123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917 |
- #include "Marlin.h"
- #include "Configuration.h"
- #include "language_all.h"
- #include "mesh_bed_calibration.h"
- #include "mesh_bed_leveling.h"
- #include "stepper.h"
- #include "ultralcd.h"
- // #include "qr_solve.h"
- extern float home_retract_mm_ext(int axis);
- float world2machine_rotation_and_skew[2][2];
- float world2machine_shift[2];
- // Weight of the Y coordinate for the least squares fitting of the bed induction sensor targets.
- // Only used for the first row of the points, which may not befully in reach of the sensor.
- #define WEIGHT_FIRST_ROW (0.2f)
- #define BED_ZERO_REF_X (- 22.f + X_PROBE_OFFSET_FROM_EXTRUDER)
- #define BED_ZERO_REF_Y (- 0.6f + Y_PROBE_OFFSET_FROM_EXTRUDER)
- // Scaling of the real machine axes against the programmed dimensions in the firmware.
- // The correction is tiny, here around 0.5mm on 250mm length.
- #define MACHINE_AXIS_SCALE_X ((250.f + 0.5f) / 250.f)
- #define MACHINE_AXIS_SCALE_Y ((250.f + 0.5f) / 250.f)
- // Positions of the bed reference points in the machine coordinates, referenced to the P.I.N.D.A sensor.
- // The points are ordered in a zig-zag fashion to speed up the calibration.
- const float bed_ref_points[] PROGMEM = {
- 13.f - BED_ZERO_REF_X, 6.4f - BED_ZERO_REF_Y,
- 115.f - BED_ZERO_REF_X, 6.4f - BED_ZERO_REF_Y,
- 216.f - BED_ZERO_REF_X, 6.4f - BED_ZERO_REF_Y,
- 216.f - BED_ZERO_REF_X, 104.4f - BED_ZERO_REF_Y,
- 115.f - BED_ZERO_REF_X, 104.4f - BED_ZERO_REF_Y,
- 13.f - BED_ZERO_REF_X, 104.4f - BED_ZERO_REF_Y,
- 13.f - BED_ZERO_REF_X, 202.4f - BED_ZERO_REF_Y,
- 115.f - BED_ZERO_REF_X, 202.4f - BED_ZERO_REF_Y,
- 216.f - BED_ZERO_REF_X, 202.4f - BED_ZERO_REF_Y
- };
- // Positions of the bed reference points in the machine coordinates, referenced to the P.I.N.D.A sensor.
- // The points are the following: center front, center right, center rear, center left.
- const float bed_ref_points_4[] PROGMEM = {
- 115.f - BED_ZERO_REF_X, 6.4f - BED_ZERO_REF_Y,
- 216.f - BED_ZERO_REF_X, 104.4f - BED_ZERO_REF_Y,
- 115.f - BED_ZERO_REF_X, 202.4f - BED_ZERO_REF_Y,
- 13.f - BED_ZERO_REF_X, 104.4f - BED_ZERO_REF_Y
- };
- //#define Y_MIN_POS_FOR_BED_CALIBRATION (MANUAL_Y_HOME_POS-0.2f)
- #define Y_MIN_POS_FOR_BED_CALIBRATION (Y_MIN_POS)
- static inline float sqr(float x) { return x * x; }
- #if 0
- // Linear Least Squares fitting of the bed to the measured induction points.
- // This method will not maintain a unity length of the machine axes.
- // This may be all right if the sensor points are measured precisely,
- // but it will stretch or shorten the machine axes if the measured data is not precise enough.
- bool calculate_machine_skew_and_offset_LS(
- // Matrix of maximum 9 2D points (18 floats)
- const float *measured_pts,
- uint8_t npts,
- const float *true_pts,
- // Resulting correction matrix.
- float *vec_x,
- float *vec_y,
- float *cntr,
- // Temporary values, 49-18-(2*3)=25 floats
- // , float *temp
- int8_t verbosity_level
- )
- {
- if (verbosity_level >= 10) {
- // Show the initial state, before the fitting.
- SERIAL_ECHOPGM("X vector, initial: ");
- MYSERIAL.print(vec_x[0], 5);
- SERIAL_ECHOPGM(", ");
- MYSERIAL.print(vec_x[1], 5);
- SERIAL_ECHOLNPGM("");
- SERIAL_ECHOPGM("Y vector, initial: ");
- MYSERIAL.print(vec_y[0], 5);
- SERIAL_ECHOPGM(", ");
- MYSERIAL.print(vec_y[1], 5);
- SERIAL_ECHOLNPGM("");
- SERIAL_ECHOPGM("center, initial: ");
- MYSERIAL.print(cntr[0], 5);
- SERIAL_ECHOPGM(", ");
- MYSERIAL.print(cntr[1], 5);
- SERIAL_ECHOLNPGM("");
- for (uint8_t i = 0; i < npts; ++ i) {
- SERIAL_ECHOPGM("point #");
- MYSERIAL.print(int(i));
- SERIAL_ECHOPGM(" measured: (");
- MYSERIAL.print(measured_pts[i*2], 5);
- SERIAL_ECHOPGM(", ");
- MYSERIAL.print(measured_pts[i*2+1], 5);
- SERIAL_ECHOPGM("); target: (");
- MYSERIAL.print(pgm_read_float(true_pts+i*2 ), 5);
- SERIAL_ECHOPGM(", ");
- MYSERIAL.print(pgm_read_float(true_pts+i*2+1), 5);
- SERIAL_ECHOPGM("), error: ");
- MYSERIAL.print(sqrt(
- sqr(pgm_read_float(true_pts+i*2 ) - measured_pts[i*2 ]) +
- sqr(pgm_read_float(true_pts+i*2+1) - measured_pts[i*2+1])), 5);
- SERIAL_ECHOLNPGM("");
- }
- delay_keep_alive(100);
- }
- {
- // Create covariance matrix for A, collect the right hand side b.
- float A[3][3] = { 0.f };
- float b[3] = { 0.f };
- float acc;
- for (uint8_t r = 0; r < 3; ++ r) {
- for (uint8_t c = 0; c < 3; ++ c) {
- acc = 0;
- for (uint8_t i = 0; i < npts; ++ i) {
- float a = (r == 2) ? 1.f : measured_pts[2 * i + r];
- float b = (c == 2) ? 1.f : measured_pts[2 * i + c];
- acc += a * b;
- }
- A[r][c] = acc;
- }
- acc = 0.f;
- for (uint8_t i = 0; i < npts; ++ i) {
- float a = (r == 2) ? 1.f : measured_pts[2 * i + r];
- float b = pgm_read_float(true_pts+i*2);
- acc += a * b;
- }
- b[r] = acc;
- }
- // Solve the linear equation for ax, bx, cx.
- float x[3] = { 0.f };
- for (uint8_t iter = 0; iter < 100; ++ iter) {
- x[0] = (b[0] - A[0][1] * x[1] - A[0][2] * x[2]) / A[0][0];
- x[1] = (b[1] - A[1][0] * x[0] - A[1][2] * x[2]) / A[1][1];
- x[2] = (b[2] - A[2][0] * x[0] - A[2][1] * x[1]) / A[2][2];
- }
- // Store the result to the output variables.
- vec_x[0] = x[0];
- vec_y[0] = x[1];
- cntr[0] = x[2];
- // Recalculate A and b for the y values.
- // Note the weighting of the first row of values.
- for (uint8_t r = 0; r < 3; ++ r) {
- for (uint8_t c = 0; c < 3; ++ c) {
- acc = 0;
- for (uint8_t i = 0; i < npts; ++ i) {
- float w = (i < 3) ? WEIGHT_FIRST_ROW : 1.f;
- float a = (r == 2) ? 1.f : measured_pts[2 * i + r];
- float b = (c == 2) ? 1.f : measured_pts[2 * i + c];
- acc += a * b * w;
- }
- A[r][c] = acc;
- }
- acc = 0.f;
- for (uint8_t i = 0; i < npts; ++ i) {
- float w = (i < 3) ? WEIGHT_FIRST_ROW : 1.f;
- float a = (r == 2) ? 1.f : measured_pts[2 * i + r];
- float b = pgm_read_float(true_pts+i*2+1);
- acc += w * a * b;
- }
- b[r] = acc;
- }
- // Solve the linear equation for ay, by, cy.
- x[0] = 0.f, x[1] = 0.f; x[2] = 0.f;
- for (uint8_t iter = 0; iter < 100; ++ iter) {
- x[0] = (b[0] - A[0][1] * x[1] - A[0][2] * x[2]) / A[0][0];
- x[1] = (b[1] - A[1][0] * x[0] - A[1][2] * x[2]) / A[1][1];
- x[2] = (b[2] - A[2][0] * x[0] - A[2][1] * x[1]) / A[2][2];
- }
- // Store the result to the output variables.
- vec_x[1] = x[0];
- vec_y[1] = x[1];
- cntr[1] = x[2];
- }
- if (verbosity_level >= 10) {
- // Show the adjusted state, before the fitting.
- SERIAL_ECHOPGM("X vector new, inverted: ");
- MYSERIAL.print(vec_x[0], 5);
- SERIAL_ECHOPGM(", ");
- MYSERIAL.print(vec_x[1], 5);
- SERIAL_ECHOLNPGM("");
- SERIAL_ECHOPGM("Y vector new, inverted: ");
- MYSERIAL.print(vec_y[0], 5);
- SERIAL_ECHOPGM(", ");
- MYSERIAL.print(vec_y[1], 5);
- SERIAL_ECHOLNPGM("");
- SERIAL_ECHOPGM("center new, inverted: ");
- MYSERIAL.print(cntr[0], 5);
- SERIAL_ECHOPGM(", ");
- MYSERIAL.print(cntr[1], 5);
- SERIAL_ECHOLNPGM("");
- delay_keep_alive(100);
- SERIAL_ECHOLNPGM("Error after correction: ");
- for (uint8_t i = 0; i < npts; ++ i) {
- float x = vec_x[0] * measured_pts[i*2] + vec_y[0] * measured_pts[i*2+1] + cntr[0];
- float y = vec_x[1] * measured_pts[i*2] + vec_y[1] * measured_pts[i*2+1] + cntr[1];
- SERIAL_ECHOPGM("point #");
- MYSERIAL.print(int(i));
- SERIAL_ECHOPGM(" measured: (");
- MYSERIAL.print(measured_pts[i*2], 5);
- SERIAL_ECHOPGM(", ");
- MYSERIAL.print(measured_pts[i*2+1], 5);
- SERIAL_ECHOPGM("); corrected: (");
- MYSERIAL.print(x, 5);
- SERIAL_ECHOPGM(", ");
- MYSERIAL.print(y, 5);
- SERIAL_ECHOPGM("); target: (");
- MYSERIAL.print(pgm_read_float(true_pts+i*2 ), 5);
- SERIAL_ECHOPGM(", ");
- MYSERIAL.print(pgm_read_float(true_pts+i*2+1), 5);
- SERIAL_ECHOPGM("), error: ");
- MYSERIAL.print(sqrt(sqr(pgm_read_float(true_pts+i*2)-x)+sqr(pgm_read_float(true_pts+i*2+1)-y)));
- SERIAL_ECHOLNPGM("");
- }
- }
- #if 0
- // Normalize the vectors. We expect, that the machine axes may be skewed a bit, but the distances are correct.
