1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930 |
- #include "qr_solve.h"
- #ifdef AUTO_BED_LEVELING_GRID
- #include <stdlib.h>
- #include <math.h>
- //# include "r8lib.h"
- int i4_min ( int i1, int i2 )
- /******************************************************************************/
- /*
- Purpose:
- I4_MIN returns the smaller of two I4's.
- Licensing:
- This code is distributed under the GNU LGPL license.
- Modified:
- 29 August 2006
- Author:
- John Burkardt
- Parameters:
- Input, int I1, I2, two integers to be compared.
- Output, int I4_MIN, the smaller of I1 and I2.
- */
- {
- int value;
- if ( i1 < i2 )
- {
- value = i1;
- }
- else
- {
- value = i2;
- }
- return value;
- }
- double r8_epsilon ( void )
- /******************************************************************************/
- /*
- Purpose:
- R8_EPSILON returns the R8 round off unit.
- Discussion:
- R8_EPSILON is a number R which is a power of 2 with the property that,
- to the precision of the computer's arithmetic,
- 1 < 1 + R
- but
- 1 = ( 1 + R / 2 )
- Licensing:
- This code is distributed under the GNU LGPL license.
- Modified:
- 01 September 2012
- Author:
- John Burkardt
- Parameters:
- Output, double R8_EPSILON, the R8 round-off unit.
- */
- {
- const double value = 2.220446049250313E-016;
- return value;
- }
- double r8_max ( double x, double y )
- /******************************************************************************/
- /*
- Purpose:
- R8_MAX returns the maximum of two R8's.
- Licensing:
- This code is distributed under the GNU LGPL license.
- Modified:
- 07 May 2006
- Author:
- John Burkardt
- Parameters:
- Input, double X, Y, the quantities to compare.
- Output, double R8_MAX, the maximum of X and Y.
- */
- {
- double value;
- if ( y < x )
- {
- value = x;
- }
- else
- {
- value = y;
- }
- return value;
- }
- double r8_abs ( double x )
- /******************************************************************************/
- /*
- Purpose:
- R8_ABS returns the absolute value of an R8.
- Licensing:
- This code is distributed under the GNU LGPL license.
- Modified:
- 07 May 2006
- Author:
- John Burkardt
- Parameters:
- Input, double X, the quantity whose absolute value is desired.
- Output, double R8_ABS, the absolute value of X.
- */
- {
- double value;
- if ( 0.0 <= x )
- {
- value = + x;
- }
- else
- {
- value = - x;
- }
- return value;
- }
- double r8_sign ( double x )
- /******************************************************************************/
- /*
- Purpose:
- R8_SIGN returns the sign of an R8.
- Licensing:
- This code is distributed under the GNU LGPL license.
- Modified:
- 08 May 2006
- Author:
- John Burkardt
- Parameters:
- Input, double X, the number whose sign is desired.
- Output, double R8_SIGN, the sign of X.
- */
- {
- double value;
- if ( x < 0.0 )
- {
- value = - 1.0;
- }
- else
- {
- value = + 1.0;
- }
- return value;
- }
- double r8mat_amax ( int m, int n, double a[] )
- /******************************************************************************/
- /*
- Purpose:
- R8MAT_AMAX returns the maximum absolute value entry of an R8MAT.
- Discussion:
- An R8MAT is a doubly dimensioned array of R8 values, stored as a vector
- in column-major order.
- Licensing:
- This code is distributed under the GNU LGPL license.
- Modified:
- 07 September 2012
- Author:
- John Burkardt
- Parameters:
- Input, int M, the number of rows in A.
- Input, int N, the number of columns in A.
- Input, double A[M*N], the M by N matrix.
- Output, double R8MAT_AMAX, the maximum absolute value entry of A.
- */
- {
- int i;
- int j;
- double value;
- value = r8_abs ( a[0+0*m] );
- for ( j = 0; j < n; j++ )
- {
- for ( i = 0; i < m; i++ )
- {
- if ( value < r8_abs ( a[i+j*m] ) )
- {
- value = r8_abs ( a[i+j*m] );
- }
- }
- }
- return value;
- }
- double *r8mat_copy_new ( int m, int n, double a1[] )
- /******************************************************************************/
- /*
- Purpose:
- R8MAT_COPY_NEW copies one R8MAT to a "new" R8MAT.
- Discussion:
- An R8MAT is a doubly dimensioned array of R8 values, stored as a vector
- in column-major order.
- Licensing:
- This code is distributed under the GNU LGPL license.
- Modified:
- 26 July 2008
- Author:
- John Burkardt
- Parameters:
- Input, int M, N, the number of rows and columns.
- Input, double A1[M*N], the matrix to be copied.
- Output, double R8MAT_COPY_NEW[M*N], the copy of A1.
- */
- {
- double *a2;
- int i;
- int j;
- a2 = ( double * ) malloc ( m * n * sizeof ( double ) );
- for ( j = 0; j < n; j++ )
- {
- for ( i = 0; i < m; i++ )
- {
- a2[i+j*m] = a1[i+j*m];
- }
- }
- return a2;
- }
- /******************************************************************************/
- void daxpy ( int n, double da, double dx[], int incx, double dy[], int incy )
- /******************************************************************************/
- /*
- Purpose:
- DAXPY computes constant times a vector plus a vector.
- Discussion:
- This routine uses unrolled loops for increments equal to one.
- Licensing:
- This code is distributed under the GNU LGPL license.
- Modified:
- 30 March 2007
- Author:
- C version by John Burkardt
- Reference:
- Jack Dongarra, Cleve Moler, Jim Bunch, Pete Stewart,
- LINPACK User's Guide,
- SIAM, 1979.
