Marlin_main.cpp 334 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971397239733974397539763977397839793980398139823983398439853986398739883989399039913992399339943995399639973998399940004001400240034004400540064007400840094010401140124013401440154016401740184019402040214022402340244025402640274028402940304031403240334034403540364037403840394040404140424043404440454046404740484049405040514052405340544055405640574058405940604061406240634064406540664067406840694070407140724073407440754076407740784079408040814082408340844085408640874088408940904091409240934094409540964097409840994100410141024103410441054106410741084109411041114112411341144115411641174118411941204121412241234124412541264127412841294130413141324133413441354136413741384139414041414142414341444145414641474148414941504151415241534154415541564157415841594160416141624163416441654166416741684169417041714172417341744175417641774178417941804181418241834184418541864187418841894190419141924193419441954196419741984199420042014202420342044205420642074208420942104211421242134214421542164217421842194220422142224223422442254226422742284229423042314232423342344235423642374238423942404241424242434244424542464247424842494250425142524253425442554256425742584259426042614262426342644265426642674268426942704271427242734274427542764277427842794280428142824283428442854286428742884289429042914292429342944295429642974298429943004301430243034304430543064307430843094310431143124313431443154316431743184319432043214322432343244325432643274328432943304331433243334334433543364337433843394340434143424343434443454346434743484349435043514352435343544355435643574358435943604361436243634364436543664367436843694370437143724373437443754376437743784379438043814382438343844385438643874388438943904391439243934394439543964397439843994400440144024403440444054406440744084409441044114412441344144415441644174418441944204421442244234424442544264427442844294430443144324433443444354436443744384439444044414442444344444445444644474448444944504451445244534454445544564457445844594460446144624463446444654466446744684469447044714472447344744475447644774478447944804481448244834484448544864487448844894490449144924493449444954496449744984499450045014502450345044505450645074508450945104511451245134514451545164517451845194520452145224523452445254526452745284529453045314532453345344535453645374538453945404541454245434544454545464547454845494550455145524553455445554556455745584559456045614562456345644565456645674568456945704571457245734574457545764577457845794580458145824583458445854586458745884589459045914592459345944595459645974598459946004601460246034604460546064607460846094610461146124613461446154616461746184619462046214622462346244625462646274628462946304631463246334634463546364637463846394640464146424643464446454646464746484649465046514652465346544655465646574658465946604661466246634664466546664667466846694670467146724673467446754676467746784679468046814682468346844685468646874688468946904691469246934694469546964697469846994700470147024703470447054706470747084709471047114712471347144715471647174718471947204721472247234724472547264727472847294730473147324733473447354736473747384739474047414742474347444745474647474748474947504751475247534754475547564757475847594760476147624763476447654766476747684769477047714772477347744775477647774778477947804781478247834784478547864787478847894790479147924793479447954796479747984799480048014802480348044805480648074808480948104811481248134814481548164817481848194820482148224823482448254826482748284829483048314832483348344835483648374838483948404841484248434844484548464847484848494850485148524853485448554856485748584859486048614862486348644865486648674868486948704871487248734874487548764877487848794880488148824883488448854886488748884889489048914892489348944895489648974898489949004901490249034904490549064907490849094910491149124913491449154916491749184919492049214922492349244925492649274928492949304931493249334934493549364937493849394940494149424943494449454946494749484949495049514952495349544955495649574958495949604961496249634964496549664967496849694970497149724973497449754976497749784979498049814982498349844985498649874988498949904991499249934994499549964997499849995000500150025003500450055006500750085009501050115012501350145015501650175018501950205021502250235024502550265027502850295030503150325033503450355036503750385039504050415042504350445045504650475048504950505051505250535054505550565057505850595060506150625063506450655066506750685069507050715072507350745075507650775078507950805081508250835084508550865087508850895090509150925093509450955096509750985099510051015102510351045105510651075108510951105111511251135114511551165117511851195120512151225123512451255126512751285129513051315132513351345135513651375138513951405141514251435144514551465147514851495150515151525153515451555156515751585159516051615162516351645165516651675168516951705171517251735174517551765177517851795180518151825183518451855186518751885189519051915192519351945195519651975198519952005201520252035204520552065207520852095210521152125213521452155216521752185219522052215222522352245225522652275228522952305231523252335234523552365237523852395240524152425243524452455246524752485249525052515252525352545255525652575258525952605261526252635264526552665267526852695270527152725273527452755276527752785279528052815282528352845285528652875288528952905291529252935294529552965297529852995300530153025303530453055306530753085309531053115312531353145315531653175318531953205321532253235324532553265327532853295330533153325333533453355336533753385339534053415342534353445345534653475348534953505351535253535354535553565357535853595360536153625363536453655366536753685369537053715372537353745375537653775378537953805381538253835384538553865387538853895390539153925393539453955396539753985399540054015402540354045405540654075408540954105411541254135414541554165417541854195420542154225423542454255426542754285429543054315432543354345435543654375438543954405441544254435444544554465447544854495450545154525453545454555456545754585459546054615462546354645465546654675468546954705471547254735474547554765477547854795480548154825483548454855486548754885489549054915492549354945495549654975498549955005501550255035504550555065507550855095510551155125513551455155516551755185519552055215522552355245525552655275528552955305531553255335534553555365537553855395540554155425543554455455546554755485549555055515552555355545555555655575558555955605561556255635564556555665567556855695570557155725573557455755576557755785579558055815582558355845585558655875588558955905591559255935594559555965597559855995600560156025603560456055606560756085609561056115612561356145615561656175618561956205621562256235624562556265627562856295630563156325633563456355636563756385639564056415642564356445645564656475648564956505651565256535654565556565657565856595660566156625663566456655666566756685669567056715672567356745675567656775678567956805681568256835684568556865687568856895690569156925693569456955696569756985699570057015702570357045705570657075708570957105711571257135714571557165717571857195720572157225723572457255726572757285729573057315732573357345735573657375738573957405741574257435744574557465747574857495750575157525753575457555756575757585759576057615762576357645765576657675768576957705771577257735774577557765777577857795780578157825783578457855786578757885789579057915792579357945795579657975798579958005801580258035804580558065807580858095810581158125813581458155816581758185819582058215822582358245825582658275828582958305831583258335834583558365837583858395840584158425843584458455846584758485849585058515852585358545855585658575858585958605861586258635864586558665867586858695870587158725873587458755876587758785879588058815882588358845885588658875888588958905891589258935894589558965897589858995900590159025903590459055906590759085909591059115912591359145915591659175918591959205921592259235924592559265927592859295930593159325933593459355936593759385939594059415942594359445945594659475948594959505951595259535954595559565957595859595960596159625963596459655966596759685969597059715972597359745975597659775978597959805981598259835984598559865987598859895990599159925993599459955996599759985999600060016002600360046005600660076008600960106011601260136014601560166017601860196020602160226023602460256026602760286029603060316032603360346035603660376038603960406041604260436044604560466047604860496050605160526053605460556056605760586059606060616062606360646065606660676068606960706071607260736074607560766077607860796080608160826083608460856086608760886089609060916092609360946095609660976098609961006101610261036104610561066107610861096110611161126113611461156116611761186119612061216122612361246125612661276128612961306131613261336134613561366137613861396140614161426143614461456146614761486149615061516152615361546155615661576158615961606161616261636164616561666167616861696170617161726173617461756176617761786179618061816182618361846185618661876188618961906191619261936194619561966197619861996200620162026203620462056206620762086209621062116212621362146215621662176218621962206221622262236224622562266227622862296230623162326233623462356236623762386239624062416242624362446245624662476248624962506251625262536254625562566257625862596260626162626263626462656266626762686269627062716272627362746275627662776278627962806281628262836284628562866287628862896290629162926293629462956296629762986299630063016302630363046305630663076308630963106311631263136314631563166317631863196320632163226323632463256326632763286329633063316332633363346335633663376338633963406341634263436344634563466347634863496350635163526353635463556356635763586359636063616362636363646365636663676368636963706371637263736374637563766377637863796380638163826383638463856386638763886389639063916392639363946395639663976398639964006401640264036404640564066407640864096410641164126413641464156416641764186419642064216422642364246425642664276428642964306431643264336434643564366437643864396440644164426443644464456446644764486449645064516452645364546455645664576458645964606461646264636464646564666467646864696470647164726473647464756476647764786479648064816482648364846485648664876488648964906491649264936494649564966497649864996500650165026503650465056506650765086509651065116512651365146515651665176518651965206521652265236524652565266527652865296530653165326533653465356536653765386539654065416542654365446545654665476548654965506551655265536554655565566557655865596560656165626563656465656566656765686569657065716572657365746575657665776578657965806581658265836584658565866587658865896590659165926593659465956596659765986599660066016602660366046605660666076608660966106611661266136614661566166617661866196620662166226623662466256626662766286629663066316632663366346635663666376638663966406641664266436644664566466647664866496650665166526653665466556656665766586659666066616662666366646665666666676668666966706671667266736674667566766677667866796680668166826683668466856686668766886689669066916692669366946695669666976698669967006701670267036704670567066707670867096710671167126713671467156716671767186719672067216722672367246725672667276728672967306731673267336734673567366737673867396740674167426743674467456746674767486749675067516752675367546755675667576758675967606761676267636764676567666767676867696770677167726773677467756776677767786779678067816782678367846785678667876788678967906791679267936794679567966797679867996800680168026803680468056806680768086809681068116812681368146815681668176818681968206821682268236824682568266827682868296830683168326833683468356836683768386839684068416842684368446845684668476848684968506851685268536854685568566857685868596860686168626863686468656866686768686869687068716872687368746875687668776878687968806881688268836884688568866887688868896890689168926893689468956896689768986899690069016902690369046905690669076908690969106911691269136914691569166917691869196920692169226923692469256926692769286929693069316932693369346935693669376938693969406941694269436944694569466947694869496950695169526953695469556956695769586959696069616962696369646965696669676968696969706971697269736974697569766977697869796980698169826983698469856986698769886989699069916992699369946995699669976998699970007001700270037004700570067007700870097010701170127013701470157016701770187019702070217022702370247025702670277028702970307031703270337034703570367037703870397040704170427043704470457046704770487049705070517052705370547055705670577058705970607061706270637064706570667067706870697070707170727073707470757076707770787079708070817082708370847085708670877088708970907091709270937094709570967097709870997100710171027103710471057106710771087109711071117112711371147115711671177118711971207121712271237124712571267127712871297130713171327133713471357136713771387139714071417142714371447145714671477148714971507151715271537154715571567157715871597160716171627163716471657166716771687169717071717172717371747175717671777178717971807181718271837184718571867187718871897190719171927193719471957196719771987199720072017202720372047205720672077208720972107211721272137214721572167217721872197220722172227223722472257226722772287229723072317232723372347235723672377238723972407241724272437244724572467247724872497250725172527253725472557256725772587259726072617262726372647265726672677268726972707271727272737274727572767277727872797280728172827283728472857286728772887289729072917292729372947295729672977298729973007301730273037304730573067307730873097310731173127313731473157316731773187319732073217322732373247325732673277328732973307331733273337334733573367337733873397340734173427343734473457346734773487349735073517352735373547355735673577358735973607361736273637364736573667367736873697370737173727373737473757376737773787379738073817382738373847385738673877388738973907391739273937394739573967397739873997400740174027403740474057406740774087409741074117412741374147415741674177418741974207421742274237424742574267427742874297430743174327433743474357436743774387439744074417442744374447445744674477448744974507451745274537454745574567457745874597460746174627463746474657466746774687469747074717472747374747475747674777478747974807481748274837484748574867487748874897490749174927493749474957496749774987499750075017502750375047505750675077508750975107511751275137514751575167517751875197520752175227523752475257526752775287529753075317532753375347535753675377538753975407541754275437544754575467547754875497550755175527553755475557556755775587559756075617562756375647565756675677568756975707571757275737574757575767577757875797580758175827583758475857586758775887589759075917592759375947595759675977598759976007601760276037604760576067607760876097610761176127613761476157616761776187619762076217622762376247625762676277628762976307631763276337634763576367637763876397640764176427643764476457646764776487649765076517652765376547655765676577658765976607661766276637664766576667667766876697670767176727673767476757676767776787679768076817682768376847685768676877688768976907691769276937694769576967697769876997700770177027703770477057706770777087709771077117712771377147715771677177718771977207721772277237724772577267727772877297730773177327733773477357736773777387739774077417742774377447745774677477748774977507751775277537754775577567757775877597760776177627763776477657766776777687769777077717772777377747775777677777778777977807781778277837784778577867787778877897790779177927793779477957796779777987799780078017802780378047805780678077808780978107811781278137814781578167817781878197820782178227823782478257826782778287829783078317832783378347835783678377838783978407841784278437844784578467847784878497850785178527853785478557856785778587859786078617862786378647865786678677868786978707871787278737874787578767877787878797880788178827883788478857886788778887889789078917892789378947895789678977898789979007901790279037904790579067907790879097910791179127913791479157916791779187919792079217922792379247925792679277928792979307931793279337934793579367937793879397940794179427943794479457946794779487949795079517952795379547955795679577958795979607961796279637964796579667967796879697970797179727973797479757976797779787979798079817982798379847985798679877988798979907991799279937994799579967997799879998000800180028003800480058006800780088009801080118012801380148015801680178018801980208021802280238024802580268027802880298030803180328033803480358036803780388039804080418042804380448045804680478048804980508051805280538054805580568057805880598060806180628063806480658066806780688069807080718072807380748075807680778078807980808081808280838084808580868087808880898090809180928093809480958096809780988099810081018102810381048105810681078108810981108111811281138114811581168117811881198120812181228123812481258126812781288129813081318132813381348135813681378138813981408141814281438144814581468147814881498150815181528153815481558156815781588159816081618162816381648165816681678168816981708171817281738174817581768177817881798180818181828183818481858186818781888189819081918192819381948195819681978198819982008201820282038204820582068207820882098210821182128213821482158216821782188219822082218222822382248225822682278228822982308231823282338234823582368237823882398240824182428243824482458246824782488249825082518252825382548255825682578258825982608261826282638264826582668267826882698270827182728273827482758276827782788279828082818282828382848285828682878288828982908291829282938294829582968297829882998300830183028303830483058306830783088309831083118312831383148315831683178318831983208321832283238324832583268327832883298330833183328333833483358336833783388339834083418342834383448345834683478348834983508351835283538354835583568357835883598360836183628363836483658366836783688369837083718372837383748375837683778378837983808381838283838384838583868387838883898390839183928393839483958396839783988399840084018402840384048405840684078408840984108411841284138414841584168417841884198420842184228423842484258426842784288429843084318432843384348435843684378438843984408441844284438444844584468447844884498450845184528453845484558456845784588459846084618462846384648465846684678468846984708471847284738474847584768477847884798480848184828483848484858486848784888489849084918492849384948495849684978498849985008501850285038504850585068507850885098510851185128513851485158516851785188519852085218522852385248525852685278528852985308531853285338534853585368537853885398540854185428543854485458546854785488549855085518552855385548555855685578558855985608561856285638564856585668567856885698570857185728573857485758576857785788579858085818582858385848585858685878588858985908591859285938594859585968597859885998600860186028603860486058606860786088609861086118612861386148615861686178618861986208621862286238624862586268627862886298630863186328633863486358636863786388639864086418642864386448645864686478648864986508651865286538654865586568657865886598660866186628663866486658666866786688669867086718672867386748675867686778678867986808681868286838684868586868687868886898690869186928693869486958696869786988699870087018702870387048705870687078708870987108711871287138714871587168717871887198720872187228723872487258726872787288729873087318732873387348735873687378738873987408741874287438744874587468747874887498750875187528753875487558756875787588759876087618762876387648765876687678768876987708771877287738774877587768777877887798780878187828783878487858786878787888789879087918792879387948795879687978798879988008801880288038804880588068807880888098810881188128813881488158816881788188819882088218822882388248825882688278828882988308831883288338834883588368837883888398840884188428843884488458846884788488849885088518852885388548855885688578858885988608861886288638864886588668867886888698870887188728873887488758876887788788879888088818882888388848885888688878888888988908891889288938894889588968897889888998900890189028903890489058906890789088909891089118912891389148915891689178918891989208921892289238924892589268927892889298930893189328933893489358936893789388939894089418942894389448945894689478948894989508951895289538954895589568957895889598960896189628963896489658966896789688969897089718972897389748975897689778978897989808981898289838984898589868987898889898990899189928993899489958996899789988999900090019002900390049005900690079008900990109011901290139014901590169017901890199020902190229023902490259026902790289029903090319032903390349035903690379038903990409041904290439044904590469047904890499050905190529053905490559056905790589059906090619062906390649065906690679068906990709071907290739074907590769077907890799080908190829083908490859086908790889089909090919092909390949095909690979098909991009101910291039104910591069107910891099110911191129113911491159116911791189119912091219122912391249125912691279128912991309131913291339134913591369137913891399140914191429143914491459146914791489149915091519152915391549155915691579158915991609161916291639164916591669167916891699170917191729173917491759176917791789179918091819182918391849185918691879188918991909191919291939194919591969197919891999200920192029203920492059206920792089209921092119212921392149215921692179218921992209221922292239224922592269227922892299230923192329233923492359236923792389239924092419242924392449245924692479248924992509251925292539254925592569257925892599260926192629263926492659266926792689269927092719272927392749275927692779278927992809281928292839284928592869287928892899290929192929293929492959296929792989299930093019302930393049305930693079308930993109311931293139314931593169317931893199320932193229323932493259326932793289329933093319332933393349335933693379338933993409341934293439344934593469347934893499350935193529353935493559356935793589359936093619362936393649365936693679368936993709371937293739374937593769377937893799380938193829383938493859386938793889389939093919392939393949395939693979398939994009401940294039404940594069407940894099410941194129413941494159416941794189419942094219422942394249425942694279428942994309431943294339434943594369437943894399440944194429443944494459446944794489449945094519452945394549455945694579458945994609461946294639464946594669467946894699470947194729473947494759476947794789479948094819482948394849485948694879488948994909491949294939494949594969497949894999500950195029503950495059506950795089509951095119512951395149515951695179518951995209521952295239524952595269527952895299530953195329533953495359536953795389539954095419542954395449545954695479548954995509551955295539554955595569557955895599560956195629563956495659566956795689569957095719572957395749575957695779578957995809581958295839584958595869587958895899590959195929593959495959596959795989599960096019602960396049605960696079608960996109611961296139614961596169617961896199620962196229623962496259626962796289629963096319632963396349635963696379638963996409641964296439644964596469647964896499650965196529653965496559656965796589659966096619662966396649665966696679668966996709671967296739674967596769677967896799680968196829683968496859686968796889689969096919692969396949695969696979698969997009701970297039704970597069707970897099710971197129713971497159716971797189719972097219722972397249725972697279728972997309731973297339734973597369737973897399740974197429743974497459746974797489749975097519752975397549755975697579758975997609761976297639764976597669767
  1. /* -*- c++ -*- */
  2. /**
  3. * @file
  4. */
  5. /**
  6. * @mainpage Reprap 3D printer firmware based on Sprinter and grbl.
  7. *
  8. * @section intro_sec Introduction
  9. *
  10. * This firmware is a mashup between Sprinter and grbl.
  11. * https://github.com/kliment/Sprinter
  12. * https://github.com/simen/grbl/tree
  13. *
  14. * It has preliminary support for Matthew Roberts advance algorithm
  15. * http://reprap.org/pipermail/reprap-dev/2011-May/003323.html
  16. *
  17. * Prusa Research s.r.o. https://www.prusa3d.cz
  18. *
  19. * @section copyright_sec Copyright
  20. *
  21. * Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
  22. *
  23. * This program is free software: you can redistribute it and/or modify
  24. * it under the terms of the GNU General Public License as published by
  25. * the Free Software Foundation, either version 3 of the License, or
  26. * (at your option) any later version.
  27. *
  28. * This program is distributed in the hope that it will be useful,
  29. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  30. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  31. * GNU General Public License for more details.
  32. *
  33. * You should have received a copy of the GNU General Public License
  34. * along with this program. If not, see <http://www.gnu.org/licenses/>.
  35. *
  36. * @section notes_sec Notes
  37. *
  38. * * Do not create static objects in global functions.
  39. * Otherwise constructor guard against concurrent calls is generated costing
  40. * about 8B RAM and 14B flash.
  41. *
  42. *
  43. */
  44. #include "Marlin.h"
  45. #ifdef ENABLE_AUTO_BED_LEVELING
  46. #include "vector_3.h"
  47. #ifdef AUTO_BED_LEVELING_GRID
  48. #include "qr_solve.h"
  49. #endif
  50. #endif // ENABLE_AUTO_BED_LEVELING
  51. #ifdef MESH_BED_LEVELING
  52. #include "mesh_bed_leveling.h"
  53. #include "mesh_bed_calibration.h"
  54. #endif
  55. #include "printers.h"
  56. #include "menu.h"
  57. #include "ultralcd.h"
  58. #include "planner.h"
  59. #include "stepper.h"
  60. #include "temperature.h"
  61. #include "motion_control.h"
  62. #include "cardreader.h"
  63. #include "ConfigurationStore.h"
  64. #include "language.h"
  65. #include "pins_arduino.h"
  66. #include "math.h"
  67. #include "util.h"
  68. #include "Timer.h"
  69. #include <avr/wdt.h>
  70. #include <avr/pgmspace.h>
  71. #include "Dcodes.h"
  72. #include "AutoDeplete.h"
  73. #ifdef SWSPI
  74. #include "swspi.h"
  75. #endif //SWSPI
  76. #include "spi.h"
  77. #ifdef SWI2C
  78. #include "swi2c.h"
  79. #endif //SWI2C
  80. #ifdef FILAMENT_SENSOR
  81. #include "fsensor.h"
  82. #endif //FILAMENT_SENSOR
  83. #ifdef TMC2130
  84. #include "tmc2130.h"
  85. #endif //TMC2130
  86. #ifdef W25X20CL
  87. #include "w25x20cl.h"
  88. #include "optiboot_w25x20cl.h"
  89. #endif //W25X20CL
  90. #ifdef BLINKM
  91. #include "BlinkM.h"
  92. #include "Wire.h"
  93. #endif
  94. #ifdef ULTRALCD
  95. #include "ultralcd.h"
  96. #endif
  97. #if NUM_SERVOS > 0
  98. #include "Servo.h"
  99. #endif
  100. #if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
  101. #include <SPI.h>
  102. #endif
  103. #include "mmu.h"
  104. #define VERSION_STRING "1.0.2"
  105. #include "ultralcd.h"
  106. #include "sound.h"
  107. #include "cmdqueue.h"
  108. #include "io_atmega2560.h"
  109. // Macros for bit masks
  110. #define BIT(b) (1<<(b))
  111. #define TEST(n,b) (((n)&BIT(b))!=0)
  112. #define SET_BIT(n,b,value) (n) ^= ((-value)^(n)) & (BIT(b))
  113. //Macro for print fan speed
  114. #define FAN_PULSE_WIDTH_LIMIT ((fanSpeed > 100) ? 3 : 4) //time in ms
  115. #define PRINTING_TYPE_SD 0
  116. #define PRINTING_TYPE_USB 1
  117. #define PRINTING_TYPE_NONE 2
  118. //filament types
  119. #define FILAMENT_DEFAULT 0
  120. #define FILAMENT_FLEX 1
  121. #define FILAMENT_PVA 2
  122. #define FILAMENT_UNDEFINED 255
  123. //Stepper Movement Variables
  124. //===========================================================================
  125. //=============================imported variables============================
  126. //===========================================================================
  127. //===========================================================================
  128. //=============================public variables=============================
  129. //===========================================================================
  130. #ifdef SDSUPPORT
  131. CardReader card;
  132. #endif
  133. unsigned long PingTime = _millis();
  134. unsigned long NcTime;
  135. uint8_t mbl_z_probe_nr = 3; //numer of Z measurements for each point in mesh bed leveling calibration
  136. //used for PINDA temp calibration and pause print
  137. #define DEFAULT_RETRACTION 1
  138. #define DEFAULT_RETRACTION_MM 4 //MM
  139. float default_retraction = DEFAULT_RETRACTION;
  140. float homing_feedrate[] = HOMING_FEEDRATE;
  141. // Currently only the extruder axis may be switched to a relative mode.
  142. // Other axes are always absolute or relative based on the common relative_mode flag.
  143. bool axis_relative_modes[] = AXIS_RELATIVE_MODES;
  144. int feedmultiply=100; //100->1 200->2
  145. int extrudemultiply=100; //100->1 200->2
  146. int extruder_multiply[EXTRUDERS] = {100
  147. #if EXTRUDERS > 1
  148. , 100
  149. #if EXTRUDERS > 2
  150. , 100
  151. #endif
  152. #endif
  153. };
  154. int bowden_length[4] = {385, 385, 385, 385};
  155. bool is_usb_printing = false;
  156. bool homing_flag = false;
  157. bool temp_cal_active = false;
  158. unsigned long kicktime = _millis()+100000;
  159. unsigned int usb_printing_counter;
  160. int8_t lcd_change_fil_state = 0;
  161. unsigned long pause_time = 0;
  162. unsigned long start_pause_print = _millis();
  163. unsigned long t_fan_rising_edge = _millis();
  164. LongTimer safetyTimer;
  165. static LongTimer crashDetTimer;
  166. //unsigned long load_filament_time;
  167. bool mesh_bed_leveling_flag = false;
  168. bool mesh_bed_run_from_menu = false;
  169. bool prusa_sd_card_upload = false;
  170. unsigned int status_number = 0;
  171. unsigned long total_filament_used;
  172. unsigned int heating_status;
  173. unsigned int heating_status_counter;
  174. bool loading_flag = false;
  175. char snmm_filaments_used = 0;
  176. bool fan_state[2];
  177. int fan_edge_counter[2];
  178. int fan_speed[2];
  179. char dir_names[3][9];
  180. bool sortAlpha = false;
  181. float extruder_multiplier[EXTRUDERS] = {1.0
  182. #if EXTRUDERS > 1
  183. , 1.0
  184. #if EXTRUDERS > 2
  185. , 1.0
  186. #endif
  187. #endif
  188. };
  189. float current_position[NUM_AXIS] = { 0.0, 0.0, 0.0, 0.0 };
  190. //shortcuts for more readable code
  191. #define _x current_position[X_AXIS]
  192. #define _y current_position[Y_AXIS]
  193. #define _z current_position[Z_AXIS]
  194. #define _e current_position[E_AXIS]
  195. float min_pos[3] = { X_MIN_POS, Y_MIN_POS, Z_MIN_POS };
  196. float max_pos[3] = { X_MAX_POS, Y_MAX_POS, Z_MAX_POS };
  197. bool axis_known_position[3] = {false, false, false};
  198. // Extruder offset
  199. #if EXTRUDERS > 1
  200. #define NUM_EXTRUDER_OFFSETS 2 // only in XY plane
  201. float extruder_offset[NUM_EXTRUDER_OFFSETS][EXTRUDERS] = {
  202. #if defined(EXTRUDER_OFFSET_X) && defined(EXTRUDER_OFFSET_Y)
  203. EXTRUDER_OFFSET_X, EXTRUDER_OFFSET_Y
  204. #endif
  205. };
  206. #endif
  207. uint8_t active_extruder = 0;
  208. int fanSpeed=0;
  209. #ifdef FWRETRACT
  210. bool retracted[EXTRUDERS]={false
  211. #if EXTRUDERS > 1
  212. , false
  213. #if EXTRUDERS > 2
  214. , false
  215. #endif
  216. #endif
  217. };
  218. bool retracted_swap[EXTRUDERS]={false
  219. #if EXTRUDERS > 1
  220. , false
  221. #if EXTRUDERS > 2
  222. , false
  223. #endif
  224. #endif
  225. };
  226. float retract_length_swap = RETRACT_LENGTH_SWAP;
  227. float retract_recover_length_swap = RETRACT_RECOVER_LENGTH_SWAP;
  228. #endif
  229. #ifdef PS_DEFAULT_OFF
  230. bool powersupply = false;
  231. #else
  232. bool powersupply = true;
  233. #endif
  234. bool cancel_heatup = false ;
  235. int8_t busy_state = NOT_BUSY;
  236. static long prev_busy_signal_ms = -1;
  237. uint8_t host_keepalive_interval = HOST_KEEPALIVE_INTERVAL;
  238. const char errormagic[] PROGMEM = "Error:";
  239. const char echomagic[] PROGMEM = "echo:";
  240. bool no_response = false;
  241. uint8_t important_status;
  242. uint8_t saved_filament_type;
  243. // save/restore printing in case that mmu was not responding
  244. bool mmu_print_saved = false;
  245. // storing estimated time to end of print counted by slicer
  246. uint8_t print_percent_done_normal = PRINT_PERCENT_DONE_INIT;
  247. uint16_t print_time_remaining_normal = PRINT_TIME_REMAINING_INIT; //estimated remaining print time in minutes
  248. uint8_t print_percent_done_silent = PRINT_PERCENT_DONE_INIT;
  249. uint16_t print_time_remaining_silent = PRINT_TIME_REMAINING_INIT; //estimated remaining print time in minutes
  250. bool wizard_active = false; //autoload temporarily disabled during wizard
  251. //===========================================================================
  252. //=============================Private Variables=============================
  253. //===========================================================================
  254. #define MSG_BED_LEVELING_FAILED_TIMEOUT 30
  255. const char axis_codes[NUM_AXIS] = {'X', 'Y', 'Z', 'E'};
  256. float destination[NUM_AXIS] = { 0.0, 0.0, 0.0, 0.0};
  257. // For tracing an arc
  258. static float offset[3] = {0.0, 0.0, 0.0};
  259. static float feedrate = 1500.0, next_feedrate, saved_feedrate;
  260. // Determines Absolute or Relative Coordinates.
  261. // Also there is bool axis_relative_modes[] per axis flag.
  262. static bool relative_mode = false;
  263. const int sensitive_pins[] = SENSITIVE_PINS; // Sensitive pin list for M42
  264. //static float tt = 0;
  265. //static float bt = 0;
  266. //Inactivity shutdown variables
  267. static unsigned long previous_millis_cmd = 0;
  268. unsigned long max_inactive_time = 0;
  269. static unsigned long stepper_inactive_time = DEFAULT_STEPPER_DEACTIVE_TIME*1000l;
  270. static unsigned long safetytimer_inactive_time = DEFAULT_SAFETYTIMER_TIME_MINS*60*1000ul;
  271. unsigned long starttime=0;
  272. unsigned long stoptime=0;
  273. unsigned long _usb_timer = 0;
  274. bool extruder_under_pressure = true;
  275. bool Stopped=false;
  276. #if NUM_SERVOS > 0
  277. Servo servos[NUM_SERVOS];
  278. #endif
  279. bool CooldownNoWait = true;
  280. bool target_direction;
  281. //Insert variables if CHDK is defined
  282. #ifdef CHDK
  283. unsigned long chdkHigh = 0;
  284. boolean chdkActive = false;
  285. #endif
  286. //! @name RAM save/restore printing
  287. //! @{
  288. bool saved_printing = false; //!< Print is paused and saved in RAM
  289. static uint32_t saved_sdpos = 0; //!< SD card position, or line number in case of USB printing
  290. static uint8_t saved_printing_type = PRINTING_TYPE_SD;
  291. static float saved_pos[4] = { 0, 0, 0, 0 };
  292. //! Feedrate hopefully derived from an active block of the planner at the time the print has been canceled, in mm/min.
  293. static float saved_feedrate2 = 0;
  294. static uint8_t saved_active_extruder = 0;
  295. static float saved_extruder_temperature = 0.0; //!< Active extruder temperature
  296. static bool saved_extruder_under_pressure = false;
  297. static bool saved_extruder_relative_mode = false;
  298. static int saved_fanSpeed = 0; //!< Print fan speed
  299. //! @}
  300. static int saved_feedmultiply_mm = 100;
  301. //===========================================================================
  302. //=============================Routines======================================
  303. //===========================================================================
  304. static void get_arc_coordinates();
  305. static bool setTargetedHotend(int code, uint8_t &extruder);
  306. static void print_time_remaining_init();
  307. static void wait_for_heater(long codenum, uint8_t extruder);
  308. static void gcode_G28(bool home_x_axis, bool home_y_axis, bool home_z_axis);
  309. uint16_t gcode_in_progress = 0;
  310. uint16_t mcode_in_progress = 0;
  311. void serial_echopair_P(const char *s_P, float v)
  312. { serialprintPGM(s_P); SERIAL_ECHO(v); }
  313. void serial_echopair_P(const char *s_P, double v)
  314. { serialprintPGM(s_P); SERIAL_ECHO(v); }
  315. void serial_echopair_P(const char *s_P, unsigned long v)
  316. { serialprintPGM(s_P); SERIAL_ECHO(v); }
  317. #ifdef SDSUPPORT
  318. #include "SdFatUtil.h"
  319. int freeMemory() { return SdFatUtil::FreeRam(); }
  320. #else
  321. extern "C" {
  322. extern unsigned int __bss_end;
  323. extern unsigned int __heap_start;
  324. extern void *__brkval;
  325. int freeMemory() {
  326. int free_memory;
  327. if ((int)__brkval == 0)
  328. free_memory = ((int)&free_memory) - ((int)&__bss_end);
  329. else
  330. free_memory = ((int)&free_memory) - ((int)__brkval);
  331. return free_memory;
  332. }
  333. }
  334. #endif //!SDSUPPORT
  335. void setup_killpin()
  336. {
  337. #if defined(KILL_PIN) && KILL_PIN > -1
  338. SET_INPUT(KILL_PIN);
  339. WRITE(KILL_PIN,HIGH);
  340. #endif
  341. }
  342. // Set home pin
  343. void setup_homepin(void)
  344. {
  345. #if defined(HOME_PIN) && HOME_PIN > -1
  346. SET_INPUT(HOME_PIN);
  347. WRITE(HOME_PIN,HIGH);
  348. #endif
  349. }
  350. void setup_photpin()
  351. {
  352. #if defined(PHOTOGRAPH_PIN) && PHOTOGRAPH_PIN > -1
  353. SET_OUTPUT(PHOTOGRAPH_PIN);
  354. WRITE(PHOTOGRAPH_PIN, LOW);
  355. #endif
  356. }
  357. void setup_powerhold()
  358. {
  359. #if defined(SUICIDE_PIN) && SUICIDE_PIN > -1
  360. SET_OUTPUT(SUICIDE_PIN);
  361. WRITE(SUICIDE_PIN, HIGH);
  362. #endif
  363. #if defined(PS_ON_PIN) && PS_ON_PIN > -1
  364. SET_OUTPUT(PS_ON_PIN);
  365. #if defined(PS_DEFAULT_OFF)
  366. WRITE(PS_ON_PIN, PS_ON_ASLEEP);
  367. #else
  368. WRITE(PS_ON_PIN, PS_ON_AWAKE);
  369. #endif
  370. #endif
  371. }
  372. void suicide()
  373. {
  374. #if defined(SUICIDE_PIN) && SUICIDE_PIN > -1
  375. SET_OUTPUT(SUICIDE_PIN);
  376. WRITE(SUICIDE_PIN, LOW);
  377. #endif
  378. }
  379. void servo_init()
  380. {
  381. #if (NUM_SERVOS >= 1) && defined(SERVO0_PIN) && (SERVO0_PIN > -1)
  382. servos[0].attach(SERVO0_PIN);
  383. #endif
  384. #if (NUM_SERVOS >= 2) && defined(SERVO1_PIN) && (SERVO1_PIN > -1)
  385. servos[1].attach(SERVO1_PIN);
  386. #endif
  387. #if (NUM_SERVOS >= 3) && defined(SERVO2_PIN) && (SERVO2_PIN > -1)
  388. servos[2].attach(SERVO2_PIN);
  389. #endif
  390. #if (NUM_SERVOS >= 4) && defined(SERVO3_PIN) && (SERVO3_PIN > -1)
  391. servos[3].attach(SERVO3_PIN);
  392. #endif
  393. #if (NUM_SERVOS >= 5)
  394. #error "TODO: enter initalisation code for more servos"
  395. #endif
  396. }
  397. bool fans_check_enabled = true;
  398. #ifdef TMC2130
  399. extern int8_t CrashDetectMenu;
  400. void crashdet_enable()
  401. {
  402. tmc2130_sg_stop_on_crash = true;
  403. eeprom_update_byte((uint8_t*)EEPROM_CRASH_DET, 0xFF);
  404. CrashDetectMenu = 1;
  405. }
  406. void crashdet_disable()
  407. {
  408. tmc2130_sg_stop_on_crash = false;
  409. tmc2130_sg_crash = 0;
  410. eeprom_update_byte((uint8_t*)EEPROM_CRASH_DET, 0x00);
  411. CrashDetectMenu = 0;
  412. }
  413. void crashdet_stop_and_save_print()
  414. {
  415. stop_and_save_print_to_ram(10, -default_retraction); //XY - no change, Z 10mm up, E -1mm retract
  416. }
  417. void crashdet_restore_print_and_continue()
  418. {
  419. restore_print_from_ram_and_continue(default_retraction); //XYZ = orig, E +1mm unretract
  420. // babystep_apply();
  421. }
  422. void crashdet_stop_and_save_print2()
  423. {
  424. cli();
  425. planner_abort_hard(); //abort printing
  426. cmdqueue_reset(); //empty cmdqueue
  427. card.sdprinting = false;
  428. card.closefile();
  429. // Reset and re-enable the stepper timer just before the global interrupts are enabled.
  430. st_reset_timer();
  431. sei();
  432. }
  433. void crashdet_detected(uint8_t mask)
  434. {
  435. st_synchronize();
  436. static uint8_t crashDet_counter = 0;
  437. bool automatic_recovery_after_crash = true;
  438. if (crashDet_counter++ == 0) {
  439. crashDetTimer.start();
  440. }
  441. else if (crashDetTimer.expired(CRASHDET_TIMER * 1000ul)){
  442. crashDetTimer.stop();
  443. crashDet_counter = 0;
  444. }
  445. else if(crashDet_counter == CRASHDET_COUNTER_MAX){
  446. automatic_recovery_after_crash = false;
  447. crashDetTimer.stop();
  448. crashDet_counter = 0;
  449. }
  450. else {
  451. crashDetTimer.start();
  452. }
  453. lcd_update_enable(true);
  454. lcd_clear();
  455. lcd_update(2);
  456. if (mask & X_AXIS_MASK)
  457. {
  458. eeprom_update_byte((uint8_t*)EEPROM_CRASH_COUNT_X, eeprom_read_byte((uint8_t*)EEPROM_CRASH_COUNT_X) + 1);
  459. eeprom_update_word((uint16_t*)EEPROM_CRASH_COUNT_X_TOT, eeprom_read_word((uint16_t*)EEPROM_CRASH_COUNT_X_TOT) + 1);
  460. }
  461. if (mask & Y_AXIS_MASK)
  462. {
  463. eeprom_update_byte((uint8_t*)EEPROM_CRASH_COUNT_Y, eeprom_read_byte((uint8_t*)EEPROM_CRASH_COUNT_Y) + 1);
  464. eeprom_update_word((uint16_t*)EEPROM_CRASH_COUNT_Y_TOT, eeprom_read_word((uint16_t*)EEPROM_CRASH_COUNT_Y_TOT) + 1);
  465. }
  466. lcd_update_enable(true);
  467. lcd_update(2);
  468. lcd_setstatuspgm(_T(MSG_CRASH_DETECTED));
  469. gcode_G28(true, true, false); //home X and Y
  470. st_synchronize();
  471. if (automatic_recovery_after_crash) {
  472. enquecommand_P(PSTR("CRASH_RECOVER"));
  473. }else{
  474. setTargetHotend(0, active_extruder);
  475. bool yesno = lcd_show_fullscreen_message_yes_no_and_wait_P(_i("Crash detected. Resume print?"), false);
  476. lcd_update_enable(true);
  477. if (yesno)
  478. {
  479. enquecommand_P(PSTR("CRASH_RECOVER"));
  480. }
  481. else
  482. {
  483. enquecommand_P(PSTR("CRASH_CANCEL"));
  484. }
  485. }
  486. }
  487. void crashdet_recover()
  488. {
  489. crashdet_restore_print_and_continue();
  490. tmc2130_sg_stop_on_crash = true;
  491. }
  492. void crashdet_cancel()
  493. {
  494. saved_printing = false;
  495. tmc2130_sg_stop_on_crash = true;
  496. if (saved_printing_type == PRINTING_TYPE_SD) {
  497. lcd_print_stop();
  498. }else if(saved_printing_type == PRINTING_TYPE_USB){
  499. SERIAL_ECHOLNPGM("// action:cancel"); //for Octoprint: works the same as clicking "Abort" button in Octoprint GUI
  500. SERIAL_PROTOCOLLNRPGM(MSG_OK);
  501. }
  502. }
  503. #endif //TMC2130
  504. void failstats_reset_print()
  505. {
  506. eeprom_update_byte((uint8_t *)EEPROM_CRASH_COUNT_X, 0);
  507. eeprom_update_byte((uint8_t *)EEPROM_CRASH_COUNT_Y, 0);
  508. eeprom_update_byte((uint8_t *)EEPROM_FERROR_COUNT, 0);
  509. eeprom_update_byte((uint8_t *)EEPROM_POWER_COUNT, 0);
  510. eeprom_update_byte((uint8_t *)EEPROM_MMU_FAIL, 0);
  511. eeprom_update_byte((uint8_t *)EEPROM_MMU_LOAD_FAIL, 0);
  512. }
  513. #ifdef MESH_BED_LEVELING
  514. enum MeshLevelingState { MeshReport, MeshStart, MeshNext, MeshSet };
  515. #endif
  516. // Factory reset function
  517. // This function is used to erase parts or whole EEPROM memory which is used for storing calibration and and so on.
  518. // Level input parameter sets depth of reset
  519. int er_progress = 0;
  520. static void factory_reset(char level)
  521. {
  522. lcd_clear();
  523. switch (level) {
  524. // Level 0: Language reset
  525. case 0:
  526. if((eSoundMode==e_SOUND_MODE_LOUD)||(eSoundMode==e_SOUND_MODE_ONCE))
  527. WRITE(BEEPER, HIGH);
  528. _delay_ms(100);
  529. WRITE(BEEPER, LOW);
  530. lang_reset();
  531. break;
  532. //Level 1: Reset statistics
  533. case 1:
  534. if((eSoundMode==e_SOUND_MODE_LOUD)||(eSoundMode==e_SOUND_MODE_ONCE))
  535. WRITE(BEEPER, HIGH);
  536. _delay_ms(100);
  537. WRITE(BEEPER, LOW);
  538. eeprom_update_dword((uint32_t *)EEPROM_TOTALTIME, 0);
  539. eeprom_update_dword((uint32_t *)EEPROM_FILAMENTUSED, 0);
  540. eeprom_update_byte((uint8_t *)EEPROM_CRASH_COUNT_X, 0);
  541. eeprom_update_byte((uint8_t *)EEPROM_CRASH_COUNT_Y, 0);
  542. eeprom_update_byte((uint8_t *)EEPROM_FERROR_COUNT, 0);
  543. eeprom_update_byte((uint8_t *)EEPROM_POWER_COUNT, 0);
  544. eeprom_update_word((uint16_t *)EEPROM_CRASH_COUNT_X_TOT, 0);
  545. eeprom_update_word((uint16_t *)EEPROM_CRASH_COUNT_Y_TOT, 0);
  546. eeprom_update_word((uint16_t *)EEPROM_FERROR_COUNT_TOT, 0);
  547. eeprom_update_word((uint16_t *)EEPROM_POWER_COUNT_TOT, 0);
  548. eeprom_update_word((uint16_t *)EEPROM_MMU_FAIL_TOT, 0);
  549. eeprom_update_word((uint16_t *)EEPROM_MMU_LOAD_FAIL_TOT, 0);
  550. eeprom_update_byte((uint8_t *)EEPROM_MMU_FAIL, 0);
  551. eeprom_update_byte((uint8_t *)EEPROM_MMU_LOAD_FAIL, 0);
  552. lcd_menu_statistics();
  553. break;
  554. // Level 2: Prepare for shipping
  555. case 2:
  556. //lcd_puts_P(PSTR("Factory RESET"));
  557. //lcd_puts_at_P(1,2,PSTR("Shipping prep"));
  558. // Force language selection at the next boot up.
  559. lang_reset();
  560. // Force the "Follow calibration flow" message at the next boot up.