- // l shall be very close to 1 already.
- float l = sqrt(vec_x[0]*vec_x[0] + vec_x[1] * vec_x[1]);
- vec_x[0] /= l;
- vec_x[1] /= l;
- SERIAL_ECHOPGM("Length of the X vector: ");
- MYSERIAL.print(l, 5);
- SERIAL_ECHOLNPGM("");
- l = sqrt(vec_y[0]*vec_y[0] + vec_y[1] * vec_y[1]);
- vec_y[0] /= l;
- vec_y[1] /= l;
- SERIAL_ECHOPGM("Length of the Y vector: ");
- MYSERIAL.print(l, 5);
- SERIAL_ECHOLNPGM("");
- // Recalculate the center using the adjusted vec_x/vec_y
- {
- cntr[0] = 0.f;
- cntr[1] = 0.f;
- for (uint8_t i = 0; i < npts; ++ i) {
- cntr[0] += measured_pts[2 * i ] - pgm_read_float(true_pts+i*2) * vec_x[0] - pgm_read_float(true_pts+i*2+1) * vec_y[0];
- cntr[1] += measured_pts[2 * i + 1] - pgm_read_float(true_pts+i*2) * vec_x[1] - pgm_read_float(true_pts+i*2+1) * vec_y[1];
- }
- cntr[0] /= float(npts);
- cntr[1] /= float(npts);
- }
- SERIAL_ECHOPGM("X vector new, inverted, normalized: ");
- MYSERIAL.print(vec_x[0], 5);
- SERIAL_ECHOPGM(", ");
- MYSERIAL.print(vec_x[1], 5);
- SERIAL_ECHOLNPGM("");
- SERIAL_ECHOPGM("Y vector new, inverted, normalized: ");
- MYSERIAL.print(vec_y[0], 5);
- SERIAL_ECHOPGM(", ");
- MYSERIAL.print(vec_y[1], 5);
- SERIAL_ECHOLNPGM("");
- SERIAL_ECHOPGM("center new, inverted, normalized: ");
- MYSERIAL.print(cntr[0], 5);
- SERIAL_ECHOPGM(", ");
- MYSERIAL.print(cntr[1], 5);
- SERIAL_ECHOLNPGM("");
- #endif
- // Invert the transformation matrix made of vec_x, vec_y and cntr.
- {
- float d = vec_x[0] * vec_y[1] - vec_x[1] * vec_y[0];
- float Ainv[2][2] = {
- { vec_y[1] / d, - vec_y[0] / d },
- { - vec_x[1] / d, vec_x[0] / d }
- };
- float cntrInv[2] = {
- - Ainv[0][0] * cntr[0] - Ainv[0][1] * cntr[1],
- - Ainv[1][0] * cntr[0] - Ainv[1][1] * cntr[1]
- };
- vec_x[0] = Ainv[0][0];
- vec_x[1] = Ainv[1][0];
- vec_y[0] = Ainv[0][1];
- vec_y[1] = Ainv[1][1];
- cntr[0] = cntrInv[0];
- cntr[1] = cntrInv[1];
- }
- if (verbosity_level >= 1) {
- // Show the adjusted state, before the fitting.
- SERIAL_ECHOPGM("X vector, adjusted: ");
- MYSERIAL.print(vec_x[0], 5);
- SERIAL_ECHOPGM(", ");
- MYSERIAL.print(vec_x[1], 5);
- SERIAL_ECHOLNPGM("");
- SERIAL_ECHOPGM("Y vector, adjusted: ");
- MYSERIAL.print(vec_y[0], 5);
- SERIAL_ECHOPGM(", ");
- MYSERIAL.print(vec_y[1], 5);
- SERIAL_ECHOLNPGM("");
- SERIAL_ECHOPGM("center, adjusted: ");
- MYSERIAL.print(cntr[0], 5);
- SERIAL_ECHOPGM(", ");
- MYSERIAL.print(cntr[1], 5);
- SERIAL_ECHOLNPGM("");
- delay_keep_alive(100);
- }
- if (verbosity_level >= 2) {
- SERIAL_ECHOLNPGM("Difference after correction: ");
- for (uint8_t i = 0; i < npts; ++ i) {
- float x = vec_x[0] * pgm_read_float(true_pts+i*2) + vec_y[0] * pgm_read_float(true_pts+i*2+1) + cntr[0];
- float y = vec_x[1] * pgm_read_float(true_pts+i*2) + vec_y[1] * pgm_read_float(true_pts+i*2+1) + cntr[1];
- SERIAL_ECHOPGM("point #");
- MYSERIAL.print(int(i));
- SERIAL_ECHOPGM("measured: (");
- MYSERIAL.print(measured_pts[i*2], 5);
- SERIAL_ECHOPGM(", ");
- MYSERIAL.print(measured_pts[i*2+1], 5);
- SERIAL_ECHOPGM("); measured-corrected: (");
- MYSERIAL.print(x, 5);
- SERIAL_ECHOPGM(", ");
- MYSERIAL.print(y, 5);
- SERIAL_ECHOPGM("); target: (");
- MYSERIAL.print(pgm_read_float(true_pts+i*2 ), 5);
- SERIAL_ECHOPGM(", ");
- MYSERIAL.print(pgm_read_float(true_pts+i*2+1), 5);
- SERIAL_ECHOPGM("), error: ");
- MYSERIAL.print(sqrt(sqr(measured_pts[i*2]-x)+sqr(measured_pts[i*2+1]-y)));
- SERIAL_ECHOLNPGM("");
- }
- delay_keep_alive(100);
- }
- return true;
- }
- #else
- // Non-Linear Least Squares fitting of the bed to the measured induction points
- // using the Gauss-Newton method.
- // This method will maintain a unity length of the machine axes,
- // which is the correct approach if the sensor points are not measured precisely.
- bool calculate_machine_skew_and_offset_LS(
- // Matrix of maximum 9 2D points (18 floats)
- const float *measured_pts,
- uint8_t npts,
- const float *true_pts,
- // Resulting correction matrix.
- float *vec_x,
- float *vec_y,
- float *cntr,
- // Temporary values, 49-18-(2*3)=25 floats
- // , float *temp
- int8_t verbosity_level
- )
- {
- if (verbosity_level >= 10) {
- // Show the initial state, before the fitting.
- SERIAL_ECHOPGM("X vector, initial: ");
- MYSERIAL.print(vec_x[0], 5);
- SERIAL_ECHOPGM(", ");
- MYSERIAL.print(vec_x[1], 5);
- SERIAL_ECHOLNPGM("");
- SERIAL_ECHOPGM("Y vector, initial: ");
- MYSERIAL.print(vec_y[0], 5);
- SERIAL_ECHOPGM(", ");
- MYSERIAL.print(vec_y[1], 5);
- SERIAL_ECHOLNPGM("");
- SERIAL_ECHOPGM("center, initial: ");
- MYSERIAL.print(cntr[0], 5);
- SERIAL_ECHOPGM(", ");
- MYSERIAL.print(cntr[1], 5);
- SERIAL_ECHOLNPGM("");
- for (uint8_t i = 0; i < npts; ++i) {
- SERIAL_ECHOPGM("point #");
- MYSERIAL.print(int(i));
- SERIAL_ECHOPGM(" measured: (");
- MYSERIAL.print(measured_pts[i * 2], 5);
- SERIAL_ECHOPGM(", ");
- MYSERIAL.print(measured_pts[i * 2 + 1], 5);
- SERIAL_ECHOPGM("); target: (");
- MYSERIAL.print(pgm_read_float(true_pts + i * 2), 5);
- SERIAL_ECHOPGM(", ");
- MYSERIAL.print(pgm_read_float(true_pts + i * 2 + 1), 5);
- SERIAL_ECHOPGM("), error: ");
- MYSERIAL.print(sqrt(
- sqr(pgm_read_float(true_pts + i * 2) - measured_pts[i * 2]) +
- sqr(pgm_read_float(true_pts + i * 2 + 1) - measured_pts[i * 2 + 1])), 5);
- SERIAL_ECHOLNPGM("");
- }
- delay_keep_alive(100);
- }
- // Run some iterations of the Gauss-Newton method of non-linear least squares.
- // Initial set of parameters:
- // X,Y offset
- cntr[0] = 0.f;
- cntr[1] = 0.f;
- // Rotation of the machine X axis from the bed X axis.
- float a1 = 0;
- // Rotation of the machine Y axis from the bed Y axis.
- float a2 = 0;
- for (int8_t iter = 0; iter < 100; ++iter) {
- float c1 = cos(a1) * MACHINE_AXIS_SCALE_X;
- float s1 = sin(a1) * MACHINE_AXIS_SCALE_X;
- float c2 = cos(a2) * MACHINE_AXIS_SCALE_Y;
- float s2 = sin(a2) * MACHINE_AXIS_SCALE_Y;
- // Prepare the Normal equation for the Gauss-Newton method.
- float A[4][4] = { 0.f };
- float b[4] = { 0.f };
- float acc;
- for (uint8_t r = 0; r < 4; ++r) {
- for (uint8_t c = 0; c < 4; ++c) {
- acc = 0;
- // J^T times J
- for (uint8_t i = 0; i < npts; ++i) {
- // First for the residuum in the x axis:
- if (r != 1 && c != 1) {
- float a =
- (r == 0) ? 1.f :
- ((r == 2) ? (-s1 * measured_pts[2 * i]) :
- (-c2 * measured_pts[2 * i + 1]));
- float b =
- (c == 0) ? 1.f :
- ((c == 2) ? (-s1 * measured_pts[2 * i]) :
- (-c2 * measured_pts[2 * i + 1]));
- acc += a * b;
- }
- // Second for the residuum in the y axis.
- // The first row of the points have a low weight, because their position may not be known
- // with a sufficient accuracy.
- if (r != 0 && c != 0) {
- float a =
- (r == 1) ? 1.f :
- ((r == 2) ? ( c1 * measured_pts[2 * i]) :
- (-s2 * measured_pts[2 * i + 1]));
- float b =
- (c == 1) ? 1.f :
- ((c == 2) ? ( c1 * measured_pts[2 * i]) :
- (-s2 * measured_pts[2 * i + 1]));
- float w = (i < 3) ? WEIGHT_FIRST_ROW : 1.f;
- acc += a * b * w;
- }
- }
- A[r][c] = acc;
- }
- // J^T times f(x)
- acc = 0.f;
- for (uint8_t i = 0; i < npts; ++i) {
- {
- float j =
- (r == 0) ? 1.f :
- ((r == 1) ? 0.f :
- ((r == 2) ? (-s1 * measured_pts[2 * i]) :
- (-c2 * measured_pts[2 * i + 1])));
- float fx = c1 * measured_pts[2 * i] - s2 * measured_pts[2 * i + 1] + cntr[0] - pgm_read_float(true_pts + i * 2);
- acc += j * fx;
- }
- {
- float j =
- (r == 0) ? 0.f :
- ((r == 1) ? 1.f :
- ((r == 2) ? ( c1 * measured_pts[2 * i]) :
- (-s2 * measured_pts[2 * i + 1])));
- float fy = s1 * measured_pts[2 * i] + c2 * measured_pts[2 * i + 1] + cntr[1] - pgm_read_float(true_pts + i * 2 + 1);
- float w = (i < 3) ? WEIGHT_FIRST_ROW : 1.f;
- acc += j * fy * w;
- }
- }
- b[r] = -acc;
- }
- // Solve for h by a Gauss iteration method.
