temperature.h 6.0 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228
  1. /*
  2. temperature.h - temperature controller
  3. Part of Marlin
  4. Copyright (c) 2011 Erik van der Zalm
  5. Grbl is free software: you can redistribute it and/or modify
  6. it under the terms of the GNU General Public License as published by
  7. the Free Software Foundation, either version 3 of the License, or
  8. (at your option) any later version.
  9. Grbl is distributed in the hope that it will be useful,
  10. but WITHOUT ANY WARRANTY; without even the implied warranty of
  11. MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  12. GNU General Public License for more details.
  13. You should have received a copy of the GNU General Public License
  14. along with Grbl. If not, see <http://www.gnu.org/licenses/>.
  15. */
  16. #ifndef temperature_h
  17. #define temperature_h
  18. #include "Marlin.h"
  19. #include "planner.h"
  20. #ifdef PID_ADD_EXTRUSION_RATE
  21. #include "stepper.h"
  22. #endif
  23. // public functions
  24. void tp_init(); //initialize the heating
  25. void manage_heater(); //it is critical that this is called periodically.
  26. #ifdef FILAMENT_SENSOR
  27. // For converting raw Filament Width to milimeters
  28. float analog2widthFil();
  29. // For converting raw Filament Width to an extrusion ratio
  30. int widthFil_to_size_ratio();
  31. #endif
  32. // low level conversion routines
  33. // do not use these routines and variables outside of temperature.cpp
  34. extern int target_temperature[EXTRUDERS];
  35. extern float current_temperature[EXTRUDERS];
  36. #ifdef SHOW_TEMP_ADC_VALUES
  37. extern int current_temperature_raw[EXTRUDERS];
  38. extern int current_temperature_bed_raw;
  39. #endif
  40. extern int target_temperature_bed;
  41. extern float current_temperature_bed;
  42. #ifdef PINDA_THERMISTOR
  43. //extern int current_temperature_raw_pinda;
  44. extern float current_temperature_pinda;
  45. #endif
  46. #ifdef AMBIENT_THERMISTOR
  47. //extern int current_temperature_raw_ambient;
  48. extern float current_temperature_ambient;
  49. #endif
  50. #ifdef TEMP_SENSOR_1_AS_REDUNDANT
  51. extern float redundant_temperature;
  52. #endif
  53. #if defined(CONTROLLERFAN_PIN) && CONTROLLERFAN_PIN > -1
  54. extern unsigned char soft_pwm_bed;
  55. #endif
  56. #ifdef PIDTEMP
  57. extern int pid_cycle, pid_number_of_cycles;
  58. extern float Kp,Ki,Kd,Kc,_Kp,_Ki,_Kd;
  59. extern bool pid_tuning_finished;
  60. float scalePID_i(float i);
  61. float scalePID_d(float d);
  62. float unscalePID_i(float i);
  63. float unscalePID_d(float d);
  64. #endif
  65. #ifdef PIDTEMPBED
  66. extern float bedKp,bedKi,bedKd;
  67. #endif
  68. #ifdef BABYSTEPPING
  69. extern volatile int babystepsTodo[3];
  70. #endif
  71. inline void babystepsTodoZadd(int n)
  72. {
  73. if (n != 0) {
  74. CRITICAL_SECTION_START
  75. babystepsTodo[Z_AXIS] += n;
  76. CRITICAL_SECTION_END
  77. }
  78. }
  79. inline void babystepsTodoZsubtract(int n)
  80. {
  81. if (n != 0) {
  82. CRITICAL_SECTION_START
  83. babystepsTodo[Z_AXIS] -= n;
  84. CRITICAL_SECTION_END
  85. }
  86. }
  87. //high level conversion routines, for use outside of temperature.cpp
  88. //inline so that there is no performance decrease.