  561. calibration_status_store(CALIBRATION_STATUS_Z_CALIBRATION);
  562. eeprom_write_byte((uint8_t*)EEPROM_WIZARD_ACTIVE, 1); //run wizard
  563. farm_no = 0;
  564. farm_mode = false;
  565. eeprom_update_byte((uint8_t*)EEPROM_FARM_MODE, farm_mode);
  566. EEPROM_save_B(EEPROM_FARM_NUMBER, &farm_no);
  567. eeprom_update_dword((uint32_t *)EEPROM_TOTALTIME, 0);
  568. eeprom_update_dword((uint32_t *)EEPROM_FILAMENTUSED, 0);
  569. eeprom_update_word((uint16_t *)EEPROM_CRASH_COUNT_X_TOT, 0);
  570. eeprom_update_word((uint16_t *)EEPROM_CRASH_COUNT_Y_TOT, 0);
  571. eeprom_update_word((uint16_t *)EEPROM_FERROR_COUNT_TOT, 0);
  572. eeprom_update_word((uint16_t *)EEPROM_POWER_COUNT_TOT, 0);
  573. eeprom_update_word((uint16_t *)EEPROM_MMU_FAIL_TOT, 0);
  574. eeprom_update_word((uint16_t *)EEPROM_MMU_LOAD_FAIL_TOT, 0);
  575. eeprom_update_byte((uint8_t *)EEPROM_MMU_FAIL, 0);
  576. eeprom_update_byte((uint8_t *)EEPROM_MMU_LOAD_FAIL, 0);
  577. #ifdef FILAMENT_SENSOR
  578. fsensor_enable();
  579. fsensor_autoload_set(true);
  580. #endif //FILAMENT_SENSOR
  581. if((eSoundMode==e_SOUND_MODE_LOUD)||(eSoundMode==e_SOUND_MODE_ONCE))
  582. WRITE(BEEPER, HIGH);
  583. _delay_ms(100);
  584. WRITE(BEEPER, LOW);
  585. //_delay_ms(2000);
  586. break;
  587. // Level 3: erase everything, whole EEPROM will be set to 0xFF
  588. case 3:
  589. lcd_puts_P(PSTR("Factory RESET"));
  590. lcd_puts_at_P(1, 2, PSTR("ERASING all data"));
  591. if((eSoundMode==e_SOUND_MODE_LOUD)||(eSoundMode==e_SOUND_MODE_ONCE))
  592. WRITE(BEEPER, HIGH);
  593. _delay_ms(100);
  594. WRITE(BEEPER, LOW);
  595. er_progress = 0;
  596. lcd_puts_at_P(3, 3, PSTR(" "));
  597. lcd_set_cursor(3, 3);
  598. lcd_print(er_progress);
  599. // Erase EEPROM
  600. for (int i = 0; i < 4096; i++) {
  601. eeprom_update_byte((uint8_t*)i, 0xFF);
  602. if (i % 41 == 0) {
  603. er_progress++;
  604. lcd_puts_at_P(3, 3, PSTR(" "));
  605. lcd_set_cursor(3, 3);
  606. lcd_print(er_progress);
  607. lcd_puts_P(PSTR("%"));
  608. }
  609. }
  610. break;
  611. case 4:
  612. bowden_menu();
  613. break;
  614. default:
  615. break;
  616. }
  617. }
  618. extern "C" {
  619. FILE _uartout; //= {0}; Global variable is always zero initialized. No need to explicitly state this.
  620. }
  621. int uart_putchar(char c, FILE *)
  622. {
  623. MYSERIAL.write(c);
  624. return 0;
  625. }
  626. void lcd_splash()
  627. {
  628. // lcd_puts_at_P(0, 1, PSTR(" Original Prusa "));
  629. // lcd_puts_at_P(0, 2, PSTR(" 3D Printers "));
  630. // lcd_puts_P(PSTR("\x1b[1;3HOriginal Prusa\x1b[2;4H3D Printers"));
  631. // fputs_P(PSTR(ESC_2J ESC_H(1,1) "Original Prusa i3" ESC_H(3,2) "Prusa Research"), lcdout);
  632. lcd_puts_P(PSTR(ESC_2J ESC_H(1,1) "Original Prusa i3" ESC_H(3,2) "Prusa Research"));
  633. // lcd_printf_P(_N(ESC_2J "x:%.3f\ny:%.3f\nz:%.3f\ne:%.3f"), _x, _y, _z, _e);
  634. }
  635. void factory_reset()
  636. {
  637. KEEPALIVE_STATE(PAUSED_FOR_USER);
  638. if (!READ(BTN_ENC))
  639. {
  640. _delay_ms(1000);
  641. if (!READ(BTN_ENC))
  642. {
  643. lcd_clear();
  644. lcd_puts_P(PSTR("Factory RESET"));
  645. SET_OUTPUT(BEEPER);
  646. if((eSoundMode==e_SOUND_MODE_LOUD)||(eSoundMode==e_SOUND_MODE_ONCE))
  647. WRITE(BEEPER, HIGH);
  648. while (!READ(BTN_ENC));
  649. WRITE(BEEPER, LOW);
  650. _delay_ms(2000);
  651. char level = reset_menu();
  652. factory_reset(level);
  653. switch (level) {
  654. case 0: _delay_ms(0); break;
  655. case 1: _delay_ms(0); break;
  656. case 2: _delay_ms(0); break;
  657. case 3: _delay_ms(0); break;
  658. }
  659. }
  660. }
  661. KEEPALIVE_STATE(IN_HANDLER);
  662. }
  663. void show_fw_version_warnings() {
  664. if (FW_DEV_VERSION == FW_VERSION_GOLD || FW_DEV_VERSION == FW_VERSION_RC) return;
  665. switch (FW_DEV_VERSION) {
  666. case(FW_VERSION_ALPHA): lcd_show_fullscreen_message_and_wait_P(_i("You are using firmware alpha version. This is development version. Using this version is not recommended and may cause printer damage.")); break;////MSG_FW_VERSION_ALPHA c=20 r=8
  667. case(FW_VERSION_BETA): lcd_show_fullscreen_message_and_wait_P(_i("You are using firmware beta version. This is development version. Using this version is not recommended and may cause printer damage.")); break;////MSG_FW_VERSION_BETA c=20 r=8
  668. case(FW_VERSION_DEVEL):
  669. case(FW_VERSION_DEBUG):
  670. lcd_update_enable(false);
  671. lcd_clear();
  672. #if FW_DEV_VERSION == FW_VERSION_DEVEL
  673. lcd_puts_at_P(0, 0, PSTR("Development build !!"));
  674. #else
  675. lcd_puts_at_P(0, 0, PSTR("Debbugging build !!!"));
  676. #endif
  677. lcd_puts_at_P(0, 1, PSTR("May destroy printer!"));
  678. lcd_puts_at_P(0, 2, PSTR("ver ")); lcd_puts_P(PSTR(FW_VERSION_FULL));
  679. lcd_puts_at_P(0, 3, PSTR(FW_REPOSITORY));
  680. lcd_wait_for_click();
  681. break;
  682. // default: lcd_show_fullscreen_message_and_wait_P(_i("WARNING: This is an unofficial, unsupported build. Use at your own risk!")); break;////MSG_FW_VERSION_UNKNOWN c=20 r=8
  683. }
  684. lcd_update_enable(true);
  685. }
  686. //! @brief try to check if firmware is on right type of printer
  687. static void check_if_fw_is_on_right_printer(){
  688. #ifdef FILAMENT_SENSOR
  689. if((PRINTER_TYPE == PRINTER_MK3) || (PRINTER_TYPE == PRINTER_MK3S)){
  690. #ifdef IR_SENSOR
  691. swi2c_init();
  692. const uint8_t pat9125_detected = swi2c_readByte_A8(PAT9125_I2C_ADDR,0x00,NULL);
  693. if (pat9125_detected){
  694. lcd_show_fullscreen_message_and_wait_P(_i("MK3S firmware detected on MK3 printer"));}
  695. #endif //IR_SENSOR
  696. #ifdef PAT9125
  697. //will return 1 only if IR can detect filament in bondtech extruder so this may fail even when we have IR sensor
  698. const uint8_t ir_detected = !(PIN_GET(IR_SENSOR_PIN));
  699. if (ir_detected){
  700. lcd_show_fullscreen_message_and_wait_P(_i("MK3 firmware detected on MK3S printer"));}
  701. #endif //PAT9125
  702. }
  703. #endif //FILAMENT_SENSOR
  704. }
  705. uint8_t check_printer_version()
  706. {
  707. uint8_t version_changed = 0;
  708. uint16_t printer_type = eeprom_read_word((uint16_t*)EEPROM_PRINTER_TYPE);
  709. uint16_t motherboard = eeprom_read_word((uint16_t*)EEPROM_BOARD_TYPE);
  710. if (printer_type != PRINTER_TYPE) {
  711. if (printer_type == 0xffff) eeprom_write_word((uint16_t*)EEPROM_PRINTER_TYPE, PRINTER_TYPE);
  712. else version_changed |= 0b10;
  713. }
  714. if (motherboard != MOTHERBOARD) {
  715. if(motherboard == 0xffff) eeprom_write_word((uint16_t*)EEPROM_BOARD_TYPE, MOTHERBOARD);
  716. else version_changed |= 0b01;
  717. }
  718. return version_changed;
  719. }
  720. #ifdef BOOTAPP
  721. #include "bootapp.h" //bootloader support
  722. #endif //BOOTAPP
  723. #if (LANG_MODE != 0) //secondary language support
  724. #ifdef W25X20CL
  725. // language update from external flash
  726. #define LANGBOOT_BLOCKSIZE 0x1000u
  727. #define LANGBOOT_RAMBUFFER 0x0800
  728. void update_sec_lang_from_external_flash()
  729. {
  730. if ((boot_app_magic == BOOT_APP_MAGIC) && (boot_app_flags & BOOT_APP_FLG_USER0))
  731. {
  732. uint8_t lang = boot_reserved >> 4;
  733. uint8_t state = boot_reserved & 0xf;
  734. lang_table_header_t header;
  735. uint32_t src_addr;
  736. if (lang_get_header(lang, &header, &src_addr))
  737. {
  738. fputs_P(PSTR(ESC_H(1,3) "Language update."), lcdout);
  739. for (uint8_t i = 0; i < state; i++) fputc('.', lcdout);
  740. _delay(100);
  741. boot_reserved = (state + 1) | (lang << 4);
  742. if ((state * LANGBOOT_BLOCKSIZE) < header.size)
  743. {
  744. cli();
  745. uint16_t size = header.size - state * LANGBOOT_BLOCKSIZE;
  746. if (size > LANGBOOT_BLOCKSIZE) size = LANGBOOT_BLOCKSIZE;
  747. w25x20cl_rd_data(src_addr + state * LANGBOOT_BLOCKSIZE, (uint8_t*)LANGBOOT_RAMBUFFER, size);
  748. if (state == 0)
  749. {
  750. //TODO - check header integrity
  751. }
  752. bootapp_ram2flash(LANGBOOT_RAMBUFFER, _SEC_LANG_TABLE + state * LANGBOOT_BLOCKSIZE, size);
  753. }
  754. else
  755. {
  756. //TODO - check sec lang data integrity
  757. eeprom_update_byte((unsigned char *)EEPROM_LANG, LANG_ID_SEC);
  758. }
  759. }
  760. }
  761. boot_app_flags &= ~BOOT_APP_FLG_USER0;
  762. }
  763. #ifdef DEBUG_W25X20CL
  764. uint8_t lang_xflash_enum_codes(uint16_t* codes)
  765. {
  766. lang_table_header_t header;
  767. uint8_t count = 0;
  768. uint32_t addr = 0x00000;
  769. while (1)
  770. {
  771. printf_P(_n("LANGTABLE%d:"), count);
  772. w25x20cl_rd_data(addr, (uint8_t*)&header, sizeof(lang_table_header_t));
  773. if (header.magic != LANG_MAGIC)
  774. {
  775. printf_P(_n("NG!\n"));
  776. break;
  777. }
  778. printf_P(_n("OK\n"));
  779. printf_P(_n(" _lt_magic = 0x%08lx %S\n"), header.magic, (header.magic==LANG_MAGIC)?_n("OK"):_n("NA"));
  780. printf_P(_n(" _lt_size = 0x%04x (%d)\n"), header.size, header.size);
  781. printf_P(_n(" _lt_count = 0x%04x (%d)\n"), header.count, header.count);
  782. printf_P(_n(" _lt_chsum = 0x%04x\n"), header.checksum);
  783. printf_P(_n(" _lt_code = 0x%04x (%c%c)\n"), header.code, header.code >> 8, header.code & 0xff);
  784. printf_P(_n(" _lt_sign = 0x%08lx\n"), header.signature);
  785. addr += header.size;
  786. codes[count] = header.code;
  787. count ++;
  788. }
  789. return count;
  790. }
  791. void list_sec_lang_from_external_flash()
  792. {
  793. uint16_t codes[8];
  794. uint8_t count = lang_xflash_enum_codes(codes);
  795. printf_P(_n("XFlash lang count = %hhd\n"), count);
  796. }
  797. #endif //DEBUG_W25X20CL
  798. #endif //W25X20CL
  799. #endif //(LANG_MODE != 0)
  800. static void w25x20cl_err_msg()
  801. {
  802. lcd_puts_P(_n(ESC_2J ESC_H(0,0) "External SPI flash" ESC_H(0,1) "W25X20CL is not res-"
  803. ESC_H(0,2) "ponding. Language" ESC_H(0,3) "switch unavailable."));
  804. }
  805. // "Setup" function is called by the Arduino framework on startup.
  806. // Before startup, the Timers-functions (PWM)/Analog RW and HardwareSerial provided by the Arduino-code
  807. // are initialized by the main() routine provided by the Arduino framework.
  808. void setup()
  809. {
  810. mmu_init();
  811. ultralcd_init();
  812. #if (LCD_BL_PIN != -1) && defined (LCD_BL_PIN)
  813. analogWrite(LCD_BL_PIN, 255); //set full brightnes
  814. #endif //(LCD_BL_PIN != -1) && defined (LCD_BL_PIN)
  815. spi_init();
  816. lcd_splash();
  817. Sound_Init(); // also guarantee "SET_OUTPUT(BEEPER)"
  818. #ifdef W25X20CL
  819. bool w25x20cl_success = w25x20cl_init();
  820. if (w25x20cl_success)
  821. {
  822. optiboot_w25x20cl_enter();
  823. #if (LANG_MODE != 0) //secondary language support
  824. update_sec_lang_from_external_flash();
  825. #endif //(LANG_MODE != 0)
  826. }
  827. else
  828. {
  829. w25x20cl_err_msg();
  830. }
  831. #else
  832. const bool w25x20cl_success = true;
  833. #endif //W25X20CL
  834. setup_killpin();
  835. setup_powerhold();
  836. farm_mode = eeprom_read_byte((uint8_t*)EEPROM_FARM_MODE);
  837. EEPROM_read_B(EEPROM_FARM_NUMBER, &farm_no);
  838. if ((farm_mode == 0xFF && farm_no == 0) || ((uint16_t)farm_no == 0xFFFF))
  839. farm_mode = false; //if farm_mode has not been stored to eeprom yet and farm number is set to zero or EEPROM is fresh, deactivate farm mode
  840. if ((uint16_t)farm_no == 0xFFFF) farm_no = 0;
  841. selectedSerialPort = eeprom_read_byte((uint8_t*)EEPROM_SECOND_SERIAL_ACTIVE);
  842. if (selectedSerialPort == 0xFF) selectedSerialPort = 0;
  843. if (farm_mode)
  844. {
  845. no_response = true; //we need confirmation by recieving PRUSA thx
  846. important_status = 8;
  847. prusa_statistics(8);
  848. selectedSerialPort = 1;
  849. #ifdef TMC2130
  850. //increased extruder current (PFW363)
  851. tmc2130_current_h[E_AXIS] = 36;
  852. tmc2130_current_r[E_AXIS] = 36;
  853. #endif //TMC2130
  854. #ifdef FILAMENT_SENSOR
  855. //disabled filament autoload (PFW360)
  856. fsensor_autoload_set(false);
  857. #endif //FILAMENT_SENSOR
  858. // ~ FanCheck -> on
  859. if(!(eeprom_read_byte((uint8_t*)EEPROM_FAN_CHECK_ENABLED)))
  860. eeprom_update_byte((unsigned char *)EEPROM_FAN_CHECK_ENABLED,true);
  861. }
  862. MYSERIAL.begin(BAUDRATE);
  863. fdev_setup_stream(uartout, uart_putchar, NULL, _FDEV_SETUP_WRITE); //setup uart out stream
  864. #ifndef W25X20CL
  865. SERIAL_PROTOCOLLNPGM("start");
  866. #endif //W25X20CL
  867. stdout = uartout;
  868. SERIAL_ECHO_START;
  869. printf_P(PSTR(" " FW_VERSION_FULL "\n"));
  870. //SERIAL_ECHOPAIR("Active sheet before:", static_cast<unsigned long int>(eeprom_read_byte(&(EEPROM_Sheets_base->active_sheet))));
  871. #ifdef DEBUG_SEC_LANG
  872. lang_table_header_t header;
  873. uint32_t src_addr = 0x00000;
  874. if (lang_get_header(1, &header, &src_addr))
  875. {
  876. //this is comparsion of some printing-methods regarding to flash space usage and code size/readability
  877. #define LT_PRINT_TEST 2
  878. // flash usage
  879. // total p.test
  880. //0 252718 t+c text code
  881. //1 253142 424 170 254
  882. //2 253040 322 164 158
  883. //3 253248 530 135 395
  884. #if (LT_PRINT_TEST==1) //not optimized printf
  885. printf_P(_n(" _src_addr = 0x%08lx\n"), src_addr);
  886. printf_P(_n(" _lt_magic = 0x%08lx %S\n"), header.magic, (header.magic==LANG_MAGIC)?_n("OK"):_n("NA"));
  887. printf_P(_n(" _lt_size = 0x%04x (%d)\n"), header.size, header.size);
  888. printf_P(_n(" _lt_count = 0x%04x (%d)\n"), header.count, header.count);
  889. printf_P(_n(" _lt_chsum = 0x%04x\n"), header.checksum);
  890. printf_P(_n(" _lt_code = 0x%04x (%c%c)\n"), header.code, header.code >> 8, header.code & 0xff);
  891. printf_P(_n(" _lt_sign = 0x%08lx\n"), header.signature);
  892. #elif (LT_PRINT_TEST==2) //optimized printf
  893. printf_P(
  894. _n(
  895. " _src_addr = 0x%08lx\n"
  896. " _lt_magic = 0x%08lx %S\n"
  897. " _lt_size = 0x%04x (%d)\n"
  898. " _lt_count = 0x%04x (%d)\n"
  899. " _lt_chsum = 0x%04x\n"
  900. " _lt_code = 0x%04x (%c%c)\n"
  901. " _lt_resv1 = 0x%08lx\n"
  902. ),
  903. src_addr,
  904. header.magic, (header.magic==LANG_MAGIC)?_n("OK"):_n("NA"),
  905. header.size, header.size,
  906. header.count, header.count,
  907. header.checksum,
  908. header.code, header.code >> 8, header.code & 0xff,
  909. header.signature
  910. );
  911. #elif (LT_PRINT_TEST==3) //arduino print/println (leading zeros not solved)
  912. MYSERIAL.print(" _src_addr = 0x");
  913. MYSERIAL.println(src_addr, 16);
  914. MYSERIAL.print(" _lt_magic = 0x");
  915. MYSERIAL.print(header.magic, 16);
  916. MYSERIAL.println((header.magic==LANG_MAGIC)?" OK":" NA");
  917. MYSERIAL.print(" _lt_size = 0x");
  918. MYSERIAL.print(header.size, 16);
  919. MYSERIAL.print(" (");
  920. MYSERIAL.print(header.size, 10);
  921. MYSERIAL.println(")");
  922. MYSERIAL.print(" _lt_count = 0x");
  923. MYSERIAL.print(header.count, 16);
  924. MYSERIAL.print(" (");
  925. MYSERIAL.print(header.count, 10);
  926. MYSERIAL.println(")");
  927. MYSERIAL.print(" _lt_chsum = 0x");
  928. MYSERIAL.println(header.checksum, 16);
  929. MYSERIAL.print(" _lt_code = 0x");
  930. MYSERIAL.print(header.code, 16);
  931. MYSERIAL.print(" (");
  932. MYSERIAL.print((char)(header.code >> 8), 0);
  933. MYSERIAL.print((char)(header.code & 0xff), 0);
  934. MYSERIAL.println(")");
  935. MYSERIAL.print(" _lt_resv1 = 0x");
  936. MYSERIAL.println(header.signature, 16);
  937. #endif //(LT_PRINT_TEST==)
  938. #undef LT_PRINT_TEST
  939. #if 0
  940. w25x20cl_rd_data(0x25ba, (uint8_t*)&block_buffer, 1024);
  941. for (uint16_t i = 0; i < 1024; i++)
  942. {
  943. if ((i % 16) == 0) printf_P(_n("%04x:"), 0x25ba+i);
  944. printf_P(_n(" %02x"), ((uint8_t*)&block_buffer)[i]);
  945. if ((i % 16) == 15) putchar('\n');
  946. }
  947. #endif
  948. uint16_t sum = 0;
  949. for (uint16_t i = 0; i < header.size; i++)
  950. sum += (uint16_t)pgm_read_byte((uint8_t*)(_SEC_LANG_TABLE + i)) << ((i & 1)?0:8);
  951. printf_P(_n("_SEC_LANG_TABLE checksum = %04x\n"), sum);
  952. sum -= header.checksum; //subtract checksum
  953. printf_P(_n("_SEC_LANG_TABLE checksum = %04x\n"), sum);
  954. sum = (sum >> 8) | ((sum & 0xff) << 8); //swap bytes
  955. if (sum == header.checksum)
  956. printf_P(_n("Checksum OK\n"), sum);
  957. else
  958. printf_P(_n("Checksum NG\n"), sum);
  959. }
  960. else
  961. printf_P(_n("lang_get_header failed!\n"));
  962. #if 0
  963. for (uint16_t i = 0; i < 1024*10; i++)
  964. {
  965. if ((i % 16) == 0) printf_P(_n("%04x:"), _SEC_LANG_TABLE+i);
  966. printf_P(_n(" %02x"), pgm_read_byte((uint8_t*)(_SEC_LANG_TABLE+i)));
  967. if ((i % 16) == 15) putchar('\n');
  968. }
  969. #endif
  970. #if 0
  971. SERIAL_ECHOLN("Reading eeprom from 0 to 100: start");
  972. for (int i = 0; i < 4096; ++i) {
  973. int b = eeprom_read_byte((unsigned char*)i);
  974. if (b != 255) {
  975. SERIAL_ECHO(i);
  976. SERIAL_ECHO(":");
  977. SERIAL_ECHO(b);
  978. SERIAL_ECHOLN("");
  979. }
  980. }
  981. SERIAL_ECHOLN("Reading eeprom from 0 to 100: done");
  982. #endif
  983. #endif //DEBUG_SEC_LANG
  984. // Check startup - does nothing if bootloader sets MCUSR to 0
  985. byte mcu = MCUSR;
  986. /* if (mcu & 1) SERIAL_ECHOLNRPGM(MSG_POWERUP);
  987. if (mcu & 2) SERIAL_ECHOLNRPGM(MSG_EXTERNAL_RESET);
  988. if (mcu & 4) SERIAL_ECHOLNRPGM(MSG_BROWNOUT_RESET);
  989. if (mcu & 8) SERIAL_ECHOLNRPGM(MSG_WATCHDOG_RESET);
  990. if (mcu & 32) SERIAL_ECHOLNRPGM(MSG_SOFTWARE_RESET);*/
  991. if (mcu & 1) puts_P(MSG_POWERUP);
  992. if (mcu & 2) puts_P(MSG_EXTERNAL_RESET);
  993. if (mcu & 4) puts_P(MSG_BROWNOUT_RESET);
  994. if (mcu & 8) puts_P(MSG_WATCHDOG_RESET);
  995. if (mcu & 32) puts_P(MSG_SOFTWARE_RESET);
  996. MCUSR = 0;
  997. //SERIAL_ECHORPGM(MSG_MARLIN);
  998. //SERIAL_ECHOLNRPGM(VERSION_STRING);
  999. #ifdef STRING_VERSION_CONFIG_H
  1000. #ifdef STRING_CONFIG_H_AUTHOR
  1001. SERIAL_ECHO_START;
  1002. SERIAL_ECHORPGM(_n(" Last Updated: "));////MSG_CONFIGURATION_VER
  1003. SERIAL_ECHOPGM(STRING_VERSION_CONFIG_H);
  1004. SERIAL_ECHORPGM(_n(" | Author: "));////MSG_AUTHOR
  1005. SERIAL_ECHOLNPGM(STRING_CONFIG_H_AUTHOR);
  1006. SERIAL_ECHOPGM("Compiled: ");
  1007. SERIAL_ECHOLNPGM(__DATE__);
  1008. #endif
  1009. #endif
  1010. SERIAL_ECHO_START;
  1011. SERIAL_ECHORPGM(_n(" Free Memory: "));////MSG_FREE_MEMORY
  1012. SERIAL_ECHO(freeMemory());
  1013. SERIAL_ECHORPGM(_n(" PlannerBufferBytes: "));////MSG_PLANNER_BUFFER_BYTES
  1014. SERIAL_ECHOLN((int)sizeof(block_t)*BLOCK_BUFFER_SIZE);
  1015. //lcd_update_enable(false); // why do we need this?? - andre
  1016. // loads data from EEPROM if available else uses defaults (and resets step acceleration rate)
  1017. bool previous_settings_retrieved = false;
  1018. uint8_t hw_changed = check_printer_version();
  1019. if (!(hw_changed & 0b10)) { //if printer version wasn't changed, check for eeprom version and retrieve settings from eeprom in case that version wasn't changed
  1020. previous_settings_retrieved = Config_RetrieveSettings();
  1021. }
  1022. else { //printer version was changed so use default settings
  1023. Config_ResetDefault();
  1024. }
  1025. SdFatUtil::set_stack_guard(); //writes magic number at the end of static variables to protect against overwriting static memory by stack
  1026. tp_init(); // Initialize temperature loop
  1027. if (w25x20cl_success) lcd_splash(); // we need to do this again, because tp_init() kills lcd
  1028. else
  1029. {
  1030. w25x20cl_err_msg();
  1031. printf_P(_n("W25X20CL not responding.\n"));
  1032. }
  1033. plan_init(); // Initialize planner;
  1034. factory_reset();
  1035. lcd_encoder_diff=0;
  1036. #ifdef TMC2130
  1037. uint8_t silentMode = eeprom_read_byte((uint8_t*)EEPROM_SILENT);
  1038. if (silentMode == 0xff) silentMode = 0;
  1039. tmc2130_mode = TMC2130_MODE_NORMAL;
  1040. uint8_t crashdet = eeprom_read_byte((uint8_t*)EEPROM_CRASH_DET);
  1041. if (crashdet && !farm_mode)
  1042. {
  1043. crashdet_enable();
  1044. puts_P(_N("CrashDetect ENABLED!"));
  1045. }
  1046. else
  1047. {
  1048. crashdet_disable();
  1049. puts_P(_N("CrashDetect DISABLED"));
  1050. }
  1051. #ifdef TMC2130_LINEARITY_CORRECTION
  1052. #ifdef TMC2130_LINEARITY_CORRECTION_XYZ
  1053. tmc2130_wave_fac[X_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_WAVE_X_FAC);
  1054. tmc2130_wave_fac[Y_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_WAVE_Y_FAC);
  1055. tmc2130_wave_fac[Z_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_WAVE_Z_FAC);
  1056. #endif //TMC2130_LINEARITY_CORRECTION_XYZ
  1057. tmc2130_wave_fac[E_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_WAVE_E_FAC);
  1058. if (tmc2130_wave_fac[X_AXIS] == 0xff) tmc2130_wave_fac[X_AXIS] = 0;
  1059. if (tmc2130_wave_fac[Y_AXIS] == 0xff) tmc2130_wave_fac[Y_AXIS] = 0;
  1060. if (tmc2130_wave_fac[Z_AXIS] == 0xff) tmc2130_wave_fac[Z_AXIS] = 0;
  1061. if (tmc2130_wave_fac[E_AXIS] == 0xff) tmc2130_wave_fac[E_AXIS] = 0;
  1062. #endif //TMC2130_LINEARITY_CORRECTION
  1063. #ifdef TMC2130_VARIABLE_RESOLUTION
  1064. tmc2130_mres[X_AXIS] = tmc2130_usteps2mres(cs.axis_ustep_resolution[X_AXIS]);
  1065. tmc2130_mres[Y_AXIS] = tmc2130_usteps2mres(cs.axis_ustep_resolution[Y_AXIS]);
  1066. tmc2130_mres[Z_AXIS] = tmc2130_usteps2mres(cs.axis_ustep_resolution[Z_AXIS]);
  1067. tmc2130_mres[E_AXIS] = tmc2130_usteps2mres(cs.axis_ustep_resolution[E_AXIS]);
  1068. #else //TMC2130_VARIABLE_RESOLUTION
  1069. tmc2130_mres[X_AXIS] = tmc2130_usteps2mres(TMC2130_USTEPS_XY);
  1070. tmc2130_mres[Y_AXIS] = tmc2130_usteps2mres(TMC2130_USTEPS_XY);
  1071. tmc2130_mres[Z_AXIS] = tmc2130_usteps2mres(TMC2130_USTEPS_Z);
  1072. tmc2130_mres[E_AXIS] = tmc2130_usteps2mres(TMC2130_USTEPS_E);
  1073. #endif //TMC2130_VARIABLE_RESOLUTION
  1074. #endif //TMC2130
  1075. st_init(); // Initialize stepper, this enables interrupts!
  1076. #ifdef UVLO_SUPPORT
  1077. setup_uvlo_interrupt();
  1078. #endif //UVLO_SUPPORT
  1079. #ifdef TMC2130
  1080. tmc2130_mode = silentMode?TMC2130_MODE_SILENT:TMC2130_MODE_NORMAL;
  1081. update_mode_profile();
  1082. tmc2130_init();
  1083. #endif //TMC2130
  1084. setup_photpin();
  1085. servo_init();
  1086. // Reset the machine correction matrix.
  1087. // It does not make sense to load the correction matrix until the machine is homed.
  1088. world2machine_reset();
  1089. #ifdef FILAMENT_SENSOR
  1090. fsensor_init();
  1091. #endif //FILAMENT_SENSOR
  1092. #if defined(CONTROLLERFAN_PIN) && (CONTROLLERFAN_PIN > -1)
  1093. SET_OUTPUT(CONTROLLERFAN_PIN); //Set pin used for driver cooling fan
  1094. #endif
  1095. setup_homepin();
  1096. #ifdef TMC2130
  1097. if (1) {
  1098. // try to run to zero phase before powering the Z motor.
  1099. // Move in negative direction
  1100. WRITE(Z_DIR_PIN,INVERT_Z_DIR);
  1101. // Round the current micro-micro steps to micro steps.
  1102. for (uint16_t phase = (tmc2130_rd_MSCNT(Z_AXIS) + 8) >> 4; phase > 0; -- phase) {
  1103. // Until the phase counter is reset to zero.
  1104. WRITE(Z_STEP_PIN, !INVERT_Z_STEP_PIN);
  1105. _delay(2);
  1106. WRITE(Z_STEP_PIN, INVERT_Z_STEP_PIN);
  1107. _delay(2);
  1108. }
  1109. }
  1110. #endif //TMC2130
  1111. #if defined(Z_AXIS_ALWAYS_ON)
  1112. enable_z();
  1113. #endif
  1114. farm_mode = eeprom_read_byte((uint8_t*)EEPROM_FARM_MODE);
  1115. EEPROM_read_B(EEPROM_FARM_NUMBER, &farm_no);
  1116. if ((farm_mode == 0xFF && farm_no == 0) || (farm_no == static_cast<int>(0xFFFF))) farm_mode = false; //if farm_mode has not been stored to eeprom yet and farm number is set to zero or EEPROM is fresh, deactivate farm mode
  1117. if (farm_no == static_cast<int>(0xFFFF)) farm_no = 0;
  1118. if (farm_mode)
  1119. {
  1120. prusa_statistics(8);
  1121. }
  1122. // Enable Toshiba FlashAir SD card / WiFi enahanced card.
  1123. card.ToshibaFlashAir_enable(eeprom_read_byte((unsigned char*)EEPROM_TOSHIBA_FLASH_AIR_COMPATIBLITY) == 1);
  1124. if (eeprom_read_dword((uint32_t*)(EEPROM_TOP - 4)) == 0x0ffffffff &&
  1125. eeprom_read_dword((uint32_t*)(EEPROM_TOP - 8)) == 0x0ffffffff) {
  1126. // Maiden startup. The firmware has been loaded and first started on a virgin RAMBo board,
  1127. // where all the EEPROM entries are set to 0x0ff.
  1128. // Once a firmware boots up, it forces at least a language selection, which changes
  1129. // EEPROM_LANG to number lower than 0x0ff.
  1130. // 1) Set a high power mode.
  1131. #ifdef TMC2130
  1132. eeprom_write_byte((uint8_t*)EEPROM_SILENT, 0);
  1133. tmc2130_mode = TMC2130_MODE_NORMAL;
  1134. #endif //TMC2130
  1135. eeprom_write_byte((uint8_t*)EEPROM_WIZARD_ACTIVE, 1); //run wizard
  1136. }
  1137. // Force SD card update. Otherwise the SD card update is done from loop() on card.checkautostart(false),
  1138. // but this times out if a blocking dialog is shown in setup().
  1139. card.initsd();
  1140. #ifdef DEBUG_SD_SPEED_TEST
  1141. if (card.cardOK)
  1142. {
  1143. uint8_t* buff = (uint8_t*)block_buffer;
  1144. uint32_t block = 0;
  1145. uint32_t sumr = 0;
  1146. uint32_t sumw = 0;
  1147. for (int i = 0; i < 1024; i++)
  1148. {
  1149. uint32_t u = _micros();
  1150. bool res = card.card.readBlock(i, buff);
  1151. u = _micros() - u;
  1152. if (res)
  1153. {
  1154. printf_P(PSTR("readBlock %4d 512 bytes %lu us\n"), i, u);
  1155. sumr += u;
  1156. u = _micros();
  1157. res = card.card.writeBlock(i, buff);
  1158. u = _micros() - u;
  1159. if (res)
  1160. {
  1161. printf_P(PSTR("writeBlock %4d 512 bytes %lu us\n"), i, u);
  1162. sumw += u;
  1163. }
  1164. else
  1165. {
  1166. printf_P(PSTR("writeBlock %4d error\n"), i);
  1167. break;
  1168. }
  1169. }
  1170. else
  1171. {
  1172. printf_P(PSTR("readBlock %4d error\n"), i);
  1173. break;
  1174. }
  1175. }
  1176. uint32_t avg_rspeed = (1024 * 1000000) / (sumr / 512);
  1177. uint32_t avg_wspeed = (1024 * 1000000) / (sumw / 512);
  1178. printf_P(PSTR("avg read speed %lu bytes/s\n"), avg_rspeed);
  1179. printf_P(PSTR("avg write speed %lu bytes/s\n"), avg_wspeed);
  1180. }
  1181. else
  1182. printf_P(PSTR("Card NG!\n"));
  1183. #endif //DEBUG_SD_SPEED_TEST
  1184. if (eeprom_read_byte((uint8_t*)EEPROM_POWER_COUNT) == 0xff) eeprom_write_byte((uint8_t*)EEPROM_POWER_COUNT, 0);
  1185. if (eeprom_read_byte((uint8_t*)EEPROM_CRASH_COUNT_X) == 0xff) eeprom_write_byte((uint8_t*)EEPROM_CRASH_COUNT_X, 0);
  1186. if (eeprom_read_byte((uint8_t*)EEPROM_CRASH_COUNT_Y) == 0xff) eeprom_write_byte((uint8_t*)EEPROM_CRASH_COUNT_Y, 0);
  1187. if (eeprom_read_byte((uint8_t*)EEPROM_FERROR_COUNT) == 0xff) eeprom_write_byte((uint8_t*)EEPROM_FERROR_COUNT, 0);
  1188. if (eeprom_read_word((uint16_t*)EEPROM_POWER_COUNT_TOT) == 0xffff) eeprom_write_word((uint16_t*)EEPROM_POWER_COUNT_TOT, 0);
  1189. if (eeprom_read_word((uint16_t*)EEPROM_CRASH_COUNT_X_TOT) == 0xffff) eeprom_write_word((uint16_t*)EEPROM_CRASH_COUNT_X_TOT, 0);
  1190. if (eeprom_read_word((uint16_t*)EEPROM_CRASH_COUNT_Y_TOT) == 0xffff) eeprom_write_word((uint16_t*)EEPROM_CRASH_COUNT_Y_TOT, 0);
  1191. if (eeprom_read_word((uint16_t*)EEPROM_FERROR_COUNT_TOT) == 0xffff) eeprom_write_word((uint16_t*)EEPROM_FERROR_COUNT_TOT, 0);
  1192. if (eeprom_read_word((uint16_t*)EEPROM_MMU_FAIL_TOT) == 0xffff) eeprom_update_word((uint16_t *)EEPROM_MMU_FAIL_TOT, 0);
  1193. if (eeprom_read_word((uint16_t*)EEPROM_MMU_LOAD_FAIL_TOT) == 0xffff) eeprom_update_word((uint16_t *)EEPROM_MMU_LOAD_FAIL_TOT, 0);
  1194. if (eeprom_read_byte((uint8_t*)EEPROM_MMU_FAIL) == 0xff) eeprom_update_byte((uint8_t *)EEPROM_MMU_FAIL, 0);
  1195. if (eeprom_read_byte((uint8_t*)EEPROM_MMU_LOAD_FAIL) == 0xff) eeprom_update_byte((uint8_t *)EEPROM_MMU_LOAD_FAIL, 0);
  1196. if (eeprom_read_byte(&(EEPROM_Sheets_base->active_sheet)) == 0xff) eeprom_update_byte(&(EEPROM_Sheets_base->active_sheet), 0);
  1197. for (uint_least8_t i = 0; i < (sizeof(Sheets::s)/sizeof(Sheets::s[0])); ++i)
  1198. {
  1199. bool is_uninitialized = true;
  1200. for (uint_least8_t j = 0; j < (sizeof(Sheet::name)/sizeof(Sheet::name[0])); ++j)
  1201. {
  1202. if (0xff != eeprom_read_byte(&(EEPROM_Sheets_base->s[i].name[j]))) is_uninitialized = false;
  1203. }
  1204. if(is_uninitialized)
  1205. {
  1206. eeprom_write_byte(&(EEPROM_Sheets_base->s[i].name[0]), i + '1');
  1207. eeprom_write_byte(&(EEPROM_Sheets_base->s[i].name[1]), '\0');
  1208. }
  1209. }
  1210. #ifdef SNMM
  1211. if (eeprom_read_dword((uint32_t*)EEPROM_BOWDEN_LENGTH) == 0x0ffffffff) { //bowden length used for SNMM
  1212. int _z = BOWDEN_LENGTH;
  1213. for(int i = 0; i<4; i++) EEPROM_save_B(EEPROM_BOWDEN_LENGTH + i * 2, &_z);
  1214. }
  1215. #endif
  1216. // In the future, somewhere here would one compare the current firmware version against the firmware version stored in the EEPROM.
  1217. // If they differ, an update procedure may need to be performed. At the end of this block, the current firmware version
  1218. // is being written into the EEPROM, so the update procedure will be triggered only once.
  1219. #if (LANG_MODE != 0) //secondary language support
  1220. #ifdef DEBUG_W25X20CL
  1221. W25X20CL_SPI_ENTER();
  1222. uint8_t uid[8]; // 64bit unique id
  1223. w25x20cl_rd_uid(uid);
  1224. puts_P(_n("W25X20CL UID="));
  1225. for (uint8_t i = 0; i < 8; i ++)
  1226. printf_P(PSTR("%02hhx"), uid[i]);
  1227. putchar('\n');
  1228. list_sec_lang_from_external_flash();
  1229. #endif //DEBUG_W25X20CL
  1230. // lang_reset();
  1231. if (!lang_select(eeprom_read_byte((uint8_t*)EEPROM_LANG)))
  1232. lcd_language();
  1233. #ifdef DEBUG_SEC_LANG
  1234. uint16_t sec_lang_code = lang_get_code(1);
  1235. uint16_t ui = _SEC_LANG_TABLE; //table pointer
  1236. printf_P(_n("lang_selected=%d\nlang_table=0x%04x\nSEC_LANG_CODE=0x%04x (%c%c)\n"), lang_selected, ui, sec_lang_code, sec_lang_code >> 8, sec_lang_code & 0xff);
  1237. lang_print_sec_lang(uartout);
  1238. #endif //DEBUG_SEC_LANG
  1239. #endif //(LANG_MODE != 0)
  1240. if (eeprom_read_byte((uint8_t*)EEPROM_TEMP_CAL_ACTIVE) == 255) {
  1241. eeprom_write_byte((uint8_t*)EEPROM_TEMP_CAL_ACTIVE, 0);
  1242. temp_cal_active = false;
  1243. } else temp_cal_active = eeprom_read_byte((uint8_t*)EEPROM_TEMP_CAL_ACTIVE);
  1244. if (eeprom_read_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA) == 255) {
  1245. //eeprom_write_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 0);
  1246. eeprom_write_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 1);
  1247. int16_t z_shift = 0;
  1248. for (uint8_t i = 0; i < 5; i++) EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + i * 2, &z_shift);
  1249. eeprom_write_byte((uint8_t*)EEPROM_TEMP_CAL_ACTIVE, 0);
  1250. temp_cal_active = false;
  1251. }
  1252. if (eeprom_read_byte((uint8_t*)EEPROM_UVLO) == 255) {
  1253. eeprom_write_byte((uint8_t*)EEPROM_UVLO, 0);
  1254. }
  1255. if (eeprom_read_byte((uint8_t*)EEPROM_SD_SORT) == 255) {
  1256. eeprom_write_byte((uint8_t*)EEPROM_SD_SORT, 0);
  1257. }
  1258. //mbl_mode_init();
  1259. mbl_settings_init();
  1260. SilentModeMenu_MMU = eeprom_read_byte((uint8_t*)EEPROM_MMU_STEALTH);
  1261. if (SilentModeMenu_MMU == 255) {
  1262. SilentModeMenu_MMU = 1;
  1263. eeprom_write_byte((uint8_t*)EEPROM_MMU_STEALTH, SilentModeMenu_MMU);
  1264. }
  1265. check_babystep(); //checking if Z babystep is in allowed range
  1266. #if !defined(DEBUG_DISABLE_FANCHECK) && defined(FANCHECK) && defined(TACH_1) && TACH_1 >-1
  1267. setup_fan_interrupt();
  1268. #endif //DEBUG_DISABLE_FANCHECK
  1269. #ifdef PAT9125
  1270. fsensor_setup_interrupt();
  1271. #endif //PAT9125
  1272. for (int i = 0; i<4; i++) EEPROM_read_B(EEPROM_BOWDEN_LENGTH + i * 2, &bowden_length[i]);
  1273. #ifndef DEBUG_DISABLE_STARTMSGS
  1274. KEEPALIVE_STATE(PAUSED_FOR_USER);
  1275. check_if_fw_is_on_right_printer();
  1276. show_fw_version_warnings();
  1277. switch (hw_changed) {
  1278. //if motherboard or printer type was changed inform user as it can indicate flashing wrong firmware version
  1279. //if user confirms with knob, new hw version (printer and/or motherboard) is written to eeprom and message will be not shown next time
  1280. case(0b01):
  1281. lcd_show_fullscreen_message_and_wait_P(_i("Warning: motherboard type changed.")); ////MSG_CHANGED_MOTHERBOARD c=20 r=4
  1282. eeprom_write_word((uint16_t*)EEPROM_BOARD_TYPE, MOTHERBOARD);
  1283. break;
  1284. case(0b10):
  1285. lcd_show_fullscreen_message_and_wait_P(_i("Warning: printer type changed.")); ////MSG_CHANGED_PRINTER c=20 r=4
  1286. eeprom_write_word((uint16_t*)EEPROM_PRINTER_TYPE, PRINTER_TYPE);
  1287. break;
  1288. case(0b11):
  1289. lcd_show_fullscreen_message_and_wait_P(_i("Warning: both printer type and motherboard type changed.")); ////MSG_CHANGED_BOTH c=20 r=4
  1290. eeprom_write_word((uint16_t*)EEPROM_PRINTER_TYPE, PRINTER_TYPE);
  1291. eeprom_write_word((uint16_t*)EEPROM_BOARD_TYPE, MOTHERBOARD);
  1292. break;
  1293. default: break; //no change, show no message
  1294. }
  1295. if (!previous_settings_retrieved) {
  1296. lcd_show_fullscreen_message_and_wait_P(_i("Old settings found. Default PID, Esteps etc. will be set.")); //if EEPROM version or printer type was changed, inform user that default setting were loaded////MSG_DEFAULT_SETTINGS_LOADED c=20 r=4
  1297. Config_StoreSettings();
  1298. }
  1299. if (eeprom_read_byte((uint8_t*)EEPROM_WIZARD_ACTIVE) == 1) {
  1300. lcd_wizard(WizState::Run);
  1301. }
  1302. if (eeprom_read_byte((uint8_t*)EEPROM_WIZARD_ACTIVE) == 0) { //dont show calibration status messages if wizard is currently active
  1303. if (calibration_status() == CALIBRATION_STATUS_ASSEMBLED ||
  1304. calibration_status() == CALIBRATION_STATUS_UNKNOWN ||
  1305. calibration_status() == CALIBRATION_STATUS_XYZ_CALIBRATION) {
  1306. // Reset the babystepping values, so the printer will not move the Z axis up when the babystepping is enabled.
  1307. eeprom_update_word((uint16_t*)EEPROM_BABYSTEP_Z, 0);
  1308. // Show the message.
  1309. lcd_show_fullscreen_message_and_wait_P(_T(MSG_FOLLOW_CALIBRATION_FLOW));
  1310. }
  1311. else if (calibration_status() == CALIBRATION_STATUS_LIVE_ADJUST) {
  1312. // Show the message.
  1313. lcd_show_fullscreen_message_and_wait_P(_T(MSG_BABYSTEP_Z_NOT_SET));
  1314. lcd_update_enable(true);
  1315. }
  1316. else if (calibration_status() == CALIBRATION_STATUS_CALIBRATED && temp_cal_active == true && calibration_status_pinda() == false) {
  1317. //lcd_show_fullscreen_message_and_wait_P(_i("Temperature calibration has not been run yet"));////MSG_PINDA_NOT_CALIBRATED c=20 r=4
  1318. lcd_update_enable(true);
  1319. }
  1320. else if (calibration_status() == CALIBRATION_STATUS_Z_CALIBRATION) {
  1321. // Show the message.
  1322. lcd_show_fullscreen_message_and_wait_P(_T(MSG_FOLLOW_Z_CALIBRATION_FLOW));
  1323. }
  1324. }
  1325. #if !defined (DEBUG_DISABLE_FORCE_SELFTEST) && defined (TMC2130)
  1326. if (force_selftest_if_fw_version() && calibration_status() < CALIBRATION_STATUS_ASSEMBLED) {
  1327. lcd_show_fullscreen_message_and_wait_P(_i("Selftest will be run to calibrate accurate sensorless rehoming."));////MSG_FORCE_SELFTEST c=20 r=8
  1328. update_current_firmware_version_to_eeprom();
  1329. lcd_selftest();
  1330. }
  1331. #endif //TMC2130 && !DEBUG_DISABLE_FORCE_SELFTEST
  1332. KEEPALIVE_STATE(IN_PROCESS);
  1333. #endif //DEBUG_DISABLE_STARTMSGS
  1334. lcd_update_enable(true);
  1335. lcd_clear();
  1336. lcd_update(2);
  1337. // Store the currently running firmware into an eeprom,
  1338. // so the next time the firmware gets updated, it will know from which version it has been updated.
  1339. update_current_firmware_version_to_eeprom();
  1340. #ifdef TMC2130
  1341. tmc2130_home_origin[X_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_HOME_X_ORIGIN);
  1342. tmc2130_home_bsteps[X_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_HOME_X_BSTEPS);
  1343. tmc2130_home_fsteps[X_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_HOME_X_FSTEPS);
  1344. if (tmc2130_home_origin[X_AXIS] == 0xff) tmc2130_home_origin[X_AXIS] = 0;
  1345. if (tmc2130_home_bsteps[X_AXIS] == 0xff) tmc2130_home_bsteps[X_AXIS] = 48;
  1346. if (tmc2130_home_fsteps[X_AXIS] == 0xff) tmc2130_home_fsteps[X_AXIS] = 48;
  1347. tmc2130_home_origin[Y_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_HOME_Y_ORIGIN);
  1348. tmc2130_home_bsteps[Y_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_HOME_Y_BSTEPS);
  1349. tmc2130_home_fsteps[Y_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_HOME_Y_FSTEPS);
  1350. if (tmc2130_home_origin[Y_AXIS] == 0xff) tmc2130_home_origin[Y_AXIS] = 0;
  1351. if (tmc2130_home_bsteps[Y_AXIS] == 0xff) tmc2130_home_bsteps[Y_AXIS] = 48;
  1352. if (tmc2130_home_fsteps[Y_AXIS] == 0xff) tmc2130_home_fsteps[Y_AXIS] = 48;
  1353. tmc2130_home_enabled = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_HOME_ENABLED);
  1354. if (tmc2130_home_enabled == 0xff) tmc2130_home_enabled = 0;
  1355. #endif //TMC2130
  1356. #ifdef UVLO_SUPPORT
  1357. if (eeprom_read_byte((uint8_t*)EEPROM_UVLO) != 0) { //previous print was terminated by UVLO
  1358. /*
  1359. if (lcd_show_fullscreen_message_yes_no_and_wait_P(_T(MSG_RECOVER_PRINT), false)) recover_print();
  1360. else {
  1361. eeprom_update_byte((uint8_t*)EEPROM_UVLO, 0);
  1362. lcd_update_enable(true);
  1363. lcd_update(2);
  1364. lcd_setstatuspgm(_T(WELCOME_MSG));
  1365. }
  1366. */
  1367. manage_heater(); // Update temperatures
  1368. #ifdef DEBUG_UVLO_AUTOMATIC_RECOVER
  1369. printf_P(_N("Power panic detected!\nCurrent bed temp:%d\nSaved bed temp:%d\n"), (int)degBed(), eeprom_read_byte((uint8_t*)EEPROM_UVLO_TARGET_BED));
  1370. #endif
  1371. if ( degBed() > ( (float)eeprom_read_byte((uint8_t*)EEPROM_UVLO_TARGET_BED) - AUTOMATIC_UVLO_BED_TEMP_OFFSET) ){
  1372. #ifdef DEBUG_UVLO_AUTOMATIC_RECOVER
  1373. puts_P(_N("Automatic recovery!"));
  1374. #endif
  1375. recover_print(1);
  1376. }
  1377. else{
  1378. #ifdef DEBUG_UVLO_AUTOMATIC_RECOVER
  1379. puts_P(_N("Normal recovery!"));
  1380. #endif
  1381. if ( lcd_show_fullscreen_message_yes_no_and_wait_P(_T(MSG_RECOVER_PRINT), false) ) recover_print(0);
  1382. else {
  1383. eeprom_update_byte((uint8_t*)EEPROM_UVLO, 0);
  1384. lcd_update_enable(true);
  1385. lcd_update(2);
  1386. lcd_setstatuspgm(_T(WELCOME_MSG));
  1387. }
  1388. }
  1389. }
  1390. #endif //UVLO_SUPPORT
  1391. fCheckModeInit();
  1392. KEEPALIVE_STATE(NOT_BUSY);
  1393. #ifdef WATCHDOG
  1394. wdt_enable(WDTO_4S);
  1395. #endif //WATCHDOG
  1396. }
  1397. void trace();
  1398. #define CHUNK_SIZE 64 // bytes
  1399. #define SAFETY_MARGIN 1
  1400. char chunk[CHUNK_SIZE+SAFETY_MARGIN];
  1401. int chunkHead = 0;
  1402. void serial_read_stream() {
  1403. setAllTargetHotends(0);
  1404. setTargetBed(0);
  1405. lcd_clear();
  1406. lcd_puts_P(PSTR(" Upload in progress"));
  1407. // first wait for how many bytes we will receive
  1408. uint32_t bytesToReceive;
  1409. // receive the four bytes
  1410. char bytesToReceiveBuffer[4];
  1411. for (int i=0; i<4; i++) {
  1412. int data;
  1413. while ((data = MYSERIAL.read()) == -1) {};
  1414. bytesToReceiveBuffer[i] = data;
  1415. }
  1416. // make it a uint32
  1417. memcpy(&bytesToReceive, &bytesToReceiveBuffer, 4);
  1418. // we're ready, notify the sender
  1419. MYSERIAL.write('+');
  1420. // lock in the routine
  1421. uint32_t receivedBytes = 0;
  1422. while (prusa_sd_card_upload) {
  1423. int i;
  1424. for (i=0; i<CHUNK_SIZE; i++) {
  1425. int data;
  1426. // check if we're not done
  1427. if (receivedBytes == bytesToReceive) {
  1428. break;
  1429. }
  1430. // read the next byte
  1431. while ((data = MYSERIAL.read()) == -1) {};
  1432. receivedBytes++;
  1433. // save it to the chunk
  1434. chunk[i] = data;
  1435. }
  1436. // write the chunk to SD
  1437. card.write_command_no_newline(&chunk[0]);
  1438. // notify the sender we're ready for more data
  1439. MYSERIAL.write('+');
  1440. // for safety
  1441. manage_heater();
  1442. // check if we're done
  1443. if(receivedBytes == bytesToReceive) {
  1444. trace(); // beep
  1445. card.closefile();
  1446. prusa_sd_card_upload = false;
  1447. SERIAL_PROTOCOLLNRPGM(MSG_FILE_SAVED);
  1448. }
  1449. }
  1450. }
  1451. /**
  1452. * Output a "busy" message at regular intervals
  1453. * while the machine is not accepting commands.
