Marlin_main.cpp 309 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892389338943895389638973898389939003901390239033904390539063907390839093910391139123913391439153916391739183919392039213922392339243925392639273928392939303931393239333934393539363937393839393940394139423943394439453946394739483949395039513952395339543955395639573958395939603961396239633964396539663967396839693970397139723973397439753976397739783979398039813982398339843985398639873988398939903991399239933994399539963997399839994000400140024003400440054006400740084009401040114012401340144015401640174018401940204021402240234024402540264027402840294030403140324033403440354036403740384039404040414042404340444045404640474048404940504051405240534054405540564057405840594060406140624063406440654066406740684069407040714072407340744075407640774078407940804081408240834084408540864087408840894090409140924093409440954096409740984099410041014102410341044105410641074108410941104111411241134114411541164117411841194120412141224123412441254126412741284129413041314132413341344135413641374138413941404141414241434144414541464147414841494150415141524153415441554156415741584159416041614162416341644165416641674168416941704171417241734174417541764177417841794180418141824183418441854186418741884189419041914192419341944195419641974198419942004201420242034204420542064207420842094210421142124213421442154216421742184219422042214222422342244225422642274228422942304231423242334234423542364237423842394240424142424243424442454246424742484249425042514252425342544255425642574258425942604261426242634264426542664267426842694270427142724273427442754276427742784279428042814282428342844285428642874288428942904291429242934294429542964297429842994300430143024303430443054306430743084309431043114312431343144315431643174318431943204321432243234324432543264327432843294330433143324333433443354336433743384339434043414342434343444345434643474348434943504351435243534354435543564357435843594360436143624363436443654366436743684369437043714372437343744375437643774378437943804381438243834384438543864387438843894390439143924393439443954396439743984399440044014402440344044405440644074408440944104411441244134414441544164417441844194420442144224423442444254426442744284429443044314432443344344435443644374438443944404441444244434444444544464447444844494450445144524453445444554456445744584459446044614462446344644465446644674468446944704471447244734474447544764477447844794480448144824483448444854486448744884489449044914492449344944495449644974498449945004501450245034504450545064507450845094510451145124513451445154516451745184519452045214522452345244525452645274528452945304531453245334534453545364537453845394540454145424543454445454546454745484549455045514552455345544555455645574558455945604561456245634564456545664567456845694570457145724573457445754576457745784579458045814582458345844585458645874588458945904591459245934594459545964597459845994600460146024603460446054606460746084609461046114612461346144615461646174618461946204621462246234624462546264627462846294630463146324633463446354636463746384639464046414642464346444645464646474648464946504651465246534654465546564657465846594660466146624663466446654666466746684669467046714672467346744675467646774678467946804681468246834684468546864687468846894690469146924693469446954696469746984699470047014702470347044705470647074708470947104711471247134714471547164717471847194720472147224723472447254726472747284729473047314732473347344735473647374738473947404741474247434744474547464747474847494750475147524753475447554756475747584759476047614762476347644765476647674768476947704771477247734774477547764777477847794780478147824783478447854786478747884789479047914792479347944795479647974798479948004801480248034804480548064807480848094810481148124813481448154816481748184819482048214822482348244825482648274828482948304831483248334834483548364837483848394840484148424843484448454846484748484849485048514852485348544855485648574858485948604861486248634864486548664867486848694870487148724873487448754876487748784879488048814882488348844885488648874888488948904891489248934894489548964897489848994900490149024903490449054906490749084909491049114912491349144915491649174918491949204921492249234924492549264927492849294930493149324933493449354936493749384939494049414942494349444945494649474948494949504951495249534954495549564957495849594960496149624963496449654966496749684969497049714972497349744975497649774978497949804981498249834984498549864987498849894990499149924993499449954996499749984999500050015002500350045005500650075008500950105011501250135014501550165017501850195020502150225023502450255026502750285029503050315032503350345035503650375038503950405041504250435044504550465047504850495050505150525053505450555056505750585059506050615062506350645065506650675068506950705071507250735074507550765077507850795080508150825083508450855086508750885089509050915092509350945095509650975098509951005101510251035104510551065107510851095110511151125113511451155116511751185119512051215122512351245125512651275128512951305131513251335134513551365137513851395140514151425143514451455146514751485149515051515152515351545155515651575158515951605161516251635164516551665167516851695170517151725173517451755176517751785179518051815182518351845185518651875188518951905191519251935194519551965197519851995200520152025203520452055206520752085209521052115212521352145215521652175218521952205221522252235224522552265227522852295230523152325233523452355236523752385239524052415242524352445245524652475248524952505251525252535254525552565257525852595260526152625263526452655266526752685269527052715272527352745275527652775278527952805281528252835284528552865287528852895290529152925293529452955296529752985299530053015302530353045305530653075308530953105311531253135314531553165317531853195320532153225323532453255326532753285329533053315332533353345335533653375338533953405341534253435344534553465347534853495350535153525353535453555356535753585359536053615362536353645365536653675368536953705371537253735374537553765377537853795380538153825383538453855386538753885389539053915392539353945395539653975398539954005401540254035404540554065407540854095410541154125413541454155416541754185419542054215422542354245425542654275428542954305431543254335434543554365437543854395440544154425443544454455446544754485449545054515452545354545455545654575458545954605461546254635464546554665467546854695470547154725473547454755476547754785479548054815482548354845485548654875488548954905491549254935494549554965497549854995500550155025503550455055506550755085509551055115512551355145515551655175518551955205521552255235524552555265527552855295530553155325533553455355536553755385539554055415542554355445545554655475548554955505551555255535554555555565557555855595560556155625563556455655566556755685569557055715572557355745575557655775578557955805581558255835584558555865587558855895590559155925593559455955596559755985599560056015602560356045605560656075608560956105611561256135614561556165617561856195620562156225623562456255626562756285629563056315632563356345635563656375638563956405641564256435644564556465647564856495650565156525653565456555656565756585659566056615662566356645665566656675668566956705671567256735674567556765677567856795680568156825683568456855686568756885689569056915692569356945695569656975698569957005701570257035704570557065707570857095710571157125713571457155716571757185719572057215722572357245725572657275728572957305731573257335734573557365737573857395740574157425743574457455746574757485749575057515752575357545755575657575758575957605761576257635764576557665767576857695770577157725773577457755776577757785779578057815782578357845785578657875788578957905791579257935794579557965797579857995800580158025803580458055806580758085809581058115812581358145815581658175818581958205821582258235824582558265827582858295830583158325833583458355836583758385839584058415842584358445845584658475848584958505851585258535854585558565857585858595860586158625863586458655866586758685869587058715872587358745875587658775878587958805881588258835884588558865887588858895890589158925893589458955896589758985899590059015902590359045905590659075908590959105911591259135914591559165917591859195920592159225923592459255926592759285929593059315932593359345935593659375938593959405941594259435944594559465947594859495950595159525953595459555956595759585959596059615962596359645965596659675968596959705971597259735974597559765977597859795980598159825983598459855986598759885989599059915992599359945995599659975998599960006001600260036004600560066007600860096010601160126013601460156016601760186019602060216022602360246025602660276028602960306031603260336034603560366037603860396040604160426043604460456046604760486049605060516052605360546055605660576058605960606061606260636064606560666067606860696070607160726073607460756076607760786079608060816082608360846085608660876088608960906091609260936094609560966097609860996100610161026103610461056106610761086109611061116112611361146115611661176118611961206121612261236124612561266127612861296130613161326133613461356136613761386139614061416142614361446145614661476148614961506151615261536154615561566157615861596160616161626163616461656166616761686169617061716172617361746175617661776178617961806181618261836184618561866187618861896190619161926193619461956196619761986199620062016202620362046205620662076208620962106211621262136214621562166217621862196220622162226223622462256226622762286229623062316232623362346235623662376238623962406241624262436244624562466247624862496250625162526253625462556256625762586259626062616262626362646265626662676268626962706271627262736274627562766277627862796280628162826283628462856286628762886289629062916292629362946295629662976298629963006301630263036304630563066307630863096310631163126313631463156316631763186319632063216322632363246325632663276328632963306331633263336334633563366337633863396340634163426343634463456346634763486349635063516352635363546355635663576358635963606361636263636364636563666367636863696370637163726373637463756376637763786379638063816382638363846385638663876388638963906391639263936394639563966397639863996400640164026403640464056406640764086409641064116412641364146415641664176418641964206421642264236424642564266427642864296430643164326433643464356436643764386439644064416442644364446445644664476448644964506451645264536454645564566457645864596460646164626463646464656466646764686469647064716472647364746475647664776478647964806481648264836484648564866487648864896490649164926493649464956496649764986499650065016502650365046505650665076508650965106511651265136514651565166517651865196520652165226523652465256526652765286529653065316532653365346535653665376538653965406541654265436544654565466547654865496550655165526553655465556556655765586559656065616562656365646565656665676568656965706571657265736574657565766577657865796580658165826583658465856586658765886589659065916592659365946595659665976598659966006601660266036604660566066607660866096610661166126613661466156616661766186619662066216622662366246625662666276628662966306631663266336634663566366637663866396640664166426643664466456646664766486649665066516652665366546655665666576658665966606661666266636664666566666667666866696670667166726673667466756676667766786679668066816682668366846685668666876688668966906691669266936694669566966697669866996700670167026703670467056706670767086709671067116712671367146715671667176718671967206721672267236724672567266727672867296730673167326733673467356736673767386739674067416742674367446745674667476748674967506751675267536754675567566757675867596760676167626763676467656766676767686769677067716772677367746775677667776778677967806781678267836784678567866787678867896790679167926793679467956796679767986799680068016802680368046805680668076808680968106811681268136814681568166817681868196820682168226823682468256826682768286829683068316832683368346835683668376838683968406841684268436844684568466847684868496850685168526853685468556856685768586859686068616862686368646865686668676868686968706871687268736874687568766877687868796880688168826883688468856886688768886889689068916892689368946895689668976898689969006901690269036904690569066907690869096910691169126913691469156916691769186919692069216922692369246925692669276928692969306931693269336934693569366937693869396940694169426943694469456946694769486949695069516952695369546955695669576958695969606961696269636964696569666967696869696970697169726973697469756976697769786979698069816982698369846985698669876988698969906991699269936994699569966997699869997000700170027003700470057006700770087009701070117012701370147015701670177018701970207021702270237024702570267027702870297030703170327033703470357036703770387039704070417042704370447045704670477048704970507051705270537054705570567057705870597060706170627063706470657066706770687069707070717072707370747075707670777078707970807081708270837084708570867087708870897090709170927093709470957096709770987099710071017102710371047105710671077108710971107111711271137114711571167117711871197120712171227123712471257126712771287129713071317132713371347135713671377138713971407141714271437144714571467147714871497150715171527153715471557156715771587159716071617162716371647165716671677168716971707171717271737174717571767177717871797180718171827183718471857186718771887189719071917192719371947195719671977198719972007201720272037204720572067207720872097210721172127213721472157216721772187219722072217222722372247225722672277228722972307231723272337234723572367237723872397240724172427243724472457246724772487249725072517252725372547255725672577258725972607261726272637264726572667267726872697270727172727273727472757276727772787279728072817282728372847285728672877288728972907291729272937294729572967297729872997300730173027303730473057306730773087309731073117312731373147315731673177318731973207321732273237324732573267327732873297330733173327333733473357336733773387339734073417342734373447345734673477348734973507351735273537354735573567357735873597360736173627363736473657366736773687369737073717372737373747375737673777378737973807381738273837384738573867387738873897390739173927393739473957396739773987399740074017402740374047405740674077408740974107411741274137414741574167417741874197420742174227423742474257426742774287429743074317432743374347435743674377438743974407441744274437444744574467447744874497450745174527453745474557456745774587459746074617462746374647465746674677468746974707471747274737474747574767477747874797480748174827483748474857486748774887489749074917492749374947495749674977498749975007501750275037504750575067507750875097510751175127513751475157516751775187519752075217522752375247525752675277528752975307531753275337534753575367537753875397540754175427543754475457546754775487549755075517552755375547555755675577558755975607561756275637564756575667567756875697570757175727573757475757576757775787579758075817582758375847585758675877588758975907591759275937594759575967597759875997600760176027603760476057606760776087609761076117612761376147615761676177618761976207621762276237624762576267627762876297630763176327633763476357636763776387639764076417642764376447645764676477648764976507651765276537654765576567657765876597660766176627663766476657666766776687669767076717672767376747675767676777678767976807681768276837684768576867687768876897690769176927693769476957696769776987699770077017702770377047705770677077708770977107711771277137714771577167717771877197720772177227723772477257726772777287729773077317732773377347735773677377738773977407741774277437744774577467747774877497750775177527753775477557756775777587759776077617762776377647765776677677768776977707771777277737774777577767777777877797780778177827783778477857786778777887789779077917792779377947795779677977798779978007801780278037804780578067807780878097810781178127813781478157816781778187819782078217822782378247825782678277828782978307831783278337834783578367837783878397840784178427843784478457846784778487849785078517852785378547855785678577858785978607861786278637864786578667867786878697870787178727873787478757876787778787879788078817882788378847885788678877888788978907891789278937894789578967897789878997900790179027903790479057906790779087909791079117912791379147915791679177918791979207921792279237924792579267927792879297930793179327933793479357936793779387939794079417942794379447945794679477948794979507951795279537954795579567957795879597960796179627963796479657966796779687969797079717972797379747975797679777978797979807981798279837984798579867987798879897990799179927993799479957996799779987999800080018002800380048005800680078008800980108011801280138014801580168017801880198020802180228023802480258026802780288029803080318032803380348035803680378038803980408041804280438044804580468047804880498050805180528053805480558056805780588059806080618062806380648065806680678068806980708071807280738074807580768077807880798080808180828083808480858086808780888089809080918092809380948095809680978098809981008101810281038104810581068107810881098110811181128113811481158116811781188119812081218122812381248125812681278128812981308131813281338134813581368137813881398140814181428143814481458146814781488149815081518152815381548155815681578158815981608161816281638164816581668167816881698170817181728173817481758176817781788179818081818182818381848185818681878188818981908191819281938194819581968197819881998200820182028203820482058206820782088209821082118212821382148215821682178218821982208221822282238224822582268227822882298230823182328233823482358236823782388239824082418242824382448245824682478248824982508251825282538254825582568257825882598260826182628263826482658266826782688269827082718272827382748275827682778278827982808281828282838284828582868287828882898290829182928293829482958296829782988299830083018302830383048305830683078308830983108311831283138314831583168317831883198320832183228323832483258326832783288329833083318332833383348335833683378338833983408341834283438344834583468347834883498350835183528353835483558356835783588359836083618362836383648365836683678368836983708371837283738374837583768377837883798380838183828383838483858386838783888389839083918392839383948395839683978398839984008401840284038404840584068407840884098410841184128413841484158416841784188419842084218422842384248425842684278428842984308431843284338434843584368437843884398440844184428443844484458446844784488449845084518452845384548455845684578458845984608461846284638464846584668467846884698470847184728473847484758476847784788479848084818482848384848485848684878488848984908491849284938494849584968497849884998500850185028503850485058506850785088509851085118512851385148515851685178518851985208521852285238524852585268527852885298530853185328533853485358536853785388539854085418542854385448545854685478548854985508551855285538554855585568557855885598560856185628563856485658566856785688569857085718572857385748575857685778578857985808581858285838584858585868587858885898590859185928593859485958596859785988599860086018602860386048605860686078608860986108611861286138614861586168617861886198620862186228623862486258626862786288629863086318632863386348635863686378638863986408641864286438644864586468647864886498650865186528653865486558656865786588659866086618662866386648665866686678668866986708671867286738674867586768677867886798680868186828683868486858686868786888689869086918692869386948695869686978698869987008701870287038704870587068707870887098710871187128713871487158716871787188719872087218722872387248725872687278728872987308731873287338734873587368737873887398740874187428743874487458746874787488749875087518752875387548755875687578758875987608761876287638764876587668767876887698770877187728773877487758776877787788779878087818782878387848785878687878788878987908791879287938794879587968797879887998800880188028803880488058806880788088809881088118812881388148815881688178818881988208821882288238824882588268827882888298830883188328833883488358836883788388839884088418842884388448845884688478848884988508851885288538854885588568857885888598860886188628863886488658866886788688869887088718872887388748875887688778878887988808881888288838884888588868887888888898890889188928893889488958896889788988899890089018902890389048905890689078908890989108911891289138914891589168917891889198920892189228923892489258926892789288929893089318932893389348935893689378938893989408941894289438944894589468947894889498950895189528953895489558956895789588959896089618962896389648965896689678968896989708971897289738974897589768977897889798980898189828983898489858986898789888989899089918992899389948995899689978998899990009001900290039004900590069007900890099010901190129013901490159016901790189019902090219022902390249025902690279028902990309031903290339034903590369037903890399040904190429043904490459046904790489049905090519052905390549055905690579058905990609061906290639064906590669067906890699070907190729073907490759076907790789079908090819082908390849085908690879088908990909091909290939094909590969097909890999100910191029103910491059106910791089109911091119112911391149115911691179118911991209121912291239124912591269127912891299130
  1. /* -*- c++ -*- */
  2. /**
  3. * @file
  4. */
  5. /**
  6. * @mainpage Reprap 3D printer firmware based on Sprinter and grbl.
  7. *
  8. * @section intro_sec Introduction
  9. *
  10. * This firmware is a mashup between Sprinter and grbl.
  11. * https://github.com/kliment/Sprinter
  12. * https://github.com/simen/grbl/tree
  13. *
  14. * It has preliminary support for Matthew Roberts advance algorithm
  15. * http://reprap.org/pipermail/reprap-dev/2011-May/003323.html
  16. *
  17. * Prusa Research s.r.o. https://www.prusa3d.cz
  18. *
  19. * @section copyright_sec Copyright
  20. *
  21. * Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
  22. *
  23. * This program is free software: you can redistribute it and/or modify
  24. * it under the terms of the GNU General Public License as published by
  25. * the Free Software Foundation, either version 3 of the License, or
  26. * (at your option) any later version.
  27. *
  28. * This program is distributed in the hope that it will be useful,
  29. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  30. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  31. * GNU General Public License for more details.
  32. *
  33. * You should have received a copy of the GNU General Public License
  34. * along with this program. If not, see <http://www.gnu.org/licenses/>.
  35. *
  36. * @section notes_sec Notes
  37. *
  38. * * Do not create static objects in global functions.
  39. * Otherwise constructor guard against concurrent calls is generated costing
  40. * about 8B RAM and 14B flash.
  41. *
  42. *
  43. */
  44. #include "Marlin.h"
  45. #ifdef ENABLE_AUTO_BED_LEVELING
  46. #include "vector_3.h"
  47. #ifdef AUTO_BED_LEVELING_GRID
  48. #include "qr_solve.h"
  49. #endif
  50. #endif // ENABLE_AUTO_BED_LEVELING
  51. #ifdef MESH_BED_LEVELING
  52. #include "mesh_bed_leveling.h"
  53. #include "mesh_bed_calibration.h"
  54. #endif
  55. #include "printers.h"
  56. #include "menu.h"
  57. #include "ultralcd.h"
  58. #include "planner.h"
  59. #include "stepper.h"
  60. #include "temperature.h"
  61. #include "motion_control.h"
  62. #include "cardreader.h"
  63. #include "ConfigurationStore.h"
  64. #include "language.h"
  65. #include "pins_arduino.h"
  66. #include "math.h"
  67. #include "util.h"
  68. #include "Timer.h"
  69. #include <avr/wdt.h>
  70. #include <avr/pgmspace.h>
  71. #include "Dcodes.h"
  72. #ifdef SWSPI
  73. #include "swspi.h"
  74. #endif //SWSPI
  75. #include "spi.h"
  76. #ifdef SWI2C
  77. #include "swi2c.h"
  78. #endif //SWI2C
  79. #ifdef FILAMENT_SENSOR
  80. #include "fsensor.h"
  81. #endif //FILAMENT_SENSOR
  82. #ifdef TMC2130
  83. #include "tmc2130.h"
  84. #endif //TMC2130
  85. #ifdef W25X20CL
  86. #include "w25x20cl.h"
  87. #include "optiboot_w25x20cl.h"
  88. #endif //W25X20CL
  89. #ifdef BLINKM
  90. #include "BlinkM.h"
  91. #include "Wire.h"
  92. #endif
  93. #ifdef ULTRALCD
  94. #include "ultralcd.h"
  95. #endif
  96. #if NUM_SERVOS > 0
  97. #include "Servo.h"
  98. #endif
  99. #if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
  100. #include <SPI.h>
  101. #endif
  102. #include "mmu.h"
  103. #define VERSION_STRING "1.0.2"
  104. #include "ultralcd.h"
  105. #include "sound.h"
  106. #include "cmdqueue.h"
  107. // Macros for bit masks
  108. #define BIT(b) (1<<(b))
  109. #define TEST(n,b) (((n)&BIT(b))!=0)
  110. #define SET_BIT(n,b,value) (n) ^= ((-value)^(n)) & (BIT(b))
  111. //Macro for print fan speed
  112. #define FAN_PULSE_WIDTH_LIMIT ((fanSpeed > 100) ? 3 : 4) //time in ms
  113. #define PRINTING_TYPE_SD 0
  114. #define PRINTING_TYPE_USB 1
  115. //filament types
  116. #define FILAMENT_DEFAULT 0
  117. #define FILAMENT_FLEX 1
  118. #define FILAMENT_PVA 2
  119. #define FILAMENT_UNDEFINED 255
  120. //Stepper Movement Variables
  121. //===========================================================================
  122. //=============================imported variables============================
  123. //===========================================================================
  124. //===========================================================================
  125. //=============================public variables=============================
  126. //===========================================================================
  127. #ifdef SDSUPPORT
  128. CardReader card;
  129. #endif
  130. unsigned long PingTime = millis();
  131. unsigned long NcTime;
  132. //used for PINDA temp calibration and pause print
  133. #define DEFAULT_RETRACTION 1
  134. #define DEFAULT_RETRACTION_MM 4 //MM
  135. float default_retraction = DEFAULT_RETRACTION;
  136. float homing_feedrate[] = HOMING_FEEDRATE;
  137. // Currently only the extruder axis may be switched to a relative mode.
  138. // Other axes are always absolute or relative based on the common relative_mode flag.
  139. bool axis_relative_modes[] = AXIS_RELATIVE_MODES;
  140. int feedmultiply=100; //100->1 200->2
  141. int extrudemultiply=100; //100->1 200->2
  142. int extruder_multiply[EXTRUDERS] = {100
  143. #if EXTRUDERS > 1
  144. , 100
  145. #if EXTRUDERS > 2
  146. , 100
  147. #endif
  148. #endif
  149. };
  150. int bowden_length[4] = {385, 385, 385, 385};
  151. bool is_usb_printing = false;
  152. bool homing_flag = false;
  153. bool temp_cal_active = false;
  154. unsigned long kicktime = millis()+100000;
  155. unsigned int usb_printing_counter;
  156. int8_t lcd_change_fil_state = 0;
  157. unsigned long pause_time = 0;
  158. unsigned long start_pause_print = millis();
  159. unsigned long t_fan_rising_edge = millis();
  160. LongTimer safetyTimer;
  161. LongTimer crashDetTimer;
  162. //unsigned long load_filament_time;
  163. bool mesh_bed_leveling_flag = false;
  164. bool mesh_bed_run_from_menu = false;
  165. int8_t FarmMode = 0;
  166. bool prusa_sd_card_upload = false;
  167. unsigned int status_number = 0;
  168. unsigned long total_filament_used;
  169. unsigned int heating_status;
  170. unsigned int heating_status_counter;
  171. bool loading_flag = false;
  172. char snmm_filaments_used = 0;
  173. bool fan_state[2];
  174. int fan_edge_counter[2];
  175. int fan_speed[2];
  176. char dir_names[3][9];
  177. bool sortAlpha = false;
  178. float extruder_multiplier[EXTRUDERS] = {1.0
  179. #if EXTRUDERS > 1
  180. , 1.0
  181. #if EXTRUDERS > 2
  182. , 1.0
  183. #endif
  184. #endif
  185. };
  186. float current_position[NUM_AXIS] = { 0.0, 0.0, 0.0, 0.0 };
  187. //shortcuts for more readable code
  188. #define _x current_position[X_AXIS]
  189. #define _y current_position[Y_AXIS]
  190. #define _z current_position[Z_AXIS]
  191. #define _e current_position[E_AXIS]
  192. float min_pos[3] = { X_MIN_POS, Y_MIN_POS, Z_MIN_POS };
  193. float max_pos[3] = { X_MAX_POS, Y_MAX_POS, Z_MAX_POS };
  194. bool axis_known_position[3] = {false, false, false};
  195. // Extruder offset
  196. #if EXTRUDERS > 1
  197. #define NUM_EXTRUDER_OFFSETS 2 // only in XY plane
  198. float extruder_offset[NUM_EXTRUDER_OFFSETS][EXTRUDERS] = {
  199. #if defined(EXTRUDER_OFFSET_X) && defined(EXTRUDER_OFFSET_Y)
  200. EXTRUDER_OFFSET_X, EXTRUDER_OFFSET_Y
  201. #endif
  202. };
  203. #endif
  204. uint8_t active_extruder = 0;
  205. int fanSpeed=0;
  206. #ifdef FWRETRACT
  207. bool retracted[EXTRUDERS]={false
  208. #if EXTRUDERS > 1
  209. , false
  210. #if EXTRUDERS > 2
  211. , false
  212. #endif
  213. #endif
  214. };
  215. bool retracted_swap[EXTRUDERS]={false
  216. #if EXTRUDERS > 1
  217. , false
  218. #if EXTRUDERS > 2
  219. , false
  220. #endif
  221. #endif
  222. };
  223. float retract_length_swap = RETRACT_LENGTH_SWAP;
  224. float retract_recover_length_swap = RETRACT_RECOVER_LENGTH_SWAP;
  225. #endif
  226. #ifdef PS_DEFAULT_OFF
  227. bool powersupply = false;
  228. #else
  229. bool powersupply = true;
  230. #endif
  231. bool cancel_heatup = false ;
  232. #ifdef HOST_KEEPALIVE_FEATURE
  233. int busy_state = NOT_BUSY;
  234. static long prev_busy_signal_ms = -1;
  235. uint8_t host_keepalive_interval = HOST_KEEPALIVE_INTERVAL;
  236. #else
  237. #define host_keepalive();
  238. #define KEEPALIVE_STATE(n);
  239. #endif
  240. const char errormagic[] PROGMEM = "Error:";
  241. const char echomagic[] PROGMEM = "echo:";
  242. bool no_response = false;
  243. uint8_t important_status;
  244. uint8_t saved_filament_type;
  245. // save/restore printing in case that mmu was not responding
  246. bool mmu_print_saved = false;
  247. // storing estimated time to end of print counted by slicer
  248. uint8_t print_percent_done_normal = PRINT_PERCENT_DONE_INIT;
  249. uint16_t print_time_remaining_normal = PRINT_TIME_REMAINING_INIT; //estimated remaining print time in minutes
  250. uint8_t print_percent_done_silent = PRINT_PERCENT_DONE_INIT;
  251. uint16_t print_time_remaining_silent = PRINT_TIME_REMAINING_INIT; //estimated remaining print time in minutes
  252. bool wizard_active = false; //autoload temporarily disabled during wizard
  253. //===========================================================================
  254. //=============================Private Variables=============================
  255. //===========================================================================
  256. #define MSG_BED_LEVELING_FAILED "Some problem encountered, Z-leveling enforced ..."
  257. #define MSG_BED_LEVELING_FAILED_TIMEOUT 30
  258. const char axis_codes[NUM_AXIS] = {'X', 'Y', 'Z', 'E'};
  259. float destination[NUM_AXIS] = { 0.0, 0.0, 0.0, 0.0};
  260. // For tracing an arc
  261. static float offset[3] = {0.0, 0.0, 0.0};
  262. static float feedrate = 1500.0, next_feedrate, saved_feedrate;
  263. // Determines Absolute or Relative Coordinates.
  264. // Also there is bool axis_relative_modes[] per axis flag.
  265. static bool relative_mode = false;
  266. const int sensitive_pins[] = SENSITIVE_PINS; // Sensitive pin list for M42
  267. //static float tt = 0;
  268. //static float bt = 0;
  269. //Inactivity shutdown variables
  270. static unsigned long previous_millis_cmd = 0;
  271. unsigned long max_inactive_time = 0;
  272. static unsigned long stepper_inactive_time = DEFAULT_STEPPER_DEACTIVE_TIME*1000l;
  273. static unsigned long safetytimer_inactive_time = DEFAULT_SAFETYTIMER_TIME_MINS*60*1000ul;
  274. unsigned long starttime=0;
  275. unsigned long stoptime=0;
  276. unsigned long _usb_timer = 0;
  277. bool extruder_under_pressure = true;
  278. bool Stopped=false;
  279. #if NUM_SERVOS > 0
  280. Servo servos[NUM_SERVOS];
  281. #endif
  282. bool CooldownNoWait = true;
  283. bool target_direction;
  284. //Insert variables if CHDK is defined
  285. #ifdef CHDK
  286. unsigned long chdkHigh = 0;
  287. boolean chdkActive = false;
  288. #endif
  289. //! @name RAM save/restore printing
  290. //! @{
  291. bool saved_printing = false; //!< Print is paused and saved in RAM
  292. static uint32_t saved_sdpos = 0; //!< SD card position, or line number in case of USB printing
  293. static uint8_t saved_printing_type = PRINTING_TYPE_SD;
  294. static float saved_pos[4] = { 0, 0, 0, 0 };
  295. //! Feedrate hopefully derived from an active block of the planner at the time the print has been canceled, in mm/min.
  296. static float saved_feedrate2 = 0;
  297. static uint8_t saved_active_extruder = 0;
  298. static float saved_extruder_temperature = 0.0; //!< Active extruder temperature
  299. static bool saved_extruder_under_pressure = false;
  300. static bool saved_extruder_relative_mode = false;
  301. static int saved_fanSpeed = 0; //!< Print fan speed
  302. //! @}
  303. //===========================================================================
  304. //=============================Routines======================================
  305. //===========================================================================
  306. static void get_arc_coordinates();
  307. static bool setTargetedHotend(int code, uint8_t &extruder);
  308. static void print_time_remaining_init();
  309. static void wait_for_heater(long codenum, uint8_t extruder);
  310. uint16_t gcode_in_progress = 0;
  311. uint16_t mcode_in_progress = 0;
  312. void serial_echopair_P(const char *s_P, float v)
  313. { serialprintPGM(s_P); SERIAL_ECHO(v); }
  314. void serial_echopair_P(const char *s_P, double v)
  315. { serialprintPGM(s_P); SERIAL_ECHO(v); }
  316. void serial_echopair_P(const char *s_P, unsigned long v)
  317. { serialprintPGM(s_P); SERIAL_ECHO(v); }
  318. #ifdef SDSUPPORT
  319. #include "SdFatUtil.h"
  320. int freeMemory() { return SdFatUtil::FreeRam(); }
  321. #else
  322. extern "C" {
  323. extern unsigned int __bss_end;
  324. extern unsigned int __heap_start;
  325. extern void *__brkval;
  326. int freeMemory() {
  327. int free_memory;
  328. if ((int)__brkval == 0)
  329. free_memory = ((int)&free_memory) - ((int)&__bss_end);
  330. else
  331. free_memory = ((int)&free_memory) - ((int)__brkval);
  332. return free_memory;
  333. }
  334. }
  335. #endif //!SDSUPPORT
  336. void setup_killpin()
  337. {
  338. #if defined(KILL_PIN) && KILL_PIN > -1
  339. SET_INPUT(KILL_PIN);
  340. WRITE(KILL_PIN,HIGH);
  341. #endif
  342. }
  343. // Set home pin
  344. void setup_homepin(void)
  345. {
  346. #if defined(HOME_PIN) && HOME_PIN > -1
  347. SET_INPUT(HOME_PIN);
  348. WRITE(HOME_PIN,HIGH);
  349. #endif
  350. }
  351. void setup_photpin()
  352. {
  353. #if defined(PHOTOGRAPH_PIN) && PHOTOGRAPH_PIN > -1
  354. SET_OUTPUT(PHOTOGRAPH_PIN);
  355. WRITE(PHOTOGRAPH_PIN, LOW);
  356. #endif
  357. }
  358. void setup_powerhold()
  359. {
  360. #if defined(SUICIDE_PIN) && SUICIDE_PIN > -1
  361. SET_OUTPUT(SUICIDE_PIN);
  362. WRITE(SUICIDE_PIN, HIGH);
  363. #endif
  364. #if defined(PS_ON_PIN) && PS_ON_PIN > -1
  365. SET_OUTPUT(PS_ON_PIN);
  366. #if defined(PS_DEFAULT_OFF)
  367. WRITE(PS_ON_PIN, PS_ON_ASLEEP);
  368. #else
  369. WRITE(PS_ON_PIN, PS_ON_AWAKE);
  370. #endif
  371. #endif
  372. }
  373. void suicide()
  374. {
  375. #if defined(SUICIDE_PIN) && SUICIDE_PIN > -1
  376. SET_OUTPUT(SUICIDE_PIN);
  377. WRITE(SUICIDE_PIN, LOW);
  378. #endif
  379. }
  380. void servo_init()
  381. {
  382. #if (NUM_SERVOS >= 1) && defined(SERVO0_PIN) && (SERVO0_PIN > -1)
  383. servos[0].attach(SERVO0_PIN);
  384. #endif
  385. #if (NUM_SERVOS >= 2) && defined(SERVO1_PIN) && (SERVO1_PIN > -1)
  386. servos[1].attach(SERVO1_PIN);
  387. #endif
  388. #if (NUM_SERVOS >= 3) && defined(SERVO2_PIN) && (SERVO2_PIN > -1)
  389. servos[2].attach(SERVO2_PIN);
  390. #endif
  391. #if (NUM_SERVOS >= 4) && defined(SERVO3_PIN) && (SERVO3_PIN > -1)
  392. servos[3].attach(SERVO3_PIN);
  393. #endif
  394. #if (NUM_SERVOS >= 5)
  395. #error "TODO: enter initalisation code for more servos"
  396. #endif
  397. }
  398. bool fans_check_enabled = true;
  399. #ifdef TMC2130
  400. extern int8_t CrashDetectMenu;
  401. void crashdet_enable()
  402. {
  403. tmc2130_sg_stop_on_crash = true;
  404. eeprom_update_byte((uint8_t*)EEPROM_CRASH_DET, 0xFF);
  405. CrashDetectMenu = 1;
  406. }
  407. void crashdet_disable()
  408. {
  409. tmc2130_sg_stop_on_crash = false;
  410. tmc2130_sg_crash = 0;
  411. eeprom_update_byte((uint8_t*)EEPROM_CRASH_DET, 0x00);
  412. CrashDetectMenu = 0;
  413. }
  414. void crashdet_stop_and_save_print()
  415. {
  416. stop_and_save_print_to_ram(10, -default_retraction); //XY - no change, Z 10mm up, E -1mm retract
  417. }
  418. void crashdet_restore_print_and_continue()
  419. {
  420. restore_print_from_ram_and_continue(default_retraction); //XYZ = orig, E +1mm unretract
  421. // babystep_apply();
  422. }
  423. void crashdet_stop_and_save_print2()
  424. {
  425. cli();
  426. planner_abort_hard(); //abort printing
  427. cmdqueue_reset(); //empty cmdqueue
  428. card.sdprinting = false;
  429. card.closefile();
  430. // Reset and re-enable the stepper timer just before the global interrupts are enabled.
  431. st_reset_timer();
  432. sei();
  433. }
  434. void crashdet_detected(uint8_t mask)
  435. {
  436. st_synchronize();
  437. static uint8_t crashDet_counter = 0;
  438. bool automatic_recovery_after_crash = true;
  439. if (crashDet_counter++ == 0) {
  440. crashDetTimer.start();
  441. }
  442. else if (crashDetTimer.expired(CRASHDET_TIMER * 1000ul)){
  443. crashDetTimer.stop();
  444. crashDet_counter = 0;
  445. }
  446. else if(crashDet_counter == CRASHDET_COUNTER_MAX){
  447. automatic_recovery_after_crash = false;
  448. crashDetTimer.stop();
  449. crashDet_counter = 0;
  450. }
  451. else {
  452. crashDetTimer.start();
  453. }
  454. lcd_update_enable(true);
  455. lcd_clear();
  456. lcd_update(2);
  457. if (mask & X_AXIS_MASK)
  458. {
  459. eeprom_update_byte((uint8_t*)EEPROM_CRASH_COUNT_X, eeprom_read_byte((uint8_t*)EEPROM_CRASH_COUNT_X) + 1);
  460. eeprom_update_word((uint16_t*)EEPROM_CRASH_COUNT_X_TOT, eeprom_read_word((uint16_t*)EEPROM_CRASH_COUNT_X_TOT) + 1);
  461. }
  462. if (mask & Y_AXIS_MASK)
  463. {
  464. eeprom_update_byte((uint8_t*)EEPROM_CRASH_COUNT_Y, eeprom_read_byte((uint8_t*)EEPROM_CRASH_COUNT_Y) + 1);
  465. eeprom_update_word((uint16_t*)EEPROM_CRASH_COUNT_Y_TOT, eeprom_read_word((uint16_t*)EEPROM_CRASH_COUNT_Y_TOT) + 1);
  466. }
  467. lcd_update_enable(true);
  468. lcd_update(2);
  469. lcd_setstatuspgm(_T(MSG_CRASH_DETECTED));
  470. gcode_G28(true, true, false); //home X and Y
  471. st_synchronize();
  472. if (automatic_recovery_after_crash) {
  473. enquecommand_P(PSTR("CRASH_RECOVER"));
  474. }else{
  475. setTargetHotend(0, active_extruder);
  476. bool yesno = lcd_show_fullscreen_message_yes_no_and_wait_P(_i("Crash detected. Resume print?"), false);
  477. lcd_update_enable(true);
  478. if (yesno)
  479. {
  480. enquecommand_P(PSTR("CRASH_RECOVER"));
  481. }
  482. else
  483. {
  484. enquecommand_P(PSTR("CRASH_CANCEL"));
  485. }
  486. }
  487. }
  488. void crashdet_recover()
  489. {
  490. crashdet_restore_print_and_continue();
  491. tmc2130_sg_stop_on_crash = true;
  492. }
  493. void crashdet_cancel()
  494. {
  495. saved_printing = false;
  496. tmc2130_sg_stop_on_crash = true;
  497. if (saved_printing_type == PRINTING_TYPE_SD) {
  498. lcd_print_stop();
  499. }else if(saved_printing_type == PRINTING_TYPE_USB){
  500. SERIAL_ECHOLNPGM("// action:cancel"); //for Octoprint: works the same as clicking "Abort" button in Octoprint GUI
  501. SERIAL_PROTOCOLLNRPGM(_T(MSG_OK));
  502. }
  503. }
  504. #endif //TMC2130
  505. void failstats_reset_print()
  506. {
  507. eeprom_update_byte((uint8_t *)EEPROM_CRASH_COUNT_X, 0);
  508. eeprom_update_byte((uint8_t *)EEPROM_CRASH_COUNT_Y, 0);
  509. eeprom_update_byte((uint8_t *)EEPROM_FERROR_COUNT, 0);
  510. eeprom_update_byte((uint8_t *)EEPROM_POWER_COUNT, 0);
  511. }
  512. #ifdef MESH_BED_LEVELING
  513. enum MeshLevelingState { MeshReport, MeshStart, MeshNext, MeshSet };
  514. #endif
  515. // Factory reset function
  516. // This function is used to erase parts or whole EEPROM memory which is used for storing calibration and and so on.
  517. // Level input parameter sets depth of reset
  518. int er_progress = 0;
  519. static void factory_reset(char level)
  520. {
  521. lcd_clear();
  522. switch (level) {
  523. // Level 0: Language reset
  524. case 0:
  525. if((eSoundMode==e_SOUND_MODE_LOUD)||(eSoundMode==e_SOUND_MODE_ONCE))
  526. WRITE(BEEPER, HIGH);
  527. _delay_ms(100);
  528. WRITE(BEEPER, LOW);
  529. lang_reset();
  530. break;
  531. //Level 1: Reset statistics
  532. case 1:
  533. if((eSoundMode==e_SOUND_MODE_LOUD)||(eSoundMode==e_SOUND_MODE_ONCE))
  534. WRITE(BEEPER, HIGH);
  535. _delay_ms(100);
  536. WRITE(BEEPER, LOW);
  537. eeprom_update_dword((uint32_t *)EEPROM_TOTALTIME, 0);
  538. eeprom_update_dword((uint32_t *)EEPROM_FILAMENTUSED, 0);
  539. eeprom_update_byte((uint8_t *)EEPROM_CRASH_COUNT_X, 0);
  540. eeprom_update_byte((uint8_t *)EEPROM_CRASH_COUNT_Y, 0);
  541. eeprom_update_byte((uint8_t *)EEPROM_FERROR_COUNT, 0);
  542. eeprom_update_byte((uint8_t *)EEPROM_POWER_COUNT, 0);
  543. eeprom_update_word((uint16_t *)EEPROM_CRASH_COUNT_X_TOT, 0);
  544. eeprom_update_word((uint16_t *)EEPROM_CRASH_COUNT_Y_TOT, 0);
  545. eeprom_update_word((uint16_t *)EEPROM_FERROR_COUNT_TOT, 0);
  546. eeprom_update_word((uint16_t *)EEPROM_POWER_COUNT_TOT, 0);
  547. lcd_menu_statistics();
  548. break;
  549. // Level 2: Prepare for shipping
  550. case 2:
  551. //lcd_puts_P(PSTR("Factory RESET"));
  552. //lcd_puts_at_P(1,2,PSTR("Shipping prep"));
  553. // Force language selection at the next boot up.
  554. lang_reset();
  555. // Force the "Follow calibration flow" message at the next boot up.
  556. calibration_status_store(CALIBRATION_STATUS_Z_CALIBRATION);
  557. eeprom_write_byte((uint8_t*)EEPROM_WIZARD_ACTIVE, 1); //run wizard
  558. farm_no = 0;
  559. farm_mode = false;
  560. eeprom_update_byte((uint8_t*)EEPROM_FARM_MODE, farm_mode);
  561. EEPROM_save_B(EEPROM_FARM_NUMBER, &farm_no);
  562. eeprom_update_dword((uint32_t *)EEPROM_TOTALTIME, 0);
  563. eeprom_update_dword((uint32_t *)EEPROM_FILAMENTUSED, 0);
  564. eeprom_update_word((uint16_t *)EEPROM_CRASH_COUNT_X_TOT, 0);
  565. eeprom_update_word((uint16_t *)EEPROM_CRASH_COUNT_Y_TOT, 0);
  566. eeprom_update_word((uint16_t *)EEPROM_FERROR_COUNT_TOT, 0);
  567. eeprom_update_word((uint16_t *)EEPROM_POWER_COUNT_TOT, 0);
  568. #ifdef FILAMENT_SENSOR
  569. fsensor_enable();
  570. fsensor_autoload_set(true);
  571. #endif //FILAMENT_SENSOR
  572. if((eSoundMode==e_SOUND_MODE_LOUD)||(eSoundMode==e_SOUND_MODE_ONCE))
  573. WRITE(BEEPER, HIGH);
  574. _delay_ms(100);
  575. WRITE(BEEPER, LOW);
  576. //_delay_ms(2000);
  577. break;
  578. // Level 3: erase everything, whole EEPROM will be set to 0xFF
  579. case 3:
  580. lcd_puts_P(PSTR("Factory RESET"));
  581. lcd_puts_at_P(1, 2, PSTR("ERASING all data"));
  582. if((eSoundMode==e_SOUND_MODE_LOUD)||(eSoundMode==e_SOUND_MODE_ONCE))
  583. WRITE(BEEPER, HIGH);
  584. _delay_ms(100);
  585. WRITE(BEEPER, LOW);
  586. er_progress = 0;
  587. lcd_puts_at_P(3, 3, PSTR(" "));
  588. lcd_set_cursor(3, 3);
  589. lcd_print(er_progress);
  590. // Erase EEPROM
  591. for (int i = 0; i < 4096; i++) {
  592. eeprom_update_byte((uint8_t*)i, 0xFF);
  593. if (i % 41 == 0) {
  594. er_progress++;
  595. lcd_puts_at_P(3, 3, PSTR(" "));
  596. lcd_set_cursor(3, 3);
  597. lcd_print(er_progress);
  598. lcd_puts_P(PSTR("%"));
  599. }
  600. }
  601. break;
  602. case 4:
  603. bowden_menu();
  604. break;
  605. default:
  606. break;
  607. }
  608. }
  609. extern "C" {
  610. FILE _uartout; //= {0}; Global variable is always zero initialized. No need to explicitly state this.
  611. }
  612. int uart_putchar(char c, FILE *)
  613. {
  614. MYSERIAL.write(c);
  615. return 0;
  616. }
  617. void lcd_splash()
  618. {
  619. // lcd_puts_at_P(0, 1, PSTR(" Original Prusa "));
  620. // lcd_puts_at_P(0, 2, PSTR(" 3D Printers "));
  621. // lcd_puts_P(PSTR("\x1b[1;3HOriginal Prusa\x1b[2;4H3D Printers"));
  622. // fputs_P(PSTR(ESC_2J ESC_H(1,1) "Original Prusa i3" ESC_H(3,2) "Prusa Research"), lcdout);
  623. lcd_puts_P(PSTR(ESC_2J ESC_H(1,1) "Original Prusa i3" ESC_H(3,2) "Prusa Research"));
  624. // lcd_printf_P(_N(ESC_2J "x:%.3f\ny:%.3f\nz:%.3f\ne:%.3f"), _x, _y, _z, _e);
  625. }
  626. void factory_reset()
  627. {
  628. KEEPALIVE_STATE(PAUSED_FOR_USER);
  629. if (!READ(BTN_ENC))
  630. {
  631. _delay_ms(1000);
  632. if (!READ(BTN_ENC))
  633. {
  634. lcd_clear();
  635. lcd_puts_P(PSTR("Factory RESET"));
  636. SET_OUTPUT(BEEPER);
  637. if((eSoundMode==e_SOUND_MODE_LOUD)||(eSoundMode==e_SOUND_MODE_ONCE))
  638. WRITE(BEEPER, HIGH);
  639. while (!READ(BTN_ENC));
  640. WRITE(BEEPER, LOW);
  641. _delay_ms(2000);
  642. char level = reset_menu();
  643. factory_reset(level);
  644. switch (level) {
  645. case 0: _delay_ms(0); break;
  646. case 1: _delay_ms(0); break;
  647. case 2: _delay_ms(0); break;
  648. case 3: _delay_ms(0); break;
  649. }
  650. }
  651. }
  652. KEEPALIVE_STATE(IN_HANDLER);
  653. }
  654. void show_fw_version_warnings() {
  655. if (FW_DEV_VERSION == FW_VERSION_GOLD || FW_DEV_VERSION == FW_VERSION_RC) return;
  656. switch (FW_DEV_VERSION) {
  657. case(FW_VERSION_ALPHA): lcd_show_fullscreen_message_and_wait_P(_i("You are using firmware alpha version. This is development version. Using this version is not recommended and may cause printer damage.")); break;////MSG_FW_VERSION_ALPHA c=20 r=8
  658. case(FW_VERSION_BETA): lcd_show_fullscreen_message_and_wait_P(_i("You are using firmware beta version. This is development version. Using this version is not recommended and may cause printer damage.")); break;////MSG_FW_VERSION_BETA c=20 r=8
  659. case(FW_VERSION_DEVEL):
  660. case(FW_VERSION_DEBUG):
  661. lcd_update_enable(false);
  662. lcd_clear();
  663. #if FW_DEV_VERSION == FW_VERSION_DEVEL
  664. lcd_puts_at_P(0, 0, PSTR("Development build !!"));
  665. #else
  666. lcd_puts_at_P(0, 0, PSTR("Debbugging build !!!"));
  667. #endif
  668. lcd_puts_at_P(0, 1, PSTR("May destroy printer!"));
  669. lcd_puts_at_P(0, 2, PSTR("ver ")); lcd_puts_P(PSTR(FW_VERSION_FULL));
  670. lcd_puts_at_P(0, 3, PSTR(FW_REPOSITORY));
  671. lcd_wait_for_click();
  672. break;
  673. // default: lcd_show_fullscreen_message_and_wait_P(_i("WARNING: This is an unofficial, unsupported build. Use at your own risk!")); break;////MSG_FW_VERSION_UNKNOWN c=20 r=8
  674. }
  675. lcd_update_enable(true);
  676. }
  677. uint8_t check_printer_version()
  678. {
  679. uint8_t version_changed = 0;
  680. uint16_t printer_type = eeprom_read_word((uint16_t*)EEPROM_PRINTER_TYPE);
  681. uint16_t motherboard = eeprom_read_word((uint16_t*)EEPROM_BOARD_TYPE);
  682. if (printer_type != PRINTER_TYPE) {
  683. if (printer_type == 0xffff) eeprom_write_word((uint16_t*)EEPROM_PRINTER_TYPE, PRINTER_TYPE);
  684. else version_changed |= 0b10;
  685. }
  686. if (motherboard != MOTHERBOARD) {
  687. if(motherboard == 0xffff) eeprom_write_word((uint16_t*)EEPROM_BOARD_TYPE, MOTHERBOARD);
  688. else version_changed |= 0b01;
  689. }
  690. return version_changed;
  691. }
  692. #ifdef BOOTAPP
  693. #include "bootapp.h" //bootloader support
  694. #endif //BOOTAPP
  695. #if (LANG_MODE != 0) //secondary language support
  696. #ifdef W25X20CL
  697. // language update from external flash
  698. #define LANGBOOT_BLOCKSIZE 0x1000u
  699. #define LANGBOOT_RAMBUFFER 0x0800
  700. void update_sec_lang_from_external_flash()
  701. {
  702. if ((boot_app_magic == BOOT_APP_MAGIC) && (boot_app_flags & BOOT_APP_FLG_USER0))
  703. {
  704. uint8_t lang = boot_reserved >> 4;
  705. uint8_t state = boot_reserved & 0xf;
  706. lang_table_header_t header;
  707. uint32_t src_addr;
  708. if (lang_get_header(lang, &header, &src_addr))
  709. {
  710. fputs_P(PSTR(ESC_H(1,3) "Language update."), lcdout);
  711. for (uint8_t i = 0; i < state; i++) fputc('.', lcdout);
  712. delay(100);
  713. boot_reserved = (state + 1) | (lang << 4);
  714. if ((state * LANGBOOT_BLOCKSIZE) < header.size)
  715. {
  716. cli();
  717. uint16_t size = header.size - state * LANGBOOT_BLOCKSIZE;
  718. if (size > LANGBOOT_BLOCKSIZE) size = LANGBOOT_BLOCKSIZE;
  719. w25x20cl_rd_data(src_addr + state * LANGBOOT_BLOCKSIZE, (uint8_t*)LANGBOOT_RAMBUFFER, size);
  720. if (state == 0)
  721. {
  722. //TODO - check header integrity
  723. }
  724. bootapp_ram2flash(LANGBOOT_RAMBUFFER, _SEC_LANG_TABLE + state * LANGBOOT_BLOCKSIZE, size);
  725. }
  726. else
  727. {
  728. //TODO - check sec lang data integrity
  729. eeprom_update_byte((unsigned char *)EEPROM_LANG, LANG_ID_SEC);
  730. }
  731. }
  732. }
  733. boot_app_flags &= ~BOOT_APP_FLG_USER0;
  734. }
  735. #ifdef DEBUG_W25X20CL
  736. uint8_t lang_xflash_enum_codes(uint16_t* codes)
  737. {
  738. lang_table_header_t header;
  739. uint8_t count = 0;
  740. uint32_t addr = 0x00000;
  741. while (1)
  742. {
  743. printf_P(_n("LANGTABLE%d:"), count);
  744. w25x20cl_rd_data(addr, (uint8_t*)&header, sizeof(lang_table_header_t));
  745. if (header.magic != LANG_MAGIC)
  746. {
  747. printf_P(_n("NG!\n"));
  748. break;
  749. }
  750. printf_P(_n("OK\n"));
  751. printf_P(_n(" _lt_magic = 0x%08lx %S\n"), header.magic, (header.magic==LANG_MAGIC)?_n("OK"):_n("NA"));
  752. printf_P(_n(" _lt_size = 0x%04x (%d)\n"), header.size, header.size);
  753. printf_P(_n(" _lt_count = 0x%04x (%d)\n"), header.count, header.count);
  754. printf_P(_n(" _lt_chsum = 0x%04x\n"), header.checksum);
  755. printf_P(_n(" _lt_code = 0x%04x (%c%c)\n"), header.code, header.code >> 8, header.code & 0xff);
  756. printf_P(_n(" _lt_sign = 0x%08lx\n"), header.signature);
  757. addr += header.size;
  758. codes[count] = header.code;
  759. count ++;
  760. }
  761. return count;
  762. }
  763. void list_sec_lang_from_external_flash()
  764. {
  765. uint16_t codes[8];
  766. uint8_t count = lang_xflash_enum_codes(codes);
  767. printf_P(_n("XFlash lang count = %hhd\n"), count);
  768. }
  769. #endif //DEBUG_W25X20CL
  770. #endif //W25X20CL
  771. #endif //(LANG_MODE != 0)
  772. // "Setup" function is called by the Arduino framework on startup.