- Charles Lawson, Richard Hanson, David Kincaid, Fred Krogh,
- Basic Linear Algebra Subprograms for Fortran Usage,
- Algorithm 539,
- ACM Transactions on Mathematical Software,
- Volume 5, Number 3, September 1979, pages 308-323.
- Parameters:
- Input, int N, the number of elements in DX and DY.
- Input, double DA, the multiplier of DX.
- Input, double DX[*], the first vector.
- Input, int INCX, the increment between successive entries of DX.
- Input/output, double DY[*], the second vector.
- On output, DY[*] has been replaced by DY[*] + DA * DX[*].
- Input, int INCY, the increment between successive entries of DY.
- */
- {
- int i;
- int ix;
- int iy;
- int m;
- if ( n <= 0 )
- {
- return;
- }
- if ( da == 0.0 )
- {
- return;
- }
- /*
- Code for unequal increments or equal increments
- not equal to 1.
- */
- if ( incx != 1 || incy != 1 )
- {
- if ( 0 <= incx )
- {
- ix = 0;
- }
- else
- {
- ix = ( - n + 1 ) * incx;
- }
- if ( 0 <= incy )
- {
- iy = 0;
- }
- else
- {
- iy = ( - n + 1 ) * incy;
- }
- for ( i = 0; i < n; i++ )
- {
- dy[iy] = dy[iy] + da * dx[ix];
- ix = ix + incx;
- iy = iy + incy;
- }
- }
- /*
- Code for both increments equal to 1.
- */
- else
- {
- m = n % 4;
- for ( i = 0; i < m; i++ )
- {
- dy[i] = dy[i] + da * dx[i];
- }
- for ( i = m; i < n; i = i + 4 )
- {
- dy[i ] = dy[i ] + da * dx[i ];
- dy[i+1] = dy[i+1] + da * dx[i+1];
- dy[i+2] = dy[i+2] + da * dx[i+2];
- dy[i+3] = dy[i+3] + da * dx[i+3];
- }
- }
- return;
- }
- /******************************************************************************/
- double ddot ( int n, double dx[], int incx, double dy[], int incy )
- /******************************************************************************/
- /*
- Purpose:
- DDOT forms the dot product of two vectors.
- Discussion:
- This routine uses unrolled loops for increments equal to one.
- Licensing:
- This code is distributed under the GNU LGPL license.
- Modified:
- 30 March 2007
- Author:
- C version by John Burkardt
- Reference:
- Jack Dongarra, Cleve Moler, Jim Bunch, Pete Stewart,
- LINPACK User's Guide,
- SIAM, 1979.
- Charles Lawson, Richard Hanson, David Kincaid, Fred Krogh,
- Basic Linear Algebra Subprograms for Fortran Usage,
- Algorithm 539,
- ACM Transactions on Mathematical Software,
- Volume 5, Number 3, September 1979, pages 308-323.
- Parameters:
- Input, int N, the number of entries in the vectors.
- Input, double DX[*], the first vector.
- Input, int INCX, the increment between successive entries in DX.
- Input, double DY[*], the second vector.
- Input, int INCY, the increment between successive entries in DY.
- Output, double DDOT, the sum of the product of the corresponding
- entries of DX and DY.
- */
- {
- double dtemp;
- int i;
- int ix;
- int iy;
- int m;
- dtemp = 0.0;
- if ( n <= 0 )
- {
- return dtemp;
- }
- /*
- Code for unequal increments or equal increments
- not equal to 1.
- */
- if ( incx != 1 || incy != 1 )
- {
- if ( 0 <= incx )
- {
- ix = 0;
- }
- else
- {
- ix = ( - n + 1 ) * incx;
- }
- if ( 0 <= incy )
- {
- iy = 0;
- }
- else
- {
- iy = ( - n + 1 ) * incy;
- }
- for ( i = 0; i < n; i++ )
- {
- dtemp = dtemp + dx[ix] * dy[iy];
- ix = ix + incx;
- iy = iy + incy;
- }
- }
- /*
- Code for both increments equal to 1.
- */
- else
- {
- m = n % 5;
- for ( i = 0; i < m; i++ )
- {
- dtemp = dtemp + dx[i] * dy[i];
- }
- for ( i = m; i < n; i = i + 5 )
- {
- dtemp = dtemp + dx[i ] * dy[i ]
- + dx[i+1] * dy[i+1]
- + dx[i+2] * dy[i+2]
- + dx[i+3] * dy[i+3]
- + dx[i+4] * dy[i+4];
- }
- }
- return dtemp;
- }
- /******************************************************************************/
- double dnrm2 ( int n, double x[], int incx )
- /******************************************************************************/
- /*
- Purpose:
- DNRM2 returns the euclidean norm of a vector.
- Discussion:
- DNRM2 ( X ) = sqrt ( X' * X )
- Licensing:
- This code is distributed under the GNU LGPL license.
- Modified:
- 30 March 2007
- Author:
- C version by John Burkardt
- Reference:
- Jack Dongarra, Cleve Moler, Jim Bunch, Pete Stewart,
- LINPACK User's Guide,
- SIAM, 1979.
- Charles Lawson, Richard Hanson, David Kincaid, Fred Krogh,
- Basic Linear Algebra Subprograms for Fortran Usage,
- Algorithm 539,
- ACM Transactions on Mathematical Software,
- Volume 5, Number 3, September 1979, pages 308-323.
- Parameters:
- Input, int N, the number of entries in the vector.
- Input, double X[*], the vector whose norm is to be computed.
- Input, int INCX, the increment between successive entries of X.
- Output, double DNRM2, the Euclidean norm of X.
