Marlin_main.cpp 237 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744374537463747374837493750375137523753375437553756375737583759376037613762376337643765376637673768376937703771377237733774377537763777377837793780378137823783378437853786378737883789379037913792379337943795379637973798379938003801380238033804380538063807380838093810381138123813381438153816381738183819382038213822382338243825382638273828382938303831383238333834383538363837383838393840384138423843384438453846384738483849385038513852385338543855385638573858385938603861386238633864386538663867386838693870387138723873387438753876387738783879388038813882388338843885388638873888388938903891389238933894389538963897389838993900390139023903390439053906390739083909391039113912391339143915391639173918391939203921392239233924392539263927392839293930393139323933393439353936393739383939394039413942394339443945394639473948394939503951395239533954395539563957395839593960396139623963396439653966396739683969397039713972397339743975397639773978397939803981398239833984398539863987398839893990399139923993399439953996399739983999400040014002400340044005400640074008400940104011401240134014401540164017401840194020402140224023402440254026402740284029403040314032403340344035403640374038403940404041404240434044404540464047404840494050405140524053405440554056405740584059406040614062406340644065406640674068406940704071407240734074407540764077407840794080408140824083408440854086408740884089409040914092409340944095409640974098409941004101410241034104410541064107410841094110411141124113411441154116411741184119412041214122412341244125412641274128412941304131413241334134413541364137413841394140414141424143414441454146414741484149415041514152415341544155415641574158415941604161416241634164416541664167416841694170417141724173417441754176417741784179418041814182418341844185418641874188418941904191419241934194419541964197419841994200420142024203420442054206420742084209421042114212421342144215421642174218421942204221422242234224422542264227422842294230423142324233423442354236423742384239424042414242424342444245424642474248424942504251425242534254425542564257425842594260426142624263426442654266426742684269427042714272427342744275427642774278427942804281428242834284428542864287428842894290429142924293429442954296429742984299430043014302430343044305430643074308430943104311431243134314431543164317431843194320432143224323432443254326432743284329433043314332433343344335433643374338433943404341434243434344434543464347434843494350435143524353435443554356435743584359436043614362436343644365436643674368436943704371437243734374437543764377437843794380438143824383438443854386438743884389439043914392439343944395439643974398439944004401440244034404440544064407440844094410441144124413441444154416441744184419442044214422442344244425442644274428442944304431443244334434443544364437443844394440444144424443444444454446444744484449445044514452445344544455445644574458445944604461446244634464446544664467446844694470447144724473447444754476447744784479448044814482448344844485448644874488448944904491449244934494449544964497449844994500450145024503450445054506450745084509451045114512451345144515451645174518451945204521452245234524452545264527452845294530453145324533453445354536453745384539454045414542454345444545454645474548454945504551455245534554455545564557455845594560456145624563456445654566456745684569457045714572457345744575457645774578457945804581458245834584458545864587458845894590459145924593459445954596459745984599460046014602460346044605460646074608460946104611461246134614461546164617461846194620462146224623462446254626462746284629463046314632463346344635463646374638463946404641464246434644464546464647464846494650465146524653465446554656465746584659466046614662466346644665466646674668466946704671467246734674467546764677467846794680468146824683468446854686468746884689469046914692469346944695469646974698469947004701470247034704470547064707470847094710471147124713471447154716471747184719472047214722472347244725472647274728472947304731473247334734473547364737473847394740474147424743474447454746474747484749475047514752475347544755475647574758475947604761476247634764476547664767476847694770477147724773477447754776477747784779478047814782478347844785478647874788478947904791479247934794479547964797479847994800480148024803480448054806480748084809481048114812481348144815481648174818481948204821482248234824482548264827482848294830483148324833483448354836483748384839484048414842484348444845484648474848484948504851485248534854485548564857485848594860486148624863486448654866486748684869487048714872487348744875487648774878487948804881488248834884488548864887488848894890489148924893489448954896489748984899490049014902490349044905490649074908490949104911491249134914491549164917491849194920492149224923492449254926492749284929493049314932493349344935493649374938493949404941494249434944494549464947494849494950495149524953495449554956495749584959496049614962496349644965496649674968496949704971497249734974497549764977497849794980498149824983498449854986498749884989499049914992499349944995499649974998499950005001500250035004500550065007500850095010501150125013501450155016501750185019502050215022502350245025502650275028502950305031503250335034503550365037503850395040504150425043504450455046504750485049505050515052505350545055505650575058505950605061506250635064506550665067506850695070507150725073507450755076507750785079508050815082508350845085508650875088508950905091509250935094509550965097509850995100510151025103510451055106510751085109511051115112511351145115511651175118511951205121512251235124512551265127512851295130513151325133513451355136513751385139514051415142514351445145514651475148514951505151515251535154515551565157515851595160516151625163516451655166516751685169517051715172517351745175517651775178517951805181518251835184518551865187518851895190519151925193519451955196519751985199520052015202520352045205520652075208520952105211521252135214521552165217521852195220522152225223522452255226522752285229523052315232523352345235523652375238523952405241524252435244524552465247524852495250525152525253525452555256525752585259526052615262526352645265526652675268526952705271527252735274527552765277527852795280528152825283528452855286528752885289529052915292529352945295529652975298529953005301530253035304530553065307530853095310531153125313531453155316531753185319532053215322532353245325532653275328532953305331533253335334533553365337533853395340534153425343534453455346534753485349535053515352535353545355535653575358535953605361536253635364536553665367536853695370537153725373537453755376537753785379538053815382538353845385538653875388538953905391539253935394539553965397539853995400540154025403540454055406540754085409541054115412541354145415541654175418541954205421542254235424542554265427542854295430543154325433543454355436543754385439544054415442544354445445544654475448544954505451545254535454545554565457545854595460546154625463546454655466546754685469547054715472547354745475547654775478547954805481548254835484548554865487548854895490549154925493549454955496549754985499550055015502550355045505550655075508550955105511551255135514551555165517551855195520552155225523552455255526552755285529553055315532553355345535553655375538553955405541554255435544554555465547554855495550555155525553555455555556555755585559556055615562556355645565556655675568556955705571557255735574557555765577557855795580558155825583558455855586558755885589559055915592559355945595559655975598559956005601560256035604560556065607560856095610561156125613561456155616561756185619562056215622562356245625562656275628562956305631563256335634563556365637563856395640564156425643564456455646564756485649565056515652565356545655565656575658565956605661566256635664566556665667566856695670567156725673567456755676567756785679568056815682568356845685568656875688568956905691569256935694569556965697569856995700570157025703570457055706570757085709571057115712571357145715571657175718571957205721572257235724572557265727572857295730573157325733573457355736573757385739574057415742574357445745574657475748574957505751575257535754575557565757575857595760576157625763576457655766576757685769577057715772577357745775577657775778577957805781578257835784578557865787578857895790579157925793579457955796579757985799580058015802580358045805580658075808580958105811581258135814581558165817581858195820582158225823582458255826582758285829583058315832583358345835583658375838583958405841584258435844584558465847584858495850585158525853585458555856585758585859586058615862586358645865586658675868586958705871587258735874587558765877587858795880588158825883588458855886588758885889589058915892589358945895589658975898589959005901590259035904590559065907590859095910591159125913591459155916591759185919592059215922592359245925592659275928592959305931593259335934593559365937593859395940594159425943594459455946594759485949595059515952595359545955595659575958595959605961596259635964596559665967596859695970597159725973597459755976597759785979598059815982598359845985598659875988598959905991599259935994599559965997599859996000600160026003600460056006600760086009601060116012601360146015601660176018601960206021602260236024602560266027602860296030603160326033603460356036603760386039604060416042604360446045604660476048604960506051605260536054605560566057605860596060606160626063606460656066606760686069607060716072607360746075607660776078607960806081608260836084608560866087608860896090609160926093609460956096609760986099610061016102610361046105610661076108610961106111611261136114611561166117611861196120612161226123612461256126612761286129613061316132613361346135613661376138613961406141614261436144614561466147614861496150615161526153615461556156615761586159616061616162616361646165616661676168616961706171617261736174617561766177617861796180618161826183618461856186618761886189619061916192619361946195619661976198619962006201620262036204620562066207620862096210621162126213621462156216621762186219622062216222622362246225622662276228622962306231623262336234623562366237623862396240624162426243624462456246624762486249625062516252625362546255625662576258625962606261626262636264626562666267626862696270627162726273627462756276627762786279628062816282628362846285628662876288628962906291629262936294629562966297629862996300630163026303630463056306630763086309631063116312631363146315631663176318631963206321632263236324632563266327632863296330633163326333633463356336633763386339634063416342634363446345634663476348634963506351635263536354635563566357635863596360636163626363636463656366636763686369637063716372637363746375637663776378637963806381638263836384638563866387638863896390639163926393639463956396639763986399640064016402640364046405640664076408640964106411641264136414641564166417641864196420642164226423642464256426642764286429643064316432643364346435643664376438643964406441644264436444644564466447644864496450645164526453645464556456645764586459646064616462646364646465646664676468646964706471647264736474647564766477647864796480648164826483648464856486648764886489649064916492649364946495649664976498649965006501650265036504650565066507650865096510651165126513651465156516651765186519652065216522652365246525652665276528652965306531653265336534653565366537653865396540654165426543654465456546654765486549655065516552655365546555655665576558655965606561656265636564656565666567656865696570657165726573657465756576657765786579658065816582658365846585658665876588658965906591659265936594659565966597659865996600660166026603660466056606660766086609661066116612661366146615661666176618661966206621662266236624662566266627662866296630663166326633663466356636663766386639664066416642664366446645664666476648664966506651665266536654665566566657665866596660666166626663666466656666666766686669667066716672667366746675667666776678667966806681668266836684668566866687668866896690669166926693669466956696669766986699670067016702670367046705670667076708670967106711671267136714671567166717671867196720672167226723672467256726672767286729673067316732673367346735673667376738673967406741674267436744674567466747674867496750675167526753675467556756675767586759676067616762676367646765676667676768676967706771677267736774677567766777677867796780678167826783678467856786678767886789679067916792679367946795679667976798679968006801680268036804680568066807680868096810681168126813681468156816681768186819682068216822682368246825682668276828682968306831683268336834683568366837683868396840684168426843684468456846684768486849685068516852685368546855685668576858685968606861686268636864686568666867686868696870687168726873687468756876687768786879688068816882688368846885688668876888688968906891689268936894689568966897689868996900690169026903690469056906690769086909691069116912691369146915691669176918691969206921692269236924692569266927692869296930693169326933693469356936693769386939694069416942694369446945694669476948694969506951695269536954695569566957695869596960696169626963696469656966696769686969697069716972697369746975697669776978697969806981698269836984698569866987698869896990699169926993699469956996699769986999700070017002700370047005700670077008700970107011701270137014701570167017701870197020702170227023702470257026702770287029703070317032703370347035703670377038703970407041704270437044704570467047704870497050
  1. /* -*- c++ -*- */
  2. /*
  3. Reprap firmware based on Sprinter and grbl.
  4. Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
  5. This program is free software: you can redistribute it and/or modify
  6. it under the terms of the GNU General Public License as published by
  7. the Free Software Foundation, either version 3 of the License, or
  8. (at your option) any later version.
  9. This program is distributed in the hope that it will be useful,
  10. but WITHOUT ANY WARRANTY; without even the implied warranty of
  11. MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  12. GNU General Public License for more details.
  13. You should have received a copy of the GNU General Public License
  14. along with this program. If not, see <http://www.gnu.org/licenses/>.
  15. */
  16. /*
  17. This firmware is a mashup between Sprinter and grbl.
  18. (https://github.com/kliment/Sprinter)
  19. (https://github.com/simen/grbl/tree)
  20. It has preliminary support for Matthew Roberts advance algorithm
  21. http://reprap.org/pipermail/reprap-dev/2011-May/003323.html
  22. */
  23. #include "Marlin.h"
  24. #ifdef ENABLE_AUTO_BED_LEVELING
  25. #include "vector_3.h"
  26. #ifdef AUTO_BED_LEVELING_GRID
  27. #include "qr_solve.h"
  28. #endif
  29. #endif // ENABLE_AUTO_BED_LEVELING
  30. #ifdef MESH_BED_LEVELING
  31. #include "mesh_bed_leveling.h"
  32. #include "mesh_bed_calibration.h"
  33. #endif
  34. #include "ultralcd.h"
  35. #include "Configuration_prusa.h"
  36. #include "planner.h"
  37. #include "stepper.h"
  38. #include "temperature.h"
  39. #include "motion_control.h"
  40. #include "cardreader.h"
  41. #include "watchdog.h"
  42. #include "ConfigurationStore.h"
  43. #include "language.h"
  44. #include "pins_arduino.h"
  45. #include "math.h"
  46. #include "util.h"
  47. #ifdef HAVE_TMC2130_DRIVERS
  48. #include "tmc2130.h"
  49. #endif //HAVE_TMC2130_DRIVERS
  50. #ifdef BLINKM
  51. #include "BlinkM.h"
  52. #include "Wire.h"
  53. #endif
  54. #ifdef ULTRALCD
  55. #include "ultralcd.h"
  56. #endif
  57. #if NUM_SERVOS > 0
  58. #include "Servo.h"
  59. #endif
  60. #if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
  61. #include <SPI.h>
  62. #endif
  63. #define VERSION_STRING "1.0.2"
  64. #include "ultralcd.h"
  65. // Macros for bit masks
  66. #define BIT(b) (1<<(b))
  67. #define TEST(n,b) (((n)&BIT(b))!=0)
  68. #define SET_BIT(n,b,value) (n) ^= ((-value)^(n)) & (BIT(b))
  69. // look here for descriptions of G-codes: http://linuxcnc.org/handbook/gcode/g-code.html
  70. // http://objects.reprap.org/wiki/Mendel_User_Manual:_RepRapGCodes
  71. //Implemented Codes
  72. //-------------------
  73. // PRUSA CODES
  74. // P F - Returns FW versions
  75. // P R - Returns revision of printer
  76. // G0 -> G1
  77. // G1 - Coordinated Movement X Y Z E
  78. // G2 - CW ARC
  79. // G3 - CCW ARC
  80. // G4 - Dwell S<seconds> or P<milliseconds>
  81. // G10 - retract filament according to settings of M207
  82. // G11 - retract recover filament according to settings of M208
  83. // G28 - Home all Axis
  84. // G29 - Detailed Z-Probe, probes the bed at 3 or more points. Will fail if you haven't homed yet.
  85. // G30 - Single Z Probe, probes bed at current XY location.
  86. // G31 - Dock sled (Z_PROBE_SLED only)
  87. // G32 - Undock sled (Z_PROBE_SLED only)
  88. // G80 - Automatic mesh bed leveling
  89. // G81 - Print bed profile
  90. // G90 - Use Absolute Coordinates
  91. // G91 - Use Relative Coordinates
  92. // G92 - Set current position to coordinates given
  93. // M Codes
  94. // M0 - Unconditional stop - Wait for user to press a button on the LCD (Only if ULTRA_LCD is enabled)
  95. // M1 - Same as M0
  96. // M17 - Enable/Power all stepper motors
  97. // M18 - Disable all stepper motors; same as M84
  98. // M20 - List SD card
  99. // M21 - Init SD card
  100. // M22 - Release SD card
  101. // M23 - Select SD file (M23 filename.g)
  102. // M24 - Start/resume SD print
  103. // M25 - Pause SD print
  104. // M26 - Set SD position in bytes (M26 S12345)
  105. // M27 - Report SD print status
  106. // M28 - Start SD write (M28 filename.g)
  107. // M29 - Stop SD write
  108. // M30 - Delete file from SD (M30 filename.g)
  109. // M31 - Output time since last M109 or SD card start to serial
  110. // M32 - Select file and start SD print (Can be used _while_ printing from SD card files):
  111. // syntax "M32 /path/filename#", or "M32 S<startpos bytes> !filename#"
  112. // Call gcode file : "M32 P !filename#" and return to caller file after finishing (similar to #include).
  113. // The '#' is necessary when calling from within sd files, as it stops buffer prereading
  114. // M42 - Change pin status via gcode Use M42 Px Sy to set pin x to value y, when omitting Px the onboard led will be used.
  115. // M80 - Turn on Power Supply
  116. // M81 - Turn off Power Supply
  117. // M82 - Set E codes absolute (default)
  118. // M83 - Set E codes relative while in Absolute Coordinates (G90) mode
  119. // M84 - Disable steppers until next move,
  120. // or use S<seconds> to specify an inactivity timeout, after which the steppers will be disabled. S0 to disable the timeout.
  121. // M85 - Set inactivity shutdown timer with parameter S<seconds>. To disable set zero (default)
  122. // M92 - Set axis_steps_per_unit - same syntax as G92
  123. // M104 - Set extruder target temp
  124. // M105 - Read current temp
  125. // M106 - Fan on
  126. // M107 - Fan off
  127. // M109 - Sxxx Wait for extruder current temp to reach target temp. Waits only when heating
  128. // Rxxx Wait for extruder current temp to reach target temp. Waits when heating and cooling
  129. // IF AUTOTEMP is enabled, S<mintemp> B<maxtemp> F<factor>. Exit autotemp by any M109 without F
  130. // M112 - Emergency stop
  131. // M114 - Output current position to serial port
  132. // M115 - Capabilities string
  133. // M117 - display message
  134. // M119 - Output Endstop status to serial port
  135. // M126 - Solenoid Air Valve Open (BariCUDA support by jmil)
  136. // M127 - Solenoid Air Valve Closed (BariCUDA vent to atmospheric pressure by jmil)
  137. // M128 - EtoP Open (BariCUDA EtoP = electricity to air pressure transducer by jmil)
  138. // M129 - EtoP Closed (BariCUDA EtoP = electricity to air pressure transducer by jmil)
  139. // M140 - Set bed target temp
  140. // M150 - Set BlinkM Color Output R: Red<0-255> U(!): Green<0-255> B: Blue<0-255> over i2c, G for green does not work.
  141. // M190 - Sxxx Wait for bed current temp to reach target temp. Waits only when heating
  142. // Rxxx Wait for bed current temp to reach target temp. Waits when heating and cooling
  143. // M200 D<millimeters>- set filament diameter and set E axis units to cubic millimeters (use S0 to set back to millimeters).
  144. // M201 - Set max acceleration in units/s^2 for print moves (M201 X1000 Y1000)
  145. // M202 - Set max acceleration in units/s^2 for travel moves (M202 X1000 Y1000) Unused in Marlin!!
  146. // M203 - Set maximum feedrate that your machine can sustain (M203 X200 Y200 Z300 E10000) in mm/sec
  147. // M204 - Set default acceleration: S normal moves T filament only moves (M204 S3000 T7000) in mm/sec^2 also sets minimum segment time in ms (B20000) to prevent buffer under-runs and M20 minimum feedrate
  148. // M205 - advanced settings: minimum travel speed S=while printing T=travel only, B=minimum segment time X= maximum xy jerk, Z=maximum Z jerk, E=maximum E jerk
  149. // M206 - set additional homing offset
  150. // M207 - set retract length S[positive mm] F[feedrate mm/min] Z[additional zlift/hop], stays in mm regardless of M200 setting
  151. // M208 - set recover=unretract length S[positive mm surplus to the M207 S*] F[feedrate mm/sec]
  152. // M209 - S<1=true/0=false> enable automatic retract detect if the slicer did not support G10/11: every normal extrude-only move will be classified as retract depending on the direction.
  153. // M218 - set hotend offset (in mm): T<extruder_number> X<offset_on_X> Y<offset_on_Y>
  154. // M220 S<factor in percent>- set speed factor override percentage
  155. // M221 S<factor in percent>- set extrude factor override percentage
  156. // M226 P<pin number> S<pin state>- Wait until the specified pin reaches the state required
  157. // M240 - Trigger a camera to take a photograph
  158. // M250 - Set LCD contrast C<contrast value> (value 0..63)
  159. // M280 - set servo position absolute. P: servo index, S: angle or microseconds
  160. // M300 - Play beep sound S<frequency Hz> P<duration ms>
  161. // M301 - Set PID parameters P I and D
  162. // M302 - Allow cold extrudes, or set the minimum extrude S<temperature>.
  163. // M303 - PID relay autotune S<temperature> sets the target temperature. (default target temperature = 150C)
  164. // M304 - Set bed PID parameters P I and D
  165. // M400 - Finish all moves
  166. // M401 - Lower z-probe if present
  167. // M402 - Raise z-probe if present
  168. // M404 - N<dia in mm> Enter the nominal filament width (3mm, 1.75mm ) or will display nominal filament width without parameters
  169. // M405 - Turn on Filament Sensor extrusion control. Optional D<delay in cm> to set delay in centimeters between sensor and extruder
  170. // M406 - Turn off Filament Sensor extrusion control
  171. // M407 - Displays measured filament diameter
  172. // M500 - stores parameters in EEPROM
  173. // M501 - reads parameters from EEPROM (if you need reset them after you changed them temporarily).
  174. // M502 - reverts to the default "factory settings". You still need to store them in EEPROM afterwards if you want to.
  175. // M503 - print the current settings (from memory not from EEPROM)
  176. // M509 - force language selection on next restart
  177. // M540 - Use S[0|1] to enable or disable the stop SD card print on endstop hit (requires ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED)
  178. // M600 - Pause for filament change X[pos] Y[pos] Z[relative lift] E[initial retract] L[later retract distance for removal]
  179. // M605 - Set dual x-carriage movement mode: S<mode> [ X<duplication x-offset> R<duplication temp offset> ]
  180. // M900 - Set LIN_ADVANCE options, if enabled. See Configuration_adv.h for details.
  181. // M907 - Set digital trimpot motor current using axis codes.
  182. // M908 - Control digital trimpot directly.
  183. // M350 - Set microstepping mode.
  184. // M351 - Toggle MS1 MS2 pins directly.
  185. // M928 - Start SD logging (M928 filename.g) - ended by M29
  186. // M999 - Restart after being stopped by error
  187. //Stepper Movement Variables
  188. //===========================================================================
  189. //=============================imported variables============================
  190. //===========================================================================
  191. //===========================================================================
  192. //=============================public variables=============================
  193. //===========================================================================
  194. #ifdef SDSUPPORT
  195. CardReader card;
  196. #endif
  197. unsigned long TimeSent = millis();
  198. unsigned long TimeNow = millis();
  199. unsigned long PingTime = millis();
  200. union Data
  201. {
  202. byte b[2];
  203. int value;
  204. };
  205. float homing_feedrate[] = HOMING_FEEDRATE;
  206. // Currently only the extruder axis may be switched to a relative mode.
  207. // Other axes are always absolute or relative based on the common relative_mode flag.
  208. bool axis_relative_modes[] = AXIS_RELATIVE_MODES;
  209. int feedmultiply=100; //100->1 200->2
  210. int saved_feedmultiply;
  211. int extrudemultiply=100; //100->1 200->2
  212. int extruder_multiply[EXTRUDERS] = {100
  213. #if EXTRUDERS > 1
  214. , 100
  215. #if EXTRUDERS > 2
  216. , 100
  217. #endif
  218. #endif
  219. };
  220. int bowden_length[4];
  221. bool is_usb_printing = false;
  222. bool homing_flag = false;
  223. bool temp_cal_active = false;
  224. unsigned long kicktime = millis()+100000;
  225. unsigned int usb_printing_counter;
  226. int lcd_change_fil_state = 0;
  227. int feedmultiplyBckp = 100;
  228. float HotendTempBckp = 0;
  229. int fanSpeedBckp = 0;
  230. float pause_lastpos[4];
  231. unsigned long pause_time = 0;
  232. unsigned long start_pause_print = millis();
  233. unsigned long load_filament_time;
  234. bool mesh_bed_leveling_flag = false;
  235. bool mesh_bed_run_from_menu = false;
  236. unsigned char lang_selected = 0;
  237. int8_t FarmMode = 0;
  238. bool prusa_sd_card_upload = false;
  239. unsigned int status_number = 0;
  240. unsigned long total_filament_used;
  241. unsigned int heating_status;
  242. unsigned int heating_status_counter;
  243. bool custom_message;
  244. bool loading_flag = false;
  245. unsigned int custom_message_type;
  246. unsigned int custom_message_state;
  247. char snmm_filaments_used = 0;
  248. float distance_from_min[3];
  249. float angleDiff;
  250. bool fan_state[2];
  251. int fan_edge_counter[2];
  252. int fan_speed[2];
  253. bool volumetric_enabled = false;
  254. float filament_size[EXTRUDERS] = { DEFAULT_NOMINAL_FILAMENT_DIA
  255. #if EXTRUDERS > 1
  256. , DEFAULT_NOMINAL_FILAMENT_DIA
  257. #if EXTRUDERS > 2
  258. , DEFAULT_NOMINAL_FILAMENT_DIA
  259. #endif
  260. #endif
  261. };
  262. float volumetric_multiplier[EXTRUDERS] = {1.0
  263. #if EXTRUDERS > 1
  264. , 1.0
  265. #if EXTRUDERS > 2
  266. , 1.0
  267. #endif
  268. #endif
  269. };
  270. float current_position[NUM_AXIS] = { 0.0, 0.0, 0.0, 0.0 };
  271. float add_homing[3]={0,0,0};
  272. float min_pos[3] = { X_MIN_POS, Y_MIN_POS, Z_MIN_POS };
  273. float max_pos[3] = { X_MAX_POS, Y_MAX_POS, Z_MAX_POS };
  274. bool axis_known_position[3] = {false, false, false};
  275. float zprobe_zoffset;
  276. // Extruder offset
  277. #if EXTRUDERS > 1
  278. #define NUM_EXTRUDER_OFFSETS 2 // only in XY plane
  279. float extruder_offset[NUM_EXTRUDER_OFFSETS][EXTRUDERS] = {
  280. #if defined(EXTRUDER_OFFSET_X) && defined(EXTRUDER_OFFSET_Y)
  281. EXTRUDER_OFFSET_X, EXTRUDER_OFFSET_Y
  282. #endif
  283. };
  284. #endif
  285. uint8_t active_extruder = 0;
  286. int fanSpeed=0;
  287. #ifdef FWRETRACT
  288. bool autoretract_enabled=false;
  289. bool retracted[EXTRUDERS]={false
  290. #if EXTRUDERS > 1
  291. , false
  292. #if EXTRUDERS > 2
  293. , false
  294. #endif
  295. #endif
  296. };
  297. bool retracted_swap[EXTRUDERS]={false
  298. #if EXTRUDERS > 1
  299. , false
  300. #if EXTRUDERS > 2
  301. , false
  302. #endif
  303. #endif
  304. };
  305. float retract_length = RETRACT_LENGTH;
  306. float retract_length_swap = RETRACT_LENGTH_SWAP;
  307. float retract_feedrate = RETRACT_FEEDRATE;
  308. float retract_zlift = RETRACT_ZLIFT;
  309. float retract_recover_length = RETRACT_RECOVER_LENGTH;
  310. float retract_recover_length_swap = RETRACT_RECOVER_LENGTH_SWAP;
  311. float retract_recover_feedrate = RETRACT_RECOVER_FEEDRATE;
  312. #endif
  313. #ifdef ULTIPANEL
  314. #ifdef PS_DEFAULT_OFF
  315. bool powersupply = false;
  316. #else
  317. bool powersupply = true;
  318. #endif
  319. #endif
  320. bool cancel_heatup = false ;
  321. #ifdef FILAMENT_SENSOR
  322. //Variables for Filament Sensor input
  323. float filament_width_nominal=DEFAULT_NOMINAL_FILAMENT_DIA; //Set nominal filament width, can be changed with M404
  324. bool filament_sensor=false; //M405 turns on filament_sensor control, M406 turns it off
  325. float filament_width_meas=DEFAULT_MEASURED_FILAMENT_DIA; //Stores the measured filament diameter
  326. signed char measurement_delay[MAX_MEASUREMENT_DELAY+1]; //ring buffer to delay measurement store extruder factor after subtracting 100
  327. int delay_index1=0; //index into ring buffer
  328. int delay_index2=-1; //index into ring buffer - set to -1 on startup to indicate ring buffer needs to be initialized
  329. float delay_dist=0; //delay distance counter
  330. int meas_delay_cm = MEASUREMENT_DELAY_CM; //distance delay setting
  331. #endif
  332. const char errormagic[] PROGMEM = "Error:";
  333. const char echomagic[] PROGMEM = "echo:";
  334. //===========================================================================
  335. //=============================Private Variables=============================
  336. //===========================================================================
  337. const char axis_codes[NUM_AXIS] = {'X', 'Y', 'Z', 'E'};
  338. float destination[NUM_AXIS] = { 0.0, 0.0, 0.0, 0.0};
  339. static float delta[3] = {0.0, 0.0, 0.0};
  340. // For tracing an arc
  341. static float offset[3] = {0.0, 0.0, 0.0};
  342. static bool home_all_axis = true;
  343. static float feedrate = 1500.0, next_feedrate, saved_feedrate;
  344. static long gcode_N, gcode_LastN, Stopped_gcode_LastN = 0;
  345. // Determines Absolute or Relative Coordinates.
  346. // Also there is bool axis_relative_modes[] per axis flag.
  347. static bool relative_mode = false;
  348. // String circular buffer. Commands may be pushed to the buffer from both sides:
  349. // Chained commands will be pushed to the front, interactive (from LCD menu)
  350. // and printing commands (from serial line or from SD card) are pushed to the tail.
  351. // First character of each entry indicates the type of the entry:
  352. #define CMDBUFFER_CURRENT_TYPE_UNKNOWN 0
  353. // Command in cmdbuffer was sent over USB.
  354. #define CMDBUFFER_CURRENT_TYPE_USB 1
  355. // Command in cmdbuffer was read from SDCARD.
  356. #define CMDBUFFER_CURRENT_TYPE_SDCARD 2
  357. // Command in cmdbuffer was generated by the UI.
  358. #define CMDBUFFER_CURRENT_TYPE_UI 3
  359. // Command in cmdbuffer was generated by another G-code.
  360. #define CMDBUFFER_CURRENT_TYPE_CHAINED 4
  361. // How much space to reserve for the chained commands
  362. // of type CMDBUFFER_CURRENT_TYPE_CHAINED,
  363. // which are pushed to the front of the queue?
  364. // Maximum 5 commands of max length 20 + null terminator.
  365. #define CMDBUFFER_RESERVE_FRONT (5*21)
  366. // Reserve BUFSIZE lines of length MAX_CMD_SIZE plus CMDBUFFER_RESERVE_FRONT.
  367. static char cmdbuffer[BUFSIZE * (MAX_CMD_SIZE + 1) + CMDBUFFER_RESERVE_FRONT];
  368. // Head of the circular buffer, where to read.
  369. static int bufindr = 0;
  370. // Tail of the buffer, where to write.
  371. static int bufindw = 0;
  372. // Number of lines in cmdbuffer.
  373. static int buflen = 0;
  374. // Flag for processing the current command inside the main Arduino loop().
  375. // If a new command was pushed to the front of a command buffer while
  376. // processing another command, this replaces the command on the top.
  377. // Therefore don't remove the command from the queue in the loop() function.
  378. static bool cmdbuffer_front_already_processed = false;
  379. // Type of a command, which is to be executed right now.
  380. #define CMDBUFFER_CURRENT_TYPE (cmdbuffer[bufindr])
  381. // String of a command, which is to be executed right now.
  382. #define CMDBUFFER_CURRENT_STRING (cmdbuffer+bufindr+1)
  383. // Enable debugging of the command buffer.
  384. // Debugging information will be sent to serial line.
  385. // #define CMDBUFFER_DEBUG
  386. static int serial_count = 0; //index of character read from serial line
  387. static boolean comment_mode = false;
  388. static char *strchr_pointer; // just a pointer to find chars in the command string like X, Y, Z, E, etc
  389. const int sensitive_pins[] = SENSITIVE_PINS; // Sensitive pin list for M42
  390. //static float tt = 0;
  391. //static float bt = 0;
  392. //Inactivity shutdown variables
  393. static unsigned long previous_millis_cmd = 0;
  394. unsigned long max_inactive_time = 0;
  395. static unsigned long stepper_inactive_time = DEFAULT_STEPPER_DEACTIVE_TIME*1000l;
  396. unsigned long starttime=0;
  397. unsigned long stoptime=0;
  398. unsigned long _usb_timer = 0;
  399. static uint8_t tmp_extruder;
  400. bool Stopped=false;
  401. #if NUM_SERVOS > 0
  402. Servo servos[NUM_SERVOS];
  403. #endif
  404. bool CooldownNoWait = true;
  405. bool target_direction;
  406. //Insert variables if CHDK is defined
  407. #ifdef CHDK
  408. unsigned long chdkHigh = 0;
  409. boolean chdkActive = false;
  410. #endif
  411. //===========================================================================
  412. //=============================Routines======================================
  413. //===========================================================================
  414. void get_arc_coordinates();
  415. bool setTargetedHotend(int code);
  416. void serial_echopair_P(const char *s_P, float v)
  417. { serialprintPGM(s_P); SERIAL_ECHO(v); }
  418. void serial_echopair_P(const char *s_P, double v)
  419. { serialprintPGM(s_P); SERIAL_ECHO(v); }
  420. void serial_echopair_P(const char *s_P, unsigned long v)
  421. { serialprintPGM(s_P); SERIAL_ECHO(v); }
  422. #ifdef SDSUPPORT
  423. #include "SdFatUtil.h"
  424. int freeMemory() { return SdFatUtil::FreeRam(); }
  425. #else
  426. extern "C" {
  427. extern unsigned int __bss_end;
  428. extern unsigned int __heap_start;
  429. extern void *__brkval;
  430. int freeMemory() {
  431. int free_memory;
  432. if ((int)__brkval == 0)
  433. free_memory = ((int)&free_memory) - ((int)&__bss_end);
  434. else
  435. free_memory = ((int)&free_memory) - ((int)__brkval);
  436. return free_memory;
  437. }
  438. }
  439. #endif //!SDSUPPORT
  440. // Pop the currently processed command from the queue.
  441. // It is expected, that there is at least one command in the queue.
  442. bool cmdqueue_pop_front()
  443. {
  444. if (buflen > 0) {
  445. #ifdef CMDBUFFER_DEBUG
  446. SERIAL_ECHOPGM("Dequeing ");
  447. SERIAL_ECHO(cmdbuffer+bufindr+1);
  448. SERIAL_ECHOLNPGM("");
  449. SERIAL_ECHOPGM("Old indices: buflen ");
  450. SERIAL_ECHO(buflen);
  451. SERIAL_ECHOPGM(", bufindr ");
  452. SERIAL_ECHO(bufindr);
  453. SERIAL_ECHOPGM(", bufindw ");
  454. SERIAL_ECHO(bufindw);
  455. SERIAL_ECHOPGM(", serial_count ");
  456. SERIAL_ECHO(serial_count);
  457. SERIAL_ECHOPGM(", bufsize ");
  458. SERIAL_ECHO(sizeof(cmdbuffer));
  459. SERIAL_ECHOLNPGM("");
  460. #endif /* CMDBUFFER_DEBUG */
  461. if (-- buflen == 0) {
  462. // Empty buffer.
  463. if (serial_count == 0)
  464. // No serial communication is pending. Reset both pointers to zero.
  465. bufindw = 0;
  466. bufindr = bufindw;
  467. } else {
  468. // There is at least one ready line in the buffer.
  469. // First skip the current command ID and iterate up to the end of the string.
  470. for (++ bufindr; cmdbuffer[bufindr] != 0; ++ bufindr) ;
  471. // Second, skip the end of string null character and iterate until a nonzero command ID is found.
  472. for (++ bufindr; bufindr < sizeof(cmdbuffer) && cmdbuffer[bufindr] == 0; ++ bufindr) ;
  473. // If the end of the buffer was empty,
  474. if (bufindr == sizeof(cmdbuffer)) {
  475. // skip to the start and find the nonzero command.
  476. for (bufindr = 0; cmdbuffer[bufindr] == 0; ++ bufindr) ;
  477. }
  478. #ifdef CMDBUFFER_DEBUG
  479. SERIAL_ECHOPGM("New indices: buflen ");
  480. SERIAL_ECHO(buflen);
  481. SERIAL_ECHOPGM(", bufindr ");
  482. SERIAL_ECHO(bufindr);
  483. SERIAL_ECHOPGM(", bufindw ");
  484. SERIAL_ECHO(bufindw);
  485. SERIAL_ECHOPGM(", serial_count ");
  486. SERIAL_ECHO(serial_count);
  487. SERIAL_ECHOPGM(" new command on the top: ");
  488. SERIAL_ECHO(cmdbuffer+bufindr+1);
  489. SERIAL_ECHOLNPGM("");
  490. #endif /* CMDBUFFER_DEBUG */
  491. }
  492. return true;
  493. }
  494. return false;
  495. }
  496. void cmdqueue_reset()
  497. {
  498. while (cmdqueue_pop_front()) ;
  499. }
  500. // How long a string could be pushed to the front of the command queue?
  501. // If yes, adjust bufindr to the new position, where the new command could be enqued.
  502. // len_asked does not contain the zero terminator size.
  503. bool cmdqueue_could_enqueue_front(int len_asked)
  504. {
  505. // MAX_CMD_SIZE has to accommodate the zero terminator.
  506. if (len_asked >= MAX_CMD_SIZE)
  507. return false;
  508. // Remove the currently processed command from the queue.
  509. if (! cmdbuffer_front_already_processed) {
  510. cmdqueue_pop_front();
  511. cmdbuffer_front_already_processed = true;
  512. }
  513. if (bufindr == bufindw && buflen > 0)
  514. // Full buffer.
  515. return false;
  516. // Adjust the end of the write buffer based on whether a partial line is in the receive buffer.
  517. int endw = (serial_count > 0) ? (bufindw + MAX_CMD_SIZE + 1) : bufindw;
  518. if (bufindw < bufindr) {
  519. int bufindr_new = bufindr - len_asked - 2;
  520. // Simple case. There is a contiguous space between the write buffer and the read buffer.
  521. if (endw <= bufindr_new) {
  522. bufindr = bufindr_new;
  523. return true;
  524. }
  525. } else {
  526. // Otherwise the free space is split between the start and end.
  527. if (len_asked + 2 <= bufindr) {
  528. // Could fit at the start.
