Marlin_main.cpp 345 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971397239733974397539763977397839793980398139823983398439853986398739883989399039913992399339943995399639973998399940004001400240034004400540064007400840094010401140124013401440154016401740184019402040214022402340244025402640274028402940304031403240334034403540364037403840394040404140424043404440454046404740484049405040514052405340544055405640574058405940604061406240634064406540664067406840694070407140724073407440754076407740784079408040814082408340844085408640874088408940904091409240934094409540964097409840994100410141024103410441054106410741084109411041114112411341144115411641174118411941204121412241234124412541264127412841294130413141324133413441354136413741384139414041414142414341444145414641474148414941504151415241534154415541564157415841594160416141624163416441654166416741684169417041714172417341744175417641774178417941804181418241834184418541864187418841894190419141924193419441954196419741984199420042014202420342044205420642074208420942104211421242134214421542164217421842194220422142224223422442254226422742284229423042314232423342344235423642374238423942404241424242434244424542464247424842494250425142524253425442554256425742584259426042614262426342644265426642674268426942704271427242734274427542764277427842794280428142824283428442854286428742884289429042914292429342944295429642974298429943004301430243034304430543064307430843094310431143124313431443154316431743184319432043214322432343244325432643274328432943304331433243334334433543364337433843394340434143424343434443454346434743484349435043514352435343544355435643574358435943604361436243634364436543664367436843694370437143724373437443754376437743784379438043814382438343844385438643874388438943904391439243934394439543964397439843994400440144024403440444054406440744084409441044114412441344144415441644174418441944204421442244234424442544264427442844294430443144324433443444354436443744384439444044414442444344444445444644474448444944504451445244534454445544564457445844594460446144624463446444654466446744684469447044714472447344744475447644774478447944804481448244834484448544864487448844894490449144924493449444954496449744984499450045014502450345044505450645074508450945104511451245134514451545164517451845194520452145224523452445254526452745284529453045314532453345344535453645374538453945404541454245434544454545464547454845494550455145524553455445554556455745584559456045614562456345644565456645674568456945704571457245734574457545764577457845794580458145824583458445854586458745884589459045914592459345944595459645974598459946004601460246034604460546064607460846094610461146124613461446154616461746184619462046214622462346244625462646274628462946304631463246334634463546364637463846394640464146424643464446454646464746484649465046514652465346544655465646574658465946604661466246634664466546664667466846694670467146724673467446754676467746784679468046814682468346844685468646874688468946904691469246934694469546964697469846994700470147024703470447054706470747084709471047114712471347144715471647174718471947204721472247234724472547264727472847294730473147324733473447354736473747384739474047414742474347444745474647474748474947504751475247534754475547564757475847594760476147624763476447654766476747684769477047714772477347744775477647774778477947804781478247834784478547864787478847894790479147924793479447954796479747984799480048014802480348044805480648074808480948104811481248134814481548164817481848194820482148224823482448254826482748284829483048314832483348344835483648374838483948404841484248434844484548464847484848494850485148524853485448554856485748584859486048614862486348644865486648674868486948704871487248734874487548764877487848794880488148824883488448854886488748884889489048914892489348944895489648974898489949004901490249034904490549064907490849094910491149124913491449154916491749184919492049214922492349244925492649274928492949304931493249334934493549364937493849394940494149424943494449454946494749484949495049514952495349544955495649574958495949604961496249634964496549664967496849694970497149724973497449754976497749784979498049814982498349844985498649874988498949904991499249934994499549964997499849995000500150025003500450055006500750085009501050115012501350145015501650175018501950205021502250235024502550265027502850295030503150325033503450355036503750385039504050415042504350445045504650475048504950505051505250535054505550565057505850595060506150625063506450655066506750685069507050715072507350745075507650775078507950805081508250835084508550865087508850895090509150925093509450955096509750985099510051015102510351045105510651075108510951105111511251135114511551165117511851195120512151225123512451255126512751285129513051315132513351345135513651375138513951405141514251435144514551465147514851495150515151525153515451555156515751585159516051615162516351645165516651675168516951705171517251735174517551765177517851795180518151825183518451855186518751885189519051915192519351945195519651975198519952005201520252035204520552065207520852095210521152125213521452155216521752185219522052215222522352245225522652275228522952305231523252335234523552365237523852395240524152425243524452455246524752485249525052515252525352545255525652575258525952605261526252635264526552665267526852695270527152725273527452755276527752785279528052815282528352845285528652875288528952905291529252935294529552965297529852995300530153025303530453055306530753085309531053115312531353145315531653175318531953205321532253235324532553265327532853295330533153325333533453355336533753385339534053415342534353445345534653475348534953505351535253535354535553565357535853595360536153625363536453655366536753685369537053715372537353745375537653775378537953805381538253835384538553865387538853895390539153925393539453955396539753985399540054015402540354045405540654075408540954105411541254135414541554165417541854195420542154225423542454255426542754285429543054315432543354345435543654375438543954405441544254435444544554465447544854495450545154525453545454555456545754585459546054615462546354645465546654675468546954705471547254735474547554765477547854795480548154825483548454855486548754885489549054915492549354945495549654975498549955005501550255035504550555065507550855095510551155125513551455155516551755185519552055215522552355245525552655275528552955305531553255335534553555365537553855395540554155425543554455455546554755485549555055515552555355545555555655575558555955605561556255635564556555665567556855695570557155725573557455755576557755785579558055815582558355845585558655875588558955905591559255935594559555965597559855995600560156025603560456055606560756085609561056115612561356145615561656175618561956205621562256235624562556265627562856295630563156325633563456355636563756385639564056415642564356445645564656475648564956505651565256535654565556565657565856595660566156625663566456655666566756685669567056715672567356745675567656775678567956805681568256835684568556865687568856895690569156925693569456955696569756985699570057015702570357045705570657075708570957105711571257135714571557165717571857195720572157225723572457255726572757285729573057315732573357345735573657375738573957405741574257435744574557465747574857495750575157525753575457555756575757585759576057615762576357645765576657675768576957705771577257735774577557765777577857795780578157825783578457855786578757885789579057915792579357945795579657975798579958005801580258035804580558065807580858095810581158125813581458155816581758185819582058215822582358245825582658275828582958305831583258335834583558365837583858395840584158425843584458455846584758485849585058515852585358545855585658575858585958605861586258635864586558665867586858695870587158725873587458755876587758785879588058815882588358845885588658875888588958905891589258935894589558965897589858995900590159025903590459055906590759085909591059115912591359145915591659175918591959205921592259235924592559265927592859295930593159325933593459355936593759385939594059415942594359445945594659475948594959505951595259535954595559565957595859595960596159625963596459655966596759685969597059715972597359745975597659775978597959805981598259835984598559865987598859895990599159925993599459955996599759985999600060016002600360046005600660076008600960106011601260136014601560166017601860196020602160226023602460256026602760286029603060316032603360346035603660376038603960406041604260436044604560466047604860496050605160526053605460556056605760586059606060616062606360646065606660676068606960706071607260736074607560766077607860796080608160826083608460856086608760886089609060916092609360946095609660976098609961006101610261036104610561066107610861096110611161126113611461156116611761186119612061216122612361246125612661276128612961306131613261336134613561366137613861396140614161426143614461456146614761486149615061516152615361546155615661576158615961606161616261636164616561666167616861696170617161726173617461756176617761786179618061816182618361846185618661876188618961906191619261936194619561966197619861996200620162026203620462056206620762086209621062116212621362146215621662176218621962206221622262236224622562266227622862296230623162326233623462356236623762386239624062416242624362446245624662476248624962506251625262536254625562566257625862596260626162626263626462656266626762686269627062716272627362746275627662776278627962806281628262836284628562866287628862896290629162926293629462956296629762986299630063016302630363046305630663076308630963106311631263136314631563166317631863196320632163226323632463256326632763286329633063316332633363346335633663376338633963406341634263436344634563466347634863496350635163526353635463556356635763586359636063616362636363646365636663676368636963706371637263736374637563766377637863796380638163826383638463856386638763886389639063916392639363946395639663976398639964006401640264036404640564066407640864096410641164126413641464156416641764186419642064216422642364246425642664276428642964306431643264336434643564366437643864396440644164426443644464456446644764486449645064516452645364546455645664576458645964606461646264636464646564666467646864696470647164726473647464756476647764786479648064816482648364846485648664876488648964906491649264936494649564966497649864996500650165026503650465056506650765086509651065116512651365146515651665176518651965206521652265236524652565266527652865296530653165326533653465356536653765386539654065416542654365446545654665476548654965506551655265536554655565566557655865596560656165626563656465656566656765686569657065716572657365746575657665776578657965806581658265836584658565866587658865896590659165926593659465956596659765986599660066016602660366046605660666076608660966106611661266136614661566166617661866196620662166226623662466256626662766286629663066316632663366346635663666376638663966406641664266436644664566466647664866496650665166526653665466556656665766586659666066616662666366646665666666676668666966706671667266736674667566766677667866796680668166826683668466856686668766886689669066916692669366946695669666976698669967006701670267036704670567066707670867096710671167126713671467156716671767186719672067216722672367246725672667276728672967306731673267336734673567366737673867396740674167426743674467456746674767486749675067516752675367546755675667576758675967606761676267636764676567666767676867696770677167726773677467756776677767786779678067816782678367846785678667876788678967906791679267936794679567966797679867996800680168026803680468056806680768086809681068116812681368146815681668176818681968206821682268236824682568266827682868296830683168326833683468356836683768386839684068416842684368446845684668476848684968506851685268536854685568566857685868596860686168626863686468656866686768686869687068716872687368746875687668776878687968806881688268836884688568866887688868896890689168926893689468956896689768986899690069016902690369046905690669076908690969106911691269136914691569166917691869196920692169226923692469256926692769286929693069316932693369346935693669376938693969406941694269436944694569466947694869496950695169526953695469556956695769586959696069616962696369646965696669676968696969706971697269736974697569766977697869796980698169826983698469856986698769886989699069916992699369946995699669976998699970007001700270037004700570067007700870097010701170127013701470157016701770187019702070217022702370247025702670277028702970307031703270337034703570367037703870397040704170427043704470457046704770487049705070517052705370547055705670577058705970607061706270637064706570667067706870697070707170727073707470757076707770787079708070817082708370847085708670877088708970907091709270937094709570967097709870997100710171027103710471057106710771087109711071117112711371147115711671177118711971207121712271237124712571267127712871297130713171327133713471357136713771387139714071417142714371447145714671477148714971507151715271537154715571567157715871597160716171627163716471657166716771687169717071717172717371747175717671777178717971807181718271837184718571867187718871897190719171927193719471957196719771987199720072017202720372047205720672077208720972107211721272137214721572167217721872197220722172227223722472257226722772287229723072317232723372347235723672377238723972407241724272437244724572467247724872497250725172527253725472557256725772587259726072617262726372647265726672677268726972707271727272737274727572767277727872797280728172827283728472857286728772887289729072917292729372947295729672977298729973007301730273037304730573067307730873097310731173127313731473157316731773187319732073217322732373247325732673277328732973307331733273337334733573367337733873397340734173427343734473457346734773487349735073517352735373547355735673577358735973607361736273637364736573667367736873697370737173727373737473757376737773787379738073817382738373847385738673877388738973907391739273937394739573967397739873997400740174027403740474057406740774087409741074117412741374147415741674177418741974207421742274237424742574267427742874297430743174327433743474357436743774387439744074417442744374447445744674477448744974507451745274537454745574567457745874597460746174627463746474657466746774687469747074717472747374747475747674777478747974807481748274837484748574867487748874897490749174927493749474957496749774987499750075017502750375047505750675077508750975107511751275137514751575167517751875197520752175227523752475257526752775287529753075317532753375347535753675377538753975407541754275437544754575467547754875497550755175527553755475557556755775587559756075617562756375647565756675677568756975707571757275737574757575767577757875797580758175827583758475857586758775887589759075917592759375947595759675977598759976007601760276037604760576067607760876097610761176127613761476157616761776187619762076217622762376247625762676277628762976307631763276337634763576367637763876397640764176427643764476457646764776487649765076517652765376547655765676577658765976607661766276637664766576667667766876697670767176727673767476757676767776787679768076817682768376847685768676877688768976907691769276937694769576967697769876997700770177027703770477057706770777087709771077117712771377147715771677177718771977207721772277237724772577267727772877297730773177327733773477357736773777387739774077417742774377447745774677477748774977507751775277537754775577567757775877597760776177627763776477657766776777687769777077717772777377747775777677777778777977807781778277837784778577867787778877897790779177927793779477957796779777987799780078017802780378047805780678077808780978107811781278137814781578167817781878197820782178227823782478257826782778287829783078317832783378347835783678377838783978407841784278437844784578467847784878497850785178527853785478557856785778587859786078617862786378647865786678677868786978707871787278737874787578767877787878797880788178827883788478857886788778887889789078917892789378947895789678977898789979007901790279037904790579067907790879097910791179127913791479157916791779187919792079217922792379247925792679277928792979307931793279337934793579367937793879397940794179427943794479457946794779487949795079517952795379547955795679577958795979607961796279637964796579667967796879697970797179727973797479757976797779787979798079817982798379847985798679877988798979907991799279937994799579967997799879998000800180028003800480058006800780088009801080118012801380148015801680178018801980208021802280238024802580268027802880298030803180328033803480358036803780388039804080418042804380448045804680478048804980508051805280538054805580568057805880598060806180628063806480658066806780688069807080718072807380748075807680778078807980808081808280838084808580868087808880898090809180928093809480958096809780988099810081018102810381048105810681078108810981108111811281138114811581168117811881198120812181228123812481258126812781288129813081318132813381348135813681378138813981408141814281438144814581468147814881498150815181528153815481558156815781588159816081618162816381648165816681678168816981708171817281738174817581768177817881798180818181828183818481858186818781888189819081918192819381948195819681978198819982008201820282038204820582068207820882098210821182128213821482158216821782188219822082218222822382248225822682278228822982308231823282338234823582368237823882398240824182428243824482458246824782488249825082518252825382548255825682578258825982608261826282638264826582668267826882698270827182728273827482758276827782788279828082818282828382848285828682878288828982908291829282938294829582968297829882998300830183028303830483058306830783088309831083118312831383148315831683178318831983208321832283238324832583268327832883298330833183328333833483358336833783388339834083418342834383448345834683478348834983508351835283538354835583568357835883598360836183628363836483658366836783688369837083718372837383748375837683778378837983808381838283838384838583868387838883898390839183928393839483958396839783988399840084018402840384048405840684078408840984108411841284138414841584168417841884198420842184228423842484258426842784288429843084318432843384348435843684378438843984408441844284438444844584468447844884498450845184528453845484558456845784588459846084618462846384648465846684678468846984708471847284738474847584768477847884798480848184828483848484858486848784888489849084918492849384948495849684978498849985008501850285038504850585068507850885098510851185128513851485158516851785188519852085218522852385248525852685278528852985308531853285338534853585368537853885398540854185428543854485458546854785488549855085518552855385548555855685578558855985608561856285638564856585668567856885698570857185728573857485758576857785788579858085818582858385848585858685878588858985908591859285938594859585968597859885998600860186028603860486058606860786088609861086118612861386148615861686178618861986208621862286238624862586268627862886298630863186328633863486358636863786388639864086418642864386448645864686478648864986508651865286538654865586568657865886598660866186628663866486658666866786688669867086718672867386748675867686778678867986808681868286838684868586868687868886898690869186928693869486958696869786988699870087018702870387048705870687078708870987108711871287138714871587168717871887198720872187228723872487258726872787288729873087318732873387348735873687378738873987408741874287438744874587468747874887498750875187528753875487558756875787588759876087618762876387648765876687678768876987708771877287738774877587768777877887798780878187828783878487858786878787888789879087918792879387948795879687978798879988008801880288038804880588068807880888098810881188128813881488158816881788188819882088218822882388248825882688278828882988308831883288338834883588368837883888398840884188428843884488458846884788488849885088518852885388548855885688578858885988608861886288638864886588668867886888698870887188728873887488758876887788788879888088818882888388848885888688878888888988908891889288938894889588968897889888998900890189028903890489058906890789088909891089118912891389148915891689178918891989208921892289238924892589268927892889298930893189328933893489358936893789388939894089418942894389448945894689478948894989508951895289538954895589568957895889598960896189628963896489658966896789688969897089718972897389748975897689778978897989808981898289838984898589868987898889898990899189928993899489958996899789988999900090019002900390049005900690079008900990109011901290139014901590169017901890199020902190229023902490259026902790289029903090319032903390349035903690379038903990409041904290439044904590469047904890499050905190529053905490559056905790589059906090619062906390649065906690679068906990709071907290739074907590769077907890799080908190829083908490859086908790889089909090919092909390949095909690979098909991009101910291039104910591069107910891099110911191129113911491159116911791189119912091219122912391249125912691279128912991309131913291339134913591369137913891399140914191429143914491459146914791489149915091519152915391549155915691579158915991609161916291639164916591669167916891699170917191729173917491759176917791789179918091819182918391849185918691879188918991909191919291939194919591969197919891999200920192029203920492059206920792089209921092119212921392149215921692179218921992209221922292239224922592269227922892299230923192329233923492359236923792389239924092419242924392449245924692479248924992509251925292539254925592569257925892599260926192629263926492659266926792689269927092719272927392749275927692779278927992809281928292839284928592869287928892899290929192929293929492959296929792989299930093019302930393049305930693079308930993109311931293139314931593169317931893199320932193229323932493259326932793289329933093319332933393349335933693379338933993409341934293439344934593469347934893499350935193529353935493559356935793589359936093619362936393649365936693679368936993709371937293739374937593769377937893799380938193829383938493859386938793889389939093919392939393949395939693979398939994009401940294039404940594069407940894099410941194129413941494159416941794189419942094219422942394249425942694279428942994309431943294339434943594369437943894399440944194429443944494459446944794489449945094519452945394549455945694579458945994609461946294639464946594669467946894699470947194729473947494759476947794789479948094819482948394849485948694879488948994909491949294939494949594969497949894999500950195029503950495059506950795089509951095119512951395149515951695179518951995209521952295239524952595269527952895299530953195329533953495359536953795389539954095419542954395449545954695479548954995509551955295539554955595569557955895599560956195629563956495659566956795689569957095719572957395749575957695779578957995809581958295839584958595869587958895899590959195929593959495959596959795989599960096019602960396049605960696079608960996109611961296139614961596169617961896199620962196229623962496259626962796289629963096319632963396349635963696379638963996409641964296439644964596469647964896499650965196529653965496559656965796589659966096619662966396649665966696679668966996709671967296739674967596769677967896799680968196829683968496859686968796889689969096919692969396949695969696979698969997009701970297039704970597069707970897099710971197129713971497159716971797189719972097219722972397249725972697279728972997309731973297339734973597369737973897399740974197429743974497459746974797489749975097519752975397549755975697579758975997609761976297639764976597669767976897699770977197729773977497759776977797789779978097819782978397849785978697879788978997909791979297939794979597969797979897999800980198029803980498059806980798089809981098119812981398149815981698179818981998209821982298239824982598269827982898299830983198329833983498359836983798389839984098419842984398449845984698479848984998509851985298539854985598569857985898599860986198629863986498659866986798689869987098719872987398749875987698779878987998809881988298839884988598869887988898899890989198929893989498959896989798989899990099019902990399049905990699079908990999109911991299139914991599169917991899199920992199229923992499259926992799289929993099319932993399349935993699379938993999409941994299439944994599469947994899499950995199529953995499559956995799589959996099619962996399649965996699679968996999709971997299739974997599769977997899799980998199829983998499859986998799889989999099919992999399949995999699979998999910000100011000210003100041000510006100071000810009100101001110012100131001410015100161001710018100191002010021100221002310024100251002610027100281002910030100311003210033100341003510036100371003810039100401004110042100431004410045100461004710048100491005010051100521005310054100551005610057100581005910060100611006210063100641006510066100671006810069100701007110072100731007410075100761007710078100791008010081100821008310084100851008610087100881008910090100911009210093100941009510096100971009810099101001010110102101031010410105101061010710108101091011010111101121011310114101151011610117101181011910120101211012210123101241012510126101271012810129101301013110132101331013410135101361013710138101391014010141101421014310144101451014610147101481014910150101511015210153101541015510156101571015810159101601016110162101631016410165101661016710168101691017010171101721017310174101751017610177101781017910180101811018210183101841018510186101871018810189101901019110192101931019410195101961019710198101991020010201102021020310204102051020610207102081020910210102111021210213102141021510216102171021810219102201022110222102231022410225102261022710228102291023010231102321023310234102351023610237102381023910240102411024210243102441024510246102471024810249102501025110252102531025410255102561025710258102591026010261102621026310264102651026610267102681026910270102711027210273102741027510276102771027810279102801028110282102831028410285102861028710288102891029010291102921029310294102951029610297102981029910300103011030210303103041030510306103071030810309103101031110312103131031410315103161031710318103191032010321103221032310324103251032610327103281032910330103311033210333103341033510336103371033810339103401034110342103431034410345103461034710348103491035010351103521035310354103551035610357103581035910360103611036210363103641036510366103671036810369103701037110372103731037410375103761037710378103791038010381103821038310384103851038610387103881038910390103911039210393103941039510396103971039810399104001040110402104031040410405104061040710408104091041010411104121041310414104151041610417104181041910420104211042210423104241042510426104271042810429104301043110432104331043410435104361043710438104391044010441104421044310444104451044610447104481044910450104511045210453104541045510456104571045810459104601046110462104631046410465104661046710468104691047010471104721047310474104751047610477104781047910480104811048210483104841048510486104871048810489104901049110492104931049410495104961049710498104991050010501105021050310504105051050610507105081050910510105111051210513105141051510516105171051810519105201052110522105231052410525105261052710528105291053010531105321053310534105351053610537105381053910540
  1. /* -*- c++ -*- */
  2. /**
  3. * @file
  4. */
  5. /**
  6. * @mainpage Reprap 3D printer firmware based on Sprinter and grbl.
  7. *
  8. * @section intro_sec Introduction
  9. *
  10. * This firmware is a mashup between Sprinter and grbl.
  11. * https://github.com/kliment/Sprinter
  12. * https://github.com/simen/grbl/tree
  13. *
  14. * It has preliminary support for Matthew Roberts advance algorithm
  15. * http://reprap.org/pipermail/reprap-dev/2011-May/003323.html
  16. *
  17. * Prusa Research s.r.o. https://www.prusa3d.cz
  18. *
  19. * @section copyright_sec Copyright
  20. *
  21. * Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
  22. *
  23. * This program is free software: you can redistribute it and/or modify
  24. * it under the terms of the GNU General Public License as published by
  25. * the Free Software Foundation, either version 3 of the License, or
  26. * (at your option) any later version.
  27. *
  28. * This program is distributed in the hope that it will be useful,
  29. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  30. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  31. * GNU General Public License for more details.
  32. *
  33. * You should have received a copy of the GNU General Public License
  34. * along with this program. If not, see <http://www.gnu.org/licenses/>.
  35. *
  36. * @section notes_sec Notes
  37. *
  38. * * Do not create static objects in global functions.
  39. * Otherwise constructor guard against concurrent calls is generated costing
  40. * about 8B RAM and 14B flash.
  41. *
  42. *
  43. */
  44. //-//
  45. #include "Configuration.h"
  46. #include "Marlin.h"
  47. #ifdef ENABLE_AUTO_BED_LEVELING
  48. #include "vector_3.h"
  49. #ifdef AUTO_BED_LEVELING_GRID
  50. #include "qr_solve.h"
  51. #endif
  52. #endif // ENABLE_AUTO_BED_LEVELING
  53. #ifdef MESH_BED_LEVELING
  54. #include "mesh_bed_leveling.h"
  55. #include "mesh_bed_calibration.h"
  56. #endif
  57. #include "printers.h"
  58. #include "menu.h"
  59. #include "ultralcd.h"
  60. #include "planner.h"
  61. #include "stepper.h"
  62. #include "temperature.h"
  63. #include "motion_control.h"
  64. #include "cardreader.h"
  65. #include "ConfigurationStore.h"
  66. #include "language.h"
  67. #include "pins_arduino.h"
  68. #include "math.h"
  69. #include "util.h"
  70. #include "Timer.h"
  71. #include <avr/wdt.h>
  72. #include <avr/pgmspace.h>
  73. #include "Dcodes.h"
  74. #include "AutoDeplete.h"
  75. #ifdef SWSPI
  76. #include "swspi.h"
  77. #endif //SWSPI
  78. #include "spi.h"
  79. #ifdef SWI2C
  80. #include "swi2c.h"
  81. #endif //SWI2C
  82. #ifdef FILAMENT_SENSOR
  83. #include "fsensor.h"
  84. #endif //FILAMENT_SENSOR
  85. #ifdef TMC2130
  86. #include "tmc2130.h"
  87. #endif //TMC2130
  88. #ifdef W25X20CL
  89. #include "w25x20cl.h"
  90. #include "optiboot_w25x20cl.h"
  91. #endif //W25X20CL
  92. #ifdef BLINKM
  93. #include "BlinkM.h"
  94. #include "Wire.h"
  95. #endif
  96. #ifdef ULTRALCD
  97. #include "ultralcd.h"
  98. #endif
  99. #if NUM_SERVOS > 0
  100. #include "Servo.h"
  101. #endif
  102. #if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
  103. #include <SPI.h>
  104. #endif
  105. #include "mmu.h"
  106. #define VERSION_STRING "1.0.2"
  107. #include "ultralcd.h"
  108. #include "sound.h"
  109. #include "cmdqueue.h"
  110. #include "io_atmega2560.h"
  111. // Macros for bit masks
  112. #define BIT(b) (1<<(b))
  113. #define TEST(n,b) (((n)&BIT(b))!=0)
  114. #define SET_BIT(n,b,value) (n) ^= ((-value)^(n)) & (BIT(b))
  115. //Macro for print fan speed
  116. #define FAN_PULSE_WIDTH_LIMIT ((fanSpeed > 100) ? 3 : 4) //time in ms
  117. #define PRINTING_TYPE_SD 0
  118. #define PRINTING_TYPE_USB 1
  119. #define PRINTING_TYPE_NONE 2
  120. //filament types
  121. #define FILAMENT_DEFAULT 0
  122. #define FILAMENT_FLEX 1
  123. #define FILAMENT_PVA 2
  124. #define FILAMENT_UNDEFINED 255
  125. //Stepper Movement Variables
  126. //===========================================================================
  127. //=============================imported variables============================
  128. //===========================================================================
  129. //===========================================================================
  130. //=============================public variables=============================
  131. //===========================================================================
  132. #ifdef SDSUPPORT
  133. CardReader card;
  134. #endif
  135. unsigned long PingTime = _millis();
  136. unsigned long NcTime;
  137. uint8_t mbl_z_probe_nr = 3; //numer of Z measurements for each point in mesh bed leveling calibration
  138. //used for PINDA temp calibration and pause print
  139. #define DEFAULT_RETRACTION 1
  140. #define DEFAULT_RETRACTION_MM 4 //MM
  141. float default_retraction = DEFAULT_RETRACTION;
  142. float homing_feedrate[] = HOMING_FEEDRATE;
  143. // Currently only the extruder axis may be switched to a relative mode.
  144. // Other axes are always absolute or relative based on the common relative_mode flag.
  145. bool axis_relative_modes[] = AXIS_RELATIVE_MODES;
  146. int feedmultiply=100; //100->1 200->2
  147. int extrudemultiply=100; //100->1 200->2
  148. int extruder_multiply[EXTRUDERS] = {100
  149. #if EXTRUDERS > 1
  150. , 100
  151. #if EXTRUDERS > 2
  152. , 100
  153. #endif
  154. #endif
  155. };
  156. int bowden_length[4] = {385, 385, 385, 385};
  157. bool is_usb_printing = false;
  158. bool homing_flag = false;
  159. bool temp_cal_active = false;
  160. unsigned long kicktime = _millis()+100000;
  161. unsigned int usb_printing_counter;
  162. int8_t lcd_change_fil_state = 0;
  163. unsigned long pause_time = 0;
  164. unsigned long start_pause_print = _millis();
  165. unsigned long t_fan_rising_edge = _millis();
  166. LongTimer safetyTimer;
  167. static LongTimer crashDetTimer;
  168. //unsigned long load_filament_time;
  169. bool mesh_bed_leveling_flag = false;
  170. bool mesh_bed_run_from_menu = false;
  171. bool prusa_sd_card_upload = false;
  172. unsigned int status_number = 0;
  173. unsigned long total_filament_used;
  174. unsigned int heating_status;
  175. unsigned int heating_status_counter;
  176. bool loading_flag = false;
  177. char snmm_filaments_used = 0;
  178. bool fan_state[2];
  179. int fan_edge_counter[2];
  180. int fan_speed[2];
  181. char dir_names[3][9];
  182. bool sortAlpha = false;
  183. float extruder_multiplier[EXTRUDERS] = {1.0
  184. #if EXTRUDERS > 1
  185. , 1.0
  186. #if EXTRUDERS > 2
  187. , 1.0
  188. #endif
  189. #endif
  190. };
  191. float current_position[NUM_AXIS] = { 0.0, 0.0, 0.0, 0.0 };
  192. //shortcuts for more readable code
  193. #define _x current_position[X_AXIS]
  194. #define _y current_position[Y_AXIS]
  195. #define _z current_position[Z_AXIS]
  196. #define _e current_position[E_AXIS]
  197. float min_pos[3] = { X_MIN_POS, Y_MIN_POS, Z_MIN_POS };
  198. float max_pos[3] = { X_MAX_POS, Y_MAX_POS, Z_MAX_POS };
  199. bool axis_known_position[3] = {false, false, false};
  200. // Extruder offset
  201. #if EXTRUDERS > 1
  202. #define NUM_EXTRUDER_OFFSETS 2 // only in XY plane
  203. float extruder_offset[NUM_EXTRUDER_OFFSETS][EXTRUDERS] = {
  204. #if defined(EXTRUDER_OFFSET_X) && defined(EXTRUDER_OFFSET_Y)
  205. EXTRUDER_OFFSET_X, EXTRUDER_OFFSET_Y
  206. #endif
  207. };
  208. #endif
  209. uint8_t active_extruder = 0;
  210. int fanSpeed=0;
  211. #ifdef FWRETRACT
  212. bool retracted[EXTRUDERS]={false
  213. #if EXTRUDERS > 1
  214. , false
  215. #if EXTRUDERS > 2
  216. , false
  217. #endif
  218. #endif
  219. };
  220. bool retracted_swap[EXTRUDERS]={false
  221. #if EXTRUDERS > 1
  222. , false
  223. #if EXTRUDERS > 2
  224. , false
  225. #endif
  226. #endif
  227. };
  228. float retract_length_swap = RETRACT_LENGTH_SWAP;
  229. float retract_recover_length_swap = RETRACT_RECOVER_LENGTH_SWAP;
  230. #endif
  231. #ifdef PS_DEFAULT_OFF
  232. bool powersupply = false;
  233. #else
  234. bool powersupply = true;
  235. #endif
  236. bool cancel_heatup = false ;
  237. int8_t busy_state = NOT_BUSY;
  238. static long prev_busy_signal_ms = -1;
  239. uint8_t host_keepalive_interval = HOST_KEEPALIVE_INTERVAL;
  240. const char errormagic[] PROGMEM = "Error:";
  241. const char echomagic[] PROGMEM = "echo:";
  242. bool no_response = false;
  243. uint8_t important_status;
  244. uint8_t saved_filament_type;
  245. // save/restore printing in case that mmu was not responding
  246. bool mmu_print_saved = false;
  247. // storing estimated time to end of print counted by slicer
  248. uint8_t print_percent_done_normal = PRINT_PERCENT_DONE_INIT;
  249. uint16_t print_time_remaining_normal = PRINT_TIME_REMAINING_INIT; //estimated remaining print time in minutes
  250. uint8_t print_percent_done_silent = PRINT_PERCENT_DONE_INIT;
  251. uint16_t print_time_remaining_silent = PRINT_TIME_REMAINING_INIT; //estimated remaining print time in minutes
  252. bool wizard_active = false; //autoload temporarily disabled during wizard
  253. //===========================================================================
  254. //=============================Private Variables=============================
  255. //===========================================================================
  256. #define MSG_BED_LEVELING_FAILED_TIMEOUT 30
  257. const char axis_codes[NUM_AXIS] = {'X', 'Y', 'Z', 'E'};
  258. float destination[NUM_AXIS] = { 0.0, 0.0, 0.0, 0.0};
  259. // For tracing an arc
  260. static float offset[3] = {0.0, 0.0, 0.0};
  261. static float feedrate = 1500.0, next_feedrate, saved_feedrate;
  262. // Determines Absolute or Relative Coordinates.
  263. // Also there is bool axis_relative_modes[] per axis flag.
  264. static bool relative_mode = false;
  265. const int sensitive_pins[] = SENSITIVE_PINS; // Sensitive pin list for M42
  266. //static float tt = 0;
  267. //static float bt = 0;
  268. //Inactivity shutdown variables
  269. static unsigned long previous_millis_cmd = 0;
  270. unsigned long max_inactive_time = 0;
  271. static unsigned long stepper_inactive_time = DEFAULT_STEPPER_DEACTIVE_TIME*1000l;
  272. static unsigned long safetytimer_inactive_time = DEFAULT_SAFETYTIMER_TIME_MINS*60*1000ul;
  273. unsigned long starttime=0;
  274. unsigned long stoptime=0;
  275. unsigned long _usb_timer = 0;
  276. bool extruder_under_pressure = true;
  277. bool Stopped=false;
  278. #if NUM_SERVOS > 0
  279. Servo servos[NUM_SERVOS];
  280. #endif
  281. bool CooldownNoWait = true;
  282. bool target_direction;
  283. //Insert variables if CHDK is defined
  284. #ifdef CHDK
  285. unsigned long chdkHigh = 0;
  286. boolean chdkActive = false;
  287. #endif
  288. //! @name RAM save/restore printing
  289. //! @{
  290. bool saved_printing = false; //!< Print is paused and saved in RAM
  291. static uint32_t saved_sdpos = 0; //!< SD card position, or line number in case of USB printing
  292. static uint8_t saved_printing_type = PRINTING_TYPE_SD;
  293. static float saved_pos[4] = { 0, 0, 0, 0 };
  294. //! Feedrate hopefully derived from an active block of the planner at the time the print has been canceled, in mm/min.
  295. static float saved_feedrate2 = 0;
  296. static uint8_t saved_active_extruder = 0;
  297. static float saved_extruder_temperature = 0.0; //!< Active extruder temperature
  298. static bool saved_extruder_under_pressure = false;
  299. static bool saved_extruder_relative_mode = false;
  300. static int saved_fanSpeed = 0; //!< Print fan speed
  301. //! @}
  302. static int saved_feedmultiply_mm = 100;
  303. //===========================================================================
  304. //=============================Routines======================================
  305. //===========================================================================
  306. static void get_arc_coordinates();
  307. static bool setTargetedHotend(int code, uint8_t &extruder);
  308. static void print_time_remaining_init();
  309. static void wait_for_heater(long codenum, uint8_t extruder);
  310. static void gcode_G28(bool home_x_axis, bool home_y_axis, bool home_z_axis);
  311. uint16_t gcode_in_progress = 0;
  312. uint16_t mcode_in_progress = 0;
  313. void serial_echopair_P(const char *s_P, float v)
  314. { serialprintPGM(s_P); SERIAL_ECHO(v); }
  315. void serial_echopair_P(const char *s_P, double v)
  316. { serialprintPGM(s_P); SERIAL_ECHO(v); }
  317. void serial_echopair_P(const char *s_P, unsigned long v)
  318. { serialprintPGM(s_P); SERIAL_ECHO(v); }
  319. /*FORCE_INLINE*/ void serialprintPGM(const char *str)
  320. {
  321. #if 0
  322. char ch=pgm_read_byte(str);
  323. while(ch)
  324. {
  325. MYSERIAL.write(ch);
  326. ch=pgm_read_byte(++str);
  327. }
  328. #else
  329. // hmm, same size as the above version, the compiler did a good job optimizing the above
  330. while( uint8_t ch = pgm_read_byte(str) ){
  331. MYSERIAL.write((char)ch);
  332. ++str;
  333. }
  334. #endif
  335. }
  336. #ifdef SDSUPPORT
  337. #include "SdFatUtil.h"
  338. int freeMemory() { return SdFatUtil::FreeRam(); }
  339. #else
  340. extern "C" {
  341. extern unsigned int __bss_end;
  342. extern unsigned int __heap_start;
  343. extern void *__brkval;
  344. int freeMemory() {
  345. int free_memory;
  346. if ((int)__brkval == 0)
  347. free_memory = ((int)&free_memory) - ((int)&__bss_end);
  348. else
  349. free_memory = ((int)&free_memory) - ((int)__brkval);
  350. return free_memory;
  351. }
  352. }
  353. #endif //!SDSUPPORT
  354. void setup_killpin()
  355. {
  356. #if defined(KILL_PIN) && KILL_PIN > -1
  357. SET_INPUT(KILL_PIN);
  358. WRITE(KILL_PIN,HIGH);
  359. #endif
  360. }
  361. // Set home pin
  362. void setup_homepin(void)
  363. {
  364. #if defined(HOME_PIN) && HOME_PIN > -1
  365. SET_INPUT(HOME_PIN);
  366. WRITE(HOME_PIN,HIGH);
  367. #endif
  368. }
  369. void setup_photpin()
  370. {
  371. #if defined(PHOTOGRAPH_PIN) && PHOTOGRAPH_PIN > -1
  372. SET_OUTPUT(PHOTOGRAPH_PIN);
  373. WRITE(PHOTOGRAPH_PIN, LOW);
  374. #endif
  375. }
  376. void setup_powerhold()
  377. {
  378. #if defined(SUICIDE_PIN) && SUICIDE_PIN > -1
  379. SET_OUTPUT(SUICIDE_PIN);
  380. WRITE(SUICIDE_PIN, HIGH);
  381. #endif
  382. #if defined(PS_ON_PIN) && PS_ON_PIN > -1
  383. SET_OUTPUT(PS_ON_PIN);
  384. #if defined(PS_DEFAULT_OFF)
  385. WRITE(PS_ON_PIN, PS_ON_ASLEEP);
  386. #else
  387. WRITE(PS_ON_PIN, PS_ON_AWAKE);
  388. #endif
  389. #endif
  390. }
  391. void suicide()
  392. {
  393. #if defined(SUICIDE_PIN) && SUICIDE_PIN > -1
  394. SET_OUTPUT(SUICIDE_PIN);
  395. WRITE(SUICIDE_PIN, LOW);
  396. #endif
  397. }
  398. void servo_init()
  399. {
  400. #if (NUM_SERVOS >= 1) && defined(SERVO0_PIN) && (SERVO0_PIN > -1)
  401. servos[0].attach(SERVO0_PIN);
  402. #endif
  403. #if (NUM_SERVOS >= 2) && defined(SERVO1_PIN) && (SERVO1_PIN > -1)
  404. servos[1].attach(SERVO1_PIN);
  405. #endif
  406. #if (NUM_SERVOS >= 3) && defined(SERVO2_PIN) && (SERVO2_PIN > -1)
  407. servos[2].attach(SERVO2_PIN);
  408. #endif
  409. #if (NUM_SERVOS >= 4) && defined(SERVO3_PIN) && (SERVO3_PIN > -1)
  410. servos[3].attach(SERVO3_PIN);
  411. #endif
  412. #if (NUM_SERVOS >= 5)
  413. #error "TODO: enter initalisation code for more servos"
  414. #endif
  415. }
  416. bool fans_check_enabled = true;
  417. #ifdef TMC2130
  418. void crashdet_stop_and_save_print()
  419. {
  420. stop_and_save_print_to_ram(10, -default_retraction); //XY - no change, Z 10mm up, E -1mm retract
  421. }
  422. void crashdet_restore_print_and_continue()
  423. {
  424. restore_print_from_ram_and_continue(default_retraction); //XYZ = orig, E +1mm unretract
  425. // babystep_apply();
  426. }
  427. void crashdet_stop_and_save_print2()
  428. {
  429. cli();
  430. planner_abort_hard(); //abort printing
  431. cmdqueue_reset(); //empty cmdqueue
  432. card.sdprinting = false;
  433. card.closefile();
  434. // Reset and re-enable the stepper timer just before the global interrupts are enabled.
  435. st_reset_timer();
  436. sei();
  437. }
  438. void crashdet_detected(uint8_t mask)
  439. {
  440. st_synchronize();
  441. static uint8_t crashDet_counter = 0;
  442. bool automatic_recovery_after_crash = true;
  443. if (crashDet_counter++ == 0) {
  444. crashDetTimer.start();
  445. }
  446. else if (crashDetTimer.expired(CRASHDET_TIMER * 1000ul)){
  447. crashDetTimer.stop();
  448. crashDet_counter = 0;
  449. }
  450. else if(crashDet_counter == CRASHDET_COUNTER_MAX){
  451. automatic_recovery_after_crash = false;
  452. crashDetTimer.stop();
  453. crashDet_counter = 0;
  454. }
  455. else {
  456. crashDetTimer.start();
  457. }
  458. lcd_update_enable(true);
  459. lcd_clear();
  460. lcd_update(2);
  461. if (mask & X_AXIS_MASK)
  462. {
  463. eeprom_update_byte((uint8_t*)EEPROM_CRASH_COUNT_X, eeprom_read_byte((uint8_t*)EEPROM_CRASH_COUNT_X) + 1);
  464. eeprom_update_word((uint16_t*)EEPROM_CRASH_COUNT_X_TOT, eeprom_read_word((uint16_t*)EEPROM_CRASH_COUNT_X_TOT) + 1);
  465. }
  466. if (mask & Y_AXIS_MASK)
  467. {
  468. eeprom_update_byte((uint8_t*)EEPROM_CRASH_COUNT_Y, eeprom_read_byte((uint8_t*)EEPROM_CRASH_COUNT_Y) + 1);
  469. eeprom_update_word((uint16_t*)EEPROM_CRASH_COUNT_Y_TOT, eeprom_read_word((uint16_t*)EEPROM_CRASH_COUNT_Y_TOT) + 1);
  470. }
  471. lcd_update_enable(true);
  472. lcd_update(2);
  473. lcd_setstatuspgm(_T(MSG_CRASH_DETECTED));
  474. gcode_G28(true, true, false); //home X and Y
  475. st_synchronize();
  476. if (automatic_recovery_after_crash) {
  477. enquecommand_P(PSTR("CRASH_RECOVER"));
  478. }else{
  479. setTargetHotend(0, active_extruder);
  480. bool yesno = lcd_show_fullscreen_message_yes_no_and_wait_P(_i("Crash detected. Resume print?"), false);
  481. lcd_update_enable(true);
  482. if (yesno)
  483. {
  484. enquecommand_P(PSTR("CRASH_RECOVER"));
  485. }
  486. else
  487. {
  488. enquecommand_P(PSTR("CRASH_CANCEL"));
  489. }
  490. }
  491. }
  492. void crashdet_recover()
  493. {
  494. crashdet_restore_print_and_continue();
  495. if (lcd_crash_detect_enabled()) tmc2130_sg_stop_on_crash = true;
  496. }
  497. void crashdet_cancel()
  498. {
  499. saved_printing = false;
  500. tmc2130_sg_stop_on_crash = true;
  501. if (saved_printing_type == PRINTING_TYPE_SD) {
  502. lcd_print_stop();
  503. }else if(saved_printing_type == PRINTING_TYPE_USB){
  504. SERIAL_ECHOLNPGM("// action:cancel"); //for Octoprint: works the same as clicking "Abort" button in Octoprint GUI
  505. SERIAL_PROTOCOLLNRPGM(MSG_OK);
  506. }
  507. }
  508. #endif //TMC2130
  509. void failstats_reset_print()
  510. {
  511. eeprom_update_byte((uint8_t *)EEPROM_CRASH_COUNT_X, 0);
  512. eeprom_update_byte((uint8_t *)EEPROM_CRASH_COUNT_Y, 0);
  513. eeprom_update_byte((uint8_t *)EEPROM_FERROR_COUNT, 0);
  514. eeprom_update_byte((uint8_t *)EEPROM_POWER_COUNT, 0);
  515. eeprom_update_byte((uint8_t *)EEPROM_MMU_FAIL, 0);
  516. eeprom_update_byte((uint8_t *)EEPROM_MMU_LOAD_FAIL, 0);
  517. }
  518. #ifdef MESH_BED_LEVELING
  519. enum MeshLevelingState { MeshReport, MeshStart, MeshNext, MeshSet };
  520. #endif
  521. // Factory reset function
  522. // This function is used to erase parts or whole EEPROM memory which is used for storing calibration and and so on.
  523. // Level input parameter sets depth of reset
  524. int er_progress = 0;
  525. static void factory_reset(char level)
  526. {
  527. lcd_clear();
  528. switch (level) {
  529. // Level 0: Language reset
  530. case 0:
  531. Sound_MakeCustom(100,0,false);
  532. lang_reset();
  533. break;
  534. //Level 1: Reset statistics
  535. case 1:
  536. Sound_MakeCustom(100,0,false);
  537. eeprom_update_dword((uint32_t *)EEPROM_TOTALTIME, 0);
  538. eeprom_update_dword((uint32_t *)EEPROM_FILAMENTUSED, 0);
  539. eeprom_update_byte((uint8_t *)EEPROM_CRASH_COUNT_X, 0);
  540. eeprom_update_byte((uint8_t *)EEPROM_CRASH_COUNT_Y, 0);
  541. eeprom_update_byte((uint8_t *)EEPROM_FERROR_COUNT, 0);
  542. eeprom_update_byte((uint8_t *)EEPROM_POWER_COUNT, 0);
  543. eeprom_update_word((uint16_t *)EEPROM_CRASH_COUNT_X_TOT, 0);
  544. eeprom_update_word((uint16_t *)EEPROM_CRASH_COUNT_Y_TOT, 0);
  545. eeprom_update_word((uint16_t *)EEPROM_FERROR_COUNT_TOT, 0);
  546. eeprom_update_word((uint16_t *)EEPROM_POWER_COUNT_TOT, 0);
  547. eeprom_update_word((uint16_t *)EEPROM_MMU_FAIL_TOT, 0);
  548. eeprom_update_word((uint16_t *)EEPROM_MMU_LOAD_FAIL_TOT, 0);
  549. eeprom_update_byte((uint8_t *)EEPROM_MMU_FAIL, 0);
  550. eeprom_update_byte((uint8_t *)EEPROM_MMU_LOAD_FAIL, 0);
  551. lcd_menu_statistics();
  552. break;
  553. // Level 2: Prepare for shipping
  554. case 2:
  555. //lcd_puts_P(PSTR("Factory RESET"));
  556. //lcd_puts_at_P(1,2,PSTR("Shipping prep"));
  557. // Force language selection at the next boot up.
  558. lang_reset();
  559. // Force the "Follow calibration flow" message at the next boot up.
  560. calibration_status_store(CALIBRATION_STATUS_Z_CALIBRATION);
  561. eeprom_write_byte((uint8_t*)EEPROM_WIZARD_ACTIVE, 1); //run wizard
  562. farm_no = 0;
  563. farm_mode = false;
  564. eeprom_update_byte((uint8_t*)EEPROM_FARM_MODE, farm_mode);
  565. EEPROM_save_B(EEPROM_FARM_NUMBER, &farm_no);
  566. eeprom_update_dword((uint32_t *)EEPROM_TOTALTIME, 0);
  567. eeprom_update_dword((uint32_t *)EEPROM_FILAMENTUSED, 0);
  568. eeprom_update_word((uint16_t *)EEPROM_CRASH_COUNT_X_TOT, 0);
  569. eeprom_update_word((uint16_t *)EEPROM_CRASH_COUNT_Y_TOT, 0);
  570. eeprom_update_word((uint16_t *)EEPROM_FERROR_COUNT_TOT, 0);
  571. eeprom_update_word((uint16_t *)EEPROM_POWER_COUNT_TOT, 0);
  572. eeprom_update_word((uint16_t *)EEPROM_MMU_FAIL_TOT, 0);
  573. eeprom_update_word((uint16_t *)EEPROM_MMU_LOAD_FAIL_TOT, 0);
  574. eeprom_update_byte((uint8_t *)EEPROM_MMU_FAIL, 0);
  575. eeprom_update_byte((uint8_t *)EEPROM_MMU_LOAD_FAIL, 0);
  576. #ifdef FILAMENT_SENSOR
  577. fsensor_enable();
  578. fsensor_autoload_set(true);
  579. #endif //FILAMENT_SENSOR
  580. Sound_MakeCustom(100,0,false);
  581. //_delay_ms(2000);
  582. break;
  583. // Level 3: erase everything, whole EEPROM will be set to 0xFF
  584. case 3:
  585. lcd_puts_P(PSTR("Factory RESET"));
  586. lcd_puts_at_P(1, 2, PSTR("ERASING all data"));
  587. Sound_MakeCustom(100,0,false);
  588. er_progress = 0;
  589. lcd_puts_at_P(3, 3, PSTR(" "));
  590. lcd_set_cursor(3, 3);
  591. lcd_print(er_progress);
  592. // Erase EEPROM
  593. for (int i = 0; i < 4096; i++) {
  594. eeprom_update_byte((uint8_t*)i, 0xFF);
  595. if (i % 41 == 0) {
  596. er_progress++;
  597. lcd_puts_at_P(3, 3, PSTR(" "));
  598. lcd_set_cursor(3, 3);
  599. lcd_print(er_progress);
  600. lcd_puts_P(PSTR("%"));
  601. }
  602. }
  603. break;
  604. case 4:
  605. bowden_menu();
  606. break;
  607. default:
  608. break;
  609. }
  610. }
  611. extern "C" {
  612. FILE _uartout; //= {0}; Global variable is always zero initialized. No need to explicitly state this.
  613. }
  614. int uart_putchar(char c, FILE *)
  615. {
  616. MYSERIAL.write(c);
  617. return 0;
  618. }
  619. void lcd_splash()
  620. {
  621. lcd_clear(); // clears display and homes screen
  622. lcd_puts_P(PSTR("\n Original Prusa i3\n Prusa Research"));
  623. }
  624. void factory_reset()
  625. {
  626. KEEPALIVE_STATE(PAUSED_FOR_USER);
  627. if (!READ(BTN_ENC))
  628. {
  629. _delay_ms(1000);
  630. if (!READ(BTN_ENC))
  631. {
  632. lcd_clear();
  633. lcd_puts_P(PSTR("Factory RESET"));
  634. SET_OUTPUT(BEEPER);
  635. if(eSoundMode!=e_SOUND_MODE_SILENT)
  636. WRITE(BEEPER, HIGH);
  637. while (!READ(BTN_ENC));
  638. WRITE(BEEPER, LOW);
  639. _delay_ms(2000);
  640. char level = reset_menu();
  641. factory_reset(level);
  642. switch (level) {
  643. case 0: _delay_ms(0); break;
  644. case 1: _delay_ms(0); break;
  645. case 2: _delay_ms(0); break;
  646. case 3: _delay_ms(0); break;
  647. }
  648. }
  649. }
  650. KEEPALIVE_STATE(IN_HANDLER);
  651. }
  652. void show_fw_version_warnings() {
  653. if (FW_DEV_VERSION == FW_VERSION_GOLD || FW_DEV_VERSION == FW_VERSION_RC) return;
  654. switch (FW_DEV_VERSION) {
  655. case(FW_VERSION_ALPHA): lcd_show_fullscreen_message_and_wait_P(_i("You are using firmware alpha version. This is development version. Using this version is not recommended and may cause printer damage.")); break;////MSG_FW_VERSION_ALPHA c=20 r=8
  656. case(FW_VERSION_BETA): lcd_show_fullscreen_message_and_wait_P(_i("You are using firmware beta version. This is development version. Using this version is not recommended and may cause printer damage.")); break;////MSG_FW_VERSION_BETA c=20 r=8
  657. case(FW_VERSION_DEVEL):
  658. case(FW_VERSION_DEBUG):
  659. lcd_update_enable(false);
  660. lcd_clear();
  661. #if FW_DEV_VERSION == FW_VERSION_DEVEL
  662. lcd_puts_at_P(0, 0, PSTR("Development build !!"));
  663. #else
  664. lcd_puts_at_P(0, 0, PSTR("Debbugging build !!!"));
  665. #endif
  666. lcd_puts_at_P(0, 1, PSTR("May destroy printer!"));
  667. lcd_puts_at_P(0, 2, PSTR("ver ")); lcd_puts_P(PSTR(FW_VERSION_FULL));
  668. lcd_puts_at_P(0, 3, PSTR(FW_REPOSITORY));
  669. lcd_wait_for_click();
  670. break;
  671. // default: lcd_show_fullscreen_message_and_wait_P(_i("WARNING: This is an unofficial, unsupported build. Use at your own risk!")); break;////MSG_FW_VERSION_UNKNOWN c=20 r=8
  672. }
  673. lcd_update_enable(true);
  674. }
  675. //! @brief try to check if firmware is on right type of printer
  676. static void check_if_fw_is_on_right_printer(){
  677. #ifdef FILAMENT_SENSOR
  678. if((PRINTER_TYPE == PRINTER_MK3) || (PRINTER_TYPE == PRINTER_MK3S)){
  679. #ifdef IR_SENSOR
  680. swi2c_init();
  681. const uint8_t pat9125_detected = swi2c_readByte_A8(PAT9125_I2C_ADDR,0x00,NULL);
  682. if (pat9125_detected){
  683. lcd_show_fullscreen_message_and_wait_P(_i("MK3S firmware detected on MK3 printer"));}
  684. #endif //IR_SENSOR
  685. #ifdef PAT9125
  686. //will return 1 only if IR can detect filament in bondtech extruder so this may fail even when we have IR sensor
  687. const uint8_t ir_detected = !(PIN_GET(IR_SENSOR_PIN));
  688. if (ir_detected){
  689. lcd_show_fullscreen_message_and_wait_P(_i("MK3 firmware detected on MK3S printer"));}
  690. #endif //PAT9125
  691. }
  692. #endif //FILAMENT_SENSOR
  693. }
  694. uint8_t check_printer_version()
  695. {
  696. uint8_t version_changed = 0;
  697. uint16_t printer_type = eeprom_read_word((uint16_t*)EEPROM_PRINTER_TYPE);
  698. uint16_t motherboard = eeprom_read_word((uint16_t*)EEPROM_BOARD_TYPE);
  699. if (printer_type != PRINTER_TYPE) {
  700. if (printer_type == 0xffff) eeprom_write_word((uint16_t*)EEPROM_PRINTER_TYPE, PRINTER_TYPE);
  701. else version_changed |= 0b10;
  702. }
  703. if (motherboard != MOTHERBOARD) {
  704. if(motherboard == 0xffff) eeprom_write_word((uint16_t*)EEPROM_BOARD_TYPE, MOTHERBOARD);
  705. else version_changed |= 0b01;
  706. }
  707. return version_changed;
  708. }
  709. #ifdef BOOTAPP
  710. #include "bootapp.h" //bootloader support
  711. #endif //BOOTAPP
  712. #if (LANG_MODE != 0) //secondary language support
  713. #ifdef W25X20CL
  714. // language update from external flash
  715. #define LANGBOOT_BLOCKSIZE 0x1000u
  716. #define LANGBOOT_RAMBUFFER 0x0800
  717. void update_sec_lang_from_external_flash()
  718. {
  719. if ((boot_app_magic == BOOT_APP_MAGIC) && (boot_app_flags & BOOT_APP_FLG_USER0))
  720. {
  721. uint8_t lang = boot_reserved >> 4;
  722. uint8_t state = boot_reserved & 0xf;
  723. lang_table_header_t header;
  724. uint32_t src_addr;
  725. if (lang_get_header(lang, &header, &src_addr))
  726. {
  727. lcd_puts_at_P(1,3,PSTR("Language update."));
  728. for (uint8_t i = 0; i < state; i++) fputc('.', lcdout);
  729. _delay(100);
  730. boot_reserved = (state + 1) | (lang << 4);
  731. if ((state * LANGBOOT_BLOCKSIZE) < header.size)
  732. {
  733. cli();
  734. uint16_t size = header.size - state * LANGBOOT_BLOCKSIZE;
  735. if (size > LANGBOOT_BLOCKSIZE) size = LANGBOOT_BLOCKSIZE;
  736. w25x20cl_rd_data(src_addr + state * LANGBOOT_BLOCKSIZE, (uint8_t*)LANGBOOT_RAMBUFFER, size);
  737. if (state == 0)
  738. {
  739. //TODO - check header integrity
  740. }
  741. bootapp_ram2flash(LANGBOOT_RAMBUFFER, _SEC_LANG_TABLE + state * LANGBOOT_BLOCKSIZE, size);
  742. }
  743. else
  744. {
  745. //TODO - check sec lang data integrity
  746. eeprom_update_byte((unsigned char *)EEPROM_LANG, LANG_ID_SEC);
  747. }
  748. }
  749. }
  750. boot_app_flags &= ~BOOT_APP_FLG_USER0;
  751. }
  752. #ifdef DEBUG_W25X20CL
  753. uint8_t lang_xflash_enum_codes(uint16_t* codes)
  754. {
  755. lang_table_header_t header;
  756. uint8_t count = 0;
  757. uint32_t addr = 0x00000;
  758. while (1)
  759. {
  760. printf_P(_n("LANGTABLE%d:"), count);
  761. w25x20cl_rd_data(addr, (uint8_t*)&header, sizeof(lang_table_header_t));
  762. if (header.magic != LANG_MAGIC)
  763. {
  764. printf_P(_n("NG!\n"));
  765. break;
  766. }
  767. printf_P(_n("OK\n"));
  768. printf_P(_n(" _lt_magic = 0x%08lx %S\n"), header.magic, (header.magic==LANG_MAGIC)?_n("OK"):_n("NA"));
  769. printf_P(_n(" _lt_size = 0x%04x (%d)\n"), header.size, header.size);
  770. printf_P(_n(" _lt_count = 0x%04x (%d)\n"), header.count, header.count);
  771. printf_P(_n(" _lt_chsum = 0x%04x\n"), header.checksum);
  772. printf_P(_n(" _lt_code = 0x%04x (%c%c)\n"), header.code, header.code >> 8, header.code & 0xff);
  773. printf_P(_n(" _lt_sign = 0x%08lx\n"), header.signature);
  774. addr += header.size;
  775. codes[count] = header.code;
  776. count ++;
  777. }
  778. return count;
  779. }
  780. void list_sec_lang_from_external_flash()
  781. {
  782. uint16_t codes[8];
  783. uint8_t count = lang_xflash_enum_codes(codes);
  784. printf_P(_n("XFlash lang count = %hhd\n"), count);
  785. }
  786. #endif //DEBUG_W25X20CL
  787. #endif //W25X20CL
  788. #endif //(LANG_MODE != 0)
  789. static void w25x20cl_err_msg()
  790. {
  791. lcd_clear();
  792. lcd_puts_P(_n("External SPI flash\nW25X20CL is not res-\nponding. Language\nswitch unavailable."));
  793. }
  794. // "Setup" function is called by the Arduino framework on startup.
  795. // Before startup, the Timers-functions (PWM)/Analog RW and HardwareSerial provided by the Arduino-code
  796. // are initialized by the main() routine provided by the Arduino framework.