- */
- {
- double absxi;
- int i;
- int ix;
- double norm;
- double scale;
- double ssq;
- double value;
- if ( n < 1 || incx < 1 )
- {
- norm = 0.0;
- }
- else if ( n == 1 )
- {
- norm = r8_abs ( x[0] );
- }
- else
- {
- scale = 0.0;
- ssq = 1.0;
- ix = 0;
- for ( i = 0; i < n; i++ )
- {
- if ( x[ix] != 0.0 )
- {
- absxi = r8_abs ( x[ix] );
- if ( scale < absxi )
- {
- ssq = 1.0 + ssq * ( scale / absxi ) * ( scale / absxi );
- scale = absxi;
- }
- else
- {
- ssq = ssq + ( absxi / scale ) * ( absxi / scale );
- }
- }
- ix = ix + incx;
- }
- norm = scale * sqrt ( ssq );
- }
- return norm;
- }
- /******************************************************************************/
- void dqrank ( double a[], int lda, int m, int n, double tol, int *kr,
- int jpvt[], double qraux[] )
- /******************************************************************************/
- /*
- Purpose:
- DQRANK computes the QR factorization of a rectangular matrix.
- Discussion:
- This routine is used in conjunction with DQRLSS to solve
- overdetermined, underdetermined and singular linear systems
- in a least squares sense.
- DQRANK uses the LINPACK subroutine DQRDC to compute the QR
- factorization, with column pivoting, of an M by N matrix A.
- The numerical rank is determined using the tolerance TOL.
- Note that on output, ABS ( A(1,1) ) / ABS ( A(KR,KR) ) is an estimate
- of the condition number of the matrix of independent columns,
- and of R. This estimate will be <= 1/TOL.
- Licensing:
- This code is distributed under the GNU LGPL license.
- Modified:
- 21 April 2012
- Author:
- C version by John Burkardt.
- Reference:
- Jack Dongarra, Cleve Moler, Jim Bunch, Pete Stewart,
- LINPACK User's Guide,
- SIAM, 1979,
- ISBN13: 978-0-898711-72-1,
- LC: QA214.L56.
- Parameters:
- Input/output, double A[LDA*N]. On input, the matrix whose
- decomposition is to be computed. On output, the information from DQRDC.
- The triangular matrix R of the QR factorization is contained in the
- upper triangle and information needed to recover the orthogonal
- matrix Q is stored below the diagonal in A and in the vector QRAUX.
- Input, int LDA, the leading dimension of A, which must
- be at least M.
- Input, int M, the number of rows of A.
- Input, int N, the number of columns of A.
- Input, double TOL, a relative tolerance used to determine the
- numerical rank. The problem should be scaled so that all the elements
- of A have roughly the same absolute accuracy, EPS. Then a reasonable
- value for TOL is roughly EPS divided by the magnitude of the largest
- element.
- Output, int *KR, the numerical rank.
- Output, int JPVT[N], the pivot information from DQRDC.
- Columns JPVT(1), ..., JPVT(KR) of the original matrix are linearly
- independent to within the tolerance TOL and the remaining columns
- are linearly dependent.
- Output, double QRAUX[N], will contain extra information defining
- the QR factorization.
- */
- {
- int i;
- int j;
- int job;
- int k;
- double *work;
- for ( i = 0; i < n; i++ )
- {
- jpvt[i] = 0;
- }
- work = ( double * ) malloc ( n * sizeof ( double ) );
- job = 1;
- dqrdc ( a, lda, m, n, qraux, jpvt, work, job );
- *kr = 0;
- k = i4_min ( m, n );
- for ( j = 0; j < k; j++ )
- {
- if ( r8_abs ( a[j+j*lda] ) <= tol * r8_abs ( a[0+0*lda] ) )
- {
- return;
- }
- *kr = j + 1;
- }
- free ( work );
- return;
- }
- /******************************************************************************/
- void dqrdc ( double a[], int lda, int n, int p, double qraux[], int jpvt[],
- double work[], int job )
- /******************************************************************************/
- /*
- Purpose:
- DQRDC computes the QR factorization of a real rectangular matrix.
- Discussion:
- DQRDC uses Householder transformations.
- Column pivoting based on the 2-norms of the reduced columns may be
- performed at the user's option.
- Licensing:
- This code is distributed under the GNU LGPL license.
- Modified:
- 07 June 2005
- Author:
- C version by John Burkardt.
- Reference:
- Jack Dongarra, Cleve Moler, Jim Bunch and Pete Stewart,
- LINPACK User's Guide,
- SIAM, (Society for Industrial and Applied Mathematics),
- 3600 University City Science Center,
- Philadelphia, PA, 19104-2688.
- ISBN 0-89871-172-X
- Parameters:
- Input/output, double A(LDA,P). On input, the N by P matrix
- whose decomposition is to be computed. On output, A contains in
- its upper triangle the upper triangular matrix R of the QR
- factorization. Below its diagonal A contains information from
- which the orthogonal part of the decomposition can be recovered.
- Note that if pivoting has been requested, the decomposition is not that
- of the original matrix A but that of A with its columns permuted
- as described by JPVT.
- Input, int LDA, the leading dimension of the array A. LDA must
- be at least N.
- Input, int N, the number of rows of the matrix A.
- Input, int P, the number of columns of the matrix A.
- Output, double QRAUX[P], contains further information required
- to recover the orthogonal part of the decomposition.
- Input/output, integer JPVT[P]. On input, JPVT contains integers that
- control the selection of the pivot columns. The K-th column A(*,K) of A
- is placed in one of three classes according to the value of JPVT(K).
- > 0, then A(K) is an initial column.
- = 0, then A(K) is a free column.
- < 0, then A(K) is a final column.