  529. bufindr -= len_asked + 2;
  530. return true;
  531. }
  532. int bufindr_new = sizeof(cmdbuffer) - len_asked - 2;
  533. if (endw <= bufindr_new) {
  534. memset(cmdbuffer, 0, bufindr);
  535. bufindr = bufindr_new;
  536. return true;
  537. }
  538. }
  539. return false;
  540. }
  541. // Could one enqueue a command of lenthg len_asked into the buffer,
  542. // while leaving CMDBUFFER_RESERVE_FRONT at the start?
  543. // If yes, adjust bufindw to the new position, where the new command could be enqued.
  544. // len_asked does not contain the zero terminator size.
  545. bool cmdqueue_could_enqueue_back(int len_asked)
  546. {
  547. // MAX_CMD_SIZE has to accommodate the zero terminator.
  548. if (len_asked >= MAX_CMD_SIZE)
  549. return false;
  550. if (bufindr == bufindw && buflen > 0)
  551. // Full buffer.
  552. return false;
  553. if (serial_count > 0) {
  554. // If there is some data stored starting at bufindw, len_asked is certainly smaller than
  555. // the allocated data buffer. Try to reserve a new buffer and to move the already received
  556. // serial data.
  557. // How much memory to reserve for the commands pushed to the front?
  558. // End of the queue, when pushing to the end.
  559. int endw = bufindw + len_asked + 2;
  560. if (bufindw < bufindr)
  561. // Simple case. There is a contiguous space between the write buffer and the read buffer.
  562. return endw + CMDBUFFER_RESERVE_FRONT <= bufindr;
  563. // Otherwise the free space is split between the start and end.
  564. if (// Could one fit to the end, including the reserve?
  565. endw + CMDBUFFER_RESERVE_FRONT <= sizeof(cmdbuffer) ||
  566. // Could one fit to the end, and the reserve to the start?
  567. (endw <= sizeof(cmdbuffer) && CMDBUFFER_RESERVE_FRONT <= bufindr))
  568. return true;
  569. // Could one fit both to the start?
  570. if (len_asked + 2 + CMDBUFFER_RESERVE_FRONT <= bufindr) {
  571. // Mark the rest of the buffer as used.
  572. memset(cmdbuffer+bufindw, 0, sizeof(cmdbuffer)-bufindw);
  573. // and point to the start.
  574. bufindw = 0;
  575. return true;
  576. }
  577. } else {
  578. // How much memory to reserve for the commands pushed to the front?
  579. // End of the queue, when pushing to the end.
  580. int endw = bufindw + len_asked + 2;
  581. if (bufindw < bufindr)
  582. // Simple case. There is a contiguous space between the write buffer and the read buffer.
  583. return endw + CMDBUFFER_RESERVE_FRONT <= bufindr;
  584. // Otherwise the free space is split between the start and end.
  585. if (// Could one fit to the end, including the reserve?
  586. endw + CMDBUFFER_RESERVE_FRONT <= sizeof(cmdbuffer) ||
  587. // Could one fit to the end, and the reserve to the start?
  588. (endw <= sizeof(cmdbuffer) && CMDBUFFER_RESERVE_FRONT <= bufindr))
  589. return true;
  590. // Could one fit both to the start?
  591. if (len_asked + 2 + CMDBUFFER_RESERVE_FRONT <= bufindr) {
  592. // Mark the rest of the buffer as used.
  593. memset(cmdbuffer+bufindw, 0, sizeof(cmdbuffer)-bufindw);
  594. // and point to the start.
  595. bufindw = 0;
  596. return true;
  597. }
  598. }
  599. return false;
  600. }
  601. #ifdef CMDBUFFER_DEBUG
  602. static void cmdqueue_dump_to_serial_single_line(int nr, const char *p)
  603. {
  604. SERIAL_ECHOPGM("Entry nr: ");
  605. SERIAL_ECHO(nr);
  606. SERIAL_ECHOPGM(", type: ");
  607. SERIAL_ECHO(int(*p));
  608. SERIAL_ECHOPGM(", cmd: ");
  609. SERIAL_ECHO(p+1);
  610. SERIAL_ECHOLNPGM("");
  611. }
  612. static void cmdqueue_dump_to_serial()
  613. {
  614. if (buflen == 0) {
  615. SERIAL_ECHOLNPGM("The command buffer is empty.");
  616. } else {
  617. SERIAL_ECHOPGM("Content of the buffer: entries ");
  618. SERIAL_ECHO(buflen);
  619. SERIAL_ECHOPGM(", indr ");
  620. SERIAL_ECHO(bufindr);
  621. SERIAL_ECHOPGM(", indw ");
  622. SERIAL_ECHO(bufindw);
  623. SERIAL_ECHOLNPGM("");
  624. int nr = 0;
  625. if (bufindr < bufindw) {
  626. for (const char *p = cmdbuffer + bufindr; p < cmdbuffer + bufindw; ++ nr) {
  627. cmdqueue_dump_to_serial_single_line(nr, p);
  628. // Skip the command.
  629. for (++p; *p != 0; ++ p);
  630. // Skip the gaps.
  631. for (++p; p < cmdbuffer + bufindw && *p == 0; ++ p);
  632. }
  633. } else {
  634. for (const char *p = cmdbuffer + bufindr; p < cmdbuffer + sizeof(cmdbuffer); ++ nr) {
  635. cmdqueue_dump_to_serial_single_line(nr, p);
  636. // Skip the command.
  637. for (++p; *p != 0; ++ p);
  638. // Skip the gaps.
  639. for (++p; p < cmdbuffer + sizeof(cmdbuffer) && *p == 0; ++ p);
  640. }
  641. for (const char *p = cmdbuffer; p < cmdbuffer + bufindw; ++ nr) {
  642. cmdqueue_dump_to_serial_single_line(nr, p);
  643. // Skip the command.
  644. for (++p; *p != 0; ++ p);
  645. // Skip the gaps.
  646. for (++p; p < cmdbuffer + bufindw && *p == 0; ++ p);
  647. }
  648. }
  649. SERIAL_ECHOLNPGM("End of the buffer.");
  650. }
  651. }
  652. #endif /* CMDBUFFER_DEBUG */
  653. //adds an command to the main command buffer
  654. //thats really done in a non-safe way.
  655. //needs overworking someday
  656. // Currently the maximum length of a command piped through this function is around 20 characters
  657. void enquecommand(const char *cmd, bool from_progmem)
  658. {
  659. int len = from_progmem ? strlen_P(cmd) : strlen(cmd);
  660. // Does cmd fit the queue while leaving sufficient space at the front for the chained commands?
  661. // If it fits, it may move bufindw, so it points to a contiguous buffer, which fits cmd.
  662. if (cmdqueue_could_enqueue_back(len)) {
  663. // This is dangerous if a mixing of serial and this happens
  664. // This may easily be tested: If serial_count > 0, we have a problem.
  665. cmdbuffer[bufindw] = CMDBUFFER_CURRENT_TYPE_UI;
  666. if (from_progmem)
  667. strcpy_P(cmdbuffer + bufindw + 1, cmd);
  668. else
  669. strcpy(cmdbuffer + bufindw + 1, cmd);
  670. SERIAL_ECHO_START;
  671. SERIAL_ECHORPGM(MSG_Enqueing);
  672. SERIAL_ECHO(cmdbuffer + bufindw + 1);
  673. SERIAL_ECHOLNPGM("\"");
  674. bufindw += len + 2;
  675. if (bufindw == sizeof(cmdbuffer))
  676. bufindw = 0;
  677. ++ buflen;
  678. #ifdef CMDBUFFER_DEBUG
  679. cmdqueue_dump_to_serial();
  680. #endif /* CMDBUFFER_DEBUG */
  681. } else {
  682. SERIAL_ERROR_START;
  683. SERIAL_ECHORPGM(MSG_Enqueing);
  684. if (from_progmem)
  685. SERIAL_PROTOCOLRPGM(cmd);
  686. else
  687. SERIAL_ECHO(cmd);
  688. SERIAL_ECHOLNPGM("\" failed: Buffer full!");
  689. #ifdef CMDBUFFER_DEBUG
  690. cmdqueue_dump_to_serial();
  691. #endif /* CMDBUFFER_DEBUG */
  692. }
  693. }
  694. void enquecommand_front(const char *cmd, bool from_progmem)
  695. {
  696. int len = from_progmem ? strlen_P(cmd) : strlen(cmd);
  697. // Does cmd fit the queue? This call shall move bufindr, so the command may be copied.
  698. if (cmdqueue_could_enqueue_front(len)) {
  699. cmdbuffer[bufindr] = CMDBUFFER_CURRENT_TYPE_UI;
  700. if (from_progmem)
  701. strcpy_P(cmdbuffer + bufindr + 1, cmd);
  702. else
  703. strcpy(cmdbuffer + bufindr + 1, cmd);
  704. ++ buflen;
  705. SERIAL_ECHO_START;
  706. SERIAL_ECHOPGM("Enqueing to the front: \"");
  707. SERIAL_ECHO(cmdbuffer + bufindr + 1);
  708. SERIAL_ECHOLNPGM("\"");
  709. #ifdef CMDBUFFER_DEBUG
  710. cmdqueue_dump_to_serial();
  711. #endif /* CMDBUFFER_DEBUG */
  712. } else {
  713. SERIAL_ERROR_START;
  714. SERIAL_ECHOPGM("Enqueing to the front: \"");
  715. if (from_progmem)
  716. SERIAL_PROTOCOLRPGM(cmd);
  717. else
  718. SERIAL_ECHO(cmd);
  719. SERIAL_ECHOLNPGM("\" failed: Buffer full!");
  720. #ifdef CMDBUFFER_DEBUG
  721. cmdqueue_dump_to_serial();
  722. #endif /* CMDBUFFER_DEBUG */
  723. }
  724. }
  725. // Mark the command at the top of the command queue as new.
  726. // Therefore it will not be removed from the queue.
  727. void repeatcommand_front()
  728. {
  729. cmdbuffer_front_already_processed = true;
  730. }
  731. bool is_buffer_empty()
  732. {
  733. if (buflen == 0) return true;
  734. else return false;
  735. }
  736. void setup_killpin()
  737. {
  738. #if defined(KILL_PIN) && KILL_PIN > -1
  739. SET_INPUT(KILL_PIN);
  740. WRITE(KILL_PIN,HIGH);
  741. #endif
  742. }
  743. // Set home pin
  744. void setup_homepin(void)
  745. {
  746. #if defined(HOME_PIN) && HOME_PIN > -1
  747. SET_INPUT(HOME_PIN);
  748. WRITE(HOME_PIN,HIGH);
  749. #endif
  750. }
  751. void setup_photpin()
  752. {
  753. #if defined(PHOTOGRAPH_PIN) && PHOTOGRAPH_PIN > -1
  754. SET_OUTPUT(PHOTOGRAPH_PIN);
  755. WRITE(PHOTOGRAPH_PIN, LOW);
  756. #endif
  757. }
  758. void setup_powerhold()
  759. {
  760. #if defined(SUICIDE_PIN) && SUICIDE_PIN > -1
  761. SET_OUTPUT(SUICIDE_PIN);
  762. WRITE(SUICIDE_PIN, HIGH);
  763. #endif
  764. #if defined(PS_ON_PIN) && PS_ON_PIN > -1
  765. SET_OUTPUT(PS_ON_PIN);
  766. #if defined(PS_DEFAULT_OFF)
  767. WRITE(PS_ON_PIN, PS_ON_ASLEEP);
  768. #else
  769. WRITE(PS_ON_PIN, PS_ON_AWAKE);
  770. #endif
  771. #endif
  772. }
  773. void suicide()
  774. {
  775. #if defined(SUICIDE_PIN) && SUICIDE_PIN > -1
  776. SET_OUTPUT(SUICIDE_PIN);
  777. WRITE(SUICIDE_PIN, LOW);
  778. #endif
  779. }
  780. void servo_init()
  781. {
  782. #if (NUM_SERVOS >= 1) && defined(SERVO0_PIN) && (SERVO0_PIN > -1)
  783. servos[0].attach(SERVO0_PIN);
  784. #endif
  785. #if (NUM_SERVOS >= 2) && defined(SERVO1_PIN) && (SERVO1_PIN > -1)
  786. servos[1].attach(SERVO1_PIN);
  787. #endif
  788. #if (NUM_SERVOS >= 3) && defined(SERVO2_PIN) && (SERVO2_PIN > -1)
  789. servos[2].attach(SERVO2_PIN);
  790. #endif
  791. #if (NUM_SERVOS >= 4) && defined(SERVO3_PIN) && (SERVO3_PIN > -1)
  792. servos[3].attach(SERVO3_PIN);
  793. #endif
  794. #if (NUM_SERVOS >= 5)
  795. #error "TODO: enter initalisation code for more servos"
  796. #endif
  797. }
  798. static void lcd_language_menu();
  799. #ifdef MESH_BED_LEVELING
  800. enum MeshLevelingState { MeshReport, MeshStart, MeshNext, MeshSet };
  801. #endif
  802. // Factory reset function
  803. // This function is used to erase parts or whole EEPROM memory which is used for storing calibration and and so on.
  804. // Level input parameter sets depth of reset
  805. // Quiet parameter masks all waitings for user interact.
  806. int er_progress = 0;
  807. void factory_reset(char level, bool quiet)
  808. {
  809. lcd_implementation_clear();
  810. int cursor_pos = 0;
  811. switch (level) {
  812. // Level 0: Language reset
  813. case 0:
  814. WRITE(BEEPER, HIGH);
  815. _delay_ms(100);
  816. WRITE(BEEPER, LOW);
  817. lcd_force_language_selection();
  818. break;
  819. //Level 1: Reset statistics
  820. case 1:
  821. WRITE(BEEPER, HIGH);
  822. _delay_ms(100);
  823. WRITE(BEEPER, LOW);
  824. eeprom_update_dword((uint32_t *)EEPROM_TOTALTIME, 0);
  825. eeprom_update_dword((uint32_t *)EEPROM_FILAMENTUSED, 0);
  826. lcd_menu_statistics();
  827. break;
  828. // Level 2: Prepare for shipping
  829. case 2:
  830. //lcd_printPGM(PSTR("Factory RESET"));
  831. //lcd_print_at_PGM(1,2,PSTR("Shipping prep"));
  832. // Force language selection at the next boot up.
  833. lcd_force_language_selection();
  834. // Force the "Follow calibration flow" message at the next boot up.
  835. calibration_status_store(CALIBRATION_STATUS_Z_CALIBRATION);
  836. farm_no = 0;
  837. farm_mode == false;
  838. eeprom_update_byte((uint8_t*)EEPROM_FARM_MODE, farm_mode);
  839. EEPROM_save_B(EEPROM_FARM_NUMBER, &farm_no);
  840. WRITE(BEEPER, HIGH);
  841. _delay_ms(100);
  842. WRITE(BEEPER, LOW);
  843. //_delay_ms(2000);
  844. break;
  845. // Level 3: erase everything, whole EEPROM will be set to 0xFF
  846. case 3:
  847. lcd_printPGM(PSTR("Factory RESET"));
  848. lcd_print_at_PGM(1, 2, PSTR("ERASING all data"));
  849. WRITE(BEEPER, HIGH);
  850. _delay_ms(100);
  851. WRITE(BEEPER, LOW);
  852. er_progress = 0;
  853. lcd_print_at_PGM(3, 3, PSTR(" "));
  854. lcd_implementation_print_at(3, 3, er_progress);
  855. // Erase EEPROM
  856. for (int i = 0; i < 4096; i++) {
  857. eeprom_write_byte((uint8_t*)i, 0xFF);
  858. if (i % 41 == 0) {
  859. er_progress++;
  860. lcd_print_at_PGM(3, 3, PSTR(" "));
  861. lcd_implementation_print_at(3, 3, er_progress);
  862. lcd_printPGM(PSTR("%"));
  863. }
  864. }
  865. break;
  866. case 4:
  867. bowden_menu();
  868. break;
  869. default:
  870. break;
  871. }
  872. }
  873. // "Setup" function is called by the Arduino framework on startup.
  874. // Before startup, the Timers-functions (PWM)/Analog RW and HardwareSerial provided by the Arduino-code
  875. // are initialized by the main() routine provided by the Arduino framework.
  876. void setup()
  877. {
  878. lcd_init();
  879. lcd_print_at_PGM(0, 1, PSTR(" Original Prusa "));
  880. lcd_print_at_PGM(0, 2, PSTR(" 3D Printers "));
  881. setup_killpin();
  882. setup_powerhold();
  883. MYSERIAL.begin(BAUDRATE);
  884. SERIAL_PROTOCOLLNPGM("start");
  885. SERIAL_ECHO_START;
  886. #if 0
  887. SERIAL_ECHOLN("Reading eeprom from 0 to 100: start");
  888. for (int i = 0; i < 4096; ++i) {
  889. int b = eeprom_read_byte((unsigned char*)i);
  890. if (b != 255) {
  891. SERIAL_ECHO(i);
  892. SERIAL_ECHO(":");
  893. SERIAL_ECHO(b);
  894. SERIAL_ECHOLN("");
  895. }
  896. }
  897. SERIAL_ECHOLN("Reading eeprom from 0 to 100: done");
  898. #endif
  899. // Check startup - does nothing if bootloader sets MCUSR to 0
  900. byte mcu = MCUSR;
  901. if (mcu & 1) SERIAL_ECHOLNRPGM(MSG_POWERUP);
  902. if (mcu & 2) SERIAL_ECHOLNRPGM(MSG_EXTERNAL_RESET);
  903. if (mcu & 4) SERIAL_ECHOLNRPGM(MSG_BROWNOUT_RESET);
  904. if (mcu & 8) SERIAL_ECHOLNRPGM(MSG_WATCHDOG_RESET);
  905. if (mcu & 32) SERIAL_ECHOLNRPGM(MSG_SOFTWARE_RESET);
  906. MCUSR = 0;
  907. //SERIAL_ECHORPGM(MSG_MARLIN);
  908. //SERIAL_ECHOLNRPGM(VERSION_STRING);
  909. #ifdef STRING_VERSION_CONFIG_H
  910. #ifdef STRING_CONFIG_H_AUTHOR
  911. SERIAL_ECHO_START;
  912. SERIAL_ECHORPGM(MSG_CONFIGURATION_VER);
  913. SERIAL_ECHOPGM(STRING_VERSION_CONFIG_H);
  914. SERIAL_ECHORPGM(MSG_AUTHOR);
  915. SERIAL_ECHOLNPGM(STRING_CONFIG_H_AUTHOR);
  916. SERIAL_ECHOPGM("Compiled: ");
  917. SERIAL_ECHOLNPGM(__DATE__);
  918. #endif
  919. #endif
  920. SERIAL_ECHO_START;
  921. SERIAL_ECHORPGM(MSG_FREE_MEMORY);
  922. SERIAL_ECHO(freeMemory());
  923. SERIAL_ECHORPGM(MSG_PLANNER_BUFFER_BYTES);
  924. SERIAL_ECHOLN((int)sizeof(block_t)*BLOCK_BUFFER_SIZE);
  925. //lcd_update_enable(false); // why do we need this?? - andre
  926. // loads data from EEPROM if available else uses defaults (and resets step acceleration rate)
  927. Config_RetrieveSettings();
  928. SdFatUtil::set_stack_guard(); //writes magic number at the end of static variables to protect against overwriting static memory by stack
  929. tp_init(); // Initialize temperature loop
  930. plan_init(); // Initialize planner;
  931. watchdog_init();
  932. #ifdef HAVE_TMC2130_DRIVERS
  933. uint8_t silentMode = eeprom_read_byte((uint8_t*)EEPROM_SILENT);
  934. tmc2130_mode = silentMode?TMC2130_MODE_SILENT:TMC2130_MODE_NORMAL;
  935. #endif //HAVE_TMC2130_DRIVERS
  936. st_init(); // Initialize stepper, this enables interrupts!
  937. setup_photpin();
  938. lcd_print_at_PGM(0, 1, PSTR(" Original Prusa ")); // we need to do this again for some reason, no time to research
  939. lcd_print_at_PGM(0, 2, PSTR(" 3D Printers "));
  940. servo_init();
  941. // Reset the machine correction matrix.
  942. // It does not make sense to load the correction matrix until the machine is homed.
  943. world2machine_reset();
  944. if (!READ(BTN_ENC))
  945. {
  946. _delay_ms(1000);
  947. if (!READ(BTN_ENC))
  948. {
  949. lcd_implementation_clear();
  950. lcd_printPGM(PSTR("Factory RESET"));
  951. SET_OUTPUT(BEEPER);
  952. WRITE(BEEPER, HIGH);
  953. while (!READ(BTN_ENC));
  954. WRITE(BEEPER, LOW);
  955. _delay_ms(2000);
  956. char level = reset_menu();
  957. factory_reset(level, false);
  958. switch (level) {
  959. case 0: _delay_ms(0); break;
  960. case 1: _delay_ms(0); break;
  961. case 2: _delay_ms(0); break;
  962. case 3: _delay_ms(0); break;
  963. }
  964. // _delay_ms(100);
  965. /*
  966. #ifdef MESH_BED_LEVELING
  967. _delay_ms(2000);
  968. if (!READ(BTN_ENC))
  969. {
  970. WRITE(BEEPER, HIGH);
  971. _delay_ms(100);
  972. WRITE(BEEPER, LOW);
  973. _delay_ms(200);
  974. WRITE(BEEPER, HIGH);
  975. _delay_ms(100);
  976. WRITE(BEEPER, LOW);
  977. int _z = 0;
  978. calibration_status_store(CALIBRATION_STATUS_CALIBRATED);
  979. EEPROM_save_B(EEPROM_BABYSTEP_X, &_z);
  980. EEPROM_save_B(EEPROM_BABYSTEP_Y, &_z);
  981. EEPROM_save_B(EEPROM_BABYSTEP_Z, &_z);
  982. }
  983. else
  984. {
  985. WRITE(BEEPER, HIGH);
  986. _delay_ms(100);
  987. WRITE(BEEPER, LOW);
  988. }
  989. #endif // mesh */
  990. }
  991. }
  992. else
  993. {
  994. //_delay_ms(1000); // wait 1sec to display the splash screen // what's this and why do we need it?? - andre
  995. }
  996. #if defined(CONTROLLERFAN_PIN) && CONTROLLERFAN_PIN > -1
  997. SET_OUTPUT(CONTROLLERFAN_PIN); //Set pin used for driver cooling fan
  998. #endif
  999. #ifdef DIGIPOT_I2C
  1000. digipot_i2c_init();
  1001. #endif
  1002. setup_homepin();
  1003. #if defined(Z_AXIS_ALWAYS_ON)
  1004. enable_z();
  1005. #endif
  1006. farm_mode = eeprom_read_byte((uint8_t*)EEPROM_FARM_MODE);
  1007. EEPROM_read_B(EEPROM_FARM_NUMBER, &farm_no);
  1008. if ((farm_mode == 0xFF && farm_no == 0) || (farm_no == 0xFFFF)) farm_mode = false; //if farm_mode has not been stored to eeprom yet and farm number is set to zero or EEPROM is fresh, deactivate farm mode
  1009. if (farm_no == 0xFFFF) farm_no = 0;
  1010. if (farm_mode)
  1011. {
  1012. prusa_statistics(8);
  1013. }
  1014. // Enable Toshiba FlashAir SD card / WiFi enahanced card.
  1015. card.ToshibaFlashAir_enable(eeprom_read_byte((unsigned char*)EEPROM_TOSHIBA_FLASH_AIR_COMPATIBLITY) == 1);
  1016. // Force SD card update. Otherwise the SD card update is done from loop() on card.checkautostart(false),
  1017. // but this times out if a blocking dialog is shown in setup().
  1018. card.initsd();
  1019. if (eeprom_read_dword((uint32_t*)(EEPROM_TOP - 4)) == 0x0ffffffff &&
  1020. eeprom_read_dword((uint32_t*)(EEPROM_TOP - 8)) == 0x0ffffffff &&
  1021. eeprom_read_dword((uint32_t*)(EEPROM_TOP - 12)) == 0x0ffffffff) {
  1022. // Maiden startup. The firmware has been loaded and first started on a virgin RAMBo board,
  1023. // where all the EEPROM entries are set to 0x0ff.
  1024. // Once a firmware boots up, it forces at least a language selection, which changes
  1025. // EEPROM_LANG to number lower than 0x0ff.
  1026. // 1) Set a high power mode.
  1027. eeprom_write_byte((uint8_t*)EEPROM_SILENT, 0);
  1028. }
  1029. #ifdef SNMM
  1030. if (eeprom_read_dword((uint32_t*)EEPROM_BOWDEN_LENGTH) == 0x0ffffffff) { //bowden length used for SNMM
  1031. int _z = BOWDEN_LENGTH;
  1032. for(int i = 0; i<4; i++) EEPROM_save_B(EEPROM_BOWDEN_LENGTH + i * 2, &_z);
  1033. }
  1034. #endif
  1035. // In the future, somewhere here would one compare the current firmware version against the firmware version stored in the EEPROM.
  1036. // If they differ, an update procedure may need to be performed. At the end of this block, the current firmware version
  1037. // is being written into the EEPROM, so the update procedure will be triggered only once.
  1038. lang_selected = eeprom_read_byte((uint8_t*)EEPROM_LANG);
  1039. if (lang_selected >= LANG_NUM){
  1040. lcd_mylang();
  1041. }
  1042. if (eeprom_read_byte((uint8_t*)EEPROM_TEMP_CAL_ACTIVE) == 255) {
  1043. eeprom_write_byte((uint8_t*)EEPROM_TEMP_CAL_ACTIVE, 0);
  1044. temp_cal_active = false;
  1045. } else temp_cal_active = eeprom_read_byte((uint8_t*)EEPROM_TEMP_CAL_ACTIVE);
  1046. if (eeprom_read_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA) == 255) {
  1047. eeprom_write_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 0);
  1048. }
  1049. if (eeprom_read_byte((uint8_t*)EEPROM_UVLO) == 255) {
  1050. eeprom_write_byte((uint8_t*)EEPROM_UVLO, 0);
  1051. }
  1052. #ifndef DEBUG_DISABLE_STARTMSGS
  1053. check_babystep(); //checking if Z babystep is in allowed range
  1054. setup_uvlo_interrupt();
  1055. if (calibration_status() == CALIBRATION_STATUS_ASSEMBLED ||
  1056. calibration_status() == CALIBRATION_STATUS_UNKNOWN) {
  1057. // Reset the babystepping values, so the printer will not move the Z axis up when the babystepping is enabled.
  1058. eeprom_update_word((uint16_t*)EEPROM_BABYSTEP_Z, 0);
  1059. // Show the message.
  1060. lcd_show_fullscreen_message_and_wait_P(MSG_FOLLOW_CALIBRATION_FLOW);
  1061. } else if (calibration_status() == CALIBRATION_STATUS_LIVE_ADJUST) {
  1062. // Show the message.
  1063. lcd_show_fullscreen_message_and_wait_P(MSG_BABYSTEP_Z_NOT_SET);
  1064. lcd_update_enable(true);
  1065. } else if (calibration_status() == CALIBRATION_STATUS_CALIBRATED && temp_cal_active == true && calibration_status_pinda() == false) {
  1066. lcd_show_fullscreen_message_and_wait_P(MSG_PINDA_NOT_CALIBRATED);
  1067. lcd_update_enable(true);
  1068. } else if (calibration_status() == CALIBRATION_STATUS_Z_CALIBRATION) {
  1069. // Show the message.
  1070. lcd_show_fullscreen_message_and_wait_P(MSG_FOLLOW_CALIBRATION_FLOW);
  1071. }
  1072. #endif //DEBUG_DISABLE_STARTMSGS
  1073. for (int i = 0; i<4; i++) EEPROM_read_B(EEPROM_BOWDEN_LENGTH + i * 2, &bowden_length[i]);
  1074. lcd_update_enable(true);
  1075. // Store the currently running firmware into an eeprom,
  1076. // so the next time the firmware gets updated, it will know from which version it has been updated.
  1077. update_current_firmware_version_to_eeprom();
  1078. if (eeprom_read_byte((uint8_t*)EEPROM_UVLO) == 1) { //previous print was terminated by UVLO
  1079. if (lcd_show_fullscreen_message_yes_no_and_wait_P(MSG_RECOVER_PRINT, false)) recover_print();
  1080. else {
  1081. eeprom_update_byte((uint8_t*)EEPROM_UVLO, 0);
  1082. lcd_update_enable(true);
  1083. lcd_update(2);
  1084. lcd_setstatuspgm(WELCOME_MSG);
  1085. }
  1086. }
  1087. }
  1088. void trace();
  1089. #define CHUNK_SIZE 64 // bytes
  1090. #define SAFETY_MARGIN 1
  1091. char chunk[CHUNK_SIZE+SAFETY_MARGIN];
  1092. int chunkHead = 0;
  1093. int serial_read_stream() {
  1094. setTargetHotend(0, 0);
  1095. setTargetBed(0);
  1096. lcd_implementation_clear();
  1097. lcd_printPGM(PSTR(" Upload in progress"));
  1098. // first wait for how many bytes we will receive
  1099. uint32_t bytesToReceive;
  1100. // receive the four bytes
  1101. char bytesToReceiveBuffer[4];
  1102. for (int i=0; i<4; i++) {
  1103. int data;
  1104. while ((data = MYSERIAL.read()) == -1) {};
  1105. bytesToReceiveBuffer[i] = data;
  1106. }
  1107. // make it a uint32
  1108. memcpy(&bytesToReceive, &bytesToReceiveBuffer, 4);
  1109. // we're ready, notify the sender
  1110. MYSERIAL.write('+');
  1111. // lock in the routine
  1112. uint32_t receivedBytes = 0;
  1113. while (prusa_sd_card_upload) {
  1114. int i;
  1115. for (i=0; i<CHUNK_SIZE; i++) {
  1116. int data;
  1117. // check if we're not done
  1118. if (receivedBytes == bytesToReceive) {
  1119. break;
  1120. }
  1121. // read the next byte
  1122. while ((data = MYSERIAL.read()) == -1) {};
  1123. receivedBytes++;
  1124. // save it to the chunk
  1125. chunk[i] = data;
  1126. }
  1127. // write the chunk to SD
  1128. card.write_command_no_newline(&chunk[0]);
  1129. // notify the sender we're ready for more data
  1130. MYSERIAL.write('+');
  1131. // for safety
  1132. manage_heater();
  1133. // check if we're done
  1134. if(receivedBytes == bytesToReceive) {
  1135. trace(); // beep
  1136. card.closefile();
  1137. prusa_sd_card_upload = false;
  1138. SERIAL_PROTOCOLLNRPGM(MSG_FILE_SAVED);
  1139. return 0;
  1140. }
  1141. }
  1142. }
  1143. // The loop() function is called in an endless loop by the Arduino framework from the default main() routine.
  1144. // Before loop(), the setup() function is called by the main() routine.
  1145. void loop()
  1146. {
  1147. bool stack_integrity = true;
  1148. if (usb_printing_counter > 0 && millis()-_usb_timer > 1000)
  1149. {
  1150. is_usb_printing = true;
  1151. usb_printing_counter--;
  1152. _usb_timer = millis();
  1153. }
  1154. if (usb_printing_counter == 0)
  1155. {
  1156. is_usb_printing = false;
  1157. }
  1158. if (prusa_sd_card_upload)
  1159. {
  1160. //we read byte-by byte
  1161. serial_read_stream();
  1162. } else
  1163. {
  1164. get_command();
  1165. #ifdef SDSUPPORT
  1166. card.checkautostart(false);
  1167. #endif
  1168. if(buflen)
  1169. {
  1170. #ifdef SDSUPPORT
  1171. if(card.saving)
  1172. {
  1173. // Saving a G-code file onto an SD-card is in progress.
  1174. // Saving starts with M28, saving until M29 is seen.
  1175. if(strstr_P(CMDBUFFER_CURRENT_STRING, PSTR("M29")) == NULL) {
  1176. card.write_command(CMDBUFFER_CURRENT_STRING);
  1177. if(card.logging)
  1178. process_commands();
  1179. else
  1180. SERIAL_PROTOCOLLNRPGM(MSG_OK);
  1181. } else {
  1182. card.closefile();
  1183. SERIAL_PROTOCOLLNRPGM(MSG_FILE_SAVED);
  1184. }
  1185. } else {
  1186. process_commands();
  1187. }
  1188. #else
  1189. process_commands();
  1190. #endif //SDSUPPORT
  1191. if (! cmdbuffer_front_already_processed)
  1192. cmdqueue_pop_front();
  1193. cmdbuffer_front_already_processed = false;
  1194. }
  1195. }
  1196. //check heater every n milliseconds
  1197. manage_heater();
  1198. isPrintPaused ? manage_inactivity(true) : manage_inactivity(false);
  1199. checkHitEndstops();
  1200. lcd_update();
  1201. #ifdef HAVE_TMC2130_DRIVERS
  1202. tmc2130_check_overtemp();
  1203. #endif //HAVE_TMC2130_DRIVERS
  1204. }
  1205. void get_command()
  1206. {
  1207. // Test and reserve space for the new command string.
  1208. if (!cmdqueue_could_enqueue_back(MAX_CMD_SIZE - 1))
  1209. return;
  1210. bool rx_buffer_full = false; //flag that serial rx buffer is full
  1211. while (MYSERIAL.available() > 0) {
  1212. if (MYSERIAL.available() == RX_BUFFER_SIZE - 1) { //compare number of chars buffered in rx buffer with rx buffer size
  1213. SERIAL_ECHOLNPGM("Full RX Buffer"); //if buffer was full, there is danger that reading of last gcode will not be completed
  1214. rx_buffer_full = true; //sets flag that buffer was full
  1215. }
  1216. char serial_char = MYSERIAL.read();
  1217. TimeSent = millis();
  1218. TimeNow = millis();
  1219. if (serial_char < 0)
  1220. // Ignore extended ASCII characters. These characters have no meaning in the G-code apart from the file names
  1221. // and Marlin does not support such file names anyway.
  1222. // Serial characters with a highest bit set to 1 are generated when the USB cable is unplugged, leading
  1223. // to a hang-up of the print process from an SD card.
  1224. continue;
  1225. if(serial_char == '\n' ||
  1226. serial_char == '\r' ||
  1227. (serial_char == ':' && comment_mode == false) ||
  1228. serial_count >= (MAX_CMD_SIZE - 1) )
  1229. {
  1230. if(!serial_count) { //if empty line
  1231. comment_mode = false; //for new command
  1232. return;
  1233. }
  1234. cmdbuffer[bufindw+serial_count+1] = 0; //terminate string
  1235. if(!comment_mode){
  1236. comment_mode = false; //for new command
  1237. if ((strchr_pointer = strstr(cmdbuffer+bufindw+1, "PRUSA")) == NULL && (strchr_pointer = strchr(cmdbuffer+bufindw+1, 'N')) != NULL) {
  1238. if ((strchr_pointer = strchr(cmdbuffer+bufindw+1, 'N')) != NULL)
  1239. {
  1240. // Line number met. When sending a G-code over a serial line, each line may be stamped with its index,
  1241. // and Marlin tests, whether the successive lines are stamped with an increasing line number ID.
  1242. gcode_N = (strtol(strchr_pointer+1, NULL, 10));
  1243. if(gcode_N != gcode_LastN+1 && (strstr_P(cmdbuffer+bufindw+1, PSTR("M110")) == NULL) ) {
  1244. // M110 - set current line number.
  1245. // Line numbers not sent in succession.
  1246. SERIAL_ERROR_START;
  1247. SERIAL_ERRORRPGM(MSG_ERR_LINE_NO);
  1248. SERIAL_ERRORLN(gcode_LastN);
  1249. //Serial.println(gcode_N);
  1250. FlushSerialRequestResend();
  1251. serial_count = 0;
  1252. return;
  1253. }
  1254. if((strchr_pointer = strchr(cmdbuffer+bufindw+1, '*')) != NULL)
  1255. {
  1256. byte checksum = 0;
  1257. char *p = cmdbuffer+bufindw+1;
  1258. while (p != strchr_pointer)
  1259. checksum = checksum^(*p++);
  1260. if (int(strtol(strchr_pointer+1, NULL, 10)) != int(checksum)) {
  1261. SERIAL_ERROR_START;
  1262. SERIAL_ERRORRPGM(MSG_ERR_CHECKSUM_MISMATCH);
  1263. SERIAL_ERRORLN(gcode_LastN);
  1264. FlushSerialRequestResend();
  1265. serial_count = 0;
  1266. return;
  1267. }
  1268. // If no errors, remove the checksum and continue parsing.
  1269. *strchr_pointer = 0;
  1270. }
  1271. else
  1272. {
  1273. SERIAL_ERROR_START;
  1274. SERIAL_ERRORRPGM(MSG_ERR_NO_CHECKSUM);
  1275. SERIAL_ERRORLN(gcode_LastN);
  1276. FlushSerialRequestResend();
  1277. serial_count = 0;
  1278. return;
  1279. }
  1280. gcode_LastN = gcode_N;
  1281. //if no errors, continue parsing
  1282. } // end of 'N' command
  1283. }
  1284. else // if we don't receive 'N' but still see '*'
  1285. {
  1286. if((strchr(cmdbuffer+bufindw+1, '*') != NULL))
  1287. {
  1288. SERIAL_ERROR_START;
  1289. SERIAL_ERRORRPGM(MSG_ERR_NO_LINENUMBER_WITH_CHECKSUM);
  1290. SERIAL_ERRORLN(gcode_LastN);
  1291. serial_count = 0;
  1292. return;
  1293. }
  1294. } // end of '*' command
  1295. if ((strchr_pointer = strchr(cmdbuffer+bufindw+1, 'G')) != NULL) {
  1296. if (! IS_SD_PRINTING) {
  1297. usb_printing_counter = 10;
  1298. is_usb_printing = true;
  1299. }
  1300. if (Stopped == true) {
  1301. int gcode = strtol(strchr_pointer+1, NULL, 10);
  1302. if (gcode >= 0 && gcode <= 3) {
  1303. SERIAL_ERRORLNRPGM(MSG_ERR_STOPPED);
  1304. LCD_MESSAGERPGM(MSG_STOPPED);
  1305. }
  1306. }
  1307. } // end of 'G' command
  1308. //If command was e-stop process now
  1309. if(strcmp(cmdbuffer+bufindw+1, "M112") == 0)
  1310. kill("", 2);
  1311. // Store the current line into buffer, move to the next line.