  797. void setup()
  798. {
  799. mmu_init();
  800. ultralcd_init();
  801. #if (LCD_BL_PIN != -1) && defined (LCD_BL_PIN)
  802. analogWrite(LCD_BL_PIN, 255); //set full brightnes
  803. #endif //(LCD_BL_PIN != -1) && defined (LCD_BL_PIN)
  804. spi_init();
  805. lcd_splash();
  806. Sound_Init(); // also guarantee "SET_OUTPUT(BEEPER)"
  807. #ifdef W25X20CL
  808. bool w25x20cl_success = w25x20cl_init();
  809. if (w25x20cl_success)
  810. {
  811. optiboot_w25x20cl_enter();
  812. #if (LANG_MODE != 0) //secondary language support
  813. update_sec_lang_from_external_flash();
  814. #endif //(LANG_MODE != 0)
  815. }
  816. else
  817. {
  818. w25x20cl_err_msg();
  819. }
  820. #else
  821. const bool w25x20cl_success = true;
  822. #endif //W25X20CL
  823. setup_killpin();
  824. setup_powerhold();
  825. farm_mode = eeprom_read_byte((uint8_t*)EEPROM_FARM_MODE);
  826. EEPROM_read_B(EEPROM_FARM_NUMBER, &farm_no);
  827. if ((farm_mode == 0xFF && farm_no == 0) || ((uint16_t)farm_no == 0xFFFF))
  828. farm_mode = false; //if farm_mode has not been stored to eeprom yet and farm number is set to zero or EEPROM is fresh, deactivate farm mode
  829. if ((uint16_t)farm_no == 0xFFFF) farm_no = 0;
  830. selectedSerialPort = eeprom_read_byte((uint8_t*)EEPROM_SECOND_SERIAL_ACTIVE);
  831. if (selectedSerialPort == 0xFF) selectedSerialPort = 0;
  832. if (farm_mode)
  833. {
  834. no_response = true; //we need confirmation by recieving PRUSA thx
  835. important_status = 8;
  836. prusa_statistics(8);
  837. selectedSerialPort = 1;
  838. #ifdef TMC2130
  839. //increased extruder current (PFW363)
  840. tmc2130_current_h[E_AXIS] = 36;
  841. tmc2130_current_r[E_AXIS] = 36;
  842. #endif //TMC2130
  843. #ifdef FILAMENT_SENSOR
  844. //disabled filament autoload (PFW360)
  845. fsensor_autoload_set(false);
  846. #endif //FILAMENT_SENSOR
  847. // ~ FanCheck -> on
  848. if(!(eeprom_read_byte((uint8_t*)EEPROM_FAN_CHECK_ENABLED)))
  849. eeprom_update_byte((unsigned char *)EEPROM_FAN_CHECK_ENABLED,true);
  850. }
  851. MYSERIAL.begin(BAUDRATE);
  852. fdev_setup_stream(uartout, uart_putchar, NULL, _FDEV_SETUP_WRITE); //setup uart out stream
  853. #ifndef W25X20CL
  854. SERIAL_PROTOCOLLNPGM("start");
  855. #endif //W25X20CL
  856. stdout = uartout;
  857. SERIAL_ECHO_START;
  858. printf_P(PSTR(" " FW_VERSION_FULL "\n"));
  859. //SERIAL_ECHOPAIR("Active sheet before:", static_cast<unsigned long int>(eeprom_read_byte(&(EEPROM_Sheets_base->active_sheet))));
  860. #ifdef DEBUG_SEC_LANG
  861. lang_table_header_t header;
  862. uint32_t src_addr = 0x00000;
  863. if (lang_get_header(1, &header, &src_addr))
  864. {
  865. //this is comparsion of some printing-methods regarding to flash space usage and code size/readability
  866. #define LT_PRINT_TEST 2
  867. // flash usage
  868. // total p.test
  869. //0 252718 t+c text code
  870. //1 253142 424 170 254
  871. //2 253040 322 164 158
  872. //3 253248 530 135 395
  873. #if (LT_PRINT_TEST==1) //not optimized printf
  874. printf_P(_n(" _src_addr = 0x%08lx\n"), src_addr);
  875. printf_P(_n(" _lt_magic = 0x%08lx %S\n"), header.magic, (header.magic==LANG_MAGIC)?_n("OK"):_n("NA"));
  876. printf_P(_n(" _lt_size = 0x%04x (%d)\n"), header.size, header.size);
  877. printf_P(_n(" _lt_count = 0x%04x (%d)\n"), header.count, header.count);
  878. printf_P(_n(" _lt_chsum = 0x%04x\n"), header.checksum);
  879. printf_P(_n(" _lt_code = 0x%04x (%c%c)\n"), header.code, header.code >> 8, header.code & 0xff);
  880. printf_P(_n(" _lt_sign = 0x%08lx\n"), header.signature);
  881. #elif (LT_PRINT_TEST==2) //optimized printf
  882. printf_P(
  883. _n(
  884. " _src_addr = 0x%08lx\n"
  885. " _lt_magic = 0x%08lx %S\n"
  886. " _lt_size = 0x%04x (%d)\n"
  887. " _lt_count = 0x%04x (%d)\n"
  888. " _lt_chsum = 0x%04x\n"
  889. " _lt_code = 0x%04x (%c%c)\n"
  890. " _lt_resv1 = 0x%08lx\n"
  891. ),
  892. src_addr,
  893. header.magic, (header.magic==LANG_MAGIC)?_n("OK"):_n("NA"),
  894. header.size, header.size,
  895. header.count, header.count,
  896. header.checksum,
  897. header.code, header.code >> 8, header.code & 0xff,
  898. header.signature
  899. );
  900. #elif (LT_PRINT_TEST==3) //arduino print/println (leading zeros not solved)
  901. MYSERIAL.print(" _src_addr = 0x");
  902. MYSERIAL.println(src_addr, 16);
  903. MYSERIAL.print(" _lt_magic = 0x");
  904. MYSERIAL.print(header.magic, 16);
  905. MYSERIAL.println((header.magic==LANG_MAGIC)?" OK":" NA");
  906. MYSERIAL.print(" _lt_size = 0x");
  907. MYSERIAL.print(header.size, 16);
  908. MYSERIAL.print(" (");
  909. MYSERIAL.print(header.size, 10);
  910. MYSERIAL.println(")");
  911. MYSERIAL.print(" _lt_count = 0x");
  912. MYSERIAL.print(header.count, 16);
  913. MYSERIAL.print(" (");
  914. MYSERIAL.print(header.count, 10);
  915. MYSERIAL.println(")");
  916. MYSERIAL.print(" _lt_chsum = 0x");
  917. MYSERIAL.println(header.checksum, 16);
  918. MYSERIAL.print(" _lt_code = 0x");
  919. MYSERIAL.print(header.code, 16);
  920. MYSERIAL.print(" (");
  921. MYSERIAL.print((char)(header.code >> 8), 0);
  922. MYSERIAL.print((char)(header.code & 0xff), 0);
  923. MYSERIAL.println(")");
  924. MYSERIAL.print(" _lt_resv1 = 0x");
  925. MYSERIAL.println(header.signature, 16);
  926. #endif //(LT_PRINT_TEST==)
  927. #undef LT_PRINT_TEST
  928. #if 0
  929. w25x20cl_rd_data(0x25ba, (uint8_t*)&block_buffer, 1024);
  930. for (uint16_t i = 0; i < 1024; i++)
  931. {
  932. if ((i % 16) == 0) printf_P(_n("%04x:"), 0x25ba+i);
  933. printf_P(_n(" %02x"), ((uint8_t*)&block_buffer)[i]);
  934. if ((i % 16) == 15) putchar('\n');
  935. }
  936. #endif
  937. uint16_t sum = 0;
  938. for (uint16_t i = 0; i < header.size; i++)
  939. sum += (uint16_t)pgm_read_byte((uint8_t*)(_SEC_LANG_TABLE + i)) << ((i & 1)?0:8);
  940. printf_P(_n("_SEC_LANG_TABLE checksum = %04x\n"), sum);
  941. sum -= header.checksum; //subtract checksum
  942. printf_P(_n("_SEC_LANG_TABLE checksum = %04x\n"), sum);
  943. sum = (sum >> 8) | ((sum & 0xff) << 8); //swap bytes
  944. if (sum == header.checksum)
  945. printf_P(_n("Checksum OK\n"), sum);
  946. else
  947. printf_P(_n("Checksum NG\n"), sum);
  948. }
  949. else
  950. printf_P(_n("lang_get_header failed!\n"));
  951. #if 0
  952. for (uint16_t i = 0; i < 1024*10; i++)
  953. {
  954. if ((i % 16) == 0) printf_P(_n("%04x:"), _SEC_LANG_TABLE+i);
  955. printf_P(_n(" %02x"), pgm_read_byte((uint8_t*)(_SEC_LANG_TABLE+i)));
  956. if ((i % 16) == 15) putchar('\n');
  957. }
  958. #endif
  959. #if 0
  960. SERIAL_ECHOLN("Reading eeprom from 0 to 100: start");
  961. for (int i = 0; i < 4096; ++i) {
  962. int b = eeprom_read_byte((unsigned char*)i);
  963. if (b != 255) {
  964. SERIAL_ECHO(i);
  965. SERIAL_ECHO(":");
  966. SERIAL_ECHO(b);
  967. SERIAL_ECHOLN("");
  968. }
  969. }
  970. SERIAL_ECHOLN("Reading eeprom from 0 to 100: done");
  971. #endif
  972. #endif //DEBUG_SEC_LANG
  973. // Check startup - does nothing if bootloader sets MCUSR to 0
  974. byte mcu = MCUSR;
  975. /* if (mcu & 1) SERIAL_ECHOLNRPGM(MSG_POWERUP);
  976. if (mcu & 2) SERIAL_ECHOLNRPGM(MSG_EXTERNAL_RESET);
  977. if (mcu & 4) SERIAL_ECHOLNRPGM(MSG_BROWNOUT_RESET);
  978. if (mcu & 8) SERIAL_ECHOLNRPGM(MSG_WATCHDOG_RESET);
  979. if (mcu & 32) SERIAL_ECHOLNRPGM(MSG_SOFTWARE_RESET);*/
  980. if (mcu & 1) puts_P(MSG_POWERUP);
  981. if (mcu & 2) puts_P(MSG_EXTERNAL_RESET);
  982. if (mcu & 4) puts_P(MSG_BROWNOUT_RESET);
  983. if (mcu & 8) puts_P(MSG_WATCHDOG_RESET);
  984. if (mcu & 32) puts_P(MSG_SOFTWARE_RESET);
  985. MCUSR = 0;
  986. //SERIAL_ECHORPGM(MSG_MARLIN);
  987. //SERIAL_ECHOLNRPGM(VERSION_STRING);
  988. #ifdef STRING_VERSION_CONFIG_H
  989. #ifdef STRING_CONFIG_H_AUTHOR
  990. SERIAL_ECHO_START;
  991. SERIAL_ECHORPGM(_n(" Last Updated: "));////MSG_CONFIGURATION_VER
  992. SERIAL_ECHOPGM(STRING_VERSION_CONFIG_H);
  993. SERIAL_ECHORPGM(_n(" | Author: "));////MSG_AUTHOR
  994. SERIAL_ECHOLNPGM(STRING_CONFIG_H_AUTHOR);
  995. SERIAL_ECHOPGM("Compiled: ");
  996. SERIAL_ECHOLNPGM(__DATE__);
  997. #endif
  998. #endif
  999. SERIAL_ECHO_START;
  1000. SERIAL_ECHORPGM(_n(" Free Memory: "));////MSG_FREE_MEMORY
  1001. SERIAL_ECHO(freeMemory());
  1002. SERIAL_ECHORPGM(_n(" PlannerBufferBytes: "));////MSG_PLANNER_BUFFER_BYTES
  1003. SERIAL_ECHOLN((int)sizeof(block_t)*BLOCK_BUFFER_SIZE);
  1004. //lcd_update_enable(false); // why do we need this?? - andre
  1005. // loads data from EEPROM if available else uses defaults (and resets step acceleration rate)
  1006. bool previous_settings_retrieved = false;
  1007. uint8_t hw_changed = check_printer_version();
  1008. if (!(hw_changed & 0b10)) { //if printer version wasn't changed, check for eeprom version and retrieve settings from eeprom in case that version wasn't changed
  1009. previous_settings_retrieved = Config_RetrieveSettings();
  1010. }
  1011. else { //printer version was changed so use default settings
  1012. Config_ResetDefault();
  1013. }
  1014. SdFatUtil::set_stack_guard(); //writes magic number at the end of static variables to protect against overwriting static memory by stack
  1015. tp_init(); // Initialize temperature loop
  1016. if (w25x20cl_success) lcd_splash(); // we need to do this again, because tp_init() kills lcd
  1017. else
  1018. {
  1019. w25x20cl_err_msg();
  1020. printf_P(_n("W25X20CL not responding.\n"));
  1021. }
  1022. plan_init(); // Initialize planner;
  1023. factory_reset();
  1024. lcd_encoder_diff=0;
  1025. #ifdef TMC2130
  1026. uint8_t silentMode = eeprom_read_byte((uint8_t*)EEPROM_SILENT);
  1027. if (silentMode == 0xff) silentMode = 0;
  1028. tmc2130_mode = TMC2130_MODE_NORMAL;
  1029. if (lcd_crash_detect_enabled() && !farm_mode)
  1030. {
  1031. lcd_crash_detect_enable();
  1032. puts_P(_N("CrashDetect ENABLED!"));
  1033. }
  1034. else
  1035. {
  1036. lcd_crash_detect_disable();
  1037. puts_P(_N("CrashDetect DISABLED"));
  1038. }
  1039. #ifdef TMC2130_LINEARITY_CORRECTION
  1040. #ifdef TMC2130_LINEARITY_CORRECTION_XYZ
  1041. tmc2130_wave_fac[X_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_WAVE_X_FAC);
  1042. tmc2130_wave_fac[Y_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_WAVE_Y_FAC);
  1043. tmc2130_wave_fac[Z_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_WAVE_Z_FAC);
  1044. #endif //TMC2130_LINEARITY_CORRECTION_XYZ
  1045. tmc2130_wave_fac[E_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_WAVE_E_FAC);
  1046. if (tmc2130_wave_fac[X_AXIS] == 0xff) tmc2130_wave_fac[X_AXIS] = 0;
  1047. if (tmc2130_wave_fac[Y_AXIS] == 0xff) tmc2130_wave_fac[Y_AXIS] = 0;
  1048. if (tmc2130_wave_fac[Z_AXIS] == 0xff) tmc2130_wave_fac[Z_AXIS] = 0;
  1049. if (tmc2130_wave_fac[E_AXIS] == 0xff) tmc2130_wave_fac[E_AXIS] = 0;
  1050. #endif //TMC2130_LINEARITY_CORRECTION
  1051. #ifdef TMC2130_VARIABLE_RESOLUTION
  1052. tmc2130_mres[X_AXIS] = tmc2130_usteps2mres(cs.axis_ustep_resolution[X_AXIS]);
  1053. tmc2130_mres[Y_AXIS] = tmc2130_usteps2mres(cs.axis_ustep_resolution[Y_AXIS]);
  1054. tmc2130_mres[Z_AXIS] = tmc2130_usteps2mres(cs.axis_ustep_resolution[Z_AXIS]);
  1055. tmc2130_mres[E_AXIS] = tmc2130_usteps2mres(cs.axis_ustep_resolution[E_AXIS]);
  1056. #else //TMC2130_VARIABLE_RESOLUTION
  1057. tmc2130_mres[X_AXIS] = tmc2130_usteps2mres(TMC2130_USTEPS_XY);
  1058. tmc2130_mres[Y_AXIS] = tmc2130_usteps2mres(TMC2130_USTEPS_XY);
  1059. tmc2130_mres[Z_AXIS] = tmc2130_usteps2mres(TMC2130_USTEPS_Z);
  1060. tmc2130_mres[E_AXIS] = tmc2130_usteps2mres(TMC2130_USTEPS_E);
  1061. #endif //TMC2130_VARIABLE_RESOLUTION
  1062. #endif //TMC2130
  1063. st_init(); // Initialize stepper, this enables interrupts!
  1064. #ifdef UVLO_SUPPORT
  1065. setup_uvlo_interrupt();
  1066. #endif //UVLO_SUPPORT
  1067. #ifdef TMC2130
  1068. tmc2130_mode = silentMode?TMC2130_MODE_SILENT:TMC2130_MODE_NORMAL;
  1069. update_mode_profile();
  1070. tmc2130_init();
  1071. #endif //TMC2130
  1072. #ifdef PSU_Delta
  1073. init_force_z(); // ! important for correct Z-axis initialization
  1074. #endif // PSU_Delta
  1075. setup_photpin();
  1076. servo_init();
  1077. // Reset the machine correction matrix.
  1078. // It does not make sense to load the correction matrix until the machine is homed.
  1079. world2machine_reset();
  1080. #ifdef FILAMENT_SENSOR
  1081. fsensor_init();
  1082. #endif //FILAMENT_SENSOR
  1083. #if defined(CONTROLLERFAN_PIN) && (CONTROLLERFAN_PIN > -1)
  1084. SET_OUTPUT(CONTROLLERFAN_PIN); //Set pin used for driver cooling fan
  1085. #endif
  1086. setup_homepin();
  1087. #ifdef TMC2130
  1088. if (1) {
  1089. // try to run to zero phase before powering the Z motor.
  1090. // Move in negative direction
  1091. WRITE(Z_DIR_PIN,INVERT_Z_DIR);
  1092. // Round the current micro-micro steps to micro steps.
  1093. for (uint16_t phase = (tmc2130_rd_MSCNT(Z_AXIS) + 8) >> 4; phase > 0; -- phase) {
  1094. // Until the phase counter is reset to zero.
  1095. WRITE(Z_STEP_PIN, !INVERT_Z_STEP_PIN);
  1096. _delay(2);
  1097. WRITE(Z_STEP_PIN, INVERT_Z_STEP_PIN);
  1098. _delay(2);
  1099. }
  1100. }
  1101. #endif //TMC2130
  1102. #if defined(Z_AXIS_ALWAYS_ON) && !defined(PSU_Delta)
  1103. enable_z();
  1104. #endif
  1105. farm_mode = eeprom_read_byte((uint8_t*)EEPROM_FARM_MODE);
  1106. EEPROM_read_B(EEPROM_FARM_NUMBER, &farm_no);
  1107. if ((farm_mode == 0xFF && farm_no == 0) || (farm_no == static_cast<int>(0xFFFF))) farm_mode = false; //if farm_mode has not been stored to eeprom yet and farm number is set to zero or EEPROM is fresh, deactivate farm mode
  1108. if (farm_no == static_cast<int>(0xFFFF)) farm_no = 0;
  1109. if (farm_mode)
  1110. {
  1111. prusa_statistics(8);
  1112. }
  1113. // Enable Toshiba FlashAir SD card / WiFi enahanced card.
  1114. card.ToshibaFlashAir_enable(eeprom_read_byte((unsigned char*)EEPROM_TOSHIBA_FLASH_AIR_COMPATIBLITY) == 1);
  1115. if (eeprom_read_dword((uint32_t*)(EEPROM_TOP - 4)) == 0x0ffffffff &&
  1116. eeprom_read_dword((uint32_t*)(EEPROM_TOP - 8)) == 0x0ffffffff) {
  1117. // Maiden startup. The firmware has been loaded and first started on a virgin RAMBo board,
  1118. // where all the EEPROM entries are set to 0x0ff.
  1119. // Once a firmware boots up, it forces at least a language selection, which changes
  1120. // EEPROM_LANG to number lower than 0x0ff.
  1121. // 1) Set a high power mode.
  1122. #ifdef TMC2130
  1123. eeprom_write_byte((uint8_t*)EEPROM_SILENT, 0);
  1124. tmc2130_mode = TMC2130_MODE_NORMAL;
  1125. #endif //TMC2130
  1126. eeprom_write_byte((uint8_t*)EEPROM_WIZARD_ACTIVE, 1); //run wizard
  1127. }
  1128. // Force SD card update. Otherwise the SD card update is done from loop() on card.checkautostart(false),
  1129. // but this times out if a blocking dialog is shown in setup().
  1130. card.initsd();
  1131. #ifdef DEBUG_SD_SPEED_TEST
  1132. if (card.cardOK)
  1133. {
  1134. uint8_t* buff = (uint8_t*)block_buffer;
  1135. uint32_t block = 0;
  1136. uint32_t sumr = 0;
  1137. uint32_t sumw = 0;
  1138. for (int i = 0; i < 1024; i++)
  1139. {
  1140. uint32_t u = _micros();
  1141. bool res = card.card.readBlock(i, buff);
  1142. u = _micros() - u;
  1143. if (res)
  1144. {
  1145. printf_P(PSTR("readBlock %4d 512 bytes %lu us\n"), i, u);
  1146. sumr += u;
  1147. u = _micros();
  1148. res = card.card.writeBlock(i, buff);
  1149. u = _micros() - u;
  1150. if (res)
  1151. {
  1152. printf_P(PSTR("writeBlock %4d 512 bytes %lu us\n"), i, u);
  1153. sumw += u;
  1154. }
  1155. else
  1156. {
  1157. printf_P(PSTR("writeBlock %4d error\n"), i);
  1158. break;
  1159. }
  1160. }
  1161. else
  1162. {
  1163. printf_P(PSTR("readBlock %4d error\n"), i);
  1164. break;
  1165. }
  1166. }
  1167. uint32_t avg_rspeed = (1024 * 1000000) / (sumr / 512);
  1168. uint32_t avg_wspeed = (1024 * 1000000) / (sumw / 512);
  1169. printf_P(PSTR("avg read speed %lu bytes/s\n"), avg_rspeed);
  1170. printf_P(PSTR("avg write speed %lu bytes/s\n"), avg_wspeed);
  1171. }
  1172. else
  1173. printf_P(PSTR("Card NG!\n"));
  1174. #endif //DEBUG_SD_SPEED_TEST
  1175. eeprom_init();
  1176. #ifdef SNMM
  1177. if (eeprom_read_dword((uint32_t*)EEPROM_BOWDEN_LENGTH) == 0x0ffffffff) { //bowden length used for SNMM
  1178. int _z = BOWDEN_LENGTH;
  1179. for(int i = 0; i<4; i++) EEPROM_save_B(EEPROM_BOWDEN_LENGTH + i * 2, &_z);
  1180. }
  1181. #endif
  1182. // In the future, somewhere here would one compare the current firmware version against the firmware version stored in the EEPROM.
  1183. // If they differ, an update procedure may need to be performed. At the end of this block, the current firmware version
  1184. // is being written into the EEPROM, so the update procedure will be triggered only once.
  1185. #if (LANG_MODE != 0) //secondary language support
  1186. #ifdef DEBUG_W25X20CL
  1187. W25X20CL_SPI_ENTER();
  1188. uint8_t uid[8]; // 64bit unique id
  1189. w25x20cl_rd_uid(uid);
  1190. puts_P(_n("W25X20CL UID="));
  1191. for (uint8_t i = 0; i < 8; i ++)
  1192. printf_P(PSTR("%02hhx"), uid[i]);
  1193. putchar('\n');
  1194. list_sec_lang_from_external_flash();
  1195. #endif //DEBUG_W25X20CL
  1196. // lang_reset();
  1197. if (!lang_select(eeprom_read_byte((uint8_t*)EEPROM_LANG)))
  1198. lcd_language();
  1199. #ifdef DEBUG_SEC_LANG
  1200. uint16_t sec_lang_code = lang_get_code(1);
  1201. uint16_t ui = _SEC_LANG_TABLE; //table pointer
  1202. printf_P(_n("lang_selected=%d\nlang_table=0x%04x\nSEC_LANG_CODE=0x%04x (%c%c)\n"), lang_selected, ui, sec_lang_code, sec_lang_code >> 8, sec_lang_code & 0xff);
  1203. lang_print_sec_lang(uartout);
  1204. #endif //DEBUG_SEC_LANG
  1205. #endif //(LANG_MODE != 0)
  1206. if (eeprom_read_byte((uint8_t*)EEPROM_TEMP_CAL_ACTIVE) == 255) {
  1207. eeprom_write_byte((uint8_t*)EEPROM_TEMP_CAL_ACTIVE, 0);
  1208. temp_cal_active = false;
  1209. } else temp_cal_active = eeprom_read_byte((uint8_t*)EEPROM_TEMP_CAL_ACTIVE);
  1210. if (eeprom_read_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA) == 255) {
  1211. //eeprom_write_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 0);
  1212. eeprom_write_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 1);
  1213. int16_t z_shift = 0;
  1214. for (uint8_t i = 0; i < 5; i++) EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + i * 2, &z_shift);
  1215. eeprom_write_byte((uint8_t*)EEPROM_TEMP_CAL_ACTIVE, 0);
  1216. temp_cal_active = false;
  1217. }
  1218. if (eeprom_read_byte((uint8_t*)EEPROM_UVLO) == 255) {
  1219. eeprom_write_byte((uint8_t*)EEPROM_UVLO, 0);
  1220. }
  1221. if (eeprom_read_byte((uint8_t*)EEPROM_SD_SORT) == 255) {
  1222. eeprom_write_byte((uint8_t*)EEPROM_SD_SORT, 0);
  1223. }
  1224. //mbl_mode_init();
  1225. mbl_settings_init();
  1226. SilentModeMenu_MMU = eeprom_read_byte((uint8_t*)EEPROM_MMU_STEALTH);
  1227. if (SilentModeMenu_MMU == 255) {
  1228. SilentModeMenu_MMU = 1;
  1229. eeprom_write_byte((uint8_t*)EEPROM_MMU_STEALTH, SilentModeMenu_MMU);
  1230. }
  1231. #if !defined(DEBUG_DISABLE_FANCHECK) && defined(FANCHECK) && defined(TACH_1) && TACH_1 >-1
  1232. setup_fan_interrupt();
  1233. #endif //DEBUG_DISABLE_FANCHECK
  1234. #ifdef PAT9125
  1235. fsensor_setup_interrupt();
  1236. #endif //PAT9125
  1237. for (int i = 0; i<4; i++) EEPROM_read_B(EEPROM_BOWDEN_LENGTH + i * 2, &bowden_length[i]);
  1238. #ifndef DEBUG_DISABLE_STARTMSGS
  1239. KEEPALIVE_STATE(PAUSED_FOR_USER);
  1240. if (!farm_mode) {
  1241. check_if_fw_is_on_right_printer();
  1242. show_fw_version_warnings();
  1243. }
  1244. switch (hw_changed) {
  1245. //if motherboard or printer type was changed inform user as it can indicate flashing wrong firmware version
  1246. //if user confirms with knob, new hw version (printer and/or motherboard) is written to eeprom and message will be not shown next time
  1247. case(0b01):
  1248. lcd_show_fullscreen_message_and_wait_P(_i("Warning: motherboard type changed.")); ////MSG_CHANGED_MOTHERBOARD c=20 r=4
  1249. eeprom_write_word((uint16_t*)EEPROM_BOARD_TYPE, MOTHERBOARD);
  1250. break;
  1251. case(0b10):
  1252. lcd_show_fullscreen_message_and_wait_P(_i("Warning: printer type changed.")); ////MSG_CHANGED_PRINTER c=20 r=4
  1253. eeprom_write_word((uint16_t*)EEPROM_PRINTER_TYPE, PRINTER_TYPE);
  1254. break;
  1255. case(0b11):
  1256. lcd_show_fullscreen_message_and_wait_P(_i("Warning: both printer type and motherboard type changed.")); ////MSG_CHANGED_BOTH c=20 r=4
  1257. eeprom_write_word((uint16_t*)EEPROM_PRINTER_TYPE, PRINTER_TYPE);
  1258. eeprom_write_word((uint16_t*)EEPROM_BOARD_TYPE, MOTHERBOARD);
  1259. break;
  1260. default: break; //no change, show no message
  1261. }
  1262. if (!previous_settings_retrieved) {
  1263. lcd_show_fullscreen_message_and_wait_P(_i("Old settings found. Default PID, Esteps etc. will be set.")); //if EEPROM version or printer type was changed, inform user that default setting were loaded////MSG_DEFAULT_SETTINGS_LOADED c=20 r=4
  1264. Config_StoreSettings();
  1265. }
  1266. if (eeprom_read_byte((uint8_t*)EEPROM_WIZARD_ACTIVE) == 1) {
  1267. lcd_wizard(WizState::Run);
  1268. }
  1269. if (eeprom_read_byte((uint8_t*)EEPROM_WIZARD_ACTIVE) == 0) { //dont show calibration status messages if wizard is currently active
  1270. if (calibration_status() == CALIBRATION_STATUS_ASSEMBLED ||
  1271. calibration_status() == CALIBRATION_STATUS_UNKNOWN ||
  1272. calibration_status() == CALIBRATION_STATUS_XYZ_CALIBRATION) {
  1273. // Reset the babystepping values, so the printer will not move the Z axis up when the babystepping is enabled.
  1274. eeprom_update_word((uint16_t*)EEPROM_BABYSTEP_Z, 0);
  1275. // Show the message.
  1276. lcd_show_fullscreen_message_and_wait_P(_T(MSG_FOLLOW_CALIBRATION_FLOW));
  1277. }
  1278. else if (calibration_status() == CALIBRATION_STATUS_LIVE_ADJUST) {
  1279. // Show the message.
  1280. lcd_show_fullscreen_message_and_wait_P(_T(MSG_BABYSTEP_Z_NOT_SET));
  1281. lcd_update_enable(true);
  1282. }
  1283. else if (calibration_status() == CALIBRATION_STATUS_CALIBRATED && temp_cal_active == true && calibration_status_pinda() == false) {
  1284. //lcd_show_fullscreen_message_and_wait_P(_i("Temperature calibration has not been run yet"));////MSG_PINDA_NOT_CALIBRATED c=20 r=4
  1285. lcd_update_enable(true);
  1286. }
  1287. else if (calibration_status() == CALIBRATION_STATUS_Z_CALIBRATION) {
  1288. // Show the message.
  1289. lcd_show_fullscreen_message_and_wait_P(_T(MSG_FOLLOW_Z_CALIBRATION_FLOW));
  1290. }
  1291. }
  1292. #if !defined (DEBUG_DISABLE_FORCE_SELFTEST) && defined (TMC2130)
  1293. if (force_selftest_if_fw_version() && calibration_status() < CALIBRATION_STATUS_ASSEMBLED) {
  1294. lcd_show_fullscreen_message_and_wait_P(_i("Selftest will be run to calibrate accurate sensorless rehoming."));////MSG_FORCE_SELFTEST c=20 r=8
  1295. update_current_firmware_version_to_eeprom();
  1296. lcd_selftest();
  1297. }
  1298. #endif //TMC2130 && !DEBUG_DISABLE_FORCE_SELFTEST
  1299. KEEPALIVE_STATE(IN_PROCESS);
  1300. #endif //DEBUG_DISABLE_STARTMSGS
  1301. lcd_update_enable(true);
  1302. lcd_clear();
  1303. lcd_update(2);
  1304. // Store the currently running firmware into an eeprom,
  1305. // so the next time the firmware gets updated, it will know from which version it has been updated.
  1306. update_current_firmware_version_to_eeprom();
  1307. #ifdef TMC2130
  1308. tmc2130_home_origin[X_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_HOME_X_ORIGIN);
  1309. tmc2130_home_bsteps[X_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_HOME_X_BSTEPS);
  1310. tmc2130_home_fsteps[X_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_HOME_X_FSTEPS);
  1311. if (tmc2130_home_origin[X_AXIS] == 0xff) tmc2130_home_origin[X_AXIS] = 0;
  1312. if (tmc2130_home_bsteps[X_AXIS] == 0xff) tmc2130_home_bsteps[X_AXIS] = 48;
  1313. if (tmc2130_home_fsteps[X_AXIS] == 0xff) tmc2130_home_fsteps[X_AXIS] = 48;
  1314. tmc2130_home_origin[Y_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_HOME_Y_ORIGIN);
  1315. tmc2130_home_bsteps[Y_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_HOME_Y_BSTEPS);
  1316. tmc2130_home_fsteps[Y_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_HOME_Y_FSTEPS);
  1317. if (tmc2130_home_origin[Y_AXIS] == 0xff) tmc2130_home_origin[Y_AXIS] = 0;
  1318. if (tmc2130_home_bsteps[Y_AXIS] == 0xff) tmc2130_home_bsteps[Y_AXIS] = 48;
  1319. if (tmc2130_home_fsteps[Y_AXIS] == 0xff) tmc2130_home_fsteps[Y_AXIS] = 48;
  1320. tmc2130_home_enabled = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_HOME_ENABLED);
  1321. if (tmc2130_home_enabled == 0xff) tmc2130_home_enabled = 0;
  1322. #endif //TMC2130
  1323. #ifdef UVLO_SUPPORT
  1324. if (eeprom_read_byte((uint8_t*)EEPROM_UVLO) != 0) { //previous print was terminated by UVLO
  1325. /*
  1326. if (lcd_show_fullscreen_message_yes_no_and_wait_P(_T(MSG_RECOVER_PRINT), false)) recover_print();
  1327. else {
  1328. eeprom_update_byte((uint8_t*)EEPROM_UVLO, 0);
  1329. lcd_update_enable(true);
  1330. lcd_update(2);
  1331. lcd_setstatuspgm(_T(WELCOME_MSG));
  1332. }
  1333. */
  1334. manage_heater(); // Update temperatures
  1335. #ifdef DEBUG_UVLO_AUTOMATIC_RECOVER
  1336. printf_P(_N("Power panic detected!\nCurrent bed temp:%d\nSaved bed temp:%d\n"), (int)degBed(), eeprom_read_byte((uint8_t*)EEPROM_UVLO_TARGET_BED));
  1337. #endif
  1338. if ( degBed() > ( (float)eeprom_read_byte((uint8_t*)EEPROM_UVLO_TARGET_BED) - AUTOMATIC_UVLO_BED_TEMP_OFFSET) ){
  1339. #ifdef DEBUG_UVLO_AUTOMATIC_RECOVER
  1340. puts_P(_N("Automatic recovery!"));
  1341. #endif
  1342. recover_print(1);
  1343. }
  1344. else{
  1345. #ifdef DEBUG_UVLO_AUTOMATIC_RECOVER
  1346. puts_P(_N("Normal recovery!"));
  1347. #endif
  1348. if ( lcd_show_fullscreen_message_yes_no_and_wait_P(_T(MSG_RECOVER_PRINT), false) ) recover_print(0);
  1349. else {
  1350. eeprom_update_byte((uint8_t*)EEPROM_UVLO, 0);
  1351. lcd_update_enable(true);
  1352. lcd_update(2);
  1353. lcd_setstatuspgm(_T(WELCOME_MSG));
  1354. }
  1355. }
  1356. }
  1357. #endif //UVLO_SUPPORT
  1358. fCheckModeInit();
  1359. fSetMmuMode(mmu_enabled);
  1360. KEEPALIVE_STATE(NOT_BUSY);
  1361. #ifdef WATCHDOG
  1362. wdt_enable(WDTO_4S);
  1363. #endif //WATCHDOG
  1364. }
  1365. void trace();
  1366. #define CHUNK_SIZE 64 // bytes
  1367. #define SAFETY_MARGIN 1
  1368. char chunk[CHUNK_SIZE+SAFETY_MARGIN];
  1369. int chunkHead = 0;
  1370. void serial_read_stream() {
  1371. setAllTargetHotends(0);
  1372. setTargetBed(0);
  1373. lcd_clear();
  1374. lcd_puts_P(PSTR(" Upload in progress"));
  1375. // first wait for how many bytes we will receive
  1376. uint32_t bytesToReceive;
  1377. // receive the four bytes
  1378. char bytesToReceiveBuffer[4];
  1379. for (int i=0; i<4; i++) {
  1380. int data;
  1381. while ((data = MYSERIAL.read()) == -1) {};
  1382. bytesToReceiveBuffer[i] = data;
  1383. }
  1384. // make it a uint32
  1385. memcpy(&bytesToReceive, &bytesToReceiveBuffer, 4);
  1386. // we're ready, notify the sender
  1387. MYSERIAL.write('+');
  1388. // lock in the routine
  1389. uint32_t receivedBytes = 0;
  1390. while (prusa_sd_card_upload) {
  1391. int i;
  1392. for (i=0; i<CHUNK_SIZE; i++) {
  1393. int data;
  1394. // check if we're not done
  1395. if (receivedBytes == bytesToReceive) {
  1396. break;
  1397. }
  1398. // read the next byte
  1399. while ((data = MYSERIAL.read()) == -1) {};
  1400. receivedBytes++;
  1401. // save it to the chunk
  1402. chunk[i] = data;
  1403. }
  1404. // write the chunk to SD
  1405. card.write_command_no_newline(&chunk[0]);
  1406. // notify the sender we're ready for more data
  1407. MYSERIAL.write('+');
  1408. // for safety
  1409. manage_heater();
  1410. // check if we're done
  1411. if(receivedBytes == bytesToReceive) {
  1412. trace(); // beep
  1413. card.closefile();
  1414. prusa_sd_card_upload = false;
  1415. SERIAL_PROTOCOLLNRPGM(MSG_FILE_SAVED);
  1416. }
  1417. }
  1418. }
  1419. /**
  1420. * Output a "busy" message at regular intervals
  1421. * while the machine is not accepting commands.
  1422. */
  1423. void host_keepalive() {
  1424. #ifndef HOST_KEEPALIVE_FEATURE
  1425. return;
  1426. #endif //HOST_KEEPALIVE_FEATURE
  1427. if (farm_mode) return;
  1428. long ms = _millis();
  1429. if (host_keepalive_interval && busy_state != NOT_BUSY) {
  1430. if ((ms - prev_busy_signal_ms) < (long)(1000L * host_keepalive_interval)) return;
  1431. switch (busy_state) {
  1432. case IN_HANDLER:
  1433. case IN_PROCESS:
  1434. SERIAL_ECHO_START;
  1435. SERIAL_ECHOLNPGM("busy: processing");
  1436. break;
  1437. case PAUSED_FOR_USER:
  1438. SERIAL_ECHO_START;
  1439. SERIAL_ECHOLNPGM("busy: paused for user");
  1440. break;
  1441. case PAUSED_FOR_INPUT:
  1442. SERIAL_ECHO_START;
  1443. SERIAL_ECHOLNPGM("busy: paused for input");
  1444. break;
  1445. default:
  1446. break;
  1447. }
  1448. }
  1449. prev_busy_signal_ms = ms;
  1450. }
  1451. // The loop() function is called in an endless loop by the Arduino framework from the default main() routine.
  1452. // Before loop(), the setup() function is called by the main() routine.
  1453. void loop()
  1454. {
  1455. KEEPALIVE_STATE(NOT_BUSY);
  1456. if ((usb_printing_counter > 0) && ((_millis()-_usb_timer) > 1000))
  1457. {
  1458. is_usb_printing = true;
  1459. usb_printing_counter--;
  1460. _usb_timer = _millis();
  1461. }
  1462. if (usb_printing_counter == 0)
  1463. {
  1464. is_usb_printing = false;
  1465. }
  1466. if (prusa_sd_card_upload)
  1467. {
  1468. //we read byte-by byte
  1469. serial_read_stream();
  1470. } else
  1471. {
  1472. get_command();
  1473. #ifdef SDSUPPORT
  1474. card.checkautostart(false);
  1475. #endif
  1476. if(buflen)
  1477. {
  1478. cmdbuffer_front_already_processed = false;
  1479. #ifdef SDSUPPORT
  1480. if(card.saving)
  1481. {
  1482. // Saving a G-code file onto an SD-card is in progress.
  1483. // Saving starts with M28, saving until M29 is seen.
  1484. if(strstr_P(CMDBUFFER_CURRENT_STRING, PSTR("M29")) == NULL) {
  1485. card.write_command(CMDBUFFER_CURRENT_STRING);
  1486. if(card.logging)
  1487. process_commands();
  1488. else
  1489. SERIAL_PROTOCOLLNRPGM(MSG_OK);
  1490. } else {
  1491. card.closefile();
  1492. SERIAL_PROTOCOLLNRPGM(MSG_FILE_SAVED);
  1493. }
  1494. } else {
  1495. process_commands();
  1496. }
  1497. #else
  1498. process_commands();
  1499. #endif //SDSUPPORT
  1500. if (! cmdbuffer_front_already_processed && buflen)
  1501. {
  1502. // ptr points to the start of the block currently being processed.
  1503. // The first character in the block is the block type.
  1504. char *ptr = cmdbuffer + bufindr;
  1505. if (*ptr == CMDBUFFER_CURRENT_TYPE_SDCARD) {
  1506. // To support power panic, move the lenght of the command on the SD card to a planner buffer.
  1507. union {
  1508. struct {
  1509. char lo;
  1510. char hi;
  1511. } lohi;
  1512. uint16_t value;
  1513. } sdlen;
  1514. sdlen.value = 0;
  1515. {
  1516. // This block locks the interrupts globally for 3.25 us,
  1517. // which corresponds to a maximum repeat frequency of 307.69 kHz.
  1518. // This blocking is safe in the context of a 10kHz stepper driver interrupt
  1519. // or a 115200 Bd serial line receive interrupt, which will not trigger faster than 12kHz.
  1520. cli();
  1521. // Reset the command to something, which will be ignored by the power panic routine,
  1522. // so this buffer length will not be counted twice.
  1523. *ptr ++ = CMDBUFFER_CURRENT_TYPE_TO_BE_REMOVED;
  1524. // Extract the current buffer length.
  1525. sdlen.lohi.lo = *ptr ++;
  1526. sdlen.lohi.hi = *ptr;
  1527. // and pass it to the planner queue.
  1528. planner_add_sd_length(sdlen.value);
  1529. sei();
  1530. }
  1531. }
  1532. else if((*ptr == CMDBUFFER_CURRENT_TYPE_USB_WITH_LINENR) && !IS_SD_PRINTING){
  1533. cli();
  1534. *ptr ++ = CMDBUFFER_CURRENT_TYPE_TO_BE_REMOVED;
  1535. // and one for each command to previous block in the planner queue.
  1536. planner_add_sd_length(1);
  1537. sei();
  1538. }
  1539. // Now it is safe to release the already processed command block. If interrupted by the power panic now,
  1540. // this block's SD card length will not be counted twice as its command type has been replaced
  1541. // by CMDBUFFER_CURRENT_TYPE_TO_BE_REMOVED.
  1542. cmdqueue_pop_front();
  1543. }
  1544. host_keepalive();
  1545. }
  1546. }
  1547. //check heater every n milliseconds
  1548. manage_heater();
  1549. isPrintPaused ? manage_inactivity(true) : manage_inactivity(false);
  1550. checkHitEndstops();
  1551. lcd_update(0);
  1552. #ifdef TMC2130
  1553. tmc2130_check_overtemp();
  1554. if (tmc2130_sg_crash)
  1555. {
  1556. uint8_t crash = tmc2130_sg_crash;
  1557. tmc2130_sg_crash = 0;
  1558. // crashdet_stop_and_save_print();
  1559. switch (crash)
  1560. {
  1561. case 1: enquecommand_P((PSTR("CRASH_DETECTEDX"))); break;
  1562. case 2: enquecommand_P((PSTR("CRASH_DETECTEDY"))); break;
  1563. case 3: enquecommand_P((PSTR("CRASH_DETECTEDXY"))); break;
  1564. }
  1565. }
  1566. #endif //TMC2130
  1567. mmu_loop();
  1568. }
  1569. #define DEFINE_PGM_READ_ANY(type, reader) \
  1570. static inline type pgm_read_any(const type *p) \
  1571. { return pgm_read_##reader##_near(p); }
  1572. DEFINE_PGM_READ_ANY(float, float);
  1573. DEFINE_PGM_READ_ANY(signed char, byte);
  1574. #define XYZ_CONSTS_FROM_CONFIG(type, array, CONFIG) \
  1575. static const PROGMEM type array##_P[3] = \
  1576. { X_##CONFIG, Y_##CONFIG, Z_##CONFIG }; \
  1577. static inline type array(int axis) \
  1578. { return pgm_read_any(&array##_P[axis]); } \
  1579. type array##_ext(int axis) \
  1580. { return pgm_read_any(&array##_P[axis]); }
  1581. XYZ_CONSTS_FROM_CONFIG(float, base_min_pos, MIN_POS);
  1582. XYZ_CONSTS_FROM_CONFIG(float, base_max_pos, MAX_POS);
  1583. XYZ_CONSTS_FROM_CONFIG(float, base_home_pos, HOME_POS);
  1584. XYZ_CONSTS_FROM_CONFIG(float, max_length, MAX_LENGTH);
  1585. XYZ_CONSTS_FROM_CONFIG(float, home_retract_mm, HOME_RETRACT_MM);
  1586. XYZ_CONSTS_FROM_CONFIG(signed char, home_dir, HOME_DIR);
  1587. static void axis_is_at_home(int axis) {
  1588. current_position[axis] = base_home_pos(axis) + cs.add_homing[axis];
  1589. min_pos[axis] = base_min_pos(axis) + cs.add_homing[axis];
  1590. max_pos[axis] = base_max_pos(axis) + cs.add_homing[axis];
  1591. }
  1592. inline void set_current_to_destination() { memcpy(current_position, destination, sizeof(current_position)); }
  1593. inline void set_destination_to_current() { memcpy(destination, current_position, sizeof(destination)); }
  1594. //! @return original feedmultiply
  1595. static int setup_for_endstop_move(bool enable_endstops_now = true) {
  1596. saved_feedrate = feedrate;
  1597. int l_feedmultiply = feedmultiply;
  1598. feedmultiply = 100;
  1599. previous_millis_cmd = _millis();
  1600. enable_endstops(enable_endstops_now);
  1601. return l_feedmultiply;
  1602. }
  1603. //! @param original_feedmultiply feedmultiply to restore
  1604. static void clean_up_after_endstop_move(int original_feedmultiply) {
  1605. #ifdef ENDSTOPS_ONLY_FOR_HOMING
  1606. enable_endstops(false);
  1607. #endif
  1608. feedrate = saved_feedrate;
  1609. feedmultiply = original_feedmultiply;
  1610. previous_millis_cmd = _millis();
  1611. }
  1612. #ifdef ENABLE_AUTO_BED_LEVELING
  1613. #ifdef AUTO_BED_LEVELING_GRID
  1614. static void set_bed_level_equation_lsq(double *plane_equation_coefficients)
  1615. {
  1616. vector_3 planeNormal = vector_3(-plane_equation_coefficients[0], -plane_equation_coefficients[1], 1);
  1617. planeNormal.debug("planeNormal");
  1618. plan_bed_level_matrix = matrix_3x3::create_look_at(planeNormal);
  1619. //bedLevel.debug("bedLevel");
  1620. //plan_bed_level_matrix.debug("bed level before");
  1621. //vector_3 uncorrected_position = plan_get_position_mm();
  1622. //uncorrected_position.debug("position before");
  1623. vector_3 corrected_position = plan_get_position();
  1624. // corrected_position.debug("position after");
  1625. current_position[X_AXIS] = corrected_position.x;
  1626. current_position[Y_AXIS] = corrected_position.y;
  1627. current_position[Z_AXIS] = corrected_position.z;
  1628. // put the bed at 0 so we don't go below it.
  1629. current_position[Z_AXIS] = cs.zprobe_zoffset; // in the lsq we reach here after raising the extruder due to the loop structure
  1630. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1631. }
  1632. #else // not AUTO_BED_LEVELING_GRID
  1633. static void set_bed_level_equation_3pts(float z_at_pt_1, float z_at_pt_2, float z_at_pt_3) {
  1634. plan_bed_level_matrix.set_to_identity();
  1635. vector_3 pt1 = vector_3(ABL_PROBE_PT_1_X, ABL_PROBE_PT_1_Y, z_at_pt_1);
  1636. vector_3 pt2 = vector_3(ABL_PROBE_PT_2_X, ABL_PROBE_PT_2_Y, z_at_pt_2);
  1637. vector_3 pt3 = vector_3(ABL_PROBE_PT_3_X, ABL_PROBE_PT_3_Y, z_at_pt_3);
  1638. vector_3 from_2_to_1 = (pt1 - pt2).get_normal();
  1639. vector_3 from_2_to_3 = (pt3 - pt2).get_normal();
  1640. vector_3 planeNormal = vector_3::cross(from_2_to_1, from_2_to_3).get_normal();
  1641. planeNormal = vector_3(planeNormal.x, planeNormal.y, abs(planeNormal.z));
  1642. plan_bed_level_matrix = matrix_3x3::create_look_at(planeNormal);
  1643. vector_3 corrected_position = plan_get_position();
  1644. current_position[X_AXIS] = corrected_position.x;
  1645. current_position[Y_AXIS] = corrected_position.y;
  1646. current_position[Z_AXIS] = corrected_position.z;
  1647. // put the bed at 0 so we don't go below it.
  1648. current_position[Z_AXIS] = cs.zprobe_zoffset;
  1649. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1650. }
  1651. #endif // AUTO_BED_LEVELING_GRID
  1652. static void run_z_probe() {
  1653. plan_bed_level_matrix.set_to_identity();
  1654. feedrate = homing_feedrate[Z_AXIS];
  1655. // move down until you find the bed
  1656. float zPosition = -10;
  1657. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder);
  1658. st_synchronize();
  1659. // we have to let the planner know where we are right now as it is not where we said to go.
  1660. zPosition = st_get_position_mm(Z_AXIS);
  1661. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS]);
  1662. // move up the retract distance
  1663. zPosition += home_retract_mm(Z_AXIS);
  1664. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder);
  1665. st_synchronize();
  1666. // move back down slowly to find bed
  1667. feedrate = homing_feedrate[Z_AXIS]/4;
  1668. zPosition -= home_retract_mm(Z_AXIS) * 2;
  1669. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder);
  1670. st_synchronize();
  1671. current_position[Z_AXIS] = st_get_position_mm(Z_AXIS);
  1672. // make sure the planner knows where we are as it may be a bit different than we last said to move to
  1673. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1674. }
  1675. static void do_blocking_move_to(float x, float y, float z) {
  1676. float oldFeedRate = feedrate;
  1677. feedrate = homing_feedrate[Z_AXIS];
  1678. current_position[Z_AXIS] = z;
  1679. plan_buffer_line_curposXYZE(feedrate/60, active_extruder);
  1680. st_synchronize();
  1681. feedrate = XY_TRAVEL_SPEED;
  1682. current_position[X_AXIS] = x;
  1683. current_position[Y_AXIS] = y;
  1684. plan_buffer_line_curposXYZE(feedrate/60, active_extruder);
  1685. st_synchronize();
  1686. feedrate = oldFeedRate;
  1687. }
  1688. static void do_blocking_move_relative(float offset_x, float offset_y, float offset_z) {
  1689. do_blocking_move_to(current_position[X_AXIS] + offset_x, current_position[Y_AXIS] + offset_y, current_position[Z_AXIS] + offset_z);
  1690. }
  1691. /// Probe bed height at position (x,y), returns the measured z value
  1692. static float probe_pt(float x, float y, float z_before) {
  1693. // move to right place
  1694. do_blocking_move_to(current_position[X_AXIS], current_position[Y_AXIS], z_before);
  1695. do_blocking_move_to(x - X_PROBE_OFFSET_FROM_EXTRUDER, y - Y_PROBE_OFFSET_FROM_EXTRUDER, current_position[Z_AXIS]);
  1696. run_z_probe();
  1697. float measured_z = current_position[Z_AXIS];
  1698. SERIAL_PROTOCOLRPGM(_T(MSG_BED));
  1699. SERIAL_PROTOCOLPGM(" x: ");
  1700. SERIAL_PROTOCOL(x);
  1701. SERIAL_PROTOCOLPGM(" y: ");
  1702. SERIAL_PROTOCOL(y);
  1703. SERIAL_PROTOCOLPGM(" z: ");
  1704. SERIAL_PROTOCOL(measured_z);
  1705. SERIAL_PROTOCOLPGM("\n");
  1706. return measured_z;
  1707. }
  1708. #endif // #ifdef ENABLE_AUTO_BED_LEVELING
  1709. #ifdef LIN_ADVANCE
  1710. /**
  1711. * M900: Set and/or Get advance K factor and WH/D ratio
  1712. *
  1713. * K<factor> Set advance K factor
  1714. * R<ratio> Set ratio directly (overrides WH/D)
  1715. * W<width> H<height> D<diam> Set ratio from WH/D
  1716. */
  1717. inline void gcode_M900() {
  1718. st_synchronize();
  1719. const float newK = code_seen('K') ? code_value_float() : -1;
  1720. if (newK >= 0) extruder_advance_k = newK;
  1721. float newR = code_seen('R') ? code_value_float() : -1;
  1722. if (newR < 0) {
  1723. const float newD = code_seen('D') ? code_value_float() : -1,
  1724. newW = code_seen('W') ? code_value_float() : -1,
  1725. newH = code_seen('H') ? code_value_float() : -1;
  1726. if (newD >= 0 && newW >= 0 && newH >= 0)
  1727. newR = newD ? (newW * newH) / (sq(newD * 0.5) * M_PI) : 0;
  1728. }
  1729. if (newR >= 0) advance_ed_ratio = newR;
  1730. SERIAL_ECHO_START;
  1731. SERIAL_ECHOPGM("Advance K=");
  1732. SERIAL_ECHOLN(extruder_advance_k);
  1733. SERIAL_ECHOPGM(" E/D=");
  1734. const float ratio = advance_ed_ratio;
  1735. if (ratio) SERIAL_ECHOLN(ratio); else SERIAL_ECHOLNPGM("Auto");
  1736. }
  1737. #endif // LIN_ADVANCE
  1738. bool check_commands() {
  1739. bool end_command_found = false;
  1740. while (buflen)
  1741. {
  1742. if ((code_seen("M84")) || (code_seen("M 84"))) end_command_found = true;
  1743. if (!cmdbuffer_front_already_processed)
  1744. cmdqueue_pop_front();
  1745. cmdbuffer_front_already_processed = false;
  1746. }
  1747. return end_command_found;
  1748. }
  1749. #ifdef TMC2130
  1750. bool calibrate_z_auto()
  1751. {
  1752. //lcd_display_message_fullscreen_P(_T(MSG_CALIBRATE_Z_AUTO));
  1753. lcd_clear();
  1754. lcd_puts_at_P(0, 1, _T(MSG_CALIBRATE_Z_AUTO));
  1755. bool endstops_enabled = enable_endstops(true);
  1756. int axis_up_dir = -home_dir(Z_AXIS);
  1757. tmc2130_home_enter(Z_AXIS_MASK);
  1758. current_position[Z_AXIS] = 0;
  1759. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1760. set_destination_to_current();
  1761. destination[Z_AXIS] += (1.1 * max_length(Z_AXIS) * axis_up_dir);
  1762. feedrate = homing_feedrate[Z_AXIS];
  1763. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate / 60, active_extruder);
  1764. st_synchronize();
  1765. // current_position[axis] = 0;
  1766. // plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1767. tmc2130_home_exit();
  1768. enable_endstops(false);
  1769. current_position[Z_AXIS] = 0;
  1770. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1771. set_destination_to_current();
  1772. destination[Z_AXIS] += 10 * axis_up_dir; //10mm up
  1773. feedrate = homing_feedrate[Z_AXIS] / 2;
  1774. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate / 60, active_extruder);
  1775. st_synchronize();
  1776. enable_endstops(endstops_enabled);
  1777. if (PRINTER_TYPE == PRINTER_MK3) {
  1778. current_position[Z_AXIS] = Z_MAX_POS + 2.0;
  1779. }
  1780. else {
  1781. current_position[Z_AXIS] = Z_MAX_POS + 9.0;
  1782. }
  1783. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1784. return true;
  1785. }
  1786. #endif //TMC2130
  1787. #ifdef TMC2130
  1788. void homeaxis(int axis, uint8_t cnt, uint8_t* pstep)
  1789. #else
  1790. void homeaxis(int axis, uint8_t cnt)
  1791. #endif //TMC2130
  1792. {
  1793. bool endstops_enabled = enable_endstops(true); //RP: endstops should be allways enabled durring homing
  1794. #define HOMEAXIS_DO(LETTER) \
  1795. ((LETTER##_MIN_PIN > -1 && LETTER##_HOME_DIR==-1) || (LETTER##_MAX_PIN > -1 && LETTER##_HOME_DIR==1))
  1796. if ((axis==X_AXIS)?HOMEAXIS_DO(X):(axis==Y_AXIS)?HOMEAXIS_DO(Y):0)
  1797. {
  1798. int axis_home_dir = home_dir(axis);
  1799. feedrate = homing_feedrate[axis];
  1800. #ifdef TMC2130
  1801. tmc2130_home_enter(X_AXIS_MASK << axis);
  1802. #endif //TMC2130
  1803. // Move away a bit, so that the print head does not touch the end position,
  1804. // and the following movement to endstop has a chance to achieve the required velocity
  1805. // for the stall guard to work.
  1806. current_position[axis] = 0;
  1807. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1808. set_destination_to_current();
  1809. // destination[axis] = 11.f;
  1810. destination[axis] = -3.f * axis_home_dir;
  1811. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1812. st_synchronize();
  1813. // Move away from the possible collision with opposite endstop with the collision detection disabled.
  1814. endstops_hit_on_purpose();
  1815. enable_endstops(false);
  1816. current_position[axis] = 0;
  1817. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1818. destination[axis] = 1. * axis_home_dir;
  1819. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1820. st_synchronize();
  1821. // Now continue to move up to the left end stop with the collision detection enabled.
  1822. enable_endstops(true);
  1823. destination[axis] = 1.1 * axis_home_dir * max_length(axis);
  1824. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1825. st_synchronize();
  1826. for (uint8_t i = 0; i < cnt; i++)
  1827. {
  1828. // Move away from the collision to a known distance from the left end stop with the collision detection disabled.
  1829. endstops_hit_on_purpose();
  1830. enable_endstops(false);
  1831. current_position[axis] = 0;
  1832. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1833. destination[axis] = -10.f * axis_home_dir;
  1834. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1835. st_synchronize();
  1836. endstops_hit_on_purpose();
  1837. // Now move left up to the collision, this time with a repeatable velocity.