  1454. */
  1455. void host_keepalive() {
  1456. #ifndef HOST_KEEPALIVE_FEATURE
  1457. return;
  1458. #endif //HOST_KEEPALIVE_FEATURE
  1459. if (farm_mode) return;
  1460. long ms = _millis();
  1461. if (host_keepalive_interval && busy_state != NOT_BUSY) {
  1462. if ((ms - prev_busy_signal_ms) < (long)(1000L * host_keepalive_interval)) return;
  1463. switch (busy_state) {
  1464. case IN_HANDLER:
  1465. case IN_PROCESS:
  1466. SERIAL_ECHO_START;
  1467. SERIAL_ECHOLNPGM("busy: processing");
  1468. break;
  1469. case PAUSED_FOR_USER:
  1470. SERIAL_ECHO_START;
  1471. SERIAL_ECHOLNPGM("busy: paused for user");
  1472. break;
  1473. case PAUSED_FOR_INPUT:
  1474. SERIAL_ECHO_START;
  1475. SERIAL_ECHOLNPGM("busy: paused for input");
  1476. break;
  1477. default:
  1478. break;
  1479. }
  1480. }
  1481. prev_busy_signal_ms = ms;
  1482. }
  1483. // The loop() function is called in an endless loop by the Arduino framework from the default main() routine.
  1484. // Before loop(), the setup() function is called by the main() routine.
  1485. void loop()
  1486. {
  1487. KEEPALIVE_STATE(NOT_BUSY);
  1488. if ((usb_printing_counter > 0) && ((_millis()-_usb_timer) > 1000))
  1489. {
  1490. is_usb_printing = true;
  1491. usb_printing_counter--;
  1492. _usb_timer = _millis();
  1493. }
  1494. if (usb_printing_counter == 0)
  1495. {
  1496. is_usb_printing = false;
  1497. }
  1498. if (prusa_sd_card_upload)
  1499. {
  1500. //we read byte-by byte
  1501. serial_read_stream();
  1502. } else
  1503. {
  1504. get_command();
  1505. #ifdef SDSUPPORT
  1506. card.checkautostart(false);
  1507. #endif
  1508. if(buflen)
  1509. {
  1510. cmdbuffer_front_already_processed = false;
  1511. #ifdef SDSUPPORT
  1512. if(card.saving)
  1513. {
  1514. // Saving a G-code file onto an SD-card is in progress.
  1515. // Saving starts with M28, saving until M29 is seen.
  1516. if(strstr_P(CMDBUFFER_CURRENT_STRING, PSTR("M29")) == NULL) {
  1517. card.write_command(CMDBUFFER_CURRENT_STRING);
  1518. if(card.logging)
  1519. process_commands();
  1520. else
  1521. SERIAL_PROTOCOLLNRPGM(MSG_OK);
  1522. } else {
  1523. card.closefile();
  1524. SERIAL_PROTOCOLLNRPGM(MSG_FILE_SAVED);
  1525. }
  1526. } else {
  1527. process_commands();
  1528. }
  1529. #else
  1530. process_commands();
  1531. #endif //SDSUPPORT
  1532. if (! cmdbuffer_front_already_processed && buflen)
  1533. {
  1534. // ptr points to the start of the block currently being processed.
  1535. // The first character in the block is the block type.
  1536. char *ptr = cmdbuffer + bufindr;
  1537. if (*ptr == CMDBUFFER_CURRENT_TYPE_SDCARD) {
  1538. // To support power panic, move the lenght of the command on the SD card to a planner buffer.
  1539. union {
  1540. struct {
  1541. char lo;
  1542. char hi;
  1543. } lohi;
  1544. uint16_t value;
  1545. } sdlen;
  1546. sdlen.value = 0;
  1547. {
  1548. // This block locks the interrupts globally for 3.25 us,
  1549. // which corresponds to a maximum repeat frequency of 307.69 kHz.
  1550. // This blocking is safe in the context of a 10kHz stepper driver interrupt
  1551. // or a 115200 Bd serial line receive interrupt, which will not trigger faster than 12kHz.
  1552. cli();
  1553. // Reset the command to something, which will be ignored by the power panic routine,
  1554. // so this buffer length will not be counted twice.
  1555. *ptr ++ = CMDBUFFER_CURRENT_TYPE_TO_BE_REMOVED;
  1556. // Extract the current buffer length.
  1557. sdlen.lohi.lo = *ptr ++;
  1558. sdlen.lohi.hi = *ptr;
  1559. // and pass it to the planner queue.
  1560. planner_add_sd_length(sdlen.value);
  1561. sei();
  1562. }
  1563. }
  1564. else if((*ptr == CMDBUFFER_CURRENT_TYPE_USB_WITH_LINENR) && !IS_SD_PRINTING){
  1565. cli();
  1566. *ptr ++ = CMDBUFFER_CURRENT_TYPE_TO_BE_REMOVED;
  1567. // and one for each command to previous block in the planner queue.
  1568. planner_add_sd_length(1);
  1569. sei();
  1570. }
  1571. // Now it is safe to release the already processed command block. If interrupted by the power panic now,
  1572. // this block's SD card length will not be counted twice as its command type has been replaced
  1573. // by CMDBUFFER_CURRENT_TYPE_TO_BE_REMOVED.
  1574. cmdqueue_pop_front();
  1575. }
  1576. host_keepalive();
  1577. }
  1578. }
  1579. //check heater every n milliseconds
  1580. manage_heater();
  1581. isPrintPaused ? manage_inactivity(true) : manage_inactivity(false);
  1582. checkHitEndstops();
  1583. lcd_update(0);
  1584. #ifdef TMC2130
  1585. tmc2130_check_overtemp();
  1586. if (tmc2130_sg_crash)
  1587. {
  1588. uint8_t crash = tmc2130_sg_crash;
  1589. tmc2130_sg_crash = 0;
  1590. // crashdet_stop_and_save_print();
  1591. switch (crash)
  1592. {
  1593. case 1: enquecommand_P((PSTR("CRASH_DETECTEDX"))); break;
  1594. case 2: enquecommand_P((PSTR("CRASH_DETECTEDY"))); break;
  1595. case 3: enquecommand_P((PSTR("CRASH_DETECTEDXY"))); break;
  1596. }
  1597. }
  1598. #endif //TMC2130
  1599. mmu_loop();
  1600. }
  1601. #define DEFINE_PGM_READ_ANY(type, reader) \
  1602. static inline type pgm_read_any(const type *p) \
  1603. { return pgm_read_##reader##_near(p); }
  1604. DEFINE_PGM_READ_ANY(float, float);
  1605. DEFINE_PGM_READ_ANY(signed char, byte);
  1606. #define XYZ_CONSTS_FROM_CONFIG(type, array, CONFIG) \
  1607. static const PROGMEM type array##_P[3] = \
  1608. { X_##CONFIG, Y_##CONFIG, Z_##CONFIG }; \
  1609. static inline type array(int axis) \
  1610. { return pgm_read_any(&array##_P[axis]); } \
  1611. type array##_ext(int axis) \
  1612. { return pgm_read_any(&array##_P[axis]); }
  1613. XYZ_CONSTS_FROM_CONFIG(float, base_min_pos, MIN_POS);
  1614. XYZ_CONSTS_FROM_CONFIG(float, base_max_pos, MAX_POS);
  1615. XYZ_CONSTS_FROM_CONFIG(float, base_home_pos, HOME_POS);
  1616. XYZ_CONSTS_FROM_CONFIG(float, max_length, MAX_LENGTH);
  1617. XYZ_CONSTS_FROM_CONFIG(float, home_retract_mm, HOME_RETRACT_MM);
  1618. XYZ_CONSTS_FROM_CONFIG(signed char, home_dir, HOME_DIR);
  1619. static void axis_is_at_home(int axis) {
  1620. current_position[axis] = base_home_pos(axis) + cs.add_homing[axis];
  1621. min_pos[axis] = base_min_pos(axis) + cs.add_homing[axis];
  1622. max_pos[axis] = base_max_pos(axis) + cs.add_homing[axis];
  1623. }
  1624. inline void set_current_to_destination() { memcpy(current_position, destination, sizeof(current_position)); }
  1625. inline void set_destination_to_current() { memcpy(destination, current_position, sizeof(destination)); }
  1626. //! @return original feedmultiply
  1627. static int setup_for_endstop_move(bool enable_endstops_now = true) {
  1628. saved_feedrate = feedrate;
  1629. int l_feedmultiply = feedmultiply;
  1630. feedmultiply = 100;
  1631. previous_millis_cmd = _millis();
  1632. enable_endstops(enable_endstops_now);
  1633. return l_feedmultiply;
  1634. }
  1635. //! @param original_feedmultiply feedmultiply to restore
  1636. static void clean_up_after_endstop_move(int original_feedmultiply) {
  1637. #ifdef ENDSTOPS_ONLY_FOR_HOMING
  1638. enable_endstops(false);
  1639. #endif
  1640. feedrate = saved_feedrate;
  1641. feedmultiply = original_feedmultiply;
  1642. previous_millis_cmd = _millis();
  1643. }
  1644. #ifdef ENABLE_AUTO_BED_LEVELING
  1645. #ifdef AUTO_BED_LEVELING_GRID
  1646. static void set_bed_level_equation_lsq(double *plane_equation_coefficients)
  1647. {
  1648. vector_3 planeNormal = vector_3(-plane_equation_coefficients[0], -plane_equation_coefficients[1], 1);
  1649. planeNormal.debug("planeNormal");
  1650. plan_bed_level_matrix = matrix_3x3::create_look_at(planeNormal);
  1651. //bedLevel.debug("bedLevel");
  1652. //plan_bed_level_matrix.debug("bed level before");
  1653. //vector_3 uncorrected_position = plan_get_position_mm();
  1654. //uncorrected_position.debug("position before");
  1655. vector_3 corrected_position = plan_get_position();
  1656. // corrected_position.debug("position after");
  1657. current_position[X_AXIS] = corrected_position.x;
  1658. current_position[Y_AXIS] = corrected_position.y;
  1659. current_position[Z_AXIS] = corrected_position.z;
  1660. // put the bed at 0 so we don't go below it.
  1661. current_position[Z_AXIS] = cs.zprobe_zoffset; // in the lsq we reach here after raising the extruder due to the loop structure
  1662. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1663. }
  1664. #else // not AUTO_BED_LEVELING_GRID
  1665. static void set_bed_level_equation_3pts(float z_at_pt_1, float z_at_pt_2, float z_at_pt_3) {
  1666. plan_bed_level_matrix.set_to_identity();
  1667. vector_3 pt1 = vector_3(ABL_PROBE_PT_1_X, ABL_PROBE_PT_1_Y, z_at_pt_1);
  1668. vector_3 pt2 = vector_3(ABL_PROBE_PT_2_X, ABL_PROBE_PT_2_Y, z_at_pt_2);
  1669. vector_3 pt3 = vector_3(ABL_PROBE_PT_3_X, ABL_PROBE_PT_3_Y, z_at_pt_3);
  1670. vector_3 from_2_to_1 = (pt1 - pt2).get_normal();
  1671. vector_3 from_2_to_3 = (pt3 - pt2).get_normal();
  1672. vector_3 planeNormal = vector_3::cross(from_2_to_1, from_2_to_3).get_normal();
  1673. planeNormal = vector_3(planeNormal.x, planeNormal.y, abs(planeNormal.z));
  1674. plan_bed_level_matrix = matrix_3x3::create_look_at(planeNormal);
  1675. vector_3 corrected_position = plan_get_position();
  1676. current_position[X_AXIS] = corrected_position.x;
  1677. current_position[Y_AXIS] = corrected_position.y;
  1678. current_position[Z_AXIS] = corrected_position.z;
  1679. // put the bed at 0 so we don't go below it.
  1680. current_position[Z_AXIS] = cs.zprobe_zoffset;
  1681. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1682. }
  1683. #endif // AUTO_BED_LEVELING_GRID
  1684. static void run_z_probe() {
  1685. plan_bed_level_matrix.set_to_identity();
  1686. feedrate = homing_feedrate[Z_AXIS];
  1687. // move down until you find the bed
  1688. float zPosition = -10;
  1689. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder);
  1690. st_synchronize();
  1691. // we have to let the planner know where we are right now as it is not where we said to go.
  1692. zPosition = st_get_position_mm(Z_AXIS);
  1693. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS]);
  1694. // move up the retract distance
  1695. zPosition += home_retract_mm(Z_AXIS);
  1696. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder);
  1697. st_synchronize();
  1698. // move back down slowly to find bed
  1699. feedrate = homing_feedrate[Z_AXIS]/4;
  1700. zPosition -= home_retract_mm(Z_AXIS) * 2;
  1701. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder);
  1702. st_synchronize();
  1703. current_position[Z_AXIS] = st_get_position_mm(Z_AXIS);
  1704. // make sure the planner knows where we are as it may be a bit different than we last said to move to
  1705. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1706. }
  1707. static void do_blocking_move_to(float x, float y, float z) {
  1708. float oldFeedRate = feedrate;
  1709. feedrate = homing_feedrate[Z_AXIS];
  1710. current_position[Z_AXIS] = z;
  1711. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], feedrate/60, active_extruder);
  1712. st_synchronize();
  1713. feedrate = XY_TRAVEL_SPEED;
  1714. current_position[X_AXIS] = x;
  1715. current_position[Y_AXIS] = y;
  1716. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], feedrate/60, active_extruder);
  1717. st_synchronize();
  1718. feedrate = oldFeedRate;
  1719. }
  1720. static void do_blocking_move_relative(float offset_x, float offset_y, float offset_z) {
  1721. do_blocking_move_to(current_position[X_AXIS] + offset_x, current_position[Y_AXIS] + offset_y, current_position[Z_AXIS] + offset_z);
  1722. }
  1723. /// Probe bed height at position (x,y), returns the measured z value
  1724. static float probe_pt(float x, float y, float z_before) {
  1725. // move to right place
  1726. do_blocking_move_to(current_position[X_AXIS], current_position[Y_AXIS], z_before);
  1727. do_blocking_move_to(x - X_PROBE_OFFSET_FROM_EXTRUDER, y - Y_PROBE_OFFSET_FROM_EXTRUDER, current_position[Z_AXIS]);
  1728. run_z_probe();
  1729. float measured_z = current_position[Z_AXIS];
  1730. SERIAL_PROTOCOLRPGM(_T(MSG_BED));
  1731. SERIAL_PROTOCOLPGM(" x: ");
  1732. SERIAL_PROTOCOL(x);
  1733. SERIAL_PROTOCOLPGM(" y: ");
  1734. SERIAL_PROTOCOL(y);
  1735. SERIAL_PROTOCOLPGM(" z: ");
  1736. SERIAL_PROTOCOL(measured_z);
  1737. SERIAL_PROTOCOLPGM("\n");
  1738. return measured_z;
  1739. }
  1740. #endif // #ifdef ENABLE_AUTO_BED_LEVELING
  1741. #ifdef LIN_ADVANCE
  1742. /**
  1743. * M900: Set and/or Get advance K factor and WH/D ratio
  1744. *
  1745. * K<factor> Set advance K factor
  1746. * R<ratio> Set ratio directly (overrides WH/D)
  1747. * W<width> H<height> D<diam> Set ratio from WH/D
  1748. */
  1749. inline void gcode_M900() {
  1750. st_synchronize();
  1751. const float newK = code_seen('K') ? code_value_float() : -1;
  1752. if (newK >= 0) extruder_advance_k = newK;
  1753. float newR = code_seen('R') ? code_value_float() : -1;
  1754. if (newR < 0) {
  1755. const float newD = code_seen('D') ? code_value_float() : -1,
  1756. newW = code_seen('W') ? code_value_float() : -1,
  1757. newH = code_seen('H') ? code_value_float() : -1;
  1758. if (newD >= 0 && newW >= 0 && newH >= 0)
  1759. newR = newD ? (newW * newH) / (sq(newD * 0.5) * M_PI) : 0;
  1760. }
  1761. if (newR >= 0) advance_ed_ratio = newR;
  1762. SERIAL_ECHO_START;
  1763. SERIAL_ECHOPGM("Advance K=");
  1764. SERIAL_ECHOLN(extruder_advance_k);
  1765. SERIAL_ECHOPGM(" E/D=");
  1766. const float ratio = advance_ed_ratio;
  1767. if (ratio) SERIAL_ECHOLN(ratio); else SERIAL_ECHOLNPGM("Auto");
  1768. }
  1769. #endif // LIN_ADVANCE
  1770. bool check_commands() {
  1771. bool end_command_found = false;
  1772. while (buflen)
  1773. {
  1774. if ((code_seen("M84")) || (code_seen("M 84"))) end_command_found = true;
  1775. if (!cmdbuffer_front_already_processed)
  1776. cmdqueue_pop_front();
  1777. cmdbuffer_front_already_processed = false;
  1778. }
  1779. return end_command_found;
  1780. }
  1781. #ifdef TMC2130
  1782. bool calibrate_z_auto()
  1783. {
  1784. //lcd_display_message_fullscreen_P(_T(MSG_CALIBRATE_Z_AUTO));
  1785. lcd_clear();
  1786. lcd_puts_at_P(0, 1, _T(MSG_CALIBRATE_Z_AUTO));
  1787. bool endstops_enabled = enable_endstops(true);
  1788. int axis_up_dir = -home_dir(Z_AXIS);
  1789. tmc2130_home_enter(Z_AXIS_MASK);
  1790. current_position[Z_AXIS] = 0;
  1791. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1792. set_destination_to_current();
  1793. destination[Z_AXIS] += (1.1 * max_length(Z_AXIS) * axis_up_dir);
  1794. feedrate = homing_feedrate[Z_AXIS];
  1795. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate / 60, active_extruder);
  1796. st_synchronize();
  1797. // current_position[axis] = 0;
  1798. // plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1799. tmc2130_home_exit();
  1800. enable_endstops(false);
  1801. current_position[Z_AXIS] = 0;
  1802. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1803. set_destination_to_current();
  1804. destination[Z_AXIS] += 10 * axis_up_dir; //10mm up
  1805. feedrate = homing_feedrate[Z_AXIS] / 2;
  1806. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate / 60, active_extruder);
  1807. st_synchronize();
  1808. enable_endstops(endstops_enabled);
  1809. if (PRINTER_TYPE == PRINTER_MK3) {
  1810. current_position[Z_AXIS] = Z_MAX_POS + 2.0;
  1811. }
  1812. else {
  1813. current_position[Z_AXIS] = Z_MAX_POS + 9.0;
  1814. }
  1815. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1816. return true;
  1817. }
  1818. #endif //TMC2130
  1819. #ifdef TMC2130
  1820. void homeaxis(int axis, uint8_t cnt, uint8_t* pstep)
  1821. #else
  1822. void homeaxis(int axis, uint8_t cnt)
  1823. #endif //TMC2130
  1824. {
  1825. bool endstops_enabled = enable_endstops(true); //RP: endstops should be allways enabled durring homing
  1826. #define HOMEAXIS_DO(LETTER) \
  1827. ((LETTER##_MIN_PIN > -1 && LETTER##_HOME_DIR==-1) || (LETTER##_MAX_PIN > -1 && LETTER##_HOME_DIR==1))
  1828. if ((axis==X_AXIS)?HOMEAXIS_DO(X):(axis==Y_AXIS)?HOMEAXIS_DO(Y):0)
  1829. {
  1830. int axis_home_dir = home_dir(axis);
  1831. feedrate = homing_feedrate[axis];
  1832. #ifdef TMC2130
  1833. tmc2130_home_enter(X_AXIS_MASK << axis);
  1834. #endif //TMC2130
  1835. // Move away a bit, so that the print head does not touch the end position,
  1836. // and the following movement to endstop has a chance to achieve the required velocity
  1837. // for the stall guard to work.
  1838. current_position[axis] = 0;
  1839. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1840. set_destination_to_current();
  1841. // destination[axis] = 11.f;
  1842. destination[axis] = -3.f * axis_home_dir;
  1843. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1844. st_synchronize();
  1845. // Move away from the possible collision with opposite endstop with the collision detection disabled.
  1846. endstops_hit_on_purpose();
  1847. enable_endstops(false);
  1848. current_position[axis] = 0;
  1849. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1850. destination[axis] = 1. * axis_home_dir;
  1851. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1852. st_synchronize();
  1853. // Now continue to move up to the left end stop with the collision detection enabled.
  1854. enable_endstops(true);
  1855. destination[axis] = 1.1 * axis_home_dir * max_length(axis);
  1856. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1857. st_synchronize();
  1858. for (uint8_t i = 0; i < cnt; i++)
  1859. {
  1860. // Move away from the collision to a known distance from the left end stop with the collision detection disabled.
  1861. endstops_hit_on_purpose();
  1862. enable_endstops(false);
  1863. current_position[axis] = 0;
  1864. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1865. destination[axis] = -10.f * axis_home_dir;
  1866. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1867. st_synchronize();
  1868. endstops_hit_on_purpose();
  1869. // Now move left up to the collision, this time with a repeatable velocity.
  1870. enable_endstops(true);
  1871. destination[axis] = 11.f * axis_home_dir;
  1872. #ifdef TMC2130
  1873. feedrate = homing_feedrate[axis];
  1874. #else //TMC2130
  1875. feedrate = homing_feedrate[axis] / 2;
  1876. #endif //TMC2130
  1877. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1878. st_synchronize();
  1879. #ifdef TMC2130
  1880. uint16_t mscnt = tmc2130_rd_MSCNT(axis);
  1881. if (pstep) pstep[i] = mscnt >> 4;
  1882. printf_P(PSTR("%3d step=%2d mscnt=%4d\n"), i, mscnt >> 4, mscnt);
  1883. #endif //TMC2130
  1884. }
  1885. endstops_hit_on_purpose();
  1886. enable_endstops(false);
  1887. #ifdef TMC2130
  1888. uint8_t orig = tmc2130_home_origin[axis];
  1889. uint8_t back = tmc2130_home_bsteps[axis];
  1890. if (tmc2130_home_enabled && (orig <= 63))
  1891. {
  1892. tmc2130_goto_step(axis, orig, 2, 1000, tmc2130_get_res(axis));
  1893. if (back > 0)
  1894. tmc2130_do_steps(axis, back, -axis_home_dir, 1000);
  1895. }
  1896. else
  1897. tmc2130_do_steps(axis, 8, -axis_home_dir, 1000);
  1898. tmc2130_home_exit();
  1899. #endif //TMC2130
  1900. axis_is_at_home(axis);
  1901. axis_known_position[axis] = true;
  1902. // Move from minimum
  1903. #ifdef TMC2130
  1904. float dist = - axis_home_dir * 0.01f * tmc2130_home_fsteps[axis];
  1905. #else //TMC2130
  1906. float dist = - axis_home_dir * 0.01f * 64;
  1907. #endif //TMC2130
  1908. current_position[axis] -= dist;
  1909. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1910. current_position[axis] += dist;
  1911. destination[axis] = current_position[axis];
  1912. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], 0.5f*feedrate/60, active_extruder);
  1913. st_synchronize();
  1914. feedrate = 0.0;
  1915. }
  1916. else if ((axis==Z_AXIS)?HOMEAXIS_DO(Z):0)
  1917. {
  1918. #ifdef TMC2130
  1919. FORCE_HIGH_POWER_START;
  1920. #endif
  1921. int axis_home_dir = home_dir(axis);
  1922. current_position[axis] = 0;
  1923. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1924. destination[axis] = 1.5 * max_length(axis) * axis_home_dir;
  1925. feedrate = homing_feedrate[axis];
  1926. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1927. st_synchronize();
  1928. #ifdef TMC2130
  1929. if (READ(Z_TMC2130_DIAG) != 0) { //Z crash
  1930. FORCE_HIGH_POWER_END;
  1931. kill(_T(MSG_BED_LEVELING_FAILED_POINT_LOW));
  1932. return;
  1933. }
  1934. #endif //TMC2130
  1935. current_position[axis] = 0;
  1936. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1937. destination[axis] = -home_retract_mm(axis) * axis_home_dir;
  1938. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1939. st_synchronize();
  1940. destination[axis] = 2*home_retract_mm(axis) * axis_home_dir;
  1941. feedrate = homing_feedrate[axis]/2 ;
  1942. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1943. st_synchronize();
  1944. #ifdef TMC2130
  1945. if (READ(Z_TMC2130_DIAG) != 0) { //Z crash
  1946. FORCE_HIGH_POWER_END;
  1947. kill(_T(MSG_BED_LEVELING_FAILED_POINT_LOW));
  1948. return;
  1949. }
  1950. #endif //TMC2130
  1951. axis_is_at_home(axis);
  1952. destination[axis] = current_position[axis];
  1953. feedrate = 0.0;
  1954. endstops_hit_on_purpose();
  1955. axis_known_position[axis] = true;
  1956. #ifdef TMC2130
  1957. FORCE_HIGH_POWER_END;
  1958. #endif
  1959. }
  1960. enable_endstops(endstops_enabled);
  1961. }
  1962. /**/
  1963. void home_xy()
  1964. {
  1965. set_destination_to_current();
  1966. homeaxis(X_AXIS);
  1967. homeaxis(Y_AXIS);
  1968. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1969. endstops_hit_on_purpose();
  1970. }
  1971. void refresh_cmd_timeout(void)
  1972. {
  1973. previous_millis_cmd = _millis();
  1974. }
  1975. #ifdef FWRETRACT
  1976. void retract(bool retracting, bool swapretract = false) {
  1977. if(retracting && !retracted[active_extruder]) {
  1978. destination[X_AXIS]=current_position[X_AXIS];
  1979. destination[Y_AXIS]=current_position[Y_AXIS];
  1980. destination[Z_AXIS]=current_position[Z_AXIS];
  1981. destination[E_AXIS]=current_position[E_AXIS];
  1982. current_position[E_AXIS]+=(swapretract?retract_length_swap:cs.retract_length)*float(extrudemultiply)*0.01f;
  1983. plan_set_e_position(current_position[E_AXIS]);
  1984. float oldFeedrate = feedrate;
  1985. feedrate=cs.retract_feedrate*60;
  1986. retracted[active_extruder]=true;
  1987. prepare_move();
  1988. current_position[Z_AXIS]-=cs.retract_zlift;
  1989. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1990. prepare_move();
  1991. feedrate = oldFeedrate;
  1992. } else if(!retracting && retracted[active_extruder]) {
  1993. destination[X_AXIS]=current_position[X_AXIS];
  1994. destination[Y_AXIS]=current_position[Y_AXIS];
  1995. destination[Z_AXIS]=current_position[Z_AXIS];
  1996. destination[E_AXIS]=current_position[E_AXIS];
  1997. current_position[Z_AXIS]+=cs.retract_zlift;
  1998. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1999. current_position[E_AXIS]-=(swapretract?(retract_length_swap+retract_recover_length_swap):(cs.retract_length+cs.retract_recover_length))*float(extrudemultiply)*0.01f;
  2000. plan_set_e_position(current_position[E_AXIS]);
  2001. float oldFeedrate = feedrate;
  2002. feedrate=cs.retract_recover_feedrate*60;
  2003. retracted[active_extruder]=false;
  2004. prepare_move();
  2005. feedrate = oldFeedrate;
  2006. }
  2007. } //retract
  2008. #endif //FWRETRACT
  2009. void trace() {
  2010. //if((eSoundMode==e_SOUND_MODE_LOUD)||(eSoundMode==e_SOUND_MODE_ONCE))
  2011. _tone(BEEPER, 440);
  2012. _delay(25);
  2013. _noTone(BEEPER);
  2014. _delay(20);
  2015. }
  2016. /*
  2017. void ramming() {
  2018. // float tmp[4] = DEFAULT_MAX_FEEDRATE;
  2019. if (current_temperature[0] < 230) {
  2020. //PLA
  2021. max_feedrate[E_AXIS] = 50;
  2022. //current_position[E_AXIS] -= 8;
  2023. //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2100 / 60, active_extruder);
  2024. //current_position[E_AXIS] += 8;
  2025. //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2100 / 60, active_extruder);
  2026. current_position[E_AXIS] += 5.4;
  2027. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2800 / 60, active_extruder);
  2028. current_position[E_AXIS] += 3.2;
  2029. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  2030. current_position[E_AXIS] += 3;
  2031. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3400 / 60, active_extruder);
  2032. st_synchronize();
  2033. max_feedrate[E_AXIS] = 80;
  2034. current_position[E_AXIS] -= 82;
  2035. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 9500 / 60, active_extruder);
  2036. max_feedrate[E_AXIS] = 50;//tmp[E_AXIS];
  2037. current_position[E_AXIS] -= 20;
  2038. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 1200 / 60, active_extruder);
  2039. current_position[E_AXIS] += 5;
  2040. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400 / 60, active_extruder);
  2041. current_position[E_AXIS] += 5;
  2042. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  2043. current_position[E_AXIS] -= 10;
  2044. st_synchronize();
  2045. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  2046. current_position[E_AXIS] += 10;
  2047. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  2048. current_position[E_AXIS] -= 10;
  2049. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 800 / 60, active_extruder);
  2050. current_position[E_AXIS] += 10;
  2051. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 800 / 60, active_extruder);
  2052. current_position[E_AXIS] -= 10;
  2053. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 800 / 60, active_extruder);
  2054. st_synchronize();
  2055. }
  2056. else {
  2057. //ABS
  2058. max_feedrate[E_AXIS] = 50;
  2059. //current_position[E_AXIS] -= 8;
  2060. //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2100 / 60, active_extruder);
  2061. //current_position[E_AXIS] += 8;
  2062. //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2100 / 60, active_extruder);
  2063. current_position[E_AXIS] += 3.1;
  2064. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2000 / 60, active_extruder);
  2065. current_position[E_AXIS] += 3.1;
  2066. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2500 / 60, active_extruder);
  2067. current_position[E_AXIS] += 4;
  2068. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  2069. st_synchronize();
  2070. //current_position[X_AXIS] += 23; //delay
  2071. //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600/60, active_extruder); //delay
  2072. //current_position[X_AXIS] -= 23; //delay
  2073. //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600/60, active_extruder); //delay
  2074. _delay(4700);
  2075. max_feedrate[E_AXIS] = 80;
  2076. current_position[E_AXIS] -= 92;
  2077. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 9900 / 60, active_extruder);
  2078. max_feedrate[E_AXIS] = 50;//tmp[E_AXIS];
  2079. current_position[E_AXIS] -= 5;
  2080. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 800 / 60, active_extruder);
  2081. current_position[E_AXIS] += 5;
  2082. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400 / 60, active_extruder);
  2083. current_position[E_AXIS] -= 5;
  2084. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  2085. st_synchronize();
  2086. current_position[E_AXIS] += 5;
  2087. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  2088. current_position[E_AXIS] -= 5;
  2089. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  2090. current_position[E_AXIS] += 5;
  2091. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  2092. current_position[E_AXIS] -= 5;
  2093. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  2094. st_synchronize();
  2095. }
  2096. }
  2097. */
  2098. #ifdef TMC2130
  2099. void force_high_power_mode(bool start_high_power_section) {
  2100. uint8_t silent;
  2101. silent = eeprom_read_byte((uint8_t*)EEPROM_SILENT);
  2102. if (silent == 1) {
  2103. //we are in silent mode, set to normal mode to enable crash detection
  2104. // Wait for the planner queue to drain and for the stepper timer routine to reach an idle state.
  2105. st_synchronize();
  2106. cli();
  2107. tmc2130_mode = (start_high_power_section == true) ? TMC2130_MODE_NORMAL : TMC2130_MODE_SILENT;
  2108. update_mode_profile();
  2109. tmc2130_init();
  2110. // We may have missed a stepper timer interrupt due to the time spent in the tmc2130_init() routine.
  2111. // Be safe than sorry, reset the stepper timer before re-enabling interrupts.
  2112. st_reset_timer();
  2113. sei();
  2114. }
  2115. }
  2116. #endif //TMC2130
  2117. #ifdef TMC2130
  2118. static void gcode_G28(bool home_x_axis, long home_x_value, bool home_y_axis, long home_y_value, bool home_z_axis, long home_z_value, bool calib, bool without_mbl)
  2119. #else
  2120. static void gcode_G28(bool home_x_axis, long home_x_value, bool home_y_axis, long home_y_value, bool home_z_axis, long home_z_value, bool without_mbl)
  2121. #endif //TMC2130
  2122. {
  2123. st_synchronize();
  2124. #if 0
  2125. SERIAL_ECHOPGM("G28, initial "); print_world_coordinates();
  2126. SERIAL_ECHOPGM("G28, initial "); print_physical_coordinates();
  2127. #endif
  2128. // Flag for the display update routine and to disable the print cancelation during homing.
  2129. homing_flag = true;
  2130. // Which axes should be homed?
  2131. bool home_x = home_x_axis;
  2132. bool home_y = home_y_axis;
  2133. bool home_z = home_z_axis;
  2134. // Either all X,Y,Z codes are present, or none of them.
  2135. bool home_all_axes = home_x == home_y && home_x == home_z;
  2136. if (home_all_axes)
  2137. // No X/Y/Z code provided means to home all axes.
  2138. home_x = home_y = home_z = true;
  2139. //if we are homing all axes, first move z higher to protect heatbed/steel sheet
  2140. if (home_all_axes) {
  2141. current_position[Z_AXIS] += MESH_HOME_Z_SEARCH;
  2142. feedrate = homing_feedrate[Z_AXIS];
  2143. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], feedrate / 60, active_extruder);
  2144. st_synchronize();
  2145. }
  2146. #ifdef ENABLE_AUTO_BED_LEVELING
  2147. plan_bed_level_matrix.set_to_identity(); //Reset the plane ("erase" all leveling data)
  2148. #endif //ENABLE_AUTO_BED_LEVELING
  2149. // Reset world2machine_rotation_and_skew and world2machine_shift, therefore
  2150. // the planner will not perform any adjustments in the XY plane.
  2151. // Wait for the motors to stop and update the current position with the absolute values.
  2152. world2machine_revert_to_uncorrected();
  2153. // For mesh bed leveling deactivate the matrix temporarily.
  2154. // It is necessary to disable the bed leveling for the X and Y homing moves, so that the move is performed
  2155. // in a single axis only.
  2156. // In case of re-homing the X or Y axes only, the mesh bed leveling is restored after G28.
  2157. #ifdef MESH_BED_LEVELING
  2158. uint8_t mbl_was_active = mbl.active;
  2159. mbl.active = 0;
  2160. current_position[Z_AXIS] = st_get_position_mm(Z_AXIS);
  2161. #endif
  2162. // Reset baby stepping to zero, if the babystepping has already been loaded before. The babystepsTodo value will be
  2163. // consumed during the first movements following this statement.
  2164. if (home_z)
  2165. babystep_undo();
  2166. saved_feedrate = feedrate;
  2167. int l_feedmultiply = feedmultiply;
  2168. feedmultiply = 100;
  2169. previous_millis_cmd = _millis();
  2170. enable_endstops(true);
  2171. memcpy(destination, current_position, sizeof(destination));
  2172. feedrate = 0.0;
  2173. #if Z_HOME_DIR > 0 // If homing away from BED do Z first
  2174. if(home_z)
  2175. homeaxis(Z_AXIS);
  2176. #endif
  2177. #ifdef QUICK_HOME
  2178. // In the quick mode, if both x and y are to be homed, a diagonal move will be performed initially.
  2179. if(home_x && home_y) //first diagonal move
  2180. {
  2181. current_position[X_AXIS] = 0;current_position[Y_AXIS] = 0;
  2182. int x_axis_home_dir = home_dir(X_AXIS);
  2183. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2184. destination[X_AXIS] = 1.5 * max_length(X_AXIS) * x_axis_home_dir;destination[Y_AXIS] = 1.5 * max_length(Y_AXIS) * home_dir(Y_AXIS);
  2185. feedrate = homing_feedrate[X_AXIS];
  2186. if(homing_feedrate[Y_AXIS]<feedrate)
  2187. feedrate = homing_feedrate[Y_AXIS];
  2188. if (max_length(X_AXIS) > max_length(Y_AXIS)) {
  2189. feedrate *= sqrt(pow(max_length(Y_AXIS) / max_length(X_AXIS), 2) + 1);
  2190. } else {
  2191. feedrate *= sqrt(pow(max_length(X_AXIS) / max_length(Y_AXIS), 2) + 1);
  2192. }
  2193. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  2194. st_synchronize();
  2195. axis_is_at_home(X_AXIS);
  2196. axis_is_at_home(Y_AXIS);
  2197. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2198. destination[X_AXIS] = current_position[X_AXIS];
  2199. destination[Y_AXIS] = current_position[Y_AXIS];
  2200. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  2201. feedrate = 0.0;
  2202. st_synchronize();
  2203. endstops_hit_on_purpose();
  2204. current_position[X_AXIS] = destination[X_AXIS];
  2205. current_position[Y_AXIS] = destination[Y_AXIS];
  2206. current_position[Z_AXIS] = destination[Z_AXIS];
  2207. }
  2208. #endif /* QUICK_HOME */
  2209. #ifdef TMC2130
  2210. if(home_x)
  2211. {
  2212. if (!calib)
  2213. homeaxis(X_AXIS);
  2214. else
  2215. tmc2130_home_calibrate(X_AXIS);
  2216. }
  2217. if(home_y)
  2218. {
  2219. if (!calib)
  2220. homeaxis(Y_AXIS);
  2221. else
  2222. tmc2130_home_calibrate(Y_AXIS);
  2223. }
  2224. #else //TMC2130
  2225. if(home_x) homeaxis(X_AXIS);
  2226. if(home_y) homeaxis(Y_AXIS);
  2227. #endif //TMC2130
  2228. if(home_x_axis && home_x_value != 0)
  2229. current_position[X_AXIS]=home_x_value+cs.add_homing[X_AXIS];
  2230. if(home_y_axis && home_y_value != 0)
  2231. current_position[Y_AXIS]=home_y_value+cs.add_homing[Y_AXIS];
  2232. #if Z_HOME_DIR < 0 // If homing towards BED do Z last
  2233. #ifndef Z_SAFE_HOMING
  2234. if(home_z) {
  2235. #if defined (Z_RAISE_BEFORE_HOMING) && (Z_RAISE_BEFORE_HOMING > 0)
  2236. destination[Z_AXIS] = Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS) * (-1); // Set destination away from bed
  2237. feedrate = max_feedrate[Z_AXIS];
  2238. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
  2239. st_synchronize();
  2240. #endif // defined (Z_RAISE_BEFORE_HOMING) && (Z_RAISE_BEFORE_HOMING > 0)
  2241. #if (defined(MESH_BED_LEVELING) && !defined(MK1BP)) // If Mesh bed leveling, move X&Y to safe position for home
  2242. if (!(axis_known_position[X_AXIS] && axis_known_position[Y_AXIS] ))
  2243. {
  2244. homeaxis(X_AXIS);
  2245. homeaxis(Y_AXIS);
  2246. }
  2247. // 1st mesh bed leveling measurement point, corrected.
  2248. world2machine_initialize();
  2249. world2machine(pgm_read_float(bed_ref_points_4), pgm_read_float(bed_ref_points_4+1), destination[X_AXIS], destination[Y_AXIS]);
  2250. world2machine_reset();
  2251. if (destination[Y_AXIS] < Y_MIN_POS)
  2252. destination[Y_AXIS] = Y_MIN_POS;
  2253. destination[Z_AXIS] = MESH_HOME_Z_SEARCH; // Set destination away from bed
  2254. feedrate = homing_feedrate[Z_AXIS]/10;
  2255. current_position[Z_AXIS] = 0;
  2256. enable_endstops(false);
  2257. #ifdef DEBUG_BUILD
  2258. SERIAL_ECHOLNPGM("plan_set_position()");
  2259. MYSERIAL.println(current_position[X_AXIS]);MYSERIAL.println(current_position[Y_AXIS]);
  2260. MYSERIAL.println(current_position[Z_AXIS]);MYSERIAL.println(current_position[E_AXIS]);
  2261. #endif
  2262. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2263. #ifdef DEBUG_BUILD
  2264. SERIAL_ECHOLNPGM("plan_buffer_line()");
  2265. MYSERIAL.println(destination[X_AXIS]);MYSERIAL.println(destination[Y_AXIS]);
  2266. MYSERIAL.println(destination[Z_AXIS]);MYSERIAL.println(destination[E_AXIS]);
  2267. MYSERIAL.println(feedrate);MYSERIAL.println(active_extruder);
  2268. #endif
  2269. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
  2270. st_synchronize();
  2271. current_position[X_AXIS] = destination[X_AXIS];
  2272. current_position[Y_AXIS] = destination[Y_AXIS];
  2273. enable_endstops(true);
  2274. endstops_hit_on_purpose();
  2275. homeaxis(Z_AXIS);
  2276. #else // MESH_BED_LEVELING
  2277. homeaxis(Z_AXIS);
  2278. #endif // MESH_BED_LEVELING
  2279. }
  2280. #else // defined(Z_SAFE_HOMING): Z Safe mode activated.
  2281. if(home_all_axes) {
  2282. destination[X_AXIS] = round(Z_SAFE_HOMING_X_POINT - X_PROBE_OFFSET_FROM_EXTRUDER);
  2283. destination[Y_AXIS] = round(Z_SAFE_HOMING_Y_POINT - Y_PROBE_OFFSET_FROM_EXTRUDER);
  2284. destination[Z_AXIS] = Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS) * (-1); // Set destination away from bed
  2285. feedrate = XY_TRAVEL_SPEED/60;
  2286. current_position[Z_AXIS] = 0;
  2287. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2288. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
  2289. st_synchronize();
  2290. current_position[X_AXIS] = destination[X_AXIS];
  2291. current_position[Y_AXIS] = destination[Y_AXIS];
  2292. homeaxis(Z_AXIS);
  2293. }
  2294. // Let's see if X and Y are homed and probe is inside bed area.
  2295. if(home_z) {
  2296. if ( (axis_known_position[X_AXIS]) && (axis_known_position[Y_AXIS]) \
  2297. && (current_position[X_AXIS]+X_PROBE_OFFSET_FROM_EXTRUDER >= X_MIN_POS) \
  2298. && (current_position[X_AXIS]+X_PROBE_OFFSET_FROM_EXTRUDER <= X_MAX_POS) \
  2299. && (current_position[Y_AXIS]+Y_PROBE_OFFSET_FROM_EXTRUDER >= Y_MIN_POS) \
  2300. && (current_position[Y_AXIS]+Y_PROBE_OFFSET_FROM_EXTRUDER <= Y_MAX_POS)) {
  2301. current_position[Z_AXIS] = 0;
  2302. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2303. destination[Z_AXIS] = Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS) * (-1); // Set destination away from bed
  2304. feedrate = max_feedrate[Z_AXIS];
  2305. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
  2306. st_synchronize();
  2307. homeaxis(Z_AXIS);
  2308. } else if (!((axis_known_position[X_AXIS]) && (axis_known_position[Y_AXIS]))) {
  2309. LCD_MESSAGERPGM(MSG_POSITION_UNKNOWN);
  2310. SERIAL_ECHO_START;
  2311. SERIAL_ECHOLNRPGM(MSG_POSITION_UNKNOWN);
  2312. } else {
  2313. LCD_MESSAGERPGM(MSG_ZPROBE_OUT);
  2314. SERIAL_ECHO_START;
  2315. SERIAL_ECHOLNRPGM(MSG_ZPROBE_OUT);
  2316. }
  2317. }
  2318. #endif // Z_SAFE_HOMING
  2319. #endif // Z_HOME_DIR < 0
  2320. if(home_z_axis && home_z_value != 0)
  2321. current_position[Z_AXIS]=home_z_value+cs.add_homing[Z_AXIS];
  2322. #ifdef ENABLE_AUTO_BED_LEVELING
  2323. if(home_z)
  2324. current_position[Z_AXIS] += cs.zprobe_zoffset; //Add Z_Probe offset (the distance is negative)
  2325. #endif
  2326. // Set the planner and stepper routine positions.
  2327. // At this point the mesh bed leveling and world2machine corrections are disabled and current_position
  2328. // contains the machine coordinates.
  2329. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2330. #ifdef ENDSTOPS_ONLY_FOR_HOMING
  2331. enable_endstops(false);
  2332. #endif
  2333. feedrate = saved_feedrate;
  2334. feedmultiply = l_feedmultiply;
  2335. previous_millis_cmd = _millis();
  2336. endstops_hit_on_purpose();
  2337. #ifndef MESH_BED_LEVELING
  2338. // If MESH_BED_LEVELING is not active, then it is the original Prusa i3.
  2339. // Offer the user to load the baby step value, which has been adjusted at the previous print session.
  2340. if(card.sdprinting && eeprom_read_word((uint16_t *)EEPROM_BABYSTEP_Z))
  2341. lcd_adjust_z();
  2342. #endif
  2343. // Load the machine correction matrix
  2344. world2machine_initialize();
  2345. // and correct the current_position XY axes to match the transformed coordinate system.
  2346. world2machine_update_current();
  2347. #if (defined(MESH_BED_LEVELING) && !defined(MK1BP))
  2348. if (home_x_axis || home_y_axis || without_mbl || home_z_axis)
  2349. {
  2350. if (! home_z && mbl_was_active) {
  2351. // Re-enable the mesh bed leveling if only the X and Y axes were re-homed.
  2352. mbl.active = true;
  2353. // and re-adjust the current logical Z axis with the bed leveling offset applicable at the current XY position.
