Marlin_main.cpp 267 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892389338943895389638973898389939003901390239033904390539063907390839093910391139123913391439153916391739183919392039213922392339243925392639273928392939303931393239333934393539363937393839393940394139423943394439453946394739483949395039513952395339543955395639573958395939603961396239633964396539663967396839693970397139723973397439753976397739783979398039813982398339843985398639873988398939903991399239933994399539963997399839994000400140024003400440054006400740084009401040114012401340144015401640174018401940204021402240234024402540264027402840294030403140324033403440354036403740384039404040414042404340444045404640474048404940504051405240534054405540564057405840594060406140624063406440654066406740684069407040714072407340744075407640774078407940804081408240834084408540864087408840894090409140924093409440954096409740984099410041014102410341044105410641074108410941104111411241134114411541164117411841194120412141224123412441254126412741284129413041314132413341344135413641374138413941404141414241434144414541464147414841494150415141524153415441554156415741584159416041614162416341644165416641674168416941704171417241734174417541764177417841794180418141824183418441854186418741884189419041914192419341944195419641974198419942004201420242034204420542064207420842094210421142124213421442154216421742184219422042214222422342244225422642274228422942304231423242334234423542364237423842394240424142424243424442454246424742484249425042514252425342544255425642574258425942604261426242634264426542664267426842694270427142724273427442754276427742784279428042814282428342844285428642874288428942904291429242934294429542964297429842994300430143024303430443054306430743084309431043114312431343144315431643174318431943204321432243234324432543264327432843294330433143324333433443354336433743384339434043414342434343444345434643474348434943504351435243534354435543564357435843594360436143624363436443654366436743684369437043714372437343744375437643774378437943804381438243834384438543864387438843894390439143924393439443954396439743984399440044014402440344044405440644074408440944104411441244134414441544164417441844194420442144224423442444254426442744284429443044314432443344344435443644374438443944404441444244434444444544464447444844494450445144524453445444554456445744584459446044614462446344644465446644674468446944704471447244734474447544764477447844794480448144824483448444854486448744884489449044914492449344944495449644974498449945004501450245034504450545064507450845094510451145124513451445154516451745184519452045214522452345244525452645274528452945304531453245334534453545364537453845394540454145424543454445454546454745484549455045514552455345544555455645574558455945604561456245634564456545664567456845694570457145724573457445754576457745784579458045814582458345844585458645874588458945904591459245934594459545964597459845994600460146024603460446054606460746084609461046114612461346144615461646174618461946204621462246234624462546264627462846294630463146324633463446354636463746384639464046414642464346444645464646474648464946504651465246534654465546564657465846594660466146624663466446654666466746684669467046714672467346744675467646774678467946804681468246834684468546864687468846894690469146924693469446954696469746984699470047014702470347044705470647074708470947104711471247134714471547164717471847194720472147224723472447254726472747284729473047314732473347344735473647374738473947404741474247434744474547464747474847494750475147524753475447554756475747584759476047614762476347644765476647674768476947704771477247734774477547764777477847794780478147824783478447854786478747884789479047914792479347944795479647974798479948004801480248034804480548064807480848094810481148124813481448154816481748184819482048214822482348244825482648274828482948304831483248334834483548364837483848394840484148424843484448454846484748484849485048514852485348544855485648574858485948604861486248634864486548664867486848694870487148724873487448754876487748784879488048814882488348844885488648874888488948904891489248934894489548964897489848994900490149024903490449054906490749084909491049114912491349144915491649174918491949204921492249234924492549264927492849294930493149324933493449354936493749384939494049414942494349444945494649474948494949504951495249534954495549564957495849594960496149624963496449654966496749684969497049714972497349744975497649774978497949804981498249834984498549864987498849894990499149924993499449954996499749984999500050015002500350045005500650075008500950105011501250135014501550165017501850195020502150225023502450255026502750285029503050315032503350345035503650375038503950405041504250435044504550465047504850495050505150525053505450555056505750585059506050615062506350645065506650675068506950705071507250735074507550765077507850795080508150825083508450855086508750885089509050915092509350945095509650975098509951005101510251035104510551065107510851095110511151125113511451155116511751185119512051215122512351245125512651275128512951305131513251335134513551365137513851395140514151425143514451455146514751485149515051515152515351545155515651575158515951605161516251635164516551665167516851695170517151725173517451755176517751785179518051815182518351845185518651875188518951905191519251935194519551965197519851995200520152025203520452055206520752085209521052115212521352145215521652175218521952205221522252235224522552265227522852295230523152325233523452355236523752385239524052415242524352445245524652475248524952505251525252535254525552565257525852595260526152625263526452655266526752685269527052715272527352745275527652775278527952805281528252835284528552865287528852895290529152925293529452955296529752985299530053015302530353045305530653075308530953105311531253135314531553165317531853195320532153225323532453255326532753285329533053315332533353345335533653375338533953405341534253435344534553465347534853495350535153525353535453555356535753585359536053615362536353645365536653675368536953705371537253735374537553765377537853795380538153825383538453855386538753885389539053915392539353945395539653975398539954005401540254035404540554065407540854095410541154125413541454155416541754185419542054215422542354245425542654275428542954305431543254335434543554365437543854395440544154425443544454455446544754485449545054515452545354545455545654575458545954605461546254635464546554665467546854695470547154725473547454755476547754785479548054815482548354845485548654875488548954905491549254935494549554965497549854995500550155025503550455055506550755085509551055115512551355145515551655175518551955205521552255235524552555265527552855295530553155325533553455355536553755385539554055415542554355445545554655475548554955505551555255535554555555565557555855595560556155625563556455655566556755685569557055715572557355745575557655775578557955805581558255835584558555865587558855895590559155925593559455955596559755985599560056015602560356045605560656075608560956105611561256135614561556165617561856195620562156225623562456255626562756285629563056315632563356345635563656375638563956405641564256435644564556465647564856495650565156525653565456555656565756585659566056615662566356645665566656675668566956705671567256735674567556765677567856795680568156825683568456855686568756885689569056915692569356945695569656975698569957005701570257035704570557065707570857095710571157125713571457155716571757185719572057215722572357245725572657275728572957305731573257335734573557365737573857395740574157425743574457455746574757485749575057515752575357545755575657575758575957605761576257635764576557665767576857695770577157725773577457755776577757785779578057815782578357845785578657875788578957905791579257935794579557965797579857995800580158025803580458055806580758085809581058115812581358145815581658175818581958205821582258235824582558265827582858295830583158325833583458355836583758385839584058415842584358445845584658475848584958505851585258535854585558565857585858595860586158625863586458655866586758685869587058715872587358745875587658775878587958805881588258835884588558865887588858895890589158925893589458955896589758985899590059015902590359045905590659075908590959105911591259135914591559165917591859195920592159225923592459255926592759285929593059315932593359345935593659375938593959405941594259435944594559465947594859495950595159525953595459555956595759585959596059615962596359645965596659675968596959705971597259735974597559765977597859795980598159825983598459855986598759885989599059915992599359945995599659975998599960006001600260036004600560066007600860096010601160126013601460156016601760186019602060216022602360246025602660276028602960306031603260336034603560366037603860396040604160426043604460456046604760486049605060516052605360546055605660576058605960606061606260636064606560666067606860696070607160726073607460756076607760786079608060816082608360846085608660876088608960906091609260936094609560966097609860996100610161026103610461056106610761086109611061116112611361146115611661176118611961206121612261236124612561266127612861296130613161326133613461356136613761386139614061416142614361446145614661476148614961506151615261536154615561566157615861596160616161626163616461656166616761686169617061716172617361746175617661776178617961806181618261836184618561866187618861896190619161926193619461956196619761986199620062016202620362046205620662076208620962106211621262136214621562166217621862196220622162226223622462256226622762286229623062316232623362346235623662376238623962406241624262436244624562466247624862496250625162526253625462556256625762586259626062616262626362646265626662676268626962706271627262736274627562766277627862796280628162826283628462856286628762886289629062916292629362946295629662976298629963006301630263036304630563066307630863096310631163126313631463156316631763186319632063216322632363246325632663276328632963306331633263336334633563366337633863396340634163426343634463456346634763486349635063516352635363546355635663576358635963606361636263636364636563666367636863696370637163726373637463756376637763786379638063816382638363846385638663876388638963906391639263936394639563966397639863996400640164026403640464056406640764086409641064116412641364146415641664176418641964206421642264236424642564266427642864296430643164326433643464356436643764386439644064416442644364446445644664476448644964506451645264536454645564566457645864596460646164626463646464656466646764686469647064716472647364746475647664776478647964806481648264836484648564866487648864896490649164926493649464956496649764986499650065016502650365046505650665076508650965106511651265136514651565166517651865196520652165226523652465256526652765286529653065316532653365346535653665376538653965406541654265436544654565466547654865496550655165526553655465556556655765586559656065616562656365646565656665676568656965706571657265736574657565766577657865796580658165826583658465856586658765886589659065916592659365946595659665976598659966006601660266036604660566066607660866096610661166126613661466156616661766186619662066216622662366246625662666276628662966306631663266336634663566366637663866396640664166426643664466456646664766486649665066516652665366546655665666576658665966606661666266636664666566666667666866696670667166726673667466756676667766786679668066816682668366846685668666876688668966906691669266936694669566966697669866996700670167026703670467056706670767086709671067116712671367146715671667176718671967206721672267236724672567266727672867296730673167326733673467356736673767386739674067416742674367446745674667476748674967506751675267536754675567566757675867596760676167626763676467656766676767686769677067716772677367746775677667776778677967806781678267836784678567866787678867896790679167926793679467956796679767986799680068016802680368046805680668076808680968106811681268136814681568166817681868196820682168226823682468256826682768286829683068316832683368346835683668376838683968406841684268436844684568466847684868496850685168526853685468556856685768586859686068616862686368646865686668676868686968706871687268736874687568766877687868796880688168826883688468856886688768886889689068916892689368946895689668976898689969006901690269036904690569066907690869096910691169126913691469156916691769186919692069216922692369246925692669276928692969306931693269336934693569366937693869396940694169426943694469456946694769486949695069516952695369546955695669576958695969606961696269636964696569666967696869696970697169726973697469756976697769786979698069816982698369846985698669876988698969906991699269936994699569966997699869997000700170027003700470057006700770087009701070117012701370147015701670177018701970207021702270237024702570267027702870297030703170327033703470357036703770387039704070417042704370447045704670477048704970507051705270537054705570567057705870597060706170627063706470657066706770687069707070717072707370747075707670777078707970807081708270837084708570867087708870897090709170927093709470957096709770987099710071017102710371047105710671077108710971107111711271137114711571167117711871197120712171227123712471257126712771287129713071317132713371347135713671377138713971407141714271437144714571467147714871497150715171527153715471557156715771587159716071617162716371647165716671677168716971707171717271737174717571767177717871797180718171827183718471857186718771887189719071917192719371947195719671977198719972007201720272037204720572067207720872097210721172127213721472157216721772187219722072217222722372247225722672277228722972307231723272337234723572367237723872397240724172427243724472457246724772487249725072517252725372547255725672577258725972607261726272637264726572667267726872697270727172727273727472757276727772787279728072817282728372847285728672877288728972907291729272937294729572967297729872997300730173027303730473057306730773087309731073117312731373147315731673177318731973207321732273237324732573267327732873297330733173327333733473357336733773387339734073417342734373447345734673477348734973507351735273537354735573567357735873597360736173627363736473657366736773687369737073717372737373747375737673777378737973807381738273837384738573867387738873897390739173927393739473957396739773987399740074017402740374047405740674077408740974107411741274137414741574167417741874197420742174227423742474257426742774287429743074317432743374347435743674377438743974407441744274437444744574467447744874497450745174527453745474557456745774587459746074617462746374647465746674677468746974707471747274737474747574767477747874797480748174827483748474857486748774887489749074917492749374947495749674977498749975007501750275037504750575067507750875097510751175127513751475157516751775187519752075217522752375247525752675277528752975307531753275337534753575367537753875397540754175427543754475457546754775487549755075517552755375547555755675577558755975607561756275637564756575667567756875697570757175727573757475757576757775787579758075817582758375847585758675877588758975907591759275937594759575967597759875997600760176027603760476057606760776087609761076117612761376147615761676177618761976207621762276237624762576267627762876297630763176327633763476357636763776387639764076417642764376447645764676477648764976507651765276537654765576567657765876597660766176627663766476657666766776687669767076717672767376747675767676777678767976807681768276837684768576867687768876897690769176927693769476957696769776987699770077017702770377047705770677077708770977107711771277137714771577167717771877197720772177227723772477257726772777287729773077317732773377347735773677377738773977407741774277437744774577467747774877497750775177527753775477557756775777587759776077617762776377647765776677677768776977707771777277737774777577767777777877797780778177827783778477857786778777887789779077917792779377947795779677977798779978007801780278037804780578067807780878097810781178127813781478157816781778187819782078217822782378247825782678277828782978307831783278337834783578367837783878397840784178427843784478457846784778487849785078517852785378547855785678577858785978607861786278637864786578667867786878697870787178727873787478757876787778787879788078817882788378847885788678877888788978907891789278937894789578967897789878997900790179027903790479057906790779087909791079117912791379147915791679177918791979207921792279237924792579267927792879297930793179327933793479357936793779387939794079417942794379447945794679477948794979507951795279537954795579567957795879597960796179627963796479657966796779687969797079717972797379747975797679777978797979807981798279837984798579867987798879897990799179927993799479957996799779987999800080018002800380048005800680078008800980108011801280138014801580168017801880198020802180228023802480258026802780288029803080318032803380348035803680378038803980408041804280438044804580468047804880498050805180528053805480558056805780588059806080618062806380648065806680678068806980708071
  1. /* -*- c++ -*- */
  2. /*
  3. Reprap firmware based on Sprinter and grbl.
  4. Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
  5. This program is free software: you can redistribute it and/or modify
  6. it under the terms of the GNU General Public License as published by
  7. the Free Software Foundation, either version 3 of the License, or
  8. (at your option) any later version.
  9. This program is distributed in the hope that it will be useful,
  10. but WITHOUT ANY WARRANTY; without even the implied warranty of
  11. MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  12. GNU General Public License for more details.
  13. You should have received a copy of the GNU General Public License
  14. along with this program. If not, see <http://www.gnu.org/licenses/>.
  15. */
  16. /*
  17. This firmware is a mashup between Sprinter and grbl.
  18. (https://github.com/kliment/Sprinter)
  19. (https://github.com/simen/grbl/tree)
  20. It has preliminary support for Matthew Roberts advance algorithm
  21. http://reprap.org/pipermail/reprap-dev/2011-May/003323.html
  22. */
  23. #include "Marlin.h"
  24. #ifdef ENABLE_AUTO_BED_LEVELING
  25. #include "vector_3.h"
  26. #ifdef AUTO_BED_LEVELING_GRID
  27. #include "qr_solve.h"
  28. #endif
  29. #endif // ENABLE_AUTO_BED_LEVELING
  30. #ifdef MESH_BED_LEVELING
  31. #include "mesh_bed_leveling.h"
  32. #include "mesh_bed_calibration.h"
  33. #endif
  34. #include "ultralcd.h"
  35. #include "Configuration_prusa.h"
  36. #include "planner.h"
  37. #include "stepper.h"
  38. #include "temperature.h"
  39. #include "motion_control.h"
  40. #include "cardreader.h"
  41. #include "watchdog.h"
  42. #include "ConfigurationStore.h"
  43. #include "language.h"
  44. #include "pins_arduino.h"
  45. #include "math.h"
  46. #include "util.h"
  47. #include <avr/wdt.h>
  48. #include "Dcodes.h"
  49. #ifdef SWSPI
  50. #include "swspi.h"
  51. #endif //SWSPI
  52. #ifdef SWI2C
  53. #include "swi2c.h"
  54. #endif //SWI2C
  55. #ifdef PAT9125
  56. #include "pat9125.h"
  57. #include "fsensor.h"
  58. #endif //PAT9125
  59. #ifdef TMC2130
  60. #include "tmc2130.h"
  61. #endif //TMC2130
  62. #ifdef BLINKM
  63. #include "BlinkM.h"
  64. #include "Wire.h"
  65. #endif
  66. #ifdef ULTRALCD
  67. #include "ultralcd.h"
  68. #endif
  69. #if NUM_SERVOS > 0
  70. #include "Servo.h"
  71. #endif
  72. #if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
  73. #include <SPI.h>
  74. #endif
  75. #define VERSION_STRING "1.0.2"
  76. #include "ultralcd.h"
  77. #include "cmdqueue.h"
  78. // Macros for bit masks
  79. #define BIT(b) (1<<(b))
  80. #define TEST(n,b) (((n)&BIT(b))!=0)
  81. #define SET_BIT(n,b,value) (n) ^= ((-value)^(n)) & (BIT(b))
  82. //Macro for print fan speed
  83. #define FAN_PULSE_WIDTH_LIMIT ((fanSpeed > 100) ? 3 : 4) //time in ms
  84. // look here for descriptions of G-codes: http://linuxcnc.org/handbook/gcode/g-code.html
  85. // http://objects.reprap.org/wiki/Mendel_User_Manual:_RepRapGCodes
  86. //Implemented Codes
  87. //-------------------
  88. // PRUSA CODES
  89. // P F - Returns FW versions
  90. // P R - Returns revision of printer
  91. // G0 -> G1
  92. // G1 - Coordinated Movement X Y Z E
  93. // G2 - CW ARC
  94. // G3 - CCW ARC
  95. // G4 - Dwell S<seconds> or P<milliseconds>
  96. // G10 - retract filament according to settings of M207
  97. // G11 - retract recover filament according to settings of M208
  98. // G28 - Home all Axis
  99. // G29 - Detailed Z-Probe, probes the bed at 3 or more points. Will fail if you haven't homed yet.
  100. // G30 - Single Z Probe, probes bed at current XY location.
  101. // G31 - Dock sled (Z_PROBE_SLED only)
  102. // G32 - Undock sled (Z_PROBE_SLED only)
  103. // G80 - Automatic mesh bed leveling
  104. // G81 - Print bed profile
  105. // G90 - Use Absolute Coordinates
  106. // G91 - Use Relative Coordinates
  107. // G92 - Set current position to coordinates given
  108. // M Codes
  109. // M0 - Unconditional stop - Wait for user to press a button on the LCD (Only if ULTRA_LCD is enabled)
  110. // M1 - Same as M0
  111. // M17 - Enable/Power all stepper motors
  112. // M18 - Disable all stepper motors; same as M84
  113. // M20 - List SD card
  114. // M21 - Init SD card
  115. // M22 - Release SD card
  116. // M23 - Select SD file (M23 filename.g)
  117. // M24 - Start/resume SD print
  118. // M25 - Pause SD print
  119. // M26 - Set SD position in bytes (M26 S12345)
  120. // M27 - Report SD print status
  121. // M28 - Start SD write (M28 filename.g)
  122. // M29 - Stop SD write
  123. // M30 - Delete file from SD (M30 filename.g)
  124. // M31 - Output time since last M109 or SD card start to serial
  125. // M32 - Select file and start SD print (Can be used _while_ printing from SD card files):
  126. // syntax "M32 /path/filename#", or "M32 S<startpos bytes> !filename#"
  127. // Call gcode file : "M32 P !filename#" and return to caller file after finishing (similar to #include).
  128. // The '#' is necessary when calling from within sd files, as it stops buffer prereading
  129. // M42 - Change pin status via gcode Use M42 Px Sy to set pin x to value y, when omitting Px the onboard led will be used.
  130. // M80 - Turn on Power Supply
  131. // M81 - Turn off Power Supply
  132. // M82 - Set E codes absolute (default)
  133. // M83 - Set E codes relative while in Absolute Coordinates (G90) mode
  134. // M84 - Disable steppers until next move,
  135. // or use S<seconds> to specify an inactivity timeout, after which the steppers will be disabled. S0 to disable the timeout.
  136. // M85 - Set inactivity shutdown timer with parameter S<seconds>. To disable set zero (default)
  137. // M92 - Set axis_steps_per_unit - same syntax as G92
  138. // M104 - Set extruder target temp
  139. // M105 - Read current temp
  140. // M106 - Fan on
  141. // M107 - Fan off
  142. // M109 - Sxxx Wait for extruder current temp to reach target temp. Waits only when heating
  143. // Rxxx Wait for extruder current temp to reach target temp. Waits when heating and cooling
  144. // IF AUTOTEMP is enabled, S<mintemp> B<maxtemp> F<factor>. Exit autotemp by any M109 without F
  145. // M112 - Emergency stop
  146. // M113 - Get or set the timeout interval for Host Keepalive "busy" messages
  147. // M114 - Output current position to serial port
  148. // M115 - Capabilities string
  149. // M117 - display message
  150. // M119 - Output Endstop status to serial port
  151. // M126 - Solenoid Air Valve Open (BariCUDA support by jmil)
  152. // M127 - Solenoid Air Valve Closed (BariCUDA vent to atmospheric pressure by jmil)
  153. // M128 - EtoP Open (BariCUDA EtoP = electricity to air pressure transducer by jmil)
  154. // M129 - EtoP Closed (BariCUDA EtoP = electricity to air pressure transducer by jmil)
  155. // M140 - Set bed target temp
  156. // M150 - Set BlinkM Color Output R: Red<0-255> U(!): Green<0-255> B: Blue<0-255> over i2c, G for green does not work.
  157. // M190 - Sxxx Wait for bed current temp to reach target temp. Waits only when heating
  158. // Rxxx Wait for bed current temp to reach target temp. Waits when heating and cooling
  159. // M200 D<millimeters>- set filament diameter and set E axis units to cubic millimeters (use S0 to set back to millimeters).
  160. // M201 - Set max acceleration in units/s^2 for print moves (M201 X1000 Y1000)
  161. // M202 - Set max acceleration in units/s^2 for travel moves (M202 X1000 Y1000) Unused in Marlin!!
  162. // M203 - Set maximum feedrate that your machine can sustain (M203 X200 Y200 Z300 E10000) in mm/sec
  163. // M204 - Set default acceleration: S normal moves T filament only moves (M204 S3000 T7000) in mm/sec^2 also sets minimum segment time in ms (B20000) to prevent buffer under-runs and M20 minimum feedrate
  164. // M205 - advanced settings: minimum travel speed S=while printing T=travel only, B=minimum segment time X= maximum xy jerk, Z=maximum Z jerk, E=maximum E jerk
  165. // M206 - set additional homing offset
  166. // M207 - set retract length S[positive mm] F[feedrate mm/min] Z[additional zlift/hop], stays in mm regardless of M200 setting
  167. // M208 - set recover=unretract length S[positive mm surplus to the M207 S*] F[feedrate mm/sec]
  168. // M209 - S<1=true/0=false> enable automatic retract detect if the slicer did not support G10/11: every normal extrude-only move will be classified as retract depending on the direction.
  169. // M218 - set hotend offset (in mm): T<extruder_number> X<offset_on_X> Y<offset_on_Y>
  170. // M220 S<factor in percent>- set speed factor override percentage
  171. // M221 S<factor in percent>- set extrude factor override percentage
  172. // M226 P<pin number> S<pin state>- Wait until the specified pin reaches the state required
  173. // M240 - Trigger a camera to take a photograph
  174. // M250 - Set LCD contrast C<contrast value> (value 0..63)
  175. // M280 - set servo position absolute. P: servo index, S: angle or microseconds
  176. // M300 - Play beep sound S<frequency Hz> P<duration ms>
  177. // M301 - Set PID parameters P I and D
  178. // M302 - Allow cold extrudes, or set the minimum extrude S<temperature>.
  179. // M303 - PID relay autotune S<temperature> sets the target temperature. (default target temperature = 150C)
  180. // M304 - Set bed PID parameters P I and D
  181. // M400 - Finish all moves
  182. // M401 - Lower z-probe if present
  183. // M402 - Raise z-probe if present
  184. // M404 - N<dia in mm> Enter the nominal filament width (3mm, 1.75mm ) or will display nominal filament width without parameters
  185. // M405 - Turn on Filament Sensor extrusion control. Optional D<delay in cm> to set delay in centimeters between sensor and extruder
  186. // M406 - Turn off Filament Sensor extrusion control
  187. // M407 - Displays measured filament diameter
  188. // M500 - stores parameters in EEPROM
  189. // M501 - reads parameters from EEPROM (if you need reset them after you changed them temporarily).
  190. // M502 - reverts to the default "factory settings". You still need to store them in EEPROM afterwards if you want to.
  191. // M503 - print the current settings (from memory not from EEPROM)
  192. // M509 - force language selection on next restart
  193. // M540 - Use S[0|1] to enable or disable the stop SD card print on endstop hit (requires ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED)
  194. // M600 - Pause for filament change X[pos] Y[pos] Z[relative lift] E[initial retract] L[later retract distance for removal]
  195. // M605 - Set dual x-carriage movement mode: S<mode> [ X<duplication x-offset> R<duplication temp offset> ]
  196. // M900 - Set LIN_ADVANCE options, if enabled. See Configuration_adv.h for details.
  197. // M907 - Set digital trimpot motor current using axis codes.
  198. // M908 - Control digital trimpot directly.
  199. // M350 - Set microstepping mode.
  200. // M351 - Toggle MS1 MS2 pins directly.
  201. // M928 - Start SD logging (M928 filename.g) - ended by M29
  202. // M999 - Restart after being stopped by error
  203. //Stepper Movement Variables
  204. //===========================================================================
  205. //=============================imported variables============================
  206. //===========================================================================
  207. //===========================================================================
  208. //=============================public variables=============================
  209. //===========================================================================
  210. #ifdef SDSUPPORT
  211. CardReader card;
  212. #endif
  213. unsigned long PingTime = millis();
  214. union Data
  215. {
  216. byte b[2];
  217. int value;
  218. };
  219. float homing_feedrate[] = HOMING_FEEDRATE;
  220. // Currently only the extruder axis may be switched to a relative mode.
  221. // Other axes are always absolute or relative based on the common relative_mode flag.
  222. bool axis_relative_modes[] = AXIS_RELATIVE_MODES;
  223. int feedmultiply=100; //100->1 200->2
  224. int saved_feedmultiply;
  225. int extrudemultiply=100; //100->1 200->2
  226. int extruder_multiply[EXTRUDERS] = {100
  227. #if EXTRUDERS > 1
  228. , 100
  229. #if EXTRUDERS > 2
  230. , 100
  231. #endif
  232. #endif
  233. };
  234. int bowden_length[4] = {385, 385, 385, 385};
  235. bool is_usb_printing = false;
  236. bool homing_flag = false;
  237. bool temp_cal_active = false;
  238. unsigned long kicktime = millis()+100000;
  239. unsigned int usb_printing_counter;
  240. int lcd_change_fil_state = 0;
  241. int feedmultiplyBckp = 100;
  242. float HotendTempBckp = 0;
  243. int fanSpeedBckp = 0;
  244. float pause_lastpos[4];
  245. unsigned long pause_time = 0;
  246. unsigned long start_pause_print = millis();
  247. unsigned long t_fan_rising_edge = millis();
  248. //unsigned long load_filament_time;
  249. bool mesh_bed_leveling_flag = false;
  250. bool mesh_bed_run_from_menu = false;
  251. unsigned char lang_selected = 0;
  252. int8_t FarmMode = 0;
  253. bool prusa_sd_card_upload = false;
  254. unsigned int status_number = 0;
  255. unsigned long total_filament_used;
  256. unsigned int heating_status;
  257. unsigned int heating_status_counter;
  258. bool custom_message;
  259. bool loading_flag = false;
  260. unsigned int custom_message_type;
  261. unsigned int custom_message_state;
  262. char snmm_filaments_used = 0;
  263. float distance_from_min[2];
  264. bool fan_state[2];
  265. int fan_edge_counter[2];
  266. int fan_speed[2];
  267. char dir_names[3][9];
  268. bool sortAlpha = false;
  269. bool volumetric_enabled = false;
  270. float filament_size[EXTRUDERS] = { DEFAULT_NOMINAL_FILAMENT_DIA
  271. #if EXTRUDERS > 1
  272. , DEFAULT_NOMINAL_FILAMENT_DIA
  273. #if EXTRUDERS > 2
  274. , DEFAULT_NOMINAL_FILAMENT_DIA
  275. #endif
  276. #endif
  277. };
  278. float volumetric_multiplier[EXTRUDERS] = {1.0
  279. #if EXTRUDERS > 1
  280. , 1.0
  281. #if EXTRUDERS > 2
  282. , 1.0
  283. #endif
  284. #endif
  285. };
  286. float current_position[NUM_AXIS] = { 0.0, 0.0, 0.0, 0.0 };
  287. float add_homing[3]={0,0,0};
  288. float min_pos[3] = { X_MIN_POS, Y_MIN_POS, Z_MIN_POS };
  289. float max_pos[3] = { X_MAX_POS, Y_MAX_POS, Z_MAX_POS };
  290. bool axis_known_position[3] = {false, false, false};
  291. float zprobe_zoffset;
  292. // Extruder offset
  293. #if EXTRUDERS > 1
  294. #define NUM_EXTRUDER_OFFSETS 2 // only in XY plane
  295. float extruder_offset[NUM_EXTRUDER_OFFSETS][EXTRUDERS] = {
  296. #if defined(EXTRUDER_OFFSET_X) && defined(EXTRUDER_OFFSET_Y)
  297. EXTRUDER_OFFSET_X, EXTRUDER_OFFSET_Y
  298. #endif
  299. };
  300. #endif
  301. uint8_t active_extruder = 0;
  302. int fanSpeed=0;
  303. #ifdef FWRETRACT
  304. bool autoretract_enabled=false;
  305. bool retracted[EXTRUDERS]={false
  306. #if EXTRUDERS > 1
  307. , false
  308. #if EXTRUDERS > 2
  309. , false
  310. #endif
  311. #endif
  312. };
  313. bool retracted_swap[EXTRUDERS]={false
  314. #if EXTRUDERS > 1
  315. , false
  316. #if EXTRUDERS > 2
  317. , false
  318. #endif
  319. #endif
  320. };
  321. float retract_length = RETRACT_LENGTH;
  322. float retract_length_swap = RETRACT_LENGTH_SWAP;
  323. float retract_feedrate = RETRACT_FEEDRATE;
  324. float retract_zlift = RETRACT_ZLIFT;
  325. float retract_recover_length = RETRACT_RECOVER_LENGTH;
  326. float retract_recover_length_swap = RETRACT_RECOVER_LENGTH_SWAP;
  327. float retract_recover_feedrate = RETRACT_RECOVER_FEEDRATE;
  328. #endif
  329. #ifdef ULTIPANEL
  330. #ifdef PS_DEFAULT_OFF
  331. bool powersupply = false;
  332. #else
  333. bool powersupply = true;
  334. #endif
  335. #endif
  336. bool cancel_heatup = false ;
  337. #ifdef HOST_KEEPALIVE_FEATURE
  338. int busy_state = NOT_BUSY;
  339. static long prev_busy_signal_ms = -1;
  340. uint8_t host_keepalive_interval = HOST_KEEPALIVE_INTERVAL;
  341. #else
  342. #define host_keepalive();
  343. #define KEEPALIVE_STATE(n);
  344. #endif
  345. #ifdef FILAMENT_SENSOR
  346. //Variables for Filament Sensor input
  347. float filament_width_nominal=DEFAULT_NOMINAL_FILAMENT_DIA; //Set nominal filament width, can be changed with M404
  348. bool filament_sensor=false; //M405 turns on filament_sensor control, M406 turns it off
  349. float filament_width_meas=DEFAULT_MEASURED_FILAMENT_DIA; //Stores the measured filament diameter
  350. signed char measurement_delay[MAX_MEASUREMENT_DELAY+1]; //ring buffer to delay measurement store extruder factor after subtracting 100
  351. int delay_index1=0; //index into ring buffer
  352. int delay_index2=-1; //index into ring buffer - set to -1 on startup to indicate ring buffer needs to be initialized
  353. float delay_dist=0; //delay distance counter
  354. int meas_delay_cm = MEASUREMENT_DELAY_CM; //distance delay setting
  355. #endif
  356. const char errormagic[] PROGMEM = "Error:";
  357. const char echomagic[] PROGMEM = "echo:";
  358. //===========================================================================
  359. //=============================Private Variables=============================
  360. //===========================================================================
  361. const char axis_codes[NUM_AXIS] = {'X', 'Y', 'Z', 'E'};
  362. float destination[NUM_AXIS] = { 0.0, 0.0, 0.0, 0.0};
  363. static float delta[3] = {0.0, 0.0, 0.0};
  364. // For tracing an arc
  365. static float offset[3] = {0.0, 0.0, 0.0};
  366. static float feedrate = 1500.0, next_feedrate, saved_feedrate;
  367. // Determines Absolute or Relative Coordinates.
  368. // Also there is bool axis_relative_modes[] per axis flag.
  369. static bool relative_mode = false;
  370. #ifndef _DISABLE_M42_M226
  371. const int sensitive_pins[] = SENSITIVE_PINS; // Sensitive pin list for M42
  372. #endif //_DISABLE_M42_M226
  373. //static float tt = 0;
  374. //static float bt = 0;
  375. //Inactivity shutdown variables
  376. static unsigned long previous_millis_cmd = 0;
  377. unsigned long max_inactive_time = 0;
  378. static unsigned long stepper_inactive_time = DEFAULT_STEPPER_DEACTIVE_TIME*1000l;
  379. unsigned long starttime=0;
  380. unsigned long stoptime=0;
  381. unsigned long _usb_timer = 0;
  382. static uint8_t tmp_extruder;
  383. bool extruder_under_pressure = true;
  384. bool Stopped=false;
  385. #if NUM_SERVOS > 0
  386. Servo servos[NUM_SERVOS];
  387. #endif
  388. bool CooldownNoWait = true;
  389. bool target_direction;
  390. //Insert variables if CHDK is defined
  391. #ifdef CHDK
  392. unsigned long chdkHigh = 0;
  393. boolean chdkActive = false;
  394. #endif
  395. //===========================================================================
  396. //=============================Routines======================================
  397. //===========================================================================
  398. void get_arc_coordinates();
  399. bool setTargetedHotend(int code);
  400. void serial_echopair_P(const char *s_P, float v)
  401. { serialprintPGM(s_P); SERIAL_ECHO(v); }
  402. void serial_echopair_P(const char *s_P, double v)
  403. { serialprintPGM(s_P); SERIAL_ECHO(v); }
  404. void serial_echopair_P(const char *s_P, unsigned long v)
  405. { serialprintPGM(s_P); SERIAL_ECHO(v); }
  406. #ifdef SDSUPPORT
  407. #include "SdFatUtil.h"
  408. int freeMemory() { return SdFatUtil::FreeRam(); }
  409. #else
  410. extern "C" {
  411. extern unsigned int __bss_end;
  412. extern unsigned int __heap_start;
  413. extern void *__brkval;
  414. int freeMemory() {
  415. int free_memory;
  416. if ((int)__brkval == 0)
  417. free_memory = ((int)&free_memory) - ((int)&__bss_end);
  418. else
  419. free_memory = ((int)&free_memory) - ((int)__brkval);
  420. return free_memory;
  421. }
  422. }
  423. #endif //!SDSUPPORT
  424. void setup_killpin()
  425. {
  426. #if defined(KILL_PIN) && KILL_PIN > -1
  427. SET_INPUT(KILL_PIN);
  428. WRITE(KILL_PIN,HIGH);
  429. #endif
  430. }
  431. // Set home pin
  432. void setup_homepin(void)
  433. {
  434. #if defined(HOME_PIN) && HOME_PIN > -1
  435. SET_INPUT(HOME_PIN);
  436. WRITE(HOME_PIN,HIGH);
  437. #endif
  438. }
  439. void setup_photpin()
  440. {
  441. #if defined(PHOTOGRAPH_PIN) && PHOTOGRAPH_PIN > -1
  442. SET_OUTPUT(PHOTOGRAPH_PIN);
  443. WRITE(PHOTOGRAPH_PIN, LOW);
  444. #endif
  445. }
  446. void setup_powerhold()
  447. {
  448. #if defined(SUICIDE_PIN) && SUICIDE_PIN > -1
  449. SET_OUTPUT(SUICIDE_PIN);
  450. WRITE(SUICIDE_PIN, HIGH);
  451. #endif
  452. #if defined(PS_ON_PIN) && PS_ON_PIN > -1
  453. SET_OUTPUT(PS_ON_PIN);
  454. #if defined(PS_DEFAULT_OFF)
  455. WRITE(PS_ON_PIN, PS_ON_ASLEEP);
  456. #else
  457. WRITE(PS_ON_PIN, PS_ON_AWAKE);
  458. #endif
  459. #endif
  460. }
  461. void suicide()
  462. {
  463. #if defined(SUICIDE_PIN) && SUICIDE_PIN > -1
  464. SET_OUTPUT(SUICIDE_PIN);
  465. WRITE(SUICIDE_PIN, LOW);
  466. #endif
  467. }
  468. void servo_init()
  469. {
  470. #if (NUM_SERVOS >= 1) && defined(SERVO0_PIN) && (SERVO0_PIN > -1)
  471. servos[0].attach(SERVO0_PIN);
  472. #endif
  473. #if (NUM_SERVOS >= 2) && defined(SERVO1_PIN) && (SERVO1_PIN > -1)
  474. servos[1].attach(SERVO1_PIN);
  475. #endif
  476. #if (NUM_SERVOS >= 3) && defined(SERVO2_PIN) && (SERVO2_PIN > -1)
  477. servos[2].attach(SERVO2_PIN);
  478. #endif
  479. #if (NUM_SERVOS >= 4) && defined(SERVO3_PIN) && (SERVO3_PIN > -1)
  480. servos[3].attach(SERVO3_PIN);
  481. #endif
  482. #if (NUM_SERVOS >= 5)
  483. #error "TODO: enter initalisation code for more servos"
  484. #endif
  485. }
  486. static void lcd_language_menu();
  487. void stop_and_save_print_to_ram(float z_move, float e_move);
  488. void restore_print_from_ram_and_continue(float e_move);
  489. bool fans_check_enabled = true;
  490. bool filament_autoload_enabled = true;
  491. extern int8_t CrashDetectMenu;
  492. void crashdet_enable()
  493. {
  494. // MYSERIAL.println("crashdet_enable");
  495. tmc2130_sg_stop_on_crash = true;
  496. eeprom_update_byte((uint8_t*)EEPROM_CRASH_DET, 0xFF);
  497. CrashDetectMenu = 1;
  498. }
  499. void crashdet_disable()
  500. {
  501. // MYSERIAL.println("crashdet_disable");
  502. tmc2130_sg_stop_on_crash = false;
  503. tmc2130_sg_crash = false;
  504. eeprom_update_byte((uint8_t*)EEPROM_CRASH_DET, 0x00);
  505. CrashDetectMenu = 0;
  506. }
  507. void crashdet_stop_and_save_print()
  508. {
  509. stop_and_save_print_to_ram(10, 0); //XY - no change, Z 10mm up, E - no change
  510. }
  511. void crashdet_restore_print_and_continue()
  512. {
  513. restore_print_from_ram_and_continue(0); //XYZ = orig, E - no change
  514. // babystep_apply();
  515. }
  516. void crashdet_stop_and_save_print2()
  517. {
  518. cli();
  519. planner_abort_hard(); //abort printing
  520. cmdqueue_reset(); //empty cmdqueue
  521. card.sdprinting = false;
  522. card.closefile();
  523. sei();
  524. }
  525. void crashdet_detected()
  526. {
  527. // printf("CRASH_DETECTED");
  528. /* while (!is_buffer_empty())
  529. {
  530. process_commands();
  531. cmdqueue_pop_front();
  532. }*/
  533. st_synchronize();
  534. lcd_update_enable(true);
  535. lcd_implementation_clear();
  536. lcd_update(2);
  537. // Increment crash counter
  538. uint8_t crash_count = eeprom_read_byte((uint8_t*)EEPROM_CRASH_COUNT);
  539. crash_count++;
  540. eeprom_update_byte((uint8_t*)EEPROM_CRASH_COUNT, crash_count);
  541. #ifdef AUTOMATIC_RECOVERY_AFTER_CRASH
  542. bool yesno = true;
  543. #else
  544. bool yesno = lcd_show_fullscreen_message_yes_no_and_wait_P(MSG_CRASH_DETECTED, false);
  545. #endif
  546. lcd_update_enable(true);
  547. lcd_update(2);
  548. lcd_setstatuspgm(MSG_CRASH_DETECTED);
  549. if (yesno)
  550. {
  551. enquecommand_P(PSTR("G28 X Y"));
  552. enquecommand_P(PSTR("CRASH_RECOVER"));
  553. }
  554. else
  555. {
  556. enquecommand_P(PSTR("CRASH_CANCEL"));
  557. }
  558. }
  559. void crashdet_recover()
  560. {
  561. crashdet_restore_print_and_continue();
  562. tmc2130_sg_stop_on_crash = true;
  563. }
  564. void crashdet_cancel()
  565. {
  566. card.sdprinting = false;
  567. card.closefile();
  568. tmc2130_sg_stop_on_crash = true;
  569. }
  570. #ifdef MESH_BED_LEVELING
  571. enum MeshLevelingState { MeshReport, MeshStart, MeshNext, MeshSet };
  572. #endif
  573. // Factory reset function
  574. // This function is used to erase parts or whole EEPROM memory which is used for storing calibration and and so on.
  575. // Level input parameter sets depth of reset
  576. // Quiet parameter masks all waitings for user interact.
  577. int er_progress = 0;
  578. void factory_reset(char level, bool quiet)
  579. {
  580. lcd_implementation_clear();
  581. int cursor_pos = 0;
  582. switch (level) {
  583. // Level 0: Language reset
  584. case 0:
  585. WRITE(BEEPER, HIGH);
  586. _delay_ms(100);
  587. WRITE(BEEPER, LOW);
  588. lcd_force_language_selection();
  589. break;
  590. //Level 1: Reset statistics
  591. case 1:
  592. WRITE(BEEPER, HIGH);
  593. _delay_ms(100);
  594. WRITE(BEEPER, LOW);
  595. eeprom_update_dword((uint32_t *)EEPROM_TOTALTIME, 0);
  596. eeprom_update_dword((uint32_t *)EEPROM_FILAMENTUSED, 0);
  597. eeprom_update_byte((uint8_t *)EEPROM_POWER_COUNT, 0);
  598. eeprom_update_byte((uint8_t *)EEPROM_CRASH_COUNT, 0);
  599. eeprom_update_byte((uint8_t *)EEPROM_FERROR_COUNT, 0);
  600. lcd_menu_statistics();
  601. break;
  602. // Level 2: Prepare for shipping
  603. case 2:
  604. //lcd_printPGM(PSTR("Factory RESET"));
  605. //lcd_print_at_PGM(1,2,PSTR("Shipping prep"));
  606. // Force language selection at the next boot up.
  607. lcd_force_language_selection();
  608. // Force the "Follow calibration flow" message at the next boot up.
