stepper.cpp 43 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481
  1. /*
  2. stepper.c - stepper motor driver: executes motion plans using stepper motors
  3. Part of Grbl
  4. Copyright (c) 2009-2011 Simen Svale Skogsrud
  5. Grbl is free software: you can redistribute it and/or modify
  6. it under the terms of the GNU General Public License as published by
  7. the Free Software Foundation, either version 3 of the License, or
  8. (at your option) any later version.
  9. Grbl is distributed in the hope that it will be useful,
  10. but WITHOUT ANY WARRANTY; without even the implied warranty of
  11. MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  12. GNU General Public License for more details.
  13. You should have received a copy of the GNU General Public License
  14. along with Grbl. If not, see <http://www.gnu.org/licenses/>.
  15. */
  16. /* The timer calculations of this module informed by the 'RepRap cartesian firmware' by Zack Smith
  17. and Philipp Tiefenbacher. */
  18. #include "Marlin.h"
  19. #include "stepper.h"
  20. #include "planner.h"
  21. #include "temperature.h"
  22. #include "ultralcd.h"
  23. #include "language.h"
  24. #include "cardreader.h"
  25. #include "speed_lookuptable.h"
  26. #if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
  27. #include <SPI.h>
  28. #endif
  29. #ifdef TMC2130
  30. #include "tmc2130.h"
  31. #endif //TMC2130
  32. #ifdef PAT9125
  33. #include "fsensor.h"
  34. int fsensor_counter = 0; //counter for e-steps
  35. #endif //PAT9125
  36. #ifdef DEBUG_STACK_MONITOR
  37. uint16_t SP_min = 0x21FF;
  38. #endif //DEBUG_STACK_MONITOR
  39. //===========================================================================
  40. //=============================public variables ============================
  41. //===========================================================================
  42. block_t *current_block; // A pointer to the block currently being traced
  43. bool x_min_endstop = false;
  44. bool x_max_endstop = false;
  45. bool y_min_endstop = false;
  46. bool y_max_endstop = false;
  47. bool z_min_endstop = false;
  48. bool z_max_endstop = false;
  49. //===========================================================================
  50. //=============================private variables ============================
  51. //===========================================================================
  52. //static makes it inpossible to be called from outside of this file by extern.!
  53. // Variables used by The Stepper Driver Interrupt
  54. static unsigned char out_bits; // The next stepping-bits to be output
  55. static int32_t counter_x, // Counter variables for the bresenham line tracer
  56. counter_y,
  57. counter_z,
  58. counter_e;
  59. volatile uint32_t step_events_completed; // The number of step events executed in the current block
  60. static int32_t acceleration_time, deceleration_time;
  61. //static unsigned long accelerate_until, decelerate_after, acceleration_rate, initial_rate, final_rate, nominal_rate;
  62. static uint16_t acc_step_rate; // needed for deccelaration start point
  63. static uint8_t step_loops;
  64. static uint16_t OCR1A_nominal;
  65. static uint8_t step_loops_nominal;
  66. volatile long endstops_trigsteps[3]={0,0,0};
  67. volatile long endstops_stepsTotal,endstops_stepsDone;
  68. static volatile bool endstop_x_hit=false;
  69. static volatile bool endstop_y_hit=false;
  70. static volatile bool endstop_z_hit=false;
  71. #ifdef ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED
  72. bool abort_on_endstop_hit = false;
  73. #endif
  74. #ifdef MOTOR_CURRENT_PWM_XY_PIN
  75. int motor_current_setting[3] = DEFAULT_PWM_MOTOR_CURRENT;
  76. int motor_current_setting_silent[3] = DEFAULT_PWM_MOTOR_CURRENT;
  77. int motor_current_setting_loud[3] = DEFAULT_PWM_MOTOR_CURRENT_LOUD;
  78. #endif
  79. static bool old_x_min_endstop=false;
  80. static bool old_x_max_endstop=false;
  81. static bool old_y_min_endstop=false;
  82. static bool old_y_max_endstop=false;
  83. static bool old_z_min_endstop=false;
  84. static bool old_z_max_endstop=false;
  85. static bool check_endstops = true;
  86. static bool check_z_endstop = false;
  87. int8_t SilentMode = 0;
  88. volatile long count_position[NUM_AXIS] = { 0, 0, 0, 0};
  89. volatile signed char count_direction[NUM_AXIS] = { 1, 1, 1, 1};
  90. uint8_t LastStepMask = 0;
  91. #ifdef LIN_ADVANCE
  92. uint16_t ADV_NEVER = 65535;
  93. static uint16_t nextMainISR = 0;
  94. static uint16_t nextAdvanceISR = ADV_NEVER;
  95. static uint16_t eISR_Rate = ADV_NEVER;
  96. static volatile int e_steps; //Extrusion steps to be executed by the stepper
  97. static int final_estep_rate; //Speed of extruder at cruising speed
  98. static int current_estep_rate; //The current speed of the extruder
  99. static int current_adv_steps; //The current pretension of filament expressed in steps
  100. #define ADV_RATE(T, L) (e_steps ? (T) * (L) / abs(e_steps) : ADV_NEVER)
  101. #define _NEXT_ISR(T) nextMainISR = T
  102. #else
  103. #define _NEXT_ISR(T) OCR1A = T
  104. #endif
  105. //===========================================================================
  106. //=============================functions ============================
  107. //===========================================================================
  108. #define CHECK_ENDSTOPS if(check_endstops)
  109. #ifndef _NO_ASM
  110. // intRes = intIn1 * intIn2 >> 16
  111. // uses:
  112. // r26 to store 0
  113. // r27 to store the byte 1 of the 24 bit result
  114. #define MultiU16X8toH16(intRes, charIn1, intIn2) \
  115. asm volatile ( \
  116. "clr r26 \n\t" \
  117. "mul %A1, %B2 \n\t" \
  118. "movw %A0, r0 \n\t" \
  119. "mul %A1, %A2 \n\t" \
  120. "add %A0, r1 \n\t" \
  121. "adc %B0, r26 \n\t" \
  122. "lsr r0 \n\t" \
  123. "adc %A0, r26 \n\t" \
  124. "adc %B0, r26 \n\t" \
  125. "clr r1 \n\t" \
  126. : \
  127. "=&r" (intRes) \
  128. : \
  129. "d" (charIn1), \
  130. "d" (intIn2) \
  131. : \
  132. "r26" \
  133. )
  134. // intRes = longIn1 * longIn2 >> 24
  135. // uses:
  136. // r26 to store 0
  137. // r27 to store the byte 1 of the 48bit result
  138. #define MultiU24X24toH16(intRes, longIn1, longIn2) \
  139. asm volatile ( \
  140. "clr r26 \n\t" \
  141. "mul %A1, %B2 \n\t" \
  142. "mov r27, r1 \n\t" \
  143. "mul %B1, %C2 \n\t" \
  144. "movw %A0, r0 \n\t" \
  145. "mul %C1, %C2 \n\t" \
  146. "add %B0, r0 \n\t" \
  147. "mul %C1, %B2 \n\t" \
  148. "add %A0, r0 \n\t" \
  149. "adc %B0, r1 \n\t" \
  150. "mul %A1, %C2 \n\t" \
  151. "add r27, r0 \n\t" \
  152. "adc %A0, r1 \n\t" \
  153. "adc %B0, r26 \n\t" \
  154. "mul %B1, %B2 \n\t" \
  155. "add r27, r0 \n\t" \
  156. "adc %A0, r1 \n\t" \
  157. "adc %B0, r26 \n\t" \
  158. "mul %C1, %A2 \n\t" \
  159. "add r27, r0 \n\t" \
  160. "adc %A0, r1 \n\t" \
  161. "adc %B0, r26 \n\t" \
  162. "mul %B1, %A2 \n\t" \
  163. "add r27, r1 \n\t" \
  164. "adc %A0, r26 \n\t" \
