Marlin_main.cpp 305 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892389338943895389638973898389939003901390239033904390539063907390839093910391139123913391439153916391739183919392039213922392339243925392639273928392939303931393239333934393539363937393839393940394139423943394439453946394739483949395039513952395339543955395639573958395939603961396239633964396539663967396839693970397139723973397439753976397739783979398039813982398339843985398639873988398939903991399239933994399539963997399839994000400140024003400440054006400740084009401040114012401340144015401640174018401940204021402240234024402540264027402840294030403140324033403440354036403740384039404040414042404340444045404640474048404940504051405240534054405540564057405840594060406140624063406440654066406740684069407040714072407340744075407640774078407940804081408240834084408540864087408840894090409140924093409440954096409740984099410041014102410341044105410641074108410941104111411241134114411541164117411841194120412141224123412441254126412741284129413041314132413341344135413641374138413941404141414241434144414541464147414841494150415141524153415441554156415741584159416041614162416341644165416641674168416941704171417241734174417541764177417841794180418141824183418441854186418741884189419041914192419341944195419641974198419942004201420242034204420542064207420842094210421142124213421442154216421742184219422042214222422342244225422642274228422942304231423242334234423542364237423842394240424142424243424442454246424742484249425042514252425342544255425642574258425942604261426242634264426542664267426842694270427142724273427442754276427742784279428042814282428342844285428642874288428942904291429242934294429542964297429842994300430143024303430443054306430743084309431043114312431343144315431643174318431943204321432243234324432543264327432843294330433143324333433443354336433743384339434043414342434343444345434643474348434943504351435243534354435543564357435843594360436143624363436443654366436743684369437043714372437343744375437643774378437943804381438243834384438543864387438843894390439143924393439443954396439743984399440044014402440344044405440644074408440944104411441244134414441544164417441844194420442144224423442444254426442744284429443044314432443344344435443644374438443944404441444244434444444544464447444844494450445144524453445444554456445744584459446044614462446344644465446644674468446944704471447244734474447544764477447844794480448144824483448444854486448744884489449044914492449344944495449644974498449945004501450245034504450545064507450845094510451145124513451445154516451745184519452045214522452345244525452645274528452945304531453245334534453545364537453845394540454145424543454445454546454745484549455045514552455345544555455645574558455945604561456245634564456545664567456845694570457145724573457445754576457745784579458045814582458345844585458645874588458945904591459245934594459545964597459845994600460146024603460446054606460746084609461046114612461346144615461646174618461946204621462246234624462546264627462846294630463146324633463446354636463746384639464046414642464346444645464646474648464946504651465246534654465546564657465846594660466146624663466446654666466746684669467046714672467346744675467646774678467946804681468246834684468546864687468846894690469146924693469446954696469746984699470047014702470347044705470647074708470947104711471247134714471547164717471847194720472147224723472447254726472747284729473047314732473347344735473647374738473947404741474247434744474547464747474847494750475147524753475447554756475747584759476047614762476347644765476647674768476947704771477247734774477547764777477847794780478147824783478447854786478747884789479047914792479347944795479647974798479948004801480248034804480548064807480848094810481148124813481448154816481748184819482048214822482348244825482648274828482948304831483248334834483548364837483848394840484148424843484448454846484748484849485048514852485348544855485648574858485948604861486248634864486548664867486848694870487148724873487448754876487748784879488048814882488348844885488648874888488948904891489248934894489548964897489848994900490149024903490449054906490749084909491049114912491349144915491649174918491949204921492249234924492549264927492849294930493149324933493449354936493749384939494049414942494349444945494649474948494949504951495249534954495549564957495849594960496149624963496449654966496749684969497049714972497349744975497649774978497949804981498249834984498549864987498849894990499149924993499449954996499749984999500050015002500350045005500650075008500950105011501250135014501550165017501850195020502150225023502450255026502750285029503050315032503350345035503650375038503950405041504250435044504550465047504850495050505150525053505450555056505750585059506050615062506350645065506650675068506950705071507250735074507550765077507850795080508150825083508450855086508750885089509050915092509350945095509650975098509951005101510251035104510551065107510851095110511151125113511451155116511751185119512051215122512351245125512651275128512951305131513251335134513551365137513851395140514151425143514451455146514751485149515051515152515351545155515651575158515951605161516251635164516551665167516851695170517151725173517451755176517751785179518051815182518351845185518651875188518951905191519251935194519551965197519851995200520152025203520452055206520752085209521052115212521352145215521652175218521952205221522252235224522552265227522852295230523152325233523452355236523752385239524052415242524352445245524652475248524952505251525252535254525552565257525852595260526152625263526452655266526752685269527052715272527352745275527652775278527952805281528252835284528552865287528852895290529152925293529452955296529752985299530053015302530353045305530653075308530953105311531253135314531553165317531853195320532153225323532453255326532753285329533053315332533353345335533653375338533953405341534253435344534553465347534853495350535153525353535453555356535753585359536053615362536353645365536653675368536953705371537253735374537553765377537853795380538153825383538453855386538753885389539053915392539353945395539653975398539954005401540254035404540554065407540854095410541154125413541454155416541754185419542054215422542354245425542654275428542954305431543254335434543554365437543854395440544154425443544454455446544754485449545054515452545354545455545654575458545954605461546254635464546554665467546854695470547154725473547454755476547754785479548054815482548354845485548654875488548954905491549254935494549554965497549854995500550155025503550455055506550755085509551055115512551355145515551655175518551955205521552255235524552555265527552855295530553155325533553455355536553755385539554055415542554355445545554655475548554955505551555255535554555555565557555855595560556155625563556455655566556755685569557055715572557355745575557655775578557955805581558255835584558555865587558855895590559155925593559455955596559755985599560056015602560356045605560656075608560956105611561256135614561556165617561856195620562156225623562456255626562756285629563056315632563356345635563656375638563956405641564256435644564556465647564856495650565156525653565456555656565756585659566056615662566356645665566656675668566956705671567256735674567556765677567856795680568156825683568456855686568756885689569056915692569356945695569656975698569957005701570257035704570557065707570857095710571157125713571457155716571757185719572057215722572357245725572657275728572957305731573257335734573557365737573857395740574157425743574457455746574757485749575057515752575357545755575657575758575957605761576257635764576557665767576857695770577157725773577457755776577757785779578057815782578357845785578657875788578957905791579257935794579557965797579857995800580158025803580458055806580758085809581058115812581358145815581658175818581958205821582258235824582558265827582858295830583158325833583458355836583758385839584058415842584358445845584658475848584958505851585258535854585558565857585858595860586158625863586458655866586758685869587058715872587358745875587658775878587958805881588258835884588558865887588858895890589158925893589458955896589758985899590059015902590359045905590659075908590959105911591259135914591559165917591859195920592159225923592459255926592759285929593059315932593359345935593659375938593959405941594259435944594559465947594859495950595159525953595459555956595759585959596059615962596359645965596659675968596959705971597259735974597559765977597859795980598159825983598459855986598759885989599059915992599359945995599659975998599960006001600260036004600560066007600860096010601160126013601460156016601760186019602060216022602360246025602660276028602960306031603260336034603560366037603860396040604160426043604460456046604760486049605060516052605360546055605660576058605960606061606260636064606560666067606860696070607160726073607460756076607760786079608060816082608360846085608660876088608960906091609260936094609560966097609860996100610161026103610461056106610761086109611061116112611361146115611661176118611961206121612261236124612561266127612861296130613161326133613461356136613761386139614061416142614361446145614661476148614961506151615261536154615561566157615861596160616161626163616461656166616761686169617061716172617361746175617661776178617961806181618261836184618561866187618861896190619161926193619461956196619761986199620062016202620362046205620662076208620962106211621262136214621562166217621862196220622162226223622462256226622762286229623062316232623362346235623662376238623962406241624262436244624562466247624862496250625162526253625462556256625762586259626062616262626362646265626662676268626962706271627262736274627562766277627862796280628162826283628462856286628762886289629062916292629362946295629662976298629963006301630263036304630563066307630863096310631163126313631463156316631763186319632063216322632363246325632663276328632963306331633263336334633563366337633863396340634163426343634463456346634763486349635063516352635363546355635663576358635963606361636263636364636563666367636863696370637163726373637463756376637763786379638063816382638363846385638663876388638963906391639263936394639563966397639863996400640164026403640464056406640764086409641064116412641364146415641664176418641964206421642264236424642564266427642864296430643164326433643464356436643764386439644064416442644364446445644664476448644964506451645264536454645564566457645864596460646164626463646464656466646764686469647064716472647364746475647664776478647964806481648264836484648564866487648864896490649164926493649464956496649764986499650065016502650365046505650665076508650965106511651265136514651565166517651865196520652165226523652465256526652765286529653065316532653365346535653665376538653965406541654265436544654565466547654865496550655165526553655465556556655765586559656065616562656365646565656665676568656965706571657265736574657565766577657865796580658165826583658465856586658765886589659065916592659365946595659665976598659966006601660266036604660566066607660866096610661166126613661466156616661766186619662066216622662366246625662666276628662966306631663266336634663566366637663866396640664166426643664466456646664766486649665066516652665366546655665666576658665966606661666266636664666566666667666866696670667166726673667466756676667766786679668066816682668366846685668666876688668966906691669266936694669566966697669866996700670167026703670467056706670767086709671067116712671367146715671667176718671967206721672267236724672567266727672867296730673167326733673467356736673767386739674067416742674367446745674667476748674967506751675267536754675567566757675867596760676167626763676467656766676767686769677067716772677367746775677667776778677967806781678267836784678567866787678867896790679167926793679467956796679767986799680068016802680368046805680668076808680968106811681268136814681568166817681868196820682168226823682468256826682768286829683068316832683368346835683668376838683968406841684268436844684568466847684868496850685168526853685468556856685768586859686068616862686368646865686668676868686968706871687268736874687568766877687868796880688168826883688468856886688768886889689068916892689368946895689668976898689969006901690269036904690569066907690869096910691169126913691469156916691769186919692069216922692369246925692669276928692969306931693269336934693569366937693869396940694169426943694469456946694769486949695069516952695369546955695669576958695969606961696269636964696569666967696869696970697169726973697469756976697769786979698069816982698369846985698669876988698969906991699269936994699569966997699869997000700170027003700470057006700770087009701070117012701370147015701670177018701970207021702270237024702570267027702870297030703170327033703470357036703770387039704070417042704370447045704670477048704970507051705270537054705570567057705870597060706170627063706470657066706770687069707070717072707370747075707670777078707970807081708270837084708570867087708870897090709170927093709470957096709770987099710071017102710371047105710671077108710971107111711271137114711571167117711871197120712171227123712471257126712771287129713071317132713371347135713671377138713971407141714271437144714571467147714871497150715171527153715471557156715771587159716071617162716371647165716671677168716971707171717271737174717571767177717871797180718171827183718471857186718771887189719071917192719371947195719671977198719972007201720272037204720572067207720872097210721172127213721472157216721772187219722072217222722372247225722672277228722972307231723272337234723572367237723872397240724172427243724472457246724772487249725072517252725372547255725672577258725972607261726272637264726572667267726872697270727172727273727472757276727772787279728072817282728372847285728672877288728972907291729272937294729572967297729872997300730173027303730473057306730773087309731073117312731373147315731673177318731973207321732273237324732573267327732873297330733173327333733473357336733773387339734073417342734373447345734673477348734973507351735273537354735573567357735873597360736173627363736473657366736773687369737073717372737373747375737673777378737973807381738273837384738573867387738873897390739173927393739473957396739773987399740074017402740374047405740674077408740974107411741274137414741574167417741874197420742174227423742474257426742774287429743074317432743374347435743674377438743974407441744274437444744574467447744874497450745174527453745474557456745774587459746074617462746374647465746674677468746974707471747274737474747574767477747874797480748174827483748474857486748774887489749074917492749374947495749674977498749975007501750275037504750575067507750875097510751175127513751475157516751775187519752075217522752375247525752675277528752975307531753275337534753575367537753875397540754175427543754475457546754775487549755075517552755375547555755675577558755975607561756275637564756575667567756875697570757175727573757475757576757775787579758075817582758375847585758675877588758975907591759275937594759575967597759875997600760176027603760476057606760776087609761076117612761376147615761676177618761976207621762276237624762576267627762876297630763176327633763476357636763776387639764076417642764376447645764676477648764976507651765276537654765576567657765876597660766176627663766476657666766776687669767076717672767376747675767676777678767976807681768276837684768576867687768876897690769176927693769476957696769776987699770077017702770377047705770677077708770977107711771277137714771577167717771877197720772177227723772477257726772777287729773077317732773377347735773677377738773977407741774277437744774577467747774877497750775177527753775477557756775777587759776077617762776377647765776677677768776977707771777277737774777577767777777877797780778177827783778477857786778777887789779077917792779377947795779677977798779978007801780278037804780578067807780878097810781178127813781478157816781778187819782078217822782378247825782678277828782978307831783278337834783578367837783878397840784178427843784478457846784778487849785078517852785378547855785678577858785978607861786278637864786578667867786878697870787178727873787478757876787778787879788078817882788378847885788678877888788978907891789278937894789578967897789878997900790179027903790479057906790779087909791079117912791379147915791679177918791979207921792279237924792579267927792879297930793179327933793479357936793779387939794079417942794379447945794679477948794979507951795279537954795579567957795879597960796179627963796479657966796779687969797079717972797379747975797679777978797979807981798279837984798579867987798879897990799179927993799479957996799779987999800080018002800380048005800680078008800980108011801280138014801580168017801880198020802180228023802480258026802780288029803080318032803380348035803680378038803980408041804280438044804580468047804880498050805180528053805480558056805780588059806080618062806380648065806680678068806980708071807280738074807580768077807880798080808180828083808480858086808780888089809080918092809380948095809680978098809981008101810281038104810581068107810881098110811181128113811481158116811781188119812081218122812381248125812681278128812981308131813281338134813581368137813881398140814181428143814481458146814781488149815081518152815381548155815681578158815981608161816281638164816581668167816881698170817181728173817481758176817781788179818081818182818381848185818681878188818981908191819281938194819581968197819881998200820182028203820482058206820782088209821082118212821382148215821682178218821982208221822282238224822582268227822882298230823182328233823482358236823782388239824082418242824382448245824682478248824982508251825282538254825582568257825882598260826182628263826482658266826782688269827082718272827382748275827682778278827982808281828282838284828582868287828882898290829182928293829482958296829782988299830083018302830383048305830683078308830983108311831283138314831583168317831883198320832183228323832483258326832783288329833083318332833383348335833683378338833983408341834283438344834583468347834883498350835183528353835483558356835783588359836083618362836383648365836683678368836983708371837283738374837583768377837883798380838183828383838483858386838783888389839083918392839383948395839683978398839984008401840284038404840584068407840884098410841184128413841484158416841784188419842084218422842384248425842684278428842984308431843284338434843584368437843884398440844184428443844484458446844784488449845084518452845384548455845684578458845984608461846284638464846584668467846884698470847184728473847484758476847784788479848084818482848384848485848684878488848984908491849284938494849584968497849884998500850185028503850485058506850785088509851085118512851385148515851685178518851985208521852285238524852585268527852885298530853185328533853485358536853785388539854085418542854385448545854685478548854985508551855285538554855585568557855885598560856185628563856485658566856785688569857085718572857385748575857685778578857985808581858285838584858585868587858885898590859185928593859485958596859785988599860086018602860386048605860686078608860986108611861286138614861586168617861886198620862186228623862486258626862786288629863086318632863386348635863686378638863986408641864286438644864586468647864886498650865186528653865486558656865786588659866086618662866386648665866686678668866986708671867286738674867586768677867886798680868186828683868486858686868786888689869086918692869386948695869686978698869987008701870287038704870587068707870887098710871187128713871487158716871787188719872087218722872387248725872687278728872987308731873287338734873587368737873887398740874187428743874487458746874787488749875087518752875387548755875687578758875987608761876287638764876587668767876887698770877187728773877487758776877787788779878087818782878387848785878687878788878987908791879287938794879587968797879887998800880188028803880488058806880788088809881088118812881388148815881688178818881988208821882288238824882588268827882888298830883188328833883488358836883788388839884088418842884388448845884688478848884988508851885288538854885588568857885888598860886188628863886488658866886788688869887088718872887388748875887688778878887988808881888288838884888588868887888888898890889188928893889488958896889788988899890089018902890389048905890689078908890989108911891289138914891589168917891889198920892189228923892489258926892789288929893089318932893389348935893689378938893989408941894289438944894589468947894889498950895189528953895489558956895789588959896089618962896389648965896689678968896989708971897289738974897589768977897889798980898189828983898489858986898789888989899089918992899389948995899689978998899990009001900290039004900590069007900890099010901190129013901490159016901790189019902090219022902390249025902690279028902990309031903290339034903590369037903890399040904190429043904490459046904790489049905090519052905390549055905690579058905990609061906290639064906590669067906890699070907190729073907490759076907790789079908090819082908390849085908690879088908990909091909290939094909590969097909890999100
  1. /* -*- c++ -*- */
  2. /**
  3. * @file
  4. */
  5. /**
  6. * @mainpage Reprap 3D printer firmware based on Sprinter and grbl.
  7. *
  8. * @section intro_sec Introduction
  9. *
  10. * This firmware is a mashup between Sprinter and grbl.
  11. * https://github.com/kliment/Sprinter
  12. * https://github.com/simen/grbl/tree
  13. *
  14. * It has preliminary support for Matthew Roberts advance algorithm
  15. * http://reprap.org/pipermail/reprap-dev/2011-May/003323.html
  16. *
  17. * Prusa Research s.r.o. https://www.prusa3d.cz
  18. *
  19. * @section copyright_sec Copyright
  20. *
  21. * Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
  22. *
  23. * This program is free software: you can redistribute it and/or modify
  24. * it under the terms of the GNU General Public License as published by
  25. * the Free Software Foundation, either version 3 of the License, or
  26. * (at your option) any later version.
  27. *
  28. * This program is distributed in the hope that it will be useful,
  29. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  30. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  31. * GNU General Public License for more details.
  32. *
  33. * You should have received a copy of the GNU General Public License
  34. * along with this program. If not, see <http://www.gnu.org/licenses/>.
  35. *
  36. * @section notes_sec Notes
  37. *
  38. * * Do not create static objects in global functions.
  39. * Otherwise constructor guard against concurrent calls is generated costing
  40. * about 8B RAM and 14B flash.
  41. *
  42. *
  43. */
  44. #include "Marlin.h"
  45. #ifdef ENABLE_AUTO_BED_LEVELING
  46. #include "vector_3.h"
  47. #ifdef AUTO_BED_LEVELING_GRID
  48. #include "qr_solve.h"
  49. #endif
  50. #endif // ENABLE_AUTO_BED_LEVELING
  51. #ifdef MESH_BED_LEVELING
  52. #include "mesh_bed_leveling.h"
  53. #include "mesh_bed_calibration.h"
  54. #endif
  55. #include "printers.h"
  56. #include "lcd.h"
  57. #include "menu.h"
  58. #include "ultralcd.h"
  59. #include "planner.h"
  60. #include "stepper.h"
  61. #include "temperature.h"
  62. #include "motion_control.h"
  63. #include "cardreader.h"
  64. #include "ConfigurationStore.h"
  65. #include "language.h"
  66. #include "pins_arduino.h"
  67. #include "math.h"
  68. #include "util.h"
  69. #include "Timer.h"
  70. #include "uart2.h"
  71. #include <avr/wdt.h>
  72. #include <avr/pgmspace.h>
  73. #include "Dcodes.h"
  74. #ifdef SWSPI
  75. #include "swspi.h"
  76. #endif //SWSPI
  77. #include "spi.h"
  78. #ifdef SWI2C
  79. #include "swi2c.h"
  80. #endif //SWI2C
  81. #ifdef PAT9125
  82. #include "pat9125.h"
  83. #include "fsensor.h"
  84. #endif //PAT9125
  85. #ifdef TMC2130
  86. #include "tmc2130.h"
  87. #endif //TMC2130
  88. #ifdef W25X20CL
  89. #include "w25x20cl.h"
  90. #include "optiboot_w25x20cl.h"
  91. #endif //W25X20CL
  92. #ifdef BLINKM
  93. #include "BlinkM.h"
  94. #include "Wire.h"
  95. #endif
  96. #ifdef ULTRALCD
  97. #include "ultralcd.h"
  98. #endif
  99. #if NUM_SERVOS > 0
  100. #include "Servo.h"
  101. #endif
  102. #if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
  103. #include <SPI.h>
  104. #endif
  105. #define VERSION_STRING "1.0.2"
  106. #include "ultralcd.h"
  107. #include "cmdqueue.h"
  108. // Macros for bit masks
  109. #define BIT(b) (1<<(b))
  110. #define TEST(n,b) (((n)&BIT(b))!=0)
  111. #define SET_BIT(n,b,value) (n) ^= ((-value)^(n)) & (BIT(b))
  112. //Macro for print fan speed
  113. #define FAN_PULSE_WIDTH_LIMIT ((fanSpeed > 100) ? 3 : 4) //time in ms
  114. #define PRINTING_TYPE_SD 0
  115. #define PRINTING_TYPE_USB 1
  116. // look here for descriptions of G-codes: http://linuxcnc.org/handbook/gcode/g-code.html
  117. // http://objects.reprap.org/wiki/Mendel_User_Manual:_RepRapGCodes
  118. //Implemented Codes
  119. //-------------------
  120. // PRUSA CODES
  121. // P F - Returns FW versions
  122. // P R - Returns revision of printer
  123. // G0 -> G1
  124. // G1 - Coordinated Movement X Y Z E
  125. // G2 - CW ARC
  126. // G3 - CCW ARC
  127. // G4 - Dwell S<seconds> or P<milliseconds>
  128. // G10 - retract filament according to settings of M207
  129. // G11 - retract recover filament according to settings of M208
  130. // G28 - Home all Axis
  131. // G29 - Detailed Z-Probe, probes the bed at 3 or more points. Will fail if you haven't homed yet.
  132. // G30 - Single Z Probe, probes bed at current XY location.
  133. // G31 - Dock sled (Z_PROBE_SLED only)
  134. // G32 - Undock sled (Z_PROBE_SLED only)
  135. // G80 - Automatic mesh bed leveling
  136. // G81 - Print bed profile
  137. // G90 - Use Absolute Coordinates
  138. // G91 - Use Relative Coordinates
  139. // G92 - Set current position to coordinates given
  140. // M Codes
  141. // M0 - Unconditional stop - Wait for user to press a button on the LCD
  142. // M1 - Same as M0
  143. // M17 - Enable/Power all stepper motors
  144. // M18 - Disable all stepper motors; same as M84
  145. // M20 - List SD card
  146. // M21 - Init SD card
  147. // M22 - Release SD card
  148. // M23 - Select SD file (M23 filename.g)
  149. // M24 - Start/resume SD print
  150. // M25 - Pause SD print
  151. // M26 - Set SD position in bytes (M26 S12345)
  152. // M27 - Report SD print status
  153. // M28 - Start SD write (M28 filename.g)
  154. // M29 - Stop SD write
  155. // M30 - Delete file from SD (M30 filename.g)
  156. // M31 - Output time since last M109 or SD card start to serial
  157. // M32 - Select file and start SD print (Can be used _while_ printing from SD card files):
  158. // syntax "M32 /path/filename#", or "M32 S<startpos bytes> !filename#"
  159. // Call gcode file : "M32 P !filename#" and return to caller file after finishing (similar to #include).
  160. // The '#' is necessary when calling from within sd files, as it stops buffer prereading
  161. // M42 - Change pin status via gcode Use M42 Px Sy to set pin x to value y, when omitting Px the onboard led will be used.
  162. // M73 - Show percent done and print time remaining
  163. // M80 - Turn on Power Supply
  164. // M81 - Turn off Power Supply
  165. // M82 - Set E codes absolute (default)
  166. // M83 - Set E codes relative while in Absolute Coordinates (G90) mode
  167. // M84 - Disable steppers until next move,
  168. // or use S<seconds> to specify an inactivity timeout, after which the steppers will be disabled. S0 to disable the timeout.
  169. // M85 - Set inactivity shutdown timer with parameter S<seconds>. To disable set zero (default)
  170. // M86 - Set safety timer expiration time with parameter S<seconds>; M86 S0 will disable safety timer
  171. // M92 - Set axis_steps_per_unit - same syntax as G92
  172. // M104 - Set extruder target temp
  173. // M105 - Read current temp
  174. // M106 - Fan on
  175. // M107 - Fan off
  176. // M109 - Sxxx Wait for extruder current temp to reach target temp. Waits only when heating
  177. // Rxxx Wait for extruder current temp to reach target temp. Waits when heating and cooling
  178. // IF AUTOTEMP is enabled, S<mintemp> B<maxtemp> F<factor>. Exit autotemp by any M109 without F
  179. // M112 - Emergency stop
  180. // M113 - Get or set the timeout interval for Host Keepalive "busy" messages
  181. // M114 - Output current position to serial port
  182. // M115 - Capabilities string
  183. // M117 - display message
  184. // M119 - Output Endstop status to serial port
  185. // M126 - Solenoid Air Valve Open (BariCUDA support by jmil)
  186. // M127 - Solenoid Air Valve Closed (BariCUDA vent to atmospheric pressure by jmil)
  187. // M128 - EtoP Open (BariCUDA EtoP = electricity to air pressure transducer by jmil)
  188. // M129 - EtoP Closed (BariCUDA EtoP = electricity to air pressure transducer by jmil)
  189. // M140 - Set bed target temp
  190. // M150 - Set BlinkM Color Output R: Red<0-255> U(!): Green<0-255> B: Blue<0-255> over i2c, G for green does not work.
  191. // M190 - Sxxx Wait for bed current temp to reach target temp. Waits only when heating
  192. // Rxxx Wait for bed current temp to reach target temp. Waits when heating and cooling
  193. // M200 D<millimeters>- set filament diameter and set E axis units to cubic millimeters (use S0 to set back to millimeters).
  194. // M201 - Set max acceleration in units/s^2 for print moves (M201 X1000 Y1000)
  195. // M202 - Set max acceleration in units/s^2 for travel moves (M202 X1000 Y1000) Unused in Marlin!!
  196. // M203 - Set maximum feedrate that your machine can sustain (M203 X200 Y200 Z300 E10000) in mm/sec
  197. // M204 - Set default acceleration: S normal moves T filament only moves (M204 S3000 T7000) in mm/sec^2 also sets minimum segment time in ms (B20000) to prevent buffer under-runs and M20 minimum feedrate
  198. // M205 - advanced settings: minimum travel speed S=while printing T=travel only, B=minimum segment time X= maximum xy jerk, Z=maximum Z jerk, E=maximum E jerk
  199. // M206 - set additional homing offset
  200. // M207 - set retract length S[positive mm] F[feedrate mm/min] Z[additional zlift/hop], stays in mm regardless of M200 setting
  201. // M208 - set recover=unretract length S[positive mm surplus to the M207 S*] F[feedrate mm/sec]
  202. // M209 - S<1=true/0=false> enable automatic retract detect if the slicer did not support G10/11: every normal extrude-only move will be classified as retract depending on the direction.
  203. // M218 - set hotend offset (in mm): T<extruder_number> X<offset_on_X> Y<offset_on_Y>
  204. // M220 S<factor in percent>- set speed factor override percentage
  205. // M221 S<factor in percent>- set extrude factor override percentage
  206. // M226 P<pin number> S<pin state>- Wait until the specified pin reaches the state required
  207. // M240 - Trigger a camera to take a photograph
  208. // M250 - Set LCD contrast C<contrast value> (value 0..63)
  209. // M280 - set servo position absolute. P: servo index, S: angle or microseconds
  210. // M300 - Play beep sound S<frequency Hz> P<duration ms>
  211. // M301 - Set PID parameters P I and D
  212. // M302 - Allow cold extrudes, or set the minimum extrude S<temperature>.
  213. // M303 - PID relay autotune S<temperature> sets the target temperature. (default target temperature = 150C)
  214. // M304 - Set bed PID parameters P I and D
  215. // M400 - Finish all moves
  216. // M401 - Lower z-probe if present
  217. // M402 - Raise z-probe if present
  218. // M404 - N<dia in mm> Enter the nominal filament width (3mm, 1.75mm ) or will display nominal filament width without parameters
  219. // M405 - Turn on Filament Sensor extrusion control. Optional D<delay in cm> to set delay in centimeters between sensor and extruder
  220. // M406 - Turn off Filament Sensor extrusion control
  221. // M407 - Displays measured filament diameter
  222. // M500 - stores parameters in EEPROM
  223. // M501 - reads parameters from EEPROM (if you need reset them after you changed them temporarily).
  224. // M502 - reverts to the default "factory settings". You still need to store them in EEPROM afterwards if you want to.
  225. // M503 - print the current settings (from memory not from EEPROM)
  226. // M509 - force language selection on next restart
  227. // M540 - Use S[0|1] to enable or disable the stop SD card print on endstop hit (requires ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED)
  228. // M600 - Pause for filament change X[pos] Y[pos] Z[relative lift] E[initial retract] L[later retract distance for removal]
  229. // M605 - Set dual x-carriage movement mode: S<mode> [ X<duplication x-offset> R<duplication temp offset> ]
  230. // M860 - Wait for PINDA thermistor to reach target temperature.
  231. // M861 - Set / Read PINDA temperature compensation offsets
  232. // M900 - Set LIN_ADVANCE options, if enabled. See Configuration_adv.h for details.
  233. // M907 - Set digital trimpot motor current using axis codes.
  234. // M908 - Control digital trimpot directly.
  235. // M350 - Set microstepping mode.
  236. // M351 - Toggle MS1 MS2 pins directly.
  237. // M928 - Start SD logging (M928 filename.g) - ended by M29
  238. // M999 - Restart after being stopped by error
  239. //Stepper Movement Variables
  240. //===========================================================================
  241. //=============================imported variables============================
  242. //===========================================================================
  243. //===========================================================================
  244. //=============================public variables=============================
  245. //===========================================================================
  246. #ifdef SDSUPPORT
  247. CardReader card;
  248. #endif
  249. unsigned long PingTime = millis();
  250. unsigned long NcTime;
  251. union Data
  252. {
  253. byte b[2];
  254. int value;
  255. };
  256. float homing_feedrate[] = HOMING_FEEDRATE;
  257. // Currently only the extruder axis may be switched to a relative mode.
  258. // Other axes are always absolute or relative based on the common relative_mode flag.
  259. bool axis_relative_modes[] = AXIS_RELATIVE_MODES;
  260. int feedmultiply=100; //100->1 200->2
  261. int saved_feedmultiply;
  262. int extrudemultiply=100; //100->1 200->2
  263. int extruder_multiply[EXTRUDERS] = {100
  264. #if EXTRUDERS > 1
  265. , 100
  266. #if EXTRUDERS > 2
  267. , 100
  268. #endif
  269. #endif
  270. };
  271. int bowden_length[4] = {385, 385, 385, 385};
  272. bool is_usb_printing = false;
  273. bool homing_flag = false;
  274. bool temp_cal_active = false;
  275. unsigned long kicktime = millis()+100000;
  276. unsigned int usb_printing_counter;
  277. int lcd_change_fil_state = 0;
  278. int feedmultiplyBckp = 100;
  279. float HotendTempBckp = 0;
  280. int fanSpeedBckp = 0;
  281. float pause_lastpos[4];
  282. unsigned long pause_time = 0;
  283. unsigned long start_pause_print = millis();
  284. unsigned long t_fan_rising_edge = millis();
  285. static LongTimer safetyTimer;
  286. static LongTimer crashDetTimer;
  287. //unsigned long load_filament_time;
  288. bool mesh_bed_leveling_flag = false;
  289. bool mesh_bed_run_from_menu = false;
  290. int8_t FarmMode = 0;
  291. bool prusa_sd_card_upload = false;
  292. unsigned int status_number = 0;
  293. unsigned long total_filament_used;
  294. unsigned int heating_status;
  295. unsigned int heating_status_counter;
  296. bool custom_message;
  297. bool loading_flag = false;
  298. unsigned int custom_message_type;
  299. unsigned int custom_message_state;
  300. char snmm_filaments_used = 0;
  301. bool fan_state[2];
  302. int fan_edge_counter[2];
  303. int fan_speed[2];
  304. char dir_names[3][9];
  305. bool sortAlpha = false;
  306. bool volumetric_enabled = false;
  307. float filament_size[EXTRUDERS] = { DEFAULT_NOMINAL_FILAMENT_DIA
  308. #if EXTRUDERS > 1
  309. , DEFAULT_NOMINAL_FILAMENT_DIA
  310. #if EXTRUDERS > 2
  311. , DEFAULT_NOMINAL_FILAMENT_DIA
  312. #endif
  313. #endif
  314. };
  315. float extruder_multiplier[EXTRUDERS] = {1.0
  316. #if EXTRUDERS > 1
  317. , 1.0
  318. #if EXTRUDERS > 2
  319. , 1.0
  320. #endif
  321. #endif
  322. };
  323. float current_position[NUM_AXIS] = { 0.0, 0.0, 0.0, 0.0 };
  324. //shortcuts for more readable code
  325. #define _x current_position[X_AXIS]
  326. #define _y current_position[Y_AXIS]
  327. #define _z current_position[Z_AXIS]
  328. #define _e current_position[E_AXIS]
  329. float add_homing[3]={0,0,0};
  330. float min_pos[3] = { X_MIN_POS, Y_MIN_POS, Z_MIN_POS };
  331. float max_pos[3] = { X_MAX_POS, Y_MAX_POS, Z_MAX_POS };
  332. bool axis_known_position[3] = {false, false, false};
  333. float zprobe_zoffset;
  334. // Extruder offset
  335. #if EXTRUDERS > 1
  336. #define NUM_EXTRUDER_OFFSETS 2 // only in XY plane
  337. float extruder_offset[NUM_EXTRUDER_OFFSETS][EXTRUDERS] = {
  338. #if defined(EXTRUDER_OFFSET_X) && defined(EXTRUDER_OFFSET_Y)
  339. EXTRUDER_OFFSET_X, EXTRUDER_OFFSET_Y
  340. #endif
  341. };
  342. #endif
  343. uint8_t active_extruder = 0;
  344. int fanSpeed=0;
  345. #ifdef FWRETRACT
  346. bool autoretract_enabled=false;
  347. bool retracted[EXTRUDERS]={false
  348. #if EXTRUDERS > 1
  349. , false
  350. #if EXTRUDERS > 2
  351. , false
  352. #endif
  353. #endif
  354. };
  355. bool retracted_swap[EXTRUDERS]={false
  356. #if EXTRUDERS > 1
  357. , false
  358. #if EXTRUDERS > 2
  359. , false
  360. #endif
  361. #endif
  362. };
  363. float retract_length = RETRACT_LENGTH;
  364. float retract_length_swap = RETRACT_LENGTH_SWAP;
  365. float retract_feedrate = RETRACT_FEEDRATE;
  366. float retract_zlift = RETRACT_ZLIFT;
  367. float retract_recover_length = RETRACT_RECOVER_LENGTH;
  368. float retract_recover_length_swap = RETRACT_RECOVER_LENGTH_SWAP;
  369. float retract_recover_feedrate = RETRACT_RECOVER_FEEDRATE;
  370. #endif
  371. #ifdef PS_DEFAULT_OFF
  372. bool powersupply = false;
  373. #else
  374. bool powersupply = true;
  375. #endif
  376. bool cancel_heatup = false ;
  377. #ifdef HOST_KEEPALIVE_FEATURE
  378. int busy_state = NOT_BUSY;
  379. static long prev_busy_signal_ms = -1;
  380. uint8_t host_keepalive_interval = HOST_KEEPALIVE_INTERVAL;
  381. #else
  382. #define host_keepalive();
  383. #define KEEPALIVE_STATE(n);
  384. #endif
  385. const char errormagic[] PROGMEM = "Error:";
  386. const char echomagic[] PROGMEM = "echo:";
  387. bool no_response = false;
  388. uint8_t important_status;
  389. uint8_t saved_filament_type;
  390. // save/restore printing
  391. bool saved_printing = false;
  392. // storing estimated time to end of print counted by slicer
  393. uint8_t print_percent_done_normal = PRINT_PERCENT_DONE_INIT;
  394. uint16_t print_time_remaining_normal = PRINT_TIME_REMAINING_INIT; //estimated remaining print time in minutes
  395. uint8_t print_percent_done_silent = PRINT_PERCENT_DONE_INIT;
  396. uint16_t print_time_remaining_silent = PRINT_TIME_REMAINING_INIT; //estimated remaining print time in minutes
  397. //===========================================================================
  398. //=============================Private Variables=============================
  399. //===========================================================================
  400. const char axis_codes[NUM_AXIS] = {'X', 'Y', 'Z', 'E'};
  401. float destination[NUM_AXIS] = { 0.0, 0.0, 0.0, 0.0};
  402. static float delta[3] = {0.0, 0.0, 0.0};
  403. // For tracing an arc
  404. static float offset[3] = {0.0, 0.0, 0.0};
  405. static float feedrate = 1500.0, next_feedrate, saved_feedrate;
  406. // Determines Absolute or Relative Coordinates.
  407. // Also there is bool axis_relative_modes[] per axis flag.
  408. static bool relative_mode = false;
  409. #ifndef _DISABLE_M42_M226
  410. const int sensitive_pins[] = SENSITIVE_PINS; // Sensitive pin list for M42
  411. #endif //_DISABLE_M42_M226
  412. //static float tt = 0;
  413. //static float bt = 0;
  414. //Inactivity shutdown variables
  415. static unsigned long previous_millis_cmd = 0;
  416. unsigned long max_inactive_time = 0;
  417. static unsigned long stepper_inactive_time = DEFAULT_STEPPER_DEACTIVE_TIME*1000l;
  418. static unsigned long safetytimer_inactive_time = DEFAULT_SAFETYTIMER_TIME_MINS*60*1000ul;
  419. unsigned long starttime=0;
  420. unsigned long stoptime=0;
  421. unsigned long _usb_timer = 0;
  422. static uint8_t tmp_extruder;
  423. bool extruder_under_pressure = true;
  424. bool Stopped=false;
  425. #if NUM_SERVOS > 0
  426. Servo servos[NUM_SERVOS];
  427. #endif
  428. bool CooldownNoWait = true;
  429. bool target_direction;
  430. //Insert variables if CHDK is defined
  431. #ifdef CHDK
  432. unsigned long chdkHigh = 0;
  433. boolean chdkActive = false;
  434. #endif
  435. // save/restore printing
  436. static uint32_t saved_sdpos = 0;
  437. static uint8_t saved_printing_type = PRINTING_TYPE_SD;
  438. static float saved_pos[4] = { 0, 0, 0, 0 };
  439. // Feedrate hopefully derived from an active block of the planner at the time the print has been canceled, in mm/min.
  440. static float saved_feedrate2 = 0;
  441. static uint8_t saved_active_extruder = 0;
  442. static bool saved_extruder_under_pressure = false;
  443. static bool saved_extruder_relative_mode = false;
  444. //===========================================================================
  445. //=============================Routines======================================
  446. //===========================================================================
  447. void get_arc_coordinates();
  448. bool setTargetedHotend(int code);
  449. void serial_echopair_P(const char *s_P, float v)
  450. { serialprintPGM(s_P); SERIAL_ECHO(v); }
  451. void serial_echopair_P(const char *s_P, double v)
  452. { serialprintPGM(s_P); SERIAL_ECHO(v); }
  453. void serial_echopair_P(const char *s_P, unsigned long v)
  454. { serialprintPGM(s_P); SERIAL_ECHO(v); }
  455. #ifdef SDSUPPORT
  456. #include "SdFatUtil.h"
  457. int freeMemory() { return SdFatUtil::FreeRam(); }
  458. #else
  459. extern "C" {
  460. extern unsigned int __bss_end;
  461. extern unsigned int __heap_start;
  462. extern void *__brkval;
  463. int freeMemory() {
  464. int free_memory;
  465. if ((int)__brkval == 0)
  466. free_memory = ((int)&free_memory) - ((int)&__bss_end);
  467. else
  468. free_memory = ((int)&free_memory) - ((int)__brkval);
  469. return free_memory;
  470. }
  471. }
  472. #endif //!SDSUPPORT
  473. void setup_killpin()
  474. {
  475. #if defined(KILL_PIN) && KILL_PIN > -1
  476. SET_INPUT(KILL_PIN);
  477. WRITE(KILL_PIN,HIGH);
  478. #endif
  479. }
  480. // Set home pin
  481. void setup_homepin(void)
  482. {
  483. #if defined(HOME_PIN) && HOME_PIN > -1
  484. SET_INPUT(HOME_PIN);
  485. WRITE(HOME_PIN,HIGH);
  486. #endif
  487. }
  488. void setup_photpin()
  489. {
  490. #if defined(PHOTOGRAPH_PIN) && PHOTOGRAPH_PIN > -1
  491. SET_OUTPUT(PHOTOGRAPH_PIN);
  492. WRITE(PHOTOGRAPH_PIN, LOW);
  493. #endif
  494. }
  495. void setup_powerhold()
  496. {
  497. #if defined(SUICIDE_PIN) && SUICIDE_PIN > -1
  498. SET_OUTPUT(SUICIDE_PIN);
  499. WRITE(SUICIDE_PIN, HIGH);
  500. #endif
  501. #if defined(PS_ON_PIN) && PS_ON_PIN > -1
  502. SET_OUTPUT(PS_ON_PIN);
  503. #if defined(PS_DEFAULT_OFF)
  504. WRITE(PS_ON_PIN, PS_ON_ASLEEP);
  505. #else
  506. WRITE(PS_ON_PIN, PS_ON_AWAKE);
  507. #endif
  508. #endif
  509. }
  510. void suicide()
  511. {
  512. #if defined(SUICIDE_PIN) && SUICIDE_PIN > -1
  513. SET_OUTPUT(SUICIDE_PIN);
  514. WRITE(SUICIDE_PIN, LOW);
  515. #endif
  516. }
  517. void servo_init()
  518. {
  519. #if (NUM_SERVOS >= 1) && defined(SERVO0_PIN) && (SERVO0_PIN > -1)
  520. servos[0].attach(SERVO0_PIN);
  521. #endif
  522. #if (NUM_SERVOS >= 2) && defined(SERVO1_PIN) && (SERVO1_PIN > -1)
  523. servos[1].attach(SERVO1_PIN);
  524. #endif
  525. #if (NUM_SERVOS >= 3) && defined(SERVO2_PIN) && (SERVO2_PIN > -1)
  526. servos[2].attach(SERVO2_PIN);
  527. #endif
  528. #if (NUM_SERVOS >= 4) && defined(SERVO3_PIN) && (SERVO3_PIN > -1)
  529. servos[3].attach(SERVO3_PIN);
  530. #endif
  531. #if (NUM_SERVOS >= 5)
  532. #error "TODO: enter initalisation code for more servos"
  533. #endif
  534. }
  535. void stop_and_save_print_to_ram(float z_move, float e_move);
  536. void restore_print_from_ram_and_continue(float e_move);
  537. bool fans_check_enabled = true;
  538. bool filament_autoload_enabled = true;
  539. #ifdef TMC2130
  540. extern int8_t CrashDetectMenu;
  541. void crashdet_enable()
  542. {
  543. tmc2130_sg_stop_on_crash = true;
  544. eeprom_update_byte((uint8_t*)EEPROM_CRASH_DET, 0xFF);
  545. CrashDetectMenu = 1;
  546. }
  547. void crashdet_disable()
  548. {
  549. tmc2130_sg_stop_on_crash = false;
  550. tmc2130_sg_crash = 0;
  551. eeprom_update_byte((uint8_t*)EEPROM_CRASH_DET, 0x00);
  552. CrashDetectMenu = 0;
  553. }
  554. void crashdet_stop_and_save_print()
  555. {
  556. stop_and_save_print_to_ram(10, -DEFAULT_RETRACTION); //XY - no change, Z 10mm up, E -1mm retract
  557. }
  558. void crashdet_restore_print_and_continue()
  559. {
  560. restore_print_from_ram_and_continue(DEFAULT_RETRACTION); //XYZ = orig, E +1mm unretract
  561. // babystep_apply();
  562. }
  563. void crashdet_stop_and_save_print2()
  564. {
  565. cli();
  566. planner_abort_hard(); //abort printing
  567. cmdqueue_reset(); //empty cmdqueue
  568. card.sdprinting = false;
  569. card.closefile();
  570. // Reset and re-enable the stepper timer just before the global interrupts are enabled.
  571. st_reset_timer();
  572. sei();
  573. }
  574. void crashdet_detected(uint8_t mask)
  575. {
  576. // printf("CRASH_DETECTED");
  577. /* while (!is_buffer_empty())
  578. {
  579. process_commands();
  580. cmdqueue_pop_front();
  581. }*/
  582. st_synchronize();
  583. static uint8_t crashDet_counter = 0;
  584. bool automatic_recovery_after_crash = true;
  585. if (crashDet_counter++ == 0) {
  586. crashDetTimer.start();
  587. }
  588. else if (crashDetTimer.expired(CRASHDET_TIMER * 1000ul)){
  589. crashDetTimer.stop();
  590. crashDet_counter = 0;
  591. }
  592. else if(crashDet_counter == CRASHDET_COUNTER_MAX){
  593. automatic_recovery_after_crash = false;
  594. crashDetTimer.stop();
  595. crashDet_counter = 0;
  596. }
  597. else {
  598. crashDetTimer.start();
  599. }
  600. lcd_update_enable(true);
  601. lcd_implementation_clear();
  602. lcd_update(2);
  603. if (mask & X_AXIS_MASK)
  604. {
  605. eeprom_update_byte((uint8_t*)EEPROM_CRASH_COUNT_X, eeprom_read_byte((uint8_t*)EEPROM_CRASH_COUNT_X) + 1);
  606. eeprom_update_word((uint16_t*)EEPROM_CRASH_COUNT_X_TOT, eeprom_read_word((uint16_t*)EEPROM_CRASH_COUNT_X_TOT) + 1);
  607. }
  608. if (mask & Y_AXIS_MASK)
  609. {
  610. eeprom_update_byte((uint8_t*)EEPROM_CRASH_COUNT_Y, eeprom_read_byte((uint8_t*)EEPROM_CRASH_COUNT_Y) + 1);
  611. eeprom_update_word((uint16_t*)EEPROM_CRASH_COUNT_Y_TOT, eeprom_read_word((uint16_t*)EEPROM_CRASH_COUNT_Y_TOT) + 1);
  612. }
  613. lcd_update_enable(true);
  614. lcd_update(2);
  615. lcd_setstatuspgm(_T(MSG_CRASH_DETECTED));
  616. gcode_G28(true, true, false, false); //home X and Y
  617. st_synchronize();
  618. if (automatic_recovery_after_crash) {
  619. enquecommand_P(PSTR("CRASH_RECOVER"));
  620. }else{
  621. HotendTempBckp = degTargetHotend(active_extruder);
  622. setTargetHotend(0, active_extruder);
  623. bool yesno = lcd_show_fullscreen_message_yes_no_and_wait_P(_i("Crash detected. Resume print?"), false);
  624. lcd_update_enable(true);
  625. if (yesno)
  626. {
  627. char cmd1[10];
  628. strcpy(cmd1, "M109 S");
  629. strcat(cmd1, ftostr3(HotendTempBckp));
  630. enquecommand(cmd1);
  631. enquecommand_P(PSTR("CRASH_RECOVER"));
  632. }
  633. else
  634. {
  635. enquecommand_P(PSTR("CRASH_CANCEL"));
  636. }
  637. }
  638. }
  639. void crashdet_recover()
  640. {
  641. crashdet_restore_print_and_continue();
  642. tmc2130_sg_stop_on_crash = true;
  643. }
  644. void crashdet_cancel()
  645. {
  646. tmc2130_sg_stop_on_crash = true;
  647. if (saved_printing_type == PRINTING_TYPE_SD) {
  648. lcd_print_stop();
  649. }else if(saved_printing_type == PRINTING_TYPE_USB){
  650. SERIAL_ECHOLNPGM("// action:cancel"); //for Octoprint: works the same as clicking "Abort" button in Octoprint GUI
  651. SERIAL_PROTOCOLLNRPGM(_T(MSG_OK));
  652. }
  653. }
  654. #endif //TMC2130
  655. void failstats_reset_print()
  656. {
  657. eeprom_update_byte((uint8_t *)EEPROM_CRASH_COUNT_X, 0);
  658. eeprom_update_byte((uint8_t *)EEPROM_CRASH_COUNT_Y, 0);
  659. eeprom_update_byte((uint8_t *)EEPROM_FERROR_COUNT, 0);
  660. eeprom_update_byte((uint8_t *)EEPROM_POWER_COUNT, 0);
  661. }
  662. #ifdef MESH_BED_LEVELING
  663. enum MeshLevelingState { MeshReport, MeshStart, MeshNext, MeshSet };
  664. #endif
  665. // Factory reset function
  666. // This function is used to erase parts or whole EEPROM memory which is used for storing calibration and and so on.
  667. // Level input parameter sets depth of reset
  668. // Quiet parameter masks all waitings for user interact.
  669. int er_progress = 0;
  670. void factory_reset(char level, bool quiet)
  671. {
  672. lcd_implementation_clear();
  673. int cursor_pos = 0;
  674. switch (level) {
  675. // Level 0: Language reset
  676. case 0:
  677. WRITE(BEEPER, HIGH);
  678. _delay_ms(100);
  679. WRITE(BEEPER, LOW);
  680. lang_reset();
  681. break;
  682. //Level 1: Reset statistics
  683. case 1:
  684. WRITE(BEEPER, HIGH);
  685. _delay_ms(100);
  686. WRITE(BEEPER, LOW);
  687. eeprom_update_dword((uint32_t *)EEPROM_TOTALTIME, 0);
  688. eeprom_update_dword((uint32_t *)EEPROM_FILAMENTUSED, 0);
  689. eeprom_update_byte((uint8_t *)EEPROM_CRASH_COUNT_X, 0);
  690. eeprom_update_byte((uint8_t *)EEPROM_CRASH_COUNT_Y, 0);
  691. eeprom_update_byte((uint8_t *)EEPROM_FERROR_COUNT, 0);
  692. eeprom_update_byte((uint8_t *)EEPROM_POWER_COUNT, 0);
  693. eeprom_update_word((uint16_t *)EEPROM_CRASH_COUNT_X_TOT, 0);
  694. eeprom_update_word((uint16_t *)EEPROM_CRASH_COUNT_Y_TOT, 0);
  695. eeprom_update_word((uint16_t *)EEPROM_FERROR_COUNT_TOT, 0);
  696. eeprom_update_word((uint16_t *)EEPROM_POWER_COUNT_TOT, 0);
  697. lcd_menu_statistics();
  698. break;
  699. // Level 2: Prepare for shipping
  700. case 2:
  701. //lcd_printPGM(PSTR("Factory RESET"));
  702. //lcd_print_at_PGM(1,2,PSTR("Shipping prep"));
  703. // Force language selection at the next boot up.
  704. lang_reset();
  705. // Force the "Follow calibration flow" message at the next boot up.
