temperature.cpp 53 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951
  1. /*
  2. temperature.c - temperature control
  3. Part of Marlin
  4. Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
  5. This program is free software: you can redistribute it and/or modify
  6. it under the terms of the GNU General Public License as published by
  7. the Free Software Foundation, either version 3 of the License, or
  8. (at your option) any later version.
  9. This program is distributed in the hope that it will be useful,
  10. but WITHOUT ANY WARRANTY; without even the implied warranty of
  11. MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  12. GNU General Public License for more details.
  13. You should have received a copy of the GNU General Public License
  14. along with this program. If not, see <http://www.gnu.org/licenses/>.
  15. */
  16. /*
  17. This firmware is a mashup between Sprinter and grbl.
  18. (https://github.com/kliment/Sprinter)
  19. (https://github.com/simen/grbl/tree)
  20. It has preliminary support for Matthew Roberts advance algorithm
  21. http://reprap.org/pipermail/reprap-dev/2011-May/003323.html
  22. */
  23. #include "Marlin.h"
  24. #include "ultralcd.h"
  25. #include "temperature.h"
  26. #include "watchdog.h"
  27. #include "cardreader.h"
  28. #include "Sd2PinMap.h"
  29. #include <avr/wdt.h>
  30. #include "adc.h"
  31. //===========================================================================
  32. //=============================public variables============================
  33. //===========================================================================
  34. int target_temperature[EXTRUDERS] = { 0 };
  35. int target_temperature_bed = 0;
  36. int current_temperature_raw[EXTRUDERS] = { 0 };
  37. float current_temperature[EXTRUDERS] = { 0.0 };
  38. #ifdef PINDA_THERMISTOR
  39. int current_temperature_raw_pinda = 0 ;
  40. float current_temperature_pinda = 0.0;
  41. #endif //PINDA_THERMISTOR
  42. #ifdef AMBIENT_THERMISTOR
  43. int current_temperature_raw_ambient = 0 ;
  44. float current_temperature_ambient = 0.0;
  45. #endif //AMBIENT_THERMISTOR
  46. #ifdef VOLT_PWR_PIN
  47. int current_voltage_raw_pwr = 0;
  48. #endif
  49. #ifdef VOLT_BED_PIN
  50. int current_voltage_raw_bed = 0;
  51. #endif
  52. int current_temperature_bed_raw = 0;
  53. float current_temperature_bed = 0.0;
  54. #ifdef TEMP_SENSOR_1_AS_REDUNDANT
  55. int redundant_temperature_raw = 0;
  56. float redundant_temperature = 0.0;
  57. #endif
  58. #ifdef PIDTEMP
  59. float _Kp, _Ki, _Kd;
  60. int pid_cycle, pid_number_of_cycles;
  61. bool pid_tuning_finished = false;
  62. float Kp=DEFAULT_Kp;
  63. float Ki=(DEFAULT_Ki*PID_dT);
  64. float Kd=(DEFAULT_Kd/PID_dT);
  65. #ifdef PID_ADD_EXTRUSION_RATE
  66. float Kc=DEFAULT_Kc;
  67. #endif
  68. #endif //PIDTEMP
  69. #ifdef PIDTEMPBED
  70. float bedKp=DEFAULT_bedKp;
  71. float bedKi=(DEFAULT_bedKi*PID_dT);
  72. float bedKd=(DEFAULT_bedKd/PID_dT);
  73. #endif //PIDTEMPBED
  74. #ifdef FAN_SOFT_PWM
  75. unsigned char fanSpeedSoftPwm;
  76. #endif
  77. unsigned char soft_pwm_bed;
  78. #ifdef BABYSTEPPING
  79. volatile int babystepsTodo[3]={0,0,0};
  80. #endif
  81. //===========================================================================
  82. //=============================private variables============================
  83. //===========================================================================
  84. static volatile bool temp_meas_ready = false;
  85. #ifdef PIDTEMP
  86. //static cannot be external:
  87. static float temp_iState[EXTRUDERS] = { 0 };
  88. static float temp_dState[EXTRUDERS] = { 0 };
  89. static float pTerm[EXTRUDERS];
  90. static float iTerm[EXTRUDERS];
  91. static float dTerm[EXTRUDERS];
  92. //int output;
  93. static float pid_error[EXTRUDERS];
  94. static float temp_iState_min[EXTRUDERS];
  95. static float temp_iState_max[EXTRUDERS];
  96. // static float pid_input[EXTRUDERS];
  97. // static float pid_output[EXTRUDERS];
  98. static bool pid_reset[EXTRUDERS];
  99. #endif //PIDTEMP
  100. #ifdef PIDTEMPBED
  101. //static cannot be external:
  102. static float temp_iState_bed = { 0 };
  103. static float temp_dState_bed = { 0 };
  104. static float pTerm_bed;
  105. static float iTerm_bed;
  106. static float dTerm_bed;
  107. //int output;
  108. static float pid_error_bed;
  109. static float temp_iState_min_bed;
  110. static float temp_iState_max_bed;
  111. #else //PIDTEMPBED
  112. static unsigned long previous_millis_bed_heater;
  113. #endif //PIDTEMPBED
  114. static unsigned char soft_pwm[EXTRUDERS];
  115. #ifdef FAN_SOFT_PWM
  116. static unsigned char soft_pwm_fan;
  117. #endif
  118. #if (defined(EXTRUDER_0_AUTO_FAN_PIN) && EXTRUDER_0_AUTO_FAN_PIN > -1) || \
  119. (defined(EXTRUDER_1_AUTO_FAN_PIN) && EXTRUDER_1_AUTO_FAN_PIN > -1) || \
  120. (defined(EXTRUDER_2_AUTO_FAN_PIN) && EXTRUDER_2_AUTO_FAN_PIN > -1)
  121. static unsigned long extruder_autofan_last_check;
  122. #endif
  123. #if EXTRUDERS > 3
  124. # error Unsupported number of extruders
  125. #elif EXTRUDERS > 2
  126. # define ARRAY_BY_EXTRUDERS(v1, v2, v3) { v1, v2, v3 }
  127. #elif EXTRUDERS > 1
  128. # define ARRAY_BY_EXTRUDERS(v1, v2, v3) { v1, v2 }
  129. #else
  130. # define ARRAY_BY_EXTRUDERS(v1, v2, v3) { v1 }
  131. #endif
  132. // Init min and max temp with extreme values to prevent false errors during startup
  133. static int minttemp_raw[EXTRUDERS] = ARRAY_BY_EXTRUDERS( HEATER_0_RAW_LO_TEMP , HEATER_1_RAW_LO_TEMP , HEATER_2_RAW_LO_TEMP );
  134. static int maxttemp_raw[EXTRUDERS] = ARRAY_BY_EXTRUDERS( HEATER_0_RAW_HI_TEMP , HEATER_1_RAW_HI_TEMP , HEATER_2_RAW_HI_TEMP );
  135. static int minttemp[EXTRUDERS] = ARRAY_BY_EXTRUDERS( 0, 0, 0 );
  136. static int maxttemp[EXTRUDERS] = ARRAY_BY_EXTRUDERS( 16383, 16383, 16383 );
  137. #ifdef BED_MINTEMP
  138. static int bed_minttemp_raw = HEATER_BED_RAW_LO_TEMP;
  139. #endif
  140. #ifdef BED_MAXTEMP
  141. static int bed_maxttemp_raw = HEATER_BED_RAW_HI_TEMP;
  142. #endif
  143. #ifdef TEMP_SENSOR_1_AS_REDUNDANT
  144. static void *heater_ttbl_map[2] = {(void *)HEATER_0_TEMPTABLE, (void *)HEATER_1_TEMPTABLE };
  145. static uint8_t heater_ttbllen_map[2] = { HEATER_0_TEMPTABLE_LEN, HEATER_1_TEMPTABLE_LEN };
  146. #else
  147. static void *heater_ttbl_map[EXTRUDERS] = ARRAY_BY_EXTRUDERS( (void *)HEATER_0_TEMPTABLE, (void *)HEATER_1_TEMPTABLE, (void *)HEATER_2_TEMPTABLE );
  148. static uint8_t heater_ttbllen_map[EXTRUDERS] = ARRAY_BY_EXTRUDERS( HEATER_0_TEMPTABLE_LEN, HEATER_1_TEMPTABLE_LEN, HEATER_2_TEMPTABLE_LEN );
  149. #endif
  150. static float analog2temp(int raw, uint8_t e);
  151. static float analog2tempBed(int raw);
  152. static float analog2tempAmbient(int raw);
  153. static void updateTemperaturesFromRawValues();
  154. enum TempRunawayStates
  155. {
  156. TempRunaway_INACTIVE = 0,
  157. TempRunaway_PREHEAT = 1,
  158. TempRunaway_ACTIVE = 2,
  159. };
  160. #ifdef WATCH_TEMP_PERIOD
  161. int watch_start_temp[EXTRUDERS] = ARRAY_BY_EXTRUDERS(0,0,0);
  162. unsigned long watchmillis[EXTRUDERS] = ARRAY_BY_EXTRUDERS(0,0,0);
  163. #endif //WATCH_TEMP_PERIOD
  164. #ifndef SOFT_PWM_SCALE
  165. #define SOFT_PWM_SCALE 0
  166. #endif
  167. //===========================================================================
  168. //============================= functions ============================
  169. //===========================================================================
  170. void PID_autotune(float temp, int extruder, int ncycles)
  171. {
  172. pid_number_of_cycles = ncycles;
  173. pid_tuning_finished = false;
  174. float input = 0.0;
  175. pid_cycle=0;
  176. bool heating = true;
  177. unsigned long temp_millis = millis();
  178. unsigned long t1=temp_millis;
  179. unsigned long t2=temp_millis;
  180. long t_high = 0;
  181. long t_low = 0;
  182. long bias, d;
  183. float Ku, Tu;
  184. float max = 0, min = 10000;
  185. uint8_t safety_check_cycles = 0;
  186. const uint8_t safety_check_cycles_count = (extruder < 0) ? 45 : 10; //10 cycles / 20s delay for extruder and 45 cycles / 90s for heatbed
  187. float temp_ambient;
  188. #if (defined(EXTRUDER_0_AUTO_FAN_PIN) && EXTRUDER_0_AUTO_FAN_PIN > -1) || \
  189. (defined(EXTRUDER_1_AUTO_FAN_PIN) && EXTRUDER_1_AUTO_FAN_PIN > -1) || \
  190. (defined(EXTRUDER_2_AUTO_FAN_PIN) && EXTRUDER_2_AUTO_FAN_PIN > -1)
  191. unsigned long extruder_autofan_last_check = millis();
  192. #endif
  193. if ((extruder >= EXTRUDERS)
  194. #if (TEMP_BED_PIN <= -1)
  195. ||(extruder < 0)
  196. #endif
  197. ){
  198. SERIAL_ECHOLN("PID Autotune failed. Bad extruder number.");
  199. pid_tuning_finished = true;
  200. pid_cycle = 0;
  201. return;
  202. }
  203. SERIAL_ECHOLN("PID Autotune start");
  204. disable_heater(); // switch off all heaters.