- Before the decomposition is computed, initial columns are moved to
- the beginning of the array A and final columns to the end. Both
- initial and final columns are frozen in place during the computation
- and only free columns are moved. At the K-th stage of the
- reduction, if A(*,K) is occupied by a free column it is interchanged
- with the free column of largest reduced norm. JPVT is not referenced
- if JOB == 0. On output, JPVT(K) contains the index of the column of the
- original matrix that has been interchanged into the K-th column, if
- pivoting was requested.
- Workspace, double WORK[P]. WORK is not referenced if JOB == 0.
- Input, int JOB, initiates column pivoting.
- 0, no pivoting is done.
- nonzero, pivoting is done.
- */
- {
- int j;
- int jp;
- int l;
- int lup;
- int maxj;
- double maxnrm;
- double nrmxl;
- int pl;
- int pu;
- int swapj;
- double t;
- double tt;
- pl = 1;
- pu = 0;
- /*
- If pivoting is requested, rearrange the columns.
- */
- if ( job != 0 )
- {
- for ( j = 1; j <= p; j++ )
- {
- swapj = ( 0 < jpvt[j-1] );
- if ( jpvt[j-1] < 0 )
- {
- jpvt[j-1] = -j;
- }
- else
- {
- jpvt[j-1] = j;
- }
- if ( swapj )
- {
- if ( j != pl )
- {
- dswap ( n, a+0+(pl-1)*lda, 1, a+0+(j-1), 1 );
- }
- jpvt[j-1] = jpvt[pl-1];
- jpvt[pl-1] = j;
- pl = pl + 1;
- }
- }
- pu = p;
- for ( j = p; 1 <= j; j-- )
- {
- if ( jpvt[j-1] < 0 )
- {
- jpvt[j-1] = -jpvt[j-1];
- if ( j != pu )
- {
- dswap ( n, a+0+(pu-1)*lda, 1, a+0+(j-1)*lda, 1 );
- jp = jpvt[pu-1];
- jpvt[pu-1] = jpvt[j-1];
- jpvt[j-1] = jp;
- }
- pu = pu - 1;
- }
- }
- }
- /*
- Compute the norms of the free columns.
- */
- for ( j = pl; j <= pu; j++ )
- {
- qraux[j-1] = dnrm2 ( n, a+0+(j-1)*lda, 1 );
- }
- for ( j = pl; j <= pu; j++ )
- {
- work[j-1] = qraux[j-1];
- }
- /*
- Perform the Householder reduction of A.
- */
- lup = i4_min ( n, p );
- for ( l = 1; l <= lup; l++ )
- {
- /*
- Bring the column of largest norm into the pivot position.
- */
- if ( pl <= l && l < pu )
- {
- maxnrm = 0.0;
- maxj = l;
- for ( j = l; j <= pu; j++ )
- {
- if ( maxnrm < qraux[j-1] )
- {
- maxnrm = qraux[j-1];
- maxj = j;
- }
- }
- if ( maxj != l )
- {
- dswap ( n, a+0+(l-1)*lda, 1, a+0+(maxj-1)*lda, 1 );
- qraux[maxj-1] = qraux[l-1];
- work[maxj-1] = work[l-1];
- jp = jpvt[maxj-1];
- jpvt[maxj-1] = jpvt[l-1];
- jpvt[l-1] = jp;
- }
- }
- /*
- Compute the Householder transformation for column L.
- */
- qraux[l-1] = 0.0;
- if ( l != n )
- {
- nrmxl = dnrm2 ( n-l+1, a+l-1+(l-1)*lda, 1 );
- if ( nrmxl != 0.0 )
- {
- if ( a[l-1+(l-1)*lda] != 0.0 )
- {
- nrmxl = nrmxl * r8_sign ( a[l-1+(l-1)*lda] );
- }
- dscal ( n-l+1, 1.0 / nrmxl, a+l-1+(l-1)*lda, 1 );
- a[l-1+(l-1)*lda] = 1.0 + a[l-1+(l-1)*lda];
- /*
- Apply the transformation to the remaining columns, updating the norms.
- */
- for ( j = l + 1; j <= p; j++ )
- {
- t = -ddot ( n-l+1, a+l-1+(l-1)*lda, 1, a+l-1+(j-1)*lda, 1 )
- / a[l-1+(l-1)*lda];
- daxpy ( n-l+1, t, a+l-1+(l-1)*lda, 1, a+l-1+(j-1)*lda, 1 );
- if ( pl <= j && j <= pu )
- {
- if ( qraux[j-1] != 0.0 )
- {
- tt = 1.0 - pow ( r8_abs ( a[l-1+(j-1)*lda] ) / qraux[j-1], 2 );
- tt = r8_max ( tt, 0.0 );
- t = tt;
- tt = 1.0 + 0.05 * tt * pow ( qraux[j-1] / work[j-1], 2 );
- if ( tt != 1.0 )
- {
- qraux[j-1] = qraux[j-1] * sqrt ( t );
- }
- else
- {
- qraux[j-1] = dnrm2 ( n-l, a+l+(j-1)*lda, 1 );
- work[j-1] = qraux[j-1];
- }
- }
- }
- }
- /*
- Save the transformation.
- */
- qraux[l-1] = a[l-1+(l-1)*lda];
- a[l-1+(l-1)*lda] = -nrmxl;
- }
- }
- }
- return;
- }
- /******************************************************************************/
- int dqrls ( double a[], int lda, int m, int n, double tol, int *kr, double b[],
- double x[], double rsd[], int jpvt[], double qraux[], int itask )
- /******************************************************************************/
- /*
- Purpose:
- DQRLS factors and solves a linear system in the least squares sense.
- Discussion:
- The linear system may be overdetermined, underdetermined or singular.
- The solution is obtained using a QR factorization of the
- coefficient matrix.
- DQRLS can be efficiently used to solve several least squares
- problems with the same matrix A. The first system is solved
- with ITASK = 1. The subsequent systems are solved with
- ITASK = 2, to avoid the recomputation of the matrix factors.