  1312. cmdbuffer[bufindw] = CMDBUFFER_CURRENT_TYPE_USB;
  1313. #ifdef CMDBUFFER_DEBUG
  1314. SERIAL_ECHO_START;
  1315. SERIAL_ECHOPGM("Storing a command line to buffer: ");
  1316. SERIAL_ECHO(cmdbuffer+bufindw+1);
  1317. SERIAL_ECHOLNPGM("");
  1318. #endif /* CMDBUFFER_DEBUG */
  1319. bufindw += strlen(cmdbuffer+bufindw+1) + 2;
  1320. if (bufindw == sizeof(cmdbuffer))
  1321. bufindw = 0;
  1322. ++ buflen;
  1323. #ifdef CMDBUFFER_DEBUG
  1324. SERIAL_ECHOPGM("Number of commands in the buffer: ");
  1325. SERIAL_ECHO(buflen);
  1326. SERIAL_ECHOLNPGM("");
  1327. #endif /* CMDBUFFER_DEBUG */
  1328. } // end of 'not comment mode'
  1329. serial_count = 0; //clear buffer
  1330. // Don't call cmdqueue_could_enqueue_back if there are no characters waiting
  1331. // in the queue, as this function will reserve the memory.
  1332. if (MYSERIAL.available() == 0 || ! cmdqueue_could_enqueue_back(MAX_CMD_SIZE-1))
  1333. return;
  1334. } // end of "end of line" processing
  1335. else {
  1336. // Not an "end of line" symbol. Store the new character into a buffer.
  1337. if(serial_char == ';') comment_mode = true;
  1338. if(!comment_mode) cmdbuffer[bufindw+1+serial_count++] = serial_char;
  1339. }
  1340. } // end of serial line processing loop
  1341. if(farm_mode){
  1342. TimeNow = millis();
  1343. if ( ((TimeNow - TimeSent) > 800) && (serial_count > 0) ) {
  1344. cmdbuffer[bufindw+serial_count+1] = 0;
  1345. bufindw += strlen(cmdbuffer+bufindw+1) + 2;
  1346. if (bufindw == sizeof(cmdbuffer))
  1347. bufindw = 0;
  1348. ++ buflen;
  1349. serial_count = 0;
  1350. SERIAL_ECHOPGM("TIMEOUT:");
  1351. //memset(cmdbuffer, 0 , sizeof(cmdbuffer));
  1352. return;
  1353. }
  1354. }
  1355. //add comment
  1356. if (rx_buffer_full == true && serial_count > 0) { //if rx buffer was full and string was not properly terminated
  1357. rx_buffer_full = false;
  1358. bufindw = bufindw - serial_count; //adjust tail of the buffer to prepare buffer for writing new command
  1359. serial_count = 0;
  1360. }
  1361. #ifdef SDSUPPORT
  1362. if(!card.sdprinting || serial_count!=0){
  1363. // If there is a half filled buffer from serial line, wait until return before
  1364. // continuing with the serial line.
  1365. return;
  1366. }
  1367. //'#' stops reading from SD to the buffer prematurely, so procedural macro calls are possible
  1368. // if it occurs, stop_buffering is triggered and the buffer is ran dry.
  1369. // this character _can_ occur in serial com, due to checksums. however, no checksums are used in SD printing
  1370. static bool stop_buffering=false;
  1371. if(buflen==0) stop_buffering=false;
  1372. // Reads whole lines from the SD card. Never leaves a half-filled line in the cmdbuffer.
  1373. while( !card.eof() && !stop_buffering) {
  1374. int16_t n=card.get();
  1375. char serial_char = (char)n;
  1376. if(serial_char == '\n' ||
  1377. serial_char == '\r' ||
  1378. (serial_char == '#' && comment_mode == false) ||
  1379. (serial_char == ':' && comment_mode == false) ||
  1380. serial_count >= (MAX_CMD_SIZE - 1)||n==-1)
  1381. {
  1382. if(card.eof()){
  1383. SERIAL_PROTOCOLLNRPGM(MSG_FILE_PRINTED);
  1384. stoptime=millis();
  1385. char time[30];
  1386. unsigned long t=(stoptime-starttime-pause_time)/1000;
  1387. pause_time = 0;
  1388. int hours, minutes;
  1389. minutes=(t/60)%60;
  1390. hours=t/60/60;
  1391. save_statistics(total_filament_used, t);
  1392. sprintf_P(time, PSTR("%i hours %i minutes"),hours, minutes);
  1393. SERIAL_ECHO_START;
  1394. SERIAL_ECHOLN(time);
  1395. lcd_setstatus(time);
  1396. card.printingHasFinished();
  1397. card.checkautostart(true);
  1398. if (farm_mode)
  1399. {
  1400. prusa_statistics(6);
  1401. lcd_commands_type = LCD_COMMAND_FARM_MODE_CONFIRM;
  1402. }
  1403. }
  1404. if(serial_char=='#')
  1405. stop_buffering=true;
  1406. if(!serial_count)
  1407. {
  1408. comment_mode = false; //for new command
  1409. return; //if empty line
  1410. }
  1411. cmdbuffer[bufindw+serial_count+1] = 0; //terminate string
  1412. cmdbuffer[bufindw] = CMDBUFFER_CURRENT_TYPE_SDCARD;
  1413. SERIAL_ECHOPGM("cmdbuffer:");
  1414. MYSERIAL.print(cmdbuffer);
  1415. ++ buflen;
  1416. SERIAL_ECHOPGM("buflen:");
  1417. MYSERIAL.print(buflen);
  1418. bufindw += strlen(cmdbuffer+bufindw+1) + 2;
  1419. if (bufindw == sizeof(cmdbuffer))
  1420. bufindw = 0;
  1421. comment_mode = false; //for new command
  1422. serial_count = 0; //clear buffer
  1423. // The following line will reserve buffer space if available.
  1424. if (! cmdqueue_could_enqueue_back(MAX_CMD_SIZE-1))
  1425. return;
  1426. }
  1427. else
  1428. {
  1429. if(serial_char == ';') comment_mode = true;
  1430. if(!comment_mode) cmdbuffer[bufindw+1+serial_count++] = serial_char;
  1431. }
  1432. }
  1433. #endif //SDSUPPORT
  1434. }
  1435. // Return True if a character was found
  1436. static inline bool code_seen(char code) { return (strchr_pointer = strchr(CMDBUFFER_CURRENT_STRING, code)) != NULL; }
  1437. static inline bool code_seen(const char *code) { return (strchr_pointer = strstr(CMDBUFFER_CURRENT_STRING, code)) != NULL; }
  1438. static inline float code_value() { return strtod(strchr_pointer+1, NULL);}
  1439. static inline long code_value_long() { return strtol(strchr_pointer+1, NULL, 10); }
  1440. static inline int16_t code_value_short() { return int16_t(strtol(strchr_pointer+1, NULL, 10)); };
  1441. static inline uint8_t code_value_uint8() { return uint8_t(strtol(strchr_pointer+1, NULL, 10)); };
  1442. static inline float code_value_float() {
  1443. char* e = strchr(strchr_pointer, 'E');
  1444. if (!e) return strtod(strchr_pointer + 1, NULL);
  1445. *e = 0;
  1446. float ret = strtod(strchr_pointer + 1, NULL);
  1447. *e = 'E';
  1448. return ret;
  1449. }
  1450. #define DEFINE_PGM_READ_ANY(type, reader) \
  1451. static inline type pgm_read_any(const type *p) \
  1452. { return pgm_read_##reader##_near(p); }
  1453. DEFINE_PGM_READ_ANY(float, float);
  1454. DEFINE_PGM_READ_ANY(signed char, byte);
  1455. #define XYZ_CONSTS_FROM_CONFIG(type, array, CONFIG) \
  1456. static const PROGMEM type array##_P[3] = \
  1457. { X_##CONFIG, Y_##CONFIG, Z_##CONFIG }; \
  1458. static inline type array(int axis) \
  1459. { return pgm_read_any(&array##_P[axis]); } \
  1460. type array##_ext(int axis) \
  1461. { return pgm_read_any(&array##_P[axis]); }
  1462. XYZ_CONSTS_FROM_CONFIG(float, base_min_pos, MIN_POS);
  1463. XYZ_CONSTS_FROM_CONFIG(float, base_max_pos, MAX_POS);
  1464. XYZ_CONSTS_FROM_CONFIG(float, base_home_pos, HOME_POS);
  1465. XYZ_CONSTS_FROM_CONFIG(float, max_length, MAX_LENGTH);
  1466. XYZ_CONSTS_FROM_CONFIG(float, home_retract_mm, HOME_RETRACT_MM);
  1467. XYZ_CONSTS_FROM_CONFIG(signed char, home_dir, HOME_DIR);
  1468. static void axis_is_at_home(int axis) {
  1469. current_position[axis] = base_home_pos(axis) + add_homing[axis];
  1470. min_pos[axis] = base_min_pos(axis) + add_homing[axis];
  1471. max_pos[axis] = base_max_pos(axis) + add_homing[axis];
  1472. }
  1473. inline void set_current_to_destination() { memcpy(current_position, destination, sizeof(current_position)); }
  1474. inline void set_destination_to_current() { memcpy(destination, current_position, sizeof(destination)); }
  1475. static void setup_for_endstop_move(bool enable_endstops_now = true) {
  1476. saved_feedrate = feedrate;
  1477. saved_feedmultiply = feedmultiply;
  1478. feedmultiply = 100;
  1479. previous_millis_cmd = millis();
  1480. enable_endstops(enable_endstops_now);
  1481. }
  1482. static void clean_up_after_endstop_move() {
  1483. #ifdef ENDSTOPS_ONLY_FOR_HOMING
  1484. enable_endstops(false);
  1485. #endif
  1486. feedrate = saved_feedrate;
  1487. feedmultiply = saved_feedmultiply;
  1488. previous_millis_cmd = millis();
  1489. }
  1490. #ifdef ENABLE_AUTO_BED_LEVELING
  1491. #ifdef AUTO_BED_LEVELING_GRID
  1492. static void set_bed_level_equation_lsq(double *plane_equation_coefficients)
  1493. {
  1494. vector_3 planeNormal = vector_3(-plane_equation_coefficients[0], -plane_equation_coefficients[1], 1);
  1495. planeNormal.debug("planeNormal");
  1496. plan_bed_level_matrix = matrix_3x3::create_look_at(planeNormal);
  1497. //bedLevel.debug("bedLevel");
  1498. //plan_bed_level_matrix.debug("bed level before");
  1499. //vector_3 uncorrected_position = plan_get_position_mm();
  1500. //uncorrected_position.debug("position before");
  1501. vector_3 corrected_position = plan_get_position();
  1502. // corrected_position.debug("position after");
  1503. current_position[X_AXIS] = corrected_position.x;
  1504. current_position[Y_AXIS] = corrected_position.y;
  1505. current_position[Z_AXIS] = corrected_position.z;
  1506. // put the bed at 0 so we don't go below it.
  1507. current_position[Z_AXIS] = zprobe_zoffset; // in the lsq we reach here after raising the extruder due to the loop structure
  1508. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1509. }
  1510. #else // not AUTO_BED_LEVELING_GRID
  1511. static void set_bed_level_equation_3pts(float z_at_pt_1, float z_at_pt_2, float z_at_pt_3) {
  1512. plan_bed_level_matrix.set_to_identity();
  1513. vector_3 pt1 = vector_3(ABL_PROBE_PT_1_X, ABL_PROBE_PT_1_Y, z_at_pt_1);
  1514. vector_3 pt2 = vector_3(ABL_PROBE_PT_2_X, ABL_PROBE_PT_2_Y, z_at_pt_2);
  1515. vector_3 pt3 = vector_3(ABL_PROBE_PT_3_X, ABL_PROBE_PT_3_Y, z_at_pt_3);
  1516. vector_3 from_2_to_1 = (pt1 - pt2).get_normal();
  1517. vector_3 from_2_to_3 = (pt3 - pt2).get_normal();
  1518. vector_3 planeNormal = vector_3::cross(from_2_to_1, from_2_to_3).get_normal();
  1519. planeNormal = vector_3(planeNormal.x, planeNormal.y, abs(planeNormal.z));
  1520. plan_bed_level_matrix = matrix_3x3::create_look_at(planeNormal);
  1521. vector_3 corrected_position = plan_get_position();
  1522. current_position[X_AXIS] = corrected_position.x;
  1523. current_position[Y_AXIS] = corrected_position.y;
  1524. current_position[Z_AXIS] = corrected_position.z;
  1525. // put the bed at 0 so we don't go below it.
  1526. current_position[Z_AXIS] = zprobe_zoffset;
  1527. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1528. }
  1529. #endif // AUTO_BED_LEVELING_GRID
  1530. static void run_z_probe() {
  1531. plan_bed_level_matrix.set_to_identity();
  1532. feedrate = homing_feedrate[Z_AXIS];
  1533. // move down until you find the bed
  1534. float zPosition = -10;
  1535. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder);
  1536. st_synchronize();
  1537. // we have to let the planner know where we are right now as it is not where we said to go.
  1538. zPosition = st_get_position_mm(Z_AXIS);
  1539. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS]);
  1540. // move up the retract distance
  1541. zPosition += home_retract_mm(Z_AXIS);
  1542. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder);
  1543. st_synchronize();
  1544. // move back down slowly to find bed
  1545. feedrate = homing_feedrate[Z_AXIS]/4;
  1546. zPosition -= home_retract_mm(Z_AXIS) * 2;
  1547. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder);
  1548. st_synchronize();
  1549. current_position[Z_AXIS] = st_get_position_mm(Z_AXIS);
  1550. // make sure the planner knows where we are as it may be a bit different than we last said to move to
  1551. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1552. }
  1553. static void do_blocking_move_to(float x, float y, float z) {
  1554. float oldFeedRate = feedrate;
  1555. feedrate = homing_feedrate[Z_AXIS];
  1556. current_position[Z_AXIS] = z;
  1557. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], feedrate/60, active_extruder);
  1558. st_synchronize();
  1559. feedrate = XY_TRAVEL_SPEED;
  1560. current_position[X_AXIS] = x;
  1561. current_position[Y_AXIS] = y;
  1562. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], feedrate/60, active_extruder);
  1563. st_synchronize();
  1564. feedrate = oldFeedRate;
  1565. }
  1566. static void do_blocking_move_relative(float offset_x, float offset_y, float offset_z) {
  1567. do_blocking_move_to(current_position[X_AXIS] + offset_x, current_position[Y_AXIS] + offset_y, current_position[Z_AXIS] + offset_z);
  1568. }
  1569. /// Probe bed height at position (x,y), returns the measured z value
  1570. static float probe_pt(float x, float y, float z_before) {
  1571. // move to right place
  1572. do_blocking_move_to(current_position[X_AXIS], current_position[Y_AXIS], z_before);
  1573. do_blocking_move_to(x - X_PROBE_OFFSET_FROM_EXTRUDER, y - Y_PROBE_OFFSET_FROM_EXTRUDER, current_position[Z_AXIS]);
  1574. run_z_probe();
  1575. float measured_z = current_position[Z_AXIS];
  1576. SERIAL_PROTOCOLRPGM(MSG_BED);
  1577. SERIAL_PROTOCOLPGM(" x: ");
  1578. SERIAL_PROTOCOL(x);
  1579. SERIAL_PROTOCOLPGM(" y: ");
  1580. SERIAL_PROTOCOL(y);
  1581. SERIAL_PROTOCOLPGM(" z: ");
  1582. SERIAL_PROTOCOL(measured_z);
  1583. SERIAL_PROTOCOLPGM("\n");
  1584. return measured_z;
  1585. }
  1586. #endif // #ifdef ENABLE_AUTO_BED_LEVELING
  1587. #ifdef LIN_ADVANCE
  1588. /**
  1589. * M900: Set and/or Get advance K factor and WH/D ratio
  1590. *
  1591. * K<factor> Set advance K factor
  1592. * R<ratio> Set ratio directly (overrides WH/D)
  1593. * W<width> H<height> D<diam> Set ratio from WH/D
  1594. */
  1595. inline void gcode_M900() {
  1596. st_synchronize();
  1597. const float newK = code_seen('K') ? code_value_float() : -1;
  1598. if (newK >= 0) extruder_advance_k = newK;
  1599. float newR = code_seen('R') ? code_value_float() : -1;
  1600. if (newR < 0) {
  1601. const float newD = code_seen('D') ? code_value_float() : -1,
  1602. newW = code_seen('W') ? code_value_float() : -1,
  1603. newH = code_seen('H') ? code_value_float() : -1;
  1604. if (newD >= 0 && newW >= 0 && newH >= 0)
  1605. newR = newD ? (newW * newH) / (sq(newD * 0.5) * M_PI) : 0;
  1606. }
  1607. if (newR >= 0) advance_ed_ratio = newR;
  1608. SERIAL_ECHO_START;
  1609. SERIAL_ECHOPGM("Advance K=");
  1610. SERIAL_ECHOLN(extruder_advance_k);
  1611. SERIAL_ECHOPGM(" E/D=");
  1612. const float ratio = advance_ed_ratio;
  1613. if (ratio) SERIAL_ECHOLN(ratio); else SERIAL_ECHOLNPGM("Auto");
  1614. }
  1615. #endif // LIN_ADVANCE
  1616. /*
  1617. void homeaxis(int axis) {
  1618. #define HOMEAXIS_DO(LETTER) \
  1619. ((LETTER##_MIN_PIN > -1 && LETTER##_HOME_DIR==-1) || (LETTER##_MAX_PIN > -1 && LETTER##_HOME_DIR==1))
  1620. if (axis==X_AXIS ? HOMEAXIS_DO(X) :
  1621. axis==Y_AXIS ? HOMEAXIS_DO(Y) :
  1622. axis==Z_AXIS ? HOMEAXIS_DO(Z) :
  1623. 0) {
  1624. int axis_home_dir = home_dir(axis);
  1625. #ifdef HAVE_TMC2130_DRIVERS
  1626. if ((axis == X_AXIS) || (axis == Y_AXIS))
  1627. tmc2130_home_enter(axis);
  1628. #endif //HAVE_TMC2130_DRIVERS
  1629. current_position[axis] = 0;
  1630. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1631. destination[axis] = 1.5 * max_length(axis) * axis_home_dir;
  1632. feedrate = homing_feedrate[axis];
  1633. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1634. st_synchronize();
  1635. current_position[axis] = 0;
  1636. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1637. destination[axis] = -home_retract_mm(axis) * axis_home_dir;
  1638. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1639. st_synchronize();
  1640. destination[axis] = 2*home_retract_mm(axis) * axis_home_dir;
  1641. // feedrate = homing_feedrate[axis]/2 ;
  1642. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1643. st_synchronize();
  1644. axis_is_at_home(axis);
  1645. destination[axis] = current_position[axis];
  1646. feedrate = 0.0;
  1647. endstops_hit_on_purpose();
  1648. axis_known_position[axis] = true;
  1649. #ifdef HAVE_TMC2130_DRIVERS
  1650. if ((axis == X_AXIS) || (axis == Y_AXIS))
  1651. tmc2130_home_exit();
  1652. #endif //HAVE_TMC2130_DRIVERS
  1653. }
  1654. }
  1655. /**/
  1656. void homeaxis(int axis) {
  1657. #define HOMEAXIS_DO(LETTER) \
  1658. ((LETTER##_MIN_PIN > -1 && LETTER##_HOME_DIR==-1) || (LETTER##_MAX_PIN > -1 && LETTER##_HOME_DIR==1))
  1659. if (axis==X_AXIS ? HOMEAXIS_DO(X) :
  1660. axis==Y_AXIS ? HOMEAXIS_DO(Y) :
  1661. 0) {
  1662. int axis_home_dir = home_dir(axis);
  1663. #ifdef HAVE_TMC2130_DRIVERS
  1664. tmc2130_home_enter(axis);
  1665. #endif
  1666. current_position[axis] = 0;
  1667. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1668. destination[axis] = 1.5 * max_length(axis) * axis_home_dir;
  1669. feedrate = homing_feedrate[axis];
  1670. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1671. sg_homing_delay = 0;
  1672. st_synchronize();
  1673. current_position[axis] = 0;
  1674. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1675. destination[axis] = -home_retract_mm(axis) * axis_home_dir;
  1676. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1677. sg_homing_delay = 0;
  1678. st_synchronize();
  1679. destination[axis] = 2*home_retract_mm(axis) * axis_home_dir;
  1680. #ifdef HAVE_TMC2130_DRIVERS
  1681. if (tmc2130_didLastHomingStall())
  1682. feedrate = homing_feedrate[axis];
  1683. else
  1684. #endif
  1685. feedrate = homing_feedrate[axis] / 2;
  1686. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1687. sg_homing_delay = 0;
  1688. st_synchronize();
  1689. axis_is_at_home(axis);
  1690. destination[axis] = current_position[axis];
  1691. feedrate = 0.0;
  1692. endstops_hit_on_purpose();
  1693. axis_known_position[axis] = true;
  1694. #ifdef HAVE_TMC2130_DRIVERS
  1695. tmc2130_home_exit();
  1696. #endif
  1697. }
  1698. else if (axis==Z_AXIS ? HOMEAXIS_DO(Z) :
  1699. 0) {
  1700. int axis_home_dir = home_dir(axis);
  1701. current_position[axis] = 0;
  1702. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1703. destination[axis] = 1.5 * max_length(axis) * axis_home_dir;
  1704. feedrate = homing_feedrate[axis];
  1705. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1706. st_synchronize();
  1707. current_position[axis] = 0;
  1708. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1709. destination[axis] = -home_retract_mm(axis) * axis_home_dir;
  1710. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1711. st_synchronize();
  1712. destination[axis] = 2*home_retract_mm(axis) * axis_home_dir;
  1713. feedrate = homing_feedrate[axis]/2 ;
  1714. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1715. st_synchronize();
  1716. axis_is_at_home(axis);
  1717. destination[axis] = current_position[axis];
  1718. feedrate = 0.0;
  1719. endstops_hit_on_purpose();
  1720. axis_known_position[axis] = true;
  1721. }
  1722. }
  1723. /**/
  1724. void home_xy()
  1725. {
  1726. set_destination_to_current();
  1727. homeaxis(X_AXIS);
  1728. homeaxis(Y_AXIS);
  1729. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1730. endstops_hit_on_purpose();
  1731. }
  1732. void refresh_cmd_timeout(void)
  1733. {
  1734. previous_millis_cmd = millis();
  1735. }
  1736. #ifdef FWRETRACT
  1737. void retract(bool retracting, bool swapretract = false) {
  1738. if(retracting && !retracted[active_extruder]) {
  1739. destination[X_AXIS]=current_position[X_AXIS];
  1740. destination[Y_AXIS]=current_position[Y_AXIS];
  1741. destination[Z_AXIS]=current_position[Z_AXIS];
  1742. destination[E_AXIS]=current_position[E_AXIS];
  1743. if (swapretract) {
  1744. current_position[E_AXIS]+=retract_length_swap/volumetric_multiplier[active_extruder];
  1745. } else {
  1746. current_position[E_AXIS]+=retract_length/volumetric_multiplier[active_extruder];
  1747. }
  1748. plan_set_e_position(current_position[E_AXIS]);
  1749. float oldFeedrate = feedrate;
  1750. feedrate=retract_feedrate*60;
  1751. retracted[active_extruder]=true;
  1752. prepare_move();
  1753. current_position[Z_AXIS]-=retract_zlift;
  1754. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1755. prepare_move();
  1756. feedrate = oldFeedrate;
  1757. } else if(!retracting && retracted[active_extruder]) {
  1758. destination[X_AXIS]=current_position[X_AXIS];
  1759. destination[Y_AXIS]=current_position[Y_AXIS];
  1760. destination[Z_AXIS]=current_position[Z_AXIS];
  1761. destination[E_AXIS]=current_position[E_AXIS];
  1762. current_position[Z_AXIS]+=retract_zlift;
  1763. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1764. //prepare_move();
  1765. if (swapretract) {
  1766. current_position[E_AXIS]-=(retract_length_swap+retract_recover_length_swap)/volumetric_multiplier[active_extruder];
  1767. } else {
  1768. current_position[E_AXIS]-=(retract_length+retract_recover_length)/volumetric_multiplier[active_extruder];
  1769. }
  1770. plan_set_e_position(current_position[E_AXIS]);
  1771. float oldFeedrate = feedrate;
  1772. feedrate=retract_recover_feedrate*60;
  1773. retracted[active_extruder]=false;
  1774. prepare_move();
  1775. feedrate = oldFeedrate;
  1776. }
  1777. } //retract
  1778. #endif //FWRETRACT
  1779. void trace() {
  1780. tone(BEEPER, 440);
  1781. delay(25);
  1782. noTone(BEEPER);
  1783. delay(20);
  1784. }
  1785. /*
  1786. void ramming() {
  1787. // float tmp[4] = DEFAULT_MAX_FEEDRATE;
  1788. if (current_temperature[0] < 230) {
  1789. //PLA
  1790. max_feedrate[E_AXIS] = 50;
  1791. //current_position[E_AXIS] -= 8;
  1792. //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2100 / 60, active_extruder);
  1793. //current_position[E_AXIS] += 8;
  1794. //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2100 / 60, active_extruder);
  1795. current_position[E_AXIS] += 5.4;
  1796. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2800 / 60, active_extruder);
  1797. current_position[E_AXIS] += 3.2;
  1798. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  1799. current_position[E_AXIS] += 3;
  1800. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3400 / 60, active_extruder);
  1801. st_synchronize();
  1802. max_feedrate[E_AXIS] = 80;
  1803. current_position[E_AXIS] -= 82;
  1804. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 9500 / 60, active_extruder);
  1805. max_feedrate[E_AXIS] = 50;//tmp[E_AXIS];
  1806. current_position[E_AXIS] -= 20;
  1807. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 1200 / 60, active_extruder);
  1808. current_position[E_AXIS] += 5;
  1809. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400 / 60, active_extruder);
  1810. current_position[E_AXIS] += 5;
  1811. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  1812. current_position[E_AXIS] -= 10;
  1813. st_synchronize();
  1814. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  1815. current_position[E_AXIS] += 10;
  1816. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  1817. current_position[E_AXIS] -= 10;
  1818. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 800 / 60, active_extruder);
  1819. current_position[E_AXIS] += 10;
  1820. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 800 / 60, active_extruder);
  1821. current_position[E_AXIS] -= 10;
  1822. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 800 / 60, active_extruder);
  1823. st_synchronize();
  1824. }
  1825. else {
  1826. //ABS
  1827. max_feedrate[E_AXIS] = 50;
  1828. //current_position[E_AXIS] -= 8;
  1829. //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2100 / 60, active_extruder);
  1830. //current_position[E_AXIS] += 8;
  1831. //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2100 / 60, active_extruder);
  1832. current_position[E_AXIS] += 3.1;
  1833. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2000 / 60, active_extruder);
  1834. current_position[E_AXIS] += 3.1;
  1835. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2500 / 60, active_extruder);
  1836. current_position[E_AXIS] += 4;
  1837. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  1838. st_synchronize();
  1839. //current_position[X_AXIS] += 23; //delay
  1840. //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600/60, active_extruder); //delay
  1841. //current_position[X_AXIS] -= 23; //delay
  1842. //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600/60, active_extruder); //delay
  1843. delay(4700);
  1844. max_feedrate[E_AXIS] = 80;
  1845. current_position[E_AXIS] -= 92;
  1846. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 9900 / 60, active_extruder);
  1847. max_feedrate[E_AXIS] = 50;//tmp[E_AXIS];
  1848. current_position[E_AXIS] -= 5;
  1849. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 800 / 60, active_extruder);
  1850. current_position[E_AXIS] += 5;
  1851. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400 / 60, active_extruder);
  1852. current_position[E_AXIS] -= 5;
  1853. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  1854. st_synchronize();
  1855. current_position[E_AXIS] += 5;
  1856. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  1857. current_position[E_AXIS] -= 5;
  1858. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  1859. current_position[E_AXIS] += 5;
  1860. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  1861. current_position[E_AXIS] -= 5;
  1862. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  1863. st_synchronize();
  1864. }
  1865. }
  1866. */
  1867. void process_commands()
  1868. {
  1869. #ifdef FILAMENT_RUNOUT_SUPPORT
  1870. SET_INPUT(FR_SENS);
  1871. #endif
  1872. #ifdef CMDBUFFER_DEBUG
  1873. SERIAL_ECHOPGM("Processing a GCODE command: ");
  1874. SERIAL_ECHO(cmdbuffer+bufindr+1);
  1875. SERIAL_ECHOLNPGM("");
  1876. SERIAL_ECHOPGM("In cmdqueue: ");
  1877. SERIAL_ECHO(buflen);
  1878. SERIAL_ECHOLNPGM("");
  1879. #endif /* CMDBUFFER_DEBUG */
  1880. unsigned long codenum; //throw away variable
  1881. char *starpos = NULL;
  1882. #ifdef ENABLE_AUTO_BED_LEVELING
  1883. float x_tmp, y_tmp, z_tmp, real_z;
  1884. #endif
  1885. // PRUSA GCODES
  1886. #ifdef SNMM
  1887. float tmp_motor[3] = DEFAULT_PWM_MOTOR_CURRENT;
  1888. float tmp_motor_loud[3] = DEFAULT_PWM_MOTOR_CURRENT_LOUD;
  1889. int8_t SilentMode;
  1890. #endif
  1891. if (code_seen("M117")) { //moved to highest priority place to be able to to print strings which includes "G", "PRUSA" and "^"
  1892. starpos = (strchr(strchr_pointer + 5, '*'));
  1893. if (starpos != NULL)
  1894. *(starpos) = '\0';
  1895. lcd_setstatus(strchr_pointer + 5);
  1896. }
  1897. else if(code_seen("PRUSA")){
  1898. if (code_seen("Ping")) { //PRUSA Ping
  1899. if (farm_mode) {
  1900. PingTime = millis();
  1901. //MYSERIAL.print(farm_no); MYSERIAL.println(": OK");
  1902. }
  1903. }
  1904. else if (code_seen("PRN")) {
  1905. MYSERIAL.println(status_number);
  1906. }else if (code_seen("fn")) {
  1907. if (farm_mode) {
  1908. MYSERIAL.println(farm_no);
  1909. }
  1910. else {
  1911. MYSERIAL.println("Not in farm mode.");
  1912. }
  1913. }else if (code_seen("fv")) {
  1914. // get file version
  1915. #ifdef SDSUPPORT
  1916. card.openFile(strchr_pointer + 3,true);
  1917. while (true) {
  1918. uint16_t readByte = card.get();
  1919. MYSERIAL.write(readByte);
  1920. if (readByte=='\n') {
  1921. break;
  1922. }
  1923. }
  1924. card.closefile();
  1925. #endif // SDSUPPORT
  1926. } else if (code_seen("M28")) {
  1927. trace();
  1928. prusa_sd_card_upload = true;
  1929. card.openFile(strchr_pointer+4,false);
  1930. } else if(code_seen("Fir")){
  1931. SERIAL_PROTOCOLLN(FW_version);
  1932. } else if(code_seen("Rev")){
  1933. SERIAL_PROTOCOLLN(FILAMENT_SIZE "-" ELECTRONICS "-" NOZZLE_TYPE );
  1934. } else if(code_seen("Lang")) {
  1935. lcd_force_language_selection();
  1936. } else if(code_seen("Lz")) {
  1937. EEPROM_save_B(EEPROM_BABYSTEP_Z,0);
  1938. } else if (code_seen("SERIAL LOW")) {
  1939. MYSERIAL.println("SERIAL LOW");
  1940. MYSERIAL.begin(BAUDRATE);
  1941. return;
  1942. } else if (code_seen("SERIAL HIGH")) {
  1943. MYSERIAL.println("SERIAL HIGH");
  1944. MYSERIAL.begin(1152000);
  1945. return;
  1946. } else if(code_seen("Beat")) {
  1947. // Kick farm link timer
  1948. kicktime = millis();
  1949. } else if(code_seen("FR")) {
  1950. // Factory full reset
  1951. factory_reset(0,true);
  1952. }
  1953. //else if (code_seen('Cal')) {
  1954. // lcd_calibration();
  1955. // }
  1956. }
  1957. else if (code_seen('^')) {
  1958. // nothing, this is a version line
  1959. } else if(code_seen('G'))
  1960. {
  1961. switch((int)code_value())
  1962. {
  1963. case 0: // G0 -> G1
  1964. case 1: // G1
  1965. if(Stopped == false) {
  1966. #ifdef FILAMENT_RUNOUT_SUPPORT
  1967. if(READ(FR_SENS)){
  1968. feedmultiplyBckp=feedmultiply;
  1969. float target[4];
  1970. float lastpos[4];
  1971. target[X_AXIS]=current_position[X_AXIS];
  1972. target[Y_AXIS]=current_position[Y_AXIS];
  1973. target[Z_AXIS]=current_position[Z_AXIS];
  1974. target[E_AXIS]=current_position[E_AXIS];
  1975. lastpos[X_AXIS]=current_position[X_AXIS];
  1976. lastpos[Y_AXIS]=current_position[Y_AXIS];
  1977. lastpos[Z_AXIS]=current_position[Z_AXIS];
  1978. lastpos[E_AXIS]=current_position[E_AXIS];
  1979. //retract by E
  1980. target[E_AXIS]+= FILAMENTCHANGE_FIRSTRETRACT ;
  1981. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 400, active_extruder);
  1982. target[Z_AXIS]+= FILAMENTCHANGE_ZADD ;
  1983. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 300, active_extruder);
  1984. target[X_AXIS]= FILAMENTCHANGE_XPOS ;
  1985. target[Y_AXIS]= FILAMENTCHANGE_YPOS ;
  1986. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 70, active_extruder);
  1987. target[E_AXIS]+= FILAMENTCHANGE_FINALRETRACT ;
  1988. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 20, active_extruder);
  1989. //finish moves
  1990. st_synchronize();
  1991. //disable extruder steppers so filament can be removed
  1992. disable_e0();
  1993. disable_e1();
  1994. disable_e2();
  1995. delay(100);
  1996. //LCD_ALERTMESSAGEPGM(MSG_FILAMENTCHANGE);
  1997. uint8_t cnt=0;
  1998. int counterBeep = 0;
  1999. lcd_wait_interact();
  2000. while(!lcd_clicked()){
  2001. cnt++;
  2002. manage_heater();
  2003. manage_inactivity(true);
  2004. //lcd_update();
  2005. if(cnt==0)
  2006. {
  2007. #if BEEPER > 0
  2008. if (counterBeep== 500){
  2009. counterBeep = 0;
  2010. }
  2011. SET_OUTPUT(BEEPER);
  2012. if (counterBeep== 0){
  2013. WRITE(BEEPER,HIGH);
  2014. }
  2015. if (counterBeep== 20){
  2016. WRITE(BEEPER,LOW);
  2017. }
  2018. counterBeep++;
  2019. #else
  2020. #if !defined(LCD_FEEDBACK_FREQUENCY_HZ) || !defined(LCD_FEEDBACK_FREQUENCY_DURATION_MS)
  2021. lcd_buzz(1000/6,100);
  2022. #else
  2023. lcd_buzz(LCD_FEEDBACK_FREQUENCY_DURATION_MS,LCD_FEEDBACK_FREQUENCY_HZ);
  2024. #endif
  2025. #endif
  2026. }
  2027. }
  2028. WRITE(BEEPER,LOW);
  2029. target[E_AXIS]+= FILAMENTCHANGE_FIRSTFEED ;
  2030. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 20, active_extruder);
  2031. target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  2032. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder);
  2033. lcd_change_fil_state = 0;
  2034. lcd_loading_filament();
  2035. while ((lcd_change_fil_state == 0)||(lcd_change_fil_state != 1)){
  2036. lcd_change_fil_state = 0;
  2037. lcd_alright();
  2038. switch(lcd_change_fil_state){
  2039. case 2:
  2040. target[E_AXIS]+= FILAMENTCHANGE_FIRSTFEED ;
  2041. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 20, active_extruder);
  2042. target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  2043. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder);
  2044. lcd_loading_filament();
  2045. break;
  2046. case 3:
  2047. target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  2048. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder);
  2049. lcd_loading_color();
  2050. break;
  2051. default:
  2052. lcd_change_success();
  2053. break;
  2054. }
  2055. }
  2056. target[E_AXIS]+= 5;
  2057. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder);
  2058. target[E_AXIS]+= FILAMENTCHANGE_FIRSTRETRACT;
  2059. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 400, active_extruder);
  2060. //current_position[E_AXIS]=target[E_AXIS]; //the long retract of L is compensated by manual filament feeding
  2061. //plan_set_e_position(current_position[E_AXIS]);
  2062. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 70, active_extruder); //should do nothing
  2063. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], target[Z_AXIS], target[E_AXIS], 70, active_extruder); //move xy back
  2064. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], target[E_AXIS], 200, active_extruder); //move z back
  2065. target[E_AXIS]= target[E_AXIS] - FILAMENTCHANGE_FIRSTRETRACT;
  2066. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], target[E_AXIS], 5, active_extruder); //final untretract
  2067. plan_set_e_position(lastpos[E_AXIS]);
  2068. feedmultiply=feedmultiplyBckp;
  2069. char cmd[9];
  2070. sprintf_P(cmd, PSTR("M220 S%i"), feedmultiplyBckp);
  2071. enquecommand(cmd);
  2072. }
  2073. #endif
  2074. get_coordinates(); // For X Y Z E F
  2075. if (total_filament_used > ((current_position[E_AXIS] - destination[E_AXIS]) * 100)) { //protection against total_filament_used overflow
  2076. total_filament_used = total_filament_used + ((destination[E_AXIS] - current_position[E_AXIS]) * 100);
  2077. }
  2078. #ifdef FWRETRACT
  2079. if(autoretract_enabled)
  2080. if( !(code_seen('X') || code_seen('Y') || code_seen('Z')) && code_seen('E')) {
  2081. float echange=destination[E_AXIS]-current_position[E_AXIS];
  2082. if((echange<-MIN_RETRACT && !retracted) || (echange>MIN_RETRACT && retracted)) { //move appears to be an attempt to retract or recover
  2083. current_position[E_AXIS] = destination[E_AXIS]; //hide the slicer-generated retract/recover from calculations
  2084. plan_set_e_position(current_position[E_AXIS]); //AND from the planner
  2085. retract(!retracted);
  2086. return;
  2087. }
  2088. }
  2089. #endif //FWRETRACT
  2090. prepare_move();
  2091. //ClearToSend();
  2092. }
  2093. break;
  2094. case 2: // G2 - CW ARC
  2095. if(Stopped == false) {
  2096. get_arc_coordinates();
  2097. prepare_arc_move(true);
  2098. }
  2099. break;
  2100. case 3: // G3 - CCW ARC
  2101. if(Stopped == false) {
  2102. get_arc_coordinates();
  2103. prepare_arc_move(false);
  2104. }
  2105. break;
  2106. case 4: // G4 dwell
  2107. codenum = 0;
  2108. if(code_seen('P')) codenum = code_value(); // milliseconds to wait
  2109. if(code_seen('S')) codenum = code_value() * 1000; // seconds to wait
  2110. if(codenum != 0) LCD_MESSAGERPGM(MSG_DWELL);
  2111. st_synchronize();
  2112. codenum += millis(); // keep track of when we started waiting
  2113. previous_millis_cmd = millis();
  2114. while(millis() < codenum) {
  2115. manage_heater();
  2116. manage_inactivity();
  2117. lcd_update();
  2118. }
  2119. break;
  2120. #ifdef FWRETRACT
  2121. case 10: // G10 retract
  2122. #if EXTRUDERS > 1
  2123. retracted_swap[active_extruder]=(code_seen('S') && code_value_long() == 1); // checks for swap retract argument
  2124. retract(true,retracted_swap[active_extruder]);
  2125. #else
  2126. retract(true);
  2127. #endif
  2128. break;
  2129. case 11: // G11 retract_recover
  2130. #if EXTRUDERS > 1
  2131. retract(false,retracted_swap[active_extruder]);
  2132. #else
  2133. retract(false);
  2134. #endif
  2135. break;
  2136. #endif //FWRETRACT
  2137. case 28: //G28 Home all Axis one at a time
  2138. homing_flag = true;
  2139. #ifdef ENABLE_AUTO_BED_LEVELING
  2140. plan_bed_level_matrix.set_to_identity(); //Reset the plane ("erase" all leveling data)
  2141. #endif //ENABLE_AUTO_BED_LEVELING
  2142. // For mesh bed leveling deactivate the matrix temporarily
  2143. #ifdef MESH_BED_LEVELING
  2144. mbl.active = 0;
  2145. #endif
  2146. // Reset world2machine_rotation_and_skew and world2machine_shift, therefore
  2147. // the planner will not perform any adjustments in the XY plane.