  773. // Before startup, the Timers-functions (PWM)/Analog RW and HardwareSerial provided by the Arduino-code
  774. // are initialized by the main() routine provided by the Arduino framework.
  775. void setup()
  776. {
  777. mmu_init();
  778. ultralcd_init();
  779. spi_init();
  780. lcd_splash();
  781. Sound_Init(); // also guarantee "SET_OUTPUT(BEEPER)"
  782. #ifdef W25X20CL
  783. if (!w25x20cl_init())
  784. kill(_i("External SPI flash W25X20CL not responding."));
  785. // Enter an STK500 compatible Optiboot boot loader waiting for flashing the languages to an external flash memory.
  786. optiboot_w25x20cl_enter();
  787. #endif
  788. #if (LANG_MODE != 0) //secondary language support
  789. #ifdef W25X20CL
  790. if (w25x20cl_init())
  791. update_sec_lang_from_external_flash();
  792. #endif //W25X20CL
  793. #endif //(LANG_MODE != 0)
  794. setup_killpin();
  795. setup_powerhold();
  796. farm_mode = eeprom_read_byte((uint8_t*)EEPROM_FARM_MODE);
  797. EEPROM_read_B(EEPROM_FARM_NUMBER, &farm_no);
  798. if ((farm_mode == 0xFF && farm_no == 0) || ((uint16_t)farm_no == 0xFFFF))
  799. farm_mode = false; //if farm_mode has not been stored to eeprom yet and farm number is set to zero or EEPROM is fresh, deactivate farm mode
  800. if ((uint16_t)farm_no == 0xFFFF) farm_no = 0;
  801. selectedSerialPort = eeprom_read_byte((uint8_t*)EEPROM_SECOND_SERIAL_ACTIVE);
  802. if (selectedSerialPort == 0xFF) selectedSerialPort = 0;
  803. if (farm_mode)
  804. {
  805. no_response = true; //we need confirmation by recieving PRUSA thx
  806. important_status = 8;
  807. prusa_statistics(8);
  808. selectedSerialPort = 1;
  809. #ifdef TMC2130
  810. //increased extruder current (PFW363)
  811. tmc2130_current_h[E_AXIS] = 36;
  812. tmc2130_current_r[E_AXIS] = 36;
  813. #endif //TMC2130
  814. #ifdef FILAMENT_SENSOR
  815. //disabled filament autoload (PFW360)
  816. fsensor_autoload_set(false);
  817. #endif //FILAMENT_SENSOR
  818. }
  819. MYSERIAL.begin(BAUDRATE);
  820. fdev_setup_stream(uartout, uart_putchar, NULL, _FDEV_SETUP_WRITE); //setup uart out stream
  821. #ifndef W25X20CL
  822. SERIAL_PROTOCOLLNPGM("start");
  823. #endif //W25X20CL
  824. stdout = uartout;
  825. SERIAL_ECHO_START;
  826. printf_P(PSTR(" " FW_VERSION_FULL "\n"));
  827. #ifdef DEBUG_SEC_LANG
  828. lang_table_header_t header;
  829. uint32_t src_addr = 0x00000;
  830. if (lang_get_header(1, &header, &src_addr))
  831. {
  832. //this is comparsion of some printing-methods regarding to flash space usage and code size/readability
  833. #define LT_PRINT_TEST 2
  834. // flash usage
  835. // total p.test
  836. //0 252718 t+c text code
  837. //1 253142 424 170 254
  838. //2 253040 322 164 158
  839. //3 253248 530 135 395
  840. #if (LT_PRINT_TEST==1) //not optimized printf
  841. printf_P(_n(" _src_addr = 0x%08lx\n"), src_addr);
  842. printf_P(_n(" _lt_magic = 0x%08lx %S\n"), header.magic, (header.magic==LANG_MAGIC)?_n("OK"):_n("NA"));
  843. printf_P(_n(" _lt_size = 0x%04x (%d)\n"), header.size, header.size);
  844. printf_P(_n(" _lt_count = 0x%04x (%d)\n"), header.count, header.count);
  845. printf_P(_n(" _lt_chsum = 0x%04x\n"), header.checksum);
  846. printf_P(_n(" _lt_code = 0x%04x (%c%c)\n"), header.code, header.code >> 8, header.code & 0xff);
  847. printf_P(_n(" _lt_sign = 0x%08lx\n"), header.signature);
  848. #elif (LT_PRINT_TEST==2) //optimized printf
  849. printf_P(
  850. _n(
  851. " _src_addr = 0x%08lx\n"
  852. " _lt_magic = 0x%08lx %S\n"
  853. " _lt_size = 0x%04x (%d)\n"
  854. " _lt_count = 0x%04x (%d)\n"
  855. " _lt_chsum = 0x%04x\n"
  856. " _lt_code = 0x%04x (%c%c)\n"
  857. " _lt_resv1 = 0x%08lx\n"
  858. ),
  859. src_addr,
  860. header.magic, (header.magic==LANG_MAGIC)?_n("OK"):_n("NA"),
  861. header.size, header.size,
  862. header.count, header.count,
  863. header.checksum,
  864. header.code, header.code >> 8, header.code & 0xff,
  865. header.signature
  866. );
  867. #elif (LT_PRINT_TEST==3) //arduino print/println (leading zeros not solved)
  868. MYSERIAL.print(" _src_addr = 0x");
  869. MYSERIAL.println(src_addr, 16);
  870. MYSERIAL.print(" _lt_magic = 0x");
  871. MYSERIAL.print(header.magic, 16);
  872. MYSERIAL.println((header.magic==LANG_MAGIC)?" OK":" NA");
  873. MYSERIAL.print(" _lt_size = 0x");
  874. MYSERIAL.print(header.size, 16);
  875. MYSERIAL.print(" (");
  876. MYSERIAL.print(header.size, 10);
  877. MYSERIAL.println(")");
  878. MYSERIAL.print(" _lt_count = 0x");
  879. MYSERIAL.print(header.count, 16);
  880. MYSERIAL.print(" (");
  881. MYSERIAL.print(header.count, 10);
  882. MYSERIAL.println(")");
  883. MYSERIAL.print(" _lt_chsum = 0x");
  884. MYSERIAL.println(header.checksum, 16);
  885. MYSERIAL.print(" _lt_code = 0x");
  886. MYSERIAL.print(header.code, 16);
  887. MYSERIAL.print(" (");
  888. MYSERIAL.print((char)(header.code >> 8), 0);
  889. MYSERIAL.print((char)(header.code & 0xff), 0);
  890. MYSERIAL.println(")");
  891. MYSERIAL.print(" _lt_resv1 = 0x");
  892. MYSERIAL.println(header.signature, 16);
  893. #endif //(LT_PRINT_TEST==)
  894. #undef LT_PRINT_TEST
  895. #if 0
  896. w25x20cl_rd_data(0x25ba, (uint8_t*)&block_buffer, 1024);
  897. for (uint16_t i = 0; i < 1024; i++)
  898. {
  899. if ((i % 16) == 0) printf_P(_n("%04x:"), 0x25ba+i);
  900. printf_P(_n(" %02x"), ((uint8_t*)&block_buffer)[i]);
  901. if ((i % 16) == 15) putchar('\n');
  902. }
  903. #endif
  904. uint16_t sum = 0;
  905. for (uint16_t i = 0; i < header.size; i++)
  906. sum += (uint16_t)pgm_read_byte((uint8_t*)(_SEC_LANG_TABLE + i)) << ((i & 1)?0:8);
  907. printf_P(_n("_SEC_LANG_TABLE checksum = %04x\n"), sum);
  908. sum -= header.checksum; //subtract checksum
  909. printf_P(_n("_SEC_LANG_TABLE checksum = %04x\n"), sum);
  910. sum = (sum >> 8) | ((sum & 0xff) << 8); //swap bytes
  911. if (sum == header.checksum)
  912. printf_P(_n("Checksum OK\n"), sum);
  913. else
  914. printf_P(_n("Checksum NG\n"), sum);
  915. }
  916. else
  917. printf_P(_n("lang_get_header failed!\n"));
  918. #if 0
  919. for (uint16_t i = 0; i < 1024*10; i++)
  920. {
  921. if ((i % 16) == 0) printf_P(_n("%04x:"), _SEC_LANG_TABLE+i);
  922. printf_P(_n(" %02x"), pgm_read_byte((uint8_t*)(_SEC_LANG_TABLE+i)));
  923. if ((i % 16) == 15) putchar('\n');
  924. }
  925. #endif
  926. #if 0
  927. SERIAL_ECHOLN("Reading eeprom from 0 to 100: start");
  928. for (int i = 0; i < 4096; ++i) {
  929. int b = eeprom_read_byte((unsigned char*)i);
  930. if (b != 255) {
  931. SERIAL_ECHO(i);
  932. SERIAL_ECHO(":");
  933. SERIAL_ECHO(b);
  934. SERIAL_ECHOLN("");
  935. }
  936. }
  937. SERIAL_ECHOLN("Reading eeprom from 0 to 100: done");
  938. #endif
  939. #endif //DEBUG_SEC_LANG
  940. // Check startup - does nothing if bootloader sets MCUSR to 0
  941. byte mcu = MCUSR;
  942. /* if (mcu & 1) SERIAL_ECHOLNRPGM(_T(MSG_POWERUP));
  943. if (mcu & 2) SERIAL_ECHOLNRPGM(MSG_EXTERNAL_RESET);
  944. if (mcu & 4) SERIAL_ECHOLNRPGM(MSG_BROWNOUT_RESET);
  945. if (mcu & 8) SERIAL_ECHOLNRPGM(MSG_WATCHDOG_RESET);
  946. if (mcu & 32) SERIAL_ECHOLNRPGM(MSG_SOFTWARE_RESET);*/
  947. if (mcu & 1) puts_P(_T(MSG_POWERUP));
  948. if (mcu & 2) puts_P(MSG_EXTERNAL_RESET);
  949. if (mcu & 4) puts_P(MSG_BROWNOUT_RESET);
  950. if (mcu & 8) puts_P(MSG_WATCHDOG_RESET);
  951. if (mcu & 32) puts_P(MSG_SOFTWARE_RESET);
  952. MCUSR = 0;
  953. //SERIAL_ECHORPGM(MSG_MARLIN);
  954. //SERIAL_ECHOLNRPGM(VERSION_STRING);
  955. #ifdef STRING_VERSION_CONFIG_H
  956. #ifdef STRING_CONFIG_H_AUTHOR
  957. SERIAL_ECHO_START;
  958. SERIAL_ECHORPGM(_i(" Last Updated: "));////MSG_CONFIGURATION_VER c=0 r=0
  959. SERIAL_ECHOPGM(STRING_VERSION_CONFIG_H);
  960. SERIAL_ECHORPGM(_n(" | Author: "));////MSG_AUTHOR c=0 r=0
  961. SERIAL_ECHOLNPGM(STRING_CONFIG_H_AUTHOR);
  962. SERIAL_ECHOPGM("Compiled: ");
  963. SERIAL_ECHOLNPGM(__DATE__);
  964. #endif
  965. #endif
  966. SERIAL_ECHO_START;
  967. SERIAL_ECHORPGM(_i(" Free Memory: "));////MSG_FREE_MEMORY c=0 r=0
  968. SERIAL_ECHO(freeMemory());
  969. SERIAL_ECHORPGM(_i(" PlannerBufferBytes: "));////MSG_PLANNER_BUFFER_BYTES c=0 r=0
  970. SERIAL_ECHOLN((int)sizeof(block_t)*BLOCK_BUFFER_SIZE);
  971. //lcd_update_enable(false); // why do we need this?? - andre
  972. // loads data from EEPROM if available else uses defaults (and resets step acceleration rate)
  973. bool previous_settings_retrieved = false;
  974. uint8_t hw_changed = check_printer_version();
  975. if (!(hw_changed & 0b10)) { //if printer version wasn't changed, check for eeprom version and retrieve settings from eeprom in case that version wasn't changed
  976. previous_settings_retrieved = Config_RetrieveSettings();
  977. }
  978. else { //printer version was changed so use default settings
  979. Config_ResetDefault();
  980. }
  981. SdFatUtil::set_stack_guard(); //writes magic number at the end of static variables to protect against overwriting static memory by stack
  982. tp_init(); // Initialize temperature loop
  983. lcd_splash(); // we need to do this again, because tp_init() kills lcd
  984. plan_init(); // Initialize planner;
  985. factory_reset();
  986. lcd_encoder_diff=0;
  987. #ifdef TMC2130
  988. uint8_t silentMode = eeprom_read_byte((uint8_t*)EEPROM_SILENT);
  989. if (silentMode == 0xff) silentMode = 0;
  990. tmc2130_mode = TMC2130_MODE_NORMAL;
  991. uint8_t crashdet = eeprom_read_byte((uint8_t*)EEPROM_CRASH_DET);
  992. if (crashdet && !farm_mode)
  993. {
  994. crashdet_enable();
  995. puts_P(_N("CrashDetect ENABLED!"));
  996. }
  997. else
  998. {
  999. crashdet_disable();
  1000. puts_P(_N("CrashDetect DISABLED"));
  1001. }
  1002. #ifdef TMC2130_LINEARITY_CORRECTION
  1003. #ifdef TMC2130_LINEARITY_CORRECTION_XYZ
  1004. tmc2130_wave_fac[X_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_WAVE_X_FAC);
  1005. tmc2130_wave_fac[Y_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_WAVE_Y_FAC);
  1006. tmc2130_wave_fac[Z_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_WAVE_Z_FAC);
  1007. #endif //TMC2130_LINEARITY_CORRECTION_XYZ
  1008. tmc2130_wave_fac[E_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_WAVE_E_FAC);
  1009. if (tmc2130_wave_fac[X_AXIS] == 0xff) tmc2130_wave_fac[X_AXIS] = 0;
  1010. if (tmc2130_wave_fac[Y_AXIS] == 0xff) tmc2130_wave_fac[Y_AXIS] = 0;
  1011. if (tmc2130_wave_fac[Z_AXIS] == 0xff) tmc2130_wave_fac[Z_AXIS] = 0;
  1012. if (tmc2130_wave_fac[E_AXIS] == 0xff) tmc2130_wave_fac[E_AXIS] = 0;
  1013. #endif //TMC2130_LINEARITY_CORRECTION
  1014. #ifdef TMC2130_VARIABLE_RESOLUTION
  1015. tmc2130_mres[X_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_X_MRES);
  1016. tmc2130_mres[Y_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_Y_MRES);
  1017. tmc2130_mres[Z_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_Z_MRES);
  1018. tmc2130_mres[E_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_E_MRES);
  1019. if (tmc2130_mres[X_AXIS] == 0xff) tmc2130_mres[X_AXIS] = tmc2130_usteps2mres(TMC2130_USTEPS_XY);
  1020. if (tmc2130_mres[Y_AXIS] == 0xff) tmc2130_mres[Y_AXIS] = tmc2130_usteps2mres(TMC2130_USTEPS_XY);
  1021. if (tmc2130_mres[Z_AXIS] == 0xff) tmc2130_mres[Z_AXIS] = tmc2130_usteps2mres(TMC2130_USTEPS_Z);
  1022. if (tmc2130_mres[E_AXIS] == 0xff) tmc2130_mres[E_AXIS] = tmc2130_usteps2mres(TMC2130_USTEPS_E);
  1023. eeprom_update_byte((uint8_t*)EEPROM_TMC2130_X_MRES, tmc2130_mres[X_AXIS]);
  1024. eeprom_update_byte((uint8_t*)EEPROM_TMC2130_Y_MRES, tmc2130_mres[Y_AXIS]);
  1025. eeprom_update_byte((uint8_t*)EEPROM_TMC2130_Z_MRES, tmc2130_mres[Z_AXIS]);
  1026. eeprom_update_byte((uint8_t*)EEPROM_TMC2130_E_MRES, tmc2130_mres[E_AXIS]);
  1027. #else //TMC2130_VARIABLE_RESOLUTION
  1028. tmc2130_mres[X_AXIS] = tmc2130_usteps2mres(TMC2130_USTEPS_XY);
  1029. tmc2130_mres[Y_AXIS] = tmc2130_usteps2mres(TMC2130_USTEPS_XY);
  1030. tmc2130_mres[Z_AXIS] = tmc2130_usteps2mres(TMC2130_USTEPS_Z);
  1031. tmc2130_mres[E_AXIS] = tmc2130_usteps2mres(TMC2130_USTEPS_E);
  1032. #endif //TMC2130_VARIABLE_RESOLUTION
  1033. #endif //TMC2130
  1034. st_init(); // Initialize stepper, this enables interrupts!
  1035. #ifdef TMC2130
  1036. tmc2130_mode = silentMode?TMC2130_MODE_SILENT:TMC2130_MODE_NORMAL;
  1037. update_mode_profile();
  1038. tmc2130_init();
  1039. #endif //TMC2130
  1040. setup_photpin();
  1041. servo_init();
  1042. // Reset the machine correction matrix.
  1043. // It does not make sense to load the correction matrix until the machine is homed.
  1044. world2machine_reset();
  1045. #ifdef FILAMENT_SENSOR
  1046. fsensor_init();
  1047. #endif //FILAMENT_SENSOR
  1048. #if defined(CONTROLLERFAN_PIN) && (CONTROLLERFAN_PIN > -1)
  1049. SET_OUTPUT(CONTROLLERFAN_PIN); //Set pin used for driver cooling fan
  1050. #endif
  1051. setup_homepin();
  1052. #ifdef TMC2130
  1053. if (1) {
  1054. // try to run to zero phase before powering the Z motor.
  1055. // Move in negative direction
  1056. WRITE(Z_DIR_PIN,INVERT_Z_DIR);
  1057. // Round the current micro-micro steps to micro steps.
  1058. for (uint16_t phase = (tmc2130_rd_MSCNT(Z_AXIS) + 8) >> 4; phase > 0; -- phase) {
  1059. // Until the phase counter is reset to zero.
  1060. WRITE(Z_STEP_PIN, !INVERT_Z_STEP_PIN);
  1061. delay(2);
  1062. WRITE(Z_STEP_PIN, INVERT_Z_STEP_PIN);
  1063. delay(2);
  1064. }
  1065. }
  1066. #endif //TMC2130
  1067. #if defined(Z_AXIS_ALWAYS_ON)
  1068. enable_z();
  1069. #endif
  1070. farm_mode = eeprom_read_byte((uint8_t*)EEPROM_FARM_MODE);
  1071. EEPROM_read_B(EEPROM_FARM_NUMBER, &farm_no);
  1072. if ((farm_mode == 0xFF && farm_no == 0) || (farm_no == static_cast<int>(0xFFFF))) farm_mode = false; //if farm_mode has not been stored to eeprom yet and farm number is set to zero or EEPROM is fresh, deactivate farm mode
  1073. if (farm_no == static_cast<int>(0xFFFF)) farm_no = 0;
  1074. if (farm_mode)
  1075. {
  1076. prusa_statistics(8);
  1077. }
  1078. // Enable Toshiba FlashAir SD card / WiFi enahanced card.
  1079. card.ToshibaFlashAir_enable(eeprom_read_byte((unsigned char*)EEPROM_TOSHIBA_FLASH_AIR_COMPATIBLITY) == 1);
  1080. if (eeprom_read_dword((uint32_t*)(EEPROM_TOP - 4)) == 0x0ffffffff &&
  1081. eeprom_read_dword((uint32_t*)(EEPROM_TOP - 8)) == 0x0ffffffff) {
  1082. // Maiden startup. The firmware has been loaded and first started on a virgin RAMBo board,
  1083. // where all the EEPROM entries are set to 0x0ff.
  1084. // Once a firmware boots up, it forces at least a language selection, which changes
  1085. // EEPROM_LANG to number lower than 0x0ff.
  1086. // 1) Set a high power mode.
  1087. #ifdef TMC2130
  1088. eeprom_write_byte((uint8_t*)EEPROM_SILENT, 0);
  1089. tmc2130_mode = TMC2130_MODE_NORMAL;
  1090. #endif //TMC2130
  1091. eeprom_write_byte((uint8_t*)EEPROM_WIZARD_ACTIVE, 1); //run wizard
  1092. }
  1093. // Force SD card update. Otherwise the SD card update is done from loop() on card.checkautostart(false),
  1094. // but this times out if a blocking dialog is shown in setup().
  1095. card.initsd();
  1096. #ifdef DEBUG_SD_SPEED_TEST
  1097. if (card.cardOK)
  1098. {
  1099. uint8_t* buff = (uint8_t*)block_buffer;
  1100. uint32_t block = 0;
  1101. uint32_t sumr = 0;
  1102. uint32_t sumw = 0;
  1103. for (int i = 0; i < 1024; i++)
  1104. {
  1105. uint32_t u = micros();
  1106. bool res = card.card.readBlock(i, buff);
  1107. u = micros() - u;
  1108. if (res)
  1109. {
  1110. printf_P(PSTR("readBlock %4d 512 bytes %lu us\n"), i, u);
  1111. sumr += u;
  1112. u = micros();
  1113. res = card.card.writeBlock(i, buff);
  1114. u = micros() - u;
  1115. if (res)
  1116. {
  1117. printf_P(PSTR("writeBlock %4d 512 bytes %lu us\n"), i, u);
  1118. sumw += u;
  1119. }
  1120. else
  1121. {
  1122. printf_P(PSTR("writeBlock %4d error\n"), i);
  1123. break;
  1124. }
  1125. }
  1126. else
  1127. {
  1128. printf_P(PSTR("readBlock %4d error\n"), i);
  1129. break;
  1130. }
  1131. }
  1132. uint32_t avg_rspeed = (1024 * 1000000) / (sumr / 512);
  1133. uint32_t avg_wspeed = (1024 * 1000000) / (sumw / 512);
  1134. printf_P(PSTR("avg read speed %lu bytes/s\n"), avg_rspeed);
  1135. printf_P(PSTR("avg write speed %lu bytes/s\n"), avg_wspeed);
  1136. }
  1137. else
  1138. printf_P(PSTR("Card NG!\n"));
  1139. #endif //DEBUG_SD_SPEED_TEST
  1140. if (eeprom_read_byte((uint8_t*)EEPROM_POWER_COUNT) == 0xff) eeprom_write_byte((uint8_t*)EEPROM_POWER_COUNT, 0);
  1141. if (eeprom_read_byte((uint8_t*)EEPROM_CRASH_COUNT_X) == 0xff) eeprom_write_byte((uint8_t*)EEPROM_CRASH_COUNT_X, 0);
  1142. if (eeprom_read_byte((uint8_t*)EEPROM_CRASH_COUNT_Y) == 0xff) eeprom_write_byte((uint8_t*)EEPROM_CRASH_COUNT_Y, 0);
  1143. if (eeprom_read_byte((uint8_t*)EEPROM_FERROR_COUNT) == 0xff) eeprom_write_byte((uint8_t*)EEPROM_FERROR_COUNT, 0);
  1144. if (eeprom_read_word((uint16_t*)EEPROM_POWER_COUNT_TOT) == 0xffff) eeprom_write_word((uint16_t*)EEPROM_POWER_COUNT_TOT, 0);
  1145. if (eeprom_read_word((uint16_t*)EEPROM_CRASH_COUNT_X_TOT) == 0xffff) eeprom_write_word((uint16_t*)EEPROM_CRASH_COUNT_X_TOT, 0);
  1146. if (eeprom_read_word((uint16_t*)EEPROM_CRASH_COUNT_Y_TOT) == 0xffff) eeprom_write_word((uint16_t*)EEPROM_CRASH_COUNT_Y_TOT, 0);
  1147. if (eeprom_read_word((uint16_t*)EEPROM_FERROR_COUNT_TOT) == 0xffff) eeprom_write_word((uint16_t*)EEPROM_FERROR_COUNT_TOT, 0);
  1148. #ifdef SNMM
  1149. if (eeprom_read_dword((uint32_t*)EEPROM_BOWDEN_LENGTH) == 0x0ffffffff) { //bowden length used for SNMM
  1150. int _z = BOWDEN_LENGTH;
  1151. for(int i = 0; i<4; i++) EEPROM_save_B(EEPROM_BOWDEN_LENGTH + i * 2, &_z);
  1152. }
  1153. #endif
  1154. // In the future, somewhere here would one compare the current firmware version against the firmware version stored in the EEPROM.
  1155. // If they differ, an update procedure may need to be performed. At the end of this block, the current firmware version
  1156. // is being written into the EEPROM, so the update procedure will be triggered only once.
  1157. #if (LANG_MODE != 0) //secondary language support
  1158. #ifdef DEBUG_W25X20CL
  1159. W25X20CL_SPI_ENTER();
  1160. uint8_t uid[8]; // 64bit unique id
  1161. w25x20cl_rd_uid(uid);
  1162. puts_P(_n("W25X20CL UID="));
  1163. for (uint8_t i = 0; i < 8; i ++)
  1164. printf_P(PSTR("%02hhx"), uid[i]);
  1165. putchar('\n');
  1166. list_sec_lang_from_external_flash();
  1167. #endif //DEBUG_W25X20CL
  1168. // lang_reset();
  1169. if (!lang_select(eeprom_read_byte((uint8_t*)EEPROM_LANG)))
  1170. lcd_language();
  1171. #ifdef DEBUG_SEC_LANG
  1172. uint16_t sec_lang_code = lang_get_code(1);
  1173. uint16_t ui = _SEC_LANG_TABLE; //table pointer
  1174. printf_P(_n("lang_selected=%d\nlang_table=0x%04x\nSEC_LANG_CODE=0x%04x (%c%c)\n"), lang_selected, ui, sec_lang_code, sec_lang_code >> 8, sec_lang_code & 0xff);
  1175. lang_print_sec_lang(uartout);
  1176. #endif //DEBUG_SEC_LANG
  1177. #endif //(LANG_MODE != 0)
  1178. if (eeprom_read_byte((uint8_t*)EEPROM_TEMP_CAL_ACTIVE) == 255) {
  1179. eeprom_write_byte((uint8_t*)EEPROM_TEMP_CAL_ACTIVE, 0);
  1180. temp_cal_active = false;
  1181. } else temp_cal_active = eeprom_read_byte((uint8_t*)EEPROM_TEMP_CAL_ACTIVE);
  1182. if (eeprom_read_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA) == 255) {
  1183. //eeprom_write_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 0);
  1184. eeprom_write_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 1);
  1185. int16_t z_shift = 0;
  1186. for (uint8_t i = 0; i < 5; i++) EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + i * 2, &z_shift);
  1187. eeprom_write_byte((uint8_t*)EEPROM_TEMP_CAL_ACTIVE, 0);
  1188. temp_cal_active = false;
  1189. }
  1190. if (eeprom_read_byte((uint8_t*)EEPROM_UVLO) == 255) {
  1191. eeprom_write_byte((uint8_t*)EEPROM_UVLO, 0);
  1192. }
  1193. if (eeprom_read_byte((uint8_t*)EEPROM_SD_SORT) == 255) {
  1194. eeprom_write_byte((uint8_t*)EEPROM_SD_SORT, 0);
  1195. }
  1196. check_babystep(); //checking if Z babystep is in allowed range
  1197. #ifdef UVLO_SUPPORT
  1198. setup_uvlo_interrupt();
  1199. #endif //UVLO_SUPPORT
  1200. #if !defined(DEBUG_DISABLE_FANCHECK) && defined(FANCHECK) && defined(TACH_1) && TACH_1 >-1
  1201. setup_fan_interrupt();
  1202. #endif //DEBUG_DISABLE_FANCHECK
  1203. #ifdef FILAMENT_SENSOR
  1204. fsensor_setup_interrupt();
  1205. #endif //FILAMENT_SENSOR
  1206. for (int i = 0; i<4; i++) EEPROM_read_B(EEPROM_BOWDEN_LENGTH + i * 2, &bowden_length[i]);
  1207. #ifndef DEBUG_DISABLE_STARTMSGS
  1208. KEEPALIVE_STATE(PAUSED_FOR_USER);
  1209. show_fw_version_warnings();
  1210. switch (hw_changed) {
  1211. //if motherboard or printer type was changed inform user as it can indicate flashing wrong firmware version
  1212. //if user confirms with knob, new hw version (printer and/or motherboard) is written to eeprom and message will be not shown next time
  1213. case(0b01):
  1214. lcd_show_fullscreen_message_and_wait_P(_i("Warning: motherboard type changed.")); ////MSG_CHANGED_MOTHERBOARD c=20 r=4
  1215. eeprom_write_word((uint16_t*)EEPROM_BOARD_TYPE, MOTHERBOARD);
  1216. break;
  1217. case(0b10):
  1218. lcd_show_fullscreen_message_and_wait_P(_i("Warning: printer type changed.")); ////MSG_CHANGED_PRINTER c=20 r=4
  1219. eeprom_write_word((uint16_t*)EEPROM_PRINTER_TYPE, PRINTER_TYPE);
  1220. break;
  1221. case(0b11):
  1222. lcd_show_fullscreen_message_and_wait_P(_i("Warning: both printer type and motherboard type changed.")); ////MSG_CHANGED_BOTH c=20 r=4
  1223. eeprom_write_word((uint16_t*)EEPROM_PRINTER_TYPE, PRINTER_TYPE);
  1224. eeprom_write_word((uint16_t*)EEPROM_BOARD_TYPE, MOTHERBOARD);
  1225. break;
  1226. default: break; //no change, show no message
  1227. }
  1228. if (!previous_settings_retrieved) {
  1229. lcd_show_fullscreen_message_and_wait_P(_i("Old settings found. Default PID, Esteps etc. will be set.")); //if EEPROM version or printer type was changed, inform user that default setting were loaded////MSG_DEFAULT_SETTINGS_LOADED c=20 r=4
  1230. Config_StoreSettings();
  1231. }
  1232. if (eeprom_read_byte((uint8_t*)EEPROM_WIZARD_ACTIVE) == 1) {
  1233. lcd_wizard(WizState::Run);
  1234. }
  1235. if (eeprom_read_byte((uint8_t*)EEPROM_WIZARD_ACTIVE) == 0) { //dont show calibration status messages if wizard is currently active
  1236. if (calibration_status() == CALIBRATION_STATUS_ASSEMBLED ||
  1237. calibration_status() == CALIBRATION_STATUS_UNKNOWN ||
  1238. calibration_status() == CALIBRATION_STATUS_XYZ_CALIBRATION) {
  1239. // Reset the babystepping values, so the printer will not move the Z axis up when the babystepping is enabled.
  1240. eeprom_update_word((uint16_t*)EEPROM_BABYSTEP_Z, 0);
  1241. // Show the message.
  1242. lcd_show_fullscreen_message_and_wait_P(_T(MSG_FOLLOW_CALIBRATION_FLOW));
  1243. }
  1244. else if (calibration_status() == CALIBRATION_STATUS_LIVE_ADJUST) {
  1245. // Show the message.
  1246. lcd_show_fullscreen_message_and_wait_P(_T(MSG_BABYSTEP_Z_NOT_SET));
  1247. lcd_update_enable(true);
  1248. }
  1249. else if (calibration_status() == CALIBRATION_STATUS_CALIBRATED && temp_cal_active == true && calibration_status_pinda() == false) {
  1250. //lcd_show_fullscreen_message_and_wait_P(_i("Temperature calibration has not been run yet"));////MSG_PINDA_NOT_CALIBRATED c=20 r=4
  1251. lcd_update_enable(true);
  1252. }
  1253. else if (calibration_status() == CALIBRATION_STATUS_Z_CALIBRATION) {
  1254. // Show the message.
  1255. lcd_show_fullscreen_message_and_wait_P(_T(MSG_FOLLOW_Z_CALIBRATION_FLOW));
  1256. }
  1257. }
  1258. #if !defined (DEBUG_DISABLE_FORCE_SELFTEST) && defined (TMC2130)
  1259. if (force_selftest_if_fw_version() && calibration_status() < CALIBRATION_STATUS_ASSEMBLED) {
  1260. lcd_show_fullscreen_message_and_wait_P(_i("Selftest will be run to calibrate accurate sensorless rehoming."));////MSG_FORCE_SELFTEST c=20 r=8
  1261. update_current_firmware_version_to_eeprom();
  1262. lcd_selftest();
  1263. }
  1264. #endif //TMC2130 && !DEBUG_DISABLE_FORCE_SELFTEST
  1265. KEEPALIVE_STATE(IN_PROCESS);
  1266. #endif //DEBUG_DISABLE_STARTMSGS
  1267. lcd_update_enable(true);
  1268. lcd_clear();
  1269. lcd_update(2);
  1270. // Store the currently running firmware into an eeprom,
  1271. // so the next time the firmware gets updated, it will know from which version it has been updated.
  1272. update_current_firmware_version_to_eeprom();
  1273. #ifdef TMC2130
  1274. tmc2130_home_origin[X_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_HOME_X_ORIGIN);
  1275. tmc2130_home_bsteps[X_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_HOME_X_BSTEPS);
  1276. tmc2130_home_fsteps[X_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_HOME_X_FSTEPS);
  1277. if (tmc2130_home_origin[X_AXIS] == 0xff) tmc2130_home_origin[X_AXIS] = 0;
  1278. if (tmc2130_home_bsteps[X_AXIS] == 0xff) tmc2130_home_bsteps[X_AXIS] = 48;
  1279. if (tmc2130_home_fsteps[X_AXIS] == 0xff) tmc2130_home_fsteps[X_AXIS] = 48;
  1280. tmc2130_home_origin[Y_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_HOME_Y_ORIGIN);
  1281. tmc2130_home_bsteps[Y_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_HOME_Y_BSTEPS);
  1282. tmc2130_home_fsteps[Y_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_HOME_Y_FSTEPS);
  1283. if (tmc2130_home_origin[Y_AXIS] == 0xff) tmc2130_home_origin[Y_AXIS] = 0;
  1284. if (tmc2130_home_bsteps[Y_AXIS] == 0xff) tmc2130_home_bsteps[Y_AXIS] = 48;
  1285. if (tmc2130_home_fsteps[Y_AXIS] == 0xff) tmc2130_home_fsteps[Y_AXIS] = 48;
  1286. tmc2130_home_enabled = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_HOME_ENABLED);
  1287. if (tmc2130_home_enabled == 0xff) tmc2130_home_enabled = 0;
  1288. #endif //TMC2130
  1289. #ifdef UVLO_SUPPORT
  1290. if (eeprom_read_byte((uint8_t*)EEPROM_UVLO) != 0) { //previous print was terminated by UVLO
  1291. /*
  1292. if (lcd_show_fullscreen_message_yes_no_and_wait_P(_T(MSG_RECOVER_PRINT), false)) recover_print();
  1293. else {
  1294. eeprom_update_byte((uint8_t*)EEPROM_UVLO, 0);
  1295. lcd_update_enable(true);
  1296. lcd_update(2);
  1297. lcd_setstatuspgm(_T(WELCOME_MSG));
  1298. }
  1299. */
  1300. manage_heater(); // Update temperatures
  1301. #ifdef DEBUG_UVLO_AUTOMATIC_RECOVER
  1302. printf_P(_N("Power panic detected!\nCurrent bed temp:%d\nSaved bed temp:%d\n"), (int)degBed(), eeprom_read_byte((uint8_t*)EEPROM_UVLO_TARGET_BED))
  1303. #endif
  1304. if ( degBed() > ( (float)eeprom_read_byte((uint8_t*)EEPROM_UVLO_TARGET_BED) - AUTOMATIC_UVLO_BED_TEMP_OFFSET) ){
  1305. #ifdef DEBUG_UVLO_AUTOMATIC_RECOVER
  1306. puts_P(_N("Automatic recovery!"));
  1307. #endif
  1308. recover_print(1);
  1309. }
  1310. else{
  1311. #ifdef DEBUG_UVLO_AUTOMATIC_RECOVER
  1312. puts_P(_N("Normal recovery!"));
  1313. #endif
  1314. if ( lcd_show_fullscreen_message_yes_no_and_wait_P(_T(MSG_RECOVER_PRINT), false) ) recover_print(0);
  1315. else {
  1316. eeprom_update_byte((uint8_t*)EEPROM_UVLO, 0);
  1317. lcd_update_enable(true);
  1318. lcd_update(2);
  1319. lcd_setstatuspgm(_T(WELCOME_MSG));
  1320. }
  1321. }
  1322. }
  1323. #endif //UVLO_SUPPORT
  1324. KEEPALIVE_STATE(NOT_BUSY);
  1325. #ifdef WATCHDOG
  1326. wdt_enable(WDTO_4S);
  1327. #endif //WATCHDOG
  1328. }
  1329. void trace();
  1330. #define CHUNK_SIZE 64 // bytes
  1331. #define SAFETY_MARGIN 1
  1332. char chunk[CHUNK_SIZE+SAFETY_MARGIN];
  1333. int chunkHead = 0;
  1334. void serial_read_stream() {
  1335. setAllTargetHotends(0);
  1336. setTargetBed(0);
  1337. lcd_clear();
  1338. lcd_puts_P(PSTR(" Upload in progress"));
  1339. // first wait for how many bytes we will receive
  1340. uint32_t bytesToReceive;
  1341. // receive the four bytes
  1342. char bytesToReceiveBuffer[4];
  1343. for (int i=0; i<4; i++) {
  1344. int data;
  1345. while ((data = MYSERIAL.read()) == -1) {};
  1346. bytesToReceiveBuffer[i] = data;
  1347. }
  1348. // make it a uint32
  1349. memcpy(&bytesToReceive, &bytesToReceiveBuffer, 4);
  1350. // we're ready, notify the sender
  1351. MYSERIAL.write('+');
  1352. // lock in the routine
  1353. uint32_t receivedBytes = 0;
  1354. while (prusa_sd_card_upload) {
  1355. int i;
  1356. for (i=0; i<CHUNK_SIZE; i++) {
  1357. int data;
  1358. // check if we're not done
  1359. if (receivedBytes == bytesToReceive) {
  1360. break;
  1361. }
  1362. // read the next byte
  1363. while ((data = MYSERIAL.read()) == -1) {};
  1364. receivedBytes++;
  1365. // save it to the chunk
  1366. chunk[i] = data;
  1367. }
  1368. // write the chunk to SD
  1369. card.write_command_no_newline(&chunk[0]);
  1370. // notify the sender we're ready for more data
  1371. MYSERIAL.write('+');
  1372. // for safety
  1373. manage_heater();
  1374. // check if we're done
  1375. if(receivedBytes == bytesToReceive) {
  1376. trace(); // beep
  1377. card.closefile();
  1378. prusa_sd_card_upload = false;
  1379. SERIAL_PROTOCOLLNRPGM(MSG_FILE_SAVED);
  1380. }
  1381. }
  1382. }
  1383. #ifdef HOST_KEEPALIVE_FEATURE
  1384. /**
  1385. * Output a "busy" message at regular intervals
  1386. * while the machine is not accepting commands.
  1387. */
  1388. void host_keepalive() {
  1389. if (farm_mode) return;
  1390. long ms = millis();
  1391. if (host_keepalive_interval && busy_state != NOT_BUSY) {
  1392. if ((ms - prev_busy_signal_ms) < (long)(1000L * host_keepalive_interval)) return;
  1393. switch (busy_state) {
  1394. case IN_HANDLER:
  1395. case IN_PROCESS:
  1396. SERIAL_ECHO_START;
  1397. SERIAL_ECHOLNPGM("busy: processing");
  1398. break;
  1399. case PAUSED_FOR_USER:
  1400. SERIAL_ECHO_START;
  1401. SERIAL_ECHOLNPGM("busy: paused for user");
  1402. break;
  1403. case PAUSED_FOR_INPUT:
  1404. SERIAL_ECHO_START;
  1405. SERIAL_ECHOLNPGM("busy: paused for input");
  1406. break;
  1407. default:
  1408. break;
  1409. }
  1410. }
  1411. prev_busy_signal_ms = ms;
  1412. }
  1413. #endif
  1414. // The loop() function is called in an endless loop by the Arduino framework from the default main() routine.
  1415. // Before loop(), the setup() function is called by the main() routine.
  1416. void loop()
  1417. {
  1418. KEEPALIVE_STATE(NOT_BUSY);
  1419. if ((usb_printing_counter > 0) && ((millis()-_usb_timer) > 1000))
  1420. {
  1421. is_usb_printing = true;
  1422. usb_printing_counter--;
  1423. _usb_timer = millis();
  1424. }
  1425. if (usb_printing_counter == 0)
  1426. {
  1427. is_usb_printing = false;
  1428. }
  1429. if (prusa_sd_card_upload)
  1430. {
  1431. //we read byte-by byte
  1432. serial_read_stream();
  1433. } else
  1434. {
  1435. get_command();
  1436. #ifdef SDSUPPORT
  1437. card.checkautostart(false);
  1438. #endif
  1439. if(buflen)
  1440. {
  1441. cmdbuffer_front_already_processed = false;
  1442. #ifdef SDSUPPORT
  1443. if(card.saving)
  1444. {
  1445. // Saving a G-code file onto an SD-card is in progress.
  1446. // Saving starts with M28, saving until M29 is seen.
  1447. if(strstr_P(CMDBUFFER_CURRENT_STRING, PSTR("M29")) == NULL) {
  1448. card.write_command(CMDBUFFER_CURRENT_STRING);
  1449. if(card.logging)
  1450. process_commands();
  1451. else
  1452. SERIAL_PROTOCOLLNRPGM(_T(MSG_OK));
  1453. } else {
  1454. card.closefile();
  1455. SERIAL_PROTOCOLLNRPGM(MSG_FILE_SAVED);
  1456. }
  1457. } else {
  1458. process_commands();
  1459. }
  1460. #else
  1461. process_commands();
  1462. #endif //SDSUPPORT
  1463. if (! cmdbuffer_front_already_processed && buflen)
  1464. {
  1465. // ptr points to the start of the block currently being processed.
  1466. // The first character in the block is the block type.
  1467. char *ptr = cmdbuffer + bufindr;
  1468. if (*ptr == CMDBUFFER_CURRENT_TYPE_SDCARD) {
  1469. // To support power panic, move the lenght of the command on the SD card to a planner buffer.
  1470. union {
  1471. struct {
  1472. char lo;
  1473. char hi;
  1474. } lohi;
  1475. uint16_t value;
  1476. } sdlen;
  1477. sdlen.value = 0;
  1478. {
  1479. // This block locks the interrupts globally for 3.25 us,
  1480. // which corresponds to a maximum repeat frequency of 307.69 kHz.
  1481. // This blocking is safe in the context of a 10kHz stepper driver interrupt
  1482. // or a 115200 Bd serial line receive interrupt, which will not trigger faster than 12kHz.
  1483. cli();
  1484. // Reset the command to something, which will be ignored by the power panic routine,
  1485. // so this buffer length will not be counted twice.
  1486. *ptr ++ = CMDBUFFER_CURRENT_TYPE_TO_BE_REMOVED;
  1487. // Extract the current buffer length.
  1488. sdlen.lohi.lo = *ptr ++;
  1489. sdlen.lohi.hi = *ptr;
  1490. // and pass it to the planner queue.
  1491. planner_add_sd_length(sdlen.value);
  1492. sei();
  1493. }
  1494. }
  1495. else if((*ptr == CMDBUFFER_CURRENT_TYPE_USB_WITH_LINENR) && !IS_SD_PRINTING){
  1496. cli();
  1497. *ptr ++ = CMDBUFFER_CURRENT_TYPE_TO_BE_REMOVED;
  1498. // and one for each command to previous block in the planner queue.
  1499. planner_add_sd_length(1);
  1500. sei();
  1501. }
  1502. // Now it is safe to release the already processed command block. If interrupted by the power panic now,
  1503. // this block's SD card length will not be counted twice as its command type has been replaced
  1504. // by CMDBUFFER_CURRENT_TYPE_TO_BE_REMOVED.
  1505. cmdqueue_pop_front();
  1506. }
  1507. host_keepalive();
  1508. }
  1509. }
  1510. //check heater every n milliseconds
  1511. manage_heater();
  1512. isPrintPaused ? manage_inactivity(true) : manage_inactivity(false);
  1513. checkHitEndstops();
  1514. lcd_update(0);
  1515. #ifdef TMC2130
  1516. tmc2130_check_overtemp();
  1517. if (tmc2130_sg_crash)
  1518. {
  1519. uint8_t crash = tmc2130_sg_crash;
  1520. tmc2130_sg_crash = 0;
  1521. // crashdet_stop_and_save_print();
  1522. switch (crash)
  1523. {
  1524. case 1: enquecommand_P((PSTR("CRASH_DETECTEDX"))); break;
  1525. case 2: enquecommand_P((PSTR("CRASH_DETECTEDY"))); break;
  1526. case 3: enquecommand_P((PSTR("CRASH_DETECTEDXY"))); break;
  1527. }
  1528. }
  1529. #endif //TMC2130
  1530. mmu_loop();
  1531. }
  1532. #define DEFINE_PGM_READ_ANY(type, reader) \
  1533. static inline type pgm_read_any(const type *p) \
  1534. { return pgm_read_##reader##_near(p); }
  1535. DEFINE_PGM_READ_ANY(float, float);
  1536. DEFINE_PGM_READ_ANY(signed char, byte);
  1537. #define XYZ_CONSTS_FROM_CONFIG(type, array, CONFIG) \
  1538. static const PROGMEM type array##_P[3] = \
  1539. { X_##CONFIG, Y_##CONFIG, Z_##CONFIG }; \
  1540. static inline type array(int axis) \
  1541. { return pgm_read_any(&array##_P[axis]); } \
  1542. type array##_ext(int axis) \
  1543. { return pgm_read_any(&array##_P[axis]); }
  1544. XYZ_CONSTS_FROM_CONFIG(float, base_min_pos, MIN_POS);
  1545. XYZ_CONSTS_FROM_CONFIG(float, base_max_pos, MAX_POS);
  1546. XYZ_CONSTS_FROM_CONFIG(float, base_home_pos, HOME_POS);
  1547. XYZ_CONSTS_FROM_CONFIG(float, max_length, MAX_LENGTH);
  1548. XYZ_CONSTS_FROM_CONFIG(float, home_retract_mm, HOME_RETRACT_MM);
  1549. XYZ_CONSTS_FROM_CONFIG(signed char, home_dir, HOME_DIR);
  1550. static void axis_is_at_home(int axis) {
  1551. current_position[axis] = base_home_pos(axis) + cs.add_homing[axis];
  1552. min_pos[axis] = base_min_pos(axis) + cs.add_homing[axis];
  1553. max_pos[axis] = base_max_pos(axis) + cs.add_homing[axis];
  1554. }
  1555. inline void set_current_to_destination() { memcpy(current_position, destination, sizeof(current_position)); }
  1556. inline void set_destination_to_current() { memcpy(destination, current_position, sizeof(destination)); }
  1557. //! @return original feedmultiply
  1558. static int setup_for_endstop_move(bool enable_endstops_now = true) {
  1559. saved_feedrate = feedrate;
  1560. int l_feedmultiply = feedmultiply;
  1561. feedmultiply = 100;
  1562. previous_millis_cmd = millis();
  1563. enable_endstops(enable_endstops_now);
  1564. return l_feedmultiply;
  1565. }
  1566. //! @param original_feedmultiply feedmultiply to restore
  1567. static void clean_up_after_endstop_move(int original_feedmultiply) {
  1568. #ifdef ENDSTOPS_ONLY_FOR_HOMING
  1569. enable_endstops(false);
  1570. #endif
  1571. feedrate = saved_feedrate;
  1572. feedmultiply = original_feedmultiply;
  1573. previous_millis_cmd = millis();
  1574. }
  1575. #ifdef ENABLE_AUTO_BED_LEVELING
  1576. #ifdef AUTO_BED_LEVELING_GRID
  1577. static void set_bed_level_equation_lsq(double *plane_equation_coefficients)
  1578. {
  1579. vector_3 planeNormal = vector_3(-plane_equation_coefficients[0], -plane_equation_coefficients[1], 1);
  1580. planeNormal.debug("planeNormal");
  1581. plan_bed_level_matrix = matrix_3x3::create_look_at(planeNormal);
  1582. //bedLevel.debug("bedLevel");
  1583. //plan_bed_level_matrix.debug("bed level before");
  1584. //vector_3 uncorrected_position = plan_get_position_mm();
  1585. //uncorrected_position.debug("position before");
  1586. vector_3 corrected_position = plan_get_position();
  1587. // corrected_position.debug("position after");
  1588. current_position[X_AXIS] = corrected_position.x;
  1589. current_position[Y_AXIS] = corrected_position.y;
  1590. current_position[Z_AXIS] = corrected_position.z;
  1591. // put the bed at 0 so we don't go below it.
  1592. current_position[Z_AXIS] = cs.zprobe_zoffset; // in the lsq we reach here after raising the extruder due to the loop structure
  1593. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1594. }
  1595. #else // not AUTO_BED_LEVELING_GRID
  1596. static void set_bed_level_equation_3pts(float z_at_pt_1, float z_at_pt_2, float z_at_pt_3) {
  1597. plan_bed_level_matrix.set_to_identity();
  1598. vector_3 pt1 = vector_3(ABL_PROBE_PT_1_X, ABL_PROBE_PT_1_Y, z_at_pt_1);
  1599. vector_3 pt2 = vector_3(ABL_PROBE_PT_2_X, ABL_PROBE_PT_2_Y, z_at_pt_2);
  1600. vector_3 pt3 = vector_3(ABL_PROBE_PT_3_X, ABL_PROBE_PT_3_Y, z_at_pt_3);
  1601. vector_3 from_2_to_1 = (pt1 - pt2).get_normal();
  1602. vector_3 from_2_to_3 = (pt3 - pt2).get_normal();
  1603. vector_3 planeNormal = vector_3::cross(from_2_to_1, from_2_to_3).get_normal();
  1604. planeNormal = vector_3(planeNormal.x, planeNormal.y, abs(planeNormal.z));
  1605. plan_bed_level_matrix = matrix_3x3::create_look_at(planeNormal);
  1606. vector_3 corrected_position = plan_get_position();
  1607. current_position[X_AXIS] = corrected_position.x;
  1608. current_position[Y_AXIS] = corrected_position.y;
  1609. current_position[Z_AXIS] = corrected_position.z;
  1610. // put the bed at 0 so we don't go below it.
  1611. current_position[Z_AXIS] = cs.zprobe_zoffset;
  1612. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1613. }
  1614. #endif // AUTO_BED_LEVELING_GRID
  1615. static void run_z_probe() {
  1616. plan_bed_level_matrix.set_to_identity();
  1617. feedrate = homing_feedrate[Z_AXIS];
  1618. // move down until you find the bed
  1619. float zPosition = -10;
  1620. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder);
  1621. st_synchronize();
  1622. // we have to let the planner know where we are right now as it is not where we said to go.