  706. calibration_status_store(CALIBRATION_STATUS_Z_CALIBRATION);
  707. eeprom_write_byte((uint8_t*)EEPROM_WIZARD_ACTIVE, 1); //run wizard
  708. farm_no = 0;
  709. farm_mode = false;
  710. eeprom_update_byte((uint8_t*)EEPROM_FARM_MODE, farm_mode);
  711. EEPROM_save_B(EEPROM_FARM_NUMBER, &farm_no);
  712. eeprom_update_dword((uint32_t *)EEPROM_TOTALTIME, 0);
  713. eeprom_update_dword((uint32_t *)EEPROM_FILAMENTUSED, 0);
  714. eeprom_update_word((uint16_t *)EEPROM_CRASH_COUNT_X_TOT, 0);
  715. eeprom_update_word((uint16_t *)EEPROM_CRASH_COUNT_Y_TOT, 0);
  716. eeprom_update_word((uint16_t *)EEPROM_FERROR_COUNT_TOT, 0);
  717. eeprom_update_word((uint16_t *)EEPROM_POWER_COUNT_TOT, 0);
  718. fsensor_enable();
  719. fautoload_set(true);
  720. WRITE(BEEPER, HIGH);
  721. _delay_ms(100);
  722. WRITE(BEEPER, LOW);
  723. //_delay_ms(2000);
  724. break;
  725. // Level 3: erase everything, whole EEPROM will be set to 0xFF
  726. case 3:
  727. lcd_printPGM(PSTR("Factory RESET"));
  728. lcd_print_at_PGM(1, 2, PSTR("ERASING all data"));
  729. WRITE(BEEPER, HIGH);
  730. _delay_ms(100);
  731. WRITE(BEEPER, LOW);
  732. er_progress = 0;
  733. lcd_print_at_PGM(3, 3, PSTR(" "));
  734. lcd_print_at(3, 3, er_progress);
  735. // Erase EEPROM
  736. for (int i = 0; i < 4096; i++) {
  737. eeprom_write_byte((uint8_t*)i, 0xFF);
  738. if (i % 41 == 0) {
  739. er_progress++;
  740. lcd_print_at_PGM(3, 3, PSTR(" "));
  741. lcd_print_at(3, 3, er_progress);
  742. lcd_printPGM(PSTR("%"));
  743. }
  744. }
  745. break;
  746. case 4:
  747. bowden_menu();
  748. break;
  749. default:
  750. break;
  751. }
  752. }
  753. #include "LiquidCrystal_Prusa.h"
  754. extern LiquidCrystal_Prusa lcd;
  755. FILE _lcdout = {0};
  756. int lcd_putchar(char c, FILE *stream)
  757. {
  758. lcd.write(c);
  759. return 0;
  760. }
  761. FILE _uartout = {0};
  762. int uart_putchar(char c, FILE *stream)
  763. {
  764. MYSERIAL.write(c);
  765. return 0;
  766. }
  767. void lcd_splash()
  768. {
  769. // lcd_print_at_PGM(0, 1, PSTR(" Original Prusa "));
  770. // lcd_print_at_PGM(0, 2, PSTR(" 3D Printers "));
  771. // lcd.print_P(PSTR("\x1b[1;3HOriginal Prusa\x1b[2;4H3D Printers"));
  772. // fputs_P(PSTR(ESC_2J ESC_H(1,1) "Original Prusa i3" ESC_H(3,2) "Prusa Research"), lcdout);
  773. lcd_puts_P(PSTR(ESC_2J ESC_H(1,1) "Original Prusa i3" ESC_H(3,2) "Prusa Research"));
  774. // lcd_printf_P(_N(ESC_2J "x:%.3f\ny:%.3f\nz:%.3f\ne:%.3f"), _x, _y, _z, _e);
  775. }
  776. void factory_reset()
  777. {
  778. KEEPALIVE_STATE(PAUSED_FOR_USER);
  779. if (!READ(BTN_ENC))
  780. {
  781. _delay_ms(1000);
  782. if (!READ(BTN_ENC))
  783. {
  784. lcd_implementation_clear();
  785. lcd_printPGM(PSTR("Factory RESET"));
  786. SET_OUTPUT(BEEPER);
  787. WRITE(BEEPER, HIGH);
  788. while (!READ(BTN_ENC));
  789. WRITE(BEEPER, LOW);
  790. _delay_ms(2000);
  791. char level = reset_menu();
  792. factory_reset(level, false);
  793. switch (level) {
  794. case 0: _delay_ms(0); break;
  795. case 1: _delay_ms(0); break;
  796. case 2: _delay_ms(0); break;
  797. case 3: _delay_ms(0); break;
  798. }
  799. // _delay_ms(100);
  800. /*
  801. #ifdef MESH_BED_LEVELING
  802. _delay_ms(2000);
  803. if (!READ(BTN_ENC))
  804. {
  805. WRITE(BEEPER, HIGH);
  806. _delay_ms(100);
  807. WRITE(BEEPER, LOW);
  808. _delay_ms(200);
  809. WRITE(BEEPER, HIGH);
  810. _delay_ms(100);
  811. WRITE(BEEPER, LOW);
  812. int _z = 0;
  813. calibration_status_store(CALIBRATION_STATUS_CALIBRATED);
  814. EEPROM_save_B(EEPROM_BABYSTEP_X, &_z);
  815. EEPROM_save_B(EEPROM_BABYSTEP_Y, &_z);
  816. EEPROM_save_B(EEPROM_BABYSTEP_Z, &_z);
  817. }
  818. else
  819. {
  820. WRITE(BEEPER, HIGH);
  821. _delay_ms(100);
  822. WRITE(BEEPER, LOW);
  823. }
  824. #endif // mesh */
  825. }
  826. }
  827. else
  828. {
  829. //_delay_ms(1000); // wait 1sec to display the splash screen // what's this and why do we need it?? - andre
  830. }
  831. KEEPALIVE_STATE(IN_HANDLER);
  832. }
  833. void show_fw_version_warnings() {
  834. if (FW_DEV_VERSION == FW_VERSION_GOLD || FW_DEV_VERSION == FW_VERSION_RC) return;
  835. switch (FW_DEV_VERSION) {
  836. case(FW_VERSION_ALPHA): lcd_show_fullscreen_message_and_wait_P(_i("You are using firmware alpha version. This is development version. Using this version is not recommended and may cause printer damage.")); break;////MSG_FW_VERSION_ALPHA c=20 r=8
  837. case(FW_VERSION_BETA): lcd_show_fullscreen_message_and_wait_P(_i("You are using firmware beta version. This is development version. Using this version is not recommended and may cause printer damage.")); break;////MSG_FW_VERSION_BETA c=20 r=8
  838. case(FW_VERSION_DEVEL):
  839. case(FW_VERSION_DEBUG):
  840. lcd_update_enable(false);
  841. lcd_implementation_clear();
  842. #if FW_DEV_VERSION == FW_VERSION_DEVEL
  843. lcd_print_at_PGM(0, 0, PSTR("Development build !!"));
  844. #else
  845. lcd_print_at_PGM(0, 0, PSTR("Debbugging build !!!"));
  846. #endif
  847. lcd_print_at_PGM(0, 1, PSTR("May destroy printer!"));
  848. lcd_print_at_PGM(0, 2, PSTR("ver ")); lcd_printPGM(PSTR(FW_VERSION_FULL));
  849. lcd_print_at_PGM(0, 3, PSTR(FW_REPOSITORY));
  850. lcd_wait_for_click();
  851. break;
  852. // default: lcd_show_fullscreen_message_and_wait_P(_i("WARNING: This is an unofficial, unsupported build. Use at your own risk!")); break;////MSG_FW_VERSION_UNKNOWN c=20 r=8
  853. }
  854. lcd_update_enable(true);
  855. }
  856. uint8_t check_printer_version()
  857. {
  858. uint8_t version_changed = 0;
  859. uint16_t printer_type = eeprom_read_word((uint16_t*)EEPROM_PRINTER_TYPE);
  860. uint16_t motherboard = eeprom_read_word((uint16_t*)EEPROM_BOARD_TYPE);
  861. if (printer_type != PRINTER_TYPE) {
  862. if (printer_type == 0xffff) eeprom_write_word((uint16_t*)EEPROM_PRINTER_TYPE, PRINTER_TYPE);
  863. else version_changed |= 0b10;
  864. }
  865. if (motherboard != MOTHERBOARD) {
  866. if(motherboard == 0xffff) eeprom_write_word((uint16_t*)EEPROM_BOARD_TYPE, MOTHERBOARD);
  867. else version_changed |= 0b01;
  868. }
  869. return version_changed;
  870. }
  871. void erase_eeprom_section(uint16_t offset, uint16_t bytes)
  872. {
  873. for (int i = offset; i < (offset+bytes); i++) eeprom_write_byte((uint8_t*)i, 0xFF);
  874. }
  875. #if (LANG_MODE != 0) //secondary language support
  876. #ifdef W25X20CL
  877. #include "bootapp.h" //bootloader support
  878. // language update from external flash
  879. #define LANGBOOT_BLOCKSIZE 0x1000
  880. #define LANGBOOT_RAMBUFFER 0x0800
  881. void update_sec_lang_from_external_flash()
  882. {
  883. if ((boot_app_magic == BOOT_APP_MAGIC) && (boot_app_flags & BOOT_APP_FLG_USER0))
  884. {
  885. uint8_t lang = boot_reserved >> 4;
  886. uint8_t state = boot_reserved & 0xf;
  887. lang_table_header_t header;
  888. uint32_t src_addr;
  889. if (lang_get_header(lang, &header, &src_addr))
  890. {
  891. fputs_P(PSTR(ESC_H(1,3) "Language update."), lcdout);
  892. for (uint8_t i = 0; i < state; i++) fputc('.', lcdout);
  893. delay(100);
  894. boot_reserved = (state + 1) | (lang << 4);
  895. if ((state * LANGBOOT_BLOCKSIZE) < header.size)
  896. {
  897. cli();
  898. uint16_t size = header.size - state * LANGBOOT_BLOCKSIZE;
  899. if (size > LANGBOOT_BLOCKSIZE) size = LANGBOOT_BLOCKSIZE;
  900. w25x20cl_rd_data(src_addr + state * LANGBOOT_BLOCKSIZE, (uint8_t*)LANGBOOT_RAMBUFFER, size);
  901. if (state == 0)
  902. {
  903. //TODO - check header integrity
  904. }
  905. bootapp_ram2flash(LANGBOOT_RAMBUFFER, _SEC_LANG_TABLE + state * LANGBOOT_BLOCKSIZE, size);
  906. }
  907. else
  908. {
  909. //TODO - check sec lang data integrity
  910. eeprom_update_byte((unsigned char *)EEPROM_LANG, LANG_ID_SEC);
  911. }
  912. }
  913. }
  914. boot_app_flags &= ~BOOT_APP_FLG_USER0;
  915. }
  916. #ifdef DEBUG_W25X20CL
  917. uint8_t lang_xflash_enum_codes(uint16_t* codes)
  918. {
  919. lang_table_header_t header;
  920. uint8_t count = 0;
  921. uint32_t addr = 0x00000;
  922. while (1)
  923. {
  924. printf_P(_n("LANGTABLE%d:"), count);
  925. w25x20cl_rd_data(addr, (uint8_t*)&header, sizeof(lang_table_header_t));
  926. if (header.magic != LANG_MAGIC)
  927. {
  928. printf_P(_n("NG!\n"));
  929. break;
  930. }
  931. printf_P(_n("OK\n"));
  932. printf_P(_n(" _lt_magic = 0x%08lx %S\n"), header.magic, (header.magic==LANG_MAGIC)?_n("OK"):_n("NA"));
  933. printf_P(_n(" _lt_size = 0x%04x (%d)\n"), header.size, header.size);
  934. printf_P(_n(" _lt_count = 0x%04x (%d)\n"), header.count, header.count);
  935. printf_P(_n(" _lt_chsum = 0x%04x\n"), header.checksum);
  936. printf_P(_n(" _lt_code = 0x%04x (%c%c)\n"), header.code, header.code >> 8, header.code & 0xff);
  937. printf_P(_n(" _lt_sign = 0x%08lx\n"), header.signature);
  938. addr += header.size;
  939. codes[count] = header.code;
  940. count ++;
  941. }
  942. return count;
  943. }
  944. void list_sec_lang_from_external_flash()
  945. {
  946. uint16_t codes[8];
  947. uint8_t count = lang_xflash_enum_codes(codes);
  948. printf_P(_n("XFlash lang count = %hhd\n"), count);
  949. }
  950. #endif //DEBUG_W25X20CL
  951. #endif //W25X20CL
  952. #endif //(LANG_MODE != 0)
  953. // "Setup" function is called by the Arduino framework on startup.
  954. // Before startup, the Timers-functions (PWM)/Analog RW and HardwareSerial provided by the Arduino-code
  955. // are initialized by the main() routine provided by the Arduino framework.
  956. void setup()
  957. {
  958. lcd_init();
  959. fdev_setup_stream(lcdout, lcd_putchar, NULL, _FDEV_SETUP_WRITE); //setup lcdout stream
  960. spi_init();
  961. lcd_splash();
  962. #ifdef W25X20CL
  963. // Enter an STK500 compatible Optiboot boot loader waiting for flashing the languages to an external flash memory.
  964. optiboot_w25x20cl_enter();
  965. #endif
  966. #if (LANG_MODE != 0) //secondary language support
  967. #ifdef W25X20CL
  968. if (w25x20cl_init())
  969. update_sec_lang_from_external_flash();
  970. else
  971. kill(_i("External SPI flash W25X20CL not responding."));
  972. #endif //W25X20CL
  973. #endif //(LANG_MODE != 0)
  974. setup_killpin();
  975. setup_powerhold();
  976. farm_mode = eeprom_read_byte((uint8_t*)EEPROM_FARM_MODE);
  977. EEPROM_read_B(EEPROM_FARM_NUMBER, &farm_no);
  978. if ((farm_mode == 0xFF && farm_no == 0) || ((uint16_t)farm_no == 0xFFFF))
  979. farm_mode = false; //if farm_mode has not been stored to eeprom yet and farm number is set to zero or EEPROM is fresh, deactivate farm mode
  980. if ((uint16_t)farm_no == 0xFFFF) farm_no = 0;
  981. selectedSerialPort = eeprom_read_byte((uint8_t*)EEPROM_SECOND_SERIAL_ACTIVE);
  982. if (selectedSerialPort == 0xFF) selectedSerialPort = 0;
  983. if (farm_mode)
  984. {
  985. no_response = true; //we need confirmation by recieving PRUSA thx
  986. important_status = 8;
  987. prusa_statistics(8);
  988. selectedSerialPort = 1;
  989. #ifdef TMC2130
  990. //increased extruder current (PFW363)
  991. tmc2130_current_h[E_AXIS] = 36;
  992. tmc2130_current_r[E_AXIS] = 36;
  993. #endif //TMC2130
  994. //disabled filament autoload (PFW360)
  995. filament_autoload_enabled = false;
  996. eeprom_update_byte((uint8_t*)EEPROM_FSENS_AUTOLOAD_ENABLED, 0);
  997. }
  998. MYSERIAL.begin(BAUDRATE);
  999. fdev_setup_stream(uartout, uart_putchar, NULL, _FDEV_SETUP_WRITE); //setup uart out stream
  1000. stdout = uartout;
  1001. SERIAL_PROTOCOLLNPGM("start");
  1002. SERIAL_ECHO_START;
  1003. printf_P(PSTR(" " FW_VERSION_FULL "\n"));
  1004. uart2_init();
  1005. #ifdef DEBUG_SEC_LANG
  1006. lang_table_header_t header;
  1007. uint32_t src_addr = 0x00000;
  1008. if (lang_get_header(1, &header, &src_addr))
  1009. {
  1010. //this is comparsion of some printing-methods regarding to flash space usage and code size/readability
  1011. #define LT_PRINT_TEST 2
  1012. // flash usage
  1013. // total p.test
  1014. //0 252718 t+c text code
  1015. //1 253142 424 170 254
  1016. //2 253040 322 164 158
  1017. //3 253248 530 135 395
  1018. #if (LT_PRINT_TEST==1) //not optimized printf
  1019. printf_P(_n(" _src_addr = 0x%08lx\n"), src_addr);
  1020. printf_P(_n(" _lt_magic = 0x%08lx %S\n"), header.magic, (header.magic==LANG_MAGIC)?_n("OK"):_n("NA"));
  1021. printf_P(_n(" _lt_size = 0x%04x (%d)\n"), header.size, header.size);
  1022. printf_P(_n(" _lt_count = 0x%04x (%d)\n"), header.count, header.count);
  1023. printf_P(_n(" _lt_chsum = 0x%04x\n"), header.checksum);
  1024. printf_P(_n(" _lt_code = 0x%04x (%c%c)\n"), header.code, header.code >> 8, header.code & 0xff);
  1025. printf_P(_n(" _lt_sign = 0x%08lx\n"), header.signature);
  1026. #elif (LT_PRINT_TEST==2) //optimized printf
  1027. printf_P(
  1028. _n(
  1029. " _src_addr = 0x%08lx\n"
  1030. " _lt_magic = 0x%08lx %S\n"
  1031. " _lt_size = 0x%04x (%d)\n"
  1032. " _lt_count = 0x%04x (%d)\n"
  1033. " _lt_chsum = 0x%04x\n"
  1034. " _lt_code = 0x%04x (%c%c)\n"
  1035. " _lt_resv1 = 0x%08lx\n"
  1036. ),
  1037. src_addr,
  1038. header.magic, (header.magic==LANG_MAGIC)?_n("OK"):_n("NA"),
  1039. header.size, header.size,
  1040. header.count, header.count,
  1041. header.checksum,
  1042. header.code, header.code >> 8, header.code & 0xff,
  1043. header.signature
  1044. );
  1045. #elif (LT_PRINT_TEST==3) //arduino print/println (leading zeros not solved)
  1046. MYSERIAL.print(" _src_addr = 0x");
  1047. MYSERIAL.println(src_addr, 16);
  1048. MYSERIAL.print(" _lt_magic = 0x");
  1049. MYSERIAL.print(header.magic, 16);
  1050. MYSERIAL.println((header.magic==LANG_MAGIC)?" OK":" NA");
  1051. MYSERIAL.print(" _lt_size = 0x");
  1052. MYSERIAL.print(header.size, 16);
  1053. MYSERIAL.print(" (");
  1054. MYSERIAL.print(header.size, 10);
  1055. MYSERIAL.println(")");
  1056. MYSERIAL.print(" _lt_count = 0x");
  1057. MYSERIAL.print(header.count, 16);
  1058. MYSERIAL.print(" (");
  1059. MYSERIAL.print(header.count, 10);
  1060. MYSERIAL.println(")");
  1061. MYSERIAL.print(" _lt_chsum = 0x");
  1062. MYSERIAL.println(header.checksum, 16);
  1063. MYSERIAL.print(" _lt_code = 0x");
  1064. MYSERIAL.print(header.code, 16);
  1065. MYSERIAL.print(" (");
  1066. MYSERIAL.print((char)(header.code >> 8), 0);
  1067. MYSERIAL.print((char)(header.code & 0xff), 0);
  1068. MYSERIAL.println(")");
  1069. MYSERIAL.print(" _lt_resv1 = 0x");
  1070. MYSERIAL.println(header.signature, 16);
  1071. #endif //(LT_PRINT_TEST==)
  1072. #undef LT_PRINT_TEST
  1073. #if 0
  1074. w25x20cl_rd_data(0x25ba, (uint8_t*)&block_buffer, 1024);
  1075. for (uint16_t i = 0; i < 1024; i++)
  1076. {
  1077. if ((i % 16) == 0) printf_P(_n("%04x:"), 0x25ba+i);
  1078. printf_P(_n(" %02x"), ((uint8_t*)&block_buffer)[i]);
  1079. if ((i % 16) == 15) putchar('\n');
  1080. }
  1081. #endif
  1082. uint16_t sum = 0;
  1083. for (uint16_t i = 0; i < header.size; i++)
  1084. sum += (uint16_t)pgm_read_byte((uint8_t*)(_SEC_LANG_TABLE + i)) << ((i & 1)?0:8);
  1085. printf_P(_n("_SEC_LANG_TABLE checksum = %04x\n"), sum);
  1086. sum -= header.checksum; //subtract checksum
  1087. printf_P(_n("_SEC_LANG_TABLE checksum = %04x\n"), sum);
  1088. sum = (sum >> 8) | ((sum & 0xff) << 8); //swap bytes
  1089. if (sum == header.checksum)
  1090. printf_P(_n("Checksum OK\n"), sum);
  1091. else
  1092. printf_P(_n("Checksum NG\n"), sum);
  1093. }
  1094. else
  1095. printf_P(_n("lang_get_header failed!\n"));
  1096. #if 0
  1097. for (uint16_t i = 0; i < 1024*10; i++)
  1098. {
  1099. if ((i % 16) == 0) printf_P(_n("%04x:"), _SEC_LANG_TABLE+i);
  1100. printf_P(_n(" %02x"), pgm_read_byte((uint8_t*)(_SEC_LANG_TABLE+i)));
  1101. if ((i % 16) == 15) putchar('\n');
  1102. }
  1103. #endif
  1104. #if 0
  1105. SERIAL_ECHOLN("Reading eeprom from 0 to 100: start");
  1106. for (int i = 0; i < 4096; ++i) {
  1107. int b = eeprom_read_byte((unsigned char*)i);
  1108. if (b != 255) {
  1109. SERIAL_ECHO(i);
  1110. SERIAL_ECHO(":");
  1111. SERIAL_ECHO(b);
  1112. SERIAL_ECHOLN("");
  1113. }
  1114. }
  1115. SERIAL_ECHOLN("Reading eeprom from 0 to 100: done");
  1116. #endif
  1117. #endif //DEBUG_SEC_LANG
  1118. // Check startup - does nothing if bootloader sets MCUSR to 0
  1119. byte mcu = MCUSR;
  1120. /* if (mcu & 1) SERIAL_ECHOLNRPGM(_T(MSG_POWERUP));
  1121. if (mcu & 2) SERIAL_ECHOLNRPGM(MSG_EXTERNAL_RESET);
  1122. if (mcu & 4) SERIAL_ECHOLNRPGM(MSG_BROWNOUT_RESET);
  1123. if (mcu & 8) SERIAL_ECHOLNRPGM(MSG_WATCHDOG_RESET);
  1124. if (mcu & 32) SERIAL_ECHOLNRPGM(MSG_SOFTWARE_RESET);*/
  1125. if (mcu & 1) puts_P(_T(MSG_POWERUP));
  1126. if (mcu & 2) puts_P(MSG_EXTERNAL_RESET);
  1127. if (mcu & 4) puts_P(MSG_BROWNOUT_RESET);
  1128. if (mcu & 8) puts_P(MSG_WATCHDOG_RESET);
  1129. if (mcu & 32) puts_P(MSG_SOFTWARE_RESET);
  1130. MCUSR = 0;
  1131. //SERIAL_ECHORPGM(MSG_MARLIN);
  1132. //SERIAL_ECHOLNRPGM(VERSION_STRING);
  1133. #ifdef STRING_VERSION_CONFIG_H
  1134. #ifdef STRING_CONFIG_H_AUTHOR
  1135. SERIAL_ECHO_START;
  1136. SERIAL_ECHORPGM(_i(" Last Updated: "));////MSG_CONFIGURATION_VER c=0 r=0
  1137. SERIAL_ECHOPGM(STRING_VERSION_CONFIG_H);
  1138. SERIAL_ECHORPGM(_n(" | Author: "));////MSG_AUTHOR c=0 r=0
  1139. SERIAL_ECHOLNPGM(STRING_CONFIG_H_AUTHOR);
  1140. SERIAL_ECHOPGM("Compiled: ");
  1141. SERIAL_ECHOLNPGM(__DATE__);
  1142. #endif
  1143. #endif
  1144. SERIAL_ECHO_START;
  1145. SERIAL_ECHORPGM(_i(" Free Memory: "));////MSG_FREE_MEMORY c=0 r=0
  1146. SERIAL_ECHO(freeMemory());
  1147. SERIAL_ECHORPGM(_i(" PlannerBufferBytes: "));////MSG_PLANNER_BUFFER_BYTES c=0 r=0
  1148. SERIAL_ECHOLN((int)sizeof(block_t)*BLOCK_BUFFER_SIZE);
  1149. //lcd_update_enable(false); // why do we need this?? - andre
  1150. // loads data from EEPROM if available else uses defaults (and resets step acceleration rate)
  1151. bool previous_settings_retrieved = false;
  1152. uint8_t hw_changed = check_printer_version();
  1153. if (!(hw_changed & 0b10)) { //if printer version wasn't changed, check for eeprom version and retrieve settings from eeprom in case that version wasn't changed
  1154. previous_settings_retrieved = Config_RetrieveSettings(EEPROM_OFFSET);
  1155. }
  1156. else { //printer version was changed so use default settings
  1157. Config_ResetDefault();
  1158. }
  1159. SdFatUtil::set_stack_guard(); //writes magic number at the end of static variables to protect against overwriting static memory by stack
  1160. tp_init(); // Initialize temperature loop
  1161. lcd_splash(); // we need to do this again, because tp_init() kills lcd
  1162. plan_init(); // Initialize planner;
  1163. factory_reset();
  1164. #ifdef TMC2130
  1165. uint8_t silentMode = eeprom_read_byte((uint8_t*)EEPROM_SILENT);
  1166. if (silentMode == 0xff) silentMode = 0;
  1167. // tmc2130_mode = silentMode?TMC2130_MODE_SILENT:TMC2130_MODE_NORMAL;
  1168. tmc2130_mode = TMC2130_MODE_NORMAL;
  1169. uint8_t crashdet = eeprom_read_byte((uint8_t*)EEPROM_CRASH_DET);
  1170. if (crashdet && !farm_mode)
  1171. {
  1172. crashdet_enable();
  1173. puts_P(_N("CrashDetect ENABLED!"));
  1174. }
  1175. else
  1176. {
  1177. crashdet_disable();
  1178. puts_P(_N("CrashDetect DISABLED"));
  1179. }
  1180. #ifdef TMC2130_LINEARITY_CORRECTION
  1181. #ifdef TMC2130_LINEARITY_CORRECTION_XYZ
  1182. tmc2130_wave_fac[X_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_WAVE_X_FAC);
  1183. tmc2130_wave_fac[Y_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_WAVE_Y_FAC);
  1184. tmc2130_wave_fac[Z_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_WAVE_Z_FAC);
  1185. #endif //TMC2130_LINEARITY_CORRECTION_XYZ
  1186. tmc2130_wave_fac[E_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_WAVE_E_FAC);
  1187. if (tmc2130_wave_fac[X_AXIS] == 0xff) tmc2130_wave_fac[X_AXIS] = 0;
  1188. if (tmc2130_wave_fac[Y_AXIS] == 0xff) tmc2130_wave_fac[Y_AXIS] = 0;
  1189. if (tmc2130_wave_fac[Z_AXIS] == 0xff) tmc2130_wave_fac[Z_AXIS] = 0;
  1190. if (tmc2130_wave_fac[E_AXIS] == 0xff) tmc2130_wave_fac[E_AXIS] = 0;
  1191. #endif //TMC2130_LINEARITY_CORRECTION
  1192. #ifdef TMC2130_VARIABLE_RESOLUTION
  1193. tmc2130_mres[X_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_X_MRES);
  1194. tmc2130_mres[Y_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_Y_MRES);
  1195. tmc2130_mres[Z_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_Z_MRES);
  1196. tmc2130_mres[E_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_E_MRES);
  1197. if (tmc2130_mres[X_AXIS] == 0xff) tmc2130_mres[X_AXIS] = tmc2130_usteps2mres(TMC2130_USTEPS_XY);
  1198. if (tmc2130_mres[Y_AXIS] == 0xff) tmc2130_mres[Y_AXIS] = tmc2130_usteps2mres(TMC2130_USTEPS_XY);
  1199. if (tmc2130_mres[Z_AXIS] == 0xff) tmc2130_mres[Z_AXIS] = tmc2130_usteps2mres(TMC2130_USTEPS_Z);
  1200. if (tmc2130_mres[E_AXIS] == 0xff) tmc2130_mres[E_AXIS] = tmc2130_usteps2mres(TMC2130_USTEPS_E);
  1201. eeprom_update_byte((uint8_t*)EEPROM_TMC2130_X_MRES, tmc2130_mres[X_AXIS]);
  1202. eeprom_update_byte((uint8_t*)EEPROM_TMC2130_Y_MRES, tmc2130_mres[Y_AXIS]);
  1203. eeprom_update_byte((uint8_t*)EEPROM_TMC2130_Z_MRES, tmc2130_mres[Z_AXIS]);
  1204. eeprom_update_byte((uint8_t*)EEPROM_TMC2130_E_MRES, tmc2130_mres[E_AXIS]);
  1205. #else //TMC2130_VARIABLE_RESOLUTION
  1206. tmc2130_mres[X_AXIS] = tmc2130_usteps2mres(TMC2130_USTEPS_XY);
  1207. tmc2130_mres[Y_AXIS] = tmc2130_usteps2mres(TMC2130_USTEPS_XY);
  1208. tmc2130_mres[Z_AXIS] = tmc2130_usteps2mres(TMC2130_USTEPS_Z);
  1209. tmc2130_mres[E_AXIS] = tmc2130_usteps2mres(TMC2130_USTEPS_E);
  1210. #endif //TMC2130_VARIABLE_RESOLUTION
  1211. #endif //TMC2130
  1212. st_init(); // Initialize stepper, this enables interrupts!
  1213. #ifdef TMC2130
  1214. tmc2130_mode = silentMode?TMC2130_MODE_SILENT:TMC2130_MODE_NORMAL;
  1215. tmc2130_init();
  1216. #endif //TMC2130
  1217. setup_photpin();
  1218. servo_init();
  1219. // Reset the machine correction matrix.
  1220. // It does not make sense to load the correction matrix until the machine is homed.
  1221. world2machine_reset();
  1222. #ifdef PAT9125
  1223. fsensor_init();
  1224. #endif //PAT9125
  1225. #if defined(CONTROLLERFAN_PIN) && (CONTROLLERFAN_PIN > -1)
  1226. SET_OUTPUT(CONTROLLERFAN_PIN); //Set pin used for driver cooling fan
  1227. #endif
  1228. setup_homepin();
  1229. #ifdef TMC2130
  1230. if (1) {
  1231. // try to run to zero phase before powering the Z motor.
  1232. // Move in negative direction
  1233. WRITE(Z_DIR_PIN,INVERT_Z_DIR);
  1234. // Round the current micro-micro steps to micro steps.
  1235. for (uint16_t phase = (tmc2130_rd_MSCNT(Z_AXIS) + 8) >> 4; phase > 0; -- phase) {
  1236. // Until the phase counter is reset to zero.
  1237. WRITE(Z_STEP_PIN, !INVERT_Z_STEP_PIN);
  1238. delay(2);
  1239. WRITE(Z_STEP_PIN, INVERT_Z_STEP_PIN);
  1240. delay(2);
  1241. }
  1242. }
  1243. #endif //TMC2130
  1244. #if defined(Z_AXIS_ALWAYS_ON)
  1245. enable_z();
  1246. #endif
  1247. farm_mode = eeprom_read_byte((uint8_t*)EEPROM_FARM_MODE);
  1248. EEPROM_read_B(EEPROM_FARM_NUMBER, &farm_no);
  1249. if ((farm_mode == 0xFF && farm_no == 0) || (farm_no == 0xFFFF)) farm_mode = false; //if farm_mode has not been stored to eeprom yet and farm number is set to zero or EEPROM is fresh, deactivate farm mode
  1250. if (farm_no == 0xFFFF) farm_no = 0;
  1251. if (farm_mode)
  1252. {
  1253. prusa_statistics(8);
  1254. }
  1255. // Enable Toshiba FlashAir SD card / WiFi enahanced card.
  1256. card.ToshibaFlashAir_enable(eeprom_read_byte((unsigned char*)EEPROM_TOSHIBA_FLASH_AIR_COMPATIBLITY) == 1);
  1257. if (eeprom_read_dword((uint32_t*)(EEPROM_TOP - 4)) == 0x0ffffffff &&
  1258. eeprom_read_dword((uint32_t*)(EEPROM_TOP - 8)) == 0x0ffffffff) {
  1259. // Maiden startup. The firmware has been loaded and first started on a virgin RAMBo board,
  1260. // where all the EEPROM entries are set to 0x0ff.
  1261. // Once a firmware boots up, it forces at least a language selection, which changes
  1262. // EEPROM_LANG to number lower than 0x0ff.
  1263. // 1) Set a high power mode.
  1264. #ifdef TMC2130
  1265. eeprom_write_byte((uint8_t*)EEPROM_SILENT, 0);
  1266. tmc2130_mode = TMC2130_MODE_NORMAL;
  1267. #endif //TMC2130
  1268. eeprom_write_byte((uint8_t*)EEPROM_WIZARD_ACTIVE, 1); //run wizard
  1269. }
  1270. // Force SD card update. Otherwise the SD card update is done from loop() on card.checkautostart(false),
  1271. // but this times out if a blocking dialog is shown in setup().
  1272. card.initsd();
  1273. #ifdef DEBUG_SD_SPEED_TEST
  1274. if (card.cardOK)
  1275. {
  1276. uint8_t* buff = (uint8_t*)block_buffer;
  1277. uint32_t block = 0;
  1278. uint32_t sumr = 0;
  1279. uint32_t sumw = 0;
  1280. for (int i = 0; i < 1024; i++)
  1281. {
  1282. uint32_t u = micros();
  1283. bool res = card.card.readBlock(i, buff);
  1284. u = micros() - u;
  1285. if (res)
  1286. {
  1287. printf_P(PSTR("readBlock %4d 512 bytes %lu us\n"), i, u);
  1288. sumr += u;
  1289. u = micros();
  1290. res = card.card.writeBlock(i, buff);
  1291. u = micros() - u;
  1292. if (res)
  1293. {
  1294. printf_P(PSTR("writeBlock %4d 512 bytes %lu us\n"), i, u);
  1295. sumw += u;
  1296. }
  1297. else
  1298. {
  1299. printf_P(PSTR("writeBlock %4d error\n"), i);
  1300. break;
  1301. }
  1302. }
  1303. else
  1304. {
  1305. printf_P(PSTR("readBlock %4d error\n"), i);
  1306. break;
  1307. }
  1308. }
  1309. uint32_t avg_rspeed = (1024 * 1000000) / (sumr / 512);
  1310. uint32_t avg_wspeed = (1024 * 1000000) / (sumw / 512);
  1311. printf_P(PSTR("avg read speed %lu bytes/s\n"), avg_rspeed);
  1312. printf_P(PSTR("avg write speed %lu bytes/s\n"), avg_wspeed);
  1313. }
  1314. else
  1315. printf_P(PSTR("Card NG!\n"));
  1316. #endif //DEBUG_SD_SPEED_TEST
  1317. if (eeprom_read_byte((uint8_t*)EEPROM_POWER_COUNT) == 0xff) eeprom_write_byte((uint8_t*)EEPROM_POWER_COUNT, 0);
  1318. if (eeprom_read_byte((uint8_t*)EEPROM_CRASH_COUNT_X) == 0xff) eeprom_write_byte((uint8_t*)EEPROM_CRASH_COUNT_X, 0);
  1319. if (eeprom_read_byte((uint8_t*)EEPROM_CRASH_COUNT_Y) == 0xff) eeprom_write_byte((uint8_t*)EEPROM_CRASH_COUNT_Y, 0);
  1320. if (eeprom_read_byte((uint8_t*)EEPROM_FERROR_COUNT) == 0xff) eeprom_write_byte((uint8_t*)EEPROM_FERROR_COUNT, 0);
  1321. if (eeprom_read_word((uint16_t*)EEPROM_POWER_COUNT_TOT) == 0xffff) eeprom_write_word((uint16_t*)EEPROM_POWER_COUNT_TOT, 0);
  1322. if (eeprom_read_word((uint16_t*)EEPROM_CRASH_COUNT_X_TOT) == 0xffff) eeprom_write_word((uint16_t*)EEPROM_CRASH_COUNT_X_TOT, 0);
  1323. if (eeprom_read_word((uint16_t*)EEPROM_CRASH_COUNT_Y_TOT) == 0xffff) eeprom_write_word((uint16_t*)EEPROM_CRASH_COUNT_Y_TOT, 0);
  1324. if (eeprom_read_word((uint16_t*)EEPROM_FERROR_COUNT_TOT) == 0xffff) eeprom_write_word((uint16_t*)EEPROM_FERROR_COUNT_TOT, 0);
  1325. #ifdef SNMM
  1326. if (eeprom_read_dword((uint32_t*)EEPROM_BOWDEN_LENGTH) == 0x0ffffffff) { //bowden length used for SNMM
  1327. int _z = BOWDEN_LENGTH;
  1328. for(int i = 0; i<4; i++) EEPROM_save_B(EEPROM_BOWDEN_LENGTH + i * 2, &_z);
  1329. }
  1330. #endif
  1331. // In the future, somewhere here would one compare the current firmware version against the firmware version stored in the EEPROM.
  1332. // If they differ, an update procedure may need to be performed. At the end of this block, the current firmware version
  1333. // is being written into the EEPROM, so the update procedure will be triggered only once.
  1334. #if (LANG_MODE != 0) //secondary language support
  1335. #ifdef DEBUG_W25X20CL
  1336. W25X20CL_SPI_ENTER();
  1337. uint8_t uid[8]; // 64bit unique id
  1338. w25x20cl_rd_uid(uid);
  1339. puts_P(_n("W25X20CL UID="));
  1340. for (uint8_t i = 0; i < 8; i ++)
  1341. printf_P(PSTR("%02hhx"), uid[i]);
  1342. putchar('\n');
  1343. list_sec_lang_from_external_flash();
  1344. #endif //DEBUG_W25X20CL
  1345. // lang_reset();
  1346. if (!lang_select(eeprom_read_byte((uint8_t*)EEPROM_LANG)))
  1347. lcd_language();
  1348. #ifdef DEBUG_SEC_LANG
  1349. uint16_t sec_lang_code = lang_get_code(1);
  1350. uint16_t ui = _SEC_LANG_TABLE; //table pointer
  1351. printf_P(_n("lang_selected=%d\nlang_table=0x%04x\nSEC_LANG_CODE=0x%04x (%c%c)\n"), lang_selected, ui, sec_lang_code, sec_lang_code >> 8, sec_lang_code & 0xff);
  1352. // lang_print_sec_lang(uartout);
  1353. #endif //DEBUG_SEC_LANG
  1354. #endif //(LANG_MODE != 0)
  1355. if (eeprom_read_byte((uint8_t*)EEPROM_TEMP_CAL_ACTIVE) == 255) {
  1356. eeprom_write_byte((uint8_t*)EEPROM_TEMP_CAL_ACTIVE, 0);
  1357. temp_cal_active = false;
  1358. } else temp_cal_active = eeprom_read_byte((uint8_t*)EEPROM_TEMP_CAL_ACTIVE);
  1359. if (eeprom_read_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA) == 255) {
  1360. //eeprom_write_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 0);
  1361. eeprom_write_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 1);
  1362. int16_t z_shift = 0;
  1363. for (uint8_t i = 0; i < 5; i++) EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + i * 2, &z_shift);
  1364. eeprom_write_byte((uint8_t*)EEPROM_TEMP_CAL_ACTIVE, 0);
  1365. temp_cal_active = false;
  1366. }
  1367. if (eeprom_read_byte((uint8_t*)EEPROM_UVLO) == 255) {
  1368. eeprom_write_byte((uint8_t*)EEPROM_UVLO, 0);
  1369. }
  1370. if (eeprom_read_byte((uint8_t*)EEPROM_SD_SORT) == 255) {
  1371. eeprom_write_byte((uint8_t*)EEPROM_SD_SORT, 0);
  1372. }
  1373. check_babystep(); //checking if Z babystep is in allowed range
  1374. #ifdef UVLO_SUPPORT
  1375. setup_uvlo_interrupt();
  1376. #endif //UVLO_SUPPORT
  1377. #if !defined(DEBUG_DISABLE_FANCHECK) && defined(FANCHECK) && defined(TACH_1) && TACH_1 >-1
  1378. setup_fan_interrupt();
  1379. #endif //DEBUG_DISABLE_FANCHECK
  1380. #ifdef PAT9125
  1381. #ifndef DEBUG_DISABLE_FSENSORCHECK
  1382. fsensor_setup_interrupt();
  1383. #endif //DEBUG_DISABLE_FSENSORCHECK
  1384. #endif //PAT9125
  1385. for (int i = 0; i<4; i++) EEPROM_read_B(EEPROM_BOWDEN_LENGTH + i * 2, &bowden_length[i]);
  1386. #ifndef DEBUG_DISABLE_STARTMSGS
  1387. KEEPALIVE_STATE(PAUSED_FOR_USER);
  1388. show_fw_version_warnings();
  1389. switch (hw_changed) {
  1390. //if motherboard or printer type was changed inform user as it can indicate flashing wrong firmware version
  1391. //if user confirms with knob, new hw version (printer and/or motherboard) is written to eeprom and message will be not shown next time
  1392. case(0b01):
  1393. lcd_show_fullscreen_message_and_wait_P(_i("Warning: motherboard type changed.")); ////MSG_CHANGED_MOTHERBOARD c=20 r=4
  1394. eeprom_write_word((uint16_t*)EEPROM_BOARD_TYPE, MOTHERBOARD);
  1395. break;
  1396. case(0b10):
  1397. lcd_show_fullscreen_message_and_wait_P(_i("Warning: printer type changed.")); ////MSG_CHANGED_PRINTER c=20 r=4
  1398. eeprom_write_word((uint16_t*)EEPROM_PRINTER_TYPE, PRINTER_TYPE);
  1399. break;
  1400. case(0b11):
  1401. lcd_show_fullscreen_message_and_wait_P(_i("Warning: both printer type and motherboard type changed.")); ////MSG_CHANGED_BOTH c=20 r=4
  1402. eeprom_write_word((uint16_t*)EEPROM_PRINTER_TYPE, PRINTER_TYPE);
  1403. eeprom_write_word((uint16_t*)EEPROM_BOARD_TYPE, MOTHERBOARD);
  1404. break;
  1405. default: break; //no change, show no message
  1406. }
  1407. if (!previous_settings_retrieved) {
  1408. lcd_show_fullscreen_message_and_wait_P(_i("Old settings found. Default PID, Esteps etc. will be set.")); //if EEPROM version or printer type was changed, inform user that default setting were loaded////MSG_DEFAULT_SETTINGS_LOADED c=20 r=4
  1409. erase_eeprom_section(EEPROM_OFFSET, 156); //erase M500 part of eeprom
  1410. }
  1411. if (eeprom_read_byte((uint8_t*)EEPROM_WIZARD_ACTIVE) == 1) {
  1412. lcd_wizard(0);
  1413. }
  1414. if (eeprom_read_byte((uint8_t*)EEPROM_WIZARD_ACTIVE) == 0) { //dont show calibration status messages if wizard is currently active
  1415. if (calibration_status() == CALIBRATION_STATUS_ASSEMBLED ||
  1416. calibration_status() == CALIBRATION_STATUS_UNKNOWN ||
  1417. calibration_status() == CALIBRATION_STATUS_XYZ_CALIBRATION) {
  1418. // Reset the babystepping values, so the printer will not move the Z axis up when the babystepping is enabled.
  1419. eeprom_update_word((uint16_t*)EEPROM_BABYSTEP_Z, 0);
  1420. // Show the message.
  1421. lcd_show_fullscreen_message_and_wait_P(_T(MSG_FOLLOW_CALIBRATION_FLOW));
  1422. }
  1423. else if (calibration_status() == CALIBRATION_STATUS_LIVE_ADJUST) {
  1424. // Show the message.
  1425. lcd_show_fullscreen_message_and_wait_P(_T(MSG_BABYSTEP_Z_NOT_SET));
  1426. lcd_update_enable(true);
  1427. }
  1428. else if (calibration_status() == CALIBRATION_STATUS_CALIBRATED && temp_cal_active == true && calibration_status_pinda() == false) {
  1429. //lcd_show_fullscreen_message_and_wait_P(_i("Temperature calibration has not been run yet"));////MSG_PINDA_NOT_CALIBRATED c=20 r=4
  1430. lcd_update_enable(true);
  1431. }
  1432. else if (calibration_status() == CALIBRATION_STATUS_Z_CALIBRATION) {
  1433. // Show the message.
  1434. lcd_show_fullscreen_message_and_wait_P(_T(MSG_FOLLOW_CALIBRATION_FLOW));
  1435. }
  1436. }
  1437. #if !defined (DEBUG_DISABLE_FORCE_SELFTEST) && defined (TMC2130)
  1438. if (force_selftest_if_fw_version() && calibration_status() < CALIBRATION_STATUS_ASSEMBLED) {
  1439. lcd_show_fullscreen_message_and_wait_P(_i("Selftest will be run to calibrate accurate sensorless rehoming."));////MSG_FORCE_SELFTEST c=20 r=8
  1440. update_current_firmware_version_to_eeprom();
  1441. lcd_selftest();
  1442. }
  1443. #endif //TMC2130 && !DEBUG_DISABLE_FORCE_SELFTEST
  1444. KEEPALIVE_STATE(IN_PROCESS);
  1445. #endif //DEBUG_DISABLE_STARTMSGS
  1446. lcd_update_enable(true);
  1447. lcd_implementation_clear();
  1448. lcd_update(2);
  1449. // Store the currently running firmware into an eeprom,
  1450. // so the next time the firmware gets updated, it will know from which version it has been updated.
  1451. update_current_firmware_version_to_eeprom();
  1452. #ifdef TMC2130
  1453. tmc2130_home_origin[X_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_HOME_X_ORIGIN);
  1454. tmc2130_home_bsteps[X_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_HOME_X_BSTEPS);
  1455. tmc2130_home_fsteps[X_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_HOME_X_FSTEPS);
  1456. if (tmc2130_home_origin[X_AXIS] == 0xff) tmc2130_home_origin[X_AXIS] = 0;
  1457. if (tmc2130_home_bsteps[X_AXIS] == 0xff) tmc2130_home_bsteps[X_AXIS] = 48;
  1458. if (tmc2130_home_fsteps[X_AXIS] == 0xff) tmc2130_home_fsteps[X_AXIS] = 48;
  1459. tmc2130_home_origin[Y_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_HOME_Y_ORIGIN);
  1460. tmc2130_home_bsteps[Y_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_HOME_Y_BSTEPS);
  1461. tmc2130_home_fsteps[Y_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_HOME_Y_FSTEPS);
  1462. if (tmc2130_home_origin[Y_AXIS] == 0xff) tmc2130_home_origin[Y_AXIS] = 0;
  1463. if (tmc2130_home_bsteps[Y_AXIS] == 0xff) tmc2130_home_bsteps[Y_AXIS] = 48;
  1464. if (tmc2130_home_fsteps[Y_AXIS] == 0xff) tmc2130_home_fsteps[Y_AXIS] = 48;
  1465. tmc2130_home_enabled = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_HOME_ENABLED);
  1466. if (tmc2130_home_enabled == 0xff) tmc2130_home_enabled = 0;
  1467. #endif //TMC2130
  1468. #ifdef UVLO_SUPPORT
  1469. if (eeprom_read_byte((uint8_t*)EEPROM_UVLO) == 1) { //previous print was terminated by UVLO
  1470. /*
  1471. if (lcd_show_fullscreen_message_yes_no_and_wait_P(_T(MSG_RECOVER_PRINT), false)) recover_print();
  1472. else {
  1473. eeprom_update_byte((uint8_t*)EEPROM_UVLO, 0);
  1474. lcd_update_enable(true);
  1475. lcd_update(2);
  1476. lcd_setstatuspgm(_T(WELCOME_MSG));
  1477. }
  1478. */
  1479. manage_heater(); // Update temperatures
  1480. #ifdef DEBUG_UVLO_AUTOMATIC_RECOVER
  1481. printf_P(_N("Power panic detected!\nCurrent bed temp:%d\nSaved bed temp:%d\n"), (int)degBed(), eeprom_read_byte((uint8_t*)EEPROM_UVLO_TARGET_BED))
  1482. #endif
  1483. if ( degBed() > ( (float)eeprom_read_byte((uint8_t*)EEPROM_UVLO_TARGET_BED) - AUTOMATIC_UVLO_BED_TEMP_OFFSET) ){
  1484. #ifdef DEBUG_UVLO_AUTOMATIC_RECOVER
  1485. puts_P(_N("Automatic recovery!"));
  1486. #endif
  1487. recover_print(1);
  1488. }
  1489. else{
  1490. #ifdef DEBUG_UVLO_AUTOMATIC_RECOVER
  1491. puts_P(_N("Normal recovery!"));
  1492. #endif
  1493. if ( lcd_show_fullscreen_message_yes_no_and_wait_P(_T(MSG_RECOVER_PRINT), false) ) recover_print(0);
  1494. else {
  1495. eeprom_update_byte((uint8_t*)EEPROM_UVLO, 0);
  1496. lcd_update_enable(true);
  1497. lcd_update(2);
  1498. lcd_setstatuspgm(_T(WELCOME_MSG));
  1499. }
  1500. }
  1501. }
  1502. #endif //UVLO_SUPPORT
  1503. KEEPALIVE_STATE(NOT_BUSY);
  1504. #ifdef WATCHDOG
  1505. wdt_enable(WDTO_4S);
  1506. #endif //WATCHDOG
  1507. }
  1508. #ifdef PAT9125
  1509. void fsensor_init() {
  1510. int pat9125 = pat9125_init();
  1511. printf_P(_N("PAT9125_init:%d\n"), pat9125);
  1512. uint8_t fsensor = eeprom_read_byte((uint8_t*)EEPROM_FSENSOR);
  1513. filament_autoload_enabled=eeprom_read_byte((uint8_t*)EEPROM_FSENS_AUTOLOAD_ENABLED);
  1514. if (!pat9125)
  1515. {
  1516. fsensor = 0; //disable sensor
  1517. fsensor_not_responding = true;
  1518. }
  1519. else {
  1520. fsensor_not_responding = false;
  1521. }
  1522. puts_P(PSTR("FSensor "));
  1523. if (fsensor)
  1524. {
  1525. puts_P(PSTR("ENABLED\n"));
  1526. fsensor_enable();
  1527. }
  1528. else
  1529. {
  1530. puts_P(PSTR("DISABLED\n"));
  1531. fsensor_disable();
  1532. }
  1533. #ifdef DEBUG_DISABLE_FSENSORCHECK
  1534. filament_autoload_enabled = false;
  1535. fsensor_disable();
  1536. #endif //DEBUG_DISABLE_FSENSORCHECK
  1537. }
  1538. #endif //PAT9125
  1539. void trace();
  1540. #define CHUNK_SIZE 64 // bytes
  1541. #define SAFETY_MARGIN 1
  1542. char chunk[CHUNK_SIZE+SAFETY_MARGIN];
  1543. int chunkHead = 0;
  1544. int serial_read_stream() {
  1545. setTargetHotend(0, 0);
  1546. setTargetBed(0);
  1547. lcd_implementation_clear();
  1548. lcd_printPGM(PSTR(" Upload in progress"));
  1549. // first wait for how many bytes we will receive
  1550. uint32_t bytesToReceive;
  1551. // receive the four bytes
  1552. char bytesToReceiveBuffer[4];
  1553. for (int i=0; i<4; i++) {
  1554. int data;
  1555. while ((data = MYSERIAL.read()) == -1) {};
  1556. bytesToReceiveBuffer[i] = data;
  1557. }
  1558. // make it a uint32
  1559. memcpy(&bytesToReceive, &bytesToReceiveBuffer, 4);
  1560. // we're ready, notify the sender
  1561. MYSERIAL.write('+');
  1562. // lock in the routine
  1563. uint32_t receivedBytes = 0;
  1564. while (prusa_sd_card_upload) {
  1565. int i;
  1566. for (i=0; i<CHUNK_SIZE; i++) {
  1567. int data;
  1568. // check if we're not done
  1569. if (receivedBytes == bytesToReceive) {
  1570. break;
  1571. }
  1572. // read the next byte
  1573. while ((data = MYSERIAL.read()) == -1) {};
  1574. receivedBytes++;
  1575. // save it to the chunk
  1576. chunk[i] = data;
  1577. }
  1578. // write the chunk to SD
  1579. card.write_command_no_newline(&chunk[0]);
  1580. // notify the sender we're ready for more data
  1581. MYSERIAL.write('+');
  1582. // for safety
  1583. manage_heater();
  1584. // check if we're done
  1585. if(receivedBytes == bytesToReceive) {
  1586. trace(); // beep
  1587. card.closefile();
  1588. prusa_sd_card_upload = false;
  1589. SERIAL_PROTOCOLLNRPGM(MSG_FILE_SAVED);
  1590. return 0;
  1591. }
  1592. }
  1593. }
  1594. #ifdef HOST_KEEPALIVE_FEATURE
  1595. /**
  1596. * Output a "busy" message at regular intervals
  1597. * while the machine is not accepting commands.