  1838. enable_endstops(true);
  1839. destination[axis] = 11.f * axis_home_dir;
  1840. #ifdef TMC2130
  1841. feedrate = homing_feedrate[axis];
  1842. #else //TMC2130
  1843. feedrate = homing_feedrate[axis] / 2;
  1844. #endif //TMC2130
  1845. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1846. st_synchronize();
  1847. #ifdef TMC2130
  1848. uint16_t mscnt = tmc2130_rd_MSCNT(axis);
  1849. if (pstep) pstep[i] = mscnt >> 4;
  1850. printf_P(PSTR("%3d step=%2d mscnt=%4d\n"), i, mscnt >> 4, mscnt);
  1851. #endif //TMC2130
  1852. }
  1853. endstops_hit_on_purpose();
  1854. enable_endstops(false);
  1855. #ifdef TMC2130
  1856. uint8_t orig = tmc2130_home_origin[axis];
  1857. uint8_t back = tmc2130_home_bsteps[axis];
  1858. if (tmc2130_home_enabled && (orig <= 63))
  1859. {
  1860. tmc2130_goto_step(axis, orig, 2, 1000, tmc2130_get_res(axis));
  1861. if (back > 0)
  1862. tmc2130_do_steps(axis, back, -axis_home_dir, 1000);
  1863. }
  1864. else
  1865. tmc2130_do_steps(axis, 8, -axis_home_dir, 1000);
  1866. tmc2130_home_exit();
  1867. #endif //TMC2130
  1868. axis_is_at_home(axis);
  1869. axis_known_position[axis] = true;
  1870. // Move from minimum
  1871. #ifdef TMC2130
  1872. float dist = - axis_home_dir * 0.01f * tmc2130_home_fsteps[axis];
  1873. #else //TMC2130
  1874. float dist = - axis_home_dir * 0.01f * 64;
  1875. #endif //TMC2130
  1876. current_position[axis] -= dist;
  1877. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1878. current_position[axis] += dist;
  1879. destination[axis] = current_position[axis];
  1880. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], 0.5f*feedrate/60, active_extruder);
  1881. st_synchronize();
  1882. feedrate = 0.0;
  1883. }
  1884. else if ((axis==Z_AXIS)?HOMEAXIS_DO(Z):0)
  1885. {
  1886. #ifdef TMC2130
  1887. FORCE_HIGH_POWER_START;
  1888. #endif
  1889. int axis_home_dir = home_dir(axis);
  1890. current_position[axis] = 0;
  1891. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1892. destination[axis] = 1.5 * max_length(axis) * axis_home_dir;
  1893. feedrate = homing_feedrate[axis];
  1894. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1895. st_synchronize();
  1896. #ifdef TMC2130
  1897. if (READ(Z_TMC2130_DIAG) != 0) { //Z crash
  1898. FORCE_HIGH_POWER_END;
  1899. kill(_T(MSG_BED_LEVELING_FAILED_POINT_LOW));
  1900. return;
  1901. }
  1902. #endif //TMC2130
  1903. current_position[axis] = 0;
  1904. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1905. destination[axis] = -home_retract_mm(axis) * axis_home_dir;
  1906. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1907. st_synchronize();
  1908. destination[axis] = 2*home_retract_mm(axis) * axis_home_dir;
  1909. feedrate = homing_feedrate[axis]/2 ;
  1910. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1911. st_synchronize();
  1912. #ifdef TMC2130
  1913. if (READ(Z_TMC2130_DIAG) != 0) { //Z crash
  1914. FORCE_HIGH_POWER_END;
  1915. kill(_T(MSG_BED_LEVELING_FAILED_POINT_LOW));
  1916. return;
  1917. }
  1918. #endif //TMC2130
  1919. axis_is_at_home(axis);
  1920. destination[axis] = current_position[axis];
  1921. feedrate = 0.0;
  1922. endstops_hit_on_purpose();
  1923. axis_known_position[axis] = true;
  1924. #ifdef TMC2130
  1925. FORCE_HIGH_POWER_END;
  1926. #endif
  1927. }
  1928. enable_endstops(endstops_enabled);
  1929. }
  1930. /**/
  1931. void home_xy()
  1932. {
  1933. set_destination_to_current();
  1934. homeaxis(X_AXIS);
  1935. homeaxis(Y_AXIS);
  1936. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1937. endstops_hit_on_purpose();
  1938. }
  1939. void refresh_cmd_timeout(void)
  1940. {
  1941. previous_millis_cmd = _millis();
  1942. }
  1943. #ifdef FWRETRACT
  1944. void retract(bool retracting, bool swapretract = false) {
  1945. if(retracting && !retracted[active_extruder]) {
  1946. destination[X_AXIS]=current_position[X_AXIS];
  1947. destination[Y_AXIS]=current_position[Y_AXIS];
  1948. destination[Z_AXIS]=current_position[Z_AXIS];
  1949. destination[E_AXIS]=current_position[E_AXIS];
  1950. current_position[E_AXIS]+=(swapretract?retract_length_swap:cs.retract_length)*float(extrudemultiply)*0.01f;
  1951. plan_set_e_position(current_position[E_AXIS]);
  1952. float oldFeedrate = feedrate;
  1953. feedrate=cs.retract_feedrate*60;
  1954. retracted[active_extruder]=true;
  1955. prepare_move();
  1956. current_position[Z_AXIS]-=cs.retract_zlift;
  1957. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1958. prepare_move();
  1959. feedrate = oldFeedrate;
  1960. } else if(!retracting && retracted[active_extruder]) {
  1961. destination[X_AXIS]=current_position[X_AXIS];
  1962. destination[Y_AXIS]=current_position[Y_AXIS];
  1963. destination[Z_AXIS]=current_position[Z_AXIS];
  1964. destination[E_AXIS]=current_position[E_AXIS];
  1965. current_position[Z_AXIS]+=cs.retract_zlift;
  1966. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1967. current_position[E_AXIS]-=(swapretract?(retract_length_swap+retract_recover_length_swap):(cs.retract_length+cs.retract_recover_length))*float(extrudemultiply)*0.01f;
  1968. plan_set_e_position(current_position[E_AXIS]);
  1969. float oldFeedrate = feedrate;
  1970. feedrate=cs.retract_recover_feedrate*60;
  1971. retracted[active_extruder]=false;
  1972. prepare_move();
  1973. feedrate = oldFeedrate;
  1974. }
  1975. } //retract
  1976. #endif //FWRETRACT
  1977. void trace() {
  1978. Sound_MakeCustom(25,440,true);
  1979. }
  1980. /*
  1981. void ramming() {
  1982. // float tmp[4] = DEFAULT_MAX_FEEDRATE;
  1983. if (current_temperature[0] < 230) {
  1984. //PLA
  1985. max_feedrate[E_AXIS] = 50;
  1986. //current_position[E_AXIS] -= 8;
  1987. //plan_buffer_line_curposXYZE(2100 / 60, active_extruder);
  1988. //current_position[E_AXIS] += 8;
  1989. //plan_buffer_line_curposXYZE(2100 / 60, active_extruder);
  1990. current_position[E_AXIS] += 5.4;
  1991. plan_buffer_line_curposXYZE(2800 / 60, active_extruder);
  1992. current_position[E_AXIS] += 3.2;
  1993. plan_buffer_line_curposXYZE(3000 / 60, active_extruder);
  1994. current_position[E_AXIS] += 3;
  1995. plan_buffer_line_curposXYZE(3400 / 60, active_extruder);
  1996. st_synchronize();
  1997. max_feedrate[E_AXIS] = 80;
  1998. current_position[E_AXIS] -= 82;
  1999. plan_buffer_line_curposXYZE(9500 / 60, active_extruder);
  2000. max_feedrate[E_AXIS] = 50;//tmp[E_AXIS];
  2001. current_position[E_AXIS] -= 20;
  2002. plan_buffer_line_curposXYZE(1200 / 60, active_extruder);
  2003. current_position[E_AXIS] += 5;
  2004. plan_buffer_line_curposXYZE(400 / 60, active_extruder);
  2005. current_position[E_AXIS] += 5;
  2006. plan_buffer_line_curposXYZE(600 / 60, active_extruder);
  2007. current_position[E_AXIS] -= 10;
  2008. st_synchronize();
  2009. plan_buffer_line_curposXYZE(600 / 60, active_extruder);
  2010. current_position[E_AXIS] += 10;
  2011. plan_buffer_line_curposXYZE(600 / 60, active_extruder);
  2012. current_position[E_AXIS] -= 10;
  2013. plan_buffer_line_curposXYZE(800 / 60, active_extruder);
  2014. current_position[E_AXIS] += 10;
  2015. plan_buffer_line_curposXYZE(800 / 60, active_extruder);
  2016. current_position[E_AXIS] -= 10;
  2017. plan_buffer_line_curposXYZE(800 / 60, active_extruder);
  2018. st_synchronize();
  2019. }
  2020. else {
  2021. //ABS
  2022. max_feedrate[E_AXIS] = 50;
  2023. //current_position[E_AXIS] -= 8;
  2024. //plan_buffer_line_curposXYZE(2100 / 60, active_extruder);
  2025. //current_position[E_AXIS] += 8;
  2026. //plan_buffer_line_curposXYZE(2100 / 60, active_extruder);
  2027. current_position[E_AXIS] += 3.1;
  2028. plan_buffer_line_curposXYZE(2000 / 60, active_extruder);
  2029. current_position[E_AXIS] += 3.1;
  2030. plan_buffer_line_curposXYZE(2500 / 60, active_extruder);
  2031. current_position[E_AXIS] += 4;
  2032. plan_buffer_line_curposXYZE(3000 / 60, active_extruder);
  2033. st_synchronize();
  2034. //current_position[X_AXIS] += 23; //delay
  2035. //plan_buffer_line_curposXYZE(600/60, active_extruder); //delay
  2036. //current_position[X_AXIS] -= 23; //delay
  2037. //plan_buffer_line_curposXYZE(600/60, active_extruder); //delay
  2038. _delay(4700);
  2039. max_feedrate[E_AXIS] = 80;
  2040. current_position[E_AXIS] -= 92;
  2041. plan_buffer_line_curposXYZE(9900 / 60, active_extruder);
  2042. max_feedrate[E_AXIS] = 50;//tmp[E_AXIS];
  2043. current_position[E_AXIS] -= 5;
  2044. plan_buffer_line_curposXYZE(800 / 60, active_extruder);
  2045. current_position[E_AXIS] += 5;
  2046. plan_buffer_line_curposXYZE(400 / 60, active_extruder);
  2047. current_position[E_AXIS] -= 5;
  2048. plan_buffer_line_curposXYZE(600 / 60, active_extruder);
  2049. st_synchronize();
  2050. current_position[E_AXIS] += 5;
  2051. plan_buffer_line_curposXYZE(600 / 60, active_extruder);
  2052. current_position[E_AXIS] -= 5;
  2053. plan_buffer_line_curposXYZE(600 / 60, active_extruder);
  2054. current_position[E_AXIS] += 5;
  2055. plan_buffer_line_curposXYZE(600 / 60, active_extruder);
  2056. current_position[E_AXIS] -= 5;
  2057. plan_buffer_line_curposXYZE(600 / 60, active_extruder);
  2058. st_synchronize();
  2059. }
  2060. }
  2061. */
  2062. #ifdef TMC2130
  2063. void force_high_power_mode(bool start_high_power_section) {
  2064. uint8_t silent;
  2065. silent = eeprom_read_byte((uint8_t*)EEPROM_SILENT);
  2066. if (silent == 1) {
  2067. //we are in silent mode, set to normal mode to enable crash detection
  2068. // Wait for the planner queue to drain and for the stepper timer routine to reach an idle state.
  2069. st_synchronize();
  2070. cli();
  2071. tmc2130_mode = (start_high_power_section == true) ? TMC2130_MODE_NORMAL : TMC2130_MODE_SILENT;
  2072. update_mode_profile();
  2073. tmc2130_init();
  2074. // We may have missed a stepper timer interrupt due to the time spent in the tmc2130_init() routine.
  2075. // Be safe than sorry, reset the stepper timer before re-enabling interrupts.
  2076. st_reset_timer();
  2077. sei();
  2078. }
  2079. }
  2080. #endif //TMC2130
  2081. #ifdef TMC2130
  2082. static void gcode_G28(bool home_x_axis, long home_x_value, bool home_y_axis, long home_y_value, bool home_z_axis, long home_z_value, bool calib, bool without_mbl)
  2083. #else
  2084. static void gcode_G28(bool home_x_axis, long home_x_value, bool home_y_axis, long home_y_value, bool home_z_axis, long home_z_value, bool without_mbl)
  2085. #endif //TMC2130
  2086. {
  2087. st_synchronize();
  2088. #if 0
  2089. SERIAL_ECHOPGM("G28, initial "); print_world_coordinates();
  2090. SERIAL_ECHOPGM("G28, initial "); print_physical_coordinates();
  2091. #endif
  2092. // Flag for the display update routine and to disable the print cancelation during homing.
  2093. homing_flag = true;
  2094. // Which axes should be homed?
  2095. bool home_x = home_x_axis;
  2096. bool home_y = home_y_axis;
  2097. bool home_z = home_z_axis;
  2098. // Either all X,Y,Z codes are present, or none of them.
  2099. bool home_all_axes = home_x == home_y && home_x == home_z;
  2100. if (home_all_axes)
  2101. // No X/Y/Z code provided means to home all axes.
  2102. home_x = home_y = home_z = true;
  2103. //if we are homing all axes, first move z higher to protect heatbed/steel sheet
  2104. if (home_all_axes) {
  2105. current_position[Z_AXIS] += MESH_HOME_Z_SEARCH;
  2106. feedrate = homing_feedrate[Z_AXIS];
  2107. plan_buffer_line_curposXYZE(feedrate / 60, active_extruder);
  2108. st_synchronize();
  2109. }
  2110. #ifdef ENABLE_AUTO_BED_LEVELING
  2111. plan_bed_level_matrix.set_to_identity(); //Reset the plane ("erase" all leveling data)
  2112. #endif //ENABLE_AUTO_BED_LEVELING
  2113. // Reset world2machine_rotation_and_skew and world2machine_shift, therefore
  2114. // the planner will not perform any adjustments in the XY plane.
  2115. // Wait for the motors to stop and update the current position with the absolute values.
  2116. world2machine_revert_to_uncorrected();
  2117. // For mesh bed leveling deactivate the matrix temporarily.
  2118. // It is necessary to disable the bed leveling for the X and Y homing moves, so that the move is performed
  2119. // in a single axis only.
  2120. // In case of re-homing the X or Y axes only, the mesh bed leveling is restored after G28.
  2121. #ifdef MESH_BED_LEVELING
  2122. uint8_t mbl_was_active = mbl.active;
  2123. mbl.active = 0;
  2124. current_position[Z_AXIS] = st_get_position_mm(Z_AXIS);
  2125. #endif
  2126. // Reset baby stepping to zero, if the babystepping has already been loaded before. The babystepsTodo value will be
  2127. // consumed during the first movements following this statement.
  2128. if (home_z)
  2129. babystep_undo();
  2130. saved_feedrate = feedrate;
  2131. int l_feedmultiply = feedmultiply;
  2132. feedmultiply = 100;
  2133. previous_millis_cmd = _millis();
  2134. enable_endstops(true);
  2135. memcpy(destination, current_position, sizeof(destination));
  2136. feedrate = 0.0;
  2137. #if Z_HOME_DIR > 0 // If homing away from BED do Z first
  2138. if(home_z)
  2139. homeaxis(Z_AXIS);
  2140. #endif
  2141. #ifdef QUICK_HOME
  2142. // In the quick mode, if both x and y are to be homed, a diagonal move will be performed initially.
  2143. if(home_x && home_y) //first diagonal move
  2144. {
  2145. current_position[X_AXIS] = 0;current_position[Y_AXIS] = 0;
  2146. int x_axis_home_dir = home_dir(X_AXIS);
  2147. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2148. destination[X_AXIS] = 1.5 * max_length(X_AXIS) * x_axis_home_dir;destination[Y_AXIS] = 1.5 * max_length(Y_AXIS) * home_dir(Y_AXIS);
  2149. feedrate = homing_feedrate[X_AXIS];
  2150. if(homing_feedrate[Y_AXIS]<feedrate)
  2151. feedrate = homing_feedrate[Y_AXIS];
  2152. if (max_length(X_AXIS) > max_length(Y_AXIS)) {
  2153. feedrate *= sqrt(pow(max_length(Y_AXIS) / max_length(X_AXIS), 2) + 1);
  2154. } else {
  2155. feedrate *= sqrt(pow(max_length(X_AXIS) / max_length(Y_AXIS), 2) + 1);
  2156. }
  2157. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  2158. st_synchronize();
  2159. axis_is_at_home(X_AXIS);
  2160. axis_is_at_home(Y_AXIS);
  2161. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2162. destination[X_AXIS] = current_position[X_AXIS];
  2163. destination[Y_AXIS] = current_position[Y_AXIS];
  2164. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  2165. feedrate = 0.0;
  2166. st_synchronize();
  2167. endstops_hit_on_purpose();
  2168. current_position[X_AXIS] = destination[X_AXIS];
  2169. current_position[Y_AXIS] = destination[Y_AXIS];
  2170. current_position[Z_AXIS] = destination[Z_AXIS];
  2171. }
  2172. #endif /* QUICK_HOME */
  2173. #ifdef TMC2130
  2174. if(home_x)
  2175. {
  2176. if (!calib)
  2177. homeaxis(X_AXIS);
  2178. else
  2179. tmc2130_home_calibrate(X_AXIS);
  2180. }
  2181. if(home_y)
  2182. {
  2183. if (!calib)
  2184. homeaxis(Y_AXIS);
  2185. else
  2186. tmc2130_home_calibrate(Y_AXIS);
  2187. }
  2188. #else //TMC2130
  2189. if(home_x) homeaxis(X_AXIS);
  2190. if(home_y) homeaxis(Y_AXIS);
  2191. #endif //TMC2130
  2192. if(home_x_axis && home_x_value != 0)
  2193. current_position[X_AXIS]=home_x_value+cs.add_homing[X_AXIS];
  2194. if(home_y_axis && home_y_value != 0)
  2195. current_position[Y_AXIS]=home_y_value+cs.add_homing[Y_AXIS];
  2196. #if Z_HOME_DIR < 0 // If homing towards BED do Z last
  2197. #ifndef Z_SAFE_HOMING
  2198. if(home_z) {
  2199. #if defined (Z_RAISE_BEFORE_HOMING) && (Z_RAISE_BEFORE_HOMING > 0)
  2200. destination[Z_AXIS] = Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS) * (-1); // Set destination away from bed
  2201. feedrate = max_feedrate[Z_AXIS];
  2202. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
  2203. st_synchronize();
  2204. #endif // defined (Z_RAISE_BEFORE_HOMING) && (Z_RAISE_BEFORE_HOMING > 0)
  2205. #if (defined(MESH_BED_LEVELING) && !defined(MK1BP)) // If Mesh bed leveling, move X&Y to safe position for home
  2206. if (!(axis_known_position[X_AXIS] && axis_known_position[Y_AXIS] ))
  2207. {
  2208. homeaxis(X_AXIS);
  2209. homeaxis(Y_AXIS);
  2210. }
  2211. // 1st mesh bed leveling measurement point, corrected.
  2212. world2machine_initialize();
  2213. world2machine(pgm_read_float(bed_ref_points_4), pgm_read_float(bed_ref_points_4+1), destination[X_AXIS], destination[Y_AXIS]);
  2214. world2machine_reset();
  2215. if (destination[Y_AXIS] < Y_MIN_POS)
  2216. destination[Y_AXIS] = Y_MIN_POS;
  2217. destination[Z_AXIS] = MESH_HOME_Z_SEARCH; // Set destination away from bed
  2218. feedrate = homing_feedrate[Z_AXIS]/10;
  2219. current_position[Z_AXIS] = 0;
  2220. enable_endstops(false);
  2221. #ifdef DEBUG_BUILD
  2222. SERIAL_ECHOLNPGM("plan_set_position()");
  2223. MYSERIAL.println(current_position[X_AXIS]);MYSERIAL.println(current_position[Y_AXIS]);
  2224. MYSERIAL.println(current_position[Z_AXIS]);MYSERIAL.println(current_position[E_AXIS]);
  2225. #endif
  2226. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2227. #ifdef DEBUG_BUILD
  2228. SERIAL_ECHOLNPGM("plan_buffer_line()");
  2229. MYSERIAL.println(destination[X_AXIS]);MYSERIAL.println(destination[Y_AXIS]);
  2230. MYSERIAL.println(destination[Z_AXIS]);MYSERIAL.println(destination[E_AXIS]);
  2231. MYSERIAL.println(feedrate);MYSERIAL.println(active_extruder);
  2232. #endif
  2233. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
  2234. st_synchronize();
  2235. current_position[X_AXIS] = destination[X_AXIS];
  2236. current_position[Y_AXIS] = destination[Y_AXIS];
  2237. enable_endstops(true);
  2238. endstops_hit_on_purpose();
  2239. homeaxis(Z_AXIS);
  2240. #else // MESH_BED_LEVELING
  2241. homeaxis(Z_AXIS);
  2242. #endif // MESH_BED_LEVELING
  2243. }
  2244. #else // defined(Z_SAFE_HOMING): Z Safe mode activated.
  2245. if(home_all_axes) {
  2246. destination[X_AXIS] = round(Z_SAFE_HOMING_X_POINT - X_PROBE_OFFSET_FROM_EXTRUDER);
  2247. destination[Y_AXIS] = round(Z_SAFE_HOMING_Y_POINT - Y_PROBE_OFFSET_FROM_EXTRUDER);
  2248. destination[Z_AXIS] = Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS) * (-1); // Set destination away from bed
  2249. feedrate = XY_TRAVEL_SPEED/60;
  2250. current_position[Z_AXIS] = 0;
  2251. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2252. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
  2253. st_synchronize();
  2254. current_position[X_AXIS] = destination[X_AXIS];
  2255. current_position[Y_AXIS] = destination[Y_AXIS];
  2256. homeaxis(Z_AXIS);
  2257. }
  2258. // Let's see if X and Y are homed and probe is inside bed area.
  2259. if(home_z) {
  2260. if ( (axis_known_position[X_AXIS]) && (axis_known_position[Y_AXIS]) \
  2261. && (current_position[X_AXIS]+X_PROBE_OFFSET_FROM_EXTRUDER >= X_MIN_POS) \
  2262. && (current_position[X_AXIS]+X_PROBE_OFFSET_FROM_EXTRUDER <= X_MAX_POS) \
  2263. && (current_position[Y_AXIS]+Y_PROBE_OFFSET_FROM_EXTRUDER >= Y_MIN_POS) \
  2264. && (current_position[Y_AXIS]+Y_PROBE_OFFSET_FROM_EXTRUDER <= Y_MAX_POS)) {
  2265. current_position[Z_AXIS] = 0;
  2266. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2267. destination[Z_AXIS] = Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS) * (-1); // Set destination away from bed
  2268. feedrate = max_feedrate[Z_AXIS];
  2269. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
  2270. st_synchronize();
  2271. homeaxis(Z_AXIS);
  2272. } else if (!((axis_known_position[X_AXIS]) && (axis_known_position[Y_AXIS]))) {
  2273. LCD_MESSAGERPGM(MSG_POSITION_UNKNOWN);
  2274. SERIAL_ECHO_START;
  2275. SERIAL_ECHOLNRPGM(MSG_POSITION_UNKNOWN);
  2276. } else {
  2277. LCD_MESSAGERPGM(MSG_ZPROBE_OUT);
  2278. SERIAL_ECHO_START;
  2279. SERIAL_ECHOLNRPGM(MSG_ZPROBE_OUT);
  2280. }
  2281. }
  2282. #endif // Z_SAFE_HOMING
  2283. #endif // Z_HOME_DIR < 0
  2284. if(home_z_axis && home_z_value != 0)
  2285. current_position[Z_AXIS]=home_z_value+cs.add_homing[Z_AXIS];
  2286. #ifdef ENABLE_AUTO_BED_LEVELING
  2287. if(home_z)
  2288. current_position[Z_AXIS] += cs.zprobe_zoffset; //Add Z_Probe offset (the distance is negative)
  2289. #endif
  2290. // Set the planner and stepper routine positions.
  2291. // At this point the mesh bed leveling and world2machine corrections are disabled and current_position
  2292. // contains the machine coordinates.
  2293. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2294. #ifdef ENDSTOPS_ONLY_FOR_HOMING
  2295. enable_endstops(false);
  2296. #endif
  2297. feedrate = saved_feedrate;
  2298. feedmultiply = l_feedmultiply;
  2299. previous_millis_cmd = _millis();
  2300. endstops_hit_on_purpose();
  2301. #ifndef MESH_BED_LEVELING
  2302. // If MESH_BED_LEVELING is not active, then it is the original Prusa i3.
  2303. // Offer the user to load the baby step value, which has been adjusted at the previous print session.
  2304. if(card.sdprinting && eeprom_read_word((uint16_t *)EEPROM_BABYSTEP_Z))
  2305. lcd_adjust_z();
  2306. #endif
  2307. // Load the machine correction matrix
  2308. world2machine_initialize();
  2309. // and correct the current_position XY axes to match the transformed coordinate system.
  2310. world2machine_update_current();
  2311. #if (defined(MESH_BED_LEVELING) && !defined(MK1BP))
  2312. if (home_x_axis || home_y_axis || without_mbl || home_z_axis)
  2313. {
  2314. if (! home_z && mbl_was_active) {
  2315. // Re-enable the mesh bed leveling if only the X and Y axes were re-homed.
  2316. mbl.active = true;
  2317. // and re-adjust the current logical Z axis with the bed leveling offset applicable at the current XY position.
  2318. current_position[Z_AXIS] -= mbl.get_z(st_get_position_mm(X_AXIS), st_get_position_mm(Y_AXIS));
  2319. }
  2320. }
  2321. else
  2322. {
  2323. st_synchronize();
  2324. homing_flag = false;
  2325. }
  2326. #endif
  2327. if (farm_mode) { prusa_statistics(20); };
  2328. homing_flag = false;
  2329. #if 0
  2330. SERIAL_ECHOPGM("G28, final "); print_world_coordinates();
  2331. SERIAL_ECHOPGM("G28, final "); print_physical_coordinates();
  2332. SERIAL_ECHOPGM("G28, final "); print_mesh_bed_leveling_table();
  2333. #endif
  2334. }
  2335. static void gcode_G28(bool home_x_axis, bool home_y_axis, bool home_z_axis)
  2336. {
  2337. #ifdef TMC2130
  2338. gcode_G28(home_x_axis, 0, home_y_axis, 0, home_z_axis, 0, false, true);
  2339. #else
  2340. gcode_G28(home_x_axis, 0, home_y_axis, 0, home_z_axis, 0, true);
  2341. #endif //TMC2130
  2342. }
  2343. void adjust_bed_reset()
  2344. {
  2345. eeprom_update_byte((unsigned char*)EEPROM_BED_CORRECTION_VALID, 1);
  2346. eeprom_update_byte((unsigned char*)EEPROM_BED_CORRECTION_LEFT, 0);
  2347. eeprom_update_byte((unsigned char*)EEPROM_BED_CORRECTION_RIGHT, 0);
  2348. eeprom_update_byte((unsigned char*)EEPROM_BED_CORRECTION_FRONT, 0);
  2349. eeprom_update_byte((unsigned char*)EEPROM_BED_CORRECTION_REAR, 0);
  2350. }
  2351. //! @brief Calibrate XYZ
  2352. //! @param onlyZ if true, calibrate only Z axis
  2353. //! @param verbosity_level
  2354. //! @retval true Succeeded
  2355. //! @retval false Failed
  2356. bool gcode_M45(bool onlyZ, int8_t verbosity_level)
  2357. {
  2358. bool final_result = false;
  2359. #ifdef TMC2130
  2360. FORCE_HIGH_POWER_START;
  2361. #endif // TMC2130
  2362. // Only Z calibration?
  2363. if (!onlyZ)
  2364. {
  2365. setTargetBed(0);
  2366. setAllTargetHotends(0);
  2367. adjust_bed_reset(); //reset bed level correction
  2368. }
  2369. // Disable the default update procedure of the display. We will do a modal dialog.
  2370. lcd_update_enable(false);
  2371. // Let the planner use the uncorrected coordinates.
  2372. mbl.reset();
  2373. // Reset world2machine_rotation_and_skew and world2machine_shift, therefore
  2374. // the planner will not perform any adjustments in the XY plane.
  2375. // Wait for the motors to stop and update the current position with the absolute values.
  2376. world2machine_revert_to_uncorrected();
  2377. // Reset the baby step value applied without moving the axes.
  2378. babystep_reset();
  2379. // Mark all axes as in a need for homing.
  2380. memset(axis_known_position, 0, sizeof(axis_known_position));
  2381. // Home in the XY plane.
  2382. //set_destination_to_current();
  2383. int l_feedmultiply = setup_for_endstop_move();
  2384. lcd_display_message_fullscreen_P(_T(MSG_AUTO_HOME));
  2385. home_xy();
  2386. enable_endstops(false);
  2387. current_position[X_AXIS] += 5;
  2388. current_position[Y_AXIS] += 5;
  2389. plan_buffer_line_curposXYZE(homing_feedrate[Z_AXIS] / 40, active_extruder);
  2390. st_synchronize();
  2391. // Let the user move the Z axes up to the end stoppers.
  2392. #ifdef TMC2130
  2393. if (calibrate_z_auto())
  2394. {
  2395. #else //TMC2130
  2396. if (lcd_calibrate_z_end_stop_manual(onlyZ))
  2397. {
  2398. #endif //TMC2130
  2399. lcd_show_fullscreen_message_and_wait_P(_T(MSG_CONFIRM_NOZZLE_CLEAN));
  2400. if(onlyZ){
  2401. lcd_display_message_fullscreen_P(_T(MSG_MEASURE_BED_REFERENCE_HEIGHT_LINE1));
  2402. lcd_set_cursor(0, 3);
  2403. lcd_print(1);
  2404. lcd_puts_P(_T(MSG_MEASURE_BED_REFERENCE_HEIGHT_LINE2));
  2405. }else{
  2406. //lcd_show_fullscreen_message_and_wait_P(_T(MSG_PAPER));
  2407. lcd_display_message_fullscreen_P(_T(MSG_FIND_BED_OFFSET_AND_SKEW_LINE1));
  2408. lcd_set_cursor(0, 2);
  2409. lcd_print(1);
  2410. lcd_puts_P(_T(MSG_FIND_BED_OFFSET_AND_SKEW_LINE2));
  2411. }
  2412. refresh_cmd_timeout();
  2413. #ifndef STEEL_SHEET
  2414. if (((degHotend(0) > MAX_HOTEND_TEMP_CALIBRATION) || (degBed() > MAX_BED_TEMP_CALIBRATION)) && (!onlyZ))
  2415. {
  2416. lcd_wait_for_cool_down();
  2417. }
  2418. #endif //STEEL_SHEET
  2419. if(!onlyZ)
  2420. {
  2421. KEEPALIVE_STATE(PAUSED_FOR_USER);
  2422. #ifdef STEEL_SHEET
  2423. bool result = lcd_show_fullscreen_message_yes_no_and_wait_P(_T(MSG_STEEL_SHEET_CHECK), false, false);
  2424. if(result) lcd_show_fullscreen_message_and_wait_P(_T(MSG_REMOVE_STEEL_SHEET));
  2425. #endif //STEEL_SHEET
  2426. lcd_show_fullscreen_message_and_wait_P(_T(MSG_PAPER));
  2427. KEEPALIVE_STATE(IN_HANDLER);
  2428. lcd_display_message_fullscreen_P(_T(MSG_FIND_BED_OFFSET_AND_SKEW_LINE1));
  2429. lcd_set_cursor(0, 2);
  2430. lcd_print(1);
  2431. lcd_puts_P(_T(MSG_FIND_BED_OFFSET_AND_SKEW_LINE2));
  2432. }
  2433. bool endstops_enabled = enable_endstops(false);
  2434. current_position[Z_AXIS] -= 1; //move 1mm down with disabled endstop
  2435. plan_buffer_line_curposXYZE(homing_feedrate[Z_AXIS] / 40, active_extruder);
  2436. st_synchronize();
  2437. // Move the print head close to the bed.
  2438. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  2439. enable_endstops(true);
  2440. #ifdef TMC2130
  2441. tmc2130_home_enter(Z_AXIS_MASK);
  2442. #endif //TMC2130
  2443. plan_buffer_line_curposXYZE(homing_feedrate[Z_AXIS] / 40, active_extruder);
  2444. st_synchronize();
  2445. #ifdef TMC2130
  2446. tmc2130_home_exit();
  2447. #endif //TMC2130
  2448. enable_endstops(endstops_enabled);
  2449. if (st_get_position_mm(Z_AXIS) == MESH_HOME_Z_SEARCH)
  2450. {
  2451. if (onlyZ)
  2452. {
  2453. clean_up_after_endstop_move(l_feedmultiply);
  2454. // Z only calibration.
  2455. // Load the machine correction matrix
  2456. world2machine_initialize();
  2457. // and correct the current_position to match the transformed coordinate system.
  2458. world2machine_update_current();
  2459. //FIXME
  2460. bool result = sample_mesh_and_store_reference();
  2461. if (result)
  2462. {
  2463. if (calibration_status() == CALIBRATION_STATUS_Z_CALIBRATION)
  2464. // Shipped, the nozzle height has been set already. The user can start printing now.
  2465. calibration_status_store(CALIBRATION_STATUS_CALIBRATED);
  2466. final_result = true;
  2467. // babystep_apply();
  2468. }
  2469. }
  2470. else
  2471. {
  2472. // Reset the baby step value and the baby step applied flag.
  2473. calibration_status_store(CALIBRATION_STATUS_XYZ_CALIBRATION);
  2474. eeprom_update_word((uint16_t*)EEPROM_BABYSTEP_Z, 0);
  2475. // Complete XYZ calibration.
  2476. uint8_t point_too_far_mask = 0;
  2477. BedSkewOffsetDetectionResultType result = find_bed_offset_and_skew(verbosity_level, point_too_far_mask);
  2478. clean_up_after_endstop_move(l_feedmultiply);
  2479. // Print head up.
  2480. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  2481. plan_buffer_line_curposXYZE(homing_feedrate[Z_AXIS] / 40, active_extruder);
  2482. st_synchronize();
  2483. //#ifndef NEW_XYZCAL
  2484. if (result >= 0)
  2485. {
  2486. #ifdef HEATBED_V2
  2487. sample_z();
  2488. #else //HEATBED_V2
  2489. point_too_far_mask = 0;
  2490. // Second half: The fine adjustment.
  2491. // Let the planner use the uncorrected coordinates.
  2492. mbl.reset();
  2493. world2machine_reset();
  2494. // Home in the XY plane.
  2495. int l_feedmultiply = setup_for_endstop_move();
  2496. home_xy();
  2497. result = improve_bed_offset_and_skew(1, verbosity_level, point_too_far_mask);
  2498. clean_up_after_endstop_move(l_feedmultiply);
  2499. // Print head up.
  2500. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  2501. plan_buffer_line_curposXYZE(homing_feedrate[Z_AXIS] / 40, active_extruder);
  2502. st_synchronize();
  2503. // if (result >= 0) babystep_apply();
  2504. #endif //HEATBED_V2
  2505. }
  2506. //#endif //NEW_XYZCAL
  2507. lcd_update_enable(true);
  2508. lcd_update(2);
  2509. lcd_bed_calibration_show_result(result, point_too_far_mask);
  2510. if (result >= 0)
  2511. {
  2512. // Calibration valid, the machine should be able to print. Advise the user to run the V2Calibration.gcode.
  2513. calibration_status_store(CALIBRATION_STATUS_LIVE_ADJUST);
  2514. if (eeprom_read_byte((uint8_t*)EEPROM_WIZARD_ACTIVE) != 1) lcd_show_fullscreen_message_and_wait_P(_T(MSG_BABYSTEP_Z_NOT_SET));
  2515. final_result = true;
  2516. }
  2517. }
  2518. #ifdef TMC2130
  2519. tmc2130_home_exit();
  2520. #endif
  2521. }
  2522. else
  2523. {
  2524. lcd_show_fullscreen_message_and_wait_P(PSTR("Calibration failed! Check the axes and run again."));
  2525. final_result = false;
  2526. }
  2527. }
  2528. else
  2529. {
  2530. // Timeouted.
  2531. }
  2532. lcd_update_enable(true);
  2533. #ifdef TMC2130
  2534. FORCE_HIGH_POWER_END;
  2535. #endif // TMC2130
  2536. return final_result;
  2537. }
  2538. void gcode_M114()
  2539. {
  2540. SERIAL_PROTOCOLPGM("X:");
  2541. SERIAL_PROTOCOL(current_position[X_AXIS]);
  2542. SERIAL_PROTOCOLPGM(" Y:");
  2543. SERIAL_PROTOCOL(current_position[Y_AXIS]);
  2544. SERIAL_PROTOCOLPGM(" Z:");
  2545. SERIAL_PROTOCOL(current_position[Z_AXIS]);
  2546. SERIAL_PROTOCOLPGM(" E:");
  2547. SERIAL_PROTOCOL(current_position[E_AXIS]);
  2548. SERIAL_PROTOCOLRPGM(_n(" Count X: "));////MSG_COUNT_X
  2549. SERIAL_PROTOCOL(float(st_get_position(X_AXIS)) / cs.axis_steps_per_unit[X_AXIS]);
  2550. SERIAL_PROTOCOLPGM(" Y:");
  2551. SERIAL_PROTOCOL(float(st_get_position(Y_AXIS)) / cs.axis_steps_per_unit[Y_AXIS]);
  2552. SERIAL_PROTOCOLPGM(" Z:");
  2553. SERIAL_PROTOCOL(float(st_get_position(Z_AXIS)) / cs.axis_steps_per_unit[Z_AXIS]);
  2554. SERIAL_PROTOCOLPGM(" E:");
  2555. SERIAL_PROTOCOL(float(st_get_position(E_AXIS)) / cs.axis_steps_per_unit[E_AXIS]);
  2556. SERIAL_PROTOCOLLN("");
  2557. }
  2558. //! extracted code to compute z_shift for M600 in case of filament change operation
  2559. //! requested from fsensors.
  2560. //! The function ensures, that the printhead lifts to at least 25mm above the heat bed
  2561. //! unlike the previous implementation, which was adding 25mm even when the head was
  2562. //! printing at e.g. 24mm height.
  2563. //! A safety margin of FILAMENTCHANGE_ZADD is added in all cases to avoid touching
  2564. //! the printout.
  2565. //! This function is templated to enable fast change of computation data type.
  2566. //! @return new z_shift value
  2567. template<typename T>
  2568. static T gcode_M600_filament_change_z_shift()
  2569. {
  2570. #ifdef FILAMENTCHANGE_ZADD
  2571. static_assert(Z_MAX_POS < (255 - FILAMENTCHANGE_ZADD), "Z-range too high, change the T type from uint8_t to uint16_t");
  2572. // avoid floating point arithmetics when not necessary - results in shorter code
  2573. T ztmp = T( current_position[Z_AXIS] );
  2574. T z_shift = 0;
  2575. if(ztmp < T(25)){
  2576. z_shift = T(25) - ztmp; // make sure to be at least 25mm above the heat bed
  2577. }
  2578. return z_shift + T(FILAMENTCHANGE_ZADD); // always move above printout
  2579. #else
  2580. return T(0);
  2581. #endif
  2582. }
  2583. static void gcode_M600(bool automatic, float x_position, float y_position, float z_shift, float e_shift, float /*e_shift_late*/)
  2584. {
  2585. st_synchronize();
  2586. float lastpos[4];
  2587. if (farm_mode)
  2588. {
  2589. prusa_statistics(22);
  2590. }
  2591. //First backup current position and settings
  2592. int feedmultiplyBckp = feedmultiply;
  2593. float HotendTempBckp = degTargetHotend(active_extruder);
  2594. int fanSpeedBckp = fanSpeed;
  2595. lastpos[X_AXIS] = current_position[X_AXIS];
  2596. lastpos[Y_AXIS] = current_position[Y_AXIS];
  2597. lastpos[Z_AXIS] = current_position[Z_AXIS];
  2598. lastpos[E_AXIS] = current_position[E_AXIS];
  2599. //Retract E
  2600. current_position[E_AXIS] += e_shift;
  2601. plan_buffer_line_curposXYZE(FILAMENTCHANGE_RFEED, active_extruder);
  2602. st_synchronize();
  2603. //Lift Z
  2604. current_position[Z_AXIS] += z_shift;
  2605. plan_buffer_line_curposXYZE(FILAMENTCHANGE_ZFEED, active_extruder);
  2606. st_synchronize();
  2607. //Move XY to side
  2608. current_position[X_AXIS] = x_position;
  2609. current_position[Y_AXIS] = y_position;
  2610. plan_buffer_line_curposXYZE(FILAMENTCHANGE_XYFEED, active_extruder);
  2611. st_synchronize();
  2612. //Beep, manage nozzle heater and wait for user to start unload filament
  2613. if(!mmu_enabled) M600_wait_for_user(HotendTempBckp);
  2614. lcd_change_fil_state = 0;
  2615. // Unload filament
  2616. if (mmu_enabled) extr_unload(); //unload just current filament for multimaterial printers (used also in M702)
  2617. else unload_filament(); //unload filament for single material (used also in M702)
  2618. //finish moves
  2619. st_synchronize();
  2620. if (!mmu_enabled)
  2621. {
  2622. KEEPALIVE_STATE(PAUSED_FOR_USER);
  2623. lcd_change_fil_state = lcd_show_fullscreen_message_yes_no_and_wait_P(_i("Was filament unload successful?"),
  2624. false, true); ////MSG_UNLOAD_SUCCESSFUL c=20 r=2
  2625. if (lcd_change_fil_state == 0)
  2626. {
  2627. lcd_clear();
  2628. lcd_set_cursor(0, 2);
  2629. lcd_puts_P(_T(MSG_PLEASE_WAIT));
  2630. current_position[X_AXIS] -= 100;
  2631. plan_buffer_line_curposXYZE(FILAMENTCHANGE_XYFEED, active_extruder);
  2632. st_synchronize();
  2633. lcd_show_fullscreen_message_and_wait_P(_i("Please open idler and remove filament manually."));////MSG_CHECK_IDLER c=20 r=4
  2634. }
  2635. }
  2636. if (mmu_enabled)
  2637. {
  2638. if (!automatic) {
  2639. if (saved_printing) mmu_eject_filament(mmu_extruder, false); //if M600 was invoked by filament senzor (FINDA) eject filament so user can easily remove it
  2640. mmu_M600_wait_and_beep();
  2641. if (saved_printing) {
  2642. lcd_clear();
  2643. lcd_set_cursor(0, 2);
  2644. lcd_puts_P(_T(MSG_PLEASE_WAIT));
  2645. mmu_command(MmuCmd::R0);
  2646. manage_response(false, false);
  2647. }
  2648. }
  2649. mmu_M600_load_filament(automatic, HotendTempBckp);
  2650. }
  2651. else
  2652. M600_load_filament();
  2653. if (!automatic) M600_check_state(HotendTempBckp);
  2654. lcd_update_enable(true);
  2655. //Not let's go back to print
  2656. fanSpeed = fanSpeedBckp;
  2657. //Feed a little of filament to stabilize pressure
  2658. if (!automatic)
  2659. {
  2660. current_position[E_AXIS] += FILAMENTCHANGE_RECFEED;
  2661. plan_buffer_line_curposXYZE(FILAMENTCHANGE_EXFEED, active_extruder);
  2662. }
  2663. //Move XY back
  2664. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS],
  2665. FILAMENTCHANGE_XYFEED, active_extruder);
  2666. st_synchronize();
  2667. //Move Z back
  2668. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], current_position[E_AXIS],
  2669. FILAMENTCHANGE_ZFEED, active_extruder);
  2670. st_synchronize();
  2671. //Set E position to original
  2672. plan_set_e_position(lastpos[E_AXIS]);
  2673. memcpy(current_position, lastpos, sizeof(lastpos));
  2674. memcpy(destination, current_position, sizeof(current_position));
  2675. //Recover feed rate
  2676. feedmultiply = feedmultiplyBckp;
  2677. char cmd[9];
  2678. sprintf_P(cmd, PSTR("M220 S%i"), feedmultiplyBckp);
  2679. enquecommand(cmd);
  2680. #ifdef IR_SENSOR
  2681. //this will set fsensor_watch_autoload to correct value and prevent possible M701 gcode enqueuing when M600 is finished
  2682. fsensor_check_autoload();
  2683. #endif //IR_SENSOR
  2684. lcd_setstatuspgm(_T(WELCOME_MSG));
  2685. custom_message_type = CustomMsg::Status;
  2686. }
  2687. //! @brief Rise Z if too low to avoid blob/jam before filament loading
  2688. //!
  2689. //! It doesn't plan_buffer_line(), as it expects plan_buffer_line() to be called after
  2690. //! during extruding (loading) filament.
  2691. void marlin_rise_z(void)
  2692. {
  2693. if (current_position[Z_AXIS] < 20) current_position[Z_AXIS] += 30;
  2694. }
  2695. void gcode_M701()
  2696. {
  2697. printf_P(PSTR("gcode_M701 begin\n"));
  2698. if (farm_mode)
  2699. {
  2700. prusa_statistics(22);
  2701. }
  2702. if (mmu_enabled)
  2703. {
  2704. extr_adj(tmp_extruder);//loads current extruder
  2705. mmu_extruder = tmp_extruder;
  2706. }
  2707. else
  2708. {
  2709. enable_z();
  2710. custom_message_type = CustomMsg::FilamentLoading;
  2711. #ifdef FSENSOR_QUALITY
  2712. fsensor_oq_meassure_start(40);
  2713. #endif //FSENSOR_QUALITY
  2714. lcd_setstatuspgm(_T(MSG_LOADING_FILAMENT));
  2715. current_position[E_AXIS] += 40;
  2716. plan_buffer_line_curposXYZE(400 / 60, active_extruder); //fast sequence
  2717. st_synchronize();
  2718. marlin_rise_z();
  2719. current_position[E_AXIS] += 30;
  2720. plan_buffer_line_curposXYZE(400 / 60, active_extruder); //fast sequence
  2721. load_filament_final_feed(); //slow sequence
  2722. st_synchronize();
  2723. Sound_MakeCustom(50,500,false);
  2724. if (!farm_mode && loading_flag) {
  2725. lcd_load_filament_color_check();
  2726. }
  2727. lcd_update_enable(true);
  2728. lcd_update(2);
  2729. lcd_setstatuspgm(_T(WELCOME_MSG));
  2730. disable_z();
  2731. loading_flag = false;
  2732. custom_message_type = CustomMsg::Status;
  2733. #ifdef FSENSOR_QUALITY
  2734. fsensor_oq_meassure_stop();
  2735. if (!fsensor_oq_result())
  2736. {
  2737. bool disable = lcd_show_fullscreen_message_yes_no_and_wait_P(_i("Fil. sensor response is poor, disable it?"), false, true);
  2738. lcd_update_enable(true);
  2739. lcd_update(2);
  2740. if (disable)
  2741. fsensor_disable();
  2742. }
  2743. #endif //FSENSOR_QUALITY
  2744. }
  2745. }
  2746. /**
  2747. * @brief Get serial number from 32U2 processor
  2748. *
  2749. * Typical format of S/N is:CZPX0917X003XC13518
  2750. *
  2751. * Command operates only in farm mode, if not in farm mode, "Not in farm mode." is written to MYSERIAL.
  2752. *
  2753. * Send command ;S to serial port 0 to retrieve serial number stored in 32U2 processor,
  2754. * reply is transmitted to serial port 1 character by character.
  2755. * Operation takes typically 23 ms. If the retransmit is not finished until 100 ms,
  2756. * it is interrupted, so less, or no characters are retransmitted, only newline character is send
  2757. * in any case.
  2758. */
  2759. static void gcode_PRUSA_SN()
  2760. {
  2761. if (farm_mode) {
  2762. selectedSerialPort = 0;
  2763. putchar(';');
  2764. putchar('S');
  2765. int numbersRead = 0;
  2766. ShortTimer timeout;
  2767. timeout.start();
  2768. while (numbersRead < 19) {
  2769. while (MSerial.available() > 0) {
  2770. uint8_t serial_char = MSerial.read();
  2771. selectedSerialPort = 1;
  2772. putchar(serial_char);
  2773. numbersRead++;
  2774. selectedSerialPort = 0;
  2775. }
  2776. if (timeout.expired(100u)) break;
  2777. }
  2778. selectedSerialPort = 1;
  2779. putchar('\n');
  2780. #if 0
  2781. for (int b = 0; b < 3; b++) {
  2782. _tone(BEEPER, 110);
  2783. _delay(50);
  2784. _noTone(BEEPER);
  2785. _delay(50);
  2786. }
  2787. #endif
  2788. } else {
  2789. puts_P(_N("Not in farm mode."));
  2790. }
  2791. }
  2792. //! Detection of faulty RAMBo 1.1b boards equipped with bigger capacitors
  2793. //! at the TACH_1 pin, which causes bad detection of print fan speed.
  2794. //! Warning: This function is not to be used by ordinary users, it is here only for automated testing purposes,
  2795. //! it may even interfere with other functions of the printer! You have been warned!
  2796. //! The test idea is to measure the time necessary to charge the capacitor.
  2797. //! So the algorithm is as follows:
  2798. //! 1. Set TACH_1 pin to INPUT mode and LOW
  2799. //! 2. Wait a few ms
  2800. //! 3. disable interrupts and measure the time until the TACH_1 pin reaches HIGH
  2801. //! Repeat 1.-3. several times
  2802. //! Good RAMBo's times are in the range of approx. 260-320 us
  2803. //! Bad RAMBo's times are approx. 260-1200 us
  2804. //! So basically we are interested in maximum time, the minima are mostly the same.
  2805. //! May be that's why the bad RAMBo's still produce some fan RPM reading, but not corresponding to reality
  2806. static void gcode_PRUSA_BadRAMBoFanTest(){
  2807. //printf_P(PSTR("Enter fan pin test\n"));
  2808. #if !defined(DEBUG_DISABLE_FANCHECK) && defined(FANCHECK) && defined(TACH_1) && TACH_1 >-1 && defined(IR_SENSOR)
  2809. fan_measuring = false; // prevent EXTINT7 breaking into the measurement
  2810. unsigned long tach1max = 0;
  2811. uint8_t tach1cntr = 0;
  2812. for( /* nothing */; tach1cntr < 100; ++tach1cntr){
  2813. //printf_P(PSTR("TACH_1: %d\n"), tach1cntr);
  2814. SET_OUTPUT(TACH_1);
  2815. WRITE(TACH_1, LOW);
  2816. _delay(20); // the delay may be lower
  2817. unsigned long tachMeasure = _micros();
  2818. cli();
  2819. SET_INPUT(TACH_1);
  2820. // just wait brutally in an endless cycle until we reach HIGH
  2821. // if this becomes a problem it may be improved to non-endless cycle
  2822. while( READ(TACH_1) == 0 ) ;
  2823. sei();
  2824. tachMeasure = _micros() - tachMeasure;
  2825. if( tach1max < tachMeasure )
  2826. tach1max = tachMeasure;
  2827. //printf_P(PSTR("TACH_1: %d: capacitor check time=%lu us\n"), (int)tach1cntr, tachMeasure);
  2828. }
  2829. //printf_P(PSTR("TACH_1: max=%lu us\n"), tach1max);
  2830. SERIAL_PROTOCOLPGM("RAMBo FAN ");
  2831. if( tach1max > 500 ){
  2832. // bad RAMBo
  2833. SERIAL_PROTOCOLLNPGM("BAD");
  2834. } else {
  2835. SERIAL_PROTOCOLLNPGM("OK");
  2836. }
  2837. // cleanup after the test function
  2838. SET_INPUT(TACH_1);
  2839. WRITE(TACH_1, HIGH);
  2840. #endif
  2841. }
  2842. #ifdef BACKLASH_X
  2843. extern uint8_t st_backlash_x;
  2844. #endif //BACKLASH_X
  2845. #ifdef BACKLASH_Y
  2846. extern uint8_t st_backlash_y;
  2847. #endif //BACKLASH_Y
  2848. //! \ingroup marlin_main
  2849. //! @brief Parse and process commands
  2850. //!
  2851. //! look here for descriptions of G-codes: http://linuxcnc.org/handbook/gcode/g-code.html
  2852. //! http://objects.reprap.org/wiki/Mendel_User_Manual:_RepRapGCodes
  2853. //!
  2854. //!
  2855. //! Implemented Codes
  2856. //! -------------------
  2857. //!
  2858. //! * _This list is not updated. Current documentation is maintained inside the process_cmd function._
  2859. //!
  2860. //!@n PRUSA CODES
  2861. //!@n P F - Returns FW versions
  2862. //!@n P R - Returns revision of printer
  2863. //!
  2864. //!@n G0 -> G1
  2865. //!@n G1 - Coordinated Movement X Y Z E
  2866. //!@n G2 - CW ARC
  2867. //!@n G3 - CCW ARC
  2868. //!@n G4 - Dwell S<seconds> or P<milliseconds>
  2869. //!@n G10 - retract filament according to settings of M207
  2870. //!@n G11 - retract recover filament according to settings of M208
  2871. //!@n G28 - Home all Axis
  2872. //!@n G29 - Detailed Z-Probe, probes the bed at 3 or more points. Will fail if you haven't homed yet.
  2873. //!@n G30 - Single Z Probe, probes bed at current XY location.
  2874. //!@n G31 - Dock sled (Z_PROBE_SLED only)
  2875. //!@n G32 - Undock sled (Z_PROBE_SLED only)
  2876. //!@n G80 - Automatic mesh bed leveling
  2877. //!@n G81 - Print bed profile
  2878. //!@n G90 - Use Absolute Coordinates
  2879. //!@n G91 - Use Relative Coordinates
  2880. //!@n G92 - Set current position to coordinates given
  2881. //!
  2882. //!@n M Codes
  2883. //!@n M0 - Unconditional stop - Wait for user to press a button on the LCD
  2884. //!@n M1 - Same as M0
  2885. //!@n M17 - Enable/Power all stepper motors
  2886. //!@n M18 - Disable all stepper motors; same as M84
  2887. //!@n M20 - List SD card
  2888. //!@n M21 - Init SD card
  2889. //!@n M22 - Release SD card
  2890. //!@n M23 - Select SD file (M23 filename.g)
  2891. //!@n M24 - Start/resume SD print
  2892. //!@n M25 - Pause SD print
  2893. //!@n M26 - Set SD position in bytes (M26 S12345)
  2894. //!@n M27 - Report SD print status
  2895. //!@n M28 - Start SD write (M28 filename.g)
  2896. //!@n M29 - Stop SD write
  2897. //!@n M30 - Delete file from SD (M30 filename.g)
  2898. //!@n M31 - Output time since last M109 or SD card start to serial
  2899. //!@n M32 - Select file and start SD print (Can be used _while_ printing from SD card files):
  2900. //! syntax "M32 /path/filename#", or "M32 S<startpos bytes> !filename#"
  2901. //! Call gcode file : "M32 P !filename#" and return to caller file after finishing (similar to #include).
  2902. //! The '#' is necessary when calling from within sd files, as it stops buffer prereading
  2903. //!@n M42 - Change pin status via gcode Use M42 Px Sy to set pin x to value y, when omitting Px the onboard led will be used.
  2904. //!@n M73 - Show percent done and print time remaining
  2905. //!@n M80 - Turn on Power Supply
  2906. //!@n M81 - Turn off Power Supply
  2907. //!@n M82 - Set E codes absolute (default)
  2908. //!@n M83 - Set E codes relative while in Absolute Coordinates (G90) mode
  2909. //!@n M84 - Disable steppers until next move,
  2910. //! or use S<seconds> to specify an inactivity timeout, after which the steppers will be disabled. S0 to disable the timeout.
  2911. //!@n M85 - Set inactivity shutdown timer with parameter S<seconds>. To disable set zero (default)
  2912. //!@n M86 - Set safety timer expiration time with parameter S<seconds>; M86 S0 will disable safety timer
  2913. //!@n M92 - Set axis_steps_per_unit - same syntax as G92
  2914. //!@n M104 - Set extruder target temp
  2915. //!@n M105 - Read current temp
  2916. //!@n M106 - Fan on
  2917. //!@n M107 - Fan off
  2918. //!@n M109 - Sxxx Wait for extruder current temp to reach target temp. Waits only when heating
  2919. //! Rxxx Wait for extruder current temp to reach target temp. Waits when heating and cooling
  2920. //! IF AUTOTEMP is enabled, S<mintemp> B<maxtemp> F<factor>. Exit autotemp by any M109 without F
  2921. //!@n M112 - Emergency stop
  2922. //!@n M113 - Get or set the timeout interval for Host Keepalive "busy" messages
  2923. //!@n M114 - Output current position to serial port
  2924. //!@n M115 - Capabilities string
  2925. //!@n M117 - display message
  2926. //!@n M119 - Output Endstop status to serial port
  2927. //!@n M126 - Solenoid Air Valve Open (BariCUDA support by jmil)
  2928. //!@n M127 - Solenoid Air Valve Closed (BariCUDA vent to atmospheric pressure by jmil)
  2929. //!@n M128 - EtoP Open (BariCUDA EtoP = electricity to air pressure transducer by jmil)
  2930. //!@n M129 - EtoP Closed (BariCUDA EtoP = electricity to air pressure transducer by jmil)
  2931. //!@n M140 - Set bed target temp
  2932. //!@n M150 - Set BlinkM Color Output R: Red<0-255> U(!): Green<0-255> B: Blue<0-255> over i2c, G for green does not work.
  2933. //!@n M190 - Sxxx Wait for bed current temp to reach target temp. Waits only when heating
  2934. //! Rxxx Wait for bed current temp to reach target temp. Waits when heating and cooling
  2935. //!@n M200 D<millimeters>- set filament diameter and set E axis units to cubic millimeters (use S0 to set back to millimeters).
  2936. //!@n M201 - Set max acceleration in units/s^2 for print moves (M201 X1000 Y1000)
  2937. //!@n M202 - Set max acceleration in units/s^2 for travel moves (M202 X1000 Y1000) Unused in Marlin!!
  2938. //!@n M203 - Set maximum feedrate that your machine can sustain (M203 X200 Y200 Z300 E10000) in mm/sec
  2939. //!@n M204 - Set default acceleration: S normal moves T filament only moves (M204 S3000 T7000) in mm/sec^2 also sets minimum segment time in ms (B20000) to prevent buffer under-runs and M20 minimum feedrate
  2940. //!@n M205 - advanced settings: minimum travel speed S=while printing T=travel only, B=minimum segment time X= maximum xy jerk, Z=maximum Z jerk, E=maximum E jerk
  2941. //!@n M206 - set additional homing offset
  2942. //!@n M207 - set retract length S[positive mm] F[feedrate mm/min] Z[additional zlift/hop], stays in mm regardless of M200 setting
  2943. //!@n M208 - set recover=unretract length S[positive mm surplus to the M207 S*] F[feedrate mm/sec]
  2944. //!@n M209 - S<1=true/0=false> enable automatic retract detect if the slicer did not support G10/11: every normal extrude-only move will be classified as retract depending on the direction.
  2945. //!@n M218 - set hotend offset (in mm): T<extruder_number> X<offset_on_X> Y<offset_on_Y>
  2946. //!@n M220 S<factor in percent>- set speed factor override percentage
  2947. //!@n M221 S<factor in percent>- set extrude factor override percentage
  2948. //!@n M226 P<pin number> S<pin state>- Wait until the specified pin reaches the state required
  2949. //!@n M240 - Trigger a camera to take a photograph
  2950. //!@n M250 - Set LCD contrast C<contrast value> (value 0..63)
  2951. //!@n M280 - set servo position absolute. P: servo index, S: angle or microseconds
  2952. //!@n M300 - Play beep sound S<frequency Hz> P<duration ms>
  2953. //!@n M301 - Set PID parameters P I and D
  2954. //!@n M302 - Allow cold extrudes, or set the minimum extrude S<temperature>.
  2955. //!@n M303 - PID relay autotune S<temperature> sets the target temperature. (default target temperature = 150C)
  2956. //!@n M304 - Set bed PID parameters P I and D
  2957. //!@n M400 - Finish all moves
  2958. //!@n M401 - Lower z-probe if present
  2959. //!@n M402 - Raise z-probe if present
  2960. //!@n M404 - N<dia in mm> Enter the nominal filament width (3mm, 1.75mm ) or will display nominal filament width without parameters
  2961. //!@n M405 - Turn on Filament Sensor extrusion control. Optional D<delay in cm> to set delay in centimeters between sensor and extruder
  2962. //!@n M406 - Turn off Filament Sensor extrusion control
  2963. //!@n M407 - Displays measured filament diameter
  2964. //!@n M500 - stores parameters in EEPROM
  2965. //!@n M501 - reads parameters from EEPROM (if you need reset them after you changed them temporarily).
  2966. //!@n M502 - reverts to the default "factory settings". You still need to store them in EEPROM afterwards if you want to.
  2967. //!@n M503 - print the current settings (from memory not from EEPROM)
  2968. //!@n M509 - force language selection on next restart
  2969. //!@n M540 - Use S[0|1] to enable or disable the stop SD card print on endstop hit (requires ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED)
  2970. //!@n M600 - Pause for filament change X[pos] Y[pos] Z[relative lift] E[initial retract] L[later retract distance for removal]
  2971. //!@n M605 - Set dual x-carriage movement mode: S<mode> [ X<duplication x-offset> R<duplication temp offset> ]
  2972. //!@n M860 - Wait for PINDA thermistor to reach target temperature.
  2973. //!@n M861 - Set / Read PINDA temperature compensation offsets
  2974. //!@n M900 - Set LIN_ADVANCE options, if enabled. See Configuration_adv.h for details.
  2975. //!@n M907 - Set digital trimpot motor current using axis codes.
  2976. //!@n M908 - Control digital trimpot directly.
  2977. //!@n M350 - Set microstepping mode.
  2978. //!@n M351 - Toggle MS1 MS2 pins directly.
  2979. //!
