temperature.cpp 55 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992
  1. /*
  2. temperature.c - temperature control
  3. Part of Marlin
  4. Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
  5. This program is free software: you can redistribute it and/or modify
  6. it under the terms of the GNU General Public License as published by
  7. the Free Software Foundation, either version 3 of the License, or
  8. (at your option) any later version.
  9. This program is distributed in the hope that it will be useful,
  10. but WITHOUT ANY WARRANTY; without even the implied warranty of
  11. MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  12. GNU General Public License for more details.
  13. You should have received a copy of the GNU General Public License
  14. along with this program. If not, see <http://www.gnu.org/licenses/>.
  15. */
  16. /*
  17. This firmware is a mashup between Sprinter and grbl.
  18. (https://github.com/kliment/Sprinter)
  19. (https://github.com/simen/grbl/tree)
  20. It has preliminary support for Matthew Roberts advance algorithm
  21. http://reprap.org/pipermail/reprap-dev/2011-May/003323.html
  22. */
  23. #include "Marlin.h"
  24. #include "ultralcd.h"
  25. #include "temperature.h"
  26. #include "cardreader.h"
  27. #include "Sd2PinMap.h"
  28. #include <avr/wdt.h>
  29. #include "adc.h"
  30. //===========================================================================
  31. //=============================public variables============================
  32. //===========================================================================
  33. int target_temperature[EXTRUDERS] = { 0 };
  34. int target_temperature_bed = 0;
  35. int current_temperature_raw[EXTRUDERS] = { 0 };
  36. float current_temperature[EXTRUDERS] = { 0.0 };
  37. #ifdef PINDA_THERMISTOR
  38. int current_temperature_raw_pinda = 0 ;
  39. float current_temperature_pinda = 0.0;
  40. #endif //PINDA_THERMISTOR
  41. #ifdef AMBIENT_THERMISTOR
  42. int current_temperature_raw_ambient = 0 ;
  43. float current_temperature_ambient = 0.0;
  44. #endif //AMBIENT_THERMISTOR
  45. #ifdef VOLT_PWR_PIN
  46. int current_voltage_raw_pwr = 0;
  47. #endif
  48. #ifdef VOLT_BED_PIN
  49. int current_voltage_raw_bed = 0;
  50. #endif
  51. int current_temperature_bed_raw = 0;
  52. float current_temperature_bed = 0.0;
  53. #ifdef TEMP_SENSOR_1_AS_REDUNDANT
  54. int redundant_temperature_raw = 0;
  55. float redundant_temperature = 0.0;
  56. #endif
  57. #ifdef PIDTEMP
  58. float _Kp, _Ki, _Kd;
  59. int pid_cycle, pid_number_of_cycles;
  60. bool pid_tuning_finished = false;
  61. float Kp=DEFAULT_Kp;
  62. float Ki=(DEFAULT_Ki*PID_dT);
  63. float Kd=(DEFAULT_Kd/PID_dT);
  64. #ifdef PID_ADD_EXTRUSION_RATE
  65. float Kc=DEFAULT_Kc;
  66. #endif
  67. #endif //PIDTEMP
  68. #ifdef PIDTEMPBED
  69. float bedKp=DEFAULT_bedKp;
  70. float bedKi=(DEFAULT_bedKi*PID_dT);
  71. float bedKd=(DEFAULT_bedKd/PID_dT);
  72. #endif //PIDTEMPBED
  73. #ifdef FAN_SOFT_PWM
  74. unsigned char fanSpeedSoftPwm;
  75. #endif
  76. unsigned char soft_pwm_bed;
  77. #ifdef BABYSTEPPING
  78. volatile int babystepsTodo[3]={0,0,0};
  79. #endif
  80. //===========================================================================
  81. //=============================private variables============================
  82. //===========================================================================
  83. static volatile bool temp_meas_ready = false;
  84. #ifdef PIDTEMP
  85. //static cannot be external:
  86. static float temp_iState[EXTRUDERS] = { 0 };
  87. static float temp_dState[EXTRUDERS] = { 0 };
  88. static float pTerm[EXTRUDERS];
  89. static float iTerm[EXTRUDERS];
  90. static float dTerm[EXTRUDERS];
  91. //int output;
  92. static float pid_error[EXTRUDERS];
  93. static float temp_iState_min[EXTRUDERS];
  94. static float temp_iState_max[EXTRUDERS];
  95. // static float pid_input[EXTRUDERS];
  96. // static float pid_output[EXTRUDERS];
  97. static bool pid_reset[EXTRUDERS];
  98. #endif //PIDTEMP
  99. #ifdef PIDTEMPBED
  100. //static cannot be external:
  101. static float temp_iState_bed = { 0 };
  102. static float temp_dState_bed = { 0 };
  103. static float pTerm_bed;
  104. static float iTerm_bed;
  105. static float dTerm_bed;
  106. //int output;
  107. static float pid_error_bed;
  108. static float temp_iState_min_bed;
  109. static float temp_iState_max_bed;
  110. #else //PIDTEMPBED
  111. static unsigned long previous_millis_bed_heater;
  112. #endif //PIDTEMPBED
  113. static unsigned char soft_pwm[EXTRUDERS];
  114. #ifdef FAN_SOFT_PWM
  115. static unsigned char soft_pwm_fan;
  116. #endif
  117. #if (defined(EXTRUDER_0_AUTO_FAN_PIN) && EXTRUDER_0_AUTO_FAN_PIN > -1) || \
  118. (defined(EXTRUDER_1_AUTO_FAN_PIN) && EXTRUDER_1_AUTO_FAN_PIN > -1) || \
  119. (defined(EXTRUDER_2_AUTO_FAN_PIN) && EXTRUDER_2_AUTO_FAN_PIN > -1)
  120. static unsigned long extruder_autofan_last_check;
  121. #endif
  122. #if EXTRUDERS > 3
  123. # error Unsupported number of extruders
  124. #elif EXTRUDERS > 2
  125. # define ARRAY_BY_EXTRUDERS(v1, v2, v3) { v1, v2, v3 }
  126. #elif EXTRUDERS > 1
  127. # define ARRAY_BY_EXTRUDERS(v1, v2, v3) { v1, v2 }
  128. #else
  129. # define ARRAY_BY_EXTRUDERS(v1, v2, v3) { v1 }
  130. #endif
  131. // Init min and max temp with extreme values to prevent false errors during startup
  132. static int minttemp_raw[EXTRUDERS] = ARRAY_BY_EXTRUDERS( HEATER_0_RAW_LO_TEMP , HEATER_1_RAW_LO_TEMP , HEATER_2_RAW_LO_TEMP );
  133. static int maxttemp_raw[EXTRUDERS] = ARRAY_BY_EXTRUDERS( HEATER_0_RAW_HI_TEMP , HEATER_1_RAW_HI_TEMP , HEATER_2_RAW_HI_TEMP );
  134. static int minttemp[EXTRUDERS] = ARRAY_BY_EXTRUDERS( 0, 0, 0 );
  135. static int maxttemp[EXTRUDERS] = ARRAY_BY_EXTRUDERS( 16383, 16383, 16383 );
  136. #ifdef BED_MINTEMP
  137. static int bed_minttemp_raw = HEATER_BED_RAW_LO_TEMP;
  138. #endif
  139. #ifdef BED_MAXTEMP
  140. static int bed_maxttemp_raw = HEATER_BED_RAW_HI_TEMP;
  141. #endif
  142. #ifdef TEMP_SENSOR_1_AS_REDUNDANT
  143. static void *heater_ttbl_map[2] = {(void *)HEATER_0_TEMPTABLE, (void *)HEATER_1_TEMPTABLE };
  144. static uint8_t heater_ttbllen_map[2] = { HEATER_0_TEMPTABLE_LEN, HEATER_1_TEMPTABLE_LEN };
  145. #else
  146. static void *heater_ttbl_map[EXTRUDERS] = ARRAY_BY_EXTRUDERS( (void *)HEATER_0_TEMPTABLE, (void *)HEATER_1_TEMPTABLE, (void *)HEATER_2_TEMPTABLE );
  147. static uint8_t heater_ttbllen_map[EXTRUDERS] = ARRAY_BY_EXTRUDERS( HEATER_0_TEMPTABLE_LEN, HEATER_1_TEMPTABLE_LEN, HEATER_2_TEMPTABLE_LEN );
  148. #endif
  149. static float analog2temp(int raw, uint8_t e);
  150. static float analog2tempBed(int raw);
  151. static float analog2tempAmbient(int raw);
  152. static void updateTemperaturesFromRawValues();
  153. enum TempRunawayStates
  154. {
  155. TempRunaway_INACTIVE = 0,
  156. TempRunaway_PREHEAT = 1,
  157. TempRunaway_ACTIVE = 2,
  158. };
  159. #ifdef WATCH_TEMP_PERIOD
  160. int watch_start_temp[EXTRUDERS] = ARRAY_BY_EXTRUDERS(0,0,0);
  161. unsigned long watchmillis[EXTRUDERS] = ARRAY_BY_EXTRUDERS(0,0,0);
  162. #endif //WATCH_TEMP_PERIOD
  163. #ifndef SOFT_PWM_SCALE
  164. #define SOFT_PWM_SCALE 0
  165. #endif
  166. //===========================================================================
  167. //============================= functions ============================
  168. //===========================================================================
  169. void PID_autotune(float temp, int extruder, int ncycles)
  170. {
  171. pid_number_of_cycles = ncycles;
  172. pid_tuning_finished = false;
  173. float input = 0.0;
  174. pid_cycle=0;
  175. bool heating = true;
  176. unsigned long temp_millis = millis();
  177. unsigned long t1=temp_millis;
  178. unsigned long t2=temp_millis;
  179. long t_high = 0;
  180. long t_low = 0;
  181. long bias, d;
  182. float Ku, Tu;
  183. float max = 0, min = 10000;
  184. uint8_t safety_check_cycles = 0;
  185. const uint8_t safety_check_cycles_count = (extruder < 0) ? 45 : 10; //10 cycles / 20s delay for extruder and 45 cycles / 90s for heatbed
  186. float temp_ambient;
  187. #if (defined(EXTRUDER_0_AUTO_FAN_PIN) && EXTRUDER_0_AUTO_FAN_PIN > -1) || \
  188. (defined(EXTRUDER_1_AUTO_FAN_PIN) && EXTRUDER_1_AUTO_FAN_PIN > -1) || \
  189. (defined(EXTRUDER_2_AUTO_FAN_PIN) && EXTRUDER_2_AUTO_FAN_PIN > -1)
  190. unsigned long extruder_autofan_last_check = millis();
  191. #endif
  192. if ((extruder >= EXTRUDERS)
  193. #if (TEMP_BED_PIN <= -1)
  194. ||(extruder < 0)
  195. #endif
  196. ){
  197. SERIAL_ECHOLN("PID Autotune failed. Bad extruder number.");
  198. pid_tuning_finished = true;
  199. pid_cycle = 0;
  200. return;
  201. }
  202. SERIAL_ECHOLN("PID Autotune start");
  203. disable_heater(); // switch off all heaters.
