Marlin_main.cpp 310 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971397239733974397539763977397839793980398139823983398439853986398739883989399039913992399339943995399639973998399940004001400240034004400540064007400840094010401140124013401440154016401740184019402040214022402340244025402640274028402940304031403240334034403540364037403840394040404140424043404440454046404740484049405040514052405340544055405640574058405940604061406240634064406540664067406840694070407140724073407440754076407740784079408040814082408340844085408640874088408940904091409240934094409540964097409840994100410141024103410441054106410741084109411041114112411341144115411641174118411941204121412241234124412541264127412841294130413141324133413441354136413741384139414041414142414341444145414641474148414941504151415241534154415541564157415841594160416141624163416441654166416741684169417041714172417341744175417641774178417941804181418241834184418541864187418841894190419141924193419441954196419741984199420042014202420342044205420642074208420942104211421242134214421542164217421842194220422142224223422442254226422742284229423042314232423342344235423642374238423942404241424242434244424542464247424842494250425142524253425442554256425742584259426042614262426342644265426642674268426942704271427242734274427542764277427842794280428142824283428442854286428742884289429042914292429342944295429642974298429943004301430243034304430543064307430843094310431143124313431443154316431743184319432043214322432343244325432643274328432943304331433243334334433543364337433843394340434143424343434443454346434743484349435043514352435343544355435643574358435943604361436243634364436543664367436843694370437143724373437443754376437743784379438043814382438343844385438643874388438943904391439243934394439543964397439843994400440144024403440444054406440744084409441044114412441344144415441644174418441944204421442244234424442544264427442844294430443144324433443444354436443744384439444044414442444344444445444644474448444944504451445244534454445544564457445844594460446144624463446444654466446744684469447044714472447344744475447644774478447944804481448244834484448544864487448844894490449144924493449444954496449744984499450045014502450345044505450645074508450945104511451245134514451545164517451845194520452145224523452445254526452745284529453045314532453345344535453645374538453945404541454245434544454545464547454845494550455145524553455445554556455745584559456045614562456345644565456645674568456945704571457245734574457545764577457845794580458145824583458445854586458745884589459045914592459345944595459645974598459946004601460246034604460546064607460846094610461146124613461446154616461746184619462046214622462346244625462646274628462946304631463246334634463546364637463846394640464146424643464446454646464746484649465046514652465346544655465646574658465946604661466246634664466546664667466846694670467146724673467446754676467746784679468046814682468346844685468646874688468946904691469246934694469546964697469846994700470147024703470447054706470747084709471047114712471347144715471647174718471947204721472247234724472547264727472847294730473147324733473447354736473747384739474047414742474347444745474647474748474947504751475247534754475547564757475847594760476147624763476447654766476747684769477047714772477347744775477647774778477947804781478247834784478547864787478847894790479147924793479447954796479747984799480048014802480348044805480648074808480948104811481248134814481548164817481848194820482148224823482448254826482748284829483048314832483348344835483648374838483948404841484248434844484548464847484848494850485148524853485448554856485748584859486048614862486348644865486648674868486948704871487248734874487548764877487848794880488148824883488448854886488748884889489048914892489348944895489648974898489949004901490249034904490549064907490849094910491149124913491449154916491749184919492049214922492349244925492649274928492949304931493249334934493549364937493849394940494149424943494449454946494749484949495049514952495349544955495649574958495949604961496249634964496549664967496849694970497149724973497449754976497749784979498049814982498349844985498649874988498949904991499249934994499549964997499849995000500150025003500450055006500750085009501050115012501350145015501650175018501950205021502250235024502550265027502850295030503150325033503450355036503750385039504050415042504350445045504650475048504950505051505250535054505550565057505850595060506150625063506450655066506750685069507050715072507350745075507650775078507950805081508250835084508550865087508850895090509150925093509450955096509750985099510051015102510351045105510651075108510951105111511251135114511551165117511851195120512151225123512451255126512751285129513051315132513351345135513651375138513951405141514251435144514551465147514851495150515151525153515451555156515751585159516051615162516351645165516651675168516951705171517251735174517551765177517851795180518151825183518451855186518751885189519051915192519351945195519651975198519952005201520252035204520552065207520852095210521152125213521452155216521752185219522052215222522352245225522652275228522952305231523252335234523552365237523852395240524152425243524452455246524752485249525052515252525352545255525652575258525952605261526252635264526552665267526852695270527152725273527452755276527752785279528052815282528352845285528652875288528952905291529252935294529552965297529852995300530153025303530453055306530753085309531053115312531353145315531653175318531953205321532253235324532553265327532853295330533153325333533453355336533753385339534053415342534353445345534653475348534953505351535253535354535553565357535853595360536153625363536453655366536753685369537053715372537353745375537653775378537953805381538253835384538553865387538853895390539153925393539453955396539753985399540054015402540354045405540654075408540954105411541254135414541554165417541854195420542154225423542454255426542754285429543054315432543354345435543654375438543954405441544254435444544554465447544854495450545154525453545454555456545754585459546054615462546354645465546654675468546954705471547254735474547554765477547854795480548154825483548454855486548754885489549054915492549354945495549654975498549955005501550255035504550555065507550855095510551155125513551455155516551755185519552055215522552355245525552655275528552955305531553255335534553555365537553855395540554155425543554455455546554755485549555055515552555355545555555655575558555955605561556255635564556555665567556855695570557155725573557455755576557755785579558055815582558355845585558655875588558955905591559255935594559555965597559855995600560156025603560456055606560756085609561056115612561356145615561656175618561956205621562256235624562556265627562856295630563156325633563456355636563756385639564056415642564356445645564656475648564956505651565256535654565556565657565856595660566156625663566456655666566756685669567056715672567356745675567656775678567956805681568256835684568556865687568856895690569156925693569456955696569756985699570057015702570357045705570657075708570957105711571257135714571557165717571857195720572157225723572457255726572757285729573057315732573357345735573657375738573957405741574257435744574557465747574857495750575157525753575457555756575757585759576057615762576357645765576657675768576957705771577257735774577557765777577857795780578157825783578457855786578757885789579057915792579357945795579657975798579958005801580258035804580558065807580858095810581158125813581458155816581758185819582058215822582358245825582658275828582958305831583258335834583558365837583858395840584158425843584458455846584758485849585058515852585358545855585658575858585958605861586258635864586558665867586858695870587158725873587458755876587758785879588058815882588358845885588658875888588958905891589258935894589558965897589858995900590159025903590459055906590759085909591059115912591359145915591659175918591959205921592259235924592559265927592859295930593159325933593459355936593759385939594059415942594359445945594659475948594959505951595259535954595559565957595859595960596159625963596459655966596759685969597059715972597359745975597659775978597959805981598259835984598559865987598859895990599159925993599459955996599759985999600060016002600360046005600660076008600960106011601260136014601560166017601860196020602160226023602460256026602760286029603060316032603360346035603660376038603960406041604260436044604560466047604860496050605160526053605460556056605760586059606060616062606360646065606660676068606960706071607260736074607560766077607860796080608160826083608460856086608760886089609060916092609360946095609660976098609961006101610261036104610561066107610861096110611161126113611461156116611761186119612061216122612361246125612661276128612961306131613261336134613561366137613861396140614161426143614461456146614761486149615061516152615361546155615661576158615961606161616261636164616561666167616861696170617161726173617461756176617761786179618061816182618361846185618661876188618961906191619261936194619561966197619861996200620162026203620462056206620762086209621062116212621362146215621662176218621962206221622262236224622562266227622862296230623162326233623462356236623762386239624062416242624362446245624662476248624962506251625262536254625562566257625862596260626162626263626462656266626762686269627062716272627362746275627662776278627962806281628262836284628562866287628862896290629162926293629462956296629762986299630063016302630363046305630663076308630963106311631263136314631563166317631863196320632163226323632463256326632763286329633063316332633363346335633663376338633963406341634263436344634563466347634863496350635163526353635463556356635763586359636063616362636363646365636663676368636963706371637263736374637563766377637863796380638163826383638463856386638763886389639063916392639363946395639663976398639964006401640264036404640564066407640864096410641164126413641464156416641764186419642064216422642364246425642664276428642964306431643264336434643564366437643864396440644164426443644464456446644764486449645064516452645364546455645664576458645964606461646264636464646564666467646864696470647164726473647464756476647764786479648064816482648364846485648664876488648964906491649264936494649564966497649864996500650165026503650465056506650765086509651065116512651365146515651665176518651965206521652265236524652565266527652865296530653165326533653465356536653765386539654065416542654365446545654665476548654965506551655265536554655565566557655865596560656165626563656465656566656765686569657065716572657365746575657665776578657965806581658265836584658565866587658865896590659165926593659465956596659765986599660066016602660366046605660666076608660966106611661266136614661566166617661866196620662166226623662466256626662766286629663066316632663366346635663666376638663966406641664266436644664566466647664866496650665166526653665466556656665766586659666066616662666366646665666666676668666966706671667266736674667566766677667866796680668166826683668466856686668766886689669066916692669366946695669666976698669967006701670267036704670567066707670867096710671167126713671467156716671767186719672067216722672367246725672667276728672967306731673267336734673567366737673867396740674167426743674467456746674767486749675067516752675367546755675667576758675967606761676267636764676567666767676867696770677167726773677467756776677767786779678067816782678367846785678667876788678967906791679267936794679567966797679867996800680168026803680468056806680768086809681068116812681368146815681668176818681968206821682268236824682568266827682868296830683168326833683468356836683768386839684068416842684368446845684668476848684968506851685268536854685568566857685868596860686168626863686468656866686768686869687068716872687368746875687668776878687968806881688268836884688568866887688868896890689168926893689468956896689768986899690069016902690369046905690669076908690969106911691269136914691569166917691869196920692169226923692469256926692769286929693069316932693369346935693669376938693969406941694269436944694569466947694869496950695169526953695469556956695769586959696069616962696369646965696669676968696969706971697269736974697569766977697869796980698169826983698469856986698769886989699069916992699369946995699669976998699970007001700270037004700570067007700870097010701170127013701470157016701770187019702070217022702370247025702670277028702970307031703270337034703570367037703870397040704170427043704470457046704770487049705070517052705370547055705670577058705970607061706270637064706570667067706870697070707170727073707470757076707770787079708070817082708370847085708670877088708970907091709270937094709570967097709870997100710171027103710471057106710771087109711071117112711371147115711671177118711971207121712271237124712571267127712871297130713171327133713471357136713771387139714071417142714371447145714671477148714971507151715271537154715571567157715871597160716171627163716471657166716771687169717071717172717371747175717671777178717971807181718271837184718571867187718871897190719171927193719471957196719771987199720072017202720372047205720672077208720972107211721272137214721572167217721872197220722172227223722472257226722772287229723072317232723372347235723672377238723972407241724272437244724572467247724872497250725172527253725472557256725772587259726072617262726372647265726672677268726972707271727272737274727572767277727872797280728172827283728472857286728772887289729072917292729372947295729672977298729973007301730273037304730573067307730873097310731173127313731473157316731773187319732073217322732373247325732673277328732973307331733273337334733573367337733873397340734173427343734473457346734773487349735073517352735373547355735673577358735973607361736273637364736573667367736873697370737173727373737473757376737773787379738073817382738373847385738673877388738973907391739273937394739573967397739873997400740174027403740474057406740774087409741074117412741374147415741674177418741974207421742274237424742574267427742874297430743174327433743474357436743774387439744074417442744374447445744674477448744974507451745274537454745574567457745874597460746174627463746474657466746774687469747074717472747374747475747674777478747974807481748274837484748574867487748874897490749174927493749474957496749774987499750075017502750375047505750675077508750975107511751275137514751575167517751875197520752175227523752475257526752775287529753075317532753375347535753675377538753975407541754275437544754575467547754875497550755175527553755475557556755775587559756075617562756375647565756675677568756975707571757275737574757575767577757875797580758175827583758475857586758775887589759075917592759375947595759675977598759976007601760276037604760576067607760876097610761176127613761476157616761776187619762076217622762376247625762676277628762976307631763276337634763576367637763876397640764176427643764476457646764776487649765076517652765376547655765676577658765976607661766276637664766576667667766876697670767176727673767476757676767776787679768076817682768376847685768676877688768976907691769276937694769576967697769876997700770177027703770477057706770777087709771077117712771377147715771677177718771977207721772277237724772577267727772877297730773177327733773477357736773777387739774077417742774377447745774677477748774977507751775277537754775577567757775877597760776177627763776477657766776777687769777077717772777377747775777677777778777977807781778277837784778577867787778877897790779177927793779477957796779777987799780078017802780378047805780678077808780978107811781278137814781578167817781878197820782178227823782478257826782778287829783078317832783378347835783678377838783978407841784278437844784578467847784878497850785178527853785478557856785778587859786078617862786378647865786678677868786978707871787278737874787578767877787878797880788178827883788478857886788778887889789078917892789378947895789678977898789979007901790279037904790579067907790879097910791179127913791479157916791779187919792079217922792379247925792679277928792979307931793279337934793579367937793879397940794179427943794479457946794779487949795079517952795379547955795679577958795979607961796279637964796579667967796879697970797179727973797479757976797779787979798079817982798379847985798679877988798979907991799279937994799579967997799879998000800180028003800480058006800780088009801080118012801380148015801680178018801980208021802280238024802580268027802880298030803180328033803480358036803780388039804080418042804380448045804680478048804980508051805280538054805580568057805880598060806180628063806480658066806780688069807080718072807380748075807680778078807980808081808280838084808580868087808880898090809180928093809480958096809780988099810081018102810381048105810681078108810981108111811281138114811581168117811881198120812181228123812481258126812781288129813081318132813381348135813681378138813981408141814281438144814581468147814881498150815181528153815481558156815781588159816081618162816381648165816681678168816981708171817281738174817581768177817881798180818181828183818481858186818781888189819081918192819381948195819681978198819982008201820282038204820582068207820882098210821182128213821482158216821782188219822082218222822382248225822682278228822982308231823282338234823582368237823882398240824182428243824482458246824782488249825082518252825382548255825682578258825982608261826282638264826582668267826882698270827182728273827482758276827782788279828082818282828382848285828682878288828982908291829282938294829582968297829882998300830183028303830483058306830783088309831083118312831383148315831683178318831983208321832283238324832583268327832883298330833183328333833483358336833783388339834083418342834383448345834683478348834983508351835283538354835583568357835883598360836183628363836483658366836783688369837083718372837383748375837683778378837983808381838283838384838583868387838883898390839183928393839483958396839783988399840084018402840384048405840684078408840984108411841284138414841584168417841884198420842184228423842484258426842784288429843084318432843384348435843684378438843984408441844284438444844584468447844884498450845184528453845484558456845784588459846084618462846384648465846684678468846984708471847284738474847584768477847884798480848184828483848484858486848784888489849084918492849384948495849684978498849985008501850285038504850585068507850885098510851185128513851485158516851785188519852085218522852385248525852685278528852985308531853285338534853585368537853885398540854185428543854485458546854785488549855085518552855385548555855685578558855985608561856285638564856585668567856885698570857185728573857485758576857785788579858085818582858385848585858685878588858985908591859285938594859585968597859885998600860186028603860486058606860786088609861086118612861386148615861686178618861986208621862286238624862586268627862886298630863186328633863486358636863786388639864086418642864386448645864686478648864986508651865286538654865586568657865886598660866186628663866486658666866786688669867086718672867386748675867686778678867986808681868286838684868586868687868886898690869186928693869486958696869786988699870087018702870387048705870687078708870987108711871287138714871587168717871887198720872187228723872487258726872787288729873087318732873387348735873687378738873987408741874287438744874587468747874887498750875187528753875487558756875787588759876087618762876387648765876687678768876987708771877287738774877587768777877887798780878187828783878487858786878787888789879087918792879387948795879687978798879988008801880288038804880588068807880888098810881188128813881488158816881788188819882088218822882388248825882688278828882988308831883288338834883588368837883888398840884188428843884488458846884788488849885088518852885388548855885688578858885988608861886288638864886588668867886888698870887188728873887488758876887788788879888088818882888388848885888688878888888988908891889288938894889588968897889888998900890189028903890489058906890789088909891089118912891389148915891689178918891989208921892289238924892589268927892889298930893189328933893489358936893789388939894089418942894389448945894689478948894989508951895289538954895589568957895889598960896189628963896489658966896789688969897089718972897389748975897689778978897989808981898289838984898589868987898889898990899189928993899489958996899789988999900090019002900390049005900690079008900990109011901290139014901590169017901890199020902190229023902490259026902790289029903090319032903390349035903690379038903990409041904290439044904590469047904890499050905190529053905490559056905790589059906090619062906390649065906690679068906990709071907290739074907590769077907890799080908190829083908490859086908790889089909090919092909390949095909690979098909991009101910291039104910591069107910891099110911191129113911491159116911791189119912091219122912391249125912691279128912991309131913291339134913591369137913891399140914191429143914491459146914791489149915091519152915391549155915691579158915991609161916291639164916591669167916891699170917191729173917491759176917791789179918091819182918391849185918691879188918991909191919291939194919591969197919891999200920192029203920492059206920792089209921092119212921392149215921692179218921992209221922292239224922592269227922892299230923192329233923492359236923792389239924092419242924392449245924692479248924992509251925292539254925592569257925892599260926192629263926492659266926792689269927092719272927392749275
  1. /* -*- c++ -*- */
  2. /**
  3. * @file
  4. */
  5. /**
  6. * @mainpage Reprap 3D printer firmware based on Sprinter and grbl.
  7. *
  8. * @section intro_sec Introduction
  9. *
  10. * This firmware is a mashup between Sprinter and grbl.
  11. * https://github.com/kliment/Sprinter
  12. * https://github.com/simen/grbl/tree
  13. *
  14. * It has preliminary support for Matthew Roberts advance algorithm
  15. * http://reprap.org/pipermail/reprap-dev/2011-May/003323.html
  16. *
  17. * Prusa Research s.r.o. https://www.prusa3d.cz
  18. *
  19. * @section copyright_sec Copyright
  20. *
  21. * Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
  22. *
  23. * This program is free software: you can redistribute it and/or modify
  24. * it under the terms of the GNU General Public License as published by
  25. * the Free Software Foundation, either version 3 of the License, or
  26. * (at your option) any later version.
  27. *
  28. * This program is distributed in the hope that it will be useful,
  29. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  30. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  31. * GNU General Public License for more details.
  32. *
  33. * You should have received a copy of the GNU General Public License
  34. * along with this program. If not, see <http://www.gnu.org/licenses/>.
  35. *
  36. * @section notes_sec Notes
  37. *
  38. * * Do not create static objects in global functions.
  39. * Otherwise constructor guard against concurrent calls is generated costing
  40. * about 8B RAM and 14B flash.
  41. *
  42. *
  43. */
  44. #include "Marlin.h"
  45. #ifdef ENABLE_AUTO_BED_LEVELING
  46. #include "vector_3.h"
  47. #ifdef AUTO_BED_LEVELING_GRID
  48. #include "qr_solve.h"
  49. #endif
  50. #endif // ENABLE_AUTO_BED_LEVELING
  51. #ifdef MESH_BED_LEVELING
  52. #include "mesh_bed_leveling.h"
  53. #include "mesh_bed_calibration.h"
  54. #endif
  55. #include "printers.h"
  56. #include "menu.h"
  57. #include "ultralcd.h"
  58. #include "planner.h"
  59. #include "stepper.h"
  60. #include "temperature.h"
  61. #include "motion_control.h"
  62. #include "cardreader.h"
  63. #include "ConfigurationStore.h"
  64. #include "language.h"
  65. #include "pins_arduino.h"
  66. #include "math.h"
  67. #include "util.h"
  68. #include "Timer.h"
  69. #include "uart2.h"
  70. #include <avr/wdt.h>
  71. #include <avr/pgmspace.h>
  72. #include "Dcodes.h"
  73. #ifdef SWSPI
  74. #include "swspi.h"
  75. #endif //SWSPI
  76. #include "spi.h"
  77. #ifdef SWI2C
  78. #include "swi2c.h"
  79. #endif //SWI2C
  80. #ifdef FILAMENT_SENSOR
  81. #include "fsensor.h"
  82. #endif //FILAMENT_SENSOR
  83. #ifdef TMC2130
  84. #include "tmc2130.h"
  85. #endif //TMC2130
  86. #ifdef W25X20CL
  87. #include "w25x20cl.h"
  88. #include "optiboot_w25x20cl.h"
  89. #endif //W25X20CL
  90. #ifdef BLINKM
  91. #include "BlinkM.h"
  92. #include "Wire.h"
  93. #endif
  94. #ifdef ULTRALCD
  95. #include "ultralcd.h"
  96. #endif
  97. #if NUM_SERVOS > 0
  98. #include "Servo.h"
  99. #endif
  100. #if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
  101. #include <SPI.h>
  102. #endif
  103. #define VERSION_STRING "1.0.2"
  104. #include "ultralcd.h"
  105. //-//
  106. #include "sound.h"
  107. #include "cmdqueue.h"
  108. // Macros for bit masks
  109. #define BIT(b) (1<<(b))
  110. #define TEST(n,b) (((n)&BIT(b))!=0)
  111. #define SET_BIT(n,b,value) (n) ^= ((-value)^(n)) & (BIT(b))
  112. //Macro for print fan speed
  113. #define FAN_PULSE_WIDTH_LIMIT ((fanSpeed > 100) ? 3 : 4) //time in ms
  114. #define PRINTING_TYPE_SD 0
  115. #define PRINTING_TYPE_USB 1
  116. // look here for descriptions of G-codes: http://linuxcnc.org/handbook/gcode/g-code.html
  117. // http://objects.reprap.org/wiki/Mendel_User_Manual:_RepRapGCodes
  118. //Implemented Codes
  119. //-------------------
  120. // PRUSA CODES
  121. // P F - Returns FW versions
  122. // P R - Returns revision of printer
  123. // G0 -> G1
  124. // G1 - Coordinated Movement X Y Z E
  125. // G2 - CW ARC
  126. // G3 - CCW ARC
  127. // G4 - Dwell S<seconds> or P<milliseconds>
  128. // G10 - retract filament according to settings of M207
  129. // G11 - retract recover filament according to settings of M208
  130. // G28 - Home all Axis
  131. // G29 - Detailed Z-Probe, probes the bed at 3 or more points. Will fail if you haven't homed yet.
  132. // G30 - Single Z Probe, probes bed at current XY location.
  133. // G31 - Dock sled (Z_PROBE_SLED only)
  134. // G32 - Undock sled (Z_PROBE_SLED only)
  135. // G80 - Automatic mesh bed leveling
  136. // G81 - Print bed profile
  137. // G90 - Use Absolute Coordinates
  138. // G91 - Use Relative Coordinates
  139. // G92 - Set current position to coordinates given
  140. // M Codes
  141. // M0 - Unconditional stop - Wait for user to press a button on the LCD
  142. // M1 - Same as M0
  143. // M17 - Enable/Power all stepper motors
  144. // M18 - Disable all stepper motors; same as M84
  145. // M20 - List SD card
  146. // M21 - Init SD card
  147. // M22 - Release SD card
  148. // M23 - Select SD file (M23 filename.g)
  149. // M24 - Start/resume SD print
  150. // M25 - Pause SD print
  151. // M26 - Set SD position in bytes (M26 S12345)
  152. // M27 - Report SD print status
  153. // M28 - Start SD write (M28 filename.g)
  154. // M29 - Stop SD write
  155. // M30 - Delete file from SD (M30 filename.g)
  156. // M31 - Output time since last M109 or SD card start to serial
  157. // M32 - Select file and start SD print (Can be used _while_ printing from SD card files):
  158. // syntax "M32 /path/filename#", or "M32 S<startpos bytes> !filename#"
  159. // Call gcode file : "M32 P !filename#" and return to caller file after finishing (similar to #include).
  160. // The '#' is necessary when calling from within sd files, as it stops buffer prereading
  161. // M42 - Change pin status via gcode Use M42 Px Sy to set pin x to value y, when omitting Px the onboard led will be used.
  162. // M73 - Show percent done and print time remaining
  163. // M80 - Turn on Power Supply
  164. // M81 - Turn off Power Supply
  165. // M82 - Set E codes absolute (default)
  166. // M83 - Set E codes relative while in Absolute Coordinates (G90) mode
  167. // M84 - Disable steppers until next move,
  168. // or use S<seconds> to specify an inactivity timeout, after which the steppers will be disabled. S0 to disable the timeout.
  169. // M85 - Set inactivity shutdown timer with parameter S<seconds>. To disable set zero (default)
  170. // M86 - Set safety timer expiration time with parameter S<seconds>; M86 S0 will disable safety timer
  171. // M92 - Set axis_steps_per_unit - same syntax as G92
  172. // M104 - Set extruder target temp
  173. // M105 - Read current temp
  174. // M106 - Fan on
  175. // M107 - Fan off
  176. // M109 - Sxxx Wait for extruder current temp to reach target temp. Waits only when heating
  177. // Rxxx Wait for extruder current temp to reach target temp. Waits when heating and cooling
  178. // IF AUTOTEMP is enabled, S<mintemp> B<maxtemp> F<factor>. Exit autotemp by any M109 without F
  179. // M112 - Emergency stop
  180. // M113 - Get or set the timeout interval for Host Keepalive "busy" messages
  181. // M114 - Output current position to serial port
  182. // M115 - Capabilities string
  183. // M117 - display message
  184. // M119 - Output Endstop status to serial port
  185. // M126 - Solenoid Air Valve Open (BariCUDA support by jmil)
  186. // M127 - Solenoid Air Valve Closed (BariCUDA vent to atmospheric pressure by jmil)
  187. // M128 - EtoP Open (BariCUDA EtoP = electricity to air pressure transducer by jmil)
  188. // M129 - EtoP Closed (BariCUDA EtoP = electricity to air pressure transducer by jmil)
  189. // M140 - Set bed target temp
  190. // M150 - Set BlinkM Color Output R: Red<0-255> U(!): Green<0-255> B: Blue<0-255> over i2c, G for green does not work.
  191. // M190 - Sxxx Wait for bed current temp to reach target temp. Waits only when heating
  192. // Rxxx Wait for bed current temp to reach target temp. Waits when heating and cooling
  193. // M200 D<millimeters>- set filament diameter and set E axis units to cubic millimeters (use S0 to set back to millimeters).
  194. // M201 - Set max acceleration in units/s^2 for print moves (M201 X1000 Y1000)
  195. // M202 - Set max acceleration in units/s^2 for travel moves (M202 X1000 Y1000) Unused in Marlin!!
  196. // M203 - Set maximum feedrate that your machine can sustain (M203 X200 Y200 Z300 E10000) in mm/sec
  197. // M204 - Set default acceleration: S normal moves T filament only moves (M204 S3000 T7000) in mm/sec^2 also sets minimum segment time in ms (B20000) to prevent buffer under-runs and M20 minimum feedrate
  198. // M205 - advanced settings: minimum travel speed S=while printing T=travel only, B=minimum segment time X= maximum xy jerk, Z=maximum Z jerk, E=maximum E jerk
  199. // M206 - set additional homing offset
  200. // M207 - set retract length S[positive mm] F[feedrate mm/min] Z[additional zlift/hop], stays in mm regardless of M200 setting
  201. // M208 - set recover=unretract length S[positive mm surplus to the M207 S*] F[feedrate mm/sec]
  202. // M209 - S<1=true/0=false> enable automatic retract detect if the slicer did not support G10/11: every normal extrude-only move will be classified as retract depending on the direction.
  203. // M218 - set hotend offset (in mm): T<extruder_number> X<offset_on_X> Y<offset_on_Y>
  204. // M220 S<factor in percent>- set speed factor override percentage
  205. // M221 S<factor in percent>- set extrude factor override percentage
  206. // M226 P<pin number> S<pin state>- Wait until the specified pin reaches the state required
  207. // M240 - Trigger a camera to take a photograph
  208. // M250 - Set LCD contrast C<contrast value> (value 0..63)
  209. // M280 - set servo position absolute. P: servo index, S: angle or microseconds
  210. // M300 - Play beep sound S<frequency Hz> P<duration ms>
  211. // M301 - Set PID parameters P I and D
  212. // M302 - Allow cold extrudes, or set the minimum extrude S<temperature>.
  213. // M303 - PID relay autotune S<temperature> sets the target temperature. (default target temperature = 150C)
  214. // M304 - Set bed PID parameters P I and D
  215. // M400 - Finish all moves
  216. // M401 - Lower z-probe if present
  217. // M402 - Raise z-probe if present
  218. // M404 - N<dia in mm> Enter the nominal filament width (3mm, 1.75mm ) or will display nominal filament width without parameters
  219. // M405 - Turn on Filament Sensor extrusion control. Optional D<delay in cm> to set delay in centimeters between sensor and extruder
  220. // M406 - Turn off Filament Sensor extrusion control
  221. // M407 - Displays measured filament diameter
  222. // M500 - stores parameters in EEPROM
  223. // M501 - reads parameters from EEPROM (if you need reset them after you changed them temporarily).
  224. // M502 - reverts to the default "factory settings". You still need to store them in EEPROM afterwards if you want to.
  225. // M503 - print the current settings (from memory not from EEPROM)
  226. // M509 - force language selection on next restart
  227. // M540 - Use S[0|1] to enable or disable the stop SD card print on endstop hit (requires ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED)
  228. // M600 - Pause for filament change X[pos] Y[pos] Z[relative lift] E[initial retract] L[later retract distance for removal]
  229. // M605 - Set dual x-carriage movement mode: S<mode> [ X<duplication x-offset> R<duplication temp offset> ]
  230. // M860 - Wait for PINDA thermistor to reach target temperature.
  231. // M861 - Set / Read PINDA temperature compensation offsets
  232. // M900 - Set LIN_ADVANCE options, if enabled. See Configuration_adv.h for details.
  233. // M907 - Set digital trimpot motor current using axis codes.
  234. // M908 - Control digital trimpot directly.
  235. // M350 - Set microstepping mode.
  236. // M351 - Toggle MS1 MS2 pins directly.
  237. // M928 - Start SD logging (M928 filename.g) - ended by M29
  238. // M999 - Restart after being stopped by error
  239. //Stepper Movement Variables
  240. //===========================================================================
  241. //=============================imported variables============================
  242. //===========================================================================
  243. //===========================================================================
  244. //=============================public variables=============================
  245. //===========================================================================
  246. #ifdef SDSUPPORT
  247. CardReader card;
  248. #endif
  249. unsigned long PingTime = millis();
  250. unsigned long NcTime;
  251. union Data
  252. {
  253. byte b[2];
  254. int value;
  255. };
  256. float homing_feedrate[] = HOMING_FEEDRATE;
  257. // Currently only the extruder axis may be switched to a relative mode.
  258. // Other axes are always absolute or relative based on the common relative_mode flag.
  259. bool axis_relative_modes[] = AXIS_RELATIVE_MODES;
  260. int feedmultiply=100; //100->1 200->2
  261. int saved_feedmultiply;
  262. int extrudemultiply=100; //100->1 200->2
  263. int extruder_multiply[EXTRUDERS] = {100
  264. #if EXTRUDERS > 1
  265. , 100
  266. #if EXTRUDERS > 2
  267. , 100
  268. #endif
  269. #endif
  270. };
  271. int bowden_length[4] = {385, 385, 385, 385};
  272. bool is_usb_printing = false;
  273. bool homing_flag = false;
  274. bool temp_cal_active = false;
  275. unsigned long kicktime = millis()+100000;
  276. unsigned int usb_printing_counter;
  277. int lcd_change_fil_state = 0;
  278. int feedmultiplyBckp = 100;
  279. float HotendTempBckp = 0;
  280. int fanSpeedBckp = 0;
  281. float pause_lastpos[4];
  282. unsigned long pause_time = 0;
  283. unsigned long start_pause_print = millis();
  284. unsigned long t_fan_rising_edge = millis();
  285. static LongTimer safetyTimer;
  286. static LongTimer crashDetTimer;
  287. //unsigned long load_filament_time;
  288. bool mesh_bed_leveling_flag = false;
  289. bool mesh_bed_run_from_menu = false;
  290. int8_t FarmMode = 0;
  291. bool prusa_sd_card_upload = false;
  292. unsigned int status_number = 0;
  293. unsigned long total_filament_used;
  294. unsigned int heating_status;
  295. unsigned int heating_status_counter;
  296. bool custom_message;
  297. bool loading_flag = false;
  298. unsigned int custom_message_type;
  299. unsigned int custom_message_state;
  300. char snmm_filaments_used = 0;
  301. bool fan_state[2];
  302. int fan_edge_counter[2];
  303. int fan_speed[2];
  304. char dir_names[3][9];
  305. bool sortAlpha = false;
  306. bool volumetric_enabled = false;
  307. float filament_size[EXTRUDERS] = { DEFAULT_NOMINAL_FILAMENT_DIA
  308. #if EXTRUDERS > 1
  309. , DEFAULT_NOMINAL_FILAMENT_DIA
  310. #if EXTRUDERS > 2
  311. , DEFAULT_NOMINAL_FILAMENT_DIA
  312. #endif
  313. #endif
  314. };
  315. float extruder_multiplier[EXTRUDERS] = {1.0
  316. #if EXTRUDERS > 1
  317. , 1.0
  318. #if EXTRUDERS > 2
  319. , 1.0
  320. #endif
  321. #endif
  322. };
  323. float current_position[NUM_AXIS] = { 0.0, 0.0, 0.0, 0.0 };
  324. //shortcuts for more readable code
  325. #define _x current_position[X_AXIS]
  326. #define _y current_position[Y_AXIS]
  327. #define _z current_position[Z_AXIS]
  328. #define _e current_position[E_AXIS]
  329. float add_homing[3]={0,0,0};
  330. float min_pos[3] = { X_MIN_POS, Y_MIN_POS, Z_MIN_POS };
  331. float max_pos[3] = { X_MAX_POS, Y_MAX_POS, Z_MAX_POS };
  332. bool axis_known_position[3] = {false, false, false};
  333. float zprobe_zoffset;
  334. // Extruder offset
  335. #if EXTRUDERS > 1
  336. #define NUM_EXTRUDER_OFFSETS 2 // only in XY plane
  337. float extruder_offset[NUM_EXTRUDER_OFFSETS][EXTRUDERS] = {
  338. #if defined(EXTRUDER_OFFSET_X) && defined(EXTRUDER_OFFSET_Y)
  339. EXTRUDER_OFFSET_X, EXTRUDER_OFFSET_Y
  340. #endif
  341. };
  342. #endif
  343. uint8_t active_extruder = 0;
  344. int fanSpeed=0;
  345. #ifdef FWRETRACT
  346. bool autoretract_enabled=false;
  347. bool retracted[EXTRUDERS]={false
  348. #if EXTRUDERS > 1
  349. , false
  350. #if EXTRUDERS > 2
  351. , false
  352. #endif
  353. #endif
  354. };
  355. bool retracted_swap[EXTRUDERS]={false
  356. #if EXTRUDERS > 1
  357. , false
  358. #if EXTRUDERS > 2
  359. , false
  360. #endif
  361. #endif
  362. };
  363. float retract_length = RETRACT_LENGTH;
  364. float retract_length_swap = RETRACT_LENGTH_SWAP;
  365. float retract_feedrate = RETRACT_FEEDRATE;
  366. float retract_zlift = RETRACT_ZLIFT;
  367. float retract_recover_length = RETRACT_RECOVER_LENGTH;
  368. float retract_recover_length_swap = RETRACT_RECOVER_LENGTH_SWAP;
  369. float retract_recover_feedrate = RETRACT_RECOVER_FEEDRATE;
  370. #endif
  371. #ifdef PS_DEFAULT_OFF
  372. bool powersupply = false;
  373. #else
  374. bool powersupply = true;
  375. #endif
  376. bool cancel_heatup = false ;
  377. #ifdef HOST_KEEPALIVE_FEATURE
  378. int busy_state = NOT_BUSY;
  379. static long prev_busy_signal_ms = -1;
  380. uint8_t host_keepalive_interval = HOST_KEEPALIVE_INTERVAL;
  381. #else
  382. #define host_keepalive();
  383. #define KEEPALIVE_STATE(n);
  384. #endif
  385. const char errormagic[] PROGMEM = "Error:";
  386. const char echomagic[] PROGMEM = "echo:";
  387. bool no_response = false;
  388. uint8_t important_status;
  389. uint8_t saved_filament_type;
  390. // save/restore printing
  391. bool saved_printing = false;
  392. // storing estimated time to end of print counted by slicer
  393. uint8_t print_percent_done_normal = PRINT_PERCENT_DONE_INIT;
  394. uint16_t print_time_remaining_normal = PRINT_TIME_REMAINING_INIT; //estimated remaining print time in minutes
  395. uint8_t print_percent_done_silent = PRINT_PERCENT_DONE_INIT;
  396. uint16_t print_time_remaining_silent = PRINT_TIME_REMAINING_INIT; //estimated remaining print time in minutes
  397. //===========================================================================
  398. //=============================Private Variables=============================
  399. //===========================================================================
  400. const char axis_codes[NUM_AXIS] = {'X', 'Y', 'Z', 'E'};
  401. float destination[NUM_AXIS] = { 0.0, 0.0, 0.0, 0.0};
  402. static float delta[3] = {0.0, 0.0, 0.0};
  403. // For tracing an arc
  404. static float offset[3] = {0.0, 0.0, 0.0};
  405. static float feedrate = 1500.0, next_feedrate, saved_feedrate;
  406. // Determines Absolute or Relative Coordinates.
  407. // Also there is bool axis_relative_modes[] per axis flag.
  408. static bool relative_mode = false;
  409. const int sensitive_pins[] = SENSITIVE_PINS; // Sensitive pin list for M42
  410. //static float tt = 0;
  411. //static float bt = 0;
  412. //Inactivity shutdown variables
  413. static unsigned long previous_millis_cmd = 0;
  414. unsigned long max_inactive_time = 0;
  415. static unsigned long stepper_inactive_time = DEFAULT_STEPPER_DEACTIVE_TIME*1000l;
  416. static unsigned long safetytimer_inactive_time = DEFAULT_SAFETYTIMER_TIME_MINS*60*1000ul;
  417. unsigned long starttime=0;
  418. unsigned long stoptime=0;
  419. unsigned long _usb_timer = 0;
  420. static uint8_t tmp_extruder;
  421. bool extruder_under_pressure = true;
  422. bool Stopped=false;
  423. #if NUM_SERVOS > 0
  424. Servo servos[NUM_SERVOS];
  425. #endif
  426. bool CooldownNoWait = true;
  427. bool target_direction;
  428. //Insert variables if CHDK is defined
  429. #ifdef CHDK
  430. unsigned long chdkHigh = 0;
  431. boolean chdkActive = false;
  432. #endif
  433. // save/restore printing
  434. static uint32_t saved_sdpos = 0;
  435. static uint8_t saved_printing_type = PRINTING_TYPE_SD;
  436. static float saved_pos[4] = { 0, 0, 0, 0 };
  437. // Feedrate hopefully derived from an active block of the planner at the time the print has been canceled, in mm/min.
  438. static float saved_feedrate2 = 0;
  439. static uint8_t saved_active_extruder = 0;
  440. static bool saved_extruder_under_pressure = false;
  441. static bool saved_extruder_relative_mode = false;
  442. //===========================================================================
  443. //=============================Routines======================================
  444. //===========================================================================
  445. static void get_arc_coordinates();
  446. static bool setTargetedHotend(int code);
  447. static void print_time_remaining_init();
  448. void serial_echopair_P(const char *s_P, float v)
  449. { serialprintPGM(s_P); SERIAL_ECHO(v); }
  450. void serial_echopair_P(const char *s_P, double v)
  451. { serialprintPGM(s_P); SERIAL_ECHO(v); }
  452. void serial_echopair_P(const char *s_P, unsigned long v)
  453. { serialprintPGM(s_P); SERIAL_ECHO(v); }
  454. #ifdef SDSUPPORT
  455. #include "SdFatUtil.h"
  456. int freeMemory() { return SdFatUtil::FreeRam(); }
  457. #else
  458. extern "C" {
  459. extern unsigned int __bss_end;
  460. extern unsigned int __heap_start;
  461. extern void *__brkval;
  462. int freeMemory() {
  463. int free_memory;
  464. if ((int)__brkval == 0)
  465. free_memory = ((int)&free_memory) - ((int)&__bss_end);
  466. else
  467. free_memory = ((int)&free_memory) - ((int)__brkval);
  468. return free_memory;
  469. }
  470. }
  471. #endif //!SDSUPPORT
  472. void setup_killpin()
  473. {
  474. #if defined(KILL_PIN) && KILL_PIN > -1
  475. SET_INPUT(KILL_PIN);
  476. WRITE(KILL_PIN,HIGH);
  477. #endif
  478. }
  479. // Set home pin
  480. void setup_homepin(void)
  481. {
  482. #if defined(HOME_PIN) && HOME_PIN > -1
  483. SET_INPUT(HOME_PIN);
  484. WRITE(HOME_PIN,HIGH);
  485. #endif
  486. }
  487. void setup_photpin()
  488. {
  489. #if defined(PHOTOGRAPH_PIN) && PHOTOGRAPH_PIN > -1
  490. SET_OUTPUT(PHOTOGRAPH_PIN);
  491. WRITE(PHOTOGRAPH_PIN, LOW);
  492. #endif
  493. }
  494. void setup_powerhold()
  495. {
  496. #if defined(SUICIDE_PIN) && SUICIDE_PIN > -1
  497. SET_OUTPUT(SUICIDE_PIN);
  498. WRITE(SUICIDE_PIN, HIGH);
  499. #endif
  500. #if defined(PS_ON_PIN) && PS_ON_PIN > -1
  501. SET_OUTPUT(PS_ON_PIN);
  502. #if defined(PS_DEFAULT_OFF)
  503. WRITE(PS_ON_PIN, PS_ON_ASLEEP);
  504. #else
  505. WRITE(PS_ON_PIN, PS_ON_AWAKE);
  506. #endif
  507. #endif
  508. }
  509. void suicide()
  510. {
  511. #if defined(SUICIDE_PIN) && SUICIDE_PIN > -1
  512. SET_OUTPUT(SUICIDE_PIN);
  513. WRITE(SUICIDE_PIN, LOW);
  514. #endif
  515. }
  516. void servo_init()
  517. {
  518. #if (NUM_SERVOS >= 1) && defined(SERVO0_PIN) && (SERVO0_PIN > -1)
  519. servos[0].attach(SERVO0_PIN);
  520. #endif
  521. #if (NUM_SERVOS >= 2) && defined(SERVO1_PIN) && (SERVO1_PIN > -1)
  522. servos[1].attach(SERVO1_PIN);
  523. #endif
  524. #if (NUM_SERVOS >= 3) && defined(SERVO2_PIN) && (SERVO2_PIN > -1)
  525. servos[2].attach(SERVO2_PIN);
  526. #endif
  527. #if (NUM_SERVOS >= 4) && defined(SERVO3_PIN) && (SERVO3_PIN > -1)
  528. servos[3].attach(SERVO3_PIN);
  529. #endif
  530. #if (NUM_SERVOS >= 5)
  531. #error "TODO: enter initalisation code for more servos"
  532. #endif
  533. }
  534. void stop_and_save_print_to_ram(float z_move, float e_move);
  535. void restore_print_from_ram_and_continue(float e_move);
  536. bool fans_check_enabled = true;
  537. #ifdef TMC2130
  538. extern int8_t CrashDetectMenu;
  539. void crashdet_enable()
  540. {
  541. tmc2130_sg_stop_on_crash = true;
  542. eeprom_update_byte((uint8_t*)EEPROM_CRASH_DET, 0xFF);
  543. CrashDetectMenu = 1;
  544. }
  545. void crashdet_disable()
  546. {
  547. tmc2130_sg_stop_on_crash = false;
  548. tmc2130_sg_crash = 0;
  549. eeprom_update_byte((uint8_t*)EEPROM_CRASH_DET, 0x00);
  550. CrashDetectMenu = 0;
  551. }
  552. void crashdet_stop_and_save_print()
  553. {
  554. stop_and_save_print_to_ram(10, -DEFAULT_RETRACTION); //XY - no change, Z 10mm up, E -1mm retract
  555. }
  556. void crashdet_restore_print_and_continue()
  557. {
  558. restore_print_from_ram_and_continue(DEFAULT_RETRACTION); //XYZ = orig, E +1mm unretract
  559. // babystep_apply();
  560. }
  561. void crashdet_stop_and_save_print2()
  562. {
  563. cli();
  564. planner_abort_hard(); //abort printing
  565. cmdqueue_reset(); //empty cmdqueue
  566. card.sdprinting = false;
  567. card.closefile();
  568. // Reset and re-enable the stepper timer just before the global interrupts are enabled.
  569. st_reset_timer();
  570. sei();
  571. }
  572. void crashdet_detected(uint8_t mask)
  573. {
  574. st_synchronize();
  575. static uint8_t crashDet_counter = 0;
  576. bool automatic_recovery_after_crash = true;
  577. if (crashDet_counter++ == 0) {
  578. crashDetTimer.start();
  579. }
  580. else if (crashDetTimer.expired(CRASHDET_TIMER * 1000ul)){
  581. crashDetTimer.stop();
  582. crashDet_counter = 0;
  583. }
  584. else if(crashDet_counter == CRASHDET_COUNTER_MAX){
  585. automatic_recovery_after_crash = false;
  586. crashDetTimer.stop();
  587. crashDet_counter = 0;
  588. }
  589. else {
  590. crashDetTimer.start();
  591. }
  592. lcd_update_enable(true);
  593. lcd_clear();
  594. lcd_update(2);
  595. if (mask & X_AXIS_MASK)
  596. {
  597. eeprom_update_byte((uint8_t*)EEPROM_CRASH_COUNT_X, eeprom_read_byte((uint8_t*)EEPROM_CRASH_COUNT_X) + 1);
  598. eeprom_update_word((uint16_t*)EEPROM_CRASH_COUNT_X_TOT, eeprom_read_word((uint16_t*)EEPROM_CRASH_COUNT_X_TOT) + 1);
  599. }
  600. if (mask & Y_AXIS_MASK)
  601. {
  602. eeprom_update_byte((uint8_t*)EEPROM_CRASH_COUNT_Y, eeprom_read_byte((uint8_t*)EEPROM_CRASH_COUNT_Y) + 1);
  603. eeprom_update_word((uint16_t*)EEPROM_CRASH_COUNT_Y_TOT, eeprom_read_word((uint16_t*)EEPROM_CRASH_COUNT_Y_TOT) + 1);
  604. }
  605. lcd_update_enable(true);
  606. lcd_update(2);
  607. lcd_setstatuspgm(_T(MSG_CRASH_DETECTED));
  608. gcode_G28(true, true, false); //home X and Y
  609. st_synchronize();
  610. if (automatic_recovery_after_crash) {
  611. enquecommand_P(PSTR("CRASH_RECOVER"));
  612. }else{
  613. HotendTempBckp = degTargetHotend(active_extruder);
  614. setTargetHotend(0, active_extruder);
  615. bool yesno = lcd_show_fullscreen_message_yes_no_and_wait_P(_i("Crash detected. Resume print?"), false);
  616. lcd_update_enable(true);
  617. if (yesno)
  618. {
  619. char cmd1[10];
  620. strcpy(cmd1, "M109 S");
  621. strcat(cmd1, ftostr3(HotendTempBckp));
  622. enquecommand(cmd1);
  623. enquecommand_P(PSTR("CRASH_RECOVER"));
  624. }
  625. else
  626. {
  627. enquecommand_P(PSTR("CRASH_CANCEL"));
  628. }
  629. }
  630. }
  631. void crashdet_recover()
  632. {
  633. crashdet_restore_print_and_continue();
  634. tmc2130_sg_stop_on_crash = true;
  635. }
  636. void crashdet_cancel()
  637. {
  638. tmc2130_sg_stop_on_crash = true;
  639. if (saved_printing_type == PRINTING_TYPE_SD) {
  640. lcd_print_stop();
  641. }else if(saved_printing_type == PRINTING_TYPE_USB){
  642. SERIAL_ECHOLNPGM("// action:cancel"); //for Octoprint: works the same as clicking "Abort" button in Octoprint GUI
  643. SERIAL_PROTOCOLLNRPGM(_T(MSG_OK));
  644. }
  645. }
  646. #endif //TMC2130
  647. void failstats_reset_print()
  648. {
  649. eeprom_update_byte((uint8_t *)EEPROM_CRASH_COUNT_X, 0);
  650. eeprom_update_byte((uint8_t *)EEPROM_CRASH_COUNT_Y, 0);
  651. eeprom_update_byte((uint8_t *)EEPROM_FERROR_COUNT, 0);
  652. eeprom_update_byte((uint8_t *)EEPROM_POWER_COUNT, 0);
  653. }
  654. #ifdef MESH_BED_LEVELING
  655. enum MeshLevelingState { MeshReport, MeshStart, MeshNext, MeshSet };
  656. #endif
  657. // Factory reset function
  658. // This function is used to erase parts or whole EEPROM memory which is used for storing calibration and and so on.
  659. // Level input parameter sets depth of reset
  660. // Quiet parameter masks all waitings for user interact.
  661. int er_progress = 0;
  662. void factory_reset(char level, bool quiet)
  663. {
  664. lcd_clear();
  665. int cursor_pos = 0;
  666. switch (level) {
  667. // Level 0: Language reset
  668. case 0:
  669. WRITE(BEEPER, HIGH);
  670. _delay_ms(100);
  671. WRITE(BEEPER, LOW);
  672. lang_reset();
  673. break;
  674. //Level 1: Reset statistics
  675. case 1:
  676. WRITE(BEEPER, HIGH);
  677. _delay_ms(100);
  678. WRITE(BEEPER, LOW);
  679. eeprom_update_dword((uint32_t *)EEPROM_TOTALTIME, 0);
  680. eeprom_update_dword((uint32_t *)EEPROM_FILAMENTUSED, 0);
  681. eeprom_update_byte((uint8_t *)EEPROM_CRASH_COUNT_X, 0);
  682. eeprom_update_byte((uint8_t *)EEPROM_CRASH_COUNT_Y, 0);
  683. eeprom_update_byte((uint8_t *)EEPROM_FERROR_COUNT, 0);
  684. eeprom_update_byte((uint8_t *)EEPROM_POWER_COUNT, 0);
  685. eeprom_update_word((uint16_t *)EEPROM_CRASH_COUNT_X_TOT, 0);
  686. eeprom_update_word((uint16_t *)EEPROM_CRASH_COUNT_Y_TOT, 0);
  687. eeprom_update_word((uint16_t *)EEPROM_FERROR_COUNT_TOT, 0);
  688. eeprom_update_word((uint16_t *)EEPROM_POWER_COUNT_TOT, 0);
  689. lcd_menu_statistics();
  690. break;
  691. // Level 2: Prepare for shipping
  692. case 2:
  693. //lcd_puts_P(PSTR("Factory RESET"));
  694. //lcd_puts_at_P(1,2,PSTR("Shipping prep"));
  695. // Force language selection at the next boot up.
  696. lang_reset();
  697. // Force the "Follow calibration flow" message at the next boot up.