  609. calibration_status_store(CALIBRATION_STATUS_Z_CALIBRATION);
  610. eeprom_write_byte((uint8_t*)EEPROM_WIZARD_ACTIVE, 1); //run wizard
  611. farm_no = 0;
  612. farm_mode == false;
  613. eeprom_update_byte((uint8_t*)EEPROM_FARM_MODE, farm_mode);
  614. EEPROM_save_B(EEPROM_FARM_NUMBER, &farm_no);
  615. WRITE(BEEPER, HIGH);
  616. _delay_ms(100);
  617. WRITE(BEEPER, LOW);
  618. //_delay_ms(2000);
  619. break;
  620. // Level 3: erase everything, whole EEPROM will be set to 0xFF
  621. case 3:
  622. lcd_printPGM(PSTR("Factory RESET"));
  623. lcd_print_at_PGM(1, 2, PSTR("ERASING all data"));
  624. WRITE(BEEPER, HIGH);
  625. _delay_ms(100);
  626. WRITE(BEEPER, LOW);
  627. er_progress = 0;
  628. lcd_print_at_PGM(3, 3, PSTR(" "));
  629. lcd_implementation_print_at(3, 3, er_progress);
  630. // Erase EEPROM
  631. for (int i = 0; i < 4096; i++) {
  632. eeprom_write_byte((uint8_t*)i, 0xFF);
  633. if (i % 41 == 0) {
  634. er_progress++;
  635. lcd_print_at_PGM(3, 3, PSTR(" "));
  636. lcd_implementation_print_at(3, 3, er_progress);
  637. lcd_printPGM(PSTR("%"));
  638. }
  639. }
  640. break;
  641. case 4:
  642. bowden_menu();
  643. break;
  644. default:
  645. break;
  646. }
  647. }
  648. #include "LiquidCrystal.h"
  649. extern LiquidCrystal lcd;
  650. FILE _lcdout = {0};
  651. int lcd_putchar(char c, FILE *stream)
  652. {
  653. lcd.write(c);
  654. return 0;
  655. }
  656. FILE _uartout = {0};
  657. int uart_putchar(char c, FILE *stream)
  658. {
  659. MYSERIAL.write(c);
  660. return 0;
  661. }
  662. void lcd_splash()
  663. {
  664. // lcd_print_at_PGM(0, 1, PSTR(" Original Prusa "));
  665. // lcd_print_at_PGM(0, 2, PSTR(" 3D Printers "));
  666. // lcd.print_P(PSTR("\x1b[1;3HOriginal Prusa\x1b[2;4H3D Printers"));
  667. fputs_P(PSTR(ESC_2J ESC_H(1,1) "Original Prusa i3" ESC_H(3,2) "Prusa Research"), lcdout);
  668. }
  669. void factory_reset()
  670. {
  671. KEEPALIVE_STATE(PAUSED_FOR_USER);
  672. if (!READ(BTN_ENC))
  673. {
  674. _delay_ms(1000);
  675. if (!READ(BTN_ENC))
  676. {
  677. lcd_implementation_clear();
  678. lcd_printPGM(PSTR("Factory RESET"));
  679. SET_OUTPUT(BEEPER);
  680. WRITE(BEEPER, HIGH);
  681. while (!READ(BTN_ENC));
  682. WRITE(BEEPER, LOW);
  683. _delay_ms(2000);
  684. char level = reset_menu();
  685. factory_reset(level, false);
  686. switch (level) {
  687. case 0: _delay_ms(0); break;
  688. case 1: _delay_ms(0); break;
  689. case 2: _delay_ms(0); break;
  690. case 3: _delay_ms(0); break;
  691. }
  692. // _delay_ms(100);
  693. /*
  694. #ifdef MESH_BED_LEVELING
  695. _delay_ms(2000);
  696. if (!READ(BTN_ENC))
  697. {
  698. WRITE(BEEPER, HIGH);
  699. _delay_ms(100);
  700. WRITE(BEEPER, LOW);
  701. _delay_ms(200);
  702. WRITE(BEEPER, HIGH);
  703. _delay_ms(100);
  704. WRITE(BEEPER, LOW);
  705. int _z = 0;
  706. calibration_status_store(CALIBRATION_STATUS_CALIBRATED);
  707. EEPROM_save_B(EEPROM_BABYSTEP_X, &_z);
  708. EEPROM_save_B(EEPROM_BABYSTEP_Y, &_z);
  709. EEPROM_save_B(EEPROM_BABYSTEP_Z, &_z);
  710. }
  711. else
  712. {
  713. WRITE(BEEPER, HIGH);
  714. _delay_ms(100);
  715. WRITE(BEEPER, LOW);
  716. }
  717. #endif // mesh */
  718. }
  719. }
  720. else
  721. {
  722. //_delay_ms(1000); // wait 1sec to display the splash screen // what's this and why do we need it?? - andre
  723. }
  724. KEEPALIVE_STATE(IN_HANDLER);
  725. }
  726. void show_fw_version_warnings() {
  727. if (FW_DEV_VERSION == FW_VERSION_GOLD || FW_DEV_VERSION == FW_VERSION_RC) return;
  728. switch (FW_DEV_VERSION) {
  729. case(FW_VERSION_ALPHA): lcd_show_fullscreen_message_and_wait_P(MSG_FW_VERSION_ALPHA); break;
  730. case(FW_VERSION_BETA): lcd_show_fullscreen_message_and_wait_P(MSG_FW_VERSION_BETA); break;
  731. case(FW_VERSION_DEVEL):
  732. case(FW_VERSION_DEBUG):
  733. lcd_update_enable(false);
  734. lcd_implementation_clear();
  735. #if FW_DEV_VERSION == FW_VERSION_DEVEL
  736. lcd_print_at_PGM(0, 0, PSTR("Development build !!"));
  737. #else
  738. lcd_print_at_PGM(0, 0, PSTR("Debbugging build !!!"));
  739. #endif
  740. lcd_print_at_PGM(0, 1, PSTR("May destroy printer!"));
  741. lcd_print_at_PGM(0, 2, PSTR("ver ")); lcd_printPGM(PSTR(FW_VERSION_FULL));
  742. lcd_print_at_PGM(0, 3, PSTR(FW_REPOSITORY));
  743. lcd_wait_for_click();
  744. break;
  745. default: lcd_show_fullscreen_message_and_wait_P(MSG_FW_VERSION_UNKNOWN); break;
  746. }
  747. lcd_update_enable(true);
  748. }
  749. // "Setup" function is called by the Arduino framework on startup.
  750. // Before startup, the Timers-functions (PWM)/Analog RW and HardwareSerial provided by the Arduino-code
  751. // are initialized by the main() routine provided by the Arduino framework.
  752. void setup()
  753. {
  754. lcd_init();
  755. fdev_setup_stream(lcdout, lcd_putchar, NULL, _FDEV_SETUP_WRITE); //setup lcdout stream
  756. lcd_splash();
  757. setup_killpin();
  758. setup_powerhold();
  759. farm_mode = eeprom_read_byte((uint8_t*)EEPROM_FARM_MODE);
  760. EEPROM_read_B(EEPROM_FARM_NUMBER, &farm_no);
  761. if ((farm_mode == 0xFF && farm_no == 0) || (farm_no == 0xFFFF)) farm_mode = false; //if farm_mode has not been stored to eeprom yet and farm number is set to zero or EEPROM is fresh, deactivate farm mode
  762. if (farm_no == 0xFFFF) farm_no = 0;
  763. selectedSerialPort = eeprom_read_byte((uint8_t*)EEPROM_SECOND_SERIAL_ACTIVE);
  764. if (selectedSerialPort == 0xFF) selectedSerialPort = 0;
  765. if (farm_mode)
  766. {
  767. prusa_statistics(8);
  768. selectedSerialPort = 1;
  769. }
  770. MYSERIAL.begin(BAUDRATE);
  771. fdev_setup_stream(uartout, uart_putchar, NULL, _FDEV_SETUP_WRITE); //setup uart out stream
  772. stdout = uartout;
  773. SERIAL_PROTOCOLLNPGM("start");
  774. SERIAL_ECHO_START;
  775. printf_P(PSTR(" "FW_VERSION_FULL"\n"));
  776. #if 0
  777. SERIAL_ECHOLN("Reading eeprom from 0 to 100: start");
  778. for (int i = 0; i < 4096; ++i) {
  779. int b = eeprom_read_byte((unsigned char*)i);
  780. if (b != 255) {
  781. SERIAL_ECHO(i);
  782. SERIAL_ECHO(":");
  783. SERIAL_ECHO(b);
  784. SERIAL_ECHOLN("");
  785. }
  786. }
  787. SERIAL_ECHOLN("Reading eeprom from 0 to 100: done");
  788. #endif
  789. // Check startup - does nothing if bootloader sets MCUSR to 0
  790. byte mcu = MCUSR;
  791. /* if (mcu & 1) SERIAL_ECHOLNRPGM(MSG_POWERUP);
  792. if (mcu & 2) SERIAL_ECHOLNRPGM(MSG_EXTERNAL_RESET);
  793. if (mcu & 4) SERIAL_ECHOLNRPGM(MSG_BROWNOUT_RESET);
  794. if (mcu & 8) SERIAL_ECHOLNRPGM(MSG_WATCHDOG_RESET);
  795. if (mcu & 32) SERIAL_ECHOLNRPGM(MSG_SOFTWARE_RESET);*/
  796. if (mcu & 1) puts_P(MSG_POWERUP);
  797. if (mcu & 2) puts_P(MSG_EXTERNAL_RESET);
  798. if (mcu & 4) puts_P(MSG_BROWNOUT_RESET);
  799. if (mcu & 8) puts_P(MSG_WATCHDOG_RESET);
  800. if (mcu & 32) puts_P(MSG_SOFTWARE_RESET);
  801. MCUSR = 0;
  802. //SERIAL_ECHORPGM(MSG_MARLIN);
  803. //SERIAL_ECHOLNRPGM(VERSION_STRING);
  804. #ifdef STRING_VERSION_CONFIG_H
  805. #ifdef STRING_CONFIG_H_AUTHOR
  806. SERIAL_ECHO_START;
  807. SERIAL_ECHORPGM(MSG_CONFIGURATION_VER);
  808. SERIAL_ECHOPGM(STRING_VERSION_CONFIG_H);
  809. SERIAL_ECHORPGM(MSG_AUTHOR);
  810. SERIAL_ECHOLNPGM(STRING_CONFIG_H_AUTHOR);
  811. SERIAL_ECHOPGM("Compiled: ");
  812. SERIAL_ECHOLNPGM(__DATE__);
  813. #endif
  814. #endif
  815. SERIAL_ECHO_START;
  816. SERIAL_ECHORPGM(MSG_FREE_MEMORY);
  817. SERIAL_ECHO(freeMemory());
  818. SERIAL_ECHORPGM(MSG_PLANNER_BUFFER_BYTES);
  819. SERIAL_ECHOLN((int)sizeof(block_t)*BLOCK_BUFFER_SIZE);
  820. //lcd_update_enable(false); // why do we need this?? - andre
  821. // loads data from EEPROM if available else uses defaults (and resets step acceleration rate)
  822. Config_RetrieveSettings(EEPROM_OFFSET);
  823. SdFatUtil::set_stack_guard(); //writes magic number at the end of static variables to protect against overwriting static memory by stack
  824. tp_init(); // Initialize temperature loop
  825. lcd_splash(); // we need to do this again, because tp_init() kills lcd
  826. plan_init(); // Initialize planner;
  827. watchdog_init();
  828. factory_reset();
  829. #ifdef TMC2130
  830. uint8_t silentMode = eeprom_read_byte((uint8_t*)EEPROM_SILENT);
  831. tmc2130_mode = silentMode?TMC2130_MODE_SILENT:TMC2130_MODE_NORMAL;
  832. uint8_t crashdet = eeprom_read_byte((uint8_t*)EEPROM_CRASH_DET);
  833. if (crashdet)
  834. {
  835. crashdet_enable();
  836. MYSERIAL.println("CrashDetect ENABLED!");
  837. }
  838. else
  839. {
  840. crashdet_disable();
  841. MYSERIAL.println("CrashDetect DISABLED");
  842. }
  843. #endif //TMC2130
  844. st_init(); // Initialize stepper, this enables interrupts!
  845. setup_photpin();
  846. servo_init();
  847. // Reset the machine correction matrix.
  848. // It does not make sense to load the correction matrix until the machine is homed.
  849. world2machine_reset();
  850. #ifdef PAT9125
  851. fsensor_init();
  852. #endif //PAT9125
  853. #if defined(CONTROLLERFAN_PIN) && (CONTROLLERFAN_PIN > -1)
  854. SET_OUTPUT(CONTROLLERFAN_PIN); //Set pin used for driver cooling fan
  855. #endif
  856. #ifdef DIGIPOT_I2C
  857. digipot_i2c_init();
  858. #endif
  859. setup_homepin();
  860. if (1) {
  861. /// SERIAL_ECHOPGM("initial zsteps on power up: "); MYSERIAL.println(tmc2130_rd_MSCNT(Z_TMC2130_CS));
  862. // try to run to zero phase before powering the Z motor.
  863. // Move in negative direction
  864. WRITE(Z_DIR_PIN,INVERT_Z_DIR);
  865. // Round the current micro-micro steps to micro steps.
  866. for (uint16_t phase = (tmc2130_rd_MSCNT(Z_TMC2130_CS) + 8) >> 4; phase > 0; -- phase) {
  867. // Until the phase counter is reset to zero.
  868. WRITE(Z_STEP_PIN, !INVERT_Z_STEP_PIN);
  869. delay(2);
  870. WRITE(Z_STEP_PIN, INVERT_Z_STEP_PIN);
  871. delay(2);
  872. }
  873. // SERIAL_ECHOPGM("initial zsteps after reset: "); MYSERIAL.println(tmc2130_rd_MSCNT(Z_TMC2130_CS));
  874. }
  875. #if defined(Z_AXIS_ALWAYS_ON)
  876. enable_z();
  877. #endif
  878. farm_mode = eeprom_read_byte((uint8_t*)EEPROM_FARM_MODE);
  879. EEPROM_read_B(EEPROM_FARM_NUMBER, &farm_no);
  880. if ((farm_mode == 0xFF && farm_no == 0) || (farm_no == 0xFFFF)) farm_mode = false; //if farm_mode has not been stored to eeprom yet and farm number is set to zero or EEPROM is fresh, deactivate farm mode
  881. if (farm_no == 0xFFFF) farm_no = 0;
  882. if (farm_mode)
  883. {
  884. prusa_statistics(8);
  885. }
  886. // Enable Toshiba FlashAir SD card / WiFi enahanced card.
  887. card.ToshibaFlashAir_enable(eeprom_read_byte((unsigned char*)EEPROM_TOSHIBA_FLASH_AIR_COMPATIBLITY) == 1);
  888. if (eeprom_read_dword((uint32_t*)(EEPROM_TOP - 4)) == 0x0ffffffff &&
  889. eeprom_read_dword((uint32_t*)(EEPROM_TOP - 8)) == 0x0ffffffff) {
  890. // Maiden startup. The firmware has been loaded and first started on a virgin RAMBo board,
  891. // where all the EEPROM entries are set to 0x0ff.
  892. // Once a firmware boots up, it forces at least a language selection, which changes
  893. // EEPROM_LANG to number lower than 0x0ff.
  894. // 1) Set a high power mode.
  895. eeprom_write_byte((uint8_t*)EEPROM_SILENT, 0);
  896. tmc2130_mode = TMC2130_MODE_NORMAL;
  897. eeprom_write_byte((uint8_t*)EEPROM_WIZARD_ACTIVE, 1); //run wizard
  898. }
  899. // Force SD card update. Otherwise the SD card update is done from loop() on card.checkautostart(false),
  900. // but this times out if a blocking dialog is shown in setup().
  901. card.initsd();
  902. if (eeprom_read_byte((uint8_t*)EEPROM_POWER_COUNT) == 0xff)
  903. eeprom_write_byte((uint8_t*)EEPROM_POWER_COUNT, 0);
  904. if (eeprom_read_byte((uint8_t*)EEPROM_CRASH_COUNT) == 0xff)
  905. eeprom_write_byte((uint8_t*)EEPROM_CRASH_COUNT, 0);
  906. if (eeprom_read_byte((uint8_t*)EEPROM_FERROR_COUNT) == 0xff)
  907. eeprom_write_byte((uint8_t*)EEPROM_FERROR_COUNT, 0);
  908. #ifdef SNMM
  909. if (eeprom_read_dword((uint32_t*)EEPROM_BOWDEN_LENGTH) == 0x0ffffffff) { //bowden length used for SNMM
  910. int _z = BOWDEN_LENGTH;
  911. for(int i = 0; i<4; i++) EEPROM_save_B(EEPROM_BOWDEN_LENGTH + i * 2, &_z);
  912. }
  913. #endif
  914. // In the future, somewhere here would one compare the current firmware version against the firmware version stored in the EEPROM.
  915. // If they differ, an update procedure may need to be performed. At the end of this block, the current firmware version
  916. // is being written into the EEPROM, so the update procedure will be triggered only once.
  917. lang_selected = eeprom_read_byte((uint8_t*)EEPROM_LANG);
  918. if (lang_selected >= LANG_NUM){
  919. lcd_mylang();
  920. }
  921. if (eeprom_read_byte((uint8_t*)EEPROM_TEMP_CAL_ACTIVE) == 255) {
  922. eeprom_write_byte((uint8_t*)EEPROM_TEMP_CAL_ACTIVE, 0);
  923. temp_cal_active = false;
  924. } else temp_cal_active = eeprom_read_byte((uint8_t*)EEPROM_TEMP_CAL_ACTIVE);
  925. if (eeprom_read_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA) == 255) {
  926. //eeprom_write_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 0);
  927. eeprom_write_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 1);
  928. eeprom_write_word(((uint16_t*)EEPROM_PROBE_TEMP_SHIFT) + 0, 8); //40C - 20um - 8usteps
  929. eeprom_write_word(((uint16_t*)EEPROM_PROBE_TEMP_SHIFT) + 1, 24); //45C - 60um - 24usteps
  930. eeprom_write_word(((uint16_t*)EEPROM_PROBE_TEMP_SHIFT) + 2, 48); //50C - 120um - 48usteps
  931. eeprom_write_word(((uint16_t*)EEPROM_PROBE_TEMP_SHIFT) + 3, 80); //55C - 200um - 80usteps
  932. eeprom_write_word(((uint16_t*)EEPROM_PROBE_TEMP_SHIFT) + 4, 120); //60C - 300um - 120usteps
  933. eeprom_write_byte((uint8_t*)EEPROM_TEMP_CAL_ACTIVE, 1);
  934. temp_cal_active = true;
  935. }
  936. if (eeprom_read_byte((uint8_t*)EEPROM_UVLO) == 255) {
  937. eeprom_write_byte((uint8_t*)EEPROM_UVLO, 0);
  938. }
  939. if (eeprom_read_byte((uint8_t*)EEPROM_SD_SORT) == 255) {
  940. eeprom_write_byte((uint8_t*)EEPROM_SD_SORT, 0);
  941. }
  942. check_babystep(); //checking if Z babystep is in allowed range
  943. setup_uvlo_interrupt();
  944. #ifndef DEBUG_DISABLE_FANCHECK
  945. setup_fan_interrupt();
  946. #endif //DEBUG_DISABLE_FANCHECK
  947. #ifndef DEBUG_DISABLE_FSENSORCHECK
  948. fsensor_setup_interrupt();
  949. #endif //DEBUG_DISABLE_FSENSORCHECK
  950. for (int i = 0; i<4; i++) EEPROM_read_B(EEPROM_BOWDEN_LENGTH + i * 2, &bowden_length[i]);
  951. #ifndef DEBUG_DISABLE_STARTMSGS
  952. KEEPALIVE_STATE(PAUSED_FOR_USER);
  953. show_fw_version_warnings();
  954. if (eeprom_read_byte((uint8_t*)EEPROM_WIZARD_ACTIVE) == 1) {
  955. lcd_wizard(0);
  956. }
  957. if (eeprom_read_byte((uint8_t*)EEPROM_WIZARD_ACTIVE) == 0) { //dont show calibration status messages if wizard is currently active
  958. if (calibration_status() == CALIBRATION_STATUS_ASSEMBLED ||
  959. calibration_status() == CALIBRATION_STATUS_UNKNOWN) {
  960. // Reset the babystepping values, so the printer will not move the Z axis up when the babystepping is enabled.
  961. eeprom_update_word((uint16_t*)EEPROM_BABYSTEP_Z, 0);
  962. // Show the message.
  963. lcd_show_fullscreen_message_and_wait_P(MSG_FOLLOW_CALIBRATION_FLOW);
  964. }
  965. else if (calibration_status() == CALIBRATION_STATUS_LIVE_ADJUST) {
  966. // Show the message.
  967. lcd_show_fullscreen_message_and_wait_P(MSG_BABYSTEP_Z_NOT_SET);
  968. lcd_update_enable(true);
  969. }
  970. else if (calibration_status() == CALIBRATION_STATUS_CALIBRATED && temp_cal_active == true && calibration_status_pinda() == false) {
  971. //lcd_show_fullscreen_message_and_wait_P(MSG_PINDA_NOT_CALIBRATED);
  972. lcd_update_enable(true);
  973. }
  974. else if (calibration_status() == CALIBRATION_STATUS_Z_CALIBRATION) {
  975. // Show the message.
  976. lcd_show_fullscreen_message_and_wait_P(MSG_FOLLOW_CALIBRATION_FLOW);
  977. }
  978. }
  979. KEEPALIVE_STATE(IN_PROCESS);
  980. #endif //DEBUG_DISABLE_STARTMSGS
  981. lcd_update_enable(true);
  982. lcd_implementation_clear();
  983. lcd_update(2);
  984. // Store the currently running firmware into an eeprom,
  985. // so the next time the firmware gets updated, it will know from which version it has been updated.
  986. update_current_firmware_version_to_eeprom();
  987. if (eeprom_read_byte((uint8_t*)EEPROM_UVLO) == 1) { //previous print was terminated by UVLO
  988. /*
  989. if (lcd_show_fullscreen_message_yes_no_and_wait_P(MSG_RECOVER_PRINT, false)) recover_print();
  990. else {
  991. eeprom_update_byte((uint8_t*)EEPROM_UVLO, 0);
  992. lcd_update_enable(true);
  993. lcd_update(2);
  994. lcd_setstatuspgm(WELCOME_MSG);
  995. }
  996. */
  997. manage_heater(); // Update temperatures
  998. #ifdef DEBUG_UVLO_AUTOMATIC_RECOVER
  999. MYSERIAL.println("Power panic detected!");
  1000. MYSERIAL.print("Current bed temp:");
  1001. MYSERIAL.println(degBed());
  1002. MYSERIAL.print("Saved bed temp:");
  1003. MYSERIAL.println((float)eeprom_read_byte((uint8_t*)EEPROM_UVLO_TARGET_BED));
  1004. #endif
  1005. if ( degBed() > ( (float)eeprom_read_byte((uint8_t*)EEPROM_UVLO_TARGET_BED) - AUTOMATIC_UVLO_BED_TEMP_OFFSET) ){
  1006. #ifdef DEBUG_UVLO_AUTOMATIC_RECOVER
  1007. MYSERIAL.println("Automatic recovery!");
  1008. #endif
  1009. recover_print(1);
  1010. }
  1011. else{
  1012. #ifdef DEBUG_UVLO_AUTOMATIC_RECOVER
  1013. MYSERIAL.println("Normal recovery!");
  1014. #endif
  1015. if ( lcd_show_fullscreen_message_yes_no_and_wait_P(MSG_RECOVER_PRINT, false) ) recover_print(0);
  1016. else {
  1017. eeprom_update_byte((uint8_t*)EEPROM_UVLO, 0);
  1018. lcd_update_enable(true);
  1019. lcd_update(2);
  1020. lcd_setstatuspgm(WELCOME_MSG);
  1021. }
  1022. }
  1023. }
  1024. KEEPALIVE_STATE(NOT_BUSY);
  1025. wdt_enable(WDTO_4S);
  1026. }
  1027. #ifdef PAT9125
  1028. void fsensor_init() {
  1029. int pat9125 = pat9125_init(PAT9125_XRES, PAT9125_YRES);
  1030. printf_P(PSTR("PAT9125_init:%d\n"), pat9125);
  1031. uint8_t fsensor = eeprom_read_byte((uint8_t*)EEPROM_FSENSOR);
  1032. if (!pat9125)
  1033. {
  1034. fsensor = 0; //disable sensor
  1035. fsensor_not_responding = true;
  1036. }
  1037. else {
  1038. fsensor_not_responding = false;
  1039. }
  1040. puts_P(PSTR("FSensor "));
  1041. if (fsensor)
  1042. {
  1043. puts_P(PSTR("ENABLED\n"));
  1044. fsensor_enable();
  1045. }
  1046. else
  1047. {
  1048. puts_P(PSTR("DISABLED\n"));
  1049. fsensor_disable();
  1050. }
  1051. #ifdef DEBUG_DISABLE_FSENSORCHECK
  1052. filament_autoload_enabled = false;
  1053. fsensor_disable();
  1054. #endif //DEBUG_DISABLE_FSENSORCHECK
  1055. }
  1056. #endif //PAT9125
  1057. void trace();
  1058. #define CHUNK_SIZE 64 // bytes
  1059. #define SAFETY_MARGIN 1
  1060. char chunk[CHUNK_SIZE+SAFETY_MARGIN];
  1061. int chunkHead = 0;
  1062. int serial_read_stream() {
  1063. setTargetHotend(0, 0);
  1064. setTargetBed(0);
  1065. lcd_implementation_clear();
  1066. lcd_printPGM(PSTR(" Upload in progress"));
  1067. // first wait for how many bytes we will receive
  1068. uint32_t bytesToReceive;
  1069. // receive the four bytes
  1070. char bytesToReceiveBuffer[4];
  1071. for (int i=0; i<4; i++) {
  1072. int data;
  1073. while ((data = MYSERIAL.read()) == -1) {};
  1074. bytesToReceiveBuffer[i] = data;
  1075. }
  1076. // make it a uint32
  1077. memcpy(&bytesToReceive, &bytesToReceiveBuffer, 4);
  1078. // we're ready, notify the sender
  1079. MYSERIAL.write('+');
  1080. // lock in the routine
  1081. uint32_t receivedBytes = 0;
  1082. while (prusa_sd_card_upload) {
  1083. int i;
  1084. for (i=0; i<CHUNK_SIZE; i++) {
  1085. int data;
  1086. // check if we're not done
  1087. if (receivedBytes == bytesToReceive) {
  1088. break;
  1089. }
  1090. // read the next byte
  1091. while ((data = MYSERIAL.read()) == -1) {};
  1092. receivedBytes++;
  1093. // save it to the chunk
  1094. chunk[i] = data;
  1095. }
  1096. // write the chunk to SD
  1097. card.write_command_no_newline(&chunk[0]);
  1098. // notify the sender we're ready for more data
  1099. MYSERIAL.write('+');
  1100. // for safety
  1101. manage_heater();
  1102. // check if we're done
  1103. if(receivedBytes == bytesToReceive) {
  1104. trace(); // beep
  1105. card.closefile();
  1106. prusa_sd_card_upload = false;
  1107. SERIAL_PROTOCOLLNRPGM(MSG_FILE_SAVED);
  1108. return 0;
  1109. }
  1110. }
  1111. }
  1112. #ifdef HOST_KEEPALIVE_FEATURE
  1113. /**
  1114. * Output a "busy" message at regular intervals
  1115. * while the machine is not accepting commands.
  1116. */
  1117. void host_keepalive() {
  1118. if (farm_mode) return;
  1119. long ms = millis();
  1120. if (host_keepalive_interval && busy_state != NOT_BUSY) {
  1121. if ((ms - prev_busy_signal_ms) < (long)(1000L * host_keepalive_interval)) return;
  1122. switch (busy_state) {
  1123. case IN_HANDLER:
  1124. case IN_PROCESS:
  1125. SERIAL_ECHO_START;
  1126. SERIAL_ECHOLNPGM("busy: processing");
  1127. break;
  1128. case PAUSED_FOR_USER:
  1129. SERIAL_ECHO_START;
  1130. SERIAL_ECHOLNPGM("busy: paused for user");
  1131. break;
  1132. case PAUSED_FOR_INPUT:
  1133. SERIAL_ECHO_START;
  1134. SERIAL_ECHOLNPGM("busy: paused for input");
  1135. break;
  1136. default:
  1137. break;
  1138. }
  1139. }
  1140. prev_busy_signal_ms = ms;
  1141. }
  1142. #endif
  1143. // The loop() function is called in an endless loop by the Arduino framework from the default main() routine.
  1144. // Before loop(), the setup() function is called by the main() routine.
  1145. void loop()
  1146. {
  1147. KEEPALIVE_STATE(NOT_BUSY);
  1148. bool stack_integrity = true;
  1149. if ((usb_printing_counter > 0) && ((millis()-_usb_timer) > 1000))
  1150. {
  1151. is_usb_printing = true;
  1152. usb_printing_counter--;
  1153. _usb_timer = millis();
  1154. }
  1155. if (usb_printing_counter == 0)
  1156. {
  1157. is_usb_printing = false;
  1158. }
  1159. if (prusa_sd_card_upload)
  1160. {
  1161. //we read byte-by byte
  1162. serial_read_stream();
  1163. } else
  1164. {
  1165. get_command();
  1166. #ifdef SDSUPPORT
  1167. card.checkautostart(false);
  1168. #endif
  1169. if(buflen)
  1170. {
  1171. cmdbuffer_front_already_processed = false;
  1172. #ifdef SDSUPPORT
  1173. if(card.saving)
  1174. {
  1175. // Saving a G-code file onto an SD-card is in progress.
  1176. // Saving starts with M28, saving until M29 is seen.
  1177. if(strstr_P(CMDBUFFER_CURRENT_STRING, PSTR("M29")) == NULL) {
  1178. card.write_command(CMDBUFFER_CURRENT_STRING);
  1179. if(card.logging)
  1180. process_commands();
  1181. else
  1182. SERIAL_PROTOCOLLNRPGM(MSG_OK);
  1183. } else {
  1184. card.closefile();
  1185. SERIAL_PROTOCOLLNRPGM(MSG_FILE_SAVED);
  1186. }
  1187. } else {
  1188. process_commands();
  1189. }
  1190. #else
  1191. process_commands();
  1192. #endif //SDSUPPORT
  1193. if (! cmdbuffer_front_already_processed && buflen)
  1194. {
  1195. cli();
  1196. union {
  1197. struct {
  1198. char lo;
  1199. char hi;
  1200. } lohi;
  1201. uint16_t value;
  1202. } sdlen;
  1203. sdlen.value = 0;
  1204. if (CMDBUFFER_CURRENT_TYPE == CMDBUFFER_CURRENT_TYPE_SDCARD) {
  1205. sdlen.lohi.lo = cmdbuffer[bufindr + 1];
  1206. sdlen.lohi.hi = cmdbuffer[bufindr + 2];
  1207. }
  1208. cmdqueue_pop_front();
  1209. planner_add_sd_length(sdlen.value);
  1210. sei();
  1211. }
  1212. host_keepalive();
  1213. }
  1214. }
  1215. //check heater every n milliseconds
  1216. manage_heater();
  1217. isPrintPaused ? manage_inactivity(true) : manage_inactivity(false);
  1218. checkHitEndstops();
  1219. lcd_update();
  1220. #ifdef PAT9125
  1221. fsensor_update();
  1222. #endif //PAT9125
  1223. #ifdef TMC2130
  1224. tmc2130_check_overtemp();
  1225. if (tmc2130_sg_crash)
  1226. {
  1227. tmc2130_sg_crash = false;
  1228. // crashdet_stop_and_save_print();
  1229. enquecommand_P((PSTR("CRASH_DETECTED")));
  1230. }
  1231. #endif //TMC2130
  1232. }
  1233. #define DEFINE_PGM_READ_ANY(type, reader) \
  1234. static inline type pgm_read_any(const type *p) \
  1235. { return pgm_read_##reader##_near(p); }
  1236. DEFINE_PGM_READ_ANY(float, float);
  1237. DEFINE_PGM_READ_ANY(signed char, byte);
  1238. #define XYZ_CONSTS_FROM_CONFIG(type, array, CONFIG) \
  1239. static const PROGMEM type array##_P[3] = \
  1240. { X_##CONFIG, Y_##CONFIG, Z_##CONFIG }; \
  1241. static inline type array(int axis) \
  1242. { return pgm_read_any(&array##_P[axis]); } \
  1243. type array##_ext(int axis) \
  1244. { return pgm_read_any(&array##_P[axis]); }
  1245. XYZ_CONSTS_FROM_CONFIG(float, base_min_pos, MIN_POS);
  1246. XYZ_CONSTS_FROM_CONFIG(float, base_max_pos, MAX_POS);
  1247. XYZ_CONSTS_FROM_CONFIG(float, base_home_pos, HOME_POS);
  1248. XYZ_CONSTS_FROM_CONFIG(float, max_length, MAX_LENGTH);
  1249. XYZ_CONSTS_FROM_CONFIG(float, home_retract_mm, HOME_RETRACT_MM);
  1250. XYZ_CONSTS_FROM_CONFIG(signed char, home_dir, HOME_DIR);
  1251. static void axis_is_at_home(int axis) {
  1252. current_position[axis] = base_home_pos(axis) + add_homing[axis];
  1253. min_pos[axis] = base_min_pos(axis) + add_homing[axis];
  1254. max_pos[axis] = base_max_pos(axis) + add_homing[axis];
  1255. }
  1256. inline void set_current_to_destination() { memcpy(current_position, destination, sizeof(current_position)); }
  1257. inline void set_destination_to_current() { memcpy(destination, current_position, sizeof(destination)); }
  1258. static void setup_for_endstop_move(bool enable_endstops_now = true) {
  1259. saved_feedrate = feedrate;
  1260. saved_feedmultiply = feedmultiply;
  1261. feedmultiply = 100;
  1262. previous_millis_cmd = millis();
  1263. enable_endstops(enable_endstops_now);
  1264. }
  1265. static void clean_up_after_endstop_move() {
  1266. #ifdef ENDSTOPS_ONLY_FOR_HOMING
  1267. enable_endstops(false);
  1268. #endif
  1269. feedrate = saved_feedrate;
  1270. feedmultiply = saved_feedmultiply;
  1271. previous_millis_cmd = millis();
  1272. }
  1273. #ifdef ENABLE_AUTO_BED_LEVELING
  1274. #ifdef AUTO_BED_LEVELING_GRID
  1275. static void set_bed_level_equation_lsq(double *plane_equation_coefficients)
  1276. {
  1277. vector_3 planeNormal = vector_3(-plane_equation_coefficients[0], -plane_equation_coefficients[1], 1);
  1278. planeNormal.debug("planeNormal");
  1279. plan_bed_level_matrix = matrix_3x3::create_look_at(planeNormal);
  1280. //bedLevel.debug("bedLevel");
  1281. //plan_bed_level_matrix.debug("bed level before");
  1282. //vector_3 uncorrected_position = plan_get_position_mm();
  1283. //uncorrected_position.debug("position before");
  1284. vector_3 corrected_position = plan_get_position();
  1285. // corrected_position.debug("position after");
  1286. current_position[X_AXIS] = corrected_position.x;
  1287. current_position[Y_AXIS] = corrected_position.y;
  1288. current_position[Z_AXIS] = corrected_position.z;
  1289. // put the bed at 0 so we don't go below it.
  1290. current_position[Z_AXIS] = zprobe_zoffset; // in the lsq we reach here after raising the extruder due to the loop structure
  1291. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1292. }
  1293. #else // not AUTO_BED_LEVELING_GRID
  1294. static void set_bed_level_equation_3pts(float z_at_pt_1, float z_at_pt_2, float z_at_pt_3) {
  1295. plan_bed_level_matrix.set_to_identity();
  1296. vector_3 pt1 = vector_3(ABL_PROBE_PT_1_X, ABL_PROBE_PT_1_Y, z_at_pt_1);
  1297. vector_3 pt2 = vector_3(ABL_PROBE_PT_2_X, ABL_PROBE_PT_2_Y, z_at_pt_2);
  1298. vector_3 pt3 = vector_3(ABL_PROBE_PT_3_X, ABL_PROBE_PT_3_Y, z_at_pt_3);
  1299. vector_3 from_2_to_1 = (pt1 - pt2).get_normal();
  1300. vector_3 from_2_to_3 = (pt3 - pt2).get_normal();
  1301. vector_3 planeNormal = vector_3::cross(from_2_to_1, from_2_to_3).get_normal();
  1302. planeNormal = vector_3(planeNormal.x, planeNormal.y, abs(planeNormal.z));
  1303. plan_bed_level_matrix = matrix_3x3::create_look_at(planeNormal);
  1304. vector_3 corrected_position = plan_get_position();
  1305. current_position[X_AXIS] = corrected_position.x;
  1306. current_position[Y_AXIS] = corrected_position.y;
  1307. current_position[Z_AXIS] = corrected_position.z;
  1308. // put the bed at 0 so we don't go below it.
  1309. current_position[Z_AXIS] = zprobe_zoffset;
  1310. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1311. }
  1312. #endif // AUTO_BED_LEVELING_GRID
  1313. static void run_z_probe() {
  1314. plan_bed_level_matrix.set_to_identity();
  1315. feedrate = homing_feedrate[Z_AXIS];
  1316. // move down until you find the bed
  1317. float zPosition = -10;
  1318. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder);
  1319. st_synchronize();
  1320. // we have to let the planner know where we are right now as it is not where we said to go.
  1321. zPosition = st_get_position_mm(Z_AXIS);
  1322. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS]);
  1323. // move up the retract distance
  1324. zPosition += home_retract_mm(Z_AXIS);
  1325. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder);
  1326. st_synchronize();
  1327. // move back down slowly to find bed
  1328. feedrate = homing_feedrate[Z_AXIS]/4;
  1329. zPosition -= home_retract_mm(Z_AXIS) * 2;
  1330. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder);
  1331. st_synchronize();
  1332. current_position[Z_AXIS] = st_get_position_mm(Z_AXIS);
  1333. // make sure the planner knows where we are as it may be a bit different than we last said to move to
  1334. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1335. }
  1336. static void do_blocking_move_to(float x, float y, float z) {
  1337. float oldFeedRate = feedrate;
  1338. feedrate = homing_feedrate[Z_AXIS];
  1339. current_position[Z_AXIS] = z;
  1340. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], feedrate/60, active_extruder);
  1341. st_synchronize();
  1342. feedrate = XY_TRAVEL_SPEED;
  1343. current_position[X_AXIS] = x;
  1344. current_position[Y_AXIS] = y;
  1345. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], feedrate/60, active_extruder);
  1346. st_synchronize();
  1347. feedrate = oldFeedRate;
  1348. }
  1349. static void do_blocking_move_relative(float offset_x, float offset_y, float offset_z) {
  1350. do_blocking_move_to(current_position[X_AXIS] + offset_x, current_position[Y_AXIS] + offset_y, current_position[Z_AXIS] + offset_z);
  1351. }
  1352. /// Probe bed height at position (x,y), returns the measured z value
  1353. static float probe_pt(float x, float y, float z_before) {
  1354. // move to right place
  1355. do_blocking_move_to(current_position[X_AXIS], current_position[Y_AXIS], z_before);
  1356. do_blocking_move_to(x - X_PROBE_OFFSET_FROM_EXTRUDER, y - Y_PROBE_OFFSET_FROM_EXTRUDER, current_position[Z_AXIS]);
  1357. run_z_probe();
  1358. float measured_z = current_position[Z_AXIS];
  1359. SERIAL_PROTOCOLRPGM(MSG_BED);
  1360. SERIAL_PROTOCOLPGM(" x: ");
  1361. SERIAL_PROTOCOL(x);
  1362. SERIAL_PROTOCOLPGM(" y: ");
  1363. SERIAL_PROTOCOL(y);
  1364. SERIAL_PROTOCOLPGM(" z: ");
  1365. SERIAL_PROTOCOL(measured_z);
  1366. SERIAL_PROTOCOLPGM("\n");
  1367. return measured_z;
  1368. }
  1369. #endif // #ifdef ENABLE_AUTO_BED_LEVELING
  1370. #ifdef LIN_ADVANCE
  1371. /**
  1372. * M900: Set and/or Get advance K factor and WH/D ratio
  1373. *
  1374. * K<factor> Set advance K factor
  1375. * R<ratio> Set ratio directly (overrides WH/D)
  1376. * W<width> H<height> D<diam> Set ratio from WH/D
  1377. */
  1378. inline void gcode_M900() {
  1379. st_synchronize();
  1380. const float newK = code_seen('K') ? code_value_float() : -1;
  1381. if (newK >= 0) extruder_advance_k = newK;
  1382. float newR = code_seen('R') ? code_value_float() : -1;
  1383. if (newR < 0) {
  1384. const float newD = code_seen('D') ? code_value_float() : -1,
  1385. newW = code_seen('W') ? code_value_float() : -1,
  1386. newH = code_seen('H') ? code_value_float() : -1;
  1387. if (newD >= 0 && newW >= 0 && newH >= 0)
  1388. newR = newD ? (newW * newH) / (sq(newD * 0.5) * M_PI) : 0;
  1389. }
  1390. if (newR >= 0) advance_ed_ratio = newR;
  1391. SERIAL_ECHO_START;
  1392. SERIAL_ECHOPGM("Advance K=");
  1393. SERIAL_ECHOLN(extruder_advance_k);
  1394. SERIAL_ECHOPGM(" E/D=");
  1395. const float ratio = advance_ed_ratio;
  1396. if (ratio) SERIAL_ECHOLN(ratio); else SERIAL_ECHOLNPGM("Auto");
  1397. }
  1398. #endif // LIN_ADVANCE
  1399. bool check_commands() {
  1400. bool end_command_found = false;
  1401. while (buflen)
  1402. {
  1403. if ((code_seen("M84")) || (code_seen("M 84"))) end_command_found = true;
  1404. if (!cmdbuffer_front_already_processed)
  1405. cmdqueue_pop_front();
  1406. cmdbuffer_front_already_processed = false;
  1407. }
  1408. return end_command_found;
  1409. }
  1410. #ifdef TMC2130
  1411. bool calibrate_z_auto()
  1412. {
  1413. //lcd_display_message_fullscreen_P(MSG_CALIBRATE_Z_AUTO);
  1414. lcd_implementation_clear();
  1415. lcd_print_at_PGM(0,1, MSG_CALIBRATE_Z_AUTO);
  1416. bool endstops_enabled = enable_endstops(true);
  1417. int axis_up_dir = -home_dir(Z_AXIS);
  1418. tmc2130_home_enter(Z_AXIS_MASK);
  1419. current_position[Z_AXIS] = 0;
  1420. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1421. set_destination_to_current();
  1422. destination[Z_AXIS] += (1.1 * max_length(Z_AXIS) * axis_up_dir);
  1423. feedrate = homing_feedrate[Z_AXIS];
  1424. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1425. st_synchronize();
  1426. // current_position[axis] = 0;
  1427. // plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1428. tmc2130_home_exit();
  1429. enable_endstops(false);
  1430. current_position[Z_AXIS] = 0;
  1431. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1432. set_destination_to_current();
  1433. destination[Z_AXIS] += 10 * axis_up_dir; //10mm up
  1434. feedrate = homing_feedrate[Z_AXIS] / 2;
  1435. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1436. st_synchronize();
  1437. enable_endstops(endstops_enabled);
  1438. current_position[Z_AXIS] = Z_MAX_POS+2.0;
  1439. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1440. return true;
  1441. }
  1442. #endif //TMC2130
  1443. void homeaxis(int axis)
  1444. {
  1445. bool endstops_enabled = enable_endstops(true); //RP: endstops should be allways enabled durring homming
  1446. #define HOMEAXIS_DO(LETTER) \
  1447. ((LETTER##_MIN_PIN > -1 && LETTER##_HOME_DIR==-1) || (LETTER##_MAX_PIN > -1 && LETTER##_HOME_DIR==1))
  1448. if ((axis==X_AXIS)?HOMEAXIS_DO(X):(axis==Y_AXIS)?HOMEAXIS_DO(Y):0)
  1449. {
  1450. int axis_home_dir = home_dir(axis);
  1451. feedrate = homing_feedrate[axis];
  1452. #ifdef TMC2130
  1453. tmc2130_home_enter(X_AXIS_MASK << axis);
  1454. #endif
  1455. // Move right a bit, so that the print head does not touch the left end position,
  1456. // and the following left movement has a chance to achieve the required velocity
  1457. // for the stall guard to work.
  1458. current_position[axis] = 0;
  1459. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1460. // destination[axis] = 11.f;
  1461. destination[axis] = 3.f;
  1462. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1463. st_synchronize();
  1464. // Move left away from the possible collision with the collision detection disabled.
  1465. endstops_hit_on_purpose();
  1466. enable_endstops(false);
  1467. current_position[axis] = 0;
  1468. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1469. destination[axis] = - 1.;
  1470. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1471. st_synchronize();
  1472. // Now continue to move up to the left end stop with the collision detection enabled.
  1473. enable_endstops(true);
  1474. destination[axis] = - 1.1 * max_length(axis);
  1475. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1476. st_synchronize();
  1477. // Move right from the collision to a known distance from the left end stop with the collision detection disabled.
  1478. endstops_hit_on_purpose();
  1479. enable_endstops(false);
  1480. current_position[axis] = 0;
  1481. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1482. destination[axis] = 10.f;
  1483. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1484. st_synchronize();
  1485. endstops_hit_on_purpose();
  1486. // Now move left up to the collision, this time with a repeatable velocity.