- The parameters KR, JPVT, and QRAUX must not be modified
- between calls to DQRLS.
- DQRLS is used to solve in a least squares sense
- overdetermined, underdetermined and singular linear systems.
- The system is A*X approximates B where A is M by N.
- B is a given M-vector, and X is the N-vector to be computed.
- A solution X is found which minimimzes the sum of squares (2-norm)
- of the residual, A*X - B.
- The numerical rank of A is determined using the tolerance TOL.
- DQRLS uses the LINPACK subroutine DQRDC to compute the QR
- factorization, with column pivoting, of an M by N matrix A.
- Licensing:
- This code is distributed under the GNU LGPL license.
- Modified:
- 10 September 2012
- Author:
- C version by John Burkardt.
- Reference:
- David Kahaner, Cleve Moler, Steven Nash,
- Numerical Methods and Software,
- Prentice Hall, 1989,
- ISBN: 0-13-627258-4,
- LC: TA345.K34.
- Parameters:
- Input/output, double A[LDA*N], an M by N matrix.
- On input, the matrix whose decomposition is to be computed.
- In a least squares data fitting problem, A(I,J) is the
- value of the J-th basis (model) function at the I-th data point.
- On output, A contains the output from DQRDC. The triangular matrix R
- of the QR factorization is contained in the upper triangle and
- information needed to recover the orthogonal matrix Q is stored
- below the diagonal in A and in the vector QRAUX.
- Input, int LDA, the leading dimension of A.
- Input, int M, the number of rows of A.
- Input, int N, the number of columns of A.
- Input, double TOL, a relative tolerance used to determine the
- numerical rank. The problem should be scaled so that all the elements
- of A have roughly the same absolute accuracy EPS. Then a reasonable
- value for TOL is roughly EPS divided by the magnitude of the largest
- element.
- Output, int *KR, the numerical rank.
- Input, double B[M], the right hand side of the linear system.
- Output, double X[N], a least squares solution to the linear
- system.
- Output, double RSD[M], the residual, B - A*X. RSD may
- overwrite B.
- Workspace, int JPVT[N], required if ITASK = 1.
- Columns JPVT(1), ..., JPVT(KR) of the original matrix are linearly
- independent to within the tolerance TOL and the remaining columns
- are linearly dependent. ABS ( A(1,1) ) / ABS ( A(KR,KR) ) is an estimate
- of the condition number of the matrix of independent columns,
- and of R. This estimate will be <= 1/TOL.
- Workspace, double QRAUX[N], required if ITASK = 1.
- Input, int ITASK.
- 1, DQRLS factors the matrix A and solves the least squares problem.
- 2, DQRLS assumes that the matrix A was factored with an earlier
- call to DQRLS, and only solves the least squares problem.
- Output, int DQRLS, error code.
- 0: no error
- -1: LDA < M (fatal error)
- -2: N < 1 (fatal error)
- -3: ITASK < 1 (fatal error)
- */
- {
- int ind;
- if ( lda < m )
- {
- /*fprintf ( stderr, "\n" );
- fprintf ( stderr, "DQRLS - Fatal error!\n" );
- fprintf ( stderr, " LDA < M.\n" );*/
- ind = -1;
- return ind;
- }
- if ( n <= 0 )
- {
- /*fprintf ( stderr, "\n" );
- fprintf ( stderr, "DQRLS - Fatal error!\n" );
- fprintf ( stderr, " N <= 0.\n" );*/
- ind = -2;
- return ind;
- }
- if ( itask < 1 )
- {
- /*fprintf ( stderr, "\n" );
- fprintf ( stderr, "DQRLS - Fatal error!\n" );
- fprintf ( stderr, " ITASK < 1.\n" );*/
- ind = -3;
- return ind;
- }
- ind = 0;
- /*
- Factor the matrix.
- */
- if ( itask == 1 )
- {
- dqrank ( a, lda, m, n, tol, kr, jpvt, qraux );
- }
- /*
- Solve the least-squares problem.
- */
- dqrlss ( a, lda, m, n, *kr, b, x, rsd, jpvt, qraux );
- return ind;
- }
- /******************************************************************************/
- void dqrlss ( double a[], int lda, int m, int n, int kr, double b[], double x[],
- double rsd[], int jpvt[], double qraux[] )
- /******************************************************************************/
- /*
- Purpose:
- DQRLSS solves a linear system in a least squares sense.
- Discussion:
- DQRLSS must be preceded by a call to DQRANK.
- The system is to be solved is
- A * X = B
- where
- A is an M by N matrix with rank KR, as determined by DQRANK,
- B is a given M-vector,
- X is the N-vector to be computed.
- A solution X, with at most KR nonzero components, is found which
- minimizes the 2-norm of the residual (A*X-B).
- Once the matrix A has been formed, DQRANK should be
- called once to decompose it. Then, for each right hand
- side B, DQRLSS should be called once to obtain the
- solution and residual.
- Licensing:
- This code is distributed under the GNU LGPL license.
- Modified:
- 10 September 2012
- Author:
- C version by John Burkardt
- Parameters:
- Input, double A[LDA*N], the QR factorization information
- from DQRANK. The triangular matrix R of the QR factorization is
- contained in the upper triangle and information needed to recover
- the orthogonal matrix Q is stored below the diagonal in A and in
- the vector QRAUX.
- Input, int LDA, the leading dimension of A, which must
- be at least M.
- Input, int M, the number of rows of A.
- Input, int N, the number of columns of A.
- Input, int KR, the rank of the matrix, as estimated by DQRANK.
- Input, double B[M], the right hand side of the linear system.
- Output, double X[N], a least squares solution to the
- linear system.