  698. calibration_status_store(CALIBRATION_STATUS_Z_CALIBRATION);
  699. eeprom_write_byte((uint8_t*)EEPROM_WIZARD_ACTIVE, 1); //run wizard
  700. farm_no = 0;
  701. farm_mode = false;
  702. eeprom_update_byte((uint8_t*)EEPROM_FARM_MODE, farm_mode);
  703. EEPROM_save_B(EEPROM_FARM_NUMBER, &farm_no);
  704. eeprom_update_dword((uint32_t *)EEPROM_TOTALTIME, 0);
  705. eeprom_update_dword((uint32_t *)EEPROM_FILAMENTUSED, 0);
  706. eeprom_update_word((uint16_t *)EEPROM_CRASH_COUNT_X_TOT, 0);
  707. eeprom_update_word((uint16_t *)EEPROM_CRASH_COUNT_Y_TOT, 0);
  708. eeprom_update_word((uint16_t *)EEPROM_FERROR_COUNT_TOT, 0);
  709. eeprom_update_word((uint16_t *)EEPROM_POWER_COUNT_TOT, 0);
  710. #ifdef FILAMENT_SENSOR
  711. fsensor_enable();
  712. fsensor_autoload_set(true);
  713. #endif //FILAMENT_SENSOR
  714. WRITE(BEEPER, HIGH);
  715. _delay_ms(100);
  716. WRITE(BEEPER, LOW);
  717. //_delay_ms(2000);
  718. break;
  719. // Level 3: erase everything, whole EEPROM will be set to 0xFF
  720. case 3:
  721. lcd_puts_P(PSTR("Factory RESET"));
  722. lcd_puts_at_P(1, 2, PSTR("ERASING all data"));
  723. WRITE(BEEPER, HIGH);
  724. _delay_ms(100);
  725. WRITE(BEEPER, LOW);
  726. er_progress = 0;
  727. lcd_puts_at_P(3, 3, PSTR(" "));
  728. lcd_set_cursor(3, 3);
  729. lcd_print(er_progress);
  730. // Erase EEPROM
  731. for (int i = 0; i < 4096; i++) {
  732. eeprom_write_byte((uint8_t*)i, 0xFF);
  733. if (i % 41 == 0) {
  734. er_progress++;
  735. lcd_puts_at_P(3, 3, PSTR(" "));
  736. lcd_set_cursor(3, 3);
  737. lcd_print(er_progress);
  738. lcd_puts_P(PSTR("%"));
  739. }
  740. }
  741. break;
  742. case 4:
  743. bowden_menu();
  744. break;
  745. default:
  746. break;
  747. }
  748. }
  749. FILE _uartout = {0};
  750. int uart_putchar(char c, FILE *stream)
  751. {
  752. MYSERIAL.write(c);
  753. return 0;
  754. }
  755. void lcd_splash()
  756. {
  757. // lcd_puts_at_P(0, 1, PSTR(" Original Prusa "));
  758. // lcd_puts_at_P(0, 2, PSTR(" 3D Printers "));
  759. // lcd_puts_P(PSTR("\x1b[1;3HOriginal Prusa\x1b[2;4H3D Printers"));
  760. // fputs_P(PSTR(ESC_2J ESC_H(1,1) "Original Prusa i3" ESC_H(3,2) "Prusa Research"), lcdout);
  761. lcd_puts_P(PSTR(ESC_2J ESC_H(1,1) "Original Prusa i3" ESC_H(3,2) "Prusa Research"));
  762. // lcd_printf_P(_N(ESC_2J "x:%.3f\ny:%.3f\nz:%.3f\ne:%.3f"), _x, _y, _z, _e);
  763. }
  764. void factory_reset()
  765. {
  766. KEEPALIVE_STATE(PAUSED_FOR_USER);
  767. if (!READ(BTN_ENC))
  768. {
  769. _delay_ms(1000);
  770. if (!READ(BTN_ENC))
  771. {
  772. lcd_clear();
  773. lcd_puts_P(PSTR("Factory RESET"));
  774. SET_OUTPUT(BEEPER);
  775. WRITE(BEEPER, HIGH);
  776. while (!READ(BTN_ENC));
  777. WRITE(BEEPER, LOW);
  778. _delay_ms(2000);
  779. char level = reset_menu();
  780. factory_reset(level, false);
  781. switch (level) {
  782. case 0: _delay_ms(0); break;
  783. case 1: _delay_ms(0); break;
  784. case 2: _delay_ms(0); break;
  785. case 3: _delay_ms(0); break;
  786. }
  787. // _delay_ms(100);
  788. /*
  789. #ifdef MESH_BED_LEVELING
  790. _delay_ms(2000);
  791. if (!READ(BTN_ENC))
  792. {
  793. WRITE(BEEPER, HIGH);
  794. _delay_ms(100);
  795. WRITE(BEEPER, LOW);
  796. _delay_ms(200);
  797. WRITE(BEEPER, HIGH);
  798. _delay_ms(100);
  799. WRITE(BEEPER, LOW);
  800. int _z = 0;
  801. calibration_status_store(CALIBRATION_STATUS_CALIBRATED);
  802. EEPROM_save_B(EEPROM_BABYSTEP_X, &_z);
  803. EEPROM_save_B(EEPROM_BABYSTEP_Y, &_z);
  804. EEPROM_save_B(EEPROM_BABYSTEP_Z, &_z);
  805. }
  806. else
  807. {
  808. WRITE(BEEPER, HIGH);
  809. _delay_ms(100);
  810. WRITE(BEEPER, LOW);
  811. }
  812. #endif // mesh */
  813. }
  814. }
  815. else
  816. {
  817. //_delay_ms(1000); // wait 1sec to display the splash screen // what's this and why do we need it?? - andre
  818. }
  819. KEEPALIVE_STATE(IN_HANDLER);
  820. }
  821. void show_fw_version_warnings() {
  822. if (FW_DEV_VERSION == FW_VERSION_GOLD || FW_DEV_VERSION == FW_VERSION_RC) return;
  823. switch (FW_DEV_VERSION) {
  824. case(FW_VERSION_ALPHA): lcd_show_fullscreen_message_and_wait_P(_i("You are using firmware alpha version. This is development version. Using this version is not recommended and may cause printer damage.")); break;////MSG_FW_VERSION_ALPHA c=20 r=8
  825. case(FW_VERSION_BETA): lcd_show_fullscreen_message_and_wait_P(_i("You are using firmware beta version. This is development version. Using this version is not recommended and may cause printer damage.")); break;////MSG_FW_VERSION_BETA c=20 r=8
  826. case(FW_VERSION_DEVEL):
  827. case(FW_VERSION_DEBUG):
  828. lcd_update_enable(false);
  829. lcd_clear();
  830. #if FW_DEV_VERSION == FW_VERSION_DEVEL
  831. lcd_puts_at_P(0, 0, PSTR("Development build !!"));
  832. #else
  833. lcd_puts_at_P(0, 0, PSTR("Debbugging build !!!"));
  834. #endif
  835. lcd_puts_at_P(0, 1, PSTR("May destroy printer!"));
  836. lcd_puts_at_P(0, 2, PSTR("ver ")); lcd_puts_P(PSTR(FW_VERSION_FULL));
  837. lcd_puts_at_P(0, 3, PSTR(FW_REPOSITORY));
  838. lcd_wait_for_click();
  839. break;
  840. // default: lcd_show_fullscreen_message_and_wait_P(_i("WARNING: This is an unofficial, unsupported build. Use at your own risk!")); break;////MSG_FW_VERSION_UNKNOWN c=20 r=8
  841. }
  842. lcd_update_enable(true);
  843. }
  844. uint8_t check_printer_version()
  845. {
  846. uint8_t version_changed = 0;
  847. uint16_t printer_type = eeprom_read_word((uint16_t*)EEPROM_PRINTER_TYPE);
  848. uint16_t motherboard = eeprom_read_word((uint16_t*)EEPROM_BOARD_TYPE);
  849. if (printer_type != PRINTER_TYPE) {
  850. if (printer_type == 0xffff) eeprom_write_word((uint16_t*)EEPROM_PRINTER_TYPE, PRINTER_TYPE);
  851. else version_changed |= 0b10;
  852. }
  853. if (motherboard != MOTHERBOARD) {
  854. if(motherboard == 0xffff) eeprom_write_word((uint16_t*)EEPROM_BOARD_TYPE, MOTHERBOARD);
  855. else version_changed |= 0b01;
  856. }
  857. return version_changed;
  858. }
  859. void erase_eeprom_section(uint16_t offset, uint16_t bytes)
  860. {
  861. for (int i = offset; i < (offset+bytes); i++) eeprom_write_byte((uint8_t*)i, 0xFF);
  862. }
  863. #ifdef BOOTAPP
  864. #include "bootapp.h" //bootloader support
  865. #endif //BOOTAPP
  866. #if (LANG_MODE != 0) //secondary language support
  867. #ifdef W25X20CL
  868. // language update from external flash
  869. #define LANGBOOT_BLOCKSIZE 0x1000
  870. #define LANGBOOT_RAMBUFFER 0x0800
  871. void update_sec_lang_from_external_flash()
  872. {
  873. if ((boot_app_magic == BOOT_APP_MAGIC) && (boot_app_flags & BOOT_APP_FLG_USER0))
  874. {
  875. uint8_t lang = boot_reserved >> 4;
  876. uint8_t state = boot_reserved & 0xf;
  877. lang_table_header_t header;
  878. uint32_t src_addr;
  879. if (lang_get_header(lang, &header, &src_addr))
  880. {
  881. fputs_P(PSTR(ESC_H(1,3) "Language update."), lcdout);
  882. for (uint8_t i = 0; i < state; i++) fputc('.', lcdout);
  883. delay(100);
  884. boot_reserved = (state + 1) | (lang << 4);
  885. if ((state * LANGBOOT_BLOCKSIZE) < header.size)
  886. {
  887. cli();
  888. uint16_t size = header.size - state * LANGBOOT_BLOCKSIZE;
  889. if (size > LANGBOOT_BLOCKSIZE) size = LANGBOOT_BLOCKSIZE;
  890. w25x20cl_rd_data(src_addr + state * LANGBOOT_BLOCKSIZE, (uint8_t*)LANGBOOT_RAMBUFFER, size);
  891. if (state == 0)
  892. {
  893. //TODO - check header integrity
  894. }
  895. bootapp_ram2flash(LANGBOOT_RAMBUFFER, _SEC_LANG_TABLE + state * LANGBOOT_BLOCKSIZE, size);
  896. }
  897. else
  898. {
  899. //TODO - check sec lang data integrity
  900. eeprom_update_byte((unsigned char *)EEPROM_LANG, LANG_ID_SEC);
  901. }
  902. }
  903. }
  904. boot_app_flags &= ~BOOT_APP_FLG_USER0;
  905. }
  906. #ifdef DEBUG_W25X20CL
  907. uint8_t lang_xflash_enum_codes(uint16_t* codes)
  908. {
  909. lang_table_header_t header;
  910. uint8_t count = 0;
  911. uint32_t addr = 0x00000;
  912. while (1)
  913. {
  914. printf_P(_n("LANGTABLE%d:"), count);
  915. w25x20cl_rd_data(addr, (uint8_t*)&header, sizeof(lang_table_header_t));
  916. if (header.magic != LANG_MAGIC)
  917. {
  918. printf_P(_n("NG!\n"));
  919. break;
  920. }
  921. printf_P(_n("OK\n"));
  922. printf_P(_n(" _lt_magic = 0x%08lx %S\n"), header.magic, (header.magic==LANG_MAGIC)?_n("OK"):_n("NA"));
  923. printf_P(_n(" _lt_size = 0x%04x (%d)\n"), header.size, header.size);
  924. printf_P(_n(" _lt_count = 0x%04x (%d)\n"), header.count, header.count);
  925. printf_P(_n(" _lt_chsum = 0x%04x\n"), header.checksum);
  926. printf_P(_n(" _lt_code = 0x%04x (%c%c)\n"), header.code, header.code >> 8, header.code & 0xff);
  927. printf_P(_n(" _lt_sign = 0x%08lx\n"), header.signature);
  928. addr += header.size;
  929. codes[count] = header.code;
  930. count ++;
  931. }
  932. return count;
  933. }
  934. void list_sec_lang_from_external_flash()
  935. {
  936. uint16_t codes[8];
  937. uint8_t count = lang_xflash_enum_codes(codes);
  938. printf_P(_n("XFlash lang count = %hhd\n"), count);
  939. }
  940. #endif //DEBUG_W25X20CL
  941. #endif //W25X20CL
  942. #endif //(LANG_MODE != 0)
  943. // "Setup" function is called by the Arduino framework on startup.
  944. // Before startup, the Timers-functions (PWM)/Analog RW and HardwareSerial provided by the Arduino-code
  945. // are initialized by the main() routine provided by the Arduino framework.
  946. void setup()
  947. {
  948. ultralcd_init();
  949. spi_init();
  950. lcd_splash();
  951. //-//
  952. Sound_Init();
  953. #ifdef W25X20CL
  954. if (!w25x20cl_init())
  955. kill(_i("External SPI flash W25X20CL not responding."));
  956. // Enter an STK500 compatible Optiboot boot loader waiting for flashing the languages to an external flash memory.
  957. optiboot_w25x20cl_enter();
  958. #endif
  959. #if (LANG_MODE != 0) //secondary language support
  960. #ifdef W25X20CL
  961. if (w25x20cl_init())
  962. update_sec_lang_from_external_flash();
  963. #endif //W25X20CL
  964. #endif //(LANG_MODE != 0)
  965. setup_killpin();
  966. setup_powerhold();
  967. farm_mode = eeprom_read_byte((uint8_t*)EEPROM_FARM_MODE);
  968. EEPROM_read_B(EEPROM_FARM_NUMBER, &farm_no);
  969. if ((farm_mode == 0xFF && farm_no == 0) || ((uint16_t)farm_no == 0xFFFF))
  970. farm_mode = false; //if farm_mode has not been stored to eeprom yet and farm number is set to zero or EEPROM is fresh, deactivate farm mode
  971. if ((uint16_t)farm_no == 0xFFFF) farm_no = 0;
  972. selectedSerialPort = eeprom_read_byte((uint8_t*)EEPROM_SECOND_SERIAL_ACTIVE);
  973. if (selectedSerialPort == 0xFF) selectedSerialPort = 0;
  974. if (farm_mode)
  975. {
  976. no_response = true; //we need confirmation by recieving PRUSA thx
  977. important_status = 8;
  978. prusa_statistics(8);
  979. selectedSerialPort = 1;
  980. #ifdef TMC2130
  981. //increased extruder current (PFW363)
  982. tmc2130_current_h[E_AXIS] = 36;
  983. tmc2130_current_r[E_AXIS] = 36;
  984. #endif //TMC2130
  985. #ifdef FILAMENT_SENSOR
  986. //disabled filament autoload (PFW360)
  987. fsensor_autoload_set(false);
  988. #endif //FILAMENT_SENSOR
  989. }
  990. MYSERIAL.begin(BAUDRATE);
  991. fdev_setup_stream(uartout, uart_putchar, NULL, _FDEV_SETUP_WRITE); //setup uart out stream
  992. stdout = uartout;
  993. SERIAL_PROTOCOLLNPGM("start");
  994. SERIAL_ECHO_START;
  995. printf_P(PSTR(" " FW_VERSION_FULL "\n"));
  996. uart2_init();
  997. #ifdef DEBUG_SEC_LANG
  998. lang_table_header_t header;
  999. uint32_t src_addr = 0x00000;
  1000. if (lang_get_header(1, &header, &src_addr))
  1001. {
  1002. //this is comparsion of some printing-methods regarding to flash space usage and code size/readability
  1003. #define LT_PRINT_TEST 2
  1004. // flash usage
  1005. // total p.test
  1006. //0 252718 t+c text code
  1007. //1 253142 424 170 254
  1008. //2 253040 322 164 158
  1009. //3 253248 530 135 395
  1010. #if (LT_PRINT_TEST==1) //not optimized printf
  1011. printf_P(_n(" _src_addr = 0x%08lx\n"), src_addr);
  1012. printf_P(_n(" _lt_magic = 0x%08lx %S\n"), header.magic, (header.magic==LANG_MAGIC)?_n("OK"):_n("NA"));
  1013. printf_P(_n(" _lt_size = 0x%04x (%d)\n"), header.size, header.size);
  1014. printf_P(_n(" _lt_count = 0x%04x (%d)\n"), header.count, header.count);
  1015. printf_P(_n(" _lt_chsum = 0x%04x\n"), header.checksum);
  1016. printf_P(_n(" _lt_code = 0x%04x (%c%c)\n"), header.code, header.code >> 8, header.code & 0xff);
  1017. printf_P(_n(" _lt_sign = 0x%08lx\n"), header.signature);
  1018. #elif (LT_PRINT_TEST==2) //optimized printf
  1019. printf_P(
  1020. _n(
  1021. " _src_addr = 0x%08lx\n"
  1022. " _lt_magic = 0x%08lx %S\n"
  1023. " _lt_size = 0x%04x (%d)\n"
  1024. " _lt_count = 0x%04x (%d)\n"
  1025. " _lt_chsum = 0x%04x\n"
  1026. " _lt_code = 0x%04x (%c%c)\n"
  1027. " _lt_resv1 = 0x%08lx\n"
  1028. ),
  1029. src_addr,
  1030. header.magic, (header.magic==LANG_MAGIC)?_n("OK"):_n("NA"),
  1031. header.size, header.size,
  1032. header.count, header.count,
  1033. header.checksum,
  1034. header.code, header.code >> 8, header.code & 0xff,
  1035. header.signature
  1036. );
  1037. #elif (LT_PRINT_TEST==3) //arduino print/println (leading zeros not solved)
  1038. MYSERIAL.print(" _src_addr = 0x");
  1039. MYSERIAL.println(src_addr, 16);
  1040. MYSERIAL.print(" _lt_magic = 0x");
  1041. MYSERIAL.print(header.magic, 16);
  1042. MYSERIAL.println((header.magic==LANG_MAGIC)?" OK":" NA");
  1043. MYSERIAL.print(" _lt_size = 0x");
  1044. MYSERIAL.print(header.size, 16);
  1045. MYSERIAL.print(" (");
  1046. MYSERIAL.print(header.size, 10);
  1047. MYSERIAL.println(")");
  1048. MYSERIAL.print(" _lt_count = 0x");
  1049. MYSERIAL.print(header.count, 16);
  1050. MYSERIAL.print(" (");
  1051. MYSERIAL.print(header.count, 10);
  1052. MYSERIAL.println(")");
  1053. MYSERIAL.print(" _lt_chsum = 0x");
  1054. MYSERIAL.println(header.checksum, 16);
  1055. MYSERIAL.print(" _lt_code = 0x");
  1056. MYSERIAL.print(header.code, 16);
  1057. MYSERIAL.print(" (");
  1058. MYSERIAL.print((char)(header.code >> 8), 0);
  1059. MYSERIAL.print((char)(header.code & 0xff), 0);
  1060. MYSERIAL.println(")");
  1061. MYSERIAL.print(" _lt_resv1 = 0x");
  1062. MYSERIAL.println(header.signature, 16);
  1063. #endif //(LT_PRINT_TEST==)
  1064. #undef LT_PRINT_TEST
  1065. #if 0
  1066. w25x20cl_rd_data(0x25ba, (uint8_t*)&block_buffer, 1024);
  1067. for (uint16_t i = 0; i < 1024; i++)
  1068. {
  1069. if ((i % 16) == 0) printf_P(_n("%04x:"), 0x25ba+i);
  1070. printf_P(_n(" %02x"), ((uint8_t*)&block_buffer)[i]);
  1071. if ((i % 16) == 15) putchar('\n');
  1072. }
  1073. #endif
  1074. uint16_t sum = 0;
  1075. for (uint16_t i = 0; i < header.size; i++)
  1076. sum += (uint16_t)pgm_read_byte((uint8_t*)(_SEC_LANG_TABLE + i)) << ((i & 1)?0:8);
  1077. printf_P(_n("_SEC_LANG_TABLE checksum = %04x\n"), sum);
  1078. sum -= header.checksum; //subtract checksum
  1079. printf_P(_n("_SEC_LANG_TABLE checksum = %04x\n"), sum);
  1080. sum = (sum >> 8) | ((sum & 0xff) << 8); //swap bytes
  1081. if (sum == header.checksum)
  1082. printf_P(_n("Checksum OK\n"), sum);
  1083. else
  1084. printf_P(_n("Checksum NG\n"), sum);
  1085. }
  1086. else
  1087. printf_P(_n("lang_get_header failed!\n"));
  1088. #if 0
  1089. for (uint16_t i = 0; i < 1024*10; i++)
  1090. {
  1091. if ((i % 16) == 0) printf_P(_n("%04x:"), _SEC_LANG_TABLE+i);
  1092. printf_P(_n(" %02x"), pgm_read_byte((uint8_t*)(_SEC_LANG_TABLE+i)));
  1093. if ((i % 16) == 15) putchar('\n');
  1094. }
  1095. #endif
  1096. #if 0
  1097. SERIAL_ECHOLN("Reading eeprom from 0 to 100: start");
  1098. for (int i = 0; i < 4096; ++i) {
  1099. int b = eeprom_read_byte((unsigned char*)i);
  1100. if (b != 255) {
  1101. SERIAL_ECHO(i);
  1102. SERIAL_ECHO(":");
  1103. SERIAL_ECHO(b);
  1104. SERIAL_ECHOLN("");
  1105. }
  1106. }
  1107. SERIAL_ECHOLN("Reading eeprom from 0 to 100: done");
  1108. #endif
  1109. #endif //DEBUG_SEC_LANG
  1110. // Check startup - does nothing if bootloader sets MCUSR to 0
  1111. byte mcu = MCUSR;
  1112. /* if (mcu & 1) SERIAL_ECHOLNRPGM(_T(MSG_POWERUP));
  1113. if (mcu & 2) SERIAL_ECHOLNRPGM(MSG_EXTERNAL_RESET);
  1114. if (mcu & 4) SERIAL_ECHOLNRPGM(MSG_BROWNOUT_RESET);
  1115. if (mcu & 8) SERIAL_ECHOLNRPGM(MSG_WATCHDOG_RESET);
  1116. if (mcu & 32) SERIAL_ECHOLNRPGM(MSG_SOFTWARE_RESET);*/
  1117. if (mcu & 1) puts_P(_T(MSG_POWERUP));
  1118. if (mcu & 2) puts_P(MSG_EXTERNAL_RESET);
  1119. if (mcu & 4) puts_P(MSG_BROWNOUT_RESET);
  1120. if (mcu & 8) puts_P(MSG_WATCHDOG_RESET);
  1121. if (mcu & 32) puts_P(MSG_SOFTWARE_RESET);
  1122. MCUSR = 0;
  1123. //SERIAL_ECHORPGM(MSG_MARLIN);
  1124. //SERIAL_ECHOLNRPGM(VERSION_STRING);
  1125. #ifdef STRING_VERSION_CONFIG_H
  1126. #ifdef STRING_CONFIG_H_AUTHOR
  1127. SERIAL_ECHO_START;
  1128. SERIAL_ECHORPGM(_i(" Last Updated: "));////MSG_CONFIGURATION_VER c=0 r=0
  1129. SERIAL_ECHOPGM(STRING_VERSION_CONFIG_H);
  1130. SERIAL_ECHORPGM(_n(" | Author: "));////MSG_AUTHOR c=0 r=0
  1131. SERIAL_ECHOLNPGM(STRING_CONFIG_H_AUTHOR);
  1132. SERIAL_ECHOPGM("Compiled: ");
  1133. SERIAL_ECHOLNPGM(__DATE__);
  1134. #endif
  1135. #endif
  1136. SERIAL_ECHO_START;
  1137. SERIAL_ECHORPGM(_i(" Free Memory: "));////MSG_FREE_MEMORY c=0 r=0
  1138. SERIAL_ECHO(freeMemory());
  1139. SERIAL_ECHORPGM(_i(" PlannerBufferBytes: "));////MSG_PLANNER_BUFFER_BYTES c=0 r=0
  1140. SERIAL_ECHOLN((int)sizeof(block_t)*BLOCK_BUFFER_SIZE);
  1141. //lcd_update_enable(false); // why do we need this?? - andre
  1142. // loads data from EEPROM if available else uses defaults (and resets step acceleration rate)
  1143. bool previous_settings_retrieved = false;
  1144. uint8_t hw_changed = check_printer_version();
  1145. if (!(hw_changed & 0b10)) { //if printer version wasn't changed, check for eeprom version and retrieve settings from eeprom in case that version wasn't changed
  1146. previous_settings_retrieved = Config_RetrieveSettings(EEPROM_OFFSET);
  1147. }
  1148. else { //printer version was changed so use default settings
  1149. Config_ResetDefault();
  1150. }
  1151. SdFatUtil::set_stack_guard(); //writes magic number at the end of static variables to protect against overwriting static memory by stack
  1152. tp_init(); // Initialize temperature loop
  1153. lcd_splash(); // we need to do this again, because tp_init() kills lcd
  1154. plan_init(); // Initialize planner;
  1155. factory_reset();
  1156. #ifdef TMC2130
  1157. uint8_t silentMode = eeprom_read_byte((uint8_t*)EEPROM_SILENT);
  1158. if (silentMode == 0xff) silentMode = 0;
  1159. tmc2130_mode = TMC2130_MODE_NORMAL;
  1160. uint8_t crashdet = eeprom_read_byte((uint8_t*)EEPROM_CRASH_DET);
  1161. if (crashdet && !farm_mode)
  1162. {
  1163. crashdet_enable();
  1164. puts_P(_N("CrashDetect ENABLED!"));
  1165. }
  1166. else
  1167. {
  1168. crashdet_disable();
  1169. puts_P(_N("CrashDetect DISABLED"));
  1170. }
  1171. #ifdef TMC2130_LINEARITY_CORRECTION
  1172. #ifdef TMC2130_LINEARITY_CORRECTION_XYZ
  1173. tmc2130_wave_fac[X_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_WAVE_X_FAC);
  1174. tmc2130_wave_fac[Y_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_WAVE_Y_FAC);
  1175. tmc2130_wave_fac[Z_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_WAVE_Z_FAC);
  1176. #endif //TMC2130_LINEARITY_CORRECTION_XYZ
  1177. tmc2130_wave_fac[E_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_WAVE_E_FAC);
  1178. if (tmc2130_wave_fac[X_AXIS] == 0xff) tmc2130_wave_fac[X_AXIS] = 0;
  1179. if (tmc2130_wave_fac[Y_AXIS] == 0xff) tmc2130_wave_fac[Y_AXIS] = 0;
  1180. if (tmc2130_wave_fac[Z_AXIS] == 0xff) tmc2130_wave_fac[Z_AXIS] = 0;
  1181. if (tmc2130_wave_fac[E_AXIS] == 0xff) tmc2130_wave_fac[E_AXIS] = 0;
  1182. #endif //TMC2130_LINEARITY_CORRECTION
  1183. #ifdef TMC2130_VARIABLE_RESOLUTION
  1184. tmc2130_mres[X_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_X_MRES);
  1185. tmc2130_mres[Y_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_Y_MRES);
  1186. tmc2130_mres[Z_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_Z_MRES);
  1187. tmc2130_mres[E_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_E_MRES);
  1188. if (tmc2130_mres[X_AXIS] == 0xff) tmc2130_mres[X_AXIS] = tmc2130_usteps2mres(TMC2130_USTEPS_XY);
  1189. if (tmc2130_mres[Y_AXIS] == 0xff) tmc2130_mres[Y_AXIS] = tmc2130_usteps2mres(TMC2130_USTEPS_XY);
  1190. if (tmc2130_mres[Z_AXIS] == 0xff) tmc2130_mres[Z_AXIS] = tmc2130_usteps2mres(TMC2130_USTEPS_Z);
  1191. if (tmc2130_mres[E_AXIS] == 0xff) tmc2130_mres[E_AXIS] = tmc2130_usteps2mres(TMC2130_USTEPS_E);
  1192. eeprom_update_byte((uint8_t*)EEPROM_TMC2130_X_MRES, tmc2130_mres[X_AXIS]);
  1193. eeprom_update_byte((uint8_t*)EEPROM_TMC2130_Y_MRES, tmc2130_mres[Y_AXIS]);
  1194. eeprom_update_byte((uint8_t*)EEPROM_TMC2130_Z_MRES, tmc2130_mres[Z_AXIS]);
  1195. eeprom_update_byte((uint8_t*)EEPROM_TMC2130_E_MRES, tmc2130_mres[E_AXIS]);
  1196. #else //TMC2130_VARIABLE_RESOLUTION
  1197. tmc2130_mres[X_AXIS] = tmc2130_usteps2mres(TMC2130_USTEPS_XY);
  1198. tmc2130_mres[Y_AXIS] = tmc2130_usteps2mres(TMC2130_USTEPS_XY);
  1199. tmc2130_mres[Z_AXIS] = tmc2130_usteps2mres(TMC2130_USTEPS_Z);
  1200. tmc2130_mres[E_AXIS] = tmc2130_usteps2mres(TMC2130_USTEPS_E);
  1201. #endif //TMC2130_VARIABLE_RESOLUTION
  1202. #endif //TMC2130
  1203. st_init(); // Initialize stepper, this enables interrupts!
  1204. #ifdef TMC2130
  1205. tmc2130_mode = silentMode?TMC2130_MODE_SILENT:TMC2130_MODE_NORMAL;
  1206. update_mode_profile();
  1207. tmc2130_init();
  1208. #endif //TMC2130
  1209. setup_photpin();
  1210. servo_init();
  1211. // Reset the machine correction matrix.
  1212. // It does not make sense to load the correction matrix until the machine is homed.
  1213. world2machine_reset();
  1214. #ifdef FILAMENT_SENSOR
  1215. fsensor_init();
  1216. #endif //FILAMENT_SENSOR
  1217. #if defined(CONTROLLERFAN_PIN) && (CONTROLLERFAN_PIN > -1)
  1218. SET_OUTPUT(CONTROLLERFAN_PIN); //Set pin used for driver cooling fan
  1219. #endif
  1220. setup_homepin();
  1221. #ifdef TMC2130
  1222. if (1) {
  1223. // try to run to zero phase before powering the Z motor.
  1224. // Move in negative direction
  1225. WRITE(Z_DIR_PIN,INVERT_Z_DIR);
  1226. // Round the current micro-micro steps to micro steps.
  1227. for (uint16_t phase = (tmc2130_rd_MSCNT(Z_AXIS) + 8) >> 4; phase > 0; -- phase) {
  1228. // Until the phase counter is reset to zero.
  1229. WRITE(Z_STEP_PIN, !INVERT_Z_STEP_PIN);
  1230. delay(2);
  1231. WRITE(Z_STEP_PIN, INVERT_Z_STEP_PIN);
  1232. delay(2);
  1233. }
  1234. }
  1235. #endif //TMC2130
  1236. #if defined(Z_AXIS_ALWAYS_ON)
  1237. enable_z();
  1238. #endif
  1239. farm_mode = eeprom_read_byte((uint8_t*)EEPROM_FARM_MODE);
  1240. EEPROM_read_B(EEPROM_FARM_NUMBER, &farm_no);
  1241. if ((farm_mode == 0xFF && farm_no == 0) || (farm_no == 0xFFFF)) farm_mode = false; //if farm_mode has not been stored to eeprom yet and farm number is set to zero or EEPROM is fresh, deactivate farm mode
  1242. if (farm_no == 0xFFFF) farm_no = 0;
  1243. if (farm_mode)
  1244. {
  1245. prusa_statistics(8);
  1246. }
  1247. // Enable Toshiba FlashAir SD card / WiFi enahanced card.
  1248. card.ToshibaFlashAir_enable(eeprom_read_byte((unsigned char*)EEPROM_TOSHIBA_FLASH_AIR_COMPATIBLITY) == 1);
  1249. if (eeprom_read_dword((uint32_t*)(EEPROM_TOP - 4)) == 0x0ffffffff &&
  1250. eeprom_read_dword((uint32_t*)(EEPROM_TOP - 8)) == 0x0ffffffff) {
  1251. // Maiden startup. The firmware has been loaded and first started on a virgin RAMBo board,
  1252. // where all the EEPROM entries are set to 0x0ff.
  1253. // Once a firmware boots up, it forces at least a language selection, which changes
  1254. // EEPROM_LANG to number lower than 0x0ff.
  1255. // 1) Set a high power mode.
  1256. #ifdef TMC2130
  1257. eeprom_write_byte((uint8_t*)EEPROM_SILENT, 0);
  1258. tmc2130_mode = TMC2130_MODE_NORMAL;
  1259. #endif //TMC2130
  1260. eeprom_write_byte((uint8_t*)EEPROM_WIZARD_ACTIVE, 1); //run wizard
  1261. }
  1262. // Force SD card update. Otherwise the SD card update is done from loop() on card.checkautostart(false),
  1263. // but this times out if a blocking dialog is shown in setup().
  1264. card.initsd();
  1265. #ifdef DEBUG_SD_SPEED_TEST
  1266. if (card.cardOK)
  1267. {
  1268. uint8_t* buff = (uint8_t*)block_buffer;
  1269. uint32_t block = 0;
  1270. uint32_t sumr = 0;
  1271. uint32_t sumw = 0;
  1272. for (int i = 0; i < 1024; i++)
  1273. {
  1274. uint32_t u = micros();
  1275. bool res = card.card.readBlock(i, buff);
  1276. u = micros() - u;
  1277. if (res)
  1278. {
  1279. printf_P(PSTR("readBlock %4d 512 bytes %lu us\n"), i, u);
  1280. sumr += u;
  1281. u = micros();
  1282. res = card.card.writeBlock(i, buff);
  1283. u = micros() - u;
  1284. if (res)
  1285. {
  1286. printf_P(PSTR("writeBlock %4d 512 bytes %lu us\n"), i, u);
  1287. sumw += u;
  1288. }
  1289. else
  1290. {
  1291. printf_P(PSTR("writeBlock %4d error\n"), i);
  1292. break;
  1293. }
  1294. }
  1295. else
  1296. {
  1297. printf_P(PSTR("readBlock %4d error\n"), i);
  1298. break;
  1299. }
  1300. }
  1301. uint32_t avg_rspeed = (1024 * 1000000) / (sumr / 512);
  1302. uint32_t avg_wspeed = (1024 * 1000000) / (sumw / 512);
  1303. printf_P(PSTR("avg read speed %lu bytes/s\n"), avg_rspeed);
  1304. printf_P(PSTR("avg write speed %lu bytes/s\n"), avg_wspeed);
  1305. }
  1306. else
  1307. printf_P(PSTR("Card NG!\n"));
  1308. #endif //DEBUG_SD_SPEED_TEST
  1309. if (eeprom_read_byte((uint8_t*)EEPROM_POWER_COUNT) == 0xff) eeprom_write_byte((uint8_t*)EEPROM_POWER_COUNT, 0);
  1310. if (eeprom_read_byte((uint8_t*)EEPROM_CRASH_COUNT_X) == 0xff) eeprom_write_byte((uint8_t*)EEPROM_CRASH_COUNT_X, 0);
  1311. if (eeprom_read_byte((uint8_t*)EEPROM_CRASH_COUNT_Y) == 0xff) eeprom_write_byte((uint8_t*)EEPROM_CRASH_COUNT_Y, 0);
  1312. if (eeprom_read_byte((uint8_t*)EEPROM_FERROR_COUNT) == 0xff) eeprom_write_byte((uint8_t*)EEPROM_FERROR_COUNT, 0);
  1313. if (eeprom_read_word((uint16_t*)EEPROM_POWER_COUNT_TOT) == 0xffff) eeprom_write_word((uint16_t*)EEPROM_POWER_COUNT_TOT, 0);
  1314. if (eeprom_read_word((uint16_t*)EEPROM_CRASH_COUNT_X_TOT) == 0xffff) eeprom_write_word((uint16_t*)EEPROM_CRASH_COUNT_X_TOT, 0);
  1315. if (eeprom_read_word((uint16_t*)EEPROM_CRASH_COUNT_Y_TOT) == 0xffff) eeprom_write_word((uint16_t*)EEPROM_CRASH_COUNT_Y_TOT, 0);
  1316. if (eeprom_read_word((uint16_t*)EEPROM_FERROR_COUNT_TOT) == 0xffff) eeprom_write_word((uint16_t*)EEPROM_FERROR_COUNT_TOT, 0);
  1317. #ifdef SNMM
  1318. if (eeprom_read_dword((uint32_t*)EEPROM_BOWDEN_LENGTH) == 0x0ffffffff) { //bowden length used for SNMM
  1319. int _z = BOWDEN_LENGTH;
  1320. for(int i = 0; i<4; i++) EEPROM_save_B(EEPROM_BOWDEN_LENGTH + i * 2, &_z);
  1321. }
  1322. #endif
  1323. // In the future, somewhere here would one compare the current firmware version against the firmware version stored in the EEPROM.
  1324. // If they differ, an update procedure may need to be performed. At the end of this block, the current firmware version
  1325. // is being written into the EEPROM, so the update procedure will be triggered only once.
  1326. #if (LANG_MODE != 0) //secondary language support
  1327. #ifdef DEBUG_W25X20CL
  1328. W25X20CL_SPI_ENTER();
  1329. uint8_t uid[8]; // 64bit unique id
  1330. w25x20cl_rd_uid(uid);
  1331. puts_P(_n("W25X20CL UID="));
  1332. for (uint8_t i = 0; i < 8; i ++)
  1333. printf_P(PSTR("%02hhx"), uid[i]);
  1334. putchar('\n');
  1335. list_sec_lang_from_external_flash();
  1336. #endif //DEBUG_W25X20CL
  1337. // lang_reset();
  1338. if (!lang_select(eeprom_read_byte((uint8_t*)EEPROM_LANG)))
  1339. lcd_language();
  1340. #ifdef DEBUG_SEC_LANG
  1341. uint16_t sec_lang_code = lang_get_code(1);
  1342. uint16_t ui = _SEC_LANG_TABLE; //table pointer
  1343. printf_P(_n("lang_selected=%d\nlang_table=0x%04x\nSEC_LANG_CODE=0x%04x (%c%c)\n"), lang_selected, ui, sec_lang_code, sec_lang_code >> 8, sec_lang_code & 0xff);
  1344. // lang_print_sec_lang(uartout);
  1345. #endif //DEBUG_SEC_LANG
  1346. #endif //(LANG_MODE != 0)
  1347. if (eeprom_read_byte((uint8_t*)EEPROM_TEMP_CAL_ACTIVE) == 255) {
  1348. eeprom_write_byte((uint8_t*)EEPROM_TEMP_CAL_ACTIVE, 0);
  1349. temp_cal_active = false;
  1350. } else temp_cal_active = eeprom_read_byte((uint8_t*)EEPROM_TEMP_CAL_ACTIVE);
  1351. if (eeprom_read_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA) == 255) {
  1352. //eeprom_write_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 0);
  1353. eeprom_write_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 1);
  1354. int16_t z_shift = 0;
  1355. for (uint8_t i = 0; i < 5; i++) EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + i * 2, &z_shift);
  1356. eeprom_write_byte((uint8_t*)EEPROM_TEMP_CAL_ACTIVE, 0);
  1357. temp_cal_active = false;
  1358. }
  1359. if (eeprom_read_byte((uint8_t*)EEPROM_UVLO) == 255) {
  1360. eeprom_write_byte((uint8_t*)EEPROM_UVLO, 0);
  1361. }
  1362. if (eeprom_read_byte((uint8_t*)EEPROM_SD_SORT) == 255) {
  1363. eeprom_write_byte((uint8_t*)EEPROM_SD_SORT, 0);
  1364. }
  1365. check_babystep(); //checking if Z babystep is in allowed range
  1366. #ifdef UVLO_SUPPORT
  1367. setup_uvlo_interrupt();
  1368. #endif //UVLO_SUPPORT
  1369. #if !defined(DEBUG_DISABLE_FANCHECK) && defined(FANCHECK) && defined(TACH_1) && TACH_1 >-1
  1370. setup_fan_interrupt();
  1371. #endif //DEBUG_DISABLE_FANCHECK
  1372. #ifdef FILAMENT_SENSOR
  1373. fsensor_setup_interrupt();
  1374. #endif //FILAMENT_SENSOR
  1375. for (int i = 0; i<4; i++) EEPROM_read_B(EEPROM_BOWDEN_LENGTH + i * 2, &bowden_length[i]);
  1376. #ifndef DEBUG_DISABLE_STARTMSGS
  1377. KEEPALIVE_STATE(PAUSED_FOR_USER);
  1378. show_fw_version_warnings();
  1379. switch (hw_changed) {
  1380. //if motherboard or printer type was changed inform user as it can indicate flashing wrong firmware version
  1381. //if user confirms with knob, new hw version (printer and/or motherboard) is written to eeprom and message will be not shown next time
  1382. case(0b01):
  1383. lcd_show_fullscreen_message_and_wait_P(_i("Warning: motherboard type changed.")); ////MSG_CHANGED_MOTHERBOARD c=20 r=4
  1384. eeprom_write_word((uint16_t*)EEPROM_BOARD_TYPE, MOTHERBOARD);
  1385. break;
  1386. case(0b10):
  1387. lcd_show_fullscreen_message_and_wait_P(_i("Warning: printer type changed.")); ////MSG_CHANGED_PRINTER c=20 r=4
  1388. eeprom_write_word((uint16_t*)EEPROM_PRINTER_TYPE, PRINTER_TYPE);
  1389. break;
  1390. case(0b11):
  1391. lcd_show_fullscreen_message_and_wait_P(_i("Warning: both printer type and motherboard type changed.")); ////MSG_CHANGED_BOTH c=20 r=4
  1392. eeprom_write_word((uint16_t*)EEPROM_PRINTER_TYPE, PRINTER_TYPE);
  1393. eeprom_write_word((uint16_t*)EEPROM_BOARD_TYPE, MOTHERBOARD);
  1394. break;
  1395. default: break; //no change, show no message
  1396. }
  1397. if (!previous_settings_retrieved) {
  1398. lcd_show_fullscreen_message_and_wait_P(_i("Old settings found. Default PID, Esteps etc. will be set.")); //if EEPROM version or printer type was changed, inform user that default setting were loaded////MSG_DEFAULT_SETTINGS_LOADED c=20 r=4
  1399. erase_eeprom_section(EEPROM_OFFSET, 156); //erase M500 part of eeprom
  1400. }
  1401. if (eeprom_read_byte((uint8_t*)EEPROM_WIZARD_ACTIVE) == 1) {
  1402. lcd_wizard(0);
  1403. }
  1404. if (eeprom_read_byte((uint8_t*)EEPROM_WIZARD_ACTIVE) == 0) { //dont show calibration status messages if wizard is currently active
  1405. if (calibration_status() == CALIBRATION_STATUS_ASSEMBLED ||
  1406. calibration_status() == CALIBRATION_STATUS_UNKNOWN ||
  1407. calibration_status() == CALIBRATION_STATUS_XYZ_CALIBRATION) {
  1408. // Reset the babystepping values, so the printer will not move the Z axis up when the babystepping is enabled.
  1409. eeprom_update_word((uint16_t*)EEPROM_BABYSTEP_Z, 0);
  1410. // Show the message.
  1411. lcd_show_fullscreen_message_and_wait_P(_T(MSG_FOLLOW_CALIBRATION_FLOW));
  1412. }
  1413. else if (calibration_status() == CALIBRATION_STATUS_LIVE_ADJUST) {
  1414. // Show the message.
  1415. lcd_show_fullscreen_message_and_wait_P(_T(MSG_BABYSTEP_Z_NOT_SET));
  1416. lcd_update_enable(true);
  1417. }
  1418. else if (calibration_status() == CALIBRATION_STATUS_CALIBRATED && temp_cal_active == true && calibration_status_pinda() == false) {
  1419. //lcd_show_fullscreen_message_and_wait_P(_i("Temperature calibration has not been run yet"));////MSG_PINDA_NOT_CALIBRATED c=20 r=4
  1420. lcd_update_enable(true);
  1421. }
  1422. else if (calibration_status() == CALIBRATION_STATUS_Z_CALIBRATION) {
  1423. // Show the message.
  1424. lcd_show_fullscreen_message_and_wait_P(_T(MSG_FOLLOW_CALIBRATION_FLOW));
  1425. }
  1426. }
  1427. #if !defined (DEBUG_DISABLE_FORCE_SELFTEST) && defined (TMC2130)
  1428. if (force_selftest_if_fw_version() && calibration_status() < CALIBRATION_STATUS_ASSEMBLED) {
  1429. lcd_show_fullscreen_message_and_wait_P(_i("Selftest will be run to calibrate accurate sensorless rehoming."));////MSG_FORCE_SELFTEST c=20 r=8
  1430. update_current_firmware_version_to_eeprom();
  1431. lcd_selftest();
  1432. }
  1433. #endif //TMC2130 && !DEBUG_DISABLE_FORCE_SELFTEST
  1434. KEEPALIVE_STATE(IN_PROCESS);
  1435. #endif //DEBUG_DISABLE_STARTMSGS
  1436. lcd_update_enable(true);
  1437. lcd_clear();
  1438. lcd_update(2);
  1439. // Store the currently running firmware into an eeprom,
  1440. // so the next time the firmware gets updated, it will know from which version it has been updated.
  1441. update_current_firmware_version_to_eeprom();
  1442. #ifdef TMC2130
  1443. tmc2130_home_origin[X_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_HOME_X_ORIGIN);
  1444. tmc2130_home_bsteps[X_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_HOME_X_BSTEPS);
  1445. tmc2130_home_fsteps[X_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_HOME_X_FSTEPS);
  1446. if (tmc2130_home_origin[X_AXIS] == 0xff) tmc2130_home_origin[X_AXIS] = 0;
  1447. if (tmc2130_home_bsteps[X_AXIS] == 0xff) tmc2130_home_bsteps[X_AXIS] = 48;
  1448. if (tmc2130_home_fsteps[X_AXIS] == 0xff) tmc2130_home_fsteps[X_AXIS] = 48;
  1449. tmc2130_home_origin[Y_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_HOME_Y_ORIGIN);
  1450. tmc2130_home_bsteps[Y_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_HOME_Y_BSTEPS);
  1451. tmc2130_home_fsteps[Y_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_HOME_Y_FSTEPS);
  1452. if (tmc2130_home_origin[Y_AXIS] == 0xff) tmc2130_home_origin[Y_AXIS] = 0;
  1453. if (tmc2130_home_bsteps[Y_AXIS] == 0xff) tmc2130_home_bsteps[Y_AXIS] = 48;
  1454. if (tmc2130_home_fsteps[Y_AXIS] == 0xff) tmc2130_home_fsteps[Y_AXIS] = 48;
  1455. tmc2130_home_enabled = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_HOME_ENABLED);
  1456. if (tmc2130_home_enabled == 0xff) tmc2130_home_enabled = 0;
  1457. #endif //TMC2130
  1458. #ifdef UVLO_SUPPORT
  1459. //-//
  1460. MYSERIAL.println(">>> Setup");
  1461. MYSERIAL.println(eeprom_read_byte((uint8_t*)EEPROM_UVLO),DEC);
  1462. // if (eeprom_read_byte((uint8_t*)EEPROM_UVLO) == 1) { //previous print was terminated by UVLO
  1463. if (eeprom_read_byte((uint8_t*)EEPROM_UVLO) != 0) { //previous print was terminated by UVLO
  1464. /*
  1465. if (lcd_show_fullscreen_message_yes_no_and_wait_P(_T(MSG_RECOVER_PRINT), false)) recover_print();
  1466. else {
  1467. eeprom_update_byte((uint8_t*)EEPROM_UVLO, 0);
  1468. lcd_update_enable(true);
  1469. lcd_update(2);
  1470. lcd_setstatuspgm(_T(WELCOME_MSG));
  1471. }
  1472. */
  1473. manage_heater(); // Update temperatures
  1474. #ifdef DEBUG_UVLO_AUTOMATIC_RECOVER
  1475. printf_P(_N("Power panic detected!\nCurrent bed temp:%d\nSaved bed temp:%d\n"), (int)degBed(), eeprom_read_byte((uint8_t*)EEPROM_UVLO_TARGET_BED))
  1476. #endif
  1477. if ( degBed() > ( (float)eeprom_read_byte((uint8_t*)EEPROM_UVLO_TARGET_BED) - AUTOMATIC_UVLO_BED_TEMP_OFFSET) ){
  1478. #ifdef DEBUG_UVLO_AUTOMATIC_RECOVER
  1479. puts_P(_N("Automatic recovery!"));
  1480. #endif
  1481. recover_print(1);
  1482. }
  1483. else{
  1484. #ifdef DEBUG_UVLO_AUTOMATIC_RECOVER
  1485. puts_P(_N("Normal recovery!"));
  1486. #endif
  1487. if ( lcd_show_fullscreen_message_yes_no_and_wait_P(_T(MSG_RECOVER_PRINT), false) ) recover_print(0);
  1488. else {
  1489. //-//
  1490. // eeprom_update_byte((uint8_t*)EEPROM_UVLO, 0);
  1491. lcd_update_enable(true);
  1492. lcd_update(2);
  1493. lcd_setstatuspgm(_T(WELCOME_MSG));
  1494. }
  1495. }
  1496. }
  1497. #endif //UVLO_SUPPORT
  1498. KEEPALIVE_STATE(NOT_BUSY);
  1499. #ifdef WATCHDOG
  1500. wdt_enable(WDTO_4S);
  1501. #endif //WATCHDOG
  1502. }
  1503. void trace();
  1504. #define CHUNK_SIZE 64 // bytes
  1505. #define SAFETY_MARGIN 1
  1506. char chunk[CHUNK_SIZE+SAFETY_MARGIN];
  1507. int chunkHead = 0;
  1508. int serial_read_stream() {
  1509. setTargetHotend(0, 0);
  1510. setTargetBed(0);
  1511. lcd_clear();
  1512. lcd_puts_P(PSTR(" Upload in progress"));
  1513. // first wait for how many bytes we will receive
  1514. uint32_t bytesToReceive;
  1515. // receive the four bytes
  1516. char bytesToReceiveBuffer[4];
  1517. for (int i=0; i<4; i++) {
  1518. int data;
  1519. while ((data = MYSERIAL.read()) == -1) {};
  1520. bytesToReceiveBuffer[i] = data;
  1521. }
  1522. // make it a uint32
  1523. memcpy(&bytesToReceive, &bytesToReceiveBuffer, 4);
  1524. // we're ready, notify the sender
  1525. MYSERIAL.write('+');
  1526. // lock in the routine
  1527. uint32_t receivedBytes = 0;
  1528. while (prusa_sd_card_upload) {
  1529. int i;
  1530. for (i=0; i<CHUNK_SIZE; i++) {
  1531. int data;
  1532. // check if we're not done
  1533. if (receivedBytes == bytesToReceive) {
  1534. break;
  1535. }
  1536. // read the next byte
  1537. while ((data = MYSERIAL.read()) == -1) {};
  1538. receivedBytes++;
  1539. // save it to the chunk
  1540. chunk[i] = data;
  1541. }
  1542. // write the chunk to SD
  1543. card.write_command_no_newline(&chunk[0]);
  1544. // notify the sender we're ready for more data
  1545. MYSERIAL.write('+');
  1546. // for safety
  1547. manage_heater();
  1548. // check if we're done
  1549. if(receivedBytes == bytesToReceive) {
  1550. trace(); // beep
  1551. card.closefile();
  1552. prusa_sd_card_upload = false;
  1553. SERIAL_PROTOCOLLNRPGM(MSG_FILE_SAVED);
  1554. return 0;
  1555. }
  1556. }
  1557. }
  1558. #ifdef HOST_KEEPALIVE_FEATURE
  1559. /**
  1560. * Output a "busy" message at regular intervals
  1561. * while the machine is not accepting commands.
  1562. */
  1563. void host_keepalive() {
  1564. if (farm_mode) return;
  1565. long ms = millis();
  1566. if (host_keepalive_interval && busy_state != NOT_BUSY) {
  1567. if ((ms - prev_busy_signal_ms) < (long)(1000L * host_keepalive_interval)) return;
  1568. switch (busy_state) {
  1569. case IN_HANDLER:
  1570. case IN_PROCESS:
  1571. SERIAL_ECHO_START;
  1572. SERIAL_ECHOLNPGM("busy: processing");
  1573. break;
  1574. case PAUSED_FOR_USER:
  1575. SERIAL_ECHO_START;
  1576. SERIAL_ECHOLNPGM("busy: paused for user");
  1577. break;
  1578. case PAUSED_FOR_INPUT:
  1579. SERIAL_ECHO_START;
  1580. SERIAL_ECHOLNPGM("busy: paused for input");
  1581. break;
  1582. default:
  1583. break;
  1584. }
  1585. }
  1586. prev_busy_signal_ms = ms;
  1587. }
  1588. #endif
  1589. // The loop() function is called in an endless loop by the Arduino framework from the default main() routine.
  1590. // Before loop(), the setup() function is called by the main() routine.
  1591. void loop()
  1592. {
  1593. KEEPALIVE_STATE(NOT_BUSY);
  1594. if ((usb_printing_counter > 0) && ((millis()-_usb_timer) > 1000))
  1595. {
  1596. is_usb_printing = true;
  1597. usb_printing_counter--;
  1598. _usb_timer = millis();
  1599. }
  1600. if (usb_printing_counter == 0)
  1601. {
  1602. is_usb_printing = false;
  1603. }
  1604. if (prusa_sd_card_upload)
  1605. {
  1606. //we read byte-by byte
  1607. serial_read_stream();
  1608. } else
  1609. {
  1610. get_command();
  1611. #ifdef SDSUPPORT
  1612. card.checkautostart(false);
  1613. #endif
  1614. if(buflen)
  1615. {
  1616. cmdbuffer_front_already_processed = false;
  1617. #ifdef SDSUPPORT
  1618. if(card.saving)
  1619. {
  1620. // Saving a G-code file onto an SD-card is in progress.
  1621. // Saving starts with M28, saving until M29 is seen.
  1622. if(strstr_P(CMDBUFFER_CURRENT_STRING, PSTR("M29")) == NULL) {
  1623. card.write_command(CMDBUFFER_CURRENT_STRING);
  1624. if(card.logging)
  1625. process_commands();
  1626. else
  1627. SERIAL_PROTOCOLLNRPGM(_T(MSG_OK));
  1628. } else {
  1629. card.closefile();
  1630. SERIAL_PROTOCOLLNRPGM(MSG_FILE_SAVED);
  1631. }
  1632. } else {
  1633. process_commands();
  1634. }
  1635. #else
  1636. process_commands();
  1637. #endif //SDSUPPORT
  1638. if (! cmdbuffer_front_already_processed && buflen)
  1639. {
  1640. // ptr points to the start of the block currently being processed.
  1641. // The first character in the block is the block type.
  1642. char *ptr = cmdbuffer + bufindr;
  1643. if (*ptr == CMDBUFFER_CURRENT_TYPE_SDCARD) {
  1644. // To support power panic, move the lenght of the command on the SD card to a planner buffer.
  1645. union {
  1646. struct {
  1647. char lo;
  1648. char hi;
  1649. } lohi;
  1650. uint16_t value;
  1651. } sdlen;
  1652. sdlen.value = 0;
  1653. {
  1654. // This block locks the interrupts globally for 3.25 us,
  1655. // which corresponds to a maximum repeat frequency of 307.69 kHz.
