tmc2130.cpp 30 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973
  1. #include "Marlin.h"
  2. #ifdef TMC2130
  3. #include "tmc2130.h"
  4. #include <SPI.h>
  5. #include "LiquidCrystal.h"
  6. #include "ultralcd.h"
  7. extern LiquidCrystal lcd;
  8. #define TMC2130_GCONF_NORMAL 0x00000000 // spreadCycle
  9. #define TMC2130_GCONF_SGSENS 0x00003180 // spreadCycle with stallguard (stall activates DIAG0 and DIAG1 [pushpull])
  10. #define TMC2130_GCONF_SILENT 0x00000004 // stealthChop
  11. //externals for debuging
  12. extern float current_position[4];
  13. extern void st_get_position_xy(long &x, long &y);
  14. extern long st_get_position(uint8_t axis);
  15. extern void crashdet_stop_and_save_print();
  16. extern void crashdet_stop_and_save_print2();
  17. //mode
  18. uint8_t tmc2130_mode = TMC2130_MODE_NORMAL;
  19. //holding currents
  20. uint8_t tmc2130_current_h[4] = TMC2130_CURRENTS_H;
  21. //running currents
  22. uint8_t tmc2130_current_r[4] = TMC2130_CURRENTS_R;
  23. //running currents for homing
  24. uint8_t tmc2130_current_r_home[4] = {8, 10, 20, 18};
  25. //pwm_ampl
  26. uint8_t tmc2130_pwm_ampl[4] = {TMC2130_PWM_AMPL_X, TMC2130_PWM_AMPL_Y, TMC2130_PWM_AMPL_Z, TMC2130_PWM_AMPL_E};
  27. //pwm_grad
  28. uint8_t tmc2130_pwm_grad[4] = {TMC2130_PWM_GRAD_X, TMC2130_PWM_GRAD_Y, TMC2130_PWM_GRAD_Z, TMC2130_PWM_GRAD_E};
  29. //pwm_auto
  30. uint8_t tmc2130_pwm_auto[4] = {TMC2130_PWM_AUTO_X, TMC2130_PWM_AUTO_Y, TMC2130_PWM_AUTO_Z, TMC2130_PWM_AUTO_E};
  31. //pwm_freq
  32. uint8_t tmc2130_pwm_freq[4] = {TMC2130_PWM_FREQ_X, TMC2130_PWM_FREQ_Y, TMC2130_PWM_FREQ_Z, TMC2130_PWM_FREQ_E};
  33. uint8_t tmc2130_mres[4] = {0, 0, 0, 0}; //will be filed at begin of init
  34. uint8_t tmc2130_sg_thr[4] = {TMC2130_SG_THRS_X, TMC2130_SG_THRS_Y, TMC2130_SG_THRS_Z, TMC2130_SG_THRS_E};
  35. uint8_t tmc2130_sg_thr_home[4] = {3, 3, TMC2130_SG_THRS_Z, TMC2130_SG_THRS_E};
  36. uint8_t sg_homing_axes_mask = 0x00;
  37. uint8_t tmc2130_sg_meassure = 0xff;
  38. uint16_t tmc2130_sg_meassure_cnt = 0;
  39. uint32_t tmc2130_sg_meassure_val = 0;
  40. uint8_t tmc2130_home_enabled = 0;
  41. uint8_t tmc2130_home_origin[2] = {0, 0};
  42. uint8_t tmc2130_home_bsteps[2] = {48, 48};
  43. uint8_t tmc2130_home_fsteps[2] = {48, 48};
  44. uint8_t tmc2130_wave_fac[4] = {0, 0, 0, 0};
  45. bool tmc2130_sg_stop_on_crash = true;
  46. uint8_t tmc2130_sg_diag_mask = 0x00;
  47. uint8_t tmc2130_sg_crash = 0;
  48. uint16_t tmc2130_sg_err[4] = {0, 0, 0, 0};
  49. uint16_t tmc2130_sg_cnt[4] = {0, 0, 0, 0};
  50. bool tmc2130_sg_change = false;
  51. bool skip_debug_msg = false;
  52. #define DBG(args...) printf_P(args)
  53. #define _n PSTR
  54. #define _i PSTR
  55. //TMC2130 registers
  56. #define TMC2130_REG_GCONF 0x00 // 17 bits
  57. #define TMC2130_REG_GSTAT 0x01 // 3 bits
  58. #define TMC2130_REG_IOIN 0x04 // 8+8 bits
  59. #define TMC2130_REG_IHOLD_IRUN 0x10 // 5+5+4 bits
  60. #define TMC2130_REG_TPOWERDOWN 0x11 // 8 bits
  61. #define TMC2130_REG_TSTEP 0x12 // 20 bits
  62. #define TMC2130_REG_TPWMTHRS 0x13 // 20 bits
  63. #define TMC2130_REG_TCOOLTHRS 0x14 // 20 bits
  64. #define TMC2130_REG_THIGH 0x15 // 20 bits
  65. #define TMC2130_REG_XDIRECT 0x2d // 32 bits
  66. #define TMC2130_REG_VDCMIN 0x33 // 23 bits
  67. #define TMC2130_REG_MSLUT0 0x60 // 32 bits
  68. #define TMC2130_REG_MSLUT1 0x61 // 32 bits
  69. #define TMC2130_REG_MSLUT2 0x62 // 32 bits
  70. #define TMC2130_REG_MSLUT3 0x63 // 32 bits
  71. #define TMC2130_REG_MSLUT4 0x64 // 32 bits
  72. #define TMC2130_REG_MSLUT5 0x65 // 32 bits
  73. #define TMC2130_REG_MSLUT6 0x66 // 32 bits
  74. #define TMC2130_REG_MSLUT7 0x67 // 32 bits
  75. #define TMC2130_REG_MSLUTSEL 0x68 // 32 bits
  76. #define TMC2130_REG_MSLUTSTART 0x69 // 8+8 bits
  77. #define TMC2130_REG_MSCNT 0x6a // 10 bits
  78. #define TMC2130_REG_MSCURACT 0x6b // 9+9 bits
  79. #define TMC2130_REG_CHOPCONF 0x6c // 32 bits
  80. #define TMC2130_REG_COOLCONF 0x6d // 25 bits
  81. #define TMC2130_REG_DCCTRL 0x6e // 24 bits
  82. #define TMC2130_REG_DRV_STATUS 0x6f // 32 bits
  83. #define TMC2130_REG_PWMCONF 0x70 // 22 bits
  84. #define TMC2130_REG_PWM_SCALE 0x71 // 8 bits
  85. #define TMC2130_REG_ENCM_CTRL 0x72 // 2 bits
  86. #define TMC2130_REG_LOST_STEPS 0x73 // 20 bits
  87. uint16_t tmc2130_rd_TSTEP(uint8_t axis);
  88. uint16_t tmc2130_rd_MSCNT(uint8_t axis);
  89. uint32_t tmc2130_rd_MSCURACT(uint8_t axis);
