Marlin_main.cpp 282 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971397239733974397539763977397839793980398139823983398439853986398739883989399039913992399339943995399639973998399940004001400240034004400540064007400840094010401140124013401440154016401740184019402040214022402340244025402640274028402940304031403240334034403540364037403840394040404140424043404440454046404740484049405040514052405340544055405640574058405940604061406240634064406540664067406840694070407140724073407440754076407740784079408040814082408340844085408640874088408940904091409240934094409540964097409840994100410141024103410441054106410741084109411041114112411341144115411641174118411941204121412241234124412541264127412841294130413141324133413441354136413741384139414041414142414341444145414641474148414941504151415241534154415541564157415841594160416141624163416441654166416741684169417041714172417341744175417641774178417941804181418241834184418541864187418841894190419141924193419441954196419741984199420042014202420342044205420642074208420942104211421242134214421542164217421842194220422142224223422442254226422742284229423042314232423342344235423642374238423942404241424242434244424542464247424842494250425142524253425442554256425742584259426042614262426342644265426642674268426942704271427242734274427542764277427842794280428142824283428442854286428742884289429042914292429342944295429642974298429943004301430243034304430543064307430843094310431143124313431443154316431743184319432043214322432343244325432643274328432943304331433243334334433543364337433843394340434143424343434443454346434743484349435043514352435343544355435643574358435943604361436243634364436543664367436843694370437143724373437443754376437743784379438043814382438343844385438643874388438943904391439243934394439543964397439843994400440144024403440444054406440744084409441044114412441344144415441644174418441944204421442244234424442544264427442844294430443144324433443444354436443744384439444044414442444344444445444644474448444944504451445244534454445544564457445844594460446144624463446444654466446744684469447044714472447344744475447644774478447944804481448244834484448544864487448844894490449144924493449444954496449744984499450045014502450345044505450645074508450945104511451245134514451545164517451845194520452145224523452445254526452745284529453045314532453345344535453645374538453945404541454245434544454545464547454845494550455145524553455445554556455745584559456045614562456345644565456645674568456945704571457245734574457545764577457845794580458145824583458445854586458745884589459045914592459345944595459645974598459946004601460246034604460546064607460846094610461146124613461446154616461746184619462046214622462346244625462646274628462946304631463246334634463546364637463846394640464146424643464446454646464746484649465046514652465346544655465646574658465946604661466246634664466546664667466846694670467146724673467446754676467746784679468046814682468346844685468646874688468946904691469246934694469546964697469846994700470147024703470447054706470747084709471047114712471347144715471647174718471947204721472247234724472547264727472847294730473147324733473447354736473747384739474047414742474347444745474647474748474947504751475247534754475547564757475847594760476147624763476447654766476747684769477047714772477347744775477647774778477947804781478247834784478547864787478847894790479147924793479447954796479747984799480048014802480348044805480648074808480948104811481248134814481548164817481848194820482148224823482448254826482748284829483048314832483348344835483648374838483948404841484248434844484548464847484848494850485148524853485448554856485748584859486048614862486348644865486648674868486948704871487248734874487548764877487848794880488148824883488448854886488748884889489048914892489348944895489648974898489949004901490249034904490549064907490849094910491149124913491449154916491749184919492049214922492349244925492649274928492949304931493249334934493549364937493849394940494149424943494449454946494749484949495049514952495349544955495649574958495949604961496249634964496549664967496849694970497149724973497449754976497749784979498049814982498349844985498649874988498949904991499249934994499549964997499849995000500150025003500450055006500750085009501050115012501350145015501650175018501950205021502250235024502550265027502850295030503150325033503450355036503750385039504050415042504350445045504650475048504950505051505250535054505550565057505850595060506150625063506450655066506750685069507050715072507350745075507650775078507950805081508250835084508550865087508850895090509150925093509450955096509750985099510051015102510351045105510651075108510951105111511251135114511551165117511851195120512151225123512451255126512751285129513051315132513351345135513651375138513951405141514251435144514551465147514851495150515151525153515451555156515751585159516051615162516351645165516651675168516951705171517251735174517551765177517851795180518151825183518451855186518751885189519051915192519351945195519651975198519952005201520252035204520552065207520852095210521152125213521452155216521752185219522052215222522352245225522652275228522952305231523252335234523552365237523852395240524152425243524452455246524752485249525052515252525352545255525652575258525952605261526252635264526552665267526852695270527152725273527452755276527752785279528052815282528352845285528652875288528952905291529252935294529552965297529852995300530153025303530453055306530753085309531053115312531353145315531653175318531953205321532253235324532553265327532853295330533153325333533453355336533753385339534053415342534353445345534653475348534953505351535253535354535553565357535853595360536153625363536453655366536753685369537053715372537353745375537653775378537953805381538253835384538553865387538853895390539153925393539453955396539753985399540054015402540354045405540654075408540954105411541254135414541554165417541854195420542154225423542454255426542754285429543054315432543354345435543654375438543954405441544254435444544554465447544854495450545154525453545454555456545754585459546054615462546354645465546654675468546954705471547254735474547554765477547854795480548154825483548454855486548754885489549054915492549354945495549654975498549955005501550255035504550555065507550855095510551155125513551455155516551755185519552055215522552355245525552655275528552955305531553255335534553555365537553855395540554155425543554455455546554755485549555055515552555355545555555655575558555955605561556255635564556555665567556855695570557155725573557455755576557755785579558055815582558355845585558655875588558955905591559255935594559555965597559855995600560156025603560456055606560756085609561056115612561356145615561656175618561956205621562256235624562556265627562856295630563156325633563456355636563756385639564056415642564356445645564656475648564956505651565256535654565556565657565856595660566156625663566456655666566756685669567056715672567356745675567656775678567956805681568256835684568556865687568856895690569156925693569456955696569756985699570057015702570357045705570657075708570957105711571257135714571557165717571857195720572157225723572457255726572757285729573057315732573357345735573657375738573957405741574257435744574557465747574857495750575157525753575457555756575757585759576057615762576357645765576657675768576957705771577257735774577557765777577857795780578157825783578457855786578757885789579057915792579357945795579657975798579958005801580258035804580558065807580858095810581158125813581458155816581758185819582058215822582358245825582658275828582958305831583258335834583558365837583858395840584158425843584458455846584758485849585058515852585358545855585658575858585958605861586258635864586558665867586858695870587158725873587458755876587758785879588058815882588358845885588658875888588958905891589258935894589558965897589858995900590159025903590459055906590759085909591059115912591359145915591659175918591959205921592259235924592559265927592859295930593159325933593459355936593759385939594059415942594359445945594659475948594959505951595259535954595559565957595859595960596159625963596459655966596759685969597059715972597359745975597659775978597959805981598259835984598559865987598859895990599159925993599459955996599759985999600060016002600360046005600660076008600960106011601260136014601560166017601860196020602160226023602460256026602760286029603060316032603360346035603660376038603960406041604260436044604560466047604860496050605160526053605460556056605760586059606060616062606360646065606660676068606960706071607260736074607560766077607860796080608160826083608460856086608760886089609060916092609360946095609660976098609961006101610261036104610561066107610861096110611161126113611461156116611761186119612061216122612361246125612661276128612961306131613261336134613561366137613861396140614161426143614461456146614761486149615061516152615361546155615661576158615961606161616261636164616561666167616861696170617161726173617461756176617761786179618061816182618361846185618661876188618961906191619261936194619561966197619861996200620162026203620462056206620762086209621062116212621362146215621662176218621962206221622262236224622562266227622862296230623162326233623462356236623762386239624062416242624362446245624662476248624962506251625262536254625562566257625862596260626162626263626462656266626762686269627062716272627362746275627662776278627962806281628262836284628562866287628862896290629162926293629462956296629762986299630063016302630363046305630663076308630963106311631263136314631563166317631863196320632163226323632463256326632763286329633063316332633363346335633663376338633963406341634263436344634563466347634863496350635163526353635463556356635763586359636063616362636363646365636663676368636963706371637263736374637563766377637863796380638163826383638463856386638763886389639063916392639363946395639663976398639964006401640264036404640564066407640864096410641164126413641464156416641764186419642064216422642364246425642664276428642964306431643264336434643564366437643864396440644164426443644464456446644764486449645064516452645364546455645664576458645964606461646264636464646564666467646864696470647164726473647464756476647764786479648064816482648364846485648664876488648964906491649264936494649564966497649864996500650165026503650465056506650765086509651065116512651365146515651665176518651965206521652265236524652565266527652865296530653165326533653465356536653765386539654065416542654365446545654665476548654965506551655265536554655565566557655865596560656165626563656465656566656765686569657065716572657365746575657665776578657965806581658265836584658565866587658865896590659165926593659465956596659765986599660066016602660366046605660666076608660966106611661266136614661566166617661866196620662166226623662466256626662766286629663066316632663366346635663666376638663966406641664266436644664566466647664866496650665166526653665466556656665766586659666066616662666366646665666666676668666966706671667266736674667566766677667866796680668166826683668466856686668766886689669066916692669366946695669666976698669967006701670267036704670567066707670867096710671167126713671467156716671767186719672067216722672367246725672667276728672967306731673267336734673567366737673867396740674167426743674467456746674767486749675067516752675367546755675667576758675967606761676267636764676567666767676867696770677167726773677467756776677767786779678067816782678367846785678667876788678967906791679267936794679567966797679867996800680168026803680468056806680768086809681068116812681368146815681668176818681968206821682268236824682568266827682868296830683168326833683468356836683768386839684068416842684368446845684668476848684968506851685268536854685568566857685868596860686168626863686468656866686768686869687068716872687368746875687668776878687968806881688268836884688568866887688868896890689168926893689468956896689768986899690069016902690369046905690669076908690969106911691269136914691569166917691869196920692169226923692469256926692769286929693069316932693369346935693669376938693969406941694269436944694569466947694869496950695169526953695469556956695769586959696069616962696369646965696669676968696969706971697269736974697569766977697869796980698169826983698469856986698769886989699069916992699369946995699669976998699970007001700270037004700570067007700870097010701170127013701470157016701770187019702070217022702370247025702670277028702970307031703270337034703570367037703870397040704170427043704470457046704770487049705070517052705370547055705670577058705970607061706270637064706570667067706870697070707170727073707470757076707770787079708070817082708370847085708670877088708970907091709270937094709570967097709870997100710171027103710471057106710771087109711071117112711371147115711671177118711971207121712271237124712571267127712871297130713171327133713471357136713771387139714071417142714371447145714671477148714971507151715271537154715571567157715871597160716171627163716471657166716771687169717071717172717371747175717671777178717971807181718271837184718571867187718871897190719171927193719471957196719771987199720072017202720372047205720672077208720972107211721272137214721572167217721872197220722172227223722472257226722772287229723072317232723372347235723672377238723972407241724272437244724572467247724872497250725172527253725472557256725772587259726072617262726372647265726672677268726972707271727272737274727572767277727872797280728172827283728472857286728772887289729072917292729372947295729672977298729973007301730273037304730573067307730873097310731173127313731473157316731773187319732073217322732373247325732673277328732973307331733273337334733573367337733873397340734173427343734473457346734773487349735073517352735373547355735673577358735973607361736273637364736573667367736873697370737173727373737473757376737773787379738073817382738373847385738673877388738973907391739273937394739573967397739873997400740174027403740474057406740774087409741074117412741374147415741674177418741974207421742274237424742574267427742874297430743174327433743474357436743774387439744074417442744374447445744674477448744974507451745274537454745574567457745874597460746174627463746474657466746774687469747074717472747374747475747674777478747974807481748274837484748574867487748874897490749174927493749474957496749774987499750075017502750375047505750675077508750975107511751275137514751575167517751875197520752175227523752475257526752775287529753075317532753375347535753675377538753975407541754275437544754575467547754875497550755175527553755475557556755775587559756075617562756375647565756675677568756975707571757275737574757575767577757875797580758175827583758475857586758775887589759075917592759375947595759675977598759976007601760276037604760576067607760876097610761176127613761476157616761776187619762076217622762376247625762676277628762976307631763276337634763576367637763876397640764176427643764476457646764776487649765076517652765376547655765676577658765976607661766276637664766576667667766876697670767176727673767476757676767776787679768076817682768376847685768676877688768976907691769276937694769576967697769876997700770177027703770477057706770777087709771077117712771377147715771677177718771977207721772277237724772577267727772877297730773177327733773477357736773777387739774077417742774377447745774677477748774977507751775277537754775577567757775877597760776177627763776477657766776777687769777077717772777377747775777677777778777977807781778277837784778577867787778877897790779177927793779477957796779777987799780078017802780378047805780678077808780978107811781278137814781578167817781878197820782178227823782478257826782778287829783078317832783378347835783678377838783978407841784278437844784578467847784878497850785178527853785478557856785778587859786078617862786378647865786678677868786978707871787278737874787578767877787878797880788178827883788478857886788778887889789078917892789378947895789678977898789979007901790279037904790579067907790879097910791179127913791479157916791779187919792079217922792379247925792679277928792979307931793279337934793579367937793879397940794179427943794479457946794779487949795079517952795379547955795679577958795979607961796279637964796579667967796879697970797179727973797479757976797779787979798079817982798379847985798679877988798979907991799279937994799579967997799879998000800180028003800480058006800780088009801080118012801380148015801680178018801980208021802280238024802580268027802880298030803180328033803480358036803780388039804080418042804380448045804680478048804980508051805280538054805580568057805880598060806180628063806480658066806780688069807080718072807380748075807680778078807980808081808280838084808580868087808880898090809180928093809480958096809780988099810081018102810381048105810681078108810981108111811281138114811581168117811881198120812181228123812481258126812781288129813081318132813381348135813681378138813981408141814281438144814581468147814881498150815181528153815481558156815781588159816081618162816381648165816681678168816981708171817281738174817581768177817881798180818181828183818481858186818781888189819081918192819381948195819681978198819982008201820282038204820582068207820882098210821182128213821482158216821782188219822082218222822382248225822682278228822982308231823282338234823582368237823882398240824182428243824482458246824782488249825082518252825382548255825682578258825982608261826282638264826582668267826882698270827182728273827482758276827782788279828082818282828382848285828682878288828982908291829282938294829582968297829882998300830183028303830483058306830783088309831083118312831383148315831683178318831983208321832283238324832583268327832883298330833183328333833483358336833783388339834083418342834383448345834683478348834983508351835283538354835583568357835883598360836183628363836483658366836783688369837083718372837383748375837683778378837983808381838283838384838583868387838883898390839183928393839483958396839783988399840084018402840384048405840684078408840984108411841284138414841584168417841884198420842184228423842484258426842784288429843084318432843384348435843684378438843984408441844284438444844584468447844884498450845184528453845484558456845784588459846084618462846384648465846684678468846984708471847284738474847584768477847884798480848184828483848484858486848784888489
  1. /* -*- c++ -*- */
  2. /*
  3. Reprap firmware based on Sprinter and grbl.
  4. Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
  5. This program is free software: you can redistribute it and/or modify
  6. it under the terms of the GNU General Public License as published by
  7. the Free Software Foundation, either version 3 of the License, or
  8. (at your option) any later version.
  9. This program is distributed in the hope that it will be useful,
  10. but WITHOUT ANY WARRANTY; without even the implied warranty of
  11. MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  12. GNU General Public License for more details.
  13. You should have received a copy of the GNU General Public License
  14. along with this program. If not, see <http://www.gnu.org/licenses/>.
  15. */
  16. /*
  17. This firmware is a mashup between Sprinter and grbl.
  18. (https://github.com/kliment/Sprinter)
  19. (https://github.com/simen/grbl/tree)
  20. It has preliminary support for Matthew Roberts advance algorithm
  21. http://reprap.org/pipermail/reprap-dev/2011-May/003323.html
  22. */
  23. #include "Marlin.h"
  24. #ifdef ENABLE_AUTO_BED_LEVELING
  25. #include "vector_3.h"
  26. #ifdef AUTO_BED_LEVELING_GRID
  27. #include "qr_solve.h"
  28. #endif
  29. #endif // ENABLE_AUTO_BED_LEVELING
  30. #ifdef MESH_BED_LEVELING
  31. #include "mesh_bed_leveling.h"
  32. #include "mesh_bed_calibration.h"
  33. #endif
  34. #include "printers.h"
  35. #include "ultralcd.h"
  36. #include "Configuration_prusa.h"
  37. #include "planner.h"
  38. #include "stepper.h"
  39. #include "temperature.h"
  40. #include "motion_control.h"
  41. #include "cardreader.h"
  42. #include "ConfigurationStore.h"
  43. #include "language.h"
  44. #include "pins_arduino.h"
  45. #include "math.h"
  46. #include "util.h"
  47. #include "Timer.h"
  48. #include <avr/wdt.h>
  49. #include "Dcodes.h"
  50. #ifdef SWSPI
  51. #include "swspi.h"
  52. #endif //SWSPI
  53. #ifdef SWI2C
  54. #include "swi2c.h"
  55. #endif //SWI2C
  56. #ifdef PAT9125
  57. #include "pat9125.h"
  58. #include "fsensor.h"
  59. #endif //PAT9125
  60. #ifdef TMC2130
  61. #include "tmc2130.h"
  62. #endif //TMC2130
  63. #ifdef BLINKM
  64. #include "BlinkM.h"
  65. #include "Wire.h"
  66. #endif
  67. #ifdef ULTRALCD
  68. #include "ultralcd.h"
  69. #endif
  70. #if NUM_SERVOS > 0
  71. #include "Servo.h"
  72. #endif
  73. #if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
  74. #include <SPI.h>
  75. #endif
  76. #define VERSION_STRING "1.0.2"
  77. #include "ultralcd.h"
  78. #include "cmdqueue.h"
  79. // Macros for bit masks
  80. #define BIT(b) (1<<(b))
  81. #define TEST(n,b) (((n)&BIT(b))!=0)
  82. #define SET_BIT(n,b,value) (n) ^= ((-value)^(n)) & (BIT(b))
  83. //Macro for print fan speed
  84. #define FAN_PULSE_WIDTH_LIMIT ((fanSpeed > 100) ? 3 : 4) //time in ms
  85. // look here for descriptions of G-codes: http://linuxcnc.org/handbook/gcode/g-code.html
  86. // http://objects.reprap.org/wiki/Mendel_User_Manual:_RepRapGCodes
  87. //Implemented Codes
  88. //-------------------
  89. // PRUSA CODES
  90. // P F - Returns FW versions
  91. // P R - Returns revision of printer
  92. // G0 -> G1
  93. // G1 - Coordinated Movement X Y Z E
  94. // G2 - CW ARC
  95. // G3 - CCW ARC
  96. // G4 - Dwell S<seconds> or P<milliseconds>
  97. // G10 - retract filament according to settings of M207
  98. // G11 - retract recover filament according to settings of M208
  99. // G28 - Home all Axis
  100. // G29 - Detailed Z-Probe, probes the bed at 3 or more points. Will fail if you haven't homed yet.
  101. // G30 - Single Z Probe, probes bed at current XY location.
  102. // G31 - Dock sled (Z_PROBE_SLED only)
  103. // G32 - Undock sled (Z_PROBE_SLED only)
  104. // G80 - Automatic mesh bed leveling
  105. // G81 - Print bed profile
  106. // G90 - Use Absolute Coordinates
  107. // G91 - Use Relative Coordinates
  108. // G92 - Set current position to coordinates given
  109. // M Codes
  110. // M0 - Unconditional stop - Wait for user to press a button on the LCD (Only if ULTRA_LCD is enabled)
  111. // M1 - Same as M0
  112. // M17 - Enable/Power all stepper motors
  113. // M18 - Disable all stepper motors; same as M84
  114. // M20 - List SD card
  115. // M21 - Init SD card
  116. // M22 - Release SD card
  117. // M23 - Select SD file (M23 filename.g)
  118. // M24 - Start/resume SD print
  119. // M25 - Pause SD print
  120. // M26 - Set SD position in bytes (M26 S12345)
  121. // M27 - Report SD print status
  122. // M28 - Start SD write (M28 filename.g)
  123. // M29 - Stop SD write
  124. // M30 - Delete file from SD (M30 filename.g)
  125. // M31 - Output time since last M109 or SD card start to serial
  126. // M32 - Select file and start SD print (Can be used _while_ printing from SD card files):
  127. // syntax "M32 /path/filename#", or "M32 S<startpos bytes> !filename#"
  128. // Call gcode file : "M32 P !filename#" and return to caller file after finishing (similar to #include).
  129. // The '#' is necessary when calling from within sd files, as it stops buffer prereading
  130. // M42 - Change pin status via gcode Use M42 Px Sy to set pin x to value y, when omitting Px the onboard led will be used.
  131. // M80 - Turn on Power Supply
  132. // M81 - Turn off Power Supply
  133. // M82 - Set E codes absolute (default)
  134. // M83 - Set E codes relative while in Absolute Coordinates (G90) mode
  135. // M84 - Disable steppers until next move,
  136. // or use S<seconds> to specify an inactivity timeout, after which the steppers will be disabled. S0 to disable the timeout.
  137. // M85 - Set inactivity shutdown timer with parameter S<seconds>. To disable set zero (default)
  138. // M92 - Set axis_steps_per_unit - same syntax as G92
  139. // M104 - Set extruder target temp
  140. // M105 - Read current temp
  141. // M106 - Fan on
  142. // M107 - Fan off
  143. // M109 - Sxxx Wait for extruder current temp to reach target temp. Waits only when heating
  144. // Rxxx Wait for extruder current temp to reach target temp. Waits when heating and cooling
  145. // IF AUTOTEMP is enabled, S<mintemp> B<maxtemp> F<factor>. Exit autotemp by any M109 without F
  146. // M112 - Emergency stop
  147. // M113 - Get or set the timeout interval for Host Keepalive "busy" messages
  148. // M114 - Output current position to serial port
  149. // M115 - Capabilities string
  150. // M117 - display message
  151. // M119 - Output Endstop status to serial port
  152. // M126 - Solenoid Air Valve Open (BariCUDA support by jmil)
  153. // M127 - Solenoid Air Valve Closed (BariCUDA vent to atmospheric pressure by jmil)
  154. // M128 - EtoP Open (BariCUDA EtoP = electricity to air pressure transducer by jmil)
  155. // M129 - EtoP Closed (BariCUDA EtoP = electricity to air pressure transducer by jmil)
  156. // M140 - Set bed target temp
  157. // M150 - Set BlinkM Color Output R: Red<0-255> U(!): Green<0-255> B: Blue<0-255> over i2c, G for green does not work.
  158. // M190 - Sxxx Wait for bed current temp to reach target temp. Waits only when heating
  159. // Rxxx Wait for bed current temp to reach target temp. Waits when heating and cooling
  160. // M200 D<millimeters>- set filament diameter and set E axis units to cubic millimeters (use S0 to set back to millimeters).
  161. // M201 - Set max acceleration in units/s^2 for print moves (M201 X1000 Y1000)
  162. // M202 - Set max acceleration in units/s^2 for travel moves (M202 X1000 Y1000) Unused in Marlin!!
  163. // M203 - Set maximum feedrate that your machine can sustain (M203 X200 Y200 Z300 E10000) in mm/sec
  164. // M204 - Set default acceleration: S normal moves T filament only moves (M204 S3000 T7000) in mm/sec^2 also sets minimum segment time in ms (B20000) to prevent buffer under-runs and M20 minimum feedrate
  165. // M205 - advanced settings: minimum travel speed S=while printing T=travel only, B=minimum segment time X= maximum xy jerk, Z=maximum Z jerk, E=maximum E jerk
  166. // M206 - set additional homing offset
  167. // M207 - set retract length S[positive mm] F[feedrate mm/min] Z[additional zlift/hop], stays in mm regardless of M200 setting
  168. // M208 - set recover=unretract length S[positive mm surplus to the M207 S*] F[feedrate mm/sec]
  169. // M209 - S<1=true/0=false> enable automatic retract detect if the slicer did not support G10/11: every normal extrude-only move will be classified as retract depending on the direction.
  170. // M218 - set hotend offset (in mm): T<extruder_number> X<offset_on_X> Y<offset_on_Y>
  171. // M220 S<factor in percent>- set speed factor override percentage
  172. // M221 S<factor in percent>- set extrude factor override percentage
  173. // M226 P<pin number> S<pin state>- Wait until the specified pin reaches the state required
  174. // M240 - Trigger a camera to take a photograph
  175. // M250 - Set LCD contrast C<contrast value> (value 0..63)
  176. // M280 - set servo position absolute. P: servo index, S: angle or microseconds
  177. // M300 - Play beep sound S<frequency Hz> P<duration ms>
  178. // M301 - Set PID parameters P I and D
  179. // M302 - Allow cold extrudes, or set the minimum extrude S<temperature>.
  180. // M303 - PID relay autotune S<temperature> sets the target temperature. (default target temperature = 150C)
  181. // M304 - Set bed PID parameters P I and D
  182. // M400 - Finish all moves
  183. // M401 - Lower z-probe if present
  184. // M402 - Raise z-probe if present
  185. // M404 - N<dia in mm> Enter the nominal filament width (3mm, 1.75mm ) or will display nominal filament width without parameters
  186. // M405 - Turn on Filament Sensor extrusion control. Optional D<delay in cm> to set delay in centimeters between sensor and extruder
  187. // M406 - Turn off Filament Sensor extrusion control
  188. // M407 - Displays measured filament diameter
  189. // M500 - stores parameters in EEPROM
  190. // M501 - reads parameters from EEPROM (if you need reset them after you changed them temporarily).
  191. // M502 - reverts to the default "factory settings". You still need to store them in EEPROM afterwards if you want to.
  192. // M503 - print the current settings (from memory not from EEPROM)
  193. // M509 - force language selection on next restart
  194. // M540 - Use S[0|1] to enable or disable the stop SD card print on endstop hit (requires ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED)
  195. // M600 - Pause for filament change X[pos] Y[pos] Z[relative lift] E[initial retract] L[later retract distance for removal]
  196. // M605 - Set dual x-carriage movement mode: S<mode> [ X<duplication x-offset> R<duplication temp offset> ]
  197. // M900 - Set LIN_ADVANCE options, if enabled. See Configuration_adv.h for details.
  198. // M907 - Set digital trimpot motor current using axis codes.
  199. // M908 - Control digital trimpot directly.
  200. // M350 - Set microstepping mode.
  201. // M351 - Toggle MS1 MS2 pins directly.
  202. // M928 - Start SD logging (M928 filename.g) - ended by M29
  203. // M999 - Restart after being stopped by error
  204. //Stepper Movement Variables
  205. //===========================================================================
  206. //=============================imported variables============================
  207. //===========================================================================
  208. //===========================================================================
  209. //=============================public variables=============================
  210. //===========================================================================
  211. #ifdef SDSUPPORT
  212. CardReader card;
  213. #endif
  214. unsigned long PingTime = millis();
  215. unsigned long NcTime;
  216. union Data
  217. {
  218. byte b[2];
  219. int value;
  220. };
  221. float homing_feedrate[] = HOMING_FEEDRATE;
  222. // Currently only the extruder axis may be switched to a relative mode.
  223. // Other axes are always absolute or relative based on the common relative_mode flag.
  224. bool axis_relative_modes[] = AXIS_RELATIVE_MODES;
  225. int feedmultiply=100; //100->1 200->2
  226. int saved_feedmultiply;
  227. int extrudemultiply=100; //100->1 200->2
  228. int extruder_multiply[EXTRUDERS] = {100
  229. #if EXTRUDERS > 1
  230. , 100
  231. #if EXTRUDERS > 2
  232. , 100
  233. #endif
  234. #endif
  235. };
  236. int bowden_length[4] = {385, 385, 385, 385};
  237. bool is_usb_printing = false;
  238. bool homing_flag = false;
  239. bool temp_cal_active = false;
  240. unsigned long kicktime = millis()+100000;
  241. unsigned int usb_printing_counter;
  242. int lcd_change_fil_state = 0;
  243. int feedmultiplyBckp = 100;
  244. float HotendTempBckp = 0;
  245. int fanSpeedBckp = 0;
  246. float pause_lastpos[4];
  247. unsigned long pause_time = 0;
  248. unsigned long start_pause_print = millis();
  249. unsigned long t_fan_rising_edge = millis();
  250. //unsigned long load_filament_time;
  251. bool mesh_bed_leveling_flag = false;
  252. bool mesh_bed_run_from_menu = false;
  253. unsigned char lang_selected = 0;
  254. int8_t FarmMode = 0;
  255. bool prusa_sd_card_upload = false;
  256. unsigned int status_number = 0;
  257. unsigned long total_filament_used;
  258. unsigned int heating_status;
  259. unsigned int heating_status_counter;
  260. bool custom_message;
  261. bool loading_flag = false;
  262. unsigned int custom_message_type;
  263. unsigned int custom_message_state;
  264. char snmm_filaments_used = 0;
  265. float distance_from_min[2];
  266. bool fan_state[2];
  267. int fan_edge_counter[2];
  268. int fan_speed[2];
  269. char dir_names[3][9];
  270. bool sortAlpha = false;
  271. bool volumetric_enabled = false;
  272. float filament_size[EXTRUDERS] = { DEFAULT_NOMINAL_FILAMENT_DIA
  273. #if EXTRUDERS > 1
  274. , DEFAULT_NOMINAL_FILAMENT_DIA
  275. #if EXTRUDERS > 2
  276. , DEFAULT_NOMINAL_FILAMENT_DIA
  277. #endif
  278. #endif
  279. };
  280. float extruder_multiplier[EXTRUDERS] = {1.0
  281. #if EXTRUDERS > 1
  282. , 1.0
  283. #if EXTRUDERS > 2
  284. , 1.0
  285. #endif
  286. #endif
  287. };
  288. float current_position[NUM_AXIS] = { 0.0, 0.0, 0.0, 0.0 };
  289. float add_homing[3]={0,0,0};
  290. float min_pos[3] = { X_MIN_POS, Y_MIN_POS, Z_MIN_POS };
  291. float max_pos[3] = { X_MAX_POS, Y_MAX_POS, Z_MAX_POS };
  292. bool axis_known_position[3] = {false, false, false};
  293. float zprobe_zoffset;
  294. // Extruder offset
  295. #if EXTRUDERS > 1
  296. #define NUM_EXTRUDER_OFFSETS 2 // only in XY plane
  297. float extruder_offset[NUM_EXTRUDER_OFFSETS][EXTRUDERS] = {
  298. #if defined(EXTRUDER_OFFSET_X) && defined(EXTRUDER_OFFSET_Y)
  299. EXTRUDER_OFFSET_X, EXTRUDER_OFFSET_Y
  300. #endif
  301. };
  302. #endif
  303. uint8_t active_extruder = 0;
  304. int fanSpeed=0;
  305. #ifdef FWRETRACT
  306. bool autoretract_enabled=false;
  307. bool retracted[EXTRUDERS]={false
  308. #if EXTRUDERS > 1
  309. , false
  310. #if EXTRUDERS > 2
  311. , false
  312. #endif
  313. #endif
  314. };
  315. bool retracted_swap[EXTRUDERS]={false
  316. #if EXTRUDERS > 1
  317. , false
  318. #if EXTRUDERS > 2
  319. , false
  320. #endif
  321. #endif
  322. };
  323. float retract_length = RETRACT_LENGTH;
  324. float retract_length_swap = RETRACT_LENGTH_SWAP;
  325. float retract_feedrate = RETRACT_FEEDRATE;
  326. float retract_zlift = RETRACT_ZLIFT;
  327. float retract_recover_length = RETRACT_RECOVER_LENGTH;
  328. float retract_recover_length_swap = RETRACT_RECOVER_LENGTH_SWAP;
  329. float retract_recover_feedrate = RETRACT_RECOVER_FEEDRATE;
  330. #endif
  331. #ifdef ULTIPANEL
  332. #ifdef PS_DEFAULT_OFF
  333. bool powersupply = false;
  334. #else
  335. bool powersupply = true;
  336. #endif
  337. #endif
  338. bool cancel_heatup = false ;
  339. #ifdef HOST_KEEPALIVE_FEATURE
  340. int busy_state = NOT_BUSY;
  341. static long prev_busy_signal_ms = -1;
  342. uint8_t host_keepalive_interval = HOST_KEEPALIVE_INTERVAL;
  343. #else
  344. #define host_keepalive();
  345. #define KEEPALIVE_STATE(n);
  346. #endif
  347. const char errormagic[] PROGMEM = "Error:";
  348. const char echomagic[] PROGMEM = "echo:";
  349. bool no_response = false;
  350. uint8_t important_status;
  351. uint8_t saved_filament_type;
  352. //===========================================================================
  353. //=============================Private Variables=============================
  354. //===========================================================================
  355. const char axis_codes[NUM_AXIS] = {'X', 'Y', 'Z', 'E'};
  356. float destination[NUM_AXIS] = { 0.0, 0.0, 0.0, 0.0};
  357. static float delta[3] = {0.0, 0.0, 0.0};
  358. // For tracing an arc
  359. static float offset[3] = {0.0, 0.0, 0.0};
  360. static float feedrate = 1500.0, next_feedrate, saved_feedrate;
  361. // Determines Absolute or Relative Coordinates.
  362. // Also there is bool axis_relative_modes[] per axis flag.
  363. static bool relative_mode = false;
  364. #ifndef _DISABLE_M42_M226
  365. const int sensitive_pins[] = SENSITIVE_PINS; // Sensitive pin list for M42
  366. #endif //_DISABLE_M42_M226
  367. //static float tt = 0;
  368. //static float bt = 0;
  369. //Inactivity shutdown variables
  370. static unsigned long previous_millis_cmd = 0;
  371. unsigned long max_inactive_time = 0;
  372. static unsigned long stepper_inactive_time = DEFAULT_STEPPER_DEACTIVE_TIME*1000l;
  373. unsigned long starttime=0;
  374. unsigned long stoptime=0;
  375. unsigned long _usb_timer = 0;
  376. static uint8_t tmp_extruder;
  377. bool extruder_under_pressure = true;
  378. bool Stopped=false;
  379. #if NUM_SERVOS > 0
  380. Servo servos[NUM_SERVOS];
  381. #endif
  382. bool CooldownNoWait = true;
  383. bool target_direction;
  384. //Insert variables if CHDK is defined
  385. #ifdef CHDK
  386. unsigned long chdkHigh = 0;
  387. boolean chdkActive = false;
  388. #endif
  389. //===========================================================================
  390. //=============================Routines======================================
  391. //===========================================================================
  392. void get_arc_coordinates();
  393. bool setTargetedHotend(int code);
  394. void serial_echopair_P(const char *s_P, float v)
  395. { serialprintPGM(s_P); SERIAL_ECHO(v); }
  396. void serial_echopair_P(const char *s_P, double v)
  397. { serialprintPGM(s_P); SERIAL_ECHO(v); }
  398. void serial_echopair_P(const char *s_P, unsigned long v)
  399. { serialprintPGM(s_P); SERIAL_ECHO(v); }
  400. #ifdef SDSUPPORT
  401. #include "SdFatUtil.h"
  402. int freeMemory() { return SdFatUtil::FreeRam(); }
  403. #else
  404. extern "C" {
  405. extern unsigned int __bss_end;
  406. extern unsigned int __heap_start;
  407. extern void *__brkval;
  408. int freeMemory() {
  409. int free_memory;
  410. if ((int)__brkval == 0)
  411. free_memory = ((int)&free_memory) - ((int)&__bss_end);
  412. else
  413. free_memory = ((int)&free_memory) - ((int)__brkval);
  414. return free_memory;
  415. }
  416. }
  417. #endif //!SDSUPPORT
  418. void setup_killpin()
  419. {
  420. #if defined(KILL_PIN) && KILL_PIN > -1
  421. SET_INPUT(KILL_PIN);
  422. WRITE(KILL_PIN,HIGH);
  423. #endif
  424. }
  425. // Set home pin
  426. void setup_homepin(void)
  427. {
  428. #if defined(HOME_PIN) && HOME_PIN > -1
  429. SET_INPUT(HOME_PIN);
  430. WRITE(HOME_PIN,HIGH);
  431. #endif
  432. }
  433. void setup_photpin()
  434. {
  435. #if defined(PHOTOGRAPH_PIN) && PHOTOGRAPH_PIN > -1
  436. SET_OUTPUT(PHOTOGRAPH_PIN);
  437. WRITE(PHOTOGRAPH_PIN, LOW);
  438. #endif
  439. }
  440. void setup_powerhold()
  441. {
  442. #if defined(SUICIDE_PIN) && SUICIDE_PIN > -1
  443. SET_OUTPUT(SUICIDE_PIN);
  444. WRITE(SUICIDE_PIN, HIGH);
  445. #endif
  446. #if defined(PS_ON_PIN) && PS_ON_PIN > -1
  447. SET_OUTPUT(PS_ON_PIN);
  448. #if defined(PS_DEFAULT_OFF)
  449. WRITE(PS_ON_PIN, PS_ON_ASLEEP);
  450. #else
  451. WRITE(PS_ON_PIN, PS_ON_AWAKE);
  452. #endif
  453. #endif
  454. }
  455. void suicide()
  456. {
  457. #if defined(SUICIDE_PIN) && SUICIDE_PIN > -1
  458. SET_OUTPUT(SUICIDE_PIN);
  459. WRITE(SUICIDE_PIN, LOW);
  460. #endif
  461. }
  462. void servo_init()
  463. {
  464. #if (NUM_SERVOS >= 1) && defined(SERVO0_PIN) && (SERVO0_PIN > -1)
  465. servos[0].attach(SERVO0_PIN);
  466. #endif
  467. #if (NUM_SERVOS >= 2) && defined(SERVO1_PIN) && (SERVO1_PIN > -1)
  468. servos[1].attach(SERVO1_PIN);
  469. #endif
  470. #if (NUM_SERVOS >= 3) && defined(SERVO2_PIN) && (SERVO2_PIN > -1)
  471. servos[2].attach(SERVO2_PIN);
  472. #endif
  473. #if (NUM_SERVOS >= 4) && defined(SERVO3_PIN) && (SERVO3_PIN > -1)
  474. servos[3].attach(SERVO3_PIN);
  475. #endif
  476. #if (NUM_SERVOS >= 5)
  477. #error "TODO: enter initalisation code for more servos"
  478. #endif
  479. }
  480. static void lcd_language_menu();
  481. void stop_and_save_print_to_ram(float z_move, float e_move);
  482. void restore_print_from_ram_and_continue(float e_move);
  483. bool fans_check_enabled = true;
  484. bool filament_autoload_enabled = true;
  485. #ifdef TMC2130
  486. extern int8_t CrashDetectMenu;
  487. void crashdet_enable()
  488. {
  489. // MYSERIAL.println("crashdet_enable");
  490. tmc2130_sg_stop_on_crash = true;
  491. eeprom_update_byte((uint8_t*)EEPROM_CRASH_DET, 0xFF);
  492. CrashDetectMenu = 1;
  493. }
  494. void crashdet_disable()
  495. {
  496. // MYSERIAL.println("crashdet_disable");
  497. tmc2130_sg_stop_on_crash = false;
  498. tmc2130_sg_crash = 0;
  499. eeprom_update_byte((uint8_t*)EEPROM_CRASH_DET, 0x00);
  500. CrashDetectMenu = 0;
  501. }
  502. void crashdet_stop_and_save_print()
  503. {
  504. stop_and_save_print_to_ram(10, 0); //XY - no change, Z 10mm up, E - no change
  505. }
  506. void crashdet_restore_print_and_continue()
  507. {
  508. restore_print_from_ram_and_continue(0); //XYZ = orig, E - no change
  509. // babystep_apply();
  510. }
  511. void crashdet_stop_and_save_print2()
  512. {
  513. cli();
  514. planner_abort_hard(); //abort printing
  515. cmdqueue_reset(); //empty cmdqueue
  516. card.sdprinting = false;
  517. card.closefile();
  518. // Reset and re-enable the stepper timer just before the global interrupts are enabled.
  519. st_reset_timer();
  520. sei();
  521. }
  522. void crashdet_detected(uint8_t mask)
  523. {
  524. // printf("CRASH_DETECTED");
  525. /* while (!is_buffer_empty())
  526. {
  527. process_commands();
  528. cmdqueue_pop_front();
  529. }*/
  530. st_synchronize();
  531. lcd_update_enable(true);
  532. lcd_implementation_clear();
  533. lcd_update(2);
  534. if (mask & X_AXIS_MASK)
  535. {
  536. eeprom_update_byte((uint8_t*)EEPROM_CRASH_COUNT_X, eeprom_read_byte((uint8_t*)EEPROM_CRASH_COUNT_X) + 1);
  537. eeprom_update_word((uint16_t*)EEPROM_CRASH_COUNT_X_TOT, eeprom_read_word((uint16_t*)EEPROM_CRASH_COUNT_X_TOT) + 1);
  538. }
  539. if (mask & Y_AXIS_MASK)
  540. {
  541. eeprom_update_byte((uint8_t*)EEPROM_CRASH_COUNT_Y, eeprom_read_byte((uint8_t*)EEPROM_CRASH_COUNT_Y) + 1);
  542. eeprom_update_word((uint16_t*)EEPROM_CRASH_COUNT_Y_TOT, eeprom_read_word((uint16_t*)EEPROM_CRASH_COUNT_Y_TOT) + 1);
  543. }
  544. #ifdef AUTOMATIC_RECOVERY_AFTER_CRASH
  545. bool yesno = true;
  546. #else
  547. bool yesno = lcd_show_fullscreen_message_yes_no_and_wait_P(MSG_CRASH_DETECTED, false);
  548. #endif
  549. lcd_update_enable(true);
  550. lcd_update(2);
  551. lcd_setstatuspgm(MSG_CRASH_DETECTED);
  552. if (yesno)
  553. {
  554. enquecommand_P(PSTR("G28 X Y"));
  555. enquecommand_P(PSTR("CRASH_RECOVER"));
  556. }
  557. else
  558. {
  559. enquecommand_P(PSTR("CRASH_CANCEL"));
  560. }
  561. }
  562. void crashdet_recover()
  563. {
  564. crashdet_restore_print_and_continue();
  565. tmc2130_sg_stop_on_crash = true;
  566. }
  567. void crashdet_cancel()
  568. {
  569. card.sdprinting = false;
  570. card.closefile();
  571. tmc2130_sg_stop_on_crash = true;
  572. }
  573. #endif //TMC2130
  574. void failstats_reset_print()
  575. {
  576. eeprom_update_byte((uint8_t *)EEPROM_CRASH_COUNT_X, 0);
  577. eeprom_update_byte((uint8_t *)EEPROM_CRASH_COUNT_Y, 0);
  578. eeprom_update_byte((uint8_t *)EEPROM_FERROR_COUNT, 0);
  579. eeprom_update_byte((uint8_t *)EEPROM_POWER_COUNT, 0);
  580. }
  581. #ifdef MESH_BED_LEVELING
  582. enum MeshLevelingState { MeshReport, MeshStart, MeshNext, MeshSet };
  583. #endif
  584. // Factory reset function
  585. // This function is used to erase parts or whole EEPROM memory which is used for storing calibration and and so on.
  586. // Level input parameter sets depth of reset
  587. // Quiet parameter masks all waitings for user interact.
  588. int er_progress = 0;
  589. void factory_reset(char level, bool quiet)
  590. {
  591. lcd_implementation_clear();
  592. int cursor_pos = 0;
  593. switch (level) {
  594. // Level 0: Language reset
  595. case 0:
  596. WRITE(BEEPER, HIGH);
  597. _delay_ms(100);
  598. WRITE(BEEPER, LOW);
  599. lcd_force_language_selection();
  600. break;
  601. //Level 1: Reset statistics
  602. case 1:
  603. WRITE(BEEPER, HIGH);
  604. _delay_ms(100);
  605. WRITE(BEEPER, LOW);
  606. eeprom_update_dword((uint32_t *)EEPROM_TOTALTIME, 0);
  607. eeprom_update_dword((uint32_t *)EEPROM_FILAMENTUSED, 0);
  608. eeprom_update_byte((uint8_t *)EEPROM_CRASH_COUNT_X, 0);
  609. eeprom_update_byte((uint8_t *)EEPROM_CRASH_COUNT_Y, 0);
  610. eeprom_update_byte((uint8_t *)EEPROM_FERROR_COUNT, 0);
  611. eeprom_update_byte((uint8_t *)EEPROM_POWER_COUNT, 0);
  612. eeprom_update_word((uint16_t *)EEPROM_CRASH_COUNT_X_TOT, 0);
  613. eeprom_update_word((uint16_t *)EEPROM_CRASH_COUNT_Y_TOT, 0);
  614. eeprom_update_word((uint16_t *)EEPROM_FERROR_COUNT_TOT, 0);
  615. eeprom_update_word((uint16_t *)EEPROM_POWER_COUNT_TOT, 0);
  616. lcd_menu_statistics();
  617. break;
  618. // Level 2: Prepare for shipping
  619. case 2:
  620. //lcd_printPGM(PSTR("Factory RESET"));
  621. //lcd_print_at_PGM(1,2,PSTR("Shipping prep"));
  622. // Force language selection at the next boot up.
  623. lcd_force_language_selection();
  624. // Force the "Follow calibration flow" message at the next boot up.