- float h[4] = { 0.f };
- for (uint8_t gauss_iter = 0; gauss_iter < 100; ++gauss_iter) {
- h[0] = (b[0] - A[0][1] * h[1] - A[0][2] * h[2] - A[0][3] * h[3]) / A[0][0];
- h[1] = (b[1] - A[1][0] * h[0] - A[1][2] * h[2] - A[1][3] * h[3]) / A[1][1];
- h[2] = (b[2] - A[2][0] * h[0] - A[2][1] * h[1] - A[2][3] * h[3]) / A[2][2];
- h[3] = (b[3] - A[3][0] * h[0] - A[3][1] * h[1] - A[3][2] * h[2]) / A[3][3];
- }
- // and update the current position with h.
- // It may be better to use the Levenberg-Marquart method here,
- // but because we are very close to the solution alread,
- // the simple Gauss-Newton non-linear Least Squares method works well enough.
- cntr[0] += h[0];
- cntr[1] += h[1];
- a1 += h[2];
- a2 += h[3];
- if (verbosity_level >= 20) {
- SERIAL_ECHOPGM("iteration: ");
- MYSERIAL.print(iter, 0);
- SERIAL_ECHOPGM("correction vector: ");
- MYSERIAL.print(h[0], 5);
- SERIAL_ECHOPGM(", ");
- MYSERIAL.print(h[1], 5);
- SERIAL_ECHOPGM(", ");
- MYSERIAL.print(h[2], 5);
- SERIAL_ECHOPGM(", ");
- MYSERIAL.print(h[3], 5);
- SERIAL_ECHOLNPGM("");
- SERIAL_ECHOPGM("corrected x/y: ");
- MYSERIAL.print(cntr[0], 5);
- SERIAL_ECHOPGM(", ");
- MYSERIAL.print(cntr[0], 5);
- SERIAL_ECHOLNPGM("");
- SERIAL_ECHOPGM("corrected angles: ");
- MYSERIAL.print(180.f * a1 / M_PI, 5);
- SERIAL_ECHOPGM(", ");
- MYSERIAL.print(180.f * a2 / M_PI, 5);
- SERIAL_ECHOLNPGM("");
- }
- }
- vec_x[0] = cos(a1) * MACHINE_AXIS_SCALE_X;
- vec_x[1] = sin(a1) * MACHINE_AXIS_SCALE_X;
- vec_y[0] = -sin(a2) * MACHINE_AXIS_SCALE_Y;
- vec_y[1] = cos(a2) * MACHINE_AXIS_SCALE_Y;
- if (verbosity_level >= 1) {
- SERIAL_ECHOPGM("correction angles: ");
- MYSERIAL.print(180.f * a1 / M_PI, 5);
- SERIAL_ECHOPGM(", ");
- MYSERIAL.print(180.f * a2 / M_PI, 5);
- SERIAL_ECHOLNPGM("");
- }
- if (verbosity_level >= 10) {
- // Show the adjusted state, before the fitting.
- SERIAL_ECHOPGM("X vector new, inverted: ");
- MYSERIAL.print(vec_x[0], 5);
- SERIAL_ECHOPGM(", ");
- MYSERIAL.print(vec_x[1], 5);
- SERIAL_ECHOLNPGM("");
- SERIAL_ECHOPGM("Y vector new, inverted: ");
- MYSERIAL.print(vec_y[0], 5);
- SERIAL_ECHOPGM(", ");
- MYSERIAL.print(vec_y[1], 5);
- SERIAL_ECHOLNPGM("");
- SERIAL_ECHOPGM("center new, inverted: ");
- MYSERIAL.print(cntr[0], 5);
- SERIAL_ECHOPGM(", ");
- MYSERIAL.print(cntr[1], 5);
- SERIAL_ECHOLNPGM("");
- delay_keep_alive(100);
- SERIAL_ECHOLNPGM("Error after correction: ");
- for (uint8_t i = 0; i < npts; ++i) {
- float x = vec_x[0] * measured_pts[i * 2] + vec_y[0] * measured_pts[i * 2 + 1] + cntr[0];
- float y = vec_x[1] * measured_pts[i * 2] + vec_y[1] * measured_pts[i * 2 + 1] + cntr[1];
- SERIAL_ECHOPGM("point #");
- MYSERIAL.print(int(i));
- SERIAL_ECHOPGM(" measured: (");
- MYSERIAL.print(measured_pts[i * 2], 5);
- SERIAL_ECHOPGM(", ");
- MYSERIAL.print(measured_pts[i * 2 + 1], 5);
- SERIAL_ECHOPGM("); corrected: (");
- MYSERIAL.print(x, 5);
- SERIAL_ECHOPGM(", ");
- MYSERIAL.print(y, 5);
- SERIAL_ECHOPGM("); target: (");
- MYSERIAL.print(pgm_read_float(true_pts + i * 2), 5);
- SERIAL_ECHOPGM(", ");
- MYSERIAL.print(pgm_read_float(true_pts + i * 2 + 1), 5);
- SERIAL_ECHOPGM("), error: ");
- MYSERIAL.print(sqrt(sqr(pgm_read_float(true_pts + i * 2) - x) + sqr(pgm_read_float(true_pts + i * 2 + 1) - y)));
- SERIAL_ECHOLNPGM("");
- }
- }
- // Invert the transformation matrix made of vec_x, vec_y and cntr.
- {
- float d = vec_x[0] * vec_y[1] - vec_x[1] * vec_y[0];
- float Ainv[2][2] = {
- { vec_y[1] / d, -vec_y[0] / d },
- { -vec_x[1] / d, vec_x[0] / d }
- };
- float cntrInv[2] = {
- -Ainv[0][0] * cntr[0] - Ainv[0][1] * cntr[1],
- -Ainv[1][0] * cntr[0] - Ainv[1][1] * cntr[1]
- };
- vec_x[0] = Ainv[0][0];
- vec_x[1] = Ainv[1][0];
- vec_y[0] = Ainv[0][1];
- vec_y[1] = Ainv[1][1];
- cntr[0] = cntrInv[0];
- cntr[1] = cntrInv[1];
- }
- if (verbosity_level >= 1) {
- // Show the adjusted state, before the fitting.
- SERIAL_ECHOPGM("X vector, adjusted: ");
- MYSERIAL.print(vec_x[0], 5);
- SERIAL_ECHOPGM(", ");
- MYSERIAL.print(vec_x[1], 5);
- SERIAL_ECHOLNPGM("");
- SERIAL_ECHOPGM("Y vector, adjusted: ");
- MYSERIAL.print(vec_y[0], 5);
- SERIAL_ECHOPGM(", ");
- MYSERIAL.print(vec_y[1], 5);
- SERIAL_ECHOLNPGM("");
- SERIAL_ECHOPGM("center, adjusted: ");
- MYSERIAL.print(cntr[0], 5);
- SERIAL_ECHOPGM(", ");
- MYSERIAL.print(cntr[1], 5);
- SERIAL_ECHOLNPGM("");
- delay_keep_alive(100);
- }
- if (verbosity_level >= 2) {
- SERIAL_ECHOLNPGM("Difference after correction: ");
- for (uint8_t i = 0; i < npts; ++i) {
- float x = vec_x[0] * pgm_read_float(true_pts + i * 2) + vec_y[0] * pgm_read_float(true_pts + i * 2 + 1) + cntr[0];
- float y = vec_x[1] * pgm_read_float(true_pts + i * 2) + vec_y[1] * pgm_read_float(true_pts + i * 2 + 1) + cntr[1];
- SERIAL_ECHOPGM("point #");
- MYSERIAL.print(int(i));
- SERIAL_ECHOPGM("measured: (");
- MYSERIAL.print(measured_pts[i * 2], 5);
- SERIAL_ECHOPGM(", ");
- MYSERIAL.print(measured_pts[i * 2 + 1], 5);
- SERIAL_ECHOPGM("); measured-corrected: (");
- MYSERIAL.print(x, 5);
- SERIAL_ECHOPGM(", ");
- MYSERIAL.print(y, 5);
- SERIAL_ECHOPGM("); target: (");
- MYSERIAL.print(pgm_read_float(true_pts + i * 2), 5);
- SERIAL_ECHOPGM(", ");
- MYSERIAL.print(pgm_read_float(true_pts + i * 2 + 1), 5);
- SERIAL_ECHOPGM("), error: ");
- MYSERIAL.print(sqrt(sqr(measured_pts[i * 2] - x) + sqr(measured_pts[i * 2 + 1] - y)));
- SERIAL_ECHOLNPGM("");
- }
- delay_keep_alive(100);
- }
- return true;
- }
- #endif
- void reset_bed_offset_and_skew()
- {
- eeprom_update_dword((uint32_t*)(EEPROM_BED_CALIBRATION_CENTER+0), 0x0FFFFFFFF);
- eeprom_update_dword((uint32_t*)(EEPROM_BED_CALIBRATION_CENTER+4), 0x0FFFFFFFF);
- eeprom_update_dword((uint32_t*)(EEPROM_BED_CALIBRATION_VEC_X +0), 0x0FFFFFFFF);
- eeprom_update_dword((uint32_t*)(EEPROM_BED_CALIBRATION_VEC_X +4), 0x0FFFFFFFF);
- eeprom_update_dword((uint32_t*)(EEPROM_BED_CALIBRATION_VEC_Y +0), 0x0FFFFFFFF);
- eeprom_update_dword((uint32_t*)(EEPROM_BED_CALIBRATION_VEC_Y +4), 0x0FFFFFFFF);
- }
- void world2machine_reset()
- {
- // Identity transformation.
- world2machine_rotation_and_skew[0][0] = 1.f;
- world2machine_rotation_and_skew[0][1] = 0.f;
- world2machine_rotation_and_skew[1][0] = 0.f;
- world2machine_rotation_and_skew[1][1] = 1.f;
- // Zero shift.
- world2machine_shift[0] = 0.f;
- world2machine_shift[1] = 0.f;
- }
- static inline bool vec_undef(const float v[2])
- {
- const uint32_t *vx = (const uint32_t*)v;
- return vx[0] == 0x0FFFFFFFF || vx[1] == 0x0FFFFFFFF;
- }
- void world2machine_initialize()
- {
- float cntr[2] = {
- eeprom_read_float((float*)(EEPROM_BED_CALIBRATION_CENTER+0)),
- eeprom_read_float((float*)(EEPROM_BED_CALIBRATION_CENTER+4))
- };
- float vec_x[2] = {
- eeprom_read_float((float*)(EEPROM_BED_CALIBRATION_VEC_X +0)),
- eeprom_read_float((float*)(EEPROM_BED_CALIBRATION_VEC_X +4))
- };
- float vec_y[2] = {
- eeprom_read_float((float*)(EEPROM_BED_CALIBRATION_VEC_Y +0)),
- eeprom_read_float((float*)(EEPROM_BED_CALIBRATION_VEC_Y +4))
- };
- bool reset = false;
- if (vec_undef(cntr) || vec_undef(vec_x) || vec_undef(vec_y)) {
- SERIAL_ECHOLNPGM("Undefined bed correction matrix.");
- reset = true;
- }
- else {
- // Length of the vec_x shall be close to unity.
