Marlin_main.cpp 347 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971397239733974397539763977397839793980398139823983398439853986398739883989399039913992399339943995399639973998399940004001400240034004400540064007400840094010401140124013401440154016401740184019402040214022402340244025402640274028402940304031403240334034403540364037403840394040404140424043404440454046404740484049405040514052405340544055405640574058405940604061406240634064406540664067406840694070407140724073407440754076407740784079408040814082408340844085408640874088408940904091409240934094409540964097409840994100410141024103410441054106410741084109411041114112411341144115411641174118411941204121412241234124412541264127412841294130413141324133413441354136413741384139414041414142414341444145414641474148414941504151415241534154415541564157415841594160416141624163416441654166416741684169417041714172417341744175417641774178417941804181418241834184418541864187418841894190419141924193419441954196419741984199420042014202420342044205420642074208420942104211421242134214421542164217421842194220422142224223422442254226422742284229423042314232423342344235423642374238423942404241424242434244424542464247424842494250425142524253425442554256425742584259426042614262426342644265426642674268426942704271427242734274427542764277427842794280428142824283428442854286428742884289429042914292429342944295429642974298429943004301430243034304430543064307430843094310431143124313431443154316431743184319432043214322432343244325432643274328432943304331433243334334433543364337433843394340434143424343434443454346434743484349435043514352435343544355435643574358435943604361436243634364436543664367436843694370437143724373437443754376437743784379438043814382438343844385438643874388438943904391439243934394439543964397439843994400440144024403440444054406440744084409441044114412441344144415441644174418441944204421442244234424442544264427442844294430443144324433443444354436443744384439444044414442444344444445444644474448444944504451445244534454445544564457445844594460446144624463446444654466446744684469447044714472447344744475447644774478447944804481448244834484448544864487448844894490449144924493449444954496449744984499450045014502450345044505450645074508450945104511451245134514451545164517451845194520452145224523452445254526452745284529453045314532453345344535453645374538453945404541454245434544454545464547454845494550455145524553455445554556455745584559456045614562456345644565456645674568456945704571457245734574457545764577457845794580458145824583458445854586458745884589459045914592459345944595459645974598459946004601460246034604460546064607460846094610461146124613461446154616461746184619462046214622462346244625462646274628462946304631463246334634463546364637463846394640464146424643464446454646464746484649465046514652465346544655465646574658465946604661466246634664466546664667466846694670467146724673467446754676467746784679468046814682468346844685468646874688468946904691469246934694469546964697469846994700470147024703470447054706470747084709471047114712471347144715471647174718471947204721472247234724472547264727472847294730473147324733473447354736473747384739474047414742474347444745474647474748474947504751475247534754475547564757475847594760476147624763476447654766476747684769477047714772477347744775477647774778477947804781478247834784478547864787478847894790479147924793479447954796479747984799480048014802480348044805480648074808480948104811481248134814481548164817481848194820482148224823482448254826482748284829483048314832483348344835483648374838483948404841484248434844484548464847484848494850485148524853485448554856485748584859486048614862486348644865486648674868486948704871487248734874487548764877487848794880488148824883488448854886488748884889489048914892489348944895489648974898489949004901490249034904490549064907490849094910491149124913491449154916491749184919492049214922492349244925492649274928492949304931493249334934493549364937493849394940494149424943494449454946494749484949495049514952495349544955495649574958495949604961496249634964496549664967496849694970497149724973497449754976497749784979498049814982498349844985498649874988498949904991499249934994499549964997499849995000500150025003500450055006500750085009501050115012501350145015501650175018501950205021502250235024502550265027502850295030503150325033503450355036503750385039504050415042504350445045504650475048504950505051505250535054505550565057505850595060506150625063506450655066506750685069507050715072507350745075507650775078507950805081508250835084508550865087508850895090509150925093509450955096509750985099510051015102510351045105510651075108510951105111511251135114511551165117511851195120512151225123512451255126512751285129513051315132513351345135513651375138513951405141514251435144514551465147514851495150515151525153515451555156515751585159516051615162516351645165516651675168516951705171517251735174517551765177517851795180518151825183518451855186518751885189519051915192519351945195519651975198519952005201520252035204520552065207520852095210521152125213521452155216521752185219522052215222522352245225522652275228522952305231523252335234523552365237523852395240524152425243524452455246524752485249525052515252525352545255525652575258525952605261526252635264526552665267526852695270527152725273527452755276527752785279528052815282528352845285528652875288528952905291529252935294529552965297529852995300530153025303530453055306530753085309531053115312531353145315531653175318531953205321532253235324532553265327532853295330533153325333533453355336533753385339534053415342534353445345534653475348534953505351535253535354535553565357535853595360536153625363536453655366536753685369537053715372537353745375537653775378537953805381538253835384538553865387538853895390539153925393539453955396539753985399540054015402540354045405540654075408540954105411541254135414541554165417541854195420542154225423542454255426542754285429543054315432543354345435543654375438543954405441544254435444544554465447544854495450545154525453545454555456545754585459546054615462546354645465546654675468546954705471547254735474547554765477547854795480548154825483548454855486548754885489549054915492549354945495549654975498549955005501550255035504550555065507550855095510551155125513551455155516551755185519552055215522552355245525552655275528552955305531553255335534553555365537553855395540554155425543554455455546554755485549555055515552555355545555555655575558555955605561556255635564556555665567556855695570557155725573557455755576557755785579558055815582558355845585558655875588558955905591559255935594559555965597559855995600560156025603560456055606560756085609561056115612561356145615561656175618561956205621562256235624562556265627562856295630563156325633563456355636563756385639564056415642564356445645564656475648564956505651565256535654565556565657565856595660566156625663566456655666566756685669567056715672567356745675567656775678567956805681568256835684568556865687568856895690569156925693569456955696569756985699570057015702570357045705570657075708570957105711571257135714571557165717571857195720572157225723572457255726572757285729573057315732573357345735573657375738573957405741574257435744574557465747574857495750575157525753575457555756575757585759576057615762576357645765576657675768576957705771577257735774577557765777577857795780578157825783578457855786578757885789579057915792579357945795579657975798579958005801580258035804580558065807580858095810581158125813581458155816581758185819582058215822582358245825582658275828582958305831583258335834583558365837583858395840584158425843584458455846584758485849585058515852585358545855585658575858585958605861586258635864586558665867586858695870587158725873587458755876587758785879588058815882588358845885588658875888588958905891589258935894589558965897589858995900590159025903590459055906590759085909591059115912591359145915591659175918591959205921592259235924592559265927592859295930593159325933593459355936593759385939594059415942594359445945594659475948594959505951595259535954595559565957595859595960596159625963596459655966596759685969597059715972597359745975597659775978597959805981598259835984598559865987598859895990599159925993599459955996599759985999600060016002600360046005600660076008600960106011601260136014601560166017601860196020602160226023602460256026602760286029603060316032603360346035603660376038603960406041604260436044604560466047604860496050605160526053605460556056605760586059606060616062606360646065606660676068606960706071607260736074607560766077607860796080608160826083608460856086608760886089609060916092609360946095609660976098609961006101610261036104610561066107610861096110611161126113611461156116611761186119612061216122612361246125612661276128612961306131613261336134613561366137613861396140614161426143614461456146614761486149615061516152615361546155615661576158615961606161616261636164616561666167616861696170617161726173617461756176617761786179618061816182618361846185618661876188618961906191619261936194619561966197619861996200620162026203620462056206620762086209621062116212621362146215621662176218621962206221622262236224622562266227622862296230623162326233623462356236623762386239624062416242624362446245624662476248624962506251625262536254625562566257625862596260626162626263626462656266626762686269627062716272627362746275627662776278627962806281628262836284628562866287628862896290629162926293629462956296629762986299630063016302630363046305630663076308630963106311631263136314631563166317631863196320632163226323632463256326632763286329633063316332633363346335633663376338633963406341634263436344634563466347634863496350635163526353635463556356635763586359636063616362636363646365636663676368636963706371637263736374637563766377637863796380638163826383638463856386638763886389639063916392639363946395639663976398639964006401640264036404640564066407640864096410641164126413641464156416641764186419642064216422642364246425642664276428642964306431643264336434643564366437643864396440644164426443644464456446644764486449645064516452645364546455645664576458645964606461646264636464646564666467646864696470647164726473647464756476647764786479648064816482648364846485648664876488648964906491649264936494649564966497649864996500650165026503650465056506650765086509651065116512651365146515651665176518651965206521652265236524652565266527652865296530653165326533653465356536653765386539654065416542654365446545654665476548654965506551655265536554655565566557655865596560656165626563656465656566656765686569657065716572657365746575657665776578657965806581658265836584658565866587658865896590659165926593659465956596659765986599660066016602660366046605660666076608660966106611661266136614661566166617661866196620662166226623662466256626662766286629663066316632663366346635663666376638663966406641664266436644664566466647664866496650665166526653665466556656665766586659666066616662666366646665666666676668666966706671667266736674667566766677667866796680668166826683668466856686668766886689669066916692669366946695669666976698669967006701670267036704670567066707670867096710671167126713671467156716671767186719672067216722672367246725672667276728672967306731673267336734673567366737673867396740674167426743674467456746674767486749675067516752675367546755675667576758675967606761676267636764676567666767676867696770677167726773677467756776677767786779678067816782678367846785678667876788678967906791679267936794679567966797679867996800680168026803680468056806680768086809681068116812681368146815681668176818681968206821682268236824682568266827682868296830683168326833683468356836683768386839684068416842684368446845684668476848684968506851685268536854685568566857685868596860686168626863686468656866686768686869687068716872687368746875687668776878687968806881688268836884688568866887688868896890689168926893689468956896689768986899690069016902690369046905690669076908690969106911691269136914691569166917691869196920692169226923692469256926692769286929693069316932693369346935693669376938693969406941694269436944694569466947694869496950695169526953695469556956695769586959696069616962696369646965696669676968696969706971697269736974697569766977697869796980698169826983698469856986698769886989699069916992699369946995699669976998699970007001700270037004700570067007700870097010701170127013701470157016701770187019702070217022702370247025702670277028702970307031703270337034703570367037703870397040704170427043704470457046704770487049705070517052705370547055705670577058705970607061706270637064706570667067706870697070707170727073707470757076707770787079708070817082708370847085708670877088708970907091709270937094709570967097709870997100710171027103710471057106710771087109711071117112711371147115711671177118711971207121712271237124712571267127712871297130713171327133713471357136713771387139714071417142714371447145714671477148714971507151715271537154715571567157715871597160716171627163716471657166716771687169717071717172717371747175717671777178717971807181718271837184718571867187718871897190719171927193719471957196719771987199720072017202720372047205720672077208720972107211721272137214721572167217721872197220722172227223722472257226722772287229723072317232723372347235723672377238723972407241724272437244724572467247724872497250725172527253725472557256725772587259726072617262726372647265726672677268726972707271727272737274727572767277727872797280728172827283728472857286728772887289729072917292729372947295729672977298729973007301730273037304730573067307730873097310731173127313731473157316731773187319732073217322732373247325732673277328732973307331733273337334733573367337733873397340734173427343734473457346734773487349735073517352735373547355735673577358735973607361736273637364736573667367736873697370737173727373737473757376737773787379738073817382738373847385738673877388738973907391739273937394739573967397739873997400740174027403740474057406740774087409741074117412741374147415741674177418741974207421742274237424742574267427742874297430743174327433743474357436743774387439744074417442744374447445744674477448744974507451745274537454745574567457745874597460746174627463746474657466746774687469747074717472747374747475747674777478747974807481748274837484748574867487748874897490749174927493749474957496749774987499750075017502750375047505750675077508750975107511751275137514751575167517751875197520752175227523752475257526752775287529753075317532753375347535753675377538753975407541754275437544754575467547754875497550755175527553755475557556755775587559756075617562756375647565756675677568756975707571757275737574757575767577757875797580758175827583758475857586758775887589759075917592759375947595759675977598759976007601760276037604760576067607760876097610761176127613761476157616761776187619762076217622762376247625762676277628762976307631763276337634763576367637763876397640764176427643764476457646764776487649765076517652765376547655765676577658765976607661766276637664766576667667766876697670767176727673767476757676767776787679768076817682768376847685768676877688768976907691769276937694769576967697769876997700770177027703770477057706770777087709771077117712771377147715771677177718771977207721772277237724772577267727772877297730773177327733773477357736773777387739774077417742774377447745774677477748774977507751775277537754775577567757775877597760776177627763776477657766776777687769777077717772777377747775777677777778777977807781778277837784778577867787778877897790779177927793779477957796779777987799780078017802780378047805780678077808780978107811781278137814781578167817781878197820782178227823782478257826782778287829783078317832783378347835783678377838783978407841784278437844784578467847784878497850785178527853785478557856785778587859786078617862786378647865786678677868786978707871787278737874787578767877787878797880788178827883788478857886788778887889789078917892789378947895789678977898789979007901790279037904790579067907790879097910791179127913791479157916791779187919792079217922792379247925792679277928792979307931793279337934793579367937793879397940794179427943794479457946794779487949795079517952795379547955795679577958795979607961796279637964796579667967796879697970797179727973797479757976797779787979798079817982798379847985798679877988798979907991799279937994799579967997799879998000800180028003800480058006800780088009801080118012801380148015801680178018801980208021802280238024802580268027802880298030803180328033803480358036803780388039804080418042804380448045804680478048804980508051805280538054805580568057805880598060806180628063806480658066806780688069807080718072807380748075807680778078807980808081808280838084808580868087808880898090809180928093809480958096809780988099810081018102810381048105810681078108810981108111811281138114811581168117811881198120812181228123812481258126812781288129813081318132813381348135813681378138813981408141814281438144814581468147814881498150815181528153815481558156815781588159816081618162816381648165816681678168816981708171817281738174817581768177817881798180818181828183818481858186818781888189819081918192819381948195819681978198819982008201820282038204820582068207820882098210821182128213821482158216821782188219822082218222822382248225822682278228822982308231823282338234823582368237823882398240824182428243824482458246824782488249825082518252825382548255825682578258825982608261826282638264826582668267826882698270827182728273827482758276827782788279828082818282828382848285828682878288828982908291829282938294829582968297829882998300830183028303830483058306830783088309831083118312831383148315831683178318831983208321832283238324832583268327832883298330833183328333833483358336833783388339834083418342834383448345834683478348834983508351835283538354835583568357835883598360836183628363836483658366836783688369837083718372837383748375837683778378837983808381838283838384838583868387838883898390839183928393839483958396839783988399840084018402840384048405840684078408840984108411841284138414841584168417841884198420842184228423842484258426842784288429843084318432843384348435843684378438843984408441844284438444844584468447844884498450845184528453845484558456845784588459846084618462846384648465846684678468846984708471847284738474847584768477847884798480848184828483848484858486848784888489849084918492849384948495849684978498849985008501850285038504850585068507850885098510851185128513851485158516851785188519852085218522852385248525852685278528852985308531853285338534853585368537853885398540854185428543854485458546854785488549855085518552855385548555855685578558855985608561856285638564856585668567856885698570857185728573857485758576857785788579858085818582858385848585858685878588858985908591859285938594859585968597859885998600860186028603860486058606860786088609861086118612861386148615861686178618861986208621862286238624862586268627862886298630863186328633863486358636863786388639864086418642864386448645864686478648864986508651865286538654865586568657865886598660866186628663866486658666866786688669867086718672867386748675867686778678867986808681868286838684868586868687868886898690869186928693869486958696869786988699870087018702870387048705870687078708870987108711871287138714871587168717871887198720872187228723872487258726872787288729873087318732873387348735873687378738873987408741874287438744874587468747874887498750875187528753875487558756875787588759876087618762876387648765876687678768876987708771877287738774877587768777877887798780878187828783878487858786878787888789879087918792879387948795879687978798879988008801880288038804880588068807880888098810881188128813881488158816881788188819882088218822882388248825882688278828882988308831883288338834883588368837883888398840884188428843884488458846884788488849885088518852885388548855885688578858885988608861886288638864886588668867886888698870887188728873887488758876887788788879888088818882888388848885888688878888888988908891889288938894889588968897889888998900890189028903890489058906890789088909891089118912891389148915891689178918891989208921892289238924892589268927892889298930893189328933893489358936893789388939894089418942894389448945894689478948894989508951895289538954895589568957895889598960896189628963896489658966896789688969897089718972897389748975897689778978897989808981898289838984898589868987898889898990899189928993899489958996899789988999900090019002900390049005900690079008900990109011901290139014901590169017901890199020902190229023902490259026902790289029903090319032903390349035903690379038903990409041904290439044904590469047904890499050905190529053905490559056905790589059906090619062906390649065906690679068906990709071907290739074907590769077907890799080908190829083908490859086908790889089909090919092909390949095909690979098909991009101910291039104910591069107910891099110911191129113911491159116911791189119912091219122912391249125912691279128912991309131913291339134913591369137913891399140914191429143914491459146914791489149915091519152915391549155915691579158915991609161916291639164916591669167916891699170917191729173917491759176917791789179918091819182918391849185918691879188918991909191919291939194919591969197919891999200920192029203920492059206920792089209921092119212921392149215921692179218921992209221922292239224922592269227922892299230923192329233923492359236923792389239924092419242924392449245924692479248924992509251925292539254925592569257925892599260926192629263926492659266926792689269927092719272927392749275927692779278927992809281928292839284928592869287928892899290929192929293929492959296929792989299930093019302930393049305930693079308930993109311931293139314931593169317931893199320932193229323932493259326932793289329933093319332933393349335933693379338933993409341934293439344934593469347934893499350935193529353935493559356935793589359936093619362936393649365936693679368936993709371937293739374937593769377937893799380938193829383938493859386938793889389939093919392939393949395939693979398939994009401940294039404940594069407940894099410941194129413941494159416941794189419942094219422942394249425942694279428942994309431943294339434943594369437943894399440944194429443944494459446944794489449945094519452945394549455945694579458945994609461946294639464946594669467946894699470947194729473947494759476947794789479948094819482948394849485948694879488948994909491949294939494949594969497949894999500950195029503950495059506950795089509951095119512951395149515951695179518951995209521952295239524952595269527952895299530953195329533953495359536953795389539954095419542954395449545954695479548954995509551955295539554955595569557955895599560956195629563956495659566956795689569957095719572957395749575957695779578957995809581958295839584958595869587958895899590959195929593959495959596959795989599960096019602960396049605960696079608960996109611961296139614961596169617961896199620962196229623962496259626962796289629963096319632963396349635963696379638963996409641964296439644964596469647964896499650965196529653965496559656965796589659966096619662966396649665966696679668966996709671967296739674967596769677967896799680968196829683968496859686968796889689969096919692969396949695969696979698969997009701970297039704970597069707970897099710971197129713971497159716971797189719972097219722972397249725972697279728972997309731973297339734973597369737973897399740974197429743974497459746974797489749975097519752975397549755975697579758975997609761976297639764976597669767976897699770977197729773977497759776977797789779978097819782978397849785978697879788978997909791979297939794979597969797979897999800980198029803980498059806980798089809981098119812981398149815981698179818981998209821982298239824982598269827982898299830983198329833983498359836983798389839984098419842984398449845984698479848984998509851985298539854985598569857985898599860986198629863986498659866986798689869987098719872987398749875987698779878987998809881988298839884988598869887988898899890989198929893989498959896989798989899990099019902990399049905990699079908990999109911991299139914991599169917991899199920992199229923992499259926992799289929993099319932993399349935993699379938993999409941994299439944994599469947994899499950995199529953995499559956995799589959996099619962996399649965996699679968996999709971997299739974997599769977997899799980998199829983998499859986998799889989999099919992999399949995999699979998999910000100011000210003100041000510006100071000810009100101001110012100131001410015100161001710018100191002010021100221002310024100251002610027100281002910030100311003210033100341003510036100371003810039100401004110042100431004410045100461004710048100491005010051100521005310054100551005610057100581005910060100611006210063100641006510066100671006810069100701007110072100731007410075100761007710078100791008010081100821008310084100851008610087100881008910090100911009210093100941009510096100971009810099101001010110102101031010410105101061010710108101091011010111101121011310114101151011610117101181011910120101211012210123101241012510126101271012810129101301013110132101331013410135101361013710138101391014010141101421014310144101451014610147101481014910150101511015210153101541015510156101571015810159101601016110162101631016410165101661016710168101691017010171101721017310174101751017610177101781017910180101811018210183101841018510186101871018810189101901019110192101931019410195101961019710198101991020010201102021020310204102051020610207102081020910210102111021210213102141021510216102171021810219102201022110222102231022410225102261022710228102291023010231102321023310234102351023610237102381023910240102411024210243102441024510246102471024810249102501025110252102531025410255102561025710258102591026010261102621026310264102651026610267102681026910270102711027210273102741027510276102771027810279102801028110282102831028410285102861028710288102891029010291102921029310294102951029610297102981029910300103011030210303103041030510306103071030810309103101031110312103131031410315103161031710318103191032010321103221032310324103251032610327103281032910330103311033210333103341033510336103371033810339103401034110342103431034410345103461034710348103491035010351103521035310354103551035610357103581035910360103611036210363103641036510366103671036810369103701037110372103731037410375103761037710378103791038010381103821038310384103851038610387103881038910390103911039210393103941039510396103971039810399104001040110402104031040410405104061040710408104091041010411104121041310414104151041610417104181041910420104211042210423104241042510426104271042810429104301043110432104331043410435104361043710438104391044010441104421044310444104451044610447104481044910450104511045210453104541045510456104571045810459104601046110462104631046410465104661046710468104691047010471104721047310474104751047610477104781047910480104811048210483104841048510486104871048810489104901049110492104931049410495104961049710498104991050010501105021050310504105051050610507105081050910510105111051210513105141051510516105171051810519105201052110522105231052410525105261052710528105291053010531105321053310534105351053610537105381053910540105411054210543105441054510546105471054810549105501055110552105531055410555105561055710558
  1. /* -*- c++ -*- */
  2. /**
  3. * @file
  4. */
  5. /**
  6. * @mainpage Reprap 3D printer firmware based on Sprinter and grbl.
  7. *
  8. * @section intro_sec Introduction
  9. *
  10. * This firmware is a mashup between Sprinter and grbl.
  11. * https://github.com/kliment/Sprinter
  12. * https://github.com/simen/grbl/tree
  13. *
  14. * It has preliminary support for Matthew Roberts advance algorithm
  15. * http://reprap.org/pipermail/reprap-dev/2011-May/003323.html
  16. *
  17. * Prusa Research s.r.o. https://www.prusa3d.cz
  18. *
  19. * @section copyright_sec Copyright
  20. *
  21. * Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
  22. *
  23. * This program is free software: you can redistribute it and/or modify
  24. * it under the terms of the GNU General Public License as published by
  25. * the Free Software Foundation, either version 3 of the License, or
  26. * (at your option) any later version.
  27. *
  28. * This program is distributed in the hope that it will be useful,
  29. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  30. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  31. * GNU General Public License for more details.
  32. *
  33. * You should have received a copy of the GNU General Public License
  34. * along with this program. If not, see <http://www.gnu.org/licenses/>.
  35. *
  36. * @section notes_sec Notes
  37. *
  38. * * Do not create static objects in global functions.
  39. * Otherwise constructor guard against concurrent calls is generated costing
  40. * about 8B RAM and 14B flash.
  41. *
  42. *
  43. */
  44. //-//
  45. #include "Configuration.h"
  46. #include "Marlin.h"
  47. #ifdef ENABLE_AUTO_BED_LEVELING
  48. #include "vector_3.h"
  49. #ifdef AUTO_BED_LEVELING_GRID
  50. #include "qr_solve.h"
  51. #endif
  52. #endif // ENABLE_AUTO_BED_LEVELING
  53. #ifdef MESH_BED_LEVELING
  54. #include "mesh_bed_leveling.h"
  55. #include "mesh_bed_calibration.h"
  56. #endif
  57. #include "printers.h"
  58. #include "menu.h"
  59. #include "ultralcd.h"
  60. #include "planner.h"
  61. #include "stepper.h"
  62. #include "temperature.h"
  63. #include "motion_control.h"
  64. #include "cardreader.h"
  65. #include "ConfigurationStore.h"
  66. #include "language.h"
  67. #include "pins_arduino.h"
  68. #include "math.h"
  69. #include "util.h"
  70. #include "Timer.h"
  71. #include <avr/wdt.h>
  72. #include <avr/pgmspace.h>
  73. #include "Dcodes.h"
  74. #include "AutoDeplete.h"
  75. #ifdef SWSPI
  76. #include "swspi.h"
  77. #endif //SWSPI
  78. #include "spi.h"
  79. #ifdef SWI2C
  80. #include "swi2c.h"
  81. #endif //SWI2C
  82. #ifdef FILAMENT_SENSOR
  83. #include "fsensor.h"
  84. #endif //FILAMENT_SENSOR
  85. #ifdef TMC2130
  86. #include "tmc2130.h"
  87. #endif //TMC2130
  88. #ifdef W25X20CL
  89. #include "w25x20cl.h"
  90. #include "optiboot_w25x20cl.h"
  91. #endif //W25X20CL
  92. #ifdef BLINKM
  93. #include "BlinkM.h"
  94. #include "Wire.h"
  95. #endif
  96. #ifdef ULTRALCD
  97. #include "ultralcd.h"
  98. #endif
  99. #if NUM_SERVOS > 0
  100. #include "Servo.h"
  101. #endif
  102. #if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
  103. #include <SPI.h>
  104. #endif
  105. #include "mmu.h"
  106. #define VERSION_STRING "1.0.2"
  107. #include "ultralcd.h"
  108. #include "sound.h"
  109. #include "cmdqueue.h"
  110. #include "io_atmega2560.h"
  111. // Macros for bit masks
  112. #define BIT(b) (1<<(b))
  113. #define TEST(n,b) (((n)&BIT(b))!=0)
  114. #define SET_BIT(n,b,value) (n) ^= ((-value)^(n)) & (BIT(b))
  115. //Macro for print fan speed
  116. #define FAN_PULSE_WIDTH_LIMIT ((fanSpeed > 100) ? 3 : 4) //time in ms
  117. //filament types
  118. #define FILAMENT_DEFAULT 0
  119. #define FILAMENT_FLEX 1
  120. #define FILAMENT_PVA 2
  121. #define FILAMENT_UNDEFINED 255
  122. //Stepper Movement Variables
  123. //===========================================================================
  124. //=============================imported variables============================
  125. //===========================================================================
  126. //===========================================================================
  127. //=============================public variables=============================
  128. //===========================================================================
  129. #ifdef SDSUPPORT
  130. CardReader card;
  131. #endif
  132. unsigned long PingTime = _millis();
  133. unsigned long NcTime;
  134. uint8_t mbl_z_probe_nr = 3; //numer of Z measurements for each point in mesh bed leveling calibration
  135. //used for PINDA temp calibration and pause print
  136. #define DEFAULT_RETRACTION 1
  137. #define DEFAULT_RETRACTION_MM 4 //MM
  138. float default_retraction = DEFAULT_RETRACTION;
  139. float homing_feedrate[] = HOMING_FEEDRATE;
  140. // Currently only the extruder axis may be switched to a relative mode.
  141. // Other axes are always absolute or relative based on the common relative_mode flag.
  142. bool axis_relative_modes[] = AXIS_RELATIVE_MODES;
  143. int feedmultiply=100; //100->1 200->2
  144. int extrudemultiply=100; //100->1 200->2
  145. int extruder_multiply[EXTRUDERS] = {100
  146. #if EXTRUDERS > 1
  147. , 100
  148. #if EXTRUDERS > 2
  149. , 100
  150. #endif
  151. #endif
  152. };
  153. int bowden_length[4] = {385, 385, 385, 385};
  154. bool is_usb_printing = false;
  155. bool homing_flag = false;
  156. bool temp_cal_active = false;
  157. unsigned long kicktime = _millis()+100000;
  158. unsigned int usb_printing_counter;
  159. int8_t lcd_change_fil_state = 0;
  160. unsigned long pause_time = 0;
  161. unsigned long start_pause_print = _millis();
  162. unsigned long t_fan_rising_edge = _millis();
  163. LongTimer safetyTimer;
  164. static LongTimer crashDetTimer;
  165. //unsigned long load_filament_time;
  166. bool mesh_bed_leveling_flag = false;
  167. bool mesh_bed_run_from_menu = false;
  168. bool prusa_sd_card_upload = false;
  169. unsigned int status_number = 0;
  170. unsigned long total_filament_used;
  171. unsigned int heating_status;
  172. unsigned int heating_status_counter;
  173. bool loading_flag = false;
  174. char snmm_filaments_used = 0;
  175. bool fan_state[2];
  176. int fan_edge_counter[2];
  177. int fan_speed[2];
  178. char dir_names[3][9];
  179. bool sortAlpha = false;
  180. float extruder_multiplier[EXTRUDERS] = {1.0
  181. #if EXTRUDERS > 1
  182. , 1.0
  183. #if EXTRUDERS > 2
  184. , 1.0
  185. #endif
  186. #endif
  187. };
  188. float current_position[NUM_AXIS] = { 0.0, 0.0, 0.0, 0.0 };
  189. //shortcuts for more readable code
  190. #define _x current_position[X_AXIS]
  191. #define _y current_position[Y_AXIS]
  192. #define _z current_position[Z_AXIS]
  193. #define _e current_position[E_AXIS]
  194. float min_pos[3] = { X_MIN_POS, Y_MIN_POS, Z_MIN_POS };
  195. float max_pos[3] = { X_MAX_POS, Y_MAX_POS, Z_MAX_POS };
  196. bool axis_known_position[3] = {false, false, false};
  197. // Extruder offset
  198. #if EXTRUDERS > 1
  199. #define NUM_EXTRUDER_OFFSETS 2 // only in XY plane
  200. float extruder_offset[NUM_EXTRUDER_OFFSETS][EXTRUDERS] = {
  201. #if defined(EXTRUDER_OFFSET_X) && defined(EXTRUDER_OFFSET_Y)
  202. EXTRUDER_OFFSET_X, EXTRUDER_OFFSET_Y
  203. #endif
  204. };
  205. #endif
  206. uint8_t active_extruder = 0;
  207. int fanSpeed=0;
  208. #ifdef FWRETRACT
  209. bool retracted[EXTRUDERS]={false
  210. #if EXTRUDERS > 1
  211. , false
  212. #if EXTRUDERS > 2
  213. , false
  214. #endif
  215. #endif
  216. };
  217. bool retracted_swap[EXTRUDERS]={false
  218. #if EXTRUDERS > 1
  219. , false
  220. #if EXTRUDERS > 2
  221. , false
  222. #endif
  223. #endif
  224. };
  225. float retract_length_swap = RETRACT_LENGTH_SWAP;
  226. float retract_recover_length_swap = RETRACT_RECOVER_LENGTH_SWAP;
  227. #endif
  228. #ifdef PS_DEFAULT_OFF
  229. bool powersupply = false;
  230. #else
  231. bool powersupply = true;
  232. #endif
  233. bool cancel_heatup = false ;
  234. int8_t busy_state = NOT_BUSY;
  235. static long prev_busy_signal_ms = -1;
  236. uint8_t host_keepalive_interval = HOST_KEEPALIVE_INTERVAL;
  237. const char errormagic[] PROGMEM = "Error:";
  238. const char echomagic[] PROGMEM = "echo:";
  239. bool no_response = false;
  240. uint8_t important_status;
  241. uint8_t saved_filament_type;
  242. // save/restore printing in case that mmu was not responding
  243. bool mmu_print_saved = false;
  244. // storing estimated time to end of print counted by slicer
  245. uint8_t print_percent_done_normal = PRINT_PERCENT_DONE_INIT;
  246. uint16_t print_time_remaining_normal = PRINT_TIME_REMAINING_INIT; //estimated remaining print time in minutes
  247. uint8_t print_percent_done_silent = PRINT_PERCENT_DONE_INIT;
  248. uint16_t print_time_remaining_silent = PRINT_TIME_REMAINING_INIT; //estimated remaining print time in minutes
  249. bool wizard_active = false; //autoload temporarily disabled during wizard
  250. //===========================================================================
  251. //=============================Private Variables=============================
  252. //===========================================================================
  253. #define MSG_BED_LEVELING_FAILED_TIMEOUT 30
  254. const char axis_codes[NUM_AXIS] = {'X', 'Y', 'Z', 'E'};
  255. float destination[NUM_AXIS] = { 0.0, 0.0, 0.0, 0.0};
  256. // For tracing an arc
  257. static float offset[3] = {0.0, 0.0, 0.0};
  258. static float feedrate = 1500.0, next_feedrate, saved_feedrate;
  259. // Determines Absolute or Relative Coordinates.
  260. // Also there is bool axis_relative_modes[] per axis flag.
  261. static bool relative_mode = false;
  262. const int sensitive_pins[] = SENSITIVE_PINS; // Sensitive pin list for M42
  263. //static float tt = 0;
  264. //static float bt = 0;
  265. //Inactivity shutdown variables
  266. static unsigned long previous_millis_cmd = 0;
  267. unsigned long max_inactive_time = 0;
  268. static unsigned long stepper_inactive_time = DEFAULT_STEPPER_DEACTIVE_TIME*1000l;
  269. static unsigned long safetytimer_inactive_time = DEFAULT_SAFETYTIMER_TIME_MINS*60*1000ul;
  270. unsigned long starttime=0;
  271. unsigned long stoptime=0;
  272. unsigned long _usb_timer = 0;
  273. bool extruder_under_pressure = true;
  274. bool Stopped=false;
  275. #if NUM_SERVOS > 0
  276. Servo servos[NUM_SERVOS];
  277. #endif
  278. bool CooldownNoWait = true;
  279. bool target_direction;
  280. //Insert variables if CHDK is defined
  281. #ifdef CHDK
  282. unsigned long chdkHigh = 0;
  283. boolean chdkActive = false;
  284. #endif
  285. //! @name RAM save/restore printing
  286. //! @{
  287. bool saved_printing = false; //!< Print is paused and saved in RAM
  288. static uint32_t saved_sdpos = 0; //!< SD card position, or line number in case of USB printing
  289. uint8_t saved_printing_type = PRINTING_TYPE_SD;
  290. static float saved_pos[4] = { 0, 0, 0, 0 };
  291. //! Feedrate hopefully derived from an active block of the planner at the time the print has been canceled, in mm/min.
  292. static float saved_feedrate2 = 0;
  293. static uint8_t saved_active_extruder = 0;
  294. static float saved_extruder_temperature = 0.0; //!< Active extruder temperature
  295. static bool saved_extruder_under_pressure = false;
  296. static bool saved_extruder_relative_mode = false;
  297. static int saved_fanSpeed = 0; //!< Print fan speed
  298. //! @}
  299. static int saved_feedmultiply_mm = 100;
  300. //===========================================================================
  301. //=============================Routines======================================
  302. //===========================================================================
  303. static void get_arc_coordinates();
  304. static bool setTargetedHotend(int code, uint8_t &extruder);
  305. static void print_time_remaining_init();
  306. static void wait_for_heater(long codenum, uint8_t extruder);
  307. static void gcode_G28(bool home_x_axis, bool home_y_axis, bool home_z_axis);
  308. uint16_t gcode_in_progress = 0;
  309. uint16_t mcode_in_progress = 0;
  310. void serial_echopair_P(const char *s_P, float v)
  311. { serialprintPGM(s_P); SERIAL_ECHO(v); }
  312. void serial_echopair_P(const char *s_P, double v)
  313. { serialprintPGM(s_P); SERIAL_ECHO(v); }
  314. void serial_echopair_P(const char *s_P, unsigned long v)
  315. { serialprintPGM(s_P); SERIAL_ECHO(v); }
  316. /*FORCE_INLINE*/ void serialprintPGM(const char *str)
  317. {
  318. #if 0
  319. char ch=pgm_read_byte(str);
  320. while(ch)
  321. {
  322. MYSERIAL.write(ch);
  323. ch=pgm_read_byte(++str);
  324. }
  325. #else
  326. // hmm, same size as the above version, the compiler did a good job optimizing the above
  327. while( uint8_t ch = pgm_read_byte(str) ){
  328. MYSERIAL.write((char)ch);
  329. ++str;
  330. }
  331. #endif
  332. }
  333. #ifdef SDSUPPORT
  334. #include "SdFatUtil.h"
  335. int freeMemory() { return SdFatUtil::FreeRam(); }
  336. #else
  337. extern "C" {
  338. extern unsigned int __bss_end;
  339. extern unsigned int __heap_start;
  340. extern void *__brkval;
  341. int freeMemory() {
  342. int free_memory;
  343. if ((int)__brkval == 0)
  344. free_memory = ((int)&free_memory) - ((int)&__bss_end);
  345. else
  346. free_memory = ((int)&free_memory) - ((int)__brkval);
  347. return free_memory;
  348. }
  349. }
  350. #endif //!SDSUPPORT
  351. void setup_killpin()
  352. {
  353. #if defined(KILL_PIN) && KILL_PIN > -1
  354. SET_INPUT(KILL_PIN);
  355. WRITE(KILL_PIN,HIGH);
  356. #endif
  357. }
  358. // Set home pin
  359. void setup_homepin(void)
  360. {
  361. #if defined(HOME_PIN) && HOME_PIN > -1
  362. SET_INPUT(HOME_PIN);
  363. WRITE(HOME_PIN,HIGH);
  364. #endif
  365. }
  366. void setup_photpin()
  367. {
  368. #if defined(PHOTOGRAPH_PIN) && PHOTOGRAPH_PIN > -1
  369. SET_OUTPUT(PHOTOGRAPH_PIN);
  370. WRITE(PHOTOGRAPH_PIN, LOW);
  371. #endif
  372. }
  373. void setup_powerhold()
  374. {
  375. #if defined(SUICIDE_PIN) && SUICIDE_PIN > -1
  376. SET_OUTPUT(SUICIDE_PIN);
  377. WRITE(SUICIDE_PIN, HIGH);
  378. #endif
  379. #if defined(PS_ON_PIN) && PS_ON_PIN > -1
  380. SET_OUTPUT(PS_ON_PIN);
  381. #if defined(PS_DEFAULT_OFF)
  382. WRITE(PS_ON_PIN, PS_ON_ASLEEP);
  383. #else
  384. WRITE(PS_ON_PIN, PS_ON_AWAKE);
  385. #endif
  386. #endif
  387. }
  388. void suicide()
  389. {
  390. #if defined(SUICIDE_PIN) && SUICIDE_PIN > -1
  391. SET_OUTPUT(SUICIDE_PIN);
  392. WRITE(SUICIDE_PIN, LOW);
  393. #endif
  394. }
  395. void servo_init()
  396. {
  397. #if (NUM_SERVOS >= 1) && defined(SERVO0_PIN) && (SERVO0_PIN > -1)
  398. servos[0].attach(SERVO0_PIN);
  399. #endif
  400. #if (NUM_SERVOS >= 2) && defined(SERVO1_PIN) && (SERVO1_PIN > -1)
  401. servos[1].attach(SERVO1_PIN);
  402. #endif
  403. #if (NUM_SERVOS >= 3) && defined(SERVO2_PIN) && (SERVO2_PIN > -1)
  404. servos[2].attach(SERVO2_PIN);
  405. #endif
  406. #if (NUM_SERVOS >= 4) && defined(SERVO3_PIN) && (SERVO3_PIN > -1)
  407. servos[3].attach(SERVO3_PIN);
  408. #endif
  409. #if (NUM_SERVOS >= 5)
  410. #error "TODO: enter initalisation code for more servos"
  411. #endif
  412. }
  413. bool fans_check_enabled = true;
  414. #ifdef TMC2130
  415. void crashdet_stop_and_save_print()
  416. {
  417. stop_and_save_print_to_ram(10, -default_retraction); //XY - no change, Z 10mm up, E -1mm retract
  418. }
  419. void crashdet_restore_print_and_continue()
  420. {
  421. restore_print_from_ram_and_continue(default_retraction); //XYZ = orig, E +1mm unretract
  422. // babystep_apply();
  423. }
  424. void crashdet_stop_and_save_print2()
  425. {
  426. cli();
  427. planner_abort_hard(); //abort printing
  428. cmdqueue_reset(); //empty cmdqueue
  429. card.sdprinting = false;
  430. card.closefile();
  431. // Reset and re-enable the stepper timer just before the global interrupts are enabled.
  432. st_reset_timer();
  433. sei();
  434. }
  435. void crashdet_detected(uint8_t mask)
  436. {
  437. st_synchronize();
  438. static uint8_t crashDet_counter = 0;
  439. bool automatic_recovery_after_crash = true;
  440. if (crashDet_counter++ == 0) {
  441. crashDetTimer.start();
  442. }
  443. else if (crashDetTimer.expired(CRASHDET_TIMER * 1000ul)){
  444. crashDetTimer.stop();
  445. crashDet_counter = 0;
  446. }
  447. else if(crashDet_counter == CRASHDET_COUNTER_MAX){
  448. automatic_recovery_after_crash = false;
  449. crashDetTimer.stop();
  450. crashDet_counter = 0;
  451. }
  452. else {
  453. crashDetTimer.start();
  454. }
  455. lcd_update_enable(true);
  456. lcd_clear();
  457. lcd_update(2);
  458. if (mask & X_AXIS_MASK)
  459. {
  460. eeprom_update_byte((uint8_t*)EEPROM_CRASH_COUNT_X, eeprom_read_byte((uint8_t*)EEPROM_CRASH_COUNT_X) + 1);
  461. eeprom_update_word((uint16_t*)EEPROM_CRASH_COUNT_X_TOT, eeprom_read_word((uint16_t*)EEPROM_CRASH_COUNT_X_TOT) + 1);
  462. }
  463. if (mask & Y_AXIS_MASK)
  464. {
  465. eeprom_update_byte((uint8_t*)EEPROM_CRASH_COUNT_Y, eeprom_read_byte((uint8_t*)EEPROM_CRASH_COUNT_Y) + 1);
  466. eeprom_update_word((uint16_t*)EEPROM_CRASH_COUNT_Y_TOT, eeprom_read_word((uint16_t*)EEPROM_CRASH_COUNT_Y_TOT) + 1);
  467. }
  468. lcd_update_enable(true);
  469. lcd_update(2);
  470. lcd_setstatuspgm(_T(MSG_CRASH_DETECTED));
  471. gcode_G28(true, true, false); //home X and Y
  472. st_synchronize();
  473. if (automatic_recovery_after_crash) {
  474. enquecommand_P(PSTR("CRASH_RECOVER"));
  475. }else{
  476. setTargetHotend(0, active_extruder);
  477. bool yesno = lcd_show_fullscreen_message_yes_no_and_wait_P(_i("Crash detected. Resume print?"), false);
  478. lcd_update_enable(true);
  479. if (yesno)
  480. {
  481. enquecommand_P(PSTR("CRASH_RECOVER"));
  482. }
  483. else
  484. {
  485. enquecommand_P(PSTR("CRASH_CANCEL"));
  486. }
  487. }
  488. }
  489. void crashdet_recover()
  490. {
  491. crashdet_restore_print_and_continue();
  492. if (lcd_crash_detect_enabled()) tmc2130_sg_stop_on_crash = true;
  493. }
  494. void crashdet_cancel()
  495. {
  496. saved_printing = false;
  497. tmc2130_sg_stop_on_crash = true;
  498. if (saved_printing_type == PRINTING_TYPE_SD) {
  499. lcd_print_stop();
  500. }else if(saved_printing_type == PRINTING_TYPE_USB){
  501. SERIAL_ECHOLNRPGM(MSG_OCTOPRINT_CANCEL); //for Octoprint: works the same as clicking "Abort" button in Octoprint GUI
  502. SERIAL_PROTOCOLLNRPGM(MSG_OK);
  503. }
  504. }
  505. #endif //TMC2130
  506. void failstats_reset_print()
  507. {
  508. eeprom_update_byte((uint8_t *)EEPROM_CRASH_COUNT_X, 0);
  509. eeprom_update_byte((uint8_t *)EEPROM_CRASH_COUNT_Y, 0);
  510. eeprom_update_byte((uint8_t *)EEPROM_FERROR_COUNT, 0);
  511. eeprom_update_byte((uint8_t *)EEPROM_POWER_COUNT, 0);
  512. eeprom_update_byte((uint8_t *)EEPROM_MMU_FAIL, 0);
  513. eeprom_update_byte((uint8_t *)EEPROM_MMU_LOAD_FAIL, 0);
  514. }
  515. #ifdef MESH_BED_LEVELING
  516. enum MeshLevelingState { MeshReport, MeshStart, MeshNext, MeshSet };
  517. #endif
  518. // Factory reset function
  519. // This function is used to erase parts or whole EEPROM memory which is used for storing calibration and and so on.
  520. // Level input parameter sets depth of reset
  521. int er_progress = 0;
  522. static void factory_reset(char level)
  523. {
  524. lcd_clear();
  525. switch (level) {
  526. // Level 0: Language reset
  527. case 0:
  528. Sound_MakeCustom(100,0,false);
  529. lang_reset();
  530. break;
  531. //Level 1: Reset statistics
  532. case 1:
  533. Sound_MakeCustom(100,0,false);
  534. eeprom_update_dword((uint32_t *)EEPROM_TOTALTIME, 0);
  535. eeprom_update_dword((uint32_t *)EEPROM_FILAMENTUSED, 0);
  536. eeprom_update_byte((uint8_t *)EEPROM_CRASH_COUNT_X, 0);
  537. eeprom_update_byte((uint8_t *)EEPROM_CRASH_COUNT_Y, 0);
  538. eeprom_update_byte((uint8_t *)EEPROM_FERROR_COUNT, 0);
  539. eeprom_update_byte((uint8_t *)EEPROM_POWER_COUNT, 0);
  540. eeprom_update_word((uint16_t *)EEPROM_CRASH_COUNT_X_TOT, 0);
  541. eeprom_update_word((uint16_t *)EEPROM_CRASH_COUNT_Y_TOT, 0);
  542. eeprom_update_word((uint16_t *)EEPROM_FERROR_COUNT_TOT, 0);
  543. eeprom_update_word((uint16_t *)EEPROM_POWER_COUNT_TOT, 0);
  544. eeprom_update_word((uint16_t *)EEPROM_MMU_FAIL_TOT, 0);
  545. eeprom_update_word((uint16_t *)EEPROM_MMU_LOAD_FAIL_TOT, 0);
  546. eeprom_update_byte((uint8_t *)EEPROM_MMU_FAIL, 0);
  547. eeprom_update_byte((uint8_t *)EEPROM_MMU_LOAD_FAIL, 0);
  548. lcd_menu_statistics();
  549. break;
  550. // Level 2: Prepare for shipping
  551. case 2:
  552. //lcd_puts_P(PSTR("Factory RESET"));
  553. //lcd_puts_at_P(1,2,PSTR("Shipping prep"));
  554. // Force language selection at the next boot up.
  555. lang_reset();
  556. // Force the "Follow calibration flow" message at the next boot up.
  557. calibration_status_store(CALIBRATION_STATUS_Z_CALIBRATION);
  558. eeprom_write_byte((uint8_t*)EEPROM_WIZARD_ACTIVE, 1); //run wizard
  559. farm_no = 0;
  560. farm_mode = false;
  561. eeprom_update_byte((uint8_t*)EEPROM_FARM_MODE, farm_mode);
  562. EEPROM_save_B(EEPROM_FARM_NUMBER, &farm_no);
  563. eeprom_update_dword((uint32_t *)EEPROM_TOTALTIME, 0);
  564. eeprom_update_dword((uint32_t *)EEPROM_FILAMENTUSED, 0);
  565. eeprom_update_word((uint16_t *)EEPROM_CRASH_COUNT_X_TOT, 0);
  566. eeprom_update_word((uint16_t *)EEPROM_CRASH_COUNT_Y_TOT, 0);
  567. eeprom_update_word((uint16_t *)EEPROM_FERROR_COUNT_TOT, 0);
  568. eeprom_update_word((uint16_t *)EEPROM_POWER_COUNT_TOT, 0);
  569. eeprom_update_word((uint16_t *)EEPROM_MMU_FAIL_TOT, 0);
  570. eeprom_update_word((uint16_t *)EEPROM_MMU_LOAD_FAIL_TOT, 0);
  571. eeprom_update_byte((uint8_t *)EEPROM_MMU_FAIL, 0);
  572. eeprom_update_byte((uint8_t *)EEPROM_MMU_LOAD_FAIL, 0);
  573. #ifdef FILAMENT_SENSOR
  574. fsensor_enable();
  575. fsensor_autoload_set(true);
  576. #endif //FILAMENT_SENSOR
  577. Sound_MakeCustom(100,0,false);
  578. //_delay_ms(2000);
  579. break;
  580. // Level 3: erase everything, whole EEPROM will be set to 0xFF
  581. case 3:
  582. lcd_puts_P(PSTR("Factory RESET"));
  583. lcd_puts_at_P(1, 2, PSTR("ERASING all data"));
  584. Sound_MakeCustom(100,0,false);
  585. er_progress = 0;
  586. lcd_puts_at_P(3, 3, PSTR(" "));
  587. lcd_set_cursor(3, 3);
  588. lcd_print(er_progress);
  589. // Erase EEPROM
  590. for (int i = 0; i < 4096; i++) {
  591. eeprom_update_byte((uint8_t*)i, 0xFF);
  592. if (i % 41 == 0) {
  593. er_progress++;
  594. lcd_puts_at_P(3, 3, PSTR(" "));
  595. lcd_set_cursor(3, 3);
  596. lcd_print(er_progress);
  597. lcd_puts_P(PSTR("%"));
  598. }
  599. }
  600. break;
  601. case 4:
  602. bowden_menu();
  603. break;
  604. default:
  605. break;
  606. }
  607. }
  608. extern "C" {
  609. FILE _uartout; //= {0}; Global variable is always zero initialized. No need to explicitly state this.
  610. }
  611. int uart_putchar(char c, FILE *)
  612. {
  613. MYSERIAL.write(c);
  614. return 0;
  615. }
  616. void lcd_splash()
  617. {
  618. lcd_clear(); // clears display and homes screen
  619. lcd_puts_P(PSTR("\n Original Prusa i3\n Prusa Research"));
  620. }
  621. void factory_reset()
  622. {
  623. KEEPALIVE_STATE(PAUSED_FOR_USER);
  624. if (!READ(BTN_ENC))
  625. {
  626. _delay_ms(1000);
  627. if (!READ(BTN_ENC))
  628. {
  629. lcd_clear();
  630. lcd_puts_P(PSTR("Factory RESET"));
  631. SET_OUTPUT(BEEPER);
  632. if(eSoundMode!=e_SOUND_MODE_SILENT)
  633. WRITE(BEEPER, HIGH);
  634. while (!READ(BTN_ENC));
  635. WRITE(BEEPER, LOW);
  636. _delay_ms(2000);
  637. char level = reset_menu();
  638. factory_reset(level);
  639. switch (level) {
  640. case 0: _delay_ms(0); break;
  641. case 1: _delay_ms(0); break;
  642. case 2: _delay_ms(0); break;
  643. case 3: _delay_ms(0); break;
  644. }
  645. }
  646. }
  647. KEEPALIVE_STATE(IN_HANDLER);
  648. }
  649. void show_fw_version_warnings() {
  650. if (FW_DEV_VERSION == FW_VERSION_GOLD || FW_DEV_VERSION == FW_VERSION_RC) return;
  651. switch (FW_DEV_VERSION) {
  652. case(FW_VERSION_ALPHA): lcd_show_fullscreen_message_and_wait_P(_i("You are using firmware alpha version. This is development version. Using this version is not recommended and may cause printer damage.")); break;////MSG_FW_VERSION_ALPHA c=20 r=8
  653. case(FW_VERSION_BETA): lcd_show_fullscreen_message_and_wait_P(_i("You are using firmware beta version. This is development version. Using this version is not recommended and may cause printer damage.")); break;////MSG_FW_VERSION_BETA c=20 r=8
  654. case(FW_VERSION_DEVEL):
  655. case(FW_VERSION_DEBUG):
  656. lcd_update_enable(false);
  657. lcd_clear();
  658. #if FW_DEV_VERSION == FW_VERSION_DEVEL
  659. lcd_puts_at_P(0, 0, PSTR("Development build !!"));
  660. #else
  661. lcd_puts_at_P(0, 0, PSTR("Debbugging build !!!"));
  662. #endif
  663. lcd_puts_at_P(0, 1, PSTR("May destroy printer!"));
  664. lcd_puts_at_P(0, 2, PSTR("ver ")); lcd_puts_P(PSTR(FW_VERSION_FULL));
  665. lcd_puts_at_P(0, 3, PSTR(FW_REPOSITORY));
  666. lcd_wait_for_click();
  667. break;
  668. // default: lcd_show_fullscreen_message_and_wait_P(_i("WARNING: This is an unofficial, unsupported build. Use at your own risk!")); break;////MSG_FW_VERSION_UNKNOWN c=20 r=8
  669. }
  670. lcd_update_enable(true);
  671. }
  672. //! @brief try to check if firmware is on right type of printer
  673. static void check_if_fw_is_on_right_printer(){
  674. #ifdef FILAMENT_SENSOR
  675. if((PRINTER_TYPE == PRINTER_MK3) || (PRINTER_TYPE == PRINTER_MK3S)){
  676. #ifdef IR_SENSOR
  677. swi2c_init();
  678. const uint8_t pat9125_detected = swi2c_readByte_A8(PAT9125_I2C_ADDR,0x00,NULL);
  679. if (pat9125_detected){
  680. lcd_show_fullscreen_message_and_wait_P(_i("MK3S firmware detected on MK3 printer"));}
  681. #endif //IR_SENSOR
  682. #ifdef PAT9125
  683. //will return 1 only if IR can detect filament in bondtech extruder so this may fail even when we have IR sensor
  684. const uint8_t ir_detected = !(PIN_GET(IR_SENSOR_PIN));
  685. if (ir_detected){
  686. lcd_show_fullscreen_message_and_wait_P(_i("MK3 firmware detected on MK3S printer"));}
  687. #endif //PAT9125
  688. }
  689. #endif //FILAMENT_SENSOR
  690. }
  691. uint8_t check_printer_version()
  692. {
  693. uint8_t version_changed = 0;
  694. uint16_t printer_type = eeprom_read_word((uint16_t*)EEPROM_PRINTER_TYPE);
  695. uint16_t motherboard = eeprom_read_word((uint16_t*)EEPROM_BOARD_TYPE);
  696. if (printer_type != PRINTER_TYPE) {
  697. if (printer_type == 0xffff) eeprom_write_word((uint16_t*)EEPROM_PRINTER_TYPE, PRINTER_TYPE);
  698. else version_changed |= 0b10;
  699. }
  700. if (motherboard != MOTHERBOARD) {
  701. if(motherboard == 0xffff) eeprom_write_word((uint16_t*)EEPROM_BOARD_TYPE, MOTHERBOARD);
  702. else version_changed |= 0b01;
  703. }
  704. return version_changed;
  705. }
  706. #ifdef BOOTAPP
  707. #include "bootapp.h" //bootloader support
  708. #endif //BOOTAPP
  709. #if (LANG_MODE != 0) //secondary language support
  710. #ifdef W25X20CL
  711. // language update from external flash
  712. #define LANGBOOT_BLOCKSIZE 0x1000u
  713. #define LANGBOOT_RAMBUFFER 0x0800
  714. void update_sec_lang_from_external_flash()
  715. {
  716. if ((boot_app_magic == BOOT_APP_MAGIC) && (boot_app_flags & BOOT_APP_FLG_USER0))
  717. {
  718. uint8_t lang = boot_reserved >> 4;
  719. uint8_t state = boot_reserved & 0xf;
  720. lang_table_header_t header;
  721. uint32_t src_addr;
  722. if (lang_get_header(lang, &header, &src_addr))
  723. {
  724. lcd_puts_at_P(1,3,PSTR("Language update."));
  725. for (uint8_t i = 0; i < state; i++) fputc('.', lcdout);
  726. _delay(100);
  727. boot_reserved = (state + 1) | (lang << 4);
  728. if ((state * LANGBOOT_BLOCKSIZE) < header.size)
  729. {
  730. cli();
  731. uint16_t size = header.size - state * LANGBOOT_BLOCKSIZE;
  732. if (size > LANGBOOT_BLOCKSIZE) size = LANGBOOT_BLOCKSIZE;
  733. w25x20cl_rd_data(src_addr + state * LANGBOOT_BLOCKSIZE, (uint8_t*)LANGBOOT_RAMBUFFER, size);
  734. if (state == 0)
  735. {
  736. //TODO - check header integrity
  737. }
  738. bootapp_ram2flash(LANGBOOT_RAMBUFFER, _SEC_LANG_TABLE + state * LANGBOOT_BLOCKSIZE, size);
  739. }
  740. else
  741. {
  742. //TODO - check sec lang data integrity
  743. eeprom_update_byte((unsigned char *)EEPROM_LANG, LANG_ID_SEC);
  744. }
  745. }
  746. }
  747. boot_app_flags &= ~BOOT_APP_FLG_USER0;
  748. }
  749. #ifdef DEBUG_W25X20CL
  750. uint8_t lang_xflash_enum_codes(uint16_t* codes)
  751. {
  752. lang_table_header_t header;
  753. uint8_t count = 0;
  754. uint32_t addr = 0x00000;
  755. while (1)
  756. {
  757. printf_P(_n("LANGTABLE%d:"), count);
  758. w25x20cl_rd_data(addr, (uint8_t*)&header, sizeof(lang_table_header_t));
  759. if (header.magic != LANG_MAGIC)
  760. {
  761. printf_P(_n("NG!\n"));
  762. break;
  763. }
  764. printf_P(_n("OK\n"));
  765. printf_P(_n(" _lt_magic = 0x%08lx %S\n"), header.magic, (header.magic==LANG_MAGIC)?_n("OK"):_n("NA"));
  766. printf_P(_n(" _lt_size = 0x%04x (%d)\n"), header.size, header.size);
  767. printf_P(_n(" _lt_count = 0x%04x (%d)\n"), header.count, header.count);
  768. printf_P(_n(" _lt_chsum = 0x%04x\n"), header.checksum);
  769. printf_P(_n(" _lt_code = 0x%04x (%c%c)\n"), header.code, header.code >> 8, header.code & 0xff);
  770. printf_P(_n(" _lt_sign = 0x%08lx\n"), header.signature);
  771. addr += header.size;
  772. codes[count] = header.code;
  773. count ++;
  774. }
  775. return count;
  776. }
  777. void list_sec_lang_from_external_flash()
  778. {
  779. uint16_t codes[8];
  780. uint8_t count = lang_xflash_enum_codes(codes);
  781. printf_P(_n("XFlash lang count = %hhd\n"), count);
  782. }
  783. #endif //DEBUG_W25X20CL
  784. #endif //W25X20CL
  785. #endif //(LANG_MODE != 0)
  786. static void w25x20cl_err_msg()
  787. {
  788. lcd_clear();
  789. lcd_puts_P(_n("External SPI flash\nW25X20CL is not res-\nponding. Language\nswitch unavailable."));
  790. }
  791. // "Setup" function is called by the Arduino framework on startup.
  792. // Before startup, the Timers-functions (PWM)/Analog RW and HardwareSerial provided by the Arduino-code
  793. // are initialized by the main() routine provided by the Arduino framework.
