temperature.cpp 56 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002
  1. /*
  2. temperature.c - temperature control
  3. Part of Marlin
  4. Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
  5. This program is free software: you can redistribute it and/or modify
  6. it under the terms of the GNU General Public License as published by
  7. the Free Software Foundation, either version 3 of the License, or
  8. (at your option) any later version.
  9. This program is distributed in the hope that it will be useful,
  10. but WITHOUT ANY WARRANTY; without even the implied warranty of
  11. MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  12. GNU General Public License for more details.
  13. You should have received a copy of the GNU General Public License
  14. along with this program. If not, see <http://www.gnu.org/licenses/>.
  15. */
  16. /*
  17. This firmware is a mashup between Sprinter and grbl.
  18. (https://github.com/kliment/Sprinter)
  19. (https://github.com/simen/grbl/tree)
  20. It has preliminary support for Matthew Roberts advance algorithm
  21. http://reprap.org/pipermail/reprap-dev/2011-May/003323.html
  22. */
  23. #include "Marlin.h"
  24. #include "ultralcd.h"
  25. #include "sound.h"
  26. #include "temperature.h"
  27. #include "cardreader.h"
  28. #include "Sd2PinMap.h"
  29. #include <avr/wdt.h>
  30. #include "adc.h"
  31. #include "ConfigurationStore.h"
  32. extern "C" {
  33. extern void timer02_init(void);
  34. extern void timer02_set_pwm0(uint8_t pwm0);
  35. }
  36. //===========================================================================
  37. //=============================public variables============================
  38. //===========================================================================
  39. int target_temperature[EXTRUDERS] = { 0 };
  40. int target_temperature_bed = 0;
  41. int current_temperature_raw[EXTRUDERS] = { 0 };
  42. float current_temperature[EXTRUDERS] = { 0.0 };
  43. #ifdef PINDA_THERMISTOR
  44. int current_temperature_raw_pinda = 0 ;
  45. float current_temperature_pinda = 0.0;
  46. #endif //PINDA_THERMISTOR
  47. #ifdef AMBIENT_THERMISTOR
  48. int current_temperature_raw_ambient = 0 ;
  49. float current_temperature_ambient = 0.0;
  50. #endif //AMBIENT_THERMISTOR
  51. #ifdef VOLT_PWR_PIN
  52. int current_voltage_raw_pwr = 0;
  53. #endif
  54. #ifdef VOLT_BED_PIN
  55. int current_voltage_raw_bed = 0;
  56. #endif
  57. int current_temperature_bed_raw = 0;
  58. float current_temperature_bed = 0.0;
  59. #ifdef TEMP_SENSOR_1_AS_REDUNDANT
  60. int redundant_temperature_raw = 0;
  61. float redundant_temperature = 0.0;
  62. #endif
  63. #ifdef PIDTEMP
  64. float _Kp, _Ki, _Kd;
  65. int pid_cycle, pid_number_of_cycles;
  66. bool pid_tuning_finished = false;
  67. #ifdef PID_ADD_EXTRUSION_RATE
  68. float Kc=DEFAULT_Kc;
  69. #endif
  70. #endif //PIDTEMP
  71. #ifdef FAN_SOFT_PWM
  72. unsigned char fanSpeedSoftPwm;
  73. #endif
  74. unsigned char soft_pwm_bed;
  75. #ifdef BABYSTEPPING
  76. volatile int babystepsTodo[3]={0,0,0};
  77. #endif
  78. //===========================================================================
  79. //=============================private variables============================
  80. //===========================================================================
  81. static volatile bool temp_meas_ready = false;
  82. #ifdef PIDTEMP
  83. //static cannot be external:
  84. static float temp_iState[EXTRUDERS] = { 0 };
  85. static float temp_dState[EXTRUDERS] = { 0 };
  86. static float pTerm[EXTRUDERS];
  87. static float iTerm[EXTRUDERS];
  88. static float dTerm[EXTRUDERS];
  89. //int output;
  90. static float pid_error[EXTRUDERS];
  91. static float temp_iState_min[EXTRUDERS];
  92. static float temp_iState_max[EXTRUDERS];
  93. // static float pid_input[EXTRUDERS];
  94. // static float pid_output[EXTRUDERS];
  95. static bool pid_reset[EXTRUDERS];
  96. #endif //PIDTEMP
  97. #ifdef PIDTEMPBED
  98. //static cannot be external:
  99. static float temp_iState_bed = { 0 };
  100. static float temp_dState_bed = { 0 };
  101. static float pTerm_bed;
  102. static float iTerm_bed;
  103. static float dTerm_bed;
  104. //int output;
  105. static float pid_error_bed;
  106. static float temp_iState_min_bed;
  107. static float temp_iState_max_bed;
  108. #else //PIDTEMPBED
  109. static unsigned long previous_millis_bed_heater;
  110. #endif //PIDTEMPBED
  111. static unsigned char soft_pwm[EXTRUDERS];
  112. #ifdef FAN_SOFT_PWM
  113. static unsigned char soft_pwm_fan;
  114. #endif
  115. #if (defined(EXTRUDER_0_AUTO_FAN_PIN) && EXTRUDER_0_AUTO_FAN_PIN > -1) || \
  116. (defined(EXTRUDER_1_AUTO_FAN_PIN) && EXTRUDER_1_AUTO_FAN_PIN > -1) || \
  117. (defined(EXTRUDER_2_AUTO_FAN_PIN) && EXTRUDER_2_AUTO_FAN_PIN > -1)
  118. static unsigned long extruder_autofan_last_check;
  119. #endif
  120. #if EXTRUDERS > 3
  121. # error Unsupported number of extruders
  122. #elif EXTRUDERS > 2
  123. # define ARRAY_BY_EXTRUDERS(v1, v2, v3) { v1, v2, v3 }
  124. #elif EXTRUDERS > 1
  125. # define ARRAY_BY_EXTRUDERS(v1, v2, v3) { v1, v2 }
  126. #else
  127. # define ARRAY_BY_EXTRUDERS(v1, v2, v3) { v1 }
  128. #endif
  129. // Init min and max temp with extreme values to prevent false errors during startup
  130. static int minttemp_raw[EXTRUDERS] = ARRAY_BY_EXTRUDERS( HEATER_0_RAW_LO_TEMP , HEATER_1_RAW_LO_TEMP , HEATER_2_RAW_LO_TEMP );
  131. static int maxttemp_raw[EXTRUDERS] = ARRAY_BY_EXTRUDERS( HEATER_0_RAW_HI_TEMP , HEATER_1_RAW_HI_TEMP , HEATER_2_RAW_HI_TEMP );
  132. static int minttemp[EXTRUDERS] = ARRAY_BY_EXTRUDERS( 0, 0, 0 );
  133. static int maxttemp[EXTRUDERS] = ARRAY_BY_EXTRUDERS( 16383, 16383, 16383 );
  134. #ifdef BED_MINTEMP
  135. static int bed_minttemp_raw = HEATER_BED_RAW_LO_TEMP;
  136. #endif
  137. #ifdef BED_MAXTEMP
  138. static int bed_maxttemp_raw = HEATER_BED_RAW_HI_TEMP;
  139. #endif
  140. #ifdef TEMP_SENSOR_1_AS_REDUNDANT
  141. static void *heater_ttbl_map[2] = {(void *)HEATER_0_TEMPTABLE, (void *)HEATER_1_TEMPTABLE };
  142. static uint8_t heater_ttbllen_map[2] = { HEATER_0_TEMPTABLE_LEN, HEATER_1_TEMPTABLE_LEN };
  143. #else
  144. static void *heater_ttbl_map[EXTRUDERS] = ARRAY_BY_EXTRUDERS( (void *)HEATER_0_TEMPTABLE, (void *)HEATER_1_TEMPTABLE, (void *)HEATER_2_TEMPTABLE );
  145. static uint8_t heater_ttbllen_map[EXTRUDERS] = ARRAY_BY_EXTRUDERS( HEATER_0_TEMPTABLE_LEN, HEATER_1_TEMPTABLE_LEN, HEATER_2_TEMPTABLE_LEN );
  146. #endif
  147. static float analog2temp(int raw, uint8_t e);
  148. static float analog2tempBed(int raw);
  149. static float analog2tempAmbient(int raw);
  150. static void updateTemperaturesFromRawValues();
  151. enum TempRunawayStates
  152. {
  153. TempRunaway_INACTIVE = 0,
  154. TempRunaway_PREHEAT = 1,
  155. TempRunaway_ACTIVE = 2,
  156. };
  157. #ifdef WATCH_TEMP_PERIOD
  158. int watch_start_temp[EXTRUDERS] = ARRAY_BY_EXTRUDERS(0,0,0);
  159. unsigned long watchmillis[EXTRUDERS] = ARRAY_BY_EXTRUDERS(0,0,0);
  160. #endif //WATCH_TEMP_PERIOD
  161. #ifndef SOFT_PWM_SCALE
  162. #define SOFT_PWM_SCALE 0
  163. #endif
  164. //===========================================================================
  165. //============================= functions ============================
  166. //===========================================================================
  167. #if (defined (TEMP_RUNAWAY_BED_HYSTERESIS) && TEMP_RUNAWAY_BED_TIMEOUT > 0) || (defined (TEMP_RUNAWAY_EXTRUDER_HYSTERESIS) && TEMP_RUNAWAY_EXTRUDER_TIMEOUT > 0)
  168. static float temp_runaway_status[4];
  169. static float temp_runaway_target[4];
  170. static float temp_runaway_timer[4];
  171. static int temp_runaway_error_counter[4];
  172. static void temp_runaway_check(int _heater_id, float _target_temperature, float _current_temperature, float _output, bool _isbed);
  173. static void temp_runaway_stop(bool isPreheat, bool isBed);
  174. #endif
  175. void PID_autotune(float temp, int extruder, int ncycles)
  176. {
  177. pid_number_of_cycles = ncycles;
  178. pid_tuning_finished = false;
  179. float input = 0.0;
  180. pid_cycle=0;
  181. bool heating = true;
  182. unsigned long temp_millis = millis();
  183. unsigned long t1=temp_millis;
  184. unsigned long t2=temp_millis;
  185. long t_high = 0;
  186. long t_low = 0;
  187. long bias, d;
  188. float Ku, Tu;
  189. float max = 0, min = 10000;
  190. uint8_t safety_check_cycles = 0;
  191. const uint8_t safety_check_cycles_count = (extruder < 0) ? 45 : 10; //10 cycles / 20s delay for extruder and 45 cycles / 90s for heatbed
  192. float temp_ambient;
  193. #if (defined(EXTRUDER_0_AUTO_FAN_PIN) && EXTRUDER_0_AUTO_FAN_PIN > -1) || \
  194. (defined(EXTRUDER_1_AUTO_FAN_PIN) && EXTRUDER_1_AUTO_FAN_PIN > -1) || \
  195. (defined(EXTRUDER_2_AUTO_FAN_PIN) && EXTRUDER_2_AUTO_FAN_PIN > -1)
  196. unsigned long extruder_autofan_last_check = millis();
  197. #endif
  198. if ((extruder >= EXTRUDERS)
  199. #if (TEMP_BED_PIN <= -1)
  200. ||(extruder < 0)
  201. #endif
  202. ){
  203. SERIAL_ECHOLN("PID Autotune failed. Bad extruder number.");
  204. pid_tuning_finished = true;
  205. pid_cycle = 0;
  206. return;
  207. }
  208. SERIAL_ECHOLN("PID Autotune start");
  209. disable_heater(); // switch off all heaters.