  1598. */
  1599. void host_keepalive() {
  1600. if (farm_mode) return;
  1601. long ms = millis();
  1602. if (host_keepalive_interval && busy_state != NOT_BUSY) {
  1603. if ((ms - prev_busy_signal_ms) < (long)(1000L * host_keepalive_interval)) return;
  1604. switch (busy_state) {
  1605. case IN_HANDLER:
  1606. case IN_PROCESS:
  1607. SERIAL_ECHO_START;
  1608. SERIAL_ECHOLNPGM("busy: processing");
  1609. break;
  1610. case PAUSED_FOR_USER:
  1611. SERIAL_ECHO_START;
  1612. SERIAL_ECHOLNPGM("busy: paused for user");
  1613. break;
  1614. case PAUSED_FOR_INPUT:
  1615. SERIAL_ECHO_START;
  1616. SERIAL_ECHOLNPGM("busy: paused for input");
  1617. break;
  1618. default:
  1619. break;
  1620. }
  1621. }
  1622. prev_busy_signal_ms = ms;
  1623. }
  1624. #endif
  1625. // The loop() function is called in an endless loop by the Arduino framework from the default main() routine.
  1626. // Before loop(), the setup() function is called by the main() routine.
  1627. void loop()
  1628. {
  1629. KEEPALIVE_STATE(NOT_BUSY);
  1630. bool stack_integrity = true;
  1631. if ((usb_printing_counter > 0) && ((millis()-_usb_timer) > 1000))
  1632. {
  1633. is_usb_printing = true;
  1634. usb_printing_counter--;
  1635. _usb_timer = millis();
  1636. }
  1637. if (usb_printing_counter == 0)
  1638. {
  1639. is_usb_printing = false;
  1640. }
  1641. if (prusa_sd_card_upload)
  1642. {
  1643. //we read byte-by byte
  1644. serial_read_stream();
  1645. } else
  1646. {
  1647. get_command();
  1648. #ifdef SDSUPPORT
  1649. card.checkautostart(false);
  1650. #endif
  1651. if(buflen)
  1652. {
  1653. cmdbuffer_front_already_processed = false;
  1654. #ifdef SDSUPPORT
  1655. if(card.saving)
  1656. {
  1657. // Saving a G-code file onto an SD-card is in progress.
  1658. // Saving starts with M28, saving until M29 is seen.
  1659. if(strstr_P(CMDBUFFER_CURRENT_STRING, PSTR("M29")) == NULL) {
  1660. card.write_command(CMDBUFFER_CURRENT_STRING);
  1661. if(card.logging)
  1662. process_commands();
  1663. else
  1664. SERIAL_PROTOCOLLNRPGM(_T(MSG_OK));
  1665. } else {
  1666. card.closefile();
  1667. SERIAL_PROTOCOLLNRPGM(MSG_FILE_SAVED);
  1668. }
  1669. } else {
  1670. process_commands();
  1671. }
  1672. #else
  1673. process_commands();
  1674. #endif //SDSUPPORT
  1675. if (! cmdbuffer_front_already_processed && buflen)
  1676. {
  1677. // ptr points to the start of the block currently being processed.
  1678. // The first character in the block is the block type.
  1679. char *ptr = cmdbuffer + bufindr;
  1680. if (*ptr == CMDBUFFER_CURRENT_TYPE_SDCARD) {
  1681. // To support power panic, move the lenght of the command on the SD card to a planner buffer.
  1682. union {
  1683. struct {
  1684. char lo;
  1685. char hi;
  1686. } lohi;
  1687. uint16_t value;
  1688. } sdlen;
  1689. sdlen.value = 0;
  1690. {
  1691. // This block locks the interrupts globally for 3.25 us,
  1692. // which corresponds to a maximum repeat frequency of 307.69 kHz.
  1693. // This blocking is safe in the context of a 10kHz stepper driver interrupt
  1694. // or a 115200 Bd serial line receive interrupt, which will not trigger faster than 12kHz.
  1695. cli();
  1696. // Reset the command to something, which will be ignored by the power panic routine,
  1697. // so this buffer length will not be counted twice.
  1698. *ptr ++ = CMDBUFFER_CURRENT_TYPE_TO_BE_REMOVED;
  1699. // Extract the current buffer length.
  1700. sdlen.lohi.lo = *ptr ++;
  1701. sdlen.lohi.hi = *ptr;
  1702. // and pass it to the planner queue.
  1703. planner_add_sd_length(sdlen.value);
  1704. sei();
  1705. }
  1706. }
  1707. else if((*ptr == CMDBUFFER_CURRENT_TYPE_USB_WITH_LINENR) && !IS_SD_PRINTING){
  1708. cli();
  1709. *ptr ++ = CMDBUFFER_CURRENT_TYPE_TO_BE_REMOVED;
  1710. // and one for each command to previous block in the planner queue.
  1711. planner_add_sd_length(1);
  1712. sei();
  1713. }
  1714. // Now it is safe to release the already processed command block. If interrupted by the power panic now,
  1715. // this block's SD card length will not be counted twice as its command type has been replaced
  1716. // by CMDBUFFER_CURRENT_TYPE_TO_BE_REMOVED.
  1717. cmdqueue_pop_front();
  1718. }
  1719. host_keepalive();
  1720. }
  1721. }
  1722. //check heater every n milliseconds
  1723. manage_heater();
  1724. isPrintPaused ? manage_inactivity(true) : manage_inactivity(false);
  1725. checkHitEndstops();
  1726. lcd_update(0);
  1727. #ifdef PAT9125
  1728. fsensor_update();
  1729. #endif //PAT9125
  1730. #ifdef TMC2130
  1731. tmc2130_check_overtemp();
  1732. if (tmc2130_sg_crash)
  1733. {
  1734. uint8_t crash = tmc2130_sg_crash;
  1735. tmc2130_sg_crash = 0;
  1736. // crashdet_stop_and_save_print();
  1737. switch (crash)
  1738. {
  1739. case 1: enquecommand_P((PSTR("CRASH_DETECTEDX"))); break;
  1740. case 2: enquecommand_P((PSTR("CRASH_DETECTEDY"))); break;
  1741. case 3: enquecommand_P((PSTR("CRASH_DETECTEDXY"))); break;
  1742. }
  1743. }
  1744. #endif //TMC2130
  1745. }
  1746. #define DEFINE_PGM_READ_ANY(type, reader) \
  1747. static inline type pgm_read_any(const type *p) \
  1748. { return pgm_read_##reader##_near(p); }
  1749. DEFINE_PGM_READ_ANY(float, float);
  1750. DEFINE_PGM_READ_ANY(signed char, byte);
  1751. #define XYZ_CONSTS_FROM_CONFIG(type, array, CONFIG) \
  1752. static const PROGMEM type array##_P[3] = \
  1753. { X_##CONFIG, Y_##CONFIG, Z_##CONFIG }; \
  1754. static inline type array(int axis) \
  1755. { return pgm_read_any(&array##_P[axis]); } \
  1756. type array##_ext(int axis) \
  1757. { return pgm_read_any(&array##_P[axis]); }
  1758. XYZ_CONSTS_FROM_CONFIG(float, base_min_pos, MIN_POS);
  1759. XYZ_CONSTS_FROM_CONFIG(float, base_max_pos, MAX_POS);
  1760. XYZ_CONSTS_FROM_CONFIG(float, base_home_pos, HOME_POS);
  1761. XYZ_CONSTS_FROM_CONFIG(float, max_length, MAX_LENGTH);
  1762. XYZ_CONSTS_FROM_CONFIG(float, home_retract_mm, HOME_RETRACT_MM);
  1763. XYZ_CONSTS_FROM_CONFIG(signed char, home_dir, HOME_DIR);
  1764. static void axis_is_at_home(int axis) {
  1765. current_position[axis] = base_home_pos(axis) + add_homing[axis];
  1766. min_pos[axis] = base_min_pos(axis) + add_homing[axis];
  1767. max_pos[axis] = base_max_pos(axis) + add_homing[axis];
  1768. }
  1769. inline void set_current_to_destination() { memcpy(current_position, destination, sizeof(current_position)); }
  1770. inline void set_destination_to_current() { memcpy(destination, current_position, sizeof(destination)); }
  1771. static void setup_for_endstop_move(bool enable_endstops_now = true) {
  1772. saved_feedrate = feedrate;
  1773. saved_feedmultiply = feedmultiply;
  1774. feedmultiply = 100;
  1775. previous_millis_cmd = millis();
  1776. enable_endstops(enable_endstops_now);
  1777. }
  1778. static void clean_up_after_endstop_move() {
  1779. #ifdef ENDSTOPS_ONLY_FOR_HOMING
  1780. enable_endstops(false);
  1781. #endif
  1782. feedrate = saved_feedrate;
  1783. feedmultiply = saved_feedmultiply;
  1784. previous_millis_cmd = millis();
  1785. }
  1786. #ifdef ENABLE_AUTO_BED_LEVELING
  1787. #ifdef AUTO_BED_LEVELING_GRID
  1788. static void set_bed_level_equation_lsq(double *plane_equation_coefficients)
  1789. {
  1790. vector_3 planeNormal = vector_3(-plane_equation_coefficients[0], -plane_equation_coefficients[1], 1);
  1791. planeNormal.debug("planeNormal");
  1792. plan_bed_level_matrix = matrix_3x3::create_look_at(planeNormal);
  1793. //bedLevel.debug("bedLevel");
  1794. //plan_bed_level_matrix.debug("bed level before");
  1795. //vector_3 uncorrected_position = plan_get_position_mm();
  1796. //uncorrected_position.debug("position before");
  1797. vector_3 corrected_position = plan_get_position();
  1798. // corrected_position.debug("position after");
  1799. current_position[X_AXIS] = corrected_position.x;
  1800. current_position[Y_AXIS] = corrected_position.y;
  1801. current_position[Z_AXIS] = corrected_position.z;
  1802. // put the bed at 0 so we don't go below it.
  1803. current_position[Z_AXIS] = zprobe_zoffset; // in the lsq we reach here after raising the extruder due to the loop structure
  1804. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1805. }
  1806. #else // not AUTO_BED_LEVELING_GRID
  1807. static void set_bed_level_equation_3pts(float z_at_pt_1, float z_at_pt_2, float z_at_pt_3) {
  1808. plan_bed_level_matrix.set_to_identity();
  1809. vector_3 pt1 = vector_3(ABL_PROBE_PT_1_X, ABL_PROBE_PT_1_Y, z_at_pt_1);
  1810. vector_3 pt2 = vector_3(ABL_PROBE_PT_2_X, ABL_PROBE_PT_2_Y, z_at_pt_2);
  1811. vector_3 pt3 = vector_3(ABL_PROBE_PT_3_X, ABL_PROBE_PT_3_Y, z_at_pt_3);
  1812. vector_3 from_2_to_1 = (pt1 - pt2).get_normal();
  1813. vector_3 from_2_to_3 = (pt3 - pt2).get_normal();
  1814. vector_3 planeNormal = vector_3::cross(from_2_to_1, from_2_to_3).get_normal();
  1815. planeNormal = vector_3(planeNormal.x, planeNormal.y, abs(planeNormal.z));
  1816. plan_bed_level_matrix = matrix_3x3::create_look_at(planeNormal);
  1817. vector_3 corrected_position = plan_get_position();
  1818. current_position[X_AXIS] = corrected_position.x;
  1819. current_position[Y_AXIS] = corrected_position.y;
  1820. current_position[Z_AXIS] = corrected_position.z;
  1821. // put the bed at 0 so we don't go below it.
  1822. current_position[Z_AXIS] = zprobe_zoffset;
  1823. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1824. }
  1825. #endif // AUTO_BED_LEVELING_GRID
  1826. static void run_z_probe() {
  1827. plan_bed_level_matrix.set_to_identity();
  1828. feedrate = homing_feedrate[Z_AXIS];
  1829. // move down until you find the bed
  1830. float zPosition = -10;
  1831. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder);
  1832. st_synchronize();
  1833. // we have to let the planner know where we are right now as it is not where we said to go.
  1834. zPosition = st_get_position_mm(Z_AXIS);
  1835. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS]);
  1836. // move up the retract distance
  1837. zPosition += home_retract_mm(Z_AXIS);
  1838. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder);
  1839. st_synchronize();
  1840. // move back down slowly to find bed
  1841. feedrate = homing_feedrate[Z_AXIS]/4;
  1842. zPosition -= home_retract_mm(Z_AXIS) * 2;
  1843. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder);
  1844. st_synchronize();
  1845. current_position[Z_AXIS] = st_get_position_mm(Z_AXIS);
  1846. // make sure the planner knows where we are as it may be a bit different than we last said to move to
  1847. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1848. }
  1849. static void do_blocking_move_to(float x, float y, float z) {
  1850. float oldFeedRate = feedrate;
  1851. feedrate = homing_feedrate[Z_AXIS];
  1852. current_position[Z_AXIS] = z;
  1853. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], feedrate/60, active_extruder);
  1854. st_synchronize();
  1855. feedrate = XY_TRAVEL_SPEED;
  1856. current_position[X_AXIS] = x;
  1857. current_position[Y_AXIS] = y;
  1858. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], feedrate/60, active_extruder);
  1859. st_synchronize();
  1860. feedrate = oldFeedRate;
  1861. }
  1862. static void do_blocking_move_relative(float offset_x, float offset_y, float offset_z) {
  1863. do_blocking_move_to(current_position[X_AXIS] + offset_x, current_position[Y_AXIS] + offset_y, current_position[Z_AXIS] + offset_z);
  1864. }
  1865. /// Probe bed height at position (x,y), returns the measured z value
  1866. static float probe_pt(float x, float y, float z_before) {
  1867. // move to right place
  1868. do_blocking_move_to(current_position[X_AXIS], current_position[Y_AXIS], z_before);
  1869. do_blocking_move_to(x - X_PROBE_OFFSET_FROM_EXTRUDER, y - Y_PROBE_OFFSET_FROM_EXTRUDER, current_position[Z_AXIS]);
  1870. run_z_probe();
  1871. float measured_z = current_position[Z_AXIS];
  1872. SERIAL_PROTOCOLRPGM(_T(MSG_BED));
  1873. SERIAL_PROTOCOLPGM(" x: ");
  1874. SERIAL_PROTOCOL(x);
  1875. SERIAL_PROTOCOLPGM(" y: ");
  1876. SERIAL_PROTOCOL(y);
  1877. SERIAL_PROTOCOLPGM(" z: ");
  1878. SERIAL_PROTOCOL(measured_z);
  1879. SERIAL_PROTOCOLPGM("\n");
  1880. return measured_z;
  1881. }
  1882. #endif // #ifdef ENABLE_AUTO_BED_LEVELING
  1883. #ifdef LIN_ADVANCE
  1884. /**
  1885. * M900: Set and/or Get advance K factor and WH/D ratio
  1886. *
  1887. * K<factor> Set advance K factor
  1888. * R<ratio> Set ratio directly (overrides WH/D)
  1889. * W<width> H<height> D<diam> Set ratio from WH/D
  1890. */
  1891. inline void gcode_M900() {
  1892. st_synchronize();
  1893. const float newK = code_seen('K') ? code_value_float() : -1;
  1894. if (newK >= 0) extruder_advance_k = newK;
  1895. float newR = code_seen('R') ? code_value_float() : -1;
  1896. if (newR < 0) {
  1897. const float newD = code_seen('D') ? code_value_float() : -1,
  1898. newW = code_seen('W') ? code_value_float() : -1,
  1899. newH = code_seen('H') ? code_value_float() : -1;
  1900. if (newD >= 0 && newW >= 0 && newH >= 0)
  1901. newR = newD ? (newW * newH) / (sq(newD * 0.5) * M_PI) : 0;
  1902. }
  1903. if (newR >= 0) advance_ed_ratio = newR;
  1904. SERIAL_ECHO_START;
  1905. SERIAL_ECHOPGM("Advance K=");
  1906. SERIAL_ECHOLN(extruder_advance_k);
  1907. SERIAL_ECHOPGM(" E/D=");
  1908. const float ratio = advance_ed_ratio;
  1909. if (ratio) SERIAL_ECHOLN(ratio); else SERIAL_ECHOLNPGM("Auto");
  1910. }
  1911. #endif // LIN_ADVANCE
  1912. bool check_commands() {
  1913. bool end_command_found = false;
  1914. while (buflen)
  1915. {
  1916. if ((code_seen("M84")) || (code_seen("M 84"))) end_command_found = true;
  1917. if (!cmdbuffer_front_already_processed)
  1918. cmdqueue_pop_front();
  1919. cmdbuffer_front_already_processed = false;
  1920. }
  1921. return end_command_found;
  1922. }
  1923. #ifdef TMC2130
  1924. bool calibrate_z_auto()
  1925. {
  1926. //lcd_display_message_fullscreen_P(_T(MSG_CALIBRATE_Z_AUTO));
  1927. lcd_implementation_clear();
  1928. lcd_print_at_PGM(0,1, _T(MSG_CALIBRATE_Z_AUTO));
  1929. bool endstops_enabled = enable_endstops(true);
  1930. int axis_up_dir = -home_dir(Z_AXIS);
  1931. tmc2130_home_enter(Z_AXIS_MASK);
  1932. current_position[Z_AXIS] = 0;
  1933. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1934. set_destination_to_current();
  1935. destination[Z_AXIS] += (1.1 * max_length(Z_AXIS) * axis_up_dir);
  1936. feedrate = homing_feedrate[Z_AXIS];
  1937. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1938. st_synchronize();
  1939. // current_position[axis] = 0;
  1940. // plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1941. tmc2130_home_exit();
  1942. enable_endstops(false);
  1943. current_position[Z_AXIS] = 0;
  1944. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1945. set_destination_to_current();
  1946. destination[Z_AXIS] += 10 * axis_up_dir; //10mm up
  1947. feedrate = homing_feedrate[Z_AXIS] / 2;
  1948. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1949. st_synchronize();
  1950. enable_endstops(endstops_enabled);
  1951. current_position[Z_AXIS] = Z_MAX_POS+2.0;
  1952. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1953. return true;
  1954. }
  1955. #endif //TMC2130
  1956. void homeaxis(int axis, uint8_t cnt, uint8_t* pstep)
  1957. {
  1958. bool endstops_enabled = enable_endstops(true); //RP: endstops should be allways enabled durring homing
  1959. #define HOMEAXIS_DO(LETTER) \
  1960. ((LETTER##_MIN_PIN > -1 && LETTER##_HOME_DIR==-1) || (LETTER##_MAX_PIN > -1 && LETTER##_HOME_DIR==1))
  1961. if ((axis==X_AXIS)?HOMEAXIS_DO(X):(axis==Y_AXIS)?HOMEAXIS_DO(Y):0)
  1962. {
  1963. int axis_home_dir = home_dir(axis);
  1964. feedrate = homing_feedrate[axis];
  1965. #ifdef TMC2130
  1966. tmc2130_home_enter(X_AXIS_MASK << axis);
  1967. #endif //TMC2130
  1968. // Move right a bit, so that the print head does not touch the left end position,
  1969. // and the following left movement has a chance to achieve the required velocity
  1970. // for the stall guard to work.
  1971. current_position[axis] = 0;
  1972. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1973. set_destination_to_current();
  1974. // destination[axis] = 11.f;
  1975. destination[axis] = 3.f;
  1976. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1977. st_synchronize();
  1978. // Move left away from the possible collision with the collision detection disabled.
  1979. endstops_hit_on_purpose();
  1980. enable_endstops(false);
  1981. current_position[axis] = 0;
  1982. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1983. destination[axis] = - 1.;
  1984. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1985. st_synchronize();
  1986. // Now continue to move up to the left end stop with the collision detection enabled.
  1987. enable_endstops(true);
  1988. destination[axis] = - 1.1 * max_length(axis);
  1989. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1990. st_synchronize();
  1991. for (uint8_t i = 0; i < cnt; i++)
  1992. {
  1993. // Move right from the collision to a known distance from the left end stop with the collision detection disabled.
  1994. endstops_hit_on_purpose();
  1995. enable_endstops(false);
  1996. current_position[axis] = 0;
  1997. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1998. destination[axis] = 10.f;
  1999. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  2000. st_synchronize();
  2001. endstops_hit_on_purpose();
  2002. // Now move left up to the collision, this time with a repeatable velocity.
  2003. enable_endstops(true);
  2004. destination[axis] = - 11.f;
  2005. #ifdef TMC2130
  2006. feedrate = homing_feedrate[axis];
  2007. #else //TMC2130
  2008. feedrate = homing_feedrate[axis] / 2;
  2009. #endif //TMC2130
  2010. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  2011. st_synchronize();
  2012. #ifdef TMC2130
  2013. uint16_t mscnt = tmc2130_rd_MSCNT(axis);
  2014. if (pstep) pstep[i] = mscnt >> 4;
  2015. printf_P(PSTR("%3d step=%2d mscnt=%4d\n"), i, mscnt >> 4, mscnt);
  2016. #endif //TMC2130
  2017. }
  2018. endstops_hit_on_purpose();
  2019. enable_endstops(false);
  2020. #ifdef TMC2130
  2021. uint8_t orig = tmc2130_home_origin[axis];
  2022. uint8_t back = tmc2130_home_bsteps[axis];
  2023. if (tmc2130_home_enabled && (orig <= 63))
  2024. {
  2025. tmc2130_goto_step(axis, orig, 2, 1000, tmc2130_get_res(axis));
  2026. if (back > 0)
  2027. tmc2130_do_steps(axis, back, 1, 1000);
  2028. }
  2029. else
  2030. tmc2130_do_steps(axis, 8, 2, 1000);
  2031. tmc2130_home_exit();
  2032. #endif //TMC2130
  2033. axis_is_at_home(axis);
  2034. axis_known_position[axis] = true;
  2035. // Move from minimum
  2036. #ifdef TMC2130
  2037. float dist = 0.01f * tmc2130_home_fsteps[axis];
  2038. #else //TMC2130
  2039. float dist = 0.01f * 64;
  2040. #endif //TMC2130
  2041. current_position[axis] -= dist;
  2042. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2043. current_position[axis] += dist;
  2044. destination[axis] = current_position[axis];
  2045. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], 0.5f*feedrate/60, active_extruder);
  2046. st_synchronize();
  2047. feedrate = 0.0;
  2048. }
  2049. else if ((axis==Z_AXIS)?HOMEAXIS_DO(Z):0)
  2050. {
  2051. #ifdef TMC2130
  2052. FORCE_HIGH_POWER_START;
  2053. #endif
  2054. int axis_home_dir = home_dir(axis);
  2055. current_position[axis] = 0;
  2056. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2057. destination[axis] = 1.5 * max_length(axis) * axis_home_dir;
  2058. feedrate = homing_feedrate[axis];
  2059. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  2060. st_synchronize();
  2061. #ifdef TMC2130
  2062. if (READ(Z_TMC2130_DIAG) != 0) { //Z crash
  2063. FORCE_HIGH_POWER_END;
  2064. kill(_T(MSG_BED_LEVELING_FAILED_POINT_LOW));
  2065. return;
  2066. }
  2067. #endif //TMC2130
  2068. current_position[axis] = 0;
  2069. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2070. destination[axis] = -home_retract_mm(axis) * axis_home_dir;
  2071. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  2072. st_synchronize();
  2073. destination[axis] = 2*home_retract_mm(axis) * axis_home_dir;
  2074. feedrate = homing_feedrate[axis]/2 ;
  2075. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  2076. st_synchronize();
  2077. #ifdef TMC2130
  2078. if (READ(Z_TMC2130_DIAG) != 0) { //Z crash
  2079. FORCE_HIGH_POWER_END;
  2080. kill(_T(MSG_BED_LEVELING_FAILED_POINT_LOW));
  2081. return;
  2082. }
  2083. #endif //TMC2130
  2084. axis_is_at_home(axis);
  2085. destination[axis] = current_position[axis];
  2086. feedrate = 0.0;
  2087. endstops_hit_on_purpose();
  2088. axis_known_position[axis] = true;
  2089. #ifdef TMC2130
  2090. FORCE_HIGH_POWER_END;
  2091. #endif
  2092. }
  2093. enable_endstops(endstops_enabled);
  2094. }
  2095. /**/
  2096. void home_xy()
  2097. {
  2098. set_destination_to_current();
  2099. homeaxis(X_AXIS);
  2100. homeaxis(Y_AXIS);
  2101. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2102. endstops_hit_on_purpose();
  2103. }
  2104. void refresh_cmd_timeout(void)
  2105. {
  2106. previous_millis_cmd = millis();
  2107. }
  2108. #ifdef FWRETRACT
  2109. void retract(bool retracting, bool swapretract = false) {
  2110. if(retracting && !retracted[active_extruder]) {
  2111. destination[X_AXIS]=current_position[X_AXIS];
  2112. destination[Y_AXIS]=current_position[Y_AXIS];
  2113. destination[Z_AXIS]=current_position[Z_AXIS];
  2114. destination[E_AXIS]=current_position[E_AXIS];
  2115. current_position[E_AXIS]+=(swapretract?retract_length_swap:retract_length)*float(extrudemultiply)*0.01f;
  2116. plan_set_e_position(current_position[E_AXIS]);
  2117. float oldFeedrate = feedrate;
  2118. feedrate=retract_feedrate*60;
  2119. retracted[active_extruder]=true;
  2120. prepare_move();
  2121. current_position[Z_AXIS]-=retract_zlift;
  2122. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2123. prepare_move();
  2124. feedrate = oldFeedrate;
  2125. } else if(!retracting && retracted[active_extruder]) {
  2126. destination[X_AXIS]=current_position[X_AXIS];
  2127. destination[Y_AXIS]=current_position[Y_AXIS];
  2128. destination[Z_AXIS]=current_position[Z_AXIS];
  2129. destination[E_AXIS]=current_position[E_AXIS];
  2130. current_position[Z_AXIS]+=retract_zlift;
  2131. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2132. current_position[E_AXIS]-=(swapretract?(retract_length_swap+retract_recover_length_swap):(retract_length+retract_recover_length))*float(extrudemultiply)*0.01f;
  2133. plan_set_e_position(current_position[E_AXIS]);
  2134. float oldFeedrate = feedrate;
  2135. feedrate=retract_recover_feedrate*60;
  2136. retracted[active_extruder]=false;
  2137. prepare_move();
  2138. feedrate = oldFeedrate;
  2139. }
  2140. } //retract
  2141. #endif //FWRETRACT
  2142. void trace() {
  2143. tone(BEEPER, 440);
  2144. delay(25);
  2145. noTone(BEEPER);
  2146. delay(20);
  2147. }
  2148. /*
  2149. void ramming() {
  2150. // float tmp[4] = DEFAULT_MAX_FEEDRATE;
  2151. if (current_temperature[0] < 230) {
  2152. //PLA
  2153. max_feedrate[E_AXIS] = 50;
  2154. //current_position[E_AXIS] -= 8;
  2155. //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2100 / 60, active_extruder);
  2156. //current_position[E_AXIS] += 8;
  2157. //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2100 / 60, active_extruder);
  2158. current_position[E_AXIS] += 5.4;
  2159. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2800 / 60, active_extruder);
  2160. current_position[E_AXIS] += 3.2;
  2161. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  2162. current_position[E_AXIS] += 3;
  2163. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3400 / 60, active_extruder);
  2164. st_synchronize();
  2165. max_feedrate[E_AXIS] = 80;
  2166. current_position[E_AXIS] -= 82;
  2167. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 9500 / 60, active_extruder);
  2168. max_feedrate[E_AXIS] = 50;//tmp[E_AXIS];
  2169. current_position[E_AXIS] -= 20;
  2170. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 1200 / 60, active_extruder);
  2171. current_position[E_AXIS] += 5;
  2172. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400 / 60, active_extruder);
  2173. current_position[E_AXIS] += 5;
  2174. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  2175. current_position[E_AXIS] -= 10;
  2176. st_synchronize();
  2177. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  2178. current_position[E_AXIS] += 10;
  2179. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  2180. current_position[E_AXIS] -= 10;
  2181. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 800 / 60, active_extruder);
  2182. current_position[E_AXIS] += 10;
  2183. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 800 / 60, active_extruder);
  2184. current_position[E_AXIS] -= 10;
  2185. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 800 / 60, active_extruder);
  2186. st_synchronize();
  2187. }
  2188. else {
  2189. //ABS
  2190. max_feedrate[E_AXIS] = 50;
  2191. //current_position[E_AXIS] -= 8;
  2192. //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2100 / 60, active_extruder);
  2193. //current_position[E_AXIS] += 8;
  2194. //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2100 / 60, active_extruder);
  2195. current_position[E_AXIS] += 3.1;
  2196. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2000 / 60, active_extruder);
  2197. current_position[E_AXIS] += 3.1;
  2198. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2500 / 60, active_extruder);
  2199. current_position[E_AXIS] += 4;
  2200. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  2201. st_synchronize();
  2202. //current_position[X_AXIS] += 23; //delay
  2203. //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600/60, active_extruder); //delay
  2204. //current_position[X_AXIS] -= 23; //delay
  2205. //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600/60, active_extruder); //delay
  2206. delay(4700);
  2207. max_feedrate[E_AXIS] = 80;
  2208. current_position[E_AXIS] -= 92;
  2209. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 9900 / 60, active_extruder);
  2210. max_feedrate[E_AXIS] = 50;//tmp[E_AXIS];
  2211. current_position[E_AXIS] -= 5;
  2212. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 800 / 60, active_extruder);
  2213. current_position[E_AXIS] += 5;
  2214. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400 / 60, active_extruder);
  2215. current_position[E_AXIS] -= 5;
  2216. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  2217. st_synchronize();
  2218. current_position[E_AXIS] += 5;
  2219. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  2220. current_position[E_AXIS] -= 5;
  2221. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  2222. current_position[E_AXIS] += 5;
  2223. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  2224. current_position[E_AXIS] -= 5;
  2225. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  2226. st_synchronize();
  2227. }
  2228. }
  2229. */
  2230. #ifdef TMC2130
  2231. void force_high_power_mode(bool start_high_power_section) {
  2232. uint8_t silent;
  2233. silent = eeprom_read_byte((uint8_t*)EEPROM_SILENT);
  2234. if (silent == 1) {
  2235. //we are in silent mode, set to normal mode to enable crash detection
  2236. // Wait for the planner queue to drain and for the stepper timer routine to reach an idle state.
  2237. st_synchronize();
  2238. cli();
  2239. tmc2130_mode = (start_high_power_section == true) ? TMC2130_MODE_NORMAL : TMC2130_MODE_SILENT;
  2240. tmc2130_init();
  2241. // We may have missed a stepper timer interrupt due to the time spent in the tmc2130_init() routine.
  2242. // Be safe than sorry, reset the stepper timer before re-enabling interrupts.
  2243. st_reset_timer();
  2244. sei();
  2245. }
  2246. }
  2247. #endif //TMC2130
  2248. void gcode_G28(bool home_x, bool home_y, bool home_z, bool calib) {
  2249. st_synchronize();
  2250. #if 0
  2251. SERIAL_ECHOPGM("G28, initial "); print_world_coordinates();
  2252. SERIAL_ECHOPGM("G28, initial "); print_physical_coordinates();
  2253. #endif
  2254. // Flag for the display update routine and to disable the print cancelation during homing.
  2255. homing_flag = true;
  2256. // Either all X,Y,Z codes are present, or none of them.
  2257. bool home_all_axes = home_x == home_y && home_x == home_z;
  2258. if (home_all_axes)
  2259. // No X/Y/Z code provided means to home all axes.
  2260. home_x = home_y = home_z = true;
  2261. //if we are homing all axes, first move z higher to protect heatbed/steel sheet
  2262. if (home_all_axes) {
  2263. current_position[Z_AXIS] += MESH_HOME_Z_SEARCH;
  2264. feedrate = homing_feedrate[Z_AXIS];
  2265. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], feedrate / 60, active_extruder);
  2266. st_synchronize();
  2267. }
  2268. #ifdef ENABLE_AUTO_BED_LEVELING
  2269. plan_bed_level_matrix.set_to_identity(); //Reset the plane ("erase" all leveling data)
  2270. #endif //ENABLE_AUTO_BED_LEVELING
  2271. // Reset world2machine_rotation_and_skew and world2machine_shift, therefore
  2272. // the planner will not perform any adjustments in the XY plane.
  2273. // Wait for the motors to stop and update the current position with the absolute values.
  2274. world2machine_revert_to_uncorrected();
  2275. // For mesh bed leveling deactivate the matrix temporarily.
  2276. // It is necessary to disable the bed leveling for the X and Y homing moves, so that the move is performed
  2277. // in a single axis only.
  2278. // In case of re-homing the X or Y axes only, the mesh bed leveling is restored after G28.
  2279. #ifdef MESH_BED_LEVELING
  2280. uint8_t mbl_was_active = mbl.active;
  2281. mbl.active = 0;
  2282. current_position[Z_AXIS] = st_get_position_mm(Z_AXIS);
  2283. #endif
  2284. // Reset baby stepping to zero, if the babystepping has already been loaded before. The babystepsTodo value will be
  2285. // consumed during the first movements following this statement.
  2286. if (home_z)
  2287. babystep_undo();
  2288. saved_feedrate = feedrate;
  2289. saved_feedmultiply = feedmultiply;
  2290. feedmultiply = 100;
  2291. previous_millis_cmd = millis();
  2292. enable_endstops(true);
  2293. memcpy(destination, current_position, sizeof(destination));
  2294. feedrate = 0.0;
  2295. #if Z_HOME_DIR > 0 // If homing away from BED do Z first
  2296. if(home_z)
  2297. homeaxis(Z_AXIS);
  2298. #endif
  2299. #ifdef QUICK_HOME
  2300. // In the quick mode, if both x and y are to be homed, a diagonal move will be performed initially.
  2301. if(home_x && home_y) //first diagonal move
  2302. {
  2303. current_position[X_AXIS] = 0;current_position[Y_AXIS] = 0;
  2304. int x_axis_home_dir = home_dir(X_AXIS);
  2305. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2306. destination[X_AXIS] = 1.5 * max_length(X_AXIS) * x_axis_home_dir;destination[Y_AXIS] = 1.5 * max_length(Y_AXIS) * home_dir(Y_AXIS);
  2307. feedrate = homing_feedrate[X_AXIS];
  2308. if(homing_feedrate[Y_AXIS]<feedrate)
  2309. feedrate = homing_feedrate[Y_AXIS];
  2310. if (max_length(X_AXIS) > max_length(Y_AXIS)) {
  2311. feedrate *= sqrt(pow(max_length(Y_AXIS) / max_length(X_AXIS), 2) + 1);
  2312. } else {
  2313. feedrate *= sqrt(pow(max_length(X_AXIS) / max_length(Y_AXIS), 2) + 1);
  2314. }
  2315. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  2316. st_synchronize();
  2317. axis_is_at_home(X_AXIS);
  2318. axis_is_at_home(Y_AXIS);
  2319. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2320. destination[X_AXIS] = current_position[X_AXIS];
  2321. destination[Y_AXIS] = current_position[Y_AXIS];
  2322. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  2323. feedrate = 0.0;
  2324. st_synchronize();
  2325. endstops_hit_on_purpose();
  2326. current_position[X_AXIS] = destination[X_AXIS];
  2327. current_position[Y_AXIS] = destination[Y_AXIS];
  2328. current_position[Z_AXIS] = destination[Z_AXIS];
  2329. }
  2330. #endif /* QUICK_HOME */
  2331. #ifdef TMC2130
  2332. if(home_x)
  2333. {
  2334. if (!calib)
  2335. homeaxis(X_AXIS);
  2336. else
  2337. tmc2130_home_calibrate(X_AXIS);
  2338. }
  2339. if(home_y)
  2340. {
  2341. if (!calib)
  2342. homeaxis(Y_AXIS);
  2343. else
  2344. tmc2130_home_calibrate(Y_AXIS);
  2345. }
  2346. #endif //TMC2130
  2347. if(code_seen(axis_codes[X_AXIS]) && code_value_long() != 0)
  2348. current_position[X_AXIS]=code_value()+add_homing[X_AXIS];
  2349. if(code_seen(axis_codes[Y_AXIS]) && code_value_long() != 0)
  2350. current_position[Y_AXIS]=code_value()+add_homing[Y_AXIS];
  2351. #if Z_HOME_DIR < 0 // If homing towards BED do Z last
  2352. #ifndef Z_SAFE_HOMING
  2353. if(home_z) {
  2354. #if defined (Z_RAISE_BEFORE_HOMING) && (Z_RAISE_BEFORE_HOMING > 0)
  2355. destination[Z_AXIS] = Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS) * (-1); // Set destination away from bed
  2356. feedrate = max_feedrate[Z_AXIS];
  2357. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
  2358. st_synchronize();
  2359. #endif // defined (Z_RAISE_BEFORE_HOMING) && (Z_RAISE_BEFORE_HOMING > 0)
  2360. #if (defined(MESH_BED_LEVELING) && !defined(MK1BP)) // If Mesh bed leveling, move X&Y to safe position for home
  2361. if (!(axis_known_position[X_AXIS] && axis_known_position[Y_AXIS] ))
  2362. {
  2363. homeaxis(X_AXIS);
  2364. homeaxis(Y_AXIS);
  2365. }
  2366. // 1st mesh bed leveling measurement point, corrected.
  2367. world2machine_initialize();
  2368. world2machine(pgm_read_float(bed_ref_points_4), pgm_read_float(bed_ref_points_4+1), destination[X_AXIS], destination[Y_AXIS]);
  2369. world2machine_reset();
  2370. if (destination[Y_AXIS] < Y_MIN_POS)
  2371. destination[Y_AXIS] = Y_MIN_POS;
  2372. destination[Z_AXIS] = MESH_HOME_Z_SEARCH; // Set destination away from bed
  2373. feedrate = homing_feedrate[Z_AXIS]/10;
  2374. current_position[Z_AXIS] = 0;
  2375. enable_endstops(false);
  2376. #ifdef DEBUG_BUILD
  2377. SERIAL_ECHOLNPGM("plan_set_position()");
  2378. MYSERIAL.println(current_position[X_AXIS]);MYSERIAL.println(current_position[Y_AXIS]);
  2379. MYSERIAL.println(current_position[Z_AXIS]);MYSERIAL.println(current_position[E_AXIS]);
  2380. #endif
  2381. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2382. #ifdef DEBUG_BUILD
  2383. SERIAL_ECHOLNPGM("plan_buffer_line()");
  2384. MYSERIAL.println(destination[X_AXIS]);MYSERIAL.println(destination[Y_AXIS]);
  2385. MYSERIAL.println(destination[Z_AXIS]);MYSERIAL.println(destination[E_AXIS]);
  2386. MYSERIAL.println(feedrate);MYSERIAL.println(active_extruder);
  2387. #endif
  2388. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
  2389. st_synchronize();
  2390. current_position[X_AXIS] = destination[X_AXIS];
  2391. current_position[Y_AXIS] = destination[Y_AXIS];
  2392. enable_endstops(true);
  2393. endstops_hit_on_purpose();
  2394. homeaxis(Z_AXIS);
  2395. #else // MESH_BED_LEVELING
  2396. homeaxis(Z_AXIS);
  2397. #endif // MESH_BED_LEVELING
  2398. }
  2399. #else // defined(Z_SAFE_HOMING): Z Safe mode activated.
  2400. if(home_all_axes) {
  2401. destination[X_AXIS] = round(Z_SAFE_HOMING_X_POINT - X_PROBE_OFFSET_FROM_EXTRUDER);
  2402. destination[Y_AXIS] = round(Z_SAFE_HOMING_Y_POINT - Y_PROBE_OFFSET_FROM_EXTRUDER);
  2403. destination[Z_AXIS] = Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS) * (-1); // Set destination away from bed
  2404. feedrate = XY_TRAVEL_SPEED/60;
  2405. current_position[Z_AXIS] = 0;
  2406. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2407. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
  2408. st_synchronize();
  2409. current_position[X_AXIS] = destination[X_AXIS];
  2410. current_position[Y_AXIS] = destination[Y_AXIS];
  2411. homeaxis(Z_AXIS);
  2412. }
  2413. // Let's see if X and Y are homed and probe is inside bed area.
  2414. if(home_z) {
  2415. if ( (axis_known_position[X_AXIS]) && (axis_known_position[Y_AXIS]) \
  2416. && (current_position[X_AXIS]+X_PROBE_OFFSET_FROM_EXTRUDER >= X_MIN_POS) \
  2417. && (current_position[X_AXIS]+X_PROBE_OFFSET_FROM_EXTRUDER <= X_MAX_POS) \
  2418. && (current_position[Y_AXIS]+Y_PROBE_OFFSET_FROM_EXTRUDER >= Y_MIN_POS) \
  2419. && (current_position[Y_AXIS]+Y_PROBE_OFFSET_FROM_EXTRUDER <= Y_MAX_POS)) {
  2420. current_position[Z_AXIS] = 0;
  2421. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2422. destination[Z_AXIS] = Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS) * (-1); // Set destination away from bed
  2423. feedrate = max_feedrate[Z_AXIS];
  2424. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
  2425. st_synchronize();
  2426. homeaxis(Z_AXIS);
  2427. } else if (!((axis_known_position[X_AXIS]) && (axis_known_position[Y_AXIS]))) {
  2428. LCD_MESSAGERPGM(MSG_POSITION_UNKNOWN);
  2429. SERIAL_ECHO_START;
  2430. SERIAL_ECHOLNRPGM(MSG_POSITION_UNKNOWN);
  2431. } else {
  2432. LCD_MESSAGERPGM(MSG_ZPROBE_OUT);
  2433. SERIAL_ECHO_START;
  2434. SERIAL_ECHOLNRPGM(MSG_ZPROBE_OUT);
  2435. }
  2436. }
  2437. #endif // Z_SAFE_HOMING
  2438. #endif // Z_HOME_DIR < 0
  2439. if(code_seen(axis_codes[Z_AXIS]) && code_value_long() != 0)
  2440. current_position[Z_AXIS]=code_value()+add_homing[Z_AXIS];
  2441. #ifdef ENABLE_AUTO_BED_LEVELING
  2442. if(home_z)
  2443. current_position[Z_AXIS] += zprobe_zoffset; //Add Z_Probe offset (the distance is negative)
  2444. #endif
  2445. // Set the planner and stepper routine positions.
  2446. // At this point the mesh bed leveling and world2machine corrections are disabled and current_position
  2447. // contains the machine coordinates.
  2448. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2449. #ifdef ENDSTOPS_ONLY_FOR_HOMING
  2450. enable_endstops(false);
  2451. #endif
  2452. feedrate = saved_feedrate;
  2453. feedmultiply = saved_feedmultiply;
  2454. previous_millis_cmd = millis();
  2455. endstops_hit_on_purpose();
  2456. #ifndef MESH_BED_LEVELING
  2457. // If MESH_BED_LEVELING is not active, then it is the original Prusa i3.
  2458. // Offer the user to load the baby step value, which has been adjusted at the previous print session.
  2459. if(card.sdprinting && eeprom_read_word((uint16_t *)EEPROM_BABYSTEP_Z))
  2460. lcd_adjust_z();
  2461. #endif
  2462. // Load the machine correction matrix
  2463. world2machine_initialize();
  2464. // and correct the current_position XY axes to match the transformed coordinate system.
  2465. world2machine_update_current();
  2466. #if (defined(MESH_BED_LEVELING) && !defined(MK1BP))
  2467. if (code_seen(axis_codes[X_AXIS]) || code_seen(axis_codes[Y_AXIS]) || code_seen('W') || code_seen(axis_codes[Z_AXIS]))
  2468. {
  2469. if (! home_z && mbl_was_active) {
  2470. // Re-enable the mesh bed leveling if only the X and Y axes were re-homed.
  2471. mbl.active = true;
  2472. // and re-adjust the current logical Z axis with the bed leveling offset applicable at the current XY position.
  2473. current_position[Z_AXIS] -= mbl.get_z(st_get_position_mm(X_AXIS), st_get_position_mm(Y_AXIS));
  2474. }
  2475. }
  2476. else
  2477. {
  2478. st_synchronize();
  2479. homing_flag = false;
  2480. // Push the commands to the front of the message queue in the reverse order!
  2481. // There shall be always enough space reserved for these commands.
  2482. enquecommand_front_P((PSTR("G80")));
  2483. //goto case_G80;
  2484. }
  2485. #endif
  2486. if (farm_mode) { prusa_statistics(20); };
  2487. homing_flag = false;
  2488. #if 0
  2489. SERIAL_ECHOPGM("G28, final "); print_world_coordinates();
  2490. SERIAL_ECHOPGM("G28, final "); print_physical_coordinates();
  2491. SERIAL_ECHOPGM("G28, final "); print_mesh_bed_leveling_table();
  2492. #endif
  2493. }
  2494. bool gcode_M45(bool onlyZ, int8_t verbosity_level)
  2495. {
  2496. bool final_result = false;
  2497. #ifdef TMC2130
  2498. FORCE_HIGH_POWER_START;
  2499. #endif // TMC2130
  2500. // Only Z calibration?
  2501. if (!onlyZ)
  2502. {
  2503. setTargetBed(0);
  2504. setTargetHotend(0, 0);
  2505. setTargetHotend(0, 1);
  2506. setTargetHotend(0, 2);
  2507. adjust_bed_reset(); //reset bed level correction
  2508. }
  2509. // Disable the default update procedure of the display. We will do a modal dialog.
  2510. lcd_update_enable(false);
  2511. // Let the planner use the uncorrected coordinates.
  2512. mbl.reset();
  2513. // Reset world2machine_rotation_and_skew and world2machine_shift, therefore
  2514. // the planner will not perform any adjustments in the XY plane.
  2515. // Wait for the motors to stop and update the current position with the absolute values.
  2516. world2machine_revert_to_uncorrected();
  2517. // Reset the baby step value applied without moving the axes.
  2518. babystep_reset();
  2519. // Mark all axes as in a need for homing.
  2520. memset(axis_known_position, 0, sizeof(axis_known_position));
  2521. // Home in the XY plane.
  2522. //set_destination_to_current();
  2523. setup_for_endstop_move();
  2524. lcd_display_message_fullscreen_P(_T(MSG_AUTO_HOME));
  2525. home_xy();
  2526. enable_endstops(false);
  2527. current_position[X_AXIS] += 5;
  2528. current_position[Y_AXIS] += 5;
  2529. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[Z_AXIS] / 40, active_extruder);
  2530. st_synchronize();
  2531. // Let the user move the Z axes up to the end stoppers.
  2532. #ifdef TMC2130
  2533. if (calibrate_z_auto())
  2534. {
  2535. #else //TMC2130
  2536. if (lcd_calibrate_z_end_stop_manual(onlyZ))
  2537. {
  2538. #endif //TMC2130
  2539. refresh_cmd_timeout();
  2540. #ifndef STEEL_SHEET
  2541. if (((degHotend(0) > MAX_HOTEND_TEMP_CALIBRATION) || (degBed() > MAX_BED_TEMP_CALIBRATION)) && (!onlyZ))
  2542. {
  2543. lcd_wait_for_cool_down();
  2544. }
  2545. #endif //STEEL_SHEET
  2546. if(!onlyZ)
  2547. {
  2548. KEEPALIVE_STATE(PAUSED_FOR_USER);
  2549. #ifdef STEEL_SHEET
  2550. bool result = lcd_show_fullscreen_message_yes_no_and_wait_P(_T(MSG_STEEL_SHEET_CHECK), false, false);
  2551. if(result) lcd_show_fullscreen_message_and_wait_P(_T(MSG_REMOVE_STEEL_SHEET));
  2552. #endif //STEEL_SHEET
  2553. lcd_show_fullscreen_message_and_wait_P(_T(MSG_CONFIRM_NOZZLE_CLEAN));
  2554. lcd_show_fullscreen_message_and_wait_P(_T(MSG_PAPER));
  2555. KEEPALIVE_STATE(IN_HANDLER);
  2556. lcd_display_message_fullscreen_P(_T(MSG_FIND_BED_OFFSET_AND_SKEW_LINE1));
  2557. lcd_print_at(0, 2, 1);
  2558. lcd_printPGM(_T(MSG_FIND_BED_OFFSET_AND_SKEW_LINE2));
  2559. }
  2560. // Move the print head close to the bed.
  2561. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  2562. bool endstops_enabled = enable_endstops(true);
  2563. #ifdef TMC2130
  2564. tmc2130_home_enter(Z_AXIS_MASK);
  2565. #endif //TMC2130
  2566. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[Z_AXIS] / 40, active_extruder);
  2567. st_synchronize();
  2568. #ifdef TMC2130
  2569. tmc2130_home_exit();
  2570. #endif //TMC2130
  2571. enable_endstops(endstops_enabled);
  2572. if (st_get_position_mm(Z_AXIS) == MESH_HOME_Z_SEARCH)
  2573. {
  2574. int8_t verbosity_level = 0;
  2575. if (code_seen('V'))
  2576. {
  2577. // Just 'V' without a number counts as V1.
  2578. char c = strchr_pointer[1];
  2579. verbosity_level = (c == ' ' || c == '\t' || c == 0) ? 1 : code_value_short();
  2580. }
  2581. if (onlyZ)
  2582. {
  2583. clean_up_after_endstop_move();
  2584. // Z only calibration.
  2585. // Load the machine correction matrix
  2586. world2machine_initialize();
  2587. // and correct the current_position to match the transformed coordinate system.
  2588. world2machine_update_current();
  2589. //FIXME
  2590. bool result = sample_mesh_and_store_reference();
  2591. if (result)
  2592. {
  2593. if (calibration_status() == CALIBRATION_STATUS_Z_CALIBRATION)
  2594. // Shipped, the nozzle height has been set already. The user can start printing now.
  2595. calibration_status_store(CALIBRATION_STATUS_CALIBRATED);
  2596. final_result = true;
  2597. // babystep_apply();
  2598. }
  2599. }
  2600. else
  2601. {
  2602. // Reset the baby step value and the baby step applied flag.
  2603. calibration_status_store(CALIBRATION_STATUS_XYZ_CALIBRATION);
  2604. eeprom_update_word((uint16_t*)EEPROM_BABYSTEP_Z, 0);
  2605. // Complete XYZ calibration.
  2606. uint8_t point_too_far_mask = 0;
  2607. BedSkewOffsetDetectionResultType result = find_bed_offset_and_skew(verbosity_level, point_too_far_mask);
  2608. clean_up_after_endstop_move();
  2609. // Print head up.
  2610. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  2611. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[Z_AXIS] / 40, active_extruder);
  2612. st_synchronize();
  2613. //#ifndef NEW_XYZCAL
  2614. if (result >= 0)
  2615. {
  2616. #ifdef HEATBED_V2
  2617. sample_z();
  2618. #else //HEATBED_V2
  2619. point_too_far_mask = 0;
  2620. // Second half: The fine adjustment.
  2621. // Let the planner use the uncorrected coordinates.
  2622. mbl.reset();
  2623. world2machine_reset();
  2624. // Home in the XY plane.
  2625. setup_for_endstop_move();
  2626. home_xy();
  2627. result = improve_bed_offset_and_skew(1, verbosity_level, point_too_far_mask);
  2628. clean_up_after_endstop_move();
  2629. // Print head up.
  2630. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  2631. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[Z_AXIS] / 40, active_extruder);
  2632. st_synchronize();
  2633. // if (result >= 0) babystep_apply();
  2634. #endif //HEATBED_V2
  2635. }
  2636. //#endif //NEW_XYZCAL
  2637. lcd_update_enable(true);
  2638. lcd_update(2);
  2639. lcd_bed_calibration_show_result(result, point_too_far_mask);
  2640. if (result >= 0)
  2641. {
  2642. // Calibration valid, the machine should be able to print. Advise the user to run the V2Calibration.gcode.