  2354. current_position[Z_AXIS] -= mbl.get_z(st_get_position_mm(X_AXIS), st_get_position_mm(Y_AXIS));
  2355. }
  2356. }
  2357. else
  2358. {
  2359. st_synchronize();
  2360. homing_flag = false;
  2361. }
  2362. #endif
  2363. if (farm_mode) { prusa_statistics(20); };
  2364. homing_flag = false;
  2365. #if 0
  2366. SERIAL_ECHOPGM("G28, final "); print_world_coordinates();
  2367. SERIAL_ECHOPGM("G28, final "); print_physical_coordinates();
  2368. SERIAL_ECHOPGM("G28, final "); print_mesh_bed_leveling_table();
  2369. #endif
  2370. }
  2371. static void gcode_G28(bool home_x_axis, bool home_y_axis, bool home_z_axis)
  2372. {
  2373. #ifdef TMC2130
  2374. gcode_G28(home_x_axis, 0, home_y_axis, 0, home_z_axis, 0, false, true);
  2375. #else
  2376. gcode_G28(home_x_axis, 0, home_y_axis, 0, home_z_axis, 0, true);
  2377. #endif //TMC2130
  2378. }
  2379. void adjust_bed_reset()
  2380. {
  2381. eeprom_update_byte((unsigned char*)EEPROM_BED_CORRECTION_VALID, 1);
  2382. eeprom_update_byte((unsigned char*)EEPROM_BED_CORRECTION_LEFT, 0);
  2383. eeprom_update_byte((unsigned char*)EEPROM_BED_CORRECTION_RIGHT, 0);
  2384. eeprom_update_byte((unsigned char*)EEPROM_BED_CORRECTION_FRONT, 0);
  2385. eeprom_update_byte((unsigned char*)EEPROM_BED_CORRECTION_REAR, 0);
  2386. }
  2387. //! @brief Calibrate XYZ
  2388. //! @param onlyZ if true, calibrate only Z axis
  2389. //! @param verbosity_level
  2390. //! @retval true Succeeded
  2391. //! @retval false Failed
  2392. bool gcode_M45(bool onlyZ, int8_t verbosity_level)
  2393. {
  2394. bool final_result = false;
  2395. #ifdef TMC2130
  2396. FORCE_HIGH_POWER_START;
  2397. #endif // TMC2130
  2398. // Only Z calibration?
  2399. if (!onlyZ)
  2400. {
  2401. setTargetBed(0);
  2402. setAllTargetHotends(0);
  2403. adjust_bed_reset(); //reset bed level correction
  2404. }
  2405. // Disable the default update procedure of the display. We will do a modal dialog.
  2406. lcd_update_enable(false);
  2407. // Let the planner use the uncorrected coordinates.
  2408. mbl.reset();
  2409. // Reset world2machine_rotation_and_skew and world2machine_shift, therefore
  2410. // the planner will not perform any adjustments in the XY plane.
  2411. // Wait for the motors to stop and update the current position with the absolute values.
  2412. world2machine_revert_to_uncorrected();
  2413. // Reset the baby step value applied without moving the axes.
  2414. babystep_reset();
  2415. // Mark all axes as in a need for homing.
  2416. memset(axis_known_position, 0, sizeof(axis_known_position));
  2417. // Home in the XY plane.
  2418. //set_destination_to_current();
  2419. int l_feedmultiply = setup_for_endstop_move();
  2420. lcd_display_message_fullscreen_P(_T(MSG_AUTO_HOME));
  2421. home_xy();
  2422. enable_endstops(false);
  2423. current_position[X_AXIS] += 5;
  2424. current_position[Y_AXIS] += 5;
  2425. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[Z_AXIS] / 40, active_extruder);
  2426. st_synchronize();
  2427. // Let the user move the Z axes up to the end stoppers.
  2428. #ifdef TMC2130
  2429. if (calibrate_z_auto())
  2430. {
  2431. #else //TMC2130
  2432. if (lcd_calibrate_z_end_stop_manual(onlyZ))
  2433. {
  2434. #endif //TMC2130
  2435. lcd_show_fullscreen_message_and_wait_P(_T(MSG_CONFIRM_NOZZLE_CLEAN));
  2436. if(onlyZ){
  2437. lcd_display_message_fullscreen_P(_T(MSG_MEASURE_BED_REFERENCE_HEIGHT_LINE1));
  2438. lcd_set_cursor(0, 3);
  2439. lcd_print(1);
  2440. lcd_puts_P(_T(MSG_MEASURE_BED_REFERENCE_HEIGHT_LINE2));
  2441. }else{
  2442. //lcd_show_fullscreen_message_and_wait_P(_T(MSG_PAPER));
  2443. lcd_display_message_fullscreen_P(_T(MSG_FIND_BED_OFFSET_AND_SKEW_LINE1));
  2444. lcd_set_cursor(0, 2);
  2445. lcd_print(1);
  2446. lcd_puts_P(_T(MSG_FIND_BED_OFFSET_AND_SKEW_LINE2));
  2447. }
  2448. refresh_cmd_timeout();
  2449. #ifndef STEEL_SHEET
  2450. if (((degHotend(0) > MAX_HOTEND_TEMP_CALIBRATION) || (degBed() > MAX_BED_TEMP_CALIBRATION)) && (!onlyZ))
  2451. {
  2452. lcd_wait_for_cool_down();
  2453. }
  2454. #endif //STEEL_SHEET
  2455. if(!onlyZ)
  2456. {
  2457. KEEPALIVE_STATE(PAUSED_FOR_USER);
  2458. #ifdef STEEL_SHEET
  2459. bool result = lcd_show_fullscreen_message_yes_no_and_wait_P(_T(MSG_STEEL_SHEET_CHECK), false, false);
  2460. if(result) lcd_show_fullscreen_message_and_wait_P(_T(MSG_REMOVE_STEEL_SHEET));
  2461. #endif //STEEL_SHEET
  2462. lcd_show_fullscreen_message_and_wait_P(_T(MSG_PAPER));
  2463. KEEPALIVE_STATE(IN_HANDLER);
  2464. lcd_display_message_fullscreen_P(_T(MSG_FIND_BED_OFFSET_AND_SKEW_LINE1));
  2465. lcd_set_cursor(0, 2);
  2466. lcd_print(1);
  2467. lcd_puts_P(_T(MSG_FIND_BED_OFFSET_AND_SKEW_LINE2));
  2468. }
  2469. bool endstops_enabled = enable_endstops(false);
  2470. current_position[Z_AXIS] -= 1; //move 1mm down with disabled endstop
  2471. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[Z_AXIS] / 40, active_extruder);
  2472. st_synchronize();
  2473. // Move the print head close to the bed.
  2474. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  2475. enable_endstops(true);
  2476. #ifdef TMC2130
  2477. tmc2130_home_enter(Z_AXIS_MASK);
  2478. #endif //TMC2130
  2479. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[Z_AXIS] / 40, active_extruder);
  2480. st_synchronize();
  2481. #ifdef TMC2130
  2482. tmc2130_home_exit();
  2483. #endif //TMC2130
  2484. enable_endstops(endstops_enabled);
  2485. if (st_get_position_mm(Z_AXIS) == MESH_HOME_Z_SEARCH)
  2486. {
  2487. if (onlyZ)
  2488. {
  2489. clean_up_after_endstop_move(l_feedmultiply);
  2490. // Z only calibration.
  2491. // Load the machine correction matrix
  2492. world2machine_initialize();
  2493. // and correct the current_position to match the transformed coordinate system.
  2494. world2machine_update_current();
  2495. //FIXME
  2496. bool result = sample_mesh_and_store_reference();
  2497. if (result)
  2498. {
  2499. if (calibration_status() == CALIBRATION_STATUS_Z_CALIBRATION)
  2500. // Shipped, the nozzle height has been set already. The user can start printing now.
  2501. calibration_status_store(CALIBRATION_STATUS_CALIBRATED);
  2502. final_result = true;
  2503. // babystep_apply();
  2504. }
  2505. }
  2506. else
  2507. {
  2508. // Reset the baby step value and the baby step applied flag.
  2509. calibration_status_store(CALIBRATION_STATUS_XYZ_CALIBRATION);
  2510. eeprom_update_word((uint16_t*)EEPROM_BABYSTEP_Z, 0);
  2511. // Complete XYZ calibration.
  2512. uint8_t point_too_far_mask = 0;
  2513. BedSkewOffsetDetectionResultType result = find_bed_offset_and_skew(verbosity_level, point_too_far_mask);
  2514. clean_up_after_endstop_move(l_feedmultiply);
  2515. // Print head up.
  2516. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  2517. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[Z_AXIS] / 40, active_extruder);
  2518. st_synchronize();
  2519. //#ifndef NEW_XYZCAL
  2520. if (result >= 0)
  2521. {
  2522. #ifdef HEATBED_V2
  2523. sample_z();
  2524. #else //HEATBED_V2
  2525. point_too_far_mask = 0;
  2526. // Second half: The fine adjustment.
  2527. // Let the planner use the uncorrected coordinates.
  2528. mbl.reset();
  2529. world2machine_reset();
  2530. // Home in the XY plane.
  2531. int l_feedmultiply = setup_for_endstop_move();
  2532. home_xy();
  2533. result = improve_bed_offset_and_skew(1, verbosity_level, point_too_far_mask);
  2534. clean_up_after_endstop_move(l_feedmultiply);
  2535. // Print head up.
  2536. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  2537. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[Z_AXIS] / 40, active_extruder);
  2538. st_synchronize();
  2539. // if (result >= 0) babystep_apply();
  2540. #endif //HEATBED_V2
  2541. }
  2542. //#endif //NEW_XYZCAL
  2543. lcd_update_enable(true);
  2544. lcd_update(2);
  2545. lcd_bed_calibration_show_result(result, point_too_far_mask);
  2546. if (result >= 0)
  2547. {
  2548. // Calibration valid, the machine should be able to print. Advise the user to run the V2Calibration.gcode.
  2549. calibration_status_store(CALIBRATION_STATUS_LIVE_ADJUST);
  2550. if (eeprom_read_byte((uint8_t*)EEPROM_WIZARD_ACTIVE) != 1) lcd_show_fullscreen_message_and_wait_P(_T(MSG_BABYSTEP_Z_NOT_SET));
  2551. final_result = true;
  2552. }
  2553. }
  2554. #ifdef TMC2130
  2555. tmc2130_home_exit();
  2556. #endif
  2557. }
  2558. else
  2559. {
  2560. lcd_show_fullscreen_message_and_wait_P(PSTR("Calibration failed! Check the axes and run again."));
  2561. final_result = false;
  2562. }
  2563. }
  2564. else
  2565. {
  2566. // Timeouted.
  2567. }
  2568. lcd_update_enable(true);
  2569. #ifdef TMC2130
  2570. FORCE_HIGH_POWER_END;
  2571. #endif // TMC2130
  2572. return final_result;
  2573. }
  2574. void gcode_M114()
  2575. {
  2576. SERIAL_PROTOCOLPGM("X:");
  2577. SERIAL_PROTOCOL(current_position[X_AXIS]);
  2578. SERIAL_PROTOCOLPGM(" Y:");
  2579. SERIAL_PROTOCOL(current_position[Y_AXIS]);
  2580. SERIAL_PROTOCOLPGM(" Z:");
  2581. SERIAL_PROTOCOL(current_position[Z_AXIS]);
  2582. SERIAL_PROTOCOLPGM(" E:");
  2583. SERIAL_PROTOCOL(current_position[E_AXIS]);
  2584. SERIAL_PROTOCOLRPGM(_n(" Count X: "));////MSG_COUNT_X
  2585. SERIAL_PROTOCOL(float(st_get_position(X_AXIS)) / cs.axis_steps_per_unit[X_AXIS]);
  2586. SERIAL_PROTOCOLPGM(" Y:");
  2587. SERIAL_PROTOCOL(float(st_get_position(Y_AXIS)) / cs.axis_steps_per_unit[Y_AXIS]);
  2588. SERIAL_PROTOCOLPGM(" Z:");
  2589. SERIAL_PROTOCOL(float(st_get_position(Z_AXIS)) / cs.axis_steps_per_unit[Z_AXIS]);
  2590. SERIAL_PROTOCOLPGM(" E:");
  2591. SERIAL_PROTOCOL(float(st_get_position(E_AXIS)) / cs.axis_steps_per_unit[E_AXIS]);
  2592. SERIAL_PROTOCOLLN("");
  2593. }
  2594. //! extracted code to compute z_shift for M600 in case of filament change operation
  2595. //! requested from fsensors.
  2596. //! The function ensures, that the printhead lifts to at least 25mm above the heat bed
  2597. //! unlike the previous implementation, which was adding 25mm even when the head was
  2598. //! printing at e.g. 24mm height.
  2599. //! A safety margin of FILAMENTCHANGE_ZADD is added in all cases to avoid touching
  2600. //! the printout.
  2601. //! This function is templated to enable fast change of computation data type.
  2602. //! @return new z_shift value
  2603. template<typename T>
  2604. static T gcode_M600_filament_change_z_shift()
  2605. {
  2606. #ifdef FILAMENTCHANGE_ZADD
  2607. static_assert(Z_MAX_POS < (255 - FILAMENTCHANGE_ZADD), "Z-range too high, change the T type from uint8_t to uint16_t");
  2608. // avoid floating point arithmetics when not necessary - results in shorter code
  2609. T ztmp = T( current_position[Z_AXIS] );
  2610. T z_shift = 0;
  2611. if(ztmp < T(25)){
  2612. z_shift = T(25) - ztmp; // make sure to be at least 25mm above the heat bed
  2613. }
  2614. return z_shift + T(FILAMENTCHANGE_ZADD); // always move above printout
  2615. #else
  2616. return T(0);
  2617. #endif
  2618. }
  2619. static void gcode_M600(bool automatic, float x_position, float y_position, float z_shift, float e_shift, float /*e_shift_late*/)
  2620. {
  2621. st_synchronize();
  2622. float lastpos[4];
  2623. if (farm_mode)
  2624. {
  2625. prusa_statistics(22);
  2626. }
  2627. //First backup current position and settings
  2628. int feedmultiplyBckp = feedmultiply;
  2629. float HotendTempBckp = degTargetHotend(active_extruder);
  2630. int fanSpeedBckp = fanSpeed;
  2631. lastpos[X_AXIS] = current_position[X_AXIS];
  2632. lastpos[Y_AXIS] = current_position[Y_AXIS];
  2633. lastpos[Z_AXIS] = current_position[Z_AXIS];
  2634. lastpos[E_AXIS] = current_position[E_AXIS];
  2635. //Retract E
  2636. current_position[E_AXIS] += e_shift;
  2637. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS],
  2638. current_position[E_AXIS], FILAMENTCHANGE_RFEED, active_extruder);
  2639. st_synchronize();
  2640. //Lift Z
  2641. current_position[Z_AXIS] += z_shift;
  2642. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS],
  2643. current_position[E_AXIS], FILAMENTCHANGE_ZFEED, active_extruder);
  2644. st_synchronize();
  2645. //Move XY to side
  2646. current_position[X_AXIS] = x_position;
  2647. current_position[Y_AXIS] = y_position;
  2648. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS],
  2649. current_position[E_AXIS], FILAMENTCHANGE_XYFEED, active_extruder);
  2650. st_synchronize();
  2651. //Beep, manage nozzle heater and wait for user to start unload filament
  2652. if(!mmu_enabled) M600_wait_for_user(HotendTempBckp);
  2653. lcd_change_fil_state = 0;
  2654. // Unload filament
  2655. if (mmu_enabled) extr_unload(); //unload just current filament for multimaterial printers (used also in M702)
  2656. else unload_filament(); //unload filament for single material (used also in M702)
  2657. //finish moves
  2658. st_synchronize();
  2659. if (!mmu_enabled)
  2660. {
  2661. KEEPALIVE_STATE(PAUSED_FOR_USER);
  2662. lcd_change_fil_state = lcd_show_fullscreen_message_yes_no_and_wait_P(_i("Was filament unload successful?"),
  2663. false, true); ////MSG_UNLOAD_SUCCESSFUL c=20 r=2
  2664. if (lcd_change_fil_state == 0)
  2665. {
  2666. lcd_clear();
  2667. lcd_set_cursor(0, 2);
  2668. lcd_puts_P(_T(MSG_PLEASE_WAIT));
  2669. current_position[X_AXIS] -= 100;
  2670. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS],
  2671. current_position[E_AXIS], FILAMENTCHANGE_XYFEED, active_extruder);
  2672. st_synchronize();
  2673. lcd_show_fullscreen_message_and_wait_P(_i("Please open idler and remove filament manually."));////MSG_CHECK_IDLER c=20 r=4
  2674. }
  2675. }
  2676. if (mmu_enabled)
  2677. {
  2678. if (!automatic) {
  2679. if (saved_printing) mmu_eject_filament(mmu_extruder, false); //if M600 was invoked by filament senzor (FINDA) eject filament so user can easily remove it
  2680. mmu_M600_wait_and_beep();
  2681. if (saved_printing) {
  2682. lcd_clear();
  2683. lcd_set_cursor(0, 2);
  2684. lcd_puts_P(_T(MSG_PLEASE_WAIT));
  2685. mmu_command(MmuCmd::R0);
  2686. manage_response(false, false);
  2687. }
  2688. }
  2689. mmu_M600_load_filament(automatic, HotendTempBckp);
  2690. }
  2691. else
  2692. M600_load_filament();
  2693. if (!automatic) M600_check_state(HotendTempBckp);
  2694. lcd_update_enable(true);
  2695. //Not let's go back to print
  2696. fanSpeed = fanSpeedBckp;
  2697. //Feed a little of filament to stabilize pressure
  2698. if (!automatic)
  2699. {
  2700. current_position[E_AXIS] += FILAMENTCHANGE_RECFEED;
  2701. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS],
  2702. current_position[E_AXIS], FILAMENTCHANGE_EXFEED, active_extruder);
  2703. }
  2704. //Move XY back
  2705. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS],
  2706. FILAMENTCHANGE_XYFEED, active_extruder);
  2707. st_synchronize();
  2708. //Move Z back
  2709. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], current_position[E_AXIS],
  2710. FILAMENTCHANGE_ZFEED, active_extruder);
  2711. st_synchronize();
  2712. //Set E position to original
  2713. plan_set_e_position(lastpos[E_AXIS]);
  2714. memcpy(current_position, lastpos, sizeof(lastpos));
  2715. memcpy(destination, current_position, sizeof(current_position));
  2716. //Recover feed rate
  2717. feedmultiply = feedmultiplyBckp;
  2718. char cmd[9];
  2719. sprintf_P(cmd, PSTR("M220 S%i"), feedmultiplyBckp);
  2720. enquecommand(cmd);
  2721. #ifdef IR_SENSOR
  2722. //this will set fsensor_watch_autoload to correct value and prevent possible M701 gcode enqueuing when M600 is finished
  2723. fsensor_check_autoload();
  2724. #endif //IR_SENSOR
  2725. lcd_setstatuspgm(_T(WELCOME_MSG));
  2726. custom_message_type = CustomMsg::Status;
  2727. }
  2728. //! @brief Rise Z if too low to avoid blob/jam before filament loading
  2729. //!
  2730. //! It doesn't plan_buffer_line(), as it expects plan_buffer_line() to be called after
  2731. //! during extruding (loading) filament.
  2732. void marlin_rise_z(void)
  2733. {
  2734. if (current_position[Z_AXIS] < 20) current_position[Z_AXIS] += 30;
  2735. }
  2736. void gcode_M701()
  2737. {
  2738. printf_P(PSTR("gcode_M701 begin\n"));
  2739. if (farm_mode)
  2740. {
  2741. prusa_statistics(22);
  2742. }
  2743. if (mmu_enabled)
  2744. {
  2745. extr_adj(tmp_extruder);//loads current extruder
  2746. mmu_extruder = tmp_extruder;
  2747. }
  2748. else
  2749. {
  2750. enable_z();
  2751. custom_message_type = CustomMsg::FilamentLoading;
  2752. #ifdef FSENSOR_QUALITY
  2753. fsensor_oq_meassure_start(40);
  2754. #endif //FSENSOR_QUALITY
  2755. lcd_setstatuspgm(_T(MSG_LOADING_FILAMENT));
  2756. current_position[E_AXIS] += 40;
  2757. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400 / 60, active_extruder); //fast sequence
  2758. st_synchronize();
  2759. marlin_rise_z();
  2760. current_position[E_AXIS] += 30;
  2761. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400 / 60, active_extruder); //fast sequence
  2762. load_filament_final_feed(); //slow sequence
  2763. st_synchronize();
  2764. if((eSoundMode==e_SOUND_MODE_LOUD)||(eSoundMode==e_SOUND_MODE_ONCE)) _tone(BEEPER, 500);
  2765. delay_keep_alive(50);
  2766. _noTone(BEEPER);
  2767. if (!farm_mode && loading_flag) {
  2768. lcd_load_filament_color_check();
  2769. }
  2770. lcd_update_enable(true);
  2771. lcd_update(2);
  2772. lcd_setstatuspgm(_T(WELCOME_MSG));
  2773. disable_z();
  2774. loading_flag = false;
  2775. custom_message_type = CustomMsg::Status;
  2776. #ifdef FSENSOR_QUALITY
  2777. fsensor_oq_meassure_stop();
  2778. if (!fsensor_oq_result())
  2779. {
  2780. bool disable = lcd_show_fullscreen_message_yes_no_and_wait_P(_i("Fil. sensor response is poor, disable it?"), false, true);
  2781. lcd_update_enable(true);
  2782. lcd_update(2);
  2783. if (disable)
  2784. fsensor_disable();
  2785. }
  2786. #endif //FSENSOR_QUALITY
  2787. }
  2788. }
  2789. /**
  2790. * @brief Get serial number from 32U2 processor
  2791. *
  2792. * Typical format of S/N is:CZPX0917X003XC13518
  2793. *
  2794. * Command operates only in farm mode, if not in farm mode, "Not in farm mode." is written to MYSERIAL.
  2795. *
  2796. * Send command ;S to serial port 0 to retrieve serial number stored in 32U2 processor,
  2797. * reply is transmitted to serial port 1 character by character.
  2798. * Operation takes typically 23 ms. If the retransmit is not finished until 100 ms,
  2799. * it is interrupted, so less, or no characters are retransmitted, only newline character is send
  2800. * in any case.
  2801. */
  2802. static void gcode_PRUSA_SN()
  2803. {
  2804. if (farm_mode) {
  2805. selectedSerialPort = 0;
  2806. putchar(';');
  2807. putchar('S');
  2808. int numbersRead = 0;
  2809. ShortTimer timeout;
  2810. timeout.start();
  2811. while (numbersRead < 19) {
  2812. while (MSerial.available() > 0) {
  2813. uint8_t serial_char = MSerial.read();
  2814. selectedSerialPort = 1;
  2815. putchar(serial_char);
  2816. numbersRead++;
  2817. selectedSerialPort = 0;
  2818. }
  2819. if (timeout.expired(100u)) break;
  2820. }
  2821. selectedSerialPort = 1;
  2822. putchar('\n');
  2823. #if 0
  2824. for (int b = 0; b < 3; b++) {
  2825. _tone(BEEPER, 110);
  2826. _delay(50);
  2827. _noTone(BEEPER);
  2828. _delay(50);
  2829. }
  2830. #endif
  2831. } else {
  2832. puts_P(_N("Not in farm mode."));
  2833. }
  2834. }
  2835. #ifdef BACKLASH_X
  2836. extern uint8_t st_backlash_x;
  2837. #endif //BACKLASH_X
  2838. #ifdef BACKLASH_Y
  2839. extern uint8_t st_backlash_y;
  2840. #endif //BACKLASH_Y
  2841. //! @brief Parse and process commands
  2842. //!
  2843. //! look here for descriptions of G-codes: http://linuxcnc.org/handbook/gcode/g-code.html
  2844. //! http://objects.reprap.org/wiki/Mendel_User_Manual:_RepRapGCodes
  2845. //!
  2846. //! Implemented Codes
  2847. //! -------------------
  2848. //!
  2849. //!@n PRUSA CODES
  2850. //!@n P F - Returns FW versions
  2851. //!@n P R - Returns revision of printer
  2852. //!
  2853. //!@n G0 -> G1
  2854. //!@n G1 - Coordinated Movement X Y Z E
  2855. //!@n G2 - CW ARC
  2856. //!@n G3 - CCW ARC
  2857. //!@n G4 - Dwell S<seconds> or P<milliseconds>
  2858. //!@n G10 - retract filament according to settings of M207
  2859. //!@n G11 - retract recover filament according to settings of M208
  2860. //!@n G28 - Home all Axis
  2861. //!@n G29 - Detailed Z-Probe, probes the bed at 3 or more points. Will fail if you haven't homed yet.
  2862. //!@n G30 - Single Z Probe, probes bed at current XY location.
  2863. //!@n G31 - Dock sled (Z_PROBE_SLED only)
  2864. //!@n G32 - Undock sled (Z_PROBE_SLED only)
  2865. //!@n G80 - Automatic mesh bed leveling
  2866. //!@n G81 - Print bed profile
  2867. //!@n G90 - Use Absolute Coordinates
  2868. //!@n G91 - Use Relative Coordinates
  2869. //!@n G92 - Set current position to coordinates given
  2870. //!
  2871. //!@n M Codes
  2872. //!@n M0 - Unconditional stop - Wait for user to press a button on the LCD
  2873. //!@n M1 - Same as M0
  2874. //!@n M17 - Enable/Power all stepper motors
  2875. //!@n M18 - Disable all stepper motors; same as M84
  2876. //!@n M20 - List SD card
  2877. //!@n M21 - Init SD card
  2878. //!@n M22 - Release SD card
  2879. //!@n M23 - Select SD file (M23 filename.g)
  2880. //!@n M24 - Start/resume SD print
  2881. //!@n M25 - Pause SD print
  2882. //!@n M26 - Set SD position in bytes (M26 S12345)
  2883. //!@n M27 - Report SD print status
  2884. //!@n M28 - Start SD write (M28 filename.g)
  2885. //!@n M29 - Stop SD write
  2886. //!@n M30 - Delete file from SD (M30 filename.g)
  2887. //!@n M31 - Output time since last M109 or SD card start to serial
  2888. //!@n M32 - Select file and start SD print (Can be used _while_ printing from SD card files):
  2889. //! syntax "M32 /path/filename#", or "M32 S<startpos bytes> !filename#"
  2890. //! Call gcode file : "M32 P !filename#" and return to caller file after finishing (similar to #include).
  2891. //! The '#' is necessary when calling from within sd files, as it stops buffer prereading
  2892. //!@n M42 - Change pin status via gcode Use M42 Px Sy to set pin x to value y, when omitting Px the onboard led will be used.
  2893. //!@n M73 - Show percent done and print time remaining
  2894. //!@n M80 - Turn on Power Supply
  2895. //!@n M81 - Turn off Power Supply
  2896. //!@n M82 - Set E codes absolute (default)
  2897. //!@n M83 - Set E codes relative while in Absolute Coordinates (G90) mode
  2898. //!@n M84 - Disable steppers until next move,
  2899. //! or use S<seconds> to specify an inactivity timeout, after which the steppers will be disabled. S0 to disable the timeout.
  2900. //!@n M85 - Set inactivity shutdown timer with parameter S<seconds>. To disable set zero (default)
  2901. //!@n M86 - Set safety timer expiration time with parameter S<seconds>; M86 S0 will disable safety timer
  2902. //!@n M92 - Set axis_steps_per_unit - same syntax as G92
  2903. //!@n M104 - Set extruder target temp
  2904. //!@n M105 - Read current temp
  2905. //!@n M106 - Fan on
  2906. //!@n M107 - Fan off
  2907. //!@n M109 - Sxxx Wait for extruder current temp to reach target temp. Waits only when heating
  2908. //! Rxxx Wait for extruder current temp to reach target temp. Waits when heating and cooling
  2909. //! IF AUTOTEMP is enabled, S<mintemp> B<maxtemp> F<factor>. Exit autotemp by any M109 without F
  2910. //!@n M112 - Emergency stop
  2911. //!@n M113 - Get or set the timeout interval for Host Keepalive "busy" messages
  2912. //!@n M114 - Output current position to serial port
  2913. //!@n M115 - Capabilities string
  2914. //!@n M117 - display message
  2915. //!@n M119 - Output Endstop status to serial port
  2916. //!@n M126 - Solenoid Air Valve Open (BariCUDA support by jmil)
  2917. //!@n M127 - Solenoid Air Valve Closed (BariCUDA vent to atmospheric pressure by jmil)
  2918. //!@n M128 - EtoP Open (BariCUDA EtoP = electricity to air pressure transducer by jmil)
  2919. //!@n M129 - EtoP Closed (BariCUDA EtoP = electricity to air pressure transducer by jmil)
  2920. //!@n M140 - Set bed target temp
  2921. //!@n M150 - Set BlinkM Color Output R: Red<0-255> U(!): Green<0-255> B: Blue<0-255> over i2c, G for green does not work.
  2922. //!@n M190 - Sxxx Wait for bed current temp to reach target temp. Waits only when heating
  2923. //! Rxxx Wait for bed current temp to reach target temp. Waits when heating and cooling
  2924. //!@n M200 D<millimeters>- set filament diameter and set E axis units to cubic millimeters (use S0 to set back to millimeters).
  2925. //!@n M201 - Set max acceleration in units/s^2 for print moves (M201 X1000 Y1000)
  2926. //!@n M202 - Set max acceleration in units/s^2 for travel moves (M202 X1000 Y1000) Unused in Marlin!!
  2927. //!@n M203 - Set maximum feedrate that your machine can sustain (M203 X200 Y200 Z300 E10000) in mm/sec
  2928. //!@n M204 - Set default acceleration: S normal moves T filament only moves (M204 S3000 T7000) in mm/sec^2 also sets minimum segment time in ms (B20000) to prevent buffer under-runs and M20 minimum feedrate
  2929. //!@n M205 - advanced settings: minimum travel speed S=while printing T=travel only, B=minimum segment time X= maximum xy jerk, Z=maximum Z jerk, E=maximum E jerk
  2930. //!@n M206 - set additional homing offset
  2931. //!@n M207 - set retract length S[positive mm] F[feedrate mm/min] Z[additional zlift/hop], stays in mm regardless of M200 setting
  2932. //!@n M208 - set recover=unretract length S[positive mm surplus to the M207 S*] F[feedrate mm/sec]
  2933. //!@n M209 - S<1=true/0=false> enable automatic retract detect if the slicer did not support G10/11: every normal extrude-only move will be classified as retract depending on the direction.
  2934. //!@n M218 - set hotend offset (in mm): T<extruder_number> X<offset_on_X> Y<offset_on_Y>
  2935. //!@n M220 S<factor in percent>- set speed factor override percentage
  2936. //!@n M221 S<factor in percent>- set extrude factor override percentage
  2937. //!@n M226 P<pin number> S<pin state>- Wait until the specified pin reaches the state required
  2938. //!@n M240 - Trigger a camera to take a photograph
  2939. //!@n M250 - Set LCD contrast C<contrast value> (value 0..63)
  2940. //!@n M280 - set servo position absolute. P: servo index, S: angle or microseconds
  2941. //!@n M300 - Play beep sound S<frequency Hz> P<duration ms>
  2942. //!@n M301 - Set PID parameters P I and D
  2943. //!@n M302 - Allow cold extrudes, or set the minimum extrude S<temperature>.
  2944. //!@n M303 - PID relay autotune S<temperature> sets the target temperature. (default target temperature = 150C)
  2945. //!@n M304 - Set bed PID parameters P I and D
  2946. //!@n M400 - Finish all moves
  2947. //!@n M401 - Lower z-probe if present
  2948. //!@n M402 - Raise z-probe if present
  2949. //!@n M404 - N<dia in mm> Enter the nominal filament width (3mm, 1.75mm ) or will display nominal filament width without parameters
  2950. //!@n M405 - Turn on Filament Sensor extrusion control. Optional D<delay in cm> to set delay in centimeters between sensor and extruder
  2951. //!@n M406 - Turn off Filament Sensor extrusion control
  2952. //!@n M407 - Displays measured filament diameter
  2953. //!@n M500 - stores parameters in EEPROM
  2954. //!@n M501 - reads parameters from EEPROM (if you need reset them after you changed them temporarily).
  2955. //!@n M502 - reverts to the default "factory settings". You still need to store them in EEPROM afterwards if you want to.
  2956. //!@n M503 - print the current settings (from memory not from EEPROM)
  2957. //!@n M509 - force language selection on next restart
  2958. //!@n M540 - Use S[0|1] to enable or disable the stop SD card print on endstop hit (requires ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED)
  2959. //!@n M600 - Pause for filament change X[pos] Y[pos] Z[relative lift] E[initial retract] L[later retract distance for removal]
  2960. //!@n M605 - Set dual x-carriage movement mode: S<mode> [ X<duplication x-offset> R<duplication temp offset> ]
  2961. //!@n M860 - Wait for PINDA thermistor to reach target temperature.
  2962. //!@n M861 - Set / Read PINDA temperature compensation offsets
  2963. //!@n M900 - Set LIN_ADVANCE options, if enabled. See Configuration_adv.h for details.
  2964. //!@n M907 - Set digital trimpot motor current using axis codes.
  2965. //!@n M908 - Control digital trimpot directly.
  2966. //!@n M350 - Set microstepping mode.
  2967. //!@n M351 - Toggle MS1 MS2 pins directly.
  2968. //!
  2969. //!@n M928 - Start SD logging (M928 filename.g) - ended by M29
  2970. //!@n M999 - Restart after being stopped by error
  2971. void process_commands()
  2972. {
  2973. #ifdef FANCHECK
  2974. if (fan_check_error){
  2975. if( fan_check_error == EFCE_DETECTED ){
  2976. fan_check_error = EFCE_REPORTED;
  2977. lcd_pause_print();
  2978. } // otherwise it has already been reported, so just ignore further processing
  2979. return;
  2980. }
  2981. #endif
  2982. if (!buflen) return; //empty command
  2983. #ifdef FILAMENT_RUNOUT_SUPPORT
  2984. SET_INPUT(FR_SENS);
  2985. #endif
  2986. #ifdef CMDBUFFER_DEBUG
  2987. SERIAL_ECHOPGM("Processing a GCODE command: ");
  2988. SERIAL_ECHO(cmdbuffer+bufindr+CMDHDRSIZE);
  2989. SERIAL_ECHOLNPGM("");
  2990. SERIAL_ECHOPGM("In cmdqueue: ");
  2991. SERIAL_ECHO(buflen);
  2992. SERIAL_ECHOLNPGM("");
  2993. #endif /* CMDBUFFER_DEBUG */
  2994. unsigned long codenum; //throw away variable
  2995. char *starpos = NULL;
  2996. #ifdef ENABLE_AUTO_BED_LEVELING
  2997. float x_tmp, y_tmp, z_tmp, real_z;
  2998. #endif
  2999. // PRUSA GCODES
  3000. KEEPALIVE_STATE(IN_HANDLER);
  3001. #ifdef SNMM
  3002. float tmp_motor[3] = DEFAULT_PWM_MOTOR_CURRENT;
  3003. float tmp_motor_loud[3] = DEFAULT_PWM_MOTOR_CURRENT_LOUD;
  3004. int8_t SilentMode;
  3005. #endif
  3006. if (code_seen("M117")) { //moved to highest priority place to be able to to print strings which includes "G", "PRUSA" and "^"
  3007. starpos = (strchr(strchr_pointer + 5, '*'));
  3008. if (starpos != NULL)
  3009. *(starpos) = '\0';
  3010. lcd_setstatus(strchr_pointer + 5);
  3011. }
  3012. #ifdef TMC2130
  3013. else if (strncmp_P(CMDBUFFER_CURRENT_STRING, PSTR("CRASH_"), 6) == 0)
  3014. {
  3015. if(code_seen("CRASH_DETECTED")) //! CRASH_DETECTED
  3016. {
  3017. uint8_t mask = 0;
  3018. if (code_seen('X')) mask |= X_AXIS_MASK;
  3019. if (code_seen('Y')) mask |= Y_AXIS_MASK;
  3020. crashdet_detected(mask);
  3021. }
  3022. else if(code_seen("CRASH_RECOVER")) //! CRASH_RECOVER
  3023. crashdet_recover();
  3024. else if(code_seen("CRASH_CANCEL")) //! CRASH_CANCEL
  3025. crashdet_cancel();
  3026. }
  3027. else if (strncmp_P(CMDBUFFER_CURRENT_STRING, PSTR("TMC_"), 4) == 0)
  3028. {
  3029. if (strncmp_P(CMDBUFFER_CURRENT_STRING + 4, PSTR("SET_WAVE_"), 9) == 0) //! TMC_SET_WAVE_
  3030. {
  3031. uint8_t axis = *(CMDBUFFER_CURRENT_STRING + 13);
  3032. axis = (axis == 'E')?3:(axis - 'X');
  3033. if (axis < 4)
  3034. {
  3035. uint8_t fac = (uint8_t)strtol(CMDBUFFER_CURRENT_STRING + 14, NULL, 10);
  3036. tmc2130_set_wave(axis, 247, fac);
  3037. }
  3038. }
  3039. else if (strncmp_P(CMDBUFFER_CURRENT_STRING + 4, PSTR("SET_STEP_"), 9) == 0) //! TMC_SET_STEP_
  3040. {
  3041. uint8_t axis = *(CMDBUFFER_CURRENT_STRING + 13);
  3042. axis = (axis == 'E')?3:(axis - 'X');
  3043. if (axis < 4)
  3044. {
  3045. uint8_t step = (uint8_t)strtol(CMDBUFFER_CURRENT_STRING + 14, NULL, 10);
  3046. uint16_t res = tmc2130_get_res(axis);
  3047. tmc2130_goto_step(axis, step & (4*res - 1), 2, 1000, res);
  3048. }
  3049. }
  3050. else if (strncmp_P(CMDBUFFER_CURRENT_STRING + 4, PSTR("SET_CHOP_"), 9) == 0) //! TMC_SET_CHOP_
  3051. {
  3052. uint8_t axis = *(CMDBUFFER_CURRENT_STRING + 13);
  3053. axis = (axis == 'E')?3:(axis - 'X');
  3054. if (axis < 4)
  3055. {
  3056. uint8_t chop0 = tmc2130_chopper_config[axis].toff;
  3057. uint8_t chop1 = tmc2130_chopper_config[axis].hstr;
  3058. uint8_t chop2 = tmc2130_chopper_config[axis].hend;
  3059. uint8_t chop3 = tmc2130_chopper_config[axis].tbl;
  3060. char* str_end = 0;
  3061. if (CMDBUFFER_CURRENT_STRING[14])
  3062. {
  3063. chop0 = (uint8_t)strtol(CMDBUFFER_CURRENT_STRING + 14, &str_end, 10) & 15;
  3064. if (str_end && *str_end)
  3065. {
  3066. chop1 = (uint8_t)strtol(str_end, &str_end, 10) & 7;
  3067. if (str_end && *str_end)
  3068. {
  3069. chop2 = (uint8_t)strtol(str_end, &str_end, 10) & 15;
  3070. if (str_end && *str_end)
  3071. chop3 = (uint8_t)strtol(str_end, &str_end, 10) & 3;
  3072. }
  3073. }
  3074. }
  3075. tmc2130_chopper_config[axis].toff = chop0;
  3076. tmc2130_chopper_config[axis].hstr = chop1 & 7;
  3077. tmc2130_chopper_config[axis].hend = chop2 & 15;
  3078. tmc2130_chopper_config[axis].tbl = chop3 & 3;
  3079. tmc2130_setup_chopper(axis, tmc2130_mres[axis], tmc2130_current_h[axis], tmc2130_current_r[axis]);
  3080. //printf_P(_N("TMC_SET_CHOP_%c %hhd %hhd %hhd %hhd\n"), "xyze"[axis], chop0, chop1, chop2, chop3);
  3081. }
  3082. }
  3083. }
  3084. #ifdef BACKLASH_X
  3085. else if (strncmp_P(CMDBUFFER_CURRENT_STRING, PSTR("BACKLASH_X"), 10) == 0)
  3086. {
  3087. uint8_t bl = (uint8_t)strtol(CMDBUFFER_CURRENT_STRING + 10, NULL, 10);
  3088. st_backlash_x = bl;
  3089. printf_P(_N("st_backlash_x = %hhd\n"), st_backlash_x);
  3090. }
  3091. #endif //BACKLASH_X
  3092. #ifdef BACKLASH_Y
  3093. else if (strncmp_P(CMDBUFFER_CURRENT_STRING, PSTR("BACKLASH_Y"), 10) == 0)
  3094. {
  3095. uint8_t bl = (uint8_t)strtol(CMDBUFFER_CURRENT_STRING + 10, NULL, 10);
  3096. st_backlash_y = bl;
  3097. printf_P(_N("st_backlash_y = %hhd\n"), st_backlash_y);
  3098. }
  3099. #endif //BACKLASH_Y
  3100. #endif //TMC2130
  3101. else if(code_seen("PRUSA")){
  3102. if (code_seen("Ping")) { //! PRUSA Ping
  3103. if (farm_mode) {
  3104. PingTime = _millis();
  3105. //MYSERIAL.print(farm_no); MYSERIAL.println(": OK");
  3106. }
  3107. }
  3108. else if (code_seen("PRN")) { //! PRUSA PRN
  3109. printf_P(_N("%d"), status_number);
  3110. }else if (code_seen("FAN")) { //! PRUSA FAN
  3111. printf_P(_N("E0:%d RPM\nPRN0:%d RPM\n"), 60*fan_speed[0], 60*fan_speed[1]);
  3112. }else if (code_seen("fn")) { //! PRUSA fn
  3113. if (farm_mode) {
  3114. printf_P(_N("%d"), farm_no);
  3115. }
  3116. else {
  3117. puts_P(_N("Not in farm mode."));
  3118. }
  3119. }
  3120. else if (code_seen("thx")) //! PRUSA thx
  3121. {
  3122. no_response = false;
  3123. }
  3124. else if (code_seen("uvlo")) //! PRUSA uvlo
  3125. {
  3126. eeprom_update_byte((uint8_t*)EEPROM_UVLO,0);
  3127. enquecommand_P(PSTR("M24"));
  3128. }
  3129. #ifdef FILAMENT_SENSOR
  3130. else if (code_seen("fsensor_recover")) //! PRUSA fsensor_recover
  3131. {
  3132. fsensor_restore_print_and_continue();
  3133. }
  3134. #endif //FILAMENT_SENSOR
  3135. else if (code_seen("MMURES")) //! PRUSA MMURES
  3136. {
  3137. mmu_reset();
  3138. }
  3139. else if (code_seen("RESET")) { //! PRUSA RESET
  3140. // careful!