  165. "adc %B0, r26 \n\t" \
  166. "lsr r27 \n\t" \
  167. "adc %A0, r26 \n\t" \
  168. "adc %B0, r26 \n\t" \
  169. "clr r1 \n\t" \
  170. : \
  171. "=&r" (intRes) \
  172. : \
  173. "d" (longIn1), \
  174. "d" (longIn2) \
  175. : \
  176. "r26" , "r27" \
  177. )
  178. #else //_NO_ASM
  179. void MultiU16X8toH16(unsigned short& intRes, unsigned char& charIn1, unsigned short& intIn2)
  180. {
  181. }
  182. void MultiU24X24toH16(uint16_t& intRes, int32_t& longIn1, long& longIn2)
  183. {
  184. }
  185. #endif //_NO_ASM
  186. // Some useful constants
  187. #define ENABLE_STEPPER_DRIVER_INTERRUPT() TIMSK1 |= (1<<OCIE1A)
  188. #define DISABLE_STEPPER_DRIVER_INTERRUPT() TIMSK1 &= ~(1<<OCIE1A)
  189. void checkHitEndstops()
  190. {
  191. if( endstop_x_hit || endstop_y_hit || endstop_z_hit) {
  192. SERIAL_ECHO_START;
  193. SERIAL_ECHORPGM(MSG_ENDSTOPS_HIT);
  194. if(endstop_x_hit) {
  195. SERIAL_ECHOPAIR(" X:",(float)endstops_trigsteps[X_AXIS]/axis_steps_per_unit[X_AXIS]);
  196. LCD_MESSAGERPGM(CAT2(MSG_ENDSTOPS_HIT, PSTR("X")));
  197. }
  198. if(endstop_y_hit) {
  199. SERIAL_ECHOPAIR(" Y:",(float)endstops_trigsteps[Y_AXIS]/axis_steps_per_unit[Y_AXIS]);
  200. LCD_MESSAGERPGM(CAT2(MSG_ENDSTOPS_HIT, PSTR("Y")));
  201. }
  202. if(endstop_z_hit) {
  203. SERIAL_ECHOPAIR(" Z:",(float)endstops_trigsteps[Z_AXIS]/axis_steps_per_unit[Z_AXIS]);
  204. LCD_MESSAGERPGM(CAT2(MSG_ENDSTOPS_HIT,PSTR("Z")));
  205. }
  206. SERIAL_ECHOLN("");
  207. endstop_x_hit=false;
  208. endstop_y_hit=false;
  209. endstop_z_hit=false;
  210. #if defined(ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED) && defined(SDSUPPORT)
  211. if (abort_on_endstop_hit)
  212. {
  213. card.sdprinting = false;
  214. card.closefile();
  215. quickStop();
  216. setTargetHotend0(0);
  217. setTargetHotend1(0);
  218. setTargetHotend2(0);
  219. }
  220. #endif
  221. }
  222. }
  223. bool endstops_hit_on_purpose()
  224. {
  225. bool hit = endstop_x_hit || endstop_y_hit || endstop_z_hit;
  226. endstop_x_hit=false;
  227. endstop_y_hit=false;
  228. endstop_z_hit=false;
  229. return hit;
  230. }
  231. bool endstop_z_hit_on_purpose()
  232. {
  233. bool hit = endstop_z_hit;
  234. endstop_z_hit=false;
  235. return hit;
  236. }
  237. bool enable_endstops(bool check)
  238. {
  239. bool old = check_endstops;
  240. check_endstops = check;
  241. return old;
  242. }
  243. bool enable_z_endstop(bool check)
  244. {
  245. bool old = check_z_endstop;
  246. check_z_endstop = check;
  247. endstop_z_hit=false;
  248. return old;
  249. }
  250. // __________________________
  251. // /| |\ _________________ ^
  252. // / | | \ /| |\ |
  253. // / | | \ / | | \ s
  254. // / | | | | | \ p
  255. // / | | | | | \ e
  256. // +-----+------------------------+---+--+---------------+----+ e
  257. // | BLOCK 1 | BLOCK 2 | d
  258. //
  259. // time ----->
  260. //
  261. // The trapezoid is the shape the speed curve over time. It starts at block->initial_rate, accelerates
  262. // first block->accelerate_until step_events_completed, then keeps going at constant speed until
  263. // step_events_completed reaches block->decelerate_after after which it decelerates until the trapezoid generator is reset.
  264. // The slope of acceleration is calculated with the leib ramp alghorithm.
  265. void st_wake_up() {
  266. // TCNT1 = 0;
  267. ENABLE_STEPPER_DRIVER_INTERRUPT();
  268. }
  269. void step_wait(){
  270. for(int8_t i=0; i < 6; i++){
  271. }
  272. }
  273. FORCE_INLINE unsigned short calc_timer(unsigned short step_rate) {
  274. unsigned short timer;
  275. if(step_rate > MAX_STEP_FREQUENCY) step_rate = MAX_STEP_FREQUENCY;
  276. if(step_rate > 20000) { // If steprate > 20kHz >> step 4 times
  277. step_rate = (step_rate >> 2)&0x3fff;
  278. step_loops = 4;
  279. }
  280. else if(step_rate > 10000) { // If steprate > 10kHz >> step 2 times
  281. step_rate = (step_rate >> 1)&0x7fff;
  282. step_loops = 2;
  283. }
  284. else {
  285. step_loops = 1;
  286. }
  287. // step_loops = 1;
  288. if(step_rate < (F_CPU/500000)) step_rate = (F_CPU/500000);
  289. step_rate -= (F_CPU/500000); // Correct for minimal speed
  290. if(step_rate >= (8*256)){ // higher step rate
  291. unsigned short table_address = (unsigned short)&speed_lookuptable_fast[(unsigned char)(step_rate>>8)][0];
  292. unsigned char tmp_step_rate = (step_rate & 0x00ff);
  293. unsigned short gain = (unsigned short)pgm_read_word_near(table_address+2);
  294. MultiU16X8toH16(timer, tmp_step_rate, gain);
  295. timer = (unsigned short)pgm_read_word_near(table_address) - timer;
  296. }
  297. else { // lower step rates
  298. unsigned short table_address = (unsigned short)&speed_lookuptable_slow[0][0];
  299. table_address += ((step_rate)>>1) & 0xfffc;
  300. timer = (unsigned short)pgm_read_word_near(table_address);
  301. timer -= (((unsigned short)pgm_read_word_near(table_address+2) * (unsigned char)(step_rate & 0x0007))>>3);
  302. }
  303. if(timer < 100) { timer = 100; MYSERIAL.print(MSG_STEPPER_TOO_HIGH); MYSERIAL.println(step_rate); }//(20kHz this should never happen)
  304. return timer;
  305. }
  306. // Initializes the trapezoid generator from the current block. Called whenever a new
  307. // block begins.
  308. FORCE_INLINE void trapezoid_generator_reset() {
  309. deceleration_time = 0;
  310. // step_rate to timer interval
  311. OCR1A_nominal = calc_timer(current_block->nominal_rate);
  312. // make a note of the number of step loops required at nominal speed
  313. step_loops_nominal = step_loops;
  314. acc_step_rate = current_block->initial_rate;
  315. acceleration_time = calc_timer(acc_step_rate);
  316. _NEXT_ISR(acceleration_time);
  317. #ifdef LIN_ADVANCE
  318. if (current_block->use_advance_lead) {
  319. current_estep_rate = ((unsigned long)acc_step_rate * current_block->abs_adv_steps_multiplier8) >> 17;
  320. final_estep_rate = (current_block->nominal_rate * current_block->abs_adv_steps_multiplier8) >> 17;
  321. }
  322. #endif
  323. }
  324. // "The Stepper Driver Interrupt" - This timer interrupt is the workhorse.
  325. // It pops blocks from the block_buffer and executes them by pulsing the stepper pins appropriately.
  326. ISR(TIMER1_COMPA_vect) {
  327. #ifdef DEBUG_STACK_MONITOR
  328. uint16_t sp = SPL + 256 * SPH;
  329. if (sp < SP_min) SP_min = sp;
  330. #endif //DEBUG_STACK_MONITOR
  331. #ifdef LIN_ADVANCE
  332. advance_isr_scheduler();
  333. #else
  334. isr();
  335. #endif
  336. }
  337. void isr() {
  338. //if (UVLO) uvlo();
  339. // If there is no current block, attempt to pop one from the buffer
  340. if (current_block == NULL) {
  341. // Anything in the buffer?
  342. current_block = plan_get_current_block();
  343. if (current_block != NULL) {
  344. #ifdef PAT9125
  345. fsensor_counter = 0;
  346. fsensor_st_block_begin(current_block);
  347. #endif //PAT9125
  348. // The busy flag is set by the plan_get_current_block() call.