  794. void setup()
  795. {
  796. mmu_init();
  797. ultralcd_init();
  798. #if (LCD_BL_PIN != -1) && defined (LCD_BL_PIN)
  799. analogWrite(LCD_BL_PIN, 255); //set full brightnes
  800. #endif //(LCD_BL_PIN != -1) && defined (LCD_BL_PIN)
  801. spi_init();
  802. lcd_splash();
  803. Sound_Init(); // also guarantee "SET_OUTPUT(BEEPER)"
  804. #ifdef W25X20CL
  805. bool w25x20cl_success = w25x20cl_init();
  806. if (w25x20cl_success)
  807. {
  808. optiboot_w25x20cl_enter();
  809. #if (LANG_MODE != 0) //secondary language support
  810. update_sec_lang_from_external_flash();
  811. #endif //(LANG_MODE != 0)
  812. }
  813. else
  814. {
  815. w25x20cl_err_msg();
  816. }
  817. #else
  818. const bool w25x20cl_success = true;
  819. #endif //W25X20CL
  820. setup_killpin();
  821. setup_powerhold();
  822. farm_mode = eeprom_read_byte((uint8_t*)EEPROM_FARM_MODE);
  823. EEPROM_read_B(EEPROM_FARM_NUMBER, &farm_no);
  824. if ((farm_mode == 0xFF && farm_no == 0) || ((uint16_t)farm_no == 0xFFFF))
  825. farm_mode = false; //if farm_mode has not been stored to eeprom yet and farm number is set to zero or EEPROM is fresh, deactivate farm mode
  826. if ((uint16_t)farm_no == 0xFFFF) farm_no = 0;
  827. selectedSerialPort = eeprom_read_byte((uint8_t*)EEPROM_SECOND_SERIAL_ACTIVE);
  828. if (selectedSerialPort == 0xFF) selectedSerialPort = 0;
  829. if (farm_mode)
  830. {
  831. no_response = true; //we need confirmation by recieving PRUSA thx
  832. important_status = 8;
  833. prusa_statistics(8);
  834. selectedSerialPort = 1;
  835. #ifdef TMC2130
  836. //increased extruder current (PFW363)
  837. tmc2130_current_h[E_AXIS] = 36;
  838. tmc2130_current_r[E_AXIS] = 36;
  839. #endif //TMC2130
  840. #ifdef FILAMENT_SENSOR
  841. //disabled filament autoload (PFW360)
  842. fsensor_autoload_set(false);
  843. #endif //FILAMENT_SENSOR
  844. // ~ FanCheck -> on
  845. if(!(eeprom_read_byte((uint8_t*)EEPROM_FAN_CHECK_ENABLED)))
  846. eeprom_update_byte((unsigned char *)EEPROM_FAN_CHECK_ENABLED,true);
  847. }
  848. MYSERIAL.begin(BAUDRATE);
  849. fdev_setup_stream(uartout, uart_putchar, NULL, _FDEV_SETUP_WRITE); //setup uart out stream
  850. #ifndef W25X20CL
  851. SERIAL_PROTOCOLLNPGM("start");
  852. #endif //W25X20CL
  853. stdout = uartout;
  854. SERIAL_ECHO_START;
  855. printf_P(PSTR(" " FW_VERSION_FULL "\n"));
  856. //SERIAL_ECHOPAIR("Active sheet before:", static_cast<unsigned long int>(eeprom_read_byte(&(EEPROM_Sheets_base->active_sheet))));
  857. #ifdef DEBUG_SEC_LANG
  858. lang_table_header_t header;
  859. uint32_t src_addr = 0x00000;
  860. if (lang_get_header(1, &header, &src_addr))
  861. {
  862. //this is comparsion of some printing-methods regarding to flash space usage and code size/readability
  863. #define LT_PRINT_TEST 2
  864. // flash usage
  865. // total p.test
  866. //0 252718 t+c text code
  867. //1 253142 424 170 254
  868. //2 253040 322 164 158
  869. //3 253248 530 135 395
  870. #if (LT_PRINT_TEST==1) //not optimized printf
  871. printf_P(_n(" _src_addr = 0x%08lx\n"), src_addr);
  872. printf_P(_n(" _lt_magic = 0x%08lx %S\n"), header.magic, (header.magic==LANG_MAGIC)?_n("OK"):_n("NA"));
  873. printf_P(_n(" _lt_size = 0x%04x (%d)\n"), header.size, header.size);
  874. printf_P(_n(" _lt_count = 0x%04x (%d)\n"), header.count, header.count);
  875. printf_P(_n(" _lt_chsum = 0x%04x\n"), header.checksum);
  876. printf_P(_n(" _lt_code = 0x%04x (%c%c)\n"), header.code, header.code >> 8, header.code & 0xff);
  877. printf_P(_n(" _lt_sign = 0x%08lx\n"), header.signature);
  878. #elif (LT_PRINT_TEST==2) //optimized printf
  879. printf_P(
  880. _n(
  881. " _src_addr = 0x%08lx\n"
  882. " _lt_magic = 0x%08lx %S\n"
  883. " _lt_size = 0x%04x (%d)\n"
  884. " _lt_count = 0x%04x (%d)\n"
  885. " _lt_chsum = 0x%04x\n"
  886. " _lt_code = 0x%04x (%c%c)\n"
  887. " _lt_resv1 = 0x%08lx\n"
  888. ),
  889. src_addr,
  890. header.magic, (header.magic==LANG_MAGIC)?_n("OK"):_n("NA"),
  891. header.size, header.size,
  892. header.count, header.count,
  893. header.checksum,
  894. header.code, header.code >> 8, header.code & 0xff,
  895. header.signature
  896. );
  897. #elif (LT_PRINT_TEST==3) //arduino print/println (leading zeros not solved)
  898. MYSERIAL.print(" _src_addr = 0x");
  899. MYSERIAL.println(src_addr, 16);
  900. MYSERIAL.print(" _lt_magic = 0x");
  901. MYSERIAL.print(header.magic, 16);
  902. MYSERIAL.println((header.magic==LANG_MAGIC)?" OK":" NA");
  903. MYSERIAL.print(" _lt_size = 0x");
  904. MYSERIAL.print(header.size, 16);
  905. MYSERIAL.print(" (");
  906. MYSERIAL.print(header.size, 10);
  907. MYSERIAL.println(")");
  908. MYSERIAL.print(" _lt_count = 0x");
  909. MYSERIAL.print(header.count, 16);
  910. MYSERIAL.print(" (");
  911. MYSERIAL.print(header.count, 10);
  912. MYSERIAL.println(")");
  913. MYSERIAL.print(" _lt_chsum = 0x");
  914. MYSERIAL.println(header.checksum, 16);
  915. MYSERIAL.print(" _lt_code = 0x");
  916. MYSERIAL.print(header.code, 16);
  917. MYSERIAL.print(" (");
  918. MYSERIAL.print((char)(header.code >> 8), 0);
  919. MYSERIAL.print((char)(header.code & 0xff), 0);
  920. MYSERIAL.println(")");
  921. MYSERIAL.print(" _lt_resv1 = 0x");
  922. MYSERIAL.println(header.signature, 16);
  923. #endif //(LT_PRINT_TEST==)
  924. #undef LT_PRINT_TEST
  925. #if 0
  926. w25x20cl_rd_data(0x25ba, (uint8_t*)&block_buffer, 1024);
  927. for (uint16_t i = 0; i < 1024; i++)
  928. {
  929. if ((i % 16) == 0) printf_P(_n("%04x:"), 0x25ba+i);
  930. printf_P(_n(" %02x"), ((uint8_t*)&block_buffer)[i]);
  931. if ((i % 16) == 15) putchar('\n');
  932. }
  933. #endif
  934. uint16_t sum = 0;
  935. for (uint16_t i = 0; i < header.size; i++)
  936. sum += (uint16_t)pgm_read_byte((uint8_t*)(_SEC_LANG_TABLE + i)) << ((i & 1)?0:8);
  937. printf_P(_n("_SEC_LANG_TABLE checksum = %04x\n"), sum);
  938. sum -= header.checksum; //subtract checksum
  939. printf_P(_n("_SEC_LANG_TABLE checksum = %04x\n"), sum);
  940. sum = (sum >> 8) | ((sum & 0xff) << 8); //swap bytes
  941. if (sum == header.checksum)
  942. printf_P(_n("Checksum OK\n"), sum);
  943. else
  944. printf_P(_n("Checksum NG\n"), sum);
  945. }
  946. else
  947. printf_P(_n("lang_get_header failed!\n"));
  948. #if 0
  949. for (uint16_t i = 0; i < 1024*10; i++)
  950. {
  951. if ((i % 16) == 0) printf_P(_n("%04x:"), _SEC_LANG_TABLE+i);
  952. printf_P(_n(" %02x"), pgm_read_byte((uint8_t*)(_SEC_LANG_TABLE+i)));
  953. if ((i % 16) == 15) putchar('\n');
  954. }
  955. #endif
  956. #if 0
  957. SERIAL_ECHOLN("Reading eeprom from 0 to 100: start");
  958. for (int i = 0; i < 4096; ++i) {
  959. int b = eeprom_read_byte((unsigned char*)i);
  960. if (b != 255) {
  961. SERIAL_ECHO(i);
  962. SERIAL_ECHO(":");
  963. SERIAL_ECHO(b);
  964. SERIAL_ECHOLN("");
  965. }
  966. }
  967. SERIAL_ECHOLN("Reading eeprom from 0 to 100: done");
  968. #endif
  969. #endif //DEBUG_SEC_LANG
  970. // Check startup - does nothing if bootloader sets MCUSR to 0
  971. byte mcu = MCUSR;
  972. /* if (mcu & 1) SERIAL_ECHOLNRPGM(MSG_POWERUP);
  973. if (mcu & 2) SERIAL_ECHOLNRPGM(MSG_EXTERNAL_RESET);
  974. if (mcu & 4) SERIAL_ECHOLNRPGM(MSG_BROWNOUT_RESET);
  975. if (mcu & 8) SERIAL_ECHOLNRPGM(MSG_WATCHDOG_RESET);
  976. if (mcu & 32) SERIAL_ECHOLNRPGM(MSG_SOFTWARE_RESET);*/
  977. if (mcu & 1) puts_P(MSG_POWERUP);
  978. if (mcu & 2) puts_P(MSG_EXTERNAL_RESET);
  979. if (mcu & 4) puts_P(MSG_BROWNOUT_RESET);
  980. if (mcu & 8) puts_P(MSG_WATCHDOG_RESET);
  981. if (mcu & 32) puts_P(MSG_SOFTWARE_RESET);
  982. MCUSR = 0;
  983. //SERIAL_ECHORPGM(MSG_MARLIN);
  984. //SERIAL_ECHOLNRPGM(VERSION_STRING);
  985. #ifdef STRING_VERSION_CONFIG_H
  986. #ifdef STRING_CONFIG_H_AUTHOR
  987. SERIAL_ECHO_START;
  988. SERIAL_ECHORPGM(_n(" Last Updated: "));////MSG_CONFIGURATION_VER
  989. SERIAL_ECHOPGM(STRING_VERSION_CONFIG_H);
  990. SERIAL_ECHORPGM(_n(" | Author: "));////MSG_AUTHOR
  991. SERIAL_ECHOLNPGM(STRING_CONFIG_H_AUTHOR);
  992. SERIAL_ECHOPGM("Compiled: ");
  993. SERIAL_ECHOLNPGM(__DATE__);
  994. #endif
  995. #endif
  996. SERIAL_ECHO_START;
  997. SERIAL_ECHORPGM(_n(" Free Memory: "));////MSG_FREE_MEMORY
  998. SERIAL_ECHO(freeMemory());
  999. SERIAL_ECHORPGM(_n(" PlannerBufferBytes: "));////MSG_PLANNER_BUFFER_BYTES
  1000. SERIAL_ECHOLN((int)sizeof(block_t)*BLOCK_BUFFER_SIZE);
  1001. //lcd_update_enable(false); // why do we need this?? - andre
  1002. // loads data from EEPROM if available else uses defaults (and resets step acceleration rate)
  1003. bool previous_settings_retrieved = false;
  1004. uint8_t hw_changed = check_printer_version();
  1005. if (!(hw_changed & 0b10)) { //if printer version wasn't changed, check for eeprom version and retrieve settings from eeprom in case that version wasn't changed
  1006. previous_settings_retrieved = Config_RetrieveSettings();
  1007. }
  1008. else { //printer version was changed so use default settings
  1009. Config_ResetDefault();
  1010. }
  1011. SdFatUtil::set_stack_guard(); //writes magic number at the end of static variables to protect against overwriting static memory by stack
  1012. tp_init(); // Initialize temperature loop
  1013. if (w25x20cl_success) lcd_splash(); // we need to do this again, because tp_init() kills lcd
  1014. else
  1015. {
  1016. w25x20cl_err_msg();
  1017. printf_P(_n("W25X20CL not responding.\n"));
  1018. }
  1019. plan_init(); // Initialize planner;
  1020. factory_reset();
  1021. lcd_encoder_diff=0;
  1022. #ifdef TMC2130
  1023. uint8_t silentMode = eeprom_read_byte((uint8_t*)EEPROM_SILENT);
  1024. if (silentMode == 0xff) silentMode = 0;
  1025. tmc2130_mode = TMC2130_MODE_NORMAL;
  1026. if (lcd_crash_detect_enabled() && !farm_mode)
  1027. {
  1028. lcd_crash_detect_enable();
  1029. puts_P(_N("CrashDetect ENABLED!"));
  1030. }
  1031. else
  1032. {
  1033. lcd_crash_detect_disable();
  1034. puts_P(_N("CrashDetect DISABLED"));
  1035. }
  1036. #ifdef TMC2130_LINEARITY_CORRECTION
  1037. #ifdef TMC2130_LINEARITY_CORRECTION_XYZ
  1038. tmc2130_wave_fac[X_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_WAVE_X_FAC);
  1039. tmc2130_wave_fac[Y_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_WAVE_Y_FAC);
  1040. tmc2130_wave_fac[Z_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_WAVE_Z_FAC);
  1041. #endif //TMC2130_LINEARITY_CORRECTION_XYZ
  1042. tmc2130_wave_fac[E_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_WAVE_E_FAC);
  1043. if (tmc2130_wave_fac[X_AXIS] == 0xff) tmc2130_wave_fac[X_AXIS] = 0;
  1044. if (tmc2130_wave_fac[Y_AXIS] == 0xff) tmc2130_wave_fac[Y_AXIS] = 0;
  1045. if (tmc2130_wave_fac[Z_AXIS] == 0xff) tmc2130_wave_fac[Z_AXIS] = 0;
  1046. if (tmc2130_wave_fac[E_AXIS] == 0xff) tmc2130_wave_fac[E_AXIS] = 0;
  1047. #endif //TMC2130_LINEARITY_CORRECTION
  1048. #ifdef TMC2130_VARIABLE_RESOLUTION
  1049. tmc2130_mres[X_AXIS] = tmc2130_usteps2mres(cs.axis_ustep_resolution[X_AXIS]);
  1050. tmc2130_mres[Y_AXIS] = tmc2130_usteps2mres(cs.axis_ustep_resolution[Y_AXIS]);
  1051. tmc2130_mres[Z_AXIS] = tmc2130_usteps2mres(cs.axis_ustep_resolution[Z_AXIS]);
  1052. tmc2130_mres[E_AXIS] = tmc2130_usteps2mres(cs.axis_ustep_resolution[E_AXIS]);
  1053. #else //TMC2130_VARIABLE_RESOLUTION
  1054. tmc2130_mres[X_AXIS] = tmc2130_usteps2mres(TMC2130_USTEPS_XY);
  1055. tmc2130_mres[Y_AXIS] = tmc2130_usteps2mres(TMC2130_USTEPS_XY);
  1056. tmc2130_mres[Z_AXIS] = tmc2130_usteps2mres(TMC2130_USTEPS_Z);
  1057. tmc2130_mres[E_AXIS] = tmc2130_usteps2mres(TMC2130_USTEPS_E);
  1058. #endif //TMC2130_VARIABLE_RESOLUTION
  1059. #endif //TMC2130
  1060. st_init(); // Initialize stepper, this enables interrupts!
  1061. #ifdef UVLO_SUPPORT
  1062. setup_uvlo_interrupt();
  1063. #endif //UVLO_SUPPORT
  1064. #ifdef TMC2130
  1065. tmc2130_mode = silentMode?TMC2130_MODE_SILENT:TMC2130_MODE_NORMAL;
  1066. update_mode_profile();
  1067. tmc2130_init();
  1068. #endif //TMC2130
  1069. #ifdef PSU_Delta
  1070. init_force_z(); // ! important for correct Z-axis initialization
  1071. #endif // PSU_Delta
  1072. setup_photpin();
  1073. servo_init();
  1074. // Reset the machine correction matrix.
  1075. // It does not make sense to load the correction matrix until the machine is homed.
  1076. world2machine_reset();
  1077. #ifdef FILAMENT_SENSOR
  1078. fsensor_init();
  1079. #endif //FILAMENT_SENSOR
  1080. #if defined(CONTROLLERFAN_PIN) && (CONTROLLERFAN_PIN > -1)
  1081. SET_OUTPUT(CONTROLLERFAN_PIN); //Set pin used for driver cooling fan
  1082. #endif
  1083. setup_homepin();
  1084. #ifdef TMC2130
  1085. if (1) {
  1086. // try to run to zero phase before powering the Z motor.
  1087. // Move in negative direction
  1088. WRITE(Z_DIR_PIN,INVERT_Z_DIR);
  1089. // Round the current micro-micro steps to micro steps.
  1090. for (uint16_t phase = (tmc2130_rd_MSCNT(Z_AXIS) + 8) >> 4; phase > 0; -- phase) {
  1091. // Until the phase counter is reset to zero.
  1092. WRITE(Z_STEP_PIN, !INVERT_Z_STEP_PIN);
  1093. _delay(2);
  1094. WRITE(Z_STEP_PIN, INVERT_Z_STEP_PIN);
  1095. _delay(2);
  1096. }
  1097. }
  1098. #endif //TMC2130
  1099. #if defined(Z_AXIS_ALWAYS_ON) && !defined(PSU_Delta)
  1100. enable_z();
  1101. #endif
  1102. farm_mode = eeprom_read_byte((uint8_t*)EEPROM_FARM_MODE);
  1103. EEPROM_read_B(EEPROM_FARM_NUMBER, &farm_no);
  1104. if ((farm_mode == 0xFF && farm_no == 0) || (farm_no == static_cast<int>(0xFFFF))) farm_mode = false; //if farm_mode has not been stored to eeprom yet and farm number is set to zero or EEPROM is fresh, deactivate farm mode
  1105. if (farm_no == static_cast<int>(0xFFFF)) farm_no = 0;
  1106. if (farm_mode)
  1107. {
  1108. prusa_statistics(8);
  1109. }
  1110. // Enable Toshiba FlashAir SD card / WiFi enahanced card.
  1111. card.ToshibaFlashAir_enable(eeprom_read_byte((unsigned char*)EEPROM_TOSHIBA_FLASH_AIR_COMPATIBLITY) == 1);
  1112. if (eeprom_read_dword((uint32_t*)(EEPROM_TOP - 4)) == 0x0ffffffff &&
  1113. eeprom_read_dword((uint32_t*)(EEPROM_TOP - 8)) == 0x0ffffffff) {
  1114. // Maiden startup. The firmware has been loaded and first started on a virgin RAMBo board,
  1115. // where all the EEPROM entries are set to 0x0ff.
  1116. // Once a firmware boots up, it forces at least a language selection, which changes
  1117. // EEPROM_LANG to number lower than 0x0ff.
  1118. // 1) Set a high power mode.
  1119. #ifdef TMC2130
  1120. eeprom_write_byte((uint8_t*)EEPROM_SILENT, 0);
  1121. tmc2130_mode = TMC2130_MODE_NORMAL;
  1122. #endif //TMC2130
  1123. eeprom_write_byte((uint8_t*)EEPROM_WIZARD_ACTIVE, 1); //run wizard
  1124. }
  1125. // Force SD card update. Otherwise the SD card update is done from loop() on card.checkautostart(false),
  1126. // but this times out if a blocking dialog is shown in setup().
  1127. card.initsd();
  1128. #ifdef DEBUG_SD_SPEED_TEST
  1129. if (card.cardOK)
  1130. {
  1131. uint8_t* buff = (uint8_t*)block_buffer;
  1132. uint32_t block = 0;
  1133. uint32_t sumr = 0;
  1134. uint32_t sumw = 0;
  1135. for (int i = 0; i < 1024; i++)
  1136. {
  1137. uint32_t u = _micros();
  1138. bool res = card.card.readBlock(i, buff);
  1139. u = _micros() - u;
  1140. if (res)
  1141. {
  1142. printf_P(PSTR("readBlock %4d 512 bytes %lu us\n"), i, u);
  1143. sumr += u;
  1144. u = _micros();
  1145. res = card.card.writeBlock(i, buff);
  1146. u = _micros() - u;
  1147. if (res)
  1148. {
  1149. printf_P(PSTR("writeBlock %4d 512 bytes %lu us\n"), i, u);
  1150. sumw += u;
  1151. }
  1152. else
  1153. {
  1154. printf_P(PSTR("writeBlock %4d error\n"), i);
  1155. break;
  1156. }
  1157. }
  1158. else
  1159. {
  1160. printf_P(PSTR("readBlock %4d error\n"), i);
  1161. break;
  1162. }
  1163. }
  1164. uint32_t avg_rspeed = (1024 * 1000000) / (sumr / 512);
  1165. uint32_t avg_wspeed = (1024 * 1000000) / (sumw / 512);
  1166. printf_P(PSTR("avg read speed %lu bytes/s\n"), avg_rspeed);
  1167. printf_P(PSTR("avg write speed %lu bytes/s\n"), avg_wspeed);
  1168. }
  1169. else
  1170. printf_P(PSTR("Card NG!\n"));
  1171. #endif //DEBUG_SD_SPEED_TEST
  1172. eeprom_init();
  1173. #ifdef SNMM
  1174. if (eeprom_read_dword((uint32_t*)EEPROM_BOWDEN_LENGTH) == 0x0ffffffff) { //bowden length used for SNMM
  1175. int _z = BOWDEN_LENGTH;
  1176. for(int i = 0; i<4; i++) EEPROM_save_B(EEPROM_BOWDEN_LENGTH + i * 2, &_z);
  1177. }
  1178. #endif
  1179. // In the future, somewhere here would one compare the current firmware version against the firmware version stored in the EEPROM.
  1180. // If they differ, an update procedure may need to be performed. At the end of this block, the current firmware version
  1181. // is being written into the EEPROM, so the update procedure will be triggered only once.
  1182. #if (LANG_MODE != 0) //secondary language support
  1183. #ifdef DEBUG_W25X20CL
  1184. W25X20CL_SPI_ENTER();
  1185. uint8_t uid[8]; // 64bit unique id
  1186. w25x20cl_rd_uid(uid);
  1187. puts_P(_n("W25X20CL UID="));
  1188. for (uint8_t i = 0; i < 8; i ++)
  1189. printf_P(PSTR("%02hhx"), uid[i]);
  1190. putchar('\n');
  1191. list_sec_lang_from_external_flash();
  1192. #endif //DEBUG_W25X20CL
  1193. // lang_reset();
  1194. if (!lang_select(eeprom_read_byte((uint8_t*)EEPROM_LANG)))
  1195. lcd_language();
  1196. #ifdef DEBUG_SEC_LANG
  1197. uint16_t sec_lang_code = lang_get_code(1);
  1198. uint16_t ui = _SEC_LANG_TABLE; //table pointer
  1199. printf_P(_n("lang_selected=%d\nlang_table=0x%04x\nSEC_LANG_CODE=0x%04x (%c%c)\n"), lang_selected, ui, sec_lang_code, sec_lang_code >> 8, sec_lang_code & 0xff);
  1200. lang_print_sec_lang(uartout);
  1201. #endif //DEBUG_SEC_LANG
  1202. #endif //(LANG_MODE != 0)
  1203. if (eeprom_read_byte((uint8_t*)EEPROM_TEMP_CAL_ACTIVE) == 255) {
  1204. eeprom_write_byte((uint8_t*)EEPROM_TEMP_CAL_ACTIVE, 0);
  1205. temp_cal_active = false;
  1206. } else temp_cal_active = eeprom_read_byte((uint8_t*)EEPROM_TEMP_CAL_ACTIVE);
  1207. if (eeprom_read_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA) == 255) {
  1208. //eeprom_write_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 0);
  1209. eeprom_write_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 1);
  1210. int16_t z_shift = 0;
  1211. for (uint8_t i = 0; i < 5; i++) EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + i * 2, &z_shift);
  1212. eeprom_write_byte((uint8_t*)EEPROM_TEMP_CAL_ACTIVE, 0);
  1213. temp_cal_active = false;
  1214. }
  1215. if (eeprom_read_byte((uint8_t*)EEPROM_UVLO) == 255) {
  1216. eeprom_write_byte((uint8_t*)EEPROM_UVLO, 0);
  1217. }
  1218. if (eeprom_read_byte((uint8_t*)EEPROM_SD_SORT) == 255) {
  1219. eeprom_write_byte((uint8_t*)EEPROM_SD_SORT, 0);
  1220. }
  1221. //mbl_mode_init();
  1222. mbl_settings_init();
  1223. SilentModeMenu_MMU = eeprom_read_byte((uint8_t*)EEPROM_MMU_STEALTH);
  1224. if (SilentModeMenu_MMU == 255) {
  1225. SilentModeMenu_MMU = 1;
  1226. eeprom_write_byte((uint8_t*)EEPROM_MMU_STEALTH, SilentModeMenu_MMU);
  1227. }
  1228. #if !defined(DEBUG_DISABLE_FANCHECK) && defined(FANCHECK) && defined(TACH_1) && TACH_1 >-1
  1229. setup_fan_interrupt();
  1230. #endif //DEBUG_DISABLE_FANCHECK
  1231. #ifdef PAT9125
  1232. fsensor_setup_interrupt();
  1233. #endif //PAT9125
  1234. for (int i = 0; i<4; i++) EEPROM_read_B(EEPROM_BOWDEN_LENGTH + i * 2, &bowden_length[i]);
  1235. #ifndef DEBUG_DISABLE_STARTMSGS
  1236. KEEPALIVE_STATE(PAUSED_FOR_USER);
  1237. if (!farm_mode) {
  1238. check_if_fw_is_on_right_printer();
  1239. show_fw_version_warnings();
  1240. }
  1241. switch (hw_changed) {
  1242. //if motherboard or printer type was changed inform user as it can indicate flashing wrong firmware version
  1243. //if user confirms with knob, new hw version (printer and/or motherboard) is written to eeprom and message will be not shown next time
  1244. case(0b01):
  1245. lcd_show_fullscreen_message_and_wait_P(_i("Warning: motherboard type changed.")); ////MSG_CHANGED_MOTHERBOARD c=20 r=4
  1246. eeprom_write_word((uint16_t*)EEPROM_BOARD_TYPE, MOTHERBOARD);
  1247. break;
  1248. case(0b10):
  1249. lcd_show_fullscreen_message_and_wait_P(_i("Warning: printer type changed.")); ////MSG_CHANGED_PRINTER c=20 r=4
  1250. eeprom_write_word((uint16_t*)EEPROM_PRINTER_TYPE, PRINTER_TYPE);
  1251. break;
  1252. case(0b11):
  1253. lcd_show_fullscreen_message_and_wait_P(_i("Warning: both printer type and motherboard type changed.")); ////MSG_CHANGED_BOTH c=20 r=4
  1254. eeprom_write_word((uint16_t*)EEPROM_PRINTER_TYPE, PRINTER_TYPE);
  1255. eeprom_write_word((uint16_t*)EEPROM_BOARD_TYPE, MOTHERBOARD);
  1256. break;
  1257. default: break; //no change, show no message
  1258. }
  1259. if (!previous_settings_retrieved) {
  1260. lcd_show_fullscreen_message_and_wait_P(_i("Old settings found. Default PID, Esteps etc. will be set.")); //if EEPROM version or printer type was changed, inform user that default setting were loaded////MSG_DEFAULT_SETTINGS_LOADED c=20 r=4
  1261. Config_StoreSettings();
  1262. }
  1263. if (eeprom_read_byte((uint8_t*)EEPROM_WIZARD_ACTIVE) == 1) {
  1264. lcd_wizard(WizState::Run);
  1265. }
  1266. if (eeprom_read_byte((uint8_t*)EEPROM_WIZARD_ACTIVE) == 0) { //dont show calibration status messages if wizard is currently active
  1267. if (calibration_status() == CALIBRATION_STATUS_ASSEMBLED ||
  1268. calibration_status() == CALIBRATION_STATUS_UNKNOWN ||
  1269. calibration_status() == CALIBRATION_STATUS_XYZ_CALIBRATION) {
  1270. // Reset the babystepping values, so the printer will not move the Z axis up when the babystepping is enabled.
  1271. eeprom_update_word((uint16_t*)EEPROM_BABYSTEP_Z, 0);
  1272. // Show the message.
  1273. lcd_show_fullscreen_message_and_wait_P(_T(MSG_FOLLOW_CALIBRATION_FLOW));
  1274. }
  1275. else if (calibration_status() == CALIBRATION_STATUS_LIVE_ADJUST) {
  1276. // Show the message.
  1277. lcd_show_fullscreen_message_and_wait_P(_T(MSG_BABYSTEP_Z_NOT_SET));
  1278. lcd_update_enable(true);
  1279. }
  1280. else if (calibration_status() == CALIBRATION_STATUS_CALIBRATED && temp_cal_active == true && calibration_status_pinda() == false) {
  1281. //lcd_show_fullscreen_message_and_wait_P(_i("Temperature calibration has not been run yet"));////MSG_PINDA_NOT_CALIBRATED c=20 r=4
  1282. lcd_update_enable(true);
  1283. }
  1284. else if (calibration_status() == CALIBRATION_STATUS_Z_CALIBRATION) {
  1285. // Show the message.
  1286. lcd_show_fullscreen_message_and_wait_P(_T(MSG_FOLLOW_Z_CALIBRATION_FLOW));
  1287. }
  1288. }
  1289. #if !defined (DEBUG_DISABLE_FORCE_SELFTEST) && defined (TMC2130)
  1290. if (force_selftest_if_fw_version() && calibration_status() < CALIBRATION_STATUS_ASSEMBLED) {
  1291. lcd_show_fullscreen_message_and_wait_P(_i("Selftest will be run to calibrate accurate sensorless rehoming."));////MSG_FORCE_SELFTEST c=20 r=8
  1292. update_current_firmware_version_to_eeprom();
  1293. lcd_selftest();
  1294. }
  1295. #endif //TMC2130 && !DEBUG_DISABLE_FORCE_SELFTEST
  1296. KEEPALIVE_STATE(IN_PROCESS);
  1297. #endif //DEBUG_DISABLE_STARTMSGS
  1298. lcd_update_enable(true);
  1299. lcd_clear();
  1300. lcd_update(2);
  1301. // Store the currently running firmware into an eeprom,
  1302. // so the next time the firmware gets updated, it will know from which version it has been updated.
  1303. update_current_firmware_version_to_eeprom();
  1304. #ifdef TMC2130
  1305. tmc2130_home_origin[X_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_HOME_X_ORIGIN);
  1306. tmc2130_home_bsteps[X_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_HOME_X_BSTEPS);
  1307. tmc2130_home_fsteps[X_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_HOME_X_FSTEPS);
  1308. if (tmc2130_home_origin[X_AXIS] == 0xff) tmc2130_home_origin[X_AXIS] = 0;
  1309. if (tmc2130_home_bsteps[X_AXIS] == 0xff) tmc2130_home_bsteps[X_AXIS] = 48;
  1310. if (tmc2130_home_fsteps[X_AXIS] == 0xff) tmc2130_home_fsteps[X_AXIS] = 48;
  1311. tmc2130_home_origin[Y_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_HOME_Y_ORIGIN);
  1312. tmc2130_home_bsteps[Y_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_HOME_Y_BSTEPS);
  1313. tmc2130_home_fsteps[Y_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_HOME_Y_FSTEPS);
  1314. if (tmc2130_home_origin[Y_AXIS] == 0xff) tmc2130_home_origin[Y_AXIS] = 0;
  1315. if (tmc2130_home_bsteps[Y_AXIS] == 0xff) tmc2130_home_bsteps[Y_AXIS] = 48;
  1316. if (tmc2130_home_fsteps[Y_AXIS] == 0xff) tmc2130_home_fsteps[Y_AXIS] = 48;
  1317. tmc2130_home_enabled = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_HOME_ENABLED);
  1318. if (tmc2130_home_enabled == 0xff) tmc2130_home_enabled = 0;
  1319. #endif //TMC2130
  1320. #ifdef UVLO_SUPPORT
  1321. if (eeprom_read_byte((uint8_t*)EEPROM_UVLO) != 0) { //previous print was terminated by UVLO
  1322. /*
  1323. if (lcd_show_fullscreen_message_yes_no_and_wait_P(_T(MSG_RECOVER_PRINT), false)) recover_print();
  1324. else {
  1325. eeprom_update_byte((uint8_t*)EEPROM_UVLO, 0);
  1326. lcd_update_enable(true);
  1327. lcd_update(2);
  1328. lcd_setstatuspgm(_T(WELCOME_MSG));
  1329. }
  1330. */
  1331. manage_heater(); // Update temperatures
  1332. #ifdef DEBUG_UVLO_AUTOMATIC_RECOVER
  1333. printf_P(_N("Power panic detected!\nCurrent bed temp:%d\nSaved bed temp:%d\n"), (int)degBed(), eeprom_read_byte((uint8_t*)EEPROM_UVLO_TARGET_BED));
  1334. #endif
  1335. if ( degBed() > ( (float)eeprom_read_byte((uint8_t*)EEPROM_UVLO_TARGET_BED) - AUTOMATIC_UVLO_BED_TEMP_OFFSET) ){
  1336. #ifdef DEBUG_UVLO_AUTOMATIC_RECOVER
  1337. puts_P(_N("Automatic recovery!"));
  1338. #endif
  1339. recover_print(1);
  1340. }
  1341. else{
  1342. #ifdef DEBUG_UVLO_AUTOMATIC_RECOVER
  1343. puts_P(_N("Normal recovery!"));
  1344. #endif
  1345. if ( lcd_show_fullscreen_message_yes_no_and_wait_P(_T(MSG_RECOVER_PRINT), false) ) recover_print(0);
  1346. else {
  1347. eeprom_update_byte((uint8_t*)EEPROM_UVLO, 0);
  1348. lcd_update_enable(true);
  1349. lcd_update(2);
  1350. lcd_setstatuspgm(_T(WELCOME_MSG));
  1351. }
  1352. }
  1353. }
  1354. #endif //UVLO_SUPPORT
  1355. fCheckModeInit();
  1356. fSetMmuMode(mmu_enabled);
  1357. KEEPALIVE_STATE(NOT_BUSY);
  1358. #ifdef WATCHDOG
  1359. wdt_enable(WDTO_4S);
  1360. #endif //WATCHDOG
  1361. }
  1362. void trace();
  1363. #define CHUNK_SIZE 64 // bytes
  1364. #define SAFETY_MARGIN 1
  1365. char chunk[CHUNK_SIZE+SAFETY_MARGIN];
  1366. int chunkHead = 0;
  1367. void serial_read_stream() {
  1368. setAllTargetHotends(0);
  1369. setTargetBed(0);
  1370. lcd_clear();
  1371. lcd_puts_P(PSTR(" Upload in progress"));
  1372. // first wait for how many bytes we will receive
  1373. uint32_t bytesToReceive;
  1374. // receive the four bytes
  1375. char bytesToReceiveBuffer[4];
  1376. for (int i=0; i<4; i++) {
  1377. int data;
  1378. while ((data = MYSERIAL.read()) == -1) {};
  1379. bytesToReceiveBuffer[i] = data;
  1380. }
  1381. // make it a uint32
  1382. memcpy(&bytesToReceive, &bytesToReceiveBuffer, 4);
  1383. // we're ready, notify the sender
  1384. MYSERIAL.write('+');
  1385. // lock in the routine
  1386. uint32_t receivedBytes = 0;
  1387. while (prusa_sd_card_upload) {
  1388. int i;
  1389. for (i=0; i<CHUNK_SIZE; i++) {
  1390. int data;
  1391. // check if we're not done
  1392. if (receivedBytes == bytesToReceive) {
  1393. break;
  1394. }
  1395. // read the next byte
  1396. while ((data = MYSERIAL.read()) == -1) {};
  1397. receivedBytes++;
  1398. // save it to the chunk
  1399. chunk[i] = data;
  1400. }
  1401. // write the chunk to SD
  1402. card.write_command_no_newline(&chunk[0]);
  1403. // notify the sender we're ready for more data
  1404. MYSERIAL.write('+');
  1405. // for safety
  1406. manage_heater();
  1407. // check if we're done
  1408. if(receivedBytes == bytesToReceive) {
  1409. trace(); // beep
  1410. card.closefile();
  1411. prusa_sd_card_upload = false;
  1412. SERIAL_PROTOCOLLNRPGM(MSG_FILE_SAVED);
  1413. }
  1414. }
  1415. }
  1416. /**
  1417. * Output a "busy" message at regular intervals
  1418. * while the machine is not accepting commands.
  1419. */
  1420. void host_keepalive() {
  1421. #ifndef HOST_KEEPALIVE_FEATURE
  1422. return;
  1423. #endif //HOST_KEEPALIVE_FEATURE
  1424. if (farm_mode) return;
  1425. long ms = _millis();
  1426. if (host_keepalive_interval && busy_state != NOT_BUSY) {
  1427. if ((ms - prev_busy_signal_ms) < (long)(1000L * host_keepalive_interval)) return;
  1428. switch (busy_state) {
  1429. case IN_HANDLER:
  1430. case IN_PROCESS:
  1431. SERIAL_ECHO_START;
  1432. SERIAL_ECHOLNPGM("busy: processing");
  1433. break;
  1434. case PAUSED_FOR_USER:
  1435. SERIAL_ECHO_START;
  1436. SERIAL_ECHOLNPGM("busy: paused for user");
  1437. break;
  1438. case PAUSED_FOR_INPUT:
  1439. SERIAL_ECHO_START;
  1440. SERIAL_ECHOLNPGM("busy: paused for input");
  1441. break;
  1442. default:
  1443. break;
  1444. }
  1445. }
  1446. prev_busy_signal_ms = ms;
  1447. }
  1448. // The loop() function is called in an endless loop by the Arduino framework from the default main() routine.
  1449. // Before loop(), the setup() function is called by the main() routine.
  1450. void loop()
  1451. {
  1452. KEEPALIVE_STATE(NOT_BUSY);
  1453. if ((usb_printing_counter > 0) && ((_millis()-_usb_timer) > 1000))
  1454. {
  1455. is_usb_printing = true;
  1456. usb_printing_counter--;
  1457. _usb_timer = _millis();
  1458. }
  1459. if (usb_printing_counter == 0)
  1460. {
  1461. is_usb_printing = false;
  1462. }
  1463. if (isPrintPaused && saved_printing_type == PRINTING_TYPE_USB) //keep believing that usb is being printed. Prevents accessing dangerous menus while pausing.
  1464. {
  1465. is_usb_printing = true;
  1466. }
  1467. #ifdef FANCHECK
  1468. if (fan_check_error && isPrintPaused)
  1469. {
  1470. KEEPALIVE_STATE(PAUSED_FOR_USER);
  1471. host_keepalive(); //prevent timeouts since usb processing is disabled until print is resumed. This is for a crude way of pausing a print on all hosts.
  1472. }
  1473. #endif
  1474. if (prusa_sd_card_upload)
  1475. {
  1476. //we read byte-by byte
  1477. serial_read_stream();
  1478. }
  1479. else
  1480. {
  1481. get_command();
  1482. #ifdef SDSUPPORT
  1483. card.checkautostart(false);
  1484. #endif
  1485. if(buflen)
  1486. {
  1487. cmdbuffer_front_already_processed = false;
  1488. #ifdef SDSUPPORT
  1489. if(card.saving)
  1490. {
  1491. // Saving a G-code file onto an SD-card is in progress.
  1492. // Saving starts with M28, saving until M29 is seen.
  1493. if(strstr_P(CMDBUFFER_CURRENT_STRING, PSTR("M29")) == NULL) {
  1494. card.write_command(CMDBUFFER_CURRENT_STRING);
  1495. if(card.logging)
  1496. process_commands();
  1497. else
  1498. SERIAL_PROTOCOLLNRPGM(MSG_OK);
  1499. } else {
  1500. card.closefile();
  1501. SERIAL_PROTOCOLLNRPGM(MSG_FILE_SAVED);
  1502. }
  1503. } else {
  1504. process_commands();
  1505. }
  1506. #else
  1507. process_commands();
  1508. #endif //SDSUPPORT
  1509. if (! cmdbuffer_front_already_processed && buflen)
  1510. {
  1511. // ptr points to the start of the block currently being processed.
  1512. // The first character in the block is the block type.
  1513. char *ptr = cmdbuffer + bufindr;
  1514. if (*ptr == CMDBUFFER_CURRENT_TYPE_SDCARD) {
  1515. // To support power panic, move the lenght of the command on the SD card to a planner buffer.
  1516. union {
  1517. struct {
  1518. char lo;
  1519. char hi;
  1520. } lohi;
  1521. uint16_t value;
  1522. } sdlen;
  1523. sdlen.value = 0;
  1524. {
  1525. // This block locks the interrupts globally for 3.25 us,
  1526. // which corresponds to a maximum repeat frequency of 307.69 kHz.
  1527. // This blocking is safe in the context of a 10kHz stepper driver interrupt
  1528. // or a 115200 Bd serial line receive interrupt, which will not trigger faster than 12kHz.
  1529. cli();
  1530. // Reset the command to something, which will be ignored by the power panic routine,
  1531. // so this buffer length will not be counted twice.
  1532. *ptr ++ = CMDBUFFER_CURRENT_TYPE_TO_BE_REMOVED;
  1533. // Extract the current buffer length.
  1534. sdlen.lohi.lo = *ptr ++;
  1535. sdlen.lohi.hi = *ptr;
  1536. // and pass it to the planner queue.
  1537. planner_add_sd_length(sdlen.value);
  1538. sei();
  1539. }
  1540. }
  1541. else if((*ptr == CMDBUFFER_CURRENT_TYPE_USB_WITH_LINENR) && !IS_SD_PRINTING){
  1542. cli();
  1543. *ptr ++ = CMDBUFFER_CURRENT_TYPE_TO_BE_REMOVED;
  1544. // and one for each command to previous block in the planner queue.
  1545. planner_add_sd_length(1);
  1546. sei();
  1547. }
  1548. // Now it is safe to release the already processed command block. If interrupted by the power panic now,
  1549. // this block's SD card length will not be counted twice as its command type has been replaced
  1550. // by CMDBUFFER_CURRENT_TYPE_TO_BE_REMOVED.
  1551. cmdqueue_pop_front();
  1552. }
  1553. host_keepalive();
  1554. }
  1555. }
  1556. //check heater every n milliseconds
  1557. manage_heater();
  1558. isPrintPaused ? manage_inactivity(true) : manage_inactivity(false);
  1559. checkHitEndstops();
  1560. lcd_update(0);
  1561. #ifdef TMC2130
  1562. tmc2130_check_overtemp();
  1563. if (tmc2130_sg_crash)
  1564. {
  1565. uint8_t crash = tmc2130_sg_crash;
  1566. tmc2130_sg_crash = 0;
  1567. // crashdet_stop_and_save_print();
  1568. switch (crash)
  1569. {
  1570. case 1: enquecommand_P((PSTR("CRASH_DETECTEDX"))); break;
  1571. case 2: enquecommand_P((PSTR("CRASH_DETECTEDY"))); break;
  1572. case 3: enquecommand_P((PSTR("CRASH_DETECTEDXY"))); break;
  1573. }
  1574. }
  1575. #endif //TMC2130
  1576. mmu_loop();
  1577. }
  1578. #define DEFINE_PGM_READ_ANY(type, reader) \
  1579. static inline type pgm_read_any(const type *p) \
  1580. { return pgm_read_##reader##_near(p); }
  1581. DEFINE_PGM_READ_ANY(float, float);
  1582. DEFINE_PGM_READ_ANY(signed char, byte);
  1583. #define XYZ_CONSTS_FROM_CONFIG(type, array, CONFIG) \
  1584. static const PROGMEM type array##_P[3] = \
  1585. { X_##CONFIG, Y_##CONFIG, Z_##CONFIG }; \
  1586. static inline type array(int axis) \
  1587. { return pgm_read_any(&array##_P[axis]); } \
  1588. type array##_ext(int axis) \
  1589. { return pgm_read_any(&array##_P[axis]); }
  1590. XYZ_CONSTS_FROM_CONFIG(float, base_min_pos, MIN_POS);
  1591. XYZ_CONSTS_FROM_CONFIG(float, base_max_pos, MAX_POS);
  1592. XYZ_CONSTS_FROM_CONFIG(float, base_home_pos, HOME_POS);
  1593. XYZ_CONSTS_FROM_CONFIG(float, max_length, MAX_LENGTH);
  1594. XYZ_CONSTS_FROM_CONFIG(float, home_retract_mm, HOME_RETRACT_MM);
  1595. XYZ_CONSTS_FROM_CONFIG(signed char, home_dir, HOME_DIR);
  1596. static void axis_is_at_home(int axis) {
  1597. current_position[axis] = base_home_pos(axis) + cs.add_homing[axis];
  1598. min_pos[axis] = base_min_pos(axis) + cs.add_homing[axis];
  1599. max_pos[axis] = base_max_pos(axis) + cs.add_homing[axis];
  1600. }
  1601. inline void set_current_to_destination() { memcpy(current_position, destination, sizeof(current_position)); }
  1602. inline void set_destination_to_current() { memcpy(destination, current_position, sizeof(destination)); }
  1603. //! @return original feedmultiply
  1604. static int setup_for_endstop_move(bool enable_endstops_now = true) {
  1605. saved_feedrate = feedrate;
  1606. int l_feedmultiply = feedmultiply;
  1607. feedmultiply = 100;
  1608. previous_millis_cmd = _millis();
  1609. enable_endstops(enable_endstops_now);
  1610. return l_feedmultiply;
  1611. }
  1612. //! @param original_feedmultiply feedmultiply to restore
  1613. static void clean_up_after_endstop_move(int original_feedmultiply) {
  1614. #ifdef ENDSTOPS_ONLY_FOR_HOMING
  1615. enable_endstops(false);
  1616. #endif
  1617. feedrate = saved_feedrate;
  1618. feedmultiply = original_feedmultiply;
  1619. previous_millis_cmd = _millis();
  1620. }
  1621. #ifdef ENABLE_AUTO_BED_LEVELING
  1622. #ifdef AUTO_BED_LEVELING_GRID
  1623. static void set_bed_level_equation_lsq(double *plane_equation_coefficients)
  1624. {
  1625. vector_3 planeNormal = vector_3(-plane_equation_coefficients[0], -plane_equation_coefficients[1], 1);
  1626. planeNormal.debug("planeNormal");
  1627. plan_bed_level_matrix = matrix_3x3::create_look_at(planeNormal);
  1628. //bedLevel.debug("bedLevel");
  1629. //plan_bed_level_matrix.debug("bed level before");
  1630. //vector_3 uncorrected_position = plan_get_position_mm();
  1631. //uncorrected_position.debug("position before");
  1632. vector_3 corrected_position = plan_get_position();
  1633. // corrected_position.debug("position after");
  1634. current_position[X_AXIS] = corrected_position.x;
  1635. current_position[Y_AXIS] = corrected_position.y;
  1636. current_position[Z_AXIS] = corrected_position.z;
  1637. // put the bed at 0 so we don't go below it.
  1638. current_position[Z_AXIS] = cs.zprobe_zoffset; // in the lsq we reach here after raising the extruder due to the loop structure
  1639. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1640. }
  1641. #else // not AUTO_BED_LEVELING_GRID
  1642. static void set_bed_level_equation_3pts(float z_at_pt_1, float z_at_pt_2, float z_at_pt_3) {
  1643. plan_bed_level_matrix.set_to_identity();
  1644. vector_3 pt1 = vector_3(ABL_PROBE_PT_1_X, ABL_PROBE_PT_1_Y, z_at_pt_1);
  1645. vector_3 pt2 = vector_3(ABL_PROBE_PT_2_X, ABL_PROBE_PT_2_Y, z_at_pt_2);
  1646. vector_3 pt3 = vector_3(ABL_PROBE_PT_3_X, ABL_PROBE_PT_3_Y, z_at_pt_3);
  1647. vector_3 from_2_to_1 = (pt1 - pt2).get_normal();
  1648. vector_3 from_2_to_3 = (pt3 - pt2).get_normal();
  1649. vector_3 planeNormal = vector_3::cross(from_2_to_1, from_2_to_3).get_normal();
  1650. planeNormal = vector_3(planeNormal.x, planeNormal.y, abs(planeNormal.z));
  1651. plan_bed_level_matrix = matrix_3x3::create_look_at(planeNormal);
  1652. vector_3 corrected_position = plan_get_position();
  1653. current_position[X_AXIS] = corrected_position.x;
  1654. current_position[Y_AXIS] = corrected_position.y;
  1655. current_position[Z_AXIS] = corrected_position.z;
  1656. // put the bed at 0 so we don't go below it.
  1657. current_position[Z_AXIS] = cs.zprobe_zoffset;
  1658. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1659. }
  1660. #endif // AUTO_BED_LEVELING_GRID
  1661. static void run_z_probe() {
  1662. plan_bed_level_matrix.set_to_identity();
  1663. feedrate = homing_feedrate[Z_AXIS];
  1664. // move down until you find the bed
  1665. float zPosition = -10;
  1666. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder);
  1667. st_synchronize();
  1668. // we have to let the planner know where we are right now as it is not where we said to go.
  1669. zPosition = st_get_position_mm(Z_AXIS);
  1670. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS]);
  1671. // move up the retract distance
  1672. zPosition += home_retract_mm(Z_AXIS);
  1673. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder);
  1674. st_synchronize();
  1675. // move back down slowly to find bed
  1676. feedrate = homing_feedrate[Z_AXIS]/4;
  1677. zPosition -= home_retract_mm(Z_AXIS) * 2;
  1678. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder);
  1679. st_synchronize();
  1680. current_position[Z_AXIS] = st_get_position_mm(Z_AXIS);
  1681. // make sure the planner knows where we are as it may be a bit different than we last said to move to
  1682. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1683. }
  1684. static void do_blocking_move_to(float x, float y, float z) {
  1685. float oldFeedRate = feedrate;
  1686. feedrate = homing_feedrate[Z_AXIS];
  1687. current_position[Z_AXIS] = z;
  1688. plan_buffer_line_curposXYZE(feedrate/60, active_extruder);
  1689. st_synchronize();
  1690. feedrate = XY_TRAVEL_SPEED;
  1691. current_position[X_AXIS] = x;
  1692. current_position[Y_AXIS] = y;
  1693. plan_buffer_line_curposXYZE(feedrate/60, active_extruder);
  1694. st_synchronize();
  1695. feedrate = oldFeedRate;
  1696. }
  1697. static void do_blocking_move_relative(float offset_x, float offset_y, float offset_z) {
  1698. do_blocking_move_to(current_position[X_AXIS] + offset_x, current_position[Y_AXIS] + offset_y, current_position[Z_AXIS] + offset_z);
  1699. }
  1700. /// Probe bed height at position (x,y), returns the measured z value
  1701. static float probe_pt(float x, float y, float z_before) {
  1702. // move to right place
  1703. do_blocking_move_to(current_position[X_AXIS], current_position[Y_AXIS], z_before);
  1704. do_blocking_move_to(x - X_PROBE_OFFSET_FROM_EXTRUDER, y - Y_PROBE_OFFSET_FROM_EXTRUDER, current_position[Z_AXIS]);
  1705. run_z_probe();
  1706. float measured_z = current_position[Z_AXIS];
  1707. SERIAL_PROTOCOLRPGM(_T(MSG_BED));
  1708. SERIAL_PROTOCOLPGM(" x: ");
  1709. SERIAL_PROTOCOL(x);
  1710. SERIAL_PROTOCOLPGM(" y: ");
  1711. SERIAL_PROTOCOL(y);
  1712. SERIAL_PROTOCOLPGM(" z: ");
  1713. SERIAL_PROTOCOL(measured_z);
  1714. SERIAL_PROTOCOLPGM("\n");
  1715. return measured_z;
  1716. }
  1717. #endif // #ifdef ENABLE_AUTO_BED_LEVELING
  1718. #ifdef LIN_ADVANCE
  1719. /**
  1720. * M900: Set and/or Get advance K factor and WH/D ratio
  1721. *
  1722. * K<factor> Set advance K factor
  1723. * R<ratio> Set ratio directly (overrides WH/D)
  1724. * W<width> H<height> D<diam> Set ratio from WH/D
  1725. */
  1726. inline void gcode_M900() {
  1727. st_synchronize();
  1728. const float newK = code_seen('K') ? code_value_float() : -1;
  1729. if (newK >= 0) extruder_advance_k = newK;
  1730. float newR = code_seen('R') ? code_value_float() : -1;
  1731. if (newR < 0) {
  1732. const float newD = code_seen('D') ? code_value_float() : -1,
  1733. newW = code_seen('W') ? code_value_float() : -1,
  1734. newH = code_seen('H') ? code_value_float() : -1;
  1735. if (newD >= 0 && newW >= 0 && newH >= 0)
  1736. newR = newD ? (newW * newH) / (sq(newD * 0.5) * M_PI) : 0;
  1737. }
  1738. if (newR >= 0) advance_ed_ratio = newR;
  1739. SERIAL_ECHO_START;
  1740. SERIAL_ECHOPGM("Advance K=");
  1741. SERIAL_ECHOLN(extruder_advance_k);
  1742. SERIAL_ECHOPGM(" E/D=");
  1743. const float ratio = advance_ed_ratio;
  1744. if (ratio) SERIAL_ECHOLN(ratio); else SERIAL_ECHOLNPGM("Auto");
  1745. }
  1746. #endif // LIN_ADVANCE
  1747. bool check_commands() {
  1748. bool end_command_found = false;
  1749. while (buflen)
  1750. {
  1751. if ((code_seen("M84")) || (code_seen("M 84"))) end_command_found = true;
  1752. if (!cmdbuffer_front_already_processed)
  1753. cmdqueue_pop_front();
  1754. cmdbuffer_front_already_processed = false;
  1755. }
  1756. return end_command_found;
  1757. }
  1758. #ifdef TMC2130
  1759. bool calibrate_z_auto()
  1760. {
  1761. //lcd_display_message_fullscreen_P(_T(MSG_CALIBRATE_Z_AUTO));
  1762. lcd_clear();
  1763. lcd_puts_at_P(0, 1, _T(MSG_CALIBRATE_Z_AUTO));
  1764. bool endstops_enabled = enable_endstops(true);
  1765. int axis_up_dir = -home_dir(Z_AXIS);
  1766. tmc2130_home_enter(Z_AXIS_MASK);
  1767. current_position[Z_AXIS] = 0;
  1768. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1769. set_destination_to_current();
  1770. destination[Z_AXIS] += (1.1 * max_length(Z_AXIS) * axis_up_dir);
  1771. feedrate = homing_feedrate[Z_AXIS];
  1772. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate / 60, active_extruder);
  1773. st_synchronize();
  1774. // current_position[axis] = 0;
  1775. // plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1776. tmc2130_home_exit();
  1777. enable_endstops(false);
  1778. current_position[Z_AXIS] = 0;
  1779. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1780. set_destination_to_current();
  1781. destination[Z_AXIS] += 10 * axis_up_dir; //10mm up
  1782. feedrate = homing_feedrate[Z_AXIS] / 2;
  1783. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate / 60, active_extruder);
  1784. st_synchronize();
  1785. enable_endstops(endstops_enabled);
  1786. if (PRINTER_TYPE == PRINTER_MK3) {
  1787. current_position[Z_AXIS] = Z_MAX_POS + 2.0;
  1788. }
  1789. else {
  1790. current_position[Z_AXIS] = Z_MAX_POS + 9.0;
  1791. }
  1792. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1793. return true;
  1794. }
  1795. #endif //TMC2130
  1796. #ifdef TMC2130
  1797. void homeaxis(int axis, uint8_t cnt, uint8_t* pstep)
  1798. #else
  1799. void homeaxis(int axis, uint8_t cnt)
  1800. #endif //TMC2130
  1801. {
  1802. bool endstops_enabled = enable_endstops(true); //RP: endstops should be allways enabled durring homing
  1803. #define HOMEAXIS_DO(LETTER) \
  1804. ((LETTER##_MIN_PIN > -1 && LETTER##_HOME_DIR==-1) || (LETTER##_MAX_PIN > -1 && LETTER##_HOME_DIR==1))
  1805. if ((axis==X_AXIS)?HOMEAXIS_DO(X):(axis==Y_AXIS)?HOMEAXIS_DO(Y):0)
  1806. {
  1807. int axis_home_dir = home_dir(axis);
  1808. feedrate = homing_feedrate[axis];
  1809. #ifdef TMC2130
  1810. tmc2130_home_enter(X_AXIS_MASK << axis);
  1811. #endif //TMC2130
  1812. // Move away a bit, so that the print head does not touch the end position,
  1813. // and the following movement to endstop has a chance to achieve the required velocity
  1814. // for the stall guard to work.
  1815. current_position[axis] = 0;
  1816. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1817. set_destination_to_current();
  1818. // destination[axis] = 11.f;
  1819. destination[axis] = -3.f * axis_home_dir;
  1820. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1821. st_synchronize();
  1822. // Move away from the possible collision with opposite endstop with the collision detection disabled.
  1823. endstops_hit_on_purpose();
  1824. enable_endstops(false);
  1825. current_position[axis] = 0;
  1826. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1827. destination[axis] = 1. * axis_home_dir;
  1828. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1829. st_synchronize();
  1830. // Now continue to move up to the left end stop with the collision detection enabled.
  1831. enable_endstops(true);
  1832. destination[axis] = 1.1 * axis_home_dir * max_length(axis);
  1833. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1834. st_synchronize();
  1835. for (uint8_t i = 0; i < cnt; i++)
  1836. {
  1837. // Move away from the collision to a known distance from the left end stop with the collision detection disabled.
  1838. endstops_hit_on_purpose();
  1839. enable_endstops(false);
  1840. current_position[axis] = 0;
  1841. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1842. destination[axis] = -10.f * axis_home_dir;
  1843. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1844. st_synchronize();
  1845. endstops_hit_on_purpose();
  1846. // Now move left up to the collision, this time with a repeatable velocity.