  205. if (extruder<0)
  206. {
  207. soft_pwm_bed = (MAX_BED_POWER)/2;
  208. bias = d = (MAX_BED_POWER)/2;
  209. }
  210. else
  211. {
  212. soft_pwm[extruder] = (PID_MAX)/2;
  213. bias = d = (PID_MAX)/2;
  214. }
  215. for(;;) {
  216. wdt_reset();
  217. if(temp_meas_ready == true) { // temp sample ready
  218. updateTemperaturesFromRawValues();
  219. input = (extruder<0)?current_temperature_bed:current_temperature[extruder];
  220. max=max(max,input);
  221. min=min(min,input);
  222. #if (defined(EXTRUDER_0_AUTO_FAN_PIN) && EXTRUDER_0_AUTO_FAN_PIN > -1) || \
  223. (defined(EXTRUDER_1_AUTO_FAN_PIN) && EXTRUDER_1_AUTO_FAN_PIN > -1) || \
  224. (defined(EXTRUDER_2_AUTO_FAN_PIN) && EXTRUDER_2_AUTO_FAN_PIN > -1)
  225. if(millis() - extruder_autofan_last_check > 2500) {
  226. checkExtruderAutoFans();
  227. extruder_autofan_last_check = millis();
  228. }
  229. #endif
  230. if(heating == true && input > temp) {
  231. if(millis() - t2 > 5000) {
  232. heating=false;
  233. if (extruder<0)
  234. soft_pwm_bed = (bias - d) >> 1;
  235. else
  236. soft_pwm[extruder] = (bias - d) >> 1;
  237. t1=millis();
  238. t_high=t1 - t2;
  239. max=temp;
  240. }
  241. }
  242. if(heating == false && input < temp) {
  243. if(millis() - t1 > 5000) {
  244. heating=true;
  245. t2=millis();
  246. t_low=t2 - t1;
  247. if(pid_cycle > 0) {
  248. bias += (d*(t_high - t_low))/(t_low + t_high);
  249. bias = constrain(bias, 20 ,(extruder<0?(MAX_BED_POWER):(PID_MAX))-20);
  250. if(bias > (extruder<0?(MAX_BED_POWER):(PID_MAX))/2) d = (extruder<0?(MAX_BED_POWER):(PID_MAX)) - 1 - bias;
  251. else d = bias;
  252. SERIAL_PROTOCOLPGM(" bias: "); SERIAL_PROTOCOL(bias);
  253. SERIAL_PROTOCOLPGM(" d: "); SERIAL_PROTOCOL(d);
  254. SERIAL_PROTOCOLPGM(" min: "); SERIAL_PROTOCOL(min);
  255. SERIAL_PROTOCOLPGM(" max: "); SERIAL_PROTOCOLLN(max);
  256. if(pid_cycle > 2) {
  257. Ku = (4.0*d)/(3.14159*(max-min)/2.0);
  258. Tu = ((float)(t_low + t_high)/1000.0);
  259. SERIAL_PROTOCOLPGM(" Ku: "); SERIAL_PROTOCOL(Ku);
  260. SERIAL_PROTOCOLPGM(" Tu: "); SERIAL_PROTOCOLLN(Tu);
  261. _Kp = 0.6*Ku;
  262. _Ki = 2*_Kp/Tu;
  263. _Kd = _Kp*Tu/8;
  264. SERIAL_PROTOCOLLNPGM(" Classic PID ");
  265. SERIAL_PROTOCOLPGM(" Kp: "); SERIAL_PROTOCOLLN(_Kp);
  266. SERIAL_PROTOCOLPGM(" Ki: "); SERIAL_PROTOCOLLN(_Ki);
  267. SERIAL_PROTOCOLPGM(" Kd: "); SERIAL_PROTOCOLLN(_Kd);
  268. /*
  269. _Kp = 0.33*Ku;
  270. _Ki = _Kp/Tu;
  271. _Kd = _Kp*Tu/3;
  272. SERIAL_PROTOCOLLNPGM(" Some overshoot ");
  273. SERIAL_PROTOCOLPGM(" Kp: "); SERIAL_PROTOCOLLN(_Kp);
  274. SERIAL_PROTOCOLPGM(" Ki: "); SERIAL_PROTOCOLLN(_Ki);
  275. SERIAL_PROTOCOLPGM(" Kd: "); SERIAL_PROTOCOLLN(_Kd);
  276. _Kp = 0.2*Ku;
  277. _Ki = 2*_Kp/Tu;
  278. _Kd = _Kp*Tu/3;
  279. SERIAL_PROTOCOLLNPGM(" No overshoot ");
  280. SERIAL_PROTOCOLPGM(" Kp: "); SERIAL_PROTOCOLLN(_Kp);
  281. SERIAL_PROTOCOLPGM(" Ki: "); SERIAL_PROTOCOLLN(_Ki);
  282. SERIAL_PROTOCOLPGM(" Kd: "); SERIAL_PROTOCOLLN(_Kd);
  283. */
  284. }
  285. }
  286. if (extruder<0)
  287. soft_pwm_bed = (bias + d) >> 1;
  288. else
  289. soft_pwm[extruder] = (bias + d) >> 1;
  290. pid_cycle++;
  291. min=temp;
  292. }
  293. }
  294. }
  295. if(input > (temp + 20)) {
  296. SERIAL_PROTOCOLLNPGM("PID Autotune failed! Temperature too high");
  297. pid_tuning_finished = true;
  298. pid_cycle = 0;
  299. return;
  300. }
  301. if(millis() - temp_millis > 2000) {
  302. int p;
  303. if (extruder<0){
  304. p=soft_pwm_bed;
  305. SERIAL_PROTOCOLPGM("B:");
  306. }else{
  307. p=soft_pwm[extruder];
  308. SERIAL_PROTOCOLPGM("T:");
  309. }
  310. SERIAL_PROTOCOL(input);
  311. SERIAL_PROTOCOLPGM(" @:");
  312. SERIAL_PROTOCOLLN(p);
  313. if (safety_check_cycles == 0) { //save ambient temp
  314. temp_ambient = input;
  315. //SERIAL_ECHOPGM("Ambient T: ");
  316. //MYSERIAL.println(temp_ambient);
  317. safety_check_cycles++;
  318. }
  319. else if (safety_check_cycles < safety_check_cycles_count) { //delay
  320. safety_check_cycles++;
  321. }
  322. else if (safety_check_cycles == safety_check_cycles_count){ //check that temperature is rising
  323. safety_check_cycles++;
  324. //SERIAL_ECHOPGM("Time from beginning: ");
  325. //MYSERIAL.print(safety_check_cycles_count * 2);
  326. //SERIAL_ECHOPGM("s. Difference between current and ambient T: ");
  327. //MYSERIAL.println(input - temp_ambient);
  328. if (abs(input - temp_ambient) < 5.0) {
  329. temp_runaway_stop(false, (extruder<0));
  330. pid_tuning_finished = true;
  331. return;
  332. }
  333. }
  334. temp_millis = millis();
  335. }
  336. if(((millis() - t1) + (millis() - t2)) > (10L*60L*1000L*2L)) {
  337. SERIAL_PROTOCOLLNPGM("PID Autotune failed! timeout");
  338. pid_tuning_finished = true;
  339. pid_cycle = 0;
  340. return;
  341. }
  342. if(pid_cycle > ncycles) {
  343. SERIAL_PROTOCOLLNPGM("PID Autotune finished! Put the last Kp, Ki and Kd constants from above into Configuration.h");
  344. pid_tuning_finished = true;
  345. pid_cycle = 0;
  346. return;
  347. }
  348. lcd_update();
  349. }
  350. }
  351. void updatePID()
  352. {
  353. #ifdef PIDTEMP
  354. for(int e = 0; e < EXTRUDERS; e++) {
  355. temp_iState_max[e] = PID_INTEGRAL_DRIVE_MAX / Ki;
  356. }
  357. #endif
  358. #ifdef PIDTEMPBED
  359. temp_iState_max_bed = PID_INTEGRAL_DRIVE_MAX / bedKi;
  360. #endif
  361. }
  362. int getHeaterPower(int heater) {
  363. if (heater<0)
  364. return soft_pwm_bed;
  365. return soft_pwm[heater];
  366. }
  367. #if (defined(EXTRUDER_0_AUTO_FAN_PIN) && EXTRUDER_0_AUTO_FAN_PIN > -1) || \
  368. (defined(EXTRUDER_1_AUTO_FAN_PIN) && EXTRUDER_1_AUTO_FAN_PIN > -1) || \
  369. (defined(EXTRUDER_2_AUTO_FAN_PIN) && EXTRUDER_2_AUTO_FAN_PIN > -1)
  370. #if defined(FAN_PIN) && FAN_PIN > -1
  371. #if EXTRUDER_0_AUTO_FAN_PIN == FAN_PIN
  372. #error "You cannot set EXTRUDER_0_AUTO_FAN_PIN equal to FAN_PIN"
  373. #endif
  374. #if EXTRUDER_1_AUTO_FAN_PIN == FAN_PIN
  375. #error "You cannot set EXTRUDER_1_AUTO_FAN_PIN equal to FAN_PIN"
  376. #endif
  377. #if EXTRUDER_2_AUTO_FAN_PIN == FAN_PIN
  378. #error "You cannot set EXTRUDER_2_AUTO_FAN_PIN equal to FAN_PIN"
  379. #endif
  380. #endif
  381. void setExtruderAutoFanState(int pin, bool state)
  382. {
  383. unsigned char newFanSpeed = (state != 0) ? EXTRUDER_AUTO_FAN_SPEED : 0;
  384. // this idiom allows both digital and PWM fan outputs (see M42 handling).