- float l = sqrt(vec_x[0] * vec_x[0] + vec_x[1] * vec_x[1]);
- if (l < 0.9 || l > 1.1) {
- SERIAL_ECHOLNPGM("Invalid bed correction matrix. Length of the X vector out of range.");
- reset = true;
- }
- // Length of the vec_y shall be close to unity.
- l = sqrt(vec_y[0] * vec_y[0] + vec_y[1] * vec_y[1]);
- if (l < 0.9 || l > 1.1) {
- SERIAL_ECHOLNPGM("Invalid bed correction matrix. Length of the X vector out of range.");
- reset = true;
- }
- // Correction of the zero point shall be reasonably small.
- l = sqrt(cntr[0] * cntr[0] + cntr[1] * cntr[1]);
- if (l > 15.f) {
- SERIAL_ECHOLNPGM("Invalid bed correction matrix. Shift out of range.");
- reset = true;
- }
- // vec_x and vec_y shall be nearly perpendicular.
- l = vec_x[0] * vec_y[0] + vec_x[1] * vec_y[1];
- if (fabs(l) > 0.1f) {
- SERIAL_ECHOLNPGM("Invalid bed correction matrix. X/Y axes are far from being perpendicular.");
- reset = true;
- }
- }
- if (reset) {
- // SERIAL_ECHOLNPGM("Invalid bed correction matrix. Resetting to identity.");
- reset_bed_offset_and_skew();
- world2machine_reset();
- } else {
- world2machine_rotation_and_skew[0][0] = vec_x[0];
- world2machine_rotation_and_skew[1][0] = vec_x[1];
- world2machine_rotation_and_skew[0][1] = vec_y[0];
- world2machine_rotation_and_skew[1][1] = vec_y[1];
- world2machine_shift[0] = cntr[0];
- world2machine_shift[1] = cntr[1];
- }
- }
- // When switching from absolute to corrected coordinates,
- // this will get the absolute coordinates from the servos,
- // applies the inverse world2machine transformation
- // and stores the result into current_position[x,y].
- void world2machine_update_current()
- {
- // Invert the transformation matrix made of vec_x, vec_y and cntr.
- float d = world2machine_rotation_and_skew[0][0] * world2machine_rotation_and_skew[1][1] - world2machine_rotation_and_skew[1][0] * world2machine_rotation_and_skew[0][1];
- float Ainv[2][2] = {
- { world2machine_rotation_and_skew[1][1] / d, - world2machine_rotation_and_skew[0][1] / d },
- { - world2machine_rotation_and_skew[1][0] / d, world2machine_rotation_and_skew[0][0] / d }
- };
- float x = current_position[X_AXIS] - world2machine_shift[0];
- float y = current_position[Y_AXIS] - world2machine_shift[1];
- current_position[X_AXIS] = Ainv[0][0] * x + Ainv[0][1] * y;
- current_position[Y_AXIS] = Ainv[1][0] * x + Ainv[1][1] * y;
- }
- static inline void go_xyz(float x, float y, float z, float fr)
- {
- plan_buffer_line(x, y, z, current_position[E_AXIS], fr, active_extruder);
- st_synchronize();
- }
- static inline void go_xy(float x, float y, float fr)
- {
- plan_buffer_line(x, y, current_position[Z_AXIS], current_position[E_AXIS], fr, active_extruder);
- st_synchronize();
- }
- static inline void go_to_current(float fr)
- {
- plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], fr, active_extruder);
- st_synchronize();
- }
- static inline void update_current_position_xyz()
- {
- current_position[X_AXIS] = st_get_position_mm(X_AXIS);
- current_position[Y_AXIS] = st_get_position_mm(Y_AXIS);
- current_position[Z_AXIS] = st_get_position_mm(Z_AXIS);
- plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
- }
- static inline void update_current_position_z()
- {
- current_position[Z_AXIS] = st_get_position_mm(Z_AXIS);
- plan_set_z_position(current_position[Z_AXIS]);
- }
- // At the current position, find the Z stop.
- inline void find_bed_induction_sensor_point_z()
- {
- bool endstops_enabled = enable_endstops(true);
- bool endstop_z_enabled = enable_z_endstop(false);
- // move down until you find the bed
- current_position[Z_AXIS] = -10;
- go_to_current(homing_feedrate[Z_AXIS]/60);
- // we have to let the planner know where we are right now as it is not where we said to go.
- update_current_position_z();
- // move up the retract distance
- current_position[Z_AXIS] += home_retract_mm_ext(Z_AXIS);
- go_to_current(homing_feedrate[Z_AXIS]/60);
-
- // move back down slowly to find bed
- current_position[Z_AXIS] -= home_retract_mm_ext(Z_AXIS) * 2;
- go_to_current(homing_feedrate[Z_AXIS]/(4*60));
- // we have to let the planner know where we are right now as it is not where we said to go.
- update_current_position_z();
- enable_endstops(endstops_enabled);
- enable_z_endstop(endstop_z_enabled);
- }
- // Search around the current_position[X,Y],
- // look for the induction sensor response.
- // Adjust the current_position[X,Y,Z] to the center of the target dot and its response Z coordinate.
- #define FIND_BED_INDUCTION_SENSOR_POINT_X_RADIUS (8.f)
- #define FIND_BED_INDUCTION_SENSOR_POINT_Y_RADIUS (6.f)
- #define FIND_BED_INDUCTION_SENSOR_POINT_XY_STEP (1.f)
- #define FIND_BED_INDUCTION_SENSOR_POINT_Z_STEP (0.5f)
- inline bool find_bed_induction_sensor_point_xy()
- {
- float feedrate = homing_feedrate[X_AXIS] / 60.f;
- bool found = false;
- {
- float x0 = current_position[X_AXIS] - FIND_BED_INDUCTION_SENSOR_POINT_X_RADIUS;
- float x1 = current_position[X_AXIS] + FIND_BED_INDUCTION_SENSOR_POINT_X_RADIUS;
- float y0 = current_position[Y_AXIS] - FIND_BED_INDUCTION_SENSOR_POINT_Y_RADIUS;
- float y1 = current_position[Y_AXIS] + FIND_BED_INDUCTION_SENSOR_POINT_Y_RADIUS;
- uint8_t nsteps_y;
- uint8_t i;
- if (x0 < X_MIN_POS)
- x0 = X_MIN_POS;
- if (x1 > X_MAX_POS)
- x1 = X_MAX_POS;
- if (y0 < Y_MIN_POS_FOR_BED_CALIBRATION)
- y0 = Y_MIN_POS_FOR_BED_CALIBRATION;
- if (y1 > Y_MAX_POS)
- y1 = Y_MAX_POS;
- nsteps_y = int(ceil((y1 - y0) / FIND_BED_INDUCTION_SENSOR_POINT_XY_STEP));
- enable_endstops(false);
- bool dir_positive = true;
- // go_xyz(current_position[X_AXIS], current_position[Y_AXIS], MESH_HOME_Z_SEARCH, homing_feedrate[Z_AXIS]/60);
- go_xyz(x0, y0, current_position[Z_AXIS], feedrate);
- // Continously lower the Z axis.
- endstops_hit_on_purpose();
- enable_z_endstop(true);
- while (current_position[Z_AXIS] > -10.f) {
- // Do nsteps_y zig-zag movements.
- current_position[Y_AXIS] = y0;
- for (i = 0; i < nsteps_y; current_position[Y_AXIS] += (y1 - y0) / float(nsteps_y - 1), ++ i) {
- // Run with a slightly decreasing Z axis, zig-zag movement. Stop at the Z end-stop.
- current_position[Z_AXIS] -= FIND_BED_INDUCTION_SENSOR_POINT_Z_STEP / float(nsteps_y);
- go_xyz(dir_positive ? x1 : x0, current_position[Y_AXIS], current_position[Z_AXIS], feedrate);
- dir_positive = ! dir_positive;
- if (endstop_z_hit_on_purpose())
- goto endloop;
- }
- for (i = 0; i < nsteps_y; current_position[Y_AXIS] -= (y1 - y0) / float(nsteps_y - 1), ++ i) {
- // Run with a slightly decreasing Z axis, zig-zag movement. Stop at the Z end-stop.
- current_position[Z_AXIS] -= FIND_BED_INDUCTION_SENSOR_POINT_Z_STEP / float(nsteps_y);
- go_xyz(dir_positive ? x1 : x0, current_position[Y_AXIS], current_position[Z_AXIS], feedrate);
- dir_positive = ! dir_positive;
- if (endstop_z_hit_on_purpose())
- goto endloop;
- }
- }
- endloop:
- // SERIAL_ECHOLN("First hit");
- // we have to let the planner know where we are right now as it is not where we said to go.
- update_current_position_xyz();
- // Search in this plane for the first hit. Zig-zag first in X, then in Y axis.
- for (int8_t iter = 0; iter < 3; ++ iter) {
- if (iter > 0) {
- // Slightly lower the Z axis to get a reliable trigger.
- current_position[Z_AXIS] -= 0.02f;
- go_xyz(current_position[X_AXIS], current_position[Y_AXIS], MESH_HOME_Z_SEARCH, homing_feedrate[Z_AXIS]/60);
- }
- // Do nsteps_y zig-zag movements.
- float a, b;
- enable_endstops(false);
- enable_z_endstop(false);
- current_position[Y_AXIS] = y0;
- go_xy(x0, current_position[Y_AXIS], feedrate);
- enable_z_endstop(true);
- found = false;
- for (i = 0, dir_positive = true; i < nsteps_y; current_position[Y_AXIS] += (y1 - y0) / float(nsteps_y - 1), ++ i, dir_positive = ! dir_positive) {
- go_xy(dir_positive ? x1 : x0, current_position[Y_AXIS], feedrate);
- if (endstop_z_hit_on_purpose()) {
- found = true;
- break;
- }
- }
- update_current_position_xyz();
- if (! found) {
- // SERIAL_ECHOLN("Search in Y - not found");
- continue;
- }
- // SERIAL_ECHOLN("Search in Y - found");
- a = current_position[Y_AXIS];
- enable_z_endstop(false);
- current_position[Y_AXIS] = y1;
- go_xy(x0, current_position[Y_AXIS], feedrate);
- enable_z_endstop(true);
- found = false;
- for (i = 0, dir_positive = true; i < nsteps_y; current_position[Y_AXIS] -= (y1 - y0) / float(nsteps_y - 1), ++ i, dir_positive = ! dir_positive) {
- go_xy(dir_positive ? x1 : x0, current_position[Y_AXIS], feedrate);
- if (endstop_z_hit_on_purpose()) {
- found = true;
- break;
- }
- }
- update_current_position_xyz();
- if (! found) {
- // SERIAL_ECHOLN("Search in Y2 - not found");
- continue;
- }
- // SERIAL_ECHOLN("Search in Y2 - found");
- b = current_position[Y_AXIS];
- current_position[Y_AXIS] = 0.5f * (a + b);
- // Search in the X direction along a cross.