  2980. //!@n M928 - Start SD logging (M928 filename.g) - ended by M29
  2981. //!@n M999 - Restart after being stopped by error
  2982. //! <br><br>
  2983. /** @defgroup marlin_main Marlin main */
  2984. /** \ingroup GCodes */
  2985. //! _This is a list of currently implemented G Codes in Prusa firmware (dynamically generated from doxygen)_
  2986. void process_commands()
  2987. {
  2988. #ifdef FANCHECK
  2989. if (fan_check_error){
  2990. if( fan_check_error == EFCE_DETECTED ){
  2991. fan_check_error = EFCE_REPORTED;
  2992. if(is_usb_printing){
  2993. SERIAL_PROTOCOLLNRPGM(MSG_OCTOPRINT_PAUSE);
  2994. }
  2995. else{
  2996. lcd_pause_print();
  2997. }
  2998. } // otherwise it has already been reported, so just ignore further processing
  2999. return;
  3000. }
  3001. #endif
  3002. if (!buflen) return; //empty command
  3003. #ifdef FILAMENT_RUNOUT_SUPPORT
  3004. SET_INPUT(FR_SENS);
  3005. #endif
  3006. #ifdef CMDBUFFER_DEBUG
  3007. SERIAL_ECHOPGM("Processing a GCODE command: ");
  3008. SERIAL_ECHO(cmdbuffer+bufindr+CMDHDRSIZE);
  3009. SERIAL_ECHOLNPGM("");
  3010. SERIAL_ECHOPGM("In cmdqueue: ");
  3011. SERIAL_ECHO(buflen);
  3012. SERIAL_ECHOLNPGM("");
  3013. #endif /* CMDBUFFER_DEBUG */
  3014. unsigned long codenum; //throw away variable
  3015. char *starpos = NULL;
  3016. #ifdef ENABLE_AUTO_BED_LEVELING
  3017. float x_tmp, y_tmp, z_tmp, real_z;
  3018. #endif
  3019. // PRUSA GCODES
  3020. KEEPALIVE_STATE(IN_HANDLER);
  3021. #ifdef SNMM
  3022. float tmp_motor[3] = DEFAULT_PWM_MOTOR_CURRENT;
  3023. float tmp_motor_loud[3] = DEFAULT_PWM_MOTOR_CURRENT_LOUD;
  3024. int8_t SilentMode;
  3025. #endif
  3026. if (code_seen("M117")) { //moved to highest priority place to be able to to print strings which includes "G", "PRUSA" and "^"
  3027. starpos = (strchr(strchr_pointer + 5, '*'));
  3028. if (starpos != NULL)
  3029. *(starpos) = '\0';
  3030. lcd_setstatus(strchr_pointer + 5);
  3031. }
  3032. #ifdef TMC2130
  3033. else if (strncmp_P(CMDBUFFER_CURRENT_STRING, PSTR("CRASH_"), 6) == 0)
  3034. {
  3035. //! ### CRASH_DETECTED - TMC2130
  3036. // ---------------------------------
  3037. if(code_seen("CRASH_DETECTED"))
  3038. {
  3039. uint8_t mask = 0;
  3040. if (code_seen('X')) mask |= X_AXIS_MASK;
  3041. if (code_seen('Y')) mask |= Y_AXIS_MASK;
  3042. crashdet_detected(mask);
  3043. }
  3044. //! ### CRASH_RECOVER - TMC2130
  3045. // ----------------------------------
  3046. else if(code_seen("CRASH_RECOVER"))
  3047. crashdet_recover();
  3048. //! ### CRASH_CANCEL - TMC2130
  3049. // ----------------------------------
  3050. else if(code_seen("CRASH_CANCEL"))
  3051. crashdet_cancel();
  3052. }
  3053. else if (strncmp_P(CMDBUFFER_CURRENT_STRING, PSTR("TMC_"), 4) == 0)
  3054. {
  3055. //! ### TMC_SET_WAVE_
  3056. // --------------------
  3057. if (strncmp_P(CMDBUFFER_CURRENT_STRING + 4, PSTR("SET_WAVE_"), 9) == 0)
  3058. {
  3059. uint8_t axis = *(CMDBUFFER_CURRENT_STRING + 13);
  3060. axis = (axis == 'E')?3:(axis - 'X');
  3061. if (axis < 4)
  3062. {
  3063. uint8_t fac = (uint8_t)strtol(CMDBUFFER_CURRENT_STRING + 14, NULL, 10);
  3064. tmc2130_set_wave(axis, 247, fac);
  3065. }
  3066. }
  3067. //! ### TMC_SET_STEP_
  3068. // ------------------
  3069. else if (strncmp_P(CMDBUFFER_CURRENT_STRING + 4, PSTR("SET_STEP_"), 9) == 0)
  3070. {
  3071. uint8_t axis = *(CMDBUFFER_CURRENT_STRING + 13);
  3072. axis = (axis == 'E')?3:(axis - 'X');
  3073. if (axis < 4)
  3074. {
  3075. uint8_t step = (uint8_t)strtol(CMDBUFFER_CURRENT_STRING + 14, NULL, 10);
  3076. uint16_t res = tmc2130_get_res(axis);
  3077. tmc2130_goto_step(axis, step & (4*res - 1), 2, 1000, res);
  3078. }
  3079. }
  3080. //! ### TMC_SET_CHOP_
  3081. // -------------------
  3082. else if (strncmp_P(CMDBUFFER_CURRENT_STRING + 4, PSTR("SET_CHOP_"), 9) == 0)
  3083. {
  3084. uint8_t axis = *(CMDBUFFER_CURRENT_STRING + 13);
  3085. axis = (axis == 'E')?3:(axis - 'X');
  3086. if (axis < 4)
  3087. {
  3088. uint8_t chop0 = tmc2130_chopper_config[axis].toff;
  3089. uint8_t chop1 = tmc2130_chopper_config[axis].hstr;
  3090. uint8_t chop2 = tmc2130_chopper_config[axis].hend;
  3091. uint8_t chop3 = tmc2130_chopper_config[axis].tbl;
  3092. char* str_end = 0;
  3093. if (CMDBUFFER_CURRENT_STRING[14])
  3094. {
  3095. chop0 = (uint8_t)strtol(CMDBUFFER_CURRENT_STRING + 14, &str_end, 10) & 15;
  3096. if (str_end && *str_end)
  3097. {
  3098. chop1 = (uint8_t)strtol(str_end, &str_end, 10) & 7;
  3099. if (str_end && *str_end)
  3100. {
  3101. chop2 = (uint8_t)strtol(str_end, &str_end, 10) & 15;
  3102. if (str_end && *str_end)
  3103. chop3 = (uint8_t)strtol(str_end, &str_end, 10) & 3;
  3104. }
  3105. }
  3106. }
  3107. tmc2130_chopper_config[axis].toff = chop0;
  3108. tmc2130_chopper_config[axis].hstr = chop1 & 7;
  3109. tmc2130_chopper_config[axis].hend = chop2 & 15;
  3110. tmc2130_chopper_config[axis].tbl = chop3 & 3;
  3111. tmc2130_setup_chopper(axis, tmc2130_mres[axis], tmc2130_current_h[axis], tmc2130_current_r[axis]);
  3112. //printf_P(_N("TMC_SET_CHOP_%c %hhd %hhd %hhd %hhd\n"), "xyze"[axis], chop0, chop1, chop2, chop3);
  3113. }
  3114. }
  3115. }
  3116. #ifdef BACKLASH_X
  3117. else if (strncmp_P(CMDBUFFER_CURRENT_STRING, PSTR("BACKLASH_X"), 10) == 0)
  3118. {
  3119. uint8_t bl = (uint8_t)strtol(CMDBUFFER_CURRENT_STRING + 10, NULL, 10);
  3120. st_backlash_x = bl;
  3121. printf_P(_N("st_backlash_x = %hhd\n"), st_backlash_x);
  3122. }
  3123. #endif //BACKLASH_X
  3124. #ifdef BACKLASH_Y
  3125. else if (strncmp_P(CMDBUFFER_CURRENT_STRING, PSTR("BACKLASH_Y"), 10) == 0)
  3126. {
  3127. uint8_t bl = (uint8_t)strtol(CMDBUFFER_CURRENT_STRING + 10, NULL, 10);
  3128. st_backlash_y = bl;
  3129. printf_P(_N("st_backlash_y = %hhd\n"), st_backlash_y);
  3130. }
  3131. #endif //BACKLASH_Y
  3132. #endif //TMC2130
  3133. else if(code_seen("PRUSA")){
  3134. /*!
  3135. *
  3136. ### PRUSA - Internal command set
  3137. Set of internal PRUSA commands
  3138. PRUSA [ Ping | PRN | FAN | fn | thx | uvlo | fsensor_recover | MMURES | RESET | fv | M28 | SN | Fir | Rev | Lang | Lz | Beat | FR ]
  3139. - `Ping`
  3140. - `PRN` - Prints revision of the printer
  3141. - `FAN` - Prints fan details
  3142. - `fn` - Prints farm no.
  3143. - `thx`
  3144. - `uvlo`
  3145. - `fsensor_recover` - Filament sensor recover - restore print and continue
  3146. - `MMURES` - Reset MMU
  3147. - `RESET` - (Careful!)
  3148. - `fv` - ?
  3149. - `M28`
  3150. - `SN`
  3151. - `Fir` - Prints firmware version
  3152. - `Rev`- Prints filament size, elelectronics, nozzle type
  3153. - `Lang` - Reset the language
  3154. - `Lz`
  3155. - `Beat` - Kick farm link timer
  3156. - `FR` - Full factory reset
  3157. - `nozzle set <diameter>` - set nozzle diameter (farm mode only), e.g. `PRUSA nozzle set 0.4`
  3158. - `nozzle D<diameter>` - check the nozzle diameter (farm mode only), works like M862.1 P, e.g. `PRUSA nozzle D0.4`
  3159. - `nozzle` - prints nozzle diameter (farm mode only), works like M862.1 P, e.g. `PRUSA nozzle`
  3160. *
  3161. */
  3162. if (code_seen("Ping")) { // PRUSA Ping
  3163. if (farm_mode) {
  3164. PingTime = _millis();
  3165. //MYSERIAL.print(farm_no); MYSERIAL.println(": OK");
  3166. }
  3167. }
  3168. else if (code_seen("PRN")) { // PRUSA PRN
  3169. printf_P(_N("%d"), status_number);
  3170. } else if( code_seen("FANPINTST") ){
  3171. gcode_PRUSA_BadRAMBoFanTest();
  3172. }else if (code_seen("FAN")) { //! PRUSA FAN
  3173. printf_P(_N("E0:%d RPM\nPRN0:%d RPM\n"), 60*fan_speed[0], 60*fan_speed[1]);
  3174. }else if (code_seen("fn")) { // PRUSA fn
  3175. if (farm_mode) {
  3176. printf_P(_N("%d"), farm_no);
  3177. }
  3178. else {
  3179. puts_P(_N("Not in farm mode."));
  3180. }
  3181. }
  3182. else if (code_seen("thx")) // PRUSA thx
  3183. {
  3184. no_response = false;
  3185. }
  3186. else if (code_seen("uvlo")) // PRUSA uvlo
  3187. {
  3188. eeprom_update_byte((uint8_t*)EEPROM_UVLO,0);
  3189. enquecommand_P(PSTR("M24"));
  3190. }
  3191. #ifdef FILAMENT_SENSOR
  3192. else if (code_seen("fsensor_recover")) // PRUSA fsensor_recover
  3193. {
  3194. fsensor_restore_print_and_continue();
  3195. }
  3196. #endif //FILAMENT_SENSOR
  3197. else if (code_seen("MMURES")) // PRUSA MMURES
  3198. {
  3199. mmu_reset();
  3200. }
  3201. else if (code_seen("RESET")) { // PRUSA RESET
  3202. // careful!
  3203. if (farm_mode) {
  3204. #if (defined(WATCHDOG) && (MOTHERBOARD == BOARD_EINSY_1_0a))
  3205. boot_app_magic = BOOT_APP_MAGIC;
  3206. boot_app_flags = BOOT_APP_FLG_RUN;
  3207. wdt_enable(WDTO_15MS);
  3208. cli();
  3209. while(1);
  3210. #else //WATCHDOG
  3211. asm volatile("jmp 0x3E000");
  3212. #endif //WATCHDOG
  3213. }
  3214. else {
  3215. MYSERIAL.println("Not in farm mode.");
  3216. }
  3217. }else if (code_seen("fv")) { // PRUSA fv
  3218. // get file version
  3219. #ifdef SDSUPPORT
  3220. card.openFile(strchr_pointer + 3,true);
  3221. while (true) {
  3222. uint16_t readByte = card.get();
  3223. MYSERIAL.write(readByte);
  3224. if (readByte=='\n') {
  3225. break;
  3226. }
  3227. }
  3228. card.closefile();
  3229. #endif // SDSUPPORT
  3230. } else if (code_seen("M28")) { // PRUSA M28
  3231. trace();
  3232. prusa_sd_card_upload = true;
  3233. card.openFile(strchr_pointer+4,false);
  3234. } else if (code_seen("SN")) { // PRUSA SN
  3235. gcode_PRUSA_SN();
  3236. } else if(code_seen("Fir")){ // PRUSA Fir
  3237. SERIAL_PROTOCOLLN(FW_VERSION_FULL);
  3238. } else if(code_seen("Rev")){ // PRUSA Rev
  3239. SERIAL_PROTOCOLLN(FILAMENT_SIZE "-" ELECTRONICS "-" NOZZLE_TYPE );
  3240. } else if(code_seen("Lang")) { // PRUSA Lang
  3241. lang_reset();
  3242. } else if(code_seen("Lz")) { // PRUSA Lz
  3243. EEPROM_save_B(EEPROM_BABYSTEP_Z,0);
  3244. } else if(code_seen("Beat")) { // PRUSA Beat
  3245. // Kick farm link timer
  3246. kicktime = _millis();
  3247. } else if(code_seen("FR")) { // PRUSA FR
  3248. // Factory full reset
  3249. factory_reset(0);
  3250. //-//
  3251. /*
  3252. } else if(code_seen("rrr")) {
  3253. MYSERIAL.println("=== checking ===");
  3254. MYSERIAL.println(eeprom_read_byte((uint8_t*)EEPROM_CHECK_MODE),DEC);
  3255. MYSERIAL.println(eeprom_read_byte((uint8_t*)EEPROM_NOZZLE_DIAMETER),DEC);
  3256. MYSERIAL.println(eeprom_read_word((uint16_t*)EEPROM_NOZZLE_DIAMETER_uM),DEC);
  3257. MYSERIAL.println(farm_mode,DEC);
  3258. MYSERIAL.println(eCheckMode,DEC);
  3259. } else if(code_seen("www")) {
  3260. MYSERIAL.println("=== @ FF ===");
  3261. eeprom_update_byte((uint8_t*)EEPROM_CHECK_MODE,0xFF);
  3262. eeprom_update_byte((uint8_t*)EEPROM_NOZZLE_DIAMETER,0xFF);
  3263. eeprom_update_word((uint16_t*)EEPROM_NOZZLE_DIAMETER_uM,0xFFFF);
  3264. */
  3265. } else if (code_seen("nozzle")) { // PRUSA nozzle
  3266. uint16_t nDiameter;
  3267. if(code_seen('D'))
  3268. {
  3269. nDiameter=(uint16_t)(code_value()*1000.0+0.5); // [,um]
  3270. nozzle_diameter_check(nDiameter);
  3271. }
  3272. else if(code_seen("set") && farm_mode)
  3273. {
  3274. strchr_pointer++; // skip 1st char (~ 's')
  3275. strchr_pointer++; // skip 2nd char (~ 'e')
  3276. nDiameter=(uint16_t)(code_value()*1000.0+0.5); // [,um]
  3277. eeprom_update_byte((uint8_t*)EEPROM_NOZZLE_DIAMETER,(uint8_t)ClNozzleDiameter::_Diameter_Undef); // for correct synchronization after farm-mode exiting
  3278. eeprom_update_word((uint16_t*)EEPROM_NOZZLE_DIAMETER_uM,nDiameter);
  3279. }
  3280. else SERIAL_PROTOCOLLN((float)eeprom_read_word((uint16_t*)EEPROM_NOZZLE_DIAMETER_uM)/1000.0);
  3281. //-// !!! SupportMenu
  3282. /*
  3283. // musi byt PRED "PRUSA model"
  3284. } else if (code_seen("smodel")) { //! PRUSA smodel
  3285. size_t nOffset;
  3286. // ! -> "l"
  3287. strchr_pointer+=5*sizeof(*strchr_pointer); // skip 1st - 5th char (~ 'smode')
  3288. nOffset=strspn(strchr_pointer+1," \t\n\r\v\f");
  3289. if(*(strchr_pointer+1+nOffset))
  3290. printer_smodel_check(strchr_pointer);
  3291. else SERIAL_PROTOCOLLN(PRINTER_NAME);
  3292. } else if (code_seen("model")) { //! PRUSA model
  3293. uint16_t nPrinterModel;
  3294. strchr_pointer+=4*sizeof(*strchr_pointer); // skip 1st - 4th char (~ 'mode')
  3295. nPrinterModel=(uint16_t)code_value_long();
  3296. if(nPrinterModel!=0)
  3297. printer_model_check(nPrinterModel);
  3298. else SERIAL_PROTOCOLLN(PRINTER_TYPE);
  3299. } else if (code_seen("version")) { //! PRUSA version
  3300. strchr_pointer+=7*sizeof(*strchr_pointer); // skip 1st - 7th char (~ 'version')
  3301. while(*strchr_pointer==' ') // skip leading spaces
  3302. strchr_pointer++;
  3303. if(*strchr_pointer!=0)
  3304. fw_version_check(strchr_pointer);
  3305. else SERIAL_PROTOCOLLN(FW_VERSION);
  3306. } else if (code_seen("gcode")) { //! PRUSA gcode
  3307. uint16_t nGcodeLevel;
  3308. strchr_pointer+=4*sizeof(*strchr_pointer); // skip 1st - 4th char (~ 'gcod')
  3309. nGcodeLevel=(uint16_t)code_value_long();
  3310. if(nGcodeLevel!=0)
  3311. gcode_level_check(nGcodeLevel);
  3312. else SERIAL_PROTOCOLLN(GCODE_LEVEL);
  3313. */
  3314. }
  3315. //else if (code_seen('Cal')) {
  3316. // lcd_calibration();
  3317. // }
  3318. }
  3319. else if (code_seen('^')) {
  3320. // nothing, this is a version line
  3321. } else if(code_seen('G'))
  3322. {
  3323. gcode_in_progress = (int)code_value();
  3324. // printf_P(_N("BEGIN G-CODE=%u\n"), gcode_in_progress);
  3325. switch (gcode_in_progress)
  3326. {
  3327. //! ### G0, G1 - Coordinated movement X Y Z E
  3328. // --------------------------------------
  3329. case 0: // G0 -> G1
  3330. case 1: // G1
  3331. if(Stopped == false) {
  3332. #ifdef FILAMENT_RUNOUT_SUPPORT
  3333. if(READ(FR_SENS)){
  3334. int feedmultiplyBckp=feedmultiply;
  3335. float target[4];
  3336. float lastpos[4];
  3337. target[X_AXIS]=current_position[X_AXIS];
  3338. target[Y_AXIS]=current_position[Y_AXIS];
  3339. target[Z_AXIS]=current_position[Z_AXIS];
  3340. target[E_AXIS]=current_position[E_AXIS];
  3341. lastpos[X_AXIS]=current_position[X_AXIS];
  3342. lastpos[Y_AXIS]=current_position[Y_AXIS];
  3343. lastpos[Z_AXIS]=current_position[Z_AXIS];
  3344. lastpos[E_AXIS]=current_position[E_AXIS];
  3345. //retract by E
  3346. target[E_AXIS]+= FILAMENTCHANGE_FIRSTRETRACT ;
  3347. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 400, active_extruder);
  3348. target[Z_AXIS]+= FILAMENTCHANGE_ZADD ;
  3349. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 300, active_extruder);
  3350. target[X_AXIS]= FILAMENTCHANGE_XPOS ;
  3351. target[Y_AXIS]= FILAMENTCHANGE_YPOS ;
  3352. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 70, active_extruder);
  3353. target[E_AXIS]+= FILAMENTCHANGE_FINALRETRACT ;
  3354. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 20, active_extruder);
  3355. //finish moves
  3356. st_synchronize();
  3357. //disable extruder steppers so filament can be removed
  3358. disable_e0();
  3359. disable_e1();
  3360. disable_e2();
  3361. _delay(100);
  3362. //LCD_ALERTMESSAGEPGM(_T(MSG_FILAMENTCHANGE));
  3363. uint8_t cnt=0;
  3364. int counterBeep = 0;
  3365. lcd_wait_interact();
  3366. while(!lcd_clicked()){
  3367. cnt++;
  3368. manage_heater();
  3369. manage_inactivity(true);
  3370. //lcd_update(0);
  3371. if(cnt==0)
  3372. {
  3373. #if BEEPER > 0
  3374. if (counterBeep== 500){
  3375. counterBeep = 0;
  3376. }
  3377. SET_OUTPUT(BEEPER);
  3378. if (counterBeep== 0){
  3379. if(eSoundMode!=e_SOUND_MODE_SILENT)
  3380. WRITE(BEEPER,HIGH);
  3381. }
  3382. if (counterBeep== 20){
  3383. WRITE(BEEPER,LOW);
  3384. }
  3385. counterBeep++;
  3386. #else
  3387. #endif
  3388. }
  3389. }
  3390. WRITE(BEEPER,LOW);
  3391. target[E_AXIS]+= FILAMENTCHANGE_FIRSTFEED ;
  3392. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 20, active_extruder);
  3393. target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  3394. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder);
  3395. lcd_change_fil_state = 0;
  3396. lcd_loading_filament();
  3397. while ((lcd_change_fil_state == 0)||(lcd_change_fil_state != 1)){
  3398. lcd_change_fil_state = 0;
  3399. lcd_alright();
  3400. switch(lcd_change_fil_state){
  3401. case 2:
  3402. target[E_AXIS]+= FILAMENTCHANGE_FIRSTFEED ;
  3403. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 20, active_extruder);
  3404. target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  3405. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder);
  3406. lcd_loading_filament();
  3407. break;
  3408. case 3:
  3409. target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  3410. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder);
  3411. lcd_loading_color();
  3412. break;
  3413. default:
  3414. lcd_change_success();
  3415. break;
  3416. }
  3417. }
  3418. target[E_AXIS]+= 5;
  3419. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder);
  3420. target[E_AXIS]+= FILAMENTCHANGE_FIRSTRETRACT;
  3421. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 400, active_extruder);
  3422. //current_position[E_AXIS]=target[E_AXIS]; //the long retract of L is compensated by manual filament feeding
  3423. //plan_set_e_position(current_position[E_AXIS]);
  3424. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 70, active_extruder); //should do nothing
  3425. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], target[Z_AXIS], target[E_AXIS], 70, active_extruder); //move xy back
  3426. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], target[E_AXIS], 200, active_extruder); //move z back
  3427. target[E_AXIS]= target[E_AXIS] - FILAMENTCHANGE_FIRSTRETRACT;
  3428. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], target[E_AXIS], 5, active_extruder); //final untretract
  3429. plan_set_e_position(lastpos[E_AXIS]);
  3430. feedmultiply=feedmultiplyBckp;
  3431. char cmd[9];
  3432. sprintf_P(cmd, PSTR("M220 S%i"), feedmultiplyBckp);
  3433. enquecommand(cmd);
  3434. }
  3435. #endif
  3436. get_coordinates(); // For X Y Z E F
  3437. if (total_filament_used > ((current_position[E_AXIS] - destination[E_AXIS]) * 100)) { //protection against total_filament_used overflow
  3438. total_filament_used = total_filament_used + ((destination[E_AXIS] - current_position[E_AXIS]) * 100);
  3439. }
  3440. #ifdef FWRETRACT
  3441. if(cs.autoretract_enabled)
  3442. if( !(code_seen('X') || code_seen('Y') || code_seen('Z')) && code_seen('E')) {
  3443. float echange=destination[E_AXIS]-current_position[E_AXIS];
  3444. if((echange<-MIN_RETRACT && !retracted[active_extruder]) || (echange>MIN_RETRACT && retracted[active_extruder])) { //move appears to be an attempt to retract or recover
  3445. current_position[E_AXIS] = destination[E_AXIS]; //hide the slicer-generated retract/recover from calculations
  3446. plan_set_e_position(current_position[E_AXIS]); //AND from the planner
  3447. retract(!retracted[active_extruder]);
  3448. return;
  3449. }
  3450. }
  3451. #endif //FWRETRACT
  3452. prepare_move();
  3453. //ClearToSend();
  3454. }
  3455. break;
  3456. //! ### G2 - CW ARC
  3457. // ------------------------------
  3458. case 2:
  3459. if(Stopped == false) {
  3460. get_arc_coordinates();
  3461. prepare_arc_move(true);
  3462. }
  3463. break;
  3464. //! ### G3 - CCW ARC
  3465. // -------------------------------
  3466. case 3:
  3467. if(Stopped == false) {
  3468. get_arc_coordinates();
  3469. prepare_arc_move(false);
  3470. }
  3471. break;
  3472. //! ### G4 - Dwell
  3473. // -------------------------------
  3474. case 4:
  3475. codenum = 0;
  3476. if(code_seen('P')) codenum = code_value(); // milliseconds to wait
  3477. if(code_seen('S')) codenum = code_value() * 1000; // seconds to wait
  3478. if(codenum != 0) LCD_MESSAGERPGM(_n("Sleep..."));////MSG_DWELL
  3479. st_synchronize();
  3480. codenum += _millis(); // keep track of when we started waiting
  3481. previous_millis_cmd = _millis();
  3482. while(_millis() < codenum) {
  3483. manage_heater();
  3484. manage_inactivity();
  3485. lcd_update(0);
  3486. }
  3487. break;
  3488. #ifdef FWRETRACT
  3489. //! ### G10 Retract
  3490. // ------------------------------
  3491. case 10:
  3492. #if EXTRUDERS > 1
  3493. retracted_swap[active_extruder]=(code_seen('S') && code_value_long() == 1); // checks for swap retract argument
  3494. retract(true,retracted_swap[active_extruder]);
  3495. #else
  3496. retract(true);
  3497. #endif
  3498. break;
  3499. //! ### G11 - Retract recover
  3500. // -----------------------------
  3501. case 11:
  3502. #if EXTRUDERS > 1
  3503. retract(false,retracted_swap[active_extruder]);
  3504. #else
  3505. retract(false);
  3506. #endif
  3507. break;
  3508. #endif //FWRETRACT
  3509. //! ### G28 - Home all Axis one at a time
  3510. // --------------------------------------------
  3511. case 28:
  3512. {
  3513. long home_x_value = 0;
  3514. long home_y_value = 0;
  3515. long home_z_value = 0;
  3516. // Which axes should be homed?
  3517. bool home_x = code_seen(axis_codes[X_AXIS]);
  3518. home_x_value = code_value_long();
  3519. bool home_y = code_seen(axis_codes[Y_AXIS]);
  3520. home_y_value = code_value_long();
  3521. bool home_z = code_seen(axis_codes[Z_AXIS]);
  3522. home_z_value = code_value_long();
  3523. bool without_mbl = code_seen('W');
  3524. // calibrate?
  3525. #ifdef TMC2130
  3526. bool calib = code_seen('C');
  3527. gcode_G28(home_x, home_x_value, home_y, home_y_value, home_z, home_z_value, calib, without_mbl);
  3528. #else
  3529. gcode_G28(home_x, home_x_value, home_y, home_y_value, home_z, home_z_value, without_mbl);
  3530. #endif //TMC2130
  3531. if ((home_x || home_y || without_mbl || home_z) == false) {
  3532. // Push the commands to the front of the message queue in the reverse order!
  3533. // There shall be always enough space reserved for these commands.
  3534. goto case_G80;
  3535. }
  3536. break;
  3537. }
  3538. #ifdef ENABLE_AUTO_BED_LEVELING
  3539. //! ### G29 - Detailed Z-Probe
  3540. // --------------------------------
  3541. case 29:
  3542. {
  3543. #if Z_MIN_PIN == -1
  3544. #error "You must have a Z_MIN endstop in order to enable Auto Bed Leveling feature! Z_MIN_PIN must point to a valid hardware pin."
  3545. #endif
  3546. // Prevent user from running a G29 without first homing in X and Y
  3547. if (! (axis_known_position[X_AXIS] && axis_known_position[Y_AXIS]) )
  3548. {
  3549. LCD_MESSAGERPGM(MSG_POSITION_UNKNOWN);
  3550. SERIAL_ECHO_START;
  3551. SERIAL_ECHOLNRPGM(MSG_POSITION_UNKNOWN);
  3552. break; // abort G29, since we don't know where we are
  3553. }
  3554. st_synchronize();
  3555. // make sure the bed_level_rotation_matrix is identity or the planner will get it incorectly
  3556. //vector_3 corrected_position = plan_get_position_mm();
  3557. //corrected_position.debug("position before G29");
  3558. plan_bed_level_matrix.set_to_identity();
  3559. vector_3 uncorrected_position = plan_get_position();
  3560. //uncorrected_position.debug("position durring G29");
  3561. current_position[X_AXIS] = uncorrected_position.x;
  3562. current_position[Y_AXIS] = uncorrected_position.y;
  3563. current_position[Z_AXIS] = uncorrected_position.z;
  3564. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  3565. int l_feedmultiply = setup_for_endstop_move();
  3566. feedrate = homing_feedrate[Z_AXIS];
  3567. #ifdef AUTO_BED_LEVELING_GRID
  3568. // probe at the points of a lattice grid
  3569. int xGridSpacing = (RIGHT_PROBE_BED_POSITION - LEFT_PROBE_BED_POSITION) / (AUTO_BED_LEVELING_GRID_POINTS-1);
  3570. int yGridSpacing = (BACK_PROBE_BED_POSITION - FRONT_PROBE_BED_POSITION) / (AUTO_BED_LEVELING_GRID_POINTS-1);
  3571. // solve the plane equation ax + by + d = z
  3572. // A is the matrix with rows [x y 1] for all the probed points
  3573. // B is the vector of the Z positions
  3574. // the normal vector to the plane is formed by the coefficients of the plane equation in the standard form, which is Vx*x+Vy*y+Vz*z+d = 0
  3575. // so Vx = -a Vy = -b Vz = 1 (we want the vector facing towards positive Z
  3576. // "A" matrix of the linear system of equations
  3577. double eqnAMatrix[AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS*3];
  3578. // "B" vector of Z points
  3579. double eqnBVector[AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS];
  3580. int probePointCounter = 0;
  3581. bool zig = true;
  3582. for (int yProbe=FRONT_PROBE_BED_POSITION; yProbe <= BACK_PROBE_BED_POSITION; yProbe += yGridSpacing)
  3583. {
  3584. int xProbe, xInc;
  3585. if (zig)
  3586. {
  3587. xProbe = LEFT_PROBE_BED_POSITION;
  3588. //xEnd = RIGHT_PROBE_BED_POSITION;
  3589. xInc = xGridSpacing;
  3590. zig = false;
  3591. } else // zag
  3592. {
  3593. xProbe = RIGHT_PROBE_BED_POSITION;
  3594. //xEnd = LEFT_PROBE_BED_POSITION;
  3595. xInc = -xGridSpacing;
  3596. zig = true;
  3597. }
  3598. for (int xCount=0; xCount < AUTO_BED_LEVELING_GRID_POINTS; xCount++)
  3599. {
  3600. float z_before;
  3601. if (probePointCounter == 0)
  3602. {
  3603. // raise before probing
  3604. z_before = Z_RAISE_BEFORE_PROBING;
  3605. } else
  3606. {
  3607. // raise extruder
  3608. z_before = current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS;
  3609. }
  3610. float measured_z = probe_pt(xProbe, yProbe, z_before);
  3611. eqnBVector[probePointCounter] = measured_z;
  3612. eqnAMatrix[probePointCounter + 0*AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS] = xProbe;
  3613. eqnAMatrix[probePointCounter + 1*AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS] = yProbe;
  3614. eqnAMatrix[probePointCounter + 2*AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS] = 1;
  3615. probePointCounter++;
  3616. xProbe += xInc;
  3617. }
  3618. }
  3619. clean_up_after_endstop_move(l_feedmultiply);
  3620. // solve lsq problem
  3621. double *plane_equation_coefficients = qr_solve(AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS, 3, eqnAMatrix, eqnBVector);
  3622. SERIAL_PROTOCOLPGM("Eqn coefficients: a: ");
  3623. SERIAL_PROTOCOL(plane_equation_coefficients[0]);
  3624. SERIAL_PROTOCOLPGM(" b: ");
  3625. SERIAL_PROTOCOL(plane_equation_coefficients[1]);
  3626. SERIAL_PROTOCOLPGM(" d: ");
  3627. SERIAL_PROTOCOLLN(plane_equation_coefficients[2]);
  3628. set_bed_level_equation_lsq(plane_equation_coefficients);
  3629. free(plane_equation_coefficients);
  3630. #else // AUTO_BED_LEVELING_GRID not defined
  3631. // Probe at 3 arbitrary points
  3632. // probe 1
  3633. float z_at_pt_1 = probe_pt(ABL_PROBE_PT_1_X, ABL_PROBE_PT_1_Y, Z_RAISE_BEFORE_PROBING);
  3634. // probe 2
  3635. float z_at_pt_2 = probe_pt(ABL_PROBE_PT_2_X, ABL_PROBE_PT_2_Y, current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS);
  3636. // probe 3
  3637. float z_at_pt_3 = probe_pt(ABL_PROBE_PT_3_X, ABL_PROBE_PT_3_Y, current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS);
  3638. clean_up_after_endstop_move(l_feedmultiply);
  3639. set_bed_level_equation_3pts(z_at_pt_1, z_at_pt_2, z_at_pt_3);
  3640. #endif // AUTO_BED_LEVELING_GRID
  3641. st_synchronize();
  3642. // The following code correct the Z height difference from z-probe position and hotend tip position.
  3643. // The Z height on homing is measured by Z-Probe, but the probe is quite far from the hotend.
  3644. // When the bed is uneven, this height must be corrected.
  3645. real_z = float(st_get_position(Z_AXIS))/cs.axis_steps_per_unit[Z_AXIS]; //get the real Z (since the auto bed leveling is already correcting the plane)
  3646. x_tmp = current_position[X_AXIS] + X_PROBE_OFFSET_FROM_EXTRUDER;
  3647. y_tmp = current_position[Y_AXIS] + Y_PROBE_OFFSET_FROM_EXTRUDER;
  3648. z_tmp = current_position[Z_AXIS];
  3649. apply_rotation_xyz(plan_bed_level_matrix, x_tmp, y_tmp, z_tmp); //Apply the correction sending the probe offset
  3650. current_position[Z_AXIS] = z_tmp - real_z + current_position[Z_AXIS]; //The difference is added to current position and sent to planner.
  3651. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  3652. }
  3653. break;
  3654. #ifndef Z_PROBE_SLED
  3655. //! ### G30 - Single Z Probe
  3656. // ------------------------------------
  3657. case 30:
  3658. {
  3659. st_synchronize();
  3660. // TODO: make sure the bed_level_rotation_matrix is identity or the planner will get set incorectly
  3661. int l_feedmultiply = setup_for_endstop_move();
  3662. feedrate = homing_feedrate[Z_AXIS];
  3663. run_z_probe();
  3664. SERIAL_PROTOCOLPGM(_T(MSG_BED));
  3665. SERIAL_PROTOCOLPGM(" X: ");
  3666. SERIAL_PROTOCOL(current_position[X_AXIS]);
  3667. SERIAL_PROTOCOLPGM(" Y: ");
  3668. SERIAL_PROTOCOL(current_position[Y_AXIS]);
  3669. SERIAL_PROTOCOLPGM(" Z: ");
  3670. SERIAL_PROTOCOL(current_position[Z_AXIS]);
  3671. SERIAL_PROTOCOLPGM("\n");
  3672. clean_up_after_endstop_move(l_feedmultiply);
  3673. }
  3674. break;
  3675. #else
  3676. //! ### G31 - Dock the sled
  3677. // ---------------------------
  3678. case 31:
  3679. dock_sled(true);
  3680. break;
  3681. //! ### G32 - Undock the sled
  3682. // ----------------------------
  3683. case 32:
  3684. dock_sled(false);
  3685. break;
  3686. #endif // Z_PROBE_SLED
  3687. #endif // ENABLE_AUTO_BED_LEVELING
  3688. #ifdef MESH_BED_LEVELING
  3689. //! ### G30 - Single Z Probe
  3690. // ----------------------------
  3691. case 30:
  3692. {
  3693. st_synchronize();
  3694. // TODO: make sure the bed_level_rotation_matrix is identity or the planner will get set incorectly
  3695. int l_feedmultiply = setup_for_endstop_move();
  3696. feedrate = homing_feedrate[Z_AXIS];
  3697. find_bed_induction_sensor_point_z(-10.f, 3);
  3698. printf_P(_N("%S X: %.5f Y: %.5f Z: %.5f\n"), _T(MSG_BED), _x, _y, _z);
  3699. clean_up_after_endstop_move(l_feedmultiply);
  3700. }
  3701. break;
  3702. //! ### G75 - Print temperature interpolation
  3703. // ---------------------------------------------
  3704. case 75:
  3705. {
  3706. for (int i = 40; i <= 110; i++)
  3707. printf_P(_N("%d %.2f"), i, temp_comp_interpolation(i));
  3708. }
  3709. break;
  3710. //! ### G76 - PINDA probe temperature calibration
  3711. // ------------------------------------------------
  3712. case 76:
  3713. {
  3714. #ifdef PINDA_THERMISTOR
  3715. if (true)
  3716. {
  3717. if (calibration_status() >= CALIBRATION_STATUS_XYZ_CALIBRATION) {
  3718. //we need to know accurate position of first calibration point
  3719. //if xyz calibration was not performed yet, interrupt temperature calibration and inform user that xyz cal. is needed
  3720. lcd_show_fullscreen_message_and_wait_P(_i("Please run XYZ calibration first."));
  3721. break;
  3722. }
  3723. if (!(axis_known_position[X_AXIS] && axis_known_position[Y_AXIS] && axis_known_position[Z_AXIS]))
  3724. {
  3725. // We don't know where we are! HOME!
  3726. // Push the commands to the front of the message queue in the reverse order!
  3727. // There shall be always enough space reserved for these commands.
  3728. repeatcommand_front(); // repeat G76 with all its parameters
  3729. enquecommand_front_P((PSTR("G28 W0")));
  3730. break;
  3731. }
  3732. lcd_show_fullscreen_message_and_wait_P(_i("Stable ambient temperature 21-26C is needed a rigid stand is required."));////MSG_TEMP_CAL_WARNING c=20 r=4
  3733. bool result = lcd_show_fullscreen_message_yes_no_and_wait_P(_T(MSG_STEEL_SHEET_CHECK), false, false);
  3734. if (result)
  3735. {
  3736. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3737. plan_buffer_line_curposXYZE(3000 / 60, active_extruder);
  3738. current_position[Z_AXIS] = 50;
  3739. current_position[Y_AXIS] = 180;
  3740. plan_buffer_line_curposXYZE(3000 / 60, active_extruder);
  3741. st_synchronize();
  3742. lcd_show_fullscreen_message_and_wait_P(_T(MSG_REMOVE_STEEL_SHEET));
  3743. current_position[Y_AXIS] = pgm_read_float(bed_ref_points_4 + 1);
  3744. current_position[X_AXIS] = pgm_read_float(bed_ref_points_4);
  3745. plan_buffer_line_curposXYZE(3000 / 60, active_extruder);
  3746. st_synchronize();
  3747. gcode_G28(false, false, true);
  3748. }
  3749. if ((current_temperature_pinda > 35) && (farm_mode == false)) {
  3750. //waiting for PIDNA probe to cool down in case that we are not in farm mode
  3751. current_position[Z_AXIS] = 100;
  3752. plan_buffer_line_curposXYZE(3000 / 60, active_extruder);
  3753. if (lcd_wait_for_pinda(35) == false) { //waiting for PINDA probe to cool, if this takes more then time expected, temp. cal. fails
  3754. lcd_temp_cal_show_result(false);
  3755. break;
  3756. }
  3757. }
  3758. lcd_update_enable(true);
  3759. KEEPALIVE_STATE(NOT_BUSY); //no need to print busy messages as we print current temperatures periodicaly
  3760. SERIAL_ECHOLNPGM("PINDA probe calibration start");
  3761. float zero_z;
  3762. int z_shift = 0; //unit: steps
  3763. float start_temp = 5 * (int)(current_temperature_pinda / 5);
  3764. if (start_temp < 35) start_temp = 35;
  3765. if (start_temp < current_temperature_pinda) start_temp += 5;
  3766. printf_P(_N("start temperature: %.1f\n"), start_temp);
  3767. // setTargetHotend(200, 0);
  3768. setTargetBed(70 + (start_temp - 30));
  3769. custom_message_type = CustomMsg::TempCal;
  3770. custom_message_state = 1;
  3771. lcd_setstatuspgm(_T(MSG_TEMP_CALIBRATION));
  3772. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3773. plan_buffer_line_curposXYZE(3000 / 60, active_extruder);
  3774. current_position[X_AXIS] = PINDA_PREHEAT_X;
  3775. current_position[Y_AXIS] = PINDA_PREHEAT_Y;
  3776. plan_buffer_line_curposXYZE(3000 / 60, active_extruder);
  3777. current_position[Z_AXIS] = PINDA_PREHEAT_Z;
  3778. plan_buffer_line_curposXYZE(3000 / 60, active_extruder);
  3779. st_synchronize();
  3780. while (current_temperature_pinda < start_temp)
  3781. {
  3782. delay_keep_alive(1000);
  3783. serialecho_temperatures();
  3784. }
  3785. eeprom_update_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 0); //invalidate temp. calibration in case that in will be aborted during the calibration process
  3786. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3787. plan_buffer_line_curposXYZE(3000 / 60, active_extruder);
  3788. current_position[X_AXIS] = pgm_read_float(bed_ref_points_4);
  3789. current_position[Y_AXIS] = pgm_read_float(bed_ref_points_4 + 1);
  3790. plan_buffer_line_curposXYZE(3000 / 60, active_extruder);
  3791. st_synchronize();
  3792. bool find_z_result = find_bed_induction_sensor_point_z(-1.f);
  3793. if (find_z_result == false) {
  3794. lcd_temp_cal_show_result(find_z_result);
  3795. break;
  3796. }
  3797. zero_z = current_position[Z_AXIS];
  3798. printf_P(_N("\nZERO: %.3f\n"), current_position[Z_AXIS]);
  3799. int i = -1; for (; i < 5; i++)
  3800. {
  3801. float temp = (40 + i * 5);
  3802. printf_P(_N("\nStep: %d/6 (skipped)\nPINDA temperature: %d Z shift (mm):0\n"), i + 2, (40 + i*5));
  3803. if (i >= 0) EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + i * 2, &z_shift);
  3804. if (start_temp <= temp) break;
  3805. }
  3806. for (i++; i < 5; i++)
  3807. {
  3808. float temp = (40 + i * 5);
  3809. printf_P(_N("\nStep: %d/6\n"), i + 2);
  3810. custom_message_state = i + 2;
  3811. setTargetBed(50 + 10 * (temp - 30) / 5);
  3812. // setTargetHotend(255, 0);
  3813. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3814. plan_buffer_line_curposXYZE(3000 / 60, active_extruder);
  3815. current_position[X_AXIS] = PINDA_PREHEAT_X;
  3816. current_position[Y_AXIS] = PINDA_PREHEAT_Y;
  3817. plan_buffer_line_curposXYZE(3000 / 60, active_extruder);
  3818. current_position[Z_AXIS] = PINDA_PREHEAT_Z;
  3819. plan_buffer_line_curposXYZE(3000 / 60, active_extruder);
  3820. st_synchronize();
  3821. while (current_temperature_pinda < temp)
  3822. {
  3823. delay_keep_alive(1000);
  3824. serialecho_temperatures();
  3825. }
  3826. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3827. plan_buffer_line_curposXYZE(3000 / 60, active_extruder);
  3828. current_position[X_AXIS] = pgm_read_float(bed_ref_points_4);
  3829. current_position[Y_AXIS] = pgm_read_float(bed_ref_points_4 + 1);
  3830. plan_buffer_line_curposXYZE(3000 / 60, active_extruder);
  3831. st_synchronize();
  3832. find_z_result = find_bed_induction_sensor_point_z(-1.f);
  3833. if (find_z_result == false) {
  3834. lcd_temp_cal_show_result(find_z_result);
  3835. break;
  3836. }
  3837. z_shift = (int)((current_position[Z_AXIS] - zero_z)*cs.axis_steps_per_unit[Z_AXIS]);
  3838. printf_P(_N("\nPINDA temperature: %.1f Z shift (mm): %.3f"), current_temperature_pinda, current_position[Z_AXIS] - zero_z);
  3839. EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + i * 2, &z_shift);
  3840. }
  3841. lcd_temp_cal_show_result(true);
  3842. break;
  3843. }
  3844. #endif //PINDA_THERMISTOR
  3845. setTargetBed(PINDA_MIN_T);
  3846. float zero_z;
  3847. int z_shift = 0; //unit: steps
  3848. int t_c; // temperature
  3849. if (!(axis_known_position[X_AXIS] && axis_known_position[Y_AXIS] && axis_known_position[Z_AXIS])) {
  3850. // We don't know where we are! HOME!
  3851. // Push the commands to the front of the message queue in the reverse order!
  3852. // There shall be always enough space reserved for these commands.
  3853. repeatcommand_front(); // repeat G76 with all its parameters
  3854. enquecommand_front_P((PSTR("G28 W0")));
  3855. break;
  3856. }
  3857. puts_P(_N("PINDA probe calibration start"));
  3858. custom_message_type = CustomMsg::TempCal;
  3859. custom_message_state = 1;
  3860. lcd_setstatuspgm(_T(MSG_TEMP_CALIBRATION));
  3861. current_position[X_AXIS] = PINDA_PREHEAT_X;
  3862. current_position[Y_AXIS] = PINDA_PREHEAT_Y;
  3863. current_position[Z_AXIS] = PINDA_PREHEAT_Z;
  3864. plan_buffer_line_curposXYZE(3000 / 60, active_extruder);
  3865. st_synchronize();
  3866. while (abs(degBed() - PINDA_MIN_T) > 1) {
  3867. delay_keep_alive(1000);
  3868. serialecho_temperatures();
  3869. }
  3870. //enquecommand_P(PSTR("M190 S50"));
  3871. for (int i = 0; i < PINDA_HEAT_T; i++) {
  3872. delay_keep_alive(1000);
  3873. serialecho_temperatures();
  3874. }
  3875. eeprom_update_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 0); //invalidate temp. calibration in case that in will be aborted during the calibration process
  3876. current_position[Z_AXIS] = 5;
  3877. plan_buffer_line_curposXYZE(3000 / 60, active_extruder);
  3878. current_position[X_AXIS] = BED_X0;
  3879. current_position[Y_AXIS] = BED_Y0;
  3880. plan_buffer_line_curposXYZE(3000 / 60, active_extruder);
  3881. st_synchronize();
  3882. find_bed_induction_sensor_point_z(-1.f);
  3883. zero_z = current_position[Z_AXIS];
  3884. printf_P(_N("\nZERO: %.3f\n"), current_position[Z_AXIS]);
  3885. for (int i = 0; i<5; i++) {
  3886. printf_P(_N("\nStep: %d/6\n"), i + 2);
  3887. custom_message_state = i + 2;
  3888. t_c = 60 + i * 10;
  3889. setTargetBed(t_c);
  3890. current_position[X_AXIS] = PINDA_PREHEAT_X;
  3891. current_position[Y_AXIS] = PINDA_PREHEAT_Y;
  3892. current_position[Z_AXIS] = PINDA_PREHEAT_Z;
  3893. plan_buffer_line_curposXYZE(3000 / 60, active_extruder);
  3894. st_synchronize();
  3895. while (degBed() < t_c) {
  3896. delay_keep_alive(1000);
  3897. serialecho_temperatures();
  3898. }
  3899. for (int i = 0; i < PINDA_HEAT_T; i++) {
  3900. delay_keep_alive(1000);
  3901. serialecho_temperatures();
  3902. }
  3903. current_position[Z_AXIS] = 5;
  3904. plan_buffer_line_curposXYZE(3000 / 60, active_extruder);
  3905. current_position[X_AXIS] = BED_X0;
  3906. current_position[Y_AXIS] = BED_Y0;
  3907. plan_buffer_line_curposXYZE(3000 / 60, active_extruder);
  3908. st_synchronize();
  3909. find_bed_induction_sensor_point_z(-1.f);
  3910. z_shift = (int)((current_position[Z_AXIS] - zero_z)*cs.axis_steps_per_unit[Z_AXIS]);
  3911. printf_P(_N("\nTemperature: %d Z shift (mm): %.3f\n"), t_c, current_position[Z_AXIS] - zero_z);
  3912. EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + i*2, &z_shift);
  3913. }
  3914. custom_message_type = CustomMsg::Status;
  3915. eeprom_update_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 1);
  3916. puts_P(_N("Temperature calibration done."));
  3917. disable_x();
  3918. disable_y();
  3919. disable_z();
  3920. disable_e0();
  3921. disable_e1();
  3922. disable_e2();
  3923. setTargetBed(0); //set bed target temperature back to 0
  3924. lcd_show_fullscreen_message_and_wait_P(_T(MSG_TEMP_CALIBRATION_DONE));
  3925. temp_cal_active = true;
  3926. eeprom_update_byte((unsigned char *)EEPROM_TEMP_CAL_ACTIVE, 1);
  3927. lcd_update_enable(true);
  3928. lcd_update(2);
  3929. }
  3930. break;
  3931. //! ### G80 - Mesh-based Z probe
  3932. // -----------------------------------
  3933. /*
  3934. * Probes a grid and produces a mesh to compensate for variable bed height
  3935. * The S0 report the points as below
  3936. * +----> X-axis
  3937. * |
  3938. * |
  3939. * v Y-axis
  3940. */
  3941. case 80:
  3942. #ifdef MK1BP
  3943. break;
  3944. #endif //MK1BP
  3945. case_G80:
  3946. {
  3947. mesh_bed_leveling_flag = true;
  3948. static bool run = false;
  3949. #ifdef SUPPORT_VERBOSITY
  3950. int8_t verbosity_level = 0;
  3951. if (code_seen('V')) {
  3952. // Just 'V' without a number counts as V1.
  3953. char c = strchr_pointer[1];
  3954. verbosity_level = (c == ' ' || c == '\t' || c == 0) ? 1 : code_value_short();
  3955. }
  3956. #endif //SUPPORT_VERBOSITY
  3957. // Firstly check if we know where we are
  3958. if (!(axis_known_position[X_AXIS] && axis_known_position[Y_AXIS] && axis_known_position[Z_AXIS])) {
  3959. // We don't know where we are! HOME!
  3960. // Push the commands to the front of the message queue in the reverse order!
  3961. // There shall be always enough space reserved for these commands.
  3962. if (lcd_commands_type != LcdCommands::StopPrint) {
  3963. repeatcommand_front(); // repeat G80 with all its parameters
  3964. enquecommand_front_P((PSTR("G28 W0")));
  3965. }
  3966. else {
  3967. mesh_bed_leveling_flag = false;
  3968. }
  3969. break;
  3970. }
  3971. uint8_t nMeasPoints = MESH_MEAS_NUM_X_POINTS;
  3972. if (code_seen('N')) {
  3973. nMeasPoints = code_value_uint8();
  3974. if (nMeasPoints != 7) {
  3975. nMeasPoints = 3;
  3976. }
  3977. }
  3978. else {
  3979. nMeasPoints = eeprom_read_byte((uint8_t*)EEPROM_MBL_POINTS_NR);
  3980. }
  3981. uint8_t nProbeRetry = 3;
  3982. if (code_seen('R')) {
  3983. nProbeRetry = code_value_uint8();
  3984. if (nProbeRetry > 10) {
  3985. nProbeRetry = 10;
  3986. }
  3987. }
  3988. else {
  3989. nProbeRetry = eeprom_read_byte((uint8_t*)EEPROM_MBL_PROBE_NR);
  3990. }
  3991. bool magnet_elimination = (eeprom_read_byte((uint8_t*)EEPROM_MBL_MAGNET_ELIMINATION) > 0);
  3992. bool temp_comp_start = true;
  3993. #ifdef PINDA_THERMISTOR
  3994. temp_comp_start = false;
  3995. #endif //PINDA_THERMISTOR
  3996. if (temp_comp_start)
  3997. if (run == false && temp_cal_active == true && calibration_status_pinda() == true && target_temperature_bed >= 50) {
  3998. if (lcd_commands_type != LcdCommands::StopPrint) {
  3999. temp_compensation_start();
  4000. run = true;
  4001. repeatcommand_front(); // repeat G80 with all its parameters
  4002. enquecommand_front_P((PSTR("G28 W0")));
  4003. }
  4004. else {
  4005. mesh_bed_leveling_flag = false;
  4006. }
  4007. break;
  4008. }
  4009. run = false;
  4010. if (lcd_commands_type == LcdCommands::StopPrint) {
  4011. mesh_bed_leveling_flag = false;
  4012. break;
  4013. }
  4014. // Save custom message state, set a new custom message state to display: Calibrating point 9.
  4015. CustomMsg custom_message_type_old = custom_message_type;
  4016. unsigned int custom_message_state_old = custom_message_state;
  4017. custom_message_type = CustomMsg::MeshBedLeveling;
  4018. custom_message_state = (nMeasPoints * nMeasPoints) + 10;
  4019. lcd_update(1);
  4020. mbl.reset(); //reset mesh bed leveling
  4021. // Reset baby stepping to zero, if the babystepping has already been loaded before. The babystepsTodo value will be
  4022. // consumed during the first movements following this statement.
  4023. babystep_undo();
  4024. // Cycle through all points and probe them
  4025. // First move up. During this first movement, the babystepping will be reverted.
  4026. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  4027. plan_buffer_line_curposXYZE(homing_feedrate[Z_AXIS] / 60, active_extruder);
  4028. // The move to the first calibration point.
  4029. current_position[X_AXIS] = BED_X0;
  4030. current_position[Y_AXIS] = BED_Y0;
  4031. #ifdef SUPPORT_VERBOSITY
  4032. if (verbosity_level >= 1)
  4033. {
  4034. bool clamped = world2machine_clamp(current_position[X_AXIS], current_position[Y_AXIS]);
  4035. clamped ? SERIAL_PROTOCOLPGM("First calibration point clamped.\n") : SERIAL_PROTOCOLPGM("No clamping for first calibration point.\n");
  4036. }
  4037. #else //SUPPORT_VERBOSITY
  4038. world2machine_clamp(current_position[X_AXIS], current_position[Y_AXIS]);
  4039. #endif //SUPPORT_VERBOSITY
  4040. plan_buffer_line_curposXYZE(homing_feedrate[X_AXIS] / 30, active_extruder);
  4041. // Wait until the move is finished.
  4042. st_synchronize();
  4043. uint8_t mesh_point = 0; //index number of calibration point
  4044. int XY_AXIS_FEEDRATE = homing_feedrate[X_AXIS] / 20;
  4045. int Z_LIFT_FEEDRATE = homing_feedrate[Z_AXIS] / 40;
  4046. bool has_z = is_bed_z_jitter_data_valid(); //checks if we have data from Z calibration (offsets of the Z heiths of the 8 calibration points from the first point)
  4047. #ifdef SUPPORT_VERBOSITY
  4048. if (verbosity_level >= 1) {
  4049. has_z ? SERIAL_PROTOCOLPGM("Z jitter data from Z cal. valid.\n") : SERIAL_PROTOCOLPGM("Z jitter data from Z cal. not valid.\n");
  4050. }
  4051. #endif // SUPPORT_VERBOSITY
  4052. int l_feedmultiply = setup_for_endstop_move(false); //save feedrate and feedmultiply, sets feedmultiply to 100
  4053. const char *kill_message = NULL;
  4054. while (mesh_point != nMeasPoints * nMeasPoints) {
  4055. // Get coords of a measuring point.
  4056. uint8_t ix = mesh_point % nMeasPoints; // from 0 to MESH_NUM_X_POINTS - 1
  4057. uint8_t iy = mesh_point / nMeasPoints;
  4058. /*if (!mbl_point_measurement_valid(ix, iy, nMeasPoints, true)) {
  4059. printf_P(PSTR("Skipping point [%d;%d] \n"), ix, iy);
  4060. custom_message_state--;
  4061. mesh_point++;
  4062. continue; //skip
  4063. }*/
  4064. if (iy & 1) ix = (nMeasPoints - 1) - ix; // Zig zag
  4065. if (nMeasPoints == 7) //if we have 7x7 mesh, compare with Z-calibration for points which are in 3x3 mesh
  4066. {
  4067. has_z = ((ix % 3 == 0) && (iy % 3 == 0)) && is_bed_z_jitter_data_valid();
  4068. }
  4069. float z0 = 0.f;
  4070. if (has_z && (mesh_point > 0)) {
  4071. uint16_t z_offset_u = 0;
  4072. if (nMeasPoints == 7) {
  4073. z_offset_u = eeprom_read_word((uint16_t*)(EEPROM_BED_CALIBRATION_Z_JITTER + 2 * ((ix/3) + iy - 1)));
  4074. }
  4075. else {
  4076. z_offset_u = eeprom_read_word((uint16_t*)(EEPROM_BED_CALIBRATION_Z_JITTER + 2 * (ix + iy * 3 - 1)));
  4077. }
  4078. z0 = mbl.z_values[0][0] + *reinterpret_cast<int16_t*>(&z_offset_u) * 0.01;
  4079. #ifdef SUPPORT_VERBOSITY
  4080. if (verbosity_level >= 1) {
  4081. printf_P(PSTR("Bed leveling, point: %d, calibration Z stored in eeprom: %d, calibration z: %f \n"), mesh_point, z_offset_u, z0);
  4082. }
  4083. #endif // SUPPORT_VERBOSITY
  4084. }
  4085. // Move Z up to MESH_HOME_Z_SEARCH.
  4086. if((ix == 0) && (iy == 0)) current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  4087. else current_position[Z_AXIS] += 2.f / nMeasPoints; //use relative movement from Z coordinate where PINDa triggered on previous point. This makes calibration faster.
  4088. float init_z_bckp = current_position[Z_AXIS];
  4089. plan_buffer_line_curposXYZE(Z_LIFT_FEEDRATE, active_extruder);
  4090. st_synchronize();
  4091. // Move to XY position of the sensor point.
  4092. current_position[X_AXIS] = BED_X(ix, nMeasPoints);
  4093. current_position[Y_AXIS] = BED_Y(iy, nMeasPoints);
  4094. //printf_P(PSTR("[%f;%f]\n"), current_position[X_AXIS], current_position[Y_AXIS]);
  4095. #ifdef SUPPORT_VERBOSITY
  4096. if (verbosity_level >= 1) {
  4097. clamped = world2machine_clamp(current_position[X_AXIS], current_position[Y_AXIS]);
  4098. SERIAL_PROTOCOL(mesh_point);
  4099. clamped ? SERIAL_PROTOCOLPGM(": xy clamped.\n") : SERIAL_PROTOCOLPGM(": no xy clamping\n");
  4100. }
  4101. #else //SUPPORT_VERBOSITY
  4102. world2machine_clamp(current_position[X_AXIS], current_position[Y_AXIS]);
  4103. #endif // SUPPORT_VERBOSITY
  4104. //printf_P(PSTR("after clamping: [%f;%f]\n"), current_position[X_AXIS], current_position[Y_AXIS]);
  4105. plan_buffer_line_curposXYZE(XY_AXIS_FEEDRATE, active_extruder);
  4106. st_synchronize();
  4107. // Go down until endstop is hit
  4108. const float Z_CALIBRATION_THRESHOLD = 1.f;
  4109. if (!find_bed_induction_sensor_point_z((has_z && mesh_point > 0) ? z0 - Z_CALIBRATION_THRESHOLD : -10.f, nProbeRetry)) { //if we have data from z calibration max allowed difference is 1mm for each point, if we dont have data max difference is 10mm from initial point
  4110. printf_P(_T(MSG_BED_LEVELING_FAILED_POINT_LOW));
  4111. break;
  4112. }
  4113. if (init_z_bckp - current_position[Z_AXIS] < 0.1f) { //broken cable or initial Z coordinate too low. Go to MESH_HOME_Z_SEARCH and repeat last step (z-probe) again to distinguish between these two cases.
  4114. //printf_P(PSTR("Another attempt! Current Z position: %f\n"), current_position[Z_AXIS]);
  4115. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  4116. plan_buffer_line_curposXYZE(Z_LIFT_FEEDRATE, active_extruder);
  4117. st_synchronize();
  4118. if (!find_bed_induction_sensor_point_z((has_z && mesh_point > 0) ? z0 - Z_CALIBRATION_THRESHOLD : -10.f, nProbeRetry)) { //if we have data from z calibration max allowed difference is 1mm for each point, if we dont have data max difference is 10mm from initial point
  4119. printf_P(_T(MSG_BED_LEVELING_FAILED_POINT_LOW));
  4120. break;
  4121. }
  4122. if (MESH_HOME_Z_SEARCH - current_position[Z_AXIS] < 0.1f) {
  4123. printf_P(PSTR("Bed leveling failed. Sensor disconnected or cable broken.\n"));
  4124. break;
  4125. }
  4126. }
  4127. if (has_z && fabs(z0 - current_position[Z_AXIS]) > Z_CALIBRATION_THRESHOLD) { //if we have data from z calibration, max. allowed difference is 1mm for each point
  4128. printf_P(PSTR("Bed leveling failed. Sensor triggered too high.\n"));
  4129. break;
  4130. }
  4131. #ifdef SUPPORT_VERBOSITY
  4132. if (verbosity_level >= 10) {
  4133. SERIAL_ECHOPGM("X: ");
  4134. MYSERIAL.print(current_position[X_AXIS], 5);
  4135. SERIAL_ECHOLNPGM("");
  4136. SERIAL_ECHOPGM("Y: ");
  4137. MYSERIAL.print(current_position[Y_AXIS], 5);
  4138. SERIAL_PROTOCOLPGM("\n");
  4139. }
  4140. #endif // SUPPORT_VERBOSITY
  4141. float offset_z = 0;
  4142. #ifdef PINDA_THERMISTOR
  4143. offset_z = temp_compensation_pinda_thermistor_offset(current_temperature_pinda);
  4144. #endif //PINDA_THERMISTOR
  4145. // #ifdef SUPPORT_VERBOSITY
  4146. /* if (verbosity_level >= 1)
  4147. {
  4148. SERIAL_ECHOPGM("mesh bed leveling: ");
  4149. MYSERIAL.print(current_position[Z_AXIS], 5);
  4150. SERIAL_ECHOPGM(" offset: ");
  4151. MYSERIAL.print(offset_z, 5);
  4152. SERIAL_ECHOLNPGM("");
  4153. }*/
  4154. // #endif // SUPPORT_VERBOSITY
  4155. mbl.set_z(ix, iy, current_position[Z_AXIS] - offset_z); //store measured z values z_values[iy][ix] = z - offset_z;
  4156. custom_message_state--;
  4157. mesh_point++;
  4158. lcd_update(1);
  4159. }
  4160. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  4161. #ifdef SUPPORT_VERBOSITY
  4162. if (verbosity_level >= 20) {
  4163. SERIAL_ECHOLNPGM("Mesh bed leveling while loop finished.");
  4164. SERIAL_ECHOLNPGM("MESH_HOME_Z_SEARCH: ");
  4165. MYSERIAL.print(current_position[Z_AXIS], 5);
  4166. }
  4167. #endif // SUPPORT_VERBOSITY
  4168. plan_buffer_line_curposXYZE(Z_LIFT_FEEDRATE, active_extruder);
  4169. st_synchronize();
  4170. if (mesh_point != nMeasPoints * nMeasPoints) {
  4171. Sound_MakeSound(e_SOUND_TYPE_StandardAlert);
  4172. bool bState;
  4173. do { // repeat until Z-leveling o.k.