  1623. zPosition = st_get_position_mm(Z_AXIS);
  1624. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS]);
  1625. // move up the retract distance
  1626. zPosition += home_retract_mm(Z_AXIS);
  1627. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder);
  1628. st_synchronize();
  1629. // move back down slowly to find bed
  1630. feedrate = homing_feedrate[Z_AXIS]/4;
  1631. zPosition -= home_retract_mm(Z_AXIS) * 2;
  1632. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder);
  1633. st_synchronize();
  1634. current_position[Z_AXIS] = st_get_position_mm(Z_AXIS);
  1635. // make sure the planner knows where we are as it may be a bit different than we last said to move to
  1636. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1637. }
  1638. static void do_blocking_move_to(float x, float y, float z) {
  1639. float oldFeedRate = feedrate;
  1640. feedrate = homing_feedrate[Z_AXIS];
  1641. current_position[Z_AXIS] = z;
  1642. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], feedrate/60, active_extruder);
  1643. st_synchronize();
  1644. feedrate = XY_TRAVEL_SPEED;
  1645. current_position[X_AXIS] = x;
  1646. current_position[Y_AXIS] = y;
  1647. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], feedrate/60, active_extruder);
  1648. st_synchronize();
  1649. feedrate = oldFeedRate;
  1650. }
  1651. static void do_blocking_move_relative(float offset_x, float offset_y, float offset_z) {
  1652. do_blocking_move_to(current_position[X_AXIS] + offset_x, current_position[Y_AXIS] + offset_y, current_position[Z_AXIS] + offset_z);
  1653. }
  1654. /// Probe bed height at position (x,y), returns the measured z value
  1655. static float probe_pt(float x, float y, float z_before) {
  1656. // move to right place
  1657. do_blocking_move_to(current_position[X_AXIS], current_position[Y_AXIS], z_before);
  1658. do_blocking_move_to(x - X_PROBE_OFFSET_FROM_EXTRUDER, y - Y_PROBE_OFFSET_FROM_EXTRUDER, current_position[Z_AXIS]);
  1659. run_z_probe();
  1660. float measured_z = current_position[Z_AXIS];
  1661. SERIAL_PROTOCOLRPGM(_T(MSG_BED));
  1662. SERIAL_PROTOCOLPGM(" x: ");
  1663. SERIAL_PROTOCOL(x);
  1664. SERIAL_PROTOCOLPGM(" y: ");
  1665. SERIAL_PROTOCOL(y);
  1666. SERIAL_PROTOCOLPGM(" z: ");
  1667. SERIAL_PROTOCOL(measured_z);
  1668. SERIAL_PROTOCOLPGM("\n");
  1669. return measured_z;
  1670. }
  1671. #endif // #ifdef ENABLE_AUTO_BED_LEVELING
  1672. #ifdef LIN_ADVANCE
  1673. /**
  1674. * M900: Set and/or Get advance K factor and WH/D ratio
  1675. *
  1676. * K<factor> Set advance K factor
  1677. * R<ratio> Set ratio directly (overrides WH/D)
  1678. * W<width> H<height> D<diam> Set ratio from WH/D
  1679. */
  1680. inline void gcode_M900() {
  1681. st_synchronize();
  1682. const float newK = code_seen('K') ? code_value_float() : -1;
  1683. if (newK >= 0) extruder_advance_k = newK;
  1684. float newR = code_seen('R') ? code_value_float() : -1;
  1685. if (newR < 0) {
  1686. const float newD = code_seen('D') ? code_value_float() : -1,
  1687. newW = code_seen('W') ? code_value_float() : -1,
  1688. newH = code_seen('H') ? code_value_float() : -1;
  1689. if (newD >= 0 && newW >= 0 && newH >= 0)
  1690. newR = newD ? (newW * newH) / (sq(newD * 0.5) * M_PI) : 0;
  1691. }
  1692. if (newR >= 0) advance_ed_ratio = newR;
  1693. SERIAL_ECHO_START;
  1694. SERIAL_ECHOPGM("Advance K=");
  1695. SERIAL_ECHOLN(extruder_advance_k);
  1696. SERIAL_ECHOPGM(" E/D=");
  1697. const float ratio = advance_ed_ratio;
  1698. if (ratio) SERIAL_ECHOLN(ratio); else SERIAL_ECHOLNPGM("Auto");
  1699. }
  1700. #endif // LIN_ADVANCE
  1701. bool check_commands() {
  1702. bool end_command_found = false;
  1703. while (buflen)
  1704. {
  1705. if ((code_seen("M84")) || (code_seen("M 84"))) end_command_found = true;
  1706. if (!cmdbuffer_front_already_processed)
  1707. cmdqueue_pop_front();
  1708. cmdbuffer_front_already_processed = false;
  1709. }
  1710. return end_command_found;
  1711. }
  1712. #ifdef TMC2130
  1713. bool calibrate_z_auto()
  1714. {
  1715. //lcd_display_message_fullscreen_P(_T(MSG_CALIBRATE_Z_AUTO));
  1716. lcd_clear();
  1717. lcd_puts_at_P(0,1, _T(MSG_CALIBRATE_Z_AUTO));
  1718. bool endstops_enabled = enable_endstops(true);
  1719. int axis_up_dir = -home_dir(Z_AXIS);
  1720. tmc2130_home_enter(Z_AXIS_MASK);
  1721. current_position[Z_AXIS] = 0;
  1722. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1723. set_destination_to_current();
  1724. destination[Z_AXIS] += (1.1 * max_length(Z_AXIS) * axis_up_dir);
  1725. feedrate = homing_feedrate[Z_AXIS];
  1726. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1727. st_synchronize();
  1728. // current_position[axis] = 0;
  1729. // plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1730. tmc2130_home_exit();
  1731. enable_endstops(false);
  1732. current_position[Z_AXIS] = 0;
  1733. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1734. set_destination_to_current();
  1735. destination[Z_AXIS] += 10 * axis_up_dir; //10mm up
  1736. feedrate = homing_feedrate[Z_AXIS] / 2;
  1737. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1738. st_synchronize();
  1739. enable_endstops(endstops_enabled);
  1740. current_position[Z_AXIS] = Z_MAX_POS+2.0;
  1741. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1742. return true;
  1743. }
  1744. #endif //TMC2130
  1745. void homeaxis(int axis, uint8_t cnt, uint8_t* pstep)
  1746. {
  1747. bool endstops_enabled = enable_endstops(true); //RP: endstops should be allways enabled durring homing
  1748. #define HOMEAXIS_DO(LETTER) \
  1749. ((LETTER##_MIN_PIN > -1 && LETTER##_HOME_DIR==-1) || (LETTER##_MAX_PIN > -1 && LETTER##_HOME_DIR==1))
  1750. if ((axis==X_AXIS)?HOMEAXIS_DO(X):(axis==Y_AXIS)?HOMEAXIS_DO(Y):0)
  1751. {
  1752. int axis_home_dir = home_dir(axis);
  1753. feedrate = homing_feedrate[axis];
  1754. #ifdef TMC2130
  1755. tmc2130_home_enter(X_AXIS_MASK << axis);
  1756. #endif //TMC2130
  1757. // Move away a bit, so that the print head does not touch the end position,
  1758. // and the following movement to endstop has a chance to achieve the required velocity
  1759. // for the stall guard to work.
  1760. current_position[axis] = 0;
  1761. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1762. set_destination_to_current();
  1763. // destination[axis] = 11.f;
  1764. destination[axis] = -3.f * axis_home_dir;
  1765. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1766. st_synchronize();
  1767. // Move away from the possible collision with opposite endstop with the collision detection disabled.
  1768. endstops_hit_on_purpose();
  1769. enable_endstops(false);
  1770. current_position[axis] = 0;
  1771. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1772. destination[axis] = 1. * axis_home_dir;
  1773. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1774. st_synchronize();
  1775. // Now continue to move up to the left end stop with the collision detection enabled.
  1776. enable_endstops(true);
  1777. destination[axis] = 1.1 * axis_home_dir * max_length(axis);
  1778. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1779. st_synchronize();
  1780. for (uint8_t i = 0; i < cnt; i++)
  1781. {
  1782. // Move away from the collision to a known distance from the left end stop with the collision detection disabled.
  1783. endstops_hit_on_purpose();
  1784. enable_endstops(false);
  1785. current_position[axis] = 0;
  1786. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1787. destination[axis] = -10.f * axis_home_dir;
  1788. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1789. st_synchronize();
  1790. endstops_hit_on_purpose();
  1791. // Now move left up to the collision, this time with a repeatable velocity.
  1792. enable_endstops(true);
  1793. destination[axis] = 11.f * axis_home_dir;
  1794. #ifdef TMC2130
  1795. feedrate = homing_feedrate[axis];
  1796. #else //TMC2130
  1797. feedrate = homing_feedrate[axis] / 2;
  1798. #endif //TMC2130
  1799. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1800. st_synchronize();
  1801. #ifdef TMC2130
  1802. uint16_t mscnt = tmc2130_rd_MSCNT(axis);
  1803. if (pstep) pstep[i] = mscnt >> 4;
  1804. printf_P(PSTR("%3d step=%2d mscnt=%4d\n"), i, mscnt >> 4, mscnt);
  1805. #endif //TMC2130
  1806. }
  1807. endstops_hit_on_purpose();
  1808. enable_endstops(false);
  1809. #ifdef TMC2130
  1810. uint8_t orig = tmc2130_home_origin[axis];
  1811. uint8_t back = tmc2130_home_bsteps[axis];
  1812. if (tmc2130_home_enabled && (orig <= 63))
  1813. {
  1814. tmc2130_goto_step(axis, orig, 2, 1000, tmc2130_get_res(axis));
  1815. if (back > 0)
  1816. tmc2130_do_steps(axis, back, -axis_home_dir, 1000);
  1817. }
  1818. else
  1819. tmc2130_do_steps(axis, 8, -axis_home_dir, 1000);
  1820. tmc2130_home_exit();
  1821. #endif //TMC2130
  1822. axis_is_at_home(axis);
  1823. axis_known_position[axis] = true;
  1824. // Move from minimum
  1825. #ifdef TMC2130
  1826. float dist = - axis_home_dir * 0.01f * tmc2130_home_fsteps[axis];
  1827. #else //TMC2130
  1828. float dist = - axis_home_dir * 0.01f * 64;
  1829. #endif //TMC2130
  1830. current_position[axis] -= dist;
  1831. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1832. current_position[axis] += dist;
  1833. destination[axis] = current_position[axis];
  1834. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], 0.5f*feedrate/60, active_extruder);
  1835. st_synchronize();
  1836. feedrate = 0.0;
  1837. }
  1838. else if ((axis==Z_AXIS)?HOMEAXIS_DO(Z):0)
  1839. {
  1840. #ifdef TMC2130
  1841. FORCE_HIGH_POWER_START;
  1842. #endif
  1843. int axis_home_dir = home_dir(axis);
  1844. current_position[axis] = 0;
  1845. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1846. destination[axis] = 1.5 * max_length(axis) * axis_home_dir;
  1847. feedrate = homing_feedrate[axis];
  1848. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1849. st_synchronize();
  1850. #ifdef TMC2130
  1851. if (READ(Z_TMC2130_DIAG) != 0) { //Z crash
  1852. FORCE_HIGH_POWER_END;
  1853. kill(_T(MSG_BED_LEVELING_FAILED_POINT_LOW));
  1854. return;
  1855. }
  1856. #endif //TMC2130
  1857. current_position[axis] = 0;
  1858. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1859. destination[axis] = -home_retract_mm(axis) * axis_home_dir;
  1860. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1861. st_synchronize();
  1862. destination[axis] = 2*home_retract_mm(axis) * axis_home_dir;
  1863. feedrate = homing_feedrate[axis]/2 ;
  1864. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1865. st_synchronize();
  1866. #ifdef TMC2130
  1867. if (READ(Z_TMC2130_DIAG) != 0) { //Z crash
  1868. FORCE_HIGH_POWER_END;
  1869. kill(_T(MSG_BED_LEVELING_FAILED_POINT_LOW));
  1870. return;
  1871. }
  1872. #endif //TMC2130
  1873. axis_is_at_home(axis);
  1874. destination[axis] = current_position[axis];
  1875. feedrate = 0.0;
  1876. endstops_hit_on_purpose();
  1877. axis_known_position[axis] = true;
  1878. #ifdef TMC2130
  1879. FORCE_HIGH_POWER_END;
  1880. #endif
  1881. }
  1882. enable_endstops(endstops_enabled);
  1883. }
  1884. /**/
  1885. void home_xy()
  1886. {
  1887. set_destination_to_current();
  1888. homeaxis(X_AXIS);
  1889. homeaxis(Y_AXIS);
  1890. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1891. endstops_hit_on_purpose();
  1892. }
  1893. void refresh_cmd_timeout(void)
  1894. {
  1895. previous_millis_cmd = millis();
  1896. }
  1897. #ifdef FWRETRACT
  1898. void retract(bool retracting, bool swapretract = false) {
  1899. if(retracting && !retracted[active_extruder]) {
  1900. destination[X_AXIS]=current_position[X_AXIS];
  1901. destination[Y_AXIS]=current_position[Y_AXIS];
  1902. destination[Z_AXIS]=current_position[Z_AXIS];
  1903. destination[E_AXIS]=current_position[E_AXIS];
  1904. current_position[E_AXIS]+=(swapretract?retract_length_swap:cs.retract_length)*float(extrudemultiply)*0.01f;
  1905. plan_set_e_position(current_position[E_AXIS]);
  1906. float oldFeedrate = feedrate;
  1907. feedrate=cs.retract_feedrate*60;
  1908. retracted[active_extruder]=true;
  1909. prepare_move();
  1910. current_position[Z_AXIS]-=cs.retract_zlift;
  1911. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1912. prepare_move();
  1913. feedrate = oldFeedrate;
  1914. } else if(!retracting && retracted[active_extruder]) {
  1915. destination[X_AXIS]=current_position[X_AXIS];
  1916. destination[Y_AXIS]=current_position[Y_AXIS];
  1917. destination[Z_AXIS]=current_position[Z_AXIS];
  1918. destination[E_AXIS]=current_position[E_AXIS];
  1919. current_position[Z_AXIS]+=cs.retract_zlift;
  1920. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1921. current_position[E_AXIS]-=(swapretract?(retract_length_swap+retract_recover_length_swap):(cs.retract_length+cs.retract_recover_length))*float(extrudemultiply)*0.01f;
  1922. plan_set_e_position(current_position[E_AXIS]);
  1923. float oldFeedrate = feedrate;
  1924. feedrate=cs.retract_recover_feedrate*60;
  1925. retracted[active_extruder]=false;
  1926. prepare_move();
  1927. feedrate = oldFeedrate;
  1928. }
  1929. } //retract
  1930. #endif //FWRETRACT
  1931. void trace() {
  1932. //if((eSoundMode==e_SOUND_MODE_LOUD)||(eSoundMode==e_SOUND_MODE_ONCE))
  1933. tone(BEEPER, 440);
  1934. delay(25);
  1935. noTone(BEEPER);
  1936. delay(20);
  1937. }
  1938. /*
  1939. void ramming() {
  1940. // float tmp[4] = DEFAULT_MAX_FEEDRATE;
  1941. if (current_temperature[0] < 230) {
  1942. //PLA
  1943. max_feedrate[E_AXIS] = 50;
  1944. //current_position[E_AXIS] -= 8;
  1945. //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2100 / 60, active_extruder);
  1946. //current_position[E_AXIS] += 8;
  1947. //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2100 / 60, active_extruder);
  1948. current_position[E_AXIS] += 5.4;
  1949. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2800 / 60, active_extruder);
  1950. current_position[E_AXIS] += 3.2;
  1951. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  1952. current_position[E_AXIS] += 3;
  1953. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3400 / 60, active_extruder);
  1954. st_synchronize();
  1955. max_feedrate[E_AXIS] = 80;
  1956. current_position[E_AXIS] -= 82;
  1957. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 9500 / 60, active_extruder);
  1958. max_feedrate[E_AXIS] = 50;//tmp[E_AXIS];
  1959. current_position[E_AXIS] -= 20;
  1960. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 1200 / 60, active_extruder);
  1961. current_position[E_AXIS] += 5;
  1962. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400 / 60, active_extruder);
  1963. current_position[E_AXIS] += 5;
  1964. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  1965. current_position[E_AXIS] -= 10;
  1966. st_synchronize();
  1967. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  1968. current_position[E_AXIS] += 10;
  1969. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  1970. current_position[E_AXIS] -= 10;
  1971. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 800 / 60, active_extruder);
  1972. current_position[E_AXIS] += 10;
  1973. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 800 / 60, active_extruder);
  1974. current_position[E_AXIS] -= 10;
  1975. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 800 / 60, active_extruder);
  1976. st_synchronize();
  1977. }
  1978. else {
  1979. //ABS
  1980. max_feedrate[E_AXIS] = 50;
  1981. //current_position[E_AXIS] -= 8;
  1982. //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2100 / 60, active_extruder);
  1983. //current_position[E_AXIS] += 8;
  1984. //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2100 / 60, active_extruder);
  1985. current_position[E_AXIS] += 3.1;
  1986. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2000 / 60, active_extruder);
  1987. current_position[E_AXIS] += 3.1;
  1988. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2500 / 60, active_extruder);
  1989. current_position[E_AXIS] += 4;
  1990. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  1991. st_synchronize();
  1992. //current_position[X_AXIS] += 23; //delay
  1993. //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600/60, active_extruder); //delay
  1994. //current_position[X_AXIS] -= 23; //delay
  1995. //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600/60, active_extruder); //delay
  1996. delay(4700);
  1997. max_feedrate[E_AXIS] = 80;
  1998. current_position[E_AXIS] -= 92;
  1999. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 9900 / 60, active_extruder);
  2000. max_feedrate[E_AXIS] = 50;//tmp[E_AXIS];
  2001. current_position[E_AXIS] -= 5;
  2002. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 800 / 60, active_extruder);
  2003. current_position[E_AXIS] += 5;
  2004. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400 / 60, active_extruder);
  2005. current_position[E_AXIS] -= 5;
  2006. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  2007. st_synchronize();
  2008. current_position[E_AXIS] += 5;
  2009. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  2010. current_position[E_AXIS] -= 5;
  2011. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  2012. current_position[E_AXIS] += 5;
  2013. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  2014. current_position[E_AXIS] -= 5;
  2015. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  2016. st_synchronize();
  2017. }
  2018. }
  2019. */
  2020. #ifdef TMC2130
  2021. void force_high_power_mode(bool start_high_power_section) {
  2022. uint8_t silent;
  2023. silent = eeprom_read_byte((uint8_t*)EEPROM_SILENT);
  2024. if (silent == 1) {
  2025. //we are in silent mode, set to normal mode to enable crash detection
  2026. // Wait for the planner queue to drain and for the stepper timer routine to reach an idle state.
  2027. st_synchronize();
  2028. cli();
  2029. tmc2130_mode = (start_high_power_section == true) ? TMC2130_MODE_NORMAL : TMC2130_MODE_SILENT;
  2030. update_mode_profile();
  2031. tmc2130_init();
  2032. // We may have missed a stepper timer interrupt due to the time spent in the tmc2130_init() routine.
  2033. // Be safe than sorry, reset the stepper timer before re-enabling interrupts.
  2034. st_reset_timer();
  2035. sei();
  2036. }
  2037. }
  2038. #endif //TMC2130
  2039. void gcode_G28(bool home_x_axis, bool home_y_axis, bool home_z_axis) {
  2040. gcode_G28(home_x_axis, 0, home_y_axis, 0, home_z_axis, 0, false, true);
  2041. }
  2042. void gcode_G28(bool home_x_axis, long home_x_value, bool home_y_axis, long home_y_value, bool home_z_axis, long home_z_value, bool calib, bool without_mbl) {
  2043. st_synchronize();
  2044. #if 0
  2045. SERIAL_ECHOPGM("G28, initial "); print_world_coordinates();
  2046. SERIAL_ECHOPGM("G28, initial "); print_physical_coordinates();
  2047. #endif
  2048. // Flag for the display update routine and to disable the print cancelation during homing.
  2049. homing_flag = true;
  2050. // Which axes should be homed?
  2051. bool home_x = home_x_axis;
  2052. bool home_y = home_y_axis;
  2053. bool home_z = home_z_axis;
  2054. // Either all X,Y,Z codes are present, or none of them.
  2055. bool home_all_axes = home_x == home_y && home_x == home_z;
  2056. if (home_all_axes)
  2057. // No X/Y/Z code provided means to home all axes.
  2058. home_x = home_y = home_z = true;
  2059. //if we are homing all axes, first move z higher to protect heatbed/steel sheet
  2060. if (home_all_axes) {
  2061. current_position[Z_AXIS] += MESH_HOME_Z_SEARCH;
  2062. feedrate = homing_feedrate[Z_AXIS];
  2063. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], feedrate / 60, active_extruder);
  2064. st_synchronize();
  2065. }
  2066. #ifdef ENABLE_AUTO_BED_LEVELING
  2067. plan_bed_level_matrix.set_to_identity(); //Reset the plane ("erase" all leveling data)
  2068. #endif //ENABLE_AUTO_BED_LEVELING
  2069. // Reset world2machine_rotation_and_skew and world2machine_shift, therefore
  2070. // the planner will not perform any adjustments in the XY plane.
  2071. // Wait for the motors to stop and update the current position with the absolute values.
  2072. world2machine_revert_to_uncorrected();
  2073. // For mesh bed leveling deactivate the matrix temporarily.
  2074. // It is necessary to disable the bed leveling for the X and Y homing moves, so that the move is performed
  2075. // in a single axis only.
  2076. // In case of re-homing the X or Y axes only, the mesh bed leveling is restored after G28.
  2077. #ifdef MESH_BED_LEVELING
  2078. uint8_t mbl_was_active = mbl.active;
  2079. mbl.active = 0;
  2080. current_position[Z_AXIS] = st_get_position_mm(Z_AXIS);
  2081. #endif
  2082. // Reset baby stepping to zero, if the babystepping has already been loaded before. The babystepsTodo value will be
  2083. // consumed during the first movements following this statement.
  2084. if (home_z)
  2085. babystep_undo();
  2086. saved_feedrate = feedrate;
  2087. int l_feedmultiply = feedmultiply;
  2088. feedmultiply = 100;
  2089. previous_millis_cmd = millis();
  2090. enable_endstops(true);
  2091. memcpy(destination, current_position, sizeof(destination));
  2092. feedrate = 0.0;
  2093. #if Z_HOME_DIR > 0 // If homing away from BED do Z first
  2094. if(home_z)
  2095. homeaxis(Z_AXIS);
  2096. #endif
  2097. #ifdef QUICK_HOME
  2098. // In the quick mode, if both x and y are to be homed, a diagonal move will be performed initially.
  2099. if(home_x && home_y) //first diagonal move
  2100. {
  2101. current_position[X_AXIS] = 0;current_position[Y_AXIS] = 0;
  2102. int x_axis_home_dir = home_dir(X_AXIS);
  2103. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2104. destination[X_AXIS] = 1.5 * max_length(X_AXIS) * x_axis_home_dir;destination[Y_AXIS] = 1.5 * max_length(Y_AXIS) * home_dir(Y_AXIS);
  2105. feedrate = homing_feedrate[X_AXIS];
  2106. if(homing_feedrate[Y_AXIS]<feedrate)
  2107. feedrate = homing_feedrate[Y_AXIS];
  2108. if (max_length(X_AXIS) > max_length(Y_AXIS)) {
  2109. feedrate *= sqrt(pow(max_length(Y_AXIS) / max_length(X_AXIS), 2) + 1);
  2110. } else {
  2111. feedrate *= sqrt(pow(max_length(X_AXIS) / max_length(Y_AXIS), 2) + 1);
  2112. }
  2113. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  2114. st_synchronize();
  2115. axis_is_at_home(X_AXIS);
  2116. axis_is_at_home(Y_AXIS);
  2117. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2118. destination[X_AXIS] = current_position[X_AXIS];
  2119. destination[Y_AXIS] = current_position[Y_AXIS];
  2120. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  2121. feedrate = 0.0;
  2122. st_synchronize();
  2123. endstops_hit_on_purpose();
  2124. current_position[X_AXIS] = destination[X_AXIS];
  2125. current_position[Y_AXIS] = destination[Y_AXIS];
  2126. current_position[Z_AXIS] = destination[Z_AXIS];
  2127. }
  2128. #endif /* QUICK_HOME */
  2129. #ifdef TMC2130
  2130. if(home_x)
  2131. {
  2132. if (!calib)
  2133. homeaxis(X_AXIS);
  2134. else
  2135. tmc2130_home_calibrate(X_AXIS);
  2136. }
  2137. if(home_y)
  2138. {
  2139. if (!calib)
  2140. homeaxis(Y_AXIS);
  2141. else
  2142. tmc2130_home_calibrate(Y_AXIS);
  2143. }
  2144. #endif //TMC2130
  2145. if(home_x_axis && home_x_value != 0)
  2146. current_position[X_AXIS]=home_x_value+cs.add_homing[X_AXIS];
  2147. if(home_y_axis && home_y_value != 0)
  2148. current_position[Y_AXIS]=home_y_value+cs.add_homing[Y_AXIS];
  2149. #if Z_HOME_DIR < 0 // If homing towards BED do Z last
  2150. #ifndef Z_SAFE_HOMING
  2151. if(home_z) {
  2152. #if defined (Z_RAISE_BEFORE_HOMING) && (Z_RAISE_BEFORE_HOMING > 0)
  2153. destination[Z_AXIS] = Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS) * (-1); // Set destination away from bed
  2154. feedrate = max_feedrate[Z_AXIS];
  2155. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
  2156. st_synchronize();
  2157. #endif // defined (Z_RAISE_BEFORE_HOMING) && (Z_RAISE_BEFORE_HOMING > 0)
  2158. #if (defined(MESH_BED_LEVELING) && !defined(MK1BP)) // If Mesh bed leveling, move X&Y to safe position for home
  2159. if (!(axis_known_position[X_AXIS] && axis_known_position[Y_AXIS] ))
  2160. {
  2161. homeaxis(X_AXIS);
  2162. homeaxis(Y_AXIS);
  2163. }
  2164. // 1st mesh bed leveling measurement point, corrected.
  2165. world2machine_initialize();
  2166. world2machine(pgm_read_float(bed_ref_points_4), pgm_read_float(bed_ref_points_4+1), destination[X_AXIS], destination[Y_AXIS]);
  2167. world2machine_reset();
  2168. if (destination[Y_AXIS] < Y_MIN_POS)
  2169. destination[Y_AXIS] = Y_MIN_POS;
  2170. destination[Z_AXIS] = MESH_HOME_Z_SEARCH; // Set destination away from bed
  2171. feedrate = homing_feedrate[Z_AXIS]/10;
  2172. current_position[Z_AXIS] = 0;
  2173. enable_endstops(false);
  2174. #ifdef DEBUG_BUILD
  2175. SERIAL_ECHOLNPGM("plan_set_position()");
  2176. MYSERIAL.println(current_position[X_AXIS]);MYSERIAL.println(current_position[Y_AXIS]);
  2177. MYSERIAL.println(current_position[Z_AXIS]);MYSERIAL.println(current_position[E_AXIS]);
  2178. #endif
  2179. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2180. #ifdef DEBUG_BUILD
  2181. SERIAL_ECHOLNPGM("plan_buffer_line()");
  2182. MYSERIAL.println(destination[X_AXIS]);MYSERIAL.println(destination[Y_AXIS]);
  2183. MYSERIAL.println(destination[Z_AXIS]);MYSERIAL.println(destination[E_AXIS]);
  2184. MYSERIAL.println(feedrate);MYSERIAL.println(active_extruder);
  2185. #endif
  2186. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
  2187. st_synchronize();
  2188. current_position[X_AXIS] = destination[X_AXIS];
  2189. current_position[Y_AXIS] = destination[Y_AXIS];
  2190. enable_endstops(true);
  2191. endstops_hit_on_purpose();
  2192. homeaxis(Z_AXIS);
  2193. #else // MESH_BED_LEVELING
  2194. homeaxis(Z_AXIS);
  2195. #endif // MESH_BED_LEVELING
  2196. }
  2197. #else // defined(Z_SAFE_HOMING): Z Safe mode activated.
  2198. if(home_all_axes) {
  2199. destination[X_AXIS] = round(Z_SAFE_HOMING_X_POINT - X_PROBE_OFFSET_FROM_EXTRUDER);
  2200. destination[Y_AXIS] = round(Z_SAFE_HOMING_Y_POINT - Y_PROBE_OFFSET_FROM_EXTRUDER);
  2201. destination[Z_AXIS] = Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS) * (-1); // Set destination away from bed
  2202. feedrate = XY_TRAVEL_SPEED/60;
  2203. current_position[Z_AXIS] = 0;
  2204. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2205. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
  2206. st_synchronize();
  2207. current_position[X_AXIS] = destination[X_AXIS];
  2208. current_position[Y_AXIS] = destination[Y_AXIS];
  2209. homeaxis(Z_AXIS);
  2210. }
  2211. // Let's see if X and Y are homed and probe is inside bed area.
  2212. if(home_z) {
  2213. if ( (axis_known_position[X_AXIS]) && (axis_known_position[Y_AXIS]) \
  2214. && (current_position[X_AXIS]+X_PROBE_OFFSET_FROM_EXTRUDER >= X_MIN_POS) \
  2215. && (current_position[X_AXIS]+X_PROBE_OFFSET_FROM_EXTRUDER <= X_MAX_POS) \
  2216. && (current_position[Y_AXIS]+Y_PROBE_OFFSET_FROM_EXTRUDER >= Y_MIN_POS) \
  2217. && (current_position[Y_AXIS]+Y_PROBE_OFFSET_FROM_EXTRUDER <= Y_MAX_POS)) {
  2218. current_position[Z_AXIS] = 0;
  2219. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2220. destination[Z_AXIS] = Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS) * (-1); // Set destination away from bed
  2221. feedrate = max_feedrate[Z_AXIS];
  2222. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
  2223. st_synchronize();
  2224. homeaxis(Z_AXIS);
  2225. } else if (!((axis_known_position[X_AXIS]) && (axis_known_position[Y_AXIS]))) {
  2226. LCD_MESSAGERPGM(MSG_POSITION_UNKNOWN);
  2227. SERIAL_ECHO_START;
  2228. SERIAL_ECHOLNRPGM(MSG_POSITION_UNKNOWN);
  2229. } else {
  2230. LCD_MESSAGERPGM(MSG_ZPROBE_OUT);
  2231. SERIAL_ECHO_START;
  2232. SERIAL_ECHOLNRPGM(MSG_ZPROBE_OUT);
  2233. }
  2234. }
  2235. #endif // Z_SAFE_HOMING
  2236. #endif // Z_HOME_DIR < 0
  2237. if(home_z_axis && home_z_value != 0)
  2238. current_position[Z_AXIS]=home_z_value+cs.add_homing[Z_AXIS];
  2239. #ifdef ENABLE_AUTO_BED_LEVELING
  2240. if(home_z)
  2241. current_position[Z_AXIS] += cs.zprobe_zoffset; //Add Z_Probe offset (the distance is negative)
  2242. #endif
  2243. // Set the planner and stepper routine positions.
  2244. // At this point the mesh bed leveling and world2machine corrections are disabled and current_position
  2245. // contains the machine coordinates.
  2246. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2247. #ifdef ENDSTOPS_ONLY_FOR_HOMING
  2248. enable_endstops(false);
  2249. #endif
  2250. feedrate = saved_feedrate;
  2251. feedmultiply = l_feedmultiply;
  2252. previous_millis_cmd = millis();
  2253. endstops_hit_on_purpose();
  2254. #ifndef MESH_BED_LEVELING
  2255. // If MESH_BED_LEVELING is not active, then it is the original Prusa i3.
  2256. // Offer the user to load the baby step value, which has been adjusted at the previous print session.
  2257. if(card.sdprinting && eeprom_read_word((uint16_t *)EEPROM_BABYSTEP_Z))
  2258. lcd_adjust_z();
  2259. #endif
  2260. // Load the machine correction matrix
  2261. world2machine_initialize();
  2262. // and correct the current_position XY axes to match the transformed coordinate system.
  2263. world2machine_update_current();
  2264. #if (defined(MESH_BED_LEVELING) && !defined(MK1BP))
  2265. if (home_x_axis || home_y_axis || without_mbl || home_z_axis)
  2266. {
  2267. if (! home_z && mbl_was_active) {
  2268. // Re-enable the mesh bed leveling if only the X and Y axes were re-homed.
  2269. mbl.active = true;
  2270. // and re-adjust the current logical Z axis with the bed leveling offset applicable at the current XY position.
  2271. current_position[Z_AXIS] -= mbl.get_z(st_get_position_mm(X_AXIS), st_get_position_mm(Y_AXIS));
  2272. }
  2273. }
  2274. else
  2275. {
  2276. st_synchronize();
  2277. homing_flag = false;
  2278. }
  2279. #endif
  2280. if (farm_mode) { prusa_statistics(20); };
  2281. homing_flag = false;
  2282. #if 0
  2283. SERIAL_ECHOPGM("G28, final "); print_world_coordinates();
  2284. SERIAL_ECHOPGM("G28, final "); print_physical_coordinates();
  2285. SERIAL_ECHOPGM("G28, final "); print_mesh_bed_leveling_table();
  2286. #endif
  2287. }
  2288. void adjust_bed_reset()
  2289. {
  2290. eeprom_update_byte((unsigned char*)EEPROM_BED_CORRECTION_VALID, 1);
  2291. eeprom_update_byte((unsigned char*)EEPROM_BED_CORRECTION_LEFT, 0);
  2292. eeprom_update_byte((unsigned char*)EEPROM_BED_CORRECTION_RIGHT, 0);
  2293. eeprom_update_byte((unsigned char*)EEPROM_BED_CORRECTION_FRONT, 0);
  2294. eeprom_update_byte((unsigned char*)EEPROM_BED_CORRECTION_REAR, 0);
  2295. }
  2296. //! @brief Calibrate XYZ
  2297. //! @param onlyZ if true, calibrate only Z axis
  2298. //! @param verbosity_level
  2299. //! @retval true Succeeded
  2300. //! @retval false Failed
  2301. bool gcode_M45(bool onlyZ, int8_t verbosity_level)
  2302. {
  2303. bool final_result = false;
  2304. #ifdef TMC2130
  2305. FORCE_HIGH_POWER_START;
  2306. #endif // TMC2130
  2307. // Only Z calibration?
  2308. if (!onlyZ)
  2309. {
  2310. setTargetBed(0);
  2311. setAllTargetHotends(0);
  2312. adjust_bed_reset(); //reset bed level correction
  2313. }
  2314. // Disable the default update procedure of the display. We will do a modal dialog.
  2315. lcd_update_enable(false);
  2316. // Let the planner use the uncorrected coordinates.
  2317. mbl.reset();
  2318. // Reset world2machine_rotation_and_skew and world2machine_shift, therefore
  2319. // the planner will not perform any adjustments in the XY plane.
  2320. // Wait for the motors to stop and update the current position with the absolute values.
  2321. world2machine_revert_to_uncorrected();
  2322. // Reset the baby step value applied without moving the axes.
  2323. babystep_reset();
  2324. // Mark all axes as in a need for homing.
  2325. memset(axis_known_position, 0, sizeof(axis_known_position));
  2326. // Home in the XY plane.
  2327. //set_destination_to_current();
  2328. int l_feedmultiply = setup_for_endstop_move();
  2329. lcd_display_message_fullscreen_P(_T(MSG_AUTO_HOME));
  2330. home_xy();
  2331. enable_endstops(false);
  2332. current_position[X_AXIS] += 5;
  2333. current_position[Y_AXIS] += 5;
  2334. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[Z_AXIS] / 40, active_extruder);
  2335. st_synchronize();
  2336. // Let the user move the Z axes up to the end stoppers.
  2337. #ifdef TMC2130
  2338. if (calibrate_z_auto())
  2339. {
  2340. #else //TMC2130
  2341. if (lcd_calibrate_z_end_stop_manual(onlyZ))
  2342. {
  2343. #endif //TMC2130
  2344. refresh_cmd_timeout();
  2345. #ifndef STEEL_SHEET
  2346. if (((degHotend(0) > MAX_HOTEND_TEMP_CALIBRATION) || (degBed() > MAX_BED_TEMP_CALIBRATION)) && (!onlyZ))
  2347. {
  2348. lcd_wait_for_cool_down();
  2349. }
  2350. #endif //STEEL_SHEET
  2351. if(!onlyZ)
  2352. {
  2353. KEEPALIVE_STATE(PAUSED_FOR_USER);
  2354. #ifdef STEEL_SHEET
  2355. bool result = lcd_show_fullscreen_message_yes_no_and_wait_P(_T(MSG_STEEL_SHEET_CHECK), false, false);
  2356. if(result) lcd_show_fullscreen_message_and_wait_P(_T(MSG_REMOVE_STEEL_SHEET));
  2357. #endif //STEEL_SHEET
  2358. lcd_show_fullscreen_message_and_wait_P(_T(MSG_CONFIRM_NOZZLE_CLEAN));
  2359. lcd_show_fullscreen_message_and_wait_P(_T(MSG_PAPER));
  2360. KEEPALIVE_STATE(IN_HANDLER);
  2361. lcd_display_message_fullscreen_P(_T(MSG_FIND_BED_OFFSET_AND_SKEW_LINE1));
  2362. lcd_set_cursor(0, 2);
  2363. lcd_print(1);
  2364. lcd_puts_P(_T(MSG_FIND_BED_OFFSET_AND_SKEW_LINE2));
  2365. }
  2366. // Move the print head close to the bed.
  2367. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  2368. bool endstops_enabled = enable_endstops(true);
  2369. #ifdef TMC2130
  2370. tmc2130_home_enter(Z_AXIS_MASK);
  2371. #endif //TMC2130
  2372. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[Z_AXIS] / 40, active_extruder);
  2373. st_synchronize();
  2374. #ifdef TMC2130
  2375. tmc2130_home_exit();
  2376. #endif //TMC2130
  2377. enable_endstops(endstops_enabled);
  2378. if (st_get_position_mm(Z_AXIS) == MESH_HOME_Z_SEARCH)
  2379. {
  2380. if (onlyZ)
  2381. {
  2382. clean_up_after_endstop_move(l_feedmultiply);
  2383. // Z only calibration.
  2384. // Load the machine correction matrix
  2385. world2machine_initialize();
  2386. // and correct the current_position to match the transformed coordinate system.
  2387. world2machine_update_current();
  2388. //FIXME
  2389. bool result = sample_mesh_and_store_reference();
  2390. if (result)
  2391. {
  2392. if (calibration_status() == CALIBRATION_STATUS_Z_CALIBRATION)
  2393. // Shipped, the nozzle height has been set already. The user can start printing now.
  2394. calibration_status_store(CALIBRATION_STATUS_CALIBRATED);
  2395. final_result = true;
  2396. // babystep_apply();
  2397. }
  2398. }
  2399. else
  2400. {
  2401. // Reset the baby step value and the baby step applied flag.
  2402. calibration_status_store(CALIBRATION_STATUS_XYZ_CALIBRATION);
  2403. eeprom_update_word((uint16_t*)EEPROM_BABYSTEP_Z, 0);
  2404. // Complete XYZ calibration.
  2405. uint8_t point_too_far_mask = 0;
  2406. BedSkewOffsetDetectionResultType result = find_bed_offset_and_skew(verbosity_level, point_too_far_mask);
  2407. clean_up_after_endstop_move(l_feedmultiply);
  2408. // Print head up.
  2409. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  2410. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[Z_AXIS] / 40, active_extruder);
  2411. st_synchronize();
  2412. //#ifndef NEW_XYZCAL
  2413. if (result >= 0)
  2414. {
  2415. #ifdef HEATBED_V2
  2416. sample_z();
  2417. #else //HEATBED_V2
  2418. point_too_far_mask = 0;
  2419. // Second half: The fine adjustment.
  2420. // Let the planner use the uncorrected coordinates.
  2421. mbl.reset();
  2422. world2machine_reset();
  2423. // Home in the XY plane.
  2424. int l_feedmultiply = setup_for_endstop_move();
  2425. home_xy();
  2426. result = improve_bed_offset_and_skew(1, verbosity_level, point_too_far_mask);
  2427. clean_up_after_endstop_move(l_feedmultiply);
  2428. // Print head up.
  2429. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  2430. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[Z_AXIS] / 40, active_extruder);
  2431. st_synchronize();
  2432. // if (result >= 0) babystep_apply();
  2433. #endif //HEATBED_V2
  2434. }
  2435. //#endif //NEW_XYZCAL
  2436. lcd_update_enable(true);
  2437. lcd_update(2);
  2438. lcd_bed_calibration_show_result(result, point_too_far_mask);
  2439. if (result >= 0)
  2440. {
  2441. // Calibration valid, the machine should be able to print. Advise the user to run the V2Calibration.gcode.
  2442. calibration_status_store(CALIBRATION_STATUS_LIVE_ADJUST);
  2443. if (eeprom_read_byte((uint8_t*)EEPROM_WIZARD_ACTIVE) != 1) lcd_show_fullscreen_message_and_wait_P(_T(MSG_BABYSTEP_Z_NOT_SET));
  2444. final_result = true;
  2445. }
  2446. }
  2447. #ifdef TMC2130
  2448. tmc2130_home_exit();
  2449. #endif
  2450. }
  2451. else
  2452. {
  2453. lcd_show_fullscreen_message_and_wait_P(PSTR("Calibration failed! Check the axes and run again."));
  2454. final_result = false;
  2455. }
  2456. }
  2457. else
  2458. {
  2459. // Timeouted.
  2460. }
  2461. lcd_update_enable(true);
  2462. #ifdef TMC2130
  2463. FORCE_HIGH_POWER_END;
  2464. #endif // TMC2130
  2465. return final_result;
  2466. }
  2467. void gcode_M114()
  2468. {
  2469. SERIAL_PROTOCOLPGM("X:");
  2470. SERIAL_PROTOCOL(current_position[X_AXIS]);
  2471. SERIAL_PROTOCOLPGM(" Y:");
  2472. SERIAL_PROTOCOL(current_position[Y_AXIS]);
  2473. SERIAL_PROTOCOLPGM(" Z:");
  2474. SERIAL_PROTOCOL(current_position[Z_AXIS]);
  2475. SERIAL_PROTOCOLPGM(" E:");
  2476. SERIAL_PROTOCOL(current_position[E_AXIS]);
  2477. SERIAL_PROTOCOLRPGM(_n(" Count X: "));////MSG_COUNT_X c=0 r=0
  2478. SERIAL_PROTOCOL(float(st_get_position(X_AXIS)) / cs.axis_steps_per_unit[X_AXIS]);
  2479. SERIAL_PROTOCOLPGM(" Y:");
  2480. SERIAL_PROTOCOL(float(st_get_position(Y_AXIS)) / cs.axis_steps_per_unit[Y_AXIS]);
  2481. SERIAL_PROTOCOLPGM(" Z:");
  2482. SERIAL_PROTOCOL(float(st_get_position(Z_AXIS)) / cs.axis_steps_per_unit[Z_AXIS]);
  2483. SERIAL_PROTOCOLPGM(" E:");
  2484. SERIAL_PROTOCOL(float(st_get_position(E_AXIS)) / cs.axis_steps_per_unit[E_AXIS]);
  2485. SERIAL_PROTOCOLLN("");
  2486. }
  2487. static void gcode_M600(bool automatic, float x_position, float y_position, float z_shift, float e_shift, float /*e_shift_late*/)
  2488. {
  2489. st_synchronize();
  2490. float lastpos[4];
  2491. if (farm_mode)
  2492. {
  2493. prusa_statistics(22);
  2494. }
  2495. //First backup current position and settings
  2496. int feedmultiplyBckp = feedmultiply;
  2497. float HotendTempBckp = degTargetHotend(active_extruder);
  2498. int fanSpeedBckp = fanSpeed;
  2499. lastpos[X_AXIS] = current_position[X_AXIS];
  2500. lastpos[Y_AXIS] = current_position[Y_AXIS];
  2501. lastpos[Z_AXIS] = current_position[Z_AXIS];
  2502. lastpos[E_AXIS] = current_position[E_AXIS];
  2503. //Retract E
  2504. current_position[E_AXIS] += e_shift;
  2505. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS],
  2506. current_position[E_AXIS], FILAMENTCHANGE_RFEED, active_extruder);
  2507. st_synchronize();
  2508. //Lift Z
  2509. current_position[Z_AXIS] += z_shift;
  2510. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS],
  2511. current_position[E_AXIS], FILAMENTCHANGE_ZFEED, active_extruder);
  2512. st_synchronize();
  2513. //Move XY to side
  2514. current_position[X_AXIS] = x_position;
  2515. current_position[Y_AXIS] = y_position;
  2516. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS],
  2517. current_position[E_AXIS], FILAMENTCHANGE_XYFEED, active_extruder);
  2518. st_synchronize();
  2519. //Beep, manage nozzle heater and wait for user to start unload filament
  2520. if(!mmu_enabled) M600_wait_for_user(HotendTempBckp);
  2521. lcd_change_fil_state = 0;
  2522. // Unload filament
  2523. if (mmu_enabled) extr_unload(); //unload just current filament for multimaterial printers (used also in M702)
  2524. else unload_filament(); //unload filament for single material (used also in M702)
  2525. //finish moves
  2526. st_synchronize();
  2527. if (!mmu_enabled)
  2528. {
  2529. KEEPALIVE_STATE(PAUSED_FOR_USER);
  2530. lcd_change_fil_state = lcd_show_fullscreen_message_yes_no_and_wait_P(_i("Was filament unload successful?"),
  2531. false, true); ////MSG_UNLOAD_SUCCESSFUL c=20 r=2
  2532. if (lcd_change_fil_state == 0)
  2533. lcd_show_fullscreen_message_and_wait_P(_i("Please open idler and remove filament manually."));////MSG_CHECK_IDLER c=20 r=4
  2534. lcd_update_enable(true);
  2535. }
  2536. if (mmu_enabled)
  2537. {
  2538. if (!automatic) {
  2539. if (saved_printing) mmu_eject_filament(mmu_extruder, false); //if M600 was invoked by filament senzor (FINDA) eject filament so user can easily remove it
  2540. mmu_M600_wait_and_beep();
  2541. if (saved_printing) {
  2542. lcd_clear();
  2543. lcd_set_cursor(0, 2);
  2544. lcd_puts_P(_T(MSG_PLEASE_WAIT));
  2545. mmu_command(MMU_CMD_R0);
  2546. manage_response(false, false);
  2547. }
  2548. }
  2549. mmu_M600_load_filament(automatic);
  2550. }
  2551. else
  2552. M600_load_filament();
  2553. if (!automatic) M600_check_state();
  2554. lcd_update_enable(true);
  2555. //Not let's go back to print
  2556. fanSpeed = fanSpeedBckp;
  2557. //Feed a little of filament to stabilize pressure
  2558. if (!automatic)
  2559. {
  2560. current_position[E_AXIS] += FILAMENTCHANGE_RECFEED;
  2561. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS],
  2562. current_position[E_AXIS], FILAMENTCHANGE_EXFEED, active_extruder);
  2563. }
  2564. //Move XY back
  2565. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS],
  2566. FILAMENTCHANGE_XYFEED, active_extruder);
  2567. st_synchronize();
  2568. //Move Z back
  2569. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], current_position[E_AXIS],
  2570. FILAMENTCHANGE_ZFEED, active_extruder);
  2571. st_synchronize();
  2572. //Set E position to original
  2573. plan_set_e_position(lastpos[E_AXIS]);
  2574. memcpy(current_position, lastpos, sizeof(lastpos));
  2575. memcpy(destination, current_position, sizeof(current_position));
  2576. //Recover feed rate
  2577. feedmultiply = feedmultiplyBckp;
  2578. char cmd[9];
  2579. sprintf_P(cmd, PSTR("M220 S%i"), feedmultiplyBckp);
  2580. enquecommand(cmd);
  2581. lcd_setstatuspgm(_T(WELCOME_MSG));
  2582. custom_message_type = CUSTOM_MSG_TYPE_STATUS;
  2583. }
  2584. void gcode_M701()
  2585. {
  2586. printf_P(PSTR("gcode_M701 begin\n"));
  2587. if (mmu_enabled)
  2588. {
  2589. extr_adj(tmp_extruder);//loads current extruder
  2590. mmu_extruder = tmp_extruder;
  2591. }
  2592. else
  2593. {
  2594. enable_z();
  2595. custom_message_type = CUSTOM_MSG_TYPE_F_LOAD;
  2596. #ifdef FSENSOR_QUALITY
  2597. fsensor_oq_meassure_start(40);
  2598. #endif //FSENSOR_QUALITY
  2599. lcd_setstatuspgm(_T(MSG_LOADING_FILAMENT));
  2600. current_position[E_AXIS] += 40;
  2601. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400 / 60, active_extruder); //fast sequence
  2602. st_synchronize();
  2603. if (current_position[Z_AXIS] < 20) current_position[Z_AXIS] += 30;
  2604. current_position[E_AXIS] += 30;
  2605. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400 / 60, active_extruder); //fast sequence
  2606. load_filament_final_feed(); //slow sequence
  2607. if((eSoundMode==e_SOUND_MODE_LOUD)||(eSoundMode==e_SOUND_MODE_ONCE)) tone(BEEPER, 500);
  2608. delay_keep_alive(50);
  2609. noTone(BEEPER);
  2610. if (!farm_mode && loading_flag) {
  2611. lcd_load_filament_color_check();
  2612. }
  2613. lcd_update_enable(true);
  2614. lcd_update(2);
  2615. lcd_setstatuspgm(_T(WELCOME_MSG));
  2616. disable_z();
  2617. loading_flag = false;
  2618. custom_message_type = CUSTOM_MSG_TYPE_STATUS;
  2619. #ifdef FSENSOR_QUALITY
  2620. fsensor_oq_meassure_stop();
  2621. if (!fsensor_oq_result())
  2622. {
  2623. bool disable = lcd_show_fullscreen_message_yes_no_and_wait_P(_i("Fil. sensor response is poor, disable it?"), false, true);
  2624. lcd_update_enable(true);
  2625. lcd_update(2);
  2626. if (disable)
  2627. fsensor_disable();
  2628. }
  2629. #endif //FSENSOR_QUALITY
  2630. }
  2631. }
  2632. /**
  2633. * @brief Get serial number from 32U2 processor
  2634. *
  2635. * Typical format of S/N is:CZPX0917X003XC13518
  2636. *
  2637. * Command operates only in farm mode, if not in farm mode, "Not in farm mode." is written to MYSERIAL.
  2638. *
  2639. * Send command ;S to serial port 0 to retrieve serial number stored in 32U2 processor,
  2640. * reply is transmitted to serial port 1 character by character.
  2641. * Operation takes typically 23 ms. If the retransmit is not finished until 100 ms,
  2642. * it is interrupted, so less, or no characters are retransmitted, only newline character is send
  2643. * in any case.
  2644. */
  2645. static void gcode_PRUSA_SN()
  2646. {
  2647. if (farm_mode) {
  2648. selectedSerialPort = 0;
  2649. putchar(';');
  2650. putchar('S');
  2651. int numbersRead = 0;
  2652. ShortTimer timeout;
  2653. timeout.start();
  2654. while (numbersRead < 19) {
  2655. while (MSerial.available() > 0) {
  2656. uint8_t serial_char = MSerial.read();
  2657. selectedSerialPort = 1;
  2658. putchar(serial_char);
  2659. numbersRead++;
  2660. selectedSerialPort = 0;
  2661. }
  2662. if (timeout.expired(100u)) break;
  2663. }
  2664. selectedSerialPort = 1;
  2665. putchar('\n');
  2666. #if 0
  2667. for (int b = 0; b < 3; b++) {
  2668. tone(BEEPER, 110);
  2669. delay(50);
  2670. noTone(BEEPER);
  2671. delay(50);
  2672. }
  2673. #endif
  2674. } else {
  2675. puts_P(_N("Not in farm mode."));
  2676. }
  2677. }
  2678. #ifdef BACKLASH_X
  2679. extern uint8_t st_backlash_x;
  2680. #endif //BACKLASH_X
  2681. #ifdef BACKLASH_Y
  2682. extern uint8_t st_backlash_y;
  2683. #endif //BACKLASH_Y
  2684. //! @brief Parse and process commands
  2685. //!
  2686. //! look here for descriptions of G-codes: http://linuxcnc.org/handbook/gcode/g-code.html
  2687. //! http://objects.reprap.org/wiki/Mendel_User_Manual:_RepRapGCodes
  2688. //!
  2689. //! Implemented Codes
  2690. //! -------------------
  2691. //!
  2692. //!@n PRUSA CODES
  2693. //!@n P F - Returns FW versions
  2694. //!@n P R - Returns revision of printer
  2695. //!
  2696. //!@n G0 -> G1
  2697. //!@n G1 - Coordinated Movement X Y Z E
  2698. //!@n G2 - CW ARC
  2699. //!@n G3 - CCW ARC
  2700. //!@n G4 - Dwell S<seconds> or P<milliseconds>
  2701. //!@n G10 - retract filament according to settings of M207
  2702. //!@n G11 - retract recover filament according to settings of M208
  2703. //!@n G28 - Home all Axis
  2704. //!@n G29 - Detailed Z-Probe, probes the bed at 3 or more points. Will fail if you haven't homed yet.
  2705. //!@n G30 - Single Z Probe, probes bed at current XY location.
  2706. //!@n G31 - Dock sled (Z_PROBE_SLED only)
  2707. //!@n G32 - Undock sled (Z_PROBE_SLED only)
  2708. //!@n G80 - Automatic mesh bed leveling
  2709. //!@n G81 - Print bed profile
  2710. //!@n G90 - Use Absolute Coordinates
  2711. //!@n G91 - Use Relative Coordinates
  2712. //!@n G92 - Set current position to coordinates given
  2713. //!
  2714. //!@n M Codes
  2715. //!@n M0 - Unconditional stop - Wait for user to press a button on the LCD
  2716. //!@n M1 - Same as M0
  2717. //!@n M17 - Enable/Power all stepper motors
  2718. //!@n M18 - Disable all stepper motors; same as M84
  2719. //!@n M20 - List SD card
  2720. //!@n M21 - Init SD card
  2721. //!@n M22 - Release SD card
  2722. //!@n M23 - Select SD file (M23 filename.g)
  2723. //!@n M24 - Start/resume SD print
  2724. //!@n M25 - Pause SD print
  2725. //!@n M26 - Set SD position in bytes (M26 S12345)
  2726. //!@n M27 - Report SD print status
  2727. //!@n M28 - Start SD write (M28 filename.g)
  2728. //!@n M29 - Stop SD write
  2729. //!@n M30 - Delete file from SD (M30 filename.g)
  2730. //!@n M31 - Output time since last M109 or SD card start to serial
  2731. //!@n M32 - Select file and start SD print (Can be used _while_ printing from SD card files):
  2732. //! syntax "M32 /path/filename#", or "M32 S<startpos bytes> !filename#"
  2733. //! Call gcode file : "M32 P !filename#" and return to caller file after finishing (similar to #include).