  385. pinMode(pin, OUTPUT);
  386. digitalWrite(pin, newFanSpeed);
  387. analogWrite(pin, newFanSpeed);
  388. }
  389. void countFanSpeed()
  390. {
  391. //SERIAL_ECHOPGM("edge counter 1:"); MYSERIAL.println(fan_edge_counter[1]);
  392. fan_speed[0] = (fan_edge_counter[0] * (float(250) / (millis() - extruder_autofan_last_check)));
  393. fan_speed[1] = (fan_edge_counter[1] * (float(250) / (millis() - extruder_autofan_last_check)));
  394. /*SERIAL_ECHOPGM("time interval: "); MYSERIAL.println(millis() - extruder_autofan_last_check);
  395. SERIAL_ECHOPGM("extruder fan speed:"); MYSERIAL.print(fan_speed[0]); SERIAL_ECHOPGM("; edge counter:"); MYSERIAL.println(fan_edge_counter[0]);
  396. SERIAL_ECHOPGM("print fan speed:"); MYSERIAL.print(fan_speed[1]); SERIAL_ECHOPGM("; edge counter:"); MYSERIAL.println(fan_edge_counter[1]);
  397. SERIAL_ECHOLNPGM(" ");*/
  398. fan_edge_counter[0] = 0;
  399. fan_edge_counter[1] = 0;
  400. }
  401. extern bool fans_check_enabled;
  402. void checkFanSpeed()
  403. {
  404. fans_check_enabled = (eeprom_read_byte((uint8_t*)EEPROM_FAN_CHECK_ENABLED) > 0);
  405. static unsigned char fan_speed_errors[2] = { 0,0 };
  406. if (fan_speed[0] == 0 && (current_temperature[0] > EXTRUDER_AUTO_FAN_TEMPERATURE)) fan_speed_errors[0]++;
  407. else fan_speed_errors[0] = 0;
  408. if ((fan_speed[1] == 0)&& (fanSpeed > MIN_PRINT_FAN_SPEED)) fan_speed_errors[1]++;
  409. else fan_speed_errors[1] = 0;
  410. if ((fan_speed_errors[0] > 5) && fans_check_enabled) fanSpeedError(0); //extruder fan
  411. if ((fan_speed_errors[1] > 15) && fans_check_enabled) fanSpeedError(1); //print fan
  412. }
  413. extern void stop_and_save_print_to_ram(float z_move, float e_move);
  414. extern void restore_print_from_ram_and_continue(float e_move);
  415. void fanSpeedError(unsigned char _fan) {
  416. if (get_message_level() != 0 && isPrintPaused) return;
  417. //to ensure that target temp. is not set to zero in case taht we are resuming print
  418. if (card.sdprinting) {
  419. if (heating_status != 0) {
  420. lcd_print_stop();
  421. }
  422. else {
  423. isPrintPaused = true;
  424. lcd_sdcard_pause();
  425. }
  426. }
  427. else {
  428. setTargetHotend0(0);
  429. SERIAL_ECHOLNPGM("// action:pause"); //for octoprint
  430. }
  431. switch (_fan) {
  432. case 0:
  433. SERIAL_ECHOLNPGM("Extruder fan speed is lower then expected");
  434. if (get_message_level() == 0) {
  435. WRITE(BEEPER, HIGH);
  436. delayMicroseconds(200);
  437. WRITE(BEEPER, LOW);
  438. delayMicroseconds(100);
  439. LCD_ALERTMESSAGEPGM("Err: EXTR. FAN ERROR");
  440. }
  441. break;
  442. case 1:
  443. SERIAL_ECHOLNPGM("Print fan speed is lower then expected");
  444. if (get_message_level() == 0) {
  445. WRITE(BEEPER, HIGH);
  446. delayMicroseconds(200);
  447. WRITE(BEEPER, LOW);
  448. delayMicroseconds(100);
  449. LCD_ALERTMESSAGEPGM("Err: PRINT FAN ERROR");
  450. }
  451. break;
  452. }
  453. }
  454. void checkExtruderAutoFans()
  455. {
  456. uint8_t fanState = 0;
  457. // which fan pins need to be turned on?
  458. #if defined(EXTRUDER_0_AUTO_FAN_PIN) && EXTRUDER_0_AUTO_FAN_PIN > -1
  459. if (current_temperature[0] > EXTRUDER_AUTO_FAN_TEMPERATURE)
  460. fanState |= 1;
  461. #endif
  462. #if defined(EXTRUDER_1_AUTO_FAN_PIN) && EXTRUDER_1_AUTO_FAN_PIN > -1
  463. if (current_temperature[1] > EXTRUDER_AUTO_FAN_TEMPERATURE)
  464. {
  465. if (EXTRUDER_1_AUTO_FAN_PIN == EXTRUDER_0_AUTO_FAN_PIN)
  466. fanState |= 1;
  467. else
  468. fanState |= 2;
  469. }
  470. #endif
  471. #if defined(EXTRUDER_2_AUTO_FAN_PIN) && EXTRUDER_2_AUTO_FAN_PIN > -1
  472. if (current_temperature[2] > EXTRUDER_AUTO_FAN_TEMPERATURE)
  473. {
  474. if (EXTRUDER_2_AUTO_FAN_PIN == EXTRUDER_0_AUTO_FAN_PIN)
  475. fanState |= 1;
  476. else if (EXTRUDER_2_AUTO_FAN_PIN == EXTRUDER_1_AUTO_FAN_PIN)
  477. fanState |= 2;
  478. else
  479. fanState |= 4;
  480. }
  481. #endif
  482. // update extruder auto fan states
  483. #if defined(EXTRUDER_0_AUTO_FAN_PIN) && EXTRUDER_0_AUTO_FAN_PIN > -1
  484. setExtruderAutoFanState(EXTRUDER_0_AUTO_FAN_PIN, (fanState & 1) != 0);
  485. #endif
  486. #if defined(EXTRUDER_1_AUTO_FAN_PIN) && EXTRUDER_1_AUTO_FAN_PIN > -1
  487. if (EXTRUDER_1_AUTO_FAN_PIN != EXTRUDER_0_AUTO_FAN_PIN)
  488. setExtruderAutoFanState(EXTRUDER_1_AUTO_FAN_PIN, (fanState & 2) != 0);
  489. #endif
  490. #if defined(EXTRUDER_2_AUTO_FAN_PIN) && EXTRUDER_2_AUTO_FAN_PIN > -1
  491. if (EXTRUDER_2_AUTO_FAN_PIN != EXTRUDER_0_AUTO_FAN_PIN
  492. && EXTRUDER_2_AUTO_FAN_PIN != EXTRUDER_1_AUTO_FAN_PIN)
  493. setExtruderAutoFanState(EXTRUDER_2_AUTO_FAN_PIN, (fanState & 4) != 0);
  494. #endif
  495. }
  496. #endif // any extruder auto fan pins set
  497. void manage_heater()
  498. {
  499. wdt_reset();
  500. float pid_input;
  501. float pid_output;
  502. if(temp_meas_ready != true) //better readability
  503. return;
  504. updateTemperaturesFromRawValues();
  505. #ifdef TEMP_RUNAWAY_BED_HYSTERESIS
  506. temp_runaway_check(0, target_temperature_bed, current_temperature_bed, (int)soft_pwm_bed, true);
  507. #endif
  508. for(int e = 0; e < EXTRUDERS; e++)
  509. {
  510. #ifdef TEMP_RUNAWAY_EXTRUDER_HYSTERESIS
  511. temp_runaway_check(e+1, target_temperature[e], current_temperature[e], (int)soft_pwm[e], false);
  512. #endif
  513. #ifdef PIDTEMP
  514. pid_input = current_temperature[e];
  515. #ifndef PID_OPENLOOP
  516. pid_error[e] = target_temperature[e] - pid_input;
  517. if(pid_error[e] > PID_FUNCTIONAL_RANGE) {
  518. pid_output = BANG_MAX;
  519. pid_reset[e] = true;
  520. }
  521. else if(pid_error[e] < -PID_FUNCTIONAL_RANGE || target_temperature[e] == 0) {
  522. pid_output = 0;
  523. pid_reset[e] = true;
  524. }
  525. else {
  526. if(pid_reset[e] == true) {
  527. temp_iState[e] = 0.0;
  528. pid_reset[e] = false;
  529. }
  530. pTerm[e] = Kp * pid_error[e];
  531. temp_iState[e] += pid_error[e];
  532. temp_iState[e] = constrain(temp_iState[e], temp_iState_min[e], temp_iState_max[e]);
  533. iTerm[e] = Ki * temp_iState[e];
  534. //K1 defined in Configuration.h in the PID settings
  535. #define K2 (1.0-K1)
  536. dTerm[e] = (Kd * (pid_input - temp_dState[e]))*K2 + (K1 * dTerm[e]);
  537. pid_output = pTerm[e] + iTerm[e] - dTerm[e];
  538. if (pid_output > PID_MAX) {
  539. if (pid_error[e] > 0 ) temp_iState[e] -= pid_error[e]; // conditional un-integration
  540. pid_output=PID_MAX;
  541. } else if (pid_output < 0){
  542. if (pid_error[e] < 0 ) temp_iState[e] -= pid_error[e]; // conditional un-integration
  543. pid_output=0;
  544. }
  545. }
  546. temp_dState[e] = pid_input;
  547. #else
  548. pid_output = constrain(target_temperature[e], 0, PID_MAX);
  549. #endif //PID_OPENLOOP
  550. #ifdef PID_DEBUG
  551. SERIAL_ECHO_START;
  552. SERIAL_ECHO(" PID_DEBUG ");
  553. SERIAL_ECHO(e);
  554. SERIAL_ECHO(": Input ");
  555. SERIAL_ECHO(pid_input);
  556. SERIAL_ECHO(" Output ");
  557. SERIAL_ECHO(pid_output);
  558. SERIAL_ECHO(" pTerm ");
  559. SERIAL_ECHO(pTerm[e]);
  560. SERIAL_ECHO(" iTerm ");
  561. SERIAL_ECHO(iTerm[e]);
  562. SERIAL_ECHO(" dTerm ");
  563. SERIAL_ECHOLN(dTerm[e]);
  564. #endif //PID_DEBUG
  565. #else /* PID off */
  566. pid_output = 0;
  567. if(current_temperature[e] < target_temperature[e]) {
  568. pid_output = PID_MAX;
  569. }
  570. #endif
  571. // Check if temperature is within the correct range
  572. if(((current_temperature_ambient < MINTEMP_MINAMBIENT) || (current_temperature[e] > minttemp[e])) && (current_temperature[e] < maxttemp[e]))
  573. {
  574. soft_pwm[e] = (int)pid_output >> 1;
  575. }
  576. else {
  577. soft_pwm[e] = 0;
  578. }
  579. #ifdef WATCH_TEMP_PERIOD
  580. if(watchmillis[e] && millis() - watchmillis[e] > WATCH_TEMP_PERIOD)
  581. {
  582. if(degHotend(e) < watch_start_temp[e] + WATCH_TEMP_INCREASE)
  583. {
  584. setTargetHotend(0, e);
  585. LCD_MESSAGEPGM("Heating failed");
  586. SERIAL_ECHO_START;
  587. SERIAL_ECHOLN("Heating failed");
  588. }else{
  589. watchmillis[e] = 0;
  590. }
  591. }
  592. #endif
  593. #ifdef TEMP_SENSOR_1_AS_REDUNDANT
  594. if(fabs(current_temperature[0] - redundant_temperature) > MAX_REDUNDANT_TEMP_SENSOR_DIFF) {
  595. disable_heater();
  596. if(IsStopped() == false) {
  597. SERIAL_ERROR_START;
  598. SERIAL_ERRORLNPGM("Extruder switched off. Temperature difference between temp sensors is too high !");
  599. LCD_ALERTMESSAGEPGM("Err: REDUNDANT TEMP ERROR");