  2643. calibration_status_store(CALIBRATION_STATUS_LIVE_ADJUST);
  2644. if (eeprom_read_byte((uint8_t*)EEPROM_WIZARD_ACTIVE) != 1) lcd_show_fullscreen_message_and_wait_P(_T(MSG_BABYSTEP_Z_NOT_SET));
  2645. final_result = true;
  2646. }
  2647. }
  2648. #ifdef TMC2130
  2649. tmc2130_home_exit();
  2650. #endif
  2651. }
  2652. else
  2653. {
  2654. lcd_show_fullscreen_message_and_wait_P(PSTR("Calibration failed! Check the axes and run again."));
  2655. final_result = false;
  2656. }
  2657. }
  2658. else
  2659. {
  2660. // Timeouted.
  2661. }
  2662. lcd_update_enable(true);
  2663. #ifdef TMC2130
  2664. FORCE_HIGH_POWER_END;
  2665. #endif // TMC2130
  2666. return final_result;
  2667. }
  2668. void gcode_M114()
  2669. {
  2670. SERIAL_PROTOCOLPGM("X:");
  2671. SERIAL_PROTOCOL(current_position[X_AXIS]);
  2672. SERIAL_PROTOCOLPGM(" Y:");
  2673. SERIAL_PROTOCOL(current_position[Y_AXIS]);
  2674. SERIAL_PROTOCOLPGM(" Z:");
  2675. SERIAL_PROTOCOL(current_position[Z_AXIS]);
  2676. SERIAL_PROTOCOLPGM(" E:");
  2677. SERIAL_PROTOCOL(current_position[E_AXIS]);
  2678. SERIAL_PROTOCOLRPGM(_n(" Count X: "));////MSG_COUNT_X c=0 r=0
  2679. SERIAL_PROTOCOL(float(st_get_position(X_AXIS)) / axis_steps_per_unit[X_AXIS]);
  2680. SERIAL_PROTOCOLPGM(" Y:");
  2681. SERIAL_PROTOCOL(float(st_get_position(Y_AXIS)) / axis_steps_per_unit[Y_AXIS]);
  2682. SERIAL_PROTOCOLPGM(" Z:");
  2683. SERIAL_PROTOCOL(float(st_get_position(Z_AXIS)) / axis_steps_per_unit[Z_AXIS]);
  2684. SERIAL_PROTOCOLPGM(" E:");
  2685. SERIAL_PROTOCOL(float(st_get_position(E_AXIS)) / axis_steps_per_unit[E_AXIS]);
  2686. SERIAL_PROTOCOLLN("");
  2687. }
  2688. void gcode_M701()
  2689. {
  2690. #ifdef SNMM
  2691. extr_adj(snmm_extruder);//loads current extruder
  2692. #else
  2693. enable_z();
  2694. custom_message = true;
  2695. custom_message_type = 2;
  2696. lcd_setstatuspgm(_T(MSG_LOADING_FILAMENT));
  2697. current_position[E_AXIS] += 70;
  2698. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400 / 60, active_extruder); //fast sequence
  2699. current_position[E_AXIS] += 25;
  2700. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 100 / 60, active_extruder); //slow sequence
  2701. st_synchronize();
  2702. tone(BEEPER, 500);
  2703. delay_keep_alive(50);
  2704. noTone(BEEPER);
  2705. if (!farm_mode && loading_flag) {
  2706. bool clean = lcd_show_fullscreen_message_yes_no_and_wait_P(_T(MSG_FILAMENT_CLEAN), false, true);
  2707. while (!clean) {
  2708. lcd_update_enable(true);
  2709. lcd_update(2);
  2710. current_position[E_AXIS] += 25;
  2711. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 100 / 60, active_extruder); //slow sequence
  2712. st_synchronize();
  2713. clean = lcd_show_fullscreen_message_yes_no_and_wait_P(_T(MSG_FILAMENT_CLEAN), false, true);
  2714. }
  2715. }
  2716. lcd_update_enable(true);
  2717. lcd_update(2);
  2718. lcd_setstatuspgm(_T(WELCOME_MSG));
  2719. disable_z();
  2720. loading_flag = false;
  2721. custom_message = false;
  2722. custom_message_type = 0;
  2723. #endif
  2724. }
  2725. /**
  2726. * @brief Get serial number from 32U2 processor
  2727. *
  2728. * Typical format of S/N is:CZPX0917X003XC13518
  2729. *
  2730. * Command operates only in farm mode, if not in farm mode, "Not in farm mode." is written to MYSERIAL.
  2731. *
  2732. * Send command ;S to serial port 0 to retrieve serial number stored in 32U2 processor,
  2733. * reply is transmitted to serial port 1 character by character.
  2734. * Operation takes typically 23 ms. If the retransmit is not finished until 100 ms,
  2735. * it is interrupted, so less, or no characters are retransmitted, only newline character is send
  2736. * in any case.
  2737. */
  2738. static void gcode_PRUSA_SN()
  2739. {
  2740. if (farm_mode) {
  2741. selectedSerialPort = 0;
  2742. putchar(';');
  2743. putchar('S');
  2744. int numbersRead = 0;
  2745. ShortTimer timeout;
  2746. timeout.start();
  2747. while (numbersRead < 19) {
  2748. while (MSerial.available() > 0) {
  2749. uint8_t serial_char = MSerial.read();
  2750. selectedSerialPort = 1;
  2751. putchar(serial_char);
  2752. numbersRead++;
  2753. selectedSerialPort = 0;
  2754. }
  2755. if (timeout.expired(100u)) break;
  2756. }
  2757. selectedSerialPort = 1;
  2758. putchar('\n');
  2759. #if 0
  2760. for (int b = 0; b < 3; b++) {
  2761. tone(BEEPER, 110);
  2762. delay(50);
  2763. noTone(BEEPER);
  2764. delay(50);
  2765. }
  2766. #endif
  2767. } else {
  2768. puts_P(_N("Not in farm mode."));
  2769. }
  2770. }
  2771. #ifdef BACKLASH_X
  2772. extern uint8_t st_backlash_x;
  2773. #endif //BACKLASH_X
  2774. #ifdef BACKLASH_Y
  2775. extern uint8_t st_backlash_y;
  2776. #endif //BACKLASH_Y
  2777. void process_commands()
  2778. {
  2779. if (!buflen) return; //empty command
  2780. #ifdef FILAMENT_RUNOUT_SUPPORT
  2781. SET_INPUT(FR_SENS);
  2782. #endif
  2783. #ifdef CMDBUFFER_DEBUG
  2784. SERIAL_ECHOPGM("Processing a GCODE command: ");
  2785. SERIAL_ECHO(cmdbuffer+bufindr+CMDHDRSIZE);
  2786. SERIAL_ECHOLNPGM("");
  2787. SERIAL_ECHOPGM("In cmdqueue: ");
  2788. SERIAL_ECHO(buflen);
  2789. SERIAL_ECHOLNPGM("");
  2790. #endif /* CMDBUFFER_DEBUG */
  2791. unsigned long codenum; //throw away variable
  2792. char *starpos = NULL;
  2793. #ifdef ENABLE_AUTO_BED_LEVELING
  2794. float x_tmp, y_tmp, z_tmp, real_z;
  2795. #endif
  2796. // PRUSA GCODES
  2797. KEEPALIVE_STATE(IN_HANDLER);
  2798. #ifdef SNMM
  2799. float tmp_motor[3] = DEFAULT_PWM_MOTOR_CURRENT;
  2800. float tmp_motor_loud[3] = DEFAULT_PWM_MOTOR_CURRENT_LOUD;
  2801. int8_t SilentMode;
  2802. #endif
  2803. if (code_seen("M117")) { //moved to highest priority place to be able to to print strings which includes "G", "PRUSA" and "^"
  2804. starpos = (strchr(strchr_pointer + 5, '*'));
  2805. if (starpos != NULL)
  2806. *(starpos) = '\0';
  2807. lcd_setstatus(strchr_pointer + 5);
  2808. }
  2809. #ifdef TMC2130
  2810. else if (strncmp_P(CMDBUFFER_CURRENT_STRING, PSTR("CRASH_"), 6) == 0)
  2811. {
  2812. if(code_seen("CRASH_DETECTED"))
  2813. {
  2814. uint8_t mask = 0;
  2815. if (code_seen("X")) mask |= X_AXIS_MASK;
  2816. if (code_seen("Y")) mask |= Y_AXIS_MASK;
  2817. crashdet_detected(mask);
  2818. }
  2819. else if(code_seen("CRASH_RECOVER"))
  2820. crashdet_recover();
  2821. else if(code_seen("CRASH_CANCEL"))
  2822. crashdet_cancel();
  2823. }
  2824. else if (strncmp_P(CMDBUFFER_CURRENT_STRING, PSTR("TMC_"), 4) == 0)
  2825. {
  2826. if (strncmp_P(CMDBUFFER_CURRENT_STRING + 4, PSTR("SET_WAVE_"), 9) == 0)
  2827. {
  2828. uint8_t axis = *(CMDBUFFER_CURRENT_STRING + 13);
  2829. axis = (axis == 'E')?3:(axis - 'X');
  2830. if (axis < 4)
  2831. {
  2832. uint8_t fac = (uint8_t)strtol(CMDBUFFER_CURRENT_STRING + 14, NULL, 10);
  2833. tmc2130_set_wave(axis, 247, fac);
  2834. }
  2835. }
  2836. else if (strncmp_P(CMDBUFFER_CURRENT_STRING + 4, PSTR("SET_STEP_"), 9) == 0)
  2837. {
  2838. uint8_t axis = *(CMDBUFFER_CURRENT_STRING + 13);
  2839. axis = (axis == 'E')?3:(axis - 'X');
  2840. if (axis < 4)
  2841. {
  2842. uint8_t step = (uint8_t)strtol(CMDBUFFER_CURRENT_STRING + 14, NULL, 10);
  2843. uint16_t res = tmc2130_get_res(axis);
  2844. tmc2130_goto_step(axis, step & (4*res - 1), 2, 1000, res);
  2845. }
  2846. }
  2847. else if (strncmp_P(CMDBUFFER_CURRENT_STRING + 4, PSTR("SET_CHOP_"), 9) == 0)
  2848. {
  2849. uint8_t axis = *(CMDBUFFER_CURRENT_STRING + 13);
  2850. axis = (axis == 'E')?3:(axis - 'X');
  2851. if (axis < 4)
  2852. {
  2853. uint8_t chop0 = tmc2130_chopper_config[axis].toff;
  2854. uint8_t chop1 = tmc2130_chopper_config[axis].hstr;
  2855. uint8_t chop2 = tmc2130_chopper_config[axis].hend;
  2856. uint8_t chop3 = tmc2130_chopper_config[axis].tbl;
  2857. char* str_end = 0;
  2858. if (CMDBUFFER_CURRENT_STRING[14])
  2859. {
  2860. chop0 = (uint8_t)strtol(CMDBUFFER_CURRENT_STRING + 14, &str_end, 10) & 15;
  2861. if (str_end && *str_end)
  2862. {
  2863. chop1 = (uint8_t)strtol(str_end, &str_end, 10) & 7;
  2864. if (str_end && *str_end)
  2865. {
  2866. chop2 = (uint8_t)strtol(str_end, &str_end, 10) & 15;
  2867. if (str_end && *str_end)
  2868. chop3 = (uint8_t)strtol(str_end, &str_end, 10) & 3;
  2869. }
  2870. }
  2871. }
  2872. tmc2130_chopper_config[axis].toff = chop0;
  2873. tmc2130_chopper_config[axis].hstr = chop1 & 7;
  2874. tmc2130_chopper_config[axis].hend = chop2 & 15;
  2875. tmc2130_chopper_config[axis].tbl = chop3 & 3;
  2876. tmc2130_setup_chopper(axis, tmc2130_mres[axis], tmc2130_current_h[axis], tmc2130_current_r[axis]);
  2877. //printf_P(_N("TMC_SET_CHOP_%c %hhd %hhd %hhd %hhd\n"), "xyze"[axis], chop0, chop1, chop2, chop3);
  2878. }
  2879. }
  2880. }
  2881. #ifdef BACKLASH_X
  2882. else if (strncmp_P(CMDBUFFER_CURRENT_STRING, PSTR("BACKLASH_X"), 10) == 0)
  2883. {
  2884. uint8_t bl = (uint8_t)strtol(CMDBUFFER_CURRENT_STRING + 10, NULL, 10);
  2885. st_backlash_x = bl;
  2886. printf_P(_N("st_backlash_x = %hhd\n"), st_backlash_x);
  2887. }
  2888. #endif //BACKLASH_X
  2889. #ifdef BACKLASH_Y
  2890. else if (strncmp_P(CMDBUFFER_CURRENT_STRING, PSTR("BACKLASH_Y"), 10) == 0)
  2891. {
  2892. uint8_t bl = (uint8_t)strtol(CMDBUFFER_CURRENT_STRING + 10, NULL, 10);
  2893. st_backlash_y = bl;
  2894. printf_P(_N("st_backlash_y = %hhd\n"), st_backlash_y);
  2895. }
  2896. #endif //BACKLASH_Y
  2897. #endif //TMC2130
  2898. else if(code_seen("PRUSA")){
  2899. if (code_seen("Ping")) { //PRUSA Ping
  2900. if (farm_mode) {
  2901. PingTime = millis();
  2902. //MYSERIAL.print(farm_no); MYSERIAL.println(": OK");
  2903. }
  2904. }
  2905. else if (code_seen("PRN")) {
  2906. printf_P(_N("%d"), status_number);
  2907. }else if (code_seen("FAN")) {
  2908. printf_P(_N("E0:%d RPM\nPRN0:%d RPM\n"), 60*fan_speed[0], 60*fan_speed[1]);
  2909. }else if (code_seen("fn")) {
  2910. if (farm_mode) {
  2911. printf_P(_N("%d"), farm_no);
  2912. }
  2913. else {
  2914. puts_P(_N("Not in farm mode."));
  2915. }
  2916. }
  2917. else if (code_seen("thx")) {
  2918. no_response = false;
  2919. } else if (code_seen("RESET")) {
  2920. // careful!
  2921. if (farm_mode) {
  2922. #ifdef WATCHDOG
  2923. wdt_enable(WDTO_15MS);
  2924. cli();
  2925. while(1);
  2926. #else //WATCHDOG
  2927. asm volatile("jmp 0x3E000");
  2928. #endif //WATCHDOG
  2929. }
  2930. else {
  2931. MYSERIAL.println("Not in farm mode.");
  2932. }
  2933. }else if (code_seen("fv")) {
  2934. // get file version
  2935. #ifdef SDSUPPORT
  2936. card.openFile(strchr_pointer + 3,true);
  2937. while (true) {
  2938. uint16_t readByte = card.get();
  2939. MYSERIAL.write(readByte);
  2940. if (readByte=='\n') {
  2941. break;
  2942. }
  2943. }
  2944. card.closefile();
  2945. #endif // SDSUPPORT
  2946. } else if (code_seen("M28")) {
  2947. trace();
  2948. prusa_sd_card_upload = true;
  2949. card.openFile(strchr_pointer+4,false);
  2950. } else if (code_seen("SN")) {
  2951. gcode_PRUSA_SN();
  2952. } else if(code_seen("Fir")){
  2953. SERIAL_PROTOCOLLN(FW_VERSION);
  2954. } else if(code_seen("Rev")){
  2955. SERIAL_PROTOCOLLN(FILAMENT_SIZE "-" ELECTRONICS "-" NOZZLE_TYPE );
  2956. } else if(code_seen("Lang")) {
  2957. lang_reset();
  2958. } else if(code_seen("Lz")) {
  2959. EEPROM_save_B(EEPROM_BABYSTEP_Z,0);
  2960. } else if(code_seen("Beat")) {
  2961. // Kick farm link timer
  2962. kicktime = millis();
  2963. } else if(code_seen("FR")) {
  2964. // Factory full reset
  2965. factory_reset(0,true);
  2966. }
  2967. //else if (code_seen('Cal')) {
  2968. // lcd_calibration();
  2969. // }
  2970. }
  2971. else if (code_seen('^')) {
  2972. // nothing, this is a version line
  2973. } else if(code_seen('G'))
  2974. {
  2975. switch((int)code_value())
  2976. {
  2977. case 0: // G0 -> G1
  2978. case 1: // G1
  2979. if(Stopped == false) {
  2980. #ifdef FILAMENT_RUNOUT_SUPPORT
  2981. if(READ(FR_SENS)){
  2982. feedmultiplyBckp=feedmultiply;
  2983. float target[4];
  2984. float lastpos[4];
  2985. target[X_AXIS]=current_position[X_AXIS];
  2986. target[Y_AXIS]=current_position[Y_AXIS];
  2987. target[Z_AXIS]=current_position[Z_AXIS];
  2988. target[E_AXIS]=current_position[E_AXIS];
  2989. lastpos[X_AXIS]=current_position[X_AXIS];
  2990. lastpos[Y_AXIS]=current_position[Y_AXIS];
  2991. lastpos[Z_AXIS]=current_position[Z_AXIS];
  2992. lastpos[E_AXIS]=current_position[E_AXIS];
  2993. //retract by E
  2994. target[E_AXIS]+= FILAMENTCHANGE_FIRSTRETRACT ;
  2995. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 400, active_extruder);
  2996. target[Z_AXIS]+= FILAMENTCHANGE_ZADD ;
  2997. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 300, active_extruder);
  2998. target[X_AXIS]= FILAMENTCHANGE_XPOS ;
  2999. target[Y_AXIS]= FILAMENTCHANGE_YPOS ;
  3000. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 70, active_extruder);
  3001. target[E_AXIS]+= FILAMENTCHANGE_FINALRETRACT ;
  3002. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 20, active_extruder);
  3003. //finish moves
  3004. st_synchronize();
  3005. //disable extruder steppers so filament can be removed
  3006. disable_e0();
  3007. disable_e1();
  3008. disable_e2();
  3009. delay(100);
  3010. //LCD_ALERTMESSAGEPGM(_T(MSG_FILAMENTCHANGE));
  3011. uint8_t cnt=0;
  3012. int counterBeep = 0;
  3013. lcd_wait_interact();
  3014. while(!lcd_clicked()){
  3015. cnt++;
  3016. manage_heater();
  3017. manage_inactivity(true);
  3018. //lcd_update(0);
  3019. if(cnt==0)
  3020. {
  3021. #if BEEPER > 0
  3022. if (counterBeep== 500){
  3023. counterBeep = 0;
  3024. }
  3025. SET_OUTPUT(BEEPER);
  3026. if (counterBeep== 0){
  3027. WRITE(BEEPER,HIGH);
  3028. }
  3029. if (counterBeep== 20){
  3030. WRITE(BEEPER,LOW);
  3031. }
  3032. counterBeep++;
  3033. #else
  3034. #endif
  3035. }
  3036. }
  3037. WRITE(BEEPER,LOW);
  3038. target[E_AXIS]+= FILAMENTCHANGE_FIRSTFEED ;
  3039. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 20, active_extruder);
  3040. target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  3041. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder);
  3042. lcd_change_fil_state = 0;
  3043. lcd_loading_filament();
  3044. while ((lcd_change_fil_state == 0)||(lcd_change_fil_state != 1)){
  3045. lcd_change_fil_state = 0;
  3046. lcd_alright();
  3047. switch(lcd_change_fil_state){
  3048. case 2:
  3049. target[E_AXIS]+= FILAMENTCHANGE_FIRSTFEED ;
  3050. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 20, active_extruder);
  3051. target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  3052. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder);
  3053. lcd_loading_filament();
  3054. break;
  3055. case 3:
  3056. target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  3057. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder);
  3058. lcd_loading_color();
  3059. break;
  3060. default:
  3061. lcd_change_success();
  3062. break;
  3063. }
  3064. }
  3065. target[E_AXIS]+= 5;
  3066. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder);
  3067. target[E_AXIS]+= FILAMENTCHANGE_FIRSTRETRACT;
  3068. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 400, active_extruder);
  3069. //current_position[E_AXIS]=target[E_AXIS]; //the long retract of L is compensated by manual filament feeding
  3070. //plan_set_e_position(current_position[E_AXIS]);
  3071. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 70, active_extruder); //should do nothing
  3072. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], target[Z_AXIS], target[E_AXIS], 70, active_extruder); //move xy back
  3073. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], target[E_AXIS], 200, active_extruder); //move z back
  3074. target[E_AXIS]= target[E_AXIS] - FILAMENTCHANGE_FIRSTRETRACT;
  3075. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], target[E_AXIS], 5, active_extruder); //final untretract
  3076. plan_set_e_position(lastpos[E_AXIS]);
  3077. feedmultiply=feedmultiplyBckp;
  3078. char cmd[9];
  3079. sprintf_P(cmd, PSTR("M220 S%i"), feedmultiplyBckp);
  3080. enquecommand(cmd);
  3081. }
  3082. #endif
  3083. get_coordinates(); // For X Y Z E F
  3084. if (total_filament_used > ((current_position[E_AXIS] - destination[E_AXIS]) * 100)) { //protection against total_filament_used overflow
  3085. total_filament_used = total_filament_used + ((destination[E_AXIS] - current_position[E_AXIS]) * 100);
  3086. }
  3087. #ifdef FWRETRACT
  3088. if(autoretract_enabled)
  3089. if( !(code_seen('X') || code_seen('Y') || code_seen('Z')) && code_seen('E')) {
  3090. float echange=destination[E_AXIS]-current_position[E_AXIS];
  3091. if((echange<-MIN_RETRACT && !retracted[active_extruder]) || (echange>MIN_RETRACT && retracted[active_extruder])) { //move appears to be an attempt to retract or recover
  3092. current_position[E_AXIS] = destination[E_AXIS]; //hide the slicer-generated retract/recover from calculations
  3093. plan_set_e_position(current_position[E_AXIS]); //AND from the planner
  3094. retract(!retracted[active_extruder]);
  3095. return;
  3096. }
  3097. }
  3098. #endif //FWRETRACT
  3099. prepare_move();
  3100. //ClearToSend();
  3101. }
  3102. break;
  3103. case 2: // G2 - CW ARC
  3104. if(Stopped == false) {
  3105. get_arc_coordinates();
  3106. prepare_arc_move(true);
  3107. }
  3108. break;
  3109. case 3: // G3 - CCW ARC
  3110. if(Stopped == false) {
  3111. get_arc_coordinates();
  3112. prepare_arc_move(false);
  3113. }
  3114. break;
  3115. case 4: // G4 dwell
  3116. codenum = 0;
  3117. if(code_seen('P')) codenum = code_value(); // milliseconds to wait
  3118. if(code_seen('S')) codenum = code_value() * 1000; // seconds to wait
  3119. if(codenum != 0) LCD_MESSAGERPGM(_i("Sleep..."));////MSG_DWELL c=0 r=0
  3120. st_synchronize();
  3121. codenum += millis(); // keep track of when we started waiting
  3122. previous_millis_cmd = millis();
  3123. while(millis() < codenum) {
  3124. manage_heater();
  3125. manage_inactivity();
  3126. lcd_update(0);
  3127. }
  3128. break;
  3129. #ifdef FWRETRACT
  3130. case 10: // G10 retract
  3131. #if EXTRUDERS > 1
  3132. retracted_swap[active_extruder]=(code_seen('S') && code_value_long() == 1); // checks for swap retract argument
  3133. retract(true,retracted_swap[active_extruder]);
  3134. #else
  3135. retract(true);
  3136. #endif
  3137. break;
  3138. case 11: // G11 retract_recover
  3139. #if EXTRUDERS > 1
  3140. retract(false,retracted_swap[active_extruder]);
  3141. #else
  3142. retract(false);
  3143. #endif
  3144. break;
  3145. #endif //FWRETRACT
  3146. case 28: //G28 Home all Axis one at a time
  3147. {
  3148. // Which axes should be homed?
  3149. bool home_x = code_seen(axis_codes[X_AXIS]);
  3150. bool home_y = code_seen(axis_codes[Y_AXIS]);
  3151. bool home_z = code_seen(axis_codes[Z_AXIS]);
  3152. // calibrate?
  3153. bool calib = code_seen('C');
  3154. gcode_G28(home_x, home_y, home_z, calib);
  3155. break;
  3156. }
  3157. #ifdef ENABLE_AUTO_BED_LEVELING
  3158. case 29: // G29 Detailed Z-Probe, probes the bed at 3 or more points.
  3159. {
  3160. #if Z_MIN_PIN == -1
  3161. #error "You must have a Z_MIN endstop in order to enable Auto Bed Leveling feature! Z_MIN_PIN must point to a valid hardware pin."
  3162. #endif
  3163. // Prevent user from running a G29 without first homing in X and Y
  3164. if (! (axis_known_position[X_AXIS] && axis_known_position[Y_AXIS]) )
  3165. {
  3166. LCD_MESSAGERPGM(MSG_POSITION_UNKNOWN);
  3167. SERIAL_ECHO_START;
  3168. SERIAL_ECHOLNRPGM(MSG_POSITION_UNKNOWN);
  3169. break; // abort G29, since we don't know where we are
  3170. }
  3171. st_synchronize();
  3172. // make sure the bed_level_rotation_matrix is identity or the planner will get it incorectly
  3173. //vector_3 corrected_position = plan_get_position_mm();
  3174. //corrected_position.debug("position before G29");
  3175. plan_bed_level_matrix.set_to_identity();
  3176. vector_3 uncorrected_position = plan_get_position();
  3177. //uncorrected_position.debug("position durring G29");
  3178. current_position[X_AXIS] = uncorrected_position.x;
  3179. current_position[Y_AXIS] = uncorrected_position.y;
  3180. current_position[Z_AXIS] = uncorrected_position.z;
  3181. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  3182. setup_for_endstop_move();
  3183. feedrate = homing_feedrate[Z_AXIS];
  3184. #ifdef AUTO_BED_LEVELING_GRID
  3185. // probe at the points of a lattice grid
  3186. int xGridSpacing = (RIGHT_PROBE_BED_POSITION - LEFT_PROBE_BED_POSITION) / (AUTO_BED_LEVELING_GRID_POINTS-1);
  3187. int yGridSpacing = (BACK_PROBE_BED_POSITION - FRONT_PROBE_BED_POSITION) / (AUTO_BED_LEVELING_GRID_POINTS-1);
  3188. // solve the plane equation ax + by + d = z
  3189. // A is the matrix with rows [x y 1] for all the probed points
  3190. // B is the vector of the Z positions
  3191. // the normal vector to the plane is formed by the coefficients of the plane equation in the standard form, which is Vx*x+Vy*y+Vz*z+d = 0
  3192. // so Vx = -a Vy = -b Vz = 1 (we want the vector facing towards positive Z
  3193. // "A" matrix of the linear system of equations
  3194. double eqnAMatrix[AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS*3];
  3195. // "B" vector of Z points
  3196. double eqnBVector[AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS];
  3197. int probePointCounter = 0;
  3198. bool zig = true;
  3199. for (int yProbe=FRONT_PROBE_BED_POSITION; yProbe <= BACK_PROBE_BED_POSITION; yProbe += yGridSpacing)
  3200. {
  3201. int xProbe, xInc;
  3202. if (zig)
  3203. {
  3204. xProbe = LEFT_PROBE_BED_POSITION;
  3205. //xEnd = RIGHT_PROBE_BED_POSITION;
  3206. xInc = xGridSpacing;
  3207. zig = false;
  3208. } else // zag
  3209. {
  3210. xProbe = RIGHT_PROBE_BED_POSITION;
  3211. //xEnd = LEFT_PROBE_BED_POSITION;
  3212. xInc = -xGridSpacing;
  3213. zig = true;
  3214. }
  3215. for (int xCount=0; xCount < AUTO_BED_LEVELING_GRID_POINTS; xCount++)
  3216. {
  3217. float z_before;
  3218. if (probePointCounter == 0)
  3219. {
  3220. // raise before probing
  3221. z_before = Z_RAISE_BEFORE_PROBING;
  3222. } else
  3223. {
  3224. // raise extruder
  3225. z_before = current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS;
  3226. }
  3227. float measured_z = probe_pt(xProbe, yProbe, z_before);
  3228. eqnBVector[probePointCounter] = measured_z;
  3229. eqnAMatrix[probePointCounter + 0*AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS] = xProbe;
  3230. eqnAMatrix[probePointCounter + 1*AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS] = yProbe;
  3231. eqnAMatrix[probePointCounter + 2*AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS] = 1;
  3232. probePointCounter++;
  3233. xProbe += xInc;
  3234. }
  3235. }
  3236. clean_up_after_endstop_move();
  3237. // solve lsq problem
  3238. double *plane_equation_coefficients = qr_solve(AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS, 3, eqnAMatrix, eqnBVector);
  3239. SERIAL_PROTOCOLPGM("Eqn coefficients: a: ");
  3240. SERIAL_PROTOCOL(plane_equation_coefficients[0]);
  3241. SERIAL_PROTOCOLPGM(" b: ");
  3242. SERIAL_PROTOCOL(plane_equation_coefficients[1]);
  3243. SERIAL_PROTOCOLPGM(" d: ");
  3244. SERIAL_PROTOCOLLN(plane_equation_coefficients[2]);
  3245. set_bed_level_equation_lsq(plane_equation_coefficients);
  3246. free(plane_equation_coefficients);
  3247. #else // AUTO_BED_LEVELING_GRID not defined
  3248. // Probe at 3 arbitrary points
  3249. // probe 1
  3250. float z_at_pt_1 = probe_pt(ABL_PROBE_PT_1_X, ABL_PROBE_PT_1_Y, Z_RAISE_BEFORE_PROBING);
  3251. // probe 2
  3252. float z_at_pt_2 = probe_pt(ABL_PROBE_PT_2_X, ABL_PROBE_PT_2_Y, current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS);
  3253. // probe 3
  3254. float z_at_pt_3 = probe_pt(ABL_PROBE_PT_3_X, ABL_PROBE_PT_3_Y, current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS);
  3255. clean_up_after_endstop_move();
  3256. set_bed_level_equation_3pts(z_at_pt_1, z_at_pt_2, z_at_pt_3);
  3257. #endif // AUTO_BED_LEVELING_GRID
  3258. st_synchronize();
  3259. // The following code correct the Z height difference from z-probe position and hotend tip position.
  3260. // The Z height on homing is measured by Z-Probe, but the probe is quite far from the hotend.
  3261. // When the bed is uneven, this height must be corrected.
  3262. real_z = float(st_get_position(Z_AXIS))/axis_steps_per_unit[Z_AXIS]; //get the real Z (since the auto bed leveling is already correcting the plane)
  3263. x_tmp = current_position[X_AXIS] + X_PROBE_OFFSET_FROM_EXTRUDER;
  3264. y_tmp = current_position[Y_AXIS] + Y_PROBE_OFFSET_FROM_EXTRUDER;
  3265. z_tmp = current_position[Z_AXIS];
  3266. apply_rotation_xyz(plan_bed_level_matrix, x_tmp, y_tmp, z_tmp); //Apply the correction sending the probe offset
  3267. current_position[Z_AXIS] = z_tmp - real_z + current_position[Z_AXIS]; //The difference is added to current position and sent to planner.
  3268. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  3269. }
  3270. break;
  3271. #ifndef Z_PROBE_SLED
  3272. case 30: // G30 Single Z Probe
  3273. {
  3274. st_synchronize();
  3275. // TODO: make sure the bed_level_rotation_matrix is identity or the planner will get set incorectly
  3276. setup_for_endstop_move();
  3277. feedrate = homing_feedrate[Z_AXIS];
  3278. run_z_probe();
  3279. SERIAL_PROTOCOLPGM(_T(MSG_BED));
  3280. SERIAL_PROTOCOLPGM(" X: ");
  3281. SERIAL_PROTOCOL(current_position[X_AXIS]);
  3282. SERIAL_PROTOCOLPGM(" Y: ");
  3283. SERIAL_PROTOCOL(current_position[Y_AXIS]);
  3284. SERIAL_PROTOCOLPGM(" Z: ");
  3285. SERIAL_PROTOCOL(current_position[Z_AXIS]);
  3286. SERIAL_PROTOCOLPGM("\n");
  3287. clean_up_after_endstop_move();
  3288. }
  3289. break;
  3290. #else
  3291. case 31: // dock the sled
  3292. dock_sled(true);
  3293. break;
  3294. case 32: // undock the sled
  3295. dock_sled(false);
  3296. break;
  3297. #endif // Z_PROBE_SLED
  3298. #endif // ENABLE_AUTO_BED_LEVELING
  3299. #ifdef MESH_BED_LEVELING
  3300. case 30: // G30 Single Z Probe
  3301. {
  3302. st_synchronize();
  3303. // TODO: make sure the bed_level_rotation_matrix is identity or the planner will get set incorectly
  3304. setup_for_endstop_move();
  3305. feedrate = homing_feedrate[Z_AXIS];
  3306. find_bed_induction_sensor_point_z(-10.f, 3);
  3307. printf_P(_N("%S X: %.5f Y: %.5f Z: %.5f\n"), _T(MSG_BED), _x, _y, _z);
  3308. clean_up_after_endstop_move();
  3309. }
  3310. break;
  3311. case 75:
  3312. {
  3313. for (int i = 40; i <= 110; i++)
  3314. printf_P(_N("%d %.2f"), i, temp_comp_interpolation(i));
  3315. }
  3316. break;
  3317. case 76: //PINDA probe temperature calibration
  3318. {
  3319. #ifdef PINDA_THERMISTOR
  3320. if (true)
  3321. {
  3322. if (calibration_status() >= CALIBRATION_STATUS_XYZ_CALIBRATION) {
  3323. //we need to know accurate position of first calibration point
  3324. //if xyz calibration was not performed yet, interrupt temperature calibration and inform user that xyz cal. is needed
  3325. lcd_show_fullscreen_message_and_wait_P(_i("Please run XYZ calibration first."));
  3326. break;
  3327. }
  3328. if (!(axis_known_position[X_AXIS] && axis_known_position[Y_AXIS] && axis_known_position[Z_AXIS]))
  3329. {
  3330. // We don't know where we are! HOME!
  3331. // Push the commands to the front of the message queue in the reverse order!
  3332. // There shall be always enough space reserved for these commands.
  3333. repeatcommand_front(); // repeat G76 with all its parameters
  3334. enquecommand_front_P((PSTR("G28 W0")));
  3335. break;
  3336. }
  3337. lcd_show_fullscreen_message_and_wait_P(_i("Stable ambient temperature 21-26C is needed a rigid stand is required."));////MSG_TEMP_CAL_WARNING c=20 r=4
  3338. bool result = lcd_show_fullscreen_message_yes_no_and_wait_P(_T(MSG_STEEL_SHEET_CHECK), false, false);
  3339. if (result)
  3340. {
  3341. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3342. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3343. current_position[Z_AXIS] = 50;
  3344. current_position[Y_AXIS] = 180;
  3345. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3346. st_synchronize();
  3347. lcd_show_fullscreen_message_and_wait_P(_T(MSG_REMOVE_STEEL_SHEET));
  3348. current_position[Y_AXIS] = pgm_read_float(bed_ref_points_4 + 1);
  3349. current_position[X_AXIS] = pgm_read_float(bed_ref_points_4);
  3350. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3351. st_synchronize();
  3352. gcode_G28(false, false, true, false);
  3353. }
  3354. if ((current_temperature_pinda > 35) && (farm_mode == false)) {
  3355. //waiting for PIDNA probe to cool down in case that we are not in farm mode
  3356. current_position[Z_AXIS] = 100;
  3357. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3358. if (lcd_wait_for_pinda(35) == false) { //waiting for PINDA probe to cool, if this takes more then time expected, temp. cal. fails
  3359. lcd_temp_cal_show_result(false);
  3360. break;
  3361. }
  3362. }
  3363. lcd_update_enable(true);
  3364. KEEPALIVE_STATE(NOT_BUSY); //no need to print busy messages as we print current temperatures periodicaly
  3365. SERIAL_ECHOLNPGM("PINDA probe calibration start");
  3366. float zero_z;
  3367. int z_shift = 0; //unit: steps
  3368. float start_temp = 5 * (int)(current_temperature_pinda / 5);
  3369. if (start_temp < 35) start_temp = 35;
  3370. if (start_temp < current_temperature_pinda) start_temp += 5;
  3371. printf_P(_N("start temperature: %.1f\n"), start_temp);
  3372. // setTargetHotend(200, 0);
  3373. setTargetBed(70 + (start_temp - 30));
  3374. custom_message = true;
  3375. custom_message_type = 4;
  3376. custom_message_state = 1;
  3377. custom_message = _T(MSG_TEMP_CALIBRATION);
  3378. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3379. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3380. current_position[X_AXIS] = PINDA_PREHEAT_X;
  3381. current_position[Y_AXIS] = PINDA_PREHEAT_Y;
  3382. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3383. current_position[Z_AXIS] = PINDA_PREHEAT_Z;
  3384. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3385. st_synchronize();
  3386. while (current_temperature_pinda < start_temp)
  3387. {
  3388. delay_keep_alive(1000);
  3389. serialecho_temperatures();
  3390. }
  3391. eeprom_update_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 0); //invalidate temp. calibration in case that in will be aborted during the calibration process
  3392. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3393. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3394. current_position[X_AXIS] = pgm_read_float(bed_ref_points_4);
  3395. current_position[Y_AXIS] = pgm_read_float(bed_ref_points_4 + 1);
  3396. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3397. st_synchronize();
  3398. bool find_z_result = find_bed_induction_sensor_point_z(-1.f);
  3399. if (find_z_result == false) {
  3400. lcd_temp_cal_show_result(find_z_result);
  3401. break;
  3402. }
  3403. zero_z = current_position[Z_AXIS];
  3404. printf_P(_N("\nZERO: %.3f\n"), current_position[Z_AXIS]);
  3405. int i = -1; for (; i < 5; i++)
  3406. {
  3407. float temp = (40 + i * 5);
  3408. printf_P(_N("\nStep: %d/6 (skipped)\nPINDA temperature: %d Z shift (mm):0\n"), i + 2, (40 + i*5));
  3409. if (i >= 0) EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + i * 2, &z_shift);
  3410. if (start_temp <= temp) break;
  3411. }
  3412. for (i++; i < 5; i++)
  3413. {
  3414. float temp = (40 + i * 5);
  3415. printf_P(_N("\nStep: %d/6\n"), i + 2);
  3416. custom_message_state = i + 2;
  3417. setTargetBed(50 + 10 * (temp - 30) / 5);
  3418. // setTargetHotend(255, 0);
  3419. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3420. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3421. current_position[X_AXIS] = PINDA_PREHEAT_X;
  3422. current_position[Y_AXIS] = PINDA_PREHEAT_Y;
  3423. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3424. current_position[Z_AXIS] = PINDA_PREHEAT_Z;
  3425. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3426. st_synchronize();
  3427. while (current_temperature_pinda < temp)
  3428. {
  3429. delay_keep_alive(1000);
  3430. serialecho_temperatures();
  3431. }
  3432. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3433. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3434. current_position[X_AXIS] = pgm_read_float(bed_ref_points_4);
  3435. current_position[Y_AXIS] = pgm_read_float(bed_ref_points_4 + 1);
  3436. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3437. st_synchronize();
  3438. find_z_result = find_bed_induction_sensor_point_z(-1.f);
  3439. if (find_z_result == false) {
  3440. lcd_temp_cal_show_result(find_z_result);
  3441. break;
  3442. }
  3443. z_shift = (int)((current_position[Z_AXIS] - zero_z)*axis_steps_per_unit[Z_AXIS]);
  3444. printf_P(_N("\nPINDA temperature: %.1f Z shift (mm): %.3f"), current_temperature_pinda, current_position[Z_AXIS] - zero_z);
  3445. EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + i * 2, &z_shift);
  3446. }
  3447. lcd_temp_cal_show_result(true);
  3448. break;
  3449. }
  3450. #endif //PINDA_THERMISTOR
  3451. setTargetBed(PINDA_MIN_T);
  3452. float zero_z;
  3453. int z_shift = 0; //unit: steps
  3454. int t_c; // temperature
  3455. if (!(axis_known_position[X_AXIS] && axis_known_position[Y_AXIS] && axis_known_position[Z_AXIS])) {
  3456. // We don't know where we are! HOME!
  3457. // Push the commands to the front of the message queue in the reverse order!
  3458. // There shall be always enough space reserved for these commands.
  3459. repeatcommand_front(); // repeat G76 with all its parameters
  3460. enquecommand_front_P((PSTR("G28 W0")));
  3461. break;
  3462. }
  3463. puts_P(_N("PINDA probe calibration start"));
  3464. custom_message = true;
  3465. custom_message_type = 4;
  3466. custom_message_state = 1;
  3467. custom_message = _T(MSG_TEMP_CALIBRATION);
  3468. current_position[X_AXIS] = PINDA_PREHEAT_X;
  3469. current_position[Y_AXIS] = PINDA_PREHEAT_Y;
  3470. current_position[Z_AXIS] = PINDA_PREHEAT_Z;
  3471. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3472. st_synchronize();
  3473. while (abs(degBed() - PINDA_MIN_T) > 1) {
  3474. delay_keep_alive(1000);
  3475. serialecho_temperatures();
  3476. }
  3477. //enquecommand_P(PSTR("M190 S50"));
  3478. for (int i = 0; i < PINDA_HEAT_T; i++) {
  3479. delay_keep_alive(1000);
  3480. serialecho_temperatures();
  3481. }
  3482. eeprom_update_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 0); //invalidate temp. calibration in case that in will be aborted during the calibration process
  3483. current_position[Z_AXIS] = 5;
  3484. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3485. current_position[X_AXIS] = pgm_read_float(bed_ref_points);
  3486. current_position[Y_AXIS] = pgm_read_float(bed_ref_points + 1);
  3487. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3488. st_synchronize();
  3489. find_bed_induction_sensor_point_z(-1.f);
  3490. zero_z = current_position[Z_AXIS];
  3491. printf_P(_N("\nZERO: %.3f\n"), current_position[Z_AXIS]);
  3492. for (int i = 0; i<5; i++) {
  3493. printf_P(_N("\nStep: %d/6\n"), i + 2);
  3494. custom_message_state = i + 2;
  3495. t_c = 60 + i * 10;
  3496. setTargetBed(t_c);
  3497. current_position[X_AXIS] = PINDA_PREHEAT_X;
  3498. current_position[Y_AXIS] = PINDA_PREHEAT_Y;
  3499. current_position[Z_AXIS] = PINDA_PREHEAT_Z;
  3500. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3501. st_synchronize();
  3502. while (degBed() < t_c) {
  3503. delay_keep_alive(1000);
  3504. serialecho_temperatures();
  3505. }
  3506. for (int i = 0; i < PINDA_HEAT_T; i++) {
  3507. delay_keep_alive(1000);
  3508. serialecho_temperatures();
  3509. }
  3510. current_position[Z_AXIS] = 5;
  3511. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3512. current_position[X_AXIS] = pgm_read_float(bed_ref_points);
  3513. current_position[Y_AXIS] = pgm_read_float(bed_ref_points + 1);
  3514. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3515. st_synchronize();
  3516. find_bed_induction_sensor_point_z(-1.f);
  3517. z_shift = (int)((current_position[Z_AXIS] - zero_z)*axis_steps_per_unit[Z_AXIS]);
  3518. printf_P(_N("\nTemperature: %d Z shift (mm): %.3f\n"), t_c, current_position[Z_AXIS] - zero_z);
  3519. EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + i*2, &z_shift);
  3520. }
  3521. custom_message_type = 0;
  3522. custom_message = false;
  3523. eeprom_update_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 1);
  3524. puts_P(_N("Temperature calibration done."));
  3525. disable_x();
  3526. disable_y();
  3527. disable_z();
  3528. disable_e0();
  3529. disable_e1();
  3530. disable_e2();
  3531. setTargetBed(0); //set bed target temperature back to 0
  3532. lcd_show_fullscreen_message_and_wait_P(_T(MSG_TEMP_CALIBRATION_DONE));
  3533. temp_cal_active = true;
  3534. eeprom_update_byte((unsigned char *)EEPROM_TEMP_CAL_ACTIVE, 1);
  3535. lcd_update_enable(true);
  3536. lcd_update(2);
  3537. }
  3538. break;
  3539. #ifdef DIS
  3540. case 77:
  3541. {
  3542. //G77 X200 Y150 XP100 YP15 XO10 Y015
  3543. //for 9 point mesh bed leveling G77 X203 Y196 XP3 YP3 XO0 YO0
  3544. //G77 X232 Y218 XP116 YP109 XO-11 YO0
  3545. float dimension_x = 40;
  3546. float dimension_y = 40;
  3547. int points_x = 40;
  3548. int points_y = 40;
  3549. float offset_x = 74;
  3550. float offset_y = 33;
  3551. if (code_seen('X')) dimension_x = code_value();
  3552. if (code_seen('Y')) dimension_y = code_value();
  3553. if (code_seen('XP')) points_x = code_value();
  3554. if (code_seen('YP')) points_y = code_value();
  3555. if (code_seen('XO')) offset_x = code_value();
  3556. if (code_seen('YO')) offset_y = code_value();
  3557. bed_analysis(dimension_x,dimension_y,points_x,points_y,offset_x,offset_y);
  3558. } break;
  3559. #endif
  3560. case 79: {
  3561. for (int i = 255; i > 0; i = i - 5) {
  3562. fanSpeed = i;
  3563. //delay_keep_alive(2000);
  3564. for (int j = 0; j < 100; j++) {
  3565. delay_keep_alive(100);
  3566. }
  3567. fan_speed[1];
  3568. printf_P(_N("%d: %d\n"), i, fan_speed[1]);
  3569. }
  3570. }break;
  3571. /**
  3572. * G80: Mesh-based Z probe, probes a grid and produces a
  3573. * mesh to compensate for variable bed height
  3574. *
  3575. * The S0 report the points as below
  3576. *
  3577. * +----> X-axis
  3578. * |
  3579. * |
  3580. * v Y-axis
  3581. *
  3582. */
  3583. case 80:
  3584. #ifdef MK1BP
  3585. break;
  3586. #endif //MK1BP
  3587. case_G80:
  3588. {
  3589. mesh_bed_leveling_flag = true;
  3590. int8_t verbosity_level = 0;
  3591. static bool run = false;
  3592. if (code_seen('V')) {
  3593. // Just 'V' without a number counts as V1.
  3594. char c = strchr_pointer[1];
  3595. verbosity_level = (c == ' ' || c == '\t' || c == 0) ? 1 : code_value_short();
  3596. }
  3597. // Firstly check if we know where we are
  3598. if (!(axis_known_position[X_AXIS] && axis_known_position[Y_AXIS] && axis_known_position[Z_AXIS])) {
  3599. // We don't know where we are! HOME!
  3600. // Push the commands to the front of the message queue in the reverse order!
  3601. // There shall be always enough space reserved for these commands.
  3602. if (lcd_commands_type != LCD_COMMAND_STOP_PRINT) {
  3603. repeatcommand_front(); // repeat G80 with all its parameters
  3604. enquecommand_front_P((PSTR("G28 W0")));
  3605. }
  3606. else {
  3607. mesh_bed_leveling_flag = false;
  3608. }
  3609. break;
  3610. }
  3611. bool temp_comp_start = true;
  3612. #ifdef PINDA_THERMISTOR
  3613. temp_comp_start = false;
  3614. #endif //PINDA_THERMISTOR
  3615. if (temp_comp_start)
  3616. if (run == false && temp_cal_active == true && calibration_status_pinda() == true && target_temperature_bed >= 50) {
  3617. if (lcd_commands_type != LCD_COMMAND_STOP_PRINT) {
  3618. temp_compensation_start();
  3619. run = true;
  3620. repeatcommand_front(); // repeat G80 with all its parameters
  3621. enquecommand_front_P((PSTR("G28 W0")));
  3622. }
  3623. else {
  3624. mesh_bed_leveling_flag = false;
  3625. }
  3626. break;
  3627. }
  3628. run = false;
  3629. if (lcd_commands_type == LCD_COMMAND_STOP_PRINT) {
  3630. mesh_bed_leveling_flag = false;
  3631. break;
  3632. }
  3633. // Save custom message state, set a new custom message state to display: Calibrating point 9.
  3634. bool custom_message_old = custom_message;
  3635. unsigned int custom_message_type_old = custom_message_type;
  3636. unsigned int custom_message_state_old = custom_message_state;
  3637. custom_message = true;
  3638. custom_message_type = 1;
  3639. custom_message_state = (MESH_MEAS_NUM_X_POINTS * MESH_MEAS_NUM_Y_POINTS) + 10;
  3640. lcd_update(1);
  3641. mbl.reset(); //reset mesh bed leveling
  3642. // Reset baby stepping to zero, if the babystepping has already been loaded before. The babystepsTodo value will be
  3643. // consumed during the first movements following this statement.
  3644. babystep_undo();
  3645. // Cycle through all points and probe them
  3646. // First move up. During this first movement, the babystepping will be reverted.
  3647. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3648. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[Z_AXIS] / 60, active_extruder);
  3649. // The move to the first calibration point.
  3650. current_position[X_AXIS] = pgm_read_float(bed_ref_points);
  3651. current_position[Y_AXIS] = pgm_read_float(bed_ref_points + 1);
  3652. bool clamped = world2machine_clamp(current_position[X_AXIS], current_position[Y_AXIS]);
  3653. #ifdef SUPPORT_VERBOSITY
  3654. if (verbosity_level >= 1) {
  3655. clamped ? SERIAL_PROTOCOLPGM("First calibration point clamped.\n") : SERIAL_PROTOCOLPGM("No clamping for first calibration point.\n");
  3656. }
  3657. #endif //SUPPORT_VERBOSITY
  3658. // mbl.get_meas_xy(0, 0, current_position[X_AXIS], current_position[Y_AXIS], false);
  3659. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[X_AXIS] / 30, active_extruder);
  3660. // Wait until the move is finished.
  3661. st_synchronize();
  3662. int mesh_point = 0; //index number of calibration point
  3663. int ix = 0;
  3664. int iy = 0;
  3665. int XY_AXIS_FEEDRATE = homing_feedrate[X_AXIS] / 20;
  3666. int Z_PROBE_FEEDRATE = homing_feedrate[Z_AXIS] / 60;
  3667. int Z_LIFT_FEEDRATE = homing_feedrate[Z_AXIS] / 40;
  3668. bool has_z = is_bed_z_jitter_data_valid(); //checks if we have data from Z calibration (offsets of the Z heiths of the 8 calibration points from the first point)
  3669. #ifdef SUPPORT_VERBOSITY
  3670. if (verbosity_level >= 1) {
  3671. has_z ? SERIAL_PROTOCOLPGM("Z jitter data from Z cal. valid.\n") : SERIAL_PROTOCOLPGM("Z jitter data from Z cal. not valid.\n");
  3672. }
  3673. #endif // SUPPORT_VERBOSITY
  3674. setup_for_endstop_move(false); //save feedrate and feedmultiply, sets feedmultiply to 100
  3675. const char *kill_message = NULL;
  3676. while (mesh_point != MESH_MEAS_NUM_X_POINTS * MESH_MEAS_NUM_Y_POINTS) {
  3677. // Get coords of a measuring point.
  3678. ix = mesh_point % MESH_MEAS_NUM_X_POINTS; // from 0 to MESH_NUM_X_POINTS - 1
  3679. iy = mesh_point / MESH_MEAS_NUM_X_POINTS;
  3680. if (iy & 1) ix = (MESH_MEAS_NUM_X_POINTS - 1) - ix; // Zig zag
  3681. float z0 = 0.f;
  3682. if (has_z && mesh_point > 0) {
  3683. uint16_t z_offset_u = eeprom_read_word((uint16_t*)(EEPROM_BED_CALIBRATION_Z_JITTER + 2 * (ix + iy * 3 - 1)));
  3684. z0 = mbl.z_values[0][0] + *reinterpret_cast<int16_t*>(&z_offset_u) * 0.01;
  3685. //#if 0
  3686. #ifdef SUPPORT_VERBOSITY
  3687. if (verbosity_level >= 1) {
  3688. SERIAL_ECHOLNPGM("");
  3689. SERIAL_ECHOPGM("Bed leveling, point: ");
  3690. MYSERIAL.print(mesh_point);
  3691. SERIAL_ECHOPGM(", calibration z: ");
  3692. MYSERIAL.print(z0, 5);
  3693. SERIAL_ECHOLNPGM("");
  3694. }
  3695. #endif // SUPPORT_VERBOSITY
  3696. //#endif
  3697. }
  3698. // Move Z up to MESH_HOME_Z_SEARCH.