- Output, double RSD[M], the residual, B - A*X. RSD may
- overwrite B.
- Input, int JPVT[N], the pivot information from DQRANK.
- Columns JPVT[0], ..., JPVT[KR-1] of the original matrix are linearly
- independent to within the tolerance TOL and the remaining columns
- are linearly dependent.
- Input, double QRAUX[N], auxiliary information from DQRANK
- defining the QR factorization.
- */
- {
- int i;
- int info;
- int j;
- int job;
- int k;
- double t;
- if ( kr != 0 )
- {
- job = 110;
- info = dqrsl ( a, lda, m, kr, qraux, b, rsd, rsd, x, rsd, rsd, job );
- }
- for ( i = 0; i < n; i++ )
- {
- jpvt[i] = - jpvt[i];
- }
- for ( i = kr; i < n; i++ )
- {
- x[i] = 0.0;
- }
- for ( j = 1; j <= n; j++ )
- {
- if ( jpvt[j-1] <= 0 )
- {
- k = - jpvt[j-1];
- jpvt[j-1] = k;
- while ( k != j )
- {
- t = x[j-1];
- x[j-1] = x[k-1];
- x[k-1] = t;
- jpvt[k-1] = -jpvt[k-1];
- k = jpvt[k-1];
- }
- }
- }
- return;
- }
- /******************************************************************************/
- int dqrsl ( double a[], int lda, int n, int k, double qraux[], double y[],
- double qy[], double qty[], double b[], double rsd[], double ab[], int job )
- /******************************************************************************/
- /*
- Purpose:
- DQRSL computes transformations, projections, and least squares solutions.
- Discussion:
- DQRSL requires the output of DQRDC.
- For K <= min(N,P), let AK be the matrix
- AK = ( A(JPVT[0]), A(JPVT(2)), ..., A(JPVT(K)) )
- formed from columns JPVT[0], ..., JPVT(K) of the original
- N by P matrix A that was input to DQRDC. If no pivoting was
- done, AK consists of the first K columns of A in their
- original order. DQRDC produces a factored orthogonal matrix Q
- and an upper triangular matrix R such that
- AK = Q * (R)
- (0)
- This information is contained in coded form in the arrays
- A and QRAUX.
- The parameters QY, QTY, B, RSD, and AB are not referenced
- if their computation is not requested and in this case
- can be replaced by dummy variables in the calling program.
- To save storage, the user may in some cases use the same
- array for different parameters in the calling sequence. A
- frequently occurring example is when one wishes to compute
- any of B, RSD, or AB and does not need Y or QTY. In this
- case one may identify Y, QTY, and one of B, RSD, or AB, while
- providing separate arrays for anything else that is to be
- computed.
- Thus the calling sequence
- dqrsl ( a, lda, n, k, qraux, y, dum, y, b, y, dum, 110, info )
- will result in the computation of B and RSD, with RSD
- overwriting Y. More generally, each item in the following
- list contains groups of permissible identifications for
- a single calling sequence.
- 1. (Y,QTY,B) (RSD) (AB) (QY)
- 2. (Y,QTY,RSD) (B) (AB) (QY)
- 3. (Y,QTY,AB) (B) (RSD) (QY)
- 4. (Y,QY) (QTY,B) (RSD) (AB)
- 5. (Y,QY) (QTY,RSD) (B) (AB)
- 6. (Y,QY) (QTY,AB) (B) (RSD)
- In any group the value returned in the array allocated to
- the group corresponds to the last member of the group.
- Licensing:
- This code is distributed under the GNU LGPL license.
- Modified:
- 07 June 2005
- Author:
- C version by John Burkardt.
- Reference:
- Jack Dongarra, Cleve Moler, Jim Bunch and Pete Stewart,
- LINPACK User's Guide,
- SIAM, (Society for Industrial and Applied Mathematics),
- 3600 University City Science Center,
- Philadelphia, PA, 19104-2688.
- ISBN 0-89871-172-X
- Parameters:
- Input, double A[LDA*P], contains the output of DQRDC.
- Input, int LDA, the leading dimension of the array A.
- Input, int N, the number of rows of the matrix AK. It must
- have the same value as N in DQRDC.
- Input, int K, the number of columns of the matrix AK. K
- must not be greater than min(N,P), where P is the same as in the
- calling sequence to DQRDC.
- Input, double QRAUX[P], the auxiliary output from DQRDC.
- Input, double Y[N], a vector to be manipulated by DQRSL.
- Output, double QY[N], contains Q * Y, if requested.
- Output, double QTY[N], contains Q' * Y, if requested.
- Output, double B[K], the solution of the least squares problem
- minimize norm2 ( Y - AK * B),
- if its computation has been requested. Note that if pivoting was
- requested in DQRDC, the J-th component of B will be associated with
- column JPVT(J) of the original matrix A that was input into DQRDC.
- Output, double RSD[N], the least squares residual Y - AK * B,
- if its computation has been requested. RSD is also the orthogonal
- projection of Y onto the orthogonal complement of the column space
- of AK.
- Output, double AB[N], the least squares approximation Ak * B,
- if its computation has been requested. AB is also the orthogonal
- projection of Y onto the column space of A.
- Input, integer JOB, specifies what is to be computed. JOB has
- the decimal expansion ABCDE, with the following meaning:
- if A != 0, compute QY.
- if B != 0, compute QTY.
- if C != 0, compute QTY and B.
- if D != 0, compute QTY and RSD.
- if E != 0, compute QTY and AB.
- Note that a request to compute B, RSD, or AB automatically triggers
- the computation of QTY, for which an array must be provided in the
- calling sequence.
- Output, int DQRSL, is zero unless the computation of B has
- been requested and R is exactly singular. In this case, INFO is the
- index of the first zero diagonal element of R, and B is left unaltered.