  600. }
  601. #ifndef BOGUS_TEMPERATURE_FAILSAFE_OVERRIDE
  602. Stop();
  603. #endif
  604. }
  605. #endif
  606. } // End extruder for loop
  607. #ifndef DEBUG_DISABLE_FANCHECK
  608. #if (defined(EXTRUDER_0_AUTO_FAN_PIN) && EXTRUDER_0_AUTO_FAN_PIN > -1) || \
  609. (defined(EXTRUDER_1_AUTO_FAN_PIN) && EXTRUDER_1_AUTO_FAN_PIN > -1) || \
  610. (defined(EXTRUDER_2_AUTO_FAN_PIN) && EXTRUDER_2_AUTO_FAN_PIN > -1)
  611. if(millis() - extruder_autofan_last_check > 1000) // only need to check fan state very infrequently
  612. {
  613. countFanSpeed();
  614. checkFanSpeed();
  615. checkExtruderAutoFans();
  616. extruder_autofan_last_check = millis();
  617. }
  618. #endif
  619. #endif //DEBUG_DISABLE_FANCHECK
  620. #ifndef PIDTEMPBED
  621. if(millis() - previous_millis_bed_heater < BED_CHECK_INTERVAL)
  622. return;
  623. previous_millis_bed_heater = millis();
  624. #endif
  625. #if TEMP_SENSOR_BED != 0
  626. #ifdef PIDTEMPBED
  627. pid_input = current_temperature_bed;
  628. #ifndef PID_OPENLOOP
  629. pid_error_bed = target_temperature_bed - pid_input;
  630. pTerm_bed = bedKp * pid_error_bed;
  631. temp_iState_bed += pid_error_bed;
  632. temp_iState_bed = constrain(temp_iState_bed, temp_iState_min_bed, temp_iState_max_bed);
  633. iTerm_bed = bedKi * temp_iState_bed;
  634. //K1 defined in Configuration.h in the PID settings
  635. #define K2 (1.0-K1)
  636. dTerm_bed= (bedKd * (pid_input - temp_dState_bed))*K2 + (K1 * dTerm_bed);
  637. temp_dState_bed = pid_input;
  638. pid_output = pTerm_bed + iTerm_bed - dTerm_bed;
  639. if (pid_output > MAX_BED_POWER) {
  640. if (pid_error_bed > 0 ) temp_iState_bed -= pid_error_bed; // conditional un-integration
  641. pid_output=MAX_BED_POWER;
  642. } else if (pid_output < 0){
  643. if (pid_error_bed < 0 ) temp_iState_bed -= pid_error_bed; // conditional un-integration
  644. pid_output=0;
  645. }
  646. #else
  647. pid_output = constrain(target_temperature_bed, 0, MAX_BED_POWER);
  648. #endif //PID_OPENLOOP
  649. if(((current_temperature_bed > BED_MINTEMP) || (current_temperature_ambient < MINTEMP_MINAMBIENT)) && (current_temperature_bed < BED_MAXTEMP))
  650. {
  651. soft_pwm_bed = (int)pid_output >> 1;
  652. }
  653. else {
  654. soft_pwm_bed = 0;
  655. }
  656. #elif !defined(BED_LIMIT_SWITCHING)
  657. // Check if temperature is within the correct range
  658. if((current_temperature_bed > BED_MINTEMP) && (current_temperature_bed < BED_MAXTEMP))
  659. {
  660. if(current_temperature_bed >= target_temperature_bed)
  661. {
  662. soft_pwm_bed = 0;
  663. }
  664. else
  665. {
  666. soft_pwm_bed = MAX_BED_POWER>>1;
  667. }
  668. }
  669. else
  670. {
  671. soft_pwm_bed = 0;
  672. WRITE(HEATER_BED_PIN,LOW);
  673. }
  674. #else //#ifdef BED_LIMIT_SWITCHING
  675. // Check if temperature is within the correct band
  676. if((current_temperature_bed > BED_MINTEMP) && (current_temperature_bed < BED_MAXTEMP))
  677. {
  678. if(current_temperature_bed > target_temperature_bed + BED_HYSTERESIS)
  679. {
  680. soft_pwm_bed = 0;
  681. }
  682. else if(current_temperature_bed <= target_temperature_bed - BED_HYSTERESIS)
  683. {
  684. soft_pwm_bed = MAX_BED_POWER>>1;
  685. }
  686. }
  687. else
  688. {
  689. soft_pwm_bed = 0;
  690. WRITE(HEATER_BED_PIN,LOW);
  691. }
  692. #endif
  693. #endif
  694. #ifdef HOST_KEEPALIVE_FEATURE
  695. host_keepalive();
  696. #endif
  697. }
  698. #define PGM_RD_W(x) (short)pgm_read_word(&x)
  699. // Derived from RepRap FiveD extruder::getTemperature()
  700. // For hot end temperature measurement.
  701. static float analog2temp(int raw, uint8_t e) {
  702. #ifdef TEMP_SENSOR_1_AS_REDUNDANT
  703. if(e > EXTRUDERS)
  704. #else
  705. if(e >= EXTRUDERS)
  706. #endif
  707. {
  708. SERIAL_ERROR_START;
  709. SERIAL_ERROR((int)e);
  710. SERIAL_ERRORLNPGM(" - Invalid extruder number !");
  711. kill("", 6);
  712. return 0.0;
  713. }
  714. #ifdef HEATER_0_USES_MAX6675
  715. if (e == 0)
  716. {
  717. return 0.25 * raw;
  718. }
  719. #endif
  720. if(heater_ttbl_map[e] != NULL)
  721. {
  722. float celsius = 0;
  723. uint8_t i;
  724. short (*tt)[][2] = (short (*)[][2])(heater_ttbl_map[e]);
  725. for (i=1; i<heater_ttbllen_map[e]; i++)
  726. {
  727. if (PGM_RD_W((*tt)[i][0]) > raw)
  728. {
  729. celsius = PGM_RD_W((*tt)[i-1][1]) +
  730. (raw - PGM_RD_W((*tt)[i-1][0])) *
  731. (float)(PGM_RD_W((*tt)[i][1]) - PGM_RD_W((*tt)[i-1][1])) /
  732. (float)(PGM_RD_W((*tt)[i][0]) - PGM_RD_W((*tt)[i-1][0]));
  733. break;
  734. }
  735. }
  736. // Overflow: Set to last value in the table
  737. if (i == heater_ttbllen_map[e]) celsius = PGM_RD_W((*tt)[i-1][1]);
  738. return celsius;
  739. }
  740. return ((raw * ((5.0 * 100.0) / 1024.0) / OVERSAMPLENR) * TEMP_SENSOR_AD595_GAIN) + TEMP_SENSOR_AD595_OFFSET;
  741. }
  742. // Derived from RepRap FiveD extruder::getTemperature()
  743. // For bed temperature measurement.
  744. static float analog2tempBed(int raw) {
  745. #ifdef BED_USES_THERMISTOR
  746. float celsius = 0;
  747. byte i;
  748. for (i=1; i<BEDTEMPTABLE_LEN; i++)
  749. {
  750. if (PGM_RD_W(BEDTEMPTABLE[i][0]) > raw)
  751. {
  752. celsius = PGM_RD_W(BEDTEMPTABLE[i-1][1]) +
  753. (raw - PGM_RD_W(BEDTEMPTABLE[i-1][0])) *
  754. (float)(PGM_RD_W(BEDTEMPTABLE[i][1]) - PGM_RD_W(BEDTEMPTABLE[i-1][1])) /
  755. (float)(PGM_RD_W(BEDTEMPTABLE[i][0]) - PGM_RD_W(BEDTEMPTABLE[i-1][0]));
  756. break;
  757. }
  758. }
  759. // Overflow: Set to last value in the table
  760. if (i == BEDTEMPTABLE_LEN) celsius = PGM_RD_W(BEDTEMPTABLE[i-1][1]);
  761. // temperature offset adjustment
  762. #ifdef BED_OFFSET
  763. float _offset = BED_OFFSET;
  764. float _offset_center = BED_OFFSET_CENTER;
  765. float _offset_start = BED_OFFSET_START;
  766. float _first_koef = (_offset / 2) / (_offset_center - _offset_start);
  767. float _second_koef = (_offset / 2) / (100 - _offset_center);
  768. if (celsius >= _offset_start && celsius <= _offset_center)
  769. {
  770. celsius = celsius + (_first_koef * (celsius - _offset_start));
  771. }
  772. else if (celsius > _offset_center && celsius <= 100)
  773. {
  774. celsius = celsius + (_first_koef * (_offset_center - _offset_start)) + ( _second_koef * ( celsius - ( 100 - _offset_center ) )) ;
  775. }
  776. else if (celsius > 100)
  777. {
  778. celsius = celsius + _offset;
  779. }
  780. #endif
  781. return celsius;
  782. #elif defined BED_USES_AD595
  783. return ((raw * ((5.0 * 100.0) / 1024.0) / OVERSAMPLENR) * TEMP_SENSOR_AD595_GAIN) + TEMP_SENSOR_AD595_OFFSET;
  784. #else
  785. return 0;
  786. #endif
  787. }
  788. static float analog2tempAmbient(int raw)
  789. {
  790. float celsius = 0;
  791. byte i;
  792. for (i=1; i<AMBIENTTEMPTABLE_LEN; i++)
  793. {
  794. if (PGM_RD_W(AMBIENTTEMPTABLE[i][0]) > raw)
  795. {
  796. celsius = PGM_RD_W(AMBIENTTEMPTABLE[i-1][1]) +
  797. (raw - PGM_RD_W(AMBIENTTEMPTABLE[i-1][0])) *
  798. (float)(PGM_RD_W(AMBIENTTEMPTABLE[i][1]) - PGM_RD_W(AMBIENTTEMPTABLE[i-1][1])) /
  799. (float)(PGM_RD_W(AMBIENTTEMPTABLE[i][0]) - PGM_RD_W(AMBIENTTEMPTABLE[i-1][0]));
  800. break;
  801. }
  802. }
  803. // Overflow: Set to last value in the table
  804. if (i == AMBIENTTEMPTABLE_LEN) celsius = PGM_RD_W(AMBIENTTEMPTABLE[i-1][1]);
  805. return celsius;
  806. }
  807. /* Called to get the raw values into the the actual temperatures. The raw values are created in interrupt context,
  808. and this function is called from normal context as it is too slow to run in interrupts and will block the stepper routine otherwise */
  809. static void updateTemperaturesFromRawValues()
  810. {
  811. for(uint8_t e=0;e<EXTRUDERS;e++)
  812. {
  813. current_temperature[e] = analog2temp(current_temperature_raw[e], e);
  814. }
  815. #ifdef PINDA_THERMISTOR
  816. current_temperature_pinda = analog2tempBed(current_temperature_raw_pinda); //thermistor for pinda is the same as for bed
  817. #endif
  818. #ifdef AMBIENT_THERMISTOR
  819. current_temperature_ambient = analog2tempAmbient(current_temperature_raw_ambient); //thermistor for ambient is NTCG104LH104JT1 (2000)
  820. #endif
  821. current_temperature_bed = analog2tempBed(current_temperature_bed_raw);
  822. #ifdef TEMP_SENSOR_1_AS_REDUNDANT
  823. redundant_temperature = analog2temp(redundant_temperature_raw, 1);
  824. #endif
  825. //Reset the watchdog after we know we have a temperature measurement.