  3699. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3700. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], Z_LIFT_FEEDRATE, active_extruder);
  3701. st_synchronize();
  3702. // Move to XY position of the sensor point.
  3703. current_position[X_AXIS] = pgm_read_float(bed_ref_points + 2 * mesh_point);
  3704. current_position[Y_AXIS] = pgm_read_float(bed_ref_points + 2 * mesh_point + 1);
  3705. world2machine_clamp(current_position[X_AXIS], current_position[Y_AXIS]);
  3706. #ifdef SUPPORT_VERBOSITY
  3707. if (verbosity_level >= 1) {
  3708. SERIAL_PROTOCOL(mesh_point);
  3709. clamped ? SERIAL_PROTOCOLPGM(": xy clamped.\n") : SERIAL_PROTOCOLPGM(": no xy clamping\n");
  3710. }
  3711. #endif // SUPPORT_VERBOSITY
  3712. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], XY_AXIS_FEEDRATE, active_extruder);
  3713. st_synchronize();
  3714. // Go down until endstop is hit
  3715. const float Z_CALIBRATION_THRESHOLD = 1.f;
  3716. if (!find_bed_induction_sensor_point_z((has_z && mesh_point > 0) ? z0 - Z_CALIBRATION_THRESHOLD : -10.f)) { //if we have data from z calibration max allowed difference is 1mm for each point, if we dont have data max difference is 10mm from initial point
  3717. kill_message = _T(MSG_BED_LEVELING_FAILED_POINT_LOW);
  3718. break;
  3719. }
  3720. if (MESH_HOME_Z_SEARCH - current_position[Z_AXIS] < 0.1f) {
  3721. kill_message = _i("Bed leveling failed. Sensor disconnected or cable broken. Waiting for reset.");////MSG_BED_LEVELING_FAILED_PROBE_DISCONNECTED c=20 r=4
  3722. break;
  3723. }
  3724. if (has_z && fabs(z0 - current_position[Z_AXIS]) > Z_CALIBRATION_THRESHOLD) { //if we have data from z calibration, max. allowed difference is 1mm for each point
  3725. kill_message = _i("Bed leveling failed. Sensor triggered too high. Waiting for reset.");////MSG_BED_LEVELING_FAILED_POINT_HIGH c=20 r=4
  3726. break;
  3727. }
  3728. #ifdef SUPPORT_VERBOSITY
  3729. if (verbosity_level >= 10) {
  3730. SERIAL_ECHOPGM("X: ");
  3731. MYSERIAL.print(current_position[X_AXIS], 5);
  3732. SERIAL_ECHOLNPGM("");
  3733. SERIAL_ECHOPGM("Y: ");
  3734. MYSERIAL.print(current_position[Y_AXIS], 5);
  3735. SERIAL_PROTOCOLPGM("\n");
  3736. }
  3737. #endif // SUPPORT_VERBOSITY
  3738. float offset_z = 0;
  3739. #ifdef PINDA_THERMISTOR
  3740. offset_z = temp_compensation_pinda_thermistor_offset(current_temperature_pinda);
  3741. #endif //PINDA_THERMISTOR
  3742. // #ifdef SUPPORT_VERBOSITY
  3743. /* if (verbosity_level >= 1)
  3744. {
  3745. SERIAL_ECHOPGM("mesh bed leveling: ");
  3746. MYSERIAL.print(current_position[Z_AXIS], 5);
  3747. SERIAL_ECHOPGM(" offset: ");
  3748. MYSERIAL.print(offset_z, 5);
  3749. SERIAL_ECHOLNPGM("");
  3750. }*/
  3751. // #endif // SUPPORT_VERBOSITY
  3752. mbl.set_z(ix, iy, current_position[Z_AXIS] - offset_z); //store measured z values z_values[iy][ix] = z - offset_z;
  3753. custom_message_state--;
  3754. mesh_point++;
  3755. lcd_update(1);
  3756. }
  3757. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3758. #ifdef SUPPORT_VERBOSITY
  3759. if (verbosity_level >= 20) {
  3760. SERIAL_ECHOLNPGM("Mesh bed leveling while loop finished.");
  3761. SERIAL_ECHOLNPGM("MESH_HOME_Z_SEARCH: ");
  3762. MYSERIAL.print(current_position[Z_AXIS], 5);
  3763. }
  3764. #endif // SUPPORT_VERBOSITY
  3765. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], Z_LIFT_FEEDRATE, active_extruder);
  3766. st_synchronize();
  3767. if (mesh_point != MESH_MEAS_NUM_X_POINTS * MESH_MEAS_NUM_Y_POINTS) {
  3768. kill(kill_message);
  3769. SERIAL_ECHOLNPGM("killed");
  3770. }
  3771. clean_up_after_endstop_move();
  3772. // SERIAL_ECHOLNPGM("clean up finished ");
  3773. bool apply_temp_comp = true;
  3774. #ifdef PINDA_THERMISTOR
  3775. apply_temp_comp = false;
  3776. #endif
  3777. if (apply_temp_comp)
  3778. if(temp_cal_active == true && calibration_status_pinda() == true) temp_compensation_apply(); //apply PINDA temperature compensation
  3779. babystep_apply(); // Apply Z height correction aka baby stepping before mesh bed leveing gets activated.
  3780. // SERIAL_ECHOLNPGM("babystep applied");
  3781. bool eeprom_bed_correction_valid = eeprom_read_byte((unsigned char*)EEPROM_BED_CORRECTION_VALID) == 1;
  3782. #ifdef SUPPORT_VERBOSITY
  3783. if (verbosity_level >= 1) {
  3784. eeprom_bed_correction_valid ? SERIAL_PROTOCOLPGM("Bed correction data valid\n") : SERIAL_PROTOCOLPGM("Bed correction data not valid\n");
  3785. }
  3786. #endif // SUPPORT_VERBOSITY
  3787. for (uint8_t i = 0; i < 4; ++i) {
  3788. unsigned char codes[4] = { 'L', 'R', 'F', 'B' };
  3789. long correction = 0;
  3790. if (code_seen(codes[i]))
  3791. correction = code_value_long();
  3792. else if (eeprom_bed_correction_valid) {
  3793. unsigned char *addr = (i < 2) ?
  3794. ((i == 0) ? (unsigned char*)EEPROM_BED_CORRECTION_LEFT : (unsigned char*)EEPROM_BED_CORRECTION_RIGHT) :
  3795. ((i == 2) ? (unsigned char*)EEPROM_BED_CORRECTION_FRONT : (unsigned char*)EEPROM_BED_CORRECTION_REAR);
  3796. correction = eeprom_read_int8(addr);
  3797. }
  3798. if (correction == 0)
  3799. continue;
  3800. float offset = float(correction) * 0.001f;
  3801. if (fabs(offset) > 0.101f) {
  3802. SERIAL_ERROR_START;
  3803. SERIAL_ECHOPGM("Excessive bed leveling correction: ");
  3804. SERIAL_ECHO(offset);
  3805. SERIAL_ECHOLNPGM(" microns");
  3806. }
  3807. else {
  3808. switch (i) {
  3809. case 0:
  3810. for (uint8_t row = 0; row < 3; ++row) {
  3811. mbl.z_values[row][1] += 0.5f * offset;
  3812. mbl.z_values[row][0] += offset;
  3813. }
  3814. break;
  3815. case 1:
  3816. for (uint8_t row = 0; row < 3; ++row) {
  3817. mbl.z_values[row][1] += 0.5f * offset;
  3818. mbl.z_values[row][2] += offset;
  3819. }
  3820. break;
  3821. case 2:
  3822. for (uint8_t col = 0; col < 3; ++col) {
  3823. mbl.z_values[1][col] += 0.5f * offset;
  3824. mbl.z_values[0][col] += offset;
  3825. }
  3826. break;
  3827. case 3:
  3828. for (uint8_t col = 0; col < 3; ++col) {
  3829. mbl.z_values[1][col] += 0.5f * offset;
  3830. mbl.z_values[2][col] += offset;
  3831. }
  3832. break;
  3833. }
  3834. }
  3835. }
  3836. // SERIAL_ECHOLNPGM("Bed leveling correction finished");
  3837. mbl.upsample_3x3(); //bilinear interpolation from 3x3 to 7x7 points while using the same array z_values[iy][ix] for storing (just coppying measured data to new destination and interpolating between them)
  3838. // SERIAL_ECHOLNPGM("Upsample finished");
  3839. mbl.active = 1; //activate mesh bed leveling
  3840. // SERIAL_ECHOLNPGM("Mesh bed leveling activated");
  3841. go_home_with_z_lift();
  3842. // SERIAL_ECHOLNPGM("Go home finished");
  3843. //unretract (after PINDA preheat retraction)
  3844. if (degHotend(active_extruder) > EXTRUDE_MINTEMP && temp_cal_active == true && calibration_status_pinda() == true && target_temperature_bed >= 50) {
  3845. current_position[E_AXIS] += DEFAULT_RETRACTION;
  3846. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400, active_extruder);
  3847. }
  3848. KEEPALIVE_STATE(NOT_BUSY);
  3849. // Restore custom message state
  3850. lcd_setstatuspgm(_T(WELCOME_MSG));
  3851. custom_message = custom_message_old;
  3852. custom_message_type = custom_message_type_old;
  3853. custom_message_state = custom_message_state_old;
  3854. mesh_bed_leveling_flag = false;
  3855. mesh_bed_run_from_menu = false;
  3856. lcd_update(2);
  3857. }
  3858. break;
  3859. /**
  3860. * G81: Print mesh bed leveling status and bed profile if activated
  3861. */
  3862. case 81:
  3863. if (mbl.active) {
  3864. SERIAL_PROTOCOLPGM("Num X,Y: ");
  3865. SERIAL_PROTOCOL(MESH_NUM_X_POINTS);
  3866. SERIAL_PROTOCOLPGM(",");
  3867. SERIAL_PROTOCOL(MESH_NUM_Y_POINTS);
  3868. SERIAL_PROTOCOLPGM("\nZ search height: ");
  3869. SERIAL_PROTOCOL(MESH_HOME_Z_SEARCH);
  3870. SERIAL_PROTOCOLLNPGM("\nMeasured points:");
  3871. for (int y = MESH_NUM_Y_POINTS-1; y >= 0; y--) {
  3872. for (int x = 0; x < MESH_NUM_X_POINTS; x++) {
  3873. SERIAL_PROTOCOLPGM(" ");
  3874. SERIAL_PROTOCOL_F(mbl.z_values[y][x], 5);
  3875. }
  3876. SERIAL_PROTOCOLPGM("\n");
  3877. }
  3878. }
  3879. else
  3880. SERIAL_PROTOCOLLNPGM("Mesh bed leveling not active.");
  3881. break;
  3882. #if 0
  3883. /**
  3884. * G82: Single Z probe at current location
  3885. *
  3886. * WARNING! USE WITH CAUTION! If you'll try to probe where is no leveling pad, nasty things can happen!
  3887. *
  3888. */
  3889. case 82:
  3890. SERIAL_PROTOCOLLNPGM("Finding bed ");
  3891. setup_for_endstop_move();
  3892. find_bed_induction_sensor_point_z();
  3893. clean_up_after_endstop_move();
  3894. SERIAL_PROTOCOLPGM("Bed found at: ");
  3895. SERIAL_PROTOCOL_F(current_position[Z_AXIS], 5);
  3896. SERIAL_PROTOCOLPGM("\n");
  3897. break;
  3898. /**
  3899. * G83: Prusa3D specific: Babystep in Z and store to EEPROM
  3900. */
  3901. case 83:
  3902. {
  3903. int babystepz = code_seen('S') ? code_value() : 0;
  3904. int BabyPosition = code_seen('P') ? code_value() : 0;
  3905. if (babystepz != 0) {
  3906. //FIXME Vojtech: What shall be the index of the axis Z: 3 or 4?
  3907. // Is the axis indexed starting with zero or one?
  3908. if (BabyPosition > 4) {
  3909. SERIAL_PROTOCOLLNPGM("Index out of bounds");
  3910. }else{
  3911. // Save it to the eeprom
  3912. babystepLoadZ = babystepz;
  3913. EEPROM_save_B(EEPROM_BABYSTEP_Z0+(BabyPosition*2),&babystepLoadZ);
  3914. // adjust the Z
  3915. babystepsTodoZadd(babystepLoadZ);
  3916. }
  3917. }
  3918. }
  3919. break;
  3920. /**
  3921. * G84: Prusa3D specific: UNDO Babystep Z (move Z axis back)
  3922. */
  3923. case 84:
  3924. babystepsTodoZsubtract(babystepLoadZ);
  3925. // babystepLoadZ = 0;
  3926. break;
  3927. /**
  3928. * G85: Prusa3D specific: Pick best babystep
  3929. */
  3930. case 85:
  3931. lcd_pick_babystep();
  3932. break;
  3933. #endif
  3934. /**
  3935. * G86: Prusa3D specific: Disable babystep correction after home.
  3936. * This G-code will be performed at the start of a calibration script.
  3937. */
  3938. case 86:
  3939. calibration_status_store(CALIBRATION_STATUS_LIVE_ADJUST);
  3940. break;
  3941. /**
  3942. * G87: Prusa3D specific: Enable babystep correction after home
  3943. * This G-code will be performed at the end of a calibration script.
  3944. */
  3945. case 87:
  3946. calibration_status_store(CALIBRATION_STATUS_CALIBRATED);
  3947. break;
  3948. /**
  3949. * G88: Prusa3D specific: Don't know what it is for, it is in V2Calibration.gcode
  3950. */
  3951. case 88:
  3952. break;
  3953. #endif // ENABLE_MESH_BED_LEVELING
  3954. case 90: // G90
  3955. relative_mode = false;
  3956. break;
  3957. case 91: // G91
  3958. relative_mode = true;
  3959. break;
  3960. case 92: // G92
  3961. if(!code_seen(axis_codes[E_AXIS]))
  3962. st_synchronize();
  3963. for(int8_t i=0; i < NUM_AXIS; i++) {
  3964. if(code_seen(axis_codes[i])) {
  3965. if(i == E_AXIS) {
  3966. current_position[i] = code_value();
  3967. plan_set_e_position(current_position[E_AXIS]);
  3968. }
  3969. else {
  3970. current_position[i] = code_value()+add_homing[i];
  3971. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  3972. }
  3973. }
  3974. }
  3975. break;
  3976. case 98: // G98 (activate farm mode)
  3977. farm_mode = 1;
  3978. PingTime = millis();
  3979. eeprom_update_byte((unsigned char *)EEPROM_FARM_MODE, farm_mode);
  3980. SilentModeMenu = SILENT_MODE_OFF;
  3981. eeprom_update_byte((unsigned char *)EEPROM_SILENT, SilentModeMenu);
  3982. break;
  3983. case 99: // G99 (deactivate farm mode)
  3984. farm_mode = 0;
  3985. lcd_printer_connected();
  3986. eeprom_update_byte((unsigned char *)EEPROM_FARM_MODE, farm_mode);
  3987. lcd_update(2);
  3988. break;
  3989. default:
  3990. printf_P(PSTR("Unknown G code: %s \n"), cmdbuffer + bufindr + CMDHDRSIZE);
  3991. }
  3992. } // end if(code_seen('G'))
  3993. else if(code_seen('M'))
  3994. {
  3995. int index;
  3996. for (index = 1; *(strchr_pointer + index) == ' ' || *(strchr_pointer + index) == '\t'; index++);
  3997. /*for (++strchr_pointer; *strchr_pointer == ' ' || *strchr_pointer == '\t'; ++strchr_pointer);*/
  3998. if (*(strchr_pointer+index) < '0' || *(strchr_pointer+index) > '9') {
  3999. printf_P(PSTR("Invalid M code: %s \n"), cmdbuffer + bufindr + CMDHDRSIZE);
  4000. } else
  4001. switch((int)code_value())
  4002. {
  4003. case 0: // M0 - Unconditional stop - Wait for user button press on LCD
  4004. case 1: // M1 - Conditional stop - Wait for user button press on LCD
  4005. {
  4006. char *src = strchr_pointer + 2;
  4007. codenum = 0;
  4008. bool hasP = false, hasS = false;
  4009. if (code_seen('P')) {
  4010. codenum = code_value(); // milliseconds to wait
  4011. hasP = codenum > 0;
  4012. }
  4013. if (code_seen('S')) {
  4014. codenum = code_value() * 1000; // seconds to wait
  4015. hasS = codenum > 0;
  4016. }
  4017. starpos = strchr(src, '*');
  4018. if (starpos != NULL) *(starpos) = '\0';
  4019. while (*src == ' ') ++src;
  4020. if (!hasP && !hasS && *src != '\0') {
  4021. lcd_setstatus(src);
  4022. } else {
  4023. LCD_MESSAGERPGM(_i("Wait for user..."));////MSG_USERWAIT c=0 r=0
  4024. }
  4025. lcd_ignore_click(); //call lcd_ignore_click aslo for else ???
  4026. st_synchronize();
  4027. previous_millis_cmd = millis();
  4028. if (codenum > 0){
  4029. codenum += millis(); // keep track of when we started waiting
  4030. KEEPALIVE_STATE(PAUSED_FOR_USER);
  4031. while(millis() < codenum && !lcd_clicked()){
  4032. manage_heater();
  4033. manage_inactivity(true);
  4034. lcd_update(0);
  4035. }
  4036. KEEPALIVE_STATE(IN_HANDLER);
  4037. lcd_ignore_click(false);
  4038. }else{
  4039. KEEPALIVE_STATE(PAUSED_FOR_USER);
  4040. while(!lcd_clicked()){
  4041. manage_heater();
  4042. manage_inactivity(true);
  4043. lcd_update(0);
  4044. }
  4045. KEEPALIVE_STATE(IN_HANDLER);
  4046. }
  4047. if (IS_SD_PRINTING)
  4048. LCD_MESSAGERPGM(_T(MSG_RESUMING_PRINT));
  4049. else
  4050. LCD_MESSAGERPGM(_T(WELCOME_MSG));
  4051. }
  4052. break;
  4053. case 17:
  4054. LCD_MESSAGERPGM(_i("No move."));////MSG_NO_MOVE c=0 r=0
  4055. enable_x();
  4056. enable_y();
  4057. enable_z();
  4058. enable_e0();
  4059. enable_e1();
  4060. enable_e2();
  4061. break;
  4062. #ifdef SDSUPPORT
  4063. case 20: // M20 - list SD card
  4064. SERIAL_PROTOCOLLNRPGM(_N("Begin file list"));////MSG_BEGIN_FILE_LIST c=0 r=0
  4065. card.ls();
  4066. SERIAL_PROTOCOLLNRPGM(_N("End file list"));////MSG_END_FILE_LIST c=0 r=0
  4067. break;
  4068. case 21: // M21 - init SD card
  4069. card.initsd();
  4070. break;
  4071. case 22: //M22 - release SD card
  4072. card.release();
  4073. break;
  4074. case 23: //M23 - Select file
  4075. starpos = (strchr(strchr_pointer + 4,'*'));
  4076. if(starpos!=NULL)
  4077. *(starpos)='\0';
  4078. card.openFile(strchr_pointer + 4,true);
  4079. break;
  4080. case 24: //M24 - Start SD print
  4081. if (!card.paused)
  4082. failstats_reset_print();
  4083. card.startFileprint();
  4084. starttime=millis();
  4085. break;
  4086. case 25: //M25 - Pause SD print
  4087. card.pauseSDPrint();
  4088. break;
  4089. case 26: //M26 - Set SD index
  4090. if(card.cardOK && code_seen('S')) {
  4091. card.setIndex(code_value_long());
  4092. }
  4093. break;
  4094. case 27: //M27 - Get SD status
  4095. card.getStatus();
  4096. break;
  4097. case 28: //M28 - Start SD write
  4098. starpos = (strchr(strchr_pointer + 4,'*'));
  4099. if(starpos != NULL){
  4100. char* npos = strchr(CMDBUFFER_CURRENT_STRING, 'N');
  4101. strchr_pointer = strchr(npos,' ') + 1;
  4102. *(starpos) = '\0';
  4103. }
  4104. card.openFile(strchr_pointer+4,false);
  4105. break;
  4106. case 29: //M29 - Stop SD write
  4107. //processed in write to file routine above
  4108. //card,saving = false;
  4109. break;
  4110. case 30: //M30 <filename> Delete File
  4111. if (card.cardOK){
  4112. card.closefile();
  4113. starpos = (strchr(strchr_pointer + 4,'*'));
  4114. if(starpos != NULL){
  4115. char* npos = strchr(CMDBUFFER_CURRENT_STRING, 'N');
  4116. strchr_pointer = strchr(npos,' ') + 1;
  4117. *(starpos) = '\0';
  4118. }
  4119. card.removeFile(strchr_pointer + 4);
  4120. }
  4121. break;
  4122. case 32: //M32 - Select file and start SD print
  4123. {
  4124. if(card.sdprinting) {
  4125. st_synchronize();
  4126. }
  4127. starpos = (strchr(strchr_pointer + 4,'*'));
  4128. char* namestartpos = (strchr(strchr_pointer + 4,'!')); //find ! to indicate filename string start.
  4129. if(namestartpos==NULL)
  4130. {
  4131. namestartpos=strchr_pointer + 4; //default name position, 4 letters after the M
  4132. }
  4133. else
  4134. namestartpos++; //to skip the '!'
  4135. if(starpos!=NULL)
  4136. *(starpos)='\0';
  4137. bool call_procedure=(code_seen('P'));
  4138. if(strchr_pointer>namestartpos)
  4139. call_procedure=false; //false alert, 'P' found within filename
  4140. if( card.cardOK )
  4141. {
  4142. card.openFile(namestartpos,true,!call_procedure);
  4143. if(code_seen('S'))
  4144. if(strchr_pointer<namestartpos) //only if "S" is occuring _before_ the filename
  4145. card.setIndex(code_value_long());
  4146. card.startFileprint();
  4147. if(!call_procedure)
  4148. starttime=millis(); //procedure calls count as normal print time.
  4149. }
  4150. } break;
  4151. case 928: //M928 - Start SD write
  4152. starpos = (strchr(strchr_pointer + 5,'*'));
  4153. if(starpos != NULL){
  4154. char* npos = strchr(CMDBUFFER_CURRENT_STRING, 'N');
  4155. strchr_pointer = strchr(npos,' ') + 1;
  4156. *(starpos) = '\0';
  4157. }
  4158. card.openLogFile(strchr_pointer+5);
  4159. break;
  4160. #endif //SDSUPPORT
  4161. case 31: //M31 take time since the start of the SD print or an M109 command
  4162. {
  4163. stoptime=millis();
  4164. char time[30];
  4165. unsigned long t=(stoptime-starttime)/1000;
  4166. int sec,min;
  4167. min=t/60;
  4168. sec=t%60;
  4169. sprintf_P(time, PSTR("%i min, %i sec"), min, sec);
  4170. SERIAL_ECHO_START;
  4171. SERIAL_ECHOLN(time);
  4172. lcd_setstatus(time);
  4173. autotempShutdown();
  4174. }
  4175. break;
  4176. #ifndef _DISABLE_M42_M226
  4177. case 42: //M42 -Change pin status via gcode
  4178. if (code_seen('S'))
  4179. {
  4180. int pin_status = code_value();
  4181. int pin_number = LED_PIN;
  4182. if (code_seen('P') && pin_status >= 0 && pin_status <= 255)
  4183. pin_number = code_value();
  4184. for(int8_t i = 0; i < (int8_t)(sizeof(sensitive_pins)/sizeof(int)); i++)
  4185. {
  4186. if (sensitive_pins[i] == pin_number)
  4187. {
  4188. pin_number = -1;
  4189. break;
  4190. }
  4191. }
  4192. #if defined(FAN_PIN) && FAN_PIN > -1
  4193. if (pin_number == FAN_PIN)
  4194. fanSpeed = pin_status;
  4195. #endif
  4196. if (pin_number > -1)
  4197. {
  4198. pinMode(pin_number, OUTPUT);
  4199. digitalWrite(pin_number, pin_status);
  4200. analogWrite(pin_number, pin_status);
  4201. }
  4202. }
  4203. break;
  4204. #endif //_DISABLE_M42_M226
  4205. case 44: // M44: Prusa3D: Reset the bed skew and offset calibration.
  4206. // Reset the baby step value and the baby step applied flag.
  4207. calibration_status_store(CALIBRATION_STATUS_ASSEMBLED);
  4208. eeprom_update_word((uint16_t*)EEPROM_BABYSTEP_Z, 0);
  4209. // Reset the skew and offset in both RAM and EEPROM.
  4210. reset_bed_offset_and_skew();
  4211. // Reset world2machine_rotation_and_skew and world2machine_shift, therefore
  4212. // the planner will not perform any adjustments in the XY plane.
  4213. // Wait for the motors to stop and update the current position with the absolute values.
  4214. world2machine_revert_to_uncorrected();
  4215. break;
  4216. case 45: // M45: Prusa3D: bed skew and offset with manual Z up
  4217. {
  4218. int8_t verbosity_level = 0;
  4219. bool only_Z = code_seen('Z');
  4220. #ifdef SUPPORT_VERBOSITY
  4221. if (code_seen('V'))
  4222. {
  4223. // Just 'V' without a number counts as V1.
  4224. char c = strchr_pointer[1];
  4225. verbosity_level = (c == ' ' || c == '\t' || c == 0) ? 1 : code_value_short();
  4226. }
  4227. #endif //SUPPORT_VERBOSITY
  4228. gcode_M45(only_Z, verbosity_level);
  4229. }
  4230. break;
  4231. /*
  4232. case 46:
  4233. {
  4234. // M46: Prusa3D: Show the assigned IP address.
  4235. uint8_t ip[4];
  4236. bool hasIP = card.ToshibaFlashAir_GetIP(ip);
  4237. if (hasIP) {
  4238. SERIAL_ECHOPGM("Toshiba FlashAir current IP: ");
  4239. SERIAL_ECHO(int(ip[0]));
  4240. SERIAL_ECHOPGM(".");
  4241. SERIAL_ECHO(int(ip[1]));
  4242. SERIAL_ECHOPGM(".");
  4243. SERIAL_ECHO(int(ip[2]));
  4244. SERIAL_ECHOPGM(".");
  4245. SERIAL_ECHO(int(ip[3]));
  4246. SERIAL_ECHOLNPGM("");
  4247. } else {
  4248. SERIAL_ECHOLNPGM("Toshiba FlashAir GetIP failed");
  4249. }
  4250. break;
  4251. }
  4252. */
  4253. case 47:
  4254. // M47: Prusa3D: Show end stops dialog on the display.
  4255. KEEPALIVE_STATE(PAUSED_FOR_USER);
  4256. lcd_diag_show_end_stops();
  4257. KEEPALIVE_STATE(IN_HANDLER);
  4258. break;
  4259. #if 0
  4260. case 48: // M48: scan the bed induction sensor points, print the sensor trigger coordinates to the serial line for visualization on the PC.
  4261. {
  4262. // Disable the default update procedure of the display. We will do a modal dialog.
  4263. lcd_update_enable(false);
  4264. // Let the planner use the uncorrected coordinates.
  4265. mbl.reset();
  4266. // Reset world2machine_rotation_and_skew and world2machine_shift, therefore
  4267. // the planner will not perform any adjustments in the XY plane.
  4268. // Wait for the motors to stop and update the current position with the absolute values.
  4269. world2machine_revert_to_uncorrected();
  4270. // Move the print head close to the bed.
  4271. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  4272. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS],current_position[Z_AXIS] , current_position[E_AXIS], homing_feedrate[Z_AXIS]/40, active_extruder);
  4273. st_synchronize();
  4274. // Home in the XY plane.
  4275. set_destination_to_current();
  4276. setup_for_endstop_move();
  4277. home_xy();
  4278. int8_t verbosity_level = 0;
  4279. if (code_seen('V')) {
  4280. // Just 'V' without a number counts as V1.
  4281. char c = strchr_pointer[1];
  4282. verbosity_level = (c == ' ' || c == '\t' || c == 0) ? 1 : code_value_short();
  4283. }
  4284. bool success = scan_bed_induction_points(verbosity_level);
  4285. clean_up_after_endstop_move();
  4286. // Print head up.
  4287. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  4288. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS],current_position[Z_AXIS] , current_position[E_AXIS], homing_feedrate[Z_AXIS]/40, active_extruder);
  4289. st_synchronize();
  4290. lcd_update_enable(true);
  4291. break;
  4292. }
  4293. #endif
  4294. // M48 Z-Probe repeatability measurement function.
  4295. //
  4296. // Usage: M48 <n #_samples> <X X_position_for_samples> <Y Y_position_for_samples> <V Verbose_Level> <L legs_of_movement_prior_to_doing_probe>
  4297. //
  4298. // This function assumes the bed has been homed. Specificaly, that a G28 command
  4299. // as been issued prior to invoking the M48 Z-Probe repeatability measurement function.
  4300. // Any information generated by a prior G29 Bed leveling command will be lost and need to be
  4301. // regenerated.
  4302. //
  4303. // The number of samples will default to 10 if not specified. You can use upper or lower case
  4304. // letters for any of the options EXCEPT n. n must be in lower case because Marlin uses a capital
  4305. // N for its communication protocol and will get horribly confused if you send it a capital N.
  4306. //
  4307. #ifdef ENABLE_AUTO_BED_LEVELING
  4308. #ifdef Z_PROBE_REPEATABILITY_TEST
  4309. case 48: // M48 Z-Probe repeatability
  4310. {
  4311. #if Z_MIN_PIN == -1
  4312. #error "You must have a Z_MIN endstop in order to enable calculation of Z-Probe repeatability."
  4313. #endif
  4314. double sum=0.0;
  4315. double mean=0.0;
  4316. double sigma=0.0;
  4317. double sample_set[50];
  4318. int verbose_level=1, n=0, j, n_samples = 10, n_legs=0;
  4319. double X_current, Y_current, Z_current;
  4320. double X_probe_location, Y_probe_location, Z_start_location, ext_position;
  4321. if (code_seen('V') || code_seen('v')) {
  4322. verbose_level = code_value();
  4323. if (verbose_level<0 || verbose_level>4 ) {
  4324. SERIAL_PROTOCOLPGM("?Verbose Level not plausable.\n");
  4325. goto Sigma_Exit;
  4326. }
  4327. }
  4328. if (verbose_level > 0) {
  4329. SERIAL_PROTOCOLPGM("M48 Z-Probe Repeatability test. Version 2.00\n");
  4330. SERIAL_PROTOCOLPGM("Full support at: http://3dprintboard.com/forum.php\n");
  4331. }
  4332. if (code_seen('n')) {
  4333. n_samples = code_value();
  4334. if (n_samples<4 || n_samples>50 ) {
  4335. SERIAL_PROTOCOLPGM("?Specified sample size not plausable.\n");
  4336. goto Sigma_Exit;
  4337. }
  4338. }
  4339. X_current = X_probe_location = st_get_position_mm(X_AXIS);
  4340. Y_current = Y_probe_location = st_get_position_mm(Y_AXIS);
  4341. Z_current = st_get_position_mm(Z_AXIS);
  4342. Z_start_location = st_get_position_mm(Z_AXIS) + Z_RAISE_BEFORE_PROBING;
  4343. ext_position = st_get_position_mm(E_AXIS);
  4344. if (code_seen('X') || code_seen('x') ) {
  4345. X_probe_location = code_value() - X_PROBE_OFFSET_FROM_EXTRUDER;
  4346. if (X_probe_location<X_MIN_POS || X_probe_location>X_MAX_POS ) {
  4347. SERIAL_PROTOCOLPGM("?Specified X position out of range.\n");
  4348. goto Sigma_Exit;
  4349. }
  4350. }
  4351. if (code_seen('Y') || code_seen('y') ) {
  4352. Y_probe_location = code_value() - Y_PROBE_OFFSET_FROM_EXTRUDER;
  4353. if (Y_probe_location<Y_MIN_POS || Y_probe_location>Y_MAX_POS ) {
  4354. SERIAL_PROTOCOLPGM("?Specified Y position out of range.\n");
  4355. goto Sigma_Exit;
  4356. }
  4357. }
  4358. if (code_seen('L') || code_seen('l') ) {
  4359. n_legs = code_value();
  4360. if ( n_legs==1 )
  4361. n_legs = 2;
  4362. if ( n_legs<0 || n_legs>15 ) {
  4363. SERIAL_PROTOCOLPGM("?Specified number of legs in movement not plausable.\n");
  4364. goto Sigma_Exit;
  4365. }
  4366. }
  4367. //
  4368. // Do all the preliminary setup work. First raise the probe.
  4369. //
  4370. st_synchronize();
  4371. plan_bed_level_matrix.set_to_identity();
  4372. plan_buffer_line( X_current, Y_current, Z_start_location,
  4373. ext_position,
  4374. homing_feedrate[Z_AXIS]/60,
  4375. active_extruder);
  4376. st_synchronize();
  4377. //
  4378. // Now get everything to the specified probe point So we can safely do a probe to
  4379. // get us close to the bed. If the Z-Axis is far from the bed, we don't want to
  4380. // use that as a starting point for each probe.
  4381. //
  4382. if (verbose_level > 2)
  4383. SERIAL_PROTOCOL("Positioning probe for the test.\n");
  4384. plan_buffer_line( X_probe_location, Y_probe_location, Z_start_location,
  4385. ext_position,
  4386. homing_feedrate[X_AXIS]/60,
  4387. active_extruder);
  4388. st_synchronize();
  4389. current_position[X_AXIS] = X_current = st_get_position_mm(X_AXIS);
  4390. current_position[Y_AXIS] = Y_current = st_get_position_mm(Y_AXIS);
  4391. current_position[Z_AXIS] = Z_current = st_get_position_mm(Z_AXIS);
  4392. current_position[E_AXIS] = ext_position = st_get_position_mm(E_AXIS);
  4393. //
  4394. // OK, do the inital probe to get us close to the bed.
  4395. // Then retrace the right amount and use that in subsequent probes
  4396. //
  4397. setup_for_endstop_move();
  4398. run_z_probe();
  4399. current_position[Z_AXIS] = Z_current = st_get_position_mm(Z_AXIS);
  4400. Z_start_location = st_get_position_mm(Z_AXIS) + Z_RAISE_BEFORE_PROBING;
  4401. plan_buffer_line( X_probe_location, Y_probe_location, Z_start_location,
  4402. ext_position,
  4403. homing_feedrate[X_AXIS]/60,
  4404. active_extruder);
  4405. st_synchronize();
  4406. current_position[Z_AXIS] = Z_current = st_get_position_mm(Z_AXIS);
  4407. for( n=0; n<n_samples; n++) {
  4408. do_blocking_move_to( X_probe_location, Y_probe_location, Z_start_location); // Make sure we are at the probe location
  4409. if ( n_legs) {
  4410. double radius=0.0, theta=0.0, x_sweep, y_sweep;
  4411. int rotational_direction, l;
  4412. rotational_direction = (unsigned long) millis() & 0x0001; // clockwise or counter clockwise
  4413. radius = (unsigned long) millis() % (long) (X_MAX_LENGTH/4); // limit how far out to go
  4414. theta = (float) ((unsigned long) millis() % (long) 360) / (360./(2*3.1415926)); // turn into radians
  4415. //SERIAL_ECHOPAIR("starting radius: ",radius);
  4416. //SERIAL_ECHOPAIR(" theta: ",theta);
  4417. //SERIAL_ECHOPAIR(" direction: ",rotational_direction);
  4418. //SERIAL_PROTOCOLLNPGM("");
  4419. for( l=0; l<n_legs-1; l++) {
  4420. if (rotational_direction==1)
  4421. theta += (float) ((unsigned long) millis() % (long) 20) / (360.0/(2*3.1415926)); // turn into radians
  4422. else
  4423. theta -= (float) ((unsigned long) millis() % (long) 20) / (360.0/(2*3.1415926)); // turn into radians
  4424. radius += (float) ( ((long) ((unsigned long) millis() % (long) 10)) - 5);
  4425. if ( radius<0.0 )
  4426. radius = -radius;
  4427. X_current = X_probe_location + cos(theta) * radius;
  4428. Y_current = Y_probe_location + sin(theta) * radius;
  4429. if ( X_current<X_MIN_POS) // Make sure our X & Y are sane
  4430. X_current = X_MIN_POS;
  4431. if ( X_current>X_MAX_POS)
  4432. X_current = X_MAX_POS;
  4433. if ( Y_current<Y_MIN_POS) // Make sure our X & Y are sane
  4434. Y_current = Y_MIN_POS;
  4435. if ( Y_current>Y_MAX_POS)
  4436. Y_current = Y_MAX_POS;
  4437. if (verbose_level>3 ) {
  4438. SERIAL_ECHOPAIR("x: ", X_current);
  4439. SERIAL_ECHOPAIR("y: ", Y_current);
  4440. SERIAL_PROTOCOLLNPGM("");
  4441. }
  4442. do_blocking_move_to( X_current, Y_current, Z_current );
  4443. }
  4444. do_blocking_move_to( X_probe_location, Y_probe_location, Z_start_location); // Go back to the probe location
  4445. }
  4446. setup_for_endstop_move();
  4447. run_z_probe();
  4448. sample_set[n] = current_position[Z_AXIS];
  4449. //
  4450. // Get the current mean for the data points we have so far
  4451. //
  4452. sum=0.0;
  4453. for( j=0; j<=n; j++) {
  4454. sum = sum + sample_set[j];
  4455. }
  4456. mean = sum / (double (n+1));
  4457. //
  4458. // Now, use that mean to calculate the standard deviation for the
  4459. // data points we have so far
  4460. //
  4461. sum=0.0;
  4462. for( j=0; j<=n; j++) {
  4463. sum = sum + (sample_set[j]-mean) * (sample_set[j]-mean);
  4464. }
  4465. sigma = sqrt( sum / (double (n+1)) );
  4466. if (verbose_level > 1) {
  4467. SERIAL_PROTOCOL(n+1);
  4468. SERIAL_PROTOCOL(" of ");
  4469. SERIAL_PROTOCOL(n_samples);
  4470. SERIAL_PROTOCOLPGM(" z: ");
  4471. SERIAL_PROTOCOL_F(current_position[Z_AXIS], 6);
  4472. }
  4473. if (verbose_level > 2) {
  4474. SERIAL_PROTOCOL(" mean: ");
  4475. SERIAL_PROTOCOL_F(mean,6);
  4476. SERIAL_PROTOCOL(" sigma: ");
  4477. SERIAL_PROTOCOL_F(sigma,6);
  4478. }
  4479. if (verbose_level > 0)
  4480. SERIAL_PROTOCOLPGM("\n");
  4481. plan_buffer_line( X_probe_location, Y_probe_location, Z_start_location,
  4482. current_position[E_AXIS], homing_feedrate[Z_AXIS]/60, active_extruder);
  4483. st_synchronize();
  4484. }
  4485. delay(1000);
  4486. clean_up_after_endstop_move();
  4487. // enable_endstops(true);
  4488. if (verbose_level > 0) {
  4489. SERIAL_PROTOCOLPGM("Mean: ");
  4490. SERIAL_PROTOCOL_F(mean, 6);
  4491. SERIAL_PROTOCOLPGM("\n");
  4492. }
  4493. SERIAL_PROTOCOLPGM("Standard Deviation: ");
  4494. SERIAL_PROTOCOL_F(sigma, 6);
  4495. SERIAL_PROTOCOLPGM("\n\n");
  4496. Sigma_Exit:
  4497. break;
  4498. }
  4499. #endif // Z_PROBE_REPEATABILITY_TEST
  4500. #endif // ENABLE_AUTO_BED_LEVELING
  4501. case 73: //M73 show percent done and time remaining
  4502. if(code_seen('P')) print_percent_done_normal = code_value();
  4503. if(code_seen('R')) print_time_remaining_normal = code_value();
  4504. if(code_seen('Q')) print_percent_done_silent = code_value();
  4505. if(code_seen('S')) print_time_remaining_silent = code_value();
  4506. {
  4507. const char* _msg_mode_done_remain = _N("%S MODE: Percent done: %d; print time remaining in mins: %d\n");
  4508. printf_P(_msg_mode_done_remain, _N("NORMAL"), int(print_percent_done_normal), print_time_remaining_normal);
  4509. printf_P(_msg_mode_done_remain, _N("SILENT"), int(print_percent_done_silent), print_time_remaining_silent);
  4510. }
  4511. break;
  4512. case 104: // M104
  4513. if(setTargetedHotend(104)){
  4514. break;
  4515. }
  4516. if (code_seen('S')) setTargetHotend(code_value(), tmp_extruder);
  4517. setWatch();
  4518. break;
  4519. case 112: // M112 -Emergency Stop
  4520. kill(_n(""), 3);
  4521. break;
  4522. case 140: // M140 set bed temp
  4523. if (code_seen('S')) setTargetBed(code_value());
  4524. break;
  4525. case 105 : // M105
  4526. if(setTargetedHotend(105)){
  4527. break;
  4528. }
  4529. #if defined(TEMP_0_PIN) && TEMP_0_PIN > -1
  4530. SERIAL_PROTOCOLPGM("ok T:");
  4531. SERIAL_PROTOCOL_F(degHotend(tmp_extruder),1);
  4532. SERIAL_PROTOCOLPGM(" /");
  4533. SERIAL_PROTOCOL_F(degTargetHotend(tmp_extruder),1);
  4534. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  4535. SERIAL_PROTOCOLPGM(" B:");
  4536. SERIAL_PROTOCOL_F(degBed(),1);
  4537. SERIAL_PROTOCOLPGM(" /");
  4538. SERIAL_PROTOCOL_F(degTargetBed(),1);
  4539. #endif //TEMP_BED_PIN
  4540. for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) {
  4541. SERIAL_PROTOCOLPGM(" T");
  4542. SERIAL_PROTOCOL(cur_extruder);
  4543. SERIAL_PROTOCOLPGM(":");
  4544. SERIAL_PROTOCOL_F(degHotend(cur_extruder),1);
  4545. SERIAL_PROTOCOLPGM(" /");
  4546. SERIAL_PROTOCOL_F(degTargetHotend(cur_extruder),1);
  4547. }
  4548. #else
  4549. SERIAL_ERROR_START;
  4550. SERIAL_ERRORLNRPGM(_i("No thermistors - no temperature"));////MSG_ERR_NO_THERMISTORS c=0 r=0
  4551. #endif
  4552. SERIAL_PROTOCOLPGM(" @:");
  4553. #ifdef EXTRUDER_WATTS
  4554. SERIAL_PROTOCOL((EXTRUDER_WATTS * getHeaterPower(tmp_extruder))/127);
  4555. SERIAL_PROTOCOLPGM("W");
  4556. #else
  4557. SERIAL_PROTOCOL(getHeaterPower(tmp_extruder));
  4558. #endif
  4559. SERIAL_PROTOCOLPGM(" B@:");
  4560. #ifdef BED_WATTS
  4561. SERIAL_PROTOCOL((BED_WATTS * getHeaterPower(-1))/127);
  4562. SERIAL_PROTOCOLPGM("W");
  4563. #else
  4564. SERIAL_PROTOCOL(getHeaterPower(-1));
  4565. #endif
  4566. #ifdef PINDA_THERMISTOR
  4567. SERIAL_PROTOCOLPGM(" P:");
  4568. SERIAL_PROTOCOL_F(current_temperature_pinda,1);
  4569. #endif //PINDA_THERMISTOR
  4570. #ifdef AMBIENT_THERMISTOR
  4571. SERIAL_PROTOCOLPGM(" A:");
  4572. SERIAL_PROTOCOL_F(current_temperature_ambient,1);
  4573. #endif //AMBIENT_THERMISTOR
  4574. #ifdef SHOW_TEMP_ADC_VALUES
  4575. {float raw = 0.0;
  4576. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  4577. SERIAL_PROTOCOLPGM(" ADC B:");
  4578. SERIAL_PROTOCOL_F(degBed(),1);
  4579. SERIAL_PROTOCOLPGM("C->");
  4580. raw = rawBedTemp();
  4581. SERIAL_PROTOCOL_F(raw/OVERSAMPLENR,5);
  4582. SERIAL_PROTOCOLPGM(" Rb->");
  4583. SERIAL_PROTOCOL_F(100 * (1 + (PtA * (raw/OVERSAMPLENR)) + (PtB * sq((raw/OVERSAMPLENR)))), 5);
  4584. SERIAL_PROTOCOLPGM(" Rxb->");
  4585. SERIAL_PROTOCOL_F(raw, 5);
  4586. #endif
  4587. for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) {
  4588. SERIAL_PROTOCOLPGM(" T");
  4589. SERIAL_PROTOCOL(cur_extruder);
  4590. SERIAL_PROTOCOLPGM(":");
  4591. SERIAL_PROTOCOL_F(degHotend(cur_extruder),1);
  4592. SERIAL_PROTOCOLPGM("C->");
  4593. raw = rawHotendTemp(cur_extruder);
  4594. SERIAL_PROTOCOL_F(raw/OVERSAMPLENR,5);
  4595. SERIAL_PROTOCOLPGM(" Rt");
  4596. SERIAL_PROTOCOL(cur_extruder);
  4597. SERIAL_PROTOCOLPGM("->");
  4598. SERIAL_PROTOCOL_F(100 * (1 + (PtA * (raw/OVERSAMPLENR)) + (PtB * sq((raw/OVERSAMPLENR)))), 5);
  4599. SERIAL_PROTOCOLPGM(" Rx");
  4600. SERIAL_PROTOCOL(cur_extruder);
  4601. SERIAL_PROTOCOLPGM("->");
  4602. SERIAL_PROTOCOL_F(raw, 5);
  4603. }}
  4604. #endif
  4605. SERIAL_PROTOCOLLN("");
  4606. KEEPALIVE_STATE(NOT_BUSY);
  4607. return;
  4608. break;
  4609. case 109:
  4610. {// M109 - Wait for extruder heater to reach target.
  4611. if(setTargetedHotend(109)){
  4612. break;
  4613. }
  4614. LCD_MESSAGERPGM(_T(MSG_HEATING));
  4615. heating_status = 1;
  4616. if (farm_mode) { prusa_statistics(1); };
  4617. #ifdef AUTOTEMP
  4618. autotemp_enabled=false;
  4619. #endif
  4620. if (code_seen('S')) {
  4621. setTargetHotend(code_value(), tmp_extruder);
  4622. CooldownNoWait = true;
  4623. } else if (code_seen('R')) {
  4624. setTargetHotend(code_value(), tmp_extruder);
  4625. CooldownNoWait = false;
  4626. }
  4627. #ifdef AUTOTEMP
  4628. if (code_seen('S')) autotemp_min=code_value();
  4629. if (code_seen('B')) autotemp_max=code_value();
  4630. if (code_seen('F'))
  4631. {
  4632. autotemp_factor=code_value();
  4633. autotemp_enabled=true;
  4634. }
  4635. #endif
  4636. setWatch();
  4637. codenum = millis();
  4638. /* See if we are heating up or cooling down */
  4639. target_direction = isHeatingHotend(tmp_extruder); // true if heating, false if cooling
  4640. KEEPALIVE_STATE(NOT_BUSY);
  4641. cancel_heatup = false;
  4642. wait_for_heater(codenum); //loops until target temperature is reached
  4643. LCD_MESSAGERPGM(_T(MSG_HEATING_COMPLETE));
  4644. KEEPALIVE_STATE(IN_HANDLER);
  4645. heating_status = 2;
  4646. if (farm_mode) { prusa_statistics(2); };
  4647. //starttime=millis();
  4648. previous_millis_cmd = millis();
  4649. }
  4650. break;
  4651. case 190: // M190 - Wait for bed heater to reach target.
  4652. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  4653. LCD_MESSAGERPGM(_T(MSG_BED_HEATING));
  4654. heating_status = 3;
  4655. if (farm_mode) { prusa_statistics(1); };
  4656. if (code_seen('S'))
  4657. {
  4658. setTargetBed(code_value());
  4659. CooldownNoWait = true;
  4660. }
  4661. else if (code_seen('R'))
  4662. {
  4663. setTargetBed(code_value());
  4664. CooldownNoWait = false;
  4665. }
  4666. codenum = millis();
  4667. cancel_heatup = false;
  4668. target_direction = isHeatingBed(); // true if heating, false if cooling
  4669. KEEPALIVE_STATE(NOT_BUSY);
  4670. while ( (target_direction)&&(!cancel_heatup) ? (isHeatingBed()) : (isCoolingBed()&&(CooldownNoWait==false)) )
  4671. {
  4672. if(( millis() - codenum) > 1000 ) //Print Temp Reading every 1 second while heating up.
  4673. {
  4674. if (!farm_mode) {
  4675. float tt = degHotend(active_extruder);
  4676. SERIAL_PROTOCOLPGM("T:");
  4677. SERIAL_PROTOCOL(tt);
  4678. SERIAL_PROTOCOLPGM(" E:");
  4679. SERIAL_PROTOCOL((int)active_extruder);
  4680. SERIAL_PROTOCOLPGM(" B:");
  4681. SERIAL_PROTOCOL_F(degBed(), 1);
  4682. SERIAL_PROTOCOLLN("");
  4683. }
  4684. codenum = millis();
  4685. }
  4686. manage_heater();
  4687. manage_inactivity();
  4688. lcd_update(0);
  4689. }
  4690. LCD_MESSAGERPGM(_T(MSG_BED_DONE));
  4691. KEEPALIVE_STATE(IN_HANDLER);
  4692. heating_status = 4;
  4693. previous_millis_cmd = millis();
  4694. #endif
  4695. break;
  4696. #if defined(FAN_PIN) && FAN_PIN > -1
  4697. case 106: //M106 Fan On
  4698. if (code_seen('S')){
  4699. fanSpeed=constrain(code_value(),0,255);
  4700. }
  4701. else {
  4702. fanSpeed=255;
  4703. }
  4704. break;
  4705. case 107: //M107 Fan Off
  4706. fanSpeed = 0;
  4707. break;
  4708. #endif //FAN_PIN
  4709. #if defined(PS_ON_PIN) && PS_ON_PIN > -1
  4710. case 80: // M80 - Turn on Power Supply
  4711. SET_OUTPUT(PS_ON_PIN); //GND
  4712. WRITE(PS_ON_PIN, PS_ON_AWAKE);
  4713. // If you have a switch on suicide pin, this is useful
  4714. // if you want to start another print with suicide feature after
  4715. // a print without suicide...