  625. calibration_status_store(CALIBRATION_STATUS_Z_CALIBRATION);
  626. eeprom_write_byte((uint8_t*)EEPROM_WIZARD_ACTIVE, 1); //run wizard
  627. farm_no = 0;
  628. farm_mode == false;
  629. eeprom_update_byte((uint8_t*)EEPROM_FARM_MODE, farm_mode);
  630. EEPROM_save_B(EEPROM_FARM_NUMBER, &farm_no);
  631. WRITE(BEEPER, HIGH);
  632. _delay_ms(100);
  633. WRITE(BEEPER, LOW);
  634. //_delay_ms(2000);
  635. break;
  636. // Level 3: erase everything, whole EEPROM will be set to 0xFF
  637. case 3:
  638. lcd_printPGM(PSTR("Factory RESET"));
  639. lcd_print_at_PGM(1, 2, PSTR("ERASING all data"));
  640. WRITE(BEEPER, HIGH);
  641. _delay_ms(100);
  642. WRITE(BEEPER, LOW);
  643. er_progress = 0;
  644. lcd_print_at_PGM(3, 3, PSTR(" "));
  645. lcd_implementation_print_at(3, 3, er_progress);
  646. // Erase EEPROM
  647. for (int i = 0; i < 4096; i++) {
  648. eeprom_write_byte((uint8_t*)i, 0xFF);
  649. if (i % 41 == 0) {
  650. er_progress++;
  651. lcd_print_at_PGM(3, 3, PSTR(" "));
  652. lcd_implementation_print_at(3, 3, er_progress);
  653. lcd_printPGM(PSTR("%"));
  654. }
  655. }
  656. break;
  657. case 4:
  658. bowden_menu();
  659. break;
  660. default:
  661. break;
  662. }
  663. }
  664. #include "LiquidCrystal.h"
  665. extern LiquidCrystal lcd;
  666. FILE _lcdout = {0};
  667. int lcd_putchar(char c, FILE *stream)
  668. {
  669. lcd.write(c);
  670. return 0;
  671. }
  672. FILE _uartout = {0};
  673. int uart_putchar(char c, FILE *stream)
  674. {
  675. MYSERIAL.write(c);
  676. return 0;
  677. }
  678. void lcd_splash()
  679. {
  680. // lcd_print_at_PGM(0, 1, PSTR(" Original Prusa "));
  681. // lcd_print_at_PGM(0, 2, PSTR(" 3D Printers "));
  682. // lcd.print_P(PSTR("\x1b[1;3HOriginal Prusa\x1b[2;4H3D Printers"));
  683. fputs_P(PSTR(ESC_2J ESC_H(1,1) "Original Prusa i3" ESC_H(3,2) "Prusa Research"), lcdout);
  684. }
  685. void factory_reset()
  686. {
  687. KEEPALIVE_STATE(PAUSED_FOR_USER);
  688. if (!READ(BTN_ENC))
  689. {
  690. _delay_ms(1000);
  691. if (!READ(BTN_ENC))
  692. {
  693. lcd_implementation_clear();
  694. lcd_printPGM(PSTR("Factory RESET"));
  695. SET_OUTPUT(BEEPER);
  696. WRITE(BEEPER, HIGH);
  697. while (!READ(BTN_ENC));
  698. WRITE(BEEPER, LOW);
  699. _delay_ms(2000);
  700. char level = reset_menu();
  701. factory_reset(level, false);
  702. switch (level) {
  703. case 0: _delay_ms(0); break;
  704. case 1: _delay_ms(0); break;
  705. case 2: _delay_ms(0); break;
  706. case 3: _delay_ms(0); break;
  707. }
  708. // _delay_ms(100);
  709. /*
  710. #ifdef MESH_BED_LEVELING
  711. _delay_ms(2000);
  712. if (!READ(BTN_ENC))
  713. {
  714. WRITE(BEEPER, HIGH);
  715. _delay_ms(100);
  716. WRITE(BEEPER, LOW);
  717. _delay_ms(200);
  718. WRITE(BEEPER, HIGH);
  719. _delay_ms(100);
  720. WRITE(BEEPER, LOW);
  721. int _z = 0;
  722. calibration_status_store(CALIBRATION_STATUS_CALIBRATED);
  723. EEPROM_save_B(EEPROM_BABYSTEP_X, &_z);
  724. EEPROM_save_B(EEPROM_BABYSTEP_Y, &_z);
  725. EEPROM_save_B(EEPROM_BABYSTEP_Z, &_z);
  726. }
  727. else
  728. {
  729. WRITE(BEEPER, HIGH);
  730. _delay_ms(100);
  731. WRITE(BEEPER, LOW);
  732. }
  733. #endif // mesh */
  734. }
  735. }
  736. else
  737. {
  738. //_delay_ms(1000); // wait 1sec to display the splash screen // what's this and why do we need it?? - andre
  739. }
  740. KEEPALIVE_STATE(IN_HANDLER);
  741. }
  742. void show_fw_version_warnings() {
  743. if (FW_DEV_VERSION == FW_VERSION_GOLD || FW_DEV_VERSION == FW_VERSION_RC) return;
  744. switch (FW_DEV_VERSION) {
  745. case(FW_VERSION_ALPHA): lcd_show_fullscreen_message_and_wait_P(MSG_FW_VERSION_ALPHA); break;
  746. case(FW_VERSION_BETA): lcd_show_fullscreen_message_and_wait_P(MSG_FW_VERSION_BETA); break;
  747. case(FW_VERSION_DEVEL):
  748. case(FW_VERSION_DEBUG):
  749. lcd_update_enable(false);
  750. lcd_implementation_clear();
  751. #if FW_DEV_VERSION == FW_VERSION_DEVEL
  752. lcd_print_at_PGM(0, 0, PSTR("Development build !!"));
  753. #else
  754. lcd_print_at_PGM(0, 0, PSTR("Debbugging build !!!"));
  755. #endif
  756. lcd_print_at_PGM(0, 1, PSTR("May destroy printer!"));
  757. lcd_print_at_PGM(0, 2, PSTR("ver ")); lcd_printPGM(PSTR(FW_VERSION_FULL));
  758. lcd_print_at_PGM(0, 3, PSTR(FW_REPOSITORY));
  759. lcd_wait_for_click();
  760. break;
  761. default: lcd_show_fullscreen_message_and_wait_P(MSG_FW_VERSION_UNKNOWN); break;
  762. }
  763. lcd_update_enable(true);
  764. }
  765. uint8_t check_printer_version()
  766. {
  767. uint8_t version_changed = 0;
  768. uint16_t printer_type = eeprom_read_word((uint16_t*)EEPROM_PRINTER_TYPE);
  769. uint16_t motherboard = eeprom_read_word((uint16_t*)EEPROM_BOARD_TYPE);
  770. if (printer_type != PRINTER_TYPE) {
  771. if (printer_type == 0xffff) eeprom_write_word((uint16_t*)EEPROM_PRINTER_TYPE, PRINTER_TYPE);
  772. else version_changed |= 0b10;
  773. }
  774. if (motherboard != MOTHERBOARD) {
  775. if(motherboard == 0xffff) eeprom_write_word((uint16_t*)EEPROM_BOARD_TYPE, MOTHERBOARD);
  776. else version_changed |= 0b01;
  777. }
  778. return version_changed;
  779. }
  780. void erase_eeprom_section(uint16_t offset, uint16_t bytes)
  781. {
  782. for (int i = offset; i < (offset+bytes); i++) eeprom_write_byte((uint8_t*)i, 0xFF);
  783. }
  784. // "Setup" function is called by the Arduino framework on startup.
  785. // Before startup, the Timers-functions (PWM)/Analog RW and HardwareSerial provided by the Arduino-code
  786. // are initialized by the main() routine provided by the Arduino framework.
  787. void setup()
  788. {
  789. lcd_init();
  790. fdev_setup_stream(lcdout, lcd_putchar, NULL, _FDEV_SETUP_WRITE); //setup lcdout stream
  791. lcd_splash();
  792. setup_killpin();
  793. setup_powerhold();
  794. farm_mode = eeprom_read_byte((uint8_t*)EEPROM_FARM_MODE);
  795. EEPROM_read_B(EEPROM_FARM_NUMBER, &farm_no);
  796. if ((farm_mode == 0xFF && farm_no == 0) || ((uint16_t)farm_no == 0xFFFF))
  797. farm_mode = false; //if farm_mode has not been stored to eeprom yet and farm number is set to zero or EEPROM is fresh, deactivate farm mode
  798. if ((uint16_t)farm_no == 0xFFFF) farm_no = 0;
  799. selectedSerialPort = eeprom_read_byte((uint8_t*)EEPROM_SECOND_SERIAL_ACTIVE);
  800. if (selectedSerialPort == 0xFF) selectedSerialPort = 0;
  801. if (farm_mode)
  802. {
  803. no_response = true; //we need confirmation by recieving PRUSA thx
  804. important_status = 8;
  805. prusa_statistics(8);
  806. selectedSerialPort = 1;
  807. }
  808. MYSERIAL.begin(BAUDRATE);
  809. fdev_setup_stream(uartout, uart_putchar, NULL, _FDEV_SETUP_WRITE); //setup uart out stream
  810. stdout = uartout;
  811. SERIAL_PROTOCOLLNPGM("start");
  812. SERIAL_ECHO_START;
  813. printf_P(PSTR(" "FW_VERSION_FULL"\n"));
  814. #if 0
  815. SERIAL_ECHOLN("Reading eeprom from 0 to 100: start");
  816. for (int i = 0; i < 4096; ++i) {
  817. int b = eeprom_read_byte((unsigned char*)i);
  818. if (b != 255) {
  819. SERIAL_ECHO(i);
  820. SERIAL_ECHO(":");
  821. SERIAL_ECHO(b);
  822. SERIAL_ECHOLN("");
  823. }
  824. }
  825. SERIAL_ECHOLN("Reading eeprom from 0 to 100: done");
  826. #endif
  827. // Check startup - does nothing if bootloader sets MCUSR to 0
  828. byte mcu = MCUSR;
  829. /* if (mcu & 1) SERIAL_ECHOLNRPGM(MSG_POWERUP);
  830. if (mcu & 2) SERIAL_ECHOLNRPGM(MSG_EXTERNAL_RESET);
  831. if (mcu & 4) SERIAL_ECHOLNRPGM(MSG_BROWNOUT_RESET);
  832. if (mcu & 8) SERIAL_ECHOLNRPGM(MSG_WATCHDOG_RESET);
  833. if (mcu & 32) SERIAL_ECHOLNRPGM(MSG_SOFTWARE_RESET);*/
  834. if (mcu & 1) puts_P(MSG_POWERUP);
  835. if (mcu & 2) puts_P(MSG_EXTERNAL_RESET);
  836. if (mcu & 4) puts_P(MSG_BROWNOUT_RESET);
  837. if (mcu & 8) puts_P(MSG_WATCHDOG_RESET);
  838. if (mcu & 32) puts_P(MSG_SOFTWARE_RESET);
  839. MCUSR = 0;
  840. //SERIAL_ECHORPGM(MSG_MARLIN);
  841. //SERIAL_ECHOLNRPGM(VERSION_STRING);
  842. #ifdef STRING_VERSION_CONFIG_H
  843. #ifdef STRING_CONFIG_H_AUTHOR
  844. SERIAL_ECHO_START;
  845. SERIAL_ECHORPGM(MSG_CONFIGURATION_VER);
  846. SERIAL_ECHOPGM(STRING_VERSION_CONFIG_H);
  847. SERIAL_ECHORPGM(MSG_AUTHOR);
  848. SERIAL_ECHOLNPGM(STRING_CONFIG_H_AUTHOR);
  849. SERIAL_ECHOPGM("Compiled: ");
  850. SERIAL_ECHOLNPGM(__DATE__);
  851. #endif
  852. #endif
  853. SERIAL_ECHO_START;
  854. SERIAL_ECHORPGM(MSG_FREE_MEMORY);
  855. SERIAL_ECHO(freeMemory());
  856. SERIAL_ECHORPGM(MSG_PLANNER_BUFFER_BYTES);
  857. SERIAL_ECHOLN((int)sizeof(block_t)*BLOCK_BUFFER_SIZE);
  858. //lcd_update_enable(false); // why do we need this?? - andre
  859. // loads data from EEPROM if available else uses defaults (and resets step acceleration rate)
  860. bool previous_settings_retrieved = false;
  861. uint8_t hw_changed = check_printer_version();
  862. if (!(hw_changed & 0b10)) { //if printer version wasn't changed, check for eeprom version and retrieve settings from eeprom in case that version wasn't changed
  863. previous_settings_retrieved = Config_RetrieveSettings(EEPROM_OFFSET);
  864. }
  865. else { //printer version was changed so use default settings
  866. Config_ResetDefault();
  867. }
  868. SdFatUtil::set_stack_guard(); //writes magic number at the end of static variables to protect against overwriting static memory by stack
  869. tp_init(); // Initialize temperature loop
  870. lcd_splash(); // we need to do this again, because tp_init() kills lcd
  871. plan_init(); // Initialize planner;
  872. factory_reset();
  873. #ifdef TMC2130
  874. uint8_t silentMode = eeprom_read_byte((uint8_t*)EEPROM_SILENT);
  875. if (silentMode == 0xff) silentMode = 0;
  876. // tmc2130_mode = silentMode?TMC2130_MODE_SILENT:TMC2130_MODE_NORMAL;
  877. tmc2130_mode = TMC2130_MODE_NORMAL;
  878. uint8_t crashdet = eeprom_read_byte((uint8_t*)EEPROM_CRASH_DET);
  879. if (crashdet)
  880. {
  881. crashdet_enable();
  882. MYSERIAL.println("CrashDetect ENABLED!");
  883. }
  884. else
  885. {
  886. crashdet_disable();
  887. MYSERIAL.println("CrashDetect DISABLED");
  888. }
  889. #ifdef TMC2130_LINEARITY_CORRECTION
  890. #ifdef EXPERIMENTAL_FEATURES
  891. tmc2130_wave_fac[X_AXIS] = eeprom_read_word((uint16_t*)EEPROM_TMC2130_WAVE_X_FAC);
  892. tmc2130_wave_fac[Y_AXIS] = eeprom_read_word((uint16_t*)EEPROM_TMC2130_WAVE_Y_FAC);
  893. tmc2130_wave_fac[Z_AXIS] = eeprom_read_word((uint16_t*)EEPROM_TMC2130_WAVE_Z_FAC);
  894. #endif //EXPERIMENTAL_FEATURES
  895. tmc2130_wave_fac[E_AXIS] = eeprom_read_word((uint16_t*)EEPROM_TMC2130_WAVE_E_FAC);
  896. if (tmc2130_wave_fac[X_AXIS] == 0xffff) tmc2130_wave_fac[X_AXIS] = 0;
  897. if (tmc2130_wave_fac[Y_AXIS] == 0xffff) tmc2130_wave_fac[Y_AXIS] = 0;
  898. if (tmc2130_wave_fac[Z_AXIS] == 0xffff) tmc2130_wave_fac[Z_AXIS] = 0;
  899. if (tmc2130_wave_fac[E_AXIS] == 0xffff) tmc2130_wave_fac[E_AXIS] = 0;
  900. #endif //TMC2130_LINEARITY_CORRECTION
  901. #ifdef TMC2130_VARIABLE_RESOLUTION
  902. tmc2130_mres[X_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_X_MRES);
  903. tmc2130_mres[Y_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_Y_MRES);
  904. tmc2130_mres[Z_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_Z_MRES);
  905. tmc2130_mres[E_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_E_MRES);
  906. if (tmc2130_mres[X_AXIS] == 0xff) tmc2130_mres[X_AXIS] = tmc2130_usteps2mres(TMC2130_USTEPS_XY);
  907. if (tmc2130_mres[Y_AXIS] == 0xff) tmc2130_mres[Y_AXIS] = tmc2130_usteps2mres(TMC2130_USTEPS_XY);
  908. if (tmc2130_mres[Z_AXIS] == 0xff) tmc2130_mres[Z_AXIS] = tmc2130_usteps2mres(TMC2130_USTEPS_Z);
  909. if (tmc2130_mres[E_AXIS] == 0xff) tmc2130_mres[E_AXIS] = tmc2130_usteps2mres(TMC2130_USTEPS_E);
  910. eeprom_update_byte((uint8_t*)EEPROM_TMC2130_X_MRES, tmc2130_mres[X_AXIS]);
  911. eeprom_update_byte((uint8_t*)EEPROM_TMC2130_Y_MRES, tmc2130_mres[Y_AXIS]);
  912. eeprom_update_byte((uint8_t*)EEPROM_TMC2130_Z_MRES, tmc2130_mres[Z_AXIS]);
  913. eeprom_update_byte((uint8_t*)EEPROM_TMC2130_E_MRES, tmc2130_mres[E_AXIS]);
  914. #else //TMC2130_VARIABLE_RESOLUTION
  915. tmc2130_mres[X_AXIS] = tmc2130_usteps2mres(TMC2130_USTEPS_XY);
  916. tmc2130_mres[Y_AXIS] = tmc2130_usteps2mres(TMC2130_USTEPS_XY);
  917. tmc2130_mres[Z_AXIS] = tmc2130_usteps2mres(TMC2130_USTEPS_Z);
  918. tmc2130_mres[E_AXIS] = tmc2130_usteps2mres(TMC2130_USTEPS_E);
  919. #endif //TMC2130_VARIABLE_RESOLUTION
  920. #endif //TMC2130
  921. st_init(); // Initialize stepper, this enables interrupts!
  922. #ifdef TMC2130
  923. tmc2130_mode = silentMode?TMC2130_MODE_SILENT:TMC2130_MODE_NORMAL;
  924. tmc2130_init();
  925. #endif //TMC2130
  926. setup_photpin();
  927. servo_init();
  928. // Reset the machine correction matrix.
  929. // It does not make sense to load the correction matrix until the machine is homed.
  930. world2machine_reset();
  931. #ifdef PAT9125
  932. fsensor_init();
  933. #endif //PAT9125
  934. #if defined(CONTROLLERFAN_PIN) && (CONTROLLERFAN_PIN > -1)
  935. SET_OUTPUT(CONTROLLERFAN_PIN); //Set pin used for driver cooling fan
  936. #endif
  937. #ifdef DIGIPOT_I2C
  938. digipot_i2c_init();
  939. #endif
  940. setup_homepin();
  941. #ifdef TMC2130
  942. if (1) {
  943. /// SERIAL_ECHOPGM("initial zsteps on power up: "); MYSERIAL.println(tmc2130_rd_MSCNT(Z_AXIS));
  944. // try to run to zero phase before powering the Z motor.
  945. // Move in negative direction
  946. WRITE(Z_DIR_PIN,INVERT_Z_DIR);
  947. // Round the current micro-micro steps to micro steps.
  948. for (uint16_t phase = (tmc2130_rd_MSCNT(Z_AXIS) + 8) >> 4; phase > 0; -- phase) {
  949. // Until the phase counter is reset to zero.
  950. WRITE(Z_STEP_PIN, !INVERT_Z_STEP_PIN);
  951. delay(2);
  952. WRITE(Z_STEP_PIN, INVERT_Z_STEP_PIN);
  953. delay(2);
  954. }
  955. // SERIAL_ECHOPGM("initial zsteps after reset: "); MYSERIAL.println(tmc2130_rd_MSCNT(Z_AXIS));
  956. }
  957. #endif //TMC2130
  958. #if defined(Z_AXIS_ALWAYS_ON)
  959. enable_z();
  960. #endif
  961. farm_mode = eeprom_read_byte((uint8_t*)EEPROM_FARM_MODE);
  962. EEPROM_read_B(EEPROM_FARM_NUMBER, &farm_no);
  963. if ((farm_mode == 0xFF && farm_no == 0) || (farm_no == 0xFFFF)) farm_mode = false; //if farm_mode has not been stored to eeprom yet and farm number is set to zero or EEPROM is fresh, deactivate farm mode
  964. if (farm_no == 0xFFFF) farm_no = 0;
  965. if (farm_mode)
  966. {
  967. prusa_statistics(8);
  968. }
  969. // Enable Toshiba FlashAir SD card / WiFi enahanced card.
  970. card.ToshibaFlashAir_enable(eeprom_read_byte((unsigned char*)EEPROM_TOSHIBA_FLASH_AIR_COMPATIBLITY) == 1);
  971. if (eeprom_read_dword((uint32_t*)(EEPROM_TOP - 4)) == 0x0ffffffff &&
  972. eeprom_read_dword((uint32_t*)(EEPROM_TOP - 8)) == 0x0ffffffff) {
  973. // Maiden startup. The firmware has been loaded and first started on a virgin RAMBo board,
  974. // where all the EEPROM entries are set to 0x0ff.
  975. // Once a firmware boots up, it forces at least a language selection, which changes
  976. // EEPROM_LANG to number lower than 0x0ff.
  977. // 1) Set a high power mode.
  978. #ifdef TMC2130
  979. eeprom_write_byte((uint8_t*)EEPROM_SILENT, 0);
  980. tmc2130_mode = TMC2130_MODE_NORMAL;
  981. #endif //TMC2130
  982. eeprom_write_byte((uint8_t*)EEPROM_WIZARD_ACTIVE, 1); //run wizard
  983. }
  984. // Force SD card update. Otherwise the SD card update is done from loop() on card.checkautostart(false),
  985. // but this times out if a blocking dialog is shown in setup().
  986. card.initsd();
  987. #ifdef DEBUG_SD_SPEED_TEST
  988. if (card.cardOK)
  989. {
  990. uint8_t* buff = (uint8_t*)block_buffer;
  991. uint32_t block = 0;
  992. uint32_t sumr = 0;
  993. uint32_t sumw = 0;
  994. for (int i = 0; i < 1024; i++)
  995. {
  996. uint32_t u = micros();
  997. bool res = card.card.readBlock(i, buff);
  998. u = micros() - u;
  999. if (res)
  1000. {
  1001. printf_P(PSTR("readBlock %4d 512 bytes %lu us\n"), i, u);
  1002. sumr += u;
  1003. u = micros();
  1004. res = card.card.writeBlock(i, buff);
  1005. u = micros() - u;
  1006. if (res)
  1007. {
  1008. printf_P(PSTR("writeBlock %4d 512 bytes %lu us\n"), i, u);
  1009. sumw += u;
  1010. }
  1011. else
  1012. {
  1013. printf_P(PSTR("writeBlock %4d error\n"), i);
  1014. break;
  1015. }
  1016. }
  1017. else
  1018. {
  1019. printf_P(PSTR("readBlock %4d error\n"), i);
  1020. break;
  1021. }
  1022. }
  1023. uint32_t avg_rspeed = (1024 * 1000000) / (sumr / 512);
  1024. uint32_t avg_wspeed = (1024 * 1000000) / (sumw / 512);
  1025. printf_P(PSTR("avg read speed %lu bytes/s\n"), avg_rspeed);
  1026. printf_P(PSTR("avg write speed %lu bytes/s\n"), avg_wspeed);
  1027. }
  1028. else
  1029. printf_P(PSTR("Card NG!\n"));
  1030. #endif DEBUG_SD_SPEED_TEST
  1031. if (eeprom_read_byte((uint8_t*)EEPROM_POWER_COUNT) == 0xff) eeprom_write_byte((uint8_t*)EEPROM_POWER_COUNT, 0);
  1032. if (eeprom_read_byte((uint8_t*)EEPROM_CRASH_COUNT_X) == 0xff) eeprom_write_byte((uint8_t*)EEPROM_CRASH_COUNT_X, 0);
  1033. if (eeprom_read_byte((uint8_t*)EEPROM_CRASH_COUNT_Y) == 0xff) eeprom_write_byte((uint8_t*)EEPROM_CRASH_COUNT_Y, 0);
  1034. if (eeprom_read_byte((uint8_t*)EEPROM_FERROR_COUNT) == 0xff) eeprom_write_byte((uint8_t*)EEPROM_FERROR_COUNT, 0);
  1035. if (eeprom_read_word((uint16_t*)EEPROM_POWER_COUNT_TOT) == 0xffff) eeprom_write_word((uint16_t*)EEPROM_POWER_COUNT_TOT, 0);
  1036. if (eeprom_read_word((uint16_t*)EEPROM_CRASH_COUNT_X_TOT) == 0xffff) eeprom_write_word((uint16_t*)EEPROM_CRASH_COUNT_X_TOT, 0);
  1037. if (eeprom_read_word((uint16_t*)EEPROM_CRASH_COUNT_Y_TOT) == 0xffff) eeprom_write_word((uint16_t*)EEPROM_CRASH_COUNT_Y_TOT, 0);
  1038. if (eeprom_read_word((uint16_t*)EEPROM_FERROR_COUNT_TOT) == 0xffff) eeprom_write_word((uint16_t*)EEPROM_FERROR_COUNT_TOT, 0);
  1039. #ifdef SNMM
  1040. if (eeprom_read_dword((uint32_t*)EEPROM_BOWDEN_LENGTH) == 0x0ffffffff) { //bowden length used for SNMM
  1041. int _z = BOWDEN_LENGTH;
  1042. for(int i = 0; i<4; i++) EEPROM_save_B(EEPROM_BOWDEN_LENGTH + i * 2, &_z);
  1043. }
  1044. #endif
  1045. // In the future, somewhere here would one compare the current firmware version against the firmware version stored in the EEPROM.
  1046. // If they differ, an update procedure may need to be performed. At the end of this block, the current firmware version
  1047. // is being written into the EEPROM, so the update procedure will be triggered only once.
  1048. lang_selected = eeprom_read_byte((uint8_t*)EEPROM_LANG);
  1049. if (lang_selected >= LANG_NUM){
  1050. lcd_mylang();
  1051. }
  1052. if (eeprom_read_byte((uint8_t*)EEPROM_TEMP_CAL_ACTIVE) == 255) {
  1053. eeprom_write_byte((uint8_t*)EEPROM_TEMP_CAL_ACTIVE, 0);
  1054. temp_cal_active = false;
  1055. } else temp_cal_active = eeprom_read_byte((uint8_t*)EEPROM_TEMP_CAL_ACTIVE);
  1056. if (eeprom_read_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA) == 255) {
  1057. //eeprom_write_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 0);
  1058. eeprom_write_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 1);
  1059. eeprom_write_word(((uint16_t*)EEPROM_PROBE_TEMP_SHIFT) + 0, 8); //40C - 20um - 8usteps
  1060. eeprom_write_word(((uint16_t*)EEPROM_PROBE_TEMP_SHIFT) + 1, 24); //45C - 60um - 24usteps
  1061. eeprom_write_word(((uint16_t*)EEPROM_PROBE_TEMP_SHIFT) + 2, 48); //50C - 120um - 48usteps
  1062. eeprom_write_word(((uint16_t*)EEPROM_PROBE_TEMP_SHIFT) + 3, 80); //55C - 200um - 80usteps
  1063. eeprom_write_word(((uint16_t*)EEPROM_PROBE_TEMP_SHIFT) + 4, 120); //60C - 300um - 120usteps
  1064. eeprom_write_byte((uint8_t*)EEPROM_TEMP_CAL_ACTIVE, 1);
  1065. temp_cal_active = true;
  1066. }
  1067. if (eeprom_read_byte((uint8_t*)EEPROM_UVLO) == 255) {
  1068. eeprom_write_byte((uint8_t*)EEPROM_UVLO, 0);
  1069. }
  1070. if (eeprom_read_byte((uint8_t*)EEPROM_SD_SORT) == 255) {
  1071. eeprom_write_byte((uint8_t*)EEPROM_SD_SORT, 0);
  1072. }
  1073. check_babystep(); //checking if Z babystep is in allowed range
  1074. #ifdef UVLO_SUPPORT
  1075. setup_uvlo_interrupt();
  1076. #endif //UVLO_SUPPORT
  1077. #if !defined(DEBUG_DISABLE_FANCHECK) && defined(FANCHECK) && defined(TACH_1) && TACH_1 >-1
  1078. setup_fan_interrupt();
  1079. #endif //DEBUG_DISABLE_FANCHECK
  1080. #ifdef PAT9125
  1081. #ifndef DEBUG_DISABLE_FSENSORCHECK
  1082. fsensor_setup_interrupt();
  1083. #endif //DEBUG_DISABLE_FSENSORCHECK
  1084. #endif //PAT9125
  1085. for (int i = 0; i<4; i++) EEPROM_read_B(EEPROM_BOWDEN_LENGTH + i * 2, &bowden_length[i]);
  1086. #ifndef DEBUG_DISABLE_STARTMSGS
  1087. KEEPALIVE_STATE(PAUSED_FOR_USER);
  1088. show_fw_version_warnings();
  1089. switch (hw_changed) {
  1090. //if motherboard or printer type was changed inform user as it can indicate flashing wrong firmware version
  1091. //if user confirms with knob, new hw version (printer and/or motherboard) is written to eeprom and message will be not shown next time
  1092. case(0b01):
  1093. lcd_show_fullscreen_message_and_wait_P(MSG_CHANGED_MOTHERBOARD);
  1094. eeprom_write_word((uint16_t*)EEPROM_BOARD_TYPE, MOTHERBOARD);
  1095. break;
  1096. case(0b10):
  1097. lcd_show_fullscreen_message_and_wait_P(MSG_CHANGED_PRINTER);
  1098. eeprom_write_word((uint16_t*)EEPROM_PRINTER_TYPE, PRINTER_TYPE);
  1099. break;
  1100. case(0b11):
  1101. lcd_show_fullscreen_message_and_wait_P(MSG_CHANGED_BOTH);
  1102. eeprom_write_word((uint16_t*)EEPROM_PRINTER_TYPE, PRINTER_TYPE);
  1103. eeprom_write_word((uint16_t*)EEPROM_BOARD_TYPE, MOTHERBOARD);
  1104. break;
  1105. default: break; //no change, show no message
  1106. }
  1107. if (!previous_settings_retrieved) {
  1108. lcd_show_fullscreen_message_and_wait_P(MSG_DEFAULT_SETTINGS_LOADED); //if EEPROM version or printer type was changed, inform user that default setting were loaded
  1109. erase_eeprom_section(EEPROM_OFFSET, 156); //erase M500 part of eeprom
  1110. }
  1111. if (eeprom_read_byte((uint8_t*)EEPROM_WIZARD_ACTIVE) == 1) {
  1112. lcd_wizard(0);
  1113. }
  1114. if (eeprom_read_byte((uint8_t*)EEPROM_WIZARD_ACTIVE) == 0) { //dont show calibration status messages if wizard is currently active
  1115. if (calibration_status() == CALIBRATION_STATUS_ASSEMBLED ||
  1116. calibration_status() == CALIBRATION_STATUS_UNKNOWN) {
  1117. // Reset the babystepping values, so the printer will not move the Z axis up when the babystepping is enabled.
  1118. eeprom_update_word((uint16_t*)EEPROM_BABYSTEP_Z, 0);
  1119. // Show the message.
  1120. lcd_show_fullscreen_message_and_wait_P(MSG_FOLLOW_CALIBRATION_FLOW);
  1121. }
  1122. else if (calibration_status() == CALIBRATION_STATUS_LIVE_ADJUST) {
  1123. // Show the message.
  1124. lcd_show_fullscreen_message_and_wait_P(MSG_BABYSTEP_Z_NOT_SET);
  1125. lcd_update_enable(true);
  1126. }
  1127. else if (calibration_status() == CALIBRATION_STATUS_CALIBRATED && temp_cal_active == true && calibration_status_pinda() == false) {
  1128. //lcd_show_fullscreen_message_and_wait_P(MSG_PINDA_NOT_CALIBRATED);
  1129. lcd_update_enable(true);
  1130. }
  1131. else if (calibration_status() == CALIBRATION_STATUS_Z_CALIBRATION) {
  1132. // Show the message.
  1133. lcd_show_fullscreen_message_and_wait_P(MSG_FOLLOW_CALIBRATION_FLOW);
  1134. }
  1135. }
  1136. #ifndef DEBUG_DISABLE_FORCE_SELFTEST
  1137. if (force_selftest_if_fw_version() && calibration_status() < CALIBRATION_STATUS_ASSEMBLED ) {
  1138. lcd_show_fullscreen_message_and_wait_P(MSG_FORCE_SELFTEST);
  1139. update_current_firmware_version_to_eeprom();
  1140. lcd_selftest();
  1141. }
  1142. #endif //DEBUG_DISABLE_FORCE_SELFTEST
  1143. KEEPALIVE_STATE(IN_PROCESS);
  1144. #endif //DEBUG_DISABLE_STARTMSGS
  1145. lcd_update_enable(true);
  1146. lcd_implementation_clear();
  1147. lcd_update(2);
  1148. // Store the currently running firmware into an eeprom,
  1149. // so the next time the firmware gets updated, it will know from which version it has been updated.
  1150. update_current_firmware_version_to_eeprom();
  1151. #ifdef TMC2130
  1152. tmc2130_home_origin[X_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_HOME_X_ORIGIN);
  1153. tmc2130_home_bsteps[X_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_HOME_X_BSTEPS);
  1154. tmc2130_home_fsteps[X_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_HOME_X_FSTEPS);
  1155. if (tmc2130_home_origin[X_AXIS] == 0xff) tmc2130_home_origin[X_AXIS] = 0;
  1156. if (tmc2130_home_bsteps[X_AXIS] == 0xff) tmc2130_home_bsteps[X_AXIS] = 48;
  1157. if (tmc2130_home_fsteps[X_AXIS] == 0xff) tmc2130_home_fsteps[X_AXIS] = 48;
  1158. tmc2130_home_origin[Y_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_HOME_Y_ORIGIN);
  1159. tmc2130_home_bsteps[Y_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_HOME_Y_BSTEPS);
  1160. tmc2130_home_fsteps[Y_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_HOME_Y_FSTEPS);
  1161. if (tmc2130_home_origin[Y_AXIS] == 0xff) tmc2130_home_origin[Y_AXIS] = 0;
  1162. if (tmc2130_home_bsteps[Y_AXIS] == 0xff) tmc2130_home_bsteps[Y_AXIS] = 48;
  1163. if (tmc2130_home_fsteps[Y_AXIS] == 0xff) tmc2130_home_fsteps[Y_AXIS] = 48;
  1164. tmc2130_home_enabled = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_HOME_ENABLED);
  1165. if (tmc2130_home_enabled == 0xff) tmc2130_home_enabled = 0;
  1166. #endif //TMC2130
  1167. #ifdef UVLO_SUPPORT
  1168. if (eeprom_read_byte((uint8_t*)EEPROM_UVLO) == 1) { //previous print was terminated by UVLO
  1169. /*
  1170. if (lcd_show_fullscreen_message_yes_no_and_wait_P(MSG_RECOVER_PRINT, false)) recover_print();
  1171. else {
  1172. eeprom_update_byte((uint8_t*)EEPROM_UVLO, 0);
  1173. lcd_update_enable(true);
  1174. lcd_update(2);
  1175. lcd_setstatuspgm(WELCOME_MSG);
  1176. }
  1177. */
  1178. manage_heater(); // Update temperatures
  1179. #ifdef DEBUG_UVLO_AUTOMATIC_RECOVER
  1180. MYSERIAL.println("Power panic detected!");
  1181. MYSERIAL.print("Current bed temp:");
  1182. MYSERIAL.println(degBed());
  1183. MYSERIAL.print("Saved bed temp:");
  1184. MYSERIAL.println((float)eeprom_read_byte((uint8_t*)EEPROM_UVLO_TARGET_BED));
  1185. #endif
  1186. if ( degBed() > ( (float)eeprom_read_byte((uint8_t*)EEPROM_UVLO_TARGET_BED) - AUTOMATIC_UVLO_BED_TEMP_OFFSET) ){
  1187. #ifdef DEBUG_UVLO_AUTOMATIC_RECOVER
  1188. MYSERIAL.println("Automatic recovery!");
  1189. #endif
  1190. recover_print(1);
  1191. }
  1192. else{
  1193. #ifdef DEBUG_UVLO_AUTOMATIC_RECOVER
  1194. MYSERIAL.println("Normal recovery!");
  1195. #endif
  1196. if ( lcd_show_fullscreen_message_yes_no_and_wait_P(MSG_RECOVER_PRINT, false) ) recover_print(0);
  1197. else {
  1198. eeprom_update_byte((uint8_t*)EEPROM_UVLO, 0);
  1199. lcd_update_enable(true);
  1200. lcd_update(2);
  1201. lcd_setstatuspgm(WELCOME_MSG);
  1202. }
  1203. }
  1204. }
  1205. #endif //UVLO_SUPPORT
  1206. KEEPALIVE_STATE(NOT_BUSY);
  1207. #ifdef WATCHDOG
  1208. wdt_enable(WDTO_4S);
  1209. #endif //WATCHDOG
  1210. }
  1211. #ifdef PAT9125
  1212. void fsensor_init() {
  1213. int pat9125 = pat9125_init();
  1214. printf_P(PSTR("PAT9125_init:%d\n"), pat9125);
  1215. uint8_t fsensor = eeprom_read_byte((uint8_t*)EEPROM_FSENSOR);
  1216. if (!pat9125)
  1217. {
  1218. fsensor = 0; //disable sensor
  1219. fsensor_not_responding = true;
  1220. }
  1221. else {
  1222. fsensor_not_responding = false;
  1223. }
  1224. puts_P(PSTR("FSensor "));
  1225. if (fsensor)
  1226. {
  1227. puts_P(PSTR("ENABLED\n"));
  1228. fsensor_enable();
  1229. }
  1230. else
  1231. {
  1232. puts_P(PSTR("DISABLED\n"));
  1233. fsensor_disable();
  1234. }
  1235. #ifdef DEBUG_DISABLE_FSENSORCHECK
  1236. filament_autoload_enabled = false;
  1237. fsensor_disable();
  1238. #endif //DEBUG_DISABLE_FSENSORCHECK
  1239. }
  1240. #endif //PAT9125
  1241. void trace();
  1242. #define CHUNK_SIZE 64 // bytes
  1243. #define SAFETY_MARGIN 1
  1244. char chunk[CHUNK_SIZE+SAFETY_MARGIN];
  1245. int chunkHead = 0;
  1246. int serial_read_stream() {
  1247. setTargetHotend(0, 0);
  1248. setTargetBed(0);
  1249. lcd_implementation_clear();
  1250. lcd_printPGM(PSTR(" Upload in progress"));
  1251. // first wait for how many bytes we will receive
  1252. uint32_t bytesToReceive;
  1253. // receive the four bytes
  1254. char bytesToReceiveBuffer[4];
  1255. for (int i=0; i<4; i++) {
  1256. int data;
  1257. while ((data = MYSERIAL.read()) == -1) {};
  1258. bytesToReceiveBuffer[i] = data;
  1259. }
  1260. // make it a uint32
  1261. memcpy(&bytesToReceive, &bytesToReceiveBuffer, 4);
  1262. // we're ready, notify the sender
  1263. MYSERIAL.write('+');
  1264. // lock in the routine
  1265. uint32_t receivedBytes = 0;
  1266. while (prusa_sd_card_upload) {
  1267. int i;
  1268. for (i=0; i<CHUNK_SIZE; i++) {
  1269. int data;
  1270. // check if we're not done
  1271. if (receivedBytes == bytesToReceive) {
  1272. break;
  1273. }
  1274. // read the next byte
  1275. while ((data = MYSERIAL.read()) == -1) {};
  1276. receivedBytes++;
  1277. // save it to the chunk
  1278. chunk[i] = data;
  1279. }
  1280. // write the chunk to SD
  1281. card.write_command_no_newline(&chunk[0]);
  1282. // notify the sender we're ready for more data
  1283. MYSERIAL.write('+');
  1284. // for safety
  1285. manage_heater();
  1286. // check if we're done
  1287. if(receivedBytes == bytesToReceive) {
  1288. trace(); // beep
  1289. card.closefile();
  1290. prusa_sd_card_upload = false;
  1291. SERIAL_PROTOCOLLNRPGM(MSG_FILE_SAVED);
  1292. return 0;
  1293. }
  1294. }
  1295. }
  1296. #ifdef HOST_KEEPALIVE_FEATURE
  1297. /**
  1298. * Output a "busy" message at regular intervals
  1299. * while the machine is not accepting commands.
  1300. */
  1301. void host_keepalive() {
  1302. if (farm_mode) return;
  1303. long ms = millis();
  1304. if (host_keepalive_interval && busy_state != NOT_BUSY) {
  1305. if ((ms - prev_busy_signal_ms) < (long)(1000L * host_keepalive_interval)) return;
  1306. switch (busy_state) {
  1307. case IN_HANDLER:
  1308. case IN_PROCESS:
  1309. SERIAL_ECHO_START;
  1310. SERIAL_ECHOLNPGM("busy: processing");
  1311. break;
  1312. case PAUSED_FOR_USER:
  1313. SERIAL_ECHO_START;
  1314. SERIAL_ECHOLNPGM("busy: paused for user");
  1315. break;
  1316. case PAUSED_FOR_INPUT:
  1317. SERIAL_ECHO_START;
  1318. SERIAL_ECHOLNPGM("busy: paused for input");
  1319. break;
  1320. default:
  1321. break;
  1322. }
  1323. }
  1324. prev_busy_signal_ms = ms;
  1325. }
  1326. #endif
  1327. // The loop() function is called in an endless loop by the Arduino framework from the default main() routine.
  1328. // Before loop(), the setup() function is called by the main() routine.
  1329. void loop()
  1330. {
  1331. KEEPALIVE_STATE(NOT_BUSY);
  1332. bool stack_integrity = true;
  1333. if ((usb_printing_counter > 0) && ((millis()-_usb_timer) > 1000))
  1334. {
  1335. is_usb_printing = true;
  1336. usb_printing_counter--;
  1337. _usb_timer = millis();
  1338. }
  1339. if (usb_printing_counter == 0)
  1340. {
  1341. is_usb_printing = false;
  1342. }
  1343. if (prusa_sd_card_upload)
  1344. {
  1345. //we read byte-by byte
  1346. serial_read_stream();
  1347. } else
  1348. {
  1349. get_command();
  1350. #ifdef SDSUPPORT
  1351. card.checkautostart(false);
  1352. #endif
  1353. if(buflen)
  1354. {
  1355. cmdbuffer_front_already_processed = false;
  1356. #ifdef SDSUPPORT
  1357. if(card.saving)
  1358. {
  1359. // Saving a G-code file onto an SD-card is in progress.
  1360. // Saving starts with M28, saving until M29 is seen.
  1361. if(strstr_P(CMDBUFFER_CURRENT_STRING, PSTR("M29")) == NULL) {
  1362. card.write_command(CMDBUFFER_CURRENT_STRING);
  1363. if(card.logging)
  1364. process_commands();
  1365. else
  1366. SERIAL_PROTOCOLLNRPGM(MSG_OK);
  1367. } else {
  1368. card.closefile();
  1369. SERIAL_PROTOCOLLNRPGM(MSG_FILE_SAVED);
  1370. }
  1371. } else {
  1372. process_commands();
  1373. }
  1374. #else
  1375. process_commands();
  1376. #endif //SDSUPPORT
  1377. if (! cmdbuffer_front_already_processed && buflen)
  1378. {
  1379. // ptr points to the start of the block currently being processed.
  1380. // The first character in the block is the block type.
  1381. char *ptr = cmdbuffer + bufindr;
  1382. if (*ptr == CMDBUFFER_CURRENT_TYPE_SDCARD) {
  1383. // To support power panic, move the lenght of the command on the SD card to a planner buffer.
  1384. union {
  1385. struct {
  1386. char lo;
  1387. char hi;
  1388. } lohi;
  1389. uint16_t value;
  1390. } sdlen;
  1391. sdlen.value = 0;
  1392. {
  1393. // This block locks the interrupts globally for 3.25 us,
  1394. // which corresponds to a maximum repeat frequency of 307.69 kHz.
  1395. // This blocking is safe in the context of a 10kHz stepper driver interrupt
  1396. // or a 115200 Bd serial line receive interrupt, which will not trigger faster than 12kHz.
  1397. cli();
  1398. // Reset the command to something, which will be ignored by the power panic routine,
  1399. // so this buffer length will not be counted twice.
  1400. *ptr ++ = CMDBUFFER_CURRENT_TYPE_TO_BE_REMOVED;
  1401. // Extract the current buffer length.
  1402. sdlen.lohi.lo = *ptr ++;
  1403. sdlen.lohi.hi = *ptr;
  1404. // and pass it to the planner queue.
  1405. planner_add_sd_length(sdlen.value);
  1406. sei();
  1407. }
  1408. }
  1409. // Now it is safe to release the already processed command block. If interrupted by the power panic now,
  1410. // this block's SD card length will not be counted twice as its command type has been replaced
  1411. // by CMDBUFFER_CURRENT_TYPE_TO_BE_REMOVED.
  1412. cmdqueue_pop_front();
  1413. }
  1414. host_keepalive();
  1415. }
  1416. }
  1417. //check heater every n milliseconds
  1418. manage_heater();
  1419. isPrintPaused ? manage_inactivity(true) : manage_inactivity(false);
  1420. checkHitEndstops();
  1421. lcd_update();
  1422. #ifdef PAT9125
  1423. fsensor_update();
  1424. #endif //PAT9125
  1425. #ifdef TMC2130
  1426. tmc2130_check_overtemp();
  1427. if (tmc2130_sg_crash)
  1428. {
  1429. uint8_t crash = tmc2130_sg_crash;
  1430. tmc2130_sg_crash = 0;
  1431. // crashdet_stop_and_save_print();
  1432. switch (crash)
  1433. {
  1434. case 1: enquecommand_P((PSTR("CRASH_DETECTEDX"))); break;
  1435. case 2: enquecommand_P((PSTR("CRASH_DETECTEDY"))); break;
  1436. case 3: enquecommand_P((PSTR("CRASH_DETECTEDXY"))); break;
  1437. }
  1438. }
  1439. #endif //TMC2130
  1440. }
  1441. #define DEFINE_PGM_READ_ANY(type, reader) \
  1442. static inline type pgm_read_any(const type *p) \
  1443. { return pgm_read_##reader##_near(p); }
  1444. DEFINE_PGM_READ_ANY(float, float);
  1445. DEFINE_PGM_READ_ANY(signed char, byte);
  1446. #define XYZ_CONSTS_FROM_CONFIG(type, array, CONFIG) \
  1447. static const PROGMEM type array##_P[3] = \
  1448. { X_##CONFIG, Y_##CONFIG, Z_##CONFIG }; \
  1449. static inline type array(int axis) \
  1450. { return pgm_read_any(&array##_P[axis]); } \
  1451. type array##_ext(int axis) \
  1452. { return pgm_read_any(&array##_P[axis]); }
  1453. XYZ_CONSTS_FROM_CONFIG(float, base_min_pos, MIN_POS);
  1454. XYZ_CONSTS_FROM_CONFIG(float, base_max_pos, MAX_POS);
  1455. XYZ_CONSTS_FROM_CONFIG(float, base_home_pos, HOME_POS);
  1456. XYZ_CONSTS_FROM_CONFIG(float, max_length, MAX_LENGTH);
  1457. XYZ_CONSTS_FROM_CONFIG(float, home_retract_mm, HOME_RETRACT_MM);
  1458. XYZ_CONSTS_FROM_CONFIG(signed char, home_dir, HOME_DIR);
  1459. static void axis_is_at_home(int axis) {
  1460. current_position[axis] = base_home_pos(axis) + add_homing[axis];
  1461. min_pos[axis] = base_min_pos(axis) + add_homing[axis];
  1462. max_pos[axis] = base_max_pos(axis) + add_homing[axis];
  1463. }
  1464. inline void set_current_to_destination() { memcpy(current_position, destination, sizeof(current_position)); }
  1465. inline void set_destination_to_current() { memcpy(destination, current_position, sizeof(destination)); }
  1466. static void setup_for_endstop_move(bool enable_endstops_now = true) {
  1467. saved_feedrate = feedrate;
  1468. saved_feedmultiply = feedmultiply;
  1469. feedmultiply = 100;
  1470. previous_millis_cmd = millis();
  1471. enable_endstops(enable_endstops_now);
  1472. }
  1473. static void clean_up_after_endstop_move() {
  1474. #ifdef ENDSTOPS_ONLY_FOR_HOMING
  1475. enable_endstops(false);
  1476. #endif
  1477. feedrate = saved_feedrate;
  1478. feedmultiply = saved_feedmultiply;
  1479. previous_millis_cmd = millis();
  1480. }
  1481. #ifdef ENABLE_AUTO_BED_LEVELING
  1482. #ifdef AUTO_BED_LEVELING_GRID
  1483. static void set_bed_level_equation_lsq(double *plane_equation_coefficients)
  1484. {
  1485. vector_3 planeNormal = vector_3(-plane_equation_coefficients[0], -plane_equation_coefficients[1], 1);
  1486. planeNormal.debug("planeNormal");
  1487. plan_bed_level_matrix = matrix_3x3::create_look_at(planeNormal);
  1488. //bedLevel.debug("bedLevel");
  1489. //plan_bed_level_matrix.debug("bed level before");
  1490. //vector_3 uncorrected_position = plan_get_position_mm();
  1491. //uncorrected_position.debug("position before");
  1492. vector_3 corrected_position = plan_get_position();
  1493. // corrected_position.debug("position after");
  1494. current_position[X_AXIS] = corrected_position.x;
  1495. current_position[Y_AXIS] = corrected_position.y;
  1496. current_position[Z_AXIS] = corrected_position.z;
  1497. // put the bed at 0 so we don't go below it.