  1656. // This blocking is safe in the context of a 10kHz stepper driver interrupt
  1657. // or a 115200 Bd serial line receive interrupt, which will not trigger faster than 12kHz.
  1658. cli();
  1659. // Reset the command to something, which will be ignored by the power panic routine,
  1660. // so this buffer length will not be counted twice.
  1661. *ptr ++ = CMDBUFFER_CURRENT_TYPE_TO_BE_REMOVED;
  1662. // Extract the current buffer length.
  1663. sdlen.lohi.lo = *ptr ++;
  1664. sdlen.lohi.hi = *ptr;
  1665. // and pass it to the planner queue.
  1666. planner_add_sd_length(sdlen.value);
  1667. sei();
  1668. }
  1669. }
  1670. else if((*ptr == CMDBUFFER_CURRENT_TYPE_USB_WITH_LINENR) && !IS_SD_PRINTING){
  1671. cli();
  1672. *ptr ++ = CMDBUFFER_CURRENT_TYPE_TO_BE_REMOVED;
  1673. // and one for each command to previous block in the planner queue.
  1674. planner_add_sd_length(1);
  1675. sei();
  1676. }
  1677. // Now it is safe to release the already processed command block. If interrupted by the power panic now,
  1678. // this block's SD card length will not be counted twice as its command type has been replaced
  1679. // by CMDBUFFER_CURRENT_TYPE_TO_BE_REMOVED.
  1680. cmdqueue_pop_front();
  1681. }
  1682. host_keepalive();
  1683. }
  1684. }
  1685. //check heater every n milliseconds
  1686. manage_heater();
  1687. isPrintPaused ? manage_inactivity(true) : manage_inactivity(false);
  1688. checkHitEndstops();
  1689. lcd_update(0);
  1690. #ifdef FILAMENT_SENSOR
  1691. fsensor_update();
  1692. #endif //FILAMENT_SENSOR
  1693. #ifdef TMC2130
  1694. tmc2130_check_overtemp();
  1695. if (tmc2130_sg_crash)
  1696. {
  1697. uint8_t crash = tmc2130_sg_crash;
  1698. tmc2130_sg_crash = 0;
  1699. // crashdet_stop_and_save_print();
  1700. switch (crash)
  1701. {
  1702. case 1: enquecommand_P((PSTR("CRASH_DETECTEDX"))); break;
  1703. case 2: enquecommand_P((PSTR("CRASH_DETECTEDY"))); break;
  1704. case 3: enquecommand_P((PSTR("CRASH_DETECTEDXY"))); break;
  1705. }
  1706. }
  1707. #endif //TMC2130
  1708. }
  1709. #define DEFINE_PGM_READ_ANY(type, reader) \
  1710. static inline type pgm_read_any(const type *p) \
  1711. { return pgm_read_##reader##_near(p); }
  1712. DEFINE_PGM_READ_ANY(float, float);
  1713. DEFINE_PGM_READ_ANY(signed char, byte);
  1714. #define XYZ_CONSTS_FROM_CONFIG(type, array, CONFIG) \
  1715. static const PROGMEM type array##_P[3] = \
  1716. { X_##CONFIG, Y_##CONFIG, Z_##CONFIG }; \
  1717. static inline type array(int axis) \
  1718. { return pgm_read_any(&array##_P[axis]); } \
  1719. type array##_ext(int axis) \
  1720. { return pgm_read_any(&array##_P[axis]); }
  1721. XYZ_CONSTS_FROM_CONFIG(float, base_min_pos, MIN_POS);
  1722. XYZ_CONSTS_FROM_CONFIG(float, base_max_pos, MAX_POS);
  1723. XYZ_CONSTS_FROM_CONFIG(float, base_home_pos, HOME_POS);
  1724. XYZ_CONSTS_FROM_CONFIG(float, max_length, MAX_LENGTH);
  1725. XYZ_CONSTS_FROM_CONFIG(float, home_retract_mm, HOME_RETRACT_MM);
  1726. XYZ_CONSTS_FROM_CONFIG(signed char, home_dir, HOME_DIR);
  1727. static void axis_is_at_home(int axis) {
  1728. current_position[axis] = base_home_pos(axis) + add_homing[axis];
  1729. min_pos[axis] = base_min_pos(axis) + add_homing[axis];
  1730. max_pos[axis] = base_max_pos(axis) + add_homing[axis];
  1731. }
  1732. inline void set_current_to_destination() { memcpy(current_position, destination, sizeof(current_position)); }
  1733. inline void set_destination_to_current() { memcpy(destination, current_position, sizeof(destination)); }
  1734. static void setup_for_endstop_move(bool enable_endstops_now = true) {
  1735. saved_feedrate = feedrate;
  1736. saved_feedmultiply = feedmultiply;
  1737. feedmultiply = 100;
  1738. previous_millis_cmd = millis();
  1739. enable_endstops(enable_endstops_now);
  1740. }
  1741. static void clean_up_after_endstop_move() {
  1742. #ifdef ENDSTOPS_ONLY_FOR_HOMING
  1743. enable_endstops(false);
  1744. #endif
  1745. feedrate = saved_feedrate;
  1746. feedmultiply = saved_feedmultiply;
  1747. previous_millis_cmd = millis();
  1748. }
  1749. #ifdef ENABLE_AUTO_BED_LEVELING
  1750. #ifdef AUTO_BED_LEVELING_GRID
  1751. static void set_bed_level_equation_lsq(double *plane_equation_coefficients)
  1752. {
  1753. vector_3 planeNormal = vector_3(-plane_equation_coefficients[0], -plane_equation_coefficients[1], 1);
  1754. planeNormal.debug("planeNormal");
  1755. plan_bed_level_matrix = matrix_3x3::create_look_at(planeNormal);
  1756. //bedLevel.debug("bedLevel");
  1757. //plan_bed_level_matrix.debug("bed level before");
  1758. //vector_3 uncorrected_position = plan_get_position_mm();
  1759. //uncorrected_position.debug("position before");
  1760. vector_3 corrected_position = plan_get_position();
  1761. // corrected_position.debug("position after");
  1762. current_position[X_AXIS] = corrected_position.x;
  1763. current_position[Y_AXIS] = corrected_position.y;
  1764. current_position[Z_AXIS] = corrected_position.z;
  1765. // put the bed at 0 so we don't go below it.
  1766. current_position[Z_AXIS] = zprobe_zoffset; // in the lsq we reach here after raising the extruder due to the loop structure
  1767. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1768. }
  1769. #else // not AUTO_BED_LEVELING_GRID
  1770. static void set_bed_level_equation_3pts(float z_at_pt_1, float z_at_pt_2, float z_at_pt_3) {
  1771. plan_bed_level_matrix.set_to_identity();
  1772. vector_3 pt1 = vector_3(ABL_PROBE_PT_1_X, ABL_PROBE_PT_1_Y, z_at_pt_1);
  1773. vector_3 pt2 = vector_3(ABL_PROBE_PT_2_X, ABL_PROBE_PT_2_Y, z_at_pt_2);
  1774. vector_3 pt3 = vector_3(ABL_PROBE_PT_3_X, ABL_PROBE_PT_3_Y, z_at_pt_3);
  1775. vector_3 from_2_to_1 = (pt1 - pt2).get_normal();
  1776. vector_3 from_2_to_3 = (pt3 - pt2).get_normal();
  1777. vector_3 planeNormal = vector_3::cross(from_2_to_1, from_2_to_3).get_normal();
  1778. planeNormal = vector_3(planeNormal.x, planeNormal.y, abs(planeNormal.z));
  1779. plan_bed_level_matrix = matrix_3x3::create_look_at(planeNormal);
  1780. vector_3 corrected_position = plan_get_position();
  1781. current_position[X_AXIS] = corrected_position.x;
  1782. current_position[Y_AXIS] = corrected_position.y;
  1783. current_position[Z_AXIS] = corrected_position.z;
  1784. // put the bed at 0 so we don't go below it.
  1785. current_position[Z_AXIS] = zprobe_zoffset;
  1786. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1787. }
  1788. #endif // AUTO_BED_LEVELING_GRID
  1789. static void run_z_probe() {
  1790. plan_bed_level_matrix.set_to_identity();
  1791. feedrate = homing_feedrate[Z_AXIS];
  1792. // move down until you find the bed
  1793. float zPosition = -10;
  1794. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder);
  1795. st_synchronize();
  1796. // we have to let the planner know where we are right now as it is not where we said to go.
  1797. zPosition = st_get_position_mm(Z_AXIS);
  1798. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS]);
  1799. // move up the retract distance
  1800. zPosition += home_retract_mm(Z_AXIS);
  1801. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder);
  1802. st_synchronize();
  1803. // move back down slowly to find bed
  1804. feedrate = homing_feedrate[Z_AXIS]/4;
  1805. zPosition -= home_retract_mm(Z_AXIS) * 2;
  1806. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder);
  1807. st_synchronize();
  1808. current_position[Z_AXIS] = st_get_position_mm(Z_AXIS);
  1809. // make sure the planner knows where we are as it may be a bit different than we last said to move to
  1810. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1811. }
  1812. static void do_blocking_move_to(float x, float y, float z) {
  1813. float oldFeedRate = feedrate;
  1814. feedrate = homing_feedrate[Z_AXIS];
  1815. current_position[Z_AXIS] = z;
  1816. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], feedrate/60, active_extruder);
  1817. st_synchronize();
  1818. feedrate = XY_TRAVEL_SPEED;
  1819. current_position[X_AXIS] = x;
  1820. current_position[Y_AXIS] = y;
  1821. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], feedrate/60, active_extruder);
  1822. st_synchronize();
  1823. feedrate = oldFeedRate;
  1824. }
  1825. static void do_blocking_move_relative(float offset_x, float offset_y, float offset_z) {
  1826. do_blocking_move_to(current_position[X_AXIS] + offset_x, current_position[Y_AXIS] + offset_y, current_position[Z_AXIS] + offset_z);
  1827. }
  1828. /// Probe bed height at position (x,y), returns the measured z value
  1829. static float probe_pt(float x, float y, float z_before) {
  1830. // move to right place
  1831. do_blocking_move_to(current_position[X_AXIS], current_position[Y_AXIS], z_before);
  1832. do_blocking_move_to(x - X_PROBE_OFFSET_FROM_EXTRUDER, y - Y_PROBE_OFFSET_FROM_EXTRUDER, current_position[Z_AXIS]);
  1833. run_z_probe();
  1834. float measured_z = current_position[Z_AXIS];
  1835. SERIAL_PROTOCOLRPGM(_T(MSG_BED));
  1836. SERIAL_PROTOCOLPGM(" x: ");
  1837. SERIAL_PROTOCOL(x);
  1838. SERIAL_PROTOCOLPGM(" y: ");
  1839. SERIAL_PROTOCOL(y);
  1840. SERIAL_PROTOCOLPGM(" z: ");
  1841. SERIAL_PROTOCOL(measured_z);
  1842. SERIAL_PROTOCOLPGM("\n");
  1843. return measured_z;
  1844. }
  1845. #endif // #ifdef ENABLE_AUTO_BED_LEVELING
  1846. #ifdef LIN_ADVANCE
  1847. /**
  1848. * M900: Set and/or Get advance K factor and WH/D ratio
  1849. *
  1850. * K<factor> Set advance K factor
  1851. * R<ratio> Set ratio directly (overrides WH/D)
  1852. * W<width> H<height> D<diam> Set ratio from WH/D
  1853. */
  1854. inline void gcode_M900() {
  1855. st_synchronize();
  1856. const float newK = code_seen('K') ? code_value_float() : -1;
  1857. if (newK >= 0) extruder_advance_k = newK;
  1858. float newR = code_seen('R') ? code_value_float() : -1;
  1859. if (newR < 0) {
  1860. const float newD = code_seen('D') ? code_value_float() : -1,
  1861. newW = code_seen('W') ? code_value_float() : -1,
  1862. newH = code_seen('H') ? code_value_float() : -1;
  1863. if (newD >= 0 && newW >= 0 && newH >= 0)
  1864. newR = newD ? (newW * newH) / (sq(newD * 0.5) * M_PI) : 0;
  1865. }
  1866. if (newR >= 0) advance_ed_ratio = newR;
  1867. SERIAL_ECHO_START;
  1868. SERIAL_ECHOPGM("Advance K=");
  1869. SERIAL_ECHOLN(extruder_advance_k);
  1870. SERIAL_ECHOPGM(" E/D=");
  1871. const float ratio = advance_ed_ratio;
  1872. if (ratio) SERIAL_ECHOLN(ratio); else SERIAL_ECHOLNPGM("Auto");
  1873. }
  1874. #endif // LIN_ADVANCE
  1875. bool check_commands() {
  1876. bool end_command_found = false;
  1877. while (buflen)
  1878. {
  1879. if ((code_seen("M84")) || (code_seen("M 84"))) end_command_found = true;
  1880. if (!cmdbuffer_front_already_processed)
  1881. cmdqueue_pop_front();
  1882. cmdbuffer_front_already_processed = false;
  1883. }
  1884. return end_command_found;
  1885. }
  1886. #ifdef TMC2130
  1887. bool calibrate_z_auto()
  1888. {
  1889. //lcd_display_message_fullscreen_P(_T(MSG_CALIBRATE_Z_AUTO));
  1890. lcd_clear();
  1891. lcd_puts_at_P(0,1, _T(MSG_CALIBRATE_Z_AUTO));
  1892. bool endstops_enabled = enable_endstops(true);
  1893. int axis_up_dir = -home_dir(Z_AXIS);
  1894. tmc2130_home_enter(Z_AXIS_MASK);
  1895. current_position[Z_AXIS] = 0;
  1896. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1897. set_destination_to_current();
  1898. destination[Z_AXIS] += (1.1 * max_length(Z_AXIS) * axis_up_dir);
  1899. feedrate = homing_feedrate[Z_AXIS];
  1900. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1901. st_synchronize();
  1902. // current_position[axis] = 0;
  1903. // plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1904. tmc2130_home_exit();
  1905. enable_endstops(false);
  1906. current_position[Z_AXIS] = 0;
  1907. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1908. set_destination_to_current();
  1909. destination[Z_AXIS] += 10 * axis_up_dir; //10mm up
  1910. feedrate = homing_feedrate[Z_AXIS] / 2;
  1911. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1912. st_synchronize();
  1913. enable_endstops(endstops_enabled);
  1914. current_position[Z_AXIS] = Z_MAX_POS+2.0;
  1915. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1916. return true;
  1917. }
  1918. #endif //TMC2130
  1919. void homeaxis(int axis, uint8_t cnt, uint8_t* pstep)
  1920. {
  1921. bool endstops_enabled = enable_endstops(true); //RP: endstops should be allways enabled durring homing
  1922. #define HOMEAXIS_DO(LETTER) \
  1923. ((LETTER##_MIN_PIN > -1 && LETTER##_HOME_DIR==-1) || (LETTER##_MAX_PIN > -1 && LETTER##_HOME_DIR==1))
  1924. if ((axis==X_AXIS)?HOMEAXIS_DO(X):(axis==Y_AXIS)?HOMEAXIS_DO(Y):0)
  1925. {
  1926. int axis_home_dir = home_dir(axis);
  1927. feedrate = homing_feedrate[axis];
  1928. #ifdef TMC2130
  1929. tmc2130_home_enter(X_AXIS_MASK << axis);
  1930. #endif //TMC2130
  1931. // Move right a bit, so that the print head does not touch the left end position,
  1932. // and the following left movement has a chance to achieve the required velocity
  1933. // for the stall guard to work.
  1934. current_position[axis] = 0;
  1935. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1936. set_destination_to_current();
  1937. // destination[axis] = 11.f;
  1938. destination[axis] = 3.f;
  1939. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1940. st_synchronize();
  1941. // Move left away from the possible collision with the collision detection disabled.
  1942. endstops_hit_on_purpose();
  1943. enable_endstops(false);
  1944. current_position[axis] = 0;
  1945. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1946. destination[axis] = - 1.;
  1947. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1948. st_synchronize();
  1949. // Now continue to move up to the left end stop with the collision detection enabled.
  1950. enable_endstops(true);
  1951. destination[axis] = - 1.1 * max_length(axis);
  1952. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1953. st_synchronize();
  1954. for (uint8_t i = 0; i < cnt; i++)
  1955. {
  1956. // Move right from the collision to a known distance from the left end stop with the collision detection disabled.
  1957. endstops_hit_on_purpose();
  1958. enable_endstops(false);
  1959. current_position[axis] = 0;
  1960. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1961. destination[axis] = 10.f;
  1962. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1963. st_synchronize();
  1964. endstops_hit_on_purpose();
  1965. // Now move left up to the collision, this time with a repeatable velocity.
  1966. enable_endstops(true);
  1967. destination[axis] = - 11.f;
  1968. #ifdef TMC2130
  1969. feedrate = homing_feedrate[axis];
  1970. #else //TMC2130
  1971. feedrate = homing_feedrate[axis] / 2;
  1972. #endif //TMC2130
  1973. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1974. st_synchronize();
  1975. #ifdef TMC2130
  1976. uint16_t mscnt = tmc2130_rd_MSCNT(axis);
  1977. if (pstep) pstep[i] = mscnt >> 4;
  1978. printf_P(PSTR("%3d step=%2d mscnt=%4d\n"), i, mscnt >> 4, mscnt);
  1979. #endif //TMC2130
  1980. }
  1981. endstops_hit_on_purpose();
  1982. enable_endstops(false);
  1983. #ifdef TMC2130
  1984. uint8_t orig = tmc2130_home_origin[axis];
  1985. uint8_t back = tmc2130_home_bsteps[axis];
  1986. if (tmc2130_home_enabled && (orig <= 63))
  1987. {
  1988. tmc2130_goto_step(axis, orig, 2, 1000, tmc2130_get_res(axis));
  1989. if (back > 0)
  1990. tmc2130_do_steps(axis, back, 1, 1000);
  1991. }
  1992. else
  1993. tmc2130_do_steps(axis, 8, 2, 1000);
  1994. tmc2130_home_exit();
  1995. #endif //TMC2130
  1996. axis_is_at_home(axis);
  1997. axis_known_position[axis] = true;
  1998. // Move from minimum
  1999. #ifdef TMC2130
  2000. float dist = 0.01f * tmc2130_home_fsteps[axis];
  2001. #else //TMC2130
  2002. float dist = 0.01f * 64;
  2003. #endif //TMC2130
  2004. current_position[axis] -= dist;
  2005. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2006. current_position[axis] += dist;
  2007. destination[axis] = current_position[axis];
  2008. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], 0.5f*feedrate/60, active_extruder);
  2009. st_synchronize();
  2010. feedrate = 0.0;
  2011. }
  2012. else if ((axis==Z_AXIS)?HOMEAXIS_DO(Z):0)
  2013. {
  2014. #ifdef TMC2130
  2015. FORCE_HIGH_POWER_START;
  2016. #endif
  2017. int axis_home_dir = home_dir(axis);
  2018. current_position[axis] = 0;
  2019. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2020. destination[axis] = 1.5 * max_length(axis) * axis_home_dir;
  2021. feedrate = homing_feedrate[axis];
  2022. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  2023. st_synchronize();
  2024. #ifdef TMC2130
  2025. if (READ(Z_TMC2130_DIAG) != 0) { //Z crash
  2026. FORCE_HIGH_POWER_END;
  2027. kill(_T(MSG_BED_LEVELING_FAILED_POINT_LOW));
  2028. return;
  2029. }
  2030. #endif //TMC2130
  2031. current_position[axis] = 0;
  2032. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2033. destination[axis] = -home_retract_mm(axis) * axis_home_dir;
  2034. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  2035. st_synchronize();
  2036. destination[axis] = 2*home_retract_mm(axis) * axis_home_dir;
  2037. feedrate = homing_feedrate[axis]/2 ;
  2038. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  2039. st_synchronize();
  2040. #ifdef TMC2130
  2041. if (READ(Z_TMC2130_DIAG) != 0) { //Z crash
  2042. FORCE_HIGH_POWER_END;
  2043. kill(_T(MSG_BED_LEVELING_FAILED_POINT_LOW));
  2044. return;
  2045. }
  2046. #endif //TMC2130
  2047. axis_is_at_home(axis);
  2048. destination[axis] = current_position[axis];
  2049. feedrate = 0.0;
  2050. endstops_hit_on_purpose();
  2051. axis_known_position[axis] = true;
  2052. #ifdef TMC2130
  2053. FORCE_HIGH_POWER_END;
  2054. #endif
  2055. }
  2056. enable_endstops(endstops_enabled);
  2057. }
  2058. /**/
  2059. void home_xy()
  2060. {
  2061. set_destination_to_current();
  2062. homeaxis(X_AXIS);
  2063. homeaxis(Y_AXIS);
  2064. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2065. endstops_hit_on_purpose();
  2066. }
  2067. void refresh_cmd_timeout(void)
  2068. {
  2069. previous_millis_cmd = millis();
  2070. }
  2071. #ifdef FWRETRACT
  2072. void retract(bool retracting, bool swapretract = false) {
  2073. if(retracting && !retracted[active_extruder]) {
  2074. destination[X_AXIS]=current_position[X_AXIS];
  2075. destination[Y_AXIS]=current_position[Y_AXIS];
  2076. destination[Z_AXIS]=current_position[Z_AXIS];
  2077. destination[E_AXIS]=current_position[E_AXIS];
  2078. current_position[E_AXIS]+=(swapretract?retract_length_swap:retract_length)*float(extrudemultiply)*0.01f;
  2079. plan_set_e_position(current_position[E_AXIS]);
  2080. float oldFeedrate = feedrate;
  2081. feedrate=retract_feedrate*60;
  2082. retracted[active_extruder]=true;
  2083. prepare_move();
  2084. current_position[Z_AXIS]-=retract_zlift;
  2085. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2086. prepare_move();
  2087. feedrate = oldFeedrate;
  2088. } else if(!retracting && retracted[active_extruder]) {
  2089. destination[X_AXIS]=current_position[X_AXIS];
  2090. destination[Y_AXIS]=current_position[Y_AXIS];
  2091. destination[Z_AXIS]=current_position[Z_AXIS];
  2092. destination[E_AXIS]=current_position[E_AXIS];
  2093. current_position[Z_AXIS]+=retract_zlift;
  2094. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2095. current_position[E_AXIS]-=(swapretract?(retract_length_swap+retract_recover_length_swap):(retract_length+retract_recover_length))*float(extrudemultiply)*0.01f;
  2096. plan_set_e_position(current_position[E_AXIS]);
  2097. float oldFeedrate = feedrate;
  2098. feedrate=retract_recover_feedrate*60;
  2099. retracted[active_extruder]=false;
  2100. prepare_move();
  2101. feedrate = oldFeedrate;
  2102. }
  2103. } //retract
  2104. #endif //FWRETRACT
  2105. void trace() {
  2106. tone(BEEPER, 440);
  2107. delay(25);
  2108. noTone(BEEPER);
  2109. delay(20);
  2110. }
  2111. /*
  2112. void ramming() {
  2113. // float tmp[4] = DEFAULT_MAX_FEEDRATE;
  2114. if (current_temperature[0] < 230) {
  2115. //PLA
  2116. max_feedrate[E_AXIS] = 50;
  2117. //current_position[E_AXIS] -= 8;
  2118. //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2100 / 60, active_extruder);
  2119. //current_position[E_AXIS] += 8;
  2120. //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2100 / 60, active_extruder);
  2121. current_position[E_AXIS] += 5.4;
  2122. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2800 / 60, active_extruder);
  2123. current_position[E_AXIS] += 3.2;
  2124. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  2125. current_position[E_AXIS] += 3;
  2126. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3400 / 60, active_extruder);
  2127. st_synchronize();
  2128. max_feedrate[E_AXIS] = 80;
  2129. current_position[E_AXIS] -= 82;
  2130. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 9500 / 60, active_extruder);
  2131. max_feedrate[E_AXIS] = 50;//tmp[E_AXIS];
  2132. current_position[E_AXIS] -= 20;
  2133. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 1200 / 60, active_extruder);
  2134. current_position[E_AXIS] += 5;
  2135. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400 / 60, active_extruder);
  2136. current_position[E_AXIS] += 5;
  2137. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  2138. current_position[E_AXIS] -= 10;
  2139. st_synchronize();
  2140. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  2141. current_position[E_AXIS] += 10;
  2142. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  2143. current_position[E_AXIS] -= 10;
  2144. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 800 / 60, active_extruder);
  2145. current_position[E_AXIS] += 10;
  2146. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 800 / 60, active_extruder);
  2147. current_position[E_AXIS] -= 10;
  2148. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 800 / 60, active_extruder);
  2149. st_synchronize();
  2150. }
  2151. else {
  2152. //ABS
  2153. max_feedrate[E_AXIS] = 50;
  2154. //current_position[E_AXIS] -= 8;
  2155. //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2100 / 60, active_extruder);
  2156. //current_position[E_AXIS] += 8;
  2157. //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2100 / 60, active_extruder);
  2158. current_position[E_AXIS] += 3.1;
  2159. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2000 / 60, active_extruder);
  2160. current_position[E_AXIS] += 3.1;
  2161. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2500 / 60, active_extruder);
  2162. current_position[E_AXIS] += 4;
  2163. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  2164. st_synchronize();
  2165. //current_position[X_AXIS] += 23; //delay
  2166. //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600/60, active_extruder); //delay
  2167. //current_position[X_AXIS] -= 23; //delay
  2168. //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600/60, active_extruder); //delay
  2169. delay(4700);
  2170. max_feedrate[E_AXIS] = 80;
  2171. current_position[E_AXIS] -= 92;
  2172. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 9900 / 60, active_extruder);
  2173. max_feedrate[E_AXIS] = 50;//tmp[E_AXIS];
  2174. current_position[E_AXIS] -= 5;
  2175. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 800 / 60, active_extruder);
  2176. current_position[E_AXIS] += 5;
  2177. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400 / 60, active_extruder);
  2178. current_position[E_AXIS] -= 5;
  2179. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  2180. st_synchronize();
  2181. current_position[E_AXIS] += 5;
  2182. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  2183. current_position[E_AXIS] -= 5;
  2184. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  2185. current_position[E_AXIS] += 5;
  2186. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  2187. current_position[E_AXIS] -= 5;
  2188. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  2189. st_synchronize();
  2190. }
  2191. }
  2192. */
  2193. #ifdef TMC2130
  2194. void force_high_power_mode(bool start_high_power_section) {
  2195. uint8_t silent;
  2196. silent = eeprom_read_byte((uint8_t*)EEPROM_SILENT);
  2197. if (silent == 1) {
  2198. //we are in silent mode, set to normal mode to enable crash detection
  2199. // Wait for the planner queue to drain and for the stepper timer routine to reach an idle state.
  2200. st_synchronize();
  2201. cli();
  2202. tmc2130_mode = (start_high_power_section == true) ? TMC2130_MODE_NORMAL : TMC2130_MODE_SILENT;
  2203. update_mode_profile();
  2204. tmc2130_init();
  2205. // We may have missed a stepper timer interrupt due to the time spent in the tmc2130_init() routine.
  2206. // Be safe than sorry, reset the stepper timer before re-enabling interrupts.
  2207. st_reset_timer();
  2208. sei();
  2209. }
  2210. }
  2211. #endif //TMC2130
  2212. void gcode_G28(bool home_x_axis, bool home_y_axis, bool home_z_axis) {
  2213. gcode_G28(home_x_axis, 0, home_y_axis, 0, home_z_axis, 0, false, true);
  2214. }
  2215. void gcode_G28(bool home_x_axis, long home_x_value, bool home_y_axis, long home_y_value, bool home_z_axis, long home_z_value, bool calib, bool without_mbl) {
  2216. st_synchronize();
  2217. #if 0
  2218. SERIAL_ECHOPGM("G28, initial "); print_world_coordinates();
  2219. SERIAL_ECHOPGM("G28, initial "); print_physical_coordinates();
  2220. #endif
  2221. // Flag for the display update routine and to disable the print cancelation during homing.
  2222. homing_flag = true;
  2223. // Which axes should be homed?
  2224. bool home_x = home_x_axis;
  2225. bool home_y = home_y_axis;
  2226. bool home_z = home_z_axis;
  2227. // Either all X,Y,Z codes are present, or none of them.
  2228. bool home_all_axes = home_x == home_y && home_x == home_z;
  2229. if (home_all_axes)
  2230. // No X/Y/Z code provided means to home all axes.
  2231. home_x = home_y = home_z = true;
  2232. //if we are homing all axes, first move z higher to protect heatbed/steel sheet
  2233. if (home_all_axes) {
  2234. current_position[Z_AXIS] += MESH_HOME_Z_SEARCH;
  2235. feedrate = homing_feedrate[Z_AXIS];
  2236. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], feedrate / 60, active_extruder);
  2237. st_synchronize();
  2238. }
  2239. #ifdef ENABLE_AUTO_BED_LEVELING
  2240. plan_bed_level_matrix.set_to_identity(); //Reset the plane ("erase" all leveling data)
  2241. #endif //ENABLE_AUTO_BED_LEVELING
  2242. // Reset world2machine_rotation_and_skew and world2machine_shift, therefore
  2243. // the planner will not perform any adjustments in the XY plane.
  2244. // Wait for the motors to stop and update the current position with the absolute values.
  2245. world2machine_revert_to_uncorrected();
  2246. // For mesh bed leveling deactivate the matrix temporarily.
  2247. // It is necessary to disable the bed leveling for the X and Y homing moves, so that the move is performed
  2248. // in a single axis only.
  2249. // In case of re-homing the X or Y axes only, the mesh bed leveling is restored after G28.
  2250. #ifdef MESH_BED_LEVELING
  2251. uint8_t mbl_was_active = mbl.active;
  2252. mbl.active = 0;
  2253. current_position[Z_AXIS] = st_get_position_mm(Z_AXIS);
  2254. #endif
  2255. // Reset baby stepping to zero, if the babystepping has already been loaded before. The babystepsTodo value will be
  2256. // consumed during the first movements following this statement.
  2257. if (home_z)
  2258. babystep_undo();
  2259. saved_feedrate = feedrate;
  2260. saved_feedmultiply = feedmultiply;
  2261. feedmultiply = 100;
  2262. previous_millis_cmd = millis();
  2263. enable_endstops(true);
  2264. memcpy(destination, current_position, sizeof(destination));
  2265. feedrate = 0.0;
  2266. #if Z_HOME_DIR > 0 // If homing away from BED do Z first
  2267. if(home_z)
  2268. homeaxis(Z_AXIS);
  2269. #endif
  2270. #ifdef QUICK_HOME
  2271. // In the quick mode, if both x and y are to be homed, a diagonal move will be performed initially.
  2272. if(home_x && home_y) //first diagonal move
  2273. {
  2274. current_position[X_AXIS] = 0;current_position[Y_AXIS] = 0;
  2275. int x_axis_home_dir = home_dir(X_AXIS);
  2276. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2277. destination[X_AXIS] = 1.5 * max_length(X_AXIS) * x_axis_home_dir;destination[Y_AXIS] = 1.5 * max_length(Y_AXIS) * home_dir(Y_AXIS);
  2278. feedrate = homing_feedrate[X_AXIS];
  2279. if(homing_feedrate[Y_AXIS]<feedrate)
  2280. feedrate = homing_feedrate[Y_AXIS];
  2281. if (max_length(X_AXIS) > max_length(Y_AXIS)) {
  2282. feedrate *= sqrt(pow(max_length(Y_AXIS) / max_length(X_AXIS), 2) + 1);
  2283. } else {
  2284. feedrate *= sqrt(pow(max_length(X_AXIS) / max_length(Y_AXIS), 2) + 1);
  2285. }
  2286. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  2287. st_synchronize();
  2288. axis_is_at_home(X_AXIS);
  2289. axis_is_at_home(Y_AXIS);
  2290. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2291. destination[X_AXIS] = current_position[X_AXIS];
  2292. destination[Y_AXIS] = current_position[Y_AXIS];
  2293. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  2294. feedrate = 0.0;
  2295. st_synchronize();
  2296. endstops_hit_on_purpose();
  2297. current_position[X_AXIS] = destination[X_AXIS];
  2298. current_position[Y_AXIS] = destination[Y_AXIS];
  2299. current_position[Z_AXIS] = destination[Z_AXIS];
  2300. }
  2301. #endif /* QUICK_HOME */
  2302. #ifdef TMC2130
  2303. if(home_x)
  2304. {
  2305. if (!calib)
  2306. homeaxis(X_AXIS);
  2307. else
  2308. tmc2130_home_calibrate(X_AXIS);
  2309. }
  2310. if(home_y)
  2311. {
  2312. if (!calib)
  2313. homeaxis(Y_AXIS);
  2314. else
  2315. tmc2130_home_calibrate(Y_AXIS);
  2316. }
  2317. #endif //TMC2130
  2318. if(home_x_axis && home_x_value != 0)
  2319. current_position[X_AXIS]=home_x_value+add_homing[X_AXIS];
  2320. if(home_y_axis && home_y_value != 0)
  2321. current_position[Y_AXIS]=home_y_value+add_homing[Y_AXIS];
  2322. #if Z_HOME_DIR < 0 // If homing towards BED do Z last
  2323. #ifndef Z_SAFE_HOMING
  2324. if(home_z) {
  2325. #if defined (Z_RAISE_BEFORE_HOMING) && (Z_RAISE_BEFORE_HOMING > 0)
  2326. destination[Z_AXIS] = Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS) * (-1); // Set destination away from bed
  2327. feedrate = max_feedrate[Z_AXIS];
  2328. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
  2329. st_synchronize();
  2330. #endif // defined (Z_RAISE_BEFORE_HOMING) && (Z_RAISE_BEFORE_HOMING > 0)
  2331. #if (defined(MESH_BED_LEVELING) && !defined(MK1BP)) // If Mesh bed leveling, move X&Y to safe position for home
  2332. if (!(axis_known_position[X_AXIS] && axis_known_position[Y_AXIS] ))
  2333. {
  2334. homeaxis(X_AXIS);
  2335. homeaxis(Y_AXIS);
  2336. }
  2337. // 1st mesh bed leveling measurement point, corrected.
  2338. world2machine_initialize();
  2339. world2machine(pgm_read_float(bed_ref_points_4), pgm_read_float(bed_ref_points_4+1), destination[X_AXIS], destination[Y_AXIS]);
  2340. world2machine_reset();
  2341. if (destination[Y_AXIS] < Y_MIN_POS)
  2342. destination[Y_AXIS] = Y_MIN_POS;
  2343. destination[Z_AXIS] = MESH_HOME_Z_SEARCH; // Set destination away from bed
  2344. feedrate = homing_feedrate[Z_AXIS]/10;
  2345. current_position[Z_AXIS] = 0;
  2346. enable_endstops(false);
  2347. #ifdef DEBUG_BUILD
  2348. SERIAL_ECHOLNPGM("plan_set_position()");
  2349. MYSERIAL.println(current_position[X_AXIS]);MYSERIAL.println(current_position[Y_AXIS]);
  2350. MYSERIAL.println(current_position[Z_AXIS]);MYSERIAL.println(current_position[E_AXIS]);
  2351. #endif
  2352. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2353. #ifdef DEBUG_BUILD
  2354. SERIAL_ECHOLNPGM("plan_buffer_line()");
  2355. MYSERIAL.println(destination[X_AXIS]);MYSERIAL.println(destination[Y_AXIS]);
  2356. MYSERIAL.println(destination[Z_AXIS]);MYSERIAL.println(destination[E_AXIS]);
  2357. MYSERIAL.println(feedrate);MYSERIAL.println(active_extruder);
  2358. #endif
  2359. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
  2360. st_synchronize();
  2361. current_position[X_AXIS] = destination[X_AXIS];
  2362. current_position[Y_AXIS] = destination[Y_AXIS];
  2363. enable_endstops(true);
  2364. endstops_hit_on_purpose();
  2365. homeaxis(Z_AXIS);
  2366. #else // MESH_BED_LEVELING
  2367. homeaxis(Z_AXIS);
  2368. #endif // MESH_BED_LEVELING
  2369. }
  2370. #else // defined(Z_SAFE_HOMING): Z Safe mode activated.
  2371. if(home_all_axes) {
  2372. destination[X_AXIS] = round(Z_SAFE_HOMING_X_POINT - X_PROBE_OFFSET_FROM_EXTRUDER);
  2373. destination[Y_AXIS] = round(Z_SAFE_HOMING_Y_POINT - Y_PROBE_OFFSET_FROM_EXTRUDER);
  2374. destination[Z_AXIS] = Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS) * (-1); // Set destination away from bed
  2375. feedrate = XY_TRAVEL_SPEED/60;
  2376. current_position[Z_AXIS] = 0;
  2377. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2378. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
  2379. st_synchronize();
  2380. current_position[X_AXIS] = destination[X_AXIS];
  2381. current_position[Y_AXIS] = destination[Y_AXIS];
  2382. homeaxis(Z_AXIS);
  2383. }
  2384. // Let's see if X and Y are homed and probe is inside bed area.
  2385. if(home_z) {
  2386. if ( (axis_known_position[X_AXIS]) && (axis_known_position[Y_AXIS]) \
  2387. && (current_position[X_AXIS]+X_PROBE_OFFSET_FROM_EXTRUDER >= X_MIN_POS) \
  2388. && (current_position[X_AXIS]+X_PROBE_OFFSET_FROM_EXTRUDER <= X_MAX_POS) \
  2389. && (current_position[Y_AXIS]+Y_PROBE_OFFSET_FROM_EXTRUDER >= Y_MIN_POS) \
  2390. && (current_position[Y_AXIS]+Y_PROBE_OFFSET_FROM_EXTRUDER <= Y_MAX_POS)) {
  2391. current_position[Z_AXIS] = 0;
  2392. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2393. destination[Z_AXIS] = Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS) * (-1); // Set destination away from bed
  2394. feedrate = max_feedrate[Z_AXIS];
  2395. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
  2396. st_synchronize();
  2397. homeaxis(Z_AXIS);
  2398. } else if (!((axis_known_position[X_AXIS]) && (axis_known_position[Y_AXIS]))) {
  2399. LCD_MESSAGERPGM(MSG_POSITION_UNKNOWN);
  2400. SERIAL_ECHO_START;
  2401. SERIAL_ECHOLNRPGM(MSG_POSITION_UNKNOWN);
  2402. } else {
  2403. LCD_MESSAGERPGM(MSG_ZPROBE_OUT);
  2404. SERIAL_ECHO_START;
  2405. SERIAL_ECHOLNRPGM(MSG_ZPROBE_OUT);
  2406. }
  2407. }
  2408. #endif // Z_SAFE_HOMING
  2409. #endif // Z_HOME_DIR < 0
  2410. if(home_z_axis && home_z_value != 0)
  2411. current_position[Z_AXIS]=home_z_value+add_homing[Z_AXIS];
  2412. #ifdef ENABLE_AUTO_BED_LEVELING
  2413. if(home_z)
  2414. current_position[Z_AXIS] += zprobe_zoffset; //Add Z_Probe offset (the distance is negative)
  2415. #endif
  2416. // Set the planner and stepper routine positions.
  2417. // At this point the mesh bed leveling and world2machine corrections are disabled and current_position
  2418. // contains the machine coordinates.
  2419. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2420. #ifdef ENDSTOPS_ONLY_FOR_HOMING
  2421. enable_endstops(false);
  2422. #endif
  2423. feedrate = saved_feedrate;
  2424. feedmultiply = saved_feedmultiply;
  2425. previous_millis_cmd = millis();
  2426. endstops_hit_on_purpose();
  2427. #ifndef MESH_BED_LEVELING
  2428. // If MESH_BED_LEVELING is not active, then it is the original Prusa i3.
  2429. // Offer the user to load the baby step value, which has been adjusted at the previous print session.
  2430. if(card.sdprinting && eeprom_read_word((uint16_t *)EEPROM_BABYSTEP_Z))
  2431. lcd_adjust_z();
  2432. #endif
  2433. // Load the machine correction matrix
  2434. world2machine_initialize();
  2435. // and correct the current_position XY axes to match the transformed coordinate system.
  2436. world2machine_update_current();
  2437. #if (defined(MESH_BED_LEVELING) && !defined(MK1BP))
  2438. if (home_x_axis || home_y_axis || without_mbl || home_z_axis)
  2439. {
  2440. if (! home_z && mbl_was_active) {
  2441. // Re-enable the mesh bed leveling if only the X and Y axes were re-homed.
  2442. mbl.active = true;
  2443. // and re-adjust the current logical Z axis with the bed leveling offset applicable at the current XY position.
  2444. current_position[Z_AXIS] -= mbl.get_z(st_get_position_mm(X_AXIS), st_get_position_mm(Y_AXIS));
  2445. }
  2446. }
  2447. else
  2448. {
  2449. st_synchronize();
  2450. homing_flag = false;
  2451. }
  2452. #endif
  2453. if (farm_mode) { prusa_statistics(20); };
  2454. homing_flag = false;
  2455. #if 0
  2456. SERIAL_ECHOPGM("G28, final "); print_world_coordinates();
  2457. SERIAL_ECHOPGM("G28, final "); print_physical_coordinates();
  2458. SERIAL_ECHOPGM("G28, final "); print_mesh_bed_leveling_table();
  2459. #endif
  2460. }
  2461. bool gcode_M45(bool onlyZ, int8_t verbosity_level)
  2462. {
  2463. bool final_result = false;
  2464. #ifdef TMC2130
  2465. FORCE_HIGH_POWER_START;
  2466. #endif // TMC2130
  2467. // Only Z calibration?
  2468. if (!onlyZ)
  2469. {
  2470. setTargetBed(0);
  2471. setTargetHotend(0, 0);
  2472. setTargetHotend(0, 1);
  2473. setTargetHotend(0, 2);
  2474. adjust_bed_reset(); //reset bed level correction
  2475. }
  2476. // Disable the default update procedure of the display. We will do a modal dialog.
  2477. lcd_update_enable(false);
  2478. // Let the planner use the uncorrected coordinates.
  2479. mbl.reset();
  2480. // Reset world2machine_rotation_and_skew and world2machine_shift, therefore
  2481. // the planner will not perform any adjustments in the XY plane.
  2482. // Wait for the motors to stop and update the current position with the absolute values.
  2483. world2machine_revert_to_uncorrected();
  2484. // Reset the baby step value applied without moving the axes.
  2485. babystep_reset();
  2486. // Mark all axes as in a need for homing.
  2487. memset(axis_known_position, 0, sizeof(axis_known_position));
  2488. // Home in the XY plane.
  2489. //set_destination_to_current();
  2490. setup_for_endstop_move();
  2491. lcd_display_message_fullscreen_P(_T(MSG_AUTO_HOME));
  2492. home_xy();
  2493. enable_endstops(false);
  2494. current_position[X_AXIS] += 5;
  2495. current_position[Y_AXIS] += 5;
  2496. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[Z_AXIS] / 40, active_extruder);
  2497. st_synchronize();
  2498. // Let the user move the Z axes up to the end stoppers.
  2499. #ifdef TMC2130
  2500. if (calibrate_z_auto())
  2501. {
  2502. #else //TMC2130
  2503. if (lcd_calibrate_z_end_stop_manual(onlyZ))
  2504. {
  2505. #endif //TMC2130
  2506. refresh_cmd_timeout();
  2507. #ifndef STEEL_SHEET
  2508. if (((degHotend(0) > MAX_HOTEND_TEMP_CALIBRATION) || (degBed() > MAX_BED_TEMP_CALIBRATION)) && (!onlyZ))
  2509. {
  2510. lcd_wait_for_cool_down();
  2511. }
  2512. #endif //STEEL_SHEET
  2513. if(!onlyZ)
  2514. {
  2515. KEEPALIVE_STATE(PAUSED_FOR_USER);
  2516. #ifdef STEEL_SHEET
  2517. bool result = lcd_show_fullscreen_message_yes_no_and_wait_P(_T(MSG_STEEL_SHEET_CHECK), false, false);
  2518. if(result) lcd_show_fullscreen_message_and_wait_P(_T(MSG_REMOVE_STEEL_SHEET));
  2519. #endif //STEEL_SHEET
  2520. lcd_show_fullscreen_message_and_wait_P(_T(MSG_CONFIRM_NOZZLE_CLEAN));
  2521. lcd_show_fullscreen_message_and_wait_P(_T(MSG_PAPER));
  2522. KEEPALIVE_STATE(IN_HANDLER);
  2523. lcd_display_message_fullscreen_P(_T(MSG_FIND_BED_OFFSET_AND_SKEW_LINE1));
  2524. lcd_set_cursor(0, 2);
  2525. lcd_print(1);
  2526. lcd_puts_P(_T(MSG_FIND_BED_OFFSET_AND_SKEW_LINE2));
  2527. }
  2528. // Move the print head close to the bed.
  2529. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  2530. bool endstops_enabled = enable_endstops(true);
  2531. #ifdef TMC2130
  2532. tmc2130_home_enter(Z_AXIS_MASK);
  2533. #endif //TMC2130
  2534. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[Z_AXIS] / 40, active_extruder);
  2535. st_synchronize();
  2536. #ifdef TMC2130
  2537. tmc2130_home_exit();
  2538. #endif //TMC2130
  2539. enable_endstops(endstops_enabled);
  2540. if (st_get_position_mm(Z_AXIS) == MESH_HOME_Z_SEARCH)
  2541. {
  2542. int8_t verbosity_level = 0;
  2543. if (code_seen('V'))
  2544. {
  2545. // Just 'V' without a number counts as V1.
  2546. char c = strchr_pointer[1];
  2547. verbosity_level = (c == ' ' || c == '\t' || c == 0) ? 1 : code_value_short();
  2548. }
  2549. if (onlyZ)
  2550. {
  2551. clean_up_after_endstop_move();
  2552. // Z only calibration.
  2553. // Load the machine correction matrix
  2554. world2machine_initialize();
  2555. // and correct the current_position to match the transformed coordinate system.
  2556. world2machine_update_current();
  2557. //FIXME
  2558. bool result = sample_mesh_and_store_reference();
  2559. if (result)
  2560. {
  2561. if (calibration_status() == CALIBRATION_STATUS_Z_CALIBRATION)
  2562. // Shipped, the nozzle height has been set already. The user can start printing now.
  2563. calibration_status_store(CALIBRATION_STATUS_CALIBRATED);
  2564. final_result = true;
  2565. // babystep_apply();
  2566. }
  2567. }
  2568. else
  2569. {
  2570. // Reset the baby step value and the baby step applied flag.
  2571. calibration_status_store(CALIBRATION_STATUS_XYZ_CALIBRATION);
  2572. eeprom_update_word((uint16_t*)EEPROM_BABYSTEP_Z, 0);
  2573. // Complete XYZ calibration.
  2574. uint8_t point_too_far_mask = 0;
  2575. BedSkewOffsetDetectionResultType result = find_bed_offset_and_skew(verbosity_level, point_too_far_mask);
  2576. clean_up_after_endstop_move();
  2577. // Print head up.
  2578. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  2579. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[Z_AXIS] / 40, active_extruder);
  2580. st_synchronize();
  2581. //#ifndef NEW_XYZCAL
  2582. if (result >= 0)
  2583. {
  2584. #ifdef HEATBED_V2
  2585. sample_z();
  2586. #else //HEATBED_V2
  2587. point_too_far_mask = 0;
  2588. // Second half: The fine adjustment.
  2589. // Let the planner use the uncorrected coordinates.
  2590. mbl.reset();
  2591. world2machine_reset();
  2592. // Home in the XY plane.
  2593. setup_for_endstop_move();
  2594. home_xy();
  2595. result = improve_bed_offset_and_skew(1, verbosity_level, point_too_far_mask);
  2596. clean_up_after_endstop_move();
  2597. // Print head up.
  2598. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  2599. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[Z_AXIS] / 40, active_extruder);
  2600. st_synchronize();
  2601. // if (result >= 0) babystep_apply();
  2602. #endif //HEATBED_V2
  2603. }
  2604. //#endif //NEW_XYZCAL
  2605. lcd_update_enable(true);
  2606. lcd_update(2);
  2607. lcd_bed_calibration_show_result(result, point_too_far_mask);
  2608. if (result >= 0)
  2609. {
  2610. // Calibration valid, the machine should be able to print. Advise the user to run the V2Calibration.gcode.
  2611. calibration_status_store(CALIBRATION_STATUS_LIVE_ADJUST);
  2612. if (eeprom_read_byte((uint8_t*)EEPROM_WIZARD_ACTIVE) != 1) lcd_show_fullscreen_message_and_wait_P(_T(MSG_BABYSTEP_Z_NOT_SET));
  2613. final_result = true;
  2614. }
  2615. }
  2616. #ifdef TMC2130
  2617. tmc2130_home_exit();
  2618. #endif
  2619. }
  2620. else
  2621. {
  2622. lcd_show_fullscreen_message_and_wait_P(PSTR("Calibration failed! Check the axes and run again."));
  2623. final_result = false;
  2624. }
  2625. }
  2626. else
  2627. {
  2628. // Timeouted.
  2629. }
  2630. lcd_update_enable(true);
  2631. #ifdef TMC2130
  2632. FORCE_HIGH_POWER_END;
  2633. #endif // TMC2130
  2634. return final_result;
  2635. }
  2636. void gcode_M114()
  2637. {
  2638. SERIAL_PROTOCOLPGM("X:");
  2639. SERIAL_PROTOCOL(current_position[X_AXIS]);
  2640. SERIAL_PROTOCOLPGM(" Y:");
  2641. SERIAL_PROTOCOL(current_position[Y_AXIS]);
  2642. SERIAL_PROTOCOLPGM(" Z:");
  2643. SERIAL_PROTOCOL(current_position[Z_AXIS]);
  2644. SERIAL_PROTOCOLPGM(" E:");
  2645. SERIAL_PROTOCOL(current_position[E_AXIS]);
  2646. SERIAL_PROTOCOLRPGM(_n(" Count X: "));////MSG_COUNT_X c=0 r=0
  2647. SERIAL_PROTOCOL(float(st_get_position(X_AXIS)) / axis_steps_per_unit[X_AXIS]);
  2648. SERIAL_PROTOCOLPGM(" Y:");
  2649. SERIAL_PROTOCOL(float(st_get_position(Y_AXIS)) / axis_steps_per_unit[Y_AXIS]);
  2650. SERIAL_PROTOCOLPGM(" Z:");
  2651. SERIAL_PROTOCOL(float(st_get_position(Z_AXIS)) / axis_steps_per_unit[Z_AXIS]);
  2652. SERIAL_PROTOCOLPGM(" E:");
  2653. SERIAL_PROTOCOL(float(st_get_position(E_AXIS)) / axis_steps_per_unit[E_AXIS]);
  2654. SERIAL_PROTOCOLLN("");
  2655. }
  2656. void gcode_M701()
  2657. {
  2658. printf_P(PSTR("gcode_M701 begin\n"));
  2659. #if defined (SNMM) || defined (SNMM_V2)
  2660. extr_adj(snmm_extruder);//loads current extruder
  2661. #else //defined (SNMM) || defined (SNMM_V2)
  2662. enable_z();
  2663. custom_message = true;
  2664. custom_message_type = 2;
  2665. #ifdef FILAMENT_SENSOR
  2666. fsensor_oq_meassure_start(40);
  2667. #endif //FILAMENT_SENSOR
  2668. lcd_setstatuspgm(_T(MSG_LOADING_FILAMENT));
  2669. current_position[E_AXIS] += 40;
  2670. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400 / 60, active_extruder); //fast sequence
  2671. st_synchronize();
  2672. if (current_position[Z_AXIS] < 20) current_position[Z_AXIS] += 30;
  2673. current_position[E_AXIS] += 30;
  2674. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400 / 60, active_extruder); //fast sequence
  2675. st_synchronize();
  2676. current_position[E_AXIS] += 25;
  2677. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 100 / 60, active_extruder); //slow sequence
  2678. st_synchronize();
  2679. tone(BEEPER, 500);
  2680. delay_keep_alive(50);
  2681. noTone(BEEPER);
  2682. if (!farm_mode && loading_flag) {
  2683. bool clean = lcd_show_fullscreen_message_yes_no_and_wait_P(_T(MSG_FILAMENT_CLEAN), false, true);
  2684. while (!clean) {
  2685. lcd_update_enable(true);
  2686. lcd_update(2);
  2687. current_position[E_AXIS] += 25;
  2688. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 100 / 60, active_extruder); //slow sequence
  2689. st_synchronize();
  2690. clean = lcd_show_fullscreen_message_yes_no_and_wait_P(_T(MSG_FILAMENT_CLEAN), false, true);
  2691. }
  2692. }
  2693. lcd_update_enable(true);
  2694. lcd_update(2);
  2695. lcd_setstatuspgm(_T(WELCOME_MSG));
  2696. disable_z();
  2697. loading_flag = false;
  2698. custom_message = false;
  2699. custom_message_type = 0;
  2700. #ifdef FILAMENT_SENSOR
  2701. fsensor_oq_meassure_stop();
  2702. if (!fsensor_oq_result())
  2703. {
  2704. bool disable = lcd_show_fullscreen_message_yes_no_and_wait_P(_i("Fil. sensor response is poor, disable it?"), false, true);
  2705. lcd_update_enable(true);
  2706. lcd_update(2);
  2707. if (disable)
  2708. fsensor_disable();
  2709. }
  2710. #endif //FILAMENT_SENSOR
  2711. #endif //defined (SNMM) || defined (SNMM_V2)
  2712. }
  2713. /**
  2714. * @brief Get serial number from 32U2 processor
  2715. *
  2716. * Typical format of S/N is:CZPX0917X003XC13518
  2717. *
  2718. * Command operates only in farm mode, if not in farm mode, "Not in farm mode." is written to MYSERIAL.