  2148. // Wait for the motors to stop and update the current position with the absolute values.
  2149. world2machine_revert_to_uncorrected();
  2150. // Reset baby stepping to zero, if the babystepping has already been loaded before. The babystepsTodo value will be
  2151. // consumed during the first movements following this statement.
  2152. babystep_undo();
  2153. saved_feedrate = feedrate;
  2154. saved_feedmultiply = feedmultiply;
  2155. feedmultiply = 100;
  2156. previous_millis_cmd = millis();
  2157. enable_endstops(true);
  2158. for(int8_t i=0; i < NUM_AXIS; i++)
  2159. destination[i] = current_position[i];
  2160. feedrate = 0.0;
  2161. home_all_axis = !((code_seen(axis_codes[X_AXIS])) || (code_seen(axis_codes[Y_AXIS])) || (code_seen(axis_codes[Z_AXIS])));
  2162. #if Z_HOME_DIR > 0 // If homing away from BED do Z first
  2163. if((home_all_axis) || (code_seen(axis_codes[Z_AXIS]))) {
  2164. homeaxis(Z_AXIS);
  2165. }
  2166. #endif
  2167. #ifdef QUICK_HOME
  2168. // In the quick mode, if both x and y are to be homed, a diagonal move will be performed initially.
  2169. if((home_all_axis)||( code_seen(axis_codes[X_AXIS]) && code_seen(axis_codes[Y_AXIS])) ) //first diagonal move
  2170. {
  2171. current_position[X_AXIS] = 0;current_position[Y_AXIS] = 0;
  2172. int x_axis_home_dir = home_dir(X_AXIS);
  2173. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2174. destination[X_AXIS] = 1.5 * max_length(X_AXIS) * x_axis_home_dir;destination[Y_AXIS] = 1.5 * max_length(Y_AXIS) * home_dir(Y_AXIS);
  2175. feedrate = homing_feedrate[X_AXIS];
  2176. if(homing_feedrate[Y_AXIS]<feedrate)
  2177. feedrate = homing_feedrate[Y_AXIS];
  2178. if (max_length(X_AXIS) > max_length(Y_AXIS)) {
  2179. feedrate *= sqrt(pow(max_length(Y_AXIS) / max_length(X_AXIS), 2) + 1);
  2180. } else {
  2181. feedrate *= sqrt(pow(max_length(X_AXIS) / max_length(Y_AXIS), 2) + 1);
  2182. }
  2183. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  2184. st_synchronize();
  2185. axis_is_at_home(X_AXIS);
  2186. axis_is_at_home(Y_AXIS);
  2187. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2188. destination[X_AXIS] = current_position[X_AXIS];
  2189. destination[Y_AXIS] = current_position[Y_AXIS];
  2190. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  2191. feedrate = 0.0;
  2192. st_synchronize();
  2193. endstops_hit_on_purpose();
  2194. current_position[X_AXIS] = destination[X_AXIS];
  2195. current_position[Y_AXIS] = destination[Y_AXIS];
  2196. current_position[Z_AXIS] = destination[Z_AXIS];
  2197. }
  2198. #endif /* QUICK_HOME */
  2199. if((home_all_axis) || (code_seen(axis_codes[X_AXIS])))
  2200. homeaxis(X_AXIS);
  2201. if((home_all_axis) || (code_seen(axis_codes[Y_AXIS])))
  2202. homeaxis(Y_AXIS);
  2203. if(code_seen(axis_codes[X_AXIS]) && code_value_long() != 0)
  2204. current_position[X_AXIS]=code_value()+add_homing[X_AXIS];
  2205. if(code_seen(axis_codes[Y_AXIS]) && code_value_long() != 0)
  2206. current_position[Y_AXIS]=code_value()+add_homing[Y_AXIS];
  2207. #if Z_HOME_DIR < 0 // If homing towards BED do Z last
  2208. #ifndef Z_SAFE_HOMING
  2209. if((home_all_axis) || (code_seen(axis_codes[Z_AXIS]))) {
  2210. #if defined (Z_RAISE_BEFORE_HOMING) && (Z_RAISE_BEFORE_HOMING > 0)
  2211. destination[Z_AXIS] = Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS) * (-1); // Set destination away from bed
  2212. feedrate = max_feedrate[Z_AXIS];
  2213. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
  2214. st_synchronize();
  2215. #endif // defined (Z_RAISE_BEFORE_HOMING) && (Z_RAISE_BEFORE_HOMING > 0)
  2216. #if (defined(MESH_BED_LEVELING) && !defined(MK1BP)) // If Mesh bed leveling, moxve X&Y to safe position for home
  2217. if (!(axis_known_position[X_AXIS] && axis_known_position[Y_AXIS] ))
  2218. {
  2219. homeaxis(X_AXIS);
  2220. homeaxis(Y_AXIS);
  2221. }
  2222. // 1st mesh bed leveling measurement point, corrected.
  2223. world2machine_initialize();
  2224. world2machine(pgm_read_float(bed_ref_points), pgm_read_float(bed_ref_points+1), destination[X_AXIS], destination[Y_AXIS]);
  2225. world2machine_reset();
  2226. if (destination[Y_AXIS] < Y_MIN_POS)
  2227. destination[Y_AXIS] = Y_MIN_POS;
  2228. destination[Z_AXIS] = MESH_HOME_Z_SEARCH; // Set destination away from bed
  2229. feedrate = homing_feedrate[Z_AXIS]/10;
  2230. current_position[Z_AXIS] = 0;
  2231. enable_endstops(false);
  2232. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2233. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
  2234. st_synchronize();
  2235. current_position[X_AXIS] = destination[X_AXIS];
  2236. current_position[Y_AXIS] = destination[Y_AXIS];
  2237. enable_endstops(true);
  2238. endstops_hit_on_purpose();
  2239. homeaxis(Z_AXIS);
  2240. #else // MESH_BED_LEVELING
  2241. homeaxis(Z_AXIS);
  2242. #endif // MESH_BED_LEVELING
  2243. }
  2244. #else // defined(Z_SAFE_HOMING): Z Safe mode activated.
  2245. if(home_all_axis) {
  2246. destination[X_AXIS] = round(Z_SAFE_HOMING_X_POINT - X_PROBE_OFFSET_FROM_EXTRUDER);
  2247. destination[Y_AXIS] = round(Z_SAFE_HOMING_Y_POINT - Y_PROBE_OFFSET_FROM_EXTRUDER);
  2248. destination[Z_AXIS] = Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS) * (-1); // Set destination away from bed
  2249. feedrate = XY_TRAVEL_SPEED/60;
  2250. current_position[Z_AXIS] = 0;
  2251. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2252. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
  2253. st_synchronize();
  2254. current_position[X_AXIS] = destination[X_AXIS];
  2255. current_position[Y_AXIS] = destination[Y_AXIS];
  2256. homeaxis(Z_AXIS);
  2257. }
  2258. // Let's see if X and Y are homed and probe is inside bed area.
  2259. if(code_seen(axis_codes[Z_AXIS])) {
  2260. if ( (axis_known_position[X_AXIS]) && (axis_known_position[Y_AXIS]) \
  2261. && (current_position[X_AXIS]+X_PROBE_OFFSET_FROM_EXTRUDER >= X_MIN_POS) \
  2262. && (current_position[X_AXIS]+X_PROBE_OFFSET_FROM_EXTRUDER <= X_MAX_POS) \
  2263. && (current_position[Y_AXIS]+Y_PROBE_OFFSET_FROM_EXTRUDER >= Y_MIN_POS) \
  2264. && (current_position[Y_AXIS]+Y_PROBE_OFFSET_FROM_EXTRUDER <= Y_MAX_POS)) {
  2265. current_position[Z_AXIS] = 0;
  2266. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2267. destination[Z_AXIS] = Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS) * (-1); // Set destination away from bed
  2268. feedrate = max_feedrate[Z_AXIS];
  2269. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
  2270. st_synchronize();
  2271. homeaxis(Z_AXIS);
  2272. } else if (!((axis_known_position[X_AXIS]) && (axis_known_position[Y_AXIS]))) {
  2273. LCD_MESSAGERPGM(MSG_POSITION_UNKNOWN);
  2274. SERIAL_ECHO_START;
  2275. SERIAL_ECHOLNRPGM(MSG_POSITION_UNKNOWN);
  2276. } else {
  2277. LCD_MESSAGERPGM(MSG_ZPROBE_OUT);
  2278. SERIAL_ECHO_START;
  2279. SERIAL_ECHOLNRPGM(MSG_ZPROBE_OUT);
  2280. }
  2281. }
  2282. #endif // Z_SAFE_HOMING
  2283. #endif // Z_HOME_DIR < 0
  2284. if(code_seen(axis_codes[Z_AXIS])) {
  2285. if(code_value_long() != 0) {
  2286. current_position[Z_AXIS]=code_value()+add_homing[Z_AXIS];
  2287. }
  2288. }
  2289. #ifdef ENABLE_AUTO_BED_LEVELING
  2290. if((home_all_axis) || (code_seen(axis_codes[Z_AXIS]))) {
  2291. current_position[Z_AXIS] += zprobe_zoffset; //Add Z_Probe offset (the distance is negative)
  2292. }
  2293. #endif
  2294. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2295. #ifdef ENDSTOPS_ONLY_FOR_HOMING
  2296. enable_endstops(false);
  2297. #endif
  2298. feedrate = saved_feedrate;
  2299. feedmultiply = saved_feedmultiply;
  2300. previous_millis_cmd = millis();
  2301. endstops_hit_on_purpose();
  2302. #ifndef MESH_BED_LEVELING
  2303. // If MESH_BED_LEVELING is not active, then it is the original Prusa i3.
  2304. // Offer the user to load the baby step value, which has been adjusted at the previous print session.
  2305. if(card.sdprinting && eeprom_read_word((uint16_t *)EEPROM_BABYSTEP_Z))
  2306. lcd_adjust_z();
  2307. #endif
  2308. // Load the machine correction matrix
  2309. world2machine_initialize();
  2310. // and correct the current_position to match the transformed coordinate system.
  2311. world2machine_update_current();
  2312. #if (defined(MESH_BED_LEVELING) && !defined(MK1BP))
  2313. if (code_seen(axis_codes[X_AXIS]) || code_seen(axis_codes[Y_AXIS]) || code_seen('W') || code_seen(axis_codes[Z_AXIS]))
  2314. {
  2315. }
  2316. else
  2317. {
  2318. st_synchronize();
  2319. homing_flag = false;
  2320. // Push the commands to the front of the message queue in the reverse order!
  2321. // There shall be always enough space reserved for these commands.
  2322. // enquecommand_front_P((PSTR("G80")));
  2323. goto case_G80;
  2324. }
  2325. #endif
  2326. if (farm_mode) { prusa_statistics(20); };
  2327. homing_flag = false;
  2328. SERIAL_ECHOLNPGM("Homing happened");
  2329. SERIAL_ECHOPGM("Current position X AXIS:");
  2330. MYSERIAL.println(current_position[X_AXIS]);
  2331. SERIAL_ECHOPGM("Current position Y_AXIS:");
  2332. MYSERIAL.println(current_position[Y_AXIS]);
  2333. break;
  2334. #ifdef ENABLE_AUTO_BED_LEVELING
  2335. case 29: // G29 Detailed Z-Probe, probes the bed at 3 or more points.
  2336. {
  2337. #if Z_MIN_PIN == -1
  2338. #error "You must have a Z_MIN endstop in order to enable Auto Bed Leveling feature! Z_MIN_PIN must point to a valid hardware pin."
  2339. #endif
  2340. // Prevent user from running a G29 without first homing in X and Y
  2341. if (! (axis_known_position[X_AXIS] && axis_known_position[Y_AXIS]) )
  2342. {
  2343. LCD_MESSAGERPGM(MSG_POSITION_UNKNOWN);
  2344. SERIAL_ECHO_START;
  2345. SERIAL_ECHOLNRPGM(MSG_POSITION_UNKNOWN);
  2346. break; // abort G29, since we don't know where we are
  2347. }
  2348. st_synchronize();
  2349. // make sure the bed_level_rotation_matrix is identity or the planner will get it incorectly
  2350. //vector_3 corrected_position = plan_get_position_mm();
  2351. //corrected_position.debug("position before G29");
  2352. plan_bed_level_matrix.set_to_identity();
  2353. vector_3 uncorrected_position = plan_get_position();
  2354. //uncorrected_position.debug("position durring G29");
  2355. current_position[X_AXIS] = uncorrected_position.x;
  2356. current_position[Y_AXIS] = uncorrected_position.y;
  2357. current_position[Z_AXIS] = uncorrected_position.z;
  2358. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2359. setup_for_endstop_move();
  2360. feedrate = homing_feedrate[Z_AXIS];
  2361. #ifdef AUTO_BED_LEVELING_GRID
  2362. // probe at the points of a lattice grid
  2363. int xGridSpacing = (RIGHT_PROBE_BED_POSITION - LEFT_PROBE_BED_POSITION) / (AUTO_BED_LEVELING_GRID_POINTS-1);
  2364. int yGridSpacing = (BACK_PROBE_BED_POSITION - FRONT_PROBE_BED_POSITION) / (AUTO_BED_LEVELING_GRID_POINTS-1);
  2365. // solve the plane equation ax + by + d = z
  2366. // A is the matrix with rows [x y 1] for all the probed points
  2367. // B is the vector of the Z positions
  2368. // the normal vector to the plane is formed by the coefficients of the plane equation in the standard form, which is Vx*x+Vy*y+Vz*z+d = 0
  2369. // so Vx = -a Vy = -b Vz = 1 (we want the vector facing towards positive Z
  2370. // "A" matrix of the linear system of equations
  2371. double eqnAMatrix[AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS*3];
  2372. // "B" vector of Z points
  2373. double eqnBVector[AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS];
  2374. int probePointCounter = 0;
  2375. bool zig = true;
  2376. for (int yProbe=FRONT_PROBE_BED_POSITION; yProbe <= BACK_PROBE_BED_POSITION; yProbe += yGridSpacing)
  2377. {
  2378. int xProbe, xInc;
  2379. if (zig)
  2380. {
  2381. xProbe = LEFT_PROBE_BED_POSITION;
  2382. //xEnd = RIGHT_PROBE_BED_POSITION;
  2383. xInc = xGridSpacing;
  2384. zig = false;
  2385. } else // zag
  2386. {
  2387. xProbe = RIGHT_PROBE_BED_POSITION;
  2388. //xEnd = LEFT_PROBE_BED_POSITION;
  2389. xInc = -xGridSpacing;
  2390. zig = true;
  2391. }
  2392. for (int xCount=0; xCount < AUTO_BED_LEVELING_GRID_POINTS; xCount++)
  2393. {
  2394. float z_before;
  2395. if (probePointCounter == 0)
  2396. {
  2397. // raise before probing
  2398. z_before = Z_RAISE_BEFORE_PROBING;
  2399. } else
  2400. {
  2401. // raise extruder
  2402. z_before = current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS;
  2403. }
  2404. float measured_z = probe_pt(xProbe, yProbe, z_before);
  2405. eqnBVector[probePointCounter] = measured_z;
  2406. eqnAMatrix[probePointCounter + 0*AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS] = xProbe;
  2407. eqnAMatrix[probePointCounter + 1*AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS] = yProbe;
  2408. eqnAMatrix[probePointCounter + 2*AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS] = 1;
  2409. probePointCounter++;
  2410. xProbe += xInc;
  2411. }
  2412. }
  2413. clean_up_after_endstop_move();
  2414. // solve lsq problem
  2415. double *plane_equation_coefficients = qr_solve(AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS, 3, eqnAMatrix, eqnBVector);
  2416. SERIAL_PROTOCOLPGM("Eqn coefficients: a: ");
  2417. SERIAL_PROTOCOL(plane_equation_coefficients[0]);
  2418. SERIAL_PROTOCOLPGM(" b: ");
  2419. SERIAL_PROTOCOL(plane_equation_coefficients[1]);
  2420. SERIAL_PROTOCOLPGM(" d: ");
  2421. SERIAL_PROTOCOLLN(plane_equation_coefficients[2]);
  2422. set_bed_level_equation_lsq(plane_equation_coefficients);
  2423. free(plane_equation_coefficients);
  2424. #else // AUTO_BED_LEVELING_GRID not defined
  2425. // Probe at 3 arbitrary points
  2426. // probe 1
  2427. float z_at_pt_1 = probe_pt(ABL_PROBE_PT_1_X, ABL_PROBE_PT_1_Y, Z_RAISE_BEFORE_PROBING);
  2428. // probe 2
  2429. float z_at_pt_2 = probe_pt(ABL_PROBE_PT_2_X, ABL_PROBE_PT_2_Y, current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS);
  2430. // probe 3
  2431. float z_at_pt_3 = probe_pt(ABL_PROBE_PT_3_X, ABL_PROBE_PT_3_Y, current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS);
  2432. clean_up_after_endstop_move();
  2433. set_bed_level_equation_3pts(z_at_pt_1, z_at_pt_2, z_at_pt_3);
  2434. #endif // AUTO_BED_LEVELING_GRID
  2435. st_synchronize();
  2436. // The following code correct the Z height difference from z-probe position and hotend tip position.
  2437. // The Z height on homing is measured by Z-Probe, but the probe is quite far from the hotend.
  2438. // When the bed is uneven, this height must be corrected.
  2439. real_z = float(st_get_position(Z_AXIS))/axis_steps_per_unit[Z_AXIS]; //get the real Z (since the auto bed leveling is already correcting the plane)
  2440. x_tmp = current_position[X_AXIS] + X_PROBE_OFFSET_FROM_EXTRUDER;
  2441. y_tmp = current_position[Y_AXIS] + Y_PROBE_OFFSET_FROM_EXTRUDER;
  2442. z_tmp = current_position[Z_AXIS];
  2443. apply_rotation_xyz(plan_bed_level_matrix, x_tmp, y_tmp, z_tmp); //Apply the correction sending the probe offset
  2444. current_position[Z_AXIS] = z_tmp - real_z + current_position[Z_AXIS]; //The difference is added to current position and sent to planner.
  2445. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2446. }
  2447. break;
  2448. #ifndef Z_PROBE_SLED
  2449. case 30: // G30 Single Z Probe
  2450. {
  2451. st_synchronize();
  2452. // TODO: make sure the bed_level_rotation_matrix is identity or the planner will get set incorectly
  2453. setup_for_endstop_move();
  2454. feedrate = homing_feedrate[Z_AXIS];
  2455. run_z_probe();
  2456. SERIAL_PROTOCOLPGM(MSG_BED);
  2457. SERIAL_PROTOCOLPGM(" X: ");
  2458. SERIAL_PROTOCOL(current_position[X_AXIS]);
  2459. SERIAL_PROTOCOLPGM(" Y: ");
  2460. SERIAL_PROTOCOL(current_position[Y_AXIS]);
  2461. SERIAL_PROTOCOLPGM(" Z: ");
  2462. SERIAL_PROTOCOL(current_position[Z_AXIS]);
  2463. SERIAL_PROTOCOLPGM("\n");
  2464. clean_up_after_endstop_move();
  2465. }
  2466. break;
  2467. #else
  2468. case 31: // dock the sled
  2469. dock_sled(true);
  2470. break;
  2471. case 32: // undock the sled
  2472. dock_sled(false);
  2473. break;
  2474. #endif // Z_PROBE_SLED
  2475. #endif // ENABLE_AUTO_BED_LEVELING
  2476. #ifdef MESH_BED_LEVELING
  2477. case 30: // G30 Single Z Probe
  2478. {
  2479. st_synchronize();
  2480. // TODO: make sure the bed_level_rotation_matrix is identity or the planner will get set incorectly
  2481. setup_for_endstop_move();
  2482. feedrate = homing_feedrate[Z_AXIS];
  2483. find_bed_induction_sensor_point_z(-10.f, 3);
  2484. SERIAL_PROTOCOLRPGM(MSG_BED);
  2485. SERIAL_PROTOCOLPGM(" X: ");
  2486. MYSERIAL.print(current_position[X_AXIS], 5);
  2487. SERIAL_PROTOCOLPGM(" Y: ");
  2488. MYSERIAL.print(current_position[Y_AXIS], 5);
  2489. SERIAL_PROTOCOLPGM(" Z: ");
  2490. MYSERIAL.print(current_position[Z_AXIS], 5);
  2491. SERIAL_PROTOCOLPGM("\n");
  2492. clean_up_after_endstop_move();
  2493. }
  2494. break;
  2495. case 75:
  2496. {
  2497. for (int i = 40; i <= 110; i++) {
  2498. MYSERIAL.print(i);
  2499. MYSERIAL.print(" ");
  2500. MYSERIAL.println(temp_comp_interpolation(i));// / axis_steps_per_unit[Z_AXIS]);
  2501. }
  2502. }
  2503. break;
  2504. case 76: //PINDA probe temperature calibration
  2505. {
  2506. setTargetBed(PINDA_MIN_T);
  2507. float zero_z;
  2508. int z_shift = 0; //unit: steps
  2509. int t_c; // temperature
  2510. if (!(axis_known_position[X_AXIS] && axis_known_position[Y_AXIS] && axis_known_position[Z_AXIS])) {
  2511. // We don't know where we are! HOME!
  2512. // Push the commands to the front of the message queue in the reverse order!
  2513. // There shall be always enough space reserved for these commands.
  2514. repeatcommand_front(); // repeat G76 with all its parameters
  2515. enquecommand_front_P((PSTR("G28 W0")));
  2516. break;
  2517. }
  2518. SERIAL_ECHOLNPGM("PINDA probe calibration start");
  2519. custom_message = true;
  2520. custom_message_type = 4;
  2521. custom_message_state = 1;
  2522. custom_message = MSG_TEMP_CALIBRATION;
  2523. current_position[X_AXIS] = PINDA_PREHEAT_X;
  2524. current_position[Y_AXIS] = PINDA_PREHEAT_Y;
  2525. current_position[Z_AXIS] = PINDA_PREHEAT_Z;
  2526. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  2527. st_synchronize();
  2528. while (abs(degBed() - PINDA_MIN_T) > 1) {
  2529. delay_keep_alive(1000);
  2530. serialecho_temperatures();
  2531. }
  2532. //enquecommand_P(PSTR("M190 S50"));
  2533. for (int i = 0; i < PINDA_HEAT_T; i++) {
  2534. delay_keep_alive(1000);
  2535. serialecho_temperatures();
  2536. }
  2537. eeprom_update_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 0); //invalidate temp. calibration in case that in will be aborted during the calibration process
  2538. current_position[Z_AXIS] = 5;
  2539. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  2540. current_position[X_AXIS] = pgm_read_float(bed_ref_points);
  2541. current_position[Y_AXIS] = pgm_read_float(bed_ref_points + 1);
  2542. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  2543. st_synchronize();
  2544. find_bed_induction_sensor_point_z(-1.f);
  2545. zero_z = current_position[Z_AXIS];
  2546. //current_position[Z_AXIS]
  2547. SERIAL_ECHOLNPGM("");
  2548. SERIAL_ECHOPGM("ZERO: ");
  2549. MYSERIAL.print(current_position[Z_AXIS]);
  2550. SERIAL_ECHOLNPGM("");
  2551. for (int i = 0; i<5; i++) {
  2552. SERIAL_ECHOPGM("Step: ");
  2553. MYSERIAL.print(i+2);
  2554. SERIAL_ECHOLNPGM("/6");
  2555. custom_message_state = i + 2;
  2556. t_c = 60 + i * 10;
  2557. setTargetBed(t_c);
  2558. current_position[X_AXIS] = PINDA_PREHEAT_X;
  2559. current_position[Y_AXIS] = PINDA_PREHEAT_Y;
  2560. current_position[Z_AXIS] = PINDA_PREHEAT_Z;
  2561. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  2562. st_synchronize();
  2563. while (degBed() < t_c) {
  2564. delay_keep_alive(1000);
  2565. serialecho_temperatures();
  2566. }
  2567. for (int i = 0; i < PINDA_HEAT_T; i++) {
  2568. delay_keep_alive(1000);
  2569. serialecho_temperatures();
  2570. }
  2571. current_position[Z_AXIS] = 5;
  2572. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  2573. current_position[X_AXIS] = pgm_read_float(bed_ref_points);
  2574. current_position[Y_AXIS] = pgm_read_float(bed_ref_points + 1);
  2575. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  2576. st_synchronize();
  2577. find_bed_induction_sensor_point_z(-1.f);
  2578. z_shift = (int)((current_position[Z_AXIS] - zero_z)*axis_steps_per_unit[Z_AXIS]);
  2579. SERIAL_ECHOLNPGM("");
  2580. SERIAL_ECHOPGM("Temperature: ");
  2581. MYSERIAL.print(t_c);
  2582. SERIAL_ECHOPGM(" Z shift (mm):");
  2583. MYSERIAL.print(current_position[Z_AXIS] - zero_z);
  2584. SERIAL_ECHOLNPGM("");
  2585. EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + i*2, &z_shift);
  2586. }
  2587. custom_message_type = 0;
  2588. custom_message = false;
  2589. eeprom_update_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 1);
  2590. SERIAL_ECHOLNPGM("Temperature calibration done. Continue with pressing the knob.");
  2591. disable_x();
  2592. disable_y();
  2593. disable_z();
  2594. disable_e0();
  2595. disable_e1();
  2596. disable_e2();
  2597. setTargetBed(0); //set bed target temperature back to 0
  2598. lcd_show_fullscreen_message_and_wait_P(MSG_TEMP_CALIBRATION_DONE);
  2599. lcd_update_enable(true);
  2600. lcd_update(2);
  2601. }
  2602. break;
  2603. #ifdef DIS
  2604. case 77:
  2605. {
  2606. //G77 X200 Y150 XP100 YP15 XO10 Y015
  2607. //for 9 point mesh bed leveling G77 X203 Y196 XP3 YP3 XO0 YO0
  2608. //G77 X232 Y218 XP116 YP109 XO-11 YO0
  2609. float dimension_x = 40;
  2610. float dimension_y = 40;
  2611. int points_x = 40;
  2612. int points_y = 40;
  2613. float offset_x = 74;
  2614. float offset_y = 33;
  2615. if (code_seen('X')) dimension_x = code_value();
  2616. if (code_seen('Y')) dimension_y = code_value();
  2617. if (code_seen('XP')) points_x = code_value();
  2618. if (code_seen('YP')) points_y = code_value();
  2619. if (code_seen('XO')) offset_x = code_value();
  2620. if (code_seen('YO')) offset_y = code_value();
  2621. bed_analysis(dimension_x,dimension_y,points_x,points_y,offset_x,offset_y);
  2622. } break;
  2623. #endif
  2624. /**
  2625. * G80: Mesh-based Z probe, probes a grid and produces a
  2626. * mesh to compensate for variable bed height
  2627. *
  2628. * The S0 report the points as below
  2629. *
  2630. * +----> X-axis
  2631. * |
  2632. * |
  2633. * v Y-axis
  2634. *
  2635. */
  2636. case 80:
  2637. #ifdef MK1BP
  2638. break;
  2639. #endif //MK1BP
  2640. case_G80:
  2641. {
  2642. mesh_bed_leveling_flag = true;
  2643. int8_t verbosity_level = 0;
  2644. static bool run = false;
  2645. if (code_seen('V')) {
  2646. // Just 'V' without a number counts as V1.
  2647. char c = strchr_pointer[1];
  2648. verbosity_level = (c == ' ' || c == '\t' || c == 0) ? 1 : code_value_short();
  2649. }
  2650. // Firstly check if we know where we are
  2651. if (!(axis_known_position[X_AXIS] && axis_known_position[Y_AXIS] && axis_known_position[Z_AXIS])) {
  2652. // We don't know where we are! HOME!
  2653. // Push the commands to the front of the message queue in the reverse order!
  2654. // There shall be always enough space reserved for these commands.
  2655. if (lcd_commands_type != LCD_COMMAND_STOP_PRINT) {
  2656. repeatcommand_front(); // repeat G80 with all its parameters
  2657. enquecommand_front_P((PSTR("G28 W0")));
  2658. }
  2659. else {
  2660. mesh_bed_leveling_flag = false;
  2661. }
  2662. break;
  2663. }
  2664. if (run == false && temp_cal_active == true && calibration_status_pinda() == true && target_temperature_bed >= 50) {
  2665. if (lcd_commands_type != LCD_COMMAND_STOP_PRINT) {
  2666. temp_compensation_start();
  2667. run = true;
  2668. repeatcommand_front(); // repeat G80 with all its parameters
  2669. enquecommand_front_P((PSTR("G28 W0")));
  2670. }
  2671. else {
  2672. mesh_bed_leveling_flag = false;
  2673. }
  2674. break;
  2675. }
  2676. run = false;
  2677. if (lcd_commands_type == LCD_COMMAND_STOP_PRINT) {
  2678. mesh_bed_leveling_flag = false;
  2679. break;
  2680. }
  2681. // Save custom message state, set a new custom message state to display: Calibrating point 9.
  2682. bool custom_message_old = custom_message;
  2683. unsigned int custom_message_type_old = custom_message_type;
  2684. unsigned int custom_message_state_old = custom_message_state;
  2685. custom_message = true;
  2686. custom_message_type = 1;
  2687. custom_message_state = (MESH_MEAS_NUM_X_POINTS * MESH_MEAS_NUM_Y_POINTS) + 10;
  2688. lcd_update(1);
  2689. mbl.reset(); //reset mesh bed leveling
  2690. // Reset baby stepping to zero, if the babystepping has already been loaded before. The babystepsTodo value will be
  2691. // consumed during the first movements following this statement.
  2692. babystep_undo();
  2693. // Cycle through all points and probe them
  2694. // First move up. During this first movement, the babystepping will be reverted.
  2695. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  2696. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[Z_AXIS] / 60, active_extruder);
  2697. // The move to the first calibration point.
  2698. current_position[X_AXIS] = pgm_read_float(bed_ref_points);
  2699. current_position[Y_AXIS] = pgm_read_float(bed_ref_points + 1);
  2700. bool clamped = world2machine_clamp(current_position[X_AXIS], current_position[Y_AXIS]);
  2701. if (verbosity_level >= 1) {
  2702. clamped ? SERIAL_PROTOCOLPGM("First calibration point clamped.\n") : SERIAL_PROTOCOLPGM("No clamping for first calibration point.\n");
  2703. }
  2704. // mbl.get_meas_xy(0, 0, current_position[X_AXIS], current_position[Y_AXIS], false);
  2705. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[X_AXIS] / 30, active_extruder);
  2706. // Wait until the move is finished.
  2707. st_synchronize();
  2708. int mesh_point = 0; //index number of calibration point
  2709. int ix = 0;
  2710. int iy = 0;
  2711. int XY_AXIS_FEEDRATE = homing_feedrate[X_AXIS] / 20;
  2712. int Z_PROBE_FEEDRATE = homing_feedrate[Z_AXIS] / 60;
  2713. int Z_LIFT_FEEDRATE = homing_feedrate[Z_AXIS] / 40;
  2714. bool has_z = is_bed_z_jitter_data_valid(); //checks if we have data from Z calibration (offsets of the Z heiths of the 8 calibration points from the first point)
  2715. if (verbosity_level >= 1) {
  2716. has_z ? SERIAL_PROTOCOLPGM("Z jitter data from Z cal. valid.\n") : SERIAL_PROTOCOLPGM("Z jitter data from Z cal. not valid.\n");
  2717. }
  2718. setup_for_endstop_move(false); //save feedrate and feedmultiply, sets feedmultiply to 100
  2719. const char *kill_message = NULL;
  2720. while (mesh_point != MESH_MEAS_NUM_X_POINTS * MESH_MEAS_NUM_Y_POINTS) {
  2721. if (verbosity_level >= 1) SERIAL_ECHOLNPGM("");
  2722. // Get coords of a measuring point.
  2723. ix = mesh_point % MESH_MEAS_NUM_X_POINTS; // from 0 to MESH_NUM_X_POINTS - 1
  2724. iy = mesh_point / MESH_MEAS_NUM_X_POINTS;
  2725. if (iy & 1) ix = (MESH_MEAS_NUM_X_POINTS - 1) - ix; // Zig zag
  2726. float z0 = 0.f;
  2727. if (has_z && mesh_point > 0) {
  2728. uint16_t z_offset_u = eeprom_read_word((uint16_t*)(EEPROM_BED_CALIBRATION_Z_JITTER + 2 * (ix + iy * 3 - 1)));
  2729. z0 = mbl.z_values[0][0] + *reinterpret_cast<int16_t*>(&z_offset_u) * 0.01;
  2730. //#if 0
  2731. if (verbosity_level >= 1) {
  2732. SERIAL_ECHOPGM("Bed leveling, point: ");
  2733. MYSERIAL.print(mesh_point);
  2734. SERIAL_ECHOPGM(", calibration z: ");
  2735. MYSERIAL.print(z0, 5);
  2736. SERIAL_ECHOLNPGM("");
  2737. }
  2738. //#endif
  2739. }
  2740. // Move Z up to MESH_HOME_Z_SEARCH.
  2741. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  2742. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], Z_LIFT_FEEDRATE, active_extruder);
  2743. st_synchronize();
  2744. // Move to XY position of the sensor point.
  2745. current_position[X_AXIS] = pgm_read_float(bed_ref_points + 2 * mesh_point);
  2746. current_position[Y_AXIS] = pgm_read_float(bed_ref_points + 2 * mesh_point + 1);
  2747. world2machine_clamp(current_position[X_AXIS], current_position[Y_AXIS]);
  2748. if (verbosity_level >= 1) {
  2749. SERIAL_PROTOCOL(mesh_point);
  2750. clamped ? SERIAL_PROTOCOLPGM(": xy clamped.\n") : SERIAL_PROTOCOLPGM(": no xy clamping\n");
  2751. }
  2752. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], XY_AXIS_FEEDRATE, active_extruder);
  2753. st_synchronize();
  2754. // Go down until endstop is hit
  2755. const float Z_CALIBRATION_THRESHOLD = 1.f;
  2756. if (!find_bed_induction_sensor_point_z((has_z && mesh_point > 0) ? z0 - Z_CALIBRATION_THRESHOLD : -10.f)) { //if we have data from z calibration max allowed difference is 1mm for each point, if we dont have data max difference is 10mm from initial point
  2757. kill_message = MSG_BED_LEVELING_FAILED_POINT_LOW;
  2758. break;
  2759. }
  2760. if (MESH_HOME_Z_SEARCH - current_position[Z_AXIS] < 0.1f) {
  2761. kill_message = MSG_BED_LEVELING_FAILED_PROBE_DISCONNECTED;
  2762. break;
  2763. }
  2764. if (has_z && fabs(z0 - current_position[Z_AXIS]) > Z_CALIBRATION_THRESHOLD) { //if we have data from z calibration, max. allowed difference is 1mm for each point
  2765. kill_message = MSG_BED_LEVELING_FAILED_POINT_HIGH;
  2766. break;
  2767. }
  2768. if (verbosity_level >= 10) {
  2769. SERIAL_ECHOPGM("X: ");
  2770. MYSERIAL.print(current_position[X_AXIS], 5);
  2771. SERIAL_ECHOLNPGM("");
  2772. SERIAL_ECHOPGM("Y: ");
  2773. MYSERIAL.print(current_position[Y_AXIS], 5);
  2774. SERIAL_PROTOCOLPGM("\n");
  2775. }
  2776. if (verbosity_level >= 1) {
  2777. SERIAL_ECHOPGM("mesh bed leveling: ");
  2778. MYSERIAL.print(current_position[Z_AXIS], 5);
  2779. SERIAL_ECHOLNPGM("");
  2780. }
  2781. mbl.set_z(ix, iy, current_position[Z_AXIS]); //store measured z values z_values[iy][ix] = z;
  2782. custom_message_state--;
  2783. mesh_point++;
  2784. lcd_update(1);
  2785. }
  2786. if (verbosity_level >= 20) SERIAL_ECHOLNPGM("Mesh bed leveling while loop finished.");
  2787. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  2788. if (verbosity_level >= 20) {
  2789. SERIAL_ECHOLNPGM("MESH_HOME_Z_SEARCH: ");
  2790. MYSERIAL.print(current_position[Z_AXIS], 5);
  2791. }
  2792. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], Z_LIFT_FEEDRATE, active_extruder);
  2793. st_synchronize();
  2794. if (mesh_point != MESH_MEAS_NUM_X_POINTS * MESH_MEAS_NUM_Y_POINTS) {
  2795. kill(kill_message);
  2796. SERIAL_ECHOLNPGM("killed");
  2797. }
  2798. clean_up_after_endstop_move();
  2799. SERIAL_ECHOLNPGM("clean up finished ");
  2800. if(temp_cal_active == true && calibration_status_pinda() == true) temp_compensation_apply(); //apply PINDA temperature compensation
  2801. babystep_apply(); // Apply Z height correction aka baby stepping before mesh bed leveing gets activated.