  826. watchdog_reset();
  827. CRITICAL_SECTION_START;
  828. temp_meas_ready = false;
  829. CRITICAL_SECTION_END;
  830. }
  831. void tp_init()
  832. {
  833. #if MB(RUMBA) && ((TEMP_SENSOR_0==-1)||(TEMP_SENSOR_1==-1)||(TEMP_SENSOR_2==-1)||(TEMP_SENSOR_BED==-1))
  834. //disable RUMBA JTAG in case the thermocouple extension is plugged on top of JTAG connector
  835. MCUCR=(1<<JTD);
  836. MCUCR=(1<<JTD);
  837. #endif
  838. // Finish init of mult extruder arrays
  839. for(int e = 0; e < EXTRUDERS; e++) {
  840. // populate with the first value
  841. maxttemp[e] = maxttemp[0];
  842. #ifdef PIDTEMP
  843. temp_iState_min[e] = 0.0;
  844. temp_iState_max[e] = PID_INTEGRAL_DRIVE_MAX / Ki;
  845. #endif //PIDTEMP
  846. #ifdef PIDTEMPBED
  847. temp_iState_min_bed = 0.0;
  848. temp_iState_max_bed = PID_INTEGRAL_DRIVE_MAX / bedKi;
  849. #endif //PIDTEMPBED
  850. }
  851. #if defined(HEATER_0_PIN) && (HEATER_0_PIN > -1)
  852. SET_OUTPUT(HEATER_0_PIN);
  853. #endif
  854. #if defined(HEATER_1_PIN) && (HEATER_1_PIN > -1)
  855. SET_OUTPUT(HEATER_1_PIN);
  856. #endif
  857. #if defined(HEATER_2_PIN) && (HEATER_2_PIN > -1)
  858. SET_OUTPUT(HEATER_2_PIN);
  859. #endif
  860. #if defined(HEATER_BED_PIN) && (HEATER_BED_PIN > -1)
  861. SET_OUTPUT(HEATER_BED_PIN);
  862. #endif
  863. #if defined(FAN_PIN) && (FAN_PIN > -1)
  864. SET_OUTPUT(FAN_PIN);
  865. #ifdef FAST_PWM_FAN
  866. setPwmFrequency(FAN_PIN, 1); // No prescaling. Pwm frequency = F_CPU/256/8
  867. #endif
  868. #ifdef FAN_SOFT_PWM
  869. soft_pwm_fan = fanSpeedSoftPwm / 2;
  870. #endif
  871. #endif
  872. #ifdef HEATER_0_USES_MAX6675
  873. #ifndef SDSUPPORT
  874. SET_OUTPUT(SCK_PIN);
  875. WRITE(SCK_PIN,0);
  876. SET_OUTPUT(MOSI_PIN);
  877. WRITE(MOSI_PIN,1);
  878. SET_INPUT(MISO_PIN);
  879. WRITE(MISO_PIN,1);
  880. #endif
  881. /* Using pinMode and digitalWrite, as that was the only way I could get it to compile */
  882. //Have to toggle SD card CS pin to low first, to enable firmware to talk with SD card
  883. pinMode(SS_PIN, OUTPUT);
  884. digitalWrite(SS_PIN,0);
  885. pinMode(MAX6675_SS, OUTPUT);
  886. digitalWrite(MAX6675_SS,1);
  887. #endif
  888. adc_init();
  889. // Use timer0 for temperature measurement
  890. // Interleave temperature interrupt with millies interrupt
  891. OCR0B = 128;
  892. TIMSK0 |= (1<<OCIE0B);
  893. // Wait for temperature measurement to settle
  894. delay(250);
  895. #ifdef HEATER_0_MINTEMP
  896. minttemp[0] = HEATER_0_MINTEMP;
  897. while(analog2temp(minttemp_raw[0], 0) < HEATER_0_MINTEMP) {
  898. #if HEATER_0_RAW_LO_TEMP < HEATER_0_RAW_HI_TEMP
  899. minttemp_raw[0] += OVERSAMPLENR;
  900. #else
  901. minttemp_raw[0] -= OVERSAMPLENR;
  902. #endif
  903. }
  904. #endif //MINTEMP
  905. #ifdef HEATER_0_MAXTEMP
  906. maxttemp[0] = HEATER_0_MAXTEMP;
  907. while(analog2temp(maxttemp_raw[0], 0) > HEATER_0_MAXTEMP) {
  908. #if HEATER_0_RAW_LO_TEMP < HEATER_0_RAW_HI_TEMP
  909. maxttemp_raw[0] -= OVERSAMPLENR;
  910. #else
  911. maxttemp_raw[0] += OVERSAMPLENR;
  912. #endif
  913. }
  914. #endif //MAXTEMP
  915. #if (EXTRUDERS > 1) && defined(HEATER_1_MINTEMP)
  916. minttemp[1] = HEATER_1_MINTEMP;
  917. while(analog2temp(minttemp_raw[1], 1) < HEATER_1_MINTEMP) {
  918. #if HEATER_1_RAW_LO_TEMP < HEATER_1_RAW_HI_TEMP
  919. minttemp_raw[1] += OVERSAMPLENR;
  920. #else
  921. minttemp_raw[1] -= OVERSAMPLENR;
  922. #endif
  923. }
  924. #endif // MINTEMP 1
  925. #if (EXTRUDERS > 1) && defined(HEATER_1_MAXTEMP)
  926. maxttemp[1] = HEATER_1_MAXTEMP;
  927. while(analog2temp(maxttemp_raw[1], 1) > HEATER_1_MAXTEMP) {
  928. #if HEATER_1_RAW_LO_TEMP < HEATER_1_RAW_HI_TEMP
  929. maxttemp_raw[1] -= OVERSAMPLENR;
  930. #else
  931. maxttemp_raw[1] += OVERSAMPLENR;
  932. #endif
  933. }
  934. #endif //MAXTEMP 1
  935. #if (EXTRUDERS > 2) && defined(HEATER_2_MINTEMP)
  936. minttemp[2] = HEATER_2_MINTEMP;
  937. while(analog2temp(minttemp_raw[2], 2) < HEATER_2_MINTEMP) {
  938. #if HEATER_2_RAW_LO_TEMP < HEATER_2_RAW_HI_TEMP
  939. minttemp_raw[2] += OVERSAMPLENR;
  940. #else
  941. minttemp_raw[2] -= OVERSAMPLENR;
  942. #endif
  943. }
  944. #endif //MINTEMP 2
  945. #if (EXTRUDERS > 2) && defined(HEATER_2_MAXTEMP)
  946. maxttemp[2] = HEATER_2_MAXTEMP;
  947. while(analog2temp(maxttemp_raw[2], 2) > HEATER_2_MAXTEMP) {
  948. #if HEATER_2_RAW_LO_TEMP < HEATER_2_RAW_HI_TEMP
  949. maxttemp_raw[2] -= OVERSAMPLENR;
  950. #else
  951. maxttemp_raw[2] += OVERSAMPLENR;
  952. #endif
  953. }
  954. #endif //MAXTEMP 2
  955. #ifdef BED_MINTEMP
  956. /* No bed MINTEMP error implemented?!? */
  957. while(analog2tempBed(bed_minttemp_raw) < BED_MINTEMP) {
  958. #if HEATER_BED_RAW_LO_TEMP < HEATER_BED_RAW_HI_TEMP
  959. bed_minttemp_raw += OVERSAMPLENR;
  960. #else
  961. bed_minttemp_raw -= OVERSAMPLENR;
  962. #endif
  963. }
  964. #endif //BED_MINTEMP
  965. #ifdef BED_MAXTEMP
  966. while(analog2tempBed(bed_maxttemp_raw) > BED_MAXTEMP) {
  967. #if HEATER_BED_RAW_LO_TEMP < HEATER_BED_RAW_HI_TEMP
  968. bed_maxttemp_raw -= OVERSAMPLENR;
  969. #else
  970. bed_maxttemp_raw += OVERSAMPLENR;
  971. #endif
  972. }
  973. #endif //BED_MAXTEMP
  974. }
  975. void setWatch()
  976. {
  977. #ifdef WATCH_TEMP_PERIOD
  978. for (int e = 0; e < EXTRUDERS; e++)
  979. {
  980. if(degHotend(e) < degTargetHotend(e) - (WATCH_TEMP_INCREASE * 2))
  981. {
  982. watch_start_temp[e] = degHotend(e);
  983. watchmillis[e] = millis();
  984. }
  985. }
  986. #endif
  987. }
  988. #if (defined (TEMP_RUNAWAY_BED_HYSTERESIS) && TEMP_RUNAWAY_BED_TIMEOUT > 0) || (defined (TEMP_RUNAWAY_EXTRUDER_HYSTERESIS) && TEMP_RUNAWAY_EXTRUDER_TIMEOUT > 0)
  989. void temp_runaway_check(int _heater_id, float _target_temperature, float _current_temperature, float _output, bool _isbed)
  990. {
  991. float __hysteresis = 0;
  992. int __timeout = 0;
  993. bool temp_runaway_check_active = false;
  994. static float __preheat_start[2] = { 0,0}; //currently just bed and one extruder
  995. static int __preheat_counter[2] = { 0,0};
  996. static int __preheat_errors[2] = { 0,0};
  997. #ifdef TEMP_RUNAWAY_BED_TIMEOUT
  998. if (_isbed)
  999. {
  1000. __hysteresis = TEMP_RUNAWAY_BED_HYSTERESIS;
  1001. __timeout = TEMP_RUNAWAY_BED_TIMEOUT;
  1002. }
  1003. #endif
  1004. #ifdef TEMP_RUNAWAY_EXTRUDER_TIMEOUT
  1005. if (!_isbed)
  1006. {
  1007. __hysteresis = TEMP_RUNAWAY_EXTRUDER_HYSTERESIS;
  1008. __timeout = TEMP_RUNAWAY_EXTRUDER_TIMEOUT;
  1009. }
  1010. #endif
  1011. if (millis() - temp_runaway_timer[_heater_id] > 2000)