- */
- {
- int cab;
- int cb;
- int cqty;
- int cqy;
- int cr;
- int i;
- int info;
- int j;
- int jj;
- int ju;
- double t;
- double temp;
- /*
- Set INFO flag.
- */
- info = 0;
- /*
- Determine what is to be computed.
- */
- cqy = ( job / 10000 != 0 );
- cqty = ( ( job % 10000 ) != 0 );
- cb = ( ( job % 1000 ) / 100 != 0 );
- cr = ( ( job % 100 ) / 10 != 0 );
- cab = ( ( job % 10 ) != 0 );
- ju = i4_min ( k, n-1 );
- /*
- Special action when N = 1.
- */
- if ( ju == 0 )
- {
- if ( cqy )
- {
- qy[0] = y[0];
- }
- if ( cqty )
- {
- qty[0] = y[0];
- }
- if ( cab )
- {
- ab[0] = y[0];
- }
- if ( cb )
- {
- if ( a[0+0*lda] == 0.0 )
- {
- info = 1;
- }
- else
- {
- b[0] = y[0] / a[0+0*lda];
- }
- }
- if ( cr )
- {
- rsd[0] = 0.0;
- }
- return info;
- }
- /*
- Set up to compute QY or QTY.
- */
- if ( cqy )
- {
- for ( i = 1; i <= n; i++ )
- {
- qy[i-1] = y[i-1];
- }
- }
- if ( cqty )
- {
- for ( i = 1; i <= n; i++ )
- {
- qty[i-1] = y[i-1];
- }
- }
- /*
- Compute QY.
- */
- if ( cqy )
- {
- for ( jj = 1; jj <= ju; jj++ )
- {
- j = ju - jj + 1;
- if ( qraux[j-1] != 0.0 )
- {
- temp = a[j-1+(j-1)*lda];
- a[j-1+(j-1)*lda] = qraux[j-1];
- t = -ddot ( n-j+1, a+j-1+(j-1)*lda, 1, qy+j-1, 1 ) / a[j-1+(j-1)*lda];
- daxpy ( n-j+1, t, a+j-1+(j-1)*lda, 1, qy+j-1, 1 );
- a[j-1+(j-1)*lda] = temp;
- }
- }
- }
- /*
- Compute Q'*Y.
- */
- if ( cqty )
- {
- for ( j = 1; j <= ju; j++ )
- {
- if ( qraux[j-1] != 0.0 )
- {
- temp = a[j-1+(j-1)*lda];
- a[j-1+(j-1)*lda] = qraux[j-1];
- t = -ddot ( n-j+1, a+j-1+(j-1)*lda, 1, qty+j-1, 1 ) / a[j-1+(j-1)*lda];
- daxpy ( n-j+1, t, a+j-1+(j-1)*lda, 1, qty+j-1, 1 );
- a[j-1+(j-1)*lda] = temp;
- }
- }
- }
- /*
- Set up to compute B, RSD, or AB.
- */
- if ( cb )
- {
- for ( i = 1; i <= k; i++ )
- {
- b[i-1] = qty[i-1];
- }
- }
- if ( cab )
- {
- for ( i = 1; i <= k; i++ )
- {
- ab[i-1] = qty[i-1];
- }
- }
- if ( cr && k < n )
- {
- for ( i = k+1; i <= n; i++ )
- {
- rsd[i-1] = qty[i-1];
- }
- }
- if ( cab && k+1 <= n )
- {
- for ( i = k+1; i <= n; i++ )
- {
- ab[i-1] = 0.0;
- }
- }
- if ( cr )
- {
- for ( i = 1; i <= k; i++ )
- {
- rsd[i-1] = 0.0;
- }
- }
- /*
- Compute B.
- */
- if ( cb )
- {
- for ( jj = 1; jj <= k; jj++ )
- {
- j = k - jj + 1;
- if ( a[j-1+(j-1)*lda] == 0.0 )
- {
- info = j;
- break;
- }
- b[j-1] = b[j-1] / a[j-1+(j-1)*lda];
- if ( j != 1 )
- {
- t = -b[j-1];
- daxpy ( j-1, t, a+0+(j-1)*lda, 1, b, 1 );
- }
- }
- }
- /*
- Compute RSD or AB as required.
- */
- if ( cr || cab )
- {
- for ( jj = 1; jj <= ju; jj++ )
- {
- j = ju - jj + 1;
- if ( qraux[j-1] != 0.0 )
- {
- temp = a[j-1+(j-1)*lda];
- a[j-1+(j-1)*lda] = qraux[j-1];
- if ( cr )
- {
- t = -ddot ( n-j+1, a+j-1+(j-1)*lda, 1, rsd+j-1, 1 )
- / a[j-1+(j-1)*lda];
- daxpy ( n-j+1, t, a+j-1+(j-1)*lda, 1, rsd+j-1, 1 );
- }
- if ( cab )
- {
- t = -ddot ( n-j+1, a+j-1+(j-1)*lda, 1, ab+j-1, 1 )
- / a[j-1+(j-1)*lda];
- daxpy ( n-j+1, t, a+j-1+(j-1)*lda, 1, ab+j-1, 1 );
- }
- a[j-1+(j-1)*lda] = temp;
- }
- }
- }
- return info;
- }
- /******************************************************************************/
- /******************************************************************************/
- void dscal ( int n, double sa, double x[], int incx )
- /******************************************************************************/
- /*
- Purpose:
- DSCAL scales a vector by a constant.
- Licensing:
- This code is distributed under the GNU LGPL license.
- Modified:
- 30 March 2007
- Author:
- C version by John Burkardt
- Reference:
- Jack Dongarra, Cleve Moler, Jim Bunch, Pete Stewart,
- LINPACK User's Guide,
- SIAM, 1979.