  349. // current_block->busy = true;
  350. trapezoid_generator_reset();
  351. counter_x = -(current_block->step_event_count >> 1);
  352. counter_y = counter_x;
  353. counter_z = counter_x;
  354. counter_e = counter_x;
  355. step_events_completed = 0;
  356. #ifdef Z_LATE_ENABLE
  357. if(current_block->steps_z > 0) {
  358. enable_z();
  359. _NEXT_ISR(2000); //1ms wait
  360. return;
  361. }
  362. #endif
  363. }
  364. else {
  365. _NEXT_ISR(2000); // 1kHz.
  366. }
  367. }
  368. LastStepMask = 0;
  369. if (current_block != NULL) {
  370. // Set directions TO DO This should be done once during init of trapezoid. Endstops -> interrupt
  371. out_bits = current_block->direction_bits;
  372. // Set the direction bits (X_AXIS=A_AXIS and Y_AXIS=B_AXIS for COREXY)
  373. if((out_bits & (1<<X_AXIS))!=0){
  374. WRITE(X_DIR_PIN, INVERT_X_DIR);
  375. count_direction[X_AXIS]=-1;
  376. }
  377. else{
  378. WRITE(X_DIR_PIN, !INVERT_X_DIR);
  379. count_direction[X_AXIS]=1;
  380. }
  381. if((out_bits & (1<<Y_AXIS))!=0){
  382. WRITE(Y_DIR_PIN, INVERT_Y_DIR);
  383. #ifdef Y_DUAL_STEPPER_DRIVERS
  384. WRITE(Y2_DIR_PIN, !(INVERT_Y_DIR == INVERT_Y2_VS_Y_DIR));
  385. #endif
  386. count_direction[Y_AXIS]=-1;
  387. }
  388. else{
  389. WRITE(Y_DIR_PIN, !INVERT_Y_DIR);
  390. #ifdef Y_DUAL_STEPPER_DRIVERS
  391. WRITE(Y2_DIR_PIN, (INVERT_Y_DIR == INVERT_Y2_VS_Y_DIR));
  392. #endif
  393. count_direction[Y_AXIS]=1;
  394. }
  395. // Set direction en check limit switches
  396. #ifndef COREXY
  397. if ((out_bits & (1<<X_AXIS)) != 0) { // stepping along -X axis
  398. #else
  399. if ((((out_bits & (1<<X_AXIS)) != 0)&&(out_bits & (1<<Y_AXIS)) != 0)) { //-X occurs for -A and -B
  400. #endif
  401. CHECK_ENDSTOPS
  402. {
  403. {
  404. #if ( (defined(X_MIN_PIN) && (X_MIN_PIN > -1)) || defined(TMC2130_SG_HOMING) ) && !defined(DEBUG_DISABLE_XMINLIMIT)
  405. #ifdef TMC2130_SG_HOMING
  406. // Stall guard homing turned on
  407. x_min_endstop = (READ(X_TMC2130_DIAG) != 0);
  408. #else
  409. // Normal homing
  410. x_min_endstop = (READ(X_MIN_PIN) != X_MIN_ENDSTOP_INVERTING);
  411. #endif
  412. if(x_min_endstop && old_x_min_endstop && (current_block->steps_x > 0)) {
  413. endstops_trigsteps[X_AXIS] = count_position[X_AXIS];
  414. endstop_x_hit=true;
  415. step_events_completed = current_block->step_event_count;
  416. }
  417. old_x_min_endstop = x_min_endstop;
  418. #endif
  419. }
  420. }
  421. }
  422. else { // +direction
  423. CHECK_ENDSTOPS
  424. {
  425. {
  426. #if ( (defined(X_MAX_PIN) && (X_MAX_PIN > -1)) || defined(TMC2130_SG_HOMING) ) && !defined(DEBUG_DISABLE_XMAXLIMIT)
  427. #ifdef TMC2130_SG_HOMING
  428. // Stall guard homing turned on
  429. x_max_endstop = (READ(X_TMC2130_DIAG) != 0);
  430. #else
  431. // Normal homing
  432. x_max_endstop = (READ(X_MAX_PIN) != X_MAX_ENDSTOP_INVERTING);
  433. #endif
  434. if(x_max_endstop && old_x_max_endstop && (current_block->steps_x > 0)){
  435. endstops_trigsteps[X_AXIS] = count_position[X_AXIS];
  436. endstop_x_hit=true;
  437. step_events_completed = current_block->step_event_count;
  438. }
  439. old_x_max_endstop = x_max_endstop;
  440. #endif
  441. }
  442. }
  443. }
  444. #ifndef COREXY
  445. if ((out_bits & (1<<Y_AXIS)) != 0) { // -direction
  446. #else
  447. if ((((out_bits & (1<<X_AXIS)) != 0)&&(out_bits & (1<<Y_AXIS)) == 0)) { // -Y occurs for -A and +B
  448. #endif
  449. CHECK_ENDSTOPS
  450. {
  451. #if ( (defined(Y_MIN_PIN) && (Y_MIN_PIN > -1)) || defined(TMC2130_SG_HOMING) ) && !defined(DEBUG_DISABLE_YMINLIMIT)
  452. #ifdef TMC2130_SG_HOMING
  453. // Stall guard homing turned on
  454. y_min_endstop = (READ(Y_TMC2130_DIAG) != 0);
  455. #else
  456. // Normal homing
  457. y_min_endstop = (READ(Y_MIN_PIN) != Y_MIN_ENDSTOP_INVERTING);
  458. #endif
  459. if(y_min_endstop && old_y_min_endstop && (current_block->steps_y > 0)) {
  460. endstops_trigsteps[Y_AXIS] = count_position[Y_AXIS];
  461. endstop_y_hit=true;
  462. step_events_completed = current_block->step_event_count;
  463. }
  464. old_y_min_endstop = y_min_endstop;
  465. #endif
  466. }
  467. }
  468. else { // +direction
  469. CHECK_ENDSTOPS
  470. {
  471. #if ( (defined(Y_MAX_PIN) && (Y_MAX_PIN > -1)) || defined(TMC2130_SG_HOMING) ) && !defined(DEBUG_DISABLE_YMAXLIMIT)
  472. #ifdef TMC2130_SG_HOMING
  473. // Stall guard homing turned on
  474. y_max_endstop = (READ(Y_TMC2130_DIAG) != 0);
  475. #else
  476. // Normal homing
  477. y_max_endstop = (READ(Y_MAX_PIN) != Y_MAX_ENDSTOP_INVERTING);
  478. #endif
  479. if(y_max_endstop && old_y_max_endstop && (current_block->steps_y > 0)){
  480. endstops_trigsteps[Y_AXIS] = count_position[Y_AXIS];
  481. endstop_y_hit=true;
  482. step_events_completed = current_block->step_event_count;
  483. }
  484. old_y_max_endstop = y_max_endstop;
  485. #endif
  486. }
  487. }
  488. if ((out_bits & (1<<Z_AXIS)) != 0) { // -direction
  489. WRITE(Z_DIR_PIN,INVERT_Z_DIR);
  490. #ifdef Z_DUAL_STEPPER_DRIVERS
  491. WRITE(Z2_DIR_PIN,INVERT_Z_DIR);
  492. #endif
  493. count_direction[Z_AXIS]=-1;
  494. if(check_endstops && ! check_z_endstop)
  495. {
  496. #if defined(Z_MIN_PIN) && (Z_MIN_PIN > -1) && !defined(DEBUG_DISABLE_ZMINLIMIT)
  497. #ifdef TMC2130_SG_HOMING
  498. // Stall guard homing turned on
  499. z_min_endstop = (READ(Z_MIN_PIN) != Z_MIN_ENDSTOP_INVERTING) || (READ(Z_TMC2130_DIAG) != 0);
  500. #else
  501. z_min_endstop = (READ(Z_MIN_PIN) != Z_MIN_ENDSTOP_INVERTING);
  502. #endif //TMC2130_SG_HOMING
  503. if(z_min_endstop && old_z_min_endstop && (current_block->steps_z > 0)) {
  504. endstops_trigsteps[Z_AXIS] = count_position[Z_AXIS];
  505. endstop_z_hit=true;
  506. step_events_completed = current_block->step_event_count;
  507. }
  508. old_z_min_endstop = z_min_endstop;
  509. #endif
  510. }
  511. }
  512. else { // +direction
  513. WRITE(Z_DIR_PIN,!INVERT_Z_DIR);
  514. #ifdef Z_DUAL_STEPPER_DRIVERS
  515. WRITE(Z2_DIR_PIN,!INVERT_Z_DIR);
  516. #endif
  517. count_direction[Z_AXIS]=1;
  518. CHECK_ENDSTOPS
  519. {
  520. #if defined(Z_MAX_PIN) && (Z_MAX_PIN > -1) && !defined(DEBUG_DISABLE_ZMAXLIMIT)
  521. #ifdef TMC2130_SG_HOMING
  522. // Stall guard homing turned on
  523. z_max_endstop = (READ(Z_TMC2130_DIAG) != 0);
  524. #else
  525. z_max_endstop = (READ(Z_MAX_PIN) != Z_MAX_ENDSTOP_INVERTING);
  526. #endif //TMC2130_SG_HOMING
  527. if(z_max_endstop && old_z_max_endstop && (current_block->steps_z > 0)) {
  528. endstops_trigsteps[Z_AXIS] = count_position[Z_AXIS];
  529. endstop_z_hit=true;
  530. step_events_completed = current_block->step_event_count;
  531. }
  532. old_z_max_endstop = z_max_endstop;
  533. #endif
  534. }
  535. }
  536. // Supporting stopping on a trigger of the Z-stop induction sensor, not only for the Z-minus movements.