  210. if (extruder<0)
  211. {
  212. soft_pwm_bed = (MAX_BED_POWER)/2;
  213. bias = d = (MAX_BED_POWER)/2;
  214. }
  215. else
  216. {
  217. soft_pwm[extruder] = (PID_MAX)/2;
  218. bias = d = (PID_MAX)/2;
  219. }
  220. for(;;) {
  221. #ifdef WATCHDOG
  222. wdt_reset();
  223. #endif //WATCHDOG
  224. if(temp_meas_ready == true) { // temp sample ready
  225. updateTemperaturesFromRawValues();
  226. input = (extruder<0)?current_temperature_bed:current_temperature[extruder];
  227. max=max(max,input);
  228. min=min(min,input);
  229. #if (defined(EXTRUDER_0_AUTO_FAN_PIN) && EXTRUDER_0_AUTO_FAN_PIN > -1) || \
  230. (defined(EXTRUDER_1_AUTO_FAN_PIN) && EXTRUDER_1_AUTO_FAN_PIN > -1) || \
  231. (defined(EXTRUDER_2_AUTO_FAN_PIN) && EXTRUDER_2_AUTO_FAN_PIN > -1)
  232. if(millis() - extruder_autofan_last_check > 2500) {
  233. checkExtruderAutoFans();
  234. extruder_autofan_last_check = millis();
  235. }
  236. #endif
  237. if(heating == true && input > temp) {
  238. if(millis() - t2 > 5000) {
  239. heating=false;
  240. if (extruder<0)
  241. soft_pwm_bed = (bias - d) >> 1;
  242. else
  243. soft_pwm[extruder] = (bias - d) >> 1;
  244. t1=millis();
  245. t_high=t1 - t2;
  246. max=temp;
  247. }
  248. }
  249. if(heating == false && input < temp) {
  250. if(millis() - t1 > 5000) {
  251. heating=true;
  252. t2=millis();
  253. t_low=t2 - t1;
  254. if(pid_cycle > 0) {
  255. bias += (d*(t_high - t_low))/(t_low + t_high);
  256. bias = constrain(bias, 20 ,(extruder<0?(MAX_BED_POWER):(PID_MAX))-20);
  257. if(bias > (extruder<0?(MAX_BED_POWER):(PID_MAX))/2) d = (extruder<0?(MAX_BED_POWER):(PID_MAX)) - 1 - bias;
  258. else d = bias;
  259. SERIAL_PROTOCOLPGM(" bias: "); SERIAL_PROTOCOL(bias);
  260. SERIAL_PROTOCOLPGM(" d: "); SERIAL_PROTOCOL(d);
  261. SERIAL_PROTOCOLPGM(" min: "); SERIAL_PROTOCOL(min);
  262. SERIAL_PROTOCOLPGM(" max: "); SERIAL_PROTOCOLLN(max);
  263. if(pid_cycle > 2) {
  264. Ku = (4.0*d)/(3.14159*(max-min)/2.0);
  265. Tu = ((float)(t_low + t_high)/1000.0);
  266. SERIAL_PROTOCOLPGM(" Ku: "); SERIAL_PROTOCOL(Ku);
  267. SERIAL_PROTOCOLPGM(" Tu: "); SERIAL_PROTOCOLLN(Tu);
  268. _Kp = 0.6*Ku;
  269. _Ki = 2*_Kp/Tu;
  270. _Kd = _Kp*Tu/8;
  271. SERIAL_PROTOCOLLNPGM(" Classic PID ");
  272. SERIAL_PROTOCOLPGM(" Kp: "); SERIAL_PROTOCOLLN(_Kp);
  273. SERIAL_PROTOCOLPGM(" Ki: "); SERIAL_PROTOCOLLN(_Ki);
  274. SERIAL_PROTOCOLPGM(" Kd: "); SERIAL_PROTOCOLLN(_Kd);
  275. /*
  276. _Kp = 0.33*Ku;
  277. _Ki = _Kp/Tu;
  278. _Kd = _Kp*Tu/3;
  279. SERIAL_PROTOCOLLNPGM(" Some overshoot ");
  280. SERIAL_PROTOCOLPGM(" Kp: "); SERIAL_PROTOCOLLN(_Kp);
  281. SERIAL_PROTOCOLPGM(" Ki: "); SERIAL_PROTOCOLLN(_Ki);
  282. SERIAL_PROTOCOLPGM(" Kd: "); SERIAL_PROTOCOLLN(_Kd);
  283. _Kp = 0.2*Ku;
  284. _Ki = 2*_Kp/Tu;
  285. _Kd = _Kp*Tu/3;
  286. SERIAL_PROTOCOLLNPGM(" No overshoot ");
  287. SERIAL_PROTOCOLPGM(" Kp: "); SERIAL_PROTOCOLLN(_Kp);
  288. SERIAL_PROTOCOLPGM(" Ki: "); SERIAL_PROTOCOLLN(_Ki);
  289. SERIAL_PROTOCOLPGM(" Kd: "); SERIAL_PROTOCOLLN(_Kd);
  290. */
  291. }
  292. }
  293. if (extruder<0)
  294. soft_pwm_bed = (bias + d) >> 1;
  295. else
  296. soft_pwm[extruder] = (bias + d) >> 1;
  297. pid_cycle++;
  298. min=temp;
  299. }
  300. }
  301. }
  302. if(input > (temp + 20)) {
  303. SERIAL_PROTOCOLLNPGM("PID Autotune failed! Temperature too high");
  304. pid_tuning_finished = true;
  305. pid_cycle = 0;
  306. return;
  307. }
  308. if(millis() - temp_millis > 2000) {
  309. int p;
  310. if (extruder<0){
  311. p=soft_pwm_bed;
  312. SERIAL_PROTOCOLPGM("B:");
  313. }else{
  314. p=soft_pwm[extruder];
  315. SERIAL_PROTOCOLPGM("T:");
  316. }
  317. SERIAL_PROTOCOL(input);
  318. SERIAL_PROTOCOLPGM(" @:");
  319. SERIAL_PROTOCOLLN(p);
  320. if (safety_check_cycles == 0) { //save ambient temp
  321. temp_ambient = input;
  322. //SERIAL_ECHOPGM("Ambient T: ");
  323. //MYSERIAL.println(temp_ambient);
  324. safety_check_cycles++;
  325. }
  326. else if (safety_check_cycles < safety_check_cycles_count) { //delay
  327. safety_check_cycles++;
  328. }
  329. else if (safety_check_cycles == safety_check_cycles_count){ //check that temperature is rising
  330. safety_check_cycles++;
  331. //SERIAL_ECHOPGM("Time from beginning: ");
  332. //MYSERIAL.print(safety_check_cycles_count * 2);
  333. //SERIAL_ECHOPGM("s. Difference between current and ambient T: ");
  334. //MYSERIAL.println(input - temp_ambient);
  335. if (abs(input - temp_ambient) < 5.0) {
  336. temp_runaway_stop(false, (extruder<0));
  337. pid_tuning_finished = true;
  338. return;
  339. }
  340. }
  341. temp_millis = millis();
  342. }
  343. if(((millis() - t1) + (millis() - t2)) > (10L*60L*1000L*2L)) {
  344. SERIAL_PROTOCOLLNPGM("PID Autotune failed! timeout");
  345. pid_tuning_finished = true;
  346. pid_cycle = 0;
  347. return;
  348. }
  349. if(pid_cycle > ncycles) {
  350. SERIAL_PROTOCOLLNPGM("PID Autotune finished! Put the last Kp, Ki and Kd constants from above into Configuration.h");
  351. pid_tuning_finished = true;
  352. pid_cycle = 0;
  353. return;
  354. }
  355. lcd_update(0);
  356. }
  357. }
  358. void updatePID()
  359. {
  360. #ifdef PIDTEMP
  361. for(int e = 0; e < EXTRUDERS; e++) {
  362. temp_iState_max[e] = PID_INTEGRAL_DRIVE_MAX / cs.Ki;
  363. }
  364. #endif
  365. #ifdef PIDTEMPBED
  366. temp_iState_max_bed = PID_INTEGRAL_DRIVE_MAX / cs.bedKi;
  367. #endif
  368. }
  369. int getHeaterPower(int heater) {
  370. if (heater<0)
  371. return soft_pwm_bed;
  372. return soft_pwm[heater];
  373. }
  374. #if (defined(EXTRUDER_0_AUTO_FAN_PIN) && EXTRUDER_0_AUTO_FAN_PIN > -1) || \
  375. (defined(EXTRUDER_1_AUTO_FAN_PIN) && EXTRUDER_1_AUTO_FAN_PIN > -1) || \
  376. (defined(EXTRUDER_2_AUTO_FAN_PIN) && EXTRUDER_2_AUTO_FAN_PIN > -1)
  377. #if defined(FAN_PIN) && FAN_PIN > -1
  378. #if EXTRUDER_0_AUTO_FAN_PIN == FAN_PIN
  379. #error "You cannot set EXTRUDER_0_AUTO_FAN_PIN equal to FAN_PIN"
  380. #endif
  381. #if EXTRUDER_1_AUTO_FAN_PIN == FAN_PIN
  382. #error "You cannot set EXTRUDER_1_AUTO_FAN_PIN equal to FAN_PIN"
  383. #endif
  384. #if EXTRUDER_2_AUTO_FAN_PIN == FAN_PIN
  385. #error "You cannot set EXTRUDER_2_AUTO_FAN_PIN equal to FAN_PIN"
  386. #endif
  387. #endif
  388. void setExtruderAutoFanState(int pin, bool state)
  389. {
  390. unsigned char newFanSpeed = (state != 0) ? EXTRUDER_AUTO_FAN_SPEED : 0;
  391. // this idiom allows both digital and PWM fan outputs (see M42 handling).