  1847. enable_endstops(true);
  1848. destination[axis] = 11.f * axis_home_dir;
  1849. #ifdef TMC2130
  1850. feedrate = homing_feedrate[axis];
  1851. #else //TMC2130
  1852. feedrate = homing_feedrate[axis] / 2;
  1853. #endif //TMC2130
  1854. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1855. st_synchronize();
  1856. #ifdef TMC2130
  1857. uint16_t mscnt = tmc2130_rd_MSCNT(axis);
  1858. if (pstep) pstep[i] = mscnt >> 4;
  1859. printf_P(PSTR("%3d step=%2d mscnt=%4d\n"), i, mscnt >> 4, mscnt);
  1860. #endif //TMC2130
  1861. }
  1862. endstops_hit_on_purpose();
  1863. enable_endstops(false);
  1864. #ifdef TMC2130
  1865. uint8_t orig = tmc2130_home_origin[axis];
  1866. uint8_t back = tmc2130_home_bsteps[axis];
  1867. if (tmc2130_home_enabled && (orig <= 63))
  1868. {
  1869. tmc2130_goto_step(axis, orig, 2, 1000, tmc2130_get_res(axis));
  1870. if (back > 0)
  1871. tmc2130_do_steps(axis, back, -axis_home_dir, 1000);
  1872. }
  1873. else
  1874. tmc2130_do_steps(axis, 8, -axis_home_dir, 1000);
  1875. tmc2130_home_exit();
  1876. #endif //TMC2130
  1877. axis_is_at_home(axis);
  1878. axis_known_position[axis] = true;
  1879. // Move from minimum
  1880. #ifdef TMC2130
  1881. float dist = - axis_home_dir * 0.01f * tmc2130_home_fsteps[axis];
  1882. #else //TMC2130
  1883. float dist = - axis_home_dir * 0.01f * 64;
  1884. #endif //TMC2130
  1885. current_position[axis] -= dist;
  1886. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1887. current_position[axis] += dist;
  1888. destination[axis] = current_position[axis];
  1889. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], 0.5f*feedrate/60, active_extruder);
  1890. st_synchronize();
  1891. feedrate = 0.0;
  1892. }
  1893. else if ((axis==Z_AXIS)?HOMEAXIS_DO(Z):0)
  1894. {
  1895. #ifdef TMC2130
  1896. FORCE_HIGH_POWER_START;
  1897. #endif
  1898. int axis_home_dir = home_dir(axis);
  1899. current_position[axis] = 0;
  1900. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1901. destination[axis] = 1.5 * max_length(axis) * axis_home_dir;
  1902. feedrate = homing_feedrate[axis];
  1903. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1904. st_synchronize();
  1905. #ifdef TMC2130
  1906. if (READ(Z_TMC2130_DIAG) != 0) { //Z crash
  1907. FORCE_HIGH_POWER_END;
  1908. kill(_T(MSG_BED_LEVELING_FAILED_POINT_LOW));
  1909. return;
  1910. }
  1911. #endif //TMC2130
  1912. current_position[axis] = 0;
  1913. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1914. destination[axis] = -home_retract_mm(axis) * axis_home_dir;
  1915. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1916. st_synchronize();
  1917. destination[axis] = 2*home_retract_mm(axis) * axis_home_dir;
  1918. feedrate = homing_feedrate[axis]/2 ;
  1919. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1920. st_synchronize();
  1921. #ifdef TMC2130
  1922. if (READ(Z_TMC2130_DIAG) != 0) { //Z crash
  1923. FORCE_HIGH_POWER_END;
  1924. kill(_T(MSG_BED_LEVELING_FAILED_POINT_LOW));
  1925. return;
  1926. }
  1927. #endif //TMC2130
  1928. axis_is_at_home(axis);
  1929. destination[axis] = current_position[axis];
  1930. feedrate = 0.0;
  1931. endstops_hit_on_purpose();
  1932. axis_known_position[axis] = true;
  1933. #ifdef TMC2130
  1934. FORCE_HIGH_POWER_END;
  1935. #endif
  1936. }
  1937. enable_endstops(endstops_enabled);
  1938. }
  1939. /**/
  1940. void home_xy()
  1941. {
  1942. set_destination_to_current();
  1943. homeaxis(X_AXIS);
  1944. homeaxis(Y_AXIS);
  1945. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1946. endstops_hit_on_purpose();
  1947. }
  1948. void refresh_cmd_timeout(void)
  1949. {
  1950. previous_millis_cmd = _millis();
  1951. }
  1952. #ifdef FWRETRACT
  1953. void retract(bool retracting, bool swapretract = false) {
  1954. if(retracting && !retracted[active_extruder]) {
  1955. destination[X_AXIS]=current_position[X_AXIS];
  1956. destination[Y_AXIS]=current_position[Y_AXIS];
  1957. destination[Z_AXIS]=current_position[Z_AXIS];
  1958. destination[E_AXIS]=current_position[E_AXIS];
  1959. current_position[E_AXIS]+=(swapretract?retract_length_swap:cs.retract_length)*float(extrudemultiply)*0.01f;
  1960. plan_set_e_position(current_position[E_AXIS]);
  1961. float oldFeedrate = feedrate;
  1962. feedrate=cs.retract_feedrate*60;
  1963. retracted[active_extruder]=true;
  1964. prepare_move();
  1965. current_position[Z_AXIS]-=cs.retract_zlift;
  1966. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1967. prepare_move();
  1968. feedrate = oldFeedrate;
  1969. } else if(!retracting && retracted[active_extruder]) {
  1970. destination[X_AXIS]=current_position[X_AXIS];
  1971. destination[Y_AXIS]=current_position[Y_AXIS];
  1972. destination[Z_AXIS]=current_position[Z_AXIS];
  1973. destination[E_AXIS]=current_position[E_AXIS];
  1974. current_position[Z_AXIS]+=cs.retract_zlift;
  1975. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1976. current_position[E_AXIS]-=(swapretract?(retract_length_swap+retract_recover_length_swap):(cs.retract_length+cs.retract_recover_length))*float(extrudemultiply)*0.01f;
  1977. plan_set_e_position(current_position[E_AXIS]);
  1978. float oldFeedrate = feedrate;
  1979. feedrate=cs.retract_recover_feedrate*60;
  1980. retracted[active_extruder]=false;
  1981. prepare_move();
  1982. feedrate = oldFeedrate;
  1983. }
  1984. } //retract
  1985. #endif //FWRETRACT
  1986. void trace() {
  1987. Sound_MakeCustom(25,440,true);
  1988. }
  1989. /*
  1990. void ramming() {
  1991. // float tmp[4] = DEFAULT_MAX_FEEDRATE;
  1992. if (current_temperature[0] < 230) {
  1993. //PLA
  1994. max_feedrate[E_AXIS] = 50;
  1995. //current_position[E_AXIS] -= 8;
  1996. //plan_buffer_line_curposXYZE(2100 / 60, active_extruder);
  1997. //current_position[E_AXIS] += 8;
  1998. //plan_buffer_line_curposXYZE(2100 / 60, active_extruder);
  1999. current_position[E_AXIS] += 5.4;
  2000. plan_buffer_line_curposXYZE(2800 / 60, active_extruder);
  2001. current_position[E_AXIS] += 3.2;
  2002. plan_buffer_line_curposXYZE(3000 / 60, active_extruder);
  2003. current_position[E_AXIS] += 3;
  2004. plan_buffer_line_curposXYZE(3400 / 60, active_extruder);
  2005. st_synchronize();
  2006. max_feedrate[E_AXIS] = 80;
  2007. current_position[E_AXIS] -= 82;
  2008. plan_buffer_line_curposXYZE(9500 / 60, active_extruder);
  2009. max_feedrate[E_AXIS] = 50;//tmp[E_AXIS];
  2010. current_position[E_AXIS] -= 20;
  2011. plan_buffer_line_curposXYZE(1200 / 60, active_extruder);
  2012. current_position[E_AXIS] += 5;
  2013. plan_buffer_line_curposXYZE(400 / 60, active_extruder);
  2014. current_position[E_AXIS] += 5;
  2015. plan_buffer_line_curposXYZE(600 / 60, active_extruder);
  2016. current_position[E_AXIS] -= 10;
  2017. st_synchronize();
  2018. plan_buffer_line_curposXYZE(600 / 60, active_extruder);
  2019. current_position[E_AXIS] += 10;
  2020. plan_buffer_line_curposXYZE(600 / 60, active_extruder);
  2021. current_position[E_AXIS] -= 10;
  2022. plan_buffer_line_curposXYZE(800 / 60, active_extruder);
  2023. current_position[E_AXIS] += 10;
  2024. plan_buffer_line_curposXYZE(800 / 60, active_extruder);
  2025. current_position[E_AXIS] -= 10;
  2026. plan_buffer_line_curposXYZE(800 / 60, active_extruder);
  2027. st_synchronize();
  2028. }
  2029. else {
  2030. //ABS
  2031. max_feedrate[E_AXIS] = 50;
  2032. //current_position[E_AXIS] -= 8;
  2033. //plan_buffer_line_curposXYZE(2100 / 60, active_extruder);
  2034. //current_position[E_AXIS] += 8;
  2035. //plan_buffer_line_curposXYZE(2100 / 60, active_extruder);
  2036. current_position[E_AXIS] += 3.1;
  2037. plan_buffer_line_curposXYZE(2000 / 60, active_extruder);
  2038. current_position[E_AXIS] += 3.1;
  2039. plan_buffer_line_curposXYZE(2500 / 60, active_extruder);
  2040. current_position[E_AXIS] += 4;
  2041. plan_buffer_line_curposXYZE(3000 / 60, active_extruder);
  2042. st_synchronize();
  2043. //current_position[X_AXIS] += 23; //delay
  2044. //plan_buffer_line_curposXYZE(600/60, active_extruder); //delay
  2045. //current_position[X_AXIS] -= 23; //delay
  2046. //plan_buffer_line_curposXYZE(600/60, active_extruder); //delay
  2047. _delay(4700);
  2048. max_feedrate[E_AXIS] = 80;
  2049. current_position[E_AXIS] -= 92;
  2050. plan_buffer_line_curposXYZE(9900 / 60, active_extruder);
  2051. max_feedrate[E_AXIS] = 50;//tmp[E_AXIS];
  2052. current_position[E_AXIS] -= 5;
  2053. plan_buffer_line_curposXYZE(800 / 60, active_extruder);
  2054. current_position[E_AXIS] += 5;
  2055. plan_buffer_line_curposXYZE(400 / 60, active_extruder);
  2056. current_position[E_AXIS] -= 5;
  2057. plan_buffer_line_curposXYZE(600 / 60, active_extruder);
  2058. st_synchronize();
  2059. current_position[E_AXIS] += 5;
  2060. plan_buffer_line_curposXYZE(600 / 60, active_extruder);
  2061. current_position[E_AXIS] -= 5;
  2062. plan_buffer_line_curposXYZE(600 / 60, active_extruder);
  2063. current_position[E_AXIS] += 5;
  2064. plan_buffer_line_curposXYZE(600 / 60, active_extruder);
  2065. current_position[E_AXIS] -= 5;
  2066. plan_buffer_line_curposXYZE(600 / 60, active_extruder);
  2067. st_synchronize();
  2068. }
  2069. }
  2070. */
  2071. #ifdef TMC2130
  2072. void force_high_power_mode(bool start_high_power_section) {
  2073. uint8_t silent;
  2074. silent = eeprom_read_byte((uint8_t*)EEPROM_SILENT);
  2075. if (silent == 1) {
  2076. //we are in silent mode, set to normal mode to enable crash detection
  2077. // Wait for the planner queue to drain and for the stepper timer routine to reach an idle state.
  2078. st_synchronize();
  2079. cli();
  2080. tmc2130_mode = (start_high_power_section == true) ? TMC2130_MODE_NORMAL : TMC2130_MODE_SILENT;
  2081. update_mode_profile();
  2082. tmc2130_init();
  2083. // We may have missed a stepper timer interrupt due to the time spent in the tmc2130_init() routine.
  2084. // Be safe than sorry, reset the stepper timer before re-enabling interrupts.
  2085. st_reset_timer();
  2086. sei();
  2087. }
  2088. }
  2089. #endif //TMC2130
  2090. #ifdef TMC2130
  2091. static void gcode_G28(bool home_x_axis, long home_x_value, bool home_y_axis, long home_y_value, bool home_z_axis, long home_z_value, bool calib, bool without_mbl)
  2092. #else
  2093. static void gcode_G28(bool home_x_axis, long home_x_value, bool home_y_axis, long home_y_value, bool home_z_axis, long home_z_value, bool without_mbl)
  2094. #endif //TMC2130
  2095. {
  2096. st_synchronize();
  2097. #if 0
  2098. SERIAL_ECHOPGM("G28, initial "); print_world_coordinates();
  2099. SERIAL_ECHOPGM("G28, initial "); print_physical_coordinates();
  2100. #endif
  2101. // Flag for the display update routine and to disable the print cancelation during homing.
  2102. homing_flag = true;
  2103. // Which axes should be homed?
  2104. bool home_x = home_x_axis;
  2105. bool home_y = home_y_axis;
  2106. bool home_z = home_z_axis;
  2107. // Either all X,Y,Z codes are present, or none of them.
  2108. bool home_all_axes = home_x == home_y && home_x == home_z;
  2109. if (home_all_axes)
  2110. // No X/Y/Z code provided means to home all axes.
  2111. home_x = home_y = home_z = true;
  2112. //if we are homing all axes, first move z higher to protect heatbed/steel sheet
  2113. if (home_all_axes) {
  2114. current_position[Z_AXIS] += MESH_HOME_Z_SEARCH;
  2115. feedrate = homing_feedrate[Z_AXIS];
  2116. plan_buffer_line_curposXYZE(feedrate / 60, active_extruder);
  2117. st_synchronize();
  2118. }
  2119. #ifdef ENABLE_AUTO_BED_LEVELING
  2120. plan_bed_level_matrix.set_to_identity(); //Reset the plane ("erase" all leveling data)
  2121. #endif //ENABLE_AUTO_BED_LEVELING
  2122. // Reset world2machine_rotation_and_skew and world2machine_shift, therefore
  2123. // the planner will not perform any adjustments in the XY plane.
  2124. // Wait for the motors to stop and update the current position with the absolute values.
  2125. world2machine_revert_to_uncorrected();
  2126. // For mesh bed leveling deactivate the matrix temporarily.
  2127. // It is necessary to disable the bed leveling for the X and Y homing moves, so that the move is performed
  2128. // in a single axis only.
  2129. // In case of re-homing the X or Y axes only, the mesh bed leveling is restored after G28.
  2130. #ifdef MESH_BED_LEVELING
  2131. uint8_t mbl_was_active = mbl.active;
  2132. mbl.active = 0;
  2133. current_position[Z_AXIS] = st_get_position_mm(Z_AXIS);
  2134. #endif
  2135. // Reset baby stepping to zero, if the babystepping has already been loaded before. The babystepsTodo value will be
  2136. // consumed during the first movements following this statement.
  2137. if (home_z)
  2138. babystep_undo();
  2139. saved_feedrate = feedrate;
  2140. int l_feedmultiply = feedmultiply;
  2141. feedmultiply = 100;
  2142. previous_millis_cmd = _millis();
  2143. enable_endstops(true);
  2144. memcpy(destination, current_position, sizeof(destination));
  2145. feedrate = 0.0;
  2146. #if Z_HOME_DIR > 0 // If homing away from BED do Z first
  2147. if(home_z)
  2148. homeaxis(Z_AXIS);
  2149. #endif
  2150. #ifdef QUICK_HOME
  2151. // In the quick mode, if both x and y are to be homed, a diagonal move will be performed initially.
  2152. if(home_x && home_y) //first diagonal move
  2153. {
  2154. current_position[X_AXIS] = 0;current_position[Y_AXIS] = 0;
  2155. int x_axis_home_dir = home_dir(X_AXIS);
  2156. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2157. destination[X_AXIS] = 1.5 * max_length(X_AXIS) * x_axis_home_dir;destination[Y_AXIS] = 1.5 * max_length(Y_AXIS) * home_dir(Y_AXIS);
  2158. feedrate = homing_feedrate[X_AXIS];
  2159. if(homing_feedrate[Y_AXIS]<feedrate)
  2160. feedrate = homing_feedrate[Y_AXIS];
  2161. if (max_length(X_AXIS) > max_length(Y_AXIS)) {
  2162. feedrate *= sqrt(pow(max_length(Y_AXIS) / max_length(X_AXIS), 2) + 1);
  2163. } else {
  2164. feedrate *= sqrt(pow(max_length(X_AXIS) / max_length(Y_AXIS), 2) + 1);
  2165. }
  2166. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  2167. st_synchronize();
  2168. axis_is_at_home(X_AXIS);
  2169. axis_is_at_home(Y_AXIS);
  2170. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2171. destination[X_AXIS] = current_position[X_AXIS];
  2172. destination[Y_AXIS] = current_position[Y_AXIS];
  2173. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  2174. feedrate = 0.0;
  2175. st_synchronize();
  2176. endstops_hit_on_purpose();
  2177. current_position[X_AXIS] = destination[X_AXIS];
  2178. current_position[Y_AXIS] = destination[Y_AXIS];
  2179. current_position[Z_AXIS] = destination[Z_AXIS];
  2180. }
  2181. #endif /* QUICK_HOME */
  2182. #ifdef TMC2130
  2183. if(home_x)
  2184. {
  2185. if (!calib)
  2186. homeaxis(X_AXIS);
  2187. else
  2188. tmc2130_home_calibrate(X_AXIS);
  2189. }
  2190. if(home_y)
  2191. {
  2192. if (!calib)
  2193. homeaxis(Y_AXIS);
  2194. else
  2195. tmc2130_home_calibrate(Y_AXIS);
  2196. }
  2197. #else //TMC2130
  2198. if(home_x) homeaxis(X_AXIS);
  2199. if(home_y) homeaxis(Y_AXIS);
  2200. #endif //TMC2130
  2201. if(home_x_axis && home_x_value != 0)
  2202. current_position[X_AXIS]=home_x_value+cs.add_homing[X_AXIS];
  2203. if(home_y_axis && home_y_value != 0)
  2204. current_position[Y_AXIS]=home_y_value+cs.add_homing[Y_AXIS];
  2205. #if Z_HOME_DIR < 0 // If homing towards BED do Z last
  2206. #ifndef Z_SAFE_HOMING
  2207. if(home_z) {
  2208. #if defined (Z_RAISE_BEFORE_HOMING) && (Z_RAISE_BEFORE_HOMING > 0)
  2209. destination[Z_AXIS] = Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS) * (-1); // Set destination away from bed
  2210. feedrate = max_feedrate[Z_AXIS];
  2211. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
  2212. st_synchronize();
  2213. #endif // defined (Z_RAISE_BEFORE_HOMING) && (Z_RAISE_BEFORE_HOMING > 0)
  2214. #if (defined(MESH_BED_LEVELING) && !defined(MK1BP)) // If Mesh bed leveling, move X&Y to safe position for home
  2215. if (!(axis_known_position[X_AXIS] && axis_known_position[Y_AXIS] ))
  2216. {
  2217. homeaxis(X_AXIS);
  2218. homeaxis(Y_AXIS);
  2219. }
  2220. // 1st mesh bed leveling measurement point, corrected.
  2221. world2machine_initialize();
  2222. world2machine(pgm_read_float(bed_ref_points_4), pgm_read_float(bed_ref_points_4+1), destination[X_AXIS], destination[Y_AXIS]);
  2223. world2machine_reset();
  2224. if (destination[Y_AXIS] < Y_MIN_POS)
  2225. destination[Y_AXIS] = Y_MIN_POS;
  2226. destination[Z_AXIS] = MESH_HOME_Z_SEARCH; // Set destination away from bed
  2227. feedrate = homing_feedrate[Z_AXIS]/10;
  2228. current_position[Z_AXIS] = 0;
  2229. enable_endstops(false);
  2230. #ifdef DEBUG_BUILD
  2231. SERIAL_ECHOLNPGM("plan_set_position()");
  2232. MYSERIAL.println(current_position[X_AXIS]);MYSERIAL.println(current_position[Y_AXIS]);
  2233. MYSERIAL.println(current_position[Z_AXIS]);MYSERIAL.println(current_position[E_AXIS]);
  2234. #endif
  2235. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2236. #ifdef DEBUG_BUILD
  2237. SERIAL_ECHOLNPGM("plan_buffer_line()");
  2238. MYSERIAL.println(destination[X_AXIS]);MYSERIAL.println(destination[Y_AXIS]);
  2239. MYSERIAL.println(destination[Z_AXIS]);MYSERIAL.println(destination[E_AXIS]);
  2240. MYSERIAL.println(feedrate);MYSERIAL.println(active_extruder);
  2241. #endif
  2242. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
  2243. st_synchronize();
  2244. current_position[X_AXIS] = destination[X_AXIS];
  2245. current_position[Y_AXIS] = destination[Y_AXIS];
  2246. enable_endstops(true);
  2247. endstops_hit_on_purpose();
  2248. homeaxis(Z_AXIS);
  2249. #else // MESH_BED_LEVELING
  2250. homeaxis(Z_AXIS);
  2251. #endif // MESH_BED_LEVELING
  2252. }
  2253. #else // defined(Z_SAFE_HOMING): Z Safe mode activated.
  2254. if(home_all_axes) {
  2255. destination[X_AXIS] = round(Z_SAFE_HOMING_X_POINT - X_PROBE_OFFSET_FROM_EXTRUDER);
  2256. destination[Y_AXIS] = round(Z_SAFE_HOMING_Y_POINT - Y_PROBE_OFFSET_FROM_EXTRUDER);
  2257. destination[Z_AXIS] = Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS) * (-1); // Set destination away from bed
  2258. feedrate = XY_TRAVEL_SPEED/60;
  2259. current_position[Z_AXIS] = 0;
  2260. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2261. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
  2262. st_synchronize();
  2263. current_position[X_AXIS] = destination[X_AXIS];
  2264. current_position[Y_AXIS] = destination[Y_AXIS];
  2265. homeaxis(Z_AXIS);
  2266. }
  2267. // Let's see if X and Y are homed and probe is inside bed area.
  2268. if(home_z) {
  2269. if ( (axis_known_position[X_AXIS]) && (axis_known_position[Y_AXIS]) \
  2270. && (current_position[X_AXIS]+X_PROBE_OFFSET_FROM_EXTRUDER >= X_MIN_POS) \
  2271. && (current_position[X_AXIS]+X_PROBE_OFFSET_FROM_EXTRUDER <= X_MAX_POS) \
  2272. && (current_position[Y_AXIS]+Y_PROBE_OFFSET_FROM_EXTRUDER >= Y_MIN_POS) \
  2273. && (current_position[Y_AXIS]+Y_PROBE_OFFSET_FROM_EXTRUDER <= Y_MAX_POS)) {
  2274. current_position[Z_AXIS] = 0;
  2275. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2276. destination[Z_AXIS] = Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS) * (-1); // Set destination away from bed
  2277. feedrate = max_feedrate[Z_AXIS];
  2278. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
  2279. st_synchronize();
  2280. homeaxis(Z_AXIS);
  2281. } else if (!((axis_known_position[X_AXIS]) && (axis_known_position[Y_AXIS]))) {
  2282. LCD_MESSAGERPGM(MSG_POSITION_UNKNOWN);
  2283. SERIAL_ECHO_START;
  2284. SERIAL_ECHOLNRPGM(MSG_POSITION_UNKNOWN);
  2285. } else {
  2286. LCD_MESSAGERPGM(MSG_ZPROBE_OUT);
  2287. SERIAL_ECHO_START;
  2288. SERIAL_ECHOLNRPGM(MSG_ZPROBE_OUT);
  2289. }
  2290. }
  2291. #endif // Z_SAFE_HOMING
  2292. #endif // Z_HOME_DIR < 0
  2293. if(home_z_axis && home_z_value != 0)
  2294. current_position[Z_AXIS]=home_z_value+cs.add_homing[Z_AXIS];
  2295. #ifdef ENABLE_AUTO_BED_LEVELING
  2296. if(home_z)
  2297. current_position[Z_AXIS] += cs.zprobe_zoffset; //Add Z_Probe offset (the distance is negative)
  2298. #endif
  2299. // Set the planner and stepper routine positions.
  2300. // At this point the mesh bed leveling and world2machine corrections are disabled and current_position
  2301. // contains the machine coordinates.
  2302. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2303. #ifdef ENDSTOPS_ONLY_FOR_HOMING
  2304. enable_endstops(false);
  2305. #endif
  2306. feedrate = saved_feedrate;
  2307. feedmultiply = l_feedmultiply;
  2308. previous_millis_cmd = _millis();
  2309. endstops_hit_on_purpose();
  2310. #ifndef MESH_BED_LEVELING
  2311. // If MESH_BED_LEVELING is not active, then it is the original Prusa i3.
  2312. // Offer the user to load the baby step value, which has been adjusted at the previous print session.
  2313. if(card.sdprinting && eeprom_read_word((uint16_t *)EEPROM_BABYSTEP_Z))
  2314. lcd_adjust_z();
  2315. #endif
  2316. // Load the machine correction matrix
  2317. world2machine_initialize();
  2318. // and correct the current_position XY axes to match the transformed coordinate system.
  2319. world2machine_update_current();
  2320. #if (defined(MESH_BED_LEVELING) && !defined(MK1BP))
  2321. if (home_x_axis || home_y_axis || without_mbl || home_z_axis)
  2322. {
  2323. if (! home_z && mbl_was_active) {
  2324. // Re-enable the mesh bed leveling if only the X and Y axes were re-homed.
  2325. mbl.active = true;
  2326. // and re-adjust the current logical Z axis with the bed leveling offset applicable at the current XY position.
  2327. current_position[Z_AXIS] -= mbl.get_z(st_get_position_mm(X_AXIS), st_get_position_mm(Y_AXIS));
  2328. }
  2329. }
  2330. else
  2331. {
  2332. st_synchronize();
  2333. homing_flag = false;
  2334. }
  2335. #endif
  2336. if (farm_mode) { prusa_statistics(20); };
  2337. homing_flag = false;
  2338. #if 0
  2339. SERIAL_ECHOPGM("G28, final "); print_world_coordinates();
  2340. SERIAL_ECHOPGM("G28, final "); print_physical_coordinates();
  2341. SERIAL_ECHOPGM("G28, final "); print_mesh_bed_leveling_table();
  2342. #endif
  2343. }
  2344. static void gcode_G28(bool home_x_axis, bool home_y_axis, bool home_z_axis)
  2345. {
  2346. #ifdef TMC2130
  2347. gcode_G28(home_x_axis, 0, home_y_axis, 0, home_z_axis, 0, false, true);
  2348. #else
  2349. gcode_G28(home_x_axis, 0, home_y_axis, 0, home_z_axis, 0, true);
  2350. #endif //TMC2130
  2351. }
  2352. void adjust_bed_reset()
  2353. {
  2354. eeprom_update_byte((unsigned char*)EEPROM_BED_CORRECTION_VALID, 1);
  2355. eeprom_update_byte((unsigned char*)EEPROM_BED_CORRECTION_LEFT, 0);
  2356. eeprom_update_byte((unsigned char*)EEPROM_BED_CORRECTION_RIGHT, 0);
  2357. eeprom_update_byte((unsigned char*)EEPROM_BED_CORRECTION_FRONT, 0);
  2358. eeprom_update_byte((unsigned char*)EEPROM_BED_CORRECTION_REAR, 0);
  2359. }
  2360. //! @brief Calibrate XYZ
  2361. //! @param onlyZ if true, calibrate only Z axis
  2362. //! @param verbosity_level
  2363. //! @retval true Succeeded
  2364. //! @retval false Failed
  2365. bool gcode_M45(bool onlyZ, int8_t verbosity_level)
  2366. {
  2367. bool final_result = false;
  2368. #ifdef TMC2130
  2369. FORCE_HIGH_POWER_START;
  2370. #endif // TMC2130
  2371. // Only Z calibration?
  2372. if (!onlyZ)
  2373. {
  2374. setTargetBed(0);
  2375. setAllTargetHotends(0);
  2376. adjust_bed_reset(); //reset bed level correction
  2377. }
  2378. // Disable the default update procedure of the display. We will do a modal dialog.
  2379. lcd_update_enable(false);
  2380. // Let the planner use the uncorrected coordinates.
  2381. mbl.reset();
  2382. // Reset world2machine_rotation_and_skew and world2machine_shift, therefore
  2383. // the planner will not perform any adjustments in the XY plane.
  2384. // Wait for the motors to stop and update the current position with the absolute values.
  2385. world2machine_revert_to_uncorrected();
  2386. // Reset the baby step value applied without moving the axes.
  2387. babystep_reset();
  2388. // Mark all axes as in a need for homing.
  2389. memset(axis_known_position, 0, sizeof(axis_known_position));
  2390. // Home in the XY plane.
  2391. //set_destination_to_current();
  2392. int l_feedmultiply = setup_for_endstop_move();
  2393. lcd_display_message_fullscreen_P(_T(MSG_AUTO_HOME));
  2394. home_xy();
  2395. enable_endstops(false);
  2396. current_position[X_AXIS] += 5;
  2397. current_position[Y_AXIS] += 5;
  2398. plan_buffer_line_curposXYZE(homing_feedrate[Z_AXIS] / 40, active_extruder);
  2399. st_synchronize();
  2400. // Let the user move the Z axes up to the end stoppers.
  2401. #ifdef TMC2130
  2402. if (calibrate_z_auto())
  2403. {
  2404. #else //TMC2130
  2405. if (lcd_calibrate_z_end_stop_manual(onlyZ))
  2406. {
  2407. #endif //TMC2130
  2408. lcd_show_fullscreen_message_and_wait_P(_T(MSG_CONFIRM_NOZZLE_CLEAN));
  2409. if(onlyZ){
  2410. lcd_display_message_fullscreen_P(_T(MSG_MEASURE_BED_REFERENCE_HEIGHT_LINE1));
  2411. lcd_set_cursor(0, 3);
  2412. lcd_print(1);
  2413. lcd_puts_P(_T(MSG_MEASURE_BED_REFERENCE_HEIGHT_LINE2));
  2414. }else{
  2415. //lcd_show_fullscreen_message_and_wait_P(_T(MSG_PAPER));
  2416. lcd_display_message_fullscreen_P(_T(MSG_FIND_BED_OFFSET_AND_SKEW_LINE1));
  2417. lcd_set_cursor(0, 2);
  2418. lcd_print(1);
  2419. lcd_puts_P(_T(MSG_FIND_BED_OFFSET_AND_SKEW_LINE2));
  2420. }
  2421. refresh_cmd_timeout();
  2422. #ifndef STEEL_SHEET
  2423. if (((degHotend(0) > MAX_HOTEND_TEMP_CALIBRATION) || (degBed() > MAX_BED_TEMP_CALIBRATION)) && (!onlyZ))
  2424. {
  2425. lcd_wait_for_cool_down();
  2426. }
  2427. #endif //STEEL_SHEET
  2428. if(!onlyZ)
  2429. {
  2430. KEEPALIVE_STATE(PAUSED_FOR_USER);
  2431. #ifdef STEEL_SHEET
  2432. bool result = lcd_show_fullscreen_message_yes_no_and_wait_P(_T(MSG_STEEL_SHEET_CHECK), false, false);
  2433. if(result) lcd_show_fullscreen_message_and_wait_P(_T(MSG_REMOVE_STEEL_SHEET));
  2434. #endif //STEEL_SHEET
  2435. lcd_show_fullscreen_message_and_wait_P(_T(MSG_PAPER));
  2436. KEEPALIVE_STATE(IN_HANDLER);
  2437. lcd_display_message_fullscreen_P(_T(MSG_FIND_BED_OFFSET_AND_SKEW_LINE1));
  2438. lcd_set_cursor(0, 2);
  2439. lcd_print(1);
  2440. lcd_puts_P(_T(MSG_FIND_BED_OFFSET_AND_SKEW_LINE2));
  2441. }
  2442. bool endstops_enabled = enable_endstops(false);
  2443. current_position[Z_AXIS] -= 1; //move 1mm down with disabled endstop
  2444. plan_buffer_line_curposXYZE(homing_feedrate[Z_AXIS] / 40, active_extruder);
  2445. st_synchronize();
  2446. // Move the print head close to the bed.
  2447. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  2448. enable_endstops(true);
  2449. #ifdef TMC2130
  2450. tmc2130_home_enter(Z_AXIS_MASK);
  2451. #endif //TMC2130
  2452. plan_buffer_line_curposXYZE(homing_feedrate[Z_AXIS] / 40, active_extruder);
  2453. st_synchronize();
  2454. #ifdef TMC2130
  2455. tmc2130_home_exit();
  2456. #endif //TMC2130
  2457. enable_endstops(endstops_enabled);
  2458. if ((st_get_position_mm(Z_AXIS) <= (MESH_HOME_Z_SEARCH + HOME_Z_SEARCH_THRESHOLD)) &&
  2459. (st_get_position_mm(Z_AXIS) >= (MESH_HOME_Z_SEARCH - HOME_Z_SEARCH_THRESHOLD)))
  2460. {
  2461. if (onlyZ)
  2462. {
  2463. clean_up_after_endstop_move(l_feedmultiply);
  2464. // Z only calibration.
  2465. // Load the machine correction matrix
  2466. world2machine_initialize();
  2467. // and correct the current_position to match the transformed coordinate system.
  2468. world2machine_update_current();
  2469. //FIXME
  2470. bool result = sample_mesh_and_store_reference();
  2471. if (result)
  2472. {
  2473. if (calibration_status() == CALIBRATION_STATUS_Z_CALIBRATION)
  2474. // Shipped, the nozzle height has been set already. The user can start printing now.
  2475. calibration_status_store(CALIBRATION_STATUS_CALIBRATED);
  2476. final_result = true;
  2477. // babystep_apply();
  2478. }
  2479. }
  2480. else
  2481. {
  2482. // Reset the baby step value and the baby step applied flag.
  2483. calibration_status_store(CALIBRATION_STATUS_XYZ_CALIBRATION);
  2484. eeprom_update_word((uint16_t*)EEPROM_BABYSTEP_Z, 0);
  2485. // Complete XYZ calibration.
  2486. uint8_t point_too_far_mask = 0;
  2487. BedSkewOffsetDetectionResultType result = find_bed_offset_and_skew(verbosity_level, point_too_far_mask);
  2488. clean_up_after_endstop_move(l_feedmultiply);
  2489. // Print head up.
  2490. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  2491. plan_buffer_line_curposXYZE(homing_feedrate[Z_AXIS] / 40, active_extruder);
  2492. st_synchronize();
  2493. //#ifndef NEW_XYZCAL
  2494. if (result >= 0)
  2495. {
  2496. #ifdef HEATBED_V2
  2497. sample_z();
  2498. #else //HEATBED_V2
  2499. point_too_far_mask = 0;
  2500. // Second half: The fine adjustment.
  2501. // Let the planner use the uncorrected coordinates.
  2502. mbl.reset();
  2503. world2machine_reset();
  2504. // Home in the XY plane.
  2505. int l_feedmultiply = setup_for_endstop_move();
  2506. home_xy();
  2507. result = improve_bed_offset_and_skew(1, verbosity_level, point_too_far_mask);
  2508. clean_up_after_endstop_move(l_feedmultiply);
  2509. // Print head up.
  2510. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  2511. plan_buffer_line_curposXYZE(homing_feedrate[Z_AXIS] / 40, active_extruder);
  2512. st_synchronize();
  2513. // if (result >= 0) babystep_apply();
  2514. #endif //HEATBED_V2
  2515. }
  2516. //#endif //NEW_XYZCAL
  2517. lcd_update_enable(true);
  2518. lcd_update(2);
  2519. lcd_bed_calibration_show_result(result, point_too_far_mask);
  2520. if (result >= 0)
  2521. {
  2522. // Calibration valid, the machine should be able to print. Advise the user to run the V2Calibration.gcode.
  2523. calibration_status_store(CALIBRATION_STATUS_LIVE_ADJUST);
  2524. if (eeprom_read_byte((uint8_t*)EEPROM_WIZARD_ACTIVE) != 1) lcd_show_fullscreen_message_and_wait_P(_T(MSG_BABYSTEP_Z_NOT_SET));
  2525. final_result = true;
  2526. }
  2527. }
  2528. #ifdef TMC2130
  2529. tmc2130_home_exit();
  2530. #endif
  2531. }
  2532. else
  2533. {
  2534. lcd_show_fullscreen_message_and_wait_P(PSTR("Calibration failed! Check the axes and run again."));
  2535. final_result = false;
  2536. }
  2537. }
  2538. else
  2539. {
  2540. // Timeouted.
  2541. }
  2542. lcd_update_enable(true);
  2543. #ifdef TMC2130
  2544. FORCE_HIGH_POWER_END;
  2545. #endif // TMC2130
  2546. return final_result;
  2547. }
  2548. void gcode_M114()
  2549. {
  2550. SERIAL_PROTOCOLPGM("X:");
  2551. SERIAL_PROTOCOL(current_position[X_AXIS]);
  2552. SERIAL_PROTOCOLPGM(" Y:");
  2553. SERIAL_PROTOCOL(current_position[Y_AXIS]);
  2554. SERIAL_PROTOCOLPGM(" Z:");
  2555. SERIAL_PROTOCOL(current_position[Z_AXIS]);
  2556. SERIAL_PROTOCOLPGM(" E:");
  2557. SERIAL_PROTOCOL(current_position[E_AXIS]);
  2558. SERIAL_PROTOCOLRPGM(_n(" Count X: "));////MSG_COUNT_X
  2559. SERIAL_PROTOCOL(float(st_get_position(X_AXIS)) / cs.axis_steps_per_unit[X_AXIS]);
  2560. SERIAL_PROTOCOLPGM(" Y:");
  2561. SERIAL_PROTOCOL(float(st_get_position(Y_AXIS)) / cs.axis_steps_per_unit[Y_AXIS]);
  2562. SERIAL_PROTOCOLPGM(" Z:");
  2563. SERIAL_PROTOCOL(float(st_get_position(Z_AXIS)) / cs.axis_steps_per_unit[Z_AXIS]);
  2564. SERIAL_PROTOCOLPGM(" E:");
  2565. SERIAL_PROTOCOL(float(st_get_position(E_AXIS)) / cs.axis_steps_per_unit[E_AXIS]);
  2566. SERIAL_PROTOCOLLN("");
  2567. }
  2568. //! extracted code to compute z_shift for M600 in case of filament change operation
  2569. //! requested from fsensors.
  2570. //! The function ensures, that the printhead lifts to at least 25mm above the heat bed
  2571. //! unlike the previous implementation, which was adding 25mm even when the head was
  2572. //! printing at e.g. 24mm height.
  2573. //! A safety margin of FILAMENTCHANGE_ZADD is added in all cases to avoid touching
  2574. //! the printout.
  2575. //! This function is templated to enable fast change of computation data type.
  2576. //! @return new z_shift value
  2577. template<typename T>
  2578. static T gcode_M600_filament_change_z_shift()
  2579. {
  2580. #ifdef FILAMENTCHANGE_ZADD
  2581. static_assert(Z_MAX_POS < (255 - FILAMENTCHANGE_ZADD), "Z-range too high, change the T type from uint8_t to uint16_t");
  2582. // avoid floating point arithmetics when not necessary - results in shorter code
  2583. T ztmp = T( current_position[Z_AXIS] );
  2584. T z_shift = 0;
  2585. if(ztmp < T(25)){
  2586. z_shift = T(25) - ztmp; // make sure to be at least 25mm above the heat bed
  2587. }
  2588. return z_shift + T(FILAMENTCHANGE_ZADD); // always move above printout
  2589. #else
  2590. return T(0);
  2591. #endif
  2592. }
  2593. static void gcode_M600(bool automatic, float x_position, float y_position, float z_shift, float e_shift, float /*e_shift_late*/)
  2594. {
  2595. st_synchronize();
  2596. float lastpos[4];
  2597. if (farm_mode)
  2598. {
  2599. prusa_statistics(22);
  2600. }
  2601. //First backup current position and settings
  2602. int feedmultiplyBckp = feedmultiply;
  2603. float HotendTempBckp = degTargetHotend(active_extruder);
  2604. int fanSpeedBckp = fanSpeed;
  2605. lastpos[X_AXIS] = current_position[X_AXIS];
  2606. lastpos[Y_AXIS] = current_position[Y_AXIS];
  2607. lastpos[Z_AXIS] = current_position[Z_AXIS];
  2608. lastpos[E_AXIS] = current_position[E_AXIS];
  2609. //Retract E
  2610. current_position[E_AXIS] += e_shift;
  2611. plan_buffer_line_curposXYZE(FILAMENTCHANGE_RFEED, active_extruder);
  2612. st_synchronize();
  2613. //Lift Z
  2614. current_position[Z_AXIS] += z_shift;
  2615. plan_buffer_line_curposXYZE(FILAMENTCHANGE_ZFEED, active_extruder);
  2616. st_synchronize();
  2617. //Move XY to side
  2618. current_position[X_AXIS] = x_position;
  2619. current_position[Y_AXIS] = y_position;
  2620. plan_buffer_line_curposXYZE(FILAMENTCHANGE_XYFEED, active_extruder);
  2621. st_synchronize();
  2622. //Beep, manage nozzle heater and wait for user to start unload filament
  2623. if(!mmu_enabled) M600_wait_for_user(HotendTempBckp);
  2624. lcd_change_fil_state = 0;
  2625. // Unload filament
  2626. if (mmu_enabled) extr_unload(); //unload just current filament for multimaterial printers (used also in M702)
  2627. else unload_filament(); //unload filament for single material (used also in M702)
  2628. //finish moves
  2629. st_synchronize();
  2630. if (!mmu_enabled)
  2631. {
  2632. KEEPALIVE_STATE(PAUSED_FOR_USER);
  2633. lcd_change_fil_state = lcd_show_fullscreen_message_yes_no_and_wait_P(_i("Was filament unload successful?"),
  2634. false, true); ////MSG_UNLOAD_SUCCESSFUL c=20 r=2
  2635. if (lcd_change_fil_state == 0)
  2636. {
  2637. lcd_clear();
  2638. lcd_set_cursor(0, 2);
  2639. lcd_puts_P(_T(MSG_PLEASE_WAIT));
  2640. current_position[X_AXIS] -= 100;
  2641. plan_buffer_line_curposXYZE(FILAMENTCHANGE_XYFEED, active_extruder);
  2642. st_synchronize();
  2643. lcd_show_fullscreen_message_and_wait_P(_i("Please open idler and remove filament manually."));////MSG_CHECK_IDLER c=20 r=4
  2644. }
  2645. }
  2646. if (mmu_enabled)
  2647. {
  2648. if (!automatic) {
  2649. if (saved_printing) mmu_eject_filament(mmu_extruder, false); //if M600 was invoked by filament senzor (FINDA) eject filament so user can easily remove it
  2650. mmu_M600_wait_and_beep();
  2651. if (saved_printing) {
  2652. lcd_clear();
  2653. lcd_set_cursor(0, 2);
  2654. lcd_puts_P(_T(MSG_PLEASE_WAIT));
  2655. mmu_command(MmuCmd::R0);
  2656. manage_response(false, false);
  2657. }
  2658. }
  2659. mmu_M600_load_filament(automatic, HotendTempBckp);
  2660. }
  2661. else
  2662. M600_load_filament();
  2663. if (!automatic) M600_check_state(HotendTempBckp);
  2664. lcd_update_enable(true);
  2665. //Not let's go back to print
  2666. fanSpeed = fanSpeedBckp;
  2667. //Feed a little of filament to stabilize pressure
  2668. if (!automatic)
  2669. {
  2670. current_position[E_AXIS] += FILAMENTCHANGE_RECFEED;
  2671. plan_buffer_line_curposXYZE(FILAMENTCHANGE_EXFEED, active_extruder);
  2672. }
  2673. //Move XY back
  2674. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS],
  2675. FILAMENTCHANGE_XYFEED, active_extruder);
  2676. st_synchronize();
  2677. //Move Z back
  2678. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], current_position[E_AXIS],
  2679. FILAMENTCHANGE_ZFEED, active_extruder);
  2680. st_synchronize();
  2681. //Set E position to original
  2682. plan_set_e_position(lastpos[E_AXIS]);
  2683. memcpy(current_position, lastpos, sizeof(lastpos));
  2684. memcpy(destination, current_position, sizeof(current_position));
  2685. //Recover feed rate
  2686. feedmultiply = feedmultiplyBckp;
  2687. char cmd[9];
  2688. sprintf_P(cmd, PSTR("M220 S%i"), feedmultiplyBckp);
  2689. enquecommand(cmd);
  2690. #ifdef IR_SENSOR
  2691. //this will set fsensor_watch_autoload to correct value and prevent possible M701 gcode enqueuing when M600 is finished
  2692. fsensor_check_autoload();
  2693. #endif //IR_SENSOR
  2694. lcd_setstatuspgm(_T(WELCOME_MSG));
  2695. custom_message_type = CustomMsg::Status;
  2696. }
  2697. //! @brief Rise Z if too low to avoid blob/jam before filament loading
  2698. //!
  2699. //! It doesn't plan_buffer_line(), as it expects plan_buffer_line() to be called after
  2700. //! during extruding (loading) filament.
  2701. void marlin_rise_z(void)
  2702. {
  2703. if (current_position[Z_AXIS] < 20) current_position[Z_AXIS] += 30;
  2704. }
  2705. void gcode_M701()
  2706. {
  2707. printf_P(PSTR("gcode_M701 begin\n"));
  2708. if (farm_mode)
  2709. {
  2710. prusa_statistics(22);
  2711. }
  2712. if (mmu_enabled)
  2713. {
  2714. extr_adj(tmp_extruder);//loads current extruder
  2715. mmu_extruder = tmp_extruder;
  2716. }
  2717. else
  2718. {
  2719. enable_z();
  2720. custom_message_type = CustomMsg::FilamentLoading;
  2721. #ifdef FSENSOR_QUALITY
  2722. fsensor_oq_meassure_start(40);
  2723. #endif //FSENSOR_QUALITY
  2724. lcd_setstatuspgm(_T(MSG_LOADING_FILAMENT));
  2725. current_position[E_AXIS] += 40;
  2726. plan_buffer_line_curposXYZE(400 / 60, active_extruder); //fast sequence
  2727. st_synchronize();
  2728. marlin_rise_z();
  2729. current_position[E_AXIS] += 30;
  2730. plan_buffer_line_curposXYZE(400 / 60, active_extruder); //fast sequence
  2731. load_filament_final_feed(); //slow sequence
  2732. st_synchronize();
  2733. Sound_MakeCustom(50,500,false);
  2734. if (!farm_mode && loading_flag) {
  2735. lcd_load_filament_color_check();
  2736. }
  2737. lcd_update_enable(true);
  2738. lcd_update(2);
  2739. lcd_setstatuspgm(_T(WELCOME_MSG));
  2740. disable_z();
  2741. loading_flag = false;
  2742. custom_message_type = CustomMsg::Status;
  2743. #ifdef FSENSOR_QUALITY
  2744. fsensor_oq_meassure_stop();
  2745. if (!fsensor_oq_result())
  2746. {
  2747. bool disable = lcd_show_fullscreen_message_yes_no_and_wait_P(_i("Fil. sensor response is poor, disable it?"), false, true);
  2748. lcd_update_enable(true);
  2749. lcd_update(2);
  2750. if (disable)
  2751. fsensor_disable();
  2752. }
  2753. #endif //FSENSOR_QUALITY
  2754. }
  2755. }
  2756. /**
  2757. * @brief Get serial number from 32U2 processor
  2758. *
  2759. * Typical format of S/N is:CZPX0917X003XC13518
  2760. *
  2761. * Command operates only in farm mode, if not in farm mode, "Not in farm mode." is written to MYSERIAL.
  2762. *
  2763. * Send command ;S to serial port 0 to retrieve serial number stored in 32U2 processor,
  2764. * reply is transmitted to serial port 1 character by character.
  2765. * Operation takes typically 23 ms. If the retransmit is not finished until 100 ms,
  2766. * it is interrupted, so less, or no characters are retransmitted, only newline character is send
  2767. * in any case.
  2768. */
  2769. static void gcode_PRUSA_SN()
  2770. {
  2771. if (farm_mode) {
  2772. selectedSerialPort = 0;
  2773. putchar(';');
  2774. putchar('S');
  2775. int numbersRead = 0;
  2776. ShortTimer timeout;
  2777. timeout.start();
  2778. while (numbersRead < 19) {
  2779. while (MSerial.available() > 0) {
  2780. uint8_t serial_char = MSerial.read();
  2781. selectedSerialPort = 1;
  2782. putchar(serial_char);
  2783. numbersRead++;
  2784. selectedSerialPort = 0;
  2785. }
  2786. if (timeout.expired(100u)) break;
  2787. }
  2788. selectedSerialPort = 1;
  2789. putchar('\n');
  2790. #if 0
  2791. for (int b = 0; b < 3; b++) {
  2792. _tone(BEEPER, 110);
  2793. _delay(50);
  2794. _noTone(BEEPER);
  2795. _delay(50);
  2796. }
  2797. #endif
  2798. } else {
  2799. puts_P(_N("Not in farm mode."));
  2800. }
  2801. }
  2802. //! Detection of faulty RAMBo 1.1b boards equipped with bigger capacitors
  2803. //! at the TACH_1 pin, which causes bad detection of print fan speed.
  2804. //! Warning: This function is not to be used by ordinary users, it is here only for automated testing purposes,
  2805. //! it may even interfere with other functions of the printer! You have been warned!
  2806. //! The test idea is to measure the time necessary to charge the capacitor.
  2807. //! So the algorithm is as follows:
  2808. //! 1. Set TACH_1 pin to INPUT mode and LOW
  2809. //! 2. Wait a few ms
  2810. //! 3. disable interrupts and measure the time until the TACH_1 pin reaches HIGH
  2811. //! Repeat 1.-3. several times
  2812. //! Good RAMBo's times are in the range of approx. 260-320 us
  2813. //! Bad RAMBo's times are approx. 260-1200 us
  2814. //! So basically we are interested in maximum time, the minima are mostly the same.
  2815. //! May be that's why the bad RAMBo's still produce some fan RPM reading, but not corresponding to reality
  2816. static void gcode_PRUSA_BadRAMBoFanTest(){
  2817. //printf_P(PSTR("Enter fan pin test\n"));
  2818. #if !defined(DEBUG_DISABLE_FANCHECK) && defined(FANCHECK) && defined(TACH_1) && TACH_1 >-1
  2819. fan_measuring = false; // prevent EXTINT7 breaking into the measurement
  2820. unsigned long tach1max = 0;
  2821. uint8_t tach1cntr = 0;
  2822. for( /* nothing */; tach1cntr < 100; ++tach1cntr){
  2823. //printf_P(PSTR("TACH_1: %d\n"), tach1cntr);
  2824. SET_OUTPUT(TACH_1);
  2825. WRITE(TACH_1, LOW);
  2826. _delay(20); // the delay may be lower
  2827. unsigned long tachMeasure = _micros();
  2828. cli();
  2829. SET_INPUT(TACH_1);
  2830. // just wait brutally in an endless cycle until we reach HIGH
  2831. // if this becomes a problem it may be improved to non-endless cycle
  2832. while( READ(TACH_1) == 0 ) ;
  2833. sei();
  2834. tachMeasure = _micros() - tachMeasure;
  2835. if( tach1max < tachMeasure )
  2836. tach1max = tachMeasure;
  2837. //printf_P(PSTR("TACH_1: %d: capacitor check time=%lu us\n"), (int)tach1cntr, tachMeasure);
  2838. }
  2839. //printf_P(PSTR("TACH_1: max=%lu us\n"), tach1max);
  2840. SERIAL_PROTOCOLPGM("RAMBo FAN ");
  2841. if( tach1max > 500 ){
  2842. // bad RAMBo
  2843. SERIAL_PROTOCOLLNPGM("BAD");
  2844. } else {
  2845. SERIAL_PROTOCOLLNPGM("OK");
  2846. }
  2847. // cleanup after the test function
  2848. SET_INPUT(TACH_1);
  2849. WRITE(TACH_1, HIGH);
  2850. #endif
  2851. }
  2852. #ifdef BACKLASH_X
  2853. extern uint8_t st_backlash_x;
  2854. #endif //BACKLASH_X
  2855. #ifdef BACKLASH_Y
  2856. extern uint8_t st_backlash_y;
  2857. #endif //BACKLASH_Y
  2858. //! \ingroup marlin_main
  2859. //! @brief Parse and process commands
  2860. //!
  2861. //! look here for descriptions of G-codes: http://linuxcnc.org/handbook/gcode/g-code.html
  2862. //! http://objects.reprap.org/wiki/Mendel_User_Manual:_RepRapGCodes
  2863. //!
  2864. //!
  2865. //! Implemented Codes
  2866. //! -------------------
  2867. //!
  2868. //! * _This list is not updated. Current documentation is maintained inside the process_cmd function._
  2869. //!
  2870. //!@n PRUSA CODES
  2871. //!@n P F - Returns FW versions
  2872. //!@n P R - Returns revision of printer
  2873. //!
  2874. //!@n G0 -> G1
  2875. //!@n G1 - Coordinated Movement X Y Z E
  2876. //!@n G2 - CW ARC
  2877. //!@n G3 - CCW ARC
  2878. //!@n G4 - Dwell S<seconds> or P<milliseconds>
  2879. //!@n G10 - retract filament according to settings of M207
  2880. //!@n G11 - retract recover filament according to settings of M208
  2881. //!@n G28 - Home all Axis
  2882. //!@n G29 - Detailed Z-Probe, probes the bed at 3 or more points. Will fail if you haven't homed yet.
  2883. //!@n G30 - Single Z Probe, probes bed at current XY location.
  2884. //!@n G31 - Dock sled (Z_PROBE_SLED only)
  2885. //!@n G32 - Undock sled (Z_PROBE_SLED only)
  2886. //!@n G80 - Automatic mesh bed leveling
  2887. //!@n G81 - Print bed profile
  2888. //!@n G90 - Use Absolute Coordinates
  2889. //!@n G91 - Use Relative Coordinates
  2890. //!@n G92 - Set current position to coordinates given
  2891. //!
  2892. //!@n M Codes
  2893. //!@n M0 - Unconditional stop - Wait for user to press a button on the LCD
  2894. //!@n M1 - Same as M0
  2895. //!@n M17 - Enable/Power all stepper motors
  2896. //!@n M18 - Disable all stepper motors; same as M84
  2897. //!@n M20 - List SD card
  2898. //!@n M21 - Init SD card
  2899. //!@n M22 - Release SD card
  2900. //!@n M23 - Select SD file (M23 filename.g)
  2901. //!@n M24 - Start/resume SD print
  2902. //!@n M25 - Pause SD print
  2903. //!@n M26 - Set SD position in bytes (M26 S12345)
  2904. //!@n M27 - Report SD print status
  2905. //!@n M28 - Start SD write (M28 filename.g)
  2906. //!@n M29 - Stop SD write
  2907. //!@n M30 - Delete file from SD (M30 filename.g)
  2908. //!@n M31 - Output time since last M109 or SD card start to serial
  2909. //!@n M32 - Select file and start SD print (Can be used _while_ printing from SD card files):
  2910. //! syntax "M32 /path/filename#", or "M32 S<startpos bytes> !filename#"
  2911. //! Call gcode file : "M32 P !filename#" and return to caller file after finishing (similar to #include).
  2912. //! The '#' is necessary when calling from within sd files, as it stops buffer prereading
  2913. //!@n M42 - Change pin status via gcode Use M42 Px Sy to set pin x to value y, when omitting Px the onboard led will be used.
  2914. //!@n M73 - Show percent done and print time remaining
  2915. //!@n M80 - Turn on Power Supply
  2916. //!@n M81 - Turn off Power Supply
  2917. //!@n M82 - Set E codes absolute (default)
  2918. //!@n M83 - Set E codes relative while in Absolute Coordinates (G90) mode
  2919. //!@n M84 - Disable steppers until next move,
  2920. //! or use S<seconds> to specify an inactivity timeout, after which the steppers will be disabled. S0 to disable the timeout.
  2921. //!@n M85 - Set inactivity shutdown timer with parameter S<seconds>. To disable set zero (default)
  2922. //!@n M86 - Set safety timer expiration time with parameter S<seconds>; M86 S0 will disable safety timer
  2923. //!@n M92 - Set axis_steps_per_unit - same syntax as G92
  2924. //!@n M104 - Set extruder target temp
  2925. //!@n M105 - Read current temp
  2926. //!@n M106 - Fan on
  2927. //!@n M107 - Fan off
  2928. //!@n M109 - Sxxx Wait for extruder current temp to reach target temp. Waits only when heating
  2929. //! Rxxx Wait for extruder current temp to reach target temp. Waits when heating and cooling
  2930. //! IF AUTOTEMP is enabled, S<mintemp> B<maxtemp> F<factor>. Exit autotemp by any M109 without F
  2931. //!@n M112 - Emergency stop
  2932. //!@n M113 - Get or set the timeout interval for Host Keepalive "busy" messages
  2933. //!@n M114 - Output current position to serial port
  2934. //!@n M115 - Capabilities string
  2935. //!@n M117 - display message
  2936. //!@n M119 - Output Endstop status to serial port
  2937. //!@n M126 - Solenoid Air Valve Open (BariCUDA support by jmil)
  2938. //!@n M127 - Solenoid Air Valve Closed (BariCUDA vent to atmospheric pressure by jmil)
  2939. //!@n M128 - EtoP Open (BariCUDA EtoP = electricity to air pressure transducer by jmil)
  2940. //!@n M129 - EtoP Closed (BariCUDA EtoP = electricity to air pressure transducer by jmil)
  2941. //!@n M140 - Set bed target temp
  2942. //!@n M150 - Set BlinkM Color Output R: Red<0-255> U(!): Green<0-255> B: Blue<0-255> over i2c, G for green does not work.
  2943. //!@n M190 - Sxxx Wait for bed current temp to reach target temp. Waits only when heating
  2944. //! Rxxx Wait for bed current temp to reach target temp. Waits when heating and cooling
  2945. //!@n M200 D<millimeters>- set filament diameter and set E axis units to cubic millimeters (use S0 to set back to millimeters).
  2946. //!@n M201 - Set max acceleration in units/s^2 for print moves (M201 X1000 Y1000)
  2947. //!@n M202 - Set max acceleration in units/s^2 for travel moves (M202 X1000 Y1000) Unused in Marlin!!
  2948. //!@n M203 - Set maximum feedrate that your machine can sustain (M203 X200 Y200 Z300 E10000) in mm/sec
  2949. //!@n M204 - Set default acceleration: S normal moves T filament only moves (M204 S3000 T7000) in mm/sec^2 also sets minimum segment time in ms (B20000) to prevent buffer under-runs and M20 minimum feedrate
  2950. //!@n M205 - advanced settings: minimum travel speed S=while printing T=travel only, B=minimum segment time X= maximum xy jerk, Z=maximum Z jerk, E=maximum E jerk
  2951. //!@n M206 - set additional homing offset
  2952. //!@n M207 - set retract length S[positive mm] F[feedrate mm/min] Z[additional zlift/hop], stays in mm regardless of M200 setting
  2953. //!@n M208 - set recover=unretract length S[positive mm surplus to the M207 S*] F[feedrate mm/sec]
  2954. //!@n M209 - S<1=true/0=false> enable automatic retract detect if the slicer did not support G10/11: every normal extrude-only move will be classified as retract depending on the direction.
  2955. //!@n M218 - set hotend offset (in mm): T<extruder_number> X<offset_on_X> Y<offset_on_Y>
  2956. //!@n M220 S<factor in percent>- set speed factor override percentage
  2957. //!@n M221 S<factor in percent>- set extrude factor override percentage
  2958. //!@n M226 P<pin number> S<pin state>- Wait until the specified pin reaches the state required
  2959. //!@n M240 - Trigger a camera to take a photograph
  2960. //!@n M250 - Set LCD contrast C<contrast value> (value 0..63)
  2961. //!@n M280 - set servo position absolute. P: servo index, S: angle or microseconds
  2962. //!@n M300 - Play beep sound S<frequency Hz> P<duration ms>
  2963. //!@n M301 - Set PID parameters P I and D
  2964. //!@n M302 - Allow cold extrudes, or set the minimum extrude S<temperature>.
  2965. //!@n M303 - PID relay autotune S<temperature> sets the target temperature. (default target temperature = 150C)
  2966. //!@n M304 - Set bed PID parameters P I and D
  2967. //!@n M400 - Finish all moves
  2968. //!@n M401 - Lower z-probe if present
  2969. //!@n M402 - Raise z-probe if present
  2970. //!@n M404 - N<dia in mm> Enter the nominal filament width (3mm, 1.75mm ) or will display nominal filament width without parameters
  2971. //!@n M405 - Turn on Filament Sensor extrusion control. Optional D<delay in cm> to set delay in centimeters between sensor and extruder
  2972. //!@n M406 - Turn off Filament Sensor extrusion control
  2973. //!@n M407 - Displays measured filament diameter
  2974. //!@n M500 - stores parameters in EEPROM
  2975. //!@n M501 - reads parameters from EEPROM (if you need reset them after you changed them temporarily).
  2976. //!@n M502 - reverts to the default "factory settings". You still need to store them in EEPROM afterwards if you want to.
  2977. //!@n M503 - print the current settings (from memory not from EEPROM)
  2978. //!@n M509 - force language selection on next restart
  2979. //!@n M540 - Use S[0|1] to enable or disable the stop SD card print on endstop hit (requires ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED)
  2980. //!@n M600 - Pause for filament change X[pos] Y[pos] Z[relative lift] E[initial retract] L[later retract distance for removal]
  2981. //!@n M605 - Set dual x-carriage movement mode: S<mode> [ X<duplication x-offset> R<duplication temp offset> ]
  2982. //!@n M860 - Wait for PINDA thermistor to reach target temperature.
  2983. //!@n M861 - Set / Read PINDA temperature compensation offsets
  2984. //!@n M900 - Set LIN_ADVANCE options, if enabled. See Configuration_adv.h for details.
  2985. //!@n M907 - Set digital trimpot motor current using axis codes.
  2986. //!@n M908 - Control digital trimpot directly.
  2987. //!@n M350 - Set microstepping mode.
  2988. //!@n M351 - Toggle MS1 MS2 pins directly.
  2989. //!
  2990. //!@n M928 - Start SD logging (M928 filename.g) - ended by M29
  2991. //!@n M999 - Restart after being stopped by error
  2992. //! <br><br>
  2993. /** @defgroup marlin_main Marlin main */
  2994. /** \ingroup GCodes */
  2995. //! _This is a list of currently implemented G Codes in Prusa firmware (dynamically generated from doxygen)_
  2996. void process_commands()
  2997. {
  2998. #ifdef FANCHECK
  2999. if(fan_check_error){
  3000. if(fan_check_error == EFCE_DETECTED){
  3001. fan_check_error = EFCE_REPORTED;
  3002. // SERIAL_PROTOCOLLNRPGM(MSG_OCTOPRINT_PAUSED);
  3003. lcd_pause_print();
  3004. } // otherwise it has already been reported, so just ignore further processing
  3005. return; //ignore usb stream. It is reenabled by selecting resume from the lcd.