  90. void tmc2130_wr_CHOPCONF(uint8_t axis, uint8_t toff = 3, uint8_t hstrt = 4, uint8_t hend = 1, uint8_t fd3 = 0, uint8_t disfdcc = 0, uint8_t rndtf = 0, uint8_t chm = 0, uint8_t tbl = 2, uint8_t vsense = 0, uint8_t vhighfs = 0, uint8_t vhighchm = 0, uint8_t sync = 0, uint8_t mres = 0b0100, uint8_t intpol = 1, uint8_t dedge = 0, uint8_t diss2g = 0);
  91. void tmc2130_wr_PWMCONF(uint8_t axis, uint8_t pwm_ampl, uint8_t pwm_grad, uint8_t pwm_freq, uint8_t pwm_auto, uint8_t pwm_symm, uint8_t freewheel);
  92. void tmc2130_wr_TPWMTHRS(uint8_t axis, uint32_t val32);
  93. void tmc2130_wr_THIGH(uint8_t axis, uint32_t val32);
  94. #define tmc2130_rd(axis, addr, rval) tmc2130_rx(axis, addr, rval)
  95. #define tmc2130_wr(axis, addr, wval) tmc2130_tx(axis, addr | 0x80, wval)
  96. uint8_t tmc2130_tx(uint8_t axis, uint8_t addr, uint32_t wval);
  97. uint8_t tmc2130_rx(uint8_t axis, uint8_t addr, uint32_t* rval);
  98. void tmc2130_setup_chopper(uint8_t axis, uint8_t mres, uint8_t current_h, uint8_t current_r);
  99. void tmc2130_init()
  100. {
  101. DBG(_n("tmc2130_init(), mode=%S\n"), tmc2130_mode?_n("STEALTH"):_n("NORMAL"));
  102. WRITE(X_TMC2130_CS, HIGH);
  103. WRITE(Y_TMC2130_CS, HIGH);
  104. WRITE(Z_TMC2130_CS, HIGH);
  105. WRITE(E0_TMC2130_CS, HIGH);
  106. SET_OUTPUT(X_TMC2130_CS);
  107. SET_OUTPUT(Y_TMC2130_CS);
  108. SET_OUTPUT(Z_TMC2130_CS);
  109. SET_OUTPUT(E0_TMC2130_CS);
  110. SET_INPUT(X_TMC2130_DIAG);
  111. SET_INPUT(Y_TMC2130_DIAG);
  112. SET_INPUT(Z_TMC2130_DIAG);
  113. SET_INPUT(E0_TMC2130_DIAG);
  114. SPI.begin();
  115. for (int axis = 0; axis < 2; axis++) // X Y axes
  116. {
  117. tmc2130_setup_chopper(axis, tmc2130_mres[axis], tmc2130_current_h[axis], tmc2130_current_r[axis]);
  118. tmc2130_wr(axis, TMC2130_REG_TPOWERDOWN, 0x00000000);
  119. tmc2130_wr(axis, TMC2130_REG_COOLCONF, (((uint32_t)tmc2130_sg_thr[axis]) << 16));
  120. tmc2130_wr(axis, TMC2130_REG_TCOOLTHRS, (tmc2130_mode == TMC2130_MODE_SILENT)?0:((axis==X_AXIS)?TMC2130_TCOOLTHRS_X:TMC2130_TCOOLTHRS_Y));
  121. tmc2130_wr(axis, TMC2130_REG_GCONF, (tmc2130_mode == TMC2130_MODE_SILENT)?TMC2130_GCONF_SILENT:TMC2130_GCONF_SGSENS);
  122. tmc2130_wr_PWMCONF(axis, tmc2130_pwm_ampl[axis], tmc2130_pwm_grad[axis], tmc2130_pwm_freq[axis], tmc2130_pwm_auto[axis], 0, 0);
  123. tmc2130_wr_TPWMTHRS(axis, TMC2130_TPWMTHRS);
  124. //tmc2130_wr_THIGH(axis, TMC2130_THIGH);
  125. }
  126. for (int axis = 2; axis < 3; axis++) // Z axis
  127. {
  128. tmc2130_setup_chopper(axis, tmc2130_mres[axis], tmc2130_current_h[axis], tmc2130_current_r[axis]);
  129. tmc2130_wr(axis, TMC2130_REG_TPOWERDOWN, 0x00000000);
  130. tmc2130_wr(axis, TMC2130_REG_GCONF, TMC2130_GCONF_SGSENS);
  131. }
  132. for (int axis = 3; axis < 4; axis++) // E axis
  133. {
  134. tmc2130_setup_chopper(axis, tmc2130_mres[axis], tmc2130_current_h[axis], tmc2130_current_r[axis]);
  135. tmc2130_wr(axis, TMC2130_REG_TPOWERDOWN, 0x00000000);
  136. #ifndef TMC2130_STEALTH_E
  137. tmc2130_wr(axis, TMC2130_REG_GCONF, TMC2130_GCONF_SGSENS);
  138. #else //TMC2130_STEALTH_E
  139. tmc2130_wr(axis, TMC2130_REG_COOLCONF, (((uint32_t)tmc2130_sg_thr[axis]) << 16));
  140. tmc2130_wr(axis, TMC2130_REG_TCOOLTHRS, 0);
  141. tmc2130_wr(axis, TMC2130_REG_GCONF, TMC2130_GCONF_SILENT);
  142. tmc2130_wr_PWMCONF(axis, tmc2130_pwm_ampl[axis], tmc2130_pwm_grad[axis], tmc2130_pwm_freq[axis], tmc2130_pwm_auto[axis], 0, 0);
  143. tmc2130_wr_TPWMTHRS(axis, TMC2130_TPWMTHRS);
  144. #endif //TMC2130_STEALTH_E
  145. }
  146. tmc2130_sg_err[0] = 0;
  147. tmc2130_sg_err[1] = 0;
  148. tmc2130_sg_err[2] = 0;
  149. tmc2130_sg_err[3] = 0;
  150. tmc2130_sg_cnt[0] = 0;
  151. tmc2130_sg_cnt[1] = 0;
  152. tmc2130_sg_cnt[2] = 0;
  153. tmc2130_sg_cnt[3] = 0;
  154. tmc2130_set_wave(X_AXIS, 247, tmc2130_wave_fac[X_AXIS]);
  155. tmc2130_set_wave(Y_AXIS, 247, tmc2130_wave_fac[Y_AXIS]);
  156. tmc2130_set_wave(Z_AXIS, 247, tmc2130_wave_fac[Z_AXIS]);
  157. tmc2130_set_wave(E_AXIS, 247, tmc2130_wave_fac[E_AXIS]);
  158. }
  159. uint8_t tmc2130_sample_diag()
  160. {
  161. uint8_t mask = 0;
  162. if (READ(X_TMC2130_DIAG)) mask |= X_AXIS_MASK;
  163. if (READ(Y_TMC2130_DIAG)) mask |= Y_AXIS_MASK;
  164. // if (READ(Z_TMC2130_DIAG)) mask |= Z_AXIS_MASK;
  165. // if (READ(E0_TMC2130_DIAG)) mask |= E_AXIS_MASK;
  166. return mask;
  167. }
  168. extern bool is_usb_printing;
  169. void tmc2130_st_isr(uint8_t last_step_mask)
  170. {
  171. if (tmc2130_mode == TMC2130_MODE_SILENT || tmc2130_sg_stop_on_crash == false) return;