  1498. current_position[Z_AXIS] = zprobe_zoffset; // in the lsq we reach here after raising the extruder due to the loop structure
  1499. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1500. }
  1501. #else // not AUTO_BED_LEVELING_GRID
  1502. static void set_bed_level_equation_3pts(float z_at_pt_1, float z_at_pt_2, float z_at_pt_3) {
  1503. plan_bed_level_matrix.set_to_identity();
  1504. vector_3 pt1 = vector_3(ABL_PROBE_PT_1_X, ABL_PROBE_PT_1_Y, z_at_pt_1);
  1505. vector_3 pt2 = vector_3(ABL_PROBE_PT_2_X, ABL_PROBE_PT_2_Y, z_at_pt_2);
  1506. vector_3 pt3 = vector_3(ABL_PROBE_PT_3_X, ABL_PROBE_PT_3_Y, z_at_pt_3);
  1507. vector_3 from_2_to_1 = (pt1 - pt2).get_normal();
  1508. vector_3 from_2_to_3 = (pt3 - pt2).get_normal();
  1509. vector_3 planeNormal = vector_3::cross(from_2_to_1, from_2_to_3).get_normal();
  1510. planeNormal = vector_3(planeNormal.x, planeNormal.y, abs(planeNormal.z));
  1511. plan_bed_level_matrix = matrix_3x3::create_look_at(planeNormal);
  1512. vector_3 corrected_position = plan_get_position();
  1513. current_position[X_AXIS] = corrected_position.x;
  1514. current_position[Y_AXIS] = corrected_position.y;
  1515. current_position[Z_AXIS] = corrected_position.z;
  1516. // put the bed at 0 so we don't go below it.
  1517. current_position[Z_AXIS] = zprobe_zoffset;
  1518. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1519. }
  1520. #endif // AUTO_BED_LEVELING_GRID
  1521. static void run_z_probe() {
  1522. plan_bed_level_matrix.set_to_identity();
  1523. feedrate = homing_feedrate[Z_AXIS];
  1524. // move down until you find the bed
  1525. float zPosition = -10;
  1526. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder);
  1527. st_synchronize();
  1528. // we have to let the planner know where we are right now as it is not where we said to go.
  1529. zPosition = st_get_position_mm(Z_AXIS);
  1530. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS]);
  1531. // move up the retract distance
  1532. zPosition += home_retract_mm(Z_AXIS);
  1533. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder);
  1534. st_synchronize();
  1535. // move back down slowly to find bed
  1536. feedrate = homing_feedrate[Z_AXIS]/4;
  1537. zPosition -= home_retract_mm(Z_AXIS) * 2;
  1538. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder);
  1539. st_synchronize();
  1540. current_position[Z_AXIS] = st_get_position_mm(Z_AXIS);
  1541. // make sure the planner knows where we are as it may be a bit different than we last said to move to
  1542. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1543. }
  1544. static void do_blocking_move_to(float x, float y, float z) {
  1545. float oldFeedRate = feedrate;
  1546. feedrate = homing_feedrate[Z_AXIS];
  1547. current_position[Z_AXIS] = z;
  1548. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], feedrate/60, active_extruder);
  1549. st_synchronize();
  1550. feedrate = XY_TRAVEL_SPEED;
  1551. current_position[X_AXIS] = x;
  1552. current_position[Y_AXIS] = y;
  1553. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], feedrate/60, active_extruder);
  1554. st_synchronize();
  1555. feedrate = oldFeedRate;
  1556. }
  1557. static void do_blocking_move_relative(float offset_x, float offset_y, float offset_z) {
  1558. do_blocking_move_to(current_position[X_AXIS] + offset_x, current_position[Y_AXIS] + offset_y, current_position[Z_AXIS] + offset_z);
  1559. }
  1560. /// Probe bed height at position (x,y), returns the measured z value
  1561. static float probe_pt(float x, float y, float z_before) {
  1562. // move to right place
  1563. do_blocking_move_to(current_position[X_AXIS], current_position[Y_AXIS], z_before);
  1564. do_blocking_move_to(x - X_PROBE_OFFSET_FROM_EXTRUDER, y - Y_PROBE_OFFSET_FROM_EXTRUDER, current_position[Z_AXIS]);
  1565. run_z_probe();
  1566. float measured_z = current_position[Z_AXIS];
  1567. SERIAL_PROTOCOLRPGM(MSG_BED);
  1568. SERIAL_PROTOCOLPGM(" x: ");
  1569. SERIAL_PROTOCOL(x);
  1570. SERIAL_PROTOCOLPGM(" y: ");
  1571. SERIAL_PROTOCOL(y);
  1572. SERIAL_PROTOCOLPGM(" z: ");
  1573. SERIAL_PROTOCOL(measured_z);
  1574. SERIAL_PROTOCOLPGM("\n");
  1575. return measured_z;
  1576. }
  1577. #endif // #ifdef ENABLE_AUTO_BED_LEVELING
  1578. #ifdef LIN_ADVANCE
  1579. /**
  1580. * M900: Set and/or Get advance K factor and WH/D ratio
  1581. *
  1582. * K<factor> Set advance K factor
  1583. * R<ratio> Set ratio directly (overrides WH/D)
  1584. * W<width> H<height> D<diam> Set ratio from WH/D
  1585. */
  1586. inline void gcode_M900() {
  1587. st_synchronize();
  1588. const float newK = code_seen('K') ? code_value_float() : -1;
  1589. if (newK >= 0) extruder_advance_k = newK;
  1590. float newR = code_seen('R') ? code_value_float() : -1;
  1591. if (newR < 0) {
  1592. const float newD = code_seen('D') ? code_value_float() : -1,
  1593. newW = code_seen('W') ? code_value_float() : -1,
  1594. newH = code_seen('H') ? code_value_float() : -1;
  1595. if (newD >= 0 && newW >= 0 && newH >= 0)
  1596. newR = newD ? (newW * newH) / (sq(newD * 0.5) * M_PI) : 0;
  1597. }
  1598. if (newR >= 0) advance_ed_ratio = newR;
  1599. SERIAL_ECHO_START;
  1600. SERIAL_ECHOPGM("Advance K=");
  1601. SERIAL_ECHOLN(extruder_advance_k);
  1602. SERIAL_ECHOPGM(" E/D=");
  1603. const float ratio = advance_ed_ratio;
  1604. if (ratio) SERIAL_ECHOLN(ratio); else SERIAL_ECHOLNPGM("Auto");
  1605. }
  1606. #endif // LIN_ADVANCE
  1607. bool check_commands() {
  1608. bool end_command_found = false;
  1609. while (buflen)
  1610. {
  1611. if ((code_seen("M84")) || (code_seen("M 84"))) end_command_found = true;
  1612. if (!cmdbuffer_front_already_processed)
  1613. cmdqueue_pop_front();
  1614. cmdbuffer_front_already_processed = false;
  1615. }
  1616. return end_command_found;
  1617. }
  1618. #ifdef TMC2130
  1619. bool calibrate_z_auto()
  1620. {
  1621. //lcd_display_message_fullscreen_P(MSG_CALIBRATE_Z_AUTO);
  1622. lcd_implementation_clear();
  1623. lcd_print_at_PGM(0,1, MSG_CALIBRATE_Z_AUTO);
  1624. bool endstops_enabled = enable_endstops(true);
  1625. int axis_up_dir = -home_dir(Z_AXIS);
  1626. tmc2130_home_enter(Z_AXIS_MASK);
  1627. current_position[Z_AXIS] = 0;
  1628. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1629. set_destination_to_current();
  1630. destination[Z_AXIS] += (1.1 * max_length(Z_AXIS) * axis_up_dir);
  1631. feedrate = homing_feedrate[Z_AXIS];
  1632. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1633. st_synchronize();
  1634. // current_position[axis] = 0;
  1635. // plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1636. tmc2130_home_exit();
  1637. enable_endstops(false);
  1638. current_position[Z_AXIS] = 0;
  1639. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1640. set_destination_to_current();
  1641. destination[Z_AXIS] += 10 * axis_up_dir; //10mm up
  1642. feedrate = homing_feedrate[Z_AXIS] / 2;
  1643. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1644. st_synchronize();
  1645. enable_endstops(endstops_enabled);
  1646. current_position[Z_AXIS] = Z_MAX_POS+2.0;
  1647. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1648. return true;
  1649. }
  1650. #endif //TMC2130
  1651. void homeaxis(int axis, uint8_t cnt, uint8_t* pstep)
  1652. {
  1653. bool endstops_enabled = enable_endstops(true); //RP: endstops should be allways enabled durring homing
  1654. #define HOMEAXIS_DO(LETTER) \
  1655. ((LETTER##_MIN_PIN > -1 && LETTER##_HOME_DIR==-1) || (LETTER##_MAX_PIN > -1 && LETTER##_HOME_DIR==1))
  1656. if ((axis==X_AXIS)?HOMEAXIS_DO(X):(axis==Y_AXIS)?HOMEAXIS_DO(Y):0)
  1657. {
  1658. int axis_home_dir = home_dir(axis);
  1659. feedrate = homing_feedrate[axis];
  1660. #ifdef TMC2130
  1661. tmc2130_home_enter(X_AXIS_MASK << axis);
  1662. #endif //TMC2130
  1663. // Move right a bit, so that the print head does not touch the left end position,
  1664. // and the following left movement has a chance to achieve the required velocity
  1665. // for the stall guard to work.
  1666. current_position[axis] = 0;
  1667. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1668. set_destination_to_current();
  1669. // destination[axis] = 11.f;
  1670. destination[axis] = 3.f;
  1671. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1672. st_synchronize();
  1673. // Move left away from the possible collision with the collision detection disabled.
  1674. endstops_hit_on_purpose();
  1675. enable_endstops(false);
  1676. current_position[axis] = 0;
  1677. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1678. destination[axis] = - 1.;
  1679. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1680. st_synchronize();
  1681. // Now continue to move up to the left end stop with the collision detection enabled.
  1682. enable_endstops(true);
  1683. destination[axis] = - 1.1 * max_length(axis);
  1684. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1685. st_synchronize();
  1686. for (uint8_t i = 0; i < cnt; i++)
  1687. {
  1688. // Move right from the collision to a known distance from the left end stop with the collision detection disabled.
  1689. endstops_hit_on_purpose();
  1690. enable_endstops(false);
  1691. current_position[axis] = 0;
  1692. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1693. destination[axis] = 10.f;
  1694. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1695. st_synchronize();
  1696. endstops_hit_on_purpose();
  1697. // Now move left up to the collision, this time with a repeatable velocity.
  1698. enable_endstops(true);
  1699. destination[axis] = - 11.f;
  1700. #ifdef TMC2130
  1701. feedrate = homing_feedrate[axis];
  1702. #else //TMC2130
  1703. feedrate = homing_feedrate[axis] / 2;
  1704. #endif //TMC2130
  1705. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1706. st_synchronize();
  1707. #ifdef TMC2130
  1708. uint16_t mscnt = tmc2130_rd_MSCNT(axis);
  1709. if (pstep) pstep[i] = mscnt >> 4;
  1710. printf_P(PSTR("%3d step=%2d mscnt=%4d\n"), i, mscnt >> 4, mscnt);
  1711. #endif //TMC2130
  1712. }
  1713. endstops_hit_on_purpose();
  1714. enable_endstops(false);
  1715. #ifdef TMC2130
  1716. uint8_t orig = tmc2130_home_origin[axis];
  1717. uint8_t back = tmc2130_home_bsteps[axis];
  1718. if (tmc2130_home_enabled && (orig <= 63))
  1719. {
  1720. tmc2130_goto_step(axis, orig, 2, 1000, tmc2130_get_res(axis));
  1721. if (back > 0)
  1722. tmc2130_do_steps(axis, back, 1, 1000);
  1723. }
  1724. else
  1725. tmc2130_do_steps(axis, 8, 2, 1000);
  1726. tmc2130_home_exit();
  1727. #endif //TMC2130
  1728. axis_is_at_home(axis);
  1729. axis_known_position[axis] = true;
  1730. // Move from minimum
  1731. #ifdef TMC2130
  1732. float dist = 0.01f * tmc2130_home_fsteps[axis];
  1733. #else //TMC2130
  1734. float dist = 0.01f * 64;
  1735. #endif //TMC2130
  1736. current_position[axis] -= dist;
  1737. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1738. current_position[axis] += dist;
  1739. destination[axis] = current_position[axis];
  1740. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], 0.5f*feedrate/60, active_extruder);
  1741. st_synchronize();
  1742. feedrate = 0.0;
  1743. }
  1744. else if ((axis==Z_AXIS)?HOMEAXIS_DO(Z):0)
  1745. {
  1746. int axis_home_dir = home_dir(axis);
  1747. current_position[axis] = 0;
  1748. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1749. destination[axis] = 1.5 * max_length(axis) * axis_home_dir;
  1750. feedrate = homing_feedrate[axis];
  1751. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1752. st_synchronize();
  1753. current_position[axis] = 0;
  1754. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1755. destination[axis] = -home_retract_mm(axis) * axis_home_dir;
  1756. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1757. st_synchronize();
  1758. destination[axis] = 2*home_retract_mm(axis) * axis_home_dir;
  1759. feedrate = homing_feedrate[axis]/2 ;
  1760. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1761. st_synchronize();
  1762. axis_is_at_home(axis);
  1763. destination[axis] = current_position[axis];
  1764. feedrate = 0.0;
  1765. endstops_hit_on_purpose();
  1766. axis_known_position[axis] = true;
  1767. }
  1768. enable_endstops(endstops_enabled);
  1769. }
  1770. /**/
  1771. void home_xy()
  1772. {
  1773. set_destination_to_current();
  1774. homeaxis(X_AXIS);
  1775. homeaxis(Y_AXIS);
  1776. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1777. endstops_hit_on_purpose();
  1778. }
  1779. void refresh_cmd_timeout(void)
  1780. {
  1781. previous_millis_cmd = millis();
  1782. }
  1783. #ifdef FWRETRACT
  1784. void retract(bool retracting, bool swapretract = false) {
  1785. if(retracting && !retracted[active_extruder]) {
  1786. destination[X_AXIS]=current_position[X_AXIS];
  1787. destination[Y_AXIS]=current_position[Y_AXIS];
  1788. destination[Z_AXIS]=current_position[Z_AXIS];
  1789. destination[E_AXIS]=current_position[E_AXIS];
  1790. current_position[E_AXIS]+=(swapretract?retract_length_swap:retract_length)*float(extrudemultiply)*0.01f;
  1791. plan_set_e_position(current_position[E_AXIS]);
  1792. float oldFeedrate = feedrate;
  1793. feedrate=retract_feedrate*60;
  1794. retracted[active_extruder]=true;
  1795. prepare_move();
  1796. current_position[Z_AXIS]-=retract_zlift;
  1797. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1798. prepare_move();
  1799. feedrate = oldFeedrate;
  1800. } else if(!retracting && retracted[active_extruder]) {
  1801. destination[X_AXIS]=current_position[X_AXIS];
  1802. destination[Y_AXIS]=current_position[Y_AXIS];
  1803. destination[Z_AXIS]=current_position[Z_AXIS];
  1804. destination[E_AXIS]=current_position[E_AXIS];
  1805. current_position[Z_AXIS]+=retract_zlift;
  1806. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1807. current_position[E_AXIS]-=(swapretract?(retract_length_swap+retract_recover_length_swap):(retract_length+retract_recover_length))*float(extrudemultiply)*0.01f;
  1808. plan_set_e_position(current_position[E_AXIS]);
  1809. float oldFeedrate = feedrate;
  1810. feedrate=retract_recover_feedrate*60;
  1811. retracted[active_extruder]=false;
  1812. prepare_move();
  1813. feedrate = oldFeedrate;
  1814. }
  1815. } //retract
  1816. #endif //FWRETRACT
  1817. void trace() {
  1818. tone(BEEPER, 440);
  1819. delay(25);
  1820. noTone(BEEPER);
  1821. delay(20);
  1822. }
  1823. /*
  1824. void ramming() {
  1825. // float tmp[4] = DEFAULT_MAX_FEEDRATE;
  1826. if (current_temperature[0] < 230) {
  1827. //PLA
  1828. max_feedrate[E_AXIS] = 50;
  1829. //current_position[E_AXIS] -= 8;
  1830. //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2100 / 60, active_extruder);
  1831. //current_position[E_AXIS] += 8;
  1832. //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2100 / 60, active_extruder);
  1833. current_position[E_AXIS] += 5.4;
  1834. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2800 / 60, active_extruder);
  1835. current_position[E_AXIS] += 3.2;
  1836. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  1837. current_position[E_AXIS] += 3;
  1838. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3400 / 60, active_extruder);
  1839. st_synchronize();
  1840. max_feedrate[E_AXIS] = 80;
  1841. current_position[E_AXIS] -= 82;
  1842. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 9500 / 60, active_extruder);
  1843. max_feedrate[E_AXIS] = 50;//tmp[E_AXIS];
  1844. current_position[E_AXIS] -= 20;
  1845. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 1200 / 60, active_extruder);
  1846. current_position[E_AXIS] += 5;
  1847. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400 / 60, active_extruder);
  1848. current_position[E_AXIS] += 5;
  1849. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  1850. current_position[E_AXIS] -= 10;
  1851. st_synchronize();
  1852. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  1853. current_position[E_AXIS] += 10;
  1854. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  1855. current_position[E_AXIS] -= 10;
  1856. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 800 / 60, active_extruder);
  1857. current_position[E_AXIS] += 10;
  1858. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 800 / 60, active_extruder);
  1859. current_position[E_AXIS] -= 10;
  1860. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 800 / 60, active_extruder);
  1861. st_synchronize();
  1862. }
  1863. else {
  1864. //ABS
  1865. max_feedrate[E_AXIS] = 50;
  1866. //current_position[E_AXIS] -= 8;
  1867. //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2100 / 60, active_extruder);
  1868. //current_position[E_AXIS] += 8;
  1869. //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2100 / 60, active_extruder);
  1870. current_position[E_AXIS] += 3.1;
  1871. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2000 / 60, active_extruder);
  1872. current_position[E_AXIS] += 3.1;
  1873. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2500 / 60, active_extruder);
  1874. current_position[E_AXIS] += 4;
  1875. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  1876. st_synchronize();
  1877. //current_position[X_AXIS] += 23; //delay
  1878. //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600/60, active_extruder); //delay
  1879. //current_position[X_AXIS] -= 23; //delay
  1880. //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600/60, active_extruder); //delay
  1881. delay(4700);
  1882. max_feedrate[E_AXIS] = 80;
  1883. current_position[E_AXIS] -= 92;
  1884. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 9900 / 60, active_extruder);
  1885. max_feedrate[E_AXIS] = 50;//tmp[E_AXIS];
  1886. current_position[E_AXIS] -= 5;
  1887. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 800 / 60, active_extruder);
  1888. current_position[E_AXIS] += 5;
  1889. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400 / 60, active_extruder);
  1890. current_position[E_AXIS] -= 5;
  1891. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  1892. st_synchronize();
  1893. current_position[E_AXIS] += 5;
  1894. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  1895. current_position[E_AXIS] -= 5;
  1896. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  1897. current_position[E_AXIS] += 5;
  1898. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  1899. current_position[E_AXIS] -= 5;
  1900. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  1901. st_synchronize();
  1902. }
  1903. }
  1904. */
  1905. #ifdef TMC2130
  1906. void force_high_power_mode(bool start_high_power_section) {
  1907. uint8_t silent;
  1908. silent = eeprom_read_byte((uint8_t*)EEPROM_SILENT);
  1909. if (silent == 1) {
  1910. //we are in silent mode, set to normal mode to enable crash detection
  1911. // Wait for the planner queue to drain and for the stepper timer routine to reach an idle state.
  1912. st_synchronize();
  1913. cli();
  1914. tmc2130_mode = (start_high_power_section == true) ? TMC2130_MODE_NORMAL : TMC2130_MODE_SILENT;
  1915. tmc2130_init();
  1916. // We may have missed a stepper timer interrupt due to the time spent in the tmc2130_init() routine.
  1917. // Be safe than sorry, reset the stepper timer before re-enabling interrupts.
  1918. st_reset_timer();
  1919. sei();
  1920. digipot_init();
  1921. }
  1922. }
  1923. #endif //TMC2130
  1924. bool gcode_M45(bool onlyZ, int8_t verbosity_level)
  1925. {
  1926. bool final_result = false;
  1927. #ifdef TMC2130
  1928. FORCE_HIGH_POWER_START;
  1929. #endif // TMC2130
  1930. // Only Z calibration?
  1931. if (!onlyZ)
  1932. {
  1933. setTargetBed(0);
  1934. setTargetHotend(0, 0);
  1935. setTargetHotend(0, 1);
  1936. setTargetHotend(0, 2);
  1937. adjust_bed_reset(); //reset bed level correction
  1938. }
  1939. // Disable the default update procedure of the display. We will do a modal dialog.
  1940. lcd_update_enable(false);
  1941. // Let the planner use the uncorrected coordinates.
  1942. mbl.reset();
  1943. // Reset world2machine_rotation_and_skew and world2machine_shift, therefore
  1944. // the planner will not perform any adjustments in the XY plane.
  1945. // Wait for the motors to stop and update the current position with the absolute values.
  1946. world2machine_revert_to_uncorrected();
  1947. // Reset the baby step value applied without moving the axes.
  1948. babystep_reset();
  1949. // Mark all axes as in a need for homing.
  1950. memset(axis_known_position, 0, sizeof(axis_known_position));
  1951. // Home in the XY plane.
  1952. //set_destination_to_current();
  1953. setup_for_endstop_move();
  1954. lcd_display_message_fullscreen_P(MSG_AUTO_HOME);
  1955. home_xy();
  1956. enable_endstops(false);
  1957. current_position[X_AXIS] += 5;
  1958. current_position[Y_AXIS] += 5;
  1959. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[Z_AXIS] / 40, active_extruder);
  1960. st_synchronize();
  1961. // Let the user move the Z axes up to the end stoppers.
  1962. #ifdef TMC2130
  1963. if (calibrate_z_auto())
  1964. {
  1965. #else //TMC2130
  1966. if (lcd_calibrate_z_end_stop_manual(onlyZ))
  1967. {
  1968. #endif //TMC2130
  1969. refresh_cmd_timeout();
  1970. #ifndef STEEL_SHEET
  1971. if (((degHotend(0) > MAX_HOTEND_TEMP_CALIBRATION) || (degBed() > MAX_BED_TEMP_CALIBRATION)) && (!onlyZ))
  1972. {
  1973. lcd_wait_for_cool_down();
  1974. }
  1975. #endif //STEEL_SHEET
  1976. if(!onlyZ)
  1977. {
  1978. KEEPALIVE_STATE(PAUSED_FOR_USER);
  1979. #ifdef STEEL_SHEET
  1980. bool result = lcd_show_fullscreen_message_yes_no_and_wait_P(MSG_STEEL_SHEET_CHECK, false, false);
  1981. if(result) lcd_show_fullscreen_message_and_wait_P(MSG_REMOVE_STEEL_SHEET);
  1982. #endif //STEEL_SHEET
  1983. lcd_show_fullscreen_message_and_wait_P(MSG_CONFIRM_NOZZLE_CLEAN);
  1984. lcd_show_fullscreen_message_and_wait_P(MSG_PAPER);
  1985. KEEPALIVE_STATE(IN_HANDLER);
  1986. lcd_display_message_fullscreen_P(MSG_FIND_BED_OFFSET_AND_SKEW_LINE1);
  1987. lcd_implementation_print_at(0, 2, 1);
  1988. lcd_printPGM(MSG_FIND_BED_OFFSET_AND_SKEW_LINE2);
  1989. }
  1990. // Move the print head close to the bed.
  1991. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  1992. bool endstops_enabled = enable_endstops(true);
  1993. #ifdef TMC2130
  1994. tmc2130_home_enter(Z_AXIS_MASK);
  1995. #endif //TMC2130
  1996. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[Z_AXIS] / 40, active_extruder);
  1997. st_synchronize();
  1998. #ifdef TMC2130
  1999. tmc2130_home_exit();
  2000. #endif //TMC2130
  2001. enable_endstops(endstops_enabled);
  2002. if (st_get_position_mm(Z_AXIS) == MESH_HOME_Z_SEARCH)
  2003. {
  2004. int8_t verbosity_level = 0;
  2005. if (code_seen('V'))
  2006. {
  2007. // Just 'V' without a number counts as V1.
  2008. char c = strchr_pointer[1];
  2009. verbosity_level = (c == ' ' || c == '\t' || c == 0) ? 1 : code_value_short();
  2010. }
  2011. if (onlyZ)
  2012. {
  2013. clean_up_after_endstop_move();
  2014. // Z only calibration.
  2015. // Load the machine correction matrix
  2016. world2machine_initialize();
  2017. // and correct the current_position to match the transformed coordinate system.
  2018. world2machine_update_current();
  2019. //FIXME
  2020. bool result = sample_mesh_and_store_reference();
  2021. if (result)
  2022. {
  2023. if (calibration_status() == CALIBRATION_STATUS_Z_CALIBRATION)
  2024. // Shipped, the nozzle height has been set already. The user can start printing now.
  2025. calibration_status_store(CALIBRATION_STATUS_CALIBRATED);
  2026. final_result = true;
  2027. // babystep_apply();
  2028. }
  2029. }
  2030. else
  2031. {
  2032. // Reset the baby step value and the baby step applied flag.
  2033. calibration_status_store(CALIBRATION_STATUS_XYZ_CALIBRATION);
  2034. eeprom_update_word((uint16_t*)EEPROM_BABYSTEP_Z, 0);
  2035. // Complete XYZ calibration.
  2036. uint8_t point_too_far_mask = 0;
  2037. BedSkewOffsetDetectionResultType result = find_bed_offset_and_skew(verbosity_level, point_too_far_mask);
  2038. clean_up_after_endstop_move();
  2039. // Print head up.
  2040. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  2041. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[Z_AXIS] / 40, active_extruder);
  2042. st_synchronize();
  2043. //#ifndef NEW_XYZCAL
  2044. if (result >= 0)
  2045. {
  2046. #ifdef HEATBED_V2
  2047. sample_z();
  2048. #else //HEATBED_V2
  2049. point_too_far_mask = 0;
  2050. // Second half: The fine adjustment.
  2051. // Let the planner use the uncorrected coordinates.
  2052. mbl.reset();
  2053. world2machine_reset();
  2054. // Home in the XY plane.
  2055. setup_for_endstop_move();
  2056. home_xy();
  2057. result = improve_bed_offset_and_skew(1, verbosity_level, point_too_far_mask);
  2058. clean_up_after_endstop_move();
  2059. // Print head up.
  2060. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  2061. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[Z_AXIS] / 40, active_extruder);
  2062. st_synchronize();
  2063. // if (result >= 0) babystep_apply();
  2064. #endif //HEATBED_V2
  2065. }
  2066. //#endif //NEW_XYZCAL
  2067. lcd_update_enable(true);
  2068. lcd_update(2);
  2069. lcd_bed_calibration_show_result(result, point_too_far_mask);
  2070. if (result >= 0)
  2071. {
  2072. // Calibration valid, the machine should be able to print. Advise the user to run the V2Calibration.gcode.
  2073. calibration_status_store(CALIBRATION_STATUS_LIVE_ADJUST);
  2074. if (eeprom_read_byte((uint8_t*)EEPROM_WIZARD_ACTIVE) != 1) lcd_show_fullscreen_message_and_wait_P(MSG_BABYSTEP_Z_NOT_SET);
  2075. final_result = true;
  2076. }
  2077. }
  2078. #ifdef TMC2130
  2079. tmc2130_home_exit();
  2080. #endif
  2081. }
  2082. else
  2083. {
  2084. lcd_show_fullscreen_message_and_wait_P(PSTR("Calibration failed! Check the axes and run again."));
  2085. final_result = false;
  2086. }
  2087. }
  2088. else
  2089. {
  2090. // Timeouted.
  2091. }
  2092. lcd_update_enable(true);
  2093. #ifdef TMC2130
  2094. FORCE_HIGH_POWER_END;
  2095. #endif // TMC2130
  2096. return final_result;
  2097. }
  2098. void gcode_M114()
  2099. {
  2100. SERIAL_PROTOCOLPGM("X:");
  2101. SERIAL_PROTOCOL(current_position[X_AXIS]);
  2102. SERIAL_PROTOCOLPGM(" Y:");
  2103. SERIAL_PROTOCOL(current_position[Y_AXIS]);
  2104. SERIAL_PROTOCOLPGM(" Z:");
  2105. SERIAL_PROTOCOL(current_position[Z_AXIS]);
  2106. SERIAL_PROTOCOLPGM(" E:");
  2107. SERIAL_PROTOCOL(current_position[E_AXIS]);
  2108. SERIAL_PROTOCOLRPGM(MSG_COUNT_X);
  2109. SERIAL_PROTOCOL(float(st_get_position(X_AXIS)) / axis_steps_per_unit[X_AXIS]);
  2110. SERIAL_PROTOCOLPGM(" Y:");
  2111. SERIAL_PROTOCOL(float(st_get_position(Y_AXIS)) / axis_steps_per_unit[Y_AXIS]);
  2112. SERIAL_PROTOCOLPGM(" Z:");
  2113. SERIAL_PROTOCOL(float(st_get_position(Z_AXIS)) / axis_steps_per_unit[Z_AXIS]);
  2114. SERIAL_PROTOCOLPGM(" E:");
  2115. SERIAL_PROTOCOL(float(st_get_position(E_AXIS)) / axis_steps_per_unit[E_AXIS]);
  2116. SERIAL_PROTOCOLLN("");
  2117. }
  2118. void gcode_M701()
  2119. {
  2120. #ifdef SNMM
  2121. extr_adj(snmm_extruder);//loads current extruder
  2122. #else
  2123. enable_z();
  2124. custom_message = true;
  2125. custom_message_type = 2;
  2126. lcd_setstatuspgm(MSG_LOADING_FILAMENT);
  2127. current_position[E_AXIS] += 70;
  2128. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400 / 60, active_extruder); //fast sequence
  2129. current_position[E_AXIS] += 25;
  2130. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 100 / 60, active_extruder); //slow sequence
  2131. st_synchronize();
  2132. tone(BEEPER, 500);
  2133. delay_keep_alive(50);
  2134. noTone(BEEPER);
  2135. if (!farm_mode && loading_flag) {
  2136. bool clean = lcd_show_fullscreen_message_yes_no_and_wait_P(MSG_FILAMENT_CLEAN, false, true);
  2137. while (!clean) {
  2138. lcd_update_enable(true);
  2139. lcd_update(2);
  2140. current_position[E_AXIS] += 25;
  2141. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 100 / 60, active_extruder); //slow sequence
  2142. st_synchronize();
  2143. clean = lcd_show_fullscreen_message_yes_no_and_wait_P(MSG_FILAMENT_CLEAN, false, true);
  2144. }
  2145. }
  2146. lcd_update_enable(true);
  2147. lcd_update(2);
  2148. lcd_setstatuspgm(WELCOME_MSG);
  2149. disable_z();
  2150. loading_flag = false;
  2151. custom_message = false;
  2152. custom_message_type = 0;
  2153. #endif
  2154. }
  2155. void process_commands()
  2156. {
  2157. if (!buflen) return; //empty command
  2158. #ifdef FILAMENT_RUNOUT_SUPPORT
  2159. SET_INPUT(FR_SENS);
  2160. #endif
  2161. #ifdef CMDBUFFER_DEBUG
  2162. SERIAL_ECHOPGM("Processing a GCODE command: ");
  2163. SERIAL_ECHO(cmdbuffer+bufindr+CMDHDRSIZE);
  2164. SERIAL_ECHOLNPGM("");
  2165. SERIAL_ECHOPGM("In cmdqueue: ");
  2166. SERIAL_ECHO(buflen);
  2167. SERIAL_ECHOLNPGM("");
  2168. #endif /* CMDBUFFER_DEBUG */
  2169. unsigned long codenum; //throw away variable
  2170. char *starpos = NULL;
  2171. #ifdef ENABLE_AUTO_BED_LEVELING
  2172. float x_tmp, y_tmp, z_tmp, real_z;
  2173. #endif
  2174. // PRUSA GCODES
  2175. KEEPALIVE_STATE(IN_HANDLER);
  2176. #ifdef SNMM
  2177. float tmp_motor[3] = DEFAULT_PWM_MOTOR_CURRENT;
  2178. float tmp_motor_loud[3] = DEFAULT_PWM_MOTOR_CURRENT_LOUD;
  2179. int8_t SilentMode;
  2180. #endif
  2181. if (code_seen("M117")) { //moved to highest priority place to be able to to print strings which includes "G", "PRUSA" and "^"
  2182. starpos = (strchr(strchr_pointer + 5, '*'));
  2183. if (starpos != NULL)
  2184. *(starpos) = '\0';
  2185. lcd_setstatus(strchr_pointer + 5);
  2186. }
  2187. #ifdef TMC2130
  2188. else if(code_seen("CRASH_DETECTED"))
  2189. {
  2190. uint8_t mask = 0;
  2191. if (code_seen("X")) mask |= X_AXIS_MASK;
  2192. if (code_seen("Y")) mask |= Y_AXIS_MASK;
  2193. crashdet_detected(mask);
  2194. }
  2195. else if(code_seen("CRASH_RECOVER"))
  2196. crashdet_recover();
  2197. else if(code_seen("CRASH_CANCEL"))
  2198. crashdet_cancel();
  2199. #endif //TMC2130
  2200. else if(code_seen("PRUSA")){
  2201. if (code_seen("Ping")) { //PRUSA Ping
  2202. if (farm_mode) {
  2203. PingTime = millis();
  2204. //MYSERIAL.print(farm_no); MYSERIAL.println(": OK");
  2205. }
  2206. }
  2207. else if (code_seen("PRN")) {
  2208. MYSERIAL.println(status_number);
  2209. }else if (code_seen("FAN")) {
  2210. MYSERIAL.print("E0:");
  2211. MYSERIAL.print(60*fan_speed[0]);
  2212. MYSERIAL.println(" RPM");
  2213. MYSERIAL.print("PRN0:");
  2214. MYSERIAL.print(60*fan_speed[1]);
  2215. MYSERIAL.println(" RPM");
  2216. }else if (code_seen("fn")) {
  2217. if (farm_mode) {
  2218. MYSERIAL.println(farm_no);
  2219. }
  2220. else {
  2221. MYSERIAL.println("Not in farm mode.");
  2222. }
  2223. }
  2224. else if (code_seen("thx")) {
  2225. no_response = false;
  2226. }else if (code_seen("fv")) {
  2227. // get file version
  2228. #ifdef SDSUPPORT
  2229. card.openFile(strchr_pointer + 3,true);
  2230. while (true) {
  2231. uint16_t readByte = card.get();
  2232. MYSERIAL.write(readByte);
  2233. if (readByte=='\n') {
  2234. break;
  2235. }
  2236. }
  2237. card.closefile();
  2238. #endif // SDSUPPORT
  2239. } else if (code_seen("M28")) {
  2240. trace();
  2241. prusa_sd_card_upload = true;
  2242. card.openFile(strchr_pointer+4,false);
  2243. } else if (code_seen("SN")) {
  2244. if (farm_mode) {
  2245. selectedSerialPort = 0;
  2246. MSerial.write(";S");
  2247. // S/N is:CZPX0917X003XC13518
  2248. int numbersRead = 0;
  2249. while (numbersRead < 19) {
  2250. while (MSerial.available() > 0) {
  2251. uint8_t serial_char = MSerial.read();
  2252. selectedSerialPort = 1;
  2253. MSerial.write(serial_char);
  2254. numbersRead++;
  2255. selectedSerialPort = 0;
  2256. }
  2257. }
  2258. selectedSerialPort = 1;
  2259. MSerial.write('\n');
  2260. /*for (int b = 0; b < 3; b++) {
  2261. tone(BEEPER, 110);
  2262. delay(50);
  2263. noTone(BEEPER);
  2264. delay(50);
  2265. }*/
  2266. } else {
  2267. MYSERIAL.println("Not in farm mode.");
  2268. }
  2269. } else if(code_seen("Fir")){
  2270. SERIAL_PROTOCOLLN(FW_VERSION);
  2271. } else if(code_seen("Rev")){
  2272. SERIAL_PROTOCOLLN(FILAMENT_SIZE "-" ELECTRONICS "-" NOZZLE_TYPE );
  2273. } else if(code_seen("Lang")) {
  2274. lcd_force_language_selection();
  2275. } else if(code_seen("Lz")) {
  2276. EEPROM_save_B(EEPROM_BABYSTEP_Z,0);
  2277. } else if (code_seen("SERIAL LOW")) {
  2278. MYSERIAL.println("SERIAL LOW");
  2279. MYSERIAL.begin(BAUDRATE);
  2280. return;
  2281. } else if (code_seen("SERIAL HIGH")) {
  2282. MYSERIAL.println("SERIAL HIGH");
  2283. MYSERIAL.begin(1152000);
  2284. return;
  2285. } else if(code_seen("Beat")) {
  2286. // Kick farm link timer
  2287. kicktime = millis();
  2288. } else if(code_seen("FR")) {
  2289. // Factory full reset
  2290. factory_reset(0,true);
  2291. }
  2292. //else if (code_seen('Cal')) {
  2293. // lcd_calibration();
  2294. // }
  2295. }
  2296. else if (code_seen('^')) {
  2297. // nothing, this is a version line
  2298. } else if(code_seen('G'))
  2299. {
  2300. switch((int)code_value())
  2301. {
  2302. case 0: // G0 -> G1
  2303. case 1: // G1
  2304. if(Stopped == false) {
  2305. #ifdef FILAMENT_RUNOUT_SUPPORT
  2306. if(READ(FR_SENS)){
  2307. feedmultiplyBckp=feedmultiply;
  2308. float target[4];
  2309. float lastpos[4];
  2310. target[X_AXIS]=current_position[X_AXIS];
  2311. target[Y_AXIS]=current_position[Y_AXIS];
  2312. target[Z_AXIS]=current_position[Z_AXIS];
  2313. target[E_AXIS]=current_position[E_AXIS];
  2314. lastpos[X_AXIS]=current_position[X_AXIS];
  2315. lastpos[Y_AXIS]=current_position[Y_AXIS];
  2316. lastpos[Z_AXIS]=current_position[Z_AXIS];
  2317. lastpos[E_AXIS]=current_position[E_AXIS];
  2318. //retract by E
  2319. target[E_AXIS]+= FILAMENTCHANGE_FIRSTRETRACT ;
  2320. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 400, active_extruder);
  2321. target[Z_AXIS]+= FILAMENTCHANGE_ZADD ;
  2322. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 300, active_extruder);
  2323. target[X_AXIS]= FILAMENTCHANGE_XPOS ;
  2324. target[Y_AXIS]= FILAMENTCHANGE_YPOS ;
  2325. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 70, active_extruder);
  2326. target[E_AXIS]+= FILAMENTCHANGE_FINALRETRACT ;
  2327. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 20, active_extruder);
  2328. //finish moves
  2329. st_synchronize();
  2330. //disable extruder steppers so filament can be removed
  2331. disable_e0();
  2332. disable_e1();
  2333. disable_e2();
  2334. delay(100);
  2335. //LCD_ALERTMESSAGEPGM(MSG_FILAMENTCHANGE);
  2336. uint8_t cnt=0;
  2337. int counterBeep = 0;
  2338. lcd_wait_interact();
  2339. while(!lcd_clicked()){
  2340. cnt++;
  2341. manage_heater();
  2342. manage_inactivity(true);
  2343. //lcd_update();
  2344. if(cnt==0)
  2345. {
  2346. #if BEEPER > 0
  2347. if (counterBeep== 500){
  2348. counterBeep = 0;
  2349. }
  2350. SET_OUTPUT(BEEPER);
  2351. if (counterBeep== 0){
  2352. WRITE(BEEPER,HIGH);
  2353. }
  2354. if (counterBeep== 20){
  2355. WRITE(BEEPER,LOW);
  2356. }
  2357. counterBeep++;
  2358. #else
  2359. #if !defined(LCD_FEEDBACK_FREQUENCY_HZ) || !defined(LCD_FEEDBACK_FREQUENCY_DURATION_MS)
  2360. lcd_buzz(1000/6,100);
  2361. #else
  2362. lcd_buzz(LCD_FEEDBACK_FREQUENCY_DURATION_MS,LCD_FEEDBACK_FREQUENCY_HZ);
  2363. #endif
  2364. #endif
  2365. }
  2366. }
  2367. WRITE(BEEPER,LOW);
  2368. target[E_AXIS]+= FILAMENTCHANGE_FIRSTFEED ;
  2369. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 20, active_extruder);
  2370. target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  2371. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder);
  2372. lcd_change_fil_state = 0;
  2373. lcd_loading_filament();
  2374. while ((lcd_change_fil_state == 0)||(lcd_change_fil_state != 1)){
  2375. lcd_change_fil_state = 0;
  2376. lcd_alright();
  2377. switch(lcd_change_fil_state){
  2378. case 2:
  2379. target[E_AXIS]+= FILAMENTCHANGE_FIRSTFEED ;
  2380. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 20, active_extruder);
  2381. target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  2382. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder);
  2383. lcd_loading_filament();
  2384. break;
  2385. case 3:
  2386. target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  2387. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder);
  2388. lcd_loading_color();
  2389. break;
  2390. default:
  2391. lcd_change_success();
  2392. break;
  2393. }
  2394. }
  2395. target[E_AXIS]+= 5;
  2396. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder);
  2397. target[E_AXIS]+= FILAMENTCHANGE_FIRSTRETRACT;
  2398. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 400, active_extruder);
  2399. //current_position[E_AXIS]=target[E_AXIS]; //the long retract of L is compensated by manual filament feeding
  2400. //plan_set_e_position(current_position[E_AXIS]);
  2401. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 70, active_extruder); //should do nothing
  2402. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], target[Z_AXIS], target[E_AXIS], 70, active_extruder); //move xy back
  2403. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], target[E_AXIS], 200, active_extruder); //move z back
  2404. target[E_AXIS]= target[E_AXIS] - FILAMENTCHANGE_FIRSTRETRACT;
  2405. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], target[E_AXIS], 5, active_extruder); //final untretract
  2406. plan_set_e_position(lastpos[E_AXIS]);
  2407. feedmultiply=feedmultiplyBckp;
  2408. char cmd[9];
  2409. sprintf_P(cmd, PSTR("M220 S%i"), feedmultiplyBckp);
  2410. enquecommand(cmd);
  2411. }
  2412. #endif
  2413. get_coordinates(); // For X Y Z E F
  2414. if (total_filament_used > ((current_position[E_AXIS] - destination[E_AXIS]) * 100)) { //protection against total_filament_used overflow
  2415. total_filament_used = total_filament_used + ((destination[E_AXIS] - current_position[E_AXIS]) * 100);
  2416. }
  2417. #ifdef FWRETRACT
  2418. if(autoretract_enabled)
  2419. if( !(code_seen('X') || code_seen('Y') || code_seen('Z')) && code_seen('E')) {
  2420. float echange=destination[E_AXIS]-current_position[E_AXIS];
  2421. if((echange<-MIN_RETRACT && !retracted) || (echange>MIN_RETRACT && retracted)) { //move appears to be an attempt to retract or recover
  2422. current_position[E_AXIS] = destination[E_AXIS]; //hide the slicer-generated retract/recover from calculations
  2423. plan_set_e_position(current_position[E_AXIS]); //AND from the planner
  2424. retract(!retracted);
  2425. return;
  2426. }
  2427. }
  2428. #endif //FWRETRACT
  2429. prepare_move();
  2430. //ClearToSend();
  2431. }
  2432. break;
  2433. case 2: // G2 - CW ARC
  2434. if(Stopped == false) {
  2435. get_arc_coordinates();
  2436. prepare_arc_move(true);
  2437. }
  2438. break;
  2439. case 3: // G3 - CCW ARC
  2440. if(Stopped == false) {
  2441. get_arc_coordinates();
  2442. prepare_arc_move(false);
  2443. }
  2444. break;
  2445. case 4: // G4 dwell
  2446. codenum = 0;
  2447. if(code_seen('P')) codenum = code_value(); // milliseconds to wait
  2448. if(code_seen('S')) codenum = code_value() * 1000; // seconds to wait
  2449. if(codenum != 0) LCD_MESSAGERPGM(MSG_DWELL);
  2450. st_synchronize();
  2451. codenum += millis(); // keep track of when we started waiting
  2452. previous_millis_cmd = millis();
  2453. while(millis() < codenum) {
  2454. manage_heater();
  2455. manage_inactivity();
  2456. lcd_update();
  2457. }
  2458. break;
  2459. #ifdef FWRETRACT
  2460. case 10: // G10 retract
  2461. #if EXTRUDERS > 1
  2462. retracted_swap[active_extruder]=(code_seen('S') && code_value_long() == 1); // checks for swap retract argument
  2463. retract(true,retracted_swap[active_extruder]);
  2464. #else
  2465. retract(true);
  2466. #endif
  2467. break;
  2468. case 11: // G11 retract_recover
  2469. #if EXTRUDERS > 1
  2470. retract(false,retracted_swap[active_extruder]);
  2471. #else
  2472. retract(false);
  2473. #endif
  2474. break;
  2475. #endif //FWRETRACT
  2476. case 28: //G28 Home all Axis one at a time
  2477. {
  2478. st_synchronize();
  2479. #if 0
  2480. SERIAL_ECHOPGM("G28, initial "); print_world_coordinates();
  2481. SERIAL_ECHOPGM("G28, initial "); print_physical_coordinates();
  2482. #endif
  2483. // Flag for the display update routine and to disable the print cancelation during homing.
  2484. homing_flag = true;
  2485. // Which axes should be homed?
  2486. bool home_x = code_seen(axis_codes[X_AXIS]);
  2487. bool home_y = code_seen(axis_codes[Y_AXIS]);
  2488. bool home_z = code_seen(axis_codes[Z_AXIS]);
  2489. // calibrate?
  2490. bool calib = code_seen('C');
  2491. // Either all X,Y,Z codes are present, or none of them.
  2492. bool home_all_axes = home_x == home_y && home_x == home_z;
  2493. if (home_all_axes)
  2494. // No X/Y/Z code provided means to home all axes.
  2495. home_x = home_y = home_z = true;
  2496. #ifdef ENABLE_AUTO_BED_LEVELING
  2497. plan_bed_level_matrix.set_to_identity(); //Reset the plane ("erase" all leveling data)
  2498. #endif //ENABLE_AUTO_BED_LEVELING
  2499. // Reset world2machine_rotation_and_skew and world2machine_shift, therefore
  2500. // the planner will not perform any adjustments in the XY plane.
  2501. // Wait for the motors to stop and update the current position with the absolute values.
  2502. world2machine_revert_to_uncorrected();
  2503. // For mesh bed leveling deactivate the matrix temporarily.
  2504. // It is necessary to disable the bed leveling for the X and Y homing moves, so that the move is performed
  2505. // in a single axis only.
  2506. // In case of re-homing the X or Y axes only, the mesh bed leveling is restored after G28.
  2507. #ifdef MESH_BED_LEVELING
  2508. uint8_t mbl_was_active = mbl.active;
  2509. mbl.active = 0;
  2510. current_position[Z_AXIS] = st_get_position_mm(Z_AXIS);
  2511. #endif
  2512. // Reset baby stepping to zero, if the babystepping has already been loaded before. The babystepsTodo value will be
  2513. // consumed during the first movements following this statement.
  2514. if (home_z)
  2515. babystep_undo();
  2516. saved_feedrate = feedrate;
  2517. saved_feedmultiply = feedmultiply;
  2518. feedmultiply = 100;
  2519. previous_millis_cmd = millis();
  2520. enable_endstops(true);
  2521. memcpy(destination, current_position, sizeof(destination));
  2522. feedrate = 0.0;
  2523. #if Z_HOME_DIR > 0 // If homing away from BED do Z first
  2524. if(home_z)
  2525. homeaxis(Z_AXIS);
  2526. #endif
  2527. #ifdef QUICK_HOME
  2528. // In the quick mode, if both x and y are to be homed, a diagonal move will be performed initially.