  392. pinMode(pin, OUTPUT);
  393. digitalWrite(pin, newFanSpeed);
  394. analogWrite(pin, newFanSpeed);
  395. }
  396. #if (defined(FANCHECK) && (((defined(TACH_0) && (TACH_0 >-1)) || (defined(TACH_1) && (TACH_1 > -1)))))
  397. void countFanSpeed()
  398. {
  399. //SERIAL_ECHOPGM("edge counter 1:"); MYSERIAL.println(fan_edge_counter[1]);
  400. fan_speed[0] = (fan_edge_counter[0] * (float(250) / (millis() - extruder_autofan_last_check)));
  401. fan_speed[1] = (fan_edge_counter[1] * (float(250) / (millis() - extruder_autofan_last_check)));
  402. /*SERIAL_ECHOPGM("time interval: "); MYSERIAL.println(millis() - extruder_autofan_last_check);
  403. SERIAL_ECHOPGM("extruder fan speed:"); MYSERIAL.print(fan_speed[0]); SERIAL_ECHOPGM("; edge counter:"); MYSERIAL.println(fan_edge_counter[0]);
  404. SERIAL_ECHOPGM("print fan speed:"); MYSERIAL.print(fan_speed[1]); SERIAL_ECHOPGM("; edge counter:"); MYSERIAL.println(fan_edge_counter[1]);
  405. SERIAL_ECHOLNPGM(" ");*/
  406. fan_edge_counter[0] = 0;
  407. fan_edge_counter[1] = 0;
  408. }
  409. extern bool fans_check_enabled;
  410. void checkFanSpeed()
  411. {
  412. fans_check_enabled = (eeprom_read_byte((uint8_t*)EEPROM_FAN_CHECK_ENABLED) > 0);
  413. static unsigned char fan_speed_errors[2] = { 0,0 };
  414. #if (defined(FANCHECK) && defined(TACH_0) && (TACH_0 >-1))
  415. if ((fan_speed[0] == 0) && (current_temperature[0] > EXTRUDER_AUTO_FAN_TEMPERATURE)) fan_speed_errors[0]++;
  416. else fan_speed_errors[0] = 0;
  417. #endif
  418. #if (defined(FANCHECK) && defined(TACH_1) && (TACH_1 >-1))
  419. if ((fan_speed[1] == 0) && ((blocks_queued() ? block_buffer[block_buffer_tail].fan_speed : fanSpeed) > MIN_PRINT_FAN_SPEED)) fan_speed_errors[1]++;
  420. else fan_speed_errors[1] = 0;
  421. #endif
  422. if ((fan_speed_errors[0] > 5) && fans_check_enabled) {
  423. fan_speed_errors[0] = 0;
  424. fanSpeedError(0); //extruder fan
  425. }
  426. if ((fan_speed_errors[1] > 15) && fans_check_enabled) {
  427. fan_speed_errors[1] = 0;
  428. fanSpeedError(1); //print fan
  429. }
  430. }
  431. void fanSpeedError(unsigned char _fan) {
  432. if (get_message_level() != 0 && isPrintPaused) return;
  433. //to ensure that target temp. is not set to zero in case taht we are resuming print
  434. if (card.sdprinting) {
  435. if (heating_status != 0) {
  436. lcd_print_stop();
  437. }
  438. else {
  439. lcd_pause_print();
  440. }
  441. }
  442. else {
  443. setTargetHotend0(0);
  444. SERIAL_ECHOLNPGM("// action:pause"); //for octoprint
  445. }
  446. switch (_fan) {
  447. case 0:
  448. SERIAL_ECHOLNPGM("Extruder fan speed is lower then expected");
  449. if (get_message_level() == 0) {
  450. if((eSoundMode==e_SOUND_MODE_LOUD)||(eSoundMode==e_SOUND_MODE_ONCE)||(eSoundMode==e_SOUND_MODE_SILENT))
  451. WRITE(BEEPER, HIGH);
  452. delayMicroseconds(200);
  453. WRITE(BEEPER, LOW);
  454. delayMicroseconds(100);
  455. LCD_ALERTMESSAGEPGM("Err: EXTR. FAN ERROR");
  456. }
  457. break;
  458. case 1:
  459. SERIAL_ECHOLNPGM("Print fan speed is lower then expected");
  460. if (get_message_level() == 0) {
  461. if((eSoundMode==e_SOUND_MODE_LOUD)||(eSoundMode==e_SOUND_MODE_ONCE)||(eSoundMode==e_SOUND_MODE_SILENT))
  462. WRITE(BEEPER, HIGH);
  463. delayMicroseconds(200);
  464. WRITE(BEEPER, LOW);
  465. delayMicroseconds(100);
  466. LCD_ALERTMESSAGEPGM("Err: PRINT FAN ERROR");
  467. }
  468. break;
  469. }
  470. }
  471. #endif //(defined(TACH_0) && TACH_0 >-1) || (defined(TACH_1) && TACH_1 > -1)
  472. void checkExtruderAutoFans()
  473. {
  474. uint8_t fanState = 0;
  475. // which fan pins need to be turned on?
  476. #if defined(EXTRUDER_0_AUTO_FAN_PIN) && EXTRUDER_0_AUTO_FAN_PIN > -1
  477. if (current_temperature[0] > EXTRUDER_AUTO_FAN_TEMPERATURE)
  478. fanState |= 1;
  479. #endif
  480. #if defined(EXTRUDER_1_AUTO_FAN_PIN) && EXTRUDER_1_AUTO_FAN_PIN > -1
  481. if (current_temperature[1] > EXTRUDER_AUTO_FAN_TEMPERATURE)
  482. {
  483. if (EXTRUDER_1_AUTO_FAN_PIN == EXTRUDER_0_AUTO_FAN_PIN)
  484. fanState |= 1;
  485. else
  486. fanState |= 2;
  487. }
  488. #endif
  489. #if defined(EXTRUDER_2_AUTO_FAN_PIN) && EXTRUDER_2_AUTO_FAN_PIN > -1
  490. if (current_temperature[2] > EXTRUDER_AUTO_FAN_TEMPERATURE)
  491. {
  492. if (EXTRUDER_2_AUTO_FAN_PIN == EXTRUDER_0_AUTO_FAN_PIN)
  493. fanState |= 1;
  494. else if (EXTRUDER_2_AUTO_FAN_PIN == EXTRUDER_1_AUTO_FAN_PIN)
  495. fanState |= 2;
  496. else
  497. fanState |= 4;
  498. }
  499. #endif
  500. // update extruder auto fan states
  501. #if defined(EXTRUDER_0_AUTO_FAN_PIN) && EXTRUDER_0_AUTO_FAN_PIN > -1
  502. setExtruderAutoFanState(EXTRUDER_0_AUTO_FAN_PIN, (fanState & 1) != 0);
  503. #endif
  504. #if defined(EXTRUDER_1_AUTO_FAN_PIN) && EXTRUDER_1_AUTO_FAN_PIN > -1
  505. if (EXTRUDER_1_AUTO_FAN_PIN != EXTRUDER_0_AUTO_FAN_PIN)
  506. setExtruderAutoFanState(EXTRUDER_1_AUTO_FAN_PIN, (fanState & 2) != 0);
  507. #endif
  508. #if defined(EXTRUDER_2_AUTO_FAN_PIN) && EXTRUDER_2_AUTO_FAN_PIN > -1
  509. if (EXTRUDER_2_AUTO_FAN_PIN != EXTRUDER_0_AUTO_FAN_PIN
  510. && EXTRUDER_2_AUTO_FAN_PIN != EXTRUDER_1_AUTO_FAN_PIN)
  511. setExtruderAutoFanState(EXTRUDER_2_AUTO_FAN_PIN, (fanState & 4) != 0);
  512. #endif
  513. }
  514. #endif // any extruder auto fan pins set
  515. void manage_heater()
  516. {
  517. #ifdef WATCHDOG
  518. wdt_reset();
  519. #endif //WATCHDOG
  520. float pid_input;
  521. float pid_output;
  522. if(temp_meas_ready != true) //better readability
  523. return;
  524. updateTemperaturesFromRawValues();
  525. #ifdef TEMP_RUNAWAY_BED_HYSTERESIS
  526. temp_runaway_check(0, target_temperature_bed, current_temperature_bed, (int)soft_pwm_bed, true);
  527. #endif
  528. for(int e = 0; e < EXTRUDERS; e++)
  529. {
  530. #ifdef TEMP_RUNAWAY_EXTRUDER_HYSTERESIS
  531. temp_runaway_check(e+1, target_temperature[e], current_temperature[e], (int)soft_pwm[e], false);
  532. #endif
  533. #ifdef PIDTEMP
  534. pid_input = current_temperature[e];
  535. #ifndef PID_OPENLOOP
  536. pid_error[e] = target_temperature[e] - pid_input;
  537. if(pid_error[e] > PID_FUNCTIONAL_RANGE) {
  538. pid_output = BANG_MAX;
  539. pid_reset[e] = true;
  540. }
  541. else if(pid_error[e] < -PID_FUNCTIONAL_RANGE || target_temperature[e] == 0) {
  542. pid_output = 0;
  543. pid_reset[e] = true;
  544. }
  545. else {
  546. if(pid_reset[e] == true) {
  547. temp_iState[e] = 0.0;
  548. pid_reset[e] = false;
  549. }
  550. pTerm[e] = cs.Kp * pid_error[e];
  551. temp_iState[e] += pid_error[e];
  552. temp_iState[e] = constrain(temp_iState[e], temp_iState_min[e], temp_iState_max[e]);
  553. iTerm[e] = cs.Ki * temp_iState[e];
  554. //K1 defined in Configuration.h in the PID settings
  555. #define K2 (1.0-K1)
  556. dTerm[e] = (cs.Kd * (pid_input - temp_dState[e]))*K2 + (K1 * dTerm[e]);
  557. pid_output = pTerm[e] + iTerm[e] - dTerm[e];
  558. if (pid_output > PID_MAX) {
  559. if (pid_error[e] > 0 ) temp_iState[e] -= pid_error[e]; // conditional un-integration
  560. pid_output=PID_MAX;
  561. } else if (pid_output < 0){
  562. if (pid_error[e] < 0 ) temp_iState[e] -= pid_error[e]; // conditional un-integration
  563. pid_output=0;
  564. }
  565. }
  566. temp_dState[e] = pid_input;
  567. #else
  568. pid_output = constrain(target_temperature[e], 0, PID_MAX);
  569. #endif //PID_OPENLOOP
  570. #ifdef PID_DEBUG
  571. SERIAL_ECHO_START;
  572. SERIAL_ECHO(" PID_DEBUG ");
  573. SERIAL_ECHO(e);
  574. SERIAL_ECHO(": Input ");
  575. SERIAL_ECHO(pid_input);
  576. SERIAL_ECHO(" Output ");
  577. SERIAL_ECHO(pid_output);
  578. SERIAL_ECHO(" pTerm ");
  579. SERIAL_ECHO(pTerm[e]);
  580. SERIAL_ECHO(" iTerm ");
  581. SERIAL_ECHO(iTerm[e]);
  582. SERIAL_ECHO(" dTerm ");
  583. SERIAL_ECHOLN(dTerm[e]);
  584. #endif //PID_DEBUG
  585. #else /* PID off */
  586. pid_output = 0;
  587. if(current_temperature[e] < target_temperature[e]) {
  588. pid_output = PID_MAX;
  589. }
  590. #endif
  591. // Check if temperature is within the correct range
  592. #ifdef AMBIENT_THERMISTOR
  593. if(((current_temperature_ambient < MINTEMP_MINAMBIENT) || (current_temperature[e] > minttemp[e])) && (current_temperature[e] < maxttemp[e]))
  594. #else //AMBIENT_THERMISTOR
  595. if((current_temperature[e] > minttemp[e]) && (current_temperature[e] < maxttemp[e]))
  596. #endif //AMBIENT_THERMISTOR
  597. {
  598. soft_pwm[e] = (int)pid_output >> 1;
  599. }
  600. else
  601. {
  602. soft_pwm[e] = 0;
  603. }
  604. #ifdef WATCH_TEMP_PERIOD
  605. if(watchmillis[e] && millis() - watchmillis[e] > WATCH_TEMP_PERIOD)
  606. {
  607. if(degHotend(e) < watch_start_temp[e] + WATCH_TEMP_INCREASE)
  608. {
  609. setTargetHotend(0, e);
  610. LCD_MESSAGEPGM("Heating failed");
  611. SERIAL_ECHO_START;
  612. SERIAL_ECHOLN("Heating failed");
  613. }else{
  614. watchmillis[e] = 0;
  615. }
  616. }
  617. #endif
  618. #ifdef TEMP_SENSOR_1_AS_REDUNDANT
  619. if(fabs(current_temperature[0] - redundant_temperature) > MAX_REDUNDANT_TEMP_SENSOR_DIFF) {
  620. disable_heater();
  621. if(IsStopped() == false) {
  622. SERIAL_ERROR_START;