  3141. if (farm_mode) {
  3142. #if (defined(WATCHDOG) && (MOTHERBOARD == BOARD_EINSY_1_0a))
  3143. boot_app_magic = BOOT_APP_MAGIC;
  3144. boot_app_flags = BOOT_APP_FLG_RUN;
  3145. wdt_enable(WDTO_15MS);
  3146. cli();
  3147. while(1);
  3148. #else //WATCHDOG
  3149. asm volatile("jmp 0x3E000");
  3150. #endif //WATCHDOG
  3151. }
  3152. else {
  3153. MYSERIAL.println("Not in farm mode.");
  3154. }
  3155. }else if (code_seen("fv")) { //! PRUSA fv
  3156. // get file version
  3157. #ifdef SDSUPPORT
  3158. card.openFile(strchr_pointer + 3,true);
  3159. while (true) {
  3160. uint16_t readByte = card.get();
  3161. MYSERIAL.write(readByte);
  3162. if (readByte=='\n') {
  3163. break;
  3164. }
  3165. }
  3166. card.closefile();
  3167. #endif // SDSUPPORT
  3168. } else if (code_seen("M28")) { //! PRUSA M28
  3169. trace();
  3170. prusa_sd_card_upload = true;
  3171. card.openFile(strchr_pointer+4,false);
  3172. } else if (code_seen("SN")) { //! PRUSA SN
  3173. gcode_PRUSA_SN();
  3174. } else if(code_seen("Fir")){ //! PRUSA Fir
  3175. SERIAL_PROTOCOLLN(FW_VERSION_FULL);
  3176. } else if(code_seen("Rev")){ //! PRUSA Rev
  3177. SERIAL_PROTOCOLLN(FILAMENT_SIZE "-" ELECTRONICS "-" NOZZLE_TYPE );
  3178. } else if(code_seen("Lang")) { //! PRUSA Lang
  3179. lang_reset();
  3180. } else if(code_seen("Lz")) { //! PRUSA Lz
  3181. EEPROM_save_B(EEPROM_BABYSTEP_Z,0);
  3182. } else if(code_seen("Beat")) { //! PRUSA Beat
  3183. // Kick farm link timer
  3184. kicktime = _millis();
  3185. } else if(code_seen("FR")) { //! PRUSA FR
  3186. // Factory full reset
  3187. factory_reset(0);
  3188. //-//
  3189. /*
  3190. } else if(code_seen("qqq")) {
  3191. MYSERIAL.println("=== checking ===");
  3192. MYSERIAL.println(eeprom_read_byte((uint8_t*)EEPROM_CHECK_MODE),DEC);
  3193. MYSERIAL.println(eeprom_read_byte((uint8_t*)EEPROM_NOZZLE_DIAMETER),DEC);
  3194. MYSERIAL.println(eeprom_read_word((uint16_t*)EEPROM_NOZZLE_DIAMETER_uM),DEC);
  3195. MYSERIAL.println(farm_mode,DEC);
  3196. MYSERIAL.println(eCheckMode,DEC);
  3197. } else if(code_seen("www")) {
  3198. MYSERIAL.println("=== @ FF ===");
  3199. eeprom_update_byte((uint8_t*)EEPROM_CHECK_MODE,0xFF);
  3200. eeprom_update_byte((uint8_t*)EEPROM_NOZZLE_DIAMETER,0xFF);
  3201. eeprom_update_word((uint16_t*)EEPROM_NOZZLE_DIAMETER_uM,0xFFFF);
  3202. */
  3203. } else if (code_seen("nozzle")) { //! PRUSA nozzle
  3204. uint16_t nDiameter;
  3205. if(code_seen('D'))
  3206. {
  3207. nDiameter=(uint16_t)(code_value()*1000.0+0.5); // [,um]
  3208. nozzle_diameter_check(nDiameter);
  3209. }
  3210. else if(code_seen("set") && farm_mode)
  3211. {
  3212. strchr_pointer++; // skip 2nd char (~ 'e')
  3213. strchr_pointer++; // skip 3rd char (~ 't')
  3214. nDiameter=(uint16_t)(code_value()*1000.0+0.5); // [,um]
  3215. eeprom_update_byte((uint8_t*)EEPROM_NOZZLE_DIAMETER,(uint8_t)e_NOZZLE_DIAMETER_NULL); // for correct synchronization after farm-mode exiting
  3216. eeprom_update_word((uint16_t*)EEPROM_NOZZLE_DIAMETER_uM,nDiameter);
  3217. }
  3218. else SERIAL_PROTOCOLLN((float)eeprom_read_word((uint16_t*)EEPROM_NOZZLE_DIAMETER_uM)/1000.0);
  3219. }
  3220. //else if (code_seen('Cal')) {
  3221. // lcd_calibration();
  3222. // }
  3223. }
  3224. else if (code_seen('^')) {
  3225. // nothing, this is a version line
  3226. } else if(code_seen('G'))
  3227. {
  3228. gcode_in_progress = (int)code_value();
  3229. // printf_P(_N("BEGIN G-CODE=%u\n"), gcode_in_progress);
  3230. switch (gcode_in_progress)
  3231. {
  3232. case 0: // G0 -> G1
  3233. case 1: // G1
  3234. if(Stopped == false) {
  3235. #ifdef FILAMENT_RUNOUT_SUPPORT
  3236. if(READ(FR_SENS)){
  3237. int feedmultiplyBckp=feedmultiply;
  3238. float target[4];
  3239. float lastpos[4];
  3240. target[X_AXIS]=current_position[X_AXIS];
  3241. target[Y_AXIS]=current_position[Y_AXIS];
  3242. target[Z_AXIS]=current_position[Z_AXIS];
  3243. target[E_AXIS]=current_position[E_AXIS];
  3244. lastpos[X_AXIS]=current_position[X_AXIS];
  3245. lastpos[Y_AXIS]=current_position[Y_AXIS];
  3246. lastpos[Z_AXIS]=current_position[Z_AXIS];
  3247. lastpos[E_AXIS]=current_position[E_AXIS];
  3248. //retract by E
  3249. target[E_AXIS]+= FILAMENTCHANGE_FIRSTRETRACT ;
  3250. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 400, active_extruder);
  3251. target[Z_AXIS]+= FILAMENTCHANGE_ZADD ;
  3252. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 300, active_extruder);
  3253. target[X_AXIS]= FILAMENTCHANGE_XPOS ;
  3254. target[Y_AXIS]= FILAMENTCHANGE_YPOS ;
  3255. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 70, active_extruder);
  3256. target[E_AXIS]+= FILAMENTCHANGE_FINALRETRACT ;
  3257. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 20, active_extruder);
  3258. //finish moves
  3259. st_synchronize();
  3260. //disable extruder steppers so filament can be removed
  3261. disable_e0();
  3262. disable_e1();
  3263. disable_e2();
  3264. _delay(100);
  3265. //LCD_ALERTMESSAGEPGM(_T(MSG_FILAMENTCHANGE));
  3266. uint8_t cnt=0;
  3267. int counterBeep = 0;
  3268. lcd_wait_interact();
  3269. while(!lcd_clicked()){
  3270. cnt++;
  3271. manage_heater();
  3272. manage_inactivity(true);
  3273. //lcd_update(0);
  3274. if(cnt==0)
  3275. {
  3276. #if BEEPER > 0
  3277. if (counterBeep== 500){
  3278. counterBeep = 0;
  3279. }
  3280. SET_OUTPUT(BEEPER);
  3281. if (counterBeep== 0){
  3282. if((eSoundMode==e_SOUND_MODE_LOUD)||(eSoundMode==e_SOUND_MODE_ONCE))
  3283. WRITE(BEEPER,HIGH);
  3284. }
  3285. if (counterBeep== 20){
  3286. WRITE(BEEPER,LOW);
  3287. }
  3288. counterBeep++;
  3289. #else
  3290. #endif
  3291. }
  3292. }
  3293. WRITE(BEEPER,LOW);
  3294. target[E_AXIS]+= FILAMENTCHANGE_FIRSTFEED ;
  3295. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 20, active_extruder);
  3296. target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  3297. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder);
  3298. lcd_change_fil_state = 0;
  3299. lcd_loading_filament();
  3300. while ((lcd_change_fil_state == 0)||(lcd_change_fil_state != 1)){
  3301. lcd_change_fil_state = 0;
  3302. lcd_alright();
  3303. switch(lcd_change_fil_state){
  3304. case 2:
  3305. target[E_AXIS]+= FILAMENTCHANGE_FIRSTFEED ;
  3306. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 20, active_extruder);
  3307. target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  3308. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder);
  3309. lcd_loading_filament();
  3310. break;
  3311. case 3:
  3312. target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  3313. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder);
  3314. lcd_loading_color();
  3315. break;
  3316. default:
  3317. lcd_change_success();
  3318. break;
  3319. }
  3320. }
  3321. target[E_AXIS]+= 5;
  3322. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder);
  3323. target[E_AXIS]+= FILAMENTCHANGE_FIRSTRETRACT;
  3324. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 400, active_extruder);
  3325. //current_position[E_AXIS]=target[E_AXIS]; //the long retract of L is compensated by manual filament feeding
  3326. //plan_set_e_position(current_position[E_AXIS]);
  3327. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 70, active_extruder); //should do nothing
  3328. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], target[Z_AXIS], target[E_AXIS], 70, active_extruder); //move xy back
  3329. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], target[E_AXIS], 200, active_extruder); //move z back
  3330. target[E_AXIS]= target[E_AXIS] - FILAMENTCHANGE_FIRSTRETRACT;
  3331. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], target[E_AXIS], 5, active_extruder); //final untretract
  3332. plan_set_e_position(lastpos[E_AXIS]);
  3333. feedmultiply=feedmultiplyBckp;
  3334. char cmd[9];
  3335. sprintf_P(cmd, PSTR("M220 S%i"), feedmultiplyBckp);
  3336. enquecommand(cmd);
  3337. }
  3338. #endif
  3339. get_coordinates(); // For X Y Z E F
  3340. if (total_filament_used > ((current_position[E_AXIS] - destination[E_AXIS]) * 100)) { //protection against total_filament_used overflow
  3341. total_filament_used = total_filament_used + ((destination[E_AXIS] - current_position[E_AXIS]) * 100);
  3342. }
  3343. #ifdef FWRETRACT
  3344. if(cs.autoretract_enabled)
  3345. if( !(code_seen('X') || code_seen('Y') || code_seen('Z')) && code_seen('E')) {
  3346. float echange=destination[E_AXIS]-current_position[E_AXIS];
  3347. if((echange<-MIN_RETRACT && !retracted[active_extruder]) || (echange>MIN_RETRACT && retracted[active_extruder])) { //move appears to be an attempt to retract or recover
  3348. current_position[E_AXIS] = destination[E_AXIS]; //hide the slicer-generated retract/recover from calculations
  3349. plan_set_e_position(current_position[E_AXIS]); //AND from the planner
  3350. retract(!retracted[active_extruder]);
  3351. return;
  3352. }
  3353. }
  3354. #endif //FWRETRACT
  3355. prepare_move();
  3356. //ClearToSend();
  3357. }
  3358. break;
  3359. case 2: // G2 - CW ARC
  3360. if(Stopped == false) {
  3361. get_arc_coordinates();
  3362. prepare_arc_move(true);
  3363. }
  3364. break;
  3365. case 3: // G3 - CCW ARC
  3366. if(Stopped == false) {
  3367. get_arc_coordinates();
  3368. prepare_arc_move(false);
  3369. }
  3370. break;
  3371. case 4: // G4 dwell
  3372. codenum = 0;
  3373. if(code_seen('P')) codenum = code_value(); // milliseconds to wait
  3374. if(code_seen('S')) codenum = code_value() * 1000; // seconds to wait
  3375. if(codenum != 0) LCD_MESSAGERPGM(_n("Sleep..."));////MSG_DWELL
  3376. st_synchronize();
  3377. codenum += _millis(); // keep track of when we started waiting
  3378. previous_millis_cmd = _millis();
  3379. while(_millis() < codenum) {
  3380. manage_heater();
  3381. manage_inactivity();
  3382. lcd_update(0);
  3383. }
  3384. break;
  3385. #ifdef FWRETRACT
  3386. case 10: // G10 retract
  3387. #if EXTRUDERS > 1
  3388. retracted_swap[active_extruder]=(code_seen('S') && code_value_long() == 1); // checks for swap retract argument
  3389. retract(true,retracted_swap[active_extruder]);
  3390. #else
  3391. retract(true);
  3392. #endif
  3393. break;
  3394. case 11: // G11 retract_recover
  3395. #if EXTRUDERS > 1
  3396. retract(false,retracted_swap[active_extruder]);
  3397. #else
  3398. retract(false);
  3399. #endif
  3400. break;
  3401. #endif //FWRETRACT
  3402. case 28: //G28 Home all Axis one at a time
  3403. {
  3404. long home_x_value = 0;
  3405. long home_y_value = 0;
  3406. long home_z_value = 0;
  3407. // Which axes should be homed?
  3408. bool home_x = code_seen(axis_codes[X_AXIS]);
  3409. home_x_value = code_value_long();
  3410. bool home_y = code_seen(axis_codes[Y_AXIS]);
  3411. home_y_value = code_value_long();
  3412. bool home_z = code_seen(axis_codes[Z_AXIS]);
  3413. home_z_value = code_value_long();
  3414. bool without_mbl = code_seen('W');
  3415. // calibrate?
  3416. #ifdef TMC2130
  3417. bool calib = code_seen('C');
  3418. gcode_G28(home_x, home_x_value, home_y, home_y_value, home_z, home_z_value, calib, without_mbl);
  3419. #else
  3420. gcode_G28(home_x, home_x_value, home_y, home_y_value, home_z, home_z_value, without_mbl);
  3421. #endif //TMC2130
  3422. if ((home_x || home_y || without_mbl || home_z) == false) {
  3423. // Push the commands to the front of the message queue in the reverse order!
  3424. // There shall be always enough space reserved for these commands.
  3425. goto case_G80;
  3426. }
  3427. break;
  3428. }
  3429. #ifdef ENABLE_AUTO_BED_LEVELING
  3430. case 29: // G29 Detailed Z-Probe, probes the bed at 3 or more points.
  3431. {
  3432. #if Z_MIN_PIN == -1
  3433. #error "You must have a Z_MIN endstop in order to enable Auto Bed Leveling feature! Z_MIN_PIN must point to a valid hardware pin."
  3434. #endif
  3435. // Prevent user from running a G29 without first homing in X and Y
  3436. if (! (axis_known_position[X_AXIS] && axis_known_position[Y_AXIS]) )
  3437. {
  3438. LCD_MESSAGERPGM(MSG_POSITION_UNKNOWN);
  3439. SERIAL_ECHO_START;
  3440. SERIAL_ECHOLNRPGM(MSG_POSITION_UNKNOWN);
  3441. break; // abort G29, since we don't know where we are
  3442. }
  3443. st_synchronize();
  3444. // make sure the bed_level_rotation_matrix is identity or the planner will get it incorectly
  3445. //vector_3 corrected_position = plan_get_position_mm();
  3446. //corrected_position.debug("position before G29");
  3447. plan_bed_level_matrix.set_to_identity();
  3448. vector_3 uncorrected_position = plan_get_position();
  3449. //uncorrected_position.debug("position durring G29");
  3450. current_position[X_AXIS] = uncorrected_position.x;
  3451. current_position[Y_AXIS] = uncorrected_position.y;
  3452. current_position[Z_AXIS] = uncorrected_position.z;
  3453. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  3454. int l_feedmultiply = setup_for_endstop_move();
  3455. feedrate = homing_feedrate[Z_AXIS];
  3456. #ifdef AUTO_BED_LEVELING_GRID
  3457. // probe at the points of a lattice grid
  3458. int xGridSpacing = (RIGHT_PROBE_BED_POSITION - LEFT_PROBE_BED_POSITION) / (AUTO_BED_LEVELING_GRID_POINTS-1);
  3459. int yGridSpacing = (BACK_PROBE_BED_POSITION - FRONT_PROBE_BED_POSITION) / (AUTO_BED_LEVELING_GRID_POINTS-1);
  3460. // solve the plane equation ax + by + d = z
  3461. // A is the matrix with rows [x y 1] for all the probed points
  3462. // B is the vector of the Z positions
  3463. // the normal vector to the plane is formed by the coefficients of the plane equation in the standard form, which is Vx*x+Vy*y+Vz*z+d = 0
  3464. // so Vx = -a Vy = -b Vz = 1 (we want the vector facing towards positive Z
  3465. // "A" matrix of the linear system of equations
  3466. double eqnAMatrix[AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS*3];
  3467. // "B" vector of Z points
  3468. double eqnBVector[AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS];
  3469. int probePointCounter = 0;
  3470. bool zig = true;
  3471. for (int yProbe=FRONT_PROBE_BED_POSITION; yProbe <= BACK_PROBE_BED_POSITION; yProbe += yGridSpacing)
  3472. {
  3473. int xProbe, xInc;
  3474. if (zig)
  3475. {
  3476. xProbe = LEFT_PROBE_BED_POSITION;
  3477. //xEnd = RIGHT_PROBE_BED_POSITION;
  3478. xInc = xGridSpacing;
  3479. zig = false;
  3480. } else // zag
  3481. {
  3482. xProbe = RIGHT_PROBE_BED_POSITION;
  3483. //xEnd = LEFT_PROBE_BED_POSITION;
  3484. xInc = -xGridSpacing;
  3485. zig = true;
  3486. }
  3487. for (int xCount=0; xCount < AUTO_BED_LEVELING_GRID_POINTS; xCount++)
  3488. {
  3489. float z_before;
  3490. if (probePointCounter == 0)
  3491. {
  3492. // raise before probing
  3493. z_before = Z_RAISE_BEFORE_PROBING;
  3494. } else
  3495. {
  3496. // raise extruder
  3497. z_before = current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS;
  3498. }
  3499. float measured_z = probe_pt(xProbe, yProbe, z_before);
  3500. eqnBVector[probePointCounter] = measured_z;
  3501. eqnAMatrix[probePointCounter + 0*AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS] = xProbe;
  3502. eqnAMatrix[probePointCounter + 1*AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS] = yProbe;
  3503. eqnAMatrix[probePointCounter + 2*AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS] = 1;
  3504. probePointCounter++;
  3505. xProbe += xInc;
  3506. }
  3507. }
  3508. clean_up_after_endstop_move(l_feedmultiply);
  3509. // solve lsq problem
  3510. double *plane_equation_coefficients = qr_solve(AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS, 3, eqnAMatrix, eqnBVector);
  3511. SERIAL_PROTOCOLPGM("Eqn coefficients: a: ");
  3512. SERIAL_PROTOCOL(plane_equation_coefficients[0]);
  3513. SERIAL_PROTOCOLPGM(" b: ");
  3514. SERIAL_PROTOCOL(plane_equation_coefficients[1]);
  3515. SERIAL_PROTOCOLPGM(" d: ");
  3516. SERIAL_PROTOCOLLN(plane_equation_coefficients[2]);
  3517. set_bed_level_equation_lsq(plane_equation_coefficients);
  3518. free(plane_equation_coefficients);
  3519. #else // AUTO_BED_LEVELING_GRID not defined
  3520. // Probe at 3 arbitrary points
  3521. // probe 1
  3522. float z_at_pt_1 = probe_pt(ABL_PROBE_PT_1_X, ABL_PROBE_PT_1_Y, Z_RAISE_BEFORE_PROBING);
  3523. // probe 2
  3524. float z_at_pt_2 = probe_pt(ABL_PROBE_PT_2_X, ABL_PROBE_PT_2_Y, current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS);
  3525. // probe 3
  3526. float z_at_pt_3 = probe_pt(ABL_PROBE_PT_3_X, ABL_PROBE_PT_3_Y, current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS);
  3527. clean_up_after_endstop_move(l_feedmultiply);
  3528. set_bed_level_equation_3pts(z_at_pt_1, z_at_pt_2, z_at_pt_3);
  3529. #endif // AUTO_BED_LEVELING_GRID
  3530. st_synchronize();
  3531. // The following code correct the Z height difference from z-probe position and hotend tip position.
  3532. // The Z height on homing is measured by Z-Probe, but the probe is quite far from the hotend.
  3533. // When the bed is uneven, this height must be corrected.
  3534. real_z = float(st_get_position(Z_AXIS))/cs.axis_steps_per_unit[Z_AXIS]; //get the real Z (since the auto bed leveling is already correcting the plane)
  3535. x_tmp = current_position[X_AXIS] + X_PROBE_OFFSET_FROM_EXTRUDER;
  3536. y_tmp = current_position[Y_AXIS] + Y_PROBE_OFFSET_FROM_EXTRUDER;
  3537. z_tmp = current_position[Z_AXIS];
  3538. apply_rotation_xyz(plan_bed_level_matrix, x_tmp, y_tmp, z_tmp); //Apply the correction sending the probe offset
  3539. current_position[Z_AXIS] = z_tmp - real_z + current_position[Z_AXIS]; //The difference is added to current position and sent to planner.
  3540. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  3541. }
  3542. break;
  3543. #ifndef Z_PROBE_SLED
  3544. case 30: // G30 Single Z Probe
  3545. {
  3546. st_synchronize();
  3547. // TODO: make sure the bed_level_rotation_matrix is identity or the planner will get set incorectly
  3548. int l_feedmultiply = setup_for_endstop_move();
  3549. feedrate = homing_feedrate[Z_AXIS];
  3550. run_z_probe();
  3551. SERIAL_PROTOCOLPGM(_T(MSG_BED));
  3552. SERIAL_PROTOCOLPGM(" X: ");
  3553. SERIAL_PROTOCOL(current_position[X_AXIS]);
  3554. SERIAL_PROTOCOLPGM(" Y: ");
  3555. SERIAL_PROTOCOL(current_position[Y_AXIS]);
  3556. SERIAL_PROTOCOLPGM(" Z: ");
  3557. SERIAL_PROTOCOL(current_position[Z_AXIS]);
  3558. SERIAL_PROTOCOLPGM("\n");
  3559. clean_up_after_endstop_move(l_feedmultiply);
  3560. }
  3561. break;
  3562. #else
  3563. case 31: // dock the sled
  3564. dock_sled(true);
  3565. break;
  3566. case 32: // undock the sled
  3567. dock_sled(false);
  3568. break;
  3569. #endif // Z_PROBE_SLED
  3570. #endif // ENABLE_AUTO_BED_LEVELING
  3571. #ifdef MESH_BED_LEVELING
  3572. case 30: // G30 Single Z Probe
  3573. {
  3574. st_synchronize();
  3575. // TODO: make sure the bed_level_rotation_matrix is identity or the planner will get set incorectly
  3576. int l_feedmultiply = setup_for_endstop_move();
  3577. feedrate = homing_feedrate[Z_AXIS];
  3578. find_bed_induction_sensor_point_z(-10.f, 3);
  3579. printf_P(_N("%S X: %.5f Y: %.5f Z: %.5f\n"), _T(MSG_BED), _x, _y, _z);
  3580. clean_up_after_endstop_move(l_feedmultiply);
  3581. }
  3582. break;
  3583. case 75:
  3584. {
  3585. for (int i = 40; i <= 110; i++)
  3586. printf_P(_N("%d %.2f"), i, temp_comp_interpolation(i));
  3587. }
  3588. break;
  3589. case 76: //! G76 - PINDA probe temperature calibration
  3590. {
  3591. #ifdef PINDA_THERMISTOR
  3592. if (true)
  3593. {
  3594. if (calibration_status() >= CALIBRATION_STATUS_XYZ_CALIBRATION) {
  3595. //we need to know accurate position of first calibration point
  3596. //if xyz calibration was not performed yet, interrupt temperature calibration and inform user that xyz cal. is needed
  3597. lcd_show_fullscreen_message_and_wait_P(_i("Please run XYZ calibration first."));
  3598. break;
  3599. }
  3600. if (!(axis_known_position[X_AXIS] && axis_known_position[Y_AXIS] && axis_known_position[Z_AXIS]))
  3601. {
  3602. // We don't know where we are! HOME!
  3603. // Push the commands to the front of the message queue in the reverse order!
  3604. // There shall be always enough space reserved for these commands.
  3605. repeatcommand_front(); // repeat G76 with all its parameters
  3606. enquecommand_front_P((PSTR("G28 W0")));
  3607. break;
  3608. }
  3609. lcd_show_fullscreen_message_and_wait_P(_i("Stable ambient temperature 21-26C is needed a rigid stand is required."));////MSG_TEMP_CAL_WARNING c=20 r=4
  3610. bool result = lcd_show_fullscreen_message_yes_no_and_wait_P(_T(MSG_STEEL_SHEET_CHECK), false, false);
  3611. if (result)
  3612. {
  3613. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3614. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3615. current_position[Z_AXIS] = 50;
  3616. current_position[Y_AXIS] = 180;
  3617. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3618. st_synchronize();
  3619. lcd_show_fullscreen_message_and_wait_P(_T(MSG_REMOVE_STEEL_SHEET));
  3620. current_position[Y_AXIS] = pgm_read_float(bed_ref_points_4 + 1);
  3621. current_position[X_AXIS] = pgm_read_float(bed_ref_points_4);
  3622. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3623. st_synchronize();
  3624. gcode_G28(false, false, true);
  3625. }
  3626. if ((current_temperature_pinda > 35) && (farm_mode == false)) {
  3627. //waiting for PIDNA probe to cool down in case that we are not in farm mode
  3628. current_position[Z_AXIS] = 100;
  3629. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3630. if (lcd_wait_for_pinda(35) == false) { //waiting for PINDA probe to cool, if this takes more then time expected, temp. cal. fails
  3631. lcd_temp_cal_show_result(false);
  3632. break;
  3633. }
  3634. }
  3635. lcd_update_enable(true);
  3636. KEEPALIVE_STATE(NOT_BUSY); //no need to print busy messages as we print current temperatures periodicaly
  3637. SERIAL_ECHOLNPGM("PINDA probe calibration start");
  3638. float zero_z;
  3639. int z_shift = 0; //unit: steps
  3640. float start_temp = 5 * (int)(current_temperature_pinda / 5);
  3641. if (start_temp < 35) start_temp = 35;
  3642. if (start_temp < current_temperature_pinda) start_temp += 5;
  3643. printf_P(_N("start temperature: %.1f\n"), start_temp);
  3644. // setTargetHotend(200, 0);
  3645. setTargetBed(70 + (start_temp - 30));
  3646. custom_message_type = CustomMsg::TempCal;
  3647. custom_message_state = 1;
  3648. lcd_setstatuspgm(_T(MSG_TEMP_CALIBRATION));
  3649. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3650. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3651. current_position[X_AXIS] = PINDA_PREHEAT_X;
  3652. current_position[Y_AXIS] = PINDA_PREHEAT_Y;
  3653. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3654. current_position[Z_AXIS] = PINDA_PREHEAT_Z;
  3655. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3656. st_synchronize();
  3657. while (current_temperature_pinda < start_temp)
  3658. {
  3659. delay_keep_alive(1000);
  3660. serialecho_temperatures();
  3661. }
  3662. eeprom_update_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 0); //invalidate temp. calibration in case that in will be aborted during the calibration process
  3663. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3664. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3665. current_position[X_AXIS] = pgm_read_float(bed_ref_points_4);
  3666. current_position[Y_AXIS] = pgm_read_float(bed_ref_points_4 + 1);
  3667. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3668. st_synchronize();
  3669. bool find_z_result = find_bed_induction_sensor_point_z(-1.f);
  3670. if (find_z_result == false) {
  3671. lcd_temp_cal_show_result(find_z_result);
  3672. break;
  3673. }
  3674. zero_z = current_position[Z_AXIS];
  3675. printf_P(_N("\nZERO: %.3f\n"), current_position[Z_AXIS]);
  3676. int i = -1; for (; i < 5; i++)
  3677. {
  3678. float temp = (40 + i * 5);
  3679. printf_P(_N("\nStep: %d/6 (skipped)\nPINDA temperature: %d Z shift (mm):0\n"), i + 2, (40 + i*5));
  3680. if (i >= 0) EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + i * 2, &z_shift);
  3681. if (start_temp <= temp) break;
  3682. }
  3683. for (i++; i < 5; i++)
  3684. {
  3685. float temp = (40 + i * 5);
  3686. printf_P(_N("\nStep: %d/6\n"), i + 2);
  3687. custom_message_state = i + 2;
  3688. setTargetBed(50 + 10 * (temp - 30) / 5);
  3689. // setTargetHotend(255, 0);
  3690. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3691. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3692. current_position[X_AXIS] = PINDA_PREHEAT_X;
  3693. current_position[Y_AXIS] = PINDA_PREHEAT_Y;
  3694. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3695. current_position[Z_AXIS] = PINDA_PREHEAT_Z;
  3696. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3697. st_synchronize();
  3698. while (current_temperature_pinda < temp)
  3699. {
  3700. delay_keep_alive(1000);
  3701. serialecho_temperatures();
  3702. }
  3703. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3704. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3705. current_position[X_AXIS] = pgm_read_float(bed_ref_points_4);
  3706. current_position[Y_AXIS] = pgm_read_float(bed_ref_points_4 + 1);
  3707. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3708. st_synchronize();
  3709. find_z_result = find_bed_induction_sensor_point_z(-1.f);
  3710. if (find_z_result == false) {
  3711. lcd_temp_cal_show_result(find_z_result);
  3712. break;
  3713. }
  3714. z_shift = (int)((current_position[Z_AXIS] - zero_z)*cs.axis_steps_per_unit[Z_AXIS]);
  3715. printf_P(_N("\nPINDA temperature: %.1f Z shift (mm): %.3f"), current_temperature_pinda, current_position[Z_AXIS] - zero_z);
  3716. EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + i * 2, &z_shift);
  3717. }
  3718. lcd_temp_cal_show_result(true);
  3719. break;
  3720. }
  3721. #endif //PINDA_THERMISTOR
  3722. setTargetBed(PINDA_MIN_T);
  3723. float zero_z;
  3724. int z_shift = 0; //unit: steps
  3725. int t_c; // temperature
  3726. if (!(axis_known_position[X_AXIS] && axis_known_position[Y_AXIS] && axis_known_position[Z_AXIS])) {
  3727. // We don't know where we are! HOME!
  3728. // Push the commands to the front of the message queue in the reverse order!
  3729. // There shall be always enough space reserved for these commands.
  3730. repeatcommand_front(); // repeat G76 with all its parameters
  3731. enquecommand_front_P((PSTR("G28 W0")));
  3732. break;
  3733. }
  3734. puts_P(_N("PINDA probe calibration start"));
  3735. custom_message_type = CustomMsg::TempCal;
  3736. custom_message_state = 1;
  3737. lcd_setstatuspgm(_T(MSG_TEMP_CALIBRATION));
  3738. current_position[X_AXIS] = PINDA_PREHEAT_X;
  3739. current_position[Y_AXIS] = PINDA_PREHEAT_Y;
  3740. current_position[Z_AXIS] = PINDA_PREHEAT_Z;
  3741. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3742. st_synchronize();
  3743. while (abs(degBed() - PINDA_MIN_T) > 1) {
  3744. delay_keep_alive(1000);
  3745. serialecho_temperatures();
  3746. }
  3747. //enquecommand_P(PSTR("M190 S50"));
  3748. for (int i = 0; i < PINDA_HEAT_T; i++) {
  3749. delay_keep_alive(1000);
  3750. serialecho_temperatures();
  3751. }
  3752. eeprom_update_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 0); //invalidate temp. calibration in case that in will be aborted during the calibration process
  3753. current_position[Z_AXIS] = 5;
  3754. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3755. current_position[X_AXIS] = BED_X0;
  3756. current_position[Y_AXIS] = BED_Y0;
  3757. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3758. st_synchronize();
  3759. find_bed_induction_sensor_point_z(-1.f);
  3760. zero_z = current_position[Z_AXIS];
  3761. printf_P(_N("\nZERO: %.3f\n"), current_position[Z_AXIS]);
  3762. for (int i = 0; i<5; i++) {
  3763. printf_P(_N("\nStep: %d/6\n"), i + 2);
  3764. custom_message_state = i + 2;
  3765. t_c = 60 + i * 10;
  3766. setTargetBed(t_c);
  3767. current_position[X_AXIS] = PINDA_PREHEAT_X;
  3768. current_position[Y_AXIS] = PINDA_PREHEAT_Y;
  3769. current_position[Z_AXIS] = PINDA_PREHEAT_Z;
  3770. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3771. st_synchronize();
  3772. while (degBed() < t_c) {
  3773. delay_keep_alive(1000);
  3774. serialecho_temperatures();
  3775. }
  3776. for (int i = 0; i < PINDA_HEAT_T; i++) {
  3777. delay_keep_alive(1000);
  3778. serialecho_temperatures();
  3779. }
  3780. current_position[Z_AXIS] = 5;
  3781. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3782. current_position[X_AXIS] = BED_X0;
  3783. current_position[Y_AXIS] = BED_Y0;
  3784. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3785. st_synchronize();
  3786. find_bed_induction_sensor_point_z(-1.f);
  3787. z_shift = (int)((current_position[Z_AXIS] - zero_z)*cs.axis_steps_per_unit[Z_AXIS]);
  3788. printf_P(_N("\nTemperature: %d Z shift (mm): %.3f\n"), t_c, current_position[Z_AXIS] - zero_z);
  3789. EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + i*2, &z_shift);
  3790. }
  3791. custom_message_type = CustomMsg::Status;
  3792. eeprom_update_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 1);
  3793. puts_P(_N("Temperature calibration done."));
  3794. disable_x();
  3795. disable_y();
  3796. disable_z();
  3797. disable_e0();
  3798. disable_e1();
  3799. disable_e2();
  3800. setTargetBed(0); //set bed target temperature back to 0
  3801. lcd_show_fullscreen_message_and_wait_P(_T(MSG_TEMP_CALIBRATION_DONE));
  3802. temp_cal_active = true;
  3803. eeprom_update_byte((unsigned char *)EEPROM_TEMP_CAL_ACTIVE, 1);
  3804. lcd_update_enable(true);
  3805. lcd_update(2);
  3806. }
  3807. break;
  3808. /**
  3809. * G80: Mesh-based Z probe, probes a grid and produces a
  3810. * mesh to compensate for variable bed height
  3811. *
  3812. * The S0 report the points as below
  3813. * @code{.unparsed}
  3814. * +----> X-axis
  3815. * |
  3816. * |
  3817. * v Y-axis
  3818. * @endcode
  3819. */
  3820. case 80:
  3821. #ifdef MK1BP
  3822. break;
  3823. #endif //MK1BP
  3824. case_G80:
  3825. {
  3826. mesh_bed_leveling_flag = true;
  3827. static bool run = false;
  3828. #ifdef SUPPORT_VERBOSITY
  3829. int8_t verbosity_level = 0;
  3830. if (code_seen('V')) {
  3831. // Just 'V' without a number counts as V1.
  3832. char c = strchr_pointer[1];
  3833. verbosity_level = (c == ' ' || c == '\t' || c == 0) ? 1 : code_value_short();
  3834. }
  3835. #endif //SUPPORT_VERBOSITY
  3836. // Firstly check if we know where we are
  3837. if (!(axis_known_position[X_AXIS] && axis_known_position[Y_AXIS] && axis_known_position[Z_AXIS])) {
  3838. // We don't know where we are! HOME!
  3839. // Push the commands to the front of the message queue in the reverse order!
  3840. // There shall be always enough space reserved for these commands.
  3841. if (lcd_commands_type != LcdCommands::StopPrint) {
  3842. repeatcommand_front(); // repeat G80 with all its parameters
  3843. enquecommand_front_P((PSTR("G28 W0")));
  3844. }
  3845. else {
  3846. mesh_bed_leveling_flag = false;
  3847. }
  3848. break;
  3849. }
  3850. uint8_t nMeasPoints = MESH_MEAS_NUM_X_POINTS;
  3851. if (code_seen('N')) {
  3852. nMeasPoints = code_value_uint8();
  3853. if (nMeasPoints != 7) {
  3854. nMeasPoints = 3;
  3855. }
  3856. }
  3857. else {
  3858. nMeasPoints = eeprom_read_byte((uint8_t*)EEPROM_MBL_POINTS_NR);
  3859. }
  3860. uint8_t nProbeRetry = 3;
  3861. if (code_seen('R')) {
  3862. nProbeRetry = code_value_uint8();
  3863. if (nProbeRetry > 10) {
  3864. nProbeRetry = 10;
  3865. }
  3866. }
  3867. else {
  3868. nProbeRetry = eeprom_read_byte((uint8_t*)EEPROM_MBL_PROBE_NR);
  3869. }
  3870. bool magnet_elimination = (eeprom_read_byte((uint8_t*)EEPROM_MBL_MAGNET_ELIMINATION) > 0);
  3871. bool temp_comp_start = true;
  3872. #ifdef PINDA_THERMISTOR
  3873. temp_comp_start = false;
  3874. #endif //PINDA_THERMISTOR
  3875. if (temp_comp_start)
  3876. if (run == false && temp_cal_active == true && calibration_status_pinda() == true && target_temperature_bed >= 50) {
  3877. if (lcd_commands_type != LcdCommands::StopPrint) {
  3878. temp_compensation_start();
  3879. run = true;
  3880. repeatcommand_front(); // repeat G80 with all its parameters
  3881. enquecommand_front_P((PSTR("G28 W0")));
  3882. }
  3883. else {
  3884. mesh_bed_leveling_flag = false;
  3885. }
  3886. break;
  3887. }
  3888. run = false;
  3889. if (lcd_commands_type == LcdCommands::StopPrint) {
  3890. mesh_bed_leveling_flag = false;
  3891. break;
  3892. }
  3893. // Save custom message state, set a new custom message state to display: Calibrating point 9.
  3894. CustomMsg custom_message_type_old = custom_message_type;
  3895. unsigned int custom_message_state_old = custom_message_state;
  3896. custom_message_type = CustomMsg::MeshBedLeveling;
  3897. custom_message_state = (nMeasPoints * nMeasPoints) + 10;
  3898. lcd_update(1);
  3899. mbl.reset(); //reset mesh bed leveling
  3900. // Reset baby stepping to zero, if the babystepping has already been loaded before. The babystepsTodo value will be
  3901. // consumed during the first movements following this statement.
  3902. babystep_undo();
  3903. // Cycle through all points and probe them
  3904. // First move up. During this first movement, the babystepping will be reverted.
  3905. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3906. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[Z_AXIS] / 60, active_extruder);
  3907. // The move to the first calibration point.
  3908. current_position[X_AXIS] = BED_X0;
  3909. current_position[Y_AXIS] = BED_Y0;
  3910. #ifdef SUPPORT_VERBOSITY
  3911. if (verbosity_level >= 1)
  3912. {
  3913. bool clamped = world2machine_clamp(current_position[X_AXIS], current_position[Y_AXIS]);
  3914. clamped ? SERIAL_PROTOCOLPGM("First calibration point clamped.\n") : SERIAL_PROTOCOLPGM("No clamping for first calibration point.\n");
  3915. }
  3916. #else //SUPPORT_VERBOSITY
  3917. world2machine_clamp(current_position[X_AXIS], current_position[Y_AXIS]);
  3918. #endif //SUPPORT_VERBOSITY
  3919. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[X_AXIS] / 30, active_extruder);
  3920. // Wait until the move is finished.
  3921. st_synchronize();
  3922. uint8_t mesh_point = 0; //index number of calibration point
  3923. int XY_AXIS_FEEDRATE = homing_feedrate[X_AXIS] / 20;
  3924. int Z_LIFT_FEEDRATE = homing_feedrate[Z_AXIS] / 40;
  3925. bool has_z = is_bed_z_jitter_data_valid(); //checks if we have data from Z calibration (offsets of the Z heiths of the 8 calibration points from the first point)
  3926. #ifdef SUPPORT_VERBOSITY
  3927. if (verbosity_level >= 1) {
  3928. has_z ? SERIAL_PROTOCOLPGM("Z jitter data from Z cal. valid.\n") : SERIAL_PROTOCOLPGM("Z jitter data from Z cal. not valid.\n");
  3929. }
  3930. #endif // SUPPORT_VERBOSITY
  3931. int l_feedmultiply = setup_for_endstop_move(false); //save feedrate and feedmultiply, sets feedmultiply to 100
  3932. const char *kill_message = NULL;
  3933. while (mesh_point != nMeasPoints * nMeasPoints) {
  3934. // Get coords of a measuring point.
  3935. uint8_t ix = mesh_point % nMeasPoints; // from 0 to MESH_NUM_X_POINTS - 1
  3936. uint8_t iy = mesh_point / nMeasPoints;
  3937. /*if (!mbl_point_measurement_valid(ix, iy, nMeasPoints, true)) {
  3938. printf_P(PSTR("Skipping point [%d;%d] \n"), ix, iy);
  3939. custom_message_state--;
  3940. mesh_point++;
  3941. continue; //skip
  3942. }*/
  3943. if (iy & 1) ix = (nMeasPoints - 1) - ix; // Zig zag
  3944. if (nMeasPoints == 7) //if we have 7x7 mesh, compare with Z-calibration for points which are in 3x3 mesh
  3945. {
  3946. has_z = ((ix % 3 == 0) && (iy % 3 == 0)) && is_bed_z_jitter_data_valid();
  3947. }
  3948. float z0 = 0.f;
  3949. if (has_z && (mesh_point > 0)) {
  3950. uint16_t z_offset_u = 0;
  3951. if (nMeasPoints == 7) {
  3952. z_offset_u = eeprom_read_word((uint16_t*)(EEPROM_BED_CALIBRATION_Z_JITTER + 2 * ((ix/3) + iy - 1)));
  3953. }
  3954. else {
  3955. z_offset_u = eeprom_read_word((uint16_t*)(EEPROM_BED_CALIBRATION_Z_JITTER + 2 * (ix + iy * 3 - 1)));
  3956. }
  3957. z0 = mbl.z_values[0][0] + *reinterpret_cast<int16_t*>(&z_offset_u) * 0.01;
  3958. #ifdef SUPPORT_VERBOSITY
  3959. if (verbosity_level >= 1) {
  3960. printf_P(PSTR("Bed leveling, point: %d, calibration Z stored in eeprom: %d, calibration z: %f \n"), mesh_point, z_offset_u, z0);
  3961. }
  3962. #endif // SUPPORT_VERBOSITY
  3963. }
  3964. // Move Z up to MESH_HOME_Z_SEARCH.
  3965. if((ix == 0) && (iy == 0)) current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3966. else current_position[Z_AXIS] += 2.f / nMeasPoints; //use relative movement from Z coordinate where PINDa triggered on previous point. This makes calibration faster.
  3967. float init_z_bckp = current_position[Z_AXIS];
  3968. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], Z_LIFT_FEEDRATE, active_extruder);
  3969. st_synchronize();
  3970. // Move to XY position of the sensor point.
  3971. current_position[X_AXIS] = BED_X(ix, nMeasPoints);
  3972. current_position[Y_AXIS] = BED_Y(iy, nMeasPoints);
  3973. //printf_P(PSTR("[%f;%f]\n"), current_position[X_AXIS], current_position[Y_AXIS]);
  3974. #ifdef SUPPORT_VERBOSITY
  3975. if (verbosity_level >= 1) {
  3976. clamped = world2machine_clamp(current_position[X_AXIS], current_position[Y_AXIS]);
  3977. SERIAL_PROTOCOL(mesh_point);
  3978. clamped ? SERIAL_PROTOCOLPGM(": xy clamped.\n") : SERIAL_PROTOCOLPGM(": no xy clamping\n");
  3979. }
  3980. #else //SUPPORT_VERBOSITY
  3981. world2machine_clamp(current_position[X_AXIS], current_position[Y_AXIS]);
  3982. #endif // SUPPORT_VERBOSITY
  3983. //printf_P(PSTR("after clamping: [%f;%f]\n"), current_position[X_AXIS], current_position[Y_AXIS]);
  3984. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], XY_AXIS_FEEDRATE, active_extruder);
  3985. st_synchronize();
  3986. // Go down until endstop is hit
  3987. const float Z_CALIBRATION_THRESHOLD = 1.f;
  3988. if (!find_bed_induction_sensor_point_z((has_z && mesh_point > 0) ? z0 - Z_CALIBRATION_THRESHOLD : -10.f, nProbeRetry)) { //if we have data from z calibration max allowed difference is 1mm for each point, if we dont have data max difference is 10mm from initial point
  3989. printf_P(_T(MSG_BED_LEVELING_FAILED_POINT_LOW));
  3990. break;
  3991. }
  3992. if (init_z_bckp - current_position[Z_AXIS] < 0.1f) { //broken cable or initial Z coordinate too low. Go to MESH_HOME_Z_SEARCH and repeat last step (z-probe) again to distinguish between these two cases.
  3993. //printf_P(PSTR("Another attempt! Current Z position: %f\n"), current_position[Z_AXIS]);
  3994. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3995. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], Z_LIFT_FEEDRATE, active_extruder);
  3996. st_synchronize();
  3997. if (!find_bed_induction_sensor_point_z((has_z && mesh_point > 0) ? z0 - Z_CALIBRATION_THRESHOLD : -10.f, nProbeRetry)) { //if we have data from z calibration max allowed difference is 1mm for each point, if we dont have data max difference is 10mm from initial point
  3998. printf_P(_T(MSG_BED_LEVELING_FAILED_POINT_LOW));
  3999. break;
  4000. }
  4001. if (MESH_HOME_Z_SEARCH - current_position[Z_AXIS] < 0.1f) {
  4002. printf_P(PSTR("Bed leveling failed. Sensor disconnected or cable broken.\n"));
  4003. break;
  4004. }
  4005. }
  4006. if (has_z && fabs(z0 - current_position[Z_AXIS]) > Z_CALIBRATION_THRESHOLD) { //if we have data from z calibration, max. allowed difference is 1mm for each point
  4007. printf_P(PSTR("Bed leveling failed. Sensor triggered too high.\n"));
  4008. break;
  4009. }
  4010. #ifdef SUPPORT_VERBOSITY
  4011. if (verbosity_level >= 10) {
  4012. SERIAL_ECHOPGM("X: ");
  4013. MYSERIAL.print(current_position[X_AXIS], 5);
  4014. SERIAL_ECHOLNPGM("");
  4015. SERIAL_ECHOPGM("Y: ");
  4016. MYSERIAL.print(current_position[Y_AXIS], 5);
  4017. SERIAL_PROTOCOLPGM("\n");
  4018. }
  4019. #endif // SUPPORT_VERBOSITY
  4020. float offset_z = 0;
  4021. #ifdef PINDA_THERMISTOR
  4022. offset_z = temp_compensation_pinda_thermistor_offset(current_temperature_pinda);
  4023. #endif //PINDA_THERMISTOR
  4024. // #ifdef SUPPORT_VERBOSITY
  4025. /* if (verbosity_level >= 1)
  4026. {
  4027. SERIAL_ECHOPGM("mesh bed leveling: ");
  4028. MYSERIAL.print(current_position[Z_AXIS], 5);
  4029. SERIAL_ECHOPGM(" offset: ");
  4030. MYSERIAL.print(offset_z, 5);
  4031. SERIAL_ECHOLNPGM("");
  4032. }*/
  4033. // #endif // SUPPORT_VERBOSITY
  4034. mbl.set_z(ix, iy, current_position[Z_AXIS] - offset_z); //store measured z values z_values[iy][ix] = z - offset_z;
  4035. custom_message_state--;
  4036. mesh_point++;
  4037. lcd_update(1);
  4038. }
  4039. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  4040. #ifdef SUPPORT_VERBOSITY
  4041. if (verbosity_level >= 20) {
  4042. SERIAL_ECHOLNPGM("Mesh bed leveling while loop finished.");
  4043. SERIAL_ECHOLNPGM("MESH_HOME_Z_SEARCH: ");
  4044. MYSERIAL.print(current_position[Z_AXIS], 5);
  4045. }
  4046. #endif // SUPPORT_VERBOSITY
  4047. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], Z_LIFT_FEEDRATE, active_extruder);
  4048. st_synchronize();
  4049. if (mesh_point != nMeasPoints * nMeasPoints) {
  4050. Sound_MakeSound(e_SOUND_TYPE_StandardAlert);
  4051. bool bState;
  4052. do { // repeat until Z-leveling o.k.
  4053. lcd_display_message_fullscreen_P(_i("Some problem encountered, Z-leveling enforced ..."));
  4054. #ifdef TMC2130
  4055. lcd_wait_for_click_delay(MSG_BED_LEVELING_FAILED_TIMEOUT);
  4056. calibrate_z_auto(); // Z-leveling (X-assembly stay up!!!)
  4057. #else // TMC2130
  4058. lcd_wait_for_click_delay(0); // ~ no timeout
  4059. lcd_calibrate_z_end_stop_manual(true); // Z-leveling (X-assembly stay up!!!)
  4060. #endif // TMC2130
  4061. // ~ Z-homing (can not be used "G28", because X & Y-homing would have been done before (Z-homing))
  4062. bState=enable_z_endstop(false);
  4063. current_position[Z_AXIS] -= 1;
  4064. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[Z_AXIS] / 40, active_extruder);
  4065. st_synchronize();
  4066. enable_z_endstop(true);
  4067. #ifdef TMC2130
  4068. tmc2130_home_enter(Z_AXIS_MASK);
  4069. #endif // TMC2130
  4070. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  4071. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[Z_AXIS] / 40, active_extruder);
  4072. st_synchronize();
  4073. #ifdef TMC2130
  4074. tmc2130_home_exit();
  4075. #endif // TMC2130
  4076. enable_z_endstop(bState);
  4077. } while (st_get_position_mm(Z_AXIS) > MESH_HOME_Z_SEARCH); // i.e. Z-leveling not o.k.
  4078. // plan_set_z_position(MESH_HOME_Z_SEARCH); // is not necessary ('do-while' loop always ends at the expected Z-position)
  4079. custom_message_type=CustomMsg::Status; // display / status-line recovery
  4080. lcd_update_enable(true); // display / status-line recovery
  4081. gcode_G28(true, true, true); // X & Y & Z-homing (must be after individual Z-homing (problem with spool-holder)!)
  4082. repeatcommand_front(); // re-run (i.e. of "G80")
  4083. break;
  4084. }
  4085. clean_up_after_endstop_move(l_feedmultiply);
  4086. // SERIAL_ECHOLNPGM("clean up finished ");
  4087. bool apply_temp_comp = true;
  4088. #ifdef PINDA_THERMISTOR
  4089. apply_temp_comp = false;
  4090. #endif
  4091. if (apply_temp_comp)
  4092. if(temp_cal_active == true && calibration_status_pinda() == true) temp_compensation_apply(); //apply PINDA temperature compensation
  4093. babystep_apply(); // Apply Z height correction aka baby stepping before mesh bed leveing gets activated.
  4094. // SERIAL_ECHOLNPGM("babystep applied");
  4095. bool eeprom_bed_correction_valid = eeprom_read_byte((unsigned char*)EEPROM_BED_CORRECTION_VALID) == 1;
  4096. #ifdef SUPPORT_VERBOSITY
  4097. if (verbosity_level >= 1) {
  4098. eeprom_bed_correction_valid ? SERIAL_PROTOCOLPGM("Bed correction data valid\n") : SERIAL_PROTOCOLPGM("Bed correction data not valid\n");
  4099. }
  4100. #endif // SUPPORT_VERBOSITY
  4101. for (uint8_t i = 0; i < 4; ++i) {
  4102. unsigned char codes[4] = { 'L', 'R', 'F', 'B' };
  4103. long correction = 0;
  4104. if (code_seen(codes[i]))
  4105. correction = code_value_long();
  4106. else if (eeprom_bed_correction_valid) {
  4107. unsigned char *addr = (i < 2) ?