  1012. {
  1013. temp_runaway_timer[_heater_id] = millis();
  1014. if (_output == 0)
  1015. {
  1016. temp_runaway_check_active = false;
  1017. temp_runaway_error_counter[_heater_id] = 0;
  1018. }
  1019. if (temp_runaway_target[_heater_id] != _target_temperature)
  1020. {
  1021. if (_target_temperature > 0)
  1022. {
  1023. temp_runaway_status[_heater_id] = TempRunaway_PREHEAT;
  1024. temp_runaway_target[_heater_id] = _target_temperature;
  1025. __preheat_start[_heater_id] = _current_temperature;
  1026. __preheat_counter[_heater_id] = 0;
  1027. }
  1028. else
  1029. {
  1030. temp_runaway_status[_heater_id] = TempRunaway_INACTIVE;
  1031. temp_runaway_target[_heater_id] = _target_temperature;
  1032. }
  1033. }
  1034. if (temp_runaway_status[_heater_id] == TempRunaway_PREHEAT)
  1035. {
  1036. if (_current_temperature < ((_isbed) ? (0.8 * _target_temperature) : 150)) //check only in area where temperature is changing fastly for heater, check to 0.8 x target temperature for bed
  1037. {
  1038. __preheat_counter[_heater_id]++;
  1039. if (__preheat_counter[_heater_id] > ((_isbed) ? 16 : 8)) // periodicaly check if current temperature changes
  1040. {
  1041. /*SERIAL_ECHOPGM("Heater:");
  1042. MYSERIAL.print(_heater_id);
  1043. SERIAL_ECHOPGM(" T:");
  1044. MYSERIAL.print(_current_temperature);
  1045. SERIAL_ECHOPGM(" Tstart:");
  1046. MYSERIAL.print(__preheat_start[_heater_id]);*/
  1047. if (_current_temperature - __preheat_start[_heater_id] < 2) {
  1048. __preheat_errors[_heater_id]++;
  1049. /*SERIAL_ECHOPGM(" Preheat errors:");
  1050. MYSERIAL.println(__preheat_errors[_heater_id]);*/
  1051. }
  1052. else {
  1053. //SERIAL_ECHOLNPGM("");
  1054. __preheat_errors[_heater_id] = 0;
  1055. }
  1056. if (__preheat_errors[_heater_id] > ((_isbed) ? 2 : 5))
  1057. {
  1058. if (farm_mode) { prusa_statistics(0); }
  1059. temp_runaway_stop(true, _isbed);
  1060. if (farm_mode) { prusa_statistics(91); }
  1061. }
  1062. __preheat_start[_heater_id] = _current_temperature;
  1063. __preheat_counter[_heater_id] = 0;
  1064. }
  1065. }
  1066. }
  1067. if (_current_temperature >= _target_temperature && temp_runaway_status[_heater_id] == TempRunaway_PREHEAT)
  1068. {
  1069. temp_runaway_status[_heater_id] = TempRunaway_ACTIVE;
  1070. temp_runaway_check_active = false;
  1071. }
  1072. if (!temp_runaway_check_active && _output > 0)
  1073. {
  1074. temp_runaway_check_active = true;
  1075. }
  1076. if (temp_runaway_check_active)
  1077. {
  1078. // we are in range
  1079. if (_target_temperature - __hysteresis < _current_temperature && _current_temperature < _target_temperature + __hysteresis)
  1080. {
  1081. temp_runaway_check_active = false;
  1082. temp_runaway_error_counter[_heater_id] = 0;
  1083. }
  1084. else
  1085. {
  1086. if (temp_runaway_status[_heater_id] > TempRunaway_PREHEAT)
  1087. {
  1088. temp_runaway_error_counter[_heater_id]++;
  1089. if (temp_runaway_error_counter[_heater_id] * 2 > __timeout)
  1090. {
  1091. if (farm_mode) { prusa_statistics(0); }
  1092. temp_runaway_stop(false, _isbed);
  1093. if (farm_mode) { prusa_statistics(90); }
  1094. }
  1095. }
  1096. }
  1097. }
  1098. }
  1099. }
  1100. void temp_runaway_stop(bool isPreheat, bool isBed)
  1101. {
  1102. cancel_heatup = true;
  1103. quickStop();
  1104. if (card.sdprinting)
  1105. {
  1106. card.sdprinting = false;
  1107. card.closefile();
  1108. }
  1109. // Clean the input command queue
  1110. // This is necessary, because in command queue there can be commands which would later set heater or bed temperature.
  1111. cmdqueue_reset();
  1112. disable_heater();
  1113. disable_x();
  1114. disable_y();
  1115. disable_e0();
  1116. disable_e1();
  1117. disable_e2();
  1118. manage_heater();
  1119. lcd_update();
  1120. WRITE(BEEPER, HIGH);
  1121. delayMicroseconds(500);
  1122. WRITE(BEEPER, LOW);
  1123. delayMicroseconds(100);
  1124. if (isPreheat)
  1125. {
  1126. Stop();
  1127. isBed ? LCD_ALERTMESSAGEPGM("BED PREHEAT ERROR") : LCD_ALERTMESSAGEPGM("PREHEAT ERROR");
  1128. SERIAL_ERROR_START;
  1129. isBed ? SERIAL_ERRORLNPGM(" THERMAL RUNAWAY ( PREHEAT HEATBED)") : SERIAL_ERRORLNPGM(" THERMAL RUNAWAY ( PREHEAT HOTEND)");
  1130. SET_OUTPUT(EXTRUDER_0_AUTO_FAN_PIN);
  1131. SET_OUTPUT(FAN_PIN);
  1132. WRITE(EXTRUDER_0_AUTO_FAN_PIN, 1);
  1133. analogWrite(FAN_PIN, 255);
  1134. fanSpeed = 255;
  1135. delayMicroseconds(2000);
  1136. }
  1137. else
  1138. {
  1139. isBed ? LCD_ALERTMESSAGEPGM("BED THERMAL RUNAWAY") : LCD_ALERTMESSAGEPGM("THERMAL RUNAWAY");
  1140. SERIAL_ERROR_START;
  1141. isBed ? SERIAL_ERRORLNPGM(" HEATBED THERMAL RUNAWAY") : SERIAL_ERRORLNPGM(" HOTEND THERMAL RUNAWAY");
  1142. }
  1143. }
  1144. #endif
  1145. void disable_heater()
  1146. {
  1147. for(int i=0;i<EXTRUDERS;i++)
  1148. setTargetHotend(0,i);
  1149. setTargetBed(0);
  1150. #if defined(TEMP_0_PIN) && TEMP_0_PIN > -1
  1151. target_temperature[0]=0;
  1152. soft_pwm[0]=0;
  1153. #if defined(HEATER_0_PIN) && HEATER_0_PIN > -1
  1154. WRITE(HEATER_0_PIN,LOW);
  1155. #endif
  1156. #endif
  1157. #if defined(TEMP_1_PIN) && TEMP_1_PIN > -1 && EXTRUDERS > 1
  1158. target_temperature[1]=0;
  1159. soft_pwm[1]=0;
  1160. #if defined(HEATER_1_PIN) && HEATER_1_PIN > -1
  1161. WRITE(HEATER_1_PIN,LOW);
  1162. #endif
  1163. #endif
  1164. #if defined(TEMP_2_PIN) && TEMP_2_PIN > -1 && EXTRUDERS > 2
  1165. target_temperature[2]=0;
  1166. soft_pwm[2]=0;
  1167. #if defined(HEATER_2_PIN) && HEATER_2_PIN > -1
  1168. WRITE(HEATER_2_PIN,LOW);
  1169. #endif
  1170. #endif
  1171. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  1172. target_temperature_bed=0;
  1173. soft_pwm_bed=0;
  1174. #if defined(HEATER_BED_PIN) && HEATER_BED_PIN > -1
  1175. WRITE(HEATER_BED_PIN,LOW);
  1176. #endif
  1177. #endif
  1178. }
  1179. void max_temp_error(uint8_t e) {
  1180. disable_heater();
  1181. if(IsStopped() == false) {
  1182. SERIAL_ERROR_START;
  1183. SERIAL_ERRORLN((int)e);
  1184. SERIAL_ERRORLNPGM(": Extruder switched off. MAXTEMP triggered !");
  1185. LCD_ALERTMESSAGEPGM("Err: MAXTEMP");
  1186. }
  1187. #ifndef BOGUS_TEMPERATURE_FAILSAFE_OVERRIDE
  1188. Stop();
  1189. #endif
  1190. SET_OUTPUT(EXTRUDER_0_AUTO_FAN_PIN);
  1191. SET_OUTPUT(FAN_PIN);
  1192. SET_OUTPUT(BEEPER);
  1193. WRITE(FAN_PIN, 1);
  1194. WRITE(EXTRUDER_0_AUTO_FAN_PIN, 1);
  1195. WRITE(BEEPER, 1);
  1196. // fanSpeed will consumed by the check_axes_activity() routine.