  623. SERIAL_ERRORLNPGM("Extruder switched off. Temperature difference between temp sensors is too high !");
  624. LCD_ALERTMESSAGEPGM("Err: REDUNDANT TEMP ERROR");
  625. }
  626. #ifndef BOGUS_TEMPERATURE_FAILSAFE_OVERRIDE
  627. Stop();
  628. #endif
  629. }
  630. #endif
  631. } // End extruder for loop
  632. #ifndef DEBUG_DISABLE_FANCHECK
  633. #if (defined(EXTRUDER_0_AUTO_FAN_PIN) && EXTRUDER_0_AUTO_FAN_PIN > -1) || \
  634. (defined(EXTRUDER_1_AUTO_FAN_PIN) && EXTRUDER_1_AUTO_FAN_PIN > -1) || \
  635. (defined(EXTRUDER_2_AUTO_FAN_PIN) && EXTRUDER_2_AUTO_FAN_PIN > -1)
  636. if(millis() - extruder_autofan_last_check > 1000) // only need to check fan state very infrequently
  637. {
  638. #if (defined(FANCHECK) && ((defined(TACH_0) && (TACH_0 >-1)) || (defined(TACH_1) && (TACH_1 > -1))))
  639. countFanSpeed();
  640. checkFanSpeed();
  641. #endif //(defined(TACH_0) && TACH_0 >-1) || (defined(TACH_1) && TACH_1 > -1)
  642. checkExtruderAutoFans();
  643. extruder_autofan_last_check = millis();
  644. }
  645. #endif
  646. #endif //DEBUG_DISABLE_FANCHECK
  647. #ifndef PIDTEMPBED
  648. if(millis() - previous_millis_bed_heater < BED_CHECK_INTERVAL)
  649. return;
  650. previous_millis_bed_heater = millis();
  651. #endif
  652. #if TEMP_SENSOR_BED != 0
  653. #ifdef PIDTEMPBED
  654. pid_input = current_temperature_bed;
  655. #ifndef PID_OPENLOOP
  656. pid_error_bed = target_temperature_bed - pid_input;
  657. pTerm_bed = cs.bedKp * pid_error_bed;
  658. temp_iState_bed += pid_error_bed;
  659. temp_iState_bed = constrain(temp_iState_bed, temp_iState_min_bed, temp_iState_max_bed);
  660. iTerm_bed = cs.bedKi * temp_iState_bed;
  661. //K1 defined in Configuration.h in the PID settings
  662. #define K2 (1.0-K1)
  663. dTerm_bed= (cs.bedKd * (pid_input - temp_dState_bed))*K2 + (K1 * dTerm_bed);
  664. temp_dState_bed = pid_input;
  665. pid_output = pTerm_bed + iTerm_bed - dTerm_bed;
  666. if (pid_output > MAX_BED_POWER) {
  667. if (pid_error_bed > 0 ) temp_iState_bed -= pid_error_bed; // conditional un-integration
  668. pid_output=MAX_BED_POWER;
  669. } else if (pid_output < 0){
  670. if (pid_error_bed < 0 ) temp_iState_bed -= pid_error_bed; // conditional un-integration
  671. pid_output=0;
  672. }
  673. #else
  674. pid_output = constrain(target_temperature_bed, 0, MAX_BED_POWER);
  675. #endif //PID_OPENLOOP
  676. #ifdef AMBIENT_THERMISTOR
  677. if(((current_temperature_bed > BED_MINTEMP) || (current_temperature_ambient < MINTEMP_MINAMBIENT)) && (current_temperature_bed < BED_MAXTEMP))
  678. #else //AMBIENT_THERMISTOR
  679. if((current_temperature_bed > BED_MINTEMP) && (current_temperature_bed < BED_MAXTEMP))
  680. #endif //AMBIENT_THERMISTOR
  681. {
  682. soft_pwm_bed = (int)pid_output >> 1;
  683. }
  684. else {
  685. soft_pwm_bed = 0;
  686. }
  687. #elif !defined(BED_LIMIT_SWITCHING)
  688. // Check if temperature is within the correct range
  689. if((current_temperature_bed > BED_MINTEMP) && (current_temperature_bed < BED_MAXTEMP))
  690. {
  691. if(current_temperature_bed >= target_temperature_bed)
  692. {
  693. soft_pwm_bed = 0;
  694. }
  695. else
  696. {
  697. soft_pwm_bed = MAX_BED_POWER>>1;
  698. }
  699. }
  700. else
  701. {
  702. soft_pwm_bed = 0;
  703. WRITE(HEATER_BED_PIN,LOW);
  704. }
  705. #else //#ifdef BED_LIMIT_SWITCHING
  706. // Check if temperature is within the correct band
  707. if((current_temperature_bed > BED_MINTEMP) && (current_temperature_bed < BED_MAXTEMP))
  708. {
  709. if(current_temperature_bed > target_temperature_bed + BED_HYSTERESIS)
  710. {
  711. soft_pwm_bed = 0;
  712. }
  713. else if(current_temperature_bed <= target_temperature_bed - BED_HYSTERESIS)
  714. {
  715. soft_pwm_bed = MAX_BED_POWER>>1;
  716. }
  717. }
  718. else
  719. {
  720. soft_pwm_bed = 0;
  721. WRITE(HEATER_BED_PIN,LOW);
  722. }
  723. #endif
  724. #endif
  725. #ifdef HOST_KEEPALIVE_FEATURE
  726. host_keepalive();
  727. #endif
  728. }
  729. #define PGM_RD_W(x) (short)pgm_read_word(&x)
  730. // Derived from RepRap FiveD extruder::getTemperature()
  731. // For hot end temperature measurement.
  732. static float analog2temp(int raw, uint8_t e) {
  733. #ifdef TEMP_SENSOR_1_AS_REDUNDANT
  734. if(e > EXTRUDERS)
  735. #else
  736. if(e >= EXTRUDERS)
  737. #endif
  738. {
  739. SERIAL_ERROR_START;
  740. SERIAL_ERROR((int)e);
  741. SERIAL_ERRORLNPGM(" - Invalid extruder number !");
  742. kill(PSTR(""), 6);
  743. return 0.0;
  744. }
  745. #ifdef HEATER_0_USES_MAX6675
  746. if (e == 0)
  747. {
  748. return 0.25 * raw;
  749. }
  750. #endif
  751. if(heater_ttbl_map[e] != NULL)
  752. {
  753. float celsius = 0;
  754. uint8_t i;
  755. short (*tt)[][2] = (short (*)[][2])(heater_ttbl_map[e]);
  756. for (i=1; i<heater_ttbllen_map[e]; i++)
  757. {
  758. if (PGM_RD_W((*tt)[i][0]) > raw)
  759. {
  760. celsius = PGM_RD_W((*tt)[i-1][1]) +
  761. (raw - PGM_RD_W((*tt)[i-1][0])) *
  762. (float)(PGM_RD_W((*tt)[i][1]) - PGM_RD_W((*tt)[i-1][1])) /
  763. (float)(PGM_RD_W((*tt)[i][0]) - PGM_RD_W((*tt)[i-1][0]));
  764. break;
  765. }
  766. }
  767. // Overflow: Set to last value in the table
  768. if (i == heater_ttbllen_map[e]) celsius = PGM_RD_W((*tt)[i-1][1]);
  769. return celsius;
  770. }
  771. return ((raw * ((5.0 * 100.0) / 1024.0) / OVERSAMPLENR) * TEMP_SENSOR_AD595_GAIN) + TEMP_SENSOR_AD595_OFFSET;
  772. }
  773. // Derived from RepRap FiveD extruder::getTemperature()
  774. // For bed temperature measurement.
  775. static float analog2tempBed(int raw) {
  776. #ifdef BED_USES_THERMISTOR
  777. float celsius = 0;
  778. byte i;
  779. for (i=1; i<BEDTEMPTABLE_LEN; i++)
  780. {
  781. if (PGM_RD_W(BEDTEMPTABLE[i][0]) > raw)
  782. {
  783. celsius = PGM_RD_W(BEDTEMPTABLE[i-1][1]) +
  784. (raw - PGM_RD_W(BEDTEMPTABLE[i-1][0])) *
  785. (float)(PGM_RD_W(BEDTEMPTABLE[i][1]) - PGM_RD_W(BEDTEMPTABLE[i-1][1])) /
  786. (float)(PGM_RD_W(BEDTEMPTABLE[i][0]) - PGM_RD_W(BEDTEMPTABLE[i-1][0]));
  787. break;
  788. }
  789. }
  790. // Overflow: Set to last value in the table
  791. if (i == BEDTEMPTABLE_LEN) celsius = PGM_RD_W(BEDTEMPTABLE[i-1][1]);
  792. // temperature offset adjustment
  793. #ifdef BED_OFFSET
  794. float _offset = BED_OFFSET;
  795. float _offset_center = BED_OFFSET_CENTER;
  796. float _offset_start = BED_OFFSET_START;
  797. float _first_koef = (_offset / 2) / (_offset_center - _offset_start);
  798. float _second_koef = (_offset / 2) / (100 - _offset_center);
  799. if (celsius >= _offset_start && celsius <= _offset_center)
  800. {
  801. celsius = celsius + (_first_koef * (celsius - _offset_start));
  802. }
  803. else if (celsius > _offset_center && celsius <= 100)
  804. {
  805. celsius = celsius + (_first_koef * (_offset_center - _offset_start)) + ( _second_koef * ( celsius - ( 100 - _offset_center ) )) ;
  806. }
  807. else if (celsius > 100)
  808. {
  809. celsius = celsius + _offset;
  810. }
  811. #endif
  812. return celsius;
  813. #elif defined BED_USES_AD595
  814. return ((raw * ((5.0 * 100.0) / 1024.0) / OVERSAMPLENR) * TEMP_SENSOR_AD595_GAIN) + TEMP_SENSOR_AD595_OFFSET;
  815. #else
  816. return 0;
  817. #endif
  818. }
  819. #ifdef AMBIENT_THERMISTOR
  820. static float analog2tempAmbient(int raw)
  821. {
  822. float celsius = 0;
  823. byte i;
  824. for (i=1; i<AMBIENTTEMPTABLE_LEN; i++)
  825. {
  826. if (PGM_RD_W(AMBIENTTEMPTABLE[i][0]) > raw)
  827. {
  828. celsius = PGM_RD_W(AMBIENTTEMPTABLE[i-1][1]) +
  829. (raw - PGM_RD_W(AMBIENTTEMPTABLE[i-1][0])) *
  830. (float)(PGM_RD_W(AMBIENTTEMPTABLE[i][1]) - PGM_RD_W(AMBIENTTEMPTABLE[i-1][1])) /
  831. (float)(PGM_RD_W(AMBIENTTEMPTABLE[i][0]) - PGM_RD_W(AMBIENTTEMPTABLE[i-1][0]));
  832. break;
  833. }
  834. }
  835. // Overflow: Set to last value in the table
  836. if (i == AMBIENTTEMPTABLE_LEN) celsius = PGM_RD_W(AMBIENTTEMPTABLE[i-1][1]);
  837. return celsius;
  838. }
  839. #endif //AMBIENT_THERMISTOR
  840. /* Called to get the raw values into the the actual temperatures. The raw values are created in interrupt context,
  841. and this function is called from normal context as it is too slow to run in interrupts and will block the stepper routine otherwise */
  842. static void updateTemperaturesFromRawValues()
  843. {
  844. for(uint8_t e=0;e<EXTRUDERS;e++)
  845. {
  846. current_temperature[e] = analog2temp(current_temperature_raw[e], e);
  847. }
  848. #ifdef PINDA_THERMISTOR
  849. current_temperature_pinda = analog2tempBed(current_temperature_raw_pinda);
  850. #endif
  851. #ifdef AMBIENT_THERMISTOR
  852. current_temperature_ambient = analog2tempAmbient(current_temperature_raw_ambient); //thermistor for ambient is NTCG104LH104JT1 (2000)
  853. #endif
  854. #ifdef DEBUG_HEATER_BED_SIM
  855. current_temperature_bed = target_temperature_bed;
  856. #else //DEBUG_HEATER_BED_SIM
  857. current_temperature_bed = analog2tempBed(current_temperature_bed_raw);
  858. #endif //DEBUG_HEATER_BED_SIM
  859. #ifdef TEMP_SENSOR_1_AS_REDUNDANT
  860. redundant_temperature = analog2temp(redundant_temperature_raw, 1);
  861. #endif
  862. //Reset the watchdog after we know we have a temperature measurement.