- found = false;
- enable_z_endstop(false);
- go_xy(x0, current_position[Y_AXIS], feedrate);
- enable_z_endstop(true);
- go_xy(x1, current_position[Y_AXIS], feedrate);
- update_current_position_xyz();
- if (! endstop_z_hit_on_purpose()) {
- // SERIAL_ECHOLN("Search X span 0 - not found");
- continue;
- }
- // SERIAL_ECHOLN("Search X span 0 - found");
- a = current_position[X_AXIS];
- enable_z_endstop(false);
- go_xy(x1, current_position[Y_AXIS], feedrate);
- enable_z_endstop(true);
- go_xy(x0, current_position[Y_AXIS], feedrate);
- update_current_position_xyz();
- if (! endstop_z_hit_on_purpose()) {
- // SERIAL_ECHOLN("Search X span 1 - not found");
- continue;
- }
- // SERIAL_ECHOLN("Search X span 1 - found");
- b = current_position[X_AXIS];
- // Go to the center.
- enable_z_endstop(false);
- current_position[X_AXIS] = 0.5f * (a + b);
- go_xy(current_position[X_AXIS], current_position[Y_AXIS], feedrate);
- found = true;
- #if 1
- // Search in the Y direction along a cross.
- found = false;
- enable_z_endstop(false);
- go_xy(current_position[X_AXIS], y0, feedrate);
- enable_z_endstop(true);
- go_xy(current_position[X_AXIS], y1, feedrate);
- update_current_position_xyz();
- if (! endstop_z_hit_on_purpose()) {
- // SERIAL_ECHOLN("Search Y2 span 0 - not found");
- continue;
- }
- // SERIAL_ECHOLN("Search Y2 span 0 - found");
- a = current_position[Y_AXIS];
- enable_z_endstop(false);
- go_xy(current_position[X_AXIS], y1, feedrate);
- enable_z_endstop(true);
- go_xy(current_position[X_AXIS], y0, feedrate);
- update_current_position_xyz();
- if (! endstop_z_hit_on_purpose()) {
- // SERIAL_ECHOLN("Search Y2 span 1 - not found");
- continue;
- }
- // SERIAL_ECHOLN("Search Y2 span 1 - found");
- b = current_position[Y_AXIS];
- // Go to the center.
- enable_z_endstop(false);
- current_position[Y_AXIS] = 0.5f * (a + b);
- go_xy(current_position[X_AXIS], current_position[Y_AXIS], feedrate);
- found = true;
- #endif
- break;
- }
- }
- enable_z_endstop(false);
- return found;
- }
- // Search around the current_position[X,Y,Z].
- // It is expected, that the induction sensor is switched on at the current position.
- // Look around this center point by painting a star around the point.
- inline bool improve_bed_induction_sensor_point()
- {
- static const float search_radius = 8.f;
- bool endstops_enabled = enable_endstops(false);
- bool endstop_z_enabled = enable_z_endstop(false);
- bool found = false;
- float feedrate = homing_feedrate[X_AXIS] / 60.f;
- float center_old_x = current_position[X_AXIS];
- float center_old_y = current_position[Y_AXIS];
- float center_x = 0.f;
- float center_y = 0.f;
- for (uint8_t iter = 0; iter < 4; ++ iter) {
- switch (iter) {
- case 0:
- destination[X_AXIS] = center_old_x - search_radius * 0.707;
- destination[Y_AXIS] = center_old_y - search_radius * 0.707;
- break;
- case 1:
- destination[X_AXIS] = center_old_x + search_radius * 0.707;
- destination[Y_AXIS] = center_old_y + search_radius * 0.707;
- break;
- case 2:
- destination[X_AXIS] = center_old_x + search_radius * 0.707;
- destination[Y_AXIS] = center_old_y - search_radius * 0.707;
- break;
- case 3:
- default:
- destination[X_AXIS] = center_old_x - search_radius * 0.707;
- destination[Y_AXIS] = center_old_y + search_radius * 0.707;
- break;
- }
- // Trim the vector from center_old_[x,y] to destination[x,y] by the bed dimensions.
- float vx = destination[X_AXIS] - center_old_x;
- float vy = destination[Y_AXIS] - center_old_y;
- float l = sqrt(vx*vx+vy*vy);
- float t;
- if (destination[X_AXIS] < X_MIN_POS) {
- // Exiting the bed at xmin.
- t = (center_x - X_MIN_POS) / l;
- destination[X_AXIS] = X_MIN_POS;
- destination[Y_AXIS] = center_old_y + t * vy;
- } else if (destination[X_AXIS] > X_MAX_POS) {
- // Exiting the bed at xmax.
- t = (X_MAX_POS - center_x) / l;
- destination[X_AXIS] = X_MAX_POS;
- destination[Y_AXIS] = center_old_y + t * vy;
- }
- if (destination[Y_AXIS] < Y_MIN_POS_FOR_BED_CALIBRATION) {
- // Exiting the bed at ymin.
- t = (center_y - Y_MIN_POS_FOR_BED_CALIBRATION) / l;
- destination[X_AXIS] = center_old_x + t * vx;
- destination[Y_AXIS] = Y_MIN_POS_FOR_BED_CALIBRATION;
- } else if (destination[Y_AXIS] > Y_MAX_POS) {
- // Exiting the bed at xmax.
- t = (Y_MAX_POS - center_y) / l;
- destination[X_AXIS] = center_old_x + t * vx;
- destination[Y_AXIS] = Y_MAX_POS;
- }
- // Move away from the measurement point.
- enable_endstops(false);
- go_xy(destination[X_AXIS], destination[Y_AXIS], feedrate);
- // Move towards the measurement point, until the induction sensor triggers.
- enable_endstops(true);
- go_xy(center_old_x, center_old_y, feedrate);
- update_current_position_xyz();
- // if (! endstop_z_hit_on_purpose()) return false;
- center_x += current_position[X_AXIS];
- center_y += current_position[Y_AXIS];
- }
- // Calculate the new center, move to the new center.
- center_x /= 4.f;
- center_y /= 4.f;
- current_position[X_AXIS] = center_x;
- current_position[Y_AXIS] = center_y;
- enable_endstops(false);
- go_xy(current_position[X_AXIS], current_position[Y_AXIS], feedrate);
- enable_endstops(endstops_enabled);
- enable_z_endstop(endstop_z_enabled);
- return found;
- }
- // Search around the current_position[X,Y,Z].
- // It is expected, that the induction sensor is switched on at the current position.
- // Look around this center point by painting a star around the point.
- #define IMPROVE_BED_INDUCTION_SENSOR_SEARCH_RADIUS (8.f)
- inline bool improve_bed_induction_sensor_point2(bool lift_z_on_min_y)
- {
- float center_old_x = current_position[X_AXIS];
- float center_old_y = current_position[Y_AXIS];
- float a, b;
- enable_endstops(false);
- {
- float x0 = center_old_x - IMPROVE_BED_INDUCTION_SENSOR_SEARCH_RADIUS;
- float x1 = center_old_x + IMPROVE_BED_INDUCTION_SENSOR_SEARCH_RADIUS;
- if (x0 < X_MIN_POS)
- x0 = X_MIN_POS;
- if (x1 > X_MAX_POS)
- x1 = X_MAX_POS;
- // Search in the X direction along a cross.
- enable_z_endstop(false);
- go_xy(x0, current_position[Y_AXIS], homing_feedrate[X_AXIS] / 60.f);
- enable_z_endstop(true);
- go_xy(x1, current_position[Y_AXIS], homing_feedrate[X_AXIS] / 60.f);
- update_current_position_xyz();
- if (! endstop_z_hit_on_purpose()) {
- current_position[X_AXIS] = center_old_x;
- goto canceled;
- }
- a = current_position[X_AXIS];
- enable_z_endstop(false);
- go_xy(x1, current_position[Y_AXIS], homing_feedrate[X_AXIS] / 60.f);
- enable_z_endstop(true);
- go_xy(x0, current_position[Y_AXIS], homing_feedrate[X_AXIS] / 60.f);
- update_current_position_xyz();
- if (! endstop_z_hit_on_purpose()) {
- current_position[X_AXIS] = center_old_x;
- goto canceled;
- }
- b = current_position[X_AXIS];
- // Go to the center.
- enable_z_endstop(false);
- current_position[X_AXIS] = 0.5f * (a + b);
- go_xy(current_position[X_AXIS], current_position[Y_AXIS], homing_feedrate[X_AXIS] / 60.f);
- }
- {
- float y0 = center_old_y - IMPROVE_BED_INDUCTION_SENSOR_SEARCH_RADIUS;
- float y1 = center_old_y + IMPROVE_BED_INDUCTION_SENSOR_SEARCH_RADIUS;
- if (y0 < Y_MIN_POS_FOR_BED_CALIBRATION)
- y0 = Y_MIN_POS_FOR_BED_CALIBRATION;
- if (y1 > Y_MAX_POS)
- y1 = Y_MAX_POS;
- // Search in the Y direction along a cross.
- enable_z_endstop(false);
- go_xy(current_position[X_AXIS], y0, homing_feedrate[X_AXIS] / 60.f);
- if (lift_z_on_min_y) {
- // The first row of points are very close to the end stop.
- // Lift the sensor to disengage the trigger. This is necessary because of the sensor hysteresis.
- go_xyz(current_position[X_AXIS], y0, current_position[Z_AXIS]+1.5f, homing_feedrate[Z_AXIS] / 60.f);
- // and go back.
- go_xyz(current_position[X_AXIS], y0, current_position[Z_AXIS], homing_feedrate[Z_AXIS] / 60.f);
- }
- if (lift_z_on_min_y && (READ(Z_MIN_PIN) ^ Z_MIN_ENDSTOP_INVERTING) == 1) {
- // Already triggering before we started the move.
- // Shift the trigger point slightly outwards.
- // a = current_position[Y_AXIS] - 1.5f;
- a = current_position[Y_AXIS];
- } else {
- enable_z_endstop(true);
- go_xy(current_position[X_AXIS], y1, homing_feedrate[X_AXIS] / 60.f);
- update_current_position_xyz();
- if (! endstop_z_hit_on_purpose()) {
- current_position[Y_AXIS] = center_old_y;
- goto canceled;
- }
- a = current_position[Y_AXIS];
- }
- enable_z_endstop(false);
- go_xy(current_position[X_AXIS], y1, homing_feedrate[X_AXIS] / 60.f);
- enable_z_endstop(true);
- go_xy(current_position[X_AXIS], y0, homing_feedrate[X_AXIS] / 60.f);
- update_current_position_xyz();
- if (! endstop_z_hit_on_purpose()) {
- current_position[Y_AXIS] = center_old_y;
- goto canceled;
- }
- b = current_position[Y_AXIS];
- // Go to the center.
- enable_z_endstop(false);
- current_position[Y_AXIS] = 0.5f * (a + b);
- go_xy(current_position[X_AXIS], current_position[Y_AXIS], homing_feedrate[X_AXIS] / 60.f);
- }
- return true;
- canceled:
- // Go back to the center.