  537. #if defined(Z_MIN_PIN) && (Z_MIN_PIN > -1) && !defined(DEBUG_DISABLE_ZMINLIMIT)
  538. if(check_z_endstop) {
  539. // Check the Z min end-stop no matter what.
  540. // Good for searching for the center of an induction target.
  541. #ifdef TMC2130_SG_HOMING
  542. // Stall guard homing turned on
  543. z_min_endstop = (READ(Z_MIN_PIN) != Z_MIN_ENDSTOP_INVERTING) || (READ(Z_TMC2130_DIAG) != 0);
  544. #else
  545. z_min_endstop = (READ(Z_MIN_PIN) != Z_MIN_ENDSTOP_INVERTING);
  546. #endif //TMC2130_SG_HOMING
  547. if(z_min_endstop && old_z_min_endstop) {
  548. endstops_trigsteps[Z_AXIS] = count_position[Z_AXIS];
  549. endstop_z_hit=true;
  550. step_events_completed = current_block->step_event_count;
  551. }
  552. old_z_min_endstop = z_min_endstop;
  553. }
  554. #endif
  555. if ((out_bits & (1 << E_AXIS)) != 0)
  556. { // -direction
  557. //AKU
  558. #ifdef SNMM
  559. if (snmm_extruder == 0 || snmm_extruder == 2)
  560. {
  561. NORM_E_DIR();
  562. }
  563. else
  564. {
  565. REV_E_DIR();
  566. }
  567. #else
  568. REV_E_DIR();
  569. #endif // SNMM
  570. count_direction[E_AXIS] = -1;
  571. }
  572. else
  573. { // +direction
  574. #ifdef SNMM
  575. if (snmm_extruder == 0 || snmm_extruder == 2)
  576. {
  577. REV_E_DIR();
  578. }
  579. else
  580. {
  581. NORM_E_DIR();
  582. }
  583. #else
  584. NORM_E_DIR();
  585. #endif // SNMM
  586. count_direction[E_AXIS] = 1;
  587. }
  588. for(uint8_t i=0; i < step_loops; i++) { // Take multiple steps per interrupt (For high speed moves)
  589. #ifndef AT90USB
  590. MSerial.checkRx(); // Check for serial chars.
  591. #endif //RP - returned, because missing characters
  592. #ifdef LIN_ADVANCE
  593. counter_e += current_block->steps_e;
  594. if (counter_e > 0) {
  595. counter_e -= current_block->step_event_count;
  596. count_position[E_AXIS] += count_direction[E_AXIS];
  597. ((out_bits&(1<<E_AXIS))!=0) ? --e_steps : ++e_steps;
  598. }
  599. #endif
  600. counter_x += current_block->steps_x;
  601. if (counter_x > 0) {
  602. WRITE(X_STEP_PIN, !INVERT_X_STEP_PIN);
  603. LastStepMask |= X_AXIS_MASK;
  604. #ifdef DEBUG_XSTEP_DUP_PIN
  605. WRITE(DEBUG_XSTEP_DUP_PIN,!INVERT_X_STEP_PIN);
  606. #endif //DEBUG_XSTEP_DUP_PIN
  607. counter_x -= current_block->step_event_count;
  608. count_position[X_AXIS]+=count_direction[X_AXIS];
  609. WRITE(X_STEP_PIN, INVERT_X_STEP_PIN);
  610. #ifdef DEBUG_XSTEP_DUP_PIN
  611. WRITE(DEBUG_XSTEP_DUP_PIN,INVERT_X_STEP_PIN);
  612. #endif //DEBUG_XSTEP_DUP_PIN
  613. }
  614. counter_y += current_block->steps_y;
  615. if (counter_y > 0) {
  616. WRITE(Y_STEP_PIN, !INVERT_Y_STEP_PIN);
  617. LastStepMask |= Y_AXIS_MASK;
  618. #ifdef DEBUG_YSTEP_DUP_PIN
  619. WRITE(DEBUG_YSTEP_DUP_PIN,!INVERT_Y_STEP_PIN);
  620. #endif //DEBUG_YSTEP_DUP_PIN
  621. #ifdef Y_DUAL_STEPPER_DRIVERS
  622. WRITE(Y2_STEP_PIN, !INVERT_Y_STEP_PIN);
  623. #endif
  624. counter_y -= current_block->step_event_count;
  625. count_position[Y_AXIS]+=count_direction[Y_AXIS];
  626. WRITE(Y_STEP_PIN, INVERT_Y_STEP_PIN);
  627. #ifdef DEBUG_YSTEP_DUP_PIN
  628. WRITE(DEBUG_YSTEP_DUP_PIN,INVERT_Y_STEP_PIN);
  629. #endif //DEBUG_YSTEP_DUP_PIN
  630. #ifdef Y_DUAL_STEPPER_DRIVERS
  631. WRITE(Y2_STEP_PIN, INVERT_Y_STEP_PIN);
  632. #endif
  633. }
  634. counter_z += current_block->steps_z;
  635. if (counter_z > 0) {
  636. WRITE(Z_STEP_PIN, !INVERT_Z_STEP_PIN);
  637. LastStepMask |= Z_AXIS_MASK;
  638. #ifdef Z_DUAL_STEPPER_DRIVERS
  639. WRITE(Z2_STEP_PIN, !INVERT_Z_STEP_PIN);
  640. #endif
  641. counter_z -= current_block->step_event_count;
  642. count_position[Z_AXIS]+=count_direction[Z_AXIS];
  643. WRITE(Z_STEP_PIN, INVERT_Z_STEP_PIN);
  644. #ifdef Z_DUAL_STEPPER_DRIVERS
  645. WRITE(Z2_STEP_PIN, INVERT_Z_STEP_PIN);
  646. #endif
  647. }
  648. #ifndef LIN_ADVANCE
  649. counter_e += current_block->steps_e;
  650. if (counter_e > 0) {
  651. WRITE_E_STEP(!INVERT_E_STEP_PIN);
  652. counter_e -= current_block->step_event_count;
  653. count_position[E_AXIS]+=count_direction[E_AXIS];
  654. WRITE_E_STEP(INVERT_E_STEP_PIN);
  655. #ifdef PAT9125
  656. fsensor_counter++;
  657. #endif //PAT9125
  658. }
  659. #endif
  660. step_events_completed += 1;
  661. if(step_events_completed >= current_block->step_event_count) break;
  662. }
  663. #ifdef LIN_ADVANCE
  664. if (current_block->use_advance_lead) {
  665. const int delta_adv_steps = current_estep_rate - current_adv_steps;
  666. current_adv_steps += delta_adv_steps;
  667. e_steps += delta_adv_steps;
  668. }
  669. // If we have esteps to execute, fire the next advance_isr "now"
  670. if (e_steps) nextAdvanceISR = 0;
  671. #endif
  672. // Calculare new timer value
  673. unsigned short timer;
  674. uint16_t step_rate;
  675. if (step_events_completed <= (unsigned long int)current_block->accelerate_until) {
  676. // v = t * a -> acc_step_rate = acceleration_time * current_block->acceleration_rate
  677. MultiU24X24toH16(acc_step_rate, acceleration_time, current_block->acceleration_rate);
  678. acc_step_rate += current_block->initial_rate;
  679. // upper limit
  680. if(acc_step_rate > current_block->nominal_rate)
  681. acc_step_rate = current_block->nominal_rate;
  682. // step_rate to timer interval
  683. timer = calc_timer(acc_step_rate);
  684. _NEXT_ISR(timer);
  685. acceleration_time += timer;
  686. #ifdef LIN_ADVANCE
  687. if (current_block->use_advance_lead) {
  688. current_estep_rate = ((uint32_t)acc_step_rate * current_block->abs_adv_steps_multiplier8) >> 17;
  689. }
  690. eISR_Rate = ADV_RATE(timer, step_loops);
  691. #endif
  692. }
  693. else if (step_events_completed > (unsigned long int)current_block->decelerate_after) {
  694. MultiU24X24toH16(step_rate, deceleration_time, current_block->acceleration_rate);
  695. if(step_rate > acc_step_rate) { // Check step_rate stays positive
  696. step_rate = current_block->final_rate;
  697. }
  698. else {
  699. step_rate = acc_step_rate - step_rate; // Decelerate from aceleration end point.