  2802. SERIAL_ECHOLNPGM("babystep applied");
  2803. bool eeprom_bed_correction_valid = eeprom_read_byte((unsigned char*)EEPROM_BED_CORRECTION_VALID) == 1;
  2804. if (verbosity_level >= 1) {
  2805. eeprom_bed_correction_valid ? SERIAL_PROTOCOLPGM("Bed correction data valid\n") : SERIAL_PROTOCOLPGM("Bed correction data not valid\n");
  2806. }
  2807. for (uint8_t i = 0; i < 4; ++i) {
  2808. unsigned char codes[4] = { 'L', 'R', 'F', 'B' };
  2809. long correction = 0;
  2810. if (code_seen(codes[i]))
  2811. correction = code_value_long();
  2812. else if (eeprom_bed_correction_valid) {
  2813. unsigned char *addr = (i < 2) ?
  2814. ((i == 0) ? (unsigned char*)EEPROM_BED_CORRECTION_LEFT : (unsigned char*)EEPROM_BED_CORRECTION_RIGHT) :
  2815. ((i == 2) ? (unsigned char*)EEPROM_BED_CORRECTION_FRONT : (unsigned char*)EEPROM_BED_CORRECTION_REAR);
  2816. correction = eeprom_read_int8(addr);
  2817. }
  2818. if (correction == 0)
  2819. continue;
  2820. float offset = float(correction) * 0.001f;
  2821. if (fabs(offset) > 0.101f) {
  2822. SERIAL_ERROR_START;
  2823. SERIAL_ECHOPGM("Excessive bed leveling correction: ");
  2824. SERIAL_ECHO(offset);
  2825. SERIAL_ECHOLNPGM(" microns");
  2826. }
  2827. else {
  2828. switch (i) {
  2829. case 0:
  2830. for (uint8_t row = 0; row < 3; ++row) {
  2831. mbl.z_values[row][1] += 0.5f * offset;
  2832. mbl.z_values[row][0] += offset;
  2833. }
  2834. break;
  2835. case 1:
  2836. for (uint8_t row = 0; row < 3; ++row) {
  2837. mbl.z_values[row][1] += 0.5f * offset;
  2838. mbl.z_values[row][2] += offset;
  2839. }
  2840. break;
  2841. case 2:
  2842. for (uint8_t col = 0; col < 3; ++col) {
  2843. mbl.z_values[1][col] += 0.5f * offset;
  2844. mbl.z_values[0][col] += offset;
  2845. }
  2846. break;
  2847. case 3:
  2848. for (uint8_t col = 0; col < 3; ++col) {
  2849. mbl.z_values[1][col] += 0.5f * offset;
  2850. mbl.z_values[2][col] += offset;
  2851. }
  2852. break;
  2853. }
  2854. }
  2855. }
  2856. SERIAL_ECHOLNPGM("Bed leveling correction finished");
  2857. mbl.upsample_3x3(); //bilinear interpolation from 3x3 to 7x7 points while using the same array z_values[iy][ix] for storing (just coppying measured data to new destination and interpolating between them)
  2858. SERIAL_ECHOLNPGM("Upsample finished");
  2859. mbl.active = 1; //activate mesh bed leveling
  2860. SERIAL_ECHOLNPGM("Mesh bed leveling activated");
  2861. go_home_with_z_lift();
  2862. SERIAL_ECHOLNPGM("Go home finished");
  2863. //unretract (after PINDA preheat retraction)
  2864. if (degHotend(active_extruder) > EXTRUDE_MINTEMP && temp_cal_active == true && calibration_status_pinda() == true && target_temperature_bed >= 50) {
  2865. current_position[E_AXIS] += DEFAULT_RETRACTION;
  2866. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400, active_extruder);
  2867. }
  2868. // Restore custom message state
  2869. custom_message = custom_message_old;
  2870. custom_message_type = custom_message_type_old;
  2871. custom_message_state = custom_message_state_old;
  2872. mesh_bed_leveling_flag = false;
  2873. mesh_bed_run_from_menu = false;
  2874. lcd_update(2);
  2875. }
  2876. break;
  2877. /**
  2878. * G81: Print mesh bed leveling status and bed profile if activated
  2879. */
  2880. case 81:
  2881. if (mbl.active) {
  2882. SERIAL_PROTOCOLPGM("Num X,Y: ");
  2883. SERIAL_PROTOCOL(MESH_NUM_X_POINTS);
  2884. SERIAL_PROTOCOLPGM(",");
  2885. SERIAL_PROTOCOL(MESH_NUM_Y_POINTS);
  2886. SERIAL_PROTOCOLPGM("\nZ search height: ");
  2887. SERIAL_PROTOCOL(MESH_HOME_Z_SEARCH);
  2888. SERIAL_PROTOCOLLNPGM("\nMeasured points:");
  2889. for (int y = MESH_NUM_Y_POINTS-1; y >= 0; y--) {
  2890. for (int x = 0; x < MESH_NUM_X_POINTS; x++) {
  2891. SERIAL_PROTOCOLPGM(" ");
  2892. SERIAL_PROTOCOL_F(mbl.z_values[y][x], 5);
  2893. }
  2894. SERIAL_PROTOCOLPGM("\n");
  2895. }
  2896. }
  2897. else
  2898. SERIAL_PROTOCOLLNPGM("Mesh bed leveling not active.");
  2899. break;
  2900. #if 0
  2901. /**
  2902. * G82: Single Z probe at current location
  2903. *
  2904. * WARNING! USE WITH CAUTION! If you'll try to probe where is no leveling pad, nasty things can happen!
  2905. *
  2906. */
  2907. case 82:
  2908. SERIAL_PROTOCOLLNPGM("Finding bed ");
  2909. setup_for_endstop_move();
  2910. find_bed_induction_sensor_point_z();
  2911. clean_up_after_endstop_move();
  2912. SERIAL_PROTOCOLPGM("Bed found at: ");
  2913. SERIAL_PROTOCOL_F(current_position[Z_AXIS], 5);
  2914. SERIAL_PROTOCOLPGM("\n");
  2915. break;
  2916. /**
  2917. * G83: Prusa3D specific: Babystep in Z and store to EEPROM
  2918. */
  2919. case 83:
  2920. {
  2921. int babystepz = code_seen('S') ? code_value() : 0;
  2922. int BabyPosition = code_seen('P') ? code_value() : 0;
  2923. if (babystepz != 0) {
  2924. //FIXME Vojtech: What shall be the index of the axis Z: 3 or 4?
  2925. // Is the axis indexed starting with zero or one?
  2926. if (BabyPosition > 4) {
  2927. SERIAL_PROTOCOLLNPGM("Index out of bounds");
  2928. }else{
  2929. // Save it to the eeprom
  2930. babystepLoadZ = babystepz;
  2931. EEPROM_save_B(EEPROM_BABYSTEP_Z0+(BabyPosition*2),&babystepLoadZ);
  2932. // adjust the Z
  2933. babystepsTodoZadd(babystepLoadZ);
  2934. }
  2935. }
  2936. }
  2937. break;
  2938. /**
  2939. * G84: Prusa3D specific: UNDO Babystep Z (move Z axis back)
  2940. */
  2941. case 84:
  2942. babystepsTodoZsubtract(babystepLoadZ);
  2943. // babystepLoadZ = 0;
  2944. break;
  2945. /**
  2946. * G85: Prusa3D specific: Pick best babystep
  2947. */
  2948. case 85:
  2949. lcd_pick_babystep();
  2950. break;
  2951. #endif
  2952. /**
  2953. * G86: Prusa3D specific: Disable babystep correction after home.
  2954. * This G-code will be performed at the start of a calibration script.
  2955. */
  2956. case 86:
  2957. calibration_status_store(CALIBRATION_STATUS_LIVE_ADJUST);
  2958. break;
  2959. /**
  2960. * G87: Prusa3D specific: Enable babystep correction after home
  2961. * This G-code will be performed at the end of a calibration script.
  2962. */
  2963. case 87:
  2964. calibration_status_store(CALIBRATION_STATUS_CALIBRATED);
  2965. break;
  2966. /**
  2967. * G88: Prusa3D specific: Don't know what it is for, it is in V2Calibration.gcode
  2968. */
  2969. case 88:
  2970. break;
  2971. #endif // ENABLE_MESH_BED_LEVELING
  2972. case 90: // G90
  2973. relative_mode = false;
  2974. break;
  2975. case 91: // G91
  2976. relative_mode = true;
  2977. break;
  2978. case 92: // G92
  2979. if(!code_seen(axis_codes[E_AXIS]))
  2980. st_synchronize();
  2981. for(int8_t i=0; i < NUM_AXIS; i++) {
  2982. if(code_seen(axis_codes[i])) {
  2983. if(i == E_AXIS) {
  2984. current_position[i] = code_value();
  2985. plan_set_e_position(current_position[E_AXIS]);
  2986. }
  2987. else {
  2988. current_position[i] = code_value()+add_homing[i];
  2989. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2990. }
  2991. }
  2992. }
  2993. break;
  2994. case 98: //activate farm mode
  2995. farm_mode = 1;
  2996. PingTime = millis();
  2997. eeprom_update_byte((unsigned char *)EEPROM_FARM_MODE, farm_mode);
  2998. break;
  2999. case 99: //deactivate farm mode
  3000. farm_mode = 0;
  3001. lcd_printer_connected();
  3002. eeprom_update_byte((unsigned char *)EEPROM_FARM_MODE, farm_mode);
  3003. lcd_update(2);
  3004. break;
  3005. }
  3006. } // end if(code_seen('G'))
  3007. else if(code_seen('M'))
  3008. {
  3009. int index;
  3010. for (index = 1; *(strchr_pointer + index) == ' ' || *(strchr_pointer + index) == '\t'; index++);
  3011. /*for (++strchr_pointer; *strchr_pointer == ' ' || *strchr_pointer == '\t'; ++strchr_pointer);*/
  3012. if (*(strchr_pointer+index) < '0' || *(strchr_pointer+index) > '9') {
  3013. SERIAL_ECHOLNPGM("Invalid M code");
  3014. } else
  3015. switch((int)code_value())
  3016. {
  3017. #ifdef ULTIPANEL
  3018. case 0: // M0 - Unconditional stop - Wait for user button press on LCD
  3019. case 1: // M1 - Conditional stop - Wait for user button press on LCD
  3020. {
  3021. char *src = strchr_pointer + 2;
  3022. codenum = 0;
  3023. bool hasP = false, hasS = false;
  3024. if (code_seen('P')) {
  3025. codenum = code_value(); // milliseconds to wait
  3026. hasP = codenum > 0;
  3027. }
  3028. if (code_seen('S')) {
  3029. codenum = code_value() * 1000; // seconds to wait
  3030. hasS = codenum > 0;
  3031. }
  3032. starpos = strchr(src, '*');
  3033. if (starpos != NULL) *(starpos) = '\0';
  3034. while (*src == ' ') ++src;
  3035. if (!hasP && !hasS && *src != '\0') {
  3036. lcd_setstatus(src);
  3037. } else {
  3038. LCD_MESSAGERPGM(MSG_USERWAIT);
  3039. }
  3040. lcd_ignore_click(); //call lcd_ignore_click aslo for else ???
  3041. st_synchronize();
  3042. previous_millis_cmd = millis();
  3043. if (codenum > 0){
  3044. codenum += millis(); // keep track of when we started waiting
  3045. while(millis() < codenum && !lcd_clicked()){
  3046. manage_heater();
  3047. manage_inactivity(true);
  3048. lcd_update();
  3049. }
  3050. lcd_ignore_click(false);
  3051. }else{
  3052. if (!lcd_detected())
  3053. break;
  3054. while(!lcd_clicked()){
  3055. manage_heater();
  3056. manage_inactivity(true);
  3057. lcd_update();
  3058. }
  3059. }
  3060. if (IS_SD_PRINTING)
  3061. LCD_MESSAGERPGM(MSG_RESUMING);
  3062. else
  3063. LCD_MESSAGERPGM(WELCOME_MSG);
  3064. }
  3065. break;
  3066. #endif
  3067. case 17:
  3068. LCD_MESSAGERPGM(MSG_NO_MOVE);
  3069. enable_x();
  3070. enable_y();
  3071. enable_z();
  3072. enable_e0();
  3073. enable_e1();
  3074. enable_e2();
  3075. break;
  3076. #ifdef SDSUPPORT
  3077. case 20: // M20 - list SD card
  3078. SERIAL_PROTOCOLLNRPGM(MSG_BEGIN_FILE_LIST);
  3079. card.ls();
  3080. SERIAL_PROTOCOLLNRPGM(MSG_END_FILE_LIST);
  3081. break;
  3082. case 21: // M21 - init SD card
  3083. card.initsd();
  3084. break;
  3085. case 22: //M22 - release SD card
  3086. card.release();
  3087. break;
  3088. case 23: //M23 - Select file
  3089. starpos = (strchr(strchr_pointer + 4,'*'));
  3090. if(starpos!=NULL)
  3091. *(starpos)='\0';
  3092. card.openFile(strchr_pointer + 4,true);
  3093. break;
  3094. case 24: //M24 - Start SD print
  3095. card.startFileprint();
  3096. starttime=millis();
  3097. break;
  3098. case 25: //M25 - Pause SD print
  3099. card.pauseSDPrint();
  3100. break;
  3101. case 26: //M26 - Set SD index
  3102. if(card.cardOK && code_seen('S')) {
  3103. card.setIndex(code_value_long());
  3104. }
  3105. break;
  3106. case 27: //M27 - Get SD status
  3107. card.getStatus();
  3108. break;
  3109. case 28: //M28 - Start SD write
  3110. starpos = (strchr(strchr_pointer + 4,'*'));
  3111. if(starpos != NULL){
  3112. char* npos = strchr(CMDBUFFER_CURRENT_STRING, 'N');
  3113. strchr_pointer = strchr(npos,' ') + 1;
  3114. *(starpos) = '\0';
  3115. }
  3116. card.openFile(strchr_pointer+4,false);
  3117. break;
  3118. case 29: //M29 - Stop SD write
  3119. //processed in write to file routine above
  3120. //card,saving = false;
  3121. break;
  3122. case 30: //M30 <filename> Delete File
  3123. if (card.cardOK){
  3124. card.closefile();
  3125. starpos = (strchr(strchr_pointer + 4,'*'));
  3126. if(starpos != NULL){
  3127. char* npos = strchr(CMDBUFFER_CURRENT_STRING, 'N');
  3128. strchr_pointer = strchr(npos,' ') + 1;
  3129. *(starpos) = '\0';
  3130. }
  3131. card.removeFile(strchr_pointer + 4);
  3132. }
  3133. break;
  3134. case 32: //M32 - Select file and start SD print
  3135. {
  3136. if(card.sdprinting) {
  3137. st_synchronize();
  3138. }
  3139. starpos = (strchr(strchr_pointer + 4,'*'));
  3140. char* namestartpos = (strchr(strchr_pointer + 4,'!')); //find ! to indicate filename string start.
  3141. if(namestartpos==NULL)
  3142. {
  3143. namestartpos=strchr_pointer + 4; //default name position, 4 letters after the M
  3144. }
  3145. else
  3146. namestartpos++; //to skip the '!'
  3147. if(starpos!=NULL)
  3148. *(starpos)='\0';
  3149. bool call_procedure=(code_seen('P'));
  3150. if(strchr_pointer>namestartpos)
  3151. call_procedure=false; //false alert, 'P' found within filename
  3152. if( card.cardOK )
  3153. {
  3154. card.openFile(namestartpos,true,!call_procedure);
  3155. if(code_seen('S'))
  3156. if(strchr_pointer<namestartpos) //only if "S" is occuring _before_ the filename
  3157. card.setIndex(code_value_long());
  3158. card.startFileprint();
  3159. if(!call_procedure)
  3160. starttime=millis(); //procedure calls count as normal print time.
  3161. }
  3162. } break;
  3163. case 928: //M928 - Start SD write
  3164. starpos = (strchr(strchr_pointer + 5,'*'));
  3165. if(starpos != NULL){
  3166. char* npos = strchr(CMDBUFFER_CURRENT_STRING, 'N');
  3167. strchr_pointer = strchr(npos,' ') + 1;
  3168. *(starpos) = '\0';
  3169. }
  3170. card.openLogFile(strchr_pointer+5);
  3171. break;
  3172. #endif //SDSUPPORT
  3173. case 31: //M31 take time since the start of the SD print or an M109 command
  3174. {
  3175. stoptime=millis();
  3176. char time[30];
  3177. unsigned long t=(stoptime-starttime)/1000;
  3178. int sec,min;
  3179. min=t/60;
  3180. sec=t%60;
  3181. sprintf_P(time, PSTR("%i min, %i sec"), min, sec);
  3182. SERIAL_ECHO_START;
  3183. SERIAL_ECHOLN(time);
  3184. lcd_setstatus(time);
  3185. autotempShutdown();
  3186. }
  3187. break;
  3188. case 42: //M42 -Change pin status via gcode
  3189. if (code_seen('S'))
  3190. {
  3191. int pin_status = code_value();
  3192. int pin_number = LED_PIN;
  3193. if (code_seen('P') && pin_status >= 0 && pin_status <= 255)
  3194. pin_number = code_value();
  3195. for(int8_t i = 0; i < (int8_t)(sizeof(sensitive_pins)/sizeof(int)); i++)
  3196. {
  3197. if (sensitive_pins[i] == pin_number)
  3198. {
  3199. pin_number = -1;
  3200. break;
  3201. }
  3202. }
  3203. #if defined(FAN_PIN) && FAN_PIN > -1
  3204. if (pin_number == FAN_PIN)
  3205. fanSpeed = pin_status;
  3206. #endif
  3207. if (pin_number > -1)
  3208. {
  3209. pinMode(pin_number, OUTPUT);
  3210. digitalWrite(pin_number, pin_status);
  3211. analogWrite(pin_number, pin_status);
  3212. }
  3213. }
  3214. break;
  3215. case 44: // M44: Prusa3D: Reset the bed skew and offset calibration.
  3216. // Reset the baby step value and the baby step applied flag.
  3217. calibration_status_store(CALIBRATION_STATUS_ASSEMBLED);
  3218. eeprom_update_word((uint16_t*)EEPROM_BABYSTEP_Z, 0);
  3219. // Reset the skew and offset in both RAM and EEPROM.
  3220. reset_bed_offset_and_skew();
  3221. // Reset world2machine_rotation_and_skew and world2machine_shift, therefore
  3222. // the planner will not perform any adjustments in the XY plane.
  3223. // Wait for the motors to stop and update the current position with the absolute values.
  3224. world2machine_revert_to_uncorrected();
  3225. break;
  3226. case 45: // M45: Prusa3D: bed skew and offset with manual Z up
  3227. {
  3228. // Only Z calibration?
  3229. bool onlyZ = code_seen('Z');
  3230. if (!onlyZ) {
  3231. setTargetBed(0);
  3232. setTargetHotend(0, 0);
  3233. setTargetHotend(0, 1);
  3234. setTargetHotend(0, 2);
  3235. adjust_bed_reset(); //reset bed level correction
  3236. }
  3237. // Disable the default update procedure of the display. We will do a modal dialog.
  3238. lcd_update_enable(false);
  3239. // Let the planner use the uncorrected coordinates.
  3240. mbl.reset();
  3241. // Reset world2machine_rotation_and_skew and world2machine_shift, therefore
  3242. // the planner will not perform any adjustments in the XY plane.
  3243. // Wait for the motors to stop and update the current position with the absolute values.
  3244. world2machine_revert_to_uncorrected();
  3245. // Reset the baby step value applied without moving the axes.
  3246. babystep_reset();
  3247. // Mark all axes as in a need for homing.
  3248. memset(axis_known_position, 0, sizeof(axis_known_position));
  3249. // Let the user move the Z axes up to the end stoppers.
  3250. if (lcd_calibrate_z_end_stop_manual( onlyZ )) {
  3251. refresh_cmd_timeout();
  3252. if (((degHotend(0) > MAX_HOTEND_TEMP_CALIBRATION) || (degBed() > MAX_BED_TEMP_CALIBRATION)) && (!onlyZ)) {
  3253. lcd_wait_for_cool_down();
  3254. lcd_show_fullscreen_message_and_wait_P(MSG_PAPER);
  3255. lcd_display_message_fullscreen_P(MSG_FIND_BED_OFFSET_AND_SKEW_LINE1);
  3256. lcd_implementation_print_at(0, 2, 1);
  3257. lcd_printPGM(MSG_FIND_BED_OFFSET_AND_SKEW_LINE2);
  3258. }
  3259. // Move the print head close to the bed.
  3260. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3261. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS],current_position[Z_AXIS] , current_position[E_AXIS], homing_feedrate[Z_AXIS]/40, active_extruder);
  3262. st_synchronize();
  3263. // Home in the XY plane.
  3264. set_destination_to_current();
  3265. setup_for_endstop_move();
  3266. home_xy();
  3267. int8_t verbosity_level = 0;
  3268. if (code_seen('V')) {
  3269. // Just 'V' without a number counts as V1.
  3270. char c = strchr_pointer[1];
  3271. verbosity_level = (c == ' ' || c == '\t' || c == 0) ? 1 : code_value_short();
  3272. }
  3273. if (onlyZ) {
  3274. clean_up_after_endstop_move();
  3275. // Z only calibration.
  3276. // Load the machine correction matrix
  3277. world2machine_initialize();
  3278. // and correct the current_position to match the transformed coordinate system.
  3279. world2machine_update_current();
  3280. //FIXME
  3281. bool result = sample_mesh_and_store_reference();
  3282. if (result) {
  3283. if (calibration_status() == CALIBRATION_STATUS_Z_CALIBRATION)
  3284. // Shipped, the nozzle height has been set already. The user can start printing now.
  3285. calibration_status_store(CALIBRATION_STATUS_CALIBRATED);
  3286. // babystep_apply();
  3287. }
  3288. } else {
  3289. // Reset the baby step value and the baby step applied flag.
  3290. calibration_status_store(CALIBRATION_STATUS_ASSEMBLED);
  3291. eeprom_update_word((uint16_t*)EEPROM_BABYSTEP_Z, 0);
  3292. // Complete XYZ calibration.
  3293. uint8_t point_too_far_mask = 0;
  3294. BedSkewOffsetDetectionResultType result = find_bed_offset_and_skew(verbosity_level, point_too_far_mask);
  3295. clean_up_after_endstop_move();
  3296. // Print head up.
  3297. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3298. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS],current_position[Z_AXIS] , current_position[E_AXIS], homing_feedrate[Z_AXIS]/40, active_extruder);
  3299. st_synchronize();
  3300. if (result >= 0) {
  3301. point_too_far_mask = 0;
  3302. // Second half: The fine adjustment.
  3303. // Let the planner use the uncorrected coordinates.
  3304. mbl.reset();
  3305. world2machine_reset();
  3306. // Home in the XY plane.
  3307. setup_for_endstop_move();
  3308. home_xy();
  3309. result = improve_bed_offset_and_skew(1, verbosity_level, point_too_far_mask);
  3310. clean_up_after_endstop_move();
  3311. // Print head up.
  3312. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3313. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS],current_position[Z_AXIS] , current_position[E_AXIS], homing_feedrate[Z_AXIS]/40, active_extruder);
  3314. st_synchronize();
  3315. // if (result >= 0) babystep_apply();
  3316. }
  3317. lcd_bed_calibration_show_result(result, point_too_far_mask);
  3318. if (result >= 0) {
  3319. // Calibration valid, the machine should be able to print. Advise the user to run the V2Calibration.gcode.
  3320. calibration_status_store(CALIBRATION_STATUS_LIVE_ADJUST);
  3321. lcd_show_fullscreen_message_and_wait_P(MSG_BABYSTEP_Z_NOT_SET);
  3322. }
  3323. }
  3324. } else {
  3325. // Timeouted.
  3326. }
  3327. lcd_update_enable(true);
  3328. break;
  3329. }
  3330. /*
  3331. case 46:
  3332. {
  3333. // M46: Prusa3D: Show the assigned IP address.
  3334. uint8_t ip[4];
  3335. bool hasIP = card.ToshibaFlashAir_GetIP(ip);
  3336. if (hasIP) {
  3337. SERIAL_ECHOPGM("Toshiba FlashAir current IP: ");
  3338. SERIAL_ECHO(int(ip[0]));
  3339. SERIAL_ECHOPGM(".");
  3340. SERIAL_ECHO(int(ip[1]));
  3341. SERIAL_ECHOPGM(".");
  3342. SERIAL_ECHO(int(ip[2]));
  3343. SERIAL_ECHOPGM(".");
  3344. SERIAL_ECHO(int(ip[3]));
  3345. SERIAL_ECHOLNPGM("");
  3346. } else {
  3347. SERIAL_ECHOLNPGM("Toshiba FlashAir GetIP failed");
  3348. }
  3349. break;
  3350. }
  3351. */
  3352. case 47:
  3353. // M47: Prusa3D: Show end stops dialog on the display.
  3354. lcd_diag_show_end_stops();
  3355. break;
  3356. #if 0
  3357. case 48: // M48: scan the bed induction sensor points, print the sensor trigger coordinates to the serial line for visualization on the PC.
  3358. {
  3359. // Disable the default update procedure of the display. We will do a modal dialog.
  3360. lcd_update_enable(false);
  3361. // Let the planner use the uncorrected coordinates.
  3362. mbl.reset();
  3363. // Reset world2machine_rotation_and_skew and world2machine_shift, therefore
  3364. // the planner will not perform any adjustments in the XY plane.
  3365. // Wait for the motors to stop and update the current position with the absolute values.
  3366. world2machine_revert_to_uncorrected();
  3367. // Move the print head close to the bed.
  3368. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3369. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS],current_position[Z_AXIS] , current_position[E_AXIS], homing_feedrate[Z_AXIS]/40, active_extruder);
  3370. st_synchronize();
  3371. // Home in the XY plane.
  3372. set_destination_to_current();
  3373. setup_for_endstop_move();
  3374. home_xy();
  3375. int8_t verbosity_level = 0;
  3376. if (code_seen('V')) {
  3377. // Just 'V' without a number counts as V1.
  3378. char c = strchr_pointer[1];
  3379. verbosity_level = (c == ' ' || c == '\t' || c == 0) ? 1 : code_value_short();
  3380. }
  3381. bool success = scan_bed_induction_points(verbosity_level);
  3382. clean_up_after_endstop_move();
  3383. // Print head up.
  3384. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3385. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS],current_position[Z_AXIS] , current_position[E_AXIS], homing_feedrate[Z_AXIS]/40, active_extruder);
  3386. st_synchronize();
  3387. lcd_update_enable(true);
  3388. break;
  3389. }
  3390. #endif
  3391. // M48 Z-Probe repeatability measurement function.
  3392. //
  3393. // Usage: M48 <n #_samples> <X X_position_for_samples> <Y Y_position_for_samples> <V Verbose_Level> <L legs_of_movement_prior_to_doing_probe>
  3394. //
  3395. // This function assumes the bed has been homed. Specificaly, that a G28 command
  3396. // as been issued prior to invoking the M48 Z-Probe repeatability measurement function.
  3397. // Any information generated by a prior G29 Bed leveling command will be lost and need to be
  3398. // regenerated.
  3399. //
  3400. // The number of samples will default to 10 if not specified. You can use upper or lower case
  3401. // letters for any of the options EXCEPT n. n must be in lower case because Marlin uses a capital
  3402. // N for its communication protocol and will get horribly confused if you send it a capital N.
  3403. //
  3404. #ifdef ENABLE_AUTO_BED_LEVELING
  3405. #ifdef Z_PROBE_REPEATABILITY_TEST
  3406. case 48: // M48 Z-Probe repeatability
  3407. {
  3408. #if Z_MIN_PIN == -1
  3409. #error "You must have a Z_MIN endstop in order to enable calculation of Z-Probe repeatability."
  3410. #endif
  3411. double sum=0.0;
  3412. double mean=0.0;
  3413. double sigma=0.0;
  3414. double sample_set[50];
  3415. int verbose_level=1, n=0, j, n_samples = 10, n_legs=0;
  3416. double X_current, Y_current, Z_current;
  3417. double X_probe_location, Y_probe_location, Z_start_location, ext_position;
  3418. if (code_seen('V') || code_seen('v')) {
  3419. verbose_level = code_value();
  3420. if (verbose_level<0 || verbose_level>4 ) {
  3421. SERIAL_PROTOCOLPGM("?Verbose Level not plausable.\n");
  3422. goto Sigma_Exit;
  3423. }
  3424. }
  3425. if (verbose_level > 0) {
  3426. SERIAL_PROTOCOLPGM("M48 Z-Probe Repeatability test. Version 2.00\n");
  3427. SERIAL_PROTOCOLPGM("Full support at: http://3dprintboard.com/forum.php\n");
  3428. }
  3429. if (code_seen('n')) {
  3430. n_samples = code_value();
  3431. if (n_samples<4 || n_samples>50 ) {
  3432. SERIAL_PROTOCOLPGM("?Specified sample size not plausable.\n");
  3433. goto Sigma_Exit;
  3434. }
  3435. }
  3436. X_current = X_probe_location = st_get_position_mm(X_AXIS);
  3437. Y_current = Y_probe_location = st_get_position_mm(Y_AXIS);
  3438. Z_current = st_get_position_mm(Z_AXIS);
  3439. Z_start_location = st_get_position_mm(Z_AXIS) + Z_RAISE_BEFORE_PROBING;
  3440. ext_position = st_get_position_mm(E_AXIS);
  3441. if (code_seen('X') || code_seen('x') ) {
  3442. X_probe_location = code_value() - X_PROBE_OFFSET_FROM_EXTRUDER;
  3443. if (X_probe_location<X_MIN_POS || X_probe_location>X_MAX_POS ) {
  3444. SERIAL_PROTOCOLPGM("?Specified X position out of range.\n");
  3445. goto Sigma_Exit;
  3446. }
  3447. }
  3448. if (code_seen('Y') || code_seen('y') ) {
  3449. Y_probe_location = code_value() - Y_PROBE_OFFSET_FROM_EXTRUDER;
  3450. if (Y_probe_location<Y_MIN_POS || Y_probe_location>Y_MAX_POS ) {
  3451. SERIAL_PROTOCOLPGM("?Specified Y position out of range.\n");
  3452. goto Sigma_Exit;
  3453. }
  3454. }
  3455. if (code_seen('L') || code_seen('l') ) {
  3456. n_legs = code_value();
  3457. if ( n_legs==1 )
  3458. n_legs = 2;
  3459. if ( n_legs<0 || n_legs>15 ) {
  3460. SERIAL_PROTOCOLPGM("?Specified number of legs in movement not plausable.\n");
  3461. goto Sigma_Exit;
  3462. }
  3463. }
  3464. //
  3465. // Do all the preliminary setup work. First raise the probe.
  3466. //
  3467. st_synchronize();
  3468. plan_bed_level_matrix.set_to_identity();
  3469. plan_buffer_line( X_current, Y_current, Z_start_location,
  3470. ext_position,
  3471. homing_feedrate[Z_AXIS]/60,
  3472. active_extruder);
  3473. st_synchronize();
  3474. //
  3475. // Now get everything to the specified probe point So we can safely do a probe to
  3476. // get us close to the bed. If the Z-Axis is far from the bed, we don't want to
  3477. // use that as a starting point for each probe.
  3478. //
  3479. if (verbose_level > 2)
  3480. SERIAL_PROTOCOL("Positioning probe for the test.\n");
  3481. plan_buffer_line( X_probe_location, Y_probe_location, Z_start_location,
  3482. ext_position,
  3483. homing_feedrate[X_AXIS]/60,
  3484. active_extruder);
  3485. st_synchronize();
  3486. current_position[X_AXIS] = X_current = st_get_position_mm(X_AXIS);
  3487. current_position[Y_AXIS] = Y_current = st_get_position_mm(Y_AXIS);
  3488. current_position[Z_AXIS] = Z_current = st_get_position_mm(Z_AXIS);
  3489. current_position[E_AXIS] = ext_position = st_get_position_mm(E_AXIS);
  3490. //
  3491. // OK, do the inital probe to get us close to the bed.
  3492. // Then retrace the right amount and use that in subsequent probes
  3493. //
  3494. setup_for_endstop_move();
  3495. run_z_probe();
  3496. current_position[Z_AXIS] = Z_current = st_get_position_mm(Z_AXIS);
  3497. Z_start_location = st_get_position_mm(Z_AXIS) + Z_RAISE_BEFORE_PROBING;
  3498. plan_buffer_line( X_probe_location, Y_probe_location, Z_start_location,
  3499. ext_position,
  3500. homing_feedrate[X_AXIS]/60,
  3501. active_extruder);
  3502. st_synchronize();
  3503. current_position[Z_AXIS] = Z_current = st_get_position_mm(Z_AXIS);
  3504. for( n=0; n<n_samples; n++) {
  3505. do_blocking_move_to( X_probe_location, Y_probe_location, Z_start_location); // Make sure we are at the probe location
  3506. if ( n_legs) {
  3507. double radius=0.0, theta=0.0, x_sweep, y_sweep;
  3508. int rotational_direction, l;
  3509. rotational_direction = (unsigned long) millis() & 0x0001; // clockwise or counter clockwise
  3510. radius = (unsigned long) millis() % (long) (X_MAX_LENGTH/4); // limit how far out to go
  3511. theta = (float) ((unsigned long) millis() % (long) 360) / (360./(2*3.1415926)); // turn into radians
  3512. //SERIAL_ECHOPAIR("starting radius: ",radius);
  3513. //SERIAL_ECHOPAIR(" theta: ",theta);
  3514. //SERIAL_ECHOPAIR(" direction: ",rotational_direction);
  3515. //SERIAL_PROTOCOLLNPGM("");
  3516. for( l=0; l<n_legs-1; l++) {
  3517. if (rotational_direction==1)
  3518. theta += (float) ((unsigned long) millis() % (long) 20) / (360.0/(2*3.1415926)); // turn into radians
  3519. else
  3520. theta -= (float) ((unsigned long) millis() % (long) 20) / (360.0/(2*3.1415926)); // turn into radians
  3521. radius += (float) ( ((long) ((unsigned long) millis() % (long) 10)) - 5);
  3522. if ( radius<0.0 )
  3523. radius = -radius;
  3524. X_current = X_probe_location + cos(theta) * radius;
  3525. Y_current = Y_probe_location + sin(theta) * radius;
  3526. if ( X_current<X_MIN_POS) // Make sure our X & Y are sane
  3527. X_current = X_MIN_POS;
  3528. if ( X_current>X_MAX_POS)
  3529. X_current = X_MAX_POS;
  3530. if ( Y_current<Y_MIN_POS) // Make sure our X & Y are sane
  3531. Y_current = Y_MIN_POS;
  3532. if ( Y_current>Y_MAX_POS)
  3533. Y_current = Y_MAX_POS;
  3534. if (verbose_level>3 ) {
  3535. SERIAL_ECHOPAIR("x: ", X_current);
  3536. SERIAL_ECHOPAIR("y: ", Y_current);
  3537. SERIAL_PROTOCOLLNPGM("");
  3538. }
  3539. do_blocking_move_to( X_current, Y_current, Z_current );
  3540. }
  3541. do_blocking_move_to( X_probe_location, Y_probe_location, Z_start_location); // Go back to the probe location
  3542. }
  3543. setup_for_endstop_move();
  3544. run_z_probe();
  3545. sample_set[n] = current_position[Z_AXIS];
  3546. //
  3547. // Get the current mean for the data points we have so far
  3548. //
  3549. sum=0.0;
  3550. for( j=0; j<=n; j++) {
  3551. sum = sum + sample_set[j];
  3552. }
  3553. mean = sum / (double (n+1));
  3554. //
  3555. // Now, use that mean to calculate the standard deviation for the
  3556. // data points we have so far
  3557. //
  3558. sum=0.0;
  3559. for( j=0; j<=n; j++) {
  3560. sum = sum + (sample_set[j]-mean) * (sample_set[j]-mean);
  3561. }
  3562. sigma = sqrt( sum / (double (n+1)) );
  3563. if (verbose_level > 1) {
  3564. SERIAL_PROTOCOL(n+1);
  3565. SERIAL_PROTOCOL(" of ");
  3566. SERIAL_PROTOCOL(n_samples);
  3567. SERIAL_PROTOCOLPGM(" z: ");
  3568. SERIAL_PROTOCOL_F(current_position[Z_AXIS], 6);
  3569. }
  3570. if (verbose_level > 2) {
  3571. SERIAL_PROTOCOL(" mean: ");
  3572. SERIAL_PROTOCOL_F(mean,6);
  3573. SERIAL_PROTOCOL(" sigma: ");
  3574. SERIAL_PROTOCOL_F(sigma,6);
  3575. }
  3576. if (verbose_level > 0)
  3577. SERIAL_PROTOCOLPGM("\n");
  3578. plan_buffer_line( X_probe_location, Y_probe_location, Z_start_location,
  3579. current_position[E_AXIS], homing_feedrate[Z_AXIS]/60, active_extruder);
  3580. st_synchronize();
  3581. }
  3582. delay(1000);
  3583. clean_up_after_endstop_move();
  3584. // enable_endstops(true);
  3585. if (verbose_level > 0) {
  3586. SERIAL_PROTOCOLPGM("Mean: ");
  3587. SERIAL_PROTOCOL_F(mean, 6);
  3588. SERIAL_PROTOCOLPGM("\n");
  3589. }
  3590. SERIAL_PROTOCOLPGM("Standard Deviation: ");
  3591. SERIAL_PROTOCOL_F(sigma, 6);
  3592. SERIAL_PROTOCOLPGM("\n\n");
  3593. Sigma_Exit:
  3594. break;
  3595. }
  3596. #endif // Z_PROBE_REPEATABILITY_TEST
  3597. #endif // ENABLE_AUTO_BED_LEVELING
  3598. case 104: // M104
  3599. if(setTargetedHotend(104)){
  3600. break;
  3601. }
  3602. if (code_seen('S')) setTargetHotend(code_value(), tmp_extruder);
  3603. setWatch();
  3604. break;
  3605. case 112: // M112 -Emergency Stop
  3606. kill("", 3);
  3607. break;
  3608. case 140: // M140 set bed temp
  3609. if (code_seen('S')) setTargetBed(code_value());
  3610. break;
  3611. case 105 : // M105
  3612. if(setTargetedHotend(105)){
  3613. break;
  3614. }
  3615. #if defined(TEMP_0_PIN) && TEMP_0_PIN > -1
  3616. SERIAL_PROTOCOLPGM("ok T:");
  3617. SERIAL_PROTOCOL_F(degHotend(tmp_extruder),1);
  3618. SERIAL_PROTOCOLPGM(" /");
  3619. SERIAL_PROTOCOL_F(degTargetHotend(tmp_extruder),1);
  3620. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  3621. SERIAL_PROTOCOLPGM(" B:");
  3622. SERIAL_PROTOCOL_F(degBed(),1);
  3623. SERIAL_PROTOCOLPGM(" /");
  3624. SERIAL_PROTOCOL_F(degTargetBed(),1);
  3625. #endif //TEMP_BED_PIN
  3626. for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) {
  3627. SERIAL_PROTOCOLPGM(" T");
  3628. SERIAL_PROTOCOL(cur_extruder);
  3629. SERIAL_PROTOCOLPGM(":");
  3630. SERIAL_PROTOCOL_F(degHotend(cur_extruder),1);
  3631. SERIAL_PROTOCOLPGM(" /");
  3632. SERIAL_PROTOCOL_F(degTargetHotend(cur_extruder),1);
  3633. }
  3634. #else
  3635. SERIAL_ERROR_START;
  3636. SERIAL_ERRORLNRPGM(MSG_ERR_NO_THERMISTORS);
  3637. #endif
  3638. SERIAL_PROTOCOLPGM(" @:");
  3639. #ifdef EXTRUDER_WATTS
  3640. SERIAL_PROTOCOL((EXTRUDER_WATTS * getHeaterPower(tmp_extruder))/127);
  3641. SERIAL_PROTOCOLPGM("W");
  3642. #else
  3643. SERIAL_PROTOCOL(getHeaterPower(tmp_extruder));
  3644. #endif
  3645. SERIAL_PROTOCOLPGM(" B@:");
  3646. #ifdef BED_WATTS
  3647. SERIAL_PROTOCOL((BED_WATTS * getHeaterPower(-1))/127);
  3648. SERIAL_PROTOCOLPGM("W");
  3649. #else
  3650. SERIAL_PROTOCOL(getHeaterPower(-1));
  3651. #endif
  3652. #ifdef SHOW_TEMP_ADC_VALUES
  3653. {float raw = 0.0;
  3654. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  3655. SERIAL_PROTOCOLPGM(" ADC B:");
  3656. SERIAL_PROTOCOL_F(degBed(),1);
  3657. SERIAL_PROTOCOLPGM("C->");
  3658. raw = rawBedTemp();
  3659. SERIAL_PROTOCOL_F(raw/OVERSAMPLENR,5);
  3660. SERIAL_PROTOCOLPGM(" Rb->");
  3661. SERIAL_PROTOCOL_F(100 * (1 + (PtA * (raw/OVERSAMPLENR)) + (PtB * sq((raw/OVERSAMPLENR)))), 5);
  3662. SERIAL_PROTOCOLPGM(" Rxb->");
  3663. SERIAL_PROTOCOL_F(raw, 5);
  3664. #endif
  3665. for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) {
  3666. SERIAL_PROTOCOLPGM(" T");
  3667. SERIAL_PROTOCOL(cur_extruder);
  3668. SERIAL_PROTOCOLPGM(":");
  3669. SERIAL_PROTOCOL_F(degHotend(cur_extruder),1);
  3670. SERIAL_PROTOCOLPGM("C->");
  3671. raw = rawHotendTemp(cur_extruder);
  3672. SERIAL_PROTOCOL_F(raw/OVERSAMPLENR,5);
  3673. SERIAL_PROTOCOLPGM(" Rt");
  3674. SERIAL_PROTOCOL(cur_extruder);
  3675. SERIAL_PROTOCOLPGM("->");
  3676. SERIAL_PROTOCOL_F(100 * (1 + (PtA * (raw/OVERSAMPLENR)) + (PtB * sq((raw/OVERSAMPLENR)))), 5);
  3677. SERIAL_PROTOCOLPGM(" Rx");
  3678. SERIAL_PROTOCOL(cur_extruder);
  3679. SERIAL_PROTOCOLPGM("->");
  3680. SERIAL_PROTOCOL_F(raw, 5);
  3681. }}
  3682. #endif
  3683. SERIAL_PROTOCOLLN("");
  3684. return;
  3685. break;
  3686. case 109:
  3687. {// M109 - Wait for extruder heater to reach target.