  1487. enable_endstops(true);
  1488. destination[axis] = - 15.f;
  1489. feedrate = homing_feedrate[axis]/2;
  1490. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1491. st_synchronize();
  1492. axis_is_at_home(axis);
  1493. axis_known_position[axis] = true;
  1494. #ifdef TMC2130
  1495. tmc2130_home_exit();
  1496. #endif
  1497. // Move the X carriage away from the collision.
  1498. // If this is not done, the X cariage will jump from the collision at the instant the Trinamic driver reduces power on idle.
  1499. endstops_hit_on_purpose();
  1500. enable_endstops(false);
  1501. {
  1502. // Two full periods (4 full steps).
  1503. float gap = 0.32f * 2.f;
  1504. current_position[axis] -= gap;
  1505. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1506. current_position[axis] += gap;
  1507. }
  1508. destination[axis] = current_position[axis];
  1509. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], 0.3f*feedrate/60, active_extruder);
  1510. st_synchronize();
  1511. feedrate = 0.0;
  1512. }
  1513. else if ((axis==Z_AXIS)?HOMEAXIS_DO(Z):0)
  1514. {
  1515. int axis_home_dir = home_dir(axis);
  1516. current_position[axis] = 0;
  1517. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1518. destination[axis] = 1.5 * max_length(axis) * axis_home_dir;
  1519. feedrate = homing_feedrate[axis];
  1520. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1521. st_synchronize();
  1522. current_position[axis] = 0;
  1523. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1524. destination[axis] = -home_retract_mm(axis) * axis_home_dir;
  1525. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1526. st_synchronize();
  1527. destination[axis] = 2*home_retract_mm(axis) * axis_home_dir;
  1528. feedrate = homing_feedrate[axis]/2 ;
  1529. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1530. st_synchronize();
  1531. axis_is_at_home(axis);
  1532. destination[axis] = current_position[axis];
  1533. feedrate = 0.0;
  1534. endstops_hit_on_purpose();
  1535. axis_known_position[axis] = true;
  1536. }
  1537. enable_endstops(endstops_enabled);
  1538. }
  1539. /**/
  1540. void home_xy()
  1541. {
  1542. set_destination_to_current();
  1543. homeaxis(X_AXIS);
  1544. homeaxis(Y_AXIS);
  1545. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1546. endstops_hit_on_purpose();
  1547. }
  1548. void refresh_cmd_timeout(void)
  1549. {
  1550. previous_millis_cmd = millis();
  1551. }
  1552. #ifdef FWRETRACT
  1553. void retract(bool retracting, bool swapretract = false) {
  1554. if(retracting && !retracted[active_extruder]) {
  1555. destination[X_AXIS]=current_position[X_AXIS];
  1556. destination[Y_AXIS]=current_position[Y_AXIS];
  1557. destination[Z_AXIS]=current_position[Z_AXIS];
  1558. destination[E_AXIS]=current_position[E_AXIS];
  1559. if (swapretract) {
  1560. current_position[E_AXIS]+=retract_length_swap/volumetric_multiplier[active_extruder];
  1561. } else {
  1562. current_position[E_AXIS]+=retract_length/volumetric_multiplier[active_extruder];
  1563. }
  1564. plan_set_e_position(current_position[E_AXIS]);
  1565. float oldFeedrate = feedrate;
  1566. feedrate=retract_feedrate*60;
  1567. retracted[active_extruder]=true;
  1568. prepare_move();
  1569. current_position[Z_AXIS]-=retract_zlift;
  1570. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1571. prepare_move();
  1572. feedrate = oldFeedrate;
  1573. } else if(!retracting && retracted[active_extruder]) {
  1574. destination[X_AXIS]=current_position[X_AXIS];
  1575. destination[Y_AXIS]=current_position[Y_AXIS];
  1576. destination[Z_AXIS]=current_position[Z_AXIS];
  1577. destination[E_AXIS]=current_position[E_AXIS];
  1578. current_position[Z_AXIS]+=retract_zlift;
  1579. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1580. //prepare_move();
  1581. if (swapretract) {
  1582. current_position[E_AXIS]-=(retract_length_swap+retract_recover_length_swap)/volumetric_multiplier[active_extruder];
  1583. } else {
  1584. current_position[E_AXIS]-=(retract_length+retract_recover_length)/volumetric_multiplier[active_extruder];
  1585. }
  1586. plan_set_e_position(current_position[E_AXIS]);
  1587. float oldFeedrate = feedrate;
  1588. feedrate=retract_recover_feedrate*60;
  1589. retracted[active_extruder]=false;
  1590. prepare_move();
  1591. feedrate = oldFeedrate;
  1592. }
  1593. } //retract
  1594. #endif //FWRETRACT
  1595. void trace() {
  1596. tone(BEEPER, 440);
  1597. delay(25);
  1598. noTone(BEEPER);
  1599. delay(20);
  1600. }
  1601. /*
  1602. void ramming() {
  1603. // float tmp[4] = DEFAULT_MAX_FEEDRATE;
  1604. if (current_temperature[0] < 230) {
  1605. //PLA
  1606. max_feedrate[E_AXIS] = 50;
  1607. //current_position[E_AXIS] -= 8;
  1608. //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2100 / 60, active_extruder);
  1609. //current_position[E_AXIS] += 8;
  1610. //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2100 / 60, active_extruder);
  1611. current_position[E_AXIS] += 5.4;
  1612. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2800 / 60, active_extruder);
  1613. current_position[E_AXIS] += 3.2;
  1614. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  1615. current_position[E_AXIS] += 3;
  1616. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3400 / 60, active_extruder);
  1617. st_synchronize();
  1618. max_feedrate[E_AXIS] = 80;
  1619. current_position[E_AXIS] -= 82;
  1620. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 9500 / 60, active_extruder);
  1621. max_feedrate[E_AXIS] = 50;//tmp[E_AXIS];
  1622. current_position[E_AXIS] -= 20;
  1623. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 1200 / 60, active_extruder);
  1624. current_position[E_AXIS] += 5;
  1625. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400 / 60, active_extruder);
  1626. current_position[E_AXIS] += 5;
  1627. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  1628. current_position[E_AXIS] -= 10;
  1629. st_synchronize();
  1630. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  1631. current_position[E_AXIS] += 10;
  1632. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  1633. current_position[E_AXIS] -= 10;
  1634. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 800 / 60, active_extruder);
  1635. current_position[E_AXIS] += 10;
  1636. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 800 / 60, active_extruder);
  1637. current_position[E_AXIS] -= 10;
  1638. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 800 / 60, active_extruder);
  1639. st_synchronize();
  1640. }
  1641. else {
  1642. //ABS
  1643. max_feedrate[E_AXIS] = 50;
  1644. //current_position[E_AXIS] -= 8;
  1645. //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2100 / 60, active_extruder);
  1646. //current_position[E_AXIS] += 8;
  1647. //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2100 / 60, active_extruder);
  1648. current_position[E_AXIS] += 3.1;
  1649. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2000 / 60, active_extruder);
  1650. current_position[E_AXIS] += 3.1;
  1651. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2500 / 60, active_extruder);
  1652. current_position[E_AXIS] += 4;
  1653. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  1654. st_synchronize();
  1655. //current_position[X_AXIS] += 23; //delay
  1656. //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600/60, active_extruder); //delay
  1657. //current_position[X_AXIS] -= 23; //delay
  1658. //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600/60, active_extruder); //delay
  1659. delay(4700);
  1660. max_feedrate[E_AXIS] = 80;
  1661. current_position[E_AXIS] -= 92;
  1662. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 9900 / 60, active_extruder);
  1663. max_feedrate[E_AXIS] = 50;//tmp[E_AXIS];
  1664. current_position[E_AXIS] -= 5;
  1665. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 800 / 60, active_extruder);
  1666. current_position[E_AXIS] += 5;
  1667. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400 / 60, active_extruder);
  1668. current_position[E_AXIS] -= 5;
  1669. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  1670. st_synchronize();
  1671. current_position[E_AXIS] += 5;
  1672. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  1673. current_position[E_AXIS] -= 5;
  1674. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  1675. current_position[E_AXIS] += 5;
  1676. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  1677. current_position[E_AXIS] -= 5;
  1678. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  1679. st_synchronize();
  1680. }
  1681. }
  1682. */
  1683. #ifdef TMC2130
  1684. void force_high_power_mode(bool start_high_power_section) {
  1685. uint8_t silent;
  1686. silent = eeprom_read_byte((uint8_t*)EEPROM_SILENT);
  1687. if (silent == 1) {
  1688. //we are in silent mode, set to normal mode to enable crash detection
  1689. st_synchronize();
  1690. cli();
  1691. tmc2130_mode = (start_high_power_section == true) ? TMC2130_MODE_NORMAL : TMC2130_MODE_SILENT;
  1692. tmc2130_init();
  1693. sei();
  1694. digipot_init();
  1695. }
  1696. }
  1697. #endif //TMC2130
  1698. bool gcode_M45(bool onlyZ)
  1699. {
  1700. bool final_result = false;
  1701. #ifdef TMC2130
  1702. FORCE_HIGH_POWER_START;
  1703. #endif // TMC2130
  1704. // Only Z calibration?
  1705. if (!onlyZ)
  1706. {
  1707. setTargetBed(0);
  1708. setTargetHotend(0, 0);
  1709. setTargetHotend(0, 1);
  1710. setTargetHotend(0, 2);
  1711. adjust_bed_reset(); //reset bed level correction
  1712. }
  1713. // Disable the default update procedure of the display. We will do a modal dialog.
  1714. lcd_update_enable(false);
  1715. // Let the planner use the uncorrected coordinates.
  1716. mbl.reset();
  1717. // Reset world2machine_rotation_and_skew and world2machine_shift, therefore
  1718. // the planner will not perform any adjustments in the XY plane.
  1719. // Wait for the motors to stop and update the current position with the absolute values.
  1720. world2machine_revert_to_uncorrected();
  1721. // Reset the baby step value applied without moving the axes.
  1722. babystep_reset();
  1723. // Mark all axes as in a need for homing.
  1724. memset(axis_known_position, 0, sizeof(axis_known_position));
  1725. // Home in the XY plane.
  1726. //set_destination_to_current();
  1727. setup_for_endstop_move();
  1728. lcd_display_message_fullscreen_P(MSG_AUTO_HOME);
  1729. home_xy();
  1730. enable_endstops(false);
  1731. current_position[X_AXIS] += 5;
  1732. current_position[Y_AXIS] += 5;
  1733. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[Z_AXIS] / 40, active_extruder);
  1734. st_synchronize();
  1735. // Let the user move the Z axes up to the end stoppers.
  1736. #ifdef TMC2130
  1737. if (calibrate_z_auto())
  1738. {
  1739. #else //TMC2130
  1740. if (lcd_calibrate_z_end_stop_manual(onlyZ))
  1741. {
  1742. #endif //TMC2130
  1743. refresh_cmd_timeout();
  1744. //if (((degHotend(0) > MAX_HOTEND_TEMP_CALIBRATION) || (degBed() > MAX_BED_TEMP_CALIBRATION)) && (!onlyZ))
  1745. //{
  1746. // lcd_wait_for_cool_down();
  1747. //}
  1748. if(!onlyZ)
  1749. {
  1750. KEEPALIVE_STATE(PAUSED_FOR_USER);
  1751. bool result = lcd_show_fullscreen_message_yes_no_and_wait_P(MSG_STEEL_SHEET_CHECK, false, false);
  1752. if(result) lcd_show_fullscreen_message_and_wait_P(MSG_REMOVE_STEEL_SHEET);
  1753. lcd_show_fullscreen_message_and_wait_P(MSG_CONFIRM_NOZZLE_CLEAN);
  1754. lcd_show_fullscreen_message_and_wait_P(MSG_PAPER);
  1755. KEEPALIVE_STATE(IN_HANDLER);
  1756. lcd_display_message_fullscreen_P(MSG_FIND_BED_OFFSET_AND_SKEW_LINE1);
  1757. lcd_implementation_print_at(0, 2, 1);
  1758. lcd_printPGM(MSG_FIND_BED_OFFSET_AND_SKEW_LINE2);
  1759. }
  1760. // Move the print head close to the bed.
  1761. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  1762. bool endstops_enabled = enable_endstops(true);
  1763. tmc2130_home_enter(Z_AXIS_MASK);
  1764. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[Z_AXIS] / 40, active_extruder);
  1765. st_synchronize();
  1766. tmc2130_home_exit();
  1767. enable_endstops(endstops_enabled);
  1768. if (st_get_position_mm(Z_AXIS) == MESH_HOME_Z_SEARCH)
  1769. {
  1770. //#ifdef TMC2130
  1771. // tmc2130_home_enter(X_AXIS_MASK | Y_AXIS_MASK);
  1772. //#endif
  1773. int8_t verbosity_level = 0;
  1774. if (code_seen('V'))
  1775. {
  1776. // Just 'V' without a number counts as V1.
  1777. char c = strchr_pointer[1];
  1778. verbosity_level = (c == ' ' || c == '\t' || c == 0) ? 1 : code_value_short();
  1779. }
  1780. if (onlyZ)
  1781. {
  1782. clean_up_after_endstop_move();
  1783. // Z only calibration.
  1784. // Load the machine correction matrix
  1785. world2machine_initialize();
  1786. // and correct the current_position to match the transformed coordinate system.
  1787. world2machine_update_current();
  1788. //FIXME
  1789. bool result = sample_mesh_and_store_reference();
  1790. if (result)
  1791. {
  1792. if (calibration_status() == CALIBRATION_STATUS_Z_CALIBRATION)
  1793. // Shipped, the nozzle height has been set already. The user can start printing now.
  1794. calibration_status_store(CALIBRATION_STATUS_CALIBRATED);
  1795. final_result = true;
  1796. // babystep_apply();
  1797. }
  1798. }
  1799. else
  1800. {
  1801. // Reset the baby step value and the baby step applied flag.
  1802. calibration_status_store(CALIBRATION_STATUS_XYZ_CALIBRATION);
  1803. eeprom_update_word((uint16_t*)EEPROM_BABYSTEP_Z, 0);
  1804. // Complete XYZ calibration.
  1805. uint8_t point_too_far_mask = 0;
  1806. BedSkewOffsetDetectionResultType result = find_bed_offset_and_skew(verbosity_level, point_too_far_mask);
  1807. clean_up_after_endstop_move();
  1808. // Print head up.
  1809. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  1810. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[Z_AXIS] / 40, active_extruder);
  1811. st_synchronize();
  1812. if (result >= 0)
  1813. {
  1814. point_too_far_mask = 0;
  1815. // Second half: The fine adjustment.
  1816. // Let the planner use the uncorrected coordinates.
  1817. mbl.reset();
  1818. world2machine_reset();
  1819. // Home in the XY plane.
  1820. setup_for_endstop_move();
  1821. home_xy();
  1822. result = improve_bed_offset_and_skew(1, verbosity_level, point_too_far_mask);
  1823. clean_up_after_endstop_move();
  1824. // Print head up.
  1825. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  1826. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[Z_AXIS] / 40, active_extruder);
  1827. st_synchronize();
  1828. // if (result >= 0) babystep_apply();
  1829. }
  1830. lcd_bed_calibration_show_result(result, point_too_far_mask);
  1831. if (result >= 0)
  1832. {
  1833. // Calibration valid, the machine should be able to print. Advise the user to run the V2Calibration.gcode.
  1834. calibration_status_store(CALIBRATION_STATUS_LIVE_ADJUST);
  1835. if (eeprom_read_byte((uint8_t*)EEPROM_WIZARD_ACTIVE) != 1) lcd_show_fullscreen_message_and_wait_P(MSG_BABYSTEP_Z_NOT_SET);
  1836. final_result = true;
  1837. }
  1838. }
  1839. #ifdef TMC2130
  1840. tmc2130_home_exit();
  1841. #endif
  1842. }
  1843. else
  1844. {
  1845. lcd_show_fullscreen_message_and_wait_P(PSTR("Calibration failed! Check the axes and run again."));
  1846. final_result = false;
  1847. }
  1848. }
  1849. else
  1850. {
  1851. // Timeouted.
  1852. }
  1853. lcd_update_enable(true);
  1854. #ifdef TMC2130
  1855. FORCE_HIGH_POWER_END;
  1856. #endif // TMC2130
  1857. return final_result;
  1858. }
  1859. void gcode_M701()
  1860. {
  1861. #ifdef SNMM
  1862. extr_adj(snmm_extruder);//loads current extruder
  1863. #else
  1864. enable_z();
  1865. custom_message = true;
  1866. custom_message_type = 2;
  1867. lcd_setstatuspgm(MSG_LOADING_FILAMENT);
  1868. current_position[E_AXIS] += 70;
  1869. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400 / 60, active_extruder); //fast sequence
  1870. current_position[E_AXIS] += 25;
  1871. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 100 / 60, active_extruder); //slow sequence
  1872. st_synchronize();
  1873. tone(BEEPER, 500);
  1874. delay_keep_alive(50);
  1875. noTone(BEEPER);
  1876. if (!farm_mode && loading_flag) {
  1877. bool clean = lcd_show_fullscreen_message_yes_no_and_wait_P(MSG_FILAMENT_CLEAN, false, true);
  1878. while (!clean) {
  1879. lcd_update_enable(true);
  1880. lcd_update(2);
  1881. current_position[E_AXIS] += 25;
  1882. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 100 / 60, active_extruder); //slow sequence
  1883. st_synchronize();
  1884. clean = lcd_show_fullscreen_message_yes_no_and_wait_P(MSG_FILAMENT_CLEAN, false, true);
  1885. }
  1886. }
  1887. lcd_update_enable(true);
  1888. lcd_update(2);
  1889. lcd_setstatuspgm(WELCOME_MSG);
  1890. disable_z();
  1891. loading_flag = false;
  1892. custom_message = false;
  1893. custom_message_type = 0;
  1894. #endif
  1895. }
  1896. void process_commands()
  1897. {
  1898. #ifdef FILAMENT_RUNOUT_SUPPORT
  1899. SET_INPUT(FR_SENS);
  1900. #endif
  1901. #ifdef CMDBUFFER_DEBUG
  1902. SERIAL_ECHOPGM("Processing a GCODE command: ");
  1903. SERIAL_ECHO(cmdbuffer+bufindr+CMDHDRSIZE);
  1904. SERIAL_ECHOLNPGM("");
  1905. SERIAL_ECHOPGM("In cmdqueue: ");
  1906. SERIAL_ECHO(buflen);
  1907. SERIAL_ECHOLNPGM("");
  1908. #endif /* CMDBUFFER_DEBUG */
  1909. unsigned long codenum; //throw away variable
  1910. char *starpos = NULL;
  1911. #ifdef ENABLE_AUTO_BED_LEVELING
  1912. float x_tmp, y_tmp, z_tmp, real_z;
  1913. #endif
  1914. // PRUSA GCODES
  1915. KEEPALIVE_STATE(IN_HANDLER);
  1916. #ifdef SNMM
  1917. float tmp_motor[3] = DEFAULT_PWM_MOTOR_CURRENT;
  1918. float tmp_motor_loud[3] = DEFAULT_PWM_MOTOR_CURRENT_LOUD;
  1919. int8_t SilentMode;
  1920. #endif
  1921. if (code_seen("M117")) { //moved to highest priority place to be able to to print strings which includes "G", "PRUSA" and "^"
  1922. starpos = (strchr(strchr_pointer + 5, '*'));
  1923. if (starpos != NULL)
  1924. *(starpos) = '\0';
  1925. lcd_setstatus(strchr_pointer + 5);
  1926. }
  1927. else if(code_seen("CRASH_DETECTED"))
  1928. crashdet_detected();
  1929. else if(code_seen("CRASH_RECOVER"))
  1930. crashdet_recover();
  1931. else if(code_seen("CRASH_CANCEL"))
  1932. crashdet_cancel();
  1933. else if(code_seen("PRUSA")){
  1934. if (code_seen("Ping")) { //PRUSA Ping
  1935. if (farm_mode) {
  1936. PingTime = millis();
  1937. //MYSERIAL.print(farm_no); MYSERIAL.println(": OK");
  1938. }
  1939. }
  1940. else if (code_seen("PRN")) {
  1941. MYSERIAL.println(status_number);
  1942. }else if (code_seen("FAN")) {
  1943. MYSERIAL.print("E0:");
  1944. MYSERIAL.print(60*fan_speed[0]);
  1945. MYSERIAL.println(" RPM");
  1946. MYSERIAL.print("PRN0:");
  1947. MYSERIAL.print(60*fan_speed[1]);
  1948. MYSERIAL.println(" RPM");
  1949. }else if (code_seen("fn")) {
  1950. if (farm_mode) {
  1951. MYSERIAL.println(farm_no);
  1952. }
  1953. else {
  1954. MYSERIAL.println("Not in farm mode.");
  1955. }
  1956. }else if (code_seen("fv")) {
  1957. // get file version
  1958. #ifdef SDSUPPORT
  1959. card.openFile(strchr_pointer + 3,true);
  1960. while (true) {
  1961. uint16_t readByte = card.get();
  1962. MYSERIAL.write(readByte);
  1963. if (readByte=='\n') {
  1964. break;
  1965. }
  1966. }
  1967. card.closefile();
  1968. #endif // SDSUPPORT
  1969. } else if (code_seen("M28")) {
  1970. trace();
  1971. prusa_sd_card_upload = true;
  1972. card.openFile(strchr_pointer+4,false);
  1973. } else if (code_seen("SN")) {
  1974. if (farm_mode) {
  1975. selectedSerialPort = 0;
  1976. MSerial.write(";S");
  1977. // S/N is:CZPX0917X003XC13518
  1978. int numbersRead = 0;
  1979. while (numbersRead < 19) {
  1980. while (MSerial.available() > 0) {
  1981. uint8_t serial_char = MSerial.read();
  1982. selectedSerialPort = 1;
  1983. MSerial.write(serial_char);
  1984. numbersRead++;
  1985. selectedSerialPort = 0;
  1986. }
  1987. }
  1988. selectedSerialPort = 1;
  1989. MSerial.write('\n');
  1990. /*for (int b = 0; b < 3; b++) {
  1991. tone(BEEPER, 110);
  1992. delay(50);
  1993. noTone(BEEPER);
  1994. delay(50);
  1995. }*/
  1996. } else {
  1997. MYSERIAL.println("Not in farm mode.");
  1998. }
  1999. } else if(code_seen("Fir")){
  2000. SERIAL_PROTOCOLLN(FW_VERSION);
  2001. } else if(code_seen("Rev")){
  2002. SERIAL_PROTOCOLLN(FILAMENT_SIZE "-" ELECTRONICS "-" NOZZLE_TYPE );
  2003. } else if(code_seen("Lang")) {
  2004. lcd_force_language_selection();
  2005. } else if(code_seen("Lz")) {
  2006. EEPROM_save_B(EEPROM_BABYSTEP_Z,0);
  2007. } else if (code_seen("SERIAL LOW")) {
  2008. MYSERIAL.println("SERIAL LOW");
  2009. MYSERIAL.begin(BAUDRATE);
  2010. return;
  2011. } else if (code_seen("SERIAL HIGH")) {
  2012. MYSERIAL.println("SERIAL HIGH");
  2013. MYSERIAL.begin(1152000);
  2014. return;
  2015. } else if(code_seen("Beat")) {
  2016. // Kick farm link timer
  2017. kicktime = millis();
  2018. } else if(code_seen("FR")) {
  2019. // Factory full reset
  2020. factory_reset(0,true);
  2021. }
  2022. //else if (code_seen('Cal')) {
  2023. // lcd_calibration();
  2024. // }
  2025. }
  2026. else if (code_seen('^')) {
  2027. // nothing, this is a version line
  2028. } else if(code_seen('G'))
  2029. {
  2030. switch((int)code_value())
  2031. {
  2032. case 0: // G0 -> G1
  2033. case 1: // G1
  2034. if(Stopped == false) {
  2035. #ifdef FILAMENT_RUNOUT_SUPPORT
  2036. if(READ(FR_SENS)){
  2037. feedmultiplyBckp=feedmultiply;
  2038. float target[4];
  2039. float lastpos[4];
  2040. target[X_AXIS]=current_position[X_AXIS];
  2041. target[Y_AXIS]=current_position[Y_AXIS];
  2042. target[Z_AXIS]=current_position[Z_AXIS];
  2043. target[E_AXIS]=current_position[E_AXIS];
  2044. lastpos[X_AXIS]=current_position[X_AXIS];
  2045. lastpos[Y_AXIS]=current_position[Y_AXIS];
  2046. lastpos[Z_AXIS]=current_position[Z_AXIS];
  2047. lastpos[E_AXIS]=current_position[E_AXIS];
  2048. //retract by E
  2049. target[E_AXIS]+= FILAMENTCHANGE_FIRSTRETRACT ;
  2050. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 400, active_extruder);
  2051. target[Z_AXIS]+= FILAMENTCHANGE_ZADD ;
  2052. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 300, active_extruder);
  2053. target[X_AXIS]= FILAMENTCHANGE_XPOS ;
  2054. target[Y_AXIS]= FILAMENTCHANGE_YPOS ;
  2055. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 70, active_extruder);
  2056. target[E_AXIS]+= FILAMENTCHANGE_FINALRETRACT ;
  2057. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 20, active_extruder);
  2058. //finish moves
  2059. st_synchronize();
  2060. //disable extruder steppers so filament can be removed
  2061. disable_e0();
  2062. disable_e1();
  2063. disable_e2();
  2064. delay(100);
  2065. //LCD_ALERTMESSAGEPGM(MSG_FILAMENTCHANGE);
  2066. uint8_t cnt=0;
  2067. int counterBeep = 0;
  2068. lcd_wait_interact();
  2069. while(!lcd_clicked()){
  2070. cnt++;
  2071. manage_heater();
  2072. manage_inactivity(true);
  2073. //lcd_update();
  2074. if(cnt==0)
  2075. {
  2076. #if BEEPER > 0
  2077. if (counterBeep== 500){
  2078. counterBeep = 0;
  2079. }
  2080. SET_OUTPUT(BEEPER);
  2081. if (counterBeep== 0){
  2082. WRITE(BEEPER,HIGH);
  2083. }
  2084. if (counterBeep== 20){
  2085. WRITE(BEEPER,LOW);
  2086. }
  2087. counterBeep++;
  2088. #else
  2089. #if !defined(LCD_FEEDBACK_FREQUENCY_HZ) || !defined(LCD_FEEDBACK_FREQUENCY_DURATION_MS)
  2090. lcd_buzz(1000/6,100);
  2091. #else
  2092. lcd_buzz(LCD_FEEDBACK_FREQUENCY_DURATION_MS,LCD_FEEDBACK_FREQUENCY_HZ);
  2093. #endif
  2094. #endif
  2095. }
  2096. }
  2097. WRITE(BEEPER,LOW);
  2098. target[E_AXIS]+= FILAMENTCHANGE_FIRSTFEED ;
  2099. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 20, active_extruder);
  2100. target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  2101. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder);
  2102. lcd_change_fil_state = 0;
  2103. lcd_loading_filament();
  2104. while ((lcd_change_fil_state == 0)||(lcd_change_fil_state != 1)){
  2105. lcd_change_fil_state = 0;
  2106. lcd_alright();
  2107. switch(lcd_change_fil_state){
  2108. case 2:
  2109. target[E_AXIS]+= FILAMENTCHANGE_FIRSTFEED ;
  2110. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 20, active_extruder);
  2111. target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  2112. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder);
  2113. lcd_loading_filament();
  2114. break;
  2115. case 3:
  2116. target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  2117. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder);
  2118. lcd_loading_color();
  2119. break;
  2120. default:
  2121. lcd_change_success();
  2122. break;
  2123. }
  2124. }
  2125. target[E_AXIS]+= 5;
  2126. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder);
  2127. target[E_AXIS]+= FILAMENTCHANGE_FIRSTRETRACT;
  2128. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 400, active_extruder);
  2129. //current_position[E_AXIS]=target[E_AXIS]; //the long retract of L is compensated by manual filament feeding
  2130. //plan_set_e_position(current_position[E_AXIS]);
  2131. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 70, active_extruder); //should do nothing
  2132. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], target[Z_AXIS], target[E_AXIS], 70, active_extruder); //move xy back
  2133. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], target[E_AXIS], 200, active_extruder); //move z back
  2134. target[E_AXIS]= target[E_AXIS] - FILAMENTCHANGE_FIRSTRETRACT;
  2135. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], target[E_AXIS], 5, active_extruder); //final untretract
  2136. plan_set_e_position(lastpos[E_AXIS]);
  2137. feedmultiply=feedmultiplyBckp;
  2138. char cmd[9];
  2139. sprintf_P(cmd, PSTR("M220 S%i"), feedmultiplyBckp);
  2140. enquecommand(cmd);
  2141. }
  2142. #endif
  2143. get_coordinates(); // For X Y Z E F
  2144. if (total_filament_used > ((current_position[E_AXIS] - destination[E_AXIS]) * 100)) { //protection against total_filament_used overflow
  2145. total_filament_used = total_filament_used + ((destination[E_AXIS] - current_position[E_AXIS]) * 100);
  2146. }
  2147. #ifdef FWRETRACT
  2148. if(autoretract_enabled)
  2149. if( !(code_seen('X') || code_seen('Y') || code_seen('Z')) && code_seen('E')) {
  2150. float echange=destination[E_AXIS]-current_position[E_AXIS];
  2151. if((echange<-MIN_RETRACT && !retracted) || (echange>MIN_RETRACT && retracted)) { //move appears to be an attempt to retract or recover
  2152. current_position[E_AXIS] = destination[E_AXIS]; //hide the slicer-generated retract/recover from calculations
  2153. plan_set_e_position(current_position[E_AXIS]); //AND from the planner
  2154. retract(!retracted);
  2155. return;
  2156. }
  2157. }
  2158. #endif //FWRETRACT
  2159. prepare_move();
  2160. //ClearToSend();
  2161. }
  2162. break;
  2163. case 2: // G2 - CW ARC
  2164. if(Stopped == false) {
  2165. get_arc_coordinates();
  2166. prepare_arc_move(true);
  2167. }
  2168. break;
  2169. case 3: // G3 - CCW ARC
  2170. if(Stopped == false) {
  2171. get_arc_coordinates();
  2172. prepare_arc_move(false);
  2173. }
  2174. break;
  2175. case 4: // G4 dwell
  2176. codenum = 0;
  2177. if(code_seen('P')) codenum = code_value(); // milliseconds to wait
  2178. if(code_seen('S')) codenum = code_value() * 1000; // seconds to wait
  2179. if(codenum != 0) LCD_MESSAGERPGM(MSG_DWELL);
  2180. st_synchronize();
  2181. codenum += millis(); // keep track of when we started waiting
  2182. previous_millis_cmd = millis();
  2183. while(millis() < codenum) {
  2184. manage_heater();
  2185. manage_inactivity();
  2186. lcd_update();
  2187. }
  2188. break;
  2189. #ifdef FWRETRACT
  2190. case 10: // G10 retract
  2191. #if EXTRUDERS > 1
  2192. retracted_swap[active_extruder]=(code_seen('S') && code_value_long() == 1); // checks for swap retract argument
  2193. retract(true,retracted_swap[active_extruder]);
  2194. #else
  2195. retract(true);
  2196. #endif
  2197. break;
  2198. case 11: // G11 retract_recover
  2199. #if EXTRUDERS > 1
  2200. retract(false,retracted_swap[active_extruder]);
  2201. #else
  2202. retract(false);
  2203. #endif
  2204. break;
  2205. #endif //FWRETRACT
  2206. case 28: //G28 Home all Axis one at a time
  2207. {
  2208. st_synchronize();
  2209. #if 1
  2210. SERIAL_ECHOPGM("G28, initial "); print_world_coordinates();
  2211. SERIAL_ECHOPGM("G28, initial "); print_physical_coordinates();
  2212. #endif
  2213. // Flag for the display update routine and to disable the print cancelation during homing.
  2214. homing_flag = true;
  2215. // Which axes should be homed?
  2216. bool home_x = code_seen(axis_codes[X_AXIS]);
  2217. bool home_y = code_seen(axis_codes[Y_AXIS]);
  2218. bool home_z = code_seen(axis_codes[Z_AXIS]);
  2219. // Either all X,Y,Z codes are present, or none of them.
  2220. bool home_all_axes = home_x == home_y && home_x == home_z;
  2221. if (home_all_axes)
  2222. // No X/Y/Z code provided means to home all axes.
  2223. home_x = home_y = home_z = true;
  2224. #ifdef ENABLE_AUTO_BED_LEVELING
  2225. plan_bed_level_matrix.set_to_identity(); //Reset the plane ("erase" all leveling data)
  2226. #endif //ENABLE_AUTO_BED_LEVELING
  2227. // Reset world2machine_rotation_and_skew and world2machine_shift, therefore
  2228. // the planner will not perform any adjustments in the XY plane.
  2229. // Wait for the motors to stop and update the current position with the absolute values.
  2230. world2machine_revert_to_uncorrected();
  2231. // For mesh bed leveling deactivate the matrix temporarily.
  2232. // It is necessary to disable the bed leveling for the X and Y homing moves, so that the move is performed
  2233. // in a single axis only.
  2234. // In case of re-homing the X or Y axes only, the mesh bed leveling is restored after G28.
  2235. #ifdef MESH_BED_LEVELING
  2236. uint8_t mbl_was_active = mbl.active;
  2237. mbl.active = 0;
  2238. current_position[Z_AXIS] = st_get_position_mm(Z_AXIS);
  2239. #endif
  2240. // Reset baby stepping to zero, if the babystepping has already been loaded before. The babystepsTodo value will be
  2241. // consumed during the first movements following this statement.
  2242. if (home_z)
  2243. babystep_undo();
  2244. saved_feedrate = feedrate;
  2245. saved_feedmultiply = feedmultiply;
  2246. feedmultiply = 100;
  2247. previous_millis_cmd = millis();
  2248. enable_endstops(true);
  2249. memcpy(destination, current_position, sizeof(destination));
  2250. feedrate = 0.0;
  2251. #if Z_HOME_DIR > 0 // If homing away from BED do Z first
  2252. if(home_z)
  2253. homeaxis(Z_AXIS);
  2254. #endif
  2255. #ifdef QUICK_HOME
  2256. // In the quick mode, if both x and y are to be homed, a diagonal move will be performed initially.
  2257. if(home_x && home_y) //first diagonal move
  2258. {
  2259. current_position[X_AXIS] = 0;current_position[Y_AXIS] = 0;
  2260. int x_axis_home_dir = home_dir(X_AXIS);
  2261. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2262. destination[X_AXIS] = 1.5 * max_length(X_AXIS) * x_axis_home_dir;destination[Y_AXIS] = 1.5 * max_length(Y_AXIS) * home_dir(Y_AXIS);
  2263. feedrate = homing_feedrate[X_AXIS];
  2264. if(homing_feedrate[Y_AXIS]<feedrate)
  2265. feedrate = homing_feedrate[Y_AXIS];
  2266. if (max_length(X_AXIS) > max_length(Y_AXIS)) {
  2267. feedrate *= sqrt(pow(max_length(Y_AXIS) / max_length(X_AXIS), 2) + 1);
  2268. } else {
  2269. feedrate *= sqrt(pow(max_length(X_AXIS) / max_length(Y_AXIS), 2) + 1);
  2270. }
  2271. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  2272. st_synchronize();
  2273. axis_is_at_home(X_AXIS);
  2274. axis_is_at_home(Y_AXIS);
  2275. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2276. destination[X_AXIS] = current_position[X_AXIS];
  2277. destination[Y_AXIS] = current_position[Y_AXIS];
  2278. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  2279. feedrate = 0.0;
  2280. st_synchronize();
  2281. endstops_hit_on_purpose();
  2282. current_position[X_AXIS] = destination[X_AXIS];
  2283. current_position[Y_AXIS] = destination[Y_AXIS];
  2284. current_position[Z_AXIS] = destination[Z_AXIS];
  2285. }
  2286. #endif /* QUICK_HOME */
  2287. if(home_x)
  2288. homeaxis(X_AXIS);
  2289. if(home_y)
  2290. homeaxis(Y_AXIS);
  2291. if(code_seen(axis_codes[X_AXIS]) && code_value_long() != 0)
  2292. current_position[X_AXIS]=code_value()+add_homing[X_AXIS];
  2293. if(code_seen(axis_codes[Y_AXIS]) && code_value_long() != 0)
  2294. current_position[Y_AXIS]=code_value()+add_homing[Y_AXIS];
  2295. #if Z_HOME_DIR < 0 // If homing towards BED do Z last
  2296. #ifndef Z_SAFE_HOMING
  2297. if(home_z) {
  2298. #if defined (Z_RAISE_BEFORE_HOMING) && (Z_RAISE_BEFORE_HOMING > 0)
  2299. destination[Z_AXIS] = Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS) * (-1); // Set destination away from bed
  2300. feedrate = max_feedrate[Z_AXIS];
  2301. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
  2302. st_synchronize();
  2303. #endif // defined (Z_RAISE_BEFORE_HOMING) && (Z_RAISE_BEFORE_HOMING > 0)
  2304. #if (defined(MESH_BED_LEVELING) && !defined(MK1BP)) // If Mesh bed leveling, moxve X&Y to safe position for home
  2305. if (!(axis_known_position[X_AXIS] && axis_known_position[Y_AXIS] ))
  2306. {
  2307. homeaxis(X_AXIS);
  2308. homeaxis(Y_AXIS);
  2309. }
  2310. // 1st mesh bed leveling measurement point, corrected.
  2311. world2machine_initialize();
  2312. world2machine(pgm_read_float(bed_ref_points), pgm_read_float(bed_ref_points+1), destination[X_AXIS], destination[Y_AXIS]);
  2313. world2machine_reset();
  2314. if (destination[Y_AXIS] < Y_MIN_POS)
  2315. destination[Y_AXIS] = Y_MIN_POS;
  2316. destination[Z_AXIS] = MESH_HOME_Z_SEARCH; // Set destination away from bed
  2317. feedrate = homing_feedrate[Z_AXIS]/10;
  2318. current_position[Z_AXIS] = 0;
  2319. enable_endstops(false);
  2320. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2321. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
  2322. st_synchronize();
  2323. current_position[X_AXIS] = destination[X_AXIS];
  2324. current_position[Y_AXIS] = destination[Y_AXIS];
  2325. enable_endstops(true);
  2326. endstops_hit_on_purpose();
  2327. homeaxis(Z_AXIS);
  2328. #else // MESH_BED_LEVELING
  2329. homeaxis(Z_AXIS);
  2330. #endif // MESH_BED_LEVELING
  2331. }
  2332. #else // defined(Z_SAFE_HOMING): Z Safe mode activated.
  2333. if(home_all_axes) {
  2334. destination[X_AXIS] = round(Z_SAFE_HOMING_X_POINT - X_PROBE_OFFSET_FROM_EXTRUDER);
  2335. destination[Y_AXIS] = round(Z_SAFE_HOMING_Y_POINT - Y_PROBE_OFFSET_FROM_EXTRUDER);
  2336. destination[Z_AXIS] = Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS) * (-1); // Set destination away from bed
  2337. feedrate = XY_TRAVEL_SPEED/60;
  2338. current_position[Z_AXIS] = 0;
  2339. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2340. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
  2341. st_synchronize();
  2342. current_position[X_AXIS] = destination[X_AXIS];
  2343. current_position[Y_AXIS] = destination[Y_AXIS];
  2344. homeaxis(Z_AXIS);
  2345. }
  2346. // Let's see if X and Y are homed and probe is inside bed area.
  2347. if(home_z) {
  2348. if ( (axis_known_position[X_AXIS]) && (axis_known_position[Y_AXIS]) \
  2349. && (current_position[X_AXIS]+X_PROBE_OFFSET_FROM_EXTRUDER >= X_MIN_POS) \
  2350. && (current_position[X_AXIS]+X_PROBE_OFFSET_FROM_EXTRUDER <= X_MAX_POS) \
  2351. && (current_position[Y_AXIS]+Y_PROBE_OFFSET_FROM_EXTRUDER >= Y_MIN_POS) \
  2352. && (current_position[Y_AXIS]+Y_PROBE_OFFSET_FROM_EXTRUDER <= Y_MAX_POS)) {
  2353. current_position[Z_AXIS] = 0;
  2354. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2355. destination[Z_AXIS] = Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS) * (-1); // Set destination away from bed
  2356. feedrate = max_feedrate[Z_AXIS];
  2357. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
  2358. st_synchronize();
  2359. homeaxis(Z_AXIS);
  2360. } else if (!((axis_known_position[X_AXIS]) && (axis_known_position[Y_AXIS]))) {
  2361. LCD_MESSAGERPGM(MSG_POSITION_UNKNOWN);
  2362. SERIAL_ECHO_START;
  2363. SERIAL_ECHOLNRPGM(MSG_POSITION_UNKNOWN);
  2364. } else {
  2365. LCD_MESSAGERPGM(MSG_ZPROBE_OUT);
  2366. SERIAL_ECHO_START;
  2367. SERIAL_ECHOLNRPGM(MSG_ZPROBE_OUT);
  2368. }
  2369. }
  2370. #endif // Z_SAFE_HOMING
  2371. #endif // Z_HOME_DIR < 0
  2372. if(code_seen(axis_codes[Z_AXIS]) && code_value_long() != 0)
  2373. current_position[Z_AXIS]=code_value()+add_homing[Z_AXIS];
  2374. #ifdef ENABLE_AUTO_BED_LEVELING
  2375. if(home_z)
  2376. current_position[Z_AXIS] += zprobe_zoffset; //Add Z_Probe offset (the distance is negative)
  2377. #endif
  2378. // Set the planner and stepper routine positions.
  2379. // At this point the mesh bed leveling and world2machine corrections are disabled and current_position
  2380. // contains the machine coordinates.
  2381. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2382. #ifdef ENDSTOPS_ONLY_FOR_HOMING
  2383. enable_endstops(false);
  2384. #endif
  2385. feedrate = saved_feedrate;
  2386. feedmultiply = saved_feedmultiply;
  2387. previous_millis_cmd = millis();
  2388. endstops_hit_on_purpose();
  2389. #ifndef MESH_BED_LEVELING
  2390. // If MESH_BED_LEVELING is not active, then it is the original Prusa i3.
  2391. // Offer the user to load the baby step value, which has been adjusted at the previous print session.
  2392. if(card.sdprinting && eeprom_read_word((uint16_t *)EEPROM_BABYSTEP_Z))
  2393. lcd_adjust_z();
  2394. #endif
  2395. // Load the machine correction matrix
  2396. world2machine_initialize();
  2397. // and correct the current_position XY axes to match the transformed coordinate system.
  2398. world2machine_update_current();
  2399. #if (defined(MESH_BED_LEVELING) && !defined(MK1BP))
  2400. if (code_seen(axis_codes[X_AXIS]) || code_seen(axis_codes[Y_AXIS]) || code_seen('W') || code_seen(axis_codes[Z_AXIS]))
  2401. {
  2402. if (! home_z && mbl_was_active) {
  2403. // Re-enable the mesh bed leveling if only the X and Y axes were re-homed.
  2404. mbl.active = true;
  2405. // and re-adjust the current logical Z axis with the bed leveling offset applicable at the current XY position.
  2406. current_position[Z_AXIS] -= mbl.get_z(st_get_position_mm(X_AXIS), st_get_position_mm(Y_AXIS));
  2407. }
  2408. }
  2409. else
  2410. {
  2411. st_synchronize();
  2412. homing_flag = false;
  2413. // Push the commands to the front of the message queue in the reverse order!
  2414. // There shall be always enough space reserved for these commands.
  2415. // enquecommand_front_P((PSTR("G80")));
  2416. goto case_G80;
  2417. }
  2418. #endif
  2419. if (farm_mode) { prusa_statistics(20); };
  2420. homing_flag = false;
  2421. #if 1
  2422. SERIAL_ECHOPGM("G28, final "); print_world_coordinates();
  2423. SERIAL_ECHOPGM("G28, final "); print_physical_coordinates();
  2424. SERIAL_ECHOPGM("G28, final "); print_mesh_bed_leveling_table();
  2425. #endif
  2426. break;
  2427. }
  2428. #ifdef ENABLE_AUTO_BED_LEVELING
  2429. case 29: // G29 Detailed Z-Probe, probes the bed at 3 or more points.
  2430. {
  2431. #if Z_MIN_PIN == -1
  2432. #error "You must have a Z_MIN endstop in order to enable Auto Bed Leveling feature! Z_MIN_PIN must point to a valid hardware pin."