  3006. }
  3007. #endif
  3008. if (!buflen) return; //empty command
  3009. #ifdef FILAMENT_RUNOUT_SUPPORT
  3010. SET_INPUT(FR_SENS);
  3011. #endif
  3012. #ifdef CMDBUFFER_DEBUG
  3013. SERIAL_ECHOPGM("Processing a GCODE command: ");
  3014. SERIAL_ECHO(cmdbuffer+bufindr+CMDHDRSIZE);
  3015. SERIAL_ECHOLNPGM("");
  3016. SERIAL_ECHOPGM("In cmdqueue: ");
  3017. SERIAL_ECHO(buflen);
  3018. SERIAL_ECHOLNPGM("");
  3019. #endif /* CMDBUFFER_DEBUG */
  3020. unsigned long codenum; //throw away variable
  3021. char *starpos = NULL;
  3022. #ifdef ENABLE_AUTO_BED_LEVELING
  3023. float x_tmp, y_tmp, z_tmp, real_z;
  3024. #endif
  3025. // PRUSA GCODES
  3026. KEEPALIVE_STATE(IN_HANDLER);
  3027. #ifdef SNMM
  3028. float tmp_motor[3] = DEFAULT_PWM_MOTOR_CURRENT;
  3029. float tmp_motor_loud[3] = DEFAULT_PWM_MOTOR_CURRENT_LOUD;
  3030. int8_t SilentMode;
  3031. #endif
  3032. if (code_seen("M117")) { //moved to highest priority place to be able to to print strings which includes "G", "PRUSA" and "^"
  3033. starpos = (strchr(strchr_pointer + 5, '*'));
  3034. if (starpos != NULL)
  3035. *(starpos) = '\0';
  3036. lcd_setstatus(strchr_pointer + 5);
  3037. }
  3038. #ifdef TMC2130
  3039. else if (strncmp_P(CMDBUFFER_CURRENT_STRING, PSTR("CRASH_"), 6) == 0)
  3040. {
  3041. //! ### CRASH_DETECTED - TMC2130
  3042. // ---------------------------------
  3043. if(code_seen("CRASH_DETECTED"))
  3044. {
  3045. uint8_t mask = 0;
  3046. if (code_seen('X')) mask |= X_AXIS_MASK;
  3047. if (code_seen('Y')) mask |= Y_AXIS_MASK;
  3048. crashdet_detected(mask);
  3049. }
  3050. //! ### CRASH_RECOVER - TMC2130
  3051. // ----------------------------------
  3052. else if(code_seen("CRASH_RECOVER"))
  3053. crashdet_recover();
  3054. //! ### CRASH_CANCEL - TMC2130
  3055. // ----------------------------------
  3056. else if(code_seen("CRASH_CANCEL"))
  3057. crashdet_cancel();
  3058. }
  3059. else if (strncmp_P(CMDBUFFER_CURRENT_STRING, PSTR("TMC_"), 4) == 0)
  3060. {
  3061. //! ### TMC_SET_WAVE_
  3062. // --------------------
  3063. if (strncmp_P(CMDBUFFER_CURRENT_STRING + 4, PSTR("SET_WAVE_"), 9) == 0)
  3064. {
  3065. uint8_t axis = *(CMDBUFFER_CURRENT_STRING + 13);
  3066. axis = (axis == 'E')?3:(axis - 'X');
  3067. if (axis < 4)
  3068. {
  3069. uint8_t fac = (uint8_t)strtol(CMDBUFFER_CURRENT_STRING + 14, NULL, 10);
  3070. tmc2130_set_wave(axis, 247, fac);
  3071. }
  3072. }
  3073. //! ### TMC_SET_STEP_
  3074. // ------------------
  3075. else if (strncmp_P(CMDBUFFER_CURRENT_STRING + 4, PSTR("SET_STEP_"), 9) == 0)
  3076. {
  3077. uint8_t axis = *(CMDBUFFER_CURRENT_STRING + 13);
  3078. axis = (axis == 'E')?3:(axis - 'X');
  3079. if (axis < 4)
  3080. {
  3081. uint8_t step = (uint8_t)strtol(CMDBUFFER_CURRENT_STRING + 14, NULL, 10);
  3082. uint16_t res = tmc2130_get_res(axis);
  3083. tmc2130_goto_step(axis, step & (4*res - 1), 2, 1000, res);
  3084. }
  3085. }
  3086. //! ### TMC_SET_CHOP_
  3087. // -------------------
  3088. else if (strncmp_P(CMDBUFFER_CURRENT_STRING + 4, PSTR("SET_CHOP_"), 9) == 0)
  3089. {
  3090. uint8_t axis = *(CMDBUFFER_CURRENT_STRING + 13);
  3091. axis = (axis == 'E')?3:(axis - 'X');
  3092. if (axis < 4)
  3093. {
  3094. uint8_t chop0 = tmc2130_chopper_config[axis].toff;
  3095. uint8_t chop1 = tmc2130_chopper_config[axis].hstr;
  3096. uint8_t chop2 = tmc2130_chopper_config[axis].hend;
  3097. uint8_t chop3 = tmc2130_chopper_config[axis].tbl;
  3098. char* str_end = 0;
  3099. if (CMDBUFFER_CURRENT_STRING[14])
  3100. {
  3101. chop0 = (uint8_t)strtol(CMDBUFFER_CURRENT_STRING + 14, &str_end, 10) & 15;
  3102. if (str_end && *str_end)
  3103. {
  3104. chop1 = (uint8_t)strtol(str_end, &str_end, 10) & 7;
  3105. if (str_end && *str_end)
  3106. {
  3107. chop2 = (uint8_t)strtol(str_end, &str_end, 10) & 15;
  3108. if (str_end && *str_end)
  3109. chop3 = (uint8_t)strtol(str_end, &str_end, 10) & 3;
  3110. }
  3111. }
  3112. }
  3113. tmc2130_chopper_config[axis].toff = chop0;
  3114. tmc2130_chopper_config[axis].hstr = chop1 & 7;
  3115. tmc2130_chopper_config[axis].hend = chop2 & 15;
  3116. tmc2130_chopper_config[axis].tbl = chop3 & 3;
  3117. tmc2130_setup_chopper(axis, tmc2130_mres[axis], tmc2130_current_h[axis], tmc2130_current_r[axis]);
  3118. //printf_P(_N("TMC_SET_CHOP_%c %hhd %hhd %hhd %hhd\n"), "xyze"[axis], chop0, chop1, chop2, chop3);
  3119. }
  3120. }
  3121. }
  3122. #ifdef BACKLASH_X
  3123. else if (strncmp_P(CMDBUFFER_CURRENT_STRING, PSTR("BACKLASH_X"), 10) == 0)
  3124. {
  3125. uint8_t bl = (uint8_t)strtol(CMDBUFFER_CURRENT_STRING + 10, NULL, 10);
  3126. st_backlash_x = bl;
  3127. printf_P(_N("st_backlash_x = %hhd\n"), st_backlash_x);
  3128. }
  3129. #endif //BACKLASH_X
  3130. #ifdef BACKLASH_Y
  3131. else if (strncmp_P(CMDBUFFER_CURRENT_STRING, PSTR("BACKLASH_Y"), 10) == 0)
  3132. {
  3133. uint8_t bl = (uint8_t)strtol(CMDBUFFER_CURRENT_STRING + 10, NULL, 10);
  3134. st_backlash_y = bl;
  3135. printf_P(_N("st_backlash_y = %hhd\n"), st_backlash_y);
  3136. }
  3137. #endif //BACKLASH_Y
  3138. #endif //TMC2130
  3139. else if(code_seen("PRUSA")){
  3140. /*!
  3141. *
  3142. ### PRUSA - Internal command set
  3143. Set of internal PRUSA commands
  3144. PRUSA [ Ping | PRN | FAN | fn | thx | uvlo | fsensor_recover | MMURES | RESET | fv | M28 | SN | Fir | Rev | Lang | Lz | Beat | FR ]
  3145. - `Ping`
  3146. - `PRN` - Prints revision of the printer
  3147. - `FAN` - Prints fan details
  3148. - `fn` - Prints farm no.
  3149. - `thx`
  3150. - `uvlo`
  3151. - `fsensor_recover` - Filament sensor recover - restore print and continue
  3152. - `MMURES` - Reset MMU
  3153. - `RESET` - (Careful!)
  3154. - `fv` - ?
  3155. - `M28`
  3156. - `SN`
  3157. - `Fir` - Prints firmware version
  3158. - `Rev`- Prints filament size, elelectronics, nozzle type
  3159. - `Lang` - Reset the language
  3160. - `Lz`
  3161. - `Beat` - Kick farm link timer
  3162. - `FR` - Full factory reset
  3163. - `nozzle set <diameter>` - set nozzle diameter (farm mode only), e.g. `PRUSA nozzle set 0.4`
  3164. - `nozzle D<diameter>` - check the nozzle diameter (farm mode only), works like M862.1 P, e.g. `PRUSA nozzle D0.4`
  3165. - `nozzle` - prints nozzle diameter (farm mode only), works like M862.1 P, e.g. `PRUSA nozzle`
  3166. *
  3167. */
  3168. if (code_seen("Ping")) { // PRUSA Ping
  3169. if (farm_mode) {
  3170. PingTime = _millis();
  3171. //MYSERIAL.print(farm_no); MYSERIAL.println(": OK");
  3172. }
  3173. }
  3174. else if (code_seen("PRN")) { // PRUSA PRN
  3175. printf_P(_N("%d"), status_number);
  3176. } else if( code_seen("FANPINTST") ){
  3177. gcode_PRUSA_BadRAMBoFanTest();
  3178. }else if (code_seen("FAN")) { //! PRUSA FAN
  3179. printf_P(_N("E0:%d RPM\nPRN0:%d RPM\n"), 60*fan_speed[0], 60*fan_speed[1]);
  3180. }else if (code_seen("fn")) { // PRUSA fn
  3181. if (farm_mode) {
  3182. printf_P(_N("%d"), farm_no);
  3183. }
  3184. else {
  3185. puts_P(_N("Not in farm mode."));
  3186. }
  3187. }
  3188. else if (code_seen("thx")) // PRUSA thx
  3189. {
  3190. no_response = false;
  3191. }
  3192. else if (code_seen("uvlo")) // PRUSA uvlo
  3193. {
  3194. eeprom_update_byte((uint8_t*)EEPROM_UVLO,0);
  3195. enquecommand_P(PSTR("M24"));
  3196. }
  3197. #ifdef FILAMENT_SENSOR
  3198. else if (code_seen("fsensor_recover")) // PRUSA fsensor_recover
  3199. {
  3200. fsensor_restore_print_and_continue();
  3201. }
  3202. #endif //FILAMENT_SENSOR
  3203. else if (code_seen("MMURES")) // PRUSA MMURES
  3204. {
  3205. mmu_reset();
  3206. }
  3207. else if (code_seen("RESET")) { // PRUSA RESET
  3208. // careful!
  3209. if (farm_mode) {
  3210. #if (defined(WATCHDOG) && (MOTHERBOARD == BOARD_EINSY_1_0a))
  3211. boot_app_magic = BOOT_APP_MAGIC;
  3212. boot_app_flags = BOOT_APP_FLG_RUN;
  3213. wdt_enable(WDTO_15MS);
  3214. cli();
  3215. while(1);
  3216. #else //WATCHDOG
  3217. asm volatile("jmp 0x3E000");
  3218. #endif //WATCHDOG
  3219. }
  3220. else {
  3221. MYSERIAL.println("Not in farm mode.");
  3222. }
  3223. }else if (code_seen("fv")) { // PRUSA fv
  3224. // get file version
  3225. #ifdef SDSUPPORT
  3226. card.openFile(strchr_pointer + 3,true);
  3227. while (true) {
  3228. uint16_t readByte = card.get();
  3229. MYSERIAL.write(readByte);
  3230. if (readByte=='\n') {
  3231. break;
  3232. }
  3233. }
  3234. card.closefile();
  3235. #endif // SDSUPPORT
  3236. } else if (code_seen("M28")) { // PRUSA M28
  3237. trace();
  3238. prusa_sd_card_upload = true;
  3239. card.openFile(strchr_pointer+4,false);
  3240. } else if (code_seen("SN")) { // PRUSA SN
  3241. gcode_PRUSA_SN();
  3242. } else if(code_seen("Fir")){ // PRUSA Fir
  3243. SERIAL_PROTOCOLLN(FW_VERSION_FULL);
  3244. } else if(code_seen("Rev")){ // PRUSA Rev
  3245. SERIAL_PROTOCOLLN(FILAMENT_SIZE "-" ELECTRONICS "-" NOZZLE_TYPE );
  3246. } else if(code_seen("Lang")) { // PRUSA Lang
  3247. lang_reset();
  3248. } else if(code_seen("Lz")) { // PRUSA Lz
  3249. EEPROM_save_B(EEPROM_BABYSTEP_Z,0);
  3250. } else if(code_seen("Beat")) { // PRUSA Beat
  3251. // Kick farm link timer
  3252. kicktime = _millis();
  3253. } else if(code_seen("FR")) { // PRUSA FR
  3254. // Factory full reset
  3255. factory_reset(0);
  3256. //-//
  3257. /*
  3258. } else if(code_seen("rrr")) {
  3259. MYSERIAL.println("=== checking ===");
  3260. MYSERIAL.println(eeprom_read_byte((uint8_t*)EEPROM_CHECK_MODE),DEC);
  3261. MYSERIAL.println(eeprom_read_byte((uint8_t*)EEPROM_NOZZLE_DIAMETER),DEC);
  3262. MYSERIAL.println(eeprom_read_word((uint16_t*)EEPROM_NOZZLE_DIAMETER_uM),DEC);
  3263. MYSERIAL.println(farm_mode,DEC);
  3264. MYSERIAL.println(eCheckMode,DEC);
  3265. } else if(code_seen("www")) {
  3266. MYSERIAL.println("=== @ FF ===");
  3267. eeprom_update_byte((uint8_t*)EEPROM_CHECK_MODE,0xFF);
  3268. eeprom_update_byte((uint8_t*)EEPROM_NOZZLE_DIAMETER,0xFF);
  3269. eeprom_update_word((uint16_t*)EEPROM_NOZZLE_DIAMETER_uM,0xFFFF);
  3270. */
  3271. } else if (code_seen("nozzle")) { // PRUSA nozzle
  3272. uint16_t nDiameter;
  3273. if(code_seen('D'))
  3274. {
  3275. nDiameter=(uint16_t)(code_value()*1000.0+0.5); // [,um]
  3276. nozzle_diameter_check(nDiameter);
  3277. }
  3278. else if(code_seen("set") && farm_mode)
  3279. {
  3280. strchr_pointer++; // skip 1st char (~ 's')
  3281. strchr_pointer++; // skip 2nd char (~ 'e')
  3282. nDiameter=(uint16_t)(code_value()*1000.0+0.5); // [,um]
  3283. eeprom_update_byte((uint8_t*)EEPROM_NOZZLE_DIAMETER,(uint8_t)ClNozzleDiameter::_Diameter_Undef); // for correct synchronization after farm-mode exiting
  3284. eeprom_update_word((uint16_t*)EEPROM_NOZZLE_DIAMETER_uM,nDiameter);
  3285. }
  3286. else SERIAL_PROTOCOLLN((float)eeprom_read_word((uint16_t*)EEPROM_NOZZLE_DIAMETER_uM)/1000.0);
  3287. //-// !!! SupportMenu
  3288. /*
  3289. // musi byt PRED "PRUSA model"
  3290. } else if (code_seen("smodel")) { //! PRUSA smodel
  3291. size_t nOffset;
  3292. // ! -> "l"
  3293. strchr_pointer+=5*sizeof(*strchr_pointer); // skip 1st - 5th char (~ 'smode')
  3294. nOffset=strspn(strchr_pointer+1," \t\n\r\v\f");
  3295. if(*(strchr_pointer+1+nOffset))
  3296. printer_smodel_check(strchr_pointer);
  3297. else SERIAL_PROTOCOLLN(PRINTER_NAME);
  3298. } else if (code_seen("model")) { //! PRUSA model
  3299. uint16_t nPrinterModel;
  3300. strchr_pointer+=4*sizeof(*strchr_pointer); // skip 1st - 4th char (~ 'mode')
  3301. nPrinterModel=(uint16_t)code_value_long();
  3302. if(nPrinterModel!=0)
  3303. printer_model_check(nPrinterModel);
  3304. else SERIAL_PROTOCOLLN(PRINTER_TYPE);
  3305. } else if (code_seen("version")) { //! PRUSA version
  3306. strchr_pointer+=7*sizeof(*strchr_pointer); // skip 1st - 7th char (~ 'version')
  3307. while(*strchr_pointer==' ') // skip leading spaces
  3308. strchr_pointer++;
  3309. if(*strchr_pointer!=0)
  3310. fw_version_check(strchr_pointer);
  3311. else SERIAL_PROTOCOLLN(FW_VERSION);
  3312. } else if (code_seen("gcode")) { //! PRUSA gcode
  3313. uint16_t nGcodeLevel;
  3314. strchr_pointer+=4*sizeof(*strchr_pointer); // skip 1st - 4th char (~ 'gcod')
  3315. nGcodeLevel=(uint16_t)code_value_long();
  3316. if(nGcodeLevel!=0)
  3317. gcode_level_check(nGcodeLevel);
  3318. else SERIAL_PROTOCOLLN(GCODE_LEVEL);
  3319. */
  3320. }
  3321. //else if (code_seen('Cal')) {
  3322. // lcd_calibration();
  3323. // }
  3324. }
  3325. // This prevents reading files with "^" in their names.
  3326. // Since it is unclear, if there is some usage of this construct,
  3327. // it will be deprecated in 3.9 alpha a possibly completely removed in the future:
  3328. // else if (code_seen('^')) {
  3329. // // nothing, this is a version line
  3330. // }
  3331. else if(code_seen('G'))
  3332. {
  3333. gcode_in_progress = (int)code_value();
  3334. // printf_P(_N("BEGIN G-CODE=%u\n"), gcode_in_progress);
  3335. switch (gcode_in_progress)
  3336. {
  3337. //! ### G0, G1 - Coordinated movement X Y Z E
  3338. // --------------------------------------
  3339. case 0: // G0 -> G1
  3340. case 1: // G1
  3341. if(Stopped == false) {
  3342. #ifdef FILAMENT_RUNOUT_SUPPORT
  3343. if(READ(FR_SENS)){
  3344. int feedmultiplyBckp=feedmultiply;
  3345. float target[4];
  3346. float lastpos[4];
  3347. target[X_AXIS]=current_position[X_AXIS];
  3348. target[Y_AXIS]=current_position[Y_AXIS];
  3349. target[Z_AXIS]=current_position[Z_AXIS];
  3350. target[E_AXIS]=current_position[E_AXIS];
  3351. lastpos[X_AXIS]=current_position[X_AXIS];
  3352. lastpos[Y_AXIS]=current_position[Y_AXIS];
  3353. lastpos[Z_AXIS]=current_position[Z_AXIS];
  3354. lastpos[E_AXIS]=current_position[E_AXIS];
  3355. //retract by E
  3356. target[E_AXIS]+= FILAMENTCHANGE_FIRSTRETRACT ;
  3357. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 400, active_extruder);
  3358. target[Z_AXIS]+= FILAMENTCHANGE_ZADD ;
  3359. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 300, active_extruder);
  3360. target[X_AXIS]= FILAMENTCHANGE_XPOS ;
  3361. target[Y_AXIS]= FILAMENTCHANGE_YPOS ;
  3362. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 70, active_extruder);
  3363. target[E_AXIS]+= FILAMENTCHANGE_FINALRETRACT ;
  3364. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 20, active_extruder);
  3365. //finish moves
  3366. st_synchronize();
  3367. //disable extruder steppers so filament can be removed
  3368. disable_e0();
  3369. disable_e1();
  3370. disable_e2();
  3371. _delay(100);
  3372. //LCD_ALERTMESSAGEPGM(_T(MSG_FILAMENTCHANGE));
  3373. uint8_t cnt=0;
  3374. int counterBeep = 0;
  3375. lcd_wait_interact();
  3376. while(!lcd_clicked()){
  3377. cnt++;
  3378. manage_heater();
  3379. manage_inactivity(true);
  3380. //lcd_update(0);
  3381. if(cnt==0)
  3382. {
  3383. #if BEEPER > 0
  3384. if (counterBeep== 500){
  3385. counterBeep = 0;
  3386. }
  3387. SET_OUTPUT(BEEPER);
  3388. if (counterBeep== 0){
  3389. if(eSoundMode!=e_SOUND_MODE_SILENT)
  3390. WRITE(BEEPER,HIGH);
  3391. }
  3392. if (counterBeep== 20){
  3393. WRITE(BEEPER,LOW);
  3394. }
  3395. counterBeep++;
  3396. #else
  3397. #endif
  3398. }
  3399. }
  3400. WRITE(BEEPER,LOW);
  3401. target[E_AXIS]+= FILAMENTCHANGE_FIRSTFEED ;
  3402. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 20, active_extruder);
  3403. target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  3404. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder);
  3405. lcd_change_fil_state = 0;
  3406. lcd_loading_filament();
  3407. while ((lcd_change_fil_state == 0)||(lcd_change_fil_state != 1)){
  3408. lcd_change_fil_state = 0;
  3409. lcd_alright();
  3410. switch(lcd_change_fil_state){
  3411. case 2:
  3412. target[E_AXIS]+= FILAMENTCHANGE_FIRSTFEED ;
  3413. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 20, active_extruder);
  3414. target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  3415. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder);
  3416. lcd_loading_filament();
  3417. break;
  3418. case 3:
  3419. target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  3420. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder);
  3421. lcd_loading_color();
  3422. break;
  3423. default:
  3424. lcd_change_success();
  3425. break;
  3426. }
  3427. }
  3428. target[E_AXIS]+= 5;
  3429. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder);
  3430. target[E_AXIS]+= FILAMENTCHANGE_FIRSTRETRACT;
  3431. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 400, active_extruder);
  3432. //current_position[E_AXIS]=target[E_AXIS]; //the long retract of L is compensated by manual filament feeding
  3433. //plan_set_e_position(current_position[E_AXIS]);
  3434. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 70, active_extruder); //should do nothing
  3435. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], target[Z_AXIS], target[E_AXIS], 70, active_extruder); //move xy back
  3436. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], target[E_AXIS], 200, active_extruder); //move z back
  3437. target[E_AXIS]= target[E_AXIS] - FILAMENTCHANGE_FIRSTRETRACT;
  3438. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], target[E_AXIS], 5, active_extruder); //final untretract
  3439. plan_set_e_position(lastpos[E_AXIS]);
  3440. feedmultiply=feedmultiplyBckp;
  3441. char cmd[9];
  3442. sprintf_P(cmd, PSTR("M220 S%i"), feedmultiplyBckp);
  3443. enquecommand(cmd);
  3444. }
  3445. #endif
  3446. get_coordinates(); // For X Y Z E F
  3447. if (total_filament_used > ((current_position[E_AXIS] - destination[E_AXIS]) * 100)) { //protection against total_filament_used overflow
  3448. total_filament_used = total_filament_used + ((destination[E_AXIS] - current_position[E_AXIS]) * 100);
  3449. }
  3450. #ifdef FWRETRACT
  3451. if(cs.autoretract_enabled)
  3452. if( !(code_seen('X') || code_seen('Y') || code_seen('Z')) && code_seen('E')) {
  3453. float echange=destination[E_AXIS]-current_position[E_AXIS];
  3454. if((echange<-MIN_RETRACT && !retracted[active_extruder]) || (echange>MIN_RETRACT && retracted[active_extruder])) { //move appears to be an attempt to retract or recover
  3455. current_position[E_AXIS] = destination[E_AXIS]; //hide the slicer-generated retract/recover from calculations
  3456. plan_set_e_position(current_position[E_AXIS]); //AND from the planner
  3457. retract(!retracted[active_extruder]);
  3458. return;
  3459. }
  3460. }
  3461. #endif //FWRETRACT
  3462. prepare_move();
  3463. //ClearToSend();
  3464. }
  3465. break;
  3466. //! ### G2 - CW ARC
  3467. // ------------------------------
  3468. case 2:
  3469. if(Stopped == false) {
  3470. get_arc_coordinates();
  3471. prepare_arc_move(true);
  3472. }
  3473. break;
  3474. //! ### G3 - CCW ARC
  3475. // -------------------------------
  3476. case 3:
  3477. if(Stopped == false) {
  3478. get_arc_coordinates();
  3479. prepare_arc_move(false);
  3480. }
  3481. break;
  3482. //! ### G4 - Dwell
  3483. // -------------------------------
  3484. case 4:
  3485. codenum = 0;
  3486. if(code_seen('P')) codenum = code_value(); // milliseconds to wait
  3487. if(code_seen('S')) codenum = code_value() * 1000; // seconds to wait
  3488. if(codenum != 0) LCD_MESSAGERPGM(_n("Sleep..."));////MSG_DWELL
  3489. st_synchronize();
  3490. codenum += _millis(); // keep track of when we started waiting
  3491. previous_millis_cmd = _millis();
  3492. while(_millis() < codenum) {
  3493. manage_heater();
  3494. manage_inactivity();
  3495. lcd_update(0);
  3496. }
  3497. break;
  3498. #ifdef FWRETRACT
  3499. //! ### G10 Retract
  3500. // ------------------------------
  3501. case 10:
  3502. #if EXTRUDERS > 1
  3503. retracted_swap[active_extruder]=(code_seen('S') && code_value_long() == 1); // checks for swap retract argument
  3504. retract(true,retracted_swap[active_extruder]);
  3505. #else
  3506. retract(true);
  3507. #endif
  3508. break;
  3509. //! ### G11 - Retract recover
  3510. // -----------------------------
  3511. case 11:
  3512. #if EXTRUDERS > 1
  3513. retract(false,retracted_swap[active_extruder]);
  3514. #else
  3515. retract(false);
  3516. #endif
  3517. break;
  3518. #endif //FWRETRACT
  3519. //! ### G28 - Home all Axis one at a time
  3520. // --------------------------------------------
  3521. case 28:
  3522. {
  3523. long home_x_value = 0;
  3524. long home_y_value = 0;
  3525. long home_z_value = 0;
  3526. // Which axes should be homed?
  3527. bool home_x = code_seen(axis_codes[X_AXIS]);
  3528. home_x_value = code_value_long();
  3529. bool home_y = code_seen(axis_codes[Y_AXIS]);
  3530. home_y_value = code_value_long();
  3531. bool home_z = code_seen(axis_codes[Z_AXIS]);
  3532. home_z_value = code_value_long();
  3533. bool without_mbl = code_seen('W');
  3534. // calibrate?
  3535. #ifdef TMC2130
  3536. bool calib = code_seen('C');
  3537. gcode_G28(home_x, home_x_value, home_y, home_y_value, home_z, home_z_value, calib, without_mbl);
  3538. #else
  3539. gcode_G28(home_x, home_x_value, home_y, home_y_value, home_z, home_z_value, without_mbl);
  3540. #endif //TMC2130
  3541. if ((home_x || home_y || without_mbl || home_z) == false) {
  3542. // Push the commands to the front of the message queue in the reverse order!
  3543. // There shall be always enough space reserved for these commands.
  3544. goto case_G80;
  3545. }
  3546. break;
  3547. }
  3548. #ifdef ENABLE_AUTO_BED_LEVELING
  3549. //! ### G29 - Detailed Z-Probe
  3550. // --------------------------------
  3551. case 29:
  3552. {
  3553. #if Z_MIN_PIN == -1
  3554. #error "You must have a Z_MIN endstop in order to enable Auto Bed Leveling feature! Z_MIN_PIN must point to a valid hardware pin."
  3555. #endif
  3556. // Prevent user from running a G29 without first homing in X and Y
  3557. if (! (axis_known_position[X_AXIS] && axis_known_position[Y_AXIS]) )
  3558. {
  3559. LCD_MESSAGERPGM(MSG_POSITION_UNKNOWN);
  3560. SERIAL_ECHO_START;
  3561. SERIAL_ECHOLNRPGM(MSG_POSITION_UNKNOWN);
  3562. break; // abort G29, since we don't know where we are
  3563. }
  3564. st_synchronize();
  3565. // make sure the bed_level_rotation_matrix is identity or the planner will get it incorectly
  3566. //vector_3 corrected_position = plan_get_position_mm();
  3567. //corrected_position.debug("position before G29");
  3568. plan_bed_level_matrix.set_to_identity();
  3569. vector_3 uncorrected_position = plan_get_position();
  3570. //uncorrected_position.debug("position durring G29");
  3571. current_position[X_AXIS] = uncorrected_position.x;
  3572. current_position[Y_AXIS] = uncorrected_position.y;
  3573. current_position[Z_AXIS] = uncorrected_position.z;
  3574. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  3575. int l_feedmultiply = setup_for_endstop_move();
  3576. feedrate = homing_feedrate[Z_AXIS];
  3577. #ifdef AUTO_BED_LEVELING_GRID
  3578. // probe at the points of a lattice grid
  3579. int xGridSpacing = (RIGHT_PROBE_BED_POSITION - LEFT_PROBE_BED_POSITION) / (AUTO_BED_LEVELING_GRID_POINTS-1);
  3580. int yGridSpacing = (BACK_PROBE_BED_POSITION - FRONT_PROBE_BED_POSITION) / (AUTO_BED_LEVELING_GRID_POINTS-1);
  3581. // solve the plane equation ax + by + d = z
  3582. // A is the matrix with rows [x y 1] for all the probed points
  3583. // B is the vector of the Z positions
  3584. // the normal vector to the plane is formed by the coefficients of the plane equation in the standard form, which is Vx*x+Vy*y+Vz*z+d = 0
  3585. // so Vx = -a Vy = -b Vz = 1 (we want the vector facing towards positive Z
  3586. // "A" matrix of the linear system of equations
  3587. double eqnAMatrix[AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS*3];
  3588. // "B" vector of Z points
  3589. double eqnBVector[AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS];
  3590. int probePointCounter = 0;
  3591. bool zig = true;
  3592. for (int yProbe=FRONT_PROBE_BED_POSITION; yProbe <= BACK_PROBE_BED_POSITION; yProbe += yGridSpacing)
  3593. {
  3594. int xProbe, xInc;
  3595. if (zig)
  3596. {
  3597. xProbe = LEFT_PROBE_BED_POSITION;
  3598. //xEnd = RIGHT_PROBE_BED_POSITION;
  3599. xInc = xGridSpacing;
  3600. zig = false;
  3601. } else // zag
  3602. {
  3603. xProbe = RIGHT_PROBE_BED_POSITION;
  3604. //xEnd = LEFT_PROBE_BED_POSITION;
  3605. xInc = -xGridSpacing;
  3606. zig = true;
  3607. }
  3608. for (int xCount=0; xCount < AUTO_BED_LEVELING_GRID_POINTS; xCount++)
  3609. {
  3610. float z_before;
  3611. if (probePointCounter == 0)
  3612. {
  3613. // raise before probing
  3614. z_before = Z_RAISE_BEFORE_PROBING;
  3615. } else
  3616. {
  3617. // raise extruder
  3618. z_before = current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS;
  3619. }
  3620. float measured_z = probe_pt(xProbe, yProbe, z_before);
  3621. eqnBVector[probePointCounter] = measured_z;
  3622. eqnAMatrix[probePointCounter + 0*AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS] = xProbe;
  3623. eqnAMatrix[probePointCounter + 1*AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS] = yProbe;
  3624. eqnAMatrix[probePointCounter + 2*AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS] = 1;
  3625. probePointCounter++;
  3626. xProbe += xInc;
  3627. }
  3628. }
  3629. clean_up_after_endstop_move(l_feedmultiply);
  3630. // solve lsq problem
  3631. double *plane_equation_coefficients = qr_solve(AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS, 3, eqnAMatrix, eqnBVector);
  3632. SERIAL_PROTOCOLPGM("Eqn coefficients: a: ");
  3633. SERIAL_PROTOCOL(plane_equation_coefficients[0]);
  3634. SERIAL_PROTOCOLPGM(" b: ");
  3635. SERIAL_PROTOCOL(plane_equation_coefficients[1]);
  3636. SERIAL_PROTOCOLPGM(" d: ");
  3637. SERIAL_PROTOCOLLN(plane_equation_coefficients[2]);
  3638. set_bed_level_equation_lsq(plane_equation_coefficients);
  3639. free(plane_equation_coefficients);
  3640. #else // AUTO_BED_LEVELING_GRID not defined
  3641. // Probe at 3 arbitrary points
  3642. // probe 1
  3643. float z_at_pt_1 = probe_pt(ABL_PROBE_PT_1_X, ABL_PROBE_PT_1_Y, Z_RAISE_BEFORE_PROBING);
  3644. // probe 2
  3645. float z_at_pt_2 = probe_pt(ABL_PROBE_PT_2_X, ABL_PROBE_PT_2_Y, current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS);
  3646. // probe 3
  3647. float z_at_pt_3 = probe_pt(ABL_PROBE_PT_3_X, ABL_PROBE_PT_3_Y, current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS);
  3648. clean_up_after_endstop_move(l_feedmultiply);
  3649. set_bed_level_equation_3pts(z_at_pt_1, z_at_pt_2, z_at_pt_3);
  3650. #endif // AUTO_BED_LEVELING_GRID
  3651. st_synchronize();
  3652. // The following code correct the Z height difference from z-probe position and hotend tip position.
  3653. // The Z height on homing is measured by Z-Probe, but the probe is quite far from the hotend.
  3654. // When the bed is uneven, this height must be corrected.
  3655. real_z = float(st_get_position(Z_AXIS))/cs.axis_steps_per_unit[Z_AXIS]; //get the real Z (since the auto bed leveling is already correcting the plane)
  3656. x_tmp = current_position[X_AXIS] + X_PROBE_OFFSET_FROM_EXTRUDER;
  3657. y_tmp = current_position[Y_AXIS] + Y_PROBE_OFFSET_FROM_EXTRUDER;
  3658. z_tmp = current_position[Z_AXIS];
  3659. apply_rotation_xyz(plan_bed_level_matrix, x_tmp, y_tmp, z_tmp); //Apply the correction sending the probe offset
  3660. current_position[Z_AXIS] = z_tmp - real_z + current_position[Z_AXIS]; //The difference is added to current position and sent to planner.
  3661. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  3662. }
  3663. break;
  3664. #ifndef Z_PROBE_SLED
  3665. //! ### G30 - Single Z Probe
  3666. // ------------------------------------
  3667. case 30:
  3668. {
  3669. st_synchronize();
  3670. // TODO: make sure the bed_level_rotation_matrix is identity or the planner will get set incorectly
  3671. int l_feedmultiply = setup_for_endstop_move();
  3672. feedrate = homing_feedrate[Z_AXIS];
  3673. run_z_probe();
  3674. SERIAL_PROTOCOLPGM(_T(MSG_BED));
  3675. SERIAL_PROTOCOLPGM(" X: ");
  3676. SERIAL_PROTOCOL(current_position[X_AXIS]);
  3677. SERIAL_PROTOCOLPGM(" Y: ");
  3678. SERIAL_PROTOCOL(current_position[Y_AXIS]);
  3679. SERIAL_PROTOCOLPGM(" Z: ");
  3680. SERIAL_PROTOCOL(current_position[Z_AXIS]);
  3681. SERIAL_PROTOCOLPGM("\n");
  3682. clean_up_after_endstop_move(l_feedmultiply);
  3683. }
  3684. break;
  3685. #else
  3686. //! ### G31 - Dock the sled
  3687. // ---------------------------
  3688. case 31:
  3689. dock_sled(true);
  3690. break;
  3691. //! ### G32 - Undock the sled
  3692. // ----------------------------
  3693. case 32:
  3694. dock_sled(false);
  3695. break;
  3696. #endif // Z_PROBE_SLED
  3697. #endif // ENABLE_AUTO_BED_LEVELING
  3698. #ifdef MESH_BED_LEVELING
  3699. //! ### G30 - Single Z Probe
  3700. // ----------------------------
  3701. case 30:
  3702. {
  3703. st_synchronize();
  3704. // TODO: make sure the bed_level_rotation_matrix is identity or the planner will get set incorectly
  3705. int l_feedmultiply = setup_for_endstop_move();
  3706. feedrate = homing_feedrate[Z_AXIS];
  3707. find_bed_induction_sensor_point_z(-10.f, 3);
  3708. printf_P(_N("%S X: %.5f Y: %.5f Z: %.5f\n"), _T(MSG_BED), _x, _y, _z);
  3709. clean_up_after_endstop_move(l_feedmultiply);
  3710. }
  3711. break;
  3712. //! ### G75 - Print temperature interpolation
  3713. // ---------------------------------------------
  3714. case 75:
  3715. {
  3716. for (int i = 40; i <= 110; i++)
  3717. printf_P(_N("%d %.2f"), i, temp_comp_interpolation(i));
  3718. }
  3719. break;
  3720. //! ### G76 - PINDA probe temperature calibration
  3721. // ------------------------------------------------
  3722. case 76:
  3723. {
  3724. #ifdef PINDA_THERMISTOR
  3725. if (true)
  3726. {
  3727. if (calibration_status() >= CALIBRATION_STATUS_XYZ_CALIBRATION) {
  3728. //we need to know accurate position of first calibration point
  3729. //if xyz calibration was not performed yet, interrupt temperature calibration and inform user that xyz cal. is needed
  3730. lcd_show_fullscreen_message_and_wait_P(_i("Please run XYZ calibration first."));
  3731. break;
  3732. }
  3733. if (!(axis_known_position[X_AXIS] && axis_known_position[Y_AXIS] && axis_known_position[Z_AXIS]))
  3734. {
  3735. // We don't know where we are! HOME!
  3736. // Push the commands to the front of the message queue in the reverse order!
  3737. // There shall be always enough space reserved for these commands.
  3738. repeatcommand_front(); // repeat G76 with all its parameters
  3739. enquecommand_front_P((PSTR("G28 W0")));
  3740. break;
  3741. }
  3742. lcd_show_fullscreen_message_and_wait_P(_i("Stable ambient temperature 21-26C is needed a rigid stand is required."));////MSG_TEMP_CAL_WARNING c=20 r=4
  3743. bool result = lcd_show_fullscreen_message_yes_no_and_wait_P(_T(MSG_STEEL_SHEET_CHECK), false, false);
  3744. if (result)
  3745. {
  3746. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3747. plan_buffer_line_curposXYZE(3000 / 60, active_extruder);
  3748. current_position[Z_AXIS] = 50;
  3749. current_position[Y_AXIS] = 180;
  3750. plan_buffer_line_curposXYZE(3000 / 60, active_extruder);
  3751. st_synchronize();
  3752. lcd_show_fullscreen_message_and_wait_P(_T(MSG_REMOVE_STEEL_SHEET));
  3753. current_position[Y_AXIS] = pgm_read_float(bed_ref_points_4 + 1);
  3754. current_position[X_AXIS] = pgm_read_float(bed_ref_points_4);
  3755. plan_buffer_line_curposXYZE(3000 / 60, active_extruder);
  3756. st_synchronize();
  3757. gcode_G28(false, false, true);
  3758. }
  3759. if ((current_temperature_pinda > 35) && (farm_mode == false)) {
  3760. //waiting for PIDNA probe to cool down in case that we are not in farm mode
  3761. current_position[Z_AXIS] = 100;
  3762. plan_buffer_line_curposXYZE(3000 / 60, active_extruder);
  3763. if (lcd_wait_for_pinda(35) == false) { //waiting for PINDA probe to cool, if this takes more then time expected, temp. cal. fails
  3764. lcd_temp_cal_show_result(false);
  3765. break;
  3766. }
  3767. }
  3768. lcd_update_enable(true);
  3769. KEEPALIVE_STATE(NOT_BUSY); //no need to print busy messages as we print current temperatures periodicaly
  3770. SERIAL_ECHOLNPGM("PINDA probe calibration start");
  3771. float zero_z;
  3772. int z_shift = 0; //unit: steps
  3773. float start_temp = 5 * (int)(current_temperature_pinda / 5);
  3774. if (start_temp < 35) start_temp = 35;
  3775. if (start_temp < current_temperature_pinda) start_temp += 5;
  3776. printf_P(_N("start temperature: %.1f\n"), start_temp);
  3777. // setTargetHotend(200, 0);
  3778. setTargetBed(70 + (start_temp - 30));
  3779. custom_message_type = CustomMsg::TempCal;
  3780. custom_message_state = 1;
  3781. lcd_setstatuspgm(_T(MSG_TEMP_CALIBRATION));
  3782. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3783. plan_buffer_line_curposXYZE(3000 / 60, active_extruder);
  3784. current_position[X_AXIS] = PINDA_PREHEAT_X;
  3785. current_position[Y_AXIS] = PINDA_PREHEAT_Y;
  3786. plan_buffer_line_curposXYZE(3000 / 60, active_extruder);
  3787. current_position[Z_AXIS] = PINDA_PREHEAT_Z;
  3788. plan_buffer_line_curposXYZE(3000 / 60, active_extruder);
  3789. st_synchronize();
  3790. while (current_temperature_pinda < start_temp)
  3791. {
  3792. delay_keep_alive(1000);
  3793. serialecho_temperatures();
  3794. }
  3795. eeprom_update_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 0); //invalidate temp. calibration in case that in will be aborted during the calibration process
  3796. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3797. plan_buffer_line_curposXYZE(3000 / 60, active_extruder);
  3798. current_position[X_AXIS] = pgm_read_float(bed_ref_points_4);
  3799. current_position[Y_AXIS] = pgm_read_float(bed_ref_points_4 + 1);
  3800. plan_buffer_line_curposXYZE(3000 / 60, active_extruder);
  3801. st_synchronize();
  3802. bool find_z_result = find_bed_induction_sensor_point_z(-1.f);
  3803. if (find_z_result == false) {
  3804. lcd_temp_cal_show_result(find_z_result);
  3805. break;
  3806. }
  3807. zero_z = current_position[Z_AXIS];
  3808. printf_P(_N("\nZERO: %.3f\n"), current_position[Z_AXIS]);
  3809. int i = -1; for (; i < 5; i++)
  3810. {
  3811. float temp = (40 + i * 5);
  3812. printf_P(_N("\nStep: %d/6 (skipped)\nPINDA temperature: %d Z shift (mm):0\n"), i + 2, (40 + i*5));
  3813. if (i >= 0) EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + i * 2, &z_shift);
  3814. if (start_temp <= temp) break;
  3815. }
  3816. for (i++; i < 5; i++)
  3817. {
  3818. float temp = (40 + i * 5);
  3819. printf_P(_N("\nStep: %d/6\n"), i + 2);
  3820. custom_message_state = i + 2;
  3821. setTargetBed(50 + 10 * (temp - 30) / 5);
  3822. // setTargetHotend(255, 0);
  3823. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3824. plan_buffer_line_curposXYZE(3000 / 60, active_extruder);
  3825. current_position[X_AXIS] = PINDA_PREHEAT_X;
  3826. current_position[Y_AXIS] = PINDA_PREHEAT_Y;
  3827. plan_buffer_line_curposXYZE(3000 / 60, active_extruder);
  3828. current_position[Z_AXIS] = PINDA_PREHEAT_Z;
  3829. plan_buffer_line_curposXYZE(3000 / 60, active_extruder);
  3830. st_synchronize();
  3831. while (current_temperature_pinda < temp)
  3832. {
  3833. delay_keep_alive(1000);
  3834. serialecho_temperatures();
  3835. }
  3836. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3837. plan_buffer_line_curposXYZE(3000 / 60, active_extruder);
  3838. current_position[X_AXIS] = pgm_read_float(bed_ref_points_4);
  3839. current_position[Y_AXIS] = pgm_read_float(bed_ref_points_4 + 1);
  3840. plan_buffer_line_curposXYZE(3000 / 60, active_extruder);
  3841. st_synchronize();
  3842. find_z_result = find_bed_induction_sensor_point_z(-1.f);
  3843. if (find_z_result == false) {
  3844. lcd_temp_cal_show_result(find_z_result);
  3845. break;
  3846. }
  3847. z_shift = (int)((current_position[Z_AXIS] - zero_z)*cs.axis_steps_per_unit[Z_AXIS]);
  3848. printf_P(_N("\nPINDA temperature: %.1f Z shift (mm): %.3f"), current_temperature_pinda, current_position[Z_AXIS] - zero_z);
  3849. EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + i * 2, &z_shift);
  3850. }
  3851. lcd_temp_cal_show_result(true);
  3852. break;
  3853. }
  3854. #endif //PINDA_THERMISTOR
  3855. setTargetBed(PINDA_MIN_T);
  3856. float zero_z;
  3857. int z_shift = 0; //unit: steps
  3858. int t_c; // temperature
  3859. if (!(axis_known_position[X_AXIS] && axis_known_position[Y_AXIS] && axis_known_position[Z_AXIS])) {
  3860. // We don't know where we are! HOME!
  3861. // Push the commands to the front of the message queue in the reverse order!
  3862. // There shall be always enough space reserved for these commands.
  3863. repeatcommand_front(); // repeat G76 with all its parameters
  3864. enquecommand_front_P((PSTR("G28 W0")));
  3865. break;
  3866. }
  3867. puts_P(_N("PINDA probe calibration start"));
  3868. custom_message_type = CustomMsg::TempCal;
  3869. custom_message_state = 1;
  3870. lcd_setstatuspgm(_T(MSG_TEMP_CALIBRATION));
  3871. current_position[X_AXIS] = PINDA_PREHEAT_X;
  3872. current_position[Y_AXIS] = PINDA_PREHEAT_Y;
  3873. current_position[Z_AXIS] = PINDA_PREHEAT_Z;
  3874. plan_buffer_line_curposXYZE(3000 / 60, active_extruder);
  3875. st_synchronize();
  3876. while (abs(degBed() - PINDA_MIN_T) > 1) {
  3877. delay_keep_alive(1000);
  3878. serialecho_temperatures();
  3879. }
  3880. //enquecommand_P(PSTR("M190 S50"));
  3881. for (int i = 0; i < PINDA_HEAT_T; i++) {
  3882. delay_keep_alive(1000);
  3883. serialecho_temperatures();
  3884. }
  3885. eeprom_update_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 0); //invalidate temp. calibration in case that in will be aborted during the calibration process
  3886. current_position[Z_AXIS] = 5;
  3887. plan_buffer_line_curposXYZE(3000 / 60, active_extruder);
  3888. current_position[X_AXIS] = BED_X0;
  3889. current_position[Y_AXIS] = BED_Y0;
  3890. plan_buffer_line_curposXYZE(3000 / 60, active_extruder);
  3891. st_synchronize();
  3892. find_bed_induction_sensor_point_z(-1.f);
  3893. zero_z = current_position[Z_AXIS];
  3894. printf_P(_N("\nZERO: %.3f\n"), current_position[Z_AXIS]);
  3895. for (int i = 0; i<5; i++) {
  3896. printf_P(_N("\nStep: %d/6\n"), i + 2);
  3897. custom_message_state = i + 2;
  3898. t_c = 60 + i * 10;
  3899. setTargetBed(t_c);
  3900. current_position[X_AXIS] = PINDA_PREHEAT_X;
  3901. current_position[Y_AXIS] = PINDA_PREHEAT_Y;
  3902. current_position[Z_AXIS] = PINDA_PREHEAT_Z;
  3903. plan_buffer_line_curposXYZE(3000 / 60, active_extruder);
  3904. st_synchronize();
  3905. while (degBed() < t_c) {
  3906. delay_keep_alive(1000);
  3907. serialecho_temperatures();
  3908. }
  3909. for (int i = 0; i < PINDA_HEAT_T; i++) {
  3910. delay_keep_alive(1000);
  3911. serialecho_temperatures();
  3912. }
  3913. current_position[Z_AXIS] = 5;
  3914. plan_buffer_line_curposXYZE(3000 / 60, active_extruder);
  3915. current_position[X_AXIS] = BED_X0;
  3916. current_position[Y_AXIS] = BED_Y0;
  3917. plan_buffer_line_curposXYZE(3000 / 60, active_extruder);
  3918. st_synchronize();
  3919. find_bed_induction_sensor_point_z(-1.f);
  3920. z_shift = (int)((current_position[Z_AXIS] - zero_z)*cs.axis_steps_per_unit[Z_AXIS]);
  3921. printf_P(_N("\nTemperature: %d Z shift (mm): %.3f\n"), t_c, current_position[Z_AXIS] - zero_z);
  3922. EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + i*2, &z_shift);
  3923. }
  3924. custom_message_type = CustomMsg::Status;
  3925. eeprom_update_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 1);
  3926. puts_P(_N("Temperature calibration done."));
  3927. disable_x();
  3928. disable_y();
  3929. disable_z();
  3930. disable_e0();
  3931. disable_e1();
  3932. disable_e2();
  3933. setTargetBed(0); //set bed target temperature back to 0
  3934. lcd_show_fullscreen_message_and_wait_P(_T(MSG_TEMP_CALIBRATION_DONE));
  3935. temp_cal_active = true;
  3936. eeprom_update_byte((unsigned char *)EEPROM_TEMP_CAL_ACTIVE, 1);
  3937. lcd_update_enable(true);
  3938. lcd_update(2);
  3939. }
  3940. break;
  3941. //! ### G80 - Mesh-based Z probe
  3942. // -----------------------------------
  3943. /*
  3944. * Probes a grid and produces a mesh to compensate for variable bed height
  3945. * The S0 report the points as below
  3946. * +----> X-axis
  3947. * |
  3948. * |
  3949. * v Y-axis
  3950. */
  3951. case 80:
  3952. #ifdef MK1BP
  3953. break;
  3954. #endif //MK1BP
  3955. case_G80:
  3956. {
  3957. mesh_bed_leveling_flag = true;
  3958. static bool run = false;
  3959. #ifdef SUPPORT_VERBOSITY
  3960. int8_t verbosity_level = 0;
  3961. if (code_seen('V')) {
  3962. // Just 'V' without a number counts as V1.
  3963. char c = strchr_pointer[1];
  3964. verbosity_level = (c == ' ' || c == '\t' || c == 0) ? 1 : code_value_short();
  3965. }
  3966. #endif //SUPPORT_VERBOSITY
  3967. // Firstly check if we know where we are
  3968. if (!(axis_known_position[X_AXIS] && axis_known_position[Y_AXIS] && axis_known_position[Z_AXIS])) {
  3969. // We don't know where we are! HOME!
  3970. // Push the commands to the front of the message queue in the reverse order!
  3971. // There shall be always enough space reserved for these commands.
  3972. if (lcd_commands_type != LcdCommands::StopPrint) {
  3973. repeatcommand_front(); // repeat G80 with all its parameters
  3974. enquecommand_front_P((PSTR("G28 W0")));
  3975. }
  3976. else {
  3977. mesh_bed_leveling_flag = false;
  3978. }
  3979. break;
  3980. }
  3981. uint8_t nMeasPoints = MESH_MEAS_NUM_X_POINTS;
  3982. if (code_seen('N')) {
  3983. nMeasPoints = code_value_uint8();
  3984. if (nMeasPoints != 7) {
  3985. nMeasPoints = 3;
  3986. }
  3987. }
  3988. else {
  3989. nMeasPoints = eeprom_read_byte((uint8_t*)EEPROM_MBL_POINTS_NR);
  3990. }
  3991. uint8_t nProbeRetry = 3;
  3992. if (code_seen('R')) {
  3993. nProbeRetry = code_value_uint8();
  3994. if (nProbeRetry > 10) {
  3995. nProbeRetry = 10;
  3996. }
  3997. }
  3998. else {
  3999. nProbeRetry = eeprom_read_byte((uint8_t*)EEPROM_MBL_PROBE_NR);
  4000. }
  4001. bool magnet_elimination = (eeprom_read_byte((uint8_t*)EEPROM_MBL_MAGNET_ELIMINATION) > 0);
  4002. bool temp_comp_start = true;
  4003. #ifdef PINDA_THERMISTOR
  4004. temp_comp_start = false;
  4005. #endif //PINDA_THERMISTOR
  4006. if (temp_comp_start)
  4007. if (run == false && temp_cal_active == true && calibration_status_pinda() == true && target_temperature_bed >= 50) {
  4008. if (lcd_commands_type != LcdCommands::StopPrint) {
  4009. temp_compensation_start();
  4010. run = true;
  4011. repeatcommand_front(); // repeat G80 with all its parameters
  4012. enquecommand_front_P((PSTR("G28 W0")));
  4013. }
  4014. else {
  4015. mesh_bed_leveling_flag = false;
  4016. }
  4017. break;
  4018. }
  4019. run = false;
  4020. if (lcd_commands_type == LcdCommands::StopPrint) {
  4021. mesh_bed_leveling_flag = false;
  4022. break;
  4023. }
  4024. // Save custom message state, set a new custom message state to display: Calibrating point 9.
  4025. CustomMsg custom_message_type_old = custom_message_type;
  4026. unsigned int custom_message_state_old = custom_message_state;
  4027. custom_message_type = CustomMsg::MeshBedLeveling;
  4028. custom_message_state = (nMeasPoints * nMeasPoints) + 10;
  4029. lcd_update(1);
  4030. mbl.reset(); //reset mesh bed leveling
  4031. // Reset baby stepping to zero, if the babystepping has already been loaded before. The babystepsTodo value will be
  4032. // consumed during the first movements following this statement.
  4033. babystep_undo();
  4034. // Cycle through all points and probe them
  4035. // First move up. During this first movement, the babystepping will be reverted.
  4036. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  4037. plan_buffer_line_curposXYZE(homing_feedrate[Z_AXIS] / 60, active_extruder);
  4038. // The move to the first calibration point.
  4039. current_position[X_AXIS] = BED_X0;
  4040. current_position[Y_AXIS] = BED_Y0;
  4041. #ifdef SUPPORT_VERBOSITY
  4042. if (verbosity_level >= 1)
  4043. {
  4044. bool clamped = world2machine_clamp(current_position[X_AXIS], current_position[Y_AXIS]);
  4045. clamped ? SERIAL_PROTOCOLPGM("First calibration point clamped.\n") : SERIAL_PROTOCOLPGM("No clamping for first calibration point.\n");
  4046. }
  4047. #else //SUPPORT_VERBOSITY
  4048. world2machine_clamp(current_position[X_AXIS], current_position[Y_AXIS]);
  4049. #endif //SUPPORT_VERBOSITY
  4050. plan_buffer_line_curposXYZE(homing_feedrate[X_AXIS] / 30, active_extruder);
  4051. // Wait until the move is finished.
  4052. st_synchronize();
  4053. uint8_t mesh_point = 0; //index number of calibration point
  4054. int XY_AXIS_FEEDRATE = homing_feedrate[X_AXIS] / 20;
  4055. int Z_LIFT_FEEDRATE = homing_feedrate[Z_AXIS] / 40;
  4056. bool has_z = is_bed_z_jitter_data_valid(); //checks if we have data from Z calibration (offsets of the Z heiths of the 8 calibration points from the first point)
  4057. #ifdef SUPPORT_VERBOSITY
  4058. if (verbosity_level >= 1) {
  4059. has_z ? SERIAL_PROTOCOLPGM("Z jitter data from Z cal. valid.\n") : SERIAL_PROTOCOLPGM("Z jitter data from Z cal. not valid.\n");
  4060. }
  4061. #endif // SUPPORT_VERBOSITY
  4062. int l_feedmultiply = setup_for_endstop_move(false); //save feedrate and feedmultiply, sets feedmultiply to 100
  4063. const char *kill_message = NULL;
  4064. while (mesh_point != nMeasPoints * nMeasPoints) {
  4065. // Get coords of a measuring point.
  4066. uint8_t ix = mesh_point % nMeasPoints; // from 0 to MESH_NUM_X_POINTS - 1
  4067. uint8_t iy = mesh_point / nMeasPoints;
  4068. /*if (!mbl_point_measurement_valid(ix, iy, nMeasPoints, true)) {
  4069. printf_P(PSTR("Skipping point [%d;%d] \n"), ix, iy);
  4070. custom_message_state--;
  4071. mesh_point++;
  4072. continue; //skip
  4073. }*/
  4074. if (iy & 1) ix = (nMeasPoints - 1) - ix; // Zig zag
  4075. if (nMeasPoints == 7) //if we have 7x7 mesh, compare with Z-calibration for points which are in 3x3 mesh
  4076. {
  4077. has_z = ((ix % 3 == 0) && (iy % 3 == 0)) && is_bed_z_jitter_data_valid();
  4078. }
  4079. float z0 = 0.f;
  4080. if (has_z && (mesh_point > 0)) {
  4081. uint16_t z_offset_u = 0;
  4082. if (nMeasPoints == 7) {
  4083. z_offset_u = eeprom_read_word((uint16_t*)(EEPROM_BED_CALIBRATION_Z_JITTER + 2 * ((ix/3) + iy - 1)));
  4084. }
  4085. else {
  4086. z_offset_u = eeprom_read_word((uint16_t*)(EEPROM_BED_CALIBRATION_Z_JITTER + 2 * (ix + iy * 3 - 1)));
  4087. }
  4088. z0 = mbl.z_values[0][0] + *reinterpret_cast<int16_t*>(&z_offset_u) * 0.01;
  4089. #ifdef SUPPORT_VERBOSITY
  4090. if (verbosity_level >= 1) {
  4091. printf_P(PSTR("Bed leveling, point: %d, calibration Z stored in eeprom: %d, calibration z: %f \n"), mesh_point, z_offset_u, z0);
  4092. }
  4093. #endif // SUPPORT_VERBOSITY
  4094. }
  4095. // Move Z up to MESH_HOME_Z_SEARCH.
  4096. if((ix == 0) && (iy == 0)) current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  4097. else current_position[Z_AXIS] += 2.f / nMeasPoints; //use relative movement from Z coordinate where PINDa triggered on previous point. This makes calibration faster.
  4098. float init_z_bckp = current_position[Z_AXIS];
  4099. plan_buffer_line_curposXYZE(Z_LIFT_FEEDRATE, active_extruder);
  4100. st_synchronize();
  4101. // Move to XY position of the sensor point.
  4102. current_position[X_AXIS] = BED_X(ix, nMeasPoints);
  4103. current_position[Y_AXIS] = BED_Y(iy, nMeasPoints);
  4104. //printf_P(PSTR("[%f;%f]\n"), current_position[X_AXIS], current_position[Y_AXIS]);
  4105. #ifdef SUPPORT_VERBOSITY
  4106. if (verbosity_level >= 1) {
  4107. clamped = world2machine_clamp(current_position[X_AXIS], current_position[Y_AXIS]);
  4108. SERIAL_PROTOCOL(mesh_point);
  4109. clamped ? SERIAL_PROTOCOLPGM(": xy clamped.\n") : SERIAL_PROTOCOLPGM(": no xy clamping\n");
  4110. }
  4111. #else //SUPPORT_VERBOSITY
  4112. world2machine_clamp(current_position[X_AXIS], current_position[Y_AXIS]);
  4113. #endif // SUPPORT_VERBOSITY
  4114. //printf_P(PSTR("after clamping: [%f;%f]\n"), current_position[X_AXIS], current_position[Y_AXIS]);
  4115. plan_buffer_line_curposXYZE(XY_AXIS_FEEDRATE, active_extruder);
  4116. st_synchronize();
  4117. // Go down until endstop is hit
  4118. const float Z_CALIBRATION_THRESHOLD = 1.f;
  4119. if (!find_bed_induction_sensor_point_z((has_z && mesh_point > 0) ? z0 - Z_CALIBRATION_THRESHOLD : -10.f, nProbeRetry)) { //if we have data from z calibration max allowed difference is 1mm for each point, if we dont have data max difference is 10mm from initial point
  4120. printf_P(_T(MSG_BED_LEVELING_FAILED_POINT_LOW));
  4121. break;
  4122. }
  4123. if (init_z_bckp - current_position[Z_AXIS] < 0.1f) { //broken cable or initial Z coordinate too low. Go to MESH_HOME_Z_SEARCH and repeat last step (z-probe) again to distinguish between these two cases.
  4124. //printf_P(PSTR("Another attempt! Current Z position: %f\n"), current_position[Z_AXIS]);
  4125. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  4126. plan_buffer_line_curposXYZE(Z_LIFT_FEEDRATE, active_extruder);
  4127. st_synchronize();
  4128. if (!find_bed_induction_sensor_point_z((has_z && mesh_point > 0) ? z0 - Z_CALIBRATION_THRESHOLD : -10.f, nProbeRetry)) { //if we have data from z calibration max allowed difference is 1mm for each point, if we dont have data max difference is 10mm from initial point
  4129. printf_P(_T(MSG_BED_LEVELING_FAILED_POINT_LOW));
  4130. break;
  4131. }
  4132. if (MESH_HOME_Z_SEARCH - current_position[Z_AXIS] < 0.1f) {
  4133. printf_P(PSTR("Bed leveling failed. Sensor disconnected or cable broken.\n"));
  4134. break;
  4135. }
  4136. }
  4137. if (has_z && fabs(z0 - current_position[Z_AXIS]) > Z_CALIBRATION_THRESHOLD) { //if we have data from z calibration, max. allowed difference is 1mm for each point
  4138. printf_P(PSTR("Bed leveling failed. Sensor triggered too high.\n"));
  4139. break;
  4140. }
  4141. #ifdef SUPPORT_VERBOSITY
  4142. if (verbosity_level >= 10) {
  4143. SERIAL_ECHOPGM("X: ");
  4144. MYSERIAL.print(current_position[X_AXIS], 5);
  4145. SERIAL_ECHOLNPGM("");
  4146. SERIAL_ECHOPGM("Y: ");
  4147. MYSERIAL.print(current_position[Y_AXIS], 5);
  4148. SERIAL_PROTOCOLPGM("\n");
  4149. }
  4150. #endif // SUPPORT_VERBOSITY
  4151. float offset_z = 0;
  4152. #ifdef PINDA_THERMISTOR
  4153. offset_z = temp_compensation_pinda_thermistor_offset(current_temperature_pinda);
  4154. #endif //PINDA_THERMISTOR
  4155. // #ifdef SUPPORT_VERBOSITY
  4156. /* if (verbosity_level >= 1)
  4157. {
  4158. SERIAL_ECHOPGM("mesh bed leveling: ");
  4159. MYSERIAL.print(current_position[Z_AXIS], 5);
  4160. SERIAL_ECHOPGM(" offset: ");
  4161. MYSERIAL.print(offset_z, 5);
  4162. SERIAL_ECHOLNPGM("");
  4163. }*/
  4164. // #endif // SUPPORT_VERBOSITY
  4165. mbl.set_z(ix, iy, current_position[Z_AXIS] - offset_z); //store measured z values z_values[iy][ix] = z - offset_z;
  4166. custom_message_state--;
  4167. mesh_point++;
  4168. lcd_update(1);
  4169. }
  4170. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  4171. #ifdef SUPPORT_VERBOSITY
  4172. if (verbosity_level >= 20) {
  4173. SERIAL_ECHOLNPGM("Mesh bed leveling while loop finished.");
  4174. SERIAL_ECHOLNPGM("MESH_HOME_Z_SEARCH: ");
  4175. MYSERIAL.print(current_position[Z_AXIS], 5);
  4176. }
  4177. #endif // SUPPORT_VERBOSITY
  4178. plan_buffer_line_curposXYZE(Z_LIFT_FEEDRATE, active_extruder);
  4179. st_synchronize();
  4180. if (mesh_point != nMeasPoints * nMeasPoints) {
  4181. Sound_MakeSound(e_SOUND_TYPE_StandardAlert);
  4182. bool bState;
  4183. do { // repeat until Z-leveling o.k.