  3688. if(setTargetedHotend(109)){
  3689. break;
  3690. }
  3691. LCD_MESSAGERPGM(MSG_HEATING);
  3692. heating_status = 1;
  3693. if (farm_mode) { prusa_statistics(1); };
  3694. #ifdef AUTOTEMP
  3695. autotemp_enabled=false;
  3696. #endif
  3697. if (code_seen('S')) {
  3698. setTargetHotend(code_value(), tmp_extruder);
  3699. CooldownNoWait = true;
  3700. } else if (code_seen('R')) {
  3701. setTargetHotend(code_value(), tmp_extruder);
  3702. CooldownNoWait = false;
  3703. }
  3704. #ifdef AUTOTEMP
  3705. if (code_seen('S')) autotemp_min=code_value();
  3706. if (code_seen('B')) autotemp_max=code_value();
  3707. if (code_seen('F'))
  3708. {
  3709. autotemp_factor=code_value();
  3710. autotemp_enabled=true;
  3711. }
  3712. #endif
  3713. setWatch();
  3714. codenum = millis();
  3715. /* See if we are heating up or cooling down */
  3716. target_direction = isHeatingHotend(tmp_extruder); // true if heating, false if cooling
  3717. cancel_heatup = false;
  3718. wait_for_heater(codenum); //loops until target temperature is reached
  3719. LCD_MESSAGERPGM(MSG_HEATING_COMPLETE);
  3720. heating_status = 2;
  3721. if (farm_mode) { prusa_statistics(2); };
  3722. //starttime=millis();
  3723. previous_millis_cmd = millis();
  3724. }
  3725. break;
  3726. case 190: // M190 - Wait for bed heater to reach target.
  3727. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  3728. LCD_MESSAGERPGM(MSG_BED_HEATING);
  3729. heating_status = 3;
  3730. if (farm_mode) { prusa_statistics(1); };
  3731. if (code_seen('S'))
  3732. {
  3733. setTargetBed(code_value());
  3734. CooldownNoWait = true;
  3735. }
  3736. else if (code_seen('R'))
  3737. {
  3738. setTargetBed(code_value());
  3739. CooldownNoWait = false;
  3740. }
  3741. codenum = millis();
  3742. cancel_heatup = false;
  3743. target_direction = isHeatingBed(); // true if heating, false if cooling
  3744. while ( (target_direction)&&(!cancel_heatup) ? (isHeatingBed()) : (isCoolingBed()&&(CooldownNoWait==false)) )
  3745. {
  3746. if(( millis() - codenum) > 1000 ) //Print Temp Reading every 1 second while heating up.
  3747. {
  3748. if (!farm_mode) {
  3749. float tt = degHotend(active_extruder);
  3750. SERIAL_PROTOCOLPGM("T:");
  3751. SERIAL_PROTOCOL(tt);
  3752. SERIAL_PROTOCOLPGM(" E:");
  3753. SERIAL_PROTOCOL((int)active_extruder);
  3754. SERIAL_PROTOCOLPGM(" B:");
  3755. SERIAL_PROTOCOL_F(degBed(), 1);
  3756. SERIAL_PROTOCOLLN("");
  3757. }
  3758. codenum = millis();
  3759. }
  3760. manage_heater();
  3761. manage_inactivity();
  3762. lcd_update();
  3763. }
  3764. LCD_MESSAGERPGM(MSG_BED_DONE);
  3765. heating_status = 4;
  3766. previous_millis_cmd = millis();
  3767. #endif
  3768. break;
  3769. #if defined(FAN_PIN) && FAN_PIN > -1
  3770. case 106: //M106 Fan On
  3771. if (code_seen('S')){
  3772. fanSpeed=constrain(code_value(),0,255);
  3773. }
  3774. else {
  3775. fanSpeed=255;
  3776. }
  3777. break;
  3778. case 107: //M107 Fan Off
  3779. fanSpeed = 0;
  3780. break;
  3781. #endif //FAN_PIN
  3782. #if defined(PS_ON_PIN) && PS_ON_PIN > -1
  3783. case 80: // M80 - Turn on Power Supply
  3784. SET_OUTPUT(PS_ON_PIN); //GND
  3785. WRITE(PS_ON_PIN, PS_ON_AWAKE);
  3786. // If you have a switch on suicide pin, this is useful
  3787. // if you want to start another print with suicide feature after
  3788. // a print without suicide...
  3789. #if defined SUICIDE_PIN && SUICIDE_PIN > -1
  3790. SET_OUTPUT(SUICIDE_PIN);
  3791. WRITE(SUICIDE_PIN, HIGH);
  3792. #endif
  3793. #ifdef ULTIPANEL
  3794. powersupply = true;
  3795. LCD_MESSAGERPGM(WELCOME_MSG);
  3796. lcd_update();
  3797. #endif
  3798. break;
  3799. #endif
  3800. case 81: // M81 - Turn off Power Supply
  3801. disable_heater();
  3802. st_synchronize();
  3803. disable_e0();
  3804. disable_e1();
  3805. disable_e2();
  3806. finishAndDisableSteppers();
  3807. fanSpeed = 0;
  3808. delay(1000); // Wait a little before to switch off
  3809. #if defined(SUICIDE_PIN) && SUICIDE_PIN > -1
  3810. st_synchronize();
  3811. suicide();
  3812. #elif defined(PS_ON_PIN) && PS_ON_PIN > -1
  3813. SET_OUTPUT(PS_ON_PIN);
  3814. WRITE(PS_ON_PIN, PS_ON_ASLEEP);
  3815. #endif
  3816. #ifdef ULTIPANEL
  3817. powersupply = false;
  3818. LCD_MESSAGERPGM(CAT4(CUSTOM_MENDEL_NAME,PSTR(" "),MSG_OFF,PSTR("."))); //!!
  3819. /*
  3820. MACHNAME = "Prusa i3"
  3821. MSGOFF = "Vypnuto"
  3822. "Prusai3"" ""vypnuto""."
  3823. "Prusa i3"" "MSG_ALL[lang_selected][50]"."
  3824. */
  3825. lcd_update();
  3826. #endif
  3827. break;
  3828. case 82:
  3829. axis_relative_modes[3] = false;
  3830. break;
  3831. case 83:
  3832. axis_relative_modes[3] = true;
  3833. break;
  3834. case 18: //compatibility
  3835. case 84: // M84
  3836. if(code_seen('S')){
  3837. stepper_inactive_time = code_value() * 1000;
  3838. }
  3839. else
  3840. {
  3841. bool all_axis = !((code_seen(axis_codes[X_AXIS])) || (code_seen(axis_codes[Y_AXIS])) || (code_seen(axis_codes[Z_AXIS]))|| (code_seen(axis_codes[E_AXIS])));
  3842. if(all_axis)
  3843. {
  3844. st_synchronize();
  3845. disable_e0();
  3846. disable_e1();
  3847. disable_e2();
  3848. finishAndDisableSteppers();
  3849. }
  3850. else
  3851. {
  3852. st_synchronize();
  3853. if (code_seen('X')) disable_x();
  3854. if (code_seen('Y')) disable_y();
  3855. if (code_seen('Z')) disable_z();
  3856. #if ((E0_ENABLE_PIN != X_ENABLE_PIN) && (E1_ENABLE_PIN != Y_ENABLE_PIN)) // Only enable on boards that have seperate ENABLE_PINS
  3857. if (code_seen('E')) {
  3858. disable_e0();
  3859. disable_e1();
  3860. disable_e2();
  3861. }
  3862. #endif
  3863. }
  3864. }
  3865. snmm_filaments_used = 0;
  3866. break;
  3867. case 85: // M85
  3868. if(code_seen('S')) {
  3869. max_inactive_time = code_value() * 1000;
  3870. }
  3871. break;
  3872. case 92: // M92
  3873. for(int8_t i=0; i < NUM_AXIS; i++)
  3874. {
  3875. if(code_seen(axis_codes[i]))
  3876. {
  3877. if(i == 3) { // E
  3878. float value = code_value();
  3879. if(value < 20.0) {
  3880. float factor = axis_steps_per_unit[i] / value; // increase e constants if M92 E14 is given for netfab.
  3881. max_jerk[E_AXIS] *= factor;
  3882. max_feedrate[i] *= factor;
  3883. axis_steps_per_sqr_second[i] *= factor;
  3884. }
  3885. axis_steps_per_unit[i] = value;
  3886. }
  3887. else {
  3888. axis_steps_per_unit[i] = code_value();
  3889. }
  3890. }
  3891. }
  3892. break;
  3893. case 115: // M115
  3894. if (code_seen('V')) {
  3895. // Report the Prusa version number.
  3896. SERIAL_PROTOCOLLNRPGM(FW_VERSION_STR_P());
  3897. } else if (code_seen('U')) {
  3898. // Check the firmware version provided. If the firmware version provided by the U code is higher than the currently running firmware,
  3899. // pause the print and ask the user to upgrade the firmware.
  3900. show_upgrade_dialog_if_version_newer(++ strchr_pointer);
  3901. } else {
  3902. SERIAL_PROTOCOLRPGM(MSG_M115_REPORT);
  3903. }
  3904. break;
  3905. /* case 117: // M117 display message
  3906. starpos = (strchr(strchr_pointer + 5,'*'));
  3907. if(starpos!=NULL)
  3908. *(starpos)='\0';
  3909. lcd_setstatus(strchr_pointer + 5);
  3910. break;*/
  3911. case 114: // M114
  3912. SERIAL_PROTOCOLPGM("X:");
  3913. SERIAL_PROTOCOL(current_position[X_AXIS]);
  3914. SERIAL_PROTOCOLPGM(" Y:");
  3915. SERIAL_PROTOCOL(current_position[Y_AXIS]);
  3916. SERIAL_PROTOCOLPGM(" Z:");
  3917. SERIAL_PROTOCOL(current_position[Z_AXIS]);
  3918. SERIAL_PROTOCOLPGM(" E:");
  3919. SERIAL_PROTOCOL(current_position[E_AXIS]);
  3920. SERIAL_PROTOCOLRPGM(MSG_COUNT_X);
  3921. SERIAL_PROTOCOL(float(st_get_position(X_AXIS))/axis_steps_per_unit[X_AXIS]);
  3922. SERIAL_PROTOCOLPGM(" Y:");
  3923. SERIAL_PROTOCOL(float(st_get_position(Y_AXIS))/axis_steps_per_unit[Y_AXIS]);
  3924. SERIAL_PROTOCOLPGM(" Z:");
  3925. SERIAL_PROTOCOL(float(st_get_position(Z_AXIS))/axis_steps_per_unit[Z_AXIS]);
  3926. SERIAL_PROTOCOLLN("");
  3927. break;
  3928. case 120: // M120
  3929. enable_endstops(false) ;
  3930. break;
  3931. case 121: // M121
  3932. enable_endstops(true) ;
  3933. break;
  3934. case 119: // M119
  3935. SERIAL_PROTOCOLRPGM(MSG_M119_REPORT);
  3936. SERIAL_PROTOCOLLN("");
  3937. #if defined(X_MIN_PIN) && X_MIN_PIN > -1
  3938. SERIAL_PROTOCOLRPGM(MSG_X_MIN);
  3939. if(READ(X_MIN_PIN)^X_MIN_ENDSTOP_INVERTING){
  3940. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_HIT);
  3941. }else{
  3942. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_OPEN);
  3943. }
  3944. SERIAL_PROTOCOLLN("");
  3945. #endif
  3946. #if defined(X_MAX_PIN) && X_MAX_PIN > -1
  3947. SERIAL_PROTOCOLRPGM(MSG_X_MAX);
  3948. if(READ(X_MAX_PIN)^X_MAX_ENDSTOP_INVERTING){
  3949. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_HIT);
  3950. }else{
  3951. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_OPEN);
  3952. }
  3953. SERIAL_PROTOCOLLN("");
  3954. #endif
  3955. #if defined(Y_MIN_PIN) && Y_MIN_PIN > -1
  3956. SERIAL_PROTOCOLRPGM(MSG_Y_MIN);
  3957. if(READ(Y_MIN_PIN)^Y_MIN_ENDSTOP_INVERTING){
  3958. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_HIT);
  3959. }else{
  3960. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_OPEN);
  3961. }
  3962. SERIAL_PROTOCOLLN("");
  3963. #endif
  3964. #if defined(Y_MAX_PIN) && Y_MAX_PIN > -1
  3965. SERIAL_PROTOCOLRPGM(MSG_Y_MAX);
  3966. if(READ(Y_MAX_PIN)^Y_MAX_ENDSTOP_INVERTING){
  3967. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_HIT);
  3968. }else{
  3969. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_OPEN);
  3970. }
  3971. SERIAL_PROTOCOLLN("");
  3972. #endif
  3973. #if defined(Z_MIN_PIN) && Z_MIN_PIN > -1
  3974. SERIAL_PROTOCOLRPGM(MSG_Z_MIN);
  3975. if(READ(Z_MIN_PIN)^Z_MIN_ENDSTOP_INVERTING){
  3976. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_HIT);
  3977. }else{
  3978. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_OPEN);
  3979. }
  3980. SERIAL_PROTOCOLLN("");
  3981. #endif
  3982. #if defined(Z_MAX_PIN) && Z_MAX_PIN > -1
  3983. SERIAL_PROTOCOLRPGM(MSG_Z_MAX);
  3984. if(READ(Z_MAX_PIN)^Z_MAX_ENDSTOP_INVERTING){
  3985. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_HIT);
  3986. }else{
  3987. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_OPEN);
  3988. }
  3989. SERIAL_PROTOCOLLN("");
  3990. #endif
  3991. break;
  3992. //TODO: update for all axis, use for loop
  3993. #ifdef BLINKM
  3994. case 150: // M150
  3995. {
  3996. byte red;
  3997. byte grn;
  3998. byte blu;
  3999. if(code_seen('R')) red = code_value();
  4000. if(code_seen('U')) grn = code_value();
  4001. if(code_seen('B')) blu = code_value();
  4002. SendColors(red,grn,blu);
  4003. }
  4004. break;
  4005. #endif //BLINKM
  4006. case 200: // M200 D<millimeters> set filament diameter and set E axis units to cubic millimeters (use S0 to set back to millimeters).
  4007. {
  4008. tmp_extruder = active_extruder;
  4009. if(code_seen('T')) {
  4010. tmp_extruder = code_value();
  4011. if(tmp_extruder >= EXTRUDERS) {
  4012. SERIAL_ECHO_START;
  4013. SERIAL_ECHO(MSG_M200_INVALID_EXTRUDER);
  4014. break;
  4015. }
  4016. }
  4017. float area = .0;
  4018. if(code_seen('D')) {
  4019. float diameter = (float)code_value();
  4020. if (diameter == 0.0) {
  4021. // setting any extruder filament size disables volumetric on the assumption that
  4022. // slicers either generate in extruder values as cubic mm or as as filament feeds
  4023. // for all extruders
  4024. volumetric_enabled = false;
  4025. } else {
  4026. filament_size[tmp_extruder] = (float)code_value();
  4027. // make sure all extruders have some sane value for the filament size
  4028. filament_size[0] = (filament_size[0] == 0.0 ? DEFAULT_NOMINAL_FILAMENT_DIA : filament_size[0]);
  4029. #if EXTRUDERS > 1
  4030. filament_size[1] = (filament_size[1] == 0.0 ? DEFAULT_NOMINAL_FILAMENT_DIA : filament_size[1]);
  4031. #if EXTRUDERS > 2
  4032. filament_size[2] = (filament_size[2] == 0.0 ? DEFAULT_NOMINAL_FILAMENT_DIA : filament_size[2]);
  4033. #endif
  4034. #endif
  4035. volumetric_enabled = true;
  4036. }
  4037. } else {
  4038. //reserved for setting filament diameter via UFID or filament measuring device
  4039. break;
  4040. }
  4041. calculate_volumetric_multipliers();
  4042. }
  4043. break;
  4044. case 201: // M201
  4045. for(int8_t i=0; i < NUM_AXIS; i++)
  4046. {
  4047. if(code_seen(axis_codes[i]))
  4048. {
  4049. max_acceleration_units_per_sq_second[i] = code_value();
  4050. }
  4051. }
  4052. // steps per sq second need to be updated to agree with the units per sq second (as they are what is used in the planner)
  4053. reset_acceleration_rates();
  4054. break;
  4055. #if 0 // Not used for Sprinter/grbl gen6
  4056. case 202: // M202
  4057. for(int8_t i=0; i < NUM_AXIS; i++) {
  4058. if(code_seen(axis_codes[i])) axis_travel_steps_per_sqr_second[i] = code_value() * axis_steps_per_unit[i];
  4059. }
  4060. break;
  4061. #endif
  4062. case 203: // M203 max feedrate mm/sec
  4063. for(int8_t i=0; i < NUM_AXIS; i++) {
  4064. if(code_seen(axis_codes[i])) max_feedrate[i] = code_value();
  4065. }
  4066. break;
  4067. case 204: // M204 acclereration S normal moves T filmanent only moves
  4068. {
  4069. if(code_seen('S')) acceleration = code_value() ;
  4070. if(code_seen('T')) retract_acceleration = code_value() ;
  4071. }
  4072. break;
  4073. case 205: //M205 advanced settings: minimum travel speed S=while printing T=travel only, B=minimum segment time X= maximum xy jerk, Z=maximum Z jerk
  4074. {
  4075. if(code_seen('S')) minimumfeedrate = code_value();
  4076. if(code_seen('T')) mintravelfeedrate = code_value();
  4077. if(code_seen('B')) minsegmenttime = code_value() ;
  4078. if(code_seen('X')) max_jerk[X_AXIS] = max_jerk[Y_AXIS] = code_value();
  4079. if(code_seen('Y')) max_jerk[Y_AXIS] = code_value();
  4080. if(code_seen('Z')) max_jerk[Z_AXIS] = code_value();
  4081. if(code_seen('E')) max_jerk[E_AXIS] = code_value();
  4082. }
  4083. break;
  4084. case 206: // M206 additional homing offset
  4085. for(int8_t i=0; i < 3; i++)
  4086. {
  4087. if(code_seen(axis_codes[i])) add_homing[i] = code_value();
  4088. }
  4089. break;
  4090. #ifdef FWRETRACT
  4091. case 207: //M207 - set retract length S[positive mm] F[feedrate mm/min] Z[additional zlift/hop]
  4092. {
  4093. if(code_seen('S'))
  4094. {
  4095. retract_length = code_value() ;
  4096. }
  4097. if(code_seen('F'))
  4098. {
  4099. retract_feedrate = code_value()/60 ;
  4100. }
  4101. if(code_seen('Z'))
  4102. {
  4103. retract_zlift = code_value() ;
  4104. }
  4105. }break;
  4106. case 208: // M208 - set retract recover length S[positive mm surplus to the M207 S*] F[feedrate mm/min]
  4107. {
  4108. if(code_seen('S'))
  4109. {
  4110. retract_recover_length = code_value() ;
  4111. }
  4112. if(code_seen('F'))
  4113. {
  4114. retract_recover_feedrate = code_value()/60 ;
  4115. }
  4116. }break;
  4117. case 209: // M209 - S<1=true/0=false> enable automatic retract detect if the slicer did not support G10/11: every normal extrude-only move will be classified as retract depending on the direction.
  4118. {
  4119. if(code_seen('S'))
  4120. {
  4121. int t= code_value() ;
  4122. switch(t)
  4123. {
  4124. case 0:
  4125. {
  4126. autoretract_enabled=false;
  4127. retracted[0]=false;
  4128. #if EXTRUDERS > 1
  4129. retracted[1]=false;
  4130. #endif
  4131. #if EXTRUDERS > 2
  4132. retracted[2]=false;
  4133. #endif
  4134. }break;
  4135. case 1:
  4136. {
  4137. autoretract_enabled=true;
  4138. retracted[0]=false;
  4139. #if EXTRUDERS > 1
  4140. retracted[1]=false;
  4141. #endif
  4142. #if EXTRUDERS > 2
  4143. retracted[2]=false;
  4144. #endif
  4145. }break;
  4146. default:
  4147. SERIAL_ECHO_START;
  4148. SERIAL_ECHORPGM(MSG_UNKNOWN_COMMAND);
  4149. SERIAL_ECHO(CMDBUFFER_CURRENT_STRING);
  4150. SERIAL_ECHOLNPGM("\"");
  4151. }
  4152. }
  4153. }break;
  4154. #endif // FWRETRACT
  4155. #if EXTRUDERS > 1
  4156. case 218: // M218 - set hotend offset (in mm), T<extruder_number> X<offset_on_X> Y<offset_on_Y>
  4157. {
  4158. if(setTargetedHotend(218)){
  4159. break;
  4160. }
  4161. if(code_seen('X'))
  4162. {
  4163. extruder_offset[X_AXIS][tmp_extruder] = code_value();
  4164. }
  4165. if(code_seen('Y'))
  4166. {
  4167. extruder_offset[Y_AXIS][tmp_extruder] = code_value();
  4168. }
  4169. SERIAL_ECHO_START;
  4170. SERIAL_ECHORPGM(MSG_HOTEND_OFFSET);
  4171. for(tmp_extruder = 0; tmp_extruder < EXTRUDERS; tmp_extruder++)
  4172. {
  4173. SERIAL_ECHO(" ");
  4174. SERIAL_ECHO(extruder_offset[X_AXIS][tmp_extruder]);
  4175. SERIAL_ECHO(",");
  4176. SERIAL_ECHO(extruder_offset[Y_AXIS][tmp_extruder]);
  4177. }
  4178. SERIAL_ECHOLN("");
  4179. }break;
  4180. #endif
  4181. case 220: // M220 S<factor in percent>- set speed factor override percentage
  4182. {
  4183. if(code_seen('S'))
  4184. {
  4185. feedmultiply = code_value() ;
  4186. }
  4187. }
  4188. break;
  4189. case 221: // M221 S<factor in percent>- set extrude factor override percentage
  4190. {
  4191. if(code_seen('S'))
  4192. {
  4193. int tmp_code = code_value();
  4194. if (code_seen('T'))
  4195. {
  4196. if(setTargetedHotend(221)){
  4197. break;
  4198. }
  4199. extruder_multiply[tmp_extruder] = tmp_code;
  4200. }
  4201. else
  4202. {
  4203. extrudemultiply = tmp_code ;
  4204. }
  4205. }
  4206. }
  4207. break;
  4208. case 226: // M226 P<pin number> S<pin state>- Wait until the specified pin reaches the state required
  4209. {
  4210. if(code_seen('P')){
  4211. int pin_number = code_value(); // pin number
  4212. int pin_state = -1; // required pin state - default is inverted
  4213. if(code_seen('S')) pin_state = code_value(); // required pin state
  4214. if(pin_state >= -1 && pin_state <= 1){
  4215. for(int8_t i = 0; i < (int8_t)(sizeof(sensitive_pins)/sizeof(int)); i++)
  4216. {
  4217. if (sensitive_pins[i] == pin_number)
  4218. {
  4219. pin_number = -1;
  4220. break;
  4221. }
  4222. }
  4223. if (pin_number > -1)
  4224. {
  4225. int target = LOW;
  4226. st_synchronize();
  4227. pinMode(pin_number, INPUT);
  4228. switch(pin_state){
  4229. case 1:
  4230. target = HIGH;
  4231. break;
  4232. case 0:
  4233. target = LOW;
  4234. break;
  4235. case -1:
  4236. target = !digitalRead(pin_number);
  4237. break;
  4238. }
  4239. while(digitalRead(pin_number) != target){
  4240. manage_heater();
  4241. manage_inactivity();
  4242. lcd_update();
  4243. }
  4244. }
  4245. }
  4246. }
  4247. }
  4248. break;
  4249. #if NUM_SERVOS > 0
  4250. case 280: // M280 - set servo position absolute. P: servo index, S: angle or microseconds
  4251. {
  4252. int servo_index = -1;
  4253. int servo_position = 0;
  4254. if (code_seen('P'))
  4255. servo_index = code_value();
  4256. if (code_seen('S')) {
  4257. servo_position = code_value();
  4258. if ((servo_index >= 0) && (servo_index < NUM_SERVOS)) {
  4259. #if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
  4260. servos[servo_index].attach(0);
  4261. #endif
  4262. servos[servo_index].write(servo_position);
  4263. #if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
  4264. delay(PROBE_SERVO_DEACTIVATION_DELAY);
  4265. servos[servo_index].detach();
  4266. #endif
  4267. }
  4268. else {
  4269. SERIAL_ECHO_START;
  4270. SERIAL_ECHO("Servo ");
  4271. SERIAL_ECHO(servo_index);
  4272. SERIAL_ECHOLN(" out of range");
  4273. }
  4274. }
  4275. else if (servo_index >= 0) {
  4276. SERIAL_PROTOCOL(MSG_OK);
  4277. SERIAL_PROTOCOL(" Servo ");
  4278. SERIAL_PROTOCOL(servo_index);
  4279. SERIAL_PROTOCOL(": ");
  4280. SERIAL_PROTOCOL(servos[servo_index].read());
  4281. SERIAL_PROTOCOLLN("");
  4282. }
  4283. }
  4284. break;
  4285. #endif // NUM_SERVOS > 0
  4286. #if (LARGE_FLASH == true && ( BEEPER > 0 || defined(ULTRALCD) || defined(LCD_USE_I2C_BUZZER)))
  4287. case 300: // M300
  4288. {
  4289. int beepS = code_seen('S') ? code_value() : 110;
  4290. int beepP = code_seen('P') ? code_value() : 1000;
  4291. if (beepS > 0)
  4292. {
  4293. #if BEEPER > 0
  4294. tone(BEEPER, beepS);
  4295. delay(beepP);
  4296. noTone(BEEPER);
  4297. #elif defined(ULTRALCD)
  4298. lcd_buzz(beepS, beepP);
  4299. #elif defined(LCD_USE_I2C_BUZZER)
  4300. lcd_buzz(beepP, beepS);
  4301. #endif
  4302. }
  4303. else
  4304. {
  4305. delay(beepP);
  4306. }
  4307. }
  4308. break;
  4309. #endif // M300
  4310. #ifdef PIDTEMP
  4311. case 301: // M301
  4312. {
  4313. if(code_seen('P')) Kp = code_value();
  4314. if(code_seen('I')) Ki = scalePID_i(code_value());
  4315. if(code_seen('D')) Kd = scalePID_d(code_value());
  4316. #ifdef PID_ADD_EXTRUSION_RATE
  4317. if(code_seen('C')) Kc = code_value();
  4318. #endif
  4319. updatePID();
  4320. SERIAL_PROTOCOLRPGM(MSG_OK);
  4321. SERIAL_PROTOCOL(" p:");
  4322. SERIAL_PROTOCOL(Kp);
  4323. SERIAL_PROTOCOL(" i:");
  4324. SERIAL_PROTOCOL(unscalePID_i(Ki));
  4325. SERIAL_PROTOCOL(" d:");
  4326. SERIAL_PROTOCOL(unscalePID_d(Kd));
  4327. #ifdef PID_ADD_EXTRUSION_RATE
  4328. SERIAL_PROTOCOL(" c:");
  4329. //Kc does not have scaling applied above, or in resetting defaults
  4330. SERIAL_PROTOCOL(Kc);
  4331. #endif
  4332. SERIAL_PROTOCOLLN("");
  4333. }
  4334. break;
  4335. #endif //PIDTEMP
  4336. #ifdef PIDTEMPBED
  4337. case 304: // M304
  4338. {
  4339. if(code_seen('P')) bedKp = code_value();
  4340. if(code_seen('I')) bedKi = scalePID_i(code_value());
  4341. if(code_seen('D')) bedKd = scalePID_d(code_value());
  4342. updatePID();
  4343. SERIAL_PROTOCOLRPGM(MSG_OK);
  4344. SERIAL_PROTOCOL(" p:");
  4345. SERIAL_PROTOCOL(bedKp);
  4346. SERIAL_PROTOCOL(" i:");
  4347. SERIAL_PROTOCOL(unscalePID_i(bedKi));
  4348. SERIAL_PROTOCOL(" d:");
  4349. SERIAL_PROTOCOL(unscalePID_d(bedKd));
  4350. SERIAL_PROTOCOLLN("");
  4351. }
  4352. break;
  4353. #endif //PIDTEMP
  4354. case 240: // M240 Triggers a camera by emulating a Canon RC-1 : http://www.doc-diy.net/photo/rc-1_hacked/
  4355. {
  4356. #ifdef CHDK
  4357. SET_OUTPUT(CHDK);
  4358. WRITE(CHDK, HIGH);
  4359. chdkHigh = millis();
  4360. chdkActive = true;
  4361. #else
  4362. #if defined(PHOTOGRAPH_PIN) && PHOTOGRAPH_PIN > -1
  4363. const uint8_t NUM_PULSES=16;
  4364. const float PULSE_LENGTH=0.01524;
  4365. for(int i=0; i < NUM_PULSES; i++) {
  4366. WRITE(PHOTOGRAPH_PIN, HIGH);
  4367. _delay_ms(PULSE_LENGTH);
  4368. WRITE(PHOTOGRAPH_PIN, LOW);
  4369. _delay_ms(PULSE_LENGTH);
  4370. }
  4371. delay(7.33);
  4372. for(int i=0; i < NUM_PULSES; i++) {
  4373. WRITE(PHOTOGRAPH_PIN, HIGH);
  4374. _delay_ms(PULSE_LENGTH);
  4375. WRITE(PHOTOGRAPH_PIN, LOW);
  4376. _delay_ms(PULSE_LENGTH);
  4377. }
  4378. #endif
  4379. #endif //chdk end if
  4380. }
  4381. break;
  4382. #ifdef DOGLCD
  4383. case 250: // M250 Set LCD contrast value: C<value> (value 0..63)
  4384. {
  4385. if (code_seen('C')) {
  4386. lcd_setcontrast( ((int)code_value())&63 );
  4387. }
  4388. SERIAL_PROTOCOLPGM("lcd contrast value: ");
  4389. SERIAL_PROTOCOL(lcd_contrast);
  4390. SERIAL_PROTOCOLLN("");
  4391. }
  4392. break;
  4393. #endif
  4394. #ifdef PREVENT_DANGEROUS_EXTRUDE
  4395. case 302: // allow cold extrudes, or set the minimum extrude temperature
  4396. {
  4397. float temp = .0;
  4398. if (code_seen('S')) temp=code_value();
  4399. set_extrude_min_temp(temp);
  4400. }
  4401. break;
  4402. #endif
  4403. case 303: // M303 PID autotune
  4404. {
  4405. float temp = 150.0;
  4406. int e=0;
  4407. int c=5;
  4408. if (code_seen('E')) e=code_value();
  4409. if (e<0)
  4410. temp=70;
  4411. if (code_seen('S')) temp=code_value();
  4412. if (code_seen('C')) c=code_value();
  4413. PID_autotune(temp, e, c);
  4414. }
  4415. break;
  4416. case 400: // M400 finish all moves
  4417. {
  4418. st_synchronize();
  4419. }
  4420. break;
  4421. #ifdef FILAMENT_SENSOR
  4422. case 404: //M404 Enter the nominal filament width (3mm, 1.75mm ) N<3.0> or display nominal filament width
  4423. {
  4424. #if (FILWIDTH_PIN > -1)
  4425. if(code_seen('N')) filament_width_nominal=code_value();
  4426. else{
  4427. SERIAL_PROTOCOLPGM("Filament dia (nominal mm):");
  4428. SERIAL_PROTOCOLLN(filament_width_nominal);
  4429. }
  4430. #endif
  4431. }
  4432. break;
  4433. case 405: //M405 Turn on filament sensor for control
  4434. {
  4435. if(code_seen('D')) meas_delay_cm=code_value();
  4436. if(meas_delay_cm> MAX_MEASUREMENT_DELAY)
  4437. meas_delay_cm = MAX_MEASUREMENT_DELAY;
  4438. if(delay_index2 == -1) //initialize the ring buffer if it has not been done since startup
  4439. {
  4440. int temp_ratio = widthFil_to_size_ratio();
  4441. for (delay_index1=0; delay_index1<(MAX_MEASUREMENT_DELAY+1); ++delay_index1 ){
  4442. measurement_delay[delay_index1]=temp_ratio-100; //subtract 100 to scale within a signed byte
  4443. }
  4444. delay_index1=0;
  4445. delay_index2=0;
  4446. }
  4447. filament_sensor = true ;
  4448. //SERIAL_PROTOCOLPGM("Filament dia (measured mm):");
  4449. //SERIAL_PROTOCOL(filament_width_meas);
  4450. //SERIAL_PROTOCOLPGM("Extrusion ratio(%):");
  4451. //SERIAL_PROTOCOL(extrudemultiply);
  4452. }
  4453. break;
  4454. case 406: //M406 Turn off filament sensor for control
  4455. {
  4456. filament_sensor = false ;
  4457. }
  4458. break;
  4459. case 407: //M407 Display measured filament diameter
  4460. {
  4461. SERIAL_PROTOCOLPGM("Filament dia (measured mm):");
  4462. SERIAL_PROTOCOLLN(filament_width_meas);
  4463. }
  4464. break;
  4465. #endif
  4466. case 500: // M500 Store settings in EEPROM
  4467. {
  4468. Config_StoreSettings();
  4469. }
  4470. break;
  4471. case 501: // M501 Read settings from EEPROM
  4472. {
  4473. Config_RetrieveSettings();
  4474. }
  4475. break;
  4476. case 502: // M502 Revert to default settings
  4477. {
  4478. Config_ResetDefault();
  4479. }
  4480. break;
  4481. case 503: // M503 print settings currently in memory
  4482. {
  4483. Config_PrintSettings();
  4484. }
  4485. break;
  4486. case 509: //M509 Force language selection
  4487. {
  4488. lcd_force_language_selection();
  4489. SERIAL_ECHO_START;
  4490. SERIAL_PROTOCOLPGM(("LANG SEL FORCED"));
  4491. }
  4492. break;
  4493. #ifdef ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED
  4494. case 540:
  4495. {
  4496. if(code_seen('S')) abort_on_endstop_hit = code_value() > 0;
  4497. }
  4498. break;
  4499. #endif
  4500. #ifdef CUSTOM_M_CODE_SET_Z_PROBE_OFFSET
  4501. case CUSTOM_M_CODE_SET_Z_PROBE_OFFSET:
  4502. {
  4503. float value;
  4504. if (code_seen('Z'))
  4505. {
  4506. value = code_value();
  4507. if ((Z_PROBE_OFFSET_RANGE_MIN <= value) && (value <= Z_PROBE_OFFSET_RANGE_MAX))
  4508. {
  4509. zprobe_zoffset = -value; // compare w/ line 278 of ConfigurationStore.cpp
  4510. SERIAL_ECHO_START;
  4511. SERIAL_ECHOLNRPGM(CAT4(MSG_ZPROBE_ZOFFSET, " ", MSG_OK,PSTR("")));
  4512. SERIAL_PROTOCOLLN("");
  4513. }
  4514. else
  4515. {
  4516. SERIAL_ECHO_START;
  4517. SERIAL_ECHORPGM(MSG_ZPROBE_ZOFFSET);
  4518. SERIAL_ECHORPGM(MSG_Z_MIN);
  4519. SERIAL_ECHO(Z_PROBE_OFFSET_RANGE_MIN);
  4520. SERIAL_ECHORPGM(MSG_Z_MAX);
  4521. SERIAL_ECHO(Z_PROBE_OFFSET_RANGE_MAX);
  4522. SERIAL_PROTOCOLLN("");
  4523. }
  4524. }
  4525. else
  4526. {
  4527. SERIAL_ECHO_START;
  4528. SERIAL_ECHOLNRPGM(CAT2(MSG_ZPROBE_ZOFFSET, PSTR(" : ")));