  4716. #if defined SUICIDE_PIN && SUICIDE_PIN > -1
  4717. SET_OUTPUT(SUICIDE_PIN);
  4718. WRITE(SUICIDE_PIN, HIGH);
  4719. #endif
  4720. powersupply = true;
  4721. LCD_MESSAGERPGM(_T(WELCOME_MSG));
  4722. lcd_update(0);
  4723. break;
  4724. #endif
  4725. case 81: // M81 - Turn off Power Supply
  4726. disable_heater();
  4727. st_synchronize();
  4728. disable_e0();
  4729. disable_e1();
  4730. disable_e2();
  4731. finishAndDisableSteppers();
  4732. fanSpeed = 0;
  4733. delay(1000); // Wait a little before to switch off
  4734. #if defined(SUICIDE_PIN) && SUICIDE_PIN > -1
  4735. st_synchronize();
  4736. suicide();
  4737. #elif defined(PS_ON_PIN) && PS_ON_PIN > -1
  4738. SET_OUTPUT(PS_ON_PIN);
  4739. WRITE(PS_ON_PIN, PS_ON_ASLEEP);
  4740. #endif
  4741. powersupply = false;
  4742. LCD_MESSAGERPGM(CAT4(CUSTOM_MENDEL_NAME,PSTR(" "),MSG_OFF,PSTR(".")));
  4743. lcd_update(0);
  4744. break;
  4745. case 82:
  4746. axis_relative_modes[3] = false;
  4747. break;
  4748. case 83:
  4749. axis_relative_modes[3] = true;
  4750. break;
  4751. case 18: //compatibility
  4752. case 84: // M84
  4753. if(code_seen('S')){
  4754. stepper_inactive_time = code_value() * 1000;
  4755. }
  4756. else
  4757. {
  4758. bool all_axis = !((code_seen(axis_codes[X_AXIS])) || (code_seen(axis_codes[Y_AXIS])) || (code_seen(axis_codes[Z_AXIS]))|| (code_seen(axis_codes[E_AXIS])));
  4759. if(all_axis)
  4760. {
  4761. st_synchronize();
  4762. disable_e0();
  4763. disable_e1();
  4764. disable_e2();
  4765. finishAndDisableSteppers();
  4766. }
  4767. else
  4768. {
  4769. st_synchronize();
  4770. if (code_seen('X')) disable_x();
  4771. if (code_seen('Y')) disable_y();
  4772. if (code_seen('Z')) disable_z();
  4773. #if ((E0_ENABLE_PIN != X_ENABLE_PIN) && (E1_ENABLE_PIN != Y_ENABLE_PIN)) // Only enable on boards that have seperate ENABLE_PINS
  4774. if (code_seen('E')) {
  4775. disable_e0();
  4776. disable_e1();
  4777. disable_e2();
  4778. }
  4779. #endif
  4780. }
  4781. }
  4782. //in the end of print set estimated time to end of print and extruders used during print to default values for next print
  4783. print_time_remaining_init();
  4784. snmm_filaments_used = 0;
  4785. break;
  4786. case 85: // M85
  4787. if(code_seen('S')) {
  4788. max_inactive_time = code_value() * 1000;
  4789. }
  4790. break;
  4791. #ifdef SAFETYTIMER
  4792. case 86: // M86 - set safety timer expiration time in seconds; M86 S0 will disable safety timer
  4793. //when safety timer expires heatbed and nozzle target temperatures are set to zero
  4794. if (code_seen('S')) {
  4795. safetytimer_inactive_time = code_value() * 1000;
  4796. safetyTimer.start();
  4797. }
  4798. break;
  4799. #endif
  4800. case 92: // M92
  4801. for(int8_t i=0; i < NUM_AXIS; i++)
  4802. {
  4803. if(code_seen(axis_codes[i]))
  4804. {
  4805. if(i == 3) { // E
  4806. float value = code_value();
  4807. if(value < 20.0) {
  4808. float factor = axis_steps_per_unit[i] / value; // increase e constants if M92 E14 is given for netfab.
  4809. max_jerk[E_AXIS] *= factor;
  4810. max_feedrate[i] *= factor;
  4811. axis_steps_per_sqr_second[i] *= factor;
  4812. }
  4813. axis_steps_per_unit[i] = value;
  4814. }
  4815. else {
  4816. axis_steps_per_unit[i] = code_value();
  4817. }
  4818. }
  4819. }
  4820. break;
  4821. case 110: // M110 - reset line pos
  4822. if (code_seen('N'))
  4823. gcode_LastN = code_value_long();
  4824. break;
  4825. #ifdef HOST_KEEPALIVE_FEATURE
  4826. case 113: // M113 - Get or set Host Keepalive interval
  4827. if (code_seen('S')) {
  4828. host_keepalive_interval = (uint8_t)code_value_short();
  4829. // NOMORE(host_keepalive_interval, 60);
  4830. }
  4831. else {
  4832. SERIAL_ECHO_START;
  4833. SERIAL_ECHOPAIR("M113 S", (unsigned long)host_keepalive_interval);
  4834. SERIAL_PROTOCOLLN("");
  4835. }
  4836. break;
  4837. #endif
  4838. case 115: // M115
  4839. if (code_seen('V')) {
  4840. // Report the Prusa version number.
  4841. SERIAL_PROTOCOLLNRPGM(FW_VERSION_STR_P());
  4842. } else if (code_seen('U')) {
  4843. // Check the firmware version provided. If the firmware version provided by the U code is higher than the currently running firmware,
  4844. // pause the print and ask the user to upgrade the firmware.
  4845. show_upgrade_dialog_if_version_newer(++ strchr_pointer);
  4846. } else {
  4847. SERIAL_ECHOPGM("FIRMWARE_NAME:Prusa-Firmware ");
  4848. SERIAL_ECHORPGM(FW_VERSION_STR_P());
  4849. SERIAL_ECHOPGM(" based on Marlin FIRMWARE_URL:https://github.com/prusa3d/Prusa-Firmware PROTOCOL_VERSION:");
  4850. SERIAL_ECHOPGM(PROTOCOL_VERSION);
  4851. SERIAL_ECHOPGM(" MACHINE_TYPE:");
  4852. SERIAL_ECHOPGM(CUSTOM_MENDEL_NAME);
  4853. SERIAL_ECHOPGM(" EXTRUDER_COUNT:");
  4854. SERIAL_ECHOPGM(STRINGIFY(EXTRUDERS));
  4855. SERIAL_ECHOPGM(" UUID:");
  4856. SERIAL_ECHOLNPGM(MACHINE_UUID);
  4857. }
  4858. break;
  4859. /* case 117: // M117 display message
  4860. starpos = (strchr(strchr_pointer + 5,'*'));
  4861. if(starpos!=NULL)
  4862. *(starpos)='\0';
  4863. lcd_setstatus(strchr_pointer + 5);
  4864. break;*/
  4865. case 114: // M114
  4866. gcode_M114();
  4867. break;
  4868. case 120: // M120
  4869. enable_endstops(false) ;
  4870. break;
  4871. case 121: // M121
  4872. enable_endstops(true) ;
  4873. break;
  4874. case 119: // M119
  4875. SERIAL_PROTOCOLRPGM(_N("Reporting endstop status"));////MSG_M119_REPORT c=0 r=0
  4876. SERIAL_PROTOCOLLN("");
  4877. #if defined(X_MIN_PIN) && X_MIN_PIN > -1
  4878. SERIAL_PROTOCOLRPGM(_n("x_min: "));////MSG_X_MIN c=0 r=0
  4879. if(READ(X_MIN_PIN)^X_MIN_ENDSTOP_INVERTING){
  4880. SERIAL_PROTOCOLRPGM(_T(MSG_ENDSTOP_HIT));
  4881. }else{
  4882. SERIAL_PROTOCOLRPGM(_T(MSG_ENDSTOP_OPEN));
  4883. }
  4884. SERIAL_PROTOCOLLN("");
  4885. #endif
  4886. #if defined(X_MAX_PIN) && X_MAX_PIN > -1
  4887. SERIAL_PROTOCOLRPGM(_n("x_max: "));////MSG_X_MAX c=0 r=0
  4888. if(READ(X_MAX_PIN)^X_MAX_ENDSTOP_INVERTING){
  4889. SERIAL_PROTOCOLRPGM(_T(MSG_ENDSTOP_HIT));
  4890. }else{
  4891. SERIAL_PROTOCOLRPGM(_T(MSG_ENDSTOP_OPEN));
  4892. }
  4893. SERIAL_PROTOCOLLN("");
  4894. #endif
  4895. #if defined(Y_MIN_PIN) && Y_MIN_PIN > -1
  4896. SERIAL_PROTOCOLRPGM(_n("y_min: "));////MSG_Y_MIN c=0 r=0
  4897. if(READ(Y_MIN_PIN)^Y_MIN_ENDSTOP_INVERTING){
  4898. SERIAL_PROTOCOLRPGM(_T(MSG_ENDSTOP_HIT));
  4899. }else{
  4900. SERIAL_PROTOCOLRPGM(_T(MSG_ENDSTOP_OPEN));
  4901. }
  4902. SERIAL_PROTOCOLLN("");
  4903. #endif
  4904. #if defined(Y_MAX_PIN) && Y_MAX_PIN > -1
  4905. SERIAL_PROTOCOLRPGM(_n("y_max: "));////MSG_Y_MAX c=0 r=0
  4906. if(READ(Y_MAX_PIN)^Y_MAX_ENDSTOP_INVERTING){
  4907. SERIAL_PROTOCOLRPGM(_T(MSG_ENDSTOP_HIT));
  4908. }else{
  4909. SERIAL_PROTOCOLRPGM(_T(MSG_ENDSTOP_OPEN));
  4910. }
  4911. SERIAL_PROTOCOLLN("");
  4912. #endif
  4913. #if defined(Z_MIN_PIN) && Z_MIN_PIN > -1
  4914. SERIAL_PROTOCOLRPGM(MSG_Z_MIN);
  4915. if(READ(Z_MIN_PIN)^Z_MIN_ENDSTOP_INVERTING){
  4916. SERIAL_PROTOCOLRPGM(_T(MSG_ENDSTOP_HIT));
  4917. }else{
  4918. SERIAL_PROTOCOLRPGM(_T(MSG_ENDSTOP_OPEN));
  4919. }
  4920. SERIAL_PROTOCOLLN("");
  4921. #endif
  4922. #if defined(Z_MAX_PIN) && Z_MAX_PIN > -1
  4923. SERIAL_PROTOCOLRPGM(MSG_Z_MAX);
  4924. if(READ(Z_MAX_PIN)^Z_MAX_ENDSTOP_INVERTING){
  4925. SERIAL_PROTOCOLRPGM(_T(MSG_ENDSTOP_HIT));
  4926. }else{
  4927. SERIAL_PROTOCOLRPGM(_T(MSG_ENDSTOP_OPEN));
  4928. }
  4929. SERIAL_PROTOCOLLN("");
  4930. #endif
  4931. break;
  4932. //TODO: update for all axis, use for loop
  4933. #ifdef BLINKM
  4934. case 150: // M150
  4935. {
  4936. byte red;
  4937. byte grn;
  4938. byte blu;
  4939. if(code_seen('R')) red = code_value();
  4940. if(code_seen('U')) grn = code_value();
  4941. if(code_seen('B')) blu = code_value();
  4942. SendColors(red,grn,blu);
  4943. }
  4944. break;
  4945. #endif //BLINKM
  4946. case 200: // M200 D<millimeters> set filament diameter and set E axis units to cubic millimeters (use S0 to set back to millimeters).
  4947. {
  4948. tmp_extruder = active_extruder;
  4949. if(code_seen('T')) {
  4950. tmp_extruder = code_value();
  4951. if(tmp_extruder >= EXTRUDERS) {
  4952. SERIAL_ECHO_START;
  4953. SERIAL_ECHO(_i("M200 Invalid extruder "));////MSG_M200_INVALID_EXTRUDER c=0 r=0
  4954. break;
  4955. }
  4956. }
  4957. float area = .0;
  4958. if(code_seen('D')) {
  4959. float diameter = (float)code_value();
  4960. if (diameter == 0.0) {
  4961. // setting any extruder filament size disables volumetric on the assumption that
  4962. // slicers either generate in extruder values as cubic mm or as as filament feeds
  4963. // for all extruders
  4964. volumetric_enabled = false;
  4965. } else {
  4966. filament_size[tmp_extruder] = (float)code_value();
  4967. // make sure all extruders have some sane value for the filament size
  4968. filament_size[0] = (filament_size[0] == 0.0 ? DEFAULT_NOMINAL_FILAMENT_DIA : filament_size[0]);
  4969. #if EXTRUDERS > 1
  4970. filament_size[1] = (filament_size[1] == 0.0 ? DEFAULT_NOMINAL_FILAMENT_DIA : filament_size[1]);
  4971. #if EXTRUDERS > 2
  4972. filament_size[2] = (filament_size[2] == 0.0 ? DEFAULT_NOMINAL_FILAMENT_DIA : filament_size[2]);
  4973. #endif
  4974. #endif
  4975. volumetric_enabled = true;
  4976. }
  4977. } else {
  4978. //reserved for setting filament diameter via UFID or filament measuring device
  4979. break;
  4980. }
  4981. calculate_extruder_multipliers();
  4982. }
  4983. break;
  4984. case 201: // M201
  4985. for(int8_t i=0; i < NUM_AXIS; i++)
  4986. {
  4987. if(code_seen(axis_codes[i]))
  4988. {
  4989. max_acceleration_units_per_sq_second[i] = code_value();
  4990. }
  4991. }
  4992. // steps per sq second need to be updated to agree with the units per sq second (as they are what is used in the planner)
  4993. reset_acceleration_rates();
  4994. break;
  4995. #if 0 // Not used for Sprinter/grbl gen6
  4996. case 202: // M202
  4997. for(int8_t i=0; i < NUM_AXIS; i++) {
  4998. if(code_seen(axis_codes[i])) axis_travel_steps_per_sqr_second[i] = code_value() * axis_steps_per_unit[i];
  4999. }
  5000. break;
  5001. #endif
  5002. case 203: // M203 max feedrate mm/sec
  5003. for(int8_t i=0; i < NUM_AXIS; i++) {
  5004. if(code_seen(axis_codes[i])) max_feedrate[i] = code_value();
  5005. }
  5006. break;
  5007. case 204: // M204 acclereration S normal moves T filmanent only moves
  5008. {
  5009. if(code_seen('S')) acceleration = code_value() ;
  5010. if(code_seen('T')) retract_acceleration = code_value() ;
  5011. }
  5012. break;
  5013. case 205: //M205 advanced settings: minimum travel speed S=while printing T=travel only, B=minimum segment time X= maximum xy jerk, Z=maximum Z jerk
  5014. {
  5015. if(code_seen('S')) minimumfeedrate = code_value();
  5016. if(code_seen('T')) mintravelfeedrate = code_value();
  5017. if(code_seen('B')) minsegmenttime = code_value() ;
  5018. if(code_seen('X')) max_jerk[X_AXIS] = max_jerk[Y_AXIS] = code_value();
  5019. if(code_seen('Y')) max_jerk[Y_AXIS] = code_value();
  5020. if(code_seen('Z')) max_jerk[Z_AXIS] = code_value();
  5021. if(code_seen('E')) max_jerk[E_AXIS] = code_value();
  5022. if (max_jerk[X_AXIS] > DEFAULT_XJERK) max_jerk[X_AXIS] = DEFAULT_XJERK;
  5023. if (max_jerk[Y_AXIS] > DEFAULT_YJERK) max_jerk[Y_AXIS] = DEFAULT_YJERK;
  5024. }
  5025. break;
  5026. case 206: // M206 additional homing offset
  5027. for(int8_t i=0; i < 3; i++)
  5028. {
  5029. if(code_seen(axis_codes[i])) add_homing[i] = code_value();
  5030. }
  5031. break;
  5032. #ifdef FWRETRACT
  5033. case 207: //M207 - set retract length S[positive mm] F[feedrate mm/min] Z[additional zlift/hop]
  5034. {
  5035. if(code_seen('S'))
  5036. {
  5037. retract_length = code_value() ;
  5038. }
  5039. if(code_seen('F'))
  5040. {
  5041. retract_feedrate = code_value()/60 ;
  5042. }
  5043. if(code_seen('Z'))
  5044. {
  5045. retract_zlift = code_value() ;
  5046. }
  5047. }break;
  5048. case 208: // M208 - set retract recover length S[positive mm surplus to the M207 S*] F[feedrate mm/min]
  5049. {
  5050. if(code_seen('S'))
  5051. {
  5052. retract_recover_length = code_value() ;
  5053. }
  5054. if(code_seen('F'))
  5055. {
  5056. retract_recover_feedrate = code_value()/60 ;
  5057. }
  5058. }break;
  5059. case 209: // M209 - S<1=true/0=false> enable automatic retract detect if the slicer did not support G10/11: every normal extrude-only move will be classified as retract depending on the direction.
  5060. {
  5061. if(code_seen('S'))
  5062. {
  5063. int t= code_value() ;
  5064. switch(t)
  5065. {
  5066. case 0:
  5067. {
  5068. autoretract_enabled=false;
  5069. retracted[0]=false;
  5070. #if EXTRUDERS > 1
  5071. retracted[1]=false;
  5072. #endif
  5073. #if EXTRUDERS > 2
  5074. retracted[2]=false;
  5075. #endif
  5076. }break;
  5077. case 1:
  5078. {
  5079. autoretract_enabled=true;
  5080. retracted[0]=false;
  5081. #if EXTRUDERS > 1
  5082. retracted[1]=false;
  5083. #endif
  5084. #if EXTRUDERS > 2
  5085. retracted[2]=false;
  5086. #endif
  5087. }break;
  5088. default:
  5089. SERIAL_ECHO_START;
  5090. SERIAL_ECHORPGM(MSG_UNKNOWN_COMMAND);
  5091. SERIAL_ECHO(CMDBUFFER_CURRENT_STRING);
  5092. SERIAL_ECHOLNPGM("\"(1)");
  5093. }
  5094. }
  5095. }break;
  5096. #endif // FWRETRACT
  5097. #if EXTRUDERS > 1
  5098. case 218: // M218 - set hotend offset (in mm), T<extruder_number> X<offset_on_X> Y<offset_on_Y>
  5099. {
  5100. if(setTargetedHotend(218)){
  5101. break;
  5102. }
  5103. if(code_seen('X'))
  5104. {
  5105. extruder_offset[X_AXIS][tmp_extruder] = code_value();
  5106. }
  5107. if(code_seen('Y'))
  5108. {
  5109. extruder_offset[Y_AXIS][tmp_extruder] = code_value();
  5110. }
  5111. SERIAL_ECHO_START;
  5112. SERIAL_ECHORPGM(MSG_HOTEND_OFFSET);
  5113. for(tmp_extruder = 0; tmp_extruder < EXTRUDERS; tmp_extruder++)
  5114. {
  5115. SERIAL_ECHO(" ");
  5116. SERIAL_ECHO(extruder_offset[X_AXIS][tmp_extruder]);
  5117. SERIAL_ECHO(",");
  5118. SERIAL_ECHO(extruder_offset[Y_AXIS][tmp_extruder]);
  5119. }
  5120. SERIAL_ECHOLN("");
  5121. }break;
  5122. #endif
  5123. case 220: // M220 S<factor in percent>- set speed factor override percentage
  5124. {
  5125. if(code_seen('S'))
  5126. {
  5127. feedmultiply = code_value() ;
  5128. }
  5129. }
  5130. break;
  5131. case 221: // M221 S<factor in percent>- set extrude factor override percentage
  5132. {
  5133. if(code_seen('S'))
  5134. {
  5135. int tmp_code = code_value();
  5136. if (code_seen('T'))
  5137. {
  5138. if(setTargetedHotend(221)){
  5139. break;
  5140. }
  5141. extruder_multiply[tmp_extruder] = tmp_code;
  5142. }
  5143. else
  5144. {
  5145. extrudemultiply = tmp_code ;
  5146. }
  5147. }
  5148. calculate_extruder_multipliers();
  5149. }
  5150. break;
  5151. #ifndef _DISABLE_M42_M226
  5152. case 226: // M226 P<pin number> S<pin state>- Wait until the specified pin reaches the state required
  5153. {
  5154. if(code_seen('P')){
  5155. int pin_number = code_value(); // pin number
  5156. int pin_state = -1; // required pin state - default is inverted
  5157. if(code_seen('S')) pin_state = code_value(); // required pin state
  5158. if(pin_state >= -1 && pin_state <= 1){
  5159. for(int8_t i = 0; i < (int8_t)(sizeof(sensitive_pins)/sizeof(int)); i++)
  5160. {
  5161. if (sensitive_pins[i] == pin_number)
  5162. {
  5163. pin_number = -1;
  5164. break;
  5165. }
  5166. }
  5167. if (pin_number > -1)
  5168. {
  5169. int target = LOW;
  5170. st_synchronize();
  5171. pinMode(pin_number, INPUT);
  5172. switch(pin_state){
  5173. case 1:
  5174. target = HIGH;
  5175. break;
  5176. case 0:
  5177. target = LOW;
  5178. break;
  5179. case -1:
  5180. target = !digitalRead(pin_number);
  5181. break;
  5182. }
  5183. while(digitalRead(pin_number) != target){
  5184. manage_heater();
  5185. manage_inactivity();
  5186. lcd_update(0);
  5187. }
  5188. }
  5189. }
  5190. }
  5191. }
  5192. break;
  5193. #endif //_DISABLE_M42_M226
  5194. #if NUM_SERVOS > 0
  5195. case 280: // M280 - set servo position absolute. P: servo index, S: angle or microseconds
  5196. {
  5197. int servo_index = -1;
  5198. int servo_position = 0;
  5199. if (code_seen('P'))
  5200. servo_index = code_value();
  5201. if (code_seen('S')) {
  5202. servo_position = code_value();
  5203. if ((servo_index >= 0) && (servo_index < NUM_SERVOS)) {
  5204. #if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
  5205. servos[servo_index].attach(0);
  5206. #endif
  5207. servos[servo_index].write(servo_position);
  5208. #if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
  5209. delay(PROBE_SERVO_DEACTIVATION_DELAY);
  5210. servos[servo_index].detach();
  5211. #endif
  5212. }
  5213. else {
  5214. SERIAL_ECHO_START;
  5215. SERIAL_ECHO("Servo ");
  5216. SERIAL_ECHO(servo_index);
  5217. SERIAL_ECHOLN(" out of range");
  5218. }
  5219. }
  5220. else if (servo_index >= 0) {
  5221. SERIAL_PROTOCOL(_T(MSG_OK));
  5222. SERIAL_PROTOCOL(" Servo ");
  5223. SERIAL_PROTOCOL(servo_index);
  5224. SERIAL_PROTOCOL(": ");
  5225. SERIAL_PROTOCOL(servos[servo_index].read());
  5226. SERIAL_PROTOCOLLN("");
  5227. }
  5228. }
  5229. break;
  5230. #endif // NUM_SERVOS > 0
  5231. #if (LARGE_FLASH == true && ( BEEPER > 0 || defined(ULTRALCD) || defined(LCD_USE_I2C_BUZZER)))
  5232. case 300: // M300
  5233. {
  5234. int beepS = code_seen('S') ? code_value() : 110;
  5235. int beepP = code_seen('P') ? code_value() : 1000;
  5236. if (beepS > 0)
  5237. {
  5238. #if BEEPER > 0
  5239. tone(BEEPER, beepS);
  5240. delay(beepP);
  5241. noTone(BEEPER);
  5242. #endif
  5243. }
  5244. else
  5245. {
  5246. delay(beepP);
  5247. }
  5248. }
  5249. break;
  5250. #endif // M300
  5251. #ifdef PIDTEMP
  5252. case 301: // M301
  5253. {
  5254. if(code_seen('P')) Kp = code_value();
  5255. if(code_seen('I')) Ki = scalePID_i(code_value());
  5256. if(code_seen('D')) Kd = scalePID_d(code_value());
  5257. #ifdef PID_ADD_EXTRUSION_RATE
  5258. if(code_seen('C')) Kc = code_value();
  5259. #endif
  5260. updatePID();
  5261. SERIAL_PROTOCOLRPGM(_T(MSG_OK));
  5262. SERIAL_PROTOCOL(" p:");
  5263. SERIAL_PROTOCOL(Kp);
  5264. SERIAL_PROTOCOL(" i:");
  5265. SERIAL_PROTOCOL(unscalePID_i(Ki));
  5266. SERIAL_PROTOCOL(" d:");
  5267. SERIAL_PROTOCOL(unscalePID_d(Kd));
  5268. #ifdef PID_ADD_EXTRUSION_RATE
  5269. SERIAL_PROTOCOL(" c:");
  5270. //Kc does not have scaling applied above, or in resetting defaults
  5271. SERIAL_PROTOCOL(Kc);
  5272. #endif
  5273. SERIAL_PROTOCOLLN("");
  5274. }
  5275. break;
  5276. #endif //PIDTEMP
  5277. #ifdef PIDTEMPBED
  5278. case 304: // M304
  5279. {
  5280. if(code_seen('P')) bedKp = code_value();
  5281. if(code_seen('I')) bedKi = scalePID_i(code_value());
  5282. if(code_seen('D')) bedKd = scalePID_d(code_value());
  5283. updatePID();
  5284. SERIAL_PROTOCOLRPGM(_T(MSG_OK));
  5285. SERIAL_PROTOCOL(" p:");
  5286. SERIAL_PROTOCOL(bedKp);
  5287. SERIAL_PROTOCOL(" i:");
  5288. SERIAL_PROTOCOL(unscalePID_i(bedKi));
  5289. SERIAL_PROTOCOL(" d:");
  5290. SERIAL_PROTOCOL(unscalePID_d(bedKd));
  5291. SERIAL_PROTOCOLLN("");
  5292. }
  5293. break;
  5294. #endif //PIDTEMP
  5295. case 240: // M240 Triggers a camera by emulating a Canon RC-1 : http://www.doc-diy.net/photo/rc-1_hacked/
  5296. {
  5297. #ifdef CHDK
  5298. SET_OUTPUT(CHDK);
  5299. WRITE(CHDK, HIGH);
  5300. chdkHigh = millis();
  5301. chdkActive = true;
  5302. #else
  5303. #if defined(PHOTOGRAPH_PIN) && PHOTOGRAPH_PIN > -1
  5304. const uint8_t NUM_PULSES=16;
  5305. const float PULSE_LENGTH=0.01524;
  5306. for(int i=0; i < NUM_PULSES; i++) {
  5307. WRITE(PHOTOGRAPH_PIN, HIGH);
  5308. _delay_ms(PULSE_LENGTH);
  5309. WRITE(PHOTOGRAPH_PIN, LOW);
  5310. _delay_ms(PULSE_LENGTH);
  5311. }
  5312. delay(7.33);
  5313. for(int i=0; i < NUM_PULSES; i++) {
  5314. WRITE(PHOTOGRAPH_PIN, HIGH);
  5315. _delay_ms(PULSE_LENGTH);
  5316. WRITE(PHOTOGRAPH_PIN, LOW);
  5317. _delay_ms(PULSE_LENGTH);
  5318. }
  5319. #endif
  5320. #endif //chdk end if
  5321. }
  5322. break;
  5323. #ifdef PREVENT_DANGEROUS_EXTRUDE
  5324. case 302: // allow cold extrudes, or set the minimum extrude temperature
  5325. {
  5326. float temp = .0;
  5327. if (code_seen('S')) temp=code_value();
  5328. set_extrude_min_temp(temp);
  5329. }
  5330. break;
  5331. #endif
  5332. case 303: // M303 PID autotune
  5333. {
  5334. float temp = 150.0;
  5335. int e=0;
  5336. int c=5;
  5337. if (code_seen('E')) e=code_value();
  5338. if (e<0)
  5339. temp=70;
  5340. if (code_seen('S')) temp=code_value();
  5341. if (code_seen('C')) c=code_value();
  5342. PID_autotune(temp, e, c);
  5343. }
  5344. break;
  5345. case 400: // M400 finish all moves
  5346. {
  5347. st_synchronize();
  5348. }
  5349. break;
  5350. case 500: // M500 Store settings in EEPROM
  5351. {
  5352. Config_StoreSettings(EEPROM_OFFSET);
  5353. }
  5354. break;
  5355. case 501: // M501 Read settings from EEPROM
  5356. {
  5357. Config_RetrieveSettings(EEPROM_OFFSET);
  5358. }
  5359. break;
  5360. case 502: // M502 Revert to default settings
  5361. {
  5362. Config_ResetDefault();
  5363. }
  5364. break;
  5365. case 503: // M503 print settings currently in memory
  5366. {
  5367. Config_PrintSettings();
  5368. }
  5369. break;
  5370. case 509: //M509 Force language selection
  5371. {
  5372. lang_reset();
  5373. SERIAL_ECHO_START;
  5374. SERIAL_PROTOCOLPGM(("LANG SEL FORCED"));
  5375. }
  5376. break;
  5377. #ifdef ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED
  5378. case 540:
  5379. {
  5380. if(code_seen('S')) abort_on_endstop_hit = code_value() > 0;
  5381. }
  5382. break;
  5383. #endif
  5384. #ifdef CUSTOM_M_CODE_SET_Z_PROBE_OFFSET
  5385. case CUSTOM_M_CODE_SET_Z_PROBE_OFFSET:
  5386. {
  5387. float value;
  5388. if (code_seen('Z'))
  5389. {
  5390. value = code_value();
  5391. if ((Z_PROBE_OFFSET_RANGE_MIN <= value) && (value <= Z_PROBE_OFFSET_RANGE_MAX))
  5392. {
  5393. zprobe_zoffset = -value; // compare w/ line 278 of ConfigurationStore.cpp
  5394. SERIAL_ECHO_START;
  5395. SERIAL_ECHOLNRPGM(CAT4(MSG_ZPROBE_ZOFFSET, " ", _T(MSG_OK),PSTR("")));
  5396. SERIAL_PROTOCOLLN("");
  5397. }
  5398. else
  5399. {
  5400. SERIAL_ECHO_START;
  5401. SERIAL_ECHORPGM(MSG_ZPROBE_ZOFFSET);
  5402. SERIAL_ECHORPGM(MSG_Z_MIN);
  5403. SERIAL_ECHO(Z_PROBE_OFFSET_RANGE_MIN);
  5404. SERIAL_ECHORPGM(MSG_Z_MAX);
  5405. SERIAL_ECHO(Z_PROBE_OFFSET_RANGE_MAX);
  5406. SERIAL_PROTOCOLLN("");
  5407. }
  5408. }
  5409. else
  5410. {
  5411. SERIAL_ECHO_START;
  5412. SERIAL_ECHOLNRPGM(CAT2(MSG_ZPROBE_ZOFFSET, PSTR(" : ")));
  5413. SERIAL_ECHO(-zprobe_zoffset);
  5414. SERIAL_PROTOCOLLN("");
  5415. }
  5416. break;
  5417. }
  5418. #endif // CUSTOM_M_CODE_SET_Z_PROBE_OFFSET
  5419. #ifdef FILAMENTCHANGEENABLE
  5420. case 600: //Pause for filament change X[pos] Y[pos] Z[relative lift] E[initial retract] L[later retract distance for removal]
  5421. {
  5422. #ifdef PAT9125
  5423. bool old_fsensor_enabled = fsensor_enabled;
  5424. fsensor_enabled = false; //temporary solution for unexpected restarting
  5425. #endif //PAT9125
  5426. st_synchronize();
  5427. float target[4];
  5428. float lastpos[4];
  5429. if (farm_mode)
  5430. {
  5431. prusa_statistics(22);
  5432. }
  5433. feedmultiplyBckp=feedmultiply;
  5434. int8_t TooLowZ = 0;
  5435. float HotendTempBckp = degTargetHotend(active_extruder);
  5436. int fanSpeedBckp = fanSpeed;
  5437. target[X_AXIS]=current_position[X_AXIS];
  5438. target[Y_AXIS]=current_position[Y_AXIS];
  5439. target[Z_AXIS]=current_position[Z_AXIS];
  5440. target[E_AXIS]=current_position[E_AXIS];
  5441. lastpos[X_AXIS]=current_position[X_AXIS];
  5442. lastpos[Y_AXIS]=current_position[Y_AXIS];
  5443. lastpos[Z_AXIS]=current_position[Z_AXIS];
  5444. lastpos[E_AXIS]=current_position[E_AXIS];
  5445. //Restract extruder
  5446. if(code_seen('E'))
  5447. {
  5448. target[E_AXIS]+= code_value();
  5449. }
  5450. else
  5451. {
  5452. #ifdef FILAMENTCHANGE_FIRSTRETRACT
  5453. target[E_AXIS]+= FILAMENTCHANGE_FIRSTRETRACT ;
  5454. #endif
  5455. }
  5456. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_RFEED, active_extruder);
  5457. //Lift Z
  5458. if(code_seen('Z'))
  5459. {
  5460. target[Z_AXIS]+= code_value();
  5461. }
  5462. else
  5463. {
  5464. #ifdef FILAMENTCHANGE_ZADD
  5465. target[Z_AXIS]+= FILAMENTCHANGE_ZADD ;
  5466. if(target[Z_AXIS] < 10){
  5467. target[Z_AXIS]+= 10 ;
  5468. TooLowZ = 1;
  5469. }else{
  5470. TooLowZ = 0;
  5471. }
  5472. #endif
  5473. }
  5474. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_ZFEED, active_extruder);
  5475. //Move XY to side
  5476. if(code_seen('X'))
  5477. {
  5478. target[X_AXIS]+= code_value();
  5479. }
  5480. else
  5481. {
  5482. #ifdef FILAMENTCHANGE_XPOS
  5483. target[X_AXIS]= FILAMENTCHANGE_XPOS ;
  5484. #endif
  5485. }
  5486. if(code_seen('Y'))
  5487. {
  5488. target[Y_AXIS]= code_value();
  5489. }
  5490. else
  5491. {
  5492. #ifdef FILAMENTCHANGE_YPOS
  5493. target[Y_AXIS]= FILAMENTCHANGE_YPOS ;
  5494. #endif
  5495. }
  5496. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_XYFEED, active_extruder);
  5497. st_synchronize();
  5498. KEEPALIVE_STATE(PAUSED_FOR_USER);
  5499. uint8_t cnt = 0;
  5500. int counterBeep = 0;
  5501. fanSpeed = 0;
  5502. unsigned long waiting_start_time = millis();
  5503. uint8_t wait_for_user_state = 0;
  5504. lcd_display_message_fullscreen_P(_T(MSG_PRESS_TO_UNLOAD));
  5505. while (!(wait_for_user_state == 0 && lcd_clicked())){
  5506. //cnt++;
  5507. manage_heater();
  5508. manage_inactivity(true);
  5509. /*#ifdef SNMM
  5510. target[E_AXIS] += 0.002;
  5511. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 500, active_extruder);
  5512. #endif // SNMM*/
  5513. //if (cnt == 0)
  5514. {
  5515. #if BEEPER > 0
  5516. if (counterBeep == 500) {
  5517. counterBeep = 0;
  5518. }
  5519. SET_OUTPUT(BEEPER);
  5520. if (counterBeep == 0) {
  5521. WRITE(BEEPER, HIGH);
  5522. }
  5523. if (counterBeep == 20) {
  5524. WRITE(BEEPER, LOW);
  5525. }
  5526. counterBeep++;
  5527. #else
  5528. #endif
  5529. }
  5530. switch (wait_for_user_state) {
  5531. case 0:
  5532. delay_keep_alive(4);
  5533. if (millis() > waiting_start_time + (unsigned long)M600_TIMEOUT * 1000) {
  5534. lcd_display_message_fullscreen_P(_i("Press knob to preheat nozzle and continue."));////MSG_PRESS_TO_PREHEAT c=20 r=4
  5535. wait_for_user_state = 1;
  5536. setTargetHotend(0, 0);
  5537. setTargetHotend(0, 1);
  5538. setTargetHotend(0, 2);
  5539. st_synchronize();
  5540. disable_e0();
  5541. disable_e1();
  5542. disable_e2();
  5543. }
  5544. break;
  5545. case 1:
  5546. delay_keep_alive(4);
  5547. if (lcd_clicked()) {
  5548. setTargetHotend(HotendTempBckp, active_extruder);
  5549. lcd_wait_for_heater();
  5550. wait_for_user_state = 2;
  5551. }
  5552. break;
  5553. case 2:
  5554. if (abs(degTargetHotend(active_extruder) - degHotend(active_extruder)) < 1) {
  5555. lcd_display_message_fullscreen_P(_T(MSG_PRESS_TO_UNLOAD));
  5556. waiting_start_time = millis();
  5557. wait_for_user_state = 0;
  5558. }
  5559. else {
  5560. counterBeep = 20; //beeper will be inactive during waiting for nozzle preheat
  5561. lcd.setCursor(1, 4);
  5562. lcd.print(ftostr3(degHotend(active_extruder)));
  5563. }
  5564. break;
  5565. }
  5566. }
  5567. WRITE(BEEPER, LOW);
  5568. lcd_change_fil_state = 0;
  5569. // Unload filament
  5570. lcd_display_message_fullscreen_P(_T(MSG_UNLOADING_FILAMENT));
  5571. KEEPALIVE_STATE(IN_HANDLER);
  5572. custom_message = true;
  5573. lcd_setstatuspgm(_T(MSG_UNLOADING_FILAMENT));
  5574. if (code_seen('L'))
  5575. {
  5576. target[E_AXIS] += code_value();
  5577. }
  5578. else
  5579. {
  5580. #ifdef SNMM
  5581. #else
  5582. #ifdef FILAMENTCHANGE_FINALRETRACT
  5583. target[E_AXIS] += FILAMENTCHANGE_FINALRETRACT;
  5584. #endif
  5585. #endif // SNMM
  5586. }
  5587. #ifdef SNMM
  5588. target[E_AXIS] += 12;
  5589. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 3500, active_extruder);
  5590. target[E_AXIS] += 6;
  5591. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 5000, active_extruder);
  5592. target[E_AXIS] += (FIL_LOAD_LENGTH * -1);
  5593. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 5000, active_extruder);
  5594. st_synchronize();
  5595. target[E_AXIS] += (FIL_COOLING);
  5596. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 50, active_extruder);
  5597. target[E_AXIS] += (FIL_COOLING*-1);
  5598. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 50, active_extruder);
  5599. target[E_AXIS] += (bowden_length[snmm_extruder] * -1);
  5600. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 3000, active_extruder);
  5601. st_synchronize();
  5602. #else
  5603. // plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_RFEED, active_extruder);
  5604. //plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 3500 / 60, active_extruder);
  5605. target[E_AXIS] -= FILAMENTCHANGE_FINALRETRACT;
  5606. st_synchronize();
  5607. #ifdef TMC2130
  5608. uint8_t tmc2130_current_r_bckp = tmc2130_current_r[E_AXIS];
  5609. tmc2130_set_current_r(E_AXIS, TMC2130_UNLOAD_CURRENT_R);
  5610. #else
  5611. st_current_set(2, 200); //set lower E motor current for unload to protect filament sensor and ptfe tube
  5612. float tmp_motor[3] = DEFAULT_PWM_MOTOR_CURRENT;
  5613. float tmp_motor_loud[3] = DEFAULT_PWM_MOTOR_CURRENT_LOUD;
  5614. #endif //TMC2130
  5615. target[E_AXIS] -= 45;
  5616. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 5200 / 60, active_extruder);
  5617. st_synchronize();
  5618. target[E_AXIS] -= 15;
  5619. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 1000 / 60, active_extruder);
  5620. st_synchronize();
  5621. target[E_AXIS] -= 20;
  5622. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 1000 / 60, active_extruder);
  5623. st_synchronize();
  5624. #ifdef TMC2130
  5625. tmc2130_set_current_r(E_AXIS, tmc2130_current_r_bckp);
  5626. #else
  5627. uint8_t silentMode = eeprom_read_byte((uint8_t*)EEPROM_SILENT);
  5628. if(silentMode != SILENT_MODE_POWER) st_current_set(2, tmp_motor[2]); //set E back to normal operation currents
  5629. else st_current_set(2, tmp_motor_loud[2]);
  5630. #endif //TMC2130
  5631. #endif // SNMM
  5632. //finish moves
  5633. st_synchronize();
  5634. lcd_display_message_fullscreen_P(_T(MSG_PULL_OUT_FILAMENT));
  5635. //disable extruder steppers so filament can be removed
  5636. disable_e0();
  5637. disable_e1();
  5638. disable_e2();
  5639. delay(100);
  5640. WRITE(BEEPER, HIGH);
  5641. counterBeep = 0;
  5642. while(!lcd_clicked() && (counterBeep < 50)) {
  5643. if(counterBeep > 5) WRITE(BEEPER, LOW);
  5644. delay_keep_alive(100);
  5645. counterBeep++;
  5646. }
  5647. WRITE(BEEPER, LOW);
  5648. KEEPALIVE_STATE(PAUSED_FOR_USER);
  5649. lcd_change_fil_state = lcd_show_fullscreen_message_yes_no_and_wait_P(_i("Was filament unload successful?"), false, true);////MSG_UNLOAD_SUCCESSFUL c=20 r=2
  5650. if (lcd_change_fil_state == 0) lcd_show_fullscreen_message_and_wait_P(_i("Please open idler and remove filament manually."));////MSG_CHECK_IDLER c=20 r=4
  5651. //lcd_return_to_status();
  5652. lcd_update_enable(true);
  5653. //Wait for user to insert filament
  5654. lcd_wait_interact();
  5655. //load_filament_time = millis();
  5656. KEEPALIVE_STATE(PAUSED_FOR_USER);
  5657. #ifdef PAT9125
  5658. if (filament_autoload_enabled && (old_fsensor_enabled || fsensor_M600)) fsensor_autoload_check_start();
  5659. #endif //PAT9125
  5660. // printf_P(PSTR("M600 PAT9125 filament_autoload_enabled=%d, old_fsensor_enabled=%d, fsensor_M600=%d"), filament_autoload_enabled, old_fsensor_enabled, fsensor_M600);
  5661. while(!lcd_clicked())
  5662. {
  5663. manage_heater();
  5664. manage_inactivity(true);
  5665. #ifdef PAT9125
  5666. if (filament_autoload_enabled && (old_fsensor_enabled || fsensor_M600) && fsensor_check_autoload())
  5667. {
  5668. tone(BEEPER, 1000);
  5669. delay_keep_alive(50);
  5670. noTone(BEEPER);
  5671. break;
  5672. }
  5673. #endif //PAT9125
  5674. /*#ifdef SNMM
  5675. target[E_AXIS] += 0.002;
  5676. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 500, active_extruder);
  5677. #endif // SNMM*/
  5678. }
  5679. #ifdef PAT9125
  5680. if (filament_autoload_enabled && (old_fsensor_enabled || fsensor_M600)) fsensor_autoload_check_stop();
  5681. #endif //PAT9125
  5682. //WRITE(BEEPER, LOW);
  5683. KEEPALIVE_STATE(IN_HANDLER);
  5684. #ifdef SNMM
  5685. display_loading();
  5686. KEEPALIVE_STATE(PAUSED_FOR_USER);
  5687. do {
  5688. target[E_AXIS] += 0.002;
  5689. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 500, active_extruder);
  5690. delay_keep_alive(2);
  5691. } while (!lcd_clicked());
  5692. KEEPALIVE_STATE(IN_HANDLER);
  5693. /*if (millis() - load_filament_time > 2) {
  5694. load_filament_time = millis();
  5695. target[E_AXIS] += 0.001;
  5696. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 1000, active_extruder);
  5697. }*/
  5698. //Filament inserted
  5699. //Feed the filament to the end of nozzle quickly
  5700. st_synchronize();
  5701. target[E_AXIS] += bowden_length[snmm_extruder];
  5702. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 3000, active_extruder);
  5703. target[E_AXIS] += FIL_LOAD_LENGTH - 60;
  5704. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 1400, active_extruder);
  5705. target[E_AXIS] += 40;
  5706. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 400, active_extruder);
  5707. target[E_AXIS] += 10;
  5708. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 50, active_extruder);
  5709. #else
  5710. target[E_AXIS] += FILAMENTCHANGE_FIRSTFEED;
  5711. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_EFEED, active_extruder);
  5712. #endif // SNMM
  5713. //Extrude some filament
  5714. target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  5715. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_EXFEED, active_extruder);
  5716. //Wait for user to check the state
  5717. lcd_change_fil_state = 0;
  5718. lcd_loading_filament();
  5719. tone(BEEPER, 500);
  5720. delay_keep_alive(50);
  5721. noTone(BEEPER);
  5722. while ((lcd_change_fil_state == 0)||(lcd_change_fil_state != 1)){
  5723. lcd_change_fil_state = 0;
  5724. KEEPALIVE_STATE(PAUSED_FOR_USER);
  5725. lcd_alright();
  5726. KEEPALIVE_STATE(IN_HANDLER);
  5727. switch(lcd_change_fil_state){
  5728. // Filament failed to load so load it again
  5729. case 2:
  5730. #ifdef SNMM
  5731. display_loading();
  5732. do {
  5733. target[E_AXIS] += 0.002;
  5734. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 500, active_extruder);
  5735. delay_keep_alive(2);
  5736. } while (!lcd_clicked());
  5737. st_synchronize();
  5738. target[E_AXIS] += bowden_length[snmm_extruder];
  5739. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 3000, active_extruder);
  5740. target[E_AXIS] += FIL_LOAD_LENGTH - 60;
  5741. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 1400, active_extruder);
  5742. target[E_AXIS] += 40;
  5743. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 400, active_extruder);
  5744. target[E_AXIS] += 10;
  5745. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 50, active_extruder);
  5746. #else
  5747. target[E_AXIS]+= FILAMENTCHANGE_FIRSTFEED ;
  5748. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_EFEED, active_extruder);
  5749. #endif
  5750. target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  5751. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_EXFEED, active_extruder);
  5752. lcd_loading_filament();
  5753. break;
  5754. // Filament loaded properly but color is not clear
  5755. case 3:
  5756. target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  5757. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder);
  5758. lcd_loading_color();
  5759. break;
  5760. // Everything good
  5761. default:
  5762. lcd_change_success();
  5763. lcd_update_enable(true);
  5764. break;
  5765. }
  5766. }
  5767. //Not let's go back to print
  5768. fanSpeed = fanSpeedBckp;
  5769. //Feed a little of filament to stabilize pressure
  5770. target[E_AXIS]+= FILAMENTCHANGE_RECFEED;
  5771. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_EXFEED, active_extruder);
  5772. //Retract
  5773. target[E_AXIS]+= FILAMENTCHANGE_FIRSTRETRACT;
  5774. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_RFEED, active_extruder);
  5775. //plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 70, active_extruder); //should do nothing
  5776. //Move XY back
  5777. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_XYFEED, active_extruder);
  5778. //Move Z back
  5779. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_ZFEED, active_extruder);
  5780. target[E_AXIS]= target[E_AXIS] - FILAMENTCHANGE_FIRSTRETRACT;
  5781. //Unretract
  5782. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_RFEED, active_extruder);
  5783. //Set E position to original
  5784. plan_set_e_position(lastpos[E_AXIS]);
  5785. //Recover feed rate
  5786. feedmultiply=feedmultiplyBckp;
  5787. char cmd[9];
  5788. sprintf_P(cmd, PSTR("M220 S%i"), feedmultiplyBckp);
  5789. enquecommand(cmd);
  5790. lcd_setstatuspgm(_T(WELCOME_MSG));
  5791. custom_message = false;
  5792. custom_message_type = 0;
  5793. #ifdef PAT9125
  5794. fsensor_enabled = old_fsensor_enabled; //temporary solution for unexpected restarting
  5795. if (fsensor_M600)
  5796. {
  5797. cmdqueue_pop_front(); //hack because M600 repeated 2x when enqueued to front
  5798. st_synchronize();
  5799. while (!is_buffer_empty())
  5800. {
  5801. process_commands();
  5802. cmdqueue_pop_front();
  5803. }
  5804. KEEPALIVE_STATE(IN_HANDLER);
  5805. fsensor_enable();
  5806. fsensor_restore_print_and_continue();
  5807. }
  5808. #endif //PAT9125
  5809. }
  5810. break;
  5811. #endif //FILAMENTCHANGEENABLE
  5812. case 601: {
  5813. if(lcd_commands_type == 0) lcd_commands_type = LCD_COMMAND_LONG_PAUSE;
  5814. }
  5815. break;
  5816. case 602: {
  5817. if(lcd_commands_type == 0) lcd_commands_type = LCD_COMMAND_LONG_PAUSE_RESUME;
  5818. }
  5819. break;
  5820. #ifdef PINDA_THERMISTOR
  5821. case 860: // M860 - Wait for PINDA thermistor to reach target temperature.
  5822. {
  5823. int set_target_pinda = 0;
  5824. if (code_seen('S')) {
  5825. set_target_pinda = code_value();
  5826. }
  5827. else {
  5828. break;
  5829. }
  5830. LCD_MESSAGERPGM(_T(MSG_PLEASE_WAIT));
  5831. SERIAL_PROTOCOLPGM("Wait for PINDA target temperature:");
  5832. SERIAL_PROTOCOL(set_target_pinda);
  5833. SERIAL_PROTOCOLLN("");
  5834. codenum = millis();
  5835. cancel_heatup = false;
  5836. bool is_pinda_cooling = false;
  5837. if ((degTargetBed() == 0) && (degTargetHotend(0) == 0)) {
  5838. is_pinda_cooling = true;
  5839. }
  5840. while ( ((!is_pinda_cooling) && (!cancel_heatup) && (current_temperature_pinda < set_target_pinda)) || (is_pinda_cooling && (current_temperature_pinda > set_target_pinda)) ) {
  5841. if ((millis() - codenum) > 1000) //Print Temp Reading every 1 second while waiting.
  5842. {
  5843. SERIAL_PROTOCOLPGM("P:");
  5844. SERIAL_PROTOCOL_F(current_temperature_pinda, 1);
  5845. SERIAL_PROTOCOLPGM("/");
  5846. SERIAL_PROTOCOL(set_target_pinda);
  5847. SERIAL_PROTOCOLLN("");
  5848. codenum = millis();
  5849. }
  5850. manage_heater();
  5851. manage_inactivity();
  5852. lcd_update(0);
  5853. }
  5854. LCD_MESSAGERPGM(_T(MSG_OK));
  5855. break;
  5856. }
  5857. case 861: // M861 - Set/Read PINDA temperature compensation offsets
  5858. if (code_seen('?')) { // ? - Print out current EEPROM offset values
  5859. uint8_t cal_status = calibration_status_pinda();
  5860. int16_t usteps = 0;
  5861. cal_status ? SERIAL_PROTOCOLLN("PINDA cal status: 1") : SERIAL_PROTOCOLLN("PINDA cal status: 0");
  5862. SERIAL_PROTOCOLLN("index, temp, ustep, um");
  5863. for (uint8_t i = 0; i < 6; i++)
  5864. {
  5865. if(i>0) EEPROM_read_B(EEPROM_PROBE_TEMP_SHIFT + (i-1) * 2, &usteps);
  5866. float mm = ((float)usteps) / axis_steps_per_unit[Z_AXIS];
  5867. i == 0 ? SERIAL_PROTOCOLPGM("n/a") : SERIAL_PROTOCOL(i - 1);
  5868. SERIAL_PROTOCOLPGM(", ");
  5869. SERIAL_PROTOCOL(35 + (i * 5));
  5870. SERIAL_PROTOCOLPGM(", ");
  5871. SERIAL_PROTOCOL(usteps);
  5872. SERIAL_PROTOCOLPGM(", ");
  5873. SERIAL_PROTOCOL(mm * 1000);
  5874. SERIAL_PROTOCOLLN("");
  5875. }
  5876. }
  5877. else if (code_seen('!')) { // ! - Set factory default values
  5878. eeprom_write_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 1);
  5879. int16_t z_shift = 8; //40C - 20um - 8usteps
  5880. EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT, &z_shift);
  5881. z_shift = 24; //45C - 60um - 24usteps
  5882. EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + 2, &z_shift);
  5883. z_shift = 48; //50C - 120um - 48usteps
  5884. EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + 4, &z_shift);
  5885. z_shift = 80; //55C - 200um - 80usteps
  5886. EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + 6, &z_shift);
  5887. z_shift = 120; //60C - 300um - 120usteps
  5888. EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + 8, &z_shift);
  5889. SERIAL_PROTOCOLLN("factory restored");
  5890. }
  5891. else if (code_seen('Z')) { // Z - Set all values to 0 (effectively disabling PINDA temperature compensation)
  5892. eeprom_write_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 1);
  5893. int16_t z_shift = 0;
  5894. for (uint8_t i = 0; i < 5; i++) EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + i * 2, &z_shift);
  5895. SERIAL_PROTOCOLLN("zerorized");
  5896. }
  5897. else if (code_seen('S')) { // Sxxx Iyyy - Set compensation ustep value S for compensation table index I
  5898. int16_t usteps = code_value();
  5899. if (code_seen('I')) {
  5900. byte index = code_value();
  5901. if ((index >= 0) && (index < 5)) {
  5902. EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + index * 2, &usteps);
  5903. SERIAL_PROTOCOLLN("OK");
  5904. SERIAL_PROTOCOLLN("index, temp, ustep, um");
  5905. for (uint8_t i = 0; i < 6; i++)
  5906. {
  5907. usteps = 0;
  5908. if (i>0) EEPROM_read_B(EEPROM_PROBE_TEMP_SHIFT + (i - 1) * 2, &usteps);
  5909. float mm = ((float)usteps) / axis_steps_per_unit[Z_AXIS];
  5910. i == 0 ? SERIAL_PROTOCOLPGM("n/a") : SERIAL_PROTOCOL(i - 1);
  5911. SERIAL_PROTOCOLPGM(", ");
  5912. SERIAL_PROTOCOL(35 + (i * 5));
  5913. SERIAL_PROTOCOLPGM(", ");
  5914. SERIAL_PROTOCOL(usteps);
  5915. SERIAL_PROTOCOLPGM(", ");
  5916. SERIAL_PROTOCOL(mm * 1000);
  5917. SERIAL_PROTOCOLLN("");
  5918. }
  5919. }
  5920. }
  5921. }
  5922. else {
  5923. SERIAL_PROTOCOLPGM("no valid command");
  5924. }
  5925. break;
  5926. #endif //PINDA_THERMISTOR
  5927. #ifdef LIN_ADVANCE
  5928. case 900: // M900: Set LIN_ADVANCE options.