  204. if (extruder<0)
  205. {
  206. soft_pwm_bed = (MAX_BED_POWER)/2;
  207. bias = d = (MAX_BED_POWER)/2;
  208. }
  209. else
  210. {
  211. soft_pwm[extruder] = (PID_MAX)/2;
  212. bias = d = (PID_MAX)/2;
  213. }
  214. for(;;) {
  215. #ifdef WATCHDOG
  216. wdt_reset();
  217. #endif //WATCHDOG
  218. if(temp_meas_ready == true) { // temp sample ready
  219. updateTemperaturesFromRawValues();
  220. input = (extruder<0)?current_temperature_bed:current_temperature[extruder];
  221. max=max(max,input);
  222. min=min(min,input);
  223. #if (defined(EXTRUDER_0_AUTO_FAN_PIN) && EXTRUDER_0_AUTO_FAN_PIN > -1) || \
  224. (defined(EXTRUDER_1_AUTO_FAN_PIN) && EXTRUDER_1_AUTO_FAN_PIN > -1) || \
  225. (defined(EXTRUDER_2_AUTO_FAN_PIN) && EXTRUDER_2_AUTO_FAN_PIN > -1)
  226. if(millis() - extruder_autofan_last_check > 2500) {
  227. checkExtruderAutoFans();
  228. extruder_autofan_last_check = millis();
  229. }
  230. #endif
  231. if(heating == true && input > temp) {
  232. if(millis() - t2 > 5000) {
  233. heating=false;
  234. if (extruder<0)
  235. soft_pwm_bed = (bias - d) >> 1;
  236. else
  237. soft_pwm[extruder] = (bias - d) >> 1;
  238. t1=millis();
  239. t_high=t1 - t2;
  240. max=temp;
  241. }
  242. }
  243. if(heating == false && input < temp) {
  244. if(millis() - t1 > 5000) {
  245. heating=true;
  246. t2=millis();
  247. t_low=t2 - t1;
  248. if(pid_cycle > 0) {
  249. bias += (d*(t_high - t_low))/(t_low + t_high);
  250. bias = constrain(bias, 20 ,(extruder<0?(MAX_BED_POWER):(PID_MAX))-20);
  251. if(bias > (extruder<0?(MAX_BED_POWER):(PID_MAX))/2) d = (extruder<0?(MAX_BED_POWER):(PID_MAX)) - 1 - bias;
  252. else d = bias;
  253. SERIAL_PROTOCOLPGM(" bias: "); SERIAL_PROTOCOL(bias);
  254. SERIAL_PROTOCOLPGM(" d: "); SERIAL_PROTOCOL(d);
  255. SERIAL_PROTOCOLPGM(" min: "); SERIAL_PROTOCOL(min);
  256. SERIAL_PROTOCOLPGM(" max: "); SERIAL_PROTOCOLLN(max);
  257. if(pid_cycle > 2) {
  258. Ku = (4.0*d)/(3.14159*(max-min)/2.0);
  259. Tu = ((float)(t_low + t_high)/1000.0);
  260. SERIAL_PROTOCOLPGM(" Ku: "); SERIAL_PROTOCOL(Ku);
  261. SERIAL_PROTOCOLPGM(" Tu: "); SERIAL_PROTOCOLLN(Tu);
  262. _Kp = 0.6*Ku;
  263. _Ki = 2*_Kp/Tu;
  264. _Kd = _Kp*Tu/8;
  265. SERIAL_PROTOCOLLNPGM(" Classic PID ");
  266. SERIAL_PROTOCOLPGM(" Kp: "); SERIAL_PROTOCOLLN(_Kp);
  267. SERIAL_PROTOCOLPGM(" Ki: "); SERIAL_PROTOCOLLN(_Ki);
  268. SERIAL_PROTOCOLPGM(" Kd: "); SERIAL_PROTOCOLLN(_Kd);
  269. /*
  270. _Kp = 0.33*Ku;
  271. _Ki = _Kp/Tu;
  272. _Kd = _Kp*Tu/3;
  273. SERIAL_PROTOCOLLNPGM(" Some overshoot ");
  274. SERIAL_PROTOCOLPGM(" Kp: "); SERIAL_PROTOCOLLN(_Kp);
  275. SERIAL_PROTOCOLPGM(" Ki: "); SERIAL_PROTOCOLLN(_Ki);
  276. SERIAL_PROTOCOLPGM(" Kd: "); SERIAL_PROTOCOLLN(_Kd);
  277. _Kp = 0.2*Ku;
  278. _Ki = 2*_Kp/Tu;
  279. _Kd = _Kp*Tu/3;
  280. SERIAL_PROTOCOLLNPGM(" No overshoot ");
  281. SERIAL_PROTOCOLPGM(" Kp: "); SERIAL_PROTOCOLLN(_Kp);
  282. SERIAL_PROTOCOLPGM(" Ki: "); SERIAL_PROTOCOLLN(_Ki);
  283. SERIAL_PROTOCOLPGM(" Kd: "); SERIAL_PROTOCOLLN(_Kd);
  284. */
  285. }
  286. }
  287. if (extruder<0)
  288. soft_pwm_bed = (bias + d) >> 1;
  289. else
  290. soft_pwm[extruder] = (bias + d) >> 1;
  291. pid_cycle++;
  292. min=temp;
  293. }
  294. }
  295. }
  296. if(input > (temp + 20)) {
  297. SERIAL_PROTOCOLLNPGM("PID Autotune failed! Temperature too high");
  298. pid_tuning_finished = true;
  299. pid_cycle = 0;
  300. return;
  301. }
  302. if(millis() - temp_millis > 2000) {
  303. int p;
  304. if (extruder<0){
  305. p=soft_pwm_bed;
  306. SERIAL_PROTOCOLPGM("B:");
  307. }else{
  308. p=soft_pwm[extruder];
  309. SERIAL_PROTOCOLPGM("T:");
  310. }
  311. SERIAL_PROTOCOL(input);
  312. SERIAL_PROTOCOLPGM(" @:");
  313. SERIAL_PROTOCOLLN(p);
  314. if (safety_check_cycles == 0) { //save ambient temp
  315. temp_ambient = input;
  316. //SERIAL_ECHOPGM("Ambient T: ");
  317. //MYSERIAL.println(temp_ambient);
  318. safety_check_cycles++;
  319. }
  320. else if (safety_check_cycles < safety_check_cycles_count) { //delay
  321. safety_check_cycles++;
  322. }
  323. else if (safety_check_cycles == safety_check_cycles_count){ //check that temperature is rising
  324. safety_check_cycles++;
  325. //SERIAL_ECHOPGM("Time from beginning: ");
  326. //MYSERIAL.print(safety_check_cycles_count * 2);
  327. //SERIAL_ECHOPGM("s. Difference between current and ambient T: ");
  328. //MYSERIAL.println(input - temp_ambient);
  329. if (abs(input - temp_ambient) < 5.0) {
  330. temp_runaway_stop(false, (extruder<0));
  331. pid_tuning_finished = true;
  332. return;
  333. }
  334. }
  335. temp_millis = millis();
  336. }
  337. if(((millis() - t1) + (millis() - t2)) > (10L*60L*1000L*2L)) {
  338. SERIAL_PROTOCOLLNPGM("PID Autotune failed! timeout");
  339. pid_tuning_finished = true;
  340. pid_cycle = 0;
  341. return;
  342. }
  343. if(pid_cycle > ncycles) {
  344. SERIAL_PROTOCOLLNPGM("PID Autotune finished! Put the last Kp, Ki and Kd constants from above into Configuration.h");
  345. pid_tuning_finished = true;
  346. pid_cycle = 0;
  347. return;
  348. }
  349. lcd_update();
  350. }
  351. }
  352. void updatePID()
  353. {
  354. #ifdef PIDTEMP
  355. for(int e = 0; e < EXTRUDERS; e++) {
  356. temp_iState_max[e] = PID_INTEGRAL_DRIVE_MAX / Ki;
  357. }
  358. #endif
  359. #ifdef PIDTEMPBED
  360. temp_iState_max_bed = PID_INTEGRAL_DRIVE_MAX / bedKi;
  361. #endif
  362. }
  363. int getHeaterPower(int heater) {
  364. if (heater<0)
  365. return soft_pwm_bed;
  366. return soft_pwm[heater];
  367. }
  368. #if (defined(EXTRUDER_0_AUTO_FAN_PIN) && EXTRUDER_0_AUTO_FAN_PIN > -1) || \
  369. (defined(EXTRUDER_1_AUTO_FAN_PIN) && EXTRUDER_1_AUTO_FAN_PIN > -1) || \
  370. (defined(EXTRUDER_2_AUTO_FAN_PIN) && EXTRUDER_2_AUTO_FAN_PIN > -1)
  371. #if defined(FAN_PIN) && FAN_PIN > -1
  372. #if EXTRUDER_0_AUTO_FAN_PIN == FAN_PIN
  373. #error "You cannot set EXTRUDER_0_AUTO_FAN_PIN equal to FAN_PIN"
  374. #endif
  375. #if EXTRUDER_1_AUTO_FAN_PIN == FAN_PIN
  376. #error "You cannot set EXTRUDER_1_AUTO_FAN_PIN equal to FAN_PIN"
  377. #endif
  378. #if EXTRUDER_2_AUTO_FAN_PIN == FAN_PIN
  379. #error "You cannot set EXTRUDER_2_AUTO_FAN_PIN equal to FAN_PIN"
  380. #endif
  381. #endif
  382. void setExtruderAutoFanState(int pin, bool state)
  383. {
  384. unsigned char newFanSpeed = (state != 0) ? EXTRUDER_AUTO_FAN_SPEED : 0;
  385. // this idiom allows both digital and PWM fan outputs (see M42 handling).