  2734. //! The '#' is necessary when calling from within sd files, as it stops buffer prereading
  2735. //!@n M42 - Change pin status via gcode Use M42 Px Sy to set pin x to value y, when omitting Px the onboard led will be used.
  2736. //!@n M73 - Show percent done and print time remaining
  2737. //!@n M80 - Turn on Power Supply
  2738. //!@n M81 - Turn off Power Supply
  2739. //!@n M82 - Set E codes absolute (default)
  2740. //!@n M83 - Set E codes relative while in Absolute Coordinates (G90) mode
  2741. //!@n M84 - Disable steppers until next move,
  2742. //! or use S<seconds> to specify an inactivity timeout, after which the steppers will be disabled. S0 to disable the timeout.
  2743. //!@n M85 - Set inactivity shutdown timer with parameter S<seconds>. To disable set zero (default)
  2744. //!@n M86 - Set safety timer expiration time with parameter S<seconds>; M86 S0 will disable safety timer
  2745. //!@n M92 - Set axis_steps_per_unit - same syntax as G92
  2746. //!@n M104 - Set extruder target temp
  2747. //!@n M105 - Read current temp
  2748. //!@n M106 - Fan on
  2749. //!@n M107 - Fan off
  2750. //!@n M109 - Sxxx Wait for extruder current temp to reach target temp. Waits only when heating
  2751. //! Rxxx Wait for extruder current temp to reach target temp. Waits when heating and cooling
  2752. //! IF AUTOTEMP is enabled, S<mintemp> B<maxtemp> F<factor>. Exit autotemp by any M109 without F
  2753. //!@n M112 - Emergency stop
  2754. //!@n M113 - Get or set the timeout interval for Host Keepalive "busy" messages
  2755. //!@n M114 - Output current position to serial port
  2756. //!@n M115 - Capabilities string
  2757. //!@n M117 - display message
  2758. //!@n M119 - Output Endstop status to serial port
  2759. //!@n M126 - Solenoid Air Valve Open (BariCUDA support by jmil)
  2760. //!@n M127 - Solenoid Air Valve Closed (BariCUDA vent to atmospheric pressure by jmil)
  2761. //!@n M128 - EtoP Open (BariCUDA EtoP = electricity to air pressure transducer by jmil)
  2762. //!@n M129 - EtoP Closed (BariCUDA EtoP = electricity to air pressure transducer by jmil)
  2763. //!@n M140 - Set bed target temp
  2764. //!@n M150 - Set BlinkM Color Output R: Red<0-255> U(!): Green<0-255> B: Blue<0-255> over i2c, G for green does not work.
  2765. //!@n M190 - Sxxx Wait for bed current temp to reach target temp. Waits only when heating
  2766. //! Rxxx Wait for bed current temp to reach target temp. Waits when heating and cooling
  2767. //!@n M200 D<millimeters>- set filament diameter and set E axis units to cubic millimeters (use S0 to set back to millimeters).
  2768. //!@n M201 - Set max acceleration in units/s^2 for print moves (M201 X1000 Y1000)
  2769. //!@n M202 - Set max acceleration in units/s^2 for travel moves (M202 X1000 Y1000) Unused in Marlin!!
  2770. //!@n M203 - Set maximum feedrate that your machine can sustain (M203 X200 Y200 Z300 E10000) in mm/sec
  2771. //!@n M204 - Set default acceleration: S normal moves T filament only moves (M204 S3000 T7000) in mm/sec^2 also sets minimum segment time in ms (B20000) to prevent buffer under-runs and M20 minimum feedrate
  2772. //!@n M205 - advanced settings: minimum travel speed S=while printing T=travel only, B=minimum segment time X= maximum xy jerk, Z=maximum Z jerk, E=maximum E jerk
  2773. //!@n M206 - set additional homing offset
  2774. //!@n M207 - set retract length S[positive mm] F[feedrate mm/min] Z[additional zlift/hop], stays in mm regardless of M200 setting
  2775. //!@n M208 - set recover=unretract length S[positive mm surplus to the M207 S*] F[feedrate mm/sec]
  2776. //!@n M209 - S<1=true/0=false> enable automatic retract detect if the slicer did not support G10/11: every normal extrude-only move will be classified as retract depending on the direction.
  2777. //!@n M218 - set hotend offset (in mm): T<extruder_number> X<offset_on_X> Y<offset_on_Y>
  2778. //!@n M220 S<factor in percent>- set speed factor override percentage
  2779. //!@n M221 S<factor in percent>- set extrude factor override percentage
  2780. //!@n M226 P<pin number> S<pin state>- Wait until the specified pin reaches the state required
  2781. //!@n M240 - Trigger a camera to take a photograph
  2782. //!@n M250 - Set LCD contrast C<contrast value> (value 0..63)
  2783. //!@n M280 - set servo position absolute. P: servo index, S: angle or microseconds
  2784. //!@n M300 - Play beep sound S<frequency Hz> P<duration ms>
  2785. //!@n M301 - Set PID parameters P I and D
  2786. //!@n M302 - Allow cold extrudes, or set the minimum extrude S<temperature>.
  2787. //!@n M303 - PID relay autotune S<temperature> sets the target temperature. (default target temperature = 150C)
  2788. //!@n M304 - Set bed PID parameters P I and D
  2789. //!@n M400 - Finish all moves
  2790. //!@n M401 - Lower z-probe if present
  2791. //!@n M402 - Raise z-probe if present
  2792. //!@n M404 - N<dia in mm> Enter the nominal filament width (3mm, 1.75mm ) or will display nominal filament width without parameters
  2793. //!@n M405 - Turn on Filament Sensor extrusion control. Optional D<delay in cm> to set delay in centimeters between sensor and extruder
  2794. //!@n M406 - Turn off Filament Sensor extrusion control
  2795. //!@n M407 - Displays measured filament diameter
  2796. //!@n M500 - stores parameters in EEPROM
  2797. //!@n M501 - reads parameters from EEPROM (if you need reset them after you changed them temporarily).
  2798. //!@n M502 - reverts to the default "factory settings". You still need to store them in EEPROM afterwards if you want to.
  2799. //!@n M503 - print the current settings (from memory not from EEPROM)
  2800. //!@n M509 - force language selection on next restart
  2801. //!@n M540 - Use S[0|1] to enable or disable the stop SD card print on endstop hit (requires ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED)
  2802. //!@n M600 - Pause for filament change X[pos] Y[pos] Z[relative lift] E[initial retract] L[later retract distance for removal]
  2803. //!@n M605 - Set dual x-carriage movement mode: S<mode> [ X<duplication x-offset> R<duplication temp offset> ]
  2804. //!@n M860 - Wait for PINDA thermistor to reach target temperature.
  2805. //!@n M861 - Set / Read PINDA temperature compensation offsets
  2806. //!@n M900 - Set LIN_ADVANCE options, if enabled. See Configuration_adv.h for details.
  2807. //!@n M907 - Set digital trimpot motor current using axis codes.
  2808. //!@n M908 - Control digital trimpot directly.
  2809. //!@n M350 - Set microstepping mode.
  2810. //!@n M351 - Toggle MS1 MS2 pins directly.
  2811. //!
  2812. //!@n M928 - Start SD logging (M928 filename.g) - ended by M29
  2813. //!@n M999 - Restart after being stopped by error
  2814. void process_commands()
  2815. {
  2816. if (!buflen) return; //empty command
  2817. #ifdef FILAMENT_RUNOUT_SUPPORT
  2818. SET_INPUT(FR_SENS);
  2819. #endif
  2820. #ifdef CMDBUFFER_DEBUG
  2821. SERIAL_ECHOPGM("Processing a GCODE command: ");
  2822. SERIAL_ECHO(cmdbuffer+bufindr+CMDHDRSIZE);
  2823. SERIAL_ECHOLNPGM("");
  2824. SERIAL_ECHOPGM("In cmdqueue: ");
  2825. SERIAL_ECHO(buflen);
  2826. SERIAL_ECHOLNPGM("");
  2827. #endif /* CMDBUFFER_DEBUG */
  2828. unsigned long codenum; //throw away variable
  2829. char *starpos = NULL;
  2830. #ifdef ENABLE_AUTO_BED_LEVELING
  2831. float x_tmp, y_tmp, z_tmp, real_z;
  2832. #endif
  2833. // PRUSA GCODES
  2834. KEEPALIVE_STATE(IN_HANDLER);
  2835. #ifdef SNMM
  2836. float tmp_motor[3] = DEFAULT_PWM_MOTOR_CURRENT;
  2837. float tmp_motor_loud[3] = DEFAULT_PWM_MOTOR_CURRENT_LOUD;
  2838. int8_t SilentMode;
  2839. #endif
  2840. if (code_seen("M117")) { //moved to highest priority place to be able to to print strings which includes "G", "PRUSA" and "^"
  2841. starpos = (strchr(strchr_pointer + 5, '*'));
  2842. if (starpos != NULL)
  2843. *(starpos) = '\0';
  2844. lcd_setstatus(strchr_pointer + 5);
  2845. }
  2846. #ifdef TMC2130
  2847. else if (strncmp_P(CMDBUFFER_CURRENT_STRING, PSTR("CRASH_"), 6) == 0)
  2848. {
  2849. if(code_seen("CRASH_DETECTED")) //! CRASH_DETECTED
  2850. {
  2851. uint8_t mask = 0;
  2852. if (code_seen('X')) mask |= X_AXIS_MASK;
  2853. if (code_seen('Y')) mask |= Y_AXIS_MASK;
  2854. crashdet_detected(mask);
  2855. }
  2856. else if(code_seen("CRASH_RECOVER")) //! CRASH_RECOVER
  2857. crashdet_recover();
  2858. else if(code_seen("CRASH_CANCEL")) //! CRASH_CANCEL
  2859. crashdet_cancel();
  2860. }
  2861. else if (strncmp_P(CMDBUFFER_CURRENT_STRING, PSTR("TMC_"), 4) == 0)
  2862. {
  2863. if (strncmp_P(CMDBUFFER_CURRENT_STRING + 4, PSTR("SET_WAVE_"), 9) == 0) //! TMC_SET_WAVE_
  2864. {
  2865. uint8_t axis = *(CMDBUFFER_CURRENT_STRING + 13);
  2866. axis = (axis == 'E')?3:(axis - 'X');
  2867. if (axis < 4)
  2868. {
  2869. uint8_t fac = (uint8_t)strtol(CMDBUFFER_CURRENT_STRING + 14, NULL, 10);
  2870. tmc2130_set_wave(axis, 247, fac);
  2871. }
  2872. }
  2873. else if (strncmp_P(CMDBUFFER_CURRENT_STRING + 4, PSTR("SET_STEP_"), 9) == 0) //! TMC_SET_STEP_
  2874. {
  2875. uint8_t axis = *(CMDBUFFER_CURRENT_STRING + 13);
  2876. axis = (axis == 'E')?3:(axis - 'X');
  2877. if (axis < 4)
  2878. {
  2879. uint8_t step = (uint8_t)strtol(CMDBUFFER_CURRENT_STRING + 14, NULL, 10);
  2880. uint16_t res = tmc2130_get_res(axis);
  2881. tmc2130_goto_step(axis, step & (4*res - 1), 2, 1000, res);
  2882. }
  2883. }
  2884. else if (strncmp_P(CMDBUFFER_CURRENT_STRING + 4, PSTR("SET_CHOP_"), 9) == 0) //! TMC_SET_CHOP_
  2885. {
  2886. uint8_t axis = *(CMDBUFFER_CURRENT_STRING + 13);
  2887. axis = (axis == 'E')?3:(axis - 'X');
  2888. if (axis < 4)
  2889. {
  2890. uint8_t chop0 = tmc2130_chopper_config[axis].toff;
  2891. uint8_t chop1 = tmc2130_chopper_config[axis].hstr;
  2892. uint8_t chop2 = tmc2130_chopper_config[axis].hend;
  2893. uint8_t chop3 = tmc2130_chopper_config[axis].tbl;
  2894. char* str_end = 0;
  2895. if (CMDBUFFER_CURRENT_STRING[14])
  2896. {
  2897. chop0 = (uint8_t)strtol(CMDBUFFER_CURRENT_STRING + 14, &str_end, 10) & 15;
  2898. if (str_end && *str_end)
  2899. {
  2900. chop1 = (uint8_t)strtol(str_end, &str_end, 10) & 7;
  2901. if (str_end && *str_end)
  2902. {
  2903. chop2 = (uint8_t)strtol(str_end, &str_end, 10) & 15;
  2904. if (str_end && *str_end)
  2905. chop3 = (uint8_t)strtol(str_end, &str_end, 10) & 3;
  2906. }
  2907. }
  2908. }
  2909. tmc2130_chopper_config[axis].toff = chop0;
  2910. tmc2130_chopper_config[axis].hstr = chop1 & 7;
  2911. tmc2130_chopper_config[axis].hend = chop2 & 15;
  2912. tmc2130_chopper_config[axis].tbl = chop3 & 3;
  2913. tmc2130_setup_chopper(axis, tmc2130_mres[axis], tmc2130_current_h[axis], tmc2130_current_r[axis]);
  2914. //printf_P(_N("TMC_SET_CHOP_%c %hhd %hhd %hhd %hhd\n"), "xyze"[axis], chop0, chop1, chop2, chop3);
  2915. }
  2916. }
  2917. }
  2918. #ifdef BACKLASH_X
  2919. else if (strncmp_P(CMDBUFFER_CURRENT_STRING, PSTR("BACKLASH_X"), 10) == 0)
  2920. {
  2921. uint8_t bl = (uint8_t)strtol(CMDBUFFER_CURRENT_STRING + 10, NULL, 10);
  2922. st_backlash_x = bl;
  2923. printf_P(_N("st_backlash_x = %hhd\n"), st_backlash_x);
  2924. }
  2925. #endif //BACKLASH_X
  2926. #ifdef BACKLASH_Y
  2927. else if (strncmp_P(CMDBUFFER_CURRENT_STRING, PSTR("BACKLASH_Y"), 10) == 0)
  2928. {
  2929. uint8_t bl = (uint8_t)strtol(CMDBUFFER_CURRENT_STRING + 10, NULL, 10);
  2930. st_backlash_y = bl;
  2931. printf_P(_N("st_backlash_y = %hhd\n"), st_backlash_y);
  2932. }
  2933. #endif //BACKLASH_Y
  2934. #endif //TMC2130
  2935. else if (code_seen("FSENSOR_RECOVER")) { //! FSENSOR_RECOVER
  2936. fsensor_restore_print_and_continue();
  2937. }
  2938. else if(code_seen("PRUSA")){
  2939. if (code_seen("Ping")) { //! PRUSA Ping
  2940. if (farm_mode) {
  2941. PingTime = millis();
  2942. //MYSERIAL.print(farm_no); MYSERIAL.println(": OK");
  2943. }
  2944. }
  2945. else if (code_seen("PRN")) { //! PRUSA PRN
  2946. printf_P(_N("%d"), status_number);
  2947. }else if (code_seen("FAN")) { //! PRUSA FAN
  2948. printf_P(_N("E0:%d RPM\nPRN0:%d RPM\n"), 60*fan_speed[0], 60*fan_speed[1]);
  2949. }else if (code_seen("fn")) { //! PRUSA fn
  2950. if (farm_mode) {
  2951. printf_P(_N("%d"), farm_no);
  2952. }
  2953. else {
  2954. puts_P(_N("Not in farm mode."));
  2955. }
  2956. }
  2957. else if (code_seen("thx")) //! PRUSA thx
  2958. {
  2959. no_response = false;
  2960. }
  2961. else if (code_seen("uvlo")) //! PRUSA uvlo
  2962. {
  2963. eeprom_update_byte((uint8_t*)EEPROM_UVLO,0);
  2964. enquecommand_P(PSTR("M24"));
  2965. }
  2966. else if (code_seen("MMURES")) //! PRUSA MMURES
  2967. {
  2968. mmu_reset();
  2969. }
  2970. else if (code_seen("RESET")) { //! PRUSA RESET
  2971. // careful!
  2972. if (farm_mode) {
  2973. #ifdef WATCHDOG
  2974. boot_app_magic = BOOT_APP_MAGIC;
  2975. boot_app_flags = BOOT_APP_FLG_RUN;
  2976. wdt_enable(WDTO_15MS);
  2977. cli();
  2978. while(1);
  2979. #else //WATCHDOG
  2980. asm volatile("jmp 0x3E000");
  2981. #endif //WATCHDOG
  2982. }
  2983. else {
  2984. MYSERIAL.println("Not in farm mode.");
  2985. }
  2986. }else if (code_seen("fv")) { //! PRUSA fv
  2987. // get file version
  2988. #ifdef SDSUPPORT
  2989. card.openFile(strchr_pointer + 3,true);
  2990. while (true) {
  2991. uint16_t readByte = card.get();
  2992. MYSERIAL.write(readByte);
  2993. if (readByte=='\n') {
  2994. break;
  2995. }
  2996. }
  2997. card.closefile();
  2998. #endif // SDSUPPORT
  2999. } else if (code_seen("M28")) { //! PRUSA M28
  3000. trace();
  3001. prusa_sd_card_upload = true;
  3002. card.openFile(strchr_pointer+4,false);
  3003. } else if (code_seen("SN")) { //! PRUSA SN
  3004. gcode_PRUSA_SN();
  3005. } else if(code_seen("Fir")){ //! PRUSA Fir
  3006. SERIAL_PROTOCOLLN(FW_VERSION_FULL);
  3007. } else if(code_seen("Rev")){ //! PRUSA Rev
  3008. SERIAL_PROTOCOLLN(FILAMENT_SIZE "-" ELECTRONICS "-" NOZZLE_TYPE );
  3009. } else if(code_seen("Lang")) { //! PRUSA Lang
  3010. lang_reset();
  3011. } else if(code_seen("Lz")) { //! PRUSA Lz
  3012. EEPROM_save_B(EEPROM_BABYSTEP_Z,0);
  3013. } else if(code_seen("Beat")) { //! PRUSA Beat
  3014. // Kick farm link timer
  3015. kicktime = millis();
  3016. } else if(code_seen("FR")) { //! PRUSA FR
  3017. // Factory full reset
  3018. factory_reset(0);
  3019. }
  3020. //else if (code_seen('Cal')) {
  3021. // lcd_calibration();
  3022. // }
  3023. }
  3024. else if (code_seen('^')) {
  3025. // nothing, this is a version line
  3026. } else if(code_seen('G'))
  3027. {
  3028. gcode_in_progress = (int)code_value();
  3029. // printf_P(_N("BEGIN G-CODE=%u\n"), gcode_in_progress);
  3030. switch (gcode_in_progress)
  3031. {
  3032. case 0: // G0 -> G1
  3033. case 1: // G1
  3034. if(Stopped == false) {
  3035. #ifdef FILAMENT_RUNOUT_SUPPORT
  3036. if(READ(FR_SENS)){
  3037. int feedmultiplyBckp=feedmultiply;
  3038. float target[4];
  3039. float lastpos[4];
  3040. target[X_AXIS]=current_position[X_AXIS];
  3041. target[Y_AXIS]=current_position[Y_AXIS];
  3042. target[Z_AXIS]=current_position[Z_AXIS];
  3043. target[E_AXIS]=current_position[E_AXIS];
  3044. lastpos[X_AXIS]=current_position[X_AXIS];
  3045. lastpos[Y_AXIS]=current_position[Y_AXIS];
  3046. lastpos[Z_AXIS]=current_position[Z_AXIS];
  3047. lastpos[E_AXIS]=current_position[E_AXIS];
  3048. //retract by E
  3049. target[E_AXIS]+= FILAMENTCHANGE_FIRSTRETRACT ;
  3050. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 400, active_extruder);
  3051. target[Z_AXIS]+= FILAMENTCHANGE_ZADD ;
  3052. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 300, active_extruder);
  3053. target[X_AXIS]= FILAMENTCHANGE_XPOS ;
  3054. target[Y_AXIS]= FILAMENTCHANGE_YPOS ;
  3055. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 70, active_extruder);
  3056. target[E_AXIS]+= FILAMENTCHANGE_FINALRETRACT ;
  3057. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 20, active_extruder);
  3058. //finish moves
  3059. st_synchronize();
  3060. //disable extruder steppers so filament can be removed
  3061. disable_e0();
  3062. disable_e1();
  3063. disable_e2();
  3064. delay(100);
  3065. //LCD_ALERTMESSAGEPGM(_T(MSG_FILAMENTCHANGE));
  3066. uint8_t cnt=0;
  3067. int counterBeep = 0;
  3068. lcd_wait_interact();
  3069. while(!lcd_clicked()){
  3070. cnt++;
  3071. manage_heater();
  3072. manage_inactivity(true);
  3073. //lcd_update(0);
  3074. if(cnt==0)
  3075. {
  3076. #if BEEPER > 0
  3077. if (counterBeep== 500){
  3078. counterBeep = 0;
  3079. }
  3080. SET_OUTPUT(BEEPER);
  3081. if (counterBeep== 0){
  3082. if((eSoundMode==e_SOUND_MODE_LOUD)||(eSoundMode==e_SOUND_MODE_ONCE))
  3083. WRITE(BEEPER,HIGH);
  3084. }
  3085. if (counterBeep== 20){
  3086. WRITE(BEEPER,LOW);
  3087. }
  3088. counterBeep++;
  3089. #else
  3090. #endif
  3091. }
  3092. }
  3093. WRITE(BEEPER,LOW);
  3094. target[E_AXIS]+= FILAMENTCHANGE_FIRSTFEED ;
  3095. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 20, active_extruder);
  3096. target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  3097. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder);
  3098. lcd_change_fil_state = 0;
  3099. lcd_loading_filament();
  3100. while ((lcd_change_fil_state == 0)||(lcd_change_fil_state != 1)){
  3101. lcd_change_fil_state = 0;
  3102. lcd_alright();
  3103. switch(lcd_change_fil_state){
  3104. case 2:
  3105. target[E_AXIS]+= FILAMENTCHANGE_FIRSTFEED ;
  3106. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 20, active_extruder);
  3107. target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  3108. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder);
  3109. lcd_loading_filament();
  3110. break;
  3111. case 3:
  3112. target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  3113. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder);
  3114. lcd_loading_color();
  3115. break;
  3116. default:
  3117. lcd_change_success();
  3118. break;
  3119. }
  3120. }
  3121. target[E_AXIS]+= 5;
  3122. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder);
  3123. target[E_AXIS]+= FILAMENTCHANGE_FIRSTRETRACT;
  3124. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 400, active_extruder);
  3125. //current_position[E_AXIS]=target[E_AXIS]; //the long retract of L is compensated by manual filament feeding
  3126. //plan_set_e_position(current_position[E_AXIS]);
  3127. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 70, active_extruder); //should do nothing
  3128. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], target[Z_AXIS], target[E_AXIS], 70, active_extruder); //move xy back
  3129. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], target[E_AXIS], 200, active_extruder); //move z back
  3130. target[E_AXIS]= target[E_AXIS] - FILAMENTCHANGE_FIRSTRETRACT;
  3131. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], target[E_AXIS], 5, active_extruder); //final untretract
  3132. plan_set_e_position(lastpos[E_AXIS]);
  3133. feedmultiply=feedmultiplyBckp;
  3134. char cmd[9];
  3135. sprintf_P(cmd, PSTR("M220 S%i"), feedmultiplyBckp);
  3136. enquecommand(cmd);
  3137. }
  3138. #endif
  3139. get_coordinates(); // For X Y Z E F
  3140. if (total_filament_used > ((current_position[E_AXIS] - destination[E_AXIS]) * 100)) { //protection against total_filament_used overflow
  3141. total_filament_used = total_filament_used + ((destination[E_AXIS] - current_position[E_AXIS]) * 100);
  3142. }
  3143. #ifdef FWRETRACT
  3144. if(cs.autoretract_enabled)
  3145. if( !(code_seen('X') || code_seen('Y') || code_seen('Z')) && code_seen('E')) {
  3146. float echange=destination[E_AXIS]-current_position[E_AXIS];
  3147. if((echange<-MIN_RETRACT && !retracted[active_extruder]) || (echange>MIN_RETRACT && retracted[active_extruder])) { //move appears to be an attempt to retract or recover
  3148. current_position[E_AXIS] = destination[E_AXIS]; //hide the slicer-generated retract/recover from calculations
  3149. plan_set_e_position(current_position[E_AXIS]); //AND from the planner
  3150. retract(!retracted[active_extruder]);
  3151. return;
  3152. }
  3153. }
  3154. #endif //FWRETRACT
  3155. prepare_move();
  3156. //ClearToSend();
  3157. }
  3158. break;
  3159. case 2: // G2 - CW ARC
  3160. if(Stopped == false) {
  3161. get_arc_coordinates();
  3162. prepare_arc_move(true);
  3163. }
  3164. break;
  3165. case 3: // G3 - CCW ARC
  3166. if(Stopped == false) {
  3167. get_arc_coordinates();
  3168. prepare_arc_move(false);
  3169. }
  3170. break;
  3171. case 4: // G4 dwell
  3172. codenum = 0;
  3173. if(code_seen('P')) codenum = code_value(); // milliseconds to wait
  3174. if(code_seen('S')) codenum = code_value() * 1000; // seconds to wait
  3175. if(codenum != 0) LCD_MESSAGERPGM(_i("Sleep..."));////MSG_DWELL c=0 r=0
  3176. st_synchronize();
  3177. codenum += millis(); // keep track of when we started waiting
  3178. previous_millis_cmd = millis();
  3179. while(millis() < codenum) {
  3180. manage_heater();
  3181. manage_inactivity();
  3182. lcd_update(0);
  3183. }
  3184. break;
  3185. #ifdef FWRETRACT
  3186. case 10: // G10 retract
  3187. #if EXTRUDERS > 1
  3188. retracted_swap[active_extruder]=(code_seen('S') && code_value_long() == 1); // checks for swap retract argument
  3189. retract(true,retracted_swap[active_extruder]);
  3190. #else
  3191. retract(true);
  3192. #endif
  3193. break;
  3194. case 11: // G11 retract_recover
  3195. #if EXTRUDERS > 1
  3196. retract(false,retracted_swap[active_extruder]);
  3197. #else
  3198. retract(false);
  3199. #endif
  3200. break;
  3201. #endif //FWRETRACT
  3202. case 28: //G28 Home all Axis one at a time
  3203. {
  3204. long home_x_value = 0;
  3205. long home_y_value = 0;
  3206. long home_z_value = 0;
  3207. // Which axes should be homed?
  3208. bool home_x = code_seen(axis_codes[X_AXIS]);
  3209. home_x_value = code_value_long();
  3210. bool home_y = code_seen(axis_codes[Y_AXIS]);
  3211. home_y_value = code_value_long();
  3212. bool home_z = code_seen(axis_codes[Z_AXIS]);
  3213. home_z_value = code_value_long();
  3214. bool without_mbl = code_seen('W');
  3215. // calibrate?
  3216. bool calib = code_seen('C');
  3217. gcode_G28(home_x, home_x_value, home_y, home_y_value, home_z, home_z_value, calib, without_mbl);
  3218. if ((home_x || home_y || without_mbl || home_z) == false) {
  3219. // Push the commands to the front of the message queue in the reverse order!
  3220. // There shall be always enough space reserved for these commands.
  3221. goto case_G80;
  3222. }
  3223. break;
  3224. }
  3225. #ifdef ENABLE_AUTO_BED_LEVELING
  3226. case 29: // G29 Detailed Z-Probe, probes the bed at 3 or more points.
  3227. {
  3228. #if Z_MIN_PIN == -1
  3229. #error "You must have a Z_MIN endstop in order to enable Auto Bed Leveling feature! Z_MIN_PIN must point to a valid hardware pin."
  3230. #endif
  3231. // Prevent user from running a G29 without first homing in X and Y
  3232. if (! (axis_known_position[X_AXIS] && axis_known_position[Y_AXIS]) )
  3233. {
  3234. LCD_MESSAGERPGM(MSG_POSITION_UNKNOWN);
  3235. SERIAL_ECHO_START;
  3236. SERIAL_ECHOLNRPGM(MSG_POSITION_UNKNOWN);
  3237. break; // abort G29, since we don't know where we are
  3238. }
  3239. st_synchronize();
  3240. // make sure the bed_level_rotation_matrix is identity or the planner will get it incorectly
  3241. //vector_3 corrected_position = plan_get_position_mm();
  3242. //corrected_position.debug("position before G29");
  3243. plan_bed_level_matrix.set_to_identity();
  3244. vector_3 uncorrected_position = plan_get_position();
  3245. //uncorrected_position.debug("position durring G29");
  3246. current_position[X_AXIS] = uncorrected_position.x;
  3247. current_position[Y_AXIS] = uncorrected_position.y;
  3248. current_position[Z_AXIS] = uncorrected_position.z;
  3249. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  3250. int l_feedmultiply = setup_for_endstop_move();
  3251. feedrate = homing_feedrate[Z_AXIS];
  3252. #ifdef AUTO_BED_LEVELING_GRID
  3253. // probe at the points of a lattice grid
  3254. int xGridSpacing = (RIGHT_PROBE_BED_POSITION - LEFT_PROBE_BED_POSITION) / (AUTO_BED_LEVELING_GRID_POINTS-1);
  3255. int yGridSpacing = (BACK_PROBE_BED_POSITION - FRONT_PROBE_BED_POSITION) / (AUTO_BED_LEVELING_GRID_POINTS-1);
  3256. // solve the plane equation ax + by + d = z
  3257. // A is the matrix with rows [x y 1] for all the probed points
  3258. // B is the vector of the Z positions
  3259. // the normal vector to the plane is formed by the coefficients of the plane equation in the standard form, which is Vx*x+Vy*y+Vz*z+d = 0
  3260. // so Vx = -a Vy = -b Vz = 1 (we want the vector facing towards positive Z
  3261. // "A" matrix of the linear system of equations
  3262. double eqnAMatrix[AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS*3];
  3263. // "B" vector of Z points
  3264. double eqnBVector[AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS];
  3265. int probePointCounter = 0;
  3266. bool zig = true;
  3267. for (int yProbe=FRONT_PROBE_BED_POSITION; yProbe <= BACK_PROBE_BED_POSITION; yProbe += yGridSpacing)
  3268. {
  3269. int xProbe, xInc;
  3270. if (zig)
  3271. {
  3272. xProbe = LEFT_PROBE_BED_POSITION;
  3273. //xEnd = RIGHT_PROBE_BED_POSITION;
  3274. xInc = xGridSpacing;
  3275. zig = false;
  3276. } else // zag
  3277. {
  3278. xProbe = RIGHT_PROBE_BED_POSITION;
  3279. //xEnd = LEFT_PROBE_BED_POSITION;
  3280. xInc = -xGridSpacing;
  3281. zig = true;
  3282. }
  3283. for (int xCount=0; xCount < AUTO_BED_LEVELING_GRID_POINTS; xCount++)
  3284. {
  3285. float z_before;
  3286. if (probePointCounter == 0)
  3287. {
  3288. // raise before probing
  3289. z_before = Z_RAISE_BEFORE_PROBING;
  3290. } else
  3291. {
  3292. // raise extruder
  3293. z_before = current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS;
  3294. }
  3295. float measured_z = probe_pt(xProbe, yProbe, z_before);
  3296. eqnBVector[probePointCounter] = measured_z;
  3297. eqnAMatrix[probePointCounter + 0*AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS] = xProbe;
  3298. eqnAMatrix[probePointCounter + 1*AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS] = yProbe;
  3299. eqnAMatrix[probePointCounter + 2*AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS] = 1;
  3300. probePointCounter++;
  3301. xProbe += xInc;
  3302. }
  3303. }
  3304. clean_up_after_endstop_move(l_feedmultiply);
  3305. // solve lsq problem
  3306. double *plane_equation_coefficients = qr_solve(AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS, 3, eqnAMatrix, eqnBVector);
  3307. SERIAL_PROTOCOLPGM("Eqn coefficients: a: ");
  3308. SERIAL_PROTOCOL(plane_equation_coefficients[0]);
  3309. SERIAL_PROTOCOLPGM(" b: ");
  3310. SERIAL_PROTOCOL(plane_equation_coefficients[1]);
  3311. SERIAL_PROTOCOLPGM(" d: ");
  3312. SERIAL_PROTOCOLLN(plane_equation_coefficients[2]);
  3313. set_bed_level_equation_lsq(plane_equation_coefficients);
  3314. free(plane_equation_coefficients);
  3315. #else // AUTO_BED_LEVELING_GRID not defined
  3316. // Probe at 3 arbitrary points
  3317. // probe 1
  3318. float z_at_pt_1 = probe_pt(ABL_PROBE_PT_1_X, ABL_PROBE_PT_1_Y, Z_RAISE_BEFORE_PROBING);
  3319. // probe 2
  3320. float z_at_pt_2 = probe_pt(ABL_PROBE_PT_2_X, ABL_PROBE_PT_2_Y, current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS);
  3321. // probe 3
  3322. float z_at_pt_3 = probe_pt(ABL_PROBE_PT_3_X, ABL_PROBE_PT_3_Y, current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS);
  3323. clean_up_after_endstop_move(l_feedmultiply);
  3324. set_bed_level_equation_3pts(z_at_pt_1, z_at_pt_2, z_at_pt_3);
  3325. #endif // AUTO_BED_LEVELING_GRID
  3326. st_synchronize();
  3327. // The following code correct the Z height difference from z-probe position and hotend tip position.
  3328. // The Z height on homing is measured by Z-Probe, but the probe is quite far from the hotend.
  3329. // When the bed is uneven, this height must be corrected.
  3330. real_z = float(st_get_position(Z_AXIS))/cs.axis_steps_per_unit[Z_AXIS]; //get the real Z (since the auto bed leveling is already correcting the plane)
  3331. x_tmp = current_position[X_AXIS] + X_PROBE_OFFSET_FROM_EXTRUDER;
  3332. y_tmp = current_position[Y_AXIS] + Y_PROBE_OFFSET_FROM_EXTRUDER;
  3333. z_tmp = current_position[Z_AXIS];
  3334. apply_rotation_xyz(plan_bed_level_matrix, x_tmp, y_tmp, z_tmp); //Apply the correction sending the probe offset
  3335. current_position[Z_AXIS] = z_tmp - real_z + current_position[Z_AXIS]; //The difference is added to current position and sent to planner.
  3336. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  3337. }
  3338. break;
  3339. #ifndef Z_PROBE_SLED
  3340. case 30: // G30 Single Z Probe
  3341. {
  3342. st_synchronize();
  3343. // TODO: make sure the bed_level_rotation_matrix is identity or the planner will get set incorectly
  3344. int l_feedmultiply = setup_for_endstop_move();
  3345. feedrate = homing_feedrate[Z_AXIS];
  3346. run_z_probe();
  3347. SERIAL_PROTOCOLPGM(_T(MSG_BED));
  3348. SERIAL_PROTOCOLPGM(" X: ");
  3349. SERIAL_PROTOCOL(current_position[X_AXIS]);
  3350. SERIAL_PROTOCOLPGM(" Y: ");
  3351. SERIAL_PROTOCOL(current_position[Y_AXIS]);
  3352. SERIAL_PROTOCOLPGM(" Z: ");
  3353. SERIAL_PROTOCOL(current_position[Z_AXIS]);
  3354. SERIAL_PROTOCOLPGM("\n");
  3355. clean_up_after_endstop_move(l_feedmultiply);
  3356. }
  3357. break;
  3358. #else
  3359. case 31: // dock the sled
  3360. dock_sled(true);
  3361. break;
  3362. case 32: // undock the sled
  3363. dock_sled(false);
  3364. break;
  3365. #endif // Z_PROBE_SLED
  3366. #endif // ENABLE_AUTO_BED_LEVELING
  3367. #ifdef MESH_BED_LEVELING
  3368. case 30: // G30 Single Z Probe
  3369. {
  3370. st_synchronize();
  3371. // TODO: make sure the bed_level_rotation_matrix is identity or the planner will get set incorectly
  3372. int l_feedmultiply = setup_for_endstop_move();
  3373. feedrate = homing_feedrate[Z_AXIS];
  3374. find_bed_induction_sensor_point_z(-10.f, 3);
  3375. printf_P(_N("%S X: %.5f Y: %.5f Z: %.5f\n"), _T(MSG_BED), _x, _y, _z);
  3376. clean_up_after_endstop_move(l_feedmultiply);
  3377. }
  3378. break;
  3379. case 75:
  3380. {
  3381. for (int i = 40; i <= 110; i++)
  3382. printf_P(_N("%d %.2f"), i, temp_comp_interpolation(i));
  3383. }
  3384. break;
  3385. case 76: //! G76 - PINDA probe temperature calibration
  3386. {
  3387. #ifdef PINDA_THERMISTOR
  3388. if (true)
  3389. {
  3390. if (calibration_status() >= CALIBRATION_STATUS_XYZ_CALIBRATION) {
  3391. //we need to know accurate position of first calibration point
  3392. //if xyz calibration was not performed yet, interrupt temperature calibration and inform user that xyz cal. is needed
  3393. lcd_show_fullscreen_message_and_wait_P(_i("Please run XYZ calibration first."));
  3394. break;
  3395. }
  3396. if (!(axis_known_position[X_AXIS] && axis_known_position[Y_AXIS] && axis_known_position[Z_AXIS]))
  3397. {
  3398. // We don't know where we are! HOME!
  3399. // Push the commands to the front of the message queue in the reverse order!
  3400. // There shall be always enough space reserved for these commands.
  3401. repeatcommand_front(); // repeat G76 with all its parameters
  3402. enquecommand_front_P((PSTR("G28 W0")));
  3403. break;
  3404. }
  3405. lcd_show_fullscreen_message_and_wait_P(_i("Stable ambient temperature 21-26C is needed a rigid stand is required."));////MSG_TEMP_CAL_WARNING c=20 r=4
  3406. bool result = lcd_show_fullscreen_message_yes_no_and_wait_P(_T(MSG_STEEL_SHEET_CHECK), false, false);
  3407. if (result)
  3408. {
  3409. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3410. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3411. current_position[Z_AXIS] = 50;
  3412. current_position[Y_AXIS] = 180;
  3413. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3414. st_synchronize();
  3415. lcd_show_fullscreen_message_and_wait_P(_T(MSG_REMOVE_STEEL_SHEET));
  3416. current_position[Y_AXIS] = pgm_read_float(bed_ref_points_4 + 1);
  3417. current_position[X_AXIS] = pgm_read_float(bed_ref_points_4);
  3418. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3419. st_synchronize();
  3420. gcode_G28(false, false, true);
  3421. }
  3422. if ((current_temperature_pinda > 35) && (farm_mode == false)) {
  3423. //waiting for PIDNA probe to cool down in case that we are not in farm mode
  3424. current_position[Z_AXIS] = 100;
  3425. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3426. if (lcd_wait_for_pinda(35) == false) { //waiting for PINDA probe to cool, if this takes more then time expected, temp. cal. fails
  3427. lcd_temp_cal_show_result(false);
  3428. break;
  3429. }
  3430. }
  3431. lcd_update_enable(true);
  3432. KEEPALIVE_STATE(NOT_BUSY); //no need to print busy messages as we print current temperatures periodicaly
  3433. SERIAL_ECHOLNPGM("PINDA probe calibration start");
  3434. float zero_z;
  3435. int z_shift = 0; //unit: steps
  3436. float start_temp = 5 * (int)(current_temperature_pinda / 5);
  3437. if (start_temp < 35) start_temp = 35;
  3438. if (start_temp < current_temperature_pinda) start_temp += 5;
  3439. printf_P(_N("start temperature: %.1f\n"), start_temp);
  3440. // setTargetHotend(200, 0);
  3441. setTargetBed(70 + (start_temp - 30));
  3442. custom_message_type = CUSTOM_MSG_TYPE_TEMCAL;
  3443. custom_message_state = 1;
  3444. lcd_setstatuspgm(_T(MSG_TEMP_CALIBRATION));
  3445. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3446. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3447. current_position[X_AXIS] = PINDA_PREHEAT_X;
  3448. current_position[Y_AXIS] = PINDA_PREHEAT_Y;
  3449. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3450. current_position[Z_AXIS] = PINDA_PREHEAT_Z;
  3451. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3452. st_synchronize();
  3453. while (current_temperature_pinda < start_temp)
  3454. {
  3455. delay_keep_alive(1000);
  3456. serialecho_temperatures();
  3457. }
  3458. eeprom_update_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 0); //invalidate temp. calibration in case that in will be aborted during the calibration process
  3459. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3460. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3461. current_position[X_AXIS] = pgm_read_float(bed_ref_points_4);
  3462. current_position[Y_AXIS] = pgm_read_float(bed_ref_points_4 + 1);
  3463. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3464. st_synchronize();
  3465. bool find_z_result = find_bed_induction_sensor_point_z(-1.f);
  3466. if (find_z_result == false) {
  3467. lcd_temp_cal_show_result(find_z_result);
  3468. break;
  3469. }
  3470. zero_z = current_position[Z_AXIS];
  3471. printf_P(_N("\nZERO: %.3f\n"), current_position[Z_AXIS]);
  3472. int i = -1; for (; i < 5; i++)
  3473. {
  3474. float temp = (40 + i * 5);
  3475. printf_P(_N("\nStep: %d/6 (skipped)\nPINDA temperature: %d Z shift (mm):0\n"), i + 2, (40 + i*5));
  3476. if (i >= 0) EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + i * 2, &z_shift);
  3477. if (start_temp <= temp) break;
  3478. }
  3479. for (i++; i < 5; i++)
  3480. {
  3481. float temp = (40 + i * 5);
  3482. printf_P(_N("\nStep: %d/6\n"), i + 2);
  3483. custom_message_state = i + 2;
  3484. setTargetBed(50 + 10 * (temp - 30) / 5);
  3485. // setTargetHotend(255, 0);
  3486. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3487. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3488. current_position[X_AXIS] = PINDA_PREHEAT_X;
  3489. current_position[Y_AXIS] = PINDA_PREHEAT_Y;
  3490. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3491. current_position[Z_AXIS] = PINDA_PREHEAT_Z;
  3492. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3493. st_synchronize();
  3494. while (current_temperature_pinda < temp)
  3495. {
  3496. delay_keep_alive(1000);
  3497. serialecho_temperatures();
  3498. }
  3499. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3500. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3501. current_position[X_AXIS] = pgm_read_float(bed_ref_points_4);
  3502. current_position[Y_AXIS] = pgm_read_float(bed_ref_points_4 + 1);
  3503. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3504. st_synchronize();
  3505. find_z_result = find_bed_induction_sensor_point_z(-1.f);
  3506. if (find_z_result == false) {
  3507. lcd_temp_cal_show_result(find_z_result);
  3508. break;
  3509. }
  3510. z_shift = (int)((current_position[Z_AXIS] - zero_z)*cs.axis_steps_per_unit[Z_AXIS]);
  3511. printf_P(_N("\nPINDA temperature: %.1f Z shift (mm): %.3f"), current_temperature_pinda, current_position[Z_AXIS] - zero_z);
  3512. EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + i * 2, &z_shift);
  3513. }
  3514. lcd_temp_cal_show_result(true);
  3515. break;
  3516. }
  3517. #endif //PINDA_THERMISTOR
  3518. setTargetBed(PINDA_MIN_T);
  3519. float zero_z;
  3520. int z_shift = 0; //unit: steps
  3521. int t_c; // temperature
  3522. if (!(axis_known_position[X_AXIS] && axis_known_position[Y_AXIS] && axis_known_position[Z_AXIS])) {
  3523. // We don't know where we are! HOME!
  3524. // Push the commands to the front of the message queue in the reverse order!
  3525. // There shall be always enough space reserved for these commands.
  3526. repeatcommand_front(); // repeat G76 with all its parameters
  3527. enquecommand_front_P((PSTR("G28 W0")));
  3528. break;
  3529. }
  3530. puts_P(_N("PINDA probe calibration start"));
  3531. custom_message_type = CUSTOM_MSG_TYPE_TEMCAL;
  3532. custom_message_state = 1;
  3533. lcd_setstatuspgm(_T(MSG_TEMP_CALIBRATION));
  3534. current_position[X_AXIS] = PINDA_PREHEAT_X;
  3535. current_position[Y_AXIS] = PINDA_PREHEAT_Y;
  3536. current_position[Z_AXIS] = PINDA_PREHEAT_Z;
  3537. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3538. st_synchronize();
  3539. while (abs(degBed() - PINDA_MIN_T) > 1) {
  3540. delay_keep_alive(1000);
  3541. serialecho_temperatures();
  3542. }
  3543. //enquecommand_P(PSTR("M190 S50"));
  3544. for (int i = 0; i < PINDA_HEAT_T; i++) {
  3545. delay_keep_alive(1000);
  3546. serialecho_temperatures();
  3547. }
  3548. eeprom_update_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 0); //invalidate temp. calibration in case that in will be aborted during the calibration process
  3549. current_position[Z_AXIS] = 5;
  3550. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3551. current_position[X_AXIS] = pgm_read_float(bed_ref_points);
  3552. current_position[Y_AXIS] = pgm_read_float(bed_ref_points + 1);
  3553. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3554. st_synchronize();
  3555. find_bed_induction_sensor_point_z(-1.f);
  3556. zero_z = current_position[Z_AXIS];
  3557. printf_P(_N("\nZERO: %.3f\n"), current_position[Z_AXIS]);
  3558. for (int i = 0; i<5; i++) {
  3559. printf_P(_N("\nStep: %d/6\n"), i + 2);
  3560. custom_message_state = i + 2;
  3561. t_c = 60 + i * 10;
  3562. setTargetBed(t_c);
  3563. current_position[X_AXIS] = PINDA_PREHEAT_X;
  3564. current_position[Y_AXIS] = PINDA_PREHEAT_Y;
  3565. current_position[Z_AXIS] = PINDA_PREHEAT_Z;
  3566. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3567. st_synchronize();
  3568. while (degBed() < t_c) {
  3569. delay_keep_alive(1000);
  3570. serialecho_temperatures();
  3571. }
  3572. for (int i = 0; i < PINDA_HEAT_T; i++) {
  3573. delay_keep_alive(1000);
  3574. serialecho_temperatures();
  3575. }
  3576. current_position[Z_AXIS] = 5;
  3577. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3578. current_position[X_AXIS] = pgm_read_float(bed_ref_points);
  3579. current_position[Y_AXIS] = pgm_read_float(bed_ref_points + 1);
  3580. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3581. st_synchronize();
  3582. find_bed_induction_sensor_point_z(-1.f);
  3583. z_shift = (int)((current_position[Z_AXIS] - zero_z)*cs.axis_steps_per_unit[Z_AXIS]);
  3584. printf_P(_N("\nTemperature: %d Z shift (mm): %.3f\n"), t_c, current_position[Z_AXIS] - zero_z);
  3585. EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + i*2, &z_shift);
  3586. }
  3587. custom_message_type = CUSTOM_MSG_TYPE_STATUS;
  3588. eeprom_update_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 1);
  3589. puts_P(_N("Temperature calibration done."));
  3590. disable_x();
  3591. disable_y();
  3592. disable_z();
  3593. disable_e0();
  3594. disable_e1();
  3595. disable_e2();
  3596. setTargetBed(0); //set bed target temperature back to 0
  3597. lcd_show_fullscreen_message_and_wait_P(_T(MSG_TEMP_CALIBRATION_DONE));
  3598. temp_cal_active = true;
  3599. eeprom_update_byte((unsigned char *)EEPROM_TEMP_CAL_ACTIVE, 1);
  3600. lcd_update_enable(true);
  3601. lcd_update(2);
  3602. }
  3603. break;
  3604. #ifdef DIS
  3605. case 77:
  3606. {
  3607. //! G77 X200 Y150 XP100 YP15 XO10 Y015
  3608. //! for 9 point mesh bed leveling G77 X203 Y196 XP3 YP3 XO0 YO0
  3609. //! G77 X232 Y218 XP116 YP109 XO-11 YO0
  3610. float dimension_x = 40;
  3611. float dimension_y = 40;
  3612. int points_x = 40;
  3613. int points_y = 40;
  3614. float offset_x = 74;
  3615. float offset_y = 33;
  3616. if (code_seen('X')) dimension_x = code_value();
  3617. if (code_seen('Y')) dimension_y = code_value();
  3618. if (code_seen("XP")) { strchr_pointer+=1; points_x = code_value(); }
  3619. if (code_seen("YP")) { strchr_pointer+=1; points_y = code_value(); }
  3620. if (code_seen("XO")) { strchr_pointer+=1; offset_x = code_value(); }
  3621. if (code_seen("YO")) { strchr_pointer+=1; offset_y = code_value(); }
  3622. bed_analysis(dimension_x,dimension_y,points_x,points_y,offset_x,offset_y);
  3623. } break;
  3624. #endif
  3625. case 79: {
  3626. for (int i = 255; i > 0; i = i - 5) {
  3627. fanSpeed = i;
  3628. //delay_keep_alive(2000);
  3629. for (int j = 0; j < 100; j++) {
  3630. delay_keep_alive(100);
  3631. }
  3632. printf_P(_N("%d: %d\n"), i, fan_speed[1]);
  3633. }
  3634. }break;
  3635. /**
  3636. * G80: Mesh-based Z probe, probes a grid and produces a
  3637. * mesh to compensate for variable bed height
  3638. *
  3639. * The S0 report the points as below
  3640. * @code{.unparsed}
  3641. * +----> X-axis
  3642. * |
  3643. * |
  3644. * v Y-axis
  3645. * @endcode
  3646. */
  3647. case 80:
  3648. #ifdef MK1BP
  3649. break;
  3650. #endif //MK1BP
  3651. case_G80:
  3652. {
  3653. mesh_bed_leveling_flag = true;
  3654. static bool run = false;
  3655. #ifdef SUPPORT_VERBOSITY
  3656. int8_t verbosity_level = 0;
  3657. if (code_seen('V')) {
  3658. // Just 'V' without a number counts as V1.
  3659. char c = strchr_pointer[1];
  3660. verbosity_level = (c == ' ' || c == '\t' || c == 0) ? 1 : code_value_short();
  3661. }
  3662. #endif //SUPPORT_VERBOSITY
  3663. // Firstly check if we know where we are
  3664. if (!(axis_known_position[X_AXIS] && axis_known_position[Y_AXIS] && axis_known_position[Z_AXIS])) {
  3665. // We don't know where we are! HOME!
  3666. // Push the commands to the front of the message queue in the reverse order!
  3667. // There shall be always enough space reserved for these commands.
  3668. if (lcd_commands_type != LCD_COMMAND_STOP_PRINT) {
  3669. repeatcommand_front(); // repeat G80 with all its parameters
  3670. enquecommand_front_P((PSTR("G28 W0")));
  3671. }
  3672. else {
  3673. mesh_bed_leveling_flag = false;
  3674. }
  3675. break;
  3676. }
  3677. bool temp_comp_start = true;
  3678. #ifdef PINDA_THERMISTOR
  3679. temp_comp_start = false;
  3680. #endif //PINDA_THERMISTOR
  3681. if (temp_comp_start)
  3682. if (run == false && temp_cal_active == true && calibration_status_pinda() == true && target_temperature_bed >= 50) {
  3683. if (lcd_commands_type != LCD_COMMAND_STOP_PRINT) {
  3684. temp_compensation_start();
  3685. run = true;
  3686. repeatcommand_front(); // repeat G80 with all its parameters
  3687. enquecommand_front_P((PSTR("G28 W0")));
  3688. }
  3689. else {
  3690. mesh_bed_leveling_flag = false;
  3691. }
  3692. break;
  3693. }
  3694. run = false;
  3695. if (lcd_commands_type == LCD_COMMAND_STOP_PRINT) {
  3696. mesh_bed_leveling_flag = false;
  3697. break;
  3698. }
  3699. // Save custom message state, set a new custom message state to display: Calibrating point 9.
  3700. unsigned int custom_message_type_old = custom_message_type;
  3701. unsigned int custom_message_state_old = custom_message_state;
  3702. custom_message_type = CUSTOM_MSG_TYPE_MESHBL;
  3703. custom_message_state = (MESH_MEAS_NUM_X_POINTS * MESH_MEAS_NUM_Y_POINTS) + 10;
  3704. lcd_update(1);
  3705. mbl.reset(); //reset mesh bed leveling
  3706. // Reset baby stepping to zero, if the babystepping has already been loaded before. The babystepsTodo value will be
  3707. // consumed during the first movements following this statement.
  3708. babystep_undo();
  3709. // Cycle through all points and probe them
  3710. // First move up. During this first movement, the babystepping will be reverted.
  3711. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3712. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[Z_AXIS] / 60, active_extruder);
  3713. // The move to the first calibration point.
  3714. current_position[X_AXIS] = pgm_read_float(bed_ref_points);
  3715. current_position[Y_AXIS] = pgm_read_float(bed_ref_points + 1);
  3716. #ifdef SUPPORT_VERBOSITY
  3717. if (verbosity_level >= 1)
  3718. {
  3719. bool clamped = world2machine_clamp(current_position[X_AXIS], current_position[Y_AXIS]);
  3720. clamped ? SERIAL_PROTOCOLPGM("First calibration point clamped.\n") : SERIAL_PROTOCOLPGM("No clamping for first calibration point.\n");
  3721. }
  3722. #endif //SUPPORT_VERBOSITY
  3723. // mbl.get_meas_xy(0, 0, current_position[X_AXIS], current_position[Y_AXIS], false);
  3724. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[X_AXIS] / 30, active_extruder);
  3725. // Wait until the move is finished.