  2719. *
  2720. * Send command ;S to serial port 0 to retrieve serial number stored in 32U2 processor,
  2721. * reply is transmitted to serial port 1 character by character.
  2722. * Operation takes typically 23 ms. If the retransmit is not finished until 100 ms,
  2723. * it is interrupted, so less, or no characters are retransmitted, only newline character is send
  2724. * in any case.
  2725. */
  2726. static void gcode_PRUSA_SN()
  2727. {
  2728. if (farm_mode) {
  2729. selectedSerialPort = 0;
  2730. putchar(';');
  2731. putchar('S');
  2732. int numbersRead = 0;
  2733. ShortTimer timeout;
  2734. timeout.start();
  2735. while (numbersRead < 19) {
  2736. while (MSerial.available() > 0) {
  2737. uint8_t serial_char = MSerial.read();
  2738. selectedSerialPort = 1;
  2739. putchar(serial_char);
  2740. numbersRead++;
  2741. selectedSerialPort = 0;
  2742. }
  2743. if (timeout.expired(100u)) break;
  2744. }
  2745. selectedSerialPort = 1;
  2746. putchar('\n');
  2747. #if 0
  2748. for (int b = 0; b < 3; b++) {
  2749. tone(BEEPER, 110);
  2750. delay(50);
  2751. noTone(BEEPER);
  2752. delay(50);
  2753. }
  2754. #endif
  2755. } else {
  2756. puts_P(_N("Not in farm mode."));
  2757. }
  2758. }
  2759. #ifdef BACKLASH_X
  2760. extern uint8_t st_backlash_x;
  2761. #endif //BACKLASH_X
  2762. #ifdef BACKLASH_Y
  2763. extern uint8_t st_backlash_y;
  2764. #endif //BACKLASH_Y
  2765. uint16_t gcode_in_progress = 0;
  2766. uint16_t mcode_in_progress = 0;
  2767. void process_commands()
  2768. {
  2769. if (!buflen) return; //empty command
  2770. #ifdef FILAMENT_RUNOUT_SUPPORT
  2771. SET_INPUT(FR_SENS);
  2772. #endif
  2773. #ifdef CMDBUFFER_DEBUG
  2774. SERIAL_ECHOPGM("Processing a GCODE command: ");
  2775. SERIAL_ECHO(cmdbuffer+bufindr+CMDHDRSIZE);
  2776. SERIAL_ECHOLNPGM("");
  2777. SERIAL_ECHOPGM("In cmdqueue: ");
  2778. SERIAL_ECHO(buflen);
  2779. SERIAL_ECHOLNPGM("");
  2780. #endif /* CMDBUFFER_DEBUG */
  2781. unsigned long codenum; //throw away variable
  2782. char *starpos = NULL;
  2783. #ifdef ENABLE_AUTO_BED_LEVELING
  2784. float x_tmp, y_tmp, z_tmp, real_z;
  2785. #endif
  2786. // PRUSA GCODES
  2787. KEEPALIVE_STATE(IN_HANDLER);
  2788. #ifdef SNMM
  2789. float tmp_motor[3] = DEFAULT_PWM_MOTOR_CURRENT;
  2790. float tmp_motor_loud[3] = DEFAULT_PWM_MOTOR_CURRENT_LOUD;
  2791. int8_t SilentMode;
  2792. #endif
  2793. if (code_seen("M117")) { //moved to highest priority place to be able to to print strings which includes "G", "PRUSA" and "^"
  2794. starpos = (strchr(strchr_pointer + 5, '*'));
  2795. if (starpos != NULL)
  2796. *(starpos) = '\0';
  2797. lcd_setstatus(strchr_pointer + 5);
  2798. }
  2799. #ifdef TMC2130
  2800. else if (strncmp_P(CMDBUFFER_CURRENT_STRING, PSTR("CRASH_"), 6) == 0)
  2801. {
  2802. if(code_seen("CRASH_DETECTED"))
  2803. {
  2804. uint8_t mask = 0;
  2805. if (code_seen("X")) mask |= X_AXIS_MASK;
  2806. if (code_seen("Y")) mask |= Y_AXIS_MASK;
  2807. crashdet_detected(mask);
  2808. }
  2809. else if(code_seen("CRASH_RECOVER"))
  2810. crashdet_recover();
  2811. else if(code_seen("CRASH_CANCEL"))
  2812. crashdet_cancel();
  2813. }
  2814. else if (strncmp_P(CMDBUFFER_CURRENT_STRING, PSTR("TMC_"), 4) == 0)
  2815. {
  2816. if (strncmp_P(CMDBUFFER_CURRENT_STRING + 4, PSTR("SET_WAVE_"), 9) == 0)
  2817. {
  2818. uint8_t axis = *(CMDBUFFER_CURRENT_STRING + 13);
  2819. axis = (axis == 'E')?3:(axis - 'X');
  2820. if (axis < 4)
  2821. {
  2822. uint8_t fac = (uint8_t)strtol(CMDBUFFER_CURRENT_STRING + 14, NULL, 10);
  2823. tmc2130_set_wave(axis, 247, fac);
  2824. }
  2825. }
  2826. else if (strncmp_P(CMDBUFFER_CURRENT_STRING + 4, PSTR("SET_STEP_"), 9) == 0)
  2827. {
  2828. uint8_t axis = *(CMDBUFFER_CURRENT_STRING + 13);
  2829. axis = (axis == 'E')?3:(axis - 'X');
  2830. if (axis < 4)
  2831. {
  2832. uint8_t step = (uint8_t)strtol(CMDBUFFER_CURRENT_STRING + 14, NULL, 10);
  2833. uint16_t res = tmc2130_get_res(axis);
  2834. tmc2130_goto_step(axis, step & (4*res - 1), 2, 1000, res);
  2835. }
  2836. }
  2837. else if (strncmp_P(CMDBUFFER_CURRENT_STRING + 4, PSTR("SET_CHOP_"), 9) == 0)
  2838. {
  2839. uint8_t axis = *(CMDBUFFER_CURRENT_STRING + 13);
  2840. axis = (axis == 'E')?3:(axis - 'X');
  2841. if (axis < 4)
  2842. {
  2843. uint8_t chop0 = tmc2130_chopper_config[axis].toff;
  2844. uint8_t chop1 = tmc2130_chopper_config[axis].hstr;
  2845. uint8_t chop2 = tmc2130_chopper_config[axis].hend;
  2846. uint8_t chop3 = tmc2130_chopper_config[axis].tbl;
  2847. char* str_end = 0;
  2848. if (CMDBUFFER_CURRENT_STRING[14])
  2849. {
  2850. chop0 = (uint8_t)strtol(CMDBUFFER_CURRENT_STRING + 14, &str_end, 10) & 15;
  2851. if (str_end && *str_end)
  2852. {
  2853. chop1 = (uint8_t)strtol(str_end, &str_end, 10) & 7;
  2854. if (str_end && *str_end)
  2855. {
  2856. chop2 = (uint8_t)strtol(str_end, &str_end, 10) & 15;
  2857. if (str_end && *str_end)
  2858. chop3 = (uint8_t)strtol(str_end, &str_end, 10) & 3;
  2859. }
  2860. }
  2861. }
  2862. tmc2130_chopper_config[axis].toff = chop0;
  2863. tmc2130_chopper_config[axis].hstr = chop1 & 7;
  2864. tmc2130_chopper_config[axis].hend = chop2 & 15;
  2865. tmc2130_chopper_config[axis].tbl = chop3 & 3;
  2866. tmc2130_setup_chopper(axis, tmc2130_mres[axis], tmc2130_current_h[axis], tmc2130_current_r[axis]);
  2867. //printf_P(_N("TMC_SET_CHOP_%c %hhd %hhd %hhd %hhd\n"), "xyze"[axis], chop0, chop1, chop2, chop3);
  2868. }
  2869. }
  2870. }
  2871. #ifdef BACKLASH_X
  2872. else if (strncmp_P(CMDBUFFER_CURRENT_STRING, PSTR("BACKLASH_X"), 10) == 0)
  2873. {
  2874. uint8_t bl = (uint8_t)strtol(CMDBUFFER_CURRENT_STRING + 10, NULL, 10);
  2875. st_backlash_x = bl;
  2876. printf_P(_N("st_backlash_x = %hhd\n"), st_backlash_x);
  2877. }
  2878. #endif //BACKLASH_X
  2879. #ifdef BACKLASH_Y
  2880. else if (strncmp_P(CMDBUFFER_CURRENT_STRING, PSTR("BACKLASH_Y"), 10) == 0)
  2881. {
  2882. uint8_t bl = (uint8_t)strtol(CMDBUFFER_CURRENT_STRING + 10, NULL, 10);
  2883. st_backlash_y = bl;
  2884. printf_P(_N("st_backlash_y = %hhd\n"), st_backlash_y);
  2885. }
  2886. #endif //BACKLASH_Y
  2887. #endif //TMC2130
  2888. else if(code_seen("PRUSA")){
  2889. if (code_seen("Ping")) { //PRUSA Ping
  2890. if (farm_mode) {
  2891. PingTime = millis();
  2892. //MYSERIAL.print(farm_no); MYSERIAL.println(": OK");
  2893. }
  2894. }
  2895. else if (code_seen("PRN")) {
  2896. printf_P(_N("%d"), status_number);
  2897. }else if (code_seen("FAN")) {
  2898. printf_P(_N("E0:%d RPM\nPRN0:%d RPM\n"), 60*fan_speed[0], 60*fan_speed[1]);
  2899. }else if (code_seen("fn")) {
  2900. if (farm_mode) {
  2901. printf_P(_N("%d"), farm_no);
  2902. }
  2903. else {
  2904. puts_P(_N("Not in farm mode."));
  2905. }
  2906. }
  2907. else if (code_seen("thx")) {
  2908. no_response = false;
  2909. }
  2910. else if (code_seen("MMURES")) {
  2911. fprintf_P(uart2io, PSTR("X0"));
  2912. }
  2913. else if (code_seen("RESET")) {
  2914. // careful!
  2915. if (farm_mode) {
  2916. #ifdef WATCHDOG
  2917. boot_app_magic = BOOT_APP_MAGIC;
  2918. boot_app_flags = BOOT_APP_FLG_RUN;
  2919. wdt_enable(WDTO_15MS);
  2920. cli();
  2921. while(1);
  2922. #else //WATCHDOG
  2923. asm volatile("jmp 0x3E000");
  2924. #endif //WATCHDOG
  2925. }
  2926. else {
  2927. MYSERIAL.println("Not in farm mode.");
  2928. }
  2929. }else if (code_seen("fv")) {
  2930. // get file version
  2931. #ifdef SDSUPPORT
  2932. card.openFile(strchr_pointer + 3,true);
  2933. while (true) {
  2934. uint16_t readByte = card.get();
  2935. MYSERIAL.write(readByte);
  2936. if (readByte=='\n') {
  2937. break;
  2938. }
  2939. }
  2940. card.closefile();
  2941. #endif // SDSUPPORT
  2942. } else if (code_seen("M28")) {
  2943. trace();
  2944. prusa_sd_card_upload = true;
  2945. card.openFile(strchr_pointer+4,false);
  2946. } else if (code_seen("SN")) {
  2947. gcode_PRUSA_SN();
  2948. } else if(code_seen("Fir")){
  2949. SERIAL_PROTOCOLLN(FW_VERSION);
  2950. } else if(code_seen("Rev")){
  2951. SERIAL_PROTOCOLLN(FILAMENT_SIZE "-" ELECTRONICS "-" NOZZLE_TYPE );
  2952. } else if(code_seen("Lang")) {
  2953. lang_reset();
  2954. } else if(code_seen("Lz")) {
  2955. EEPROM_save_B(EEPROM_BABYSTEP_Z,0);
  2956. } else if(code_seen("Beat")) {
  2957. // Kick farm link timer
  2958. kicktime = millis();
  2959. } else if(code_seen("FR")) {
  2960. // Factory full reset
  2961. factory_reset(0,true);
  2962. }
  2963. //else if (code_seen('Cal')) {
  2964. // lcd_calibration();
  2965. // }
  2966. }
  2967. else if (code_seen('^')) {
  2968. // nothing, this is a version line
  2969. } else if(code_seen('G'))
  2970. {
  2971. gcode_in_progress = (int)code_value();
  2972. // printf_P(_N("BEGIN G-CODE=%u\n"), gcode_in_progress);
  2973. switch (gcode_in_progress)
  2974. {
  2975. case 0: // G0 -> G1
  2976. case 1: // G1
  2977. if(Stopped == false) {
  2978. #ifdef FILAMENT_RUNOUT_SUPPORT
  2979. if(READ(FR_SENS)){
  2980. feedmultiplyBckp=feedmultiply;
  2981. float target[4];
  2982. float lastpos[4];
  2983. target[X_AXIS]=current_position[X_AXIS];
  2984. target[Y_AXIS]=current_position[Y_AXIS];
  2985. target[Z_AXIS]=current_position[Z_AXIS];
  2986. target[E_AXIS]=current_position[E_AXIS];
  2987. lastpos[X_AXIS]=current_position[X_AXIS];
  2988. lastpos[Y_AXIS]=current_position[Y_AXIS];
  2989. lastpos[Z_AXIS]=current_position[Z_AXIS];
  2990. lastpos[E_AXIS]=current_position[E_AXIS];
  2991. //retract by E
  2992. target[E_AXIS]+= FILAMENTCHANGE_FIRSTRETRACT ;
  2993. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 400, active_extruder);
  2994. target[Z_AXIS]+= FILAMENTCHANGE_ZADD ;
  2995. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 300, active_extruder);
  2996. target[X_AXIS]= FILAMENTCHANGE_XPOS ;
  2997. target[Y_AXIS]= FILAMENTCHANGE_YPOS ;
  2998. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 70, active_extruder);
  2999. target[E_AXIS]+= FILAMENTCHANGE_FINALRETRACT ;
  3000. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 20, active_extruder);
  3001. //finish moves
  3002. st_synchronize();
  3003. //disable extruder steppers so filament can be removed
  3004. disable_e0();
  3005. disable_e1();
  3006. disable_e2();
  3007. delay(100);
  3008. //LCD_ALERTMESSAGEPGM(_T(MSG_FILAMENTCHANGE));
  3009. uint8_t cnt=0;
  3010. int counterBeep = 0;
  3011. lcd_wait_interact();
  3012. while(!lcd_clicked()){
  3013. cnt++;
  3014. manage_heater();
  3015. manage_inactivity(true);
  3016. //lcd_update(0);
  3017. if(cnt==0)
  3018. {
  3019. #if BEEPER > 0
  3020. if (counterBeep== 500){
  3021. counterBeep = 0;
  3022. }
  3023. SET_OUTPUT(BEEPER);
  3024. if (counterBeep== 0){
  3025. WRITE(BEEPER,HIGH);
  3026. }
  3027. if (counterBeep== 20){
  3028. WRITE(BEEPER,LOW);
  3029. }
  3030. counterBeep++;
  3031. #else
  3032. #endif
  3033. }
  3034. }
  3035. WRITE(BEEPER,LOW);
  3036. target[E_AXIS]+= FILAMENTCHANGE_FIRSTFEED ;
  3037. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 20, active_extruder);
  3038. target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  3039. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder);
  3040. lcd_change_fil_state = 0;
  3041. lcd_loading_filament();
  3042. while ((lcd_change_fil_state == 0)||(lcd_change_fil_state != 1)){
  3043. lcd_change_fil_state = 0;
  3044. lcd_alright();
  3045. switch(lcd_change_fil_state){
  3046. case 2:
  3047. target[E_AXIS]+= FILAMENTCHANGE_FIRSTFEED ;
  3048. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 20, active_extruder);
  3049. target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  3050. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder);
  3051. lcd_loading_filament();
  3052. break;
  3053. case 3:
  3054. target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  3055. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder);
  3056. lcd_loading_color();
  3057. break;
  3058. default:
  3059. lcd_change_success();
  3060. break;
  3061. }
  3062. }
  3063. target[E_AXIS]+= 5;
  3064. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder);
  3065. target[E_AXIS]+= FILAMENTCHANGE_FIRSTRETRACT;
  3066. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 400, active_extruder);
  3067. //current_position[E_AXIS]=target[E_AXIS]; //the long retract of L is compensated by manual filament feeding
  3068. //plan_set_e_position(current_position[E_AXIS]);
  3069. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 70, active_extruder); //should do nothing
  3070. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], target[Z_AXIS], target[E_AXIS], 70, active_extruder); //move xy back
  3071. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], target[E_AXIS], 200, active_extruder); //move z back
  3072. target[E_AXIS]= target[E_AXIS] - FILAMENTCHANGE_FIRSTRETRACT;
  3073. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], target[E_AXIS], 5, active_extruder); //final untretract
  3074. plan_set_e_position(lastpos[E_AXIS]);
  3075. feedmultiply=feedmultiplyBckp;
  3076. char cmd[9];
  3077. sprintf_P(cmd, PSTR("M220 S%i"), feedmultiplyBckp);
  3078. enquecommand(cmd);
  3079. }
  3080. #endif
  3081. get_coordinates(); // For X Y Z E F
  3082. if (total_filament_used > ((current_position[E_AXIS] - destination[E_AXIS]) * 100)) { //protection against total_filament_used overflow
  3083. total_filament_used = total_filament_used + ((destination[E_AXIS] - current_position[E_AXIS]) * 100);
  3084. }
  3085. #ifdef FWRETRACT
  3086. if(autoretract_enabled)
  3087. if( !(code_seen('X') || code_seen('Y') || code_seen('Z')) && code_seen('E')) {
  3088. float echange=destination[E_AXIS]-current_position[E_AXIS];
  3089. if((echange<-MIN_RETRACT && !retracted[active_extruder]) || (echange>MIN_RETRACT && retracted[active_extruder])) { //move appears to be an attempt to retract or recover
  3090. current_position[E_AXIS] = destination[E_AXIS]; //hide the slicer-generated retract/recover from calculations
  3091. plan_set_e_position(current_position[E_AXIS]); //AND from the planner
  3092. retract(!retracted[active_extruder]);
  3093. return;
  3094. }
  3095. }
  3096. #endif //FWRETRACT
  3097. prepare_move();
  3098. //ClearToSend();
  3099. }
  3100. break;
  3101. case 2: // G2 - CW ARC
  3102. if(Stopped == false) {
  3103. get_arc_coordinates();
  3104. prepare_arc_move(true);
  3105. }
  3106. break;
  3107. case 3: // G3 - CCW ARC
  3108. if(Stopped == false) {
  3109. get_arc_coordinates();
  3110. prepare_arc_move(false);
  3111. }
  3112. break;
  3113. case 4: // G4 dwell
  3114. codenum = 0;
  3115. if(code_seen('P')) codenum = code_value(); // milliseconds to wait
  3116. if(code_seen('S')) codenum = code_value() * 1000; // seconds to wait
  3117. if(codenum != 0) LCD_MESSAGERPGM(_i("Sleep..."));////MSG_DWELL c=0 r=0
  3118. st_synchronize();
  3119. codenum += millis(); // keep track of when we started waiting
  3120. previous_millis_cmd = millis();
  3121. while(millis() < codenum) {
  3122. manage_heater();
  3123. manage_inactivity();
  3124. lcd_update(0);
  3125. }
  3126. break;
  3127. #ifdef FWRETRACT
  3128. case 10: // G10 retract
  3129. #if EXTRUDERS > 1
  3130. retracted_swap[active_extruder]=(code_seen('S') && code_value_long() == 1); // checks for swap retract argument
  3131. retract(true,retracted_swap[active_extruder]);
  3132. #else
  3133. retract(true);
  3134. #endif
  3135. break;
  3136. case 11: // G11 retract_recover
  3137. #if EXTRUDERS > 1
  3138. retract(false,retracted_swap[active_extruder]);
  3139. #else
  3140. retract(false);
  3141. #endif
  3142. break;
  3143. #endif //FWRETRACT
  3144. case 28: //G28 Home all Axis one at a time
  3145. {
  3146. long home_x_value = 0;
  3147. long home_y_value = 0;
  3148. long home_z_value = 0;
  3149. // Which axes should be homed?
  3150. bool home_x = code_seen(axis_codes[X_AXIS]);
  3151. home_x_value = code_value_long();
  3152. bool home_y = code_seen(axis_codes[Y_AXIS]);
  3153. home_y_value = code_value_long();
  3154. bool home_z = code_seen(axis_codes[Z_AXIS]);
  3155. home_z_value = code_value_long();
  3156. bool without_mbl = code_seen('W');
  3157. // calibrate?
  3158. bool calib = code_seen('C');
  3159. gcode_G28(home_x, home_x_value, home_y, home_y_value, home_z, home_z_value, calib, without_mbl);
  3160. if ((home_x || home_y || without_mbl || home_z) == false) {
  3161. // Push the commands to the front of the message queue in the reverse order!
  3162. // There shall be always enough space reserved for these commands.
  3163. goto case_G80;
  3164. }
  3165. break;
  3166. }
  3167. #ifdef ENABLE_AUTO_BED_LEVELING
  3168. case 29: // G29 Detailed Z-Probe, probes the bed at 3 or more points.
  3169. {
  3170. #if Z_MIN_PIN == -1
  3171. #error "You must have a Z_MIN endstop in order to enable Auto Bed Leveling feature! Z_MIN_PIN must point to a valid hardware pin."
  3172. #endif
  3173. // Prevent user from running a G29 without first homing in X and Y
  3174. if (! (axis_known_position[X_AXIS] && axis_known_position[Y_AXIS]) )
  3175. {
  3176. LCD_MESSAGERPGM(MSG_POSITION_UNKNOWN);
  3177. SERIAL_ECHO_START;
  3178. SERIAL_ECHOLNRPGM(MSG_POSITION_UNKNOWN);
  3179. break; // abort G29, since we don't know where we are
  3180. }
  3181. st_synchronize();
  3182. // make sure the bed_level_rotation_matrix is identity or the planner will get it incorectly
  3183. //vector_3 corrected_position = plan_get_position_mm();
  3184. //corrected_position.debug("position before G29");
  3185. plan_bed_level_matrix.set_to_identity();
  3186. vector_3 uncorrected_position = plan_get_position();
  3187. //uncorrected_position.debug("position durring G29");
  3188. current_position[X_AXIS] = uncorrected_position.x;
  3189. current_position[Y_AXIS] = uncorrected_position.y;
  3190. current_position[Z_AXIS] = uncorrected_position.z;
  3191. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  3192. setup_for_endstop_move();
  3193. feedrate = homing_feedrate[Z_AXIS];
  3194. #ifdef AUTO_BED_LEVELING_GRID
  3195. // probe at the points of a lattice grid
  3196. int xGridSpacing = (RIGHT_PROBE_BED_POSITION - LEFT_PROBE_BED_POSITION) / (AUTO_BED_LEVELING_GRID_POINTS-1);
  3197. int yGridSpacing = (BACK_PROBE_BED_POSITION - FRONT_PROBE_BED_POSITION) / (AUTO_BED_LEVELING_GRID_POINTS-1);
  3198. // solve the plane equation ax + by + d = z
  3199. // A is the matrix with rows [x y 1] for all the probed points
  3200. // B is the vector of the Z positions
  3201. // the normal vector to the plane is formed by the coefficients of the plane equation in the standard form, which is Vx*x+Vy*y+Vz*z+d = 0
  3202. // so Vx = -a Vy = -b Vz = 1 (we want the vector facing towards positive Z
  3203. // "A" matrix of the linear system of equations
  3204. double eqnAMatrix[AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS*3];
  3205. // "B" vector of Z points
  3206. double eqnBVector[AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS];
  3207. int probePointCounter = 0;
  3208. bool zig = true;
  3209. for (int yProbe=FRONT_PROBE_BED_POSITION; yProbe <= BACK_PROBE_BED_POSITION; yProbe += yGridSpacing)
  3210. {
  3211. int xProbe, xInc;
  3212. if (zig)
  3213. {
  3214. xProbe = LEFT_PROBE_BED_POSITION;
  3215. //xEnd = RIGHT_PROBE_BED_POSITION;
  3216. xInc = xGridSpacing;
  3217. zig = false;
  3218. } else // zag
  3219. {
  3220. xProbe = RIGHT_PROBE_BED_POSITION;
  3221. //xEnd = LEFT_PROBE_BED_POSITION;
  3222. xInc = -xGridSpacing;
  3223. zig = true;
  3224. }
  3225. for (int xCount=0; xCount < AUTO_BED_LEVELING_GRID_POINTS; xCount++)
  3226. {
  3227. float z_before;
  3228. if (probePointCounter == 0)
  3229. {
  3230. // raise before probing
  3231. z_before = Z_RAISE_BEFORE_PROBING;
  3232. } else
  3233. {
  3234. // raise extruder
  3235. z_before = current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS;
  3236. }
  3237. float measured_z = probe_pt(xProbe, yProbe, z_before);
  3238. eqnBVector[probePointCounter] = measured_z;
  3239. eqnAMatrix[probePointCounter + 0*AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS] = xProbe;
  3240. eqnAMatrix[probePointCounter + 1*AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS] = yProbe;
  3241. eqnAMatrix[probePointCounter + 2*AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS] = 1;
  3242. probePointCounter++;
  3243. xProbe += xInc;
  3244. }
  3245. }
  3246. clean_up_after_endstop_move();
  3247. // solve lsq problem
  3248. double *plane_equation_coefficients = qr_solve(AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS, 3, eqnAMatrix, eqnBVector);
  3249. SERIAL_PROTOCOLPGM("Eqn coefficients: a: ");
  3250. SERIAL_PROTOCOL(plane_equation_coefficients[0]);
  3251. SERIAL_PROTOCOLPGM(" b: ");
  3252. SERIAL_PROTOCOL(plane_equation_coefficients[1]);
  3253. SERIAL_PROTOCOLPGM(" d: ");
  3254. SERIAL_PROTOCOLLN(plane_equation_coefficients[2]);
  3255. set_bed_level_equation_lsq(plane_equation_coefficients);
  3256. free(plane_equation_coefficients);
  3257. #else // AUTO_BED_LEVELING_GRID not defined
  3258. // Probe at 3 arbitrary points
  3259. // probe 1
  3260. float z_at_pt_1 = probe_pt(ABL_PROBE_PT_1_X, ABL_PROBE_PT_1_Y, Z_RAISE_BEFORE_PROBING);
  3261. // probe 2
  3262. float z_at_pt_2 = probe_pt(ABL_PROBE_PT_2_X, ABL_PROBE_PT_2_Y, current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS);
  3263. // probe 3
  3264. float z_at_pt_3 = probe_pt(ABL_PROBE_PT_3_X, ABL_PROBE_PT_3_Y, current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS);
  3265. clean_up_after_endstop_move();
  3266. set_bed_level_equation_3pts(z_at_pt_1, z_at_pt_2, z_at_pt_3);
  3267. #endif // AUTO_BED_LEVELING_GRID
  3268. st_synchronize();
  3269. // The following code correct the Z height difference from z-probe position and hotend tip position.
  3270. // The Z height on homing is measured by Z-Probe, but the probe is quite far from the hotend.
  3271. // When the bed is uneven, this height must be corrected.
  3272. real_z = float(st_get_position(Z_AXIS))/axis_steps_per_unit[Z_AXIS]; //get the real Z (since the auto bed leveling is already correcting the plane)
  3273. x_tmp = current_position[X_AXIS] + X_PROBE_OFFSET_FROM_EXTRUDER;
  3274. y_tmp = current_position[Y_AXIS] + Y_PROBE_OFFSET_FROM_EXTRUDER;
  3275. z_tmp = current_position[Z_AXIS];
  3276. apply_rotation_xyz(plan_bed_level_matrix, x_tmp, y_tmp, z_tmp); //Apply the correction sending the probe offset
  3277. current_position[Z_AXIS] = z_tmp - real_z + current_position[Z_AXIS]; //The difference is added to current position and sent to planner.
  3278. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  3279. }
  3280. break;
  3281. #ifndef Z_PROBE_SLED
  3282. case 30: // G30 Single Z Probe
  3283. {
  3284. st_synchronize();
  3285. // TODO: make sure the bed_level_rotation_matrix is identity or the planner will get set incorectly
  3286. setup_for_endstop_move();
  3287. feedrate = homing_feedrate[Z_AXIS];
  3288. run_z_probe();
  3289. SERIAL_PROTOCOLPGM(_T(MSG_BED));
  3290. SERIAL_PROTOCOLPGM(" X: ");
  3291. SERIAL_PROTOCOL(current_position[X_AXIS]);
  3292. SERIAL_PROTOCOLPGM(" Y: ");
  3293. SERIAL_PROTOCOL(current_position[Y_AXIS]);
  3294. SERIAL_PROTOCOLPGM(" Z: ");
  3295. SERIAL_PROTOCOL(current_position[Z_AXIS]);
  3296. SERIAL_PROTOCOLPGM("\n");
  3297. clean_up_after_endstop_move();
  3298. }
  3299. break;
  3300. #else
  3301. case 31: // dock the sled
  3302. dock_sled(true);
  3303. break;
  3304. case 32: // undock the sled
  3305. dock_sled(false);
  3306. break;
  3307. #endif // Z_PROBE_SLED
  3308. #endif // ENABLE_AUTO_BED_LEVELING
  3309. #ifdef MESH_BED_LEVELING
  3310. case 30: // G30 Single Z Probe
  3311. {
  3312. st_synchronize();
  3313. // TODO: make sure the bed_level_rotation_matrix is identity or the planner will get set incorectly
  3314. setup_for_endstop_move();
  3315. feedrate = homing_feedrate[Z_AXIS];
  3316. find_bed_induction_sensor_point_z(-10.f, 3);
  3317. printf_P(_N("%S X: %.5f Y: %.5f Z: %.5f\n"), _T(MSG_BED), _x, _y, _z);
  3318. clean_up_after_endstop_move();
  3319. }
  3320. break;
  3321. case 75:
  3322. {
  3323. for (int i = 40; i <= 110; i++)
  3324. printf_P(_N("%d %.2f"), i, temp_comp_interpolation(i));
  3325. }
  3326. break;
  3327. case 76: //PINDA probe temperature calibration
  3328. {
  3329. #ifdef PINDA_THERMISTOR
  3330. if (true)
  3331. {
  3332. if (calibration_status() >= CALIBRATION_STATUS_XYZ_CALIBRATION) {
  3333. //we need to know accurate position of first calibration point
  3334. //if xyz calibration was not performed yet, interrupt temperature calibration and inform user that xyz cal. is needed
  3335. lcd_show_fullscreen_message_and_wait_P(_i("Please run XYZ calibration first."));
  3336. break;
  3337. }
  3338. if (!(axis_known_position[X_AXIS] && axis_known_position[Y_AXIS] && axis_known_position[Z_AXIS]))
  3339. {
  3340. // We don't know where we are! HOME!
  3341. // Push the commands to the front of the message queue in the reverse order!
  3342. // There shall be always enough space reserved for these commands.
  3343. repeatcommand_front(); // repeat G76 with all its parameters
  3344. enquecommand_front_P((PSTR("G28 W0")));
  3345. break;
  3346. }
  3347. lcd_show_fullscreen_message_and_wait_P(_i("Stable ambient temperature 21-26C is needed a rigid stand is required."));////MSG_TEMP_CAL_WARNING c=20 r=4
  3348. bool result = lcd_show_fullscreen_message_yes_no_and_wait_P(_T(MSG_STEEL_SHEET_CHECK), false, false);
  3349. if (result)
  3350. {
  3351. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3352. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3353. current_position[Z_AXIS] = 50;
  3354. current_position[Y_AXIS] = 180;
  3355. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3356. st_synchronize();
  3357. lcd_show_fullscreen_message_and_wait_P(_T(MSG_REMOVE_STEEL_SHEET));
  3358. current_position[Y_AXIS] = pgm_read_float(bed_ref_points_4 + 1);
  3359. current_position[X_AXIS] = pgm_read_float(bed_ref_points_4);
  3360. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3361. st_synchronize();
  3362. gcode_G28(false, false, true);
  3363. }
  3364. if ((current_temperature_pinda > 35) && (farm_mode == false)) {
  3365. //waiting for PIDNA probe to cool down in case that we are not in farm mode
  3366. current_position[Z_AXIS] = 100;
  3367. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3368. if (lcd_wait_for_pinda(35) == false) { //waiting for PINDA probe to cool, if this takes more then time expected, temp. cal. fails
  3369. lcd_temp_cal_show_result(false);
  3370. break;
  3371. }
  3372. }
  3373. lcd_update_enable(true);
  3374. KEEPALIVE_STATE(NOT_BUSY); //no need to print busy messages as we print current temperatures periodicaly
  3375. SERIAL_ECHOLNPGM("PINDA probe calibration start");
  3376. float zero_z;
  3377. int z_shift = 0; //unit: steps
  3378. float start_temp = 5 * (int)(current_temperature_pinda / 5);
  3379. if (start_temp < 35) start_temp = 35;
  3380. if (start_temp < current_temperature_pinda) start_temp += 5;
  3381. printf_P(_N("start temperature: %.1f\n"), start_temp);
  3382. // setTargetHotend(200, 0);
  3383. setTargetBed(70 + (start_temp - 30));
  3384. custom_message = true;
  3385. custom_message_type = 4;
  3386. custom_message_state = 1;
  3387. custom_message = _T(MSG_TEMP_CALIBRATION);
  3388. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3389. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3390. current_position[X_AXIS] = PINDA_PREHEAT_X;
  3391. current_position[Y_AXIS] = PINDA_PREHEAT_Y;
  3392. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3393. current_position[Z_AXIS] = PINDA_PREHEAT_Z;
  3394. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3395. st_synchronize();
  3396. while (current_temperature_pinda < start_temp)
  3397. {
  3398. delay_keep_alive(1000);
  3399. serialecho_temperatures();
  3400. }
  3401. eeprom_update_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 0); //invalidate temp. calibration in case that in will be aborted during the calibration process
  3402. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3403. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3404. current_position[X_AXIS] = pgm_read_float(bed_ref_points_4);
  3405. current_position[Y_AXIS] = pgm_read_float(bed_ref_points_4 + 1);
  3406. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3407. st_synchronize();
  3408. bool find_z_result = find_bed_induction_sensor_point_z(-1.f);
  3409. if (find_z_result == false) {
  3410. lcd_temp_cal_show_result(find_z_result);
  3411. break;
  3412. }
  3413. zero_z = current_position[Z_AXIS];
  3414. printf_P(_N("\nZERO: %.3f\n"), current_position[Z_AXIS]);
  3415. int i = -1; for (; i < 5; i++)
  3416. {
  3417. float temp = (40 + i * 5);
  3418. printf_P(_N("\nStep: %d/6 (skipped)\nPINDA temperature: %d Z shift (mm):0\n"), i + 2, (40 + i*5));
  3419. if (i >= 0) EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + i * 2, &z_shift);
  3420. if (start_temp <= temp) break;
  3421. }
  3422. for (i++; i < 5; i++)
  3423. {
  3424. float temp = (40 + i * 5);
  3425. printf_P(_N("\nStep: %d/6\n"), i + 2);
  3426. custom_message_state = i + 2;
  3427. setTargetBed(50 + 10 * (temp - 30) / 5);
  3428. // setTargetHotend(255, 0);
  3429. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3430. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3431. current_position[X_AXIS] = PINDA_PREHEAT_X;
  3432. current_position[Y_AXIS] = PINDA_PREHEAT_Y;
  3433. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3434. current_position[Z_AXIS] = PINDA_PREHEAT_Z;
  3435. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3436. st_synchronize();
  3437. while (current_temperature_pinda < temp)
  3438. {
  3439. delay_keep_alive(1000);
  3440. serialecho_temperatures();
  3441. }
  3442. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3443. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3444. current_position[X_AXIS] = pgm_read_float(bed_ref_points_4);
  3445. current_position[Y_AXIS] = pgm_read_float(bed_ref_points_4 + 1);
  3446. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3447. st_synchronize();
  3448. find_z_result = find_bed_induction_sensor_point_z(-1.f);
  3449. if (find_z_result == false) {
  3450. lcd_temp_cal_show_result(find_z_result);
  3451. break;
  3452. }
  3453. z_shift = (int)((current_position[Z_AXIS] - zero_z)*axis_steps_per_unit[Z_AXIS]);
  3454. printf_P(_N("\nPINDA temperature: %.1f Z shift (mm): %.3f"), current_temperature_pinda, current_position[Z_AXIS] - zero_z);
  3455. EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + i * 2, &z_shift);
  3456. }
  3457. lcd_temp_cal_show_result(true);
  3458. break;
  3459. }
  3460. #endif //PINDA_THERMISTOR
  3461. setTargetBed(PINDA_MIN_T);
  3462. float zero_z;
  3463. int z_shift = 0; //unit: steps
  3464. int t_c; // temperature
  3465. if (!(axis_known_position[X_AXIS] && axis_known_position[Y_AXIS] && axis_known_position[Z_AXIS])) {
  3466. // We don't know where we are! HOME!
  3467. // Push the commands to the front of the message queue in the reverse order!
  3468. // There shall be always enough space reserved for these commands.
  3469. repeatcommand_front(); // repeat G76 with all its parameters
  3470. enquecommand_front_P((PSTR("G28 W0")));
  3471. break;
  3472. }
  3473. puts_P(_N("PINDA probe calibration start"));
  3474. custom_message = true;
  3475. custom_message_type = 4;
  3476. custom_message_state = 1;
  3477. custom_message = _T(MSG_TEMP_CALIBRATION);
  3478. current_position[X_AXIS] = PINDA_PREHEAT_X;
  3479. current_position[Y_AXIS] = PINDA_PREHEAT_Y;
  3480. current_position[Z_AXIS] = PINDA_PREHEAT_Z;
  3481. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3482. st_synchronize();
  3483. while (abs(degBed() - PINDA_MIN_T) > 1) {
  3484. delay_keep_alive(1000);
  3485. serialecho_temperatures();
  3486. }
  3487. //enquecommand_P(PSTR("M190 S50"));
  3488. for (int i = 0; i < PINDA_HEAT_T; i++) {
  3489. delay_keep_alive(1000);
  3490. serialecho_temperatures();
  3491. }
  3492. eeprom_update_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 0); //invalidate temp. calibration in case that in will be aborted during the calibration process
  3493. current_position[Z_AXIS] = 5;
  3494. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3495. current_position[X_AXIS] = pgm_read_float(bed_ref_points);
  3496. current_position[Y_AXIS] = pgm_read_float(bed_ref_points + 1);
  3497. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3498. st_synchronize();
  3499. find_bed_induction_sensor_point_z(-1.f);
  3500. zero_z = current_position[Z_AXIS];
  3501. printf_P(_N("\nZERO: %.3f\n"), current_position[Z_AXIS]);
  3502. for (int i = 0; i<5; i++) {
  3503. printf_P(_N("\nStep: %d/6\n"), i + 2);
  3504. custom_message_state = i + 2;
  3505. t_c = 60 + i * 10;
  3506. setTargetBed(t_c);
  3507. current_position[X_AXIS] = PINDA_PREHEAT_X;
  3508. current_position[Y_AXIS] = PINDA_PREHEAT_Y;
  3509. current_position[Z_AXIS] = PINDA_PREHEAT_Z;
  3510. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3511. st_synchronize();
  3512. while (degBed() < t_c) {
  3513. delay_keep_alive(1000);
  3514. serialecho_temperatures();
  3515. }
  3516. for (int i = 0; i < PINDA_HEAT_T; i++) {
  3517. delay_keep_alive(1000);
  3518. serialecho_temperatures();
  3519. }
  3520. current_position[Z_AXIS] = 5;
  3521. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3522. current_position[X_AXIS] = pgm_read_float(bed_ref_points);
  3523. current_position[Y_AXIS] = pgm_read_float(bed_ref_points + 1);
  3524. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3525. st_synchronize();
  3526. find_bed_induction_sensor_point_z(-1.f);
  3527. z_shift = (int)((current_position[Z_AXIS] - zero_z)*axis_steps_per_unit[Z_AXIS]);
  3528. printf_P(_N("\nTemperature: %d Z shift (mm): %.3f\n"), t_c, current_position[Z_AXIS] - zero_z);
  3529. EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + i*2, &z_shift);
  3530. }
  3531. custom_message_type = 0;
  3532. custom_message = false;
  3533. eeprom_update_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 1);
  3534. puts_P(_N("Temperature calibration done."));
  3535. disable_x();
  3536. disable_y();
  3537. disable_z();
  3538. disable_e0();
  3539. disable_e1();
  3540. disable_e2();
  3541. setTargetBed(0); //set bed target temperature back to 0
  3542. lcd_show_fullscreen_message_and_wait_P(_T(MSG_TEMP_CALIBRATION_DONE));
  3543. temp_cal_active = true;
  3544. eeprom_update_byte((unsigned char *)EEPROM_TEMP_CAL_ACTIVE, 1);
  3545. lcd_update_enable(true);
  3546. lcd_update(2);
  3547. }
  3548. break;
  3549. #ifdef DIS
  3550. case 77:
  3551. {
  3552. //G77 X200 Y150 XP100 YP15 XO10 Y015
  3553. //for 9 point mesh bed leveling G77 X203 Y196 XP3 YP3 XO0 YO0
  3554. //G77 X232 Y218 XP116 YP109 XO-11 YO0
  3555. float dimension_x = 40;
  3556. float dimension_y = 40;
  3557. int points_x = 40;
  3558. int points_y = 40;
  3559. float offset_x = 74;
  3560. float offset_y = 33;
  3561. if (code_seen('X')) dimension_x = code_value();
  3562. if (code_seen('Y')) dimension_y = code_value();
  3563. if (code_seen('XP')) points_x = code_value();
  3564. if (code_seen('YP')) points_y = code_value();
  3565. if (code_seen('XO')) offset_x = code_value();
  3566. if (code_seen('YO')) offset_y = code_value();
  3567. bed_analysis(dimension_x,dimension_y,points_x,points_y,offset_x,offset_y);
  3568. } break;
  3569. #endif
  3570. case 79: {
  3571. for (int i = 255; i > 0; i = i - 5) {
  3572. fanSpeed = i;
  3573. //delay_keep_alive(2000);
  3574. for (int j = 0; j < 100; j++) {
  3575. delay_keep_alive(100);
  3576. }
  3577. fan_speed[1];
  3578. printf_P(_N("%d: %d\n"), i, fan_speed[1]);
  3579. }
  3580. }break;
  3581. /**
  3582. * G80: Mesh-based Z probe, probes a grid and produces a
  3583. * mesh to compensate for variable bed height
  3584. *
  3585. * The S0 report the points as below
  3586. *
  3587. * +----> X-axis
  3588. * |
  3589. * |
  3590. * v Y-axis
  3591. *
  3592. */
  3593. case 80:
  3594. #ifdef MK1BP
  3595. break;
  3596. #endif //MK1BP
  3597. case_G80:
  3598. {
  3599. mesh_bed_leveling_flag = true;
  3600. int8_t verbosity_level = 0;
  3601. static bool run = false;
  3602. if (code_seen('V')) {
  3603. // Just 'V' without a number counts as V1.
  3604. char c = strchr_pointer[1];
  3605. verbosity_level = (c == ' ' || c == '\t' || c == 0) ? 1 : code_value_short();
  3606. }
  3607. // Firstly check if we know where we are
  3608. if (!(axis_known_position[X_AXIS] && axis_known_position[Y_AXIS] && axis_known_position[Z_AXIS])) {
  3609. // We don't know where we are! HOME!
  3610. // Push the commands to the front of the message queue in the reverse order!
  3611. // There shall be always enough space reserved for these commands.
  3612. if (lcd_commands_type != LCD_COMMAND_STOP_PRINT) {
  3613. repeatcommand_front(); // repeat G80 with all its parameters
  3614. enquecommand_front_P((PSTR("G28 W0")));
  3615. }
  3616. else {
  3617. mesh_bed_leveling_flag = false;
  3618. }
  3619. break;
  3620. }
  3621. bool temp_comp_start = true;
  3622. #ifdef PINDA_THERMISTOR
  3623. temp_comp_start = false;
  3624. #endif //PINDA_THERMISTOR
  3625. if (temp_comp_start)
  3626. if (run == false && temp_cal_active == true && calibration_status_pinda() == true && target_temperature_bed >= 50) {
  3627. if (lcd_commands_type != LCD_COMMAND_STOP_PRINT) {
  3628. temp_compensation_start();
  3629. run = true;
  3630. repeatcommand_front(); // repeat G80 with all its parameters
  3631. enquecommand_front_P((PSTR("G28 W0")));
  3632. }
  3633. else {
  3634. mesh_bed_leveling_flag = false;
  3635. }
  3636. break;
  3637. }
  3638. run = false;
  3639. if (lcd_commands_type == LCD_COMMAND_STOP_PRINT) {
  3640. mesh_bed_leveling_flag = false;
  3641. break;
  3642. }
  3643. // Save custom message state, set a new custom message state to display: Calibrating point 9.
  3644. bool custom_message_old = custom_message;
  3645. unsigned int custom_message_type_old = custom_message_type;
  3646. unsigned int custom_message_state_old = custom_message_state;
  3647. custom_message = true;
  3648. custom_message_type = 1;
  3649. custom_message_state = (MESH_MEAS_NUM_X_POINTS * MESH_MEAS_NUM_Y_POINTS) + 10;
  3650. lcd_update(1);
  3651. mbl.reset(); //reset mesh bed leveling
  3652. // Reset baby stepping to zero, if the babystepping has already been loaded before. The babystepsTodo value will be
  3653. // consumed during the first movements following this statement.
  3654. babystep_undo();
  3655. // Cycle through all points and probe them
  3656. // First move up. During this first movement, the babystepping will be reverted.
  3657. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3658. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[Z_AXIS] / 60, active_extruder);
  3659. // The move to the first calibration point.
  3660. current_position[X_AXIS] = pgm_read_float(bed_ref_points);
  3661. current_position[Y_AXIS] = pgm_read_float(bed_ref_points + 1);
  3662. #ifdef SUPPORT_VERBOSITY
  3663. if (verbosity_level >= 1)
  3664. {
  3665. bool clamped = world2machine_clamp(current_position[X_AXIS], current_position[Y_AXIS]);
  3666. clamped ? SERIAL_PROTOCOLPGM("First calibration point clamped.\n") : SERIAL_PROTOCOLPGM("No clamping for first calibration point.\n");
  3667. }
  3668. #endif //SUPPORT_VERBOSITY
  3669. // mbl.get_meas_xy(0, 0, current_position[X_AXIS], current_position[Y_AXIS], false);
  3670. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[X_AXIS] / 30, active_extruder);
  3671. // Wait until the move is finished.
  3672. st_synchronize();
  3673. int mesh_point = 0; //index number of calibration point
  3674. int ix = 0;
  3675. int iy = 0;
  3676. int XY_AXIS_FEEDRATE = homing_feedrate[X_AXIS] / 20;
  3677. int Z_PROBE_FEEDRATE = homing_feedrate[Z_AXIS] / 60;
  3678. int Z_LIFT_FEEDRATE = homing_feedrate[Z_AXIS] / 40;
  3679. bool has_z = is_bed_z_jitter_data_valid(); //checks if we have data from Z calibration (offsets of the Z heiths of the 8 calibration points from the first point)
  3680. #ifdef SUPPORT_VERBOSITY
  3681. if (verbosity_level >= 1) {
  3682. has_z ? SERIAL_PROTOCOLPGM("Z jitter data from Z cal. valid.\n") : SERIAL_PROTOCOLPGM("Z jitter data from Z cal. not valid.\n");
  3683. }
  3684. #endif // SUPPORT_VERBOSITY
  3685. setup_for_endstop_move(false); //save feedrate and feedmultiply, sets feedmultiply to 100
  3686. const char *kill_message = NULL;
  3687. while (mesh_point != MESH_MEAS_NUM_X_POINTS * MESH_MEAS_NUM_Y_POINTS) {
  3688. // Get coords of a measuring point.
  3689. ix = mesh_point % MESH_MEAS_NUM_X_POINTS; // from 0 to MESH_NUM_X_POINTS - 1
  3690. iy = mesh_point / MESH_MEAS_NUM_X_POINTS;
  3691. if (iy & 1) ix = (MESH_MEAS_NUM_X_POINTS - 1) - ix; // Zig zag
  3692. float z0 = 0.f;
  3693. if (has_z && mesh_point > 0) {
  3694. uint16_t z_offset_u = eeprom_read_word((uint16_t*)(EEPROM_BED_CALIBRATION_Z_JITTER + 2 * (ix + iy * 3 - 1)));
  3695. z0 = mbl.z_values[0][0] + *reinterpret_cast<int16_t*>(&z_offset_u) * 0.01;
  3696. //#if 0
  3697. #ifdef SUPPORT_VERBOSITY
  3698. if (verbosity_level >= 1) {
  3699. SERIAL_ECHOLNPGM("");
  3700. SERIAL_ECHOPGM("Bed leveling, point: ");
  3701. MYSERIAL.print(mesh_point);
  3702. SERIAL_ECHOPGM(", calibration z: ");
  3703. MYSERIAL.print(z0, 5);
  3704. SERIAL_ECHOLNPGM("");
  3705. }
  3706. #endif // SUPPORT_VERBOSITY
  3707. //#endif
  3708. }
  3709. // Move Z up to MESH_HOME_Z_SEARCH.
  3710. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3711. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], Z_LIFT_FEEDRATE, active_extruder);
  3712. st_synchronize();
  3713. // Move to XY position of the sensor point.
  3714. current_position[X_AXIS] = pgm_read_float(bed_ref_points + 2 * mesh_point);
  3715. current_position[Y_AXIS] = pgm_read_float(bed_ref_points + 2 * mesh_point + 1);
  3716. world2machine_clamp(current_position[X_AXIS], current_position[Y_AXIS]);
  3717. #ifdef SUPPORT_VERBOSITY
  3718. if (verbosity_level >= 1) {
  3719. SERIAL_PROTOCOL(mesh_point);
  3720. clamped ? SERIAL_PROTOCOLPGM(": xy clamped.\n") : SERIAL_PROTOCOLPGM(": no xy clamping\n");
  3721. }
  3722. #endif // SUPPORT_VERBOSITY
  3723. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], XY_AXIS_FEEDRATE, active_extruder);
  3724. st_synchronize();
  3725. // Go down until endstop is hit
  3726. const float Z_CALIBRATION_THRESHOLD = 1.f;
  3727. if (!find_bed_induction_sensor_point_z((has_z && mesh_point > 0) ? z0 - Z_CALIBRATION_THRESHOLD : -10.f)) { //if we have data from z calibration max allowed difference is 1mm for each point, if we dont have data max difference is 10mm from initial point
  3728. kill_message = _T(MSG_BED_LEVELING_FAILED_POINT_LOW);
  3729. break;
  3730. }
  3731. if (MESH_HOME_Z_SEARCH - current_position[Z_AXIS] < 0.1f) {
  3732. kill_message = _i("Bed leveling failed. Sensor disconnected or cable broken. Waiting for reset.");////MSG_BED_LEVELING_FAILED_PROBE_DISCONNECTED c=20 r=4
  3733. break;
  3734. }
  3735. if (has_z && fabs(z0 - current_position[Z_AXIS]) > Z_CALIBRATION_THRESHOLD) { //if we have data from z calibration, max. allowed difference is 1mm for each point
  3736. kill_message = _i("Bed leveling failed. Sensor triggered too high. Waiting for reset.");////MSG_BED_LEVELING_FAILED_POINT_HIGH c=20 r=4
  3737. break;
  3738. }
  3739. #ifdef SUPPORT_VERBOSITY
  3740. if (verbosity_level >= 10) {
  3741. SERIAL_ECHOPGM("X: ");
  3742. MYSERIAL.print(current_position[X_AXIS], 5);
  3743. SERIAL_ECHOLNPGM("");
  3744. SERIAL_ECHOPGM("Y: ");
  3745. MYSERIAL.print(current_position[Y_AXIS], 5);
  3746. SERIAL_PROTOCOLPGM("\n");
  3747. }
  3748. #endif // SUPPORT_VERBOSITY
  3749. float offset_z = 0;
  3750. #ifdef PINDA_THERMISTOR
  3751. offset_z = temp_compensation_pinda_thermistor_offset(current_temperature_pinda);
  3752. #endif //PINDA_THERMISTOR
  3753. // #ifdef SUPPORT_VERBOSITY
  3754. /* if (verbosity_level >= 1)
  3755. {
  3756. SERIAL_ECHOPGM("mesh bed leveling: ");
  3757. MYSERIAL.print(current_position[Z_AXIS], 5);
  3758. SERIAL_ECHOPGM(" offset: ");
  3759. MYSERIAL.print(offset_z, 5);
  3760. SERIAL_ECHOLNPGM("");
  3761. }*/
  3762. // #endif // SUPPORT_VERBOSITY
  3763. mbl.set_z(ix, iy, current_position[Z_AXIS] - offset_z); //store measured z values z_values[iy][ix] = z - offset_z;
  3764. custom_message_state--;
  3765. mesh_point++;
  3766. lcd_update(1);
  3767. }
  3768. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3769. #ifdef SUPPORT_VERBOSITY
  3770. if (verbosity_level >= 20) {
  3771. SERIAL_ECHOLNPGM("Mesh bed leveling while loop finished.");
  3772. SERIAL_ECHOLNPGM("MESH_HOME_Z_SEARCH: ");
  3773. MYSERIAL.print(current_position[Z_AXIS], 5);
  3774. }
  3775. #endif // SUPPORT_VERBOSITY
  3776. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], Z_LIFT_FEEDRATE, active_extruder);
  3777. st_synchronize();
  3778. if (mesh_point != MESH_MEAS_NUM_X_POINTS * MESH_MEAS_NUM_Y_POINTS) {
  3779. kill(kill_message);
  3780. SERIAL_ECHOLNPGM("killed");
  3781. }
  3782. clean_up_after_endstop_move();
  3783. // SERIAL_ECHOLNPGM("clean up finished ");
  3784. bool apply_temp_comp = true;
  3785. #ifdef PINDA_THERMISTOR
  3786. apply_temp_comp = false;
  3787. #endif
  3788. if (apply_temp_comp)
  3789. if(temp_cal_active == true && calibration_status_pinda() == true) temp_compensation_apply(); //apply PINDA temperature compensation
  3790. babystep_apply(); // Apply Z height correction aka baby stepping before mesh bed leveing gets activated.