  5929. gcode_M900();
  5930. break;
  5931. #endif
  5932. case 907: // M907 Set digital trimpot motor current using axis codes.
  5933. {
  5934. #if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
  5935. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) st_current_set(i,code_value());
  5936. if(code_seen('B')) st_current_set(4,code_value());
  5937. if(code_seen('S')) for(int i=0;i<=4;i++) st_current_set(i,code_value());
  5938. #endif
  5939. #ifdef MOTOR_CURRENT_PWM_XY_PIN
  5940. if(code_seen('X')) st_current_set(0, code_value());
  5941. #endif
  5942. #ifdef MOTOR_CURRENT_PWM_Z_PIN
  5943. if(code_seen('Z')) st_current_set(1, code_value());
  5944. #endif
  5945. #ifdef MOTOR_CURRENT_PWM_E_PIN
  5946. if(code_seen('E')) st_current_set(2, code_value());
  5947. #endif
  5948. }
  5949. break;
  5950. case 908: // M908 Control digital trimpot directly.
  5951. {
  5952. #if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
  5953. uint8_t channel,current;
  5954. if(code_seen('P')) channel=code_value();
  5955. if(code_seen('S')) current=code_value();
  5956. digitalPotWrite(channel, current);
  5957. #endif
  5958. }
  5959. break;
  5960. #ifdef TMC2130
  5961. case 910: // M910 TMC2130 init
  5962. {
  5963. tmc2130_init();
  5964. }
  5965. break;
  5966. case 911: // M911 Set TMC2130 holding currents
  5967. {
  5968. if (code_seen('X')) tmc2130_set_current_h(0, code_value());
  5969. if (code_seen('Y')) tmc2130_set_current_h(1, code_value());
  5970. if (code_seen('Z')) tmc2130_set_current_h(2, code_value());
  5971. if (code_seen('E')) tmc2130_set_current_h(3, code_value());
  5972. }
  5973. break;
  5974. case 912: // M912 Set TMC2130 running currents
  5975. {
  5976. if (code_seen('X')) tmc2130_set_current_r(0, code_value());
  5977. if (code_seen('Y')) tmc2130_set_current_r(1, code_value());
  5978. if (code_seen('Z')) tmc2130_set_current_r(2, code_value());
  5979. if (code_seen('E')) tmc2130_set_current_r(3, code_value());
  5980. }
  5981. break;
  5982. case 913: // M913 Print TMC2130 currents
  5983. {
  5984. tmc2130_print_currents();
  5985. }
  5986. break;
  5987. case 914: // M914 Set normal mode
  5988. {
  5989. tmc2130_mode = TMC2130_MODE_NORMAL;
  5990. tmc2130_init();
  5991. }
  5992. break;
  5993. case 915: // M915 Set silent mode
  5994. {
  5995. tmc2130_mode = TMC2130_MODE_SILENT;
  5996. tmc2130_init();
  5997. }
  5998. break;
  5999. case 916: // M916 Set sg_thrs
  6000. {
  6001. if (code_seen('X')) tmc2130_sg_thr[X_AXIS] = code_value();
  6002. if (code_seen('Y')) tmc2130_sg_thr[Y_AXIS] = code_value();
  6003. if (code_seen('Z')) tmc2130_sg_thr[Z_AXIS] = code_value();
  6004. if (code_seen('E')) tmc2130_sg_thr[E_AXIS] = code_value();
  6005. for (uint8_t a = X_AXIS; a <= E_AXIS; a++)
  6006. printf_P(_N("tmc2130_sg_thr[%c]=%d\n"), "XYZE"[a], tmc2130_sg_thr[a]);
  6007. }
  6008. break;
  6009. case 917: // M917 Set TMC2130 pwm_ampl
  6010. {
  6011. if (code_seen('X')) tmc2130_set_pwm_ampl(0, code_value());
  6012. if (code_seen('Y')) tmc2130_set_pwm_ampl(1, code_value());
  6013. if (code_seen('Z')) tmc2130_set_pwm_ampl(2, code_value());
  6014. if (code_seen('E')) tmc2130_set_pwm_ampl(3, code_value());
  6015. }
  6016. break;
  6017. case 918: // M918 Set TMC2130 pwm_grad
  6018. {
  6019. if (code_seen('X')) tmc2130_set_pwm_grad(0, code_value());
  6020. if (code_seen('Y')) tmc2130_set_pwm_grad(1, code_value());
  6021. if (code_seen('Z')) tmc2130_set_pwm_grad(2, code_value());
  6022. if (code_seen('E')) tmc2130_set_pwm_grad(3, code_value());
  6023. }
  6024. break;
  6025. #endif //TMC2130
  6026. case 350: // M350 Set microstepping mode. Warning: Steps per unit remains unchanged. S code sets stepping mode for all drivers.
  6027. {
  6028. #ifdef TMC2130
  6029. if(code_seen('E'))
  6030. {
  6031. uint16_t res_new = code_value();
  6032. if ((res_new == 8) || (res_new == 16) || (res_new == 32) || (res_new == 64) || (res_new == 128))
  6033. {
  6034. st_synchronize();
  6035. uint8_t axis = E_AXIS;
  6036. uint16_t res = tmc2130_get_res(axis);
  6037. tmc2130_set_res(axis, res_new);
  6038. if (res_new > res)
  6039. {
  6040. uint16_t fac = (res_new / res);
  6041. axis_steps_per_unit[axis] *= fac;
  6042. position[E_AXIS] *= fac;
  6043. }
  6044. else
  6045. {
  6046. uint16_t fac = (res / res_new);
  6047. axis_steps_per_unit[axis] /= fac;
  6048. position[E_AXIS] /= fac;
  6049. }
  6050. }
  6051. }
  6052. #else //TMC2130
  6053. #if defined(X_MS1_PIN) && X_MS1_PIN > -1
  6054. if(code_seen('S')) for(int i=0;i<=4;i++) microstep_mode(i,code_value());
  6055. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) microstep_mode(i,(uint8_t)code_value());
  6056. if(code_seen('B')) microstep_mode(4,code_value());
  6057. microstep_readings();
  6058. #endif
  6059. #endif //TMC2130
  6060. }
  6061. break;
  6062. case 351: // M351 Toggle MS1 MS2 pins directly, S# determines MS1 or MS2, X# sets the pin high/low.
  6063. {
  6064. #if defined(X_MS1_PIN) && X_MS1_PIN > -1
  6065. if(code_seen('S')) switch((int)code_value())
  6066. {
  6067. case 1:
  6068. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) microstep_ms(i,code_value(),-1);
  6069. if(code_seen('B')) microstep_ms(4,code_value(),-1);
  6070. break;
  6071. case 2:
  6072. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) microstep_ms(i,-1,code_value());
  6073. if(code_seen('B')) microstep_ms(4,-1,code_value());
  6074. break;
  6075. }
  6076. microstep_readings();
  6077. #endif
  6078. }
  6079. break;
  6080. case 701: //M701: load filament
  6081. {
  6082. gcode_M701();
  6083. }
  6084. break;
  6085. case 702:
  6086. {
  6087. #ifdef SNMM
  6088. if (code_seen('U')) {
  6089. extr_unload_used(); //unload all filaments which were used in current print
  6090. }
  6091. else if (code_seen('C')) {
  6092. extr_unload(); //unload just current filament
  6093. }
  6094. else {
  6095. extr_unload_all(); //unload all filaments
  6096. }
  6097. #else
  6098. #ifdef PAT9125
  6099. bool old_fsensor_enabled = fsensor_enabled;
  6100. fsensor_enabled = false;
  6101. #endif //PAT9125
  6102. custom_message = true;
  6103. custom_message_type = 2;
  6104. lcd_setstatuspgm(_T(MSG_UNLOADING_FILAMENT));
  6105. // extr_unload2();
  6106. current_position[E_AXIS] -= 45;
  6107. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 5200 / 60, active_extruder);
  6108. st_synchronize();
  6109. current_position[E_AXIS] -= 15;
  6110. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 1000 / 60, active_extruder);
  6111. st_synchronize();
  6112. current_position[E_AXIS] -= 20;
  6113. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 1000 / 60, active_extruder);
  6114. st_synchronize();
  6115. lcd_display_message_fullscreen_P(_T(MSG_PULL_OUT_FILAMENT));
  6116. //disable extruder steppers so filament can be removed
  6117. disable_e0();
  6118. disable_e1();
  6119. disable_e2();
  6120. delay(100);
  6121. WRITE(BEEPER, HIGH);
  6122. uint8_t counterBeep = 0;
  6123. while (!lcd_clicked() && (counterBeep < 50)) {
  6124. if (counterBeep > 5) WRITE(BEEPER, LOW);
  6125. delay_keep_alive(100);
  6126. counterBeep++;
  6127. }
  6128. WRITE(BEEPER, LOW);
  6129. st_synchronize();
  6130. while (lcd_clicked()) delay_keep_alive(100);
  6131. lcd_update_enable(true);
  6132. lcd_setstatuspgm(_T(WELCOME_MSG));
  6133. custom_message = false;
  6134. custom_message_type = 0;
  6135. #ifdef PAT9125
  6136. fsensor_enabled = old_fsensor_enabled;
  6137. #endif //PAT9125
  6138. #endif
  6139. }
  6140. break;
  6141. case 999: // M999: Restart after being stopped
  6142. Stopped = false;
  6143. lcd_reset_alert_level();
  6144. gcode_LastN = Stopped_gcode_LastN;
  6145. FlushSerialRequestResend();
  6146. break;
  6147. default:
  6148. printf_P(PSTR("Unknown M code: %s \n"), cmdbuffer + bufindr + CMDHDRSIZE);
  6149. }
  6150. } // end if(code_seen('M')) (end of M codes)
  6151. else if(code_seen('T'))
  6152. {
  6153. int index;
  6154. st_synchronize();
  6155. for (index = 1; *(strchr_pointer + index) == ' ' || *(strchr_pointer + index) == '\t'; index++);
  6156. if ((*(strchr_pointer + index) < '0' || *(strchr_pointer + index) > '9') && *(strchr_pointer + index) != '?') {
  6157. SERIAL_ECHOLNPGM("Invalid T code.");
  6158. }
  6159. else {
  6160. if (*(strchr_pointer + index) == '?') {
  6161. tmp_extruder = choose_extruder_menu();
  6162. }
  6163. else {
  6164. tmp_extruder = code_value();
  6165. }
  6166. snmm_filaments_used |= (1 << tmp_extruder); //for stop print
  6167. #ifdef SNMM_V2
  6168. printf_P(PSTR("T code: %d \n"), tmp_extruder);
  6169. switch (tmp_extruder)
  6170. {
  6171. case 1:
  6172. fprintf_P(uart2io, PSTR("T1\n"));
  6173. break;
  6174. case 2:
  6175. fprintf_P(uart2io, PSTR("T2\n"));
  6176. break;
  6177. case 3:
  6178. fprintf_P(uart2io, PSTR("T3\n"));
  6179. break;
  6180. case 4:
  6181. fprintf_P(uart2io, PSTR("T4\n"));
  6182. break;
  6183. default:
  6184. fprintf_P(uart2io, PSTR("T0\n"));
  6185. break;
  6186. }
  6187. // get response
  6188. uart2_rx_clr();
  6189. while (!uart2_rx_ok())
  6190. {
  6191. //printf_P(PSTR("waiting..\n"));
  6192. delay_keep_alive(100);
  6193. }
  6194. #endif
  6195. #ifdef SNMM
  6196. #ifdef LIN_ADVANCE
  6197. if (snmm_extruder != tmp_extruder)
  6198. clear_current_adv_vars(); //Check if the selected extruder is not the active one and reset LIN_ADVANCE variables if so.
  6199. #endif
  6200. snmm_extruder = tmp_extruder;
  6201. delay(100);
  6202. disable_e0();
  6203. disable_e1();
  6204. disable_e2();
  6205. pinMode(E_MUX0_PIN, OUTPUT);
  6206. pinMode(E_MUX1_PIN, OUTPUT);
  6207. delay(100);
  6208. SERIAL_ECHO_START;
  6209. SERIAL_ECHO("T:");
  6210. SERIAL_ECHOLN((int)tmp_extruder);
  6211. switch (tmp_extruder) {
  6212. case 1:
  6213. WRITE(E_MUX0_PIN, HIGH);
  6214. WRITE(E_MUX1_PIN, LOW);
  6215. break;
  6216. case 2:
  6217. WRITE(E_MUX0_PIN, LOW);
  6218. WRITE(E_MUX1_PIN, HIGH);
  6219. break;
  6220. case 3:
  6221. WRITE(E_MUX0_PIN, HIGH);
  6222. WRITE(E_MUX1_PIN, HIGH);
  6223. break;
  6224. default:
  6225. WRITE(E_MUX0_PIN, LOW);
  6226. WRITE(E_MUX1_PIN, LOW);
  6227. break;
  6228. }
  6229. delay(100);
  6230. #else
  6231. if (tmp_extruder >= EXTRUDERS) {
  6232. SERIAL_ECHO_START;
  6233. SERIAL_ECHOPGM("T");
  6234. SERIAL_PROTOCOLLN((int)tmp_extruder);
  6235. SERIAL_ECHOLNRPGM(_n("Invalid extruder"));////MSG_INVALID_EXTRUDER c=0 r=0
  6236. }
  6237. else {
  6238. boolean make_move = false;
  6239. if (code_seen('F')) {
  6240. make_move = true;
  6241. next_feedrate = code_value();
  6242. if (next_feedrate > 0.0) {
  6243. feedrate = next_feedrate;
  6244. }
  6245. }
  6246. #if EXTRUDERS > 1
  6247. if (tmp_extruder != active_extruder) {
  6248. // Save current position to return to after applying extruder offset
  6249. memcpy(destination, current_position, sizeof(destination));
  6250. // Offset extruder (only by XY)
  6251. int i;
  6252. for (i = 0; i < 2; i++) {
  6253. current_position[i] = current_position[i] -
  6254. extruder_offset[i][active_extruder] +
  6255. extruder_offset[i][tmp_extruder];
  6256. }
  6257. // Set the new active extruder and position
  6258. active_extruder = tmp_extruder;
  6259. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  6260. // Move to the old position if 'F' was in the parameters
  6261. if (make_move && Stopped == false) {
  6262. prepare_move();
  6263. }
  6264. }
  6265. #endif
  6266. SERIAL_ECHO_START;
  6267. SERIAL_ECHORPGM(_n("Active Extruder: "));////MSG_ACTIVE_EXTRUDER c=0 r=0
  6268. SERIAL_PROTOCOLLN((int)active_extruder);
  6269. }
  6270. #endif
  6271. }
  6272. } // end if(code_seen('T')) (end of T codes)
  6273. #ifdef DEBUG_DCODES
  6274. else if (code_seen('D')) // D codes (debug)
  6275. {
  6276. switch((int)code_value())
  6277. {
  6278. case -1: // D-1 - Endless loop
  6279. dcode__1(); break;
  6280. case 0: // D0 - Reset
  6281. dcode_0(); break;
  6282. case 1: // D1 - Clear EEPROM
  6283. dcode_1(); break;
  6284. case 2: // D2 - Read/Write RAM
  6285. dcode_2(); break;
  6286. case 3: // D3 - Read/Write EEPROM
  6287. dcode_3(); break;
  6288. case 4: // D4 - Read/Write PIN
  6289. dcode_4(); break;
  6290. case 5: // D5 - Read/Write FLASH
  6291. // dcode_5(); break;
  6292. break;
  6293. case 6: // D6 - Read/Write external FLASH
  6294. dcode_6(); break;
  6295. case 7: // D7 - Read/Write Bootloader
  6296. dcode_7(); break;
  6297. case 8: // D8 - Read/Write PINDA
  6298. dcode_8(); break;
  6299. case 9: // D9 - Read/Write ADC
  6300. dcode_9(); break;
  6301. case 10: // D10 - XYZ calibration = OK
  6302. dcode_10(); break;
  6303. #ifdef TMC2130
  6304. case 2130: // D9125 - TMC2130
  6305. dcode_2130(); break;
  6306. #endif //TMC2130
  6307. #ifdef PAT9125
  6308. case 9125: // D9125 - PAT9125
  6309. dcode_9125(); break;
  6310. #endif //PAT9125
  6311. }
  6312. }
  6313. #endif //DEBUG_DCODES
  6314. else
  6315. {
  6316. SERIAL_ECHO_START;
  6317. SERIAL_ECHORPGM(MSG_UNKNOWN_COMMAND);
  6318. SERIAL_ECHO(CMDBUFFER_CURRENT_STRING);
  6319. SERIAL_ECHOLNPGM("\"(2)");
  6320. }
  6321. KEEPALIVE_STATE(NOT_BUSY);
  6322. ClearToSend();
  6323. }
  6324. void FlushSerialRequestResend()
  6325. {
  6326. //char cmdbuffer[bufindr][100]="Resend:";
  6327. MYSERIAL.flush();
  6328. printf_P(_N("%S: %ld\n%S\n"), _i("Resend"), gcode_LastN + 1, _T(MSG_OK));
  6329. }
  6330. // Confirm the execution of a command, if sent from a serial line.
  6331. // Execution of a command from a SD card will not be confirmed.
  6332. void ClearToSend()
  6333. {
  6334. previous_millis_cmd = millis();
  6335. if ((CMDBUFFER_CURRENT_TYPE == CMDBUFFER_CURRENT_TYPE_USB) || (CMDBUFFER_CURRENT_TYPE == CMDBUFFER_CURRENT_TYPE_USB_WITH_LINENR))
  6336. SERIAL_PROTOCOLLNRPGM(_T(MSG_OK));
  6337. }
  6338. #if MOTHERBOARD == BOARD_RAMBO_MINI_1_0 || MOTHERBOARD == BOARD_RAMBO_MINI_1_3
  6339. void update_currents() {
  6340. float current_high[3] = DEFAULT_PWM_MOTOR_CURRENT_LOUD;
  6341. float current_low[3] = DEFAULT_PWM_MOTOR_CURRENT;
  6342. float tmp_motor[3];
  6343. //SERIAL_ECHOLNPGM("Currents updated: ");
  6344. if (destination[Z_AXIS] < Z_SILENT) {
  6345. //SERIAL_ECHOLNPGM("LOW");
  6346. for (uint8_t i = 0; i < 3; i++) {
  6347. st_current_set(i, current_low[i]);
  6348. /*MYSERIAL.print(int(i));
  6349. SERIAL_ECHOPGM(": ");
  6350. MYSERIAL.println(current_low[i]);*/
  6351. }
  6352. }
  6353. else if (destination[Z_AXIS] > Z_HIGH_POWER) {
  6354. //SERIAL_ECHOLNPGM("HIGH");
  6355. for (uint8_t i = 0; i < 3; i++) {
  6356. st_current_set(i, current_high[i]);
  6357. /*MYSERIAL.print(int(i));
  6358. SERIAL_ECHOPGM(": ");
  6359. MYSERIAL.println(current_high[i]);*/
  6360. }
  6361. }
  6362. else {
  6363. for (uint8_t i = 0; i < 3; i++) {
  6364. float q = current_low[i] - Z_SILENT*((current_high[i] - current_low[i]) / (Z_HIGH_POWER - Z_SILENT));
  6365. tmp_motor[i] = ((current_high[i] - current_low[i]) / (Z_HIGH_POWER - Z_SILENT))*destination[Z_AXIS] + q;
  6366. st_current_set(i, tmp_motor[i]);
  6367. /*MYSERIAL.print(int(i));
  6368. SERIAL_ECHOPGM(": ");
  6369. MYSERIAL.println(tmp_motor[i]);*/
  6370. }
  6371. }
  6372. }
  6373. #endif //MOTHERBOARD == BOARD_RAMBO_MINI_1_0 || MOTHERBOARD == BOARD_RAMBO_MINI_1_3
  6374. void get_coordinates()
  6375. {
  6376. bool seen[4]={false,false,false,false};
  6377. for(int8_t i=0; i < NUM_AXIS; i++) {
  6378. if(code_seen(axis_codes[i]))
  6379. {
  6380. bool relative = axis_relative_modes[i] || relative_mode;
  6381. destination[i] = (float)code_value();
  6382. if (i == E_AXIS) {
  6383. float emult = extruder_multiplier[active_extruder];
  6384. if (emult != 1.) {
  6385. if (! relative) {
  6386. destination[i] -= current_position[i];
  6387. relative = true;
  6388. }
  6389. destination[i] *= emult;
  6390. }
  6391. }
  6392. if (relative)
  6393. destination[i] += current_position[i];
  6394. seen[i]=true;
  6395. #if MOTHERBOARD == BOARD_RAMBO_MINI_1_0 || MOTHERBOARD == BOARD_RAMBO_MINI_1_3
  6396. if (i == Z_AXIS && SilentModeMenu == SILENT_MODE_AUTO) update_currents();
  6397. #endif //MOTHERBOARD == BOARD_RAMBO_MINI_1_0 || MOTHERBOARD == BOARD_RAMBO_MINI_1_3
  6398. }
  6399. else destination[i] = current_position[i]; //Are these else lines really needed?
  6400. }
  6401. if(code_seen('F')) {
  6402. next_feedrate = code_value();
  6403. #ifdef MAX_SILENT_FEEDRATE
  6404. if (tmc2130_mode == TMC2130_MODE_SILENT)
  6405. if (next_feedrate > MAX_SILENT_FEEDRATE) next_feedrate = MAX_SILENT_FEEDRATE;
  6406. #endif //MAX_SILENT_FEEDRATE
  6407. if(next_feedrate > 0.0) feedrate = next_feedrate;
  6408. if (!seen[0] && !seen[1] && !seen[2] && seen[3])
  6409. {
  6410. // float e_max_speed =
  6411. // printf_P(PSTR("E MOVE speed %7.3f\n"), feedrate / 60)
  6412. }
  6413. }
  6414. }
  6415. void get_arc_coordinates()
  6416. {
  6417. #ifdef SF_ARC_FIX
  6418. bool relative_mode_backup = relative_mode;
  6419. relative_mode = true;
  6420. #endif
  6421. get_coordinates();
  6422. #ifdef SF_ARC_FIX
  6423. relative_mode=relative_mode_backup;
  6424. #endif
  6425. if(code_seen('I')) {
  6426. offset[0] = code_value();
  6427. }
  6428. else {
  6429. offset[0] = 0.0;
  6430. }
  6431. if(code_seen('J')) {
  6432. offset[1] = code_value();
  6433. }
  6434. else {
  6435. offset[1] = 0.0;
  6436. }
  6437. }
  6438. void clamp_to_software_endstops(float target[3])
  6439. {
  6440. #ifdef DEBUG_DISABLE_SWLIMITS
  6441. return;
  6442. #endif //DEBUG_DISABLE_SWLIMITS
  6443. world2machine_clamp(target[0], target[1]);
  6444. // Clamp the Z coordinate.
  6445. if (min_software_endstops) {
  6446. float negative_z_offset = 0;
  6447. #ifdef ENABLE_AUTO_BED_LEVELING
  6448. if (Z_PROBE_OFFSET_FROM_EXTRUDER < 0) negative_z_offset = negative_z_offset + Z_PROBE_OFFSET_FROM_EXTRUDER;
  6449. if (add_homing[Z_AXIS] < 0) negative_z_offset = negative_z_offset + add_homing[Z_AXIS];
  6450. #endif
  6451. if (target[Z_AXIS] < min_pos[Z_AXIS]+negative_z_offset) target[Z_AXIS] = min_pos[Z_AXIS]+negative_z_offset;
  6452. }
  6453. if (max_software_endstops) {
  6454. if (target[Z_AXIS] > max_pos[Z_AXIS]) target[Z_AXIS] = max_pos[Z_AXIS];
  6455. }
  6456. }
  6457. #ifdef MESH_BED_LEVELING
  6458. void mesh_plan_buffer_line(const float &x, const float &y, const float &z, const float &e, const float &feed_rate, const uint8_t extruder) {
  6459. float dx = x - current_position[X_AXIS];
  6460. float dy = y - current_position[Y_AXIS];
  6461. float dz = z - current_position[Z_AXIS];
  6462. int n_segments = 0;
  6463. if (mbl.active) {
  6464. float len = abs(dx) + abs(dy);
  6465. if (len > 0)
  6466. // Split to 3cm segments or shorter.
  6467. n_segments = int(ceil(len / 30.f));
  6468. }
  6469. if (n_segments > 1) {
  6470. float de = e - current_position[E_AXIS];
  6471. for (int i = 1; i < n_segments; ++ i) {
  6472. float t = float(i) / float(n_segments);
  6473. if (saved_printing || (mbl.active == false)) return;
  6474. plan_buffer_line(
  6475. current_position[X_AXIS] + t * dx,
  6476. current_position[Y_AXIS] + t * dy,
  6477. current_position[Z_AXIS] + t * dz,
  6478. current_position[E_AXIS] + t * de,
  6479. feed_rate, extruder);
  6480. }
  6481. }
  6482. // The rest of the path.
  6483. plan_buffer_line(x, y, z, e, feed_rate, extruder);
  6484. current_position[X_AXIS] = x;
  6485. current_position[Y_AXIS] = y;
  6486. current_position[Z_AXIS] = z;
  6487. current_position[E_AXIS] = e;
  6488. }
  6489. #endif // MESH_BED_LEVELING
  6490. void prepare_move()
  6491. {
  6492. clamp_to_software_endstops(destination);
  6493. previous_millis_cmd = millis();
  6494. // Do not use feedmultiply for E or Z only moves
  6495. if( (current_position[X_AXIS] == destination [X_AXIS]) && (current_position[Y_AXIS] == destination [Y_AXIS])) {
  6496. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  6497. }
  6498. else {
  6499. #ifdef MESH_BED_LEVELING
  6500. mesh_plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate*feedmultiply*(1./(60.f*100.f)), active_extruder);
  6501. #else
  6502. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate*feedmultiply*(1./(60.f*100.f)), active_extruder);
  6503. #endif
  6504. }
  6505. for(int8_t i=0; i < NUM_AXIS; i++) {
  6506. current_position[i] = destination[i];
  6507. }
  6508. }
  6509. void prepare_arc_move(char isclockwise) {
  6510. float r = hypot(offset[X_AXIS], offset[Y_AXIS]); // Compute arc radius for mc_arc
  6511. // Trace the arc
  6512. mc_arc(current_position, destination, offset, X_AXIS, Y_AXIS, Z_AXIS, feedrate*feedmultiply/60/100.0, r, isclockwise, active_extruder);
  6513. // As far as the parser is concerned, the position is now == target. In reality the
  6514. // motion control system might still be processing the action and the real tool position
  6515. // in any intermediate location.
  6516. for(int8_t i=0; i < NUM_AXIS; i++) {
  6517. current_position[i] = destination[i];
  6518. }
  6519. previous_millis_cmd = millis();
  6520. }
  6521. #if defined(CONTROLLERFAN_PIN) && CONTROLLERFAN_PIN > -1
  6522. #if defined(FAN_PIN)
  6523. #if CONTROLLERFAN_PIN == FAN_PIN
  6524. #error "You cannot set CONTROLLERFAN_PIN equal to FAN_PIN"
  6525. #endif
  6526. #endif
  6527. unsigned long lastMotor = 0; //Save the time for when a motor was turned on last
  6528. unsigned long lastMotorCheck = 0;
  6529. void controllerFan()
  6530. {
  6531. if ((millis() - lastMotorCheck) >= 2500) //Not a time critical function, so we only check every 2500ms
  6532. {
  6533. lastMotorCheck = millis();
  6534. if(!READ(X_ENABLE_PIN) || !READ(Y_ENABLE_PIN) || !READ(Z_ENABLE_PIN) || (soft_pwm_bed > 0)
  6535. #if EXTRUDERS > 2
  6536. || !READ(E2_ENABLE_PIN)
  6537. #endif
  6538. #if EXTRUDER > 1
  6539. #if defined(X2_ENABLE_PIN) && X2_ENABLE_PIN > -1
  6540. || !READ(X2_ENABLE_PIN)
  6541. #endif
  6542. || !READ(E1_ENABLE_PIN)
  6543. #endif
  6544. || !READ(E0_ENABLE_PIN)) //If any of the drivers are enabled...
  6545. {
  6546. lastMotor = millis(); //... set time to NOW so the fan will turn on
  6547. }
  6548. if ((millis() - lastMotor) >= (CONTROLLERFAN_SECS*1000UL) || lastMotor == 0) //If the last time any driver was enabled, is longer since than CONTROLLERSEC...
  6549. {
  6550. digitalWrite(CONTROLLERFAN_PIN, 0);
  6551. analogWrite(CONTROLLERFAN_PIN, 0);
  6552. }
  6553. else
  6554. {
  6555. // allows digital or PWM fan output to be used (see M42 handling)
  6556. digitalWrite(CONTROLLERFAN_PIN, CONTROLLERFAN_SPEED);
  6557. analogWrite(CONTROLLERFAN_PIN, CONTROLLERFAN_SPEED);
  6558. }
  6559. }
  6560. }
  6561. #endif
  6562. #ifdef TEMP_STAT_LEDS
  6563. static bool blue_led = false;
  6564. static bool red_led = false;
  6565. static uint32_t stat_update = 0;
  6566. void handle_status_leds(void) {
  6567. float max_temp = 0.0;
  6568. if(millis() > stat_update) {
  6569. stat_update += 500; // Update every 0.5s
  6570. for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) {
  6571. max_temp = max(max_temp, degHotend(cur_extruder));
  6572. max_temp = max(max_temp, degTargetHotend(cur_extruder));
  6573. }
  6574. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  6575. max_temp = max(max_temp, degTargetBed());
  6576. max_temp = max(max_temp, degBed());
  6577. #endif
  6578. if((max_temp > 55.0) && (red_led == false)) {
  6579. digitalWrite(STAT_LED_RED, 1);
  6580. digitalWrite(STAT_LED_BLUE, 0);
  6581. red_led = true;
  6582. blue_led = false;
  6583. }
  6584. if((max_temp < 54.0) && (blue_led == false)) {
  6585. digitalWrite(STAT_LED_RED, 0);
  6586. digitalWrite(STAT_LED_BLUE, 1);
  6587. red_led = false;
  6588. blue_led = true;
  6589. }
  6590. }
  6591. }
  6592. #endif
  6593. #ifdef SAFETYTIMER
  6594. /**
  6595. * @brief Turn off heating after safetytimer_inactive_time milliseconds of inactivity
  6596. *
  6597. * Full screen blocking notification message is shown after heater turning off.
  6598. * Paused print is not considered inactivity, as nozzle is cooled anyway and bed cooling would
  6599. * damage print.
  6600. *
  6601. * If safetytimer_inactive_time is zero, feature is disabled (heating is never turned off because of inactivity)
  6602. */
  6603. static void handleSafetyTimer()
  6604. {
  6605. #if (EXTRUDERS > 1)
  6606. #error Implemented only for one extruder.
  6607. #endif //(EXTRUDERS > 1)
  6608. if ((PRINTER_ACTIVE) || (!degTargetBed() && !degTargetHotend(0)) || (!safetytimer_inactive_time))
  6609. {
  6610. safetyTimer.stop();
  6611. }
  6612. else if ((degTargetBed() || degTargetHotend(0)) && (!safetyTimer.running()))
  6613. {
  6614. safetyTimer.start();
  6615. }
  6616. else if (safetyTimer.expired(safetytimer_inactive_time))
  6617. {
  6618. setTargetBed(0);
  6619. setTargetHotend(0, 0);
  6620. lcd_show_fullscreen_message_and_wait_P(_i("Heating disabled by safety timer."));////MSG_BED_HEATING_SAFETY_DISABLED c=0 r=0
  6621. }
  6622. }
  6623. #endif //SAFETYTIMER
  6624. void manage_inactivity(bool ignore_stepper_queue/*=false*/) //default argument set in Marlin.h
  6625. {
  6626. #ifdef PAT9125
  6627. if (fsensor_enabled && filament_autoload_enabled && !fsensor_M600 && !moves_planned() && !IS_SD_PRINTING && !is_usb_printing && (lcd_commands_type != LCD_COMMAND_V2_CAL))
  6628. {
  6629. if (fsensor_autoload_enabled)
  6630. {
  6631. if (fsensor_check_autoload())
  6632. {
  6633. if (degHotend0() > EXTRUDE_MINTEMP)
  6634. {
  6635. fsensor_autoload_check_stop();
  6636. tone(BEEPER, 1000);
  6637. delay_keep_alive(50);
  6638. noTone(BEEPER);
  6639. loading_flag = true;
  6640. enquecommand_front_P((PSTR("M701")));
  6641. }
  6642. else
  6643. {
  6644. lcd_update_enable(false);
  6645. lcd_implementation_clear();
  6646. lcd.setCursor(0, 0);
  6647. lcd_printPGM(_T(MSG_ERROR));
  6648. lcd.setCursor(0, 2);
  6649. lcd_printPGM(_T(MSG_PREHEAT_NOZZLE));
  6650. delay(2000);
  6651. lcd_implementation_clear();
  6652. lcd_update_enable(true);
  6653. }
  6654. }
  6655. }
  6656. else
  6657. fsensor_autoload_check_start();
  6658. }
  6659. else
  6660. if (fsensor_autoload_enabled)
  6661. fsensor_autoload_check_stop();
  6662. #endif //PAT9125
  6663. #ifdef SAFETYTIMER
  6664. handleSafetyTimer();
  6665. #endif //SAFETYTIMER
  6666. #if defined(KILL_PIN) && KILL_PIN > -1
  6667. static int killCount = 0; // make the inactivity button a bit less responsive
  6668. const int KILL_DELAY = 10000;
  6669. #endif
  6670. if(buflen < (BUFSIZE-1)){
  6671. get_command();
  6672. }
  6673. if( (millis() - previous_millis_cmd) > max_inactive_time )
  6674. if(max_inactive_time)
  6675. kill(_n(""), 4);
  6676. if(stepper_inactive_time) {
  6677. if( (millis() - previous_millis_cmd) > stepper_inactive_time )
  6678. {
  6679. if(blocks_queued() == false && ignore_stepper_queue == false) {
  6680. disable_x();
  6681. // SERIAL_ECHOLNPGM("manage_inactivity - disable Y");
  6682. disable_y();
  6683. disable_z();
  6684. disable_e0();
  6685. disable_e1();
  6686. disable_e2();
  6687. }
  6688. }
  6689. }
  6690. #ifdef CHDK //Check if pin should be set to LOW after M240 set it to HIGH
  6691. if (chdkActive && (millis() - chdkHigh > CHDK_DELAY))
  6692. {
  6693. chdkActive = false;
  6694. WRITE(CHDK, LOW);
  6695. }
  6696. #endif
  6697. #if defined(KILL_PIN) && KILL_PIN > -1
  6698. // Check if the kill button was pressed and wait just in case it was an accidental
  6699. // key kill key press
  6700. // -------------------------------------------------------------------------------
  6701. if( 0 == READ(KILL_PIN) )
  6702. {
  6703. killCount++;
  6704. }
  6705. else if (killCount > 0)
  6706. {
  6707. killCount--;
  6708. }
  6709. // Exceeded threshold and we can confirm that it was not accidental
  6710. // KILL the machine
  6711. // ----------------------------------------------------------------
  6712. if ( killCount >= KILL_DELAY)
  6713. {
  6714. kill("", 5);
  6715. }
  6716. #endif
  6717. #if defined(CONTROLLERFAN_PIN) && CONTROLLERFAN_PIN > -1
  6718. controllerFan(); //Check if fan should be turned on to cool stepper drivers down
  6719. #endif
  6720. #ifdef EXTRUDER_RUNOUT_PREVENT
  6721. if( (millis() - previous_millis_cmd) > EXTRUDER_RUNOUT_SECONDS*1000 )
  6722. if(degHotend(active_extruder)>EXTRUDER_RUNOUT_MINTEMP)
  6723. {
  6724. bool oldstatus=READ(E0_ENABLE_PIN);
  6725. enable_e0();
  6726. float oldepos=current_position[E_AXIS];
  6727. float oldedes=destination[E_AXIS];
  6728. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS],
  6729. destination[E_AXIS]+EXTRUDER_RUNOUT_EXTRUDE*EXTRUDER_RUNOUT_ESTEPS/axis_steps_per_unit[E_AXIS],
  6730. EXTRUDER_RUNOUT_SPEED/60.*EXTRUDER_RUNOUT_ESTEPS/axis_steps_per_unit[E_AXIS], active_extruder);
  6731. current_position[E_AXIS]=oldepos;
  6732. destination[E_AXIS]=oldedes;
  6733. plan_set_e_position(oldepos);
  6734. previous_millis_cmd=millis();
  6735. st_synchronize();
  6736. WRITE(E0_ENABLE_PIN,oldstatus);
  6737. }
  6738. #endif
  6739. #ifdef TEMP_STAT_LEDS
  6740. handle_status_leds();
  6741. #endif
  6742. check_axes_activity();
  6743. }
  6744. void kill(const char *full_screen_message, unsigned char id)
  6745. {
  6746. printf_P(_N("KILL: %d\n"), id);
  6747. //return;
  6748. cli(); // Stop interrupts
  6749. disable_heater();
  6750. disable_x();
  6751. // SERIAL_ECHOLNPGM("kill - disable Y");
  6752. disable_y();
  6753. disable_z();
  6754. disable_e0();
  6755. disable_e1();
  6756. disable_e2();
  6757. #if defined(PS_ON_PIN) && PS_ON_PIN > -1
  6758. pinMode(PS_ON_PIN,INPUT);
  6759. #endif
  6760. SERIAL_ERROR_START;
  6761. SERIAL_ERRORLNRPGM(_i("Printer halted. kill() called!"));////MSG_ERR_KILLED c=0 r=0
  6762. if (full_screen_message != NULL) {
  6763. SERIAL_ERRORLNRPGM(full_screen_message);
  6764. lcd_display_message_fullscreen_P(full_screen_message);
  6765. } else {
  6766. LCD_ALERTMESSAGERPGM(_i("KILLED. "));////MSG_KILLED c=0 r=0
  6767. }
  6768. // FMC small patch to update the LCD before ending
  6769. sei(); // enable interrupts
  6770. for ( int i=5; i--; lcd_update(0))
  6771. {
  6772. delay(200);
  6773. }
  6774. cli(); // disable interrupts
  6775. suicide();
  6776. while(1)
  6777. {
  6778. #ifdef WATCHDOG
  6779. wdt_reset();
  6780. #endif //WATCHDOG
  6781. /* Intentionally left empty */
  6782. } // Wait for reset
  6783. }
  6784. void Stop()
  6785. {
  6786. disable_heater();
  6787. if(Stopped == false) {
  6788. Stopped = true;
  6789. Stopped_gcode_LastN = gcode_LastN; // Save last g_code for restart
  6790. SERIAL_ERROR_START;
  6791. SERIAL_ERRORLNRPGM(_T(MSG_ERR_STOPPED));
  6792. LCD_MESSAGERPGM(_T(MSG_STOPPED));
  6793. }
  6794. }
  6795. bool IsStopped() { return Stopped; };
  6796. #ifdef FAST_PWM_FAN
  6797. void setPwmFrequency(uint8_t pin, int val)
  6798. {
  6799. val &= 0x07;
  6800. switch(digitalPinToTimer(pin))
  6801. {
  6802. #if defined(TCCR0A)
  6803. case TIMER0A:
  6804. case TIMER0B:
  6805. // TCCR0B &= ~(_BV(CS00) | _BV(CS01) | _BV(CS02));
  6806. // TCCR0B |= val;
  6807. break;
  6808. #endif
  6809. #if defined(TCCR1A)
  6810. case TIMER1A:
  6811. case TIMER1B:
  6812. // TCCR1B &= ~(_BV(CS10) | _BV(CS11) | _BV(CS12));
  6813. // TCCR1B |= val;
  6814. break;
  6815. #endif
  6816. #if defined(TCCR2)
  6817. case TIMER2:
  6818. case TIMER2:
  6819. TCCR2 &= ~(_BV(CS10) | _BV(CS11) | _BV(CS12));
  6820. TCCR2 |= val;
  6821. break;
  6822. #endif
  6823. #if defined(TCCR2A)
  6824. case TIMER2A:
  6825. case TIMER2B:
  6826. TCCR2B &= ~(_BV(CS20) | _BV(CS21) | _BV(CS22));
  6827. TCCR2B |= val;
  6828. break;
  6829. #endif
  6830. #if defined(TCCR3A)
  6831. case TIMER3A:
  6832. case TIMER3B:
  6833. case TIMER3C:
  6834. TCCR3B &= ~(_BV(CS30) | _BV(CS31) | _BV(CS32));
  6835. TCCR3B |= val;
  6836. break;
  6837. #endif
  6838. #if defined(TCCR4A)
  6839. case TIMER4A:
  6840. case TIMER4B:
  6841. case TIMER4C:
  6842. TCCR4B &= ~(_BV(CS40) | _BV(CS41) | _BV(CS42));
  6843. TCCR4B |= val;
  6844. break;
  6845. #endif
  6846. #if defined(TCCR5A)
  6847. case TIMER5A:
  6848. case TIMER5B:
  6849. case TIMER5C:
  6850. TCCR5B &= ~(_BV(CS50) | _BV(CS51) | _BV(CS52));
  6851. TCCR5B |= val;
  6852. break;
  6853. #endif
  6854. }
  6855. }
  6856. #endif //FAST_PWM_FAN
  6857. bool setTargetedHotend(int code){
  6858. tmp_extruder = active_extruder;
  6859. if(code_seen('T')) {
  6860. tmp_extruder = code_value();
  6861. if(tmp_extruder >= EXTRUDERS) {
  6862. SERIAL_ECHO_START;
  6863. switch(code){
  6864. case 104:
  6865. SERIAL_ECHORPGM(_i("M104 Invalid extruder "));////MSG_M104_INVALID_EXTRUDER c=0 r=0
  6866. break;
  6867. case 105:
  6868. SERIAL_ECHO(_i("M105 Invalid extruder "));////MSG_M105_INVALID_EXTRUDER c=0 r=0
  6869. break;
  6870. case 109:
  6871. SERIAL_ECHO(_i("M109 Invalid extruder "));////MSG_M109_INVALID_EXTRUDER c=0 r=0
  6872. break;
  6873. case 218:
  6874. SERIAL_ECHO(_i("M218 Invalid extruder "));////MSG_M218_INVALID_EXTRUDER c=0 r=0
  6875. break;
  6876. case 221:
  6877. SERIAL_ECHO(_i("M221 Invalid extruder "));////MSG_M221_INVALID_EXTRUDER c=0 r=0
  6878. break;
  6879. }
  6880. SERIAL_PROTOCOLLN((int)tmp_extruder);
  6881. return true;
  6882. }
  6883. }
  6884. return false;
  6885. }
  6886. void save_statistics(unsigned long _total_filament_used, unsigned long _total_print_time) //_total_filament_used unit: mm/100; print time in s
  6887. {
  6888. if (eeprom_read_byte((uint8_t *)EEPROM_TOTALTIME) == 255 && eeprom_read_byte((uint8_t *)EEPROM_TOTALTIME + 1) == 255 && eeprom_read_byte((uint8_t *)EEPROM_TOTALTIME + 2) == 255 && eeprom_read_byte((uint8_t *)EEPROM_TOTALTIME + 3) == 255)
  6889. {
  6890. eeprom_update_dword((uint32_t *)EEPROM_TOTALTIME, 0);
  6891. eeprom_update_dword((uint32_t *)EEPROM_FILAMENTUSED, 0);
  6892. }
  6893. unsigned long _previous_filament = eeprom_read_dword((uint32_t *)EEPROM_FILAMENTUSED); //_previous_filament unit: cm
  6894. unsigned long _previous_time = eeprom_read_dword((uint32_t *)EEPROM_TOTALTIME); //_previous_time unit: min
  6895. eeprom_update_dword((uint32_t *)EEPROM_TOTALTIME, _previous_time + (_total_print_time/60)); //EEPROM_TOTALTIME unit: min
  6896. eeprom_update_dword((uint32_t *)EEPROM_FILAMENTUSED, _previous_filament + (_total_filament_used / 1000));
  6897. total_filament_used = 0;
  6898. }
  6899. float calculate_extruder_multiplier(float diameter) {
  6900. float out = 1.f;
  6901. if (volumetric_enabled && diameter > 0.f) {
  6902. float area = M_PI * diameter * diameter * 0.25;
  6903. out = 1.f / area;
  6904. }
  6905. if (extrudemultiply != 100)
  6906. out *= float(extrudemultiply) * 0.01f;
  6907. return out;
  6908. }
  6909. void calculate_extruder_multipliers() {
  6910. extruder_multiplier[0] = calculate_extruder_multiplier(filament_size[0]);
  6911. #if EXTRUDERS > 1
  6912. extruder_multiplier[1] = calculate_extruder_multiplier(filament_size[1]);
  6913. #if EXTRUDERS > 2
  6914. extruder_multiplier[2] = calculate_extruder_multiplier(filament_size[2]);
  6915. #endif
  6916. #endif
  6917. }
  6918. void delay_keep_alive(unsigned int ms)
  6919. {
  6920. for (;;) {
  6921. manage_heater();
  6922. // Manage inactivity, but don't disable steppers on timeout.
  6923. manage_inactivity(true);
  6924. lcd_update(0);
  6925. if (ms == 0)
  6926. break;
  6927. else if (ms >= 50) {
  6928. delay(50);
  6929. ms -= 50;
  6930. } else {
  6931. delay(ms);
  6932. ms = 0;
  6933. }
  6934. }
  6935. }
  6936. void wait_for_heater(long codenum) {
  6937. #ifdef TEMP_RESIDENCY_TIME
  6938. long residencyStart;
  6939. residencyStart = -1;
  6940. /* continue to loop until we have reached the target temp
  6941. _and_ until TEMP_RESIDENCY_TIME hasn't passed since we reached it */
  6942. while ((!cancel_heatup) && ((residencyStart == -1) ||
  6943. (residencyStart >= 0 && (((unsigned int)(millis() - residencyStart)) < (TEMP_RESIDENCY_TIME * 1000UL))))) {
  6944. #else
  6945. while (target_direction ? (isHeatingHotend(tmp_extruder)) : (isCoolingHotend(tmp_extruder) && (CooldownNoWait == false))) {
  6946. #endif //TEMP_RESIDENCY_TIME
  6947. if ((millis() - codenum) > 1000UL)
  6948. { //Print Temp Reading and remaining time every 1 second while heating up/cooling down
  6949. if (!farm_mode) {
  6950. SERIAL_PROTOCOLPGM("T:");
  6951. SERIAL_PROTOCOL_F(degHotend(tmp_extruder), 1);
  6952. SERIAL_PROTOCOLPGM(" E:");
  6953. SERIAL_PROTOCOL((int)tmp_extruder);
  6954. #ifdef TEMP_RESIDENCY_TIME
  6955. SERIAL_PROTOCOLPGM(" W:");
  6956. if (residencyStart > -1)
  6957. {
  6958. codenum = ((TEMP_RESIDENCY_TIME * 1000UL) - (millis() - residencyStart)) / 1000UL;
  6959. SERIAL_PROTOCOLLN(codenum);
  6960. }
  6961. else
  6962. {
  6963. SERIAL_PROTOCOLLN("?");
  6964. }
  6965. }
  6966. #else
  6967. SERIAL_PROTOCOLLN("");
  6968. #endif
  6969. codenum = millis();
  6970. }
  6971. manage_heater();
  6972. manage_inactivity();
  6973. lcd_update(0);
  6974. #ifdef TEMP_RESIDENCY_TIME
  6975. /* start/restart the TEMP_RESIDENCY_TIME timer whenever we reach target temp for the first time
  6976. or when current temp falls outside the hysteresis after target temp was reached */
  6977. if ((residencyStart == -1 && target_direction && (degHotend(tmp_extruder) >= (degTargetHotend(tmp_extruder) - TEMP_WINDOW))) ||
  6978. (residencyStart == -1 && !target_direction && (degHotend(tmp_extruder) <= (degTargetHotend(tmp_extruder) + TEMP_WINDOW))) ||
  6979. (residencyStart > -1 && labs(degHotend(tmp_extruder) - degTargetHotend(tmp_extruder)) > TEMP_HYSTERESIS))
  6980. {
  6981. residencyStart = millis();
  6982. }
  6983. #endif //TEMP_RESIDENCY_TIME
  6984. }
  6985. }
  6986. void check_babystep() {
  6987. int babystep_z;
  6988. EEPROM_read_B(EEPROM_BABYSTEP_Z, &babystep_z);
  6989. if ((babystep_z < Z_BABYSTEP_MIN) || (babystep_z > Z_BABYSTEP_MAX)) {
  6990. babystep_z = 0; //if babystep value is out of min max range, set it to 0
  6991. SERIAL_ECHOLNPGM("Z live adjust out of range. Setting to 0");
  6992. EEPROM_save_B(EEPROM_BABYSTEP_Z, &babystep_z);
  6993. lcd_show_fullscreen_message_and_wait_P(PSTR("Z live adjust out of range. Setting to 0. Click to continue."));
  6994. lcd_update_enable(true);
  6995. }
  6996. }
  6997. #ifdef DIS
  6998. void d_setup()
  6999. {
  7000. pinMode(D_DATACLOCK, INPUT_PULLUP);
  7001. pinMode(D_DATA, INPUT_PULLUP);
  7002. pinMode(D_REQUIRE, OUTPUT);
  7003. digitalWrite(D_REQUIRE, HIGH);
  7004. }
  7005. float d_ReadData()
  7006. {
  7007. int digit[13];
  7008. String mergeOutput;
  7009. float output;
  7010. digitalWrite(D_REQUIRE, HIGH);
  7011. for (int i = 0; i<13; i++)
  7012. {
  7013. for (int j = 0; j < 4; j++)
  7014. {
  7015. while (digitalRead(D_DATACLOCK) == LOW) {}
  7016. while (digitalRead(D_DATACLOCK) == HIGH) {}
  7017. bitWrite(digit[i], j, digitalRead(D_DATA));
  7018. }
  7019. }
  7020. digitalWrite(D_REQUIRE, LOW);
  7021. mergeOutput = "";
  7022. output = 0;
  7023. for (int r = 5; r <= 10; r++) //Merge digits
  7024. {
  7025. mergeOutput += digit[r];
  7026. }
  7027. output = mergeOutput.toFloat();
  7028. if (digit[4] == 8) //Handle sign
  7029. {
  7030. output *= -1;
  7031. }
  7032. for (int i = digit[11]; i > 0; i--) //Handle floating point
  7033. {
  7034. output /= 10;
  7035. }
  7036. return output;
  7037. }
  7038. void bed_analysis(float x_dimension, float y_dimension, int x_points_num, int y_points_num, float shift_x, float shift_y) {
  7039. int t1 = 0;
  7040. int t_delay = 0;
  7041. int digit[13];
  7042. int m;
  7043. char str[3];
  7044. //String mergeOutput;
  7045. char mergeOutput[15];
  7046. float output;
  7047. int mesh_point = 0; //index number of calibration point
  7048. float bed_zero_ref_x = (-22.f + X_PROBE_OFFSET_FROM_EXTRUDER); //shift between zero point on bed and target and between probe and nozzle
  7049. float bed_zero_ref_y = (-0.6f + Y_PROBE_OFFSET_FROM_EXTRUDER);
  7050. float mesh_home_z_search = 4;
  7051. float row[x_points_num];
  7052. int ix = 0;
  7053. int iy = 0;
  7054. char* filename_wldsd = "wldsd.txt";
  7055. char data_wldsd[70];
  7056. char numb_wldsd[10];
  7057. d_setup();
  7058. if (!(axis_known_position[X_AXIS] && axis_known_position[Y_AXIS] && axis_known_position[Z_AXIS])) {
  7059. // We don't know where we are! HOME!