- enable_z_endstop(false);
- go_xy(current_position[X_AXIS], current_position[Y_AXIS], homing_feedrate[X_AXIS] / 60.f);
- return false;
- }
- // Searching the front points, where one cannot move the sensor head in front of the sensor point.
- // Searching in a zig-zag movement in a plane for the maximum width of the response.
- #define IMPROVE_BED_INDUCTION_SENSOR_POINT3_SEARCH_RADIUS (4.f)
- #define IMPROVE_BED_INDUCTION_SENSOR_POINT3_SEARCH_STEP_FINE_Y (0.1f)
- inline bool improve_bed_induction_sensor_point3(int verbosity_level)
- {
- float center_old_x = current_position[X_AXIS];
- float center_old_y = current_position[Y_AXIS];
- float a, b;
- {
- float x0 = center_old_x - IMPROVE_BED_INDUCTION_SENSOR_POINT3_SEARCH_RADIUS;
- float x1 = center_old_x + IMPROVE_BED_INDUCTION_SENSOR_POINT3_SEARCH_RADIUS;
- float y0 = center_old_y - IMPROVE_BED_INDUCTION_SENSOR_POINT3_SEARCH_RADIUS;
- float y1 = center_old_y + IMPROVE_BED_INDUCTION_SENSOR_POINT3_SEARCH_RADIUS;
- float y = y0;
- if (x0 < X_MIN_POS)
- x0 = X_MIN_POS;
- if (x1 > X_MAX_POS)
- x1 = X_MAX_POS;
- if (y0 < Y_MIN_POS_FOR_BED_CALIBRATION)
- y0 = Y_MIN_POS_FOR_BED_CALIBRATION;
- if (y1 > Y_MAX_POS)
- y1 = Y_MAX_POS;
- if (verbosity_level >= 20) {
- SERIAL_ECHOPGM("Initial position: ");
- SERIAL_ECHO(center_old_x);
- SERIAL_ECHOPGM(", ");
- SERIAL_ECHO(center_old_y);
- SERIAL_ECHOLNPGM("");
- }
- // Search in the positive Y direction, until a maximum diameter is found.
- float dmax = 0.f;
- float xmax1 = 0.f;
- float xmax2 = 0.f;
- for (float y = y0; y < y1; y += IMPROVE_BED_INDUCTION_SENSOR_POINT3_SEARCH_STEP_FINE_Y) {
- enable_z_endstop(false);
- go_xy(x0, y, homing_feedrate[X_AXIS] / 60.f);
- enable_z_endstop(true);
- go_xy(x1, y, homing_feedrate[X_AXIS] / 60.f);
- update_current_position_xyz();
- if (! endstop_z_hit_on_purpose()) {
- continue;
- // SERIAL_PROTOCOLPGM("Failed 1\n");
- // current_position[X_AXIS] = center_old_x;
- // goto canceled;
- }
- a = current_position[X_AXIS];
- enable_z_endstop(false);
- go_xy(x1, y, homing_feedrate[X_AXIS] / 60.f);
- enable_z_endstop(true);
- go_xy(x0, y, homing_feedrate[X_AXIS] / 60.f);
- update_current_position_xyz();
- if (! endstop_z_hit_on_purpose()) {
- continue;
- // SERIAL_PROTOCOLPGM("Failed 2\n");
- // current_position[X_AXIS] = center_old_x;
- // goto canceled;
- }
- b = current_position[X_AXIS];
- if (verbosity_level > 20) {
- SERIAL_ECHOPGM("Measured left ");
- MYSERIAL.print(a, 5);
- SERIAL_ECHOPGM("right ");
- MYSERIAL.print(b, 5);
- SERIAL_ECHOPGM(", ");
- MYSERIAL.print(y, 5);
- SERIAL_ECHOPGM(", ");
- MYSERIAL.print(current_position[Z_AXIS], 5);
- SERIAL_ECHOLNPGM("");
- }
- float d = b - a;
- if (d > dmax) {
- xmax1 = 0.5f * (a + b);
- dmax = d;
- } else if (dmax > 0.) {
- y0 = y - IMPROVE_BED_INDUCTION_SENSOR_POINT3_SEARCH_STEP_FINE_Y;
- break;
- }
- }
- if (dmax == 0.) {
- SERIAL_PROTOCOLPGM("failed - not found\n");
- goto canceled;
- }
- SERIAL_PROTOCOLPGM("ok 1\n");
- // Search in the negative Y direction, until a maximum diameter is found.
- dmax = 0.;
- if (y0 + 1.f < y1)
- y1 = y0 + 1.f;
- for (float y = y1; y >= y0; y -= IMPROVE_BED_INDUCTION_SENSOR_POINT3_SEARCH_STEP_FINE_Y) {
- enable_z_endstop(false);
- go_xy(x0, y, homing_feedrate[X_AXIS] / 60.f);
- enable_z_endstop(true);
- go_xy(x1, y, homing_feedrate[X_AXIS] / 60.f);
- update_current_position_xyz();
- if (! endstop_z_hit_on_purpose()) {
- continue;
- /*
- current_position[X_AXIS] = center_old_x;
- SERIAL_PROTOCOLPGM("Failed 3\n");
- goto canceled;
- */
- }
- a = current_position[X_AXIS];
- enable_z_endstop(false);
- go_xy(x1, y, homing_feedrate[X_AXIS] / 60.f);
- enable_z_endstop(true);
- go_xy(x0, y, homing_feedrate[X_AXIS] / 60.f);
- update_current_position_xyz();
- if (! endstop_z_hit_on_purpose()) {
- continue;
- /*
- current_position[X_AXIS] = center_old_x;
- SERIAL_PROTOCOLPGM("Failed 4\n");
- goto canceled;
- */
- }
- b = current_position[X_AXIS];
- if (verbosity_level > 20) {
- SERIAL_ECHOPGM("Measured left ");
- MYSERIAL.print(a, 5);
- SERIAL_ECHOPGM("right ");
- MYSERIAL.print(b, 5);
- SERIAL_ECHOPGM(", ");
- MYSERIAL.print(y, 5);
- SERIAL_ECHOPGM(", ");
- MYSERIAL.print(current_position[Z_AXIS], 5);
- SERIAL_ECHOLNPGM("");
- }
- float d = b - a;
- if (d > dmax) {
- xmax2 = 0.5f * (a + b);
- dmax = d;
- } else if (dmax > 0.) {
- y1 = y + IMPROVE_BED_INDUCTION_SENSOR_POINT3_SEARCH_STEP_FINE_Y;
- break;
- }
- }
- // SERIAL_PROTOCOLPGM("ok 2\n");
- // Go to the center.
- enable_z_endstop(false);
- if (dmax == 0.f) {
- // Found only the point going from ymin to ymax.
- current_position[X_AXIS] = xmax1;
- current_position[Y_AXIS] = y0;
- } else {
- // Both points found (from ymin to ymax and from ymax to ymin).
- float p = 0.5f;
- // If the first hit was on the machine boundary,
- // give it a higher weight.
- if (y0 == Y_MIN_POS_FOR_BED_CALIBRATION)
- p = 0.75f;
- current_position[X_AXIS] = p * xmax1 + (1.f - p) * xmax2;
- current_position[Y_AXIS] = p * y0 + (1.f - p) * y1;
- }
- if (verbosity_level >= 20) {
- SERIAL_ECHOPGM("Adjusted position: ");
- SERIAL_ECHO(current_position[X_AXIS]);
- SERIAL_ECHOPGM(", ");
- SERIAL_ECHO(current_position[Y_AXIS]);
- SERIAL_ECHOLNPGM("");
- }
- go_xy(current_position[X_AXIS], current_position[Y_AXIS], homing_feedrate[X_AXIS] / 60.f);
- // delay_keep_alive(3000);
- }
- // Try yet to improve the X position.
- {
- float x0 = current_position[X_AXIS] - IMPROVE_BED_INDUCTION_SENSOR_SEARCH_RADIUS;
- float x1 = current_position[X_AXIS] + IMPROVE_BED_INDUCTION_SENSOR_SEARCH_RADIUS;
- if (x0 < X_MIN_POS)
- x0 = X_MIN_POS;
- if (x1 > X_MAX_POS)
- x1 = X_MAX_POS;
- // Search in the X direction along a cross.
- enable_z_endstop(false);
- go_xy(x0, current_position[Y_AXIS], homing_feedrate[X_AXIS] / 60.f);
- enable_z_endstop(true);
- go_xy(x1, current_position[Y_AXIS], homing_feedrate[X_AXIS] / 60.f);
- update_current_position_xyz();
- if (! endstop_z_hit_on_purpose()) {
- current_position[X_AXIS] = center_old_x;
- goto canceled;
- }
- a = current_position[X_AXIS];
- enable_z_endstop(false);
- go_xy(x1, current_position[Y_AXIS], homing_feedrate[X_AXIS] / 60.f);
- enable_z_endstop(true);
- go_xy(x0, current_position[Y_AXIS], homing_feedrate[X_AXIS] / 60.f);
- update_current_position_xyz();
- if (! endstop_z_hit_on_purpose()) {
- current_position[X_AXIS] = center_old_x;
- goto canceled;
- }
- b = current_position[X_AXIS];
- // Go to the center.
- enable_z_endstop(false);
- current_position[X_AXIS] = 0.5f * (a + b);
- go_xy(current_position[X_AXIS], current_position[Y_AXIS], homing_feedrate[X_AXIS] / 60.f);
- }
- return true;
- canceled:
- // Go back to the center.
- enable_z_endstop(false);
- go_xy(current_position[X_AXIS], current_position[Y_AXIS], homing_feedrate[X_AXIS] / 60.f);
- return false;
- }
- // Scan the mesh bed induction points one by one by a left-right zig-zag movement,
- // write the trigger coordinates to the serial line.
- // Useful for visualizing the behavior of the bed induction detector.