  700. }
  701. // lower limit
  702. if(step_rate < current_block->final_rate)
  703. step_rate = current_block->final_rate;
  704. // step_rate to timer interval
  705. timer = calc_timer(step_rate);
  706. _NEXT_ISR(timer);
  707. deceleration_time += timer;
  708. #ifdef LIN_ADVANCE
  709. if (current_block->use_advance_lead) {
  710. current_estep_rate = ((uint32_t)step_rate * current_block->abs_adv_steps_multiplier8) >> 17;
  711. }
  712. eISR_Rate = ADV_RATE(timer, step_loops);
  713. #endif
  714. }
  715. else {
  716. #ifdef LIN_ADVANCE
  717. if (current_block->use_advance_lead)
  718. current_estep_rate = final_estep_rate;
  719. eISR_Rate = ADV_RATE(OCR1A_nominal, step_loops_nominal);
  720. #endif
  721. _NEXT_ISR(OCR1A_nominal);
  722. // ensure we're running at the correct step rate, even if we just came off an acceleration
  723. step_loops = step_loops_nominal;
  724. }
  725. // If current block is finished, reset pointer
  726. if (step_events_completed >= current_block->step_event_count) {
  727. #ifdef PAT9125
  728. fsensor_st_block_chunk(current_block, fsensor_counter);
  729. fsensor_counter = 0;
  730. #endif //PAT9125
  731. current_block = NULL;
  732. plan_discard_current_block();
  733. }
  734. #ifdef PAT9125
  735. else if (fsensor_counter >= fsensor_chunk_len)
  736. {
  737. fsensor_st_block_chunk(current_block, fsensor_counter);
  738. fsensor_counter = 0;
  739. }
  740. #endif //PAT9125
  741. }
  742. #ifdef TMC2130
  743. tmc2130_st_isr(LastStepMask);
  744. #endif //TMC2130
  745. }
  746. #ifdef LIN_ADVANCE
  747. // Timer interrupt for E. e_steps is set in the main routine.
  748. void advance_isr() {
  749. if (e_steps) {
  750. bool dir =
  751. #ifdef SNMM
  752. ((e_steps < 0) == (snmm_extruder & 1))
  753. #else
  754. (e_steps < 0)
  755. #endif
  756. ? INVERT_E0_DIR : !INVERT_E0_DIR; //If we have SNMM, reverse every second extruder.
  757. WRITE(E0_DIR_PIN, dir);
  758. for (uint8_t i = step_loops; e_steps && i--;) {
  759. WRITE(E0_STEP_PIN, !INVERT_E_STEP_PIN);
  760. e_steps < 0 ? ++e_steps : --e_steps;
  761. WRITE(E0_STEP_PIN, INVERT_E_STEP_PIN);
  762. #ifdef PAT9125
  763. fsensor_counter++;
  764. #endif //PAT9125
  765. }
  766. }
  767. else {
  768. eISR_Rate = ADV_NEVER;
  769. }
  770. nextAdvanceISR = eISR_Rate;
  771. }
  772. void advance_isr_scheduler() {
  773. // Run main stepping ISR if flagged
  774. if (!nextMainISR) isr();
  775. // Run Advance stepping ISR if flagged
  776. if (!nextAdvanceISR) advance_isr();
  777. // Is the next advance ISR scheduled before the next main ISR?
  778. if (nextAdvanceISR <= nextMainISR) {
  779. // Set up the next interrupt
  780. OCR1A = nextAdvanceISR;
  781. // New interval for the next main ISR
  782. if (nextMainISR) nextMainISR -= nextAdvanceISR;
  783. // Will call Stepper::advance_isr on the next interrupt
  784. nextAdvanceISR = 0;
  785. }
  786. else {
  787. // The next main ISR comes first
  788. OCR1A = nextMainISR;
  789. // New interval for the next advance ISR, if any
  790. if (nextAdvanceISR && nextAdvanceISR != ADV_NEVER)
  791. nextAdvanceISR -= nextMainISR;
  792. // Will call Stepper::isr on the next interrupt
  793. nextMainISR = 0;
  794. }
  795. // Don't run the ISR faster than possible
  796. if (OCR1A < TCNT1 + 16) OCR1A = TCNT1 + 16;
  797. }
  798. void clear_current_adv_vars() {
  799. e_steps = 0; //Should be already 0 at an filament change event, but just to be sure..
  800. current_adv_steps = 0;
  801. }
  802. #endif // LIN_ADVANCE
  803. void st_init()
  804. {
  805. #ifdef TMC2130
  806. tmc2130_init();
  807. #endif //TMC2130
  808. digipot_init(); //Initialize Digipot Motor Current
  809. microstep_init(); //Initialize Microstepping Pins
  810. //Initialize Dir Pins
  811. #if defined(X_DIR_PIN) && X_DIR_PIN > -1
  812. SET_OUTPUT(X_DIR_PIN);
  813. #endif
  814. #if defined(X2_DIR_PIN) && X2_DIR_PIN > -1
  815. SET_OUTPUT(X2_DIR_PIN);
  816. #endif
  817. #if defined(Y_DIR_PIN) && Y_DIR_PIN > -1
  818. SET_OUTPUT(Y_DIR_PIN);
  819. #if defined(Y_DUAL_STEPPER_DRIVERS) && defined(Y2_DIR_PIN) && (Y2_DIR_PIN > -1)
  820. SET_OUTPUT(Y2_DIR_PIN);
  821. #endif
  822. #endif
  823. #if defined(Z_DIR_PIN) && Z_DIR_PIN > -1
  824. SET_OUTPUT(Z_DIR_PIN);
  825. #if defined(Z_DUAL_STEPPER_DRIVERS) && defined(Z2_DIR_PIN) && (Z2_DIR_PIN > -1)
  826. SET_OUTPUT(Z2_DIR_PIN);
  827. #endif
  828. #endif
  829. #if defined(E0_DIR_PIN) && E0_DIR_PIN > -1
  830. SET_OUTPUT(E0_DIR_PIN);
  831. #endif
  832. #if defined(E1_DIR_PIN) && (E1_DIR_PIN > -1)
  833. SET_OUTPUT(E1_DIR_PIN);
  834. #endif
  835. #if defined(E2_DIR_PIN) && (E2_DIR_PIN > -1)
  836. SET_OUTPUT(E2_DIR_PIN);
  837. #endif
  838. //Initialize Enable Pins - steppers default to disabled.