  4184. lcd_display_message_fullscreen_P(_i("Some problem encountered, Z-leveling enforced ..."));
  4185. #ifdef TMC2130
  4186. lcd_wait_for_click_delay(MSG_BED_LEVELING_FAILED_TIMEOUT);
  4187. calibrate_z_auto(); // Z-leveling (X-assembly stay up!!!)
  4188. #else // TMC2130
  4189. lcd_wait_for_click_delay(0); // ~ no timeout
  4190. lcd_calibrate_z_end_stop_manual(true); // Z-leveling (X-assembly stay up!!!)
  4191. #endif // TMC2130
  4192. // ~ Z-homing (can not be used "G28", because X & Y-homing would have been done before (Z-homing))
  4193. bState=enable_z_endstop(false);
  4194. current_position[Z_AXIS] -= 1;
  4195. plan_buffer_line_curposXYZE(homing_feedrate[Z_AXIS] / 40, active_extruder);
  4196. st_synchronize();
  4197. enable_z_endstop(true);
  4198. #ifdef TMC2130
  4199. tmc2130_home_enter(Z_AXIS_MASK);
  4200. #endif // TMC2130
  4201. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  4202. plan_buffer_line_curposXYZE(homing_feedrate[Z_AXIS] / 40, active_extruder);
  4203. st_synchronize();
  4204. #ifdef TMC2130
  4205. tmc2130_home_exit();
  4206. #endif // TMC2130
  4207. enable_z_endstop(bState);
  4208. } while (st_get_position_mm(Z_AXIS) > MESH_HOME_Z_SEARCH); // i.e. Z-leveling not o.k.
  4209. // plan_set_z_position(MESH_HOME_Z_SEARCH); // is not necessary ('do-while' loop always ends at the expected Z-position)
  4210. custom_message_type=CustomMsg::Status; // display / status-line recovery
  4211. lcd_update_enable(true); // display / status-line recovery
  4212. gcode_G28(true, true, true); // X & Y & Z-homing (must be after individual Z-homing (problem with spool-holder)!)
  4213. repeatcommand_front(); // re-run (i.e. of "G80")
  4214. break;
  4215. }
  4216. clean_up_after_endstop_move(l_feedmultiply);
  4217. // SERIAL_ECHOLNPGM("clean up finished ");
  4218. bool apply_temp_comp = true;
  4219. #ifdef PINDA_THERMISTOR
  4220. apply_temp_comp = false;
  4221. #endif
  4222. if (apply_temp_comp)
  4223. if(temp_cal_active == true && calibration_status_pinda() == true) temp_compensation_apply(); //apply PINDA temperature compensation
  4224. babystep_apply(); // Apply Z height correction aka baby stepping before mesh bed leveing gets activated.
  4225. // SERIAL_ECHOLNPGM("babystep applied");
  4226. bool eeprom_bed_correction_valid = eeprom_read_byte((unsigned char*)EEPROM_BED_CORRECTION_VALID) == 1;
  4227. #ifdef SUPPORT_VERBOSITY
  4228. if (verbosity_level >= 1) {
  4229. eeprom_bed_correction_valid ? SERIAL_PROTOCOLPGM("Bed correction data valid\n") : SERIAL_PROTOCOLPGM("Bed correction data not valid\n");
  4230. }
  4231. #endif // SUPPORT_VERBOSITY
  4232. for (uint8_t i = 0; i < 4; ++i) {
  4233. unsigned char codes[4] = { 'L', 'R', 'F', 'B' };
  4234. long correction = 0;
  4235. if (code_seen(codes[i]))
  4236. correction = code_value_long();
  4237. else if (eeprom_bed_correction_valid) {
  4238. unsigned char *addr = (i < 2) ?
  4239. ((i == 0) ? (unsigned char*)EEPROM_BED_CORRECTION_LEFT : (unsigned char*)EEPROM_BED_CORRECTION_RIGHT) :
  4240. ((i == 2) ? (unsigned char*)EEPROM_BED_CORRECTION_FRONT : (unsigned char*)EEPROM_BED_CORRECTION_REAR);
  4241. correction = eeprom_read_int8(addr);
  4242. }
  4243. if (correction == 0)
  4244. continue;
  4245. if (labs(correction) > BED_ADJUSTMENT_UM_MAX) {
  4246. SERIAL_ERROR_START;
  4247. SERIAL_ECHOPGM("Excessive bed leveling correction: ");
  4248. SERIAL_ECHO(correction);
  4249. SERIAL_ECHOLNPGM(" microns");
  4250. }
  4251. else {
  4252. float offset = float(correction) * 0.001f;
  4253. switch (i) {
  4254. case 0:
  4255. for (uint8_t row = 0; row < nMeasPoints; ++row) {
  4256. for (uint8_t col = 0; col < nMeasPoints - 1; ++col) {
  4257. mbl.z_values[row][col] += offset * (nMeasPoints - 1 - col) / (nMeasPoints - 1);
  4258. }
  4259. }
  4260. break;
  4261. case 1:
  4262. for (uint8_t row = 0; row < nMeasPoints; ++row) {
  4263. for (uint8_t col = 1; col < nMeasPoints; ++col) {
  4264. mbl.z_values[row][col] += offset * col / (nMeasPoints - 1);
  4265. }
  4266. }
  4267. break;
  4268. case 2:
  4269. for (uint8_t col = 0; col < nMeasPoints; ++col) {
  4270. for (uint8_t row = 0; row < nMeasPoints; ++row) {
  4271. mbl.z_values[row][col] += offset * (nMeasPoints - 1 - row) / (nMeasPoints - 1);
  4272. }
  4273. }
  4274. break;
  4275. case 3:
  4276. for (uint8_t col = 0; col < nMeasPoints; ++col) {
  4277. for (uint8_t row = 1; row < nMeasPoints; ++row) {
  4278. mbl.z_values[row][col] += offset * row / (nMeasPoints - 1);
  4279. }
  4280. }
  4281. break;
  4282. }
  4283. }
  4284. }
  4285. // SERIAL_ECHOLNPGM("Bed leveling correction finished");
  4286. if (nMeasPoints == 3) {
  4287. mbl.upsample_3x3(); //interpolation from 3x3 to 7x7 points using largrangian polynomials while using the same array z_values[iy][ix] for storing (just coppying measured data to new destination and interpolating between them)
  4288. }
  4289. /*
  4290. SERIAL_PROTOCOLPGM("Num X,Y: ");
  4291. SERIAL_PROTOCOL(MESH_NUM_X_POINTS);
  4292. SERIAL_PROTOCOLPGM(",");
  4293. SERIAL_PROTOCOL(MESH_NUM_Y_POINTS);
  4294. SERIAL_PROTOCOLPGM("\nZ search height: ");
  4295. SERIAL_PROTOCOL(MESH_HOME_Z_SEARCH);
  4296. SERIAL_PROTOCOLLNPGM("\nMeasured points:");
  4297. for (int y = MESH_NUM_Y_POINTS-1; y >= 0; y--) {
  4298. for (int x = 0; x < MESH_NUM_X_POINTS; x++) {
  4299. SERIAL_PROTOCOLPGM(" ");
  4300. SERIAL_PROTOCOL_F(mbl.z_values[y][x], 5);
  4301. }
  4302. SERIAL_PROTOCOLPGM("\n");
  4303. }
  4304. */
  4305. if (nMeasPoints == 7 && magnet_elimination) {
  4306. mbl_interpolation(nMeasPoints);
  4307. }
  4308. /*
  4309. SERIAL_PROTOCOLPGM("Num X,Y: ");
  4310. SERIAL_PROTOCOL(MESH_NUM_X_POINTS);
  4311. SERIAL_PROTOCOLPGM(",");
  4312. SERIAL_PROTOCOL(MESH_NUM_Y_POINTS);
  4313. SERIAL_PROTOCOLPGM("\nZ search height: ");
  4314. SERIAL_PROTOCOL(MESH_HOME_Z_SEARCH);
  4315. SERIAL_PROTOCOLLNPGM("\nMeasured points:");
  4316. for (int y = MESH_NUM_Y_POINTS-1; y >= 0; y--) {
  4317. for (int x = 0; x < MESH_NUM_X_POINTS; x++) {
  4318. SERIAL_PROTOCOLPGM(" ");
  4319. SERIAL_PROTOCOL_F(mbl.z_values[y][x], 5);
  4320. }
  4321. SERIAL_PROTOCOLPGM("\n");
  4322. }
  4323. */
  4324. // SERIAL_ECHOLNPGM("Upsample finished");
  4325. mbl.active = 1; //activate mesh bed leveling
  4326. // SERIAL_ECHOLNPGM("Mesh bed leveling activated");
  4327. go_home_with_z_lift();
  4328. // SERIAL_ECHOLNPGM("Go home finished");
  4329. //unretract (after PINDA preheat retraction)
  4330. if (degHotend(active_extruder) > EXTRUDE_MINTEMP && temp_cal_active == true && calibration_status_pinda() == true && target_temperature_bed >= 50) {
  4331. current_position[E_AXIS] += default_retraction;
  4332. plan_buffer_line_curposXYZE(400, active_extruder);
  4333. }
  4334. KEEPALIVE_STATE(NOT_BUSY);
  4335. // Restore custom message state
  4336. lcd_setstatuspgm(_T(WELCOME_MSG));
  4337. custom_message_type = custom_message_type_old;
  4338. custom_message_state = custom_message_state_old;
  4339. mesh_bed_leveling_flag = false;
  4340. mesh_bed_run_from_menu = false;
  4341. lcd_update(2);
  4342. }
  4343. break;
  4344. //! ### G81 - Mesh bed leveling status
  4345. // -----------------------------------------
  4346. /*
  4347. * Prints mesh bed leveling status and bed profile if activated
  4348. */
  4349. case 81:
  4350. if (mbl.active) {
  4351. SERIAL_PROTOCOLPGM("Num X,Y: ");
  4352. SERIAL_PROTOCOL(MESH_NUM_X_POINTS);
  4353. SERIAL_PROTOCOLPGM(",");
  4354. SERIAL_PROTOCOL(MESH_NUM_Y_POINTS);
  4355. SERIAL_PROTOCOLPGM("\nZ search height: ");
  4356. SERIAL_PROTOCOL(MESH_HOME_Z_SEARCH);
  4357. SERIAL_PROTOCOLLNPGM("\nMeasured points:");
  4358. for (int y = MESH_NUM_Y_POINTS-1; y >= 0; y--) {
  4359. for (int x = 0; x < MESH_NUM_X_POINTS; x++) {
  4360. SERIAL_PROTOCOLPGM(" ");
  4361. SERIAL_PROTOCOL_F(mbl.z_values[y][x], 5);
  4362. }
  4363. SERIAL_PROTOCOLPGM("\n");
  4364. }
  4365. }
  4366. else
  4367. SERIAL_PROTOCOLLNPGM("Mesh bed leveling not active.");
  4368. break;
  4369. #if 0
  4370. /*
  4371. * G82: Single Z probe at current location
  4372. *
  4373. * WARNING! USE WITH CAUTION! If you'll try to probe where is no leveling pad, nasty things can happen!
  4374. *
  4375. */
  4376. case 82:
  4377. SERIAL_PROTOCOLLNPGM("Finding bed ");
  4378. int l_feedmultiply = setup_for_endstop_move();
  4379. find_bed_induction_sensor_point_z();
  4380. clean_up_after_endstop_move(l_feedmultiply);
  4381. SERIAL_PROTOCOLPGM("Bed found at: ");
  4382. SERIAL_PROTOCOL_F(current_position[Z_AXIS], 5);
  4383. SERIAL_PROTOCOLPGM("\n");
  4384. break;
  4385. /*
  4386. * G83: Prusa3D specific: Babystep in Z and store to EEPROM
  4387. */
  4388. case 83:
  4389. {
  4390. int babystepz = code_seen('S') ? code_value() : 0;
  4391. int BabyPosition = code_seen('P') ? code_value() : 0;
  4392. if (babystepz != 0) {
  4393. //FIXME Vojtech: What shall be the index of the axis Z: 3 or 4?
  4394. // Is the axis indexed starting with zero or one?
  4395. if (BabyPosition > 4) {
  4396. SERIAL_PROTOCOLLNPGM("Index out of bounds");
  4397. }else{
  4398. // Save it to the eeprom
  4399. babystepLoadZ = babystepz;
  4400. EEPROM_save_B(EEPROM_BABYSTEP_Z0+(BabyPosition*2),&babystepLoadZ);
  4401. // adjust the Z
  4402. babystepsTodoZadd(babystepLoadZ);
  4403. }
  4404. }
  4405. }
  4406. break;
  4407. /*
  4408. * G84: Prusa3D specific: UNDO Babystep Z (move Z axis back)
  4409. */
  4410. case 84:
  4411. babystepsTodoZsubtract(babystepLoadZ);
  4412. // babystepLoadZ = 0;
  4413. break;
  4414. /*
  4415. * G85: Prusa3D specific: Pick best babystep
  4416. */
  4417. case 85:
  4418. lcd_pick_babystep();
  4419. break;
  4420. #endif
  4421. /**
  4422. * ### G86 - Disable babystep correction after home
  4423. *
  4424. * This G-code will be performed at the start of a calibration script.
  4425. * (Prusa3D specific)
  4426. */
  4427. case 86:
  4428. calibration_status_store(CALIBRATION_STATUS_LIVE_ADJUST);
  4429. break;
  4430. /**
  4431. * ### G87 - Enable babystep correction after home
  4432. *
  4433. *
  4434. * This G-code will be performed at the end of a calibration script.
  4435. * (Prusa3D specific)
  4436. */
  4437. case 87:
  4438. calibration_status_store(CALIBRATION_STATUS_CALIBRATED);
  4439. break;
  4440. /**
  4441. * ### G88 - Reserved
  4442. *
  4443. * Currently has no effect.
  4444. */
  4445. // Prusa3D specific: Don't know what it is for, it is in V2Calibration.gcode
  4446. case 88:
  4447. break;
  4448. #endif // ENABLE_MESH_BED_LEVELING
  4449. //! ### G90 - Switch off relative mode
  4450. // -------------------------------
  4451. case 90:
  4452. relative_mode = false;
  4453. break;
  4454. //! ### G91 - Switch on relative mode
  4455. // -------------------------------
  4456. case 91:
  4457. relative_mode = true;
  4458. break;
  4459. //! ### G92 - Set position
  4460. // -----------------------------
  4461. case 92:
  4462. if(!code_seen(axis_codes[E_AXIS]))
  4463. st_synchronize();
  4464. for(int8_t i=0; i < NUM_AXIS; i++) {
  4465. if(code_seen(axis_codes[i])) {
  4466. if(i == E_AXIS) {
  4467. current_position[i] = code_value();
  4468. plan_set_e_position(current_position[E_AXIS]);
  4469. }
  4470. else {
  4471. current_position[i] = code_value()+cs.add_homing[i];
  4472. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  4473. }
  4474. }
  4475. }
  4476. break;
  4477. //! ### G98 - Activate farm mode
  4478. // -----------------------------------
  4479. case 98:
  4480. farm_mode = 1;
  4481. PingTime = _millis();
  4482. eeprom_update_byte((unsigned char *)EEPROM_FARM_MODE, farm_mode);
  4483. EEPROM_save_B(EEPROM_FARM_NUMBER, &farm_no);
  4484. SilentModeMenu = SILENT_MODE_OFF;
  4485. eeprom_update_byte((unsigned char *)EEPROM_SILENT, SilentModeMenu);
  4486. fCheckModeInit(); // alternatively invoke printer reset
  4487. break;
  4488. //! ### G99 - Deactivate farm mode
  4489. // -------------------------------------
  4490. case 99:
  4491. farm_mode = 0;
  4492. lcd_printer_connected();
  4493. eeprom_update_byte((unsigned char *)EEPROM_FARM_MODE, farm_mode);
  4494. lcd_update(2);
  4495. fCheckModeInit(); // alternatively invoke printer reset
  4496. break;
  4497. default:
  4498. printf_P(PSTR("Unknown G code: %s \n"), cmdbuffer + bufindr + CMDHDRSIZE);
  4499. }
  4500. // printf_P(_N("END G-CODE=%u\n"), gcode_in_progress);
  4501. gcode_in_progress = 0;
  4502. } // end if(code_seen('G'))
  4503. //! ---------------------------------------------------------------------------------
  4504. else if(code_seen('M'))
  4505. {
  4506. int index;
  4507. for (index = 1; *(strchr_pointer + index) == ' ' || *(strchr_pointer + index) == '\t'; index++);
  4508. /*for (++strchr_pointer; *strchr_pointer == ' ' || *strchr_pointer == '\t'; ++strchr_pointer);*/
  4509. if (*(strchr_pointer+index) < '0' || *(strchr_pointer+index) > '9') {
  4510. printf_P(PSTR("Invalid M code: %s \n"), cmdbuffer + bufindr + CMDHDRSIZE);
  4511. } else
  4512. {
  4513. mcode_in_progress = (int)code_value();
  4514. // printf_P(_N("BEGIN M-CODE=%u\n"), mcode_in_progress);
  4515. switch(mcode_in_progress)
  4516. {
  4517. //! ### M0, M1 - Stop the printer
  4518. // ---------------------------------------------------------------
  4519. case 0: // M0 - Unconditional stop - Wait for user button press on LCD
  4520. case 1: // M1 - Conditional stop - Wait for user button press on LCD
  4521. {
  4522. char *src = strchr_pointer + 2;
  4523. codenum = 0;
  4524. bool hasP = false, hasS = false;
  4525. if (code_seen('P')) {
  4526. codenum = code_value(); // milliseconds to wait
  4527. hasP = codenum > 0;
  4528. }
  4529. if (code_seen('S')) {
  4530. codenum = code_value() * 1000; // seconds to wait
  4531. hasS = codenum > 0;
  4532. }
  4533. starpos = strchr(src, '*');
  4534. if (starpos != NULL) *(starpos) = '\0';
  4535. while (*src == ' ') ++src;
  4536. if (!hasP && !hasS && *src != '\0') {
  4537. lcd_setstatus(src);
  4538. } else {
  4539. LCD_MESSAGERPGM(_i("Wait for user..."));////MSG_USERWAIT
  4540. }
  4541. lcd_ignore_click(); //call lcd_ignore_click aslo for else ???
  4542. st_synchronize();
  4543. previous_millis_cmd = _millis();
  4544. if (codenum > 0){
  4545. codenum += _millis(); // keep track of when we started waiting
  4546. KEEPALIVE_STATE(PAUSED_FOR_USER);
  4547. while(_millis() < codenum && !lcd_clicked()){
  4548. manage_heater();
  4549. manage_inactivity(true);
  4550. lcd_update(0);
  4551. }
  4552. KEEPALIVE_STATE(IN_HANDLER);
  4553. lcd_ignore_click(false);
  4554. }else{
  4555. marlin_wait_for_click();
  4556. }
  4557. if (IS_SD_PRINTING)
  4558. LCD_MESSAGERPGM(_T(MSG_RESUMING_PRINT));
  4559. else
  4560. LCD_MESSAGERPGM(_T(WELCOME_MSG));
  4561. }
  4562. break;
  4563. //! ### M17 - Enable axes
  4564. // ---------------------------------
  4565. case 17:
  4566. LCD_MESSAGERPGM(_i("No move."));////MSG_NO_MOVE
  4567. enable_x();
  4568. enable_y();
  4569. enable_z();
  4570. enable_e0();
  4571. enable_e1();
  4572. enable_e2();
  4573. break;
  4574. #ifdef SDSUPPORT
  4575. //! ### M20 - SD Card file list
  4576. // -----------------------------------
  4577. case 20:
  4578. SERIAL_PROTOCOLLNRPGM(_N("Begin file list"));////MSG_BEGIN_FILE_LIST
  4579. card.ls();
  4580. SERIAL_PROTOCOLLNRPGM(_N("End file list"));////MSG_END_FILE_LIST
  4581. break;
  4582. //! ### M21 - Init SD card
  4583. // ------------------------------------
  4584. case 21:
  4585. card.initsd();
  4586. break;
  4587. //! ### M22 - Release SD card
  4588. // -----------------------------------
  4589. case 22:
  4590. card.release();
  4591. break;
  4592. //! ### M23 - Select file
  4593. // -----------------------------------
  4594. case 23:
  4595. starpos = (strchr(strchr_pointer + 4,'*'));
  4596. if(starpos!=NULL)
  4597. *(starpos)='\0';
  4598. card.openFile(strchr_pointer + 4,true);
  4599. break;
  4600. //! ### M24 - Start SD print
  4601. // ----------------------------------
  4602. case 24:
  4603. if (!card.paused)
  4604. failstats_reset_print();
  4605. card.startFileprint();
  4606. starttime=_millis();
  4607. break;
  4608. //! ### M25 - Pause SD print
  4609. // ----------------------------------
  4610. case 25:
  4611. card.pauseSDPrint();
  4612. break;
  4613. //! ### M26 S\<index\> - Set SD index
  4614. //! Set position in SD card file to index in bytes.
  4615. //! This command is expected to be called after M23 and before M24.
  4616. //! Otherwise effect of this command is undefined.
  4617. // ----------------------------------
  4618. case 26:
  4619. if(card.cardOK && code_seen('S')) {
  4620. long index = code_value_long();
  4621. card.setIndex(index);
  4622. // We don't disable interrupt during update of sdpos_atomic
  4623. // as we expect, that SD card print is not active in this moment
  4624. sdpos_atomic = index;
  4625. }
  4626. break;
  4627. //! ### M27 - Get SD status
  4628. // ----------------------------------
  4629. case 27:
  4630. card.getStatus();
  4631. break;
  4632. //! ### M28 - Start SD write
  4633. // ---------------------------------
  4634. case 28:
  4635. starpos = (strchr(strchr_pointer + 4,'*'));
  4636. if(starpos != NULL){
  4637. char* npos = strchr(CMDBUFFER_CURRENT_STRING, 'N');
  4638. strchr_pointer = strchr(npos,' ') + 1;
  4639. *(starpos) = '\0';
  4640. }
  4641. card.openFile(strchr_pointer+4,false);
  4642. break;
  4643. //! ### M29 - Stop SD write
  4644. // -------------------------------------
  4645. //! Currently has no effect.
  4646. case 29:
  4647. //processed in write to file routine above
  4648. //card,saving = false;
  4649. break;
  4650. //! ### M30 - Delete file <filename>
  4651. // ----------------------------------
  4652. case 30:
  4653. if (card.cardOK){
  4654. card.closefile();
  4655. starpos = (strchr(strchr_pointer + 4,'*'));
  4656. if(starpos != NULL){
  4657. char* npos = strchr(CMDBUFFER_CURRENT_STRING, 'N');
  4658. strchr_pointer = strchr(npos,' ') + 1;
  4659. *(starpos) = '\0';
  4660. }
  4661. card.removeFile(strchr_pointer + 4);
  4662. }
  4663. break;
  4664. //! ### M32 - Select file and start SD print
  4665. // ------------------------------------
  4666. case 32:
  4667. {
  4668. if(card.sdprinting) {
  4669. st_synchronize();
  4670. }
  4671. starpos = (strchr(strchr_pointer + 4,'*'));
  4672. char* namestartpos = (strchr(strchr_pointer + 4,'!')); //find ! to indicate filename string start.
  4673. if(namestartpos==NULL)
  4674. {
  4675. namestartpos=strchr_pointer + 4; //default name position, 4 letters after the M
  4676. }
  4677. else
  4678. namestartpos++; //to skip the '!'
  4679. if(starpos!=NULL)
  4680. *(starpos)='\0';
  4681. bool call_procedure=(code_seen('P'));
  4682. if(strchr_pointer>namestartpos)
  4683. call_procedure=false; //false alert, 'P' found within filename
  4684. if( card.cardOK )
  4685. {
  4686. card.openFile(namestartpos,true,!call_procedure);
  4687. if(code_seen('S'))
  4688. if(strchr_pointer<namestartpos) //only if "S" is occuring _before_ the filename
  4689. card.setIndex(code_value_long());
  4690. card.startFileprint();
  4691. if(!call_procedure)
  4692. starttime=_millis(); //procedure calls count as normal print time.
  4693. }
  4694. } break;
  4695. //! ### M982 - Start SD write
  4696. // ---------------------------------
  4697. case 928:
  4698. starpos = (strchr(strchr_pointer + 5,'*'));
  4699. if(starpos != NULL){
  4700. char* npos = strchr(CMDBUFFER_CURRENT_STRING, 'N');
  4701. strchr_pointer = strchr(npos,' ') + 1;
  4702. *(starpos) = '\0';
  4703. }
  4704. card.openLogFile(strchr_pointer+5);
  4705. break;
  4706. #endif //SDSUPPORT
  4707. //! ### M31 - Report current print time
  4708. // --------------------------------------------------
  4709. case 31: //M31 take time since the start of the SD print or an M109 command
  4710. {
  4711. stoptime=_millis();
  4712. char time[30];
  4713. unsigned long t=(stoptime-starttime)/1000;
  4714. int sec,min;
  4715. min=t/60;
  4716. sec=t%60;
  4717. sprintf_P(time, PSTR("%i min, %i sec"), min, sec);
  4718. SERIAL_ECHO_START;
  4719. SERIAL_ECHOLN(time);
  4720. lcd_setstatus(time);
  4721. autotempShutdown();
  4722. }
  4723. break;
  4724. //! ### M42 - Set pin state
  4725. // -----------------------------
  4726. case 42:
  4727. if (code_seen('S'))
  4728. {
  4729. int pin_status = code_value();
  4730. int pin_number = LED_PIN;
  4731. if (code_seen('P') && pin_status >= 0 && pin_status <= 255)
  4732. pin_number = code_value();
  4733. for(int8_t i = 0; i < (int8_t)(sizeof(sensitive_pins)/sizeof(int)); i++)
  4734. {
  4735. if (sensitive_pins[i] == pin_number)
  4736. {
  4737. pin_number = -1;
  4738. break;
  4739. }
  4740. }
  4741. #if defined(FAN_PIN) && FAN_PIN > -1
  4742. if (pin_number == FAN_PIN)
  4743. fanSpeed = pin_status;
  4744. #endif
  4745. if (pin_number > -1)
  4746. {
  4747. pinMode(pin_number, OUTPUT);
  4748. digitalWrite(pin_number, pin_status);
  4749. analogWrite(pin_number, pin_status);
  4750. }
  4751. }
  4752. break;
  4753. //! ### M44 - Reset the bed skew and offset calibration (Prusa specific)
  4754. // --------------------------------------------------------------------
  4755. case 44: // M44: Prusa3D: Reset the bed skew and offset calibration.
  4756. // Reset the baby step value and the baby step applied flag.
  4757. calibration_status_store(CALIBRATION_STATUS_ASSEMBLED);
  4758. eeprom_update_word((uint16_t*)EEPROM_BABYSTEP_Z, 0);
  4759. // Reset the skew and offset in both RAM and EEPROM.
  4760. reset_bed_offset_and_skew();
  4761. // Reset world2machine_rotation_and_skew and world2machine_shift, therefore
  4762. // the planner will not perform any adjustments in the XY plane.
  4763. // Wait for the motors to stop and update the current position with the absolute values.
  4764. world2machine_revert_to_uncorrected();
  4765. break;
  4766. //! ### M45 - Bed skew and offset with manual Z up (Prusa specific)
  4767. // ------------------------------------------------------
  4768. case 45: // M45: Prusa3D: bed skew and offset with manual Z up
  4769. {
  4770. int8_t verbosity_level = 0;
  4771. bool only_Z = code_seen('Z');
  4772. #ifdef SUPPORT_VERBOSITY
  4773. if (code_seen('V'))
  4774. {
  4775. // Just 'V' without a number counts as V1.
  4776. char c = strchr_pointer[1];
  4777. verbosity_level = (c == ' ' || c == '\t' || c == 0) ? 1 : code_value_short();
  4778. }
  4779. #endif //SUPPORT_VERBOSITY
  4780. gcode_M45(only_Z, verbosity_level);
  4781. }
  4782. break;
  4783. /*
  4784. case 46:
  4785. {
  4786. // M46: Prusa3D: Show the assigned IP address.
  4787. uint8_t ip[4];
  4788. bool hasIP = card.ToshibaFlashAir_GetIP(ip);
  4789. if (hasIP) {
  4790. SERIAL_ECHOPGM("Toshiba FlashAir current IP: ");
  4791. SERIAL_ECHO(int(ip[0]));
  4792. SERIAL_ECHOPGM(".");
  4793. SERIAL_ECHO(int(ip[1]));
  4794. SERIAL_ECHOPGM(".");
  4795. SERIAL_ECHO(int(ip[2]));
  4796. SERIAL_ECHOPGM(".");
  4797. SERIAL_ECHO(int(ip[3]));
  4798. SERIAL_ECHOLNPGM("");
  4799. } else {
  4800. SERIAL_ECHOLNPGM("Toshiba FlashAir GetIP failed");
  4801. }
  4802. break;
  4803. }
  4804. */
  4805. //! ### M47 - Show end stops dialog on the display (Prusa specific)
  4806. // ----------------------------------------------------
  4807. case 47:
  4808. KEEPALIVE_STATE(PAUSED_FOR_USER);
  4809. lcd_diag_show_end_stops();
  4810. KEEPALIVE_STATE(IN_HANDLER);
  4811. break;
  4812. #if 0
  4813. case 48: // M48: scan the bed induction sensor points, print the sensor trigger coordinates to the serial line for visualization on the PC.
  4814. {
  4815. // Disable the default update procedure of the display. We will do a modal dialog.
  4816. lcd_update_enable(false);
  4817. // Let the planner use the uncorrected coordinates.
  4818. mbl.reset();
  4819. // Reset world2machine_rotation_and_skew and world2machine_shift, therefore
  4820. // the planner will not perform any adjustments in the XY plane.
  4821. // Wait for the motors to stop and update the current position with the absolute values.
  4822. world2machine_revert_to_uncorrected();
  4823. // Move the print head close to the bed.
  4824. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  4825. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS],current_position[Z_AXIS] , current_position[E_AXIS], homing_feedrate[Z_AXIS]/40, active_extruder);
  4826. st_synchronize();
  4827. // Home in the XY plane.
  4828. set_destination_to_current();
  4829. int l_feedmultiply = setup_for_endstop_move();
  4830. home_xy();
  4831. int8_t verbosity_level = 0;
  4832. if (code_seen('V')) {
  4833. // Just 'V' without a number counts as V1.
  4834. char c = strchr_pointer[1];
  4835. verbosity_level = (c == ' ' || c == '\t' || c == 0) ? 1 : code_value_short();
  4836. }
  4837. bool success = scan_bed_induction_points(verbosity_level);
  4838. clean_up_after_endstop_move(l_feedmultiply);
  4839. // Print head up.
  4840. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  4841. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS],current_position[Z_AXIS] , current_position[E_AXIS], homing_feedrate[Z_AXIS]/40, active_extruder);
  4842. st_synchronize();
  4843. lcd_update_enable(true);
  4844. break;
  4845. }
  4846. #endif
  4847. #ifdef ENABLE_AUTO_BED_LEVELING
  4848. #ifdef Z_PROBE_REPEATABILITY_TEST
  4849. //! ### M48 - Z-Probe repeatability measurement function.
  4850. // ------------------------------------------------------
  4851. //!
  4852. //! _Usage:_
  4853. //!
  4854. //! M48 <n #_samples> <X X_position_for_samples> <Y Y_position_for_samples> <V Verbose_Level> <L legs_of_movement_prior_to_doing_probe>
  4855. //!
  4856. //! This function assumes the bed has been homed. Specifically, that a G28 command
  4857. //! as been issued prior to invoking the M48 Z-Probe repeatability measurement function.
  4858. //! Any information generated by a prior G29 Bed leveling command will be lost and need to be
  4859. //! regenerated.
  4860. //!
  4861. //! The number of samples will default to 10 if not specified. You can use upper or lower case
  4862. //! letters for any of the options EXCEPT n. n must be in lower case because Marlin uses a capital
  4863. //! N for its communication protocol and will get horribly confused if you send it a capital N.
  4864. //!
  4865. case 48: // M48 Z-Probe repeatability
  4866. {
  4867. #if Z_MIN_PIN == -1
  4868. #error "You must have a Z_MIN endstop in order to enable calculation of Z-Probe repeatability."
  4869. #endif
  4870. double sum=0.0;
  4871. double mean=0.0;
  4872. double sigma=0.0;
  4873. double sample_set[50];
  4874. int verbose_level=1, n=0, j, n_samples = 10, n_legs=0;
  4875. double X_current, Y_current, Z_current;
  4876. double X_probe_location, Y_probe_location, Z_start_location, ext_position;
  4877. if (code_seen('V') || code_seen('v')) {
  4878. verbose_level = code_value();
  4879. if (verbose_level<0 || verbose_level>4 ) {
  4880. SERIAL_PROTOCOLPGM("?Verbose Level not plausable.\n");
  4881. goto Sigma_Exit;
  4882. }
  4883. }
  4884. if (verbose_level > 0) {
  4885. SERIAL_PROTOCOLPGM("M48 Z-Probe Repeatability test. Version 2.00\n");
  4886. SERIAL_PROTOCOLPGM("Full support at: http://3dprintboard.com/forum.php\n");
  4887. }
  4888. if (code_seen('n')) {
  4889. n_samples = code_value();
  4890. if (n_samples<4 || n_samples>50 ) {
  4891. SERIAL_PROTOCOLPGM("?Specified sample size not plausable.\n");
  4892. goto Sigma_Exit;
  4893. }
  4894. }
  4895. X_current = X_probe_location = st_get_position_mm(X_AXIS);
  4896. Y_current = Y_probe_location = st_get_position_mm(Y_AXIS);
  4897. Z_current = st_get_position_mm(Z_AXIS);
  4898. Z_start_location = st_get_position_mm(Z_AXIS) + Z_RAISE_BEFORE_PROBING;
  4899. ext_position = st_get_position_mm(E_AXIS);
  4900. if (code_seen('X') || code_seen('x') ) {
  4901. X_probe_location = code_value() - X_PROBE_OFFSET_FROM_EXTRUDER;
  4902. if (X_probe_location<X_MIN_POS || X_probe_location>X_MAX_POS ) {
  4903. SERIAL_PROTOCOLPGM("?Specified X position out of range.\n");
  4904. goto Sigma_Exit;
  4905. }
  4906. }
  4907. if (code_seen('Y') || code_seen('y') ) {
  4908. Y_probe_location = code_value() - Y_PROBE_OFFSET_FROM_EXTRUDER;
  4909. if (Y_probe_location<Y_MIN_POS || Y_probe_location>Y_MAX_POS ) {
  4910. SERIAL_PROTOCOLPGM("?Specified Y position out of range.\n");
  4911. goto Sigma_Exit;
  4912. }
  4913. }
  4914. if (code_seen('L') || code_seen('l') ) {
  4915. n_legs = code_value();
  4916. if ( n_legs==1 )
  4917. n_legs = 2;
  4918. if ( n_legs<0 || n_legs>15 ) {
  4919. SERIAL_PROTOCOLPGM("?Specified number of legs in movement not plausable.\n");
  4920. goto Sigma_Exit;
  4921. }
  4922. }
  4923. //
  4924. // Do all the preliminary setup work. First raise the probe.
  4925. //
  4926. st_synchronize();
  4927. plan_bed_level_matrix.set_to_identity();
  4928. plan_buffer_line( X_current, Y_current, Z_start_location,
  4929. ext_position,
  4930. homing_feedrate[Z_AXIS]/60,
  4931. active_extruder);
  4932. st_synchronize();
  4933. //
  4934. // Now get everything to the specified probe point So we can safely do a probe to
  4935. // get us close to the bed. If the Z-Axis is far from the bed, we don't want to
  4936. // use that as a starting point for each probe.
  4937. //
  4938. if (verbose_level > 2)
  4939. SERIAL_PROTOCOL("Positioning probe for the test.\n");
  4940. plan_buffer_line( X_probe_location, Y_probe_location, Z_start_location,
  4941. ext_position,
  4942. homing_feedrate[X_AXIS]/60,
  4943. active_extruder);
  4944. st_synchronize();
  4945. current_position[X_AXIS] = X_current = st_get_position_mm(X_AXIS);
  4946. current_position[Y_AXIS] = Y_current = st_get_position_mm(Y_AXIS);
  4947. current_position[Z_AXIS] = Z_current = st_get_position_mm(Z_AXIS);
  4948. current_position[E_AXIS] = ext_position = st_get_position_mm(E_AXIS);
  4949. //
  4950. // OK, do the inital probe to get us close to the bed.
  4951. // Then retrace the right amount and use that in subsequent probes
  4952. //
  4953. int l_feedmultiply = setup_for_endstop_move();
  4954. run_z_probe();
  4955. current_position[Z_AXIS] = Z_current = st_get_position_mm(Z_AXIS);
  4956. Z_start_location = st_get_position_mm(Z_AXIS) + Z_RAISE_BEFORE_PROBING;
  4957. plan_buffer_line( X_probe_location, Y_probe_location, Z_start_location,
  4958. ext_position,
  4959. homing_feedrate[X_AXIS]/60,
  4960. active_extruder);
  4961. st_synchronize();
  4962. current_position[Z_AXIS] = Z_current = st_get_position_mm(Z_AXIS);
  4963. for( n=0; n<n_samples; n++) {
  4964. do_blocking_move_to( X_probe_location, Y_probe_location, Z_start_location); // Make sure we are at the probe location
  4965. if ( n_legs) {
  4966. double radius=0.0, theta=0.0, x_sweep, y_sweep;
  4967. int rotational_direction, l;
  4968. rotational_direction = (unsigned long) _millis() & 0x0001; // clockwise or counter clockwise
  4969. radius = (unsigned long) _millis() % (long) (X_MAX_LENGTH/4); // limit how far out to go
  4970. theta = (float) ((unsigned long) _millis() % (long) 360) / (360./(2*3.1415926)); // turn into radians
  4971. //SERIAL_ECHOPAIR("starting radius: ",radius);
  4972. //SERIAL_ECHOPAIR(" theta: ",theta);
  4973. //SERIAL_ECHOPAIR(" direction: ",rotational_direction);
  4974. //SERIAL_PROTOCOLLNPGM("");
  4975. for( l=0; l<n_legs-1; l++) {
  4976. if (rotational_direction==1)
  4977. theta += (float) ((unsigned long) _millis() % (long) 20) / (360.0/(2*3.1415926)); // turn into radians
  4978. else
  4979. theta -= (float) ((unsigned long) _millis() % (long) 20) / (360.0/(2*3.1415926)); // turn into radians
  4980. radius += (float) ( ((long) ((unsigned long) _millis() % (long) 10)) - 5);
  4981. if ( radius<0.0 )
  4982. radius = -radius;
  4983. X_current = X_probe_location + cos(theta) * radius;
  4984. Y_current = Y_probe_location + sin(theta) * radius;
  4985. if ( X_current<X_MIN_POS) // Make sure our X & Y are sane
  4986. X_current = X_MIN_POS;
  4987. if ( X_current>X_MAX_POS)
  4988. X_current = X_MAX_POS;
  4989. if ( Y_current<Y_MIN_POS) // Make sure our X & Y are sane
  4990. Y_current = Y_MIN_POS;
  4991. if ( Y_current>Y_MAX_POS)
  4992. Y_current = Y_MAX_POS;
  4993. if (verbose_level>3 ) {
  4994. SERIAL_ECHOPAIR("x: ", X_current);
  4995. SERIAL_ECHOPAIR("y: ", Y_current);
  4996. SERIAL_PROTOCOLLNPGM("");
  4997. }
  4998. do_blocking_move_to( X_current, Y_current, Z_current );
  4999. }
  5000. do_blocking_move_to( X_probe_location, Y_probe_location, Z_start_location); // Go back to the probe location
  5001. }
  5002. int l_feedmultiply = setup_for_endstop_move();
  5003. run_z_probe();
  5004. sample_set[n] = current_position[Z_AXIS];
  5005. //
  5006. // Get the current mean for the data points we have so far
  5007. //
  5008. sum=0.0;
  5009. for( j=0; j<=n; j++) {
  5010. sum = sum + sample_set[j];
  5011. }
  5012. mean = sum / (double (n+1));
  5013. //
  5014. // Now, use that mean to calculate the standard deviation for the
  5015. // data points we have so far
  5016. //
  5017. sum=0.0;
  5018. for( j=0; j<=n; j++) {
  5019. sum = sum + (sample_set[j]-mean) * (sample_set[j]-mean);
  5020. }
  5021. sigma = sqrt( sum / (double (n+1)) );
  5022. if (verbose_level > 1) {
  5023. SERIAL_PROTOCOL(n+1);
  5024. SERIAL_PROTOCOL(" of ");
  5025. SERIAL_PROTOCOL(n_samples);
  5026. SERIAL_PROTOCOLPGM(" z: ");
  5027. SERIAL_PROTOCOL_F(current_position[Z_AXIS], 6);
  5028. }
  5029. if (verbose_level > 2) {
  5030. SERIAL_PROTOCOL(" mean: ");
  5031. SERIAL_PROTOCOL_F(mean,6);
  5032. SERIAL_PROTOCOL(" sigma: ");
  5033. SERIAL_PROTOCOL_F(sigma,6);
  5034. }
  5035. if (verbose_level > 0)
  5036. SERIAL_PROTOCOLPGM("\n");
  5037. plan_buffer_line( X_probe_location, Y_probe_location, Z_start_location,
  5038. current_position[E_AXIS], homing_feedrate[Z_AXIS]/60, active_extruder);
  5039. st_synchronize();
  5040. }
  5041. _delay(1000);
  5042. clean_up_after_endstop_move(l_feedmultiply);
  5043. // enable_endstops(true);
  5044. if (verbose_level > 0) {
  5045. SERIAL_PROTOCOLPGM("Mean: ");
  5046. SERIAL_PROTOCOL_F(mean, 6);
  5047. SERIAL_PROTOCOLPGM("\n");
  5048. }
  5049. SERIAL_PROTOCOLPGM("Standard Deviation: ");
  5050. SERIAL_PROTOCOL_F(sigma, 6);
  5051. SERIAL_PROTOCOLPGM("\n\n");
  5052. Sigma_Exit:
  5053. break;
  5054. }
  5055. #endif // Z_PROBE_REPEATABILITY_TEST
  5056. #endif // ENABLE_AUTO_BED_LEVELING
  5057. //! ### M73 - Set/get print progress
  5058. // -------------------------------------
  5059. //! _Usage:_
  5060. //!
  5061. //! M73 P<percent> R<time_remaining> Q<percent_silent> S<time_remaining_silent>
  5062. //!
  5063. case 73: //M73 show percent done and time remaining
  5064. if(code_seen('P')) print_percent_done_normal = code_value();
  5065. if(code_seen('R')) print_time_remaining_normal = code_value();
  5066. if(code_seen('Q')) print_percent_done_silent = code_value();
  5067. if(code_seen('S')) print_time_remaining_silent = code_value();
  5068. {
  5069. const char* _msg_mode_done_remain = _N("%S MODE: Percent done: %d; print time remaining in mins: %d\n");
  5070. printf_P(_msg_mode_done_remain, _N("NORMAL"), int(print_percent_done_normal), print_time_remaining_normal);
  5071. printf_P(_msg_mode_done_remain, _N("SILENT"), int(print_percent_done_silent), print_time_remaining_silent);
  5072. }
  5073. break;
  5074. //! ### M104 - Set hotend temperature
  5075. // -----------------------------------------
  5076. case 104: // M104
  5077. {
  5078. uint8_t extruder;
  5079. if(setTargetedHotend(104,extruder)){
  5080. break;
  5081. }
  5082. if (code_seen('S'))
  5083. {
  5084. setTargetHotendSafe(code_value(), extruder);
  5085. }
  5086. break;
  5087. }
  5088. //! ### M112 - Emergency stop
  5089. // -----------------------------------------
  5090. case 112:
  5091. kill(_n(""), 3);
  5092. break;
  5093. //! ### M140 - Set bed temperature
  5094. // -----------------------------------------
  5095. case 140:
  5096. if (code_seen('S')) setTargetBed(code_value());
  5097. break;
  5098. //! ### M105 - Report temperatures
  5099. // -----------------------------------------
  5100. case 105:
  5101. {
  5102. uint8_t extruder;
  5103. if(setTargetedHotend(105, extruder)){
  5104. break;
  5105. }
  5106. #if defined(TEMP_0_PIN) && TEMP_0_PIN > -1
  5107. SERIAL_PROTOCOLPGM("ok T:");
  5108. SERIAL_PROTOCOL_F(degHotend(extruder),1);
  5109. SERIAL_PROTOCOLPGM(" /");
  5110. SERIAL_PROTOCOL_F(degTargetHotend(extruder),1);
  5111. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  5112. SERIAL_PROTOCOLPGM(" B:");
  5113. SERIAL_PROTOCOL_F(degBed(),1);
  5114. SERIAL_PROTOCOLPGM(" /");
  5115. SERIAL_PROTOCOL_F(degTargetBed(),1);
  5116. #endif //TEMP_BED_PIN
  5117. for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) {
  5118. SERIAL_PROTOCOLPGM(" T");
  5119. SERIAL_PROTOCOL(cur_extruder);
  5120. SERIAL_PROTOCOLPGM(":");
  5121. SERIAL_PROTOCOL_F(degHotend(cur_extruder),1);
  5122. SERIAL_PROTOCOLPGM(" /");
  5123. SERIAL_PROTOCOL_F(degTargetHotend(cur_extruder),1);
  5124. }
  5125. #else
  5126. SERIAL_ERROR_START;
  5127. SERIAL_ERRORLNRPGM(_i("No thermistors - no temperature"));////MSG_ERR_NO_THERMISTORS
  5128. #endif
  5129. SERIAL_PROTOCOLPGM(" @:");
  5130. #ifdef EXTRUDER_WATTS
  5131. SERIAL_PROTOCOL((EXTRUDER_WATTS * getHeaterPower(tmp_extruder))/127);
  5132. SERIAL_PROTOCOLPGM("W");
  5133. #else
  5134. SERIAL_PROTOCOL(getHeaterPower(extruder));
  5135. #endif
  5136. SERIAL_PROTOCOLPGM(" B@:");
  5137. #ifdef BED_WATTS
  5138. SERIAL_PROTOCOL((BED_WATTS * getHeaterPower(-1))/127);
  5139. SERIAL_PROTOCOLPGM("W");
  5140. #else
  5141. SERIAL_PROTOCOL(getHeaterPower(-1));
  5142. #endif
  5143. #ifdef PINDA_THERMISTOR
  5144. SERIAL_PROTOCOLPGM(" P:");
  5145. SERIAL_PROTOCOL_F(current_temperature_pinda,1);
  5146. #endif //PINDA_THERMISTOR
  5147. #ifdef AMBIENT_THERMISTOR
  5148. SERIAL_PROTOCOLPGM(" A:");
  5149. SERIAL_PROTOCOL_F(current_temperature_ambient,1);
  5150. #endif //AMBIENT_THERMISTOR
  5151. #ifdef SHOW_TEMP_ADC_VALUES
  5152. {float raw = 0.0;
  5153. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  5154. SERIAL_PROTOCOLPGM(" ADC B:");
  5155. SERIAL_PROTOCOL_F(degBed(),1);
  5156. SERIAL_PROTOCOLPGM("C->");
  5157. raw = rawBedTemp();
  5158. SERIAL_PROTOCOL_F(raw/OVERSAMPLENR,5);
  5159. SERIAL_PROTOCOLPGM(" Rb->");
  5160. SERIAL_PROTOCOL_F(100 * (1 + (PtA * (raw/OVERSAMPLENR)) + (PtB * sq((raw/OVERSAMPLENR)))), 5);
  5161. SERIAL_PROTOCOLPGM(" Rxb->");
  5162. SERIAL_PROTOCOL_F(raw, 5);
  5163. #endif
  5164. for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) {
  5165. SERIAL_PROTOCOLPGM(" T");
  5166. SERIAL_PROTOCOL(cur_extruder);
  5167. SERIAL_PROTOCOLPGM(":");
  5168. SERIAL_PROTOCOL_F(degHotend(cur_extruder),1);
  5169. SERIAL_PROTOCOLPGM("C->");
  5170. raw = rawHotendTemp(cur_extruder);
  5171. SERIAL_PROTOCOL_F(raw/OVERSAMPLENR,5);
  5172. SERIAL_PROTOCOLPGM(" Rt");
  5173. SERIAL_PROTOCOL(cur_extruder);
  5174. SERIAL_PROTOCOLPGM("->");
  5175. SERIAL_PROTOCOL_F(100 * (1 + (PtA * (raw/OVERSAMPLENR)) + (PtB * sq((raw/OVERSAMPLENR)))), 5);
  5176. SERIAL_PROTOCOLPGM(" Rx");
  5177. SERIAL_PROTOCOL(cur_extruder);
  5178. SERIAL_PROTOCOLPGM("->");
  5179. SERIAL_PROTOCOL_F(raw, 5);
  5180. }}
  5181. #endif
  5182. SERIAL_PROTOCOLLN("");
  5183. KEEPALIVE_STATE(NOT_BUSY);
  5184. return;
  5185. break;
  5186. }
  5187. //! ### M109 - Wait for extruder temperature
  5188. // -------------------------------------------------
  5189. case 109:
  5190. {
  5191. uint8_t extruder;
  5192. if(setTargetedHotend(109, extruder)){
  5193. break;
  5194. }
  5195. LCD_MESSAGERPGM(_T(MSG_HEATING));
  5196. heating_status = 1;
  5197. if (farm_mode) { prusa_statistics(1); };
  5198. #ifdef AUTOTEMP
  5199. autotemp_enabled=false;
  5200. #endif
  5201. if (code_seen('S')) {
  5202. setTargetHotendSafe(code_value(), extruder);
  5203. CooldownNoWait = true;
  5204. } else if (code_seen('R')) {
  5205. setTargetHotendSafe(code_value(), extruder);
  5206. CooldownNoWait = false;
  5207. }
  5208. #ifdef AUTOTEMP
  5209. if (code_seen('S')) autotemp_min=code_value();
  5210. if (code_seen('B')) autotemp_max=code_value();
  5211. if (code_seen('F'))
  5212. {
  5213. autotemp_factor=code_value();
  5214. autotemp_enabled=true;
  5215. }
  5216. #endif
  5217. codenum = _millis();
  5218. /* See if we are heating up or cooling down */
  5219. target_direction = isHeatingHotend(extruder); // true if heating, false if cooling
  5220. KEEPALIVE_STATE(NOT_BUSY);
  5221. cancel_heatup = false;
  5222. wait_for_heater(codenum, extruder); //loops until target temperature is reached
  5223. LCD_MESSAGERPGM(_T(MSG_HEATING_COMPLETE));
  5224. KEEPALIVE_STATE(IN_HANDLER);
  5225. heating_status = 2;
  5226. if (farm_mode) { prusa_statistics(2); };
  5227. //starttime=_millis();
  5228. previous_millis_cmd = _millis();
  5229. }
  5230. break;
  5231. //! ### M190 - Wait for bed temperature
  5232. // ---------------------------------------
  5233. case 190:
  5234. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  5235. LCD_MESSAGERPGM(_T(MSG_BED_HEATING));
  5236. heating_status = 3;
  5237. if (farm_mode) { prusa_statistics(1); };
  5238. if (code_seen('S'))
  5239. {
  5240. setTargetBed(code_value());
  5241. CooldownNoWait = true;
  5242. }
  5243. else if (code_seen('R'))
  5244. {
  5245. setTargetBed(code_value());
  5246. CooldownNoWait = false;
  5247. }
  5248. codenum = _millis();
  5249. cancel_heatup = false;
  5250. target_direction = isHeatingBed(); // true if heating, false if cooling
  5251. KEEPALIVE_STATE(NOT_BUSY);
  5252. while ( (target_direction)&&(!cancel_heatup) ? (isHeatingBed()) : (isCoolingBed()&&(CooldownNoWait==false)) )
  5253. {
  5254. if(( _millis() - codenum) > 1000 ) //Print Temp Reading every 1 second while heating up.
  5255. {
  5256. if (!farm_mode) {
  5257. float tt = degHotend(active_extruder);
  5258. SERIAL_PROTOCOLPGM("T:");
  5259. SERIAL_PROTOCOL(tt);
  5260. SERIAL_PROTOCOLPGM(" E:");
  5261. SERIAL_PROTOCOL((int)active_extruder);
  5262. SERIAL_PROTOCOLPGM(" B:");
  5263. SERIAL_PROTOCOL_F(degBed(), 1);
  5264. SERIAL_PROTOCOLLN("");
  5265. }
  5266. codenum = _millis();
  5267. }
  5268. manage_heater();
  5269. manage_inactivity();
  5270. lcd_update(0);
  5271. }
  5272. LCD_MESSAGERPGM(_T(MSG_BED_DONE));
  5273. KEEPALIVE_STATE(IN_HANDLER);
  5274. heating_status = 4;
  5275. previous_millis_cmd = _millis();
  5276. #endif
  5277. break;
  5278. #if defined(FAN_PIN) && FAN_PIN > -1
  5279. //! ### M106 - Set fan speed
  5280. // -------------------------------------------
  5281. case 106: // M106 Sxxx Fan On S<speed> 0 .. 255
  5282. if (code_seen('S')){
  5283. fanSpeed=constrain(code_value(),0,255);
  5284. }
  5285. else {
  5286. fanSpeed=255;
  5287. }
  5288. break;
  5289. //! ### M107 - Fan off
  5290. // -------------------------------
  5291. case 107:
  5292. fanSpeed = 0;
  5293. break;
  5294. #endif //FAN_PIN
  5295. #if defined(PS_ON_PIN) && PS_ON_PIN > -1
  5296. //! ### M80 - Turn on the Power Supply
  5297. // -------------------------------
  5298. case 80:
  5299. SET_OUTPUT(PS_ON_PIN); //GND
  5300. WRITE(PS_ON_PIN, PS_ON_AWAKE);
  5301. // If you have a switch on suicide pin, this is useful
  5302. // if you want to start another print with suicide feature after
  5303. // a print without suicide...
  5304. #if defined SUICIDE_PIN && SUICIDE_PIN > -1
  5305. SET_OUTPUT(SUICIDE_PIN);
  5306. WRITE(SUICIDE_PIN, HIGH);
  5307. #endif
  5308. powersupply = true;
  5309. LCD_MESSAGERPGM(_T(WELCOME_MSG));
  5310. lcd_update(0);
  5311. break;
  5312. #endif
  5313. //! ### M81 - Turn off Power Supply
  5314. // --------------------------------------
  5315. case 81:
  5316. disable_heater();
  5317. st_synchronize();
  5318. disable_e0();
  5319. disable_e1();
  5320. disable_e2();
  5321. finishAndDisableSteppers();
  5322. fanSpeed = 0;
  5323. _delay(1000); // Wait a little before to switch off
  5324. #if defined(SUICIDE_PIN) && SUICIDE_PIN > -1
  5325. st_synchronize();
  5326. suicide();
  5327. #elif defined(PS_ON_PIN) && PS_ON_PIN > -1
  5328. SET_OUTPUT(PS_ON_PIN);
  5329. WRITE(PS_ON_PIN, PS_ON_ASLEEP);
  5330. #endif
  5331. powersupply = false;
  5332. LCD_MESSAGERPGM(CAT4(CUSTOM_MENDEL_NAME,PSTR(" "),MSG_OFF,PSTR(".")));
  5333. lcd_update(0);
  5334. break;
  5335. //! ### M82 - Set E axis to absolute mode
  5336. // ---------------------------------------
  5337. case 82:
  5338. axis_relative_modes[3] = false;
  5339. break;
  5340. //! ### M83 - Set E axis to relative mode
  5341. // ---------------------------------------
  5342. case 83:
  5343. axis_relative_modes[3] = true;
  5344. break;
  5345. //! ### M84, M18 - Disable steppers
  5346. //---------------------------------------
  5347. //! This command can be used to set the stepper inactivity timeout (`S`) or to disable steppers (`X`,`Y`,`Z`,`E`)
  5348. //!
  5349. //! M84 [E<flag>] [S<seconds>] [X<flag>] [Y<flag>] [Z<flag>]
  5350. //!
  5351. case 18: //compatibility
  5352. case 84: // M84
  5353. if(code_seen('S')){
  5354. stepper_inactive_time = code_value() * 1000;
  5355. }
  5356. else
  5357. {
  5358. bool all_axis = !((code_seen(axis_codes[X_AXIS])) || (code_seen(axis_codes[Y_AXIS])) || (code_seen(axis_codes[Z_AXIS]))|| (code_seen(axis_codes[E_AXIS])));
  5359. if(all_axis)
  5360. {
  5361. st_synchronize();
  5362. disable_e0();
  5363. disable_e1();
  5364. disable_e2();
  5365. finishAndDisableSteppers();
  5366. }
  5367. else
  5368. {
  5369. st_synchronize();
  5370. if (code_seen('X')) disable_x();
  5371. if (code_seen('Y')) disable_y();
  5372. if (code_seen('Z')) disable_z();
  5373. #if ((E0_ENABLE_PIN != X_ENABLE_PIN) && (E1_ENABLE_PIN != Y_ENABLE_PIN)) // Only enable on boards that have seperate ENABLE_PINS
  5374. if (code_seen('E')) {
  5375. disable_e0();
  5376. disable_e1();
  5377. disable_e2();
  5378. }
  5379. #endif
  5380. }
  5381. }
  5382. //in the end of print set estimated time to end of print and extruders used during print to default values for next print
  5383. print_time_remaining_init();
  5384. snmm_filaments_used = 0;
  5385. break;
  5386. //! ### M85 - Set max inactive time
  5387. // ---------------------------------------
  5388. case 85: // M85
  5389. if(code_seen('S')) {
  5390. max_inactive_time = code_value() * 1000;
  5391. }
  5392. break;
  5393. #ifdef SAFETYTIMER
  5394. //! ### M86 - Set safety timer expiration time
  5395. //!
  5396. //! _Usage:_
  5397. //! M86 S<seconds>
  5398. //!
  5399. //! Sets the safety timer expiration time in seconds. M86 S0 will disable safety timer.
  5400. //! When safety timer expires, heatbed and nozzle target temperatures are set to zero.
  5401. case 86:
  5402. if (code_seen('S')) {
  5403. safetytimer_inactive_time = code_value() * 1000;
  5404. safetyTimer.start();
  5405. }
  5406. break;
  5407. #endif
  5408. //! ### M92 Set Axis steps-per-unit
  5409. // ---------------------------------------
  5410. //! Same syntax as G92
  5411. case 92:
  5412. for(int8_t i=0; i < NUM_AXIS; i++)
  5413. {
  5414. if(code_seen(axis_codes[i]))
  5415. {
  5416. if(i == 3) { // E
  5417. float value = code_value();
  5418. if(value < 20.0) {
  5419. float factor = cs.axis_steps_per_unit[i] / value; // increase e constants if M92 E14 is given for netfab.
  5420. cs.max_jerk[E_AXIS] *= factor;
  5421. max_feedrate[i] *= factor;
  5422. axis_steps_per_sqr_second[i] *= factor;
  5423. }
  5424. cs.axis_steps_per_unit[i] = value;
  5425. }
  5426. else {
  5427. cs.axis_steps_per_unit[i] = code_value();
  5428. }
  5429. }
  5430. }
  5431. break;
  5432. //! ### M110 - Set Line number
  5433. // ---------------------------------------
  5434. case 110:
  5435. if (code_seen('N'))
  5436. gcode_LastN = code_value_long();
  5437. break;
  5438. //! ### M113 - Get or set host keep-alive interval
  5439. // ------------------------------------------
  5440. case 113:
  5441. if (code_seen('S')) {
  5442. host_keepalive_interval = (uint8_t)code_value_short();
  5443. // NOMORE(host_keepalive_interval, 60);
  5444. }
  5445. else {
  5446. SERIAL_ECHO_START;
  5447. SERIAL_ECHOPAIR("M113 S", (unsigned long)host_keepalive_interval);
  5448. SERIAL_PROTOCOLLN("");
  5449. }
  5450. break;
  5451. //! ### M115 - Firmware info
  5452. // --------------------------------------
  5453. //! Print the firmware info and capabilities
  5454. //!
  5455. //! M115 [V] [U<version>]
  5456. //!
  5457. //! Without any arguments, prints Prusa firmware version number, machine type, extruder count and UUID.