  89. //deg=degreeCelsius
  90. FORCE_INLINE float degHotend(uint8_t extruder) {
  91. return current_temperature[extruder];
  92. };
  93. #ifdef SHOW_TEMP_ADC_VALUES
  94. FORCE_INLINE float rawHotendTemp(uint8_t extruder) {
  95. return current_temperature_raw[extruder];
  96. };
  97. FORCE_INLINE float rawBedTemp() {
  98. return current_temperature_bed_raw;
  99. };
  100. #endif
  101. FORCE_INLINE float degBed() {
  102. return current_temperature_bed;
  103. };
  104. FORCE_INLINE float degTargetHotend(uint8_t extruder) {
  105. return target_temperature[extruder];
  106. };
  107. FORCE_INLINE float degTargetBed() {
  108. return target_temperature_bed;
  109. };
  110. FORCE_INLINE void setTargetHotend(const float &celsius, uint8_t extruder) {
  111. target_temperature[extruder] = celsius;
  112. };
  113. FORCE_INLINE void setTargetBed(const float &celsius) {
  114. target_temperature_bed = celsius;
  115. };
  116. FORCE_INLINE bool isHeatingHotend(uint8_t extruder){
  117. return target_temperature[extruder] > current_temperature[extruder];
  118. };
  119. FORCE_INLINE bool isHeatingBed() {
  120. return target_temperature_bed > current_temperature_bed;
  121. };
  122. FORCE_INLINE bool isCoolingHotend(uint8_t extruder) {
  123. return target_temperature[extruder] < current_temperature[extruder];
  124. };
  125. FORCE_INLINE bool isCoolingBed() {
  126. return target_temperature_bed < current_temperature_bed;
  127. };
  128. #define degHotend0() degHotend(0)
  129. #define degTargetHotend0() degTargetHotend(0)
  130. #define setTargetHotend0(_celsius) setTargetHotend((_celsius), 0)
  131. #define isHeatingHotend0() isHeatingHotend(0)
  132. #define isCoolingHotend0() isCoolingHotend(0)
  133. #if EXTRUDERS > 1
  134. #define degHotend1() degHotend(1)
  135. #define degTargetHotend1() degTargetHotend(1)
  136. #define setTargetHotend1(_celsius) setTargetHotend((_celsius), 1)
  137. #define isHeatingHotend1() isHeatingHotend(1)
  138. #define isCoolingHotend1() isCoolingHotend(1)
  139. #else
  140. #define setTargetHotend1(_celsius) do{}while(0)
  141. #endif
  142. #if EXTRUDERS > 2
  143. #define degHotend2() degHotend(2)
  144. #define degTargetHotend2() degTargetHotend(2)
  145. #define setTargetHotend2(_celsius) setTargetHotend((_celsius), 2)
  146. #define isHeatingHotend2() isHeatingHotend(2)
  147. #define isCoolingHotend2() isCoolingHotend(2)
  148. #else
  149. #define setTargetHotend2(_celsius) do{}while(0)
  150. #endif
  151. #if EXTRUDERS > 3
  152. #error Invalid number of extruders
  153. #endif
  154. #if (defined (TEMP_RUNAWAY_BED_HYSTERESIS) && TEMP_RUNAWAY_BED_TIMEOUT > 0) || (defined (TEMP_RUNAWAY_EXTRUDER_HYSTERESIS) && TEMP_RUNAWAY_EXTRUDER_TIMEOUT > 0)
  155. static float temp_runaway_status[4];
  156. static float temp_runaway_target[4];
  157. static float temp_runaway_timer[4];
  158. static int temp_runaway_error_counter[4];
  159. void temp_runaway_check(int _heater_id, float _target_temperature, float _current_temperature, float _output, bool _isbed);
  160. void temp_runaway_stop(bool isPreheat, bool isBed);
  161. #endif
  162. int getHeaterPower(int heater);
  163. void disable_heater();
  164. void setWatch();
  165. void updatePID();
  166. FORCE_INLINE void autotempShutdown(){
  167. #ifdef AUTOTEMP
  168. if(autotemp_enabled)
  169. {
  170. autotemp_enabled=false;
  171. if(degTargetHotend(active_extruder)>autotemp_min)
  172. setTargetHotend(0,active_extruder);
  173. }
  174. #endif
  175. }
  176. void PID_autotune(float temp, int extruder, int ncycles);
  177. void setExtruderAutoFanState(int pin, bool state);
  178. void checkExtruderAutoFans();
  179. void countFanSpeed();
  180. void checkFanSpeed();
  181. void fanSpeedError(unsigned char _fan);
  182. void check_fans();
  183. #endif