  4108. ((i == 0) ? (unsigned char*)EEPROM_BED_CORRECTION_LEFT : (unsigned char*)EEPROM_BED_CORRECTION_RIGHT) :
  4109. ((i == 2) ? (unsigned char*)EEPROM_BED_CORRECTION_FRONT : (unsigned char*)EEPROM_BED_CORRECTION_REAR);
  4110. correction = eeprom_read_int8(addr);
  4111. }
  4112. if (correction == 0)
  4113. continue;
  4114. if (labs(correction) > BED_ADJUSTMENT_UM_MAX) {
  4115. SERIAL_ERROR_START;
  4116. SERIAL_ECHOPGM("Excessive bed leveling correction: ");
  4117. SERIAL_ECHO(correction);
  4118. SERIAL_ECHOLNPGM(" microns");
  4119. }
  4120. else {
  4121. float offset = float(correction) * 0.001f;
  4122. switch (i) {
  4123. case 0:
  4124. for (uint8_t row = 0; row < nMeasPoints; ++row) {
  4125. for (uint8_t col = 0; col < nMeasPoints - 1; ++col) {
  4126. mbl.z_values[row][col] += offset * (nMeasPoints - 1 - col) / (nMeasPoints - 1);
  4127. }
  4128. }
  4129. break;
  4130. case 1:
  4131. for (uint8_t row = 0; row < nMeasPoints; ++row) {
  4132. for (uint8_t col = 1; col < nMeasPoints; ++col) {
  4133. mbl.z_values[row][col] += offset * col / (nMeasPoints - 1);
  4134. }
  4135. }
  4136. break;
  4137. case 2:
  4138. for (uint8_t col = 0; col < nMeasPoints; ++col) {
  4139. for (uint8_t row = 0; row < nMeasPoints; ++row) {
  4140. mbl.z_values[row][col] += offset * (nMeasPoints - 1 - row) / (nMeasPoints - 1);
  4141. }
  4142. }
  4143. break;
  4144. case 3:
  4145. for (uint8_t col = 0; col < nMeasPoints; ++col) {
  4146. for (uint8_t row = 1; row < nMeasPoints; ++row) {
  4147. mbl.z_values[row][col] += offset * row / (nMeasPoints - 1);
  4148. }
  4149. }
  4150. break;
  4151. }
  4152. }
  4153. }
  4154. // SERIAL_ECHOLNPGM("Bed leveling correction finished");
  4155. if (nMeasPoints == 3) {
  4156. mbl.upsample_3x3(); //interpolation from 3x3 to 7x7 points using largrangian polynomials while using the same array z_values[iy][ix] for storing (just coppying measured data to new destination and interpolating between them)
  4157. }
  4158. /*
  4159. SERIAL_PROTOCOLPGM("Num X,Y: ");
  4160. SERIAL_PROTOCOL(MESH_NUM_X_POINTS);
  4161. SERIAL_PROTOCOLPGM(",");
  4162. SERIAL_PROTOCOL(MESH_NUM_Y_POINTS);
  4163. SERIAL_PROTOCOLPGM("\nZ search height: ");
  4164. SERIAL_PROTOCOL(MESH_HOME_Z_SEARCH);
  4165. SERIAL_PROTOCOLLNPGM("\nMeasured points:");
  4166. for (int y = MESH_NUM_Y_POINTS-1; y >= 0; y--) {
  4167. for (int x = 0; x < MESH_NUM_X_POINTS; x++) {
  4168. SERIAL_PROTOCOLPGM(" ");
  4169. SERIAL_PROTOCOL_F(mbl.z_values[y][x], 5);
  4170. }
  4171. SERIAL_PROTOCOLPGM("\n");
  4172. }
  4173. */
  4174. if (nMeasPoints == 7 && magnet_elimination) {
  4175. mbl_interpolation(nMeasPoints);
  4176. }
  4177. /*
  4178. SERIAL_PROTOCOLPGM("Num X,Y: ");
  4179. SERIAL_PROTOCOL(MESH_NUM_X_POINTS);
  4180. SERIAL_PROTOCOLPGM(",");
  4181. SERIAL_PROTOCOL(MESH_NUM_Y_POINTS);
  4182. SERIAL_PROTOCOLPGM("\nZ search height: ");
  4183. SERIAL_PROTOCOL(MESH_HOME_Z_SEARCH);
  4184. SERIAL_PROTOCOLLNPGM("\nMeasured points:");
  4185. for (int y = MESH_NUM_Y_POINTS-1; y >= 0; y--) {
  4186. for (int x = 0; x < MESH_NUM_X_POINTS; x++) {
  4187. SERIAL_PROTOCOLPGM(" ");
  4188. SERIAL_PROTOCOL_F(mbl.z_values[y][x], 5);
  4189. }
  4190. SERIAL_PROTOCOLPGM("\n");
  4191. }
  4192. */
  4193. // SERIAL_ECHOLNPGM("Upsample finished");
  4194. mbl.active = 1; //activate mesh bed leveling
  4195. // SERIAL_ECHOLNPGM("Mesh bed leveling activated");
  4196. go_home_with_z_lift();
  4197. // SERIAL_ECHOLNPGM("Go home finished");
  4198. //unretract (after PINDA preheat retraction)
  4199. if (degHotend(active_extruder) > EXTRUDE_MINTEMP && temp_cal_active == true && calibration_status_pinda() == true && target_temperature_bed >= 50) {
  4200. current_position[E_AXIS] += default_retraction;
  4201. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400, active_extruder);
  4202. }
  4203. KEEPALIVE_STATE(NOT_BUSY);
  4204. // Restore custom message state
  4205. lcd_setstatuspgm(_T(WELCOME_MSG));
  4206. custom_message_type = custom_message_type_old;
  4207. custom_message_state = custom_message_state_old;
  4208. mesh_bed_leveling_flag = false;
  4209. mesh_bed_run_from_menu = false;
  4210. lcd_update(2);
  4211. }
  4212. break;
  4213. /**
  4214. * G81: Print mesh bed leveling status and bed profile if activated
  4215. */
  4216. case 81:
  4217. if (mbl.active) {
  4218. SERIAL_PROTOCOLPGM("Num X,Y: ");
  4219. SERIAL_PROTOCOL(MESH_NUM_X_POINTS);
  4220. SERIAL_PROTOCOLPGM(",");
  4221. SERIAL_PROTOCOL(MESH_NUM_Y_POINTS);
  4222. SERIAL_PROTOCOLPGM("\nZ search height: ");
  4223. SERIAL_PROTOCOL(MESH_HOME_Z_SEARCH);
  4224. SERIAL_PROTOCOLLNPGM("\nMeasured points:");
  4225. for (int y = MESH_NUM_Y_POINTS-1; y >= 0; y--) {
  4226. for (int x = 0; x < MESH_NUM_X_POINTS; x++) {
  4227. SERIAL_PROTOCOLPGM(" ");
  4228. SERIAL_PROTOCOL_F(mbl.z_values[y][x], 5);
  4229. }
  4230. SERIAL_PROTOCOLPGM("\n");
  4231. }
  4232. }
  4233. else
  4234. SERIAL_PROTOCOLLNPGM("Mesh bed leveling not active.");
  4235. break;
  4236. #if 0
  4237. /**
  4238. * G82: Single Z probe at current location
  4239. *
  4240. * WARNING! USE WITH CAUTION! If you'll try to probe where is no leveling pad, nasty things can happen!
  4241. *
  4242. */
  4243. case 82:
  4244. SERIAL_PROTOCOLLNPGM("Finding bed ");
  4245. int l_feedmultiply = setup_for_endstop_move();
  4246. find_bed_induction_sensor_point_z();
  4247. clean_up_after_endstop_move(l_feedmultiply);
  4248. SERIAL_PROTOCOLPGM("Bed found at: ");
  4249. SERIAL_PROTOCOL_F(current_position[Z_AXIS], 5);
  4250. SERIAL_PROTOCOLPGM("\n");
  4251. break;
  4252. /**
  4253. * G83: Prusa3D specific: Babystep in Z and store to EEPROM
  4254. */
  4255. case 83:
  4256. {
  4257. int babystepz = code_seen('S') ? code_value() : 0;
  4258. int BabyPosition = code_seen('P') ? code_value() : 0;
  4259. if (babystepz != 0) {
  4260. //FIXME Vojtech: What shall be the index of the axis Z: 3 or 4?
  4261. // Is the axis indexed starting with zero or one?
  4262. if (BabyPosition > 4) {
  4263. SERIAL_PROTOCOLLNPGM("Index out of bounds");
  4264. }else{
  4265. // Save it to the eeprom
  4266. babystepLoadZ = babystepz;
  4267. EEPROM_save_B(EEPROM_BABYSTEP_Z0+(BabyPosition*2),&babystepLoadZ);
  4268. // adjust the Z
  4269. babystepsTodoZadd(babystepLoadZ);
  4270. }
  4271. }
  4272. }
  4273. break;
  4274. /**
  4275. * G84: Prusa3D specific: UNDO Babystep Z (move Z axis back)
  4276. */
  4277. case 84:
  4278. babystepsTodoZsubtract(babystepLoadZ);
  4279. // babystepLoadZ = 0;
  4280. break;
  4281. /**
  4282. * G85: Prusa3D specific: Pick best babystep
  4283. */
  4284. case 85:
  4285. lcd_pick_babystep();
  4286. break;
  4287. #endif
  4288. /**
  4289. * G86: Prusa3D specific: Disable babystep correction after home.
  4290. * This G-code will be performed at the start of a calibration script.
  4291. */
  4292. case 86:
  4293. calibration_status_store(CALIBRATION_STATUS_LIVE_ADJUST);
  4294. break;
  4295. /**
  4296. * G87: Prusa3D specific: Enable babystep correction after home
  4297. * This G-code will be performed at the end of a calibration script.
  4298. */
  4299. case 87:
  4300. calibration_status_store(CALIBRATION_STATUS_CALIBRATED);
  4301. break;
  4302. /**
  4303. * G88: Prusa3D specific: Don't know what it is for, it is in V2Calibration.gcode
  4304. */
  4305. case 88:
  4306. break;
  4307. #endif // ENABLE_MESH_BED_LEVELING
  4308. case 90: // G90
  4309. relative_mode = false;
  4310. break;
  4311. case 91: // G91
  4312. relative_mode = true;
  4313. break;
  4314. case 92: // G92
  4315. if(!code_seen(axis_codes[E_AXIS]))
  4316. st_synchronize();
  4317. for(int8_t i=0; i < NUM_AXIS; i++) {
  4318. if(code_seen(axis_codes[i])) {
  4319. if(i == E_AXIS) {
  4320. current_position[i] = code_value();
  4321. plan_set_e_position(current_position[E_AXIS]);
  4322. }
  4323. else {
  4324. current_position[i] = code_value()+cs.add_homing[i];
  4325. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  4326. }
  4327. }
  4328. }
  4329. break;
  4330. case 98: //! G98 (activate farm mode)
  4331. farm_mode = 1;
  4332. PingTime = _millis();
  4333. eeprom_update_byte((unsigned char *)EEPROM_FARM_MODE, farm_mode);
  4334. EEPROM_save_B(EEPROM_FARM_NUMBER, &farm_no);
  4335. SilentModeMenu = SILENT_MODE_OFF;
  4336. eeprom_update_byte((unsigned char *)EEPROM_SILENT, SilentModeMenu);
  4337. fCheckModeInit(); // alternatively invoke printer reset
  4338. break;
  4339. case 99: //! G99 (deactivate farm mode)
  4340. farm_mode = 0;
  4341. lcd_printer_connected();
  4342. eeprom_update_byte((unsigned char *)EEPROM_FARM_MODE, farm_mode);
  4343. lcd_update(2);
  4344. fCheckModeInit(); // alternatively invoke printer reset
  4345. break;
  4346. default:
  4347. printf_P(PSTR("Unknown G code: %s \n"), cmdbuffer + bufindr + CMDHDRSIZE);
  4348. }
  4349. // printf_P(_N("END G-CODE=%u\n"), gcode_in_progress);
  4350. gcode_in_progress = 0;
  4351. } // end if(code_seen('G'))
  4352. else if(code_seen('M'))
  4353. {
  4354. int index;
  4355. for (index = 1; *(strchr_pointer + index) == ' ' || *(strchr_pointer + index) == '\t'; index++);
  4356. /*for (++strchr_pointer; *strchr_pointer == ' ' || *strchr_pointer == '\t'; ++strchr_pointer);*/
  4357. if (*(strchr_pointer+index) < '0' || *(strchr_pointer+index) > '9') {
  4358. printf_P(PSTR("Invalid M code: %s \n"), cmdbuffer + bufindr + CMDHDRSIZE);
  4359. } else
  4360. {
  4361. mcode_in_progress = (int)code_value();
  4362. // printf_P(_N("BEGIN M-CODE=%u\n"), mcode_in_progress);
  4363. switch(mcode_in_progress)
  4364. {
  4365. case 0: // M0 - Unconditional stop - Wait for user button press on LCD
  4366. case 1: // M1 - Conditional stop - Wait for user button press on LCD
  4367. {
  4368. char *src = strchr_pointer + 2;
  4369. codenum = 0;
  4370. bool hasP = false, hasS = false;
  4371. if (code_seen('P')) {
  4372. codenum = code_value(); // milliseconds to wait
  4373. hasP = codenum > 0;
  4374. }
  4375. if (code_seen('S')) {
  4376. codenum = code_value() * 1000; // seconds to wait
  4377. hasS = codenum > 0;
  4378. }
  4379. starpos = strchr(src, '*');
  4380. if (starpos != NULL) *(starpos) = '\0';
  4381. while (*src == ' ') ++src;
  4382. if (!hasP && !hasS && *src != '\0') {
  4383. lcd_setstatus(src);
  4384. } else {
  4385. LCD_MESSAGERPGM(_i("Wait for user..."));////MSG_USERWAIT
  4386. }
  4387. lcd_ignore_click(); //call lcd_ignore_click aslo for else ???
  4388. st_synchronize();
  4389. previous_millis_cmd = _millis();
  4390. if (codenum > 0){
  4391. codenum += _millis(); // keep track of when we started waiting
  4392. KEEPALIVE_STATE(PAUSED_FOR_USER);
  4393. while(_millis() < codenum && !lcd_clicked()){
  4394. manage_heater();
  4395. manage_inactivity(true);
  4396. lcd_update(0);
  4397. }
  4398. KEEPALIVE_STATE(IN_HANDLER);
  4399. lcd_ignore_click(false);
  4400. }else{
  4401. marlin_wait_for_click();
  4402. }
  4403. if (IS_SD_PRINTING)
  4404. LCD_MESSAGERPGM(_T(MSG_RESUMING_PRINT));
  4405. else
  4406. LCD_MESSAGERPGM(_T(WELCOME_MSG));
  4407. }
  4408. break;
  4409. case 17:
  4410. LCD_MESSAGERPGM(_i("No move."));////MSG_NO_MOVE
  4411. enable_x();
  4412. enable_y();
  4413. enable_z();
  4414. enable_e0();
  4415. enable_e1();
  4416. enable_e2();
  4417. break;
  4418. #ifdef SDSUPPORT
  4419. case 20: // M20 - list SD card
  4420. SERIAL_PROTOCOLLNRPGM(_N("Begin file list"));////MSG_BEGIN_FILE_LIST
  4421. card.ls();
  4422. SERIAL_PROTOCOLLNRPGM(_N("End file list"));////MSG_END_FILE_LIST
  4423. break;
  4424. case 21: // M21 - init SD card
  4425. card.initsd();
  4426. break;
  4427. case 22: //M22 - release SD card
  4428. card.release();
  4429. break;
  4430. case 23: //M23 - Select file
  4431. starpos = (strchr(strchr_pointer + 4,'*'));
  4432. if(starpos!=NULL)
  4433. *(starpos)='\0';
  4434. card.openFile(strchr_pointer + 4,true);
  4435. break;
  4436. case 24: //M24 - Start SD print
  4437. if (!card.paused)
  4438. failstats_reset_print();
  4439. card.startFileprint();
  4440. starttime=_millis();
  4441. break;
  4442. case 25: //M25 - Pause SD print
  4443. card.pauseSDPrint();
  4444. break;
  4445. case 26: //M26 - Set SD index
  4446. if(card.cardOK && code_seen('S')) {
  4447. card.setIndex(code_value_long());
  4448. }
  4449. break;
  4450. case 27: //M27 - Get SD status
  4451. card.getStatus();
  4452. break;
  4453. case 28: //M28 - Start SD write
  4454. starpos = (strchr(strchr_pointer + 4,'*'));
  4455. if(starpos != NULL){
  4456. char* npos = strchr(CMDBUFFER_CURRENT_STRING, 'N');
  4457. strchr_pointer = strchr(npos,' ') + 1;
  4458. *(starpos) = '\0';
  4459. }
  4460. card.openFile(strchr_pointer+4,false);
  4461. break;
  4462. case 29: //M29 - Stop SD write
  4463. //processed in write to file routine above
  4464. //card,saving = false;
  4465. break;
  4466. case 30: //M30 <filename> Delete File
  4467. if (card.cardOK){
  4468. card.closefile();
  4469. starpos = (strchr(strchr_pointer + 4,'*'));
  4470. if(starpos != NULL){
  4471. char* npos = strchr(CMDBUFFER_CURRENT_STRING, 'N');
  4472. strchr_pointer = strchr(npos,' ') + 1;
  4473. *(starpos) = '\0';
  4474. }
  4475. card.removeFile(strchr_pointer + 4);
  4476. }
  4477. break;
  4478. case 32: //M32 - Select file and start SD print
  4479. {
  4480. if(card.sdprinting) {
  4481. st_synchronize();
  4482. }
  4483. starpos = (strchr(strchr_pointer + 4,'*'));
  4484. char* namestartpos = (strchr(strchr_pointer + 4,'!')); //find ! to indicate filename string start.
  4485. if(namestartpos==NULL)
  4486. {
  4487. namestartpos=strchr_pointer + 4; //default name position, 4 letters after the M
  4488. }
  4489. else
  4490. namestartpos++; //to skip the '!'
  4491. if(starpos!=NULL)
  4492. *(starpos)='\0';
  4493. bool call_procedure=(code_seen('P'));
  4494. if(strchr_pointer>namestartpos)
  4495. call_procedure=false; //false alert, 'P' found within filename
  4496. if( card.cardOK )
  4497. {
  4498. card.openFile(namestartpos,true,!call_procedure);
  4499. if(code_seen('S'))
  4500. if(strchr_pointer<namestartpos) //only if "S" is occuring _before_ the filename
  4501. card.setIndex(code_value_long());
  4502. card.startFileprint();
  4503. if(!call_procedure)
  4504. starttime=_millis(); //procedure calls count as normal print time.
  4505. }
  4506. } break;
  4507. case 928: //M928 - Start SD write
  4508. starpos = (strchr(strchr_pointer + 5,'*'));
  4509. if(starpos != NULL){
  4510. char* npos = strchr(CMDBUFFER_CURRENT_STRING, 'N');
  4511. strchr_pointer = strchr(npos,' ') + 1;
  4512. *(starpos) = '\0';
  4513. }
  4514. card.openLogFile(strchr_pointer+5);
  4515. break;
  4516. #endif //SDSUPPORT
  4517. case 31: //M31 take time since the start of the SD print or an M109 command
  4518. {
  4519. stoptime=_millis();
  4520. char time[30];
  4521. unsigned long t=(stoptime-starttime)/1000;
  4522. int sec,min;
  4523. min=t/60;
  4524. sec=t%60;
  4525. sprintf_P(time, PSTR("%i min, %i sec"), min, sec);
  4526. SERIAL_ECHO_START;
  4527. SERIAL_ECHOLN(time);
  4528. lcd_setstatus(time);
  4529. autotempShutdown();
  4530. }
  4531. break;
  4532. case 42: //M42 -Change pin status via gcode
  4533. if (code_seen('S'))
  4534. {
  4535. int pin_status = code_value();
  4536. int pin_number = LED_PIN;
  4537. if (code_seen('P') && pin_status >= 0 && pin_status <= 255)
  4538. pin_number = code_value();
  4539. for(int8_t i = 0; i < (int8_t)(sizeof(sensitive_pins)/sizeof(int)); i++)
  4540. {
  4541. if (sensitive_pins[i] == pin_number)
  4542. {
  4543. pin_number = -1;
  4544. break;
  4545. }
  4546. }
  4547. #if defined(FAN_PIN) && FAN_PIN > -1
  4548. if (pin_number == FAN_PIN)
  4549. fanSpeed = pin_status;
  4550. #endif
  4551. if (pin_number > -1)
  4552. {
  4553. pinMode(pin_number, OUTPUT);
  4554. digitalWrite(pin_number, pin_status);
  4555. analogWrite(pin_number, pin_status);
  4556. }
  4557. }
  4558. break;
  4559. case 44: //! M44: Prusa3D: Reset the bed skew and offset calibration.
  4560. // Reset the baby step value and the baby step applied flag.
  4561. calibration_status_store(CALIBRATION_STATUS_ASSEMBLED);
  4562. eeprom_update_word((uint16_t*)EEPROM_BABYSTEP_Z, 0);
  4563. // Reset the skew and offset in both RAM and EEPROM.
  4564. reset_bed_offset_and_skew();
  4565. // Reset world2machine_rotation_and_skew and world2machine_shift, therefore
  4566. // the planner will not perform any adjustments in the XY plane.
  4567. // Wait for the motors to stop and update the current position with the absolute values.
  4568. world2machine_revert_to_uncorrected();
  4569. break;
  4570. case 45: //! M45: Prusa3D: bed skew and offset with manual Z up
  4571. {
  4572. int8_t verbosity_level = 0;
  4573. bool only_Z = code_seen('Z');
  4574. #ifdef SUPPORT_VERBOSITY
  4575. if (code_seen('V'))
  4576. {
  4577. // Just 'V' without a number counts as V1.
  4578. char c = strchr_pointer[1];
  4579. verbosity_level = (c == ' ' || c == '\t' || c == 0) ? 1 : code_value_short();
  4580. }
  4581. #endif //SUPPORT_VERBOSITY
  4582. gcode_M45(only_Z, verbosity_level);
  4583. }
  4584. break;
  4585. /*
  4586. case 46:
  4587. {
  4588. // M46: Prusa3D: Show the assigned IP address.
  4589. uint8_t ip[4];
  4590. bool hasIP = card.ToshibaFlashAir_GetIP(ip);
  4591. if (hasIP) {
  4592. SERIAL_ECHOPGM("Toshiba FlashAir current IP: ");
  4593. SERIAL_ECHO(int(ip[0]));
  4594. SERIAL_ECHOPGM(".");
  4595. SERIAL_ECHO(int(ip[1]));
  4596. SERIAL_ECHOPGM(".");
  4597. SERIAL_ECHO(int(ip[2]));
  4598. SERIAL_ECHOPGM(".");
  4599. SERIAL_ECHO(int(ip[3]));
  4600. SERIAL_ECHOLNPGM("");
  4601. } else {
  4602. SERIAL_ECHOLNPGM("Toshiba FlashAir GetIP failed");
  4603. }
  4604. break;
  4605. }
  4606. */
  4607. case 47:
  4608. //! M47: Prusa3D: Show end stops dialog on the display.
  4609. KEEPALIVE_STATE(PAUSED_FOR_USER);
  4610. lcd_diag_show_end_stops();
  4611. KEEPALIVE_STATE(IN_HANDLER);
  4612. break;
  4613. #if 0
  4614. case 48: //! M48: scan the bed induction sensor points, print the sensor trigger coordinates to the serial line for visualization on the PC.
  4615. {
  4616. // Disable the default update procedure of the display. We will do a modal dialog.
  4617. lcd_update_enable(false);
  4618. // Let the planner use the uncorrected coordinates.
  4619. mbl.reset();
  4620. // Reset world2machine_rotation_and_skew and world2machine_shift, therefore
  4621. // the planner will not perform any adjustments in the XY plane.
  4622. // Wait for the motors to stop and update the current position with the absolute values.
  4623. world2machine_revert_to_uncorrected();
  4624. // Move the print head close to the bed.
  4625. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  4626. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS],current_position[Z_AXIS] , current_position[E_AXIS], homing_feedrate[Z_AXIS]/40, active_extruder);
  4627. st_synchronize();
  4628. // Home in the XY plane.
  4629. set_destination_to_current();
  4630. int l_feedmultiply = setup_for_endstop_move();
  4631. home_xy();
  4632. int8_t verbosity_level = 0;
  4633. if (code_seen('V')) {
  4634. // Just 'V' without a number counts as V1.
  4635. char c = strchr_pointer[1];
  4636. verbosity_level = (c == ' ' || c == '\t' || c == 0) ? 1 : code_value_short();
  4637. }
  4638. bool success = scan_bed_induction_points(verbosity_level);
  4639. clean_up_after_endstop_move(l_feedmultiply);
  4640. // Print head up.
  4641. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  4642. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS],current_position[Z_AXIS] , current_position[E_AXIS], homing_feedrate[Z_AXIS]/40, active_extruder);
  4643. st_synchronize();
  4644. lcd_update_enable(true);
  4645. break;
  4646. }
  4647. #endif
  4648. #ifdef ENABLE_AUTO_BED_LEVELING
  4649. #ifdef Z_PROBE_REPEATABILITY_TEST
  4650. //! M48 Z-Probe repeatability measurement function.
  4651. //!
  4652. //! Usage: M48 <n #_samples> <X X_position_for_samples> <Y Y_position_for_samples> <V Verbose_Level> <L legs_of_movement_prior_to_doing_probe>
  4653. //!
  4654. //! This function assumes the bed has been homed. Specificaly, that a G28 command
  4655. //! as been issued prior to invoking the M48 Z-Probe repeatability measurement function.
  4656. //! Any information generated by a prior G29 Bed leveling command will be lost and need to be
  4657. //! regenerated.
  4658. //!
  4659. //! The number of samples will default to 10 if not specified. You can use upper or lower case
  4660. //! letters for any of the options EXCEPT n. n must be in lower case because Marlin uses a capital
  4661. //! N for its communication protocol and will get horribly confused if you send it a capital N.
  4662. //!
  4663. case 48: // M48 Z-Probe repeatability
  4664. {
  4665. #if Z_MIN_PIN == -1
  4666. #error "You must have a Z_MIN endstop in order to enable calculation of Z-Probe repeatability."
  4667. #endif
  4668. double sum=0.0;
  4669. double mean=0.0;
  4670. double sigma=0.0;
  4671. double sample_set[50];
  4672. int verbose_level=1, n=0, j, n_samples = 10, n_legs=0;
  4673. double X_current, Y_current, Z_current;
  4674. double X_probe_location, Y_probe_location, Z_start_location, ext_position;
  4675. if (code_seen('V') || code_seen('v')) {
  4676. verbose_level = code_value();
  4677. if (verbose_level<0 || verbose_level>4 ) {
  4678. SERIAL_PROTOCOLPGM("?Verbose Level not plausable.\n");
  4679. goto Sigma_Exit;
  4680. }
  4681. }
  4682. if (verbose_level > 0) {
  4683. SERIAL_PROTOCOLPGM("M48 Z-Probe Repeatability test. Version 2.00\n");
  4684. SERIAL_PROTOCOLPGM("Full support at: http://3dprintboard.com/forum.php\n");
  4685. }
  4686. if (code_seen('n')) {
  4687. n_samples = code_value();
  4688. if (n_samples<4 || n_samples>50 ) {
  4689. SERIAL_PROTOCOLPGM("?Specified sample size not plausable.\n");
  4690. goto Sigma_Exit;
  4691. }
  4692. }
  4693. X_current = X_probe_location = st_get_position_mm(X_AXIS);
  4694. Y_current = Y_probe_location = st_get_position_mm(Y_AXIS);
  4695. Z_current = st_get_position_mm(Z_AXIS);
  4696. Z_start_location = st_get_position_mm(Z_AXIS) + Z_RAISE_BEFORE_PROBING;
  4697. ext_position = st_get_position_mm(E_AXIS);
  4698. if (code_seen('X') || code_seen('x') ) {
  4699. X_probe_location = code_value() - X_PROBE_OFFSET_FROM_EXTRUDER;
  4700. if (X_probe_location<X_MIN_POS || X_probe_location>X_MAX_POS ) {
  4701. SERIAL_PROTOCOLPGM("?Specified X position out of range.\n");
  4702. goto Sigma_Exit;
  4703. }
  4704. }
  4705. if (code_seen('Y') || code_seen('y') ) {
  4706. Y_probe_location = code_value() - Y_PROBE_OFFSET_FROM_EXTRUDER;
  4707. if (Y_probe_location<Y_MIN_POS || Y_probe_location>Y_MAX_POS ) {
  4708. SERIAL_PROTOCOLPGM("?Specified Y position out of range.\n");
  4709. goto Sigma_Exit;
  4710. }
  4711. }
  4712. if (code_seen('L') || code_seen('l') ) {
  4713. n_legs = code_value();
  4714. if ( n_legs==1 )
  4715. n_legs = 2;
  4716. if ( n_legs<0 || n_legs>15 ) {
  4717. SERIAL_PROTOCOLPGM("?Specified number of legs in movement not plausable.\n");
  4718. goto Sigma_Exit;
  4719. }
  4720. }
  4721. //
  4722. // Do all the preliminary setup work. First raise the probe.
  4723. //
  4724. st_synchronize();
  4725. plan_bed_level_matrix.set_to_identity();
  4726. plan_buffer_line( X_current, Y_current, Z_start_location,
  4727. ext_position,
  4728. homing_feedrate[Z_AXIS]/60,
  4729. active_extruder);
  4730. st_synchronize();
  4731. //
  4732. // Now get everything to the specified probe point So we can safely do a probe to
  4733. // get us close to the bed. If the Z-Axis is far from the bed, we don't want to
  4734. // use that as a starting point for each probe.
  4735. //
  4736. if (verbose_level > 2)
  4737. SERIAL_PROTOCOL("Positioning probe for the test.\n");
  4738. plan_buffer_line( X_probe_location, Y_probe_location, Z_start_location,
  4739. ext_position,
  4740. homing_feedrate[X_AXIS]/60,
  4741. active_extruder);
  4742. st_synchronize();
  4743. current_position[X_AXIS] = X_current = st_get_position_mm(X_AXIS);
  4744. current_position[Y_AXIS] = Y_current = st_get_position_mm(Y_AXIS);
  4745. current_position[Z_AXIS] = Z_current = st_get_position_mm(Z_AXIS);
  4746. current_position[E_AXIS] = ext_position = st_get_position_mm(E_AXIS);
  4747. //
  4748. // OK, do the inital probe to get us close to the bed.
  4749. // Then retrace the right amount and use that in subsequent probes
  4750. //
  4751. int l_feedmultiply = setup_for_endstop_move();
  4752. run_z_probe();
  4753. current_position[Z_AXIS] = Z_current = st_get_position_mm(Z_AXIS);
  4754. Z_start_location = st_get_position_mm(Z_AXIS) + Z_RAISE_BEFORE_PROBING;
  4755. plan_buffer_line( X_probe_location, Y_probe_location, Z_start_location,
  4756. ext_position,
  4757. homing_feedrate[X_AXIS]/60,
  4758. active_extruder);
  4759. st_synchronize();
  4760. current_position[Z_AXIS] = Z_current = st_get_position_mm(Z_AXIS);
  4761. for( n=0; n<n_samples; n++) {
  4762. do_blocking_move_to( X_probe_location, Y_probe_location, Z_start_location); // Make sure we are at the probe location
  4763. if ( n_legs) {
  4764. double radius=0.0, theta=0.0, x_sweep, y_sweep;
  4765. int rotational_direction, l;
  4766. rotational_direction = (unsigned long) _millis() & 0x0001; // clockwise or counter clockwise
  4767. radius = (unsigned long) _millis() % (long) (X_MAX_LENGTH/4); // limit how far out to go
  4768. theta = (float) ((unsigned long) _millis() % (long) 360) / (360./(2*3.1415926)); // turn into radians
  4769. //SERIAL_ECHOPAIR("starting radius: ",radius);
  4770. //SERIAL_ECHOPAIR(" theta: ",theta);
  4771. //SERIAL_ECHOPAIR(" direction: ",rotational_direction);
  4772. //SERIAL_PROTOCOLLNPGM("");
  4773. for( l=0; l<n_legs-1; l++) {
  4774. if (rotational_direction==1)
  4775. theta += (float) ((unsigned long) _millis() % (long) 20) / (360.0/(2*3.1415926)); // turn into radians
  4776. else
  4777. theta -= (float) ((unsigned long) _millis() % (long) 20) / (360.0/(2*3.1415926)); // turn into radians
  4778. radius += (float) ( ((long) ((unsigned long) _millis() % (long) 10)) - 5);
  4779. if ( radius<0.0 )
  4780. radius = -radius;
  4781. X_current = X_probe_location + cos(theta) * radius;
  4782. Y_current = Y_probe_location + sin(theta) * radius;
  4783. if ( X_current<X_MIN_POS) // Make sure our X & Y are sane
  4784. X_current = X_MIN_POS;
  4785. if ( X_current>X_MAX_POS)
  4786. X_current = X_MAX_POS;
  4787. if ( Y_current<Y_MIN_POS) // Make sure our X & Y are sane
  4788. Y_current = Y_MIN_POS;
  4789. if ( Y_current>Y_MAX_POS)
  4790. Y_current = Y_MAX_POS;
  4791. if (verbose_level>3 ) {
  4792. SERIAL_ECHOPAIR("x: ", X_current);
  4793. SERIAL_ECHOPAIR("y: ", Y_current);
  4794. SERIAL_PROTOCOLLNPGM("");
  4795. }
  4796. do_blocking_move_to( X_current, Y_current, Z_current );
  4797. }
  4798. do_blocking_move_to( X_probe_location, Y_probe_location, Z_start_location); // Go back to the probe location
  4799. }
  4800. int l_feedmultiply = setup_for_endstop_move();
  4801. run_z_probe();
  4802. sample_set[n] = current_position[Z_AXIS];
  4803. //
  4804. // Get the current mean for the data points we have so far
  4805. //
  4806. sum=0.0;
  4807. for( j=0; j<=n; j++) {
  4808. sum = sum + sample_set[j];
  4809. }
  4810. mean = sum / (double (n+1));
  4811. //
  4812. // Now, use that mean to calculate the standard deviation for the
  4813. // data points we have so far
  4814. //
  4815. sum=0.0;
  4816. for( j=0; j<=n; j++) {
  4817. sum = sum + (sample_set[j]-mean) * (sample_set[j]-mean);
  4818. }
  4819. sigma = sqrt( sum / (double (n+1)) );
  4820. if (verbose_level > 1) {
  4821. SERIAL_PROTOCOL(n+1);
  4822. SERIAL_PROTOCOL(" of ");
  4823. SERIAL_PROTOCOL(n_samples);
  4824. SERIAL_PROTOCOLPGM(" z: ");
  4825. SERIAL_PROTOCOL_F(current_position[Z_AXIS], 6);
  4826. }
  4827. if (verbose_level > 2) {
  4828. SERIAL_PROTOCOL(" mean: ");
  4829. SERIAL_PROTOCOL_F(mean,6);
  4830. SERIAL_PROTOCOL(" sigma: ");
  4831. SERIAL_PROTOCOL_F(sigma,6);
  4832. }
  4833. if (verbose_level > 0)
  4834. SERIAL_PROTOCOLPGM("\n");
  4835. plan_buffer_line( X_probe_location, Y_probe_location, Z_start_location,
  4836. current_position[E_AXIS], homing_feedrate[Z_AXIS]/60, active_extruder);
  4837. st_synchronize();
  4838. }
  4839. _delay(1000);
  4840. clean_up_after_endstop_move(l_feedmultiply);
  4841. // enable_endstops(true);
  4842. if (verbose_level > 0) {
  4843. SERIAL_PROTOCOLPGM("Mean: ");
  4844. SERIAL_PROTOCOL_F(mean, 6);
  4845. SERIAL_PROTOCOLPGM("\n");
  4846. }
  4847. SERIAL_PROTOCOLPGM("Standard Deviation: ");
  4848. SERIAL_PROTOCOL_F(sigma, 6);
  4849. SERIAL_PROTOCOLPGM("\n\n");
  4850. Sigma_Exit:
  4851. break;
  4852. }
  4853. #endif // Z_PROBE_REPEATABILITY_TEST
  4854. #endif // ENABLE_AUTO_BED_LEVELING
  4855. case 73: //M73 show percent done and time remaining
  4856. if(code_seen('P')) print_percent_done_normal = code_value();
  4857. if(code_seen('R')) print_time_remaining_normal = code_value();
  4858. if(code_seen('Q')) print_percent_done_silent = code_value();
  4859. if(code_seen('S')) print_time_remaining_silent = code_value();
  4860. {
  4861. const char* _msg_mode_done_remain = _N("%S MODE: Percent done: %d; print time remaining in mins: %d\n");
  4862. printf_P(_msg_mode_done_remain, _N("NORMAL"), int(print_percent_done_normal), print_time_remaining_normal);
  4863. printf_P(_msg_mode_done_remain, _N("SILENT"), int(print_percent_done_silent), print_time_remaining_silent);
  4864. }
  4865. break;
  4866. case 104: // M104
  4867. {
  4868. uint8_t extruder;
  4869. if(setTargetedHotend(104,extruder)){
  4870. break;
  4871. }
  4872. if (code_seen('S'))
  4873. {
  4874. setTargetHotendSafe(code_value(), extruder);
  4875. }
  4876. setWatch();
  4877. break;
  4878. }
  4879. case 112: // M112 -Emergency Stop
  4880. kill(_n(""), 3);
  4881. break;
  4882. case 140: // M140 set bed temp
  4883. if (code_seen('S')) setTargetBed(code_value());
  4884. break;
  4885. case 105 : // M105
  4886. {
  4887. uint8_t extruder;
  4888. if(setTargetedHotend(105, extruder)){
  4889. break;
  4890. }
  4891. #if defined(TEMP_0_PIN) && TEMP_0_PIN > -1
  4892. SERIAL_PROTOCOLPGM("ok T:");
  4893. SERIAL_PROTOCOL_F(degHotend(extruder),1);
  4894. SERIAL_PROTOCOLPGM(" /");
  4895. SERIAL_PROTOCOL_F(degTargetHotend(extruder),1);
  4896. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  4897. SERIAL_PROTOCOLPGM(" B:");
  4898. SERIAL_PROTOCOL_F(degBed(),1);
  4899. SERIAL_PROTOCOLPGM(" /");
  4900. SERIAL_PROTOCOL_F(degTargetBed(),1);
  4901. #endif //TEMP_BED_PIN
  4902. for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) {
  4903. SERIAL_PROTOCOLPGM(" T");
  4904. SERIAL_PROTOCOL(cur_extruder);
  4905. SERIAL_PROTOCOLPGM(":");
  4906. SERIAL_PROTOCOL_F(degHotend(cur_extruder),1);
  4907. SERIAL_PROTOCOLPGM(" /");
  4908. SERIAL_PROTOCOL_F(degTargetHotend(cur_extruder),1);
  4909. }
  4910. #else
  4911. SERIAL_ERROR_START;
  4912. SERIAL_ERRORLNRPGM(_i("No thermistors - no temperature"));////MSG_ERR_NO_THERMISTORS
  4913. #endif
  4914. SERIAL_PROTOCOLPGM(" @:");
  4915. #ifdef EXTRUDER_WATTS
  4916. SERIAL_PROTOCOL((EXTRUDER_WATTS * getHeaterPower(tmp_extruder))/127);
  4917. SERIAL_PROTOCOLPGM("W");
  4918. #else
  4919. SERIAL_PROTOCOL(getHeaterPower(extruder));
  4920. #endif
  4921. SERIAL_PROTOCOLPGM(" B@:");
  4922. #ifdef BED_WATTS
  4923. SERIAL_PROTOCOL((BED_WATTS * getHeaterPower(-1))/127);
  4924. SERIAL_PROTOCOLPGM("W");
  4925. #else
  4926. SERIAL_PROTOCOL(getHeaterPower(-1));
  4927. #endif
  4928. #ifdef PINDA_THERMISTOR
  4929. SERIAL_PROTOCOLPGM(" P:");
  4930. SERIAL_PROTOCOL_F(current_temperature_pinda,1);
  4931. #endif //PINDA_THERMISTOR
  4932. #ifdef AMBIENT_THERMISTOR
  4933. SERIAL_PROTOCOLPGM(" A:");
  4934. SERIAL_PROTOCOL_F(current_temperature_ambient,1);
  4935. #endif //AMBIENT_THERMISTOR
  4936. #ifdef SHOW_TEMP_ADC_VALUES
  4937. {float raw = 0.0;
  4938. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  4939. SERIAL_PROTOCOLPGM(" ADC B:");
  4940. SERIAL_PROTOCOL_F(degBed(),1);
  4941. SERIAL_PROTOCOLPGM("C->");
  4942. raw = rawBedTemp();
  4943. SERIAL_PROTOCOL_F(raw/OVERSAMPLENR,5);
  4944. SERIAL_PROTOCOLPGM(" Rb->");
  4945. SERIAL_PROTOCOL_F(100 * (1 + (PtA * (raw/OVERSAMPLENR)) + (PtB * sq((raw/OVERSAMPLENR)))), 5);
  4946. SERIAL_PROTOCOLPGM(" Rxb->");
  4947. SERIAL_PROTOCOL_F(raw, 5);
  4948. #endif
  4949. for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) {
  4950. SERIAL_PROTOCOLPGM(" T");
  4951. SERIAL_PROTOCOL(cur_extruder);
  4952. SERIAL_PROTOCOLPGM(":");
  4953. SERIAL_PROTOCOL_F(degHotend(cur_extruder),1);
  4954. SERIAL_PROTOCOLPGM("C->");
  4955. raw = rawHotendTemp(cur_extruder);
  4956. SERIAL_PROTOCOL_F(raw/OVERSAMPLENR,5);
  4957. SERIAL_PROTOCOLPGM(" Rt");
  4958. SERIAL_PROTOCOL(cur_extruder);
  4959. SERIAL_PROTOCOLPGM("->");
  4960. SERIAL_PROTOCOL_F(100 * (1 + (PtA * (raw/OVERSAMPLENR)) + (PtB * sq((raw/OVERSAMPLENR)))), 5);
  4961. SERIAL_PROTOCOLPGM(" Rx");
  4962. SERIAL_PROTOCOL(cur_extruder);
  4963. SERIAL_PROTOCOLPGM("->");
  4964. SERIAL_PROTOCOL_F(raw, 5);
  4965. }}
  4966. #endif
  4967. SERIAL_PROTOCOLLN("");
  4968. KEEPALIVE_STATE(NOT_BUSY);
  4969. return;
  4970. break;
  4971. }
  4972. case 109:
  4973. {// M109 - Wait for extruder heater to reach target.
  4974. uint8_t extruder;
  4975. if(setTargetedHotend(109, extruder)){
  4976. break;
  4977. }
  4978. LCD_MESSAGERPGM(_T(MSG_HEATING));
  4979. heating_status = 1;
  4980. if (farm_mode) { prusa_statistics(1); };
  4981. #ifdef AUTOTEMP
  4982. autotemp_enabled=false;
  4983. #endif
  4984. if (code_seen('S')) {
  4985. setTargetHotendSafe(code_value(), extruder);
  4986. CooldownNoWait = true;
  4987. } else if (code_seen('R')) {
  4988. setTargetHotendSafe(code_value(), extruder);
  4989. CooldownNoWait = false;
  4990. }
  4991. #ifdef AUTOTEMP
  4992. if (code_seen('S')) autotemp_min=code_value();
  4993. if (code_seen('B')) autotemp_max=code_value();
  4994. if (code_seen('F'))
  4995. {
  4996. autotemp_factor=code_value();
  4997. autotemp_enabled=true;
  4998. }
  4999. #endif
  5000. setWatch();
  5001. codenum = _millis();
  5002. /* See if we are heating up or cooling down */
  5003. target_direction = isHeatingHotend(extruder); // true if heating, false if cooling
  5004. KEEPALIVE_STATE(NOT_BUSY);
  5005. cancel_heatup = false;
  5006. wait_for_heater(codenum, extruder); //loops until target temperature is reached
  5007. LCD_MESSAGERPGM(_T(MSG_HEATING_COMPLETE));
  5008. KEEPALIVE_STATE(IN_HANDLER);
  5009. heating_status = 2;
  5010. if (farm_mode) { prusa_statistics(2); };
  5011. //starttime=_millis();
  5012. previous_millis_cmd = _millis();
  5013. }
  5014. break;
  5015. case 190: // M190 - Wait for bed heater to reach target.
  5016. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  5017. LCD_MESSAGERPGM(_T(MSG_BED_HEATING));
  5018. heating_status = 3;
  5019. if (farm_mode) { prusa_statistics(1); };
  5020. if (code_seen('S'))
  5021. {
  5022. setTargetBed(code_value());
  5023. CooldownNoWait = true;
  5024. }
  5025. else if (code_seen('R'))
  5026. {
  5027. setTargetBed(code_value());
  5028. CooldownNoWait = false;
  5029. }
  5030. codenum = _millis();
  5031. cancel_heatup = false;
  5032. target_direction = isHeatingBed(); // true if heating, false if cooling
  5033. KEEPALIVE_STATE(NOT_BUSY);
  5034. while ( (target_direction)&&(!cancel_heatup) ? (isHeatingBed()) : (isCoolingBed()&&(CooldownNoWait==false)) )
  5035. {
  5036. if(( _millis() - codenum) > 1000 ) //Print Temp Reading every 1 second while heating up.
  5037. {
  5038. if (!farm_mode) {
  5039. float tt = degHotend(active_extruder);
  5040. SERIAL_PROTOCOLPGM("T:");
  5041. SERIAL_PROTOCOL(tt);
  5042. SERIAL_PROTOCOLPGM(" E:");
  5043. SERIAL_PROTOCOL((int)active_extruder);
  5044. SERIAL_PROTOCOLPGM(" B:");
  5045. SERIAL_PROTOCOL_F(degBed(), 1);
  5046. SERIAL_PROTOCOLLN("");
  5047. }
  5048. codenum = _millis();
  5049. }
  5050. manage_heater();
  5051. manage_inactivity();
  5052. lcd_update(0);
  5053. }
  5054. LCD_MESSAGERPGM(_T(MSG_BED_DONE));
  5055. KEEPALIVE_STATE(IN_HANDLER);
  5056. heating_status = 4;
  5057. previous_millis_cmd = _millis();
  5058. #endif
  5059. break;
  5060. #if defined(FAN_PIN) && FAN_PIN > -1
  5061. case 106: //!M106 Sxxx Fan On S<speed> 0 .. 255
  5062. if (code_seen('S')){
  5063. fanSpeed=constrain(code_value(),0,255);
  5064. }
  5065. else {
  5066. fanSpeed=255;
  5067. }
  5068. break;
  5069. case 107: //M107 Fan Off
  5070. fanSpeed = 0;
  5071. break;
  5072. #endif //FAN_PIN
  5073. #if defined(PS_ON_PIN) && PS_ON_PIN > -1
  5074. case 80: // M80 - Turn on Power Supply
  5075. SET_OUTPUT(PS_ON_PIN); //GND
  5076. WRITE(PS_ON_PIN, PS_ON_AWAKE);
  5077. // If you have a switch on suicide pin, this is useful
  5078. // if you want to start another print with suicide feature after
  5079. // a print without suicide...
  5080. #if defined SUICIDE_PIN && SUICIDE_PIN > -1
  5081. SET_OUTPUT(SUICIDE_PIN);
  5082. WRITE(SUICIDE_PIN, HIGH);
  5083. #endif
  5084. powersupply = true;
  5085. LCD_MESSAGERPGM(_T(WELCOME_MSG));
  5086. lcd_update(0);
  5087. break;
  5088. #endif
  5089. case 81: // M81 - Turn off Power Supply
  5090. disable_heater();
  5091. st_synchronize();
  5092. disable_e0();
  5093. disable_e1();
  5094. disable_e2();
  5095. finishAndDisableSteppers();
  5096. fanSpeed = 0;
  5097. _delay(1000); // Wait a little before to switch off
  5098. #if defined(SUICIDE_PIN) && SUICIDE_PIN > -1
  5099. st_synchronize();
  5100. suicide();
  5101. #elif defined(PS_ON_PIN) && PS_ON_PIN > -1
  5102. SET_OUTPUT(PS_ON_PIN);
  5103. WRITE(PS_ON_PIN, PS_ON_ASLEEP);
  5104. #endif
  5105. powersupply = false;
  5106. LCD_MESSAGERPGM(CAT4(CUSTOM_MENDEL_NAME,PSTR(" "),MSG_OFF,PSTR(".")));
  5107. lcd_update(0);
  5108. break;
  5109. case 82:
  5110. axis_relative_modes[3] = false;
  5111. break;
  5112. case 83:
  5113. axis_relative_modes[3] = true;
  5114. break;
  5115. case 18: //compatibility
  5116. case 84: // M84
  5117. if(code_seen('S')){
  5118. stepper_inactive_time = code_value() * 1000;
  5119. }
  5120. else
  5121. {
  5122. bool all_axis = !((code_seen(axis_codes[X_AXIS])) || (code_seen(axis_codes[Y_AXIS])) || (code_seen(axis_codes[Z_AXIS]))|| (code_seen(axis_codes[E_AXIS])));
  5123. if(all_axis)
  5124. {
  5125. st_synchronize();
  5126. disable_e0();
  5127. disable_e1();
  5128. disable_e2();
  5129. finishAndDisableSteppers();
  5130. }
  5131. else
  5132. {
  5133. st_synchronize();
  5134. if (code_seen('X')) disable_x();
  5135. if (code_seen('Y')) disable_y();
  5136. if (code_seen('Z')) disable_z();
  5137. #if ((E0_ENABLE_PIN != X_ENABLE_PIN) && (E1_ENABLE_PIN != Y_ENABLE_PIN)) // Only enable on boards that have seperate ENABLE_PINS
  5138. if (code_seen('E')) {
  5139. disable_e0();
  5140. disable_e1();
  5141. disable_e2();
  5142. }
  5143. #endif
  5144. }
  5145. }
  5146. //in the end of print set estimated time to end of print and extruders used during print to default values for next print
  5147. print_time_remaining_init();
  5148. snmm_filaments_used = 0;
  5149. break;
  5150. case 85: // M85
  5151. if(code_seen('S')) {
  5152. max_inactive_time = code_value() * 1000;
  5153. }
  5154. break;
  5155. #ifdef SAFETYTIMER
  5156. case 86: // M86 - set safety timer expiration time in seconds; M86 S0 will disable safety timer
  5157. //when safety timer expires heatbed and nozzle target temperatures are set to zero
  5158. if (code_seen('S')) {
  5159. safetytimer_inactive_time = code_value() * 1000;
  5160. safetyTimer.start();
  5161. }
  5162. break;
  5163. #endif
  5164. case 92: // M92
  5165. for(int8_t i=0; i < NUM_AXIS; i++)
  5166. {
  5167. if(code_seen(axis_codes[i]))
  5168. {
  5169. if(i == 3) { // E
  5170. float value = code_value();
  5171. if(value < 20.0) {
  5172. float factor = cs.axis_steps_per_unit[i] / value; // increase e constants if M92 E14 is given for netfab.