  2529. if(home_x && home_y) //first diagonal move
  2530. {
  2531. current_position[X_AXIS] = 0;current_position[Y_AXIS] = 0;
  2532. int x_axis_home_dir = home_dir(X_AXIS);
  2533. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2534. destination[X_AXIS] = 1.5 * max_length(X_AXIS) * x_axis_home_dir;destination[Y_AXIS] = 1.5 * max_length(Y_AXIS) * home_dir(Y_AXIS);
  2535. feedrate = homing_feedrate[X_AXIS];
  2536. if(homing_feedrate[Y_AXIS]<feedrate)
  2537. feedrate = homing_feedrate[Y_AXIS];
  2538. if (max_length(X_AXIS) > max_length(Y_AXIS)) {
  2539. feedrate *= sqrt(pow(max_length(Y_AXIS) / max_length(X_AXIS), 2) + 1);
  2540. } else {
  2541. feedrate *= sqrt(pow(max_length(X_AXIS) / max_length(Y_AXIS), 2) + 1);
  2542. }
  2543. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  2544. st_synchronize();
  2545. axis_is_at_home(X_AXIS);
  2546. axis_is_at_home(Y_AXIS);
  2547. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2548. destination[X_AXIS] = current_position[X_AXIS];
  2549. destination[Y_AXIS] = current_position[Y_AXIS];
  2550. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  2551. feedrate = 0.0;
  2552. st_synchronize();
  2553. endstops_hit_on_purpose();
  2554. current_position[X_AXIS] = destination[X_AXIS];
  2555. current_position[Y_AXIS] = destination[Y_AXIS];
  2556. current_position[Z_AXIS] = destination[Z_AXIS];
  2557. }
  2558. #endif /* QUICK_HOME */
  2559. #ifdef TMC2130
  2560. if(home_x)
  2561. {
  2562. if (!calib)
  2563. homeaxis(X_AXIS);
  2564. else
  2565. tmc2130_home_calibrate(X_AXIS);
  2566. }
  2567. if(home_y)
  2568. {
  2569. if (!calib)
  2570. homeaxis(Y_AXIS);
  2571. else
  2572. tmc2130_home_calibrate(Y_AXIS);
  2573. }
  2574. #endif //TMC2130
  2575. if(code_seen(axis_codes[X_AXIS]) && code_value_long() != 0)
  2576. current_position[X_AXIS]=code_value()+add_homing[X_AXIS];
  2577. if(code_seen(axis_codes[Y_AXIS]) && code_value_long() != 0)
  2578. current_position[Y_AXIS]=code_value()+add_homing[Y_AXIS];
  2579. #if Z_HOME_DIR < 0 // If homing towards BED do Z last
  2580. #ifndef Z_SAFE_HOMING
  2581. if(home_z) {
  2582. #if defined (Z_RAISE_BEFORE_HOMING) && (Z_RAISE_BEFORE_HOMING > 0)
  2583. destination[Z_AXIS] = Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS) * (-1); // Set destination away from bed
  2584. feedrate = max_feedrate[Z_AXIS];
  2585. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
  2586. st_synchronize();
  2587. #endif // defined (Z_RAISE_BEFORE_HOMING) && (Z_RAISE_BEFORE_HOMING > 0)
  2588. #if (defined(MESH_BED_LEVELING) && !defined(MK1BP)) // If Mesh bed leveling, moxve X&Y to safe position for home
  2589. if (!(axis_known_position[X_AXIS] && axis_known_position[Y_AXIS] ))
  2590. {
  2591. homeaxis(X_AXIS);
  2592. homeaxis(Y_AXIS);
  2593. }
  2594. // 1st mesh bed leveling measurement point, corrected.
  2595. world2machine_initialize();
  2596. world2machine(pgm_read_float(bed_ref_points), pgm_read_float(bed_ref_points+1), destination[X_AXIS], destination[Y_AXIS]);
  2597. world2machine_reset();
  2598. if (destination[Y_AXIS] < Y_MIN_POS)
  2599. destination[Y_AXIS] = Y_MIN_POS;
  2600. destination[Z_AXIS] = MESH_HOME_Z_SEARCH; // Set destination away from bed
  2601. feedrate = homing_feedrate[Z_AXIS]/10;
  2602. current_position[Z_AXIS] = 0;
  2603. enable_endstops(false);
  2604. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2605. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
  2606. st_synchronize();
  2607. current_position[X_AXIS] = destination[X_AXIS];
  2608. current_position[Y_AXIS] = destination[Y_AXIS];
  2609. enable_endstops(true);
  2610. endstops_hit_on_purpose();
  2611. homeaxis(Z_AXIS);
  2612. #else // MESH_BED_LEVELING
  2613. homeaxis(Z_AXIS);
  2614. #endif // MESH_BED_LEVELING
  2615. }
  2616. #else // defined(Z_SAFE_HOMING): Z Safe mode activated.
  2617. if(home_all_axes) {
  2618. destination[X_AXIS] = round(Z_SAFE_HOMING_X_POINT - X_PROBE_OFFSET_FROM_EXTRUDER);
  2619. destination[Y_AXIS] = round(Z_SAFE_HOMING_Y_POINT - Y_PROBE_OFFSET_FROM_EXTRUDER);
  2620. destination[Z_AXIS] = Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS) * (-1); // Set destination away from bed
  2621. feedrate = XY_TRAVEL_SPEED/60;
  2622. current_position[Z_AXIS] = 0;
  2623. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2624. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
  2625. st_synchronize();
  2626. current_position[X_AXIS] = destination[X_AXIS];
  2627. current_position[Y_AXIS] = destination[Y_AXIS];
  2628. homeaxis(Z_AXIS);
  2629. }
  2630. // Let's see if X and Y are homed and probe is inside bed area.
  2631. if(home_z) {
  2632. if ( (axis_known_position[X_AXIS]) && (axis_known_position[Y_AXIS]) \
  2633. && (current_position[X_AXIS]+X_PROBE_OFFSET_FROM_EXTRUDER >= X_MIN_POS) \
  2634. && (current_position[X_AXIS]+X_PROBE_OFFSET_FROM_EXTRUDER <= X_MAX_POS) \
  2635. && (current_position[Y_AXIS]+Y_PROBE_OFFSET_FROM_EXTRUDER >= Y_MIN_POS) \
  2636. && (current_position[Y_AXIS]+Y_PROBE_OFFSET_FROM_EXTRUDER <= Y_MAX_POS)) {
  2637. current_position[Z_AXIS] = 0;
  2638. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2639. destination[Z_AXIS] = Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS) * (-1); // Set destination away from bed
  2640. feedrate = max_feedrate[Z_AXIS];
  2641. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
  2642. st_synchronize();
  2643. homeaxis(Z_AXIS);
  2644. } else if (!((axis_known_position[X_AXIS]) && (axis_known_position[Y_AXIS]))) {
  2645. LCD_MESSAGERPGM(MSG_POSITION_UNKNOWN);
  2646. SERIAL_ECHO_START;
  2647. SERIAL_ECHOLNRPGM(MSG_POSITION_UNKNOWN);
  2648. } else {
  2649. LCD_MESSAGERPGM(MSG_ZPROBE_OUT);
  2650. SERIAL_ECHO_START;
  2651. SERIAL_ECHOLNRPGM(MSG_ZPROBE_OUT);
  2652. }
  2653. }
  2654. #endif // Z_SAFE_HOMING
  2655. #endif // Z_HOME_DIR < 0
  2656. if(code_seen(axis_codes[Z_AXIS]) && code_value_long() != 0)
  2657. current_position[Z_AXIS]=code_value()+add_homing[Z_AXIS];
  2658. #ifdef ENABLE_AUTO_BED_LEVELING
  2659. if(home_z)
  2660. current_position[Z_AXIS] += zprobe_zoffset; //Add Z_Probe offset (the distance is negative)
  2661. #endif
  2662. // Set the planner and stepper routine positions.
  2663. // At this point the mesh bed leveling and world2machine corrections are disabled and current_position
  2664. // contains the machine coordinates.
  2665. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2666. #ifdef ENDSTOPS_ONLY_FOR_HOMING
  2667. enable_endstops(false);
  2668. #endif
  2669. feedrate = saved_feedrate;
  2670. feedmultiply = saved_feedmultiply;
  2671. previous_millis_cmd = millis();
  2672. endstops_hit_on_purpose();
  2673. #ifndef MESH_BED_LEVELING
  2674. // If MESH_BED_LEVELING is not active, then it is the original Prusa i3.
  2675. // Offer the user to load the baby step value, which has been adjusted at the previous print session.
  2676. if(card.sdprinting && eeprom_read_word((uint16_t *)EEPROM_BABYSTEP_Z))
  2677. lcd_adjust_z();
  2678. #endif
  2679. // Load the machine correction matrix
  2680. world2machine_initialize();
  2681. // and correct the current_position XY axes to match the transformed coordinate system.
  2682. world2machine_update_current();
  2683. #if (defined(MESH_BED_LEVELING) && !defined(MK1BP))
  2684. if (code_seen(axis_codes[X_AXIS]) || code_seen(axis_codes[Y_AXIS]) || code_seen('W') || code_seen(axis_codes[Z_AXIS]))
  2685. {
  2686. if (! home_z && mbl_was_active) {
  2687. // Re-enable the mesh bed leveling if only the X and Y axes were re-homed.
  2688. mbl.active = true;
  2689. // and re-adjust the current logical Z axis with the bed leveling offset applicable at the current XY position.
  2690. current_position[Z_AXIS] -= mbl.get_z(st_get_position_mm(X_AXIS), st_get_position_mm(Y_AXIS));
  2691. }
  2692. }
  2693. else
  2694. {
  2695. st_synchronize();
  2696. homing_flag = false;
  2697. // Push the commands to the front of the message queue in the reverse order!
  2698. // There shall be always enough space reserved for these commands.
  2699. // enquecommand_front_P((PSTR("G80")));
  2700. goto case_G80;
  2701. }
  2702. #endif
  2703. if (farm_mode) { prusa_statistics(20); };
  2704. homing_flag = false;
  2705. #if 0
  2706. SERIAL_ECHOPGM("G28, final "); print_world_coordinates();
  2707. SERIAL_ECHOPGM("G28, final "); print_physical_coordinates();
  2708. SERIAL_ECHOPGM("G28, final "); print_mesh_bed_leveling_table();
  2709. #endif
  2710. break;
  2711. }
  2712. #ifdef ENABLE_AUTO_BED_LEVELING
  2713. case 29: // G29 Detailed Z-Probe, probes the bed at 3 or more points.
  2714. {
  2715. #if Z_MIN_PIN == -1
  2716. #error "You must have a Z_MIN endstop in order to enable Auto Bed Leveling feature! Z_MIN_PIN must point to a valid hardware pin."
  2717. #endif
  2718. // Prevent user from running a G29 without first homing in X and Y
  2719. if (! (axis_known_position[X_AXIS] && axis_known_position[Y_AXIS]) )
  2720. {
  2721. LCD_MESSAGERPGM(MSG_POSITION_UNKNOWN);
  2722. SERIAL_ECHO_START;
  2723. SERIAL_ECHOLNRPGM(MSG_POSITION_UNKNOWN);
  2724. break; // abort G29, since we don't know where we are
  2725. }
  2726. st_synchronize();
  2727. // make sure the bed_level_rotation_matrix is identity or the planner will get it incorectly
  2728. //vector_3 corrected_position = plan_get_position_mm();
  2729. //corrected_position.debug("position before G29");
  2730. plan_bed_level_matrix.set_to_identity();
  2731. vector_3 uncorrected_position = plan_get_position();
  2732. //uncorrected_position.debug("position durring G29");
  2733. current_position[X_AXIS] = uncorrected_position.x;
  2734. current_position[Y_AXIS] = uncorrected_position.y;
  2735. current_position[Z_AXIS] = uncorrected_position.z;
  2736. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2737. setup_for_endstop_move();
  2738. feedrate = homing_feedrate[Z_AXIS];
  2739. #ifdef AUTO_BED_LEVELING_GRID
  2740. // probe at the points of a lattice grid
  2741. int xGridSpacing = (RIGHT_PROBE_BED_POSITION - LEFT_PROBE_BED_POSITION) / (AUTO_BED_LEVELING_GRID_POINTS-1);
  2742. int yGridSpacing = (BACK_PROBE_BED_POSITION - FRONT_PROBE_BED_POSITION) / (AUTO_BED_LEVELING_GRID_POINTS-1);
  2743. // solve the plane equation ax + by + d = z
  2744. // A is the matrix with rows [x y 1] for all the probed points
  2745. // B is the vector of the Z positions
  2746. // the normal vector to the plane is formed by the coefficients of the plane equation in the standard form, which is Vx*x+Vy*y+Vz*z+d = 0
  2747. // so Vx = -a Vy = -b Vz = 1 (we want the vector facing towards positive Z
  2748. // "A" matrix of the linear system of equations
  2749. double eqnAMatrix[AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS*3];
  2750. // "B" vector of Z points
  2751. double eqnBVector[AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS];
  2752. int probePointCounter = 0;
  2753. bool zig = true;
  2754. for (int yProbe=FRONT_PROBE_BED_POSITION; yProbe <= BACK_PROBE_BED_POSITION; yProbe += yGridSpacing)
  2755. {
  2756. int xProbe, xInc;
  2757. if (zig)
  2758. {
  2759. xProbe = LEFT_PROBE_BED_POSITION;
  2760. //xEnd = RIGHT_PROBE_BED_POSITION;
  2761. xInc = xGridSpacing;
  2762. zig = false;
  2763. } else // zag
  2764. {
  2765. xProbe = RIGHT_PROBE_BED_POSITION;
  2766. //xEnd = LEFT_PROBE_BED_POSITION;
  2767. xInc = -xGridSpacing;
  2768. zig = true;
  2769. }
  2770. for (int xCount=0; xCount < AUTO_BED_LEVELING_GRID_POINTS; xCount++)
  2771. {
  2772. float z_before;
  2773. if (probePointCounter == 0)
  2774. {
  2775. // raise before probing
  2776. z_before = Z_RAISE_BEFORE_PROBING;
  2777. } else
  2778. {
  2779. // raise extruder
  2780. z_before = current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS;
  2781. }
  2782. float measured_z = probe_pt(xProbe, yProbe, z_before);
  2783. eqnBVector[probePointCounter] = measured_z;
  2784. eqnAMatrix[probePointCounter + 0*AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS] = xProbe;
  2785. eqnAMatrix[probePointCounter + 1*AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS] = yProbe;
  2786. eqnAMatrix[probePointCounter + 2*AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS] = 1;
  2787. probePointCounter++;
  2788. xProbe += xInc;
  2789. }
  2790. }
  2791. clean_up_after_endstop_move();
  2792. // solve lsq problem
  2793. double *plane_equation_coefficients = qr_solve(AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS, 3, eqnAMatrix, eqnBVector);
  2794. SERIAL_PROTOCOLPGM("Eqn coefficients: a: ");
  2795. SERIAL_PROTOCOL(plane_equation_coefficients[0]);
  2796. SERIAL_PROTOCOLPGM(" b: ");
  2797. SERIAL_PROTOCOL(plane_equation_coefficients[1]);
  2798. SERIAL_PROTOCOLPGM(" d: ");
  2799. SERIAL_PROTOCOLLN(plane_equation_coefficients[2]);
  2800. set_bed_level_equation_lsq(plane_equation_coefficients);
  2801. free(plane_equation_coefficients);
  2802. #else // AUTO_BED_LEVELING_GRID not defined
  2803. // Probe at 3 arbitrary points
  2804. // probe 1
  2805. float z_at_pt_1 = probe_pt(ABL_PROBE_PT_1_X, ABL_PROBE_PT_1_Y, Z_RAISE_BEFORE_PROBING);
  2806. // probe 2
  2807. float z_at_pt_2 = probe_pt(ABL_PROBE_PT_2_X, ABL_PROBE_PT_2_Y, current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS);
  2808. // probe 3
  2809. float z_at_pt_3 = probe_pt(ABL_PROBE_PT_3_X, ABL_PROBE_PT_3_Y, current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS);
  2810. clean_up_after_endstop_move();
  2811. set_bed_level_equation_3pts(z_at_pt_1, z_at_pt_2, z_at_pt_3);
  2812. #endif // AUTO_BED_LEVELING_GRID
  2813. st_synchronize();
  2814. // The following code correct the Z height difference from z-probe position and hotend tip position.
  2815. // The Z height on homing is measured by Z-Probe, but the probe is quite far from the hotend.
  2816. // When the bed is uneven, this height must be corrected.
  2817. real_z = float(st_get_position(Z_AXIS))/axis_steps_per_unit[Z_AXIS]; //get the real Z (since the auto bed leveling is already correcting the plane)
  2818. x_tmp = current_position[X_AXIS] + X_PROBE_OFFSET_FROM_EXTRUDER;
  2819. y_tmp = current_position[Y_AXIS] + Y_PROBE_OFFSET_FROM_EXTRUDER;
  2820. z_tmp = current_position[Z_AXIS];
  2821. apply_rotation_xyz(plan_bed_level_matrix, x_tmp, y_tmp, z_tmp); //Apply the correction sending the probe offset
  2822. current_position[Z_AXIS] = z_tmp - real_z + current_position[Z_AXIS]; //The difference is added to current position and sent to planner.
  2823. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2824. }
  2825. break;
  2826. #ifndef Z_PROBE_SLED
  2827. case 30: // G30 Single Z Probe
  2828. {
  2829. st_synchronize();
  2830. // TODO: make sure the bed_level_rotation_matrix is identity or the planner will get set incorectly
  2831. setup_for_endstop_move();
  2832. feedrate = homing_feedrate[Z_AXIS];
  2833. run_z_probe();
  2834. SERIAL_PROTOCOLPGM(MSG_BED);
  2835. SERIAL_PROTOCOLPGM(" X: ");
  2836. SERIAL_PROTOCOL(current_position[X_AXIS]);
  2837. SERIAL_PROTOCOLPGM(" Y: ");
  2838. SERIAL_PROTOCOL(current_position[Y_AXIS]);
  2839. SERIAL_PROTOCOLPGM(" Z: ");
  2840. SERIAL_PROTOCOL(current_position[Z_AXIS]);
  2841. SERIAL_PROTOCOLPGM("\n");
  2842. clean_up_after_endstop_move();
  2843. }
  2844. break;
  2845. #else
  2846. case 31: // dock the sled
  2847. dock_sled(true);
  2848. break;
  2849. case 32: // undock the sled
  2850. dock_sled(false);
  2851. break;
  2852. #endif // Z_PROBE_SLED
  2853. #endif // ENABLE_AUTO_BED_LEVELING
  2854. #ifdef MESH_BED_LEVELING
  2855. case 30: // G30 Single Z Probe
  2856. {
  2857. st_synchronize();
  2858. // TODO: make sure the bed_level_rotation_matrix is identity or the planner will get set incorectly
  2859. setup_for_endstop_move();
  2860. feedrate = homing_feedrate[Z_AXIS];
  2861. find_bed_induction_sensor_point_z(-10.f, 3);
  2862. SERIAL_PROTOCOLRPGM(MSG_BED);
  2863. SERIAL_PROTOCOLPGM(" X: ");
  2864. MYSERIAL.print(current_position[X_AXIS], 5);
  2865. SERIAL_PROTOCOLPGM(" Y: ");
  2866. MYSERIAL.print(current_position[Y_AXIS], 5);
  2867. SERIAL_PROTOCOLPGM(" Z: ");
  2868. MYSERIAL.print(current_position[Z_AXIS], 5);
  2869. SERIAL_PROTOCOLPGM("\n");
  2870. clean_up_after_endstop_move();
  2871. }
  2872. break;
  2873. case 75:
  2874. {
  2875. for (int i = 40; i <= 110; i++) {
  2876. MYSERIAL.print(i);
  2877. MYSERIAL.print(" ");
  2878. MYSERIAL.println(temp_comp_interpolation(i));// / axis_steps_per_unit[Z_AXIS]);
  2879. }
  2880. }
  2881. break;
  2882. case 76: //PINDA probe temperature calibration
  2883. {
  2884. #ifdef PINDA_THERMISTOR
  2885. if (true)
  2886. {
  2887. if (!(axis_known_position[X_AXIS] && axis_known_position[Y_AXIS] && axis_known_position[Z_AXIS]))
  2888. {
  2889. // We don't know where we are! HOME!
  2890. // Push the commands to the front of the message queue in the reverse order!
  2891. // There shall be always enough space reserved for these commands.
  2892. repeatcommand_front(); // repeat G76 with all its parameters
  2893. enquecommand_front_P((PSTR("G28 W0")));
  2894. break;
  2895. }
  2896. lcd_show_fullscreen_message_and_wait_P(MSG_TEMP_CAL_WARNING);
  2897. bool result = lcd_show_fullscreen_message_yes_no_and_wait_P(MSG_STEEL_SHEET_CHECK, false, false);
  2898. if (result)
  2899. {
  2900. current_position[Z_AXIS] = 50;
  2901. current_position[Y_AXIS] = 190;
  2902. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  2903. st_synchronize();
  2904. lcd_show_fullscreen_message_and_wait_P(MSG_REMOVE_STEEL_SHEET);
  2905. }
  2906. lcd_update_enable(true);
  2907. KEEPALIVE_STATE(NOT_BUSY); //no need to print busy messages as we print current temperatures periodicaly
  2908. SERIAL_ECHOLNPGM("PINDA probe calibration start");
  2909. float zero_z;
  2910. int z_shift = 0; //unit: steps
  2911. float start_temp = 5 * (int)(current_temperature_pinda / 5);
  2912. if (start_temp < 35) start_temp = 35;
  2913. if (start_temp < current_temperature_pinda) start_temp += 5;
  2914. SERIAL_ECHOPGM("start temperature: ");
  2915. MYSERIAL.println(start_temp);
  2916. // setTargetHotend(200, 0);
  2917. setTargetBed(70 + (start_temp - 30));
  2918. custom_message = true;
  2919. custom_message_type = 4;
  2920. custom_message_state = 1;
  2921. custom_message = MSG_TEMP_CALIBRATION;
  2922. current_position[X_AXIS] = PINDA_PREHEAT_X;
  2923. current_position[Y_AXIS] = PINDA_PREHEAT_Y;
  2924. current_position[Z_AXIS] = PINDA_PREHEAT_Z;
  2925. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  2926. st_synchronize();
  2927. while (current_temperature_pinda < start_temp)
  2928. {
  2929. delay_keep_alive(1000);
  2930. serialecho_temperatures();
  2931. }
  2932. eeprom_update_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 0); //invalidate temp. calibration in case that in will be aborted during the calibration process
  2933. current_position[Z_AXIS] = 5;
  2934. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  2935. current_position[X_AXIS] = pgm_read_float(bed_ref_points);
  2936. current_position[Y_AXIS] = pgm_read_float(bed_ref_points + 1);
  2937. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  2938. st_synchronize();
  2939. find_bed_induction_sensor_point_z(-1.f);
  2940. zero_z = current_position[Z_AXIS];
  2941. //current_position[Z_AXIS]
  2942. SERIAL_ECHOLNPGM("");
  2943. SERIAL_ECHOPGM("ZERO: ");
  2944. MYSERIAL.print(current_position[Z_AXIS]);
  2945. SERIAL_ECHOLNPGM("");
  2946. int i = -1; for (; i < 5; i++)
  2947. {
  2948. float temp = (40 + i * 5);
  2949. SERIAL_ECHOPGM("Step: ");
  2950. MYSERIAL.print(i + 2);
  2951. SERIAL_ECHOLNPGM("/6 (skipped)");
  2952. SERIAL_ECHOPGM("PINDA temperature: ");
  2953. MYSERIAL.print((40 + i*5));
  2954. SERIAL_ECHOPGM(" Z shift (mm):");
  2955. MYSERIAL.print(0);
  2956. SERIAL_ECHOLNPGM("");
  2957. if (i >= 0) EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + i * 2, &z_shift);
  2958. if (start_temp <= temp) break;
  2959. }
  2960. for (i++; i < 5; i++)
  2961. {
  2962. float temp = (40 + i * 5);
  2963. SERIAL_ECHOPGM("Step: ");
  2964. MYSERIAL.print(i + 2);
  2965. SERIAL_ECHOLNPGM("/6");
  2966. custom_message_state = i + 2;
  2967. setTargetBed(50 + 10 * (temp - 30) / 5);
  2968. // setTargetHotend(255, 0);
  2969. current_position[X_AXIS] = PINDA_PREHEAT_X;
  2970. current_position[Y_AXIS] = PINDA_PREHEAT_Y;
  2971. current_position[Z_AXIS] = PINDA_PREHEAT_Z;
  2972. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  2973. st_synchronize();
  2974. while (current_temperature_pinda < temp)
  2975. {
  2976. delay_keep_alive(1000);
  2977. serialecho_temperatures();
  2978. }
  2979. current_position[Z_AXIS] = 5;
  2980. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  2981. current_position[X_AXIS] = pgm_read_float(bed_ref_points);
  2982. current_position[Y_AXIS] = pgm_read_float(bed_ref_points + 1);
  2983. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  2984. st_synchronize();
  2985. find_bed_induction_sensor_point_z(-1.f);
  2986. z_shift = (int)((current_position[Z_AXIS] - zero_z)*axis_steps_per_unit[Z_AXIS]);
  2987. SERIAL_ECHOLNPGM("");
  2988. SERIAL_ECHOPGM("PINDA temperature: ");
  2989. MYSERIAL.print(current_temperature_pinda);
  2990. SERIAL_ECHOPGM(" Z shift (mm):");
  2991. MYSERIAL.print(current_position[Z_AXIS] - zero_z);
  2992. SERIAL_ECHOLNPGM("");
  2993. EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + i * 2, &z_shift);
  2994. }
  2995. custom_message_type = 0;
  2996. custom_message = false;
  2997. eeprom_update_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 1);
  2998. SERIAL_ECHOLNPGM("Temperature calibration done. Continue with pressing the knob.");
  2999. disable_x();
  3000. disable_y();
  3001. disable_z();
  3002. disable_e0();
  3003. disable_e1();
  3004. disable_e2();
  3005. setTargetBed(0); //set bed target temperature back to 0
  3006. // setTargetHotend(0,0); //set hotend target temperature back to 0
  3007. lcd_show_fullscreen_message_and_wait_P(MSG_TEMP_CALIBRATION_DONE);
  3008. lcd_update_enable(true);
  3009. lcd_update(2);
  3010. break;
  3011. }
  3012. #endif //PINDA_THERMISTOR
  3013. setTargetBed(PINDA_MIN_T);
  3014. float zero_z;
  3015. int z_shift = 0; //unit: steps
  3016. int t_c; // temperature
  3017. if (!(axis_known_position[X_AXIS] && axis_known_position[Y_AXIS] && axis_known_position[Z_AXIS])) {
  3018. // We don't know where we are! HOME!
  3019. // Push the commands to the front of the message queue in the reverse order!
  3020. // There shall be always enough space reserved for these commands.
  3021. repeatcommand_front(); // repeat G76 with all its parameters
  3022. enquecommand_front_P((PSTR("G28 W0")));
  3023. break;
  3024. }
  3025. SERIAL_ECHOLNPGM("PINDA probe calibration start");
  3026. custom_message = true;
  3027. custom_message_type = 4;
  3028. custom_message_state = 1;
  3029. custom_message = MSG_TEMP_CALIBRATION;
  3030. current_position[X_AXIS] = PINDA_PREHEAT_X;
  3031. current_position[Y_AXIS] = PINDA_PREHEAT_Y;
  3032. current_position[Z_AXIS] = PINDA_PREHEAT_Z;
  3033. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3034. st_synchronize();
  3035. while (abs(degBed() - PINDA_MIN_T) > 1) {
  3036. delay_keep_alive(1000);
  3037. serialecho_temperatures();
  3038. }
  3039. //enquecommand_P(PSTR("M190 S50"));
  3040. for (int i = 0; i < PINDA_HEAT_T; i++) {
  3041. delay_keep_alive(1000);
  3042. serialecho_temperatures();
  3043. }
  3044. eeprom_update_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 0); //invalidate temp. calibration in case that in will be aborted during the calibration process
  3045. current_position[Z_AXIS] = 5;
  3046. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3047. current_position[X_AXIS] = pgm_read_float(bed_ref_points);
  3048. current_position[Y_AXIS] = pgm_read_float(bed_ref_points + 1);
  3049. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3050. st_synchronize();
  3051. find_bed_induction_sensor_point_z(-1.f);
  3052. zero_z = current_position[Z_AXIS];
  3053. //current_position[Z_AXIS]
  3054. SERIAL_ECHOLNPGM("");
  3055. SERIAL_ECHOPGM("ZERO: ");
  3056. MYSERIAL.print(current_position[Z_AXIS]);
  3057. SERIAL_ECHOLNPGM("");
  3058. for (int i = 0; i<5; i++) {
  3059. SERIAL_ECHOPGM("Step: ");
  3060. MYSERIAL.print(i+2);
  3061. SERIAL_ECHOLNPGM("/6");
  3062. custom_message_state = i + 2;
  3063. t_c = 60 + i * 10;
  3064. setTargetBed(t_c);
  3065. current_position[X_AXIS] = PINDA_PREHEAT_X;
  3066. current_position[Y_AXIS] = PINDA_PREHEAT_Y;
  3067. current_position[Z_AXIS] = PINDA_PREHEAT_Z;
  3068. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3069. st_synchronize();
  3070. while (degBed() < t_c) {
  3071. delay_keep_alive(1000);
  3072. serialecho_temperatures();
  3073. }
  3074. for (int i = 0; i < PINDA_HEAT_T; i++) {
  3075. delay_keep_alive(1000);
  3076. serialecho_temperatures();
  3077. }
  3078. current_position[Z_AXIS] = 5;
  3079. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3080. current_position[X_AXIS] = pgm_read_float(bed_ref_points);
  3081. current_position[Y_AXIS] = pgm_read_float(bed_ref_points + 1);
  3082. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3083. st_synchronize();
  3084. find_bed_induction_sensor_point_z(-1.f);
  3085. z_shift = (int)((current_position[Z_AXIS] - zero_z)*axis_steps_per_unit[Z_AXIS]);
  3086. SERIAL_ECHOLNPGM("");
  3087. SERIAL_ECHOPGM("Temperature: ");
  3088. MYSERIAL.print(t_c);
  3089. SERIAL_ECHOPGM(" Z shift (mm):");
  3090. MYSERIAL.print(current_position[Z_AXIS] - zero_z);
  3091. SERIAL_ECHOLNPGM("");
  3092. EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + i*2, &z_shift);
  3093. }
  3094. custom_message_type = 0;
  3095. custom_message = false;
  3096. eeprom_update_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 1);
  3097. SERIAL_ECHOLNPGM("Temperature calibration done. Continue with pressing the knob.");
  3098. disable_x();
  3099. disable_y();
  3100. disable_z();
  3101. disable_e0();
  3102. disable_e1();
  3103. disable_e2();
  3104. setTargetBed(0); //set bed target temperature back to 0
  3105. lcd_show_fullscreen_message_and_wait_P(MSG_TEMP_CALIBRATION_DONE);
  3106. lcd_update_enable(true);
  3107. lcd_update(2);
  3108. }
  3109. break;
  3110. #ifdef DIS
  3111. case 77:
  3112. {
  3113. //G77 X200 Y150 XP100 YP15 XO10 Y015
  3114. //for 9 point mesh bed leveling G77 X203 Y196 XP3 YP3 XO0 YO0
  3115. //G77 X232 Y218 XP116 YP109 XO-11 YO0
  3116. float dimension_x = 40;
  3117. float dimension_y = 40;
  3118. int points_x = 40;
  3119. int points_y = 40;
  3120. float offset_x = 74;
  3121. float offset_y = 33;
  3122. if (code_seen('X')) dimension_x = code_value();
  3123. if (code_seen('Y')) dimension_y = code_value();
  3124. if (code_seen('XP')) points_x = code_value();
  3125. if (code_seen('YP')) points_y = code_value();
  3126. if (code_seen('XO')) offset_x = code_value();
  3127. if (code_seen('YO')) offset_y = code_value();
  3128. bed_analysis(dimension_x,dimension_y,points_x,points_y,offset_x,offset_y);
  3129. } break;
  3130. #endif
  3131. case 79: {
  3132. for (int i = 255; i > 0; i = i - 5) {
  3133. fanSpeed = i;
  3134. //delay_keep_alive(2000);
  3135. for (int j = 0; j < 100; j++) {
  3136. delay_keep_alive(100);
  3137. }
  3138. fan_speed[1];
  3139. MYSERIAL.print(i); SERIAL_ECHOPGM(": "); MYSERIAL.println(fan_speed[1]);
  3140. }
  3141. }break;
  3142. /**
  3143. * G80: Mesh-based Z probe, probes a grid and produces a
  3144. * mesh to compensate for variable bed height
  3145. *
  3146. * The S0 report the points as below
  3147. *
  3148. * +----> X-axis
  3149. * |
  3150. * |
  3151. * v Y-axis
  3152. *
  3153. */
  3154. case 80:
  3155. #ifdef MK1BP
  3156. break;
  3157. #endif //MK1BP
  3158. case_G80:
  3159. {
  3160. mesh_bed_leveling_flag = true;
  3161. int8_t verbosity_level = 0;
  3162. static bool run = false;
  3163. if (code_seen('V')) {
  3164. // Just 'V' without a number counts as V1.
  3165. char c = strchr_pointer[1];
  3166. verbosity_level = (c == ' ' || c == '\t' || c == 0) ? 1 : code_value_short();
  3167. }
  3168. // Firstly check if we know where we are
  3169. if (!(axis_known_position[X_AXIS] && axis_known_position[Y_AXIS] && axis_known_position[Z_AXIS])) {
  3170. // We don't know where we are! HOME!
  3171. // Push the commands to the front of the message queue in the reverse order!
  3172. // There shall be always enough space reserved for these commands.
  3173. if (lcd_commands_type != LCD_COMMAND_STOP_PRINT) {
  3174. repeatcommand_front(); // repeat G80 with all its parameters
  3175. enquecommand_front_P((PSTR("G28 W0")));
  3176. }
  3177. else {
  3178. mesh_bed_leveling_flag = false;
  3179. }
  3180. break;
  3181. }
  3182. bool temp_comp_start = true;
  3183. #ifdef PINDA_THERMISTOR
  3184. temp_comp_start = false;
  3185. #endif //PINDA_THERMISTOR
  3186. if (temp_comp_start)
  3187. if (run == false && temp_cal_active == true && calibration_status_pinda() == true && target_temperature_bed >= 50) {
  3188. if (lcd_commands_type != LCD_COMMAND_STOP_PRINT) {
  3189. temp_compensation_start();
  3190. run = true;
  3191. repeatcommand_front(); // repeat G80 with all its parameters
  3192. enquecommand_front_P((PSTR("G28 W0")));
  3193. }
  3194. else {
  3195. mesh_bed_leveling_flag = false;
  3196. }
  3197. break;
  3198. }
  3199. run = false;
  3200. if (lcd_commands_type == LCD_COMMAND_STOP_PRINT) {
  3201. mesh_bed_leveling_flag = false;
  3202. break;
  3203. }
  3204. // Save custom message state, set a new custom message state to display: Calibrating point 9.
  3205. bool custom_message_old = custom_message;
  3206. unsigned int custom_message_type_old = custom_message_type;
  3207. unsigned int custom_message_state_old = custom_message_state;
  3208. custom_message = true;
  3209. custom_message_type = 1;
  3210. custom_message_state = (MESH_MEAS_NUM_X_POINTS * MESH_MEAS_NUM_Y_POINTS) + 10;
  3211. lcd_update(1);
  3212. mbl.reset(); //reset mesh bed leveling
  3213. // Reset baby stepping to zero, if the babystepping has already been loaded before. The babystepsTodo value will be
  3214. // consumed during the first movements following this statement.
  3215. babystep_undo();
  3216. // Cycle through all points and probe them
  3217. // First move up. During this first movement, the babystepping will be reverted.
  3218. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3219. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[Z_AXIS] / 60, active_extruder);
  3220. // The move to the first calibration point.
  3221. current_position[X_AXIS] = pgm_read_float(bed_ref_points);
  3222. current_position[Y_AXIS] = pgm_read_float(bed_ref_points + 1);
  3223. bool clamped = world2machine_clamp(current_position[X_AXIS], current_position[Y_AXIS]);
  3224. #ifdef SUPPORT_VERBOSITY
  3225. if (verbosity_level >= 1) {
  3226. clamped ? SERIAL_PROTOCOLPGM("First calibration point clamped.\n") : SERIAL_PROTOCOLPGM("No clamping for first calibration point.\n");
  3227. }
  3228. #endif //SUPPORT_VERBOSITY
  3229. // mbl.get_meas_xy(0, 0, current_position[X_AXIS], current_position[Y_AXIS], false);
  3230. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[X_AXIS] / 30, active_extruder);
  3231. // Wait until the move is finished.
  3232. st_synchronize();
  3233. int mesh_point = 0; //index number of calibration point
  3234. int ix = 0;
  3235. int iy = 0;
  3236. int XY_AXIS_FEEDRATE = homing_feedrate[X_AXIS] / 20;
  3237. int Z_PROBE_FEEDRATE = homing_feedrate[Z_AXIS] / 60;
  3238. int Z_LIFT_FEEDRATE = homing_feedrate[Z_AXIS] / 40;
  3239. bool has_z = is_bed_z_jitter_data_valid(); //checks if we have data from Z calibration (offsets of the Z heiths of the 8 calibration points from the first point)
  3240. #ifdef SUPPORT_VERBOSITY
  3241. if (verbosity_level >= 1) {
  3242. has_z ? SERIAL_PROTOCOLPGM("Z jitter data from Z cal. valid.\n") : SERIAL_PROTOCOLPGM("Z jitter data from Z cal. not valid.\n");
  3243. }
  3244. #endif // SUPPORT_VERBOSITY
  3245. setup_for_endstop_move(false); //save feedrate and feedmultiply, sets feedmultiply to 100
  3246. const char *kill_message = NULL;
  3247. while (mesh_point != MESH_MEAS_NUM_X_POINTS * MESH_MEAS_NUM_Y_POINTS) {
  3248. // Get coords of a measuring point.
  3249. ix = mesh_point % MESH_MEAS_NUM_X_POINTS; // from 0 to MESH_NUM_X_POINTS - 1
  3250. iy = mesh_point / MESH_MEAS_NUM_X_POINTS;
  3251. if (iy & 1) ix = (MESH_MEAS_NUM_X_POINTS - 1) - ix; // Zig zag
  3252. float z0 = 0.f;
  3253. if (has_z && mesh_point > 0) {
  3254. uint16_t z_offset_u = eeprom_read_word((uint16_t*)(EEPROM_BED_CALIBRATION_Z_JITTER + 2 * (ix + iy * 3 - 1)));
  3255. z0 = mbl.z_values[0][0] + *reinterpret_cast<int16_t*>(&z_offset_u) * 0.01;
  3256. //#if 0
  3257. #ifdef SUPPORT_VERBOSITY
  3258. if (verbosity_level >= 1) {
  3259. SERIAL_ECHOLNPGM("");
  3260. SERIAL_ECHOPGM("Bed leveling, point: ");
  3261. MYSERIAL.print(mesh_point);
  3262. SERIAL_ECHOPGM(", calibration z: ");
  3263. MYSERIAL.print(z0, 5);
  3264. SERIAL_ECHOLNPGM("");
  3265. }
  3266. #endif // SUPPORT_VERBOSITY
  3267. //#endif
  3268. }
  3269. // Move Z up to MESH_HOME_Z_SEARCH.
  3270. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3271. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], Z_LIFT_FEEDRATE, active_extruder);
  3272. st_synchronize();
  3273. // Move to XY position of the sensor point.
  3274. current_position[X_AXIS] = pgm_read_float(bed_ref_points + 2 * mesh_point);
  3275. current_position[Y_AXIS] = pgm_read_float(bed_ref_points + 2 * mesh_point + 1);
  3276. world2machine_clamp(current_position[X_AXIS], current_position[Y_AXIS]);
  3277. #ifdef SUPPORT_VERBOSITY
  3278. if (verbosity_level >= 1) {
  3279. SERIAL_PROTOCOL(mesh_point);
  3280. clamped ? SERIAL_PROTOCOLPGM(": xy clamped.\n") : SERIAL_PROTOCOLPGM(": no xy clamping\n");
  3281. }
  3282. #endif // SUPPORT_VERBOSITY
  3283. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], XY_AXIS_FEEDRATE, active_extruder);
  3284. st_synchronize();
  3285. // Go down until endstop is hit
  3286. const float Z_CALIBRATION_THRESHOLD = 1.f;
  3287. if (!find_bed_induction_sensor_point_z((has_z && mesh_point > 0) ? z0 - Z_CALIBRATION_THRESHOLD : -10.f)) { //if we have data from z calibration max allowed difference is 1mm for each point, if we dont have data max difference is 10mm from initial point
  3288. kill_message = MSG_BED_LEVELING_FAILED_POINT_LOW;
  3289. break;
  3290. }
  3291. if (MESH_HOME_Z_SEARCH - current_position[Z_AXIS] < 0.1f) {
  3292. kill_message = MSG_BED_LEVELING_FAILED_PROBE_DISCONNECTED;
  3293. break;
  3294. }
  3295. if (has_z && fabs(z0 - current_position[Z_AXIS]) > Z_CALIBRATION_THRESHOLD) { //if we have data from z calibration, max. allowed difference is 1mm for each point
  3296. kill_message = MSG_BED_LEVELING_FAILED_POINT_HIGH;
  3297. break;
  3298. }
  3299. #ifdef SUPPORT_VERBOSITY
  3300. if (verbosity_level >= 10) {
  3301. SERIAL_ECHOPGM("X: ");
  3302. MYSERIAL.print(current_position[X_AXIS], 5);
  3303. SERIAL_ECHOLNPGM("");
  3304. SERIAL_ECHOPGM("Y: ");
  3305. MYSERIAL.print(current_position[Y_AXIS], 5);
  3306. SERIAL_PROTOCOLPGM("\n");
  3307. }
  3308. #endif // SUPPORT_VERBOSITY
  3309. float offset_z = 0;
  3310. #ifdef PINDA_THERMISTOR
  3311. offset_z = temp_compensation_pinda_thermistor_offset(current_temperature_pinda);
  3312. #endif //PINDA_THERMISTOR
  3313. // #ifdef SUPPORT_VERBOSITY
  3314. /* if (verbosity_level >= 1)
  3315. {
  3316. SERIAL_ECHOPGM("mesh bed leveling: ");
  3317. MYSERIAL.print(current_position[Z_AXIS], 5);
  3318. SERIAL_ECHOPGM(" offset: ");
  3319. MYSERIAL.print(offset_z, 5);
  3320. SERIAL_ECHOLNPGM("");
  3321. }*/
  3322. // #endif // SUPPORT_VERBOSITY
  3323. mbl.set_z(ix, iy, current_position[Z_AXIS] - offset_z); //store measured z values z_values[iy][ix] = z - offset_z;
  3324. custom_message_state--;
  3325. mesh_point++;
  3326. lcd_update(1);
  3327. }
  3328. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3329. #ifdef SUPPORT_VERBOSITY
  3330. if (verbosity_level >= 20) {
  3331. SERIAL_ECHOLNPGM("Mesh bed leveling while loop finished.");
  3332. SERIAL_ECHOLNPGM("MESH_HOME_Z_SEARCH: ");
  3333. MYSERIAL.print(current_position[Z_AXIS], 5);
  3334. }
  3335. #endif // SUPPORT_VERBOSITY
  3336. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], Z_LIFT_FEEDRATE, active_extruder);
  3337. st_synchronize();
  3338. if (mesh_point != MESH_MEAS_NUM_X_POINTS * MESH_MEAS_NUM_Y_POINTS) {
  3339. kill(kill_message);
  3340. SERIAL_ECHOLNPGM("killed");
  3341. }
  3342. clean_up_after_endstop_move();
  3343. // SERIAL_ECHOLNPGM("clean up finished ");
  3344. bool apply_temp_comp = true;
  3345. #ifdef PINDA_THERMISTOR
  3346. apply_temp_comp = false;
  3347. #endif
  3348. if (apply_temp_comp)
  3349. if(temp_cal_active == true && calibration_status_pinda() == true) temp_compensation_apply(); //apply PINDA temperature compensation
  3350. babystep_apply(); // Apply Z height correction aka baby stepping before mesh bed leveing gets activated.
  3351. // SERIAL_ECHOLNPGM("babystep applied");
  3352. bool eeprom_bed_correction_valid = eeprom_read_byte((unsigned char*)EEPROM_BED_CORRECTION_VALID) == 1;
  3353. #ifdef SUPPORT_VERBOSITY
  3354. if (verbosity_level >= 1) {
  3355. eeprom_bed_correction_valid ? SERIAL_PROTOCOLPGM("Bed correction data valid\n") : SERIAL_PROTOCOLPGM("Bed correction data not valid\n");
  3356. }
  3357. #endif // SUPPORT_VERBOSITY
  3358. for (uint8_t i = 0; i < 4; ++i) {
  3359. unsigned char codes[4] = { 'L', 'R', 'F', 'B' };
  3360. long correction = 0;
  3361. if (code_seen(codes[i]))
  3362. correction = code_value_long();
  3363. else if (eeprom_bed_correction_valid) {
  3364. unsigned char *addr = (i < 2) ?