  3791. // SERIAL_ECHOLNPGM("babystep applied");
  3792. bool eeprom_bed_correction_valid = eeprom_read_byte((unsigned char*)EEPROM_BED_CORRECTION_VALID) == 1;
  3793. #ifdef SUPPORT_VERBOSITY
  3794. if (verbosity_level >= 1) {
  3795. eeprom_bed_correction_valid ? SERIAL_PROTOCOLPGM("Bed correction data valid\n") : SERIAL_PROTOCOLPGM("Bed correction data not valid\n");
  3796. }
  3797. #endif // SUPPORT_VERBOSITY
  3798. for (uint8_t i = 0; i < 4; ++i) {
  3799. unsigned char codes[4] = { 'L', 'R', 'F', 'B' };
  3800. long correction = 0;
  3801. if (code_seen(codes[i]))
  3802. correction = code_value_long();
  3803. else if (eeprom_bed_correction_valid) {
  3804. unsigned char *addr = (i < 2) ?
  3805. ((i == 0) ? (unsigned char*)EEPROM_BED_CORRECTION_LEFT : (unsigned char*)EEPROM_BED_CORRECTION_RIGHT) :
  3806. ((i == 2) ? (unsigned char*)EEPROM_BED_CORRECTION_FRONT : (unsigned char*)EEPROM_BED_CORRECTION_REAR);
  3807. correction = eeprom_read_int8(addr);
  3808. }
  3809. if (correction == 0)
  3810. continue;
  3811. float offset = float(correction) * 0.001f;
  3812. if (fabs(offset) > 0.101f) {
  3813. SERIAL_ERROR_START;
  3814. SERIAL_ECHOPGM("Excessive bed leveling correction: ");
  3815. SERIAL_ECHO(offset);
  3816. SERIAL_ECHOLNPGM(" microns");
  3817. }
  3818. else {
  3819. switch (i) {
  3820. case 0:
  3821. for (uint8_t row = 0; row < 3; ++row) {
  3822. mbl.z_values[row][1] += 0.5f * offset;
  3823. mbl.z_values[row][0] += offset;
  3824. }
  3825. break;
  3826. case 1:
  3827. for (uint8_t row = 0; row < 3; ++row) {
  3828. mbl.z_values[row][1] += 0.5f * offset;
  3829. mbl.z_values[row][2] += offset;
  3830. }
  3831. break;
  3832. case 2:
  3833. for (uint8_t col = 0; col < 3; ++col) {
  3834. mbl.z_values[1][col] += 0.5f * offset;
  3835. mbl.z_values[0][col] += offset;
  3836. }
  3837. break;
  3838. case 3:
  3839. for (uint8_t col = 0; col < 3; ++col) {
  3840. mbl.z_values[1][col] += 0.5f * offset;
  3841. mbl.z_values[2][col] += offset;
  3842. }
  3843. break;
  3844. }
  3845. }
  3846. }
  3847. // SERIAL_ECHOLNPGM("Bed leveling correction finished");
  3848. mbl.upsample_3x3(); //bilinear interpolation from 3x3 to 7x7 points while using the same array z_values[iy][ix] for storing (just coppying measured data to new destination and interpolating between them)
  3849. // SERIAL_ECHOLNPGM("Upsample finished");
  3850. mbl.active = 1; //activate mesh bed leveling
  3851. // SERIAL_ECHOLNPGM("Mesh bed leveling activated");
  3852. go_home_with_z_lift();
  3853. // SERIAL_ECHOLNPGM("Go home finished");
  3854. //unretract (after PINDA preheat retraction)
  3855. if (degHotend(active_extruder) > EXTRUDE_MINTEMP && temp_cal_active == true && calibration_status_pinda() == true && target_temperature_bed >= 50) {
  3856. current_position[E_AXIS] += DEFAULT_RETRACTION;
  3857. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400, active_extruder);
  3858. }
  3859. KEEPALIVE_STATE(NOT_BUSY);
  3860. // Restore custom message state
  3861. lcd_setstatuspgm(_T(WELCOME_MSG));
  3862. custom_message = custom_message_old;
  3863. custom_message_type = custom_message_type_old;
  3864. custom_message_state = custom_message_state_old;
  3865. mesh_bed_leveling_flag = false;
  3866. mesh_bed_run_from_menu = false;
  3867. lcd_update(2);
  3868. }
  3869. break;
  3870. /**
  3871. * G81: Print mesh bed leveling status and bed profile if activated
  3872. */
  3873. case 81:
  3874. if (mbl.active) {
  3875. SERIAL_PROTOCOLPGM("Num X,Y: ");
  3876. SERIAL_PROTOCOL(MESH_NUM_X_POINTS);
  3877. SERIAL_PROTOCOLPGM(",");
  3878. SERIAL_PROTOCOL(MESH_NUM_Y_POINTS);
  3879. SERIAL_PROTOCOLPGM("\nZ search height: ");
  3880. SERIAL_PROTOCOL(MESH_HOME_Z_SEARCH);
  3881. SERIAL_PROTOCOLLNPGM("\nMeasured points:");
  3882. for (int y = MESH_NUM_Y_POINTS-1; y >= 0; y--) {
  3883. for (int x = 0; x < MESH_NUM_X_POINTS; x++) {
  3884. SERIAL_PROTOCOLPGM(" ");
  3885. SERIAL_PROTOCOL_F(mbl.z_values[y][x], 5);
  3886. }
  3887. SERIAL_PROTOCOLPGM("\n");
  3888. }
  3889. }
  3890. else
  3891. SERIAL_PROTOCOLLNPGM("Mesh bed leveling not active.");
  3892. break;
  3893. #if 0
  3894. /**
  3895. * G82: Single Z probe at current location
  3896. *
  3897. * WARNING! USE WITH CAUTION! If you'll try to probe where is no leveling pad, nasty things can happen!
  3898. *
  3899. */
  3900. case 82:
  3901. SERIAL_PROTOCOLLNPGM("Finding bed ");
  3902. setup_for_endstop_move();
  3903. find_bed_induction_sensor_point_z();
  3904. clean_up_after_endstop_move();
  3905. SERIAL_PROTOCOLPGM("Bed found at: ");
  3906. SERIAL_PROTOCOL_F(current_position[Z_AXIS], 5);
  3907. SERIAL_PROTOCOLPGM("\n");
  3908. break;
  3909. /**
  3910. * G83: Prusa3D specific: Babystep in Z and store to EEPROM
  3911. */
  3912. case 83:
  3913. {
  3914. int babystepz = code_seen('S') ? code_value() : 0;
  3915. int BabyPosition = code_seen('P') ? code_value() : 0;
  3916. if (babystepz != 0) {
  3917. //FIXME Vojtech: What shall be the index of the axis Z: 3 or 4?
  3918. // Is the axis indexed starting with zero or one?
  3919. if (BabyPosition > 4) {
  3920. SERIAL_PROTOCOLLNPGM("Index out of bounds");
  3921. }else{
  3922. // Save it to the eeprom
  3923. babystepLoadZ = babystepz;
  3924. EEPROM_save_B(EEPROM_BABYSTEP_Z0+(BabyPosition*2),&babystepLoadZ);
  3925. // adjust the Z
  3926. babystepsTodoZadd(babystepLoadZ);
  3927. }
  3928. }
  3929. }
  3930. break;
  3931. /**
  3932. * G84: Prusa3D specific: UNDO Babystep Z (move Z axis back)
  3933. */
  3934. case 84:
  3935. babystepsTodoZsubtract(babystepLoadZ);
  3936. // babystepLoadZ = 0;
  3937. break;
  3938. /**
  3939. * G85: Prusa3D specific: Pick best babystep
  3940. */
  3941. case 85:
  3942. lcd_pick_babystep();
  3943. break;
  3944. #endif
  3945. /**
  3946. * G86: Prusa3D specific: Disable babystep correction after home.
  3947. * This G-code will be performed at the start of a calibration script.
  3948. */
  3949. case 86:
  3950. calibration_status_store(CALIBRATION_STATUS_LIVE_ADJUST);
  3951. break;
  3952. /**
  3953. * G87: Prusa3D specific: Enable babystep correction after home
  3954. * This G-code will be performed at the end of a calibration script.
  3955. */
  3956. case 87:
  3957. calibration_status_store(CALIBRATION_STATUS_CALIBRATED);
  3958. break;
  3959. /**
  3960. * G88: Prusa3D specific: Don't know what it is for, it is in V2Calibration.gcode
  3961. */
  3962. case 88:
  3963. break;
  3964. #endif // ENABLE_MESH_BED_LEVELING
  3965. case 90: // G90
  3966. relative_mode = false;
  3967. break;
  3968. case 91: // G91
  3969. relative_mode = true;
  3970. break;
  3971. case 92: // G92
  3972. if(!code_seen(axis_codes[E_AXIS]))
  3973. st_synchronize();
  3974. for(int8_t i=0; i < NUM_AXIS; i++) {
  3975. if(code_seen(axis_codes[i])) {
  3976. if(i == E_AXIS) {
  3977. current_position[i] = code_value();
  3978. plan_set_e_position(current_position[E_AXIS]);
  3979. }
  3980. else {
  3981. current_position[i] = code_value()+add_homing[i];
  3982. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  3983. }
  3984. }
  3985. }
  3986. break;
  3987. case 98: // G98 (activate farm mode)
  3988. farm_mode = 1;
  3989. PingTime = millis();
  3990. eeprom_update_byte((unsigned char *)EEPROM_FARM_MODE, farm_mode);
  3991. EEPROM_save_B(EEPROM_FARM_NUMBER, &farm_no);
  3992. SilentModeMenu = SILENT_MODE_OFF;
  3993. eeprom_update_byte((unsigned char *)EEPROM_SILENT, SilentModeMenu);
  3994. break;
  3995. case 99: // G99 (deactivate farm mode)
  3996. farm_mode = 0;
  3997. lcd_printer_connected();
  3998. eeprom_update_byte((unsigned char *)EEPROM_FARM_MODE, farm_mode);
  3999. lcd_update(2);
  4000. break;
  4001. default:
  4002. printf_P(PSTR("Unknown G code: %s \n"), cmdbuffer + bufindr + CMDHDRSIZE);
  4003. }
  4004. // printf_P(_N("END G-CODE=%u\n"), gcode_in_progress);
  4005. gcode_in_progress = 0;
  4006. } // end if(code_seen('G'))
  4007. else if(code_seen('M'))
  4008. {
  4009. int index;
  4010. for (index = 1; *(strchr_pointer + index) == ' ' || *(strchr_pointer + index) == '\t'; index++);
  4011. /*for (++strchr_pointer; *strchr_pointer == ' ' || *strchr_pointer == '\t'; ++strchr_pointer);*/
  4012. if (*(strchr_pointer+index) < '0' || *(strchr_pointer+index) > '9') {
  4013. printf_P(PSTR("Invalid M code: %s \n"), cmdbuffer + bufindr + CMDHDRSIZE);
  4014. } else
  4015. {
  4016. mcode_in_progress = (int)code_value();
  4017. // printf_P(_N("BEGIN M-CODE=%u\n"), mcode_in_progress);
  4018. switch(mcode_in_progress)
  4019. {
  4020. case 0: // M0 - Unconditional stop - Wait for user button press on LCD
  4021. case 1: // M1 - Conditional stop - Wait for user button press on LCD
  4022. {
  4023. char *src = strchr_pointer + 2;
  4024. codenum = 0;
  4025. bool hasP = false, hasS = false;
  4026. if (code_seen('P')) {
  4027. codenum = code_value(); // milliseconds to wait
  4028. hasP = codenum > 0;
  4029. }
  4030. if (code_seen('S')) {
  4031. codenum = code_value() * 1000; // seconds to wait
  4032. hasS = codenum > 0;
  4033. }
  4034. starpos = strchr(src, '*');
  4035. if (starpos != NULL) *(starpos) = '\0';
  4036. while (*src == ' ') ++src;
  4037. if (!hasP && !hasS && *src != '\0') {
  4038. lcd_setstatus(src);
  4039. } else {
  4040. LCD_MESSAGERPGM(_i("Wait for user..."));////MSG_USERWAIT c=0 r=0
  4041. }
  4042. lcd_ignore_click(); //call lcd_ignore_click aslo for else ???
  4043. st_synchronize();
  4044. previous_millis_cmd = millis();
  4045. if (codenum > 0){
  4046. codenum += millis(); // keep track of when we started waiting
  4047. KEEPALIVE_STATE(PAUSED_FOR_USER);
  4048. while(millis() < codenum && !lcd_clicked()){
  4049. manage_heater();
  4050. manage_inactivity(true);
  4051. lcd_update(0);
  4052. }
  4053. KEEPALIVE_STATE(IN_HANDLER);
  4054. lcd_ignore_click(false);
  4055. }else{
  4056. KEEPALIVE_STATE(PAUSED_FOR_USER);
  4057. while(!lcd_clicked()){
  4058. manage_heater();
  4059. manage_inactivity(true);
  4060. lcd_update(0);
  4061. }
  4062. KEEPALIVE_STATE(IN_HANDLER);
  4063. }
  4064. if (IS_SD_PRINTING)
  4065. LCD_MESSAGERPGM(_T(MSG_RESUMING_PRINT));
  4066. else
  4067. LCD_MESSAGERPGM(_T(WELCOME_MSG));
  4068. }
  4069. break;
  4070. case 17:
  4071. LCD_MESSAGERPGM(_i("No move."));////MSG_NO_MOVE c=0 r=0
  4072. enable_x();
  4073. enable_y();
  4074. enable_z();
  4075. enable_e0();
  4076. enable_e1();
  4077. enable_e2();
  4078. break;
  4079. #ifdef SDSUPPORT
  4080. case 20: // M20 - list SD card
  4081. SERIAL_PROTOCOLLNRPGM(_N("Begin file list"));////MSG_BEGIN_FILE_LIST c=0 r=0
  4082. card.ls();
  4083. SERIAL_PROTOCOLLNRPGM(_N("End file list"));////MSG_END_FILE_LIST c=0 r=0
  4084. break;
  4085. case 21: // M21 - init SD card
  4086. card.initsd();
  4087. break;
  4088. case 22: //M22 - release SD card
  4089. card.release();
  4090. break;
  4091. case 23: //M23 - Select file
  4092. starpos = (strchr(strchr_pointer + 4,'*'));
  4093. if(starpos!=NULL)
  4094. *(starpos)='\0';
  4095. card.openFile(strchr_pointer + 4,true);
  4096. break;
  4097. case 24: //M24 - Start SD print
  4098. //-//
  4099. eeprom_update_byte((uint8_t*)EEPROM_UVLO,0);
  4100. if (!card.paused)
  4101. failstats_reset_print();
  4102. card.startFileprint();
  4103. starttime=millis();
  4104. break;
  4105. case 25: //M25 - Pause SD print
  4106. card.pauseSDPrint();
  4107. break;
  4108. case 26: //M26 - Set SD index
  4109. if(card.cardOK && code_seen('S')) {
  4110. card.setIndex(code_value_long());
  4111. }
  4112. break;
  4113. case 27: //M27 - Get SD status
  4114. card.getStatus();
  4115. break;
  4116. case 28: //M28 - Start SD write
  4117. starpos = (strchr(strchr_pointer + 4,'*'));
  4118. if(starpos != NULL){
  4119. char* npos = strchr(CMDBUFFER_CURRENT_STRING, 'N');
  4120. strchr_pointer = strchr(npos,' ') + 1;
  4121. *(starpos) = '\0';
  4122. }
  4123. card.openFile(strchr_pointer+4,false);
  4124. break;
  4125. case 29: //M29 - Stop SD write
  4126. //processed in write to file routine above
  4127. //card,saving = false;
  4128. break;
  4129. case 30: //M30 <filename> Delete File
  4130. if (card.cardOK){
  4131. card.closefile();
  4132. starpos = (strchr(strchr_pointer + 4,'*'));
  4133. if(starpos != NULL){
  4134. char* npos = strchr(CMDBUFFER_CURRENT_STRING, 'N');
  4135. strchr_pointer = strchr(npos,' ') + 1;
  4136. *(starpos) = '\0';
  4137. }
  4138. card.removeFile(strchr_pointer + 4);
  4139. }
  4140. break;
  4141. case 32: //M32 - Select file and start SD print
  4142. {
  4143. if(card.sdprinting) {
  4144. st_synchronize();
  4145. }
  4146. starpos = (strchr(strchr_pointer + 4,'*'));
  4147. char* namestartpos = (strchr(strchr_pointer + 4,'!')); //find ! to indicate filename string start.
  4148. if(namestartpos==NULL)
  4149. {
  4150. namestartpos=strchr_pointer + 4; //default name position, 4 letters after the M
  4151. }
  4152. else
  4153. namestartpos++; //to skip the '!'
  4154. if(starpos!=NULL)
  4155. *(starpos)='\0';
  4156. bool call_procedure=(code_seen('P'));
  4157. if(strchr_pointer>namestartpos)
  4158. call_procedure=false; //false alert, 'P' found within filename
  4159. if( card.cardOK )
  4160. {
  4161. card.openFile(namestartpos,true,!call_procedure);
  4162. if(code_seen('S'))
  4163. if(strchr_pointer<namestartpos) //only if "S" is occuring _before_ the filename
  4164. card.setIndex(code_value_long());
  4165. card.startFileprint();
  4166. if(!call_procedure)
  4167. starttime=millis(); //procedure calls count as normal print time.
  4168. }
  4169. } break;
  4170. case 928: //M928 - Start SD write
  4171. starpos = (strchr(strchr_pointer + 5,'*'));
  4172. if(starpos != NULL){
  4173. char* npos = strchr(CMDBUFFER_CURRENT_STRING, 'N');
  4174. strchr_pointer = strchr(npos,' ') + 1;
  4175. *(starpos) = '\0';
  4176. }
  4177. card.openLogFile(strchr_pointer+5);
  4178. break;
  4179. #endif //SDSUPPORT
  4180. case 31: //M31 take time since the start of the SD print or an M109 command
  4181. {
  4182. stoptime=millis();
  4183. char time[30];
  4184. unsigned long t=(stoptime-starttime)/1000;
  4185. int sec,min;
  4186. min=t/60;
  4187. sec=t%60;
  4188. sprintf_P(time, PSTR("%i min, %i sec"), min, sec);
  4189. SERIAL_ECHO_START;
  4190. SERIAL_ECHOLN(time);
  4191. lcd_setstatus(time);
  4192. autotempShutdown();
  4193. }
  4194. break;
  4195. case 42: //M42 -Change pin status via gcode
  4196. if (code_seen('S'))
  4197. {
  4198. int pin_status = code_value();
  4199. int pin_number = LED_PIN;
  4200. if (code_seen('P') && pin_status >= 0 && pin_status <= 255)
  4201. pin_number = code_value();
  4202. for(int8_t i = 0; i < (int8_t)(sizeof(sensitive_pins)/sizeof(int)); i++)
  4203. {
  4204. if (sensitive_pins[i] == pin_number)
  4205. {
  4206. pin_number = -1;
  4207. break;
  4208. }
  4209. }
  4210. #if defined(FAN_PIN) && FAN_PIN > -1
  4211. if (pin_number == FAN_PIN)
  4212. fanSpeed = pin_status;
  4213. #endif
  4214. if (pin_number > -1)
  4215. {
  4216. pinMode(pin_number, OUTPUT);
  4217. digitalWrite(pin_number, pin_status);
  4218. analogWrite(pin_number, pin_status);
  4219. }
  4220. }
  4221. break;
  4222. case 44: // M44: Prusa3D: Reset the bed skew and offset calibration.
  4223. // Reset the baby step value and the baby step applied flag.
  4224. calibration_status_store(CALIBRATION_STATUS_ASSEMBLED);
  4225. eeprom_update_word((uint16_t*)EEPROM_BABYSTEP_Z, 0);
  4226. // Reset the skew and offset in both RAM and EEPROM.
  4227. reset_bed_offset_and_skew();
  4228. // Reset world2machine_rotation_and_skew and world2machine_shift, therefore
  4229. // the planner will not perform any adjustments in the XY plane.
  4230. // Wait for the motors to stop and update the current position with the absolute values.
  4231. world2machine_revert_to_uncorrected();
  4232. break;
  4233. case 45: // M45: Prusa3D: bed skew and offset with manual Z up
  4234. {
  4235. int8_t verbosity_level = 0;
  4236. bool only_Z = code_seen('Z');
  4237. #ifdef SUPPORT_VERBOSITY
  4238. if (code_seen('V'))
  4239. {
  4240. // Just 'V' without a number counts as V1.
  4241. char c = strchr_pointer[1];
  4242. verbosity_level = (c == ' ' || c == '\t' || c == 0) ? 1 : code_value_short();
  4243. }
  4244. #endif //SUPPORT_VERBOSITY
  4245. gcode_M45(only_Z, verbosity_level);
  4246. }
  4247. break;
  4248. /*
  4249. case 46:
  4250. {
  4251. // M46: Prusa3D: Show the assigned IP address.
  4252. uint8_t ip[4];
  4253. bool hasIP = card.ToshibaFlashAir_GetIP(ip);
  4254. if (hasIP) {
  4255. SERIAL_ECHOPGM("Toshiba FlashAir current IP: ");
  4256. SERIAL_ECHO(int(ip[0]));
  4257. SERIAL_ECHOPGM(".");
  4258. SERIAL_ECHO(int(ip[1]));
  4259. SERIAL_ECHOPGM(".");
  4260. SERIAL_ECHO(int(ip[2]));
  4261. SERIAL_ECHOPGM(".");
  4262. SERIAL_ECHO(int(ip[3]));
  4263. SERIAL_ECHOLNPGM("");
  4264. } else {
  4265. SERIAL_ECHOLNPGM("Toshiba FlashAir GetIP failed");
  4266. }
  4267. break;
  4268. }
  4269. */
  4270. case 47:
  4271. // M47: Prusa3D: Show end stops dialog on the display.
  4272. KEEPALIVE_STATE(PAUSED_FOR_USER);
  4273. lcd_diag_show_end_stops();
  4274. KEEPALIVE_STATE(IN_HANDLER);
  4275. break;
  4276. #if 0
  4277. case 48: // M48: scan the bed induction sensor points, print the sensor trigger coordinates to the serial line for visualization on the PC.
  4278. {
  4279. // Disable the default update procedure of the display. We will do a modal dialog.
  4280. lcd_update_enable(false);
  4281. // Let the planner use the uncorrected coordinates.
  4282. mbl.reset();
  4283. // Reset world2machine_rotation_and_skew and world2machine_shift, therefore
  4284. // the planner will not perform any adjustments in the XY plane.
  4285. // Wait for the motors to stop and update the current position with the absolute values.
  4286. world2machine_revert_to_uncorrected();
  4287. // Move the print head close to the bed.
  4288. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  4289. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS],current_position[Z_AXIS] , current_position[E_AXIS], homing_feedrate[Z_AXIS]/40, active_extruder);
  4290. st_synchronize();
  4291. // Home in the XY plane.
  4292. set_destination_to_current();
  4293. setup_for_endstop_move();
  4294. home_xy();
  4295. int8_t verbosity_level = 0;
  4296. if (code_seen('V')) {
  4297. // Just 'V' without a number counts as V1.
  4298. char c = strchr_pointer[1];
  4299. verbosity_level = (c == ' ' || c == '\t' || c == 0) ? 1 : code_value_short();
  4300. }
  4301. bool success = scan_bed_induction_points(verbosity_level);
  4302. clean_up_after_endstop_move();
  4303. // Print head up.
  4304. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  4305. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS],current_position[Z_AXIS] , current_position[E_AXIS], homing_feedrate[Z_AXIS]/40, active_extruder);
  4306. st_synchronize();
  4307. lcd_update_enable(true);
  4308. break;
  4309. }
  4310. #endif
  4311. // M48 Z-Probe repeatability measurement function.
  4312. //
  4313. // Usage: M48 <n #_samples> <X X_position_for_samples> <Y Y_position_for_samples> <V Verbose_Level> <L legs_of_movement_prior_to_doing_probe>
  4314. //
  4315. // This function assumes the bed has been homed. Specificaly, that a G28 command
  4316. // as been issued prior to invoking the M48 Z-Probe repeatability measurement function.
  4317. // Any information generated by a prior G29 Bed leveling command will be lost and need to be
  4318. // regenerated.
  4319. //
  4320. // The number of samples will default to 10 if not specified. You can use upper or lower case
  4321. // letters for any of the options EXCEPT n. n must be in lower case because Marlin uses a capital
  4322. // N for its communication protocol and will get horribly confused if you send it a capital N.
  4323. //
  4324. #ifdef ENABLE_AUTO_BED_LEVELING
  4325. #ifdef Z_PROBE_REPEATABILITY_TEST
  4326. case 48: // M48 Z-Probe repeatability
  4327. {
  4328. #if Z_MIN_PIN == -1
  4329. #error "You must have a Z_MIN endstop in order to enable calculation of Z-Probe repeatability."
  4330. #endif
  4331. double sum=0.0;
  4332. double mean=0.0;
  4333. double sigma=0.0;
  4334. double sample_set[50];
  4335. int verbose_level=1, n=0, j, n_samples = 10, n_legs=0;
  4336. double X_current, Y_current, Z_current;
  4337. double X_probe_location, Y_probe_location, Z_start_location, ext_position;
  4338. if (code_seen('V') || code_seen('v')) {
  4339. verbose_level = code_value();
  4340. if (verbose_level<0 || verbose_level>4 ) {
  4341. SERIAL_PROTOCOLPGM("?Verbose Level not plausable.\n");
  4342. goto Sigma_Exit;
  4343. }
  4344. }
  4345. if (verbose_level > 0) {
  4346. SERIAL_PROTOCOLPGM("M48 Z-Probe Repeatability test. Version 2.00\n");
  4347. SERIAL_PROTOCOLPGM("Full support at: http://3dprintboard.com/forum.php\n");
  4348. }
  4349. if (code_seen('n')) {
  4350. n_samples = code_value();
  4351. if (n_samples<4 || n_samples>50 ) {
  4352. SERIAL_PROTOCOLPGM("?Specified sample size not plausable.\n");
  4353. goto Sigma_Exit;
  4354. }
  4355. }
  4356. X_current = X_probe_location = st_get_position_mm(X_AXIS);
  4357. Y_current = Y_probe_location = st_get_position_mm(Y_AXIS);
  4358. Z_current = st_get_position_mm(Z_AXIS);
  4359. Z_start_location = st_get_position_mm(Z_AXIS) + Z_RAISE_BEFORE_PROBING;
  4360. ext_position = st_get_position_mm(E_AXIS);
  4361. if (code_seen('X') || code_seen('x') ) {
  4362. X_probe_location = code_value() - X_PROBE_OFFSET_FROM_EXTRUDER;
  4363. if (X_probe_location<X_MIN_POS || X_probe_location>X_MAX_POS ) {
  4364. SERIAL_PROTOCOLPGM("?Specified X position out of range.\n");
  4365. goto Sigma_Exit;
  4366. }
  4367. }
  4368. if (code_seen('Y') || code_seen('y') ) {
  4369. Y_probe_location = code_value() - Y_PROBE_OFFSET_FROM_EXTRUDER;
  4370. if (Y_probe_location<Y_MIN_POS || Y_probe_location>Y_MAX_POS ) {
  4371. SERIAL_PROTOCOLPGM("?Specified Y position out of range.\n");
  4372. goto Sigma_Exit;
  4373. }
  4374. }
  4375. if (code_seen('L') || code_seen('l') ) {
  4376. n_legs = code_value();
  4377. if ( n_legs==1 )
  4378. n_legs = 2;
  4379. if ( n_legs<0 || n_legs>15 ) {
  4380. SERIAL_PROTOCOLPGM("?Specified number of legs in movement not plausable.\n");
  4381. goto Sigma_Exit;
  4382. }
  4383. }
  4384. //
  4385. // Do all the preliminary setup work. First raise the probe.
  4386. //
  4387. st_synchronize();
  4388. plan_bed_level_matrix.set_to_identity();
  4389. plan_buffer_line( X_current, Y_current, Z_start_location,
  4390. ext_position,
  4391. homing_feedrate[Z_AXIS]/60,
  4392. active_extruder);
  4393. st_synchronize();
  4394. //
  4395. // Now get everything to the specified probe point So we can safely do a probe to
  4396. // get us close to the bed. If the Z-Axis is far from the bed, we don't want to
  4397. // use that as a starting point for each probe.
  4398. //
  4399. if (verbose_level > 2)
  4400. SERIAL_PROTOCOL("Positioning probe for the test.\n");
  4401. plan_buffer_line( X_probe_location, Y_probe_location, Z_start_location,
  4402. ext_position,
  4403. homing_feedrate[X_AXIS]/60,
  4404. active_extruder);
  4405. st_synchronize();
  4406. current_position[X_AXIS] = X_current = st_get_position_mm(X_AXIS);
  4407. current_position[Y_AXIS] = Y_current = st_get_position_mm(Y_AXIS);
  4408. current_position[Z_AXIS] = Z_current = st_get_position_mm(Z_AXIS);
  4409. current_position[E_AXIS] = ext_position = st_get_position_mm(E_AXIS);
  4410. //
  4411. // OK, do the inital probe to get us close to the bed.
  4412. // Then retrace the right amount and use that in subsequent probes
  4413. //
  4414. setup_for_endstop_move();
  4415. run_z_probe();
  4416. current_position[Z_AXIS] = Z_current = st_get_position_mm(Z_AXIS);
  4417. Z_start_location = st_get_position_mm(Z_AXIS) + Z_RAISE_BEFORE_PROBING;
  4418. plan_buffer_line( X_probe_location, Y_probe_location, Z_start_location,
  4419. ext_position,
  4420. homing_feedrate[X_AXIS]/60,
  4421. active_extruder);
  4422. st_synchronize();
  4423. current_position[Z_AXIS] = Z_current = st_get_position_mm(Z_AXIS);
  4424. for( n=0; n<n_samples; n++) {
  4425. do_blocking_move_to( X_probe_location, Y_probe_location, Z_start_location); // Make sure we are at the probe location
  4426. if ( n_legs) {
  4427. double radius=0.0, theta=0.0, x_sweep, y_sweep;
  4428. int rotational_direction, l;
  4429. rotational_direction = (unsigned long) millis() & 0x0001; // clockwise or counter clockwise
  4430. radius = (unsigned long) millis() % (long) (X_MAX_LENGTH/4); // limit how far out to go
  4431. theta = (float) ((unsigned long) millis() % (long) 360) / (360./(2*3.1415926)); // turn into radians
  4432. //SERIAL_ECHOPAIR("starting radius: ",radius);
  4433. //SERIAL_ECHOPAIR(" theta: ",theta);
  4434. //SERIAL_ECHOPAIR(" direction: ",rotational_direction);
  4435. //SERIAL_PROTOCOLLNPGM("");
  4436. for( l=0; l<n_legs-1; l++) {
  4437. if (rotational_direction==1)
  4438. theta += (float) ((unsigned long) millis() % (long) 20) / (360.0/(2*3.1415926)); // turn into radians
  4439. else
  4440. theta -= (float) ((unsigned long) millis() % (long) 20) / (360.0/(2*3.1415926)); // turn into radians
  4441. radius += (float) ( ((long) ((unsigned long) millis() % (long) 10)) - 5);
  4442. if ( radius<0.0 )
  4443. radius = -radius;
  4444. X_current = X_probe_location + cos(theta) * radius;
  4445. Y_current = Y_probe_location + sin(theta) * radius;
  4446. if ( X_current<X_MIN_POS) // Make sure our X & Y are sane
  4447. X_current = X_MIN_POS;
  4448. if ( X_current>X_MAX_POS)
  4449. X_current = X_MAX_POS;
  4450. if ( Y_current<Y_MIN_POS) // Make sure our X & Y are sane
  4451. Y_current = Y_MIN_POS;
  4452. if ( Y_current>Y_MAX_POS)
  4453. Y_current = Y_MAX_POS;
  4454. if (verbose_level>3 ) {
  4455. SERIAL_ECHOPAIR("x: ", X_current);
  4456. SERIAL_ECHOPAIR("y: ", Y_current);
  4457. SERIAL_PROTOCOLLNPGM("");
  4458. }
  4459. do_blocking_move_to( X_current, Y_current, Z_current );
  4460. }
  4461. do_blocking_move_to( X_probe_location, Y_probe_location, Z_start_location); // Go back to the probe location
  4462. }
  4463. setup_for_endstop_move();
  4464. run_z_probe();
  4465. sample_set[n] = current_position[Z_AXIS];
  4466. //
  4467. // Get the current mean for the data points we have so far
  4468. //
  4469. sum=0.0;
  4470. for( j=0; j<=n; j++) {
  4471. sum = sum + sample_set[j];
  4472. }
  4473. mean = sum / (double (n+1));
  4474. //
  4475. // Now, use that mean to calculate the standard deviation for the
  4476. // data points we have so far
  4477. //
  4478. sum=0.0;
  4479. for( j=0; j<=n; j++) {
  4480. sum = sum + (sample_set[j]-mean) * (sample_set[j]-mean);
  4481. }
  4482. sigma = sqrt( sum / (double (n+1)) );
  4483. if (verbose_level > 1) {
  4484. SERIAL_PROTOCOL(n+1);
  4485. SERIAL_PROTOCOL(" of ");
  4486. SERIAL_PROTOCOL(n_samples);
  4487. SERIAL_PROTOCOLPGM(" z: ");
  4488. SERIAL_PROTOCOL_F(current_position[Z_AXIS], 6);
  4489. }
  4490. if (verbose_level > 2) {
  4491. SERIAL_PROTOCOL(" mean: ");
  4492. SERIAL_PROTOCOL_F(mean,6);
  4493. SERIAL_PROTOCOL(" sigma: ");
  4494. SERIAL_PROTOCOL_F(sigma,6);
  4495. }
  4496. if (verbose_level > 0)
  4497. SERIAL_PROTOCOLPGM("\n");
  4498. plan_buffer_line( X_probe_location, Y_probe_location, Z_start_location,
  4499. current_position[E_AXIS], homing_feedrate[Z_AXIS]/60, active_extruder);
  4500. st_synchronize();
  4501. }
  4502. delay(1000);
  4503. clean_up_after_endstop_move();
  4504. // enable_endstops(true);
  4505. if (verbose_level > 0) {
  4506. SERIAL_PROTOCOLPGM("Mean: ");
  4507. SERIAL_PROTOCOL_F(mean, 6);
  4508. SERIAL_PROTOCOLPGM("\n");
  4509. }
  4510. SERIAL_PROTOCOLPGM("Standard Deviation: ");
  4511. SERIAL_PROTOCOL_F(sigma, 6);
  4512. SERIAL_PROTOCOLPGM("\n\n");
  4513. Sigma_Exit:
  4514. break;
  4515. }
  4516. #endif // Z_PROBE_REPEATABILITY_TEST
  4517. #endif // ENABLE_AUTO_BED_LEVELING
  4518. case 73: //M73 show percent done and time remaining
  4519. if(code_seen('P')) print_percent_done_normal = code_value();
  4520. if(code_seen('R')) print_time_remaining_normal = code_value();
  4521. if(code_seen('Q')) print_percent_done_silent = code_value();
  4522. if(code_seen('S')) print_time_remaining_silent = code_value();
  4523. {
  4524. const char* _msg_mode_done_remain = _N("%S MODE: Percent done: %d; print time remaining in mins: %d\n");
  4525. printf_P(_msg_mode_done_remain, _N("NORMAL"), int(print_percent_done_normal), print_time_remaining_normal);
  4526. printf_P(_msg_mode_done_remain, _N("SILENT"), int(print_percent_done_silent), print_time_remaining_silent);
  4527. }
  4528. break;
  4529. case 104: // M104
  4530. if(setTargetedHotend(104)){
  4531. break;
  4532. }
  4533. if (code_seen('S')) setTargetHotend(code_value(), tmp_extruder);
  4534. setWatch();
  4535. break;
  4536. case 112: // M112 -Emergency Stop
  4537. kill(_n(""), 3);
  4538. break;
  4539. case 140: // M140 set bed temp
  4540. if (code_seen('S')) setTargetBed(code_value());
  4541. break;
  4542. case 105 : // M105
  4543. if(setTargetedHotend(105)){
  4544. break;
  4545. }
  4546. #if defined(TEMP_0_PIN) && TEMP_0_PIN > -1
  4547. SERIAL_PROTOCOLPGM("ok T:");
  4548. SERIAL_PROTOCOL_F(degHotend(tmp_extruder),1);
  4549. SERIAL_PROTOCOLPGM(" /");
  4550. SERIAL_PROTOCOL_F(degTargetHotend(tmp_extruder),1);
  4551. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  4552. SERIAL_PROTOCOLPGM(" B:");
  4553. SERIAL_PROTOCOL_F(degBed(),1);
  4554. SERIAL_PROTOCOLPGM(" /");
  4555. SERIAL_PROTOCOL_F(degTargetBed(),1);
  4556. #endif //TEMP_BED_PIN
  4557. for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) {
  4558. SERIAL_PROTOCOLPGM(" T");
  4559. SERIAL_PROTOCOL(cur_extruder);
  4560. SERIAL_PROTOCOLPGM(":");
  4561. SERIAL_PROTOCOL_F(degHotend(cur_extruder),1);
  4562. SERIAL_PROTOCOLPGM(" /");
  4563. SERIAL_PROTOCOL_F(degTargetHotend(cur_extruder),1);
  4564. }
  4565. #else
  4566. SERIAL_ERROR_START;
  4567. SERIAL_ERRORLNRPGM(_i("No thermistors - no temperature"));////MSG_ERR_NO_THERMISTORS c=0 r=0
  4568. #endif
  4569. SERIAL_PROTOCOLPGM(" @:");
  4570. #ifdef EXTRUDER_WATTS
  4571. SERIAL_PROTOCOL((EXTRUDER_WATTS * getHeaterPower(tmp_extruder))/127);
  4572. SERIAL_PROTOCOLPGM("W");
  4573. #else
  4574. SERIAL_PROTOCOL(getHeaterPower(tmp_extruder));
  4575. #endif
  4576. SERIAL_PROTOCOLPGM(" B@:");
  4577. #ifdef BED_WATTS
  4578. SERIAL_PROTOCOL((BED_WATTS * getHeaterPower(-1))/127);
  4579. SERIAL_PROTOCOLPGM("W");
  4580. #else
  4581. SERIAL_PROTOCOL(getHeaterPower(-1));
  4582. #endif
  4583. #ifdef PINDA_THERMISTOR
  4584. SERIAL_PROTOCOLPGM(" P:");
  4585. SERIAL_PROTOCOL_F(current_temperature_pinda,1);
  4586. #endif //PINDA_THERMISTOR
  4587. #ifdef AMBIENT_THERMISTOR
  4588. SERIAL_PROTOCOLPGM(" A:");
  4589. SERIAL_PROTOCOL_F(current_temperature_ambient,1);
  4590. #endif //AMBIENT_THERMISTOR
  4591. #ifdef SHOW_TEMP_ADC_VALUES
  4592. {float raw = 0.0;
  4593. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  4594. SERIAL_PROTOCOLPGM(" ADC B:");
  4595. SERIAL_PROTOCOL_F(degBed(),1);
  4596. SERIAL_PROTOCOLPGM("C->");
  4597. raw = rawBedTemp();
  4598. SERIAL_PROTOCOL_F(raw/OVERSAMPLENR,5);
  4599. SERIAL_PROTOCOLPGM(" Rb->");
  4600. SERIAL_PROTOCOL_F(100 * (1 + (PtA * (raw/OVERSAMPLENR)) + (PtB * sq((raw/OVERSAMPLENR)))), 5);
  4601. SERIAL_PROTOCOLPGM(" Rxb->");
  4602. SERIAL_PROTOCOL_F(raw, 5);
  4603. #endif
  4604. for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) {
  4605. SERIAL_PROTOCOLPGM(" T");
  4606. SERIAL_PROTOCOL(cur_extruder);
  4607. SERIAL_PROTOCOLPGM(":");
  4608. SERIAL_PROTOCOL_F(degHotend(cur_extruder),1);
  4609. SERIAL_PROTOCOLPGM("C->");
  4610. raw = rawHotendTemp(cur_extruder);
  4611. SERIAL_PROTOCOL_F(raw/OVERSAMPLENR,5);
  4612. SERIAL_PROTOCOLPGM(" Rt");
  4613. SERIAL_PROTOCOL(cur_extruder);
  4614. SERIAL_PROTOCOLPGM("->");
  4615. SERIAL_PROTOCOL_F(100 * (1 + (PtA * (raw/OVERSAMPLENR)) + (PtB * sq((raw/OVERSAMPLENR)))), 5);
  4616. SERIAL_PROTOCOLPGM(" Rx");
  4617. SERIAL_PROTOCOL(cur_extruder);
  4618. SERIAL_PROTOCOLPGM("->");
  4619. SERIAL_PROTOCOL_F(raw, 5);
  4620. }}
  4621. #endif
  4622. SERIAL_PROTOCOLLN("");
  4623. KEEPALIVE_STATE(NOT_BUSY);
  4624. return;
  4625. break;
  4626. case 109:
  4627. {// M109 - Wait for extruder heater to reach target.
  4628. if(setTargetedHotend(109)){
  4629. break;
  4630. }
  4631. LCD_MESSAGERPGM(_T(MSG_HEATING));
  4632. heating_status = 1;
  4633. if (farm_mode) { prusa_statistics(1); };
  4634. #ifdef AUTOTEMP
  4635. autotemp_enabled=false;
  4636. #endif
  4637. if (code_seen('S')) {
  4638. setTargetHotend(code_value(), tmp_extruder);
  4639. CooldownNoWait = true;
  4640. } else if (code_seen('R')) {
  4641. setTargetHotend(code_value(), tmp_extruder);
  4642. CooldownNoWait = false;
  4643. }
  4644. #ifdef AUTOTEMP
  4645. if (code_seen('S')) autotemp_min=code_value();
  4646. if (code_seen('B')) autotemp_max=code_value();
  4647. if (code_seen('F'))
  4648. {
  4649. autotemp_factor=code_value();
  4650. autotemp_enabled=true;
  4651. }
  4652. #endif
  4653. setWatch();
  4654. codenum = millis();
  4655. /* See if we are heating up or cooling down */
  4656. target_direction = isHeatingHotend(tmp_extruder); // true if heating, false if cooling
  4657. KEEPALIVE_STATE(NOT_BUSY);
  4658. cancel_heatup = false;
  4659. wait_for_heater(codenum); //loops until target temperature is reached
  4660. LCD_MESSAGERPGM(_T(MSG_HEATING_COMPLETE));
  4661. KEEPALIVE_STATE(IN_HANDLER);
  4662. heating_status = 2;
  4663. if (farm_mode) { prusa_statistics(2); };
  4664. //starttime=millis();
  4665. previous_millis_cmd = millis();
  4666. }
  4667. break;
  4668. case 190: // M190 - Wait for bed heater to reach target.
  4669. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  4670. LCD_MESSAGERPGM(_T(MSG_BED_HEATING));
  4671. heating_status = 3;
  4672. if (farm_mode) { prusa_statistics(1); };
  4673. if (code_seen('S'))
  4674. {
  4675. setTargetBed(code_value());
  4676. CooldownNoWait = true;
  4677. }
  4678. else if (code_seen('R'))
  4679. {
  4680. setTargetBed(code_value());
  4681. CooldownNoWait = false;
  4682. }
  4683. codenum = millis();
  4684. cancel_heatup = false;
  4685. target_direction = isHeatingBed(); // true if heating, false if cooling
  4686. KEEPALIVE_STATE(NOT_BUSY);
  4687. while ( (target_direction)&&(!cancel_heatup) ? (isHeatingBed()) : (isCoolingBed()&&(CooldownNoWait==false)) )
  4688. {
  4689. if(( millis() - codenum) > 1000 ) //Print Temp Reading every 1 second while heating up.
  4690. {
  4691. if (!farm_mode) {
  4692. float tt = degHotend(active_extruder);
  4693. SERIAL_PROTOCOLPGM("T:");
  4694. SERIAL_PROTOCOL(tt);
  4695. SERIAL_PROTOCOLPGM(" E:");
  4696. SERIAL_PROTOCOL((int)active_extruder);
  4697. SERIAL_PROTOCOLPGM(" B:");
  4698. SERIAL_PROTOCOL_F(degBed(), 1);
  4699. SERIAL_PROTOCOLLN("");
  4700. }
  4701. codenum = millis();
  4702. }
  4703. manage_heater();
  4704. manage_inactivity();
  4705. lcd_update(0);
  4706. }
  4707. LCD_MESSAGERPGM(_T(MSG_BED_DONE));
  4708. KEEPALIVE_STATE(IN_HANDLER);
  4709. heating_status = 4;
  4710. previous_millis_cmd = millis();
  4711. #endif
  4712. break;
  4713. #if defined(FAN_PIN) && FAN_PIN > -1
  4714. case 106: //M106 Fan On
  4715. if (code_seen('S')){
  4716. fanSpeed=constrain(code_value(),0,255);
  4717. }
  4718. else {
  4719. fanSpeed=255;
  4720. }
  4721. break;
  4722. case 107: //M107 Fan Off
  4723. fanSpeed = 0;
  4724. break;
  4725. #endif //FAN_PIN
  4726. #if defined(PS_ON_PIN) && PS_ON_PIN > -1
  4727. case 80: // M80 - Turn on Power Supply
  4728. SET_OUTPUT(PS_ON_PIN); //GND
  4729. WRITE(PS_ON_PIN, PS_ON_AWAKE);
  4730. // If you have a switch on suicide pin, this is useful
  4731. // if you want to start another print with suicide feature after
  4732. // a print without suicide...
  4733. #if defined SUICIDE_PIN && SUICIDE_PIN > -1
  4734. SET_OUTPUT(SUICIDE_PIN);
  4735. WRITE(SUICIDE_PIN, HIGH);
  4736. #endif
  4737. powersupply = true;
  4738. LCD_MESSAGERPGM(_T(WELCOME_MSG));
  4739. lcd_update(0);
  4740. break;
  4741. #endif
  4742. case 81: // M81 - Turn off Power Supply
  4743. disable_heater();
  4744. st_synchronize();
  4745. disable_e0();
  4746. disable_e1();
  4747. disable_e2();
  4748. finishAndDisableSteppers();
  4749. fanSpeed = 0;
  4750. delay(1000); // Wait a little before to switch off
  4751. #if defined(SUICIDE_PIN) && SUICIDE_PIN > -1
  4752. st_synchronize();
  4753. suicide();
  4754. #elif defined(PS_ON_PIN) && PS_ON_PIN > -1
  4755. SET_OUTPUT(PS_ON_PIN);
  4756. WRITE(PS_ON_PIN, PS_ON_ASLEEP);
  4757. #endif
  4758. powersupply = false;
  4759. LCD_MESSAGERPGM(CAT4(CUSTOM_MENDEL_NAME,PSTR(" "),MSG_OFF,PSTR(".")));
  4760. lcd_update(0);
  4761. break;
  4762. case 82:
  4763. axis_relative_modes[3] = false;
  4764. break;
  4765. case 83:
  4766. axis_relative_modes[3] = true;
  4767. break;
  4768. case 18: //compatibility
  4769. case 84: // M84
  4770. if(code_seen('S')){
  4771. stepper_inactive_time = code_value() * 1000;
  4772. }
  4773. else
  4774. {
  4775. bool all_axis = !((code_seen(axis_codes[X_AXIS])) || (code_seen(axis_codes[Y_AXIS])) || (code_seen(axis_codes[Z_AXIS]))|| (code_seen(axis_codes[E_AXIS])));
  4776. if(all_axis)
  4777. {
  4778. st_synchronize();
  4779. disable_e0();
  4780. disable_e1();
  4781. disable_e2();
  4782. finishAndDisableSteppers();
  4783. }
  4784. else
  4785. {
  4786. st_synchronize();
  4787. if (code_seen('X')) disable_x();
  4788. if (code_seen('Y')) disable_y();
  4789. if (code_seen('Z')) disable_z();
  4790. #if ((E0_ENABLE_PIN != X_ENABLE_PIN) && (E1_ENABLE_PIN != Y_ENABLE_PIN)) // Only enable on boards that have seperate ENABLE_PINS
  4791. if (code_seen('E')) {
  4792. disable_e0();
  4793. disable_e1();
  4794. disable_e2();
  4795. }
  4796. #endif
  4797. }
  4798. }
  4799. //in the end of print set estimated time to end of print and extruders used during print to default values for next print
  4800. print_time_remaining_init();
  4801. snmm_filaments_used = 0;
  4802. break;
  4803. case 85: // M85
  4804. if(code_seen('S')) {
  4805. max_inactive_time = code_value() * 1000;
  4806. }
  4807. break;
  4808. #ifdef SAFETYTIMER
  4809. case 86: // M86 - set safety timer expiration time in seconds; M86 S0 will disable safety timer
  4810. //when safety timer expires heatbed and nozzle target temperatures are set to zero
  4811. if (code_seen('S')) {
  4812. safetytimer_inactive_time = code_value() * 1000;
  4813. safetyTimer.start();
  4814. }
  4815. break;
  4816. #endif
  4817. case 92: // M92
  4818. for(int8_t i=0; i < NUM_AXIS; i++)
  4819. {
  4820. if(code_seen(axis_codes[i]))
  4821. {
  4822. if(i == 3) { // E
  4823. float value = code_value();
  4824. if(value < 20.0) {
  4825. float factor = axis_steps_per_unit[i] / value; // increase e constants if M92 E14 is given for netfab.
  4826. max_jerk[E_AXIS] *= factor;
  4827. max_feedrate[i] *= factor;
  4828. axis_steps_per_sqr_second[i] *= factor;
  4829. }
  4830. axis_steps_per_unit[i] = value;
  4831. }
  4832. else {
  4833. axis_steps_per_unit[i] = code_value();
  4834. }
  4835. }
  4836. }
  4837. break;
  4838. case 110: // M110 - reset line pos
  4839. if (code_seen('N'))
  4840. gcode_LastN = code_value_long();
  4841. break;
  4842. #ifdef HOST_KEEPALIVE_FEATURE
  4843. case 113: // M113 - Get or set Host Keepalive interval
  4844. if (code_seen('S')) {
  4845. host_keepalive_interval = (uint8_t)code_value_short();
  4846. // NOMORE(host_keepalive_interval, 60);
  4847. }
  4848. else {
  4849. SERIAL_ECHO_START;
  4850. SERIAL_ECHOPAIR("M113 S", (unsigned long)host_keepalive_interval);
  4851. SERIAL_PROTOCOLLN("");
  4852. }
  4853. break;
  4854. #endif
  4855. case 115: // M115
  4856. if (code_seen('V')) {
  4857. // Report the Prusa version number.
  4858. SERIAL_PROTOCOLLNRPGM(FW_VERSION_STR_P());
  4859. } else if (code_seen('U')) {
  4860. // Check the firmware version provided. If the firmware version provided by the U code is higher than the currently running firmware,
  4861. // pause the print and ask the user to upgrade the firmware.