  839. #if defined(X_ENABLE_PIN) && X_ENABLE_PIN > -1
  840. SET_OUTPUT(X_ENABLE_PIN);
  841. if(!X_ENABLE_ON) WRITE(X_ENABLE_PIN,HIGH);
  842. #endif
  843. #if defined(X2_ENABLE_PIN) && X2_ENABLE_PIN > -1
  844. SET_OUTPUT(X2_ENABLE_PIN);
  845. if(!X_ENABLE_ON) WRITE(X2_ENABLE_PIN,HIGH);
  846. #endif
  847. #if defined(Y_ENABLE_PIN) && Y_ENABLE_PIN > -1
  848. SET_OUTPUT(Y_ENABLE_PIN);
  849. if(!Y_ENABLE_ON) WRITE(Y_ENABLE_PIN,HIGH);
  850. #if defined(Y_DUAL_STEPPER_DRIVERS) && defined(Y2_ENABLE_PIN) && (Y2_ENABLE_PIN > -1)
  851. SET_OUTPUT(Y2_ENABLE_PIN);
  852. if(!Y_ENABLE_ON) WRITE(Y2_ENABLE_PIN,HIGH);
  853. #endif
  854. #endif
  855. #if defined(Z_ENABLE_PIN) && Z_ENABLE_PIN > -1
  856. SET_OUTPUT(Z_ENABLE_PIN);
  857. if(!Z_ENABLE_ON) WRITE(Z_ENABLE_PIN,HIGH);
  858. #if defined(Z_DUAL_STEPPER_DRIVERS) && defined(Z2_ENABLE_PIN) && (Z2_ENABLE_PIN > -1)
  859. SET_OUTPUT(Z2_ENABLE_PIN);
  860. if(!Z_ENABLE_ON) WRITE(Z2_ENABLE_PIN,HIGH);
  861. #endif
  862. #endif
  863. #if defined(E0_ENABLE_PIN) && (E0_ENABLE_PIN > -1)
  864. SET_OUTPUT(E0_ENABLE_PIN);
  865. if(!E_ENABLE_ON) WRITE(E0_ENABLE_PIN,HIGH);
  866. #endif
  867. #if defined(E1_ENABLE_PIN) && (E1_ENABLE_PIN > -1)
  868. SET_OUTPUT(E1_ENABLE_PIN);
  869. if(!E_ENABLE_ON) WRITE(E1_ENABLE_PIN,HIGH);
  870. #endif
  871. #if defined(E2_ENABLE_PIN) && (E2_ENABLE_PIN > -1)
  872. SET_OUTPUT(E2_ENABLE_PIN);
  873. if(!E_ENABLE_ON) WRITE(E2_ENABLE_PIN,HIGH);
  874. #endif
  875. //endstops and pullups
  876. #ifdef TMC2130_SG_HOMING
  877. SET_INPUT(X_TMC2130_DIAG);
  878. WRITE(X_TMC2130_DIAG,HIGH);
  879. SET_INPUT(Y_TMC2130_DIAG);
  880. WRITE(Y_TMC2130_DIAG,HIGH);
  881. SET_INPUT(Z_TMC2130_DIAG);
  882. WRITE(Z_TMC2130_DIAG,HIGH);
  883. SET_INPUT(E0_TMC2130_DIAG);
  884. WRITE(E0_TMC2130_DIAG,HIGH);
  885. #endif
  886. #if defined(X_MIN_PIN) && X_MIN_PIN > -1
  887. SET_INPUT(X_MIN_PIN);
  888. #ifdef ENDSTOPPULLUP_XMIN
  889. WRITE(X_MIN_PIN,HIGH);
  890. #endif
  891. #endif
  892. #if defined(Y_MIN_PIN) && Y_MIN_PIN > -1
  893. SET_INPUT(Y_MIN_PIN);
  894. #ifdef ENDSTOPPULLUP_YMIN
  895. WRITE(Y_MIN_PIN,HIGH);
  896. #endif
  897. #endif
  898. #if defined(Z_MIN_PIN) && Z_MIN_PIN > -1
  899. SET_INPUT(Z_MIN_PIN);
  900. #ifdef ENDSTOPPULLUP_ZMIN
  901. WRITE(Z_MIN_PIN,HIGH);
  902. #endif
  903. #endif
  904. #if defined(X_MAX_PIN) && X_MAX_PIN > -1
  905. SET_INPUT(X_MAX_PIN);
  906. #ifdef ENDSTOPPULLUP_XMAX
  907. WRITE(X_MAX_PIN,HIGH);
  908. #endif
  909. #endif
  910. #if defined(Y_MAX_PIN) && Y_MAX_PIN > -1
  911. SET_INPUT(Y_MAX_PIN);
  912. #ifdef ENDSTOPPULLUP_YMAX
  913. WRITE(Y_MAX_PIN,HIGH);
  914. #endif
  915. #endif
  916. #if defined(Z_MAX_PIN) && Z_MAX_PIN > -1
  917. SET_INPUT(Z_MAX_PIN);
  918. #ifdef ENDSTOPPULLUP_ZMAX
  919. WRITE(Z_MAX_PIN,HIGH);
  920. #endif
  921. #endif
  922. //Initialize Step Pins
  923. #if defined(X_STEP_PIN) && (X_STEP_PIN > -1)
  924. SET_OUTPUT(X_STEP_PIN);
  925. WRITE(X_STEP_PIN,INVERT_X_STEP_PIN);
  926. #ifdef DEBUG_XSTEP_DUP_PIN
  927. SET_OUTPUT(DEBUG_XSTEP_DUP_PIN);
  928. WRITE(DEBUG_XSTEP_DUP_PIN,INVERT_X_STEP_PIN);
  929. #endif //DEBUG_XSTEP_DUP_PIN
  930. disable_x();
  931. #endif
  932. #if defined(X2_STEP_PIN) && (X2_STEP_PIN > -1)
  933. SET_OUTPUT(X2_STEP_PIN);
  934. WRITE(X2_STEP_PIN,INVERT_X_STEP_PIN);
  935. disable_x();
  936. #endif
  937. #if defined(Y_STEP_PIN) && (Y_STEP_PIN > -1)
  938. SET_OUTPUT(Y_STEP_PIN);
  939. WRITE(Y_STEP_PIN,INVERT_Y_STEP_PIN);
  940. #ifdef DEBUG_YSTEP_DUP_PIN
  941. SET_OUTPUT(DEBUG_YSTEP_DUP_PIN);
  942. WRITE(DEBUG_YSTEP_DUP_PIN,INVERT_Y_STEP_PIN);
  943. #endif //DEBUG_YSTEP_DUP_PIN
  944. #if defined(Y_DUAL_STEPPER_DRIVERS) && defined(Y2_STEP_PIN) && (Y2_STEP_PIN > -1)
  945. SET_OUTPUT(Y2_STEP_PIN);
  946. WRITE(Y2_STEP_PIN,INVERT_Y_STEP_PIN);
  947. #endif
  948. disable_y();
  949. #endif
  950. #if defined(Z_STEP_PIN) && (Z_STEP_PIN > -1)
  951. SET_OUTPUT(Z_STEP_PIN);
  952. WRITE(Z_STEP_PIN,INVERT_Z_STEP_PIN);
  953. #if defined(Z_DUAL_STEPPER_DRIVERS) && defined(Z2_STEP_PIN) && (Z2_STEP_PIN > -1)
  954. SET_OUTPUT(Z2_STEP_PIN);
  955. WRITE(Z2_STEP_PIN,INVERT_Z_STEP_PIN);
  956. #endif
  957. disable_z();
  958. #endif
  959. #if defined(E0_STEP_PIN) && (E0_STEP_PIN > -1)
  960. SET_OUTPUT(E0_STEP_PIN);
  961. WRITE(E0_STEP_PIN,INVERT_E_STEP_PIN);
  962. disable_e0();
  963. #endif
  964. #if defined(E1_STEP_PIN) && (E1_STEP_PIN > -1)
  965. SET_OUTPUT(E1_STEP_PIN);
  966. WRITE(E1_STEP_PIN,INVERT_E_STEP_PIN);
  967. disable_e1();
  968. #endif
  969. #if defined(E2_STEP_PIN) && (E2_STEP_PIN > -1)
  970. SET_OUTPUT(E2_STEP_PIN);
  971. WRITE(E2_STEP_PIN,INVERT_E_STEP_PIN);
  972. disable_e2();
  973. #endif
  974. // waveform generation = 0100 = CTC
  975. TCCR1B &= ~(1<<WGM13);
  976. TCCR1B |= (1<<WGM12);
  977. TCCR1A &= ~(1<<WGM11);
  978. TCCR1A &= ~(1<<WGM10);
  979. // output mode = 00 (disconnected)
  980. TCCR1A &= ~(3<<COM1A0);
  981. TCCR1A &= ~(3<<COM1B0);
  982. // Set the timer pre-scaler
  983. // Generally we use a divider of 8, resulting in a 2MHz timer
  984. // frequency on a 16MHz MCU. If you are going to change this, be
  985. // sure to regenerate speed_lookuptable.h with
  986. // create_speed_lookuptable.py
  987. TCCR1B = (TCCR1B & ~(0x07<<CS10)) | (2<<CS10);
  988. OCR1A = 0x4000;
  989. TCNT1 = 0;
  990. ENABLE_STEPPER_DRIVER_INTERRUPT();
  991. #ifdef LIN_ADVANCE
  992. e_steps = 0;
  993. current_adv_steps = 0;
  994. #endif
  995. enable_endstops(true); // Start with endstops active. After homing they can be disabled
  996. sei();
  997. }
  998. // Block until all buffered steps are executed
  999. void st_synchronize()
  1000. {
  1001. while(blocks_queued())
  1002. {
  1003. #ifdef TMC2130
  1004. manage_heater();
  1005. // Vojtech: Don't disable motors inside the planner!