  3365. ((i == 0) ? (unsigned char*)EEPROM_BED_CORRECTION_LEFT : (unsigned char*)EEPROM_BED_CORRECTION_RIGHT) :
  3366. ((i == 2) ? (unsigned char*)EEPROM_BED_CORRECTION_FRONT : (unsigned char*)EEPROM_BED_CORRECTION_REAR);
  3367. correction = eeprom_read_int8(addr);
  3368. }
  3369. if (correction == 0)
  3370. continue;
  3371. float offset = float(correction) * 0.001f;
  3372. if (fabs(offset) > 0.101f) {
  3373. SERIAL_ERROR_START;
  3374. SERIAL_ECHOPGM("Excessive bed leveling correction: ");
  3375. SERIAL_ECHO(offset);
  3376. SERIAL_ECHOLNPGM(" microns");
  3377. }
  3378. else {
  3379. switch (i) {
  3380. case 0:
  3381. for (uint8_t row = 0; row < 3; ++row) {
  3382. mbl.z_values[row][1] += 0.5f * offset;
  3383. mbl.z_values[row][0] += offset;
  3384. }
  3385. break;
  3386. case 1:
  3387. for (uint8_t row = 0; row < 3; ++row) {
  3388. mbl.z_values[row][1] += 0.5f * offset;
  3389. mbl.z_values[row][2] += offset;
  3390. }
  3391. break;
  3392. case 2:
  3393. for (uint8_t col = 0; col < 3; ++col) {
  3394. mbl.z_values[1][col] += 0.5f * offset;
  3395. mbl.z_values[0][col] += offset;
  3396. }
  3397. break;
  3398. case 3:
  3399. for (uint8_t col = 0; col < 3; ++col) {
  3400. mbl.z_values[1][col] += 0.5f * offset;
  3401. mbl.z_values[2][col] += offset;
  3402. }
  3403. break;
  3404. }
  3405. }
  3406. }
  3407. // SERIAL_ECHOLNPGM("Bed leveling correction finished");
  3408. mbl.upsample_3x3(); //bilinear interpolation from 3x3 to 7x7 points while using the same array z_values[iy][ix] for storing (just coppying measured data to new destination and interpolating between them)
  3409. // SERIAL_ECHOLNPGM("Upsample finished");
  3410. mbl.active = 1; //activate mesh bed leveling
  3411. // SERIAL_ECHOLNPGM("Mesh bed leveling activated");
  3412. go_home_with_z_lift();
  3413. // SERIAL_ECHOLNPGM("Go home finished");
  3414. //unretract (after PINDA preheat retraction)
  3415. if (degHotend(active_extruder) > EXTRUDE_MINTEMP && temp_cal_active == true && calibration_status_pinda() == true && target_temperature_bed >= 50) {
  3416. current_position[E_AXIS] += DEFAULT_RETRACTION;
  3417. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400, active_extruder);
  3418. }
  3419. KEEPALIVE_STATE(NOT_BUSY);
  3420. // Restore custom message state
  3421. custom_message = custom_message_old;
  3422. custom_message_type = custom_message_type_old;
  3423. custom_message_state = custom_message_state_old;
  3424. mesh_bed_leveling_flag = false;
  3425. mesh_bed_run_from_menu = false;
  3426. lcd_update(2);
  3427. }
  3428. break;
  3429. /**
  3430. * G81: Print mesh bed leveling status and bed profile if activated
  3431. */
  3432. case 81:
  3433. if (mbl.active) {
  3434. SERIAL_PROTOCOLPGM("Num X,Y: ");
  3435. SERIAL_PROTOCOL(MESH_NUM_X_POINTS);
  3436. SERIAL_PROTOCOLPGM(",");
  3437. SERIAL_PROTOCOL(MESH_NUM_Y_POINTS);
  3438. SERIAL_PROTOCOLPGM("\nZ search height: ");
  3439. SERIAL_PROTOCOL(MESH_HOME_Z_SEARCH);
  3440. SERIAL_PROTOCOLLNPGM("\nMeasured points:");
  3441. for (int y = MESH_NUM_Y_POINTS-1; y >= 0; y--) {
  3442. for (int x = 0; x < MESH_NUM_X_POINTS; x++) {
  3443. SERIAL_PROTOCOLPGM(" ");
  3444. SERIAL_PROTOCOL_F(mbl.z_values[y][x], 5);
  3445. }
  3446. SERIAL_PROTOCOLPGM("\n");
  3447. }
  3448. }
  3449. else
  3450. SERIAL_PROTOCOLLNPGM("Mesh bed leveling not active.");
  3451. break;
  3452. #if 0
  3453. /**
  3454. * G82: Single Z probe at current location
  3455. *
  3456. * WARNING! USE WITH CAUTION! If you'll try to probe where is no leveling pad, nasty things can happen!
  3457. *
  3458. */
  3459. case 82:
  3460. SERIAL_PROTOCOLLNPGM("Finding bed ");
  3461. setup_for_endstop_move();
  3462. find_bed_induction_sensor_point_z();
  3463. clean_up_after_endstop_move();
  3464. SERIAL_PROTOCOLPGM("Bed found at: ");
  3465. SERIAL_PROTOCOL_F(current_position[Z_AXIS], 5);
  3466. SERIAL_PROTOCOLPGM("\n");
  3467. break;
  3468. /**
  3469. * G83: Prusa3D specific: Babystep in Z and store to EEPROM
  3470. */
  3471. case 83:
  3472. {
  3473. int babystepz = code_seen('S') ? code_value() : 0;
  3474. int BabyPosition = code_seen('P') ? code_value() : 0;
  3475. if (babystepz != 0) {
  3476. //FIXME Vojtech: What shall be the index of the axis Z: 3 or 4?
  3477. // Is the axis indexed starting with zero or one?
  3478. if (BabyPosition > 4) {
  3479. SERIAL_PROTOCOLLNPGM("Index out of bounds");
  3480. }else{
  3481. // Save it to the eeprom
  3482. babystepLoadZ = babystepz;
  3483. EEPROM_save_B(EEPROM_BABYSTEP_Z0+(BabyPosition*2),&babystepLoadZ);
  3484. // adjust the Z
  3485. babystepsTodoZadd(babystepLoadZ);
  3486. }
  3487. }
  3488. }
  3489. break;
  3490. /**
  3491. * G84: Prusa3D specific: UNDO Babystep Z (move Z axis back)
  3492. */
  3493. case 84:
  3494. babystepsTodoZsubtract(babystepLoadZ);
  3495. // babystepLoadZ = 0;
  3496. break;
  3497. /**
  3498. * G85: Prusa3D specific: Pick best babystep
  3499. */
  3500. case 85:
  3501. lcd_pick_babystep();
  3502. break;
  3503. #endif
  3504. /**
  3505. * G86: Prusa3D specific: Disable babystep correction after home.
  3506. * This G-code will be performed at the start of a calibration script.
  3507. */
  3508. case 86:
  3509. calibration_status_store(CALIBRATION_STATUS_LIVE_ADJUST);
  3510. break;
  3511. /**
  3512. * G87: Prusa3D specific: Enable babystep correction after home
  3513. * This G-code will be performed at the end of a calibration script.
  3514. */
  3515. case 87:
  3516. calibration_status_store(CALIBRATION_STATUS_CALIBRATED);
  3517. break;
  3518. /**
  3519. * G88: Prusa3D specific: Don't know what it is for, it is in V2Calibration.gcode
  3520. */
  3521. case 88:
  3522. break;
  3523. #endif // ENABLE_MESH_BED_LEVELING
  3524. case 90: // G90
  3525. relative_mode = false;
  3526. break;
  3527. case 91: // G91
  3528. relative_mode = true;
  3529. break;
  3530. case 92: // G92
  3531. if(!code_seen(axis_codes[E_AXIS]))
  3532. st_synchronize();
  3533. for(int8_t i=0; i < NUM_AXIS; i++) {
  3534. if(code_seen(axis_codes[i])) {
  3535. if(i == E_AXIS) {
  3536. current_position[i] = code_value();
  3537. plan_set_e_position(current_position[E_AXIS]);
  3538. }
  3539. else {
  3540. current_position[i] = code_value()+add_homing[i];
  3541. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  3542. }
  3543. }
  3544. }
  3545. break;
  3546. case 98: //activate farm mode
  3547. farm_mode = 1;
  3548. PingTime = millis();
  3549. eeprom_update_byte((unsigned char *)EEPROM_FARM_MODE, farm_mode);
  3550. break;
  3551. case 99: //deactivate farm mode
  3552. farm_mode = 0;
  3553. lcd_printer_connected();
  3554. eeprom_update_byte((unsigned char *)EEPROM_FARM_MODE, farm_mode);
  3555. lcd_update(2);
  3556. break;
  3557. default:
  3558. printf_P(PSTR("Unknown G code: %s \n"), cmdbuffer + bufindr + CMDHDRSIZE);
  3559. }
  3560. } // end if(code_seen('G'))
  3561. else if(code_seen('M'))
  3562. {
  3563. int index;
  3564. for (index = 1; *(strchr_pointer + index) == ' ' || *(strchr_pointer + index) == '\t'; index++);
  3565. /*for (++strchr_pointer; *strchr_pointer == ' ' || *strchr_pointer == '\t'; ++strchr_pointer);*/
  3566. if (*(strchr_pointer+index) < '0' || *(strchr_pointer+index) > '9') {
  3567. printf_P(PSTR("Invalid M code: %s \n"), cmdbuffer + bufindr + CMDHDRSIZE);
  3568. } else
  3569. switch((int)code_value())
  3570. {
  3571. #ifdef ULTIPANEL
  3572. case 0: // M0 - Unconditional stop - Wait for user button press on LCD
  3573. case 1: // M1 - Conditional stop - Wait for user button press on LCD
  3574. {
  3575. char *src = strchr_pointer + 2;
  3576. codenum = 0;
  3577. bool hasP = false, hasS = false;
  3578. if (code_seen('P')) {
  3579. codenum = code_value(); // milliseconds to wait
  3580. hasP = codenum > 0;
  3581. }
  3582. if (code_seen('S')) {
  3583. codenum = code_value() * 1000; // seconds to wait
  3584. hasS = codenum > 0;
  3585. }
  3586. starpos = strchr(src, '*');
  3587. if (starpos != NULL) *(starpos) = '\0';
  3588. while (*src == ' ') ++src;
  3589. if (!hasP && !hasS && *src != '\0') {
  3590. lcd_setstatus(src);
  3591. } else {
  3592. LCD_MESSAGERPGM(MSG_USERWAIT);
  3593. }
  3594. lcd_ignore_click(); //call lcd_ignore_click aslo for else ???
  3595. st_synchronize();
  3596. previous_millis_cmd = millis();
  3597. if (codenum > 0){
  3598. codenum += millis(); // keep track of when we started waiting
  3599. KEEPALIVE_STATE(PAUSED_FOR_USER);
  3600. while(millis() < codenum && !lcd_clicked()){
  3601. manage_heater();
  3602. manage_inactivity(true);
  3603. lcd_update();
  3604. }
  3605. KEEPALIVE_STATE(IN_HANDLER);
  3606. lcd_ignore_click(false);
  3607. }else{
  3608. if (!lcd_detected())
  3609. break;
  3610. KEEPALIVE_STATE(PAUSED_FOR_USER);
  3611. while(!lcd_clicked()){
  3612. manage_heater();
  3613. manage_inactivity(true);
  3614. lcd_update();
  3615. }
  3616. KEEPALIVE_STATE(IN_HANDLER);
  3617. }
  3618. if (IS_SD_PRINTING)
  3619. LCD_MESSAGERPGM(MSG_RESUMING);
  3620. else
  3621. LCD_MESSAGERPGM(WELCOME_MSG);
  3622. }
  3623. break;
  3624. #endif
  3625. case 17:
  3626. LCD_MESSAGERPGM(MSG_NO_MOVE);
  3627. enable_x();
  3628. enable_y();
  3629. enable_z();
  3630. enable_e0();
  3631. enable_e1();
  3632. enable_e2();
  3633. break;
  3634. #ifdef SDSUPPORT
  3635. case 20: // M20 - list SD card
  3636. SERIAL_PROTOCOLLNRPGM(MSG_BEGIN_FILE_LIST);
  3637. card.ls();
  3638. SERIAL_PROTOCOLLNRPGM(MSG_END_FILE_LIST);
  3639. break;
  3640. case 21: // M21 - init SD card
  3641. card.initsd();
  3642. break;
  3643. case 22: //M22 - release SD card
  3644. card.release();
  3645. break;
  3646. case 23: //M23 - Select file
  3647. starpos = (strchr(strchr_pointer + 4,'*'));
  3648. if(starpos!=NULL)
  3649. *(starpos)='\0';
  3650. card.openFile(strchr_pointer + 4,true);
  3651. break;
  3652. case 24: //M24 - Start SD print
  3653. if (!card.paused)
  3654. failstats_reset_print();
  3655. card.startFileprint();
  3656. starttime=millis();
  3657. break;
  3658. case 25: //M25 - Pause SD print
  3659. card.pauseSDPrint();
  3660. break;
  3661. case 26: //M26 - Set SD index
  3662. if(card.cardOK && code_seen('S')) {
  3663. card.setIndex(code_value_long());
  3664. }
  3665. break;
  3666. case 27: //M27 - Get SD status
  3667. card.getStatus();
  3668. break;
  3669. case 28: //M28 - Start SD write
  3670. starpos = (strchr(strchr_pointer + 4,'*'));
  3671. if(starpos != NULL){
  3672. char* npos = strchr(CMDBUFFER_CURRENT_STRING, 'N');
  3673. strchr_pointer = strchr(npos,' ') + 1;
  3674. *(starpos) = '\0';
  3675. }
  3676. card.openFile(strchr_pointer+4,false);
  3677. break;
  3678. case 29: //M29 - Stop SD write
  3679. //processed in write to file routine above
  3680. //card,saving = false;
  3681. break;
  3682. case 30: //M30 <filename> Delete File
  3683. if (card.cardOK){
  3684. card.closefile();
  3685. starpos = (strchr(strchr_pointer + 4,'*'));
  3686. if(starpos != NULL){
  3687. char* npos = strchr(CMDBUFFER_CURRENT_STRING, 'N');
  3688. strchr_pointer = strchr(npos,' ') + 1;
  3689. *(starpos) = '\0';
  3690. }
  3691. card.removeFile(strchr_pointer + 4);
  3692. }
  3693. break;
  3694. case 32: //M32 - Select file and start SD print
  3695. {
  3696. if(card.sdprinting) {
  3697. st_synchronize();
  3698. }
  3699. starpos = (strchr(strchr_pointer + 4,'*'));
  3700. char* namestartpos = (strchr(strchr_pointer + 4,'!')); //find ! to indicate filename string start.
  3701. if(namestartpos==NULL)
  3702. {
  3703. namestartpos=strchr_pointer + 4; //default name position, 4 letters after the M
  3704. }
  3705. else
  3706. namestartpos++; //to skip the '!'
  3707. if(starpos!=NULL)
  3708. *(starpos)='\0';
  3709. bool call_procedure=(code_seen('P'));
  3710. if(strchr_pointer>namestartpos)
  3711. call_procedure=false; //false alert, 'P' found within filename
  3712. if( card.cardOK )
  3713. {
  3714. card.openFile(namestartpos,true,!call_procedure);
  3715. if(code_seen('S'))
  3716. if(strchr_pointer<namestartpos) //only if "S" is occuring _before_ the filename
  3717. card.setIndex(code_value_long());
  3718. card.startFileprint();
  3719. if(!call_procedure)
  3720. starttime=millis(); //procedure calls count as normal print time.
  3721. }
  3722. } break;
  3723. case 928: //M928 - Start SD write
  3724. starpos = (strchr(strchr_pointer + 5,'*'));
  3725. if(starpos != NULL){
  3726. char* npos = strchr(CMDBUFFER_CURRENT_STRING, 'N');
  3727. strchr_pointer = strchr(npos,' ') + 1;
  3728. *(starpos) = '\0';
  3729. }
  3730. card.openLogFile(strchr_pointer+5);
  3731. break;
  3732. #endif //SDSUPPORT
  3733. case 31: //M31 take time since the start of the SD print or an M109 command
  3734. {
  3735. stoptime=millis();
  3736. char time[30];
  3737. unsigned long t=(stoptime-starttime)/1000;
  3738. int sec,min;
  3739. min=t/60;
  3740. sec=t%60;
  3741. sprintf_P(time, PSTR("%i min, %i sec"), min, sec);
  3742. SERIAL_ECHO_START;
  3743. SERIAL_ECHOLN(time);
  3744. lcd_setstatus(time);
  3745. autotempShutdown();
  3746. }
  3747. break;
  3748. #ifndef _DISABLE_M42_M226
  3749. case 42: //M42 -Change pin status via gcode
  3750. if (code_seen('S'))
  3751. {
  3752. int pin_status = code_value();
  3753. int pin_number = LED_PIN;
  3754. if (code_seen('P') && pin_status >= 0 && pin_status <= 255)
  3755. pin_number = code_value();
  3756. for(int8_t i = 0; i < (int8_t)(sizeof(sensitive_pins)/sizeof(int)); i++)
  3757. {
  3758. if (sensitive_pins[i] == pin_number)
  3759. {
  3760. pin_number = -1;
  3761. break;
  3762. }
  3763. }
  3764. #if defined(FAN_PIN) && FAN_PIN > -1
  3765. if (pin_number == FAN_PIN)
  3766. fanSpeed = pin_status;
  3767. #endif
  3768. if (pin_number > -1)
  3769. {
  3770. pinMode(pin_number, OUTPUT);
  3771. digitalWrite(pin_number, pin_status);
  3772. analogWrite(pin_number, pin_status);
  3773. }
  3774. }
  3775. break;
  3776. #endif //_DISABLE_M42_M226
  3777. case 44: // M44: Prusa3D: Reset the bed skew and offset calibration.
  3778. // Reset the baby step value and the baby step applied flag.
  3779. calibration_status_store(CALIBRATION_STATUS_ASSEMBLED);
  3780. eeprom_update_word((uint16_t*)EEPROM_BABYSTEP_Z, 0);
  3781. // Reset the skew and offset in both RAM and EEPROM.
  3782. reset_bed_offset_and_skew();
  3783. // Reset world2machine_rotation_and_skew and world2machine_shift, therefore
  3784. // the planner will not perform any adjustments in the XY plane.
  3785. // Wait for the motors to stop and update the current position with the absolute values.
  3786. world2machine_revert_to_uncorrected();
  3787. break;
  3788. case 45: // M45: Prusa3D: bed skew and offset with manual Z up
  3789. {
  3790. int8_t verbosity_level = 0;
  3791. bool only_Z = code_seen('Z');
  3792. #ifdef SUPPORT_VERBOSITY
  3793. if (code_seen('V'))
  3794. {
  3795. // Just 'V' without a number counts as V1.
  3796. char c = strchr_pointer[1];
  3797. verbosity_level = (c == ' ' || c == '\t' || c == 0) ? 1 : code_value_short();
  3798. }
  3799. #endif //SUPPORT_VERBOSITY
  3800. gcode_M45(only_Z, verbosity_level);
  3801. }
  3802. break;
  3803. /*
  3804. case 46:
  3805. {
  3806. // M46: Prusa3D: Show the assigned IP address.
  3807. uint8_t ip[4];
  3808. bool hasIP = card.ToshibaFlashAir_GetIP(ip);
  3809. if (hasIP) {
  3810. SERIAL_ECHOPGM("Toshiba FlashAir current IP: ");
  3811. SERIAL_ECHO(int(ip[0]));
  3812. SERIAL_ECHOPGM(".");
  3813. SERIAL_ECHO(int(ip[1]));
  3814. SERIAL_ECHOPGM(".");
  3815. SERIAL_ECHO(int(ip[2]));
  3816. SERIAL_ECHOPGM(".");
  3817. SERIAL_ECHO(int(ip[3]));
  3818. SERIAL_ECHOLNPGM("");
  3819. } else {
  3820. SERIAL_ECHOLNPGM("Toshiba FlashAir GetIP failed");
  3821. }
  3822. break;
  3823. }
  3824. */
  3825. case 47:
  3826. // M47: Prusa3D: Show end stops dialog on the display.
  3827. KEEPALIVE_STATE(PAUSED_FOR_USER);
  3828. lcd_diag_show_end_stops();
  3829. KEEPALIVE_STATE(IN_HANDLER);
  3830. break;
  3831. #if 0
  3832. case 48: // M48: scan the bed induction sensor points, print the sensor trigger coordinates to the serial line for visualization on the PC.
  3833. {
  3834. // Disable the default update procedure of the display. We will do a modal dialog.
  3835. lcd_update_enable(false);
  3836. // Let the planner use the uncorrected coordinates.
  3837. mbl.reset();
  3838. // Reset world2machine_rotation_and_skew and world2machine_shift, therefore
  3839. // the planner will not perform any adjustments in the XY plane.
  3840. // Wait for the motors to stop and update the current position with the absolute values.
  3841. world2machine_revert_to_uncorrected();
  3842. // Move the print head close to the bed.
  3843. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3844. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS],current_position[Z_AXIS] , current_position[E_AXIS], homing_feedrate[Z_AXIS]/40, active_extruder);
  3845. st_synchronize();
  3846. // Home in the XY plane.
  3847. set_destination_to_current();
  3848. setup_for_endstop_move();
  3849. home_xy();
  3850. int8_t verbosity_level = 0;
  3851. if (code_seen('V')) {
  3852. // Just 'V' without a number counts as V1.
  3853. char c = strchr_pointer[1];
  3854. verbosity_level = (c == ' ' || c == '\t' || c == 0) ? 1 : code_value_short();
  3855. }
  3856. bool success = scan_bed_induction_points(verbosity_level);
  3857. clean_up_after_endstop_move();
  3858. // Print head up.
  3859. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3860. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS],current_position[Z_AXIS] , current_position[E_AXIS], homing_feedrate[Z_AXIS]/40, active_extruder);
  3861. st_synchronize();
  3862. lcd_update_enable(true);
  3863. break;
  3864. }
  3865. #endif
  3866. // M48 Z-Probe repeatability measurement function.
  3867. //
  3868. // Usage: M48 <n #_samples> <X X_position_for_samples> <Y Y_position_for_samples> <V Verbose_Level> <L legs_of_movement_prior_to_doing_probe>
  3869. //
  3870. // This function assumes the bed has been homed. Specificaly, that a G28 command
  3871. // as been issued prior to invoking the M48 Z-Probe repeatability measurement function.
  3872. // Any information generated by a prior G29 Bed leveling command will be lost and need to be
  3873. // regenerated.
  3874. //
  3875. // The number of samples will default to 10 if not specified. You can use upper or lower case
  3876. // letters for any of the options EXCEPT n. n must be in lower case because Marlin uses a capital
  3877. // N for its communication protocol and will get horribly confused if you send it a capital N.
  3878. //
  3879. #ifdef ENABLE_AUTO_BED_LEVELING
  3880. #ifdef Z_PROBE_REPEATABILITY_TEST
  3881. case 48: // M48 Z-Probe repeatability
  3882. {
  3883. #if Z_MIN_PIN == -1
  3884. #error "You must have a Z_MIN endstop in order to enable calculation of Z-Probe repeatability."
  3885. #endif
  3886. double sum=0.0;
  3887. double mean=0.0;
  3888. double sigma=0.0;
  3889. double sample_set[50];
  3890. int verbose_level=1, n=0, j, n_samples = 10, n_legs=0;
  3891. double X_current, Y_current, Z_current;
  3892. double X_probe_location, Y_probe_location, Z_start_location, ext_position;
  3893. if (code_seen('V') || code_seen('v')) {
  3894. verbose_level = code_value();
  3895. if (verbose_level<0 || verbose_level>4 ) {
  3896. SERIAL_PROTOCOLPGM("?Verbose Level not plausable.\n");
  3897. goto Sigma_Exit;
  3898. }
  3899. }
  3900. if (verbose_level > 0) {
  3901. SERIAL_PROTOCOLPGM("M48 Z-Probe Repeatability test. Version 2.00\n");
  3902. SERIAL_PROTOCOLPGM("Full support at: http://3dprintboard.com/forum.php\n");
  3903. }
  3904. if (code_seen('n')) {
  3905. n_samples = code_value();
  3906. if (n_samples<4 || n_samples>50 ) {
  3907. SERIAL_PROTOCOLPGM("?Specified sample size not plausable.\n");
  3908. goto Sigma_Exit;
  3909. }
  3910. }
  3911. X_current = X_probe_location = st_get_position_mm(X_AXIS);
  3912. Y_current = Y_probe_location = st_get_position_mm(Y_AXIS);
  3913. Z_current = st_get_position_mm(Z_AXIS);
  3914. Z_start_location = st_get_position_mm(Z_AXIS) + Z_RAISE_BEFORE_PROBING;
  3915. ext_position = st_get_position_mm(E_AXIS);
  3916. if (code_seen('X') || code_seen('x') ) {
  3917. X_probe_location = code_value() - X_PROBE_OFFSET_FROM_EXTRUDER;
  3918. if (X_probe_location<X_MIN_POS || X_probe_location>X_MAX_POS ) {
  3919. SERIAL_PROTOCOLPGM("?Specified X position out of range.\n");
  3920. goto Sigma_Exit;
  3921. }
  3922. }
  3923. if (code_seen('Y') || code_seen('y') ) {
  3924. Y_probe_location = code_value() - Y_PROBE_OFFSET_FROM_EXTRUDER;
  3925. if (Y_probe_location<Y_MIN_POS || Y_probe_location>Y_MAX_POS ) {
  3926. SERIAL_PROTOCOLPGM("?Specified Y position out of range.\n");
  3927. goto Sigma_Exit;
  3928. }
  3929. }
  3930. if (code_seen('L') || code_seen('l') ) {
  3931. n_legs = code_value();
  3932. if ( n_legs==1 )
  3933. n_legs = 2;
  3934. if ( n_legs<0 || n_legs>15 ) {
  3935. SERIAL_PROTOCOLPGM("?Specified number of legs in movement not plausable.\n");
  3936. goto Sigma_Exit;
  3937. }
  3938. }
  3939. //
  3940. // Do all the preliminary setup work. First raise the probe.
  3941. //
  3942. st_synchronize();
  3943. plan_bed_level_matrix.set_to_identity();
  3944. plan_buffer_line( X_current, Y_current, Z_start_location,
  3945. ext_position,
  3946. homing_feedrate[Z_AXIS]/60,
  3947. active_extruder);
  3948. st_synchronize();
  3949. //
  3950. // Now get everything to the specified probe point So we can safely do a probe to
  3951. // get us close to the bed. If the Z-Axis is far from the bed, we don't want to
  3952. // use that as a starting point for each probe.
  3953. //
  3954. if (verbose_level > 2)
  3955. SERIAL_PROTOCOL("Positioning probe for the test.\n");
  3956. plan_buffer_line( X_probe_location, Y_probe_location, Z_start_location,
  3957. ext_position,
  3958. homing_feedrate[X_AXIS]/60,
  3959. active_extruder);
  3960. st_synchronize();
  3961. current_position[X_AXIS] = X_current = st_get_position_mm(X_AXIS);
  3962. current_position[Y_AXIS] = Y_current = st_get_position_mm(Y_AXIS);
  3963. current_position[Z_AXIS] = Z_current = st_get_position_mm(Z_AXIS);
  3964. current_position[E_AXIS] = ext_position = st_get_position_mm(E_AXIS);
  3965. //
  3966. // OK, do the inital probe to get us close to the bed.
  3967. // Then retrace the right amount and use that in subsequent probes
  3968. //
  3969. setup_for_endstop_move();
  3970. run_z_probe();
  3971. current_position[Z_AXIS] = Z_current = st_get_position_mm(Z_AXIS);
  3972. Z_start_location = st_get_position_mm(Z_AXIS) + Z_RAISE_BEFORE_PROBING;
  3973. plan_buffer_line( X_probe_location, Y_probe_location, Z_start_location,
  3974. ext_position,
  3975. homing_feedrate[X_AXIS]/60,
  3976. active_extruder);
  3977. st_synchronize();
  3978. current_position[Z_AXIS] = Z_current = st_get_position_mm(Z_AXIS);
  3979. for( n=0; n<n_samples; n++) {
  3980. do_blocking_move_to( X_probe_location, Y_probe_location, Z_start_location); // Make sure we are at the probe location
  3981. if ( n_legs) {
  3982. double radius=0.0, theta=0.0, x_sweep, y_sweep;
  3983. int rotational_direction, l;
  3984. rotational_direction = (unsigned long) millis() & 0x0001; // clockwise or counter clockwise
  3985. radius = (unsigned long) millis() % (long) (X_MAX_LENGTH/4); // limit how far out to go
  3986. theta = (float) ((unsigned long) millis() % (long) 360) / (360./(2*3.1415926)); // turn into radians
  3987. //SERIAL_ECHOPAIR("starting radius: ",radius);
  3988. //SERIAL_ECHOPAIR(" theta: ",theta);
  3989. //SERIAL_ECHOPAIR(" direction: ",rotational_direction);
  3990. //SERIAL_PROTOCOLLNPGM("");
  3991. for( l=0; l<n_legs-1; l++) {
  3992. if (rotational_direction==1)
  3993. theta += (float) ((unsigned long) millis() % (long) 20) / (360.0/(2*3.1415926)); // turn into radians
  3994. else
  3995. theta -= (float) ((unsigned long) millis() % (long) 20) / (360.0/(2*3.1415926)); // turn into radians
  3996. radius += (float) ( ((long) ((unsigned long) millis() % (long) 10)) - 5);
  3997. if ( radius<0.0 )
  3998. radius = -radius;
  3999. X_current = X_probe_location + cos(theta) * radius;
  4000. Y_current = Y_probe_location + sin(theta) * radius;
  4001. if ( X_current<X_MIN_POS) // Make sure our X & Y are sane
  4002. X_current = X_MIN_POS;
  4003. if ( X_current>X_MAX_POS)
  4004. X_current = X_MAX_POS;
  4005. if ( Y_current<Y_MIN_POS) // Make sure our X & Y are sane
  4006. Y_current = Y_MIN_POS;
  4007. if ( Y_current>Y_MAX_POS)
  4008. Y_current = Y_MAX_POS;
  4009. if (verbose_level>3 ) {
  4010. SERIAL_ECHOPAIR("x: ", X_current);
  4011. SERIAL_ECHOPAIR("y: ", Y_current);
  4012. SERIAL_PROTOCOLLNPGM("");
  4013. }
  4014. do_blocking_move_to( X_current, Y_current, Z_current );
  4015. }
  4016. do_blocking_move_to( X_probe_location, Y_probe_location, Z_start_location); // Go back to the probe location
  4017. }
  4018. setup_for_endstop_move();
  4019. run_z_probe();
  4020. sample_set[n] = current_position[Z_AXIS];
  4021. //
  4022. // Get the current mean for the data points we have so far
  4023. //
  4024. sum=0.0;
  4025. for( j=0; j<=n; j++) {
  4026. sum = sum + sample_set[j];
  4027. }
  4028. mean = sum / (double (n+1));
  4029. //
  4030. // Now, use that mean to calculate the standard deviation for the
  4031. // data points we have so far
  4032. //
  4033. sum=0.0;
  4034. for( j=0; j<=n; j++) {
  4035. sum = sum + (sample_set[j]-mean) * (sample_set[j]-mean);
  4036. }
  4037. sigma = sqrt( sum / (double (n+1)) );
  4038. if (verbose_level > 1) {
  4039. SERIAL_PROTOCOL(n+1);
  4040. SERIAL_PROTOCOL(" of ");
  4041. SERIAL_PROTOCOL(n_samples);
  4042. SERIAL_PROTOCOLPGM(" z: ");
  4043. SERIAL_PROTOCOL_F(current_position[Z_AXIS], 6);
  4044. }
  4045. if (verbose_level > 2) {
  4046. SERIAL_PROTOCOL(" mean: ");
  4047. SERIAL_PROTOCOL_F(mean,6);
  4048. SERIAL_PROTOCOL(" sigma: ");
  4049. SERIAL_PROTOCOL_F(sigma,6);
  4050. }
  4051. if (verbose_level > 0)
  4052. SERIAL_PROTOCOLPGM("\n");
  4053. plan_buffer_line( X_probe_location, Y_probe_location, Z_start_location,
  4054. current_position[E_AXIS], homing_feedrate[Z_AXIS]/60, active_extruder);
  4055. st_synchronize();
  4056. }
  4057. delay(1000);
  4058. clean_up_after_endstop_move();
  4059. // enable_endstops(true);
  4060. if (verbose_level > 0) {
  4061. SERIAL_PROTOCOLPGM("Mean: ");
  4062. SERIAL_PROTOCOL_F(mean, 6);
  4063. SERIAL_PROTOCOLPGM("\n");
  4064. }
  4065. SERIAL_PROTOCOLPGM("Standard Deviation: ");
  4066. SERIAL_PROTOCOL_F(sigma, 6);
  4067. SERIAL_PROTOCOLPGM("\n\n");
  4068. Sigma_Exit:
  4069. break;
  4070. }
  4071. #endif // Z_PROBE_REPEATABILITY_TEST
  4072. #endif // ENABLE_AUTO_BED_LEVELING
  4073. case 104: // M104
  4074. if(setTargetedHotend(104)){
  4075. break;
  4076. }
  4077. if (code_seen('S')) setTargetHotend(code_value(), tmp_extruder);
  4078. setWatch();
  4079. break;
  4080. case 112: // M112 -Emergency Stop
  4081. kill("", 3);
  4082. break;
  4083. case 140: // M140 set bed temp
  4084. if (code_seen('S')) setTargetBed(code_value());
  4085. break;
  4086. case 105 : // M105
  4087. if(setTargetedHotend(105)){
  4088. break;
  4089. }
  4090. #if defined(TEMP_0_PIN) && TEMP_0_PIN > -1
  4091. SERIAL_PROTOCOLPGM("ok T:");
  4092. SERIAL_PROTOCOL_F(degHotend(tmp_extruder),1);
  4093. SERIAL_PROTOCOLPGM(" /");
  4094. SERIAL_PROTOCOL_F(degTargetHotend(tmp_extruder),1);
  4095. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  4096. SERIAL_PROTOCOLPGM(" B:");
  4097. SERIAL_PROTOCOL_F(degBed(),1);
  4098. SERIAL_PROTOCOLPGM(" /");
  4099. SERIAL_PROTOCOL_F(degTargetBed(),1);
  4100. #endif //TEMP_BED_PIN
  4101. for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) {
  4102. SERIAL_PROTOCOLPGM(" T");
  4103. SERIAL_PROTOCOL(cur_extruder);
  4104. SERIAL_PROTOCOLPGM(":");
  4105. SERIAL_PROTOCOL_F(degHotend(cur_extruder),1);
  4106. SERIAL_PROTOCOLPGM(" /");
  4107. SERIAL_PROTOCOL_F(degTargetHotend(cur_extruder),1);
  4108. }
  4109. #else
  4110. SERIAL_ERROR_START;
  4111. SERIAL_ERRORLNRPGM(MSG_ERR_NO_THERMISTORS);
  4112. #endif
  4113. SERIAL_PROTOCOLPGM(" @:");
  4114. #ifdef EXTRUDER_WATTS
  4115. SERIAL_PROTOCOL((EXTRUDER_WATTS * getHeaterPower(tmp_extruder))/127);
  4116. SERIAL_PROTOCOLPGM("W");
  4117. #else
  4118. SERIAL_PROTOCOL(getHeaterPower(tmp_extruder));
  4119. #endif
  4120. SERIAL_PROTOCOLPGM(" B@:");
  4121. #ifdef BED_WATTS
  4122. SERIAL_PROTOCOL((BED_WATTS * getHeaterPower(-1))/127);
  4123. SERIAL_PROTOCOLPGM("W");
  4124. #else
  4125. SERIAL_PROTOCOL(getHeaterPower(-1));
  4126. #endif
  4127. #ifdef PINDA_THERMISTOR
  4128. SERIAL_PROTOCOLPGM(" P:");
  4129. SERIAL_PROTOCOL_F(current_temperature_pinda,1);
  4130. #endif //PINDA_THERMISTOR
  4131. #ifdef AMBIENT_THERMISTOR
  4132. SERIAL_PROTOCOLPGM(" A:");
  4133. SERIAL_PROTOCOL_F(current_temperature_ambient,1);
  4134. #endif //AMBIENT_THERMISTOR
  4135. #ifdef SHOW_TEMP_ADC_VALUES
  4136. {float raw = 0.0;
  4137. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  4138. SERIAL_PROTOCOLPGM(" ADC B:");
  4139. SERIAL_PROTOCOL_F(degBed(),1);
  4140. SERIAL_PROTOCOLPGM("C->");
  4141. raw = rawBedTemp();
  4142. SERIAL_PROTOCOL_F(raw/OVERSAMPLENR,5);
  4143. SERIAL_PROTOCOLPGM(" Rb->");
  4144. SERIAL_PROTOCOL_F(100 * (1 + (PtA * (raw/OVERSAMPLENR)) + (PtB * sq((raw/OVERSAMPLENR)))), 5);
  4145. SERIAL_PROTOCOLPGM(" Rxb->");
  4146. SERIAL_PROTOCOL_F(raw, 5);
  4147. #endif
  4148. for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) {
  4149. SERIAL_PROTOCOLPGM(" T");
  4150. SERIAL_PROTOCOL(cur_extruder);
  4151. SERIAL_PROTOCOLPGM(":");
  4152. SERIAL_PROTOCOL_F(degHotend(cur_extruder),1);
  4153. SERIAL_PROTOCOLPGM("C->");
  4154. raw = rawHotendTemp(cur_extruder);
  4155. SERIAL_PROTOCOL_F(raw/OVERSAMPLENR,5);
  4156. SERIAL_PROTOCOLPGM(" Rt");
  4157. SERIAL_PROTOCOL(cur_extruder);
  4158. SERIAL_PROTOCOLPGM("->");
  4159. SERIAL_PROTOCOL_F(100 * (1 + (PtA * (raw/OVERSAMPLENR)) + (PtB * sq((raw/OVERSAMPLENR)))), 5);
  4160. SERIAL_PROTOCOLPGM(" Rx");
  4161. SERIAL_PROTOCOL(cur_extruder);
  4162. SERIAL_PROTOCOLPGM("->");
  4163. SERIAL_PROTOCOL_F(raw, 5);
  4164. }}
  4165. #endif
  4166. SERIAL_PROTOCOLLN("");
  4167. KEEPALIVE_STATE(NOT_BUSY);
  4168. return;
  4169. break;
  4170. case 109:
  4171. {// M109 - Wait for extruder heater to reach target.
  4172. if(setTargetedHotend(109)){
  4173. break;
  4174. }
  4175. LCD_MESSAGERPGM(MSG_HEATING);
  4176. heating_status = 1;
  4177. if (farm_mode) { prusa_statistics(1); };
  4178. #ifdef AUTOTEMP
  4179. autotemp_enabled=false;
  4180. #endif
  4181. if (code_seen('S')) {
  4182. setTargetHotend(code_value(), tmp_extruder);
  4183. CooldownNoWait = true;
  4184. } else if (code_seen('R')) {
  4185. setTargetHotend(code_value(), tmp_extruder);
  4186. CooldownNoWait = false;
  4187. }
  4188. #ifdef AUTOTEMP
  4189. if (code_seen('S')) autotemp_min=code_value();
  4190. if (code_seen('B')) autotemp_max=code_value();
  4191. if (code_seen('F'))
  4192. {
  4193. autotemp_factor=code_value();
  4194. autotemp_enabled=true;
  4195. }
  4196. #endif
  4197. setWatch();
  4198. codenum = millis();
  4199. /* See if we are heating up or cooling down */
  4200. target_direction = isHeatingHotend(tmp_extruder); // true if heating, false if cooling
  4201. KEEPALIVE_STATE(NOT_BUSY);
  4202. cancel_heatup = false;
  4203. wait_for_heater(codenum); //loops until target temperature is reached
  4204. LCD_MESSAGERPGM(MSG_HEATING_COMPLETE);
  4205. KEEPALIVE_STATE(IN_HANDLER);
  4206. heating_status = 2;
  4207. if (farm_mode) { prusa_statistics(2); };
  4208. //starttime=millis();
  4209. previous_millis_cmd = millis();
  4210. }
  4211. break;
  4212. case 190: // M190 - Wait for bed heater to reach target.
  4213. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  4214. LCD_MESSAGERPGM(MSG_BED_HEATING);
  4215. heating_status = 3;
  4216. if (farm_mode) { prusa_statistics(1); };
  4217. if (code_seen('S'))
  4218. {
  4219. setTargetBed(code_value());
  4220. CooldownNoWait = true;
  4221. }
  4222. else if (code_seen('R'))
  4223. {
  4224. setTargetBed(code_value());
  4225. CooldownNoWait = false;
  4226. }
  4227. codenum = millis();
  4228. cancel_heatup = false;
  4229. target_direction = isHeatingBed(); // true if heating, false if cooling
  4230. KEEPALIVE_STATE(NOT_BUSY);
  4231. while ( (target_direction)&&(!cancel_heatup) ? (isHeatingBed()) : (isCoolingBed()&&(CooldownNoWait==false)) )
  4232. {
  4233. if(( millis() - codenum) > 1000 ) //Print Temp Reading every 1 second while heating up.
  4234. {
  4235. if (!farm_mode) {
  4236. float tt = degHotend(active_extruder);
  4237. SERIAL_PROTOCOLPGM("T:");
  4238. SERIAL_PROTOCOL(tt);
  4239. SERIAL_PROTOCOLPGM(" E:");
  4240. SERIAL_PROTOCOL((int)active_extruder);
  4241. SERIAL_PROTOCOLPGM(" B:");
  4242. SERIAL_PROTOCOL_F(degBed(), 1);
  4243. SERIAL_PROTOCOLLN("");
  4244. }
  4245. codenum = millis();
  4246. }
  4247. manage_heater();
  4248. manage_inactivity();
  4249. lcd_update();
  4250. }
  4251. LCD_MESSAGERPGM(MSG_BED_DONE);
  4252. KEEPALIVE_STATE(IN_HANDLER);
  4253. heating_status = 4;
  4254. previous_millis_cmd = millis();
  4255. #endif
  4256. break;
  4257. #if defined(FAN_PIN) && FAN_PIN > -1
  4258. case 106: //M106 Fan On
  4259. if (code_seen('S')){
  4260. fanSpeed=constrain(code_value(),0,255);
  4261. }
  4262. else {
  4263. fanSpeed=255;
  4264. }
  4265. break;
  4266. case 107: //M107 Fan Off
  4267. fanSpeed = 0;
  4268. break;
  4269. #endif //FAN_PIN
  4270. #if defined(PS_ON_PIN) && PS_ON_PIN > -1
  4271. case 80: // M80 - Turn on Power Supply
  4272. SET_OUTPUT(PS_ON_PIN); //GND
  4273. WRITE(PS_ON_PIN, PS_ON_AWAKE);
  4274. // If you have a switch on suicide pin, this is useful
  4275. // if you want to start another print with suicide feature after
  4276. // a print without suicide...
  4277. #if defined SUICIDE_PIN && SUICIDE_PIN > -1
  4278. SET_OUTPUT(SUICIDE_PIN);
  4279. WRITE(SUICIDE_PIN, HIGH);
  4280. #endif
  4281. #ifdef ULTIPANEL
  4282. powersupply = true;
  4283. LCD_MESSAGERPGM(WELCOME_MSG);
  4284. lcd_update();
  4285. #endif
  4286. break;
  4287. #endif
  4288. case 81: // M81 - Turn off Power Supply
  4289. disable_heater();
  4290. st_synchronize();
  4291. disable_e0();
  4292. disable_e1();
  4293. disable_e2();
  4294. finishAndDisableSteppers();
  4295. fanSpeed = 0;
  4296. delay(1000); // Wait a little before to switch off
  4297. #if defined(SUICIDE_PIN) && SUICIDE_PIN > -1
  4298. st_synchronize();
  4299. suicide();
  4300. #elif defined(PS_ON_PIN) && PS_ON_PIN > -1
  4301. SET_OUTPUT(PS_ON_PIN);
  4302. WRITE(PS_ON_PIN, PS_ON_ASLEEP);
  4303. #endif
  4304. #ifdef ULTIPANEL
  4305. powersupply = false;
  4306. LCD_MESSAGERPGM(CAT4(CUSTOM_MENDEL_NAME,PSTR(" "),MSG_OFF,PSTR("."))); //!!
  4307. /*
  4308. MACHNAME = "Prusa i3"
  4309. MSGOFF = "Vypnuto"
  4310. "Prusai3"" ""vypnuto""."
  4311. "Prusa i3"" "MSG_ALL[lang_selected][50]"."
  4312. */
  4313. lcd_update();
  4314. #endif
  4315. break;
  4316. case 82:
  4317. axis_relative_modes[3] = false;
  4318. break;
  4319. case 83:
  4320. axis_relative_modes[3] = true;
  4321. break;
  4322. case 18: //compatibility
  4323. case 84: // M84
  4324. if(code_seen('S')){
  4325. stepper_inactive_time = code_value() * 1000;
  4326. }
  4327. else
  4328. {
  4329. bool all_axis = !((code_seen(axis_codes[X_AXIS])) || (code_seen(axis_codes[Y_AXIS])) || (code_seen(axis_codes[Z_AXIS]))|| (code_seen(axis_codes[E_AXIS])));
  4330. if(all_axis)
  4331. {
  4332. st_synchronize();
  4333. disable_e0();
  4334. disable_e1();
  4335. disable_e2();
  4336. finishAndDisableSteppers();
  4337. }
  4338. else
  4339. {
  4340. st_synchronize();
  4341. if (code_seen('X')) disable_x();
  4342. if (code_seen('Y')) disable_y();
  4343. if (code_seen('Z')) disable_z();
  4344. #if ((E0_ENABLE_PIN != X_ENABLE_PIN) && (E1_ENABLE_PIN != Y_ENABLE_PIN)) // Only enable on boards that have seperate ENABLE_PINS
  4345. if (code_seen('E')) {
  4346. disable_e0();
  4347. disable_e1();
  4348. disable_e2();
  4349. }
  4350. #endif
  4351. }
  4352. }
  4353. snmm_filaments_used = 0;
  4354. break;
  4355. case 85: // M85
  4356. if(code_seen('S')) {
  4357. max_inactive_time = code_value() * 1000;
  4358. }
  4359. break;
  4360. case 92: // M92
  4361. for(int8_t i=0; i < NUM_AXIS; i++)
  4362. {
  4363. if(code_seen(axis_codes[i]))
  4364. {
  4365. if(i == 3) { // E
  4366. float value = code_value();
  4367. if(value < 20.0) {
  4368. float factor = axis_steps_per_unit[i] / value; // increase e constants if M92 E14 is given for netfab.
  4369. max_jerk[E_AXIS] *= factor;
  4370. max_feedrate[i] *= factor;
  4371. axis_steps_per_sqr_second[i] *= factor;
  4372. }
  4373. axis_steps_per_unit[i] = value;
  4374. }
  4375. else {
  4376. axis_steps_per_unit[i] = code_value();
  4377. }
  4378. }
  4379. }
  4380. break;
  4381. case 110: // M110 - reset line pos
  4382. if (code_seen('N'))
  4383. gcode_LastN = code_value_long();
  4384. break;
  4385. #ifdef HOST_KEEPALIVE_FEATURE
  4386. case 113: // M113 - Get or set Host Keepalive interval
  4387. if (code_seen('S')) {
  4388. host_keepalive_interval = (uint8_t)code_value_short();
  4389. // NOMORE(host_keepalive_interval, 60);
  4390. }
  4391. else {
  4392. SERIAL_ECHO_START;
  4393. SERIAL_ECHOPAIR("M113 S", (unsigned long)host_keepalive_interval);
  4394. SERIAL_PROTOCOLLN("");
  4395. }
  4396. break;
  4397. #endif
  4398. case 115: // M115
  4399. if (code_seen('V')) {
  4400. // Report the Prusa version number.
  4401. SERIAL_PROTOCOLLNRPGM(FW_VERSION_STR_P());
  4402. } else if (code_seen('U')) {
  4403. // Check the firmware version provided. If the firmware version provided by the U code is higher than the currently running firmware,
  4404. // pause the print and ask the user to upgrade the firmware.