  4862. show_upgrade_dialog_if_version_newer(++ strchr_pointer);
  4863. } else {
  4864. SERIAL_ECHOPGM("FIRMWARE_NAME:Prusa-Firmware ");
  4865. SERIAL_ECHORPGM(FW_VERSION_STR_P());
  4866. SERIAL_ECHOPGM(" based on Marlin FIRMWARE_URL:https://github.com/prusa3d/Prusa-Firmware PROTOCOL_VERSION:");
  4867. SERIAL_ECHOPGM(PROTOCOL_VERSION);
  4868. SERIAL_ECHOPGM(" MACHINE_TYPE:");
  4869. SERIAL_ECHOPGM(CUSTOM_MENDEL_NAME);
  4870. SERIAL_ECHOPGM(" EXTRUDER_COUNT:");
  4871. SERIAL_ECHOPGM(STRINGIFY(EXTRUDERS));
  4872. SERIAL_ECHOPGM(" UUID:");
  4873. SERIAL_ECHOLNPGM(MACHINE_UUID);
  4874. }
  4875. break;
  4876. /* case 117: // M117 display message
  4877. starpos = (strchr(strchr_pointer + 5,'*'));
  4878. if(starpos!=NULL)
  4879. *(starpos)='\0';
  4880. lcd_setstatus(strchr_pointer + 5);
  4881. break;*/
  4882. case 114: // M114
  4883. gcode_M114();
  4884. break;
  4885. case 120: // M120
  4886. enable_endstops(false) ;
  4887. break;
  4888. case 121: // M121
  4889. enable_endstops(true) ;
  4890. break;
  4891. case 119: // M119
  4892. SERIAL_PROTOCOLRPGM(_N("Reporting endstop status"));////MSG_M119_REPORT c=0 r=0
  4893. SERIAL_PROTOCOLLN("");
  4894. #if defined(X_MIN_PIN) && X_MIN_PIN > -1
  4895. SERIAL_PROTOCOLRPGM(_n("x_min: "));////MSG_X_MIN c=0 r=0
  4896. if(READ(X_MIN_PIN)^X_MIN_ENDSTOP_INVERTING){
  4897. SERIAL_PROTOCOLRPGM(_T(MSG_ENDSTOP_HIT));
  4898. }else{
  4899. SERIAL_PROTOCOLRPGM(_T(MSG_ENDSTOP_OPEN));
  4900. }
  4901. SERIAL_PROTOCOLLN("");
  4902. #endif
  4903. #if defined(X_MAX_PIN) && X_MAX_PIN > -1
  4904. SERIAL_PROTOCOLRPGM(_n("x_max: "));////MSG_X_MAX c=0 r=0
  4905. if(READ(X_MAX_PIN)^X_MAX_ENDSTOP_INVERTING){
  4906. SERIAL_PROTOCOLRPGM(_T(MSG_ENDSTOP_HIT));
  4907. }else{
  4908. SERIAL_PROTOCOLRPGM(_T(MSG_ENDSTOP_OPEN));
  4909. }
  4910. SERIAL_PROTOCOLLN("");
  4911. #endif
  4912. #if defined(Y_MIN_PIN) && Y_MIN_PIN > -1
  4913. SERIAL_PROTOCOLRPGM(_n("y_min: "));////MSG_Y_MIN c=0 r=0
  4914. if(READ(Y_MIN_PIN)^Y_MIN_ENDSTOP_INVERTING){
  4915. SERIAL_PROTOCOLRPGM(_T(MSG_ENDSTOP_HIT));
  4916. }else{
  4917. SERIAL_PROTOCOLRPGM(_T(MSG_ENDSTOP_OPEN));
  4918. }
  4919. SERIAL_PROTOCOLLN("");
  4920. #endif
  4921. #if defined(Y_MAX_PIN) && Y_MAX_PIN > -1
  4922. SERIAL_PROTOCOLRPGM(_n("y_max: "));////MSG_Y_MAX c=0 r=0
  4923. if(READ(Y_MAX_PIN)^Y_MAX_ENDSTOP_INVERTING){
  4924. SERIAL_PROTOCOLRPGM(_T(MSG_ENDSTOP_HIT));
  4925. }else{
  4926. SERIAL_PROTOCOLRPGM(_T(MSG_ENDSTOP_OPEN));
  4927. }
  4928. SERIAL_PROTOCOLLN("");
  4929. #endif
  4930. #if defined(Z_MIN_PIN) && Z_MIN_PIN > -1
  4931. SERIAL_PROTOCOLRPGM(MSG_Z_MIN);
  4932. if(READ(Z_MIN_PIN)^Z_MIN_ENDSTOP_INVERTING){
  4933. SERIAL_PROTOCOLRPGM(_T(MSG_ENDSTOP_HIT));
  4934. }else{
  4935. SERIAL_PROTOCOLRPGM(_T(MSG_ENDSTOP_OPEN));
  4936. }
  4937. SERIAL_PROTOCOLLN("");
  4938. #endif
  4939. #if defined(Z_MAX_PIN) && Z_MAX_PIN > -1
  4940. SERIAL_PROTOCOLRPGM(MSG_Z_MAX);
  4941. if(READ(Z_MAX_PIN)^Z_MAX_ENDSTOP_INVERTING){
  4942. SERIAL_PROTOCOLRPGM(_T(MSG_ENDSTOP_HIT));
  4943. }else{
  4944. SERIAL_PROTOCOLRPGM(_T(MSG_ENDSTOP_OPEN));
  4945. }
  4946. SERIAL_PROTOCOLLN("");
  4947. #endif
  4948. break;
  4949. //TODO: update for all axis, use for loop
  4950. #ifdef BLINKM
  4951. case 150: // M150
  4952. {
  4953. byte red;
  4954. byte grn;
  4955. byte blu;
  4956. if(code_seen('R')) red = code_value();
  4957. if(code_seen('U')) grn = code_value();
  4958. if(code_seen('B')) blu = code_value();
  4959. SendColors(red,grn,blu);
  4960. }
  4961. break;
  4962. #endif //BLINKM
  4963. case 200: // M200 D<millimeters> set filament diameter and set E axis units to cubic millimeters (use S0 to set back to millimeters).
  4964. {
  4965. tmp_extruder = active_extruder;
  4966. if(code_seen('T')) {
  4967. tmp_extruder = code_value();
  4968. if(tmp_extruder >= EXTRUDERS) {
  4969. SERIAL_ECHO_START;
  4970. SERIAL_ECHO(_i("M200 Invalid extruder "));////MSG_M200_INVALID_EXTRUDER c=0 r=0
  4971. break;
  4972. }
  4973. }
  4974. float area = .0;
  4975. if(code_seen('D')) {
  4976. float diameter = (float)code_value();
  4977. if (diameter == 0.0) {
  4978. // setting any extruder filament size disables volumetric on the assumption that
  4979. // slicers either generate in extruder values as cubic mm or as as filament feeds
  4980. // for all extruders
  4981. volumetric_enabled = false;
  4982. } else {
  4983. filament_size[tmp_extruder] = (float)code_value();
  4984. // make sure all extruders have some sane value for the filament size
  4985. filament_size[0] = (filament_size[0] == 0.0 ? DEFAULT_NOMINAL_FILAMENT_DIA : filament_size[0]);
  4986. #if EXTRUDERS > 1
  4987. filament_size[1] = (filament_size[1] == 0.0 ? DEFAULT_NOMINAL_FILAMENT_DIA : filament_size[1]);
  4988. #if EXTRUDERS > 2
  4989. filament_size[2] = (filament_size[2] == 0.0 ? DEFAULT_NOMINAL_FILAMENT_DIA : filament_size[2]);
  4990. #endif
  4991. #endif
  4992. volumetric_enabled = true;
  4993. }
  4994. } else {
  4995. //reserved for setting filament diameter via UFID or filament measuring device
  4996. break;
  4997. }
  4998. calculate_extruder_multipliers();
  4999. }
  5000. break;
  5001. case 201: // M201
  5002. for (int8_t i = 0; i < NUM_AXIS; i++)
  5003. {
  5004. if (code_seen(axis_codes[i]))
  5005. {
  5006. int val = code_value();
  5007. #ifdef TMC2130
  5008. int val_silent = val;
  5009. if ((i == X_AXIS) || (i == Y_AXIS))
  5010. {
  5011. if (val > NORMAL_MAX_ACCEL_XY)
  5012. val = NORMAL_MAX_ACCEL_XY;
  5013. if (val_silent > SILENT_MAX_ACCEL_XY)
  5014. val_silent = SILENT_MAX_ACCEL_XY;
  5015. }
  5016. max_acceleration_units_per_sq_second_normal[i] = val;
  5017. max_acceleration_units_per_sq_second_silent[i] = val_silent;
  5018. #else //TMC2130
  5019. max_acceleration_units_per_sq_second[i] = val;
  5020. #endif //TMC2130
  5021. }
  5022. }
  5023. // steps per sq second need to be updated to agree with the units per sq second (as they are what is used in the planner)
  5024. reset_acceleration_rates();
  5025. break;
  5026. #if 0 // Not used for Sprinter/grbl gen6
  5027. case 202: // M202
  5028. for(int8_t i=0; i < NUM_AXIS; i++) {
  5029. if(code_seen(axis_codes[i])) axis_travel_steps_per_sqr_second[i] = code_value() * axis_steps_per_unit[i];
  5030. }
  5031. break;
  5032. #endif
  5033. case 203: // M203 max feedrate mm/sec
  5034. for (int8_t i = 0; i < NUM_AXIS; i++)
  5035. {
  5036. if (code_seen(axis_codes[i]))
  5037. {
  5038. float val = code_value();
  5039. #ifdef TMC2130
  5040. float val_silent = val;
  5041. if ((i == X_AXIS) || (i == Y_AXIS))
  5042. {
  5043. if (val > NORMAL_MAX_FEEDRATE_XY)
  5044. val = NORMAL_MAX_FEEDRATE_XY;
  5045. if (val_silent > SILENT_MAX_FEEDRATE_XY)
  5046. val_silent = SILENT_MAX_FEEDRATE_XY;
  5047. }
  5048. max_feedrate_normal[i] = val;
  5049. max_feedrate_silent[i] = val_silent;
  5050. #else //TMC2130
  5051. max_feedrate[i] = val;
  5052. #endif //TMC2130
  5053. }
  5054. }
  5055. break;
  5056. case 204: // M204 acclereration S normal moves T filmanent only moves
  5057. {
  5058. if(code_seen('S')) acceleration = code_value() ;
  5059. if(code_seen('T')) retract_acceleration = code_value() ;
  5060. }
  5061. break;
  5062. case 205: //M205 advanced settings: minimum travel speed S=while printing T=travel only, B=minimum segment time X= maximum xy jerk, Z=maximum Z jerk
  5063. {
  5064. if(code_seen('S')) minimumfeedrate = code_value();
  5065. if(code_seen('T')) mintravelfeedrate = code_value();
  5066. if(code_seen('B')) minsegmenttime = code_value() ;
  5067. if(code_seen('X')) max_jerk[X_AXIS] = max_jerk[Y_AXIS] = code_value();
  5068. if(code_seen('Y')) max_jerk[Y_AXIS] = code_value();
  5069. if(code_seen('Z')) max_jerk[Z_AXIS] = code_value();
  5070. if(code_seen('E')) max_jerk[E_AXIS] = code_value();
  5071. if (max_jerk[X_AXIS] > DEFAULT_XJERK) max_jerk[X_AXIS] = DEFAULT_XJERK;
  5072. if (max_jerk[Y_AXIS] > DEFAULT_YJERK) max_jerk[Y_AXIS] = DEFAULT_YJERK;
  5073. }
  5074. break;
  5075. case 206: // M206 additional homing offset
  5076. for(int8_t i=0; i < 3; i++)
  5077. {
  5078. if(code_seen(axis_codes[i])) add_homing[i] = code_value();
  5079. }
  5080. break;
  5081. #ifdef FWRETRACT
  5082. case 207: //M207 - set retract length S[positive mm] F[feedrate mm/min] Z[additional zlift/hop]
  5083. {
  5084. if(code_seen('S'))
  5085. {
  5086. retract_length = code_value() ;
  5087. }
  5088. if(code_seen('F'))
  5089. {
  5090. retract_feedrate = code_value()/60 ;
  5091. }
  5092. if(code_seen('Z'))
  5093. {
  5094. retract_zlift = code_value() ;
  5095. }
  5096. }break;
  5097. case 208: // M208 - set retract recover length S[positive mm surplus to the M207 S*] F[feedrate mm/min]
  5098. {
  5099. if(code_seen('S'))
  5100. {
  5101. retract_recover_length = code_value() ;
  5102. }
  5103. if(code_seen('F'))
  5104. {
  5105. retract_recover_feedrate = code_value()/60 ;
  5106. }
  5107. }break;
  5108. case 209: // M209 - S<1=true/0=false> enable automatic retract detect if the slicer did not support G10/11: every normal extrude-only move will be classified as retract depending on the direction.
  5109. {
  5110. if(code_seen('S'))
  5111. {
  5112. int t= code_value() ;
  5113. switch(t)
  5114. {
  5115. case 0:
  5116. {
  5117. autoretract_enabled=false;
  5118. retracted[0]=false;
  5119. #if EXTRUDERS > 1
  5120. retracted[1]=false;
  5121. #endif
  5122. #if EXTRUDERS > 2
  5123. retracted[2]=false;
  5124. #endif
  5125. }break;
  5126. case 1:
  5127. {
  5128. autoretract_enabled=true;
  5129. retracted[0]=false;
  5130. #if EXTRUDERS > 1
  5131. retracted[1]=false;
  5132. #endif
  5133. #if EXTRUDERS > 2
  5134. retracted[2]=false;
  5135. #endif
  5136. }break;
  5137. default:
  5138. SERIAL_ECHO_START;
  5139. SERIAL_ECHORPGM(MSG_UNKNOWN_COMMAND);
  5140. SERIAL_ECHO(CMDBUFFER_CURRENT_STRING);
  5141. SERIAL_ECHOLNPGM("\"(1)");
  5142. }
  5143. }
  5144. }break;
  5145. #endif // FWRETRACT
  5146. #if EXTRUDERS > 1
  5147. case 218: // M218 - set hotend offset (in mm), T<extruder_number> X<offset_on_X> Y<offset_on_Y>
  5148. {
  5149. if(setTargetedHotend(218)){
  5150. break;
  5151. }
  5152. if(code_seen('X'))
  5153. {
  5154. extruder_offset[X_AXIS][tmp_extruder] = code_value();
  5155. }
  5156. if(code_seen('Y'))
  5157. {
  5158. extruder_offset[Y_AXIS][tmp_extruder] = code_value();
  5159. }
  5160. SERIAL_ECHO_START;
  5161. SERIAL_ECHORPGM(MSG_HOTEND_OFFSET);
  5162. for(tmp_extruder = 0; tmp_extruder < EXTRUDERS; tmp_extruder++)
  5163. {
  5164. SERIAL_ECHO(" ");
  5165. SERIAL_ECHO(extruder_offset[X_AXIS][tmp_extruder]);
  5166. SERIAL_ECHO(",");
  5167. SERIAL_ECHO(extruder_offset[Y_AXIS][tmp_extruder]);
  5168. }
  5169. SERIAL_ECHOLN("");
  5170. }break;
  5171. #endif
  5172. case 220: // M220 S<factor in percent>- set speed factor override percentage
  5173. {
  5174. if(code_seen('S'))
  5175. {
  5176. feedmultiply = code_value() ;
  5177. }
  5178. }
  5179. break;
  5180. case 221: // M221 S<factor in percent>- set extrude factor override percentage
  5181. {
  5182. if(code_seen('S'))
  5183. {
  5184. int tmp_code = code_value();
  5185. if (code_seen('T'))
  5186. {
  5187. if(setTargetedHotend(221)){
  5188. break;
  5189. }
  5190. extruder_multiply[tmp_extruder] = tmp_code;
  5191. }
  5192. else
  5193. {
  5194. extrudemultiply = tmp_code ;
  5195. }
  5196. }
  5197. calculate_extruder_multipliers();
  5198. }
  5199. break;
  5200. case 226: // M226 P<pin number> S<pin state>- Wait until the specified pin reaches the state required
  5201. {
  5202. if(code_seen('P')){
  5203. int pin_number = code_value(); // pin number
  5204. int pin_state = -1; // required pin state - default is inverted
  5205. if(code_seen('S')) pin_state = code_value(); // required pin state
  5206. if(pin_state >= -1 && pin_state <= 1){
  5207. for(int8_t i = 0; i < (int8_t)(sizeof(sensitive_pins)/sizeof(int)); i++)
  5208. {
  5209. if (sensitive_pins[i] == pin_number)
  5210. {
  5211. pin_number = -1;
  5212. break;
  5213. }
  5214. }
  5215. if (pin_number > -1)
  5216. {
  5217. int target = LOW;
  5218. st_synchronize();
  5219. pinMode(pin_number, INPUT);
  5220. switch(pin_state){
  5221. case 1:
  5222. target = HIGH;
  5223. break;
  5224. case 0:
  5225. target = LOW;
  5226. break;
  5227. case -1:
  5228. target = !digitalRead(pin_number);
  5229. break;
  5230. }
  5231. while(digitalRead(pin_number) != target){
  5232. manage_heater();
  5233. manage_inactivity();
  5234. lcd_update(0);
  5235. }
  5236. }
  5237. }
  5238. }
  5239. }
  5240. break;
  5241. #if NUM_SERVOS > 0
  5242. case 280: // M280 - set servo position absolute. P: servo index, S: angle or microseconds
  5243. {
  5244. int servo_index = -1;
  5245. int servo_position = 0;
  5246. if (code_seen('P'))
  5247. servo_index = code_value();
  5248. if (code_seen('S')) {
  5249. servo_position = code_value();
  5250. if ((servo_index >= 0) && (servo_index < NUM_SERVOS)) {
  5251. #if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
  5252. servos[servo_index].attach(0);
  5253. #endif
  5254. servos[servo_index].write(servo_position);
  5255. #if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
  5256. delay(PROBE_SERVO_DEACTIVATION_DELAY);
  5257. servos[servo_index].detach();
  5258. #endif
  5259. }
  5260. else {
  5261. SERIAL_ECHO_START;
  5262. SERIAL_ECHO("Servo ");
  5263. SERIAL_ECHO(servo_index);
  5264. SERIAL_ECHOLN(" out of range");
  5265. }
  5266. }
  5267. else if (servo_index >= 0) {
  5268. SERIAL_PROTOCOL(_T(MSG_OK));
  5269. SERIAL_PROTOCOL(" Servo ");
  5270. SERIAL_PROTOCOL(servo_index);
  5271. SERIAL_PROTOCOL(": ");
  5272. SERIAL_PROTOCOL(servos[servo_index].read());
  5273. SERIAL_PROTOCOLLN("");
  5274. }
  5275. }
  5276. break;
  5277. #endif // NUM_SERVOS > 0
  5278. #if (LARGE_FLASH == true && ( BEEPER > 0 || defined(ULTRALCD) || defined(LCD_USE_I2C_BUZZER)))
  5279. case 300: // M300
  5280. {
  5281. int beepS = code_seen('S') ? code_value() : 110;
  5282. int beepP = code_seen('P') ? code_value() : 1000;
  5283. if (beepS > 0)
  5284. {
  5285. #if BEEPER > 0
  5286. tone(BEEPER, beepS);
  5287. delay(beepP);
  5288. noTone(BEEPER);
  5289. #endif
  5290. }
  5291. else
  5292. {
  5293. delay(beepP);
  5294. }
  5295. }
  5296. break;
  5297. #endif // M300
  5298. #ifdef PIDTEMP
  5299. case 301: // M301
  5300. {
  5301. if(code_seen('P')) Kp = code_value();
  5302. if(code_seen('I')) Ki = scalePID_i(code_value());
  5303. if(code_seen('D')) Kd = scalePID_d(code_value());
  5304. #ifdef PID_ADD_EXTRUSION_RATE
  5305. if(code_seen('C')) Kc = code_value();
  5306. #endif
  5307. updatePID();
  5308. SERIAL_PROTOCOLRPGM(_T(MSG_OK));
  5309. SERIAL_PROTOCOL(" p:");
  5310. SERIAL_PROTOCOL(Kp);
  5311. SERIAL_PROTOCOL(" i:");
  5312. SERIAL_PROTOCOL(unscalePID_i(Ki));
  5313. SERIAL_PROTOCOL(" d:");
  5314. SERIAL_PROTOCOL(unscalePID_d(Kd));
  5315. #ifdef PID_ADD_EXTRUSION_RATE
  5316. SERIAL_PROTOCOL(" c:");
  5317. //Kc does not have scaling applied above, or in resetting defaults
  5318. SERIAL_PROTOCOL(Kc);
  5319. #endif
  5320. SERIAL_PROTOCOLLN("");
  5321. }
  5322. break;
  5323. #endif //PIDTEMP
  5324. #ifdef PIDTEMPBED
  5325. case 304: // M304
  5326. {
  5327. if(code_seen('P')) bedKp = code_value();
  5328. if(code_seen('I')) bedKi = scalePID_i(code_value());
  5329. if(code_seen('D')) bedKd = scalePID_d(code_value());
  5330. updatePID();
  5331. SERIAL_PROTOCOLRPGM(_T(MSG_OK));
  5332. SERIAL_PROTOCOL(" p:");
  5333. SERIAL_PROTOCOL(bedKp);
  5334. SERIAL_PROTOCOL(" i:");
  5335. SERIAL_PROTOCOL(unscalePID_i(bedKi));
  5336. SERIAL_PROTOCOL(" d:");
  5337. SERIAL_PROTOCOL(unscalePID_d(bedKd));
  5338. SERIAL_PROTOCOLLN("");
  5339. }
  5340. break;
  5341. #endif //PIDTEMP
  5342. case 240: // M240 Triggers a camera by emulating a Canon RC-1 : http://www.doc-diy.net/photo/rc-1_hacked/
  5343. {
  5344. #ifdef CHDK
  5345. SET_OUTPUT(CHDK);
  5346. WRITE(CHDK, HIGH);
  5347. chdkHigh = millis();
  5348. chdkActive = true;
  5349. #else
  5350. #if defined(PHOTOGRAPH_PIN) && PHOTOGRAPH_PIN > -1
  5351. const uint8_t NUM_PULSES=16;
  5352. const float PULSE_LENGTH=0.01524;
  5353. for(int i=0; i < NUM_PULSES; i++) {
  5354. WRITE(PHOTOGRAPH_PIN, HIGH);
  5355. _delay_ms(PULSE_LENGTH);
  5356. WRITE(PHOTOGRAPH_PIN, LOW);
  5357. _delay_ms(PULSE_LENGTH);
  5358. }
  5359. delay(7.33);
  5360. for(int i=0; i < NUM_PULSES; i++) {
  5361. WRITE(PHOTOGRAPH_PIN, HIGH);
  5362. _delay_ms(PULSE_LENGTH);
  5363. WRITE(PHOTOGRAPH_PIN, LOW);
  5364. _delay_ms(PULSE_LENGTH);
  5365. }
  5366. #endif
  5367. #endif //chdk end if
  5368. }
  5369. break;
  5370. #ifdef PREVENT_DANGEROUS_EXTRUDE
  5371. case 302: // allow cold extrudes, or set the minimum extrude temperature
  5372. {
  5373. float temp = .0;
  5374. if (code_seen('S')) temp=code_value();
  5375. set_extrude_min_temp(temp);
  5376. }
  5377. break;
  5378. #endif
  5379. case 303: // M303 PID autotune
  5380. {
  5381. float temp = 150.0;
  5382. int e=0;
  5383. int c=5;
  5384. if (code_seen('E')) e=code_value();
  5385. if (e<0)
  5386. temp=70;
  5387. if (code_seen('S')) temp=code_value();
  5388. if (code_seen('C')) c=code_value();
  5389. PID_autotune(temp, e, c);
  5390. }
  5391. break;
  5392. case 400: // M400 finish all moves
  5393. {
  5394. st_synchronize();
  5395. }
  5396. break;
  5397. case 500: // M500 Store settings in EEPROM
  5398. {
  5399. Config_StoreSettings(EEPROM_OFFSET);
  5400. }
  5401. break;
  5402. case 501: // M501 Read settings from EEPROM
  5403. {
  5404. Config_RetrieveSettings(EEPROM_OFFSET);
  5405. }
  5406. break;
  5407. case 502: // M502 Revert to default settings
  5408. {
  5409. Config_ResetDefault();
  5410. }
  5411. break;
  5412. case 503: // M503 print settings currently in memory
  5413. {
  5414. Config_PrintSettings();
  5415. }
  5416. break;
  5417. case 509: //M509 Force language selection
  5418. {
  5419. lang_reset();
  5420. SERIAL_ECHO_START;
  5421. SERIAL_PROTOCOLPGM(("LANG SEL FORCED"));
  5422. }
  5423. break;
  5424. #ifdef ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED
  5425. case 540:
  5426. {
  5427. if(code_seen('S')) abort_on_endstop_hit = code_value() > 0;
  5428. }
  5429. break;
  5430. #endif
  5431. #ifdef CUSTOM_M_CODE_SET_Z_PROBE_OFFSET
  5432. case CUSTOM_M_CODE_SET_Z_PROBE_OFFSET:
  5433. {
  5434. float value;
  5435. if (code_seen('Z'))
  5436. {
  5437. value = code_value();
  5438. if ((Z_PROBE_OFFSET_RANGE_MIN <= value) && (value <= Z_PROBE_OFFSET_RANGE_MAX))
  5439. {
  5440. zprobe_zoffset = -value; // compare w/ line 278 of ConfigurationStore.cpp
  5441. SERIAL_ECHO_START;
  5442. SERIAL_ECHOLNRPGM(CAT4(MSG_ZPROBE_ZOFFSET, " ", _T(MSG_OK),PSTR("")));
  5443. SERIAL_PROTOCOLLN("");
  5444. }
  5445. else
  5446. {
  5447. SERIAL_ECHO_START;
  5448. SERIAL_ECHORPGM(MSG_ZPROBE_ZOFFSET);
  5449. SERIAL_ECHORPGM(MSG_Z_MIN);
  5450. SERIAL_ECHO(Z_PROBE_OFFSET_RANGE_MIN);
  5451. SERIAL_ECHORPGM(MSG_Z_MAX);
  5452. SERIAL_ECHO(Z_PROBE_OFFSET_RANGE_MAX);
  5453. SERIAL_PROTOCOLLN("");
  5454. }
  5455. }
  5456. else
  5457. {
  5458. SERIAL_ECHO_START;
  5459. SERIAL_ECHOLNRPGM(CAT2(MSG_ZPROBE_ZOFFSET, PSTR(" : ")));
  5460. SERIAL_ECHO(-zprobe_zoffset);
  5461. SERIAL_PROTOCOLLN("");
  5462. }
  5463. break;
  5464. }
  5465. #endif // CUSTOM_M_CODE_SET_Z_PROBE_OFFSET
  5466. #ifdef FILAMENTCHANGEENABLE
  5467. case 600: //Pause for filament change X[pos] Y[pos] Z[relative lift] E[initial retract] L[later retract distance for removal]
  5468. {
  5469. st_synchronize();
  5470. float lastpos[4];
  5471. if (farm_mode)
  5472. {
  5473. prusa_statistics(22);
  5474. }
  5475. feedmultiplyBckp=feedmultiply;
  5476. int8_t TooLowZ = 0;
  5477. float HotendTempBckp = degTargetHotend(active_extruder);
  5478. int fanSpeedBckp = fanSpeed;
  5479. lastpos[X_AXIS]=current_position[X_AXIS];
  5480. lastpos[Y_AXIS]=current_position[Y_AXIS];
  5481. lastpos[Z_AXIS]=current_position[Z_AXIS];
  5482. lastpos[E_AXIS]=current_position[E_AXIS];
  5483. //Restract extruder
  5484. if(code_seen('E'))
  5485. {
  5486. current_position[E_AXIS]+= code_value();
  5487. }
  5488. else
  5489. {
  5490. #ifdef FILAMENTCHANGE_FIRSTRETRACT
  5491. current_position[E_AXIS]+= FILAMENTCHANGE_FIRSTRETRACT ;
  5492. #endif
  5493. }
  5494. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], FILAMENTCHANGE_RFEED, active_extruder);
  5495. //Lift Z
  5496. if(code_seen('Z'))
  5497. {
  5498. current_position[Z_AXIS]+= code_value();
  5499. }
  5500. else
  5501. {
  5502. #ifdef FILAMENTCHANGE_ZADD
  5503. current_position[Z_AXIS]+= FILAMENTCHANGE_ZADD ;
  5504. if(current_position[Z_AXIS] < 10){
  5505. current_position[Z_AXIS]+= 10 ;
  5506. TooLowZ = 1;
  5507. }else{
  5508. TooLowZ = 0;
  5509. }
  5510. #endif
  5511. }
  5512. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], FILAMENTCHANGE_ZFEED, active_extruder);
  5513. //Move XY to side
  5514. if(code_seen('X'))
  5515. {
  5516. current_position[X_AXIS]+= code_value();
  5517. }
  5518. else
  5519. {
  5520. #ifdef FILAMENTCHANGE_XPOS
  5521. current_position[X_AXIS]= FILAMENTCHANGE_XPOS ;
  5522. #endif
  5523. }
  5524. if(code_seen('Y'))
  5525. {
  5526. current_position[Y_AXIS]= code_value();
  5527. }
  5528. else
  5529. {
  5530. #ifdef FILAMENTCHANGE_YPOS
  5531. current_position[Y_AXIS]= FILAMENTCHANGE_YPOS ;
  5532. #endif
  5533. }
  5534. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], FILAMENTCHANGE_XYFEED, active_extruder);
  5535. st_synchronize();
  5536. KEEPALIVE_STATE(PAUSED_FOR_USER);
  5537. uint8_t cnt = 0;
  5538. int counterBeep = 0;
  5539. fanSpeed = 0;
  5540. unsigned long waiting_start_time = millis();
  5541. uint8_t wait_for_user_state = 0;
  5542. lcd_display_message_fullscreen_P(_T(MSG_PRESS_TO_UNLOAD));
  5543. //-//
  5544. bool bFirst=true;
  5545. while (!(wait_for_user_state == 0 && lcd_clicked())){
  5546. //cnt++;
  5547. manage_heater();
  5548. manage_inactivity(true);
  5549. #if BEEPER > 0
  5550. if (counterBeep == 500) {
  5551. counterBeep = 0;
  5552. }
  5553. SET_OUTPUT(BEEPER);
  5554. if (counterBeep == 0) {
  5555. //-//
  5556. //if(eSoundMode==e_SOUND_MODE_LOUD)
  5557. if((eSoundMode==e_SOUND_MODE_LOUD)||((eSoundMode==e_SOUND_MODE_ONCE)&&bFirst))
  5558. {
  5559. bFirst=false;
  5560. WRITE(BEEPER, HIGH);
  5561. }
  5562. }
  5563. if (counterBeep == 20) {
  5564. WRITE(BEEPER, LOW);
  5565. }
  5566. counterBeep++;
  5567. #endif
  5568. switch (wait_for_user_state) {
  5569. case 0:
  5570. delay_keep_alive(4);
  5571. if (millis() > waiting_start_time + (unsigned long)M600_TIMEOUT * 1000) {
  5572. lcd_display_message_fullscreen_P(_i("Press knob to preheat nozzle and continue."));////MSG_PRESS_TO_PREHEAT c=20 r=4
  5573. wait_for_user_state = 1;
  5574. setTargetHotend(0, 0);
  5575. setTargetHotend(0, 1);
  5576. setTargetHotend(0, 2);
  5577. st_synchronize();
  5578. disable_e0();
  5579. disable_e1();
  5580. disable_e2();
  5581. }
  5582. break;
  5583. case 1:
  5584. delay_keep_alive(4);
  5585. if (lcd_clicked()) {
  5586. setTargetHotend(HotendTempBckp, active_extruder);
  5587. lcd_wait_for_heater();
  5588. wait_for_user_state = 2;
  5589. }
  5590. break;
  5591. case 2:
  5592. if (abs(degTargetHotend(active_extruder) - degHotend(active_extruder)) < 1) {
  5593. lcd_display_message_fullscreen_P(_T(MSG_PRESS_TO_UNLOAD));
  5594. waiting_start_time = millis();
  5595. wait_for_user_state = 0;
  5596. }
  5597. else {
  5598. counterBeep = 20; //beeper will be inactive during waiting for nozzle preheat
  5599. lcd_set_cursor(1, 4);
  5600. lcd_print(ftostr3(degHotend(active_extruder)));
  5601. }
  5602. break;
  5603. }
  5604. }
  5605. WRITE(BEEPER, LOW);
  5606. lcd_change_fil_state = 0;
  5607. // Unload filament
  5608. lcd_display_message_fullscreen_P(_T(MSG_UNLOADING_FILAMENT));
  5609. KEEPALIVE_STATE(IN_HANDLER);
  5610. custom_message = true;
  5611. lcd_setstatuspgm(_T(MSG_UNLOADING_FILAMENT));
  5612. if (code_seen('L'))
  5613. {
  5614. current_position[E_AXIS] += code_value();
  5615. }
  5616. else
  5617. {
  5618. #ifdef SNMM
  5619. #else
  5620. #ifdef FILAMENTCHANGE_FINALRETRACT
  5621. current_position[E_AXIS] += FILAMENTCHANGE_FINALRETRACT;
  5622. #endif
  5623. #endif // SNMM
  5624. }
  5625. #ifdef SNMM
  5626. current_position[E_AXIS] += 12;
  5627. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3500, active_extruder);
  5628. current_position[E_AXIS] += 6;
  5629. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 5000, active_extruder);
  5630. current_position[E_AXIS] += (FIL_LOAD_LENGTH * -1);
  5631. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 5000, active_extruder);
  5632. st_synchronize();
  5633. current_position[E_AXIS] += (FIL_COOLING);
  5634. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 50, active_extruder);
  5635. current_position[E_AXIS] += (FIL_COOLING*-1);
  5636. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 50, active_extruder);
  5637. current_position[E_AXIS] += (bowden_length[snmm_extruder] * -1);
  5638. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000, active_extruder);
  5639. st_synchronize();
  5640. #else
  5641. // plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], FILAMENTCHANGE_RFEED, active_extruder);
  5642. //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3500 / 60, active_extruder);
  5643. current_position[E_AXIS] -= FILAMENTCHANGE_FINALRETRACT;
  5644. st_synchronize();
  5645. #ifdef TMC2130
  5646. uint8_t tmc2130_current_r_bckp = tmc2130_current_r[E_AXIS];
  5647. tmc2130_set_current_r(E_AXIS, TMC2130_UNLOAD_CURRENT_R);
  5648. #else
  5649. st_current_set(2, 200); //set lower E motor current for unload to protect filament sensor and ptfe tube
  5650. float tmp_motor[3] = DEFAULT_PWM_MOTOR_CURRENT;
  5651. float tmp_motor_loud[3] = DEFAULT_PWM_MOTOR_CURRENT_LOUD;
  5652. #endif //TMC2130
  5653. current_position[E_AXIS] -= 45;
  5654. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 5200 / 60, active_extruder);
  5655. st_synchronize();
  5656. current_position[E_AXIS] -= 15;
  5657. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 1000 / 60, active_extruder);
  5658. st_synchronize();
  5659. current_position[E_AXIS] -= 20;
  5660. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 1000 / 60, active_extruder);
  5661. st_synchronize();
  5662. #ifdef TMC2130
  5663. tmc2130_set_current_r(E_AXIS, tmc2130_current_r_bckp);
  5664. #else
  5665. uint8_t silentMode = eeprom_read_byte((uint8_t*)EEPROM_SILENT);
  5666. if(silentMode != SILENT_MODE_POWER) st_current_set(2, tmp_motor[2]); //set E back to normal operation currents
  5667. else st_current_set(2, tmp_motor_loud[2]);
  5668. #endif //TMC2130
  5669. #endif // SNMM
  5670. //finish moves
  5671. st_synchronize();
  5672. //disable extruder steppers so filament can be removed
  5673. disable_e0();
  5674. disable_e1();
  5675. disable_e2();
  5676. delay(100);
  5677. #ifdef SNMM_V2
  5678. fprintf_P(uart2io, PSTR("U0\n"));
  5679. // get response
  5680. bool response = mmu_get_reponse(false);
  5681. if (!response) mmu_not_responding();
  5682. #else
  5683. lcd_display_message_fullscreen_P(_T(MSG_PULL_OUT_FILAMENT));
  5684. WRITE(BEEPER, HIGH);
  5685. counterBeep = 0;
  5686. while(!lcd_clicked() && (counterBeep < 50)) {
  5687. if(counterBeep > 5) WRITE(BEEPER, LOW);
  5688. delay_keep_alive(100);
  5689. counterBeep++;
  5690. }
  5691. WRITE(BEEPER, LOW);
  5692. #endif
  5693. KEEPALIVE_STATE(PAUSED_FOR_USER);
  5694. lcd_change_fil_state = lcd_show_fullscreen_message_yes_no_and_wait_P(_i("Was filament unload successful?"), false, true);////MSG_UNLOAD_SUCCESSFUL c=20 r=2
  5695. if (lcd_change_fil_state == 0) lcd_show_fullscreen_message_and_wait_P(_i("Please open idler and remove filament manually."));////MSG_CHECK_IDLER c=20 r=4
  5696. //lcd_return_to_status();
  5697. lcd_update_enable(true);
  5698. #ifdef SNMM_V2
  5699. mmu_M600_load_filament();
  5700. #else
  5701. M600_load_filament();
  5702. #endif
  5703. //Wait for user to check the state
  5704. lcd_change_fil_state = 0;
  5705. while ((lcd_change_fil_state == 0)||(lcd_change_fil_state != 1)){
  5706. lcd_change_fil_state = 0;
  5707. KEEPALIVE_STATE(PAUSED_FOR_USER);
  5708. lcd_alright();
  5709. KEEPALIVE_STATE(IN_HANDLER);
  5710. switch(lcd_change_fil_state){
  5711. // Filament failed to load so load it again
  5712. case 2:
  5713. #ifdef SNMM_V2
  5714. mmu_M600_load_filament(); //change to "wrong filament loaded" option?
  5715. #else
  5716. M600_load_filament_movements();
  5717. #endif
  5718. break;
  5719. // Filament loaded properly but color is not clear
  5720. case 3:
  5721. current_position[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  5722. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2, active_extruder);
  5723. lcd_loading_color();
  5724. break;
  5725. // Everything good
  5726. default:
  5727. lcd_change_success();
  5728. lcd_update_enable(true);
  5729. break;
  5730. }
  5731. }
  5732. //Not let's go back to print
  5733. fanSpeed = fanSpeedBckp;
  5734. //Feed a little of filament to stabilize pressure
  5735. current_position[E_AXIS]+= FILAMENTCHANGE_RECFEED;
  5736. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], FILAMENTCHANGE_EXFEED, active_extruder);
  5737. //Retract
  5738. current_position[E_AXIS]+= FILAMENTCHANGE_FIRSTRETRACT;
  5739. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], FILAMENTCHANGE_RFEED, active_extruder);
  5740. //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 70, active_extruder); //should do nothing
  5741. //Move XY back
  5742. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], FILAMENTCHANGE_XYFEED, active_extruder);
  5743. //Move Z back
  5744. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], current_position[E_AXIS], FILAMENTCHANGE_ZFEED, active_extruder);
  5745. current_position[E_AXIS]= current_position[E_AXIS] - FILAMENTCHANGE_FIRSTRETRACT;
  5746. //Unretract
  5747. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], current_position[E_AXIS], FILAMENTCHANGE_RFEED, active_extruder);
  5748. //Set E position to original
  5749. plan_set_e_position(lastpos[E_AXIS]);
  5750. memcpy(current_position, lastpos, sizeof(lastpos));
  5751. memcpy(destination, current_position, sizeof(current_position));
  5752. //Recover feed rate
  5753. feedmultiply=feedmultiplyBckp;
  5754. char cmd[9];
  5755. sprintf_P(cmd, PSTR("M220 S%i"), feedmultiplyBckp);
  5756. enquecommand(cmd);
  5757. lcd_setstatuspgm(_T(WELCOME_MSG));
  5758. custom_message = false;
  5759. custom_message_type = 0;
  5760. }
  5761. break;
  5762. #endif //FILAMENTCHANGEENABLE
  5763. case 601: {
  5764. if(lcd_commands_type == 0) lcd_commands_type = LCD_COMMAND_LONG_PAUSE;
  5765. }
  5766. break;
  5767. case 602: {
  5768. if(lcd_commands_type == 0) lcd_commands_type = LCD_COMMAND_LONG_PAUSE_RESUME;
  5769. }
  5770. break;
  5771. #ifdef PINDA_THERMISTOR
  5772. case 860: // M860 - Wait for PINDA thermistor to reach target temperature.
  5773. {
  5774. int set_target_pinda = 0;
  5775. if (code_seen('S')) {
  5776. set_target_pinda = code_value();
  5777. }
  5778. else {
  5779. break;
  5780. }
  5781. LCD_MESSAGERPGM(_T(MSG_PLEASE_WAIT));
  5782. SERIAL_PROTOCOLPGM("Wait for PINDA target temperature:");
  5783. SERIAL_PROTOCOL(set_target_pinda);
  5784. SERIAL_PROTOCOLLN("");
  5785. codenum = millis();
  5786. cancel_heatup = false;
  5787. bool is_pinda_cooling = false;
  5788. if ((degTargetBed() == 0) && (degTargetHotend(0) == 0)) {
  5789. is_pinda_cooling = true;
  5790. }
  5791. while ( ((!is_pinda_cooling) && (!cancel_heatup) && (current_temperature_pinda < set_target_pinda)) || (is_pinda_cooling && (current_temperature_pinda > set_target_pinda)) ) {
  5792. if ((millis() - codenum) > 1000) //Print Temp Reading every 1 second while waiting.
  5793. {
  5794. SERIAL_PROTOCOLPGM("P:");
  5795. SERIAL_PROTOCOL_F(current_temperature_pinda, 1);
  5796. SERIAL_PROTOCOLPGM("/");
  5797. SERIAL_PROTOCOL(set_target_pinda);
  5798. SERIAL_PROTOCOLLN("");
  5799. codenum = millis();
  5800. }
  5801. manage_heater();
  5802. manage_inactivity();
  5803. lcd_update(0);
  5804. }
  5805. LCD_MESSAGERPGM(_T(MSG_OK));
  5806. break;
  5807. }
  5808. case 861: // M861 - Set/Read PINDA temperature compensation offsets
  5809. if (code_seen('?')) { // ? - Print out current EEPROM offset values
  5810. uint8_t cal_status = calibration_status_pinda();
  5811. int16_t usteps = 0;
  5812. cal_status ? SERIAL_PROTOCOLLN("PINDA cal status: 1") : SERIAL_PROTOCOLLN("PINDA cal status: 0");
  5813. SERIAL_PROTOCOLLN("index, temp, ustep, um");
  5814. for (uint8_t i = 0; i < 6; i++)
  5815. {
  5816. if(i>0) EEPROM_read_B(EEPROM_PROBE_TEMP_SHIFT + (i-1) * 2, &usteps);
  5817. float mm = ((float)usteps) / axis_steps_per_unit[Z_AXIS];
  5818. i == 0 ? SERIAL_PROTOCOLPGM("n/a") : SERIAL_PROTOCOL(i - 1);
  5819. SERIAL_PROTOCOLPGM(", ");
  5820. SERIAL_PROTOCOL(35 + (i * 5));
  5821. SERIAL_PROTOCOLPGM(", ");
  5822. SERIAL_PROTOCOL(usteps);
  5823. SERIAL_PROTOCOLPGM(", ");
  5824. SERIAL_PROTOCOL(mm * 1000);
  5825. SERIAL_PROTOCOLLN("");
  5826. }
  5827. }
  5828. else if (code_seen('!')) { // ! - Set factory default values
  5829. eeprom_write_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 1);
  5830. int16_t z_shift = 8; //40C - 20um - 8usteps
  5831. EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT, &z_shift);
  5832. z_shift = 24; //45C - 60um - 24usteps
  5833. EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + 2, &z_shift);
  5834. z_shift = 48; //50C - 120um - 48usteps
  5835. EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + 4, &z_shift);
  5836. z_shift = 80; //55C - 200um - 80usteps
  5837. EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + 6, &z_shift);
  5838. z_shift = 120; //60C - 300um - 120usteps
  5839. EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + 8, &z_shift);
  5840. SERIAL_PROTOCOLLN("factory restored");
  5841. }
  5842. else if (code_seen('Z')) { // Z - Set all values to 0 (effectively disabling PINDA temperature compensation)
  5843. eeprom_write_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 1);
  5844. int16_t z_shift = 0;
  5845. for (uint8_t i = 0; i < 5; i++) EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + i * 2, &z_shift);
  5846. SERIAL_PROTOCOLLN("zerorized");
  5847. }
  5848. else if (code_seen('S')) { // Sxxx Iyyy - Set compensation ustep value S for compensation table index I
  5849. int16_t usteps = code_value();
  5850. if (code_seen('I')) {
  5851. byte index = code_value();
  5852. if ((index >= 0) && (index < 5)) {
  5853. EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + index * 2, &usteps);
  5854. SERIAL_PROTOCOLLN("OK");
  5855. SERIAL_PROTOCOLLN("index, temp, ustep, um");
  5856. for (uint8_t i = 0; i < 6; i++)
  5857. {
  5858. usteps = 0;
  5859. if (i>0) EEPROM_read_B(EEPROM_PROBE_TEMP_SHIFT + (i - 1) * 2, &usteps);
  5860. float mm = ((float)usteps) / axis_steps_per_unit[Z_AXIS];
  5861. i == 0 ? SERIAL_PROTOCOLPGM("n/a") : SERIAL_PROTOCOL(i - 1);
  5862. SERIAL_PROTOCOLPGM(", ");
  5863. SERIAL_PROTOCOL(35 + (i * 5));
  5864. SERIAL_PROTOCOLPGM(", ");
  5865. SERIAL_PROTOCOL(usteps);
  5866. SERIAL_PROTOCOLPGM(", ");
  5867. SERIAL_PROTOCOL(mm * 1000);
  5868. SERIAL_PROTOCOLLN("");
  5869. }
  5870. }
  5871. }
  5872. }
  5873. else {
  5874. SERIAL_PROTOCOLPGM("no valid command");
  5875. }
  5876. break;
  5877. #endif //PINDA_THERMISTOR
  5878. #ifdef LIN_ADVANCE
  5879. case 900: // M900: Set LIN_ADVANCE options.
  5880. gcode_M900();
  5881. break;
  5882. #endif
  5883. case 907: // M907 Set digital trimpot motor current using axis codes.
  5884. {
  5885. #if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
  5886. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) st_current_set(i,code_value());
  5887. if(code_seen('B')) st_current_set(4,code_value());
  5888. if(code_seen('S')) for(int i=0;i<=4;i++) st_current_set(i,code_value());
  5889. #endif
  5890. #ifdef MOTOR_CURRENT_PWM_XY_PIN
  5891. if(code_seen('X')) st_current_set(0, code_value());
  5892. #endif
  5893. #ifdef MOTOR_CURRENT_PWM_Z_PIN
  5894. if(code_seen('Z')) st_current_set(1, code_value());
  5895. #endif
  5896. #ifdef MOTOR_CURRENT_PWM_E_PIN
  5897. if(code_seen('E')) st_current_set(2, code_value());
  5898. #endif
  5899. }
  5900. break;
  5901. case 908: // M908 Control digital trimpot directly.
  5902. {
  5903. #if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
  5904. uint8_t channel,current;
  5905. if(code_seen('P')) channel=code_value();
  5906. if(code_seen('S')) current=code_value();
  5907. digitalPotWrite(channel, current);
  5908. #endif
  5909. }
  5910. break;
  5911. #ifdef TMC2130
  5912. case 910: // M910 TMC2130 init
  5913. {
  5914. tmc2130_init();
  5915. }
  5916. break;
  5917. case 911: // M911 Set TMC2130 holding currents
  5918. {
  5919. if (code_seen('X')) tmc2130_set_current_h(0, code_value());
  5920. if (code_seen('Y')) tmc2130_set_current_h(1, code_value());
  5921. if (code_seen('Z')) tmc2130_set_current_h(2, code_value());
  5922. if (code_seen('E')) tmc2130_set_current_h(3, code_value());
  5923. }
  5924. break;
  5925. case 912: // M912 Set TMC2130 running currents
  5926. {
  5927. if (code_seen('X')) tmc2130_set_current_r(0, code_value());
  5928. if (code_seen('Y')) tmc2130_set_current_r(1, code_value());
  5929. if (code_seen('Z')) tmc2130_set_current_r(2, code_value());
  5930. if (code_seen('E')) tmc2130_set_current_r(3, code_value());
  5931. }
  5932. break;
  5933. case 913: // M913 Print TMC2130 currents
  5934. {
  5935. tmc2130_print_currents();
  5936. }
  5937. break;
  5938. case 914: // M914 Set normal mode
  5939. {
  5940. tmc2130_mode = TMC2130_MODE_NORMAL;
  5941. update_mode_profile();
  5942. tmc2130_init();
  5943. }
  5944. break;
  5945. case 915: // M915 Set silent mode
  5946. {
  5947. tmc2130_mode = TMC2130_MODE_SILENT;
  5948. update_mode_profile();
  5949. tmc2130_init();
  5950. }
  5951. break;
  5952. case 916: // M916 Set sg_thrs
  5953. {
  5954. if (code_seen('X')) tmc2130_sg_thr[X_AXIS] = code_value();
  5955. if (code_seen('Y')) tmc2130_sg_thr[Y_AXIS] = code_value();
  5956. if (code_seen('Z')) tmc2130_sg_thr[Z_AXIS] = code_value();
  5957. if (code_seen('E')) tmc2130_sg_thr[E_AXIS] = code_value();
  5958. for (uint8_t a = X_AXIS; a <= E_AXIS; a++)
  5959. printf_P(_N("tmc2130_sg_thr[%c]=%d\n"), "XYZE"[a], tmc2130_sg_thr[a]);
  5960. }
  5961. break;
  5962. case 917: // M917 Set TMC2130 pwm_ampl
  5963. {
  5964. if (code_seen('X')) tmc2130_set_pwm_ampl(0, code_value());
  5965. if (code_seen('Y')) tmc2130_set_pwm_ampl(1, code_value());
  5966. if (code_seen('Z')) tmc2130_set_pwm_ampl(2, code_value());
  5967. if (code_seen('E')) tmc2130_set_pwm_ampl(3, code_value());
  5968. }
  5969. break;
  5970. case 918: // M918 Set TMC2130 pwm_grad
  5971. {
  5972. if (code_seen('X')) tmc2130_set_pwm_grad(0, code_value());
  5973. if (code_seen('Y')) tmc2130_set_pwm_grad(1, code_value());
  5974. if (code_seen('Z')) tmc2130_set_pwm_grad(2, code_value());
  5975. if (code_seen('E')) tmc2130_set_pwm_grad(3, code_value());
  5976. }
  5977. break;
  5978. #endif //TMC2130
  5979. case 350: // M350 Set microstepping mode. Warning: Steps per unit remains unchanged. S code sets stepping mode for all drivers.
  5980. {
  5981. #ifdef TMC2130
  5982. if(code_seen('E'))
  5983. {
  5984. uint16_t res_new = code_value();
  5985. if ((res_new == 8) || (res_new == 16) || (res_new == 32) || (res_new == 64) || (res_new == 128))
  5986. {
  5987. st_synchronize();
  5988. uint8_t axis = E_AXIS;
  5989. uint16_t res = tmc2130_get_res(axis);
  5990. tmc2130_set_res(axis, res_new);
  5991. if (res_new > res)
  5992. {
  5993. uint16_t fac = (res_new / res);
  5994. axis_steps_per_unit[axis] *= fac;
  5995. position[E_AXIS] *= fac;
  5996. }
  5997. else
  5998. {
  5999. uint16_t fac = (res / res_new);
  6000. axis_steps_per_unit[axis] /= fac;
  6001. position[E_AXIS] /= fac;
  6002. }
  6003. }
  6004. }
  6005. #else //TMC2130
  6006. #if defined(X_MS1_PIN) && X_MS1_PIN > -1
  6007. if(code_seen('S')) for(int i=0;i<=4;i++) microstep_mode(i,code_value());
  6008. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) microstep_mode(i,(uint8_t)code_value());
  6009. if(code_seen('B')) microstep_mode(4,code_value());
  6010. microstep_readings();
  6011. #endif
  6012. #endif //TMC2130
  6013. }
  6014. break;
  6015. case 351: // M351 Toggle MS1 MS2 pins directly, S# determines MS1 or MS2, X# sets the pin high/low.