  172. uint8_t crash = 0;
  173. uint8_t diag_mask = tmc2130_sample_diag();
  174. // for (uint8_t axis = X_AXIS; axis <= E_AXIS; axis++)
  175. for (uint8_t axis = X_AXIS; axis <= Z_AXIS; axis++)
  176. {
  177. uint8_t mask = (X_AXIS_MASK << axis);
  178. if (diag_mask & mask) tmc2130_sg_err[axis]++;
  179. else
  180. if (tmc2130_sg_err[axis] > 0) tmc2130_sg_err[axis]--;
  181. if (tmc2130_sg_cnt[axis] < tmc2130_sg_err[axis])
  182. {
  183. tmc2130_sg_cnt[axis] = tmc2130_sg_err[axis];
  184. tmc2130_sg_change = true;
  185. uint8_t sg_thr = 64;
  186. // if (axis == Y_AXIS) sg_thr = 64;
  187. if (tmc2130_sg_err[axis] >= sg_thr)
  188. {
  189. tmc2130_sg_err[axis] = 0;
  190. crash |= mask;
  191. }
  192. }
  193. }
  194. if (sg_homing_axes_mask == 0)
  195. {
  196. if (tmc2130_sg_stop_on_crash && crash)
  197. {
  198. tmc2130_sg_crash = crash;
  199. tmc2130_sg_stop_on_crash = false;
  200. crashdet_stop_and_save_print();
  201. }
  202. }
  203. }
  204. bool tmc2130_update_sg()
  205. {
  206. if (tmc2130_sg_meassure <= E_AXIS)
  207. {
  208. uint32_t val32 = 0;
  209. tmc2130_rd(tmc2130_sg_meassure, TMC2130_REG_DRV_STATUS, &val32);
  210. tmc2130_sg_meassure_val += (val32 & 0x3ff);
  211. tmc2130_sg_meassure_cnt++;
  212. return true;
  213. }
  214. return false;
  215. }
  216. void tmc2130_home_enter(uint8_t axes_mask)
  217. {
  218. // printf_P(PSTR("tmc2130_home_enter(axes_mask=0x%02x)\n"), axes_mask);
  219. #ifdef TMC2130_SG_HOMING
  220. for (uint8_t axis = X_AXIS; axis <= Z_AXIS; axis++) //X Y and Z axes
  221. {
  222. uint8_t mask = (X_AXIS_MASK << axis);
  223. if (axes_mask & mask)
  224. {
  225. sg_homing_axes_mask |= mask;
  226. //Configuration to spreadCycle
  227. tmc2130_wr(axis, TMC2130_REG_GCONF, TMC2130_GCONF_NORMAL);
  228. tmc2130_wr(axis, TMC2130_REG_COOLCONF, (((uint32_t)tmc2130_sg_thr_home[axis]) << 16));
  229. // tmc2130_wr(axis, TMC2130_REG_COOLCONF, (((uint32_t)tmc2130_sg_thr[axis]) << 16) | ((uint32_t)1 << 24));
  230. tmc2130_wr(axis, TMC2130_REG_TCOOLTHRS, (axis==X_AXIS)?TMC2130_TCOOLTHRS_X:TMC2130_TCOOLTHRS_Y);
  231. tmc2130_setup_chopper(axis, tmc2130_mres[axis], tmc2130_current_h[axis], tmc2130_current_r_home[axis]);
  232. if (mask & (X_AXIS_MASK | Y_AXIS_MASK | Z_AXIS_MASK))
  233. tmc2130_wr(axis, TMC2130_REG_GCONF, TMC2130_GCONF_SGSENS); //stallguard output DIAG1, DIAG1 = pushpull
  234. }
  235. }
  236. #endif //TMC2130_SG_HOMING
  237. }
  238. void tmc2130_home_exit()
  239. {
  240. // printf_P(PSTR("tmc2130_home_exit sg_homing_axes_mask=0x%02x\n"), sg_homing_axes_mask);
  241. #ifdef TMC2130_SG_HOMING
  242. if (sg_homing_axes_mask)
  243. {
  244. for (uint8_t axis = X_AXIS; axis <= Z_AXIS; axis++) //X Y and Z axes
  245. {
  246. uint8_t mask = (X_AXIS_MASK << axis);
  247. if (sg_homing_axes_mask & mask & (X_AXIS_MASK | Y_AXIS_MASK))
  248. {
  249. if (tmc2130_mode == TMC2130_MODE_SILENT)
  250. {
  251. tmc2130_wr(axis, TMC2130_REG_GCONF, TMC2130_GCONF_SILENT); // Configuration back to stealthChop
  252. tmc2130_wr(axis, TMC2130_REG_TCOOLTHRS, 0);
  253. // tmc2130_wr_PWMCONF(i, tmc2130_pwm_ampl[i], tmc2130_pwm_grad[i], tmc2130_pwm_freq[i], tmc2130_pwm_auto[i], 0, 0);
  254. }
  255. else
  256. {
  257. // tmc2130_wr(axis, TMC2130_REG_GCONF, TMC2130_GCONF_NORMAL);
  258. tmc2130_setup_chopper(axis, tmc2130_mres[axis], tmc2130_current_h[axis], tmc2130_current_r[axis]);
  259. // tmc2130_wr(axis, TMC2130_REG_COOLCONF, (((uint32_t)tmc2130_sg_thr[axis]) << 16) | ((uint32_t)1 << 24));
  260. tmc2130_wr(axis, TMC2130_REG_COOLCONF, (((uint32_t)tmc2130_sg_thr[axis]) << 16));
  261. tmc2130_wr(axis, TMC2130_REG_TCOOLTHRS, (tmc2130_mode == TMC2130_MODE_SILENT)?0:((axis==X_AXIS)?TMC2130_TCOOLTHRS_X:TMC2130_TCOOLTHRS_Y));
  262. tmc2130_wr(axis, TMC2130_REG_GCONF, TMC2130_GCONF_SGSENS);
  263. }
  264. }
  265. }
  266. sg_homing_axes_mask = 0x00;
  267. }
  268. tmc2130_sg_crash = false;
  269. #endif
  270. }
  271. void tmc2130_sg_meassure_start(uint8_t axis)
  272. {
  273. tmc2130_sg_meassure = axis;
  274. tmc2130_sg_meassure_cnt = 0;
  275. tmc2130_sg_meassure_val = 0;
  276. }
  277. uint16_t tmc2130_sg_meassure_stop()
  278. {
  279. tmc2130_sg_meassure = 0xff;
  280. return tmc2130_sg_meassure_val / tmc2130_sg_meassure_cnt;
  281. }
  282. bool tmc2130_wait_standstill_xy(int timeout)
  283. {
  284. // DBG(_n("tmc2130_wait_standstill_xy(timeout=%d)\n"), timeout);
  285. bool standstill = false;