  2433. #endif
  2434. // Prevent user from running a G29 without first homing in X and Y
  2435. if (! (axis_known_position[X_AXIS] && axis_known_position[Y_AXIS]) )
  2436. {
  2437. LCD_MESSAGERPGM(MSG_POSITION_UNKNOWN);
  2438. SERIAL_ECHO_START;
  2439. SERIAL_ECHOLNRPGM(MSG_POSITION_UNKNOWN);
  2440. break; // abort G29, since we don't know where we are
  2441. }
  2442. st_synchronize();
  2443. // make sure the bed_level_rotation_matrix is identity or the planner will get it incorectly
  2444. //vector_3 corrected_position = plan_get_position_mm();
  2445. //corrected_position.debug("position before G29");
  2446. plan_bed_level_matrix.set_to_identity();
  2447. vector_3 uncorrected_position = plan_get_position();
  2448. //uncorrected_position.debug("position durring G29");
  2449. current_position[X_AXIS] = uncorrected_position.x;
  2450. current_position[Y_AXIS] = uncorrected_position.y;
  2451. current_position[Z_AXIS] = uncorrected_position.z;
  2452. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2453. setup_for_endstop_move();
  2454. feedrate = homing_feedrate[Z_AXIS];
  2455. #ifdef AUTO_BED_LEVELING_GRID
  2456. // probe at the points of a lattice grid
  2457. int xGridSpacing = (RIGHT_PROBE_BED_POSITION - LEFT_PROBE_BED_POSITION) / (AUTO_BED_LEVELING_GRID_POINTS-1);
  2458. int yGridSpacing = (BACK_PROBE_BED_POSITION - FRONT_PROBE_BED_POSITION) / (AUTO_BED_LEVELING_GRID_POINTS-1);
  2459. // solve the plane equation ax + by + d = z
  2460. // A is the matrix with rows [x y 1] for all the probed points
  2461. // B is the vector of the Z positions
  2462. // the normal vector to the plane is formed by the coefficients of the plane equation in the standard form, which is Vx*x+Vy*y+Vz*z+d = 0
  2463. // so Vx = -a Vy = -b Vz = 1 (we want the vector facing towards positive Z
  2464. // "A" matrix of the linear system of equations
  2465. double eqnAMatrix[AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS*3];
  2466. // "B" vector of Z points
  2467. double eqnBVector[AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS];
  2468. int probePointCounter = 0;
  2469. bool zig = true;
  2470. for (int yProbe=FRONT_PROBE_BED_POSITION; yProbe <= BACK_PROBE_BED_POSITION; yProbe += yGridSpacing)
  2471. {
  2472. int xProbe, xInc;
  2473. if (zig)
  2474. {
  2475. xProbe = LEFT_PROBE_BED_POSITION;
  2476. //xEnd = RIGHT_PROBE_BED_POSITION;
  2477. xInc = xGridSpacing;
  2478. zig = false;
  2479. } else // zag
  2480. {
  2481. xProbe = RIGHT_PROBE_BED_POSITION;
  2482. //xEnd = LEFT_PROBE_BED_POSITION;
  2483. xInc = -xGridSpacing;
  2484. zig = true;
  2485. }
  2486. for (int xCount=0; xCount < AUTO_BED_LEVELING_GRID_POINTS; xCount++)
  2487. {
  2488. float z_before;
  2489. if (probePointCounter == 0)
  2490. {
  2491. // raise before probing
  2492. z_before = Z_RAISE_BEFORE_PROBING;
  2493. } else
  2494. {
  2495. // raise extruder
  2496. z_before = current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS;
  2497. }
  2498. float measured_z = probe_pt(xProbe, yProbe, z_before);
  2499. eqnBVector[probePointCounter] = measured_z;
  2500. eqnAMatrix[probePointCounter + 0*AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS] = xProbe;
  2501. eqnAMatrix[probePointCounter + 1*AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS] = yProbe;
  2502. eqnAMatrix[probePointCounter + 2*AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS] = 1;
  2503. probePointCounter++;
  2504. xProbe += xInc;
  2505. }
  2506. }
  2507. clean_up_after_endstop_move();
  2508. // solve lsq problem
  2509. double *plane_equation_coefficients = qr_solve(AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS, 3, eqnAMatrix, eqnBVector);
  2510. SERIAL_PROTOCOLPGM("Eqn coefficients: a: ");
  2511. SERIAL_PROTOCOL(plane_equation_coefficients[0]);
  2512. SERIAL_PROTOCOLPGM(" b: ");
  2513. SERIAL_PROTOCOL(plane_equation_coefficients[1]);
  2514. SERIAL_PROTOCOLPGM(" d: ");
  2515. SERIAL_PROTOCOLLN(plane_equation_coefficients[2]);
  2516. set_bed_level_equation_lsq(plane_equation_coefficients);
  2517. free(plane_equation_coefficients);
  2518. #else // AUTO_BED_LEVELING_GRID not defined
  2519. // Probe at 3 arbitrary points
  2520. // probe 1
  2521. float z_at_pt_1 = probe_pt(ABL_PROBE_PT_1_X, ABL_PROBE_PT_1_Y, Z_RAISE_BEFORE_PROBING);
  2522. // probe 2
  2523. float z_at_pt_2 = probe_pt(ABL_PROBE_PT_2_X, ABL_PROBE_PT_2_Y, current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS);
  2524. // probe 3
  2525. float z_at_pt_3 = probe_pt(ABL_PROBE_PT_3_X, ABL_PROBE_PT_3_Y, current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS);
  2526. clean_up_after_endstop_move();
  2527. set_bed_level_equation_3pts(z_at_pt_1, z_at_pt_2, z_at_pt_3);
  2528. #endif // AUTO_BED_LEVELING_GRID
  2529. st_synchronize();
  2530. // The following code correct the Z height difference from z-probe position and hotend tip position.
  2531. // The Z height on homing is measured by Z-Probe, but the probe is quite far from the hotend.
  2532. // When the bed is uneven, this height must be corrected.
  2533. real_z = float(st_get_position(Z_AXIS))/axis_steps_per_unit[Z_AXIS]; //get the real Z (since the auto bed leveling is already correcting the plane)
  2534. x_tmp = current_position[X_AXIS] + X_PROBE_OFFSET_FROM_EXTRUDER;
  2535. y_tmp = current_position[Y_AXIS] + Y_PROBE_OFFSET_FROM_EXTRUDER;
  2536. z_tmp = current_position[Z_AXIS];
  2537. apply_rotation_xyz(plan_bed_level_matrix, x_tmp, y_tmp, z_tmp); //Apply the correction sending the probe offset
  2538. current_position[Z_AXIS] = z_tmp - real_z + current_position[Z_AXIS]; //The difference is added to current position and sent to planner.
  2539. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2540. }
  2541. break;
  2542. #ifndef Z_PROBE_SLED
  2543. case 30: // G30 Single Z Probe
  2544. {
  2545. st_synchronize();
  2546. // TODO: make sure the bed_level_rotation_matrix is identity or the planner will get set incorectly
  2547. setup_for_endstop_move();
  2548. feedrate = homing_feedrate[Z_AXIS];
  2549. run_z_probe();
  2550. SERIAL_PROTOCOLPGM(MSG_BED);
  2551. SERIAL_PROTOCOLPGM(" X: ");
  2552. SERIAL_PROTOCOL(current_position[X_AXIS]);
  2553. SERIAL_PROTOCOLPGM(" Y: ");
  2554. SERIAL_PROTOCOL(current_position[Y_AXIS]);
  2555. SERIAL_PROTOCOLPGM(" Z: ");
  2556. SERIAL_PROTOCOL(current_position[Z_AXIS]);
  2557. SERIAL_PROTOCOLPGM("\n");
  2558. clean_up_after_endstop_move();
  2559. }
  2560. break;
  2561. #else
  2562. case 31: // dock the sled
  2563. dock_sled(true);
  2564. break;
  2565. case 32: // undock the sled
  2566. dock_sled(false);
  2567. break;
  2568. #endif // Z_PROBE_SLED
  2569. #endif // ENABLE_AUTO_BED_LEVELING
  2570. #ifdef MESH_BED_LEVELING
  2571. case 30: // G30 Single Z Probe
  2572. {
  2573. st_synchronize();
  2574. // TODO: make sure the bed_level_rotation_matrix is identity or the planner will get set incorectly
  2575. setup_for_endstop_move();
  2576. feedrate = homing_feedrate[Z_AXIS];
  2577. find_bed_induction_sensor_point_z(-10.f, 3);
  2578. SERIAL_PROTOCOLRPGM(MSG_BED);
  2579. SERIAL_PROTOCOLPGM(" X: ");
  2580. MYSERIAL.print(current_position[X_AXIS], 5);
  2581. SERIAL_PROTOCOLPGM(" Y: ");
  2582. MYSERIAL.print(current_position[Y_AXIS], 5);
  2583. SERIAL_PROTOCOLPGM(" Z: ");
  2584. MYSERIAL.print(current_position[Z_AXIS], 5);
  2585. SERIAL_PROTOCOLPGM("\n");
  2586. clean_up_after_endstop_move();
  2587. }
  2588. break;
  2589. case 75:
  2590. {
  2591. for (int i = 40; i <= 110; i++) {
  2592. MYSERIAL.print(i);
  2593. MYSERIAL.print(" ");
  2594. MYSERIAL.println(temp_comp_interpolation(i));// / axis_steps_per_unit[Z_AXIS]);
  2595. }
  2596. }
  2597. break;
  2598. case 76: //PINDA probe temperature calibration
  2599. {
  2600. #ifdef PINDA_THERMISTOR
  2601. if (true)
  2602. {
  2603. if (!(axis_known_position[X_AXIS] && axis_known_position[Y_AXIS] && axis_known_position[Z_AXIS])) {
  2604. // We don't know where we are! HOME!
  2605. // Push the commands to the front of the message queue in the reverse order!
  2606. // There shall be always enough space reserved for these commands.
  2607. repeatcommand_front(); // repeat G76 with all its parameters
  2608. enquecommand_front_P((PSTR("G28 W0")));
  2609. break;
  2610. }
  2611. KEEPALIVE_STATE(NOT_BUSY); //no need to print busy messages as we print current temperatures periodicaly
  2612. SERIAL_ECHOLNPGM("PINDA probe calibration start");
  2613. float zero_z;
  2614. int z_shift = 0; //unit: steps
  2615. float start_temp = 5 * (int)(current_temperature_pinda / 5);
  2616. if (start_temp < 35) start_temp = 35;
  2617. if (start_temp < current_temperature_pinda) start_temp += 5;
  2618. SERIAL_ECHOPGM("start temperature: ");
  2619. MYSERIAL.println(start_temp);
  2620. // setTargetHotend(200, 0);
  2621. setTargetBed(70 + (start_temp - 30));
  2622. custom_message = true;
  2623. custom_message_type = 4;
  2624. custom_message_state = 1;
  2625. custom_message = MSG_TEMP_CALIBRATION;
  2626. current_position[X_AXIS] = PINDA_PREHEAT_X;
  2627. current_position[Y_AXIS] = PINDA_PREHEAT_Y;
  2628. current_position[Z_AXIS] = PINDA_PREHEAT_Z;
  2629. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  2630. st_synchronize();
  2631. while (current_temperature_pinda < start_temp)
  2632. {
  2633. delay_keep_alive(1000);
  2634. serialecho_temperatures();
  2635. }
  2636. eeprom_update_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 0); //invalidate temp. calibration in case that in will be aborted during the calibration process
  2637. current_position[Z_AXIS] = 5;
  2638. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  2639. current_position[X_AXIS] = pgm_read_float(bed_ref_points);
  2640. current_position[Y_AXIS] = pgm_read_float(bed_ref_points + 1);
  2641. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  2642. st_synchronize();
  2643. find_bed_induction_sensor_point_z(-1.f);
  2644. zero_z = current_position[Z_AXIS];
  2645. //current_position[Z_AXIS]
  2646. SERIAL_ECHOLNPGM("");
  2647. SERIAL_ECHOPGM("ZERO: ");
  2648. MYSERIAL.print(current_position[Z_AXIS]);
  2649. SERIAL_ECHOLNPGM("");
  2650. int i = -1; for (; i < 5; i++)
  2651. {
  2652. float temp = (40 + i * 5);
  2653. SERIAL_ECHOPGM("Step: ");
  2654. MYSERIAL.print(i + 2);
  2655. SERIAL_ECHOLNPGM("/6 (skipped)");
  2656. SERIAL_ECHOPGM("PINDA temperature: ");
  2657. MYSERIAL.print((40 + i*5));
  2658. SERIAL_ECHOPGM(" Z shift (mm):");
  2659. MYSERIAL.print(0);
  2660. SERIAL_ECHOLNPGM("");
  2661. if (i >= 0) EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + i * 2, &z_shift);
  2662. if (start_temp <= temp) break;
  2663. }
  2664. for (i++; i < 5; i++)
  2665. {
  2666. float temp = (40 + i * 5);
  2667. SERIAL_ECHOPGM("Step: ");
  2668. MYSERIAL.print(i + 2);
  2669. SERIAL_ECHOLNPGM("/6");
  2670. custom_message_state = i + 2;
  2671. setTargetBed(50 + 10 * (temp - 30) / 5);
  2672. // setTargetHotend(255, 0);
  2673. current_position[X_AXIS] = PINDA_PREHEAT_X;
  2674. current_position[Y_AXIS] = PINDA_PREHEAT_Y;
  2675. current_position[Z_AXIS] = PINDA_PREHEAT_Z;
  2676. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  2677. st_synchronize();
  2678. while (current_temperature_pinda < temp)
  2679. {
  2680. delay_keep_alive(1000);
  2681. serialecho_temperatures();
  2682. }
  2683. current_position[Z_AXIS] = 5;
  2684. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  2685. current_position[X_AXIS] = pgm_read_float(bed_ref_points);
  2686. current_position[Y_AXIS] = pgm_read_float(bed_ref_points + 1);
  2687. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  2688. st_synchronize();
  2689. find_bed_induction_sensor_point_z(-1.f);
  2690. z_shift = (int)((current_position[Z_AXIS] - zero_z)*axis_steps_per_unit[Z_AXIS]);
  2691. SERIAL_ECHOLNPGM("");
  2692. SERIAL_ECHOPGM("PINDA temperature: ");
  2693. MYSERIAL.print(current_temperature_pinda);
  2694. SERIAL_ECHOPGM(" Z shift (mm):");
  2695. MYSERIAL.print(current_position[Z_AXIS] - zero_z);
  2696. SERIAL_ECHOLNPGM("");
  2697. EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + i * 2, &z_shift);
  2698. }
  2699. custom_message_type = 0;
  2700. custom_message = false;
  2701. eeprom_update_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 1);
  2702. SERIAL_ECHOLNPGM("Temperature calibration done. Continue with pressing the knob.");
  2703. disable_x();
  2704. disable_y();
  2705. disable_z();
  2706. disable_e0();
  2707. disable_e1();
  2708. disable_e2();
  2709. setTargetBed(0); //set bed target temperature back to 0
  2710. // setTargetHotend(0,0); //set hotend target temperature back to 0
  2711. lcd_show_fullscreen_message_and_wait_P(MSG_TEMP_CALIBRATION_DONE);
  2712. lcd_update_enable(true);
  2713. lcd_update(2);
  2714. break;
  2715. }
  2716. #endif //PINDA_THERMISTOR
  2717. setTargetBed(PINDA_MIN_T);
  2718. float zero_z;
  2719. int z_shift = 0; //unit: steps
  2720. int t_c; // temperature
  2721. if (!(axis_known_position[X_AXIS] && axis_known_position[Y_AXIS] && axis_known_position[Z_AXIS])) {
  2722. // We don't know where we are! HOME!
  2723. // Push the commands to the front of the message queue in the reverse order!
  2724. // There shall be always enough space reserved for these commands.
  2725. repeatcommand_front(); // repeat G76 with all its parameters
  2726. enquecommand_front_P((PSTR("G28 W0")));
  2727. break;
  2728. }
  2729. SERIAL_ECHOLNPGM("PINDA probe calibration start");
  2730. custom_message = true;
  2731. custom_message_type = 4;
  2732. custom_message_state = 1;
  2733. custom_message = MSG_TEMP_CALIBRATION;
  2734. current_position[X_AXIS] = PINDA_PREHEAT_X;
  2735. current_position[Y_AXIS] = PINDA_PREHEAT_Y;
  2736. current_position[Z_AXIS] = PINDA_PREHEAT_Z;
  2737. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  2738. st_synchronize();
  2739. while (abs(degBed() - PINDA_MIN_T) > 1) {
  2740. delay_keep_alive(1000);
  2741. serialecho_temperatures();
  2742. }
  2743. //enquecommand_P(PSTR("M190 S50"));
  2744. for (int i = 0; i < PINDA_HEAT_T; i++) {
  2745. delay_keep_alive(1000);
  2746. serialecho_temperatures();
  2747. }
  2748. eeprom_update_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 0); //invalidate temp. calibration in case that in will be aborted during the calibration process
  2749. current_position[Z_AXIS] = 5;
  2750. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  2751. current_position[X_AXIS] = pgm_read_float(bed_ref_points);
  2752. current_position[Y_AXIS] = pgm_read_float(bed_ref_points + 1);
  2753. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  2754. st_synchronize();
  2755. find_bed_induction_sensor_point_z(-1.f);
  2756. zero_z = current_position[Z_AXIS];
  2757. //current_position[Z_AXIS]
  2758. SERIAL_ECHOLNPGM("");
  2759. SERIAL_ECHOPGM("ZERO: ");
  2760. MYSERIAL.print(current_position[Z_AXIS]);
  2761. SERIAL_ECHOLNPGM("");
  2762. for (int i = 0; i<5; i++) {
  2763. SERIAL_ECHOPGM("Step: ");
  2764. MYSERIAL.print(i+2);
  2765. SERIAL_ECHOLNPGM("/6");
  2766. custom_message_state = i + 2;
  2767. t_c = 60 + i * 10;
  2768. setTargetBed(t_c);
  2769. current_position[X_AXIS] = PINDA_PREHEAT_X;
  2770. current_position[Y_AXIS] = PINDA_PREHEAT_Y;
  2771. current_position[Z_AXIS] = PINDA_PREHEAT_Z;
  2772. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  2773. st_synchronize();
  2774. while (degBed() < t_c) {
  2775. delay_keep_alive(1000);
  2776. serialecho_temperatures();
  2777. }
  2778. for (int i = 0; i < PINDA_HEAT_T; i++) {
  2779. delay_keep_alive(1000);
  2780. serialecho_temperatures();
  2781. }
  2782. current_position[Z_AXIS] = 5;
  2783. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  2784. current_position[X_AXIS] = pgm_read_float(bed_ref_points);
  2785. current_position[Y_AXIS] = pgm_read_float(bed_ref_points + 1);
  2786. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  2787. st_synchronize();
  2788. find_bed_induction_sensor_point_z(-1.f);
  2789. z_shift = (int)((current_position[Z_AXIS] - zero_z)*axis_steps_per_unit[Z_AXIS]);
  2790. SERIAL_ECHOLNPGM("");
  2791. SERIAL_ECHOPGM("Temperature: ");
  2792. MYSERIAL.print(t_c);
  2793. SERIAL_ECHOPGM(" Z shift (mm):");
  2794. MYSERIAL.print(current_position[Z_AXIS] - zero_z);
  2795. SERIAL_ECHOLNPGM("");
  2796. EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + i*2, &z_shift);
  2797. }
  2798. custom_message_type = 0;
  2799. custom_message = false;
  2800. eeprom_update_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 1);
  2801. SERIAL_ECHOLNPGM("Temperature calibration done. Continue with pressing the knob.");
  2802. disable_x();
  2803. disable_y();
  2804. disable_z();
  2805. disable_e0();
  2806. disable_e1();
  2807. disable_e2();
  2808. setTargetBed(0); //set bed target temperature back to 0
  2809. lcd_show_fullscreen_message_and_wait_P(MSG_TEMP_CALIBRATION_DONE);
  2810. lcd_update_enable(true);
  2811. lcd_update(2);
  2812. }
  2813. break;
  2814. #ifdef DIS
  2815. case 77:
  2816. {
  2817. //G77 X200 Y150 XP100 YP15 XO10 Y015
  2818. //for 9 point mesh bed leveling G77 X203 Y196 XP3 YP3 XO0 YO0
  2819. //G77 X232 Y218 XP116 YP109 XO-11 YO0
  2820. float dimension_x = 40;
  2821. float dimension_y = 40;
  2822. int points_x = 40;
  2823. int points_y = 40;
  2824. float offset_x = 74;
  2825. float offset_y = 33;
  2826. if (code_seen('X')) dimension_x = code_value();
  2827. if (code_seen('Y')) dimension_y = code_value();
  2828. if (code_seen('XP')) points_x = code_value();
  2829. if (code_seen('YP')) points_y = code_value();
  2830. if (code_seen('XO')) offset_x = code_value();
  2831. if (code_seen('YO')) offset_y = code_value();
  2832. bed_analysis(dimension_x,dimension_y,points_x,points_y,offset_x,offset_y);
  2833. } break;
  2834. #endif
  2835. case 79: {
  2836. for (int i = 255; i > 0; i = i - 5) {
  2837. fanSpeed = i;
  2838. //delay_keep_alive(2000);
  2839. for (int j = 0; j < 100; j++) {
  2840. delay_keep_alive(100);
  2841. }
  2842. fan_speed[1];
  2843. MYSERIAL.print(i); SERIAL_ECHOPGM(": "); MYSERIAL.println(fan_speed[1]);
  2844. }
  2845. }break;
  2846. /**
  2847. * G80: Mesh-based Z probe, probes a grid and produces a
  2848. * mesh to compensate for variable bed height
  2849. *
  2850. * The S0 report the points as below
  2851. *
  2852. * +----> X-axis
  2853. * |
  2854. * |
  2855. * v Y-axis
  2856. *
  2857. */
  2858. case 80:
  2859. #ifdef MK1BP
  2860. break;
  2861. #endif //MK1BP
  2862. case_G80:
  2863. {
  2864. mesh_bed_leveling_flag = true;
  2865. int8_t verbosity_level = 0;
  2866. static bool run = false;
  2867. if (code_seen('V')) {
  2868. // Just 'V' without a number counts as V1.
  2869. char c = strchr_pointer[1];
  2870. verbosity_level = (c == ' ' || c == '\t' || c == 0) ? 1 : code_value_short();
  2871. }
  2872. // Firstly check if we know where we are
  2873. if (!(axis_known_position[X_AXIS] && axis_known_position[Y_AXIS] && axis_known_position[Z_AXIS])) {
  2874. // We don't know where we are! HOME!
  2875. // Push the commands to the front of the message queue in the reverse order!
  2876. // There shall be always enough space reserved for these commands.
  2877. if (lcd_commands_type != LCD_COMMAND_STOP_PRINT) {
  2878. repeatcommand_front(); // repeat G80 with all its parameters
  2879. enquecommand_front_P((PSTR("G28 W0")));
  2880. }
  2881. else {
  2882. mesh_bed_leveling_flag = false;
  2883. }
  2884. break;
  2885. }
  2886. bool temp_comp_start = true;
  2887. #ifdef PINDA_THERMISTOR
  2888. temp_comp_start = false;
  2889. #endif //PINDA_THERMISTOR
  2890. if (temp_comp_start)
  2891. if (run == false && temp_cal_active == true && calibration_status_pinda() == true && target_temperature_bed >= 50) {
  2892. if (lcd_commands_type != LCD_COMMAND_STOP_PRINT) {
  2893. temp_compensation_start();
  2894. run = true;
  2895. repeatcommand_front(); // repeat G80 with all its parameters
  2896. enquecommand_front_P((PSTR("G28 W0")));
  2897. }
  2898. else {
  2899. mesh_bed_leveling_flag = false;
  2900. }
  2901. break;
  2902. }
  2903. run = false;
  2904. if (lcd_commands_type == LCD_COMMAND_STOP_PRINT) {
  2905. mesh_bed_leveling_flag = false;
  2906. break;
  2907. }
  2908. // Save custom message state, set a new custom message state to display: Calibrating point 9.
  2909. bool custom_message_old = custom_message;
  2910. unsigned int custom_message_type_old = custom_message_type;
  2911. unsigned int custom_message_state_old = custom_message_state;
  2912. custom_message = true;
  2913. custom_message_type = 1;
  2914. custom_message_state = (MESH_MEAS_NUM_X_POINTS * MESH_MEAS_NUM_Y_POINTS) + 10;
  2915. lcd_update(1);
  2916. mbl.reset(); //reset mesh bed leveling
  2917. // Reset baby stepping to zero, if the babystepping has already been loaded before. The babystepsTodo value will be
  2918. // consumed during the first movements following this statement.
  2919. babystep_undo();
  2920. // Cycle through all points and probe them
  2921. // First move up. During this first movement, the babystepping will be reverted.
  2922. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  2923. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[Z_AXIS] / 60, active_extruder);
  2924. // The move to the first calibration point.
  2925. current_position[X_AXIS] = pgm_read_float(bed_ref_points);
  2926. current_position[Y_AXIS] = pgm_read_float(bed_ref_points + 1);
  2927. bool clamped = world2machine_clamp(current_position[X_AXIS], current_position[Y_AXIS]);
  2928. #ifdef SUPPORT_VERBOSITY
  2929. if (verbosity_level >= 1) {
  2930. clamped ? SERIAL_PROTOCOLPGM("First calibration point clamped.\n") : SERIAL_PROTOCOLPGM("No clamping for first calibration point.\n");
  2931. }
  2932. #endif //SUPPORT_VERBOSITY
  2933. // mbl.get_meas_xy(0, 0, current_position[X_AXIS], current_position[Y_AXIS], false);
  2934. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[X_AXIS] / 30, active_extruder);
  2935. // Wait until the move is finished.
  2936. st_synchronize();
  2937. int mesh_point = 0; //index number of calibration point
  2938. int ix = 0;
  2939. int iy = 0;
  2940. int XY_AXIS_FEEDRATE = homing_feedrate[X_AXIS] / 20;
  2941. int Z_PROBE_FEEDRATE = homing_feedrate[Z_AXIS] / 60;
  2942. int Z_LIFT_FEEDRATE = homing_feedrate[Z_AXIS] / 40;
  2943. bool has_z = is_bed_z_jitter_data_valid(); //checks if we have data from Z calibration (offsets of the Z heiths of the 8 calibration points from the first point)
  2944. #ifdef SUPPORT_VERBOSITY
  2945. if (verbosity_level >= 1) {
  2946. has_z ? SERIAL_PROTOCOLPGM("Z jitter data from Z cal. valid.\n") : SERIAL_PROTOCOLPGM("Z jitter data from Z cal. not valid.\n");
  2947. }
  2948. #endif // SUPPORT_VERBOSITY
  2949. setup_for_endstop_move(false); //save feedrate and feedmultiply, sets feedmultiply to 100
  2950. const char *kill_message = NULL;
  2951. while (mesh_point != MESH_MEAS_NUM_X_POINTS * MESH_MEAS_NUM_Y_POINTS) {
  2952. // Get coords of a measuring point.
  2953. ix = mesh_point % MESH_MEAS_NUM_X_POINTS; // from 0 to MESH_NUM_X_POINTS - 1
  2954. iy = mesh_point / MESH_MEAS_NUM_X_POINTS;
  2955. if (iy & 1) ix = (MESH_MEAS_NUM_X_POINTS - 1) - ix; // Zig zag
  2956. float z0 = 0.f;
  2957. if (has_z && mesh_point > 0) {
  2958. uint16_t z_offset_u = eeprom_read_word((uint16_t*)(EEPROM_BED_CALIBRATION_Z_JITTER + 2 * (ix + iy * 3 - 1)));
  2959. z0 = mbl.z_values[0][0] + *reinterpret_cast<int16_t*>(&z_offset_u) * 0.01;
  2960. //#if 0
  2961. #ifdef SUPPORT_VERBOSITY
  2962. if (verbosity_level >= 1) {
  2963. SERIAL_ECHOLNPGM("");
  2964. SERIAL_ECHOPGM("Bed leveling, point: ");
  2965. MYSERIAL.print(mesh_point);
  2966. SERIAL_ECHOPGM(", calibration z: ");
  2967. MYSERIAL.print(z0, 5);
  2968. SERIAL_ECHOLNPGM("");
  2969. }
  2970. #endif // SUPPORT_VERBOSITY
  2971. //#endif
  2972. }
  2973. // Move Z up to MESH_HOME_Z_SEARCH.
  2974. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  2975. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], Z_LIFT_FEEDRATE, active_extruder);
  2976. st_synchronize();
  2977. // Move to XY position of the sensor point.
  2978. current_position[X_AXIS] = pgm_read_float(bed_ref_points + 2 * mesh_point);
  2979. current_position[Y_AXIS] = pgm_read_float(bed_ref_points + 2 * mesh_point + 1);
  2980. world2machine_clamp(current_position[X_AXIS], current_position[Y_AXIS]);
  2981. #ifdef SUPPORT_VERBOSITY
  2982. if (verbosity_level >= 1) {
  2983. SERIAL_PROTOCOL(mesh_point);
  2984. clamped ? SERIAL_PROTOCOLPGM(": xy clamped.\n") : SERIAL_PROTOCOLPGM(": no xy clamping\n");
  2985. }
  2986. #endif // SUPPORT_VERBOSITY
  2987. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], XY_AXIS_FEEDRATE, active_extruder);
  2988. st_synchronize();
  2989. // Go down until endstop is hit
  2990. const float Z_CALIBRATION_THRESHOLD = 1.f;
  2991. if (!find_bed_induction_sensor_point_z((has_z && mesh_point > 0) ? z0 - Z_CALIBRATION_THRESHOLD : -10.f)) { //if we have data from z calibration max allowed difference is 1mm for each point, if we dont have data max difference is 10mm from initial point
  2992. kill_message = MSG_BED_LEVELING_FAILED_POINT_LOW;
  2993. break;
  2994. }
  2995. if (MESH_HOME_Z_SEARCH - current_position[Z_AXIS] < 0.1f) {
  2996. kill_message = MSG_BED_LEVELING_FAILED_PROBE_DISCONNECTED;
  2997. break;
  2998. }
  2999. if (has_z && fabs(z0 - current_position[Z_AXIS]) > Z_CALIBRATION_THRESHOLD) { //if we have data from z calibration, max. allowed difference is 1mm for each point
  3000. kill_message = MSG_BED_LEVELING_FAILED_POINT_HIGH;
  3001. break;
  3002. }
  3003. #ifdef SUPPORT_VERBOSITY
  3004. if (verbosity_level >= 10) {
  3005. SERIAL_ECHOPGM("X: ");
  3006. MYSERIAL.print(current_position[X_AXIS], 5);
  3007. SERIAL_ECHOLNPGM("");
  3008. SERIAL_ECHOPGM("Y: ");
  3009. MYSERIAL.print(current_position[Y_AXIS], 5);
  3010. SERIAL_PROTOCOLPGM("\n");
  3011. }
  3012. #endif // SUPPORT_VERBOSITY
  3013. float offset_z = 0;
  3014. #ifdef PINDA_THERMISTOR
  3015. offset_z = temp_compensation_pinda_thermistor_offset(current_temperature_pinda);
  3016. #endif //PINDA_THERMISTOR
  3017. // #ifdef SUPPORT_VERBOSITY
  3018. /* if (verbosity_level >= 1)
  3019. {
  3020. SERIAL_ECHOPGM("mesh bed leveling: ");
  3021. MYSERIAL.print(current_position[Z_AXIS], 5);
  3022. SERIAL_ECHOPGM(" offset: ");
  3023. MYSERIAL.print(offset_z, 5);
  3024. SERIAL_ECHOLNPGM("");
  3025. }*/
  3026. // #endif // SUPPORT_VERBOSITY
  3027. mbl.set_z(ix, iy, current_position[Z_AXIS] - offset_z); //store measured z values z_values[iy][ix] = z - offset_z;
  3028. custom_message_state--;
  3029. mesh_point++;
  3030. lcd_update(1);
  3031. }
  3032. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3033. #ifdef SUPPORT_VERBOSITY
  3034. if (verbosity_level >= 20) {
  3035. SERIAL_ECHOLNPGM("Mesh bed leveling while loop finished.");
  3036. SERIAL_ECHOLNPGM("MESH_HOME_Z_SEARCH: ");
  3037. MYSERIAL.print(current_position[Z_AXIS], 5);
  3038. }
  3039. #endif // SUPPORT_VERBOSITY
  3040. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], Z_LIFT_FEEDRATE, active_extruder);
  3041. st_synchronize();
  3042. if (mesh_point != MESH_MEAS_NUM_X_POINTS * MESH_MEAS_NUM_Y_POINTS) {
  3043. kill(kill_message);
  3044. SERIAL_ECHOLNPGM("killed");
  3045. }
  3046. clean_up_after_endstop_move();
  3047. // SERIAL_ECHOLNPGM("clean up finished ");
  3048. bool apply_temp_comp = true;
  3049. #ifdef PINDA_THERMISTOR
  3050. apply_temp_comp = false;
  3051. #endif
  3052. if (apply_temp_comp)
  3053. if(temp_cal_active == true && calibration_status_pinda() == true) temp_compensation_apply(); //apply PINDA temperature compensation
  3054. babystep_apply(); // Apply Z height correction aka baby stepping before mesh bed leveing gets activated.
  3055. // SERIAL_ECHOLNPGM("babystep applied");
  3056. bool eeprom_bed_correction_valid = eeprom_read_byte((unsigned char*)EEPROM_BED_CORRECTION_VALID) == 1;
  3057. #ifdef SUPPORT_VERBOSITY
  3058. if (verbosity_level >= 1) {
  3059. eeprom_bed_correction_valid ? SERIAL_PROTOCOLPGM("Bed correction data valid\n") : SERIAL_PROTOCOLPGM("Bed correction data not valid\n");
  3060. }
  3061. #endif // SUPPORT_VERBOSITY
  3062. for (uint8_t i = 0; i < 4; ++i) {
  3063. unsigned char codes[4] = { 'L', 'R', 'F', 'B' };
  3064. long correction = 0;
  3065. if (code_seen(codes[i]))
  3066. correction = code_value_long();
  3067. else if (eeprom_bed_correction_valid) {
  3068. unsigned char *addr = (i < 2) ?
  3069. ((i == 0) ? (unsigned char*)EEPROM_BED_CORRECTION_LEFT : (unsigned char*)EEPROM_BED_CORRECTION_RIGHT) :
  3070. ((i == 2) ? (unsigned char*)EEPROM_BED_CORRECTION_FRONT : (unsigned char*)EEPROM_BED_CORRECTION_REAR);
  3071. correction = eeprom_read_int8(addr);
  3072. }
  3073. if (correction == 0)
  3074. continue;
  3075. float offset = float(correction) * 0.001f;
  3076. if (fabs(offset) > 0.101f) {
  3077. SERIAL_ERROR_START;
  3078. SERIAL_ECHOPGM("Excessive bed leveling correction: ");
  3079. SERIAL_ECHO(offset);
  3080. SERIAL_ECHOLNPGM(" microns");
  3081. }
  3082. else {
  3083. switch (i) {
  3084. case 0:
  3085. for (uint8_t row = 0; row < 3; ++row) {
  3086. mbl.z_values[row][1] += 0.5f * offset;
  3087. mbl.z_values[row][0] += offset;
  3088. }
  3089. break;
  3090. case 1:
  3091. for (uint8_t row = 0; row < 3; ++row) {
  3092. mbl.z_values[row][1] += 0.5f * offset;
  3093. mbl.z_values[row][2] += offset;
  3094. }
  3095. break;
  3096. case 2:
  3097. for (uint8_t col = 0; col < 3; ++col) {
  3098. mbl.z_values[1][col] += 0.5f * offset;
  3099. mbl.z_values[0][col] += offset;
  3100. }
  3101. break;
  3102. case 3:
  3103. for (uint8_t col = 0; col < 3; ++col) {
  3104. mbl.z_values[1][col] += 0.5f * offset;
  3105. mbl.z_values[2][col] += offset;
  3106. }
  3107. break;
  3108. }
  3109. }
  3110. }
  3111. // SERIAL_ECHOLNPGM("Bed leveling correction finished");
  3112. mbl.upsample_3x3(); //bilinear interpolation from 3x3 to 7x7 points while using the same array z_values[iy][ix] for storing (just coppying measured data to new destination and interpolating between them)
  3113. // SERIAL_ECHOLNPGM("Upsample finished");
  3114. mbl.active = 1; //activate mesh bed leveling
  3115. // SERIAL_ECHOLNPGM("Mesh bed leveling activated");
  3116. go_home_with_z_lift();
  3117. // SERIAL_ECHOLNPGM("Go home finished");
  3118. //unretract (after PINDA preheat retraction)
  3119. if (degHotend(active_extruder) > EXTRUDE_MINTEMP && temp_cal_active == true && calibration_status_pinda() == true && target_temperature_bed >= 50) {
  3120. current_position[E_AXIS] += DEFAULT_RETRACTION;
  3121. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400, active_extruder);
  3122. }
  3123. KEEPALIVE_STATE(NOT_BUSY);
  3124. // Restore custom message state
  3125. custom_message = custom_message_old;
  3126. custom_message_type = custom_message_type_old;
  3127. custom_message_state = custom_message_state_old;
  3128. mesh_bed_leveling_flag = false;
  3129. mesh_bed_run_from_menu = false;
  3130. lcd_update(2);
  3131. }
  3132. break;
  3133. /**
  3134. * G81: Print mesh bed leveling status and bed profile if activated
  3135. */
  3136. case 81:
  3137. if (mbl.active) {
  3138. SERIAL_PROTOCOLPGM("Num X,Y: ");
  3139. SERIAL_PROTOCOL(MESH_NUM_X_POINTS);
  3140. SERIAL_PROTOCOLPGM(",");
  3141. SERIAL_PROTOCOL(MESH_NUM_Y_POINTS);
  3142. SERIAL_PROTOCOLPGM("\nZ search height: ");
  3143. SERIAL_PROTOCOL(MESH_HOME_Z_SEARCH);
  3144. SERIAL_PROTOCOLLNPGM("\nMeasured points:");
  3145. for (int y = MESH_NUM_Y_POINTS-1; y >= 0; y--) {
  3146. for (int x = 0; x < MESH_NUM_X_POINTS; x++) {
  3147. SERIAL_PROTOCOLPGM(" ");
  3148. SERIAL_PROTOCOL_F(mbl.z_values[y][x], 5);
  3149. }
  3150. SERIAL_PROTOCOLPGM("\n");
  3151. }
  3152. }
  3153. else
  3154. SERIAL_PROTOCOLLNPGM("Mesh bed leveling not active.");
  3155. break;
  3156. #if 0
  3157. /**
  3158. * G82: Single Z probe at current location
  3159. *
  3160. * WARNING! USE WITH CAUTION! If you'll try to probe where is no leveling pad, nasty things can happen!
  3161. *
  3162. */
  3163. case 82:
  3164. SERIAL_PROTOCOLLNPGM("Finding bed ");
  3165. setup_for_endstop_move();
  3166. find_bed_induction_sensor_point_z();
  3167. clean_up_after_endstop_move();
  3168. SERIAL_PROTOCOLPGM("Bed found at: ");
  3169. SERIAL_PROTOCOL_F(current_position[Z_AXIS], 5);
  3170. SERIAL_PROTOCOLPGM("\n");
  3171. break;
  3172. /**
  3173. * G83: Prusa3D specific: Babystep in Z and store to EEPROM
  3174. */
  3175. case 83:
  3176. {
  3177. int babystepz = code_seen('S') ? code_value() : 0;
  3178. int BabyPosition = code_seen('P') ? code_value() : 0;
  3179. if (babystepz != 0) {
  3180. //FIXME Vojtech: What shall be the index of the axis Z: 3 or 4?
  3181. // Is the axis indexed starting with zero or one?
  3182. if (BabyPosition > 4) {
  3183. SERIAL_PROTOCOLLNPGM("Index out of bounds");
  3184. }else{
  3185. // Save it to the eeprom
  3186. babystepLoadZ = babystepz;
  3187. EEPROM_save_B(EEPROM_BABYSTEP_Z0+(BabyPosition*2),&babystepLoadZ);
  3188. // adjust the Z
  3189. babystepsTodoZadd(babystepLoadZ);
  3190. }
  3191. }
  3192. }
  3193. break;
  3194. /**
  3195. * G84: Prusa3D specific: UNDO Babystep Z (move Z axis back)
  3196. */
  3197. case 84:
  3198. babystepsTodoZsubtract(babystepLoadZ);
  3199. // babystepLoadZ = 0;
  3200. break;
  3201. /**
  3202. * G85: Prusa3D specific: Pick best babystep
  3203. */
  3204. case 85:
  3205. lcd_pick_babystep();
  3206. break;
  3207. #endif
  3208. /**
  3209. * G86: Prusa3D specific: Disable babystep correction after home.
  3210. * This G-code will be performed at the start of a calibration script.
  3211. */
  3212. case 86:
  3213. calibration_status_store(CALIBRATION_STATUS_LIVE_ADJUST);
  3214. break;
  3215. /**
  3216. * G87: Prusa3D specific: Enable babystep correction after home
  3217. * This G-code will be performed at the end of a calibration script.
  3218. */
  3219. case 87:
  3220. calibration_status_store(CALIBRATION_STATUS_CALIBRATED);
  3221. break;
  3222. /**
  3223. * G88: Prusa3D specific: Don't know what it is for, it is in V2Calibration.gcode
  3224. */
  3225. case 88:
  3226. break;
  3227. #endif // ENABLE_MESH_BED_LEVELING
  3228. case 90: // G90
  3229. relative_mode = false;
  3230. break;
  3231. case 91: // G91
  3232. relative_mode = true;
  3233. break;
  3234. case 92: // G92
  3235. if(!code_seen(axis_codes[E_AXIS]))
  3236. st_synchronize();
  3237. for(int8_t i=0; i < NUM_AXIS; i++) {
  3238. if(code_seen(axis_codes[i])) {
  3239. if(i == E_AXIS) {
  3240. current_position[i] = code_value();
  3241. plan_set_e_position(current_position[E_AXIS]);
  3242. }
  3243. else {
  3244. current_position[i] = code_value()+add_homing[i];
  3245. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  3246. }
  3247. }
  3248. }
  3249. break;
  3250. case 98: //activate farm mode
  3251. farm_mode = 1;
  3252. PingTime = millis();
  3253. eeprom_update_byte((unsigned char *)EEPROM_FARM_MODE, farm_mode);
  3254. break;
  3255. case 99: //deactivate farm mode
  3256. farm_mode = 0;
  3257. lcd_printer_connected();
  3258. eeprom_update_byte((unsigned char *)EEPROM_FARM_MODE, farm_mode);
  3259. lcd_update(2);
  3260. break;
  3261. }
  3262. } // end if(code_seen('G'))
  3263. else if(code_seen('M'))
  3264. {
  3265. int index;
  3266. for (index = 1; *(strchr_pointer + index) == ' ' || *(strchr_pointer + index) == '\t'; index++);
  3267. /*for (++strchr_pointer; *strchr_pointer == ' ' || *strchr_pointer == '\t'; ++strchr_pointer);*/
  3268. if (*(strchr_pointer+index) < '0' || *(strchr_pointer+index) > '9') {
  3269. SERIAL_ECHOLNPGM("Invalid M code");
  3270. } else
  3271. switch((int)code_value())
  3272. {
  3273. #ifdef ULTIPANEL
  3274. case 0: // M0 - Unconditional stop - Wait for user button press on LCD
  3275. case 1: // M1 - Conditional stop - Wait for user button press on LCD
  3276. {
  3277. char *src = strchr_pointer + 2;
  3278. codenum = 0;
  3279. bool hasP = false, hasS = false;
  3280. if (code_seen('P')) {
  3281. codenum = code_value(); // milliseconds to wait
  3282. hasP = codenum > 0;
  3283. }
  3284. if (code_seen('S')) {
  3285. codenum = code_value() * 1000; // seconds to wait
  3286. hasS = codenum > 0;
  3287. }
  3288. starpos = strchr(src, '*');
  3289. if (starpos != NULL) *(starpos) = '\0';
  3290. while (*src == ' ') ++src;
  3291. if (!hasP && !hasS && *src != '\0') {
  3292. lcd_setstatus(src);
  3293. } else {
  3294. LCD_MESSAGERPGM(MSG_USERWAIT);
  3295. }
  3296. lcd_ignore_click(); //call lcd_ignore_click aslo for else ???