  1006. if (!tmc2130_update_sg())
  1007. {
  1008. manage_inactivity(true);
  1009. lcd_update();
  1010. }
  1011. #else //TMC2130
  1012. manage_heater();
  1013. // Vojtech: Don't disable motors inside the planner!
  1014. manage_inactivity(true);
  1015. lcd_update();
  1016. #endif //TMC2130
  1017. }
  1018. }
  1019. void st_set_position(const long &x, const long &y, const long &z, const long &e)
  1020. {
  1021. CRITICAL_SECTION_START;
  1022. count_position[X_AXIS] = x;
  1023. count_position[Y_AXIS] = y;
  1024. count_position[Z_AXIS] = z;
  1025. count_position[E_AXIS] = e;
  1026. CRITICAL_SECTION_END;
  1027. }
  1028. void st_set_e_position(const long &e)
  1029. {
  1030. CRITICAL_SECTION_START;
  1031. count_position[E_AXIS] = e;
  1032. CRITICAL_SECTION_END;
  1033. }
  1034. long st_get_position(uint8_t axis)
  1035. {
  1036. long count_pos;
  1037. CRITICAL_SECTION_START;
  1038. count_pos = count_position[axis];
  1039. CRITICAL_SECTION_END;
  1040. return count_pos;
  1041. }
  1042. void st_get_position_xy(long &x, long &y)
  1043. {
  1044. CRITICAL_SECTION_START;
  1045. x = count_position[X_AXIS];
  1046. y = count_position[Y_AXIS];
  1047. CRITICAL_SECTION_END;
  1048. }
  1049. float st_get_position_mm(uint8_t axis)
  1050. {
  1051. float steper_position_in_steps = st_get_position(axis);
  1052. return steper_position_in_steps / axis_steps_per_unit[axis];
  1053. }
  1054. void finishAndDisableSteppers()
  1055. {
  1056. st_synchronize();
  1057. disable_x();
  1058. disable_y();
  1059. disable_z();
  1060. disable_e0();
  1061. disable_e1();
  1062. disable_e2();
  1063. }
  1064. void quickStop()
  1065. {
  1066. DISABLE_STEPPER_DRIVER_INTERRUPT();
  1067. while (blocks_queued()) plan_discard_current_block();
  1068. current_block = NULL;
  1069. ENABLE_STEPPER_DRIVER_INTERRUPT();
  1070. }
  1071. #ifdef BABYSTEPPING
  1072. void babystep(const uint8_t axis,const bool direction)
  1073. {
  1074. //MUST ONLY BE CALLED BY A ISR, it depends on that no other ISR interrupts this
  1075. //store initial pin states
  1076. switch(axis)
  1077. {
  1078. case X_AXIS:
  1079. {
  1080. enable_x();
  1081. uint8_t old_x_dir_pin= READ(X_DIR_PIN); //if dualzstepper, both point to same direction.
  1082. //setup new step
  1083. WRITE(X_DIR_PIN,(INVERT_X_DIR)^direction);
  1084. //perform step
  1085. WRITE(X_STEP_PIN, !INVERT_X_STEP_PIN);
  1086. LastStepMask |= X_AXIS_MASK;
  1087. #ifdef DEBUG_XSTEP_DUP_PIN
  1088. WRITE(DEBUG_XSTEP_DUP_PIN,!INVERT_X_STEP_PIN);
  1089. #endif //DEBUG_XSTEP_DUP_PIN
  1090. {
  1091. volatile float x=1./float(axis+1)/float(axis+2); //wait a tiny bit
  1092. }
  1093. WRITE(X_STEP_PIN, INVERT_X_STEP_PIN);
  1094. #ifdef DEBUG_XSTEP_DUP_PIN
  1095. WRITE(DEBUG_XSTEP_DUP_PIN,INVERT_X_STEP_PIN);
  1096. #endif //DEBUG_XSTEP_DUP_PIN
  1097. //get old pin state back.
  1098. WRITE(X_DIR_PIN,old_x_dir_pin);
  1099. }
  1100. break;
  1101. case Y_AXIS:
  1102. {
  1103. enable_y();
  1104. uint8_t old_y_dir_pin= READ(Y_DIR_PIN); //if dualzstepper, both point to same direction.
  1105. //setup new step
  1106. WRITE(Y_DIR_PIN,(INVERT_Y_DIR)^direction);
  1107. //perform step
  1108. WRITE(Y_STEP_PIN, !INVERT_Y_STEP_PIN);
  1109. LastStepMask |= Y_AXIS_MASK;
  1110. #ifdef DEBUG_YSTEP_DUP_PIN
  1111. WRITE(DEBUG_YSTEP_DUP_PIN,!INVERT_Y_STEP_PIN);
  1112. #endif //DEBUG_YSTEP_DUP_PIN
  1113. {
  1114. volatile float x=1./float(axis+1)/float(axis+2); //wait a tiny bit
  1115. }
  1116. WRITE(Y_STEP_PIN, INVERT_Y_STEP_PIN);
  1117. #ifdef DEBUG_YSTEP_DUP_PIN
  1118. WRITE(DEBUG_YSTEP_DUP_PIN,INVERT_Y_STEP_PIN);
  1119. #endif //DEBUG_YSTEP_DUP_PIN
  1120. //get old pin state back.
  1121. WRITE(Y_DIR_PIN,old_y_dir_pin);
  1122. }
  1123. break;
  1124. case Z_AXIS:
  1125. {
  1126. enable_z();
  1127. uint8_t old_z_dir_pin= READ(Z_DIR_PIN); //if dualzstepper, both point to same direction.
  1128. //setup new step
  1129. WRITE(Z_DIR_PIN,(INVERT_Z_DIR)^direction^BABYSTEP_INVERT_Z);
  1130. #ifdef Z_DUAL_STEPPER_DRIVERS
  1131. WRITE(Z2_DIR_PIN,(INVERT_Z_DIR)^direction^BABYSTEP_INVERT_Z);
  1132. #endif
  1133. //perform step
  1134. WRITE(Z_STEP_PIN, !INVERT_Z_STEP_PIN);
  1135. LastStepMask |= Z_AXIS_MASK;
  1136. #ifdef Z_DUAL_STEPPER_DRIVERS
  1137. WRITE(Z2_STEP_PIN, !INVERT_Z_STEP_PIN);
  1138. #endif
  1139. //wait a tiny bit
  1140. {
  1141. volatile float x=1./float(axis+1); //absolutely useless
  1142. }
  1143. WRITE(Z_STEP_PIN, INVERT_Z_STEP_PIN);
  1144. #ifdef Z_DUAL_STEPPER_DRIVERS
  1145. WRITE(Z2_STEP_PIN, INVERT_Z_STEP_PIN);
  1146. #endif
  1147. //get old pin state back.