  286. while (!standstill && (timeout > 0))
  287. {
  288. uint32_t drv_status_x = 0;
  289. uint32_t drv_status_y = 0;
  290. tmc2130_rd(X_AXIS, TMC2130_REG_DRV_STATUS, &drv_status_x);
  291. tmc2130_rd(Y_AXIS, TMC2130_REG_DRV_STATUS, &drv_status_y);
  292. // DBG(_n("\tdrv_status_x=0x%08x drv_status_x=0x%08x\n"), drv_status_x, drv_status_y);
  293. standstill = (drv_status_x & 0x80000000) && (drv_status_y & 0x80000000);
  294. tmc2130_check_overtemp();
  295. timeout--;
  296. }
  297. return standstill;
  298. }
  299. void tmc2130_check_overtemp()
  300. {
  301. const static char TMC_OVERTEMP_MSG[] PROGMEM = "TMC DRIVER OVERTEMP ";
  302. static uint32_t checktime = 0;
  303. if (millis() - checktime > 1000 )
  304. {
  305. for (int i = 0; i < 4; i++)
  306. {
  307. uint32_t drv_status = 0;
  308. skip_debug_msg = true;
  309. tmc2130_rd(i, TMC2130_REG_DRV_STATUS, &drv_status);
  310. if (drv_status & ((uint32_t)1 << 26))
  311. { // BIT 26 - over temp prewarning ~120C (+-20C)
  312. SERIAL_ERRORRPGM(TMC_OVERTEMP_MSG);
  313. SERIAL_ECHOLN(i);
  314. for (int j = 0; j < 4; j++)
  315. tmc2130_wr(j, TMC2130_REG_CHOPCONF, 0x00010000);
  316. kill(TMC_OVERTEMP_MSG);
  317. }
  318. }
  319. checktime = millis();
  320. tmc2130_sg_change = true;
  321. }
  322. #ifdef DEBUG_CRASHDET_COUNTERS
  323. if (tmc2130_sg_change)
  324. {
  325. for (int i = 0; i < 4; i++)
  326. {
  327. tmc2130_sg_change = false;
  328. lcd.setCursor(0 + i*4, 3);
  329. lcd.print(itostr3(tmc2130_sg_cnt[i]));
  330. lcd.print(' ');
  331. }
  332. }
  333. #endif DEBUG_CRASHDET_COUNTERS
  334. }
  335. void tmc2130_setup_chopper(uint8_t axis, uint8_t mres, uint8_t current_h, uint8_t current_r)
  336. {
  337. uint8_t intpol = 1;
  338. uint8_t toff = TMC2130_TOFF_XYZ; // toff = 3 (fchop = 27.778kHz)
  339. uint8_t hstrt = 5; //initial 4, modified to 5
  340. uint8_t hend = 1;
  341. uint8_t fd3 = 0;
  342. uint8_t rndtf = 0; //random off time
  343. uint8_t chm = 0; //spreadCycle
  344. uint8_t tbl = 2; //blanking time
  345. if (axis == E_AXIS)
  346. {
  347. #ifdef TMC2130_CNSTOFF_E
  348. // fd = 0 (slow decay only)
  349. hstrt = 0; //fd0..2
  350. fd3 = 0; //fd3
  351. hend = 0; //sine wave offset
  352. chm = 1; // constant off time mod
  353. #endif //TMC2130_CNSTOFF_E
  354. toff = TMC2130_TOFF_E; // toff = 3-5
  355. // rndtf = 1;
  356. }
  357. if (current_r <= 31)
  358. {
  359. tmc2130_wr_CHOPCONF(axis, toff, hstrt, hend, fd3, 0, rndtf, chm, tbl, 1, 0, 0, 0, mres, intpol, 0, 0);
  360. tmc2130_wr(axis, TMC2130_REG_IHOLD_IRUN, 0x000f0000 | ((current_r & 0x1f) << 8) | (current_h & 0x1f));
  361. }
  362. else
  363. {
  364. tmc2130_wr_CHOPCONF(axis, toff, hstrt, hend, fd3, 0, 0, 0, tbl, 0, 0, 0, 0, mres, intpol, 0, 0);
  365. tmc2130_wr(axis, TMC2130_REG_IHOLD_IRUN, 0x000f0000 | (((current_r >> 1) & 0x1f) << 8) | ((current_h >> 1) & 0x1f));
  366. }
  367. }
  368. void tmc2130_set_current_h(uint8_t axis, uint8_t current)
  369. {
  370. DBG(_n("tmc2130_set_current_h(axis=%d, current=%d\n"), axis, current);
  371. tmc2130_current_h[axis] = current;
  372. tmc2130_setup_chopper(axis, tmc2130_mres[axis], tmc2130_current_h[axis], tmc2130_current_r[axis]);
  373. }
  374. void tmc2130_set_current_r(uint8_t axis, uint8_t current)
  375. {
  376. DBG(_n("tmc2130_set_current_r(axis=%d, current=%d\n"), axis, current);
  377. tmc2130_current_r[axis] = current;
  378. tmc2130_setup_chopper(axis, tmc2130_mres[axis], tmc2130_current_h[axis], tmc2130_current_r[axis]);
  379. }
  380. void tmc2130_print_currents()
  381. {
  382. DBG(_n("tmc2130_print_currents()\n\tH\tR\nX\t%d\t%d\nY\t%d\t%d\nZ\t%d\t%d\nE\t%d\t%d\n"),
  383. tmc2130_current_h[0], tmc2130_current_r[0],
  384. tmc2130_current_h[1], tmc2130_current_r[1],
  385. tmc2130_current_h[2], tmc2130_current_r[2],
  386. tmc2130_current_h[3], tmc2130_current_r[3]
  387. );
  388. }
  389. void tmc2130_set_pwm_ampl(uint8_t axis, uint8_t pwm_ampl)
  390. {
  391. MYSERIAL.print("tmc2130_set_pwm_ampl ");
  392. MYSERIAL.print((int)axis);
  393. MYSERIAL.print(" ");
  394. MYSERIAL.println((int)pwm_ampl);
  395. tmc2130_pwm_ampl[axis] = pwm_ampl;
  396. if (((axis == 0) || (axis == 1)) && (tmc2130_mode == TMC2130_MODE_SILENT))
  397. tmc2130_wr_PWMCONF(axis, tmc2130_pwm_ampl[axis], tmc2130_pwm_grad[axis], tmc2130_pwm_freq[axis], tmc2130_pwm_auto[axis], 0, 0);
  398. }
  399. void tmc2130_set_pwm_grad(uint8_t axis, uint8_t pwm_grad)
  400. {