  6016. {
  6017. #if defined(X_MS1_PIN) && X_MS1_PIN > -1
  6018. if(code_seen('S')) switch((int)code_value())
  6019. {
  6020. case 1:
  6021. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) microstep_ms(i,code_value(),-1);
  6022. if(code_seen('B')) microstep_ms(4,code_value(),-1);
  6023. break;
  6024. case 2:
  6025. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) microstep_ms(i,-1,code_value());
  6026. if(code_seen('B')) microstep_ms(4,-1,code_value());
  6027. break;
  6028. }
  6029. microstep_readings();
  6030. #endif
  6031. }
  6032. break;
  6033. case 701: //M701: load filament
  6034. {
  6035. #ifdef SNMM_V2
  6036. if (code_seen('E'))
  6037. {
  6038. snmm_extruder = code_value();
  6039. }
  6040. #endif
  6041. gcode_M701();
  6042. }
  6043. break;
  6044. case 702:
  6045. {
  6046. #if defined (SNMM) || defined (SNMM_V2)
  6047. if (code_seen('U')) {
  6048. extr_unload_used(); //unload all filaments which were used in current print
  6049. }
  6050. else if (code_seen('C')) {
  6051. extr_unload(); //unload just current filament
  6052. }
  6053. else {
  6054. extr_unload_all(); //unload all filaments
  6055. }
  6056. #else
  6057. custom_message = true;
  6058. custom_message_type = 2;
  6059. lcd_setstatuspgm(_T(MSG_UNLOADING_FILAMENT));
  6060. // extr_unload2();
  6061. current_position[E_AXIS] -= 45;
  6062. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 5200 / 60, active_extruder);
  6063. st_synchronize();
  6064. current_position[E_AXIS] -= 15;
  6065. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 1000 / 60, active_extruder);
  6066. st_synchronize();
  6067. current_position[E_AXIS] -= 20;
  6068. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 1000 / 60, active_extruder);
  6069. st_synchronize();
  6070. lcd_display_message_fullscreen_P(_T(MSG_PULL_OUT_FILAMENT));
  6071. //disable extruder steppers so filament can be removed
  6072. disable_e0();
  6073. disable_e1();
  6074. disable_e2();
  6075. delay(100);
  6076. //-//
  6077. //if(eSoundMode==e_SOUND_MODE_LOUD)
  6078. // Sound_MakeSound_tmp();
  6079. Sound_MakeSound(e_SOUND_CLASS_Prompt,e_SOUND_TYPE_StandardPrompt);
  6080. /*
  6081. WRITE(BEEPER, HIGH);
  6082. uint8_t counterBeep = 0;
  6083. while (!lcd_clicked() && (counterBeep < 50)) {
  6084. if (counterBeep > 5) WRITE(BEEPER, LOW);
  6085. delay_keep_alive(100);
  6086. counterBeep++;
  6087. }
  6088. WRITE(BEEPER, LOW);
  6089. */
  6090. uint8_t counterBeep = 0;
  6091. while (!lcd_clicked() && (counterBeep < 50)) {
  6092. delay_keep_alive(100);
  6093. counterBeep++;
  6094. }
  6095. //-//
  6096. st_synchronize();
  6097. while (lcd_clicked()) delay_keep_alive(100);
  6098. lcd_update_enable(true);
  6099. lcd_setstatuspgm(_T(WELCOME_MSG));
  6100. custom_message = false;
  6101. custom_message_type = 0;
  6102. #endif
  6103. }
  6104. break;
  6105. case 999: // M999: Restart after being stopped
  6106. Stopped = false;
  6107. lcd_reset_alert_level();
  6108. gcode_LastN = Stopped_gcode_LastN;
  6109. FlushSerialRequestResend();
  6110. break;
  6111. default:
  6112. printf_P(PSTR("Unknown M code: %s \n"), cmdbuffer + bufindr + CMDHDRSIZE);
  6113. }
  6114. // printf_P(_N("END M-CODE=%u\n"), mcode_in_progress);
  6115. mcode_in_progress = 0;
  6116. }
  6117. } // end if(code_seen('M')) (end of M codes)
  6118. else if(code_seen('T'))
  6119. {
  6120. int index;
  6121. st_synchronize();
  6122. for (index = 1; *(strchr_pointer + index) == ' ' || *(strchr_pointer + index) == '\t'; index++);
  6123. if ((*(strchr_pointer + index) < '0' || *(strchr_pointer + index) > '9') && *(strchr_pointer + index) != '?') {
  6124. SERIAL_ECHOLNPGM("Invalid T code.");
  6125. }
  6126. else {
  6127. if (*(strchr_pointer + index) == '?') {
  6128. tmp_extruder = choose_extruder_menu();
  6129. }
  6130. else {
  6131. tmp_extruder = code_value();
  6132. }
  6133. snmm_filaments_used |= (1 << tmp_extruder); //for stop print
  6134. #ifdef SNMM_V2
  6135. printf_P(PSTR("T code: %d \n"), tmp_extruder);
  6136. fprintf_P(uart2io, PSTR("T%d\n"), tmp_extruder);
  6137. bool response = mmu_get_reponse(false);
  6138. if (!response) mmu_not_responding();
  6139. snmm_extruder = tmp_extruder; //filament change is finished
  6140. if (*(strchr_pointer + index) == '?') { // for single material usage with mmu
  6141. mmu_load_to_nozzle();
  6142. }
  6143. #endif
  6144. #ifdef SNMM
  6145. #ifdef LIN_ADVANCE
  6146. if (snmm_extruder != tmp_extruder)
  6147. clear_current_adv_vars(); //Check if the selected extruder is not the active one and reset LIN_ADVANCE variables if so.
  6148. #endif
  6149. snmm_extruder = tmp_extruder;
  6150. delay(100);
  6151. disable_e0();
  6152. disable_e1();
  6153. disable_e2();
  6154. pinMode(E_MUX0_PIN, OUTPUT);
  6155. pinMode(E_MUX1_PIN, OUTPUT);
  6156. delay(100);
  6157. SERIAL_ECHO_START;
  6158. SERIAL_ECHO("T:");
  6159. SERIAL_ECHOLN((int)tmp_extruder);
  6160. switch (tmp_extruder) {
  6161. case 1:
  6162. WRITE(E_MUX0_PIN, HIGH);
  6163. WRITE(E_MUX1_PIN, LOW);
  6164. break;
  6165. case 2:
  6166. WRITE(E_MUX0_PIN, LOW);
  6167. WRITE(E_MUX1_PIN, HIGH);
  6168. break;
  6169. case 3:
  6170. WRITE(E_MUX0_PIN, HIGH);
  6171. WRITE(E_MUX1_PIN, HIGH);
  6172. break;
  6173. default:
  6174. WRITE(E_MUX0_PIN, LOW);
  6175. WRITE(E_MUX1_PIN, LOW);
  6176. break;
  6177. }
  6178. delay(100);
  6179. #else
  6180. if (tmp_extruder >= EXTRUDERS) {
  6181. SERIAL_ECHO_START;
  6182. SERIAL_ECHOPGM("T");
  6183. SERIAL_PROTOCOLLN((int)tmp_extruder);
  6184. SERIAL_ECHOLNRPGM(_n("Invalid extruder"));////MSG_INVALID_EXTRUDER c=0 r=0
  6185. }
  6186. else {
  6187. boolean make_move = false;
  6188. if (code_seen('F')) {
  6189. make_move = true;
  6190. next_feedrate = code_value();
  6191. if (next_feedrate > 0.0) {
  6192. feedrate = next_feedrate;
  6193. }
  6194. }
  6195. #if EXTRUDERS > 1
  6196. if (tmp_extruder != active_extruder) {
  6197. // Save current position to return to after applying extruder offset
  6198. memcpy(destination, current_position, sizeof(destination));
  6199. // Offset extruder (only by XY)
  6200. int i;
  6201. for (i = 0; i < 2; i++) {
  6202. current_position[i] = current_position[i] -
  6203. extruder_offset[i][active_extruder] +
  6204. extruder_offset[i][tmp_extruder];
  6205. }
  6206. // Set the new active extruder and position
  6207. active_extruder = tmp_extruder;
  6208. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  6209. // Move to the old position if 'F' was in the parameters
  6210. if (make_move && Stopped == false) {
  6211. prepare_move();
  6212. }
  6213. }
  6214. #endif
  6215. SERIAL_ECHO_START;
  6216. SERIAL_ECHORPGM(_n("Active Extruder: "));////MSG_ACTIVE_EXTRUDER c=0 r=0
  6217. SERIAL_PROTOCOLLN((int)active_extruder);
  6218. }
  6219. #endif
  6220. }
  6221. } // end if(code_seen('T')) (end of T codes)
  6222. #ifdef DEBUG_DCODES
  6223. else if (code_seen('D')) // D codes (debug)
  6224. {
  6225. switch((int)code_value())
  6226. {
  6227. case -1: // D-1 - Endless loop
  6228. dcode__1(); break;
  6229. case 0: // D0 - Reset
  6230. dcode_0(); break;
  6231. case 1: // D1 - Clear EEPROM
  6232. dcode_1(); break;
  6233. case 2: // D2 - Read/Write RAM
  6234. dcode_2(); break;
  6235. case 3: // D3 - Read/Write EEPROM
  6236. dcode_3(); break;
  6237. case 4: // D4 - Read/Write PIN
  6238. dcode_4(); break;
  6239. case 5: // D5 - Read/Write FLASH
  6240. // dcode_5(); break;
  6241. break;
  6242. case 6: // D6 - Read/Write external FLASH
  6243. dcode_6(); break;
  6244. case 7: // D7 - Read/Write Bootloader
  6245. dcode_7(); break;
  6246. case 8: // D8 - Read/Write PINDA
  6247. dcode_8(); break;
  6248. case 9: // D9 - Read/Write ADC
  6249. dcode_9(); break;
  6250. case 10: // D10 - XYZ calibration = OK
  6251. dcode_10(); break;
  6252. #ifdef TMC2130
  6253. case 2130: // D9125 - TMC2130
  6254. dcode_2130(); break;
  6255. #endif //TMC2130
  6256. #ifdef FILAMENT_SENSOR
  6257. case 9125: // D9125 - FILAMENT_SENSOR
  6258. dcode_9125(); break;
  6259. #endif //FILAMENT_SENSOR
  6260. }
  6261. }
  6262. #endif //DEBUG_DCODES
  6263. else
  6264. {
  6265. SERIAL_ECHO_START;
  6266. SERIAL_ECHORPGM(MSG_UNKNOWN_COMMAND);
  6267. SERIAL_ECHO(CMDBUFFER_CURRENT_STRING);
  6268. SERIAL_ECHOLNPGM("\"(2)");
  6269. }
  6270. KEEPALIVE_STATE(NOT_BUSY);
  6271. ClearToSend();
  6272. }
  6273. void FlushSerialRequestResend()
  6274. {
  6275. //char cmdbuffer[bufindr][100]="Resend:";
  6276. MYSERIAL.flush();
  6277. printf_P(_N("%S: %ld\n%S\n"), _i("Resend"), gcode_LastN + 1, _T(MSG_OK));
  6278. }
  6279. // Confirm the execution of a command, if sent from a serial line.
  6280. // Execution of a command from a SD card will not be confirmed.
  6281. void ClearToSend()
  6282. {
  6283. previous_millis_cmd = millis();
  6284. if ((CMDBUFFER_CURRENT_TYPE == CMDBUFFER_CURRENT_TYPE_USB) || (CMDBUFFER_CURRENT_TYPE == CMDBUFFER_CURRENT_TYPE_USB_WITH_LINENR))
  6285. SERIAL_PROTOCOLLNRPGM(_T(MSG_OK));
  6286. }
  6287. #if MOTHERBOARD == BOARD_RAMBO_MINI_1_0 || MOTHERBOARD == BOARD_RAMBO_MINI_1_3
  6288. void update_currents() {
  6289. float current_high[3] = DEFAULT_PWM_MOTOR_CURRENT_LOUD;
  6290. float current_low[3] = DEFAULT_PWM_MOTOR_CURRENT;
  6291. float tmp_motor[3];
  6292. //SERIAL_ECHOLNPGM("Currents updated: ");
  6293. if (destination[Z_AXIS] < Z_SILENT) {
  6294. //SERIAL_ECHOLNPGM("LOW");
  6295. for (uint8_t i = 0; i < 3; i++) {
  6296. st_current_set(i, current_low[i]);
  6297. /*MYSERIAL.print(int(i));
  6298. SERIAL_ECHOPGM(": ");
  6299. MYSERIAL.println(current_low[i]);*/
  6300. }
  6301. }
  6302. else if (destination[Z_AXIS] > Z_HIGH_POWER) {
  6303. //SERIAL_ECHOLNPGM("HIGH");
  6304. for (uint8_t i = 0; i < 3; i++) {
  6305. st_current_set(i, current_high[i]);
  6306. /*MYSERIAL.print(int(i));
  6307. SERIAL_ECHOPGM(": ");
  6308. MYSERIAL.println(current_high[i]);*/
  6309. }
  6310. }
  6311. else {
  6312. for (uint8_t i = 0; i < 3; i++) {
  6313. float q = current_low[i] - Z_SILENT*((current_high[i] - current_low[i]) / (Z_HIGH_POWER - Z_SILENT));
  6314. tmp_motor[i] = ((current_high[i] - current_low[i]) / (Z_HIGH_POWER - Z_SILENT))*destination[Z_AXIS] + q;
  6315. st_current_set(i, tmp_motor[i]);
  6316. /*MYSERIAL.print(int(i));
  6317. SERIAL_ECHOPGM(": ");
  6318. MYSERIAL.println(tmp_motor[i]);*/
  6319. }
  6320. }
  6321. }
  6322. #endif //MOTHERBOARD == BOARD_RAMBO_MINI_1_0 || MOTHERBOARD == BOARD_RAMBO_MINI_1_3
  6323. void get_coordinates()
  6324. {
  6325. bool seen[4]={false,false,false,false};
  6326. for(int8_t i=0; i < NUM_AXIS; i++) {
  6327. if(code_seen(axis_codes[i]))
  6328. {
  6329. bool relative = axis_relative_modes[i] || relative_mode;
  6330. destination[i] = (float)code_value();
  6331. if (i == E_AXIS) {
  6332. float emult = extruder_multiplier[active_extruder];
  6333. if (emult != 1.) {
  6334. if (! relative) {
  6335. destination[i] -= current_position[i];
  6336. relative = true;
  6337. }
  6338. destination[i] *= emult;
  6339. }
  6340. }
  6341. if (relative)
  6342. destination[i] += current_position[i];
  6343. seen[i]=true;
  6344. #if MOTHERBOARD == BOARD_RAMBO_MINI_1_0 || MOTHERBOARD == BOARD_RAMBO_MINI_1_3
  6345. if (i == Z_AXIS && SilentModeMenu == SILENT_MODE_AUTO) update_currents();
  6346. #endif //MOTHERBOARD == BOARD_RAMBO_MINI_1_0 || MOTHERBOARD == BOARD_RAMBO_MINI_1_3
  6347. }
  6348. else destination[i] = current_position[i]; //Are these else lines really needed?
  6349. }
  6350. if(code_seen('F')) {
  6351. next_feedrate = code_value();
  6352. #ifdef MAX_SILENT_FEEDRATE
  6353. if (tmc2130_mode == TMC2130_MODE_SILENT)
  6354. if (next_feedrate > MAX_SILENT_FEEDRATE) next_feedrate = MAX_SILENT_FEEDRATE;
  6355. #endif //MAX_SILENT_FEEDRATE
  6356. if(next_feedrate > 0.0) feedrate = next_feedrate;
  6357. if (!seen[0] && !seen[1] && !seen[2] && seen[3])
  6358. {
  6359. // float e_max_speed =
  6360. // printf_P(PSTR("E MOVE speed %7.3f\n"), feedrate / 60)
  6361. }
  6362. }
  6363. }
  6364. void get_arc_coordinates()
  6365. {
  6366. #ifdef SF_ARC_FIX
  6367. bool relative_mode_backup = relative_mode;
  6368. relative_mode = true;
  6369. #endif
  6370. get_coordinates();
  6371. #ifdef SF_ARC_FIX
  6372. relative_mode=relative_mode_backup;
  6373. #endif
  6374. if(code_seen('I')) {
  6375. offset[0] = code_value();
  6376. }
  6377. else {
  6378. offset[0] = 0.0;
  6379. }
  6380. if(code_seen('J')) {
  6381. offset[1] = code_value();
  6382. }
  6383. else {
  6384. offset[1] = 0.0;
  6385. }
  6386. }
  6387. void clamp_to_software_endstops(float target[3])
  6388. {
  6389. #ifdef DEBUG_DISABLE_SWLIMITS
  6390. return;
  6391. #endif //DEBUG_DISABLE_SWLIMITS
  6392. world2machine_clamp(target[0], target[1]);
  6393. // Clamp the Z coordinate.
  6394. if (min_software_endstops) {
  6395. float negative_z_offset = 0;
  6396. #ifdef ENABLE_AUTO_BED_LEVELING
  6397. if (Z_PROBE_OFFSET_FROM_EXTRUDER < 0) negative_z_offset = negative_z_offset + Z_PROBE_OFFSET_FROM_EXTRUDER;
  6398. if (add_homing[Z_AXIS] < 0) negative_z_offset = negative_z_offset + add_homing[Z_AXIS];
  6399. #endif
  6400. if (target[Z_AXIS] < min_pos[Z_AXIS]+negative_z_offset) target[Z_AXIS] = min_pos[Z_AXIS]+negative_z_offset;
  6401. }
  6402. if (max_software_endstops) {
  6403. if (target[Z_AXIS] > max_pos[Z_AXIS]) target[Z_AXIS] = max_pos[Z_AXIS];
  6404. }
  6405. }
  6406. #ifdef MESH_BED_LEVELING
  6407. void mesh_plan_buffer_line(const float &x, const float &y, const float &z, const float &e, const float &feed_rate, const uint8_t extruder) {
  6408. float dx = x - current_position[X_AXIS];
  6409. float dy = y - current_position[Y_AXIS];
  6410. float dz = z - current_position[Z_AXIS];
  6411. int n_segments = 0;
  6412. if (mbl.active) {
  6413. float len = abs(dx) + abs(dy);
  6414. if (len > 0)
  6415. // Split to 3cm segments or shorter.
  6416. n_segments = int(ceil(len / 30.f));
  6417. }
  6418. if (n_segments > 1) {
  6419. float de = e - current_position[E_AXIS];
  6420. for (int i = 1; i < n_segments; ++ i) {
  6421. float t = float(i) / float(n_segments);
  6422. if (saved_printing || (mbl.active == false)) return;
  6423. plan_buffer_line(
  6424. current_position[X_AXIS] + t * dx,
  6425. current_position[Y_AXIS] + t * dy,
  6426. current_position[Z_AXIS] + t * dz,
  6427. current_position[E_AXIS] + t * de,
  6428. feed_rate, extruder);
  6429. }
  6430. }
  6431. // The rest of the path.
  6432. plan_buffer_line(x, y, z, e, feed_rate, extruder);
  6433. current_position[X_AXIS] = x;
  6434. current_position[Y_AXIS] = y;
  6435. current_position[Z_AXIS] = z;
  6436. current_position[E_AXIS] = e;
  6437. }
  6438. #endif // MESH_BED_LEVELING
  6439. void prepare_move()
  6440. {
  6441. clamp_to_software_endstops(destination);
  6442. previous_millis_cmd = millis();
  6443. // Do not use feedmultiply for E or Z only moves
  6444. if( (current_position[X_AXIS] == destination [X_AXIS]) && (current_position[Y_AXIS] == destination [Y_AXIS])) {
  6445. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  6446. }
  6447. else {
  6448. #ifdef MESH_BED_LEVELING
  6449. mesh_plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate*feedmultiply*(1./(60.f*100.f)), active_extruder);
  6450. #else
  6451. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate*feedmultiply*(1./(60.f*100.f)), active_extruder);
  6452. #endif
  6453. }
  6454. for(int8_t i=0; i < NUM_AXIS; i++) {
  6455. current_position[i] = destination[i];
  6456. }
  6457. }
  6458. void prepare_arc_move(char isclockwise) {
  6459. float r = hypot(offset[X_AXIS], offset[Y_AXIS]); // Compute arc radius for mc_arc
  6460. // Trace the arc
  6461. mc_arc(current_position, destination, offset, X_AXIS, Y_AXIS, Z_AXIS, feedrate*feedmultiply/60/100.0, r, isclockwise, active_extruder);
  6462. // As far as the parser is concerned, the position is now == target. In reality the
  6463. // motion control system might still be processing the action and the real tool position
  6464. // in any intermediate location.
  6465. for(int8_t i=0; i < NUM_AXIS; i++) {
  6466. current_position[i] = destination[i];
  6467. }
  6468. previous_millis_cmd = millis();
  6469. }
  6470. #if defined(CONTROLLERFAN_PIN) && CONTROLLERFAN_PIN > -1
  6471. #if defined(FAN_PIN)
  6472. #if CONTROLLERFAN_PIN == FAN_PIN
  6473. #error "You cannot set CONTROLLERFAN_PIN equal to FAN_PIN"
  6474. #endif
  6475. #endif
  6476. unsigned long lastMotor = 0; //Save the time for when a motor was turned on last
  6477. unsigned long lastMotorCheck = 0;
  6478. void controllerFan()
  6479. {
  6480. if ((millis() - lastMotorCheck) >= 2500) //Not a time critical function, so we only check every 2500ms
  6481. {
  6482. lastMotorCheck = millis();
  6483. if(!READ(X_ENABLE_PIN) || !READ(Y_ENABLE_PIN) || !READ(Z_ENABLE_PIN) || (soft_pwm_bed > 0)
  6484. #if EXTRUDERS > 2
  6485. || !READ(E2_ENABLE_PIN)
  6486. #endif
  6487. #if EXTRUDER > 1
  6488. #if defined(X2_ENABLE_PIN) && X2_ENABLE_PIN > -1
  6489. || !READ(X2_ENABLE_PIN)
  6490. #endif
  6491. || !READ(E1_ENABLE_PIN)
  6492. #endif
  6493. || !READ(E0_ENABLE_PIN)) //If any of the drivers are enabled...
  6494. {
  6495. lastMotor = millis(); //... set time to NOW so the fan will turn on
  6496. }
  6497. if ((millis() - lastMotor) >= (CONTROLLERFAN_SECS*1000UL) || lastMotor == 0) //If the last time any driver was enabled, is longer since than CONTROLLERSEC...
  6498. {
  6499. digitalWrite(CONTROLLERFAN_PIN, 0);
  6500. analogWrite(CONTROLLERFAN_PIN, 0);
  6501. }
  6502. else
  6503. {
  6504. // allows digital or PWM fan output to be used (see M42 handling)
  6505. digitalWrite(CONTROLLERFAN_PIN, CONTROLLERFAN_SPEED);
  6506. analogWrite(CONTROLLERFAN_PIN, CONTROLLERFAN_SPEED);
  6507. }
  6508. }
  6509. }
  6510. #endif
  6511. #ifdef TEMP_STAT_LEDS
  6512. static bool blue_led = false;
  6513. static bool red_led = false;
  6514. static uint32_t stat_update = 0;
  6515. void handle_status_leds(void) {
  6516. float max_temp = 0.0;
  6517. if(millis() > stat_update) {
  6518. stat_update += 500; // Update every 0.5s
  6519. for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) {
  6520. max_temp = max(max_temp, degHotend(cur_extruder));
  6521. max_temp = max(max_temp, degTargetHotend(cur_extruder));
  6522. }
  6523. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  6524. max_temp = max(max_temp, degTargetBed());
  6525. max_temp = max(max_temp, degBed());
  6526. #endif
  6527. if((max_temp > 55.0) && (red_led == false)) {
  6528. digitalWrite(STAT_LED_RED, 1);
  6529. digitalWrite(STAT_LED_BLUE, 0);
  6530. red_led = true;
  6531. blue_led = false;
  6532. }
  6533. if((max_temp < 54.0) && (blue_led == false)) {
  6534. digitalWrite(STAT_LED_RED, 0);
  6535. digitalWrite(STAT_LED_BLUE, 1);
  6536. red_led = false;
  6537. blue_led = true;
  6538. }
  6539. }
  6540. }
  6541. #endif
  6542. #ifdef SAFETYTIMER
  6543. /**
  6544. * @brief Turn off heating after safetytimer_inactive_time milliseconds of inactivity
  6545. *
  6546. * Full screen blocking notification message is shown after heater turning off.
  6547. * Paused print is not considered inactivity, as nozzle is cooled anyway and bed cooling would
  6548. * damage print.
  6549. *
  6550. * If safetytimer_inactive_time is zero, feature is disabled (heating is never turned off because of inactivity)
  6551. */
  6552. static void handleSafetyTimer()
  6553. {
  6554. #if (EXTRUDERS > 1)
  6555. #error Implemented only for one extruder.
  6556. #endif //(EXTRUDERS > 1)
  6557. if ((PRINTER_ACTIVE) || (!degTargetBed() && !degTargetHotend(0)) || (!safetytimer_inactive_time))
  6558. {
  6559. safetyTimer.stop();
  6560. }
  6561. else if ((degTargetBed() || degTargetHotend(0)) && (!safetyTimer.running()))
  6562. {
  6563. safetyTimer.start();
  6564. }
  6565. else if (safetyTimer.expired(safetytimer_inactive_time))
  6566. {
  6567. setTargetBed(0);
  6568. setTargetHotend(0, 0);
  6569. lcd_show_fullscreen_message_and_wait_P(_i("Heating disabled by safety timer."));////MSG_BED_HEATING_SAFETY_DISABLED c=0 r=0
  6570. }
  6571. }
  6572. #endif //SAFETYTIMER
  6573. void manage_inactivity(bool ignore_stepper_queue/*=false*/) //default argument set in Marlin.h
  6574. {
  6575. #ifdef FILAMENT_SENSOR
  6576. if (mcode_in_progress != 600) //M600 not in progress
  6577. {
  6578. if (!moves_planned() && !IS_SD_PRINTING && !is_usb_printing && (lcd_commands_type != LCD_COMMAND_V2_CAL))
  6579. {
  6580. if (fsensor_check_autoload())
  6581. {
  6582. fsensor_autoload_check_stop();
  6583. if (degHotend0() > EXTRUDE_MINTEMP)
  6584. {
  6585. tone(BEEPER, 1000);
  6586. delay_keep_alive(50);
  6587. noTone(BEEPER);
  6588. loading_flag = true;
  6589. enquecommand_front_P((PSTR("M701")));
  6590. }
  6591. else
  6592. {
  6593. lcd_update_enable(false);
  6594. lcd_clear();
  6595. lcd_set_cursor(0, 0);
  6596. lcd_puts_P(_T(MSG_ERROR));
  6597. lcd_set_cursor(0, 2);
  6598. lcd_puts_P(_T(MSG_PREHEAT_NOZZLE));
  6599. delay(2000);
  6600. lcd_clear();
  6601. lcd_update_enable(true);
  6602. }
  6603. }
  6604. }
  6605. else
  6606. fsensor_autoload_check_stop();
  6607. }
  6608. #endif //FILAMENT_SENSOR
  6609. #ifdef SAFETYTIMER
  6610. handleSafetyTimer();
  6611. #endif //SAFETYTIMER
  6612. #if defined(KILL_PIN) && KILL_PIN > -1
  6613. static int killCount = 0; // make the inactivity button a bit less responsive
  6614. const int KILL_DELAY = 10000;
  6615. #endif
  6616. if(buflen < (BUFSIZE-1)){
  6617. get_command();
  6618. }
  6619. if( (millis() - previous_millis_cmd) > max_inactive_time )
  6620. if(max_inactive_time)
  6621. kill(_n(""), 4);
  6622. if(stepper_inactive_time) {
  6623. if( (millis() - previous_millis_cmd) > stepper_inactive_time )
  6624. {
  6625. if(blocks_queued() == false && ignore_stepper_queue == false) {
  6626. disable_x();
  6627. // SERIAL_ECHOLNPGM("manage_inactivity - disable Y");
  6628. disable_y();
  6629. disable_z();
  6630. disable_e0();
  6631. disable_e1();
  6632. disable_e2();
  6633. }
  6634. }
  6635. }
  6636. #ifdef CHDK //Check if pin should be set to LOW after M240 set it to HIGH
  6637. if (chdkActive && (millis() - chdkHigh > CHDK_DELAY))
  6638. {
  6639. chdkActive = false;
  6640. WRITE(CHDK, LOW);
  6641. }
  6642. #endif
  6643. #if defined(KILL_PIN) && KILL_PIN > -1
  6644. // Check if the kill button was pressed and wait just in case it was an accidental
  6645. // key kill key press
  6646. // -------------------------------------------------------------------------------
  6647. if( 0 == READ(KILL_PIN) )
  6648. {
  6649. killCount++;
  6650. }
  6651. else if (killCount > 0)
  6652. {
  6653. killCount--;
  6654. }
  6655. // Exceeded threshold and we can confirm that it was not accidental
  6656. // KILL the machine
  6657. // ----------------------------------------------------------------
  6658. if ( killCount >= KILL_DELAY)
  6659. {
  6660. kill("", 5);
  6661. }
  6662. #endif
  6663. #if defined(CONTROLLERFAN_PIN) && CONTROLLERFAN_PIN > -1
  6664. controllerFan(); //Check if fan should be turned on to cool stepper drivers down
  6665. #endif
  6666. #ifdef EXTRUDER_RUNOUT_PREVENT
  6667. if( (millis() - previous_millis_cmd) > EXTRUDER_RUNOUT_SECONDS*1000 )
  6668. if(degHotend(active_extruder)>EXTRUDER_RUNOUT_MINTEMP)
  6669. {
  6670. bool oldstatus=READ(E0_ENABLE_PIN);
  6671. enable_e0();
  6672. float oldepos=current_position[E_AXIS];
  6673. float oldedes=destination[E_AXIS];
  6674. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS],
  6675. destination[E_AXIS]+EXTRUDER_RUNOUT_EXTRUDE*EXTRUDER_RUNOUT_ESTEPS/axis_steps_per_unit[E_AXIS],
  6676. EXTRUDER_RUNOUT_SPEED/60.*EXTRUDER_RUNOUT_ESTEPS/axis_steps_per_unit[E_AXIS], active_extruder);
  6677. current_position[E_AXIS]=oldepos;
  6678. destination[E_AXIS]=oldedes;
  6679. plan_set_e_position(oldepos);
  6680. previous_millis_cmd=millis();
  6681. st_synchronize();
  6682. WRITE(E0_ENABLE_PIN,oldstatus);
  6683. }
  6684. #endif
  6685. #ifdef TEMP_STAT_LEDS
  6686. handle_status_leds();
  6687. #endif
  6688. check_axes_activity();
  6689. }
  6690. void kill(const char *full_screen_message, unsigned char id)
  6691. {
  6692. printf_P(_N("KILL: %d\n"), id);
  6693. //return;
  6694. cli(); // Stop interrupts
  6695. disable_heater();
  6696. disable_x();
  6697. // SERIAL_ECHOLNPGM("kill - disable Y");
  6698. disable_y();
  6699. disable_z();
  6700. disable_e0();
  6701. disable_e1();
  6702. disable_e2();
  6703. #if defined(PS_ON_PIN) && PS_ON_PIN > -1
  6704. pinMode(PS_ON_PIN,INPUT);
  6705. #endif
  6706. SERIAL_ERROR_START;
  6707. SERIAL_ERRORLNRPGM(_i("Printer halted. kill() called!"));////MSG_ERR_KILLED c=0 r=0
  6708. if (full_screen_message != NULL) {
  6709. SERIAL_ERRORLNRPGM(full_screen_message);
  6710. lcd_display_message_fullscreen_P(full_screen_message);
  6711. } else {
  6712. LCD_ALERTMESSAGERPGM(_i("KILLED. "));////MSG_KILLED c=0 r=0
  6713. }
  6714. // FMC small patch to update the LCD before ending
  6715. sei(); // enable interrupts
  6716. for ( int i=5; i--; lcd_update(0))
  6717. {
  6718. delay(200);
  6719. }
  6720. cli(); // disable interrupts
  6721. suicide();
  6722. while(1)
  6723. {
  6724. #ifdef WATCHDOG
  6725. wdt_reset();
  6726. #endif //WATCHDOG
  6727. /* Intentionally left empty */
  6728. } // Wait for reset
  6729. }
  6730. void Stop()
  6731. {
  6732. disable_heater();
  6733. if(Stopped == false) {
  6734. Stopped = true;
  6735. Stopped_gcode_LastN = gcode_LastN; // Save last g_code for restart
  6736. SERIAL_ERROR_START;
  6737. SERIAL_ERRORLNRPGM(_T(MSG_ERR_STOPPED));
  6738. LCD_MESSAGERPGM(_T(MSG_STOPPED));
  6739. }
  6740. }
  6741. bool IsStopped() { return Stopped; };
  6742. #ifdef FAST_PWM_FAN
  6743. void setPwmFrequency(uint8_t pin, int val)
  6744. {
  6745. val &= 0x07;
  6746. switch(digitalPinToTimer(pin))
  6747. {
  6748. #if defined(TCCR0A)
  6749. case TIMER0A:
  6750. case TIMER0B:
  6751. // TCCR0B &= ~(_BV(CS00) | _BV(CS01) | _BV(CS02));
  6752. // TCCR0B |= val;
  6753. break;
  6754. #endif
  6755. #if defined(TCCR1A)
  6756. case TIMER1A:
  6757. case TIMER1B:
  6758. // TCCR1B &= ~(_BV(CS10) | _BV(CS11) | _BV(CS12));
  6759. // TCCR1B |= val;
  6760. break;
  6761. #endif
  6762. #if defined(TCCR2)
  6763. case TIMER2:
  6764. case TIMER2:
  6765. TCCR2 &= ~(_BV(CS10) | _BV(CS11) | _BV(CS12));
  6766. TCCR2 |= val;
  6767. break;
  6768. #endif
  6769. #if defined(TCCR2A)
  6770. case TIMER2A:
  6771. case TIMER2B:
  6772. TCCR2B &= ~(_BV(CS20) | _BV(CS21) | _BV(CS22));
  6773. TCCR2B |= val;
  6774. break;
  6775. #endif
  6776. #if defined(TCCR3A)
  6777. case TIMER3A:
  6778. case TIMER3B:
  6779. case TIMER3C:
  6780. TCCR3B &= ~(_BV(CS30) | _BV(CS31) | _BV(CS32));
  6781. TCCR3B |= val;
  6782. break;
  6783. #endif
  6784. #if defined(TCCR4A)
  6785. case TIMER4A:
  6786. case TIMER4B:
  6787. case TIMER4C:
  6788. TCCR4B &= ~(_BV(CS40) | _BV(CS41) | _BV(CS42));
  6789. TCCR4B |= val;
  6790. break;
  6791. #endif
  6792. #if defined(TCCR5A)
  6793. case TIMER5A:
  6794. case TIMER5B:
  6795. case TIMER5C:
  6796. TCCR5B &= ~(_BV(CS50) | _BV(CS51) | _BV(CS52));
  6797. TCCR5B |= val;
  6798. break;
  6799. #endif
  6800. }
  6801. }
  6802. #endif //FAST_PWM_FAN
  6803. bool setTargetedHotend(int code){
  6804. tmp_extruder = active_extruder;
  6805. if(code_seen('T')) {
  6806. tmp_extruder = code_value();
  6807. if(tmp_extruder >= EXTRUDERS) {
  6808. SERIAL_ECHO_START;
  6809. switch(code){
  6810. case 104:
  6811. SERIAL_ECHORPGM(_i("M104 Invalid extruder "));////MSG_M104_INVALID_EXTRUDER c=0 r=0
  6812. break;
  6813. case 105:
  6814. SERIAL_ECHO(_i("M105 Invalid extruder "));////MSG_M105_INVALID_EXTRUDER c=0 r=0
  6815. break;
  6816. case 109:
  6817. SERIAL_ECHO(_i("M109 Invalid extruder "));////MSG_M109_INVALID_EXTRUDER c=0 r=0
  6818. break;
  6819. case 218:
  6820. SERIAL_ECHO(_i("M218 Invalid extruder "));////MSG_M218_INVALID_EXTRUDER c=0 r=0
  6821. break;
  6822. case 221:
  6823. SERIAL_ECHO(_i("M221 Invalid extruder "));////MSG_M221_INVALID_EXTRUDER c=0 r=0
  6824. break;
  6825. }
  6826. SERIAL_PROTOCOLLN((int)tmp_extruder);
  6827. return true;
  6828. }
  6829. }
  6830. return false;
  6831. }
  6832. void save_statistics(unsigned long _total_filament_used, unsigned long _total_print_time) //_total_filament_used unit: mm/100; print time in s
  6833. {
  6834. if (eeprom_read_byte((uint8_t *)EEPROM_TOTALTIME) == 255 && eeprom_read_byte((uint8_t *)EEPROM_TOTALTIME + 1) == 255 && eeprom_read_byte((uint8_t *)EEPROM_TOTALTIME + 2) == 255 && eeprom_read_byte((uint8_t *)EEPROM_TOTALTIME + 3) == 255)
  6835. {
  6836. eeprom_update_dword((uint32_t *)EEPROM_TOTALTIME, 0);
  6837. eeprom_update_dword((uint32_t *)EEPROM_FILAMENTUSED, 0);
  6838. }
  6839. unsigned long _previous_filament = eeprom_read_dword((uint32_t *)EEPROM_FILAMENTUSED); //_previous_filament unit: cm
  6840. unsigned long _previous_time = eeprom_read_dword((uint32_t *)EEPROM_TOTALTIME); //_previous_time unit: min
  6841. eeprom_update_dword((uint32_t *)EEPROM_TOTALTIME, _previous_time + (_total_print_time/60)); //EEPROM_TOTALTIME unit: min
  6842. eeprom_update_dword((uint32_t *)EEPROM_FILAMENTUSED, _previous_filament + (_total_filament_used / 1000));
  6843. total_filament_used = 0;
  6844. }
  6845. float calculate_extruder_multiplier(float diameter) {
  6846. float out = 1.f;
  6847. if (volumetric_enabled && diameter > 0.f) {
  6848. float area = M_PI * diameter * diameter * 0.25;
  6849. out = 1.f / area;
  6850. }
  6851. if (extrudemultiply != 100)
  6852. out *= float(extrudemultiply) * 0.01f;
  6853. return out;
  6854. }
  6855. void calculate_extruder_multipliers() {
  6856. extruder_multiplier[0] = calculate_extruder_multiplier(filament_size[0]);
  6857. #if EXTRUDERS > 1
  6858. extruder_multiplier[1] = calculate_extruder_multiplier(filament_size[1]);
  6859. #if EXTRUDERS > 2
  6860. extruder_multiplier[2] = calculate_extruder_multiplier(filament_size[2]);
  6861. #endif
  6862. #endif
  6863. }
  6864. void delay_keep_alive(unsigned int ms)
  6865. {
  6866. for (;;) {
  6867. manage_heater();
  6868. // Manage inactivity, but don't disable steppers on timeout.
  6869. manage_inactivity(true);
  6870. lcd_update(0);
  6871. if (ms == 0)
  6872. break;
  6873. else if (ms >= 50) {
  6874. delay(50);
  6875. ms -= 50;
  6876. } else {
  6877. delay(ms);
  6878. ms = 0;
  6879. }
  6880. }
  6881. }
  6882. void wait_for_heater(long codenum) {
  6883. #ifdef TEMP_RESIDENCY_TIME
  6884. long residencyStart;
  6885. residencyStart = -1;
  6886. /* continue to loop until we have reached the target temp
  6887. _and_ until TEMP_RESIDENCY_TIME hasn't passed since we reached it */
  6888. while ((!cancel_heatup) && ((residencyStart == -1) ||
  6889. (residencyStart >= 0 && (((unsigned int)(millis() - residencyStart)) < (TEMP_RESIDENCY_TIME * 1000UL))))) {
  6890. #else
  6891. while (target_direction ? (isHeatingHotend(tmp_extruder)) : (isCoolingHotend(tmp_extruder) && (CooldownNoWait == false))) {
  6892. #endif //TEMP_RESIDENCY_TIME
  6893. if ((millis() - codenum) > 1000UL)
  6894. { //Print Temp Reading and remaining time every 1 second while heating up/cooling down
  6895. if (!farm_mode) {
  6896. SERIAL_PROTOCOLPGM("T:");
  6897. SERIAL_PROTOCOL_F(degHotend(tmp_extruder), 1);
  6898. SERIAL_PROTOCOLPGM(" E:");
  6899. SERIAL_PROTOCOL((int)tmp_extruder);
  6900. #ifdef TEMP_RESIDENCY_TIME
  6901. SERIAL_PROTOCOLPGM(" W:");
  6902. if (residencyStart > -1)
  6903. {
  6904. codenum = ((TEMP_RESIDENCY_TIME * 1000UL) - (millis() - residencyStart)) / 1000UL;
  6905. SERIAL_PROTOCOLLN(codenum);
  6906. }
  6907. else
  6908. {
  6909. SERIAL_PROTOCOLLN("?");
  6910. }
  6911. }
  6912. #else
  6913. SERIAL_PROTOCOLLN("");
  6914. #endif
  6915. codenum = millis();
  6916. }
  6917. manage_heater();
  6918. manage_inactivity();
  6919. lcd_update(0);
  6920. #ifdef TEMP_RESIDENCY_TIME
  6921. /* start/restart the TEMP_RESIDENCY_TIME timer whenever we reach target temp for the first time
  6922. or when current temp falls outside the hysteresis after target temp was reached */
  6923. if ((residencyStart == -1 && target_direction && (degHotend(tmp_extruder) >= (degTargetHotend(tmp_extruder) - TEMP_WINDOW))) ||
  6924. (residencyStart == -1 && !target_direction && (degHotend(tmp_extruder) <= (degTargetHotend(tmp_extruder) + TEMP_WINDOW))) ||
  6925. (residencyStart > -1 && labs(degHotend(tmp_extruder) - degTargetHotend(tmp_extruder)) > TEMP_HYSTERESIS))
  6926. {
  6927. residencyStart = millis();
  6928. }
  6929. #endif //TEMP_RESIDENCY_TIME
  6930. }
  6931. }
  6932. void check_babystep() {
  6933. int babystep_z;
  6934. EEPROM_read_B(EEPROM_BABYSTEP_Z, &babystep_z);
  6935. if ((babystep_z < Z_BABYSTEP_MIN) || (babystep_z > Z_BABYSTEP_MAX)) {
  6936. babystep_z = 0; //if babystep value is out of min max range, set it to 0
  6937. SERIAL_ECHOLNPGM("Z live adjust out of range. Setting to 0");
  6938. EEPROM_save_B(EEPROM_BABYSTEP_Z, &babystep_z);
  6939. lcd_show_fullscreen_message_and_wait_P(PSTR("Z live adjust out of range. Setting to 0. Click to continue."));
  6940. lcd_update_enable(true);
  6941. }
  6942. }
  6943. #ifdef DIS
  6944. void d_setup()
  6945. {
  6946. pinMode(D_DATACLOCK, INPUT_PULLUP);
  6947. pinMode(D_DATA, INPUT_PULLUP);
  6948. pinMode(D_REQUIRE, OUTPUT);
  6949. digitalWrite(D_REQUIRE, HIGH);
  6950. }
  6951. float d_ReadData()
  6952. {
  6953. int digit[13];
  6954. String mergeOutput;
  6955. float output;
  6956. digitalWrite(D_REQUIRE, HIGH);
  6957. for (int i = 0; i<13; i++)
  6958. {
  6959. for (int j = 0; j < 4; j++)
  6960. {
  6961. while (digitalRead(D_DATACLOCK) == LOW) {}
  6962. while (digitalRead(D_DATACLOCK) == HIGH) {}
  6963. bitWrite(digit[i], j, digitalRead(D_DATA));
  6964. }
  6965. }
  6966. digitalWrite(D_REQUIRE, LOW);
  6967. mergeOutput = "";
  6968. output = 0;
  6969. for (int r = 5; r <= 10; r++) //Merge digits
  6970. {
  6971. mergeOutput += digit[r];
  6972. }
  6973. output = mergeOutput.toFloat();
  6974. if (digit[4] == 8) //Handle sign
  6975. {
  6976. output *= -1;
  6977. }
  6978. for (int i = digit[11]; i > 0; i--) //Handle floating point
  6979. {
  6980. output /= 10;
  6981. }
  6982. return output;
  6983. }
  6984. void bed_analysis(float x_dimension, float y_dimension, int x_points_num, int y_points_num, float shift_x, float shift_y) {
  6985. int t1 = 0;
  6986. int t_delay = 0;
  6987. int digit[13];
  6988. int m;
  6989. char str[3];
  6990. //String mergeOutput;
  6991. char mergeOutput[15];
  6992. float output;
  6993. int mesh_point = 0; //index number of calibration point
  6994. float bed_zero_ref_x = (-22.f + X_PROBE_OFFSET_FROM_EXTRUDER); //shift between zero point on bed and target and between probe and nozzle
  6995. float bed_zero_ref_y = (-0.6f + Y_PROBE_OFFSET_FROM_EXTRUDER);
  6996. float mesh_home_z_search = 4;
  6997. float row[x_points_num];
  6998. int ix = 0;
  6999. int iy = 0;
  7000. char* filename_wldsd = "wldsd.txt";
  7001. char data_wldsd[70];
  7002. char numb_wldsd[10];
  7003. d_setup();
  7004. if (!(axis_known_position[X_AXIS] && axis_known_position[Y_AXIS] && axis_known_position[Z_AXIS])) {
  7005. // We don't know where we are! HOME!
  7006. // Push the commands to the front of the message queue in the reverse order!
  7007. // There shall be always enough space reserved for these commands.
  7008. repeatcommand_front(); // repeat G80 with all its parameters
  7009. enquecommand_front_P((PSTR("G28 W0")));
  7010. enquecommand_front_P((PSTR("G1 Z5")));
  7011. return;
  7012. }
  7013. bool custom_message_old = custom_message;
  7014. unsigned int custom_message_type_old = custom_message_type;
  7015. unsigned int custom_message_state_old = custom_message_state;
  7016. custom_message = true;
  7017. custom_message_type = 1;
  7018. custom_message_state = (x_points_num * y_points_num) + 10;
  7019. lcd_update(1);
  7020. mbl.reset();
  7021. babystep_undo();
  7022. card.openFile(filename_wldsd, false);
  7023. current_position[Z_AXIS] = mesh_home_z_search;
  7024. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[Z_AXIS] / 60, active_extruder);
  7025. int XY_AXIS_FEEDRATE = homing_feedrate[X_AXIS] / 20;
  7026. int Z_PROBE_FEEDRATE = homing_feedrate[Z_AXIS] / 60;
  7027. int Z_LIFT_FEEDRATE = homing_feedrate[Z_AXIS] / 40;
  7028. setup_for_endstop_move(false);
  7029. SERIAL_PROTOCOLPGM("Num X,Y: ");
  7030. SERIAL_PROTOCOL(x_points_num);
  7031. SERIAL_PROTOCOLPGM(",");
  7032. SERIAL_PROTOCOL(y_points_num);
  7033. SERIAL_PROTOCOLPGM("\nZ search height: ");
  7034. SERIAL_PROTOCOL(mesh_home_z_search);
  7035. SERIAL_PROTOCOLPGM("\nDimension X,Y: ");
  7036. SERIAL_PROTOCOL(x_dimension);
  7037. SERIAL_PROTOCOLPGM(",");
  7038. SERIAL_PROTOCOL(y_dimension);
  7039. SERIAL_PROTOCOLLNPGM("\nMeasured points:");
  7040. while (mesh_point != x_points_num * y_points_num) {
  7041. ix = mesh_point % x_points_num; // from 0 to MESH_NUM_X_POINTS - 1
  7042. iy = mesh_point / x_points_num;
  7043. if (iy & 1) ix = (x_points_num - 1) - ix; // Zig zag
  7044. float z0 = 0.f;
  7045. current_position[Z_AXIS] = mesh_home_z_search;
  7046. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], Z_LIFT_FEEDRATE, active_extruder);
  7047. st_synchronize();
  7048. current_position[X_AXIS] = 13.f + ix * (x_dimension / (x_points_num - 1)) - bed_zero_ref_x + shift_x;
  7049. current_position[Y_AXIS] = 6.4f + iy * (y_dimension / (y_points_num - 1)) - bed_zero_ref_y + shift_y;
  7050. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], XY_AXIS_FEEDRATE, active_extruder);
  7051. st_synchronize();
  7052. if (!find_bed_induction_sensor_point_z(-10.f)) { //if we have data from z calibration max allowed difference is 1mm for each point, if we dont have data max difference is 10mm from initial point
  7053. break;
  7054. card.closefile();
  7055. }
  7056. //memset(numb_wldsd, 0, sizeof(numb_wldsd));
  7057. //dtostrf(d_ReadData(), 8, 5, numb_wldsd);
  7058. //strcat(data_wldsd, numb_wldsd);
  7059. //MYSERIAL.println(data_wldsd);
  7060. //delay(1000);
  7061. //delay(3000);
  7062. //t1 = millis();
  7063. //while (digitalRead(D_DATACLOCK) == LOW) {}
  7064. //while (digitalRead(D_DATACLOCK) == HIGH) {}
  7065. memset(digit, 0, sizeof(digit));
  7066. //cli();
  7067. digitalWrite(D_REQUIRE, LOW);
  7068. for (int i = 0; i<13; i++)
  7069. {
  7070. //t1 = millis();
  7071. for (int j = 0; j < 4; j++)
  7072. {
  7073. while (digitalRead(D_DATACLOCK) == LOW) {}
  7074. while (digitalRead(D_DATACLOCK) == HIGH) {}
  7075. bitWrite(digit[i], j, digitalRead(D_DATA));
  7076. }
  7077. //t_delay = (millis() - t1);
  7078. //SERIAL_PROTOCOLPGM(" ");
  7079. //SERIAL_PROTOCOL_F(t_delay, 5);
  7080. //SERIAL_PROTOCOLPGM(" ");
  7081. }
  7082. //sei();
  7083. digitalWrite(D_REQUIRE, HIGH);
  7084. mergeOutput[0] = '\0';
  7085. output = 0;
  7086. for (int r = 5; r <= 10; r++) //Merge digits
  7087. {
  7088. sprintf(str, "%d", digit[r]);
  7089. strcat(mergeOutput, str);
  7090. }
  7091. output = atof(mergeOutput);
  7092. if (digit[4] == 8) //Handle sign
  7093. {
  7094. output *= -1;
  7095. }
  7096. for (int i = digit[11]; i > 0; i--) //Handle floating point
  7097. {
  7098. output *= 0.1;
  7099. }
  7100. //output = d_ReadData();
  7101. //row[ix] = current_position[Z_AXIS];
  7102. memset(data_wldsd, 0, sizeof(data_wldsd));
  7103. for (int i = 0; i <3; i++) {
  7104. memset(numb_wldsd, 0, sizeof(numb_wldsd));
  7105. dtostrf(current_position[i], 8, 5, numb_wldsd);
  7106. strcat(data_wldsd, numb_wldsd);
  7107. strcat(data_wldsd, ";");
  7108. }
  7109. memset(numb_wldsd, 0, sizeof(numb_wldsd));
  7110. dtostrf(output, 8, 5, numb_wldsd);
  7111. strcat(data_wldsd, numb_wldsd);
  7112. //strcat(data_wldsd, ";");
  7113. card.write_command(data_wldsd);
  7114. //row[ix] = d_ReadData();
  7115. row[ix] = output; // current_position[Z_AXIS];
  7116. if (iy % 2 == 1 ? ix == 0 : ix == x_points_num - 1) {
  7117. for (int i = 0; i < x_points_num; i++) {
  7118. SERIAL_PROTOCOLPGM(" ");
  7119. SERIAL_PROTOCOL_F(row[i], 5);
  7120. }
  7121. SERIAL_PROTOCOLPGM("\n");
  7122. }
  7123. custom_message_state--;
  7124. mesh_point++;
  7125. lcd_update(1);
  7126. }
  7127. card.closefile();
  7128. }
  7129. #endif
  7130. void temp_compensation_start() {
  7131. custom_message = true;
  7132. custom_message_type = 5;
  7133. custom_message_state = PINDA_HEAT_T + 1;
  7134. lcd_update(2);
  7135. if (degHotend(active_extruder) > EXTRUDE_MINTEMP) {
  7136. current_position[E_AXIS] -= DEFAULT_RETRACTION;
  7137. }
  7138. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400, active_extruder);
  7139. current_position[X_AXIS] = PINDA_PREHEAT_X;
  7140. current_position[Y_AXIS] = PINDA_PREHEAT_Y;
  7141. current_position[Z_AXIS] = PINDA_PREHEAT_Z;
  7142. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  7143. st_synchronize();
  7144. while (fabs(degBed() - target_temperature_bed) > 1) delay_keep_alive(1000);
  7145. for (int i = 0; i < PINDA_HEAT_T; i++) {
  7146. delay_keep_alive(1000);
  7147. custom_message_state = PINDA_HEAT_T - i;
  7148. if (custom_message_state == 99 || custom_message_state == 9) lcd_update(2); //force whole display redraw if number of digits changed
  7149. else lcd_update(1);
  7150. }
  7151. custom_message_type = 0;
  7152. custom_message_state = 0;
  7153. custom_message = false;
  7154. }
  7155. void temp_compensation_apply() {
  7156. int i_add;
  7157. int compensation_value;
  7158. int z_shift = 0;
  7159. float z_shift_mm;
  7160. if (calibration_status() == CALIBRATION_STATUS_CALIBRATED) {
  7161. if (target_temperature_bed % 10 == 0 && target_temperature_bed >= 60 && target_temperature_bed <= 100) {
  7162. i_add = (target_temperature_bed - 60) / 10;
  7163. EEPROM_read_B(EEPROM_PROBE_TEMP_SHIFT + i_add * 2, &z_shift);
  7164. z_shift_mm = z_shift / axis_steps_per_unit[Z_AXIS];
  7165. }else {
  7166. //interpolation
  7167. z_shift_mm = temp_comp_interpolation(target_temperature_bed) / axis_steps_per_unit[Z_AXIS];
  7168. }
  7169. printf_P(_N("\nZ shift applied:%.3f\n"), z_shift_mm);
  7170. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS] - z_shift_mm, current_position[E_AXIS], homing_feedrate[Z_AXIS] / 40, active_extruder);
  7171. st_synchronize();
  7172. plan_set_z_position(current_position[Z_AXIS]);
  7173. }
  7174. else {
  7175. //we have no temp compensation data
  7176. }
  7177. }
  7178. float temp_comp_interpolation(float inp_temperature) {
  7179. //cubic spline interpolation
  7180. int n, i, j, k;
  7181. float h[10], a, b, c, d, sum, s[10] = { 0 }, x[10], F[10], f[10], m[10][10] = { 0 }, temp;
  7182. int shift[10];
  7183. int temp_C[10];
  7184. n = 6; //number of measured points
  7185. shift[0] = 0;
  7186. for (i = 0; i < n; i++) {
  7187. if (i>0) EEPROM_read_B(EEPROM_PROBE_TEMP_SHIFT + (i-1) * 2, &shift[i]); //read shift in steps from EEPROM
  7188. temp_C[i] = 50 + i * 10; //temperature in C
  7189. #ifdef PINDA_THERMISTOR
  7190. temp_C[i] = 35 + i * 5; //temperature in C
  7191. #else
  7192. temp_C[i] = 50 + i * 10; //temperature in C
  7193. #endif
  7194. x[i] = (float)temp_C[i];
  7195. f[i] = (float)shift[i];
  7196. }
  7197. if (inp_temperature < x[0]) return 0;
  7198. for (i = n - 1; i>0; i--) {
  7199. F[i] = (f[i] - f[i - 1]) / (x[i] - x[i - 1]);
  7200. h[i - 1] = x[i] - x[i - 1];
  7201. }
  7202. //*********** formation of h, s , f matrix **************
  7203. for (i = 1; i<n - 1; i++) {
  7204. m[i][i] = 2 * (h[i - 1] + h[i]);
  7205. if (i != 1) {
  7206. m[i][i - 1] = h[i - 1];
  7207. m[i - 1][i] = h[i - 1];
  7208. }
  7209. m[i][n - 1] = 6 * (F[i + 1] - F[i]);
  7210. }
  7211. //*********** forward elimination **************
  7212. for (i = 1; i<n - 2; i++) {
  7213. temp = (m[i + 1][i] / m[i][i]);
  7214. for (j = 1; j <= n - 1; j++)
  7215. m[i + 1][j] -= temp*m[i][j];
  7216. }
  7217. //*********** backward substitution *********
  7218. for (i = n - 2; i>0; i--) {
  7219. sum = 0;
  7220. for (j = i; j <= n - 2; j++)
  7221. sum += m[i][j] * s[j];
  7222. s[i] = (m[i][n - 1] - sum) / m[i][i];
  7223. }
  7224. for (i = 0; i<n - 1; i++)
  7225. if ((x[i] <= inp_temperature && inp_temperature <= x[i + 1]) || (i == n-2 && inp_temperature > x[i + 1])) {
  7226. a = (s[i + 1] - s[i]) / (6 * h[i]);
  7227. b = s[i] / 2;
  7228. c = (f[i + 1] - f[i]) / h[i] - (2 * h[i] * s[i] + s[i + 1] * h[i]) / 6;
  7229. d = f[i];
  7230. sum = a*pow((inp_temperature - x[i]), 3) + b*pow((inp_temperature - x[i]), 2) + c*(inp_temperature - x[i]) + d;
  7231. }
  7232. return sum;
  7233. }
  7234. #ifdef PINDA_THERMISTOR
  7235. float temp_compensation_pinda_thermistor_offset(float temperature_pinda)
  7236. {
  7237. if (!temp_cal_active) return 0;
  7238. if (!calibration_status_pinda()) return 0;
  7239. return temp_comp_interpolation(temperature_pinda) / axis_steps_per_unit[Z_AXIS];
  7240. }
  7241. #endif //PINDA_THERMISTOR
  7242. void long_pause() //long pause print
  7243. {
  7244. st_synchronize();
  7245. //save currently set parameters to global variables
  7246. saved_feedmultiply = feedmultiply;
  7247. HotendTempBckp = degTargetHotend(active_extruder);
  7248. fanSpeedBckp = fanSpeed;
  7249. start_pause_print = millis();
  7250. //save position
  7251. pause_lastpos[X_AXIS] = current_position[X_AXIS];
  7252. pause_lastpos[Y_AXIS] = current_position[Y_AXIS];
  7253. pause_lastpos[Z_AXIS] = current_position[Z_AXIS];
  7254. pause_lastpos[E_AXIS] = current_position[E_AXIS];
  7255. //retract
  7256. current_position[E_AXIS] -= DEFAULT_RETRACTION;
  7257. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400, active_extruder);
  7258. //lift z
  7259. current_position[Z_AXIS] += Z_PAUSE_LIFT;
  7260. if (current_position[Z_AXIS] > Z_MAX_POS) current_position[Z_AXIS] = Z_MAX_POS;
  7261. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 15, active_extruder);
  7262. //set nozzle target temperature to 0
  7263. setTargetHotend(0, 0);
  7264. setTargetHotend(0, 1);
  7265. setTargetHotend(0, 2);
  7266. //Move XY to side
  7267. current_position[X_AXIS] = X_PAUSE_POS;
  7268. current_position[Y_AXIS] = Y_PAUSE_POS;
  7269. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 50, active_extruder);
  7270. // Turn off the print fan
  7271. fanSpeed = 0;
  7272. st_synchronize();
  7273. }
  7274. void serialecho_temperatures() {
  7275. float tt = degHotend(active_extruder);
  7276. SERIAL_PROTOCOLPGM("T:");
  7277. SERIAL_PROTOCOL(tt);
  7278. SERIAL_PROTOCOLPGM(" E:");
  7279. SERIAL_PROTOCOL((int)active_extruder);
  7280. SERIAL_PROTOCOLPGM(" B:");
  7281. SERIAL_PROTOCOL_F(degBed(), 1);
  7282. SERIAL_PROTOCOLLN("");
  7283. }
  7284. extern uint32_t sdpos_atomic;
  7285. #ifdef UVLO_SUPPORT
  7286. void uvlo_()
  7287. {
  7288. unsigned long time_start = millis();
  7289. bool sd_print = card.sdprinting;
  7290. //-//
  7291. MYSERIAL.println(">>> uvlo()");
  7292. // Conserve power as soon as possible.