  386. pinMode(pin, OUTPUT);
  387. digitalWrite(pin, newFanSpeed);
  388. analogWrite(pin, newFanSpeed);
  389. }
  390. #if (defined(FANCHECK) && (((defined(TACH_0) && (TACH_0 >-1)) || (defined(TACH_1) && (TACH_1 > -1)))))
  391. void countFanSpeed()
  392. {
  393. //SERIAL_ECHOPGM("edge counter 1:"); MYSERIAL.println(fan_edge_counter[1]);
  394. fan_speed[0] = (fan_edge_counter[0] * (float(250) / (millis() - extruder_autofan_last_check)));
  395. fan_speed[1] = (fan_edge_counter[1] * (float(250) / (millis() - extruder_autofan_last_check)));
  396. /*SERIAL_ECHOPGM("time interval: "); MYSERIAL.println(millis() - extruder_autofan_last_check);
  397. SERIAL_ECHOPGM("extruder fan speed:"); MYSERIAL.print(fan_speed[0]); SERIAL_ECHOPGM("; edge counter:"); MYSERIAL.println(fan_edge_counter[0]);
  398. SERIAL_ECHOPGM("print fan speed:"); MYSERIAL.print(fan_speed[1]); SERIAL_ECHOPGM("; edge counter:"); MYSERIAL.println(fan_edge_counter[1]);
  399. SERIAL_ECHOLNPGM(" ");*/
  400. fan_edge_counter[0] = 0;
  401. fan_edge_counter[1] = 0;
  402. }
  403. extern bool fans_check_enabled;
  404. void checkFanSpeed()
  405. {
  406. fans_check_enabled = (eeprom_read_byte((uint8_t*)EEPROM_FAN_CHECK_ENABLED) > 0);
  407. static unsigned char fan_speed_errors[2] = { 0,0 };
  408. #if (defined(FANCHECK) && defined(TACH_0) && (TACH_0 >-1))
  409. if (fan_speed[0] == 0 && (current_temperature[0] > EXTRUDER_AUTO_FAN_TEMPERATURE)) fan_speed_errors[0]++;
  410. else fan_speed_errors[0] = 0;
  411. #endif
  412. #if (defined(FANCHECK) && defined(TACH_1) && (TACH_1 >-1))
  413. if ((fan_speed[1] == 0)&& (fanSpeed > MIN_PRINT_FAN_SPEED)) fan_speed_errors[1]++;
  414. else fan_speed_errors[1] = 0;
  415. #endif
  416. if ((fan_speed_errors[0] > 5) && fans_check_enabled) {
  417. fan_speed_errors[0] = 0;
  418. fanSpeedError(0); //extruder fan
  419. }
  420. if ((fan_speed_errors[1] > 15) && fans_check_enabled) {
  421. fan_speed_errors[1] = 0;
  422. fanSpeedError(1); //print fan
  423. }
  424. }
  425. extern void stop_and_save_print_to_ram(float z_move, float e_move);
  426. extern void restore_print_from_ram_and_continue(float e_move);
  427. void fanSpeedError(unsigned char _fan) {
  428. if (get_message_level() != 0 && isPrintPaused) return;
  429. //to ensure that target temp. is not set to zero in case taht we are resuming print
  430. if (card.sdprinting) {
  431. if (heating_status != 0) {
  432. lcd_print_stop();
  433. }
  434. else {
  435. isPrintPaused = true;
  436. lcd_sdcard_pause();
  437. }
  438. }
  439. else {
  440. setTargetHotend0(0);
  441. SERIAL_ECHOLNPGM("// action:pause"); //for octoprint
  442. }
  443. switch (_fan) {
  444. case 0:
  445. SERIAL_ECHOLNPGM("Extruder fan speed is lower then expected");
  446. if (get_message_level() == 0) {
  447. WRITE(BEEPER, HIGH);
  448. delayMicroseconds(200);
  449. WRITE(BEEPER, LOW);
  450. delayMicroseconds(100);
  451. LCD_ALERTMESSAGEPGM("Err: EXTR. FAN ERROR");
  452. }
  453. break;
  454. case 1:
  455. SERIAL_ECHOLNPGM("Print fan speed is lower then expected");
  456. if (get_message_level() == 0) {
  457. WRITE(BEEPER, HIGH);
  458. delayMicroseconds(200);
  459. WRITE(BEEPER, LOW);
  460. delayMicroseconds(100);
  461. LCD_ALERTMESSAGEPGM("Err: PRINT FAN ERROR");
  462. }
  463. break;
  464. }
  465. }
  466. #endif //(defined(TACH_0) && TACH_0 >-1) || (defined(TACH_1) && TACH_1 > -1)
  467. void checkExtruderAutoFans()
  468. {
  469. uint8_t fanState = 0;
  470. // which fan pins need to be turned on?
  471. #if defined(EXTRUDER_0_AUTO_FAN_PIN) && EXTRUDER_0_AUTO_FAN_PIN > -1
  472. if (current_temperature[0] > EXTRUDER_AUTO_FAN_TEMPERATURE)
  473. fanState |= 1;
  474. #endif
  475. #if defined(EXTRUDER_1_AUTO_FAN_PIN) && EXTRUDER_1_AUTO_FAN_PIN > -1
  476. if (current_temperature[1] > EXTRUDER_AUTO_FAN_TEMPERATURE)
  477. {
  478. if (EXTRUDER_1_AUTO_FAN_PIN == EXTRUDER_0_AUTO_FAN_PIN)
  479. fanState |= 1;
  480. else
  481. fanState |= 2;
  482. }
  483. #endif
  484. #if defined(EXTRUDER_2_AUTO_FAN_PIN) && EXTRUDER_2_AUTO_FAN_PIN > -1
  485. if (current_temperature[2] > EXTRUDER_AUTO_FAN_TEMPERATURE)
  486. {
  487. if (EXTRUDER_2_AUTO_FAN_PIN == EXTRUDER_0_AUTO_FAN_PIN)
  488. fanState |= 1;
  489. else if (EXTRUDER_2_AUTO_FAN_PIN == EXTRUDER_1_AUTO_FAN_PIN)
  490. fanState |= 2;
  491. else
  492. fanState |= 4;
  493. }
  494. #endif
  495. // update extruder auto fan states
  496. #if defined(EXTRUDER_0_AUTO_FAN_PIN) && EXTRUDER_0_AUTO_FAN_PIN > -1
  497. setExtruderAutoFanState(EXTRUDER_0_AUTO_FAN_PIN, (fanState & 1) != 0);
  498. #endif
  499. #if defined(EXTRUDER_1_AUTO_FAN_PIN) && EXTRUDER_1_AUTO_FAN_PIN > -1
  500. if (EXTRUDER_1_AUTO_FAN_PIN != EXTRUDER_0_AUTO_FAN_PIN)
  501. setExtruderAutoFanState(EXTRUDER_1_AUTO_FAN_PIN, (fanState & 2) != 0);
  502. #endif
  503. #if defined(EXTRUDER_2_AUTO_FAN_PIN) && EXTRUDER_2_AUTO_FAN_PIN > -1
  504. if (EXTRUDER_2_AUTO_FAN_PIN != EXTRUDER_0_AUTO_FAN_PIN
  505. && EXTRUDER_2_AUTO_FAN_PIN != EXTRUDER_1_AUTO_FAN_PIN)
  506. setExtruderAutoFanState(EXTRUDER_2_AUTO_FAN_PIN, (fanState & 4) != 0);
  507. #endif
  508. }
  509. #endif // any extruder auto fan pins set
  510. void manage_heater()
  511. {
  512. #ifdef WATCHDOG
  513. wdt_reset();
  514. #endif //WATCHDOG
  515. float pid_input;
  516. float pid_output;
  517. if(temp_meas_ready != true) //better readability
  518. return;
  519. updateTemperaturesFromRawValues();
  520. #ifdef TEMP_RUNAWAY_BED_HYSTERESIS
  521. temp_runaway_check(0, target_temperature_bed, current_temperature_bed, (int)soft_pwm_bed, true);
  522. #endif
  523. for(int e = 0; e < EXTRUDERS; e++)
  524. {
  525. #ifdef TEMP_RUNAWAY_EXTRUDER_HYSTERESIS
  526. temp_runaway_check(e+1, target_temperature[e], current_temperature[e], (int)soft_pwm[e], false);
  527. #endif
  528. #ifdef PIDTEMP
  529. pid_input = current_temperature[e];
  530. #ifndef PID_OPENLOOP
  531. pid_error[e] = target_temperature[e] - pid_input;
  532. if(pid_error[e] > PID_FUNCTIONAL_RANGE) {
  533. pid_output = BANG_MAX;
  534. pid_reset[e] = true;
  535. }
  536. else if(pid_error[e] < -PID_FUNCTIONAL_RANGE || target_temperature[e] == 0) {
  537. pid_output = 0;
  538. pid_reset[e] = true;
  539. }
  540. else {
  541. if(pid_reset[e] == true) {
  542. temp_iState[e] = 0.0;
  543. pid_reset[e] = false;
  544. }
  545. pTerm[e] = Kp * pid_error[e];
  546. temp_iState[e] += pid_error[e];
  547. temp_iState[e] = constrain(temp_iState[e], temp_iState_min[e], temp_iState_max[e]);
  548. iTerm[e] = Ki * temp_iState[e];
  549. //K1 defined in Configuration.h in the PID settings
  550. #define K2 (1.0-K1)
  551. dTerm[e] = (Kd * (pid_input - temp_dState[e]))*K2 + (K1 * dTerm[e]);
  552. pid_output = pTerm[e] + iTerm[e] - dTerm[e];
  553. if (pid_output > PID_MAX) {
  554. if (pid_error[e] > 0 ) temp_iState[e] -= pid_error[e]; // conditional un-integration
  555. pid_output=PID_MAX;
  556. } else if (pid_output < 0){
  557. if (pid_error[e] < 0 ) temp_iState[e] -= pid_error[e]; // conditional un-integration
  558. pid_output=0;
  559. }
  560. }
  561. temp_dState[e] = pid_input;
  562. #else
  563. pid_output = constrain(target_temperature[e], 0, PID_MAX);
  564. #endif //PID_OPENLOOP
  565. #ifdef PID_DEBUG
  566. SERIAL_ECHO_START;
  567. SERIAL_ECHO(" PID_DEBUG ");
  568. SERIAL_ECHO(e);
  569. SERIAL_ECHO(": Input ");
  570. SERIAL_ECHO(pid_input);
  571. SERIAL_ECHO(" Output ");
  572. SERIAL_ECHO(pid_output);
  573. SERIAL_ECHO(" pTerm ");
  574. SERIAL_ECHO(pTerm[e]);
  575. SERIAL_ECHO(" iTerm ");
  576. SERIAL_ECHO(iTerm[e]);
  577. SERIAL_ECHO(" dTerm ");
  578. SERIAL_ECHOLN(dTerm[e]);
  579. #endif //PID_DEBUG
  580. #else /* PID off */
  581. pid_output = 0;
  582. if(current_temperature[e] < target_temperature[e]) {
  583. pid_output = PID_MAX;
  584. }
  585. #endif
  586. // Check if temperature is within the correct range
  587. #ifdef AMBIENT_THERMISTOR
  588. if(((current_temperature_ambient < MINTEMP_MINAMBIENT) || (current_temperature[e] > minttemp[e])) && (current_temperature[e] < maxttemp[e]))
  589. #else //AMBIENT_THERMISTOR
  590. if((current_temperature[e] > minttemp[e]) && (current_temperature[e] < maxttemp[e]))
  591. #endif //AMBIENT_THERMISTOR
  592. {
  593. soft_pwm[e] = (int)pid_output >> 1;
  594. }
  595. else
  596. {
  597. soft_pwm[e] = 0;
  598. }
  599. #ifdef WATCH_TEMP_PERIOD
  600. if(watchmillis[e] && millis() - watchmillis[e] > WATCH_TEMP_PERIOD)
  601. {
  602. if(degHotend(e) < watch_start_temp[e] + WATCH_TEMP_INCREASE)
  603. {
  604. setTargetHotend(0, e);
  605. LCD_MESSAGEPGM("Heating failed");
  606. SERIAL_ECHO_START;
  607. SERIAL_ECHOLN("Heating failed");
  608. }else{
  609. watchmillis[e] = 0;
  610. }
  611. }
  612. #endif
  613. #ifdef TEMP_SENSOR_1_AS_REDUNDANT
  614. if(fabs(current_temperature[0] - redundant_temperature) > MAX_REDUNDANT_TEMP_SENSOR_DIFF) {
  615. disable_heater();
  616. if(IsStopped() == false) {
  617. SERIAL_ERROR_START;