  7060. // Push the commands to the front of the message queue in the reverse order!
  7061. // There shall be always enough space reserved for these commands.
  7062. repeatcommand_front(); // repeat G80 with all its parameters
  7063. enquecommand_front_P((PSTR("G28 W0")));
  7064. enquecommand_front_P((PSTR("G1 Z5")));
  7065. return;
  7066. }
  7067. bool custom_message_old = custom_message;
  7068. unsigned int custom_message_type_old = custom_message_type;
  7069. unsigned int custom_message_state_old = custom_message_state;
  7070. custom_message = true;
  7071. custom_message_type = 1;
  7072. custom_message_state = (x_points_num * y_points_num) + 10;
  7073. lcd_update(1);
  7074. mbl.reset();
  7075. babystep_undo();
  7076. card.openFile(filename_wldsd, false);
  7077. current_position[Z_AXIS] = mesh_home_z_search;
  7078. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[Z_AXIS] / 60, active_extruder);
  7079. int XY_AXIS_FEEDRATE = homing_feedrate[X_AXIS] / 20;
  7080. int Z_PROBE_FEEDRATE = homing_feedrate[Z_AXIS] / 60;
  7081. int Z_LIFT_FEEDRATE = homing_feedrate[Z_AXIS] / 40;
  7082. setup_for_endstop_move(false);
  7083. SERIAL_PROTOCOLPGM("Num X,Y: ");
  7084. SERIAL_PROTOCOL(x_points_num);
  7085. SERIAL_PROTOCOLPGM(",");
  7086. SERIAL_PROTOCOL(y_points_num);
  7087. SERIAL_PROTOCOLPGM("\nZ search height: ");
  7088. SERIAL_PROTOCOL(mesh_home_z_search);
  7089. SERIAL_PROTOCOLPGM("\nDimension X,Y: ");
  7090. SERIAL_PROTOCOL(x_dimension);
  7091. SERIAL_PROTOCOLPGM(",");
  7092. SERIAL_PROTOCOL(y_dimension);
  7093. SERIAL_PROTOCOLLNPGM("\nMeasured points:");
  7094. while (mesh_point != x_points_num * y_points_num) {
  7095. ix = mesh_point % x_points_num; // from 0 to MESH_NUM_X_POINTS - 1
  7096. iy = mesh_point / x_points_num;
  7097. if (iy & 1) ix = (x_points_num - 1) - ix; // Zig zag
  7098. float z0 = 0.f;
  7099. current_position[Z_AXIS] = mesh_home_z_search;
  7100. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], Z_LIFT_FEEDRATE, active_extruder);
  7101. st_synchronize();
  7102. current_position[X_AXIS] = 13.f + ix * (x_dimension / (x_points_num - 1)) - bed_zero_ref_x + shift_x;
  7103. current_position[Y_AXIS] = 6.4f + iy * (y_dimension / (y_points_num - 1)) - bed_zero_ref_y + shift_y;
  7104. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], XY_AXIS_FEEDRATE, active_extruder);
  7105. st_synchronize();
  7106. if (!find_bed_induction_sensor_point_z(-10.f)) { //if we have data from z calibration max allowed difference is 1mm for each point, if we dont have data max difference is 10mm from initial point
  7107. break;
  7108. card.closefile();
  7109. }
  7110. //memset(numb_wldsd, 0, sizeof(numb_wldsd));
  7111. //dtostrf(d_ReadData(), 8, 5, numb_wldsd);
  7112. //strcat(data_wldsd, numb_wldsd);
  7113. //MYSERIAL.println(data_wldsd);
  7114. //delay(1000);
  7115. //delay(3000);
  7116. //t1 = millis();
  7117. //while (digitalRead(D_DATACLOCK) == LOW) {}
  7118. //while (digitalRead(D_DATACLOCK) == HIGH) {}
  7119. memset(digit, 0, sizeof(digit));
  7120. //cli();
  7121. digitalWrite(D_REQUIRE, LOW);
  7122. for (int i = 0; i<13; i++)
  7123. {
  7124. //t1 = millis();
  7125. for (int j = 0; j < 4; j++)
  7126. {
  7127. while (digitalRead(D_DATACLOCK) == LOW) {}
  7128. while (digitalRead(D_DATACLOCK) == HIGH) {}
  7129. bitWrite(digit[i], j, digitalRead(D_DATA));
  7130. }
  7131. //t_delay = (millis() - t1);
  7132. //SERIAL_PROTOCOLPGM(" ");
  7133. //SERIAL_PROTOCOL_F(t_delay, 5);
  7134. //SERIAL_PROTOCOLPGM(" ");
  7135. }
  7136. //sei();
  7137. digitalWrite(D_REQUIRE, HIGH);
  7138. mergeOutput[0] = '\0';
  7139. output = 0;
  7140. for (int r = 5; r <= 10; r++) //Merge digits
  7141. {
  7142. sprintf(str, "%d", digit[r]);
  7143. strcat(mergeOutput, str);
  7144. }
  7145. output = atof(mergeOutput);
  7146. if (digit[4] == 8) //Handle sign
  7147. {
  7148. output *= -1;
  7149. }
  7150. for (int i = digit[11]; i > 0; i--) //Handle floating point
  7151. {
  7152. output *= 0.1;
  7153. }
  7154. //output = d_ReadData();
  7155. //row[ix] = current_position[Z_AXIS];
  7156. memset(data_wldsd, 0, sizeof(data_wldsd));
  7157. for (int i = 0; i <3; i++) {
  7158. memset(numb_wldsd, 0, sizeof(numb_wldsd));
  7159. dtostrf(current_position[i], 8, 5, numb_wldsd);
  7160. strcat(data_wldsd, numb_wldsd);
  7161. strcat(data_wldsd, ";");
  7162. }
  7163. memset(numb_wldsd, 0, sizeof(numb_wldsd));
  7164. dtostrf(output, 8, 5, numb_wldsd);
  7165. strcat(data_wldsd, numb_wldsd);
  7166. //strcat(data_wldsd, ";");
  7167. card.write_command(data_wldsd);
  7168. //row[ix] = d_ReadData();
  7169. row[ix] = output; // current_position[Z_AXIS];
  7170. if (iy % 2 == 1 ? ix == 0 : ix == x_points_num - 1) {
  7171. for (int i = 0; i < x_points_num; i++) {
  7172. SERIAL_PROTOCOLPGM(" ");
  7173. SERIAL_PROTOCOL_F(row[i], 5);
  7174. }
  7175. SERIAL_PROTOCOLPGM("\n");
  7176. }
  7177. custom_message_state--;
  7178. mesh_point++;
  7179. lcd_update(1);
  7180. }
  7181. card.closefile();
  7182. }
  7183. #endif
  7184. void temp_compensation_start() {
  7185. custom_message = true;
  7186. custom_message_type = 5;
  7187. custom_message_state = PINDA_HEAT_T + 1;
  7188. lcd_update(2);
  7189. if (degHotend(active_extruder) > EXTRUDE_MINTEMP) {
  7190. current_position[E_AXIS] -= DEFAULT_RETRACTION;
  7191. }
  7192. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400, active_extruder);
  7193. current_position[X_AXIS] = PINDA_PREHEAT_X;
  7194. current_position[Y_AXIS] = PINDA_PREHEAT_Y;
  7195. current_position[Z_AXIS] = PINDA_PREHEAT_Z;
  7196. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  7197. st_synchronize();
  7198. while (fabs(degBed() - target_temperature_bed) > 1) delay_keep_alive(1000);
  7199. for (int i = 0; i < PINDA_HEAT_T; i++) {
  7200. delay_keep_alive(1000);
  7201. custom_message_state = PINDA_HEAT_T - i;
  7202. if (custom_message_state == 99 || custom_message_state == 9) lcd_update(2); //force whole display redraw if number of digits changed
  7203. else lcd_update(1);
  7204. }
  7205. custom_message_type = 0;
  7206. custom_message_state = 0;
  7207. custom_message = false;
  7208. }
  7209. void temp_compensation_apply() {
  7210. int i_add;
  7211. int compensation_value;
  7212. int z_shift = 0;
  7213. float z_shift_mm;
  7214. if (calibration_status() == CALIBRATION_STATUS_CALIBRATED) {
  7215. if (target_temperature_bed % 10 == 0 && target_temperature_bed >= 60 && target_temperature_bed <= 100) {
  7216. i_add = (target_temperature_bed - 60) / 10;
  7217. EEPROM_read_B(EEPROM_PROBE_TEMP_SHIFT + i_add * 2, &z_shift);
  7218. z_shift_mm = z_shift / axis_steps_per_unit[Z_AXIS];
  7219. }else {
  7220. //interpolation
  7221. z_shift_mm = temp_comp_interpolation(target_temperature_bed) / axis_steps_per_unit[Z_AXIS];
  7222. }
  7223. printf_P(_N("\nZ shift applied:%.3f\n"), z_shift_mm);
  7224. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS] - z_shift_mm, current_position[E_AXIS], homing_feedrate[Z_AXIS] / 40, active_extruder);
  7225. st_synchronize();
  7226. plan_set_z_position(current_position[Z_AXIS]);
  7227. }
  7228. else {
  7229. //we have no temp compensation data
  7230. }
  7231. }
  7232. float temp_comp_interpolation(float inp_temperature) {
  7233. //cubic spline interpolation
  7234. int n, i, j, k;
  7235. float h[10], a, b, c, d, sum, s[10] = { 0 }, x[10], F[10], f[10], m[10][10] = { 0 }, temp;
  7236. int shift[10];
  7237. int temp_C[10];
  7238. n = 6; //number of measured points
  7239. shift[0] = 0;
  7240. for (i = 0; i < n; i++) {
  7241. if (i>0) EEPROM_read_B(EEPROM_PROBE_TEMP_SHIFT + (i-1) * 2, &shift[i]); //read shift in steps from EEPROM
  7242. temp_C[i] = 50 + i * 10; //temperature in C
  7243. #ifdef PINDA_THERMISTOR
  7244. temp_C[i] = 35 + i * 5; //temperature in C
  7245. #else
  7246. temp_C[i] = 50 + i * 10; //temperature in C
  7247. #endif
  7248. x[i] = (float)temp_C[i];
  7249. f[i] = (float)shift[i];
  7250. }
  7251. if (inp_temperature < x[0]) return 0;
  7252. for (i = n - 1; i>0; i--) {
  7253. F[i] = (f[i] - f[i - 1]) / (x[i] - x[i - 1]);
  7254. h[i - 1] = x[i] - x[i - 1];
  7255. }
  7256. //*********** formation of h, s , f matrix **************
  7257. for (i = 1; i<n - 1; i++) {
  7258. m[i][i] = 2 * (h[i - 1] + h[i]);
  7259. if (i != 1) {
  7260. m[i][i - 1] = h[i - 1];
  7261. m[i - 1][i] = h[i - 1];
  7262. }
  7263. m[i][n - 1] = 6 * (F[i + 1] - F[i]);
  7264. }
  7265. //*********** forward elimination **************
  7266. for (i = 1; i<n - 2; i++) {
  7267. temp = (m[i + 1][i] / m[i][i]);
  7268. for (j = 1; j <= n - 1; j++)
  7269. m[i + 1][j] -= temp*m[i][j];
  7270. }
  7271. //*********** backward substitution *********
  7272. for (i = n - 2; i>0; i--) {
  7273. sum = 0;
  7274. for (j = i; j <= n - 2; j++)
  7275. sum += m[i][j] * s[j];
  7276. s[i] = (m[i][n - 1] - sum) / m[i][i];
  7277. }
  7278. for (i = 0; i<n - 1; i++)
  7279. if ((x[i] <= inp_temperature && inp_temperature <= x[i + 1]) || (i == n-2 && inp_temperature > x[i + 1])) {
  7280. a = (s[i + 1] - s[i]) / (6 * h[i]);
  7281. b = s[i] / 2;
  7282. c = (f[i + 1] - f[i]) / h[i] - (2 * h[i] * s[i] + s[i + 1] * h[i]) / 6;
  7283. d = f[i];
  7284. sum = a*pow((inp_temperature - x[i]), 3) + b*pow((inp_temperature - x[i]), 2) + c*(inp_temperature - x[i]) + d;
  7285. }
  7286. return sum;
  7287. }
  7288. #ifdef PINDA_THERMISTOR
  7289. float temp_compensation_pinda_thermistor_offset(float temperature_pinda)
  7290. {
  7291. if (!temp_cal_active) return 0;
  7292. if (!calibration_status_pinda()) return 0;
  7293. return temp_comp_interpolation(temperature_pinda) / axis_steps_per_unit[Z_AXIS];
  7294. }
  7295. #endif //PINDA_THERMISTOR
  7296. void long_pause() //long pause print
  7297. {
  7298. st_synchronize();
  7299. //save currently set parameters to global variables
  7300. saved_feedmultiply = feedmultiply;
  7301. HotendTempBckp = degTargetHotend(active_extruder);
  7302. fanSpeedBckp = fanSpeed;
  7303. start_pause_print = millis();
  7304. //save position
  7305. pause_lastpos[X_AXIS] = current_position[X_AXIS];
  7306. pause_lastpos[Y_AXIS] = current_position[Y_AXIS];
  7307. pause_lastpos[Z_AXIS] = current_position[Z_AXIS];
  7308. pause_lastpos[E_AXIS] = current_position[E_AXIS];
  7309. //retract
  7310. current_position[E_AXIS] -= DEFAULT_RETRACTION;
  7311. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400, active_extruder);
  7312. //lift z
  7313. current_position[Z_AXIS] += Z_PAUSE_LIFT;
  7314. if (current_position[Z_AXIS] > Z_MAX_POS) current_position[Z_AXIS] = Z_MAX_POS;
  7315. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 15, active_extruder);
  7316. //set nozzle target temperature to 0
  7317. setTargetHotend(0, 0);
  7318. setTargetHotend(0, 1);
  7319. setTargetHotend(0, 2);
  7320. //Move XY to side
  7321. current_position[X_AXIS] = X_PAUSE_POS;
  7322. current_position[Y_AXIS] = Y_PAUSE_POS;
  7323. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 50, active_extruder);
  7324. // Turn off the print fan
  7325. fanSpeed = 0;
  7326. st_synchronize();
  7327. }
  7328. void serialecho_temperatures() {
  7329. float tt = degHotend(active_extruder);
  7330. SERIAL_PROTOCOLPGM("T:");
  7331. SERIAL_PROTOCOL(tt);
  7332. SERIAL_PROTOCOLPGM(" E:");
  7333. SERIAL_PROTOCOL((int)active_extruder);
  7334. SERIAL_PROTOCOLPGM(" B:");
  7335. SERIAL_PROTOCOL_F(degBed(), 1);
  7336. SERIAL_PROTOCOLLN("");
  7337. }
  7338. extern uint32_t sdpos_atomic;
  7339. #ifdef UVLO_SUPPORT
  7340. void uvlo_()
  7341. {
  7342. unsigned long time_start = millis();
  7343. bool sd_print = card.sdprinting;
  7344. // Conserve power as soon as possible.
  7345. disable_x();
  7346. disable_y();
  7347. #ifdef TMC2130
  7348. tmc2130_set_current_h(Z_AXIS, 20);
  7349. tmc2130_set_current_r(Z_AXIS, 20);
  7350. tmc2130_set_current_h(E_AXIS, 20);
  7351. tmc2130_set_current_r(E_AXIS, 20);
  7352. #endif //TMC2130
  7353. // Indicate that the interrupt has been triggered.
  7354. // SERIAL_ECHOLNPGM("UVLO");
  7355. // Read out the current Z motor microstep counter. This will be later used
  7356. // for reaching the zero full step before powering off.
  7357. uint16_t z_microsteps = 0;
  7358. #ifdef TMC2130
  7359. z_microsteps = tmc2130_rd_MSCNT(Z_TMC2130_CS);
  7360. #endif //TMC2130
  7361. // Calculate the file position, from which to resume this print.
  7362. long sd_position = sdpos_atomic; //atomic sd position of last command added in queue
  7363. {
  7364. uint16_t sdlen_planner = planner_calc_sd_length(); //length of sd commands in planner
  7365. sd_position -= sdlen_planner;
  7366. uint16_t sdlen_cmdqueue = cmdqueue_calc_sd_length(); //length of sd commands in cmdqueue
  7367. sd_position -= sdlen_cmdqueue;
  7368. if (sd_position < 0) sd_position = 0;
  7369. }
  7370. // Backup the feedrate in mm/min.
  7371. int feedrate_bckp = blocks_queued() ? (block_buffer[block_buffer_tail].nominal_speed * 60.f) : feedrate;
  7372. // After this call, the planner queue is emptied and the current_position is set to a current logical coordinate.
  7373. // The logical coordinate will likely differ from the machine coordinate if the skew calibration and mesh bed leveling
  7374. // are in action.
  7375. planner_abort_hard();
  7376. // Store the current extruder position.
  7377. eeprom_update_float((float*)(EEPROM_UVLO_CURRENT_POSITION_E), st_get_position_mm(E_AXIS));
  7378. eeprom_update_byte((uint8_t*)EEPROM_UVLO_E_ABS, axis_relative_modes[3]?0:1);
  7379. // Clean the input command queue.
  7380. cmdqueue_reset();
  7381. card.sdprinting = false;
  7382. // card.closefile();
  7383. // Enable stepper driver interrupt to move Z axis.
  7384. // This should be fine as the planner and command queues are empty and the SD card printing is disabled.
  7385. //FIXME one may want to disable serial lines at this point of time to avoid interfering with the command queue,
  7386. // though it should not happen that the command queue is touched as the plan_buffer_line always succeed without blocking.
  7387. sei();
  7388. plan_buffer_line(
  7389. current_position[X_AXIS],
  7390. current_position[Y_AXIS],
  7391. current_position[Z_AXIS],
  7392. current_position[E_AXIS] - DEFAULT_RETRACTION,
  7393. 95, active_extruder);
  7394. st_synchronize();
  7395. disable_e0();
  7396. plan_buffer_line(
  7397. current_position[X_AXIS],
  7398. current_position[Y_AXIS],
  7399. current_position[Z_AXIS] + UVLO_Z_AXIS_SHIFT + float((1024 - z_microsteps + 7) >> 4) / axis_steps_per_unit[Z_AXIS],
  7400. current_position[E_AXIS] - DEFAULT_RETRACTION,
  7401. 40, active_extruder);
  7402. st_synchronize();
  7403. disable_e0();
  7404. plan_buffer_line(
  7405. current_position[X_AXIS],
  7406. current_position[Y_AXIS],
  7407. current_position[Z_AXIS] + UVLO_Z_AXIS_SHIFT + float((1024 - z_microsteps + 7) >> 4) / axis_steps_per_unit[Z_AXIS],
  7408. current_position[E_AXIS] - DEFAULT_RETRACTION,
  7409. 40, active_extruder);
  7410. st_synchronize();
  7411. disable_e0();
  7412. disable_z();
  7413. // Move Z up to the next 0th full step.
  7414. // Write the file position.
  7415. eeprom_update_dword((uint32_t*)(EEPROM_FILE_POSITION), sd_position);
  7416. // Store the mesh bed leveling offsets. This is 2*9=18 bytes, which takes 18*3.4us=52us in worst case.
  7417. for (int8_t mesh_point = 0; mesh_point < 9; ++ mesh_point) {
  7418. uint8_t ix = mesh_point % MESH_MEAS_NUM_X_POINTS; // from 0 to MESH_NUM_X_POINTS - 1
  7419. uint8_t iy = mesh_point / MESH_MEAS_NUM_X_POINTS;
  7420. // Scale the z value to 1u resolution.
  7421. int16_t v = mbl.active ? int16_t(floor(mbl.z_values[iy*3][ix*3] * 1000.f + 0.5f)) : 0;
  7422. eeprom_update_word((uint16_t*)(EEPROM_UVLO_MESH_BED_LEVELING+2*mesh_point), *reinterpret_cast<uint16_t*>(&v));
  7423. }
  7424. // Read out the current Z motor microstep counter. This will be later used
  7425. // for reaching the zero full step before powering off.
  7426. eeprom_update_word((uint16_t*)(EEPROM_UVLO_Z_MICROSTEPS), z_microsteps);
  7427. // Store the current position.
  7428. eeprom_update_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 0), current_position[X_AXIS]);
  7429. eeprom_update_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 4), current_position[Y_AXIS]);
  7430. eeprom_update_float((float*)(EEPROM_UVLO_CURRENT_POSITION_Z), current_position[Z_AXIS]);
  7431. // Store the current feed rate, temperatures, fan speed and extruder multipliers (flow rates)
  7432. EEPROM_save_B(EEPROM_UVLO_FEEDRATE, &feedrate_bckp);
  7433. eeprom_update_byte((uint8_t*)EEPROM_UVLO_TARGET_HOTEND, target_temperature[active_extruder]);
  7434. eeprom_update_byte((uint8_t*)EEPROM_UVLO_TARGET_BED, target_temperature_bed);
  7435. eeprom_update_byte((uint8_t*)EEPROM_UVLO_FAN_SPEED, fanSpeed);
  7436. eeprom_update_float((float*)(EEPROM_EXTRUDER_MULTIPLIER_0), extruder_multiplier[0]);
  7437. #if EXTRUDERS > 1
  7438. eeprom_update_float((float*)(EEPROM_EXTRUDER_MULTIPLIER_1), extruder_multiplier[1]);
  7439. #if EXTRUDERS > 2
  7440. eeprom_update_float((float*)(EEPROM_EXTRUDER_MULTIPLIER_2), extruder_multiplier[2]);
  7441. #endif
  7442. #endif
  7443. eeprom_update_word((uint16_t*)(EEPROM_EXTRUDEMULTIPLY), (uint16_t)extrudemultiply);
  7444. // Finaly store the "power outage" flag.
  7445. if(sd_print) eeprom_update_byte((uint8_t*)EEPROM_UVLO, 1);
  7446. st_synchronize();
  7447. printf_P(_N("stps%d\n"), tmc2130_rd_MSCNT(Z_AXIS));
  7448. disable_z();
  7449. // Increment power failure counter
  7450. eeprom_update_byte((uint8_t*)EEPROM_POWER_COUNT, eeprom_read_byte((uint8_t*)EEPROM_POWER_COUNT) + 1);
  7451. eeprom_update_word((uint16_t*)EEPROM_POWER_COUNT_TOT, eeprom_read_word((uint16_t*)EEPROM_POWER_COUNT_TOT) + 1);
  7452. printf_P(_N("UVLO - end %d\n"), millis() - time_start);
  7453. #if 0
  7454. // Move the print head to the side of the print until all the power stored in the power supply capacitors is depleted.
  7455. current_position[X_AXIS] = (current_position[X_AXIS] < 0.5f * (X_MIN_POS + X_MAX_POS)) ? X_MIN_POS : X_MAX_POS;
  7456. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 500, active_extruder);
  7457. st_synchronize();
  7458. #endif
  7459. cli();
  7460. volatile unsigned int ppcount = 0;
  7461. SET_OUTPUT(BEEPER);
  7462. WRITE(BEEPER, HIGH);
  7463. for(ppcount = 0; ppcount < 2000; ppcount ++){
  7464. asm("nop");//50ns on 20Mhz, 62.5ns on 16Mhz
  7465. }
  7466. WRITE(BEEPER, LOW);
  7467. while(1){
  7468. #if 1
  7469. WRITE(BEEPER, LOW);
  7470. for(ppcount = 0; ppcount < 8000; ppcount ++){
  7471. asm("nop");//50ns on 20Mhz, 62.5ns on 16Mhz
  7472. }
  7473. #endif
  7474. };
  7475. }
  7476. #endif //UVLO_SUPPORT
  7477. #if (defined(FANCHECK) && defined(TACH_1) && (TACH_1 >-1))
  7478. void setup_fan_interrupt() {
  7479. //INT7
  7480. DDRE &= ~(1 << 7); //input pin
  7481. PORTE &= ~(1 << 7); //no internal pull-up
  7482. //start with sensing rising edge
  7483. EICRB &= ~(1 << 6);
  7484. EICRB |= (1 << 7);
  7485. //enable INT7 interrupt
  7486. EIMSK |= (1 << 7);
  7487. }
  7488. // The fan interrupt is triggered at maximum 325Hz (may be a bit more due to component tollerances),
  7489. // and it takes 4.24 us to process (the interrupt invocation overhead not taken into account).
  7490. ISR(INT7_vect) {
  7491. //measuring speed now works for fanSpeed > 18 (approximately), which is sufficient because MIN_PRINT_FAN_SPEED is higher
  7492. if (fanSpeed < MIN_PRINT_FAN_SPEED) return;
  7493. if ((1 << 6) & EICRB) { //interrupt was triggered by rising edge
  7494. t_fan_rising_edge = millis_nc();
  7495. }
  7496. else { //interrupt was triggered by falling edge
  7497. if ((millis_nc() - t_fan_rising_edge) >= FAN_PULSE_WIDTH_LIMIT) {//this pulse was from sensor and not from pwm
  7498. fan_edge_counter[1] += 2; //we are currently counting all edges so lets count two edges for one pulse
  7499. }
  7500. }
  7501. EICRB ^= (1 << 6); //change edge
  7502. }
  7503. #endif
  7504. #ifdef UVLO_SUPPORT
  7505. void setup_uvlo_interrupt() {
  7506. DDRE &= ~(1 << 4); //input pin
  7507. PORTE &= ~(1 << 4); //no internal pull-up
  7508. //sensing falling edge
  7509. EICRB |= (1 << 0);
  7510. EICRB &= ~(1 << 1);
  7511. //enable INT4 interrupt
  7512. EIMSK |= (1 << 4);
  7513. }
  7514. ISR(INT4_vect) {
  7515. EIMSK &= ~(1 << 4); //disable INT4 interrupt to make sure that this code will be executed just once
  7516. SERIAL_ECHOLNPGM("INT4");
  7517. if (IS_SD_PRINTING) uvlo_();
  7518. }
  7519. void recover_print(uint8_t automatic) {
  7520. char cmd[30];
  7521. lcd_update_enable(true);
  7522. lcd_update(2);
  7523. lcd_setstatuspgm(_i("Recovering print "));////MSG_RECOVERING_PRINT c=20 r=1
  7524. recover_machine_state_after_power_panic(); //recover position, temperatures and extrude_multipliers
  7525. // Lift the print head, so one may remove the excess priming material.
  7526. if (current_position[Z_AXIS] < 25)
  7527. enquecommand_P(PSTR("G1 Z25 F800"));
  7528. // Home X and Y axes. Homing just X and Y shall not touch the babystep and the world2machine transformation status.
  7529. enquecommand_P(PSTR("G28 X Y"));
  7530. // Set the target bed and nozzle temperatures and wait.
  7531. sprintf_P(cmd, PSTR("M109 S%d"), target_temperature[active_extruder]);
  7532. enquecommand(cmd);
  7533. sprintf_P(cmd, PSTR("M190 S%d"), target_temperature_bed);
  7534. enquecommand(cmd);
  7535. enquecommand_P(PSTR("M83")); //E axis relative mode
  7536. //enquecommand_P(PSTR("G1 E5 F120")); //Extrude some filament to stabilize pessure
  7537. // If not automatically recoreverd (long power loss), extrude extra filament to stabilize
  7538. if(automatic == 0){
  7539. enquecommand_P(PSTR("G1 E5 F120")); //Extrude some filament to stabilize pessure
  7540. }
  7541. enquecommand_P(PSTR("G1 E" STRINGIFY(-DEFAULT_RETRACTION)" F480"));
  7542. // Mark the power panic status as inactive.
  7543. eeprom_update_byte((uint8_t*)EEPROM_UVLO, 0);
  7544. /*while ((abs(degHotend(0)- target_temperature[0])>5) || (abs(degBed() -target_temperature_bed)>3)) { //wait for heater and bed to reach target temp
  7545. delay_keep_alive(1000);
  7546. }*/
  7547. printf_P(_N("After waiting for temp:\nCurrent pos X_AXIS:%.3f\nCurrent pos Y_AXIS:%.3f\n"), current_position[X_AXIS], current_position[Y_AXIS]);
  7548. // Restart the print.
  7549. restore_print_from_eeprom();
  7550. printf_P(_N("Current pos Z_AXIS:%.3f\nCurrent pos E_AXIS:%.3f\n"), current_position[Z_AXIS], current_position[E_AXIS]);
  7551. }
  7552. void recover_machine_state_after_power_panic()
  7553. {
  7554. char cmd[30];
  7555. // 1) Recover the logical cordinates at the time of the power panic.
  7556. // The logical XY coordinates are needed to recover the machine Z coordinate corrected by the mesh bed leveling.
  7557. current_position[X_AXIS] = eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 0));
  7558. current_position[Y_AXIS] = eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 4));
  7559. // Recover the logical coordinate of the Z axis at the time of the power panic.
  7560. // The current position after power panic is moved to the next closest 0th full step.
  7561. current_position[Z_AXIS] = eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION_Z)) +
  7562. UVLO_Z_AXIS_SHIFT + float((1024 - eeprom_read_word((uint16_t*)(EEPROM_UVLO_Z_MICROSTEPS)) + 7) >> 4) / axis_steps_per_unit[Z_AXIS];
  7563. if (eeprom_read_byte((uint8_t*)EEPROM_UVLO_E_ABS)) {
  7564. current_position[E_AXIS] = eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION_E));
  7565. sprintf_P(cmd, PSTR("G92 E"));
  7566. dtostrf(current_position[E_AXIS], 6, 3, cmd + strlen(cmd));
  7567. enquecommand(cmd);
  7568. }
  7569. memcpy(destination, current_position, sizeof(destination));
  7570. SERIAL_ECHOPGM("recover_machine_state_after_power_panic, initial ");
  7571. print_world_coordinates();
  7572. // 2) Initialize the logical to physical coordinate system transformation.
  7573. world2machine_initialize();
  7574. // 3) Restore the mesh bed leveling offsets. This is 2*9=18 bytes, which takes 18*3.4us=52us in worst case.
  7575. mbl.active = false;
  7576. for (int8_t mesh_point = 0; mesh_point < 9; ++ mesh_point) {
  7577. uint8_t ix = mesh_point % MESH_MEAS_NUM_X_POINTS; // from 0 to MESH_NUM_X_POINTS - 1
  7578. uint8_t iy = mesh_point / MESH_MEAS_NUM_X_POINTS;
  7579. // Scale the z value to 10u resolution.
  7580. int16_t v;
  7581. eeprom_read_block(&v, (void*)(EEPROM_UVLO_MESH_BED_LEVELING+2*mesh_point), 2);
  7582. if (v != 0)
  7583. mbl.active = true;
  7584. mbl.z_values[iy][ix] = float(v) * 0.001f;
  7585. }
  7586. if (mbl.active)
  7587. mbl.upsample_3x3();
  7588. // SERIAL_ECHOPGM("recover_machine_state_after_power_panic, initial ");
  7589. // print_mesh_bed_leveling_table();
  7590. // 4) Load the baby stepping value, which is expected to be active at the time of power panic.
  7591. // The baby stepping value is used to reset the physical Z axis when rehoming the Z axis.
  7592. babystep_load();
  7593. // 5) Set the physical positions from the logical positions using the world2machine transformation and the active bed leveling.
  7594. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  7595. // 6) Power up the motors, mark their positions as known.
  7596. //FIXME Verfiy, whether the X and Y axes should be powered up here, as they will later be re-homed anyway.
  7597. axis_known_position[X_AXIS] = true; enable_x();
  7598. axis_known_position[Y_AXIS] = true; enable_y();
  7599. axis_known_position[Z_AXIS] = true; enable_z();
  7600. SERIAL_ECHOPGM("recover_machine_state_after_power_panic, initial ");
  7601. print_physical_coordinates();
  7602. // 7) Recover the target temperatures.
  7603. target_temperature[active_extruder] = eeprom_read_byte((uint8_t*)EEPROM_UVLO_TARGET_HOTEND);
  7604. target_temperature_bed = eeprom_read_byte((uint8_t*)EEPROM_UVLO_TARGET_BED);
  7605. // 8) Recover extruder multipilers
  7606. extruder_multiplier[0] = eeprom_read_float((float*)(EEPROM_EXTRUDER_MULTIPLIER_0));
  7607. #if EXTRUDERS > 1
  7608. extruder_multiplier[1] = eeprom_read_float((float*)(EEPROM_EXTRUDER_MULTIPLIER_1));
  7609. #if EXTRUDERS > 2
  7610. extruder_multiplier[2] = eeprom_read_float((float*)(EEPROM_EXTRUDER_MULTIPLIER_2));
  7611. #endif
  7612. #endif
  7613. extrudemultiply = (int)eeprom_read_word((uint16_t*)(EEPROM_EXTRUDEMULTIPLY));
  7614. }
  7615. void restore_print_from_eeprom() {
  7616. float x_rec, y_rec, z_pos;
  7617. int feedrate_rec;
  7618. uint8_t fan_speed_rec;
  7619. char cmd[30];
  7620. char* c;
  7621. char filename[13];
  7622. uint8_t depth = 0;
  7623. char dir_name[9];
  7624. fan_speed_rec = eeprom_read_byte((uint8_t*)EEPROM_UVLO_FAN_SPEED);
  7625. EEPROM_read_B(EEPROM_UVLO_FEEDRATE, &feedrate_rec);
  7626. SERIAL_ECHOPGM("Feedrate:");
  7627. MYSERIAL.println(feedrate_rec);
  7628. depth = eeprom_read_byte((uint8_t*)EEPROM_DIR_DEPTH);
  7629. MYSERIAL.println(int(depth));
  7630. for (int i = 0; i < depth; i++) {
  7631. for (int j = 0; j < 8; j++) {
  7632. dir_name[j] = eeprom_read_byte((uint8_t*)EEPROM_DIRS + j + 8 * i);
  7633. }
  7634. dir_name[8] = '\0';
  7635. MYSERIAL.println(dir_name);
  7636. strcpy(dir_names[i], dir_name);
  7637. card.chdir(dir_name);
  7638. }
  7639. for (int i = 0; i < 8; i++) {
  7640. filename[i] = eeprom_read_byte((uint8_t*)EEPROM_FILENAME + i);
  7641. }
  7642. filename[8] = '\0';
  7643. MYSERIAL.print(filename);
  7644. strcat_P(filename, PSTR(".gco"));
  7645. sprintf_P(cmd, PSTR("M23 %s"), filename);
  7646. enquecommand(cmd);
  7647. uint32_t position = eeprom_read_dword((uint32_t*)(EEPROM_FILE_POSITION));
  7648. SERIAL_ECHOPGM("Position read from eeprom:");
  7649. MYSERIAL.println(position);
  7650. // E axis relative mode.
  7651. enquecommand_P(PSTR("M83"));
  7652. // Move to the XY print position in logical coordinates, where the print has been killed.
  7653. strcpy_P(cmd, PSTR("G1 X")); strcat(cmd, ftostr32(eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 0))));
  7654. strcat_P(cmd, PSTR(" Y")); strcat(cmd, ftostr32(eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 4))));
  7655. strcat_P(cmd, PSTR(" F2000"));
  7656. enquecommand(cmd);
  7657. // Move the Z axis down to the print, in logical coordinates.
  7658. strcpy_P(cmd, PSTR("G1 Z")); strcat(cmd, ftostr32(eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION_Z))));
  7659. enquecommand(cmd);
  7660. // Unretract.
  7661. enquecommand_P(PSTR("G1 E" STRINGIFY(2*DEFAULT_RETRACTION)" F480"));
  7662. // Set the feedrate saved at the power panic.
  7663. sprintf_P(cmd, PSTR("G1 F%d"), feedrate_rec);
  7664. enquecommand(cmd);
  7665. if (eeprom_read_byte((uint8_t*)EEPROM_UVLO_E_ABS))
  7666. {
  7667. float extruder_abs_pos = eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION_E));
  7668. enquecommand_P(PSTR("M82")); //E axis abslute mode
  7669. }
  7670. // Set the fan speed saved at the power panic.
  7671. strcpy_P(cmd, PSTR("M106 S"));
  7672. strcat(cmd, itostr3(int(fan_speed_rec)));
  7673. enquecommand(cmd);
  7674. // Set a position in the file.
  7675. sprintf_P(cmd, PSTR("M26 S%lu"), position);
  7676. enquecommand(cmd);
  7677. // Start SD print.
  7678. enquecommand_P(PSTR("M24"));
  7679. }
  7680. #endif //UVLO_SUPPORT
  7681. ////////////////////////////////////////////////////////////////////////////////
  7682. // save/restore printing
  7683. void stop_and_save_print_to_ram(float z_move, float e_move)
  7684. {
  7685. if (saved_printing) return;
  7686. unsigned char nplanner_blocks;
  7687. unsigned char nlines;
  7688. uint16_t sdlen_planner;
  7689. uint16_t sdlen_cmdqueue;
  7690. cli();
  7691. if (card.sdprinting) {
  7692. nplanner_blocks = number_of_blocks();
  7693. saved_sdpos = sdpos_atomic; //atomic sd position of last command added in queue
  7694. sdlen_planner = planner_calc_sd_length(); //length of sd commands in planner
  7695. saved_sdpos -= sdlen_planner;
  7696. sdlen_cmdqueue = cmdqueue_calc_sd_length(); //length of sd commands in cmdqueue
  7697. saved_sdpos -= sdlen_cmdqueue;
  7698. saved_printing_type = PRINTING_TYPE_SD;
  7699. }
  7700. else if (is_usb_printing) { //reuse saved_sdpos for storing line number
  7701. saved_sdpos = gcode_LastN; //start with line number of command added recently to cmd queue
  7702. //reuse planner_calc_sd_length function for getting number of lines of commands in planner:
  7703. nlines = planner_calc_sd_length(); //number of lines of commands in planner
  7704. saved_sdpos -= nlines;
  7705. saved_sdpos -= buflen; //number of blocks in cmd buffer
  7706. saved_printing_type = PRINTING_TYPE_USB;
  7707. }
  7708. else {
  7709. //not sd printing nor usb printing
  7710. }
  7711. #if 0
  7712. SERIAL_ECHOPGM("SDPOS_ATOMIC="); MYSERIAL.println(sdpos_atomic, DEC);
  7713. SERIAL_ECHOPGM("SDPOS="); MYSERIAL.println(card.get_sdpos(), DEC);
  7714. SERIAL_ECHOPGM("SDLEN_PLAN="); MYSERIAL.println(sdlen_planner, DEC);
  7715. SERIAL_ECHOPGM("SDLEN_CMDQ="); MYSERIAL.println(sdlen_cmdqueue, DEC);
  7716. SERIAL_ECHOPGM("PLANNERBLOCKS="); MYSERIAL.println(int(nplanner_blocks), DEC);
  7717. SERIAL_ECHOPGM("SDSAVED="); MYSERIAL.println(saved_sdpos, DEC);
  7718. //SERIAL_ECHOPGM("SDFILELEN="); MYSERIAL.println(card.fileSize(), DEC);
  7719. {
  7720. card.setIndex(saved_sdpos);
  7721. SERIAL_ECHOLNPGM("Content of planner buffer: ");
  7722. for (unsigned int idx = 0; idx < sdlen_planner; ++ idx)
  7723. MYSERIAL.print(char(card.get()));
  7724. SERIAL_ECHOLNPGM("Content of command buffer: ");
  7725. for (unsigned int idx = 0; idx < sdlen_cmdqueue; ++ idx)
  7726. MYSERIAL.print(char(card.get()));
  7727. SERIAL_ECHOLNPGM("End of command buffer");
  7728. }
  7729. {
  7730. // Print the content of the planner buffer, line by line:
  7731. card.setIndex(saved_sdpos);
  7732. int8_t iline = 0;
  7733. for (unsigned char idx = block_buffer_tail; idx != block_buffer_head; idx = (idx + 1) & (BLOCK_BUFFER_SIZE - 1), ++ iline) {
  7734. SERIAL_ECHOPGM("Planner line (from file): ");
  7735. MYSERIAL.print(int(iline), DEC);
  7736. SERIAL_ECHOPGM(", length: ");
  7737. MYSERIAL.print(block_buffer[idx].sdlen, DEC);
  7738. SERIAL_ECHOPGM(", steps: (");
  7739. MYSERIAL.print(block_buffer[idx].steps_x, DEC);
  7740. SERIAL_ECHOPGM(",");
  7741. MYSERIAL.print(block_buffer[idx].steps_y, DEC);
  7742. SERIAL_ECHOPGM(",");
  7743. MYSERIAL.print(block_buffer[idx].steps_z, DEC);
  7744. SERIAL_ECHOPGM(",");
  7745. MYSERIAL.print(block_buffer[idx].steps_e, DEC);
  7746. SERIAL_ECHOPGM("), events: ");
  7747. MYSERIAL.println(block_buffer[idx].step_event_count, DEC);
  7748. for (int len = block_buffer[idx].sdlen; len > 0; -- len)
  7749. MYSERIAL.print(char(card.get()));
  7750. }
  7751. }
  7752. {
  7753. // Print the content of the command buffer, line by line:
  7754. int8_t iline = 0;
  7755. union {
  7756. struct {
  7757. char lo;
  7758. char hi;
  7759. } lohi;
  7760. uint16_t value;
  7761. } sdlen_single;
  7762. int _bufindr = bufindr;
  7763. for (int _buflen = buflen; _buflen > 0; ++ iline) {
  7764. if (cmdbuffer[_bufindr] == CMDBUFFER_CURRENT_TYPE_SDCARD) {
  7765. sdlen_single.lohi.lo = cmdbuffer[_bufindr + 1];
  7766. sdlen_single.lohi.hi = cmdbuffer[_bufindr + 2];
  7767. }
  7768. SERIAL_ECHOPGM("Buffer line (from buffer): ");
  7769. MYSERIAL.print(int(iline), DEC);
  7770. SERIAL_ECHOPGM(", type: ");
  7771. MYSERIAL.print(int(cmdbuffer[_bufindr]), DEC);
  7772. SERIAL_ECHOPGM(", len: ");
  7773. MYSERIAL.println(sdlen_single.value, DEC);
  7774. // Print the content of the buffer line.
  7775. MYSERIAL.println(cmdbuffer + _bufindr + CMDHDRSIZE);
  7776. SERIAL_ECHOPGM("Buffer line (from file): ");
  7777. MYSERIAL.println(int(iline), DEC);
  7778. for (; sdlen_single.value > 0; -- sdlen_single.value)
  7779. MYSERIAL.print(char(card.get()));
  7780. if (-- _buflen == 0)
  7781. break;
  7782. // First skip the current command ID and iterate up to the end of the string.
  7783. for (_bufindr += CMDHDRSIZE; cmdbuffer[_bufindr] != 0; ++ _bufindr) ;
  7784. // Second, skip the end of string null character and iterate until a nonzero command ID is found.
  7785. for (++ _bufindr; _bufindr < sizeof(cmdbuffer) && cmdbuffer[_bufindr] == 0; ++ _bufindr) ;
  7786. // If the end of the buffer was empty,
  7787. if (_bufindr == sizeof(cmdbuffer)) {
  7788. // skip to the start and find the nonzero command.
  7789. for (_bufindr = 0; cmdbuffer[_bufindr] == 0; ++ _bufindr) ;
  7790. }
  7791. }
  7792. }
  7793. #endif
  7794. #if 0
  7795. saved_feedrate2 = feedrate; //save feedrate
  7796. #else
  7797. // Try to deduce the feedrate from the first block of the planner.
  7798. // Speed is in mm/min.
  7799. saved_feedrate2 = blocks_queued() ? (block_buffer[block_buffer_tail].nominal_speed * 60.f) : feedrate;
  7800. #endif
  7801. planner_abort_hard(); //abort printing
  7802. memcpy(saved_pos, current_position, sizeof(saved_pos));
  7803. saved_active_extruder = active_extruder; //save active_extruder
  7804. saved_extruder_under_pressure = extruder_under_pressure; //extruder under pressure flag - currently unused
  7805. saved_extruder_relative_mode = axis_relative_modes[E_AXIS];
  7806. cmdqueue_reset(); //empty cmdqueue
  7807. card.sdprinting = false;
  7808. // card.closefile();
  7809. saved_printing = true;
  7810. // We may have missed a stepper timer interrupt. Be safe than sorry, reset the stepper timer before re-enabling interrupts.
  7811. st_reset_timer();
  7812. sei();
  7813. if ((z_move != 0) || (e_move != 0)) { // extruder or z move
  7814. #if 1
  7815. // Rather than calling plan_buffer_line directly, push the move into the command queue,
  7816. char buf[48];
  7817. // First unretract (relative extrusion)
  7818. if(!saved_extruder_relative_mode){
  7819. strcpy_P(buf, PSTR("M83"));
  7820. enquecommand(buf, false);
  7821. }
  7822. //retract 45mm/s
  7823. strcpy_P(buf, PSTR("G1 E"));
  7824. dtostrf(e_move, 6, 3, buf + strlen(buf));
  7825. strcat_P(buf, PSTR(" F"));
  7826. dtostrf(2700, 8, 3, buf + strlen(buf));
  7827. enquecommand(buf, false);
  7828. // Then lift Z axis
  7829. strcpy_P(buf, PSTR("G1 Z"));
  7830. dtostrf(saved_pos[Z_AXIS] + z_move, 8, 3, buf + strlen(buf));
  7831. strcat_P(buf, PSTR(" F"));
  7832. dtostrf(homing_feedrate[Z_AXIS], 8, 3, buf + strlen(buf));
  7833. // At this point the command queue is empty.
  7834. enquecommand(buf, false);
  7835. // If this call is invoked from the main Arduino loop() function, let the caller know that the command
  7836. // in the command queue is not the original command, but a new one, so it should not be removed from the queue.
  7837. repeatcommand_front();
  7838. #else
  7839. plan_buffer_line(saved_pos[X_AXIS], saved_pos[Y_AXIS], saved_pos[Z_AXIS] + z_move, saved_pos[E_AXIS] + e_move, homing_feedrate[Z_AXIS], active_extruder);
  7840. st_synchronize(); //wait moving
  7841. memcpy(current_position, saved_pos, sizeof(saved_pos));
  7842. memcpy(destination, current_position, sizeof(destination));
  7843. #endif
  7844. }
  7845. }
  7846. void restore_print_from_ram_and_continue(float e_move)
  7847. {
  7848. if (!saved_printing) return;
  7849. // for (int axis = X_AXIS; axis <= E_AXIS; axis++)
  7850. // current_position[axis] = st_get_position_mm(axis);
  7851. active_extruder = saved_active_extruder; //restore active_extruder
  7852. feedrate = saved_feedrate2; //restore feedrate
  7853. axis_relative_modes[E_AXIS] = saved_extruder_relative_mode;
  7854. float e = saved_pos[E_AXIS] - e_move;
  7855. plan_set_e_position(e);
  7856. //first move print head in XY to the saved position:
  7857. plan_buffer_line(saved_pos[X_AXIS], saved_pos[Y_AXIS], current_position[Z_AXIS], saved_pos[E_AXIS] - e_move, homing_feedrate[Z_AXIS]/13, active_extruder);
  7858. st_synchronize();
  7859. //then move Z
  7860. plan_buffer_line(saved_pos[X_AXIS], saved_pos[Y_AXIS], saved_pos[Z_AXIS], saved_pos[E_AXIS] - e_move, homing_feedrate[Z_AXIS]/13, active_extruder);
  7861. st_synchronize();
  7862. //and finaly unretract (35mm/s)
  7863. plan_buffer_line(saved_pos[X_AXIS], saved_pos[Y_AXIS], saved_pos[Z_AXIS], saved_pos[E_AXIS], 35, active_extruder);
  7864. st_synchronize();
  7865. memcpy(current_position, saved_pos, sizeof(saved_pos));
  7866. memcpy(destination, current_position, sizeof(destination));
  7867. if (saved_printing_type == PRINTING_TYPE_SD) { //was sd printing
  7868. card.setIndex(saved_sdpos);
  7869. sdpos_atomic = saved_sdpos;
  7870. card.sdprinting = true;
  7871. printf_P(PSTR("ok\n")); //dummy response because of octoprint is waiting for this
  7872. }
  7873. else if (saved_printing_type == PRINTING_TYPE_USB) { //was usb printing
  7874. gcode_LastN = saved_sdpos; //saved_sdpos was reused for storing line number when usb printing
  7875. serial_count = 0;
  7876. FlushSerialRequestResend();
  7877. }
  7878. else {
  7879. //not sd printing nor usb printing
  7880. }
  7881. lcd_setstatuspgm(_T(WELCOME_MSG));
  7882. saved_printing = false;
  7883. }
  7884. void print_world_coordinates()
  7885. {
  7886. printf_P(_N("world coordinates: (%.3f, %.3f, %.3f)\n"), current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS]);
  7887. }
  7888. void print_physical_coordinates()
  7889. {
  7890. printf_P(_N("physical coordinates: (%.3f, %.3f, %.3f)\n"), st_get_position_mm[X_AXIS], st_get_position_mm[Y_AXIS], st_get_position_mm[Z_AXIS]);
  7891. }
  7892. void print_mesh_bed_leveling_table()
  7893. {
  7894. SERIAL_ECHOPGM("mesh bed leveling: ");
  7895. for (int8_t y = 0; y < MESH_NUM_Y_POINTS; ++ y)
  7896. for (int8_t x = 0; x < MESH_NUM_Y_POINTS; ++ x) {
  7897. MYSERIAL.print(mbl.z_values[y][x], 3);
  7898. SERIAL_ECHOPGM(" ");
  7899. }
  7900. SERIAL_ECHOLNPGM("");
  7901. }
  7902. uint16_t print_time_remaining() {
  7903. uint16_t print_t = PRINT_TIME_REMAINING_INIT;
  7904. if (SilentModeMenu == SILENT_MODE_OFF) print_t = print_time_remaining_normal;
  7905. else print_t = print_time_remaining_silent;
  7906. if ((print_t != PRINT_TIME_REMAINING_INIT) && (feedmultiply != 0)) print_t = 100 * print_t / feedmultiply;
  7907. return print_t;
  7908. }
  7909. uint8_t print_percent_done() {
  7910. //in case that we have information from M73 gcode return percentage counted by slicer, else return percentage counted as byte_printed/filesize
  7911. uint8_t percent_done = 0;
  7912. if (SilentModeMenu == SILENT_MODE_OFF && print_percent_done_normal <= 100) {
  7913. percent_done = print_percent_done_normal;
  7914. }
  7915. else if (print_percent_done_silent <= 100) {
  7916. percent_done = print_percent_done_silent;
  7917. }
  7918. else {
  7919. percent_done = card.percentDone();
  7920. }
  7921. return percent_done;
  7922. }
  7923. static void print_time_remaining_init() {
  7924. print_time_remaining_normal = PRINT_TIME_REMAINING_INIT;
  7925. print_time_remaining_silent = PRINT_TIME_REMAINING_INIT;
  7926. print_percent_done_normal = PRINT_PERCENT_DONE_INIT;
  7927. print_percent_done_silent = PRINT_PERCENT_DONE_INIT;
  7928. }
  7929. #define FIL_LOAD_LENGTH 60