  3297. st_synchronize();
  3298. previous_millis_cmd = millis();
  3299. if (codenum > 0){
  3300. codenum += millis(); // keep track of when we started waiting
  3301. KEEPALIVE_STATE(PAUSED_FOR_USER);
  3302. while(millis() < codenum && !lcd_clicked()){
  3303. manage_heater();
  3304. manage_inactivity(true);
  3305. lcd_update();
  3306. }
  3307. KEEPALIVE_STATE(IN_HANDLER);
  3308. lcd_ignore_click(false);
  3309. }else{
  3310. if (!lcd_detected())
  3311. break;
  3312. KEEPALIVE_STATE(PAUSED_FOR_USER);
  3313. while(!lcd_clicked()){
  3314. manage_heater();
  3315. manage_inactivity(true);
  3316. lcd_update();
  3317. }
  3318. KEEPALIVE_STATE(IN_HANDLER);
  3319. }
  3320. if (IS_SD_PRINTING)
  3321. LCD_MESSAGERPGM(MSG_RESUMING);
  3322. else
  3323. LCD_MESSAGERPGM(WELCOME_MSG);
  3324. }
  3325. break;
  3326. #endif
  3327. case 17:
  3328. LCD_MESSAGERPGM(MSG_NO_MOVE);
  3329. enable_x();
  3330. enable_y();
  3331. enable_z();
  3332. enable_e0();
  3333. enable_e1();
  3334. enable_e2();
  3335. break;
  3336. #ifdef SDSUPPORT
  3337. case 20: // M20 - list SD card
  3338. SERIAL_PROTOCOLLNRPGM(MSG_BEGIN_FILE_LIST);
  3339. card.ls();
  3340. SERIAL_PROTOCOLLNRPGM(MSG_END_FILE_LIST);
  3341. break;
  3342. case 21: // M21 - init SD card
  3343. card.initsd();
  3344. break;
  3345. case 22: //M22 - release SD card
  3346. card.release();
  3347. break;
  3348. case 23: //M23 - Select file
  3349. starpos = (strchr(strchr_pointer + 4,'*'));
  3350. if(starpos!=NULL)
  3351. *(starpos)='\0';
  3352. card.openFile(strchr_pointer + 4,true);
  3353. break;
  3354. case 24: //M24 - Start SD print
  3355. card.startFileprint();
  3356. starttime=millis();
  3357. break;
  3358. case 25: //M25 - Pause SD print
  3359. card.pauseSDPrint();
  3360. break;
  3361. case 26: //M26 - Set SD index
  3362. if(card.cardOK && code_seen('S')) {
  3363. card.setIndex(code_value_long());
  3364. }
  3365. break;
  3366. case 27: //M27 - Get SD status
  3367. card.getStatus();
  3368. break;
  3369. case 28: //M28 - Start SD write
  3370. starpos = (strchr(strchr_pointer + 4,'*'));
  3371. if(starpos != NULL){
  3372. char* npos = strchr(CMDBUFFER_CURRENT_STRING, 'N');
  3373. strchr_pointer = strchr(npos,' ') + 1;
  3374. *(starpos) = '\0';
  3375. }
  3376. card.openFile(strchr_pointer+4,false);
  3377. break;
  3378. case 29: //M29 - Stop SD write
  3379. //processed in write to file routine above
  3380. //card,saving = false;
  3381. break;
  3382. case 30: //M30 <filename> Delete File
  3383. if (card.cardOK){
  3384. card.closefile();
  3385. starpos = (strchr(strchr_pointer + 4,'*'));
  3386. if(starpos != NULL){
  3387. char* npos = strchr(CMDBUFFER_CURRENT_STRING, 'N');
  3388. strchr_pointer = strchr(npos,' ') + 1;
  3389. *(starpos) = '\0';
  3390. }
  3391. card.removeFile(strchr_pointer + 4);
  3392. }
  3393. break;
  3394. case 32: //M32 - Select file and start SD print
  3395. {
  3396. if(card.sdprinting) {
  3397. st_synchronize();
  3398. }
  3399. starpos = (strchr(strchr_pointer + 4,'*'));
  3400. char* namestartpos = (strchr(strchr_pointer + 4,'!')); //find ! to indicate filename string start.
  3401. if(namestartpos==NULL)
  3402. {
  3403. namestartpos=strchr_pointer + 4; //default name position, 4 letters after the M
  3404. }
  3405. else
  3406. namestartpos++; //to skip the '!'
  3407. if(starpos!=NULL)
  3408. *(starpos)='\0';
  3409. bool call_procedure=(code_seen('P'));
  3410. if(strchr_pointer>namestartpos)
  3411. call_procedure=false; //false alert, 'P' found within filename
  3412. if( card.cardOK )
  3413. {
  3414. card.openFile(namestartpos,true,!call_procedure);
  3415. if(code_seen('S'))
  3416. if(strchr_pointer<namestartpos) //only if "S" is occuring _before_ the filename
  3417. card.setIndex(code_value_long());
  3418. card.startFileprint();
  3419. if(!call_procedure)
  3420. starttime=millis(); //procedure calls count as normal print time.
  3421. }
  3422. } break;
  3423. case 928: //M928 - Start SD write
  3424. starpos = (strchr(strchr_pointer + 5,'*'));
  3425. if(starpos != NULL){
  3426. char* npos = strchr(CMDBUFFER_CURRENT_STRING, 'N');
  3427. strchr_pointer = strchr(npos,' ') + 1;
  3428. *(starpos) = '\0';
  3429. }
  3430. card.openLogFile(strchr_pointer+5);
  3431. break;
  3432. #endif //SDSUPPORT
  3433. case 31: //M31 take time since the start of the SD print or an M109 command
  3434. {
  3435. stoptime=millis();
  3436. char time[30];
  3437. unsigned long t=(stoptime-starttime)/1000;
  3438. int sec,min;
  3439. min=t/60;
  3440. sec=t%60;
  3441. sprintf_P(time, PSTR("%i min, %i sec"), min, sec);
  3442. SERIAL_ECHO_START;
  3443. SERIAL_ECHOLN(time);
  3444. lcd_setstatus(time);
  3445. autotempShutdown();
  3446. }
  3447. break;
  3448. #ifndef _DISABLE_M42_M226
  3449. case 42: //M42 -Change pin status via gcode
  3450. if (code_seen('S'))
  3451. {
  3452. int pin_status = code_value();
  3453. int pin_number = LED_PIN;
  3454. if (code_seen('P') && pin_status >= 0 && pin_status <= 255)
  3455. pin_number = code_value();
  3456. for(int8_t i = 0; i < (int8_t)(sizeof(sensitive_pins)/sizeof(int)); i++)
  3457. {
  3458. if (sensitive_pins[i] == pin_number)
  3459. {
  3460. pin_number = -1;
  3461. break;
  3462. }
  3463. }
  3464. #if defined(FAN_PIN) && FAN_PIN > -1
  3465. if (pin_number == FAN_PIN)
  3466. fanSpeed = pin_status;
  3467. #endif
  3468. if (pin_number > -1)
  3469. {
  3470. pinMode(pin_number, OUTPUT);
  3471. digitalWrite(pin_number, pin_status);
  3472. analogWrite(pin_number, pin_status);
  3473. }
  3474. }
  3475. break;
  3476. #endif //_DISABLE_M42_M226
  3477. case 44: // M44: Prusa3D: Reset the bed skew and offset calibration.
  3478. // Reset the baby step value and the baby step applied flag.
  3479. calibration_status_store(CALIBRATION_STATUS_ASSEMBLED);
  3480. eeprom_update_word((uint16_t*)EEPROM_BABYSTEP_Z, 0);
  3481. // Reset the skew and offset in both RAM and EEPROM.
  3482. reset_bed_offset_and_skew();
  3483. // Reset world2machine_rotation_and_skew and world2machine_shift, therefore
  3484. // the planner will not perform any adjustments in the XY plane.
  3485. // Wait for the motors to stop and update the current position with the absolute values.
  3486. world2machine_revert_to_uncorrected();
  3487. break;
  3488. case 45: // M45: Prusa3D: bed skew and offset with manual Z up
  3489. {
  3490. bool only_Z = code_seen('Z');
  3491. gcode_M45(only_Z);
  3492. }
  3493. break;
  3494. /*
  3495. case 46:
  3496. {
  3497. // M46: Prusa3D: Show the assigned IP address.
  3498. uint8_t ip[4];
  3499. bool hasIP = card.ToshibaFlashAir_GetIP(ip);
  3500. if (hasIP) {
  3501. SERIAL_ECHOPGM("Toshiba FlashAir current IP: ");
  3502. SERIAL_ECHO(int(ip[0]));
  3503. SERIAL_ECHOPGM(".");
  3504. SERIAL_ECHO(int(ip[1]));
  3505. SERIAL_ECHOPGM(".");
  3506. SERIAL_ECHO(int(ip[2]));
  3507. SERIAL_ECHOPGM(".");
  3508. SERIAL_ECHO(int(ip[3]));
  3509. SERIAL_ECHOLNPGM("");
  3510. } else {
  3511. SERIAL_ECHOLNPGM("Toshiba FlashAir GetIP failed");
  3512. }
  3513. break;
  3514. }
  3515. */
  3516. case 47:
  3517. // M47: Prusa3D: Show end stops dialog on the display.
  3518. KEEPALIVE_STATE(PAUSED_FOR_USER);
  3519. lcd_diag_show_end_stops();
  3520. KEEPALIVE_STATE(IN_HANDLER);
  3521. break;
  3522. #if 0
  3523. case 48: // M48: scan the bed induction sensor points, print the sensor trigger coordinates to the serial line for visualization on the PC.
  3524. {
  3525. // Disable the default update procedure of the display. We will do a modal dialog.
  3526. lcd_update_enable(false);
  3527. // Let the planner use the uncorrected coordinates.
  3528. mbl.reset();
  3529. // Reset world2machine_rotation_and_skew and world2machine_shift, therefore
  3530. // the planner will not perform any adjustments in the XY plane.
  3531. // Wait for the motors to stop and update the current position with the absolute values.
  3532. world2machine_revert_to_uncorrected();
  3533. // Move the print head close to the bed.
  3534. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3535. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS],current_position[Z_AXIS] , current_position[E_AXIS], homing_feedrate[Z_AXIS]/40, active_extruder);
  3536. st_synchronize();
  3537. // Home in the XY plane.
  3538. set_destination_to_current();
  3539. setup_for_endstop_move();
  3540. home_xy();
  3541. int8_t verbosity_level = 0;
  3542. if (code_seen('V')) {
  3543. // Just 'V' without a number counts as V1.
  3544. char c = strchr_pointer[1];
  3545. verbosity_level = (c == ' ' || c == '\t' || c == 0) ? 1 : code_value_short();
  3546. }
  3547. bool success = scan_bed_induction_points(verbosity_level);
  3548. clean_up_after_endstop_move();
  3549. // Print head up.
  3550. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3551. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS],current_position[Z_AXIS] , current_position[E_AXIS], homing_feedrate[Z_AXIS]/40, active_extruder);
  3552. st_synchronize();
  3553. lcd_update_enable(true);
  3554. break;
  3555. }
  3556. #endif
  3557. // M48 Z-Probe repeatability measurement function.
  3558. //
  3559. // Usage: M48 <n #_samples> <X X_position_for_samples> <Y Y_position_for_samples> <V Verbose_Level> <L legs_of_movement_prior_to_doing_probe>
  3560. //
  3561. // This function assumes the bed has been homed. Specificaly, that a G28 command
  3562. // as been issued prior to invoking the M48 Z-Probe repeatability measurement function.
  3563. // Any information generated by a prior G29 Bed leveling command will be lost and need to be
  3564. // regenerated.
  3565. //
  3566. // The number of samples will default to 10 if not specified. You can use upper or lower case
  3567. // letters for any of the options EXCEPT n. n must be in lower case because Marlin uses a capital
  3568. // N for its communication protocol and will get horribly confused if you send it a capital N.
  3569. //
  3570. #ifdef ENABLE_AUTO_BED_LEVELING
  3571. #ifdef Z_PROBE_REPEATABILITY_TEST
  3572. case 48: // M48 Z-Probe repeatability
  3573. {
  3574. #if Z_MIN_PIN == -1
  3575. #error "You must have a Z_MIN endstop in order to enable calculation of Z-Probe repeatability."
  3576. #endif
  3577. double sum=0.0;
  3578. double mean=0.0;
  3579. double sigma=0.0;
  3580. double sample_set[50];
  3581. int verbose_level=1, n=0, j, n_samples = 10, n_legs=0;
  3582. double X_current, Y_current, Z_current;
  3583. double X_probe_location, Y_probe_location, Z_start_location, ext_position;
  3584. if (code_seen('V') || code_seen('v')) {
  3585. verbose_level = code_value();
  3586. if (verbose_level<0 || verbose_level>4 ) {
  3587. SERIAL_PROTOCOLPGM("?Verbose Level not plausable.\n");
  3588. goto Sigma_Exit;
  3589. }
  3590. }
  3591. if (verbose_level > 0) {
  3592. SERIAL_PROTOCOLPGM("M48 Z-Probe Repeatability test. Version 2.00\n");
  3593. SERIAL_PROTOCOLPGM("Full support at: http://3dprintboard.com/forum.php\n");
  3594. }
  3595. if (code_seen('n')) {
  3596. n_samples = code_value();
  3597. if (n_samples<4 || n_samples>50 ) {
  3598. SERIAL_PROTOCOLPGM("?Specified sample size not plausable.\n");
  3599. goto Sigma_Exit;
  3600. }
  3601. }
  3602. X_current = X_probe_location = st_get_position_mm(X_AXIS);
  3603. Y_current = Y_probe_location = st_get_position_mm(Y_AXIS);
  3604. Z_current = st_get_position_mm(Z_AXIS);
  3605. Z_start_location = st_get_position_mm(Z_AXIS) + Z_RAISE_BEFORE_PROBING;
  3606. ext_position = st_get_position_mm(E_AXIS);
  3607. if (code_seen('X') || code_seen('x') ) {
  3608. X_probe_location = code_value() - X_PROBE_OFFSET_FROM_EXTRUDER;
  3609. if (X_probe_location<X_MIN_POS || X_probe_location>X_MAX_POS ) {
  3610. SERIAL_PROTOCOLPGM("?Specified X position out of range.\n");
  3611. goto Sigma_Exit;
  3612. }
  3613. }
  3614. if (code_seen('Y') || code_seen('y') ) {
  3615. Y_probe_location = code_value() - Y_PROBE_OFFSET_FROM_EXTRUDER;
  3616. if (Y_probe_location<Y_MIN_POS || Y_probe_location>Y_MAX_POS ) {
  3617. SERIAL_PROTOCOLPGM("?Specified Y position out of range.\n");
  3618. goto Sigma_Exit;
  3619. }
  3620. }
  3621. if (code_seen('L') || code_seen('l') ) {
  3622. n_legs = code_value();
  3623. if ( n_legs==1 )
  3624. n_legs = 2;
  3625. if ( n_legs<0 || n_legs>15 ) {
  3626. SERIAL_PROTOCOLPGM("?Specified number of legs in movement not plausable.\n");
  3627. goto Sigma_Exit;
  3628. }
  3629. }
  3630. //
  3631. // Do all the preliminary setup work. First raise the probe.
  3632. //
  3633. st_synchronize();
  3634. plan_bed_level_matrix.set_to_identity();
  3635. plan_buffer_line( X_current, Y_current, Z_start_location,
  3636. ext_position,
  3637. homing_feedrate[Z_AXIS]/60,
  3638. active_extruder);
  3639. st_synchronize();
  3640. //
  3641. // Now get everything to the specified probe point So we can safely do a probe to
  3642. // get us close to the bed. If the Z-Axis is far from the bed, we don't want to
  3643. // use that as a starting point for each probe.
  3644. //
  3645. if (verbose_level > 2)
  3646. SERIAL_PROTOCOL("Positioning probe for the test.\n");
  3647. plan_buffer_line( X_probe_location, Y_probe_location, Z_start_location,
  3648. ext_position,
  3649. homing_feedrate[X_AXIS]/60,
  3650. active_extruder);
  3651. st_synchronize();
  3652. current_position[X_AXIS] = X_current = st_get_position_mm(X_AXIS);
  3653. current_position[Y_AXIS] = Y_current = st_get_position_mm(Y_AXIS);
  3654. current_position[Z_AXIS] = Z_current = st_get_position_mm(Z_AXIS);
  3655. current_position[E_AXIS] = ext_position = st_get_position_mm(E_AXIS);
  3656. //
  3657. // OK, do the inital probe to get us close to the bed.
  3658. // Then retrace the right amount and use that in subsequent probes
  3659. //
  3660. setup_for_endstop_move();
  3661. run_z_probe();
  3662. current_position[Z_AXIS] = Z_current = st_get_position_mm(Z_AXIS);
  3663. Z_start_location = st_get_position_mm(Z_AXIS) + Z_RAISE_BEFORE_PROBING;
  3664. plan_buffer_line( X_probe_location, Y_probe_location, Z_start_location,
  3665. ext_position,
  3666. homing_feedrate[X_AXIS]/60,
  3667. active_extruder);
  3668. st_synchronize();
  3669. current_position[Z_AXIS] = Z_current = st_get_position_mm(Z_AXIS);
  3670. for( n=0; n<n_samples; n++) {
  3671. do_blocking_move_to( X_probe_location, Y_probe_location, Z_start_location); // Make sure we are at the probe location
  3672. if ( n_legs) {
  3673. double radius=0.0, theta=0.0, x_sweep, y_sweep;
  3674. int rotational_direction, l;
  3675. rotational_direction = (unsigned long) millis() & 0x0001; // clockwise or counter clockwise
  3676. radius = (unsigned long) millis() % (long) (X_MAX_LENGTH/4); // limit how far out to go
  3677. theta = (float) ((unsigned long) millis() % (long) 360) / (360./(2*3.1415926)); // turn into radians
  3678. //SERIAL_ECHOPAIR("starting radius: ",radius);
  3679. //SERIAL_ECHOPAIR(" theta: ",theta);
  3680. //SERIAL_ECHOPAIR(" direction: ",rotational_direction);
  3681. //SERIAL_PROTOCOLLNPGM("");
  3682. for( l=0; l<n_legs-1; l++) {
  3683. if (rotational_direction==1)
  3684. theta += (float) ((unsigned long) millis() % (long) 20) / (360.0/(2*3.1415926)); // turn into radians
  3685. else
  3686. theta -= (float) ((unsigned long) millis() % (long) 20) / (360.0/(2*3.1415926)); // turn into radians
  3687. radius += (float) ( ((long) ((unsigned long) millis() % (long) 10)) - 5);
  3688. if ( radius<0.0 )
  3689. radius = -radius;
  3690. X_current = X_probe_location + cos(theta) * radius;
  3691. Y_current = Y_probe_location + sin(theta) * radius;
  3692. if ( X_current<X_MIN_POS) // Make sure our X & Y are sane
  3693. X_current = X_MIN_POS;
  3694. if ( X_current>X_MAX_POS)
  3695. X_current = X_MAX_POS;
  3696. if ( Y_current<Y_MIN_POS) // Make sure our X & Y are sane
  3697. Y_current = Y_MIN_POS;
  3698. if ( Y_current>Y_MAX_POS)
  3699. Y_current = Y_MAX_POS;
  3700. if (verbose_level>3 ) {
  3701. SERIAL_ECHOPAIR("x: ", X_current);
  3702. SERIAL_ECHOPAIR("y: ", Y_current);
  3703. SERIAL_PROTOCOLLNPGM("");
  3704. }
  3705. do_blocking_move_to( X_current, Y_current, Z_current );
  3706. }
  3707. do_blocking_move_to( X_probe_location, Y_probe_location, Z_start_location); // Go back to the probe location
  3708. }
  3709. setup_for_endstop_move();
  3710. run_z_probe();
  3711. sample_set[n] = current_position[Z_AXIS];
  3712. //
  3713. // Get the current mean for the data points we have so far
  3714. //
  3715. sum=0.0;
  3716. for( j=0; j<=n; j++) {
  3717. sum = sum + sample_set[j];
  3718. }
  3719. mean = sum / (double (n+1));
  3720. //
  3721. // Now, use that mean to calculate the standard deviation for the
  3722. // data points we have so far
  3723. //
  3724. sum=0.0;
  3725. for( j=0; j<=n; j++) {
  3726. sum = sum + (sample_set[j]-mean) * (sample_set[j]-mean);
  3727. }
  3728. sigma = sqrt( sum / (double (n+1)) );
  3729. if (verbose_level > 1) {
  3730. SERIAL_PROTOCOL(n+1);
  3731. SERIAL_PROTOCOL(" of ");
  3732. SERIAL_PROTOCOL(n_samples);
  3733. SERIAL_PROTOCOLPGM(" z: ");
  3734. SERIAL_PROTOCOL_F(current_position[Z_AXIS], 6);
  3735. }
  3736. if (verbose_level > 2) {
  3737. SERIAL_PROTOCOL(" mean: ");
  3738. SERIAL_PROTOCOL_F(mean,6);
  3739. SERIAL_PROTOCOL(" sigma: ");
  3740. SERIAL_PROTOCOL_F(sigma,6);
  3741. }
  3742. if (verbose_level > 0)
  3743. SERIAL_PROTOCOLPGM("\n");
  3744. plan_buffer_line( X_probe_location, Y_probe_location, Z_start_location,
  3745. current_position[E_AXIS], homing_feedrate[Z_AXIS]/60, active_extruder);
  3746. st_synchronize();
  3747. }
  3748. delay(1000);
  3749. clean_up_after_endstop_move();
  3750. // enable_endstops(true);
  3751. if (verbose_level > 0) {
  3752. SERIAL_PROTOCOLPGM("Mean: ");
  3753. SERIAL_PROTOCOL_F(mean, 6);
  3754. SERIAL_PROTOCOLPGM("\n");
  3755. }
  3756. SERIAL_PROTOCOLPGM("Standard Deviation: ");
  3757. SERIAL_PROTOCOL_F(sigma, 6);
  3758. SERIAL_PROTOCOLPGM("\n\n");
  3759. Sigma_Exit:
  3760. break;
  3761. }
  3762. #endif // Z_PROBE_REPEATABILITY_TEST
  3763. #endif // ENABLE_AUTO_BED_LEVELING
  3764. case 104: // M104
  3765. if(setTargetedHotend(104)){
  3766. break;
  3767. }
  3768. if (code_seen('S')) setTargetHotend(code_value(), tmp_extruder);
  3769. setWatch();
  3770. break;
  3771. case 112: // M112 -Emergency Stop
  3772. kill("", 3);
  3773. break;
  3774. case 140: // M140 set bed temp
  3775. if (code_seen('S')) setTargetBed(code_value());
  3776. break;
  3777. case 105 : // M105
  3778. if(setTargetedHotend(105)){
  3779. break;
  3780. }
  3781. #if defined(TEMP_0_PIN) && TEMP_0_PIN > -1
  3782. SERIAL_PROTOCOLPGM("ok T:");
  3783. SERIAL_PROTOCOL_F(degHotend(tmp_extruder),1);
  3784. SERIAL_PROTOCOLPGM(" /");
  3785. SERIAL_PROTOCOL_F(degTargetHotend(tmp_extruder),1);
  3786. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  3787. SERIAL_PROTOCOLPGM(" B:");
  3788. SERIAL_PROTOCOL_F(degBed(),1);
  3789. SERIAL_PROTOCOLPGM(" /");
  3790. SERIAL_PROTOCOL_F(degTargetBed(),1);
  3791. #endif //TEMP_BED_PIN
  3792. for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) {
  3793. SERIAL_PROTOCOLPGM(" T");
  3794. SERIAL_PROTOCOL(cur_extruder);
  3795. SERIAL_PROTOCOLPGM(":");
  3796. SERIAL_PROTOCOL_F(degHotend(cur_extruder),1);
  3797. SERIAL_PROTOCOLPGM(" /");
  3798. SERIAL_PROTOCOL_F(degTargetHotend(cur_extruder),1);
  3799. }
  3800. #else
  3801. SERIAL_ERROR_START;
  3802. SERIAL_ERRORLNRPGM(MSG_ERR_NO_THERMISTORS);
  3803. #endif
  3804. SERIAL_PROTOCOLPGM(" @:");
  3805. #ifdef EXTRUDER_WATTS
  3806. SERIAL_PROTOCOL((EXTRUDER_WATTS * getHeaterPower(tmp_extruder))/127);
  3807. SERIAL_PROTOCOLPGM("W");
  3808. #else
  3809. SERIAL_PROTOCOL(getHeaterPower(tmp_extruder));
  3810. #endif
  3811. SERIAL_PROTOCOLPGM(" B@:");
  3812. #ifdef BED_WATTS
  3813. SERIAL_PROTOCOL((BED_WATTS * getHeaterPower(-1))/127);
  3814. SERIAL_PROTOCOLPGM("W");
  3815. #else
  3816. SERIAL_PROTOCOL(getHeaterPower(-1));
  3817. #endif
  3818. #ifdef PINDA_THERMISTOR
  3819. SERIAL_PROTOCOLPGM(" P:");
  3820. SERIAL_PROTOCOL_F(current_temperature_pinda,1);
  3821. #endif //PINDA_THERMISTOR
  3822. #ifdef AMBIENT_THERMISTOR
  3823. SERIAL_PROTOCOLPGM(" A:");
  3824. SERIAL_PROTOCOL_F(current_temperature_ambient,1);
  3825. #endif //AMBIENT_THERMISTOR
  3826. #ifdef SHOW_TEMP_ADC_VALUES
  3827. {float raw = 0.0;
  3828. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  3829. SERIAL_PROTOCOLPGM(" ADC B:");
  3830. SERIAL_PROTOCOL_F(degBed(),1);
  3831. SERIAL_PROTOCOLPGM("C->");
  3832. raw = rawBedTemp();
  3833. SERIAL_PROTOCOL_F(raw/OVERSAMPLENR,5);
  3834. SERIAL_PROTOCOLPGM(" Rb->");
  3835. SERIAL_PROTOCOL_F(100 * (1 + (PtA * (raw/OVERSAMPLENR)) + (PtB * sq((raw/OVERSAMPLENR)))), 5);
  3836. SERIAL_PROTOCOLPGM(" Rxb->");
  3837. SERIAL_PROTOCOL_F(raw, 5);
  3838. #endif
  3839. for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) {
  3840. SERIAL_PROTOCOLPGM(" T");
  3841. SERIAL_PROTOCOL(cur_extruder);
  3842. SERIAL_PROTOCOLPGM(":");
  3843. SERIAL_PROTOCOL_F(degHotend(cur_extruder),1);
  3844. SERIAL_PROTOCOLPGM("C->");
  3845. raw = rawHotendTemp(cur_extruder);
  3846. SERIAL_PROTOCOL_F(raw/OVERSAMPLENR,5);
  3847. SERIAL_PROTOCOLPGM(" Rt");
  3848. SERIAL_PROTOCOL(cur_extruder);
  3849. SERIAL_PROTOCOLPGM("->");
  3850. SERIAL_PROTOCOL_F(100 * (1 + (PtA * (raw/OVERSAMPLENR)) + (PtB * sq((raw/OVERSAMPLENR)))), 5);
  3851. SERIAL_PROTOCOLPGM(" Rx");
  3852. SERIAL_PROTOCOL(cur_extruder);
  3853. SERIAL_PROTOCOLPGM("->");
  3854. SERIAL_PROTOCOL_F(raw, 5);
  3855. }}
  3856. #endif
  3857. SERIAL_PROTOCOLLN("");
  3858. KEEPALIVE_STATE(NOT_BUSY);
  3859. return;
  3860. break;
  3861. case 109:
  3862. {// M109 - Wait for extruder heater to reach target.
  3863. if(setTargetedHotend(109)){
  3864. break;
  3865. }
  3866. LCD_MESSAGERPGM(MSG_HEATING);
  3867. heating_status = 1;
  3868. if (farm_mode) { prusa_statistics(1); };
  3869. #ifdef AUTOTEMP
  3870. autotemp_enabled=false;
  3871. #endif
  3872. if (code_seen('S')) {
  3873. setTargetHotend(code_value(), tmp_extruder);
  3874. CooldownNoWait = true;
  3875. } else if (code_seen('R')) {
  3876. setTargetHotend(code_value(), tmp_extruder);
  3877. CooldownNoWait = false;
  3878. }
  3879. #ifdef AUTOTEMP
  3880. if (code_seen('S')) autotemp_min=code_value();
  3881. if (code_seen('B')) autotemp_max=code_value();
  3882. if (code_seen('F'))
  3883. {
  3884. autotemp_factor=code_value();
  3885. autotemp_enabled=true;
  3886. }
  3887. #endif
  3888. setWatch();
  3889. codenum = millis();
  3890. /* See if we are heating up or cooling down */
  3891. target_direction = isHeatingHotend(tmp_extruder); // true if heating, false if cooling
  3892. KEEPALIVE_STATE(NOT_BUSY);
  3893. cancel_heatup = false;
  3894. wait_for_heater(codenum); //loops until target temperature is reached
  3895. LCD_MESSAGERPGM(MSG_HEATING_COMPLETE);
  3896. KEEPALIVE_STATE(IN_HANDLER);
  3897. heating_status = 2;
  3898. if (farm_mode) { prusa_statistics(2); };
  3899. //starttime=millis();
  3900. previous_millis_cmd = millis();
  3901. }
  3902. break;
  3903. case 190: // M190 - Wait for bed heater to reach target.
  3904. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  3905. LCD_MESSAGERPGM(MSG_BED_HEATING);
  3906. heating_status = 3;
  3907. if (farm_mode) { prusa_statistics(1); };
  3908. if (code_seen('S'))
  3909. {
  3910. setTargetBed(code_value());
  3911. CooldownNoWait = true;
  3912. }
  3913. else if (code_seen('R'))
  3914. {
  3915. setTargetBed(code_value());
  3916. CooldownNoWait = false;
  3917. }
  3918. codenum = millis();
  3919. cancel_heatup = false;
  3920. target_direction = isHeatingBed(); // true if heating, false if cooling
  3921. KEEPALIVE_STATE(NOT_BUSY);
  3922. while ( (target_direction)&&(!cancel_heatup) ? (isHeatingBed()) : (isCoolingBed()&&(CooldownNoWait==false)) )
  3923. {
  3924. if(( millis() - codenum) > 1000 ) //Print Temp Reading every 1 second while heating up.
  3925. {
  3926. if (!farm_mode) {
  3927. float tt = degHotend(active_extruder);
  3928. SERIAL_PROTOCOLPGM("T:");
  3929. SERIAL_PROTOCOL(tt);
  3930. SERIAL_PROTOCOLPGM(" E:");
  3931. SERIAL_PROTOCOL((int)active_extruder);
  3932. SERIAL_PROTOCOLPGM(" B:");
  3933. SERIAL_PROTOCOL_F(degBed(), 1);
  3934. SERIAL_PROTOCOLLN("");
  3935. }
  3936. codenum = millis();
  3937. }
  3938. manage_heater();
  3939. manage_inactivity();
  3940. lcd_update();
  3941. }
  3942. LCD_MESSAGERPGM(MSG_BED_DONE);
  3943. KEEPALIVE_STATE(IN_HANDLER);
  3944. heating_status = 4;
  3945. previous_millis_cmd = millis();
  3946. #endif
  3947. break;
  3948. #if defined(FAN_PIN) && FAN_PIN > -1
  3949. case 106: //M106 Fan On
  3950. if (code_seen('S')){
  3951. fanSpeed=constrain(code_value(),0,255);
  3952. }
  3953. else {
  3954. fanSpeed=255;
  3955. }
  3956. break;
  3957. case 107: //M107 Fan Off
  3958. fanSpeed = 0;
  3959. break;
  3960. #endif //FAN_PIN
  3961. #if defined(PS_ON_PIN) && PS_ON_PIN > -1
  3962. case 80: // M80 - Turn on Power Supply
  3963. SET_OUTPUT(PS_ON_PIN); //GND
  3964. WRITE(PS_ON_PIN, PS_ON_AWAKE);
  3965. // If you have a switch on suicide pin, this is useful
  3966. // if you want to start another print with suicide feature after
  3967. // a print without suicide...
  3968. #if defined SUICIDE_PIN && SUICIDE_PIN > -1
  3969. SET_OUTPUT(SUICIDE_PIN);
  3970. WRITE(SUICIDE_PIN, HIGH);
  3971. #endif
  3972. #ifdef ULTIPANEL
  3973. powersupply = true;
  3974. LCD_MESSAGERPGM(WELCOME_MSG);
  3975. lcd_update();
  3976. #endif
  3977. break;
  3978. #endif
  3979. case 81: // M81 - Turn off Power Supply
  3980. disable_heater();
  3981. st_synchronize();
  3982. disable_e0();
  3983. disable_e1();
  3984. disable_e2();
  3985. finishAndDisableSteppers();
  3986. fanSpeed = 0;
  3987. delay(1000); // Wait a little before to switch off
  3988. #if defined(SUICIDE_PIN) && SUICIDE_PIN > -1
  3989. st_synchronize();
  3990. suicide();
  3991. #elif defined(PS_ON_PIN) && PS_ON_PIN > -1
  3992. SET_OUTPUT(PS_ON_PIN);
  3993. WRITE(PS_ON_PIN, PS_ON_ASLEEP);
  3994. #endif
  3995. #ifdef ULTIPANEL
  3996. powersupply = false;
  3997. LCD_MESSAGERPGM(CAT4(CUSTOM_MENDEL_NAME,PSTR(" "),MSG_OFF,PSTR("."))); //!!
  3998. /*
  3999. MACHNAME = "Prusa i3"
  4000. MSGOFF = "Vypnuto"
  4001. "Prusai3"" ""vypnuto""."
  4002. "Prusa i3"" "MSG_ALL[lang_selected][50]"."
  4003. */
  4004. lcd_update();
  4005. #endif
  4006. break;
  4007. case 82:
  4008. axis_relative_modes[3] = false;
  4009. break;
  4010. case 83:
  4011. axis_relative_modes[3] = true;
  4012. break;
  4013. case 18: //compatibility
  4014. case 84: // M84
  4015. if(code_seen('S')){
  4016. stepper_inactive_time = code_value() * 1000;
  4017. }
  4018. else
  4019. {
  4020. bool all_axis = !((code_seen(axis_codes[X_AXIS])) || (code_seen(axis_codes[Y_AXIS])) || (code_seen(axis_codes[Z_AXIS]))|| (code_seen(axis_codes[E_AXIS])));
  4021. if(all_axis)
  4022. {
  4023. st_synchronize();
  4024. disable_e0();
  4025. disable_e1();
  4026. disable_e2();
  4027. finishAndDisableSteppers();
  4028. }
  4029. else
  4030. {
  4031. st_synchronize();
  4032. if (code_seen('X')) disable_x();
  4033. if (code_seen('Y')) disable_y();
  4034. if (code_seen('Z')) disable_z();
  4035. #if ((E0_ENABLE_PIN != X_ENABLE_PIN) && (E1_ENABLE_PIN != Y_ENABLE_PIN)) // Only enable on boards that have seperate ENABLE_PINS
  4036. if (code_seen('E')) {
  4037. disable_e0();
  4038. disable_e1();
  4039. disable_e2();
  4040. }
  4041. #endif
  4042. }
  4043. }
  4044. snmm_filaments_used = 0;
  4045. break;
  4046. case 85: // M85
  4047. if(code_seen('S')) {
  4048. max_inactive_time = code_value() * 1000;
  4049. }
  4050. break;
  4051. case 92: // M92
  4052. for(int8_t i=0; i < NUM_AXIS; i++)
  4053. {
  4054. if(code_seen(axis_codes[i]))
  4055. {
  4056. if(i == 3) { // E
  4057. float value = code_value();
  4058. if(value < 20.0) {
  4059. float factor = axis_steps_per_unit[i] / value; // increase e constants if M92 E14 is given for netfab.
  4060. max_jerk[E_AXIS] *= factor;
  4061. max_feedrate[i] *= factor;
  4062. axis_steps_per_sqr_second[i] *= factor;
  4063. }
  4064. axis_steps_per_unit[i] = value;
  4065. }
  4066. else {
  4067. axis_steps_per_unit[i] = code_value();
  4068. }
  4069. }
  4070. }
  4071. break;
  4072. case 110: // M110 - reset line pos
  4073. if (code_seen('N'))
  4074. gcode_LastN = code_value_long();
  4075. break;
  4076. #ifdef HOST_KEEPALIVE_FEATURE
  4077. case 113: // M113 - Get or set Host Keepalive interval
  4078. if (code_seen('S')) {
  4079. host_keepalive_interval = (uint8_t)code_value_short();
  4080. // NOMORE(host_keepalive_interval, 60);
  4081. }
  4082. else {
  4083. SERIAL_ECHO_START;
  4084. SERIAL_ECHOPAIR("M113 S", (unsigned long)host_keepalive_interval);
  4085. SERIAL_PROTOCOLLN("");
  4086. }
  4087. break;
  4088. #endif
  4089. case 115: // M115
  4090. if (code_seen('V')) {
  4091. // Report the Prusa version number.
  4092. SERIAL_PROTOCOLLNRPGM(FW_VERSION_STR_P());
  4093. } else if (code_seen('U')) {
  4094. // Check the firmware version provided. If the firmware version provided by the U code is higher than the currently running firmware,
  4095. // pause the print and ask the user to upgrade the firmware.
  4096. show_upgrade_dialog_if_version_newer(++ strchr_pointer);
  4097. } else {
  4098. SERIAL_PROTOCOLRPGM(MSG_M115_REPORT);
  4099. }
  4100. break;
  4101. /* case 117: // M117 display message
  4102. starpos = (strchr(strchr_pointer + 5,'*'));
  4103. if(starpos!=NULL)
  4104. *(starpos)='\0';
  4105. lcd_setstatus(strchr_pointer + 5);
  4106. break;*/
  4107. case 114: // M114
  4108. SERIAL_PROTOCOLPGM("X:");
  4109. SERIAL_PROTOCOL(current_position[X_AXIS]);
  4110. SERIAL_PROTOCOLPGM(" Y:");
  4111. SERIAL_PROTOCOL(current_position[Y_AXIS]);
  4112. SERIAL_PROTOCOLPGM(" Z:");
  4113. SERIAL_PROTOCOL(current_position[Z_AXIS]);
  4114. SERIAL_PROTOCOLPGM(" E:");
  4115. SERIAL_PROTOCOL(current_position[E_AXIS]);
  4116. SERIAL_PROTOCOLRPGM(MSG_COUNT_X);
  4117. SERIAL_PROTOCOL(float(st_get_position(X_AXIS))/axis_steps_per_unit[X_AXIS]);
  4118. SERIAL_PROTOCOLPGM(" Y:");
  4119. SERIAL_PROTOCOL(float(st_get_position(Y_AXIS))/axis_steps_per_unit[Y_AXIS]);
  4120. SERIAL_PROTOCOLPGM(" Z:");
  4121. SERIAL_PROTOCOL(float(st_get_position(Z_AXIS))/axis_steps_per_unit[Z_AXIS]);
  4122. SERIAL_PROTOCOLPGM(" E:");
  4123. SERIAL_PROTOCOL(float(st_get_position(E_AXIS))/axis_steps_per_unit[E_AXIS]);
  4124. SERIAL_PROTOCOLLN("");
  4125. break;
  4126. case 120: // M120
  4127. enable_endstops(false) ;
  4128. break;
  4129. case 121: // M121
  4130. enable_endstops(true) ;
  4131. break;
  4132. case 119: // M119
  4133. SERIAL_PROTOCOLRPGM(MSG_M119_REPORT);
  4134. SERIAL_PROTOCOLLN("");
  4135. #if defined(X_MIN_PIN) && X_MIN_PIN > -1
  4136. SERIAL_PROTOCOLRPGM(MSG_X_MIN);
  4137. if(READ(X_MIN_PIN)^X_MIN_ENDSTOP_INVERTING){
  4138. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_HIT);
  4139. }else{
  4140. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_OPEN);
  4141. }
  4142. SERIAL_PROTOCOLLN("");
  4143. #endif
  4144. #if defined(X_MAX_PIN) && X_MAX_PIN > -1
  4145. SERIAL_PROTOCOLRPGM(MSG_X_MAX);
  4146. if(READ(X_MAX_PIN)^X_MAX_ENDSTOP_INVERTING){
  4147. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_HIT);
  4148. }else{
  4149. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_OPEN);
  4150. }
  4151. SERIAL_PROTOCOLLN("");
  4152. #endif
  4153. #if defined(Y_MIN_PIN) && Y_MIN_PIN > -1
  4154. SERIAL_PROTOCOLRPGM(MSG_Y_MIN);
  4155. if(READ(Y_MIN_PIN)^Y_MIN_ENDSTOP_INVERTING){
  4156. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_HIT);
  4157. }else{
  4158. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_OPEN);
  4159. }
  4160. SERIAL_PROTOCOLLN("");
  4161. #endif
  4162. #if defined(Y_MAX_PIN) && Y_MAX_PIN > -1
  4163. SERIAL_PROTOCOLRPGM(MSG_Y_MAX);
  4164. if(READ(Y_MAX_PIN)^Y_MAX_ENDSTOP_INVERTING){
  4165. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_HIT);
  4166. }else{
  4167. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_OPEN);
  4168. }
  4169. SERIAL_PROTOCOLLN("");
  4170. #endif
  4171. #if defined(Z_MIN_PIN) && Z_MIN_PIN > -1
  4172. SERIAL_PROTOCOLRPGM(MSG_Z_MIN);
  4173. if(READ(Z_MIN_PIN)^Z_MIN_ENDSTOP_INVERTING){
  4174. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_HIT);
  4175. }else{
  4176. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_OPEN);
  4177. }
  4178. SERIAL_PROTOCOLLN("");
  4179. #endif
  4180. #if defined(Z_MAX_PIN) && Z_MAX_PIN > -1
  4181. SERIAL_PROTOCOLRPGM(MSG_Z_MAX);
  4182. if(READ(Z_MAX_PIN)^Z_MAX_ENDSTOP_INVERTING){
  4183. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_HIT);
  4184. }else{
  4185. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_OPEN);
  4186. }
  4187. SERIAL_PROTOCOLLN("");
  4188. #endif
  4189. break;
  4190. //TODO: update for all axis, use for loop
  4191. #ifdef BLINKM
  4192. case 150: // M150
  4193. {
  4194. byte red;
  4195. byte grn;
  4196. byte blu;
  4197. if(code_seen('R')) red = code_value();
  4198. if(code_seen('U')) grn = code_value();
  4199. if(code_seen('B')) blu = code_value();
  4200. SendColors(red,grn,blu);
  4201. }
  4202. break;
  4203. #endif //BLINKM
  4204. case 200: // M200 D<millimeters> set filament diameter and set E axis units to cubic millimeters (use S0 to set back to millimeters).