  7293. disable_x();
  7294. disable_y();
  7295. #ifdef TMC2130
  7296. tmc2130_set_current_h(Z_AXIS, 20);
  7297. tmc2130_set_current_r(Z_AXIS, 20);
  7298. tmc2130_set_current_h(E_AXIS, 20);
  7299. tmc2130_set_current_r(E_AXIS, 20);
  7300. #endif //TMC2130
  7301. // Indicate that the interrupt has been triggered.
  7302. // SERIAL_ECHOLNPGM("UVLO");
  7303. // Read out the current Z motor microstep counter. This will be later used
  7304. // for reaching the zero full step before powering off.
  7305. uint16_t z_microsteps = 0;
  7306. #ifdef TMC2130
  7307. z_microsteps = tmc2130_rd_MSCNT(Z_TMC2130_CS);
  7308. #endif //TMC2130
  7309. // Calculate the file position, from which to resume this print.
  7310. long sd_position = sdpos_atomic; //atomic sd position of last command added in queue
  7311. {
  7312. uint16_t sdlen_planner = planner_calc_sd_length(); //length of sd commands in planner
  7313. sd_position -= sdlen_planner;
  7314. uint16_t sdlen_cmdqueue = cmdqueue_calc_sd_length(); //length of sd commands in cmdqueue
  7315. sd_position -= sdlen_cmdqueue;
  7316. if (sd_position < 0) sd_position = 0;
  7317. }
  7318. // Backup the feedrate in mm/min.
  7319. int feedrate_bckp = blocks_queued() ? (block_buffer[block_buffer_tail].nominal_speed * 60.f) : feedrate;
  7320. // After this call, the planner queue is emptied and the current_position is set to a current logical coordinate.
  7321. // The logical coordinate will likely differ from the machine coordinate if the skew calibration and mesh bed leveling
  7322. // are in action.
  7323. planner_abort_hard();
  7324. // Store the current extruder position.
  7325. eeprom_update_float((float*)(EEPROM_UVLO_CURRENT_POSITION_E), st_get_position_mm(E_AXIS));
  7326. eeprom_update_byte((uint8_t*)EEPROM_UVLO_E_ABS, axis_relative_modes[3]?0:1);
  7327. // Clean the input command queue.
  7328. cmdqueue_reset();
  7329. card.sdprinting = false;
  7330. // card.closefile();
  7331. // Enable stepper driver interrupt to move Z axis.
  7332. // This should be fine as the planner and command queues are empty and the SD card printing is disabled.
  7333. //FIXME one may want to disable serial lines at this point of time to avoid interfering with the command queue,
  7334. // though it should not happen that the command queue is touched as the plan_buffer_line always succeed without blocking.
  7335. sei();
  7336. plan_buffer_line(
  7337. current_position[X_AXIS],
  7338. current_position[Y_AXIS],
  7339. current_position[Z_AXIS],
  7340. current_position[E_AXIS] - DEFAULT_RETRACTION,
  7341. 95, active_extruder);
  7342. st_synchronize();
  7343. disable_e0();
  7344. plan_buffer_line(
  7345. current_position[X_AXIS],
  7346. current_position[Y_AXIS],
  7347. current_position[Z_AXIS] + UVLO_Z_AXIS_SHIFT + float((1024 - z_microsteps + 7) >> 4) / axis_steps_per_unit[Z_AXIS],
  7348. current_position[E_AXIS] - DEFAULT_RETRACTION,
  7349. 40, active_extruder);
  7350. st_synchronize();
  7351. disable_e0();
  7352. plan_buffer_line(
  7353. current_position[X_AXIS],
  7354. current_position[Y_AXIS],
  7355. current_position[Z_AXIS] + UVLO_Z_AXIS_SHIFT + float((1024 - z_microsteps + 7) >> 4) / axis_steps_per_unit[Z_AXIS],
  7356. current_position[E_AXIS] - DEFAULT_RETRACTION,
  7357. 40, active_extruder);
  7358. st_synchronize();
  7359. disable_e0();
  7360. disable_z();
  7361. // Move Z up to the next 0th full step.
  7362. // Write the file position.
  7363. eeprom_update_dword((uint32_t*)(EEPROM_FILE_POSITION), sd_position);
  7364. // Store the mesh bed leveling offsets. This is 2*9=18 bytes, which takes 18*3.4us=52us in worst case.
  7365. for (int8_t mesh_point = 0; mesh_point < 9; ++ mesh_point) {
  7366. uint8_t ix = mesh_point % MESH_MEAS_NUM_X_POINTS; // from 0 to MESH_NUM_X_POINTS - 1
  7367. uint8_t iy = mesh_point / MESH_MEAS_NUM_X_POINTS;
  7368. // Scale the z value to 1u resolution.
  7369. int16_t v = mbl.active ? int16_t(floor(mbl.z_values[iy*3][ix*3] * 1000.f + 0.5f)) : 0;
  7370. eeprom_update_word((uint16_t*)(EEPROM_UVLO_MESH_BED_LEVELING+2*mesh_point), *reinterpret_cast<uint16_t*>(&v));
  7371. }
  7372. // Read out the current Z motor microstep counter. This will be later used
  7373. // for reaching the zero full step before powering off.
  7374. eeprom_update_word((uint16_t*)(EEPROM_UVLO_Z_MICROSTEPS), z_microsteps);
  7375. // Store the current position.
  7376. eeprom_update_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 0), current_position[X_AXIS]);
  7377. eeprom_update_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 4), current_position[Y_AXIS]);
  7378. eeprom_update_float((float*)(EEPROM_UVLO_CURRENT_POSITION_Z), current_position[Z_AXIS]);
  7379. // Store the current feed rate, temperatures, fan speed and extruder multipliers (flow rates)
  7380. EEPROM_save_B(EEPROM_UVLO_FEEDRATE, &feedrate_bckp);
  7381. eeprom_update_byte((uint8_t*)EEPROM_UVLO_TARGET_HOTEND, target_temperature[active_extruder]);
  7382. eeprom_update_byte((uint8_t*)EEPROM_UVLO_TARGET_BED, target_temperature_bed);
  7383. eeprom_update_byte((uint8_t*)EEPROM_UVLO_FAN_SPEED, fanSpeed);
  7384. eeprom_update_float((float*)(EEPROM_EXTRUDER_MULTIPLIER_0), extruder_multiplier[0]);
  7385. #if EXTRUDERS > 1
  7386. eeprom_update_float((float*)(EEPROM_EXTRUDER_MULTIPLIER_1), extruder_multiplier[1]);
  7387. #if EXTRUDERS > 2
  7388. eeprom_update_float((float*)(EEPROM_EXTRUDER_MULTIPLIER_2), extruder_multiplier[2]);
  7389. #endif
  7390. #endif
  7391. eeprom_update_word((uint16_t*)(EEPROM_EXTRUDEMULTIPLY), (uint16_t)extrudemultiply);
  7392. // Finaly store the "power outage" flag.
  7393. if(sd_print) eeprom_update_byte((uint8_t*)EEPROM_UVLO, 1);
  7394. st_synchronize();
  7395. printf_P(_N("stps%d\n"), tmc2130_rd_MSCNT(Z_AXIS));
  7396. disable_z();
  7397. // Increment power failure counter
  7398. eeprom_update_byte((uint8_t*)EEPROM_POWER_COUNT, eeprom_read_byte((uint8_t*)EEPROM_POWER_COUNT) + 1);
  7399. eeprom_update_word((uint16_t*)EEPROM_POWER_COUNT_TOT, eeprom_read_word((uint16_t*)EEPROM_POWER_COUNT_TOT) + 1);
  7400. printf_P(_N("UVLO - end %d\n"), millis() - time_start);
  7401. #if 0
  7402. // Move the print head to the side of the print until all the power stored in the power supply capacitors is depleted.
  7403. current_position[X_AXIS] = (current_position[X_AXIS] < 0.5f * (X_MIN_POS + X_MAX_POS)) ? X_MIN_POS : X_MAX_POS;
  7404. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 500, active_extruder);
  7405. st_synchronize();
  7406. #endif
  7407. cli();
  7408. volatile unsigned int ppcount = 0;
  7409. SET_OUTPUT(BEEPER);
  7410. WRITE(BEEPER, HIGH);
  7411. for(ppcount = 0; ppcount < 2000; ppcount ++){
  7412. asm("nop");//50ns on 20Mhz, 62.5ns on 16Mhz
  7413. }
  7414. WRITE(BEEPER, LOW);
  7415. while(1){
  7416. #if 1
  7417. WRITE(BEEPER, LOW);
  7418. for(ppcount = 0; ppcount < 8000; ppcount ++){
  7419. asm("nop");//50ns on 20Mhz, 62.5ns on 16Mhz
  7420. }
  7421. #endif
  7422. };
  7423. }
  7424. void uvlo_tiny()
  7425. {
  7426. uint16_t z_microsteps=0;
  7427. bool sd_print=card.sdprinting;
  7428. MYSERIAL.println(">>> uvloTiny()");
  7429. // Conserve power as soon as possible.
  7430. disable_x();
  7431. disable_y();
  7432. disable_e0();
  7433. #ifdef TMC2130
  7434. tmc2130_set_current_h(Z_AXIS, 20);
  7435. tmc2130_set_current_r(Z_AXIS, 20);
  7436. #endif //TMC2130
  7437. // Read out the current Z motor microstep counter
  7438. #ifdef TMC2130
  7439. z_microsteps=tmc2130_rd_MSCNT(Z_TMC2130_CS);
  7440. #endif //TMC2130
  7441. planner_abort_hard();
  7442. sei();
  7443. plan_buffer_line(
  7444. current_position[X_AXIS],
  7445. current_position[Y_AXIS],
  7446. current_position[Z_AXIS]+UVLO_Z_AXIS_SHIFT+float((1024-z_microsteps+7)>>4)/axis_steps_per_unit[Z_AXIS],
  7447. current_position[E_AXIS],
  7448. 40, active_extruder);
  7449. st_synchronize();
  7450. disable_z();
  7451. // Finaly store the "power outage" flag.
  7452. //if(sd_print)
  7453. eeprom_update_byte((uint8_t*)EEPROM_UVLO,2);
  7454. eeprom_update_word((uint16_t*)(EEPROM_UVLO_TINY_Z_MICROSTEPS),z_microsteps);
  7455. eeprom_update_float((float*)(EEPROM_UVLO_TINY_CURRENT_POSITION_Z), current_position[Z_AXIS]);
  7456. // Increment power failure counter
  7457. eeprom_update_byte((uint8_t*)EEPROM_POWER_COUNT, eeprom_read_byte((uint8_t*)EEPROM_POWER_COUNT) + 1);
  7458. eeprom_update_word((uint16_t*)EEPROM_POWER_COUNT_TOT, eeprom_read_word((uint16_t*)EEPROM_POWER_COUNT_TOT) + 1);
  7459. }
  7460. #endif //UVLO_SUPPORT
  7461. #if (defined(FANCHECK) && defined(TACH_1) && (TACH_1 >-1))
  7462. void setup_fan_interrupt() {
  7463. //INT7
  7464. DDRE &= ~(1 << 7); //input pin
  7465. PORTE &= ~(1 << 7); //no internal pull-up
  7466. //start with sensing rising edge
  7467. EICRB &= ~(1 << 6);
  7468. EICRB |= (1 << 7);
  7469. //enable INT7 interrupt
  7470. EIMSK |= (1 << 7);
  7471. }
  7472. // The fan interrupt is triggered at maximum 325Hz (may be a bit more due to component tollerances),
  7473. // and it takes 4.24 us to process (the interrupt invocation overhead not taken into account).
  7474. ISR(INT7_vect) {
  7475. //measuring speed now works for fanSpeed > 18 (approximately), which is sufficient because MIN_PRINT_FAN_SPEED is higher
  7476. if (fanSpeed < MIN_PRINT_FAN_SPEED) return;
  7477. if ((1 << 6) & EICRB) { //interrupt was triggered by rising edge
  7478. t_fan_rising_edge = millis_nc();
  7479. }
  7480. else { //interrupt was triggered by falling edge
  7481. if ((millis_nc() - t_fan_rising_edge) >= FAN_PULSE_WIDTH_LIMIT) {//this pulse was from sensor and not from pwm
  7482. fan_edge_counter[1] += 2; //we are currently counting all edges so lets count two edges for one pulse
  7483. }
  7484. }
  7485. EICRB ^= (1 << 6); //change edge
  7486. }
  7487. #endif
  7488. #ifdef UVLO_SUPPORT
  7489. void setup_uvlo_interrupt() {
  7490. DDRE &= ~(1 << 4); //input pin
  7491. PORTE &= ~(1 << 4); //no internal pull-up
  7492. //sensing falling edge
  7493. EICRB |= (1 << 0);
  7494. EICRB &= ~(1 << 1);
  7495. //enable INT4 interrupt
  7496. EIMSK |= (1 << 4);
  7497. }
  7498. ISR(INT4_vect) {
  7499. EIMSK &= ~(1 << 4); //disable INT4 interrupt to make sure that this code will be executed just once
  7500. SERIAL_ECHOLNPGM("INT4");
  7501. //-//
  7502. // if (IS_SD_PRINTING) uvlo_();
  7503. //if(IS_SD_PRINTING && (!(eeprom_read_byte((uint8_t*)EEPROM_UVLO))) ) uvlo_();
  7504. if(IS_SD_PRINTING && (!(eeprom_read_byte((uint8_t*)EEPROM_UVLO))) ) uvlo_();
  7505. if(eeprom_read_byte((uint8_t*)EEPROM_UVLO)) uvlo_tiny();
  7506. /*
  7507. if(IS_SD_PRINTING)
  7508. {
  7509. MYSERIAL.println(">>> ");
  7510. if(!(eeprom_read_byte((uint8_t*)EEPROM_UVLO)))
  7511. uvlo_();
  7512. else uvlo_tiny();
  7513. }
  7514. */
  7515. }
  7516. void recover_print(uint8_t automatic) {
  7517. char cmd[30];
  7518. lcd_update_enable(true);
  7519. lcd_update(2);
  7520. lcd_setstatuspgm(_i("Recovering print "));////MSG_RECOVERING_PRINT c=20 r=1
  7521. //-//
  7522. // recover_machine_state_after_power_panic(); //recover position, temperatures and extrude_multipliers
  7523. MYSERIAL.println(">>> RecoverPrint");
  7524. MYSERIAL.println(eeprom_read_byte((uint8_t*)EEPROM_UVLO),DEC);
  7525. bool bTiny=(eeprom_read_byte((uint8_t*)EEPROM_UVLO)==2);
  7526. recover_machine_state_after_power_panic(bTiny); //recover position, temperatures and extrude_multipliers
  7527. // Lift the print head, so one may remove the excess priming material.
  7528. //-//
  7529. //if (current_position[Z_AXIS] < 25)
  7530. if(!bTiny&&(current_position[Z_AXIS]<25))
  7531. enquecommand_P(PSTR("G1 Z25 F800"));
  7532. // Home X and Y axes. Homing just X and Y shall not touch the babystep and the world2machine transformation status.
  7533. enquecommand_P(PSTR("G28 X Y"));
  7534. // Set the target bed and nozzle temperatures and wait.
  7535. sprintf_P(cmd, PSTR("M109 S%d"), target_temperature[active_extruder]);
  7536. enquecommand(cmd);
  7537. sprintf_P(cmd, PSTR("M190 S%d"), target_temperature_bed);
  7538. enquecommand(cmd);
  7539. enquecommand_P(PSTR("M83")); //E axis relative mode
  7540. //enquecommand_P(PSTR("G1 E5 F120")); //Extrude some filament to stabilize pessure
  7541. // If not automatically recoreverd (long power loss), extrude extra filament to stabilize
  7542. if(automatic == 0){
  7543. enquecommand_P(PSTR("G1 E5 F120")); //Extrude some filament to stabilize pessure
  7544. }
  7545. enquecommand_P(PSTR("G1 E" STRINGIFY(-DEFAULT_RETRACTION)" F480"));
  7546. // Mark the power panic status as inactive.
  7547. //-//
  7548. MYSERIAL.println("===== before");
  7549. // eeprom_update_byte((uint8_t*)EEPROM_UVLO, 0);
  7550. MYSERIAL.println("===== after");
  7551. /*while ((abs(degHotend(0)- target_temperature[0])>5) || (abs(degBed() -target_temperature_bed)>3)) { //wait for heater and bed to reach target temp
  7552. delay_keep_alive(1000);
  7553. }*/
  7554. printf_P(_N("After waiting for temp:\nCurrent pos X_AXIS:%.3f\nCurrent pos Y_AXIS:%.3f\n"), current_position[X_AXIS], current_position[Y_AXIS]);
  7555. // Restart the print.
  7556. restore_print_from_eeprom();
  7557. printf_P(_N("Current pos Z_AXIS:%.3f\nCurrent pos E_AXIS:%.3f\n"), current_position[Z_AXIS], current_position[E_AXIS]);
  7558. }
  7559. void recover_machine_state_after_power_panic(bool bTiny)
  7560. {
  7561. char cmd[30];
  7562. // 1) Recover the logical cordinates at the time of the power panic.
  7563. // The logical XY coordinates are needed to recover the machine Z coordinate corrected by the mesh bed leveling.
  7564. current_position[X_AXIS] = eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 0));
  7565. current_position[Y_AXIS] = eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 4));
  7566. // Recover the logical coordinate of the Z axis at the time of the power panic.
  7567. // The current position after power panic is moved to the next closest 0th full step.
  7568. //-//
  7569. // current_position[Z_AXIS] = eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION_Z)) +
  7570. // UVLO_Z_AXIS_SHIFT + float((1024 - eeprom_read_word((uint16_t*)(EEPROM_UVLO_Z_MICROSTEPS)) + 7) >> 4) / axis_steps_per_unit[Z_AXIS];
  7571. if(bTiny)
  7572. current_position[Z_AXIS] = eeprom_read_float((float*)(EEPROM_UVLO_TINY_CURRENT_POSITION_Z)) +
  7573. UVLO_Z_AXIS_SHIFT + float((1024 - eeprom_read_word((uint16_t*)(EEPROM_UVLO_TINY_Z_MICROSTEPS)) + 7) >> 4) / axis_steps_per_unit[Z_AXIS];
  7574. else
  7575. current_position[Z_AXIS] = eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION_Z)) +
  7576. UVLO_Z_AXIS_SHIFT + float((1024 - eeprom_read_word((uint16_t*)(EEPROM_UVLO_Z_MICROSTEPS)) + 7) >> 4) / axis_steps_per_unit[Z_AXIS];
  7577. //-//
  7578. if (eeprom_read_byte((uint8_t*)EEPROM_UVLO_E_ABS)) {
  7579. current_position[E_AXIS] = eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION_E));
  7580. sprintf_P(cmd, PSTR("G92 E"));
  7581. dtostrf(current_position[E_AXIS], 6, 3, cmd + strlen(cmd));
  7582. enquecommand(cmd);
  7583. }
  7584. memcpy(destination, current_position, sizeof(destination));
  7585. SERIAL_ECHOPGM("recover_machine_state_after_power_panic, initial ");
  7586. print_world_coordinates();
  7587. // 2) Initialize the logical to physical coordinate system transformation.
  7588. world2machine_initialize();
  7589. // 3) Restore the mesh bed leveling offsets. This is 2*9=18 bytes, which takes 18*3.4us=52us in worst case.
  7590. mbl.active = false;
  7591. for (int8_t mesh_point = 0; mesh_point < 9; ++ mesh_point) {
  7592. uint8_t ix = mesh_point % MESH_MEAS_NUM_X_POINTS; // from 0 to MESH_NUM_X_POINTS - 1
  7593. uint8_t iy = mesh_point / MESH_MEAS_NUM_X_POINTS;
  7594. // Scale the z value to 10u resolution.
  7595. int16_t v;
  7596. eeprom_read_block(&v, (void*)(EEPROM_UVLO_MESH_BED_LEVELING+2*mesh_point), 2);
  7597. if (v != 0)
  7598. mbl.active = true;
  7599. mbl.z_values[iy][ix] = float(v) * 0.001f;
  7600. }
  7601. if (mbl.active)
  7602. mbl.upsample_3x3();
  7603. // SERIAL_ECHOPGM("recover_machine_state_after_power_panic, initial ");
  7604. // print_mesh_bed_leveling_table();
  7605. // 4) Load the baby stepping value, which is expected to be active at the time of power panic.
  7606. // The baby stepping value is used to reset the physical Z axis when rehoming the Z axis.
  7607. babystep_load();
  7608. // 5) Set the physical positions from the logical positions using the world2machine transformation and the active bed leveling.
  7609. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  7610. // 6) Power up the motors, mark their positions as known.
  7611. //FIXME Verfiy, whether the X and Y axes should be powered up here, as they will later be re-homed anyway.
  7612. axis_known_position[X_AXIS] = true; enable_x();
  7613. axis_known_position[Y_AXIS] = true; enable_y();
  7614. axis_known_position[Z_AXIS] = true; enable_z();
  7615. SERIAL_ECHOPGM("recover_machine_state_after_power_panic, initial ");
  7616. print_physical_coordinates();
  7617. // 7) Recover the target temperatures.
  7618. target_temperature[active_extruder] = eeprom_read_byte((uint8_t*)EEPROM_UVLO_TARGET_HOTEND);
  7619. target_temperature_bed = eeprom_read_byte((uint8_t*)EEPROM_UVLO_TARGET_BED);
  7620. // 8) Recover extruder multipilers
  7621. extruder_multiplier[0] = eeprom_read_float((float*)(EEPROM_EXTRUDER_MULTIPLIER_0));
  7622. #if EXTRUDERS > 1
  7623. extruder_multiplier[1] = eeprom_read_float((float*)(EEPROM_EXTRUDER_MULTIPLIER_1));
  7624. #if EXTRUDERS > 2
  7625. extruder_multiplier[2] = eeprom_read_float((float*)(EEPROM_EXTRUDER_MULTIPLIER_2));
  7626. #endif
  7627. #endif
  7628. extrudemultiply = (int)eeprom_read_word((uint16_t*)(EEPROM_EXTRUDEMULTIPLY));
  7629. }
  7630. void restore_print_from_eeprom() {
  7631. float x_rec, y_rec, z_pos;
  7632. int feedrate_rec;
  7633. uint8_t fan_speed_rec;
  7634. char cmd[30];
  7635. char* c;
  7636. char filename[13];
  7637. uint8_t depth = 0;
  7638. char dir_name[9];
  7639. fan_speed_rec = eeprom_read_byte((uint8_t*)EEPROM_UVLO_FAN_SPEED);
  7640. EEPROM_read_B(EEPROM_UVLO_FEEDRATE, &feedrate_rec);
  7641. SERIAL_ECHOPGM("Feedrate:");
  7642. MYSERIAL.println(feedrate_rec);
  7643. depth = eeprom_read_byte((uint8_t*)EEPROM_DIR_DEPTH);
  7644. MYSERIAL.println(int(depth));
  7645. for (int i = 0; i < depth; i++) {
  7646. for (int j = 0; j < 8; j++) {
  7647. dir_name[j] = eeprom_read_byte((uint8_t*)EEPROM_DIRS + j + 8 * i);
  7648. }
  7649. dir_name[8] = '\0';
  7650. MYSERIAL.println(dir_name);
  7651. strcpy(dir_names[i], dir_name);
  7652. card.chdir(dir_name);
  7653. }
  7654. for (int i = 0; i < 8; i++) {
  7655. filename[i] = eeprom_read_byte((uint8_t*)EEPROM_FILENAME + i);
  7656. }
  7657. filename[8] = '\0';
  7658. MYSERIAL.print(filename);
  7659. strcat_P(filename, PSTR(".gco"));
  7660. sprintf_P(cmd, PSTR("M23 %s"), filename);
  7661. enquecommand(cmd);
  7662. uint32_t position = eeprom_read_dword((uint32_t*)(EEPROM_FILE_POSITION));
  7663. SERIAL_ECHOPGM("Position read from eeprom:");
  7664. MYSERIAL.println(position);
  7665. // E axis relative mode.
  7666. enquecommand_P(PSTR("M83"));
  7667. // Move to the XY print position in logical coordinates, where the print has been killed.
  7668. strcpy_P(cmd, PSTR("G1 X")); strcat(cmd, ftostr32(eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 0))));
  7669. strcat_P(cmd, PSTR(" Y")); strcat(cmd, ftostr32(eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 4))));
  7670. strcat_P(cmd, PSTR(" F2000"));
  7671. enquecommand(cmd);
  7672. // Move the Z axis down to the print, in logical coordinates.
  7673. strcpy_P(cmd, PSTR("G1 Z")); strcat(cmd, ftostr32(eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION_Z))));
  7674. enquecommand(cmd);
  7675. // Unretract.
  7676. enquecommand_P(PSTR("G1 E" STRINGIFY(2*DEFAULT_RETRACTION)" F480"));
  7677. // Set the feedrate saved at the power panic.
  7678. sprintf_P(cmd, PSTR("G1 F%d"), feedrate_rec);
  7679. enquecommand(cmd);
  7680. if (eeprom_read_byte((uint8_t*)EEPROM_UVLO_E_ABS))
  7681. {
  7682. float extruder_abs_pos = eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION_E));
  7683. enquecommand_P(PSTR("M82")); //E axis abslute mode
  7684. }
  7685. // Set the fan speed saved at the power panic.
  7686. strcpy_P(cmd, PSTR("M106 S"));
  7687. strcat(cmd, itostr3(int(fan_speed_rec)));
  7688. enquecommand(cmd);
  7689. // Set a position in the file.
  7690. sprintf_P(cmd, PSTR("M26 S%lu"), position);
  7691. enquecommand(cmd);
  7692. //-//
  7693. enquecommand_P(PSTR("G4 S0"));
  7694. // Start SD print.
  7695. enquecommand_P(PSTR("M24"));
  7696. }
  7697. #endif //UVLO_SUPPORT
  7698. ////////////////////////////////////////////////////////////////////////////////
  7699. // save/restore printing
  7700. void stop_and_save_print_to_ram(float z_move, float e_move)
  7701. {
  7702. if (saved_printing) return;
  7703. unsigned char nplanner_blocks;
  7704. unsigned char nlines;
  7705. uint16_t sdlen_planner;
  7706. uint16_t sdlen_cmdqueue;
  7707. cli();
  7708. if (card.sdprinting) {
  7709. nplanner_blocks = number_of_blocks();
  7710. saved_sdpos = sdpos_atomic; //atomic sd position of last command added in queue
  7711. sdlen_planner = planner_calc_sd_length(); //length of sd commands in planner
  7712. saved_sdpos -= sdlen_planner;
  7713. sdlen_cmdqueue = cmdqueue_calc_sd_length(); //length of sd commands in cmdqueue
  7714. saved_sdpos -= sdlen_cmdqueue;
  7715. saved_printing_type = PRINTING_TYPE_SD;
  7716. }
  7717. else if (is_usb_printing) { //reuse saved_sdpos for storing line number
  7718. saved_sdpos = gcode_LastN; //start with line number of command added recently to cmd queue
  7719. //reuse planner_calc_sd_length function for getting number of lines of commands in planner:
  7720. nlines = planner_calc_sd_length(); //number of lines of commands in planner
  7721. saved_sdpos -= nlines;
  7722. saved_sdpos -= buflen; //number of blocks in cmd buffer
  7723. saved_printing_type = PRINTING_TYPE_USB;
  7724. }
  7725. else {
  7726. //not sd printing nor usb printing
  7727. }
  7728. #if 0
  7729. SERIAL_ECHOPGM("SDPOS_ATOMIC="); MYSERIAL.println(sdpos_atomic, DEC);
  7730. SERIAL_ECHOPGM("SDPOS="); MYSERIAL.println(card.get_sdpos(), DEC);
  7731. SERIAL_ECHOPGM("SDLEN_PLAN="); MYSERIAL.println(sdlen_planner, DEC);
  7732. SERIAL_ECHOPGM("SDLEN_CMDQ="); MYSERIAL.println(sdlen_cmdqueue, DEC);
  7733. SERIAL_ECHOPGM("PLANNERBLOCKS="); MYSERIAL.println(int(nplanner_blocks), DEC);
  7734. SERIAL_ECHOPGM("SDSAVED="); MYSERIAL.println(saved_sdpos, DEC);
  7735. //SERIAL_ECHOPGM("SDFILELEN="); MYSERIAL.println(card.fileSize(), DEC);
  7736. {
  7737. card.setIndex(saved_sdpos);
  7738. SERIAL_ECHOLNPGM("Content of planner buffer: ");
  7739. for (unsigned int idx = 0; idx < sdlen_planner; ++ idx)
  7740. MYSERIAL.print(char(card.get()));
  7741. SERIAL_ECHOLNPGM("Content of command buffer: ");
  7742. for (unsigned int idx = 0; idx < sdlen_cmdqueue; ++ idx)
  7743. MYSERIAL.print(char(card.get()));
  7744. SERIAL_ECHOLNPGM("End of command buffer");
  7745. }
  7746. {
  7747. // Print the content of the planner buffer, line by line:
  7748. card.setIndex(saved_sdpos);
  7749. int8_t iline = 0;
  7750. for (unsigned char idx = block_buffer_tail; idx != block_buffer_head; idx = (idx + 1) & (BLOCK_BUFFER_SIZE - 1), ++ iline) {
  7751. SERIAL_ECHOPGM("Planner line (from file): ");
  7752. MYSERIAL.print(int(iline), DEC);
  7753. SERIAL_ECHOPGM(", length: ");
  7754. MYSERIAL.print(block_buffer[idx].sdlen, DEC);
  7755. SERIAL_ECHOPGM(", steps: (");
  7756. MYSERIAL.print(block_buffer[idx].steps_x, DEC);
  7757. SERIAL_ECHOPGM(",");
  7758. MYSERIAL.print(block_buffer[idx].steps_y, DEC);
  7759. SERIAL_ECHOPGM(",");
  7760. MYSERIAL.print(block_buffer[idx].steps_z, DEC);
  7761. SERIAL_ECHOPGM(",");
  7762. MYSERIAL.print(block_buffer[idx].steps_e, DEC);
  7763. SERIAL_ECHOPGM("), events: ");
  7764. MYSERIAL.println(block_buffer[idx].step_event_count, DEC);
  7765. for (int len = block_buffer[idx].sdlen; len > 0; -- len)
  7766. MYSERIAL.print(char(card.get()));
  7767. }
  7768. }
  7769. {
  7770. // Print the content of the command buffer, line by line:
  7771. int8_t iline = 0;
  7772. union {
  7773. struct {
  7774. char lo;
  7775. char hi;
  7776. } lohi;
  7777. uint16_t value;
  7778. } sdlen_single;
  7779. int _bufindr = bufindr;
  7780. for (int _buflen = buflen; _buflen > 0; ++ iline) {
  7781. if (cmdbuffer[_bufindr] == CMDBUFFER_CURRENT_TYPE_SDCARD) {
  7782. sdlen_single.lohi.lo = cmdbuffer[_bufindr + 1];
  7783. sdlen_single.lohi.hi = cmdbuffer[_bufindr + 2];
  7784. }
  7785. SERIAL_ECHOPGM("Buffer line (from buffer): ");
  7786. MYSERIAL.print(int(iline), DEC);
  7787. SERIAL_ECHOPGM(", type: ");
  7788. MYSERIAL.print(int(cmdbuffer[_bufindr]), DEC);
  7789. SERIAL_ECHOPGM(", len: ");
  7790. MYSERIAL.println(sdlen_single.value, DEC);
  7791. // Print the content of the buffer line.
  7792. MYSERIAL.println(cmdbuffer + _bufindr + CMDHDRSIZE);
  7793. SERIAL_ECHOPGM("Buffer line (from file): ");
  7794. MYSERIAL.println(int(iline), DEC);
  7795. for (; sdlen_single.value > 0; -- sdlen_single.value)
  7796. MYSERIAL.print(char(card.get()));
  7797. if (-- _buflen == 0)
  7798. break;
  7799. // First skip the current command ID and iterate up to the end of the string.
  7800. for (_bufindr += CMDHDRSIZE; cmdbuffer[_bufindr] != 0; ++ _bufindr) ;
  7801. // Second, skip the end of string null character and iterate until a nonzero command ID is found.
  7802. for (++ _bufindr; _bufindr < sizeof(cmdbuffer) && cmdbuffer[_bufindr] == 0; ++ _bufindr) ;
  7803. // If the end of the buffer was empty,
  7804. if (_bufindr == sizeof(cmdbuffer)) {
  7805. // skip to the start and find the nonzero command.
  7806. for (_bufindr = 0; cmdbuffer[_bufindr] == 0; ++ _bufindr) ;
  7807. }
  7808. }
  7809. }
  7810. #endif
  7811. #if 0
  7812. saved_feedrate2 = feedrate; //save feedrate
  7813. #else
  7814. // Try to deduce the feedrate from the first block of the planner.
  7815. // Speed is in mm/min.
  7816. saved_feedrate2 = blocks_queued() ? (block_buffer[block_buffer_tail].nominal_speed * 60.f) : feedrate;
  7817. #endif
  7818. planner_abort_hard(); //abort printing
  7819. memcpy(saved_pos, current_position, sizeof(saved_pos));
  7820. saved_active_extruder = active_extruder; //save active_extruder
  7821. saved_extruder_under_pressure = extruder_under_pressure; //extruder under pressure flag - currently unused
  7822. saved_extruder_relative_mode = axis_relative_modes[E_AXIS];
  7823. cmdqueue_reset(); //empty cmdqueue
  7824. card.sdprinting = false;
  7825. // card.closefile();
  7826. saved_printing = true;
  7827. // We may have missed a stepper timer interrupt. Be safe than sorry, reset the stepper timer before re-enabling interrupts.
  7828. st_reset_timer();
  7829. sei();
  7830. if ((z_move != 0) || (e_move != 0)) { // extruder or z move
  7831. #if 1
  7832. // Rather than calling plan_buffer_line directly, push the move into the command queue,
  7833. char buf[48];
  7834. // First unretract (relative extrusion)
  7835. if(!saved_extruder_relative_mode){
  7836. strcpy_P(buf, PSTR("M83"));
  7837. enquecommand(buf, false);
  7838. }
  7839. //retract 45mm/s
  7840. strcpy_P(buf, PSTR("G1 E"));
  7841. dtostrf(e_move, 6, 3, buf + strlen(buf));
  7842. strcat_P(buf, PSTR(" F"));
  7843. dtostrf(2700, 8, 3, buf + strlen(buf));
  7844. enquecommand(buf, false);
  7845. // Then lift Z axis
  7846. strcpy_P(buf, PSTR("G1 Z"));
  7847. dtostrf(saved_pos[Z_AXIS] + z_move, 8, 3, buf + strlen(buf));
  7848. strcat_P(buf, PSTR(" F"));
  7849. dtostrf(homing_feedrate[Z_AXIS], 8, 3, buf + strlen(buf));
  7850. // At this point the command queue is empty.
  7851. enquecommand(buf, false);
  7852. // If this call is invoked from the main Arduino loop() function, let the caller know that the command
  7853. // in the command queue is not the original command, but a new one, so it should not be removed from the queue.
  7854. repeatcommand_front();
  7855. #else
  7856. plan_buffer_line(saved_pos[X_AXIS], saved_pos[Y_AXIS], saved_pos[Z_AXIS] + z_move, saved_pos[E_AXIS] + e_move, homing_feedrate[Z_AXIS], active_extruder);
  7857. st_synchronize(); //wait moving
  7858. memcpy(current_position, saved_pos, sizeof(saved_pos));
  7859. memcpy(destination, current_position, sizeof(destination));
  7860. #endif
  7861. }
  7862. }
  7863. void restore_print_from_ram_and_continue(float e_move)
  7864. {
  7865. if (!saved_printing) return;
  7866. // for (int axis = X_AXIS; axis <= E_AXIS; axis++)
  7867. // current_position[axis] = st_get_position_mm(axis);
  7868. active_extruder = saved_active_extruder; //restore active_extruder
  7869. feedrate = saved_feedrate2; //restore feedrate
  7870. axis_relative_modes[E_AXIS] = saved_extruder_relative_mode;
  7871. float e = saved_pos[E_AXIS] - e_move;
  7872. plan_set_e_position(e);
  7873. //first move print head in XY to the saved position:
  7874. plan_buffer_line(saved_pos[X_AXIS], saved_pos[Y_AXIS], current_position[Z_AXIS], saved_pos[E_AXIS] - e_move, homing_feedrate[Z_AXIS]/13, active_extruder);
  7875. st_synchronize();
  7876. //then move Z
  7877. plan_buffer_line(saved_pos[X_AXIS], saved_pos[Y_AXIS], saved_pos[Z_AXIS], saved_pos[E_AXIS] - e_move, homing_feedrate[Z_AXIS]/13, active_extruder);
  7878. st_synchronize();
  7879. //and finaly unretract (35mm/s)
  7880. plan_buffer_line(saved_pos[X_AXIS], saved_pos[Y_AXIS], saved_pos[Z_AXIS], saved_pos[E_AXIS], 35, active_extruder);
  7881. st_synchronize();
  7882. memcpy(current_position, saved_pos, sizeof(saved_pos));
  7883. memcpy(destination, current_position, sizeof(destination));
  7884. if (saved_printing_type == PRINTING_TYPE_SD) { //was sd printing
  7885. card.setIndex(saved_sdpos);
  7886. sdpos_atomic = saved_sdpos;
  7887. card.sdprinting = true;
  7888. printf_P(PSTR("ok\n")); //dummy response because of octoprint is waiting for this
  7889. }
  7890. else if (saved_printing_type == PRINTING_TYPE_USB) { //was usb printing
  7891. gcode_LastN = saved_sdpos; //saved_sdpos was reused for storing line number when usb printing
  7892. serial_count = 0;
  7893. FlushSerialRequestResend();
  7894. }
  7895. else {
  7896. //not sd printing nor usb printing
  7897. }
  7898. lcd_setstatuspgm(_T(WELCOME_MSG));
  7899. saved_printing = false;
  7900. }
  7901. void print_world_coordinates()
  7902. {
  7903. printf_P(_N("world coordinates: (%.3f, %.3f, %.3f)\n"), current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS]);
  7904. }
  7905. void print_physical_coordinates()
  7906. {
  7907. printf_P(_N("physical coordinates: (%.3f, %.3f, %.3f)\n"), st_get_position_mm(X_AXIS), st_get_position_mm(Y_AXIS), st_get_position_mm(Z_AXIS));
  7908. }
  7909. void print_mesh_bed_leveling_table()
  7910. {
  7911. SERIAL_ECHOPGM("mesh bed leveling: ");
  7912. for (int8_t y = 0; y < MESH_NUM_Y_POINTS; ++ y)
  7913. for (int8_t x = 0; x < MESH_NUM_Y_POINTS; ++ x) {
  7914. MYSERIAL.print(mbl.z_values[y][x], 3);
  7915. SERIAL_ECHOPGM(" ");
  7916. }
  7917. SERIAL_ECHOLNPGM("");
  7918. }
  7919. uint16_t print_time_remaining() {
  7920. uint16_t print_t = PRINT_TIME_REMAINING_INIT;
  7921. if (SilentModeMenu == SILENT_MODE_OFF) print_t = print_time_remaining_normal;
  7922. else print_t = print_time_remaining_silent;
  7923. if ((print_t != PRINT_TIME_REMAINING_INIT) && (feedmultiply != 0)) print_t = 100 * print_t / feedmultiply;
  7924. return print_t;
  7925. }
  7926. uint8_t print_percent_done() {
  7927. //in case that we have information from M73 gcode return percentage counted by slicer, else return percentage counted as byte_printed/filesize
  7928. uint8_t percent_done = 0;
  7929. if (SilentModeMenu == SILENT_MODE_OFF && print_percent_done_normal <= 100) {
  7930. percent_done = print_percent_done_normal;
  7931. }
  7932. else if (print_percent_done_silent <= 100) {
  7933. percent_done = print_percent_done_silent;
  7934. }
  7935. else {
  7936. percent_done = card.percentDone();
  7937. }
  7938. return percent_done;
  7939. }
  7940. static void print_time_remaining_init() {
  7941. print_time_remaining_normal = PRINT_TIME_REMAINING_INIT;
  7942. print_time_remaining_silent = PRINT_TIME_REMAINING_INIT;
  7943. print_percent_done_normal = PRINT_PERCENT_DONE_INIT;
  7944. print_percent_done_silent = PRINT_PERCENT_DONE_INIT;
  7945. }
  7946. bool mmu_get_reponse(bool timeout) {
  7947. bool response = true;
  7948. LongTimer mmu_get_reponse_timeout;
  7949. uart2_rx_clr();
  7950. mmu_get_reponse_timeout.start();
  7951. while (!uart2_rx_ok())
  7952. {
  7953. delay_keep_alive(100);
  7954. if (timeout && mmu_get_reponse_timeout.expired(180 * 1000ul)) { //3 minutes timeout
  7955. response = false;
  7956. break;
  7957. }
  7958. }
  7959. return response;
  7960. }
  7961. void mmu_not_responding() {
  7962. printf_P(PSTR("MMU not responding"));
  7963. }
  7964. void mmu_load_to_nozzle() {
  7965. /*bool saved_e_relative_mode = axis_relative_modes[E_AXIS];
  7966. if (!saved_e_relative_mode) {
  7967. enquecommand_front_P(PSTR("M82")); // set extruder to relative mode
  7968. }
  7969. enquecommand_front_P((PSTR("G1 E7.2000 F562")));
  7970. enquecommand_front_P((PSTR("G1 E14.4000 F871")));
  7971. enquecommand_front_P((PSTR("G1 E36.0000 F1393")));
  7972. enquecommand_front_P((PSTR("G1 E14.4000 F871")));
  7973. if (!saved_e_relative_mode) {
  7974. enquecommand_front_P(PSTR("M83")); // set extruder to relative mode
  7975. }*/
  7976. st_synchronize();
  7977. bool saved_e_relative_mode = axis_relative_modes[E_AXIS];
  7978. if (!saved_e_relative_mode) axis_relative_modes[E_AXIS] = true;
  7979. current_position[E_AXIS] += 7.2f;
  7980. float feedrate = 562;
  7981. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], feedrate / 60, active_extruder);
  7982. st_synchronize();
  7983. current_position[E_AXIS] += 14.4f;
  7984. feedrate = 871;
  7985. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], feedrate / 60, active_extruder);
  7986. st_synchronize();
  7987. current_position[E_AXIS] += 36.0f;
  7988. feedrate = 1393;
  7989. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], feedrate / 60, active_extruder);
  7990. st_synchronize();
  7991. current_position[E_AXIS] += 14.4f;
  7992. feedrate = 871;
  7993. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], feedrate / 60, active_extruder);
  7994. st_synchronize();
  7995. if (!saved_e_relative_mode) axis_relative_modes[E_AXIS] = false;
  7996. }
  7997. void mmu_switch_extruder(uint8_t extruder) {
  7998. }
  7999. void mmu_M600_load_filament() {
  8000. #ifdef SNMM_V2
  8001. bool response = false;
  8002. tmp_extruder = choose_extruder_menu();
  8003. lcd_update_enable(false);
  8004. lcd_clear();
  8005. lcd_set_cursor(0, 1); lcd_puts_P(_T(MSG_LOADING_FILAMENT));
  8006. lcd_print(" ");
  8007. lcd_print(snmm_extruder + 1);
  8008. snmm_filaments_used |= (1 << tmp_extruder); //for stop print
  8009. printf_P(PSTR("T code: %d \n"), tmp_extruder);
  8010. fprintf_P(uart2io, PSTR("T%d\n"), tmp_extruder);
  8011. response = mmu_get_reponse(false);
  8012. if (!response) mmu_not_responding();
  8013. snmm_extruder = tmp_extruder; //filament change is finished
  8014. mmu_load_to_nozzle();
  8015. #endif
  8016. }
  8017. void M600_load_filament_movements() {
  8018. #ifdef SNMM
  8019. display_loading();
  8020. do {
  8021. current_position[E_AXIS] += 0.002;
  8022. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 500, active_extruder);
  8023. delay_keep_alive(2);
  8024. } while (!lcd_clicked());
  8025. st_synchronize();
  8026. current_position[E_AXIS] += bowden_length[snmm_extruder];
  8027. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000, active_extruder);
  8028. current_position[E_AXIS] += FIL_LOAD_LENGTH - 60;
  8029. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 1400, active_extruder);
  8030. current_position[E_AXIS] += 40;
  8031. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400, active_extruder);
  8032. current_position[E_AXIS] += 10;
  8033. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 50, active_extruder);
  8034. #else
  8035. current_position[E_AXIS]+= FILAMENTCHANGE_FIRSTFEED ;
  8036. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], FILAMENTCHANGE_EFEED, active_extruder);
  8037. #endif
  8038. current_position[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  8039. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], FILAMENTCHANGE_EXFEED, active_extruder);
  8040. lcd_loading_filament();
  8041. }
  8042. void M600_load_filament()
  8043. {
  8044. lcd_wait_interact();
  8045. //load_filament_time = millis();
  8046. KEEPALIVE_STATE(PAUSED_FOR_USER);
  8047. #ifdef FILAMENT_SENSOR
  8048. fsensor_autoload_check_start();
  8049. #endif //FILAMENT_SENSOR
  8050. while(!lcd_clicked())
  8051. {
  8052. manage_heater();
  8053. manage_inactivity(true);
  8054. #ifdef FILAMENT_SENSOR
  8055. if (fsensor_check_autoload())
  8056. {
  8057. tone(BEEPER, 1000);
  8058. delay_keep_alive(50);
  8059. noTone(BEEPER);
  8060. break;
  8061. }
  8062. #endif //FILAMENT_SENSOR
  8063. }
  8064. #ifdef FILAMENT_SENSOR
  8065. fsensor_autoload_check_stop();
  8066. #endif //FILAMENT_SENSOR
  8067. KEEPALIVE_STATE(IN_HANDLER);
  8068. #ifdef FILAMENT_SENSOR
  8069. fsensor_oq_meassure_start(70);
  8070. #endif //FILAMENT_SENSOR
  8071. M600_load_filament_movements();
  8072. tone(BEEPER, 500);
  8073. delay_keep_alive(50);
  8074. noTone(BEEPER);
  8075. #ifdef FILAMENT_SENSOR
  8076. fsensor_oq_meassure_stop();
  8077. if (!fsensor_oq_result())
  8078. {
  8079. bool disable = lcd_show_fullscreen_message_yes_no_and_wait_P(_i("Fil. sensor response is poor, disable it?"), false, true);
  8080. lcd_update_enable(true);
  8081. lcd_update(2);
  8082. if (disable)
  8083. fsensor_disable();
  8084. }
  8085. #endif //FILAMENT_SENSOR
  8086. }
  8087. #define FIL_LOAD_LENGTH 60