  3726. st_synchronize();
  3727. int mesh_point = 0; //index number of calibration point
  3728. int ix = 0;
  3729. int iy = 0;
  3730. int XY_AXIS_FEEDRATE = homing_feedrate[X_AXIS] / 20;
  3731. int Z_LIFT_FEEDRATE = homing_feedrate[Z_AXIS] / 40;
  3732. bool has_z = is_bed_z_jitter_data_valid(); //checks if we have data from Z calibration (offsets of the Z heiths of the 8 calibration points from the first point)
  3733. #ifdef SUPPORT_VERBOSITY
  3734. if (verbosity_level >= 1) {
  3735. has_z ? SERIAL_PROTOCOLPGM("Z jitter data from Z cal. valid.\n") : SERIAL_PROTOCOLPGM("Z jitter data from Z cal. not valid.\n");
  3736. }
  3737. #endif // SUPPORT_VERBOSITY
  3738. int l_feedmultiply = setup_for_endstop_move(false); //save feedrate and feedmultiply, sets feedmultiply to 100
  3739. const char *kill_message = NULL;
  3740. while (mesh_point != MESH_MEAS_NUM_X_POINTS * MESH_MEAS_NUM_Y_POINTS) {
  3741. // Get coords of a measuring point.
  3742. ix = mesh_point % MESH_MEAS_NUM_X_POINTS; // from 0 to MESH_NUM_X_POINTS - 1
  3743. iy = mesh_point / MESH_MEAS_NUM_X_POINTS;
  3744. if (iy & 1) ix = (MESH_MEAS_NUM_X_POINTS - 1) - ix; // Zig zag
  3745. float z0 = 0.f;
  3746. if (has_z && mesh_point > 0) {
  3747. uint16_t z_offset_u = eeprom_read_word((uint16_t*)(EEPROM_BED_CALIBRATION_Z_JITTER + 2 * (ix + iy * 3 - 1)));
  3748. z0 = mbl.z_values[0][0] + *reinterpret_cast<int16_t*>(&z_offset_u) * 0.01;
  3749. //#if 0
  3750. #ifdef SUPPORT_VERBOSITY
  3751. if (verbosity_level >= 1) {
  3752. SERIAL_ECHOLNPGM("");
  3753. SERIAL_ECHOPGM("Bed leveling, point: ");
  3754. MYSERIAL.print(mesh_point);
  3755. SERIAL_ECHOPGM(", calibration z: ");
  3756. MYSERIAL.print(z0, 5);
  3757. SERIAL_ECHOLNPGM("");
  3758. }
  3759. #endif // SUPPORT_VERBOSITY
  3760. //#endif
  3761. }
  3762. // Move Z up to MESH_HOME_Z_SEARCH.
  3763. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3764. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], Z_LIFT_FEEDRATE, active_extruder);
  3765. st_synchronize();
  3766. // Move to XY position of the sensor point.
  3767. current_position[X_AXIS] = pgm_read_float(bed_ref_points + 2 * mesh_point);
  3768. current_position[Y_AXIS] = pgm_read_float(bed_ref_points + 2 * mesh_point + 1);
  3769. world2machine_clamp(current_position[X_AXIS], current_position[Y_AXIS]);
  3770. #ifdef SUPPORT_VERBOSITY
  3771. if (verbosity_level >= 1) {
  3772. SERIAL_PROTOCOL(mesh_point);
  3773. clamped ? SERIAL_PROTOCOLPGM(": xy clamped.\n") : SERIAL_PROTOCOLPGM(": no xy clamping\n");
  3774. }
  3775. #endif // SUPPORT_VERBOSITY
  3776. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], XY_AXIS_FEEDRATE, active_extruder);
  3777. st_synchronize();
  3778. // Go down until endstop is hit
  3779. const float Z_CALIBRATION_THRESHOLD = 1.f;
  3780. if (!find_bed_induction_sensor_point_z((has_z && mesh_point > 0) ? z0 - Z_CALIBRATION_THRESHOLD : -10.f)) { //if we have data from z calibration max allowed difference is 1mm for each point, if we dont have data max difference is 10mm from initial point
  3781. kill_message = _T(MSG_BED_LEVELING_FAILED_POINT_LOW);
  3782. break;
  3783. }
  3784. if (MESH_HOME_Z_SEARCH - current_position[Z_AXIS] < 0.1f) {
  3785. kill_message = _i("Bed leveling failed. Sensor disconnected or cable broken. Waiting for reset.");////MSG_BED_LEVELING_FAILED_PROBE_DISCONNECTED c=20 r=4
  3786. break;
  3787. }
  3788. if (has_z && fabs(z0 - current_position[Z_AXIS]) > Z_CALIBRATION_THRESHOLD) { //if we have data from z calibration, max. allowed difference is 1mm for each point
  3789. kill_message = _i("Bed leveling failed. Sensor triggered too high. Waiting for reset.");////MSG_BED_LEVELING_FAILED_POINT_HIGH c=20 r=4
  3790. break;
  3791. }
  3792. #ifdef SUPPORT_VERBOSITY
  3793. if (verbosity_level >= 10) {
  3794. SERIAL_ECHOPGM("X: ");
  3795. MYSERIAL.print(current_position[X_AXIS], 5);
  3796. SERIAL_ECHOLNPGM("");
  3797. SERIAL_ECHOPGM("Y: ");
  3798. MYSERIAL.print(current_position[Y_AXIS], 5);
  3799. SERIAL_PROTOCOLPGM("\n");
  3800. }
  3801. #endif // SUPPORT_VERBOSITY
  3802. float offset_z = 0;
  3803. #ifdef PINDA_THERMISTOR
  3804. offset_z = temp_compensation_pinda_thermistor_offset(current_temperature_pinda);
  3805. #endif //PINDA_THERMISTOR
  3806. // #ifdef SUPPORT_VERBOSITY
  3807. /* if (verbosity_level >= 1)
  3808. {
  3809. SERIAL_ECHOPGM("mesh bed leveling: ");
  3810. MYSERIAL.print(current_position[Z_AXIS], 5);
  3811. SERIAL_ECHOPGM(" offset: ");
  3812. MYSERIAL.print(offset_z, 5);
  3813. SERIAL_ECHOLNPGM("");
  3814. }*/
  3815. // #endif // SUPPORT_VERBOSITY
  3816. mbl.set_z(ix, iy, current_position[Z_AXIS] - offset_z); //store measured z values z_values[iy][ix] = z - offset_z;
  3817. custom_message_state--;
  3818. mesh_point++;
  3819. lcd_update(1);
  3820. }
  3821. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3822. #ifdef SUPPORT_VERBOSITY
  3823. if (verbosity_level >= 20) {
  3824. SERIAL_ECHOLNPGM("Mesh bed leveling while loop finished.");
  3825. SERIAL_ECHOLNPGM("MESH_HOME_Z_SEARCH: ");
  3826. MYSERIAL.print(current_position[Z_AXIS], 5);
  3827. }
  3828. #endif // SUPPORT_VERBOSITY
  3829. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], Z_LIFT_FEEDRATE, active_extruder);
  3830. st_synchronize();
  3831. if (mesh_point != MESH_MEAS_NUM_X_POINTS * MESH_MEAS_NUM_Y_POINTS) {
  3832. Sound_MakeSound(e_SOUND_TYPE_StandardAlert);
  3833. lcd_display_message_fullscreen_P(_i(MSG_BED_LEVELING_FAILED));
  3834. lcd_wait_for_click_delay(MSG_BED_LEVELING_FAILED_TIMEOUT);
  3835. #ifdef TMC2130
  3836. calibrate_z_auto(); // Z-leveling (X-assembly stay up!!!)
  3837. #else // TMC2130
  3838. lcd_calibrate_z_end_stop_manual(true); // Z-leveling (X-assembly stay up!!!)
  3839. #endif // TMC2130
  3840. // ~ Z-homing (can not be used "G28", because X & Y-homing would have been done before (Z-homing))
  3841. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3842. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[Z_AXIS] / 40, active_extruder);
  3843. st_synchronize();
  3844. //
  3845. custom_message_type=CUSTOM_MSG_TYPE_STATUS; // display / status-line recovery
  3846. lcd_update_enable(true); // display / status-line recovery
  3847. gcode_G28(true, true, false); // X & Y-homing (must be after Z-homing (problem with spool-holder)!)
  3848. repeatcommand_front(); // re-run (i.e. of "G80")
  3849. break;
  3850. }
  3851. clean_up_after_endstop_move(l_feedmultiply);
  3852. // SERIAL_ECHOLNPGM("clean up finished ");
  3853. bool apply_temp_comp = true;
  3854. #ifdef PINDA_THERMISTOR
  3855. apply_temp_comp = false;
  3856. #endif
  3857. if (apply_temp_comp)
  3858. if(temp_cal_active == true && calibration_status_pinda() == true) temp_compensation_apply(); //apply PINDA temperature compensation
  3859. babystep_apply(); // Apply Z height correction aka baby stepping before mesh bed leveing gets activated.
  3860. // SERIAL_ECHOLNPGM("babystep applied");
  3861. bool eeprom_bed_correction_valid = eeprom_read_byte((unsigned char*)EEPROM_BED_CORRECTION_VALID) == 1;
  3862. #ifdef SUPPORT_VERBOSITY
  3863. if (verbosity_level >= 1) {
  3864. eeprom_bed_correction_valid ? SERIAL_PROTOCOLPGM("Bed correction data valid\n") : SERIAL_PROTOCOLPGM("Bed correction data not valid\n");
  3865. }
  3866. #endif // SUPPORT_VERBOSITY
  3867. for (uint8_t i = 0; i < 4; ++i) {
  3868. unsigned char codes[4] = { 'L', 'R', 'F', 'B' };
  3869. long correction = 0;
  3870. if (code_seen(codes[i]))
  3871. correction = code_value_long();
  3872. else if (eeprom_bed_correction_valid) {
  3873. unsigned char *addr = (i < 2) ?
  3874. ((i == 0) ? (unsigned char*)EEPROM_BED_CORRECTION_LEFT : (unsigned char*)EEPROM_BED_CORRECTION_RIGHT) :
  3875. ((i == 2) ? (unsigned char*)EEPROM_BED_CORRECTION_FRONT : (unsigned char*)EEPROM_BED_CORRECTION_REAR);
  3876. correction = eeprom_read_int8(addr);
  3877. }
  3878. if (correction == 0)
  3879. continue;
  3880. float offset = float(correction) * 0.001f;
  3881. if (fabs(offset) > 0.101f) {
  3882. SERIAL_ERROR_START;
  3883. SERIAL_ECHOPGM("Excessive bed leveling correction: ");
  3884. SERIAL_ECHO(offset);
  3885. SERIAL_ECHOLNPGM(" microns");
  3886. }
  3887. else {
  3888. switch (i) {
  3889. case 0:
  3890. for (uint8_t row = 0; row < 3; ++row) {
  3891. mbl.z_values[row][1] += 0.5f * offset;
  3892. mbl.z_values[row][0] += offset;
  3893. }
  3894. break;
  3895. case 1:
  3896. for (uint8_t row = 0; row < 3; ++row) {
  3897. mbl.z_values[row][1] += 0.5f * offset;
  3898. mbl.z_values[row][2] += offset;
  3899. }
  3900. break;
  3901. case 2:
  3902. for (uint8_t col = 0; col < 3; ++col) {
  3903. mbl.z_values[1][col] += 0.5f * offset;
  3904. mbl.z_values[0][col] += offset;
  3905. }
  3906. break;
  3907. case 3:
  3908. for (uint8_t col = 0; col < 3; ++col) {
  3909. mbl.z_values[1][col] += 0.5f * offset;
  3910. mbl.z_values[2][col] += offset;
  3911. }
  3912. break;
  3913. }
  3914. }
  3915. }
  3916. // SERIAL_ECHOLNPGM("Bed leveling correction finished");
  3917. mbl.upsample_3x3(); //bilinear interpolation from 3x3 to 7x7 points while using the same array z_values[iy][ix] for storing (just coppying measured data to new destination and interpolating between them)
  3918. // SERIAL_ECHOLNPGM("Upsample finished");
  3919. mbl.active = 1; //activate mesh bed leveling
  3920. // SERIAL_ECHOLNPGM("Mesh bed leveling activated");
  3921. go_home_with_z_lift();
  3922. // SERIAL_ECHOLNPGM("Go home finished");
  3923. //unretract (after PINDA preheat retraction)
  3924. if (degHotend(active_extruder) > EXTRUDE_MINTEMP && temp_cal_active == true && calibration_status_pinda() == true && target_temperature_bed >= 50) {
  3925. current_position[E_AXIS] += default_retraction;
  3926. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400, active_extruder);
  3927. }
  3928. KEEPALIVE_STATE(NOT_BUSY);
  3929. // Restore custom message state
  3930. lcd_setstatuspgm(_T(WELCOME_MSG));
  3931. custom_message_type = custom_message_type_old;
  3932. custom_message_state = custom_message_state_old;
  3933. mesh_bed_leveling_flag = false;
  3934. mesh_bed_run_from_menu = false;
  3935. lcd_update(2);
  3936. }
  3937. break;
  3938. /**
  3939. * G81: Print mesh bed leveling status and bed profile if activated
  3940. */
  3941. case 81:
  3942. if (mbl.active) {
  3943. SERIAL_PROTOCOLPGM("Num X,Y: ");
  3944. SERIAL_PROTOCOL(MESH_NUM_X_POINTS);
  3945. SERIAL_PROTOCOLPGM(",");
  3946. SERIAL_PROTOCOL(MESH_NUM_Y_POINTS);
  3947. SERIAL_PROTOCOLPGM("\nZ search height: ");
  3948. SERIAL_PROTOCOL(MESH_HOME_Z_SEARCH);
  3949. SERIAL_PROTOCOLLNPGM("\nMeasured points:");
  3950. for (int y = MESH_NUM_Y_POINTS-1; y >= 0; y--) {
  3951. for (int x = 0; x < MESH_NUM_X_POINTS; x++) {
  3952. SERIAL_PROTOCOLPGM(" ");
  3953. SERIAL_PROTOCOL_F(mbl.z_values[y][x], 5);
  3954. }
  3955. SERIAL_PROTOCOLPGM("\n");
  3956. }
  3957. }
  3958. else
  3959. SERIAL_PROTOCOLLNPGM("Mesh bed leveling not active.");
  3960. break;
  3961. #if 0
  3962. /**
  3963. * G82: Single Z probe at current location
  3964. *
  3965. * WARNING! USE WITH CAUTION! If you'll try to probe where is no leveling pad, nasty things can happen!
  3966. *
  3967. */
  3968. case 82:
  3969. SERIAL_PROTOCOLLNPGM("Finding bed ");
  3970. int l_feedmultiply = setup_for_endstop_move();
  3971. find_bed_induction_sensor_point_z();
  3972. clean_up_after_endstop_move(l_feedmultiply);
  3973. SERIAL_PROTOCOLPGM("Bed found at: ");
  3974. SERIAL_PROTOCOL_F(current_position[Z_AXIS], 5);
  3975. SERIAL_PROTOCOLPGM("\n");
  3976. break;
  3977. /**
  3978. * G83: Prusa3D specific: Babystep in Z and store to EEPROM
  3979. */
  3980. case 83:
  3981. {
  3982. int babystepz = code_seen('S') ? code_value() : 0;
  3983. int BabyPosition = code_seen('P') ? code_value() : 0;
  3984. if (babystepz != 0) {
  3985. //FIXME Vojtech: What shall be the index of the axis Z: 3 or 4?
  3986. // Is the axis indexed starting with zero or one?
  3987. if (BabyPosition > 4) {
  3988. SERIAL_PROTOCOLLNPGM("Index out of bounds");
  3989. }else{
  3990. // Save it to the eeprom
  3991. babystepLoadZ = babystepz;
  3992. EEPROM_save_B(EEPROM_BABYSTEP_Z0+(BabyPosition*2),&babystepLoadZ);
  3993. // adjust the Z
  3994. babystepsTodoZadd(babystepLoadZ);
  3995. }
  3996. }
  3997. }
  3998. break;
  3999. /**
  4000. * G84: Prusa3D specific: UNDO Babystep Z (move Z axis back)
  4001. */
  4002. case 84:
  4003. babystepsTodoZsubtract(babystepLoadZ);
  4004. // babystepLoadZ = 0;
  4005. break;
  4006. /**
  4007. * G85: Prusa3D specific: Pick best babystep
  4008. */
  4009. case 85:
  4010. lcd_pick_babystep();
  4011. break;
  4012. #endif
  4013. /**
  4014. * G86: Prusa3D specific: Disable babystep correction after home.
  4015. * This G-code will be performed at the start of a calibration script.
  4016. */
  4017. case 86:
  4018. calibration_status_store(CALIBRATION_STATUS_LIVE_ADJUST);
  4019. break;
  4020. /**
  4021. * G87: Prusa3D specific: Enable babystep correction after home
  4022. * This G-code will be performed at the end of a calibration script.
  4023. */
  4024. case 87:
  4025. calibration_status_store(CALIBRATION_STATUS_CALIBRATED);
  4026. break;
  4027. /**
  4028. * G88: Prusa3D specific: Don't know what it is for, it is in V2Calibration.gcode
  4029. */
  4030. case 88:
  4031. break;
  4032. #endif // ENABLE_MESH_BED_LEVELING
  4033. case 90: // G90
  4034. relative_mode = false;
  4035. break;
  4036. case 91: // G91
  4037. relative_mode = true;
  4038. break;
  4039. case 92: // G92
  4040. if(!code_seen(axis_codes[E_AXIS]))
  4041. st_synchronize();
  4042. for(int8_t i=0; i < NUM_AXIS; i++) {
  4043. if(code_seen(axis_codes[i])) {
  4044. if(i == E_AXIS) {
  4045. current_position[i] = code_value();
  4046. plan_set_e_position(current_position[E_AXIS]);
  4047. }
  4048. else {
  4049. current_position[i] = code_value()+cs.add_homing[i];
  4050. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  4051. }
  4052. }
  4053. }
  4054. break;
  4055. case 98: //! G98 (activate farm mode)
  4056. farm_mode = 1;
  4057. PingTime = millis();
  4058. eeprom_update_byte((unsigned char *)EEPROM_FARM_MODE, farm_mode);
  4059. EEPROM_save_B(EEPROM_FARM_NUMBER, &farm_no);
  4060. SilentModeMenu = SILENT_MODE_OFF;
  4061. eeprom_update_byte((unsigned char *)EEPROM_SILENT, SilentModeMenu);
  4062. break;
  4063. case 99: //! G99 (deactivate farm mode)
  4064. farm_mode = 0;
  4065. lcd_printer_connected();
  4066. eeprom_update_byte((unsigned char *)EEPROM_FARM_MODE, farm_mode);
  4067. lcd_update(2);
  4068. break;
  4069. default:
  4070. printf_P(PSTR("Unknown G code: %s \n"), cmdbuffer + bufindr + CMDHDRSIZE);
  4071. }
  4072. // printf_P(_N("END G-CODE=%u\n"), gcode_in_progress);
  4073. gcode_in_progress = 0;
  4074. } // end if(code_seen('G'))
  4075. else if(code_seen('M'))
  4076. {
  4077. int index;
  4078. for (index = 1; *(strchr_pointer + index) == ' ' || *(strchr_pointer + index) == '\t'; index++);
  4079. /*for (++strchr_pointer; *strchr_pointer == ' ' || *strchr_pointer == '\t'; ++strchr_pointer);*/
  4080. if (*(strchr_pointer+index) < '0' || *(strchr_pointer+index) > '9') {
  4081. printf_P(PSTR("Invalid M code: %s \n"), cmdbuffer + bufindr + CMDHDRSIZE);
  4082. } else
  4083. {
  4084. mcode_in_progress = (int)code_value();
  4085. // printf_P(_N("BEGIN M-CODE=%u\n"), mcode_in_progress);
  4086. switch(mcode_in_progress)
  4087. {
  4088. case 0: // M0 - Unconditional stop - Wait for user button press on LCD
  4089. case 1: // M1 - Conditional stop - Wait for user button press on LCD
  4090. {
  4091. char *src = strchr_pointer + 2;
  4092. codenum = 0;
  4093. bool hasP = false, hasS = false;
  4094. if (code_seen('P')) {
  4095. codenum = code_value(); // milliseconds to wait
  4096. hasP = codenum > 0;
  4097. }
  4098. if (code_seen('S')) {
  4099. codenum = code_value() * 1000; // seconds to wait
  4100. hasS = codenum > 0;
  4101. }
  4102. starpos = strchr(src, '*');
  4103. if (starpos != NULL) *(starpos) = '\0';
  4104. while (*src == ' ') ++src;
  4105. if (!hasP && !hasS && *src != '\0') {
  4106. lcd_setstatus(src);
  4107. } else {
  4108. LCD_MESSAGERPGM(_i("Wait for user..."));////MSG_USERWAIT c=0 r=0
  4109. }
  4110. lcd_ignore_click(); //call lcd_ignore_click aslo for else ???
  4111. st_synchronize();
  4112. previous_millis_cmd = millis();
  4113. if (codenum > 0){
  4114. codenum += millis(); // keep track of when we started waiting
  4115. KEEPALIVE_STATE(PAUSED_FOR_USER);
  4116. while(millis() < codenum && !lcd_clicked()){
  4117. manage_heater();
  4118. manage_inactivity(true);
  4119. lcd_update(0);
  4120. }
  4121. KEEPALIVE_STATE(IN_HANDLER);
  4122. lcd_ignore_click(false);
  4123. }else{
  4124. KEEPALIVE_STATE(PAUSED_FOR_USER);
  4125. while(!lcd_clicked()){
  4126. manage_heater();
  4127. manage_inactivity(true);
  4128. lcd_update(0);
  4129. }
  4130. KEEPALIVE_STATE(IN_HANDLER);
  4131. }
  4132. if (IS_SD_PRINTING)
  4133. LCD_MESSAGERPGM(_T(MSG_RESUMING_PRINT));
  4134. else
  4135. LCD_MESSAGERPGM(_T(WELCOME_MSG));
  4136. }
  4137. break;
  4138. case 17:
  4139. LCD_MESSAGERPGM(_i("No move."));////MSG_NO_MOVE c=0 r=0
  4140. enable_x();
  4141. enable_y();
  4142. enable_z();
  4143. enable_e0();
  4144. enable_e1();
  4145. enable_e2();
  4146. break;
  4147. #ifdef SDSUPPORT
  4148. case 20: // M20 - list SD card
  4149. SERIAL_PROTOCOLLNRPGM(_N("Begin file list"));////MSG_BEGIN_FILE_LIST c=0 r=0
  4150. card.ls();
  4151. SERIAL_PROTOCOLLNRPGM(_N("End file list"));////MSG_END_FILE_LIST c=0 r=0
  4152. break;
  4153. case 21: // M21 - init SD card
  4154. card.initsd();
  4155. break;
  4156. case 22: //M22 - release SD card
  4157. card.release();
  4158. break;
  4159. case 23: //M23 - Select file
  4160. starpos = (strchr(strchr_pointer + 4,'*'));
  4161. if(starpos!=NULL)
  4162. *(starpos)='\0';
  4163. card.openFile(strchr_pointer + 4,true);
  4164. break;
  4165. case 24: //M24 - Start SD print
  4166. if (!card.paused)
  4167. failstats_reset_print();
  4168. card.startFileprint();
  4169. starttime=millis();
  4170. break;
  4171. case 25: //M25 - Pause SD print
  4172. card.pauseSDPrint();
  4173. break;
  4174. case 26: //M26 - Set SD index
  4175. if(card.cardOK && code_seen('S')) {
  4176. card.setIndex(code_value_long());
  4177. }
  4178. break;
  4179. case 27: //M27 - Get SD status
  4180. card.getStatus();
  4181. break;
  4182. case 28: //M28 - Start SD write
  4183. starpos = (strchr(strchr_pointer + 4,'*'));
  4184. if(starpos != NULL){
  4185. char* npos = strchr(CMDBUFFER_CURRENT_STRING, 'N');
  4186. strchr_pointer = strchr(npos,' ') + 1;
  4187. *(starpos) = '\0';
  4188. }
  4189. card.openFile(strchr_pointer+4,false);
  4190. break;
  4191. case 29: //M29 - Stop SD write
  4192. //processed in write to file routine above
  4193. //card,saving = false;
  4194. break;
  4195. case 30: //M30 <filename> Delete File
  4196. if (card.cardOK){
  4197. card.closefile();
  4198. starpos = (strchr(strchr_pointer + 4,'*'));
  4199. if(starpos != NULL){
  4200. char* npos = strchr(CMDBUFFER_CURRENT_STRING, 'N');
  4201. strchr_pointer = strchr(npos,' ') + 1;
  4202. *(starpos) = '\0';
  4203. }
  4204. card.removeFile(strchr_pointer + 4);
  4205. }
  4206. break;
  4207. case 32: //M32 - Select file and start SD print
  4208. {
  4209. if(card.sdprinting) {
  4210. st_synchronize();
  4211. }
  4212. starpos = (strchr(strchr_pointer + 4,'*'));
  4213. char* namestartpos = (strchr(strchr_pointer + 4,'!')); //find ! to indicate filename string start.
  4214. if(namestartpos==NULL)
  4215. {
  4216. namestartpos=strchr_pointer + 4; //default name position, 4 letters after the M
  4217. }
  4218. else
  4219. namestartpos++; //to skip the '!'
  4220. if(starpos!=NULL)
  4221. *(starpos)='\0';
  4222. bool call_procedure=(code_seen('P'));
  4223. if(strchr_pointer>namestartpos)
  4224. call_procedure=false; //false alert, 'P' found within filename
  4225. if( card.cardOK )
  4226. {
  4227. card.openFile(namestartpos,true,!call_procedure);
  4228. if(code_seen('S'))
  4229. if(strchr_pointer<namestartpos) //only if "S" is occuring _before_ the filename
  4230. card.setIndex(code_value_long());
  4231. card.startFileprint();
  4232. if(!call_procedure)
  4233. starttime=millis(); //procedure calls count as normal print time.
  4234. }
  4235. } break;
  4236. case 928: //M928 - Start SD write
  4237. starpos = (strchr(strchr_pointer + 5,'*'));
  4238. if(starpos != NULL){
  4239. char* npos = strchr(CMDBUFFER_CURRENT_STRING, 'N');
  4240. strchr_pointer = strchr(npos,' ') + 1;
  4241. *(starpos) = '\0';
  4242. }
  4243. card.openLogFile(strchr_pointer+5);
  4244. break;
  4245. #endif //SDSUPPORT
  4246. case 31: //M31 take time since the start of the SD print or an M109 command
  4247. {
  4248. stoptime=millis();
  4249. char time[30];
  4250. unsigned long t=(stoptime-starttime)/1000;
  4251. int sec,min;
  4252. min=t/60;
  4253. sec=t%60;
  4254. sprintf_P(time, PSTR("%i min, %i sec"), min, sec);
  4255. SERIAL_ECHO_START;
  4256. SERIAL_ECHOLN(time);
  4257. lcd_setstatus(time);
  4258. autotempShutdown();
  4259. }
  4260. break;
  4261. case 42: //M42 -Change pin status via gcode
  4262. if (code_seen('S'))
  4263. {
  4264. int pin_status = code_value();
  4265. int pin_number = LED_PIN;
  4266. if (code_seen('P') && pin_status >= 0 && pin_status <= 255)
  4267. pin_number = code_value();
  4268. for(int8_t i = 0; i < (int8_t)(sizeof(sensitive_pins)/sizeof(int)); i++)
  4269. {
  4270. if (sensitive_pins[i] == pin_number)
  4271. {
  4272. pin_number = -1;
  4273. break;
  4274. }
  4275. }
  4276. #if defined(FAN_PIN) && FAN_PIN > -1
  4277. if (pin_number == FAN_PIN)
  4278. fanSpeed = pin_status;
  4279. #endif
  4280. if (pin_number > -1)
  4281. {
  4282. pinMode(pin_number, OUTPUT);
  4283. digitalWrite(pin_number, pin_status);
  4284. analogWrite(pin_number, pin_status);
  4285. }
  4286. }
  4287. break;
  4288. case 44: //! M44: Prusa3D: Reset the bed skew and offset calibration.
  4289. // Reset the baby step value and the baby step applied flag.
  4290. calibration_status_store(CALIBRATION_STATUS_ASSEMBLED);
  4291. eeprom_update_word((uint16_t*)EEPROM_BABYSTEP_Z, 0);
  4292. // Reset the skew and offset in both RAM and EEPROM.
  4293. reset_bed_offset_and_skew();
  4294. // Reset world2machine_rotation_and_skew and world2machine_shift, therefore
  4295. // the planner will not perform any adjustments in the XY plane.
  4296. // Wait for the motors to stop and update the current position with the absolute values.
  4297. world2machine_revert_to_uncorrected();
  4298. break;
  4299. case 45: //! M45: Prusa3D: bed skew and offset with manual Z up
  4300. {
  4301. int8_t verbosity_level = 0;
  4302. bool only_Z = code_seen('Z');
  4303. #ifdef SUPPORT_VERBOSITY
  4304. if (code_seen('V'))
  4305. {
  4306. // Just 'V' without a number counts as V1.
  4307. char c = strchr_pointer[1];
  4308. verbosity_level = (c == ' ' || c == '\t' || c == 0) ? 1 : code_value_short();
  4309. }
  4310. #endif //SUPPORT_VERBOSITY
  4311. gcode_M45(only_Z, verbosity_level);
  4312. }
  4313. break;
  4314. /*
  4315. case 46:
  4316. {
  4317. // M46: Prusa3D: Show the assigned IP address.
  4318. uint8_t ip[4];
  4319. bool hasIP = card.ToshibaFlashAir_GetIP(ip);
  4320. if (hasIP) {
  4321. SERIAL_ECHOPGM("Toshiba FlashAir current IP: ");
  4322. SERIAL_ECHO(int(ip[0]));
  4323. SERIAL_ECHOPGM(".");
  4324. SERIAL_ECHO(int(ip[1]));
  4325. SERIAL_ECHOPGM(".");
  4326. SERIAL_ECHO(int(ip[2]));
  4327. SERIAL_ECHOPGM(".");
  4328. SERIAL_ECHO(int(ip[3]));
  4329. SERIAL_ECHOLNPGM("");
  4330. } else {
  4331. SERIAL_ECHOLNPGM("Toshiba FlashAir GetIP failed");
  4332. }
  4333. break;
  4334. }
  4335. */
  4336. case 47:
  4337. //! M47: Prusa3D: Show end stops dialog on the display.
  4338. KEEPALIVE_STATE(PAUSED_FOR_USER);
  4339. lcd_diag_show_end_stops();
  4340. KEEPALIVE_STATE(IN_HANDLER);
  4341. break;
  4342. #if 0
  4343. case 48: //! M48: scan the bed induction sensor points, print the sensor trigger coordinates to the serial line for visualization on the PC.
  4344. {
  4345. // Disable the default update procedure of the display. We will do a modal dialog.
  4346. lcd_update_enable(false);
  4347. // Let the planner use the uncorrected coordinates.
  4348. mbl.reset();
  4349. // Reset world2machine_rotation_and_skew and world2machine_shift, therefore
  4350. // the planner will not perform any adjustments in the XY plane.
  4351. // Wait for the motors to stop and update the current position with the absolute values.
  4352. world2machine_revert_to_uncorrected();
  4353. // Move the print head close to the bed.
  4354. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  4355. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS],current_position[Z_AXIS] , current_position[E_AXIS], homing_feedrate[Z_AXIS]/40, active_extruder);
  4356. st_synchronize();
  4357. // Home in the XY plane.
  4358. set_destination_to_current();
  4359. int l_feedmultiply = setup_for_endstop_move();
  4360. home_xy();
  4361. int8_t verbosity_level = 0;
  4362. if (code_seen('V')) {
  4363. // Just 'V' without a number counts as V1.
  4364. char c = strchr_pointer[1];
  4365. verbosity_level = (c == ' ' || c == '\t' || c == 0) ? 1 : code_value_short();
  4366. }
  4367. bool success = scan_bed_induction_points(verbosity_level);
  4368. clean_up_after_endstop_move(l_feedmultiply);
  4369. // Print head up.
  4370. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  4371. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS],current_position[Z_AXIS] , current_position[E_AXIS], homing_feedrate[Z_AXIS]/40, active_extruder);
  4372. st_synchronize();
  4373. lcd_update_enable(true);
  4374. break;
  4375. }
  4376. #endif
  4377. #ifdef ENABLE_AUTO_BED_LEVELING
  4378. #ifdef Z_PROBE_REPEATABILITY_TEST
  4379. //! M48 Z-Probe repeatability measurement function.
  4380. //!
  4381. //! Usage: M48 <n #_samples> <X X_position_for_samples> <Y Y_position_for_samples> <V Verbose_Level> <L legs_of_movement_prior_to_doing_probe>
  4382. //!
  4383. //! This function assumes the bed has been homed. Specificaly, that a G28 command
  4384. //! as been issued prior to invoking the M48 Z-Probe repeatability measurement function.
  4385. //! Any information generated by a prior G29 Bed leveling command will be lost and need to be
  4386. //! regenerated.
  4387. //!
  4388. //! The number of samples will default to 10 if not specified. You can use upper or lower case
  4389. //! letters for any of the options EXCEPT n. n must be in lower case because Marlin uses a capital
  4390. //! N for its communication protocol and will get horribly confused if you send it a capital N.
  4391. //!
  4392. case 48: // M48 Z-Probe repeatability
  4393. {
  4394. #if Z_MIN_PIN == -1
  4395. #error "You must have a Z_MIN endstop in order to enable calculation of Z-Probe repeatability."
  4396. #endif
  4397. double sum=0.0;
  4398. double mean=0.0;
  4399. double sigma=0.0;
  4400. double sample_set[50];
  4401. int verbose_level=1, n=0, j, n_samples = 10, n_legs=0;
  4402. double X_current, Y_current, Z_current;
  4403. double X_probe_location, Y_probe_location, Z_start_location, ext_position;
  4404. if (code_seen('V') || code_seen('v')) {
  4405. verbose_level = code_value();
  4406. if (verbose_level<0 || verbose_level>4 ) {
  4407. SERIAL_PROTOCOLPGM("?Verbose Level not plausable.\n");
  4408. goto Sigma_Exit;
  4409. }
  4410. }
  4411. if (verbose_level > 0) {
  4412. SERIAL_PROTOCOLPGM("M48 Z-Probe Repeatability test. Version 2.00\n");
  4413. SERIAL_PROTOCOLPGM("Full support at: http://3dprintboard.com/forum.php\n");
  4414. }
  4415. if (code_seen('n')) {
  4416. n_samples = code_value();
  4417. if (n_samples<4 || n_samples>50 ) {
  4418. SERIAL_PROTOCOLPGM("?Specified sample size not plausable.\n");
  4419. goto Sigma_Exit;
  4420. }
  4421. }
  4422. X_current = X_probe_location = st_get_position_mm(X_AXIS);
  4423. Y_current = Y_probe_location = st_get_position_mm(Y_AXIS);
  4424. Z_current = st_get_position_mm(Z_AXIS);
  4425. Z_start_location = st_get_position_mm(Z_AXIS) + Z_RAISE_BEFORE_PROBING;
  4426. ext_position = st_get_position_mm(E_AXIS);
  4427. if (code_seen('X') || code_seen('x') ) {
  4428. X_probe_location = code_value() - X_PROBE_OFFSET_FROM_EXTRUDER;
  4429. if (X_probe_location<X_MIN_POS || X_probe_location>X_MAX_POS ) {
  4430. SERIAL_PROTOCOLPGM("?Specified X position out of range.\n");
  4431. goto Sigma_Exit;
  4432. }
  4433. }
  4434. if (code_seen('Y') || code_seen('y') ) {
  4435. Y_probe_location = code_value() - Y_PROBE_OFFSET_FROM_EXTRUDER;
  4436. if (Y_probe_location<Y_MIN_POS || Y_probe_location>Y_MAX_POS ) {
  4437. SERIAL_PROTOCOLPGM("?Specified Y position out of range.\n");
  4438. goto Sigma_Exit;
  4439. }
  4440. }
  4441. if (code_seen('L') || code_seen('l') ) {
  4442. n_legs = code_value();
  4443. if ( n_legs==1 )
  4444. n_legs = 2;
  4445. if ( n_legs<0 || n_legs>15 ) {
  4446. SERIAL_PROTOCOLPGM("?Specified number of legs in movement not plausable.\n");
  4447. goto Sigma_Exit;
  4448. }
  4449. }
  4450. //
  4451. // Do all the preliminary setup work. First raise the probe.
  4452. //
  4453. st_synchronize();
  4454. plan_bed_level_matrix.set_to_identity();
  4455. plan_buffer_line( X_current, Y_current, Z_start_location,
  4456. ext_position,
  4457. homing_feedrate[Z_AXIS]/60,
  4458. active_extruder);
  4459. st_synchronize();
  4460. //
  4461. // Now get everything to the specified probe point So we can safely do a probe to
  4462. // get us close to the bed. If the Z-Axis is far from the bed, we don't want to
  4463. // use that as a starting point for each probe.
  4464. //
  4465. if (verbose_level > 2)
  4466. SERIAL_PROTOCOL("Positioning probe for the test.\n");
  4467. plan_buffer_line( X_probe_location, Y_probe_location, Z_start_location,
  4468. ext_position,
  4469. homing_feedrate[X_AXIS]/60,
  4470. active_extruder);
  4471. st_synchronize();
  4472. current_position[X_AXIS] = X_current = st_get_position_mm(X_AXIS);
  4473. current_position[Y_AXIS] = Y_current = st_get_position_mm(Y_AXIS);
  4474. current_position[Z_AXIS] = Z_current = st_get_position_mm(Z_AXIS);
  4475. current_position[E_AXIS] = ext_position = st_get_position_mm(E_AXIS);
  4476. //
  4477. // OK, do the inital probe to get us close to the bed.
  4478. // Then retrace the right amount and use that in subsequent probes
  4479. //
  4480. int l_feedmultiply = setup_for_endstop_move();
  4481. run_z_probe();
  4482. current_position[Z_AXIS] = Z_current = st_get_position_mm(Z_AXIS);
  4483. Z_start_location = st_get_position_mm(Z_AXIS) + Z_RAISE_BEFORE_PROBING;
  4484. plan_buffer_line( X_probe_location, Y_probe_location, Z_start_location,
  4485. ext_position,
  4486. homing_feedrate[X_AXIS]/60,
  4487. active_extruder);
  4488. st_synchronize();
  4489. current_position[Z_AXIS] = Z_current = st_get_position_mm(Z_AXIS);
  4490. for( n=0; n<n_samples; n++) {
  4491. do_blocking_move_to( X_probe_location, Y_probe_location, Z_start_location); // Make sure we are at the probe location
  4492. if ( n_legs) {
  4493. double radius=0.0, theta=0.0, x_sweep, y_sweep;
  4494. int rotational_direction, l;
  4495. rotational_direction = (unsigned long) millis() & 0x0001; // clockwise or counter clockwise
  4496. radius = (unsigned long) millis() % (long) (X_MAX_LENGTH/4); // limit how far out to go
  4497. theta = (float) ((unsigned long) millis() % (long) 360) / (360./(2*3.1415926)); // turn into radians
  4498. //SERIAL_ECHOPAIR("starting radius: ",radius);
  4499. //SERIAL_ECHOPAIR(" theta: ",theta);
  4500. //SERIAL_ECHOPAIR(" direction: ",rotational_direction);
  4501. //SERIAL_PROTOCOLLNPGM("");
  4502. for( l=0; l<n_legs-1; l++) {
  4503. if (rotational_direction==1)
  4504. theta += (float) ((unsigned long) millis() % (long) 20) / (360.0/(2*3.1415926)); // turn into radians
  4505. else
  4506. theta -= (float) ((unsigned long) millis() % (long) 20) / (360.0/(2*3.1415926)); // turn into radians
  4507. radius += (float) ( ((long) ((unsigned long) millis() % (long) 10)) - 5);
  4508. if ( radius<0.0 )
  4509. radius = -radius;
  4510. X_current = X_probe_location + cos(theta) * radius;
  4511. Y_current = Y_probe_location + sin(theta) * radius;
  4512. if ( X_current<X_MIN_POS) // Make sure our X & Y are sane
  4513. X_current = X_MIN_POS;
  4514. if ( X_current>X_MAX_POS)
  4515. X_current = X_MAX_POS;
  4516. if ( Y_current<Y_MIN_POS) // Make sure our X & Y are sane
  4517. Y_current = Y_MIN_POS;
  4518. if ( Y_current>Y_MAX_POS)
  4519. Y_current = Y_MAX_POS;
  4520. if (verbose_level>3 ) {
  4521. SERIAL_ECHOPAIR("x: ", X_current);
  4522. SERIAL_ECHOPAIR("y: ", Y_current);
  4523. SERIAL_PROTOCOLLNPGM("");
  4524. }
  4525. do_blocking_move_to( X_current, Y_current, Z_current );
  4526. }
  4527. do_blocking_move_to( X_probe_location, Y_probe_location, Z_start_location); // Go back to the probe location
  4528. }
  4529. int l_feedmultiply = setup_for_endstop_move();
  4530. run_z_probe();
  4531. sample_set[n] = current_position[Z_AXIS];
  4532. //
  4533. // Get the current mean for the data points we have so far
  4534. //
  4535. sum=0.0;
  4536. for( j=0; j<=n; j++) {
  4537. sum = sum + sample_set[j];
  4538. }
  4539. mean = sum / (double (n+1));
  4540. //
  4541. // Now, use that mean to calculate the standard deviation for the
  4542. // data points we have so far
  4543. //
  4544. sum=0.0;
  4545. for( j=0; j<=n; j++) {
  4546. sum = sum + (sample_set[j]-mean) * (sample_set[j]-mean);
  4547. }
  4548. sigma = sqrt( sum / (double (n+1)) );
  4549. if (verbose_level > 1) {
  4550. SERIAL_PROTOCOL(n+1);
  4551. SERIAL_PROTOCOL(" of ");
  4552. SERIAL_PROTOCOL(n_samples);
  4553. SERIAL_PROTOCOLPGM(" z: ");
  4554. SERIAL_PROTOCOL_F(current_position[Z_AXIS], 6);
  4555. }
  4556. if (verbose_level > 2) {
  4557. SERIAL_PROTOCOL(" mean: ");
  4558. SERIAL_PROTOCOL_F(mean,6);
  4559. SERIAL_PROTOCOL(" sigma: ");
  4560. SERIAL_PROTOCOL_F(sigma,6);
  4561. }
  4562. if (verbose_level > 0)
  4563. SERIAL_PROTOCOLPGM("\n");
  4564. plan_buffer_line( X_probe_location, Y_probe_location, Z_start_location,
  4565. current_position[E_AXIS], homing_feedrate[Z_AXIS]/60, active_extruder);
  4566. st_synchronize();
  4567. }
  4568. delay(1000);
  4569. clean_up_after_endstop_move(l_feedmultiply);
  4570. // enable_endstops(true);
  4571. if (verbose_level > 0) {
  4572. SERIAL_PROTOCOLPGM("Mean: ");
  4573. SERIAL_PROTOCOL_F(mean, 6);
  4574. SERIAL_PROTOCOLPGM("\n");
  4575. }
  4576. SERIAL_PROTOCOLPGM("Standard Deviation: ");
  4577. SERIAL_PROTOCOL_F(sigma, 6);
  4578. SERIAL_PROTOCOLPGM("\n\n");
  4579. Sigma_Exit:
  4580. break;
  4581. }
  4582. #endif // Z_PROBE_REPEATABILITY_TEST
  4583. #endif // ENABLE_AUTO_BED_LEVELING
  4584. case 73: //M73 show percent done and time remaining
  4585. if(code_seen('P')) print_percent_done_normal = code_value();
  4586. if(code_seen('R')) print_time_remaining_normal = code_value();
  4587. if(code_seen('Q')) print_percent_done_silent = code_value();
  4588. if(code_seen('S')) print_time_remaining_silent = code_value();
  4589. {
  4590. const char* _msg_mode_done_remain = _N("%S MODE: Percent done: %d; print time remaining in mins: %d\n");
  4591. printf_P(_msg_mode_done_remain, _N("NORMAL"), int(print_percent_done_normal), print_time_remaining_normal);
  4592. printf_P(_msg_mode_done_remain, _N("SILENT"), int(print_percent_done_silent), print_time_remaining_silent);
  4593. }
  4594. break;
  4595. case 104: // M104
  4596. {
  4597. uint8_t extruder;
  4598. if(setTargetedHotend(104,extruder)){
  4599. break;
  4600. }
  4601. if (code_seen('S'))
  4602. {
  4603. setTargetHotendSafe(code_value(), extruder);
  4604. }
  4605. setWatch();
  4606. break;
  4607. }
  4608. case 112: // M112 -Emergency Stop
  4609. kill(_n(""), 3);
  4610. break;
  4611. case 140: // M140 set bed temp
  4612. if (code_seen('S')) setTargetBed(code_value());
  4613. break;
  4614. case 105 : // M105
  4615. {
  4616. uint8_t extruder;
  4617. if(setTargetedHotend(105, extruder)){
  4618. break;
  4619. }
  4620. #if defined(TEMP_0_PIN) && TEMP_0_PIN > -1
  4621. SERIAL_PROTOCOLPGM("ok T:");
  4622. SERIAL_PROTOCOL_F(degHotend(extruder),1);
  4623. SERIAL_PROTOCOLPGM(" /");
  4624. SERIAL_PROTOCOL_F(degTargetHotend(extruder),1);
  4625. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  4626. SERIAL_PROTOCOLPGM(" B:");
  4627. SERIAL_PROTOCOL_F(degBed(),1);
  4628. SERIAL_PROTOCOLPGM(" /");
  4629. SERIAL_PROTOCOL_F(degTargetBed(),1);
  4630. #endif //TEMP_BED_PIN
  4631. for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) {
  4632. SERIAL_PROTOCOLPGM(" T");
  4633. SERIAL_PROTOCOL(cur_extruder);
  4634. SERIAL_PROTOCOLPGM(":");
  4635. SERIAL_PROTOCOL_F(degHotend(cur_extruder),1);
  4636. SERIAL_PROTOCOLPGM(" /");
  4637. SERIAL_PROTOCOL_F(degTargetHotend(cur_extruder),1);
  4638. }
  4639. #else
  4640. SERIAL_ERROR_START;
  4641. SERIAL_ERRORLNRPGM(_i("No thermistors - no temperature"));////MSG_ERR_NO_THERMISTORS c=0 r=0
  4642. #endif
  4643. SERIAL_PROTOCOLPGM(" @:");
  4644. #ifdef EXTRUDER_WATTS
  4645. SERIAL_PROTOCOL((EXTRUDER_WATTS * getHeaterPower(tmp_extruder))/127);
  4646. SERIAL_PROTOCOLPGM("W");
  4647. #else
  4648. SERIAL_PROTOCOL(getHeaterPower(extruder));
  4649. #endif
  4650. SERIAL_PROTOCOLPGM(" B@:");
  4651. #ifdef BED_WATTS
  4652. SERIAL_PROTOCOL((BED_WATTS * getHeaterPower(-1))/127);
  4653. SERIAL_PROTOCOLPGM("W");
  4654. #else
  4655. SERIAL_PROTOCOL(getHeaterPower(-1));
  4656. #endif
  4657. #ifdef PINDA_THERMISTOR
  4658. SERIAL_PROTOCOLPGM(" P:");
  4659. SERIAL_PROTOCOL_F(current_temperature_pinda,1);
  4660. #endif //PINDA_THERMISTOR
  4661. #ifdef AMBIENT_THERMISTOR
  4662. SERIAL_PROTOCOLPGM(" A:");
  4663. SERIAL_PROTOCOL_F(current_temperature_ambient,1);
  4664. #endif //AMBIENT_THERMISTOR
  4665. #ifdef SHOW_TEMP_ADC_VALUES
  4666. {float raw = 0.0;
  4667. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  4668. SERIAL_PROTOCOLPGM(" ADC B:");
  4669. SERIAL_PROTOCOL_F(degBed(),1);
  4670. SERIAL_PROTOCOLPGM("C->");
  4671. raw = rawBedTemp();
  4672. SERIAL_PROTOCOL_F(raw/OVERSAMPLENR,5);
  4673. SERIAL_PROTOCOLPGM(" Rb->");
  4674. SERIAL_PROTOCOL_F(100 * (1 + (PtA * (raw/OVERSAMPLENR)) + (PtB * sq((raw/OVERSAMPLENR)))), 5);
  4675. SERIAL_PROTOCOLPGM(" Rxb->");
  4676. SERIAL_PROTOCOL_F(raw, 5);
  4677. #endif
  4678. for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) {
  4679. SERIAL_PROTOCOLPGM(" T");
  4680. SERIAL_PROTOCOL(cur_extruder);
  4681. SERIAL_PROTOCOLPGM(":");
  4682. SERIAL_PROTOCOL_F(degHotend(cur_extruder),1);
  4683. SERIAL_PROTOCOLPGM("C->");
  4684. raw = rawHotendTemp(cur_extruder);
  4685. SERIAL_PROTOCOL_F(raw/OVERSAMPLENR,5);
  4686. SERIAL_PROTOCOLPGM(" Rt");
  4687. SERIAL_PROTOCOL(cur_extruder);
  4688. SERIAL_PROTOCOLPGM("->");
  4689. SERIAL_PROTOCOL_F(100 * (1 + (PtA * (raw/OVERSAMPLENR)) + (PtB * sq((raw/OVERSAMPLENR)))), 5);
  4690. SERIAL_PROTOCOLPGM(" Rx");
  4691. SERIAL_PROTOCOL(cur_extruder);
  4692. SERIAL_PROTOCOLPGM("->");
  4693. SERIAL_PROTOCOL_F(raw, 5);
  4694. }}
  4695. #endif
  4696. SERIAL_PROTOCOLLN("");
  4697. KEEPALIVE_STATE(NOT_BUSY);
  4698. return;
  4699. break;
  4700. }
  4701. case 109:
  4702. {// M109 - Wait for extruder heater to reach target.
  4703. uint8_t extruder;
  4704. if(setTargetedHotend(109, extruder)){
  4705. break;
  4706. }
  4707. LCD_MESSAGERPGM(_T(MSG_HEATING));
  4708. heating_status = 1;
  4709. if (farm_mode) { prusa_statistics(1); };
  4710. #ifdef AUTOTEMP
  4711. autotemp_enabled=false;
  4712. #endif
  4713. if (code_seen('S')) {
  4714. setTargetHotendSafe(code_value(), extruder);
  4715. CooldownNoWait = true;
  4716. } else if (code_seen('R')) {
  4717. setTargetHotendSafe(code_value(), extruder);
  4718. CooldownNoWait = false;
  4719. }
  4720. #ifdef AUTOTEMP
  4721. if (code_seen('S')) autotemp_min=code_value();
  4722. if (code_seen('B')) autotemp_max=code_value();
  4723. if (code_seen('F'))
  4724. {
  4725. autotemp_factor=code_value();
  4726. autotemp_enabled=true;
  4727. }
  4728. #endif
  4729. setWatch();
  4730. codenum = millis();
  4731. /* See if we are heating up or cooling down */
  4732. target_direction = isHeatingHotend(extruder); // true if heating, false if cooling
  4733. KEEPALIVE_STATE(NOT_BUSY);
  4734. cancel_heatup = false;
  4735. wait_for_heater(codenum, extruder); //loops until target temperature is reached
  4736. LCD_MESSAGERPGM(_T(MSG_HEATING_COMPLETE));
  4737. KEEPALIVE_STATE(IN_HANDLER);
  4738. heating_status = 2;
  4739. if (farm_mode) { prusa_statistics(2); };
  4740. //starttime=millis();
  4741. previous_millis_cmd = millis();
  4742. }
  4743. break;
  4744. case 190: // M190 - Wait for bed heater to reach target.
  4745. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  4746. LCD_MESSAGERPGM(_T(MSG_BED_HEATING));
  4747. heating_status = 3;
  4748. if (farm_mode) { prusa_statistics(1); };
  4749. if (code_seen('S'))
  4750. {
  4751. setTargetBed(code_value());
  4752. CooldownNoWait = true;
  4753. }
  4754. else if (code_seen('R'))
  4755. {
  4756. setTargetBed(code_value());
  4757. CooldownNoWait = false;
  4758. }
  4759. codenum = millis();
  4760. cancel_heatup = false;
  4761. target_direction = isHeatingBed(); // true if heating, false if cooling
  4762. KEEPALIVE_STATE(NOT_BUSY);
  4763. while ( (target_direction)&&(!cancel_heatup) ? (isHeatingBed()) : (isCoolingBed()&&(CooldownNoWait==false)) )
  4764. {
  4765. if(( millis() - codenum) > 1000 ) //Print Temp Reading every 1 second while heating up.