  5458. //! `M115 U` Checks the firmware version provided. If the firmware version provided by the U code is higher than the currently running firmware,
  5459. //! pause the print for 30s and ask the user to upgrade the firmware.
  5460. case 115: // M115
  5461. if (code_seen('V')) {
  5462. // Report the Prusa version number.
  5463. SERIAL_PROTOCOLLNRPGM(FW_VERSION_STR_P());
  5464. } else if (code_seen('U')) {
  5465. // Check the firmware version provided. If the firmware version provided by the U code is higher than the currently running firmware,
  5466. // pause the print for 30s and ask the user to upgrade the firmware.
  5467. show_upgrade_dialog_if_version_newer(++ strchr_pointer);
  5468. } else {
  5469. SERIAL_ECHOPGM("FIRMWARE_NAME:Prusa-Firmware ");
  5470. SERIAL_ECHORPGM(FW_VERSION_STR_P());
  5471. SERIAL_ECHOPGM(" based on Marlin FIRMWARE_URL:https://github.com/prusa3d/Prusa-Firmware PROTOCOL_VERSION:");
  5472. SERIAL_ECHOPGM(PROTOCOL_VERSION);
  5473. SERIAL_ECHOPGM(" MACHINE_TYPE:");
  5474. SERIAL_ECHOPGM(CUSTOM_MENDEL_NAME);
  5475. SERIAL_ECHOPGM(" EXTRUDER_COUNT:");
  5476. SERIAL_ECHOPGM(STRINGIFY(EXTRUDERS));
  5477. SERIAL_ECHOPGM(" UUID:");
  5478. SERIAL_ECHOLNPGM(MACHINE_UUID);
  5479. }
  5480. break;
  5481. //! ### M114 - Get current position
  5482. // -------------------------------------
  5483. case 114:
  5484. gcode_M114();
  5485. break;
  5486. //! ### M117 - Set LCD Message
  5487. // --------------------------------------
  5488. /*
  5489. M117 moved up to get the high priority
  5490. case 117: // M117 display message
  5491. starpos = (strchr(strchr_pointer + 5,'*'));
  5492. if(starpos!=NULL)
  5493. *(starpos)='\0';
  5494. lcd_setstatus(strchr_pointer + 5);
  5495. break;*/
  5496. //! ### M120 - Disable endstops
  5497. // ----------------------------------------
  5498. case 120:
  5499. enable_endstops(false) ;
  5500. break;
  5501. //! ### M121 - Enable endstops
  5502. // ----------------------------------------
  5503. case 121:
  5504. enable_endstops(true) ;
  5505. break;
  5506. //! ### M119 - Get endstop states
  5507. // ----------------------------------------
  5508. case 119:
  5509. SERIAL_PROTOCOLRPGM(_N("Reporting endstop status"));////MSG_M119_REPORT
  5510. SERIAL_PROTOCOLLN("");
  5511. #if defined(X_MIN_PIN) && X_MIN_PIN > -1
  5512. SERIAL_PROTOCOLRPGM(_n("x_min: "));////MSG_X_MIN
  5513. if(READ(X_MIN_PIN)^X_MIN_ENDSTOP_INVERTING){
  5514. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_HIT);
  5515. }else{
  5516. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_OPEN);
  5517. }
  5518. SERIAL_PROTOCOLLN("");
  5519. #endif
  5520. #if defined(X_MAX_PIN) && X_MAX_PIN > -1
  5521. SERIAL_PROTOCOLRPGM(_n("x_max: "));////MSG_X_MAX
  5522. if(READ(X_MAX_PIN)^X_MAX_ENDSTOP_INVERTING){
  5523. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_HIT);
  5524. }else{
  5525. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_OPEN);
  5526. }
  5527. SERIAL_PROTOCOLLN("");
  5528. #endif
  5529. #if defined(Y_MIN_PIN) && Y_MIN_PIN > -1
  5530. SERIAL_PROTOCOLRPGM(_n("y_min: "));////MSG_Y_MIN
  5531. if(READ(Y_MIN_PIN)^Y_MIN_ENDSTOP_INVERTING){
  5532. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_HIT);
  5533. }else{
  5534. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_OPEN);
  5535. }
  5536. SERIAL_PROTOCOLLN("");
  5537. #endif
  5538. #if defined(Y_MAX_PIN) && Y_MAX_PIN > -1
  5539. SERIAL_PROTOCOLRPGM(_n("y_max: "));////MSG_Y_MAX
  5540. if(READ(Y_MAX_PIN)^Y_MAX_ENDSTOP_INVERTING){
  5541. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_HIT);
  5542. }else{
  5543. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_OPEN);
  5544. }
  5545. SERIAL_PROTOCOLLN("");
  5546. #endif
  5547. #if defined(Z_MIN_PIN) && Z_MIN_PIN > -1
  5548. SERIAL_PROTOCOLRPGM(MSG_Z_MIN);
  5549. if(READ(Z_MIN_PIN)^Z_MIN_ENDSTOP_INVERTING){
  5550. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_HIT);
  5551. }else{
  5552. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_OPEN);
  5553. }
  5554. SERIAL_PROTOCOLLN("");
  5555. #endif
  5556. #if defined(Z_MAX_PIN) && Z_MAX_PIN > -1
  5557. SERIAL_PROTOCOLRPGM(MSG_Z_MAX);
  5558. if(READ(Z_MAX_PIN)^Z_MAX_ENDSTOP_INVERTING){
  5559. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_HIT);
  5560. }else{
  5561. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_OPEN);
  5562. }
  5563. SERIAL_PROTOCOLLN("");
  5564. #endif
  5565. break;
  5566. //TODO: update for all axis, use for loop
  5567. #ifdef BLINKM
  5568. //! ### M150 - Set RGB(W) Color
  5569. // -------------------------------------------
  5570. case 150:
  5571. {
  5572. byte red;
  5573. byte grn;
  5574. byte blu;
  5575. if(code_seen('R')) red = code_value();
  5576. if(code_seen('U')) grn = code_value();
  5577. if(code_seen('B')) blu = code_value();
  5578. SendColors(red,grn,blu);
  5579. }
  5580. break;
  5581. #endif //BLINKM
  5582. //! ### M200 - Set filament diameter
  5583. // ----------------------------------------
  5584. case 200: // M200 D<millimeters> set filament diameter and set E axis units to cubic millimeters (use S0 to set back to millimeters).
  5585. {
  5586. uint8_t extruder = active_extruder;
  5587. if(code_seen('T')) {
  5588. extruder = code_value();
  5589. if(extruder >= EXTRUDERS) {
  5590. SERIAL_ECHO_START;
  5591. SERIAL_ECHO(_n("M200 Invalid extruder "));////MSG_M200_INVALID_EXTRUDER
  5592. break;
  5593. }
  5594. }
  5595. if(code_seen('D')) {
  5596. float diameter = (float)code_value();
  5597. if (diameter == 0.0) {
  5598. // setting any extruder filament size disables volumetric on the assumption that
  5599. // slicers either generate in extruder values as cubic mm or as as filament feeds
  5600. // for all extruders
  5601. cs.volumetric_enabled = false;
  5602. } else {
  5603. cs.filament_size[extruder] = (float)code_value();
  5604. // make sure all extruders have some sane value for the filament size
  5605. cs.filament_size[0] = (cs.filament_size[0] == 0.0 ? DEFAULT_NOMINAL_FILAMENT_DIA : cs.filament_size[0]);
  5606. #if EXTRUDERS > 1
  5607. cs.filament_size[1] = (cs.filament_size[1] == 0.0 ? DEFAULT_NOMINAL_FILAMENT_DIA : cs.filament_size[1]);
  5608. #if EXTRUDERS > 2
  5609. cs.filament_size[2] = (cs.filament_size[2] == 0.0 ? DEFAULT_NOMINAL_FILAMENT_DIA : cs.filament_size[2]);
  5610. #endif
  5611. #endif
  5612. cs.volumetric_enabled = true;
  5613. }
  5614. } else {
  5615. //reserved for setting filament diameter via UFID or filament measuring device
  5616. break;
  5617. }
  5618. calculate_extruder_multipliers();
  5619. }
  5620. break;
  5621. //! ### M201 - Set Print Max Acceleration
  5622. // -------------------------------------------
  5623. case 201:
  5624. for (int8_t i = 0; i < NUM_AXIS; i++)
  5625. {
  5626. if (code_seen(axis_codes[i]))
  5627. {
  5628. unsigned long val = code_value();
  5629. #ifdef TMC2130
  5630. unsigned long val_silent = val;
  5631. if ((i == X_AXIS) || (i == Y_AXIS))
  5632. {
  5633. if (val > NORMAL_MAX_ACCEL_XY)
  5634. val = NORMAL_MAX_ACCEL_XY;
  5635. if (val_silent > SILENT_MAX_ACCEL_XY)
  5636. val_silent = SILENT_MAX_ACCEL_XY;
  5637. }
  5638. cs.max_acceleration_units_per_sq_second_normal[i] = val;
  5639. cs.max_acceleration_units_per_sq_second_silent[i] = val_silent;
  5640. #else //TMC2130
  5641. max_acceleration_units_per_sq_second[i] = val;
  5642. #endif //TMC2130
  5643. }
  5644. }
  5645. // steps per sq second need to be updated to agree with the units per sq second (as they are what is used in the planner)
  5646. reset_acceleration_rates();
  5647. break;
  5648. #if 0 // Not used for Sprinter/grbl gen6
  5649. case 202: // M202
  5650. for(int8_t i=0; i < NUM_AXIS; i++) {
  5651. if(code_seen(axis_codes[i])) axis_travel_steps_per_sqr_second[i] = code_value() * cs.axis_steps_per_unit[i];
  5652. }
  5653. break;
  5654. #endif
  5655. //! ### M203 - Set Max Feedrate
  5656. // ---------------------------------------
  5657. case 203: // M203 max feedrate mm/sec
  5658. for (int8_t i = 0; i < NUM_AXIS; i++)
  5659. {
  5660. if (code_seen(axis_codes[i]))
  5661. {
  5662. float val = code_value();
  5663. #ifdef TMC2130
  5664. float val_silent = val;
  5665. if ((i == X_AXIS) || (i == Y_AXIS))
  5666. {
  5667. if (val > NORMAL_MAX_FEEDRATE_XY)
  5668. val = NORMAL_MAX_FEEDRATE_XY;
  5669. if (val_silent > SILENT_MAX_FEEDRATE_XY)
  5670. val_silent = SILENT_MAX_FEEDRATE_XY;
  5671. }
  5672. cs.max_feedrate_normal[i] = val;
  5673. cs.max_feedrate_silent[i] = val_silent;
  5674. #else //TMC2130
  5675. max_feedrate[i] = val;
  5676. #endif //TMC2130
  5677. }
  5678. }
  5679. break;
  5680. //! ### M204 - Acceleration settings
  5681. // ------------------------------------------
  5682. //! Supporting old format:
  5683. //!
  5684. //! M204 S[normal moves] T[filmanent only moves]
  5685. //!
  5686. //! and new format:
  5687. //!
  5688. //! M204 P[printing moves] R[filmanent only moves] T[travel moves] (as of now T is ignored)
  5689. case 204:
  5690. {
  5691. if(code_seen('S')) {
  5692. // Legacy acceleration format. This format is used by the legacy Marlin, MK2 or MK3 firmware,
  5693. // and it is also generated by Slic3r to control acceleration per extrusion type
  5694. // (there is a separate acceleration settings in Slicer for perimeter, first layer etc).
  5695. cs.acceleration = code_value();
  5696. // Interpret the T value as retract acceleration in the old Marlin format.
  5697. if(code_seen('T'))
  5698. cs.retract_acceleration = code_value();
  5699. } else {
  5700. // New acceleration format, compatible with the upstream Marlin.
  5701. if(code_seen('P'))
  5702. cs.acceleration = code_value();
  5703. if(code_seen('R'))
  5704. cs.retract_acceleration = code_value();
  5705. if(code_seen('T')) {
  5706. // Interpret the T value as the travel acceleration in the new Marlin format.
  5707. //FIXME Prusa3D firmware currently does not support travel acceleration value independent from the extruding acceleration value.
  5708. // travel_acceleration = code_value();
  5709. }
  5710. }
  5711. }
  5712. break;
  5713. //! ### M205 - Set advanced settings
  5714. // ---------------------------------------------
  5715. //! Set some advanced settings related to movement.
  5716. //!
  5717. //! M205 [S] [T] [B] [X] [Y] [Z] [E]
  5718. /*!
  5719. - `S` - Minimum feedrate for print moves (unit/s)
  5720. - `T` - Minimum feedrate for travel moves (units/s)
  5721. - `B` - Minimum segment time (us)
  5722. - `X` - Maximum X jerk (units/s), similarly for other axes
  5723. */
  5724. case 205:
  5725. {
  5726. if(code_seen('S')) cs.minimumfeedrate = code_value();
  5727. if(code_seen('T')) cs.mintravelfeedrate = code_value();
  5728. if(code_seen('B')) cs.minsegmenttime = code_value() ;
  5729. if(code_seen('X')) cs.max_jerk[X_AXIS] = cs.max_jerk[Y_AXIS] = code_value();
  5730. if(code_seen('Y')) cs.max_jerk[Y_AXIS] = code_value();
  5731. if(code_seen('Z')) cs.max_jerk[Z_AXIS] = code_value();
  5732. if(code_seen('E')) cs.max_jerk[E_AXIS] = code_value();
  5733. if (cs.max_jerk[X_AXIS] > DEFAULT_XJERK) cs.max_jerk[X_AXIS] = DEFAULT_XJERK;
  5734. if (cs.max_jerk[Y_AXIS] > DEFAULT_YJERK) cs.max_jerk[Y_AXIS] = DEFAULT_YJERK;
  5735. }
  5736. break;
  5737. //! ### M206 - Set additional homing offsets
  5738. // ----------------------------------------------
  5739. case 206:
  5740. for(int8_t i=0; i < 3; i++)
  5741. {
  5742. if(code_seen(axis_codes[i])) cs.add_homing[i] = code_value();
  5743. }
  5744. break;
  5745. #ifdef FWRETRACT
  5746. //! ### M207 - Set firmware retraction
  5747. // --------------------------------------------------
  5748. case 207: //M207 - set retract length S[positive mm] F[feedrate mm/min] Z[additional zlift/hop]
  5749. {
  5750. if(code_seen('S'))
  5751. {
  5752. cs.retract_length = code_value() ;
  5753. }
  5754. if(code_seen('F'))
  5755. {
  5756. cs.retract_feedrate = code_value()/60 ;
  5757. }
  5758. if(code_seen('Z'))
  5759. {
  5760. cs.retract_zlift = code_value() ;
  5761. }
  5762. }break;
  5763. //! ### M208 - Set retract recover length
  5764. // --------------------------------------------
  5765. case 208: // M208 - set retract recover length S[positive mm surplus to the M207 S*] F[feedrate mm/min]
  5766. {
  5767. if(code_seen('S'))
  5768. {
  5769. cs.retract_recover_length = code_value() ;
  5770. }
  5771. if(code_seen('F'))
  5772. {
  5773. cs.retract_recover_feedrate = code_value()/60 ;
  5774. }
  5775. }break;
  5776. //! ### M209 - Enable/disable automatict retract
  5777. // ---------------------------------------------
  5778. case 209: // M209 - S<1=true/0=false> enable automatic retract detect if the slicer did not support G10/11: every normal extrude-only move will be classified as retract depending on the direction.
  5779. {
  5780. if(code_seen('S'))
  5781. {
  5782. int t= code_value() ;
  5783. switch(t)
  5784. {
  5785. case 0:
  5786. {
  5787. cs.autoretract_enabled=false;
  5788. retracted[0]=false;
  5789. #if EXTRUDERS > 1
  5790. retracted[1]=false;
  5791. #endif
  5792. #if EXTRUDERS > 2
  5793. retracted[2]=false;
  5794. #endif
  5795. }break;
  5796. case 1:
  5797. {
  5798. cs.autoretract_enabled=true;
  5799. retracted[0]=false;
  5800. #if EXTRUDERS > 1
  5801. retracted[1]=false;
  5802. #endif
  5803. #if EXTRUDERS > 2
  5804. retracted[2]=false;
  5805. #endif
  5806. }break;
  5807. default:
  5808. SERIAL_ECHO_START;
  5809. SERIAL_ECHORPGM(MSG_UNKNOWN_COMMAND);
  5810. SERIAL_ECHO(CMDBUFFER_CURRENT_STRING);
  5811. SERIAL_ECHOLNPGM("\"(1)");
  5812. }
  5813. }
  5814. }break;
  5815. #endif // FWRETRACT
  5816. #if EXTRUDERS > 1
  5817. // ### M218 - Set hotend offset
  5818. // ----------------------------------------
  5819. case 218: // M218 - set hotend offset (in mm), T<extruder_number> X<offset_on_X> Y<offset_on_Y>
  5820. {
  5821. uint8_t extruder;
  5822. if(setTargetedHotend(218, extruder)){
  5823. break;
  5824. }
  5825. if(code_seen('X'))
  5826. {
  5827. extruder_offset[X_AXIS][extruder] = code_value();
  5828. }
  5829. if(code_seen('Y'))
  5830. {
  5831. extruder_offset[Y_AXIS][extruder] = code_value();
  5832. }
  5833. SERIAL_ECHO_START;
  5834. SERIAL_ECHORPGM(MSG_HOTEND_OFFSET);
  5835. for(extruder = 0; extruder < EXTRUDERS; extruder++)
  5836. {
  5837. SERIAL_ECHO(" ");
  5838. SERIAL_ECHO(extruder_offset[X_AXIS][extruder]);
  5839. SERIAL_ECHO(",");
  5840. SERIAL_ECHO(extruder_offset[Y_AXIS][extruder]);
  5841. }
  5842. SERIAL_ECHOLN("");
  5843. }break;
  5844. #endif
  5845. //! ### M220 Set feedrate percentage
  5846. // -----------------------------------------------
  5847. case 220: // M220 S<factor in percent>- set speed factor override percentage
  5848. {
  5849. if (code_seen('B')) //backup current speed factor
  5850. {
  5851. saved_feedmultiply_mm = feedmultiply;
  5852. }
  5853. if(code_seen('S'))
  5854. {
  5855. feedmultiply = code_value() ;
  5856. }
  5857. if (code_seen('R')) { //restore previous feedmultiply
  5858. feedmultiply = saved_feedmultiply_mm;
  5859. }
  5860. }
  5861. break;
  5862. //! ### M221 - Set extrude factor override percentage
  5863. // ----------------------------------------------------
  5864. case 221: // M221 S<factor in percent>- set extrude factor override percentage
  5865. {
  5866. if(code_seen('S'))
  5867. {
  5868. int tmp_code = code_value();
  5869. if (code_seen('T'))
  5870. {
  5871. uint8_t extruder;
  5872. if(setTargetedHotend(221, extruder)){
  5873. break;
  5874. }
  5875. extruder_multiply[extruder] = tmp_code;
  5876. }
  5877. else
  5878. {
  5879. extrudemultiply = tmp_code ;
  5880. }
  5881. }
  5882. calculate_extruder_multipliers();
  5883. }
  5884. break;
  5885. //! ### M226 - Wait for Pin state
  5886. // ------------------------------------------
  5887. case 226: // M226 P<pin number> S<pin state>- Wait until the specified pin reaches the state required
  5888. {
  5889. if(code_seen('P')){
  5890. int pin_number = code_value(); // pin number
  5891. int pin_state = -1; // required pin state - default is inverted
  5892. if(code_seen('S')) pin_state = code_value(); // required pin state
  5893. if(pin_state >= -1 && pin_state <= 1){
  5894. for(int8_t i = 0; i < (int8_t)(sizeof(sensitive_pins)/sizeof(int)); i++)
  5895. {
  5896. if (sensitive_pins[i] == pin_number)
  5897. {
  5898. pin_number = -1;
  5899. break;
  5900. }
  5901. }
  5902. if (pin_number > -1)
  5903. {
  5904. int target = LOW;
  5905. st_synchronize();
  5906. pinMode(pin_number, INPUT);
  5907. switch(pin_state){
  5908. case 1:
  5909. target = HIGH;
  5910. break;
  5911. case 0:
  5912. target = LOW;
  5913. break;
  5914. case -1:
  5915. target = !digitalRead(pin_number);
  5916. break;
  5917. }
  5918. while(digitalRead(pin_number) != target){
  5919. manage_heater();
  5920. manage_inactivity();
  5921. lcd_update(0);
  5922. }
  5923. }
  5924. }
  5925. }
  5926. }
  5927. break;
  5928. #if NUM_SERVOS > 0
  5929. //! ### M280 - Set/Get servo position
  5930. // --------------------------------------------
  5931. case 280: // M280 - set servo position absolute. P: servo index, S: angle or microseconds
  5932. {
  5933. int servo_index = -1;
  5934. int servo_position = 0;
  5935. if (code_seen('P'))
  5936. servo_index = code_value();
  5937. if (code_seen('S')) {
  5938. servo_position = code_value();
  5939. if ((servo_index >= 0) && (servo_index < NUM_SERVOS)) {
  5940. #if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
  5941. servos[servo_index].attach(0);
  5942. #endif
  5943. servos[servo_index].write(servo_position);
  5944. #if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
  5945. _delay(PROBE_SERVO_DEACTIVATION_DELAY);
  5946. servos[servo_index].detach();
  5947. #endif
  5948. }
  5949. else {
  5950. SERIAL_ECHO_START;
  5951. SERIAL_ECHO("Servo ");
  5952. SERIAL_ECHO(servo_index);
  5953. SERIAL_ECHOLN(" out of range");
  5954. }
  5955. }
  5956. else if (servo_index >= 0) {
  5957. SERIAL_PROTOCOL(MSG_OK);
  5958. SERIAL_PROTOCOL(" Servo ");
  5959. SERIAL_PROTOCOL(servo_index);
  5960. SERIAL_PROTOCOL(": ");
  5961. SERIAL_PROTOCOL(servos[servo_index].read());
  5962. SERIAL_PROTOCOLLN("");
  5963. }
  5964. }
  5965. break;
  5966. #endif // NUM_SERVOS > 0
  5967. #if (LARGE_FLASH == true && ( BEEPER > 0 || defined(ULTRALCD) || defined(LCD_USE_I2C_BUZZER)))
  5968. //! ### M300 - Play tone
  5969. // -----------------------
  5970. case 300: // M300
  5971. {
  5972. int beepS = code_seen('S') ? code_value() : 110;
  5973. int beepP = code_seen('P') ? code_value() : 1000;
  5974. if (beepS > 0)
  5975. {
  5976. #if BEEPER > 0
  5977. Sound_MakeCustom(beepP,beepS,false);
  5978. #endif
  5979. }
  5980. else
  5981. {
  5982. _delay(beepP);
  5983. }
  5984. }
  5985. break;
  5986. #endif // M300
  5987. #ifdef PIDTEMP
  5988. //! ### M301 - Set hotend PID
  5989. // ---------------------------------------
  5990. case 301:
  5991. {
  5992. if(code_seen('P')) cs.Kp = code_value();
  5993. if(code_seen('I')) cs.Ki = scalePID_i(code_value());
  5994. if(code_seen('D')) cs.Kd = scalePID_d(code_value());
  5995. #ifdef PID_ADD_EXTRUSION_RATE
  5996. if(code_seen('C')) Kc = code_value();
  5997. #endif
  5998. updatePID();
  5999. SERIAL_PROTOCOLRPGM(MSG_OK);
  6000. SERIAL_PROTOCOL(" p:");
  6001. SERIAL_PROTOCOL(cs.Kp);
  6002. SERIAL_PROTOCOL(" i:");
  6003. SERIAL_PROTOCOL(unscalePID_i(cs.Ki));
  6004. SERIAL_PROTOCOL(" d:");
  6005. SERIAL_PROTOCOL(unscalePID_d(cs.Kd));
  6006. #ifdef PID_ADD_EXTRUSION_RATE
  6007. SERIAL_PROTOCOL(" c:");
  6008. //Kc does not have scaling applied above, or in resetting defaults
  6009. SERIAL_PROTOCOL(Kc);
  6010. #endif
  6011. SERIAL_PROTOCOLLN("");
  6012. }
  6013. break;
  6014. #endif //PIDTEMP
  6015. #ifdef PIDTEMPBED
  6016. //! ### M304 - Set bed PID
  6017. // --------------------------------------
  6018. case 304:
  6019. {
  6020. if(code_seen('P')) cs.bedKp = code_value();
  6021. if(code_seen('I')) cs.bedKi = scalePID_i(code_value());
  6022. if(code_seen('D')) cs.bedKd = scalePID_d(code_value());
  6023. updatePID();
  6024. SERIAL_PROTOCOLRPGM(MSG_OK);
  6025. SERIAL_PROTOCOL(" p:");
  6026. SERIAL_PROTOCOL(cs.bedKp);
  6027. SERIAL_PROTOCOL(" i:");
  6028. SERIAL_PROTOCOL(unscalePID_i(cs.bedKi));
  6029. SERIAL_PROTOCOL(" d:");
  6030. SERIAL_PROTOCOL(unscalePID_d(cs.bedKd));
  6031. SERIAL_PROTOCOLLN("");
  6032. }
  6033. break;
  6034. #endif //PIDTEMP
  6035. //! ### M240 - Trigger camera
  6036. // --------------------------------------------
  6037. case 240: // M240 Triggers a camera by emulating a Canon RC-1 : http://www.doc-diy.net/photo/rc-1_hacked/
  6038. {
  6039. #ifdef CHDK
  6040. SET_OUTPUT(CHDK);
  6041. WRITE(CHDK, HIGH);
  6042. chdkHigh = _millis();
  6043. chdkActive = true;
  6044. #else
  6045. #if defined(PHOTOGRAPH_PIN) && PHOTOGRAPH_PIN > -1
  6046. const uint8_t NUM_PULSES=16;
  6047. const float PULSE_LENGTH=0.01524;
  6048. for(int i=0; i < NUM_PULSES; i++) {
  6049. WRITE(PHOTOGRAPH_PIN, HIGH);
  6050. _delay_ms(PULSE_LENGTH);
  6051. WRITE(PHOTOGRAPH_PIN, LOW);
  6052. _delay_ms(PULSE_LENGTH);
  6053. }
  6054. _delay(7.33);
  6055. for(int i=0; i < NUM_PULSES; i++) {
  6056. WRITE(PHOTOGRAPH_PIN, HIGH);
  6057. _delay_ms(PULSE_LENGTH);
  6058. WRITE(PHOTOGRAPH_PIN, LOW);
  6059. _delay_ms(PULSE_LENGTH);
  6060. }
  6061. #endif
  6062. #endif //chdk end if
  6063. }
  6064. break;
  6065. #ifdef PREVENT_DANGEROUS_EXTRUDE
  6066. //! ### M302 - Allow cold extrude, or set minimum extrude temperature
  6067. // -------------------------------------------------------------------
  6068. case 302:
  6069. {
  6070. float temp = .0;
  6071. if (code_seen('S')) temp=code_value();
  6072. set_extrude_min_temp(temp);
  6073. }
  6074. break;
  6075. #endif
  6076. //! ### M303 - PID autotune
  6077. // -------------------------------------
  6078. case 303:
  6079. {
  6080. float temp = 150.0;
  6081. int e=0;
  6082. int c=5;
  6083. if (code_seen('E')) e=code_value();
  6084. if (e<0)
  6085. temp=70;
  6086. if (code_seen('S')) temp=code_value();
  6087. if (code_seen('C')) c=code_value();
  6088. PID_autotune(temp, e, c);
  6089. }
  6090. break;
  6091. //! ### M400 - Wait for all moves to finish
  6092. // -----------------------------------------
  6093. case 400:
  6094. {
  6095. st_synchronize();
  6096. }
  6097. break;
  6098. //! ### M403 - Set filament type (material) for particular extruder and notify the MMU
  6099. // ----------------------------------------------
  6100. case 403:
  6101. {
  6102. // currently three different materials are needed (default, flex and PVA)
  6103. // add storing this information for different load/unload profiles etc. in the future
  6104. // firmware does not wait for "ok" from mmu
  6105. if (mmu_enabled)
  6106. {
  6107. uint8_t extruder = 255;
  6108. uint8_t filament = FILAMENT_UNDEFINED;
  6109. if(code_seen('E')) extruder = code_value();
  6110. if(code_seen('F')) filament = code_value();
  6111. mmu_set_filament_type(extruder, filament);
  6112. }
  6113. }
  6114. break;
  6115. //! ### M500 - Store settings in EEPROM
  6116. // -----------------------------------------
  6117. case 500:
  6118. {
  6119. Config_StoreSettings();
  6120. }
  6121. break;
  6122. //! ### M501 - Read settings from EEPROM
  6123. // ----------------------------------------
  6124. case 501:
  6125. {
  6126. Config_RetrieveSettings();
  6127. }
  6128. break;
  6129. //! ### M502 - Revert all settings to factory default
  6130. // -------------------------------------------------
  6131. case 502:
  6132. {
  6133. Config_ResetDefault();
  6134. }
  6135. break;
  6136. //! ### M503 - Repport all settings currently in memory
  6137. // -------------------------------------------------
  6138. case 503:
  6139. {
  6140. Config_PrintSettings();
  6141. }
  6142. break;
  6143. //! ### M509 - Force language selection
  6144. // ------------------------------------------------
  6145. case 509:
  6146. {
  6147. lang_reset();
  6148. SERIAL_ECHO_START;
  6149. SERIAL_PROTOCOLPGM(("LANG SEL FORCED"));
  6150. }
  6151. break;
  6152. #ifdef ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED
  6153. //! ### M540 - Abort print on endstop hit (enable/disable)
  6154. // -----------------------------------------------------
  6155. case 540:
  6156. {
  6157. if(code_seen('S')) abort_on_endstop_hit = code_value() > 0;
  6158. }
  6159. break;
  6160. #endif
  6161. #ifdef CUSTOM_M_CODE_SET_Z_PROBE_OFFSET
  6162. case CUSTOM_M_CODE_SET_Z_PROBE_OFFSET:
  6163. {
  6164. float value;
  6165. if (code_seen('Z'))
  6166. {
  6167. value = code_value();
  6168. if ((Z_PROBE_OFFSET_RANGE_MIN <= value) && (value <= Z_PROBE_OFFSET_RANGE_MAX))
  6169. {
  6170. cs.zprobe_zoffset = -value; // compare w/ line 278 of ConfigurationStore.cpp
  6171. SERIAL_ECHO_START;
  6172. SERIAL_ECHOLNRPGM(CAT4(MSG_ZPROBE_ZOFFSET, " ", MSG_OK,PSTR("")));
  6173. SERIAL_PROTOCOLLN("");
  6174. }
  6175. else
  6176. {
  6177. SERIAL_ECHO_START;
  6178. SERIAL_ECHORPGM(MSG_ZPROBE_ZOFFSET);
  6179. SERIAL_ECHORPGM(MSG_Z_MIN);
  6180. SERIAL_ECHO(Z_PROBE_OFFSET_RANGE_MIN);
  6181. SERIAL_ECHORPGM(MSG_Z_MAX);
  6182. SERIAL_ECHO(Z_PROBE_OFFSET_RANGE_MAX);
  6183. SERIAL_PROTOCOLLN("");
  6184. }
  6185. }
  6186. else
  6187. {
  6188. SERIAL_ECHO_START;
  6189. SERIAL_ECHOLNRPGM(CAT2(MSG_ZPROBE_ZOFFSET, PSTR(" : ")));
  6190. SERIAL_ECHO(-cs.zprobe_zoffset);
  6191. SERIAL_PROTOCOLLN("");
  6192. }
  6193. break;
  6194. }
  6195. #endif // CUSTOM_M_CODE_SET_Z_PROBE_OFFSET
  6196. #ifdef FILAMENTCHANGEENABLE
  6197. //! ### M600 - Initiate Filament change procedure
  6198. // --------------------------------------
  6199. case 600: //Pause for filament change X[pos] Y[pos] Z[relative lift] E[initial retract] L[later retract distance for removal]
  6200. {
  6201. st_synchronize();
  6202. float x_position = current_position[X_AXIS];
  6203. float y_position = current_position[Y_AXIS];
  6204. float z_shift = 0; // is it necessary to be a float?
  6205. float e_shift_init = 0;
  6206. float e_shift_late = 0;
  6207. bool automatic = false;
  6208. //Retract extruder
  6209. if(code_seen('E'))
  6210. {
  6211. e_shift_init = code_value();
  6212. }
  6213. else
  6214. {
  6215. #ifdef FILAMENTCHANGE_FIRSTRETRACT
  6216. e_shift_init = FILAMENTCHANGE_FIRSTRETRACT ;
  6217. #endif
  6218. }
  6219. //currently don't work as we are using the same unload sequence as in M702, needs re-work
  6220. if (code_seen('L'))
  6221. {
  6222. e_shift_late = code_value();
  6223. }
  6224. else
  6225. {
  6226. #ifdef FILAMENTCHANGE_FINALRETRACT
  6227. e_shift_late = FILAMENTCHANGE_FINALRETRACT;
  6228. #endif
  6229. }
  6230. //Lift Z
  6231. if(code_seen('Z'))
  6232. {
  6233. z_shift = code_value();
  6234. }
  6235. else
  6236. {
  6237. z_shift = gcode_M600_filament_change_z_shift<uint8_t>();
  6238. }
  6239. //Move XY to side
  6240. if(code_seen('X'))
  6241. {
  6242. x_position = code_value();
  6243. }
  6244. else
  6245. {
  6246. #ifdef FILAMENTCHANGE_XPOS
  6247. x_position = FILAMENTCHANGE_XPOS;
  6248. #endif
  6249. }
  6250. if(code_seen('Y'))
  6251. {
  6252. y_position = code_value();
  6253. }
  6254. else
  6255. {
  6256. #ifdef FILAMENTCHANGE_YPOS
  6257. y_position = FILAMENTCHANGE_YPOS ;
  6258. #endif
  6259. }
  6260. if (mmu_enabled && code_seen("AUTO"))
  6261. automatic = true;
  6262. gcode_M600(automatic, x_position, y_position, z_shift, e_shift_init, e_shift_late);
  6263. }
  6264. break;
  6265. #endif //FILAMENTCHANGEENABLE
  6266. //! ### M601 - Pause print
  6267. // -------------------------------
  6268. case 601:
  6269. {
  6270. cmdqueue_pop_front(); //trick because we want skip this command (M601) after restore
  6271. lcd_pause_print();
  6272. }
  6273. break;
  6274. //! ### M602 - Resume print
  6275. // -------------------------------
  6276. case 602: {
  6277. lcd_resume_print();
  6278. }
  6279. break;
  6280. //! ### M603 - Stop print
  6281. // -------------------------------
  6282. case 603: {
  6283. lcd_print_stop();
  6284. }
  6285. #ifdef PINDA_THERMISTOR
  6286. //! ### M860 - Wait for extruder temperature (PINDA)
  6287. // --------------------------------------------------------------
  6288. /*!
  6289. Wait for PINDA thermistor to reach target temperature
  6290. M860 [S<target_temperature>]
  6291. */
  6292. case 860:
  6293. {
  6294. int set_target_pinda = 0;
  6295. if (code_seen('S')) {
  6296. set_target_pinda = code_value();
  6297. }
  6298. else {
  6299. break;
  6300. }
  6301. LCD_MESSAGERPGM(_T(MSG_PLEASE_WAIT));
  6302. SERIAL_PROTOCOLPGM("Wait for PINDA target temperature:");
  6303. SERIAL_PROTOCOL(set_target_pinda);
  6304. SERIAL_PROTOCOLLN("");
  6305. codenum = _millis();
  6306. cancel_heatup = false;
  6307. bool is_pinda_cooling = false;
  6308. if ((degTargetBed() == 0) && (degTargetHotend(0) == 0)) {
  6309. is_pinda_cooling = true;
  6310. }
  6311. while ( ((!is_pinda_cooling) && (!cancel_heatup) && (current_temperature_pinda < set_target_pinda)) || (is_pinda_cooling && (current_temperature_pinda > set_target_pinda)) ) {
  6312. if ((_millis() - codenum) > 1000) //Print Temp Reading every 1 second while waiting.
  6313. {
  6314. SERIAL_PROTOCOLPGM("P:");
  6315. SERIAL_PROTOCOL_F(current_temperature_pinda, 1);
  6316. SERIAL_PROTOCOLPGM("/");
  6317. SERIAL_PROTOCOL(set_target_pinda);
  6318. SERIAL_PROTOCOLLN("");
  6319. codenum = _millis();
  6320. }
  6321. manage_heater();
  6322. manage_inactivity();
  6323. lcd_update(0);
  6324. }
  6325. LCD_MESSAGERPGM(MSG_OK);
  6326. break;
  6327. }
  6328. //! ### M861 - Set/Get PINDA temperature compensation offsets
  6329. // -----------------------------------------------------------
  6330. /*!
  6331. M861 [ ? | ! | Z | S<microsteps> [I<table_index>] ]
  6332. - `?` - Print current EEPROM offset values
  6333. - `!` - Set factory default values
  6334. - `Z` - Set all values to 0 (effectively disabling PINDA temperature compensation)
  6335. - `S<microsteps>` `I<table_index>` - Set compensation ustep value S for compensation table index I
  6336. */
  6337. case 861:
  6338. if (code_seen('?')) { // ? - Print out current EEPROM offset values
  6339. uint8_t cal_status = calibration_status_pinda();
  6340. int16_t usteps = 0;
  6341. cal_status ? SERIAL_PROTOCOLLN("PINDA cal status: 1") : SERIAL_PROTOCOLLN("PINDA cal status: 0");
  6342. SERIAL_PROTOCOLLN("index, temp, ustep, um");
  6343. for (uint8_t i = 0; i < 6; i++)
  6344. {
  6345. if(i>0) EEPROM_read_B(EEPROM_PROBE_TEMP_SHIFT + (i-1) * 2, &usteps);
  6346. float mm = ((float)usteps) / cs.axis_steps_per_unit[Z_AXIS];
  6347. i == 0 ? SERIAL_PROTOCOLPGM("n/a") : SERIAL_PROTOCOL(i - 1);
  6348. SERIAL_PROTOCOLPGM(", ");
  6349. SERIAL_PROTOCOL(35 + (i * 5));
  6350. SERIAL_PROTOCOLPGM(", ");
  6351. SERIAL_PROTOCOL(usteps);
  6352. SERIAL_PROTOCOLPGM(", ");
  6353. SERIAL_PROTOCOL(mm * 1000);
  6354. SERIAL_PROTOCOLLN("");
  6355. }
  6356. }
  6357. else if (code_seen('!')) { // ! - Set factory default values
  6358. eeprom_write_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 1);
  6359. int16_t z_shift = 8; //40C - 20um - 8usteps
  6360. EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT, &z_shift);
  6361. z_shift = 24; //45C - 60um - 24usteps
  6362. EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + 2, &z_shift);
  6363. z_shift = 48; //50C - 120um - 48usteps
  6364. EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + 4, &z_shift);
  6365. z_shift = 80; //55C - 200um - 80usteps
  6366. EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + 6, &z_shift);
  6367. z_shift = 120; //60C - 300um - 120usteps
  6368. EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + 8, &z_shift);
  6369. SERIAL_PROTOCOLLN("factory restored");
  6370. }
  6371. else if (code_seen('Z')) { // Z - Set all values to 0 (effectively disabling PINDA temperature compensation)
  6372. eeprom_write_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 1);
  6373. int16_t z_shift = 0;
  6374. for (uint8_t i = 0; i < 5; i++) EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + i * 2, &z_shift);
  6375. SERIAL_PROTOCOLLN("zerorized");
  6376. }
  6377. else if (code_seen('S')) { // Sxxx Iyyy - Set compensation ustep value S for compensation table index I
  6378. int16_t usteps = code_value();
  6379. if (code_seen('I')) {
  6380. uint8_t index = code_value();
  6381. if (index < 5) {
  6382. EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + index * 2, &usteps);
  6383. SERIAL_PROTOCOLLN("OK");
  6384. SERIAL_PROTOCOLLN("index, temp, ustep, um");
  6385. for (uint8_t i = 0; i < 6; i++)
  6386. {
  6387. usteps = 0;
  6388. if (i>0) EEPROM_read_B(EEPROM_PROBE_TEMP_SHIFT + (i - 1) * 2, &usteps);
  6389. float mm = ((float)usteps) / cs.axis_steps_per_unit[Z_AXIS];
  6390. i == 0 ? SERIAL_PROTOCOLPGM("n/a") : SERIAL_PROTOCOL(i - 1);
  6391. SERIAL_PROTOCOLPGM(", ");
  6392. SERIAL_PROTOCOL(35 + (i * 5));
  6393. SERIAL_PROTOCOLPGM(", ");
  6394. SERIAL_PROTOCOL(usteps);
  6395. SERIAL_PROTOCOLPGM(", ");
  6396. SERIAL_PROTOCOL(mm * 1000);
  6397. SERIAL_PROTOCOLLN("");
  6398. }
  6399. }
  6400. }
  6401. }
  6402. else {
  6403. SERIAL_PROTOCOLPGM("no valid command");
  6404. }
  6405. break;
  6406. #endif //PINDA_THERMISTOR
  6407. //! ### M862 - Print checking
  6408. // ----------------------------------------------
  6409. /*!
  6410. Checks the parameters of the printer and gcode and performs compatibility check
  6411. - M862.1 { P<nozzle_diameter> | Q }
  6412. - M862.2 { P<model_code> | Q }
  6413. - M862.3 { P"<model_name>" | Q }
  6414. - M862.4 { P<fw_version> | Q }
  6415. - M862.5 { P<gcode_level> | Q }
  6416. When run with P<> argument, the check is performed against the input value.
  6417. When run with Q argument, the current value is shown.
  6418. M862.3 accepts text identifiers of printer types too.
  6419. The syntax of M862.3 is (note the quotes around the type):
  6420. M862.3 P "MK3S"
  6421. Accepted printer type identifiers and their numeric counterparts:
  6422. - MK1 (100)
  6423. - MK2 (200)
  6424. - MK2MM (201)
  6425. - MK2S (202)
  6426. - MK2SMM (203)
  6427. - MK2.5 (250)
  6428. - MK2.5MMU2 (20250)
  6429. - MK2.5S (252)
  6430. - MK2.5SMMU2S (20252)
  6431. - MK3 (300)
  6432. - MK3MMU2 (20300)
  6433. - MK3S (302)
  6434. - MK3SMMU2S (20302)
  6435. */
  6436. case 862: // M862: print checking
  6437. float nDummy;
  6438. uint8_t nCommand;
  6439. nCommand=(uint8_t)(modff(code_value_float(),&nDummy)*10.0+0.5);
  6440. switch((ClPrintChecking)nCommand)
  6441. {
  6442. case ClPrintChecking::_Nozzle: // ~ .1
  6443. uint16_t nDiameter;
  6444. if(code_seen('P'))
  6445. {
  6446. nDiameter=(uint16_t)(code_value()*1000.0+0.5); // [,um]
  6447. nozzle_diameter_check(nDiameter);
  6448. }
  6449. /*
  6450. else if(code_seen('S')&&farm_mode)
  6451. {
  6452. nDiameter=(uint16_t)(code_value()*1000.0+0.5); // [,um]
  6453. eeprom_update_byte((uint8_t*)EEPROM_NOZZLE_DIAMETER,(uint8_t)ClNozzleDiameter::_Diameter_Undef); // for correct synchronization after farm-mode exiting
  6454. eeprom_update_word((uint16_t*)EEPROM_NOZZLE_DIAMETER_uM,nDiameter);
  6455. }
  6456. */
  6457. else if(code_seen('Q'))
  6458. SERIAL_PROTOCOLLN((float)eeprom_read_word((uint16_t*)EEPROM_NOZZLE_DIAMETER_uM)/1000.0);
  6459. break;
  6460. case ClPrintChecking::_Model: // ~ .2
  6461. if(code_seen('P'))
  6462. {
  6463. uint16_t nPrinterModel;
  6464. nPrinterModel=(uint16_t)code_value_long();
  6465. printer_model_check(nPrinterModel);
  6466. }
  6467. else if(code_seen('Q'))
  6468. SERIAL_PROTOCOLLN(nPrinterType);
  6469. break;
  6470. case ClPrintChecking::_Smodel: // ~ .3
  6471. if(code_seen('P'))
  6472. printer_smodel_check(strchr_pointer);
  6473. else if(code_seen('Q'))
  6474. SERIAL_PROTOCOLLNRPGM(sPrinterName);
  6475. break;
  6476. case ClPrintChecking::_Version: // ~ .4
  6477. if(code_seen('P'))
  6478. fw_version_check(++strchr_pointer);
  6479. else if(code_seen('Q'))
  6480. SERIAL_PROTOCOLLN(FW_VERSION);
  6481. break;
  6482. case ClPrintChecking::_Gcode: // ~ .5
  6483. if(code_seen('P'))
  6484. {
  6485. uint16_t nGcodeLevel;
  6486. nGcodeLevel=(uint16_t)code_value_long();
  6487. gcode_level_check(nGcodeLevel);
  6488. }
  6489. else if(code_seen('Q'))
  6490. SERIAL_PROTOCOLLN(GCODE_LEVEL);
  6491. break;
  6492. }
  6493. break;
  6494. #ifdef LIN_ADVANCE
  6495. //! ### M900 - Set Linear advance options
  6496. // ----------------------------------------------
  6497. case 900:
  6498. gcode_M900();
  6499. break;
  6500. #endif
  6501. //! ### M907 - Set digital trimpot motor current in mA using axis codes
  6502. // ---------------------------------------------------------------
  6503. case 907:
  6504. {
  6505. #ifdef TMC2130
  6506. //! See tmc2130_cur2val() for translation to 0 .. 63 range
  6507. for (int i = 0; i < NUM_AXIS; i++)
  6508. if(code_seen(axis_codes[i]))
  6509. {
  6510. long cur_mA = code_value_long();
  6511. uint8_t val = tmc2130_cur2val(cur_mA);
  6512. tmc2130_set_current_h(i, val);
  6513. tmc2130_set_current_r(i, val);
  6514. //if (i == E_AXIS) printf_P(PSTR("E-axis current=%ldmA\n"), cur_mA);
  6515. }
  6516. #else //TMC2130
  6517. #if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
  6518. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) st_current_set(i,code_value());
  6519. if(code_seen('B')) st_current_set(4,code_value());
  6520. if(code_seen('S')) for(int i=0;i<=4;i++) st_current_set(i,code_value());
  6521. #endif
  6522. #ifdef MOTOR_CURRENT_PWM_XY_PIN
  6523. if(code_seen('X')) st_current_set(0, code_value());
  6524. #endif
  6525. #ifdef MOTOR_CURRENT_PWM_Z_PIN
  6526. if(code_seen('Z')) st_current_set(1, code_value());
  6527. #endif
  6528. #ifdef MOTOR_CURRENT_PWM_E_PIN
  6529. if(code_seen('E')) st_current_set(2, code_value());
  6530. #endif
  6531. #endif //TMC2130
  6532. }
  6533. break;
  6534. //! ### M908 - Control digital trimpot directly
  6535. // ---------------------------------------------------------
  6536. case 908:
  6537. {
  6538. #if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
  6539. uint8_t channel,current;
  6540. if(code_seen('P')) channel=code_value();
  6541. if(code_seen('S')) current=code_value();
  6542. digitalPotWrite(channel, current);
  6543. #endif
  6544. }
  6545. break;
  6546. #ifdef TMC2130_SERVICE_CODES_M910_M918
  6547. //! ### M910 - TMC2130 init
  6548. // -----------------------------------------------
  6549. case 910:
  6550. {
  6551. tmc2130_init();
  6552. }
  6553. break;
  6554. //! ### M911 - Set TMC2130 holding currents
  6555. // -------------------------------------------------
  6556. case 911:
  6557. {
  6558. if (code_seen('X')) tmc2130_set_current_h(0, code_value());
  6559. if (code_seen('Y')) tmc2130_set_current_h(1, code_value());
  6560. if (code_seen('Z')) tmc2130_set_current_h(2, code_value());
  6561. if (code_seen('E')) tmc2130_set_current_h(3, code_value());
  6562. }
  6563. break;
  6564. //! ### M912 - Set TMC2130 running currents
  6565. // -----------------------------------------------
  6566. case 912:
  6567. {
  6568. if (code_seen('X')) tmc2130_set_current_r(0, code_value());
  6569. if (code_seen('Y')) tmc2130_set_current_r(1, code_value());
  6570. if (code_seen('Z')) tmc2130_set_current_r(2, code_value());
  6571. if (code_seen('E')) tmc2130_set_current_r(3, code_value());
  6572. }
  6573. break;
  6574. //! ### M913 - Print TMC2130 currents
  6575. // -----------------------------
  6576. case 913:
  6577. {
  6578. tmc2130_print_currents();
  6579. }
  6580. break;
  6581. //! ### M914 - Set TMC2130 normal mode
  6582. // ------------------------------
  6583. case 914:
  6584. {
  6585. tmc2130_mode = TMC2130_MODE_NORMAL;
  6586. update_mode_profile();
  6587. tmc2130_init();
  6588. }
  6589. break;
  6590. //! ### M95 - Set TMC2130 silent mode
  6591. // ------------------------------
  6592. case 915:
  6593. {
  6594. tmc2130_mode = TMC2130_MODE_SILENT;
  6595. update_mode_profile();
  6596. tmc2130_init();
  6597. }
  6598. break;
  6599. //! ### M916 - Set TMC2130 Stallguard sensitivity threshold
  6600. // -------------------------------------------------------
  6601. case 916:
  6602. {
  6603. if (code_seen('X')) tmc2130_sg_thr[X_AXIS] = code_value();
  6604. if (code_seen('Y')) tmc2130_sg_thr[Y_AXIS] = code_value();
  6605. if (code_seen('Z')) tmc2130_sg_thr[Z_AXIS] = code_value();
  6606. if (code_seen('E')) tmc2130_sg_thr[E_AXIS] = code_value();
  6607. for (uint8_t a = X_AXIS; a <= E_AXIS; a++)
  6608. printf_P(_N("tmc2130_sg_thr[%c]=%d\n"), "XYZE"[a], tmc2130_sg_thr[a]);
  6609. }
  6610. break;
  6611. //! ### M917 - Set TMC2130 PWM amplitude offset (pwm_ampl)
  6612. // --------------------------------------------------------------
  6613. case 917:
  6614. {
  6615. if (code_seen('X')) tmc2130_set_pwm_ampl(0, code_value());
  6616. if (code_seen('Y')) tmc2130_set_pwm_ampl(1, code_value());
  6617. if (code_seen('Z')) tmc2130_set_pwm_ampl(2, code_value());
  6618. if (code_seen('E')) tmc2130_set_pwm_ampl(3, code_value());
  6619. }
  6620. break;
  6621. //! ### M918 - Set TMC2130 PWM amplitude gradient (pwm_grad)
  6622. // -------------------------------------------------------------
  6623. case 918:
  6624. {
  6625. if (code_seen('X')) tmc2130_set_pwm_grad(0, code_value());
  6626. if (code_seen('Y')) tmc2130_set_pwm_grad(1, code_value());
  6627. if (code_seen('Z')) tmc2130_set_pwm_grad(2, code_value());
  6628. if (code_seen('E')) tmc2130_set_pwm_grad(3, code_value());
  6629. }
  6630. break;
  6631. #endif //TMC2130_SERVICE_CODES_M910_M918
  6632. //! ### M350 - Set microstepping mode
  6633. // ---------------------------------------------------
  6634. //! Warning: Steps per unit remains unchanged. S code sets stepping mode for all drivers.
  6635. case 350:
  6636. {
  6637. #ifdef TMC2130
  6638. if(code_seen('E'))
  6639. {
  6640. uint16_t res_new = code_value();
  6641. if ((res_new == 8) || (res_new == 16) || (res_new == 32) || (res_new == 64) || (res_new == 128))
  6642. {
  6643. st_synchronize();
  6644. uint8_t axis = E_AXIS;
  6645. uint16_t res = tmc2130_get_res(axis);
  6646. tmc2130_set_res(axis, res_new);
  6647. cs.axis_ustep_resolution[axis] = res_new;
  6648. if (res_new > res)
  6649. {
  6650. uint16_t fac = (res_new / res);
  6651. cs.axis_steps_per_unit[axis] *= fac;
  6652. position[E_AXIS] *= fac;
  6653. }
  6654. else
  6655. {
  6656. uint16_t fac = (res / res_new);
  6657. cs.axis_steps_per_unit[axis] /= fac;
  6658. position[E_AXIS] /= fac;
  6659. }
  6660. }
  6661. }
  6662. #else //TMC2130
  6663. #if defined(X_MS1_PIN) && X_MS1_PIN > -1
  6664. if(code_seen('S')) for(int i=0;i<=4;i++) microstep_mode(i,code_value());
  6665. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) microstep_mode(i,(uint8_t)code_value());
  6666. if(code_seen('B')) microstep_mode(4,code_value());
  6667. microstep_readings();
  6668. #endif
  6669. #endif //TMC2130
  6670. }
  6671. break;
  6672. //! ### M351 - Toggle Microstep Pins
  6673. // -----------------------------------
  6674. //! Toggle MS1 MS2 pins directly, S# determines MS1 or MS2, X# sets the pin high/low.
  6675. //!
  6676. //! M351 [B<0|1>] [E<0|1>] S<1|2> [X<0|1>] [Y<0|1>] [Z<0|1>]
  6677. case 351:
  6678. {
  6679. #if defined(X_MS1_PIN) && X_MS1_PIN > -1
  6680. if(code_seen('S')) switch((int)code_value())
  6681. {
  6682. case 1:
  6683. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) microstep_ms(i,code_value(),-1);
  6684. if(code_seen('B')) microstep_ms(4,code_value(),-1);
  6685. break;
  6686. case 2:
  6687. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) microstep_ms(i,-1,code_value());
  6688. if(code_seen('B')) microstep_ms(4,-1,code_value());
  6689. break;
  6690. }
  6691. microstep_readings();
  6692. #endif
  6693. }
  6694. break;
  6695. //! ### M701 - Load filament
  6696. // -------------------------
  6697. case 701:
  6698. {
  6699. if (mmu_enabled && code_seen('E'))
  6700. tmp_extruder = code_value();
  6701. gcode_M701();
  6702. }
  6703. break;
  6704. //! ### M702 - Unload filament
  6705. // ------------------------
  6706. /*!
  6707. M702 [U C]
  6708. - `U` Unload all filaments used in current print
  6709. - `C` Unload just current filament
  6710. - without any parameters unload all filaments
  6711. */
  6712. case 702:
  6713. {
  6714. #ifdef SNMM
  6715. if (code_seen('U'))
  6716. extr_unload_used(); //! if "U" unload all filaments which were used in current print
  6717. else if (code_seen('C'))
  6718. extr_unload(); //! if "C" unload just current filament
  6719. else
  6720. extr_unload_all(); //! otherwise unload all filaments
  6721. #else
  6722. if (code_seen('C')) {
  6723. if(mmu_enabled) extr_unload(); //! if "C" unload current filament; if mmu is not present no action is performed
  6724. }
  6725. else {
  6726. if(mmu_enabled) extr_unload(); //! unload current filament
  6727. else unload_filament();
  6728. }
  6729. #endif //SNMM
  6730. }
  6731. break;
  6732. //! ### M999 - Restart after being stopped
  6733. // ------------------------------------
  6734. case 999:
  6735. Stopped = false;
  6736. lcd_reset_alert_level();
  6737. gcode_LastN = Stopped_gcode_LastN;
  6738. FlushSerialRequestResend();
  6739. break;
  6740. default:
  6741. printf_P(PSTR("Unknown M code: %s \n"), cmdbuffer + bufindr + CMDHDRSIZE);
  6742. }
  6743. // printf_P(_N("END M-CODE=%u\n"), mcode_in_progress);
  6744. mcode_in_progress = 0;
  6745. }
  6746. }
  6747. // end if(code_seen('M')) (end of M codes)
  6748. //! -----------------------------------------------------------------------------------------
  6749. //! T Codes
  6750. //!
  6751. //! T<extruder nr.> - select extruder in case of multi extruder printer
  6752. //! select filament in case of MMU_V2
  6753. //! if extruder is "?", open menu to let the user select extruder/filament
  6754. //!
  6755. //! For MMU_V2:
  6756. //! @n T<n> Gcode to extrude at least 38.10 mm at feedrate 19.02 mm/s must follow immediately to load to extruder wheels.
  6757. //! @n T? Gcode to extrude shouldn't have to follow, load to extruder wheels is done automatically
  6758. //! @n Tx Same as T?, except nozzle doesn't have to be preheated. Tc must be placed after extruder nozzle is preheated to finish filament load.
  6759. //! @n Tc Load to nozzle after filament was prepared by Tc and extruder nozzle is already heated.
  6760. else if(code_seen('T'))
  6761. {
  6762. int index;
  6763. bool load_to_nozzle = false;
  6764. for (index = 1; *(strchr_pointer + index) == ' ' || *(strchr_pointer + index) == '\t'; index++);
  6765. *(strchr_pointer + index) = tolower(*(strchr_pointer + index));
  6766. if ((*(strchr_pointer + index) < '0' || *(strchr_pointer + index) > '4') && *(strchr_pointer + index) != '?' && *(strchr_pointer + index) != 'x' && *(strchr_pointer + index) != 'c') {
  6767. SERIAL_ECHOLNPGM("Invalid T code.");
  6768. }
  6769. else if (*(strchr_pointer + index) == 'x'){ //load to bondtech gears; if mmu is not present do nothing
  6770. if (mmu_enabled)
  6771. {
  6772. tmp_extruder = choose_menu_P(_T(MSG_CHOOSE_FILAMENT), _T(MSG_FILAMENT));
  6773. if ((tmp_extruder == mmu_extruder) && mmu_fil_loaded) //dont execute the same T-code twice in a row
  6774. {
  6775. printf_P(PSTR("Duplicate T-code ignored.\n"));
  6776. }
  6777. else
  6778. {
  6779. st_synchronize();
  6780. mmu_command(MmuCmd::T0 + tmp_extruder);
  6781. manage_response(true, true, MMU_TCODE_MOVE);
  6782. }
  6783. }
  6784. }
  6785. else if (*(strchr_pointer + index) == 'c') { //load to from bondtech gears to nozzle (nozzle should be preheated)
  6786. if (mmu_enabled)
  6787. {
  6788. st_synchronize();
  6789. mmu_continue_loading(is_usb_printing || (lcd_commands_type == LcdCommands::Layer1Cal));
  6790. mmu_extruder = tmp_extruder; //filament change is finished
  6791. mmu_load_to_nozzle();
  6792. }
  6793. }
  6794. else {
  6795. if (*(strchr_pointer + index) == '?')
  6796. {
  6797. if(mmu_enabled)
  6798. {
  6799. tmp_extruder = choose_menu_P(_T(MSG_CHOOSE_FILAMENT), _T(MSG_FILAMENT));
  6800. load_to_nozzle = true;
  6801. } else
  6802. {
  6803. tmp_extruder = choose_menu_P(_T(MSG_CHOOSE_EXTRUDER), _T(MSG_EXTRUDER));
  6804. }
  6805. }
  6806. else {
  6807. tmp_extruder = code_value();
  6808. if (mmu_enabled && lcd_autoDepleteEnabled())
  6809. {
  6810. tmp_extruder = ad_getAlternative(tmp_extruder);
  6811. }
  6812. }
  6813. st_synchronize();
  6814. snmm_filaments_used |= (1 << tmp_extruder); //for stop print
  6815. if (mmu_enabled)
  6816. {
  6817. if ((tmp_extruder == mmu_extruder) && mmu_fil_loaded) //dont execute the same T-code twice in a row
  6818. {
  6819. printf_P(PSTR("Duplicate T-code ignored.\n"));
  6820. }
  6821. else
  6822. {
  6823. #if defined(MMU_HAS_CUTTER) && defined(MMU_ALWAYS_CUT)
  6824. if (EEPROM_MMU_CUTTER_ENABLED_always == eeprom_read_byte((uint8_t*)EEPROM_MMU_CUTTER_ENABLED))
  6825. {
  6826. mmu_command(MmuCmd::K0 + tmp_extruder);
  6827. manage_response(true, true, MMU_UNLOAD_MOVE);
  6828. }
  6829. #endif //defined(MMU_HAS_CUTTER) && defined(MMU_ALWAYS_CUT)
  6830. mmu_command(MmuCmd::T0 + tmp_extruder);
  6831. manage_response(true, true, MMU_TCODE_MOVE);
  6832. mmu_continue_loading(is_usb_printing || (lcd_commands_type == LcdCommands::Layer1Cal));
  6833. mmu_extruder = tmp_extruder; //filament change is finished
  6834. if (load_to_nozzle)// for single material usage with mmu
  6835. {
  6836. mmu_load_to_nozzle();
  6837. }
  6838. }
  6839. }
  6840. else
  6841. {
  6842. #ifdef SNMM
  6843. #ifdef LIN_ADVANCE
  6844. if (mmu_extruder != tmp_extruder)
  6845. clear_current_adv_vars(); //Check if the selected extruder is not the active one and reset LIN_ADVANCE variables if so.