- inline void scan_bed_induction_sensor_point()
- {
- float center_old_x = current_position[X_AXIS];
- float center_old_y = current_position[Y_AXIS];
- float x0 = center_old_x - IMPROVE_BED_INDUCTION_SENSOR_POINT3_SEARCH_RADIUS;
- float x1 = center_old_x + IMPROVE_BED_INDUCTION_SENSOR_POINT3_SEARCH_RADIUS;
- float y0 = center_old_y - IMPROVE_BED_INDUCTION_SENSOR_POINT3_SEARCH_RADIUS;
- float y1 = center_old_y + IMPROVE_BED_INDUCTION_SENSOR_POINT3_SEARCH_RADIUS;
- float y = y0;
- if (x0 < X_MIN_POS)
- x0 = X_MIN_POS;
- if (x1 > X_MAX_POS)
- x1 = X_MAX_POS;
- if (y0 < Y_MIN_POS_FOR_BED_CALIBRATION)
- y0 = Y_MIN_POS_FOR_BED_CALIBRATION;
- if (y1 > Y_MAX_POS)
- y1 = Y_MAX_POS;
- for (float y = y0; y < y1; y += IMPROVE_BED_INDUCTION_SENSOR_POINT3_SEARCH_STEP_FINE_Y) {
- enable_z_endstop(false);
- go_xy(x0, y, homing_feedrate[X_AXIS] / 60.f);
- enable_z_endstop(true);
- go_xy(x1, y, homing_feedrate[X_AXIS] / 60.f);
- update_current_position_xyz();
- if (endstop_z_hit_on_purpose()) {
- SERIAL_ECHOPGM("Measured left: ");
- MYSERIAL.print(current_position[X_AXIS], 5);
- SERIAL_ECHOPGM(", ");
- MYSERIAL.print(y, 5);
- SERIAL_ECHOPGM(", ");
- MYSERIAL.print(current_position[Z_AXIS], 5);
- SERIAL_ECHOLNPGM("");
- }
- enable_z_endstop(false);
- go_xy(x1, y, homing_feedrate[X_AXIS] / 60.f);
- enable_z_endstop(true);
- go_xy(x0, y, homing_feedrate[X_AXIS] / 60.f);
- update_current_position_xyz();
- if (endstop_z_hit_on_purpose()) {
- SERIAL_ECHOPGM("Measured right: ");
- MYSERIAL.print(current_position[X_AXIS], 5);
- SERIAL_ECHOPGM(", ");
- MYSERIAL.print(y, 5);
- SERIAL_ECHOPGM(", ");
- MYSERIAL.print(current_position[Z_AXIS], 5);
- SERIAL_ECHOLNPGM("");
- }
- }
- enable_z_endstop(false);
- current_position[X_AXIS] = center_old_x;
- current_position[Y_AXIS] = center_old_y;
- go_xy(current_position[X_AXIS], current_position[Y_AXIS], homing_feedrate[X_AXIS] / 60.f);
- }
- #define MESH_BED_CALIBRATION_SHOW_LCD
- bool find_bed_offset_and_skew(int8_t verbosity_level)
- {
- // Don't let the manage_inactivity() function remove power from the motors.
- refresh_cmd_timeout();
- // Reusing the z_values memory for the measurement cache.
- // 7x7=49 floats, good for 16 (x,y,z) vectors.
- float *pts = &mbl.z_values[0][0];
- float *vec_x = pts + 2 * 4;
- float *vec_y = vec_x + 2;
- float *cntr = vec_y + 2;
- memset(pts, 0, sizeof(float) * 7 * 7);
- // SERIAL_ECHOLNPGM("find_bed_offset_and_skew verbosity level: ");
- // SERIAL_ECHO(int(verbosity_level));
- // SERIAL_ECHOPGM("");
- #ifdef MESH_BED_CALIBRATION_SHOW_LCD
- lcd_implementation_clear();
- lcd_print_at_PGM(0, 0, MSG_FIND_BED_OFFSET_AND_SKEW_LINE1);
- #endif /* MESH_BED_CALIBRATION_SHOW_LCD */
- // Collect the rear 2x3 points.
- current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
- for (int k = 0; k < 4; ++ k) {
- // Don't let the manage_inactivity() function remove power from the motors.
- refresh_cmd_timeout();
- #ifdef MESH_BED_CALIBRATION_SHOW_LCD
- lcd_print_at_PGM(0, 1, MSG_FIND_BED_OFFSET_AND_SKEW_LINE2);
- lcd_implementation_print_at(0, 2, k+1);
- lcd_printPGM(MSG_FIND_BED_OFFSET_AND_SKEW_LINE3);
- #endif /* MESH_BED_CALIBRATION_SHOW_LCD */
- float *pt = pts + k * 2;
- // Go up to z_initial.
- go_to_current(homing_feedrate[Z_AXIS] / 60.f);
- if (verbosity_level >= 20) {
- // Go to Y0, wait, then go to Y-4.
- current_position[Y_AXIS] = 0.f;
- go_to_current(homing_feedrate[X_AXIS] / 60.f);
- SERIAL_ECHOLNPGM("At Y0");
- delay_keep_alive(5000);
- current_position[Y_AXIS] = Y_MIN_POS;
- go_to_current(homing_feedrate[X_AXIS] / 60.f);
- SERIAL_ECHOLNPGM("At Y-4");
- delay_keep_alive(5000);
- }
- // Go to the measurement point position.
- current_position[X_AXIS] = pgm_read_float(bed_ref_points_4+k*2);
- current_position[Y_AXIS] = pgm_read_float(bed_ref_points_4+k*2+1);
- go_to_current(homing_feedrate[X_AXIS] / 60.f);
- if (verbosity_level >= 10)
- delay_keep_alive(3000);
- if (! find_bed_induction_sensor_point_xy())
- return false;
- find_bed_induction_sensor_point_z();
- #if 1
- if (k == 0) {
- // Improve the position of the 1st row sensor points by a zig-zag movement.
- int8_t i = 4;
- for (;;) {
- if (improve_bed_induction_sensor_point3(verbosity_level))
- break;
- if (-- i == 0)
- return false;
- // Try to move the Z axis down a bit to increase a chance of the sensor to trigger.
- current_position[Z_AXIS] -= 0.025f;
- enable_endstops(false);
- enable_z_endstop(false);
- go_to_current(homing_feedrate[Z_AXIS]);
- }
- if (i == 0)
- // not found
- return false;
- }
- #endif
- if (verbosity_level >= 10)
- delay_keep_alive(3000);
- pt[0] = current_position[X_AXIS];
- pt[1] = current_position[Y_AXIS];
- // Start searching for the other points at 3mm above the last point.
- current_position[Z_AXIS] += 3.f;
- cntr[0] += pt[0];
- cntr[1] += pt[1];
- if (verbosity_level >= 10 && k == 0) {
- // Show the zero. Test, whether the Y motor skipped steps.
- current_position[Y_AXIS] = MANUAL_Y_HOME_POS;
- go_to_current(homing_feedrate[X_AXIS] / 60.f);
- delay_keep_alive(3000);
- }
- }
- if (verbosity_level >= 20) {
- // Test the positions. Are the positions reproducible? Now the calibration is active in the planner.
- delay_keep_alive(3000);
- for (int8_t mesh_point = 0; mesh_point < 4; ++ mesh_point) {
- // Don't let the manage_inactivity() function remove power from the motors.
- refresh_cmd_timeout();
- // Go to the measurement point.
- // Use the coorrected coordinate, which is a result of find_bed_offset_and_skew().
- current_position[X_AXIS] = pts[mesh_point*2];
- current_position[Y_AXIS] = pts[mesh_point*2+1];
- go_to_current(homing_feedrate[X_AXIS]/60);
- delay_keep_alive(3000);
- }
- }
- calculate_machine_skew_and_offset_LS(pts, 4, bed_ref_points_4, vec_x, vec_y, cntr, verbosity_level);
- world2machine_rotation_and_skew[0][0] = vec_x[0];
- world2machine_rotation_and_skew[1][0] = vec_x[1];
- world2machine_rotation_and_skew[0][1] = vec_y[0];
- world2machine_rotation_and_skew[1][1] = vec_y[1];
- world2machine_shift[0] = cntr[0];
- world2machine_shift[1] = cntr[1];
- #if 1
- // Fearlessly store the calibration values into the eeprom.
- eeprom_update_float((float*)(EEPROM_BED_CALIBRATION_CENTER+0), cntr [0]);
- eeprom_update_float((float*)(EEPROM_BED_CALIBRATION_CENTER+4), cntr [1]);
- eeprom_update_float((float*)(EEPROM_BED_CALIBRATION_VEC_X +0), vec_x[0]);
- eeprom_update_float((float*)(EEPROM_BED_CALIBRATION_VEC_X +4), vec_x[1]);
- eeprom_update_float((float*)(EEPROM_BED_CALIBRATION_VEC_Y +0), vec_y[0]);
- eeprom_update_float((float*)(EEPROM_BED_CALIBRATION_VEC_Y +4), vec_y[1]);
- #endif
- // Correct the current_position to match the transformed coordinate system after world2machine_rotation_and_skew and world2machine_shift were set.
- world2machine_update_current();
- if (verbosity_level >= 20) {
- // Test the positions. Are the positions reproducible? Now the calibration is active in the planner.
- delay_keep_alive(3000);
- for (int8_t mesh_point = 0; mesh_point < 9; ++ mesh_point) {
- // Don't let the manage_inactivity() function remove power from the motors.
- refresh_cmd_timeout();
- // Go to the measurement point.
- // Use the coorrected coordinate, which is a result of find_bed_offset_and_skew().
- current_position[X_AXIS] = pgm_read_float(bed_ref_points+mesh_point*2);
- current_position[Y_AXIS] = pgm_read_float(bed_ref_points+mesh_point*2+1);
- go_to_current(homing_feedrate[X_AXIS]/60);
- delay_keep_alive(3000);
- }
- }
- return true;
- }
- bool improve_bed_offset_and_skew(int8_t method, int8_t verbosity_level)
- {
- // Don't let the manage_inactivity() function remove power from the motors.
- refresh_cmd_timeout();
- // Reusing the z_values memory for the measurement cache.
- // 7x7=49 floats, good for 16 (x,y,z) vectors.
- float *pts = &mbl.z_values[0][0];
- float *vec_x = pts + 2 * 9;
- float *vec_y = vec_x + 2;
- float *cntr = vec_y + 2;
- memset(pts, 0, sizeof(float) * 7 * 7);
- // Cache the current correction matrix.
- world2machine_initialize();
- vec_x[0] = world2machine_rotation_and_skew[0][0];
- vec_x[1] = world2machine_rotation_and_skew[1][0];
- vec_y[0] = world2machine_rotation_and_skew[0][1];
- vec_y[1] = world2machine_rotation_and_skew[1][1];
- cntr[0] = world2machine_shift[0];
- cntr[1] = world2machine_shift[1];
- // and reset the correction matrix, so the planner will not do anything.
- world2machine_reset();
- bool endstops_enabled = enable_endstops(false);
- bool endstop_z_enabled = enable_z_endstop(false);
- #ifdef MESH_BED_CALIBRATION_SHOW_LCD
- lcd_implementation_clear();
- lcd_print_at_PGM(0, 0, MSG_IMPROVE_BED_OFFSET_AND_SKEW_LINE1);
- #endif /* MESH_BED_CALIBRATION_SHOW_LCD */
- // Collect a matrix of 9x9 points.
- for (int8_t mesh_point = 0; mesh_point < 9; ++ mesh_point) {
- // Don't let the manage_inactivity() function remove power from the motors.
- refresh_cmd_timeout();
- // Print the decrasing ID of the measurement point.
- #ifdef MESH_BED_CALIBRATION_SHOW_LCD
- lcd_print_at_PGM(0, 1, MSG_IMPROVE_BED_OFFSET_AND_SKEW_LINE2);
- lcd_implementation_print_at(0, 2, mesh_point+1);
- lcd_printPGM(MSG_IMPROVE_BED_OFFSET_AND_SKEW_LINE3);
- #endif /* MESH_BED_CALIBRATION_SHOW_LCD */
- // Move up.
- current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
- enable_endstops(false);
- enable_z_endstop(false);
- go_to_current(homing_feedrate[Z_AXIS]/60);
- if (verbosity_level >= 20) {
- // Go to Y0, wait, then go to Y-4.