  4766. {
  4767. if (!farm_mode) {
  4768. float tt = degHotend(active_extruder);
  4769. SERIAL_PROTOCOLPGM("T:");
  4770. SERIAL_PROTOCOL(tt);
  4771. SERIAL_PROTOCOLPGM(" E:");
  4772. SERIAL_PROTOCOL((int)active_extruder);
  4773. SERIAL_PROTOCOLPGM(" B:");
  4774. SERIAL_PROTOCOL_F(degBed(), 1);
  4775. SERIAL_PROTOCOLLN("");
  4776. }
  4777. codenum = millis();
  4778. }
  4779. manage_heater();
  4780. manage_inactivity();
  4781. lcd_update(0);
  4782. }
  4783. LCD_MESSAGERPGM(_T(MSG_BED_DONE));
  4784. KEEPALIVE_STATE(IN_HANDLER);
  4785. heating_status = 4;
  4786. previous_millis_cmd = millis();
  4787. #endif
  4788. break;
  4789. #if defined(FAN_PIN) && FAN_PIN > -1
  4790. case 106: //!M106 Sxxx Fan On S<speed> 0 .. 255
  4791. if (code_seen('S')){
  4792. fanSpeed=constrain(code_value(),0,255);
  4793. }
  4794. else {
  4795. fanSpeed=255;
  4796. }
  4797. break;
  4798. case 107: //M107 Fan Off
  4799. fanSpeed = 0;
  4800. break;
  4801. #endif //FAN_PIN
  4802. #if defined(PS_ON_PIN) && PS_ON_PIN > -1
  4803. case 80: // M80 - Turn on Power Supply
  4804. SET_OUTPUT(PS_ON_PIN); //GND
  4805. WRITE(PS_ON_PIN, PS_ON_AWAKE);
  4806. // If you have a switch on suicide pin, this is useful
  4807. // if you want to start another print with suicide feature after
  4808. // a print without suicide...
  4809. #if defined SUICIDE_PIN && SUICIDE_PIN > -1
  4810. SET_OUTPUT(SUICIDE_PIN);
  4811. WRITE(SUICIDE_PIN, HIGH);
  4812. #endif
  4813. powersupply = true;
  4814. LCD_MESSAGERPGM(_T(WELCOME_MSG));
  4815. lcd_update(0);
  4816. break;
  4817. #endif
  4818. case 81: // M81 - Turn off Power Supply
  4819. disable_heater();
  4820. st_synchronize();
  4821. disable_e0();
  4822. disable_e1();
  4823. disable_e2();
  4824. finishAndDisableSteppers();
  4825. fanSpeed = 0;
  4826. delay(1000); // Wait a little before to switch off
  4827. #if defined(SUICIDE_PIN) && SUICIDE_PIN > -1
  4828. st_synchronize();
  4829. suicide();
  4830. #elif defined(PS_ON_PIN) && PS_ON_PIN > -1
  4831. SET_OUTPUT(PS_ON_PIN);
  4832. WRITE(PS_ON_PIN, PS_ON_ASLEEP);
  4833. #endif
  4834. powersupply = false;
  4835. LCD_MESSAGERPGM(CAT4(CUSTOM_MENDEL_NAME,PSTR(" "),MSG_OFF,PSTR(".")));
  4836. lcd_update(0);
  4837. break;
  4838. case 82:
  4839. axis_relative_modes[3] = false;
  4840. break;
  4841. case 83:
  4842. axis_relative_modes[3] = true;
  4843. break;
  4844. case 18: //compatibility
  4845. case 84: // M84
  4846. if(code_seen('S')){
  4847. stepper_inactive_time = code_value() * 1000;
  4848. }
  4849. else
  4850. {
  4851. bool all_axis = !((code_seen(axis_codes[X_AXIS])) || (code_seen(axis_codes[Y_AXIS])) || (code_seen(axis_codes[Z_AXIS]))|| (code_seen(axis_codes[E_AXIS])));
  4852. if(all_axis)
  4853. {
  4854. st_synchronize();
  4855. disable_e0();
  4856. disable_e1();
  4857. disable_e2();
  4858. finishAndDisableSteppers();
  4859. }
  4860. else
  4861. {
  4862. st_synchronize();
  4863. if (code_seen('X')) disable_x();
  4864. if (code_seen('Y')) disable_y();
  4865. if (code_seen('Z')) disable_z();
  4866. #if ((E0_ENABLE_PIN != X_ENABLE_PIN) && (E1_ENABLE_PIN != Y_ENABLE_PIN)) // Only enable on boards that have seperate ENABLE_PINS
  4867. if (code_seen('E')) {
  4868. disable_e0();
  4869. disable_e1();
  4870. disable_e2();
  4871. }
  4872. #endif
  4873. }
  4874. }
  4875. //in the end of print set estimated time to end of print and extruders used during print to default values for next print
  4876. print_time_remaining_init();
  4877. snmm_filaments_used = 0;
  4878. break;
  4879. case 85: // M85
  4880. if(code_seen('S')) {
  4881. max_inactive_time = code_value() * 1000;
  4882. }
  4883. break;
  4884. #ifdef SAFETYTIMER
  4885. case 86: // M86 - set safety timer expiration time in seconds; M86 S0 will disable safety timer
  4886. //when safety timer expires heatbed and nozzle target temperatures are set to zero
  4887. if (code_seen('S')) {
  4888. safetytimer_inactive_time = code_value() * 1000;
  4889. safetyTimer.start();
  4890. }
  4891. break;
  4892. #endif
  4893. case 92: // M92
  4894. for(int8_t i=0; i < NUM_AXIS; i++)
  4895. {
  4896. if(code_seen(axis_codes[i]))
  4897. {
  4898. if(i == 3) { // E
  4899. float value = code_value();
  4900. if(value < 20.0) {
  4901. float factor = cs.axis_steps_per_unit[i] / value; // increase e constants if M92 E14 is given for netfab.
  4902. cs.max_jerk[E_AXIS] *= factor;
  4903. max_feedrate[i] *= factor;
  4904. axis_steps_per_sqr_second[i] *= factor;
  4905. }
  4906. cs.axis_steps_per_unit[i] = value;
  4907. }
  4908. else {
  4909. cs.axis_steps_per_unit[i] = code_value();
  4910. }
  4911. }
  4912. }
  4913. break;
  4914. case 110: //! M110 N<line number> - reset line pos
  4915. if (code_seen('N'))
  4916. gcode_LastN = code_value_long();
  4917. break;
  4918. #ifdef HOST_KEEPALIVE_FEATURE
  4919. case 113: // M113 - Get or set Host Keepalive interval
  4920. if (code_seen('S')) {
  4921. host_keepalive_interval = (uint8_t)code_value_short();
  4922. // NOMORE(host_keepalive_interval, 60);
  4923. }
  4924. else {
  4925. SERIAL_ECHO_START;
  4926. SERIAL_ECHOPAIR("M113 S", (unsigned long)host_keepalive_interval);
  4927. SERIAL_PROTOCOLLN("");
  4928. }
  4929. break;
  4930. #endif
  4931. case 115: // M115
  4932. if (code_seen('V')) {
  4933. // Report the Prusa version number.
  4934. SERIAL_PROTOCOLLNRPGM(FW_VERSION_STR_P());
  4935. } else if (code_seen('U')) {
  4936. // Check the firmware version provided. If the firmware version provided by the U code is higher than the currently running firmware,
  4937. // pause the print and ask the user to upgrade the firmware.
  4938. show_upgrade_dialog_if_version_newer(++ strchr_pointer);
  4939. } else {
  4940. SERIAL_ECHOPGM("FIRMWARE_NAME:Prusa-Firmware ");
  4941. SERIAL_ECHORPGM(FW_VERSION_STR_P());
  4942. SERIAL_ECHOPGM(" based on Marlin FIRMWARE_URL:https://github.com/prusa3d/Prusa-Firmware PROTOCOL_VERSION:");
  4943. SERIAL_ECHOPGM(PROTOCOL_VERSION);
  4944. SERIAL_ECHOPGM(" MACHINE_TYPE:");
  4945. SERIAL_ECHOPGM(CUSTOM_MENDEL_NAME);
  4946. SERIAL_ECHOPGM(" EXTRUDER_COUNT:");
  4947. SERIAL_ECHOPGM(STRINGIFY(EXTRUDERS));
  4948. SERIAL_ECHOPGM(" UUID:");
  4949. SERIAL_ECHOLNPGM(MACHINE_UUID);
  4950. }
  4951. break;
  4952. /* case 117: // M117 display message
  4953. starpos = (strchr(strchr_pointer + 5,'*'));
  4954. if(starpos!=NULL)
  4955. *(starpos)='\0';
  4956. lcd_setstatus(strchr_pointer + 5);
  4957. break;*/
  4958. case 114: // M114
  4959. gcode_M114();
  4960. break;
  4961. case 120: //! M120 - Disable endstops
  4962. enable_endstops(false) ;
  4963. break;
  4964. case 121: //! M121 - Enable endstops
  4965. enable_endstops(true) ;
  4966. break;
  4967. case 119: // M119
  4968. SERIAL_PROTOCOLRPGM(_N("Reporting endstop status"));////MSG_M119_REPORT c=0 r=0
  4969. SERIAL_PROTOCOLLN("");
  4970. #if defined(X_MIN_PIN) && X_MIN_PIN > -1
  4971. SERIAL_PROTOCOLRPGM(_n("x_min: "));////MSG_X_MIN c=0 r=0
  4972. if(READ(X_MIN_PIN)^X_MIN_ENDSTOP_INVERTING){
  4973. SERIAL_PROTOCOLRPGM(_T(MSG_ENDSTOP_HIT));
  4974. }else{
  4975. SERIAL_PROTOCOLRPGM(_T(MSG_ENDSTOP_OPEN));
  4976. }
  4977. SERIAL_PROTOCOLLN("");
  4978. #endif
  4979. #if defined(X_MAX_PIN) && X_MAX_PIN > -1
  4980. SERIAL_PROTOCOLRPGM(_n("x_max: "));////MSG_X_MAX c=0 r=0
  4981. if(READ(X_MAX_PIN)^X_MAX_ENDSTOP_INVERTING){
  4982. SERIAL_PROTOCOLRPGM(_T(MSG_ENDSTOP_HIT));
  4983. }else{
  4984. SERIAL_PROTOCOLRPGM(_T(MSG_ENDSTOP_OPEN));
  4985. }
  4986. SERIAL_PROTOCOLLN("");
  4987. #endif
  4988. #if defined(Y_MIN_PIN) && Y_MIN_PIN > -1
  4989. SERIAL_PROTOCOLRPGM(_n("y_min: "));////MSG_Y_MIN c=0 r=0
  4990. if(READ(Y_MIN_PIN)^Y_MIN_ENDSTOP_INVERTING){
  4991. SERIAL_PROTOCOLRPGM(_T(MSG_ENDSTOP_HIT));
  4992. }else{
  4993. SERIAL_PROTOCOLRPGM(_T(MSG_ENDSTOP_OPEN));
  4994. }
  4995. SERIAL_PROTOCOLLN("");
  4996. #endif
  4997. #if defined(Y_MAX_PIN) && Y_MAX_PIN > -1
  4998. SERIAL_PROTOCOLRPGM(_n("y_max: "));////MSG_Y_MAX c=0 r=0
  4999. if(READ(Y_MAX_PIN)^Y_MAX_ENDSTOP_INVERTING){
  5000. SERIAL_PROTOCOLRPGM(_T(MSG_ENDSTOP_HIT));
  5001. }else{
  5002. SERIAL_PROTOCOLRPGM(_T(MSG_ENDSTOP_OPEN));
  5003. }
  5004. SERIAL_PROTOCOLLN("");
  5005. #endif
  5006. #if defined(Z_MIN_PIN) && Z_MIN_PIN > -1
  5007. SERIAL_PROTOCOLRPGM(MSG_Z_MIN);
  5008. if(READ(Z_MIN_PIN)^Z_MIN_ENDSTOP_INVERTING){
  5009. SERIAL_PROTOCOLRPGM(_T(MSG_ENDSTOP_HIT));
  5010. }else{
  5011. SERIAL_PROTOCOLRPGM(_T(MSG_ENDSTOP_OPEN));
  5012. }
  5013. SERIAL_PROTOCOLLN("");
  5014. #endif
  5015. #if defined(Z_MAX_PIN) && Z_MAX_PIN > -1
  5016. SERIAL_PROTOCOLRPGM(MSG_Z_MAX);
  5017. if(READ(Z_MAX_PIN)^Z_MAX_ENDSTOP_INVERTING){
  5018. SERIAL_PROTOCOLRPGM(_T(MSG_ENDSTOP_HIT));
  5019. }else{
  5020. SERIAL_PROTOCOLRPGM(_T(MSG_ENDSTOP_OPEN));
  5021. }
  5022. SERIAL_PROTOCOLLN("");
  5023. #endif
  5024. break;
  5025. //TODO: update for all axis, use for loop
  5026. #ifdef BLINKM
  5027. case 150: // M150
  5028. {
  5029. byte red;
  5030. byte grn;
  5031. byte blu;
  5032. if(code_seen('R')) red = code_value();
  5033. if(code_seen('U')) grn = code_value();
  5034. if(code_seen('B')) blu = code_value();
  5035. SendColors(red,grn,blu);
  5036. }
  5037. break;
  5038. #endif //BLINKM
  5039. case 200: // M200 D<millimeters> set filament diameter and set E axis units to cubic millimeters (use S0 to set back to millimeters).
  5040. {
  5041. uint8_t extruder = active_extruder;
  5042. if(code_seen('T')) {
  5043. extruder = code_value();
  5044. if(extruder >= EXTRUDERS) {
  5045. SERIAL_ECHO_START;
  5046. SERIAL_ECHO(_i("M200 Invalid extruder "));////MSG_M200_INVALID_EXTRUDER c=0 r=0
  5047. break;
  5048. }
  5049. }
  5050. if(code_seen('D')) {
  5051. float diameter = (float)code_value();
  5052. if (diameter == 0.0) {
  5053. // setting any extruder filament size disables volumetric on the assumption that
  5054. // slicers either generate in extruder values as cubic mm or as as filament feeds
  5055. // for all extruders
  5056. cs.volumetric_enabled = false;
  5057. } else {
  5058. cs.filament_size[extruder] = (float)code_value();
  5059. // make sure all extruders have some sane value for the filament size
  5060. cs.filament_size[0] = (cs.filament_size[0] == 0.0 ? DEFAULT_NOMINAL_FILAMENT_DIA : cs.filament_size[0]);
  5061. #if EXTRUDERS > 1
  5062. cs.filament_size[1] = (cs.filament_size[1] == 0.0 ? DEFAULT_NOMINAL_FILAMENT_DIA : cs.filament_size[1]);
  5063. #if EXTRUDERS > 2
  5064. cs.filament_size[2] = (cs.filament_size[2] == 0.0 ? DEFAULT_NOMINAL_FILAMENT_DIA : cs.filament_size[2]);
  5065. #endif
  5066. #endif
  5067. cs.volumetric_enabled = true;
  5068. }
  5069. } else {
  5070. //reserved for setting filament diameter via UFID or filament measuring device
  5071. break;
  5072. }
  5073. calculate_extruder_multipliers();
  5074. }
  5075. break;
  5076. case 201: // M201
  5077. for (int8_t i = 0; i < NUM_AXIS; i++)
  5078. {
  5079. if (code_seen(axis_codes[i]))
  5080. {
  5081. unsigned long val = code_value();
  5082. #ifdef TMC2130
  5083. unsigned long val_silent = val;
  5084. if ((i == X_AXIS) || (i == Y_AXIS))
  5085. {
  5086. if (val > NORMAL_MAX_ACCEL_XY)
  5087. val = NORMAL_MAX_ACCEL_XY;
  5088. if (val_silent > SILENT_MAX_ACCEL_XY)
  5089. val_silent = SILENT_MAX_ACCEL_XY;
  5090. }
  5091. cs.max_acceleration_units_per_sq_second_normal[i] = val;
  5092. cs.max_acceleration_units_per_sq_second_silent[i] = val_silent;
  5093. #else //TMC2130
  5094. max_acceleration_units_per_sq_second[i] = val;
  5095. #endif //TMC2130
  5096. }
  5097. }
  5098. // steps per sq second need to be updated to agree with the units per sq second (as they are what is used in the planner)
  5099. reset_acceleration_rates();
  5100. break;
  5101. #if 0 // Not used for Sprinter/grbl gen6
  5102. case 202: // M202
  5103. for(int8_t i=0; i < NUM_AXIS; i++) {
  5104. if(code_seen(axis_codes[i])) axis_travel_steps_per_sqr_second[i] = code_value() * cs.axis_steps_per_unit[i];
  5105. }
  5106. break;
  5107. #endif
  5108. case 203: // M203 max feedrate mm/sec
  5109. for (int8_t i = 0; i < NUM_AXIS; i++)
  5110. {
  5111. if (code_seen(axis_codes[i]))
  5112. {
  5113. float val = code_value();
  5114. #ifdef TMC2130
  5115. float val_silent = val;
  5116. if ((i == X_AXIS) || (i == Y_AXIS))
  5117. {
  5118. if (val > NORMAL_MAX_FEEDRATE_XY)
  5119. val = NORMAL_MAX_FEEDRATE_XY;
  5120. if (val_silent > SILENT_MAX_FEEDRATE_XY)
  5121. val_silent = SILENT_MAX_FEEDRATE_XY;
  5122. }
  5123. cs.max_feedrate_normal[i] = val;
  5124. cs.max_feedrate_silent[i] = val_silent;
  5125. #else //TMC2130
  5126. max_feedrate[i] = val;
  5127. #endif //TMC2130
  5128. }
  5129. }
  5130. break;
  5131. case 204:
  5132. //! M204 acclereration settings.
  5133. //!@n Supporting old format: M204 S[normal moves] T[filmanent only moves]
  5134. //!@n and new format: M204 P[printing moves] R[filmanent only moves] T[travel moves] (as of now T is ignored)
  5135. {
  5136. if(code_seen('S')) {
  5137. // Legacy acceleration format. This format is used by the legacy Marlin, MK2 or MK3 firmware,
  5138. // and it is also generated by Slic3r to control acceleration per extrusion type
  5139. // (there is a separate acceleration settings in Slicer for perimeter, first layer etc).
  5140. cs.acceleration = code_value();
  5141. // Interpret the T value as retract acceleration in the old Marlin format.
  5142. if(code_seen('T'))
  5143. cs.retract_acceleration = code_value();
  5144. } else {
  5145. // New acceleration format, compatible with the upstream Marlin.
  5146. if(code_seen('P'))
  5147. cs.acceleration = code_value();
  5148. if(code_seen('R'))
  5149. cs.retract_acceleration = code_value();
  5150. if(code_seen('T')) {
  5151. // Interpret the T value as the travel acceleration in the new Marlin format.
  5152. //FIXME Prusa3D firmware currently does not support travel acceleration value independent from the extruding acceleration value.
  5153. // travel_acceleration = code_value();
  5154. }
  5155. }
  5156. }
  5157. break;
  5158. case 205: //M205 advanced settings: minimum travel speed S=while printing T=travel only, B=minimum segment time X= maximum xy jerk, Z=maximum Z jerk
  5159. {
  5160. if(code_seen('S')) cs.minimumfeedrate = code_value();
  5161. if(code_seen('T')) cs.mintravelfeedrate = code_value();
  5162. if(code_seen('B')) cs.minsegmenttime = code_value() ;
  5163. if(code_seen('X')) cs.max_jerk[X_AXIS] = cs.max_jerk[Y_AXIS] = code_value();
  5164. if(code_seen('Y')) cs.max_jerk[Y_AXIS] = code_value();
  5165. if(code_seen('Z')) cs.max_jerk[Z_AXIS] = code_value();
  5166. if(code_seen('E')) cs.max_jerk[E_AXIS] = code_value();
  5167. if (cs.max_jerk[X_AXIS] > DEFAULT_XJERK) cs.max_jerk[X_AXIS] = DEFAULT_XJERK;
  5168. if (cs.max_jerk[Y_AXIS] > DEFAULT_YJERK) cs.max_jerk[Y_AXIS] = DEFAULT_YJERK;
  5169. }
  5170. break;
  5171. case 206: // M206 additional homing offset
  5172. for(int8_t i=0; i < 3; i++)
  5173. {
  5174. if(code_seen(axis_codes[i])) cs.add_homing[i] = code_value();
  5175. }
  5176. break;
  5177. #ifdef FWRETRACT
  5178. case 207: //M207 - set retract length S[positive mm] F[feedrate mm/min] Z[additional zlift/hop]
  5179. {
  5180. if(code_seen('S'))
  5181. {
  5182. cs.retract_length = code_value() ;
  5183. }
  5184. if(code_seen('F'))
  5185. {
  5186. cs.retract_feedrate = code_value()/60 ;
  5187. }
  5188. if(code_seen('Z'))
  5189. {
  5190. cs.retract_zlift = code_value() ;
  5191. }
  5192. }break;
  5193. case 208: // M208 - set retract recover length S[positive mm surplus to the M207 S*] F[feedrate mm/min]
  5194. {
  5195. if(code_seen('S'))
  5196. {
  5197. cs.retract_recover_length = code_value() ;
  5198. }
  5199. if(code_seen('F'))
  5200. {
  5201. cs.retract_recover_feedrate = code_value()/60 ;
  5202. }
  5203. }break;
  5204. case 209: // M209 - S<1=true/0=false> enable automatic retract detect if the slicer did not support G10/11: every normal extrude-only move will be classified as retract depending on the direction.
  5205. {
  5206. if(code_seen('S'))
  5207. {
  5208. int t= code_value() ;
  5209. switch(t)
  5210. {
  5211. case 0:
  5212. {
  5213. cs.autoretract_enabled=false;
  5214. retracted[0]=false;
  5215. #if EXTRUDERS > 1
  5216. retracted[1]=false;
  5217. #endif
  5218. #if EXTRUDERS > 2
  5219. retracted[2]=false;
  5220. #endif
  5221. }break;
  5222. case 1:
  5223. {
  5224. cs.autoretract_enabled=true;
  5225. retracted[0]=false;
  5226. #if EXTRUDERS > 1
  5227. retracted[1]=false;
  5228. #endif
  5229. #if EXTRUDERS > 2
  5230. retracted[2]=false;
  5231. #endif
  5232. }break;
  5233. default:
  5234. SERIAL_ECHO_START;
  5235. SERIAL_ECHORPGM(MSG_UNKNOWN_COMMAND);
  5236. SERIAL_ECHO(CMDBUFFER_CURRENT_STRING);
  5237. SERIAL_ECHOLNPGM("\"(1)");
  5238. }
  5239. }
  5240. }break;
  5241. #endif // FWRETRACT
  5242. #if EXTRUDERS > 1
  5243. case 218: // M218 - set hotend offset (in mm), T<extruder_number> X<offset_on_X> Y<offset_on_Y>
  5244. {
  5245. uint8_t extruder;
  5246. if(setTargetedHotend(218, extruder)){
  5247. break;
  5248. }
  5249. if(code_seen('X'))
  5250. {
  5251. extruder_offset[X_AXIS][extruder] = code_value();
  5252. }
  5253. if(code_seen('Y'))
  5254. {
  5255. extruder_offset[Y_AXIS][extruder] = code_value();
  5256. }
  5257. SERIAL_ECHO_START;
  5258. SERIAL_ECHORPGM(MSG_HOTEND_OFFSET);
  5259. for(extruder = 0; extruder < EXTRUDERS; extruder++)
  5260. {
  5261. SERIAL_ECHO(" ");
  5262. SERIAL_ECHO(extruder_offset[X_AXIS][extruder]);
  5263. SERIAL_ECHO(",");
  5264. SERIAL_ECHO(extruder_offset[Y_AXIS][extruder]);
  5265. }
  5266. SERIAL_ECHOLN("");
  5267. }break;
  5268. #endif
  5269. case 220: // M220 S<factor in percent>- set speed factor override percentage
  5270. {
  5271. if(code_seen('S'))
  5272. {
  5273. feedmultiply = code_value() ;
  5274. }
  5275. }
  5276. break;
  5277. case 221: // M221 S<factor in percent>- set extrude factor override percentage
  5278. {
  5279. if(code_seen('S'))
  5280. {
  5281. int tmp_code = code_value();
  5282. if (code_seen('T'))
  5283. {
  5284. uint8_t extruder;
  5285. if(setTargetedHotend(221, extruder)){
  5286. break;
  5287. }
  5288. extruder_multiply[extruder] = tmp_code;
  5289. }
  5290. else
  5291. {
  5292. extrudemultiply = tmp_code ;
  5293. }
  5294. }
  5295. calculate_extruder_multipliers();
  5296. }
  5297. break;
  5298. case 226: // M226 P<pin number> S<pin state>- Wait until the specified pin reaches the state required
  5299. {
  5300. if(code_seen('P')){
  5301. int pin_number = code_value(); // pin number
  5302. int pin_state = -1; // required pin state - default is inverted
  5303. if(code_seen('S')) pin_state = code_value(); // required pin state
  5304. if(pin_state >= -1 && pin_state <= 1){
  5305. for(int8_t i = 0; i < (int8_t)(sizeof(sensitive_pins)/sizeof(int)); i++)
  5306. {
  5307. if (sensitive_pins[i] == pin_number)
  5308. {
  5309. pin_number = -1;
  5310. break;
  5311. }
  5312. }
  5313. if (pin_number > -1)
  5314. {
  5315. int target = LOW;
  5316. st_synchronize();
  5317. pinMode(pin_number, INPUT);
  5318. switch(pin_state){
  5319. case 1:
  5320. target = HIGH;
  5321. break;
  5322. case 0:
  5323. target = LOW;
  5324. break;
  5325. case -1:
  5326. target = !digitalRead(pin_number);
  5327. break;
  5328. }
  5329. while(digitalRead(pin_number) != target){
  5330. manage_heater();
  5331. manage_inactivity();
  5332. lcd_update(0);
  5333. }
  5334. }
  5335. }
  5336. }
  5337. }
  5338. break;
  5339. #if NUM_SERVOS > 0
  5340. case 280: // M280 - set servo position absolute. P: servo index, S: angle or microseconds
  5341. {
  5342. int servo_index = -1;
  5343. int servo_position = 0;
  5344. if (code_seen('P'))
  5345. servo_index = code_value();
  5346. if (code_seen('S')) {
  5347. servo_position = code_value();
  5348. if ((servo_index >= 0) && (servo_index < NUM_SERVOS)) {
  5349. #if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
  5350. servos[servo_index].attach(0);
  5351. #endif
  5352. servos[servo_index].write(servo_position);
  5353. #if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
  5354. delay(PROBE_SERVO_DEACTIVATION_DELAY);
  5355. servos[servo_index].detach();
  5356. #endif
  5357. }
  5358. else {
  5359. SERIAL_ECHO_START;
  5360. SERIAL_ECHO("Servo ");
  5361. SERIAL_ECHO(servo_index);
  5362. SERIAL_ECHOLN(" out of range");
  5363. }
  5364. }
  5365. else if (servo_index >= 0) {
  5366. SERIAL_PROTOCOL(_T(MSG_OK));
  5367. SERIAL_PROTOCOL(" Servo ");
  5368. SERIAL_PROTOCOL(servo_index);
  5369. SERIAL_PROTOCOL(": ");
  5370. SERIAL_PROTOCOL(servos[servo_index].read());
  5371. SERIAL_PROTOCOLLN("");
  5372. }
  5373. }
  5374. break;
  5375. #endif // NUM_SERVOS > 0
  5376. #if (LARGE_FLASH == true && ( BEEPER > 0 || defined(ULTRALCD) || defined(LCD_USE_I2C_BUZZER)))
  5377. case 300: // M300
  5378. {
  5379. int beepS = code_seen('S') ? code_value() : 110;
  5380. int beepP = code_seen('P') ? code_value() : 1000;
  5381. if (beepS > 0)
  5382. {
  5383. #if BEEPER > 0
  5384. if((eSoundMode==e_SOUND_MODE_LOUD)||(eSoundMode==e_SOUND_MODE_ONCE))
  5385. tone(BEEPER, beepS);
  5386. delay(beepP);
  5387. noTone(BEEPER);
  5388. #endif
  5389. }
  5390. else
  5391. {
  5392. delay(beepP);
  5393. }
  5394. }
  5395. break;
  5396. #endif // M300
  5397. #ifdef PIDTEMP
  5398. case 301: // M301
  5399. {
  5400. if(code_seen('P')) cs.Kp = code_value();
  5401. if(code_seen('I')) cs.Ki = scalePID_i(code_value());
  5402. if(code_seen('D')) cs.Kd = scalePID_d(code_value());
  5403. #ifdef PID_ADD_EXTRUSION_RATE
  5404. if(code_seen('C')) Kc = code_value();
  5405. #endif
  5406. updatePID();
  5407. SERIAL_PROTOCOLRPGM(_T(MSG_OK));
  5408. SERIAL_PROTOCOL(" p:");
  5409. SERIAL_PROTOCOL(cs.Kp);
  5410. SERIAL_PROTOCOL(" i:");
  5411. SERIAL_PROTOCOL(unscalePID_i(cs.Ki));
  5412. SERIAL_PROTOCOL(" d:");
  5413. SERIAL_PROTOCOL(unscalePID_d(cs.Kd));
  5414. #ifdef PID_ADD_EXTRUSION_RATE
  5415. SERIAL_PROTOCOL(" c:");
  5416. //Kc does not have scaling applied above, or in resetting defaults
  5417. SERIAL_PROTOCOL(Kc);
  5418. #endif
  5419. SERIAL_PROTOCOLLN("");
  5420. }
  5421. break;
  5422. #endif //PIDTEMP
  5423. #ifdef PIDTEMPBED
  5424. case 304: // M304
  5425. {
  5426. if(code_seen('P')) cs.bedKp = code_value();
  5427. if(code_seen('I')) cs.bedKi = scalePID_i(code_value());
  5428. if(code_seen('D')) cs.bedKd = scalePID_d(code_value());
  5429. updatePID();
  5430. SERIAL_PROTOCOLRPGM(_T(MSG_OK));
  5431. SERIAL_PROTOCOL(" p:");
  5432. SERIAL_PROTOCOL(cs.bedKp);
  5433. SERIAL_PROTOCOL(" i:");
  5434. SERIAL_PROTOCOL(unscalePID_i(cs.bedKi));
  5435. SERIAL_PROTOCOL(" d:");
  5436. SERIAL_PROTOCOL(unscalePID_d(cs.bedKd));
  5437. SERIAL_PROTOCOLLN("");
  5438. }
  5439. break;
  5440. #endif //PIDTEMP
  5441. case 240: // M240 Triggers a camera by emulating a Canon RC-1 : http://www.doc-diy.net/photo/rc-1_hacked/
  5442. {
  5443. #ifdef CHDK
  5444. SET_OUTPUT(CHDK);
  5445. WRITE(CHDK, HIGH);
  5446. chdkHigh = millis();
  5447. chdkActive = true;
  5448. #else
  5449. #if defined(PHOTOGRAPH_PIN) && PHOTOGRAPH_PIN > -1
  5450. const uint8_t NUM_PULSES=16;
  5451. const float PULSE_LENGTH=0.01524;
  5452. for(int i=0; i < NUM_PULSES; i++) {
  5453. WRITE(PHOTOGRAPH_PIN, HIGH);
  5454. _delay_ms(PULSE_LENGTH);
  5455. WRITE(PHOTOGRAPH_PIN, LOW);
  5456. _delay_ms(PULSE_LENGTH);
  5457. }
  5458. delay(7.33);
  5459. for(int i=0; i < NUM_PULSES; i++) {
  5460. WRITE(PHOTOGRAPH_PIN, HIGH);
  5461. _delay_ms(PULSE_LENGTH);
  5462. WRITE(PHOTOGRAPH_PIN, LOW);
  5463. _delay_ms(PULSE_LENGTH);
  5464. }
  5465. #endif
  5466. #endif //chdk end if
  5467. }
  5468. break;
  5469. #ifdef PREVENT_DANGEROUS_EXTRUDE
  5470. case 302: // allow cold extrudes, or set the minimum extrude temperature
  5471. {
  5472. float temp = .0;
  5473. if (code_seen('S')) temp=code_value();
  5474. set_extrude_min_temp(temp);
  5475. }
  5476. break;
  5477. #endif
  5478. case 303: // M303 PID autotune
  5479. {
  5480. float temp = 150.0;
  5481. int e=0;
  5482. int c=5;
  5483. if (code_seen('E')) e=code_value();
  5484. if (e<0)
  5485. temp=70;
  5486. if (code_seen('S')) temp=code_value();
  5487. if (code_seen('C')) c=code_value();
  5488. PID_autotune(temp, e, c);
  5489. }
  5490. break;
  5491. case 400: // M400 finish all moves
  5492. {
  5493. st_synchronize();
  5494. }
  5495. break;
  5496. case 403: //! M403 set filament type (material) for particular extruder and send this information to mmu
  5497. {
  5498. //! currently three different materials are needed (default, flex and PVA)
  5499. //! add storing this information for different load/unload profiles etc. in the future
  5500. //!firmware does not wait for "ok" from mmu
  5501. if (mmu_enabled)
  5502. {
  5503. uint8_t extruder = 255;
  5504. uint8_t filament = FILAMENT_UNDEFINED;
  5505. if(code_seen('E')) extruder = code_value();
  5506. if(code_seen('F')) filament = code_value();
  5507. mmu_set_filament_type(extruder, filament);
  5508. }
  5509. }
  5510. break;
  5511. case 500: // M500 Store settings in EEPROM
  5512. {
  5513. Config_StoreSettings();
  5514. }
  5515. break;
  5516. case 501: // M501 Read settings from EEPROM
  5517. {
  5518. Config_RetrieveSettings();
  5519. }
  5520. break;
  5521. case 502: // M502 Revert to default settings
  5522. {
  5523. Config_ResetDefault();
  5524. }
  5525. break;
  5526. case 503: // M503 print settings currently in memory
  5527. {
  5528. Config_PrintSettings();
  5529. }
  5530. break;
  5531. case 509: //M509 Force language selection
  5532. {
  5533. lang_reset();
  5534. SERIAL_ECHO_START;
  5535. SERIAL_PROTOCOLPGM(("LANG SEL FORCED"));
  5536. }
  5537. break;
  5538. #ifdef ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED
  5539. case 540:
  5540. {
  5541. if(code_seen('S')) abort_on_endstop_hit = code_value() > 0;
  5542. }
  5543. break;
  5544. #endif
  5545. #ifdef CUSTOM_M_CODE_SET_Z_PROBE_OFFSET
  5546. case CUSTOM_M_CODE_SET_Z_PROBE_OFFSET:
  5547. {
  5548. float value;
  5549. if (code_seen('Z'))
  5550. {
  5551. value = code_value();
  5552. if ((Z_PROBE_OFFSET_RANGE_MIN <= value) && (value <= Z_PROBE_OFFSET_RANGE_MAX))
  5553. {
  5554. cs.zprobe_zoffset = -value; // compare w/ line 278 of ConfigurationStore.cpp
  5555. SERIAL_ECHO_START;
  5556. SERIAL_ECHOLNRPGM(CAT4(MSG_ZPROBE_ZOFFSET, " ", _T(MSG_OK),PSTR("")));
  5557. SERIAL_PROTOCOLLN("");
  5558. }
  5559. else
  5560. {
  5561. SERIAL_ECHO_START;
  5562. SERIAL_ECHORPGM(MSG_ZPROBE_ZOFFSET);
  5563. SERIAL_ECHORPGM(MSG_Z_MIN);
  5564. SERIAL_ECHO(Z_PROBE_OFFSET_RANGE_MIN);
  5565. SERIAL_ECHORPGM(MSG_Z_MAX);
  5566. SERIAL_ECHO(Z_PROBE_OFFSET_RANGE_MAX);
  5567. SERIAL_PROTOCOLLN("");
  5568. }
  5569. }
  5570. else
  5571. {
  5572. SERIAL_ECHO_START;
  5573. SERIAL_ECHOLNRPGM(CAT2(MSG_ZPROBE_ZOFFSET, PSTR(" : ")));
  5574. SERIAL_ECHO(-cs.zprobe_zoffset);
  5575. SERIAL_PROTOCOLLN("");
  5576. }
  5577. break;
  5578. }
  5579. #endif // CUSTOM_M_CODE_SET_Z_PROBE_OFFSET
  5580. #ifdef FILAMENTCHANGEENABLE
  5581. case 600: //Pause for filament change X[pos] Y[pos] Z[relative lift] E[initial retract] L[later retract distance for removal]
  5582. {
  5583. st_synchronize();
  5584. float x_position = current_position[X_AXIS];
  5585. float y_position = current_position[Y_AXIS];
  5586. float z_shift = 0;
  5587. float e_shift_init = 0;
  5588. float e_shift_late = 0;
  5589. bool automatic = false;
  5590. //Retract extruder
  5591. if(code_seen('E'))
  5592. {
  5593. e_shift_init = code_value();
  5594. }
  5595. else
  5596. {
  5597. #ifdef FILAMENTCHANGE_FIRSTRETRACT
  5598. e_shift_init = FILAMENTCHANGE_FIRSTRETRACT ;
  5599. #endif
  5600. }
  5601. //currently don't work as we are using the same unload sequence as in M702, needs re-work
  5602. if (code_seen('L'))
  5603. {
  5604. e_shift_late = code_value();
  5605. }
  5606. else
  5607. {
  5608. #ifdef FILAMENTCHANGE_FINALRETRACT
  5609. e_shift_late = FILAMENTCHANGE_FINALRETRACT;
  5610. #endif
  5611. }
  5612. //Lift Z
  5613. if(code_seen('Z'))
  5614. {
  5615. z_shift = code_value();
  5616. }
  5617. else
  5618. {
  5619. #ifdef FILAMENTCHANGE_ZADD
  5620. z_shift= FILAMENTCHANGE_ZADD ;
  5621. if(current_position[Z_AXIS] < 25) z_shift+= 25 ;
  5622. #endif
  5623. }
  5624. //Move XY to side
  5625. if(code_seen('X'))
  5626. {
  5627. x_position = code_value();
  5628. }
  5629. else
  5630. {
  5631. #ifdef FILAMENTCHANGE_XPOS
  5632. x_position = FILAMENTCHANGE_XPOS;
  5633. #endif
  5634. }
  5635. if(code_seen('Y'))
  5636. {
  5637. y_position = code_value();
  5638. }
  5639. else
  5640. {
  5641. #ifdef FILAMENTCHANGE_YPOS
  5642. y_position = FILAMENTCHANGE_YPOS ;
  5643. #endif
  5644. }
  5645. if (mmu_enabled && code_seen("AUTO"))
  5646. automatic = true;
  5647. gcode_M600(automatic, x_position, y_position, z_shift, e_shift_init, e_shift_late);
  5648. }
  5649. break;
  5650. #endif //FILAMENTCHANGEENABLE
  5651. case 601: //! M601 - Pause print
  5652. {
  5653. lcd_pause_print();
  5654. }
  5655. break;
  5656. case 602: { //! M602 - Resume print
  5657. lcd_resume_print();
  5658. }
  5659. break;
  5660. #ifdef PINDA_THERMISTOR
  5661. case 860: // M860 - Wait for PINDA thermistor to reach target temperature.
  5662. {
  5663. int set_target_pinda = 0;
  5664. if (code_seen('S')) {
  5665. set_target_pinda = code_value();
  5666. }
  5667. else {
  5668. break;
  5669. }
  5670. LCD_MESSAGERPGM(_T(MSG_PLEASE_WAIT));
  5671. SERIAL_PROTOCOLPGM("Wait for PINDA target temperature:");
  5672. SERIAL_PROTOCOL(set_target_pinda);
  5673. SERIAL_PROTOCOLLN("");
  5674. codenum = millis();
  5675. cancel_heatup = false;
  5676. bool is_pinda_cooling = false;
  5677. if ((degTargetBed() == 0) && (degTargetHotend(0) == 0)) {
  5678. is_pinda_cooling = true;
  5679. }
  5680. while ( ((!is_pinda_cooling) && (!cancel_heatup) && (current_temperature_pinda < set_target_pinda)) || (is_pinda_cooling && (current_temperature_pinda > set_target_pinda)) ) {
  5681. if ((millis() - codenum) > 1000) //Print Temp Reading every 1 second while waiting.
  5682. {
  5683. SERIAL_PROTOCOLPGM("P:");
  5684. SERIAL_PROTOCOL_F(current_temperature_pinda, 1);
  5685. SERIAL_PROTOCOLPGM("/");
  5686. SERIAL_PROTOCOL(set_target_pinda);
  5687. SERIAL_PROTOCOLLN("");
  5688. codenum = millis();
  5689. }
  5690. manage_heater();
  5691. manage_inactivity();
  5692. lcd_update(0);
  5693. }
  5694. LCD_MESSAGERPGM(_T(MSG_OK));
  5695. break;
  5696. }
  5697. case 861: // M861 - Set/Read PINDA temperature compensation offsets
  5698. if (code_seen('?')) { // ? - Print out current EEPROM offset values
  5699. uint8_t cal_status = calibration_status_pinda();
  5700. int16_t usteps = 0;
  5701. cal_status ? SERIAL_PROTOCOLLN("PINDA cal status: 1") : SERIAL_PROTOCOLLN("PINDA cal status: 0");
  5702. SERIAL_PROTOCOLLN("index, temp, ustep, um");
  5703. for (uint8_t i = 0; i < 6; i++)
  5704. {
  5705. if(i>0) EEPROM_read_B(EEPROM_PROBE_TEMP_SHIFT + (i-1) * 2, &usteps);
  5706. float mm = ((float)usteps) / cs.axis_steps_per_unit[Z_AXIS];
  5707. i == 0 ? SERIAL_PROTOCOLPGM("n/a") : SERIAL_PROTOCOL(i - 1);
  5708. SERIAL_PROTOCOLPGM(", ");
  5709. SERIAL_PROTOCOL(35 + (i * 5));
  5710. SERIAL_PROTOCOLPGM(", ");
  5711. SERIAL_PROTOCOL(usteps);
  5712. SERIAL_PROTOCOLPGM(", ");
  5713. SERIAL_PROTOCOL(mm * 1000);
  5714. SERIAL_PROTOCOLLN("");
  5715. }
  5716. }
  5717. else if (code_seen('!')) { // ! - Set factory default values
  5718. eeprom_write_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 1);
  5719. int16_t z_shift = 8; //40C - 20um - 8usteps
  5720. EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT, &z_shift);
  5721. z_shift = 24; //45C - 60um - 24usteps
  5722. EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + 2, &z_shift);
  5723. z_shift = 48; //50C - 120um - 48usteps
  5724. EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + 4, &z_shift);
  5725. z_shift = 80; //55C - 200um - 80usteps
  5726. EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + 6, &z_shift);
  5727. z_shift = 120; //60C - 300um - 120usteps
  5728. EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + 8, &z_shift);
  5729. SERIAL_PROTOCOLLN("factory restored");
  5730. }
  5731. else if (code_seen('Z')) { // Z - Set all values to 0 (effectively disabling PINDA temperature compensation)
  5732. eeprom_write_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 1);
  5733. int16_t z_shift = 0;
  5734. for (uint8_t i = 0; i < 5; i++) EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + i * 2, &z_shift);
  5735. SERIAL_PROTOCOLLN("zerorized");
  5736. }
  5737. else if (code_seen('S')) { // Sxxx Iyyy - Set compensation ustep value S for compensation table index I
  5738. int16_t usteps = code_value();
  5739. if (code_seen('I')) {
  5740. uint8_t index = code_value();
  5741. if (index < 5) {
  5742. EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + index * 2, &usteps);
  5743. SERIAL_PROTOCOLLN("OK");
  5744. SERIAL_PROTOCOLLN("index, temp, ustep, um");
  5745. for (uint8_t i = 0; i < 6; i++)
  5746. {
  5747. usteps = 0;
  5748. if (i>0) EEPROM_read_B(EEPROM_PROBE_TEMP_SHIFT + (i - 1) * 2, &usteps);
  5749. float mm = ((float)usteps) / cs.axis_steps_per_unit[Z_AXIS];
  5750. i == 0 ? SERIAL_PROTOCOLPGM("n/a") : SERIAL_PROTOCOL(i - 1);
  5751. SERIAL_PROTOCOLPGM(", ");
  5752. SERIAL_PROTOCOL(35 + (i * 5));
  5753. SERIAL_PROTOCOLPGM(", ");
  5754. SERIAL_PROTOCOL(usteps);
  5755. SERIAL_PROTOCOLPGM(", ");
  5756. SERIAL_PROTOCOL(mm * 1000);
  5757. SERIAL_PROTOCOLLN("");
  5758. }
  5759. }
  5760. }
  5761. }
  5762. else {
  5763. SERIAL_PROTOCOLPGM("no valid command");
  5764. }
  5765. break;
  5766. #endif //PINDA_THERMISTOR
  5767. #ifdef LIN_ADVANCE
  5768. case 900: // M900: Set LIN_ADVANCE options.
  5769. gcode_M900();
  5770. break;
  5771. #endif
  5772. case 907: // M907 Set digital trimpot motor current using axis codes.
  5773. {
  5774. #if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
  5775. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) st_current_set(i,code_value());
  5776. if(code_seen('B')) st_current_set(4,code_value());
  5777. if(code_seen('S')) for(int i=0;i<=4;i++) st_current_set(i,code_value());
  5778. #endif
  5779. #ifdef MOTOR_CURRENT_PWM_XY_PIN
  5780. if(code_seen('X')) st_current_set(0, code_value());
  5781. #endif
  5782. #ifdef MOTOR_CURRENT_PWM_Z_PIN
  5783. if(code_seen('Z')) st_current_set(1, code_value());
  5784. #endif
  5785. #ifdef MOTOR_CURRENT_PWM_E_PIN
  5786. if(code_seen('E')) st_current_set(2, code_value());
  5787. #endif
  5788. }
  5789. break;
  5790. case 908: // M908 Control digital trimpot directly.
  5791. {
  5792. #if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
  5793. uint8_t channel,current;
  5794. if(code_seen('P')) channel=code_value();
  5795. if(code_seen('S')) current=code_value();
  5796. digitalPotWrite(channel, current);
  5797. #endif
  5798. }
  5799. break;
  5800. #ifdef TMC2130
  5801. case 910: //! M910 - TMC2130 init
  5802. {
  5803. tmc2130_init();
  5804. }
  5805. break;
  5806. case 911: //! M911 - Set TMC2130 holding currents
  5807. {
  5808. if (code_seen('X')) tmc2130_set_current_h(0, code_value());
  5809. if (code_seen('Y')) tmc2130_set_current_h(1, code_value());
  5810. if (code_seen('Z')) tmc2130_set_current_h(2, code_value());
  5811. if (code_seen('E')) tmc2130_set_current_h(3, code_value());
  5812. }
  5813. break;
  5814. case 912: //! M912 - Set TMC2130 running currents
  5815. {
  5816. if (code_seen('X')) tmc2130_set_current_r(0, code_value());
  5817. if (code_seen('Y')) tmc2130_set_current_r(1, code_value());
  5818. if (code_seen('Z')) tmc2130_set_current_r(2, code_value());
  5819. if (code_seen('E')) tmc2130_set_current_r(3, code_value());
  5820. }
  5821. break;
  5822. case 913: //! M913 - Print TMC2130 currents
  5823. {
  5824. tmc2130_print_currents();
  5825. }
  5826. break;
  5827. case 914: //! M914 - Set normal mode
  5828. {
  5829. tmc2130_mode = TMC2130_MODE_NORMAL;
  5830. update_mode_profile();
  5831. tmc2130_init();
  5832. }
  5833. break;
  5834. case 915: //! M915 - Set silent mode
  5835. {
  5836. tmc2130_mode = TMC2130_MODE_SILENT;
  5837. update_mode_profile();
  5838. tmc2130_init();
  5839. }
  5840. break;
  5841. case 916: //! M916 - Set sg_thrs
  5842. {
  5843. if (code_seen('X')) tmc2130_sg_thr[X_AXIS] = code_value();
  5844. if (code_seen('Y')) tmc2130_sg_thr[Y_AXIS] = code_value();
  5845. if (code_seen('Z')) tmc2130_sg_thr[Z_AXIS] = code_value();
  5846. if (code_seen('E')) tmc2130_sg_thr[E_AXIS] = code_value();
  5847. for (uint8_t a = X_AXIS; a <= E_AXIS; a++)
  5848. printf_P(_N("tmc2130_sg_thr[%c]=%d\n"), "XYZE"[a], tmc2130_sg_thr[a]);
  5849. }
  5850. break;
  5851. case 917: //! M917 - Set TMC2130 pwm_ampl
  5852. {
  5853. if (code_seen('X')) tmc2130_set_pwm_ampl(0, code_value());
  5854. if (code_seen('Y')) tmc2130_set_pwm_ampl(1, code_value());
  5855. if (code_seen('Z')) tmc2130_set_pwm_ampl(2, code_value());
  5856. if (code_seen('E')) tmc2130_set_pwm_ampl(3, code_value());
  5857. }
  5858. break;
  5859. case 918: //! M918 - Set TMC2130 pwm_grad
  5860. {
  5861. if (code_seen('X')) tmc2130_set_pwm_grad(0, code_value());
  5862. if (code_seen('Y')) tmc2130_set_pwm_grad(1, code_value());
  5863. if (code_seen('Z')) tmc2130_set_pwm_grad(2, code_value());
  5864. if (code_seen('E')) tmc2130_set_pwm_grad(3, code_value());
  5865. }
  5866. break;
  5867. #endif //TMC2130
  5868. case 350: //! M350 - Set microstepping mode. Warning: Steps per unit remains unchanged. S code sets stepping mode for all drivers.
  5869. {
  5870. #ifdef TMC2130
  5871. if(code_seen('E'))
  5872. {
  5873. uint16_t res_new = code_value();
  5874. if ((res_new == 8) || (res_new == 16) || (res_new == 32) || (res_new == 64) || (res_new == 128))
  5875. {
  5876. st_synchronize();
  5877. uint8_t axis = E_AXIS;
  5878. uint16_t res = tmc2130_get_res(axis);
  5879. tmc2130_set_res(axis, res_new);
  5880. if (res_new > res)
  5881. {
  5882. uint16_t fac = (res_new / res);
  5883. cs.axis_steps_per_unit[axis] *= fac;
  5884. position[E_AXIS] *= fac;
  5885. }
  5886. else
  5887. {
  5888. uint16_t fac = (res / res_new);
  5889. cs.axis_steps_per_unit[axis] /= fac;
  5890. position[E_AXIS] /= fac;
  5891. }
  5892. }
  5893. }
  5894. #else //TMC2130
  5895. #if defined(X_MS1_PIN) && X_MS1_PIN > -1
  5896. if(code_seen('S')) for(int i=0;i<=4;i++) microstep_mode(i,code_value());
  5897. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) microstep_mode(i,(uint8_t)code_value());
  5898. if(code_seen('B')) microstep_mode(4,code_value());
  5899. microstep_readings();
  5900. #endif
  5901. #endif //TMC2130
  5902. }
  5903. break;
  5904. case 351: //! M351 - Toggle MS1 MS2 pins directly, S# determines MS1 or MS2, X# sets the pin high/low.
  5905. {
  5906. #if defined(X_MS1_PIN) && X_MS1_PIN > -1
  5907. if(code_seen('S')) switch((int)code_value())
  5908. {
  5909. case 1:
  5910. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) microstep_ms(i,code_value(),-1);
  5911. if(code_seen('B')) microstep_ms(4,code_value(),-1);
  5912. break;
  5913. case 2:
  5914. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) microstep_ms(i,-1,code_value());
  5915. if(code_seen('B')) microstep_ms(4,-1,code_value());
  5916. break;
  5917. }
  5918. microstep_readings();
  5919. #endif
  5920. }
  5921. break;
  5922. case 701: //! M701 - load filament
  5923. {
  5924. if (mmu_enabled && code_seen('E'))
  5925. tmp_extruder = code_value();
  5926. gcode_M701();
  5927. }
  5928. break;
  5929. case 702: //! M702 [U C] -
  5930. {
  5931. #ifdef SNMM
  5932. if (code_seen('U'))
  5933. extr_unload_used(); //! if "U" unload all filaments which were used in current print
  5934. else if (code_seen('C'))
  5935. extr_unload(); //! if "C" unload just current filament
  5936. else
  5937. extr_unload_all(); //! otherwise unload all filaments
  5938. #else
  5939. if (code_seen('C')) {
  5940. if(mmu_enabled) extr_unload(); //! if "C" unload current filament; if mmu is not present no action is performed
  5941. }
  5942. else {
  5943. if(mmu_enabled) extr_unload(); //! unload current filament
  5944. else unload_filament();
  5945. }
  5946. #endif //SNMM
  5947. }
  5948. break;
  5949. case 999: // M999: Restart after being stopped
  5950. Stopped = false;
  5951. lcd_reset_alert_level();
  5952. gcode_LastN = Stopped_gcode_LastN;
  5953. FlushSerialRequestResend();
  5954. break;
  5955. default:
  5956. printf_P(PSTR("Unknown M code: %s \n"), cmdbuffer + bufindr + CMDHDRSIZE);
  5957. }
  5958. // printf_P(_N("END M-CODE=%u\n"), mcode_in_progress);
  5959. mcode_in_progress = 0;
  5960. }
  5961. }
  5962. // end if(code_seen('M')) (end of M codes)
  5963. //! T<extruder nr.> - select extruder in case of multi extruder printer
  5964. //! select filament in case of MMU_V2
  5965. //! if extruder is "?", open menu to let the user select extruder/filament
  5966. //!