  4174. lcd_display_message_fullscreen_P(_i("Some problem encountered, Z-leveling enforced ..."));
  4175. #ifdef TMC2130
  4176. lcd_wait_for_click_delay(MSG_BED_LEVELING_FAILED_TIMEOUT);
  4177. calibrate_z_auto(); // Z-leveling (X-assembly stay up!!!)
  4178. #else // TMC2130
  4179. lcd_wait_for_click_delay(0); // ~ no timeout
  4180. lcd_calibrate_z_end_stop_manual(true); // Z-leveling (X-assembly stay up!!!)
  4181. #endif // TMC2130
  4182. // ~ Z-homing (can not be used "G28", because X & Y-homing would have been done before (Z-homing))
  4183. bState=enable_z_endstop(false);
  4184. current_position[Z_AXIS] -= 1;
  4185. plan_buffer_line_curposXYZE(homing_feedrate[Z_AXIS] / 40, active_extruder);
  4186. st_synchronize();
  4187. enable_z_endstop(true);
  4188. #ifdef TMC2130
  4189. tmc2130_home_enter(Z_AXIS_MASK);
  4190. #endif // TMC2130
  4191. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  4192. plan_buffer_line_curposXYZE(homing_feedrate[Z_AXIS] / 40, active_extruder);
  4193. st_synchronize();
  4194. #ifdef TMC2130
  4195. tmc2130_home_exit();
  4196. #endif // TMC2130
  4197. enable_z_endstop(bState);
  4198. } while (st_get_position_mm(Z_AXIS) > MESH_HOME_Z_SEARCH); // i.e. Z-leveling not o.k.
  4199. // plan_set_z_position(MESH_HOME_Z_SEARCH); // is not necessary ('do-while' loop always ends at the expected Z-position)
  4200. custom_message_type=CustomMsg::Status; // display / status-line recovery
  4201. lcd_update_enable(true); // display / status-line recovery
  4202. gcode_G28(true, true, true); // X & Y & Z-homing (must be after individual Z-homing (problem with spool-holder)!)
  4203. repeatcommand_front(); // re-run (i.e. of "G80")
  4204. break;
  4205. }
  4206. clean_up_after_endstop_move(l_feedmultiply);
  4207. // SERIAL_ECHOLNPGM("clean up finished ");
  4208. bool apply_temp_comp = true;
  4209. #ifdef PINDA_THERMISTOR
  4210. apply_temp_comp = false;
  4211. #endif
  4212. if (apply_temp_comp)
  4213. if(temp_cal_active == true && calibration_status_pinda() == true) temp_compensation_apply(); //apply PINDA temperature compensation
  4214. babystep_apply(); // Apply Z height correction aka baby stepping before mesh bed leveing gets activated.
  4215. // SERIAL_ECHOLNPGM("babystep applied");
  4216. bool eeprom_bed_correction_valid = eeprom_read_byte((unsigned char*)EEPROM_BED_CORRECTION_VALID) == 1;
  4217. #ifdef SUPPORT_VERBOSITY
  4218. if (verbosity_level >= 1) {
  4219. eeprom_bed_correction_valid ? SERIAL_PROTOCOLPGM("Bed correction data valid\n") : SERIAL_PROTOCOLPGM("Bed correction data not valid\n");
  4220. }
  4221. #endif // SUPPORT_VERBOSITY
  4222. for (uint8_t i = 0; i < 4; ++i) {
  4223. unsigned char codes[4] = { 'L', 'R', 'F', 'B' };
  4224. long correction = 0;
  4225. if (code_seen(codes[i]))
  4226. correction = code_value_long();
  4227. else if (eeprom_bed_correction_valid) {
  4228. unsigned char *addr = (i < 2) ?
  4229. ((i == 0) ? (unsigned char*)EEPROM_BED_CORRECTION_LEFT : (unsigned char*)EEPROM_BED_CORRECTION_RIGHT) :
  4230. ((i == 2) ? (unsigned char*)EEPROM_BED_CORRECTION_FRONT : (unsigned char*)EEPROM_BED_CORRECTION_REAR);
  4231. correction = eeprom_read_int8(addr);
  4232. }
  4233. if (correction == 0)
  4234. continue;
  4235. if (labs(correction) > BED_ADJUSTMENT_UM_MAX) {
  4236. SERIAL_ERROR_START;
  4237. SERIAL_ECHOPGM("Excessive bed leveling correction: ");
  4238. SERIAL_ECHO(correction);
  4239. SERIAL_ECHOLNPGM(" microns");
  4240. }
  4241. else {
  4242. float offset = float(correction) * 0.001f;
  4243. switch (i) {
  4244. case 0:
  4245. for (uint8_t row = 0; row < nMeasPoints; ++row) {
  4246. for (uint8_t col = 0; col < nMeasPoints - 1; ++col) {
  4247. mbl.z_values[row][col] += offset * (nMeasPoints - 1 - col) / (nMeasPoints - 1);
  4248. }
  4249. }
  4250. break;
  4251. case 1:
  4252. for (uint8_t row = 0; row < nMeasPoints; ++row) {
  4253. for (uint8_t col = 1; col < nMeasPoints; ++col) {
  4254. mbl.z_values[row][col] += offset * col / (nMeasPoints - 1);
  4255. }
  4256. }
  4257. break;
  4258. case 2:
  4259. for (uint8_t col = 0; col < nMeasPoints; ++col) {
  4260. for (uint8_t row = 0; row < nMeasPoints; ++row) {
  4261. mbl.z_values[row][col] += offset * (nMeasPoints - 1 - row) / (nMeasPoints - 1);
  4262. }
  4263. }
  4264. break;
  4265. case 3:
  4266. for (uint8_t col = 0; col < nMeasPoints; ++col) {
  4267. for (uint8_t row = 1; row < nMeasPoints; ++row) {
  4268. mbl.z_values[row][col] += offset * row / (nMeasPoints - 1);
  4269. }
  4270. }
  4271. break;
  4272. }
  4273. }
  4274. }
  4275. // SERIAL_ECHOLNPGM("Bed leveling correction finished");
  4276. if (nMeasPoints == 3) {
  4277. mbl.upsample_3x3(); //interpolation from 3x3 to 7x7 points using largrangian polynomials while using the same array z_values[iy][ix] for storing (just coppying measured data to new destination and interpolating between them)
  4278. }
  4279. /*
  4280. SERIAL_PROTOCOLPGM("Num X,Y: ");
  4281. SERIAL_PROTOCOL(MESH_NUM_X_POINTS);
  4282. SERIAL_PROTOCOLPGM(",");
  4283. SERIAL_PROTOCOL(MESH_NUM_Y_POINTS);
  4284. SERIAL_PROTOCOLPGM("\nZ search height: ");
  4285. SERIAL_PROTOCOL(MESH_HOME_Z_SEARCH);
  4286. SERIAL_PROTOCOLLNPGM("\nMeasured points:");
  4287. for (int y = MESH_NUM_Y_POINTS-1; y >= 0; y--) {
  4288. for (int x = 0; x < MESH_NUM_X_POINTS; x++) {
  4289. SERIAL_PROTOCOLPGM(" ");
  4290. SERIAL_PROTOCOL_F(mbl.z_values[y][x], 5);
  4291. }
  4292. SERIAL_PROTOCOLPGM("\n");
  4293. }
  4294. */
  4295. if (nMeasPoints == 7 && magnet_elimination) {
  4296. mbl_interpolation(nMeasPoints);
  4297. }
  4298. /*
  4299. SERIAL_PROTOCOLPGM("Num X,Y: ");
  4300. SERIAL_PROTOCOL(MESH_NUM_X_POINTS);
  4301. SERIAL_PROTOCOLPGM(",");
  4302. SERIAL_PROTOCOL(MESH_NUM_Y_POINTS);
  4303. SERIAL_PROTOCOLPGM("\nZ search height: ");
  4304. SERIAL_PROTOCOL(MESH_HOME_Z_SEARCH);
  4305. SERIAL_PROTOCOLLNPGM("\nMeasured points:");
  4306. for (int y = MESH_NUM_Y_POINTS-1; y >= 0; y--) {
  4307. for (int x = 0; x < MESH_NUM_X_POINTS; x++) {
  4308. SERIAL_PROTOCOLPGM(" ");
  4309. SERIAL_PROTOCOL_F(mbl.z_values[y][x], 5);
  4310. }
  4311. SERIAL_PROTOCOLPGM("\n");
  4312. }
  4313. */
  4314. // SERIAL_ECHOLNPGM("Upsample finished");
  4315. mbl.active = 1; //activate mesh bed leveling
  4316. // SERIAL_ECHOLNPGM("Mesh bed leveling activated");
  4317. go_home_with_z_lift();
  4318. // SERIAL_ECHOLNPGM("Go home finished");
  4319. //unretract (after PINDA preheat retraction)
  4320. if (degHotend(active_extruder) > EXTRUDE_MINTEMP && temp_cal_active == true && calibration_status_pinda() == true && target_temperature_bed >= 50) {
  4321. current_position[E_AXIS] += default_retraction;
  4322. plan_buffer_line_curposXYZE(400, active_extruder);
  4323. }
  4324. KEEPALIVE_STATE(NOT_BUSY);
  4325. // Restore custom message state
  4326. lcd_setstatuspgm(_T(WELCOME_MSG));
  4327. custom_message_type = custom_message_type_old;
  4328. custom_message_state = custom_message_state_old;
  4329. mesh_bed_leveling_flag = false;
  4330. mesh_bed_run_from_menu = false;
  4331. lcd_update(2);
  4332. }
  4333. break;
  4334. //! ### G81 - Mesh bed leveling status
  4335. // -----------------------------------------
  4336. /*
  4337. * Prints mesh bed leveling status and bed profile if activated
  4338. */
  4339. case 81:
  4340. if (mbl.active) {
  4341. SERIAL_PROTOCOLPGM("Num X,Y: ");
  4342. SERIAL_PROTOCOL(MESH_NUM_X_POINTS);
  4343. SERIAL_PROTOCOLPGM(",");
  4344. SERIAL_PROTOCOL(MESH_NUM_Y_POINTS);
  4345. SERIAL_PROTOCOLPGM("\nZ search height: ");
  4346. SERIAL_PROTOCOL(MESH_HOME_Z_SEARCH);
  4347. SERIAL_PROTOCOLLNPGM("\nMeasured points:");
  4348. for (int y = MESH_NUM_Y_POINTS-1; y >= 0; y--) {
  4349. for (int x = 0; x < MESH_NUM_X_POINTS; x++) {
  4350. SERIAL_PROTOCOLPGM(" ");
  4351. SERIAL_PROTOCOL_F(mbl.z_values[y][x], 5);
  4352. }
  4353. SERIAL_PROTOCOLPGM("\n");
  4354. }
  4355. }
  4356. else
  4357. SERIAL_PROTOCOLLNPGM("Mesh bed leveling not active.");
  4358. break;
  4359. #if 0
  4360. /*
  4361. * G82: Single Z probe at current location
  4362. *
  4363. * WARNING! USE WITH CAUTION! If you'll try to probe where is no leveling pad, nasty things can happen!
  4364. *
  4365. */
  4366. case 82:
  4367. SERIAL_PROTOCOLLNPGM("Finding bed ");
  4368. int l_feedmultiply = setup_for_endstop_move();
  4369. find_bed_induction_sensor_point_z();
  4370. clean_up_after_endstop_move(l_feedmultiply);
  4371. SERIAL_PROTOCOLPGM("Bed found at: ");
  4372. SERIAL_PROTOCOL_F(current_position[Z_AXIS], 5);
  4373. SERIAL_PROTOCOLPGM("\n");
  4374. break;
  4375. /*
  4376. * G83: Prusa3D specific: Babystep in Z and store to EEPROM
  4377. */
  4378. case 83:
  4379. {
  4380. int babystepz = code_seen('S') ? code_value() : 0;
  4381. int BabyPosition = code_seen('P') ? code_value() : 0;
  4382. if (babystepz != 0) {
  4383. //FIXME Vojtech: What shall be the index of the axis Z: 3 or 4?
  4384. // Is the axis indexed starting with zero or one?
  4385. if (BabyPosition > 4) {
  4386. SERIAL_PROTOCOLLNPGM("Index out of bounds");
  4387. }else{
  4388. // Save it to the eeprom
  4389. babystepLoadZ = babystepz;
  4390. EEPROM_save_B(EEPROM_BABYSTEP_Z0+(BabyPosition*2),&babystepLoadZ);
  4391. // adjust the Z
  4392. babystepsTodoZadd(babystepLoadZ);
  4393. }
  4394. }
  4395. }
  4396. break;
  4397. /*
  4398. * G84: Prusa3D specific: UNDO Babystep Z (move Z axis back)
  4399. */
  4400. case 84:
  4401. babystepsTodoZsubtract(babystepLoadZ);
  4402. // babystepLoadZ = 0;
  4403. break;
  4404. /*
  4405. * G85: Prusa3D specific: Pick best babystep
  4406. */
  4407. case 85:
  4408. lcd_pick_babystep();
  4409. break;
  4410. #endif
  4411. /**
  4412. * ### G86 - Disable babystep correction after home
  4413. *
  4414. * This G-code will be performed at the start of a calibration script.
  4415. * (Prusa3D specific)
  4416. */
  4417. case 86:
  4418. calibration_status_store(CALIBRATION_STATUS_LIVE_ADJUST);
  4419. break;
  4420. /**
  4421. * ### G87 - Enable babystep correction after home
  4422. *
  4423. *
  4424. * This G-code will be performed at the end of a calibration script.
  4425. * (Prusa3D specific)
  4426. */
  4427. case 87:
  4428. calibration_status_store(CALIBRATION_STATUS_CALIBRATED);
  4429. break;
  4430. /**
  4431. * ### G88 - Reserved
  4432. *
  4433. * Currently has no effect.
  4434. */
  4435. // Prusa3D specific: Don't know what it is for, it is in V2Calibration.gcode
  4436. case 88:
  4437. break;
  4438. #endif // ENABLE_MESH_BED_LEVELING
  4439. //! ### G90 - Switch off relative mode
  4440. // -------------------------------
  4441. case 90:
  4442. relative_mode = false;
  4443. break;
  4444. //! ### G91 - Switch on relative mode
  4445. // -------------------------------
  4446. case 91:
  4447. relative_mode = true;
  4448. break;
  4449. //! ### G92 - Set position
  4450. // -----------------------------
  4451. case 92:
  4452. if(!code_seen(axis_codes[E_AXIS]))
  4453. st_synchronize();
  4454. for(int8_t i=0; i < NUM_AXIS; i++) {
  4455. if(code_seen(axis_codes[i])) {
  4456. if(i == E_AXIS) {
  4457. current_position[i] = code_value();
  4458. plan_set_e_position(current_position[E_AXIS]);
  4459. }
  4460. else {
  4461. current_position[i] = code_value()+cs.add_homing[i];
  4462. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  4463. }
  4464. }
  4465. }
  4466. break;
  4467. //! ### G98 - Activate farm mode
  4468. // -----------------------------------
  4469. case 98:
  4470. farm_mode = 1;
  4471. PingTime = _millis();
  4472. eeprom_update_byte((unsigned char *)EEPROM_FARM_MODE, farm_mode);
  4473. EEPROM_save_B(EEPROM_FARM_NUMBER, &farm_no);
  4474. SilentModeMenu = SILENT_MODE_OFF;
  4475. eeprom_update_byte((unsigned char *)EEPROM_SILENT, SilentModeMenu);
  4476. fCheckModeInit(); // alternatively invoke printer reset
  4477. break;
  4478. //! ### G99 - Deactivate farm mode
  4479. // -------------------------------------
  4480. case 99:
  4481. farm_mode = 0;
  4482. lcd_printer_connected();
  4483. eeprom_update_byte((unsigned char *)EEPROM_FARM_MODE, farm_mode);
  4484. lcd_update(2);
  4485. fCheckModeInit(); // alternatively invoke printer reset
  4486. break;
  4487. default:
  4488. printf_P(PSTR("Unknown G code: %s \n"), cmdbuffer + bufindr + CMDHDRSIZE);
  4489. }
  4490. // printf_P(_N("END G-CODE=%u\n"), gcode_in_progress);
  4491. gcode_in_progress = 0;
  4492. } // end if(code_seen('G'))
  4493. //! ---------------------------------------------------------------------------------
  4494. else if(code_seen('M'))
  4495. {
  4496. int index;
  4497. for (index = 1; *(strchr_pointer + index) == ' ' || *(strchr_pointer + index) == '\t'; index++);
  4498. /*for (++strchr_pointer; *strchr_pointer == ' ' || *strchr_pointer == '\t'; ++strchr_pointer);*/
  4499. if (*(strchr_pointer+index) < '0' || *(strchr_pointer+index) > '9') {
  4500. printf_P(PSTR("Invalid M code: %s \n"), cmdbuffer + bufindr + CMDHDRSIZE);
  4501. } else
  4502. {
  4503. mcode_in_progress = (int)code_value();
  4504. // printf_P(_N("BEGIN M-CODE=%u\n"), mcode_in_progress);
  4505. switch(mcode_in_progress)
  4506. {
  4507. //! ### M0, M1 - Stop the printer
  4508. // ---------------------------------------------------------------
  4509. case 0: // M0 - Unconditional stop - Wait for user button press on LCD
  4510. case 1: // M1 - Conditional stop - Wait for user button press on LCD
  4511. {
  4512. char *src = strchr_pointer + 2;
  4513. codenum = 0;
  4514. bool hasP = false, hasS = false;
  4515. if (code_seen('P')) {
  4516. codenum = code_value(); // milliseconds to wait
  4517. hasP = codenum > 0;
  4518. }
  4519. if (code_seen('S')) {
  4520. codenum = code_value() * 1000; // seconds to wait
  4521. hasS = codenum > 0;
  4522. }
  4523. starpos = strchr(src, '*');
  4524. if (starpos != NULL) *(starpos) = '\0';
  4525. while (*src == ' ') ++src;
  4526. if (!hasP && !hasS && *src != '\0') {
  4527. lcd_setstatus(src);
  4528. } else {
  4529. LCD_MESSAGERPGM(_i("Wait for user..."));////MSG_USERWAIT
  4530. }
  4531. lcd_ignore_click(); //call lcd_ignore_click aslo for else ???
  4532. st_synchronize();
  4533. previous_millis_cmd = _millis();
  4534. if (codenum > 0){
  4535. codenum += _millis(); // keep track of when we started waiting
  4536. KEEPALIVE_STATE(PAUSED_FOR_USER);
  4537. while(_millis() < codenum && !lcd_clicked()){
  4538. manage_heater();
  4539. manage_inactivity(true);
  4540. lcd_update(0);
  4541. }
  4542. KEEPALIVE_STATE(IN_HANDLER);
  4543. lcd_ignore_click(false);
  4544. }else{
  4545. marlin_wait_for_click();
  4546. }
  4547. if (IS_SD_PRINTING)
  4548. LCD_MESSAGERPGM(_T(MSG_RESUMING_PRINT));
  4549. else
  4550. LCD_MESSAGERPGM(_T(WELCOME_MSG));
  4551. }
  4552. break;
  4553. //! ### M17 - Enable axes
  4554. // ---------------------------------
  4555. case 17:
  4556. LCD_MESSAGERPGM(_i("No move."));////MSG_NO_MOVE
  4557. enable_x();
  4558. enable_y();
  4559. enable_z();
  4560. enable_e0();
  4561. enable_e1();
  4562. enable_e2();
  4563. break;
  4564. #ifdef SDSUPPORT
  4565. //! ### M20 - SD Card file list
  4566. // -----------------------------------
  4567. case 20:
  4568. SERIAL_PROTOCOLLNRPGM(_N("Begin file list"));////MSG_BEGIN_FILE_LIST
  4569. card.ls();
  4570. SERIAL_PROTOCOLLNRPGM(_N("End file list"));////MSG_END_FILE_LIST
  4571. break;
  4572. //! ### M21 - Init SD card
  4573. // ------------------------------------
  4574. case 21:
  4575. card.initsd();
  4576. break;
  4577. //! ### M22 - Release SD card
  4578. // -----------------------------------
  4579. case 22:
  4580. card.release();
  4581. break;
  4582. //! ### M23 - Select file
  4583. // -----------------------------------
  4584. case 23:
  4585. starpos = (strchr(strchr_pointer + 4,'*'));
  4586. if(starpos!=NULL)
  4587. *(starpos)='\0';
  4588. card.openFile(strchr_pointer + 4,true);
  4589. break;
  4590. //! ### M24 - Start SD print
  4591. // ----------------------------------
  4592. case 24:
  4593. if (!card.paused)
  4594. failstats_reset_print();
  4595. card.startFileprint();
  4596. starttime=_millis();
  4597. break;
  4598. //! ### M25 - Pause SD print
  4599. // ----------------------------------
  4600. case 25:
  4601. card.pauseSDPrint();
  4602. break;
  4603. //! ### M26 - Set SD index
  4604. // ----------------------------------
  4605. case 26:
  4606. if(card.cardOK && code_seen('S')) {
  4607. card.setIndex(code_value_long());
  4608. }
  4609. break;
  4610. //! ### M27 - Get SD status
  4611. // ----------------------------------
  4612. case 27:
  4613. card.getStatus();
  4614. break;
  4615. //! ### M28 - Start SD write
  4616. // ---------------------------------
  4617. case 28:
  4618. starpos = (strchr(strchr_pointer + 4,'*'));
  4619. if(starpos != NULL){
  4620. char* npos = strchr(CMDBUFFER_CURRENT_STRING, 'N');
  4621. strchr_pointer = strchr(npos,' ') + 1;
  4622. *(starpos) = '\0';
  4623. }
  4624. card.openFile(strchr_pointer+4,false);
  4625. break;
  4626. //! ### M29 - Stop SD write
  4627. // -------------------------------------
  4628. //! Currently has no effect.
  4629. case 29:
  4630. //processed in write to file routine above
  4631. //card,saving = false;
  4632. break;
  4633. //! ### M30 - Delete file <filename>
  4634. // ----------------------------------
  4635. case 30:
  4636. if (card.cardOK){
  4637. card.closefile();
  4638. starpos = (strchr(strchr_pointer + 4,'*'));
  4639. if(starpos != NULL){
  4640. char* npos = strchr(CMDBUFFER_CURRENT_STRING, 'N');
  4641. strchr_pointer = strchr(npos,' ') + 1;
  4642. *(starpos) = '\0';
  4643. }
  4644. card.removeFile(strchr_pointer + 4);
  4645. }
  4646. break;
  4647. //! ### M32 - Select file and start SD print
  4648. // ------------------------------------
  4649. case 32:
  4650. {
  4651. if(card.sdprinting) {
  4652. st_synchronize();
  4653. }
  4654. starpos = (strchr(strchr_pointer + 4,'*'));
  4655. char* namestartpos = (strchr(strchr_pointer + 4,'!')); //find ! to indicate filename string start.
  4656. if(namestartpos==NULL)
  4657. {
  4658. namestartpos=strchr_pointer + 4; //default name position, 4 letters after the M
  4659. }
  4660. else
  4661. namestartpos++; //to skip the '!'
  4662. if(starpos!=NULL)
  4663. *(starpos)='\0';
  4664. bool call_procedure=(code_seen('P'));
  4665. if(strchr_pointer>namestartpos)
  4666. call_procedure=false; //false alert, 'P' found within filename
  4667. if( card.cardOK )
  4668. {
  4669. card.openFile(namestartpos,true,!call_procedure);
  4670. if(code_seen('S'))
  4671. if(strchr_pointer<namestartpos) //only if "S" is occuring _before_ the filename
  4672. card.setIndex(code_value_long());
  4673. card.startFileprint();
  4674. if(!call_procedure)
  4675. starttime=_millis(); //procedure calls count as normal print time.
  4676. }
  4677. } break;
  4678. //! ### M982 - Start SD write
  4679. // ---------------------------------
  4680. case 928:
  4681. starpos = (strchr(strchr_pointer + 5,'*'));
  4682. if(starpos != NULL){
  4683. char* npos = strchr(CMDBUFFER_CURRENT_STRING, 'N');
  4684. strchr_pointer = strchr(npos,' ') + 1;
  4685. *(starpos) = '\0';
  4686. }
  4687. card.openLogFile(strchr_pointer+5);
  4688. break;
  4689. #endif //SDSUPPORT
  4690. //! ### M31 - Report current print time
  4691. // --------------------------------------------------
  4692. case 31: //M31 take time since the start of the SD print or an M109 command
  4693. {
  4694. stoptime=_millis();
  4695. char time[30];
  4696. unsigned long t=(stoptime-starttime)/1000;
  4697. int sec,min;
  4698. min=t/60;
  4699. sec=t%60;
  4700. sprintf_P(time, PSTR("%i min, %i sec"), min, sec);
  4701. SERIAL_ECHO_START;
  4702. SERIAL_ECHOLN(time);
  4703. lcd_setstatus(time);
  4704. autotempShutdown();
  4705. }
  4706. break;
  4707. //! ### M42 - Set pin state
  4708. // -----------------------------
  4709. case 42:
  4710. if (code_seen('S'))
  4711. {
  4712. int pin_status = code_value();
  4713. int pin_number = LED_PIN;
  4714. if (code_seen('P') && pin_status >= 0 && pin_status <= 255)
  4715. pin_number = code_value();
  4716. for(int8_t i = 0; i < (int8_t)(sizeof(sensitive_pins)/sizeof(int)); i++)
  4717. {
  4718. if (sensitive_pins[i] == pin_number)
  4719. {
  4720. pin_number = -1;
  4721. break;
  4722. }
  4723. }
  4724. #if defined(FAN_PIN) && FAN_PIN > -1
  4725. if (pin_number == FAN_PIN)
  4726. fanSpeed = pin_status;
  4727. #endif
  4728. if (pin_number > -1)
  4729. {
  4730. pinMode(pin_number, OUTPUT);
  4731. digitalWrite(pin_number, pin_status);
  4732. analogWrite(pin_number, pin_status);
  4733. }
  4734. }
  4735. break;
  4736. //! ### M44 - Reset the bed skew and offset calibration (Prusa specific)
  4737. // --------------------------------------------------------------------
  4738. case 44: // M44: Prusa3D: Reset the bed skew and offset calibration.
  4739. // Reset the baby step value and the baby step applied flag.
  4740. calibration_status_store(CALIBRATION_STATUS_ASSEMBLED);
  4741. eeprom_update_word((uint16_t*)EEPROM_BABYSTEP_Z, 0);
  4742. // Reset the skew and offset in both RAM and EEPROM.
  4743. reset_bed_offset_and_skew();
  4744. // Reset world2machine_rotation_and_skew and world2machine_shift, therefore
  4745. // the planner will not perform any adjustments in the XY plane.
  4746. // Wait for the motors to stop and update the current position with the absolute values.
  4747. world2machine_revert_to_uncorrected();
  4748. break;
  4749. //! ### M45 - Bed skew and offset with manual Z up (Prusa specific)
  4750. // ------------------------------------------------------
  4751. case 45: // M45: Prusa3D: bed skew and offset with manual Z up
  4752. {
  4753. int8_t verbosity_level = 0;
  4754. bool only_Z = code_seen('Z');
  4755. #ifdef SUPPORT_VERBOSITY
  4756. if (code_seen('V'))
  4757. {
  4758. // Just 'V' without a number counts as V1.
  4759. char c = strchr_pointer[1];
  4760. verbosity_level = (c == ' ' || c == '\t' || c == 0) ? 1 : code_value_short();
  4761. }
  4762. #endif //SUPPORT_VERBOSITY
  4763. gcode_M45(only_Z, verbosity_level);
  4764. }
  4765. break;
  4766. /*
  4767. case 46:
  4768. {
  4769. // M46: Prusa3D: Show the assigned IP address.
  4770. uint8_t ip[4];
  4771. bool hasIP = card.ToshibaFlashAir_GetIP(ip);
  4772. if (hasIP) {
  4773. SERIAL_ECHOPGM("Toshiba FlashAir current IP: ");
  4774. SERIAL_ECHO(int(ip[0]));
  4775. SERIAL_ECHOPGM(".");
  4776. SERIAL_ECHO(int(ip[1]));
  4777. SERIAL_ECHOPGM(".");
  4778. SERIAL_ECHO(int(ip[2]));
  4779. SERIAL_ECHOPGM(".");
  4780. SERIAL_ECHO(int(ip[3]));
  4781. SERIAL_ECHOLNPGM("");
  4782. } else {
  4783. SERIAL_ECHOLNPGM("Toshiba FlashAir GetIP failed");
  4784. }
  4785. break;
  4786. }
  4787. */
  4788. //! ### M47 - Show end stops dialog on the display (Prusa specific)
  4789. // ----------------------------------------------------
  4790. case 47:
  4791. KEEPALIVE_STATE(PAUSED_FOR_USER);
  4792. lcd_diag_show_end_stops();
  4793. KEEPALIVE_STATE(IN_HANDLER);
  4794. break;
  4795. #if 0
  4796. case 48: // M48: scan the bed induction sensor points, print the sensor trigger coordinates to the serial line for visualization on the PC.
  4797. {
  4798. // Disable the default update procedure of the display. We will do a modal dialog.
  4799. lcd_update_enable(false);
  4800. // Let the planner use the uncorrected coordinates.
  4801. mbl.reset();
  4802. // Reset world2machine_rotation_and_skew and world2machine_shift, therefore
  4803. // the planner will not perform any adjustments in the XY plane.
  4804. // Wait for the motors to stop and update the current position with the absolute values.
  4805. world2machine_revert_to_uncorrected();
  4806. // Move the print head close to the bed.
  4807. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  4808. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS],current_position[Z_AXIS] , current_position[E_AXIS], homing_feedrate[Z_AXIS]/40, active_extruder);
  4809. st_synchronize();
  4810. // Home in the XY plane.
  4811. set_destination_to_current();
  4812. int l_feedmultiply = setup_for_endstop_move();
  4813. home_xy();
  4814. int8_t verbosity_level = 0;
  4815. if (code_seen('V')) {
  4816. // Just 'V' without a number counts as V1.
  4817. char c = strchr_pointer[1];
  4818. verbosity_level = (c == ' ' || c == '\t' || c == 0) ? 1 : code_value_short();
  4819. }
  4820. bool success = scan_bed_induction_points(verbosity_level);
  4821. clean_up_after_endstop_move(l_feedmultiply);
  4822. // Print head up.
  4823. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  4824. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS],current_position[Z_AXIS] , current_position[E_AXIS], homing_feedrate[Z_AXIS]/40, active_extruder);
  4825. st_synchronize();
  4826. lcd_update_enable(true);
  4827. break;
  4828. }
  4829. #endif
  4830. #ifdef ENABLE_AUTO_BED_LEVELING
  4831. #ifdef Z_PROBE_REPEATABILITY_TEST
  4832. //! ### M48 - Z-Probe repeatability measurement function.
  4833. // ------------------------------------------------------
  4834. //!
  4835. //! _Usage:_
  4836. //!
  4837. //! M48 <n #_samples> <X X_position_for_samples> <Y Y_position_for_samples> <V Verbose_Level> <L legs_of_movement_prior_to_doing_probe>
  4838. //!
  4839. //! This function assumes the bed has been homed. Specifically, that a G28 command
  4840. //! as been issued prior to invoking the M48 Z-Probe repeatability measurement function.
  4841. //! Any information generated by a prior G29 Bed leveling command will be lost and need to be
  4842. //! regenerated.
  4843. //!
  4844. //! The number of samples will default to 10 if not specified. You can use upper or lower case
  4845. //! letters for any of the options EXCEPT n. n must be in lower case because Marlin uses a capital
  4846. //! N for its communication protocol and will get horribly confused if you send it a capital N.
  4847. //!
  4848. case 48: // M48 Z-Probe repeatability
  4849. {
  4850. #if Z_MIN_PIN == -1
  4851. #error "You must have a Z_MIN endstop in order to enable calculation of Z-Probe repeatability."
  4852. #endif
  4853. double sum=0.0;
  4854. double mean=0.0;
  4855. double sigma=0.0;
  4856. double sample_set[50];
  4857. int verbose_level=1, n=0, j, n_samples = 10, n_legs=0;
  4858. double X_current, Y_current, Z_current;
  4859. double X_probe_location, Y_probe_location, Z_start_location, ext_position;
  4860. if (code_seen('V') || code_seen('v')) {
  4861. verbose_level = code_value();
  4862. if (verbose_level<0 || verbose_level>4 ) {
  4863. SERIAL_PROTOCOLPGM("?Verbose Level not plausable.\n");
  4864. goto Sigma_Exit;
  4865. }
  4866. }
  4867. if (verbose_level > 0) {
  4868. SERIAL_PROTOCOLPGM("M48 Z-Probe Repeatability test. Version 2.00\n");
  4869. SERIAL_PROTOCOLPGM("Full support at: http://3dprintboard.com/forum.php\n");
  4870. }
  4871. if (code_seen('n')) {
  4872. n_samples = code_value();
  4873. if (n_samples<4 || n_samples>50 ) {
  4874. SERIAL_PROTOCOLPGM("?Specified sample size not plausable.\n");
  4875. goto Sigma_Exit;
  4876. }
  4877. }
  4878. X_current = X_probe_location = st_get_position_mm(X_AXIS);
  4879. Y_current = Y_probe_location = st_get_position_mm(Y_AXIS);
  4880. Z_current = st_get_position_mm(Z_AXIS);
  4881. Z_start_location = st_get_position_mm(Z_AXIS) + Z_RAISE_BEFORE_PROBING;
  4882. ext_position = st_get_position_mm(E_AXIS);
  4883. if (code_seen('X') || code_seen('x') ) {
  4884. X_probe_location = code_value() - X_PROBE_OFFSET_FROM_EXTRUDER;
  4885. if (X_probe_location<X_MIN_POS || X_probe_location>X_MAX_POS ) {
  4886. SERIAL_PROTOCOLPGM("?Specified X position out of range.\n");
  4887. goto Sigma_Exit;
  4888. }
  4889. }
  4890. if (code_seen('Y') || code_seen('y') ) {
  4891. Y_probe_location = code_value() - Y_PROBE_OFFSET_FROM_EXTRUDER;
  4892. if (Y_probe_location<Y_MIN_POS || Y_probe_location>Y_MAX_POS ) {
  4893. SERIAL_PROTOCOLPGM("?Specified Y position out of range.\n");
  4894. goto Sigma_Exit;
  4895. }
  4896. }
  4897. if (code_seen('L') || code_seen('l') ) {
  4898. n_legs = code_value();
  4899. if ( n_legs==1 )
  4900. n_legs = 2;
  4901. if ( n_legs<0 || n_legs>15 ) {
  4902. SERIAL_PROTOCOLPGM("?Specified number of legs in movement not plausable.\n");
  4903. goto Sigma_Exit;
  4904. }
  4905. }
  4906. //
  4907. // Do all the preliminary setup work. First raise the probe.
  4908. //
  4909. st_synchronize();
  4910. plan_bed_level_matrix.set_to_identity();
  4911. plan_buffer_line( X_current, Y_current, Z_start_location,
  4912. ext_position,
  4913. homing_feedrate[Z_AXIS]/60,
  4914. active_extruder);
  4915. st_synchronize();
  4916. //
  4917. // Now get everything to the specified probe point So we can safely do a probe to
  4918. // get us close to the bed. If the Z-Axis is far from the bed, we don't want to
  4919. // use that as a starting point for each probe.
  4920. //
  4921. if (verbose_level > 2)
  4922. SERIAL_PROTOCOL("Positioning probe for the test.\n");
  4923. plan_buffer_line( X_probe_location, Y_probe_location, Z_start_location,
  4924. ext_position,
  4925. homing_feedrate[X_AXIS]/60,
  4926. active_extruder);
  4927. st_synchronize();
  4928. current_position[X_AXIS] = X_current = st_get_position_mm(X_AXIS);
  4929. current_position[Y_AXIS] = Y_current = st_get_position_mm(Y_AXIS);
  4930. current_position[Z_AXIS] = Z_current = st_get_position_mm(Z_AXIS);
  4931. current_position[E_AXIS] = ext_position = st_get_position_mm(E_AXIS);
  4932. //
  4933. // OK, do the inital probe to get us close to the bed.
  4934. // Then retrace the right amount and use that in subsequent probes
  4935. //
  4936. int l_feedmultiply = setup_for_endstop_move();
  4937. run_z_probe();
  4938. current_position[Z_AXIS] = Z_current = st_get_position_mm(Z_AXIS);
  4939. Z_start_location = st_get_position_mm(Z_AXIS) + Z_RAISE_BEFORE_PROBING;
  4940. plan_buffer_line( X_probe_location, Y_probe_location, Z_start_location,
  4941. ext_position,
  4942. homing_feedrate[X_AXIS]/60,
  4943. active_extruder);
  4944. st_synchronize();
  4945. current_position[Z_AXIS] = Z_current = st_get_position_mm(Z_AXIS);
  4946. for( n=0; n<n_samples; n++) {
  4947. do_blocking_move_to( X_probe_location, Y_probe_location, Z_start_location); // Make sure we are at the probe location
  4948. if ( n_legs) {
  4949. double radius=0.0, theta=0.0, x_sweep, y_sweep;
  4950. int rotational_direction, l;
  4951. rotational_direction = (unsigned long) _millis() & 0x0001; // clockwise or counter clockwise
  4952. radius = (unsigned long) _millis() % (long) (X_MAX_LENGTH/4); // limit how far out to go
  4953. theta = (float) ((unsigned long) _millis() % (long) 360) / (360./(2*3.1415926)); // turn into radians
  4954. //SERIAL_ECHOPAIR("starting radius: ",radius);
  4955. //SERIAL_ECHOPAIR(" theta: ",theta);
  4956. //SERIAL_ECHOPAIR(" direction: ",rotational_direction);
  4957. //SERIAL_PROTOCOLLNPGM("");
  4958. for( l=0; l<n_legs-1; l++) {
  4959. if (rotational_direction==1)
  4960. theta += (float) ((unsigned long) _millis() % (long) 20) / (360.0/(2*3.1415926)); // turn into radians
  4961. else
  4962. theta -= (float) ((unsigned long) _millis() % (long) 20) / (360.0/(2*3.1415926)); // turn into radians
  4963. radius += (float) ( ((long) ((unsigned long) _millis() % (long) 10)) - 5);
  4964. if ( radius<0.0 )
  4965. radius = -radius;
  4966. X_current = X_probe_location + cos(theta) * radius;
  4967. Y_current = Y_probe_location + sin(theta) * radius;
  4968. if ( X_current<X_MIN_POS) // Make sure our X & Y are sane
  4969. X_current = X_MIN_POS;
  4970. if ( X_current>X_MAX_POS)
  4971. X_current = X_MAX_POS;
  4972. if ( Y_current<Y_MIN_POS) // Make sure our X & Y are sane
  4973. Y_current = Y_MIN_POS;
  4974. if ( Y_current>Y_MAX_POS)
  4975. Y_current = Y_MAX_POS;
  4976. if (verbose_level>3 ) {
  4977. SERIAL_ECHOPAIR("x: ", X_current);
  4978. SERIAL_ECHOPAIR("y: ", Y_current);
  4979. SERIAL_PROTOCOLLNPGM("");
  4980. }
  4981. do_blocking_move_to( X_current, Y_current, Z_current );
  4982. }
  4983. do_blocking_move_to( X_probe_location, Y_probe_location, Z_start_location); // Go back to the probe location
  4984. }
  4985. int l_feedmultiply = setup_for_endstop_move();
  4986. run_z_probe();
  4987. sample_set[n] = current_position[Z_AXIS];
  4988. //
  4989. // Get the current mean for the data points we have so far
  4990. //
  4991. sum=0.0;
  4992. for( j=0; j<=n; j++) {
  4993. sum = sum + sample_set[j];
  4994. }
  4995. mean = sum / (double (n+1));
  4996. //
  4997. // Now, use that mean to calculate the standard deviation for the
  4998. // data points we have so far
  4999. //
  5000. sum=0.0;
  5001. for( j=0; j<=n; j++) {
  5002. sum = sum + (sample_set[j]-mean) * (sample_set[j]-mean);
  5003. }
  5004. sigma = sqrt( sum / (double (n+1)) );
  5005. if (verbose_level > 1) {
  5006. SERIAL_PROTOCOL(n+1);
  5007. SERIAL_PROTOCOL(" of ");
  5008. SERIAL_PROTOCOL(n_samples);
  5009. SERIAL_PROTOCOLPGM(" z: ");
  5010. SERIAL_PROTOCOL_F(current_position[Z_AXIS], 6);
  5011. }
  5012. if (verbose_level > 2) {
  5013. SERIAL_PROTOCOL(" mean: ");
  5014. SERIAL_PROTOCOL_F(mean,6);
  5015. SERIAL_PROTOCOL(" sigma: ");
  5016. SERIAL_PROTOCOL_F(sigma,6);
  5017. }
  5018. if (verbose_level > 0)
  5019. SERIAL_PROTOCOLPGM("\n");
  5020. plan_buffer_line( X_probe_location, Y_probe_location, Z_start_location,
  5021. current_position[E_AXIS], homing_feedrate[Z_AXIS]/60, active_extruder);
  5022. st_synchronize();
  5023. }
  5024. _delay(1000);
  5025. clean_up_after_endstop_move(l_feedmultiply);
  5026. // enable_endstops(true);
  5027. if (verbose_level > 0) {
  5028. SERIAL_PROTOCOLPGM("Mean: ");
  5029. SERIAL_PROTOCOL_F(mean, 6);
  5030. SERIAL_PROTOCOLPGM("\n");
  5031. }
  5032. SERIAL_PROTOCOLPGM("Standard Deviation: ");
  5033. SERIAL_PROTOCOL_F(sigma, 6);
  5034. SERIAL_PROTOCOLPGM("\n\n");
  5035. Sigma_Exit:
  5036. break;
  5037. }
  5038. #endif // Z_PROBE_REPEATABILITY_TEST
  5039. #endif // ENABLE_AUTO_BED_LEVELING
  5040. //! ### M73 - Set/get print progress
  5041. // -------------------------------------
  5042. //! _Usage:_
  5043. //!
  5044. //! M73 P<percent> R<time_remaining> Q<percent_silent> S<time_remaining_silent>
  5045. //!
  5046. case 73: //M73 show percent done and time remaining
  5047. if(code_seen('P')) print_percent_done_normal = code_value();
  5048. if(code_seen('R')) print_time_remaining_normal = code_value();
  5049. if(code_seen('Q')) print_percent_done_silent = code_value();
  5050. if(code_seen('S')) print_time_remaining_silent = code_value();
  5051. {
  5052. const char* _msg_mode_done_remain = _N("%S MODE: Percent done: %d; print time remaining in mins: %d\n");
  5053. printf_P(_msg_mode_done_remain, _N("NORMAL"), int(print_percent_done_normal), print_time_remaining_normal);
  5054. printf_P(_msg_mode_done_remain, _N("SILENT"), int(print_percent_done_silent), print_time_remaining_silent);
  5055. }
  5056. break;
  5057. //! ### M104 - Set hotend temperature
  5058. // -----------------------------------------
  5059. case 104: // M104
  5060. {
  5061. uint8_t extruder;
  5062. if(setTargetedHotend(104,extruder)){
  5063. break;
  5064. }
  5065. if (code_seen('S'))
  5066. {
  5067. setTargetHotendSafe(code_value(), extruder);
  5068. }
  5069. break;
  5070. }
  5071. //! ### M112 - Emergency stop
  5072. // -----------------------------------------
  5073. case 112:
  5074. kill(_n(""), 3);
  5075. break;
  5076. //! ### M140 - Set bed temperature
  5077. // -----------------------------------------
  5078. case 140:
  5079. if (code_seen('S')) setTargetBed(code_value());
  5080. break;
  5081. //! ### M105 - Report temperatures
  5082. // -----------------------------------------
  5083. case 105:
  5084. {
  5085. uint8_t extruder;
  5086. if(setTargetedHotend(105, extruder)){
  5087. break;
  5088. }
  5089. #if defined(TEMP_0_PIN) && TEMP_0_PIN > -1
  5090. SERIAL_PROTOCOLPGM("ok T:");
  5091. SERIAL_PROTOCOL_F(degHotend(extruder),1);
  5092. SERIAL_PROTOCOLPGM(" /");
  5093. SERIAL_PROTOCOL_F(degTargetHotend(extruder),1);
  5094. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  5095. SERIAL_PROTOCOLPGM(" B:");
  5096. SERIAL_PROTOCOL_F(degBed(),1);
  5097. SERIAL_PROTOCOLPGM(" /");
  5098. SERIAL_PROTOCOL_F(degTargetBed(),1);
  5099. #endif //TEMP_BED_PIN
  5100. for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) {
  5101. SERIAL_PROTOCOLPGM(" T");
  5102. SERIAL_PROTOCOL(cur_extruder);
  5103. SERIAL_PROTOCOLPGM(":");
  5104. SERIAL_PROTOCOL_F(degHotend(cur_extruder),1);
  5105. SERIAL_PROTOCOLPGM(" /");
  5106. SERIAL_PROTOCOL_F(degTargetHotend(cur_extruder),1);
  5107. }
  5108. #else
  5109. SERIAL_ERROR_START;
  5110. SERIAL_ERRORLNRPGM(_i("No thermistors - no temperature"));////MSG_ERR_NO_THERMISTORS
  5111. #endif
  5112. SERIAL_PROTOCOLPGM(" @:");
  5113. #ifdef EXTRUDER_WATTS
  5114. SERIAL_PROTOCOL((EXTRUDER_WATTS * getHeaterPower(tmp_extruder))/127);
  5115. SERIAL_PROTOCOLPGM("W");
  5116. #else
  5117. SERIAL_PROTOCOL(getHeaterPower(extruder));
  5118. #endif
  5119. SERIAL_PROTOCOLPGM(" B@:");
  5120. #ifdef BED_WATTS
  5121. SERIAL_PROTOCOL((BED_WATTS * getHeaterPower(-1))/127);
  5122. SERIAL_PROTOCOLPGM("W");
  5123. #else
  5124. SERIAL_PROTOCOL(getHeaterPower(-1));
  5125. #endif
  5126. #ifdef PINDA_THERMISTOR
  5127. SERIAL_PROTOCOLPGM(" P:");
  5128. SERIAL_PROTOCOL_F(current_temperature_pinda,1);
  5129. #endif //PINDA_THERMISTOR
  5130. #ifdef AMBIENT_THERMISTOR
  5131. SERIAL_PROTOCOLPGM(" A:");
  5132. SERIAL_PROTOCOL_F(current_temperature_ambient,1);
  5133. #endif //AMBIENT_THERMISTOR
  5134. #ifdef SHOW_TEMP_ADC_VALUES
  5135. {float raw = 0.0;
  5136. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  5137. SERIAL_PROTOCOLPGM(" ADC B:");
  5138. SERIAL_PROTOCOL_F(degBed(),1);
  5139. SERIAL_PROTOCOLPGM("C->");
  5140. raw = rawBedTemp();
  5141. SERIAL_PROTOCOL_F(raw/OVERSAMPLENR,5);
  5142. SERIAL_PROTOCOLPGM(" Rb->");
  5143. SERIAL_PROTOCOL_F(100 * (1 + (PtA * (raw/OVERSAMPLENR)) + (PtB * sq((raw/OVERSAMPLENR)))), 5);
  5144. SERIAL_PROTOCOLPGM(" Rxb->");
  5145. SERIAL_PROTOCOL_F(raw, 5);
  5146. #endif
  5147. for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) {
  5148. SERIAL_PROTOCOLPGM(" T");
  5149. SERIAL_PROTOCOL(cur_extruder);
  5150. SERIAL_PROTOCOLPGM(":");
  5151. SERIAL_PROTOCOL_F(degHotend(cur_extruder),1);
  5152. SERIAL_PROTOCOLPGM("C->");
  5153. raw = rawHotendTemp(cur_extruder);
  5154. SERIAL_PROTOCOL_F(raw/OVERSAMPLENR,5);
  5155. SERIAL_PROTOCOLPGM(" Rt");
  5156. SERIAL_PROTOCOL(cur_extruder);
  5157. SERIAL_PROTOCOLPGM("->");
  5158. SERIAL_PROTOCOL_F(100 * (1 + (PtA * (raw/OVERSAMPLENR)) + (PtB * sq((raw/OVERSAMPLENR)))), 5);
  5159. SERIAL_PROTOCOLPGM(" Rx");
  5160. SERIAL_PROTOCOL(cur_extruder);
  5161. SERIAL_PROTOCOLPGM("->");
  5162. SERIAL_PROTOCOL_F(raw, 5);
  5163. }}
  5164. #endif
  5165. SERIAL_PROTOCOLLN("");
  5166. KEEPALIVE_STATE(NOT_BUSY);
  5167. return;
  5168. break;
  5169. }
  5170. //! ### M109 - Wait for extruder temperature
  5171. // -------------------------------------------------
  5172. case 109:
  5173. {
  5174. uint8_t extruder;
  5175. if(setTargetedHotend(109, extruder)){
  5176. break;
  5177. }
  5178. LCD_MESSAGERPGM(_T(MSG_HEATING));
  5179. heating_status = 1;
  5180. if (farm_mode) { prusa_statistics(1); };
  5181. #ifdef AUTOTEMP
  5182. autotemp_enabled=false;
  5183. #endif
  5184. if (code_seen('S')) {
  5185. setTargetHotendSafe(code_value(), extruder);
  5186. CooldownNoWait = true;
  5187. } else if (code_seen('R')) {
  5188. setTargetHotendSafe(code_value(), extruder);
  5189. CooldownNoWait = false;
  5190. }
  5191. #ifdef AUTOTEMP
  5192. if (code_seen('S')) autotemp_min=code_value();
  5193. if (code_seen('B')) autotemp_max=code_value();
  5194. if (code_seen('F'))
  5195. {
  5196. autotemp_factor=code_value();
  5197. autotemp_enabled=true;
  5198. }
  5199. #endif
  5200. codenum = _millis();
  5201. /* See if we are heating up or cooling down */
  5202. target_direction = isHeatingHotend(extruder); // true if heating, false if cooling
  5203. KEEPALIVE_STATE(NOT_BUSY);
  5204. cancel_heatup = false;
  5205. wait_for_heater(codenum, extruder); //loops until target temperature is reached
  5206. LCD_MESSAGERPGM(_T(MSG_HEATING_COMPLETE));
  5207. KEEPALIVE_STATE(IN_HANDLER);
  5208. heating_status = 2;
  5209. if (farm_mode) { prusa_statistics(2); };
  5210. //starttime=_millis();
  5211. previous_millis_cmd = _millis();
  5212. }
  5213. break;
  5214. //! ### M190 - Wait for bed temperature
  5215. // ---------------------------------------
  5216. case 190:
  5217. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  5218. LCD_MESSAGERPGM(_T(MSG_BED_HEATING));
  5219. heating_status = 3;
  5220. if (farm_mode) { prusa_statistics(1); };
  5221. if (code_seen('S'))
  5222. {
  5223. setTargetBed(code_value());
  5224. CooldownNoWait = true;
  5225. }
  5226. else if (code_seen('R'))
  5227. {
  5228. setTargetBed(code_value());
  5229. CooldownNoWait = false;
  5230. }
  5231. codenum = _millis();
  5232. cancel_heatup = false;
  5233. target_direction = isHeatingBed(); // true if heating, false if cooling
  5234. KEEPALIVE_STATE(NOT_BUSY);
  5235. while ( (target_direction)&&(!cancel_heatup) ? (isHeatingBed()) : (isCoolingBed()&&(CooldownNoWait==false)) )
  5236. {
  5237. if(( _millis() - codenum) > 1000 ) //Print Temp Reading every 1 second while heating up.
  5238. {
  5239. if (!farm_mode) {
  5240. float tt = degHotend(active_extruder);
  5241. SERIAL_PROTOCOLPGM("T:");
  5242. SERIAL_PROTOCOL(tt);
  5243. SERIAL_PROTOCOLPGM(" E:");
  5244. SERIAL_PROTOCOL((int)active_extruder);
  5245. SERIAL_PROTOCOLPGM(" B:");
  5246. SERIAL_PROTOCOL_F(degBed(), 1);
  5247. SERIAL_PROTOCOLLN("");
  5248. }
  5249. codenum = _millis();
  5250. }
  5251. manage_heater();
  5252. manage_inactivity();
  5253. lcd_update(0);
  5254. }
  5255. LCD_MESSAGERPGM(_T(MSG_BED_DONE));
  5256. KEEPALIVE_STATE(IN_HANDLER);
  5257. heating_status = 4;
  5258. previous_millis_cmd = _millis();
  5259. #endif
  5260. break;
  5261. #if defined(FAN_PIN) && FAN_PIN > -1
  5262. //! ### M106 - Set fan speed
  5263. // -------------------------------------------
  5264. case 106: // M106 Sxxx Fan On S<speed> 0 .. 255
  5265. if (code_seen('S')){
  5266. fanSpeed=constrain(code_value(),0,255);
  5267. }
  5268. else {
  5269. fanSpeed=255;
  5270. }
  5271. break;
  5272. //! ### M107 - Fan off
  5273. // -------------------------------
  5274. case 107:
  5275. fanSpeed = 0;
  5276. break;
  5277. #endif //FAN_PIN
  5278. #if defined(PS_ON_PIN) && PS_ON_PIN > -1
  5279. //! ### M80 - Turn on the Power Supply
  5280. // -------------------------------
  5281. case 80:
  5282. SET_OUTPUT(PS_ON_PIN); //GND
  5283. WRITE(PS_ON_PIN, PS_ON_AWAKE);
  5284. // If you have a switch on suicide pin, this is useful
  5285. // if you want to start another print with suicide feature after
  5286. // a print without suicide...
  5287. #if defined SUICIDE_PIN && SUICIDE_PIN > -1
  5288. SET_OUTPUT(SUICIDE_PIN);
  5289. WRITE(SUICIDE_PIN, HIGH);
  5290. #endif
  5291. powersupply = true;
  5292. LCD_MESSAGERPGM(_T(WELCOME_MSG));
  5293. lcd_update(0);
  5294. break;
  5295. #endif
  5296. //! ### M81 - Turn off Power Supply
  5297. // --------------------------------------
  5298. case 81:
  5299. disable_heater();
  5300. st_synchronize();
  5301. disable_e0();
  5302. disable_e1();
  5303. disable_e2();
  5304. finishAndDisableSteppers();
  5305. fanSpeed = 0;
  5306. _delay(1000); // Wait a little before to switch off
  5307. #if defined(SUICIDE_PIN) && SUICIDE_PIN > -1
  5308. st_synchronize();
  5309. suicide();
  5310. #elif defined(PS_ON_PIN) && PS_ON_PIN > -1
  5311. SET_OUTPUT(PS_ON_PIN);
  5312. WRITE(PS_ON_PIN, PS_ON_ASLEEP);
  5313. #endif
  5314. powersupply = false;
  5315. LCD_MESSAGERPGM(CAT4(CUSTOM_MENDEL_NAME,PSTR(" "),MSG_OFF,PSTR(".")));
  5316. lcd_update(0);
  5317. break;
  5318. //! ### M82 - Set E axis to absolute mode
  5319. // ---------------------------------------
  5320. case 82:
  5321. axis_relative_modes[3] = false;
  5322. break;
  5323. //! ### M83 - Set E axis to relative mode
  5324. // ---------------------------------------
  5325. case 83:
  5326. axis_relative_modes[3] = true;
  5327. break;
  5328. //! ### M84, M18 - Disable steppers
  5329. //---------------------------------------
  5330. //! This command can be used to set the stepper inactivity timeout (`S`) or to disable steppers (`X`,`Y`,`Z`,`E`)
  5331. //!
  5332. //! M84 [E<flag>] [S<seconds>] [X<flag>] [Y<flag>] [Z<flag>]
  5333. //!
  5334. case 18: //compatibility
  5335. case 84: // M84
  5336. if(code_seen('S')){
  5337. stepper_inactive_time = code_value() * 1000;
  5338. }
  5339. else
  5340. {
  5341. bool all_axis = !((code_seen(axis_codes[X_AXIS])) || (code_seen(axis_codes[Y_AXIS])) || (code_seen(axis_codes[Z_AXIS]))|| (code_seen(axis_codes[E_AXIS])));
  5342. if(all_axis)
  5343. {
  5344. st_synchronize();
  5345. disable_e0();
  5346. disable_e1();
  5347. disable_e2();
  5348. finishAndDisableSteppers();
  5349. }
  5350. else
  5351. {
  5352. st_synchronize();
  5353. if (code_seen('X')) disable_x();
  5354. if (code_seen('Y')) disable_y();
  5355. if (code_seen('Z')) disable_z();
  5356. #if ((E0_ENABLE_PIN != X_ENABLE_PIN) && (E1_ENABLE_PIN != Y_ENABLE_PIN)) // Only enable on boards that have seperate ENABLE_PINS
  5357. if (code_seen('E')) {
  5358. disable_e0();
  5359. disable_e1();
  5360. disable_e2();
  5361. }
  5362. #endif
  5363. }
  5364. }
  5365. //in the end of print set estimated time to end of print and extruders used during print to default values for next print
  5366. print_time_remaining_init();
  5367. snmm_filaments_used = 0;
  5368. break;
  5369. //! ### M85 - Set max inactive time
  5370. // ---------------------------------------
  5371. case 85: // M85
  5372. if(code_seen('S')) {
  5373. max_inactive_time = code_value() * 1000;
  5374. }
  5375. break;
  5376. #ifdef SAFETYTIMER
  5377. //! ### M86 - Set safety timer expiration time
  5378. //!
  5379. //! _Usage:_
  5380. //! M86 S<seconds>
  5381. //!
  5382. //! Sets the safety timer expiration time in seconds. M86 S0 will disable safety timer.
  5383. //! When safety timer expires, heatbed and nozzle target temperatures are set to zero.
  5384. case 86:
  5385. if (code_seen('S')) {
  5386. safetytimer_inactive_time = code_value() * 1000;
  5387. safetyTimer.start();
  5388. }
  5389. break;
  5390. #endif
  5391. //! ### M92 Set Axis steps-per-unit
  5392. // ---------------------------------------
  5393. //! Same syntax as G92
  5394. case 92:
  5395. for(int8_t i=0; i < NUM_AXIS; i++)
  5396. {
  5397. if(code_seen(axis_codes[i]))
  5398. {
  5399. if(i == 3) { // E
  5400. float value = code_value();
  5401. if(value < 20.0) {
  5402. float factor = cs.axis_steps_per_unit[i] / value; // increase e constants if M92 E14 is given for netfab.
  5403. cs.max_jerk[E_AXIS] *= factor;
  5404. max_feedrate[i] *= factor;
  5405. axis_steps_per_sqr_second[i] *= factor;
  5406. }
  5407. cs.axis_steps_per_unit[i] = value;
  5408. }
  5409. else {
  5410. cs.axis_steps_per_unit[i] = code_value();
  5411. }
  5412. }
  5413. }
  5414. break;
  5415. //! ### M110 - Set Line number
  5416. // ---------------------------------------
  5417. case 110:
  5418. if (code_seen('N'))
  5419. gcode_LastN = code_value_long();
  5420. break;
  5421. //! ### M113 - Get or set host keep-alive interval
  5422. // ------------------------------------------
  5423. case 113:
  5424. if (code_seen('S')) {
  5425. host_keepalive_interval = (uint8_t)code_value_short();
  5426. // NOMORE(host_keepalive_interval, 60);
  5427. }
  5428. else {
  5429. SERIAL_ECHO_START;
  5430. SERIAL_ECHOPAIR("M113 S", (unsigned long)host_keepalive_interval);
  5431. SERIAL_PROTOCOLLN("");
  5432. }
  5433. break;
  5434. //! ### M115 - Firmware info
  5435. // --------------------------------------
  5436. //! Print the firmware info and capabilities
  5437. //!
  5438. //! M115 [V] [U<version>]
  5439. //!
  5440. //! Without any arguments, prints Prusa firmware version number, machine type, extruder count and UUID.
  5441. //! `M115 U` Checks the firmware version provided. If the firmware version provided by the U code is higher than the currently running firmware,
  5442. //! pause the print for 30s and ask the user to upgrade the firmware.
  5443. case 115: // M115
  5444. if (code_seen('V')) {
  5445. // Report the Prusa version number.