  401. MYSERIAL.print("tmc2130_set_pwm_grad ");
  402. MYSERIAL.print((int)axis);
  403. MYSERIAL.print(" ");
  404. MYSERIAL.println((int)pwm_grad);
  405. tmc2130_pwm_grad[axis] = pwm_grad;
  406. if (((axis == 0) || (axis == 1)) && (tmc2130_mode == TMC2130_MODE_SILENT))
  407. tmc2130_wr_PWMCONF(axis, tmc2130_pwm_ampl[axis], tmc2130_pwm_grad[axis], tmc2130_pwm_freq[axis], tmc2130_pwm_auto[axis], 0, 0);
  408. }
  409. uint16_t tmc2130_rd_TSTEP(uint8_t axis)
  410. {
  411. uint32_t val32 = 0;
  412. tmc2130_rd(axis, TMC2130_REG_TSTEP, &val32);
  413. if (val32 & 0x000f0000) return 0xffff;
  414. return val32 & 0xffff;
  415. }
  416. uint16_t tmc2130_rd_MSCNT(uint8_t axis)
  417. {
  418. uint32_t val32 = 0;
  419. tmc2130_rd(axis, TMC2130_REG_MSCNT, &val32);
  420. return val32 & 0x3ff;
  421. }
  422. uint32_t tmc2130_rd_MSCURACT(uint8_t axis)
  423. {
  424. uint32_t val32 = 0;
  425. tmc2130_rd(axis, TMC2130_REG_MSCURACT, &val32);
  426. return val32;
  427. }
  428. void tmc2130_wr_MSLUTSTART(uint8_t axis, uint8_t start_sin, uint8_t start_sin90)
  429. {
  430. uint32_t val = 0;
  431. val |= (uint32_t)start_sin;
  432. val |= ((uint32_t)start_sin90) << 16;
  433. tmc2130_wr(axis, TMC2130_REG_MSLUTSTART, val);
  434. //printf_P(PSTR("MSLUTSTART=%08lx (start_sin=%d start_sin90=%d)\n"), val, start_sin, start_sin90);
  435. }
  436. void tmc2130_wr_MSLUTSEL(uint8_t axis, uint8_t x1, uint8_t x2, uint8_t x3, uint8_t w0, uint8_t w1, uint8_t w2, uint8_t w3)
  437. {
  438. uint32_t val = 0;
  439. val |= ((uint32_t)w0);
  440. val |= ((uint32_t)w1) << 2;
  441. val |= ((uint32_t)w2) << 4;
  442. val |= ((uint32_t)w3) << 6;
  443. val |= ((uint32_t)x1) << 8;
  444. val |= ((uint32_t)x2) << 16;
  445. val |= ((uint32_t)x3) << 24;
  446. tmc2130_wr(axis, TMC2130_REG_MSLUTSEL, val);
  447. //printf_P(PSTR("MSLUTSEL=%08lx (x1=%d x2=%d x3=%d w0=%d w1=%d w2=%d w3=%d)\n"), val, x1, x2, x3, w0, w1, w2, w3);
  448. }
  449. void tmc2130_wr_MSLUT(uint8_t axis, uint8_t i, uint32_t val)
  450. {
  451. tmc2130_wr(axis, TMC2130_REG_MSLUT0 + (i & 7), val);
  452. //printf_P(PSTR("MSLUT[%d]=%08lx\n"), i, val);
  453. }
  454. void tmc2130_wr_CHOPCONF(uint8_t axis, uint8_t toff, uint8_t hstrt, uint8_t hend, uint8_t fd3, uint8_t disfdcc, uint8_t rndtf, uint8_t chm, uint8_t tbl, uint8_t vsense, uint8_t vhighfs, uint8_t vhighchm, uint8_t sync, uint8_t mres, uint8_t intpol, uint8_t dedge, uint8_t diss2g)
  455. {
  456. uint32_t val = 0;
  457. val |= (uint32_t)(toff & 15);
  458. val |= (uint32_t)(hstrt & 7) << 4;
  459. val |= (uint32_t)(hend & 15) << 7;
  460. val |= (uint32_t)(fd3 & 1) << 11;
  461. val |= (uint32_t)(disfdcc & 1) << 12;
  462. val |= (uint32_t)(rndtf & 1) << 13;
  463. val |= (uint32_t)(chm & 1) << 14;
  464. val |= (uint32_t)(tbl & 3) << 15;
  465. val |= (uint32_t)(vsense & 1) << 17;
  466. val |= (uint32_t)(vhighfs & 1) << 18;
  467. val |= (uint32_t)(vhighchm & 1) << 19;
  468. val |= (uint32_t)(sync & 15) << 20;
  469. val |= (uint32_t)(mres & 15) << 24;
  470. val |= (uint32_t)(intpol & 1) << 28;
  471. val |= (uint32_t)(dedge & 1) << 29;
  472. val |= (uint32_t)(diss2g & 1) << 30;
  473. tmc2130_wr(axis, TMC2130_REG_CHOPCONF, val);
  474. }
  475. //void tmc2130_wr_PWMCONF(uint8_t axis, uint8_t PWMautoScale, uint8_t PWMfreq, uint8_t PWMgrad, uint8_t PWMampl)
  476. void tmc2130_wr_PWMCONF(uint8_t axis, uint8_t pwm_ampl, uint8_t pwm_grad, uint8_t pwm_freq, uint8_t pwm_auto, uint8_t pwm_symm, uint8_t freewheel)
  477. {
  478. uint32_t val = 0;
  479. val |= (uint32_t)(pwm_ampl & 255);
  480. val |= (uint32_t)(pwm_grad & 255) << 8;
  481. val |= (uint32_t)(pwm_freq & 3) << 16;
  482. val |= (uint32_t)(pwm_auto & 1) << 18;
  483. val |= (uint32_t)(pwm_symm & 1) << 19;
  484. val |= (uint32_t)(freewheel & 3) << 20;
  485. tmc2130_wr(axis, TMC2130_REG_PWMCONF, val);
  486. // tmc2130_wr(axis, TMC2130_REG_PWMCONF, ((uint32_t)(PWMautoScale+PWMfreq) << 16) | ((uint32_t)PWMgrad << 8) | PWMampl); // TMC LJ -> For better readability changed to 0x00 and added PWMautoScale and PWMfreq
  487. }
  488. void tmc2130_wr_TPWMTHRS(uint8_t axis, uint32_t val32)
  489. {
  490. tmc2130_wr(axis, TMC2130_REG_TPWMTHRS, val32);
  491. }
  492. void tmc2130_wr_THIGH(uint8_t axis, uint32_t val32)
  493. {
  494. tmc2130_wr(axis, TMC2130_REG_THIGH, val32);
  495. }
  496. uint8_t tmc2130_usteps2mres(uint16_t usteps)
  497. {
  498. uint8_t mres = 8; while (mres && (usteps >>= 1)) mres--;
  499. return mres;