  863. #ifdef WATCHDOG
  864. wdt_reset();
  865. #endif //WATCHDOG
  866. CRITICAL_SECTION_START;
  867. temp_meas_ready = false;
  868. CRITICAL_SECTION_END;
  869. }
  870. void tp_init()
  871. {
  872. #if MB(RUMBA) && ((TEMP_SENSOR_0==-1)||(TEMP_SENSOR_1==-1)||(TEMP_SENSOR_2==-1)||(TEMP_SENSOR_BED==-1))
  873. //disable RUMBA JTAG in case the thermocouple extension is plugged on top of JTAG connector
  874. MCUCR=(1<<JTD);
  875. MCUCR=(1<<JTD);
  876. #endif
  877. // Finish init of mult extruder arrays
  878. for(int e = 0; e < EXTRUDERS; e++) {
  879. // populate with the first value
  880. maxttemp[e] = maxttemp[0];
  881. #ifdef PIDTEMP
  882. temp_iState_min[e] = 0.0;
  883. temp_iState_max[e] = PID_INTEGRAL_DRIVE_MAX / cs.Ki;
  884. #endif //PIDTEMP
  885. #ifdef PIDTEMPBED
  886. temp_iState_min_bed = 0.0;
  887. temp_iState_max_bed = PID_INTEGRAL_DRIVE_MAX / cs.bedKi;
  888. #endif //PIDTEMPBED
  889. }
  890. #if defined(HEATER_0_PIN) && (HEATER_0_PIN > -1)
  891. SET_OUTPUT(HEATER_0_PIN);
  892. #endif
  893. #if defined(HEATER_1_PIN) && (HEATER_1_PIN > -1)
  894. SET_OUTPUT(HEATER_1_PIN);
  895. #endif
  896. #if defined(HEATER_2_PIN) && (HEATER_2_PIN > -1)
  897. SET_OUTPUT(HEATER_2_PIN);
  898. #endif
  899. #if defined(HEATER_BED_PIN) && (HEATER_BED_PIN > -1)
  900. SET_OUTPUT(HEATER_BED_PIN);
  901. #endif
  902. #if defined(FAN_PIN) && (FAN_PIN > -1)
  903. SET_OUTPUT(FAN_PIN);
  904. #ifdef FAST_PWM_FAN
  905. setPwmFrequency(FAN_PIN, 1); // No prescaling. Pwm frequency = F_CPU/256/8
  906. #endif
  907. #ifdef FAN_SOFT_PWM
  908. soft_pwm_fan = fanSpeedSoftPwm / 2;
  909. #endif
  910. #endif
  911. #ifdef HEATER_0_USES_MAX6675
  912. #ifndef SDSUPPORT
  913. SET_OUTPUT(SCK_PIN);
  914. WRITE(SCK_PIN,0);
  915. SET_OUTPUT(MOSI_PIN);
  916. WRITE(MOSI_PIN,1);
  917. SET_INPUT(MISO_PIN);
  918. WRITE(MISO_PIN,1);
  919. #endif
  920. /* Using pinMode and digitalWrite, as that was the only way I could get it to compile */
  921. //Have to toggle SD card CS pin to low first, to enable firmware to talk with SD card
  922. pinMode(SS_PIN, OUTPUT);
  923. digitalWrite(SS_PIN,0);
  924. pinMode(MAX6675_SS, OUTPUT);
  925. digitalWrite(MAX6675_SS,1);
  926. #endif
  927. adc_init();
  928. timer02_init();
  929. // Use timer0 for temperature measurement
  930. // Interleave temperature interrupt with millies interrupt
  931. OCR2B = 128;
  932. TIMSK2 |= (1<<OCIE2B);
  933. // Wait for temperature measurement to settle
  934. delay(250);
  935. #ifdef HEATER_0_MINTEMP
  936. minttemp[0] = HEATER_0_MINTEMP;
  937. while(analog2temp(minttemp_raw[0], 0) < HEATER_0_MINTEMP) {
  938. #if HEATER_0_RAW_LO_TEMP < HEATER_0_RAW_HI_TEMP
  939. minttemp_raw[0] += OVERSAMPLENR;
  940. #else
  941. minttemp_raw[0] -= OVERSAMPLENR;
  942. #endif
  943. }
  944. #endif //MINTEMP
  945. #ifdef HEATER_0_MAXTEMP
  946. maxttemp[0] = HEATER_0_MAXTEMP;
  947. while(analog2temp(maxttemp_raw[0], 0) > HEATER_0_MAXTEMP) {
  948. #if HEATER_0_RAW_LO_TEMP < HEATER_0_RAW_HI_TEMP
  949. maxttemp_raw[0] -= OVERSAMPLENR;
  950. #else
  951. maxttemp_raw[0] += OVERSAMPLENR;
  952. #endif
  953. }
  954. #endif //MAXTEMP
  955. #if (EXTRUDERS > 1) && defined(HEATER_1_MINTEMP)
  956. minttemp[1] = HEATER_1_MINTEMP;
  957. while(analog2temp(minttemp_raw[1], 1) < HEATER_1_MINTEMP) {
  958. #if HEATER_1_RAW_LO_TEMP < HEATER_1_RAW_HI_TEMP
  959. minttemp_raw[1] += OVERSAMPLENR;
  960. #else
  961. minttemp_raw[1] -= OVERSAMPLENR;
  962. #endif
  963. }
  964. #endif // MINTEMP 1
  965. #if (EXTRUDERS > 1) && defined(HEATER_1_MAXTEMP)
  966. maxttemp[1] = HEATER_1_MAXTEMP;
  967. while(analog2temp(maxttemp_raw[1], 1) > HEATER_1_MAXTEMP) {
  968. #if HEATER_1_RAW_LO_TEMP < HEATER_1_RAW_HI_TEMP
  969. maxttemp_raw[1] -= OVERSAMPLENR;
  970. #else
  971. maxttemp_raw[1] += OVERSAMPLENR;
  972. #endif
  973. }
  974. #endif //MAXTEMP 1
  975. #if (EXTRUDERS > 2) && defined(HEATER_2_MINTEMP)
  976. minttemp[2] = HEATER_2_MINTEMP;
  977. while(analog2temp(minttemp_raw[2], 2) < HEATER_2_MINTEMP) {
  978. #if HEATER_2_RAW_LO_TEMP < HEATER_2_RAW_HI_TEMP
  979. minttemp_raw[2] += OVERSAMPLENR;
  980. #else
  981. minttemp_raw[2] -= OVERSAMPLENR;
  982. #endif
  983. }
  984. #endif //MINTEMP 2
  985. #if (EXTRUDERS > 2) && defined(HEATER_2_MAXTEMP)
  986. maxttemp[2] = HEATER_2_MAXTEMP;
  987. while(analog2temp(maxttemp_raw[2], 2) > HEATER_2_MAXTEMP) {
  988. #if HEATER_2_RAW_LO_TEMP < HEATER_2_RAW_HI_TEMP
  989. maxttemp_raw[2] -= OVERSAMPLENR;
  990. #else
  991. maxttemp_raw[2] += OVERSAMPLENR;
  992. #endif
  993. }
  994. #endif //MAXTEMP 2
  995. #ifdef BED_MINTEMP
  996. /* No bed MINTEMP error implemented?!? */
  997. while(analog2tempBed(bed_minttemp_raw) < BED_MINTEMP) {
  998. #if HEATER_BED_RAW_LO_TEMP < HEATER_BED_RAW_HI_TEMP
  999. bed_minttemp_raw += OVERSAMPLENR;
  1000. #else
  1001. bed_minttemp_raw -= OVERSAMPLENR;
  1002. #endif
  1003. }
  1004. #endif //BED_MINTEMP
  1005. #ifdef BED_MAXTEMP
  1006. while(analog2tempBed(bed_maxttemp_raw) > BED_MAXTEMP) {
  1007. #if HEATER_BED_RAW_LO_TEMP < HEATER_BED_RAW_HI_TEMP
  1008. bed_maxttemp_raw -= OVERSAMPLENR;
  1009. #else
  1010. bed_maxttemp_raw += OVERSAMPLENR;
  1011. #endif
  1012. }
  1013. #endif //BED_MAXTEMP
  1014. }
  1015. void setWatch()
  1016. {
  1017. #ifdef WATCH_TEMP_PERIOD
  1018. for (int e = 0; e < EXTRUDERS; e++)
  1019. {
  1020. if(degHotend(e) < degTargetHotend(e) - (WATCH_TEMP_INCREASE * 2))
  1021. {
  1022. watch_start_temp[e] = degHotend(e);
  1023. watchmillis[e] = millis();
  1024. }
  1025. }
  1026. #endif
  1027. }
  1028. #if (defined (TEMP_RUNAWAY_BED_HYSTERESIS) && TEMP_RUNAWAY_BED_TIMEOUT > 0) || (defined (TEMP_RUNAWAY_EXTRUDER_HYSTERESIS) && TEMP_RUNAWAY_EXTRUDER_TIMEOUT > 0)
  1029. void temp_runaway_check(int _heater_id, float _target_temperature, float _current_temperature, float _output, bool _isbed)
  1030. {
  1031. float __hysteresis = 0;
  1032. int __timeout = 0;
  1033. bool temp_runaway_check_active = false;
  1034. static float __preheat_start[2] = { 0,0}; //currently just bed and one extruder
  1035. static int __preheat_counter[2] = { 0,0};
  1036. static int __preheat_errors[2] = { 0,0};
  1037. if (millis() - temp_runaway_timer[_heater_id] > 2000)
  1038. {
  1039. #ifdef TEMP_RUNAWAY_BED_TIMEOUT
  1040. if (_isbed)
  1041. {
  1042. __hysteresis = TEMP_RUNAWAY_BED_HYSTERESIS;
  1043. __timeout = TEMP_RUNAWAY_BED_TIMEOUT;
  1044. }
  1045. #endif
  1046. #ifdef TEMP_RUNAWAY_EXTRUDER_TIMEOUT
  1047. if (!_isbed)
  1048. {
  1049. __hysteresis = TEMP_RUNAWAY_EXTRUDER_HYSTERESIS;