  618. SERIAL_ERRORLNPGM("Extruder switched off. Temperature difference between temp sensors is too high !");
  619. LCD_ALERTMESSAGEPGM("Err: REDUNDANT TEMP ERROR");
  620. }
  621. #ifndef BOGUS_TEMPERATURE_FAILSAFE_OVERRIDE
  622. Stop();
  623. #endif
  624. }
  625. #endif
  626. } // End extruder for loop
  627. #ifndef DEBUG_DISABLE_FANCHECK
  628. #if (defined(EXTRUDER_0_AUTO_FAN_PIN) && EXTRUDER_0_AUTO_FAN_PIN > -1) || \
  629. (defined(EXTRUDER_1_AUTO_FAN_PIN) && EXTRUDER_1_AUTO_FAN_PIN > -1) || \
  630. (defined(EXTRUDER_2_AUTO_FAN_PIN) && EXTRUDER_2_AUTO_FAN_PIN > -1)
  631. if(millis() - extruder_autofan_last_check > 1000) // only need to check fan state very infrequently
  632. {
  633. #if (defined(FANCHECK) && ((defined(TACH_0) && (TACH_0 >-1)) || (defined(TACH_1) && (TACH_1 > -1))))
  634. countFanSpeed();
  635. checkFanSpeed();
  636. #endif //(defined(TACH_0) && TACH_0 >-1) || (defined(TACH_1) && TACH_1 > -1)
  637. checkExtruderAutoFans();
  638. extruder_autofan_last_check = millis();
  639. }
  640. #endif
  641. #endif //DEBUG_DISABLE_FANCHECK
  642. #ifndef PIDTEMPBED
  643. if(millis() - previous_millis_bed_heater < BED_CHECK_INTERVAL)
  644. return;
  645. previous_millis_bed_heater = millis();
  646. #endif
  647. #if TEMP_SENSOR_BED != 0
  648. #ifdef PIDTEMPBED
  649. pid_input = current_temperature_bed;
  650. #ifndef PID_OPENLOOP
  651. pid_error_bed = target_temperature_bed - pid_input;
  652. pTerm_bed = bedKp * pid_error_bed;
  653. temp_iState_bed += pid_error_bed;
  654. temp_iState_bed = constrain(temp_iState_bed, temp_iState_min_bed, temp_iState_max_bed);
  655. iTerm_bed = bedKi * temp_iState_bed;
  656. //K1 defined in Configuration.h in the PID settings
  657. #define K2 (1.0-K1)
  658. dTerm_bed= (bedKd * (pid_input - temp_dState_bed))*K2 + (K1 * dTerm_bed);
  659. temp_dState_bed = pid_input;
  660. pid_output = pTerm_bed + iTerm_bed - dTerm_bed;
  661. if (pid_output > MAX_BED_POWER) {
  662. if (pid_error_bed > 0 ) temp_iState_bed -= pid_error_bed; // conditional un-integration
  663. pid_output=MAX_BED_POWER;
  664. } else if (pid_output < 0){
  665. if (pid_error_bed < 0 ) temp_iState_bed -= pid_error_bed; // conditional un-integration
  666. pid_output=0;
  667. }
  668. #else
  669. pid_output = constrain(target_temperature_bed, 0, MAX_BED_POWER);
  670. #endif //PID_OPENLOOP
  671. #ifdef AMBIENT_THERMISTOR
  672. if(((current_temperature_bed > BED_MINTEMP) || (current_temperature_ambient < MINTEMP_MINAMBIENT)) && (current_temperature_bed < BED_MAXTEMP))
  673. #else //AMBIENT_THERMISTOR
  674. if((current_temperature_bed > BED_MINTEMP) && (current_temperature_bed < BED_MAXTEMP))
  675. #endif //AMBIENT_THERMISTOR
  676. {
  677. soft_pwm_bed = (int)pid_output >> 1;
  678. }
  679. else {
  680. soft_pwm_bed = 0;
  681. }
  682. #elif !defined(BED_LIMIT_SWITCHING)
  683. // Check if temperature is within the correct range
  684. if((current_temperature_bed > BED_MINTEMP) && (current_temperature_bed < BED_MAXTEMP))
  685. {
  686. if(current_temperature_bed >= target_temperature_bed)
  687. {
  688. soft_pwm_bed = 0;
  689. }
  690. else
  691. {
  692. soft_pwm_bed = MAX_BED_POWER>>1;
  693. }
  694. }
  695. else
  696. {
  697. soft_pwm_bed = 0;
  698. WRITE(HEATER_BED_PIN,LOW);
  699. }
  700. #else //#ifdef BED_LIMIT_SWITCHING
  701. // Check if temperature is within the correct band
  702. if((current_temperature_bed > BED_MINTEMP) && (current_temperature_bed < BED_MAXTEMP))
  703. {
  704. if(current_temperature_bed > target_temperature_bed + BED_HYSTERESIS)
  705. {
  706. soft_pwm_bed = 0;
  707. }
  708. else if(current_temperature_bed <= target_temperature_bed - BED_HYSTERESIS)
  709. {
  710. soft_pwm_bed = MAX_BED_POWER>>1;
  711. }
  712. }
  713. else
  714. {
  715. soft_pwm_bed = 0;
  716. WRITE(HEATER_BED_PIN,LOW);
  717. }
  718. #endif
  719. #endif
  720. #ifdef HOST_KEEPALIVE_FEATURE
  721. host_keepalive();
  722. #endif
  723. }
  724. #define PGM_RD_W(x) (short)pgm_read_word(&x)
  725. // Derived from RepRap FiveD extruder::getTemperature()
  726. // For hot end temperature measurement.
  727. static float analog2temp(int raw, uint8_t e) {
  728. #ifdef TEMP_SENSOR_1_AS_REDUNDANT
  729. if(e > EXTRUDERS)
  730. #else
  731. if(e >= EXTRUDERS)
  732. #endif
  733. {
  734. SERIAL_ERROR_START;
  735. SERIAL_ERROR((int)e);
  736. SERIAL_ERRORLNPGM(" - Invalid extruder number !");
  737. kill("", 6);
  738. return 0.0;
  739. }
  740. #ifdef HEATER_0_USES_MAX6675
  741. if (e == 0)
  742. {
  743. return 0.25 * raw;
  744. }
  745. #endif
  746. if(heater_ttbl_map[e] != NULL)
  747. {
  748. float celsius = 0;
  749. uint8_t i;
  750. short (*tt)[][2] = (short (*)[][2])(heater_ttbl_map[e]);
  751. for (i=1; i<heater_ttbllen_map[e]; i++)
  752. {
  753. if (PGM_RD_W((*tt)[i][0]) > raw)
  754. {
  755. celsius = PGM_RD_W((*tt)[i-1][1]) +
  756. (raw - PGM_RD_W((*tt)[i-1][0])) *
  757. (float)(PGM_RD_W((*tt)[i][1]) - PGM_RD_W((*tt)[i-1][1])) /
  758. (float)(PGM_RD_W((*tt)[i][0]) - PGM_RD_W((*tt)[i-1][0]));
  759. break;
  760. }
  761. }
  762. // Overflow: Set to last value in the table
  763. if (i == heater_ttbllen_map[e]) celsius = PGM_RD_W((*tt)[i-1][1]);
  764. return celsius;
  765. }
  766. return ((raw * ((5.0 * 100.0) / 1024.0) / OVERSAMPLENR) * TEMP_SENSOR_AD595_GAIN) + TEMP_SENSOR_AD595_OFFSET;
  767. }
  768. // Derived from RepRap FiveD extruder::getTemperature()
  769. // For bed temperature measurement.
  770. static float analog2tempBed(int raw) {
  771. #ifdef BED_USES_THERMISTOR
  772. float celsius = 0;
  773. byte i;
  774. for (i=1; i<BEDTEMPTABLE_LEN; i++)
  775. {
  776. if (PGM_RD_W(BEDTEMPTABLE[i][0]) > raw)
  777. {
  778. celsius = PGM_RD_W(BEDTEMPTABLE[i-1][1]) +
  779. (raw - PGM_RD_W(BEDTEMPTABLE[i-1][0])) *
  780. (float)(PGM_RD_W(BEDTEMPTABLE[i][1]) - PGM_RD_W(BEDTEMPTABLE[i-1][1])) /
  781. (float)(PGM_RD_W(BEDTEMPTABLE[i][0]) - PGM_RD_W(BEDTEMPTABLE[i-1][0]));
  782. break;
  783. }
  784. }
  785. // Overflow: Set to last value in the table
  786. if (i == BEDTEMPTABLE_LEN) celsius = PGM_RD_W(BEDTEMPTABLE[i-1][1]);
  787. // temperature offset adjustment
  788. #ifdef BED_OFFSET
  789. float _offset = BED_OFFSET;
  790. float _offset_center = BED_OFFSET_CENTER;
  791. float _offset_start = BED_OFFSET_START;
  792. float _first_koef = (_offset / 2) / (_offset_center - _offset_start);
  793. float _second_koef = (_offset / 2) / (100 - _offset_center);
  794. if (celsius >= _offset_start && celsius <= _offset_center)
  795. {
  796. celsius = celsius + (_first_koef * (celsius - _offset_start));
  797. }
  798. else if (celsius > _offset_center && celsius <= 100)
  799. {
  800. celsius = celsius + (_first_koef * (_offset_center - _offset_start)) + ( _second_koef * ( celsius - ( 100 - _offset_center ) )) ;
  801. }
  802. else if (celsius > 100)
  803. {
  804. celsius = celsius + _offset;
  805. }
  806. #endif
  807. return celsius;
  808. #elif defined BED_USES_AD595
  809. return ((raw * ((5.0 * 100.0) / 1024.0) / OVERSAMPLENR) * TEMP_SENSOR_AD595_GAIN) + TEMP_SENSOR_AD595_OFFSET;
  810. #else
  811. return 0;
  812. #endif
  813. }
  814. #ifdef AMBIENT_THERMISTOR
  815. static float analog2tempAmbient(int raw)
  816. {
  817. float celsius = 0;
  818. byte i;
  819. for (i=1; i<AMBIENTTEMPTABLE_LEN; i++)
  820. {
  821. if (PGM_RD_W(AMBIENTTEMPTABLE[i][0]) > raw)
  822. {
  823. celsius = PGM_RD_W(AMBIENTTEMPTABLE[i-1][1]) +
  824. (raw - PGM_RD_W(AMBIENTTEMPTABLE[i-1][0])) *
  825. (float)(PGM_RD_W(AMBIENTTEMPTABLE[i][1]) - PGM_RD_W(AMBIENTTEMPTABLE[i-1][1])) /
  826. (float)(PGM_RD_W(AMBIENTTEMPTABLE[i][0]) - PGM_RD_W(AMBIENTTEMPTABLE[i-1][0]));
  827. break;
  828. }
  829. }
  830. // Overflow: Set to last value in the table
  831. if (i == AMBIENTTEMPTABLE_LEN) celsius = PGM_RD_W(AMBIENTTEMPTABLE[i-1][1]);
  832. return celsius;
  833. }
  834. #endif //AMBIENT_THERMISTOR
  835. /* Called to get the raw values into the the actual temperatures. The raw values are created in interrupt context,
  836. and this function is called from normal context as it is too slow to run in interrupts and will block the stepper routine otherwise */
  837. static void updateTemperaturesFromRawValues()
  838. {
  839. for(uint8_t e=0;e<EXTRUDERS;e++)
  840. {
  841. current_temperature[e] = analog2temp(current_temperature_raw[e], e);
  842. }
  843. #ifdef PINDA_THERMISTOR
  844. current_temperature_pinda = analog2tempBed(current_temperature_raw_pinda); //thermistor for pinda is the same as for bed
  845. #endif
  846. #ifdef AMBIENT_THERMISTOR
  847. current_temperature_ambient = analog2tempAmbient(current_temperature_raw_ambient); //thermistor for ambient is NTCG104LH104JT1 (2000)
  848. #endif
  849. current_temperature_bed = analog2tempBed(current_temperature_bed_raw);
  850. #ifdef TEMP_SENSOR_1_AS_REDUNDANT
  851. redundant_temperature = analog2temp(redundant_temperature_raw, 1);
  852. #endif
  853. //Reset the watchdog after we know we have a temperature measurement.