  1197. fanSpeed=255;
  1198. if (farm_mode) { prusa_statistics(93); }
  1199. }
  1200. void min_temp_error(uint8_t e) {
  1201. #ifdef DEBUG_DISABLE_MINTEMP
  1202. return;
  1203. #endif
  1204. //if (current_temperature_ambient < MINTEMP_MINAMBIENT) return;
  1205. disable_heater();
  1206. if(IsStopped() == false) {
  1207. SERIAL_ERROR_START;
  1208. SERIAL_ERRORLN((int)e);
  1209. SERIAL_ERRORLNPGM(": Extruder switched off. MINTEMP triggered !");
  1210. LCD_ALERTMESSAGEPGM("Err: MINTEMP");
  1211. }
  1212. #ifndef BOGUS_TEMPERATURE_FAILSAFE_OVERRIDE
  1213. Stop();
  1214. #endif
  1215. if (farm_mode) { prusa_statistics(92); }
  1216. }
  1217. void bed_max_temp_error(void) {
  1218. #if HEATER_BED_PIN > -1
  1219. WRITE(HEATER_BED_PIN, 0);
  1220. #endif
  1221. if(IsStopped() == false) {
  1222. SERIAL_ERROR_START;
  1223. SERIAL_ERRORLNPGM("Temperature heated bed switched off. MAXTEMP triggered !");
  1224. LCD_ALERTMESSAGEPGM("Err: MAXTEMP BED");
  1225. }
  1226. #ifndef BOGUS_TEMPERATURE_FAILSAFE_OVERRIDE
  1227. Stop();
  1228. #endif
  1229. }
  1230. void bed_min_temp_error(void) {
  1231. #ifdef DEBUG_DISABLE_MINTEMP
  1232. return;
  1233. #endif
  1234. //if (current_temperature_ambient < MINTEMP_MINAMBIENT) return;
  1235. #if HEATER_BED_PIN > -1
  1236. WRITE(HEATER_BED_PIN, 0);
  1237. #endif
  1238. if(IsStopped() == false) {
  1239. SERIAL_ERROR_START;
  1240. SERIAL_ERRORLNPGM("Temperature heated bed switched off. MINTEMP triggered !");
  1241. LCD_ALERTMESSAGEPGM("Err: MINTEMP BED");
  1242. }
  1243. #ifndef BOGUS_TEMPERATURE_FAILSAFE_OVERRIDE
  1244. Stop();
  1245. #endif*/
  1246. }
  1247. #ifdef HEATER_0_USES_MAX6675
  1248. #define MAX6675_HEAT_INTERVAL 250
  1249. long max6675_previous_millis = MAX6675_HEAT_INTERVAL;
  1250. int max6675_temp = 2000;
  1251. int read_max6675()
  1252. {
  1253. if (millis() - max6675_previous_millis < MAX6675_HEAT_INTERVAL)
  1254. return max6675_temp;
  1255. max6675_previous_millis = millis();
  1256. max6675_temp = 0;
  1257. #ifdef PRR
  1258. PRR &= ~(1<<PRSPI);
  1259. #elif defined PRR0
  1260. PRR0 &= ~(1<<PRSPI);
  1261. #endif
  1262. SPCR = (1<<MSTR) | (1<<SPE) | (1<<SPR0);
  1263. // enable TT_MAX6675
  1264. WRITE(MAX6675_SS, 0);
  1265. // ensure 100ns delay - a bit extra is fine
  1266. asm("nop");//50ns on 20Mhz, 62.5ns on 16Mhz
  1267. asm("nop");//50ns on 20Mhz, 62.5ns on 16Mhz
  1268. // read MSB
  1269. SPDR = 0;
  1270. for (;(SPSR & (1<<SPIF)) == 0;);
  1271. max6675_temp = SPDR;
  1272. max6675_temp <<= 8;
  1273. // read LSB
  1274. SPDR = 0;
  1275. for (;(SPSR & (1<<SPIF)) == 0;);
  1276. max6675_temp |= SPDR;
  1277. // disable TT_MAX6675
  1278. WRITE(MAX6675_SS, 1);
  1279. if (max6675_temp & 4)
  1280. {
  1281. // thermocouple open
  1282. max6675_temp = 2000;
  1283. }
  1284. else
  1285. {
  1286. max6675_temp = max6675_temp >> 3;
  1287. }
  1288. return max6675_temp;
  1289. }
  1290. #endif
  1291. extern "C" {
  1292. void adc_ready(void) //callback from adc when sampling finished
  1293. {
  1294. current_temperature_raw[0] = adc_values[0];
  1295. current_temperature_bed_raw = adc_values[2];
  1296. current_temperature_raw_pinda = adc_values[3];
  1297. current_voltage_raw_pwr = adc_values[4];
  1298. current_temperature_raw_ambient = adc_values[5];
  1299. current_voltage_raw_bed = adc_values[6];
  1300. temp_meas_ready = true;
  1301. }
  1302. } // extern "C"
  1303. // Timer 0 is shared with millies
  1304. ISR(TIMER0_COMPB_vect)
  1305. {
  1306. static bool _lock = false;
  1307. if (_lock) return;
  1308. _lock = true;
  1309. asm("sei");
  1310. if (!temp_meas_ready) adc_cycle();
  1311. else
  1312. {
  1313. check_max_temp();
  1314. check_min_temp();
  1315. }
  1316. lcd_buttons_update();
  1317. static unsigned char pwm_count = (1 << SOFT_PWM_SCALE);
  1318. static unsigned char soft_pwm_0;
  1319. #ifdef SLOW_PWM_HEATERS
  1320. static unsigned char slow_pwm_count = 0;
  1321. static unsigned char state_heater_0 = 0;
  1322. static unsigned char state_timer_heater_0 = 0;
  1323. #endif
  1324. #if (EXTRUDERS > 1) || defined(HEATERS_PARALLEL)
  1325. static unsigned char soft_pwm_1;
  1326. #ifdef SLOW_PWM_HEATERS
  1327. static unsigned char state_heater_1 = 0;
  1328. static unsigned char state_timer_heater_1 = 0;
  1329. #endif
  1330. #endif
  1331. #if EXTRUDERS > 2
  1332. static unsigned char soft_pwm_2;
  1333. #ifdef SLOW_PWM_HEATERS
  1334. static unsigned char state_heater_2 = 0;
  1335. static unsigned char state_timer_heater_2 = 0;
  1336. #endif
  1337. #endif
  1338. #if HEATER_BED_PIN > -1
  1339. static unsigned char soft_pwm_b;
  1340. #ifdef SLOW_PWM_HEATERS
  1341. static unsigned char state_heater_b = 0;
  1342. static unsigned char state_timer_heater_b = 0;
  1343. #endif
  1344. #endif
  1345. #if defined(FILWIDTH_PIN) &&(FILWIDTH_PIN > -1)
  1346. static unsigned long raw_filwidth_value = 0; //added for filament width sensor
  1347. #endif
  1348. #ifndef SLOW_PWM_HEATERS
  1349. /*
  1350. * standard PWM modulation
  1351. */
  1352. if (pwm_count == 0)
  1353. {
  1354. soft_pwm_0 = soft_pwm[0];
  1355. if(soft_pwm_0 > 0)
  1356. {
  1357. WRITE(HEATER_0_PIN,1);
  1358. #ifdef HEATERS_PARALLEL
  1359. WRITE(HEATER_1_PIN,1);
  1360. #endif
  1361. } else WRITE(HEATER_0_PIN,0);
  1362. #if EXTRUDERS > 1
  1363. soft_pwm_1 = soft_pwm[1];
  1364. if(soft_pwm_1 > 0) WRITE(HEATER_1_PIN,1); else WRITE(HEATER_1_PIN,0);
  1365. #endif
  1366. #if EXTRUDERS > 2
  1367. soft_pwm_2 = soft_pwm[2];
  1368. if(soft_pwm_2 > 0) WRITE(HEATER_2_PIN,1); else WRITE(HEATER_2_PIN,0);
  1369. #endif
  1370. #if defined(HEATER_BED_PIN) && HEATER_BED_PIN > -1
  1371. soft_pwm_b = soft_pwm_bed;
  1372. if(soft_pwm_b > 0) WRITE(HEATER_BED_PIN,1); else WRITE(HEATER_BED_PIN,0);
  1373. #endif
  1374. #ifdef FAN_SOFT_PWM
  1375. soft_pwm_fan = fanSpeedSoftPwm / 2;
  1376. if(soft_pwm_fan > 0) WRITE(FAN_PIN,1); else WRITE(FAN_PIN,0);
  1377. #endif
  1378. }
  1379. if(soft_pwm_0 < pwm_count)
  1380. {
  1381. WRITE(HEATER_0_PIN,0);
  1382. #ifdef HEATERS_PARALLEL
  1383. WRITE(HEATER_1_PIN,0);
  1384. #endif
  1385. }
  1386. #if EXTRUDERS > 1
  1387. if(soft_pwm_1 < pwm_count) WRITE(HEATER_1_PIN,0);
  1388. #endif
  1389. #if EXTRUDERS > 2
  1390. if(soft_pwm_2 < pwm_count) WRITE(HEATER_2_PIN,0);
  1391. #endif
  1392. #if defined(HEATER_BED_PIN) && HEATER_BED_PIN > -1
  1393. if(soft_pwm_b < pwm_count) WRITE(HEATER_BED_PIN,0);
  1394. #endif
  1395. #ifdef FAN_SOFT_PWM
  1396. if(soft_pwm_fan < pwm_count) WRITE(FAN_PIN,0);
  1397. #endif
  1398. pwm_count += (1 << SOFT_PWM_SCALE);
  1399. pwm_count &= 0x7f;
  1400. #else //ifndef SLOW_PWM_HEATERS
  1401. /*
  1402. * SLOW PWM HEATERS
  1403. *
  1404. * for heaters drived by relay
  1405. */
  1406. #ifndef MIN_STATE_TIME
  1407. #define MIN_STATE_TIME 16 // MIN_STATE_TIME * 65.5 = time in milliseconds
  1408. #endif
  1409. if (slow_pwm_count == 0) {
  1410. // EXTRUDER 0
  1411. soft_pwm_0 = soft_pwm[0];
  1412. if (soft_pwm_0 > 0) {
  1413. // turn ON heather only if the minimum time is up
  1414. if (state_timer_heater_0 == 0) {
  1415. // if change state set timer
  1416. if (state_heater_0 == 0) {
  1417. state_timer_heater_0 = MIN_STATE_TIME;
  1418. }
  1419. state_heater_0 = 1;
  1420. WRITE(HEATER_0_PIN, 1);
  1421. #ifdef HEATERS_PARALLEL
  1422. WRITE(HEATER_1_PIN, 1);
  1423. #endif
  1424. }
  1425. } else {
  1426. // turn OFF heather only if the minimum time is up
  1427. if (state_timer_heater_0 == 0) {
  1428. // if change state set timer
  1429. if (state_heater_0 == 1) {
  1430. state_timer_heater_0 = MIN_STATE_TIME;
  1431. }
  1432. state_heater_0 = 0;
  1433. WRITE(HEATER_0_PIN, 0);
  1434. #ifdef HEATERS_PARALLEL
  1435. WRITE(HEATER_1_PIN, 0);
  1436. #endif
  1437. }
  1438. }
  1439. #if EXTRUDERS > 1
  1440. // EXTRUDER 1
  1441. soft_pwm_1 = soft_pwm[1];
  1442. if (soft_pwm_1 > 0) {
  1443. // turn ON heather only if the minimum time is up
  1444. if (state_timer_heater_1 == 0) {
  1445. // if change state set timer
  1446. if (state_heater_1 == 0) {