  500. }
  501. inline void tmc2130_cs_low(uint8_t axis)
  502. {
  503. switch (axis)
  504. {
  505. case X_AXIS: WRITE(X_TMC2130_CS, LOW); break;
  506. case Y_AXIS: WRITE(Y_TMC2130_CS, LOW); break;
  507. case Z_AXIS: WRITE(Z_TMC2130_CS, LOW); break;
  508. case E_AXIS: WRITE(E0_TMC2130_CS, LOW); break;
  509. }
  510. }
  511. inline void tmc2130_cs_high(uint8_t axis)
  512. {
  513. switch (axis)
  514. {
  515. case X_AXIS: WRITE(X_TMC2130_CS, HIGH); break;
  516. case Y_AXIS: WRITE(Y_TMC2130_CS, HIGH); break;
  517. case Z_AXIS: WRITE(Z_TMC2130_CS, HIGH); break;
  518. case E_AXIS: WRITE(E0_TMC2130_CS, HIGH); break;
  519. }
  520. }
  521. uint8_t tmc2130_tx(uint8_t axis, uint8_t addr, uint32_t wval)
  522. {
  523. //datagram1 - request
  524. SPI.beginTransaction(SPISettings(4000000, MSBFIRST, SPI_MODE3));
  525. tmc2130_cs_low(axis);
  526. SPI.transfer(addr); // address
  527. SPI.transfer((wval >> 24) & 0xff); // MSB
  528. SPI.transfer((wval >> 16) & 0xff);
  529. SPI.transfer((wval >> 8) & 0xff);
  530. SPI.transfer(wval & 0xff); // LSB
  531. tmc2130_cs_high(axis);
  532. SPI.endTransaction();
  533. }
  534. uint8_t tmc2130_rx(uint8_t axis, uint8_t addr, uint32_t* rval)
  535. {
  536. //datagram1 - request
  537. SPI.beginTransaction(SPISettings(4000000, MSBFIRST, SPI_MODE3));
  538. tmc2130_cs_low(axis);
  539. SPI.transfer(addr); // address
  540. SPI.transfer(0); // MSB
  541. SPI.transfer(0);
  542. SPI.transfer(0);
  543. SPI.transfer(0); // LSB
  544. tmc2130_cs_high(axis);
  545. SPI.endTransaction();
  546. //datagram2 - response
  547. SPI.beginTransaction(SPISettings(4000000, MSBFIRST, SPI_MODE3));
  548. tmc2130_cs_low(axis);
  549. uint8_t stat = SPI.transfer(0); // status
  550. uint32_t val32 = 0;
  551. val32 = SPI.transfer(0); // MSB
  552. val32 = (val32 << 8) | SPI.transfer(0);
  553. val32 = (val32 << 8) | SPI.transfer(0);
  554. val32 = (val32 << 8) | SPI.transfer(0); // LSB
  555. tmc2130_cs_high(axis);
  556. SPI.endTransaction();
  557. if (rval != 0) *rval = val32;
  558. return stat;
  559. }
  560. void tmc2130_eeprom_load_config()
  561. {
  562. }
  563. void tmc2130_eeprom_save_config()
  564. {
  565. }
  566. #define _GET_PWR_X (READ(X_ENABLE_PIN) == X_ENABLE_ON)
  567. #define _GET_PWR_Y (READ(Y_ENABLE_PIN) == Y_ENABLE_ON)
  568. #define _GET_PWR_Z (READ(Z_ENABLE_PIN) == Z_ENABLE_ON)
  569. #define _GET_PWR_E (READ(E0_ENABLE_PIN) == E_ENABLE_ON)
  570. #define _SET_PWR_X(ena) { WRITE(X_ENABLE_PIN, ena?X_ENABLE_ON:!X_ENABLE_ON); asm("nop"); }
  571. #define _SET_PWR_Y(ena) { WRITE(Y_ENABLE_PIN, ena?Y_ENABLE_ON:!Y_ENABLE_ON); asm("nop"); }
  572. #define _SET_PWR_Z(ena) { WRITE(Z_ENABLE_PIN, ena?Z_ENABLE_ON:!Z_ENABLE_ON); asm("nop"); }
  573. #define _SET_PWR_E(ena) { WRITE(E0_ENABLE_PIN, ena?E_ENABLE_ON:!E_ENABLE_ON); asm("nop"); }
  574. #define _GET_DIR_X (READ(X_DIR_PIN) == INVERT_X_DIR)
  575. #define _GET_DIR_Y (READ(Y_DIR_PIN) == INVERT_Y_DIR)
  576. #define _GET_DIR_Z (READ(Z_DIR_PIN) == INVERT_Z_DIR)
  577. #define _GET_DIR_E (READ(E0_DIR_PIN) == INVERT_E0_DIR)
  578. #define _SET_DIR_X(dir) { WRITE(X_DIR_PIN, dir?INVERT_X_DIR:!INVERT_X_DIR); asm("nop"); }
  579. #define _SET_DIR_Y(dir) { WRITE(Y_DIR_PIN, dir?INVERT_Y_DIR:!INVERT_Y_DIR); asm("nop"); }
  580. #define _SET_DIR_Z(dir) { WRITE(Z_DIR_PIN, dir?INVERT_Z_DIR:!INVERT_Z_DIR); asm("nop"); }
  581. #define _SET_DIR_E(dir) { WRITE(E0_DIR_PIN, dir?INVERT_E0_DIR:!INVERT_E0_DIR); asm("nop"); }
  582. #define _DO_STEP_X { WRITE(X_STEP_PIN, !INVERT_X_STEP_PIN); asm("nop"); WRITE(X_STEP_PIN, INVERT_X_STEP_PIN); asm("nop"); }
  583. #define _DO_STEP_Y { WRITE(Y_STEP_PIN, !INVERT_Y_STEP_PIN); asm("nop"); WRITE(Y_STEP_PIN, INVERT_Y_STEP_PIN); asm("nop"); }
  584. #define _DO_STEP_Z { WRITE(Z_STEP_PIN, !INVERT_Z_STEP_PIN); asm("nop"); WRITE(Z_STEP_PIN, INVERT_Z_STEP_PIN); asm("nop"); }
  585. #define _DO_STEP_E { WRITE(E0_STEP_PIN, !INVERT_E_STEP_PIN); asm("nop"); WRITE(E0_STEP_PIN, INVERT_E_STEP_PIN); asm("nop"); }
  586. uint16_t tmc2130_get_res(uint8_t axis)
  587. {
  588. return tmc2130_mres2usteps(tmc2130_mres[axis]);
  589. }
  590. void tmc2130_set_res(uint8_t axis, uint16_t res)
  591. {
  592. tmc2130_mres[axis] = tmc2130_usteps2mres(res);
  593. // uint32_t u = micros();
  594. tmc2130_setup_chopper(axis, tmc2130_mres[axis], tmc2130_current_h[axis], tmc2130_current_r[axis]);
  595. // u = micros() - u;
  596. // printf_P(PSTR("tmc2130_setup_chopper %c %lu us"), "XYZE"[axis], u);