  4405. show_upgrade_dialog_if_version_newer(++ strchr_pointer);
  4406. } else {
  4407. SERIAL_PROTOCOLRPGM(MSG_M115_REPORT);
  4408. }
  4409. break;
  4410. /* case 117: // M117 display message
  4411. starpos = (strchr(strchr_pointer + 5,'*'));
  4412. if(starpos!=NULL)
  4413. *(starpos)='\0';
  4414. lcd_setstatus(strchr_pointer + 5);
  4415. break;*/
  4416. case 114: // M114
  4417. gcode_M114();
  4418. break;
  4419. case 120: // M120
  4420. enable_endstops(false) ;
  4421. break;
  4422. case 121: // M121
  4423. enable_endstops(true) ;
  4424. break;
  4425. case 119: // M119
  4426. SERIAL_PROTOCOLRPGM(MSG_M119_REPORT);
  4427. SERIAL_PROTOCOLLN("");
  4428. #if defined(X_MIN_PIN) && X_MIN_PIN > -1
  4429. SERIAL_PROTOCOLRPGM(MSG_X_MIN);
  4430. if(READ(X_MIN_PIN)^X_MIN_ENDSTOP_INVERTING){
  4431. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_HIT);
  4432. }else{
  4433. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_OPEN);
  4434. }
  4435. SERIAL_PROTOCOLLN("");
  4436. #endif
  4437. #if defined(X_MAX_PIN) && X_MAX_PIN > -1
  4438. SERIAL_PROTOCOLRPGM(MSG_X_MAX);
  4439. if(READ(X_MAX_PIN)^X_MAX_ENDSTOP_INVERTING){
  4440. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_HIT);
  4441. }else{
  4442. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_OPEN);
  4443. }
  4444. SERIAL_PROTOCOLLN("");
  4445. #endif
  4446. #if defined(Y_MIN_PIN) && Y_MIN_PIN > -1
  4447. SERIAL_PROTOCOLRPGM(MSG_Y_MIN);
  4448. if(READ(Y_MIN_PIN)^Y_MIN_ENDSTOP_INVERTING){
  4449. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_HIT);
  4450. }else{
  4451. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_OPEN);
  4452. }
  4453. SERIAL_PROTOCOLLN("");
  4454. #endif
  4455. #if defined(Y_MAX_PIN) && Y_MAX_PIN > -1
  4456. SERIAL_PROTOCOLRPGM(MSG_Y_MAX);
  4457. if(READ(Y_MAX_PIN)^Y_MAX_ENDSTOP_INVERTING){
  4458. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_HIT);
  4459. }else{
  4460. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_OPEN);
  4461. }
  4462. SERIAL_PROTOCOLLN("");
  4463. #endif
  4464. #if defined(Z_MIN_PIN) && Z_MIN_PIN > -1
  4465. SERIAL_PROTOCOLRPGM(MSG_Z_MIN);
  4466. if(READ(Z_MIN_PIN)^Z_MIN_ENDSTOP_INVERTING){
  4467. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_HIT);
  4468. }else{
  4469. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_OPEN);
  4470. }
  4471. SERIAL_PROTOCOLLN("");
  4472. #endif
  4473. #if defined(Z_MAX_PIN) && Z_MAX_PIN > -1
  4474. SERIAL_PROTOCOLRPGM(MSG_Z_MAX);
  4475. if(READ(Z_MAX_PIN)^Z_MAX_ENDSTOP_INVERTING){
  4476. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_HIT);
  4477. }else{
  4478. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_OPEN);
  4479. }
  4480. SERIAL_PROTOCOLLN("");
  4481. #endif
  4482. break;
  4483. //TODO: update for all axis, use for loop
  4484. #ifdef BLINKM
  4485. case 150: // M150
  4486. {
  4487. byte red;
  4488. byte grn;
  4489. byte blu;
  4490. if(code_seen('R')) red = code_value();
  4491. if(code_seen('U')) grn = code_value();
  4492. if(code_seen('B')) blu = code_value();
  4493. SendColors(red,grn,blu);
  4494. }
  4495. break;
  4496. #endif //BLINKM
  4497. case 200: // M200 D<millimeters> set filament diameter and set E axis units to cubic millimeters (use S0 to set back to millimeters).
  4498. {
  4499. tmp_extruder = active_extruder;
  4500. if(code_seen('T')) {
  4501. tmp_extruder = code_value();
  4502. if(tmp_extruder >= EXTRUDERS) {
  4503. SERIAL_ECHO_START;
  4504. SERIAL_ECHO(MSG_M200_INVALID_EXTRUDER);
  4505. break;
  4506. }
  4507. }
  4508. float area = .0;
  4509. if(code_seen('D')) {
  4510. float diameter = (float)code_value();
  4511. if (diameter == 0.0) {
  4512. // setting any extruder filament size disables volumetric on the assumption that
  4513. // slicers either generate in extruder values as cubic mm or as as filament feeds
  4514. // for all extruders
  4515. volumetric_enabled = false;
  4516. } else {
  4517. filament_size[tmp_extruder] = (float)code_value();
  4518. // make sure all extruders have some sane value for the filament size
  4519. filament_size[0] = (filament_size[0] == 0.0 ? DEFAULT_NOMINAL_FILAMENT_DIA : filament_size[0]);
  4520. #if EXTRUDERS > 1
  4521. filament_size[1] = (filament_size[1] == 0.0 ? DEFAULT_NOMINAL_FILAMENT_DIA : filament_size[1]);
  4522. #if EXTRUDERS > 2
  4523. filament_size[2] = (filament_size[2] == 0.0 ? DEFAULT_NOMINAL_FILAMENT_DIA : filament_size[2]);
  4524. #endif
  4525. #endif
  4526. volumetric_enabled = true;
  4527. }
  4528. } else {
  4529. //reserved for setting filament diameter via UFID or filament measuring device
  4530. break;
  4531. }
  4532. calculate_extruder_multipliers();
  4533. }
  4534. break;
  4535. case 201: // M201
  4536. for(int8_t i=0; i < NUM_AXIS; i++)
  4537. {
  4538. if(code_seen(axis_codes[i]))
  4539. {
  4540. max_acceleration_units_per_sq_second[i] = code_value();
  4541. }
  4542. }
  4543. // steps per sq second need to be updated to agree with the units per sq second (as they are what is used in the planner)
  4544. reset_acceleration_rates();
  4545. break;
  4546. #if 0 // Not used for Sprinter/grbl gen6
  4547. case 202: // M202
  4548. for(int8_t i=0; i < NUM_AXIS; i++) {
  4549. if(code_seen(axis_codes[i])) axis_travel_steps_per_sqr_second[i] = code_value() * axis_steps_per_unit[i];
  4550. }
  4551. break;
  4552. #endif
  4553. case 203: // M203 max feedrate mm/sec
  4554. for(int8_t i=0; i < NUM_AXIS; i++) {
  4555. if(code_seen(axis_codes[i])) max_feedrate[i] = code_value();
  4556. }
  4557. break;
  4558. case 204: // M204 acclereration S normal moves T filmanent only moves
  4559. {
  4560. if(code_seen('S')) acceleration = code_value() ;
  4561. if(code_seen('T')) retract_acceleration = code_value() ;
  4562. }
  4563. break;
  4564. case 205: //M205 advanced settings: minimum travel speed S=while printing T=travel only, B=minimum segment time X= maximum xy jerk, Z=maximum Z jerk
  4565. {
  4566. if(code_seen('S')) minimumfeedrate = code_value();
  4567. if(code_seen('T')) mintravelfeedrate = code_value();
  4568. if(code_seen('B')) minsegmenttime = code_value() ;
  4569. if(code_seen('X')) max_jerk[X_AXIS] = max_jerk[Y_AXIS] = code_value();
  4570. if(code_seen('Y')) max_jerk[Y_AXIS] = code_value();
  4571. if(code_seen('Z')) max_jerk[Z_AXIS] = code_value();
  4572. if(code_seen('E')) max_jerk[E_AXIS] = code_value();
  4573. if (max_jerk[X_AXIS] > DEFAULT_XJERK) max_jerk[X_AXIS] = DEFAULT_XJERK;
  4574. if (max_jerk[Y_AXIS] > DEFAULT_YJERK) max_jerk[Y_AXIS] = DEFAULT_YJERK;
  4575. }
  4576. break;
  4577. case 206: // M206 additional homing offset
  4578. for(int8_t i=0; i < 3; i++)
  4579. {
  4580. if(code_seen(axis_codes[i])) add_homing[i] = code_value();
  4581. }
  4582. break;
  4583. #ifdef FWRETRACT
  4584. case 207: //M207 - set retract length S[positive mm] F[feedrate mm/min] Z[additional zlift/hop]
  4585. {
  4586. if(code_seen('S'))
  4587. {
  4588. retract_length = code_value() ;
  4589. }
  4590. if(code_seen('F'))
  4591. {
  4592. retract_feedrate = code_value()/60 ;
  4593. }
  4594. if(code_seen('Z'))
  4595. {
  4596. retract_zlift = code_value() ;
  4597. }
  4598. }break;
  4599. case 208: // M208 - set retract recover length S[positive mm surplus to the M207 S*] F[feedrate mm/min]
  4600. {
  4601. if(code_seen('S'))
  4602. {
  4603. retract_recover_length = code_value() ;
  4604. }
  4605. if(code_seen('F'))
  4606. {
  4607. retract_recover_feedrate = code_value()/60 ;
  4608. }
  4609. }break;
  4610. case 209: // M209 - S<1=true/0=false> enable automatic retract detect if the slicer did not support G10/11: every normal extrude-only move will be classified as retract depending on the direction.
  4611. {
  4612. if(code_seen('S'))
  4613. {
  4614. int t= code_value() ;
  4615. switch(t)
  4616. {
  4617. case 0:
  4618. {
  4619. autoretract_enabled=false;
  4620. retracted[0]=false;
  4621. #if EXTRUDERS > 1
  4622. retracted[1]=false;
  4623. #endif
  4624. #if EXTRUDERS > 2
  4625. retracted[2]=false;
  4626. #endif
  4627. }break;
  4628. case 1:
  4629. {
  4630. autoretract_enabled=true;
  4631. retracted[0]=false;
  4632. #if EXTRUDERS > 1
  4633. retracted[1]=false;
  4634. #endif
  4635. #if EXTRUDERS > 2
  4636. retracted[2]=false;
  4637. #endif
  4638. }break;
  4639. default:
  4640. SERIAL_ECHO_START;
  4641. SERIAL_ECHORPGM(MSG_UNKNOWN_COMMAND);
  4642. SERIAL_ECHO(CMDBUFFER_CURRENT_STRING);
  4643. SERIAL_ECHOLNPGM("\"(1)");
  4644. }
  4645. }
  4646. }break;
  4647. #endif // FWRETRACT
  4648. #if EXTRUDERS > 1
  4649. case 218: // M218 - set hotend offset (in mm), T<extruder_number> X<offset_on_X> Y<offset_on_Y>
  4650. {
  4651. if(setTargetedHotend(218)){
  4652. break;
  4653. }
  4654. if(code_seen('X'))
  4655. {
  4656. extruder_offset[X_AXIS][tmp_extruder] = code_value();
  4657. }
  4658. if(code_seen('Y'))
  4659. {
  4660. extruder_offset[Y_AXIS][tmp_extruder] = code_value();
  4661. }
  4662. SERIAL_ECHO_START;
  4663. SERIAL_ECHORPGM(MSG_HOTEND_OFFSET);
  4664. for(tmp_extruder = 0; tmp_extruder < EXTRUDERS; tmp_extruder++)
  4665. {
  4666. SERIAL_ECHO(" ");
  4667. SERIAL_ECHO(extruder_offset[X_AXIS][tmp_extruder]);
  4668. SERIAL_ECHO(",");
  4669. SERIAL_ECHO(extruder_offset[Y_AXIS][tmp_extruder]);
  4670. }
  4671. SERIAL_ECHOLN("");
  4672. }break;
  4673. #endif
  4674. case 220: // M220 S<factor in percent>- set speed factor override percentage
  4675. {
  4676. if(code_seen('S'))
  4677. {
  4678. feedmultiply = code_value() ;
  4679. }
  4680. }
  4681. break;
  4682. case 221: // M221 S<factor in percent>- set extrude factor override percentage
  4683. {
  4684. if(code_seen('S'))
  4685. {
  4686. int tmp_code = code_value();
  4687. if (code_seen('T'))
  4688. {
  4689. if(setTargetedHotend(221)){
  4690. break;
  4691. }
  4692. extruder_multiply[tmp_extruder] = tmp_code;
  4693. }
  4694. else
  4695. {
  4696. extrudemultiply = tmp_code ;
  4697. }
  4698. }
  4699. calculate_extruder_multipliers();
  4700. }
  4701. break;
  4702. #ifndef _DISABLE_M42_M226
  4703. case 226: // M226 P<pin number> S<pin state>- Wait until the specified pin reaches the state required
  4704. {
  4705. if(code_seen('P')){
  4706. int pin_number = code_value(); // pin number
  4707. int pin_state = -1; // required pin state - default is inverted
  4708. if(code_seen('S')) pin_state = code_value(); // required pin state
  4709. if(pin_state >= -1 && pin_state <= 1){
  4710. for(int8_t i = 0; i < (int8_t)(sizeof(sensitive_pins)/sizeof(int)); i++)
  4711. {
  4712. if (sensitive_pins[i] == pin_number)
  4713. {
  4714. pin_number = -1;
  4715. break;
  4716. }
  4717. }
  4718. if (pin_number > -1)
  4719. {
  4720. int target = LOW;
  4721. st_synchronize();
  4722. pinMode(pin_number, INPUT);
  4723. switch(pin_state){
  4724. case 1:
  4725. target = HIGH;
  4726. break;
  4727. case 0:
  4728. target = LOW;
  4729. break;
  4730. case -1:
  4731. target = !digitalRead(pin_number);
  4732. break;
  4733. }
  4734. while(digitalRead(pin_number) != target){
  4735. manage_heater();
  4736. manage_inactivity();
  4737. lcd_update();
  4738. }
  4739. }
  4740. }
  4741. }
  4742. }
  4743. break;
  4744. #endif //_DISABLE_M42_M226
  4745. #if NUM_SERVOS > 0
  4746. case 280: // M280 - set servo position absolute. P: servo index, S: angle or microseconds
  4747. {
  4748. int servo_index = -1;
  4749. int servo_position = 0;
  4750. if (code_seen('P'))
  4751. servo_index = code_value();
  4752. if (code_seen('S')) {
  4753. servo_position = code_value();
  4754. if ((servo_index >= 0) && (servo_index < NUM_SERVOS)) {
  4755. #if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
  4756. servos[servo_index].attach(0);
  4757. #endif
  4758. servos[servo_index].write(servo_position);
  4759. #if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
  4760. delay(PROBE_SERVO_DEACTIVATION_DELAY);
  4761. servos[servo_index].detach();
  4762. #endif
  4763. }
  4764. else {
  4765. SERIAL_ECHO_START;
  4766. SERIAL_ECHO("Servo ");
  4767. SERIAL_ECHO(servo_index);
  4768. SERIAL_ECHOLN(" out of range");
  4769. }
  4770. }
  4771. else if (servo_index >= 0) {
  4772. SERIAL_PROTOCOL(MSG_OK);
  4773. SERIAL_PROTOCOL(" Servo ");
  4774. SERIAL_PROTOCOL(servo_index);
  4775. SERIAL_PROTOCOL(": ");
  4776. SERIAL_PROTOCOL(servos[servo_index].read());
  4777. SERIAL_PROTOCOLLN("");
  4778. }
  4779. }
  4780. break;
  4781. #endif // NUM_SERVOS > 0
  4782. #if (LARGE_FLASH == true && ( BEEPER > 0 || defined(ULTRALCD) || defined(LCD_USE_I2C_BUZZER)))
  4783. case 300: // M300
  4784. {
  4785. int beepS = code_seen('S') ? code_value() : 110;
  4786. int beepP = code_seen('P') ? code_value() : 1000;
  4787. if (beepS > 0)
  4788. {
  4789. #if BEEPER > 0
  4790. tone(BEEPER, beepS);
  4791. delay(beepP);
  4792. noTone(BEEPER);
  4793. #elif defined(ULTRALCD)
  4794. lcd_buzz(beepS, beepP);
  4795. #elif defined(LCD_USE_I2C_BUZZER)
  4796. lcd_buzz(beepP, beepS);
  4797. #endif
  4798. }
  4799. else
  4800. {
  4801. delay(beepP);
  4802. }
  4803. }
  4804. break;
  4805. #endif // M300
  4806. #ifdef PIDTEMP
  4807. case 301: // M301
  4808. {
  4809. if(code_seen('P')) Kp = code_value();
  4810. if(code_seen('I')) Ki = scalePID_i(code_value());
  4811. if(code_seen('D')) Kd = scalePID_d(code_value());
  4812. #ifdef PID_ADD_EXTRUSION_RATE
  4813. if(code_seen('C')) Kc = code_value();
  4814. #endif
  4815. updatePID();
  4816. SERIAL_PROTOCOLRPGM(MSG_OK);
  4817. SERIAL_PROTOCOL(" p:");
  4818. SERIAL_PROTOCOL(Kp);
  4819. SERIAL_PROTOCOL(" i:");
  4820. SERIAL_PROTOCOL(unscalePID_i(Ki));
  4821. SERIAL_PROTOCOL(" d:");
  4822. SERIAL_PROTOCOL(unscalePID_d(Kd));
  4823. #ifdef PID_ADD_EXTRUSION_RATE
  4824. SERIAL_PROTOCOL(" c:");
  4825. //Kc does not have scaling applied above, or in resetting defaults
  4826. SERIAL_PROTOCOL(Kc);
  4827. #endif
  4828. SERIAL_PROTOCOLLN("");
  4829. }
  4830. break;
  4831. #endif //PIDTEMP
  4832. #ifdef PIDTEMPBED
  4833. case 304: // M304
  4834. {
  4835. if(code_seen('P')) bedKp = code_value();
  4836. if(code_seen('I')) bedKi = scalePID_i(code_value());
  4837. if(code_seen('D')) bedKd = scalePID_d(code_value());
  4838. updatePID();
  4839. SERIAL_PROTOCOLRPGM(MSG_OK);
  4840. SERIAL_PROTOCOL(" p:");
  4841. SERIAL_PROTOCOL(bedKp);
  4842. SERIAL_PROTOCOL(" i:");
  4843. SERIAL_PROTOCOL(unscalePID_i(bedKi));
  4844. SERIAL_PROTOCOL(" d:");
  4845. SERIAL_PROTOCOL(unscalePID_d(bedKd));
  4846. SERIAL_PROTOCOLLN("");
  4847. }
  4848. break;
  4849. #endif //PIDTEMP
  4850. case 240: // M240 Triggers a camera by emulating a Canon RC-1 : http://www.doc-diy.net/photo/rc-1_hacked/
  4851. {
  4852. #ifdef CHDK
  4853. SET_OUTPUT(CHDK);
  4854. WRITE(CHDK, HIGH);
  4855. chdkHigh = millis();
  4856. chdkActive = true;
  4857. #else
  4858. #if defined(PHOTOGRAPH_PIN) && PHOTOGRAPH_PIN > -1
  4859. const uint8_t NUM_PULSES=16;
  4860. const float PULSE_LENGTH=0.01524;
  4861. for(int i=0; i < NUM_PULSES; i++) {
  4862. WRITE(PHOTOGRAPH_PIN, HIGH);
  4863. _delay_ms(PULSE_LENGTH);
  4864. WRITE(PHOTOGRAPH_PIN, LOW);
  4865. _delay_ms(PULSE_LENGTH);
  4866. }
  4867. delay(7.33);
  4868. for(int i=0; i < NUM_PULSES; i++) {
  4869. WRITE(PHOTOGRAPH_PIN, HIGH);
  4870. _delay_ms(PULSE_LENGTH);
  4871. WRITE(PHOTOGRAPH_PIN, LOW);
  4872. _delay_ms(PULSE_LENGTH);
  4873. }
  4874. #endif
  4875. #endif //chdk end if
  4876. }
  4877. break;
  4878. #ifdef DOGLCD
  4879. case 250: // M250 Set LCD contrast value: C<value> (value 0..63)
  4880. {
  4881. if (code_seen('C')) {
  4882. lcd_setcontrast( ((int)code_value())&63 );
  4883. }
  4884. SERIAL_PROTOCOLPGM("lcd contrast value: ");
  4885. SERIAL_PROTOCOL(lcd_contrast);
  4886. SERIAL_PROTOCOLLN("");
  4887. }
  4888. break;
  4889. #endif
  4890. #ifdef PREVENT_DANGEROUS_EXTRUDE
  4891. case 302: // allow cold extrudes, or set the minimum extrude temperature
  4892. {
  4893. float temp = .0;
  4894. if (code_seen('S')) temp=code_value();
  4895. set_extrude_min_temp(temp);
  4896. }
  4897. break;
  4898. #endif
  4899. case 303: // M303 PID autotune
  4900. {
  4901. float temp = 150.0;
  4902. int e=0;
  4903. int c=5;
  4904. if (code_seen('E')) e=code_value();
  4905. if (e<0)
  4906. temp=70;
  4907. if (code_seen('S')) temp=code_value();
  4908. if (code_seen('C')) c=code_value();
  4909. PID_autotune(temp, e, c);
  4910. }
  4911. break;
  4912. case 400: // M400 finish all moves
  4913. {
  4914. st_synchronize();
  4915. }
  4916. break;
  4917. case 500: // M500 Store settings in EEPROM
  4918. {
  4919. Config_StoreSettings(EEPROM_OFFSET);
  4920. }
  4921. break;
  4922. case 501: // M501 Read settings from EEPROM
  4923. {
  4924. Config_RetrieveSettings(EEPROM_OFFSET);
  4925. }
  4926. break;
  4927. case 502: // M502 Revert to default settings
  4928. {
  4929. Config_ResetDefault();
  4930. }
  4931. break;
  4932. case 503: // M503 print settings currently in memory
  4933. {
  4934. Config_PrintSettings();
  4935. }
  4936. break;
  4937. case 509: //M509 Force language selection
  4938. {
  4939. lcd_force_language_selection();
  4940. SERIAL_ECHO_START;
  4941. SERIAL_PROTOCOLPGM(("LANG SEL FORCED"));
  4942. }
  4943. break;
  4944. #ifdef ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED
  4945. case 540:
  4946. {
  4947. if(code_seen('S')) abort_on_endstop_hit = code_value() > 0;
  4948. }
  4949. break;
  4950. #endif
  4951. #ifdef CUSTOM_M_CODE_SET_Z_PROBE_OFFSET
  4952. case CUSTOM_M_CODE_SET_Z_PROBE_OFFSET:
  4953. {
  4954. float value;
  4955. if (code_seen('Z'))
  4956. {
  4957. value = code_value();
  4958. if ((Z_PROBE_OFFSET_RANGE_MIN <= value) && (value <= Z_PROBE_OFFSET_RANGE_MAX))
  4959. {
  4960. zprobe_zoffset = -value; // compare w/ line 278 of ConfigurationStore.cpp
  4961. SERIAL_ECHO_START;
  4962. SERIAL_ECHOLNRPGM(CAT4(MSG_ZPROBE_ZOFFSET, " ", MSG_OK,PSTR("")));
  4963. SERIAL_PROTOCOLLN("");
  4964. }
  4965. else
  4966. {
  4967. SERIAL_ECHO_START;
  4968. SERIAL_ECHORPGM(MSG_ZPROBE_ZOFFSET);
  4969. SERIAL_ECHORPGM(MSG_Z_MIN);
  4970. SERIAL_ECHO(Z_PROBE_OFFSET_RANGE_MIN);
  4971. SERIAL_ECHORPGM(MSG_Z_MAX);
  4972. SERIAL_ECHO(Z_PROBE_OFFSET_RANGE_MAX);
  4973. SERIAL_PROTOCOLLN("");
  4974. }
  4975. }
  4976. else
  4977. {
  4978. SERIAL_ECHO_START;
  4979. SERIAL_ECHOLNRPGM(CAT2(MSG_ZPROBE_ZOFFSET, PSTR(" : ")));
  4980. SERIAL_ECHO(-zprobe_zoffset);
  4981. SERIAL_PROTOCOLLN("");
  4982. }
  4983. break;
  4984. }
  4985. #endif // CUSTOM_M_CODE_SET_Z_PROBE_OFFSET
  4986. #ifdef FILAMENTCHANGEENABLE
  4987. case 600: //Pause for filament change X[pos] Y[pos] Z[relative lift] E[initial retract] L[later retract distance for removal]
  4988. {
  4989. #ifdef PAT9125
  4990. bool old_fsensor_enabled = fsensor_enabled;
  4991. fsensor_enabled = false; //temporary solution for unexpected restarting
  4992. #endif //PAT9125
  4993. st_synchronize();
  4994. float target[4];
  4995. float lastpos[4];
  4996. if (farm_mode)
  4997. {
  4998. prusa_statistics(22);
  4999. }
  5000. feedmultiplyBckp=feedmultiply;
  5001. int8_t TooLowZ = 0;
  5002. float HotendTempBckp = degTargetHotend(active_extruder);
  5003. int fanSpeedBckp = fanSpeed;
  5004. target[X_AXIS]=current_position[X_AXIS];
  5005. target[Y_AXIS]=current_position[Y_AXIS];
  5006. target[Z_AXIS]=current_position[Z_AXIS];
  5007. target[E_AXIS]=current_position[E_AXIS];
  5008. lastpos[X_AXIS]=current_position[X_AXIS];
  5009. lastpos[Y_AXIS]=current_position[Y_AXIS];
  5010. lastpos[Z_AXIS]=current_position[Z_AXIS];
  5011. lastpos[E_AXIS]=current_position[E_AXIS];
  5012. //Restract extruder
  5013. if(code_seen('E'))
  5014. {
  5015. target[E_AXIS]+= code_value();
  5016. }
  5017. else
  5018. {
  5019. #ifdef FILAMENTCHANGE_FIRSTRETRACT
  5020. target[E_AXIS]+= FILAMENTCHANGE_FIRSTRETRACT ;
  5021. #endif
  5022. }
  5023. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_RFEED, active_extruder);
  5024. //Lift Z
  5025. if(code_seen('Z'))
  5026. {
  5027. target[Z_AXIS]+= code_value();
  5028. }
  5029. else
  5030. {
  5031. #ifdef FILAMENTCHANGE_ZADD
  5032. target[Z_AXIS]+= FILAMENTCHANGE_ZADD ;
  5033. if(target[Z_AXIS] < 10){
  5034. target[Z_AXIS]+= 10 ;
  5035. TooLowZ = 1;
  5036. }else{
  5037. TooLowZ = 0;
  5038. }
  5039. #endif
  5040. }
  5041. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_ZFEED, active_extruder);
  5042. //Move XY to side
  5043. if(code_seen('X'))
  5044. {
  5045. target[X_AXIS]+= code_value();
  5046. }
  5047. else
  5048. {
  5049. #ifdef FILAMENTCHANGE_XPOS
  5050. target[X_AXIS]= FILAMENTCHANGE_XPOS ;
  5051. #endif
  5052. }
  5053. if(code_seen('Y'))
  5054. {
  5055. target[Y_AXIS]= code_value();
  5056. }
  5057. else
  5058. {
  5059. #ifdef FILAMENTCHANGE_YPOS
  5060. target[Y_AXIS]= FILAMENTCHANGE_YPOS ;
  5061. #endif
  5062. }
  5063. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_XYFEED, active_extruder);
  5064. st_synchronize();
  5065. KEEPALIVE_STATE(PAUSED_FOR_USER);
  5066. uint8_t cnt = 0;
  5067. int counterBeep = 0;
  5068. fanSpeed = 0;
  5069. unsigned long waiting_start_time = millis();
  5070. uint8_t wait_for_user_state = 0;
  5071. lcd_display_message_fullscreen_P(MSG_PRESS_TO_UNLOAD);
  5072. while (!(wait_for_user_state == 0 && lcd_clicked())){
  5073. //cnt++;
  5074. manage_heater();
  5075. manage_inactivity(true);
  5076. /*#ifdef SNMM
  5077. target[E_AXIS] += 0.002;
  5078. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 500, active_extruder);
  5079. #endif // SNMM*/
  5080. //if (cnt == 0)
  5081. {
  5082. #if BEEPER > 0
  5083. if (counterBeep == 500) {
  5084. counterBeep = 0;
  5085. }
  5086. SET_OUTPUT(BEEPER);
  5087. if (counterBeep == 0) {
  5088. WRITE(BEEPER, HIGH);
  5089. }
  5090. if (counterBeep == 20) {
  5091. WRITE(BEEPER, LOW);
  5092. }
  5093. counterBeep++;
  5094. #else
  5095. #if !defined(LCD_FEEDBACK_FREQUENCY_HZ) || !defined(LCD_FEEDBACK_FREQUENCY_DURATION_MS)
  5096. lcd_buzz(1000 / 6, 100);
  5097. #else
  5098. lcd_buzz(LCD_FEEDBACK_FREQUENCY_DURATION_MS, LCD_FEEDBACK_FREQUENCY_HZ);
  5099. #endif
  5100. #endif
  5101. }
  5102. switch (wait_for_user_state) {
  5103. case 0:
  5104. delay_keep_alive(4);
  5105. if (millis() > waiting_start_time + (unsigned long)M600_TIMEOUT * 1000) {
  5106. lcd_display_message_fullscreen_P(MSG_PRESS_TO_PREHEAT);
  5107. wait_for_user_state = 1;
  5108. setTargetHotend(0, 0);
  5109. setTargetHotend(0, 1);
  5110. setTargetHotend(0, 2);
  5111. st_synchronize();
  5112. disable_e0();
  5113. disable_e1();
  5114. disable_e2();
  5115. }
  5116. break;
  5117. case 1:
  5118. delay_keep_alive(4);
  5119. if (lcd_clicked()) {
  5120. setTargetHotend(HotendTempBckp, active_extruder);
  5121. lcd_wait_for_heater();
  5122. wait_for_user_state = 2;
  5123. }
  5124. break;
  5125. case 2:
  5126. if (abs(degTargetHotend(active_extruder) - degHotend(active_extruder)) < 1) {
  5127. lcd_display_message_fullscreen_P(MSG_PRESS_TO_UNLOAD);
  5128. waiting_start_time = millis();
  5129. wait_for_user_state = 0;
  5130. }
  5131. else {
  5132. counterBeep = 20; //beeper will be inactive during waiting for nozzle preheat
  5133. lcd.setCursor(1, 4);
  5134. lcd.print(ftostr3(degHotend(active_extruder)));
  5135. }
  5136. break;
  5137. }
  5138. }
  5139. WRITE(BEEPER, LOW);
  5140. lcd_change_fil_state = 0;
  5141. // Unload filament
  5142. lcd_display_message_fullscreen_P(MSG_UNLOADING_FILAMENT);
  5143. KEEPALIVE_STATE(IN_HANDLER);
  5144. custom_message = true;
  5145. lcd_setstatuspgm(MSG_UNLOADING_FILAMENT);
  5146. if (code_seen('L'))
  5147. {
  5148. target[E_AXIS] += code_value();
  5149. }
  5150. else
  5151. {
  5152. #ifdef SNMM
  5153. #else
  5154. #ifdef FILAMENTCHANGE_FINALRETRACT
  5155. target[E_AXIS] += FILAMENTCHANGE_FINALRETRACT;
  5156. #endif
  5157. #endif // SNMM
  5158. }
  5159. #ifdef SNMM
  5160. target[E_AXIS] += 12;
  5161. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 3500, active_extruder);
  5162. target[E_AXIS] += 6;
  5163. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 5000, active_extruder);
  5164. target[E_AXIS] += (FIL_LOAD_LENGTH * -1);
  5165. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 5000, active_extruder);
  5166. st_synchronize();
  5167. target[E_AXIS] += (FIL_COOLING);
  5168. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 50, active_extruder);
  5169. target[E_AXIS] += (FIL_COOLING*-1);
  5170. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 50, active_extruder);
  5171. target[E_AXIS] += (bowden_length[snmm_extruder] * -1);
  5172. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 3000, active_extruder);
  5173. st_synchronize();
  5174. #else
  5175. // plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_RFEED, active_extruder);
  5176. //plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 3500 / 60, active_extruder);
  5177. target[E_AXIS] -= FILAMENTCHANGE_FINALRETRACT;
  5178. st_synchronize();
  5179. #ifdef TMC2130
  5180. uint8_t tmc2130_current_r_bckp = tmc2130_current_r[E_AXIS];
  5181. tmc2130_set_current_r(E_AXIS, TMC2130_UNLOAD_CURRENT_R);
  5182. #else
  5183. digipot_current(2, 200); //set lower E motor current for unload to protect filament sensor and ptfe tube
  5184. float tmp_motor[3] = DEFAULT_PWM_MOTOR_CURRENT;
  5185. float tmp_motor_loud[3] = DEFAULT_PWM_MOTOR_CURRENT_LOUD;
  5186. #endif //TMC2130
  5187. target[E_AXIS] -= 45;
  5188. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 5200 / 60, active_extruder);
  5189. st_synchronize();
  5190. target[E_AXIS] -= 15;
  5191. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 1000 / 60, active_extruder);
  5192. st_synchronize();
  5193. target[E_AXIS] -= 20;
  5194. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 1000 / 60, active_extruder);
  5195. st_synchronize();
  5196. #ifdef TMC2130
  5197. tmc2130_set_current_r(E_AXIS, tmc2130_current_r_bckp);
  5198. #else
  5199. uint8_t silentMode = eeprom_read_byte((uint8_t*)EEPROM_SILENT);
  5200. if(silentMode) digipot_current(2, tmp_motor[2]); //set E back to normal operation currents
  5201. else digipot_current(2, tmp_motor_loud[2]);
  5202. #endif //TMC2130
  5203. #endif // SNMM
  5204. //finish moves
  5205. st_synchronize();
  5206. lcd_display_message_fullscreen_P(MSG_PULL_OUT_FILAMENT);
  5207. //disable extruder steppers so filament can be removed
  5208. disable_e0();
  5209. disable_e1();
  5210. disable_e2();
  5211. delay(100);
  5212. WRITE(BEEPER, HIGH);
  5213. counterBeep = 0;
  5214. while(!lcd_clicked() && (counterBeep < 50)) {
  5215. if(counterBeep > 5) WRITE(BEEPER, LOW);
  5216. delay_keep_alive(100);
  5217. counterBeep++;
  5218. }
  5219. WRITE(BEEPER, LOW);
  5220. KEEPALIVE_STATE(PAUSED_FOR_USER);
  5221. lcd_change_fil_state = lcd_show_fullscreen_message_yes_no_and_wait_P(MSG_UNLOAD_SUCCESSFUL, false, true);
  5222. if (lcd_change_fil_state == 0) lcd_show_fullscreen_message_and_wait_P(MSG_CHECK_IDLER);
  5223. //lcd_return_to_status();
  5224. lcd_update_enable(true);
  5225. //Wait for user to insert filament
  5226. lcd_wait_interact();
  5227. //load_filament_time = millis();
  5228. KEEPALIVE_STATE(PAUSED_FOR_USER);
  5229. #ifdef PAT9125
  5230. if (filament_autoload_enabled && (old_fsensor_enabled || fsensor_M600)) fsensor_autoload_check_start();
  5231. #endif //PAT9125
  5232. // printf_P(PSTR("M600 PAT9125 filament_autoload_enabled=%d, old_fsensor_enabled=%d, fsensor_M600=%d"), filament_autoload_enabled, old_fsensor_enabled, fsensor_M600);
  5233. while(!lcd_clicked())
  5234. {
  5235. manage_heater();
  5236. manage_inactivity(true);
  5237. #ifdef PAT9125
  5238. if (filament_autoload_enabled && (old_fsensor_enabled || fsensor_M600) && fsensor_check_autoload())
  5239. {
  5240. tone(BEEPER, 1000);
  5241. delay_keep_alive(50);
  5242. noTone(BEEPER);
  5243. break;
  5244. }
  5245. #endif //PAT9125
  5246. /*#ifdef SNMM
  5247. target[E_AXIS] += 0.002;
  5248. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 500, active_extruder);
  5249. #endif // SNMM*/
  5250. }
  5251. #ifdef PAT9125
  5252. if (filament_autoload_enabled && (old_fsensor_enabled || fsensor_M600)) fsensor_autoload_check_stop();
  5253. #endif //PAT9125
  5254. //WRITE(BEEPER, LOW);
  5255. KEEPALIVE_STATE(IN_HANDLER);
  5256. #ifdef SNMM
  5257. display_loading();
  5258. KEEPALIVE_STATE(PAUSED_FOR_USER);
  5259. do {
  5260. target[E_AXIS] += 0.002;
  5261. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 500, active_extruder);
  5262. delay_keep_alive(2);
  5263. } while (!lcd_clicked());
  5264. KEEPALIVE_STATE(IN_HANDLER);
  5265. /*if (millis() - load_filament_time > 2) {
  5266. load_filament_time = millis();
  5267. target[E_AXIS] += 0.001;
  5268. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 1000, active_extruder);
  5269. }*/
  5270. //Filament inserted
  5271. //Feed the filament to the end of nozzle quickly
  5272. st_synchronize();
  5273. target[E_AXIS] += bowden_length[snmm_extruder];
  5274. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 3000, active_extruder);
  5275. target[E_AXIS] += FIL_LOAD_LENGTH - 60;
  5276. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 1400, active_extruder);
  5277. target[E_AXIS] += 40;
  5278. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 400, active_extruder);
  5279. target[E_AXIS] += 10;
  5280. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 50, active_extruder);
  5281. #else
  5282. target[E_AXIS] += FILAMENTCHANGE_FIRSTFEED;
  5283. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_EFEED, active_extruder);
  5284. #endif // SNMM
  5285. //Extrude some filament
  5286. target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  5287. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_EXFEED, active_extruder);
  5288. //Wait for user to check the state
  5289. lcd_change_fil_state = 0;
  5290. lcd_loading_filament();
  5291. tone(BEEPER, 500);
  5292. delay_keep_alive(50);
  5293. noTone(BEEPER);
  5294. while ((lcd_change_fil_state == 0)||(lcd_change_fil_state != 1)){
  5295. lcd_change_fil_state = 0;
  5296. KEEPALIVE_STATE(PAUSED_FOR_USER);
  5297. lcd_alright();
  5298. KEEPALIVE_STATE(IN_HANDLER);
  5299. switch(lcd_change_fil_state){
  5300. // Filament failed to load so load it again
  5301. case 2:
  5302. #ifdef SNMM
  5303. display_loading();
  5304. do {
  5305. target[E_AXIS] += 0.002;
  5306. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 500, active_extruder);
  5307. delay_keep_alive(2);
  5308. } while (!lcd_clicked());
  5309. st_synchronize();
  5310. target[E_AXIS] += bowden_length[snmm_extruder];
  5311. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 3000, active_extruder);
  5312. target[E_AXIS] += FIL_LOAD_LENGTH - 60;
  5313. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 1400, active_extruder);
  5314. target[E_AXIS] += 40;
  5315. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 400, active_extruder);
  5316. target[E_AXIS] += 10;
  5317. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 50, active_extruder);
  5318. #else
  5319. target[E_AXIS]+= FILAMENTCHANGE_FIRSTFEED ;
  5320. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_EFEED, active_extruder);
  5321. #endif
  5322. target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  5323. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_EXFEED, active_extruder);
  5324. lcd_loading_filament();
  5325. break;
  5326. // Filament loaded properly but color is not clear
  5327. case 3:
  5328. target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  5329. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder);
  5330. lcd_loading_color();
  5331. break;
  5332. // Everything good
  5333. default:
  5334. lcd_change_success();
  5335. lcd_update_enable(true);
  5336. break;
  5337. }
  5338. }
  5339. //Not let's go back to print
  5340. fanSpeed = fanSpeedBckp;
  5341. //Feed a little of filament to stabilize pressure
  5342. target[E_AXIS]+= FILAMENTCHANGE_RECFEED;
  5343. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_EXFEED, active_extruder);
  5344. //Retract
  5345. target[E_AXIS]+= FILAMENTCHANGE_FIRSTRETRACT;
  5346. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_RFEED, active_extruder);
  5347. //plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 70, active_extruder); //should do nothing
  5348. //Move XY back
  5349. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_XYFEED, active_extruder);
  5350. //Move Z back
  5351. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_ZFEED, active_extruder);
  5352. target[E_AXIS]= target[E_AXIS] - FILAMENTCHANGE_FIRSTRETRACT;
  5353. //Unretract
  5354. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_RFEED, active_extruder);
  5355. //Set E position to original
  5356. plan_set_e_position(lastpos[E_AXIS]);
  5357. //Recover feed rate
  5358. feedmultiply=feedmultiplyBckp;
  5359. char cmd[9];
  5360. sprintf_P(cmd, PSTR("M220 S%i"), feedmultiplyBckp);
  5361. enquecommand(cmd);
  5362. lcd_setstatuspgm(WELCOME_MSG);
  5363. custom_message = false;
  5364. custom_message_type = 0;
  5365. #ifdef PAT9125
  5366. fsensor_enabled = old_fsensor_enabled; //temporary solution for unexpected restarting
  5367. if (fsensor_M600)
  5368. {
  5369. cmdqueue_pop_front(); //hack because M600 repeated 2x when enqueued to front
  5370. st_synchronize();
  5371. while (!is_buffer_empty())
  5372. {
  5373. process_commands();
  5374. cmdqueue_pop_front();
  5375. }
  5376. fsensor_enable();
  5377. fsensor_restore_print_and_continue();
  5378. }
  5379. #endif //PAT9125
  5380. }
  5381. break;
  5382. #endif //FILAMENTCHANGEENABLE
  5383. case 601: {
  5384. if(lcd_commands_type == 0) lcd_commands_type = LCD_COMMAND_LONG_PAUSE;
  5385. }
  5386. break;
  5387. case 602: {
  5388. if(lcd_commands_type == 0) lcd_commands_type = LCD_COMMAND_LONG_PAUSE_RESUME;
  5389. }
  5390. break;
  5391. #ifdef LIN_ADVANCE
  5392. case 900: // M900: Set LIN_ADVANCE options.
  5393. gcode_M900();
  5394. break;
  5395. #endif
  5396. case 907: // M907 Set digital trimpot motor current using axis codes.
  5397. {
  5398. #if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
  5399. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) digipot_current(i,code_value());
  5400. if(code_seen('B')) digipot_current(4,code_value());
  5401. if(code_seen('S')) for(int i=0;i<=4;i++) digipot_current(i,code_value());
  5402. #endif
  5403. #ifdef MOTOR_CURRENT_PWM_XY_PIN
  5404. if(code_seen('X')) digipot_current(0, code_value());
  5405. #endif
  5406. #ifdef MOTOR_CURRENT_PWM_Z_PIN
  5407. if(code_seen('Z')) digipot_current(1, code_value());
  5408. #endif
  5409. #ifdef MOTOR_CURRENT_PWM_E_PIN
  5410. if(code_seen('E')) digipot_current(2, code_value());
  5411. #endif
  5412. #ifdef DIGIPOT_I2C
  5413. // this one uses actual amps in floating point
  5414. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) digipot_i2c_set_current(i, code_value());
  5415. // for each additional extruder (named B,C,D,E..., channels 4,5,6,7...)
  5416. for(int i=NUM_AXIS;i<DIGIPOT_I2C_NUM_CHANNELS;i++) if(code_seen('B'+i-NUM_AXIS)) digipot_i2c_set_current(i, code_value());
  5417. #endif
  5418. }
  5419. break;
  5420. case 908: // M908 Control digital trimpot directly.
  5421. {
  5422. #if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
  5423. uint8_t channel,current;
  5424. if(code_seen('P')) channel=code_value();
  5425. if(code_seen('S')) current=code_value();
  5426. digitalPotWrite(channel, current);
  5427. #endif
  5428. }
  5429. break;
  5430. #ifdef TMC2130
  5431. case 910: // M910 TMC2130 init
  5432. {
  5433. tmc2130_init();
  5434. }
  5435. break;
  5436. case 911: // M911 Set TMC2130 holding currents
  5437. {
  5438. if (code_seen('X')) tmc2130_set_current_h(0, code_value());
  5439. if (code_seen('Y')) tmc2130_set_current_h(1, code_value());
  5440. if (code_seen('Z')) tmc2130_set_current_h(2, code_value());
  5441. if (code_seen('E')) tmc2130_set_current_h(3, code_value());
  5442. }
  5443. break;
  5444. case 912: // M912 Set TMC2130 running currents
  5445. {
  5446. if (code_seen('X')) tmc2130_set_current_r(0, code_value());
  5447. if (code_seen('Y')) tmc2130_set_current_r(1, code_value());
  5448. if (code_seen('Z')) tmc2130_set_current_r(2, code_value());
  5449. if (code_seen('E')) tmc2130_set_current_r(3, code_value());
  5450. }
  5451. break;
  5452. case 913: // M913 Print TMC2130 currents
  5453. {
  5454. tmc2130_print_currents();
  5455. }
  5456. break;
  5457. case 914: // M914 Set normal mode
  5458. {
  5459. tmc2130_mode = TMC2130_MODE_NORMAL;
  5460. tmc2130_init();
  5461. }
  5462. break;
  5463. case 915: // M915 Set silent mode
  5464. {
  5465. tmc2130_mode = TMC2130_MODE_SILENT;
  5466. tmc2130_init();
  5467. }
  5468. break;
  5469. case 916: // M916 Set sg_thrs
  5470. {
  5471. if (code_seen('X')) tmc2130_sg_thr[X_AXIS] = code_value();
  5472. if (code_seen('Y')) tmc2130_sg_thr[Y_AXIS] = code_value();
  5473. if (code_seen('Z')) tmc2130_sg_thr[Z_AXIS] = code_value();
  5474. if (code_seen('E')) tmc2130_sg_thr[E_AXIS] = code_value();
  5475. MYSERIAL.print("tmc2130_sg_thr[X]=");
  5476. MYSERIAL.println(tmc2130_sg_thr[X_AXIS], DEC);
  5477. MYSERIAL.print("tmc2130_sg_thr[Y]=");
  5478. MYSERIAL.println(tmc2130_sg_thr[Y_AXIS], DEC);
  5479. MYSERIAL.print("tmc2130_sg_thr[Z]=");
  5480. MYSERIAL.println(tmc2130_sg_thr[Z_AXIS], DEC);
  5481. MYSERIAL.print("tmc2130_sg_thr[E]=");
  5482. MYSERIAL.println(tmc2130_sg_thr[E_AXIS], DEC);
  5483. }
  5484. break;
  5485. case 917: // M917 Set TMC2130 pwm_ampl
  5486. {
  5487. if (code_seen('X')) tmc2130_set_pwm_ampl(0, code_value());
  5488. if (code_seen('Y')) tmc2130_set_pwm_ampl(1, code_value());
  5489. if (code_seen('Z')) tmc2130_set_pwm_ampl(2, code_value());
  5490. if (code_seen('E')) tmc2130_set_pwm_ampl(3, code_value());
  5491. }
  5492. break;
  5493. case 918: // M918 Set TMC2130 pwm_grad
  5494. {
  5495. if (code_seen('X')) tmc2130_set_pwm_grad(0, code_value());
  5496. if (code_seen('Y')) tmc2130_set_pwm_grad(1, code_value());
  5497. if (code_seen('Z')) tmc2130_set_pwm_grad(2, code_value());
  5498. if (code_seen('E')) tmc2130_set_pwm_grad(3, code_value());
  5499. }
  5500. break;
  5501. #endif //TMC2130
  5502. case 350: // M350 Set microstepping mode. Warning: Steps per unit remains unchanged. S code sets stepping mode for all drivers.
  5503. {
  5504. #ifdef TMC2130
  5505. if(code_seen('E'))
  5506. {
  5507. uint16_t res_new = code_value();
  5508. if ((res_new == 8) || (res_new == 16) || (res_new == 32) || (res_new == 64) || (res_new == 128))
  5509. {
  5510. st_synchronize();
  5511. uint8_t axis = E_AXIS;
  5512. uint16_t res = tmc2130_get_res(axis);
  5513. tmc2130_set_res(axis, res_new);
  5514. if (res_new > res)
  5515. {
  5516. uint16_t fac = (res_new / res);
  5517. axis_steps_per_unit[axis] *= fac;
  5518. position[E_AXIS] *= fac;
  5519. }
  5520. else
  5521. {
  5522. uint16_t fac = (res / res_new);
  5523. axis_steps_per_unit[axis] /= fac;
  5524. position[E_AXIS] /= fac;
  5525. }
  5526. }
  5527. }
  5528. #else //TMC2130
  5529. #if defined(X_MS1_PIN) && X_MS1_PIN > -1
  5530. if(code_seen('S')) for(int i=0;i<=4;i++) microstep_mode(i,code_value());
  5531. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) microstep_mode(i,(uint8_t)code_value());
  5532. if(code_seen('B')) microstep_mode(4,code_value());
  5533. microstep_readings();
  5534. #endif
  5535. #endif //TMC2130
  5536. }
  5537. break;
  5538. case 351: // M351 Toggle MS1 MS2 pins directly, S# determines MS1 or MS2, X# sets the pin high/low.