- Charles Lawson, Richard Hanson, David Kincaid, Fred Krogh,
- Basic Linear Algebra Subprograms for Fortran Usage,
- Algorithm 539,
- ACM Transactions on Mathematical Software,
- Volume 5, Number 3, September 1979, pages 308-323.
- Parameters:
- Input, int N, the number of entries in the vector.
- Input, double SA, the multiplier.
- Input/output, double X[*], the vector to be scaled.
- Input, int INCX, the increment between successive entries of X.
- */
- {
- int i;
- int ix;
- int m;
- if ( n <= 0 )
- {
- }
- else if ( incx == 1 )
- {
- m = n % 5;
- for ( i = 0; i < m; i++ )
- {
- x[i] = sa * x[i];
- }
- for ( i = m; i < n; i = i + 5 )
- {
- x[i] = sa * x[i];
- x[i+1] = sa * x[i+1];
- x[i+2] = sa * x[i+2];
- x[i+3] = sa * x[i+3];
- x[i+4] = sa * x[i+4];
- }
- }
- else
- {
- if ( 0 <= incx )
- {
- ix = 0;
- }
- else
- {
- ix = ( - n + 1 ) * incx;
- }
- for ( i = 0; i < n; i++ )
- {
- x[ix] = sa * x[ix];
- ix = ix + incx;
- }
- }
- return;
- }
- /******************************************************************************/
- void dswap ( int n, double x[], int incx, double y[], int incy )
- /******************************************************************************/
- /*
- Purpose:
- DSWAP interchanges two vectors.
- Licensing:
- This code is distributed under the GNU LGPL license.
- Modified:
- 30 March 2007
- Author:
- C version by John Burkardt
- Reference:
- Jack Dongarra, Cleve Moler, Jim Bunch, Pete Stewart,
- LINPACK User's Guide,
- SIAM, 1979.
- Charles Lawson, Richard Hanson, David Kincaid, Fred Krogh,
- Basic Linear Algebra Subprograms for Fortran Usage,
- Algorithm 539,
- ACM Transactions on Mathematical Software,
- Volume 5, Number 3, September 1979, pages 308-323.
- Parameters:
- Input, int N, the number of entries in the vectors.
- Input/output, double X[*], one of the vectors to swap.
- Input, int INCX, the increment between successive entries of X.
- Input/output, double Y[*], one of the vectors to swap.
- Input, int INCY, the increment between successive elements of Y.
- */
- {
- int i;
- int ix;
- int iy;
- int m;
- double temp;
- if ( n <= 0 )
- {
- }
- else if ( incx == 1 && incy == 1 )
- {
- m = n % 3;
- for ( i = 0; i < m; i++ )
- {
- temp = x[i];
- x[i] = y[i];
- y[i] = temp;
- }
- for ( i = m; i < n; i = i + 3 )
- {
- temp = x[i];
- x[i] = y[i];
- y[i] = temp;
- temp = x[i+1];
- x[i+1] = y[i+1];
- y[i+1] = temp;
- temp = x[i+2];
- x[i+2] = y[i+2];
- y[i+2] = temp;
- }
- }
- else
- {
- if ( 0 <= incx )
- {
- ix = 0;
- }
- else
- {
- ix = ( - n + 1 ) * incx;
- }
- if ( 0 <= incy )
- {
- iy = 0;
- }
- else
- {
- iy = ( - n + 1 ) * incy;
- }
- for ( i = 0; i < n; i++ )
- {
- temp = x[ix];
- x[ix] = y[iy];
- y[iy] = temp;
- ix = ix + incx;
- iy = iy + incy;
- }
- }
- return;
- }
- /******************************************************************************/
- /******************************************************************************/
- double *qr_solve ( int m, int n, double a[], double b[] )
- /******************************************************************************/
- /*
- Purpose:
- QR_SOLVE solves a linear system in the least squares sense.
- Discussion:
- If the matrix A has full column rank, then the solution X should be the
- unique vector that minimizes the Euclidean norm of the residual.
- If the matrix A does not have full column rank, then the solution is
- not unique; the vector X will minimize the residual norm, but so will
- various other vectors.
- Licensing:
- This code is distributed under the GNU LGPL license.
- Modified:
- 11 September 2012
- Author:
- John Burkardt
- Reference:
- David Kahaner, Cleve Moler, Steven Nash,
- Numerical Methods and Software,
- Prentice Hall, 1989,
- ISBN: 0-13-627258-4,
- LC: TA345.K34.
- Parameters:
- Input, int M, the number of rows of A.
- Input, int N, the number of columns of A.
- Input, double A[M*N], the matrix.
- Input, double B[M], the right hand side.
- Output, double QR_SOLVE[N], the least squares solution.
- */
- {
- double *a_qr;
- int ind;
- int itask;
- int *jpvt;
- int kr;
- int lda;
- double *qraux;
- double *r;
- double tol;
- double *x;
- a_qr = r8mat_copy_new ( m, n, a );
- lda = m;
- tol = r8_epsilon ( ) / r8mat_amax ( m, n, a_qr );
- x = ( double * ) malloc ( n * sizeof ( double ) );
- jpvt = ( int * ) malloc ( n * sizeof ( int ) );
- qraux = ( double * ) malloc ( n * sizeof ( double ) );
- r = ( double * ) malloc ( m * sizeof ( double ) );
- itask = 1;
- ind = dqrls ( a_qr, lda, m, n, tol, &kr, b, x, r, jpvt, qraux, itask );
- free ( a_qr );
- free ( jpvt );
- free ( qraux );
- free ( r );
- return x;
- }
- /******************************************************************************/
- #endif
|