  5446. SERIAL_PROTOCOLLNRPGM(FW_VERSION_STR_P());
  5447. } else if (code_seen('U')) {
  5448. // Check the firmware version provided. If the firmware version provided by the U code is higher than the currently running firmware,
  5449. // pause the print for 30s and ask the user to upgrade the firmware.
  5450. show_upgrade_dialog_if_version_newer(++ strchr_pointer);
  5451. } else {
  5452. SERIAL_ECHOPGM("FIRMWARE_NAME:Prusa-Firmware ");
  5453. SERIAL_ECHORPGM(FW_VERSION_STR_P());
  5454. SERIAL_ECHOPGM(" based on Marlin FIRMWARE_URL:https://github.com/prusa3d/Prusa-Firmware PROTOCOL_VERSION:");
  5455. SERIAL_ECHOPGM(PROTOCOL_VERSION);
  5456. SERIAL_ECHOPGM(" MACHINE_TYPE:");
  5457. SERIAL_ECHOPGM(CUSTOM_MENDEL_NAME);
  5458. SERIAL_ECHOPGM(" EXTRUDER_COUNT:");
  5459. SERIAL_ECHOPGM(STRINGIFY(EXTRUDERS));
  5460. SERIAL_ECHOPGM(" UUID:");
  5461. SERIAL_ECHOLNPGM(MACHINE_UUID);
  5462. }
  5463. break;
  5464. //! ### M114 - Get current position
  5465. // -------------------------------------
  5466. case 114:
  5467. gcode_M114();
  5468. break;
  5469. //! ### M117 - Set LCD Message
  5470. // --------------------------------------
  5471. /*
  5472. M117 moved up to get the high priority
  5473. case 117: // M117 display message
  5474. starpos = (strchr(strchr_pointer + 5,'*'));
  5475. if(starpos!=NULL)
  5476. *(starpos)='\0';
  5477. lcd_setstatus(strchr_pointer + 5);
  5478. break;*/
  5479. //! ### M120 - Disable endstops
  5480. // ----------------------------------------
  5481. case 120:
  5482. enable_endstops(false) ;
  5483. break;
  5484. //! ### M121 - Enable endstops
  5485. // ----------------------------------------
  5486. case 121:
  5487. enable_endstops(true) ;
  5488. break;
  5489. //! ### M119 - Get endstop states
  5490. // ----------------------------------------
  5491. case 119:
  5492. SERIAL_PROTOCOLRPGM(_N("Reporting endstop status"));////MSG_M119_REPORT
  5493. SERIAL_PROTOCOLLN("");
  5494. #if defined(X_MIN_PIN) && X_MIN_PIN > -1
  5495. SERIAL_PROTOCOLRPGM(_n("x_min: "));////MSG_X_MIN
  5496. if(READ(X_MIN_PIN)^X_MIN_ENDSTOP_INVERTING){
  5497. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_HIT);
  5498. }else{
  5499. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_OPEN);
  5500. }
  5501. SERIAL_PROTOCOLLN("");
  5502. #endif
  5503. #if defined(X_MAX_PIN) && X_MAX_PIN > -1
  5504. SERIAL_PROTOCOLRPGM(_n("x_max: "));////MSG_X_MAX
  5505. if(READ(X_MAX_PIN)^X_MAX_ENDSTOP_INVERTING){
  5506. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_HIT);
  5507. }else{
  5508. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_OPEN);
  5509. }
  5510. SERIAL_PROTOCOLLN("");
  5511. #endif
  5512. #if defined(Y_MIN_PIN) && Y_MIN_PIN > -1
  5513. SERIAL_PROTOCOLRPGM(_n("y_min: "));////MSG_Y_MIN
  5514. if(READ(Y_MIN_PIN)^Y_MIN_ENDSTOP_INVERTING){
  5515. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_HIT);
  5516. }else{
  5517. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_OPEN);
  5518. }
  5519. SERIAL_PROTOCOLLN("");
  5520. #endif
  5521. #if defined(Y_MAX_PIN) && Y_MAX_PIN > -1
  5522. SERIAL_PROTOCOLRPGM(_n("y_max: "));////MSG_Y_MAX
  5523. if(READ(Y_MAX_PIN)^Y_MAX_ENDSTOP_INVERTING){
  5524. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_HIT);
  5525. }else{
  5526. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_OPEN);
  5527. }
  5528. SERIAL_PROTOCOLLN("");
  5529. #endif
  5530. #if defined(Z_MIN_PIN) && Z_MIN_PIN > -1
  5531. SERIAL_PROTOCOLRPGM(MSG_Z_MIN);
  5532. if(READ(Z_MIN_PIN)^Z_MIN_ENDSTOP_INVERTING){
  5533. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_HIT);
  5534. }else{
  5535. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_OPEN);
  5536. }
  5537. SERIAL_PROTOCOLLN("");
  5538. #endif
  5539. #if defined(Z_MAX_PIN) && Z_MAX_PIN > -1
  5540. SERIAL_PROTOCOLRPGM(MSG_Z_MAX);
  5541. if(READ(Z_MAX_PIN)^Z_MAX_ENDSTOP_INVERTING){
  5542. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_HIT);
  5543. }else{
  5544. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_OPEN);
  5545. }
  5546. SERIAL_PROTOCOLLN("");
  5547. #endif
  5548. break;
  5549. //TODO: update for all axis, use for loop
  5550. #ifdef BLINKM
  5551. //! ### M150 - Set RGB(W) Color
  5552. // -------------------------------------------
  5553. case 150:
  5554. {
  5555. byte red;
  5556. byte grn;
  5557. byte blu;
  5558. if(code_seen('R')) red = code_value();
  5559. if(code_seen('U')) grn = code_value();
  5560. if(code_seen('B')) blu = code_value();
  5561. SendColors(red,grn,blu);
  5562. }
  5563. break;
  5564. #endif //BLINKM
  5565. //! ### M200 - Set filament diameter
  5566. // ----------------------------------------
  5567. case 200: // M200 D<millimeters> set filament diameter and set E axis units to cubic millimeters (use S0 to set back to millimeters).
  5568. {
  5569. uint8_t extruder = active_extruder;
  5570. if(code_seen('T')) {
  5571. extruder = code_value();
  5572. if(extruder >= EXTRUDERS) {
  5573. SERIAL_ECHO_START;
  5574. SERIAL_ECHO(_n("M200 Invalid extruder "));////MSG_M200_INVALID_EXTRUDER
  5575. break;
  5576. }
  5577. }
  5578. if(code_seen('D')) {
  5579. float diameter = (float)code_value();
  5580. if (diameter == 0.0) {
  5581. // setting any extruder filament size disables volumetric on the assumption that
  5582. // slicers either generate in extruder values as cubic mm or as as filament feeds
  5583. // for all extruders
  5584. cs.volumetric_enabled = false;
  5585. } else {
  5586. cs.filament_size[extruder] = (float)code_value();
  5587. // make sure all extruders have some sane value for the filament size
  5588. cs.filament_size[0] = (cs.filament_size[0] == 0.0 ? DEFAULT_NOMINAL_FILAMENT_DIA : cs.filament_size[0]);
  5589. #if EXTRUDERS > 1
  5590. cs.filament_size[1] = (cs.filament_size[1] == 0.0 ? DEFAULT_NOMINAL_FILAMENT_DIA : cs.filament_size[1]);
  5591. #if EXTRUDERS > 2
  5592. cs.filament_size[2] = (cs.filament_size[2] == 0.0 ? DEFAULT_NOMINAL_FILAMENT_DIA : cs.filament_size[2]);
  5593. #endif
  5594. #endif
  5595. cs.volumetric_enabled = true;
  5596. }
  5597. } else {
  5598. //reserved for setting filament diameter via UFID or filament measuring device
  5599. break;
  5600. }
  5601. calculate_extruder_multipliers();
  5602. }
  5603. break;
  5604. //! ### M201 - Set Print Max Acceleration
  5605. // -------------------------------------------
  5606. case 201:
  5607. for (int8_t i = 0; i < NUM_AXIS; i++)
  5608. {
  5609. if (code_seen(axis_codes[i]))
  5610. {
  5611. unsigned long val = code_value();
  5612. #ifdef TMC2130
  5613. unsigned long val_silent = val;
  5614. if ((i == X_AXIS) || (i == Y_AXIS))
  5615. {
  5616. if (val > NORMAL_MAX_ACCEL_XY)
  5617. val = NORMAL_MAX_ACCEL_XY;
  5618. if (val_silent > SILENT_MAX_ACCEL_XY)
  5619. val_silent = SILENT_MAX_ACCEL_XY;
  5620. }
  5621. cs.max_acceleration_units_per_sq_second_normal[i] = val;
  5622. cs.max_acceleration_units_per_sq_second_silent[i] = val_silent;
  5623. #else //TMC2130
  5624. max_acceleration_units_per_sq_second[i] = val;
  5625. #endif //TMC2130
  5626. }
  5627. }
  5628. // steps per sq second need to be updated to agree with the units per sq second (as they are what is used in the planner)
  5629. reset_acceleration_rates();
  5630. break;
  5631. #if 0 // Not used for Sprinter/grbl gen6
  5632. case 202: // M202
  5633. for(int8_t i=0; i < NUM_AXIS; i++) {
  5634. if(code_seen(axis_codes[i])) axis_travel_steps_per_sqr_second[i] = code_value() * cs.axis_steps_per_unit[i];
  5635. }
  5636. break;
  5637. #endif
  5638. //! ### M203 - Set Max Feedrate
  5639. // ---------------------------------------
  5640. case 203: // M203 max feedrate mm/sec
  5641. for (int8_t i = 0; i < NUM_AXIS; i++)
  5642. {
  5643. if (code_seen(axis_codes[i]))
  5644. {
  5645. float val = code_value();
  5646. #ifdef TMC2130
  5647. float val_silent = val;
  5648. if ((i == X_AXIS) || (i == Y_AXIS))
  5649. {
  5650. if (val > NORMAL_MAX_FEEDRATE_XY)
  5651. val = NORMAL_MAX_FEEDRATE_XY;
  5652. if (val_silent > SILENT_MAX_FEEDRATE_XY)
  5653. val_silent = SILENT_MAX_FEEDRATE_XY;
  5654. }
  5655. cs.max_feedrate_normal[i] = val;
  5656. cs.max_feedrate_silent[i] = val_silent;
  5657. #else //TMC2130
  5658. max_feedrate[i] = val;
  5659. #endif //TMC2130
  5660. }
  5661. }
  5662. break;
  5663. //! ### M204 - Acceleration settings
  5664. // ------------------------------------------
  5665. //! Supporting old format:
  5666. //!
  5667. //! M204 S[normal moves] T[filmanent only moves]
  5668. //!
  5669. //! and new format:
  5670. //!
  5671. //! M204 P[printing moves] R[filmanent only moves] T[travel moves] (as of now T is ignored)
  5672. case 204:
  5673. {
  5674. if(code_seen('S')) {
  5675. // Legacy acceleration format. This format is used by the legacy Marlin, MK2 or MK3 firmware,
  5676. // and it is also generated by Slic3r to control acceleration per extrusion type
  5677. // (there is a separate acceleration settings in Slicer for perimeter, first layer etc).
  5678. cs.acceleration = code_value();
  5679. // Interpret the T value as retract acceleration in the old Marlin format.
  5680. if(code_seen('T'))
  5681. cs.retract_acceleration = code_value();
  5682. } else {
  5683. // New acceleration format, compatible with the upstream Marlin.
  5684. if(code_seen('P'))
  5685. cs.acceleration = code_value();
  5686. if(code_seen('R'))
  5687. cs.retract_acceleration = code_value();
  5688. if(code_seen('T')) {
  5689. // Interpret the T value as the travel acceleration in the new Marlin format.
  5690. //FIXME Prusa3D firmware currently does not support travel acceleration value independent from the extruding acceleration value.
  5691. // travel_acceleration = code_value();
  5692. }
  5693. }
  5694. }
  5695. break;
  5696. //! ### M205 - Set advanced settings
  5697. // ---------------------------------------------
  5698. //! Set some advanced settings related to movement.
  5699. //!
  5700. //! M205 [S] [T] [B] [X] [Y] [Z] [E]
  5701. /*!
  5702. - `S` - Minimum feedrate for print moves (unit/s)
  5703. - `T` - Minimum feedrate for travel moves (units/s)
  5704. - `B` - Minimum segment time (us)
  5705. - `X` - Maximum X jerk (units/s), similarly for other axes
  5706. */
  5707. case 205:
  5708. {
  5709. if(code_seen('S')) cs.minimumfeedrate = code_value();
  5710. if(code_seen('T')) cs.mintravelfeedrate = code_value();
  5711. if(code_seen('B')) cs.minsegmenttime = code_value() ;
  5712. if(code_seen('X')) cs.max_jerk[X_AXIS] = cs.max_jerk[Y_AXIS] = code_value();
  5713. if(code_seen('Y')) cs.max_jerk[Y_AXIS] = code_value();
  5714. if(code_seen('Z')) cs.max_jerk[Z_AXIS] = code_value();
  5715. if(code_seen('E')) cs.max_jerk[E_AXIS] = code_value();
  5716. if (cs.max_jerk[X_AXIS] > DEFAULT_XJERK) cs.max_jerk[X_AXIS] = DEFAULT_XJERK;
  5717. if (cs.max_jerk[Y_AXIS] > DEFAULT_YJERK) cs.max_jerk[Y_AXIS] = DEFAULT_YJERK;
  5718. }
  5719. break;
  5720. //! ### M206 - Set additional homing offsets
  5721. // ----------------------------------------------
  5722. case 206:
  5723. for(int8_t i=0; i < 3; i++)
  5724. {
  5725. if(code_seen(axis_codes[i])) cs.add_homing[i] = code_value();
  5726. }
  5727. break;
  5728. #ifdef FWRETRACT
  5729. //! ### M207 - Set firmware retraction
  5730. // --------------------------------------------------
  5731. case 207: //M207 - set retract length S[positive mm] F[feedrate mm/min] Z[additional zlift/hop]
  5732. {
  5733. if(code_seen('S'))
  5734. {
  5735. cs.retract_length = code_value() ;
  5736. }
  5737. if(code_seen('F'))
  5738. {
  5739. cs.retract_feedrate = code_value()/60 ;
  5740. }
  5741. if(code_seen('Z'))
  5742. {
  5743. cs.retract_zlift = code_value() ;
  5744. }
  5745. }break;
  5746. //! ### M208 - Set retract recover length
  5747. // --------------------------------------------
  5748. case 208: // M208 - set retract recover length S[positive mm surplus to the M207 S*] F[feedrate mm/min]
  5749. {
  5750. if(code_seen('S'))
  5751. {
  5752. cs.retract_recover_length = code_value() ;
  5753. }
  5754. if(code_seen('F'))
  5755. {
  5756. cs.retract_recover_feedrate = code_value()/60 ;
  5757. }
  5758. }break;
  5759. //! ### M209 - Enable/disable automatict retract
  5760. // ---------------------------------------------
  5761. case 209: // M209 - S<1=true/0=false> enable automatic retract detect if the slicer did not support G10/11: every normal extrude-only move will be classified as retract depending on the direction.
  5762. {
  5763. if(code_seen('S'))
  5764. {
  5765. int t= code_value() ;
  5766. switch(t)
  5767. {
  5768. case 0:
  5769. {
  5770. cs.autoretract_enabled=false;
  5771. retracted[0]=false;
  5772. #if EXTRUDERS > 1
  5773. retracted[1]=false;
  5774. #endif
  5775. #if EXTRUDERS > 2
  5776. retracted[2]=false;
  5777. #endif
  5778. }break;
  5779. case 1:
  5780. {
  5781. cs.autoretract_enabled=true;
  5782. retracted[0]=false;
  5783. #if EXTRUDERS > 1
  5784. retracted[1]=false;
  5785. #endif
  5786. #if EXTRUDERS > 2
  5787. retracted[2]=false;
  5788. #endif
  5789. }break;
  5790. default:
  5791. SERIAL_ECHO_START;
  5792. SERIAL_ECHORPGM(MSG_UNKNOWN_COMMAND);
  5793. SERIAL_ECHO(CMDBUFFER_CURRENT_STRING);
  5794. SERIAL_ECHOLNPGM("\"(1)");
  5795. }
  5796. }
  5797. }break;
  5798. #endif // FWRETRACT
  5799. #if EXTRUDERS > 1
  5800. // ### M218 - Set hotend offset
  5801. // ----------------------------------------
  5802. case 218: // M218 - set hotend offset (in mm), T<extruder_number> X<offset_on_X> Y<offset_on_Y>
  5803. {
  5804. uint8_t extruder;
  5805. if(setTargetedHotend(218, extruder)){
  5806. break;
  5807. }
  5808. if(code_seen('X'))
  5809. {
  5810. extruder_offset[X_AXIS][extruder] = code_value();
  5811. }
  5812. if(code_seen('Y'))
  5813. {
  5814. extruder_offset[Y_AXIS][extruder] = code_value();
  5815. }
  5816. SERIAL_ECHO_START;
  5817. SERIAL_ECHORPGM(MSG_HOTEND_OFFSET);
  5818. for(extruder = 0; extruder < EXTRUDERS; extruder++)
  5819. {
  5820. SERIAL_ECHO(" ");
  5821. SERIAL_ECHO(extruder_offset[X_AXIS][extruder]);
  5822. SERIAL_ECHO(",");
  5823. SERIAL_ECHO(extruder_offset[Y_AXIS][extruder]);
  5824. }
  5825. SERIAL_ECHOLN("");
  5826. }break;
  5827. #endif
  5828. //! ### M220 Set feedrate percentage
  5829. // -----------------------------------------------
  5830. case 220: // M220 S<factor in percent>- set speed factor override percentage
  5831. {
  5832. if (code_seen('B')) //backup current speed factor
  5833. {
  5834. saved_feedmultiply_mm = feedmultiply;
  5835. }
  5836. if(code_seen('S'))
  5837. {
  5838. feedmultiply = code_value() ;
  5839. }
  5840. if (code_seen('R')) { //restore previous feedmultiply
  5841. feedmultiply = saved_feedmultiply_mm;
  5842. }
  5843. }
  5844. break;
  5845. //! ### M221 - Set extrude factor override percentage
  5846. // ----------------------------------------------------
  5847. case 221: // M221 S<factor in percent>- set extrude factor override percentage
  5848. {
  5849. if(code_seen('S'))
  5850. {
  5851. int tmp_code = code_value();
  5852. if (code_seen('T'))
  5853. {
  5854. uint8_t extruder;
  5855. if(setTargetedHotend(221, extruder)){
  5856. break;
  5857. }
  5858. extruder_multiply[extruder] = tmp_code;
  5859. }
  5860. else
  5861. {
  5862. extrudemultiply = tmp_code ;
  5863. }
  5864. }
  5865. calculate_extruder_multipliers();
  5866. }
  5867. break;
  5868. //! ### M226 - Wait for Pin state
  5869. // ------------------------------------------
  5870. case 226: // M226 P<pin number> S<pin state>- Wait until the specified pin reaches the state required
  5871. {
  5872. if(code_seen('P')){
  5873. int pin_number = code_value(); // pin number
  5874. int pin_state = -1; // required pin state - default is inverted
  5875. if(code_seen('S')) pin_state = code_value(); // required pin state
  5876. if(pin_state >= -1 && pin_state <= 1){
  5877. for(int8_t i = 0; i < (int8_t)(sizeof(sensitive_pins)/sizeof(int)); i++)
  5878. {
  5879. if (sensitive_pins[i] == pin_number)
  5880. {
  5881. pin_number = -1;
  5882. break;
  5883. }
  5884. }
  5885. if (pin_number > -1)
  5886. {
  5887. int target = LOW;
  5888. st_synchronize();
  5889. pinMode(pin_number, INPUT);
  5890. switch(pin_state){
  5891. case 1:
  5892. target = HIGH;
  5893. break;
  5894. case 0:
  5895. target = LOW;
  5896. break;
  5897. case -1:
  5898. target = !digitalRead(pin_number);
  5899. break;
  5900. }
  5901. while(digitalRead(pin_number) != target){
  5902. manage_heater();
  5903. manage_inactivity();
  5904. lcd_update(0);
  5905. }
  5906. }
  5907. }
  5908. }
  5909. }
  5910. break;
  5911. #if NUM_SERVOS > 0
  5912. //! ### M280 - Set/Get servo position
  5913. // --------------------------------------------
  5914. case 280: // M280 - set servo position absolute. P: servo index, S: angle or microseconds
  5915. {
  5916. int servo_index = -1;
  5917. int servo_position = 0;
  5918. if (code_seen('P'))
  5919. servo_index = code_value();
  5920. if (code_seen('S')) {
  5921. servo_position = code_value();
  5922. if ((servo_index >= 0) && (servo_index < NUM_SERVOS)) {
  5923. #if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
  5924. servos[servo_index].attach(0);
  5925. #endif
  5926. servos[servo_index].write(servo_position);
  5927. #if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
  5928. _delay(PROBE_SERVO_DEACTIVATION_DELAY);
  5929. servos[servo_index].detach();
  5930. #endif
  5931. }
  5932. else {
  5933. SERIAL_ECHO_START;
  5934. SERIAL_ECHO("Servo ");
  5935. SERIAL_ECHO(servo_index);
  5936. SERIAL_ECHOLN(" out of range");
  5937. }
  5938. }
  5939. else if (servo_index >= 0) {
  5940. SERIAL_PROTOCOL(MSG_OK);
  5941. SERIAL_PROTOCOL(" Servo ");
  5942. SERIAL_PROTOCOL(servo_index);
  5943. SERIAL_PROTOCOL(": ");
  5944. SERIAL_PROTOCOL(servos[servo_index].read());
  5945. SERIAL_PROTOCOLLN("");
  5946. }
  5947. }
  5948. break;
  5949. #endif // NUM_SERVOS > 0
  5950. #if (LARGE_FLASH == true && ( BEEPER > 0 || defined(ULTRALCD) || defined(LCD_USE_I2C_BUZZER)))
  5951. //! ### M300 - Play tone
  5952. // -----------------------
  5953. case 300: // M300
  5954. {
  5955. int beepS = code_seen('S') ? code_value() : 110;
  5956. int beepP = code_seen('P') ? code_value() : 1000;
  5957. if (beepS > 0)
  5958. {
  5959. #if BEEPER > 0
  5960. Sound_MakeCustom(beepP,beepS,false);
  5961. #endif
  5962. }
  5963. else
  5964. {
  5965. _delay(beepP);
  5966. }
  5967. }
  5968. break;
  5969. #endif // M300
  5970. #ifdef PIDTEMP
  5971. //! ### M301 - Set hotend PID
  5972. // ---------------------------------------
  5973. case 301:
  5974. {
  5975. if(code_seen('P')) cs.Kp = code_value();
  5976. if(code_seen('I')) cs.Ki = scalePID_i(code_value());
  5977. if(code_seen('D')) cs.Kd = scalePID_d(code_value());
  5978. #ifdef PID_ADD_EXTRUSION_RATE
  5979. if(code_seen('C')) Kc = code_value();
  5980. #endif
  5981. updatePID();
  5982. SERIAL_PROTOCOLRPGM(MSG_OK);
  5983. SERIAL_PROTOCOL(" p:");
  5984. SERIAL_PROTOCOL(cs.Kp);
  5985. SERIAL_PROTOCOL(" i:");
  5986. SERIAL_PROTOCOL(unscalePID_i(cs.Ki));
  5987. SERIAL_PROTOCOL(" d:");
  5988. SERIAL_PROTOCOL(unscalePID_d(cs.Kd));
  5989. #ifdef PID_ADD_EXTRUSION_RATE
  5990. SERIAL_PROTOCOL(" c:");
  5991. //Kc does not have scaling applied above, or in resetting defaults
  5992. SERIAL_PROTOCOL(Kc);
  5993. #endif
  5994. SERIAL_PROTOCOLLN("");
  5995. }
  5996. break;
  5997. #endif //PIDTEMP
  5998. #ifdef PIDTEMPBED
  5999. //! ### M304 - Set bed PID
  6000. // --------------------------------------
  6001. case 304:
  6002. {
  6003. if(code_seen('P')) cs.bedKp = code_value();
  6004. if(code_seen('I')) cs.bedKi = scalePID_i(code_value());
  6005. if(code_seen('D')) cs.bedKd = scalePID_d(code_value());
  6006. updatePID();
  6007. SERIAL_PROTOCOLRPGM(MSG_OK);
  6008. SERIAL_PROTOCOL(" p:");
  6009. SERIAL_PROTOCOL(cs.bedKp);
  6010. SERIAL_PROTOCOL(" i:");
  6011. SERIAL_PROTOCOL(unscalePID_i(cs.bedKi));
  6012. SERIAL_PROTOCOL(" d:");
  6013. SERIAL_PROTOCOL(unscalePID_d(cs.bedKd));
  6014. SERIAL_PROTOCOLLN("");
  6015. }
  6016. break;
  6017. #endif //PIDTEMP
  6018. //! ### M240 - Trigger camera
  6019. // --------------------------------------------
  6020. case 240: // M240 Triggers a camera by emulating a Canon RC-1 : http://www.doc-diy.net/photo/rc-1_hacked/
  6021. {
  6022. #ifdef CHDK
  6023. SET_OUTPUT(CHDK);
  6024. WRITE(CHDK, HIGH);
  6025. chdkHigh = _millis();
  6026. chdkActive = true;
  6027. #else
  6028. #if defined(PHOTOGRAPH_PIN) && PHOTOGRAPH_PIN > -1
  6029. const uint8_t NUM_PULSES=16;
  6030. const float PULSE_LENGTH=0.01524;
  6031. for(int i=0; i < NUM_PULSES; i++) {
  6032. WRITE(PHOTOGRAPH_PIN, HIGH);
  6033. _delay_ms(PULSE_LENGTH);
  6034. WRITE(PHOTOGRAPH_PIN, LOW);
  6035. _delay_ms(PULSE_LENGTH);
  6036. }
  6037. _delay(7.33);
  6038. for(int i=0; i < NUM_PULSES; i++) {
  6039. WRITE(PHOTOGRAPH_PIN, HIGH);
  6040. _delay_ms(PULSE_LENGTH);
  6041. WRITE(PHOTOGRAPH_PIN, LOW);
  6042. _delay_ms(PULSE_LENGTH);
  6043. }
  6044. #endif
  6045. #endif //chdk end if
  6046. }
  6047. break;
  6048. #ifdef PREVENT_DANGEROUS_EXTRUDE
  6049. //! ### M302 - Allow cold extrude, or set minimum extrude temperature
  6050. // -------------------------------------------------------------------
  6051. case 302:
  6052. {
  6053. float temp = .0;
  6054. if (code_seen('S')) temp=code_value();
  6055. set_extrude_min_temp(temp);
  6056. }
  6057. break;
  6058. #endif
  6059. //! ### M303 - PID autotune
  6060. // -------------------------------------
  6061. case 303:
  6062. {
  6063. float temp = 150.0;
  6064. int e=0;
  6065. int c=5;
  6066. if (code_seen('E')) e=code_value();
  6067. if (e<0)
  6068. temp=70;
  6069. if (code_seen('S')) temp=code_value();
  6070. if (code_seen('C')) c=code_value();
  6071. PID_autotune(temp, e, c);
  6072. }
  6073. break;
  6074. //! ### M400 - Wait for all moves to finish
  6075. // -----------------------------------------
  6076. case 400:
  6077. {
  6078. st_synchronize();
  6079. }
  6080. break;
  6081. //! ### M403 - Set filament type (material) for particular extruder and notify the MMU
  6082. // ----------------------------------------------
  6083. case 403:
  6084. {
  6085. // currently three different materials are needed (default, flex and PVA)
  6086. // add storing this information for different load/unload profiles etc. in the future
  6087. // firmware does not wait for "ok" from mmu
  6088. if (mmu_enabled)
  6089. {
  6090. uint8_t extruder = 255;
  6091. uint8_t filament = FILAMENT_UNDEFINED;
  6092. if(code_seen('E')) extruder = code_value();
  6093. if(code_seen('F')) filament = code_value();
  6094. mmu_set_filament_type(extruder, filament);
  6095. }
  6096. }
  6097. break;
  6098. //! ### M500 - Store settings in EEPROM
  6099. // -----------------------------------------
  6100. case 500:
  6101. {
  6102. Config_StoreSettings();
  6103. }
  6104. break;
  6105. //! ### M501 - Read settings from EEPROM
  6106. // ----------------------------------------
  6107. case 501:
  6108. {
  6109. Config_RetrieveSettings();
  6110. }
  6111. break;
  6112. //! ### M502 - Revert all settings to factory default
  6113. // -------------------------------------------------
  6114. case 502:
  6115. {
  6116. Config_ResetDefault();
  6117. }
  6118. break;
  6119. //! ### M503 - Repport all settings currently in memory
  6120. // -------------------------------------------------
  6121. case 503:
  6122. {
  6123. Config_PrintSettings();
  6124. }
  6125. break;
  6126. //! ### M509 - Force language selection
  6127. // ------------------------------------------------
  6128. case 509:
  6129. {
  6130. lang_reset();
  6131. SERIAL_ECHO_START;
  6132. SERIAL_PROTOCOLPGM(("LANG SEL FORCED"));
  6133. }
  6134. break;
  6135. #ifdef ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED
  6136. //! ### M540 - Abort print on endstop hit (enable/disable)
  6137. // -----------------------------------------------------
  6138. case 540:
  6139. {
  6140. if(code_seen('S')) abort_on_endstop_hit = code_value() > 0;
  6141. }
  6142. break;
  6143. #endif
  6144. #ifdef CUSTOM_M_CODE_SET_Z_PROBE_OFFSET
  6145. case CUSTOM_M_CODE_SET_Z_PROBE_OFFSET:
  6146. {
  6147. float value;
  6148. if (code_seen('Z'))
  6149. {
  6150. value = code_value();
  6151. if ((Z_PROBE_OFFSET_RANGE_MIN <= value) && (value <= Z_PROBE_OFFSET_RANGE_MAX))
  6152. {
  6153. cs.zprobe_zoffset = -value; // compare w/ line 278 of ConfigurationStore.cpp
  6154. SERIAL_ECHO_START;
  6155. SERIAL_ECHOLNRPGM(CAT4(MSG_ZPROBE_ZOFFSET, " ", MSG_OK,PSTR("")));
  6156. SERIAL_PROTOCOLLN("");
  6157. }
  6158. else
  6159. {
  6160. SERIAL_ECHO_START;
  6161. SERIAL_ECHORPGM(MSG_ZPROBE_ZOFFSET);
  6162. SERIAL_ECHORPGM(MSG_Z_MIN);
  6163. SERIAL_ECHO(Z_PROBE_OFFSET_RANGE_MIN);
  6164. SERIAL_ECHORPGM(MSG_Z_MAX);
  6165. SERIAL_ECHO(Z_PROBE_OFFSET_RANGE_MAX);
  6166. SERIAL_PROTOCOLLN("");
  6167. }
  6168. }
  6169. else
  6170. {
  6171. SERIAL_ECHO_START;
  6172. SERIAL_ECHOLNRPGM(CAT2(MSG_ZPROBE_ZOFFSET, PSTR(" : ")));
  6173. SERIAL_ECHO(-cs.zprobe_zoffset);
  6174. SERIAL_PROTOCOLLN("");
  6175. }
  6176. break;
  6177. }
  6178. #endif // CUSTOM_M_CODE_SET_Z_PROBE_OFFSET
  6179. #ifdef FILAMENTCHANGEENABLE
  6180. //! ### M600 - Initiate Filament change procedure
  6181. // --------------------------------------
  6182. case 600: //Pause for filament change X[pos] Y[pos] Z[relative lift] E[initial retract] L[later retract distance for removal]
  6183. {
  6184. st_synchronize();
  6185. float x_position = current_position[X_AXIS];
  6186. float y_position = current_position[Y_AXIS];
  6187. float z_shift = 0; // is it necessary to be a float?
  6188. float e_shift_init = 0;
  6189. float e_shift_late = 0;
  6190. bool automatic = false;
  6191. //Retract extruder
  6192. if(code_seen('E'))
  6193. {
  6194. e_shift_init = code_value();
  6195. }
  6196. else
  6197. {
  6198. #ifdef FILAMENTCHANGE_FIRSTRETRACT
  6199. e_shift_init = FILAMENTCHANGE_FIRSTRETRACT ;
  6200. #endif
  6201. }
  6202. //currently don't work as we are using the same unload sequence as in M702, needs re-work
  6203. if (code_seen('L'))
  6204. {
  6205. e_shift_late = code_value();
  6206. }
  6207. else
  6208. {
  6209. #ifdef FILAMENTCHANGE_FINALRETRACT
  6210. e_shift_late = FILAMENTCHANGE_FINALRETRACT;
  6211. #endif
  6212. }
  6213. //Lift Z
  6214. if(code_seen('Z'))
  6215. {
  6216. z_shift = code_value();
  6217. }
  6218. else
  6219. {
  6220. z_shift = gcode_M600_filament_change_z_shift<uint8_t>();
  6221. }
  6222. //Move XY to side
  6223. if(code_seen('X'))
  6224. {
  6225. x_position = code_value();
  6226. }
  6227. else
  6228. {
  6229. #ifdef FILAMENTCHANGE_XPOS
  6230. x_position = FILAMENTCHANGE_XPOS;
  6231. #endif
  6232. }
  6233. if(code_seen('Y'))
  6234. {
  6235. y_position = code_value();
  6236. }
  6237. else
  6238. {
  6239. #ifdef FILAMENTCHANGE_YPOS
  6240. y_position = FILAMENTCHANGE_YPOS ;
  6241. #endif
  6242. }
  6243. if (mmu_enabled && code_seen("AUTO"))
  6244. automatic = true;
  6245. gcode_M600(automatic, x_position, y_position, z_shift, e_shift_init, e_shift_late);
  6246. }
  6247. break;
  6248. #endif //FILAMENTCHANGEENABLE
  6249. //! ### M601 - Pause print
  6250. // -------------------------------
  6251. case 601:
  6252. {
  6253. cmdqueue_pop_front(); //trick because we want skip this command (M601) after restore
  6254. lcd_pause_print();
  6255. }
  6256. break;
  6257. //! ### M602 - Resume print
  6258. // -------------------------------
  6259. case 602: {
  6260. lcd_resume_print();
  6261. }
  6262. break;
  6263. //! ### M603 - Stop print
  6264. // -------------------------------
  6265. case 603: {
  6266. lcd_print_stop();
  6267. }
  6268. #ifdef PINDA_THERMISTOR
  6269. //! ### M860 - Wait for extruder temperature (PINDA)
  6270. // --------------------------------------------------------------
  6271. /*!
  6272. Wait for PINDA thermistor to reach target temperature
  6273. M860 [S<target_temperature>]
  6274. */
  6275. case 860:
  6276. {
  6277. int set_target_pinda = 0;
  6278. if (code_seen('S')) {
  6279. set_target_pinda = code_value();
  6280. }
  6281. else {
  6282. break;
  6283. }
  6284. LCD_MESSAGERPGM(_T(MSG_PLEASE_WAIT));
  6285. SERIAL_PROTOCOLPGM("Wait for PINDA target temperature:");
  6286. SERIAL_PROTOCOL(set_target_pinda);
  6287. SERIAL_PROTOCOLLN("");
  6288. codenum = _millis();
  6289. cancel_heatup = false;
  6290. bool is_pinda_cooling = false;
  6291. if ((degTargetBed() == 0) && (degTargetHotend(0) == 0)) {
  6292. is_pinda_cooling = true;
  6293. }
  6294. while ( ((!is_pinda_cooling) && (!cancel_heatup) && (current_temperature_pinda < set_target_pinda)) || (is_pinda_cooling && (current_temperature_pinda > set_target_pinda)) ) {
  6295. if ((_millis() - codenum) > 1000) //Print Temp Reading every 1 second while waiting.
  6296. {
  6297. SERIAL_PROTOCOLPGM("P:");
  6298. SERIAL_PROTOCOL_F(current_temperature_pinda, 1);
  6299. SERIAL_PROTOCOLPGM("/");
  6300. SERIAL_PROTOCOL(set_target_pinda);
  6301. SERIAL_PROTOCOLLN("");
  6302. codenum = _millis();
  6303. }
  6304. manage_heater();
  6305. manage_inactivity();
  6306. lcd_update(0);
  6307. }
  6308. LCD_MESSAGERPGM(MSG_OK);
  6309. break;
  6310. }
  6311. //! ### M861 - Set/Get PINDA temperature compensation offsets
  6312. // -----------------------------------------------------------
  6313. /*!
  6314. M861 [ ? | ! | Z | S<microsteps> [I<table_index>] ]
  6315. - `?` - Print current EEPROM offset values
  6316. - `!` - Set factory default values
  6317. - `Z` - Set all values to 0 (effectively disabling PINDA temperature compensation)
  6318. - `S<microsteps>` `I<table_index>` - Set compensation ustep value S for compensation table index I
  6319. */
  6320. case 861:
  6321. if (code_seen('?')) { // ? - Print out current EEPROM offset values
  6322. uint8_t cal_status = calibration_status_pinda();
  6323. int16_t usteps = 0;
  6324. cal_status ? SERIAL_PROTOCOLLN("PINDA cal status: 1") : SERIAL_PROTOCOLLN("PINDA cal status: 0");
  6325. SERIAL_PROTOCOLLN("index, temp, ustep, um");
  6326. for (uint8_t i = 0; i < 6; i++)
  6327. {
  6328. if(i>0) EEPROM_read_B(EEPROM_PROBE_TEMP_SHIFT + (i-1) * 2, &usteps);
  6329. float mm = ((float)usteps) / cs.axis_steps_per_unit[Z_AXIS];
  6330. i == 0 ? SERIAL_PROTOCOLPGM("n/a") : SERIAL_PROTOCOL(i - 1);
  6331. SERIAL_PROTOCOLPGM(", ");
  6332. SERIAL_PROTOCOL(35 + (i * 5));
  6333. SERIAL_PROTOCOLPGM(", ");
  6334. SERIAL_PROTOCOL(usteps);
  6335. SERIAL_PROTOCOLPGM(", ");
  6336. SERIAL_PROTOCOL(mm * 1000);
  6337. SERIAL_PROTOCOLLN("");
  6338. }
  6339. }
  6340. else if (code_seen('!')) { // ! - Set factory default values
  6341. eeprom_write_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 1);
  6342. int16_t z_shift = 8; //40C - 20um - 8usteps
  6343. EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT, &z_shift);
  6344. z_shift = 24; //45C - 60um - 24usteps
  6345. EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + 2, &z_shift);
  6346. z_shift = 48; //50C - 120um - 48usteps
  6347. EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + 4, &z_shift);
  6348. z_shift = 80; //55C - 200um - 80usteps
  6349. EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + 6, &z_shift);
  6350. z_shift = 120; //60C - 300um - 120usteps
  6351. EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + 8, &z_shift);
  6352. SERIAL_PROTOCOLLN("factory restored");
  6353. }
  6354. else if (code_seen('Z')) { // Z - Set all values to 0 (effectively disabling PINDA temperature compensation)
  6355. eeprom_write_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 1);
  6356. int16_t z_shift = 0;
  6357. for (uint8_t i = 0; i < 5; i++) EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + i * 2, &z_shift);
  6358. SERIAL_PROTOCOLLN("zerorized");
  6359. }
  6360. else if (code_seen('S')) { // Sxxx Iyyy - Set compensation ustep value S for compensation table index I
  6361. int16_t usteps = code_value();
  6362. if (code_seen('I')) {
  6363. uint8_t index = code_value();
  6364. if (index < 5) {
  6365. EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + index * 2, &usteps);
  6366. SERIAL_PROTOCOLLN("OK");
  6367. SERIAL_PROTOCOLLN("index, temp, ustep, um");
  6368. for (uint8_t i = 0; i < 6; i++)
  6369. {
  6370. usteps = 0;
  6371. if (i>0) EEPROM_read_B(EEPROM_PROBE_TEMP_SHIFT + (i - 1) * 2, &usteps);
  6372. float mm = ((float)usteps) / cs.axis_steps_per_unit[Z_AXIS];
  6373. i == 0 ? SERIAL_PROTOCOLPGM("n/a") : SERIAL_PROTOCOL(i - 1);
  6374. SERIAL_PROTOCOLPGM(", ");
  6375. SERIAL_PROTOCOL(35 + (i * 5));
  6376. SERIAL_PROTOCOLPGM(", ");
  6377. SERIAL_PROTOCOL(usteps);
  6378. SERIAL_PROTOCOLPGM(", ");
  6379. SERIAL_PROTOCOL(mm * 1000);
  6380. SERIAL_PROTOCOLLN("");
  6381. }
  6382. }
  6383. }
  6384. }
  6385. else {
  6386. SERIAL_PROTOCOLPGM("no valid command");
  6387. }
  6388. break;
  6389. #endif //PINDA_THERMISTOR
  6390. //! ### M862 - Print checking
  6391. // ----------------------------------------------
  6392. /*!
  6393. Checks the parameters of the printer and gcode and performs compatibility check
  6394. - M862.1 { P<nozzle_diameter> | Q }
  6395. - M862.2 { P<model_code> | Q }
  6396. - M862.3 { P"<model_name>" | Q }
  6397. - M862.4 { P<fw_version> | Q }
  6398. - M862.5 { P<gcode_level> | Q }
  6399. When run with P<> argument, the check is performed against the input value.
  6400. When run with Q argument, the current value is shown.
  6401. M862.3 accepts text identifiers of printer types too.
  6402. The syntax of M862.3 is (note the quotes around the type):
  6403. M862.3 P "MK3S"
  6404. Accepted printer type identifiers and their numeric counterparts:
  6405. - MK1 (100)
  6406. - MK2 (200)
  6407. - MK2MM (201)
  6408. - MK2S (202)
  6409. - MK2SMM (203)
  6410. - MK2.5 (250)
  6411. - MK2.5MMU2 (20250)
  6412. - MK2.5S (252)
  6413. - MK2.5SMMU2S (20252)
  6414. - MK3 (300)
  6415. - MK3MMU2 (20300)
  6416. - MK3S (302)
  6417. - MK3SMMU2S (20302)
  6418. */
  6419. case 862: // M862: print checking
  6420. float nDummy;
  6421. uint8_t nCommand;
  6422. nCommand=(uint8_t)(modff(code_value_float(),&nDummy)*10.0+0.5);
  6423. switch((ClPrintChecking)nCommand)
  6424. {
  6425. case ClPrintChecking::_Nozzle: // ~ .1
  6426. uint16_t nDiameter;
  6427. if(code_seen('P'))
  6428. {
  6429. nDiameter=(uint16_t)(code_value()*1000.0+0.5); // [,um]
  6430. nozzle_diameter_check(nDiameter);
  6431. }
  6432. /*
  6433. else if(code_seen('S')&&farm_mode)
  6434. {
  6435. nDiameter=(uint16_t)(code_value()*1000.0+0.5); // [,um]
  6436. eeprom_update_byte((uint8_t*)EEPROM_NOZZLE_DIAMETER,(uint8_t)ClNozzleDiameter::_Diameter_Undef); // for correct synchronization after farm-mode exiting
  6437. eeprom_update_word((uint16_t*)EEPROM_NOZZLE_DIAMETER_uM,nDiameter);
  6438. }
  6439. */
  6440. else if(code_seen('Q'))
  6441. SERIAL_PROTOCOLLN((float)eeprom_read_word((uint16_t*)EEPROM_NOZZLE_DIAMETER_uM)/1000.0);
  6442. break;
  6443. case ClPrintChecking::_Model: // ~ .2
  6444. if(code_seen('P'))
  6445. {
  6446. uint16_t nPrinterModel;
  6447. nPrinterModel=(uint16_t)code_value_long();
  6448. printer_model_check(nPrinterModel);
  6449. }
  6450. else if(code_seen('Q'))
  6451. SERIAL_PROTOCOLLN(nPrinterType);
  6452. break;
  6453. case ClPrintChecking::_Smodel: // ~ .3
  6454. if(code_seen('P'))
  6455. printer_smodel_check(strchr_pointer);
  6456. else if(code_seen('Q'))
  6457. SERIAL_PROTOCOLLNRPGM(sPrinterName);
  6458. break;
  6459. case ClPrintChecking::_Version: // ~ .4
  6460. if(code_seen('P'))
  6461. fw_version_check(++strchr_pointer);
  6462. else if(code_seen('Q'))
  6463. SERIAL_PROTOCOLLN(FW_VERSION);
  6464. break;
  6465. case ClPrintChecking::_Gcode: // ~ .5
  6466. if(code_seen('P'))
  6467. {
  6468. uint16_t nGcodeLevel;
  6469. nGcodeLevel=(uint16_t)code_value_long();
  6470. gcode_level_check(nGcodeLevel);
  6471. }
  6472. else if(code_seen('Q'))
  6473. SERIAL_PROTOCOLLN(GCODE_LEVEL);
  6474. break;
  6475. }
  6476. break;
  6477. #ifdef LIN_ADVANCE
  6478. //! ### M900 - Set Linear advance options
  6479. // ----------------------------------------------
  6480. case 900:
  6481. gcode_M900();
  6482. break;
  6483. #endif
  6484. //! ### M907 - Set digital trimpot motor current using axis codes
  6485. // ---------------------------------------------------------------
  6486. case 907:
  6487. {
  6488. #ifdef TMC2130
  6489. for (int i = 0; i < NUM_AXIS; i++)
  6490. if(code_seen(axis_codes[i]))
  6491. {
  6492. long cur_mA = code_value_long();
  6493. uint8_t val = tmc2130_cur2val(cur_mA);
  6494. tmc2130_set_current_h(i, val);
  6495. tmc2130_set_current_r(i, val);
  6496. //if (i == E_AXIS) printf_P(PSTR("E-axis current=%ldmA\n"), cur_mA);
  6497. }
  6498. #else //TMC2130
  6499. #if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
  6500. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) st_current_set(i,code_value());
  6501. if(code_seen('B')) st_current_set(4,code_value());
  6502. if(code_seen('S')) for(int i=0;i<=4;i++) st_current_set(i,code_value());
  6503. #endif
  6504. #ifdef MOTOR_CURRENT_PWM_XY_PIN
  6505. if(code_seen('X')) st_current_set(0, code_value());
  6506. #endif
  6507. #ifdef MOTOR_CURRENT_PWM_Z_PIN
  6508. if(code_seen('Z')) st_current_set(1, code_value());
  6509. #endif
  6510. #ifdef MOTOR_CURRENT_PWM_E_PIN
  6511. if(code_seen('E')) st_current_set(2, code_value());
  6512. #endif
  6513. #endif //TMC2130
  6514. }
  6515. break;
  6516. //! ### M908 - Control digital trimpot directly
  6517. // ---------------------------------------------------------
  6518. case 908:
  6519. {
  6520. #if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
  6521. uint8_t channel,current;
  6522. if(code_seen('P')) channel=code_value();
  6523. if(code_seen('S')) current=code_value();
  6524. digitalPotWrite(channel, current);
  6525. #endif
  6526. }
  6527. break;
  6528. #ifdef TMC2130_SERVICE_CODES_M910_M918
  6529. //! ### M910 - TMC2130 init
  6530. // -----------------------------------------------
  6531. case 910:
  6532. {
  6533. tmc2130_init();
  6534. }
  6535. break;
  6536. //! ### M911 - Set TMC2130 holding currents
  6537. // -------------------------------------------------
  6538. case 911:
  6539. {
  6540. if (code_seen('X')) tmc2130_set_current_h(0, code_value());
  6541. if (code_seen('Y')) tmc2130_set_current_h(1, code_value());
  6542. if (code_seen('Z')) tmc2130_set_current_h(2, code_value());
  6543. if (code_seen('E')) tmc2130_set_current_h(3, code_value());
  6544. }
  6545. break;
  6546. //! ### M912 - Set TMC2130 running currents
  6547. // -----------------------------------------------
  6548. case 912:
  6549. {
  6550. if (code_seen('X')) tmc2130_set_current_r(0, code_value());
  6551. if (code_seen('Y')) tmc2130_set_current_r(1, code_value());
  6552. if (code_seen('Z')) tmc2130_set_current_r(2, code_value());
  6553. if (code_seen('E')) tmc2130_set_current_r(3, code_value());
  6554. }
  6555. break;
  6556. //! ### M913 - Print TMC2130 currents
  6557. // -----------------------------
  6558. case 913:
  6559. {
  6560. tmc2130_print_currents();
  6561. }
  6562. break;
  6563. //! ### M914 - Set TMC2130 normal mode
  6564. // ------------------------------
  6565. case 914:
  6566. {
  6567. tmc2130_mode = TMC2130_MODE_NORMAL;
  6568. update_mode_profile();
  6569. tmc2130_init();
  6570. }
  6571. break;
  6572. //! ### M95 - Set TMC2130 silent mode
  6573. // ------------------------------
  6574. case 915:
  6575. {
  6576. tmc2130_mode = TMC2130_MODE_SILENT;
  6577. update_mode_profile();
  6578. tmc2130_init();
  6579. }
  6580. break;
  6581. //! ### M916 - Set TMC2130 Stallguard sensitivity threshold
  6582. // -------------------------------------------------------
  6583. case 916:
  6584. {
  6585. if (code_seen('X')) tmc2130_sg_thr[X_AXIS] = code_value();
  6586. if (code_seen('Y')) tmc2130_sg_thr[Y_AXIS] = code_value();
  6587. if (code_seen('Z')) tmc2130_sg_thr[Z_AXIS] = code_value();
  6588. if (code_seen('E')) tmc2130_sg_thr[E_AXIS] = code_value();
  6589. for (uint8_t a = X_AXIS; a <= E_AXIS; a++)
  6590. printf_P(_N("tmc2130_sg_thr[%c]=%d\n"), "XYZE"[a], tmc2130_sg_thr[a]);
  6591. }
  6592. break;
  6593. //! ### M917 - Set TMC2130 PWM amplitude offset (pwm_ampl)
  6594. // --------------------------------------------------------------
  6595. case 917:
  6596. {
  6597. if (code_seen('X')) tmc2130_set_pwm_ampl(0, code_value());
  6598. if (code_seen('Y')) tmc2130_set_pwm_ampl(1, code_value());
  6599. if (code_seen('Z')) tmc2130_set_pwm_ampl(2, code_value());
  6600. if (code_seen('E')) tmc2130_set_pwm_ampl(3, code_value());
  6601. }
  6602. break;
  6603. //! ### M918 - Set TMC2130 PWM amplitude gradient (pwm_grad)
  6604. // -------------------------------------------------------------
  6605. case 918:
  6606. {
  6607. if (code_seen('X')) tmc2130_set_pwm_grad(0, code_value());
  6608. if (code_seen('Y')) tmc2130_set_pwm_grad(1, code_value());
  6609. if (code_seen('Z')) tmc2130_set_pwm_grad(2, code_value());
  6610. if (code_seen('E')) tmc2130_set_pwm_grad(3, code_value());
  6611. }
  6612. break;
  6613. #endif //TMC2130_SERVICE_CODES_M910_M918
  6614. //! ### M350 - Set microstepping mode
  6615. // ---------------------------------------------------
  6616. //! Warning: Steps per unit remains unchanged. S code sets stepping mode for all drivers.
  6617. case 350:
  6618. {
  6619. #ifdef TMC2130
  6620. if(code_seen('E'))
  6621. {
  6622. uint16_t res_new = code_value();
  6623. if ((res_new == 8) || (res_new == 16) || (res_new == 32) || (res_new == 64) || (res_new == 128))
  6624. {
  6625. st_synchronize();
  6626. uint8_t axis = E_AXIS;
  6627. uint16_t res = tmc2130_get_res(axis);
  6628. tmc2130_set_res(axis, res_new);
  6629. cs.axis_ustep_resolution[axis] = res_new;
  6630. if (res_new > res)
  6631. {
  6632. uint16_t fac = (res_new / res);
  6633. cs.axis_steps_per_unit[axis] *= fac;
  6634. position[E_AXIS] *= fac;
  6635. }
  6636. else
  6637. {
  6638. uint16_t fac = (res / res_new);
  6639. cs.axis_steps_per_unit[axis] /= fac;
  6640. position[E_AXIS] /= fac;
  6641. }
  6642. }
  6643. }
  6644. #else //TMC2130
  6645. #if defined(X_MS1_PIN) && X_MS1_PIN > -1
  6646. if(code_seen('S')) for(int i=0;i<=4;i++) microstep_mode(i,code_value());
  6647. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) microstep_mode(i,(uint8_t)code_value());
  6648. if(code_seen('B')) microstep_mode(4,code_value());
  6649. microstep_readings();
  6650. #endif
  6651. #endif //TMC2130
  6652. }
  6653. break;
  6654. //! ### M351 - Toggle Microstep Pins
  6655. // -----------------------------------
  6656. //! Toggle MS1 MS2 pins directly, S# determines MS1 or MS2, X# sets the pin high/low.
  6657. //!
  6658. //! M351 [B<0|1>] [E<0|1>] S<1|2> [X<0|1>] [Y<0|1>] [Z<0|1>]
  6659. case 351:
  6660. {
  6661. #if defined(X_MS1_PIN) && X_MS1_PIN > -1
  6662. if(code_seen('S')) switch((int)code_value())
  6663. {
  6664. case 1:
  6665. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) microstep_ms(i,code_value(),-1);
  6666. if(code_seen('B')) microstep_ms(4,code_value(),-1);
  6667. break;
  6668. case 2:
  6669. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) microstep_ms(i,-1,code_value());
  6670. if(code_seen('B')) microstep_ms(4,-1,code_value());
  6671. break;
  6672. }
  6673. microstep_readings();
  6674. #endif
  6675. }
  6676. break;
  6677. //! ### M701 - Load filament
  6678. // -------------------------
  6679. case 701:
  6680. {
  6681. if (mmu_enabled && code_seen('E'))
  6682. tmp_extruder = code_value();
  6683. gcode_M701();
  6684. }
  6685. break;
  6686. //! ### M702 - Unload filament
  6687. // ------------------------
  6688. /*!
  6689. M702 [U C]
  6690. - `U` Unload all filaments used in current print
  6691. - `C` Unload just current filament
  6692. - without any parameters unload all filaments
  6693. */
  6694. case 702:
  6695. {
  6696. #ifdef SNMM
  6697. if (code_seen('U'))
  6698. extr_unload_used(); //! if "U" unload all filaments which were used in current print
  6699. else if (code_seen('C'))
  6700. extr_unload(); //! if "C" unload just current filament
  6701. else
  6702. extr_unload_all(); //! otherwise unload all filaments
  6703. #else
  6704. if (code_seen('C')) {
  6705. if(mmu_enabled) extr_unload(); //! if "C" unload current filament; if mmu is not present no action is performed
  6706. }
  6707. else {
  6708. if(mmu_enabled) extr_unload(); //! unload current filament
  6709. else unload_filament();
  6710. }
  6711. #endif //SNMM
  6712. }
  6713. break;
  6714. //! ### M999 - Restart after being stopped
  6715. // ------------------------------------
  6716. case 999:
  6717. Stopped = false;
  6718. lcd_reset_alert_level();
  6719. gcode_LastN = Stopped_gcode_LastN;
  6720. FlushSerialRequestResend();
  6721. break;
  6722. default:
  6723. printf_P(PSTR("Unknown M code: %s \n"), cmdbuffer + bufindr + CMDHDRSIZE);
  6724. }
  6725. // printf_P(_N("END M-CODE=%u\n"), mcode_in_progress);
  6726. mcode_in_progress = 0;
  6727. }
  6728. }
  6729. // end if(code_seen('M')) (end of M codes)
  6730. //! -----------------------------------------------------------------------------------------
  6731. //! T Codes
  6732. //!
  6733. //! T<extruder nr.> - select extruder in case of multi extruder printer
  6734. //! select filament in case of MMU_V2
  6735. //! if extruder is "?", open menu to let the user select extruder/filament
  6736. //!
  6737. //! For MMU_V2:
  6738. //! @n T<n> Gcode to extrude at least 38.10 mm at feedrate 19.02 mm/s must follow immediately to load to extruder wheels.
  6739. //! @n T? Gcode to extrude shouldn't have to follow, load to extruder wheels is done automatically
  6740. //! @n Tx Same as T?, except nozzle doesn't have to be preheated. Tc must be placed after extruder nozzle is preheated to finish filament load.
  6741. //! @n Tc Load to nozzle after filament was prepared by Tc and extruder nozzle is already heated.
  6742. else if(code_seen('T'))
  6743. {
  6744. int index;
  6745. bool load_to_nozzle = false;
  6746. for (index = 1; *(strchr_pointer + index) == ' ' || *(strchr_pointer + index) == '\t'; index++);
  6747. *(strchr_pointer + index) = tolower(*(strchr_pointer + index));
  6748. if ((*(strchr_pointer + index) < '0' || *(strchr_pointer + index) > '4') && *(strchr_pointer + index) != '?' && *(strchr_pointer + index) != 'x' && *(strchr_pointer + index) != 'c') {
  6749. SERIAL_ECHOLNPGM("Invalid T code.");
  6750. }
  6751. else if (*(strchr_pointer + index) == 'x'){ //load to bondtech gears; if mmu is not present do nothing
  6752. if (mmu_enabled)
  6753. {
  6754. tmp_extruder = choose_menu_P(_T(MSG_CHOOSE_FILAMENT), _T(MSG_FILAMENT));
  6755. if ((tmp_extruder == mmu_extruder) && mmu_fil_loaded) //dont execute the same T-code twice in a row
  6756. {
  6757. printf_P(PSTR("Duplicate T-code ignored.\n"));
  6758. }
  6759. else
  6760. {
  6761. st_synchronize();
  6762. mmu_command(MmuCmd::T0 + tmp_extruder);
  6763. manage_response(true, true, MMU_TCODE_MOVE);
  6764. }
  6765. }
  6766. }
  6767. else if (*(strchr_pointer + index) == 'c') { //load to from bondtech gears to nozzle (nozzle should be preheated)
  6768. if (mmu_enabled)
  6769. {
  6770. st_synchronize();
  6771. mmu_continue_loading(is_usb_printing || (lcd_commands_type == LcdCommands::Layer1Cal));
  6772. mmu_extruder = tmp_extruder; //filament change is finished
  6773. mmu_load_to_nozzle();
  6774. }
  6775. }
  6776. else {
  6777. if (*(strchr_pointer + index) == '?')
  6778. {
  6779. if(mmu_enabled)
  6780. {
  6781. tmp_extruder = choose_menu_P(_T(MSG_CHOOSE_FILAMENT), _T(MSG_FILAMENT));
  6782. load_to_nozzle = true;
  6783. } else
  6784. {
  6785. tmp_extruder = choose_menu_P(_T(MSG_CHOOSE_EXTRUDER), _T(MSG_EXTRUDER));
  6786. }
  6787. }
  6788. else {
  6789. tmp_extruder = code_value();
  6790. if (mmu_enabled && lcd_autoDepleteEnabled())
  6791. {
  6792. tmp_extruder = ad_getAlternative(tmp_extruder);
  6793. }
  6794. }
  6795. st_synchronize();
  6796. snmm_filaments_used |= (1 << tmp_extruder); //for stop print
  6797. if (mmu_enabled)
  6798. {
  6799. if ((tmp_extruder == mmu_extruder) && mmu_fil_loaded) //dont execute the same T-code twice in a row
  6800. {
  6801. printf_P(PSTR("Duplicate T-code ignored.\n"));
  6802. }
  6803. else
  6804. {
  6805. #if defined(MMU_HAS_CUTTER) && defined(MMU_ALWAYS_CUT)
  6806. if (EEPROM_MMU_CUTTER_ENABLED_always == eeprom_read_byte((uint8_t*)EEPROM_MMU_CUTTER_ENABLED))
  6807. {
  6808. mmu_command(MmuCmd::K0 + tmp_extruder);
  6809. manage_response(true, true, MMU_UNLOAD_MOVE);
  6810. }
  6811. #endif //defined(MMU_HAS_CUTTER) && defined(MMU_ALWAYS_CUT)
  6812. mmu_command(MmuCmd::T0 + tmp_extruder);
  6813. manage_response(true, true, MMU_TCODE_MOVE);
  6814. mmu_continue_loading(is_usb_printing || (lcd_commands_type == LcdCommands::Layer1Cal));
  6815. mmu_extruder = tmp_extruder; //filament change is finished
  6816. if (load_to_nozzle)// for single material usage with mmu
  6817. {
  6818. mmu_load_to_nozzle();
  6819. }
  6820. }
  6821. }
  6822. else
  6823. {
  6824. #ifdef SNMM
  6825. #ifdef LIN_ADVANCE
  6826. if (mmu_extruder != tmp_extruder)
  6827. clear_current_adv_vars(); //Check if the selected extruder is not the active one and reset LIN_ADVANCE variables if so.