  1447. state_timer_heater_1 = MIN_STATE_TIME;
  1448. }
  1449. state_heater_1 = 1;
  1450. WRITE(HEATER_1_PIN, 1);
  1451. }
  1452. } else {
  1453. // turn OFF heather only if the minimum time is up
  1454. if (state_timer_heater_1 == 0) {
  1455. // if change state set timer
  1456. if (state_heater_1 == 1) {
  1457. state_timer_heater_1 = MIN_STATE_TIME;
  1458. }
  1459. state_heater_1 = 0;
  1460. WRITE(HEATER_1_PIN, 0);
  1461. }
  1462. }
  1463. #endif
  1464. #if EXTRUDERS > 2
  1465. // EXTRUDER 2
  1466. soft_pwm_2 = soft_pwm[2];
  1467. if (soft_pwm_2 > 0) {
  1468. // turn ON heather only if the minimum time is up
  1469. if (state_timer_heater_2 == 0) {
  1470. // if change state set timer
  1471. if (state_heater_2 == 0) {
  1472. state_timer_heater_2 = MIN_STATE_TIME;
  1473. }
  1474. state_heater_2 = 1;
  1475. WRITE(HEATER_2_PIN, 1);
  1476. }
  1477. } else {
  1478. // turn OFF heather only if the minimum time is up
  1479. if (state_timer_heater_2 == 0) {
  1480. // if change state set timer
  1481. if (state_heater_2 == 1) {
  1482. state_timer_heater_2 = MIN_STATE_TIME;
  1483. }
  1484. state_heater_2 = 0;
  1485. WRITE(HEATER_2_PIN, 0);
  1486. }
  1487. }
  1488. #endif
  1489. #if defined(HEATER_BED_PIN) && HEATER_BED_PIN > -1
  1490. // BED
  1491. soft_pwm_b = soft_pwm_bed;
  1492. if (soft_pwm_b > 0) {
  1493. // turn ON heather only if the minimum time is up
  1494. if (state_timer_heater_b == 0) {
  1495. // if change state set timer
  1496. if (state_heater_b == 0) {
  1497. state_timer_heater_b = MIN_STATE_TIME;
  1498. }
  1499. state_heater_b = 1;
  1500. WRITE(HEATER_BED_PIN, 1);
  1501. }
  1502. } else {
  1503. // turn OFF heather only if the minimum time is up
  1504. if (state_timer_heater_b == 0) {
  1505. // if change state set timer
  1506. if (state_heater_b == 1) {
  1507. state_timer_heater_b = MIN_STATE_TIME;
  1508. }
  1509. state_heater_b = 0;
  1510. WRITE(HEATER_BED_PIN, 0);
  1511. }
  1512. }
  1513. #endif
  1514. } // if (slow_pwm_count == 0)
  1515. // EXTRUDER 0
  1516. if (soft_pwm_0 < slow_pwm_count) {
  1517. // turn OFF heather only if the minimum time is up
  1518. if (state_timer_heater_0 == 0) {
  1519. // if change state set timer
  1520. if (state_heater_0 == 1) {
  1521. state_timer_heater_0 = MIN_STATE_TIME;
  1522. }
  1523. state_heater_0 = 0;
  1524. WRITE(HEATER_0_PIN, 0);
  1525. #ifdef HEATERS_PARALLEL
  1526. WRITE(HEATER_1_PIN, 0);
  1527. #endif
  1528. }
  1529. }
  1530. #if EXTRUDERS > 1
  1531. // EXTRUDER 1
  1532. if (soft_pwm_1 < slow_pwm_count) {
  1533. // turn OFF heather only if the minimum time is up
  1534. if (state_timer_heater_1 == 0) {
  1535. // if change state set timer
  1536. if (state_heater_1 == 1) {
  1537. state_timer_heater_1 = MIN_STATE_TIME;
  1538. }
  1539. state_heater_1 = 0;
  1540. WRITE(HEATER_1_PIN, 0);
  1541. }
  1542. }
  1543. #endif
  1544. #if EXTRUDERS > 2
  1545. // EXTRUDER 2
  1546. if (soft_pwm_2 < slow_pwm_count) {
  1547. // turn OFF heather only if the minimum time is up
  1548. if (state_timer_heater_2 == 0) {
  1549. // if change state set timer
  1550. if (state_heater_2 == 1) {
  1551. state_timer_heater_2 = MIN_STATE_TIME;
  1552. }
  1553. state_heater_2 = 0;
  1554. WRITE(HEATER_2_PIN, 0);
  1555. }
  1556. }
  1557. #endif
  1558. #if defined(HEATER_BED_PIN) && HEATER_BED_PIN > -1
  1559. // BED
  1560. if (soft_pwm_b < slow_pwm_count) {
  1561. // turn OFF heather only if the minimum time is up
  1562. if (state_timer_heater_b == 0) {
  1563. // if change state set timer
  1564. if (state_heater_b == 1) {
  1565. state_timer_heater_b = MIN_STATE_TIME;
  1566. }
  1567. state_heater_b = 0;
  1568. WRITE(HEATER_BED_PIN, 0);
  1569. }
  1570. }
  1571. #endif
  1572. #ifdef FAN_SOFT_PWM
  1573. if (pwm_count == 0){
  1574. soft_pwm_fan = fanSpeedSoftPwm / 2;
  1575. if (soft_pwm_fan > 0) WRITE(FAN_PIN,1); else WRITE(FAN_PIN,0);
  1576. }
  1577. if (soft_pwm_fan < pwm_count) WRITE(FAN_PIN,0);
  1578. #endif
  1579. pwm_count += (1 << SOFT_PWM_SCALE);
  1580. pwm_count &= 0x7f;
  1581. // increment slow_pwm_count only every 64 pwm_count circa 65.5ms
  1582. if ((pwm_count % 64) == 0) {
  1583. slow_pwm_count++;
  1584. slow_pwm_count &= 0x7f;
  1585. // Extruder 0
  1586. if (state_timer_heater_0 > 0) {
  1587. state_timer_heater_0--;
  1588. }
  1589. #if EXTRUDERS > 1
  1590. // Extruder 1
  1591. if (state_timer_heater_1 > 0)
  1592. state_timer_heater_1--;
  1593. #endif
  1594. #if EXTRUDERS > 2
  1595. // Extruder 2
  1596. if (state_timer_heater_2 > 0)
  1597. state_timer_heater_2--;
  1598. #endif
  1599. #if defined(HEATER_BED_PIN) && HEATER_BED_PIN > -1
  1600. // Bed
  1601. if (state_timer_heater_b > 0)
  1602. state_timer_heater_b--;
  1603. #endif
  1604. } //if ((pwm_count % 64) == 0) {
  1605. #endif //ifndef SLOW_PWM_HEATERS
  1606. #ifdef BABYSTEPPING
  1607. for(uint8_t axis=0;axis<3;axis++)
  1608. {
  1609. int curTodo=babystepsTodo[axis]; //get rid of volatile for performance
  1610. if(curTodo>0)
  1611. {
  1612. asm("cli");
  1613. babystep(axis,/*fwd*/true);
  1614. babystepsTodo[axis]--; //less to do next time
  1615. asm("sei");
  1616. }
  1617. else
  1618. if(curTodo<0)
  1619. {
  1620. asm("cli");
  1621. babystep(axis,/*fwd*/false);
  1622. babystepsTodo[axis]++; //less to do next time
  1623. asm("sei");
  1624. }
  1625. }
  1626. #endif //BABYSTEPPING
  1627. check_fans();
  1628. _lock = false;
  1629. }
  1630. void check_max_temp()
  1631. {
  1632. //heater
  1633. #if HEATER_0_RAW_LO_TEMP > HEATER_0_RAW_HI_TEMP
  1634. if (current_temperature_raw[0] <= maxttemp_raw[0]) {
  1635. #else
  1636. if (current_temperature_raw[0] >= maxttemp_raw[0]) {
  1637. #endif
  1638. max_temp_error(0);
  1639. }
  1640. //bed
  1641. #if defined(BED_MAXTEMP) && (TEMP_SENSOR_BED != 0)
  1642. #if HEATER_BED_RAW_LO_TEMP > HEATER_BED_RAW_HI_TEMP
  1643. if (current_temperature_bed_raw <= bed_maxttemp_raw) {
  1644. #else
  1645. if (current_temperature_bed_raw >= bed_maxttemp_raw) {
  1646. #endif
  1647. target_temperature_bed = 0;
  1648. bed_max_temp_error();
  1649. }
  1650. #endif
  1651. }
  1652. void check_min_temp_heater0()
  1653. {
  1654. //heater
  1655. #if HEATER_0_RAW_LO_TEMP > HEATER_0_RAW_HI_TEMP
  1656. if (current_temperature_raw[0] >= minttemp_raw[0]) {
  1657. #else
  1658. if (current_temperature_raw[0] <= minttemp_raw[0]) {
  1659. #endif
  1660. min_temp_error(0);
  1661. }
  1662. }
  1663. void check_min_temp_bed()
  1664. {
  1665. #if HEATER_BED_RAW_LO_TEMP > HEATER_BED_RAW_HI_TEMP
  1666. if (current_temperature_bed_raw >= bed_minttemp_raw) {
  1667. #else
  1668. if (current_temperature_bed_raw <= bed_minttemp_raw) {
  1669. #endif
  1670. bed_min_temp_error();
  1671. }
  1672. }
  1673. void check_min_temp()
  1674. {
  1675. static uint8_t heat_cycles = 0;
  1676. if (current_temperature_raw_ambient > OVERSAMPLENR*MINTEMP_MINAMBIENT_RAW)
  1677. {
  1678. if (READ(HEATER_0_PIN) == HIGH)
  1679. {
  1680. // if ((heat_cycles % 10) == 0)
  1681. // printf_P(PSTR("X%d\n"), heat_cycles);
  1682. if (heat_cycles > 50) //reaction time 5-10s
  1683. check_min_temp_heater0();
  1684. else
  1685. heat_cycles++;
  1686. }
  1687. else
  1688. heat_cycles = 0;
  1689. return;
  1690. }
  1691. check_min_temp_heater0();
  1692. check_min_temp_bed();
  1693. }
  1694. void check_fans() {
  1695. if (READ(TACH_0) != fan_state[0]) {
  1696. fan_edge_counter[0] ++;
  1697. fan_state[0] = !fan_state[0];
  1698. }
  1699. //if (READ(TACH_1) != fan_state[1]) {
  1700. // fan_edge_counter[1] ++;
  1701. // fan_state[1] = !fan_state[1];
  1702. //}
  1703. }
  1704. #ifdef PIDTEMP
  1705. // Apply the scale factors to the PID values
  1706. float scalePID_i(float i)
  1707. {
  1708. return i*PID_dT;
  1709. }
  1710. float unscalePID_i(float i)
  1711. {
  1712. return i/PID_dT;
  1713. }
  1714. float scalePID_d(float d)
  1715. {
  1716. return d/PID_dT;
  1717. }
  1718. float unscalePID_d(float d)
  1719. {
  1720. return d*PID_dT;
  1721. }
  1722. #endif //PIDTEMP