  5967. //! For MMU_V2:
  5968. //! @n T<n> Gcode to extrude must follow immediately to load to extruder wheels
  5969. //! @n T? Gcode to extrude doesn't have to follow, load to extruder wheels is done automatically
  5970. else if(code_seen('T'))
  5971. {
  5972. int index;
  5973. st_synchronize();
  5974. for (index = 1; *(strchr_pointer + index) == ' ' || *(strchr_pointer + index) == '\t'; index++);
  5975. *(strchr_pointer + index) = tolower(*(strchr_pointer + index));
  5976. if ((*(strchr_pointer + index) < '0' || *(strchr_pointer + index) > '4') && *(strchr_pointer + index) != '?' && *(strchr_pointer + index) != 'x' && *(strchr_pointer + index) != 'c') {
  5977. SERIAL_ECHOLNPGM("Invalid T code.");
  5978. }
  5979. else if (*(strchr_pointer + index) == 'x'){ //load to bondtech gears; if mmu is not present do nothing
  5980. if (mmu_enabled)
  5981. {
  5982. tmp_extruder = choose_menu_P(_T(MSG_CHOOSE_FILAMENT), _T(MSG_FILAMENT));
  5983. mmu_command(MMU_CMD_T0 + tmp_extruder);
  5984. manage_response(true, true);
  5985. }
  5986. }
  5987. else if (*(strchr_pointer + index) == 'c') { //load to from bondtech gears to nozzle (nozzle should be preheated)
  5988. if (mmu_enabled)
  5989. {
  5990. mmu_command(MMU_CMD_C0);
  5991. mmu_extruder = tmp_extruder; //filament change is finished
  5992. mmu_load_to_nozzle();
  5993. }
  5994. }
  5995. else {
  5996. if (*(strchr_pointer + index) == '?')
  5997. {
  5998. if(mmu_enabled)
  5999. {
  6000. tmp_extruder = choose_menu_P(_T(MSG_CHOOSE_FILAMENT), _T(MSG_FILAMENT));
  6001. } else
  6002. {
  6003. tmp_extruder = choose_menu_P(_T(MSG_CHOOSE_EXTRUDER), _T(MSG_EXTRUDER));
  6004. }
  6005. }
  6006. else {
  6007. tmp_extruder = code_value();
  6008. }
  6009. snmm_filaments_used |= (1 << tmp_extruder); //for stop print
  6010. if (mmu_enabled)
  6011. {
  6012. mmu_command(MMU_CMD_T0 + tmp_extruder);
  6013. manage_response(true, true);
  6014. mmu_command(MMU_CMD_C0);
  6015. mmu_extruder = tmp_extruder; //filament change is finished
  6016. if (*(strchr_pointer + index) == '?')// for single material usage with mmu
  6017. {
  6018. mmu_load_to_nozzle();
  6019. }
  6020. }
  6021. else
  6022. {
  6023. #ifdef SNMM
  6024. #ifdef LIN_ADVANCE
  6025. if (mmu_extruder != tmp_extruder)
  6026. clear_current_adv_vars(); //Check if the selected extruder is not the active one and reset LIN_ADVANCE variables if so.
  6027. #endif
  6028. mmu_extruder = tmp_extruder;
  6029. delay(100);
  6030. disable_e0();
  6031. disable_e1();
  6032. disable_e2();
  6033. pinMode(E_MUX0_PIN, OUTPUT);
  6034. pinMode(E_MUX1_PIN, OUTPUT);
  6035. delay(100);
  6036. SERIAL_ECHO_START;
  6037. SERIAL_ECHO("T:");
  6038. SERIAL_ECHOLN((int)tmp_extruder);
  6039. switch (tmp_extruder) {
  6040. case 1:
  6041. WRITE(E_MUX0_PIN, HIGH);
  6042. WRITE(E_MUX1_PIN, LOW);
  6043. break;
  6044. case 2:
  6045. WRITE(E_MUX0_PIN, LOW);
  6046. WRITE(E_MUX1_PIN, HIGH);
  6047. break;
  6048. case 3:
  6049. WRITE(E_MUX0_PIN, HIGH);
  6050. WRITE(E_MUX1_PIN, HIGH);
  6051. break;
  6052. default:
  6053. WRITE(E_MUX0_PIN, LOW);
  6054. WRITE(E_MUX1_PIN, LOW);
  6055. break;
  6056. }
  6057. delay(100);
  6058. #else //SNMM
  6059. if (tmp_extruder >= EXTRUDERS) {
  6060. SERIAL_ECHO_START;
  6061. SERIAL_ECHOPGM("T");
  6062. SERIAL_PROTOCOLLN((int)tmp_extruder);
  6063. SERIAL_ECHOLNRPGM(_n("Invalid extruder"));////MSG_INVALID_EXTRUDER c=0 r=0
  6064. }
  6065. else {
  6066. #if EXTRUDERS > 1
  6067. boolean make_move = false;
  6068. #endif
  6069. if (code_seen('F')) {
  6070. #if EXTRUDERS > 1
  6071. make_move = true;
  6072. #endif
  6073. next_feedrate = code_value();
  6074. if (next_feedrate > 0.0) {
  6075. feedrate = next_feedrate;
  6076. }
  6077. }
  6078. #if EXTRUDERS > 1
  6079. if (tmp_extruder != active_extruder) {
  6080. // Save current position to return to after applying extruder offset
  6081. memcpy(destination, current_position, sizeof(destination));
  6082. // Offset extruder (only by XY)
  6083. int i;
  6084. for (i = 0; i < 2; i++) {
  6085. current_position[i] = current_position[i] -
  6086. extruder_offset[i][active_extruder] +
  6087. extruder_offset[i][tmp_extruder];
  6088. }
  6089. // Set the new active extruder and position
  6090. active_extruder = tmp_extruder;
  6091. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  6092. // Move to the old position if 'F' was in the parameters
  6093. if (make_move && Stopped == false) {
  6094. prepare_move();
  6095. }
  6096. }
  6097. #endif
  6098. SERIAL_ECHO_START;
  6099. SERIAL_ECHORPGM(_n("Active Extruder: "));////MSG_ACTIVE_EXTRUDER c=0 r=0
  6100. SERIAL_PROTOCOLLN((int)active_extruder);
  6101. }
  6102. #endif //SNMM
  6103. }
  6104. }
  6105. } // end if(code_seen('T')) (end of T codes)
  6106. else if (code_seen('D')) // D codes (debug)
  6107. {
  6108. switch((int)code_value())
  6109. {
  6110. #ifdef DEBUG_DCODES
  6111. case -1: //! D-1 - Endless loop
  6112. dcode__1(); break;
  6113. case 0: //! D0 - Reset
  6114. dcode_0(); break;
  6115. case 1: //! D1 - Clear EEPROM
  6116. dcode_1(); break;
  6117. case 2: //! D2 - Read/Write RAM
  6118. dcode_2(); break;
  6119. #endif //DEBUG_DCODES
  6120. #ifdef DEBUG_DCODE3
  6121. case 3: //! D3 - Read/Write EEPROM
  6122. dcode_3(); break;
  6123. #endif //DEBUG_DCODE3
  6124. #ifdef DEBUG_DCODES
  6125. case 4: //! D4 - Read/Write PIN
  6126. dcode_4(); break;
  6127. #endif //DEBUG_DCODES
  6128. #ifdef DEBUG_DCODE5
  6129. case 5: // D5 - Read/Write FLASH
  6130. dcode_5(); break;
  6131. break;
  6132. #endif //DEBUG_DCODE5
  6133. #ifdef DEBUG_DCODES
  6134. case 6: // D6 - Read/Write external FLASH
  6135. dcode_6(); break;
  6136. case 7: //! D7 - Read/Write Bootloader
  6137. dcode_7(); break;
  6138. case 8: //! D8 - Read/Write PINDA
  6139. dcode_8(); break;
  6140. case 9: //! D9 - Read/Write ADC
  6141. dcode_9(); break;
  6142. case 10: //! D10 - XYZ calibration = OK
  6143. dcode_10(); break;
  6144. #ifdef TMC2130
  6145. case 2130: //! D2130 - TMC2130
  6146. dcode_2130(); break;
  6147. #endif //TMC2130
  6148. #ifdef FILAMENT_SENSOR
  6149. case 9125: //! D9125 - FILAMENT_SENSOR
  6150. dcode_9125(); break;
  6151. #endif //FILAMENT_SENSOR
  6152. #endif //DEBUG_DCODES
  6153. }
  6154. }
  6155. else
  6156. {
  6157. SERIAL_ECHO_START;
  6158. SERIAL_ECHORPGM(MSG_UNKNOWN_COMMAND);
  6159. SERIAL_ECHO(CMDBUFFER_CURRENT_STRING);
  6160. SERIAL_ECHOLNPGM("\"(2)");
  6161. }
  6162. KEEPALIVE_STATE(NOT_BUSY);
  6163. ClearToSend();
  6164. }
  6165. void FlushSerialRequestResend()
  6166. {
  6167. //char cmdbuffer[bufindr][100]="Resend:";
  6168. MYSERIAL.flush();
  6169. printf_P(_N("%S: %ld\n%S\n"), _i("Resend"), gcode_LastN + 1, _T(MSG_OK));
  6170. }
  6171. // Confirm the execution of a command, if sent from a serial line.
  6172. // Execution of a command from a SD card will not be confirmed.
  6173. void ClearToSend()
  6174. {
  6175. previous_millis_cmd = millis();
  6176. if ((CMDBUFFER_CURRENT_TYPE == CMDBUFFER_CURRENT_TYPE_USB) || (CMDBUFFER_CURRENT_TYPE == CMDBUFFER_CURRENT_TYPE_USB_WITH_LINENR))
  6177. SERIAL_PROTOCOLLNRPGM(_T(MSG_OK));
  6178. }
  6179. #if MOTHERBOARD == BOARD_RAMBO_MINI_1_0 || MOTHERBOARD == BOARD_RAMBO_MINI_1_3
  6180. void update_currents() {
  6181. float current_high[3] = DEFAULT_PWM_MOTOR_CURRENT_LOUD;
  6182. float current_low[3] = DEFAULT_PWM_MOTOR_CURRENT;
  6183. float tmp_motor[3];
  6184. //SERIAL_ECHOLNPGM("Currents updated: ");
  6185. if (destination[Z_AXIS] < Z_SILENT) {
  6186. //SERIAL_ECHOLNPGM("LOW");
  6187. for (uint8_t i = 0; i < 3; i++) {
  6188. st_current_set(i, current_low[i]);
  6189. /*MYSERIAL.print(int(i));
  6190. SERIAL_ECHOPGM(": ");
  6191. MYSERIAL.println(current_low[i]);*/
  6192. }
  6193. }
  6194. else if (destination[Z_AXIS] > Z_HIGH_POWER) {
  6195. //SERIAL_ECHOLNPGM("HIGH");
  6196. for (uint8_t i = 0; i < 3; i++) {
  6197. st_current_set(i, current_high[i]);
  6198. /*MYSERIAL.print(int(i));
  6199. SERIAL_ECHOPGM(": ");
  6200. MYSERIAL.println(current_high[i]);*/
  6201. }
  6202. }
  6203. else {
  6204. for (uint8_t i = 0; i < 3; i++) {
  6205. float q = current_low[i] - Z_SILENT*((current_high[i] - current_low[i]) / (Z_HIGH_POWER - Z_SILENT));
  6206. tmp_motor[i] = ((current_high[i] - current_low[i]) / (Z_HIGH_POWER - Z_SILENT))*destination[Z_AXIS] + q;
  6207. st_current_set(i, tmp_motor[i]);
  6208. /*MYSERIAL.print(int(i));
  6209. SERIAL_ECHOPGM(": ");
  6210. MYSERIAL.println(tmp_motor[i]);*/
  6211. }
  6212. }
  6213. }
  6214. #endif //MOTHERBOARD == BOARD_RAMBO_MINI_1_0 || MOTHERBOARD == BOARD_RAMBO_MINI_1_3
  6215. void get_coordinates()
  6216. {
  6217. bool seen[4]={false,false,false,false};
  6218. for(int8_t i=0; i < NUM_AXIS; i++) {
  6219. if(code_seen(axis_codes[i]))
  6220. {
  6221. bool relative = axis_relative_modes[i] || relative_mode;
  6222. destination[i] = (float)code_value();
  6223. if (i == E_AXIS) {
  6224. float emult = extruder_multiplier[active_extruder];
  6225. if (emult != 1.) {
  6226. if (! relative) {
  6227. destination[i] -= current_position[i];
  6228. relative = true;
  6229. }
  6230. destination[i] *= emult;
  6231. }
  6232. }
  6233. if (relative)
  6234. destination[i] += current_position[i];
  6235. seen[i]=true;
  6236. #if MOTHERBOARD == BOARD_RAMBO_MINI_1_0 || MOTHERBOARD == BOARD_RAMBO_MINI_1_3
  6237. if (i == Z_AXIS && SilentModeMenu == SILENT_MODE_AUTO) update_currents();
  6238. #endif //MOTHERBOARD == BOARD_RAMBO_MINI_1_0 || MOTHERBOARD == BOARD_RAMBO_MINI_1_3
  6239. }
  6240. else destination[i] = current_position[i]; //Are these else lines really needed?
  6241. }
  6242. if(code_seen('F')) {
  6243. next_feedrate = code_value();
  6244. #ifdef MAX_SILENT_FEEDRATE
  6245. if (tmc2130_mode == TMC2130_MODE_SILENT)
  6246. if (next_feedrate > MAX_SILENT_FEEDRATE) next_feedrate = MAX_SILENT_FEEDRATE;
  6247. #endif //MAX_SILENT_FEEDRATE
  6248. if(next_feedrate > 0.0) feedrate = next_feedrate;
  6249. if (!seen[0] && !seen[1] && !seen[2] && seen[3])
  6250. {
  6251. // float e_max_speed =
  6252. // printf_P(PSTR("E MOVE speed %7.3f\n"), feedrate / 60)
  6253. }
  6254. }
  6255. }
  6256. void get_arc_coordinates()
  6257. {
  6258. #ifdef SF_ARC_FIX
  6259. bool relative_mode_backup = relative_mode;
  6260. relative_mode = true;
  6261. #endif
  6262. get_coordinates();
  6263. #ifdef SF_ARC_FIX
  6264. relative_mode=relative_mode_backup;
  6265. #endif
  6266. if(code_seen('I')) {
  6267. offset[0] = code_value();
  6268. }
  6269. else {
  6270. offset[0] = 0.0;
  6271. }
  6272. if(code_seen('J')) {
  6273. offset[1] = code_value();
  6274. }
  6275. else {
  6276. offset[1] = 0.0;
  6277. }
  6278. }
  6279. void clamp_to_software_endstops(float target[3])
  6280. {
  6281. #ifdef DEBUG_DISABLE_SWLIMITS
  6282. return;
  6283. #endif //DEBUG_DISABLE_SWLIMITS
  6284. world2machine_clamp(target[0], target[1]);
  6285. // Clamp the Z coordinate.
  6286. if (min_software_endstops) {
  6287. float negative_z_offset = 0;
  6288. #ifdef ENABLE_AUTO_BED_LEVELING
  6289. if (Z_PROBE_OFFSET_FROM_EXTRUDER < 0) negative_z_offset = negative_z_offset + Z_PROBE_OFFSET_FROM_EXTRUDER;
  6290. if (cs.add_homing[Z_AXIS] < 0) negative_z_offset = negative_z_offset + cs.add_homing[Z_AXIS];
  6291. #endif
  6292. if (target[Z_AXIS] < min_pos[Z_AXIS]+negative_z_offset) target[Z_AXIS] = min_pos[Z_AXIS]+negative_z_offset;
  6293. }
  6294. if (max_software_endstops) {
  6295. if (target[Z_AXIS] > max_pos[Z_AXIS]) target[Z_AXIS] = max_pos[Z_AXIS];
  6296. }
  6297. }
  6298. #ifdef MESH_BED_LEVELING
  6299. void mesh_plan_buffer_line(const float &x, const float &y, const float &z, const float &e, const float &feed_rate, const uint8_t extruder) {
  6300. float dx = x - current_position[X_AXIS];
  6301. float dy = y - current_position[Y_AXIS];
  6302. float dz = z - current_position[Z_AXIS];
  6303. int n_segments = 0;
  6304. if (mbl.active) {
  6305. float len = abs(dx) + abs(dy);
  6306. if (len > 0)
  6307. // Split to 3cm segments or shorter.
  6308. n_segments = int(ceil(len / 30.f));
  6309. }
  6310. if (n_segments > 1) {
  6311. float de = e - current_position[E_AXIS];
  6312. for (int i = 1; i < n_segments; ++ i) {
  6313. float t = float(i) / float(n_segments);
  6314. if (saved_printing || (mbl.active == false)) return;
  6315. plan_buffer_line(
  6316. current_position[X_AXIS] + t * dx,
  6317. current_position[Y_AXIS] + t * dy,
  6318. current_position[Z_AXIS] + t * dz,
  6319. current_position[E_AXIS] + t * de,
  6320. feed_rate, extruder);
  6321. }
  6322. }
  6323. // The rest of the path.
  6324. plan_buffer_line(x, y, z, e, feed_rate, extruder);
  6325. current_position[X_AXIS] = x;
  6326. current_position[Y_AXIS] = y;
  6327. current_position[Z_AXIS] = z;
  6328. current_position[E_AXIS] = e;
  6329. }
  6330. #endif // MESH_BED_LEVELING
  6331. void prepare_move()
  6332. {
  6333. clamp_to_software_endstops(destination);
  6334. previous_millis_cmd = millis();
  6335. // Do not use feedmultiply for E or Z only moves
  6336. if( (current_position[X_AXIS] == destination [X_AXIS]) && (current_position[Y_AXIS] == destination [Y_AXIS])) {
  6337. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  6338. }
  6339. else {
  6340. #ifdef MESH_BED_LEVELING
  6341. mesh_plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate*feedmultiply*(1./(60.f*100.f)), active_extruder);
  6342. #else
  6343. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate*feedmultiply*(1./(60.f*100.f)), active_extruder);
  6344. #endif
  6345. }
  6346. for(int8_t i=0; i < NUM_AXIS; i++) {
  6347. current_position[i] = destination[i];
  6348. }
  6349. }
  6350. void prepare_arc_move(char isclockwise) {
  6351. float r = hypot(offset[X_AXIS], offset[Y_AXIS]); // Compute arc radius for mc_arc
  6352. // Trace the arc
  6353. mc_arc(current_position, destination, offset, X_AXIS, Y_AXIS, Z_AXIS, feedrate*feedmultiply/60/100.0, r, isclockwise, active_extruder);
  6354. // As far as the parser is concerned, the position is now == target. In reality the
  6355. // motion control system might still be processing the action and the real tool position
  6356. // in any intermediate location.
  6357. for(int8_t i=0; i < NUM_AXIS; i++) {
  6358. current_position[i] = destination[i];
  6359. }
  6360. previous_millis_cmd = millis();
  6361. }
  6362. #if defined(CONTROLLERFAN_PIN) && CONTROLLERFAN_PIN > -1
  6363. #if defined(FAN_PIN)
  6364. #if CONTROLLERFAN_PIN == FAN_PIN
  6365. #error "You cannot set CONTROLLERFAN_PIN equal to FAN_PIN"
  6366. #endif
  6367. #endif
  6368. unsigned long lastMotor = 0; //Save the time for when a motor was turned on last
  6369. unsigned long lastMotorCheck = 0;
  6370. void controllerFan()
  6371. {
  6372. if ((millis() - lastMotorCheck) >= 2500) //Not a time critical function, so we only check every 2500ms
  6373. {
  6374. lastMotorCheck = millis();
  6375. if(!READ(X_ENABLE_PIN) || !READ(Y_ENABLE_PIN) || !READ(Z_ENABLE_PIN) || (soft_pwm_bed > 0)
  6376. #if EXTRUDERS > 2
  6377. || !READ(E2_ENABLE_PIN)
  6378. #endif
  6379. #if EXTRUDER > 1
  6380. #if defined(X2_ENABLE_PIN) && X2_ENABLE_PIN > -1
  6381. || !READ(X2_ENABLE_PIN)
  6382. #endif
  6383. || !READ(E1_ENABLE_PIN)
  6384. #endif
  6385. || !READ(E0_ENABLE_PIN)) //If any of the drivers are enabled...
  6386. {
  6387. lastMotor = millis(); //... set time to NOW so the fan will turn on
  6388. }
  6389. if ((millis() - lastMotor) >= (CONTROLLERFAN_SECS*1000UL) || lastMotor == 0) //If the last time any driver was enabled, is longer since than CONTROLLERSEC...
  6390. {
  6391. digitalWrite(CONTROLLERFAN_PIN, 0);
  6392. analogWrite(CONTROLLERFAN_PIN, 0);
  6393. }
  6394. else
  6395. {
  6396. // allows digital or PWM fan output to be used (see M42 handling)
  6397. digitalWrite(CONTROLLERFAN_PIN, CONTROLLERFAN_SPEED);
  6398. analogWrite(CONTROLLERFAN_PIN, CONTROLLERFAN_SPEED);
  6399. }
  6400. }
  6401. }
  6402. #endif
  6403. #ifdef TEMP_STAT_LEDS
  6404. static bool blue_led = false;
  6405. static bool red_led = false;
  6406. static uint32_t stat_update = 0;
  6407. void handle_status_leds(void) {
  6408. float max_temp = 0.0;
  6409. if(millis() > stat_update) {
  6410. stat_update += 500; // Update every 0.5s
  6411. for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) {
  6412. max_temp = max(max_temp, degHotend(cur_extruder));
  6413. max_temp = max(max_temp, degTargetHotend(cur_extruder));
  6414. }
  6415. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  6416. max_temp = max(max_temp, degTargetBed());
  6417. max_temp = max(max_temp, degBed());
  6418. #endif
  6419. if((max_temp > 55.0) && (red_led == false)) {
  6420. digitalWrite(STAT_LED_RED, 1);
  6421. digitalWrite(STAT_LED_BLUE, 0);
  6422. red_led = true;
  6423. blue_led = false;
  6424. }
  6425. if((max_temp < 54.0) && (blue_led == false)) {
  6426. digitalWrite(STAT_LED_RED, 0);
  6427. digitalWrite(STAT_LED_BLUE, 1);
  6428. red_led = false;
  6429. blue_led = true;
  6430. }
  6431. }
  6432. }
  6433. #endif
  6434. #ifdef SAFETYTIMER
  6435. /**
  6436. * @brief Turn off heating after safetytimer_inactive_time milliseconds of inactivity
  6437. *
  6438. * Full screen blocking notification message is shown after heater turning off.
  6439. * Paused print is not considered inactivity, as nozzle is cooled anyway and bed cooling would
  6440. * damage print.
  6441. *
  6442. * If safetytimer_inactive_time is zero, feature is disabled (heating is never turned off because of inactivity)
  6443. */
  6444. static void handleSafetyTimer()
  6445. {
  6446. #if (EXTRUDERS > 1)
  6447. #error Implemented only for one extruder.
  6448. #endif //(EXTRUDERS > 1)
  6449. if ((PRINTER_ACTIVE) || (!degTargetBed() && !degTargetHotend(0)) || (!safetytimer_inactive_time))
  6450. {
  6451. safetyTimer.stop();
  6452. }
  6453. else if ((degTargetBed() || degTargetHotend(0)) && (!safetyTimer.running()))
  6454. {
  6455. safetyTimer.start();
  6456. }
  6457. else if (safetyTimer.expired(safetytimer_inactive_time))
  6458. {
  6459. setTargetBed(0);
  6460. setAllTargetHotends(0);
  6461. lcd_show_fullscreen_message_and_wait_P(_i("Heating disabled by safety timer."));////MSG_BED_HEATING_SAFETY_DISABLED c=0 r=0
  6462. }
  6463. }
  6464. #endif //SAFETYTIMER
  6465. void manage_inactivity(bool ignore_stepper_queue/*=false*/) //default argument set in Marlin.h
  6466. {
  6467. #ifdef FILAMENT_SENSOR
  6468. if (mmu_enabled == false)
  6469. {
  6470. if (mcode_in_progress != 600) //M600 not in progress
  6471. {
  6472. if (!moves_planned() && !IS_SD_PRINTING && !is_usb_printing && (lcd_commands_type != LCD_COMMAND_V2_CAL) && !wizard_active)
  6473. {
  6474. if (fsensor_check_autoload())
  6475. {
  6476. fsensor_autoload_check_stop();
  6477. if (degHotend0() > EXTRUDE_MINTEMP)
  6478. {
  6479. if ((eSoundMode == e_SOUND_MODE_LOUD) || (eSoundMode == e_SOUND_MODE_ONCE))
  6480. tone(BEEPER, 1000);
  6481. delay_keep_alive(50);
  6482. noTone(BEEPER);
  6483. loading_flag = true;
  6484. enquecommand_front_P((PSTR("M701")));
  6485. }
  6486. else
  6487. {
  6488. lcd_update_enable(false);
  6489. show_preheat_nozzle_warning();
  6490. lcd_update_enable(true);
  6491. }
  6492. }
  6493. }
  6494. else
  6495. {
  6496. fsensor_autoload_check_stop();
  6497. fsensor_update();
  6498. }
  6499. }
  6500. }
  6501. #endif //FILAMENT_SENSOR
  6502. #ifdef SAFETYTIMER
  6503. handleSafetyTimer();
  6504. #endif //SAFETYTIMER
  6505. #if defined(KILL_PIN) && KILL_PIN > -1
  6506. static int killCount = 0; // make the inactivity button a bit less responsive
  6507. const int KILL_DELAY = 10000;
  6508. #endif
  6509. if(buflen < (BUFSIZE-1)){
  6510. get_command();
  6511. }
  6512. if( (millis() - previous_millis_cmd) > max_inactive_time )
  6513. if(max_inactive_time)
  6514. kill(_n(""), 4);
  6515. if(stepper_inactive_time) {
  6516. if( (millis() - previous_millis_cmd) > stepper_inactive_time )
  6517. {
  6518. if(blocks_queued() == false && ignore_stepper_queue == false) {
  6519. disable_x();
  6520. // SERIAL_ECHOLNPGM("manage_inactivity - disable Y");
  6521. disable_y();
  6522. disable_z();
  6523. disable_e0();
  6524. disable_e1();
  6525. disable_e2();
  6526. }
  6527. }
  6528. }
  6529. #ifdef CHDK //Check if pin should be set to LOW after M240 set it to HIGH
  6530. if (chdkActive && (millis() - chdkHigh > CHDK_DELAY))
  6531. {
  6532. chdkActive = false;
  6533. WRITE(CHDK, LOW);
  6534. }
  6535. #endif
  6536. #if defined(KILL_PIN) && KILL_PIN > -1
  6537. // Check if the kill button was pressed and wait just in case it was an accidental
  6538. // key kill key press
  6539. // -------------------------------------------------------------------------------
  6540. if( 0 == READ(KILL_PIN) )
  6541. {
  6542. killCount++;
  6543. }
  6544. else if (killCount > 0)
  6545. {
  6546. killCount--;
  6547. }
  6548. // Exceeded threshold and we can confirm that it was not accidental
  6549. // KILL the machine
  6550. // ----------------------------------------------------------------
  6551. if ( killCount >= KILL_DELAY)
  6552. {
  6553. kill("", 5);
  6554. }
  6555. #endif
  6556. #if defined(CONTROLLERFAN_PIN) && CONTROLLERFAN_PIN > -1
  6557. controllerFan(); //Check if fan should be turned on to cool stepper drivers down
  6558. #endif
  6559. #ifdef EXTRUDER_RUNOUT_PREVENT
  6560. if( (millis() - previous_millis_cmd) > EXTRUDER_RUNOUT_SECONDS*1000 )
  6561. if(degHotend(active_extruder)>EXTRUDER_RUNOUT_MINTEMP)
  6562. {
  6563. bool oldstatus=READ(E0_ENABLE_PIN);
  6564. enable_e0();
  6565. float oldepos=current_position[E_AXIS];
  6566. float oldedes=destination[E_AXIS];
  6567. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS],
  6568. destination[E_AXIS]+EXTRUDER_RUNOUT_EXTRUDE*EXTRUDER_RUNOUT_ESTEPS/cs.axis_steps_per_unit[E_AXIS],
  6569. EXTRUDER_RUNOUT_SPEED/60.*EXTRUDER_RUNOUT_ESTEPS/cs.axis_steps_per_unit[E_AXIS], active_extruder);
  6570. current_position[E_AXIS]=oldepos;
  6571. destination[E_AXIS]=oldedes;
  6572. plan_set_e_position(oldepos);
  6573. previous_millis_cmd=millis();
  6574. st_synchronize();
  6575. WRITE(E0_ENABLE_PIN,oldstatus);
  6576. }
  6577. #endif
  6578. #ifdef TEMP_STAT_LEDS
  6579. handle_status_leds();
  6580. #endif
  6581. check_axes_activity();
  6582. mmu_loop();
  6583. }
  6584. void kill(const char *full_screen_message, unsigned char id)
  6585. {
  6586. printf_P(_N("KILL: %d\n"), id);
  6587. //return;
  6588. cli(); // Stop interrupts
  6589. disable_heater();
  6590. disable_x();
  6591. // SERIAL_ECHOLNPGM("kill - disable Y");
  6592. disable_y();
  6593. disable_z();
  6594. disable_e0();
  6595. disable_e1();
  6596. disable_e2();
  6597. #if defined(PS_ON_PIN) && PS_ON_PIN > -1
  6598. pinMode(PS_ON_PIN,INPUT);
  6599. #endif
  6600. SERIAL_ERROR_START;
  6601. SERIAL_ERRORLNRPGM(_i("Printer halted. kill() called!"));////MSG_ERR_KILLED c=0 r=0
  6602. if (full_screen_message != NULL) {
  6603. SERIAL_ERRORLNRPGM(full_screen_message);
  6604. lcd_display_message_fullscreen_P(full_screen_message);
  6605. } else {
  6606. LCD_ALERTMESSAGERPGM(_i("KILLED. "));////MSG_KILLED c=0 r=0
  6607. }
  6608. // FMC small patch to update the LCD before ending
  6609. sei(); // enable interrupts
  6610. for ( int i=5; i--; lcd_update(0))
  6611. {
  6612. delay(200);
  6613. }
  6614. cli(); // disable interrupts
  6615. suicide();
  6616. while(1)
  6617. {
  6618. #ifdef WATCHDOG
  6619. wdt_reset();
  6620. #endif //WATCHDOG
  6621. /* Intentionally left empty */
  6622. } // Wait for reset
  6623. }
  6624. void Stop()
  6625. {
  6626. disable_heater();
  6627. if(Stopped == false) {
  6628. Stopped = true;
  6629. Stopped_gcode_LastN = gcode_LastN; // Save last g_code for restart
  6630. SERIAL_ERROR_START;
  6631. SERIAL_ERRORLNRPGM(_T(MSG_ERR_STOPPED));
  6632. LCD_MESSAGERPGM(_T(MSG_STOPPED));
  6633. }
  6634. }
  6635. bool IsStopped() { return Stopped; };
  6636. #ifdef FAST_PWM_FAN
  6637. void setPwmFrequency(uint8_t pin, int val)
  6638. {
  6639. val &= 0x07;
  6640. switch(digitalPinToTimer(pin))
  6641. {
  6642. #if defined(TCCR0A)
  6643. case TIMER0A:
  6644. case TIMER0B:
  6645. // TCCR0B &= ~(_BV(CS00) | _BV(CS01) | _BV(CS02));
  6646. // TCCR0B |= val;
  6647. break;
  6648. #endif
  6649. #if defined(TCCR1A)
  6650. case TIMER1A:
  6651. case TIMER1B:
  6652. // TCCR1B &= ~(_BV(CS10) | _BV(CS11) | _BV(CS12));
  6653. // TCCR1B |= val;
  6654. break;
  6655. #endif
  6656. #if defined(TCCR2)
  6657. case TIMER2:
  6658. case TIMER2:
  6659. TCCR2 &= ~(_BV(CS10) | _BV(CS11) | _BV(CS12));
  6660. TCCR2 |= val;
  6661. break;
  6662. #endif
  6663. #if defined(TCCR2A)
  6664. case TIMER2A:
  6665. case TIMER2B:
  6666. TCCR2B &= ~(_BV(CS20) | _BV(CS21) | _BV(CS22));
  6667. TCCR2B |= val;
  6668. break;
  6669. #endif
  6670. #if defined(TCCR3A)
  6671. case TIMER3A:
  6672. case TIMER3B:
  6673. case TIMER3C:
  6674. TCCR3B &= ~(_BV(CS30) | _BV(CS31) | _BV(CS32));
  6675. TCCR3B |= val;
  6676. break;
  6677. #endif
  6678. #if defined(TCCR4A)
  6679. case TIMER4A:
  6680. case TIMER4B:
  6681. case TIMER4C:
  6682. TCCR4B &= ~(_BV(CS40) | _BV(CS41) | _BV(CS42));
  6683. TCCR4B |= val;
  6684. break;
  6685. #endif
  6686. #if defined(TCCR5A)
  6687. case TIMER5A:
  6688. case TIMER5B:
  6689. case TIMER5C:
  6690. TCCR5B &= ~(_BV(CS50) | _BV(CS51) | _BV(CS52));
  6691. TCCR5B |= val;
  6692. break;
  6693. #endif
  6694. }
  6695. }
  6696. #endif //FAST_PWM_FAN
  6697. //! @brief Get and validate extruder number
  6698. //!
  6699. //! If it is not specified, active_extruder is returned in parameter extruder.
  6700. //! @param [in] code M code number
  6701. //! @param [out] extruder
  6702. //! @return error
  6703. //! @retval true Invalid extruder specified in T code
  6704. //! @retval false Valid extruder specified in T code, or not specifiead
  6705. bool setTargetedHotend(int code, uint8_t &extruder)
  6706. {
  6707. extruder = active_extruder;
  6708. if(code_seen('T')) {
  6709. extruder = code_value();
  6710. if(extruder >= EXTRUDERS) {
  6711. SERIAL_ECHO_START;
  6712. switch(code){
  6713. case 104:
  6714. SERIAL_ECHORPGM(_i("M104 Invalid extruder "));////MSG_M104_INVALID_EXTRUDER c=0 r=0
  6715. break;
  6716. case 105:
  6717. SERIAL_ECHO(_i("M105 Invalid extruder "));////MSG_M105_INVALID_EXTRUDER c=0 r=0
  6718. break;
  6719. case 109:
  6720. SERIAL_ECHO(_i("M109 Invalid extruder "));////MSG_M109_INVALID_EXTRUDER c=0 r=0
  6721. break;
  6722. case 218:
  6723. SERIAL_ECHO(_i("M218 Invalid extruder "));////MSG_M218_INVALID_EXTRUDER c=0 r=0
  6724. break;
  6725. case 221:
  6726. SERIAL_ECHO(_i("M221 Invalid extruder "));////MSG_M221_INVALID_EXTRUDER c=0 r=0
  6727. break;
  6728. }
  6729. SERIAL_PROTOCOLLN((int)extruder);
  6730. return true;
  6731. }
  6732. }
  6733. return false;
  6734. }
  6735. void save_statistics(unsigned long _total_filament_used, unsigned long _total_print_time) //_total_filament_used unit: mm/100; print time in s
  6736. {
  6737. if (eeprom_read_byte((uint8_t *)EEPROM_TOTALTIME) == 255 && eeprom_read_byte((uint8_t *)EEPROM_TOTALTIME + 1) == 255 && eeprom_read_byte((uint8_t *)EEPROM_TOTALTIME + 2) == 255 && eeprom_read_byte((uint8_t *)EEPROM_TOTALTIME + 3) == 255)
  6738. {
  6739. eeprom_update_dword((uint32_t *)EEPROM_TOTALTIME, 0);
  6740. eeprom_update_dword((uint32_t *)EEPROM_FILAMENTUSED, 0);
  6741. }
  6742. unsigned long _previous_filament = eeprom_read_dword((uint32_t *)EEPROM_FILAMENTUSED); //_previous_filament unit: cm
  6743. unsigned long _previous_time = eeprom_read_dword((uint32_t *)EEPROM_TOTALTIME); //_previous_time unit: min
  6744. eeprom_update_dword((uint32_t *)EEPROM_TOTALTIME, _previous_time + (_total_print_time/60)); //EEPROM_TOTALTIME unit: min
  6745. eeprom_update_dword((uint32_t *)EEPROM_FILAMENTUSED, _previous_filament + (_total_filament_used / 1000));
  6746. total_filament_used = 0;
  6747. }
  6748. float calculate_extruder_multiplier(float diameter) {
  6749. float out = 1.f;
  6750. if (cs.volumetric_enabled && diameter > 0.f) {
  6751. float area = M_PI * diameter * diameter * 0.25;
  6752. out = 1.f / area;
  6753. }
  6754. if (extrudemultiply != 100)
  6755. out *= float(extrudemultiply) * 0.01f;
  6756. return out;
  6757. }
  6758. void calculate_extruder_multipliers() {
  6759. extruder_multiplier[0] = calculate_extruder_multiplier(cs.filament_size[0]);
  6760. #if EXTRUDERS > 1
  6761. extruder_multiplier[1] = calculate_extruder_multiplier(cs.filament_size[1]);
  6762. #if EXTRUDERS > 2
  6763. extruder_multiplier[2] = calculate_extruder_multiplier(cs.filament_size[2]);
  6764. #endif
  6765. #endif
  6766. }
  6767. void delay_keep_alive(unsigned int ms)
  6768. {
  6769. for (;;) {
  6770. manage_heater();
  6771. // Manage inactivity, but don't disable steppers on timeout.
  6772. manage_inactivity(true);
  6773. lcd_update(0);
  6774. if (ms == 0)
  6775. break;
  6776. else if (ms >= 50) {
  6777. delay(50);
  6778. ms -= 50;
  6779. } else {
  6780. delay(ms);
  6781. ms = 0;
  6782. }
  6783. }
  6784. }
  6785. static void wait_for_heater(long codenum, uint8_t extruder) {
  6786. #ifdef TEMP_RESIDENCY_TIME
  6787. long residencyStart;
  6788. residencyStart = -1;
  6789. /* continue to loop until we have reached the target temp
  6790. _and_ until TEMP_RESIDENCY_TIME hasn't passed since we reached it */
  6791. while ((!cancel_heatup) && ((residencyStart == -1) ||
  6792. (residencyStart >= 0 && (((unsigned int)(millis() - residencyStart)) < (TEMP_RESIDENCY_TIME * 1000UL))))) {
  6793. #else
  6794. while (target_direction ? (isHeatingHotend(tmp_extruder)) : (isCoolingHotend(tmp_extruder) && (CooldownNoWait == false))) {
  6795. #endif //TEMP_RESIDENCY_TIME
  6796. if ((millis() - codenum) > 1000UL)
  6797. { //Print Temp Reading and remaining time every 1 second while heating up/cooling down
  6798. if (!farm_mode) {
  6799. SERIAL_PROTOCOLPGM("T:");
  6800. SERIAL_PROTOCOL_F(degHotend(extruder), 1);
  6801. SERIAL_PROTOCOLPGM(" E:");
  6802. SERIAL_PROTOCOL((int)extruder);
  6803. #ifdef TEMP_RESIDENCY_TIME
  6804. SERIAL_PROTOCOLPGM(" W:");
  6805. if (residencyStart > -1)
  6806. {
  6807. codenum = ((TEMP_RESIDENCY_TIME * 1000UL) - (millis() - residencyStart)) / 1000UL;
  6808. SERIAL_PROTOCOLLN(codenum);
  6809. }
  6810. else
  6811. {
  6812. SERIAL_PROTOCOLLN("?");
  6813. }
  6814. }
  6815. #else
  6816. SERIAL_PROTOCOLLN("");
  6817. #endif
  6818. codenum = millis();
  6819. }
  6820. manage_heater();
  6821. manage_inactivity();
  6822. lcd_update(0);
  6823. #ifdef TEMP_RESIDENCY_TIME
  6824. /* start/restart the TEMP_RESIDENCY_TIME timer whenever we reach target temp for the first time
  6825. or when current temp falls outside the hysteresis after target temp was reached */
  6826. if ((residencyStart == -1 && target_direction && (degHotend(extruder) >= (degTargetHotend(extruder) - TEMP_WINDOW))) ||
  6827. (residencyStart == -1 && !target_direction && (degHotend(extruder) <= (degTargetHotend(extruder) + TEMP_WINDOW))) ||
  6828. (residencyStart > -1 && labs(degHotend(extruder) - degTargetHotend(extruder)) > TEMP_HYSTERESIS))
  6829. {
  6830. residencyStart = millis();
  6831. }
  6832. #endif //TEMP_RESIDENCY_TIME
  6833. }
  6834. }
  6835. void check_babystep()
  6836. {
  6837. int babystep_z;
  6838. EEPROM_read_B(EEPROM_BABYSTEP_Z, &babystep_z);
  6839. if ((babystep_z < Z_BABYSTEP_MIN) || (babystep_z > Z_BABYSTEP_MAX)) {
  6840. babystep_z = 0; //if babystep value is out of min max range, set it to 0
  6841. SERIAL_ECHOLNPGM("Z live adjust out of range. Setting to 0");
  6842. EEPROM_save_B(EEPROM_BABYSTEP_Z, &babystep_z);
  6843. lcd_show_fullscreen_message_and_wait_P(PSTR("Z live adjust out of range. Setting to 0. Click to continue."));
  6844. lcd_update_enable(true);
  6845. }
  6846. }
  6847. #ifdef DIS
  6848. void d_setup()
  6849. {
  6850. pinMode(D_DATACLOCK, INPUT_PULLUP);
  6851. pinMode(D_DATA, INPUT_PULLUP);
  6852. pinMode(D_REQUIRE, OUTPUT);
  6853. digitalWrite(D_REQUIRE, HIGH);
  6854. }
  6855. float d_ReadData()
  6856. {
  6857. int digit[13];
  6858. String mergeOutput;
  6859. float output;
  6860. digitalWrite(D_REQUIRE, HIGH);
  6861. for (int i = 0; i<13; i++)
  6862. {
  6863. for (int j = 0; j < 4; j++)
  6864. {
  6865. while (digitalRead(D_DATACLOCK) == LOW) {}
  6866. while (digitalRead(D_DATACLOCK) == HIGH) {}
  6867. bitWrite(digit[i], j, digitalRead(D_DATA));
  6868. }
  6869. }
  6870. digitalWrite(D_REQUIRE, LOW);
  6871. mergeOutput = "";
  6872. output = 0;
  6873. for (int r = 5; r <= 10; r++) //Merge digits
  6874. {
  6875. mergeOutput += digit[r];
  6876. }
  6877. output = mergeOutput.toFloat();
  6878. if (digit[4] == 8) //Handle sign
  6879. {
  6880. output *= -1;
  6881. }
  6882. for (int i = digit[11]; i > 0; i--) //Handle floating point
  6883. {
  6884. output /= 10;
  6885. }
  6886. return output;
  6887. }
  6888. void bed_analysis(float x_dimension, float y_dimension, int x_points_num, int y_points_num, float shift_x, float shift_y) {
  6889. int t1 = 0;
  6890. int t_delay = 0;
  6891. int digit[13];
  6892. int m;
  6893. char str[3];
  6894. //String mergeOutput;
  6895. char mergeOutput[15];
  6896. float output;
  6897. int mesh_point = 0; //index number of calibration point
  6898. float bed_zero_ref_x = (-22.f + X_PROBE_OFFSET_FROM_EXTRUDER); //shift between zero point on bed and target and between probe and nozzle
  6899. float bed_zero_ref_y = (-0.6f + Y_PROBE_OFFSET_FROM_EXTRUDER);
  6900. float mesh_home_z_search = 4;
  6901. float row[x_points_num];
  6902. int ix = 0;
  6903. int iy = 0;
  6904. const char* filename_wldsd = "wldsd.txt";
  6905. char data_wldsd[70];
  6906. char numb_wldsd[10];
  6907. d_setup();
  6908. if (!(axis_known_position[X_AXIS] && axis_known_position[Y_AXIS] && axis_known_position[Z_AXIS])) {
  6909. // We don't know where we are! HOME!
  6910. // Push the commands to the front of the message queue in the reverse order!
  6911. // There shall be always enough space reserved for these commands.
  6912. repeatcommand_front(); // repeat G80 with all its parameters
  6913. enquecommand_front_P((PSTR("G28 W0")));
  6914. enquecommand_front_P((PSTR("G1 Z5")));
  6915. return;
  6916. }
  6917. unsigned int custom_message_type_old = custom_message_type;
  6918. unsigned int custom_message_state_old = custom_message_state;
  6919. custom_message_type = CUSTOM_MSG_TYPE_MESHBL;
  6920. custom_message_state = (x_points_num * y_points_num) + 10;
  6921. lcd_update(1);
  6922. mbl.reset();
  6923. babystep_undo();
  6924. card.openFile(filename_wldsd, false);
  6925. current_position[Z_AXIS] = mesh_home_z_search;
  6926. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[Z_AXIS] / 60, active_extruder);
  6927. int XY_AXIS_FEEDRATE = homing_feedrate[X_AXIS] / 20;
  6928. int Z_LIFT_FEEDRATE = homing_feedrate[Z_AXIS] / 40;
  6929. int l_feedmultiply = setup_for_endstop_move(false);
  6930. SERIAL_PROTOCOLPGM("Num X,Y: ");
  6931. SERIAL_PROTOCOL(x_points_num);
  6932. SERIAL_PROTOCOLPGM(",");
  6933. SERIAL_PROTOCOL(y_points_num);
  6934. SERIAL_PROTOCOLPGM("\nZ search height: ");
  6935. SERIAL_PROTOCOL(mesh_home_z_search);
  6936. SERIAL_PROTOCOLPGM("\nDimension X,Y: ");
  6937. SERIAL_PROTOCOL(x_dimension);
  6938. SERIAL_PROTOCOLPGM(",");
  6939. SERIAL_PROTOCOL(y_dimension);
  6940. SERIAL_PROTOCOLLNPGM("\nMeasured points:");
  6941. while (mesh_point != x_points_num * y_points_num) {
  6942. ix = mesh_point % x_points_num; // from 0 to MESH_NUM_X_POINTS - 1
  6943. iy = mesh_point / x_points_num;
  6944. if (iy & 1) ix = (x_points_num - 1) - ix; // Zig zag
  6945. float z0 = 0.f;
  6946. current_position[Z_AXIS] = mesh_home_z_search;
  6947. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], Z_LIFT_FEEDRATE, active_extruder);
  6948. st_synchronize();
  6949. current_position[X_AXIS] = 13.f + ix * (x_dimension / (x_points_num - 1)) - bed_zero_ref_x + shift_x;
  6950. current_position[Y_AXIS] = 6.4f + iy * (y_dimension / (y_points_num - 1)) - bed_zero_ref_y + shift_y;
  6951. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], XY_AXIS_FEEDRATE, active_extruder);
  6952. st_synchronize();
  6953. if (!find_bed_induction_sensor_point_z(-10.f)) { //if we have data from z calibration max allowed difference is 1mm for each point, if we dont have data max difference is 10mm from initial point
  6954. break;
  6955. card.closefile();
  6956. }
  6957. //memset(numb_wldsd, 0, sizeof(numb_wldsd));
  6958. //dtostrf(d_ReadData(), 8, 5, numb_wldsd);
  6959. //strcat(data_wldsd, numb_wldsd);
  6960. //MYSERIAL.println(data_wldsd);
  6961. //delay(1000);
  6962. //delay(3000);
  6963. //t1 = millis();
  6964. //while (digitalRead(D_DATACLOCK) == LOW) {}
  6965. //while (digitalRead(D_DATACLOCK) == HIGH) {}
  6966. memset(digit, 0, sizeof(digit));
  6967. //cli();
  6968. digitalWrite(D_REQUIRE, LOW);
  6969. for (int i = 0; i<13; i++)
  6970. {
  6971. //t1 = millis();
  6972. for (int j = 0; j < 4; j++)
  6973. {
  6974. while (digitalRead(D_DATACLOCK) == LOW) {}
  6975. while (digitalRead(D_DATACLOCK) == HIGH) {}
  6976. bitWrite(digit[i], j, digitalRead(D_DATA));
  6977. }
  6978. //t_delay = (millis() - t1);
  6979. //SERIAL_PROTOCOLPGM(" ");
  6980. //SERIAL_PROTOCOL_F(t_delay, 5);
  6981. //SERIAL_PROTOCOLPGM(" ");
  6982. }
  6983. //sei();
  6984. digitalWrite(D_REQUIRE, HIGH);
  6985. mergeOutput[0] = '\0';
  6986. output = 0;
  6987. for (int r = 5; r <= 10; r++) //Merge digits
  6988. {
  6989. sprintf(str, "%d", digit[r]);
  6990. strcat(mergeOutput, str);
  6991. }
  6992. output = atof(mergeOutput);
  6993. if (digit[4] == 8) //Handle sign
  6994. {
  6995. output *= -1;
  6996. }
  6997. for (int i = digit[11]; i > 0; i--) //Handle floating point
  6998. {
  6999. output *= 0.1;
  7000. }
  7001. //output = d_ReadData();
  7002. //row[ix] = current_position[Z_AXIS];
  7003. memset(data_wldsd, 0, sizeof(data_wldsd));
  7004. for (int i = 0; i <3; i++) {
  7005. memset(numb_wldsd, 0, sizeof(numb_wldsd));
  7006. dtostrf(current_position[i], 8, 5, numb_wldsd);
  7007. strcat(data_wldsd, numb_wldsd);
  7008. strcat(data_wldsd, ";");
  7009. }
  7010. memset(numb_wldsd, 0, sizeof(numb_wldsd));
  7011. dtostrf(output, 8, 5, numb_wldsd);
  7012. strcat(data_wldsd, numb_wldsd);
  7013. //strcat(data_wldsd, ";");
  7014. card.write_command(data_wldsd);
  7015. //row[ix] = d_ReadData();
  7016. row[ix] = output; // current_position[Z_AXIS];
  7017. if (iy % 2 == 1 ? ix == 0 : ix == x_points_num - 1) {
  7018. for (int i = 0; i < x_points_num; i++) {
  7019. SERIAL_PROTOCOLPGM(" ");
  7020. SERIAL_PROTOCOL_F(row[i], 5);
  7021. }
  7022. SERIAL_PROTOCOLPGM("\n");
  7023. }
  7024. custom_message_state--;
  7025. mesh_point++;
  7026. lcd_update(1);
  7027. }
  7028. card.closefile();
  7029. clean_up_after_endstop_move(l_feedmultiply);
  7030. }
  7031. #endif
  7032. void temp_compensation_start() {
  7033. custom_message_type = CUSTOM_MSG_TYPE_TEMPRE;
  7034. custom_message_state = PINDA_HEAT_T + 1;
  7035. lcd_update(2);
  7036. if (degHotend(active_extruder) > EXTRUDE_MINTEMP) {
  7037. current_position[E_AXIS] -= default_retraction;
  7038. }
  7039. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400, active_extruder);
  7040. current_position[X_AXIS] = PINDA_PREHEAT_X;
  7041. current_position[Y_AXIS] = PINDA_PREHEAT_Y;
  7042. current_position[Z_AXIS] = PINDA_PREHEAT_Z;
  7043. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  7044. st_synchronize();
  7045. while (fabs(degBed() - target_temperature_bed) > 1) delay_keep_alive(1000);
  7046. for (int i = 0; i < PINDA_HEAT_T; i++) {
  7047. delay_keep_alive(1000);
  7048. custom_message_state = PINDA_HEAT_T - i;
  7049. if (custom_message_state == 99 || custom_message_state == 9) lcd_update(2); //force whole display redraw if number of digits changed
  7050. else lcd_update(1);
  7051. }
  7052. custom_message_type = CUSTOM_MSG_TYPE_STATUS;
  7053. custom_message_state = 0;
  7054. }
  7055. void temp_compensation_apply() {
  7056. int i_add;
  7057. int z_shift = 0;
  7058. float z_shift_mm;
  7059. if (calibration_status() == CALIBRATION_STATUS_CALIBRATED) {
  7060. if (target_temperature_bed % 10 == 0 && target_temperature_bed >= 60 && target_temperature_bed <= 100) {
  7061. i_add = (target_temperature_bed - 60) / 10;
  7062. EEPROM_read_B(EEPROM_PROBE_TEMP_SHIFT + i_add * 2, &z_shift);
  7063. z_shift_mm = z_shift / cs.axis_steps_per_unit[Z_AXIS];
  7064. }else {
  7065. //interpolation
  7066. z_shift_mm = temp_comp_interpolation(target_temperature_bed) / cs.axis_steps_per_unit[Z_AXIS];
  7067. }
  7068. printf_P(_N("\nZ shift applied:%.3f\n"), z_shift_mm);
  7069. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS] - z_shift_mm, current_position[E_AXIS], homing_feedrate[Z_AXIS] / 40, active_extruder);
  7070. st_synchronize();
  7071. plan_set_z_position(current_position[Z_AXIS]);
  7072. }
  7073. else {
  7074. //we have no temp compensation data
  7075. }
  7076. }
  7077. float temp_comp_interpolation(float inp_temperature) {
  7078. //cubic spline interpolation
  7079. int n, i, j;
  7080. float h[10], a, b, c, d, sum, s[10] = { 0 }, x[10], F[10], f[10], m[10][10] = { 0 }, temp;
  7081. int shift[10];
  7082. int temp_C[10];
  7083. n = 6; //number of measured points
  7084. shift[0] = 0;
  7085. for (i = 0; i < n; i++) {
  7086. if (i>0) EEPROM_read_B(EEPROM_PROBE_TEMP_SHIFT + (i-1) * 2, &shift[i]); //read shift in steps from EEPROM
  7087. temp_C[i] = 50 + i * 10; //temperature in C
  7088. #ifdef PINDA_THERMISTOR
  7089. temp_C[i] = 35 + i * 5; //temperature in C
  7090. #else
  7091. temp_C[i] = 50 + i * 10; //temperature in C
  7092. #endif
  7093. x[i] = (float)temp_C[i];
  7094. f[i] = (float)shift[i];
  7095. }
  7096. if (inp_temperature < x[0]) return 0;
  7097. for (i = n - 1; i>0; i--) {
  7098. F[i] = (f[i] - f[i - 1]) / (x[i] - x[i - 1]);
  7099. h[i - 1] = x[i] - x[i - 1];
  7100. }
  7101. //*********** formation of h, s , f matrix **************
  7102. for (i = 1; i<n - 1; i++) {
  7103. m[i][i] = 2 * (h[i - 1] + h[i]);
  7104. if (i != 1) {
  7105. m[i][i - 1] = h[i - 1];
  7106. m[i - 1][i] = h[i - 1];
  7107. }
  7108. m[i][n - 1] = 6 * (F[i + 1] - F[i]);
  7109. }
  7110. //*********** forward elimination **************
  7111. for (i = 1; i<n - 2; i++) {
  7112. temp = (m[i + 1][i] / m[i][i]);
  7113. for (j = 1; j <= n - 1; j++)
  7114. m[i + 1][j] -= temp*m[i][j];
  7115. }
  7116. //*********** backward substitution *********
  7117. for (i = n - 2; i>0; i--) {
  7118. sum = 0;
  7119. for (j = i; j <= n - 2; j++)
  7120. sum += m[i][j] * s[j];
  7121. s[i] = (m[i][n - 1] - sum) / m[i][i];
  7122. }
  7123. for (i = 0; i<n - 1; i++)
  7124. if ((x[i] <= inp_temperature && inp_temperature <= x[i + 1]) || (i == n-2 && inp_temperature > x[i + 1])) {
  7125. a = (s[i + 1] - s[i]) / (6 * h[i]);
  7126. b = s[i] / 2;
  7127. c = (f[i + 1] - f[i]) / h[i] - (2 * h[i] * s[i] + s[i + 1] * h[i]) / 6;
  7128. d = f[i];
  7129. sum = a*pow((inp_temperature - x[i]), 3) + b*pow((inp_temperature - x[i]), 2) + c*(inp_temperature - x[i]) + d;
  7130. }
  7131. return sum;
  7132. }
  7133. #ifdef PINDA_THERMISTOR
  7134. float temp_compensation_pinda_thermistor_offset(float temperature_pinda)
  7135. {
  7136. if (!temp_cal_active) return 0;
  7137. if (!calibration_status_pinda()) return 0;
  7138. return temp_comp_interpolation(temperature_pinda) / cs.axis_steps_per_unit[Z_AXIS];
  7139. }
  7140. #endif //PINDA_THERMISTOR
  7141. void long_pause() //long pause print
  7142. {
  7143. st_synchronize();
  7144. start_pause_print = millis();
  7145. //retract
  7146. current_position[E_AXIS] -= default_retraction;
  7147. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400, active_extruder);
  7148. //lift z
  7149. current_position[Z_AXIS] += Z_PAUSE_LIFT;
  7150. if (current_position[Z_AXIS] > Z_MAX_POS) current_position[Z_AXIS] = Z_MAX_POS;
  7151. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 15, active_extruder);
  7152. //Move XY to side
  7153. current_position[X_AXIS] = X_PAUSE_POS;
  7154. current_position[Y_AXIS] = Y_PAUSE_POS;
  7155. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 50, active_extruder);
  7156. // Turn off the print fan
  7157. fanSpeed = 0;
  7158. st_synchronize();
  7159. }
  7160. void serialecho_temperatures() {
  7161. float tt = degHotend(active_extruder);
  7162. SERIAL_PROTOCOLPGM("T:");
  7163. SERIAL_PROTOCOL(tt);
  7164. SERIAL_PROTOCOLPGM(" E:");
  7165. SERIAL_PROTOCOL((int)active_extruder);
  7166. SERIAL_PROTOCOLPGM(" B:");
  7167. SERIAL_PROTOCOL_F(degBed(), 1);
  7168. SERIAL_PROTOCOLLN("");
  7169. }
  7170. extern uint32_t sdpos_atomic;
  7171. #ifdef UVLO_SUPPORT
  7172. void uvlo_()
  7173. {
  7174. unsigned long time_start = millis();
  7175. bool sd_print = card.sdprinting;
  7176. // Conserve power as soon as possible.