  4205. {
  4206. tmp_extruder = active_extruder;
  4207. if(code_seen('T')) {
  4208. tmp_extruder = code_value();
  4209. if(tmp_extruder >= EXTRUDERS) {
  4210. SERIAL_ECHO_START;
  4211. SERIAL_ECHO(MSG_M200_INVALID_EXTRUDER);
  4212. break;
  4213. }
  4214. }
  4215. float area = .0;
  4216. if(code_seen('D')) {
  4217. float diameter = (float)code_value();
  4218. if (diameter == 0.0) {
  4219. // setting any extruder filament size disables volumetric on the assumption that
  4220. // slicers either generate in extruder values as cubic mm or as as filament feeds
  4221. // for all extruders
  4222. volumetric_enabled = false;
  4223. } else {
  4224. filament_size[tmp_extruder] = (float)code_value();
  4225. // make sure all extruders have some sane value for the filament size
  4226. filament_size[0] = (filament_size[0] == 0.0 ? DEFAULT_NOMINAL_FILAMENT_DIA : filament_size[0]);
  4227. #if EXTRUDERS > 1
  4228. filament_size[1] = (filament_size[1] == 0.0 ? DEFAULT_NOMINAL_FILAMENT_DIA : filament_size[1]);
  4229. #if EXTRUDERS > 2
  4230. filament_size[2] = (filament_size[2] == 0.0 ? DEFAULT_NOMINAL_FILAMENT_DIA : filament_size[2]);
  4231. #endif
  4232. #endif
  4233. volumetric_enabled = true;
  4234. }
  4235. } else {
  4236. //reserved for setting filament diameter via UFID or filament measuring device
  4237. break;
  4238. }
  4239. calculate_volumetric_multipliers();
  4240. }
  4241. break;
  4242. case 201: // M201
  4243. for(int8_t i=0; i < NUM_AXIS; i++)
  4244. {
  4245. if(code_seen(axis_codes[i]))
  4246. {
  4247. max_acceleration_units_per_sq_second[i] = code_value();
  4248. }
  4249. }
  4250. // steps per sq second need to be updated to agree with the units per sq second (as they are what is used in the planner)
  4251. reset_acceleration_rates();
  4252. break;
  4253. #if 0 // Not used for Sprinter/grbl gen6
  4254. case 202: // M202
  4255. for(int8_t i=0; i < NUM_AXIS; i++) {
  4256. if(code_seen(axis_codes[i])) axis_travel_steps_per_sqr_second[i] = code_value() * axis_steps_per_unit[i];
  4257. }
  4258. break;
  4259. #endif
  4260. case 203: // M203 max feedrate mm/sec
  4261. for(int8_t i=0; i < NUM_AXIS; i++) {
  4262. if(code_seen(axis_codes[i])) max_feedrate[i] = code_value();
  4263. }
  4264. break;
  4265. case 204: // M204 acclereration S normal moves T filmanent only moves
  4266. {
  4267. if(code_seen('S')) acceleration = code_value() ;
  4268. if(code_seen('T')) retract_acceleration = code_value() ;
  4269. }
  4270. break;
  4271. case 205: //M205 advanced settings: minimum travel speed S=while printing T=travel only, B=minimum segment time X= maximum xy jerk, Z=maximum Z jerk
  4272. {
  4273. if(code_seen('S')) minimumfeedrate = code_value();
  4274. if(code_seen('T')) mintravelfeedrate = code_value();
  4275. if(code_seen('B')) minsegmenttime = code_value() ;
  4276. if(code_seen('X')) max_jerk[X_AXIS] = max_jerk[Y_AXIS] = code_value();
  4277. if(code_seen('Y')) max_jerk[Y_AXIS] = code_value();
  4278. if(code_seen('Z')) max_jerk[Z_AXIS] = code_value();
  4279. if(code_seen('E')) max_jerk[E_AXIS] = code_value();
  4280. if (max_jerk[X_AXIS] > DEFAULT_XJERK) max_jerk[X_AXIS] = DEFAULT_XJERK;
  4281. if (max_jerk[Y_AXIS] > DEFAULT_YJERK) max_jerk[Y_AXIS] = DEFAULT_YJERK;
  4282. }
  4283. break;
  4284. case 206: // M206 additional homing offset
  4285. for(int8_t i=0; i < 3; i++)
  4286. {
  4287. if(code_seen(axis_codes[i])) add_homing[i] = code_value();
  4288. }
  4289. break;
  4290. #ifdef FWRETRACT
  4291. case 207: //M207 - set retract length S[positive mm] F[feedrate mm/min] Z[additional zlift/hop]
  4292. {
  4293. if(code_seen('S'))
  4294. {
  4295. retract_length = code_value() ;
  4296. }
  4297. if(code_seen('F'))
  4298. {
  4299. retract_feedrate = code_value()/60 ;
  4300. }
  4301. if(code_seen('Z'))
  4302. {
  4303. retract_zlift = code_value() ;
  4304. }
  4305. }break;
  4306. case 208: // M208 - set retract recover length S[positive mm surplus to the M207 S*] F[feedrate mm/min]
  4307. {
  4308. if(code_seen('S'))
  4309. {
  4310. retract_recover_length = code_value() ;
  4311. }
  4312. if(code_seen('F'))
  4313. {
  4314. retract_recover_feedrate = code_value()/60 ;
  4315. }
  4316. }break;
  4317. case 209: // M209 - S<1=true/0=false> enable automatic retract detect if the slicer did not support G10/11: every normal extrude-only move will be classified as retract depending on the direction.
  4318. {
  4319. if(code_seen('S'))
  4320. {
  4321. int t= code_value() ;
  4322. switch(t)
  4323. {
  4324. case 0:
  4325. {
  4326. autoretract_enabled=false;
  4327. retracted[0]=false;
  4328. #if EXTRUDERS > 1
  4329. retracted[1]=false;
  4330. #endif
  4331. #if EXTRUDERS > 2
  4332. retracted[2]=false;
  4333. #endif
  4334. }break;
  4335. case 1:
  4336. {
  4337. autoretract_enabled=true;
  4338. retracted[0]=false;
  4339. #if EXTRUDERS > 1
  4340. retracted[1]=false;
  4341. #endif
  4342. #if EXTRUDERS > 2
  4343. retracted[2]=false;
  4344. #endif
  4345. }break;
  4346. default:
  4347. SERIAL_ECHO_START;
  4348. SERIAL_ECHORPGM(MSG_UNKNOWN_COMMAND);
  4349. SERIAL_ECHO(CMDBUFFER_CURRENT_STRING);
  4350. SERIAL_ECHOLNPGM("\"(1)");
  4351. }
  4352. }
  4353. }break;
  4354. #endif // FWRETRACT
  4355. #if EXTRUDERS > 1
  4356. case 218: // M218 - set hotend offset (in mm), T<extruder_number> X<offset_on_X> Y<offset_on_Y>
  4357. {
  4358. if(setTargetedHotend(218)){
  4359. break;
  4360. }
  4361. if(code_seen('X'))
  4362. {
  4363. extruder_offset[X_AXIS][tmp_extruder] = code_value();
  4364. }
  4365. if(code_seen('Y'))
  4366. {
  4367. extruder_offset[Y_AXIS][tmp_extruder] = code_value();
  4368. }
  4369. SERIAL_ECHO_START;
  4370. SERIAL_ECHORPGM(MSG_HOTEND_OFFSET);
  4371. for(tmp_extruder = 0; tmp_extruder < EXTRUDERS; tmp_extruder++)
  4372. {
  4373. SERIAL_ECHO(" ");
  4374. SERIAL_ECHO(extruder_offset[X_AXIS][tmp_extruder]);
  4375. SERIAL_ECHO(",");
  4376. SERIAL_ECHO(extruder_offset[Y_AXIS][tmp_extruder]);
  4377. }
  4378. SERIAL_ECHOLN("");
  4379. }break;
  4380. #endif
  4381. case 220: // M220 S<factor in percent>- set speed factor override percentage
  4382. {
  4383. if(code_seen('S'))
  4384. {
  4385. feedmultiply = code_value() ;
  4386. }
  4387. }
  4388. break;
  4389. case 221: // M221 S<factor in percent>- set extrude factor override percentage
  4390. {
  4391. if(code_seen('S'))
  4392. {
  4393. int tmp_code = code_value();
  4394. if (code_seen('T'))
  4395. {
  4396. if(setTargetedHotend(221)){
  4397. break;
  4398. }
  4399. extruder_multiply[tmp_extruder] = tmp_code;
  4400. }
  4401. else
  4402. {
  4403. extrudemultiply = tmp_code ;
  4404. }
  4405. }
  4406. }
  4407. break;
  4408. #ifndef _DISABLE_M42_M226
  4409. case 226: // M226 P<pin number> S<pin state>- Wait until the specified pin reaches the state required
  4410. {
  4411. if(code_seen('P')){
  4412. int pin_number = code_value(); // pin number
  4413. int pin_state = -1; // required pin state - default is inverted
  4414. if(code_seen('S')) pin_state = code_value(); // required pin state
  4415. if(pin_state >= -1 && pin_state <= 1){
  4416. for(int8_t i = 0; i < (int8_t)(sizeof(sensitive_pins)/sizeof(int)); i++)
  4417. {
  4418. if (sensitive_pins[i] == pin_number)
  4419. {
  4420. pin_number = -1;
  4421. break;
  4422. }
  4423. }
  4424. if (pin_number > -1)
  4425. {
  4426. int target = LOW;
  4427. st_synchronize();
  4428. pinMode(pin_number, INPUT);
  4429. switch(pin_state){
  4430. case 1:
  4431. target = HIGH;
  4432. break;
  4433. case 0:
  4434. target = LOW;
  4435. break;
  4436. case -1:
  4437. target = !digitalRead(pin_number);
  4438. break;
  4439. }
  4440. while(digitalRead(pin_number) != target){
  4441. manage_heater();
  4442. manage_inactivity();
  4443. lcd_update();
  4444. }
  4445. }
  4446. }
  4447. }
  4448. }
  4449. break;
  4450. #endif //_DISABLE_M42_M226
  4451. #if NUM_SERVOS > 0
  4452. case 280: // M280 - set servo position absolute. P: servo index, S: angle or microseconds
  4453. {
  4454. int servo_index = -1;
  4455. int servo_position = 0;
  4456. if (code_seen('P'))
  4457. servo_index = code_value();
  4458. if (code_seen('S')) {
  4459. servo_position = code_value();
  4460. if ((servo_index >= 0) && (servo_index < NUM_SERVOS)) {
  4461. #if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
  4462. servos[servo_index].attach(0);
  4463. #endif
  4464. servos[servo_index].write(servo_position);
  4465. #if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
  4466. delay(PROBE_SERVO_DEACTIVATION_DELAY);
  4467. servos[servo_index].detach();
  4468. #endif
  4469. }
  4470. else {
  4471. SERIAL_ECHO_START;
  4472. SERIAL_ECHO("Servo ");
  4473. SERIAL_ECHO(servo_index);
  4474. SERIAL_ECHOLN(" out of range");
  4475. }
  4476. }
  4477. else if (servo_index >= 0) {
  4478. SERIAL_PROTOCOL(MSG_OK);
  4479. SERIAL_PROTOCOL(" Servo ");
  4480. SERIAL_PROTOCOL(servo_index);
  4481. SERIAL_PROTOCOL(": ");
  4482. SERIAL_PROTOCOL(servos[servo_index].read());
  4483. SERIAL_PROTOCOLLN("");
  4484. }
  4485. }
  4486. break;
  4487. #endif // NUM_SERVOS > 0
  4488. #if (LARGE_FLASH == true && ( BEEPER > 0 || defined(ULTRALCD) || defined(LCD_USE_I2C_BUZZER)))
  4489. case 300: // M300
  4490. {
  4491. int beepS = code_seen('S') ? code_value() : 110;
  4492. int beepP = code_seen('P') ? code_value() : 1000;
  4493. if (beepS > 0)
  4494. {
  4495. #if BEEPER > 0
  4496. tone(BEEPER, beepS);
  4497. delay(beepP);
  4498. noTone(BEEPER);
  4499. #elif defined(ULTRALCD)
  4500. lcd_buzz(beepS, beepP);
  4501. #elif defined(LCD_USE_I2C_BUZZER)
  4502. lcd_buzz(beepP, beepS);
  4503. #endif
  4504. }
  4505. else
  4506. {
  4507. delay(beepP);
  4508. }
  4509. }
  4510. break;
  4511. #endif // M300
  4512. #ifdef PIDTEMP
  4513. case 301: // M301
  4514. {
  4515. if(code_seen('P')) Kp = code_value();
  4516. if(code_seen('I')) Ki = scalePID_i(code_value());
  4517. if(code_seen('D')) Kd = scalePID_d(code_value());
  4518. #ifdef PID_ADD_EXTRUSION_RATE
  4519. if(code_seen('C')) Kc = code_value();
  4520. #endif
  4521. updatePID();
  4522. SERIAL_PROTOCOLRPGM(MSG_OK);
  4523. SERIAL_PROTOCOL(" p:");
  4524. SERIAL_PROTOCOL(Kp);
  4525. SERIAL_PROTOCOL(" i:");
  4526. SERIAL_PROTOCOL(unscalePID_i(Ki));
  4527. SERIAL_PROTOCOL(" d:");
  4528. SERIAL_PROTOCOL(unscalePID_d(Kd));
  4529. #ifdef PID_ADD_EXTRUSION_RATE
  4530. SERIAL_PROTOCOL(" c:");
  4531. //Kc does not have scaling applied above, or in resetting defaults
  4532. SERIAL_PROTOCOL(Kc);
  4533. #endif
  4534. SERIAL_PROTOCOLLN("");
  4535. }
  4536. break;
  4537. #endif //PIDTEMP
  4538. #ifdef PIDTEMPBED
  4539. case 304: // M304
  4540. {
  4541. if(code_seen('P')) bedKp = code_value();
  4542. if(code_seen('I')) bedKi = scalePID_i(code_value());
  4543. if(code_seen('D')) bedKd = scalePID_d(code_value());
  4544. updatePID();
  4545. SERIAL_PROTOCOLRPGM(MSG_OK);
  4546. SERIAL_PROTOCOL(" p:");
  4547. SERIAL_PROTOCOL(bedKp);
  4548. SERIAL_PROTOCOL(" i:");
  4549. SERIAL_PROTOCOL(unscalePID_i(bedKi));
  4550. SERIAL_PROTOCOL(" d:");
  4551. SERIAL_PROTOCOL(unscalePID_d(bedKd));
  4552. SERIAL_PROTOCOLLN("");
  4553. }
  4554. break;
  4555. #endif //PIDTEMP
  4556. case 240: // M240 Triggers a camera by emulating a Canon RC-1 : http://www.doc-diy.net/photo/rc-1_hacked/
  4557. {
  4558. #ifdef CHDK
  4559. SET_OUTPUT(CHDK);
  4560. WRITE(CHDK, HIGH);
  4561. chdkHigh = millis();
  4562. chdkActive = true;
  4563. #else
  4564. #if defined(PHOTOGRAPH_PIN) && PHOTOGRAPH_PIN > -1
  4565. const uint8_t NUM_PULSES=16;
  4566. const float PULSE_LENGTH=0.01524;
  4567. for(int i=0; i < NUM_PULSES; i++) {
  4568. WRITE(PHOTOGRAPH_PIN, HIGH);
  4569. _delay_ms(PULSE_LENGTH);
  4570. WRITE(PHOTOGRAPH_PIN, LOW);
  4571. _delay_ms(PULSE_LENGTH);
  4572. }
  4573. delay(7.33);
  4574. for(int i=0; i < NUM_PULSES; i++) {
  4575. WRITE(PHOTOGRAPH_PIN, HIGH);
  4576. _delay_ms(PULSE_LENGTH);
  4577. WRITE(PHOTOGRAPH_PIN, LOW);
  4578. _delay_ms(PULSE_LENGTH);
  4579. }
  4580. #endif
  4581. #endif //chdk end if
  4582. }
  4583. break;
  4584. #ifdef DOGLCD
  4585. case 250: // M250 Set LCD contrast value: C<value> (value 0..63)
  4586. {
  4587. if (code_seen('C')) {
  4588. lcd_setcontrast( ((int)code_value())&63 );
  4589. }
  4590. SERIAL_PROTOCOLPGM("lcd contrast value: ");
  4591. SERIAL_PROTOCOL(lcd_contrast);
  4592. SERIAL_PROTOCOLLN("");
  4593. }
  4594. break;
  4595. #endif
  4596. #ifdef PREVENT_DANGEROUS_EXTRUDE
  4597. case 302: // allow cold extrudes, or set the minimum extrude temperature
  4598. {
  4599. float temp = .0;
  4600. if (code_seen('S')) temp=code_value();
  4601. set_extrude_min_temp(temp);
  4602. }
  4603. break;
  4604. #endif
  4605. case 303: // M303 PID autotune
  4606. {
  4607. float temp = 150.0;
  4608. int e=0;
  4609. int c=5;
  4610. if (code_seen('E')) e=code_value();
  4611. if (e<0)
  4612. temp=70;
  4613. if (code_seen('S')) temp=code_value();
  4614. if (code_seen('C')) c=code_value();
  4615. PID_autotune(temp, e, c);
  4616. }
  4617. break;
  4618. case 400: // M400 finish all moves
  4619. {
  4620. st_synchronize();
  4621. }
  4622. break;
  4623. #ifdef FILAMENT_SENSOR
  4624. case 404: //M404 Enter the nominal filament width (3mm, 1.75mm ) N<3.0> or display nominal filament width
  4625. {
  4626. #if (FILWIDTH_PIN > -1)
  4627. if(code_seen('N')) filament_width_nominal=code_value();
  4628. else{
  4629. SERIAL_PROTOCOLPGM("Filament dia (nominal mm):");
  4630. SERIAL_PROTOCOLLN(filament_width_nominal);
  4631. }
  4632. #endif
  4633. }
  4634. break;
  4635. case 405: //M405 Turn on filament sensor for control
  4636. {
  4637. if(code_seen('D')) meas_delay_cm=code_value();
  4638. if(meas_delay_cm> MAX_MEASUREMENT_DELAY)
  4639. meas_delay_cm = MAX_MEASUREMENT_DELAY;
  4640. if(delay_index2 == -1) //initialize the ring buffer if it has not been done since startup
  4641. {
  4642. int temp_ratio = widthFil_to_size_ratio();
  4643. for (delay_index1=0; delay_index1<(MAX_MEASUREMENT_DELAY+1); ++delay_index1 ){
  4644. measurement_delay[delay_index1]=temp_ratio-100; //subtract 100 to scale within a signed byte
  4645. }
  4646. delay_index1=0;
  4647. delay_index2=0;
  4648. }
  4649. filament_sensor = true ;
  4650. //SERIAL_PROTOCOLPGM("Filament dia (measured mm):");
  4651. //SERIAL_PROTOCOL(filament_width_meas);
  4652. //SERIAL_PROTOCOLPGM("Extrusion ratio(%):");
  4653. //SERIAL_PROTOCOL(extrudemultiply);
  4654. }
  4655. break;
  4656. case 406: //M406 Turn off filament sensor for control
  4657. {
  4658. filament_sensor = false ;
  4659. }
  4660. break;
  4661. case 407: //M407 Display measured filament diameter
  4662. {
  4663. SERIAL_PROTOCOLPGM("Filament dia (measured mm):");
  4664. SERIAL_PROTOCOLLN(filament_width_meas);
  4665. }
  4666. break;
  4667. #endif
  4668. case 500: // M500 Store settings in EEPROM
  4669. {
  4670. Config_StoreSettings(EEPROM_OFFSET);
  4671. }
  4672. break;
  4673. case 501: // M501 Read settings from EEPROM
  4674. {
  4675. Config_RetrieveSettings(EEPROM_OFFSET);
  4676. }
  4677. break;
  4678. case 502: // M502 Revert to default settings
  4679. {
  4680. Config_ResetDefault();
  4681. }
  4682. break;
  4683. case 503: // M503 print settings currently in memory
  4684. {
  4685. Config_PrintSettings();
  4686. }
  4687. break;
  4688. case 509: //M509 Force language selection
  4689. {
  4690. lcd_force_language_selection();
  4691. SERIAL_ECHO_START;
  4692. SERIAL_PROTOCOLPGM(("LANG SEL FORCED"));
  4693. }
  4694. break;
  4695. #ifdef ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED
  4696. case 540:
  4697. {
  4698. if(code_seen('S')) abort_on_endstop_hit = code_value() > 0;
  4699. }
  4700. break;
  4701. #endif
  4702. #ifdef CUSTOM_M_CODE_SET_Z_PROBE_OFFSET
  4703. case CUSTOM_M_CODE_SET_Z_PROBE_OFFSET:
  4704. {
  4705. float value;
  4706. if (code_seen('Z'))
  4707. {
  4708. value = code_value();
  4709. if ((Z_PROBE_OFFSET_RANGE_MIN <= value) && (value <= Z_PROBE_OFFSET_RANGE_MAX))
  4710. {
  4711. zprobe_zoffset = -value; // compare w/ line 278 of ConfigurationStore.cpp
  4712. SERIAL_ECHO_START;
  4713. SERIAL_ECHOLNRPGM(CAT4(MSG_ZPROBE_ZOFFSET, " ", MSG_OK,PSTR("")));
  4714. SERIAL_PROTOCOLLN("");
  4715. }
  4716. else
  4717. {
  4718. SERIAL_ECHO_START;
  4719. SERIAL_ECHORPGM(MSG_ZPROBE_ZOFFSET);
  4720. SERIAL_ECHORPGM(MSG_Z_MIN);
  4721. SERIAL_ECHO(Z_PROBE_OFFSET_RANGE_MIN);
  4722. SERIAL_ECHORPGM(MSG_Z_MAX);
  4723. SERIAL_ECHO(Z_PROBE_OFFSET_RANGE_MAX);
  4724. SERIAL_PROTOCOLLN("");
  4725. }
  4726. }
  4727. else
  4728. {
  4729. SERIAL_ECHO_START;
  4730. SERIAL_ECHOLNRPGM(CAT2(MSG_ZPROBE_ZOFFSET, PSTR(" : ")));
  4731. SERIAL_ECHO(-zprobe_zoffset);
  4732. SERIAL_PROTOCOLLN("");
  4733. }
  4734. break;
  4735. }
  4736. #endif // CUSTOM_M_CODE_SET_Z_PROBE_OFFSET
  4737. #ifdef FILAMENTCHANGEENABLE
  4738. case 600: //Pause for filament change X[pos] Y[pos] Z[relative lift] E[initial retract] L[later retract distance for removal]
  4739. {
  4740. bool old_fsensor_enabled = fsensor_enabled;
  4741. fsensor_enabled = false; //temporary solution for unexpected restarting
  4742. st_synchronize();
  4743. float target[4];
  4744. float lastpos[4];
  4745. if (farm_mode)
  4746. {
  4747. prusa_statistics(22);
  4748. }
  4749. feedmultiplyBckp=feedmultiply;
  4750. int8_t TooLowZ = 0;
  4751. float HotendTempBckp = degTargetHotend(active_extruder);
  4752. int fanSpeedBckp = fanSpeed;
  4753. target[X_AXIS]=current_position[X_AXIS];
  4754. target[Y_AXIS]=current_position[Y_AXIS];
  4755. target[Z_AXIS]=current_position[Z_AXIS];
  4756. target[E_AXIS]=current_position[E_AXIS];
  4757. lastpos[X_AXIS]=current_position[X_AXIS];
  4758. lastpos[Y_AXIS]=current_position[Y_AXIS];
  4759. lastpos[Z_AXIS]=current_position[Z_AXIS];
  4760. lastpos[E_AXIS]=current_position[E_AXIS];
  4761. //Restract extruder
  4762. if(code_seen('E'))
  4763. {
  4764. target[E_AXIS]+= code_value();
  4765. }
  4766. else
  4767. {
  4768. #ifdef FILAMENTCHANGE_FIRSTRETRACT
  4769. target[E_AXIS]+= FILAMENTCHANGE_FIRSTRETRACT ;
  4770. #endif
  4771. }
  4772. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_RFEED, active_extruder);
  4773. //Lift Z
  4774. if(code_seen('Z'))
  4775. {
  4776. target[Z_AXIS]+= code_value();
  4777. }
  4778. else
  4779. {
  4780. #ifdef FILAMENTCHANGE_ZADD
  4781. target[Z_AXIS]+= FILAMENTCHANGE_ZADD ;
  4782. if(target[Z_AXIS] < 10){
  4783. target[Z_AXIS]+= 10 ;
  4784. TooLowZ = 1;
  4785. }else{
  4786. TooLowZ = 0;
  4787. }
  4788. #endif
  4789. }
  4790. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_ZFEED, active_extruder);
  4791. //Move XY to side
  4792. if(code_seen('X'))
  4793. {
  4794. target[X_AXIS]+= code_value();
  4795. }
  4796. else
  4797. {
  4798. #ifdef FILAMENTCHANGE_XPOS
  4799. target[X_AXIS]= FILAMENTCHANGE_XPOS ;
  4800. #endif
  4801. }
  4802. if(code_seen('Y'))
  4803. {
  4804. target[Y_AXIS]= code_value();
  4805. }
  4806. else
  4807. {
  4808. #ifdef FILAMENTCHANGE_YPOS
  4809. target[Y_AXIS]= FILAMENTCHANGE_YPOS ;
  4810. #endif
  4811. }
  4812. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_XYFEED, active_extruder);
  4813. st_synchronize();
  4814. KEEPALIVE_STATE(PAUSED_FOR_USER);
  4815. uint8_t cnt = 0;
  4816. int counterBeep = 0;
  4817. fanSpeed = 0;
  4818. unsigned long waiting_start_time = millis();
  4819. uint8_t wait_for_user_state = 0;
  4820. lcd_display_message_fullscreen_P(MSG_PRESS_TO_UNLOAD);
  4821. while (!(wait_for_user_state == 0 && lcd_clicked())){
  4822. //cnt++;
  4823. manage_heater();
  4824. manage_inactivity(true);
  4825. /*#ifdef SNMM
  4826. target[E_AXIS] += 0.002;
  4827. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 500, active_extruder);
  4828. #endif // SNMM*/
  4829. //if (cnt == 0)
  4830. {
  4831. #if BEEPER > 0
  4832. if (counterBeep == 500) {
  4833. counterBeep = 0;
  4834. }
  4835. SET_OUTPUT(BEEPER);
  4836. if (counterBeep == 0) {
  4837. WRITE(BEEPER, HIGH);
  4838. }
  4839. if (counterBeep == 20) {
  4840. WRITE(BEEPER, LOW);
  4841. }
  4842. counterBeep++;
  4843. #else
  4844. #if !defined(LCD_FEEDBACK_FREQUENCY_HZ) || !defined(LCD_FEEDBACK_FREQUENCY_DURATION_MS)
  4845. lcd_buzz(1000 / 6, 100);
  4846. #else
  4847. lcd_buzz(LCD_FEEDBACK_FREQUENCY_DURATION_MS, LCD_FEEDBACK_FREQUENCY_HZ);
  4848. #endif
  4849. #endif
  4850. }
  4851. switch (wait_for_user_state) {
  4852. case 0:
  4853. delay_keep_alive(4);
  4854. if (millis() > waiting_start_time + (unsigned long)M600_TIMEOUT * 1000) {
  4855. lcd_display_message_fullscreen_P(MSG_PRESS_TO_PREHEAT);
  4856. wait_for_user_state = 1;
  4857. setTargetHotend(0, 0);
  4858. setTargetHotend(0, 1);
  4859. setTargetHotend(0, 2);
  4860. st_synchronize();
  4861. disable_e0();
  4862. disable_e1();
  4863. disable_e2();
  4864. }
  4865. break;
  4866. case 1:
  4867. delay_keep_alive(4);
  4868. if (lcd_clicked()) {
  4869. setTargetHotend(HotendTempBckp, active_extruder);
  4870. lcd_wait_for_heater();
  4871. wait_for_user_state = 2;
  4872. }
  4873. break;
  4874. case 2:
  4875. if (abs(degTargetHotend(active_extruder) - degHotend(active_extruder)) < 1) {
  4876. lcd_display_message_fullscreen_P(MSG_PRESS_TO_UNLOAD);
  4877. waiting_start_time = millis();
  4878. wait_for_user_state = 0;
  4879. }
  4880. else {
  4881. counterBeep = 20; //beeper will be inactive during waiting for nozzle preheat
  4882. lcd.setCursor(1, 4);
  4883. lcd.print(ftostr3(degHotend(active_extruder)));
  4884. }
  4885. break;
  4886. }
  4887. }
  4888. WRITE(BEEPER, LOW);
  4889. lcd_change_fil_state = 0;
  4890. // Unload filament
  4891. lcd_display_message_fullscreen_P(MSG_UNLOADING_FILAMENT);
  4892. KEEPALIVE_STATE(IN_HANDLER);
  4893. custom_message = true;
  4894. lcd_setstatuspgm(MSG_UNLOADING_FILAMENT);
  4895. if (code_seen('L'))
  4896. {
  4897. target[E_AXIS] += code_value();
  4898. }
  4899. else
  4900. {
  4901. #ifdef SNMM
  4902. #else
  4903. #ifdef FILAMENTCHANGE_FINALRETRACT
  4904. target[E_AXIS] += FILAMENTCHANGE_FINALRETRACT;
  4905. #endif
  4906. #endif // SNMM
  4907. }
  4908. #ifdef SNMM
  4909. target[E_AXIS] += 12;
  4910. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 3500, active_extruder);
  4911. target[E_AXIS] += 6;
  4912. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 5000, active_extruder);
  4913. target[E_AXIS] += (FIL_LOAD_LENGTH * -1);
  4914. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 5000, active_extruder);
  4915. st_synchronize();
  4916. target[E_AXIS] += (FIL_COOLING);
  4917. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 50, active_extruder);
  4918. target[E_AXIS] += (FIL_COOLING*-1);
  4919. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 50, active_extruder);
  4920. target[E_AXIS] += (bowden_length[snmm_extruder] * -1);
  4921. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 3000, active_extruder);
  4922. st_synchronize();
  4923. #else
  4924. // plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_RFEED, active_extruder);
  4925. //plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 3500 / 60, active_extruder);
  4926. target[E_AXIS] -= FILAMENTCHANGE_FINALRETRACT;
  4927. target[E_AXIS] -= 45;
  4928. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 5200 / 60, active_extruder);
  4929. st_synchronize();
  4930. target[E_AXIS] -= 15;
  4931. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 1000 / 60, active_extruder);
  4932. st_synchronize();
  4933. target[E_AXIS] -= 20;
  4934. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 1000 / 60, active_extruder);
  4935. st_synchronize();
  4936. #endif // SNMM
  4937. //finish moves
  4938. st_synchronize();
  4939. lcd_display_message_fullscreen_P(MSG_PULL_OUT_FILAMENT);
  4940. //disable extruder steppers so filament can be removed
  4941. disable_e0();
  4942. disable_e1();
  4943. disable_e2();
  4944. delay(100);
  4945. WRITE(BEEPER, HIGH);
  4946. counterBeep = 0;
  4947. while(!lcd_clicked() && (counterBeep < 50)) {
  4948. if(counterBeep > 5) WRITE(BEEPER, LOW);
  4949. delay_keep_alive(100);
  4950. counterBeep++;
  4951. }
  4952. WRITE(BEEPER, LOW);
  4953. KEEPALIVE_STATE(PAUSED_FOR_USER);
  4954. lcd_change_fil_state = lcd_show_fullscreen_message_yes_no_and_wait_P(MSG_UNLOAD_SUCCESSFULL, false, true);
  4955. if (lcd_change_fil_state == 0) lcd_show_fullscreen_message_and_wait_P(MSG_CHECK_IDLER);
  4956. //lcd_return_to_status();
  4957. lcd_update_enable(true);
  4958. //Wait for user to insert filament
  4959. lcd_wait_interact();
  4960. //load_filament_time = millis();
  4961. KEEPALIVE_STATE(PAUSED_FOR_USER);
  4962. #ifdef PAT9125
  4963. if (filament_autoload_enabled && (old_fsensor_enabled || fsensor_M600)) fsensor_autoload_check_start();
  4964. #endif //PAT9125
  4965. // printf_P(PSTR("M600 PAT9125 filament_autoload_enabled=%d, old_fsensor_enabled=%d, fsensor_M600=%d"), filament_autoload_enabled, old_fsensor_enabled, fsensor_M600);
  4966. while(!lcd_clicked())
  4967. {
  4968. manage_heater();
  4969. manage_inactivity(true);
  4970. #ifdef PAT9125
  4971. if (filament_autoload_enabled && (old_fsensor_enabled || fsensor_M600) && fsensor_check_autoload())
  4972. {
  4973. tone(BEEPER, 1000);
  4974. delay_keep_alive(50);
  4975. noTone(BEEPER);
  4976. break;
  4977. }
  4978. #endif //PAT9125
  4979. /*#ifdef SNMM
  4980. target[E_AXIS] += 0.002;
  4981. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 500, active_extruder);
  4982. #endif // SNMM*/
  4983. }
  4984. #ifdef PAT9125
  4985. if (filament_autoload_enabled && (old_fsensor_enabled || fsensor_M600)) fsensor_autoload_check_stop();
  4986. #endif //PAT9125
  4987. //WRITE(BEEPER, LOW);
  4988. KEEPALIVE_STATE(IN_HANDLER);
  4989. #ifdef SNMM
  4990. display_loading();
  4991. KEEPALIVE_STATE(PAUSED_FOR_USER);
  4992. do {
  4993. target[E_AXIS] += 0.002;
  4994. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 500, active_extruder);
  4995. delay_keep_alive(2);
  4996. } while (!lcd_clicked());
  4997. KEEPALIVE_STATE(IN_HANDLER);
  4998. /*if (millis() - load_filament_time > 2) {
  4999. load_filament_time = millis();
  5000. target[E_AXIS] += 0.001;
  5001. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 1000, active_extruder);
  5002. }*/
  5003. //Filament inserted
  5004. //Feed the filament to the end of nozzle quickly
  5005. st_synchronize();
  5006. target[E_AXIS] += bowden_length[snmm_extruder];
  5007. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 3000, active_extruder);
  5008. target[E_AXIS] += FIL_LOAD_LENGTH - 60;
  5009. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 1400, active_extruder);
  5010. target[E_AXIS] += 40;
  5011. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 400, active_extruder);
  5012. target[E_AXIS] += 10;
  5013. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 50, active_extruder);
  5014. #else
  5015. target[E_AXIS] += FILAMENTCHANGE_FIRSTFEED;
  5016. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_EFEED, active_extruder);
  5017. #endif // SNMM
  5018. //Extrude some filament
  5019. target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  5020. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_EXFEED, active_extruder);
  5021. //Wait for user to check the state
  5022. lcd_change_fil_state = 0;
  5023. lcd_loading_filament();
  5024. tone(BEEPER, 500);
  5025. delay_keep_alive(50);
  5026. noTone(BEEPER);
  5027. while ((lcd_change_fil_state == 0)||(lcd_change_fil_state != 1)){
  5028. lcd_change_fil_state = 0;
  5029. KEEPALIVE_STATE(PAUSED_FOR_USER);
  5030. lcd_alright();
  5031. KEEPALIVE_STATE(IN_HANDLER);
  5032. switch(lcd_change_fil_state){
  5033. // Filament failed to load so load it again
  5034. case 2:
  5035. #ifdef SNMM
  5036. display_loading();
  5037. do {
  5038. target[E_AXIS] += 0.002;
  5039. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 500, active_extruder);
  5040. delay_keep_alive(2);
  5041. } while (!lcd_clicked());
  5042. st_synchronize();
  5043. target[E_AXIS] += bowden_length[snmm_extruder];
  5044. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 3000, active_extruder);
  5045. target[E_AXIS] += FIL_LOAD_LENGTH - 60;
  5046. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 1400, active_extruder);
  5047. target[E_AXIS] += 40;
  5048. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 400, active_extruder);
  5049. target[E_AXIS] += 10;
  5050. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 50, active_extruder);
  5051. #else
  5052. target[E_AXIS]+= FILAMENTCHANGE_FIRSTFEED ;
  5053. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_EFEED, active_extruder);
  5054. #endif
  5055. target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  5056. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_EXFEED, active_extruder);
  5057. lcd_loading_filament();
  5058. break;
  5059. // Filament loaded properly but color is not clear
  5060. case 3:
  5061. target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  5062. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder);
  5063. lcd_loading_color();
  5064. break;
  5065. // Everything good
  5066. default:
  5067. lcd_change_success();
  5068. lcd_update_enable(true);
  5069. break;
  5070. }
  5071. }
  5072. //Not let's go back to print
  5073. fanSpeed = fanSpeedBckp;
  5074. //Feed a little of filament to stabilize pressure
  5075. target[E_AXIS]+= FILAMENTCHANGE_RECFEED;
  5076. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_EXFEED, active_extruder);
  5077. //Retract
  5078. target[E_AXIS]+= FILAMENTCHANGE_FIRSTRETRACT;
  5079. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_RFEED, active_extruder);
  5080. //plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 70, active_extruder); //should do nothing
  5081. //Move XY back
  5082. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_XYFEED, active_extruder);
  5083. //Move Z back
  5084. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_ZFEED, active_extruder);
  5085. target[E_AXIS]= target[E_AXIS] - FILAMENTCHANGE_FIRSTRETRACT;
  5086. //Unretract
  5087. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_RFEED, active_extruder);
  5088. //Set E position to original
  5089. plan_set_e_position(lastpos[E_AXIS]);
  5090. //Recover feed rate
  5091. feedmultiply=feedmultiplyBckp;
  5092. char cmd[9];
  5093. sprintf_P(cmd, PSTR("M220 S%i"), feedmultiplyBckp);
  5094. enquecommand(cmd);
  5095. lcd_setstatuspgm(WELCOME_MSG);
  5096. custom_message = false;
  5097. custom_message_type = 0;
  5098. fsensor_enabled = old_fsensor_enabled; //temporary solution for unexpected restarting
  5099. #ifdef PAT9125
  5100. if (fsensor_M600)
  5101. {
  5102. cmdqueue_pop_front(); //hack because M600 repeated 2x when enqueued to front
  5103. st_synchronize();
  5104. while (!is_buffer_empty())
  5105. {
  5106. process_commands();
  5107. cmdqueue_pop_front();
  5108. }
  5109. fsensor_enable();
  5110. fsensor_restore_print_and_continue();
  5111. }
  5112. #endif //PAT9125
  5113. }
  5114. break;
  5115. #endif //FILAMENTCHANGEENABLE
  5116. case 601: {
  5117. if(lcd_commands_type == 0) lcd_commands_type = LCD_COMMAND_LONG_PAUSE;
  5118. }
  5119. break;
  5120. case 602: {
  5121. if(lcd_commands_type == 0) lcd_commands_type = LCD_COMMAND_LONG_PAUSE_RESUME;
  5122. }
  5123. break;
  5124. #ifdef LIN_ADVANCE
  5125. case 900: // M900: Set LIN_ADVANCE options.
  5126. gcode_M900();
  5127. break;
  5128. #endif
  5129. case 907: // M907 Set digital trimpot motor current using axis codes.
  5130. {
  5131. #if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
  5132. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) digipot_current(i,code_value());
  5133. if(code_seen('B')) digipot_current(4,code_value());
  5134. if(code_seen('S')) for(int i=0;i<=4;i++) digipot_current(i,code_value());
  5135. #endif
  5136. #ifdef MOTOR_CURRENT_PWM_XY_PIN
  5137. if(code_seen('X')) digipot_current(0, code_value());
  5138. #endif
  5139. #ifdef MOTOR_CURRENT_PWM_Z_PIN
  5140. if(code_seen('Z')) digipot_current(1, code_value());
  5141. #endif
  5142. #ifdef MOTOR_CURRENT_PWM_E_PIN
  5143. if(code_seen('E')) digipot_current(2, code_value());
  5144. #endif
  5145. #ifdef DIGIPOT_I2C
  5146. // this one uses actual amps in floating point
  5147. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) digipot_i2c_set_current(i, code_value());
  5148. // for each additional extruder (named B,C,D,E..., channels 4,5,6,7...)
  5149. for(int i=NUM_AXIS;i<DIGIPOT_I2C_NUM_CHANNELS;i++) if(code_seen('B'+i-NUM_AXIS)) digipot_i2c_set_current(i, code_value());
  5150. #endif
  5151. }
  5152. break;
  5153. case 908: // M908 Control digital trimpot directly.
  5154. {
  5155. #if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
  5156. uint8_t channel,current;
  5157. if(code_seen('P')) channel=code_value();
  5158. if(code_seen('S')) current=code_value();
  5159. digitalPotWrite(channel, current);
  5160. #endif
  5161. }
  5162. break;
  5163. case 910: // M910 TMC2130 init
  5164. {
  5165. tmc2130_init();
  5166. }
  5167. break;
  5168. case 911: // M911 Set TMC2130 holding currents
  5169. {
  5170. if (code_seen('X')) tmc2130_set_current_h(0, code_value());
  5171. if (code_seen('Y')) tmc2130_set_current_h(1, code_value());
  5172. if (code_seen('Z')) tmc2130_set_current_h(2, code_value());
  5173. if (code_seen('E')) tmc2130_set_current_h(3, code_value());
  5174. }
  5175. break;
  5176. case 912: // M912 Set TMC2130 running currents
  5177. {
  5178. if (code_seen('X')) tmc2130_set_current_r(0, code_value());
  5179. if (code_seen('Y')) tmc2130_set_current_r(1, code_value());
  5180. if (code_seen('Z')) tmc2130_set_current_r(2, code_value());
  5181. if (code_seen('E')) tmc2130_set_current_r(3, code_value());
  5182. }
  5183. break;
  5184. case 913: // M913 Print TMC2130 currents
  5185. {
  5186. tmc2130_print_currents();
  5187. }
  5188. break;
  5189. case 914: // M914 Set normal mode
  5190. {
  5191. tmc2130_mode = TMC2130_MODE_NORMAL;
  5192. tmc2130_init();
  5193. }
  5194. break;
  5195. case 915: // M915 Set silent mode
  5196. {
  5197. tmc2130_mode = TMC2130_MODE_SILENT;
  5198. tmc2130_init();
  5199. }
  5200. break;
  5201. case 916: // M916 Set sg_thrs
  5202. {
  5203. if (code_seen('X')) tmc2130_sg_thr[X_AXIS] = code_value();
  5204. if (code_seen('Y')) tmc2130_sg_thr[Y_AXIS] = code_value();
  5205. if (code_seen('Z')) tmc2130_sg_thr[Z_AXIS] = code_value();
  5206. if (code_seen('E')) tmc2130_sg_thr[E_AXIS] = code_value();
  5207. MYSERIAL.print("tmc2130_sg_thr[X]=");
  5208. MYSERIAL.println(tmc2130_sg_thr[X_AXIS], DEC);
  5209. MYSERIAL.print("tmc2130_sg_thr[Y]=");
  5210. MYSERIAL.println(tmc2130_sg_thr[Y_AXIS], DEC);
  5211. MYSERIAL.print("tmc2130_sg_thr[Z]=");
  5212. MYSERIAL.println(tmc2130_sg_thr[Z_AXIS], DEC);
  5213. MYSERIAL.print("tmc2130_sg_thr[E]=");
  5214. MYSERIAL.println(tmc2130_sg_thr[E_AXIS], DEC);
  5215. }
  5216. break;
  5217. case 917: // M917 Set TMC2130 pwm_ampl
  5218. {
  5219. if (code_seen('X')) tmc2130_set_pwm_ampl(0, code_value());
  5220. if (code_seen('Y')) tmc2130_set_pwm_ampl(1, code_value());
  5221. if (code_seen('Z')) tmc2130_set_pwm_ampl(2, code_value());
  5222. if (code_seen('E')) tmc2130_set_pwm_ampl(3, code_value());
  5223. }
  5224. break;
  5225. case 918: // M918 Set TMC2130 pwm_grad
  5226. {
  5227. if (code_seen('X')) tmc2130_set_pwm_grad(0, code_value());
  5228. if (code_seen('Y')) tmc2130_set_pwm_grad(1, code_value());
  5229. if (code_seen('Z')) tmc2130_set_pwm_grad(2, code_value());
  5230. if (code_seen('E')) tmc2130_set_pwm_grad(3, code_value());
  5231. }
  5232. break;
  5233. case 350: // M350 Set microstepping mode. Warning: Steps per unit remains unchanged. S code sets stepping mode for all drivers.
  5234. {
  5235. #if defined(X_MS1_PIN) && X_MS1_PIN > -1
  5236. if(code_seen('S')) for(int i=0;i<=4;i++) microstep_mode(i,code_value());
  5237. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) microstep_mode(i,(uint8_t)code_value());
  5238. if(code_seen('B')) microstep_mode(4,code_value());
  5239. microstep_readings();
  5240. #endif
  5241. }
  5242. break;
  5243. case 351: // M351 Toggle MS1 MS2 pins directly, S# determines MS1 or MS2, X# sets the pin high/low.