  5539. {
  5540. #if defined(X_MS1_PIN) && X_MS1_PIN > -1
  5541. if(code_seen('S')) switch((int)code_value())
  5542. {
  5543. case 1:
  5544. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) microstep_ms(i,code_value(),-1);
  5545. if(code_seen('B')) microstep_ms(4,code_value(),-1);
  5546. break;
  5547. case 2:
  5548. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) microstep_ms(i,-1,code_value());
  5549. if(code_seen('B')) microstep_ms(4,-1,code_value());
  5550. break;
  5551. }
  5552. microstep_readings();
  5553. #endif
  5554. }
  5555. break;
  5556. case 701: //M701: load filament
  5557. {
  5558. gcode_M701();
  5559. }
  5560. break;
  5561. case 702:
  5562. {
  5563. #ifdef SNMM
  5564. if (code_seen('U')) {
  5565. extr_unload_used(); //unload all filaments which were used in current print
  5566. }
  5567. else if (code_seen('C')) {
  5568. extr_unload(); //unload just current filament
  5569. }
  5570. else {
  5571. extr_unload_all(); //unload all filaments
  5572. }
  5573. #else
  5574. #ifdef PAT9125
  5575. bool old_fsensor_enabled = fsensor_enabled;
  5576. fsensor_enabled = false;
  5577. #endif //PAT9125
  5578. custom_message = true;
  5579. custom_message_type = 2;
  5580. lcd_setstatuspgm(MSG_UNLOADING_FILAMENT);
  5581. // extr_unload2();
  5582. current_position[E_AXIS] -= 45;
  5583. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 5200 / 60, active_extruder);
  5584. st_synchronize();
  5585. current_position[E_AXIS] -= 15;
  5586. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 1000 / 60, active_extruder);
  5587. st_synchronize();
  5588. current_position[E_AXIS] -= 20;
  5589. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 1000 / 60, active_extruder);
  5590. st_synchronize();
  5591. lcd_display_message_fullscreen_P(MSG_PULL_OUT_FILAMENT);
  5592. //disable extruder steppers so filament can be removed
  5593. disable_e0();
  5594. disable_e1();
  5595. disable_e2();
  5596. delay(100);
  5597. WRITE(BEEPER, HIGH);
  5598. uint8_t counterBeep = 0;
  5599. while (!lcd_clicked() && (counterBeep < 50)) {
  5600. if (counterBeep > 5) WRITE(BEEPER, LOW);
  5601. delay_keep_alive(100);
  5602. counterBeep++;
  5603. }
  5604. WRITE(BEEPER, LOW);
  5605. st_synchronize();
  5606. while (lcd_clicked()) delay_keep_alive(100);
  5607. lcd_update_enable(true);
  5608. lcd_setstatuspgm(WELCOME_MSG);
  5609. custom_message = false;
  5610. custom_message_type = 0;
  5611. #ifdef PAT9125
  5612. fsensor_enabled = old_fsensor_enabled;
  5613. #endif //PAT9125
  5614. #endif
  5615. }
  5616. break;
  5617. case 999: // M999: Restart after being stopped
  5618. Stopped = false;
  5619. lcd_reset_alert_level();
  5620. gcode_LastN = Stopped_gcode_LastN;
  5621. FlushSerialRequestResend();
  5622. break;
  5623. default:
  5624. printf_P(PSTR("Unknown M code: %s \n"), cmdbuffer + bufindr + CMDHDRSIZE);
  5625. }
  5626. } // end if(code_seen('M')) (end of M codes)
  5627. else if(code_seen('T'))
  5628. {
  5629. int index;
  5630. st_synchronize();
  5631. for (index = 1; *(strchr_pointer + index) == ' ' || *(strchr_pointer + index) == '\t'; index++);
  5632. if ((*(strchr_pointer + index) < '0' || *(strchr_pointer + index) > '9') && *(strchr_pointer + index) != '?') {
  5633. SERIAL_ECHOLNPGM("Invalid T code.");
  5634. }
  5635. else {
  5636. if (*(strchr_pointer + index) == '?') {
  5637. tmp_extruder = choose_extruder_menu();
  5638. }
  5639. else {
  5640. tmp_extruder = code_value();
  5641. }
  5642. snmm_filaments_used |= (1 << tmp_extruder); //for stop print
  5643. #ifdef SNMM
  5644. #ifdef LIN_ADVANCE
  5645. if (snmm_extruder != tmp_extruder)
  5646. clear_current_adv_vars(); //Check if the selected extruder is not the active one and reset LIN_ADVANCE variables if so.
  5647. #endif
  5648. snmm_extruder = tmp_extruder;
  5649. delay(100);
  5650. disable_e0();
  5651. disable_e1();
  5652. disable_e2();
  5653. pinMode(E_MUX0_PIN, OUTPUT);
  5654. pinMode(E_MUX1_PIN, OUTPUT);
  5655. pinMode(E_MUX2_PIN, OUTPUT);
  5656. delay(100);
  5657. SERIAL_ECHO_START;
  5658. SERIAL_ECHO("T:");
  5659. SERIAL_ECHOLN((int)tmp_extruder);
  5660. switch (tmp_extruder) {
  5661. case 1:
  5662. WRITE(E_MUX0_PIN, HIGH);
  5663. WRITE(E_MUX1_PIN, LOW);
  5664. WRITE(E_MUX2_PIN, LOW);
  5665. break;
  5666. case 2:
  5667. WRITE(E_MUX0_PIN, LOW);
  5668. WRITE(E_MUX1_PIN, HIGH);
  5669. WRITE(E_MUX2_PIN, LOW);
  5670. break;
  5671. case 3:
  5672. WRITE(E_MUX0_PIN, HIGH);
  5673. WRITE(E_MUX1_PIN, HIGH);
  5674. WRITE(E_MUX2_PIN, LOW);
  5675. break;
  5676. default:
  5677. WRITE(E_MUX0_PIN, LOW);
  5678. WRITE(E_MUX1_PIN, LOW);
  5679. WRITE(E_MUX2_PIN, LOW);
  5680. break;
  5681. }
  5682. delay(100);
  5683. #else
  5684. if (tmp_extruder >= EXTRUDERS) {
  5685. SERIAL_ECHO_START;
  5686. SERIAL_ECHOPGM("T");
  5687. SERIAL_PROTOCOLLN((int)tmp_extruder);
  5688. SERIAL_ECHOLNRPGM(MSG_INVALID_EXTRUDER);
  5689. }
  5690. else {
  5691. boolean make_move = false;
  5692. if (code_seen('F')) {
  5693. make_move = true;
  5694. next_feedrate = code_value();
  5695. if (next_feedrate > 0.0) {
  5696. feedrate = next_feedrate;
  5697. }
  5698. }
  5699. #if EXTRUDERS > 1
  5700. if (tmp_extruder != active_extruder) {
  5701. // Save current position to return to after applying extruder offset
  5702. memcpy(destination, current_position, sizeof(destination));
  5703. // Offset extruder (only by XY)
  5704. int i;
  5705. for (i = 0; i < 2; i++) {
  5706. current_position[i] = current_position[i] -
  5707. extruder_offset[i][active_extruder] +
  5708. extruder_offset[i][tmp_extruder];
  5709. }
  5710. // Set the new active extruder and position
  5711. active_extruder = tmp_extruder;
  5712. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  5713. // Move to the old position if 'F' was in the parameters
  5714. if (make_move && Stopped == false) {
  5715. prepare_move();
  5716. }
  5717. }
  5718. #endif
  5719. SERIAL_ECHO_START;
  5720. SERIAL_ECHORPGM(MSG_ACTIVE_EXTRUDER);
  5721. SERIAL_PROTOCOLLN((int)active_extruder);
  5722. }
  5723. #endif
  5724. }
  5725. } // end if(code_seen('T')) (end of T codes)
  5726. #ifdef DEBUG_DCODES
  5727. else if (code_seen('D')) // D codes (debug)
  5728. {
  5729. switch((int)code_value())
  5730. {
  5731. case -1: // D-1 - Endless loop
  5732. dcode__1(); break;
  5733. case 0: // D0 - Reset
  5734. dcode_0(); break;
  5735. case 1: // D1 - Clear EEPROM
  5736. dcode_1(); break;
  5737. case 2: // D2 - Read/Write RAM
  5738. dcode_2(); break;
  5739. case 3: // D3 - Read/Write EEPROM
  5740. dcode_3(); break;
  5741. case 4: // D4 - Read/Write PIN
  5742. dcode_4(); break;
  5743. case 5: // D5 - Read/Write FLASH
  5744. // dcode_5(); break;
  5745. break;
  5746. case 6: // D6 - Read/Write external FLASH
  5747. dcode_6(); break;
  5748. case 7: // D7 - Read/Write Bootloader
  5749. dcode_7(); break;
  5750. case 8: // D8 - Read/Write PINDA
  5751. dcode_8(); break;
  5752. case 9: // D9 - Read/Write ADC
  5753. dcode_9(); break;
  5754. case 10: // D10 - XYZ calibration = OK
  5755. dcode_10(); break;
  5756. #ifdef TMC2130
  5757. case 2130: // D9125 - TMC2130
  5758. dcode_2130(); break;
  5759. #endif //TMC2130
  5760. #ifdef PAT9125
  5761. case 9125: // D9125 - PAT9125
  5762. dcode_9125(); break;
  5763. #endif //PAT9125
  5764. }
  5765. }
  5766. #endif //DEBUG_DCODES
  5767. else
  5768. {
  5769. SERIAL_ECHO_START;
  5770. SERIAL_ECHORPGM(MSG_UNKNOWN_COMMAND);
  5771. SERIAL_ECHO(CMDBUFFER_CURRENT_STRING);
  5772. SERIAL_ECHOLNPGM("\"(2)");
  5773. }
  5774. KEEPALIVE_STATE(NOT_BUSY);
  5775. ClearToSend();
  5776. }
  5777. void FlushSerialRequestResend()
  5778. {
  5779. //char cmdbuffer[bufindr][100]="Resend:";
  5780. MYSERIAL.flush();
  5781. SERIAL_PROTOCOLRPGM(MSG_RESEND);
  5782. SERIAL_PROTOCOLLN(gcode_LastN + 1);
  5783. previous_millis_cmd = millis();
  5784. SERIAL_PROTOCOLLNRPGM(MSG_OK);
  5785. }
  5786. // Confirm the execution of a command, if sent from a serial line.
  5787. // Execution of a command from a SD card will not be confirmed.
  5788. void ClearToSend()
  5789. {
  5790. previous_millis_cmd = millis();
  5791. if (CMDBUFFER_CURRENT_TYPE == CMDBUFFER_CURRENT_TYPE_USB)
  5792. SERIAL_PROTOCOLLNRPGM(MSG_OK);
  5793. }
  5794. #if MOTHERBOARD == 200 || MOTHERBOARD == 203
  5795. void update_currents() {
  5796. float current_high[3] = DEFAULT_PWM_MOTOR_CURRENT_LOUD;
  5797. float current_low[3] = DEFAULT_PWM_MOTOR_CURRENT;
  5798. float tmp_motor[3];
  5799. //SERIAL_ECHOLNPGM("Currents updated: ");
  5800. if (destination[Z_AXIS] < Z_SILENT) {
  5801. //SERIAL_ECHOLNPGM("LOW");
  5802. for (uint8_t i = 0; i < 3; i++) {
  5803. digipot_current(i, current_low[i]);
  5804. /*MYSERIAL.print(int(i));
  5805. SERIAL_ECHOPGM(": ");
  5806. MYSERIAL.println(current_low[i]);*/
  5807. }
  5808. }
  5809. else if (destination[Z_AXIS] > Z_HIGH_POWER) {
  5810. //SERIAL_ECHOLNPGM("HIGH");
  5811. for (uint8_t i = 0; i < 3; i++) {
  5812. digipot_current(i, current_high[i]);
  5813. /*MYSERIAL.print(int(i));
  5814. SERIAL_ECHOPGM(": ");
  5815. MYSERIAL.println(current_high[i]);*/
  5816. }
  5817. }
  5818. else {
  5819. for (uint8_t i = 0; i < 3; i++) {
  5820. float q = current_low[i] - Z_SILENT*((current_high[i] - current_low[i]) / (Z_HIGH_POWER - Z_SILENT));
  5821. tmp_motor[i] = ((current_high[i] - current_low[i]) / (Z_HIGH_POWER - Z_SILENT))*destination[Z_AXIS] + q;
  5822. digipot_current(i, tmp_motor[i]);
  5823. /*MYSERIAL.print(int(i));
  5824. SERIAL_ECHOPGM(": ");
  5825. MYSERIAL.println(tmp_motor[i]);*/
  5826. }
  5827. }
  5828. }
  5829. #endif //MOTHERBOARD == 200 || MOTHERBOARD == 203
  5830. void get_coordinates()
  5831. {
  5832. bool seen[4]={false,false,false,false};
  5833. for(int8_t i=0; i < NUM_AXIS; i++) {
  5834. if(code_seen(axis_codes[i]))
  5835. {
  5836. bool relative = axis_relative_modes[i] || relative_mode;
  5837. destination[i] = (float)code_value();
  5838. if (i == E_AXIS) {
  5839. float emult = extruder_multiplier[active_extruder];
  5840. if (emult != 1.) {
  5841. if (! relative) {
  5842. destination[i] -= current_position[i];
  5843. relative = true;
  5844. }
  5845. destination[i] *= emult;
  5846. }
  5847. }
  5848. if (relative)
  5849. destination[i] += current_position[i];
  5850. seen[i]=true;
  5851. #if MOTHERBOARD == 200 || MOTHERBOARD == 203
  5852. if (i == Z_AXIS && SilentModeMenu == 2) update_currents();
  5853. #endif //MOTHERBOARD == 200 || MOTHERBOARD == 203
  5854. }
  5855. else destination[i] = current_position[i]; //Are these else lines really needed?
  5856. }
  5857. if(code_seen('F')) {
  5858. next_feedrate = code_value();
  5859. #ifdef MAX_SILENT_FEEDRATE
  5860. if (tmc2130_mode == TMC2130_MODE_SILENT)
  5861. if (next_feedrate > MAX_SILENT_FEEDRATE) next_feedrate = MAX_SILENT_FEEDRATE;
  5862. #endif //MAX_SILENT_FEEDRATE
  5863. if(next_feedrate > 0.0) feedrate = next_feedrate;
  5864. if (!seen[0] && !seen[1] && !seen[2] && seen[3])
  5865. {
  5866. // float e_max_speed =
  5867. // printf_P(PSTR("E MOVE speed %7.3f\n"), feedrate / 60)
  5868. }
  5869. }
  5870. }
  5871. void get_arc_coordinates()
  5872. {
  5873. #ifdef SF_ARC_FIX
  5874. bool relative_mode_backup = relative_mode;
  5875. relative_mode = true;
  5876. #endif
  5877. get_coordinates();
  5878. #ifdef SF_ARC_FIX
  5879. relative_mode=relative_mode_backup;
  5880. #endif
  5881. if(code_seen('I')) {
  5882. offset[0] = code_value();
  5883. }
  5884. else {
  5885. offset[0] = 0.0;
  5886. }
  5887. if(code_seen('J')) {
  5888. offset[1] = code_value();
  5889. }
  5890. else {
  5891. offset[1] = 0.0;
  5892. }
  5893. }
  5894. void clamp_to_software_endstops(float target[3])
  5895. {
  5896. #ifdef DEBUG_DISABLE_SWLIMITS
  5897. return;
  5898. #endif //DEBUG_DISABLE_SWLIMITS
  5899. world2machine_clamp(target[0], target[1]);
  5900. // Clamp the Z coordinate.
  5901. if (min_software_endstops) {
  5902. float negative_z_offset = 0;
  5903. #ifdef ENABLE_AUTO_BED_LEVELING
  5904. if (Z_PROBE_OFFSET_FROM_EXTRUDER < 0) negative_z_offset = negative_z_offset + Z_PROBE_OFFSET_FROM_EXTRUDER;
  5905. if (add_homing[Z_AXIS] < 0) negative_z_offset = negative_z_offset + add_homing[Z_AXIS];
  5906. #endif
  5907. if (target[Z_AXIS] < min_pos[Z_AXIS]+negative_z_offset) target[Z_AXIS] = min_pos[Z_AXIS]+negative_z_offset;
  5908. }
  5909. if (max_software_endstops) {
  5910. if (target[Z_AXIS] > max_pos[Z_AXIS]) target[Z_AXIS] = max_pos[Z_AXIS];
  5911. }
  5912. }
  5913. #ifdef MESH_BED_LEVELING
  5914. void mesh_plan_buffer_line(const float &x, const float &y, const float &z, const float &e, const float &feed_rate, const uint8_t extruder) {
  5915. float dx = x - current_position[X_AXIS];
  5916. float dy = y - current_position[Y_AXIS];
  5917. float dz = z - current_position[Z_AXIS];
  5918. int n_segments = 0;
  5919. if (mbl.active) {
  5920. float len = abs(dx) + abs(dy);
  5921. if (len > 0)
  5922. // Split to 3cm segments or shorter.
  5923. n_segments = int(ceil(len / 30.f));
  5924. }
  5925. if (n_segments > 1) {
  5926. float de = e - current_position[E_AXIS];
  5927. for (int i = 1; i < n_segments; ++ i) {
  5928. float t = float(i) / float(n_segments);
  5929. plan_buffer_line(
  5930. current_position[X_AXIS] + t * dx,
  5931. current_position[Y_AXIS] + t * dy,
  5932. current_position[Z_AXIS] + t * dz,
  5933. current_position[E_AXIS] + t * de,
  5934. feed_rate, extruder);
  5935. }
  5936. }
  5937. // The rest of the path.
  5938. plan_buffer_line(x, y, z, e, feed_rate, extruder);
  5939. current_position[X_AXIS] = x;
  5940. current_position[Y_AXIS] = y;
  5941. current_position[Z_AXIS] = z;
  5942. current_position[E_AXIS] = e;
  5943. }
  5944. #endif // MESH_BED_LEVELING
  5945. void prepare_move()
  5946. {
  5947. clamp_to_software_endstops(destination);
  5948. previous_millis_cmd = millis();
  5949. // Do not use feedmultiply for E or Z only moves
  5950. if( (current_position[X_AXIS] == destination [X_AXIS]) && (current_position[Y_AXIS] == destination [Y_AXIS])) {
  5951. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  5952. }
  5953. else {
  5954. #ifdef MESH_BED_LEVELING
  5955. mesh_plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate*feedmultiply*(1./(60.f*100.f)), active_extruder);
  5956. #else
  5957. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate*feedmultiply*(1./(60.f*100.f)), active_extruder);
  5958. #endif
  5959. }
  5960. for(int8_t i=0; i < NUM_AXIS; i++) {
  5961. current_position[i] = destination[i];
  5962. }
  5963. }
  5964. void prepare_arc_move(char isclockwise) {
  5965. float r = hypot(offset[X_AXIS], offset[Y_AXIS]); // Compute arc radius for mc_arc
  5966. // Trace the arc
  5967. mc_arc(current_position, destination, offset, X_AXIS, Y_AXIS, Z_AXIS, feedrate*feedmultiply/60/100.0, r, isclockwise, active_extruder);
  5968. // As far as the parser is concerned, the position is now == target. In reality the
  5969. // motion control system might still be processing the action and the real tool position
  5970. // in any intermediate location.
  5971. for(int8_t i=0; i < NUM_AXIS; i++) {
  5972. current_position[i] = destination[i];
  5973. }
  5974. previous_millis_cmd = millis();
  5975. }
  5976. #if defined(CONTROLLERFAN_PIN) && CONTROLLERFAN_PIN > -1
  5977. #if defined(FAN_PIN)
  5978. #if CONTROLLERFAN_PIN == FAN_PIN
  5979. #error "You cannot set CONTROLLERFAN_PIN equal to FAN_PIN"
  5980. #endif
  5981. #endif
  5982. unsigned long lastMotor = 0; //Save the time for when a motor was turned on last
  5983. unsigned long lastMotorCheck = 0;
  5984. void controllerFan()
  5985. {
  5986. if ((millis() - lastMotorCheck) >= 2500) //Not a time critical function, so we only check every 2500ms
  5987. {
  5988. lastMotorCheck = millis();
  5989. if(!READ(X_ENABLE_PIN) || !READ(Y_ENABLE_PIN) || !READ(Z_ENABLE_PIN) || (soft_pwm_bed > 0)
  5990. #if EXTRUDERS > 2
  5991. || !READ(E2_ENABLE_PIN)
  5992. #endif
  5993. #if EXTRUDER > 1
  5994. #if defined(X2_ENABLE_PIN) && X2_ENABLE_PIN > -1
  5995. || !READ(X2_ENABLE_PIN)
  5996. #endif
  5997. || !READ(E1_ENABLE_PIN)
  5998. #endif
  5999. || !READ(E0_ENABLE_PIN)) //If any of the drivers are enabled...
  6000. {
  6001. lastMotor = millis(); //... set time to NOW so the fan will turn on
  6002. }
  6003. if ((millis() - lastMotor) >= (CONTROLLERFAN_SECS*1000UL) || lastMotor == 0) //If the last time any driver was enabled, is longer since than CONTROLLERSEC...
  6004. {
  6005. digitalWrite(CONTROLLERFAN_PIN, 0);
  6006. analogWrite(CONTROLLERFAN_PIN, 0);
  6007. }
  6008. else
  6009. {
  6010. // allows digital or PWM fan output to be used (see M42 handling)
  6011. digitalWrite(CONTROLLERFAN_PIN, CONTROLLERFAN_SPEED);
  6012. analogWrite(CONTROLLERFAN_PIN, CONTROLLERFAN_SPEED);
  6013. }
  6014. }
  6015. }
  6016. #endif
  6017. #ifdef TEMP_STAT_LEDS
  6018. static bool blue_led = false;
  6019. static bool red_led = false;
  6020. static uint32_t stat_update = 0;
  6021. void handle_status_leds(void) {
  6022. float max_temp = 0.0;
  6023. if(millis() > stat_update) {
  6024. stat_update += 500; // Update every 0.5s
  6025. for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) {
  6026. max_temp = max(max_temp, degHotend(cur_extruder));
  6027. max_temp = max(max_temp, degTargetHotend(cur_extruder));
  6028. }
  6029. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  6030. max_temp = max(max_temp, degTargetBed());
  6031. max_temp = max(max_temp, degBed());
  6032. #endif
  6033. if((max_temp > 55.0) && (red_led == false)) {
  6034. digitalWrite(STAT_LED_RED, 1);
  6035. digitalWrite(STAT_LED_BLUE, 0);
  6036. red_led = true;
  6037. blue_led = false;
  6038. }
  6039. if((max_temp < 54.0) && (blue_led == false)) {
  6040. digitalWrite(STAT_LED_RED, 0);
  6041. digitalWrite(STAT_LED_BLUE, 1);
  6042. red_led = false;
  6043. blue_led = true;
  6044. }
  6045. }
  6046. }
  6047. #endif
  6048. #ifdef SAFETYTIMER
  6049. /**
  6050. * @brief Turn off heating after 15 minutes of inactivity
  6051. */
  6052. static void handleSafetyTimer()
  6053. {
  6054. #if (EXTRUDERS > 1)
  6055. #error Implemented only for one extruder.
  6056. #endif //(EXTRUDERS > 1)
  6057. static Timer safetyTimer;
  6058. if (IS_SD_PRINTING || is_usb_printing || (custom_message_type == 4) || (lcd_commands_type == LCD_COMMAND_V2_CAL) ||
  6059. (!degTargetBed() && !degTargetHotend(0)))
  6060. {
  6061. safetyTimer.stop();
  6062. }
  6063. else if ((degTargetBed() || degTargetHotend(0)) && (!safetyTimer.running()))
  6064. {
  6065. safetyTimer.start();
  6066. }
  6067. else if (safetyTimer.expired(15*60*1000))
  6068. {
  6069. setTargetBed(0);
  6070. setTargetHotend(0, 0);
  6071. }
  6072. }
  6073. #endif //SAFETYTIMER
  6074. void manage_inactivity(bool ignore_stepper_queue/*=false*/) //default argument set in Marlin.h
  6075. {
  6076. #ifdef PAT9125
  6077. if (fsensor_enabled && filament_autoload_enabled && !fsensor_M600 && !moves_planned() && !IS_SD_PRINTING && !is_usb_printing && (lcd_commands_type != LCD_COMMAND_V2_CAL))
  6078. {
  6079. if (fsensor_autoload_enabled)
  6080. {
  6081. if (fsensor_check_autoload())
  6082. {
  6083. if (degHotend0() > EXTRUDE_MINTEMP)
  6084. {
  6085. fsensor_autoload_check_stop();
  6086. tone(BEEPER, 1000);
  6087. delay_keep_alive(50);
  6088. noTone(BEEPER);
  6089. loading_flag = true;
  6090. enquecommand_front_P((PSTR("M701")));
  6091. }
  6092. else
  6093. {
  6094. lcd_update_enable(false);
  6095. lcd_implementation_clear();
  6096. lcd.setCursor(0, 0);
  6097. lcd_printPGM(MSG_ERROR);
  6098. lcd.setCursor(0, 2);
  6099. lcd_printPGM(MSG_PREHEAT_NOZZLE);
  6100. delay(2000);
  6101. lcd_implementation_clear();
  6102. lcd_update_enable(true);
  6103. }
  6104. }
  6105. }
  6106. else
  6107. fsensor_autoload_check_start();
  6108. }
  6109. else
  6110. if (fsensor_autoload_enabled)
  6111. fsensor_autoload_check_stop();
  6112. #endif //PAT9125
  6113. #ifdef SAFETYTIMER
  6114. handleSafetyTimer();
  6115. #endif //SAFETYTIMER
  6116. #ifdef SAFETYTIMER
  6117. handleSafetyTimer();
  6118. #endif //SAFETYTIMER
  6119. #if defined(KILL_PIN) && KILL_PIN > -1
  6120. static int killCount = 0; // make the inactivity button a bit less responsive
  6121. const int KILL_DELAY = 10000;
  6122. #endif
  6123. if(buflen < (BUFSIZE-1)){
  6124. get_command();
  6125. }
  6126. if( (millis() - previous_millis_cmd) > max_inactive_time )
  6127. if(max_inactive_time)
  6128. kill("", 4);
  6129. if(stepper_inactive_time) {
  6130. if( (millis() - previous_millis_cmd) > stepper_inactive_time )
  6131. {
  6132. if(blocks_queued() == false && ignore_stepper_queue == false) {
  6133. disable_x();
  6134. // SERIAL_ECHOLNPGM("manage_inactivity - disable Y");
  6135. disable_y();
  6136. disable_z();
  6137. disable_e0();
  6138. disable_e1();
  6139. disable_e2();
  6140. }
  6141. }
  6142. }
  6143. #ifdef CHDK //Check if pin should be set to LOW after M240 set it to HIGH
  6144. if (chdkActive && (millis() - chdkHigh > CHDK_DELAY))
  6145. {
  6146. chdkActive = false;
  6147. WRITE(CHDK, LOW);
  6148. }
  6149. #endif
  6150. #if defined(KILL_PIN) && KILL_PIN > -1
  6151. // Check if the kill button was pressed and wait just in case it was an accidental
  6152. // key kill key press
  6153. // -------------------------------------------------------------------------------
  6154. if( 0 == READ(KILL_PIN) )
  6155. {
  6156. killCount++;
  6157. }
  6158. else if (killCount > 0)
  6159. {
  6160. killCount--;
  6161. }
  6162. // Exceeded threshold and we can confirm that it was not accidental
  6163. // KILL the machine
  6164. // ----------------------------------------------------------------
  6165. if ( killCount >= KILL_DELAY)
  6166. {
  6167. kill("", 5);
  6168. }
  6169. #endif
  6170. #if defined(CONTROLLERFAN_PIN) && CONTROLLERFAN_PIN > -1
  6171. controllerFan(); //Check if fan should be turned on to cool stepper drivers down
  6172. #endif
  6173. #ifdef EXTRUDER_RUNOUT_PREVENT
  6174. if( (millis() - previous_millis_cmd) > EXTRUDER_RUNOUT_SECONDS*1000 )
  6175. if(degHotend(active_extruder)>EXTRUDER_RUNOUT_MINTEMP)
  6176. {
  6177. bool oldstatus=READ(E0_ENABLE_PIN);
  6178. enable_e0();
  6179. float oldepos=current_position[E_AXIS];
  6180. float oldedes=destination[E_AXIS];
  6181. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS],
  6182. destination[E_AXIS]+EXTRUDER_RUNOUT_EXTRUDE*EXTRUDER_RUNOUT_ESTEPS/axis_steps_per_unit[E_AXIS],
  6183. EXTRUDER_RUNOUT_SPEED/60.*EXTRUDER_RUNOUT_ESTEPS/axis_steps_per_unit[E_AXIS], active_extruder);
  6184. current_position[E_AXIS]=oldepos;
  6185. destination[E_AXIS]=oldedes;
  6186. plan_set_e_position(oldepos);
  6187. previous_millis_cmd=millis();
  6188. st_synchronize();
  6189. WRITE(E0_ENABLE_PIN,oldstatus);
  6190. }
  6191. #endif
  6192. #ifdef TEMP_STAT_LEDS
  6193. handle_status_leds();
  6194. #endif
  6195. check_axes_activity();
  6196. }
  6197. void kill(const char *full_screen_message, unsigned char id)
  6198. {
  6199. SERIAL_ECHOPGM("KILL: ");
  6200. MYSERIAL.println(int(id));
  6201. //return;
  6202. cli(); // Stop interrupts
  6203. disable_heater();
  6204. disable_x();
  6205. // SERIAL_ECHOLNPGM("kill - disable Y");
  6206. disable_y();
  6207. disable_z();
  6208. disable_e0();
  6209. disable_e1();
  6210. disable_e2();
  6211. #if defined(PS_ON_PIN) && PS_ON_PIN > -1
  6212. pinMode(PS_ON_PIN,INPUT);
  6213. #endif
  6214. SERIAL_ERROR_START;
  6215. SERIAL_ERRORLNRPGM(MSG_ERR_KILLED);
  6216. if (full_screen_message != NULL) {
  6217. SERIAL_ERRORLNRPGM(full_screen_message);
  6218. lcd_display_message_fullscreen_P(full_screen_message);
  6219. } else {
  6220. LCD_ALERTMESSAGERPGM(MSG_KILLED);
  6221. }
  6222. // FMC small patch to update the LCD before ending
  6223. sei(); // enable interrupts
  6224. for ( int i=5; i--; lcd_update())
  6225. {
  6226. delay(200);
  6227. }
  6228. cli(); // disable interrupts
  6229. suicide();
  6230. while(1)
  6231. {
  6232. #ifdef WATCHDOG
  6233. wdt_reset();
  6234. #endif //WATCHDOG
  6235. /* Intentionally left empty */
  6236. } // Wait for reset
  6237. }
  6238. void Stop()
  6239. {
  6240. disable_heater();
  6241. if(Stopped == false) {
  6242. Stopped = true;
  6243. Stopped_gcode_LastN = gcode_LastN; // Save last g_code for restart
  6244. SERIAL_ERROR_START;
  6245. SERIAL_ERRORLNRPGM(MSG_ERR_STOPPED);
  6246. LCD_MESSAGERPGM(MSG_STOPPED);
  6247. }
  6248. }
  6249. bool IsStopped() { return Stopped; };
  6250. #ifdef FAST_PWM_FAN
  6251. void setPwmFrequency(uint8_t pin, int val)
  6252. {
  6253. val &= 0x07;
  6254. switch(digitalPinToTimer(pin))
  6255. {
  6256. #if defined(TCCR0A)
  6257. case TIMER0A:
  6258. case TIMER0B:
  6259. // TCCR0B &= ~(_BV(CS00) | _BV(CS01) | _BV(CS02));
  6260. // TCCR0B |= val;
  6261. break;
  6262. #endif
  6263. #if defined(TCCR1A)
  6264. case TIMER1A:
  6265. case TIMER1B:
  6266. // TCCR1B &= ~(_BV(CS10) | _BV(CS11) | _BV(CS12));
  6267. // TCCR1B |= val;
  6268. break;
  6269. #endif
  6270. #if defined(TCCR2)
  6271. case TIMER2:
  6272. case TIMER2:
  6273. TCCR2 &= ~(_BV(CS10) | _BV(CS11) | _BV(CS12));
  6274. TCCR2 |= val;
  6275. break;
  6276. #endif
  6277. #if defined(TCCR2A)
  6278. case TIMER2A:
  6279. case TIMER2B:
  6280. TCCR2B &= ~(_BV(CS20) | _BV(CS21) | _BV(CS22));
  6281. TCCR2B |= val;
  6282. break;
  6283. #endif
  6284. #if defined(TCCR3A)
  6285. case TIMER3A:
  6286. case TIMER3B:
  6287. case TIMER3C:
  6288. TCCR3B &= ~(_BV(CS30) | _BV(CS31) | _BV(CS32));
  6289. TCCR3B |= val;
  6290. break;
  6291. #endif
  6292. #if defined(TCCR4A)
  6293. case TIMER4A:
  6294. case TIMER4B:
  6295. case TIMER4C:
  6296. TCCR4B &= ~(_BV(CS40) | _BV(CS41) | _BV(CS42));
  6297. TCCR4B |= val;
  6298. break;
  6299. #endif
  6300. #if defined(TCCR5A)
  6301. case TIMER5A:
  6302. case TIMER5B:
  6303. case TIMER5C:
  6304. TCCR5B &= ~(_BV(CS50) | _BV(CS51) | _BV(CS52));
  6305. TCCR5B |= val;
  6306. break;
  6307. #endif
  6308. }
  6309. }
  6310. #endif //FAST_PWM_FAN
  6311. bool setTargetedHotend(int code){
  6312. tmp_extruder = active_extruder;
  6313. if(code_seen('T')) {
  6314. tmp_extruder = code_value();
  6315. if(tmp_extruder >= EXTRUDERS) {
  6316. SERIAL_ECHO_START;
  6317. switch(code){
  6318. case 104:
  6319. SERIAL_ECHORPGM(MSG_M104_INVALID_EXTRUDER);
  6320. break;
  6321. case 105:
  6322. SERIAL_ECHO(MSG_M105_INVALID_EXTRUDER);
  6323. break;
  6324. case 109:
  6325. SERIAL_ECHO(MSG_M109_INVALID_EXTRUDER);
  6326. break;
  6327. case 218:
  6328. SERIAL_ECHO(MSG_M218_INVALID_EXTRUDER);
  6329. break;
  6330. case 221:
  6331. SERIAL_ECHO(MSG_M221_INVALID_EXTRUDER);
  6332. break;
  6333. }
  6334. SERIAL_PROTOCOLLN((int)tmp_extruder);
  6335. return true;
  6336. }
  6337. }
  6338. return false;
  6339. }
  6340. void save_statistics(unsigned long _total_filament_used, unsigned long _total_print_time) //_total_filament_used unit: mm/100; print time in s
  6341. {
  6342. if (eeprom_read_byte((uint8_t *)EEPROM_TOTALTIME) == 255 && eeprom_read_byte((uint8_t *)EEPROM_TOTALTIME + 1) == 255 && eeprom_read_byte((uint8_t *)EEPROM_TOTALTIME + 2) == 255 && eeprom_read_byte((uint8_t *)EEPROM_TOTALTIME + 3) == 255)
  6343. {
  6344. eeprom_update_dword((uint32_t *)EEPROM_TOTALTIME, 0);
  6345. eeprom_update_dword((uint32_t *)EEPROM_FILAMENTUSED, 0);
  6346. }
  6347. unsigned long _previous_filament = eeprom_read_dword((uint32_t *)EEPROM_FILAMENTUSED); //_previous_filament unit: cm
  6348. unsigned long _previous_time = eeprom_read_dword((uint32_t *)EEPROM_TOTALTIME); //_previous_time unit: min
  6349. eeprom_update_dword((uint32_t *)EEPROM_TOTALTIME, _previous_time + (_total_print_time/60)); //EEPROM_TOTALTIME unit: min
  6350. eeprom_update_dword((uint32_t *)EEPROM_FILAMENTUSED, _previous_filament + (_total_filament_used / 1000));
  6351. total_filament_used = 0;
  6352. }
  6353. float calculate_extruder_multiplier(float diameter) {
  6354. float out = 1.f;
  6355. if (volumetric_enabled && diameter > 0.f) {
  6356. float area = M_PI * diameter * diameter * 0.25;
  6357. out = 1.f / area;
  6358. }
  6359. if (extrudemultiply != 100)
  6360. out *= float(extrudemultiply) * 0.01f;
  6361. return out;
  6362. }
  6363. void calculate_extruder_multipliers() {
  6364. extruder_multiplier[0] = calculate_extruder_multiplier(filament_size[0]);
  6365. #if EXTRUDERS > 1
  6366. extruder_multiplier[1] = calculate_extruder_multiplier(filament_size[1]);
  6367. #if EXTRUDERS > 2
  6368. extruder_multiplier[2] = calculate_extruder_multiplier(filament_size[2]);
  6369. #endif
  6370. #endif
  6371. }
  6372. void delay_keep_alive(unsigned int ms)
  6373. {
  6374. for (;;) {
  6375. manage_heater();
  6376. // Manage inactivity, but don't disable steppers on timeout.
  6377. manage_inactivity(true);
  6378. lcd_update();
  6379. if (ms == 0)
  6380. break;
  6381. else if (ms >= 50) {
  6382. delay(50);
  6383. ms -= 50;
  6384. } else {
  6385. delay(ms);
  6386. ms = 0;
  6387. }
  6388. }
  6389. }
  6390. void wait_for_heater(long codenum) {
  6391. #ifdef TEMP_RESIDENCY_TIME
  6392. long residencyStart;
  6393. residencyStart = -1;
  6394. /* continue to loop until we have reached the target temp
  6395. _and_ until TEMP_RESIDENCY_TIME hasn't passed since we reached it */
  6396. while ((!cancel_heatup) && ((residencyStart == -1) ||
  6397. (residencyStart >= 0 && (((unsigned int)(millis() - residencyStart)) < (TEMP_RESIDENCY_TIME * 1000UL))))) {
  6398. #else
  6399. while (target_direction ? (isHeatingHotend(tmp_extruder)) : (isCoolingHotend(tmp_extruder) && (CooldownNoWait == false))) {
  6400. #endif //TEMP_RESIDENCY_TIME
  6401. if ((millis() - codenum) > 1000UL)
  6402. { //Print Temp Reading and remaining time every 1 second while heating up/cooling down
  6403. if (!farm_mode) {
  6404. SERIAL_PROTOCOLPGM("T:");
  6405. SERIAL_PROTOCOL_F(degHotend(tmp_extruder), 1);
  6406. SERIAL_PROTOCOLPGM(" E:");
  6407. SERIAL_PROTOCOL((int)tmp_extruder);
  6408. #ifdef TEMP_RESIDENCY_TIME
  6409. SERIAL_PROTOCOLPGM(" W:");
  6410. if (residencyStart > -1)
  6411. {
  6412. codenum = ((TEMP_RESIDENCY_TIME * 1000UL) - (millis() - residencyStart)) / 1000UL;
  6413. SERIAL_PROTOCOLLN(codenum);
  6414. }
  6415. else
  6416. {
  6417. SERIAL_PROTOCOLLN("?");
  6418. }
  6419. }
  6420. #else
  6421. SERIAL_PROTOCOLLN("");
  6422. #endif
  6423. codenum = millis();
  6424. }
  6425. manage_heater();
  6426. manage_inactivity();
  6427. lcd_update();
  6428. #ifdef TEMP_RESIDENCY_TIME
  6429. /* start/restart the TEMP_RESIDENCY_TIME timer whenever we reach target temp for the first time
  6430. or when current temp falls outside the hysteresis after target temp was reached */
  6431. if ((residencyStart == -1 && target_direction && (degHotend(tmp_extruder) >= (degTargetHotend(tmp_extruder) - TEMP_WINDOW))) ||
  6432. (residencyStart == -1 && !target_direction && (degHotend(tmp_extruder) <= (degTargetHotend(tmp_extruder) + TEMP_WINDOW))) ||
  6433. (residencyStart > -1 && labs(degHotend(tmp_extruder) - degTargetHotend(tmp_extruder)) > TEMP_HYSTERESIS))
  6434. {
  6435. residencyStart = millis();
  6436. }
  6437. #endif //TEMP_RESIDENCY_TIME
  6438. }
  6439. }
  6440. void check_babystep() {
  6441. int babystep_z;
  6442. EEPROM_read_B(EEPROM_BABYSTEP_Z, &babystep_z);
  6443. if ((babystep_z < Z_BABYSTEP_MIN) || (babystep_z > Z_BABYSTEP_MAX)) {
  6444. babystep_z = 0; //if babystep value is out of min max range, set it to 0
  6445. SERIAL_ECHOLNPGM("Z live adjust out of range. Setting to 0");
  6446. EEPROM_save_B(EEPROM_BABYSTEP_Z, &babystep_z);
  6447. lcd_show_fullscreen_message_and_wait_P(PSTR("Z live adjust out of range. Setting to 0. Click to continue."));
  6448. lcd_update_enable(true);
  6449. }
  6450. }
  6451. #ifdef DIS
  6452. void d_setup()
  6453. {
  6454. pinMode(D_DATACLOCK, INPUT_PULLUP);
  6455. pinMode(D_DATA, INPUT_PULLUP);
  6456. pinMode(D_REQUIRE, OUTPUT);
  6457. digitalWrite(D_REQUIRE, HIGH);
  6458. }
  6459. float d_ReadData()
  6460. {
  6461. int digit[13];
  6462. String mergeOutput;
  6463. float output;
  6464. digitalWrite(D_REQUIRE, HIGH);
  6465. for (int i = 0; i<13; i++)
  6466. {
  6467. for (int j = 0; j < 4; j++)
  6468. {
  6469. while (digitalRead(D_DATACLOCK) == LOW) {}
  6470. while (digitalRead(D_DATACLOCK) == HIGH) {}
  6471. bitWrite(digit[i], j, digitalRead(D_DATA));
  6472. }
  6473. }
  6474. digitalWrite(D_REQUIRE, LOW);
  6475. mergeOutput = "";
  6476. output = 0;
  6477. for (int r = 5; r <= 10; r++) //Merge digits
  6478. {
  6479. mergeOutput += digit[r];
  6480. }
  6481. output = mergeOutput.toFloat();
  6482. if (digit[4] == 8) //Handle sign
  6483. {
  6484. output *= -1;
  6485. }
  6486. for (int i = digit[11]; i > 0; i--) //Handle floating point
  6487. {
  6488. output /= 10;
  6489. }
  6490. return output;
  6491. }
  6492. void bed_analysis(float x_dimension, float y_dimension, int x_points_num, int y_points_num, float shift_x, float shift_y) {
  6493. int t1 = 0;
  6494. int t_delay = 0;
  6495. int digit[13];
  6496. int m;
  6497. char str[3];
  6498. //String mergeOutput;
  6499. char mergeOutput[15];
  6500. float output;
  6501. int mesh_point = 0; //index number of calibration point
  6502. float bed_zero_ref_x = (-22.f + X_PROBE_OFFSET_FROM_EXTRUDER); //shift between zero point on bed and target and between probe and nozzle
  6503. float bed_zero_ref_y = (-0.6f + Y_PROBE_OFFSET_FROM_EXTRUDER);
  6504. float mesh_home_z_search = 4;
  6505. float row[x_points_num];
  6506. int ix = 0;
  6507. int iy = 0;
  6508. char* filename_wldsd = "wldsd.txt";
  6509. char data_wldsd[70];
  6510. char numb_wldsd[10];
  6511. d_setup();
  6512. if (!(axis_known_position[X_AXIS] && axis_known_position[Y_AXIS] && axis_known_position[Z_AXIS])) {
  6513. // We don't know where we are! HOME!
  6514. // Push the commands to the front of the message queue in the reverse order!
  6515. // There shall be always enough space reserved for these commands.