  854. #ifdef WATCHDOG
  855. wdt_reset();
  856. #endif //WATCHDOG
  857. CRITICAL_SECTION_START;
  858. temp_meas_ready = false;
  859. CRITICAL_SECTION_END;
  860. }
  861. void tp_init()
  862. {
  863. #if MB(RUMBA) && ((TEMP_SENSOR_0==-1)||(TEMP_SENSOR_1==-1)||(TEMP_SENSOR_2==-1)||(TEMP_SENSOR_BED==-1))
  864. //disable RUMBA JTAG in case the thermocouple extension is plugged on top of JTAG connector
  865. MCUCR=(1<<JTD);
  866. MCUCR=(1<<JTD);
  867. #endif
  868. // Finish init of mult extruder arrays
  869. for(int e = 0; e < EXTRUDERS; e++) {
  870. // populate with the first value
  871. maxttemp[e] = maxttemp[0];
  872. #ifdef PIDTEMP
  873. temp_iState_min[e] = 0.0;
  874. temp_iState_max[e] = PID_INTEGRAL_DRIVE_MAX / Ki;
  875. #endif //PIDTEMP
  876. #ifdef PIDTEMPBED
  877. temp_iState_min_bed = 0.0;
  878. temp_iState_max_bed = PID_INTEGRAL_DRIVE_MAX / bedKi;
  879. #endif //PIDTEMPBED
  880. }
  881. #if defined(HEATER_0_PIN) && (HEATER_0_PIN > -1)
  882. SET_OUTPUT(HEATER_0_PIN);
  883. #endif
  884. #if defined(HEATER_1_PIN) && (HEATER_1_PIN > -1)
  885. SET_OUTPUT(HEATER_1_PIN);
  886. #endif
  887. #if defined(HEATER_2_PIN) && (HEATER_2_PIN > -1)
  888. SET_OUTPUT(HEATER_2_PIN);
  889. #endif
  890. #if defined(HEATER_BED_PIN) && (HEATER_BED_PIN > -1)
  891. SET_OUTPUT(HEATER_BED_PIN);
  892. #endif
  893. #if defined(FAN_PIN) && (FAN_PIN > -1)
  894. SET_OUTPUT(FAN_PIN);
  895. #ifdef FAST_PWM_FAN
  896. setPwmFrequency(FAN_PIN, 1); // No prescaling. Pwm frequency = F_CPU/256/8
  897. #endif
  898. #ifdef FAN_SOFT_PWM
  899. soft_pwm_fan = fanSpeedSoftPwm / 2;
  900. #endif
  901. #endif
  902. #ifdef HEATER_0_USES_MAX6675
  903. #ifndef SDSUPPORT
  904. SET_OUTPUT(SCK_PIN);
  905. WRITE(SCK_PIN,0);
  906. SET_OUTPUT(MOSI_PIN);
  907. WRITE(MOSI_PIN,1);
  908. SET_INPUT(MISO_PIN);
  909. WRITE(MISO_PIN,1);
  910. #endif
  911. /* Using pinMode and digitalWrite, as that was the only way I could get it to compile */
  912. //Have to toggle SD card CS pin to low first, to enable firmware to talk with SD card
  913. pinMode(SS_PIN, OUTPUT);
  914. digitalWrite(SS_PIN,0);
  915. pinMode(MAX6675_SS, OUTPUT);
  916. digitalWrite(MAX6675_SS,1);
  917. #endif
  918. adc_init();
  919. // Use timer0 for temperature measurement
  920. // Interleave temperature interrupt with millies interrupt
  921. OCR0B = 128;
  922. TIMSK0 |= (1<<OCIE0B);
  923. // Wait for temperature measurement to settle
  924. delay(250);
  925. #ifdef HEATER_0_MINTEMP
  926. minttemp[0] = HEATER_0_MINTEMP;
  927. while(analog2temp(minttemp_raw[0], 0) < HEATER_0_MINTEMP) {
  928. #if HEATER_0_RAW_LO_TEMP < HEATER_0_RAW_HI_TEMP
  929. minttemp_raw[0] += OVERSAMPLENR;
  930. #else
  931. minttemp_raw[0] -= OVERSAMPLENR;
  932. #endif
  933. }
  934. #endif //MINTEMP
  935. #ifdef HEATER_0_MAXTEMP
  936. maxttemp[0] = HEATER_0_MAXTEMP;
  937. while(analog2temp(maxttemp_raw[0], 0) > HEATER_0_MAXTEMP) {
  938. #if HEATER_0_RAW_LO_TEMP < HEATER_0_RAW_HI_TEMP
  939. maxttemp_raw[0] -= OVERSAMPLENR;
  940. #else
  941. maxttemp_raw[0] += OVERSAMPLENR;
  942. #endif
  943. }
  944. #endif //MAXTEMP
  945. #if (EXTRUDERS > 1) && defined(HEATER_1_MINTEMP)
  946. minttemp[1] = HEATER_1_MINTEMP;
  947. while(analog2temp(minttemp_raw[1], 1) < HEATER_1_MINTEMP) {
  948. #if HEATER_1_RAW_LO_TEMP < HEATER_1_RAW_HI_TEMP
  949. minttemp_raw[1] += OVERSAMPLENR;
  950. #else
  951. minttemp_raw[1] -= OVERSAMPLENR;
  952. #endif
  953. }
  954. #endif // MINTEMP 1
  955. #if (EXTRUDERS > 1) && defined(HEATER_1_MAXTEMP)
  956. maxttemp[1] = HEATER_1_MAXTEMP;
  957. while(analog2temp(maxttemp_raw[1], 1) > HEATER_1_MAXTEMP) {
  958. #if HEATER_1_RAW_LO_TEMP < HEATER_1_RAW_HI_TEMP
  959. maxttemp_raw[1] -= OVERSAMPLENR;
  960. #else
  961. maxttemp_raw[1] += OVERSAMPLENR;
  962. #endif
  963. }
  964. #endif //MAXTEMP 1
  965. #if (EXTRUDERS > 2) && defined(HEATER_2_MINTEMP)
  966. minttemp[2] = HEATER_2_MINTEMP;
  967. while(analog2temp(minttemp_raw[2], 2) < HEATER_2_MINTEMP) {
  968. #if HEATER_2_RAW_LO_TEMP < HEATER_2_RAW_HI_TEMP
  969. minttemp_raw[2] += OVERSAMPLENR;
  970. #else
  971. minttemp_raw[2] -= OVERSAMPLENR;
  972. #endif
  973. }
  974. #endif //MINTEMP 2
  975. #if (EXTRUDERS > 2) && defined(HEATER_2_MAXTEMP)
  976. maxttemp[2] = HEATER_2_MAXTEMP;
  977. while(analog2temp(maxttemp_raw[2], 2) > HEATER_2_MAXTEMP) {
  978. #if HEATER_2_RAW_LO_TEMP < HEATER_2_RAW_HI_TEMP
  979. maxttemp_raw[2] -= OVERSAMPLENR;
  980. #else
  981. maxttemp_raw[2] += OVERSAMPLENR;
  982. #endif
  983. }
  984. #endif //MAXTEMP 2
  985. #ifdef BED_MINTEMP
  986. /* No bed MINTEMP error implemented?!? */
  987. while(analog2tempBed(bed_minttemp_raw) < BED_MINTEMP) {
  988. #if HEATER_BED_RAW_LO_TEMP < HEATER_BED_RAW_HI_TEMP
  989. bed_minttemp_raw += OVERSAMPLENR;
  990. #else
  991. bed_minttemp_raw -= OVERSAMPLENR;
  992. #endif
  993. }
  994. #endif //BED_MINTEMP
  995. #ifdef BED_MAXTEMP
  996. while(analog2tempBed(bed_maxttemp_raw) > BED_MAXTEMP) {
  997. #if HEATER_BED_RAW_LO_TEMP < HEATER_BED_RAW_HI_TEMP
  998. bed_maxttemp_raw -= OVERSAMPLENR;
  999. #else
  1000. bed_maxttemp_raw += OVERSAMPLENR;
  1001. #endif
  1002. }
  1003. #endif //BED_MAXTEMP
  1004. }
  1005. void setWatch()
  1006. {
  1007. #ifdef WATCH_TEMP_PERIOD
  1008. for (int e = 0; e < EXTRUDERS; e++)
  1009. {
  1010. if(degHotend(e) < degTargetHotend(e) - (WATCH_TEMP_INCREASE * 2))
  1011. {
  1012. watch_start_temp[e] = degHotend(e);
  1013. watchmillis[e] = millis();
  1014. }
  1015. }
  1016. #endif
  1017. }
  1018. #if (defined (TEMP_RUNAWAY_BED_HYSTERESIS) && TEMP_RUNAWAY_BED_TIMEOUT > 0) || (defined (TEMP_RUNAWAY_EXTRUDER_HYSTERESIS) && TEMP_RUNAWAY_EXTRUDER_TIMEOUT > 0)
  1019. void temp_runaway_check(int _heater_id, float _target_temperature, float _current_temperature, float _output, bool _isbed)
  1020. {
  1021. float __hysteresis = 0;
  1022. int __timeout = 0;
  1023. bool temp_runaway_check_active = false;
  1024. static float __preheat_start[2] = { 0,0}; //currently just bed and one extruder
  1025. static int __preheat_counter[2] = { 0,0};
  1026. static int __preheat_errors[2] = { 0,0};
  1027. #ifdef TEMP_RUNAWAY_BED_TIMEOUT
  1028. if (_isbed)
  1029. {
  1030. __hysteresis = TEMP_RUNAWAY_BED_HYSTERESIS;
  1031. __timeout = TEMP_RUNAWAY_BED_TIMEOUT;
  1032. }
  1033. #endif
  1034. #ifdef TEMP_RUNAWAY_EXTRUDER_TIMEOUT
  1035. if (!_isbed)
  1036. {
  1037. __hysteresis = TEMP_RUNAWAY_EXTRUDER_HYSTERESIS;
  1038. __timeout = TEMP_RUNAWAY_EXTRUDER_TIMEOUT;
  1039. }
  1040. #endif