  4529. SERIAL_ECHO(-zprobe_zoffset);
  4530. SERIAL_PROTOCOLLN("");
  4531. }
  4532. break;
  4533. }
  4534. #endif // CUSTOM_M_CODE_SET_Z_PROBE_OFFSET
  4535. #ifdef FILAMENTCHANGEENABLE
  4536. case 600: //Pause for filament change X[pos] Y[pos] Z[relative lift] E[initial retract] L[later retract distance for removal]
  4537. {
  4538. st_synchronize();
  4539. float target[4];
  4540. float lastpos[4];
  4541. if (farm_mode)
  4542. {
  4543. prusa_statistics(22);
  4544. }
  4545. feedmultiplyBckp=feedmultiply;
  4546. int8_t TooLowZ = 0;
  4547. target[X_AXIS]=current_position[X_AXIS];
  4548. target[Y_AXIS]=current_position[Y_AXIS];
  4549. target[Z_AXIS]=current_position[Z_AXIS];
  4550. target[E_AXIS]=current_position[E_AXIS];
  4551. lastpos[X_AXIS]=current_position[X_AXIS];
  4552. lastpos[Y_AXIS]=current_position[Y_AXIS];
  4553. lastpos[Z_AXIS]=current_position[Z_AXIS];
  4554. lastpos[E_AXIS]=current_position[E_AXIS];
  4555. //Restract extruder
  4556. if(code_seen('E'))
  4557. {
  4558. target[E_AXIS]+= code_value();
  4559. }
  4560. else
  4561. {
  4562. #ifdef FILAMENTCHANGE_FIRSTRETRACT
  4563. target[E_AXIS]+= FILAMENTCHANGE_FIRSTRETRACT ;
  4564. #endif
  4565. }
  4566. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_RFEED, active_extruder);
  4567. //Lift Z
  4568. if(code_seen('Z'))
  4569. {
  4570. target[Z_AXIS]+= code_value();
  4571. }
  4572. else
  4573. {
  4574. #ifdef FILAMENTCHANGE_ZADD
  4575. target[Z_AXIS]+= FILAMENTCHANGE_ZADD ;
  4576. if(target[Z_AXIS] < 10){
  4577. target[Z_AXIS]+= 10 ;
  4578. TooLowZ = 1;
  4579. }else{
  4580. TooLowZ = 0;
  4581. }
  4582. #endif
  4583. }
  4584. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_ZFEED, active_extruder);
  4585. //Move XY to side
  4586. if(code_seen('X'))
  4587. {
  4588. target[X_AXIS]+= code_value();
  4589. }
  4590. else
  4591. {
  4592. #ifdef FILAMENTCHANGE_XPOS
  4593. target[X_AXIS]= FILAMENTCHANGE_XPOS ;
  4594. #endif
  4595. }
  4596. if(code_seen('Y'))
  4597. {
  4598. target[Y_AXIS]= code_value();
  4599. }
  4600. else
  4601. {
  4602. #ifdef FILAMENTCHANGE_YPOS
  4603. target[Y_AXIS]= FILAMENTCHANGE_YPOS ;
  4604. #endif
  4605. }
  4606. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_XYFEED, active_extruder);
  4607. st_synchronize();
  4608. custom_message = true;
  4609. lcd_setstatuspgm(MSG_UNLOADING_FILAMENT);
  4610. // Unload filament
  4611. if(code_seen('L'))
  4612. {
  4613. target[E_AXIS]+= code_value();
  4614. }
  4615. else
  4616. {
  4617. #ifdef SNMM
  4618. #else
  4619. #ifdef FILAMENTCHANGE_FINALRETRACT
  4620. target[E_AXIS] += FILAMENTCHANGE_FINALRETRACT;
  4621. #endif
  4622. #endif // SNMM
  4623. }
  4624. #ifdef SNMM
  4625. target[E_AXIS] += 12;
  4626. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 3500, active_extruder);
  4627. target[E_AXIS] += 6;
  4628. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 5000, active_extruder);
  4629. target[E_AXIS] += (FIL_LOAD_LENGTH * -1);
  4630. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 5000, active_extruder);
  4631. st_synchronize();
  4632. target[E_AXIS] += (FIL_COOLING);
  4633. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 50, active_extruder);
  4634. target[E_AXIS] += (FIL_COOLING*-1);
  4635. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 50, active_extruder);
  4636. target[E_AXIS] += (bowden_length[snmm_extruder] *-1);
  4637. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 3000, active_extruder);
  4638. st_synchronize();
  4639. #else
  4640. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_RFEED, active_extruder);
  4641. #endif // SNMM
  4642. //finish moves
  4643. st_synchronize();
  4644. //disable extruder steppers so filament can be removed
  4645. disable_e0();
  4646. disable_e1();
  4647. disable_e2();
  4648. delay(100);
  4649. //Wait for user to insert filament
  4650. uint8_t cnt=0;
  4651. int counterBeep = 0;
  4652. lcd_wait_interact();
  4653. load_filament_time = millis();
  4654. while(!lcd_clicked()){
  4655. cnt++;
  4656. manage_heater();
  4657. manage_inactivity(true);
  4658. /*#ifdef SNMM
  4659. target[E_AXIS] += 0.002;
  4660. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 500, active_extruder);
  4661. #endif // SNMM*/
  4662. if(cnt==0)
  4663. {
  4664. #if BEEPER > 0
  4665. if (counterBeep== 500){
  4666. counterBeep = 0;
  4667. }
  4668. SET_OUTPUT(BEEPER);
  4669. if (counterBeep== 0){
  4670. WRITE(BEEPER,HIGH);
  4671. }
  4672. if (counterBeep== 20){
  4673. WRITE(BEEPER,LOW);
  4674. }
  4675. counterBeep++;
  4676. #else
  4677. #if !defined(LCD_FEEDBACK_FREQUENCY_HZ) || !defined(LCD_FEEDBACK_FREQUENCY_DURATION_MS)
  4678. lcd_buzz(1000/6,100);
  4679. #else
  4680. lcd_buzz(LCD_FEEDBACK_FREQUENCY_DURATION_MS,LCD_FEEDBACK_FREQUENCY_HZ);
  4681. #endif
  4682. #endif
  4683. }
  4684. }
  4685. #ifdef SNMM
  4686. display_loading();
  4687. do {
  4688. target[E_AXIS] += 0.002;
  4689. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 500, active_extruder);
  4690. delay_keep_alive(2);
  4691. } while (!lcd_clicked());
  4692. /*if (millis() - load_filament_time > 2) {
  4693. load_filament_time = millis();
  4694. target[E_AXIS] += 0.001;
  4695. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 1000, active_extruder);
  4696. }*/
  4697. #endif
  4698. //Filament inserted
  4699. WRITE(BEEPER,LOW);
  4700. //Feed the filament to the end of nozzle quickly
  4701. #ifdef SNMM
  4702. st_synchronize();
  4703. target[E_AXIS] += bowden_length[snmm_extruder];
  4704. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 3000, active_extruder);
  4705. target[E_AXIS] += FIL_LOAD_LENGTH - 60;
  4706. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 1400, active_extruder);
  4707. target[E_AXIS] += 40;
  4708. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 400, active_extruder);
  4709. target[E_AXIS] += 10;
  4710. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 50, active_extruder);
  4711. #else
  4712. target[E_AXIS] += FILAMENTCHANGE_FIRSTFEED;
  4713. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_EFEED, active_extruder);
  4714. #endif // SNMM
  4715. //Extrude some filament
  4716. target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  4717. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_EXFEED, active_extruder);
  4718. //Wait for user to check the state
  4719. lcd_change_fil_state = 0;
  4720. lcd_loading_filament();
  4721. while ((lcd_change_fil_state == 0)||(lcd_change_fil_state != 1)){
  4722. lcd_change_fil_state = 0;
  4723. lcd_alright();
  4724. switch(lcd_change_fil_state){
  4725. // Filament failed to load so load it again
  4726. case 2:
  4727. #ifdef SNMM
  4728. display_loading();
  4729. do {
  4730. target[E_AXIS] += 0.002;
  4731. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 500, active_extruder);
  4732. delay_keep_alive(2);
  4733. } while (!lcd_clicked());
  4734. st_synchronize();
  4735. target[E_AXIS] += bowden_length[snmm_extruder];
  4736. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 3000, active_extruder);
  4737. target[E_AXIS] += FIL_LOAD_LENGTH - 60;
  4738. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 1400, active_extruder);
  4739. target[E_AXIS] += 40;
  4740. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 400, active_extruder);
  4741. target[E_AXIS] += 10;
  4742. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 50, active_extruder);
  4743. #else
  4744. target[E_AXIS]+= FILAMENTCHANGE_FIRSTFEED ;
  4745. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_EFEED, active_extruder);
  4746. #endif
  4747. target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  4748. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_EXFEED, active_extruder);
  4749. lcd_loading_filament();
  4750. break;
  4751. // Filament loaded properly but color is not clear
  4752. case 3:
  4753. target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  4754. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder);
  4755. lcd_loading_color();
  4756. break;
  4757. // Everything good
  4758. default:
  4759. lcd_change_success();
  4760. lcd_update_enable(true);
  4761. break;
  4762. }
  4763. }
  4764. //Not let's go back to print
  4765. //Feed a little of filament to stabilize pressure
  4766. target[E_AXIS]+= FILAMENTCHANGE_RECFEED;
  4767. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_EXFEED, active_extruder);
  4768. //Retract
  4769. target[E_AXIS]+= FILAMENTCHANGE_FIRSTRETRACT;
  4770. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_RFEED, active_extruder);
  4771. //plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 70, active_extruder); //should do nothing
  4772. //Move XY back
  4773. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_XYFEED, active_extruder);
  4774. //Move Z back
  4775. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_ZFEED, active_extruder);
  4776. target[E_AXIS]= target[E_AXIS] - FILAMENTCHANGE_FIRSTRETRACT;
  4777. //Unretract
  4778. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_RFEED, active_extruder);
  4779. //Set E position to original
  4780. plan_set_e_position(lastpos[E_AXIS]);
  4781. //Recover feed rate
  4782. feedmultiply=feedmultiplyBckp;
  4783. char cmd[9];
  4784. sprintf_P(cmd, PSTR("M220 S%i"), feedmultiplyBckp);
  4785. enquecommand(cmd);
  4786. lcd_setstatuspgm(WELCOME_MSG);
  4787. custom_message = false;
  4788. custom_message_type = 0;
  4789. }
  4790. break;
  4791. #endif //FILAMENTCHANGEENABLE
  4792. case 601: {
  4793. if(lcd_commands_type == 0) lcd_commands_type = LCD_COMMAND_LONG_PAUSE;
  4794. }
  4795. break;
  4796. case 602: {
  4797. if(lcd_commands_type == 0) lcd_commands_type = LCD_COMMAND_LONG_PAUSE_RESUME;
  4798. }
  4799. break;
  4800. #ifdef LIN_ADVANCE
  4801. case 900: // M900: Set LIN_ADVANCE options.
  4802. gcode_M900();
  4803. break;
  4804. #endif
  4805. case 907: // M907 Set digital trimpot motor current using axis codes.
  4806. {
  4807. #if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
  4808. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) digipot_current(i,code_value());
  4809. if(code_seen('B')) digipot_current(4,code_value());
  4810. if(code_seen('S')) for(int i=0;i<=4;i++) digipot_current(i,code_value());
  4811. #endif
  4812. #ifdef MOTOR_CURRENT_PWM_XY_PIN
  4813. if(code_seen('X')) digipot_current(0, code_value());
  4814. #endif
  4815. #ifdef MOTOR_CURRENT_PWM_Z_PIN
  4816. if(code_seen('Z')) digipot_current(1, code_value());
  4817. #endif
  4818. #ifdef MOTOR_CURRENT_PWM_E_PIN
  4819. if(code_seen('E')) digipot_current(2, code_value());
  4820. #endif
  4821. #ifdef DIGIPOT_I2C
  4822. // this one uses actual amps in floating point
  4823. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) digipot_i2c_set_current(i, code_value());
  4824. // for each additional extruder (named B,C,D,E..., channels 4,5,6,7...)
  4825. for(int i=NUM_AXIS;i<DIGIPOT_I2C_NUM_CHANNELS;i++) if(code_seen('B'+i-NUM_AXIS)) digipot_i2c_set_current(i, code_value());
  4826. #endif
  4827. }
  4828. break;
  4829. case 908: // M908 Control digital trimpot directly.
  4830. {
  4831. #if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
  4832. uint8_t channel,current;
  4833. if(code_seen('P')) channel=code_value();
  4834. if(code_seen('S')) current=code_value();
  4835. digitalPotWrite(channel, current);
  4836. #endif
  4837. }
  4838. break;
  4839. case 910: // M910 TMC2130 init
  4840. {
  4841. tmc2130_init();
  4842. }
  4843. break;
  4844. case 911: // M911 Set TMC2130 holding currents
  4845. {
  4846. if (code_seen('X')) tmc2130_set_current_h(0, code_value());
  4847. if (code_seen('Y')) tmc2130_set_current_h(1, code_value());
  4848. if (code_seen('Z')) tmc2130_set_current_h(2, code_value());
  4849. if (code_seen('E')) tmc2130_set_current_h(3, code_value());
  4850. }
  4851. break;
  4852. case 912: // M912 Set TMC2130 running currents
  4853. {
  4854. if (code_seen('X')) tmc2130_set_current_r(0, code_value());
  4855. if (code_seen('Y')) tmc2130_set_current_r(1, code_value());
  4856. if (code_seen('Z')) tmc2130_set_current_r(2, code_value());
  4857. if (code_seen('E')) tmc2130_set_current_r(3, code_value());
  4858. }
  4859. break;
  4860. case 913: // M913 Print TMC2130 currents
  4861. {
  4862. tmc2130_print_currents();
  4863. }
  4864. break;
  4865. case 914: // M914 Set normal mode
  4866. {
  4867. tmc2130_mode = TMC2130_MODE_NORMAL;
  4868. tmc2130_init();
  4869. }
  4870. break;
  4871. case 915: // M915 Set silent mode
  4872. {
  4873. tmc2130_mode = TMC2130_MODE_SILENT;
  4874. tmc2130_init();
  4875. }
  4876. break;
  4877. case 916: // M916 Set sg_thrs
  4878. {
  4879. if (code_seen('X')) sg_thrs_x = code_value();
  4880. if (code_seen('Y')) sg_thrs_y = code_value();
  4881. MYSERIAL.print("sg_thrs_x=");
  4882. MYSERIAL.print(sg_thrs_x, DEC);
  4883. MYSERIAL.print(" sg_thrs_y=");
  4884. MYSERIAL.println(sg_thrs_y, DEC);
  4885. }
  4886. break;
  4887. case 917: // M917 Set TMC2130 pwm_ampl
  4888. {
  4889. if (code_seen('X')) tmc2130_set_pwm_ampl(0, code_value());
  4890. if (code_seen('Y')) tmc2130_set_pwm_ampl(1, code_value());
  4891. if (code_seen('Z')) tmc2130_set_pwm_ampl(2, code_value());
  4892. if (code_seen('E')) tmc2130_set_pwm_ampl(3, code_value());
  4893. }
  4894. break;
  4895. case 918: // M918 Set TMC2130 pwm_grad
  4896. {
  4897. if (code_seen('X')) tmc2130_set_pwm_grad(0, code_value());
  4898. if (code_seen('Y')) tmc2130_set_pwm_grad(1, code_value());
  4899. if (code_seen('Z')) tmc2130_set_pwm_grad(2, code_value());
  4900. if (code_seen('E')) tmc2130_set_pwm_grad(3, code_value());
  4901. }
  4902. break;
  4903. case 350: // M350 Set microstepping mode. Warning: Steps per unit remains unchanged. S code sets stepping mode for all drivers.
  4904. {
  4905. #if defined(X_MS1_PIN) && X_MS1_PIN > -1
  4906. if(code_seen('S')) for(int i=0;i<=4;i++) microstep_mode(i,code_value());
  4907. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) microstep_mode(i,(uint8_t)code_value());
  4908. if(code_seen('B')) microstep_mode(4,code_value());
  4909. microstep_readings();
  4910. #endif
  4911. }
  4912. break;
  4913. case 351: // M351 Toggle MS1 MS2 pins directly, S# determines MS1 or MS2, X# sets the pin high/low.
  4914. {
  4915. #if defined(X_MS1_PIN) && X_MS1_PIN > -1
  4916. if(code_seen('S')) switch((int)code_value())
  4917. {
  4918. case 1:
  4919. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) microstep_ms(i,code_value(),-1);
  4920. if(code_seen('B')) microstep_ms(4,code_value(),-1);
  4921. break;
  4922. case 2:
  4923. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) microstep_ms(i,-1,code_value());
  4924. if(code_seen('B')) microstep_ms(4,-1,code_value());
  4925. break;
  4926. }
  4927. microstep_readings();
  4928. #endif
  4929. }
  4930. break;
  4931. case 701: //M701: load filament
  4932. {
  4933. enable_z();
  4934. custom_message = true;
  4935. custom_message_type = 2;
  4936. lcd_setstatuspgm(MSG_LOADING_FILAMENT);
  4937. current_position[E_AXIS] += 70;
  4938. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400 / 60, active_extruder); //fast sequence
  4939. current_position[E_AXIS] += 25;
  4940. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 100 / 60, active_extruder); //slow sequence
  4941. st_synchronize();
  4942. if (!farm_mode && loading_flag) {
  4943. bool clean = lcd_show_fullscreen_message_yes_no_and_wait_P(MSG_FILAMENT_CLEAN, false, true);
  4944. while (!clean) {
  4945. lcd_update_enable(true);
  4946. lcd_update(2);
  4947. current_position[E_AXIS] += 25;
  4948. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 100 / 60, active_extruder); //slow sequence
  4949. st_synchronize();
  4950. clean = lcd_show_fullscreen_message_yes_no_and_wait_P(MSG_FILAMENT_CLEAN, false, true);
  4951. }
  4952. }
  4953. lcd_update_enable(true);
  4954. lcd_update(2);
  4955. lcd_setstatuspgm(WELCOME_MSG);
  4956. disable_z();
  4957. loading_flag = false;
  4958. custom_message = false;
  4959. custom_message_type = 0;
  4960. }
  4961. break;
  4962. case 702:
  4963. {
  4964. #ifdef SNMM
  4965. if (code_seen('U')) {
  4966. extr_unload_used(); //unload all filaments which were used in current print
  4967. }
  4968. else if (code_seen('C')) {
  4969. extr_unload(); //unload just current filament
  4970. }
  4971. else {
  4972. extr_unload_all(); //unload all filaments
  4973. }
  4974. #else
  4975. custom_message = true;
  4976. custom_message_type = 2;
  4977. lcd_setstatuspgm(MSG_UNLOADING_FILAMENT);
  4978. current_position[E_AXIS] -= 80;
  4979. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 7000 / 60, active_extruder);
  4980. st_synchronize();
  4981. lcd_setstatuspgm(WELCOME_MSG);
  4982. custom_message = false;
  4983. custom_message_type = 0;
  4984. #endif
  4985. }
  4986. break;
  4987. case 999: // M999: Restart after being stopped
  4988. Stopped = false;
  4989. lcd_reset_alert_level();
  4990. gcode_LastN = Stopped_gcode_LastN;
  4991. FlushSerialRequestResend();
  4992. break;
  4993. default: SERIAL_ECHOLNPGM("Invalid M code.");
  4994. }
  4995. } // end if(code_seen('M')) (end of M codes)
  4996. else if(code_seen('T'))
  4997. {
  4998. int index;
  4999. for (index = 1; *(strchr_pointer + index) == ' ' || *(strchr_pointer + index) == '\t'; index++);
  5000. if ((*(strchr_pointer + index) < '0' || *(strchr_pointer + index) > '9') && *(strchr_pointer + index) != '?') {
  5001. SERIAL_ECHOLNPGM("Invalid T code.");
  5002. }
  5003. else {
  5004. if (*(strchr_pointer + index) == '?') {
  5005. tmp_extruder = choose_extruder_menu();
  5006. }
  5007. else {
  5008. tmp_extruder = code_value();
  5009. }
  5010. snmm_filaments_used |= (1 << tmp_extruder); //for stop print
  5011. #ifdef SNMM
  5012. #ifdef LIN_ADVANCE
  5013. if (snmm_extruder != tmp_extruder)
  5014. clear_current_adv_vars(); //Check if the selected extruder is not the active one and reset LIN_ADVANCE variables if so.
  5015. #endif
  5016. snmm_extruder = tmp_extruder;
  5017. st_synchronize();
  5018. delay(100);
  5019. disable_e0();
  5020. disable_e1();
  5021. disable_e2();
  5022. pinMode(E_MUX0_PIN, OUTPUT);
  5023. pinMode(E_MUX1_PIN, OUTPUT);
  5024. pinMode(E_MUX2_PIN, OUTPUT);
  5025. delay(100);
  5026. SERIAL_ECHO_START;
  5027. SERIAL_ECHO("T:");
  5028. SERIAL_ECHOLN((int)tmp_extruder);
  5029. switch (tmp_extruder) {
  5030. case 1:
  5031. WRITE(E_MUX0_PIN, HIGH);
  5032. WRITE(E_MUX1_PIN, LOW);
  5033. WRITE(E_MUX2_PIN, LOW);
  5034. break;
  5035. case 2:
  5036. WRITE(E_MUX0_PIN, LOW);
  5037. WRITE(E_MUX1_PIN, HIGH);
  5038. WRITE(E_MUX2_PIN, LOW);
  5039. break;
  5040. case 3:
  5041. WRITE(E_MUX0_PIN, HIGH);
  5042. WRITE(E_MUX1_PIN, HIGH);
  5043. WRITE(E_MUX2_PIN, LOW);
  5044. break;
  5045. default:
  5046. WRITE(E_MUX0_PIN, LOW);
  5047. WRITE(E_MUX1_PIN, LOW);
  5048. WRITE(E_MUX2_PIN, LOW);
  5049. break;
  5050. }
  5051. delay(100);
  5052. #else
  5053. if (tmp_extruder >= EXTRUDERS) {
  5054. SERIAL_ECHO_START;
  5055. SERIAL_ECHOPGM("T");
  5056. SERIAL_PROTOCOLLN((int)tmp_extruder);
  5057. SERIAL_ECHOLNRPGM(MSG_INVALID_EXTRUDER);
  5058. }
  5059. else {
  5060. boolean make_move = false;
  5061. if (code_seen('F')) {
  5062. make_move = true;
  5063. next_feedrate = code_value();
  5064. if (next_feedrate > 0.0) {
  5065. feedrate = next_feedrate;
  5066. }
  5067. }
  5068. #if EXTRUDERS > 1
  5069. if (tmp_extruder != active_extruder) {
  5070. // Save current position to return to after applying extruder offset
  5071. memcpy(destination, current_position, sizeof(destination));
  5072. // Offset extruder (only by XY)
  5073. int i;
  5074. for (i = 0; i < 2; i++) {
  5075. current_position[i] = current_position[i] -
  5076. extruder_offset[i][active_extruder] +
  5077. extruder_offset[i][tmp_extruder];
  5078. }
  5079. // Set the new active extruder and position
  5080. active_extruder = tmp_extruder;
  5081. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  5082. // Move to the old position if 'F' was in the parameters
  5083. if (make_move && Stopped == false) {
  5084. prepare_move();
  5085. }
  5086. }
  5087. #endif
  5088. SERIAL_ECHO_START;
  5089. SERIAL_ECHORPGM(MSG_ACTIVE_EXTRUDER);
  5090. SERIAL_PROTOCOLLN((int)active_extruder);
  5091. }
  5092. #endif
  5093. }
  5094. } // end if(code_seen('T')) (end of T codes)
  5095. else
  5096. {
  5097. SERIAL_ECHO_START;
  5098. SERIAL_ECHORPGM(MSG_UNKNOWN_COMMAND);
  5099. SERIAL_ECHO(CMDBUFFER_CURRENT_STRING);
  5100. SERIAL_ECHOLNPGM("\"");
  5101. }
  5102. ClearToSend();
  5103. }
  5104. void FlushSerialRequestResend()
  5105. {
  5106. //char cmdbuffer[bufindr][100]="Resend:";
  5107. MYSERIAL.flush();
  5108. SERIAL_PROTOCOLRPGM(MSG_RESEND);
  5109. SERIAL_PROTOCOLLN(gcode_LastN + 1);
  5110. ClearToSend();
  5111. }
  5112. // Confirm the execution of a command, if sent from a serial line.
  5113. // Execution of a command from a SD card will not be confirmed.
  5114. void ClearToSend()
  5115. {
  5116. previous_millis_cmd = millis();
  5117. if (CMDBUFFER_CURRENT_TYPE == CMDBUFFER_CURRENT_TYPE_USB)
  5118. SERIAL_PROTOCOLLNRPGM(MSG_OK);
  5119. }
  5120. void get_coordinates()
  5121. {
  5122. bool seen[4]={false,false,false,false};
  5123. for(int8_t i=0; i < NUM_AXIS; i++) {
  5124. if(code_seen(axis_codes[i]))
  5125. {
  5126. destination[i] = (float)code_value() + (axis_relative_modes[i] || relative_mode)*current_position[i];
  5127. seen[i]=true;
  5128. }
  5129. else destination[i] = current_position[i]; //Are these else lines really needed?
  5130. }
  5131. if(code_seen('F')) {
  5132. next_feedrate = code_value();
  5133. #ifdef MAX_SILENT_FEEDRATE
  5134. if (tmc2130_mode == TMC2130_MODE_SILENT)
  5135. if (next_feedrate > MAX_SILENT_FEEDRATE) next_feedrate = MAX_SILENT_FEEDRATE;
  5136. #endif //MAX_SILENT_FEEDRATE
  5137. if(next_feedrate > 0.0) feedrate = next_feedrate;
  5138. }
  5139. }
  5140. void get_arc_coordinates()
  5141. {
  5142. #ifdef SF_ARC_FIX
  5143. bool relative_mode_backup = relative_mode;
  5144. relative_mode = true;
  5145. #endif
  5146. get_coordinates();
  5147. #ifdef SF_ARC_FIX
  5148. relative_mode=relative_mode_backup;
  5149. #endif
  5150. if(code_seen('I')) {
  5151. offset[0] = code_value();
  5152. }
  5153. else {
  5154. offset[0] = 0.0;
  5155. }
  5156. if(code_seen('J')) {
  5157. offset[1] = code_value();
  5158. }
  5159. else {
  5160. offset[1] = 0.0;
  5161. }
  5162. }
  5163. void clamp_to_software_endstops(float target[3])
  5164. {
  5165. world2machine_clamp(target[0], target[1]);
  5166. // Clamp the Z coordinate.
  5167. if (min_software_endstops) {
  5168. float negative_z_offset = 0;
  5169. #ifdef ENABLE_AUTO_BED_LEVELING
  5170. if (Z_PROBE_OFFSET_FROM_EXTRUDER < 0) negative_z_offset = negative_z_offset + Z_PROBE_OFFSET_FROM_EXTRUDER;
  5171. if (add_homing[Z_AXIS] < 0) negative_z_offset = negative_z_offset + add_homing[Z_AXIS];
  5172. #endif
  5173. if (target[Z_AXIS] < min_pos[Z_AXIS]+negative_z_offset) target[Z_AXIS] = min_pos[Z_AXIS]+negative_z_offset;
  5174. }
  5175. if (max_software_endstops) {
  5176. if (target[Z_AXIS] > max_pos[Z_AXIS]) target[Z_AXIS] = max_pos[Z_AXIS];
  5177. }
  5178. }
  5179. #ifdef MESH_BED_LEVELING
  5180. void mesh_plan_buffer_line(const float &x, const float &y, const float &z, const float &e, const float &feed_rate, const uint8_t extruder) {
  5181. float dx = x - current_position[X_AXIS];
  5182. float dy = y - current_position[Y_AXIS];
  5183. float dz = z - current_position[Z_AXIS];
  5184. int n_segments = 0;
  5185. if (mbl.active) {
  5186. float len = abs(dx) + abs(dy);
  5187. if (len > 0)
  5188. // Split to 3cm segments or shorter.
  5189. n_segments = int(ceil(len / 30.f));
  5190. }
  5191. if (n_segments > 1) {
  5192. float de = e - current_position[E_AXIS];
  5193. for (int i = 1; i < n_segments; ++ i) {
  5194. float t = float(i) / float(n_segments);
  5195. plan_buffer_line(
  5196. current_position[X_AXIS] + t * dx,
  5197. current_position[Y_AXIS] + t * dy,
  5198. current_position[Z_AXIS] + t * dz,
  5199. current_position[E_AXIS] + t * de,
  5200. feed_rate, extruder);
  5201. }
  5202. }
  5203. // The rest of the path.
  5204. plan_buffer_line(x, y, z, e, feed_rate, extruder);
  5205. current_position[X_AXIS] = x;
  5206. current_position[Y_AXIS] = y;
  5207. current_position[Z_AXIS] = z;
  5208. current_position[E_AXIS] = e;
  5209. }
  5210. #endif // MESH_BED_LEVELING
  5211. void prepare_move()
  5212. {
  5213. clamp_to_software_endstops(destination);
  5214. previous_millis_cmd = millis();
  5215. // Do not use feedmultiply for E or Z only moves
  5216. if( (current_position[X_AXIS] == destination [X_AXIS]) && (current_position[Y_AXIS] == destination [Y_AXIS])) {
  5217. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  5218. }
  5219. else {
  5220. #ifdef MESH_BED_LEVELING
  5221. mesh_plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate*feedmultiply*(1./(60.f*100.f)), active_extruder);
  5222. #else
  5223. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate*feedmultiply*(1./(60.f*100.f)), active_extruder);
  5224. #endif
  5225. }
  5226. for(int8_t i=0; i < NUM_AXIS; i++) {
  5227. current_position[i] = destination[i];
  5228. }
  5229. }
  5230. void prepare_arc_move(char isclockwise) {
  5231. float r = hypot(offset[X_AXIS], offset[Y_AXIS]); // Compute arc radius for mc_arc
  5232. // Trace the arc
  5233. mc_arc(current_position, destination, offset, X_AXIS, Y_AXIS, Z_AXIS, feedrate*feedmultiply/60/100.0, r, isclockwise, active_extruder);
  5234. // As far as the parser is concerned, the position is now == target. In reality the
  5235. // motion control system might still be processing the action and the real tool position
  5236. // in any intermediate location.
  5237. for(int8_t i=0; i < NUM_AXIS; i++) {
  5238. current_position[i] = destination[i];
  5239. }
  5240. previous_millis_cmd = millis();
  5241. }
  5242. #if defined(CONTROLLERFAN_PIN) && CONTROLLERFAN_PIN > -1
  5243. #if defined(FAN_PIN)
  5244. #if CONTROLLERFAN_PIN == FAN_PIN
  5245. #error "You cannot set CONTROLLERFAN_PIN equal to FAN_PIN"
  5246. #endif
  5247. #endif
  5248. unsigned long lastMotor = 0; //Save the time for when a motor was turned on last
  5249. unsigned long lastMotorCheck = 0;
  5250. void controllerFan()
  5251. {
  5252. if ((millis() - lastMotorCheck) >= 2500) //Not a time critical function, so we only check every 2500ms
  5253. {
  5254. lastMotorCheck = millis();
  5255. if(!READ(X_ENABLE_PIN) || !READ(Y_ENABLE_PIN) || !READ(Z_ENABLE_PIN) || (soft_pwm_bed > 0)
  5256. #if EXTRUDERS > 2
  5257. || !READ(E2_ENABLE_PIN)
  5258. #endif
  5259. #if EXTRUDER > 1
  5260. #if defined(X2_ENABLE_PIN) && X2_ENABLE_PIN > -1
  5261. || !READ(X2_ENABLE_PIN)
  5262. #endif
  5263. || !READ(E1_ENABLE_PIN)
  5264. #endif
  5265. || !READ(E0_ENABLE_PIN)) //If any of the drivers are enabled...
  5266. {
  5267. lastMotor = millis(); //... set time to NOW so the fan will turn on
  5268. }
  5269. if ((millis() - lastMotor) >= (CONTROLLERFAN_SECS*1000UL) || lastMotor == 0) //If the last time any driver was enabled, is longer since than CONTROLLERSEC...
