123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179 |
- #include "mesh_bed_leveling.h"
- #include "mesh_bed_calibration.h"
- #include "Configuration.h"
- #ifdef MESH_BED_LEVELING
- mesh_bed_leveling mbl;
- mesh_bed_leveling::mesh_bed_leveling() { reset(); }
- void mesh_bed_leveling::reset() {
- active = 0;
- for (int y = 0; y < MESH_NUM_Y_POINTS; y++)
- for (int x = 0; x < MESH_NUM_X_POINTS; x++)
- z_values[y][x] = 0;
- }
- static inline bool vec_undef(const float v[2])
- {
- const uint32_t *vx = (const uint32_t*)v;
- return vx[0] == 0x0FFFFFFFF || vx[1] == 0x0FFFFFFFF;
- }
- void mesh_bed_leveling::get_meas_xy(int ix, int iy, float &x, float &y, bool /*use_default*/)
- {
- #if 0
- float cntr[2] = {
- eeprom_read_float((float*)(EEPROM_BED_CALIBRATION_CENTER+0)),
- eeprom_read_float((float*)(EEPROM_BED_CALIBRATION_CENTER+4))
- };
- float vec_x[2] = {
- eeprom_read_float((float*)(EEPROM_BED_CALIBRATION_VEC_X +0)),
- eeprom_read_float((float*)(EEPROM_BED_CALIBRATION_VEC_X +4))
- };
- float vec_y[2] = {
- eeprom_read_float((float*)(EEPROM_BED_CALIBRATION_VEC_Y +0)),
- eeprom_read_float((float*)(EEPROM_BED_CALIBRATION_VEC_Y +4))
- };
- if (use_default || vec_undef(cntr) || vec_undef(vec_x) || vec_undef(vec_y)) {
- // Default, uncorrected positions of the calibration points. Works well for correctly built printers.
- x = float(MESH_MIN_X) + float(MEAS_NUM_X_DIST) * float(ix) - X_PROBE_OFFSET_FROM_EXTRUDER;
- //FIXME
- //x -= 5.f;
- y = float(MESH_MIN_Y) + float(MEAS_NUM_Y_DIST) * float(iy) - Y_PROBE_OFFSET_FROM_EXTRUDER;
- } else {
- #if 0
- SERIAL_ECHO("Running bed leveling. Calibration data: ");
- SERIAL_ECHO(cntr[0]);
- SERIAL_ECHO(",");
- SERIAL_ECHO(cntr[1]);
- SERIAL_ECHO(", x: ");
- SERIAL_ECHO(vec_x[0]);
- SERIAL_ECHO(",");
- SERIAL_ECHO(vec_x[1]);
- SERIAL_ECHO(", y: ");
- SERIAL_ECHO(vec_y[0]);
- SERIAL_ECHO(",");
- SERIAL_ECHO(vec_y[1]);
- SERIAL_ECHOLN("");
- #endif
- x = cntr[0];
- y = cntr[1];
- if (ix < 1) {
- x -= vec_x[0];
- y -= vec_x[1];
- } else if (ix > 1) {
- x += vec_x[0];
- y += vec_x[1];
- }
- if (iy < 1) {
- x -= vec_y[0];
- y -= vec_y[1];
- } else if (iy > 1) {
- x += vec_y[0];
- y += vec_y[1];
- }
- #if 0
- SERIAL_ECHO("Calibration point position: ");
- SERIAL_ECHO(x);
- SERIAL_ECHO(",");
- SERIAL_ECHO(y);
- SERIAL_ECHOLN("");
- #endif
- }
- #else
- // Default, uncorrected positions of the calibration points.
- // This coordinate will be corrected by the planner.