  1041. if (millis() - temp_runaway_timer[_heater_id] > 2000)
  1042. {
  1043. temp_runaway_timer[_heater_id] = millis();
  1044. if (_output == 0)
  1045. {
  1046. temp_runaway_check_active = false;
  1047. temp_runaway_error_counter[_heater_id] = 0;
  1048. }
  1049. if (temp_runaway_target[_heater_id] != _target_temperature)
  1050. {
  1051. if (_target_temperature > 0)
  1052. {
  1053. temp_runaway_status[_heater_id] = TempRunaway_PREHEAT;
  1054. temp_runaway_target[_heater_id] = _target_temperature;
  1055. __preheat_start[_heater_id] = _current_temperature;
  1056. __preheat_counter[_heater_id] = 0;
  1057. }
  1058. else
  1059. {
  1060. temp_runaway_status[_heater_id] = TempRunaway_INACTIVE;
  1061. temp_runaway_target[_heater_id] = _target_temperature;
  1062. }
  1063. }
  1064. if (temp_runaway_status[_heater_id] == TempRunaway_PREHEAT)
  1065. {
  1066. if (_current_temperature < ((_isbed) ? (0.8 * _target_temperature) : 150)) //check only in area where temperature is changing fastly for heater, check to 0.8 x target temperature for bed
  1067. {
  1068. __preheat_counter[_heater_id]++;
  1069. if (__preheat_counter[_heater_id] > ((_isbed) ? 16 : 8)) // periodicaly check if current temperature changes
  1070. {
  1071. /*SERIAL_ECHOPGM("Heater:");
  1072. MYSERIAL.print(_heater_id);
  1073. SERIAL_ECHOPGM(" T:");
  1074. MYSERIAL.print(_current_temperature);
  1075. SERIAL_ECHOPGM(" Tstart:");
  1076. MYSERIAL.print(__preheat_start[_heater_id]);*/
  1077. if (_current_temperature - __preheat_start[_heater_id] < 2) {
  1078. __preheat_errors[_heater_id]++;
  1079. /*SERIAL_ECHOPGM(" Preheat errors:");
  1080. MYSERIAL.println(__preheat_errors[_heater_id]);*/
  1081. }
  1082. else {
  1083. //SERIAL_ECHOLNPGM("");
  1084. __preheat_errors[_heater_id] = 0;
  1085. }
  1086. if (__preheat_errors[_heater_id] > ((_isbed) ? 2 : 5))
  1087. {
  1088. if (farm_mode) { prusa_statistics(0); }
  1089. temp_runaway_stop(true, _isbed);
  1090. if (farm_mode) { prusa_statistics(91); }
  1091. }
  1092. __preheat_start[_heater_id] = _current_temperature;
  1093. __preheat_counter[_heater_id] = 0;
  1094. }
  1095. }
  1096. }
  1097. if (_current_temperature >= _target_temperature && temp_runaway_status[_heater_id] == TempRunaway_PREHEAT)
  1098. {
  1099. temp_runaway_status[_heater_id] = TempRunaway_ACTIVE;
  1100. temp_runaway_check_active = false;
  1101. }
  1102. if (!temp_runaway_check_active && _output > 0)
  1103. {
  1104. temp_runaway_check_active = true;
  1105. }
  1106. if (temp_runaway_check_active)
  1107. {
  1108. // we are in range
  1109. if (_target_temperature - __hysteresis < _current_temperature && _current_temperature < _target_temperature + __hysteresis)
  1110. {
  1111. temp_runaway_check_active = false;
  1112. temp_runaway_error_counter[_heater_id] = 0;
  1113. }
  1114. else
  1115. {
  1116. if (temp_runaway_status[_heater_id] > TempRunaway_PREHEAT)
  1117. {
  1118. temp_runaway_error_counter[_heater_id]++;
  1119. if (temp_runaway_error_counter[_heater_id] * 2 > __timeout)
  1120. {
  1121. if (farm_mode) { prusa_statistics(0); }
  1122. temp_runaway_stop(false, _isbed);
  1123. if (farm_mode) { prusa_statistics(90); }
  1124. }
  1125. }
  1126. }
  1127. }
  1128. }
  1129. }
  1130. void temp_runaway_stop(bool isPreheat, bool isBed)
  1131. {
  1132. cancel_heatup = true;
  1133. quickStop();
  1134. if (card.sdprinting)
  1135. {
  1136. card.sdprinting = false;
  1137. card.closefile();
  1138. }
  1139. // Clean the input command queue
  1140. // This is necessary, because in command queue there can be commands which would later set heater or bed temperature.
  1141. cmdqueue_reset();
  1142. disable_heater();
  1143. disable_x();
  1144. disable_y();
  1145. disable_e0();
  1146. disable_e1();
  1147. disable_e2();
  1148. manage_heater();
  1149. lcd_update();
  1150. WRITE(BEEPER, HIGH);
  1151. delayMicroseconds(500);
  1152. WRITE(BEEPER, LOW);
  1153. delayMicroseconds(100);
  1154. if (isPreheat)
  1155. {
  1156. Stop();
  1157. isBed ? LCD_ALERTMESSAGEPGM("BED PREHEAT ERROR") : LCD_ALERTMESSAGEPGM("PREHEAT ERROR");
  1158. SERIAL_ERROR_START;
  1159. isBed ? SERIAL_ERRORLNPGM(" THERMAL RUNAWAY ( PREHEAT HEATBED)") : SERIAL_ERRORLNPGM(" THERMAL RUNAWAY ( PREHEAT HOTEND)");
  1160. SET_OUTPUT(EXTRUDER_0_AUTO_FAN_PIN);
  1161. SET_OUTPUT(FAN_PIN);
  1162. WRITE(EXTRUDER_0_AUTO_FAN_PIN, 1);
  1163. analogWrite(FAN_PIN, 255);
  1164. fanSpeed = 255;
  1165. delayMicroseconds(2000);
  1166. }
  1167. else
  1168. {
  1169. isBed ? LCD_ALERTMESSAGEPGM("BED THERMAL RUNAWAY") : LCD_ALERTMESSAGEPGM("THERMAL RUNAWAY");
  1170. SERIAL_ERROR_START;
  1171. isBed ? SERIAL_ERRORLNPGM(" HEATBED THERMAL RUNAWAY") : SERIAL_ERRORLNPGM(" HOTEND THERMAL RUNAWAY");
  1172. }
  1173. }
  1174. #endif
  1175. void disable_heater()
  1176. {
  1177. for(int i=0;i<EXTRUDERS;i++)
  1178. setTargetHotend(0,i);
  1179. setTargetBed(0);
  1180. #if defined(TEMP_0_PIN) && TEMP_0_PIN > -1
  1181. target_temperature[0]=0;
  1182. soft_pwm[0]=0;
  1183. #if defined(HEATER_0_PIN) && HEATER_0_PIN > -1
  1184. WRITE(HEATER_0_PIN,LOW);
  1185. #endif
  1186. #endif
  1187. #if defined(TEMP_1_PIN) && TEMP_1_PIN > -1 && EXTRUDERS > 1
  1188. target_temperature[1]=0;
  1189. soft_pwm[1]=0;
  1190. #if defined(HEATER_1_PIN) && HEATER_1_PIN > -1
  1191. WRITE(HEATER_1_PIN,LOW);
  1192. #endif
  1193. #endif
  1194. #if defined(TEMP_2_PIN) && TEMP_2_PIN > -1 && EXTRUDERS > 2
  1195. target_temperature[2]=0;
  1196. soft_pwm[2]=0;
  1197. #if defined(HEATER_2_PIN) && HEATER_2_PIN > -1
  1198. WRITE(HEATER_2_PIN,LOW);
  1199. #endif
  1200. #endif
  1201. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  1202. target_temperature_bed=0;
  1203. soft_pwm_bed=0;
  1204. #if defined(HEATER_BED_PIN) && HEATER_BED_PIN > -1
  1205. WRITE(HEATER_BED_PIN,LOW);
  1206. #endif
  1207. #endif
  1208. }
  1209. void max_temp_error(uint8_t e) {
  1210. disable_heater();
  1211. if(IsStopped() == false) {
  1212. SERIAL_ERROR_START;
  1213. SERIAL_ERRORLN((int)e);
  1214. SERIAL_ERRORLNPGM(": Extruder switched off. MAXTEMP triggered !");
  1215. LCD_ALERTMESSAGEPGM("Err: MAXTEMP");
  1216. }
  1217. #ifndef BOGUS_TEMPERATURE_FAILSAFE_OVERRIDE
  1218. Stop();
  1219. #endif
  1220. SET_OUTPUT(EXTRUDER_0_AUTO_FAN_PIN);
  1221. SET_OUTPUT(FAN_PIN);
  1222. SET_OUTPUT(BEEPER);
  1223. WRITE(FAN_PIN, 1);
  1224. WRITE(EXTRUDER_0_AUTO_FAN_PIN, 1);
  1225. WRITE(BEEPER, 1);
  1226. // fanSpeed will consumed by the check_axes_activity() routine.