  1050. __timeout = TEMP_RUNAWAY_EXTRUDER_TIMEOUT;
  1051. }
  1052. #endif
  1053. temp_runaway_timer[_heater_id] = millis();
  1054. if (_output == 0)
  1055. {
  1056. temp_runaway_check_active = false;
  1057. temp_runaway_error_counter[_heater_id] = 0;
  1058. }
  1059. if (temp_runaway_target[_heater_id] != _target_temperature)
  1060. {
  1061. if (_target_temperature > 0)
  1062. {
  1063. temp_runaway_status[_heater_id] = TempRunaway_PREHEAT;
  1064. temp_runaway_target[_heater_id] = _target_temperature;
  1065. __preheat_start[_heater_id] = _current_temperature;
  1066. __preheat_counter[_heater_id] = 0;
  1067. }
  1068. else
  1069. {
  1070. temp_runaway_status[_heater_id] = TempRunaway_INACTIVE;
  1071. temp_runaway_target[_heater_id] = _target_temperature;
  1072. }
  1073. }
  1074. if ((_current_temperature < _target_temperature) && (temp_runaway_status[_heater_id] == TempRunaway_PREHEAT))
  1075. {
  1076. __preheat_counter[_heater_id]++;
  1077. if (__preheat_counter[_heater_id] > ((_isbed) ? 16 : 8)) // periodicaly check if current temperature changes
  1078. {
  1079. /*SERIAL_ECHOPGM("Heater:");
  1080. MYSERIAL.print(_heater_id);
  1081. SERIAL_ECHOPGM(" T:");
  1082. MYSERIAL.print(_current_temperature);
  1083. SERIAL_ECHOPGM(" Tstart:");
  1084. MYSERIAL.print(__preheat_start[_heater_id]);*/
  1085. if (_current_temperature - __preheat_start[_heater_id] < 2) {
  1086. __preheat_errors[_heater_id]++;
  1087. /*SERIAL_ECHOPGM(" Preheat errors:");
  1088. MYSERIAL.println(__preheat_errors[_heater_id]);*/
  1089. }
  1090. else {
  1091. //SERIAL_ECHOLNPGM("");
  1092. __preheat_errors[_heater_id] = 0;
  1093. }
  1094. if (__preheat_errors[_heater_id] > ((_isbed) ? 2 : 5))
  1095. {
  1096. if (farm_mode) { prusa_statistics(0); }
  1097. temp_runaway_stop(true, _isbed);
  1098. if (farm_mode) { prusa_statistics(91); }
  1099. }
  1100. __preheat_start[_heater_id] = _current_temperature;
  1101. __preheat_counter[_heater_id] = 0;
  1102. }
  1103. }
  1104. if (_current_temperature >= _target_temperature && temp_runaway_status[_heater_id] == TempRunaway_PREHEAT)
  1105. {
  1106. temp_runaway_status[_heater_id] = TempRunaway_ACTIVE;
  1107. temp_runaway_check_active = false;
  1108. }
  1109. if (_output > 0)
  1110. {
  1111. temp_runaway_check_active = true;
  1112. }
  1113. if (temp_runaway_check_active)
  1114. {
  1115. // we are in range
  1116. if ((_current_temperature > (_target_temperature - __hysteresis)) && (_current_temperature < (_target_temperature + __hysteresis)))
  1117. {
  1118. temp_runaway_check_active = false;
  1119. temp_runaway_error_counter[_heater_id] = 0;
  1120. }
  1121. else
  1122. {
  1123. if (temp_runaway_status[_heater_id] > TempRunaway_PREHEAT)
  1124. {
  1125. temp_runaway_error_counter[_heater_id]++;
  1126. if (temp_runaway_error_counter[_heater_id] * 2 > __timeout)
  1127. {
  1128. if (farm_mode) { prusa_statistics(0); }
  1129. temp_runaway_stop(false, _isbed);
  1130. if (farm_mode) { prusa_statistics(90); }
  1131. }
  1132. }
  1133. }
  1134. }
  1135. }
  1136. }
  1137. void temp_runaway_stop(bool isPreheat, bool isBed)
  1138. {
  1139. cancel_heatup = true;
  1140. quickStop();
  1141. if (card.sdprinting)
  1142. {
  1143. card.sdprinting = false;
  1144. card.closefile();
  1145. }
  1146. // Clean the input command queue
  1147. // This is necessary, because in command queue there can be commands which would later set heater or bed temperature.
  1148. cmdqueue_reset();
  1149. disable_heater();
  1150. disable_x();
  1151. disable_y();
  1152. disable_e0();
  1153. disable_e1();
  1154. disable_e2();
  1155. manage_heater();
  1156. lcd_update(0);
  1157. if((eSoundMode==e_SOUND_MODE_LOUD)||(eSoundMode==e_SOUND_MODE_ONCE)||(eSoundMode==e_SOUND_MODE_SILENT))
  1158. WRITE(BEEPER, HIGH);
  1159. delayMicroseconds(500);
  1160. WRITE(BEEPER, LOW);
  1161. delayMicroseconds(100);
  1162. if (isPreheat)
  1163. {
  1164. Stop();
  1165. isBed ? LCD_ALERTMESSAGEPGM("BED PREHEAT ERROR") : LCD_ALERTMESSAGEPGM("PREHEAT ERROR");
  1166. SERIAL_ERROR_START;
  1167. isBed ? SERIAL_ERRORLNPGM(" THERMAL RUNAWAY ( PREHEAT HEATBED)") : SERIAL_ERRORLNPGM(" THERMAL RUNAWAY ( PREHEAT HOTEND)");
  1168. SET_OUTPUT(EXTRUDER_0_AUTO_FAN_PIN);
  1169. SET_OUTPUT(FAN_PIN);
  1170. WRITE(EXTRUDER_0_AUTO_FAN_PIN, 1);
  1171. analogWrite(FAN_PIN, 255);
  1172. fanSpeed = 255;
  1173. delayMicroseconds(2000);
  1174. }
  1175. else
  1176. {
  1177. isBed ? LCD_ALERTMESSAGEPGM("BED THERMAL RUNAWAY") : LCD_ALERTMESSAGEPGM("THERMAL RUNAWAY");
  1178. SERIAL_ERROR_START;
  1179. isBed ? SERIAL_ERRORLNPGM(" HEATBED THERMAL RUNAWAY") : SERIAL_ERRORLNPGM(" HOTEND THERMAL RUNAWAY");
  1180. }
  1181. }
  1182. #endif
  1183. void disable_heater()
  1184. {
  1185. setAllTargetHotends(0);
  1186. setTargetBed(0);
  1187. #if defined(TEMP_0_PIN) && TEMP_0_PIN > -1
  1188. target_temperature[0]=0;
  1189. soft_pwm[0]=0;
  1190. #if defined(HEATER_0_PIN) && HEATER_0_PIN > -1
  1191. WRITE(HEATER_0_PIN,LOW);
  1192. #endif
  1193. #endif
  1194. #if defined(TEMP_1_PIN) && TEMP_1_PIN > -1 && EXTRUDERS > 1
  1195. target_temperature[1]=0;
  1196. soft_pwm[1]=0;
  1197. #if defined(HEATER_1_PIN) && HEATER_1_PIN > -1
  1198. WRITE(HEATER_1_PIN,LOW);
  1199. #endif
  1200. #endif
  1201. #if defined(TEMP_2_PIN) && TEMP_2_PIN > -1 && EXTRUDERS > 2
  1202. target_temperature[2]=0;
  1203. soft_pwm[2]=0;
  1204. #if defined(HEATER_2_PIN) && HEATER_2_PIN > -1
  1205. WRITE(HEATER_2_PIN,LOW);
  1206. #endif
  1207. #endif
  1208. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  1209. target_temperature_bed=0;
  1210. soft_pwm_bed=0;
  1211. #if defined(HEATER_BED_PIN) && HEATER_BED_PIN > -1
  1212. WRITE(HEATER_BED_PIN,LOW);
  1213. #endif
  1214. #endif
  1215. }
  1216. void max_temp_error(uint8_t e) {
  1217. disable_heater();
  1218. if(IsStopped() == false) {
  1219. SERIAL_ERROR_START;
  1220. SERIAL_ERRORLN((int)e);
  1221. SERIAL_ERRORLNPGM(": Extruder switched off. MAXTEMP triggered !");
  1222. LCD_ALERTMESSAGEPGM("Err: MAXTEMP");
  1223. }
  1224. #ifndef BOGUS_TEMPERATURE_FAILSAFE_OVERRIDE
  1225. Stop();
  1226. #endif
  1227. SET_OUTPUT(EXTRUDER_0_AUTO_FAN_PIN);
  1228. SET_OUTPUT(FAN_PIN);
  1229. SET_OUTPUT(BEEPER);
  1230. WRITE(FAN_PIN, 1);
  1231. WRITE(EXTRUDER_0_AUTO_FAN_PIN, 1);
  1232. if((eSoundMode==e_SOUND_MODE_LOUD)||(eSoundMode==e_SOUND_MODE_ONCE)||(eSoundMode==e_SOUND_MODE_SILENT))
  1233. WRITE(BEEPER, 1);
  1234. // fanSpeed will consumed by the check_axes_activity() routine.