- current_position[Y_AXIS] = 0.f;
- go_to_current(homing_feedrate[X_AXIS] / 60.f);
- SERIAL_ECHOLNPGM("At Y0");
- delay_keep_alive(5000);
- current_position[Y_AXIS] = Y_MIN_POS;
- go_to_current(homing_feedrate[X_AXIS] / 60.f);
- SERIAL_ECHOLNPGM("At Y-4");
- delay_keep_alive(5000);
- }
- // Go to the measurement point.
- // Use the coorrected coordinate, which is a result of find_bed_offset_and_skew().
- current_position[X_AXIS] = vec_x[0] * pgm_read_float(bed_ref_points+mesh_point*2) + vec_y[0] * pgm_read_float(bed_ref_points+mesh_point*2+1) + cntr[0];
- current_position[Y_AXIS] = vec_x[1] * pgm_read_float(bed_ref_points+mesh_point*2) + vec_y[1] * pgm_read_float(bed_ref_points+mesh_point*2+1) + cntr[1];
- // The calibration points are very close to the min Y.
- if (current_position[Y_AXIS] < Y_MIN_POS_FOR_BED_CALIBRATION)
- current_position[Y_AXIS] = Y_MIN_POS_FOR_BED_CALIBRATION;
- go_to_current(homing_feedrate[X_AXIS]/60);
- // Find its Z position by running the normal vertical search.
- if (verbosity_level >= 10)
- delay_keep_alive(3000);
- find_bed_induction_sensor_point_z();
- if (verbosity_level >= 10)
- delay_keep_alive(3000);
- // Improve the point position by searching its center in a current plane.
- int8_t n_errors = 3;
- for (int8_t iter = 0; iter < 8; ) {
- if (verbosity_level > 20) {
- SERIAL_ECHOPGM("Improving bed point ");
- SERIAL_ECHO(mesh_point);
- SERIAL_ECHOPGM(", iteration ");
- SERIAL_ECHO(iter);
- SERIAL_ECHOPGM(", z");
- MYSERIAL.print(current_position[Z_AXIS], 5);
- SERIAL_ECHOLNPGM("");
- }
- bool found = false;
- if (mesh_point < 3) {
- // Because the sensor cannot move in front of the first row
- // of the sensor points, the y position cannot be measured
- // by a cross center method.
- // Use a zig-zag search for the first row of the points.
- found = improve_bed_induction_sensor_point3(verbosity_level);
- } else {
- switch (method) {
- case 0: found = improve_bed_induction_sensor_point(); break;
- case 1: found = improve_bed_induction_sensor_point2(mesh_point < 3); break;
- default: break;
- }
- }
- if (found) {
- if (iter > 3) {
- // Average the last 4 measurements.
- pts[mesh_point*2 ] += current_position[X_AXIS];
- pts[mesh_point*2+1] += current_position[Y_AXIS];
- }
- ++ iter;
- } else if (n_errors -- == 0) {
- // Give up.
- goto canceled;
- } else {
- // Try to move the Z axis down a bit to increase a chance of the sensor to trigger.
- current_position[Z_AXIS] -= 0.025f;
- enable_endstops(false);
- enable_z_endstop(false);
- go_to_current(homing_feedrate[Z_AXIS]);
- if (verbosity_level > 20) {
- SERIAL_ECHOPGM("Improving bed point ");
- SERIAL_ECHO(mesh_point);
- SERIAL_ECHOPGM(", iteration ");
- SERIAL_ECHO(iter);
- SERIAL_ECHOPGM(" failed. Lowering z to ");
- MYSERIAL.print(current_position[Z_AXIS], 5);
- SERIAL_ECHOLNPGM("");
- }
- }
- }
- if (verbosity_level >= 10)
- delay_keep_alive(3000);
- }
- // Don't let the manage_inactivity() function remove power from the motors.
- refresh_cmd_timeout();
- // Average the last 4 measurements.
- for (int8_t i = 0; i < 18; ++ i)
- pts[i] *= (1.f/4.f);
- enable_endstops(false);
- enable_z_endstop(false);
- if (verbosity_level >= 10) {
- // Test the positions. Are the positions reproducible?
- for (int8_t mesh_point = 0; mesh_point < 9; ++ mesh_point) {
- // Don't let the manage_inactivity() function remove power from the motors.
- refresh_cmd_timeout();
- // Go to the measurement point.
- // Use the coorrected coordinate, which is a result of find_bed_offset_and_skew().
- current_position[X_AXIS] = pts[mesh_point*2];
- current_position[Y_AXIS] = pts[mesh_point*2+1];
- go_to_current(homing_feedrate[X_AXIS]/60);
- delay_keep_alive(3000);
- #if 0
- if (verbosity_level > 20) {
- SERIAL_ECHOPGM("Final measured bed point ");
- SERIAL_ECHO(mesh_point);
- SERIAL_ECHOPGM(": ");
- MYSERIAL.print(current_position[X_AXIS], 5);
- SERIAL_ECHOPGM(", ");
- MYSERIAL.print(current_position[Y_AXIS], 5);
- SERIAL_ECHOLNPGM("");
- }
- #endif
- }
- }
- calculate_machine_skew_and_offset_LS(pts, 9, bed_ref_points, vec_x, vec_y, cntr, verbosity_level);
- world2machine_rotation_and_skew[0][0] = vec_x[0];
- world2machine_rotation_and_skew[1][0] = vec_x[1];
- world2machine_rotation_and_skew[0][1] = vec_y[0];
- world2machine_rotation_and_skew[1][1] = vec_y[1];
- world2machine_shift[0] = cntr[0];
- world2machine_shift[1] = cntr[1];
- #if 1
- // Fearlessly store the calibration values into the eeprom.
- eeprom_update_float((float*)(EEPROM_BED_CALIBRATION_CENTER+0), cntr [0]);
- eeprom_update_float((float*)(EEPROM_BED_CALIBRATION_CENTER+4), cntr [1]);
- eeprom_update_float((float*)(EEPROM_BED_CALIBRATION_VEC_X +0), vec_x[0]);
- eeprom_update_float((float*)(EEPROM_BED_CALIBRATION_VEC_X +4), vec_x[1]);
- eeprom_update_float((float*)(EEPROM_BED_CALIBRATION_VEC_Y +0), vec_y[0]);
- eeprom_update_float((float*)(EEPROM_BED_CALIBRATION_VEC_Y +4), vec_y[1]);
- #endif
- // Correct the current_position to match the transformed coordinate system after world2machine_rotation_and_skew and world2machine_shift were set.
- world2machine_update_current();
- enable_endstops(false);
- enable_z_endstop(false);
- if (verbosity_level >= 10) {
- // Test the positions. Are the positions reproducible? Now the calibration is active in the planner.
- delay_keep_alive(3000);
- for (int8_t mesh_point = 0; mesh_point < 9; ++ mesh_point) {
- // Don't let the manage_inactivity() function remove power from the motors.
- refresh_cmd_timeout();
- // Go to the measurement point.
- // Use the coorrected coordinate, which is a result of find_bed_offset_and_skew().
- current_position[X_AXIS] = pgm_read_float(bed_ref_points+mesh_point*2);
- current_position[Y_AXIS] = pgm_read_float(bed_ref_points+mesh_point*2+1);
- go_to_current(homing_feedrate[X_AXIS]/60);
- delay_keep_alive(3000);
- #if 0
- if (verbosity_level > 20) {
- SERIAL_ECHOPGM("Final calculated bed point ");
- SERIAL_ECHO(mesh_point);
- SERIAL_ECHOPGM(": ");
- MYSERIAL.print(st_get_position_mm(X_AXIS), 5);
- SERIAL_ECHOPGM(", ");
- MYSERIAL.print(st_get_position_mm(Y_AXIS), 5);
- SERIAL_ECHOLNPGM("");
- }
- #endif
- }
- }
- // Don't let the manage_inactivity() function remove power from the motors.
- refresh_cmd_timeout();
- enable_endstops(endstops_enabled);
- enable_z_endstop(endstop_z_enabled);
- return true;
- canceled:
- // Don't let the manage_inactivity() function remove power from the motors.
- refresh_cmd_timeout();
- // Store the identity matrix to EEPROM.
- reset_bed_offset_and_skew();
- enable_endstops(endstops_enabled);
- enable_z_endstop(endstop_z_enabled);
- return false;
- }
- bool scan_bed_induction_points(int8_t verbosity_level)
- {
- // Don't let the manage_inactivity() function remove power from the motors.
- refresh_cmd_timeout();
- // Reusing the z_values memory for the measurement cache.
- // 7x7=49 floats, good for 16 (x,y,z) vectors.
- float *pts = &mbl.z_values[0][0];
- float *vec_x = pts + 2 * 9;
- float *vec_y = vec_x + 2;
- float *cntr = vec_y + 2;
- memset(pts, 0, sizeof(float) * 7 * 7);
- // Cache the current correction matrix.
- world2machine_initialize();
- vec_x[0] = world2machine_rotation_and_skew[0][0];
- vec_x[1] = world2machine_rotation_and_skew[1][0];
- vec_y[0] = world2machine_rotation_and_skew[0][1];
- vec_y[1] = world2machine_rotation_and_skew[1][1];
- cntr[0] = world2machine_shift[0];
- cntr[1] = world2machine_shift[1];
- // and reset the correction matrix, so the planner will not do anything.
- world2machine_reset();
- bool endstops_enabled = enable_endstops(false);
- bool endstop_z_enabled = enable_z_endstop(false);
- // Collect a matrix of 9x9 points.
- for (int8_t mesh_point = 0; mesh_point < 9; ++ mesh_point) {
- // Don't let the manage_inactivity() function remove power from the motors.
- refresh_cmd_timeout();
- // Move up.
- current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
- enable_endstops(false);
- enable_z_endstop(false);
- go_to_current(homing_feedrate[Z_AXIS]/60);
- // Go to the measurement point.
- // Use the coorrected coordinate, which is a result of find_bed_offset_and_skew().
- current_position[X_AXIS] = vec_x[0] * pgm_read_float(bed_ref_points+mesh_point*2) + vec_y[0] * pgm_read_float(bed_ref_points+mesh_point*2+1) + cntr[0];
- current_position[Y_AXIS] = vec_x[1] * pgm_read_float(bed_ref_points+mesh_point*2) + vec_y[1] * pgm_read_float(bed_ref_points+mesh_point*2+1) + cntr[1];
- // The calibration points are very close to the min Y.
- if (current_position[Y_AXIS] < Y_MIN_POS_FOR_BED_CALIBRATION)
- current_position[Y_AXIS] = Y_MIN_POS_FOR_BED_CALIBRATION;
- go_to_current(homing_feedrate[X_AXIS]/60);
- find_bed_induction_sensor_point_z();
- scan_bed_induction_sensor_point();
- }
- // Don't let the manage_inactivity() function remove power from the motors.
- refresh_cmd_timeout();
- enable_endstops(false);
- enable_z_endstop(false);
- // Don't let the manage_inactivity() function remove power from the motors.
- refresh_cmd_timeout();
- enable_endstops(endstops_enabled);
- enable_z_endstop(endstop_z_enabled);
- return true;
- }
|