  597. }
  598. uint8_t tmc2130_get_pwr(uint8_t axis)
  599. {
  600. switch (axis)
  601. {
  602. case X_AXIS: return _GET_PWR_X;
  603. case Y_AXIS: return _GET_PWR_Y;
  604. case Z_AXIS: return _GET_PWR_Z;
  605. case E_AXIS: return _GET_PWR_E;
  606. }
  607. return 0;
  608. }
  609. void tmc2130_set_pwr(uint8_t axis, uint8_t pwr)
  610. {
  611. switch (axis)
  612. {
  613. case X_AXIS: _SET_PWR_X(pwr); break;
  614. case Y_AXIS: _SET_PWR_Y(pwr); break;
  615. case Z_AXIS: _SET_PWR_Z(pwr); break;
  616. case E_AXIS: _SET_PWR_E(pwr); break;
  617. }
  618. }
  619. uint8_t tmc2130_get_inv(uint8_t axis)
  620. {
  621. switch (axis)
  622. {
  623. case X_AXIS: return INVERT_X_DIR;
  624. case Y_AXIS: return INVERT_Y_DIR;
  625. case Z_AXIS: return INVERT_Z_DIR;
  626. case E_AXIS: return INVERT_E0_DIR;
  627. }
  628. return 0;
  629. }
  630. uint8_t tmc2130_get_dir(uint8_t axis)
  631. {
  632. switch (axis)
  633. {
  634. case X_AXIS: return _GET_DIR_X;
  635. case Y_AXIS: return _GET_DIR_Y;
  636. case Z_AXIS: return _GET_DIR_Z;
  637. case E_AXIS: return _GET_DIR_E;
  638. }
  639. return 0;
  640. }
  641. void tmc2130_set_dir(uint8_t axis, uint8_t dir)
  642. {
  643. switch (axis)
  644. {
  645. case X_AXIS: _SET_DIR_X(dir); break;
  646. case Y_AXIS: _SET_DIR_Y(dir); break;
  647. case Z_AXIS: _SET_DIR_Z(dir); break;
  648. case E_AXIS: _SET_DIR_E(dir); break;
  649. }
  650. }
  651. void tmc2130_do_step(uint8_t axis)
  652. {
  653. switch (axis)
  654. {
  655. case X_AXIS: _DO_STEP_X; break;
  656. case Y_AXIS: _DO_STEP_Y; break;
  657. case Z_AXIS: _DO_STEP_Z; break;
  658. case E_AXIS: _DO_STEP_E; break;
  659. }
  660. }
  661. void tmc2130_do_steps(uint8_t axis, uint16_t steps, uint8_t dir, uint16_t delay_us)
  662. {
  663. tmc2130_set_dir(axis, dir);
  664. delayMicroseconds(100);
  665. while (steps--)
  666. {
  667. tmc2130_do_step(axis);
  668. delayMicroseconds(delay_us);
  669. }
  670. }
  671. void tmc2130_goto_step(uint8_t axis, uint8_t step, uint8_t dir, uint16_t delay_us, uint16_t microstep_resolution)
  672. {
  673. printf_P(PSTR("tmc2130_goto_step %d %d %d %d \n"), axis, step, dir, delay_us, microstep_resolution);
  674. uint8_t shift; for (shift = 0; shift < 8; shift++) if (microstep_resolution == (256 >> shift)) break;
  675. uint16_t cnt = 4 * (1 << (8 - shift));
  676. uint16_t mscnt = tmc2130_rd_MSCNT(axis);
  677. if (dir == 2)
  678. {
  679. dir = tmc2130_get_inv(axis)?0:1;
  680. int steps = (int)step - (int)(mscnt >> shift);
  681. if (steps < 0)
  682. {
  683. dir ^= 1;
  684. steps = -steps;
  685. }
  686. if (steps > (cnt / 2))
  687. {
  688. dir ^= 1;
  689. steps = cnt - steps;
  690. }
  691. cnt = steps;
  692. }
  693. tmc2130_set_dir(axis, dir);
  694. delayMicroseconds(100);
  695. mscnt = tmc2130_rd_MSCNT(axis);
  696. while ((cnt--) && ((mscnt >> shift) != step))
  697. {
  698. tmc2130_do_step(axis);
  699. delayMicroseconds(delay_us);
  700. mscnt = tmc2130_rd_MSCNT(axis);
  701. }
  702. }
  703. void tmc2130_get_wave(uint8_t axis, uint8_t* data, FILE* stream)
  704. {
  705. uint8_t pwr = tmc2130_get_pwr(axis);
  706. tmc2130_set_pwr(axis, 0);
  707. tmc2130_setup_chopper(axis, tmc2130_usteps2mres(256), tmc2130_current_h[axis], tmc2130_current_r[axis]);
  708. tmc2130_goto_step(axis, 0, 2, 100, 256);
  709. tmc2130_set_dir(axis, tmc2130_get_inv(axis)?0:1);
  710. for (int i = 0; i <= 255; i++)
  711. {
  712. uint32_t val = tmc2130_rd_MSCURACT(axis);
  713. uint16_t mscnt = tmc2130_rd_MSCNT(axis);
  714. int curA = (val & 0xff) | ((val << 7) & 0x8000);
  715. if (stream)
  716. {
  717. if (mscnt == i)
  718. fprintf_P(stream, PSTR("%d\t%d\n"), i, curA);
  719. else //TODO - remove this check
  720. fprintf_P(stream, PSTR("!! (i=%d MSCNT=%d)\n"), i, mscnt);
  721. }
  722. if (data) *(data++) = curA;
  723. tmc2130_do_step(axis);
  724. delayMicroseconds(100);
  725. }
  726. tmc2130_setup_chopper(axis, tmc2130_mres[axis], tmc2130_current_h[axis], tmc2130_current_r[axis]);
  727. }
  728. void tmc2130_set_wave(uint8_t axis, uint8_t amp, uint8_t fac200)
  729. {
  730. // TMC2130 wave compression algorithm
  731. // optimized for minimal memory requirements
  732. printf_P(PSTR("tmc2130_set_wave %d %d\n"), axis, fac200);
  733. if (fac200 < TMC2130_WAVE_FAC200_MIN) fac200 = 0;
  734. if (fac200 > TMC2130_WAVE_FAC200_MAX) fac200 = TMC2130_WAVE_FAC200_MAX;
  735. float fac = (float)fac200/200; //correction factor