  1235. fanSpeed=255;
  1236. if (farm_mode) { prusa_statistics(93); }
  1237. }
  1238. void min_temp_error(uint8_t e) {
  1239. #ifdef DEBUG_DISABLE_MINTEMP
  1240. return;
  1241. #endif
  1242. //if (current_temperature_ambient < MINTEMP_MINAMBIENT) return;
  1243. disable_heater();
  1244. if(IsStopped() == false) {
  1245. SERIAL_ERROR_START;
  1246. SERIAL_ERRORLN((int)e);
  1247. SERIAL_ERRORLNPGM(": Extruder switched off. MINTEMP triggered !");
  1248. LCD_ALERTMESSAGEPGM("Err: MINTEMP");
  1249. }
  1250. #ifndef BOGUS_TEMPERATURE_FAILSAFE_OVERRIDE
  1251. Stop();
  1252. #endif
  1253. if (farm_mode) { prusa_statistics(92); }
  1254. }
  1255. void bed_max_temp_error(void) {
  1256. #if HEATER_BED_PIN > -1
  1257. WRITE(HEATER_BED_PIN, 0);
  1258. #endif
  1259. if(IsStopped() == false) {
  1260. SERIAL_ERROR_START;
  1261. SERIAL_ERRORLNPGM("Temperature heated bed switched off. MAXTEMP triggered !");
  1262. LCD_ALERTMESSAGEPGM("Err: MAXTEMP BED");
  1263. }
  1264. #ifndef BOGUS_TEMPERATURE_FAILSAFE_OVERRIDE
  1265. Stop();
  1266. #endif
  1267. }
  1268. void bed_min_temp_error(void) {
  1269. #ifdef DEBUG_DISABLE_MINTEMP
  1270. return;
  1271. #endif
  1272. //if (current_temperature_ambient < MINTEMP_MINAMBIENT) return;
  1273. #if HEATER_BED_PIN > -1
  1274. WRITE(HEATER_BED_PIN, 0);
  1275. #endif
  1276. if(IsStopped() == false) {
  1277. SERIAL_ERROR_START;
  1278. SERIAL_ERRORLNPGM("Temperature heated bed switched off. MINTEMP triggered !");
  1279. LCD_ALERTMESSAGEPGM("Err: MINTEMP BED");
  1280. }
  1281. #ifndef BOGUS_TEMPERATURE_FAILSAFE_OVERRIDE
  1282. Stop();
  1283. #endif
  1284. }
  1285. #ifdef HEATER_0_USES_MAX6675
  1286. #define MAX6675_HEAT_INTERVAL 250
  1287. long max6675_previous_millis = MAX6675_HEAT_INTERVAL;
  1288. int max6675_temp = 2000;
  1289. int read_max6675()
  1290. {
  1291. if (millis() - max6675_previous_millis < MAX6675_HEAT_INTERVAL)
  1292. return max6675_temp;
  1293. max6675_previous_millis = millis();
  1294. max6675_temp = 0;
  1295. #ifdef PRR
  1296. PRR &= ~(1<<PRSPI);
  1297. #elif defined PRR0
  1298. PRR0 &= ~(1<<PRSPI);
  1299. #endif
  1300. SPCR = (1<<MSTR) | (1<<SPE) | (1<<SPR0);
  1301. // enable TT_MAX6675
  1302. WRITE(MAX6675_SS, 0);
  1303. // ensure 100ns delay - a bit extra is fine
  1304. asm("nop");//50ns on 20Mhz, 62.5ns on 16Mhz
  1305. asm("nop");//50ns on 20Mhz, 62.5ns on 16Mhz
  1306. // read MSB
  1307. SPDR = 0;
  1308. for (;(SPSR & (1<<SPIF)) == 0;);
  1309. max6675_temp = SPDR;
  1310. max6675_temp <<= 8;
  1311. // read LSB
  1312. SPDR = 0;
  1313. for (;(SPSR & (1<<SPIF)) == 0;);
  1314. max6675_temp |= SPDR;
  1315. // disable TT_MAX6675
  1316. WRITE(MAX6675_SS, 1);
  1317. if (max6675_temp & 4)
  1318. {
  1319. // thermocouple open
  1320. max6675_temp = 2000;
  1321. }
  1322. else
  1323. {
  1324. max6675_temp = max6675_temp >> 3;
  1325. }
  1326. return max6675_temp;
  1327. }
  1328. #endif
  1329. extern "C" {
  1330. void adc_ready(void) //callback from adc when sampling finished
  1331. {
  1332. current_temperature_raw[0] = adc_values[ADC_PIN_IDX(TEMP_0_PIN)]; //heater
  1333. current_temperature_raw_pinda = adc_values[ADC_PIN_IDX(TEMP_PINDA_PIN)];
  1334. current_temperature_bed_raw = adc_values[ADC_PIN_IDX(TEMP_BED_PIN)];
  1335. #ifdef VOLT_PWR_PIN
  1336. current_voltage_raw_pwr = adc_values[ADC_PIN_IDX(VOLT_PWR_PIN)];
  1337. #endif
  1338. #ifdef AMBIENT_THERMISTOR
  1339. current_temperature_raw_ambient = adc_values[ADC_PIN_IDX(TEMP_AMBIENT_PIN)];
  1340. #endif //AMBIENT_THERMISTOR
  1341. #ifdef VOLT_BED_PIN
  1342. current_voltage_raw_bed = adc_values[ADC_PIN_IDX(VOLT_BED_PIN)]; // 6->9
  1343. #endif
  1344. temp_meas_ready = true;
  1345. }
  1346. } // extern "C"
  1347. // Timer2 (originaly timer0) is shared with millies
  1348. ISR(TIMER2_COMPB_vect)
  1349. {
  1350. static bool _lock = false;
  1351. if (_lock) return;
  1352. _lock = true;
  1353. asm("sei");
  1354. if (!temp_meas_ready) adc_cycle();
  1355. else
  1356. {
  1357. check_max_temp();
  1358. check_min_temp();
  1359. }
  1360. lcd_buttons_update();
  1361. static unsigned char pwm_count = (1 << SOFT_PWM_SCALE);
  1362. static unsigned char soft_pwm_0;
  1363. #ifdef SLOW_PWM_HEATERS
  1364. static unsigned char slow_pwm_count = 0;
  1365. static unsigned char state_heater_0 = 0;
  1366. static unsigned char state_timer_heater_0 = 0;
  1367. #endif
  1368. #if (EXTRUDERS > 1) || defined(HEATERS_PARALLEL)
  1369. static unsigned char soft_pwm_1;
  1370. #ifdef SLOW_PWM_HEATERS
  1371. static unsigned char state_heater_1 = 0;
  1372. static unsigned char state_timer_heater_1 = 0;
  1373. #endif
  1374. #endif
  1375. #if EXTRUDERS > 2
  1376. static unsigned char soft_pwm_2;
  1377. #ifdef SLOW_PWM_HEATERS
  1378. static unsigned char state_heater_2 = 0;
  1379. static unsigned char state_timer_heater_2 = 0;
  1380. #endif
  1381. #endif
  1382. #if HEATER_BED_PIN > -1
  1383. static unsigned char soft_pwm_b;
  1384. #ifdef SLOW_PWM_HEATERS
  1385. static unsigned char state_heater_b = 0;
  1386. static unsigned char state_timer_heater_b = 0;
  1387. #endif
  1388. #endif
  1389. #if defined(FILWIDTH_PIN) &&(FILWIDTH_PIN > -1)
  1390. static unsigned long raw_filwidth_value = 0; //added for filament width sensor
  1391. #endif
  1392. #ifndef SLOW_PWM_HEATERS
  1393. /*
  1394. * standard PWM modulation
  1395. */
  1396. if (pwm_count == 0)
  1397. {
  1398. soft_pwm_0 = soft_pwm[0];
  1399. if(soft_pwm_0 > 0)
  1400. {
  1401. WRITE(HEATER_0_PIN,1);
  1402. #ifdef HEATERS_PARALLEL
  1403. WRITE(HEATER_1_PIN,1);
  1404. #endif
  1405. } else WRITE(HEATER_0_PIN,0);
  1406. #if EXTRUDERS > 1
  1407. soft_pwm_1 = soft_pwm[1];
  1408. if(soft_pwm_1 > 0) WRITE(HEATER_1_PIN,1); else WRITE(HEATER_1_PIN,0);
  1409. #endif
  1410. #if EXTRUDERS > 2
  1411. soft_pwm_2 = soft_pwm[2];
  1412. if(soft_pwm_2 > 0) WRITE(HEATER_2_PIN,1); else WRITE(HEATER_2_PIN,0);
  1413. #endif
  1414. #if defined(HEATER_BED_PIN) && HEATER_BED_PIN > -1
  1415. soft_pwm_b = soft_pwm_bed;
  1416. if(soft_pwm_b > 0) WRITE(HEATER_BED_PIN,1); else WRITE(HEATER_BED_PIN,0);
  1417. #endif
  1418. #ifdef FAN_SOFT_PWM
  1419. soft_pwm_fan = fanSpeedSoftPwm / 2;
  1420. if(soft_pwm_fan > 0) WRITE(FAN_PIN,1); else WRITE(FAN_PIN,0);
  1421. #endif
  1422. }
  1423. if(soft_pwm_0 < pwm_count)
  1424. {
  1425. WRITE(HEATER_0_PIN,0);
  1426. #ifdef HEATERS_PARALLEL
  1427. WRITE(HEATER_1_PIN,0);
  1428. #endif
  1429. }
  1430. #if EXTRUDERS > 1
  1431. if(soft_pwm_1 < pwm_count) WRITE(HEATER_1_PIN,0);
  1432. #endif
  1433. #if EXTRUDERS > 2
  1434. if(soft_pwm_2 < pwm_count) WRITE(HEATER_2_PIN,0);
  1435. #endif
  1436. #if defined(HEATER_BED_PIN) && HEATER_BED_PIN > -1
  1437. if(soft_pwm_b < pwm_count) WRITE(HEATER_BED_PIN,0);
  1438. #endif
  1439. #ifdef FAN_SOFT_PWM
  1440. if(soft_pwm_fan < pwm_count) WRITE(FAN_PIN,0);
  1441. #endif
  1442. pwm_count += (1 << SOFT_PWM_SCALE);
  1443. pwm_count &= 0x7f;
  1444. #else //ifndef SLOW_PWM_HEATERS
  1445. /*
  1446. * SLOW PWM HEATERS
  1447. *
  1448. * for heaters drived by relay
  1449. */
  1450. #ifndef MIN_STATE_TIME
  1451. #define MIN_STATE_TIME 16 // MIN_STATE_TIME * 65.5 = time in milliseconds
  1452. #endif
  1453. if (slow_pwm_count == 0) {
  1454. // EXTRUDER 0
  1455. soft_pwm_0 = soft_pwm[0];
  1456. if (soft_pwm_0 > 0) {
  1457. // turn ON heather only if the minimum time is up
  1458. if (state_timer_heater_0 == 0) {
  1459. // if change state set timer
  1460. if (state_heater_0 == 0) {
  1461. state_timer_heater_0 = MIN_STATE_TIME;
  1462. }
  1463. state_heater_0 = 1;
  1464. WRITE(HEATER_0_PIN, 1);
  1465. #ifdef HEATERS_PARALLEL
  1466. WRITE(HEATER_1_PIN, 1);
  1467. #endif
  1468. }
  1469. } else {
  1470. // turn OFF heather only if the minimum time is up
  1471. if (state_timer_heater_0 == 0) {
  1472. // if change state set timer
  1473. if (state_heater_0 == 1) {
  1474. state_timer_heater_0 = MIN_STATE_TIME;
  1475. }
  1476. state_heater_0 = 0;
  1477. WRITE(HEATER_0_PIN, 0);
  1478. #ifdef HEATERS_PARALLEL
  1479. WRITE(HEATER_1_PIN, 0);
  1480. #endif
  1481. }
  1482. }
  1483. #if EXTRUDERS > 1
  1484. // EXTRUDER 1
  1485. soft_pwm_1 = soft_pwm[1];
  1486. if (soft_pwm_1 > 0) {
  1487. // turn ON heather only if the minimum time is up
  1488. if (state_timer_heater_1 == 0) {
  1489. // if change state set timer