  6846. #endif
  6847. mmu_extruder = tmp_extruder;
  6848. _delay(100);
  6849. disable_e0();
  6850. disable_e1();
  6851. disable_e2();
  6852. pinMode(E_MUX0_PIN, OUTPUT);
  6853. pinMode(E_MUX1_PIN, OUTPUT);
  6854. _delay(100);
  6855. SERIAL_ECHO_START;
  6856. SERIAL_ECHO("T:");
  6857. SERIAL_ECHOLN((int)tmp_extruder);
  6858. switch (tmp_extruder) {
  6859. case 1:
  6860. WRITE(E_MUX0_PIN, HIGH);
  6861. WRITE(E_MUX1_PIN, LOW);
  6862. break;
  6863. case 2:
  6864. WRITE(E_MUX0_PIN, LOW);
  6865. WRITE(E_MUX1_PIN, HIGH);
  6866. break;
  6867. case 3:
  6868. WRITE(E_MUX0_PIN, HIGH);
  6869. WRITE(E_MUX1_PIN, HIGH);
  6870. break;
  6871. default:
  6872. WRITE(E_MUX0_PIN, LOW);
  6873. WRITE(E_MUX1_PIN, LOW);
  6874. break;
  6875. }
  6876. _delay(100);
  6877. #else //SNMM
  6878. if (tmp_extruder >= EXTRUDERS) {
  6879. SERIAL_ECHO_START;
  6880. SERIAL_ECHOPGM("T");
  6881. SERIAL_PROTOCOLLN((int)tmp_extruder);
  6882. SERIAL_ECHOLNRPGM(_n("Invalid extruder"));////MSG_INVALID_EXTRUDER
  6883. }
  6884. else {
  6885. #if EXTRUDERS > 1
  6886. boolean make_move = false;
  6887. #endif
  6888. if (code_seen('F')) {
  6889. #if EXTRUDERS > 1
  6890. make_move = true;
  6891. #endif
  6892. next_feedrate = code_value();
  6893. if (next_feedrate > 0.0) {
  6894. feedrate = next_feedrate;
  6895. }
  6896. }
  6897. #if EXTRUDERS > 1
  6898. if (tmp_extruder != active_extruder) {
  6899. // Save current position to return to after applying extruder offset
  6900. memcpy(destination, current_position, sizeof(destination));
  6901. // Offset extruder (only by XY)
  6902. int i;
  6903. for (i = 0; i < 2; i++) {
  6904. current_position[i] = current_position[i] -
  6905. extruder_offset[i][active_extruder] +
  6906. extruder_offset[i][tmp_extruder];
  6907. }
  6908. // Set the new active extruder and position
  6909. active_extruder = tmp_extruder;
  6910. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  6911. // Move to the old position if 'F' was in the parameters
  6912. if (make_move && Stopped == false) {
  6913. prepare_move();
  6914. }
  6915. }
  6916. #endif
  6917. SERIAL_ECHO_START;
  6918. SERIAL_ECHORPGM(_n("Active Extruder: "));////MSG_ACTIVE_EXTRUDER
  6919. SERIAL_PROTOCOLLN((int)active_extruder);
  6920. }
  6921. #endif //SNMM
  6922. }
  6923. }
  6924. } // end if(code_seen('T')) (end of T codes)
  6925. //! ----------------------------------------------------------------------------------------------
  6926. else if (code_seen('D')) // D codes (debug)
  6927. {
  6928. switch((int)code_value())
  6929. {
  6930. //! ### D-1 - Endless loop
  6931. // -------------------
  6932. case -1:
  6933. dcode__1(); break;
  6934. #ifdef DEBUG_DCODES
  6935. //! ### D0 - Reset
  6936. // --------------
  6937. case 0:
  6938. dcode_0(); break;
  6939. //! ### D1 - Clear EEPROM
  6940. // ------------------
  6941. case 1:
  6942. dcode_1(); break;
  6943. //! ### D2 - Read/Write RAM
  6944. // --------------------
  6945. case 2:
  6946. dcode_2(); break;
  6947. #endif //DEBUG_DCODES
  6948. #ifdef DEBUG_DCODE3
  6949. //! ### D3 - Read/Write EEPROM
  6950. // -----------------------
  6951. case 3:
  6952. dcode_3(); break;
  6953. #endif //DEBUG_DCODE3
  6954. #ifdef DEBUG_DCODES
  6955. //! ### D4 - Read/Write PIN
  6956. // ---------------------
  6957. case 4:
  6958. dcode_4(); break;
  6959. #endif //DEBUG_DCODES
  6960. #ifdef DEBUG_DCODE5
  6961. //! ### D5 - Read/Write FLASH
  6962. // ------------------------
  6963. case 5:
  6964. dcode_5(); break;
  6965. break;
  6966. #endif //DEBUG_DCODE5
  6967. #ifdef DEBUG_DCODES
  6968. //! ### D6 - Read/Write external FLASH
  6969. // ---------------------------------------
  6970. case 6:
  6971. dcode_6(); break;
  6972. //! ### D7 - Read/Write Bootloader
  6973. // -------------------------------
  6974. case 7:
  6975. dcode_7(); break;
  6976. //! ### D8 - Read/Write PINDA
  6977. // ---------------------------
  6978. case 8:
  6979. dcode_8(); break;
  6980. // ### D9 - Read/Write ADC
  6981. // ------------------------
  6982. case 9:
  6983. dcode_9(); break;
  6984. //! ### D10 - XYZ calibration = OK
  6985. // ------------------------------
  6986. case 10:
  6987. dcode_10(); break;
  6988. #endif //DEBUG_DCODES
  6989. #ifdef HEATBED_ANALYSIS
  6990. //! ### D80 - Bed check
  6991. // ---------------------
  6992. /*!
  6993. - `E` - dimension x
  6994. - `F` - dimention y
  6995. - `G` - points_x
  6996. - `H` - points_y
  6997. - `I` - offset_x
  6998. - `J` - offset_y
  6999. */
  7000. case 80:
  7001. {
  7002. float dimension_x = 40;
  7003. float dimension_y = 40;
  7004. int points_x = 40;
  7005. int points_y = 40;
  7006. float offset_x = 74;
  7007. float offset_y = 33;
  7008. if (code_seen('E')) dimension_x = code_value();
  7009. if (code_seen('F')) dimension_y = code_value();
  7010. if (code_seen('G')) {points_x = code_value(); }
  7011. if (code_seen('H')) {points_y = code_value(); }
  7012. if (code_seen('I')) {offset_x = code_value(); }
  7013. if (code_seen('J')) {offset_y = code_value(); }
  7014. printf_P(PSTR("DIM X: %f\n"), dimension_x);
  7015. printf_P(PSTR("DIM Y: %f\n"), dimension_y);
  7016. printf_P(PSTR("POINTS X: %d\n"), points_x);
  7017. printf_P(PSTR("POINTS Y: %d\n"), points_y);
  7018. printf_P(PSTR("OFFSET X: %f\n"), offset_x);
  7019. printf_P(PSTR("OFFSET Y: %f\n"), offset_y);
  7020. bed_check(dimension_x,dimension_y,points_x,points_y,offset_x,offset_y);
  7021. }break;
  7022. //! ### D81 - Bed analysis
  7023. // -----------------------------
  7024. /*!
  7025. - `E` - dimension x
  7026. - `F` - dimention y
  7027. - `G` - points_x
  7028. - `H` - points_y
  7029. - `I` - offset_x
  7030. - `J` - offset_y
  7031. */
  7032. case 81:
  7033. {
  7034. float dimension_x = 40;
  7035. float dimension_y = 40;
  7036. int points_x = 40;
  7037. int points_y = 40;
  7038. float offset_x = 74;
  7039. float offset_y = 33;
  7040. if (code_seen('E')) dimension_x = code_value();
  7041. if (code_seen('F')) dimension_y = code_value();
  7042. if (code_seen("G")) { strchr_pointer+=1; points_x = code_value(); }
  7043. if (code_seen("H")) { strchr_pointer+=1; points_y = code_value(); }
  7044. if (code_seen("I")) { strchr_pointer+=1; offset_x = code_value(); }
  7045. if (code_seen("J")) { strchr_pointer+=1; offset_y = code_value(); }
  7046. bed_analysis(dimension_x,dimension_y,points_x,points_y,offset_x,offset_y);
  7047. } break;
  7048. #endif //HEATBED_ANALYSIS
  7049. #ifdef DEBUG_DCODES
  7050. //! ### D106 print measured fan speed for different pwm values
  7051. // --------------------------------------------------------------
  7052. case 106:
  7053. {
  7054. for (int i = 255; i > 0; i = i - 5) {
  7055. fanSpeed = i;
  7056. //delay_keep_alive(2000);
  7057. for (int j = 0; j < 100; j++) {
  7058. delay_keep_alive(100);
  7059. }
  7060. printf_P(_N("%d: %d\n"), i, fan_speed[1]);
  7061. }
  7062. }break;
  7063. #ifdef TMC2130
  7064. //! ### D2130 - TMC2130 Trinamic stepper controller
  7065. // ---------------------------
  7066. /*!
  7067. D2130<axis><command>[subcommand][value]
  7068. - <command>:
  7069. - '0' current off
  7070. - '1' current on
  7071. - '+' single step
  7072. - * value sereval steps
  7073. - '-' dtto oposite direction
  7074. - '?' read register
  7075. - * "mres"
  7076. - * "step"
  7077. - * "mscnt"
  7078. - * "mscuract"
  7079. - * "wave"
  7080. - '!' set register
  7081. - * "mres"
  7082. - * "step"
  7083. - * "wave"
  7084. - '@' home calibrate axis
  7085. Example:
  7086. D2130E?wave ... print extruder microstep linearity compensation curve
  7087. D2130E!wave0 ... disable extruder linearity compensation curve, (sine curve is used)
  7088. D2130E!wave220 ... (sin(x))^1.1 extruder microstep compensation curve used
  7089. */
  7090. case 2130:
  7091. dcode_2130(); break;
  7092. #endif //TMC2130
  7093. #if (defined (FILAMENT_SENSOR) && defined(PAT9125))
  7094. //! ### D9125 - FILAMENT_SENSOR
  7095. // ---------------------------------
  7096. case 9125:
  7097. dcode_9125(); break;
  7098. #endif //FILAMENT_SENSOR
  7099. #endif //DEBUG_DCODES
  7100. }
  7101. }
  7102. else
  7103. {
  7104. SERIAL_ECHO_START;
  7105. SERIAL_ECHORPGM(MSG_UNKNOWN_COMMAND);
  7106. SERIAL_ECHO(CMDBUFFER_CURRENT_STRING);
  7107. SERIAL_ECHOLNPGM("\"(2)");
  7108. }
  7109. KEEPALIVE_STATE(NOT_BUSY);
  7110. ClearToSend();
  7111. }
  7112. /** @defgroup GCodes G-Code List
  7113. */
  7114. // ---------------------------------------------------
  7115. void FlushSerialRequestResend()
  7116. {
  7117. //char cmdbuffer[bufindr][100]="Resend:";
  7118. MYSERIAL.flush();
  7119. printf_P(_N("%S: %ld\n%S\n"), _n("Resend"), gcode_LastN + 1, MSG_OK);
  7120. }
  7121. // Confirm the execution of a command, if sent from a serial line.
  7122. // Execution of a command from a SD card will not be confirmed.
  7123. void ClearToSend()
  7124. {
  7125. previous_millis_cmd = _millis();
  7126. if ((CMDBUFFER_CURRENT_TYPE == CMDBUFFER_CURRENT_TYPE_USB) || (CMDBUFFER_CURRENT_TYPE == CMDBUFFER_CURRENT_TYPE_USB_WITH_LINENR))
  7127. SERIAL_PROTOCOLLNRPGM(MSG_OK);
  7128. }
  7129. #if MOTHERBOARD == BOARD_RAMBO_MINI_1_0 || MOTHERBOARD == BOARD_RAMBO_MINI_1_3
  7130. void update_currents() {
  7131. float current_high[3] = DEFAULT_PWM_MOTOR_CURRENT_LOUD;
  7132. float current_low[3] = DEFAULT_PWM_MOTOR_CURRENT;
  7133. float tmp_motor[3];
  7134. //SERIAL_ECHOLNPGM("Currents updated: ");
  7135. if (destination[Z_AXIS] < Z_SILENT) {
  7136. //SERIAL_ECHOLNPGM("LOW");
  7137. for (uint8_t i = 0; i < 3; i++) {
  7138. st_current_set(i, current_low[i]);
  7139. /*MYSERIAL.print(int(i));
  7140. SERIAL_ECHOPGM(": ");
  7141. MYSERIAL.println(current_low[i]);*/
  7142. }
  7143. }
  7144. else if (destination[Z_AXIS] > Z_HIGH_POWER) {
  7145. //SERIAL_ECHOLNPGM("HIGH");
  7146. for (uint8_t i = 0; i < 3; i++) {
  7147. st_current_set(i, current_high[i]);
  7148. /*MYSERIAL.print(int(i));
  7149. SERIAL_ECHOPGM(": ");
  7150. MYSERIAL.println(current_high[i]);*/
  7151. }
  7152. }
  7153. else {
  7154. for (uint8_t i = 0; i < 3; i++) {
  7155. float q = current_low[i] - Z_SILENT*((current_high[i] - current_low[i]) / (Z_HIGH_POWER - Z_SILENT));
  7156. tmp_motor[i] = ((current_high[i] - current_low[i]) / (Z_HIGH_POWER - Z_SILENT))*destination[Z_AXIS] + q;
  7157. st_current_set(i, tmp_motor[i]);
  7158. /*MYSERIAL.print(int(i));
  7159. SERIAL_ECHOPGM(": ");
  7160. MYSERIAL.println(tmp_motor[i]);*/
  7161. }
  7162. }
  7163. }
  7164. #endif //MOTHERBOARD == BOARD_RAMBO_MINI_1_0 || MOTHERBOARD == BOARD_RAMBO_MINI_1_3
  7165. void get_coordinates()
  7166. {
  7167. bool seen[4]={false,false,false,false};
  7168. for(int8_t i=0; i < NUM_AXIS; i++) {
  7169. if(code_seen(axis_codes[i]))
  7170. {
  7171. bool relative = axis_relative_modes[i] || relative_mode;
  7172. destination[i] = (float)code_value();
  7173. if (i == E_AXIS) {
  7174. float emult = extruder_multiplier[active_extruder];
  7175. if (emult != 1.) {
  7176. if (! relative) {
  7177. destination[i] -= current_position[i];
  7178. relative = true;
  7179. }
  7180. destination[i] *= emult;
  7181. }
  7182. }
  7183. if (relative)
  7184. destination[i] += current_position[i];
  7185. seen[i]=true;
  7186. #if MOTHERBOARD == BOARD_RAMBO_MINI_1_0 || MOTHERBOARD == BOARD_RAMBO_MINI_1_3
  7187. if (i == Z_AXIS && SilentModeMenu == SILENT_MODE_AUTO) update_currents();
  7188. #endif //MOTHERBOARD == BOARD_RAMBO_MINI_1_0 || MOTHERBOARD == BOARD_RAMBO_MINI_1_3
  7189. }
  7190. else destination[i] = current_position[i]; //Are these else lines really needed?
  7191. }
  7192. if(code_seen('F')) {
  7193. next_feedrate = code_value();
  7194. #ifdef MAX_SILENT_FEEDRATE
  7195. if (tmc2130_mode == TMC2130_MODE_SILENT)
  7196. if (next_feedrate > MAX_SILENT_FEEDRATE) next_feedrate = MAX_SILENT_FEEDRATE;
  7197. #endif //MAX_SILENT_FEEDRATE
  7198. if(next_feedrate > 0.0) feedrate = next_feedrate;
  7199. if (!seen[0] && !seen[1] && !seen[2] && seen[3])
  7200. {
  7201. // float e_max_speed =
  7202. // printf_P(PSTR("E MOVE speed %7.3f\n"), feedrate / 60)
  7203. }
  7204. }
  7205. }
  7206. void get_arc_coordinates()
  7207. {
  7208. #ifdef SF_ARC_FIX
  7209. bool relative_mode_backup = relative_mode;
  7210. relative_mode = true;
  7211. #endif
  7212. get_coordinates();
  7213. #ifdef SF_ARC_FIX
  7214. relative_mode=relative_mode_backup;
  7215. #endif
  7216. if(code_seen('I')) {
  7217. offset[0] = code_value();
  7218. }
  7219. else {
  7220. offset[0] = 0.0;
  7221. }
  7222. if(code_seen('J')) {
  7223. offset[1] = code_value();
  7224. }
  7225. else {
  7226. offset[1] = 0.0;
  7227. }
  7228. }
  7229. void clamp_to_software_endstops(float target[3])
  7230. {
  7231. #ifdef DEBUG_DISABLE_SWLIMITS
  7232. return;
  7233. #endif //DEBUG_DISABLE_SWLIMITS
  7234. world2machine_clamp(target[0], target[1]);
  7235. // Clamp the Z coordinate.
  7236. if (min_software_endstops) {
  7237. float negative_z_offset = 0;
  7238. #ifdef ENABLE_AUTO_BED_LEVELING
  7239. if (Z_PROBE_OFFSET_FROM_EXTRUDER < 0) negative_z_offset = negative_z_offset + Z_PROBE_OFFSET_FROM_EXTRUDER;
  7240. if (cs.add_homing[Z_AXIS] < 0) negative_z_offset = negative_z_offset + cs.add_homing[Z_AXIS];
  7241. #endif
  7242. if (target[Z_AXIS] < min_pos[Z_AXIS]+negative_z_offset) target[Z_AXIS] = min_pos[Z_AXIS]+negative_z_offset;
  7243. }
  7244. if (max_software_endstops) {
  7245. if (target[Z_AXIS] > max_pos[Z_AXIS]) target[Z_AXIS] = max_pos[Z_AXIS];
  7246. }
  7247. }
  7248. #ifdef MESH_BED_LEVELING
  7249. void mesh_plan_buffer_line(const float &x, const float &y, const float &z, const float &e, const float &feed_rate, const uint8_t extruder) {
  7250. float dx = x - current_position[X_AXIS];
  7251. float dy = y - current_position[Y_AXIS];
  7252. float dz = z - current_position[Z_AXIS];
  7253. int n_segments = 0;
  7254. if (mbl.active) {
  7255. float len = abs(dx) + abs(dy);
  7256. if (len > 0)
  7257. // Split to 3cm segments or shorter.
  7258. n_segments = int(ceil(len / 30.f));
  7259. }
  7260. if (n_segments > 1) {
  7261. float de = e - current_position[E_AXIS];
  7262. for (int i = 1; i < n_segments; ++ i) {
  7263. float t = float(i) / float(n_segments);
  7264. if (saved_printing || (mbl.active == false)) return;
  7265. plan_buffer_line(
  7266. current_position[X_AXIS] + t * dx,
  7267. current_position[Y_AXIS] + t * dy,
  7268. current_position[Z_AXIS] + t * dz,
  7269. current_position[E_AXIS] + t * de,
  7270. feed_rate, extruder);
  7271. }
  7272. }
  7273. // The rest of the path.
  7274. plan_buffer_line(x, y, z, e, feed_rate, extruder);
  7275. current_position[X_AXIS] = x;
  7276. current_position[Y_AXIS] = y;
  7277. current_position[Z_AXIS] = z;
  7278. current_position[E_AXIS] = e;
  7279. }
  7280. #endif // MESH_BED_LEVELING
  7281. void prepare_move()
  7282. {
  7283. clamp_to_software_endstops(destination);
  7284. previous_millis_cmd = _millis();
  7285. // Do not use feedmultiply for E or Z only moves
  7286. if( (current_position[X_AXIS] == destination [X_AXIS]) && (current_position[Y_AXIS] == destination [Y_AXIS])) {
  7287. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  7288. }
  7289. else {
  7290. #ifdef MESH_BED_LEVELING
  7291. mesh_plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate*feedmultiply*(1./(60.f*100.f)), active_extruder);
  7292. #else
  7293. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate*feedmultiply*(1./(60.f*100.f)), active_extruder);
  7294. #endif
  7295. }
  7296. for(int8_t i=0; i < NUM_AXIS; i++) {
  7297. current_position[i] = destination[i];
  7298. }
  7299. }
  7300. void prepare_arc_move(char isclockwise) {
  7301. float r = hypot(offset[X_AXIS], offset[Y_AXIS]); // Compute arc radius for mc_arc
  7302. // Trace the arc
  7303. mc_arc(current_position, destination, offset, X_AXIS, Y_AXIS, Z_AXIS, feedrate*feedmultiply/60/100.0, r, isclockwise, active_extruder);
  7304. // As far as the parser is concerned, the position is now == target. In reality the
  7305. // motion control system might still be processing the action and the real tool position
  7306. // in any intermediate location.
  7307. for(int8_t i=0; i < NUM_AXIS; i++) {
  7308. current_position[i] = destination[i];
  7309. }
  7310. previous_millis_cmd = _millis();
  7311. }
  7312. #if defined(CONTROLLERFAN_PIN) && CONTROLLERFAN_PIN > -1
  7313. #if defined(FAN_PIN)
  7314. #if CONTROLLERFAN_PIN == FAN_PIN
  7315. #error "You cannot set CONTROLLERFAN_PIN equal to FAN_PIN"
  7316. #endif
  7317. #endif
  7318. unsigned long lastMotor = 0; //Save the time for when a motor was turned on last
  7319. unsigned long lastMotorCheck = 0;
  7320. void controllerFan()
  7321. {
  7322. if ((_millis() - lastMotorCheck) >= 2500) //Not a time critical function, so we only check every 2500ms
  7323. {
  7324. lastMotorCheck = _millis();
  7325. if(!READ(X_ENABLE_PIN) || !READ(Y_ENABLE_PIN) || !READ(Z_ENABLE_PIN) || (soft_pwm_bed > 0)
  7326. #if EXTRUDERS > 2
  7327. || !READ(E2_ENABLE_PIN)
  7328. #endif
  7329. #if EXTRUDER > 1
  7330. #if defined(X2_ENABLE_PIN) && X2_ENABLE_PIN > -1
  7331. || !READ(X2_ENABLE_PIN)
  7332. #endif
  7333. || !READ(E1_ENABLE_PIN)
  7334. #endif
  7335. || !READ(E0_ENABLE_PIN)) //If any of the drivers are enabled...
  7336. {
  7337. lastMotor = _millis(); //... set time to NOW so the fan will turn on
  7338. }
  7339. if ((_millis() - lastMotor) >= (CONTROLLERFAN_SECS*1000UL) || lastMotor == 0) //If the last time any driver was enabled, is longer since than CONTROLLERSEC...
  7340. {
  7341. digitalWrite(CONTROLLERFAN_PIN, 0);
  7342. analogWrite(CONTROLLERFAN_PIN, 0);
  7343. }
  7344. else
  7345. {
  7346. // allows digital or PWM fan output to be used (see M42 handling)
  7347. digitalWrite(CONTROLLERFAN_PIN, CONTROLLERFAN_SPEED);
  7348. analogWrite(CONTROLLERFAN_PIN, CONTROLLERFAN_SPEED);
  7349. }
  7350. }
  7351. }
  7352. #endif
  7353. #ifdef TEMP_STAT_LEDS
  7354. static bool blue_led = false;
  7355. static bool red_led = false;
  7356. static uint32_t stat_update = 0;
  7357. void handle_status_leds(void) {
  7358. float max_temp = 0.0;
  7359. if(_millis() > stat_update) {
  7360. stat_update += 500; // Update every 0.5s
  7361. for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) {
  7362. max_temp = max(max_temp, degHotend(cur_extruder));
  7363. max_temp = max(max_temp, degTargetHotend(cur_extruder));
  7364. }
  7365. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  7366. max_temp = max(max_temp, degTargetBed());
  7367. max_temp = max(max_temp, degBed());
  7368. #endif
  7369. if((max_temp > 55.0) && (red_led == false)) {
  7370. digitalWrite(STAT_LED_RED, 1);
  7371. digitalWrite(STAT_LED_BLUE, 0);
  7372. red_led = true;
  7373. blue_led = false;
  7374. }
  7375. if((max_temp < 54.0) && (blue_led == false)) {
  7376. digitalWrite(STAT_LED_RED, 0);
  7377. digitalWrite(STAT_LED_BLUE, 1);
  7378. red_led = false;
  7379. blue_led = true;
  7380. }
  7381. }
  7382. }
  7383. #endif
  7384. #ifdef SAFETYTIMER
  7385. /**
  7386. * @brief Turn off heating after safetytimer_inactive_time milliseconds of inactivity
  7387. *
  7388. * Full screen blocking notification message is shown after heater turning off.
  7389. * Paused print is not considered inactivity, as nozzle is cooled anyway and bed cooling would
  7390. * damage print.
  7391. *
  7392. * If safetytimer_inactive_time is zero, feature is disabled (heating is never turned off because of inactivity)
  7393. */
  7394. static void handleSafetyTimer()
  7395. {
  7396. #if (EXTRUDERS > 1)
  7397. #error Implemented only for one extruder.
  7398. #endif //(EXTRUDERS > 1)
  7399. if ((PRINTER_ACTIVE) || (!degTargetBed() && !degTargetHotend(0)) || (!safetytimer_inactive_time))
  7400. {
  7401. safetyTimer.stop();
  7402. }
  7403. else if ((degTargetBed() || degTargetHotend(0)) && (!safetyTimer.running()))
  7404. {
  7405. safetyTimer.start();
  7406. }
  7407. else if (safetyTimer.expired(farm_mode?FARM_DEFAULT_SAFETYTIMER_TIME_ms:safetytimer_inactive_time))
  7408. {
  7409. setTargetBed(0);
  7410. setAllTargetHotends(0);
  7411. lcd_show_fullscreen_message_and_wait_P(_i("Heating disabled by safety timer."));////MSG_BED_HEATING_SAFETY_DISABLED
  7412. }
  7413. }
  7414. #endif //SAFETYTIMER
  7415. void manage_inactivity(bool ignore_stepper_queue/*=false*/) //default argument set in Marlin.h
  7416. {
  7417. bool bInhibitFlag;
  7418. #ifdef FILAMENT_SENSOR
  7419. if (mmu_enabled == false)
  7420. {
  7421. //-// if (mcode_in_progress != 600) //M600 not in progress
  7422. #ifdef PAT9125
  7423. bInhibitFlag=(menu_menu==lcd_menu_extruder_info); // Support::ExtruderInfo menu active
  7424. #endif // PAT9125
  7425. #ifdef IR_SENSOR
  7426. bInhibitFlag=(menu_menu==lcd_menu_show_sensors_state); // Support::SensorInfo menu active
  7427. #endif // IR_SENSOR
  7428. if ((mcode_in_progress != 600) && (eFilamentAction != FilamentAction::AutoLoad) && (!bInhibitFlag)) //M600 not in progress, preHeat @ autoLoad menu not active, Support::ExtruderInfo/SensorInfo menu not active
  7429. {
  7430. if (!moves_planned() && !IS_SD_PRINTING && !is_usb_printing && (lcd_commands_type != LcdCommands::Layer1Cal) && !wizard_active)
  7431. {
  7432. if (fsensor_check_autoload())
  7433. {
  7434. #ifdef PAT9125
  7435. fsensor_autoload_check_stop();
  7436. #endif //PAT9125
  7437. //-// if (degHotend0() > EXTRUDE_MINTEMP)
  7438. if(0)
  7439. {
  7440. Sound_MakeCustom(50,1000,false);
  7441. loading_flag = true;
  7442. enquecommand_front_P((PSTR("M701")));
  7443. }
  7444. else
  7445. {
  7446. /*
  7447. lcd_update_enable(false);
  7448. show_preheat_nozzle_warning();
  7449. lcd_update_enable(true);
  7450. */
  7451. eFilamentAction=FilamentAction::AutoLoad;
  7452. bFilamentFirstRun=false;
  7453. if(target_temperature[0]>=EXTRUDE_MINTEMP)
  7454. {
  7455. bFilamentPreheatState=true;
  7456. // mFilamentItem(target_temperature[0],target_temperature_bed);
  7457. menu_submenu(mFilamentItemForce);
  7458. }
  7459. else
  7460. {
  7461. menu_submenu(mFilamentMenu);
  7462. lcd_timeoutToStatus.start();
  7463. }
  7464. }
  7465. }
  7466. }
  7467. else
  7468. {
  7469. #ifdef PAT9125
  7470. fsensor_autoload_check_stop();
  7471. #endif //PAT9125
  7472. fsensor_update();
  7473. }
  7474. }
  7475. }
  7476. #endif //FILAMENT_SENSOR
  7477. #ifdef SAFETYTIMER
  7478. handleSafetyTimer();
  7479. #endif //SAFETYTIMER
  7480. #if defined(KILL_PIN) && KILL_PIN > -1
  7481. static int killCount = 0; // make the inactivity button a bit less responsive
  7482. const int KILL_DELAY = 10000;
  7483. #endif
  7484. if(buflen < (BUFSIZE-1)){
  7485. get_command();
  7486. }
  7487. if( (_millis() - previous_millis_cmd) > max_inactive_time )
  7488. if(max_inactive_time)
  7489. kill(_n(""), 4);
  7490. if(stepper_inactive_time) {
  7491. if( (_millis() - previous_millis_cmd) > stepper_inactive_time )
  7492. {
  7493. if(blocks_queued() == false && ignore_stepper_queue == false) {
  7494. disable_x();
  7495. disable_y();
  7496. disable_z();
  7497. disable_e0();
  7498. disable_e1();
  7499. disable_e2();
  7500. }
  7501. }
  7502. }
  7503. #ifdef CHDK //Check if pin should be set to LOW after M240 set it to HIGH
  7504. if (chdkActive && (_millis() - chdkHigh > CHDK_DELAY))
  7505. {
  7506. chdkActive = false;
  7507. WRITE(CHDK, LOW);
  7508. }
  7509. #endif
  7510. #if defined(KILL_PIN) && KILL_PIN > -1
  7511. // Check if the kill button was pressed and wait just in case it was an accidental
  7512. // key kill key press
  7513. // -------------------------------------------------------------------------------
  7514. if( 0 == READ(KILL_PIN) )
  7515. {
  7516. killCount++;
  7517. }
  7518. else if (killCount > 0)
  7519. {
  7520. killCount--;
  7521. }
  7522. // Exceeded threshold and we can confirm that it was not accidental
  7523. // KILL the machine
  7524. // ----------------------------------------------------------------
  7525. if ( killCount >= KILL_DELAY)
  7526. {
  7527. kill("", 5);
  7528. }
  7529. #endif
  7530. #if defined(CONTROLLERFAN_PIN) && CONTROLLERFAN_PIN > -1
  7531. controllerFan(); //Check if fan should be turned on to cool stepper drivers down
  7532. #endif
  7533. #ifdef EXTRUDER_RUNOUT_PREVENT
  7534. if( (_millis() - previous_millis_cmd) > EXTRUDER_RUNOUT_SECONDS*1000 )
  7535. if(degHotend(active_extruder)>EXTRUDER_RUNOUT_MINTEMP)
  7536. {
  7537. bool oldstatus=READ(E0_ENABLE_PIN);
  7538. enable_e0();
  7539. float oldepos=current_position[E_AXIS];
  7540. float oldedes=destination[E_AXIS];
  7541. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS],
  7542. destination[E_AXIS]+EXTRUDER_RUNOUT_EXTRUDE*EXTRUDER_RUNOUT_ESTEPS/cs.axis_steps_per_unit[E_AXIS],
  7543. EXTRUDER_RUNOUT_SPEED/60.*EXTRUDER_RUNOUT_ESTEPS/cs.axis_steps_per_unit[E_AXIS], active_extruder);
  7544. current_position[E_AXIS]=oldepos;
  7545. destination[E_AXIS]=oldedes;
  7546. plan_set_e_position(oldepos);
  7547. previous_millis_cmd=_millis();
  7548. st_synchronize();
  7549. WRITE(E0_ENABLE_PIN,oldstatus);
  7550. }
  7551. #endif
  7552. #ifdef TEMP_STAT_LEDS
  7553. handle_status_leds();
  7554. #endif
  7555. check_axes_activity();
  7556. mmu_loop();
  7557. }
  7558. void kill(const char *full_screen_message, unsigned char id)
  7559. {
  7560. printf_P(_N("KILL: %d\n"), id);
  7561. //return;
  7562. cli(); // Stop interrupts
  7563. disable_heater();
  7564. disable_x();
  7565. // SERIAL_ECHOLNPGM("kill - disable Y");
  7566. disable_y();
  7567. disable_z();
  7568. disable_e0();
  7569. disable_e1();
  7570. disable_e2();
  7571. #if defined(PS_ON_PIN) && PS_ON_PIN > -1
  7572. pinMode(PS_ON_PIN,INPUT);
  7573. #endif
  7574. SERIAL_ERROR_START;
  7575. SERIAL_ERRORLNRPGM(_n("Printer halted. kill() called!"));////MSG_ERR_KILLED
  7576. if (full_screen_message != NULL) {
  7577. SERIAL_ERRORLNRPGM(full_screen_message);
  7578. lcd_display_message_fullscreen_P(full_screen_message);
  7579. } else {
  7580. LCD_ALERTMESSAGERPGM(_n("KILLED. "));////MSG_KILLED
  7581. }
  7582. // FMC small patch to update the LCD before ending
  7583. sei(); // enable interrupts
  7584. for ( int i=5; i--; lcd_update(0))
  7585. {
  7586. _delay(200);
  7587. }
  7588. cli(); // disable interrupts
  7589. suicide();
  7590. while(1)
  7591. {
  7592. #ifdef WATCHDOG
  7593. wdt_reset();
  7594. #endif //WATCHDOG
  7595. /* Intentionally left empty */
  7596. } // Wait for reset
  7597. }
  7598. void Stop()
  7599. {
  7600. disable_heater();
  7601. if(Stopped == false) {
  7602. Stopped = true;
  7603. lcd_print_stop();
  7604. Stopped_gcode_LastN = gcode_LastN; // Save last g_code for restart
  7605. SERIAL_ERROR_START;
  7606. SERIAL_ERRORLNRPGM(MSG_ERR_STOPPED);
  7607. LCD_MESSAGERPGM(_T(MSG_STOPPED));
  7608. }
  7609. }
  7610. bool IsStopped() { return Stopped; };
  7611. #ifdef FAST_PWM_FAN
  7612. void setPwmFrequency(uint8_t pin, int val)
  7613. {
  7614. val &= 0x07;
  7615. switch(digitalPinToTimer(pin))
  7616. {
  7617. #if defined(TCCR0A)
  7618. case TIMER0A:
  7619. case TIMER0B:
  7620. // TCCR0B &= ~(_BV(CS00) | _BV(CS01) | _BV(CS02));
  7621. // TCCR0B |= val;
  7622. break;
  7623. #endif
  7624. #if defined(TCCR1A)
  7625. case TIMER1A:
  7626. case TIMER1B:
  7627. // TCCR1B &= ~(_BV(CS10) | _BV(CS11) | _BV(CS12));
  7628. // TCCR1B |= val;
  7629. break;
  7630. #endif
  7631. #if defined(TCCR2)
  7632. case TIMER2:
  7633. case TIMER2:
  7634. TCCR2 &= ~(_BV(CS10) | _BV(CS11) | _BV(CS12));
  7635. TCCR2 |= val;
  7636. break;
  7637. #endif
  7638. #if defined(TCCR2A)
  7639. case TIMER2A:
  7640. case TIMER2B:
  7641. TCCR2B &= ~(_BV(CS20) | _BV(CS21) | _BV(CS22));
  7642. TCCR2B |= val;
  7643. break;
  7644. #endif
  7645. #if defined(TCCR3A)
  7646. case TIMER3A:
  7647. case TIMER3B:
  7648. case TIMER3C:
  7649. TCCR3B &= ~(_BV(CS30) | _BV(CS31) | _BV(CS32));
  7650. TCCR3B |= val;
  7651. break;
  7652. #endif
  7653. #if defined(TCCR4A)
  7654. case TIMER4A:
  7655. case TIMER4B:
  7656. case TIMER4C:
  7657. TCCR4B &= ~(_BV(CS40) | _BV(CS41) | _BV(CS42));
  7658. TCCR4B |= val;
  7659. break;
  7660. #endif
  7661. #if defined(TCCR5A)
  7662. case TIMER5A:
  7663. case TIMER5B:
  7664. case TIMER5C:
  7665. TCCR5B &= ~(_BV(CS50) | _BV(CS51) | _BV(CS52));
  7666. TCCR5B |= val;
  7667. break;
  7668. #endif
  7669. }
  7670. }
  7671. #endif //FAST_PWM_FAN
  7672. //! @brief Get and validate extruder number
  7673. //!
  7674. //! If it is not specified, active_extruder is returned in parameter extruder.
  7675. //! @param [in] code M code number
  7676. //! @param [out] extruder
  7677. //! @return error
  7678. //! @retval true Invalid extruder specified in T code
  7679. //! @retval false Valid extruder specified in T code, or not specifiead
  7680. bool setTargetedHotend(int code, uint8_t &extruder)
  7681. {
  7682. extruder = active_extruder;
  7683. if(code_seen('T')) {
  7684. extruder = code_value();
  7685. if(extruder >= EXTRUDERS) {
  7686. SERIAL_ECHO_START;
  7687. switch(code){
  7688. case 104:
  7689. SERIAL_ECHORPGM(_n("M104 Invalid extruder "));////MSG_M104_INVALID_EXTRUDER
  7690. break;
  7691. case 105:
  7692. SERIAL_ECHO(_n("M105 Invalid extruder "));////MSG_M105_INVALID_EXTRUDER
  7693. break;
  7694. case 109:
  7695. SERIAL_ECHO(_n("M109 Invalid extruder "));////MSG_M109_INVALID_EXTRUDER
  7696. break;
  7697. case 218:
  7698. SERIAL_ECHO(_n("M218 Invalid extruder "));////MSG_M218_INVALID_EXTRUDER
  7699. break;
  7700. case 221:
  7701. SERIAL_ECHO(_n("M221 Invalid extruder "));////MSG_M221_INVALID_EXTRUDER
  7702. break;
  7703. }
  7704. SERIAL_PROTOCOLLN((int)extruder);
  7705. return true;
  7706. }
  7707. }
  7708. return false;
  7709. }
  7710. void save_statistics(unsigned long _total_filament_used, unsigned long _total_print_time) //_total_filament_used unit: mm/100; print time in s
  7711. {
  7712. if (eeprom_read_byte((uint8_t *)EEPROM_TOTALTIME) == 255 && eeprom_read_byte((uint8_t *)EEPROM_TOTALTIME + 1) == 255 && eeprom_read_byte((uint8_t *)EEPROM_TOTALTIME + 2) == 255 && eeprom_read_byte((uint8_t *)EEPROM_TOTALTIME + 3) == 255)
  7713. {
  7714. eeprom_update_dword((uint32_t *)EEPROM_TOTALTIME, 0);
  7715. eeprom_update_dword((uint32_t *)EEPROM_FILAMENTUSED, 0);
  7716. }
  7717. unsigned long _previous_filament = eeprom_read_dword((uint32_t *)EEPROM_FILAMENTUSED); //_previous_filament unit: cm
  7718. unsigned long _previous_time = eeprom_read_dword((uint32_t *)EEPROM_TOTALTIME); //_previous_time unit: min
  7719. eeprom_update_dword((uint32_t *)EEPROM_TOTALTIME, _previous_time + (_total_print_time/60)); //EEPROM_TOTALTIME unit: min
  7720. eeprom_update_dword((uint32_t *)EEPROM_FILAMENTUSED, _previous_filament + (_total_filament_used / 1000));
  7721. total_filament_used = 0;
  7722. }
  7723. float calculate_extruder_multiplier(float diameter) {
  7724. float out = 1.f;
  7725. if (cs.volumetric_enabled && diameter > 0.f) {
  7726. float area = M_PI * diameter * diameter * 0.25;
  7727. out = 1.f / area;
  7728. }
  7729. if (extrudemultiply != 100)
  7730. out *= float(extrudemultiply) * 0.01f;
  7731. return out;
  7732. }
  7733. void calculate_extruder_multipliers() {
  7734. extruder_multiplier[0] = calculate_extruder_multiplier(cs.filament_size[0]);
  7735. #if EXTRUDERS > 1
  7736. extruder_multiplier[1] = calculate_extruder_multiplier(cs.filament_size[1]);
  7737. #if EXTRUDERS > 2
  7738. extruder_multiplier[2] = calculate_extruder_multiplier(cs.filament_size[2]);
  7739. #endif
  7740. #endif
  7741. }
  7742. void delay_keep_alive(unsigned int ms)
  7743. {
  7744. for (;;) {
  7745. manage_heater();
  7746. // Manage inactivity, but don't disable steppers on timeout.
  7747. manage_inactivity(true);
  7748. lcd_update(0);
  7749. if (ms == 0)
  7750. break;
  7751. else if (ms >= 50) {
  7752. _delay(50);
  7753. ms -= 50;
  7754. } else {
  7755. _delay(ms);
  7756. ms = 0;
  7757. }
  7758. }
  7759. }
  7760. static void wait_for_heater(long codenum, uint8_t extruder) {
  7761. #ifdef TEMP_RESIDENCY_TIME
  7762. long residencyStart;
  7763. residencyStart = -1;
  7764. /* continue to loop until we have reached the target temp
  7765. _and_ until TEMP_RESIDENCY_TIME hasn't passed since we reached it */
  7766. while ((!cancel_heatup) && ((residencyStart == -1) ||
  7767. (residencyStart >= 0 && (((unsigned int)(_millis() - residencyStart)) < (TEMP_RESIDENCY_TIME * 1000UL))))) {
  7768. #else
  7769. while (target_direction ? (isHeatingHotend(tmp_extruder)) : (isCoolingHotend(tmp_extruder) && (CooldownNoWait == false))) {
  7770. #endif //TEMP_RESIDENCY_TIME
  7771. if ((_millis() - codenum) > 1000UL)
  7772. { //Print Temp Reading and remaining time every 1 second while heating up/cooling down
  7773. if (!farm_mode) {
  7774. SERIAL_PROTOCOLPGM("T:");
  7775. SERIAL_PROTOCOL_F(degHotend(extruder), 1);
  7776. SERIAL_PROTOCOLPGM(" E:");
  7777. SERIAL_PROTOCOL((int)extruder);
  7778. #ifdef TEMP_RESIDENCY_TIME
  7779. SERIAL_PROTOCOLPGM(" W:");
  7780. if (residencyStart > -1)
  7781. {
  7782. codenum = ((TEMP_RESIDENCY_TIME * 1000UL) - (_millis() - residencyStart)) / 1000UL;
  7783. SERIAL_PROTOCOLLN(codenum);
  7784. }
  7785. else
  7786. {
  7787. SERIAL_PROTOCOLLN("?");
  7788. }
  7789. }
  7790. #else
  7791. SERIAL_PROTOCOLLN("");
  7792. #endif
  7793. codenum = _millis();
  7794. }
  7795. manage_heater();
  7796. manage_inactivity(true); //do not disable steppers
  7797. lcd_update(0);
  7798. #ifdef TEMP_RESIDENCY_TIME
  7799. /* start/restart the TEMP_RESIDENCY_TIME timer whenever we reach target temp for the first time
  7800. or when current temp falls outside the hysteresis after target temp was reached */
  7801. if ((residencyStart == -1 && target_direction && (degHotend(extruder) >= (degTargetHotend(extruder) - TEMP_WINDOW))) ||
  7802. (residencyStart == -1 && !target_direction && (degHotend(extruder) <= (degTargetHotend(extruder) + TEMP_WINDOW))) ||
  7803. (residencyStart > -1 && labs(degHotend(extruder) - degTargetHotend(extruder)) > TEMP_HYSTERESIS))
  7804. {
  7805. residencyStart = _millis();
  7806. }
  7807. #endif //TEMP_RESIDENCY_TIME
  7808. }
  7809. }
  7810. void check_babystep()
  7811. {
  7812. int babystep_z = eeprom_read_word(reinterpret_cast<uint16_t *>(&(EEPROM_Sheets_base->
  7813. s[(eeprom_read_byte(&(EEPROM_Sheets_base->active_sheet)))].z_offset)));
  7814. if ((babystep_z < Z_BABYSTEP_MIN) || (babystep_z > Z_BABYSTEP_MAX)) {
  7815. babystep_z = 0; //if babystep value is out of min max range, set it to 0
  7816. SERIAL_ECHOLNPGM("Z live adjust out of range. Setting to 0");
  7817. eeprom_write_word(reinterpret_cast<uint16_t *>(&(EEPROM_Sheets_base->
  7818. s[(eeprom_read_byte(&(EEPROM_Sheets_base->active_sheet)))].z_offset)),
  7819. babystep_z);
  7820. lcd_show_fullscreen_message_and_wait_P(PSTR("Z live adjust out of range. Setting to 0. Click to continue."));
  7821. lcd_update_enable(true);
  7822. }
  7823. }
  7824. #ifdef HEATBED_ANALYSIS
  7825. void d_setup()
  7826. {
  7827. pinMode(D_DATACLOCK, INPUT_PULLUP);
  7828. pinMode(D_DATA, INPUT_PULLUP);
  7829. pinMode(D_REQUIRE, OUTPUT);
  7830. digitalWrite(D_REQUIRE, HIGH);
  7831. }
  7832. float d_ReadData()
  7833. {
  7834. int digit[13];
  7835. String mergeOutput;
  7836. float output;
  7837. digitalWrite(D_REQUIRE, HIGH);
  7838. for (int i = 0; i<13; i++)
  7839. {
  7840. for (int j = 0; j < 4; j++)
  7841. {
  7842. while (digitalRead(D_DATACLOCK) == LOW) {}
  7843. while (digitalRead(D_DATACLOCK) == HIGH) {}
  7844. bitWrite(digit[i], j, digitalRead(D_DATA));
  7845. }
  7846. }
  7847. digitalWrite(D_REQUIRE, LOW);
  7848. mergeOutput = "";
  7849. output = 0;
  7850. for (int r = 5; r <= 10; r++) //Merge digits
  7851. {
  7852. mergeOutput += digit[r];
  7853. }
  7854. output = mergeOutput.toFloat();
  7855. if (digit[4] == 8) //Handle sign
  7856. {
  7857. output *= -1;
  7858. }
  7859. for (int i = digit[11]; i > 0; i--) //Handle floating point
  7860. {
  7861. output /= 10;
  7862. }
  7863. return output;
  7864. }
  7865. void bed_check(float x_dimension, float y_dimension, int x_points_num, int y_points_num, float shift_x, float shift_y) {
  7866. int t1 = 0;
  7867. int t_delay = 0;
  7868. int digit[13];
  7869. int m;
  7870. char str[3];
  7871. //String mergeOutput;
  7872. char mergeOutput[15];
  7873. float output;
  7874. int mesh_point = 0; //index number of calibration point
  7875. float bed_zero_ref_x = (-22.f + X_PROBE_OFFSET_FROM_EXTRUDER); //shift between zero point on bed and target and between probe and nozzle
  7876. float bed_zero_ref_y = (-0.6f + Y_PROBE_OFFSET_FROM_EXTRUDER);
  7877. float mesh_home_z_search = 4;
  7878. float measure_z_height = 0.2f;
  7879. float row[x_points_num];
  7880. int ix = 0;
  7881. int iy = 0;
  7882. const char* filename_wldsd = "mesh.txt";
  7883. char data_wldsd[x_points_num * 7 + 1]; //6 chars(" -A.BCD")for each measurement + null
  7884. char numb_wldsd[8]; // (" -A.BCD" + null)
  7885. #ifdef MICROMETER_LOGGING
  7886. d_setup();
  7887. #endif //MICROMETER_LOGGING
  7888. int XY_AXIS_FEEDRATE = homing_feedrate[X_AXIS] / 20;
  7889. int Z_LIFT_FEEDRATE = homing_feedrate[Z_AXIS] / 40;
  7890. unsigned int custom_message_type_old = custom_message_type;
  7891. unsigned int custom_message_state_old = custom_message_state;
  7892. custom_message_type = CustomMsg::MeshBedLeveling;
  7893. custom_message_state = (x_points_num * y_points_num) + 10;
  7894. lcd_update(1);
  7895. //mbl.reset();
  7896. babystep_undo();
  7897. card.openFile(filename_wldsd, false);
  7898. /*destination[Z_AXIS] = mesh_home_z_search;
  7899. //plan_buffer_line_curposXYZE(Z_LIFT_FEEDRATE, active_extruder);
  7900. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], Z_LIFT_FEEDRATE, active_extruder);
  7901. for(int8_t i=0; i < NUM_AXIS; i++) {
  7902. current_position[i] = destination[i];
  7903. }
  7904. st_synchronize();
  7905. */
  7906. destination[Z_AXIS] = measure_z_height;
  7907. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], Z_LIFT_FEEDRATE, active_extruder);
  7908. for(int8_t i=0; i < NUM_AXIS; i++) {
  7909. current_position[i] = destination[i];
  7910. }
  7911. st_synchronize();
  7912. /*int l_feedmultiply = */setup_for_endstop_move(false);
  7913. SERIAL_PROTOCOLPGM("Num X,Y: ");
  7914. SERIAL_PROTOCOL(x_points_num);
  7915. SERIAL_PROTOCOLPGM(",");
  7916. SERIAL_PROTOCOL(y_points_num);
  7917. SERIAL_PROTOCOLPGM("\nZ search height: ");
  7918. SERIAL_PROTOCOL(mesh_home_z_search);
  7919. SERIAL_PROTOCOLPGM("\nDimension X,Y: ");
  7920. SERIAL_PROTOCOL(x_dimension);
  7921. SERIAL_PROTOCOLPGM(",");
  7922. SERIAL_PROTOCOL(y_dimension);
  7923. SERIAL_PROTOCOLLNPGM("\nMeasured points:");
  7924. while (mesh_point != x_points_num * y_points_num) {
  7925. ix = mesh_point % x_points_num; // from 0 to MESH_NUM_X_POINTS - 1
  7926. iy = mesh_point / x_points_num;
  7927. if (iy & 1) ix = (x_points_num - 1) - ix; // Zig zag
  7928. float z0 = 0.f;
  7929. /*destination[Z_AXIS] = mesh_home_z_search;
  7930. //plan_buffer_line_curposXYZE(Z_LIFT_FEEDRATE, active_extruder);
  7931. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], Z_LIFT_FEEDRATE, active_extruder);
  7932. for(int8_t i=0; i < NUM_AXIS; i++) {
  7933. current_position[i] = destination[i];
  7934. }
  7935. st_synchronize();*/
  7936. //current_position[X_AXIS] = 13.f + ix * (x_dimension / (x_points_num - 1)) - bed_zero_ref_x + shift_x;
  7937. //current_position[Y_AXIS] = 6.4f + iy * (y_dimension / (y_points_num - 1)) - bed_zero_ref_y + shift_y;
  7938. destination[X_AXIS] = ix * (x_dimension / (x_points_num - 1)) + shift_x;
  7939. destination[Y_AXIS] = iy * (y_dimension / (y_points_num - 1)) + shift_y;
  7940. mesh_plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], XY_AXIS_FEEDRATE/6, active_extruder);
  7941. for(int8_t i=0; i < NUM_AXIS; i++) {
  7942. current_position[i] = destination[i];
  7943. }
  7944. st_synchronize();
  7945. // printf_P(PSTR("X = %f; Y= %f \n"), current_position[X_AXIS], current_position[Y_AXIS]);
  7946. delay_keep_alive(1000);
  7947. #ifdef MICROMETER_LOGGING
  7948. //memset(numb_wldsd, 0, sizeof(numb_wldsd));
  7949. //dtostrf(d_ReadData(), 8, 5, numb_wldsd);
  7950. //strcat(data_wldsd, numb_wldsd);
  7951. //MYSERIAL.println(data_wldsd);
  7952. //delay(1000);
  7953. //delay(3000);
  7954. //t1 = millis();
  7955. //while (digitalRead(D_DATACLOCK) == LOW) {}
  7956. //while (digitalRead(D_DATACLOCK) == HIGH) {}
  7957. memset(digit, 0, sizeof(digit));
  7958. //cli();
  7959. digitalWrite(D_REQUIRE, LOW);
  7960. for (int i = 0; i<13; i++)
  7961. {
  7962. //t1 = millis();
  7963. for (int j = 0; j < 4; j++)
  7964. {
  7965. while (digitalRead(D_DATACLOCK) == LOW) {}
  7966. while (digitalRead(D_DATACLOCK) == HIGH) {}
  7967. //printf_P(PSTR("Done %d\n"), j);
  7968. bitWrite(digit[i], j, digitalRead(D_DATA));
  7969. }
  7970. //t_delay = (millis() - t1);
  7971. //SERIAL_PROTOCOLPGM(" ");
  7972. //SERIAL_PROTOCOL_F(t_delay, 5);
  7973. //SERIAL_PROTOCOLPGM(" ");
  7974. }
  7975. //sei();
  7976. digitalWrite(D_REQUIRE, HIGH);
  7977. mergeOutput[0] = '\0';
  7978. output = 0;
  7979. for (int r = 5; r <= 10; r++) //Merge digits
  7980. {
  7981. sprintf(str, "%d", digit[r]);
  7982. strcat(mergeOutput, str);
  7983. }
  7984. output = atof(mergeOutput);
  7985. if (digit[4] == 8) //Handle sign
  7986. {
  7987. output *= -1;
  7988. }
  7989. for (int i = digit[11]; i > 0; i--) //Handle floating point
  7990. {
  7991. output *= 0.1;
  7992. }
  7993. //output = d_ReadData();
  7994. //row[ix] = current_position[Z_AXIS];
  7995. //row[ix] = d_ReadData();
  7996. row[ix] = output;
  7997. if (iy % 2 == 1 ? ix == 0 : ix == x_points_num - 1) {
  7998. memset(data_wldsd, 0, sizeof(data_wldsd));
  7999. for (int i = 0; i < x_points_num; i++) {
  8000. SERIAL_PROTOCOLPGM(" ");
  8001. SERIAL_PROTOCOL_F(row[i], 5);
  8002. memset(numb_wldsd, 0, sizeof(numb_wldsd));
  8003. dtostrf(row[i], 7, 3, numb_wldsd);
  8004. strcat(data_wldsd, numb_wldsd);
  8005. }
  8006. card.write_command(data_wldsd);
  8007. SERIAL_PROTOCOLPGM("\n");
  8008. }
  8009. custom_message_state--;
  8010. mesh_point++;
  8011. lcd_update(1);
  8012. }
  8013. #endif //MICROMETER_LOGGING
  8014. card.closefile();
  8015. //clean_up_after_endstop_move(l_feedmultiply);
  8016. }
  8017. void bed_analysis(float x_dimension, float y_dimension, int x_points_num, int y_points_num, float shift_x, float shift_y) {
  8018. int t1 = 0;
  8019. int t_delay = 0;
  8020. int digit[13];
  8021. int m;
  8022. char str[3];
  8023. //String mergeOutput;
  8024. char mergeOutput[15];
  8025. float output;
  8026. int mesh_point = 0; //index number of calibration point
  8027. float bed_zero_ref_x = (-22.f + X_PROBE_OFFSET_FROM_EXTRUDER); //shift between zero point on bed and target and between probe and nozzle
  8028. float bed_zero_ref_y = (-0.6f + Y_PROBE_OFFSET_FROM_EXTRUDER);
  8029. float mesh_home_z_search = 4;
  8030. float row[x_points_num];
  8031. int ix = 0;
  8032. int iy = 0;
  8033. const char* filename_wldsd = "wldsd.txt";
  8034. char data_wldsd[70];
  8035. char numb_wldsd[10];
  8036. d_setup();
  8037. if (!(axis_known_position[X_AXIS] && axis_known_position[Y_AXIS] && axis_known_position[Z_AXIS])) {
  8038. // We don't know where we are! HOME!
  8039. // Push the commands to the front of the message queue in the reverse order!
  8040. // There shall be always enough space reserved for these commands.