  5244. {
  5245. #if defined(X_MS1_PIN) && X_MS1_PIN > -1
  5246. if(code_seen('S')) switch((int)code_value())
  5247. {
  5248. case 1:
  5249. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) microstep_ms(i,code_value(),-1);
  5250. if(code_seen('B')) microstep_ms(4,code_value(),-1);
  5251. break;
  5252. case 2:
  5253. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) microstep_ms(i,-1,code_value());
  5254. if(code_seen('B')) microstep_ms(4,-1,code_value());
  5255. break;
  5256. }
  5257. microstep_readings();
  5258. #endif
  5259. }
  5260. break;
  5261. case 701: //M701: load filament
  5262. {
  5263. gcode_M701();
  5264. }
  5265. break;
  5266. case 702:
  5267. {
  5268. #ifdef SNMM
  5269. if (code_seen('U')) {
  5270. extr_unload_used(); //unload all filaments which were used in current print
  5271. }
  5272. else if (code_seen('C')) {
  5273. extr_unload(); //unload just current filament
  5274. }
  5275. else {
  5276. extr_unload_all(); //unload all filaments
  5277. }
  5278. #else
  5279. bool old_fsensor_enabled = fsensor_enabled;
  5280. fsensor_enabled = false;
  5281. custom_message = true;
  5282. custom_message_type = 2;
  5283. lcd_setstatuspgm(MSG_UNLOADING_FILAMENT);
  5284. // extr_unload2();
  5285. current_position[E_AXIS] -= 45;
  5286. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 5200 / 60, active_extruder);
  5287. st_synchronize();
  5288. current_position[E_AXIS] -= 15;
  5289. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 1000 / 60, active_extruder);
  5290. st_synchronize();
  5291. current_position[E_AXIS] -= 20;
  5292. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 1000 / 60, active_extruder);
  5293. st_synchronize();
  5294. lcd_display_message_fullscreen_P(MSG_PULL_OUT_FILAMENT);
  5295. //disable extruder steppers so filament can be removed
  5296. disable_e0();
  5297. disable_e1();
  5298. disable_e2();
  5299. delay(100);
  5300. WRITE(BEEPER, HIGH);
  5301. uint8_t counterBeep = 0;
  5302. while (!lcd_clicked() && (counterBeep < 50)) {
  5303. if (counterBeep > 5) WRITE(BEEPER, LOW);
  5304. delay_keep_alive(100);
  5305. counterBeep++;
  5306. }
  5307. WRITE(BEEPER, LOW);
  5308. st_synchronize();
  5309. while (lcd_clicked()) delay_keep_alive(100);
  5310. lcd_update_enable(true);
  5311. lcd_setstatuspgm(WELCOME_MSG);
  5312. custom_message = false;
  5313. custom_message_type = 0;
  5314. fsensor_enabled = old_fsensor_enabled;
  5315. #endif
  5316. }
  5317. break;
  5318. case 999: // M999: Restart after being stopped
  5319. Stopped = false;
  5320. lcd_reset_alert_level();
  5321. gcode_LastN = Stopped_gcode_LastN;
  5322. FlushSerialRequestResend();
  5323. break;
  5324. default: SERIAL_ECHOLNPGM("Invalid M code.");
  5325. }
  5326. } // end if(code_seen('M')) (end of M codes)
  5327. else if(code_seen('T'))
  5328. {
  5329. int index;
  5330. st_synchronize();
  5331. for (index = 1; *(strchr_pointer + index) == ' ' || *(strchr_pointer + index) == '\t'; index++);
  5332. if ((*(strchr_pointer + index) < '0' || *(strchr_pointer + index) > '9') && *(strchr_pointer + index) != '?') {
  5333. SERIAL_ECHOLNPGM("Invalid T code.");
  5334. }
  5335. else {
  5336. if (*(strchr_pointer + index) == '?') {
  5337. tmp_extruder = choose_extruder_menu();
  5338. }
  5339. else {
  5340. tmp_extruder = code_value();
  5341. }
  5342. snmm_filaments_used |= (1 << tmp_extruder); //for stop print
  5343. #ifdef SNMM
  5344. #ifdef LIN_ADVANCE
  5345. if (snmm_extruder != tmp_extruder)
  5346. clear_current_adv_vars(); //Check if the selected extruder is not the active one and reset LIN_ADVANCE variables if so.
  5347. #endif
  5348. snmm_extruder = tmp_extruder;
  5349. delay(100);
  5350. disable_e0();
  5351. disable_e1();
  5352. disable_e2();
  5353. pinMode(E_MUX0_PIN, OUTPUT);
  5354. pinMode(E_MUX1_PIN, OUTPUT);
  5355. pinMode(E_MUX2_PIN, OUTPUT);
  5356. delay(100);
  5357. SERIAL_ECHO_START;
  5358. SERIAL_ECHO("T:");
  5359. SERIAL_ECHOLN((int)tmp_extruder);
  5360. switch (tmp_extruder) {
  5361. case 1:
  5362. WRITE(E_MUX0_PIN, HIGH);
  5363. WRITE(E_MUX1_PIN, LOW);
  5364. WRITE(E_MUX2_PIN, LOW);
  5365. break;
  5366. case 2:
  5367. WRITE(E_MUX0_PIN, LOW);
  5368. WRITE(E_MUX1_PIN, HIGH);
  5369. WRITE(E_MUX2_PIN, LOW);
  5370. break;
  5371. case 3:
  5372. WRITE(E_MUX0_PIN, HIGH);
  5373. WRITE(E_MUX1_PIN, HIGH);
  5374. WRITE(E_MUX2_PIN, LOW);
  5375. break;
  5376. default:
  5377. WRITE(E_MUX0_PIN, LOW);
  5378. WRITE(E_MUX1_PIN, LOW);
  5379. WRITE(E_MUX2_PIN, LOW);
  5380. break;
  5381. }
  5382. delay(100);
  5383. #else
  5384. if (tmp_extruder >= EXTRUDERS) {
  5385. SERIAL_ECHO_START;
  5386. SERIAL_ECHOPGM("T");
  5387. SERIAL_PROTOCOLLN((int)tmp_extruder);
  5388. SERIAL_ECHOLNRPGM(MSG_INVALID_EXTRUDER);
  5389. }
  5390. else {
  5391. boolean make_move = false;
  5392. if (code_seen('F')) {
  5393. make_move = true;
  5394. next_feedrate = code_value();
  5395. if (next_feedrate > 0.0) {
  5396. feedrate = next_feedrate;
  5397. }
  5398. }
  5399. #if EXTRUDERS > 1
  5400. if (tmp_extruder != active_extruder) {
  5401. // Save current position to return to after applying extruder offset
  5402. memcpy(destination, current_position, sizeof(destination));
  5403. // Offset extruder (only by XY)
  5404. int i;
  5405. for (i = 0; i < 2; i++) {
  5406. current_position[i] = current_position[i] -
  5407. extruder_offset[i][active_extruder] +
  5408. extruder_offset[i][tmp_extruder];
  5409. }
  5410. // Set the new active extruder and position
  5411. active_extruder = tmp_extruder;
  5412. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  5413. // Move to the old position if 'F' was in the parameters
  5414. if (make_move && Stopped == false) {
  5415. prepare_move();
  5416. }
  5417. }
  5418. #endif
  5419. SERIAL_ECHO_START;
  5420. SERIAL_ECHORPGM(MSG_ACTIVE_EXTRUDER);
  5421. SERIAL_PROTOCOLLN((int)active_extruder);
  5422. }
  5423. #endif
  5424. }
  5425. } // end if(code_seen('T')) (end of T codes)
  5426. #ifdef DEBUG_DCODES
  5427. else if (code_seen('D')) // D codes (debug)
  5428. {
  5429. switch((int)code_value())
  5430. {
  5431. case -1: // D-1 - Endless loop
  5432. dcode__1(); break;
  5433. case 0: // D0 - Reset
  5434. dcode_0(); break;
  5435. case 1: // D1 - Clear EEPROM
  5436. dcode_1(); break;
  5437. case 2: // D2 - Read/Write RAM
  5438. dcode_2(); break;
  5439. case 3: // D3 - Read/Write EEPROM
  5440. dcode_3(); break;
  5441. case 4: // D4 - Read/Write PIN
  5442. dcode_4(); break;
  5443. case 5: // D5 - Read/Write FLASH
  5444. // dcode_5(); break;
  5445. break;
  5446. case 6: // D6 - Read/Write external FLASH
  5447. dcode_6(); break;
  5448. case 7: // D7 - Read/Write Bootloader
  5449. dcode_7(); break;
  5450. case 8: // D8 - Read/Write PINDA
  5451. dcode_8(); break;
  5452. case 9: // D9 - Read/Write ADC
  5453. dcode_9(); break;
  5454. case 10: // D10 - XYZ calibration = OK
  5455. dcode_10(); break;
  5456. case 12: //D12 - Reset failstat counters
  5457. dcode_12(); break;
  5458. case 2130: // D9125 - TMC2130
  5459. dcode_2130(); break;
  5460. case 9125: // D9125 - PAT9125
  5461. dcode_9125(); break;
  5462. }
  5463. }
  5464. #endif //DEBUG_DCODES
  5465. else
  5466. {
  5467. SERIAL_ECHO_START;
  5468. SERIAL_ECHORPGM(MSG_UNKNOWN_COMMAND);
  5469. SERIAL_ECHO(CMDBUFFER_CURRENT_STRING);
  5470. SERIAL_ECHOLNPGM("\"(2)");
  5471. }
  5472. KEEPALIVE_STATE(NOT_BUSY);
  5473. ClearToSend();
  5474. }
  5475. void FlushSerialRequestResend()
  5476. {
  5477. //char cmdbuffer[bufindr][100]="Resend:";
  5478. MYSERIAL.flush();
  5479. SERIAL_PROTOCOLRPGM(MSG_RESEND);
  5480. SERIAL_PROTOCOLLN(gcode_LastN + 1);
  5481. previous_millis_cmd = millis();
  5482. SERIAL_PROTOCOLLNRPGM(MSG_OK);
  5483. }
  5484. // Confirm the execution of a command, if sent from a serial line.
  5485. // Execution of a command from a SD card will not be confirmed.
  5486. void ClearToSend()
  5487. {
  5488. previous_millis_cmd = millis();
  5489. if (CMDBUFFER_CURRENT_TYPE == CMDBUFFER_CURRENT_TYPE_USB)
  5490. SERIAL_PROTOCOLLNRPGM(MSG_OK);
  5491. }
  5492. void get_coordinates()
  5493. {
  5494. bool seen[4]={false,false,false,false};
  5495. for(int8_t i=0; i < NUM_AXIS; i++) {
  5496. if(code_seen(axis_codes[i]))
  5497. {
  5498. destination[i] = (float)code_value() + (axis_relative_modes[i] || relative_mode)*current_position[i];
  5499. seen[i]=true;
  5500. }
  5501. else destination[i] = current_position[i]; //Are these else lines really needed?
  5502. }
  5503. if(code_seen('F')) {
  5504. next_feedrate = code_value();
  5505. #ifdef MAX_SILENT_FEEDRATE
  5506. if (tmc2130_mode == TMC2130_MODE_SILENT)
  5507. if (next_feedrate > MAX_SILENT_FEEDRATE) next_feedrate = MAX_SILENT_FEEDRATE;
  5508. #endif //MAX_SILENT_FEEDRATE
  5509. if(next_feedrate > 0.0) feedrate = next_feedrate;
  5510. }
  5511. }
  5512. void get_arc_coordinates()
  5513. {
  5514. #ifdef SF_ARC_FIX
  5515. bool relative_mode_backup = relative_mode;
  5516. relative_mode = true;
  5517. #endif
  5518. get_coordinates();
  5519. #ifdef SF_ARC_FIX
  5520. relative_mode=relative_mode_backup;
  5521. #endif
  5522. if(code_seen('I')) {
  5523. offset[0] = code_value();
  5524. }
  5525. else {
  5526. offset[0] = 0.0;
  5527. }
  5528. if(code_seen('J')) {
  5529. offset[1] = code_value();
  5530. }
  5531. else {
  5532. offset[1] = 0.0;
  5533. }
  5534. }
  5535. void clamp_to_software_endstops(float target[3])
  5536. {
  5537. #ifdef DEBUG_DISABLE_SWLIMITS
  5538. return;
  5539. #endif //DEBUG_DISABLE_SWLIMITS
  5540. world2machine_clamp(target[0], target[1]);
  5541. // Clamp the Z coordinate.
  5542. if (min_software_endstops) {
  5543. float negative_z_offset = 0;
  5544. #ifdef ENABLE_AUTO_BED_LEVELING
  5545. if (Z_PROBE_OFFSET_FROM_EXTRUDER < 0) negative_z_offset = negative_z_offset + Z_PROBE_OFFSET_FROM_EXTRUDER;
  5546. if (add_homing[Z_AXIS] < 0) negative_z_offset = negative_z_offset + add_homing[Z_AXIS];
  5547. #endif
  5548. if (target[Z_AXIS] < min_pos[Z_AXIS]+negative_z_offset) target[Z_AXIS] = min_pos[Z_AXIS]+negative_z_offset;
  5549. }
  5550. if (max_software_endstops) {
  5551. if (target[Z_AXIS] > max_pos[Z_AXIS]) target[Z_AXIS] = max_pos[Z_AXIS];
  5552. }
  5553. }
  5554. #ifdef MESH_BED_LEVELING
  5555. void mesh_plan_buffer_line(const float &x, const float &y, const float &z, const float &e, const float &feed_rate, const uint8_t extruder) {
  5556. float dx = x - current_position[X_AXIS];
  5557. float dy = y - current_position[Y_AXIS];
  5558. float dz = z - current_position[Z_AXIS];
  5559. int n_segments = 0;
  5560. if (mbl.active) {
  5561. float len = abs(dx) + abs(dy);
  5562. if (len > 0)
  5563. // Split to 3cm segments or shorter.
  5564. n_segments = int(ceil(len / 30.f));
  5565. }
  5566. if (n_segments > 1) {
  5567. float de = e - current_position[E_AXIS];
  5568. for (int i = 1; i < n_segments; ++ i) {
  5569. float t = float(i) / float(n_segments);
  5570. plan_buffer_line(
  5571. current_position[X_AXIS] + t * dx,
  5572. current_position[Y_AXIS] + t * dy,
  5573. current_position[Z_AXIS] + t * dz,
  5574. current_position[E_AXIS] + t * de,
  5575. feed_rate, extruder);
  5576. }
  5577. }
  5578. // The rest of the path.
  5579. plan_buffer_line(x, y, z, e, feed_rate, extruder);
  5580. current_position[X_AXIS] = x;
  5581. current_position[Y_AXIS] = y;
  5582. current_position[Z_AXIS] = z;
  5583. current_position[E_AXIS] = e;
  5584. }
  5585. #endif // MESH_BED_LEVELING
  5586. void prepare_move()
  5587. {
  5588. clamp_to_software_endstops(destination);
  5589. previous_millis_cmd = millis();
  5590. // Do not use feedmultiply for E or Z only moves
  5591. if( (current_position[X_AXIS] == destination [X_AXIS]) && (current_position[Y_AXIS] == destination [Y_AXIS])) {
  5592. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  5593. }
  5594. else {
  5595. #ifdef MESH_BED_LEVELING
  5596. mesh_plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate*feedmultiply*(1./(60.f*100.f)), active_extruder);
  5597. #else
  5598. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate*feedmultiply*(1./(60.f*100.f)), active_extruder);
  5599. #endif
  5600. }
  5601. for(int8_t i=0; i < NUM_AXIS; i++) {
  5602. current_position[i] = destination[i];
  5603. }
  5604. }
  5605. void prepare_arc_move(char isclockwise) {
  5606. float r = hypot(offset[X_AXIS], offset[Y_AXIS]); // Compute arc radius for mc_arc
  5607. // Trace the arc
  5608. mc_arc(current_position, destination, offset, X_AXIS, Y_AXIS, Z_AXIS, feedrate*feedmultiply/60/100.0, r, isclockwise, active_extruder);
  5609. // As far as the parser is concerned, the position is now == target. In reality the
  5610. // motion control system might still be processing the action and the real tool position
  5611. // in any intermediate location.
  5612. for(int8_t i=0; i < NUM_AXIS; i++) {
  5613. current_position[i] = destination[i];
  5614. }
  5615. previous_millis_cmd = millis();
  5616. }
  5617. #if defined(CONTROLLERFAN_PIN) && CONTROLLERFAN_PIN > -1
  5618. #if defined(FAN_PIN)
  5619. #if CONTROLLERFAN_PIN == FAN_PIN
  5620. #error "You cannot set CONTROLLERFAN_PIN equal to FAN_PIN"
  5621. #endif
  5622. #endif
  5623. unsigned long lastMotor = 0; //Save the time for when a motor was turned on last
  5624. unsigned long lastMotorCheck = 0;
  5625. void controllerFan()
  5626. {
  5627. if ((millis() - lastMotorCheck) >= 2500) //Not a time critical function, so we only check every 2500ms
  5628. {
  5629. lastMotorCheck = millis();
  5630. if(!READ(X_ENABLE_PIN) || !READ(Y_ENABLE_PIN) || !READ(Z_ENABLE_PIN) || (soft_pwm_bed > 0)
  5631. #if EXTRUDERS > 2
  5632. || !READ(E2_ENABLE_PIN)
  5633. #endif
  5634. #if EXTRUDER > 1
  5635. #if defined(X2_ENABLE_PIN) && X2_ENABLE_PIN > -1
  5636. || !READ(X2_ENABLE_PIN)
  5637. #endif
  5638. || !READ(E1_ENABLE_PIN)
  5639. #endif
  5640. || !READ(E0_ENABLE_PIN)) //If any of the drivers are enabled...
  5641. {
  5642. lastMotor = millis(); //... set time to NOW so the fan will turn on
  5643. }
  5644. if ((millis() - lastMotor) >= (CONTROLLERFAN_SECS*1000UL) || lastMotor == 0) //If the last time any driver was enabled, is longer since than CONTROLLERSEC...
  5645. {
  5646. digitalWrite(CONTROLLERFAN_PIN, 0);
  5647. analogWrite(CONTROLLERFAN_PIN, 0);
  5648. }
  5649. else
  5650. {
  5651. // allows digital or PWM fan output to be used (see M42 handling)
  5652. digitalWrite(CONTROLLERFAN_PIN, CONTROLLERFAN_SPEED);
  5653. analogWrite(CONTROLLERFAN_PIN, CONTROLLERFAN_SPEED);
  5654. }
  5655. }
  5656. }
  5657. #endif
  5658. #ifdef TEMP_STAT_LEDS
  5659. static bool blue_led = false;
  5660. static bool red_led = false;
  5661. static uint32_t stat_update = 0;
  5662. void handle_status_leds(void) {
  5663. float max_temp = 0.0;
  5664. if(millis() > stat_update) {
  5665. stat_update += 500; // Update every 0.5s
  5666. for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) {
  5667. max_temp = max(max_temp, degHotend(cur_extruder));
  5668. max_temp = max(max_temp, degTargetHotend(cur_extruder));
  5669. }
  5670. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  5671. max_temp = max(max_temp, degTargetBed());
  5672. max_temp = max(max_temp, degBed());
  5673. #endif
  5674. if((max_temp > 55.0) && (red_led == false)) {
  5675. digitalWrite(STAT_LED_RED, 1);
  5676. digitalWrite(STAT_LED_BLUE, 0);
  5677. red_led = true;
  5678. blue_led = false;
  5679. }
  5680. if((max_temp < 54.0) && (blue_led == false)) {
  5681. digitalWrite(STAT_LED_RED, 0);
  5682. digitalWrite(STAT_LED_BLUE, 1);
  5683. red_led = false;
  5684. blue_led = true;
  5685. }
  5686. }
  5687. }
  5688. #endif
  5689. void manage_inactivity(bool ignore_stepper_queue/*=false*/) //default argument set in Marlin.h
  5690. {
  5691. if (fsensor_enabled && filament_autoload_enabled && !fsensor_M600 && !moves_planned() && !IS_SD_PRINTING && !is_usb_printing && (lcd_commands_type != LCD_COMMAND_V2_CAL))
  5692. {
  5693. if (fsensor_autoload_enabled)
  5694. {
  5695. if (fsensor_check_autoload())
  5696. {
  5697. if (degHotend0() > EXTRUDE_MINTEMP)
  5698. {
  5699. fsensor_autoload_check_stop();
  5700. tone(BEEPER, 1000);
  5701. delay_keep_alive(50);
  5702. noTone(BEEPER);
  5703. loading_flag = true;
  5704. enquecommand_front_P((PSTR("M701")));
  5705. }
  5706. else
  5707. {
  5708. lcd_update_enable(false);
  5709. lcd_implementation_clear();
  5710. lcd.setCursor(0, 0);
  5711. lcd_printPGM(MSG_ERROR);
  5712. lcd.setCursor(0, 2);
  5713. lcd_printPGM(MSG_PREHEAT_NOZZLE);
  5714. delay(2000);
  5715. lcd_implementation_clear();
  5716. lcd_update_enable(true);
  5717. }
  5718. }
  5719. }
  5720. else
  5721. fsensor_autoload_check_start();
  5722. }
  5723. else
  5724. if (fsensor_autoload_enabled)
  5725. fsensor_autoload_check_stop();
  5726. #if defined(KILL_PIN) && KILL_PIN > -1
  5727. static int killCount = 0; // make the inactivity button a bit less responsive
  5728. const int KILL_DELAY = 10000;
  5729. #endif
  5730. if(buflen < (BUFSIZE-1)){
  5731. get_command();
  5732. }
  5733. if( (millis() - previous_millis_cmd) > max_inactive_time )
  5734. if(max_inactive_time)
  5735. kill("", 4);
  5736. if(stepper_inactive_time) {
  5737. if( (millis() - previous_millis_cmd) > stepper_inactive_time )
  5738. {
  5739. if(blocks_queued() == false && ignore_stepper_queue == false) {
  5740. disable_x();
  5741. // SERIAL_ECHOLNPGM("manage_inactivity - disable Y");
  5742. disable_y();
  5743. disable_z();
  5744. disable_e0();
  5745. disable_e1();
  5746. disable_e2();
  5747. }
  5748. }
  5749. }
  5750. #ifdef CHDK //Check if pin should be set to LOW after M240 set it to HIGH
  5751. if (chdkActive && (millis() - chdkHigh > CHDK_DELAY))
  5752. {
  5753. chdkActive = false;
  5754. WRITE(CHDK, LOW);
  5755. }
  5756. #endif
  5757. #if defined(KILL_PIN) && KILL_PIN > -1
  5758. // Check if the kill button was pressed and wait just in case it was an accidental
  5759. // key kill key press
  5760. // -------------------------------------------------------------------------------
  5761. if( 0 == READ(KILL_PIN) )
  5762. {
  5763. killCount++;
  5764. }
  5765. else if (killCount > 0)
  5766. {
  5767. killCount--;
  5768. }
  5769. // Exceeded threshold and we can confirm that it was not accidental
  5770. // KILL the machine
  5771. // ----------------------------------------------------------------
  5772. if ( killCount >= KILL_DELAY)
  5773. {
  5774. kill("", 5);
  5775. }
  5776. #endif
  5777. #if defined(CONTROLLERFAN_PIN) && CONTROLLERFAN_PIN > -1
  5778. controllerFan(); //Check if fan should be turned on to cool stepper drivers down
  5779. #endif
  5780. #ifdef EXTRUDER_RUNOUT_PREVENT
  5781. if( (millis() - previous_millis_cmd) > EXTRUDER_RUNOUT_SECONDS*1000 )
  5782. if(degHotend(active_extruder)>EXTRUDER_RUNOUT_MINTEMP)
  5783. {
  5784. bool oldstatus=READ(E0_ENABLE_PIN);
  5785. enable_e0();
  5786. float oldepos=current_position[E_AXIS];
  5787. float oldedes=destination[E_AXIS];
  5788. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS],
  5789. destination[E_AXIS]+EXTRUDER_RUNOUT_EXTRUDE*EXTRUDER_RUNOUT_ESTEPS/axis_steps_per_unit[E_AXIS],
  5790. EXTRUDER_RUNOUT_SPEED/60.*EXTRUDER_RUNOUT_ESTEPS/axis_steps_per_unit[E_AXIS], active_extruder);
  5791. current_position[E_AXIS]=oldepos;
  5792. destination[E_AXIS]=oldedes;
  5793. plan_set_e_position(oldepos);
  5794. previous_millis_cmd=millis();
  5795. st_synchronize();
  5796. WRITE(E0_ENABLE_PIN,oldstatus);
  5797. }
  5798. #endif
  5799. #ifdef TEMP_STAT_LEDS
  5800. handle_status_leds();
  5801. #endif
  5802. check_axes_activity();
  5803. }
  5804. void kill(const char *full_screen_message, unsigned char id)
  5805. {
  5806. SERIAL_ECHOPGM("KILL: ");
  5807. MYSERIAL.println(int(id));
  5808. //return;
  5809. cli(); // Stop interrupts
  5810. disable_heater();
  5811. disable_x();
  5812. // SERIAL_ECHOLNPGM("kill - disable Y");
  5813. disable_y();
  5814. disable_z();
  5815. disable_e0();
  5816. disable_e1();
  5817. disable_e2();
  5818. #if defined(PS_ON_PIN) && PS_ON_PIN > -1
  5819. pinMode(PS_ON_PIN,INPUT);
  5820. #endif
  5821. SERIAL_ERROR_START;
  5822. SERIAL_ERRORLNRPGM(MSG_ERR_KILLED);
  5823. if (full_screen_message != NULL) {
  5824. SERIAL_ERRORLNRPGM(full_screen_message);
  5825. lcd_display_message_fullscreen_P(full_screen_message);
  5826. } else {
  5827. LCD_ALERTMESSAGERPGM(MSG_KILLED);
  5828. }
  5829. // FMC small patch to update the LCD before ending
  5830. sei(); // enable interrupts
  5831. for ( int i=5; i--; lcd_update())
  5832. {
  5833. delay(200);
  5834. }
  5835. cli(); // disable interrupts
  5836. suicide();
  5837. while(1)
  5838. {
  5839. wdt_reset();
  5840. /* Intentionally left empty */
  5841. } // Wait for reset
  5842. }
  5843. void Stop()
  5844. {
  5845. disable_heater();
  5846. if(Stopped == false) {
  5847. Stopped = true;
  5848. Stopped_gcode_LastN = gcode_LastN; // Save last g_code for restart
  5849. SERIAL_ERROR_START;
  5850. SERIAL_ERRORLNRPGM(MSG_ERR_STOPPED);
  5851. LCD_MESSAGERPGM(MSG_STOPPED);
  5852. }
  5853. }
  5854. bool IsStopped() { return Stopped; };
  5855. #ifdef FAST_PWM_FAN
  5856. void setPwmFrequency(uint8_t pin, int val)
  5857. {
  5858. val &= 0x07;
  5859. switch(digitalPinToTimer(pin))
  5860. {
  5861. #if defined(TCCR0A)
  5862. case TIMER0A:
  5863. case TIMER0B:
  5864. // TCCR0B &= ~(_BV(CS00) | _BV(CS01) | _BV(CS02));
  5865. // TCCR0B |= val;
  5866. break;
  5867. #endif
  5868. #if defined(TCCR1A)
  5869. case TIMER1A:
  5870. case TIMER1B:
  5871. // TCCR1B &= ~(_BV(CS10) | _BV(CS11) | _BV(CS12));
  5872. // TCCR1B |= val;
  5873. break;
  5874. #endif
  5875. #if defined(TCCR2)
  5876. case TIMER2:
  5877. case TIMER2:
  5878. TCCR2 &= ~(_BV(CS10) | _BV(CS11) | _BV(CS12));
  5879. TCCR2 |= val;
  5880. break;
  5881. #endif
  5882. #if defined(TCCR2A)
  5883. case TIMER2A:
  5884. case TIMER2B:
  5885. TCCR2B &= ~(_BV(CS20) | _BV(CS21) | _BV(CS22));
  5886. TCCR2B |= val;
  5887. break;
  5888. #endif
  5889. #if defined(TCCR3A)
  5890. case TIMER3A:
  5891. case TIMER3B:
  5892. case TIMER3C:
  5893. TCCR3B &= ~(_BV(CS30) | _BV(CS31) | _BV(CS32));
  5894. TCCR3B |= val;
  5895. break;
  5896. #endif
  5897. #if defined(TCCR4A)
  5898. case TIMER4A:
  5899. case TIMER4B:
  5900. case TIMER4C:
  5901. TCCR4B &= ~(_BV(CS40) | _BV(CS41) | _BV(CS42));
  5902. TCCR4B |= val;
  5903. break;
  5904. #endif
  5905. #if defined(TCCR5A)
  5906. case TIMER5A:
  5907. case TIMER5B:
  5908. case TIMER5C:
  5909. TCCR5B &= ~(_BV(CS50) | _BV(CS51) | _BV(CS52));
  5910. TCCR5B |= val;
  5911. break;
  5912. #endif
  5913. }
  5914. }
  5915. #endif //FAST_PWM_FAN
  5916. bool setTargetedHotend(int code){
  5917. tmp_extruder = active_extruder;
  5918. if(code_seen('T')) {
  5919. tmp_extruder = code_value();
  5920. if(tmp_extruder >= EXTRUDERS) {
  5921. SERIAL_ECHO_START;
  5922. switch(code){
  5923. case 104:
  5924. SERIAL_ECHORPGM(MSG_M104_INVALID_EXTRUDER);
  5925. break;
  5926. case 105:
  5927. SERIAL_ECHO(MSG_M105_INVALID_EXTRUDER);
  5928. break;
  5929. case 109:
  5930. SERIAL_ECHO(MSG_M109_INVALID_EXTRUDER);
  5931. break;
  5932. case 218:
  5933. SERIAL_ECHO(MSG_M218_INVALID_EXTRUDER);
  5934. break;
  5935. case 221:
  5936. SERIAL_ECHO(MSG_M221_INVALID_EXTRUDER);
  5937. break;
  5938. }
  5939. SERIAL_PROTOCOLLN((int)tmp_extruder);
  5940. return true;
  5941. }
  5942. }
  5943. return false;
  5944. }
  5945. void save_statistics(unsigned long _total_filament_used, unsigned long _total_print_time) //_total_filament_used unit: mm/100; print time in s
  5946. {
  5947. if (eeprom_read_byte((uint8_t *)EEPROM_TOTALTIME) == 255 && eeprom_read_byte((uint8_t *)EEPROM_TOTALTIME + 1) == 255 && eeprom_read_byte((uint8_t *)EEPROM_TOTALTIME + 2) == 255 && eeprom_read_byte((uint8_t *)EEPROM_TOTALTIME + 3) == 255)
  5948. {
  5949. eeprom_update_dword((uint32_t *)EEPROM_TOTALTIME, 0);
  5950. eeprom_update_dword((uint32_t *)EEPROM_FILAMENTUSED, 0);
  5951. }
  5952. unsigned long _previous_filament = eeprom_read_dword((uint32_t *)EEPROM_FILAMENTUSED); //_previous_filament unit: cm
  5953. unsigned long _previous_time = eeprom_read_dword((uint32_t *)EEPROM_TOTALTIME); //_previous_time unit: min
  5954. eeprom_update_dword((uint32_t *)EEPROM_TOTALTIME, _previous_time + (_total_print_time/60)); //EEPROM_TOTALTIME unit: min
  5955. eeprom_update_dword((uint32_t *)EEPROM_FILAMENTUSED, _previous_filament + (_total_filament_used / 1000));
  5956. total_filament_used = 0;
  5957. }
  5958. float calculate_volumetric_multiplier(float diameter) {
  5959. float area = .0;
  5960. float radius = .0;
  5961. radius = diameter * .5;
  5962. if (! volumetric_enabled || radius == 0) {
  5963. area = 1;
  5964. }
  5965. else {
  5966. area = M_PI * pow(radius, 2);
  5967. }
  5968. return 1.0 / area;
  5969. }
  5970. void calculate_volumetric_multipliers() {
  5971. volumetric_multiplier[0] = calculate_volumetric_multiplier(filament_size[0]);
  5972. #if EXTRUDERS > 1
  5973. volumetric_multiplier[1] = calculate_volumetric_multiplier(filament_size[1]);
  5974. #if EXTRUDERS > 2
  5975. volumetric_multiplier[2] = calculate_volumetric_multiplier(filament_size[2]);
  5976. #endif
  5977. #endif
  5978. }
  5979. void delay_keep_alive(unsigned int ms)
  5980. {
  5981. for (;;) {
  5982. manage_heater();
  5983. // Manage inactivity, but don't disable steppers on timeout.
  5984. manage_inactivity(true);
  5985. lcd_update();
  5986. if (ms == 0)
  5987. break;
  5988. else if (ms >= 50) {
  5989. delay(50);
  5990. ms -= 50;
  5991. } else {
  5992. delay(ms);
  5993. ms = 0;
  5994. }
  5995. }
  5996. }
  5997. void wait_for_heater(long codenum) {
  5998. #ifdef TEMP_RESIDENCY_TIME
  5999. long residencyStart;
  6000. residencyStart = -1;
  6001. /* continue to loop until we have reached the target temp
  6002. _and_ until TEMP_RESIDENCY_TIME hasn't passed since we reached it */
  6003. while ((!cancel_heatup) && ((residencyStart == -1) ||
  6004. (residencyStart >= 0 && (((unsigned int)(millis() - residencyStart)) < (TEMP_RESIDENCY_TIME * 1000UL))))) {
  6005. #else
  6006. while (target_direction ? (isHeatingHotend(tmp_extruder)) : (isCoolingHotend(tmp_extruder) && (CooldownNoWait == false))) {
  6007. #endif //TEMP_RESIDENCY_TIME
  6008. if ((millis() - codenum) > 1000UL)
  6009. { //Print Temp Reading and remaining time every 1 second while heating up/cooling down
  6010. if (!farm_mode) {
  6011. SERIAL_PROTOCOLPGM("T:");
  6012. SERIAL_PROTOCOL_F(degHotend(tmp_extruder), 1);
  6013. SERIAL_PROTOCOLPGM(" E:");
  6014. SERIAL_PROTOCOL((int)tmp_extruder);
  6015. #ifdef TEMP_RESIDENCY_TIME
  6016. SERIAL_PROTOCOLPGM(" W:");
  6017. if (residencyStart > -1)
  6018. {
  6019. codenum = ((TEMP_RESIDENCY_TIME * 1000UL) - (millis() - residencyStart)) / 1000UL;
  6020. SERIAL_PROTOCOLLN(codenum);
  6021. }
  6022. else
  6023. {
  6024. SERIAL_PROTOCOLLN("?");
  6025. }
  6026. }
  6027. #else
  6028. SERIAL_PROTOCOLLN("");
  6029. #endif
  6030. codenum = millis();
  6031. }
  6032. manage_heater();
  6033. manage_inactivity();
  6034. lcd_update();
  6035. #ifdef TEMP_RESIDENCY_TIME
  6036. /* start/restart the TEMP_RESIDENCY_TIME timer whenever we reach target temp for the first time
  6037. or when current temp falls outside the hysteresis after target temp was reached */
  6038. if ((residencyStart == -1 && target_direction && (degHotend(tmp_extruder) >= (degTargetHotend(tmp_extruder) - TEMP_WINDOW))) ||
  6039. (residencyStart == -1 && !target_direction && (degHotend(tmp_extruder) <= (degTargetHotend(tmp_extruder) + TEMP_WINDOW))) ||
  6040. (residencyStart > -1 && labs(degHotend(tmp_extruder) - degTargetHotend(tmp_extruder)) > TEMP_HYSTERESIS))
  6041. {
  6042. residencyStart = millis();
  6043. }
  6044. #endif //TEMP_RESIDENCY_TIME
  6045. }
  6046. }
  6047. void check_babystep() {
  6048. int babystep_z;
  6049. EEPROM_read_B(EEPROM_BABYSTEP_Z, &babystep_z);
  6050. if ((babystep_z < Z_BABYSTEP_MIN) || (babystep_z > Z_BABYSTEP_MAX)) {
  6051. babystep_z = 0; //if babystep value is out of min max range, set it to 0
  6052. SERIAL_ECHOLNPGM("Z live adjust out of range. Setting to 0");
  6053. EEPROM_save_B(EEPROM_BABYSTEP_Z, &babystep_z);
  6054. lcd_show_fullscreen_message_and_wait_P(PSTR("Z live adjust out of range. Setting to 0. Click to continue."));
  6055. lcd_update_enable(true);
  6056. }
  6057. }
  6058. #ifdef DIS
  6059. void d_setup()
  6060. {
  6061. pinMode(D_DATACLOCK, INPUT_PULLUP);
  6062. pinMode(D_DATA, INPUT_PULLUP);
  6063. pinMode(D_REQUIRE, OUTPUT);
  6064. digitalWrite(D_REQUIRE, HIGH);
  6065. }
  6066. float d_ReadData()
  6067. {
  6068. int digit[13];
  6069. String mergeOutput;
  6070. float output;
  6071. digitalWrite(D_REQUIRE, HIGH);
  6072. for (int i = 0; i<13; i++)
  6073. {
  6074. for (int j = 0; j < 4; j++)
  6075. {
  6076. while (digitalRead(D_DATACLOCK) == LOW) {}
  6077. while (digitalRead(D_DATACLOCK) == HIGH) {}
  6078. bitWrite(digit[i], j, digitalRead(D_DATA));
  6079. }
  6080. }
  6081. digitalWrite(D_REQUIRE, LOW);
  6082. mergeOutput = "";
  6083. output = 0;
  6084. for (int r = 5; r <= 10; r++) //Merge digits
  6085. {
  6086. mergeOutput += digit[r];
  6087. }
  6088. output = mergeOutput.toFloat();
  6089. if (digit[4] == 8) //Handle sign
  6090. {
  6091. output *= -1;
  6092. }
  6093. for (int i = digit[11]; i > 0; i--) //Handle floating point
  6094. {
  6095. output /= 10;
  6096. }
  6097. return output;
  6098. }
  6099. void bed_analysis(float x_dimension, float y_dimension, int x_points_num, int y_points_num, float shift_x, float shift_y) {
  6100. int t1 = 0;
  6101. int t_delay = 0;
  6102. int digit[13];
  6103. int m;
  6104. char str[3];
  6105. //String mergeOutput;
  6106. char mergeOutput[15];
  6107. float output;
  6108. int mesh_point = 0; //index number of calibration point
  6109. float bed_zero_ref_x = (-22.f + X_PROBE_OFFSET_FROM_EXTRUDER); //shift between zero point on bed and target and between probe and nozzle
  6110. float bed_zero_ref_y = (-0.6f + Y_PROBE_OFFSET_FROM_EXTRUDER);
  6111. float mesh_home_z_search = 4;
  6112. float row[x_points_num];
  6113. int ix = 0;
  6114. int iy = 0;
  6115. char* filename_wldsd = "wldsd.txt";
  6116. char data_wldsd[70];
  6117. char numb_wldsd[10];
  6118. d_setup();
  6119. if (!(axis_known_position[X_AXIS] && axis_known_position[Y_AXIS] && axis_known_position[Z_AXIS])) {
  6120. // We don't know where we are! HOME!
  6121. // Push the commands to the front of the message queue in the reverse order!
  6122. // There shall be always enough space reserved for these commands.