  1227. fanSpeed=255;
  1228. if (farm_mode) { prusa_statistics(93); }
  1229. }
  1230. void min_temp_error(uint8_t e) {
  1231. #ifdef DEBUG_DISABLE_MINTEMP
  1232. return;
  1233. #endif
  1234. //if (current_temperature_ambient < MINTEMP_MINAMBIENT) return;
  1235. disable_heater();
  1236. if(IsStopped() == false) {
  1237. SERIAL_ERROR_START;
  1238. SERIAL_ERRORLN((int)e);
  1239. SERIAL_ERRORLNPGM(": Extruder switched off. MINTEMP triggered !");
  1240. LCD_ALERTMESSAGEPGM("Err: MINTEMP");
  1241. }
  1242. #ifndef BOGUS_TEMPERATURE_FAILSAFE_OVERRIDE
  1243. Stop();
  1244. #endif
  1245. if (farm_mode) { prusa_statistics(92); }
  1246. }
  1247. void bed_max_temp_error(void) {
  1248. #if HEATER_BED_PIN > -1
  1249. WRITE(HEATER_BED_PIN, 0);
  1250. #endif
  1251. if(IsStopped() == false) {
  1252. SERIAL_ERROR_START;
  1253. SERIAL_ERRORLNPGM("Temperature heated bed switched off. MAXTEMP triggered !");
  1254. LCD_ALERTMESSAGEPGM("Err: MAXTEMP BED");
  1255. }
  1256. #ifndef BOGUS_TEMPERATURE_FAILSAFE_OVERRIDE
  1257. Stop();
  1258. #endif
  1259. }
  1260. void bed_min_temp_error(void) {
  1261. #ifdef DEBUG_DISABLE_MINTEMP
  1262. return;
  1263. #endif
  1264. //if (current_temperature_ambient < MINTEMP_MINAMBIENT) return;
  1265. #if HEATER_BED_PIN > -1
  1266. WRITE(HEATER_BED_PIN, 0);
  1267. #endif
  1268. if(IsStopped() == false) {
  1269. SERIAL_ERROR_START;
  1270. SERIAL_ERRORLNPGM("Temperature heated bed switched off. MINTEMP triggered !");
  1271. LCD_ALERTMESSAGEPGM("Err: MINTEMP BED");
  1272. }
  1273. #ifndef BOGUS_TEMPERATURE_FAILSAFE_OVERRIDE
  1274. Stop();
  1275. #endif*/
  1276. }
  1277. #ifdef HEATER_0_USES_MAX6675
  1278. #define MAX6675_HEAT_INTERVAL 250
  1279. long max6675_previous_millis = MAX6675_HEAT_INTERVAL;
  1280. int max6675_temp = 2000;
  1281. int read_max6675()
  1282. {
  1283. if (millis() - max6675_previous_millis < MAX6675_HEAT_INTERVAL)
  1284. return max6675_temp;
  1285. max6675_previous_millis = millis();
  1286. max6675_temp = 0;
  1287. #ifdef PRR
  1288. PRR &= ~(1<<PRSPI);
  1289. #elif defined PRR0
  1290. PRR0 &= ~(1<<PRSPI);
  1291. #endif
  1292. SPCR = (1<<MSTR) | (1<<SPE) | (1<<SPR0);
  1293. // enable TT_MAX6675
  1294. WRITE(MAX6675_SS, 0);
  1295. // ensure 100ns delay - a bit extra is fine
  1296. asm("nop");//50ns on 20Mhz, 62.5ns on 16Mhz
  1297. asm("nop");//50ns on 20Mhz, 62.5ns on 16Mhz
  1298. // read MSB
  1299. SPDR = 0;
  1300. for (;(SPSR & (1<<SPIF)) == 0;);
  1301. max6675_temp = SPDR;
  1302. max6675_temp <<= 8;
  1303. // read LSB
  1304. SPDR = 0;
  1305. for (;(SPSR & (1<<SPIF)) == 0;);
  1306. max6675_temp |= SPDR;
  1307. // disable TT_MAX6675
  1308. WRITE(MAX6675_SS, 1);
  1309. if (max6675_temp & 4)
  1310. {
  1311. // thermocouple open
  1312. max6675_temp = 2000;
  1313. }
  1314. else
  1315. {
  1316. max6675_temp = max6675_temp >> 3;
  1317. }
  1318. return max6675_temp;
  1319. }
  1320. #endif
  1321. extern "C" {
  1322. void adc_ready(void) //callback from adc when sampling finished
  1323. {
  1324. current_temperature_raw[0] = adc_values[0];
  1325. current_temperature_raw_pinda = adc_values[1];
  1326. current_temperature_bed_raw = adc_values[2];
  1327. #ifdef VOLT_PWR_PIN
  1328. current_voltage_raw_pwr = adc_values[4];
  1329. #endif
  1330. #ifdef AMBIENT_THERMISTOR
  1331. current_temperature_raw_ambient = adc_values[5];
  1332. #endif //AMBIENT_THERMISTOR
  1333. #ifdef VOLT_BED_PIN
  1334. current_voltage_raw_bed = adc_values[6];
  1335. #endif
  1336. temp_meas_ready = true;
  1337. }
  1338. } // extern "C"
  1339. // Timer 0 is shared with millies
  1340. ISR(TIMER0_COMPB_vect)
  1341. {
  1342. static bool _lock = false;
  1343. if (_lock) return;
  1344. _lock = true;
  1345. asm("sei");
  1346. if (!temp_meas_ready) adc_cycle();
  1347. else
  1348. {
  1349. check_max_temp();
  1350. check_min_temp();
  1351. }
  1352. lcd_buttons_update();
  1353. static unsigned char pwm_count = (1 << SOFT_PWM_SCALE);
  1354. static unsigned char soft_pwm_0;
  1355. #ifdef SLOW_PWM_HEATERS
  1356. static unsigned char slow_pwm_count = 0;
  1357. static unsigned char state_heater_0 = 0;
  1358. static unsigned char state_timer_heater_0 = 0;
  1359. #endif
  1360. #if (EXTRUDERS > 1) || defined(HEATERS_PARALLEL)
  1361. static unsigned char soft_pwm_1;
  1362. #ifdef SLOW_PWM_HEATERS
  1363. static unsigned char state_heater_1 = 0;
  1364. static unsigned char state_timer_heater_1 = 0;
  1365. #endif
  1366. #endif
  1367. #if EXTRUDERS > 2
  1368. static unsigned char soft_pwm_2;
  1369. #ifdef SLOW_PWM_HEATERS
  1370. static unsigned char state_heater_2 = 0;
  1371. static unsigned char state_timer_heater_2 = 0;
  1372. #endif
  1373. #endif
  1374. #if HEATER_BED_PIN > -1
  1375. static unsigned char soft_pwm_b;
  1376. #ifdef SLOW_PWM_HEATERS
  1377. static unsigned char state_heater_b = 0;
  1378. static unsigned char state_timer_heater_b = 0;
  1379. #endif
  1380. #endif
  1381. #if defined(FILWIDTH_PIN) &&(FILWIDTH_PIN > -1)
  1382. static unsigned long raw_filwidth_value = 0; //added for filament width sensor
  1383. #endif
  1384. #ifndef SLOW_PWM_HEATERS
  1385. /*
  1386. * standard PWM modulation
  1387. */
  1388. if (pwm_count == 0)
  1389. {
  1390. soft_pwm_0 = soft_pwm[0];
  1391. if(soft_pwm_0 > 0)
  1392. {
  1393. WRITE(HEATER_0_PIN,1);
  1394. #ifdef HEATERS_PARALLEL
  1395. WRITE(HEATER_1_PIN,1);
  1396. #endif
  1397. } else WRITE(HEATER_0_PIN,0);
  1398. #if EXTRUDERS > 1
  1399. soft_pwm_1 = soft_pwm[1];
  1400. if(soft_pwm_1 > 0) WRITE(HEATER_1_PIN,1); else WRITE(HEATER_1_PIN,0);
  1401. #endif
  1402. #if EXTRUDERS > 2
  1403. soft_pwm_2 = soft_pwm[2];
  1404. if(soft_pwm_2 > 0) WRITE(HEATER_2_PIN,1); else WRITE(HEATER_2_PIN,0);
  1405. #endif
  1406. #if defined(HEATER_BED_PIN) && HEATER_BED_PIN > -1
  1407. soft_pwm_b = soft_pwm_bed;
  1408. if(soft_pwm_b > 0) WRITE(HEATER_BED_PIN,1); else WRITE(HEATER_BED_PIN,0);
  1409. #endif
  1410. #ifdef FAN_SOFT_PWM
  1411. soft_pwm_fan = fanSpeedSoftPwm / 2;
  1412. if(soft_pwm_fan > 0) WRITE(FAN_PIN,1); else WRITE(FAN_PIN,0);
  1413. #endif
  1414. }
  1415. if(soft_pwm_0 < pwm_count)
  1416. {
  1417. WRITE(HEATER_0_PIN,0);
  1418. #ifdef HEATERS_PARALLEL
  1419. WRITE(HEATER_1_PIN,0);
  1420. #endif
  1421. }
  1422. #if EXTRUDERS > 1
  1423. if(soft_pwm_1 < pwm_count) WRITE(HEATER_1_PIN,0);
  1424. #endif
  1425. #if EXTRUDERS > 2
  1426. if(soft_pwm_2 < pwm_count) WRITE(HEATER_2_PIN,0);
  1427. #endif
  1428. #if defined(HEATER_BED_PIN) && HEATER_BED_PIN > -1
  1429. if(soft_pwm_b < pwm_count) WRITE(HEATER_BED_PIN,0);
  1430. #endif
  1431. #ifdef FAN_SOFT_PWM
  1432. if(soft_pwm_fan < pwm_count) WRITE(FAN_PIN,0);
  1433. #endif
  1434. pwm_count += (1 << SOFT_PWM_SCALE);
  1435. pwm_count &= 0x7f;
  1436. #else //ifndef SLOW_PWM_HEATERS
  1437. /*
  1438. * SLOW PWM HEATERS
  1439. *
  1440. * for heaters drived by relay
  1441. */
  1442. #ifndef MIN_STATE_TIME
  1443. #define MIN_STATE_TIME 16 // MIN_STATE_TIME * 65.5 = time in milliseconds
  1444. #endif
  1445. if (slow_pwm_count == 0) {
  1446. // EXTRUDER 0
  1447. soft_pwm_0 = soft_pwm[0];
  1448. if (soft_pwm_0 > 0) {
  1449. // turn ON heather only if the minimum time is up
  1450. if (state_timer_heater_0 == 0) {
  1451. // if change state set timer
  1452. if (state_heater_0 == 0) {
  1453. state_timer_heater_0 = MIN_STATE_TIME;
  1454. }
  1455. state_heater_0 = 1;
  1456. WRITE(HEATER_0_PIN, 1);
  1457. #ifdef HEATERS_PARALLEL
  1458. WRITE(HEATER_1_PIN, 1);
  1459. #endif
  1460. }
  1461. } else {
  1462. // turn OFF heather only if the minimum time is up
  1463. if (state_timer_heater_0 == 0) {
  1464. // if change state set timer
  1465. if (state_heater_0 == 1) {
  1466. state_timer_heater_0 = MIN_STATE_TIME;
  1467. }
  1468. state_heater_0 = 0;
  1469. WRITE(HEATER_0_PIN, 0);
  1470. #ifdef HEATERS_PARALLEL
  1471. WRITE(HEATER_1_PIN, 0);
  1472. #endif
  1473. }
  1474. }
  1475. #if EXTRUDERS > 1
  1476. // EXTRUDER 1
  1477. soft_pwm_1 = soft_pwm[1];
  1478. if (soft_pwm_1 > 0) {
  1479. // turn ON heather only if the minimum time is up
  1480. if (state_timer_heater_1 == 0) {
  1481. // if change state set timer
  1482. if (state_heater_1 == 0) {
  1483. state_timer_heater_1 = MIN_STATE_TIME;