  6828. #endif
  6829. mmu_extruder = tmp_extruder;
  6830. _delay(100);
  6831. disable_e0();
  6832. disable_e1();
  6833. disable_e2();
  6834. pinMode(E_MUX0_PIN, OUTPUT);
  6835. pinMode(E_MUX1_PIN, OUTPUT);
  6836. _delay(100);
  6837. SERIAL_ECHO_START;
  6838. SERIAL_ECHO("T:");
  6839. SERIAL_ECHOLN((int)tmp_extruder);
  6840. switch (tmp_extruder) {
  6841. case 1:
  6842. WRITE(E_MUX0_PIN, HIGH);
  6843. WRITE(E_MUX1_PIN, LOW);
  6844. break;
  6845. case 2:
  6846. WRITE(E_MUX0_PIN, LOW);
  6847. WRITE(E_MUX1_PIN, HIGH);
  6848. break;
  6849. case 3:
  6850. WRITE(E_MUX0_PIN, HIGH);
  6851. WRITE(E_MUX1_PIN, HIGH);
  6852. break;
  6853. default:
  6854. WRITE(E_MUX0_PIN, LOW);
  6855. WRITE(E_MUX1_PIN, LOW);
  6856. break;
  6857. }
  6858. _delay(100);
  6859. #else //SNMM
  6860. if (tmp_extruder >= EXTRUDERS) {
  6861. SERIAL_ECHO_START;
  6862. SERIAL_ECHOPGM("T");
  6863. SERIAL_PROTOCOLLN((int)tmp_extruder);
  6864. SERIAL_ECHOLNRPGM(_n("Invalid extruder"));////MSG_INVALID_EXTRUDER
  6865. }
  6866. else {
  6867. #if EXTRUDERS > 1
  6868. boolean make_move = false;
  6869. #endif
  6870. if (code_seen('F')) {
  6871. #if EXTRUDERS > 1
  6872. make_move = true;
  6873. #endif
  6874. next_feedrate = code_value();
  6875. if (next_feedrate > 0.0) {
  6876. feedrate = next_feedrate;
  6877. }
  6878. }
  6879. #if EXTRUDERS > 1
  6880. if (tmp_extruder != active_extruder) {
  6881. // Save current position to return to after applying extruder offset
  6882. memcpy(destination, current_position, sizeof(destination));
  6883. // Offset extruder (only by XY)
  6884. int i;
  6885. for (i = 0; i < 2; i++) {
  6886. current_position[i] = current_position[i] -
  6887. extruder_offset[i][active_extruder] +
  6888. extruder_offset[i][tmp_extruder];
  6889. }
  6890. // Set the new active extruder and position
  6891. active_extruder = tmp_extruder;
  6892. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  6893. // Move to the old position if 'F' was in the parameters
  6894. if (make_move && Stopped == false) {
  6895. prepare_move();
  6896. }
  6897. }
  6898. #endif
  6899. SERIAL_ECHO_START;
  6900. SERIAL_ECHORPGM(_n("Active Extruder: "));////MSG_ACTIVE_EXTRUDER
  6901. SERIAL_PROTOCOLLN((int)active_extruder);
  6902. }
  6903. #endif //SNMM
  6904. }
  6905. }
  6906. } // end if(code_seen('T')) (end of T codes)
  6907. //! ----------------------------------------------------------------------------------------------
  6908. else if (code_seen('D')) // D codes (debug)
  6909. {
  6910. switch((int)code_value())
  6911. {
  6912. //! ### D-1 - Endless loop
  6913. // -------------------
  6914. case -1:
  6915. dcode__1(); break;
  6916. #ifdef DEBUG_DCODES
  6917. //! ### D0 - Reset
  6918. // --------------
  6919. case 0:
  6920. dcode_0(); break;
  6921. //! ### D1 - Clear EEPROM
  6922. // ------------------
  6923. case 1:
  6924. dcode_1(); break;
  6925. //! ### D2 - Read/Write RAM
  6926. // --------------------
  6927. case 2:
  6928. dcode_2(); break;
  6929. #endif //DEBUG_DCODES
  6930. #ifdef DEBUG_DCODE3
  6931. //! ### D3 - Read/Write EEPROM
  6932. // -----------------------
  6933. case 3:
  6934. dcode_3(); break;
  6935. #endif //DEBUG_DCODE3
  6936. #ifdef DEBUG_DCODES
  6937. //! ### D4 - Read/Write PIN
  6938. // ---------------------
  6939. case 4:
  6940. dcode_4(); break;
  6941. #endif //DEBUG_DCODES
  6942. #ifdef DEBUG_DCODE5
  6943. //! ### D5 - Read/Write FLASH
  6944. // ------------------------
  6945. case 5:
  6946. dcode_5(); break;
  6947. break;
  6948. #endif //DEBUG_DCODE5
  6949. #ifdef DEBUG_DCODES
  6950. //! ### D6 - Read/Write external FLASH
  6951. // ---------------------------------------
  6952. case 6:
  6953. dcode_6(); break;
  6954. //! ### D7 - Read/Write Bootloader
  6955. // -------------------------------
  6956. case 7:
  6957. dcode_7(); break;
  6958. //! ### D8 - Read/Write PINDA
  6959. // ---------------------------
  6960. case 8:
  6961. dcode_8(); break;
  6962. // ### D9 - Read/Write ADC
  6963. // ------------------------
  6964. case 9:
  6965. dcode_9(); break;
  6966. //! ### D10 - XYZ calibration = OK
  6967. // ------------------------------
  6968. case 10:
  6969. dcode_10(); break;
  6970. #endif //DEBUG_DCODES
  6971. #ifdef HEATBED_ANALYSIS
  6972. //! ### D80 - Bed check
  6973. // ---------------------
  6974. /*!
  6975. - `E` - dimension x
  6976. - `F` - dimention y
  6977. - `G` - points_x
  6978. - `H` - points_y
  6979. - `I` - offset_x
  6980. - `J` - offset_y
  6981. */
  6982. case 80:
  6983. {
  6984. float dimension_x = 40;
  6985. float dimension_y = 40;
  6986. int points_x = 40;
  6987. int points_y = 40;
  6988. float offset_x = 74;
  6989. float offset_y = 33;
  6990. if (code_seen('E')) dimension_x = code_value();
  6991. if (code_seen('F')) dimension_y = code_value();
  6992. if (code_seen('G')) {points_x = code_value(); }
  6993. if (code_seen('H')) {points_y = code_value(); }
  6994. if (code_seen('I')) {offset_x = code_value(); }
  6995. if (code_seen('J')) {offset_y = code_value(); }
  6996. printf_P(PSTR("DIM X: %f\n"), dimension_x);
  6997. printf_P(PSTR("DIM Y: %f\n"), dimension_y);
  6998. printf_P(PSTR("POINTS X: %d\n"), points_x);
  6999. printf_P(PSTR("POINTS Y: %d\n"), points_y);
  7000. printf_P(PSTR("OFFSET X: %f\n"), offset_x);
  7001. printf_P(PSTR("OFFSET Y: %f\n"), offset_y);
  7002. bed_check(dimension_x,dimension_y,points_x,points_y,offset_x,offset_y);
  7003. }break;
  7004. //! ### D81 - Bed analysis
  7005. // -----------------------------
  7006. /*!
  7007. - `E` - dimension x
  7008. - `F` - dimention y
  7009. - `G` - points_x
  7010. - `H` - points_y
  7011. - `I` - offset_x
  7012. - `J` - offset_y
  7013. */
  7014. case 81:
  7015. {
  7016. float dimension_x = 40;
  7017. float dimension_y = 40;
  7018. int points_x = 40;
  7019. int points_y = 40;
  7020. float offset_x = 74;
  7021. float offset_y = 33;
  7022. if (code_seen('E')) dimension_x = code_value();
  7023. if (code_seen('F')) dimension_y = code_value();
  7024. if (code_seen("G")) { strchr_pointer+=1; points_x = code_value(); }
  7025. if (code_seen("H")) { strchr_pointer+=1; points_y = code_value(); }
  7026. if (code_seen("I")) { strchr_pointer+=1; offset_x = code_value(); }
  7027. if (code_seen("J")) { strchr_pointer+=1; offset_y = code_value(); }
  7028. bed_analysis(dimension_x,dimension_y,points_x,points_y,offset_x,offset_y);
  7029. } break;
  7030. #endif //HEATBED_ANALYSIS
  7031. #ifdef DEBUG_DCODES
  7032. //! ### D106 print measured fan speed for different pwm values
  7033. // --------------------------------------------------------------
  7034. case 106:
  7035. {
  7036. for (int i = 255; i > 0; i = i - 5) {
  7037. fanSpeed = i;
  7038. //delay_keep_alive(2000);
  7039. for (int j = 0; j < 100; j++) {
  7040. delay_keep_alive(100);
  7041. }
  7042. printf_P(_N("%d: %d\n"), i, fan_speed[1]);
  7043. }
  7044. }break;
  7045. #ifdef TMC2130
  7046. //! ### D2130 - TMC2130 Trinamic stepper controller
  7047. // ---------------------------
  7048. /*!
  7049. D2130<axis><command>[subcommand][value]
  7050. - <command>:
  7051. - '0' current off
  7052. - '1' current on
  7053. - '+' single step
  7054. - * value sereval steps
  7055. - '-' dtto oposite direction
  7056. - '?' read register
  7057. - * "mres"
  7058. - * "step"
  7059. - * "mscnt"
  7060. - * "mscuract"
  7061. - * "wave"
  7062. - '!' set register
  7063. - * "mres"
  7064. - * "step"
  7065. - * "wave"
  7066. - '@' home calibrate axis
  7067. Example:
  7068. D2130E?wave ... print extruder microstep linearity compensation curve
  7069. D2130E!wave0 ... disable extruder linearity compensation curve, (sine curve is used)
  7070. D2130E!wave220 ... (sin(x))^1.1 extruder microstep compensation curve used
  7071. */
  7072. case 2130:
  7073. dcode_2130(); break;
  7074. #endif //TMC2130
  7075. #if (defined (FILAMENT_SENSOR) && defined(PAT9125))
  7076. //! ### D9125 - FILAMENT_SENSOR
  7077. // ---------------------------------
  7078. case 9125:
  7079. dcode_9125(); break;
  7080. #endif //FILAMENT_SENSOR
  7081. #endif //DEBUG_DCODES
  7082. }
  7083. }
  7084. else
  7085. {
  7086. SERIAL_ECHO_START;
  7087. SERIAL_ECHORPGM(MSG_UNKNOWN_COMMAND);
  7088. SERIAL_ECHO(CMDBUFFER_CURRENT_STRING);
  7089. SERIAL_ECHOLNPGM("\"(2)");
  7090. }
  7091. KEEPALIVE_STATE(NOT_BUSY);
  7092. ClearToSend();
  7093. }
  7094. /** @defgroup GCodes G-Code List
  7095. */
  7096. // ---------------------------------------------------
  7097. void FlushSerialRequestResend()
  7098. {
  7099. //char cmdbuffer[bufindr][100]="Resend:";
  7100. MYSERIAL.flush();
  7101. printf_P(_N("%S: %ld\n%S\n"), _n("Resend"), gcode_LastN + 1, MSG_OK);
  7102. }
  7103. // Confirm the execution of a command, if sent from a serial line.
  7104. // Execution of a command from a SD card will not be confirmed.
  7105. void ClearToSend()
  7106. {
  7107. previous_millis_cmd = _millis();
  7108. if ((CMDBUFFER_CURRENT_TYPE == CMDBUFFER_CURRENT_TYPE_USB) || (CMDBUFFER_CURRENT_TYPE == CMDBUFFER_CURRENT_TYPE_USB_WITH_LINENR))
  7109. SERIAL_PROTOCOLLNRPGM(MSG_OK);
  7110. }
  7111. #if MOTHERBOARD == BOARD_RAMBO_MINI_1_0 || MOTHERBOARD == BOARD_RAMBO_MINI_1_3
  7112. void update_currents() {
  7113. float current_high[3] = DEFAULT_PWM_MOTOR_CURRENT_LOUD;
  7114. float current_low[3] = DEFAULT_PWM_MOTOR_CURRENT;
  7115. float tmp_motor[3];
  7116. //SERIAL_ECHOLNPGM("Currents updated: ");
  7117. if (destination[Z_AXIS] < Z_SILENT) {
  7118. //SERIAL_ECHOLNPGM("LOW");
  7119. for (uint8_t i = 0; i < 3; i++) {
  7120. st_current_set(i, current_low[i]);
  7121. /*MYSERIAL.print(int(i));
  7122. SERIAL_ECHOPGM(": ");
  7123. MYSERIAL.println(current_low[i]);*/
  7124. }
  7125. }
  7126. else if (destination[Z_AXIS] > Z_HIGH_POWER) {
  7127. //SERIAL_ECHOLNPGM("HIGH");
  7128. for (uint8_t i = 0; i < 3; i++) {
  7129. st_current_set(i, current_high[i]);
  7130. /*MYSERIAL.print(int(i));
  7131. SERIAL_ECHOPGM(": ");
  7132. MYSERIAL.println(current_high[i]);*/
  7133. }
  7134. }
  7135. else {
  7136. for (uint8_t i = 0; i < 3; i++) {
  7137. float q = current_low[i] - Z_SILENT*((current_high[i] - current_low[i]) / (Z_HIGH_POWER - Z_SILENT));
  7138. tmp_motor[i] = ((current_high[i] - current_low[i]) / (Z_HIGH_POWER - Z_SILENT))*destination[Z_AXIS] + q;
  7139. st_current_set(i, tmp_motor[i]);
  7140. /*MYSERIAL.print(int(i));
  7141. SERIAL_ECHOPGM(": ");
  7142. MYSERIAL.println(tmp_motor[i]);*/
  7143. }
  7144. }
  7145. }
  7146. #endif //MOTHERBOARD == BOARD_RAMBO_MINI_1_0 || MOTHERBOARD == BOARD_RAMBO_MINI_1_3
  7147. void get_coordinates()
  7148. {
  7149. bool seen[4]={false,false,false,false};
  7150. for(int8_t i=0; i < NUM_AXIS; i++) {
  7151. if(code_seen(axis_codes[i]))
  7152. {
  7153. bool relative = axis_relative_modes[i] || relative_mode;
  7154. destination[i] = (float)code_value();
  7155. if (i == E_AXIS) {
  7156. float emult = extruder_multiplier[active_extruder];
  7157. if (emult != 1.) {
  7158. if (! relative) {
  7159. destination[i] -= current_position[i];
  7160. relative = true;
  7161. }
  7162. destination[i] *= emult;
  7163. }
  7164. }
  7165. if (relative)
  7166. destination[i] += current_position[i];
  7167. seen[i]=true;
  7168. #if MOTHERBOARD == BOARD_RAMBO_MINI_1_0 || MOTHERBOARD == BOARD_RAMBO_MINI_1_3
  7169. if (i == Z_AXIS && SilentModeMenu == SILENT_MODE_AUTO) update_currents();
  7170. #endif //MOTHERBOARD == BOARD_RAMBO_MINI_1_0 || MOTHERBOARD == BOARD_RAMBO_MINI_1_3
  7171. }
  7172. else destination[i] = current_position[i]; //Are these else lines really needed?
  7173. }
  7174. if(code_seen('F')) {
  7175. next_feedrate = code_value();
  7176. #ifdef MAX_SILENT_FEEDRATE
  7177. if (tmc2130_mode == TMC2130_MODE_SILENT)
  7178. if (next_feedrate > MAX_SILENT_FEEDRATE) next_feedrate = MAX_SILENT_FEEDRATE;
  7179. #endif //MAX_SILENT_FEEDRATE
  7180. if(next_feedrate > 0.0) feedrate = next_feedrate;
  7181. if (!seen[0] && !seen[1] && !seen[2] && seen[3])
  7182. {
  7183. // float e_max_speed =
  7184. // printf_P(PSTR("E MOVE speed %7.3f\n"), feedrate / 60)
  7185. }
  7186. }
  7187. }
  7188. void get_arc_coordinates()
  7189. {
  7190. #ifdef SF_ARC_FIX
  7191. bool relative_mode_backup = relative_mode;
  7192. relative_mode = true;
  7193. #endif
  7194. get_coordinates();
  7195. #ifdef SF_ARC_FIX
  7196. relative_mode=relative_mode_backup;
  7197. #endif
  7198. if(code_seen('I')) {
  7199. offset[0] = code_value();
  7200. }
  7201. else {
  7202. offset[0] = 0.0;
  7203. }
  7204. if(code_seen('J')) {
  7205. offset[1] = code_value();
  7206. }
  7207. else {
  7208. offset[1] = 0.0;
  7209. }
  7210. }
  7211. void clamp_to_software_endstops(float target[3])
  7212. {
  7213. #ifdef DEBUG_DISABLE_SWLIMITS
  7214. return;
  7215. #endif //DEBUG_DISABLE_SWLIMITS
  7216. world2machine_clamp(target[0], target[1]);
  7217. // Clamp the Z coordinate.
  7218. if (min_software_endstops) {
  7219. float negative_z_offset = 0;
  7220. #ifdef ENABLE_AUTO_BED_LEVELING
  7221. if (Z_PROBE_OFFSET_FROM_EXTRUDER < 0) negative_z_offset = negative_z_offset + Z_PROBE_OFFSET_FROM_EXTRUDER;
  7222. if (cs.add_homing[Z_AXIS] < 0) negative_z_offset = negative_z_offset + cs.add_homing[Z_AXIS];
  7223. #endif
  7224. if (target[Z_AXIS] < min_pos[Z_AXIS]+negative_z_offset) target[Z_AXIS] = min_pos[Z_AXIS]+negative_z_offset;
  7225. }
  7226. if (max_software_endstops) {
  7227. if (target[Z_AXIS] > max_pos[Z_AXIS]) target[Z_AXIS] = max_pos[Z_AXIS];
  7228. }
  7229. }
  7230. #ifdef MESH_BED_LEVELING
  7231. void mesh_plan_buffer_line(const float &x, const float &y, const float &z, const float &e, const float &feed_rate, const uint8_t extruder) {
  7232. float dx = x - current_position[X_AXIS];
  7233. float dy = y - current_position[Y_AXIS];
  7234. float dz = z - current_position[Z_AXIS];
  7235. int n_segments = 0;
  7236. if (mbl.active) {
  7237. float len = abs(dx) + abs(dy);
  7238. if (len > 0)
  7239. // Split to 3cm segments or shorter.
  7240. n_segments = int(ceil(len / 30.f));
  7241. }
  7242. if (n_segments > 1) {
  7243. float de = e - current_position[E_AXIS];
  7244. for (int i = 1; i < n_segments; ++ i) {
  7245. float t = float(i) / float(n_segments);
  7246. if (saved_printing || (mbl.active == false)) return;
  7247. plan_buffer_line(
  7248. current_position[X_AXIS] + t * dx,
  7249. current_position[Y_AXIS] + t * dy,
  7250. current_position[Z_AXIS] + t * dz,
  7251. current_position[E_AXIS] + t * de,
  7252. feed_rate, extruder);
  7253. }
  7254. }
  7255. // The rest of the path.
  7256. plan_buffer_line(x, y, z, e, feed_rate, extruder);
  7257. current_position[X_AXIS] = x;
  7258. current_position[Y_AXIS] = y;
  7259. current_position[Z_AXIS] = z;
  7260. current_position[E_AXIS] = e;
  7261. }
  7262. #endif // MESH_BED_LEVELING
  7263. void prepare_move()
  7264. {
  7265. clamp_to_software_endstops(destination);
  7266. previous_millis_cmd = _millis();
  7267. // Do not use feedmultiply for E or Z only moves
  7268. if( (current_position[X_AXIS] == destination [X_AXIS]) && (current_position[Y_AXIS] == destination [Y_AXIS])) {
  7269. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  7270. }
  7271. else {
  7272. #ifdef MESH_BED_LEVELING
  7273. mesh_plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate*feedmultiply*(1./(60.f*100.f)), active_extruder);
  7274. #else
  7275. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate*feedmultiply*(1./(60.f*100.f)), active_extruder);
  7276. #endif
  7277. }
  7278. for(int8_t i=0; i < NUM_AXIS; i++) {
  7279. current_position[i] = destination[i];
  7280. }
  7281. }
  7282. void prepare_arc_move(char isclockwise) {
  7283. float r = hypot(offset[X_AXIS], offset[Y_AXIS]); // Compute arc radius for mc_arc
  7284. // Trace the arc
  7285. mc_arc(current_position, destination, offset, X_AXIS, Y_AXIS, Z_AXIS, feedrate*feedmultiply/60/100.0, r, isclockwise, active_extruder);
  7286. // As far as the parser is concerned, the position is now == target. In reality the
  7287. // motion control system might still be processing the action and the real tool position
  7288. // in any intermediate location.
  7289. for(int8_t i=0; i < NUM_AXIS; i++) {
  7290. current_position[i] = destination[i];
  7291. }
  7292. previous_millis_cmd = _millis();
  7293. }
  7294. #if defined(CONTROLLERFAN_PIN) && CONTROLLERFAN_PIN > -1
  7295. #if defined(FAN_PIN)
  7296. #if CONTROLLERFAN_PIN == FAN_PIN
  7297. #error "You cannot set CONTROLLERFAN_PIN equal to FAN_PIN"
  7298. #endif
  7299. #endif
  7300. unsigned long lastMotor = 0; //Save the time for when a motor was turned on last
  7301. unsigned long lastMotorCheck = 0;
  7302. void controllerFan()
  7303. {
  7304. if ((_millis() - lastMotorCheck) >= 2500) //Not a time critical function, so we only check every 2500ms
  7305. {
  7306. lastMotorCheck = _millis();
  7307. if(!READ(X_ENABLE_PIN) || !READ(Y_ENABLE_PIN) || !READ(Z_ENABLE_PIN) || (soft_pwm_bed > 0)
  7308. #if EXTRUDERS > 2
  7309. || !READ(E2_ENABLE_PIN)
  7310. #endif
  7311. #if EXTRUDER > 1
  7312. #if defined(X2_ENABLE_PIN) && X2_ENABLE_PIN > -1
  7313. || !READ(X2_ENABLE_PIN)
  7314. #endif
  7315. || !READ(E1_ENABLE_PIN)
  7316. #endif
  7317. || !READ(E0_ENABLE_PIN)) //If any of the drivers are enabled...
  7318. {
  7319. lastMotor = _millis(); //... set time to NOW so the fan will turn on
  7320. }
  7321. if ((_millis() - lastMotor) >= (CONTROLLERFAN_SECS*1000UL) || lastMotor == 0) //If the last time any driver was enabled, is longer since than CONTROLLERSEC...
  7322. {
  7323. digitalWrite(CONTROLLERFAN_PIN, 0);
  7324. analogWrite(CONTROLLERFAN_PIN, 0);
  7325. }
  7326. else
  7327. {
  7328. // allows digital or PWM fan output to be used (see M42 handling)
  7329. digitalWrite(CONTROLLERFAN_PIN, CONTROLLERFAN_SPEED);
  7330. analogWrite(CONTROLLERFAN_PIN, CONTROLLERFAN_SPEED);
  7331. }
  7332. }
  7333. }
  7334. #endif
  7335. #ifdef TEMP_STAT_LEDS
  7336. static bool blue_led = false;
  7337. static bool red_led = false;
  7338. static uint32_t stat_update = 0;
  7339. void handle_status_leds(void) {
  7340. float max_temp = 0.0;
  7341. if(_millis() > stat_update) {
  7342. stat_update += 500; // Update every 0.5s
  7343. for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) {
  7344. max_temp = max(max_temp, degHotend(cur_extruder));
  7345. max_temp = max(max_temp, degTargetHotend(cur_extruder));
  7346. }
  7347. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  7348. max_temp = max(max_temp, degTargetBed());
  7349. max_temp = max(max_temp, degBed());
  7350. #endif
  7351. if((max_temp > 55.0) && (red_led == false)) {
  7352. digitalWrite(STAT_LED_RED, 1);
  7353. digitalWrite(STAT_LED_BLUE, 0);
  7354. red_led = true;
  7355. blue_led = false;
  7356. }
  7357. if((max_temp < 54.0) && (blue_led == false)) {
  7358. digitalWrite(STAT_LED_RED, 0);
  7359. digitalWrite(STAT_LED_BLUE, 1);
  7360. red_led = false;
  7361. blue_led = true;
  7362. }
  7363. }
  7364. }
  7365. #endif
  7366. #ifdef SAFETYTIMER
  7367. /**
  7368. * @brief Turn off heating after safetytimer_inactive_time milliseconds of inactivity
  7369. *
  7370. * Full screen blocking notification message is shown after heater turning off.
  7371. * Paused print is not considered inactivity, as nozzle is cooled anyway and bed cooling would
  7372. * damage print.
  7373. *
  7374. * If safetytimer_inactive_time is zero, feature is disabled (heating is never turned off because of inactivity)
  7375. */
  7376. static void handleSafetyTimer()
  7377. {
  7378. #if (EXTRUDERS > 1)
  7379. #error Implemented only for one extruder.
  7380. #endif //(EXTRUDERS > 1)
  7381. if ((PRINTER_ACTIVE) || (!degTargetBed() && !degTargetHotend(0)) || (!safetytimer_inactive_time))
  7382. {
  7383. safetyTimer.stop();
  7384. }
  7385. else if ((degTargetBed() || degTargetHotend(0)) && (!safetyTimer.running()))
  7386. {
  7387. safetyTimer.start();
  7388. }
  7389. else if (safetyTimer.expired(farm_mode?FARM_DEFAULT_SAFETYTIMER_TIME_ms:safetytimer_inactive_time))
  7390. {
  7391. setTargetBed(0);
  7392. setAllTargetHotends(0);
  7393. lcd_show_fullscreen_message_and_wait_P(_i("Heating disabled by safety timer."));////MSG_BED_HEATING_SAFETY_DISABLED
  7394. }
  7395. }
  7396. #endif //SAFETYTIMER
  7397. void manage_inactivity(bool ignore_stepper_queue/*=false*/) //default argument set in Marlin.h
  7398. {
  7399. bool bInhibitFlag;
  7400. #ifdef FILAMENT_SENSOR
  7401. if (mmu_enabled == false)
  7402. {
  7403. //-// if (mcode_in_progress != 600) //M600 not in progress
  7404. #ifdef PAT9125
  7405. bInhibitFlag=(menu_menu==lcd_menu_extruder_info); // Support::ExtruderInfo menu active
  7406. #endif // PAT9125
  7407. #ifdef IR_SENSOR
  7408. bInhibitFlag=(menu_menu==lcd_menu_show_sensors_state); // Support::SensorInfo menu active
  7409. #endif // IR_SENSOR
  7410. if ((mcode_in_progress != 600) && (eFilamentAction != FilamentAction::AutoLoad) && (!bInhibitFlag)) //M600 not in progress, preHeat @ autoLoad menu not active, Support::ExtruderInfo/SensorInfo menu not active
  7411. {
  7412. if (!moves_planned() && !IS_SD_PRINTING && !is_usb_printing && (lcd_commands_type != LcdCommands::Layer1Cal) && !wizard_active)
  7413. {
  7414. if (fsensor_check_autoload())
  7415. {
  7416. #ifdef PAT9125
  7417. fsensor_autoload_check_stop();
  7418. #endif //PAT9125
  7419. //-// if (degHotend0() > EXTRUDE_MINTEMP)
  7420. if(0)
  7421. {
  7422. Sound_MakeCustom(50,1000,false);
  7423. loading_flag = true;
  7424. enquecommand_front_P((PSTR("M701")));
  7425. }
  7426. else
  7427. {
  7428. /*
  7429. lcd_update_enable(false);
  7430. show_preheat_nozzle_warning();
  7431. lcd_update_enable(true);
  7432. */
  7433. eFilamentAction=FilamentAction::AutoLoad;
  7434. bFilamentFirstRun=false;
  7435. if(target_temperature[0]>=EXTRUDE_MINTEMP)
  7436. {
  7437. bFilamentPreheatState=true;
  7438. // mFilamentItem(target_temperature[0],target_temperature_bed);
  7439. menu_submenu(mFilamentItemForce);
  7440. }
  7441. else
  7442. {
  7443. menu_submenu(mFilamentMenu);
  7444. lcd_timeoutToStatus.start();
  7445. }
  7446. }
  7447. }
  7448. }
  7449. else
  7450. {
  7451. #ifdef PAT9125
  7452. fsensor_autoload_check_stop();
  7453. #endif //PAT9125
  7454. fsensor_update();
  7455. }
  7456. }
  7457. }
  7458. #endif //FILAMENT_SENSOR
  7459. #ifdef SAFETYTIMER
  7460. handleSafetyTimer();
  7461. #endif //SAFETYTIMER
  7462. #if defined(KILL_PIN) && KILL_PIN > -1
  7463. static int killCount = 0; // make the inactivity button a bit less responsive
  7464. const int KILL_DELAY = 10000;
  7465. #endif
  7466. if(buflen < (BUFSIZE-1)){
  7467. get_command();
  7468. }
  7469. if( (_millis() - previous_millis_cmd) > max_inactive_time )
  7470. if(max_inactive_time)
  7471. kill(_n(""), 4);
  7472. if(stepper_inactive_time) {
  7473. if( (_millis() - previous_millis_cmd) > stepper_inactive_time )
  7474. {
  7475. if(blocks_queued() == false && ignore_stepper_queue == false) {
  7476. disable_x();
  7477. disable_y();
  7478. disable_z();
  7479. disable_e0();
  7480. disable_e1();
  7481. disable_e2();
  7482. }
  7483. }
  7484. }
  7485. #ifdef CHDK //Check if pin should be set to LOW after M240 set it to HIGH
  7486. if (chdkActive && (_millis() - chdkHigh > CHDK_DELAY))
  7487. {
  7488. chdkActive = false;
  7489. WRITE(CHDK, LOW);
  7490. }
  7491. #endif
  7492. #if defined(KILL_PIN) && KILL_PIN > -1
  7493. // Check if the kill button was pressed and wait just in case it was an accidental
  7494. // key kill key press
  7495. // -------------------------------------------------------------------------------
  7496. if( 0 == READ(KILL_PIN) )
  7497. {
  7498. killCount++;
  7499. }
  7500. else if (killCount > 0)
  7501. {
  7502. killCount--;
  7503. }
  7504. // Exceeded threshold and we can confirm that it was not accidental
  7505. // KILL the machine
  7506. // ----------------------------------------------------------------
  7507. if ( killCount >= KILL_DELAY)
  7508. {
  7509. kill("", 5);
  7510. }
  7511. #endif
  7512. #if defined(CONTROLLERFAN_PIN) && CONTROLLERFAN_PIN > -1
  7513. controllerFan(); //Check if fan should be turned on to cool stepper drivers down
  7514. #endif
  7515. #ifdef EXTRUDER_RUNOUT_PREVENT
  7516. if( (_millis() - previous_millis_cmd) > EXTRUDER_RUNOUT_SECONDS*1000 )
  7517. if(degHotend(active_extruder)>EXTRUDER_RUNOUT_MINTEMP)
  7518. {
  7519. bool oldstatus=READ(E0_ENABLE_PIN);
  7520. enable_e0();
  7521. float oldepos=current_position[E_AXIS];
  7522. float oldedes=destination[E_AXIS];
  7523. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS],
  7524. destination[E_AXIS]+EXTRUDER_RUNOUT_EXTRUDE*EXTRUDER_RUNOUT_ESTEPS/cs.axis_steps_per_unit[E_AXIS],
  7525. EXTRUDER_RUNOUT_SPEED/60.*EXTRUDER_RUNOUT_ESTEPS/cs.axis_steps_per_unit[E_AXIS], active_extruder);
  7526. current_position[E_AXIS]=oldepos;
  7527. destination[E_AXIS]=oldedes;
  7528. plan_set_e_position(oldepos);
  7529. previous_millis_cmd=_millis();
  7530. st_synchronize();
  7531. WRITE(E0_ENABLE_PIN,oldstatus);
  7532. }
  7533. #endif
  7534. #ifdef TEMP_STAT_LEDS
  7535. handle_status_leds();
  7536. #endif
  7537. check_axes_activity();
  7538. mmu_loop();
  7539. }
  7540. void kill(const char *full_screen_message, unsigned char id)
  7541. {
  7542. printf_P(_N("KILL: %d\n"), id);
  7543. //return;
  7544. cli(); // Stop interrupts
  7545. disable_heater();
  7546. disable_x();
  7547. // SERIAL_ECHOLNPGM("kill - disable Y");
  7548. disable_y();
  7549. disable_z();
  7550. disable_e0();
  7551. disable_e1();
  7552. disable_e2();
  7553. #if defined(PS_ON_PIN) && PS_ON_PIN > -1
  7554. pinMode(PS_ON_PIN,INPUT);
  7555. #endif
  7556. SERIAL_ERROR_START;
  7557. SERIAL_ERRORLNRPGM(_n("Printer halted. kill() called!"));////MSG_ERR_KILLED
  7558. if (full_screen_message != NULL) {
  7559. SERIAL_ERRORLNRPGM(full_screen_message);
  7560. lcd_display_message_fullscreen_P(full_screen_message);
  7561. } else {
  7562. LCD_ALERTMESSAGERPGM(_n("KILLED. "));////MSG_KILLED
  7563. }
  7564. // FMC small patch to update the LCD before ending
  7565. sei(); // enable interrupts
  7566. for ( int i=5; i--; lcd_update(0))
  7567. {
  7568. _delay(200);
  7569. }
  7570. cli(); // disable interrupts
  7571. suicide();
  7572. while(1)
  7573. {
  7574. #ifdef WATCHDOG
  7575. wdt_reset();
  7576. #endif //WATCHDOG
  7577. /* Intentionally left empty */
  7578. } // Wait for reset
  7579. }
  7580. void Stop()
  7581. {
  7582. disable_heater();
  7583. if(Stopped == false) {
  7584. Stopped = true;
  7585. lcd_print_stop();
  7586. Stopped_gcode_LastN = gcode_LastN; // Save last g_code for restart
  7587. SERIAL_ERROR_START;
  7588. SERIAL_ERRORLNRPGM(MSG_ERR_STOPPED);
  7589. LCD_MESSAGERPGM(_T(MSG_STOPPED));
  7590. }
  7591. }
  7592. bool IsStopped() { return Stopped; };
  7593. #ifdef FAST_PWM_FAN
  7594. void setPwmFrequency(uint8_t pin, int val)
  7595. {
  7596. val &= 0x07;
  7597. switch(digitalPinToTimer(pin))
  7598. {
  7599. #if defined(TCCR0A)
  7600. case TIMER0A:
  7601. case TIMER0B:
  7602. // TCCR0B &= ~(_BV(CS00) | _BV(CS01) | _BV(CS02));
  7603. // TCCR0B |= val;
  7604. break;
  7605. #endif
  7606. #if defined(TCCR1A)
  7607. case TIMER1A:
  7608. case TIMER1B:
  7609. // TCCR1B &= ~(_BV(CS10) | _BV(CS11) | _BV(CS12));
  7610. // TCCR1B |= val;
  7611. break;
  7612. #endif
  7613. #if defined(TCCR2)
  7614. case TIMER2:
  7615. case TIMER2:
  7616. TCCR2 &= ~(_BV(CS10) | _BV(CS11) | _BV(CS12));
  7617. TCCR2 |= val;
  7618. break;
  7619. #endif
  7620. #if defined(TCCR2A)
  7621. case TIMER2A:
  7622. case TIMER2B:
  7623. TCCR2B &= ~(_BV(CS20) | _BV(CS21) | _BV(CS22));
  7624. TCCR2B |= val;
  7625. break;
  7626. #endif
  7627. #if defined(TCCR3A)
  7628. case TIMER3A:
  7629. case TIMER3B:
  7630. case TIMER3C:
  7631. TCCR3B &= ~(_BV(CS30) | _BV(CS31) | _BV(CS32));
  7632. TCCR3B |= val;
  7633. break;
  7634. #endif
  7635. #if defined(TCCR4A)
  7636. case TIMER4A:
  7637. case TIMER4B:
  7638. case TIMER4C:
  7639. TCCR4B &= ~(_BV(CS40) | _BV(CS41) | _BV(CS42));
  7640. TCCR4B |= val;
  7641. break;
  7642. #endif
  7643. #if defined(TCCR5A)
  7644. case TIMER5A:
  7645. case TIMER5B:
  7646. case TIMER5C:
  7647. TCCR5B &= ~(_BV(CS50) | _BV(CS51) | _BV(CS52));
  7648. TCCR5B |= val;
  7649. break;
  7650. #endif
  7651. }
  7652. }
  7653. #endif //FAST_PWM_FAN
  7654. //! @brief Get and validate extruder number
  7655. //!
  7656. //! If it is not specified, active_extruder is returned in parameter extruder.
  7657. //! @param [in] code M code number
  7658. //! @param [out] extruder
  7659. //! @return error
  7660. //! @retval true Invalid extruder specified in T code
  7661. //! @retval false Valid extruder specified in T code, or not specifiead
  7662. bool setTargetedHotend(int code, uint8_t &extruder)
  7663. {
  7664. extruder = active_extruder;
  7665. if(code_seen('T')) {
  7666. extruder = code_value();
  7667. if(extruder >= EXTRUDERS) {
  7668. SERIAL_ECHO_START;
  7669. switch(code){
  7670. case 104:
  7671. SERIAL_ECHORPGM(_n("M104 Invalid extruder "));////MSG_M104_INVALID_EXTRUDER
  7672. break;
  7673. case 105:
  7674. SERIAL_ECHO(_n("M105 Invalid extruder "));////MSG_M105_INVALID_EXTRUDER
  7675. break;
  7676. case 109:
  7677. SERIAL_ECHO(_n("M109 Invalid extruder "));////MSG_M109_INVALID_EXTRUDER
  7678. break;
  7679. case 218:
  7680. SERIAL_ECHO(_n("M218 Invalid extruder "));////MSG_M218_INVALID_EXTRUDER
  7681. break;
  7682. case 221:
  7683. SERIAL_ECHO(_n("M221 Invalid extruder "));////MSG_M221_INVALID_EXTRUDER
  7684. break;
  7685. }
  7686. SERIAL_PROTOCOLLN((int)extruder);
  7687. return true;
  7688. }
  7689. }
  7690. return false;
  7691. }
  7692. void save_statistics(unsigned long _total_filament_used, unsigned long _total_print_time) //_total_filament_used unit: mm/100; print time in s
  7693. {
  7694. if (eeprom_read_byte((uint8_t *)EEPROM_TOTALTIME) == 255 && eeprom_read_byte((uint8_t *)EEPROM_TOTALTIME + 1) == 255 && eeprom_read_byte((uint8_t *)EEPROM_TOTALTIME + 2) == 255 && eeprom_read_byte((uint8_t *)EEPROM_TOTALTIME + 3) == 255)
  7695. {
  7696. eeprom_update_dword((uint32_t *)EEPROM_TOTALTIME, 0);
  7697. eeprom_update_dword((uint32_t *)EEPROM_FILAMENTUSED, 0);
  7698. }
  7699. unsigned long _previous_filament = eeprom_read_dword((uint32_t *)EEPROM_FILAMENTUSED); //_previous_filament unit: cm
  7700. unsigned long _previous_time = eeprom_read_dword((uint32_t *)EEPROM_TOTALTIME); //_previous_time unit: min
  7701. eeprom_update_dword((uint32_t *)EEPROM_TOTALTIME, _previous_time + (_total_print_time/60)); //EEPROM_TOTALTIME unit: min
  7702. eeprom_update_dword((uint32_t *)EEPROM_FILAMENTUSED, _previous_filament + (_total_filament_used / 1000));
  7703. total_filament_used = 0;
  7704. }
  7705. float calculate_extruder_multiplier(float diameter) {
  7706. float out = 1.f;
  7707. if (cs.volumetric_enabled && diameter > 0.f) {
  7708. float area = M_PI * diameter * diameter * 0.25;
  7709. out = 1.f / area;
  7710. }
  7711. if (extrudemultiply != 100)
  7712. out *= float(extrudemultiply) * 0.01f;
  7713. return out;
  7714. }
  7715. void calculate_extruder_multipliers() {
  7716. extruder_multiplier[0] = calculate_extruder_multiplier(cs.filament_size[0]);
  7717. #if EXTRUDERS > 1
  7718. extruder_multiplier[1] = calculate_extruder_multiplier(cs.filament_size[1]);
  7719. #if EXTRUDERS > 2
  7720. extruder_multiplier[2] = calculate_extruder_multiplier(cs.filament_size[2]);
  7721. #endif
  7722. #endif
  7723. }
  7724. void delay_keep_alive(unsigned int ms)
  7725. {
  7726. for (;;) {
  7727. manage_heater();
  7728. // Manage inactivity, but don't disable steppers on timeout.
  7729. manage_inactivity(true);
  7730. lcd_update(0);
  7731. if (ms == 0)
  7732. break;
  7733. else if (ms >= 50) {
  7734. _delay(50);
  7735. ms -= 50;
  7736. } else {
  7737. _delay(ms);
  7738. ms = 0;
  7739. }
  7740. }
  7741. }
  7742. static void wait_for_heater(long codenum, uint8_t extruder) {
  7743. #ifdef TEMP_RESIDENCY_TIME
  7744. long residencyStart;
  7745. residencyStart = -1;
  7746. /* continue to loop until we have reached the target temp
  7747. _and_ until TEMP_RESIDENCY_TIME hasn't passed since we reached it */
  7748. while ((!cancel_heatup) && ((residencyStart == -1) ||
  7749. (residencyStart >= 0 && (((unsigned int)(_millis() - residencyStart)) < (TEMP_RESIDENCY_TIME * 1000UL))))) {
  7750. #else
  7751. while (target_direction ? (isHeatingHotend(tmp_extruder)) : (isCoolingHotend(tmp_extruder) && (CooldownNoWait == false))) {
  7752. #endif //TEMP_RESIDENCY_TIME
  7753. if ((_millis() - codenum) > 1000UL)
  7754. { //Print Temp Reading and remaining time every 1 second while heating up/cooling down
  7755. if (!farm_mode) {
  7756. SERIAL_PROTOCOLPGM("T:");
  7757. SERIAL_PROTOCOL_F(degHotend(extruder), 1);
  7758. SERIAL_PROTOCOLPGM(" E:");
  7759. SERIAL_PROTOCOL((int)extruder);
  7760. #ifdef TEMP_RESIDENCY_TIME
  7761. SERIAL_PROTOCOLPGM(" W:");
  7762. if (residencyStart > -1)
  7763. {
  7764. codenum = ((TEMP_RESIDENCY_TIME * 1000UL) - (_millis() - residencyStart)) / 1000UL;
  7765. SERIAL_PROTOCOLLN(codenum);
  7766. }
  7767. else
  7768. {
  7769. SERIAL_PROTOCOLLN("?");
  7770. }
  7771. }
  7772. #else
  7773. SERIAL_PROTOCOLLN("");
  7774. #endif
  7775. codenum = _millis();
  7776. }
  7777. manage_heater();
  7778. manage_inactivity(true); //do not disable steppers
  7779. lcd_update(0);
  7780. #ifdef TEMP_RESIDENCY_TIME
  7781. /* start/restart the TEMP_RESIDENCY_TIME timer whenever we reach target temp for the first time
  7782. or when current temp falls outside the hysteresis after target temp was reached */
  7783. if ((residencyStart == -1 && target_direction && (degHotend(extruder) >= (degTargetHotend(extruder) - TEMP_WINDOW))) ||
  7784. (residencyStart == -1 && !target_direction && (degHotend(extruder) <= (degTargetHotend(extruder) + TEMP_WINDOW))) ||
  7785. (residencyStart > -1 && labs(degHotend(extruder) - degTargetHotend(extruder)) > TEMP_HYSTERESIS))
  7786. {
  7787. residencyStart = _millis();
  7788. }
  7789. #endif //TEMP_RESIDENCY_TIME
  7790. }
  7791. }
  7792. void check_babystep()
  7793. {
  7794. int babystep_z = eeprom_read_word(reinterpret_cast<uint16_t *>(&(EEPROM_Sheets_base->
  7795. s[(eeprom_read_byte(&(EEPROM_Sheets_base->active_sheet)))].z_offset)));
  7796. if ((babystep_z < Z_BABYSTEP_MIN) || (babystep_z > Z_BABYSTEP_MAX)) {
  7797. babystep_z = 0; //if babystep value is out of min max range, set it to 0
  7798. SERIAL_ECHOLNPGM("Z live adjust out of range. Setting to 0");
  7799. eeprom_write_word(reinterpret_cast<uint16_t *>(&(EEPROM_Sheets_base->
  7800. s[(eeprom_read_byte(&(EEPROM_Sheets_base->active_sheet)))].z_offset)),
  7801. babystep_z);
  7802. lcd_show_fullscreen_message_and_wait_P(PSTR("Z live adjust out of range. Setting to 0. Click to continue."));
  7803. lcd_update_enable(true);
  7804. }
  7805. }
  7806. #ifdef HEATBED_ANALYSIS
  7807. void d_setup()
  7808. {
  7809. pinMode(D_DATACLOCK, INPUT_PULLUP);
  7810. pinMode(D_DATA, INPUT_PULLUP);
  7811. pinMode(D_REQUIRE, OUTPUT);
  7812. digitalWrite(D_REQUIRE, HIGH);
  7813. }
  7814. float d_ReadData()
  7815. {
  7816. int digit[13];
  7817. String mergeOutput;
  7818. float output;
  7819. digitalWrite(D_REQUIRE, HIGH);
  7820. for (int i = 0; i<13; i++)
  7821. {
  7822. for (int j = 0; j < 4; j++)
  7823. {
  7824. while (digitalRead(D_DATACLOCK) == LOW) {}
  7825. while (digitalRead(D_DATACLOCK) == HIGH) {}
  7826. bitWrite(digit[i], j, digitalRead(D_DATA));
  7827. }
  7828. }
  7829. digitalWrite(D_REQUIRE, LOW);
  7830. mergeOutput = "";
  7831. output = 0;
  7832. for (int r = 5; r <= 10; r++) //Merge digits
  7833. {
  7834. mergeOutput += digit[r];
  7835. }
  7836. output = mergeOutput.toFloat();
  7837. if (digit[4] == 8) //Handle sign
  7838. {
  7839. output *= -1;
  7840. }
  7841. for (int i = digit[11]; i > 0; i--) //Handle floating point
  7842. {
  7843. output /= 10;
  7844. }
  7845. return output;
  7846. }
  7847. void bed_check(float x_dimension, float y_dimension, int x_points_num, int y_points_num, float shift_x, float shift_y) {
  7848. int t1 = 0;
  7849. int t_delay = 0;
  7850. int digit[13];
  7851. int m;
  7852. char str[3];
  7853. //String mergeOutput;
  7854. char mergeOutput[15];
  7855. float output;
  7856. int mesh_point = 0; //index number of calibration point
  7857. float bed_zero_ref_x = (-22.f + X_PROBE_OFFSET_FROM_EXTRUDER); //shift between zero point on bed and target and between probe and nozzle
  7858. float bed_zero_ref_y = (-0.6f + Y_PROBE_OFFSET_FROM_EXTRUDER);
  7859. float mesh_home_z_search = 4;
  7860. float measure_z_height = 0.2f;
  7861. float row[x_points_num];
  7862. int ix = 0;
  7863. int iy = 0;
  7864. const char* filename_wldsd = "mesh.txt";
  7865. char data_wldsd[x_points_num * 7 + 1]; //6 chars(" -A.BCD")for each measurement + null
  7866. char numb_wldsd[8]; // (" -A.BCD" + null)
  7867. #ifdef MICROMETER_LOGGING
  7868. d_setup();
  7869. #endif //MICROMETER_LOGGING
  7870. int XY_AXIS_FEEDRATE = homing_feedrate[X_AXIS] / 20;
  7871. int Z_LIFT_FEEDRATE = homing_feedrate[Z_AXIS] / 40;
  7872. unsigned int custom_message_type_old = custom_message_type;
  7873. unsigned int custom_message_state_old = custom_message_state;
  7874. custom_message_type = CustomMsg::MeshBedLeveling;
  7875. custom_message_state = (x_points_num * y_points_num) + 10;
  7876. lcd_update(1);
  7877. //mbl.reset();
  7878. babystep_undo();
  7879. card.openFile(filename_wldsd, false);
  7880. /*destination[Z_AXIS] = mesh_home_z_search;
  7881. //plan_buffer_line_curposXYZE(Z_LIFT_FEEDRATE, active_extruder);
  7882. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], Z_LIFT_FEEDRATE, active_extruder);
  7883. for(int8_t i=0; i < NUM_AXIS; i++) {
  7884. current_position[i] = destination[i];
  7885. }
  7886. st_synchronize();
  7887. */
  7888. destination[Z_AXIS] = measure_z_height;
  7889. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], Z_LIFT_FEEDRATE, active_extruder);
  7890. for(int8_t i=0; i < NUM_AXIS; i++) {
  7891. current_position[i] = destination[i];
  7892. }
  7893. st_synchronize();
  7894. /*int l_feedmultiply = */setup_for_endstop_move(false);
  7895. SERIAL_PROTOCOLPGM("Num X,Y: ");
  7896. SERIAL_PROTOCOL(x_points_num);
  7897. SERIAL_PROTOCOLPGM(",");
  7898. SERIAL_PROTOCOL(y_points_num);
  7899. SERIAL_PROTOCOLPGM("\nZ search height: ");
  7900. SERIAL_PROTOCOL(mesh_home_z_search);
  7901. SERIAL_PROTOCOLPGM("\nDimension X,Y: ");
  7902. SERIAL_PROTOCOL(x_dimension);
  7903. SERIAL_PROTOCOLPGM(",");
  7904. SERIAL_PROTOCOL(y_dimension);
  7905. SERIAL_PROTOCOLLNPGM("\nMeasured points:");
  7906. while (mesh_point != x_points_num * y_points_num) {
  7907. ix = mesh_point % x_points_num; // from 0 to MESH_NUM_X_POINTS - 1
  7908. iy = mesh_point / x_points_num;
  7909. if (iy & 1) ix = (x_points_num - 1) - ix; // Zig zag
  7910. float z0 = 0.f;
  7911. /*destination[Z_AXIS] = mesh_home_z_search;
  7912. //plan_buffer_line_curposXYZE(Z_LIFT_FEEDRATE, active_extruder);
  7913. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], Z_LIFT_FEEDRATE, active_extruder);
  7914. for(int8_t i=0; i < NUM_AXIS; i++) {
  7915. current_position[i] = destination[i];
  7916. }
  7917. st_synchronize();*/
  7918. //current_position[X_AXIS] = 13.f + ix * (x_dimension / (x_points_num - 1)) - bed_zero_ref_x + shift_x;
  7919. //current_position[Y_AXIS] = 6.4f + iy * (y_dimension / (y_points_num - 1)) - bed_zero_ref_y + shift_y;
  7920. destination[X_AXIS] = ix * (x_dimension / (x_points_num - 1)) + shift_x;
  7921. destination[Y_AXIS] = iy * (y_dimension / (y_points_num - 1)) + shift_y;
  7922. mesh_plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], XY_AXIS_FEEDRATE/6, active_extruder);
  7923. for(int8_t i=0; i < NUM_AXIS; i++) {
  7924. current_position[i] = destination[i];
  7925. }
  7926. st_synchronize();
  7927. // printf_P(PSTR("X = %f; Y= %f \n"), current_position[X_AXIS], current_position[Y_AXIS]);
  7928. delay_keep_alive(1000);
  7929. #ifdef MICROMETER_LOGGING
  7930. //memset(numb_wldsd, 0, sizeof(numb_wldsd));
  7931. //dtostrf(d_ReadData(), 8, 5, numb_wldsd);
  7932. //strcat(data_wldsd, numb_wldsd);
  7933. //MYSERIAL.println(data_wldsd);
  7934. //delay(1000);
  7935. //delay(3000);
  7936. //t1 = millis();
  7937. //while (digitalRead(D_DATACLOCK) == LOW) {}
  7938. //while (digitalRead(D_DATACLOCK) == HIGH) {}
  7939. memset(digit, 0, sizeof(digit));
  7940. //cli();
  7941. digitalWrite(D_REQUIRE, LOW);
  7942. for (int i = 0; i<13; i++)
  7943. {
  7944. //t1 = millis();
  7945. for (int j = 0; j < 4; j++)
  7946. {
  7947. while (digitalRead(D_DATACLOCK) == LOW) {}
  7948. while (digitalRead(D_DATACLOCK) == HIGH) {}
  7949. //printf_P(PSTR("Done %d\n"), j);
  7950. bitWrite(digit[i], j, digitalRead(D_DATA));
  7951. }
  7952. //t_delay = (millis() - t1);
  7953. //SERIAL_PROTOCOLPGM(" ");
  7954. //SERIAL_PROTOCOL_F(t_delay, 5);
  7955. //SERIAL_PROTOCOLPGM(" ");
  7956. }
  7957. //sei();
  7958. digitalWrite(D_REQUIRE, HIGH);
  7959. mergeOutput[0] = '\0';
  7960. output = 0;
  7961. for (int r = 5; r <= 10; r++) //Merge digits
  7962. {
  7963. sprintf(str, "%d", digit[r]);
  7964. strcat(mergeOutput, str);
  7965. }
  7966. output = atof(mergeOutput);
  7967. if (digit[4] == 8) //Handle sign
  7968. {
  7969. output *= -1;
  7970. }
  7971. for (int i = digit[11]; i > 0; i--) //Handle floating point
  7972. {
  7973. output *= 0.1;
  7974. }
  7975. //output = d_ReadData();
  7976. //row[ix] = current_position[Z_AXIS];
  7977. //row[ix] = d_ReadData();
  7978. row[ix] = output;
  7979. if (iy % 2 == 1 ? ix == 0 : ix == x_points_num - 1) {
  7980. memset(data_wldsd, 0, sizeof(data_wldsd));
  7981. for (int i = 0; i < x_points_num; i++) {
  7982. SERIAL_PROTOCOLPGM(" ");
  7983. SERIAL_PROTOCOL_F(row[i], 5);
  7984. memset(numb_wldsd, 0, sizeof(numb_wldsd));
  7985. dtostrf(row[i], 7, 3, numb_wldsd);
  7986. strcat(data_wldsd, numb_wldsd);
  7987. }
  7988. card.write_command(data_wldsd);
  7989. SERIAL_PROTOCOLPGM("\n");
  7990. }
  7991. custom_message_state--;
  7992. mesh_point++;
  7993. lcd_update(1);
  7994. }
  7995. #endif //MICROMETER_LOGGING
  7996. card.closefile();
  7997. //clean_up_after_endstop_move(l_feedmultiply);
  7998. }
  7999. void bed_analysis(float x_dimension, float y_dimension, int x_points_num, int y_points_num, float shift_x, float shift_y) {
  8000. int t1 = 0;
  8001. int t_delay = 0;
  8002. int digit[13];
  8003. int m;
  8004. char str[3];
  8005. //String mergeOutput;
  8006. char mergeOutput[15];
  8007. float output;
  8008. int mesh_point = 0; //index number of calibration point
  8009. float bed_zero_ref_x = (-22.f + X_PROBE_OFFSET_FROM_EXTRUDER); //shift between zero point on bed and target and between probe and nozzle
  8010. float bed_zero_ref_y = (-0.6f + Y_PROBE_OFFSET_FROM_EXTRUDER);
  8011. float mesh_home_z_search = 4;
  8012. float row[x_points_num];
  8013. int ix = 0;
  8014. int iy = 0;
  8015. const char* filename_wldsd = "wldsd.txt";
  8016. char data_wldsd[70];
  8017. char numb_wldsd[10];
  8018. d_setup();
  8019. if (!(axis_known_position[X_AXIS] && axis_known_position[Y_AXIS] && axis_known_position[Z_AXIS])) {
  8020. // We don't know where we are! HOME!
  8021. // Push the commands to the front of the message queue in the reverse order!
  8022. // There shall be always enough space reserved for these commands.