  6123. repeatcommand_front(); // repeat G80 with all its parameters
  6124. enquecommand_front_P((PSTR("G28 W0")));
  6125. enquecommand_front_P((PSTR("G1 Z5")));
  6126. return;
  6127. }
  6128. bool custom_message_old = custom_message;
  6129. unsigned int custom_message_type_old = custom_message_type;
  6130. unsigned int custom_message_state_old = custom_message_state;
  6131. custom_message = true;
  6132. custom_message_type = 1;
  6133. custom_message_state = (x_points_num * y_points_num) + 10;
  6134. lcd_update(1);
  6135. mbl.reset();
  6136. babystep_undo();
  6137. card.openFile(filename_wldsd, false);
  6138. current_position[Z_AXIS] = mesh_home_z_search;
  6139. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[Z_AXIS] / 60, active_extruder);
  6140. int XY_AXIS_FEEDRATE = homing_feedrate[X_AXIS] / 20;
  6141. int Z_PROBE_FEEDRATE = homing_feedrate[Z_AXIS] / 60;
  6142. int Z_LIFT_FEEDRATE = homing_feedrate[Z_AXIS] / 40;
  6143. setup_for_endstop_move(false);
  6144. SERIAL_PROTOCOLPGM("Num X,Y: ");
  6145. SERIAL_PROTOCOL(x_points_num);
  6146. SERIAL_PROTOCOLPGM(",");
  6147. SERIAL_PROTOCOL(y_points_num);
  6148. SERIAL_PROTOCOLPGM("\nZ search height: ");
  6149. SERIAL_PROTOCOL(mesh_home_z_search);
  6150. SERIAL_PROTOCOLPGM("\nDimension X,Y: ");
  6151. SERIAL_PROTOCOL(x_dimension);
  6152. SERIAL_PROTOCOLPGM(",");
  6153. SERIAL_PROTOCOL(y_dimension);
  6154. SERIAL_PROTOCOLLNPGM("\nMeasured points:");
  6155. while (mesh_point != x_points_num * y_points_num) {
  6156. ix = mesh_point % x_points_num; // from 0 to MESH_NUM_X_POINTS - 1
  6157. iy = mesh_point / x_points_num;
  6158. if (iy & 1) ix = (x_points_num - 1) - ix; // Zig zag
  6159. float z0 = 0.f;
  6160. current_position[Z_AXIS] = mesh_home_z_search;
  6161. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], Z_LIFT_FEEDRATE, active_extruder);
  6162. st_synchronize();
  6163. current_position[X_AXIS] = 13.f + ix * (x_dimension / (x_points_num - 1)) - bed_zero_ref_x + shift_x;
  6164. current_position[Y_AXIS] = 6.4f + iy * (y_dimension / (y_points_num - 1)) - bed_zero_ref_y + shift_y;
  6165. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], XY_AXIS_FEEDRATE, active_extruder);
  6166. st_synchronize();
  6167. if (!find_bed_induction_sensor_point_z(-10.f)) { //if we have data from z calibration max allowed difference is 1mm for each point, if we dont have data max difference is 10mm from initial point
  6168. break;
  6169. card.closefile();
  6170. }
  6171. //memset(numb_wldsd, 0, sizeof(numb_wldsd));
  6172. //dtostrf(d_ReadData(), 8, 5, numb_wldsd);
  6173. //strcat(data_wldsd, numb_wldsd);
  6174. //MYSERIAL.println(data_wldsd);
  6175. //delay(1000);
  6176. //delay(3000);
  6177. //t1 = millis();
  6178. //while (digitalRead(D_DATACLOCK) == LOW) {}
  6179. //while (digitalRead(D_DATACLOCK) == HIGH) {}
  6180. memset(digit, 0, sizeof(digit));
  6181. //cli();
  6182. digitalWrite(D_REQUIRE, LOW);
  6183. for (int i = 0; i<13; i++)
  6184. {
  6185. //t1 = millis();
  6186. for (int j = 0; j < 4; j++)
  6187. {
  6188. while (digitalRead(D_DATACLOCK) == LOW) {}
  6189. while (digitalRead(D_DATACLOCK) == HIGH) {}
  6190. bitWrite(digit[i], j, digitalRead(D_DATA));
  6191. }
  6192. //t_delay = (millis() - t1);
  6193. //SERIAL_PROTOCOLPGM(" ");
  6194. //SERIAL_PROTOCOL_F(t_delay, 5);
  6195. //SERIAL_PROTOCOLPGM(" ");
  6196. }
  6197. //sei();
  6198. digitalWrite(D_REQUIRE, HIGH);
  6199. mergeOutput[0] = '\0';
  6200. output = 0;
  6201. for (int r = 5; r <= 10; r++) //Merge digits
  6202. {
  6203. sprintf(str, "%d", digit[r]);
  6204. strcat(mergeOutput, str);
  6205. }
  6206. output = atof(mergeOutput);
  6207. if (digit[4] == 8) //Handle sign
  6208. {
  6209. output *= -1;
  6210. }
  6211. for (int i = digit[11]; i > 0; i--) //Handle floating point
  6212. {
  6213. output *= 0.1;
  6214. }
  6215. //output = d_ReadData();
  6216. //row[ix] = current_position[Z_AXIS];
  6217. memset(data_wldsd, 0, sizeof(data_wldsd));
  6218. for (int i = 0; i <3; i++) {
  6219. memset(numb_wldsd, 0, sizeof(numb_wldsd));
  6220. dtostrf(current_position[i], 8, 5, numb_wldsd);
  6221. strcat(data_wldsd, numb_wldsd);
  6222. strcat(data_wldsd, ";");
  6223. }
  6224. memset(numb_wldsd, 0, sizeof(numb_wldsd));
  6225. dtostrf(output, 8, 5, numb_wldsd);
  6226. strcat(data_wldsd, numb_wldsd);
  6227. //strcat(data_wldsd, ";");
  6228. card.write_command(data_wldsd);
  6229. //row[ix] = d_ReadData();
  6230. row[ix] = output; // current_position[Z_AXIS];
  6231. if (iy % 2 == 1 ? ix == 0 : ix == x_points_num - 1) {
  6232. for (int i = 0; i < x_points_num; i++) {
  6233. SERIAL_PROTOCOLPGM(" ");
  6234. SERIAL_PROTOCOL_F(row[i], 5);
  6235. }
  6236. SERIAL_PROTOCOLPGM("\n");
  6237. }
  6238. custom_message_state--;
  6239. mesh_point++;
  6240. lcd_update(1);
  6241. }
  6242. card.closefile();
  6243. }
  6244. #endif
  6245. void temp_compensation_start() {
  6246. custom_message = true;
  6247. custom_message_type = 5;
  6248. custom_message_state = PINDA_HEAT_T + 1;
  6249. lcd_update(2);
  6250. if (degHotend(active_extruder) > EXTRUDE_MINTEMP) {
  6251. current_position[E_AXIS] -= DEFAULT_RETRACTION;
  6252. }
  6253. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400, active_extruder);
  6254. current_position[X_AXIS] = PINDA_PREHEAT_X;
  6255. current_position[Y_AXIS] = PINDA_PREHEAT_Y;
  6256. current_position[Z_AXIS] = PINDA_PREHEAT_Z;
  6257. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  6258. st_synchronize();
  6259. while (fabs(degBed() - target_temperature_bed) > 1) delay_keep_alive(1000);
  6260. for (int i = 0; i < PINDA_HEAT_T; i++) {
  6261. delay_keep_alive(1000);
  6262. custom_message_state = PINDA_HEAT_T - i;
  6263. if (custom_message_state == 99 || custom_message_state == 9) lcd_update(2); //force whole display redraw if number of digits changed
  6264. else lcd_update(1);
  6265. }
  6266. custom_message_type = 0;
  6267. custom_message_state = 0;
  6268. custom_message = false;
  6269. }
  6270. void temp_compensation_apply() {
  6271. int i_add;
  6272. int compensation_value;
  6273. int z_shift = 0;
  6274. float z_shift_mm;
  6275. if (calibration_status() == CALIBRATION_STATUS_CALIBRATED) {
  6276. if (target_temperature_bed % 10 == 0 && target_temperature_bed >= 60 && target_temperature_bed <= 100) {
  6277. i_add = (target_temperature_bed - 60) / 10;
  6278. EEPROM_read_B(EEPROM_PROBE_TEMP_SHIFT + i_add * 2, &z_shift);
  6279. z_shift_mm = z_shift / axis_steps_per_unit[Z_AXIS];
  6280. }else {
  6281. //interpolation
  6282. z_shift_mm = temp_comp_interpolation(target_temperature_bed) / axis_steps_per_unit[Z_AXIS];
  6283. }
  6284. SERIAL_PROTOCOLPGM("\n");
  6285. SERIAL_PROTOCOLPGM("Z shift applied:");
  6286. MYSERIAL.print(z_shift_mm);
  6287. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS] - z_shift_mm, current_position[E_AXIS], homing_feedrate[Z_AXIS] / 40, active_extruder);
  6288. st_synchronize();
  6289. plan_set_z_position(current_position[Z_AXIS]);
  6290. }
  6291. else {
  6292. //we have no temp compensation data
  6293. }
  6294. }
  6295. float temp_comp_interpolation(float inp_temperature) {
  6296. //cubic spline interpolation
  6297. int n, i, j, k;
  6298. float h[10], a, b, c, d, sum, s[10] = { 0 }, x[10], F[10], f[10], m[10][10] = { 0 }, temp;
  6299. int shift[10];
  6300. int temp_C[10];
  6301. n = 6; //number of measured points
  6302. shift[0] = 0;
  6303. for (i = 0; i < n; i++) {
  6304. if (i>0) EEPROM_read_B(EEPROM_PROBE_TEMP_SHIFT + (i-1) * 2, &shift[i]); //read shift in steps from EEPROM
  6305. temp_C[i] = 50 + i * 10; //temperature in C
  6306. #ifdef PINDA_THERMISTOR
  6307. temp_C[i] = 35 + i * 5; //temperature in C
  6308. #else
  6309. temp_C[i] = 50 + i * 10; //temperature in C
  6310. #endif
  6311. x[i] = (float)temp_C[i];
  6312. f[i] = (float)shift[i];
  6313. }
  6314. if (inp_temperature < x[0]) return 0;
  6315. for (i = n - 1; i>0; i--) {
  6316. F[i] = (f[i] - f[i - 1]) / (x[i] - x[i - 1]);
  6317. h[i - 1] = x[i] - x[i - 1];
  6318. }
  6319. //*********** formation of h, s , f matrix **************
  6320. for (i = 1; i<n - 1; i++) {
  6321. m[i][i] = 2 * (h[i - 1] + h[i]);
  6322. if (i != 1) {
  6323. m[i][i - 1] = h[i - 1];
  6324. m[i - 1][i] = h[i - 1];
  6325. }
  6326. m[i][n - 1] = 6 * (F[i + 1] - F[i]);
  6327. }
  6328. //*********** forward elimination **************
  6329. for (i = 1; i<n - 2; i++) {
  6330. temp = (m[i + 1][i] / m[i][i]);
  6331. for (j = 1; j <= n - 1; j++)
  6332. m[i + 1][j] -= temp*m[i][j];
  6333. }
  6334. //*********** backward substitution *********
  6335. for (i = n - 2; i>0; i--) {
  6336. sum = 0;
  6337. for (j = i; j <= n - 2; j++)
  6338. sum += m[i][j] * s[j];
  6339. s[i] = (m[i][n - 1] - sum) / m[i][i];
  6340. }
  6341. for (i = 0; i<n - 1; i++)
  6342. if ((x[i] <= inp_temperature && inp_temperature <= x[i + 1]) || (i == n-2 && inp_temperature > x[i + 1])) {
  6343. a = (s[i + 1] - s[i]) / (6 * h[i]);
  6344. b = s[i] / 2;
  6345. c = (f[i + 1] - f[i]) / h[i] - (2 * h[i] * s[i] + s[i + 1] * h[i]) / 6;
  6346. d = f[i];
  6347. sum = a*pow((inp_temperature - x[i]), 3) + b*pow((inp_temperature - x[i]), 2) + c*(inp_temperature - x[i]) + d;
  6348. }
  6349. return sum;
  6350. }
  6351. #ifdef PINDA_THERMISTOR
  6352. float temp_compensation_pinda_thermistor_offset(float temperature_pinda)
  6353. {
  6354. if (!temp_cal_active) return 0;
  6355. if (!calibration_status_pinda()) return 0;
  6356. return temp_comp_interpolation(temperature_pinda) / axis_steps_per_unit[Z_AXIS];
  6357. }
  6358. #endif //PINDA_THERMISTOR
  6359. void long_pause() //long pause print
  6360. {
  6361. st_synchronize();
  6362. //save currently set parameters to global variables
  6363. saved_feedmultiply = feedmultiply;
  6364. HotendTempBckp = degTargetHotend(active_extruder);
  6365. fanSpeedBckp = fanSpeed;
  6366. start_pause_print = millis();
  6367. //save position
  6368. pause_lastpos[X_AXIS] = current_position[X_AXIS];
  6369. pause_lastpos[Y_AXIS] = current_position[Y_AXIS];
  6370. pause_lastpos[Z_AXIS] = current_position[Z_AXIS];
  6371. pause_lastpos[E_AXIS] = current_position[E_AXIS];
  6372. SERIAL_ECHOPGM("X: ");
  6373. MYSERIAL.println(pause_lastpos[X_AXIS]);
  6374. SERIAL_ECHOPGM("Y: ");
  6375. MYSERIAL.println(pause_lastpos[Y_AXIS]);
  6376. SERIAL_ECHOPGM("Z: ");
  6377. MYSERIAL.println(pause_lastpos[Z_AXIS]);
  6378. //retract
  6379. current_position[E_AXIS] -= DEFAULT_RETRACTION;
  6380. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400, active_extruder);
  6381. //lift z
  6382. current_position[Z_AXIS] += Z_PAUSE_LIFT;
  6383. if (current_position[Z_AXIS] > Z_MAX_POS) current_position[Z_AXIS] = Z_MAX_POS;
  6384. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 15, active_extruder);
  6385. //set nozzle target temperature to 0
  6386. setTargetHotend(0, 0);
  6387. setTargetHotend(0, 1);
  6388. setTargetHotend(0, 2);
  6389. //Move XY to side
  6390. current_position[X_AXIS] = X_PAUSE_POS;
  6391. current_position[Y_AXIS] = Y_PAUSE_POS;
  6392. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 50, active_extruder);
  6393. // Turn off the print fan
  6394. fanSpeed = 0;
  6395. st_synchronize();
  6396. }
  6397. void serialecho_temperatures() {
  6398. float tt = degHotend(active_extruder);
  6399. SERIAL_PROTOCOLPGM("T:");
  6400. SERIAL_PROTOCOL(tt);
  6401. SERIAL_PROTOCOLPGM(" E:");
  6402. SERIAL_PROTOCOL((int)active_extruder);
  6403. SERIAL_PROTOCOLPGM(" B:");
  6404. SERIAL_PROTOCOL_F(degBed(), 1);
  6405. SERIAL_PROTOCOLLN("");
  6406. }
  6407. extern uint32_t sdpos_atomic;
  6408. void uvlo_()
  6409. {
  6410. unsigned long time_start = millis();
  6411. bool sd_print = card.sdprinting;
  6412. // Conserve power as soon as possible.
  6413. disable_x();
  6414. disable_y();
  6415. disable_e0();
  6416. tmc2130_set_current_h(Z_AXIS, 20);
  6417. tmc2130_set_current_r(Z_AXIS, 20);
  6418. tmc2130_set_current_h(E_AXIS, 20);
  6419. tmc2130_set_current_r(E_AXIS, 20);
  6420. // Indicate that the interrupt has been triggered.
  6421. // SERIAL_ECHOLNPGM("UVLO");
  6422. // Read out the current Z motor microstep counter. This will be later used
  6423. // for reaching the zero full step before powering off.
  6424. uint16_t z_microsteps = tmc2130_rd_MSCNT(Z_TMC2130_CS);
  6425. // Calculate the file position, from which to resume this print.
  6426. long sd_position = sdpos_atomic; //atomic sd position of last command added in queue
  6427. {
  6428. uint16_t sdlen_planner = planner_calc_sd_length(); //length of sd commands in planner
  6429. sd_position -= sdlen_planner;
  6430. uint16_t sdlen_cmdqueue = cmdqueue_calc_sd_length(); //length of sd commands in cmdqueue
  6431. sd_position -= sdlen_cmdqueue;
  6432. if (sd_position < 0) sd_position = 0;
  6433. }
  6434. // Backup the feedrate in mm/min.
  6435. int feedrate_bckp = blocks_queued() ? (block_buffer[block_buffer_tail].nominal_speed * 60.f) : feedrate;
  6436. // After this call, the planner queue is emptied and the current_position is set to a current logical coordinate.
  6437. // The logical coordinate will likely differ from the machine coordinate if the skew calibration and mesh bed leveling
  6438. // are in action.
  6439. planner_abort_hard();
  6440. // Store the current extruder position.
  6441. eeprom_update_float((float*)(EEPROM_UVLO_CURRENT_POSITION_E), st_get_position_mm(E_AXIS));
  6442. eeprom_update_byte((uint8_t*)EEPROM_UVLO_E_ABS, axis_relative_modes[3]?0:1);
  6443. // Clean the input command queue.
  6444. cmdqueue_reset();
  6445. card.sdprinting = false;
  6446. // card.closefile();
  6447. // Enable stepper driver interrupt to move Z axis.
  6448. // This should be fine as the planner and command queues are empty and the SD card printing is disabled.
  6449. //FIXME one may want to disable serial lines at this point of time to avoid interfering with the command queue,
  6450. // though it should not happen that the command queue is touched as the plan_buffer_line always succeed without blocking.
  6451. sei();
  6452. plan_buffer_line(
  6453. current_position[X_AXIS],
  6454. current_position[Y_AXIS],
  6455. current_position[Z_AXIS],
  6456. current_position[E_AXIS] - DEFAULT_RETRACTION,
  6457. 95, active_extruder);
  6458. st_synchronize();
  6459. disable_e0();
  6460. plan_buffer_line(
  6461. current_position[X_AXIS],
  6462. current_position[Y_AXIS],
  6463. current_position[Z_AXIS] + UVLO_Z_AXIS_SHIFT + float((1024 - z_microsteps + 7) >> 4) / axis_steps_per_unit[Z_AXIS],
  6464. current_position[E_AXIS] - DEFAULT_RETRACTION,
  6465. 40, active_extruder);
  6466. st_synchronize();
  6467. disable_e0();
  6468. plan_buffer_line(
  6469. current_position[X_AXIS],
  6470. current_position[Y_AXIS],
  6471. current_position[Z_AXIS] + UVLO_Z_AXIS_SHIFT + float((1024 - z_microsteps + 7) >> 4) / axis_steps_per_unit[Z_AXIS],
  6472. current_position[E_AXIS] - DEFAULT_RETRACTION,
  6473. 40, active_extruder);
  6474. st_synchronize();
  6475. disable_e0();
  6476. disable_z();
  6477. // Move Z up to the next 0th full step.
  6478. // Write the file position.
  6479. eeprom_update_dword((uint32_t*)(EEPROM_FILE_POSITION), sd_position);
  6480. // Store the mesh bed leveling offsets. This is 2*9=18 bytes, which takes 18*3.4us=52us in worst case.
  6481. for (int8_t mesh_point = 0; mesh_point < 9; ++ mesh_point) {
  6482. uint8_t ix = mesh_point % MESH_MEAS_NUM_X_POINTS; // from 0 to MESH_NUM_X_POINTS - 1
  6483. uint8_t iy = mesh_point / MESH_MEAS_NUM_X_POINTS;
  6484. // Scale the z value to 1u resolution.
  6485. int16_t v = mbl.active ? int16_t(floor(mbl.z_values[iy*3][ix*3] * 1000.f + 0.5f)) : 0;
  6486. eeprom_update_word((uint16_t*)(EEPROM_UVLO_MESH_BED_LEVELING+2*mesh_point), *reinterpret_cast<uint16_t*>(&v));
  6487. }
  6488. // Read out the current Z motor microstep counter. This will be later used
  6489. // for reaching the zero full step before powering off.
  6490. eeprom_update_word((uint16_t*)(EEPROM_UVLO_Z_MICROSTEPS), z_microsteps);
  6491. // Store the current position.
  6492. eeprom_update_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 0), current_position[X_AXIS]);
  6493. eeprom_update_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 4), current_position[Y_AXIS]);
  6494. eeprom_update_float((float*)(EEPROM_UVLO_CURRENT_POSITION_Z), current_position[Z_AXIS]);
  6495. // Store the current feed rate, temperatures and fan speed.
  6496. EEPROM_save_B(EEPROM_UVLO_FEEDRATE, &feedrate_bckp);
  6497. eeprom_update_byte((uint8_t*)EEPROM_UVLO_TARGET_HOTEND, target_temperature[active_extruder]);
  6498. eeprom_update_byte((uint8_t*)EEPROM_UVLO_TARGET_BED, target_temperature_bed);
  6499. eeprom_update_byte((uint8_t*)EEPROM_UVLO_FAN_SPEED, fanSpeed);
  6500. // Finaly store the "power outage" flag.
  6501. if(sd_print) eeprom_update_byte((uint8_t*)EEPROM_UVLO, 1);
  6502. st_synchronize();
  6503. SERIAL_ECHOPGM("stps");
  6504. MYSERIAL.println(tmc2130_rd_MSCNT(Z_TMC2130_CS));
  6505. disable_z();
  6506. // Increment power failure counter
  6507. uint8_t power_count = eeprom_read_byte((uint8_t*)EEPROM_POWER_COUNT);
  6508. power_count++;
  6509. eeprom_update_byte((uint8_t*)EEPROM_POWER_COUNT, power_count);
  6510. SERIAL_ECHOLNPGM("UVLO - end");
  6511. MYSERIAL.println(millis() - time_start);
  6512. #if 0
  6513. // Move the print head to the side of the print until all the power stored in the power supply capacitors is depleted.
  6514. current_position[X_AXIS] = (current_position[X_AXIS] < 0.5f * (X_MIN_POS + X_MAX_POS)) ? X_MIN_POS : X_MAX_POS;
  6515. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 500, active_extruder);
  6516. st_synchronize();
  6517. #endif
  6518. cli();
  6519. volatile unsigned int ppcount = 0;
  6520. SET_OUTPUT(BEEPER);
  6521. WRITE(BEEPER, HIGH);
  6522. for(ppcount = 0; ppcount < 2000; ppcount ++){
  6523. asm("nop");//50ns on 20Mhz, 62.5ns on 16Mhz
  6524. }
  6525. WRITE(BEEPER, LOW);
  6526. while(1){
  6527. #if 1
  6528. WRITE(BEEPER, LOW);
  6529. for(ppcount = 0; ppcount < 8000; ppcount ++){
  6530. asm("nop");//50ns on 20Mhz, 62.5ns on 16Mhz
  6531. }
  6532. #endif
  6533. };
  6534. }
  6535. void setup_fan_interrupt() {
  6536. //INT7
  6537. DDRE &= ~(1 << 7); //input pin
  6538. PORTE &= ~(1 << 7); //no internal pull-up
  6539. //start with sensing rising edge
  6540. EICRB &= ~(1 << 6);
  6541. EICRB |= (1 << 7);
  6542. //enable INT7 interrupt
  6543. EIMSK |= (1 << 7);
  6544. }
  6545. ISR(INT7_vect) {
  6546. //measuring speed now works for fanSpeed > 18 (approximately), which is sufficient because MIN_PRINT_FAN_SPEED is higher
  6547. if (fanSpeed < MIN_PRINT_FAN_SPEED) return;
  6548. if ((1 << 6) & EICRB) { //interrupt was triggered by rising edge
  6549. t_fan_rising_edge = millis_nc();
  6550. }
  6551. else { //interrupt was triggered by falling edge
  6552. if ((millis_nc() - t_fan_rising_edge) >= FAN_PULSE_WIDTH_LIMIT) {//this pulse was from sensor and not from pwm
  6553. fan_edge_counter[1] += 2; //we are currently counting all edges so lets count two edges for one pulse
  6554. }
  6555. }
  6556. EICRB ^= (1 << 6); //change edge
  6557. }
  6558. void setup_uvlo_interrupt() {
  6559. DDRE &= ~(1 << 4); //input pin
  6560. PORTE &= ~(1 << 4); //no internal pull-up
  6561. //sensing falling edge
  6562. EICRB |= (1 << 0);
  6563. EICRB &= ~(1 << 1);
  6564. //enable INT4 interrupt
  6565. EIMSK |= (1 << 4);
  6566. }
  6567. ISR(INT4_vect) {
  6568. EIMSK &= ~(1 << 4); //disable INT4 interrupt to make sure that this code will be executed just once
  6569. SERIAL_ECHOLNPGM("INT4");
  6570. if (IS_SD_PRINTING) uvlo_();
  6571. }
  6572. void recover_print(uint8_t automatic) {
  6573. char cmd[30];
  6574. lcd_update_enable(true);
  6575. lcd_update(2);
  6576. lcd_setstatuspgm(MSG_RECOVERING_PRINT);
  6577. recover_machine_state_after_power_panic();
  6578. // Set the target bed and nozzle temperatures.
  6579. sprintf_P(cmd, PSTR("M104 S%d"), target_temperature[active_extruder]);
  6580. enquecommand(cmd);
  6581. sprintf_P(cmd, PSTR("M140 S%d"), target_temperature_bed);
  6582. enquecommand(cmd);
  6583. // Lift the print head, so one may remove the excess priming material.
  6584. if (current_position[Z_AXIS] < 25)
  6585. enquecommand_P(PSTR("G1 Z25 F800"));
  6586. // Home X and Y axes. Homing just X and Y shall not touch the babystep and the world2machine transformation status.
  6587. enquecommand_P(PSTR("G28 X Y"));
  6588. // Set the target bed and nozzle temperatures and wait.
  6589. sprintf_P(cmd, PSTR("M109 S%d"), target_temperature[active_extruder]);
  6590. enquecommand(cmd);
  6591. sprintf_P(cmd, PSTR("M190 S%d"), target_temperature_bed);
  6592. enquecommand(cmd);
  6593. enquecommand_P(PSTR("M83")); //E axis relative mode
  6594. //enquecommand_P(PSTR("G1 E5 F120")); //Extrude some filament to stabilize pessure
  6595. // If not automatically recoreverd (long power loss), extrude extra filament to stabilize
  6596. if(automatic == 0){
  6597. enquecommand_P(PSTR("G1 E5 F120")); //Extrude some filament to stabilize pessure
  6598. }
  6599. enquecommand_P(PSTR("G1 E" STRINGIFY(-DEFAULT_RETRACTION)" F480"));
  6600. // Mark the power panic status as inactive.
  6601. eeprom_update_byte((uint8_t*)EEPROM_UVLO, 0);
  6602. /*while ((abs(degHotend(0)- target_temperature[0])>5) || (abs(degBed() -target_temperature_bed)>3)) { //wait for heater and bed to reach target temp
  6603. delay_keep_alive(1000);
  6604. }*/
  6605. SERIAL_ECHOPGM("After waiting for temp:");
  6606. SERIAL_ECHOPGM("Current position X_AXIS:");
  6607. MYSERIAL.println(current_position[X_AXIS]);
  6608. SERIAL_ECHOPGM("Current position Y_AXIS:");
  6609. MYSERIAL.println(current_position[Y_AXIS]);
  6610. // Restart the print.
  6611. restore_print_from_eeprom();
  6612. SERIAL_ECHOPGM("current_position[Z_AXIS]:");
  6613. MYSERIAL.print(current_position[Z_AXIS]);
  6614. SERIAL_ECHOPGM("current_position[E_AXIS]:");
  6615. MYSERIAL.print(current_position[E_AXIS]);
  6616. }
  6617. void recover_machine_state_after_power_panic()
  6618. {
  6619. char cmd[30];
  6620. // 1) Recover the logical cordinates at the time of the power panic.
  6621. // The logical XY coordinates are needed to recover the machine Z coordinate corrected by the mesh bed leveling.
  6622. current_position[X_AXIS] = eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 0));
  6623. current_position[Y_AXIS] = eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 4));
  6624. // Recover the logical coordinate of the Z axis at the time of the power panic.
  6625. // The current position after power panic is moved to the next closest 0th full step.
  6626. current_position[Z_AXIS] = eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION_Z)) +
  6627. UVLO_Z_AXIS_SHIFT + float((1024 - eeprom_read_word((uint16_t*)(EEPROM_UVLO_Z_MICROSTEPS)) + 7) >> 4) / axis_steps_per_unit[Z_AXIS];
  6628. if (eeprom_read_byte((uint8_t*)EEPROM_UVLO_E_ABS)) {
  6629. current_position[E_AXIS] = eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION_E));
  6630. sprintf_P(cmd, PSTR("G92 E"));
  6631. dtostrf(current_position[E_AXIS], 6, 3, cmd + strlen(cmd));
  6632. enquecommand(cmd);
  6633. }
  6634. memcpy(destination, current_position, sizeof(destination));
  6635. SERIAL_ECHOPGM("recover_machine_state_after_power_panic, initial ");
  6636. print_world_coordinates();
  6637. // 2) Initialize the logical to physical coordinate system transformation.
  6638. world2machine_initialize();
  6639. // 3) Restore the mesh bed leveling offsets. This is 2*9=18 bytes, which takes 18*3.4us=52us in worst case.
  6640. mbl.active = false;
  6641. for (int8_t mesh_point = 0; mesh_point < 9; ++ mesh_point) {
  6642. uint8_t ix = mesh_point % MESH_MEAS_NUM_X_POINTS; // from 0 to MESH_NUM_X_POINTS - 1
  6643. uint8_t iy = mesh_point / MESH_MEAS_NUM_X_POINTS;
  6644. // Scale the z value to 10u resolution.
  6645. int16_t v;
  6646. eeprom_read_block(&v, (void*)(EEPROM_UVLO_MESH_BED_LEVELING+2*mesh_point), 2);
  6647. if (v != 0)
  6648. mbl.active = true;
  6649. mbl.z_values[iy][ix] = float(v) * 0.001f;
  6650. }
  6651. if (mbl.active)
  6652. mbl.upsample_3x3();
  6653. // SERIAL_ECHOPGM("recover_machine_state_after_power_panic, initial ");
  6654. // print_mesh_bed_leveling_table();
  6655. // 4) Load the baby stepping value, which is expected to be active at the time of power panic.
  6656. // The baby stepping value is used to reset the physical Z axis when rehoming the Z axis.
  6657. babystep_load();
  6658. // 5) Set the physical positions from the logical positions using the world2machine transformation and the active bed leveling.
  6659. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  6660. // 6) Power up the motors, mark their positions as known.
  6661. //FIXME Verfiy, whether the X and Y axes should be powered up here, as they will later be re-homed anyway.
  6662. axis_known_position[X_AXIS] = true; enable_x();
  6663. axis_known_position[Y_AXIS] = true; enable_y();
  6664. axis_known_position[Z_AXIS] = true; enable_z();
  6665. SERIAL_ECHOPGM("recover_machine_state_after_power_panic, initial ");
  6666. print_physical_coordinates();
  6667. // 7) Recover the target temperatures.
  6668. target_temperature[active_extruder] = eeprom_read_byte((uint8_t*)EEPROM_UVLO_TARGET_HOTEND);
  6669. target_temperature_bed = eeprom_read_byte((uint8_t*)EEPROM_UVLO_TARGET_BED);
  6670. }
  6671. void restore_print_from_eeprom() {
  6672. float x_rec, y_rec, z_pos;
  6673. int feedrate_rec;
  6674. uint8_t fan_speed_rec;
  6675. char cmd[30];
  6676. char* c;
  6677. char filename[13];
  6678. uint8_t depth = 0;
  6679. char dir_name[9];
  6680. fan_speed_rec = eeprom_read_byte((uint8_t*)EEPROM_UVLO_FAN_SPEED);
  6681. EEPROM_read_B(EEPROM_UVLO_FEEDRATE, &feedrate_rec);
  6682. SERIAL_ECHOPGM("Feedrate:");
  6683. MYSERIAL.println(feedrate_rec);
  6684. depth = eeprom_read_byte((uint8_t*)EEPROM_DIR_DEPTH);
  6685. MYSERIAL.println(int(depth));
  6686. for (int i = 0; i < depth; i++) {
  6687. for (int j = 0; j < 8; j++) {
  6688. dir_name[j] = eeprom_read_byte((uint8_t*)EEPROM_DIRS + j + 8 * i);
  6689. }
  6690. dir_name[8] = '\0';
  6691. MYSERIAL.println(dir_name);
  6692. card.chdir(dir_name);
  6693. }
  6694. for (int i = 0; i < 8; i++) {
  6695. filename[i] = eeprom_read_byte((uint8_t*)EEPROM_FILENAME + i);
  6696. }
  6697. filename[8] = '\0';
  6698. MYSERIAL.print(filename);
  6699. strcat_P(filename, PSTR(".gco"));
  6700. sprintf_P(cmd, PSTR("M23 %s"), filename);
  6701. for (c = &cmd[4]; *c; c++)
  6702. *c = tolower(*c);
  6703. enquecommand(cmd);
  6704. uint32_t position = eeprom_read_dword((uint32_t*)(EEPROM_FILE_POSITION));
  6705. SERIAL_ECHOPGM("Position read from eeprom:");
  6706. MYSERIAL.println(position);
  6707. // E axis relative mode.
  6708. enquecommand_P(PSTR("M83"));
  6709. // Move to the XY print position in logical coordinates, where the print has been killed.
  6710. strcpy_P(cmd, PSTR("G1 X")); strcat(cmd, ftostr32(eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 0))));
  6711. strcat_P(cmd, PSTR(" Y")); strcat(cmd, ftostr32(eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 4))));
  6712. strcat_P(cmd, PSTR(" F2000"));
  6713. enquecommand(cmd);
  6714. // Move the Z axis down to the print, in logical coordinates.
  6715. strcpy_P(cmd, PSTR("G1 Z")); strcat(cmd, ftostr32(eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION_Z))));
  6716. enquecommand(cmd);
  6717. // Unretract.
  6718. enquecommand_P(PSTR("G1 E" STRINGIFY(2*DEFAULT_RETRACTION)" F480"));
  6719. // Set the feedrate saved at the power panic.
  6720. sprintf_P(cmd, PSTR("G1 F%d"), feedrate_rec);
  6721. enquecommand(cmd);
  6722. if (eeprom_read_byte((uint8_t*)EEPROM_UVLO_E_ABS))
  6723. {
  6724. float extruder_abs_pos = eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION_E));
  6725. enquecommand_P(PSTR("M82")); //E axis abslute mode
  6726. }
  6727. // Set the fan speed saved at the power panic.
  6728. strcpy_P(cmd, PSTR("M106 S"));
  6729. strcat(cmd, itostr3(int(fan_speed_rec)));
  6730. enquecommand(cmd);
  6731. // Set a position in the file.
  6732. sprintf_P(cmd, PSTR("M26 S%lu"), position);
  6733. enquecommand(cmd);
  6734. // Start SD print.
  6735. enquecommand_P(PSTR("M24"));
  6736. }
  6737. ////////////////////////////////////////////////////////////////////////////////
  6738. // new save/restore printing
  6739. //extern uint32_t sdpos_atomic;
  6740. bool saved_printing = false;
  6741. uint32_t saved_sdpos = 0;
  6742. float saved_pos[4] = {0, 0, 0, 0};
  6743. // Feedrate hopefully derived from an active block of the planner at the time the print has been canceled, in mm/min.
  6744. float saved_feedrate2 = 0;
  6745. uint8_t saved_active_extruder = 0;
  6746. bool saved_extruder_under_pressure = false;
  6747. void stop_and_save_print_to_ram(float z_move, float e_move)
  6748. {
  6749. if (saved_printing) return;
  6750. cli();
  6751. unsigned char nplanner_blocks = number_of_blocks();
  6752. saved_sdpos = sdpos_atomic; //atomic sd position of last command added in queue
  6753. uint16_t sdlen_planner = planner_calc_sd_length(); //length of sd commands in planner
  6754. saved_sdpos -= sdlen_planner;
  6755. uint16_t sdlen_cmdqueue = cmdqueue_calc_sd_length(); //length of sd commands in cmdqueue
  6756. saved_sdpos -= sdlen_cmdqueue;
  6757. #if 0
  6758. SERIAL_ECHOPGM("SDPOS_ATOMIC="); MYSERIAL.println(sdpos_atomic, DEC);
  6759. SERIAL_ECHOPGM("SDPOS="); MYSERIAL.println(card.get_sdpos(), DEC);
  6760. SERIAL_ECHOPGM("SDLEN_PLAN="); MYSERIAL.println(sdlen_planner, DEC);
  6761. SERIAL_ECHOPGM("SDLEN_CMDQ="); MYSERIAL.println(sdlen_cmdqueue, DEC);
  6762. SERIAL_ECHOPGM("PLANNERBLOCKS="); MYSERIAL.println(int(nplanner_blocks), DEC);
  6763. SERIAL_ECHOPGM("SDSAVED="); MYSERIAL.println(saved_sdpos, DEC);
  6764. SERIAL_ECHOPGM("SDFILELEN="); MYSERIAL.println(card.fileSize(), DEC);
  6765. {
  6766. card.setIndex(saved_sdpos);
  6767. SERIAL_ECHOLNPGM("Content of planner buffer: ");
  6768. for (unsigned int idx = 0; idx < sdlen_planner; ++ idx)
  6769. MYSERIAL.print(char(card.get()));
  6770. SERIAL_ECHOLNPGM("Content of command buffer: ");
  6771. for (unsigned int idx = 0; idx < sdlen_cmdqueue; ++ idx)
  6772. MYSERIAL.print(char(card.get()));
  6773. SERIAL_ECHOLNPGM("End of command buffer");
  6774. }
  6775. {
  6776. // Print the content of the planner buffer, line by line:
  6777. card.setIndex(saved_sdpos);
  6778. int8_t iline = 0;
  6779. for (unsigned char idx = block_buffer_tail; idx != block_buffer_head; idx = (idx + 1) & (BLOCK_BUFFER_SIZE - 1), ++ iline) {
  6780. SERIAL_ECHOPGM("Planner line (from file): ");
  6781. MYSERIAL.print(int(iline), DEC);
  6782. SERIAL_ECHOPGM(", length: ");
  6783. MYSERIAL.print(block_buffer[idx].sdlen, DEC);
  6784. SERIAL_ECHOPGM(", steps: (");
  6785. MYSERIAL.print(block_buffer[idx].steps_x, DEC);
  6786. SERIAL_ECHOPGM(",");
  6787. MYSERIAL.print(block_buffer[idx].steps_y, DEC);
  6788. SERIAL_ECHOPGM(",");
  6789. MYSERIAL.print(block_buffer[idx].steps_z, DEC);
  6790. SERIAL_ECHOPGM(",");
  6791. MYSERIAL.print(block_buffer[idx].steps_e, DEC);
  6792. SERIAL_ECHOPGM("), events: ");
  6793. MYSERIAL.println(block_buffer[idx].step_event_count, DEC);
  6794. for (int len = block_buffer[idx].sdlen; len > 0; -- len)
  6795. MYSERIAL.print(char(card.get()));
  6796. }
  6797. }
  6798. {
  6799. // Print the content of the command buffer, line by line:
  6800. int8_t iline = 0;
  6801. union {
  6802. struct {
  6803. char lo;
  6804. char hi;
  6805. } lohi;
  6806. uint16_t value;
  6807. } sdlen_single;
  6808. int _bufindr = bufindr;
  6809. for (int _buflen = buflen; _buflen > 0; ++ iline) {
  6810. if (cmdbuffer[_bufindr] == CMDBUFFER_CURRENT_TYPE_SDCARD) {
  6811. sdlen_single.lohi.lo = cmdbuffer[_bufindr + 1];
  6812. sdlen_single.lohi.hi = cmdbuffer[_bufindr + 2];
  6813. }
  6814. SERIAL_ECHOPGM("Buffer line (from buffer): ");
  6815. MYSERIAL.print(int(iline), DEC);
  6816. SERIAL_ECHOPGM(", type: ");
  6817. MYSERIAL.print(int(cmdbuffer[_bufindr]), DEC);
  6818. SERIAL_ECHOPGM(", len: ");
  6819. MYSERIAL.println(sdlen_single.value, DEC);
  6820. // Print the content of the buffer line.
  6821. MYSERIAL.println(cmdbuffer + _bufindr + CMDHDRSIZE);
  6822. SERIAL_ECHOPGM("Buffer line (from file): ");
  6823. MYSERIAL.print(int(iline), DEC);
  6824. MYSERIAL.println(int(iline), DEC);
  6825. for (; sdlen_single.value > 0; -- sdlen_single.value)
  6826. MYSERIAL.print(char(card.get()));
  6827. if (-- _buflen == 0)
  6828. break;
  6829. // First skip the current command ID and iterate up to the end of the string.
  6830. for (_bufindr += CMDHDRSIZE; cmdbuffer[_bufindr] != 0; ++ _bufindr) ;
  6831. // Second, skip the end of string null character and iterate until a nonzero command ID is found.
  6832. for (++ _bufindr; _bufindr < sizeof(cmdbuffer) && cmdbuffer[_bufindr] == 0; ++ _bufindr) ;
  6833. // If the end of the buffer was empty,
  6834. if (_bufindr == sizeof(cmdbuffer)) {
  6835. // skip to the start and find the nonzero command.
  6836. for (_bufindr = 0; cmdbuffer[_bufindr] == 0; ++ _bufindr) ;
  6837. }
  6838. }
  6839. }
  6840. #endif
  6841. #if 0
  6842. saved_feedrate2 = feedrate; //save feedrate
  6843. #else
  6844. // Try to deduce the feedrate from the first block of the planner.
  6845. // Speed is in mm/min.
  6846. saved_feedrate2 = blocks_queued() ? (block_buffer[block_buffer_tail].nominal_speed * 60.f) : feedrate;
  6847. #endif
  6848. planner_abort_hard(); //abort printing
  6849. memcpy(saved_pos, current_position, sizeof(saved_pos));
  6850. saved_active_extruder = active_extruder; //save active_extruder
  6851. saved_extruder_under_pressure = extruder_under_pressure; //extruder under pressure flag - currently unused
  6852. cmdqueue_reset(); //empty cmdqueue
  6853. card.sdprinting = false;
  6854. // card.closefile();
  6855. saved_printing = true;
  6856. sei();
  6857. if ((z_move != 0) || (e_move != 0)) { // extruder or z move
  6858. #if 1
  6859. // Rather than calling plan_buffer_line directly, push the move into the command queue,
  6860. char buf[48];
  6861. strcpy_P(buf, PSTR("G1 Z"));
  6862. dtostrf(saved_pos[Z_AXIS] + z_move, 8, 3, buf + strlen(buf));
  6863. strcat_P(buf, PSTR(" E"));
  6864. // Relative extrusion
  6865. dtostrf(e_move, 6, 3, buf + strlen(buf));
  6866. strcat_P(buf, PSTR(" F"));
  6867. dtostrf(homing_feedrate[Z_AXIS], 8, 3, buf + strlen(buf));
  6868. // At this point the command queue is empty.
  6869. enquecommand(buf, false);
  6870. // If this call is invoked from the main Arduino loop() function, let the caller know that the command
  6871. // in the command queue is not the original command, but a new one, so it should not be removed from the queue.
  6872. repeatcommand_front();
  6873. #else
  6874. plan_buffer_line(saved_pos[X_AXIS], saved_pos[Y_AXIS], saved_pos[Z_AXIS] + z_move, saved_pos[E_AXIS] + e_move, homing_feedrate[Z_AXIS], active_extruder);
  6875. st_synchronize(); //wait moving
  6876. memcpy(current_position, saved_pos, sizeof(saved_pos));
  6877. memcpy(destination, current_position, sizeof(destination));
  6878. #endif
  6879. }
  6880. }
  6881. void restore_print_from_ram_and_continue(float e_move)
  6882. {
  6883. if (!saved_printing) return;
  6884. // for (int axis = X_AXIS; axis <= E_AXIS; axis++)
  6885. // current_position[axis] = st_get_position_mm(axis);
  6886. active_extruder = saved_active_extruder; //restore active_extruder
  6887. feedrate = saved_feedrate2; //restore feedrate
  6888. float e = saved_pos[E_AXIS] - e_move;
  6889. plan_set_e_position(e);
  6890. plan_buffer_line(saved_pos[X_AXIS], saved_pos[Y_AXIS], saved_pos[Z_AXIS], saved_pos[E_AXIS], homing_feedrate[Z_AXIS]/13, active_extruder);
  6891. st_synchronize();
  6892. memcpy(current_position, saved_pos, sizeof(saved_pos));
  6893. memcpy(destination, current_position, sizeof(destination));
  6894. card.setIndex(saved_sdpos);
  6895. sdpos_atomic = saved_sdpos;
  6896. card.sdprinting = true;
  6897. saved_printing = false;
  6898. printf_P(PSTR("ok\n")); //dummy response because of octoprint is waiting for this
  6899. }
  6900. void print_world_coordinates()
  6901. {
  6902. SERIAL_ECHOPGM("world coordinates: (");
  6903. MYSERIAL.print(current_position[X_AXIS], 3);
  6904. SERIAL_ECHOPGM(", ");
  6905. MYSERIAL.print(current_position[Y_AXIS], 3);
  6906. SERIAL_ECHOPGM(", ");
  6907. MYSERIAL.print(current_position[Z_AXIS], 3);
  6908. SERIAL_ECHOLNPGM(")");
  6909. }
  6910. void print_physical_coordinates()
  6911. {
  6912. SERIAL_ECHOPGM("physical coordinates: (");
  6913. MYSERIAL.print(st_get_position_mm(X_AXIS), 3);
  6914. SERIAL_ECHOPGM(", ");
  6915. MYSERIAL.print(st_get_position_mm(Y_AXIS), 3);
  6916. SERIAL_ECHOPGM(", ");
  6917. MYSERIAL.print(st_get_position_mm(Z_AXIS), 3);
  6918. SERIAL_ECHOLNPGM(")");
  6919. }
  6920. void print_mesh_bed_leveling_table()
  6921. {
  6922. SERIAL_ECHOPGM("mesh bed leveling: ");
  6923. for (int8_t y = 0; y < MESH_NUM_Y_POINTS; ++ y)
  6924. for (int8_t x = 0; x < MESH_NUM_Y_POINTS; ++ x) {
  6925. MYSERIAL.print(mbl.z_values[y][x], 3);
  6926. SERIAL_ECHOPGM(" ");
  6927. }
  6928. SERIAL_ECHOLNPGM("");
  6929. }
  6930. #define FIL_LOAD_LENGTH 60
  6931. void extr_unload2() { //unloads filament
  6932. // float tmp_motor[3] = DEFAULT_PWM_MOTOR_CURRENT;
  6933. // float tmp_motor_loud[3] = DEFAULT_PWM_MOTOR_CURRENT_LOUD;
  6934. // int8_t SilentMode;
  6935. uint8_t snmm_extruder = 0;
  6936. if (degHotend0() > EXTRUDE_MINTEMP) {
  6937. lcd_implementation_clear();
  6938. lcd_display_message_fullscreen_P(PSTR(""));
  6939. max_feedrate[E_AXIS] = 50;
  6940. lcd.setCursor(0, 0); lcd_printPGM(MSG_UNLOADING_FILAMENT);
  6941. // lcd.print(" ");
  6942. // lcd.print(snmm_extruder + 1);
  6943. lcd.setCursor(0, 2); lcd_printPGM(MSG_PLEASE_WAIT);
  6944. if (current_position[Z_AXIS] < 15) {
  6945. current_position[Z_AXIS] += 15; //lifting in Z direction to make space for extrusion
  6946. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 25, active_extruder);
  6947. }
  6948. current_position[E_AXIS] += 10; //extrusion
  6949. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 10, active_extruder);
  6950. // digipot_current(2, E_MOTOR_HIGH_CURRENT);
  6951. if (current_temperature[0] < 230) { //PLA & all other filaments
  6952. current_position[E_AXIS] += 5.4;
  6953. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2800 / 60, active_extruder);
  6954. current_position[E_AXIS] += 3.2;
  6955. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  6956. current_position[E_AXIS] += 3;
  6957. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3400 / 60, active_extruder);
  6958. }
  6959. else { //ABS
  6960. current_position[E_AXIS] += 3.1;
  6961. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2000 / 60, active_extruder);
  6962. current_position[E_AXIS] += 3.1;
  6963. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2500 / 60, active_extruder);
  6964. current_position[E_AXIS] += 4;
  6965. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  6966. /*current_position[X_AXIS] += 23; //delay
  6967. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder); //delay
  6968. current_position[X_AXIS] -= 23; //delay
  6969. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder); //delay*/
  6970. delay_keep_alive(4700);
  6971. }
  6972. max_feedrate[E_AXIS] = 80;
  6973. current_position[E_AXIS] -= (bowden_length[snmm_extruder] + 60 + FIL_LOAD_LENGTH) / 2;
  6974. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 500, active_extruder);
  6975. current_position[E_AXIS] -= (bowden_length[snmm_extruder] + 60 + FIL_LOAD_LENGTH) / 2;
  6976. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 500, active_extruder);
  6977. st_synchronize();
  6978. //digipot_init();
  6979. // if (SilentMode == 1) digipot_current(2, tmp_motor[2]); //set back to normal operation currents
  6980. // else digipot_current(2, tmp_motor_loud[2]);
  6981. lcd_update_enable(true);
  6982. // lcd_return_to_status();
  6983. max_feedrate[E_AXIS] = 50;
  6984. }
  6985. else {
  6986. lcd_implementation_clear();
  6987. lcd.setCursor(0, 0);
  6988. lcd_printPGM(MSG_ERROR);
  6989. lcd.setCursor(0, 2);
  6990. lcd_printPGM(MSG_PREHEAT_NOZZLE);
  6991. delay(2000);
  6992. lcd_implementation_clear();
  6993. }
  6994. // lcd_return_to_status();
  6995. }