  1484. }
  1485. state_heater_1 = 1;
  1486. WRITE(HEATER_1_PIN, 1);
  1487. }
  1488. } else {
  1489. // turn OFF heather only if the minimum time is up
  1490. if (state_timer_heater_1 == 0) {
  1491. // if change state set timer
  1492. if (state_heater_1 == 1) {
  1493. state_timer_heater_1 = MIN_STATE_TIME;
  1494. }
  1495. state_heater_1 = 0;
  1496. WRITE(HEATER_1_PIN, 0);
  1497. }
  1498. }
  1499. #endif
  1500. #if EXTRUDERS > 2
  1501. // EXTRUDER 2
  1502. soft_pwm_2 = soft_pwm[2];
  1503. if (soft_pwm_2 > 0) {
  1504. // turn ON heather only if the minimum time is up
  1505. if (state_timer_heater_2 == 0) {
  1506. // if change state set timer
  1507. if (state_heater_2 == 0) {
  1508. state_timer_heater_2 = MIN_STATE_TIME;
  1509. }
  1510. state_heater_2 = 1;
  1511. WRITE(HEATER_2_PIN, 1);
  1512. }
  1513. } else {
  1514. // turn OFF heather only if the minimum time is up
  1515. if (state_timer_heater_2 == 0) {
  1516. // if change state set timer
  1517. if (state_heater_2 == 1) {
  1518. state_timer_heater_2 = MIN_STATE_TIME;
  1519. }
  1520. state_heater_2 = 0;
  1521. WRITE(HEATER_2_PIN, 0);
  1522. }
  1523. }
  1524. #endif
  1525. #if defined(HEATER_BED_PIN) && HEATER_BED_PIN > -1
  1526. // BED
  1527. soft_pwm_b = soft_pwm_bed;
  1528. if (soft_pwm_b > 0) {
  1529. // turn ON heather only if the minimum time is up
  1530. if (state_timer_heater_b == 0) {
  1531. // if change state set timer
  1532. if (state_heater_b == 0) {
  1533. state_timer_heater_b = MIN_STATE_TIME;
  1534. }
  1535. state_heater_b = 1;
  1536. WRITE(HEATER_BED_PIN, 1);
  1537. }
  1538. } else {
  1539. // turn OFF heather only if the minimum time is up
  1540. if (state_timer_heater_b == 0) {
  1541. // if change state set timer
  1542. if (state_heater_b == 1) {
  1543. state_timer_heater_b = MIN_STATE_TIME;
  1544. }
  1545. state_heater_b = 0;
  1546. WRITE(HEATER_BED_PIN, 0);
  1547. }
  1548. }
  1549. #endif
  1550. } // if (slow_pwm_count == 0)
  1551. // EXTRUDER 0
  1552. if (soft_pwm_0 < slow_pwm_count) {
  1553. // turn OFF heather only if the minimum time is up
  1554. if (state_timer_heater_0 == 0) {
  1555. // if change state set timer
  1556. if (state_heater_0 == 1) {
  1557. state_timer_heater_0 = MIN_STATE_TIME;
  1558. }
  1559. state_heater_0 = 0;
  1560. WRITE(HEATER_0_PIN, 0);
  1561. #ifdef HEATERS_PARALLEL
  1562. WRITE(HEATER_1_PIN, 0);
  1563. #endif
  1564. }
  1565. }
  1566. #if EXTRUDERS > 1
  1567. // EXTRUDER 1
  1568. if (soft_pwm_1 < slow_pwm_count) {
  1569. // turn OFF heather only if the minimum time is up
  1570. if (state_timer_heater_1 == 0) {
  1571. // if change state set timer
  1572. if (state_heater_1 == 1) {
  1573. state_timer_heater_1 = MIN_STATE_TIME;
  1574. }
  1575. state_heater_1 = 0;
  1576. WRITE(HEATER_1_PIN, 0);
  1577. }
  1578. }
  1579. #endif
  1580. #if EXTRUDERS > 2
  1581. // EXTRUDER 2
  1582. if (soft_pwm_2 < slow_pwm_count) {
  1583. // turn OFF heather only if the minimum time is up
  1584. if (state_timer_heater_2 == 0) {
  1585. // if change state set timer
  1586. if (state_heater_2 == 1) {
  1587. state_timer_heater_2 = MIN_STATE_TIME;
  1588. }
  1589. state_heater_2 = 0;
  1590. WRITE(HEATER_2_PIN, 0);
  1591. }
  1592. }
  1593. #endif
  1594. #if defined(HEATER_BED_PIN) && HEATER_BED_PIN > -1
  1595. // BED
  1596. if (soft_pwm_b < slow_pwm_count) {
  1597. // turn OFF heather only if the minimum time is up
  1598. if (state_timer_heater_b == 0) {
  1599. // if change state set timer
  1600. if (state_heater_b == 1) {
  1601. state_timer_heater_b = MIN_STATE_TIME;
  1602. }
  1603. state_heater_b = 0;
  1604. WRITE(HEATER_BED_PIN, 0);
  1605. }
  1606. }
  1607. #endif
  1608. #ifdef FAN_SOFT_PWM
  1609. if (pwm_count == 0){
  1610. soft_pwm_fan = fanSpeedSoftPwm / 2;
  1611. if (soft_pwm_fan > 0) WRITE(FAN_PIN,1); else WRITE(FAN_PIN,0);
  1612. }
  1613. if (soft_pwm_fan < pwm_count) WRITE(FAN_PIN,0);
  1614. #endif
  1615. pwm_count += (1 << SOFT_PWM_SCALE);
  1616. pwm_count &= 0x7f;
  1617. // increment slow_pwm_count only every 64 pwm_count circa 65.5ms
  1618. if ((pwm_count % 64) == 0) {
  1619. slow_pwm_count++;
  1620. slow_pwm_count &= 0x7f;
  1621. // Extruder 0
  1622. if (state_timer_heater_0 > 0) {
  1623. state_timer_heater_0--;
  1624. }
  1625. #if EXTRUDERS > 1
  1626. // Extruder 1
  1627. if (state_timer_heater_1 > 0)
  1628. state_timer_heater_1--;
  1629. #endif
  1630. #if EXTRUDERS > 2
  1631. // Extruder 2
  1632. if (state_timer_heater_2 > 0)
  1633. state_timer_heater_2--;
  1634. #endif
  1635. #if defined(HEATER_BED_PIN) && HEATER_BED_PIN > -1
  1636. // Bed
  1637. if (state_timer_heater_b > 0)
  1638. state_timer_heater_b--;
  1639. #endif
  1640. } //if ((pwm_count % 64) == 0) {
  1641. #endif //ifndef SLOW_PWM_HEATERS
  1642. #ifdef BABYSTEPPING
  1643. for(uint8_t axis=0;axis<3;axis++)
  1644. {
  1645. int curTodo=babystepsTodo[axis]; //get rid of volatile for performance
  1646. if(curTodo>0)
  1647. {
  1648. asm("cli");
  1649. babystep(axis,/*fwd*/true);
  1650. babystepsTodo[axis]--; //less to do next time
  1651. asm("sei");
  1652. }
  1653. else
  1654. if(curTodo<0)
  1655. {
  1656. asm("cli");
  1657. babystep(axis,/*fwd*/false);
  1658. babystepsTodo[axis]++; //less to do next time
  1659. asm("sei");
  1660. }
  1661. }
  1662. #endif //BABYSTEPPING
  1663. #if (defined(FANCHECK) && defined(TACH_0) && (TACH_0 > -1))
  1664. check_fans();
  1665. #endif //(defined(TACH_0))
  1666. _lock = false;
  1667. }
  1668. void check_max_temp()
  1669. {
  1670. //heater
  1671. #if HEATER_0_RAW_LO_TEMP > HEATER_0_RAW_HI_TEMP
  1672. if (current_temperature_raw[0] <= maxttemp_raw[0]) {
  1673. #else
  1674. if (current_temperature_raw[0] >= maxttemp_raw[0]) {
  1675. #endif
  1676. max_temp_error(0);
  1677. }
  1678. //bed
  1679. #if defined(BED_MAXTEMP) && (TEMP_SENSOR_BED != 0)
  1680. #if HEATER_BED_RAW_LO_TEMP > HEATER_BED_RAW_HI_TEMP
  1681. if (current_temperature_bed_raw <= bed_maxttemp_raw) {
  1682. #else
  1683. if (current_temperature_bed_raw >= bed_maxttemp_raw) {
  1684. #endif
  1685. target_temperature_bed = 0;
  1686. bed_max_temp_error();
  1687. }
  1688. #endif
  1689. }
  1690. void check_min_temp_heater0()
  1691. {
  1692. //heater
  1693. #if HEATER_0_RAW_LO_TEMP > HEATER_0_RAW_HI_TEMP
  1694. if (current_temperature_raw[0] >= minttemp_raw[0]) {
  1695. #else
  1696. if (current_temperature_raw[0] <= minttemp_raw[0]) {
  1697. #endif
  1698. min_temp_error(0);
  1699. }
  1700. }
  1701. void check_min_temp_bed()
  1702. {
  1703. #if HEATER_BED_RAW_LO_TEMP > HEATER_BED_RAW_HI_TEMP
  1704. if (current_temperature_bed_raw >= bed_minttemp_raw) {
  1705. #else
  1706. if (current_temperature_bed_raw <= bed_minttemp_raw) {
  1707. #endif
  1708. bed_min_temp_error();
  1709. }
  1710. }
  1711. void check_min_temp()
  1712. {
  1713. #ifdef AMBIENT_THERMISTOR
  1714. static uint8_t heat_cycles = 0;
  1715. if (current_temperature_raw_ambient > OVERSAMPLENR*MINTEMP_MINAMBIENT_RAW)
  1716. {
  1717. if (READ(HEATER_0_PIN) == HIGH)
  1718. {
  1719. // if ((heat_cycles % 10) == 0)
  1720. // printf_P(PSTR("X%d\n"), heat_cycles);
  1721. if (heat_cycles > 50) //reaction time 5-10s
  1722. check_min_temp_heater0();
  1723. else
  1724. heat_cycles++;
  1725. }
  1726. else
  1727. heat_cycles = 0;
  1728. return;
  1729. }
  1730. #endif //AMBIENT_THERMISTOR
  1731. check_min_temp_heater0();
  1732. check_min_temp_bed();
  1733. }
  1734. #if (defined(FANCHECK) && defined(TACH_0) && (TACH_0 > -1))
  1735. void check_fans() {
  1736. if (READ(TACH_0) != fan_state[0]) {
  1737. fan_edge_counter[0] ++;
  1738. fan_state[0] = !fan_state[0];
  1739. }
  1740. //if (READ(TACH_1) != fan_state[1]) {
  1741. // fan_edge_counter[1] ++;
  1742. // fan_state[1] = !fan_state[1];
  1743. //}
  1744. }
  1745. #endif //TACH_0
  1746. #ifdef PIDTEMP
  1747. // Apply the scale factors to the PID values
  1748. float scalePID_i(float i)
  1749. {
  1750. return i*PID_dT;
  1751. }
  1752. float unscalePID_i(float i)
  1753. {
  1754. return i/PID_dT;
  1755. }
  1756. float scalePID_d(float d)
  1757. {
  1758. return d/PID_dT;
  1759. }
  1760. float unscalePID_d(float d)
  1761. {
  1762. return d*PID_dT;
  1763. }
  1764. #endif //PIDTEMP