  1148. WRITE(Z_DIR_PIN,old_z_dir_pin);
  1149. #ifdef Z_DUAL_STEPPER_DRIVERS
  1150. WRITE(Z2_DIR_PIN,old_z_dir_pin);
  1151. #endif
  1152. }
  1153. break;
  1154. default: break;
  1155. }
  1156. }
  1157. #endif //BABYSTEPPING
  1158. void digitalPotWrite(int address, int value) // From Arduino DigitalPotControl example
  1159. {
  1160. #if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
  1161. digitalWrite(DIGIPOTSS_PIN,LOW); // take the SS pin low to select the chip
  1162. SPI.transfer(address); // send in the address and value via SPI:
  1163. SPI.transfer(value);
  1164. digitalWrite(DIGIPOTSS_PIN,HIGH); // take the SS pin high to de-select the chip:
  1165. //delay(10);
  1166. #endif
  1167. }
  1168. void EEPROM_read_st(int pos, uint8_t* value, uint8_t size)
  1169. {
  1170. do
  1171. {
  1172. *value = eeprom_read_byte((unsigned char*)pos);
  1173. pos++;
  1174. value++;
  1175. }while(--size);
  1176. }
  1177. void digipot_init() //Initialize Digipot Motor Current
  1178. {
  1179. EEPROM_read_st(EEPROM_SILENT,(uint8_t*)&SilentMode,sizeof(SilentMode));
  1180. #if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
  1181. if(SilentMode == 0){
  1182. const uint8_t digipot_motor_current[] = DIGIPOT_MOTOR_CURRENT_LOUD;
  1183. }else{
  1184. const uint8_t digipot_motor_current[] = DIGIPOT_MOTOR_CURRENT;
  1185. }
  1186. SPI.begin();
  1187. pinMode(DIGIPOTSS_PIN, OUTPUT);
  1188. for(int i=0;i<=4;i++)
  1189. //digitalPotWrite(digipot_ch[i], digipot_motor_current[i]);
  1190. digipot_current(i,digipot_motor_current[i]);
  1191. #endif
  1192. #ifdef MOTOR_CURRENT_PWM_XY_PIN
  1193. pinMode(MOTOR_CURRENT_PWM_XY_PIN, OUTPUT);
  1194. pinMode(MOTOR_CURRENT_PWM_Z_PIN, OUTPUT);
  1195. pinMode(MOTOR_CURRENT_PWM_E_PIN, OUTPUT);
  1196. if((SilentMode == 0) || (farm_mode) ){
  1197. motor_current_setting[0] = motor_current_setting_loud[0];
  1198. motor_current_setting[1] = motor_current_setting_loud[1];
  1199. motor_current_setting[2] = motor_current_setting_loud[2];
  1200. }else{
  1201. motor_current_setting[0] = motor_current_setting_silent[0];
  1202. motor_current_setting[1] = motor_current_setting_silent[1];
  1203. motor_current_setting[2] = motor_current_setting_silent[2];
  1204. }
  1205. digipot_current(0, motor_current_setting[0]);
  1206. digipot_current(1, motor_current_setting[1]);
  1207. digipot_current(2, motor_current_setting[2]);
  1208. //Set timer5 to 31khz so the PWM of the motor power is as constant as possible. (removes a buzzing noise)
  1209. TCCR5B = (TCCR5B & ~(_BV(CS50) | _BV(CS51) | _BV(CS52))) | _BV(CS50);
  1210. #endif
  1211. }
  1212. void digipot_current(uint8_t driver, int current)
  1213. {
  1214. #if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
  1215. const uint8_t digipot_ch[] = DIGIPOT_CHANNELS;
  1216. digitalPotWrite(digipot_ch[driver], current);
  1217. #endif
  1218. #ifdef MOTOR_CURRENT_PWM_XY_PIN
  1219. if (driver == 0) analogWrite(MOTOR_CURRENT_PWM_XY_PIN, (long)current * 255L / (long)MOTOR_CURRENT_PWM_RANGE);
  1220. if (driver == 1) analogWrite(MOTOR_CURRENT_PWM_Z_PIN, (long)current * 255L / (long)MOTOR_CURRENT_PWM_RANGE);
  1221. if (driver == 2) analogWrite(MOTOR_CURRENT_PWM_E_PIN, (long)current * 255L / (long)MOTOR_CURRENT_PWM_RANGE);
  1222. #endif
  1223. }
  1224. void microstep_init()
  1225. {
  1226. const uint8_t microstep_modes[] = MICROSTEP_MODES;
  1227. #if defined(E1_MS1_PIN) && E1_MS1_PIN > -1
  1228. pinMode(E1_MS1_PIN,OUTPUT);
  1229. pinMode(E1_MS2_PIN,OUTPUT);
  1230. #endif
  1231. #if defined(X_MS1_PIN) && X_MS1_PIN > -1
  1232. pinMode(X_MS1_PIN,OUTPUT);
  1233. pinMode(X_MS2_PIN,OUTPUT);
  1234. pinMode(Y_MS1_PIN,OUTPUT);
  1235. pinMode(Y_MS2_PIN,OUTPUT);
  1236. pinMode(Z_MS1_PIN,OUTPUT);
  1237. pinMode(Z_MS2_PIN,OUTPUT);
  1238. pinMode(E0_MS1_PIN,OUTPUT);
  1239. pinMode(E0_MS2_PIN,OUTPUT);
  1240. for(int i=0;i<=4;i++) microstep_mode(i,microstep_modes[i]);
  1241. #endif
  1242. }
  1243. void microstep_ms(uint8_t driver, int8_t ms1, int8_t ms2)
  1244. {
  1245. if(ms1 > -1) switch(driver)
  1246. {
  1247. case 0: digitalWrite( X_MS1_PIN,ms1); break;
  1248. case 1: digitalWrite( Y_MS1_PIN,ms1); break;
  1249. case 2: digitalWrite( Z_MS1_PIN,ms1); break;
  1250. case 3: digitalWrite(E0_MS1_PIN,ms1); break;
  1251. #if defined(E1_MS1_PIN) && E1_MS1_PIN > -1
  1252. case 4: digitalWrite(E1_MS1_PIN,ms1); break;
  1253. #endif
  1254. }
  1255. if(ms2 > -1) switch(driver)
  1256. {
  1257. case 0: digitalWrite( X_MS2_PIN,ms2); break;
  1258. case 1: digitalWrite( Y_MS2_PIN,ms2); break;
  1259. case 2: digitalWrite( Z_MS2_PIN,ms2); break;
  1260. case 3: digitalWrite(E0_MS2_PIN,ms2); break;
  1261. #if defined(E1_MS2_PIN) && E1_MS2_PIN > -1
  1262. case 4: digitalWrite(E1_MS2_PIN,ms2); break;
  1263. #endif
  1264. }
  1265. }
  1266. void microstep_mode(uint8_t driver, uint8_t stepping_mode)
  1267. {
  1268. switch(stepping_mode)
  1269. {
  1270. case 1: microstep_ms(driver,MICROSTEP1); break;
  1271. case 2: microstep_ms(driver,MICROSTEP2); break;
  1272. case 4: microstep_ms(driver,MICROSTEP4); break;
  1273. case 8: microstep_ms(driver,MICROSTEP8); break;
  1274. case 16: microstep_ms(driver,MICROSTEP16); break;
  1275. }
  1276. }
  1277. void microstep_readings()
  1278. {
  1279. SERIAL_PROTOCOLPGM("MS1,MS2 Pins\n");
  1280. SERIAL_PROTOCOLPGM("X: ");
  1281. SERIAL_PROTOCOL( digitalRead(X_MS1_PIN));
  1282. SERIAL_PROTOCOLLN( digitalRead(X_MS2_PIN));
  1283. SERIAL_PROTOCOLPGM("Y: ");
  1284. SERIAL_PROTOCOL( digitalRead(Y_MS1_PIN));
  1285. SERIAL_PROTOCOLLN( digitalRead(Y_MS2_PIN));
  1286. SERIAL_PROTOCOLPGM("Z: ");
  1287. SERIAL_PROTOCOL( digitalRead(Z_MS1_PIN));
  1288. SERIAL_PROTOCOLLN( digitalRead(Z_MS2_PIN));
  1289. SERIAL_PROTOCOLPGM("E0: ");
  1290. SERIAL_PROTOCOL( digitalRead(E0_MS1_PIN));
  1291. SERIAL_PROTOCOLLN( digitalRead(E0_MS2_PIN));
  1292. #if defined(E1_MS1_PIN) && E1_MS1_PIN > -1
  1293. SERIAL_PROTOCOLPGM("E1: ");
  1294. SERIAL_PROTOCOL( digitalRead(E1_MS1_PIN));
  1295. SERIAL_PROTOCOLLN( digitalRead(E1_MS2_PIN));
  1296. #endif
  1297. }