  1490. if (state_heater_1 == 0) {
  1491. state_timer_heater_1 = MIN_STATE_TIME;
  1492. }
  1493. state_heater_1 = 1;
  1494. WRITE(HEATER_1_PIN, 1);
  1495. }
  1496. } else {
  1497. // turn OFF heather only if the minimum time is up
  1498. if (state_timer_heater_1 == 0) {
  1499. // if change state set timer
  1500. if (state_heater_1 == 1) {
  1501. state_timer_heater_1 = MIN_STATE_TIME;
  1502. }
  1503. state_heater_1 = 0;
  1504. WRITE(HEATER_1_PIN, 0);
  1505. }
  1506. }
  1507. #endif
  1508. #if EXTRUDERS > 2
  1509. // EXTRUDER 2
  1510. soft_pwm_2 = soft_pwm[2];
  1511. if (soft_pwm_2 > 0) {
  1512. // turn ON heather only if the minimum time is up
  1513. if (state_timer_heater_2 == 0) {
  1514. // if change state set timer
  1515. if (state_heater_2 == 0) {
  1516. state_timer_heater_2 = MIN_STATE_TIME;
  1517. }
  1518. state_heater_2 = 1;
  1519. WRITE(HEATER_2_PIN, 1);
  1520. }
  1521. } else {
  1522. // turn OFF heather only if the minimum time is up
  1523. if (state_timer_heater_2 == 0) {
  1524. // if change state set timer
  1525. if (state_heater_2 == 1) {
  1526. state_timer_heater_2 = MIN_STATE_TIME;
  1527. }
  1528. state_heater_2 = 0;
  1529. WRITE(HEATER_2_PIN, 0);
  1530. }
  1531. }
  1532. #endif
  1533. #if defined(HEATER_BED_PIN) && HEATER_BED_PIN > -1
  1534. // BED
  1535. soft_pwm_b = soft_pwm_bed;
  1536. if (soft_pwm_b > 0) {
  1537. // turn ON heather only if the minimum time is up
  1538. if (state_timer_heater_b == 0) {
  1539. // if change state set timer
  1540. if (state_heater_b == 0) {
  1541. state_timer_heater_b = MIN_STATE_TIME;
  1542. }
  1543. state_heater_b = 1;
  1544. WRITE(HEATER_BED_PIN, 1);
  1545. }
  1546. } else {
  1547. // turn OFF heather only if the minimum time is up
  1548. if (state_timer_heater_b == 0) {
  1549. // if change state set timer
  1550. if (state_heater_b == 1) {
  1551. state_timer_heater_b = MIN_STATE_TIME;
  1552. }
  1553. state_heater_b = 0;
  1554. WRITE(HEATER_BED_PIN, 0);
  1555. }
  1556. }
  1557. #endif
  1558. } // if (slow_pwm_count == 0)
  1559. // EXTRUDER 0
  1560. if (soft_pwm_0 < slow_pwm_count) {
  1561. // turn OFF heather only if the minimum time is up
  1562. if (state_timer_heater_0 == 0) {
  1563. // if change state set timer
  1564. if (state_heater_0 == 1) {
  1565. state_timer_heater_0 = MIN_STATE_TIME;
  1566. }
  1567. state_heater_0 = 0;
  1568. WRITE(HEATER_0_PIN, 0);
  1569. #ifdef HEATERS_PARALLEL
  1570. WRITE(HEATER_1_PIN, 0);
  1571. #endif
  1572. }
  1573. }
  1574. #if EXTRUDERS > 1
  1575. // EXTRUDER 1
  1576. if (soft_pwm_1 < slow_pwm_count) {
  1577. // turn OFF heather only if the minimum time is up
  1578. if (state_timer_heater_1 == 0) {
  1579. // if change state set timer
  1580. if (state_heater_1 == 1) {
  1581. state_timer_heater_1 = MIN_STATE_TIME;
  1582. }
  1583. state_heater_1 = 0;
  1584. WRITE(HEATER_1_PIN, 0);
  1585. }
  1586. }
  1587. #endif
  1588. #if EXTRUDERS > 2
  1589. // EXTRUDER 2
  1590. if (soft_pwm_2 < slow_pwm_count) {
  1591. // turn OFF heather only if the minimum time is up
  1592. if (state_timer_heater_2 == 0) {
  1593. // if change state set timer
  1594. if (state_heater_2 == 1) {
  1595. state_timer_heater_2 = MIN_STATE_TIME;
  1596. }
  1597. state_heater_2 = 0;
  1598. WRITE(HEATER_2_PIN, 0);
  1599. }
  1600. }
  1601. #endif
  1602. #if defined(HEATER_BED_PIN) && HEATER_BED_PIN > -1
  1603. // BED
  1604. if (soft_pwm_b < slow_pwm_count) {
  1605. // turn OFF heather only if the minimum time is up
  1606. if (state_timer_heater_b == 0) {
  1607. // if change state set timer
  1608. if (state_heater_b == 1) {
  1609. state_timer_heater_b = MIN_STATE_TIME;
  1610. }
  1611. state_heater_b = 0;
  1612. WRITE(HEATER_BED_PIN, 0);
  1613. }
  1614. }
  1615. #endif
  1616. #ifdef FAN_SOFT_PWM
  1617. if (pwm_count == 0){
  1618. soft_pwm_fan = fanSpeedSoftPwm / 2;
  1619. if (soft_pwm_fan > 0) WRITE(FAN_PIN,1); else WRITE(FAN_PIN,0);
  1620. }
  1621. if (soft_pwm_fan < pwm_count) WRITE(FAN_PIN,0);
  1622. #endif
  1623. pwm_count += (1 << SOFT_PWM_SCALE);
  1624. pwm_count &= 0x7f;
  1625. // increment slow_pwm_count only every 64 pwm_count circa 65.5ms
  1626. if ((pwm_count % 64) == 0) {
  1627. slow_pwm_count++;
  1628. slow_pwm_count &= 0x7f;
  1629. // Extruder 0
  1630. if (state_timer_heater_0 > 0) {
  1631. state_timer_heater_0--;
  1632. }
  1633. #if EXTRUDERS > 1
  1634. // Extruder 1
  1635. if (state_timer_heater_1 > 0)
  1636. state_timer_heater_1--;
  1637. #endif
  1638. #if EXTRUDERS > 2
  1639. // Extruder 2
  1640. if (state_timer_heater_2 > 0)
  1641. state_timer_heater_2--;
  1642. #endif
  1643. #if defined(HEATER_BED_PIN) && HEATER_BED_PIN > -1
  1644. // Bed
  1645. if (state_timer_heater_b > 0)
  1646. state_timer_heater_b--;
  1647. #endif
  1648. } //if ((pwm_count % 64) == 0) {
  1649. #endif //ifndef SLOW_PWM_HEATERS
  1650. #ifdef BABYSTEPPING
  1651. for(uint8_t axis=0;axis<3;axis++)
  1652. {
  1653. int curTodo=babystepsTodo[axis]; //get rid of volatile for performance
  1654. if(curTodo>0)
  1655. {
  1656. asm("cli");
  1657. babystep(axis,/*fwd*/true);
  1658. babystepsTodo[axis]--; //less to do next time
  1659. asm("sei");
  1660. }
  1661. else
  1662. if(curTodo<0)
  1663. {
  1664. asm("cli");
  1665. babystep(axis,/*fwd*/false);
  1666. babystepsTodo[axis]++; //less to do next time
  1667. asm("sei");
  1668. }
  1669. }
  1670. #endif //BABYSTEPPING
  1671. #if (defined(FANCHECK) && defined(TACH_0) && (TACH_0 > -1))
  1672. check_fans();
  1673. #endif //(defined(TACH_0))
  1674. _lock = false;
  1675. }
  1676. void check_max_temp()
  1677. {
  1678. //heater
  1679. #if HEATER_0_RAW_LO_TEMP > HEATER_0_RAW_HI_TEMP
  1680. if (current_temperature_raw[0] <= maxttemp_raw[0]) {
  1681. #else
  1682. if (current_temperature_raw[0] >= maxttemp_raw[0]) {
  1683. #endif
  1684. max_temp_error(0);
  1685. }
  1686. //bed
  1687. #if defined(BED_MAXTEMP) && (TEMP_SENSOR_BED != 0)
  1688. #if HEATER_BED_RAW_LO_TEMP > HEATER_BED_RAW_HI_TEMP
  1689. if (current_temperature_bed_raw <= bed_maxttemp_raw) {
  1690. #else
  1691. if (current_temperature_bed_raw >= bed_maxttemp_raw) {
  1692. #endif
  1693. target_temperature_bed = 0;
  1694. bed_max_temp_error();
  1695. }
  1696. #endif
  1697. }
  1698. void check_min_temp_heater0()
  1699. {
  1700. //heater
  1701. #if HEATER_0_RAW_LO_TEMP > HEATER_0_RAW_HI_TEMP
  1702. if (current_temperature_raw[0] >= minttemp_raw[0]) {
  1703. #else
  1704. if (current_temperature_raw[0] <= minttemp_raw[0]) {
  1705. #endif
  1706. min_temp_error(0);
  1707. }
  1708. }
  1709. void check_min_temp_bed()
  1710. {
  1711. #if HEATER_BED_RAW_LO_TEMP > HEATER_BED_RAW_HI_TEMP
  1712. if (current_temperature_bed_raw >= bed_minttemp_raw) {
  1713. #else
  1714. if (current_temperature_bed_raw <= bed_minttemp_raw) {
  1715. #endif
  1716. bed_min_temp_error();
  1717. }
  1718. }
  1719. void check_min_temp()
  1720. {
  1721. #ifdef AMBIENT_THERMISTOR
  1722. static uint8_t heat_cycles = 0;
  1723. if (current_temperature_raw_ambient > OVERSAMPLENR*MINTEMP_MINAMBIENT_RAW)
  1724. {
  1725. if (READ(HEATER_0_PIN) == HIGH)
  1726. {
  1727. // if ((heat_cycles % 10) == 0)
  1728. // printf_P(PSTR("X%d\n"), heat_cycles);
  1729. if (heat_cycles > 50) //reaction time 5-10s
  1730. check_min_temp_heater0();
  1731. else
  1732. heat_cycles++;
  1733. }
  1734. else
  1735. heat_cycles = 0;
  1736. return;
  1737. }
  1738. #endif //AMBIENT_THERMISTOR
  1739. check_min_temp_heater0();
  1740. check_min_temp_bed();
  1741. }
  1742. #if (defined(FANCHECK) && defined(TACH_0) && (TACH_0 > -1))
  1743. void check_fans() {
  1744. if (READ(TACH_0) != fan_state[0]) {
  1745. fan_edge_counter[0] ++;
  1746. fan_state[0] = !fan_state[0];
  1747. }
  1748. //if (READ(TACH_1) != fan_state[1]) {
  1749. // fan_edge_counter[1] ++;
  1750. // fan_state[1] = !fan_state[1];
  1751. //}
  1752. }
  1753. #endif //TACH_0
  1754. #ifdef PIDTEMP
  1755. // Apply the scale factors to the PID values
  1756. float scalePID_i(float i)
  1757. {
  1758. return i*PID_dT;
  1759. }
  1760. float unscalePID_i(float i)
  1761. {
  1762. return i/PID_dT;
  1763. }
  1764. float scalePID_d(float d)
  1765. {
  1766. return d/PID_dT;
  1767. }
  1768. float unscalePID_d(float d)
  1769. {
  1770. return d*PID_dT;
  1771. }
  1772. #endif //PIDTEMP