  6516. repeatcommand_front(); // repeat G80 with all its parameters
  6517. enquecommand_front_P((PSTR("G28 W0")));
  6518. enquecommand_front_P((PSTR("G1 Z5")));
  6519. return;
  6520. }
  6521. bool custom_message_old = custom_message;
  6522. unsigned int custom_message_type_old = custom_message_type;
  6523. unsigned int custom_message_state_old = custom_message_state;
  6524. custom_message = true;
  6525. custom_message_type = 1;
  6526. custom_message_state = (x_points_num * y_points_num) + 10;
  6527. lcd_update(1);
  6528. mbl.reset();
  6529. babystep_undo();
  6530. card.openFile(filename_wldsd, false);
  6531. current_position[Z_AXIS] = mesh_home_z_search;
  6532. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[Z_AXIS] / 60, active_extruder);
  6533. int XY_AXIS_FEEDRATE = homing_feedrate[X_AXIS] / 20;
  6534. int Z_PROBE_FEEDRATE = homing_feedrate[Z_AXIS] / 60;
  6535. int Z_LIFT_FEEDRATE = homing_feedrate[Z_AXIS] / 40;
  6536. setup_for_endstop_move(false);
  6537. SERIAL_PROTOCOLPGM("Num X,Y: ");
  6538. SERIAL_PROTOCOL(x_points_num);
  6539. SERIAL_PROTOCOLPGM(",");
  6540. SERIAL_PROTOCOL(y_points_num);
  6541. SERIAL_PROTOCOLPGM("\nZ search height: ");
  6542. SERIAL_PROTOCOL(mesh_home_z_search);
  6543. SERIAL_PROTOCOLPGM("\nDimension X,Y: ");
  6544. SERIAL_PROTOCOL(x_dimension);
  6545. SERIAL_PROTOCOLPGM(",");
  6546. SERIAL_PROTOCOL(y_dimension);
  6547. SERIAL_PROTOCOLLNPGM("\nMeasured points:");
  6548. while (mesh_point != x_points_num * y_points_num) {
  6549. ix = mesh_point % x_points_num; // from 0 to MESH_NUM_X_POINTS - 1
  6550. iy = mesh_point / x_points_num;
  6551. if (iy & 1) ix = (x_points_num - 1) - ix; // Zig zag
  6552. float z0 = 0.f;
  6553. current_position[Z_AXIS] = mesh_home_z_search;
  6554. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], Z_LIFT_FEEDRATE, active_extruder);
  6555. st_synchronize();
  6556. current_position[X_AXIS] = 13.f + ix * (x_dimension / (x_points_num - 1)) - bed_zero_ref_x + shift_x;
  6557. current_position[Y_AXIS] = 6.4f + iy * (y_dimension / (y_points_num - 1)) - bed_zero_ref_y + shift_y;
  6558. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], XY_AXIS_FEEDRATE, active_extruder);
  6559. st_synchronize();
  6560. if (!find_bed_induction_sensor_point_z(-10.f)) { //if we have data from z calibration max allowed difference is 1mm for each point, if we dont have data max difference is 10mm from initial point
  6561. break;
  6562. card.closefile();
  6563. }
  6564. //memset(numb_wldsd, 0, sizeof(numb_wldsd));
  6565. //dtostrf(d_ReadData(), 8, 5, numb_wldsd);
  6566. //strcat(data_wldsd, numb_wldsd);
  6567. //MYSERIAL.println(data_wldsd);
  6568. //delay(1000);
  6569. //delay(3000);
  6570. //t1 = millis();
  6571. //while (digitalRead(D_DATACLOCK) == LOW) {}
  6572. //while (digitalRead(D_DATACLOCK) == HIGH) {}
  6573. memset(digit, 0, sizeof(digit));
  6574. //cli();
  6575. digitalWrite(D_REQUIRE, LOW);
  6576. for (int i = 0; i<13; i++)
  6577. {
  6578. //t1 = millis();
  6579. for (int j = 0; j < 4; j++)
  6580. {
  6581. while (digitalRead(D_DATACLOCK) == LOW) {}
  6582. while (digitalRead(D_DATACLOCK) == HIGH) {}
  6583. bitWrite(digit[i], j, digitalRead(D_DATA));
  6584. }
  6585. //t_delay = (millis() - t1);
  6586. //SERIAL_PROTOCOLPGM(" ");
  6587. //SERIAL_PROTOCOL_F(t_delay, 5);
  6588. //SERIAL_PROTOCOLPGM(" ");
  6589. }
  6590. //sei();
  6591. digitalWrite(D_REQUIRE, HIGH);
  6592. mergeOutput[0] = '\0';
  6593. output = 0;
  6594. for (int r = 5; r <= 10; r++) //Merge digits
  6595. {
  6596. sprintf(str, "%d", digit[r]);
  6597. strcat(mergeOutput, str);
  6598. }
  6599. output = atof(mergeOutput);
  6600. if (digit[4] == 8) //Handle sign
  6601. {
  6602. output *= -1;
  6603. }
  6604. for (int i = digit[11]; i > 0; i--) //Handle floating point
  6605. {
  6606. output *= 0.1;
  6607. }
  6608. //output = d_ReadData();
  6609. //row[ix] = current_position[Z_AXIS];
  6610. memset(data_wldsd, 0, sizeof(data_wldsd));
  6611. for (int i = 0; i <3; i++) {
  6612. memset(numb_wldsd, 0, sizeof(numb_wldsd));
  6613. dtostrf(current_position[i], 8, 5, numb_wldsd);
  6614. strcat(data_wldsd, numb_wldsd);
  6615. strcat(data_wldsd, ";");
  6616. }
  6617. memset(numb_wldsd, 0, sizeof(numb_wldsd));
  6618. dtostrf(output, 8, 5, numb_wldsd);
  6619. strcat(data_wldsd, numb_wldsd);
  6620. //strcat(data_wldsd, ";");
  6621. card.write_command(data_wldsd);
  6622. //row[ix] = d_ReadData();
  6623. row[ix] = output; // current_position[Z_AXIS];
  6624. if (iy % 2 == 1 ? ix == 0 : ix == x_points_num - 1) {
  6625. for (int i = 0; i < x_points_num; i++) {
  6626. SERIAL_PROTOCOLPGM(" ");
  6627. SERIAL_PROTOCOL_F(row[i], 5);
  6628. }
  6629. SERIAL_PROTOCOLPGM("\n");
  6630. }
  6631. custom_message_state--;
  6632. mesh_point++;
  6633. lcd_update(1);
  6634. }
  6635. card.closefile();
  6636. }
  6637. #endif
  6638. void temp_compensation_start() {
  6639. custom_message = true;
  6640. custom_message_type = 5;
  6641. custom_message_state = PINDA_HEAT_T + 1;
  6642. lcd_update(2);
  6643. if (degHotend(active_extruder) > EXTRUDE_MINTEMP) {
  6644. current_position[E_AXIS] -= DEFAULT_RETRACTION;
  6645. }
  6646. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400, active_extruder);
  6647. current_position[X_AXIS] = PINDA_PREHEAT_X;
  6648. current_position[Y_AXIS] = PINDA_PREHEAT_Y;
  6649. current_position[Z_AXIS] = PINDA_PREHEAT_Z;
  6650. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  6651. st_synchronize();
  6652. while (fabs(degBed() - target_temperature_bed) > 1) delay_keep_alive(1000);
  6653. for (int i = 0; i < PINDA_HEAT_T; i++) {
  6654. delay_keep_alive(1000);
  6655. custom_message_state = PINDA_HEAT_T - i;
  6656. if (custom_message_state == 99 || custom_message_state == 9) lcd_update(2); //force whole display redraw if number of digits changed
  6657. else lcd_update(1);
  6658. }
  6659. custom_message_type = 0;
  6660. custom_message_state = 0;
  6661. custom_message = false;
  6662. }
  6663. void temp_compensation_apply() {
  6664. int i_add;
  6665. int compensation_value;
  6666. int z_shift = 0;
  6667. float z_shift_mm;
  6668. if (calibration_status() == CALIBRATION_STATUS_CALIBRATED) {
  6669. if (target_temperature_bed % 10 == 0 && target_temperature_bed >= 60 && target_temperature_bed <= 100) {
  6670. i_add = (target_temperature_bed - 60) / 10;
  6671. EEPROM_read_B(EEPROM_PROBE_TEMP_SHIFT + i_add * 2, &z_shift);
  6672. z_shift_mm = z_shift / axis_steps_per_unit[Z_AXIS];
  6673. }else {
  6674. //interpolation
  6675. z_shift_mm = temp_comp_interpolation(target_temperature_bed) / axis_steps_per_unit[Z_AXIS];
  6676. }
  6677. SERIAL_PROTOCOLPGM("\n");
  6678. SERIAL_PROTOCOLPGM("Z shift applied:");
  6679. MYSERIAL.print(z_shift_mm);
  6680. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS] - z_shift_mm, current_position[E_AXIS], homing_feedrate[Z_AXIS] / 40, active_extruder);
  6681. st_synchronize();
  6682. plan_set_z_position(current_position[Z_AXIS]);
  6683. }
  6684. else {
  6685. //we have no temp compensation data
  6686. }
  6687. }
  6688. float temp_comp_interpolation(float inp_temperature) {
  6689. //cubic spline interpolation
  6690. int n, i, j, k;
  6691. float h[10], a, b, c, d, sum, s[10] = { 0 }, x[10], F[10], f[10], m[10][10] = { 0 }, temp;
  6692. int shift[10];
  6693. int temp_C[10];
  6694. n = 6; //number of measured points
  6695. shift[0] = 0;
  6696. for (i = 0; i < n; i++) {
  6697. if (i>0) EEPROM_read_B(EEPROM_PROBE_TEMP_SHIFT + (i-1) * 2, &shift[i]); //read shift in steps from EEPROM
  6698. temp_C[i] = 50 + i * 10; //temperature in C
  6699. #ifdef PINDA_THERMISTOR
  6700. temp_C[i] = 35 + i * 5; //temperature in C
  6701. #else
  6702. temp_C[i] = 50 + i * 10; //temperature in C
  6703. #endif
  6704. x[i] = (float)temp_C[i];
  6705. f[i] = (float)shift[i];
  6706. }
  6707. if (inp_temperature < x[0]) return 0;
  6708. for (i = n - 1; i>0; i--) {
  6709. F[i] = (f[i] - f[i - 1]) / (x[i] - x[i - 1]);
  6710. h[i - 1] = x[i] - x[i - 1];
  6711. }
  6712. //*********** formation of h, s , f matrix **************
  6713. for (i = 1; i<n - 1; i++) {
  6714. m[i][i] = 2 * (h[i - 1] + h[i]);
  6715. if (i != 1) {
  6716. m[i][i - 1] = h[i - 1];
  6717. m[i - 1][i] = h[i - 1];
  6718. }
  6719. m[i][n - 1] = 6 * (F[i + 1] - F[i]);
  6720. }
  6721. //*********** forward elimination **************
  6722. for (i = 1; i<n - 2; i++) {
  6723. temp = (m[i + 1][i] / m[i][i]);
  6724. for (j = 1; j <= n - 1; j++)
  6725. m[i + 1][j] -= temp*m[i][j];
  6726. }
  6727. //*********** backward substitution *********
  6728. for (i = n - 2; i>0; i--) {
  6729. sum = 0;
  6730. for (j = i; j <= n - 2; j++)
  6731. sum += m[i][j] * s[j];
  6732. s[i] = (m[i][n - 1] - sum) / m[i][i];
  6733. }
  6734. for (i = 0; i<n - 1; i++)
  6735. if ((x[i] <= inp_temperature && inp_temperature <= x[i + 1]) || (i == n-2 && inp_temperature > x[i + 1])) {
  6736. a = (s[i + 1] - s[i]) / (6 * h[i]);
  6737. b = s[i] / 2;
  6738. c = (f[i + 1] - f[i]) / h[i] - (2 * h[i] * s[i] + s[i + 1] * h[i]) / 6;
  6739. d = f[i];
  6740. sum = a*pow((inp_temperature - x[i]), 3) + b*pow((inp_temperature - x[i]), 2) + c*(inp_temperature - x[i]) + d;
  6741. }
  6742. return sum;
  6743. }
  6744. #ifdef PINDA_THERMISTOR
  6745. float temp_compensation_pinda_thermistor_offset(float temperature_pinda)
  6746. {
  6747. if (!temp_cal_active) return 0;
  6748. if (!calibration_status_pinda()) return 0;
  6749. return temp_comp_interpolation(temperature_pinda) / axis_steps_per_unit[Z_AXIS];
  6750. }
  6751. #endif //PINDA_THERMISTOR
  6752. void long_pause() //long pause print
  6753. {
  6754. st_synchronize();
  6755. //save currently set parameters to global variables
  6756. saved_feedmultiply = feedmultiply;
  6757. HotendTempBckp = degTargetHotend(active_extruder);
  6758. fanSpeedBckp = fanSpeed;
  6759. start_pause_print = millis();
  6760. //save position
  6761. pause_lastpos[X_AXIS] = current_position[X_AXIS];
  6762. pause_lastpos[Y_AXIS] = current_position[Y_AXIS];
  6763. pause_lastpos[Z_AXIS] = current_position[Z_AXIS];
  6764. pause_lastpos[E_AXIS] = current_position[E_AXIS];
  6765. //retract
  6766. current_position[E_AXIS] -= DEFAULT_RETRACTION;
  6767. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400, active_extruder);
  6768. //lift z
  6769. current_position[Z_AXIS] += Z_PAUSE_LIFT;
  6770. if (current_position[Z_AXIS] > Z_MAX_POS) current_position[Z_AXIS] = Z_MAX_POS;
  6771. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 15, active_extruder);
  6772. //set nozzle target temperature to 0
  6773. setTargetHotend(0, 0);
  6774. setTargetHotend(0, 1);
  6775. setTargetHotend(0, 2);
  6776. //Move XY to side
  6777. current_position[X_AXIS] = X_PAUSE_POS;
  6778. current_position[Y_AXIS] = Y_PAUSE_POS;
  6779. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 50, active_extruder);
  6780. // Turn off the print fan
  6781. fanSpeed = 0;
  6782. st_synchronize();
  6783. }
  6784. void serialecho_temperatures() {
  6785. float tt = degHotend(active_extruder);
  6786. SERIAL_PROTOCOLPGM("T:");
  6787. SERIAL_PROTOCOL(tt);
  6788. SERIAL_PROTOCOLPGM(" E:");
  6789. SERIAL_PROTOCOL((int)active_extruder);
  6790. SERIAL_PROTOCOLPGM(" B:");
  6791. SERIAL_PROTOCOL_F(degBed(), 1);
  6792. SERIAL_PROTOCOLLN("");
  6793. }
  6794. extern uint32_t sdpos_atomic;
  6795. #ifdef UVLO_SUPPORT
  6796. void uvlo_()
  6797. {
  6798. unsigned long time_start = millis();
  6799. bool sd_print = card.sdprinting;
  6800. // Conserve power as soon as possible.
  6801. disable_x();
  6802. disable_y();
  6803. disable_e0();
  6804. #ifdef TMC2130
  6805. tmc2130_set_current_h(Z_AXIS, 20);
  6806. tmc2130_set_current_r(Z_AXIS, 20);
  6807. tmc2130_set_current_h(E_AXIS, 20);
  6808. tmc2130_set_current_r(E_AXIS, 20);
  6809. #endif //TMC2130
  6810. // Indicate that the interrupt has been triggered.
  6811. // SERIAL_ECHOLNPGM("UVLO");
  6812. // Read out the current Z motor microstep counter. This will be later used
  6813. // for reaching the zero full step before powering off.
  6814. uint16_t z_microsteps = 0;
  6815. #ifdef TMC2130
  6816. z_microsteps = tmc2130_rd_MSCNT(Z_TMC2130_CS);
  6817. #endif //TMC2130
  6818. // Calculate the file position, from which to resume this print.
  6819. long sd_position = sdpos_atomic; //atomic sd position of last command added in queue
  6820. {
  6821. uint16_t sdlen_planner = planner_calc_sd_length(); //length of sd commands in planner
  6822. sd_position -= sdlen_planner;
  6823. uint16_t sdlen_cmdqueue = cmdqueue_calc_sd_length(); //length of sd commands in cmdqueue
  6824. sd_position -= sdlen_cmdqueue;
  6825. if (sd_position < 0) sd_position = 0;
  6826. }
  6827. // Backup the feedrate in mm/min.
  6828. int feedrate_bckp = blocks_queued() ? (block_buffer[block_buffer_tail].nominal_speed * 60.f) : feedrate;
  6829. // After this call, the planner queue is emptied and the current_position is set to a current logical coordinate.
  6830. // The logical coordinate will likely differ from the machine coordinate if the skew calibration and mesh bed leveling
  6831. // are in action.
  6832. planner_abort_hard();
  6833. // Store the current extruder position.
  6834. eeprom_update_float((float*)(EEPROM_UVLO_CURRENT_POSITION_E), st_get_position_mm(E_AXIS));
  6835. eeprom_update_byte((uint8_t*)EEPROM_UVLO_E_ABS, axis_relative_modes[3]?0:1);
  6836. // Clean the input command queue.
  6837. cmdqueue_reset();
  6838. card.sdprinting = false;
  6839. // card.closefile();
  6840. // Enable stepper driver interrupt to move Z axis.
  6841. // This should be fine as the planner and command queues are empty and the SD card printing is disabled.
  6842. //FIXME one may want to disable serial lines at this point of time to avoid interfering with the command queue,
  6843. // though it should not happen that the command queue is touched as the plan_buffer_line always succeed without blocking.
  6844. sei();
  6845. plan_buffer_line(
  6846. current_position[X_AXIS],
  6847. current_position[Y_AXIS],
  6848. current_position[Z_AXIS],
  6849. current_position[E_AXIS] - DEFAULT_RETRACTION,
  6850. 95, active_extruder);
  6851. st_synchronize();
  6852. disable_e0();
  6853. plan_buffer_line(
  6854. current_position[X_AXIS],
  6855. current_position[Y_AXIS],
  6856. current_position[Z_AXIS] + UVLO_Z_AXIS_SHIFT + float((1024 - z_microsteps + 7) >> 4) / axis_steps_per_unit[Z_AXIS],
  6857. current_position[E_AXIS] - DEFAULT_RETRACTION,
  6858. 40, active_extruder);
  6859. st_synchronize();
  6860. disable_e0();
  6861. plan_buffer_line(
  6862. current_position[X_AXIS],
  6863. current_position[Y_AXIS],
  6864. current_position[Z_AXIS] + UVLO_Z_AXIS_SHIFT + float((1024 - z_microsteps + 7) >> 4) / axis_steps_per_unit[Z_AXIS],
  6865. current_position[E_AXIS] - DEFAULT_RETRACTION,
  6866. 40, active_extruder);
  6867. st_synchronize();
  6868. disable_e0();
  6869. disable_z();
  6870. // Move Z up to the next 0th full step.
  6871. // Write the file position.
  6872. eeprom_update_dword((uint32_t*)(EEPROM_FILE_POSITION), sd_position);
  6873. // Store the mesh bed leveling offsets. This is 2*9=18 bytes, which takes 18*3.4us=52us in worst case.
  6874. for (int8_t mesh_point = 0; mesh_point < 9; ++ mesh_point) {
  6875. uint8_t ix = mesh_point % MESH_MEAS_NUM_X_POINTS; // from 0 to MESH_NUM_X_POINTS - 1
  6876. uint8_t iy = mesh_point / MESH_MEAS_NUM_X_POINTS;
  6877. // Scale the z value to 1u resolution.
  6878. int16_t v = mbl.active ? int16_t(floor(mbl.z_values[iy*3][ix*3] * 1000.f + 0.5f)) : 0;
  6879. eeprom_update_word((uint16_t*)(EEPROM_UVLO_MESH_BED_LEVELING+2*mesh_point), *reinterpret_cast<uint16_t*>(&v));
  6880. }
  6881. // Read out the current Z motor microstep counter. This will be later used
  6882. // for reaching the zero full step before powering off.
  6883. eeprom_update_word((uint16_t*)(EEPROM_UVLO_Z_MICROSTEPS), z_microsteps);
  6884. // Store the current position.
  6885. eeprom_update_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 0), current_position[X_AXIS]);
  6886. eeprom_update_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 4), current_position[Y_AXIS]);
  6887. eeprom_update_float((float*)(EEPROM_UVLO_CURRENT_POSITION_Z), current_position[Z_AXIS]);
  6888. // Store the current feed rate, temperatures and fan speed.
  6889. EEPROM_save_B(EEPROM_UVLO_FEEDRATE, &feedrate_bckp);
  6890. eeprom_update_byte((uint8_t*)EEPROM_UVLO_TARGET_HOTEND, target_temperature[active_extruder]);
  6891. eeprom_update_byte((uint8_t*)EEPROM_UVLO_TARGET_BED, target_temperature_bed);
  6892. eeprom_update_byte((uint8_t*)EEPROM_UVLO_FAN_SPEED, fanSpeed);
  6893. // Finaly store the "power outage" flag.
  6894. if(sd_print) eeprom_update_byte((uint8_t*)EEPROM_UVLO, 1);
  6895. st_synchronize();
  6896. SERIAL_ECHOPGM("stps");
  6897. MYSERIAL.println(tmc2130_rd_MSCNT(Z_AXIS));
  6898. disable_z();
  6899. // Increment power failure counter
  6900. eeprom_update_byte((uint8_t*)EEPROM_POWER_COUNT, eeprom_read_byte((uint8_t*)EEPROM_POWER_COUNT) + 1);
  6901. eeprom_update_word((uint16_t*)EEPROM_POWER_COUNT_TOT, eeprom_read_word((uint16_t*)EEPROM_POWER_COUNT_TOT) + 1);
  6902. SERIAL_ECHOLNPGM("UVLO - end");
  6903. MYSERIAL.println(millis() - time_start);
  6904. #if 0
  6905. // Move the print head to the side of the print until all the power stored in the power supply capacitors is depleted.
  6906. current_position[X_AXIS] = (current_position[X_AXIS] < 0.5f * (X_MIN_POS + X_MAX_POS)) ? X_MIN_POS : X_MAX_POS;
  6907. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 500, active_extruder);
  6908. st_synchronize();
  6909. #endif
  6910. cli();
  6911. volatile unsigned int ppcount = 0;
  6912. SET_OUTPUT(BEEPER);
  6913. WRITE(BEEPER, HIGH);
  6914. for(ppcount = 0; ppcount < 2000; ppcount ++){
  6915. asm("nop");//50ns on 20Mhz, 62.5ns on 16Mhz
  6916. }
  6917. WRITE(BEEPER, LOW);
  6918. while(1){
  6919. #if 1
  6920. WRITE(BEEPER, LOW);
  6921. for(ppcount = 0; ppcount < 8000; ppcount ++){
  6922. asm("nop");//50ns on 20Mhz, 62.5ns on 16Mhz
  6923. }
  6924. #endif
  6925. };
  6926. }
  6927. #endif //UVLO_SUPPORT
  6928. #if (defined(FANCHECK) && defined(TACH_1) && (TACH_1 >-1))
  6929. void setup_fan_interrupt() {
  6930. //INT7
  6931. DDRE &= ~(1 << 7); //input pin
  6932. PORTE &= ~(1 << 7); //no internal pull-up
  6933. //start with sensing rising edge
  6934. EICRB &= ~(1 << 6);
  6935. EICRB |= (1 << 7);
  6936. //enable INT7 interrupt
  6937. EIMSK |= (1 << 7);
  6938. }
  6939. // The fan interrupt is triggered at maximum 325Hz (may be a bit more due to component tollerances),
  6940. // and it takes 4.24 us to process (the interrupt invocation overhead not taken into account).
  6941. ISR(INT7_vect) {
  6942. //measuring speed now works for fanSpeed > 18 (approximately), which is sufficient because MIN_PRINT_FAN_SPEED is higher
  6943. if (fanSpeed < MIN_PRINT_FAN_SPEED) return;
  6944. if ((1 << 6) & EICRB) { //interrupt was triggered by rising edge
  6945. t_fan_rising_edge = millis_nc();
  6946. }
  6947. else { //interrupt was triggered by falling edge
  6948. if ((millis_nc() - t_fan_rising_edge) >= FAN_PULSE_WIDTH_LIMIT) {//this pulse was from sensor and not from pwm
  6949. fan_edge_counter[1] += 2; //we are currently counting all edges so lets count two edges for one pulse
  6950. }
  6951. }
  6952. EICRB ^= (1 << 6); //change edge
  6953. }
  6954. #endif
  6955. #ifdef UVLO_SUPPORT
  6956. void setup_uvlo_interrupt() {
  6957. DDRE &= ~(1 << 4); //input pin
  6958. PORTE &= ~(1 << 4); //no internal pull-up
  6959. //sensing falling edge
  6960. EICRB |= (1 << 0);
  6961. EICRB &= ~(1 << 1);
  6962. //enable INT4 interrupt
  6963. EIMSK |= (1 << 4);
  6964. }
  6965. ISR(INT4_vect) {
  6966. EIMSK &= ~(1 << 4); //disable INT4 interrupt to make sure that this code will be executed just once
  6967. SERIAL_ECHOLNPGM("INT4");
  6968. if (IS_SD_PRINTING) uvlo_();
  6969. }
  6970. void recover_print(uint8_t automatic) {
  6971. char cmd[30];
  6972. lcd_update_enable(true);
  6973. lcd_update(2);
  6974. lcd_setstatuspgm(MSG_RECOVERING_PRINT);
  6975. recover_machine_state_after_power_panic();
  6976. // Set the target bed and nozzle temperatures.
  6977. sprintf_P(cmd, PSTR("M104 S%d"), target_temperature[active_extruder]);
  6978. enquecommand(cmd);
  6979. sprintf_P(cmd, PSTR("M140 S%d"), target_temperature_bed);
  6980. enquecommand(cmd);
  6981. // Lift the print head, so one may remove the excess priming material.
  6982. if (current_position[Z_AXIS] < 25)
  6983. enquecommand_P(PSTR("G1 Z25 F800"));
  6984. // Home X and Y axes. Homing just X and Y shall not touch the babystep and the world2machine transformation status.
  6985. enquecommand_P(PSTR("G28 X Y"));
  6986. // Set the target bed and nozzle temperatures and wait.
  6987. sprintf_P(cmd, PSTR("M109 S%d"), target_temperature[active_extruder]);
  6988. enquecommand(cmd);
  6989. sprintf_P(cmd, PSTR("M190 S%d"), target_temperature_bed);
  6990. enquecommand(cmd);
  6991. enquecommand_P(PSTR("M83")); //E axis relative mode
  6992. //enquecommand_P(PSTR("G1 E5 F120")); //Extrude some filament to stabilize pessure
  6993. // If not automatically recoreverd (long power loss), extrude extra filament to stabilize
  6994. if(automatic == 0){
  6995. enquecommand_P(PSTR("G1 E5 F120")); //Extrude some filament to stabilize pessure
  6996. }
  6997. enquecommand_P(PSTR("G1 E" STRINGIFY(-DEFAULT_RETRACTION)" F480"));
  6998. // Mark the power panic status as inactive.
  6999. eeprom_update_byte((uint8_t*)EEPROM_UVLO, 0);
  7000. /*while ((abs(degHotend(0)- target_temperature[0])>5) || (abs(degBed() -target_temperature_bed)>3)) { //wait for heater and bed to reach target temp
  7001. delay_keep_alive(1000);
  7002. }*/
  7003. SERIAL_ECHOPGM("After waiting for temp:");
  7004. SERIAL_ECHOPGM("Current position X_AXIS:");
  7005. MYSERIAL.println(current_position[X_AXIS]);
  7006. SERIAL_ECHOPGM("Current position Y_AXIS:");
  7007. MYSERIAL.println(current_position[Y_AXIS]);
  7008. // Restart the print.
  7009. restore_print_from_eeprom();
  7010. SERIAL_ECHOPGM("current_position[Z_AXIS]:");
  7011. MYSERIAL.print(current_position[Z_AXIS]);
  7012. SERIAL_ECHOPGM("current_position[E_AXIS]:");
  7013. MYSERIAL.print(current_position[E_AXIS]);
  7014. }
  7015. void recover_machine_state_after_power_panic()
  7016. {
  7017. char cmd[30];
  7018. // 1) Recover the logical cordinates at the time of the power panic.
  7019. // The logical XY coordinates are needed to recover the machine Z coordinate corrected by the mesh bed leveling.
  7020. current_position[X_AXIS] = eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 0));
  7021. current_position[Y_AXIS] = eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 4));
  7022. // Recover the logical coordinate of the Z axis at the time of the power panic.
  7023. // The current position after power panic is moved to the next closest 0th full step.
  7024. current_position[Z_AXIS] = eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION_Z)) +
  7025. UVLO_Z_AXIS_SHIFT + float((1024 - eeprom_read_word((uint16_t*)(EEPROM_UVLO_Z_MICROSTEPS)) + 7) >> 4) / axis_steps_per_unit[Z_AXIS];
  7026. if (eeprom_read_byte((uint8_t*)EEPROM_UVLO_E_ABS)) {
  7027. current_position[E_AXIS] = eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION_E));
  7028. sprintf_P(cmd, PSTR("G92 E"));
  7029. dtostrf(current_position[E_AXIS], 6, 3, cmd + strlen(cmd));
  7030. enquecommand(cmd);
  7031. }
  7032. memcpy(destination, current_position, sizeof(destination));
  7033. SERIAL_ECHOPGM("recover_machine_state_after_power_panic, initial ");
  7034. print_world_coordinates();
  7035. // 2) Initialize the logical to physical coordinate system transformation.
  7036. world2machine_initialize();
  7037. // 3) Restore the mesh bed leveling offsets. This is 2*9=18 bytes, which takes 18*3.4us=52us in worst case.
  7038. mbl.active = false;
  7039. for (int8_t mesh_point = 0; mesh_point < 9; ++ mesh_point) {
  7040. uint8_t ix = mesh_point % MESH_MEAS_NUM_X_POINTS; // from 0 to MESH_NUM_X_POINTS - 1
  7041. uint8_t iy = mesh_point / MESH_MEAS_NUM_X_POINTS;
  7042. // Scale the z value to 10u resolution.
  7043. int16_t v;
  7044. eeprom_read_block(&v, (void*)(EEPROM_UVLO_MESH_BED_LEVELING+2*mesh_point), 2);
  7045. if (v != 0)
  7046. mbl.active = true;
  7047. mbl.z_values[iy][ix] = float(v) * 0.001f;
  7048. }
  7049. if (mbl.active)
  7050. mbl.upsample_3x3();
  7051. // SERIAL_ECHOPGM("recover_machine_state_after_power_panic, initial ");
  7052. // print_mesh_bed_leveling_table();
  7053. // 4) Load the baby stepping value, which is expected to be active at the time of power panic.
  7054. // The baby stepping value is used to reset the physical Z axis when rehoming the Z axis.
  7055. babystep_load();
  7056. // 5) Set the physical positions from the logical positions using the world2machine transformation and the active bed leveling.
  7057. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  7058. // 6) Power up the motors, mark their positions as known.
  7059. //FIXME Verfiy, whether the X and Y axes should be powered up here, as they will later be re-homed anyway.
  7060. axis_known_position[X_AXIS] = true; enable_x();
  7061. axis_known_position[Y_AXIS] = true; enable_y();
  7062. axis_known_position[Z_AXIS] = true; enable_z();
  7063. SERIAL_ECHOPGM("recover_machine_state_after_power_panic, initial ");
  7064. print_physical_coordinates();
  7065. // 7) Recover the target temperatures.
  7066. target_temperature[active_extruder] = eeprom_read_byte((uint8_t*)EEPROM_UVLO_TARGET_HOTEND);
  7067. target_temperature_bed = eeprom_read_byte((uint8_t*)EEPROM_UVLO_TARGET_BED);
  7068. }
  7069. void restore_print_from_eeprom() {
  7070. float x_rec, y_rec, z_pos;
  7071. int feedrate_rec;
  7072. uint8_t fan_speed_rec;
  7073. char cmd[30];
  7074. char* c;
  7075. char filename[13];
  7076. uint8_t depth = 0;
  7077. char dir_name[9];
  7078. fan_speed_rec = eeprom_read_byte((uint8_t*)EEPROM_UVLO_FAN_SPEED);
  7079. EEPROM_read_B(EEPROM_UVLO_FEEDRATE, &feedrate_rec);
  7080. SERIAL_ECHOPGM("Feedrate:");
  7081. MYSERIAL.println(feedrate_rec);
  7082. depth = eeprom_read_byte((uint8_t*)EEPROM_DIR_DEPTH);
  7083. MYSERIAL.println(int(depth));
  7084. for (int i = 0; i < depth; i++) {
  7085. for (int j = 0; j < 8; j++) {
  7086. dir_name[j] = eeprom_read_byte((uint8_t*)EEPROM_DIRS + j + 8 * i);
  7087. }
  7088. dir_name[8] = '\0';
  7089. MYSERIAL.println(dir_name);
  7090. card.chdir(dir_name);
  7091. }
  7092. for (int i = 0; i < 8; i++) {
  7093. filename[i] = eeprom_read_byte((uint8_t*)EEPROM_FILENAME + i);
  7094. }
  7095. filename[8] = '\0';
  7096. MYSERIAL.print(filename);
  7097. strcat_P(filename, PSTR(".gco"));
  7098. sprintf_P(cmd, PSTR("M23 %s"), filename);
  7099. for (c = &cmd[4]; *c; c++)
  7100. *c = tolower(*c);
  7101. enquecommand(cmd);
  7102. uint32_t position = eeprom_read_dword((uint32_t*)(EEPROM_FILE_POSITION));
  7103. SERIAL_ECHOPGM("Position read from eeprom:");
  7104. MYSERIAL.println(position);
  7105. // E axis relative mode.
  7106. enquecommand_P(PSTR("M83"));
  7107. // Move to the XY print position in logical coordinates, where the print has been killed.
  7108. strcpy_P(cmd, PSTR("G1 X")); strcat(cmd, ftostr32(eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 0))));
  7109. strcat_P(cmd, PSTR(" Y")); strcat(cmd, ftostr32(eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 4))));
  7110. strcat_P(cmd, PSTR(" F2000"));
  7111. enquecommand(cmd);
  7112. // Move the Z axis down to the print, in logical coordinates.
  7113. strcpy_P(cmd, PSTR("G1 Z")); strcat(cmd, ftostr32(eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION_Z))));
  7114. enquecommand(cmd);
  7115. // Unretract.
  7116. enquecommand_P(PSTR("G1 E" STRINGIFY(2*DEFAULT_RETRACTION)" F480"));
  7117. // Set the feedrate saved at the power panic.
  7118. sprintf_P(cmd, PSTR("G1 F%d"), feedrate_rec);
  7119. enquecommand(cmd);
  7120. if (eeprom_read_byte((uint8_t*)EEPROM_UVLO_E_ABS))
  7121. {
  7122. float extruder_abs_pos = eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION_E));
  7123. enquecommand_P(PSTR("M82")); //E axis abslute mode
  7124. }
  7125. // Set the fan speed saved at the power panic.
  7126. strcpy_P(cmd, PSTR("M106 S"));
  7127. strcat(cmd, itostr3(int(fan_speed_rec)));
  7128. enquecommand(cmd);
  7129. // Set a position in the file.
  7130. sprintf_P(cmd, PSTR("M26 S%lu"), position);
  7131. enquecommand(cmd);
  7132. // Start SD print.
  7133. enquecommand_P(PSTR("M24"));
  7134. }
  7135. #endif //UVLO_SUPPORT
  7136. ////////////////////////////////////////////////////////////////////////////////
  7137. // new save/restore printing
  7138. //extern uint32_t sdpos_atomic;
  7139. bool saved_printing = false;
  7140. uint32_t saved_sdpos = 0;
  7141. float saved_pos[4] = {0, 0, 0, 0};
  7142. // Feedrate hopefully derived from an active block of the planner at the time the print has been canceled, in mm/min.
  7143. float saved_feedrate2 = 0;
  7144. uint8_t saved_active_extruder = 0;
  7145. bool saved_extruder_under_pressure = false;
  7146. void stop_and_save_print_to_ram(float z_move, float e_move)
  7147. {
  7148. if (saved_printing) return;
  7149. cli();
  7150. unsigned char nplanner_blocks = number_of_blocks();
  7151. saved_sdpos = sdpos_atomic; //atomic sd position of last command added in queue
  7152. uint16_t sdlen_planner = planner_calc_sd_length(); //length of sd commands in planner
  7153. saved_sdpos -= sdlen_planner;
  7154. uint16_t sdlen_cmdqueue = cmdqueue_calc_sd_length(); //length of sd commands in cmdqueue
  7155. saved_sdpos -= sdlen_cmdqueue;
  7156. #if 0
  7157. SERIAL_ECHOPGM("SDPOS_ATOMIC="); MYSERIAL.println(sdpos_atomic, DEC);
  7158. SERIAL_ECHOPGM("SDPOS="); MYSERIAL.println(card.get_sdpos(), DEC);
  7159. SERIAL_ECHOPGM("SDLEN_PLAN="); MYSERIAL.println(sdlen_planner, DEC);
  7160. SERIAL_ECHOPGM("SDLEN_CMDQ="); MYSERIAL.println(sdlen_cmdqueue, DEC);
  7161. SERIAL_ECHOPGM("PLANNERBLOCKS="); MYSERIAL.println(int(nplanner_blocks), DEC);
  7162. SERIAL_ECHOPGM("SDSAVED="); MYSERIAL.println(saved_sdpos, DEC);
  7163. SERIAL_ECHOPGM("SDFILELEN="); MYSERIAL.println(card.fileSize(), DEC);
  7164. {
  7165. card.setIndex(saved_sdpos);
  7166. SERIAL_ECHOLNPGM("Content of planner buffer: ");
  7167. for (unsigned int idx = 0; idx < sdlen_planner; ++ idx)
  7168. MYSERIAL.print(char(card.get()));
  7169. SERIAL_ECHOLNPGM("Content of command buffer: ");
  7170. for (unsigned int idx = 0; idx < sdlen_cmdqueue; ++ idx)
  7171. MYSERIAL.print(char(card.get()));
  7172. SERIAL_ECHOLNPGM("End of command buffer");
  7173. }
  7174. {
  7175. // Print the content of the planner buffer, line by line:
  7176. card.setIndex(saved_sdpos);
  7177. int8_t iline = 0;
  7178. for (unsigned char idx = block_buffer_tail; idx != block_buffer_head; idx = (idx + 1) & (BLOCK_BUFFER_SIZE - 1), ++ iline) {
  7179. SERIAL_ECHOPGM("Planner line (from file): ");
  7180. MYSERIAL.print(int(iline), DEC);
  7181. SERIAL_ECHOPGM(", length: ");
  7182. MYSERIAL.print(block_buffer[idx].sdlen, DEC);
  7183. SERIAL_ECHOPGM(", steps: (");
  7184. MYSERIAL.print(block_buffer[idx].steps_x, DEC);
  7185. SERIAL_ECHOPGM(",");
  7186. MYSERIAL.print(block_buffer[idx].steps_y, DEC);
  7187. SERIAL_ECHOPGM(",");
  7188. MYSERIAL.print(block_buffer[idx].steps_z, DEC);
  7189. SERIAL_ECHOPGM(",");
  7190. MYSERIAL.print(block_buffer[idx].steps_e, DEC);
  7191. SERIAL_ECHOPGM("), events: ");
  7192. MYSERIAL.println(block_buffer[idx].step_event_count, DEC);
  7193. for (int len = block_buffer[idx].sdlen; len > 0; -- len)
  7194. MYSERIAL.print(char(card.get()));
  7195. }
  7196. }
  7197. {
  7198. // Print the content of the command buffer, line by line:
  7199. int8_t iline = 0;
  7200. union {
  7201. struct {
  7202. char lo;
  7203. char hi;
  7204. } lohi;
  7205. uint16_t value;
  7206. } sdlen_single;
  7207. int _bufindr = bufindr;
  7208. for (int _buflen = buflen; _buflen > 0; ++ iline) {
  7209. if (cmdbuffer[_bufindr] == CMDBUFFER_CURRENT_TYPE_SDCARD) {
  7210. sdlen_single.lohi.lo = cmdbuffer[_bufindr + 1];
  7211. sdlen_single.lohi.hi = cmdbuffer[_bufindr + 2];
  7212. }
  7213. SERIAL_ECHOPGM("Buffer line (from buffer): ");
  7214. MYSERIAL.print(int(iline), DEC);
  7215. SERIAL_ECHOPGM(", type: ");
  7216. MYSERIAL.print(int(cmdbuffer[_bufindr]), DEC);
  7217. SERIAL_ECHOPGM(", len: ");
  7218. MYSERIAL.println(sdlen_single.value, DEC);
  7219. // Print the content of the buffer line.
  7220. MYSERIAL.println(cmdbuffer + _bufindr + CMDHDRSIZE);
  7221. SERIAL_ECHOPGM("Buffer line (from file): ");
  7222. MYSERIAL.print(int(iline), DEC);
  7223. MYSERIAL.println(int(iline), DEC);
  7224. for (; sdlen_single.value > 0; -- sdlen_single.value)
  7225. MYSERIAL.print(char(card.get()));
  7226. if (-- _buflen == 0)
  7227. break;
  7228. // First skip the current command ID and iterate up to the end of the string.
  7229. for (_bufindr += CMDHDRSIZE; cmdbuffer[_bufindr] != 0; ++ _bufindr) ;
  7230. // Second, skip the end of string null character and iterate until a nonzero command ID is found.
  7231. for (++ _bufindr; _bufindr < sizeof(cmdbuffer) && cmdbuffer[_bufindr] == 0; ++ _bufindr) ;
  7232. // If the end of the buffer was empty,
  7233. if (_bufindr == sizeof(cmdbuffer)) {
  7234. // skip to the start and find the nonzero command.
  7235. for (_bufindr = 0; cmdbuffer[_bufindr] == 0; ++ _bufindr) ;
  7236. }
  7237. }
  7238. }
  7239. #endif
  7240. #if 0
  7241. saved_feedrate2 = feedrate; //save feedrate
  7242. #else
  7243. // Try to deduce the feedrate from the first block of the planner.
  7244. // Speed is in mm/min.
  7245. saved_feedrate2 = blocks_queued() ? (block_buffer[block_buffer_tail].nominal_speed * 60.f) : feedrate;
  7246. #endif
  7247. planner_abort_hard(); //abort printing
  7248. memcpy(saved_pos, current_position, sizeof(saved_pos));
  7249. saved_active_extruder = active_extruder; //save active_extruder
  7250. saved_extruder_under_pressure = extruder_under_pressure; //extruder under pressure flag - currently unused
  7251. cmdqueue_reset(); //empty cmdqueue
  7252. card.sdprinting = false;
  7253. // card.closefile();
  7254. saved_printing = true;
  7255. // We may have missed a stepper timer interrupt. Be safe than sorry, reset the stepper timer before re-enabling interrupts.
  7256. st_reset_timer();
  7257. sei();
  7258. if ((z_move != 0) || (e_move != 0)) { // extruder or z move
  7259. #if 1
  7260. // Rather than calling plan_buffer_line directly, push the move into the command queue,
  7261. char buf[48];
  7262. strcpy_P(buf, PSTR("G1 Z"));
  7263. dtostrf(saved_pos[Z_AXIS] + z_move, 8, 3, buf + strlen(buf));
  7264. strcat_P(buf, PSTR(" E"));
  7265. // Relative extrusion
  7266. dtostrf(e_move, 6, 3, buf + strlen(buf));
  7267. strcat_P(buf, PSTR(" F"));
  7268. dtostrf(homing_feedrate[Z_AXIS], 8, 3, buf + strlen(buf));
  7269. // At this point the command queue is empty.
  7270. enquecommand(buf, false);
  7271. // If this call is invoked from the main Arduino loop() function, let the caller know that the command
  7272. // in the command queue is not the original command, but a new one, so it should not be removed from the queue.
  7273. repeatcommand_front();
  7274. #else
  7275. plan_buffer_line(saved_pos[X_AXIS], saved_pos[Y_AXIS], saved_pos[Z_AXIS] + z_move, saved_pos[E_AXIS] + e_move, homing_feedrate[Z_AXIS], active_extruder);
  7276. st_synchronize(); //wait moving
  7277. memcpy(current_position, saved_pos, sizeof(saved_pos));
  7278. memcpy(destination, current_position, sizeof(destination));
  7279. #endif
  7280. }
  7281. }
  7282. void restore_print_from_ram_and_continue(float e_move)
  7283. {
  7284. if (!saved_printing) return;
  7285. // for (int axis = X_AXIS; axis <= E_AXIS; axis++)
  7286. // current_position[axis] = st_get_position_mm(axis);
  7287. active_extruder = saved_active_extruder; //restore active_extruder
  7288. feedrate = saved_feedrate2; //restore feedrate
  7289. float e = saved_pos[E_AXIS] - e_move;
  7290. plan_set_e_position(e);
  7291. plan_buffer_line(saved_pos[X_AXIS], saved_pos[Y_AXIS], saved_pos[Z_AXIS], saved_pos[E_AXIS], homing_feedrate[Z_AXIS]/13, active_extruder);
  7292. st_synchronize();
  7293. memcpy(current_position, saved_pos, sizeof(saved_pos));
  7294. memcpy(destination, current_position, sizeof(destination));
  7295. card.setIndex(saved_sdpos);
  7296. sdpos_atomic = saved_sdpos;
  7297. card.sdprinting = true;
  7298. saved_printing = false;
  7299. printf_P(PSTR("ok\n")); //dummy response because of octoprint is waiting for this
  7300. }
  7301. void print_world_coordinates()
  7302. {
  7303. SERIAL_ECHOPGM("world coordinates: (");
  7304. MYSERIAL.print(current_position[X_AXIS], 3);
  7305. SERIAL_ECHOPGM(", ");
  7306. MYSERIAL.print(current_position[Y_AXIS], 3);
  7307. SERIAL_ECHOPGM(", ");
  7308. MYSERIAL.print(current_position[Z_AXIS], 3);
  7309. SERIAL_ECHOLNPGM(")");
  7310. }
  7311. void print_physical_coordinates()
  7312. {
  7313. SERIAL_ECHOPGM("physical coordinates: (");
  7314. MYSERIAL.print(st_get_position_mm(X_AXIS), 3);
  7315. SERIAL_ECHOPGM(", ");
  7316. MYSERIAL.print(st_get_position_mm(Y_AXIS), 3);
  7317. SERIAL_ECHOPGM(", ");
  7318. MYSERIAL.print(st_get_position_mm(Z_AXIS), 3);
  7319. SERIAL_ECHOLNPGM(")");
  7320. }
  7321. void print_mesh_bed_leveling_table()
  7322. {
  7323. SERIAL_ECHOPGM("mesh bed leveling: ");
  7324. for (int8_t y = 0; y < MESH_NUM_Y_POINTS; ++ y)
  7325. for (int8_t x = 0; x < MESH_NUM_Y_POINTS; ++ x) {
  7326. MYSERIAL.print(mbl.z_values[y][x], 3);
  7327. SERIAL_ECHOPGM(" ");
  7328. }
  7329. SERIAL_ECHOLNPGM("");
  7330. }
  7331. #define FIL_LOAD_LENGTH 60
  7332. void extr_unload2() { //unloads filament
  7333. // float tmp_motor[3] = DEFAULT_PWM_MOTOR_CURRENT;
  7334. // float tmp_motor_loud[3] = DEFAULT_PWM_MOTOR_CURRENT_LOUD;
  7335. // int8_t SilentMode;
  7336. uint8_t snmm_extruder = 0;
  7337. if (degHotend0() > EXTRUDE_MINTEMP) {
  7338. lcd_implementation_clear();
  7339. lcd_display_message_fullscreen_P(PSTR(""));
  7340. max_feedrate[E_AXIS] = 50;
  7341. lcd.setCursor(0, 0); lcd_printPGM(MSG_UNLOADING_FILAMENT);
  7342. // lcd.print(" ");
  7343. // lcd.print(snmm_extruder + 1);
  7344. lcd.setCursor(0, 2); lcd_printPGM(MSG_PLEASE_WAIT);
  7345. if (current_position[Z_AXIS] < 15) {
  7346. current_position[Z_AXIS] += 15; //lifting in Z direction to make space for extrusion
  7347. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 25, active_extruder);
  7348. }
  7349. current_position[E_AXIS] += 10; //extrusion
  7350. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 10, active_extruder);
  7351. // digipot_current(2, E_MOTOR_HIGH_CURRENT);
  7352. if (current_temperature[0] < 230) { //PLA & all other filaments
  7353. current_position[E_AXIS] += 5.4;
  7354. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2800 / 60, active_extruder);
  7355. current_position[E_AXIS] += 3.2;
  7356. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  7357. current_position[E_AXIS] += 3;
  7358. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3400 / 60, active_extruder);
  7359. }
  7360. else { //ABS
  7361. current_position[E_AXIS] += 3.1;
  7362. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2000 / 60, active_extruder);
  7363. current_position[E_AXIS] += 3.1;
  7364. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2500 / 60, active_extruder);
  7365. current_position[E_AXIS] += 4;
  7366. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  7367. /*current_position[X_AXIS] += 23; //delay
  7368. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder); //delay
  7369. current_position[X_AXIS] -= 23; //delay
  7370. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder); //delay*/
  7371. delay_keep_alive(4700);
  7372. }
  7373. max_feedrate[E_AXIS] = 80;
  7374. current_position[E_AXIS] -= (bowden_length[snmm_extruder] + 60 + FIL_LOAD_LENGTH) / 2;
  7375. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 500, active_extruder);
  7376. current_position[E_AXIS] -= (bowden_length[snmm_extruder] + 60 + FIL_LOAD_LENGTH) / 2;
  7377. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 500, active_extruder);
  7378. st_synchronize();
  7379. //digipot_init();
  7380. // if (SilentMode == 1) digipot_current(2, tmp_motor[2]); //set back to normal operation currents
  7381. // else digipot_current(2, tmp_motor_loud[2]);
  7382. lcd_update_enable(true);
  7383. // lcd_return_to_status();
  7384. max_feedrate[E_AXIS] = 50;
  7385. }
  7386. else {
  7387. lcd_implementation_clear();
  7388. lcd.setCursor(0, 0);
  7389. lcd_printPGM(MSG_ERROR);
  7390. lcd.setCursor(0, 2);
  7391. lcd_printPGM(MSG_PREHEAT_NOZZLE);
  7392. delay(2000);
  7393. lcd_implementation_clear();
  7394. }
  7395. // lcd_return_to_status();
  7396. }