  5270. {
  5271. digitalWrite(CONTROLLERFAN_PIN, 0);
  5272. analogWrite(CONTROLLERFAN_PIN, 0);
  5273. }
  5274. else
  5275. {
  5276. // allows digital or PWM fan output to be used (see M42 handling)
  5277. digitalWrite(CONTROLLERFAN_PIN, CONTROLLERFAN_SPEED);
  5278. analogWrite(CONTROLLERFAN_PIN, CONTROLLERFAN_SPEED);
  5279. }
  5280. }
  5281. }
  5282. #endif
  5283. #ifdef TEMP_STAT_LEDS
  5284. static bool blue_led = false;
  5285. static bool red_led = false;
  5286. static uint32_t stat_update = 0;
  5287. void handle_status_leds(void) {
  5288. float max_temp = 0.0;
  5289. if(millis() > stat_update) {
  5290. stat_update += 500; // Update every 0.5s
  5291. for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) {
  5292. max_temp = max(max_temp, degHotend(cur_extruder));
  5293. max_temp = max(max_temp, degTargetHotend(cur_extruder));
  5294. }
  5295. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  5296. max_temp = max(max_temp, degTargetBed());
  5297. max_temp = max(max_temp, degBed());
  5298. #endif
  5299. if((max_temp > 55.0) && (red_led == false)) {
  5300. digitalWrite(STAT_LED_RED, 1);
  5301. digitalWrite(STAT_LED_BLUE, 0);
  5302. red_led = true;
  5303. blue_led = false;
  5304. }
  5305. if((max_temp < 54.0) && (blue_led == false)) {
  5306. digitalWrite(STAT_LED_RED, 0);
  5307. digitalWrite(STAT_LED_BLUE, 1);
  5308. red_led = false;
  5309. blue_led = true;
  5310. }
  5311. }
  5312. }
  5313. #endif
  5314. void manage_inactivity(bool ignore_stepper_queue/*=false*/) //default argument set in Marlin.h
  5315. {
  5316. #if defined(KILL_PIN) && KILL_PIN > -1
  5317. static int killCount = 0; // make the inactivity button a bit less responsive
  5318. const int KILL_DELAY = 10000;
  5319. #endif
  5320. if(buflen < (BUFSIZE-1)){
  5321. get_command();
  5322. }
  5323. if( (millis() - previous_millis_cmd) > max_inactive_time )
  5324. if(max_inactive_time)
  5325. kill("", 4);
  5326. if(stepper_inactive_time) {
  5327. if( (millis() - previous_millis_cmd) > stepper_inactive_time )
  5328. {
  5329. if(blocks_queued() == false && ignore_stepper_queue == false) {
  5330. disable_x();
  5331. // SERIAL_ECHOLNPGM("manage_inactivity - disable Y");
  5332. disable_y();
  5333. disable_z();
  5334. disable_e0();
  5335. disable_e1();
  5336. disable_e2();
  5337. }
  5338. }
  5339. }
  5340. #ifdef CHDK //Check if pin should be set to LOW after M240 set it to HIGH
  5341. if (chdkActive && (millis() - chdkHigh > CHDK_DELAY))
  5342. {
  5343. chdkActive = false;
  5344. WRITE(CHDK, LOW);
  5345. }
  5346. #endif
  5347. #if defined(KILL_PIN) && KILL_PIN > -1
  5348. // Check if the kill button was pressed and wait just in case it was an accidental
  5349. // key kill key press
  5350. // -------------------------------------------------------------------------------
  5351. if( 0 == READ(KILL_PIN) )
  5352. {
  5353. killCount++;
  5354. }
  5355. else if (killCount > 0)
  5356. {
  5357. killCount--;
  5358. }
  5359. // Exceeded threshold and we can confirm that it was not accidental
  5360. // KILL the machine
  5361. // ----------------------------------------------------------------
  5362. if ( killCount >= KILL_DELAY)
  5363. {
  5364. kill("", 5);
  5365. }
  5366. #endif
  5367. #if defined(CONTROLLERFAN_PIN) && CONTROLLERFAN_PIN > -1
  5368. controllerFan(); //Check if fan should be turned on to cool stepper drivers down
  5369. #endif
  5370. #ifdef EXTRUDER_RUNOUT_PREVENT
  5371. if( (millis() - previous_millis_cmd) > EXTRUDER_RUNOUT_SECONDS*1000 )
  5372. if(degHotend(active_extruder)>EXTRUDER_RUNOUT_MINTEMP)
  5373. {
  5374. bool oldstatus=READ(E0_ENABLE_PIN);
  5375. enable_e0();
  5376. float oldepos=current_position[E_AXIS];
  5377. float oldedes=destination[E_AXIS];
  5378. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS],
  5379. destination[E_AXIS]+EXTRUDER_RUNOUT_EXTRUDE*EXTRUDER_RUNOUT_ESTEPS/axis_steps_per_unit[E_AXIS],
  5380. EXTRUDER_RUNOUT_SPEED/60.*EXTRUDER_RUNOUT_ESTEPS/axis_steps_per_unit[E_AXIS], active_extruder);
  5381. current_position[E_AXIS]=oldepos;
  5382. destination[E_AXIS]=oldedes;
  5383. plan_set_e_position(oldepos);
  5384. previous_millis_cmd=millis();
  5385. st_synchronize();
  5386. WRITE(E0_ENABLE_PIN,oldstatus);
  5387. }
  5388. #endif
  5389. #ifdef TEMP_STAT_LEDS
  5390. handle_status_leds();
  5391. #endif
  5392. check_axes_activity();
  5393. }
  5394. void kill(const char *full_screen_message, unsigned char id)
  5395. {
  5396. SERIAL_ECHOPGM("KILL: ");
  5397. MYSERIAL.println(int(id));
  5398. //return;
  5399. cli(); // Stop interrupts
  5400. disable_heater();
  5401. disable_x();
  5402. // SERIAL_ECHOLNPGM("kill - disable Y");
  5403. disable_y();
  5404. disable_z();
  5405. disable_e0();
  5406. disable_e1();
  5407. disable_e2();
  5408. #if defined(PS_ON_PIN) && PS_ON_PIN > -1
  5409. pinMode(PS_ON_PIN,INPUT);
  5410. #endif
  5411. SERIAL_ERROR_START;
  5412. SERIAL_ERRORLNRPGM(MSG_ERR_KILLED);
  5413. if (full_screen_message != NULL) {
  5414. SERIAL_ERRORLNRPGM(full_screen_message);
  5415. lcd_display_message_fullscreen_P(full_screen_message);
  5416. } else {
  5417. LCD_ALERTMESSAGERPGM(MSG_KILLED);
  5418. }
  5419. // FMC small patch to update the LCD before ending
  5420. sei(); // enable interrupts
  5421. for ( int i=5; i--; lcd_update())
  5422. {
  5423. delay(200);
  5424. }
  5425. cli(); // disable interrupts
  5426. suicide();
  5427. while(1) { /* Intentionally left empty */ } // Wait for reset
  5428. }
  5429. void Stop()
  5430. {
  5431. disable_heater();
  5432. if(Stopped == false) {
  5433. Stopped = true;
  5434. Stopped_gcode_LastN = gcode_LastN; // Save last g_code for restart
  5435. SERIAL_ERROR_START;
  5436. SERIAL_ERRORLNRPGM(MSG_ERR_STOPPED);
  5437. LCD_MESSAGERPGM(MSG_STOPPED);
  5438. }
  5439. }
  5440. bool IsStopped() { return Stopped; };
  5441. #ifdef FAST_PWM_FAN
  5442. void setPwmFrequency(uint8_t pin, int val)
  5443. {
  5444. val &= 0x07;
  5445. switch(digitalPinToTimer(pin))
  5446. {
  5447. #if defined(TCCR0A)
  5448. case TIMER0A:
  5449. case TIMER0B:
  5450. // TCCR0B &= ~(_BV(CS00) | _BV(CS01) | _BV(CS02));
  5451. // TCCR0B |= val;
  5452. break;
  5453. #endif
  5454. #if defined(TCCR1A)
  5455. case TIMER1A:
  5456. case TIMER1B:
  5457. // TCCR1B &= ~(_BV(CS10) | _BV(CS11) | _BV(CS12));
  5458. // TCCR1B |= val;
  5459. break;
  5460. #endif
  5461. #if defined(TCCR2)
  5462. case TIMER2:
  5463. case TIMER2:
  5464. TCCR2 &= ~(_BV(CS10) | _BV(CS11) | _BV(CS12));
  5465. TCCR2 |= val;
  5466. break;
  5467. #endif
  5468. #if defined(TCCR2A)
  5469. case TIMER2A:
  5470. case TIMER2B:
  5471. TCCR2B &= ~(_BV(CS20) | _BV(CS21) | _BV(CS22));
  5472. TCCR2B |= val;
  5473. break;
  5474. #endif
  5475. #if defined(TCCR3A)
  5476. case TIMER3A:
  5477. case TIMER3B:
  5478. case TIMER3C:
  5479. TCCR3B &= ~(_BV(CS30) | _BV(CS31) | _BV(CS32));
  5480. TCCR3B |= val;
  5481. break;
  5482. #endif
  5483. #if defined(TCCR4A)
  5484. case TIMER4A:
  5485. case TIMER4B:
  5486. case TIMER4C:
  5487. TCCR4B &= ~(_BV(CS40) | _BV(CS41) | _BV(CS42));
  5488. TCCR4B |= val;
  5489. break;
  5490. #endif
  5491. #if defined(TCCR5A)
  5492. case TIMER5A:
  5493. case TIMER5B:
  5494. case TIMER5C:
  5495. TCCR5B &= ~(_BV(CS50) | _BV(CS51) | _BV(CS52));
  5496. TCCR5B |= val;
  5497. break;
  5498. #endif
  5499. }
  5500. }
  5501. #endif //FAST_PWM_FAN
  5502. bool setTargetedHotend(int code){
  5503. tmp_extruder = active_extruder;
  5504. if(code_seen('T')) {
  5505. tmp_extruder = code_value();
  5506. if(tmp_extruder >= EXTRUDERS) {
  5507. SERIAL_ECHO_START;
  5508. switch(code){
  5509. case 104:
  5510. SERIAL_ECHORPGM(MSG_M104_INVALID_EXTRUDER);
  5511. break;
  5512. case 105:
  5513. SERIAL_ECHO(MSG_M105_INVALID_EXTRUDER);
  5514. break;
  5515. case 109:
  5516. SERIAL_ECHO(MSG_M109_INVALID_EXTRUDER);
  5517. break;
  5518. case 218:
  5519. SERIAL_ECHO(MSG_M218_INVALID_EXTRUDER);
  5520. break;
  5521. case 221:
  5522. SERIAL_ECHO(MSG_M221_INVALID_EXTRUDER);
  5523. break;
  5524. }
  5525. SERIAL_PROTOCOLLN((int)tmp_extruder);
  5526. return true;
  5527. }
  5528. }
  5529. return false;
  5530. }
  5531. void save_statistics(unsigned long _total_filament_used, unsigned long _total_print_time) //_total_filament_used unit: mm/100; print time in s
  5532. {
  5533. if (eeprom_read_byte((uint8_t *)EEPROM_TOTALTIME) == 255 && eeprom_read_byte((uint8_t *)EEPROM_TOTALTIME + 1) == 255 && eeprom_read_byte((uint8_t *)EEPROM_TOTALTIME + 2) == 255 && eeprom_read_byte((uint8_t *)EEPROM_TOTALTIME + 3) == 255)
  5534. {
  5535. eeprom_update_dword((uint32_t *)EEPROM_TOTALTIME, 0);
  5536. eeprom_update_dword((uint32_t *)EEPROM_FILAMENTUSED, 0);
  5537. }
  5538. unsigned long _previous_filament = eeprom_read_dword((uint32_t *)EEPROM_FILAMENTUSED); //_previous_filament unit: cm
  5539. unsigned long _previous_time = eeprom_read_dword((uint32_t *)EEPROM_TOTALTIME); //_previous_time unit: min
  5540. eeprom_update_dword((uint32_t *)EEPROM_TOTALTIME, _previous_time + (_total_print_time/60)); //EEPROM_TOTALTIME unit: min
  5541. eeprom_update_dword((uint32_t *)EEPROM_FILAMENTUSED, _previous_filament + (_total_filament_used / 1000));
  5542. total_filament_used = 0;
  5543. }
  5544. float calculate_volumetric_multiplier(float diameter) {
  5545. float area = .0;
  5546. float radius = .0;
  5547. radius = diameter * .5;
  5548. if (! volumetric_enabled || radius == 0) {
  5549. area = 1;
  5550. }
  5551. else {
  5552. area = M_PI * pow(radius, 2);
  5553. }
  5554. return 1.0 / area;
  5555. }
  5556. void calculate_volumetric_multipliers() {
  5557. volumetric_multiplier[0] = calculate_volumetric_multiplier(filament_size[0]);
  5558. #if EXTRUDERS > 1
  5559. volumetric_multiplier[1] = calculate_volumetric_multiplier(filament_size[1]);
  5560. #if EXTRUDERS > 2
  5561. volumetric_multiplier[2] = calculate_volumetric_multiplier(filament_size[2]);
  5562. #endif
  5563. #endif
  5564. }
  5565. void delay_keep_alive(unsigned int ms)
  5566. {
  5567. for (;;) {
  5568. manage_heater();
  5569. // Manage inactivity, but don't disable steppers on timeout.
  5570. manage_inactivity(true);
  5571. lcd_update();
  5572. if (ms == 0)
  5573. break;
  5574. else if (ms >= 50) {
  5575. delay(50);
  5576. ms -= 50;
  5577. } else {
  5578. delay(ms);
  5579. ms = 0;
  5580. }
  5581. }
  5582. }
  5583. void wait_for_heater(long codenum) {
  5584. #ifdef TEMP_RESIDENCY_TIME
  5585. long residencyStart;
  5586. residencyStart = -1;
  5587. /* continue to loop until we have reached the target temp
  5588. _and_ until TEMP_RESIDENCY_TIME hasn't passed since we reached it */
  5589. while ((!cancel_heatup) && ((residencyStart == -1) ||
  5590. (residencyStart >= 0 && (((unsigned int)(millis() - residencyStart)) < (TEMP_RESIDENCY_TIME * 1000UL))))) {
  5591. #else
  5592. while (target_direction ? (isHeatingHotend(tmp_extruder)) : (isCoolingHotend(tmp_extruder) && (CooldownNoWait == false))) {
  5593. #endif //TEMP_RESIDENCY_TIME
  5594. if ((millis() - codenum) > 1000UL)
  5595. { //Print Temp Reading and remaining time every 1 second while heating up/cooling down
  5596. if (!farm_mode) {
  5597. SERIAL_PROTOCOLPGM("T:");
  5598. SERIAL_PROTOCOL_F(degHotend(tmp_extruder), 1);
  5599. SERIAL_PROTOCOLPGM(" E:");
  5600. SERIAL_PROTOCOL((int)tmp_extruder);
  5601. #ifdef TEMP_RESIDENCY_TIME
  5602. SERIAL_PROTOCOLPGM(" W:");
  5603. if (residencyStart > -1)
  5604. {
  5605. codenum = ((TEMP_RESIDENCY_TIME * 1000UL) - (millis() - residencyStart)) / 1000UL;
  5606. SERIAL_PROTOCOLLN(codenum);
  5607. }
  5608. else
  5609. {
  5610. SERIAL_PROTOCOLLN("?");
  5611. }
  5612. }
  5613. #else
  5614. SERIAL_PROTOCOLLN("");
  5615. #endif
  5616. codenum = millis();
  5617. }
  5618. manage_heater();
  5619. manage_inactivity();
  5620. lcd_update();
  5621. #ifdef TEMP_RESIDENCY_TIME
  5622. /* start/restart the TEMP_RESIDENCY_TIME timer whenever we reach target temp for the first time
  5623. or when current temp falls outside the hysteresis after target temp was reached */
  5624. if ((residencyStart == -1 && target_direction && (degHotend(tmp_extruder) >= (degTargetHotend(tmp_extruder) - TEMP_WINDOW))) ||
  5625. (residencyStart == -1 && !target_direction && (degHotend(tmp_extruder) <= (degTargetHotend(tmp_extruder) + TEMP_WINDOW))) ||
  5626. (residencyStart > -1 && labs(degHotend(tmp_extruder) - degTargetHotend(tmp_extruder)) > TEMP_HYSTERESIS))
  5627. {
  5628. residencyStart = millis();
  5629. }
  5630. #endif //TEMP_RESIDENCY_TIME
  5631. }
  5632. }
  5633. void check_babystep() {
  5634. int babystep_z;
  5635. EEPROM_read_B(EEPROM_BABYSTEP_Z, &babystep_z);
  5636. if ((babystep_z < Z_BABYSTEP_MIN) || (babystep_z > Z_BABYSTEP_MAX)) {
  5637. babystep_z = 0; //if babystep value is out of min max range, set it to 0
  5638. SERIAL_ECHOLNPGM("Z live adjust out of range. Setting to 0");
  5639. EEPROM_save_B(EEPROM_BABYSTEP_Z, &babystep_z);
  5640. lcd_show_fullscreen_message_and_wait_P(PSTR("Z live adjust out of range. Setting to 0. Click to continue."));
  5641. lcd_update_enable(true);
  5642. }
  5643. }
  5644. #ifdef DIS
  5645. void d_setup()
  5646. {
  5647. pinMode(D_DATACLOCK, INPUT_PULLUP);
  5648. pinMode(D_DATA, INPUT_PULLUP);
  5649. pinMode(D_REQUIRE, OUTPUT);
  5650. digitalWrite(D_REQUIRE, HIGH);
  5651. }
  5652. float d_ReadData()
  5653. {
  5654. int digit[13];
  5655. String mergeOutput;
  5656. float output;
  5657. digitalWrite(D_REQUIRE, HIGH);
  5658. for (int i = 0; i<13; i++)
  5659. {
  5660. for (int j = 0; j < 4; j++)
  5661. {
  5662. while (digitalRead(D_DATACLOCK) == LOW) {}
  5663. while (digitalRead(D_DATACLOCK) == HIGH) {}
  5664. bitWrite(digit[i], j, digitalRead(D_DATA));
  5665. }
  5666. }
  5667. digitalWrite(D_REQUIRE, LOW);
  5668. mergeOutput = "";
  5669. output = 0;
  5670. for (int r = 5; r <= 10; r++) //Merge digits
  5671. {
  5672. mergeOutput += digit[r];
  5673. }
  5674. output = mergeOutput.toFloat();
  5675. if (digit[4] == 8) //Handle sign
  5676. {
  5677. output *= -1;
  5678. }
  5679. for (int i = digit[11]; i > 0; i--) //Handle floating point
  5680. {
  5681. output /= 10;
  5682. }
  5683. return output;
  5684. }
  5685. void bed_analysis(float x_dimension, float y_dimension, int x_points_num, int y_points_num, float shift_x, float shift_y) {
  5686. int t1 = 0;
  5687. int t_delay = 0;
  5688. int digit[13];
  5689. int m;
  5690. char str[3];
  5691. //String mergeOutput;
  5692. char mergeOutput[15];
  5693. float output;
  5694. int mesh_point = 0; //index number of calibration point
  5695. float bed_zero_ref_x = (-22.f + X_PROBE_OFFSET_FROM_EXTRUDER); //shift between zero point on bed and target and between probe and nozzle
  5696. float bed_zero_ref_y = (-0.6f + Y_PROBE_OFFSET_FROM_EXTRUDER);
  5697. float mesh_home_z_search = 4;
  5698. float row[x_points_num];
  5699. int ix = 0;
  5700. int iy = 0;
  5701. char* filename_wldsd = "wldsd.txt";
  5702. char data_wldsd[70];
  5703. char numb_wldsd[10];
  5704. d_setup();
  5705. if (!(axis_known_position[X_AXIS] && axis_known_position[Y_AXIS] && axis_known_position[Z_AXIS])) {
  5706. // We don't know where we are! HOME!
  5707. // Push the commands to the front of the message queue in the reverse order!
  5708. // There shall be always enough space reserved for these commands.
  5709. repeatcommand_front(); // repeat G80 with all its parameters
  5710. enquecommand_front_P((PSTR("G28 W0")));
  5711. enquecommand_front_P((PSTR("G1 Z5")));
  5712. return;
  5713. }
  5714. bool custom_message_old = custom_message;
  5715. unsigned int custom_message_type_old = custom_message_type;
  5716. unsigned int custom_message_state_old = custom_message_state;
  5717. custom_message = true;
  5718. custom_message_type = 1;
  5719. custom_message_state = (x_points_num * y_points_num) + 10;
  5720. lcd_update(1);
  5721. mbl.reset();
  5722. babystep_undo();
  5723. card.openFile(filename_wldsd, false);
  5724. current_position[Z_AXIS] = mesh_home_z_search;
  5725. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[Z_AXIS] / 60, active_extruder);
  5726. int XY_AXIS_FEEDRATE = homing_feedrate[X_AXIS] / 20;
  5727. int Z_PROBE_FEEDRATE = homing_feedrate[Z_AXIS] / 60;
  5728. int Z_LIFT_FEEDRATE = homing_feedrate[Z_AXIS] / 40;
  5729. setup_for_endstop_move(false);
  5730. SERIAL_PROTOCOLPGM("Num X,Y: ");
  5731. SERIAL_PROTOCOL(x_points_num);
  5732. SERIAL_PROTOCOLPGM(",");
  5733. SERIAL_PROTOCOL(y_points_num);
  5734. SERIAL_PROTOCOLPGM("\nZ search height: ");
  5735. SERIAL_PROTOCOL(mesh_home_z_search);
  5736. SERIAL_PROTOCOLPGM("\nDimension X,Y: ");
  5737. SERIAL_PROTOCOL(x_dimension);
  5738. SERIAL_PROTOCOLPGM(",");
  5739. SERIAL_PROTOCOL(y_dimension);
  5740. SERIAL_PROTOCOLLNPGM("\nMeasured points:");
  5741. while (mesh_point != x_points_num * y_points_num) {
  5742. ix = mesh_point % x_points_num; // from 0 to MESH_NUM_X_POINTS - 1
  5743. iy = mesh_point / x_points_num;
  5744. if (iy & 1) ix = (x_points_num - 1) - ix; // Zig zag
  5745. float z0 = 0.f;
  5746. current_position[Z_AXIS] = mesh_home_z_search;
  5747. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], Z_LIFT_FEEDRATE, active_extruder);
  5748. st_synchronize();
  5749. current_position[X_AXIS] = 13.f + ix * (x_dimension / (x_points_num - 1)) - bed_zero_ref_x + shift_x;
  5750. current_position[Y_AXIS] = 6.4f + iy * (y_dimension / (y_points_num - 1)) - bed_zero_ref_y + shift_y;
  5751. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], XY_AXIS_FEEDRATE, active_extruder);
  5752. st_synchronize();
  5753. if (!find_bed_induction_sensor_point_z(-10.f)) { //if we have data from z calibration max allowed difference is 1mm for each point, if we dont have data max difference is 10mm from initial point
  5754. break;
  5755. card.closefile();
  5756. }
  5757. //memset(numb_wldsd, 0, sizeof(numb_wldsd));
  5758. //dtostrf(d_ReadData(), 8, 5, numb_wldsd);
  5759. //strcat(data_wldsd, numb_wldsd);
  5760. //MYSERIAL.println(data_wldsd);
  5761. //delay(1000);
  5762. //delay(3000);
  5763. //t1 = millis();
  5764. //while (digitalRead(D_DATACLOCK) == LOW) {}
  5765. //while (digitalRead(D_DATACLOCK) == HIGH) {}
  5766. memset(digit, 0, sizeof(digit));
  5767. //cli();
  5768. digitalWrite(D_REQUIRE, LOW);
  5769. for (int i = 0; i<13; i++)
  5770. {
  5771. //t1 = millis();
  5772. for (int j = 0; j < 4; j++)
  5773. {
  5774. while (digitalRead(D_DATACLOCK) == LOW) {}
  5775. while (digitalRead(D_DATACLOCK) == HIGH) {}
  5776. bitWrite(digit[i], j, digitalRead(D_DATA));
  5777. }
  5778. //t_delay = (millis() - t1);
  5779. //SERIAL_PROTOCOLPGM(" ");
  5780. //SERIAL_PROTOCOL_F(t_delay, 5);
  5781. //SERIAL_PROTOCOLPGM(" ");
  5782. }
  5783. //sei();
  5784. digitalWrite(D_REQUIRE, HIGH);
  5785. mergeOutput[0] = '\0';
  5786. output = 0;
  5787. for (int r = 5; r <= 10; r++) //Merge digits
  5788. {
  5789. sprintf(str, "%d", digit[r]);
  5790. strcat(mergeOutput, str);
  5791. }
  5792. output = atof(mergeOutput);
  5793. if (digit[4] == 8) //Handle sign
  5794. {
  5795. output *= -1;
  5796. }
  5797. for (int i = digit[11]; i > 0; i--) //Handle floating point
  5798. {
  5799. output *= 0.1;
  5800. }
  5801. //output = d_ReadData();
  5802. //row[ix] = current_position[Z_AXIS];
  5803. memset(data_wldsd, 0, sizeof(data_wldsd));
  5804. for (int i = 0; i <3; i++) {
  5805. memset(numb_wldsd, 0, sizeof(numb_wldsd));
  5806. dtostrf(current_position[i], 8, 5, numb_wldsd);
  5807. strcat(data_wldsd, numb_wldsd);
  5808. strcat(data_wldsd, ";");
  5809. }
  5810. memset(numb_wldsd, 0, sizeof(numb_wldsd));
  5811. dtostrf(output, 8, 5, numb_wldsd);
  5812. strcat(data_wldsd, numb_wldsd);
  5813. //strcat(data_wldsd, ";");
  5814. card.write_command(data_wldsd);
  5815. //row[ix] = d_ReadData();
  5816. row[ix] = output; // current_position[Z_AXIS];
  5817. if (iy % 2 == 1 ? ix == 0 : ix == x_points_num - 1) {
  5818. for (int i = 0; i < x_points_num; i++) {
  5819. SERIAL_PROTOCOLPGM(" ");
  5820. SERIAL_PROTOCOL_F(row[i], 5);
  5821. }
  5822. SERIAL_PROTOCOLPGM("\n");
  5823. }
  5824. custom_message_state--;
  5825. mesh_point++;
  5826. lcd_update(1);
  5827. }
  5828. card.closefile();
  5829. }
  5830. #endif
  5831. void temp_compensation_start() {
  5832. custom_message = true;
  5833. custom_message_type = 5;
  5834. custom_message_state = PINDA_HEAT_T + 1;
  5835. lcd_update(2);
  5836. if (degHotend(active_extruder) > EXTRUDE_MINTEMP) {
  5837. current_position[E_AXIS] -= DEFAULT_RETRACTION;
  5838. }
  5839. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400, active_extruder);
  5840. current_position[X_AXIS] = PINDA_PREHEAT_X;
  5841. current_position[Y_AXIS] = PINDA_PREHEAT_Y;
  5842. current_position[Z_AXIS] = PINDA_PREHEAT_Z;
  5843. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  5844. st_synchronize();
  5845. while (fabs(degBed() - target_temperature_bed) > 1) delay_keep_alive(1000);
  5846. for (int i = 0; i < PINDA_HEAT_T; i++) {
  5847. delay_keep_alive(1000);
  5848. custom_message_state = PINDA_HEAT_T - i;
  5849. if (custom_message_state == 99 || custom_message_state == 9) lcd_update(2); //force whole display redraw if number of digits changed
  5850. else lcd_update(1);
  5851. }
  5852. custom_message_type = 0;
  5853. custom_message_state = 0;
  5854. custom_message = false;
  5855. }
  5856. void temp_compensation_apply() {
  5857. int i_add;
  5858. int compensation_value;
  5859. int z_shift = 0;
  5860. float z_shift_mm;
  5861. if (calibration_status() == CALIBRATION_STATUS_CALIBRATED) {
  5862. if (target_temperature_bed % 10 == 0 && target_temperature_bed >= 60 && target_temperature_bed <= 100) {
  5863. i_add = (target_temperature_bed - 60) / 10;
  5864. EEPROM_read_B(EEPROM_PROBE_TEMP_SHIFT + i_add * 2, &z_shift);
  5865. z_shift_mm = z_shift / axis_steps_per_unit[Z_AXIS];
  5866. }else {
  5867. //interpolation
  5868. z_shift_mm = temp_comp_interpolation(target_temperature_bed) / axis_steps_per_unit[Z_AXIS];
  5869. }
  5870. SERIAL_PROTOCOLPGM("\n");
  5871. SERIAL_PROTOCOLPGM("Z shift applied:");
  5872. MYSERIAL.print(z_shift_mm);
  5873. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS] - z_shift_mm, current_position[E_AXIS], homing_feedrate[Z_AXIS] / 40, active_extruder);
  5874. st_synchronize();
  5875. plan_set_z_position(current_position[Z_AXIS]);
  5876. }
  5877. else {
  5878. //we have no temp compensation data
  5879. }
  5880. }
  5881. float temp_comp_interpolation(float inp_temperature) {
  5882. //cubic spline interpolation
  5883. int n, i, j, k;
  5884. float h[10], a, b, c, d, sum, s[10] = { 0 }, x[10], F[10], f[10], m[10][10] = { 0 }, temp;
  5885. int shift[10];
  5886. int temp_C[10];
  5887. n = 6; //number of measured points
  5888. shift[0] = 0;
  5889. for (i = 0; i < n; i++) {
  5890. if (i>0) EEPROM_read_B(EEPROM_PROBE_TEMP_SHIFT + (i-1) * 2, &shift[i]); //read shift in steps from EEPROM
  5891. temp_C[i] = 50 + i * 10; //temperature in C
  5892. x[i] = (float)temp_C[i];
  5893. f[i] = (float)shift[i];
  5894. }
  5895. if (inp_temperature < x[0]) return 0;
  5896. for (i = n - 1; i>0; i--) {
  5897. F[i] = (f[i] - f[i - 1]) / (x[i] - x[i - 1]);
  5898. h[i - 1] = x[i] - x[i - 1];
  5899. }
  5900. //*********** formation of h, s , f matrix **************
  5901. for (i = 1; i<n - 1; i++) {
  5902. m[i][i] = 2 * (h[i - 1] + h[i]);
  5903. if (i != 1) {
  5904. m[i][i - 1] = h[i - 1];
  5905. m[i - 1][i] = h[i - 1];
  5906. }
  5907. m[i][n - 1] = 6 * (F[i + 1] - F[i]);
  5908. }
  5909. //*********** forward elimination **************
  5910. for (i = 1; i<n - 2; i++) {
  5911. temp = (m[i + 1][i] / m[i][i]);
  5912. for (j = 1; j <= n - 1; j++)
  5913. m[i + 1][j] -= temp*m[i][j];
  5914. }
  5915. //*********** backward substitution *********
  5916. for (i = n - 2; i>0; i--) {
  5917. sum = 0;
  5918. for (j = i; j <= n - 2; j++)
  5919. sum += m[i][j] * s[j];
  5920. s[i] = (m[i][n - 1] - sum) / m[i][i];
  5921. }
  5922. for (i = 0; i<n - 1; i++)
  5923. if ((x[i] <= inp_temperature && inp_temperature <= x[i + 1]) || (i == n-2 && inp_temperature > x[i + 1])) {
  5924. a = (s[i + 1] - s[i]) / (6 * h[i]);
  5925. b = s[i] / 2;
  5926. c = (f[i + 1] - f[i]) / h[i] - (2 * h[i] * s[i] + s[i + 1] * h[i]) / 6;
  5927. d = f[i];
  5928. sum = a*pow((inp_temperature - x[i]), 3) + b*pow((inp_temperature - x[i]), 2) + c*(inp_temperature - x[i]) + d;
  5929. }
  5930. return sum;
  5931. }
  5932. void long_pause() //long pause print
  5933. {
  5934. st_synchronize();
  5935. //save currently set parameters to global variables
  5936. saved_feedmultiply = feedmultiply;
  5937. HotendTempBckp = degTargetHotend(active_extruder);
  5938. fanSpeedBckp = fanSpeed;
  5939. start_pause_print = millis();
  5940. //save position
  5941. pause_lastpos[X_AXIS] = current_position[X_AXIS];
  5942. pause_lastpos[Y_AXIS] = current_position[Y_AXIS];
  5943. pause_lastpos[Z_AXIS] = current_position[Z_AXIS];
  5944. pause_lastpos[E_AXIS] = current_position[E_AXIS];
  5945. //retract
  5946. current_position[E_AXIS] -= DEFAULT_RETRACTION;
  5947. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400, active_extruder);
  5948. //lift z
  5949. current_position[Z_AXIS] += Z_PAUSE_LIFT;
  5950. if (current_position[Z_AXIS] > Z_MAX_POS) current_position[Z_AXIS] = Z_MAX_POS;
  5951. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 15, active_extruder);
  5952. //set nozzle target temperature to 0
  5953. setTargetHotend(0, 0);
  5954. setTargetHotend(0, 1);
  5955. setTargetHotend(0, 2);
  5956. //Move XY to side
  5957. current_position[X_AXIS] = X_PAUSE_POS;
  5958. current_position[Y_AXIS] = Y_PAUSE_POS;
  5959. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 50, active_extruder);
  5960. // Turn off the print fan
  5961. fanSpeed = 0;
  5962. st_synchronize();
  5963. }
  5964. void serialecho_temperatures() {
  5965. float tt = degHotend(active_extruder);
  5966. SERIAL_PROTOCOLPGM("T:");
  5967. SERIAL_PROTOCOL(tt);
  5968. SERIAL_PROTOCOLPGM(" E:");
  5969. SERIAL_PROTOCOL((int)active_extruder);
  5970. SERIAL_PROTOCOLPGM(" B:");
  5971. SERIAL_PROTOCOL_F(degBed(), 1);
  5972. SERIAL_PROTOCOLLN("");
  5973. }
  5974. void uvlo_() {
  5975. //SERIAL_ECHOLNPGM("UVLO");
  5976. save_print_to_eeprom();
  5977. float current_position_bckp[2];
  5978. int feedrate_bckp = feedrate;
  5979. current_position_bckp[X_AXIS] = st_get_position_mm(X_AXIS);
  5980. current_position_bckp[Y_AXIS] = st_get_position_mm(Y_AXIS);
  5981. eeprom_update_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 0), current_position_bckp[X_AXIS]);
  5982. eeprom_update_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 4), current_position_bckp[Y_AXIS]);
  5983. eeprom_update_float((float*)(EEPROM_UVLO_CURRENT_POSITION_Z), current_position[Z_AXIS]);
  5984. EEPROM_save_B(EEPROM_UVLO_FEEDRATE, &feedrate_bckp);
  5985. eeprom_update_byte((uint8_t*)EEPROM_UVLO_TARGET_HOTEND, target_temperature[active_extruder]);
  5986. eeprom_update_byte((uint8_t*)EEPROM_UVLO_TARGET_BED, target_temperature_bed);
  5987. eeprom_update_byte((uint8_t*)EEPROM_UVLO_FAN_SPEED, fanSpeed);
  5988. disable_x();
  5989. disable_y();
  5990. planner_abort_hard();
  5991. // Because the planner_abort_hard() initialized current_position[Z] from the stepper,
  5992. // Z baystep is no more applied. Reset it.
  5993. babystep_reset();
  5994. // Clean the input command queue.
  5995. cmdqueue_reset();
  5996. card.sdprinting = false;
  5997. card.closefile();
  5998. current_position[E_AXIS] -= DEFAULT_RETRACTION;
  5999. sei(); //enable stepper driver interrupt to move Z axis
  6000. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400, active_extruder);
  6001. st_synchronize();
  6002. current_position[Z_AXIS] += UVLO_Z_AXIS_SHIFT;
  6003. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 40, active_extruder);
  6004. st_synchronize();
  6005. eeprom_update_byte((uint8_t*)EEPROM_UVLO, 1);
  6006. }
  6007. void setup_uvlo_interrupt() {
  6008. DDRE &= ~(1 << 4); //input pin
  6009. PORTE &= ~(1 << 4); //no internal pull-up
  6010. //sensing falling edge
  6011. EICRB |= (1 << 0);
  6012. EICRB &= ~(1 << 1);
  6013. //enable INT4 interrupt
  6014. EIMSK |= (1 << 4);
  6015. }
  6016. ISR(INT4_vect) {
  6017. EIMSK &= ~(1 << 4); //disable INT4 interrupt to make sure that this code will be executed just once
  6018. SERIAL_ECHOLNPGM("INT4");
  6019. if (IS_SD_PRINTING) uvlo_();
  6020. }
  6021. void save_print_to_eeprom() {
  6022. //eeprom_update_word((uint16_t*)(EPROM_UVLO_CMD_QUEUE), bufindw - bufindr );
  6023. //BLOCK_BUFFER_SIZE: max. 16 linear moves in planner buffer
  6024. #define TYP_GCODE_LENGTH 30 //G1 X117.489 Y22.814 E1.46695 + cr lf
  6025. //card.get_sdpos() -> byte currently read from SD card
  6026. //bufindw -> position in circular buffer where to write
  6027. //bufindr -> position in circular buffer where to read
  6028. //bufflen -> number of lines in buffer -> for each line one special character??
  6029. //number_of_blocks() returns number of linear movements buffered in planner
  6030. long sd_position = card.get_sdpos() - ((bufindw > bufindr) ? (bufindw - bufindr) : sizeof(cmdbuffer) - bufindr + bufindw) - TYP_GCODE_LENGTH* number_of_blocks();
  6031. if (sd_position < 0) sd_position = 0;
  6032. /*SERIAL_ECHOPGM("sd position before correction:");
  6033. MYSERIAL.println(card.get_sdpos());
  6034. SERIAL_ECHOPGM("bufindw:");
  6035. MYSERIAL.println(bufindw);
  6036. SERIAL_ECHOPGM("bufindr:");
  6037. MYSERIAL.println(bufindr);
  6038. SERIAL_ECHOPGM("sizeof(cmd_buffer):");
  6039. MYSERIAL.println(sizeof(cmdbuffer));
  6040. SERIAL_ECHOPGM("sd position after correction:");
  6041. MYSERIAL.println(sd_position);*/
  6042. eeprom_update_dword((uint32_t*)(EEPROM_FILE_POSITION), sd_position);
  6043. }
  6044. void recover_print() {
  6045. char cmd[30];
  6046. lcd_update_enable(true);
  6047. lcd_update(2);
  6048. lcd_setstatuspgm(MSG_RECOVERING_PRINT);
  6049. target_temperature[active_extruder] = eeprom_read_byte((uint8_t*)EEPROM_UVLO_TARGET_HOTEND);
  6050. target_temperature_bed = eeprom_read_byte((uint8_t*)EEPROM_UVLO_TARGET_BED);
  6051. float z_pos = eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION_Z));
  6052. z_pos = z_pos + UVLO_Z_AXIS_SHIFT;
  6053. current_position[Z_AXIS] = z_pos;
  6054. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  6055. enquecommand_P(PSTR("G28 X"));
  6056. enquecommand_P(PSTR("G28 Y"));
  6057. eeprom_update_byte((uint8_t*)EEPROM_UVLO, 0);
  6058. while ((abs(degHotend(0)- target_temperature[0])>5) || (abs(degBed() -target_temperature_bed)>3)) { //wait for heater and bed to reach target temp
  6059. delay_keep_alive(1000);
  6060. }
  6061. SERIAL_ECHOPGM("After waiting for temp:");
  6062. SERIAL_ECHOPGM("Current position X_AXIS:");
  6063. MYSERIAL.println(current_position[X_AXIS]);
  6064. SERIAL_ECHOPGM("Current position Y_AXIS:");
  6065. MYSERIAL.println(current_position[Y_AXIS]);
  6066. restore_print_from_eeprom();
  6067. SERIAL_ECHOPGM("current_position[Z_AXIS]:");
  6068. MYSERIAL.print(current_position[Z_AXIS]);
  6069. }
  6070. void restore_print_from_eeprom() {
  6071. float x_rec, y_rec, z_pos;
  6072. int feedrate_rec;
  6073. uint8_t fan_speed_rec;
  6074. char cmd[30];
  6075. char* c;
  6076. char filename[13];
  6077. char str[5] = ".gco";
  6078. x_rec = eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 0));
  6079. y_rec = eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 4));
  6080. z_pos = eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION_Z));
  6081. fan_speed_rec = eeprom_read_byte((uint8_t*)EEPROM_UVLO_FAN_SPEED);
  6082. EEPROM_read_B(EEPROM_UVLO_FEEDRATE, &feedrate_rec);
  6083. SERIAL_ECHOPGM("Feedrate:");
  6084. MYSERIAL.println(feedrate_rec);
  6085. for (int i = 0; i < 8; i++) {
  6086. filename[i] = eeprom_read_byte((uint8_t*)EEPROM_FILENAME + i);
  6087. }
  6088. filename[8] = '\0';
  6089. MYSERIAL.print(filename);
  6090. strcat(filename, str);
  6091. sprintf_P(cmd, PSTR("M23 %s"), filename);
  6092. for (c = &cmd[4]; *c; c++)
  6093. *c = tolower(*c);
  6094. enquecommand(cmd);
  6095. uint32_t position = eeprom_read_dword((uint32_t*)(EEPROM_FILE_POSITION));
  6096. SERIAL_ECHOPGM("Position read from eeprom:");
  6097. MYSERIAL.println(position);
  6098. enquecommand_P(PSTR("M24")); //M24 - Start SD print
  6099. sprintf_P(cmd, PSTR("M26 S%lu"), position);
  6100. enquecommand(cmd);
  6101. enquecommand_P(PSTR("M83")); //E axis relative mode
  6102. strcpy(cmd, "G1 X");
  6103. strcat(cmd, ftostr32(x_rec));
  6104. strcat(cmd, " Y");
  6105. strcat(cmd, ftostr32(y_rec));
  6106. enquecommand(cmd);
  6107. strcpy(cmd, "G1 Z");
  6108. strcat(cmd, ftostr32(z_pos));
  6109. enquecommand(cmd);
  6110. enquecommand_P(PSTR("G1 E" STRINGIFY(DEFAULT_RETRACTION)" F480"));
  6111. enquecommand_P(PSTR("G1 E0.5"));
  6112. sprintf_P(cmd, PSTR("G1 F%d"), feedrate_rec);
  6113. enquecommand(cmd);
  6114. strcpy(cmd, "M106 S");
  6115. strcat(cmd, itostr3(int(fan_speed_rec)));
  6116. enquecommand(cmd);
  6117. }