- x = pgm_read_float(bed_ref_points + 2 * (iy * 3 + ix));
- y = pgm_read_float(bed_ref_points + 2 * (iy * 3 + ix) + 1);
- #endif
- }
- #if MESH_NUM_X_POINTS>=5 && MESH_NUM_Y_POINTS>=5 && (MESH_NUM_X_POINTS&1)==1 && (MESH_NUM_Y_POINTS&1)==1
- // Works for an odd number of MESH_NUM_X_POINTS and MESH_NUM_Y_POINTS
- // #define MBL_BILINEAR
- void mesh_bed_leveling::upsample_3x3()
- {
- int idx0 = 0;
- int idx1 = MESH_NUM_X_POINTS / 2;
- int idx2 = MESH_NUM_X_POINTS - 1;
- {
- // First interpolate the points in X axis.
- static const float x0 = MESH_MIN_X;
- static const float x1 = 0.5f * float(MESH_MIN_X + MESH_MAX_X);
- static const float x2 = MESH_MAX_X;
- for (int j = 0; j < 3; ++ j) {
- // 1) Copy the source points to their new destination.
- z_values[j][idx2] = z_values[j][2];
- z_values[j][idx1] = z_values[j][1];
- // 2) Interpolate the remaining values by Largrangian polynomials.
- for (int i = idx0 + 1; i < idx2; ++ i) {
- if (i == idx1)
- continue;
- float x = get_x(i);
- #ifdef MBL_BILINEAR
- z_values[j][i] = (x < x1) ?
- ((z_values[j][idx0] * (x - x0) + z_values[j][idx1] * (x1 - x)) / (x1 - x0)) :
- ((z_values[j][idx1] * (x - x1) + z_values[j][idx2] * (x2 - x)) / (x2 - x1));
- #else
- z_values[j][i] =
- z_values[j][idx0] * (x - x1) * (x - x2) / ((x0 - x1) * (x0 - x2)) +
- z_values[j][idx1] * (x - x0) * (x - x2) / ((x1 - x0) * (x1 - x2)) +
- z_values[j][idx2] * (x - x0) * (x - x1) / ((x2 - x0) * (x2 - x1));
- #endif
- }
- }
- }
- {
- // Second interpolate the points in Y axis.
- static const float y0 = MESH_MIN_Y;
- static const float y1 = 0.5f * float(MESH_MIN_Y + MESH_MAX_Y);
- static const float y2 = MESH_MAX_Y;
- for (int i = 0; i < MESH_NUM_X_POINTS; ++ i) {
- // 1) Copy the intermediate points to their new destination.
- z_values[idx2][i] = z_values[2][i];
- z_values[idx1][i] = z_values[1][i];
- // 2) Interpolate the remaining values by Largrangian polynomials.
- for (int j = 1; j + 1 < MESH_NUM_Y_POINTS; ++ j) {
- if (j == idx1)
- continue;
- float y = get_y(j);
- #ifdef MBL_BILINEAR
- z_values[j][i] = (y < y1) ?
- ((z_values[idx0][i] * (y - y0) + z_values[idx1][i] * (y1 - y)) / (y1 - y0)) :
- ((z_values[idx1][i] * (y - y1) + z_values[idx2][i] * (y2 - y)) / (y2 - y1));
- #else
- z_values[j][i] =
- z_values[idx0][i] * (y - y1) * (y - y2) / ((y0 - y1) * (y0 - y2)) +
- z_values[idx1][i] * (y - y0) * (y - y2) / ((y1 - y0) * (y1 - y2)) +
- z_values[idx2][i] * (y - y0) * (y - y1) / ((y2 - y0) * (y2 - y1));
- #endif
- }
- }
- }
- /*
- // Relax the non-measured points.
- const float weight = 0.2f;
- for (uint8_t iter = 0; iter < 20; ++ iter) {
- for (int8_t j = 1; j < 6; ++ j) {
- for (int8_t i = 1; i < 6; ++ i) {
- if (i == 3 || j == 3)
- continue;
- if ((i % 3) == 0 && (j % 3) == 0)
- continue;
- float avg = 0.25f * (z_values[j][i-1]+z_values[j][i+1]+z_values[j-1][i]+z_values[j+1][i]);
- z_values[j][i] = (1.f-weight)*z_values[j][i] + weight*avg;
- }
- }
- }
- */
- }
- #endif
- #endif // MESH_BED_LEVELING
|