  736. uint8_t vA = 0; //value of currentA
  737. uint8_t va = 0; //previous vA
  738. uint8_t d0 = 0; //delta0
  739. uint8_t d1 = 1; //delta1
  740. uint8_t w[4] = {1,1,1,1}; //W bits (MSLUTSEL)
  741. uint8_t x[3] = {255,255,255}; //X segment bounds (MSLUTSEL)
  742. uint8_t s = 0; //current segment
  743. int8_t b; //encoded bit value
  744. uint8_t dA; //delta value
  745. int i; //microstep index
  746. uint32_t reg; //tmc2130 register
  747. tmc2130_wr_MSLUTSTART(axis, 0, amp);
  748. for (i = 0; i < 256; i++)
  749. {
  750. if ((i & 31) == 0)
  751. reg = 0;
  752. // calculate value
  753. if (fac == 0) // default TMC wave
  754. vA = (uint8_t)((amp+1) * sin((2*PI*i + PI)/1024) + 0.5) - 1;
  755. else // corrected wave
  756. vA = (uint8_t)(amp * pow(sin(2*PI*i/1024), fac) + 0.5);
  757. dA = vA - va; // calculate delta
  758. va = vA;
  759. b = -1;
  760. if (dA == d0) b = 0; //delta == delta0 => bit=0
  761. else if (dA == d1) b = 1; //delta == delta1 => bit=1
  762. else
  763. {
  764. if (dA < d0) // delta < delta0 => switch wbit down
  765. {
  766. //printf("dn\n");
  767. b = 0;
  768. switch (dA)
  769. {
  770. case -1: d0 = -1; d1 = 0; w[s+1] = 0; break;
  771. case 0: d0 = 0; d1 = 1; w[s+1] = 1; break;
  772. case 1: d0 = 1; d1 = 2; w[s+1] = 2; break;
  773. default: b = -1; break;
  774. }
  775. if (b >= 0) { x[s] = i; s++; }
  776. }
  777. else if (dA > d1) // delta > delta0 => switch wbit up
  778. {
  779. //printf("up\n");
  780. b = 1;
  781. switch (dA)
  782. {
  783. case 1: d0 = 0; d1 = 1; w[s+1] = 1; break;
  784. case 2: d0 = 1; d1 = 2; w[s+1] = 2; break;
  785. case 3: d0 = 2; d1 = 3; w[s+1] = 3; break;
  786. default: b = -1; break;
  787. }
  788. if (b >= 0) { x[s] = i; s++; }
  789. }
  790. }
  791. if (b < 0) break; // delta out of range (<-1 or >3)
  792. if (s > 3) break; // segment out of range (> 3)
  793. //printf("%d\n", vA);
  794. if (b == 1) reg |= 0x80000000;
  795. if ((i & 31) == 31)
  796. tmc2130_wr_MSLUT(axis, (uint8_t)(i >> 5), reg);
  797. else
  798. reg >>= 1;
  799. // printf("%3d\t%3d\t%2d\t%2d\t%2d\t%2d %08x\n", i, vA, dA, b, w[s], s, reg);
  800. }
  801. tmc2130_wr_MSLUTSEL(axis, x[0], x[1], x[2], w[0], w[1], w[2], w[3]);
  802. }
  803. void bubblesort_uint8(uint8_t* data, uint8_t size, uint8_t* data2)
  804. {
  805. uint8_t changed = 1;
  806. while (changed)
  807. {
  808. changed = 0;
  809. for (uint8_t i = 0; i < (size - 1); i++)
  810. if (data[i] > data[i+1])
  811. {
  812. uint8_t register d = data[i];
  813. data[i] = data[i+1];
  814. data[i+1] = d;
  815. if (data2)
  816. {
  817. d = data2[i];
  818. data2[i] = data2[i+1];
  819. data2[i+1] = d;
  820. }
  821. changed = 1;
  822. }
  823. }
  824. }
  825. uint8_t clusterize_uint8(uint8_t* data, uint8_t size, uint8_t* ccnt, uint8_t* cval, uint8_t tol)
  826. {
  827. uint8_t cnt = 1;
  828. uint16_t sum = data[0];
  829. uint8_t cl = 0;
  830. for (uint8_t i = 1; i < size; i++)
  831. {
  832. uint8_t d = data[i];
  833. uint8_t val = sum / cnt;
  834. uint8_t dif = 0;
  835. if (val > d) dif = val - d;
  836. else dif = d - val;
  837. if (dif <= tol)
  838. {
  839. cnt += 1;
  840. sum += d;
  841. }
  842. else
  843. {
  844. if (ccnt) ccnt[cl] = cnt;
  845. if (cval) cval[cl] = val;
  846. cnt = 1;
  847. sum = d;
  848. cl += 1;
  849. }
  850. }
  851. if (ccnt) ccnt[cl] = cnt;
  852. if (cval) cval[cl] = sum / cnt;
  853. return ++cl;
  854. }
  855. bool tmc2130_home_calibrate(uint8_t axis)
  856. {
  857. uint8_t step[16];
  858. uint8_t cnt[16];
  859. uint8_t val[16];
  860. homeaxis(axis, 16, step);
  861. bubblesort_uint8(step, 16, 0);
  862. printf_P(PSTR("sorted samples:\n"));
  863. for (uint8_t i = 0; i < 16; i++)
  864. printf_P(PSTR(" i=%2d step=%2d\n"), i, step[i]);
  865. uint8_t cl = clusterize_uint8(step, 16, cnt, val, 1);
  866. printf_P(PSTR("clusters:\n"));
  867. for (uint8_t i = 0; i < cl; i++)
  868. printf_P(PSTR(" i=%2d cnt=%2d val=%2d\n"), i, cnt[i], val[i]);
  869. bubblesort_uint8(cnt, cl, val);
  870. tmc2130_home_origin[axis] = val[cl-1];
  871. printf_P(PSTR("result value: %d\n"), tmc2130_home_origin[axis]);
  872. if (axis == X_AXIS) eeprom_update_byte((uint8_t*)EEPROM_TMC2130_HOME_X_ORIGIN, tmc2130_home_origin[X_AXIS]);
  873. else if (axis == Y_AXIS) eeprom_update_byte((uint8_t*)EEPROM_TMC2130_HOME_Y_ORIGIN, tmc2130_home_origin[Y_AXIS]);
  874. return true;
  875. }
  876. #endif //TMC2130