  8023. repeatcommand_front(); // repeat G80 with all its parameters
  8024. enquecommand_front_P((PSTR("G28 W0")));
  8025. enquecommand_front_P((PSTR("G1 Z5")));
  8026. return;
  8027. }
  8028. unsigned int custom_message_type_old = custom_message_type;
  8029. unsigned int custom_message_state_old = custom_message_state;
  8030. custom_message_type = CustomMsg::MeshBedLeveling;
  8031. custom_message_state = (x_points_num * y_points_num) + 10;
  8032. lcd_update(1);
  8033. mbl.reset();
  8034. babystep_undo();
  8035. card.openFile(filename_wldsd, false);
  8036. current_position[Z_AXIS] = mesh_home_z_search;
  8037. plan_buffer_line_curposXYZE(homing_feedrate[Z_AXIS] / 60, active_extruder);
  8038. int XY_AXIS_FEEDRATE = homing_feedrate[X_AXIS] / 20;
  8039. int Z_LIFT_FEEDRATE = homing_feedrate[Z_AXIS] / 40;
  8040. int l_feedmultiply = setup_for_endstop_move(false);
  8041. SERIAL_PROTOCOLPGM("Num X,Y: ");
  8042. SERIAL_PROTOCOL(x_points_num);
  8043. SERIAL_PROTOCOLPGM(",");
  8044. SERIAL_PROTOCOL(y_points_num);
  8045. SERIAL_PROTOCOLPGM("\nZ search height: ");
  8046. SERIAL_PROTOCOL(mesh_home_z_search);
  8047. SERIAL_PROTOCOLPGM("\nDimension X,Y: ");
  8048. SERIAL_PROTOCOL(x_dimension);
  8049. SERIAL_PROTOCOLPGM(",");
  8050. SERIAL_PROTOCOL(y_dimension);
  8051. SERIAL_PROTOCOLLNPGM("\nMeasured points:");
  8052. while (mesh_point != x_points_num * y_points_num) {
  8053. ix = mesh_point % x_points_num; // from 0 to MESH_NUM_X_POINTS - 1
  8054. iy = mesh_point / x_points_num;
  8055. if (iy & 1) ix = (x_points_num - 1) - ix; // Zig zag
  8056. float z0 = 0.f;
  8057. current_position[Z_AXIS] = mesh_home_z_search;
  8058. plan_buffer_line_curposXYZE(Z_LIFT_FEEDRATE, active_extruder);
  8059. st_synchronize();
  8060. current_position[X_AXIS] = 13.f + ix * (x_dimension / (x_points_num - 1)) - bed_zero_ref_x + shift_x;
  8061. current_position[Y_AXIS] = 6.4f + iy * (y_dimension / (y_points_num - 1)) - bed_zero_ref_y + shift_y;
  8062. plan_buffer_line_curposXYZE(XY_AXIS_FEEDRATE, active_extruder);
  8063. st_synchronize();
  8064. if (!find_bed_induction_sensor_point_z(-10.f)) { //if we have data from z calibration max allowed difference is 1mm for each point, if we dont have data max difference is 10mm from initial point
  8065. break;
  8066. card.closefile();
  8067. }
  8068. //memset(numb_wldsd, 0, sizeof(numb_wldsd));
  8069. //dtostrf(d_ReadData(), 8, 5, numb_wldsd);
  8070. //strcat(data_wldsd, numb_wldsd);
  8071. //MYSERIAL.println(data_wldsd);
  8072. //_delay(1000);
  8073. //_delay(3000);
  8074. //t1 = _millis();
  8075. //while (digitalRead(D_DATACLOCK) == LOW) {}
  8076. //while (digitalRead(D_DATACLOCK) == HIGH) {}
  8077. memset(digit, 0, sizeof(digit));
  8078. //cli();
  8079. digitalWrite(D_REQUIRE, LOW);
  8080. for (int i = 0; i<13; i++)
  8081. {
  8082. //t1 = _millis();
  8083. for (int j = 0; j < 4; j++)
  8084. {
  8085. while (digitalRead(D_DATACLOCK) == LOW) {}
  8086. while (digitalRead(D_DATACLOCK) == HIGH) {}
  8087. bitWrite(digit[i], j, digitalRead(D_DATA));
  8088. }
  8089. //t_delay = (_millis() - t1);
  8090. //SERIAL_PROTOCOLPGM(" ");
  8091. //SERIAL_PROTOCOL_F(t_delay, 5);
  8092. //SERIAL_PROTOCOLPGM(" ");
  8093. }
  8094. //sei();
  8095. digitalWrite(D_REQUIRE, HIGH);
  8096. mergeOutput[0] = '\0';
  8097. output = 0;
  8098. for (int r = 5; r <= 10; r++) //Merge digits
  8099. {
  8100. sprintf(str, "%d", digit[r]);
  8101. strcat(mergeOutput, str);
  8102. }
  8103. output = atof(mergeOutput);
  8104. if (digit[4] == 8) //Handle sign
  8105. {
  8106. output *= -1;
  8107. }
  8108. for (int i = digit[11]; i > 0; i--) //Handle floating point
  8109. {
  8110. output *= 0.1;
  8111. }
  8112. //output = d_ReadData();
  8113. //row[ix] = current_position[Z_AXIS];
  8114. memset(data_wldsd, 0, sizeof(data_wldsd));
  8115. for (int i = 0; i <3; i++) {
  8116. memset(numb_wldsd, 0, sizeof(numb_wldsd));
  8117. dtostrf(current_position[i], 8, 5, numb_wldsd);
  8118. strcat(data_wldsd, numb_wldsd);
  8119. strcat(data_wldsd, ";");
  8120. }
  8121. memset(numb_wldsd, 0, sizeof(numb_wldsd));
  8122. dtostrf(output, 8, 5, numb_wldsd);
  8123. strcat(data_wldsd, numb_wldsd);
  8124. //strcat(data_wldsd, ";");
  8125. card.write_command(data_wldsd);
  8126. //row[ix] = d_ReadData();
  8127. row[ix] = output; // current_position[Z_AXIS];
  8128. if (iy % 2 == 1 ? ix == 0 : ix == x_points_num - 1) {
  8129. for (int i = 0; i < x_points_num; i++) {
  8130. SERIAL_PROTOCOLPGM(" ");
  8131. SERIAL_PROTOCOL_F(row[i], 5);
  8132. }
  8133. SERIAL_PROTOCOLPGM("\n");
  8134. }
  8135. custom_message_state--;
  8136. mesh_point++;
  8137. lcd_update(1);
  8138. }
  8139. card.closefile();
  8140. clean_up_after_endstop_move(l_feedmultiply);
  8141. }
  8142. #endif //HEATBED_ANALYSIS
  8143. void temp_compensation_start() {
  8144. custom_message_type = CustomMsg::TempCompPreheat;
  8145. custom_message_state = PINDA_HEAT_T + 1;
  8146. lcd_update(2);
  8147. if (degHotend(active_extruder) > EXTRUDE_MINTEMP) {
  8148. current_position[E_AXIS] -= default_retraction;
  8149. }
  8150. plan_buffer_line_curposXYZE(400, active_extruder);
  8151. current_position[X_AXIS] = PINDA_PREHEAT_X;
  8152. current_position[Y_AXIS] = PINDA_PREHEAT_Y;
  8153. current_position[Z_AXIS] = PINDA_PREHEAT_Z;
  8154. plan_buffer_line_curposXYZE(3000 / 60, active_extruder);
  8155. st_synchronize();
  8156. while (fabs(degBed() - target_temperature_bed) > 1) delay_keep_alive(1000);
  8157. for (int i = 0; i < PINDA_HEAT_T; i++) {
  8158. delay_keep_alive(1000);
  8159. custom_message_state = PINDA_HEAT_T - i;
  8160. if (custom_message_state == 99 || custom_message_state == 9) lcd_update(2); //force whole display redraw if number of digits changed
  8161. else lcd_update(1);
  8162. }
  8163. custom_message_type = CustomMsg::Status;
  8164. custom_message_state = 0;
  8165. }
  8166. void temp_compensation_apply() {
  8167. int i_add;
  8168. int z_shift = 0;
  8169. float z_shift_mm;
  8170. if (calibration_status() == CALIBRATION_STATUS_CALIBRATED) {
  8171. if (target_temperature_bed % 10 == 0 && target_temperature_bed >= 60 && target_temperature_bed <= 100) {
  8172. i_add = (target_temperature_bed - 60) / 10;
  8173. EEPROM_read_B(EEPROM_PROBE_TEMP_SHIFT + i_add * 2, &z_shift);
  8174. z_shift_mm = z_shift / cs.axis_steps_per_unit[Z_AXIS];
  8175. }else {
  8176. //interpolation
  8177. z_shift_mm = temp_comp_interpolation(target_temperature_bed) / cs.axis_steps_per_unit[Z_AXIS];
  8178. }
  8179. printf_P(_N("\nZ shift applied:%.3f\n"), z_shift_mm);
  8180. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS] - z_shift_mm, current_position[E_AXIS], homing_feedrate[Z_AXIS] / 40, active_extruder);
  8181. st_synchronize();
  8182. plan_set_z_position(current_position[Z_AXIS]);
  8183. }
  8184. else {
  8185. //we have no temp compensation data
  8186. }
  8187. }
  8188. float temp_comp_interpolation(float inp_temperature) {
  8189. //cubic spline interpolation
  8190. int n, i, j;
  8191. float h[10], a, b, c, d, sum, s[10] = { 0 }, x[10], F[10], f[10], m[10][10] = { 0 }, temp;
  8192. int shift[10];
  8193. int temp_C[10];
  8194. n = 6; //number of measured points
  8195. shift[0] = 0;
  8196. for (i = 0; i < n; i++) {
  8197. if (i>0) EEPROM_read_B(EEPROM_PROBE_TEMP_SHIFT + (i-1) * 2, &shift[i]); //read shift in steps from EEPROM
  8198. temp_C[i] = 50 + i * 10; //temperature in C
  8199. #ifdef PINDA_THERMISTOR
  8200. temp_C[i] = 35 + i * 5; //temperature in C
  8201. #else
  8202. temp_C[i] = 50 + i * 10; //temperature in C
  8203. #endif
  8204. x[i] = (float)temp_C[i];
  8205. f[i] = (float)shift[i];
  8206. }
  8207. if (inp_temperature < x[0]) return 0;
  8208. for (i = n - 1; i>0; i--) {
  8209. F[i] = (f[i] - f[i - 1]) / (x[i] - x[i - 1]);
  8210. h[i - 1] = x[i] - x[i - 1];
  8211. }
  8212. //*********** formation of h, s , f matrix **************
  8213. for (i = 1; i<n - 1; i++) {
  8214. m[i][i] = 2 * (h[i - 1] + h[i]);
  8215. if (i != 1) {
  8216. m[i][i - 1] = h[i - 1];
  8217. m[i - 1][i] = h[i - 1];
  8218. }
  8219. m[i][n - 1] = 6 * (F[i + 1] - F[i]);
  8220. }
  8221. //*********** forward elimination **************
  8222. for (i = 1; i<n - 2; i++) {
  8223. temp = (m[i + 1][i] / m[i][i]);
  8224. for (j = 1; j <= n - 1; j++)
  8225. m[i + 1][j] -= temp*m[i][j];
  8226. }
  8227. //*********** backward substitution *********
  8228. for (i = n - 2; i>0; i--) {
  8229. sum = 0;
  8230. for (j = i; j <= n - 2; j++)
  8231. sum += m[i][j] * s[j];
  8232. s[i] = (m[i][n - 1] - sum) / m[i][i];
  8233. }
  8234. for (i = 0; i<n - 1; i++)
  8235. if ((x[i] <= inp_temperature && inp_temperature <= x[i + 1]) || (i == n-2 && inp_temperature > x[i + 1])) {
  8236. a = (s[i + 1] - s[i]) / (6 * h[i]);
  8237. b = s[i] / 2;
  8238. c = (f[i + 1] - f[i]) / h[i] - (2 * h[i] * s[i] + s[i + 1] * h[i]) / 6;
  8239. d = f[i];
  8240. sum = a*pow((inp_temperature - x[i]), 3) + b*pow((inp_temperature - x[i]), 2) + c*(inp_temperature - x[i]) + d;
  8241. }
  8242. return sum;
  8243. }
  8244. #ifdef PINDA_THERMISTOR
  8245. float temp_compensation_pinda_thermistor_offset(float temperature_pinda)
  8246. {
  8247. if (!temp_cal_active) return 0;
  8248. if (!calibration_status_pinda()) return 0;
  8249. return temp_comp_interpolation(temperature_pinda) / cs.axis_steps_per_unit[Z_AXIS];
  8250. }
  8251. #endif //PINDA_THERMISTOR
  8252. void long_pause() //long pause print
  8253. {
  8254. st_synchronize();
  8255. start_pause_print = _millis();
  8256. //retract
  8257. current_position[E_AXIS] -= default_retraction;
  8258. plan_buffer_line_curposXYZE(400, active_extruder);
  8259. //lift z
  8260. current_position[Z_AXIS] += Z_PAUSE_LIFT;
  8261. if (current_position[Z_AXIS] > Z_MAX_POS) current_position[Z_AXIS] = Z_MAX_POS;
  8262. plan_buffer_line_curposXYZE(15, active_extruder);
  8263. //Move XY to side
  8264. current_position[X_AXIS] = X_PAUSE_POS;
  8265. current_position[Y_AXIS] = Y_PAUSE_POS;
  8266. plan_buffer_line_curposXYZE(50, active_extruder);
  8267. // Turn off the print fan
  8268. fanSpeed = 0;
  8269. st_synchronize();
  8270. }
  8271. void serialecho_temperatures() {
  8272. float tt = degHotend(active_extruder);
  8273. SERIAL_PROTOCOLPGM("T:");
  8274. SERIAL_PROTOCOL(tt);
  8275. SERIAL_PROTOCOLPGM(" E:");
  8276. SERIAL_PROTOCOL((int)active_extruder);
  8277. SERIAL_PROTOCOLPGM(" B:");
  8278. SERIAL_PROTOCOL_F(degBed(), 1);
  8279. SERIAL_PROTOCOLLN("");
  8280. }
  8281. extern uint32_t sdpos_atomic;
  8282. #ifdef UVLO_SUPPORT
  8283. void uvlo_()
  8284. {
  8285. unsigned long time_start = _millis();
  8286. bool sd_print = card.sdprinting;
  8287. // Conserve power as soon as possible.
  8288. disable_x();
  8289. disable_y();
  8290. #ifdef TMC2130
  8291. tmc2130_set_current_h(Z_AXIS, 20);
  8292. tmc2130_set_current_r(Z_AXIS, 20);
  8293. tmc2130_set_current_h(E_AXIS, 20);
  8294. tmc2130_set_current_r(E_AXIS, 20);
  8295. #endif //TMC2130
  8296. // Indicate that the interrupt has been triggered.
  8297. // SERIAL_ECHOLNPGM("UVLO");
  8298. // Read out the current Z motor microstep counter. This will be later used
  8299. // for reaching the zero full step before powering off.
  8300. uint16_t z_microsteps = 0;
  8301. #ifdef TMC2130
  8302. z_microsteps = tmc2130_rd_MSCNT(Z_TMC2130_CS);
  8303. #endif //TMC2130
  8304. // Calculate the file position, from which to resume this print.
  8305. long sd_position = sdpos_atomic; //atomic sd position of last command added in queue
  8306. {
  8307. uint16_t sdlen_planner = planner_calc_sd_length(); //length of sd commands in planner
  8308. sd_position -= sdlen_planner;
  8309. uint16_t sdlen_cmdqueue = cmdqueue_calc_sd_length(); //length of sd commands in cmdqueue
  8310. sd_position -= sdlen_cmdqueue;
  8311. if (sd_position < 0) sd_position = 0;
  8312. }
  8313. // Backup the feedrate in mm/min.
  8314. int feedrate_bckp = blocks_queued() ? (block_buffer[block_buffer_tail].nominal_speed * 60.f) : feedrate;
  8315. // After this call, the planner queue is emptied and the current_position is set to a current logical coordinate.
  8316. // The logical coordinate will likely differ from the machine coordinate if the skew calibration and mesh bed leveling
  8317. // are in action.
  8318. planner_abort_hard();
  8319. // Store the current extruder position.
  8320. eeprom_update_float((float*)(EEPROM_UVLO_CURRENT_POSITION_E), st_get_position_mm(E_AXIS));
  8321. eeprom_update_byte((uint8_t*)EEPROM_UVLO_E_ABS, axis_relative_modes[3]?0:1);
  8322. // Clean the input command queue.
  8323. cmdqueue_reset();
  8324. card.sdprinting = false;
  8325. // card.closefile();
  8326. // Enable stepper driver interrupt to move Z axis.
  8327. // This should be fine as the planner and command queues are empty and the SD card printing is disabled.
  8328. //FIXME one may want to disable serial lines at this point of time to avoid interfering with the command queue,
  8329. // though it should not happen that the command queue is touched as the plan_buffer_line always succeed without blocking.
  8330. sei();
  8331. plan_buffer_line(
  8332. current_position[X_AXIS],
  8333. current_position[Y_AXIS],
  8334. current_position[Z_AXIS],
  8335. current_position[E_AXIS] - default_retraction,
  8336. 95, active_extruder);
  8337. st_synchronize();
  8338. disable_e0();
  8339. plan_buffer_line(
  8340. current_position[X_AXIS],
  8341. current_position[Y_AXIS],
  8342. current_position[Z_AXIS] + UVLO_Z_AXIS_SHIFT + float((1024 - z_microsteps + 7) >> 4) / cs.axis_steps_per_unit[Z_AXIS],
  8343. current_position[E_AXIS] - default_retraction,
  8344. 40, active_extruder);
  8345. st_synchronize();
  8346. disable_e0();
  8347. plan_buffer_line(
  8348. current_position[X_AXIS],
  8349. current_position[Y_AXIS],
  8350. current_position[Z_AXIS] + UVLO_Z_AXIS_SHIFT + float((1024 - z_microsteps + 7) >> 4) / cs.axis_steps_per_unit[Z_AXIS],
  8351. current_position[E_AXIS] - default_retraction,
  8352. 40, active_extruder);
  8353. st_synchronize();
  8354. disable_e0();
  8355. // Move Z up to the next 0th full step.
  8356. // Write the file position.
  8357. eeprom_update_dword((uint32_t*)(EEPROM_FILE_POSITION), sd_position);
  8358. // Store the mesh bed leveling offsets. This is 2*7*7=98 bytes, which takes 98*3.4us=333us in worst case.
  8359. for (int8_t mesh_point = 0; mesh_point < MESH_NUM_X_POINTS * MESH_NUM_Y_POINTS; ++ mesh_point) {
  8360. uint8_t ix = mesh_point % MESH_NUM_X_POINTS; // from 0 to MESH_NUM_X_POINTS - 1
  8361. uint8_t iy = mesh_point / MESH_NUM_X_POINTS;
  8362. // Scale the z value to 1u resolution.
  8363. int16_t v = mbl.active ? int16_t(floor(mbl.z_values[iy][ix] * 1000.f + 0.5f)) : 0;
  8364. eeprom_update_word((uint16_t*)(EEPROM_UVLO_MESH_BED_LEVELING_FULL +2*mesh_point), *reinterpret_cast<uint16_t*>(&v));
  8365. }
  8366. // Read out the current Z motor microstep counter. This will be later used
  8367. // for reaching the zero full step before powering off.
  8368. eeprom_update_word((uint16_t*)(EEPROM_UVLO_Z_MICROSTEPS), z_microsteps);
  8369. // Store the current position.
  8370. eeprom_update_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 0), current_position[X_AXIS]);
  8371. eeprom_update_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 4), current_position[Y_AXIS]);
  8372. eeprom_update_float((float*)EEPROM_UVLO_CURRENT_POSITION_Z , current_position[Z_AXIS]);
  8373. // Store the current feed rate, temperatures, fan speed and extruder multipliers (flow rates)
  8374. EEPROM_save_B(EEPROM_UVLO_FEEDRATE, &feedrate_bckp);
  8375. eeprom_update_byte((uint8_t*)EEPROM_UVLO_TARGET_HOTEND, target_temperature[active_extruder]);
  8376. eeprom_update_byte((uint8_t*)EEPROM_UVLO_TARGET_BED, target_temperature_bed);
  8377. eeprom_update_byte((uint8_t*)EEPROM_UVLO_FAN_SPEED, fanSpeed);
  8378. eeprom_update_float((float*)(EEPROM_EXTRUDER_MULTIPLIER_0), extruder_multiplier[0]);
  8379. #if EXTRUDERS > 1
  8380. eeprom_update_float((float*)(EEPROM_EXTRUDER_MULTIPLIER_1), extruder_multiplier[1]);
  8381. #if EXTRUDERS > 2
  8382. eeprom_update_float((float*)(EEPROM_EXTRUDER_MULTIPLIER_2), extruder_multiplier[2]);
  8383. #endif
  8384. #endif
  8385. eeprom_update_word((uint16_t*)(EEPROM_EXTRUDEMULTIPLY), (uint16_t)extrudemultiply);
  8386. // Finaly store the "power outage" flag.
  8387. if(sd_print) eeprom_update_byte((uint8_t*)EEPROM_UVLO, 1);
  8388. st_synchronize();
  8389. printf_P(_N("stps%d\n"), tmc2130_rd_MSCNT(Z_AXIS));
  8390. // Increment power failure counter
  8391. eeprom_update_byte((uint8_t*)EEPROM_POWER_COUNT, eeprom_read_byte((uint8_t*)EEPROM_POWER_COUNT) + 1);
  8392. eeprom_update_word((uint16_t*)EEPROM_POWER_COUNT_TOT, eeprom_read_word((uint16_t*)EEPROM_POWER_COUNT_TOT) + 1);
  8393. printf_P(_N("UVLO - end %d\n"), _millis() - time_start);
  8394. #if 0
  8395. // Move the print head to the side of the print until all the power stored in the power supply capacitors is depleted.
  8396. current_position[X_AXIS] = (current_position[X_AXIS] < 0.5f * (X_MIN_POS + X_MAX_POS)) ? X_MIN_POS : X_MAX_POS;
  8397. plan_buffer_line_curposXYZE(500, active_extruder);
  8398. st_synchronize();
  8399. #endif
  8400. wdt_enable(WDTO_500MS);
  8401. WRITE(BEEPER,HIGH);
  8402. while(1)
  8403. ;
  8404. }
  8405. void uvlo_tiny()
  8406. {
  8407. uint16_t z_microsteps=0;
  8408. // Conserve power as soon as possible.
  8409. disable_x();
  8410. disable_y();
  8411. disable_e0();
  8412. #ifdef TMC2130
  8413. tmc2130_set_current_h(Z_AXIS, 20);
  8414. tmc2130_set_current_r(Z_AXIS, 20);
  8415. #endif //TMC2130
  8416. // Read out the current Z motor microstep counter
  8417. #ifdef TMC2130
  8418. z_microsteps=tmc2130_rd_MSCNT(Z_TMC2130_CS);
  8419. #endif //TMC2130
  8420. planner_abort_hard();
  8421. //save current position only in case, where the printer is moving on Z axis, which is only when EEPROM_UVLO is 1
  8422. //EEPROM_UVLO is 1 after normal uvlo or after recover_print(), when the extruder is moving on Z axis after rehome
  8423. if(eeprom_read_byte((uint8_t*)EEPROM_UVLO)!=2){
  8424. eeprom_update_float((float*)(EEPROM_UVLO_TINY_CURRENT_POSITION_Z), current_position[Z_AXIS]);
  8425. eeprom_update_word((uint16_t*)(EEPROM_UVLO_TINY_Z_MICROSTEPS),z_microsteps);
  8426. }
  8427. //after multiple power panics current Z axis is unknow
  8428. //in this case we set EEPROM_UVLO_TINY_CURRENT_POSITION_Z to last know position which is EEPROM_UVLO_CURRENT_POSITION_Z
  8429. if(eeprom_read_float((float*)EEPROM_UVLO_TINY_CURRENT_POSITION_Z) < 0.001f){
  8430. eeprom_update_float((float*)(EEPROM_UVLO_TINY_CURRENT_POSITION_Z), eeprom_read_float((float*)EEPROM_UVLO_CURRENT_POSITION_Z));
  8431. eeprom_update_word((uint16_t*)(EEPROM_UVLO_TINY_Z_MICROSTEPS), eeprom_read_word((uint16_t*)EEPROM_UVLO_Z_MICROSTEPS));
  8432. }
  8433. // Finaly store the "power outage" flag.
  8434. eeprom_update_byte((uint8_t*)EEPROM_UVLO,2);
  8435. // Increment power failure counter
  8436. eeprom_update_byte((uint8_t*)EEPROM_POWER_COUNT, eeprom_read_byte((uint8_t*)EEPROM_POWER_COUNT) + 1);
  8437. eeprom_update_word((uint16_t*)EEPROM_POWER_COUNT_TOT, eeprom_read_word((uint16_t*)EEPROM_POWER_COUNT_TOT) + 1);
  8438. wdt_enable(WDTO_500MS);
  8439. WRITE(BEEPER,HIGH);
  8440. while(1)
  8441. ;
  8442. }
  8443. #endif //UVLO_SUPPORT
  8444. #if (defined(FANCHECK) && defined(TACH_1) && (TACH_1 >-1))
  8445. void setup_fan_interrupt() {
  8446. //INT7
  8447. DDRE &= ~(1 << 7); //input pin
  8448. PORTE &= ~(1 << 7); //no internal pull-up
  8449. //start with sensing rising edge
  8450. EICRB &= ~(1 << 6);
  8451. EICRB |= (1 << 7);
  8452. //enable INT7 interrupt
  8453. EIMSK |= (1 << 7);
  8454. }
  8455. // The fan interrupt is triggered at maximum 325Hz (may be a bit more due to component tollerances),
  8456. // and it takes 4.24 us to process (the interrupt invocation overhead not taken into account).
  8457. ISR(INT7_vect) {
  8458. //measuring speed now works for fanSpeed > 18 (approximately), which is sufficient because MIN_PRINT_FAN_SPEED is higher
  8459. #ifdef FAN_SOFT_PWM
  8460. if (!fan_measuring || (fanSpeedSoftPwm < MIN_PRINT_FAN_SPEED)) return;
  8461. #else //FAN_SOFT_PWM
  8462. if (fanSpeed < MIN_PRINT_FAN_SPEED) return;
  8463. #endif //FAN_SOFT_PWM
  8464. if ((1 << 6) & EICRB) { //interrupt was triggered by rising edge
  8465. t_fan_rising_edge = millis_nc();
  8466. }
  8467. else { //interrupt was triggered by falling edge
  8468. if ((millis_nc() - t_fan_rising_edge) >= FAN_PULSE_WIDTH_LIMIT) {//this pulse was from sensor and not from pwm
  8469. fan_edge_counter[1] += 2; //we are currently counting all edges so lets count two edges for one pulse
  8470. }
  8471. }
  8472. EICRB ^= (1 << 6); //change edge
  8473. }
  8474. #endif
  8475. #ifdef UVLO_SUPPORT
  8476. void setup_uvlo_interrupt() {
  8477. DDRE &= ~(1 << 4); //input pin
  8478. PORTE &= ~(1 << 4); //no internal pull-up
  8479. //sensing falling edge
  8480. EICRB |= (1 << 0);
  8481. EICRB &= ~(1 << 1);
  8482. //enable INT4 interrupt
  8483. EIMSK |= (1 << 4);
  8484. }
  8485. ISR(INT4_vect) {
  8486. EIMSK &= ~(1 << 4); //disable INT4 interrupt to make sure that this code will be executed just once
  8487. SERIAL_ECHOLNPGM("INT4");
  8488. //fire normal uvlo only in case where EEPROM_UVLO is 0 or if IS_SD_PRINTING is 1.
  8489. if(PRINTER_ACTIVE && (!(eeprom_read_byte((uint8_t*)EEPROM_UVLO)))) uvlo_();
  8490. if(eeprom_read_byte((uint8_t*)EEPROM_UVLO)) uvlo_tiny();
  8491. }
  8492. void recover_print(uint8_t automatic) {
  8493. char cmd[30];
  8494. lcd_update_enable(true);
  8495. lcd_update(2);
  8496. lcd_setstatuspgm(_i("Recovering print "));////MSG_RECOVERING_PRINT c=20 r=1
  8497. bool bTiny=(eeprom_read_byte((uint8_t*)EEPROM_UVLO)==2);
  8498. recover_machine_state_after_power_panic(bTiny); //recover position, temperatures and extrude_multipliers
  8499. // Lift the print head, so one may remove the excess priming material.
  8500. if(!bTiny&&(current_position[Z_AXIS]<25))
  8501. enquecommand_P(PSTR("G1 Z25 F800"));
  8502. // Home X and Y axes. Homing just X and Y shall not touch the babystep and the world2machine transformation status.
  8503. enquecommand_P(PSTR("G28 X Y"));
  8504. // Set the target bed and nozzle temperatures and wait.
  8505. sprintf_P(cmd, PSTR("M109 S%d"), target_temperature[active_extruder]);
  8506. enquecommand(cmd);
  8507. sprintf_P(cmd, PSTR("M190 S%d"), target_temperature_bed);
  8508. enquecommand(cmd);
  8509. enquecommand_P(PSTR("M83")); //E axis relative mode
  8510. //enquecommand_P(PSTR("G1 E5 F120")); //Extrude some filament to stabilize pessure
  8511. // If not automatically recoreverd (long power loss), extrude extra filament to stabilize
  8512. if(automatic == 0){
  8513. enquecommand_P(PSTR("G1 E5 F120")); //Extrude some filament to stabilize pessure
  8514. }
  8515. enquecommand_P(PSTR("G1 E" STRINGIFY(-default_retraction)" F480"));
  8516. printf_P(_N("After waiting for temp:\nCurrent pos X_AXIS:%.3f\nCurrent pos Y_AXIS:%.3f\n"), current_position[X_AXIS], current_position[Y_AXIS]);
  8517. // Restart the print.
  8518. restore_print_from_eeprom();
  8519. printf_P(_N("Current pos Z_AXIS:%.3f\nCurrent pos E_AXIS:%.3f\n"), current_position[Z_AXIS], current_position[E_AXIS]);
  8520. }
  8521. void recover_machine_state_after_power_panic(bool bTiny)
  8522. {
  8523. char cmd[30];
  8524. // 1) Recover the logical cordinates at the time of the power panic.
  8525. // The logical XY coordinates are needed to recover the machine Z coordinate corrected by the mesh bed leveling.
  8526. current_position[X_AXIS] = eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 0));
  8527. current_position[Y_AXIS] = eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 4));
  8528. // 2) Restore the mesh bed leveling offsets. This is 2*7*7=98 bytes, which takes 98*3.4us=333us in worst case.
  8529. mbl.active = false;
  8530. for (int8_t mesh_point = 0; mesh_point < MESH_NUM_X_POINTS * MESH_NUM_Y_POINTS; ++ mesh_point) {
  8531. uint8_t ix = mesh_point % MESH_NUM_X_POINTS; // from 0 to MESH_NUM_X_POINTS - 1
  8532. uint8_t iy = mesh_point / MESH_NUM_X_POINTS;
  8533. // Scale the z value to 10u resolution.
  8534. int16_t v;
  8535. eeprom_read_block(&v, (void*)(EEPROM_UVLO_MESH_BED_LEVELING_FULL+2*mesh_point), 2);
  8536. if (v != 0)
  8537. mbl.active = true;
  8538. mbl.z_values[iy][ix] = float(v) * 0.001f;
  8539. }
  8540. // Recover the logical coordinate of the Z axis at the time of the power panic.
  8541. // The current position after power panic is moved to the next closest 0th full step.
  8542. if(bTiny){
  8543. current_position[Z_AXIS] = eeprom_read_float((float*)(EEPROM_UVLO_TINY_CURRENT_POSITION_Z))
  8544. + float((1024 - eeprom_read_word((uint16_t*)(EEPROM_UVLO_TINY_Z_MICROSTEPS))
  8545. + 7) >> 4) / cs.axis_steps_per_unit[Z_AXIS];
  8546. //after multiple power panics the print is slightly in the air so get it little bit down.
  8547. //Not exactly sure why is this happening, but it has something to do with bed leveling and world2machine coordinates
  8548. current_position[Z_AXIS] -= 0.4*mbl.get_z(current_position[X_AXIS], current_position[Y_AXIS]);
  8549. }
  8550. else{
  8551. current_position[Z_AXIS] = eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION_Z)) +
  8552. UVLO_Z_AXIS_SHIFT + float((1024 - eeprom_read_word((uint16_t*)(EEPROM_UVLO_Z_MICROSTEPS))
  8553. + 7) >> 4) / cs.axis_steps_per_unit[Z_AXIS];
  8554. }
  8555. if (eeprom_read_byte((uint8_t*)EEPROM_UVLO_E_ABS)) {
  8556. current_position[E_AXIS] = eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION_E));
  8557. sprintf_P(cmd, PSTR("G92 E"));
  8558. dtostrf(current_position[E_AXIS], 6, 3, cmd + strlen(cmd));
  8559. enquecommand(cmd);
  8560. }
  8561. memcpy(destination, current_position, sizeof(destination));
  8562. SERIAL_ECHOPGM("recover_machine_state_after_power_panic, initial ");
  8563. print_world_coordinates();
  8564. // 3) Initialize the logical to physical coordinate system transformation.
  8565. world2machine_initialize();
  8566. // SERIAL_ECHOPGM("recover_machine_state_after_power_panic, initial ");
  8567. // print_mesh_bed_leveling_table();
  8568. // 4) Load the baby stepping value, which is expected to be active at the time of power panic.
  8569. // The baby stepping value is used to reset the physical Z axis when rehoming the Z axis.
  8570. babystep_load();
  8571. // 5) Set the physical positions from the logical positions using the world2machine transformation and the active bed leveling.
  8572. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  8573. // 6) Power up the motors, mark their positions as known.
  8574. //FIXME Verfiy, whether the X and Y axes should be powered up here, as they will later be re-homed anyway.
  8575. axis_known_position[X_AXIS] = true; enable_x();
  8576. axis_known_position[Y_AXIS] = true; enable_y();
  8577. axis_known_position[Z_AXIS] = true; enable_z();
  8578. SERIAL_ECHOPGM("recover_machine_state_after_power_panic, initial ");
  8579. print_physical_coordinates();
  8580. // 7) Recover the target temperatures.
  8581. target_temperature[active_extruder] = eeprom_read_byte((uint8_t*)EEPROM_UVLO_TARGET_HOTEND);
  8582. target_temperature_bed = eeprom_read_byte((uint8_t*)EEPROM_UVLO_TARGET_BED);
  8583. // 8) Recover extruder multipilers
  8584. extruder_multiplier[0] = eeprom_read_float((float*)(EEPROM_EXTRUDER_MULTIPLIER_0));
  8585. #if EXTRUDERS > 1
  8586. extruder_multiplier[1] = eeprom_read_float((float*)(EEPROM_EXTRUDER_MULTIPLIER_1));
  8587. #if EXTRUDERS > 2
  8588. extruder_multiplier[2] = eeprom_read_float((float*)(EEPROM_EXTRUDER_MULTIPLIER_2));
  8589. #endif
  8590. #endif
  8591. extrudemultiply = (int)eeprom_read_word((uint16_t*)(EEPROM_EXTRUDEMULTIPLY));
  8592. }
  8593. void restore_print_from_eeprom() {
  8594. int feedrate_rec;
  8595. uint8_t fan_speed_rec;
  8596. char cmd[30];
  8597. char filename[13];
  8598. uint8_t depth = 0;
  8599. char dir_name[9];
  8600. fan_speed_rec = eeprom_read_byte((uint8_t*)EEPROM_UVLO_FAN_SPEED);
  8601. EEPROM_read_B(EEPROM_UVLO_FEEDRATE, &feedrate_rec);
  8602. SERIAL_ECHOPGM("Feedrate:");
  8603. MYSERIAL.println(feedrate_rec);
  8604. depth = eeprom_read_byte((uint8_t*)EEPROM_DIR_DEPTH);
  8605. MYSERIAL.println(int(depth));
  8606. for (int i = 0; i < depth; i++) {
  8607. for (int j = 0; j < 8; j++) {
  8608. dir_name[j] = eeprom_read_byte((uint8_t*)EEPROM_DIRS + j + 8 * i);
  8609. }
  8610. dir_name[8] = '\0';
  8611. MYSERIAL.println(dir_name);
  8612. strcpy(dir_names[i], dir_name);
  8613. card.chdir(dir_name);
  8614. }
  8615. for (int i = 0; i < 8; i++) {
  8616. filename[i] = eeprom_read_byte((uint8_t*)EEPROM_FILENAME + i);
  8617. }
  8618. filename[8] = '\0';
  8619. MYSERIAL.print(filename);
  8620. strcat_P(filename, PSTR(".gco"));
  8621. sprintf_P(cmd, PSTR("M23 %s"), filename);
  8622. enquecommand(cmd);
  8623. uint32_t position = eeprom_read_dword((uint32_t*)(EEPROM_FILE_POSITION));
  8624. SERIAL_ECHOPGM("Position read from eeprom:");
  8625. MYSERIAL.println(position);
  8626. // E axis relative mode.
  8627. enquecommand_P(PSTR("M83"));
  8628. // Move to the XY print position in logical coordinates, where the print has been killed.
  8629. strcpy_P(cmd, PSTR("G1 X")); strcat(cmd, ftostr32(eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 0))));
  8630. strcat_P(cmd, PSTR(" Y")); strcat(cmd, ftostr32(eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 4))));
  8631. strcat_P(cmd, PSTR(" F2000"));
  8632. enquecommand(cmd);
  8633. //moving on Z axis ahead, set EEPROM_UVLO to 1, so normal uvlo can fire
  8634. eeprom_update_byte((uint8_t*)EEPROM_UVLO,1);
  8635. // Move the Z axis down to the print, in logical coordinates.
  8636. strcpy_P(cmd, PSTR("G1 Z")); strcat(cmd, ftostr32(eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION_Z))));
  8637. enquecommand(cmd);
  8638. // Unretract.
  8639. enquecommand_P(PSTR("G1 E" STRINGIFY(2*default_retraction)" F480"));
  8640. // Set the feedrate saved at the power panic.
  8641. sprintf_P(cmd, PSTR("G1 F%d"), feedrate_rec);
  8642. enquecommand(cmd);
  8643. if (eeprom_read_byte((uint8_t*)EEPROM_UVLO_E_ABS))
  8644. {
  8645. enquecommand_P(PSTR("M82")); //E axis abslute mode
  8646. }
  8647. // Set the fan speed saved at the power panic.
  8648. strcpy_P(cmd, PSTR("M106 S"));
  8649. strcat(cmd, itostr3(int(fan_speed_rec)));
  8650. enquecommand(cmd);
  8651. // Set a position in the file.
  8652. sprintf_P(cmd, PSTR("M26 S%lu"), position);
  8653. enquecommand(cmd);
  8654. enquecommand_P(PSTR("G4 S0"));
  8655. enquecommand_P(PSTR("PRUSA uvlo"));
  8656. }
  8657. #endif //UVLO_SUPPORT
  8658. //! @brief Immediately stop print moves
  8659. //!
  8660. //! Immediately stop print moves, save current extruder temperature and position to RAM.
  8661. //! If printing from sd card, position in file is saved.
  8662. //! If printing from USB, line number is saved.
  8663. //!
  8664. //! @param z_move
  8665. //! @param e_move
  8666. void stop_and_save_print_to_ram(float z_move, float e_move)
  8667. {
  8668. if (saved_printing) return;
  8669. #if 0
  8670. unsigned char nplanner_blocks;
  8671. #endif
  8672. unsigned char nlines;
  8673. uint16_t sdlen_planner;
  8674. uint16_t sdlen_cmdqueue;
  8675. cli();
  8676. if (card.sdprinting) {
  8677. #if 0
  8678. nplanner_blocks = number_of_blocks();
  8679. #endif
  8680. saved_sdpos = sdpos_atomic; //atomic sd position of last command added in queue
  8681. sdlen_planner = planner_calc_sd_length(); //length of sd commands in planner
  8682. saved_sdpos -= sdlen_planner;
  8683. sdlen_cmdqueue = cmdqueue_calc_sd_length(); //length of sd commands in cmdqueue
  8684. saved_sdpos -= sdlen_cmdqueue;
  8685. saved_printing_type = PRINTING_TYPE_SD;
  8686. }
  8687. else if (is_usb_printing) { //reuse saved_sdpos for storing line number
  8688. saved_sdpos = gcode_LastN; //start with line number of command added recently to cmd queue
  8689. //reuse planner_calc_sd_length function for getting number of lines of commands in planner:
  8690. nlines = planner_calc_sd_length(); //number of lines of commands in planner
  8691. saved_sdpos -= nlines;
  8692. saved_sdpos -= buflen; //number of blocks in cmd buffer
  8693. saved_printing_type = PRINTING_TYPE_USB;
  8694. }
  8695. else {
  8696. saved_printing_type = PRINTING_TYPE_NONE;
  8697. //not sd printing nor usb printing
  8698. }
  8699. #if 0
  8700. SERIAL_ECHOPGM("SDPOS_ATOMIC="); MYSERIAL.println(sdpos_atomic, DEC);
  8701. SERIAL_ECHOPGM("SDPOS="); MYSERIAL.println(card.get_sdpos(), DEC);
  8702. SERIAL_ECHOPGM("SDLEN_PLAN="); MYSERIAL.println(sdlen_planner, DEC);
  8703. SERIAL_ECHOPGM("SDLEN_CMDQ="); MYSERIAL.println(sdlen_cmdqueue, DEC);
  8704. SERIAL_ECHOPGM("PLANNERBLOCKS="); MYSERIAL.println(int(nplanner_blocks), DEC);
  8705. SERIAL_ECHOPGM("SDSAVED="); MYSERIAL.println(saved_sdpos, DEC);
  8706. //SERIAL_ECHOPGM("SDFILELEN="); MYSERIAL.println(card.fileSize(), DEC);
  8707. {
  8708. card.setIndex(saved_sdpos);
  8709. SERIAL_ECHOLNPGM("Content of planner buffer: ");
  8710. for (unsigned int idx = 0; idx < sdlen_planner; ++ idx)
  8711. MYSERIAL.print(char(card.get()));
  8712. SERIAL_ECHOLNPGM("Content of command buffer: ");
  8713. for (unsigned int idx = 0; idx < sdlen_cmdqueue; ++ idx)
  8714. MYSERIAL.print(char(card.get()));
  8715. SERIAL_ECHOLNPGM("End of command buffer");
  8716. }
  8717. {
  8718. // Print the content of the planner buffer, line by line:
  8719. card.setIndex(saved_sdpos);
  8720. int8_t iline = 0;
  8721. for (unsigned char idx = block_buffer_tail; idx != block_buffer_head; idx = (idx + 1) & (BLOCK_BUFFER_SIZE - 1), ++ iline) {
  8722. SERIAL_ECHOPGM("Planner line (from file): ");
  8723. MYSERIAL.print(int(iline), DEC);
  8724. SERIAL_ECHOPGM(", length: ");
  8725. MYSERIAL.print(block_buffer[idx].sdlen, DEC);
  8726. SERIAL_ECHOPGM(", steps: (");
  8727. MYSERIAL.print(block_buffer[idx].steps_x, DEC);
  8728. SERIAL_ECHOPGM(",");
  8729. MYSERIAL.print(block_buffer[idx].steps_y, DEC);
  8730. SERIAL_ECHOPGM(",");
  8731. MYSERIAL.print(block_buffer[idx].steps_z, DEC);
  8732. SERIAL_ECHOPGM(",");
  8733. MYSERIAL.print(block_buffer[idx].steps_e, DEC);
  8734. SERIAL_ECHOPGM("), events: ");
  8735. MYSERIAL.println(block_buffer[idx].step_event_count, DEC);
  8736. for (int len = block_buffer[idx].sdlen; len > 0; -- len)
  8737. MYSERIAL.print(char(card.get()));
  8738. }
  8739. }
  8740. {
  8741. // Print the content of the command buffer, line by line:
  8742. int8_t iline = 0;
  8743. union {
  8744. struct {
  8745. char lo;
  8746. char hi;
  8747. } lohi;
  8748. uint16_t value;
  8749. } sdlen_single;
  8750. int _bufindr = bufindr;
  8751. for (int _buflen = buflen; _buflen > 0; ++ iline) {
  8752. if (cmdbuffer[_bufindr] == CMDBUFFER_CURRENT_TYPE_SDCARD) {
  8753. sdlen_single.lohi.lo = cmdbuffer[_bufindr + 1];
  8754. sdlen_single.lohi.hi = cmdbuffer[_bufindr + 2];
  8755. }
  8756. SERIAL_ECHOPGM("Buffer line (from buffer): ");
  8757. MYSERIAL.print(int(iline), DEC);
  8758. SERIAL_ECHOPGM(", type: ");
  8759. MYSERIAL.print(int(cmdbuffer[_bufindr]), DEC);
  8760. SERIAL_ECHOPGM(", len: ");
  8761. MYSERIAL.println(sdlen_single.value, DEC);
  8762. // Print the content of the buffer line.
  8763. MYSERIAL.println(cmdbuffer + _bufindr + CMDHDRSIZE);
  8764. SERIAL_ECHOPGM("Buffer line (from file): ");
  8765. MYSERIAL.println(int(iline), DEC);
  8766. for (; sdlen_single.value > 0; -- sdlen_single.value)
  8767. MYSERIAL.print(char(card.get()));
  8768. if (-- _buflen == 0)
  8769. break;
  8770. // First skip the current command ID and iterate up to the end of the string.
  8771. for (_bufindr += CMDHDRSIZE; cmdbuffer[_bufindr] != 0; ++ _bufindr) ;
  8772. // Second, skip the end of string null character and iterate until a nonzero command ID is found.
  8773. for (++ _bufindr; _bufindr < sizeof(cmdbuffer) && cmdbuffer[_bufindr] == 0; ++ _bufindr) ;
  8774. // If the end of the buffer was empty,
  8775. if (_bufindr == sizeof(cmdbuffer)) {
  8776. // skip to the start and find the nonzero command.
  8777. for (_bufindr = 0; cmdbuffer[_bufindr] == 0; ++ _bufindr) ;
  8778. }
  8779. }
  8780. }
  8781. #endif
  8782. #if 0
  8783. saved_feedrate2 = feedrate; //save feedrate
  8784. #else
  8785. // Try to deduce the feedrate from the first block of the planner.
  8786. // Speed is in mm/min.
  8787. saved_feedrate2 = blocks_queued() ? (block_buffer[block_buffer_tail].nominal_speed * 60.f) : feedrate;
  8788. #endif
  8789. planner_abort_hard(); //abort printing
  8790. memcpy(saved_pos, current_position, sizeof(saved_pos));
  8791. saved_active_extruder = active_extruder; //save active_extruder
  8792. saved_extruder_temperature = degTargetHotend(active_extruder);
  8793. saved_extruder_under_pressure = extruder_under_pressure; //extruder under pressure flag - currently unused
  8794. saved_extruder_relative_mode = axis_relative_modes[E_AXIS];
  8795. saved_fanSpeed = fanSpeed;
  8796. cmdqueue_reset(); //empty cmdqueue
  8797. card.sdprinting = false;
  8798. // card.closefile();
  8799. saved_printing = true;
  8800. // We may have missed a stepper timer interrupt. Be safe than sorry, reset the stepper timer before re-enabling interrupts.
  8801. st_reset_timer();
  8802. sei();
  8803. if ((z_move != 0) || (e_move != 0)) { // extruder or z move
  8804. #if 1
  8805. // Rather than calling plan_buffer_line directly, push the move into the command queue,
  8806. char buf[48];
  8807. // First unretract (relative extrusion)
  8808. if(!saved_extruder_relative_mode){
  8809. enquecommand(PSTR("M83"), true);
  8810. }
  8811. //retract 45mm/s
  8812. // A single sprintf may not be faster, but is definitely 20B shorter
  8813. // than a sequence of commands building the string piece by piece
  8814. // A snprintf would have been a safer call, but since it is not used
  8815. // in the whole program, its implementation would bring more bytes to the total size
  8816. // The behavior of dtostrf 8,3 should be roughly the same as %-0.3
  8817. sprintf_P(buf, PSTR("G1 E%-0.3f F2700"), e_move);
  8818. enquecommand(buf, false);
  8819. // Then lift Z axis
  8820. sprintf_P(buf, PSTR("G1 Z%-0.3f F%-0.3f"), saved_pos[Z_AXIS] + z_move, homing_feedrate[Z_AXIS]);
  8821. // At this point the command queue is empty.
  8822. enquecommand(buf, false);
  8823. // If this call is invoked from the main Arduino loop() function, let the caller know that the command
  8824. // in the command queue is not the original command, but a new one, so it should not be removed from the queue.
  8825. repeatcommand_front();
  8826. #else
  8827. plan_buffer_line(saved_pos[X_AXIS], saved_pos[Y_AXIS], saved_pos[Z_AXIS] + z_move, saved_pos[E_AXIS] + e_move, homing_feedrate[Z_AXIS], active_extruder);
  8828. st_synchronize(); //wait moving
  8829. memcpy(current_position, saved_pos, sizeof(saved_pos));
  8830. memcpy(destination, current_position, sizeof(destination));
  8831. #endif
  8832. }
  8833. }
  8834. //! @brief Restore print from ram
  8835. //!
  8836. //! Restore print saved by stop_and_save_print_to_ram(). Is blocking, restores
  8837. //! print fan speed, waits for extruder temperature restore, then restores
  8838. //! position and continues print moves.
  8839. //!
  8840. //! Internally lcd_update() is called by wait_for_heater().
  8841. //!
  8842. //! @param e_move
  8843. void restore_print_from_ram_and_continue(float e_move)
  8844. {
  8845. if (!saved_printing) return;
  8846. #ifdef FANCHECK
  8847. // Do not allow resume printing if fans are still not ok
  8848. if( fan_check_error != EFCE_OK )return;
  8849. #endif
  8850. // for (int axis = X_AXIS; axis <= E_AXIS; axis++)
  8851. // current_position[axis] = st_get_position_mm(axis);
  8852. active_extruder = saved_active_extruder; //restore active_extruder
  8853. fanSpeed = saved_fanSpeed;
  8854. if (degTargetHotend(saved_active_extruder) != saved_extruder_temperature)
  8855. {
  8856. setTargetHotendSafe(saved_extruder_temperature, saved_active_extruder);
  8857. heating_status = 1;
  8858. wait_for_heater(_millis(), saved_active_extruder);
  8859. heating_status = 2;
  8860. }
  8861. feedrate = saved_feedrate2; //restore feedrate
  8862. axis_relative_modes[E_AXIS] = saved_extruder_relative_mode;
  8863. float e = saved_pos[E_AXIS] - e_move;
  8864. plan_set_e_position(e);
  8865. #ifdef FANCHECK
  8866. fans_check_enabled = false;
  8867. #endif
  8868. //first move print head in XY to the saved position:
  8869. plan_buffer_line(saved_pos[X_AXIS], saved_pos[Y_AXIS], current_position[Z_AXIS], saved_pos[E_AXIS] - e_move, homing_feedrate[Z_AXIS]/13, active_extruder);
  8870. st_synchronize();
  8871. //then move Z
  8872. plan_buffer_line(saved_pos[X_AXIS], saved_pos[Y_AXIS], saved_pos[Z_AXIS], saved_pos[E_AXIS] - e_move, homing_feedrate[Z_AXIS]/13, active_extruder);
  8873. st_synchronize();
  8874. //and finaly unretract (35mm/s)
  8875. plan_buffer_line(saved_pos[X_AXIS], saved_pos[Y_AXIS], saved_pos[Z_AXIS], saved_pos[E_AXIS], 35, active_extruder);
  8876. st_synchronize();
  8877. #ifdef FANCHECK
  8878. fans_check_enabled = true;
  8879. #endif
  8880. memcpy(current_position, saved_pos, sizeof(saved_pos));
  8881. memcpy(destination, current_position, sizeof(destination));
  8882. if (saved_printing_type == PRINTING_TYPE_SD) { //was sd printing
  8883. card.setIndex(saved_sdpos);
  8884. sdpos_atomic = saved_sdpos;
  8885. card.sdprinting = true;
  8886. }
  8887. else if (saved_printing_type == PRINTING_TYPE_USB) { //was usb printing
  8888. gcode_LastN = saved_sdpos; //saved_sdpos was reused for storing line number when usb printing
  8889. serial_count = 0;
  8890. FlushSerialRequestResend();
  8891. }
  8892. else {
  8893. //not sd printing nor usb printing
  8894. }
  8895. printf_P(PSTR("ok\n")); //dummy response because of octoprint is waiting for this
  8896. lcd_setstatuspgm(_T(WELCOME_MSG));
  8897. saved_printing = false;
  8898. }
  8899. void print_world_coordinates()
  8900. {
  8901. printf_P(_N("world coordinates: (%.3f, %.3f, %.3f)\n"), current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS]);
  8902. }
  8903. void print_physical_coordinates()
  8904. {
  8905. printf_P(_N("physical coordinates: (%.3f, %.3f, %.3f)\n"), st_get_position_mm(X_AXIS), st_get_position_mm(Y_AXIS), st_get_position_mm(Z_AXIS));
  8906. }
  8907. void print_mesh_bed_leveling_table()
  8908. {
  8909. SERIAL_ECHOPGM("mesh bed leveling: ");
  8910. for (int8_t y = 0; y < MESH_NUM_Y_POINTS; ++ y)
  8911. for (int8_t x = 0; x < MESH_NUM_Y_POINTS; ++ x) {
  8912. MYSERIAL.print(mbl.z_values[y][x], 3);
  8913. SERIAL_ECHOPGM(" ");
  8914. }
  8915. SERIAL_ECHOLNPGM("");
  8916. }
  8917. uint16_t print_time_remaining() {
  8918. uint16_t print_t = PRINT_TIME_REMAINING_INIT;
  8919. #ifdef TMC2130
  8920. if (SilentModeMenu == SILENT_MODE_OFF) print_t = print_time_remaining_normal;
  8921. else print_t = print_time_remaining_silent;
  8922. #else
  8923. print_t = print_time_remaining_normal;
  8924. #endif //TMC2130
  8925. if ((print_t != PRINT_TIME_REMAINING_INIT) && (feedmultiply != 0)) print_t = 100ul * print_t / feedmultiply;
  8926. return print_t;
  8927. }
  8928. uint8_t calc_percent_done()
  8929. {
  8930. //in case that we have information from M73 gcode return percentage counted by slicer, else return percentage counted as byte_printed/filesize
  8931. uint8_t percent_done = 0;
  8932. #ifdef TMC2130
  8933. if (SilentModeMenu == SILENT_MODE_OFF && print_percent_done_normal <= 100) {
  8934. percent_done = print_percent_done_normal;
  8935. }
  8936. else if (print_percent_done_silent <= 100) {
  8937. percent_done = print_percent_done_silent;
  8938. }
  8939. #else
  8940. if (print_percent_done_normal <= 100) {
  8941. percent_done = print_percent_done_normal;
  8942. }
  8943. #endif //TMC2130
  8944. else {
  8945. percent_done = card.percentDone();
  8946. }
  8947. return percent_done;
  8948. }
  8949. static void print_time_remaining_init()
  8950. {
  8951. print_time_remaining_normal = PRINT_TIME_REMAINING_INIT;
  8952. print_time_remaining_silent = PRINT_TIME_REMAINING_INIT;
  8953. print_percent_done_normal = PRINT_PERCENT_DONE_INIT;
  8954. print_percent_done_silent = PRINT_PERCENT_DONE_INIT;
  8955. }
  8956. void load_filament_final_feed()
  8957. {
  8958. current_position[E_AXIS]+= FILAMENTCHANGE_FINALFEED;
  8959. plan_buffer_line_curposXYZE(FILAMENTCHANGE_EFEED_FINAL, active_extruder);
  8960. }
  8961. //! @brief Wait for user to check the state
  8962. //! @par nozzle_temp nozzle temperature to load filament
  8963. void M600_check_state(float nozzle_temp)
  8964. {
  8965. lcd_change_fil_state = 0;
  8966. while (lcd_change_fil_state != 1)
  8967. {
  8968. lcd_change_fil_state = 0;
  8969. KEEPALIVE_STATE(PAUSED_FOR_USER);
  8970. lcd_alright();
  8971. KEEPALIVE_STATE(IN_HANDLER);
  8972. switch(lcd_change_fil_state)
  8973. {
  8974. // Filament failed to load so load it again
  8975. case 2:
  8976. if (mmu_enabled)
  8977. mmu_M600_load_filament(false, nozzle_temp); //nonautomatic load; change to "wrong filament loaded" option?
  8978. else
  8979. M600_load_filament_movements();
  8980. break;
  8981. // Filament loaded properly but color is not clear
  8982. case 3:
  8983. st_synchronize();
  8984. load_filament_final_feed();
  8985. lcd_loading_color();
  8986. st_synchronize();
  8987. break;
  8988. // Everything good
  8989. default:
  8990. lcd_change_success();
  8991. break;
  8992. }
  8993. }
  8994. }
  8995. //! @brief Wait for user action
  8996. //!
  8997. //! Beep, manage nozzle heater and wait for user to start unload filament
  8998. //! If times out, active extruder temperature is set to 0.
  8999. //!
  9000. //! @param HotendTempBckp Temperature to be restored for active extruder, after user resolves MMU problem.
  9001. void M600_wait_for_user(float HotendTempBckp) {
  9002. KEEPALIVE_STATE(PAUSED_FOR_USER);
  9003. int counterBeep = 0;
  9004. unsigned long waiting_start_time = _millis();
  9005. uint8_t wait_for_user_state = 0;
  9006. lcd_display_message_fullscreen_P(_T(MSG_PRESS_TO_UNLOAD));
  9007. bool bFirst=true;
  9008. while (!(wait_for_user_state == 0 && lcd_clicked())){
  9009. manage_heater();
  9010. manage_inactivity(true);
  9011. #if BEEPER > 0
  9012. if (counterBeep == 500) {
  9013. counterBeep = 0;
  9014. }
  9015. SET_OUTPUT(BEEPER);
  9016. if (counterBeep == 0) {
  9017. if((eSoundMode==e_SOUND_MODE_BLIND)|| (eSoundMode==e_SOUND_MODE_LOUD)||((eSoundMode==e_SOUND_MODE_ONCE)&&bFirst))
  9018. {
  9019. bFirst=false;
  9020. WRITE(BEEPER, HIGH);
  9021. }
  9022. }
  9023. if (counterBeep == 20) {
  9024. WRITE(BEEPER, LOW);
  9025. }
  9026. counterBeep++;
  9027. #endif //BEEPER > 0
  9028. switch (wait_for_user_state) {
  9029. case 0: //nozzle is hot, waiting for user to press the knob to unload filament
  9030. delay_keep_alive(4);
  9031. if (_millis() > waiting_start_time + (unsigned long)M600_TIMEOUT * 1000) {
  9032. lcd_display_message_fullscreen_P(_i("Press knob to preheat nozzle and continue."));////MSG_PRESS_TO_PREHEAT c=20 r=4
  9033. wait_for_user_state = 1;
  9034. setAllTargetHotends(0);
  9035. st_synchronize();
  9036. disable_e0();
  9037. disable_e1();
  9038. disable_e2();
  9039. }
  9040. break;
  9041. case 1: //nozzle target temperature is set to zero, waiting for user to start nozzle preheat
  9042. delay_keep_alive(4);
  9043. if (lcd_clicked()) {
  9044. setTargetHotend(HotendTempBckp, active_extruder);
  9045. lcd_wait_for_heater();
  9046. wait_for_user_state = 2;
  9047. }
  9048. break;
  9049. case 2: //waiting for nozzle to reach target temperature
  9050. if (abs(degTargetHotend(active_extruder) - degHotend(active_extruder)) < 1) {
  9051. lcd_display_message_fullscreen_P(_T(MSG_PRESS_TO_UNLOAD));
  9052. waiting_start_time = _millis();
  9053. wait_for_user_state = 0;
  9054. }
  9055. else {
  9056. counterBeep = 20; //beeper will be inactive during waiting for nozzle preheat
  9057. lcd_set_cursor(1, 4);
  9058. lcd_print(ftostr3(degHotend(active_extruder)));
  9059. }
  9060. break;
  9061. }
  9062. }
  9063. WRITE(BEEPER, LOW);
  9064. }
  9065. void M600_load_filament_movements()
  9066. {
  9067. #ifdef SNMM
  9068. display_loading();
  9069. do
  9070. {
  9071. current_position[E_AXIS] += 0.002;
  9072. plan_buffer_line_curposXYZE(500, active_extruder);
  9073. delay_keep_alive(2);
  9074. }
  9075. while (!lcd_clicked());
  9076. st_synchronize();
  9077. current_position[E_AXIS] += bowden_length[mmu_extruder];
  9078. plan_buffer_line_curposXYZE(3000, active_extruder);
  9079. current_position[E_AXIS] += FIL_LOAD_LENGTH - 60;
  9080. plan_buffer_line_curposXYZE(1400, active_extruder);
  9081. current_position[E_AXIS] += 40;
  9082. plan_buffer_line_curposXYZE(400, active_extruder);
  9083. current_position[E_AXIS] += 10;
  9084. plan_buffer_line_curposXYZE(50, active_extruder);
  9085. #else
  9086. current_position[E_AXIS]+= FILAMENTCHANGE_FIRSTFEED ;
  9087. plan_buffer_line_curposXYZE(FILAMENTCHANGE_EFEED_FIRST, active_extruder);
  9088. #endif
  9089. load_filament_final_feed();
  9090. lcd_loading_filament();
  9091. st_synchronize();
  9092. }
  9093. void M600_load_filament() {
  9094. //load filament for single material and SNMM
  9095. lcd_wait_interact();
  9096. //load_filament_time = _millis();
  9097. KEEPALIVE_STATE(PAUSED_FOR_USER);
  9098. #ifdef PAT9125
  9099. fsensor_autoload_check_start();
  9100. #endif //PAT9125
  9101. while(!lcd_clicked())
  9102. {
  9103. manage_heater();
  9104. manage_inactivity(true);
  9105. #ifdef FILAMENT_SENSOR
  9106. if (fsensor_check_autoload())
  9107. {
  9108. Sound_MakeCustom(50,1000,false);
  9109. break;
  9110. }
  9111. #endif //FILAMENT_SENSOR
  9112. }
  9113. #ifdef PAT9125
  9114. fsensor_autoload_check_stop();
  9115. #endif //PAT9125
  9116. KEEPALIVE_STATE(IN_HANDLER);
  9117. #ifdef FSENSOR_QUALITY
  9118. fsensor_oq_meassure_start(70);
  9119. #endif //FSENSOR_QUALITY
  9120. M600_load_filament_movements();
  9121. Sound_MakeCustom(50,1000,false);
  9122. #ifdef FSENSOR_QUALITY
  9123. fsensor_oq_meassure_stop();
  9124. if (!fsensor_oq_result())
  9125. {
  9126. bool disable = lcd_show_fullscreen_message_yes_no_and_wait_P(_i("Fil. sensor response is poor, disable it?"), false, true);
  9127. lcd_update_enable(true);
  9128. lcd_update(2);
  9129. if (disable)
  9130. fsensor_disable();
  9131. }
  9132. #endif //FSENSOR_QUALITY
  9133. lcd_update_enable(false);
  9134. }
  9135. //! @brief Wait for click
  9136. //!
  9137. //! Set
  9138. void marlin_wait_for_click()
  9139. {
  9140. int8_t busy_state_backup = busy_state;
  9141. KEEPALIVE_STATE(PAUSED_FOR_USER);
  9142. lcd_consume_click();
  9143. while(!lcd_clicked())
  9144. {
  9145. manage_heater();
  9146. manage_inactivity(true);
  9147. lcd_update(0);
  9148. }
  9149. KEEPALIVE_STATE(busy_state_backup);
  9150. }
  9151. #define FIL_LOAD_LENGTH 60
  9152. #ifdef PSU_Delta
  9153. bool bEnableForce_z;
  9154. void init_force_z()
  9155. {
  9156. WRITE(Z_ENABLE_PIN,Z_ENABLE_ON);
  9157. bEnableForce_z=true; // "true"-value enforce "disable_force_z()" executing
  9158. disable_force_z();
  9159. }
  9160. void check_force_z()
  9161. {
  9162. if(!(bEnableForce_z||eeprom_read_byte((uint8_t*)EEPROM_SILENT)))
  9163. init_force_z(); // causes enforced switching into disable-state
  9164. }
  9165. void disable_force_z()
  9166. {
  9167. uint16_t z_microsteps=0;
  9168. if(!bEnableForce_z) return; // motor already disabled (may be ;-p )
  9169. bEnableForce_z=false;
  9170. // switching to silent mode
  9171. #ifdef TMC2130
  9172. tmc2130_mode=TMC2130_MODE_SILENT;
  9173. update_mode_profile();
  9174. tmc2130_init(true);
  9175. #endif // TMC2130
  9176. axis_known_position[Z_AXIS]=false;
  9177. }
  9178. void enable_force_z()
  9179. {
  9180. if(bEnableForce_z)
  9181. return; // motor already enabled (may be ;-p )
  9182. bEnableForce_z=true;
  9183. // mode recovering
  9184. #ifdef TMC2130
  9185. tmc2130_mode=eeprom_read_byte((uint8_t*)EEPROM_SILENT)?TMC2130_MODE_SILENT:TMC2130_MODE_NORMAL;
  9186. update_mode_profile();
  9187. tmc2130_init(true);
  9188. #endif // TMC2130
  9189. WRITE(Z_ENABLE_PIN,Z_ENABLE_ON); // slightly redundant ;-p
  9190. }
  9191. #endif // PSU_Delta