  5173. cs.max_jerk[E_AXIS] *= factor;
  5174. max_feedrate[i] *= factor;
  5175. axis_steps_per_sqr_second[i] *= factor;
  5176. }
  5177. cs.axis_steps_per_unit[i] = value;
  5178. }
  5179. else {
  5180. cs.axis_steps_per_unit[i] = code_value();
  5181. }
  5182. }
  5183. }
  5184. break;
  5185. case 110: //! M110 N<line number> - reset line pos
  5186. if (code_seen('N'))
  5187. gcode_LastN = code_value_long();
  5188. break;
  5189. case 113: // M113 - Get or set Host Keepalive interval
  5190. if (code_seen('S')) {
  5191. host_keepalive_interval = (uint8_t)code_value_short();
  5192. // NOMORE(host_keepalive_interval, 60);
  5193. }
  5194. else {
  5195. SERIAL_ECHO_START;
  5196. SERIAL_ECHOPAIR("M113 S", (unsigned long)host_keepalive_interval);
  5197. SERIAL_PROTOCOLLN("");
  5198. }
  5199. break;
  5200. case 115: // M115
  5201. if (code_seen('V')) {
  5202. // Report the Prusa version number.
  5203. SERIAL_PROTOCOLLNRPGM(FW_VERSION_STR_P());
  5204. } else if (code_seen('U')) {
  5205. // Check the firmware version provided. If the firmware version provided by the U code is higher than the currently running firmware,
  5206. // pause the print for 30s and ask the user to upgrade the firmware.
  5207. show_upgrade_dialog_if_version_newer(++ strchr_pointer);
  5208. } else {
  5209. SERIAL_ECHOPGM("FIRMWARE_NAME:Prusa-Firmware ");
  5210. SERIAL_ECHORPGM(FW_VERSION_STR_P());
  5211. SERIAL_ECHOPGM(" based on Marlin FIRMWARE_URL:https://github.com/prusa3d/Prusa-Firmware PROTOCOL_VERSION:");
  5212. SERIAL_ECHOPGM(PROTOCOL_VERSION);
  5213. SERIAL_ECHOPGM(" MACHINE_TYPE:");
  5214. SERIAL_ECHOPGM(CUSTOM_MENDEL_NAME);
  5215. SERIAL_ECHOPGM(" EXTRUDER_COUNT:");
  5216. SERIAL_ECHOPGM(STRINGIFY(EXTRUDERS));
  5217. SERIAL_ECHOPGM(" UUID:");
  5218. SERIAL_ECHOLNPGM(MACHINE_UUID);
  5219. }
  5220. break;
  5221. /* case 117: // M117 display message
  5222. starpos = (strchr(strchr_pointer + 5,'*'));
  5223. if(starpos!=NULL)
  5224. *(starpos)='\0';
  5225. lcd_setstatus(strchr_pointer + 5);
  5226. break;*/
  5227. case 114: // M114
  5228. gcode_M114();
  5229. break;
  5230. case 120: //! M120 - Disable endstops
  5231. enable_endstops(false) ;
  5232. break;
  5233. case 121: //! M121 - Enable endstops
  5234. enable_endstops(true) ;
  5235. break;
  5236. case 119: // M119
  5237. SERIAL_PROTOCOLRPGM(_N("Reporting endstop status"));////MSG_M119_REPORT
  5238. SERIAL_PROTOCOLLN("");
  5239. #if defined(X_MIN_PIN) && X_MIN_PIN > -1
  5240. SERIAL_PROTOCOLRPGM(_n("x_min: "));////MSG_X_MIN
  5241. if(READ(X_MIN_PIN)^X_MIN_ENDSTOP_INVERTING){
  5242. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_HIT);
  5243. }else{
  5244. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_OPEN);
  5245. }
  5246. SERIAL_PROTOCOLLN("");
  5247. #endif
  5248. #if defined(X_MAX_PIN) && X_MAX_PIN > -1
  5249. SERIAL_PROTOCOLRPGM(_n("x_max: "));////MSG_X_MAX
  5250. if(READ(X_MAX_PIN)^X_MAX_ENDSTOP_INVERTING){
  5251. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_HIT);
  5252. }else{
  5253. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_OPEN);
  5254. }
  5255. SERIAL_PROTOCOLLN("");
  5256. #endif
  5257. #if defined(Y_MIN_PIN) && Y_MIN_PIN > -1
  5258. SERIAL_PROTOCOLRPGM(_n("y_min: "));////MSG_Y_MIN
  5259. if(READ(Y_MIN_PIN)^Y_MIN_ENDSTOP_INVERTING){
  5260. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_HIT);
  5261. }else{
  5262. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_OPEN);
  5263. }
  5264. SERIAL_PROTOCOLLN("");
  5265. #endif
  5266. #if defined(Y_MAX_PIN) && Y_MAX_PIN > -1
  5267. SERIAL_PROTOCOLRPGM(_n("y_max: "));////MSG_Y_MAX
  5268. if(READ(Y_MAX_PIN)^Y_MAX_ENDSTOP_INVERTING){
  5269. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_HIT);
  5270. }else{
  5271. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_OPEN);
  5272. }
  5273. SERIAL_PROTOCOLLN("");
  5274. #endif
  5275. #if defined(Z_MIN_PIN) && Z_MIN_PIN > -1
  5276. SERIAL_PROTOCOLRPGM(MSG_Z_MIN);
  5277. if(READ(Z_MIN_PIN)^Z_MIN_ENDSTOP_INVERTING){
  5278. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_HIT);
  5279. }else{
  5280. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_OPEN);
  5281. }
  5282. SERIAL_PROTOCOLLN("");
  5283. #endif
  5284. #if defined(Z_MAX_PIN) && Z_MAX_PIN > -1
  5285. SERIAL_PROTOCOLRPGM(MSG_Z_MAX);
  5286. if(READ(Z_MAX_PIN)^Z_MAX_ENDSTOP_INVERTING){
  5287. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_HIT);
  5288. }else{
  5289. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_OPEN);
  5290. }
  5291. SERIAL_PROTOCOLLN("");
  5292. #endif
  5293. break;
  5294. //TODO: update for all axis, use for loop
  5295. #ifdef BLINKM
  5296. case 150: // M150
  5297. {
  5298. byte red;
  5299. byte grn;
  5300. byte blu;
  5301. if(code_seen('R')) red = code_value();
  5302. if(code_seen('U')) grn = code_value();
  5303. if(code_seen('B')) blu = code_value();
  5304. SendColors(red,grn,blu);
  5305. }
  5306. break;
  5307. #endif //BLINKM
  5308. case 200: // M200 D<millimeters> set filament diameter and set E axis units to cubic millimeters (use S0 to set back to millimeters).
  5309. {
  5310. uint8_t extruder = active_extruder;
  5311. if(code_seen('T')) {
  5312. extruder = code_value();
  5313. if(extruder >= EXTRUDERS) {
  5314. SERIAL_ECHO_START;
  5315. SERIAL_ECHO(_n("M200 Invalid extruder "));////MSG_M200_INVALID_EXTRUDER
  5316. break;
  5317. }
  5318. }
  5319. if(code_seen('D')) {
  5320. float diameter = (float)code_value();
  5321. if (diameter == 0.0) {
  5322. // setting any extruder filament size disables volumetric on the assumption that
  5323. // slicers either generate in extruder values as cubic mm or as as filament feeds
  5324. // for all extruders
  5325. cs.volumetric_enabled = false;
  5326. } else {
  5327. cs.filament_size[extruder] = (float)code_value();
  5328. // make sure all extruders have some sane value for the filament size
  5329. cs.filament_size[0] = (cs.filament_size[0] == 0.0 ? DEFAULT_NOMINAL_FILAMENT_DIA : cs.filament_size[0]);
  5330. #if EXTRUDERS > 1
  5331. cs.filament_size[1] = (cs.filament_size[1] == 0.0 ? DEFAULT_NOMINAL_FILAMENT_DIA : cs.filament_size[1]);
  5332. #if EXTRUDERS > 2
  5333. cs.filament_size[2] = (cs.filament_size[2] == 0.0 ? DEFAULT_NOMINAL_FILAMENT_DIA : cs.filament_size[2]);
  5334. #endif
  5335. #endif
  5336. cs.volumetric_enabled = true;
  5337. }
  5338. } else {
  5339. //reserved for setting filament diameter via UFID or filament measuring device
  5340. break;
  5341. }
  5342. calculate_extruder_multipliers();
  5343. }
  5344. break;
  5345. case 201: // M201
  5346. for (int8_t i = 0; i < NUM_AXIS; i++)
  5347. {
  5348. if (code_seen(axis_codes[i]))
  5349. {
  5350. unsigned long val = code_value();
  5351. #ifdef TMC2130
  5352. unsigned long val_silent = val;
  5353. if ((i == X_AXIS) || (i == Y_AXIS))
  5354. {
  5355. if (val > NORMAL_MAX_ACCEL_XY)
  5356. val = NORMAL_MAX_ACCEL_XY;
  5357. if (val_silent > SILENT_MAX_ACCEL_XY)
  5358. val_silent = SILENT_MAX_ACCEL_XY;
  5359. }
  5360. cs.max_acceleration_units_per_sq_second_normal[i] = val;
  5361. cs.max_acceleration_units_per_sq_second_silent[i] = val_silent;
  5362. #else //TMC2130
  5363. max_acceleration_units_per_sq_second[i] = val;
  5364. #endif //TMC2130
  5365. }
  5366. }
  5367. // steps per sq second need to be updated to agree with the units per sq second (as they are what is used in the planner)
  5368. reset_acceleration_rates();
  5369. break;
  5370. #if 0 // Not used for Sprinter/grbl gen6
  5371. case 202: // M202
  5372. for(int8_t i=0; i < NUM_AXIS; i++) {
  5373. if(code_seen(axis_codes[i])) axis_travel_steps_per_sqr_second[i] = code_value() * cs.axis_steps_per_unit[i];
  5374. }
  5375. break;
  5376. #endif
  5377. case 203: // M203 max feedrate mm/sec
  5378. for (int8_t i = 0; i < NUM_AXIS; i++)
  5379. {
  5380. if (code_seen(axis_codes[i]))
  5381. {
  5382. float val = code_value();
  5383. #ifdef TMC2130
  5384. float val_silent = val;
  5385. if ((i == X_AXIS) || (i == Y_AXIS))
  5386. {
  5387. if (val > NORMAL_MAX_FEEDRATE_XY)
  5388. val = NORMAL_MAX_FEEDRATE_XY;
  5389. if (val_silent > SILENT_MAX_FEEDRATE_XY)
  5390. val_silent = SILENT_MAX_FEEDRATE_XY;
  5391. }
  5392. cs.max_feedrate_normal[i] = val;
  5393. cs.max_feedrate_silent[i] = val_silent;
  5394. #else //TMC2130
  5395. max_feedrate[i] = val;
  5396. #endif //TMC2130
  5397. }
  5398. }
  5399. break;
  5400. case 204:
  5401. //! M204 acclereration settings.
  5402. //!@n Supporting old format: M204 S[normal moves] T[filmanent only moves]
  5403. //!@n and new format: M204 P[printing moves] R[filmanent only moves] T[travel moves] (as of now T is ignored)
  5404. {
  5405. if(code_seen('S')) {
  5406. // Legacy acceleration format. This format is used by the legacy Marlin, MK2 or MK3 firmware,
  5407. // and it is also generated by Slic3r to control acceleration per extrusion type
  5408. // (there is a separate acceleration settings in Slicer for perimeter, first layer etc).
  5409. cs.acceleration = code_value();
  5410. // Interpret the T value as retract acceleration in the old Marlin format.
  5411. if(code_seen('T'))
  5412. cs.retract_acceleration = code_value();
  5413. } else {
  5414. // New acceleration format, compatible with the upstream Marlin.
  5415. if(code_seen('P'))
  5416. cs.acceleration = code_value();
  5417. if(code_seen('R'))
  5418. cs.retract_acceleration = code_value();
  5419. if(code_seen('T')) {
  5420. // Interpret the T value as the travel acceleration in the new Marlin format.
  5421. //FIXME Prusa3D firmware currently does not support travel acceleration value independent from the extruding acceleration value.
  5422. // travel_acceleration = code_value();
  5423. }
  5424. }
  5425. }
  5426. break;
  5427. case 205: //M205 advanced settings: minimum travel speed S=while printing T=travel only, B=minimum segment time X= maximum xy jerk, Z=maximum Z jerk
  5428. {
  5429. if(code_seen('S')) cs.minimumfeedrate = code_value();
  5430. if(code_seen('T')) cs.mintravelfeedrate = code_value();
  5431. if(code_seen('B')) cs.minsegmenttime = code_value() ;
  5432. if(code_seen('X')) cs.max_jerk[X_AXIS] = cs.max_jerk[Y_AXIS] = code_value();
  5433. if(code_seen('Y')) cs.max_jerk[Y_AXIS] = code_value();
  5434. if(code_seen('Z')) cs.max_jerk[Z_AXIS] = code_value();
  5435. if(code_seen('E')) cs.max_jerk[E_AXIS] = code_value();
  5436. if (cs.max_jerk[X_AXIS] > DEFAULT_XJERK) cs.max_jerk[X_AXIS] = DEFAULT_XJERK;
  5437. if (cs.max_jerk[Y_AXIS] > DEFAULT_YJERK) cs.max_jerk[Y_AXIS] = DEFAULT_YJERK;
  5438. }
  5439. break;
  5440. case 206: // M206 additional homing offset
  5441. for(int8_t i=0; i < 3; i++)
  5442. {
  5443. if(code_seen(axis_codes[i])) cs.add_homing[i] = code_value();
  5444. }
  5445. break;
  5446. #ifdef FWRETRACT
  5447. case 207: //M207 - set retract length S[positive mm] F[feedrate mm/min] Z[additional zlift/hop]
  5448. {
  5449. if(code_seen('S'))
  5450. {
  5451. cs.retract_length = code_value() ;
  5452. }
  5453. if(code_seen('F'))
  5454. {
  5455. cs.retract_feedrate = code_value()/60 ;
  5456. }
  5457. if(code_seen('Z'))
  5458. {
  5459. cs.retract_zlift = code_value() ;
  5460. }
  5461. }break;
  5462. case 208: // M208 - set retract recover length S[positive mm surplus to the M207 S*] F[feedrate mm/min]
  5463. {
  5464. if(code_seen('S'))
  5465. {
  5466. cs.retract_recover_length = code_value() ;
  5467. }
  5468. if(code_seen('F'))
  5469. {
  5470. cs.retract_recover_feedrate = code_value()/60 ;
  5471. }
  5472. }break;
  5473. case 209: // M209 - S<1=true/0=false> enable automatic retract detect if the slicer did not support G10/11: every normal extrude-only move will be classified as retract depending on the direction.
  5474. {
  5475. if(code_seen('S'))
  5476. {
  5477. int t= code_value() ;
  5478. switch(t)
  5479. {
  5480. case 0:
  5481. {
  5482. cs.autoretract_enabled=false;
  5483. retracted[0]=false;
  5484. #if EXTRUDERS > 1
  5485. retracted[1]=false;
  5486. #endif
  5487. #if EXTRUDERS > 2
  5488. retracted[2]=false;
  5489. #endif
  5490. }break;
  5491. case 1:
  5492. {
  5493. cs.autoretract_enabled=true;
  5494. retracted[0]=false;
  5495. #if EXTRUDERS > 1
  5496. retracted[1]=false;
  5497. #endif
  5498. #if EXTRUDERS > 2
  5499. retracted[2]=false;
  5500. #endif
  5501. }break;
  5502. default:
  5503. SERIAL_ECHO_START;
  5504. SERIAL_ECHORPGM(MSG_UNKNOWN_COMMAND);
  5505. SERIAL_ECHO(CMDBUFFER_CURRENT_STRING);
  5506. SERIAL_ECHOLNPGM("\"(1)");
  5507. }
  5508. }
  5509. }break;
  5510. #endif // FWRETRACT
  5511. #if EXTRUDERS > 1
  5512. case 218: // M218 - set hotend offset (in mm), T<extruder_number> X<offset_on_X> Y<offset_on_Y>
  5513. {
  5514. uint8_t extruder;
  5515. if(setTargetedHotend(218, extruder)){
  5516. break;
  5517. }
  5518. if(code_seen('X'))
  5519. {
  5520. extruder_offset[X_AXIS][extruder] = code_value();
  5521. }
  5522. if(code_seen('Y'))
  5523. {
  5524. extruder_offset[Y_AXIS][extruder] = code_value();
  5525. }
  5526. SERIAL_ECHO_START;
  5527. SERIAL_ECHORPGM(MSG_HOTEND_OFFSET);
  5528. for(extruder = 0; extruder < EXTRUDERS; extruder++)
  5529. {
  5530. SERIAL_ECHO(" ");
  5531. SERIAL_ECHO(extruder_offset[X_AXIS][extruder]);
  5532. SERIAL_ECHO(",");
  5533. SERIAL_ECHO(extruder_offset[Y_AXIS][extruder]);
  5534. }
  5535. SERIAL_ECHOLN("");
  5536. }break;
  5537. #endif
  5538. case 220: // M220 S<factor in percent>- set speed factor override percentage
  5539. {
  5540. if (code_seen('B')) //backup current speed factor
  5541. {
  5542. saved_feedmultiply_mm = feedmultiply;
  5543. }
  5544. if(code_seen('S'))
  5545. {
  5546. feedmultiply = code_value() ;
  5547. }
  5548. if (code_seen('R')) { //restore previous feedmultiply
  5549. feedmultiply = saved_feedmultiply_mm;
  5550. }
  5551. }
  5552. break;
  5553. case 221: // M221 S<factor in percent>- set extrude factor override percentage
  5554. {
  5555. if(code_seen('S'))
  5556. {
  5557. int tmp_code = code_value();
  5558. if (code_seen('T'))
  5559. {
  5560. uint8_t extruder;
  5561. if(setTargetedHotend(221, extruder)){
  5562. break;
  5563. }
  5564. extruder_multiply[extruder] = tmp_code;
  5565. }
  5566. else
  5567. {
  5568. extrudemultiply = tmp_code ;
  5569. }
  5570. }
  5571. calculate_extruder_multipliers();
  5572. }
  5573. break;
  5574. case 226: // M226 P<pin number> S<pin state>- Wait until the specified pin reaches the state required
  5575. {
  5576. if(code_seen('P')){
  5577. int pin_number = code_value(); // pin number
  5578. int pin_state = -1; // required pin state - default is inverted
  5579. if(code_seen('S')) pin_state = code_value(); // required pin state
  5580. if(pin_state >= -1 && pin_state <= 1){
  5581. for(int8_t i = 0; i < (int8_t)(sizeof(sensitive_pins)/sizeof(int)); i++)
  5582. {
  5583. if (sensitive_pins[i] == pin_number)
  5584. {
  5585. pin_number = -1;
  5586. break;
  5587. }
  5588. }
  5589. if (pin_number > -1)
  5590. {
  5591. int target = LOW;
  5592. st_synchronize();
  5593. pinMode(pin_number, INPUT);
  5594. switch(pin_state){
  5595. case 1:
  5596. target = HIGH;
  5597. break;
  5598. case 0:
  5599. target = LOW;
  5600. break;
  5601. case -1:
  5602. target = !digitalRead(pin_number);
  5603. break;
  5604. }
  5605. while(digitalRead(pin_number) != target){
  5606. manage_heater();
  5607. manage_inactivity();
  5608. lcd_update(0);
  5609. }
  5610. }
  5611. }
  5612. }
  5613. }
  5614. break;
  5615. #if NUM_SERVOS > 0
  5616. case 280: // M280 - set servo position absolute. P: servo index, S: angle or microseconds
  5617. {
  5618. int servo_index = -1;
  5619. int servo_position = 0;
  5620. if (code_seen('P'))
  5621. servo_index = code_value();
  5622. if (code_seen('S')) {
  5623. servo_position = code_value();
  5624. if ((servo_index >= 0) && (servo_index < NUM_SERVOS)) {
  5625. #if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
  5626. servos[servo_index].attach(0);
  5627. #endif
  5628. servos[servo_index].write(servo_position);
  5629. #if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
  5630. _delay(PROBE_SERVO_DEACTIVATION_DELAY);
  5631. servos[servo_index].detach();
  5632. #endif
  5633. }
  5634. else {
  5635. SERIAL_ECHO_START;
  5636. SERIAL_ECHO("Servo ");
  5637. SERIAL_ECHO(servo_index);
  5638. SERIAL_ECHOLN(" out of range");
  5639. }
  5640. }
  5641. else if (servo_index >= 0) {
  5642. SERIAL_PROTOCOL(MSG_OK);
  5643. SERIAL_PROTOCOL(" Servo ");
  5644. SERIAL_PROTOCOL(servo_index);
  5645. SERIAL_PROTOCOL(": ");
  5646. SERIAL_PROTOCOL(servos[servo_index].read());
  5647. SERIAL_PROTOCOLLN("");
  5648. }
  5649. }
  5650. break;
  5651. #endif // NUM_SERVOS > 0
  5652. #if (LARGE_FLASH == true && ( BEEPER > 0 || defined(ULTRALCD) || defined(LCD_USE_I2C_BUZZER)))
  5653. case 300: // M300
  5654. {
  5655. int beepS = code_seen('S') ? code_value() : 110;
  5656. int beepP = code_seen('P') ? code_value() : 1000;
  5657. if (beepS > 0)
  5658. {
  5659. #if BEEPER > 0
  5660. if((eSoundMode==e_SOUND_MODE_LOUD)||(eSoundMode==e_SOUND_MODE_ONCE))
  5661. _tone(BEEPER, beepS);
  5662. _delay(beepP);
  5663. _noTone(BEEPER);
  5664. #endif
  5665. }
  5666. else
  5667. {
  5668. _delay(beepP);
  5669. }
  5670. }
  5671. break;
  5672. #endif // M300
  5673. #ifdef PIDTEMP
  5674. case 301: // M301
  5675. {
  5676. if(code_seen('P')) cs.Kp = code_value();
  5677. if(code_seen('I')) cs.Ki = scalePID_i(code_value());
  5678. if(code_seen('D')) cs.Kd = scalePID_d(code_value());
  5679. #ifdef PID_ADD_EXTRUSION_RATE
  5680. if(code_seen('C')) Kc = code_value();
  5681. #endif
  5682. updatePID();
  5683. SERIAL_PROTOCOLRPGM(MSG_OK);
  5684. SERIAL_PROTOCOL(" p:");
  5685. SERIAL_PROTOCOL(cs.Kp);
  5686. SERIAL_PROTOCOL(" i:");
  5687. SERIAL_PROTOCOL(unscalePID_i(cs.Ki));
  5688. SERIAL_PROTOCOL(" d:");
  5689. SERIAL_PROTOCOL(unscalePID_d(cs.Kd));
  5690. #ifdef PID_ADD_EXTRUSION_RATE
  5691. SERIAL_PROTOCOL(" c:");
  5692. //Kc does not have scaling applied above, or in resetting defaults
  5693. SERIAL_PROTOCOL(Kc);
  5694. #endif
  5695. SERIAL_PROTOCOLLN("");
  5696. }
  5697. break;
  5698. #endif //PIDTEMP
  5699. #ifdef PIDTEMPBED
  5700. case 304: // M304
  5701. {
  5702. if(code_seen('P')) cs.bedKp = code_value();
  5703. if(code_seen('I')) cs.bedKi = scalePID_i(code_value());
  5704. if(code_seen('D')) cs.bedKd = scalePID_d(code_value());
  5705. updatePID();
  5706. SERIAL_PROTOCOLRPGM(MSG_OK);
  5707. SERIAL_PROTOCOL(" p:");
  5708. SERIAL_PROTOCOL(cs.bedKp);
  5709. SERIAL_PROTOCOL(" i:");
  5710. SERIAL_PROTOCOL(unscalePID_i(cs.bedKi));
  5711. SERIAL_PROTOCOL(" d:");
  5712. SERIAL_PROTOCOL(unscalePID_d(cs.bedKd));
  5713. SERIAL_PROTOCOLLN("");
  5714. }
  5715. break;
  5716. #endif //PIDTEMP
  5717. case 240: // M240 Triggers a camera by emulating a Canon RC-1 : http://www.doc-diy.net/photo/rc-1_hacked/
  5718. {
  5719. #ifdef CHDK
  5720. SET_OUTPUT(CHDK);
  5721. WRITE(CHDK, HIGH);
  5722. chdkHigh = _millis();
  5723. chdkActive = true;
  5724. #else
  5725. #if defined(PHOTOGRAPH_PIN) && PHOTOGRAPH_PIN > -1
  5726. const uint8_t NUM_PULSES=16;
  5727. const float PULSE_LENGTH=0.01524;
  5728. for(int i=0; i < NUM_PULSES; i++) {
  5729. WRITE(PHOTOGRAPH_PIN, HIGH);
  5730. _delay_ms(PULSE_LENGTH);
  5731. WRITE(PHOTOGRAPH_PIN, LOW);
  5732. _delay_ms(PULSE_LENGTH);
  5733. }
  5734. _delay(7.33);
  5735. for(int i=0; i < NUM_PULSES; i++) {
  5736. WRITE(PHOTOGRAPH_PIN, HIGH);
  5737. _delay_ms(PULSE_LENGTH);
  5738. WRITE(PHOTOGRAPH_PIN, LOW);
  5739. _delay_ms(PULSE_LENGTH);
  5740. }
  5741. #endif
  5742. #endif //chdk end if
  5743. }
  5744. break;
  5745. #ifdef PREVENT_DANGEROUS_EXTRUDE
  5746. case 302: // allow cold extrudes, or set the minimum extrude temperature
  5747. {
  5748. float temp = .0;
  5749. if (code_seen('S')) temp=code_value();
  5750. set_extrude_min_temp(temp);
  5751. }
  5752. break;
  5753. #endif
  5754. case 303: // M303 PID autotune
  5755. {
  5756. float temp = 150.0;
  5757. int e=0;
  5758. int c=5;
  5759. if (code_seen('E')) e=code_value();
  5760. if (e<0)
  5761. temp=70;
  5762. if (code_seen('S')) temp=code_value();
  5763. if (code_seen('C')) c=code_value();
  5764. PID_autotune(temp, e, c);
  5765. }
  5766. break;
  5767. case 400: // M400 finish all moves
  5768. {
  5769. st_synchronize();
  5770. }
  5771. break;
  5772. case 403: //! M403 set filament type (material) for particular extruder and send this information to mmu
  5773. {
  5774. //! currently three different materials are needed (default, flex and PVA)
  5775. //! add storing this information for different load/unload profiles etc. in the future
  5776. //!firmware does not wait for "ok" from mmu
  5777. if (mmu_enabled)
  5778. {
  5779. uint8_t extruder = 255;
  5780. uint8_t filament = FILAMENT_UNDEFINED;
  5781. if(code_seen('E')) extruder = code_value();
  5782. if(code_seen('F')) filament = code_value();
  5783. mmu_set_filament_type(extruder, filament);
  5784. }
  5785. }
  5786. break;
  5787. case 500: // M500 Store settings in EEPROM
  5788. {
  5789. Config_StoreSettings();
  5790. }
  5791. break;
  5792. case 501: // M501 Read settings from EEPROM
  5793. {
  5794. Config_RetrieveSettings();
  5795. }
  5796. break;
  5797. case 502: // M502 Revert to default settings
  5798. {
  5799. Config_ResetDefault();
  5800. }
  5801. break;
  5802. case 503: // M503 print settings currently in memory
  5803. {
  5804. Config_PrintSettings();
  5805. }
  5806. break;
  5807. case 509: //M509 Force language selection
  5808. {
  5809. lang_reset();
  5810. SERIAL_ECHO_START;
  5811. SERIAL_PROTOCOLPGM(("LANG SEL FORCED"));
  5812. }
  5813. break;
  5814. #ifdef ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED
  5815. case 540:
  5816. {
  5817. if(code_seen('S')) abort_on_endstop_hit = code_value() > 0;
  5818. }
  5819. break;
  5820. #endif
  5821. #ifdef CUSTOM_M_CODE_SET_Z_PROBE_OFFSET
  5822. case CUSTOM_M_CODE_SET_Z_PROBE_OFFSET:
  5823. {
  5824. float value;
  5825. if (code_seen('Z'))
  5826. {
  5827. value = code_value();
  5828. if ((Z_PROBE_OFFSET_RANGE_MIN <= value) && (value <= Z_PROBE_OFFSET_RANGE_MAX))
  5829. {
  5830. cs.zprobe_zoffset = -value; // compare w/ line 278 of ConfigurationStore.cpp
  5831. SERIAL_ECHO_START;
  5832. SERIAL_ECHOLNRPGM(CAT4(MSG_ZPROBE_ZOFFSET, " ", MSG_OK,PSTR("")));
  5833. SERIAL_PROTOCOLLN("");
  5834. }
  5835. else
  5836. {
  5837. SERIAL_ECHO_START;
  5838. SERIAL_ECHORPGM(MSG_ZPROBE_ZOFFSET);
  5839. SERIAL_ECHORPGM(MSG_Z_MIN);
  5840. SERIAL_ECHO(Z_PROBE_OFFSET_RANGE_MIN);
  5841. SERIAL_ECHORPGM(MSG_Z_MAX);
  5842. SERIAL_ECHO(Z_PROBE_OFFSET_RANGE_MAX);
  5843. SERIAL_PROTOCOLLN("");
  5844. }
  5845. }
  5846. else
  5847. {
  5848. SERIAL_ECHO_START;
  5849. SERIAL_ECHOLNRPGM(CAT2(MSG_ZPROBE_ZOFFSET, PSTR(" : ")));
  5850. SERIAL_ECHO(-cs.zprobe_zoffset);
  5851. SERIAL_PROTOCOLLN("");
  5852. }
  5853. break;
  5854. }
  5855. #endif // CUSTOM_M_CODE_SET_Z_PROBE_OFFSET
  5856. #ifdef FILAMENTCHANGEENABLE
  5857. case 600: //Pause for filament change X[pos] Y[pos] Z[relative lift] E[initial retract] L[later retract distance for removal]
  5858. {
  5859. st_synchronize();
  5860. float x_position = current_position[X_AXIS];
  5861. float y_position = current_position[Y_AXIS];
  5862. float z_shift = 0; // is it necessary to be a float?
  5863. float e_shift_init = 0;
  5864. float e_shift_late = 0;
  5865. bool automatic = false;
  5866. //Retract extruder
  5867. if(code_seen('E'))
  5868. {
  5869. e_shift_init = code_value();
  5870. }
  5871. else
  5872. {
  5873. #ifdef FILAMENTCHANGE_FIRSTRETRACT
  5874. e_shift_init = FILAMENTCHANGE_FIRSTRETRACT ;
  5875. #endif
  5876. }
  5877. //currently don't work as we are using the same unload sequence as in M702, needs re-work
  5878. if (code_seen('L'))
  5879. {
  5880. e_shift_late = code_value();
  5881. }
  5882. else
  5883. {
  5884. #ifdef FILAMENTCHANGE_FINALRETRACT
  5885. e_shift_late = FILAMENTCHANGE_FINALRETRACT;
  5886. #endif
  5887. }
  5888. //Lift Z
  5889. if(code_seen('Z'))
  5890. {
  5891. z_shift = code_value();
  5892. }
  5893. else
  5894. {
  5895. z_shift = gcode_M600_filament_change_z_shift<uint8_t>();
  5896. }
  5897. //Move XY to side
  5898. if(code_seen('X'))
  5899. {
  5900. x_position = code_value();
  5901. }
  5902. else
  5903. {
  5904. #ifdef FILAMENTCHANGE_XPOS
  5905. x_position = FILAMENTCHANGE_XPOS;
  5906. #endif
  5907. }
  5908. if(code_seen('Y'))
  5909. {
  5910. y_position = code_value();
  5911. }
  5912. else
  5913. {
  5914. #ifdef FILAMENTCHANGE_YPOS
  5915. y_position = FILAMENTCHANGE_YPOS ;
  5916. #endif
  5917. }
  5918. if (mmu_enabled && code_seen("AUTO"))
  5919. automatic = true;
  5920. gcode_M600(automatic, x_position, y_position, z_shift, e_shift_init, e_shift_late);
  5921. }
  5922. break;
  5923. #endif //FILAMENTCHANGEENABLE
  5924. case 601: //! M601 - Pause print
  5925. {
  5926. cmdqueue_pop_front(); //trick because we want skip this command (M601) after restore
  5927. lcd_pause_print();
  5928. }
  5929. break;
  5930. case 602: { //! M602 - Resume print
  5931. lcd_resume_print();
  5932. }
  5933. break;
  5934. #ifdef PINDA_THERMISTOR
  5935. case 860: // M860 - Wait for PINDA thermistor to reach target temperature.
  5936. {
  5937. int set_target_pinda = 0;
  5938. if (code_seen('S')) {
  5939. set_target_pinda = code_value();
  5940. }
  5941. else {
  5942. break;
  5943. }
  5944. LCD_MESSAGERPGM(_T(MSG_PLEASE_WAIT));
  5945. SERIAL_PROTOCOLPGM("Wait for PINDA target temperature:");
  5946. SERIAL_PROTOCOL(set_target_pinda);
  5947. SERIAL_PROTOCOLLN("");
  5948. codenum = _millis();
  5949. cancel_heatup = false;
  5950. bool is_pinda_cooling = false;
  5951. if ((degTargetBed() == 0) && (degTargetHotend(0) == 0)) {
  5952. is_pinda_cooling = true;
  5953. }
  5954. while ( ((!is_pinda_cooling) && (!cancel_heatup) && (current_temperature_pinda < set_target_pinda)) || (is_pinda_cooling && (current_temperature_pinda > set_target_pinda)) ) {
  5955. if ((_millis() - codenum) > 1000) //Print Temp Reading every 1 second while waiting.
  5956. {
  5957. SERIAL_PROTOCOLPGM("P:");
  5958. SERIAL_PROTOCOL_F(current_temperature_pinda, 1);
  5959. SERIAL_PROTOCOLPGM("/");
  5960. SERIAL_PROTOCOL(set_target_pinda);
  5961. SERIAL_PROTOCOLLN("");
  5962. codenum = _millis();
  5963. }
  5964. manage_heater();
  5965. manage_inactivity();
  5966. lcd_update(0);
  5967. }
  5968. LCD_MESSAGERPGM(MSG_OK);
  5969. break;
  5970. }
  5971. case 861: // M861 - Set/Read PINDA temperature compensation offsets
  5972. if (code_seen('?')) { // ? - Print out current EEPROM offset values
  5973. uint8_t cal_status = calibration_status_pinda();
  5974. int16_t usteps = 0;
  5975. cal_status ? SERIAL_PROTOCOLLN("PINDA cal status: 1") : SERIAL_PROTOCOLLN("PINDA cal status: 0");
  5976. SERIAL_PROTOCOLLN("index, temp, ustep, um");
  5977. for (uint8_t i = 0; i < 6; i++)
  5978. {
  5979. if(i>0) EEPROM_read_B(EEPROM_PROBE_TEMP_SHIFT + (i-1) * 2, &usteps);
  5980. float mm = ((float)usteps) / cs.axis_steps_per_unit[Z_AXIS];
  5981. i == 0 ? SERIAL_PROTOCOLPGM("n/a") : SERIAL_PROTOCOL(i - 1);
  5982. SERIAL_PROTOCOLPGM(", ");
  5983. SERIAL_PROTOCOL(35 + (i * 5));
  5984. SERIAL_PROTOCOLPGM(", ");
  5985. SERIAL_PROTOCOL(usteps);
  5986. SERIAL_PROTOCOLPGM(", ");
  5987. SERIAL_PROTOCOL(mm * 1000);
  5988. SERIAL_PROTOCOLLN("");
  5989. }
  5990. }
  5991. else if (code_seen('!')) { // ! - Set factory default values
  5992. eeprom_write_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 1);
  5993. int16_t z_shift = 8; //40C - 20um - 8usteps
  5994. EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT, &z_shift);
  5995. z_shift = 24; //45C - 60um - 24usteps
  5996. EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + 2, &z_shift);
  5997. z_shift = 48; //50C - 120um - 48usteps
  5998. EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + 4, &z_shift);
  5999. z_shift = 80; //55C - 200um - 80usteps
  6000. EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + 6, &z_shift);
  6001. z_shift = 120; //60C - 300um - 120usteps
  6002. EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + 8, &z_shift);
  6003. SERIAL_PROTOCOLLN("factory restored");
  6004. }
  6005. else if (code_seen('Z')) { // Z - Set all values to 0 (effectively disabling PINDA temperature compensation)
  6006. eeprom_write_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 1);
  6007. int16_t z_shift = 0;
  6008. for (uint8_t i = 0; i < 5; i++) EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + i * 2, &z_shift);
  6009. SERIAL_PROTOCOLLN("zerorized");
  6010. }
  6011. else if (code_seen('S')) { // Sxxx Iyyy - Set compensation ustep value S for compensation table index I
  6012. int16_t usteps = code_value();
  6013. if (code_seen('I')) {
  6014. uint8_t index = code_value();
  6015. if (index < 5) {
  6016. EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + index * 2, &usteps);
  6017. SERIAL_PROTOCOLLN("OK");
  6018. SERIAL_PROTOCOLLN("index, temp, ustep, um");
  6019. for (uint8_t i = 0; i < 6; i++)
  6020. {
  6021. usteps = 0;
  6022. if (i>0) EEPROM_read_B(EEPROM_PROBE_TEMP_SHIFT + (i - 1) * 2, &usteps);
  6023. float mm = ((float)usteps) / cs.axis_steps_per_unit[Z_AXIS];
  6024. i == 0 ? SERIAL_PROTOCOLPGM("n/a") : SERIAL_PROTOCOL(i - 1);
  6025. SERIAL_PROTOCOLPGM(", ");
  6026. SERIAL_PROTOCOL(35 + (i * 5));
  6027. SERIAL_PROTOCOLPGM(", ");
  6028. SERIAL_PROTOCOL(usteps);
  6029. SERIAL_PROTOCOLPGM(", ");
  6030. SERIAL_PROTOCOL(mm * 1000);
  6031. SERIAL_PROTOCOLLN("");
  6032. }
  6033. }
  6034. }
  6035. }
  6036. else {
  6037. SERIAL_PROTOCOLPGM("no valid command");
  6038. }
  6039. break;
  6040. #endif //PINDA_THERMISTOR
  6041. #ifdef LIN_ADVANCE
  6042. case 900: // M900: Set LIN_ADVANCE options.
  6043. gcode_M900();
  6044. break;
  6045. #endif
  6046. case 907: // M907 Set digital trimpot motor current using axis codes.
  6047. {
  6048. #ifdef TMC2130
  6049. for (int i = 0; i < NUM_AXIS; i++)
  6050. if(code_seen(axis_codes[i]))
  6051. {
  6052. long cur_mA = code_value_long();
  6053. uint8_t val = tmc2130_cur2val(cur_mA);
  6054. tmc2130_set_current_h(i, val);
  6055. tmc2130_set_current_r(i, val);
  6056. //if (i == E_AXIS) printf_P(PSTR("E-axis current=%ldmA\n"), cur_mA);
  6057. }
  6058. #else //TMC2130
  6059. #if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
  6060. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) st_current_set(i,code_value());
  6061. if(code_seen('B')) st_current_set(4,code_value());
  6062. if(code_seen('S')) for(int i=0;i<=4;i++) st_current_set(i,code_value());
  6063. #endif
  6064. #ifdef MOTOR_CURRENT_PWM_XY_PIN
  6065. if(code_seen('X')) st_current_set(0, code_value());
  6066. #endif
  6067. #ifdef MOTOR_CURRENT_PWM_Z_PIN
  6068. if(code_seen('Z')) st_current_set(1, code_value());
  6069. #endif
  6070. #ifdef MOTOR_CURRENT_PWM_E_PIN
  6071. if(code_seen('E')) st_current_set(2, code_value());
  6072. #endif
  6073. #endif //TMC2130
  6074. }
  6075. break;
  6076. case 908: // M908 Control digital trimpot directly.
  6077. {
  6078. #if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
  6079. uint8_t channel,current;
  6080. if(code_seen('P')) channel=code_value();
  6081. if(code_seen('S')) current=code_value();
  6082. digitalPotWrite(channel, current);
  6083. #endif
  6084. }
  6085. break;
  6086. #ifdef TMC2130_SERVICE_CODES_M910_M918
  6087. case 910: //! M910 - TMC2130 init
  6088. {
  6089. tmc2130_init();
  6090. }
  6091. break;
  6092. case 911: //! M911 - Set TMC2130 holding currents
  6093. {
  6094. if (code_seen('X')) tmc2130_set_current_h(0, code_value());
  6095. if (code_seen('Y')) tmc2130_set_current_h(1, code_value());
  6096. if (code_seen('Z')) tmc2130_set_current_h(2, code_value());
  6097. if (code_seen('E')) tmc2130_set_current_h(3, code_value());
  6098. }
  6099. break;
  6100. case 912: //! M912 - Set TMC2130 running currents
  6101. {
  6102. if (code_seen('X')) tmc2130_set_current_r(0, code_value());
  6103. if (code_seen('Y')) tmc2130_set_current_r(1, code_value());
  6104. if (code_seen('Z')) tmc2130_set_current_r(2, code_value());
  6105. if (code_seen('E')) tmc2130_set_current_r(3, code_value());
  6106. }
  6107. break;
  6108. case 913: //! M913 - Print TMC2130 currents
  6109. {
  6110. tmc2130_print_currents();
  6111. }
  6112. break;
  6113. case 914: //! M914 - Set normal mode
  6114. {
  6115. tmc2130_mode = TMC2130_MODE_NORMAL;
  6116. update_mode_profile();
  6117. tmc2130_init();
  6118. }
  6119. break;
  6120. case 915: //! M915 - Set silent mode
  6121. {
  6122. tmc2130_mode = TMC2130_MODE_SILENT;
  6123. update_mode_profile();
  6124. tmc2130_init();
  6125. }
  6126. break;
  6127. case 916: //! M916 - Set sg_thrs
  6128. {
  6129. if (code_seen('X')) tmc2130_sg_thr[X_AXIS] = code_value();
  6130. if (code_seen('Y')) tmc2130_sg_thr[Y_AXIS] = code_value();
  6131. if (code_seen('Z')) tmc2130_sg_thr[Z_AXIS] = code_value();
  6132. if (code_seen('E')) tmc2130_sg_thr[E_AXIS] = code_value();
  6133. for (uint8_t a = X_AXIS; a <= E_AXIS; a++)
  6134. printf_P(_N("tmc2130_sg_thr[%c]=%d\n"), "XYZE"[a], tmc2130_sg_thr[a]);
  6135. }
  6136. break;
  6137. case 917: //! M917 - Set TMC2130 pwm_ampl
  6138. {
  6139. if (code_seen('X')) tmc2130_set_pwm_ampl(0, code_value());
  6140. if (code_seen('Y')) tmc2130_set_pwm_ampl(1, code_value());
  6141. if (code_seen('Z')) tmc2130_set_pwm_ampl(2, code_value());
  6142. if (code_seen('E')) tmc2130_set_pwm_ampl(3, code_value());
  6143. }
  6144. break;
  6145. case 918: //! M918 - Set TMC2130 pwm_grad
  6146. {
  6147. if (code_seen('X')) tmc2130_set_pwm_grad(0, code_value());
  6148. if (code_seen('Y')) tmc2130_set_pwm_grad(1, code_value());
  6149. if (code_seen('Z')) tmc2130_set_pwm_grad(2, code_value());
  6150. if (code_seen('E')) tmc2130_set_pwm_grad(3, code_value());
  6151. }
  6152. break;
  6153. #endif //TMC2130_SERVICE_CODES_M910_M918
  6154. case 350: //! M350 - Set microstepping mode. Warning: Steps per unit remains unchanged. S code sets stepping mode for all drivers.
  6155. {
  6156. #ifdef TMC2130
  6157. if(code_seen('E'))
  6158. {
  6159. uint16_t res_new = code_value();
  6160. if ((res_new == 8) || (res_new == 16) || (res_new == 32) || (res_new == 64) || (res_new == 128))
  6161. {
  6162. st_synchronize();
  6163. uint8_t axis = E_AXIS;
  6164. uint16_t res = tmc2130_get_res(axis);
  6165. tmc2130_set_res(axis, res_new);
  6166. cs.axis_ustep_resolution[axis] = res_new;
  6167. if (res_new > res)
  6168. {
  6169. uint16_t fac = (res_new / res);
  6170. cs.axis_steps_per_unit[axis] *= fac;
  6171. position[E_AXIS] *= fac;
  6172. }
  6173. else
  6174. {
  6175. uint16_t fac = (res / res_new);
  6176. cs.axis_steps_per_unit[axis] /= fac;
  6177. position[E_AXIS] /= fac;
  6178. }
  6179. }
  6180. }
  6181. #else //TMC2130
  6182. #if defined(X_MS1_PIN) && X_MS1_PIN > -1
  6183. if(code_seen('S')) for(int i=0;i<=4;i++) microstep_mode(i,code_value());
  6184. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) microstep_mode(i,(uint8_t)code_value());
  6185. if(code_seen('B')) microstep_mode(4,code_value());
  6186. microstep_readings();
  6187. #endif
  6188. #endif //TMC2130
  6189. }
  6190. break;
  6191. case 351: //! M351 - Toggle MS1 MS2 pins directly, S# determines MS1 or MS2, X# sets the pin high/low.
  6192. {
  6193. #if defined(X_MS1_PIN) && X_MS1_PIN > -1
  6194. if(code_seen('S')) switch((int)code_value())
  6195. {
  6196. case 1:
  6197. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) microstep_ms(i,code_value(),-1);
  6198. if(code_seen('B')) microstep_ms(4,code_value(),-1);
  6199. break;
  6200. case 2:
  6201. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) microstep_ms(i,-1,code_value());
  6202. if(code_seen('B')) microstep_ms(4,-1,code_value());
  6203. break;
  6204. }
  6205. microstep_readings();
  6206. #endif
  6207. }
  6208. break;
  6209. case 701: //! M701 - load filament
  6210. {
  6211. if (mmu_enabled && code_seen('E'))
  6212. tmp_extruder = code_value();
  6213. gcode_M701();
  6214. }
  6215. break;
  6216. case 702: //! M702 [U C] -
  6217. {
  6218. #ifdef SNMM
  6219. if (code_seen('U'))
  6220. extr_unload_used(); //! if "U" unload all filaments which were used in current print
  6221. else if (code_seen('C'))
  6222. extr_unload(); //! if "C" unload just current filament
  6223. else
  6224. extr_unload_all(); //! otherwise unload all filaments
  6225. #else
  6226. if (code_seen('C')) {
  6227. if(mmu_enabled) extr_unload(); //! if "C" unload current filament; if mmu is not present no action is performed
  6228. }
  6229. else {
  6230. if(mmu_enabled) extr_unload(); //! unload current filament
  6231. else unload_filament();
  6232. }
  6233. #endif //SNMM
  6234. }
  6235. break;
  6236. case 999: // M999: Restart after being stopped
  6237. Stopped = false;
  6238. lcd_reset_alert_level();
  6239. gcode_LastN = Stopped_gcode_LastN;
  6240. FlushSerialRequestResend();
  6241. break;
  6242. default:
  6243. printf_P(PSTR("Unknown M code: %s \n"), cmdbuffer + bufindr + CMDHDRSIZE);
  6244. }
  6245. // printf_P(_N("END M-CODE=%u\n"), mcode_in_progress);
  6246. mcode_in_progress = 0;
  6247. }
  6248. }
  6249. // end if(code_seen('M')) (end of M codes)
  6250. //! T<extruder nr.> - select extruder in case of multi extruder printer
  6251. //! select filament in case of MMU_V2
  6252. //! if extruder is "?", open menu to let the user select extruder/filament
  6253. //!