  8041. repeatcommand_front(); // repeat G80 with all its parameters
  8042. enquecommand_front_P((PSTR("G28 W0")));
  8043. enquecommand_front_P((PSTR("G1 Z5")));
  8044. return;
  8045. }
  8046. unsigned int custom_message_type_old = custom_message_type;
  8047. unsigned int custom_message_state_old = custom_message_state;
  8048. custom_message_type = CustomMsg::MeshBedLeveling;
  8049. custom_message_state = (x_points_num * y_points_num) + 10;
  8050. lcd_update(1);
  8051. mbl.reset();
  8052. babystep_undo();
  8053. card.openFile(filename_wldsd, false);
  8054. current_position[Z_AXIS] = mesh_home_z_search;
  8055. plan_buffer_line_curposXYZE(homing_feedrate[Z_AXIS] / 60, active_extruder);
  8056. int XY_AXIS_FEEDRATE = homing_feedrate[X_AXIS] / 20;
  8057. int Z_LIFT_FEEDRATE = homing_feedrate[Z_AXIS] / 40;
  8058. int l_feedmultiply = setup_for_endstop_move(false);
  8059. SERIAL_PROTOCOLPGM("Num X,Y: ");
  8060. SERIAL_PROTOCOL(x_points_num);
  8061. SERIAL_PROTOCOLPGM(",");
  8062. SERIAL_PROTOCOL(y_points_num);
  8063. SERIAL_PROTOCOLPGM("\nZ search height: ");
  8064. SERIAL_PROTOCOL(mesh_home_z_search);
  8065. SERIAL_PROTOCOLPGM("\nDimension X,Y: ");
  8066. SERIAL_PROTOCOL(x_dimension);
  8067. SERIAL_PROTOCOLPGM(",");
  8068. SERIAL_PROTOCOL(y_dimension);
  8069. SERIAL_PROTOCOLLNPGM("\nMeasured points:");
  8070. while (mesh_point != x_points_num * y_points_num) {
  8071. ix = mesh_point % x_points_num; // from 0 to MESH_NUM_X_POINTS - 1
  8072. iy = mesh_point / x_points_num;
  8073. if (iy & 1) ix = (x_points_num - 1) - ix; // Zig zag
  8074. float z0 = 0.f;
  8075. current_position[Z_AXIS] = mesh_home_z_search;
  8076. plan_buffer_line_curposXYZE(Z_LIFT_FEEDRATE, active_extruder);
  8077. st_synchronize();
  8078. current_position[X_AXIS] = 13.f + ix * (x_dimension / (x_points_num - 1)) - bed_zero_ref_x + shift_x;
  8079. current_position[Y_AXIS] = 6.4f + iy * (y_dimension / (y_points_num - 1)) - bed_zero_ref_y + shift_y;
  8080. plan_buffer_line_curposXYZE(XY_AXIS_FEEDRATE, active_extruder);
  8081. st_synchronize();
  8082. if (!find_bed_induction_sensor_point_z(-10.f)) { //if we have data from z calibration max allowed difference is 1mm for each point, if we dont have data max difference is 10mm from initial point
  8083. break;
  8084. card.closefile();
  8085. }
  8086. //memset(numb_wldsd, 0, sizeof(numb_wldsd));
  8087. //dtostrf(d_ReadData(), 8, 5, numb_wldsd);
  8088. //strcat(data_wldsd, numb_wldsd);
  8089. //MYSERIAL.println(data_wldsd);
  8090. //_delay(1000);
  8091. //_delay(3000);
  8092. //t1 = _millis();
  8093. //while (digitalRead(D_DATACLOCK) == LOW) {}
  8094. //while (digitalRead(D_DATACLOCK) == HIGH) {}
  8095. memset(digit, 0, sizeof(digit));
  8096. //cli();
  8097. digitalWrite(D_REQUIRE, LOW);
  8098. for (int i = 0; i<13; i++)
  8099. {
  8100. //t1 = _millis();
  8101. for (int j = 0; j < 4; j++)
  8102. {
  8103. while (digitalRead(D_DATACLOCK) == LOW) {}
  8104. while (digitalRead(D_DATACLOCK) == HIGH) {}
  8105. bitWrite(digit[i], j, digitalRead(D_DATA));
  8106. }
  8107. //t_delay = (_millis() - t1);
  8108. //SERIAL_PROTOCOLPGM(" ");
  8109. //SERIAL_PROTOCOL_F(t_delay, 5);
  8110. //SERIAL_PROTOCOLPGM(" ");
  8111. }
  8112. //sei();
  8113. digitalWrite(D_REQUIRE, HIGH);
  8114. mergeOutput[0] = '\0';
  8115. output = 0;
  8116. for (int r = 5; r <= 10; r++) //Merge digits
  8117. {
  8118. sprintf(str, "%d", digit[r]);
  8119. strcat(mergeOutput, str);
  8120. }
  8121. output = atof(mergeOutput);
  8122. if (digit[4] == 8) //Handle sign
  8123. {
  8124. output *= -1;
  8125. }
  8126. for (int i = digit[11]; i > 0; i--) //Handle floating point
  8127. {
  8128. output *= 0.1;
  8129. }
  8130. //output = d_ReadData();
  8131. //row[ix] = current_position[Z_AXIS];
  8132. memset(data_wldsd, 0, sizeof(data_wldsd));
  8133. for (int i = 0; i <3; i++) {
  8134. memset(numb_wldsd, 0, sizeof(numb_wldsd));
  8135. dtostrf(current_position[i], 8, 5, numb_wldsd);
  8136. strcat(data_wldsd, numb_wldsd);
  8137. strcat(data_wldsd, ";");
  8138. }
  8139. memset(numb_wldsd, 0, sizeof(numb_wldsd));
  8140. dtostrf(output, 8, 5, numb_wldsd);
  8141. strcat(data_wldsd, numb_wldsd);
  8142. //strcat(data_wldsd, ";");
  8143. card.write_command(data_wldsd);
  8144. //row[ix] = d_ReadData();
  8145. row[ix] = output; // current_position[Z_AXIS];
  8146. if (iy % 2 == 1 ? ix == 0 : ix == x_points_num - 1) {
  8147. for (int i = 0; i < x_points_num; i++) {
  8148. SERIAL_PROTOCOLPGM(" ");
  8149. SERIAL_PROTOCOL_F(row[i], 5);
  8150. }
  8151. SERIAL_PROTOCOLPGM("\n");
  8152. }
  8153. custom_message_state--;
  8154. mesh_point++;
  8155. lcd_update(1);
  8156. }
  8157. card.closefile();
  8158. clean_up_after_endstop_move(l_feedmultiply);
  8159. }
  8160. #endif //HEATBED_ANALYSIS
  8161. void temp_compensation_start() {
  8162. custom_message_type = CustomMsg::TempCompPreheat;
  8163. custom_message_state = PINDA_HEAT_T + 1;
  8164. lcd_update(2);
  8165. if (degHotend(active_extruder) > EXTRUDE_MINTEMP) {
  8166. current_position[E_AXIS] -= default_retraction;
  8167. }
  8168. plan_buffer_line_curposXYZE(400, active_extruder);
  8169. current_position[X_AXIS] = PINDA_PREHEAT_X;
  8170. current_position[Y_AXIS] = PINDA_PREHEAT_Y;
  8171. current_position[Z_AXIS] = PINDA_PREHEAT_Z;
  8172. plan_buffer_line_curposXYZE(3000 / 60, active_extruder);
  8173. st_synchronize();
  8174. while (fabs(degBed() - target_temperature_bed) > 1) delay_keep_alive(1000);
  8175. for (int i = 0; i < PINDA_HEAT_T; i++) {
  8176. delay_keep_alive(1000);
  8177. custom_message_state = PINDA_HEAT_T - i;
  8178. if (custom_message_state == 99 || custom_message_state == 9) lcd_update(2); //force whole display redraw if number of digits changed
  8179. else lcd_update(1);
  8180. }
  8181. custom_message_type = CustomMsg::Status;
  8182. custom_message_state = 0;
  8183. }
  8184. void temp_compensation_apply() {
  8185. int i_add;
  8186. int z_shift = 0;
  8187. float z_shift_mm;
  8188. if (calibration_status() == CALIBRATION_STATUS_CALIBRATED) {
  8189. if (target_temperature_bed % 10 == 0 && target_temperature_bed >= 60 && target_temperature_bed <= 100) {
  8190. i_add = (target_temperature_bed - 60) / 10;
  8191. EEPROM_read_B(EEPROM_PROBE_TEMP_SHIFT + i_add * 2, &z_shift);
  8192. z_shift_mm = z_shift / cs.axis_steps_per_unit[Z_AXIS];
  8193. }else {
  8194. //interpolation
  8195. z_shift_mm = temp_comp_interpolation(target_temperature_bed) / cs.axis_steps_per_unit[Z_AXIS];
  8196. }
  8197. printf_P(_N("\nZ shift applied:%.3f\n"), z_shift_mm);
  8198. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS] - z_shift_mm, current_position[E_AXIS], homing_feedrate[Z_AXIS] / 40, active_extruder);
  8199. st_synchronize();
  8200. plan_set_z_position(current_position[Z_AXIS]);
  8201. }
  8202. else {
  8203. //we have no temp compensation data
  8204. }
  8205. }
  8206. float temp_comp_interpolation(float inp_temperature) {
  8207. //cubic spline interpolation
  8208. int n, i, j;
  8209. float h[10], a, b, c, d, sum, s[10] = { 0 }, x[10], F[10], f[10], m[10][10] = { 0 }, temp;
  8210. int shift[10];
  8211. int temp_C[10];
  8212. n = 6; //number of measured points
  8213. shift[0] = 0;
  8214. for (i = 0; i < n; i++) {
  8215. if (i>0) EEPROM_read_B(EEPROM_PROBE_TEMP_SHIFT + (i-1) * 2, &shift[i]); //read shift in steps from EEPROM
  8216. temp_C[i] = 50 + i * 10; //temperature in C
  8217. #ifdef PINDA_THERMISTOR
  8218. temp_C[i] = 35 + i * 5; //temperature in C
  8219. #else
  8220. temp_C[i] = 50 + i * 10; //temperature in C
  8221. #endif
  8222. x[i] = (float)temp_C[i];
  8223. f[i] = (float)shift[i];
  8224. }
  8225. if (inp_temperature < x[0]) return 0;
  8226. for (i = n - 1; i>0; i--) {
  8227. F[i] = (f[i] - f[i - 1]) / (x[i] - x[i - 1]);
  8228. h[i - 1] = x[i] - x[i - 1];
  8229. }
  8230. //*********** formation of h, s , f matrix **************
  8231. for (i = 1; i<n - 1; i++) {
  8232. m[i][i] = 2 * (h[i - 1] + h[i]);
  8233. if (i != 1) {
  8234. m[i][i - 1] = h[i - 1];
  8235. m[i - 1][i] = h[i - 1];
  8236. }
  8237. m[i][n - 1] = 6 * (F[i + 1] - F[i]);
  8238. }
  8239. //*********** forward elimination **************
  8240. for (i = 1; i<n - 2; i++) {
  8241. temp = (m[i + 1][i] / m[i][i]);
  8242. for (j = 1; j <= n - 1; j++)
  8243. m[i + 1][j] -= temp*m[i][j];
  8244. }
  8245. //*********** backward substitution *********
  8246. for (i = n - 2; i>0; i--) {
  8247. sum = 0;
  8248. for (j = i; j <= n - 2; j++)
  8249. sum += m[i][j] * s[j];
  8250. s[i] = (m[i][n - 1] - sum) / m[i][i];
  8251. }
  8252. for (i = 0; i<n - 1; i++)
  8253. if ((x[i] <= inp_temperature && inp_temperature <= x[i + 1]) || (i == n-2 && inp_temperature > x[i + 1])) {
  8254. a = (s[i + 1] - s[i]) / (6 * h[i]);
  8255. b = s[i] / 2;
  8256. c = (f[i + 1] - f[i]) / h[i] - (2 * h[i] * s[i] + s[i + 1] * h[i]) / 6;
  8257. d = f[i];
  8258. sum = a*pow((inp_temperature - x[i]), 3) + b*pow((inp_temperature - x[i]), 2) + c*(inp_temperature - x[i]) + d;
  8259. }
  8260. return sum;
  8261. }
  8262. #ifdef PINDA_THERMISTOR
  8263. float temp_compensation_pinda_thermistor_offset(float temperature_pinda)
  8264. {
  8265. if (!temp_cal_active) return 0;
  8266. if (!calibration_status_pinda()) return 0;
  8267. return temp_comp_interpolation(temperature_pinda) / cs.axis_steps_per_unit[Z_AXIS];
  8268. }
  8269. #endif //PINDA_THERMISTOR
  8270. void long_pause() //long pause print
  8271. {
  8272. st_synchronize();
  8273. start_pause_print = _millis();
  8274. //retract
  8275. current_position[E_AXIS] -= default_retraction;
  8276. plan_buffer_line_curposXYZE(400, active_extruder);
  8277. //lift z
  8278. current_position[Z_AXIS] += Z_PAUSE_LIFT;
  8279. if (current_position[Z_AXIS] > Z_MAX_POS) current_position[Z_AXIS] = Z_MAX_POS;
  8280. plan_buffer_line_curposXYZE(15, active_extruder);
  8281. //Move XY to side
  8282. current_position[X_AXIS] = X_PAUSE_POS;
  8283. current_position[Y_AXIS] = Y_PAUSE_POS;
  8284. plan_buffer_line_curposXYZE(50, active_extruder);
  8285. // Turn off the print fan
  8286. fanSpeed = 0;
  8287. st_synchronize();
  8288. }
  8289. void serialecho_temperatures() {
  8290. float tt = degHotend(active_extruder);
  8291. SERIAL_PROTOCOLPGM("T:");
  8292. SERIAL_PROTOCOL(tt);
  8293. SERIAL_PROTOCOLPGM(" E:");
  8294. SERIAL_PROTOCOL((int)active_extruder);
  8295. SERIAL_PROTOCOLPGM(" B:");
  8296. SERIAL_PROTOCOL_F(degBed(), 1);
  8297. SERIAL_PROTOCOLLN("");
  8298. }
  8299. #ifdef UVLO_SUPPORT
  8300. void uvlo_()
  8301. {
  8302. unsigned long time_start = _millis();
  8303. bool sd_print = card.sdprinting;
  8304. // Conserve power as soon as possible.
  8305. disable_x();
  8306. disable_y();
  8307. #ifdef TMC2130
  8308. tmc2130_set_current_h(Z_AXIS, 20);
  8309. tmc2130_set_current_r(Z_AXIS, 20);
  8310. tmc2130_set_current_h(E_AXIS, 20);
  8311. tmc2130_set_current_r(E_AXIS, 20);
  8312. #endif //TMC2130
  8313. // Indicate that the interrupt has been triggered.
  8314. // SERIAL_ECHOLNPGM("UVLO");
  8315. // Read out the current Z motor microstep counter. This will be later used
  8316. // for reaching the zero full step before powering off.
  8317. uint16_t z_microsteps = 0;
  8318. #ifdef TMC2130
  8319. z_microsteps = tmc2130_rd_MSCNT(Z_TMC2130_CS);
  8320. #endif //TMC2130
  8321. // Calculate the file position, from which to resume this print.
  8322. long sd_position = sdpos_atomic; //atomic sd position of last command added in queue
  8323. {
  8324. uint16_t sdlen_planner = planner_calc_sd_length(); //length of sd commands in planner
  8325. sd_position -= sdlen_planner;
  8326. uint16_t sdlen_cmdqueue = cmdqueue_calc_sd_length(); //length of sd commands in cmdqueue
  8327. sd_position -= sdlen_cmdqueue;
  8328. if (sd_position < 0) sd_position = 0;
  8329. }
  8330. // Backup the feedrate in mm/min.
  8331. int feedrate_bckp = blocks_queued() ? (block_buffer[block_buffer_tail].nominal_speed * 60.f) : feedrate;
  8332. // After this call, the planner queue is emptied and the current_position is set to a current logical coordinate.
  8333. // The logical coordinate will likely differ from the machine coordinate if the skew calibration and mesh bed leveling
  8334. // are in action.
  8335. planner_abort_hard();
  8336. // Store the current extruder position.
  8337. eeprom_update_float((float*)(EEPROM_UVLO_CURRENT_POSITION_E), st_get_position_mm(E_AXIS));
  8338. eeprom_update_byte((uint8_t*)EEPROM_UVLO_E_ABS, axis_relative_modes[3]?0:1);
  8339. // Clean the input command queue.
  8340. cmdqueue_reset();
  8341. card.sdprinting = false;
  8342. // card.closefile();
  8343. // Enable stepper driver interrupt to move Z axis.
  8344. // This should be fine as the planner and command queues are empty and the SD card printing is disabled.
  8345. //FIXME one may want to disable serial lines at this point of time to avoid interfering with the command queue,
  8346. // though it should not happen that the command queue is touched as the plan_buffer_line always succeed without blocking.
  8347. sei();
  8348. plan_buffer_line(
  8349. current_position[X_AXIS],
  8350. current_position[Y_AXIS],
  8351. current_position[Z_AXIS],
  8352. current_position[E_AXIS] - default_retraction,
  8353. 95, active_extruder);
  8354. st_synchronize();
  8355. disable_e0();
  8356. plan_buffer_line(
  8357. current_position[X_AXIS],
  8358. current_position[Y_AXIS],
  8359. current_position[Z_AXIS] + UVLO_Z_AXIS_SHIFT + float((1024 - z_microsteps + 7) >> 4) / cs.axis_steps_per_unit[Z_AXIS],
  8360. current_position[E_AXIS] - default_retraction,
  8361. 40, active_extruder);
  8362. st_synchronize();
  8363. disable_e0();
  8364. plan_buffer_line(
  8365. current_position[X_AXIS],
  8366. current_position[Y_AXIS],
  8367. current_position[Z_AXIS] + UVLO_Z_AXIS_SHIFT + float((1024 - z_microsteps + 7) >> 4) / cs.axis_steps_per_unit[Z_AXIS],
  8368. current_position[E_AXIS] - default_retraction,
  8369. 40, active_extruder);
  8370. st_synchronize();
  8371. disable_e0();
  8372. // Move Z up to the next 0th full step.
  8373. // Write the file position.
  8374. eeprom_update_dword((uint32_t*)(EEPROM_FILE_POSITION), sd_position);
  8375. // Store the mesh bed leveling offsets. This is 2*7*7=98 bytes, which takes 98*3.4us=333us in worst case.
  8376. for (int8_t mesh_point = 0; mesh_point < MESH_NUM_X_POINTS * MESH_NUM_Y_POINTS; ++ mesh_point) {
  8377. uint8_t ix = mesh_point % MESH_NUM_X_POINTS; // from 0 to MESH_NUM_X_POINTS - 1
  8378. uint8_t iy = mesh_point / MESH_NUM_X_POINTS;
  8379. // Scale the z value to 1u resolution.
  8380. int16_t v = mbl.active ? int16_t(floor(mbl.z_values[iy][ix] * 1000.f + 0.5f)) : 0;
  8381. eeprom_update_word((uint16_t*)(EEPROM_UVLO_MESH_BED_LEVELING_FULL +2*mesh_point), *reinterpret_cast<uint16_t*>(&v));
  8382. }
  8383. // Read out the current Z motor microstep counter. This will be later used
  8384. // for reaching the zero full step before powering off.
  8385. eeprom_update_word((uint16_t*)(EEPROM_UVLO_Z_MICROSTEPS), z_microsteps);
  8386. // Store the current position.
  8387. eeprom_update_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 0), current_position[X_AXIS]);
  8388. eeprom_update_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 4), current_position[Y_AXIS]);
  8389. eeprom_update_float((float*)EEPROM_UVLO_CURRENT_POSITION_Z , current_position[Z_AXIS]);
  8390. // Store the current feed rate, temperatures, fan speed and extruder multipliers (flow rates)
  8391. EEPROM_save_B(EEPROM_UVLO_FEEDRATE, &feedrate_bckp);
  8392. eeprom_update_byte((uint8_t*)EEPROM_UVLO_TARGET_HOTEND, target_temperature[active_extruder]);
  8393. eeprom_update_byte((uint8_t*)EEPROM_UVLO_TARGET_BED, target_temperature_bed);
  8394. eeprom_update_byte((uint8_t*)EEPROM_UVLO_FAN_SPEED, fanSpeed);
  8395. eeprom_update_float((float*)(EEPROM_EXTRUDER_MULTIPLIER_0), extruder_multiplier[0]);
  8396. #if EXTRUDERS > 1
  8397. eeprom_update_float((float*)(EEPROM_EXTRUDER_MULTIPLIER_1), extruder_multiplier[1]);
  8398. #if EXTRUDERS > 2
  8399. eeprom_update_float((float*)(EEPROM_EXTRUDER_MULTIPLIER_2), extruder_multiplier[2]);
  8400. #endif
  8401. #endif
  8402. eeprom_update_word((uint16_t*)(EEPROM_EXTRUDEMULTIPLY), (uint16_t)extrudemultiply);
  8403. // Finaly store the "power outage" flag.
  8404. if(sd_print) eeprom_update_byte((uint8_t*)EEPROM_UVLO, 1);
  8405. st_synchronize();
  8406. printf_P(_N("stps%d\n"), tmc2130_rd_MSCNT(Z_AXIS));
  8407. // Increment power failure counter
  8408. eeprom_update_byte((uint8_t*)EEPROM_POWER_COUNT, eeprom_read_byte((uint8_t*)EEPROM_POWER_COUNT) + 1);
  8409. eeprom_update_word((uint16_t*)EEPROM_POWER_COUNT_TOT, eeprom_read_word((uint16_t*)EEPROM_POWER_COUNT_TOT) + 1);
  8410. printf_P(_N("UVLO - end %d\n"), _millis() - time_start);
  8411. #if 0
  8412. // Move the print head to the side of the print until all the power stored in the power supply capacitors is depleted.
  8413. current_position[X_AXIS] = (current_position[X_AXIS] < 0.5f * (X_MIN_POS + X_MAX_POS)) ? X_MIN_POS : X_MAX_POS;
  8414. plan_buffer_line_curposXYZE(500, active_extruder);
  8415. st_synchronize();
  8416. #endif
  8417. wdt_enable(WDTO_500MS);
  8418. WRITE(BEEPER,HIGH);
  8419. while(1)
  8420. ;
  8421. }
  8422. void uvlo_tiny()
  8423. {
  8424. uint16_t z_microsteps=0;
  8425. // Conserve power as soon as possible.
  8426. disable_x();
  8427. disable_y();
  8428. disable_e0();
  8429. #ifdef TMC2130
  8430. tmc2130_set_current_h(Z_AXIS, 20);
  8431. tmc2130_set_current_r(Z_AXIS, 20);
  8432. #endif //TMC2130
  8433. // Read out the current Z motor microstep counter
  8434. #ifdef TMC2130
  8435. z_microsteps=tmc2130_rd_MSCNT(Z_TMC2130_CS);
  8436. #endif //TMC2130
  8437. planner_abort_hard();
  8438. //save current position only in case, where the printer is moving on Z axis, which is only when EEPROM_UVLO is 1
  8439. //EEPROM_UVLO is 1 after normal uvlo or after recover_print(), when the extruder is moving on Z axis after rehome
  8440. if(eeprom_read_byte((uint8_t*)EEPROM_UVLO)!=2){
  8441. eeprom_update_float((float*)(EEPROM_UVLO_TINY_CURRENT_POSITION_Z), current_position[Z_AXIS]);
  8442. eeprom_update_word((uint16_t*)(EEPROM_UVLO_TINY_Z_MICROSTEPS),z_microsteps);
  8443. }
  8444. //after multiple power panics current Z axis is unknow
  8445. //in this case we set EEPROM_UVLO_TINY_CURRENT_POSITION_Z to last know position which is EEPROM_UVLO_CURRENT_POSITION_Z
  8446. if(eeprom_read_float((float*)EEPROM_UVLO_TINY_CURRENT_POSITION_Z) < 0.001f){
  8447. eeprom_update_float((float*)(EEPROM_UVLO_TINY_CURRENT_POSITION_Z), eeprom_read_float((float*)EEPROM_UVLO_CURRENT_POSITION_Z));
  8448. eeprom_update_word((uint16_t*)(EEPROM_UVLO_TINY_Z_MICROSTEPS), eeprom_read_word((uint16_t*)EEPROM_UVLO_Z_MICROSTEPS));
  8449. }
  8450. // Finaly store the "power outage" flag.
  8451. eeprom_update_byte((uint8_t*)EEPROM_UVLO,2);
  8452. // Increment power failure counter
  8453. eeprom_update_byte((uint8_t*)EEPROM_POWER_COUNT, eeprom_read_byte((uint8_t*)EEPROM_POWER_COUNT) + 1);
  8454. eeprom_update_word((uint16_t*)EEPROM_POWER_COUNT_TOT, eeprom_read_word((uint16_t*)EEPROM_POWER_COUNT_TOT) + 1);
  8455. wdt_enable(WDTO_500MS);
  8456. WRITE(BEEPER,HIGH);
  8457. while(1)
  8458. ;
  8459. }
  8460. #endif //UVLO_SUPPORT
  8461. #if (defined(FANCHECK) && defined(TACH_1) && (TACH_1 >-1))
  8462. void setup_fan_interrupt() {
  8463. //INT7
  8464. DDRE &= ~(1 << 7); //input pin
  8465. PORTE &= ~(1 << 7); //no internal pull-up
  8466. //start with sensing rising edge
  8467. EICRB &= ~(1 << 6);
  8468. EICRB |= (1 << 7);
  8469. //enable INT7 interrupt
  8470. EIMSK |= (1 << 7);
  8471. }
  8472. // The fan interrupt is triggered at maximum 325Hz (may be a bit more due to component tollerances),
  8473. // and it takes 4.24 us to process (the interrupt invocation overhead not taken into account).
  8474. ISR(INT7_vect) {
  8475. //measuring speed now works for fanSpeed > 18 (approximately), which is sufficient because MIN_PRINT_FAN_SPEED is higher
  8476. #ifdef FAN_SOFT_PWM
  8477. if (!fan_measuring || (fanSpeedSoftPwm < MIN_PRINT_FAN_SPEED)) return;
  8478. #else //FAN_SOFT_PWM
  8479. if (fanSpeed < MIN_PRINT_FAN_SPEED) return;
  8480. #endif //FAN_SOFT_PWM
  8481. if ((1 << 6) & EICRB) { //interrupt was triggered by rising edge
  8482. t_fan_rising_edge = millis_nc();
  8483. }
  8484. else { //interrupt was triggered by falling edge
  8485. if ((millis_nc() - t_fan_rising_edge) >= FAN_PULSE_WIDTH_LIMIT) {//this pulse was from sensor and not from pwm
  8486. fan_edge_counter[1] += 2; //we are currently counting all edges so lets count two edges for one pulse
  8487. }
  8488. }
  8489. EICRB ^= (1 << 6); //change edge
  8490. }
  8491. #endif
  8492. #ifdef UVLO_SUPPORT
  8493. void setup_uvlo_interrupt() {
  8494. DDRE &= ~(1 << 4); //input pin
  8495. PORTE &= ~(1 << 4); //no internal pull-up
  8496. //sensing falling edge
  8497. EICRB |= (1 << 0);
  8498. EICRB &= ~(1 << 1);
  8499. //enable INT4 interrupt
  8500. EIMSK |= (1 << 4);
  8501. }
  8502. ISR(INT4_vect) {
  8503. EIMSK &= ~(1 << 4); //disable INT4 interrupt to make sure that this code will be executed just once
  8504. SERIAL_ECHOLNPGM("INT4");
  8505. //fire normal uvlo only in case where EEPROM_UVLO is 0 or if IS_SD_PRINTING is 1.
  8506. if(PRINTER_ACTIVE && (!(eeprom_read_byte((uint8_t*)EEPROM_UVLO)))) uvlo_();
  8507. if(eeprom_read_byte((uint8_t*)EEPROM_UVLO)) uvlo_tiny();
  8508. }
  8509. void recover_print(uint8_t automatic) {
  8510. char cmd[30];
  8511. lcd_update_enable(true);
  8512. lcd_update(2);
  8513. lcd_setstatuspgm(_i("Recovering print "));////MSG_RECOVERING_PRINT c=20 r=1
  8514. bool bTiny=(eeprom_read_byte((uint8_t*)EEPROM_UVLO)==2);
  8515. recover_machine_state_after_power_panic(bTiny); //recover position, temperatures and extrude_multipliers
  8516. // Lift the print head, so one may remove the excess priming material.
  8517. if(!bTiny&&(current_position[Z_AXIS]<25))
  8518. enquecommand_P(PSTR("G1 Z25 F800"));
  8519. // Home X and Y axes. Homing just X and Y shall not touch the babystep and the world2machine transformation status.
  8520. enquecommand_P(PSTR("G28 X Y"));
  8521. // Set the target bed and nozzle temperatures and wait.
  8522. sprintf_P(cmd, PSTR("M109 S%d"), target_temperature[active_extruder]);
  8523. enquecommand(cmd);
  8524. sprintf_P(cmd, PSTR("M190 S%d"), target_temperature_bed);
  8525. enquecommand(cmd);
  8526. enquecommand_P(PSTR("M83")); //E axis relative mode
  8527. //enquecommand_P(PSTR("G1 E5 F120")); //Extrude some filament to stabilize pessure
  8528. // If not automatically recoreverd (long power loss), extrude extra filament to stabilize
  8529. if(automatic == 0){
  8530. enquecommand_P(PSTR("G1 E5 F120")); //Extrude some filament to stabilize pessure
  8531. }
  8532. enquecommand_P(PSTR("G1 E" STRINGIFY(-default_retraction)" F480"));
  8533. printf_P(_N("After waiting for temp:\nCurrent pos X_AXIS:%.3f\nCurrent pos Y_AXIS:%.3f\n"), current_position[X_AXIS], current_position[Y_AXIS]);
  8534. // Restart the print.
  8535. restore_print_from_eeprom();
  8536. printf_P(_N("Current pos Z_AXIS:%.3f\nCurrent pos E_AXIS:%.3f\n"), current_position[Z_AXIS], current_position[E_AXIS]);
  8537. }
  8538. void recover_machine_state_after_power_panic(bool bTiny)
  8539. {
  8540. char cmd[30];
  8541. // 1) Recover the logical cordinates at the time of the power panic.
  8542. // The logical XY coordinates are needed to recover the machine Z coordinate corrected by the mesh bed leveling.
  8543. current_position[X_AXIS] = eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 0));
  8544. current_position[Y_AXIS] = eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 4));
  8545. // 2) Restore the mesh bed leveling offsets. This is 2*7*7=98 bytes, which takes 98*3.4us=333us in worst case.
  8546. mbl.active = false;
  8547. for (int8_t mesh_point = 0; mesh_point < MESH_NUM_X_POINTS * MESH_NUM_Y_POINTS; ++ mesh_point) {
  8548. uint8_t ix = mesh_point % MESH_NUM_X_POINTS; // from 0 to MESH_NUM_X_POINTS - 1
  8549. uint8_t iy = mesh_point / MESH_NUM_X_POINTS;
  8550. // Scale the z value to 10u resolution.
  8551. int16_t v;
  8552. eeprom_read_block(&v, (void*)(EEPROM_UVLO_MESH_BED_LEVELING_FULL+2*mesh_point), 2);
  8553. if (v != 0)
  8554. mbl.active = true;
  8555. mbl.z_values[iy][ix] = float(v) * 0.001f;
  8556. }
  8557. // Recover the logical coordinate of the Z axis at the time of the power panic.
  8558. // The current position after power panic is moved to the next closest 0th full step.
  8559. if(bTiny){
  8560. current_position[Z_AXIS] = eeprom_read_float((float*)(EEPROM_UVLO_TINY_CURRENT_POSITION_Z))
  8561. + float((1024 - eeprom_read_word((uint16_t*)(EEPROM_UVLO_TINY_Z_MICROSTEPS))
  8562. + 7) >> 4) / cs.axis_steps_per_unit[Z_AXIS];
  8563. //after multiple power panics the print is slightly in the air so get it little bit down.
  8564. //Not exactly sure why is this happening, but it has something to do with bed leveling and world2machine coordinates
  8565. current_position[Z_AXIS] -= 0.4*mbl.get_z(current_position[X_AXIS], current_position[Y_AXIS]);
  8566. }
  8567. else{
  8568. current_position[Z_AXIS] = eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION_Z)) +
  8569. UVLO_Z_AXIS_SHIFT + float((1024 - eeprom_read_word((uint16_t*)(EEPROM_UVLO_Z_MICROSTEPS))
  8570. + 7) >> 4) / cs.axis_steps_per_unit[Z_AXIS];
  8571. }
  8572. if (eeprom_read_byte((uint8_t*)EEPROM_UVLO_E_ABS)) {
  8573. current_position[E_AXIS] = eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION_E));
  8574. sprintf_P(cmd, PSTR("G92 E"));
  8575. dtostrf(current_position[E_AXIS], 6, 3, cmd + strlen(cmd));
  8576. enquecommand(cmd);
  8577. }
  8578. memcpy(destination, current_position, sizeof(destination));
  8579. SERIAL_ECHOPGM("recover_machine_state_after_power_panic, initial ");
  8580. print_world_coordinates();
  8581. // 3) Initialize the logical to physical coordinate system transformation.
  8582. world2machine_initialize();
  8583. // SERIAL_ECHOPGM("recover_machine_state_after_power_panic, initial ");
  8584. // print_mesh_bed_leveling_table();
  8585. // 4) Load the baby stepping value, which is expected to be active at the time of power panic.
  8586. // The baby stepping value is used to reset the physical Z axis when rehoming the Z axis.
  8587. babystep_load();
  8588. // 5) Set the physical positions from the logical positions using the world2machine transformation and the active bed leveling.
  8589. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  8590. // 6) Power up the motors, mark their positions as known.
  8591. //FIXME Verfiy, whether the X and Y axes should be powered up here, as they will later be re-homed anyway.
  8592. axis_known_position[X_AXIS] = true; enable_x();
  8593. axis_known_position[Y_AXIS] = true; enable_y();
  8594. axis_known_position[Z_AXIS] = true; enable_z();
  8595. SERIAL_ECHOPGM("recover_machine_state_after_power_panic, initial ");
  8596. print_physical_coordinates();
  8597. // 7) Recover the target temperatures.
  8598. target_temperature[active_extruder] = eeprom_read_byte((uint8_t*)EEPROM_UVLO_TARGET_HOTEND);
  8599. target_temperature_bed = eeprom_read_byte((uint8_t*)EEPROM_UVLO_TARGET_BED);
  8600. // 8) Recover extruder multipilers
  8601. extruder_multiplier[0] = eeprom_read_float((float*)(EEPROM_EXTRUDER_MULTIPLIER_0));
  8602. #if EXTRUDERS > 1
  8603. extruder_multiplier[1] = eeprom_read_float((float*)(EEPROM_EXTRUDER_MULTIPLIER_1));
  8604. #if EXTRUDERS > 2
  8605. extruder_multiplier[2] = eeprom_read_float((float*)(EEPROM_EXTRUDER_MULTIPLIER_2));
  8606. #endif
  8607. #endif
  8608. extrudemultiply = (int)eeprom_read_word((uint16_t*)(EEPROM_EXTRUDEMULTIPLY));
  8609. }
  8610. void restore_print_from_eeprom() {
  8611. int feedrate_rec;
  8612. uint8_t fan_speed_rec;
  8613. char cmd[30];
  8614. char filename[13];
  8615. uint8_t depth = 0;
  8616. char dir_name[9];
  8617. fan_speed_rec = eeprom_read_byte((uint8_t*)EEPROM_UVLO_FAN_SPEED);
  8618. EEPROM_read_B(EEPROM_UVLO_FEEDRATE, &feedrate_rec);
  8619. SERIAL_ECHOPGM("Feedrate:");
  8620. MYSERIAL.println(feedrate_rec);
  8621. depth = eeprom_read_byte((uint8_t*)EEPROM_DIR_DEPTH);
  8622. MYSERIAL.println(int(depth));
  8623. for (int i = 0; i < depth; i++) {
  8624. for (int j = 0; j < 8; j++) {
  8625. dir_name[j] = eeprom_read_byte((uint8_t*)EEPROM_DIRS + j + 8 * i);
  8626. }
  8627. dir_name[8] = '\0';
  8628. MYSERIAL.println(dir_name);
  8629. strcpy(dir_names[i], dir_name);
  8630. card.chdir(dir_name);
  8631. }
  8632. for (int i = 0; i < 8; i++) {
  8633. filename[i] = eeprom_read_byte((uint8_t*)EEPROM_FILENAME + i);
  8634. }
  8635. filename[8] = '\0';
  8636. MYSERIAL.print(filename);
  8637. strcat_P(filename, PSTR(".gco"));
  8638. sprintf_P(cmd, PSTR("M23 %s"), filename);
  8639. enquecommand(cmd);
  8640. uint32_t position = eeprom_read_dword((uint32_t*)(EEPROM_FILE_POSITION));
  8641. SERIAL_ECHOPGM("Position read from eeprom:");
  8642. MYSERIAL.println(position);
  8643. // E axis relative mode.
  8644. enquecommand_P(PSTR("M83"));
  8645. // Move to the XY print position in logical coordinates, where the print has been killed.
  8646. strcpy_P(cmd, PSTR("G1 X")); strcat(cmd, ftostr32(eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 0))));
  8647. strcat_P(cmd, PSTR(" Y")); strcat(cmd, ftostr32(eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 4))));
  8648. strcat_P(cmd, PSTR(" F2000"));
  8649. enquecommand(cmd);
  8650. //moving on Z axis ahead, set EEPROM_UVLO to 1, so normal uvlo can fire
  8651. eeprom_update_byte((uint8_t*)EEPROM_UVLO,1);
  8652. // Move the Z axis down to the print, in logical coordinates.
  8653. strcpy_P(cmd, PSTR("G1 Z")); strcat(cmd, ftostr32(eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION_Z))));
  8654. enquecommand(cmd);
  8655. // Unretract.
  8656. enquecommand_P(PSTR("G1 E" STRINGIFY(2*default_retraction)" F480"));
  8657. // Set the feedrate saved at the power panic.
  8658. sprintf_P(cmd, PSTR("G1 F%d"), feedrate_rec);
  8659. enquecommand(cmd);
  8660. if (eeprom_read_byte((uint8_t*)EEPROM_UVLO_E_ABS))
  8661. {
  8662. enquecommand_P(PSTR("M82")); //E axis abslute mode
  8663. }
  8664. // Set the fan speed saved at the power panic.
  8665. strcpy_P(cmd, PSTR("M106 S"));
  8666. strcat(cmd, itostr3(int(fan_speed_rec)));
  8667. enquecommand(cmd);
  8668. // Set a position in the file.
  8669. sprintf_P(cmd, PSTR("M26 S%lu"), position);
  8670. enquecommand(cmd);
  8671. enquecommand_P(PSTR("G4 S0"));
  8672. enquecommand_P(PSTR("PRUSA uvlo"));
  8673. }
  8674. #endif //UVLO_SUPPORT
  8675. //! @brief Immediately stop print moves
  8676. //!
  8677. //! Immediately stop print moves, save current extruder temperature and position to RAM.
  8678. //! If printing from sd card, position in file is saved.
  8679. //! If printing from USB, line number is saved.
  8680. //!
  8681. //! @param z_move
  8682. //! @param e_move
  8683. void stop_and_save_print_to_ram(float z_move, float e_move)
  8684. {
  8685. if (saved_printing) return;
  8686. #if 0
  8687. unsigned char nplanner_blocks;
  8688. #endif
  8689. unsigned char nlines;
  8690. uint16_t sdlen_planner;
  8691. uint16_t sdlen_cmdqueue;
  8692. cli();
  8693. if (card.sdprinting) {
  8694. #if 0
  8695. nplanner_blocks = number_of_blocks();
  8696. #endif
  8697. saved_sdpos = sdpos_atomic; //atomic sd position of last command added in queue
  8698. sdlen_planner = planner_calc_sd_length(); //length of sd commands in planner
  8699. saved_sdpos -= sdlen_planner;
  8700. sdlen_cmdqueue = cmdqueue_calc_sd_length(); //length of sd commands in cmdqueue
  8701. saved_sdpos -= sdlen_cmdqueue;
  8702. saved_printing_type = PRINTING_TYPE_SD;
  8703. }
  8704. else if (is_usb_printing) { //reuse saved_sdpos for storing line number
  8705. saved_sdpos = gcode_LastN; //start with line number of command added recently to cmd queue
  8706. //reuse planner_calc_sd_length function for getting number of lines of commands in planner:
  8707. nlines = planner_calc_sd_length(); //number of lines of commands in planner
  8708. saved_sdpos -= nlines;
  8709. saved_sdpos -= buflen; //number of blocks in cmd buffer
  8710. saved_printing_type = PRINTING_TYPE_USB;
  8711. }
  8712. else {
  8713. saved_printing_type = PRINTING_TYPE_NONE;
  8714. //not sd printing nor usb printing
  8715. }
  8716. #if 0
  8717. SERIAL_ECHOPGM("SDPOS_ATOMIC="); MYSERIAL.println(sdpos_atomic, DEC);
  8718. SERIAL_ECHOPGM("SDPOS="); MYSERIAL.println(card.get_sdpos(), DEC);
  8719. SERIAL_ECHOPGM("SDLEN_PLAN="); MYSERIAL.println(sdlen_planner, DEC);
  8720. SERIAL_ECHOPGM("SDLEN_CMDQ="); MYSERIAL.println(sdlen_cmdqueue, DEC);
  8721. SERIAL_ECHOPGM("PLANNERBLOCKS="); MYSERIAL.println(int(nplanner_blocks), DEC);
  8722. SERIAL_ECHOPGM("SDSAVED="); MYSERIAL.println(saved_sdpos, DEC);
  8723. //SERIAL_ECHOPGM("SDFILELEN="); MYSERIAL.println(card.fileSize(), DEC);
  8724. {
  8725. card.setIndex(saved_sdpos);
  8726. SERIAL_ECHOLNPGM("Content of planner buffer: ");
  8727. for (unsigned int idx = 0; idx < sdlen_planner; ++ idx)
  8728. MYSERIAL.print(char(card.get()));
  8729. SERIAL_ECHOLNPGM("Content of command buffer: ");
  8730. for (unsigned int idx = 0; idx < sdlen_cmdqueue; ++ idx)
  8731. MYSERIAL.print(char(card.get()));
  8732. SERIAL_ECHOLNPGM("End of command buffer");
  8733. }
  8734. {
  8735. // Print the content of the planner buffer, line by line:
  8736. card.setIndex(saved_sdpos);
  8737. int8_t iline = 0;
  8738. for (unsigned char idx = block_buffer_tail; idx != block_buffer_head; idx = (idx + 1) & (BLOCK_BUFFER_SIZE - 1), ++ iline) {
  8739. SERIAL_ECHOPGM("Planner line (from file): ");
  8740. MYSERIAL.print(int(iline), DEC);
  8741. SERIAL_ECHOPGM(", length: ");
  8742. MYSERIAL.print(block_buffer[idx].sdlen, DEC);
  8743. SERIAL_ECHOPGM(", steps: (");
  8744. MYSERIAL.print(block_buffer[idx].steps_x, DEC);
  8745. SERIAL_ECHOPGM(",");
  8746. MYSERIAL.print(block_buffer[idx].steps_y, DEC);
  8747. SERIAL_ECHOPGM(",");
  8748. MYSERIAL.print(block_buffer[idx].steps_z, DEC);
  8749. SERIAL_ECHOPGM(",");
  8750. MYSERIAL.print(block_buffer[idx].steps_e, DEC);
  8751. SERIAL_ECHOPGM("), events: ");
  8752. MYSERIAL.println(block_buffer[idx].step_event_count, DEC);
  8753. for (int len = block_buffer[idx].sdlen; len > 0; -- len)
  8754. MYSERIAL.print(char(card.get()));
  8755. }
  8756. }
  8757. {
  8758. // Print the content of the command buffer, line by line:
  8759. int8_t iline = 0;
  8760. union {
  8761. struct {
  8762. char lo;
  8763. char hi;
  8764. } lohi;
  8765. uint16_t value;
  8766. } sdlen_single;
  8767. int _bufindr = bufindr;
  8768. for (int _buflen = buflen; _buflen > 0; ++ iline) {
  8769. if (cmdbuffer[_bufindr] == CMDBUFFER_CURRENT_TYPE_SDCARD) {
  8770. sdlen_single.lohi.lo = cmdbuffer[_bufindr + 1];
  8771. sdlen_single.lohi.hi = cmdbuffer[_bufindr + 2];
  8772. }
  8773. SERIAL_ECHOPGM("Buffer line (from buffer): ");
  8774. MYSERIAL.print(int(iline), DEC);
  8775. SERIAL_ECHOPGM(", type: ");
  8776. MYSERIAL.print(int(cmdbuffer[_bufindr]), DEC);
  8777. SERIAL_ECHOPGM(", len: ");
  8778. MYSERIAL.println(sdlen_single.value, DEC);
  8779. // Print the content of the buffer line.
  8780. MYSERIAL.println(cmdbuffer + _bufindr + CMDHDRSIZE);
  8781. SERIAL_ECHOPGM("Buffer line (from file): ");
  8782. MYSERIAL.println(int(iline), DEC);
  8783. for (; sdlen_single.value > 0; -- sdlen_single.value)
  8784. MYSERIAL.print(char(card.get()));
  8785. if (-- _buflen == 0)
  8786. break;
  8787. // First skip the current command ID and iterate up to the end of the string.
  8788. for (_bufindr += CMDHDRSIZE; cmdbuffer[_bufindr] != 0; ++ _bufindr) ;
  8789. // Second, skip the end of string null character and iterate until a nonzero command ID is found.
  8790. for (++ _bufindr; _bufindr < sizeof(cmdbuffer) && cmdbuffer[_bufindr] == 0; ++ _bufindr) ;
  8791. // If the end of the buffer was empty,
  8792. if (_bufindr == sizeof(cmdbuffer)) {
  8793. // skip to the start and find the nonzero command.
  8794. for (_bufindr = 0; cmdbuffer[_bufindr] == 0; ++ _bufindr) ;
  8795. }
  8796. }
  8797. }
  8798. #endif
  8799. #if 0
  8800. saved_feedrate2 = feedrate; //save feedrate
  8801. #else
  8802. // Try to deduce the feedrate from the first block of the planner.
  8803. // Speed is in mm/min.
  8804. saved_feedrate2 = blocks_queued() ? (block_buffer[block_buffer_tail].nominal_speed * 60.f) : feedrate;
  8805. #endif
  8806. planner_abort_hard(); //abort printing
  8807. memcpy(saved_pos, current_position, sizeof(saved_pos));
  8808. saved_active_extruder = active_extruder; //save active_extruder
  8809. saved_extruder_temperature = degTargetHotend(active_extruder);
  8810. saved_extruder_under_pressure = extruder_under_pressure; //extruder under pressure flag - currently unused
  8811. saved_extruder_relative_mode = axis_relative_modes[E_AXIS];
  8812. saved_fanSpeed = fanSpeed;
  8813. cmdqueue_reset(); //empty cmdqueue
  8814. card.sdprinting = false;
  8815. // card.closefile();
  8816. saved_printing = true;
  8817. // We may have missed a stepper timer interrupt. Be safe than sorry, reset the stepper timer before re-enabling interrupts.
  8818. st_reset_timer();
  8819. sei();
  8820. if ((z_move != 0) || (e_move != 0)) { // extruder or z move
  8821. #if 1
  8822. // Rather than calling plan_buffer_line directly, push the move into the command queue,
  8823. char buf[48];
  8824. // First unretract (relative extrusion)
  8825. if(!saved_extruder_relative_mode){
  8826. enquecommand(PSTR("M83"), true);
  8827. }
  8828. //retract 45mm/s
  8829. // A single sprintf may not be faster, but is definitely 20B shorter
  8830. // than a sequence of commands building the string piece by piece
  8831. // A snprintf would have been a safer call, but since it is not used
  8832. // in the whole program, its implementation would bring more bytes to the total size
  8833. // The behavior of dtostrf 8,3 should be roughly the same as %-0.3
  8834. sprintf_P(buf, PSTR("G1 E%-0.3f F2700"), e_move);
  8835. enquecommand(buf, false);
  8836. // Then lift Z axis
  8837. sprintf_P(buf, PSTR("G1 Z%-0.3f F%-0.3f"), saved_pos[Z_AXIS] + z_move, homing_feedrate[Z_AXIS]);
  8838. // At this point the command queue is empty.
  8839. enquecommand(buf, false);
  8840. // If this call is invoked from the main Arduino loop() function, let the caller know that the command
  8841. // in the command queue is not the original command, but a new one, so it should not be removed from the queue.
  8842. repeatcommand_front();
  8843. #else
  8844. plan_buffer_line(saved_pos[X_AXIS], saved_pos[Y_AXIS], saved_pos[Z_AXIS] + z_move, saved_pos[E_AXIS] + e_move, homing_feedrate[Z_AXIS], active_extruder);
  8845. st_synchronize(); //wait moving
  8846. memcpy(current_position, saved_pos, sizeof(saved_pos));
  8847. memcpy(destination, current_position, sizeof(destination));
  8848. #endif
  8849. }
  8850. }
  8851. //! @brief Restore print from ram
  8852. //!
  8853. //! Restore print saved by stop_and_save_print_to_ram(). Is blocking, restores
  8854. //! print fan speed, waits for extruder temperature restore, then restores
  8855. //! position and continues print moves.
  8856. //!
  8857. //! Internally lcd_update() is called by wait_for_heater().
  8858. //!
  8859. //! @param e_move
  8860. void restore_print_from_ram_and_continue(float e_move)
  8861. {
  8862. if (!saved_printing) return;
  8863. #ifdef FANCHECK
  8864. // Do not allow resume printing if fans are still not ok
  8865. if ((fan_check_error != EFCE_OK) && (fan_check_error != EFCE_FIXED)) return;
  8866. if (fan_check_error == EFCE_FIXED) fan_check_error = EFCE_OK; //reenable serial stream processing if printing from usb
  8867. #endif
  8868. // for (int axis = X_AXIS; axis <= E_AXIS; axis++)
  8869. // current_position[axis] = st_get_position_mm(axis);
  8870. active_extruder = saved_active_extruder; //restore active_extruder
  8871. fanSpeed = saved_fanSpeed;
  8872. if (degTargetHotend(saved_active_extruder) != saved_extruder_temperature)
  8873. {
  8874. setTargetHotendSafe(saved_extruder_temperature, saved_active_extruder);
  8875. heating_status = 1;
  8876. wait_for_heater(_millis(), saved_active_extruder);
  8877. heating_status = 2;
  8878. }
  8879. feedrate = saved_feedrate2; //restore feedrate
  8880. axis_relative_modes[E_AXIS] = saved_extruder_relative_mode;
  8881. float e = saved_pos[E_AXIS] - e_move;
  8882. plan_set_e_position(e);
  8883. #ifdef FANCHECK
  8884. fans_check_enabled = false;
  8885. #endif
  8886. //first move print head in XY to the saved position:
  8887. plan_buffer_line(saved_pos[X_AXIS], saved_pos[Y_AXIS], current_position[Z_AXIS], saved_pos[E_AXIS] - e_move, homing_feedrate[Z_AXIS]/13, active_extruder);
  8888. st_synchronize();
  8889. //then move Z
  8890. plan_buffer_line(saved_pos[X_AXIS], saved_pos[Y_AXIS], saved_pos[Z_AXIS], saved_pos[E_AXIS] - e_move, homing_feedrate[Z_AXIS]/13, active_extruder);
  8891. st_synchronize();
  8892. //and finaly unretract (35mm/s)
  8893. plan_buffer_line(saved_pos[X_AXIS], saved_pos[Y_AXIS], saved_pos[Z_AXIS], saved_pos[E_AXIS], 35, active_extruder);
  8894. st_synchronize();
  8895. #ifdef FANCHECK
  8896. fans_check_enabled = true;
  8897. #endif
  8898. memcpy(current_position, saved_pos, sizeof(saved_pos));
  8899. memcpy(destination, current_position, sizeof(destination));
  8900. if (saved_printing_type == PRINTING_TYPE_SD) { //was sd printing
  8901. card.setIndex(saved_sdpos);
  8902. sdpos_atomic = saved_sdpos;
  8903. card.sdprinting = true;
  8904. }
  8905. else if (saved_printing_type == PRINTING_TYPE_USB) { //was usb printing
  8906. gcode_LastN = saved_sdpos; //saved_sdpos was reused for storing line number when usb printing
  8907. serial_count = 0;
  8908. FlushSerialRequestResend();
  8909. }
  8910. else {
  8911. //not sd printing nor usb printing
  8912. }
  8913. SERIAL_PROTOCOLLNRPGM(MSG_OK); //dummy response because of octoprint is waiting for this
  8914. lcd_setstatuspgm(_T(WELCOME_MSG));
  8915. saved_printing_type = PRINTING_TYPE_NONE;
  8916. saved_printing = false;
  8917. }
  8918. void print_world_coordinates()
  8919. {
  8920. printf_P(_N("world coordinates: (%.3f, %.3f, %.3f)\n"), current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS]);
  8921. }
  8922. void print_physical_coordinates()
  8923. {
  8924. printf_P(_N("physical coordinates: (%.3f, %.3f, %.3f)\n"), st_get_position_mm(X_AXIS), st_get_position_mm(Y_AXIS), st_get_position_mm(Z_AXIS));
  8925. }
  8926. void print_mesh_bed_leveling_table()
  8927. {
  8928. SERIAL_ECHOPGM("mesh bed leveling: ");
  8929. for (int8_t y = 0; y < MESH_NUM_Y_POINTS; ++ y)
  8930. for (int8_t x = 0; x < MESH_NUM_Y_POINTS; ++ x) {
  8931. MYSERIAL.print(mbl.z_values[y][x], 3);
  8932. SERIAL_ECHOPGM(" ");
  8933. }
  8934. SERIAL_ECHOLNPGM("");
  8935. }
  8936. uint16_t print_time_remaining() {
  8937. uint16_t print_t = PRINT_TIME_REMAINING_INIT;
  8938. #ifdef TMC2130
  8939. if (SilentModeMenu == SILENT_MODE_OFF) print_t = print_time_remaining_normal;
  8940. else print_t = print_time_remaining_silent;
  8941. #else
  8942. print_t = print_time_remaining_normal;
  8943. #endif //TMC2130
  8944. if ((print_t != PRINT_TIME_REMAINING_INIT) && (feedmultiply != 0)) print_t = 100ul * print_t / feedmultiply;
  8945. return print_t;
  8946. }
  8947. uint8_t calc_percent_done()
  8948. {
  8949. //in case that we have information from M73 gcode return percentage counted by slicer, else return percentage counted as byte_printed/filesize
  8950. uint8_t percent_done = 0;
  8951. #ifdef TMC2130
  8952. if (SilentModeMenu == SILENT_MODE_OFF && print_percent_done_normal <= 100) {
  8953. percent_done = print_percent_done_normal;
  8954. }
  8955. else if (print_percent_done_silent <= 100) {
  8956. percent_done = print_percent_done_silent;
  8957. }
  8958. #else
  8959. if (print_percent_done_normal <= 100) {
  8960. percent_done = print_percent_done_normal;
  8961. }
  8962. #endif //TMC2130
  8963. else {
  8964. percent_done = card.percentDone();
  8965. }
  8966. return percent_done;
  8967. }
  8968. static void print_time_remaining_init()
  8969. {
  8970. print_time_remaining_normal = PRINT_TIME_REMAINING_INIT;
  8971. print_time_remaining_silent = PRINT_TIME_REMAINING_INIT;
  8972. print_percent_done_normal = PRINT_PERCENT_DONE_INIT;
  8973. print_percent_done_silent = PRINT_PERCENT_DONE_INIT;
  8974. }
  8975. void load_filament_final_feed()
  8976. {
  8977. current_position[E_AXIS]+= FILAMENTCHANGE_FINALFEED;
  8978. plan_buffer_line_curposXYZE(FILAMENTCHANGE_EFEED_FINAL, active_extruder);
  8979. }
  8980. //! @brief Wait for user to check the state
  8981. //! @par nozzle_temp nozzle temperature to load filament
  8982. void M600_check_state(float nozzle_temp)
  8983. {
  8984. lcd_change_fil_state = 0;
  8985. while (lcd_change_fil_state != 1)
  8986. {
  8987. lcd_change_fil_state = 0;
  8988. KEEPALIVE_STATE(PAUSED_FOR_USER);
  8989. lcd_alright();
  8990. KEEPALIVE_STATE(IN_HANDLER);
  8991. switch(lcd_change_fil_state)
  8992. {
  8993. // Filament failed to load so load it again
  8994. case 2:
  8995. if (mmu_enabled)
  8996. mmu_M600_load_filament(false, nozzle_temp); //nonautomatic load; change to "wrong filament loaded" option?
  8997. else
  8998. M600_load_filament_movements();
  8999. break;
  9000. // Filament loaded properly but color is not clear
  9001. case 3:
  9002. st_synchronize();
  9003. load_filament_final_feed();
  9004. lcd_loading_color();
  9005. st_synchronize();
  9006. break;
  9007. // Everything good
  9008. default:
  9009. lcd_change_success();
  9010. break;
  9011. }
  9012. }
  9013. }
  9014. //! @brief Wait for user action
  9015. //!
  9016. //! Beep, manage nozzle heater and wait for user to start unload filament
  9017. //! If times out, active extruder temperature is set to 0.
  9018. //!
  9019. //! @param HotendTempBckp Temperature to be restored for active extruder, after user resolves MMU problem.
  9020. void M600_wait_for_user(float HotendTempBckp) {
  9021. KEEPALIVE_STATE(PAUSED_FOR_USER);
  9022. int counterBeep = 0;
  9023. unsigned long waiting_start_time = _millis();
  9024. uint8_t wait_for_user_state = 0;
  9025. lcd_display_message_fullscreen_P(_T(MSG_PRESS_TO_UNLOAD));
  9026. bool bFirst=true;
  9027. while (!(wait_for_user_state == 0 && lcd_clicked())){
  9028. manage_heater();
  9029. manage_inactivity(true);
  9030. #if BEEPER > 0
  9031. if (counterBeep == 500) {
  9032. counterBeep = 0;
  9033. }
  9034. SET_OUTPUT(BEEPER);
  9035. if (counterBeep == 0) {
  9036. if((eSoundMode==e_SOUND_MODE_BLIND)|| (eSoundMode==e_SOUND_MODE_LOUD)||((eSoundMode==e_SOUND_MODE_ONCE)&&bFirst))
  9037. {
  9038. bFirst=false;
  9039. WRITE(BEEPER, HIGH);
  9040. }
  9041. }
  9042. if (counterBeep == 20) {
  9043. WRITE(BEEPER, LOW);
  9044. }
  9045. counterBeep++;
  9046. #endif //BEEPER > 0
  9047. switch (wait_for_user_state) {
  9048. case 0: //nozzle is hot, waiting for user to press the knob to unload filament
  9049. delay_keep_alive(4);
  9050. if (_millis() > waiting_start_time + (unsigned long)M600_TIMEOUT * 1000) {
  9051. lcd_display_message_fullscreen_P(_i("Press knob to preheat nozzle and continue."));////MSG_PRESS_TO_PREHEAT c=20 r=4
  9052. wait_for_user_state = 1;
  9053. setAllTargetHotends(0);
  9054. st_synchronize();
  9055. disable_e0();
  9056. disable_e1();
  9057. disable_e2();
  9058. }
  9059. break;
  9060. case 1: //nozzle target temperature is set to zero, waiting for user to start nozzle preheat
  9061. delay_keep_alive(4);
  9062. if (lcd_clicked()) {
  9063. setTargetHotend(HotendTempBckp, active_extruder);
  9064. lcd_wait_for_heater();
  9065. wait_for_user_state = 2;
  9066. }
  9067. break;
  9068. case 2: //waiting for nozzle to reach target temperature
  9069. if (abs(degTargetHotend(active_extruder) - degHotend(active_extruder)) < 1) {
  9070. lcd_display_message_fullscreen_P(_T(MSG_PRESS_TO_UNLOAD));
  9071. waiting_start_time = _millis();
  9072. wait_for_user_state = 0;
  9073. }
  9074. else {
  9075. counterBeep = 20; //beeper will be inactive during waiting for nozzle preheat
  9076. lcd_set_cursor(1, 4);
  9077. lcd_print(ftostr3(degHotend(active_extruder)));
  9078. }
  9079. break;
  9080. }
  9081. }
  9082. WRITE(BEEPER, LOW);
  9083. }
  9084. void M600_load_filament_movements()
  9085. {
  9086. #ifdef SNMM
  9087. display_loading();
  9088. do
  9089. {
  9090. current_position[E_AXIS] += 0.002;
  9091. plan_buffer_line_curposXYZE(500, active_extruder);
  9092. delay_keep_alive(2);
  9093. }
  9094. while (!lcd_clicked());
  9095. st_synchronize();
  9096. current_position[E_AXIS] += bowden_length[mmu_extruder];
  9097. plan_buffer_line_curposXYZE(3000, active_extruder);
  9098. current_position[E_AXIS] += FIL_LOAD_LENGTH - 60;
  9099. plan_buffer_line_curposXYZE(1400, active_extruder);
  9100. current_position[E_AXIS] += 40;
  9101. plan_buffer_line_curposXYZE(400, active_extruder);
  9102. current_position[E_AXIS] += 10;
  9103. plan_buffer_line_curposXYZE(50, active_extruder);
  9104. #else
  9105. current_position[E_AXIS]+= FILAMENTCHANGE_FIRSTFEED ;
  9106. plan_buffer_line_curposXYZE(FILAMENTCHANGE_EFEED_FIRST, active_extruder);
  9107. #endif
  9108. load_filament_final_feed();
  9109. lcd_loading_filament();
  9110. st_synchronize();
  9111. }
  9112. void M600_load_filament() {
  9113. //load filament for single material and SNMM
  9114. lcd_wait_interact();
  9115. //load_filament_time = _millis();
  9116. KEEPALIVE_STATE(PAUSED_FOR_USER);
  9117. #ifdef PAT9125
  9118. fsensor_autoload_check_start();
  9119. #endif //PAT9125
  9120. while(!lcd_clicked())
  9121. {
  9122. manage_heater();
  9123. manage_inactivity(true);
  9124. #ifdef FILAMENT_SENSOR
  9125. if (fsensor_check_autoload())
  9126. {
  9127. Sound_MakeCustom(50,1000,false);
  9128. break;
  9129. }
  9130. #endif //FILAMENT_SENSOR
  9131. }
  9132. #ifdef PAT9125
  9133. fsensor_autoload_check_stop();
  9134. #endif //PAT9125
  9135. KEEPALIVE_STATE(IN_HANDLER);
  9136. #ifdef FSENSOR_QUALITY
  9137. fsensor_oq_meassure_start(70);
  9138. #endif //FSENSOR_QUALITY
  9139. M600_load_filament_movements();
  9140. Sound_MakeCustom(50,1000,false);
  9141. #ifdef FSENSOR_QUALITY
  9142. fsensor_oq_meassure_stop();
  9143. if (!fsensor_oq_result())
  9144. {
  9145. bool disable = lcd_show_fullscreen_message_yes_no_and_wait_P(_i("Fil. sensor response is poor, disable it?"), false, true);
  9146. lcd_update_enable(true);
  9147. lcd_update(2);
  9148. if (disable)
  9149. fsensor_disable();
  9150. }
  9151. #endif //FSENSOR_QUALITY
  9152. lcd_update_enable(false);
  9153. }
  9154. //! @brief Wait for click
  9155. //!
  9156. //! Set
  9157. void marlin_wait_for_click()
  9158. {
  9159. int8_t busy_state_backup = busy_state;
  9160. KEEPALIVE_STATE(PAUSED_FOR_USER);
  9161. lcd_consume_click();
  9162. while(!lcd_clicked())
  9163. {
  9164. manage_heater();
  9165. manage_inactivity(true);
  9166. lcd_update(0);
  9167. }
  9168. KEEPALIVE_STATE(busy_state_backup);
  9169. }
  9170. #define FIL_LOAD_LENGTH 60
  9171. #ifdef PSU_Delta
  9172. bool bEnableForce_z;
  9173. void init_force_z()
  9174. {
  9175. WRITE(Z_ENABLE_PIN,Z_ENABLE_ON);
  9176. bEnableForce_z=true; // "true"-value enforce "disable_force_z()" executing
  9177. disable_force_z();
  9178. }
  9179. void check_force_z()
  9180. {
  9181. if(!(bEnableForce_z||eeprom_read_byte((uint8_t*)EEPROM_SILENT)))
  9182. init_force_z(); // causes enforced switching into disable-state
  9183. }
  9184. void disable_force_z()
  9185. {
  9186. uint16_t z_microsteps=0;
  9187. if(!bEnableForce_z) return; // motor already disabled (may be ;-p )
  9188. bEnableForce_z=false;
  9189. // switching to silent mode
  9190. #ifdef TMC2130
  9191. tmc2130_mode=TMC2130_MODE_SILENT;
  9192. update_mode_profile();
  9193. tmc2130_init(true);
  9194. #endif // TMC2130
  9195. axis_known_position[Z_AXIS]=false;
  9196. }
  9197. void enable_force_z()
  9198. {
  9199. if(bEnableForce_z)
  9200. return; // motor already enabled (may be ;-p )
  9201. bEnableForce_z=true;
  9202. // mode recovering
  9203. #ifdef TMC2130
  9204. tmc2130_mode=eeprom_read_byte((uint8_t*)EEPROM_SILENT)?TMC2130_MODE_SILENT:TMC2130_MODE_NORMAL;
  9205. update_mode_profile();
  9206. tmc2130_init(true);
  9207. #endif // TMC2130
  9208. WRITE(Z_ENABLE_PIN,Z_ENABLE_ON); // slightly redundant ;-p
  9209. }
  9210. #endif // PSU_Delta