  7177. disable_x();
  7178. disable_y();
  7179. #ifdef TMC2130
  7180. tmc2130_set_current_h(Z_AXIS, 20);
  7181. tmc2130_set_current_r(Z_AXIS, 20);
  7182. tmc2130_set_current_h(E_AXIS, 20);
  7183. tmc2130_set_current_r(E_AXIS, 20);
  7184. #endif //TMC2130
  7185. // Indicate that the interrupt has been triggered.
  7186. // SERIAL_ECHOLNPGM("UVLO");
  7187. // Read out the current Z motor microstep counter. This will be later used
  7188. // for reaching the zero full step before powering off.
  7189. uint16_t z_microsteps = 0;
  7190. #ifdef TMC2130
  7191. z_microsteps = tmc2130_rd_MSCNT(Z_TMC2130_CS);
  7192. #endif //TMC2130
  7193. // Calculate the file position, from which to resume this print.
  7194. long sd_position = sdpos_atomic; //atomic sd position of last command added in queue
  7195. {
  7196. uint16_t sdlen_planner = planner_calc_sd_length(); //length of sd commands in planner
  7197. sd_position -= sdlen_planner;
  7198. uint16_t sdlen_cmdqueue = cmdqueue_calc_sd_length(); //length of sd commands in cmdqueue
  7199. sd_position -= sdlen_cmdqueue;
  7200. if (sd_position < 0) sd_position = 0;
  7201. }
  7202. // Backup the feedrate in mm/min.
  7203. int feedrate_bckp = blocks_queued() ? (block_buffer[block_buffer_tail].nominal_speed * 60.f) : feedrate;
  7204. // After this call, the planner queue is emptied and the current_position is set to a current logical coordinate.
  7205. // The logical coordinate will likely differ from the machine coordinate if the skew calibration and mesh bed leveling
  7206. // are in action.
  7207. planner_abort_hard();
  7208. // Store the current extruder position.
  7209. eeprom_update_float((float*)(EEPROM_UVLO_CURRENT_POSITION_E), st_get_position_mm(E_AXIS));
  7210. eeprom_update_byte((uint8_t*)EEPROM_UVLO_E_ABS, axis_relative_modes[3]?0:1);
  7211. // Clean the input command queue.
  7212. cmdqueue_reset();
  7213. card.sdprinting = false;
  7214. // card.closefile();
  7215. // Enable stepper driver interrupt to move Z axis.
  7216. // This should be fine as the planner and command queues are empty and the SD card printing is disabled.
  7217. //FIXME one may want to disable serial lines at this point of time to avoid interfering with the command queue,
  7218. // though it should not happen that the command queue is touched as the plan_buffer_line always succeed without blocking.
  7219. sei();
  7220. plan_buffer_line(
  7221. current_position[X_AXIS],
  7222. current_position[Y_AXIS],
  7223. current_position[Z_AXIS],
  7224. current_position[E_AXIS] - default_retraction,
  7225. 95, active_extruder);
  7226. st_synchronize();
  7227. disable_e0();
  7228. plan_buffer_line(
  7229. current_position[X_AXIS],
  7230. current_position[Y_AXIS],
  7231. current_position[Z_AXIS] + UVLO_Z_AXIS_SHIFT + float((1024 - z_microsteps + 7) >> 4) / cs.axis_steps_per_unit[Z_AXIS],
  7232. current_position[E_AXIS] - default_retraction,
  7233. 40, active_extruder);
  7234. st_synchronize();
  7235. disable_e0();
  7236. plan_buffer_line(
  7237. current_position[X_AXIS],
  7238. current_position[Y_AXIS],
  7239. current_position[Z_AXIS] + UVLO_Z_AXIS_SHIFT + float((1024 - z_microsteps + 7) >> 4) / cs.axis_steps_per_unit[Z_AXIS],
  7240. current_position[E_AXIS] - default_retraction,
  7241. 40, active_extruder);
  7242. st_synchronize();
  7243. disable_e0();
  7244. disable_z();
  7245. // Move Z up to the next 0th full step.
  7246. // Write the file position.
  7247. eeprom_update_dword((uint32_t*)(EEPROM_FILE_POSITION), sd_position);
  7248. // Store the mesh bed leveling offsets. This is 2*9=18 bytes, which takes 18*3.4us=52us in worst case.
  7249. for (int8_t mesh_point = 0; mesh_point < 9; ++ mesh_point) {
  7250. uint8_t ix = mesh_point % MESH_MEAS_NUM_X_POINTS; // from 0 to MESH_NUM_X_POINTS - 1
  7251. uint8_t iy = mesh_point / MESH_MEAS_NUM_X_POINTS;
  7252. // Scale the z value to 1u resolution.
  7253. int16_t v = mbl.active ? int16_t(floor(mbl.z_values[iy*3][ix*3] * 1000.f + 0.5f)) : 0;
  7254. eeprom_update_word((uint16_t*)(EEPROM_UVLO_MESH_BED_LEVELING+2*mesh_point), *reinterpret_cast<uint16_t*>(&v));
  7255. }
  7256. // Read out the current Z motor microstep counter. This will be later used
  7257. // for reaching the zero full step before powering off.
  7258. eeprom_update_word((uint16_t*)(EEPROM_UVLO_Z_MICROSTEPS), z_microsteps);
  7259. // Store the current position.
  7260. eeprom_update_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 0), current_position[X_AXIS]);
  7261. eeprom_update_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 4), current_position[Y_AXIS]);
  7262. eeprom_update_float((float*)(EEPROM_UVLO_CURRENT_POSITION_Z), current_position[Z_AXIS]);
  7263. // Store the current feed rate, temperatures, fan speed and extruder multipliers (flow rates)
  7264. EEPROM_save_B(EEPROM_UVLO_FEEDRATE, &feedrate_bckp);
  7265. eeprom_update_byte((uint8_t*)EEPROM_UVLO_TARGET_HOTEND, target_temperature[active_extruder]);
  7266. eeprom_update_byte((uint8_t*)EEPROM_UVLO_TARGET_BED, target_temperature_bed);
  7267. eeprom_update_byte((uint8_t*)EEPROM_UVLO_FAN_SPEED, fanSpeed);
  7268. eeprom_update_float((float*)(EEPROM_EXTRUDER_MULTIPLIER_0), extruder_multiplier[0]);
  7269. #if EXTRUDERS > 1
  7270. eeprom_update_float((float*)(EEPROM_EXTRUDER_MULTIPLIER_1), extruder_multiplier[1]);
  7271. #if EXTRUDERS > 2
  7272. eeprom_update_float((float*)(EEPROM_EXTRUDER_MULTIPLIER_2), extruder_multiplier[2]);
  7273. #endif
  7274. #endif
  7275. eeprom_update_word((uint16_t*)(EEPROM_EXTRUDEMULTIPLY), (uint16_t)extrudemultiply);
  7276. // Finaly store the "power outage" flag.
  7277. if(sd_print) eeprom_update_byte((uint8_t*)EEPROM_UVLO, 1);
  7278. st_synchronize();
  7279. printf_P(_N("stps%d\n"), tmc2130_rd_MSCNT(Z_AXIS));
  7280. disable_z();
  7281. // Increment power failure counter
  7282. eeprom_update_byte((uint8_t*)EEPROM_POWER_COUNT, eeprom_read_byte((uint8_t*)EEPROM_POWER_COUNT) + 1);
  7283. eeprom_update_word((uint16_t*)EEPROM_POWER_COUNT_TOT, eeprom_read_word((uint16_t*)EEPROM_POWER_COUNT_TOT) + 1);
  7284. printf_P(_N("UVLO - end %d\n"), millis() - time_start);
  7285. #if 0
  7286. // Move the print head to the side of the print until all the power stored in the power supply capacitors is depleted.
  7287. current_position[X_AXIS] = (current_position[X_AXIS] < 0.5f * (X_MIN_POS + X_MAX_POS)) ? X_MIN_POS : X_MAX_POS;
  7288. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 500, active_extruder);
  7289. st_synchronize();
  7290. #endif
  7291. wdt_enable(WDTO_500MS);
  7292. WRITE(BEEPER,HIGH);
  7293. while(1)
  7294. ;
  7295. }
  7296. void uvlo_tiny()
  7297. {
  7298. uint16_t z_microsteps=0;
  7299. // Conserve power as soon as possible.
  7300. disable_x();
  7301. disable_y();
  7302. disable_e0();
  7303. #ifdef TMC2130
  7304. tmc2130_set_current_h(Z_AXIS, 20);
  7305. tmc2130_set_current_r(Z_AXIS, 20);
  7306. #endif //TMC2130
  7307. // Read out the current Z motor microstep counter
  7308. #ifdef TMC2130
  7309. z_microsteps=tmc2130_rd_MSCNT(Z_TMC2130_CS);
  7310. #endif //TMC2130
  7311. planner_abort_hard();
  7312. sei();
  7313. plan_buffer_line(
  7314. current_position[X_AXIS],
  7315. current_position[Y_AXIS],
  7316. // current_position[Z_AXIS]+float((1024-z_microsteps+7)>>4)/axis_steps_per_unit[Z_AXIS],
  7317. current_position[Z_AXIS]+UVLO_Z_AXIS_SHIFT+float((1024-z_microsteps+7)>>4)/cs.axis_steps_per_unit[Z_AXIS],
  7318. current_position[E_AXIS],
  7319. 40, active_extruder);
  7320. st_synchronize();
  7321. disable_z();
  7322. // Finaly store the "power outage" flag.
  7323. //if(sd_print)
  7324. eeprom_update_byte((uint8_t*)EEPROM_UVLO,2);
  7325. eeprom_update_word((uint16_t*)(EEPROM_UVLO_TINY_Z_MICROSTEPS),z_microsteps);
  7326. eeprom_update_float((float*)(EEPROM_UVLO_TINY_CURRENT_POSITION_Z), current_position[Z_AXIS]);
  7327. // Increment power failure counter
  7328. eeprom_update_byte((uint8_t*)EEPROM_POWER_COUNT, eeprom_read_byte((uint8_t*)EEPROM_POWER_COUNT) + 1);
  7329. eeprom_update_word((uint16_t*)EEPROM_POWER_COUNT_TOT, eeprom_read_word((uint16_t*)EEPROM_POWER_COUNT_TOT) + 1);
  7330. wdt_enable(WDTO_500MS);
  7331. WRITE(BEEPER,HIGH);
  7332. while(1)
  7333. ;
  7334. }
  7335. #endif //UVLO_SUPPORT
  7336. #if (defined(FANCHECK) && defined(TACH_1) && (TACH_1 >-1))
  7337. void setup_fan_interrupt() {
  7338. //INT7
  7339. DDRE &= ~(1 << 7); //input pin
  7340. PORTE &= ~(1 << 7); //no internal pull-up
  7341. //start with sensing rising edge
  7342. EICRB &= ~(1 << 6);
  7343. EICRB |= (1 << 7);
  7344. //enable INT7 interrupt
  7345. EIMSK |= (1 << 7);
  7346. }
  7347. // The fan interrupt is triggered at maximum 325Hz (may be a bit more due to component tollerances),
  7348. // and it takes 4.24 us to process (the interrupt invocation overhead not taken into account).
  7349. ISR(INT7_vect) {
  7350. //measuring speed now works for fanSpeed > 18 (approximately), which is sufficient because MIN_PRINT_FAN_SPEED is higher
  7351. if (fanSpeed < MIN_PRINT_FAN_SPEED) return;
  7352. if ((1 << 6) & EICRB) { //interrupt was triggered by rising edge
  7353. t_fan_rising_edge = millis_nc();
  7354. }
  7355. else { //interrupt was triggered by falling edge
  7356. if ((millis_nc() - t_fan_rising_edge) >= FAN_PULSE_WIDTH_LIMIT) {//this pulse was from sensor and not from pwm
  7357. fan_edge_counter[1] += 2; //we are currently counting all edges so lets count two edges for one pulse
  7358. }
  7359. }
  7360. EICRB ^= (1 << 6); //change edge
  7361. }
  7362. #endif
  7363. #ifdef UVLO_SUPPORT
  7364. void setup_uvlo_interrupt() {
  7365. DDRE &= ~(1 << 4); //input pin
  7366. PORTE &= ~(1 << 4); //no internal pull-up
  7367. //sensing falling edge
  7368. EICRB |= (1 << 0);
  7369. EICRB &= ~(1 << 1);
  7370. //enable INT4 interrupt
  7371. EIMSK |= (1 << 4);
  7372. }
  7373. ISR(INT4_vect) {
  7374. EIMSK &= ~(1 << 4); //disable INT4 interrupt to make sure that this code will be executed just once
  7375. SERIAL_ECHOLNPGM("INT4");
  7376. if(IS_SD_PRINTING && (!(eeprom_read_byte((uint8_t*)EEPROM_UVLO))) ) uvlo_();
  7377. if(eeprom_read_byte((uint8_t*)EEPROM_UVLO)) uvlo_tiny();
  7378. }
  7379. void recover_print(uint8_t automatic) {
  7380. char cmd[30];
  7381. lcd_update_enable(true);
  7382. lcd_update(2);
  7383. lcd_setstatuspgm(_i("Recovering print "));////MSG_RECOVERING_PRINT c=20 r=1
  7384. bool bTiny=(eeprom_read_byte((uint8_t*)EEPROM_UVLO)==2);
  7385. recover_machine_state_after_power_panic(bTiny); //recover position, temperatures and extrude_multipliers
  7386. // Lift the print head, so one may remove the excess priming material.
  7387. if(!bTiny&&(current_position[Z_AXIS]<25))
  7388. enquecommand_P(PSTR("G1 Z25 F800"));
  7389. // Home X and Y axes. Homing just X and Y shall not touch the babystep and the world2machine transformation status.
  7390. enquecommand_P(PSTR("G28 X Y"));
  7391. // Set the target bed and nozzle temperatures and wait.
  7392. sprintf_P(cmd, PSTR("M109 S%d"), target_temperature[active_extruder]);
  7393. enquecommand(cmd);
  7394. sprintf_P(cmd, PSTR("M190 S%d"), target_temperature_bed);
  7395. enquecommand(cmd);
  7396. enquecommand_P(PSTR("M83")); //E axis relative mode
  7397. //enquecommand_P(PSTR("G1 E5 F120")); //Extrude some filament to stabilize pessure
  7398. // If not automatically recoreverd (long power loss), extrude extra filament to stabilize
  7399. if(automatic == 0){
  7400. enquecommand_P(PSTR("G1 E5 F120")); //Extrude some filament to stabilize pessure
  7401. }
  7402. enquecommand_P(PSTR("G1 E" STRINGIFY(-default_retraction)" F480"));
  7403. printf_P(_N("After waiting for temp:\nCurrent pos X_AXIS:%.3f\nCurrent pos Y_AXIS:%.3f\n"), current_position[X_AXIS], current_position[Y_AXIS]);
  7404. // Restart the print.
  7405. restore_print_from_eeprom();
  7406. printf_P(_N("Current pos Z_AXIS:%.3f\nCurrent pos E_AXIS:%.3f\n"), current_position[Z_AXIS], current_position[E_AXIS]);
  7407. }
  7408. void recover_machine_state_after_power_panic(bool bTiny)
  7409. {
  7410. char cmd[30];
  7411. // 1) Recover the logical cordinates at the time of the power panic.
  7412. // The logical XY coordinates are needed to recover the machine Z coordinate corrected by the mesh bed leveling.
  7413. current_position[X_AXIS] = eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 0));
  7414. current_position[Y_AXIS] = eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 4));
  7415. // Recover the logical coordinate of the Z axis at the time of the power panic.
  7416. // The current position after power panic is moved to the next closest 0th full step.
  7417. if(bTiny)
  7418. current_position[Z_AXIS] = eeprom_read_float((float*)(EEPROM_UVLO_TINY_CURRENT_POSITION_Z)) +
  7419. UVLO_Z_AXIS_SHIFT + float((1024 - eeprom_read_word((uint16_t*)(EEPROM_UVLO_TINY_Z_MICROSTEPS)) + 7) >> 4) / cs.axis_steps_per_unit[Z_AXIS];
  7420. else
  7421. current_position[Z_AXIS] = eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION_Z)) +
  7422. UVLO_Z_AXIS_SHIFT + float((1024 - eeprom_read_word((uint16_t*)(EEPROM_UVLO_Z_MICROSTEPS)) + 7) >> 4) / cs.axis_steps_per_unit[Z_AXIS];
  7423. if (eeprom_read_byte((uint8_t*)EEPROM_UVLO_E_ABS)) {
  7424. current_position[E_AXIS] = eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION_E));
  7425. sprintf_P(cmd, PSTR("G92 E"));
  7426. dtostrf(current_position[E_AXIS], 6, 3, cmd + strlen(cmd));
  7427. enquecommand(cmd);
  7428. }
  7429. memcpy(destination, current_position, sizeof(destination));
  7430. SERIAL_ECHOPGM("recover_machine_state_after_power_panic, initial ");
  7431. print_world_coordinates();
  7432. // 2) Initialize the logical to physical coordinate system transformation.
  7433. world2machine_initialize();
  7434. // 3) Restore the mesh bed leveling offsets. This is 2*9=18 bytes, which takes 18*3.4us=52us in worst case.
  7435. mbl.active = false;
  7436. for (int8_t mesh_point = 0; mesh_point < 9; ++ mesh_point) {
  7437. uint8_t ix = mesh_point % MESH_MEAS_NUM_X_POINTS; // from 0 to MESH_NUM_X_POINTS - 1
  7438. uint8_t iy = mesh_point / MESH_MEAS_NUM_X_POINTS;
  7439. // Scale the z value to 10u resolution.
  7440. int16_t v;
  7441. eeprom_read_block(&v, (void*)(EEPROM_UVLO_MESH_BED_LEVELING+2*mesh_point), 2);
  7442. if (v != 0)
  7443. mbl.active = true;
  7444. mbl.z_values[iy][ix] = float(v) * 0.001f;
  7445. }
  7446. if (mbl.active)
  7447. mbl.upsample_3x3();
  7448. // SERIAL_ECHOPGM("recover_machine_state_after_power_panic, initial ");
  7449. // print_mesh_bed_leveling_table();
  7450. // 4) Load the baby stepping value, which is expected to be active at the time of power panic.
  7451. // The baby stepping value is used to reset the physical Z axis when rehoming the Z axis.
  7452. babystep_load();
  7453. // 5) Set the physical positions from the logical positions using the world2machine transformation and the active bed leveling.
  7454. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  7455. // 6) Power up the motors, mark their positions as known.
  7456. //FIXME Verfiy, whether the X and Y axes should be powered up here, as they will later be re-homed anyway.
  7457. axis_known_position[X_AXIS] = true; enable_x();
  7458. axis_known_position[Y_AXIS] = true; enable_y();
  7459. axis_known_position[Z_AXIS] = true; enable_z();
  7460. SERIAL_ECHOPGM("recover_machine_state_after_power_panic, initial ");
  7461. print_physical_coordinates();
  7462. // 7) Recover the target temperatures.
  7463. target_temperature[active_extruder] = eeprom_read_byte((uint8_t*)EEPROM_UVLO_TARGET_HOTEND);
  7464. target_temperature_bed = eeprom_read_byte((uint8_t*)EEPROM_UVLO_TARGET_BED);
  7465. // 8) Recover extruder multipilers
  7466. extruder_multiplier[0] = eeprom_read_float((float*)(EEPROM_EXTRUDER_MULTIPLIER_0));
  7467. #if EXTRUDERS > 1
  7468. extruder_multiplier[1] = eeprom_read_float((float*)(EEPROM_EXTRUDER_MULTIPLIER_1));
  7469. #if EXTRUDERS > 2
  7470. extruder_multiplier[2] = eeprom_read_float((float*)(EEPROM_EXTRUDER_MULTIPLIER_2));
  7471. #endif
  7472. #endif
  7473. extrudemultiply = (int)eeprom_read_word((uint16_t*)(EEPROM_EXTRUDEMULTIPLY));
  7474. }
  7475. void restore_print_from_eeprom() {
  7476. int feedrate_rec;
  7477. uint8_t fan_speed_rec;
  7478. char cmd[30];
  7479. char filename[13];
  7480. uint8_t depth = 0;
  7481. char dir_name[9];
  7482. fan_speed_rec = eeprom_read_byte((uint8_t*)EEPROM_UVLO_FAN_SPEED);
  7483. EEPROM_read_B(EEPROM_UVLO_FEEDRATE, &feedrate_rec);
  7484. SERIAL_ECHOPGM("Feedrate:");
  7485. MYSERIAL.println(feedrate_rec);
  7486. depth = eeprom_read_byte((uint8_t*)EEPROM_DIR_DEPTH);
  7487. MYSERIAL.println(int(depth));
  7488. for (int i = 0; i < depth; i++) {
  7489. for (int j = 0; j < 8; j++) {
  7490. dir_name[j] = eeprom_read_byte((uint8_t*)EEPROM_DIRS + j + 8 * i);
  7491. }
  7492. dir_name[8] = '\0';
  7493. MYSERIAL.println(dir_name);
  7494. strcpy(dir_names[i], dir_name);
  7495. card.chdir(dir_name);
  7496. }
  7497. for (int i = 0; i < 8; i++) {
  7498. filename[i] = eeprom_read_byte((uint8_t*)EEPROM_FILENAME + i);
  7499. }
  7500. filename[8] = '\0';
  7501. MYSERIAL.print(filename);
  7502. strcat_P(filename, PSTR(".gco"));
  7503. sprintf_P(cmd, PSTR("M23 %s"), filename);
  7504. enquecommand(cmd);
  7505. uint32_t position = eeprom_read_dword((uint32_t*)(EEPROM_FILE_POSITION));
  7506. SERIAL_ECHOPGM("Position read from eeprom:");
  7507. MYSERIAL.println(position);
  7508. // E axis relative mode.
  7509. enquecommand_P(PSTR("M83"));
  7510. // Move to the XY print position in logical coordinates, where the print has been killed.
  7511. strcpy_P(cmd, PSTR("G1 X")); strcat(cmd, ftostr32(eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 0))));
  7512. strcat_P(cmd, PSTR(" Y")); strcat(cmd, ftostr32(eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 4))));
  7513. strcat_P(cmd, PSTR(" F2000"));
  7514. enquecommand(cmd);
  7515. // Move the Z axis down to the print, in logical coordinates.
  7516. strcpy_P(cmd, PSTR("G1 Z")); strcat(cmd, ftostr32(eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION_Z))));
  7517. enquecommand(cmd);
  7518. // Unretract.
  7519. enquecommand_P(PSTR("G1 E" STRINGIFY(2*default_retraction)" F480"));
  7520. // Set the feedrate saved at the power panic.
  7521. sprintf_P(cmd, PSTR("G1 F%d"), feedrate_rec);
  7522. enquecommand(cmd);
  7523. if (eeprom_read_byte((uint8_t*)EEPROM_UVLO_E_ABS))
  7524. {
  7525. enquecommand_P(PSTR("M82")); //E axis abslute mode
  7526. }
  7527. // Set the fan speed saved at the power panic.
  7528. strcpy_P(cmd, PSTR("M106 S"));
  7529. strcat(cmd, itostr3(int(fan_speed_rec)));
  7530. enquecommand(cmd);
  7531. // Set a position in the file.
  7532. sprintf_P(cmd, PSTR("M26 S%lu"), position);
  7533. enquecommand(cmd);
  7534. enquecommand_P(PSTR("G4 S0"));
  7535. enquecommand_P(PSTR("PRUSA uvlo"));
  7536. }
  7537. #endif //UVLO_SUPPORT
  7538. //! @brief Immediately stop print moves
  7539. //!
  7540. //! Immediately stop print moves, save current extruder temperature and position to RAM.
  7541. //! If printing from sd card, position in file is saved.
  7542. //! If printing from USB, line number is saved.
  7543. //!
  7544. //! @param z_move
  7545. //! @param e_move
  7546. void stop_and_save_print_to_ram(float z_move, float e_move)
  7547. {
  7548. if (saved_printing) return;
  7549. #if 0
  7550. unsigned char nplanner_blocks;
  7551. #endif
  7552. unsigned char nlines;
  7553. uint16_t sdlen_planner;
  7554. uint16_t sdlen_cmdqueue;
  7555. cli();
  7556. if (card.sdprinting) {
  7557. #if 0
  7558. nplanner_blocks = number_of_blocks();
  7559. #endif
  7560. saved_sdpos = sdpos_atomic; //atomic sd position of last command added in queue
  7561. sdlen_planner = planner_calc_sd_length(); //length of sd commands in planner
  7562. saved_sdpos -= sdlen_planner;
  7563. sdlen_cmdqueue = cmdqueue_calc_sd_length(); //length of sd commands in cmdqueue
  7564. saved_sdpos -= sdlen_cmdqueue;
  7565. saved_printing_type = PRINTING_TYPE_SD;
  7566. }
  7567. else if (is_usb_printing) { //reuse saved_sdpos for storing line number
  7568. saved_sdpos = gcode_LastN; //start with line number of command added recently to cmd queue
  7569. //reuse planner_calc_sd_length function for getting number of lines of commands in planner:
  7570. nlines = planner_calc_sd_length(); //number of lines of commands in planner
  7571. saved_sdpos -= nlines;
  7572. saved_sdpos -= buflen; //number of blocks in cmd buffer
  7573. saved_printing_type = PRINTING_TYPE_USB;
  7574. }
  7575. else {
  7576. //not sd printing nor usb printing
  7577. }
  7578. #if 0
  7579. SERIAL_ECHOPGM("SDPOS_ATOMIC="); MYSERIAL.println(sdpos_atomic, DEC);
  7580. SERIAL_ECHOPGM("SDPOS="); MYSERIAL.println(card.get_sdpos(), DEC);
  7581. SERIAL_ECHOPGM("SDLEN_PLAN="); MYSERIAL.println(sdlen_planner, DEC);
  7582. SERIAL_ECHOPGM("SDLEN_CMDQ="); MYSERIAL.println(sdlen_cmdqueue, DEC);
  7583. SERIAL_ECHOPGM("PLANNERBLOCKS="); MYSERIAL.println(int(nplanner_blocks), DEC);
  7584. SERIAL_ECHOPGM("SDSAVED="); MYSERIAL.println(saved_sdpos, DEC);
  7585. //SERIAL_ECHOPGM("SDFILELEN="); MYSERIAL.println(card.fileSize(), DEC);
  7586. {
  7587. card.setIndex(saved_sdpos);
  7588. SERIAL_ECHOLNPGM("Content of planner buffer: ");
  7589. for (unsigned int idx = 0; idx < sdlen_planner; ++ idx)
  7590. MYSERIAL.print(char(card.get()));
  7591. SERIAL_ECHOLNPGM("Content of command buffer: ");
  7592. for (unsigned int idx = 0; idx < sdlen_cmdqueue; ++ idx)
  7593. MYSERIAL.print(char(card.get()));
  7594. SERIAL_ECHOLNPGM("End of command buffer");
  7595. }
  7596. {
  7597. // Print the content of the planner buffer, line by line:
  7598. card.setIndex(saved_sdpos);
  7599. int8_t iline = 0;
  7600. for (unsigned char idx = block_buffer_tail; idx != block_buffer_head; idx = (idx + 1) & (BLOCK_BUFFER_SIZE - 1), ++ iline) {
  7601. SERIAL_ECHOPGM("Planner line (from file): ");
  7602. MYSERIAL.print(int(iline), DEC);
  7603. SERIAL_ECHOPGM(", length: ");
  7604. MYSERIAL.print(block_buffer[idx].sdlen, DEC);
  7605. SERIAL_ECHOPGM(", steps: (");
  7606. MYSERIAL.print(block_buffer[idx].steps_x, DEC);
  7607. SERIAL_ECHOPGM(",");
  7608. MYSERIAL.print(block_buffer[idx].steps_y, DEC);
  7609. SERIAL_ECHOPGM(",");
  7610. MYSERIAL.print(block_buffer[idx].steps_z, DEC);
  7611. SERIAL_ECHOPGM(",");
  7612. MYSERIAL.print(block_buffer[idx].steps_e, DEC);
  7613. SERIAL_ECHOPGM("), events: ");
  7614. MYSERIAL.println(block_buffer[idx].step_event_count, DEC);
  7615. for (int len = block_buffer[idx].sdlen; len > 0; -- len)
  7616. MYSERIAL.print(char(card.get()));
  7617. }
  7618. }
  7619. {
  7620. // Print the content of the command buffer, line by line:
  7621. int8_t iline = 0;
  7622. union {
  7623. struct {
  7624. char lo;
  7625. char hi;
  7626. } lohi;
  7627. uint16_t value;
  7628. } sdlen_single;
  7629. int _bufindr = bufindr;
  7630. for (int _buflen = buflen; _buflen > 0; ++ iline) {
  7631. if (cmdbuffer[_bufindr] == CMDBUFFER_CURRENT_TYPE_SDCARD) {
  7632. sdlen_single.lohi.lo = cmdbuffer[_bufindr + 1];
  7633. sdlen_single.lohi.hi = cmdbuffer[_bufindr + 2];
  7634. }
  7635. SERIAL_ECHOPGM("Buffer line (from buffer): ");
  7636. MYSERIAL.print(int(iline), DEC);
  7637. SERIAL_ECHOPGM(", type: ");
  7638. MYSERIAL.print(int(cmdbuffer[_bufindr]), DEC);
  7639. SERIAL_ECHOPGM(", len: ");
  7640. MYSERIAL.println(sdlen_single.value, DEC);
  7641. // Print the content of the buffer line.
  7642. MYSERIAL.println(cmdbuffer + _bufindr + CMDHDRSIZE);
  7643. SERIAL_ECHOPGM("Buffer line (from file): ");
  7644. MYSERIAL.println(int(iline), DEC);
  7645. for (; sdlen_single.value > 0; -- sdlen_single.value)
  7646. MYSERIAL.print(char(card.get()));
  7647. if (-- _buflen == 0)
  7648. break;
  7649. // First skip the current command ID and iterate up to the end of the string.
  7650. for (_bufindr += CMDHDRSIZE; cmdbuffer[_bufindr] != 0; ++ _bufindr) ;
  7651. // Second, skip the end of string null character and iterate until a nonzero command ID is found.
  7652. for (++ _bufindr; _bufindr < sizeof(cmdbuffer) && cmdbuffer[_bufindr] == 0; ++ _bufindr) ;
  7653. // If the end of the buffer was empty,
  7654. if (_bufindr == sizeof(cmdbuffer)) {
  7655. // skip to the start and find the nonzero command.
  7656. for (_bufindr = 0; cmdbuffer[_bufindr] == 0; ++ _bufindr) ;
  7657. }
  7658. }
  7659. }
  7660. #endif
  7661. #if 0
  7662. saved_feedrate2 = feedrate; //save feedrate
  7663. #else
  7664. // Try to deduce the feedrate from the first block of the planner.
  7665. // Speed is in mm/min.
  7666. saved_feedrate2 = blocks_queued() ? (block_buffer[block_buffer_tail].nominal_speed * 60.f) : feedrate;
  7667. #endif
  7668. planner_abort_hard(); //abort printing
  7669. memcpy(saved_pos, current_position, sizeof(saved_pos));
  7670. saved_active_extruder = active_extruder; //save active_extruder
  7671. saved_extruder_temperature = degTargetHotend(active_extruder);
  7672. saved_extruder_under_pressure = extruder_under_pressure; //extruder under pressure flag - currently unused
  7673. saved_extruder_relative_mode = axis_relative_modes[E_AXIS];
  7674. saved_fanSpeed = fanSpeed;
  7675. cmdqueue_reset(); //empty cmdqueue
  7676. card.sdprinting = false;
  7677. // card.closefile();
  7678. saved_printing = true;
  7679. // We may have missed a stepper timer interrupt. Be safe than sorry, reset the stepper timer before re-enabling interrupts.
  7680. st_reset_timer();
  7681. sei();
  7682. if ((z_move != 0) || (e_move != 0)) { // extruder or z move
  7683. #if 1
  7684. // Rather than calling plan_buffer_line directly, push the move into the command queue,
  7685. char buf[48];
  7686. // First unretract (relative extrusion)
  7687. if(!saved_extruder_relative_mode){
  7688. strcpy_P(buf, PSTR("M83"));
  7689. enquecommand(buf, false);
  7690. }
  7691. //retract 45mm/s
  7692. strcpy_P(buf, PSTR("G1 E"));
  7693. dtostrf(e_move, 6, 3, buf + strlen(buf));
  7694. strcat_P(buf, PSTR(" F"));
  7695. dtostrf(2700, 8, 3, buf + strlen(buf));
  7696. enquecommand(buf, false);
  7697. // Then lift Z axis
  7698. strcpy_P(buf, PSTR("G1 Z"));
  7699. dtostrf(saved_pos[Z_AXIS] + z_move, 8, 3, buf + strlen(buf));
  7700. strcat_P(buf, PSTR(" F"));
  7701. dtostrf(homing_feedrate[Z_AXIS], 8, 3, buf + strlen(buf));
  7702. // At this point the command queue is empty.
  7703. enquecommand(buf, false);
  7704. // If this call is invoked from the main Arduino loop() function, let the caller know that the command
  7705. // in the command queue is not the original command, but a new one, so it should not be removed from the queue.
  7706. repeatcommand_front();
  7707. #else
  7708. plan_buffer_line(saved_pos[X_AXIS], saved_pos[Y_AXIS], saved_pos[Z_AXIS] + z_move, saved_pos[E_AXIS] + e_move, homing_feedrate[Z_AXIS], active_extruder);
  7709. st_synchronize(); //wait moving
  7710. memcpy(current_position, saved_pos, sizeof(saved_pos));
  7711. memcpy(destination, current_position, sizeof(destination));
  7712. #endif
  7713. }
  7714. }
  7715. //! @brief Restore print from ram
  7716. //!
  7717. //! Restore print saved by stop_and_save_print_to_ram(). Is blocking,
  7718. //! waits for extruder temperature restore, then restores position and continues
  7719. //! print moves.
  7720. //! Internaly lcd_update() is called by wait_for_heater().
  7721. //!
  7722. //! @param e_move
  7723. void restore_print_from_ram_and_continue(float e_move)
  7724. {
  7725. if (!saved_printing) return;
  7726. // for (int axis = X_AXIS; axis <= E_AXIS; axis++)
  7727. // current_position[axis] = st_get_position_mm(axis);
  7728. active_extruder = saved_active_extruder; //restore active_extruder
  7729. setTargetHotendSafe(saved_extruder_temperature,saved_active_extruder);
  7730. heating_status = 1;
  7731. wait_for_heater(millis(),saved_active_extruder);
  7732. heating_status = 2;
  7733. feedrate = saved_feedrate2; //restore feedrate
  7734. axis_relative_modes[E_AXIS] = saved_extruder_relative_mode;
  7735. fanSpeed = saved_fanSpeed;
  7736. float e = saved_pos[E_AXIS] - e_move;
  7737. plan_set_e_position(e);
  7738. //first move print head in XY to the saved position:
  7739. plan_buffer_line(saved_pos[X_AXIS], saved_pos[Y_AXIS], current_position[Z_AXIS], saved_pos[E_AXIS] - e_move, homing_feedrate[Z_AXIS]/13, active_extruder);
  7740. st_synchronize();
  7741. //then move Z
  7742. plan_buffer_line(saved_pos[X_AXIS], saved_pos[Y_AXIS], saved_pos[Z_AXIS], saved_pos[E_AXIS] - e_move, homing_feedrate[Z_AXIS]/13, active_extruder);
  7743. st_synchronize();
  7744. //and finaly unretract (35mm/s)
  7745. plan_buffer_line(saved_pos[X_AXIS], saved_pos[Y_AXIS], saved_pos[Z_AXIS], saved_pos[E_AXIS], 35, active_extruder);
  7746. st_synchronize();
  7747. memcpy(current_position, saved_pos, sizeof(saved_pos));
  7748. memcpy(destination, current_position, sizeof(destination));
  7749. if (saved_printing_type == PRINTING_TYPE_SD) { //was sd printing
  7750. card.setIndex(saved_sdpos);
  7751. sdpos_atomic = saved_sdpos;
  7752. card.sdprinting = true;
  7753. printf_P(PSTR("ok\n")); //dummy response because of octoprint is waiting for this
  7754. }
  7755. else if (saved_printing_type == PRINTING_TYPE_USB) { //was usb printing
  7756. gcode_LastN = saved_sdpos; //saved_sdpos was reused for storing line number when usb printing
  7757. serial_count = 0;
  7758. FlushSerialRequestResend();
  7759. }
  7760. else {
  7761. //not sd printing nor usb printing
  7762. }
  7763. lcd_setstatuspgm(_T(WELCOME_MSG));
  7764. saved_printing = false;
  7765. }
  7766. void print_world_coordinates()
  7767. {
  7768. printf_P(_N("world coordinates: (%.3f, %.3f, %.3f)\n"), current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS]);
  7769. }
  7770. void print_physical_coordinates()
  7771. {
  7772. printf_P(_N("physical coordinates: (%.3f, %.3f, %.3f)\n"), st_get_position_mm(X_AXIS), st_get_position_mm(Y_AXIS), st_get_position_mm(Z_AXIS));
  7773. }
  7774. void print_mesh_bed_leveling_table()
  7775. {
  7776. SERIAL_ECHOPGM("mesh bed leveling: ");
  7777. for (int8_t y = 0; y < MESH_NUM_Y_POINTS; ++ y)
  7778. for (int8_t x = 0; x < MESH_NUM_Y_POINTS; ++ x) {
  7779. MYSERIAL.print(mbl.z_values[y][x], 3);
  7780. SERIAL_ECHOPGM(" ");
  7781. }
  7782. SERIAL_ECHOLNPGM("");
  7783. }
  7784. uint16_t print_time_remaining() {
  7785. uint16_t print_t = PRINT_TIME_REMAINING_INIT;
  7786. #ifdef TMC2130
  7787. if (SilentModeMenu == SILENT_MODE_OFF) print_t = print_time_remaining_normal;
  7788. else print_t = print_time_remaining_silent;
  7789. #else
  7790. print_t = print_time_remaining_normal;
  7791. #endif //TMC2130
  7792. if ((print_t != PRINT_TIME_REMAINING_INIT) && (feedmultiply != 0)) print_t = 100ul * print_t / feedmultiply;
  7793. return print_t;
  7794. }
  7795. uint8_t calc_percent_done()
  7796. {
  7797. //in case that we have information from M73 gcode return percentage counted by slicer, else return percentage counted as byte_printed/filesize
  7798. uint8_t percent_done = 0;
  7799. #ifdef TMC2130
  7800. if (SilentModeMenu == SILENT_MODE_OFF && print_percent_done_normal <= 100) {
  7801. percent_done = print_percent_done_normal;
  7802. }
  7803. else if (print_percent_done_silent <= 100) {
  7804. percent_done = print_percent_done_silent;
  7805. }
  7806. #else
  7807. if (print_percent_done_normal <= 100) {
  7808. percent_done = print_percent_done_normal;
  7809. }
  7810. #endif //TMC2130
  7811. else {
  7812. percent_done = card.percentDone();
  7813. }
  7814. return percent_done;
  7815. }
  7816. static void print_time_remaining_init()
  7817. {
  7818. print_time_remaining_normal = PRINT_TIME_REMAINING_INIT;
  7819. print_time_remaining_silent = PRINT_TIME_REMAINING_INIT;
  7820. print_percent_done_normal = PRINT_PERCENT_DONE_INIT;
  7821. print_percent_done_silent = PRINT_PERCENT_DONE_INIT;
  7822. }
  7823. void load_filament_final_feed()
  7824. {
  7825. st_synchronize();
  7826. current_position[E_AXIS]+= FILAMENTCHANGE_FINALFEED;
  7827. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 200/60, active_extruder);
  7828. st_synchronize();
  7829. }
  7830. void M600_check_state()
  7831. {
  7832. //Wait for user to check the state
  7833. lcd_change_fil_state = 0;
  7834. while (lcd_change_fil_state != 1){
  7835. lcd_change_fil_state = 0;
  7836. KEEPALIVE_STATE(PAUSED_FOR_USER);
  7837. lcd_alright();
  7838. KEEPALIVE_STATE(IN_HANDLER);
  7839. switch(lcd_change_fil_state){
  7840. // Filament failed to load so load it again
  7841. case 2:
  7842. if (mmu_enabled)
  7843. mmu_M600_load_filament(false); //nonautomatic load; change to "wrong filament loaded" option?
  7844. else
  7845. M600_load_filament_movements();
  7846. break;
  7847. // Filament loaded properly but color is not clear
  7848. case 3:
  7849. st_synchronize();
  7850. current_position[E_AXIS]+= FILAMENTCHANGE_FINALFEED;
  7851. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 200/60, active_extruder);
  7852. lcd_loading_color();
  7853. break;
  7854. // Everything good
  7855. default:
  7856. lcd_change_success();
  7857. break;
  7858. }
  7859. }
  7860. }
  7861. //! @brief Wait for user action
  7862. //!
  7863. //! Beep, manage nozzle heater and wait for user to start unload filament
  7864. //! If times out, active extruder temperature is set to 0.
  7865. //!
  7866. //! @param HotendTempBckp Temperature to be restored for active extruder, after user resolves MMU problem.
  7867. void M600_wait_for_user(float HotendTempBckp) {
  7868. KEEPALIVE_STATE(PAUSED_FOR_USER);
  7869. int counterBeep = 0;
  7870. unsigned long waiting_start_time = millis();
  7871. uint8_t wait_for_user_state = 0;
  7872. lcd_display_message_fullscreen_P(_T(MSG_PRESS_TO_UNLOAD));
  7873. bool bFirst=true;
  7874. while (!(wait_for_user_state == 0 && lcd_clicked())){
  7875. manage_heater();
  7876. manage_inactivity(true);
  7877. #if BEEPER > 0
  7878. if (counterBeep == 500) {
  7879. counterBeep = 0;
  7880. }
  7881. SET_OUTPUT(BEEPER);
  7882. if (counterBeep == 0) {
  7883. if((eSoundMode==e_SOUND_MODE_LOUD)||((eSoundMode==e_SOUND_MODE_ONCE)&&bFirst))
  7884. {
  7885. bFirst=false;
  7886. WRITE(BEEPER, HIGH);
  7887. }
  7888. }
  7889. if (counterBeep == 20) {
  7890. WRITE(BEEPER, LOW);
  7891. }
  7892. counterBeep++;
  7893. #endif //BEEPER > 0
  7894. switch (wait_for_user_state) {
  7895. case 0: //nozzle is hot, waiting for user to press the knob to unload filament
  7896. delay_keep_alive(4);
  7897. if (millis() > waiting_start_time + (unsigned long)M600_TIMEOUT * 1000) {
  7898. lcd_display_message_fullscreen_P(_i("Press knob to preheat nozzle and continue."));////MSG_PRESS_TO_PREHEAT c=20 r=4
  7899. wait_for_user_state = 1;
  7900. setAllTargetHotends(0);
  7901. st_synchronize();
  7902. disable_e0();
  7903. disable_e1();
  7904. disable_e2();
  7905. }
  7906. break;
  7907. case 1: //nozzle target temperature is set to zero, waiting for user to start nozzle preheat
  7908. delay_keep_alive(4);
  7909. if (lcd_clicked()) {
  7910. setTargetHotend(HotendTempBckp, active_extruder);
  7911. lcd_wait_for_heater();
  7912. wait_for_user_state = 2;
  7913. }
  7914. break;
  7915. case 2: //waiting for nozzle to reach target temperature
  7916. if (abs(degTargetHotend(active_extruder) - degHotend(active_extruder)) < 1) {
  7917. lcd_display_message_fullscreen_P(_T(MSG_PRESS_TO_UNLOAD));
  7918. waiting_start_time = millis();
  7919. wait_for_user_state = 0;
  7920. }
  7921. else {
  7922. counterBeep = 20; //beeper will be inactive during waiting for nozzle preheat
  7923. lcd_set_cursor(1, 4);
  7924. lcd_print(ftostr3(degHotend(active_extruder)));
  7925. }
  7926. break;
  7927. }
  7928. }
  7929. WRITE(BEEPER, LOW);
  7930. }
  7931. void M600_load_filament_movements()
  7932. {
  7933. #ifdef SNMM
  7934. display_loading();
  7935. do
  7936. {
  7937. current_position[E_AXIS] += 0.002;
  7938. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 500, active_extruder);
  7939. delay_keep_alive(2);
  7940. }
  7941. while (!lcd_clicked());
  7942. st_synchronize();
  7943. current_position[E_AXIS] += bowden_length[mmu_extruder];
  7944. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000, active_extruder);
  7945. current_position[E_AXIS] += FIL_LOAD_LENGTH - 60;
  7946. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 1400, active_extruder);
  7947. current_position[E_AXIS] += 40;
  7948. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400, active_extruder);
  7949. current_position[E_AXIS] += 10;
  7950. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 50, active_extruder);
  7951. #else
  7952. current_position[E_AXIS]+= FILAMENTCHANGE_FIRSTFEED ;
  7953. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], FILAMENTCHANGE_EFEED, active_extruder);
  7954. #endif
  7955. load_filament_final_feed();
  7956. lcd_loading_filament();
  7957. }
  7958. void M600_load_filament() {
  7959. //load filament for single material and SNMM
  7960. lcd_wait_interact();
  7961. //load_filament_time = millis();
  7962. KEEPALIVE_STATE(PAUSED_FOR_USER);
  7963. #ifdef FILAMENT_SENSOR
  7964. fsensor_autoload_check_start();
  7965. #endif //FILAMENT_SENSOR
  7966. while(!lcd_clicked())
  7967. {
  7968. manage_heater();
  7969. manage_inactivity(true);
  7970. #ifdef FILAMENT_SENSOR
  7971. if (fsensor_check_autoload())
  7972. {
  7973. if((eSoundMode==e_SOUND_MODE_LOUD)||(eSoundMode==e_SOUND_MODE_ONCE))
  7974. tone(BEEPER, 1000);
  7975. delay_keep_alive(50);
  7976. noTone(BEEPER);
  7977. break;
  7978. }
  7979. #endif //FILAMENT_SENSOR
  7980. }
  7981. #ifdef FILAMENT_SENSOR
  7982. fsensor_autoload_check_stop();
  7983. #endif //FILAMENT_SENSOR
  7984. KEEPALIVE_STATE(IN_HANDLER);
  7985. #ifdef FSENSOR_QUALITY
  7986. fsensor_oq_meassure_start(70);
  7987. #endif //FSENSOR_QUALITY
  7988. M600_load_filament_movements();
  7989. if((eSoundMode==e_SOUND_MODE_LOUD)||(eSoundMode==e_SOUND_MODE_ONCE))
  7990. tone(BEEPER, 500);
  7991. delay_keep_alive(50);
  7992. noTone(BEEPER);
  7993. #ifdef FSENSOR_QUALITY
  7994. fsensor_oq_meassure_stop();
  7995. if (!fsensor_oq_result())
  7996. {
  7997. bool disable = lcd_show_fullscreen_message_yes_no_and_wait_P(_i("Fil. sensor response is poor, disable it?"), false, true);
  7998. lcd_update_enable(true);
  7999. lcd_update(2);
  8000. if (disable)
  8001. fsensor_disable();
  8002. }
  8003. #endif //FSENSOR_QUALITY
  8004. lcd_update_enable(false);
  8005. }
  8006. #define FIL_LOAD_LENGTH 60