  6254. //! For MMU_V2:
  6255. //! @n T<n> Gcode to extrude at least 38.10 mm at feedrate 19.02 mm/s must follow immediately to load to extruder wheels.
  6256. //! @n T? Gcode to extrude shouldn't have to follow, load to extruder wheels is done automatically
  6257. //! @n Tx Same as T?, except nozzle doesn't have to be preheated. Tc must be placed after extruder nozzle is preheated to finish filament load.
  6258. //! @n Tc Load to nozzle after filament was prepared by Tc and extruder nozzle is already heated.
  6259. else if(code_seen('T'))
  6260. {
  6261. int index;
  6262. bool load_to_nozzle = false;
  6263. for (index = 1; *(strchr_pointer + index) == ' ' || *(strchr_pointer + index) == '\t'; index++);
  6264. *(strchr_pointer + index) = tolower(*(strchr_pointer + index));
  6265. if ((*(strchr_pointer + index) < '0' || *(strchr_pointer + index) > '4') && *(strchr_pointer + index) != '?' && *(strchr_pointer + index) != 'x' && *(strchr_pointer + index) != 'c') {
  6266. SERIAL_ECHOLNPGM("Invalid T code.");
  6267. }
  6268. else if (*(strchr_pointer + index) == 'x'){ //load to bondtech gears; if mmu is not present do nothing
  6269. if (mmu_enabled)
  6270. {
  6271. tmp_extruder = choose_menu_P(_T(MSG_CHOOSE_FILAMENT), _T(MSG_FILAMENT));
  6272. if ((tmp_extruder == mmu_extruder) && mmu_fil_loaded) //dont execute the same T-code twice in a row
  6273. {
  6274. printf_P(PSTR("Duplicate T-code ignored.\n"));
  6275. }
  6276. else
  6277. {
  6278. st_synchronize();
  6279. mmu_command(MmuCmd::T0 + tmp_extruder);
  6280. manage_response(true, true, MMU_TCODE_MOVE);
  6281. }
  6282. }
  6283. }
  6284. else if (*(strchr_pointer + index) == 'c') { //load to from bondtech gears to nozzle (nozzle should be preheated)
  6285. if (mmu_enabled)
  6286. {
  6287. st_synchronize();
  6288. mmu_continue_loading(is_usb_printing);
  6289. mmu_extruder = tmp_extruder; //filament change is finished
  6290. mmu_load_to_nozzle();
  6291. }
  6292. }
  6293. else {
  6294. if (*(strchr_pointer + index) == '?')
  6295. {
  6296. if(mmu_enabled)
  6297. {
  6298. tmp_extruder = choose_menu_P(_T(MSG_CHOOSE_FILAMENT), _T(MSG_FILAMENT));
  6299. load_to_nozzle = true;
  6300. } else
  6301. {
  6302. tmp_extruder = choose_menu_P(_T(MSG_CHOOSE_EXTRUDER), _T(MSG_EXTRUDER));
  6303. }
  6304. }
  6305. else {
  6306. tmp_extruder = code_value();
  6307. if (mmu_enabled && lcd_autoDepleteEnabled())
  6308. {
  6309. tmp_extruder = ad_getAlternative(tmp_extruder);
  6310. }
  6311. }
  6312. st_synchronize();
  6313. snmm_filaments_used |= (1 << tmp_extruder); //for stop print
  6314. if (mmu_enabled)
  6315. {
  6316. if ((tmp_extruder == mmu_extruder) && mmu_fil_loaded) //dont execute the same T-code twice in a row
  6317. {
  6318. printf_P(PSTR("Duplicate T-code ignored.\n"));
  6319. }
  6320. else
  6321. {
  6322. #if defined(MMU_HAS_CUTTER) && defined(MMU_ALWAYS_CUT)
  6323. if (EEPROM_MMU_CUTTER_ENABLED_always == eeprom_read_byte((uint8_t*)EEPROM_MMU_CUTTER_ENABLED))
  6324. {
  6325. mmu_command(MmuCmd::K0 + tmp_extruder);
  6326. manage_response(true, true, MMU_UNLOAD_MOVE);
  6327. }
  6328. #endif //defined(MMU_HAS_CUTTER) && defined(MMU_ALWAYS_CUT)
  6329. mmu_command(MmuCmd::T0 + tmp_extruder);
  6330. manage_response(true, true, MMU_TCODE_MOVE);
  6331. mmu_continue_loading(is_usb_printing);
  6332. mmu_extruder = tmp_extruder; //filament change is finished
  6333. if (load_to_nozzle)// for single material usage with mmu
  6334. {
  6335. mmu_load_to_nozzle();
  6336. }
  6337. }
  6338. }
  6339. else
  6340. {
  6341. #ifdef SNMM
  6342. #ifdef LIN_ADVANCE
  6343. if (mmu_extruder != tmp_extruder)
  6344. clear_current_adv_vars(); //Check if the selected extruder is not the active one and reset LIN_ADVANCE variables if so.
  6345. #endif
  6346. mmu_extruder = tmp_extruder;
  6347. _delay(100);
  6348. disable_e0();
  6349. disable_e1();
  6350. disable_e2();
  6351. pinMode(E_MUX0_PIN, OUTPUT);
  6352. pinMode(E_MUX1_PIN, OUTPUT);
  6353. _delay(100);
  6354. SERIAL_ECHO_START;
  6355. SERIAL_ECHO("T:");
  6356. SERIAL_ECHOLN((int)tmp_extruder);
  6357. switch (tmp_extruder) {
  6358. case 1:
  6359. WRITE(E_MUX0_PIN, HIGH);
  6360. WRITE(E_MUX1_PIN, LOW);
  6361. break;
  6362. case 2:
  6363. WRITE(E_MUX0_PIN, LOW);
  6364. WRITE(E_MUX1_PIN, HIGH);
  6365. break;
  6366. case 3:
  6367. WRITE(E_MUX0_PIN, HIGH);
  6368. WRITE(E_MUX1_PIN, HIGH);
  6369. break;
  6370. default:
  6371. WRITE(E_MUX0_PIN, LOW);
  6372. WRITE(E_MUX1_PIN, LOW);
  6373. break;
  6374. }
  6375. _delay(100);
  6376. #else //SNMM
  6377. if (tmp_extruder >= EXTRUDERS) {
  6378. SERIAL_ECHO_START;
  6379. SERIAL_ECHOPGM("T");
  6380. SERIAL_PROTOCOLLN((int)tmp_extruder);
  6381. SERIAL_ECHOLNRPGM(_n("Invalid extruder"));////MSG_INVALID_EXTRUDER
  6382. }
  6383. else {
  6384. #if EXTRUDERS > 1
  6385. boolean make_move = false;
  6386. #endif
  6387. if (code_seen('F')) {
  6388. #if EXTRUDERS > 1
  6389. make_move = true;
  6390. #endif
  6391. next_feedrate = code_value();
  6392. if (next_feedrate > 0.0) {
  6393. feedrate = next_feedrate;
  6394. }
  6395. }
  6396. #if EXTRUDERS > 1
  6397. if (tmp_extruder != active_extruder) {
  6398. // Save current position to return to after applying extruder offset
  6399. memcpy(destination, current_position, sizeof(destination));
  6400. // Offset extruder (only by XY)
  6401. int i;
  6402. for (i = 0; i < 2; i++) {
  6403. current_position[i] = current_position[i] -
  6404. extruder_offset[i][active_extruder] +
  6405. extruder_offset[i][tmp_extruder];
  6406. }
  6407. // Set the new active extruder and position
  6408. active_extruder = tmp_extruder;
  6409. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  6410. // Move to the old position if 'F' was in the parameters
  6411. if (make_move && Stopped == false) {
  6412. prepare_move();
  6413. }
  6414. }
  6415. #endif
  6416. SERIAL_ECHO_START;
  6417. SERIAL_ECHORPGM(_n("Active Extruder: "));////MSG_ACTIVE_EXTRUDER
  6418. SERIAL_PROTOCOLLN((int)active_extruder);
  6419. }
  6420. #endif //SNMM
  6421. }
  6422. }
  6423. } // end if(code_seen('T')) (end of T codes)
  6424. else if (code_seen('D')) // D codes (debug)
  6425. {
  6426. switch((int)code_value())
  6427. {
  6428. case -1: //! D-1 - Endless loop
  6429. dcode__1(); break;
  6430. #ifdef DEBUG_DCODES
  6431. case 0: //! D0 - Reset
  6432. dcode_0(); break;
  6433. case 1: //! D1 - Clear EEPROM
  6434. dcode_1(); break;
  6435. case 2: //! D2 - Read/Write RAM
  6436. dcode_2(); break;
  6437. #endif //DEBUG_DCODES
  6438. #ifdef DEBUG_DCODE3
  6439. case 3: //! D3 - Read/Write EEPROM
  6440. dcode_3(); break;
  6441. #endif //DEBUG_DCODE3
  6442. #ifdef DEBUG_DCODES
  6443. case 4: //! D4 - Read/Write PIN
  6444. dcode_4(); break;
  6445. #endif //DEBUG_DCODES
  6446. #ifdef DEBUG_DCODE5
  6447. case 5: // D5 - Read/Write FLASH
  6448. dcode_5(); break;
  6449. break;
  6450. #endif //DEBUG_DCODE5
  6451. #ifdef DEBUG_DCODES
  6452. case 6: // D6 - Read/Write external FLASH
  6453. dcode_6(); break;
  6454. case 7: //! D7 - Read/Write Bootloader
  6455. dcode_7(); break;
  6456. case 8: //! D8 - Read/Write PINDA
  6457. dcode_8(); break;
  6458. case 9: //! D9 - Read/Write ADC
  6459. dcode_9(); break;
  6460. case 10: //! D10 - XYZ calibration = OK
  6461. dcode_10(); break;
  6462. #endif //DEBUG_DCODES
  6463. #ifdef HEATBED_ANALYSIS
  6464. case 80:
  6465. {
  6466. float dimension_x = 40;
  6467. float dimension_y = 40;
  6468. int points_x = 40;
  6469. int points_y = 40;
  6470. float offset_x = 74;
  6471. float offset_y = 33;
  6472. if (code_seen('E')) dimension_x = code_value();
  6473. if (code_seen('F')) dimension_y = code_value();
  6474. if (code_seen('G')) {points_x = code_value(); }
  6475. if (code_seen('H')) {points_y = code_value(); }
  6476. if (code_seen('I')) {offset_x = code_value(); }
  6477. if (code_seen('J')) {offset_y = code_value(); }
  6478. printf_P(PSTR("DIM X: %f\n"), dimension_x);
  6479. printf_P(PSTR("DIM Y: %f\n"), dimension_y);
  6480. printf_P(PSTR("POINTS X: %d\n"), points_x);
  6481. printf_P(PSTR("POINTS Y: %d\n"), points_y);
  6482. printf_P(PSTR("OFFSET X: %f\n"), offset_x);
  6483. printf_P(PSTR("OFFSET Y: %f\n"), offset_y);
  6484. bed_check(dimension_x,dimension_y,points_x,points_y,offset_x,offset_y);
  6485. }break;
  6486. case 81:
  6487. {
  6488. float dimension_x = 40;
  6489. float dimension_y = 40;
  6490. int points_x = 40;
  6491. int points_y = 40;
  6492. float offset_x = 74;
  6493. float offset_y = 33;
  6494. if (code_seen('E')) dimension_x = code_value();
  6495. if (code_seen('F')) dimension_y = code_value();
  6496. if (code_seen("G")) { strchr_pointer+=1; points_x = code_value(); }
  6497. if (code_seen("H")) { strchr_pointer+=1; points_y = code_value(); }
  6498. if (code_seen("I")) { strchr_pointer+=1; offset_x = code_value(); }
  6499. if (code_seen("J")) { strchr_pointer+=1; offset_y = code_value(); }
  6500. bed_analysis(dimension_x,dimension_y,points_x,points_y,offset_x,offset_y);
  6501. } break;
  6502. #endif //HEATBED_ANALYSIS
  6503. #ifdef DEBUG_DCODES
  6504. case 106: //D106 print measured fan speed for different pwm values
  6505. {
  6506. for (int i = 255; i > 0; i = i - 5) {
  6507. fanSpeed = i;
  6508. //delay_keep_alive(2000);
  6509. for (int j = 0; j < 100; j++) {
  6510. delay_keep_alive(100);
  6511. }
  6512. printf_P(_N("%d: %d\n"), i, fan_speed[1]);
  6513. }
  6514. }break;
  6515. #ifdef TMC2130
  6516. case 2130: //! D2130 - TMC2130
  6517. dcode_2130(); break;
  6518. #endif //TMC2130
  6519. #if (defined (FILAMENT_SENSOR) && defined(PAT9125))
  6520. case 9125: //! D9125 - FILAMENT_SENSOR
  6521. dcode_9125(); break;
  6522. #endif //FILAMENT_SENSOR
  6523. #endif //DEBUG_DCODES
  6524. }
  6525. }
  6526. else
  6527. {
  6528. SERIAL_ECHO_START;
  6529. SERIAL_ECHORPGM(MSG_UNKNOWN_COMMAND);
  6530. SERIAL_ECHO(CMDBUFFER_CURRENT_STRING);
  6531. SERIAL_ECHOLNPGM("\"(2)");
  6532. }
  6533. KEEPALIVE_STATE(NOT_BUSY);
  6534. ClearToSend();
  6535. }
  6536. void FlushSerialRequestResend()
  6537. {
  6538. //char cmdbuffer[bufindr][100]="Resend:";
  6539. MYSERIAL.flush();
  6540. printf_P(_N("%S: %ld\n%S\n"), _n("Resend"), gcode_LastN + 1, MSG_OK);
  6541. }
  6542. // Confirm the execution of a command, if sent from a serial line.
  6543. // Execution of a command from a SD card will not be confirmed.
  6544. void ClearToSend()
  6545. {
  6546. previous_millis_cmd = _millis();
  6547. if ((CMDBUFFER_CURRENT_TYPE == CMDBUFFER_CURRENT_TYPE_USB) || (CMDBUFFER_CURRENT_TYPE == CMDBUFFER_CURRENT_TYPE_USB_WITH_LINENR))
  6548. SERIAL_PROTOCOLLNRPGM(MSG_OK);
  6549. }
  6550. #if MOTHERBOARD == BOARD_RAMBO_MINI_1_0 || MOTHERBOARD == BOARD_RAMBO_MINI_1_3
  6551. void update_currents() {
  6552. float current_high[3] = DEFAULT_PWM_MOTOR_CURRENT_LOUD;
  6553. float current_low[3] = DEFAULT_PWM_MOTOR_CURRENT;
  6554. float tmp_motor[3];
  6555. //SERIAL_ECHOLNPGM("Currents updated: ");
  6556. if (destination[Z_AXIS] < Z_SILENT) {
  6557. //SERIAL_ECHOLNPGM("LOW");
  6558. for (uint8_t i = 0; i < 3; i++) {
  6559. st_current_set(i, current_low[i]);
  6560. /*MYSERIAL.print(int(i));
  6561. SERIAL_ECHOPGM(": ");
  6562. MYSERIAL.println(current_low[i]);*/
  6563. }
  6564. }
  6565. else if (destination[Z_AXIS] > Z_HIGH_POWER) {
  6566. //SERIAL_ECHOLNPGM("HIGH");
  6567. for (uint8_t i = 0; i < 3; i++) {
  6568. st_current_set(i, current_high[i]);
  6569. /*MYSERIAL.print(int(i));
  6570. SERIAL_ECHOPGM(": ");
  6571. MYSERIAL.println(current_high[i]);*/
  6572. }
  6573. }
  6574. else {
  6575. for (uint8_t i = 0; i < 3; i++) {
  6576. float q = current_low[i] - Z_SILENT*((current_high[i] - current_low[i]) / (Z_HIGH_POWER - Z_SILENT));
  6577. tmp_motor[i] = ((current_high[i] - current_low[i]) / (Z_HIGH_POWER - Z_SILENT))*destination[Z_AXIS] + q;
  6578. st_current_set(i, tmp_motor[i]);
  6579. /*MYSERIAL.print(int(i));
  6580. SERIAL_ECHOPGM(": ");
  6581. MYSERIAL.println(tmp_motor[i]);*/
  6582. }
  6583. }
  6584. }
  6585. #endif //MOTHERBOARD == BOARD_RAMBO_MINI_1_0 || MOTHERBOARD == BOARD_RAMBO_MINI_1_3
  6586. void get_coordinates()
  6587. {
  6588. bool seen[4]={false,false,false,false};
  6589. for(int8_t i=0; i < NUM_AXIS; i++) {
  6590. if(code_seen(axis_codes[i]))
  6591. {
  6592. bool relative = axis_relative_modes[i] || relative_mode;
  6593. destination[i] = (float)code_value();
  6594. if (i == E_AXIS) {
  6595. float emult = extruder_multiplier[active_extruder];
  6596. if (emult != 1.) {
  6597. if (! relative) {
  6598. destination[i] -= current_position[i];
  6599. relative = true;
  6600. }
  6601. destination[i] *= emult;
  6602. }
  6603. }
  6604. if (relative)
  6605. destination[i] += current_position[i];
  6606. seen[i]=true;
  6607. #if MOTHERBOARD == BOARD_RAMBO_MINI_1_0 || MOTHERBOARD == BOARD_RAMBO_MINI_1_3
  6608. if (i == Z_AXIS && SilentModeMenu == SILENT_MODE_AUTO) update_currents();
  6609. #endif //MOTHERBOARD == BOARD_RAMBO_MINI_1_0 || MOTHERBOARD == BOARD_RAMBO_MINI_1_3
  6610. }
  6611. else destination[i] = current_position[i]; //Are these else lines really needed?
  6612. }
  6613. if(code_seen('F')) {
  6614. next_feedrate = code_value();
  6615. #ifdef MAX_SILENT_FEEDRATE
  6616. if (tmc2130_mode == TMC2130_MODE_SILENT)
  6617. if (next_feedrate > MAX_SILENT_FEEDRATE) next_feedrate = MAX_SILENT_FEEDRATE;
  6618. #endif //MAX_SILENT_FEEDRATE
  6619. if(next_feedrate > 0.0) feedrate = next_feedrate;
  6620. if (!seen[0] && !seen[1] && !seen[2] && seen[3])
  6621. {
  6622. // float e_max_speed =
  6623. // printf_P(PSTR("E MOVE speed %7.3f\n"), feedrate / 60)
  6624. }
  6625. }
  6626. }
  6627. void get_arc_coordinates()
  6628. {
  6629. #ifdef SF_ARC_FIX
  6630. bool relative_mode_backup = relative_mode;
  6631. relative_mode = true;
  6632. #endif
  6633. get_coordinates();
  6634. #ifdef SF_ARC_FIX
  6635. relative_mode=relative_mode_backup;
  6636. #endif
  6637. if(code_seen('I')) {
  6638. offset[0] = code_value();
  6639. }
  6640. else {
  6641. offset[0] = 0.0;
  6642. }
  6643. if(code_seen('J')) {
  6644. offset[1] = code_value();
  6645. }
  6646. else {
  6647. offset[1] = 0.0;
  6648. }
  6649. }
  6650. void clamp_to_software_endstops(float target[3])
  6651. {
  6652. #ifdef DEBUG_DISABLE_SWLIMITS
  6653. return;
  6654. #endif //DEBUG_DISABLE_SWLIMITS
  6655. world2machine_clamp(target[0], target[1]);
  6656. // Clamp the Z coordinate.
  6657. if (min_software_endstops) {
  6658. float negative_z_offset = 0;
  6659. #ifdef ENABLE_AUTO_BED_LEVELING
  6660. if (Z_PROBE_OFFSET_FROM_EXTRUDER < 0) negative_z_offset = negative_z_offset + Z_PROBE_OFFSET_FROM_EXTRUDER;
  6661. if (cs.add_homing[Z_AXIS] < 0) negative_z_offset = negative_z_offset + cs.add_homing[Z_AXIS];
  6662. #endif
  6663. if (target[Z_AXIS] < min_pos[Z_AXIS]+negative_z_offset) target[Z_AXIS] = min_pos[Z_AXIS]+negative_z_offset;
  6664. }
  6665. if (max_software_endstops) {
  6666. if (target[Z_AXIS] > max_pos[Z_AXIS]) target[Z_AXIS] = max_pos[Z_AXIS];
  6667. }
  6668. }
  6669. #ifdef MESH_BED_LEVELING
  6670. void mesh_plan_buffer_line(const float &x, const float &y, const float &z, const float &e, const float &feed_rate, const uint8_t extruder) {
  6671. float dx = x - current_position[X_AXIS];
  6672. float dy = y - current_position[Y_AXIS];
  6673. float dz = z - current_position[Z_AXIS];
  6674. int n_segments = 0;
  6675. if (mbl.active) {
  6676. float len = abs(dx) + abs(dy);
  6677. if (len > 0)
  6678. // Split to 3cm segments or shorter.
  6679. n_segments = int(ceil(len / 30.f));
  6680. }
  6681. if (n_segments > 1) {
  6682. float de = e - current_position[E_AXIS];
  6683. for (int i = 1; i < n_segments; ++ i) {
  6684. float t = float(i) / float(n_segments);
  6685. if (saved_printing || (mbl.active == false)) return;
  6686. plan_buffer_line(
  6687. current_position[X_AXIS] + t * dx,
  6688. current_position[Y_AXIS] + t * dy,
  6689. current_position[Z_AXIS] + t * dz,
  6690. current_position[E_AXIS] + t * de,
  6691. feed_rate, extruder);
  6692. }
  6693. }
  6694. // The rest of the path.
  6695. plan_buffer_line(x, y, z, e, feed_rate, extruder);
  6696. current_position[X_AXIS] = x;
  6697. current_position[Y_AXIS] = y;
  6698. current_position[Z_AXIS] = z;
  6699. current_position[E_AXIS] = e;
  6700. }
  6701. #endif // MESH_BED_LEVELING
  6702. void prepare_move()
  6703. {
  6704. clamp_to_software_endstops(destination);
  6705. previous_millis_cmd = _millis();
  6706. // Do not use feedmultiply for E or Z only moves
  6707. if( (current_position[X_AXIS] == destination [X_AXIS]) && (current_position[Y_AXIS] == destination [Y_AXIS])) {
  6708. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  6709. }
  6710. else {
  6711. #ifdef MESH_BED_LEVELING
  6712. mesh_plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate*feedmultiply*(1./(60.f*100.f)), active_extruder);
  6713. #else
  6714. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate*feedmultiply*(1./(60.f*100.f)), active_extruder);
  6715. #endif
  6716. }
  6717. for(int8_t i=0; i < NUM_AXIS; i++) {
  6718. current_position[i] = destination[i];
  6719. }
  6720. }
  6721. void prepare_arc_move(char isclockwise) {
  6722. float r = hypot(offset[X_AXIS], offset[Y_AXIS]); // Compute arc radius for mc_arc
  6723. // Trace the arc
  6724. mc_arc(current_position, destination, offset, X_AXIS, Y_AXIS, Z_AXIS, feedrate*feedmultiply/60/100.0, r, isclockwise, active_extruder);
  6725. // As far as the parser is concerned, the position is now == target. In reality the
  6726. // motion control system might still be processing the action and the real tool position
  6727. // in any intermediate location.
  6728. for(int8_t i=0; i < NUM_AXIS; i++) {
  6729. current_position[i] = destination[i];
  6730. }
  6731. previous_millis_cmd = _millis();
  6732. }
  6733. #if defined(CONTROLLERFAN_PIN) && CONTROLLERFAN_PIN > -1
  6734. #if defined(FAN_PIN)
  6735. #if CONTROLLERFAN_PIN == FAN_PIN
  6736. #error "You cannot set CONTROLLERFAN_PIN equal to FAN_PIN"
  6737. #endif
  6738. #endif
  6739. unsigned long lastMotor = 0; //Save the time for when a motor was turned on last
  6740. unsigned long lastMotorCheck = 0;
  6741. void controllerFan()
  6742. {
  6743. if ((_millis() - lastMotorCheck) >= 2500) //Not a time critical function, so we only check every 2500ms
  6744. {
  6745. lastMotorCheck = _millis();
  6746. if(!READ(X_ENABLE_PIN) || !READ(Y_ENABLE_PIN) || !READ(Z_ENABLE_PIN) || (soft_pwm_bed > 0)
  6747. #if EXTRUDERS > 2
  6748. || !READ(E2_ENABLE_PIN)
  6749. #endif
  6750. #if EXTRUDER > 1
  6751. #if defined(X2_ENABLE_PIN) && X2_ENABLE_PIN > -1
  6752. || !READ(X2_ENABLE_PIN)
  6753. #endif
  6754. || !READ(E1_ENABLE_PIN)
  6755. #endif
  6756. || !READ(E0_ENABLE_PIN)) //If any of the drivers are enabled...
  6757. {
  6758. lastMotor = _millis(); //... set time to NOW so the fan will turn on
  6759. }
  6760. if ((_millis() - lastMotor) >= (CONTROLLERFAN_SECS*1000UL) || lastMotor == 0) //If the last time any driver was enabled, is longer since than CONTROLLERSEC...
  6761. {
  6762. digitalWrite(CONTROLLERFAN_PIN, 0);
  6763. analogWrite(CONTROLLERFAN_PIN, 0);
  6764. }
  6765. else
  6766. {
  6767. // allows digital or PWM fan output to be used (see M42 handling)
  6768. digitalWrite(CONTROLLERFAN_PIN, CONTROLLERFAN_SPEED);
  6769. analogWrite(CONTROLLERFAN_PIN, CONTROLLERFAN_SPEED);
  6770. }
  6771. }
  6772. }
  6773. #endif
  6774. #ifdef TEMP_STAT_LEDS
  6775. static bool blue_led = false;
  6776. static bool red_led = false;
  6777. static uint32_t stat_update = 0;
  6778. void handle_status_leds(void) {
  6779. float max_temp = 0.0;
  6780. if(_millis() > stat_update) {
  6781. stat_update += 500; // Update every 0.5s
  6782. for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) {
  6783. max_temp = max(max_temp, degHotend(cur_extruder));
  6784. max_temp = max(max_temp, degTargetHotend(cur_extruder));
  6785. }
  6786. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  6787. max_temp = max(max_temp, degTargetBed());
  6788. max_temp = max(max_temp, degBed());
  6789. #endif
  6790. if((max_temp > 55.0) && (red_led == false)) {
  6791. digitalWrite(STAT_LED_RED, 1);
  6792. digitalWrite(STAT_LED_BLUE, 0);
  6793. red_led = true;
  6794. blue_led = false;
  6795. }
  6796. if((max_temp < 54.0) && (blue_led == false)) {
  6797. digitalWrite(STAT_LED_RED, 0);
  6798. digitalWrite(STAT_LED_BLUE, 1);
  6799. red_led = false;
  6800. blue_led = true;
  6801. }
  6802. }
  6803. }
  6804. #endif
  6805. #ifdef SAFETYTIMER
  6806. /**
  6807. * @brief Turn off heating after safetytimer_inactive_time milliseconds of inactivity
  6808. *
  6809. * Full screen blocking notification message is shown after heater turning off.
  6810. * Paused print is not considered inactivity, as nozzle is cooled anyway and bed cooling would
  6811. * damage print.
  6812. *
  6813. * If safetytimer_inactive_time is zero, feature is disabled (heating is never turned off because of inactivity)
  6814. */
  6815. static void handleSafetyTimer()
  6816. {
  6817. #if (EXTRUDERS > 1)
  6818. #error Implemented only for one extruder.
  6819. #endif //(EXTRUDERS > 1)
  6820. if ((PRINTER_ACTIVE) || (!degTargetBed() && !degTargetHotend(0)) || (!safetytimer_inactive_time))
  6821. {
  6822. safetyTimer.stop();
  6823. }
  6824. else if ((degTargetBed() || degTargetHotend(0)) && (!safetyTimer.running()))
  6825. {
  6826. safetyTimer.start();
  6827. }
  6828. else if (safetyTimer.expired(farm_mode?FARM_DEFAULT_SAFETYTIMER_TIME_ms:safetytimer_inactive_time))
  6829. {
  6830. setTargetBed(0);
  6831. setAllTargetHotends(0);
  6832. lcd_show_fullscreen_message_and_wait_P(_i("Heating disabled by safety timer."));////MSG_BED_HEATING_SAFETY_DISABLED
  6833. }
  6834. }
  6835. #endif //SAFETYTIMER
  6836. void manage_inactivity(bool ignore_stepper_queue/*=false*/) //default argument set in Marlin.h
  6837. {
  6838. bool bInhibitFlag;
  6839. #ifdef FILAMENT_SENSOR
  6840. if (mmu_enabled == false)
  6841. {
  6842. //-// if (mcode_in_progress != 600) //M600 not in progress
  6843. #ifdef PAT9125
  6844. bInhibitFlag=(menu_menu==lcd_menu_extruder_info); // Support::ExtruderInfo menu active
  6845. #endif // PAT9125
  6846. #ifdef IR_SENSOR
  6847. bInhibitFlag=(menu_menu==lcd_menu_show_sensors_state); // Support::SensorInfo menu active
  6848. #endif // IR_SENSOR
  6849. if ((mcode_in_progress != 600) && (eFilamentAction != FilamentAction::AutoLoad) && (!bInhibitFlag)) //M600 not in progress, preHeat @ autoLoad menu not active, Support::ExtruderInfo/SensorInfo menu not active
  6850. {
  6851. if (!moves_planned() && !IS_SD_PRINTING && !is_usb_printing && (lcd_commands_type != LcdCommands::Layer1Cal) && !wizard_active)
  6852. {
  6853. if (fsensor_check_autoload())
  6854. {
  6855. #ifdef PAT9125
  6856. fsensor_autoload_check_stop();
  6857. #endif //PAT9125
  6858. //-// if (degHotend0() > EXTRUDE_MINTEMP)
  6859. if(0)
  6860. {
  6861. if ((eSoundMode == e_SOUND_MODE_LOUD) || (eSoundMode == e_SOUND_MODE_ONCE))
  6862. _tone(BEEPER, 1000);
  6863. delay_keep_alive(50);
  6864. _noTone(BEEPER);
  6865. loading_flag = true;
  6866. enquecommand_front_P((PSTR("M701")));
  6867. }
  6868. else
  6869. {
  6870. /*
  6871. lcd_update_enable(false);
  6872. show_preheat_nozzle_warning();
  6873. lcd_update_enable(true);
  6874. */
  6875. eFilamentAction=FilamentAction::AutoLoad;
  6876. bFilamentFirstRun=false;
  6877. if(target_temperature[0]>=EXTRUDE_MINTEMP)
  6878. {
  6879. bFilamentPreheatState=true;
  6880. // mFilamentItem(target_temperature[0],target_temperature_bed);
  6881. menu_submenu(mFilamentItemForce);
  6882. }
  6883. else
  6884. {
  6885. menu_submenu(mFilamentMenu);
  6886. lcd_timeoutToStatus.start();
  6887. }
  6888. }
  6889. }
  6890. }
  6891. else
  6892. {
  6893. #ifdef PAT9125
  6894. fsensor_autoload_check_stop();
  6895. #endif //PAT9125
  6896. fsensor_update();
  6897. }
  6898. }
  6899. }
  6900. #endif //FILAMENT_SENSOR
  6901. #ifdef SAFETYTIMER
  6902. handleSafetyTimer();
  6903. #endif //SAFETYTIMER
  6904. #if defined(KILL_PIN) && KILL_PIN > -1
  6905. static int killCount = 0; // make the inactivity button a bit less responsive
  6906. const int KILL_DELAY = 10000;
  6907. #endif
  6908. if(buflen < (BUFSIZE-1)){
  6909. get_command();
  6910. }
  6911. if( (_millis() - previous_millis_cmd) > max_inactive_time )
  6912. if(max_inactive_time)
  6913. kill(_n(""), 4);
  6914. if(stepper_inactive_time) {
  6915. if( (_millis() - previous_millis_cmd) > stepper_inactive_time )
  6916. {
  6917. if(blocks_queued() == false && ignore_stepper_queue == false) {
  6918. disable_x();
  6919. disable_y();
  6920. disable_z();
  6921. disable_e0();
  6922. disable_e1();
  6923. disable_e2();
  6924. }
  6925. }
  6926. }
  6927. #ifdef CHDK //Check if pin should be set to LOW after M240 set it to HIGH
  6928. if (chdkActive && (_millis() - chdkHigh > CHDK_DELAY))
  6929. {
  6930. chdkActive = false;
  6931. WRITE(CHDK, LOW);
  6932. }
  6933. #endif
  6934. #if defined(KILL_PIN) && KILL_PIN > -1
  6935. // Check if the kill button was pressed and wait just in case it was an accidental
  6936. // key kill key press
  6937. // -------------------------------------------------------------------------------
  6938. if( 0 == READ(KILL_PIN) )
  6939. {
  6940. killCount++;
  6941. }
  6942. else if (killCount > 0)
  6943. {
  6944. killCount--;
  6945. }
  6946. // Exceeded threshold and we can confirm that it was not accidental
  6947. // KILL the machine
  6948. // ----------------------------------------------------------------
  6949. if ( killCount >= KILL_DELAY)
  6950. {
  6951. kill("", 5);
  6952. }
  6953. #endif
  6954. #if defined(CONTROLLERFAN_PIN) && CONTROLLERFAN_PIN > -1
  6955. controllerFan(); //Check if fan should be turned on to cool stepper drivers down
  6956. #endif
  6957. #ifdef EXTRUDER_RUNOUT_PREVENT
  6958. if( (_millis() - previous_millis_cmd) > EXTRUDER_RUNOUT_SECONDS*1000 )
  6959. if(degHotend(active_extruder)>EXTRUDER_RUNOUT_MINTEMP)
  6960. {
  6961. bool oldstatus=READ(E0_ENABLE_PIN);
  6962. enable_e0();
  6963. float oldepos=current_position[E_AXIS];
  6964. float oldedes=destination[E_AXIS];
  6965. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS],
  6966. destination[E_AXIS]+EXTRUDER_RUNOUT_EXTRUDE*EXTRUDER_RUNOUT_ESTEPS/cs.axis_steps_per_unit[E_AXIS],
  6967. EXTRUDER_RUNOUT_SPEED/60.*EXTRUDER_RUNOUT_ESTEPS/cs.axis_steps_per_unit[E_AXIS], active_extruder);
  6968. current_position[E_AXIS]=oldepos;
  6969. destination[E_AXIS]=oldedes;
  6970. plan_set_e_position(oldepos);
  6971. previous_millis_cmd=_millis();
  6972. st_synchronize();
  6973. WRITE(E0_ENABLE_PIN,oldstatus);
  6974. }
  6975. #endif
  6976. #ifdef TEMP_STAT_LEDS
  6977. handle_status_leds();
  6978. #endif
  6979. check_axes_activity();
  6980. mmu_loop();
  6981. }
  6982. void kill(const char *full_screen_message, unsigned char id)
  6983. {
  6984. printf_P(_N("KILL: %d\n"), id);
  6985. //return;
  6986. cli(); // Stop interrupts
  6987. disable_heater();
  6988. disable_x();
  6989. // SERIAL_ECHOLNPGM("kill - disable Y");
  6990. disable_y();
  6991. disable_z();
  6992. disable_e0();
  6993. disable_e1();
  6994. disable_e2();
  6995. #if defined(PS_ON_PIN) && PS_ON_PIN > -1
  6996. pinMode(PS_ON_PIN,INPUT);
  6997. #endif
  6998. SERIAL_ERROR_START;
  6999. SERIAL_ERRORLNRPGM(_n("Printer halted. kill() called!"));////MSG_ERR_KILLED
  7000. if (full_screen_message != NULL) {
  7001. SERIAL_ERRORLNRPGM(full_screen_message);
  7002. lcd_display_message_fullscreen_P(full_screen_message);
  7003. } else {
  7004. LCD_ALERTMESSAGERPGM(_n("KILLED. "));////MSG_KILLED
  7005. }
  7006. // FMC small patch to update the LCD before ending
  7007. sei(); // enable interrupts
  7008. for ( int i=5; i--; lcd_update(0))
  7009. {
  7010. _delay(200);
  7011. }
  7012. cli(); // disable interrupts
  7013. suicide();
  7014. while(1)
  7015. {
  7016. #ifdef WATCHDOG
  7017. wdt_reset();
  7018. #endif //WATCHDOG
  7019. /* Intentionally left empty */
  7020. } // Wait for reset
  7021. }
  7022. void Stop()
  7023. {
  7024. disable_heater();
  7025. if(Stopped == false) {
  7026. Stopped = true;
  7027. lcd_print_stop();
  7028. Stopped_gcode_LastN = gcode_LastN; // Save last g_code for restart
  7029. SERIAL_ERROR_START;
  7030. SERIAL_ERRORLNRPGM(MSG_ERR_STOPPED);
  7031. LCD_MESSAGERPGM(_T(MSG_STOPPED));
  7032. }
  7033. }
  7034. bool IsStopped() { return Stopped; };
  7035. #ifdef FAST_PWM_FAN
  7036. void setPwmFrequency(uint8_t pin, int val)
  7037. {
  7038. val &= 0x07;
  7039. switch(digitalPinToTimer(pin))
  7040. {
  7041. #if defined(TCCR0A)
  7042. case TIMER0A:
  7043. case TIMER0B:
  7044. // TCCR0B &= ~(_BV(CS00) | _BV(CS01) | _BV(CS02));
  7045. // TCCR0B |= val;
  7046. break;
  7047. #endif
  7048. #if defined(TCCR1A)
  7049. case TIMER1A:
  7050. case TIMER1B:
  7051. // TCCR1B &= ~(_BV(CS10) | _BV(CS11) | _BV(CS12));
  7052. // TCCR1B |= val;
  7053. break;
  7054. #endif
  7055. #if defined(TCCR2)
  7056. case TIMER2:
  7057. case TIMER2:
  7058. TCCR2 &= ~(_BV(CS10) | _BV(CS11) | _BV(CS12));
  7059. TCCR2 |= val;
  7060. break;
  7061. #endif
  7062. #if defined(TCCR2A)
  7063. case TIMER2A:
  7064. case TIMER2B:
  7065. TCCR2B &= ~(_BV(CS20) | _BV(CS21) | _BV(CS22));
  7066. TCCR2B |= val;
  7067. break;
  7068. #endif
  7069. #if defined(TCCR3A)
  7070. case TIMER3A:
  7071. case TIMER3B:
  7072. case TIMER3C:
  7073. TCCR3B &= ~(_BV(CS30) | _BV(CS31) | _BV(CS32));
  7074. TCCR3B |= val;
  7075. break;
  7076. #endif
  7077. #if defined(TCCR4A)
  7078. case TIMER4A:
  7079. case TIMER4B:
  7080. case TIMER4C:
  7081. TCCR4B &= ~(_BV(CS40) | _BV(CS41) | _BV(CS42));
  7082. TCCR4B |= val;
  7083. break;
  7084. #endif
  7085. #if defined(TCCR5A)
  7086. case TIMER5A:
  7087. case TIMER5B:
  7088. case TIMER5C:
  7089. TCCR5B &= ~(_BV(CS50) | _BV(CS51) | _BV(CS52));
  7090. TCCR5B |= val;
  7091. break;
  7092. #endif
  7093. }
  7094. }
  7095. #endif //FAST_PWM_FAN
  7096. //! @brief Get and validate extruder number
  7097. //!
  7098. //! If it is not specified, active_extruder is returned in parameter extruder.
  7099. //! @param [in] code M code number
  7100. //! @param [out] extruder
  7101. //! @return error
  7102. //! @retval true Invalid extruder specified in T code
  7103. //! @retval false Valid extruder specified in T code, or not specifiead
  7104. bool setTargetedHotend(int code, uint8_t &extruder)
  7105. {
  7106. extruder = active_extruder;
  7107. if(code_seen('T')) {
  7108. extruder = code_value();
  7109. if(extruder >= EXTRUDERS) {
  7110. SERIAL_ECHO_START;
  7111. switch(code){
  7112. case 104:
  7113. SERIAL_ECHORPGM(_n("M104 Invalid extruder "));////MSG_M104_INVALID_EXTRUDER
  7114. break;
  7115. case 105:
  7116. SERIAL_ECHO(_n("M105 Invalid extruder "));////MSG_M105_INVALID_EXTRUDER
  7117. break;
  7118. case 109:
  7119. SERIAL_ECHO(_n("M109 Invalid extruder "));////MSG_M109_INVALID_EXTRUDER
  7120. break;
  7121. case 218:
  7122. SERIAL_ECHO(_n("M218 Invalid extruder "));////MSG_M218_INVALID_EXTRUDER
  7123. break;
  7124. case 221:
  7125. SERIAL_ECHO(_n("M221 Invalid extruder "));////MSG_M221_INVALID_EXTRUDER
  7126. break;
  7127. }
  7128. SERIAL_PROTOCOLLN((int)extruder);
  7129. return true;
  7130. }
  7131. }
  7132. return false;
  7133. }
  7134. void save_statistics(unsigned long _total_filament_used, unsigned long _total_print_time) //_total_filament_used unit: mm/100; print time in s
  7135. {
  7136. if (eeprom_read_byte((uint8_t *)EEPROM_TOTALTIME) == 255 && eeprom_read_byte((uint8_t *)EEPROM_TOTALTIME + 1) == 255 && eeprom_read_byte((uint8_t *)EEPROM_TOTALTIME + 2) == 255 && eeprom_read_byte((uint8_t *)EEPROM_TOTALTIME + 3) == 255)
  7137. {
  7138. eeprom_update_dword((uint32_t *)EEPROM_TOTALTIME, 0);
  7139. eeprom_update_dword((uint32_t *)EEPROM_FILAMENTUSED, 0);
  7140. }
  7141. unsigned long _previous_filament = eeprom_read_dword((uint32_t *)EEPROM_FILAMENTUSED); //_previous_filament unit: cm
  7142. unsigned long _previous_time = eeprom_read_dword((uint32_t *)EEPROM_TOTALTIME); //_previous_time unit: min
  7143. eeprom_update_dword((uint32_t *)EEPROM_TOTALTIME, _previous_time + (_total_print_time/60)); //EEPROM_TOTALTIME unit: min
  7144. eeprom_update_dword((uint32_t *)EEPROM_FILAMENTUSED, _previous_filament + (_total_filament_used / 1000));
  7145. total_filament_used = 0;
  7146. }
  7147. float calculate_extruder_multiplier(float diameter) {
  7148. float out = 1.f;
  7149. if (cs.volumetric_enabled && diameter > 0.f) {
  7150. float area = M_PI * diameter * diameter * 0.25;
  7151. out = 1.f / area;
  7152. }
  7153. if (extrudemultiply != 100)
  7154. out *= float(extrudemultiply) * 0.01f;
  7155. return out;
  7156. }
  7157. void calculate_extruder_multipliers() {
  7158. extruder_multiplier[0] = calculate_extruder_multiplier(cs.filament_size[0]);
  7159. #if EXTRUDERS > 1
  7160. extruder_multiplier[1] = calculate_extruder_multiplier(cs.filament_size[1]);
  7161. #if EXTRUDERS > 2
  7162. extruder_multiplier[2] = calculate_extruder_multiplier(cs.filament_size[2]);
  7163. #endif
  7164. #endif
  7165. }
  7166. void delay_keep_alive(unsigned int ms)
  7167. {
  7168. for (;;) {
  7169. manage_heater();
  7170. // Manage inactivity, but don't disable steppers on timeout.
  7171. manage_inactivity(true);
  7172. lcd_update(0);
  7173. if (ms == 0)
  7174. break;
  7175. else if (ms >= 50) {
  7176. _delay(50);
  7177. ms -= 50;
  7178. } else {
  7179. _delay(ms);
  7180. ms = 0;
  7181. }
  7182. }
  7183. }
  7184. static void wait_for_heater(long codenum, uint8_t extruder) {
  7185. #ifdef TEMP_RESIDENCY_TIME
  7186. long residencyStart;
  7187. residencyStart = -1;
  7188. /* continue to loop until we have reached the target temp
  7189. _and_ until TEMP_RESIDENCY_TIME hasn't passed since we reached it */
  7190. while ((!cancel_heatup) && ((residencyStart == -1) ||
  7191. (residencyStart >= 0 && (((unsigned int)(_millis() - residencyStart)) < (TEMP_RESIDENCY_TIME * 1000UL))))) {
  7192. #else
  7193. while (target_direction ? (isHeatingHotend(tmp_extruder)) : (isCoolingHotend(tmp_extruder) && (CooldownNoWait == false))) {
  7194. #endif //TEMP_RESIDENCY_TIME
  7195. if ((_millis() - codenum) > 1000UL)
  7196. { //Print Temp Reading and remaining time every 1 second while heating up/cooling down
  7197. if (!farm_mode) {
  7198. SERIAL_PROTOCOLPGM("T:");
  7199. SERIAL_PROTOCOL_F(degHotend(extruder), 1);
  7200. SERIAL_PROTOCOLPGM(" E:");
  7201. SERIAL_PROTOCOL((int)extruder);
  7202. #ifdef TEMP_RESIDENCY_TIME
  7203. SERIAL_PROTOCOLPGM(" W:");
  7204. if (residencyStart > -1)
  7205. {
  7206. codenum = ((TEMP_RESIDENCY_TIME * 1000UL) - (_millis() - residencyStart)) / 1000UL;
  7207. SERIAL_PROTOCOLLN(codenum);
  7208. }
  7209. else
  7210. {
  7211. SERIAL_PROTOCOLLN("?");
  7212. }
  7213. }
  7214. #else
  7215. SERIAL_PROTOCOLLN("");
  7216. #endif
  7217. codenum = _millis();
  7218. }
  7219. manage_heater();
  7220. manage_inactivity(true); //do not disable steppers
  7221. lcd_update(0);
  7222. #ifdef TEMP_RESIDENCY_TIME
  7223. /* start/restart the TEMP_RESIDENCY_TIME timer whenever we reach target temp for the first time
  7224. or when current temp falls outside the hysteresis after target temp was reached */
  7225. if ((residencyStart == -1 && target_direction && (degHotend(extruder) >= (degTargetHotend(extruder) - TEMP_WINDOW))) ||
  7226. (residencyStart == -1 && !target_direction && (degHotend(extruder) <= (degTargetHotend(extruder) + TEMP_WINDOW))) ||
  7227. (residencyStart > -1 && labs(degHotend(extruder) - degTargetHotend(extruder)) > TEMP_HYSTERESIS))
  7228. {
  7229. residencyStart = _millis();
  7230. }
  7231. #endif //TEMP_RESIDENCY_TIME
  7232. }
  7233. }
  7234. void check_babystep()
  7235. {
  7236. int babystep_z;
  7237. EEPROM_read_B(EEPROM_BABYSTEP_Z, &babystep_z);
  7238. if ((babystep_z < Z_BABYSTEP_MIN) || (babystep_z > Z_BABYSTEP_MAX)) {
  7239. babystep_z = 0; //if babystep value is out of min max range, set it to 0
  7240. SERIAL_ECHOLNPGM("Z live adjust out of range. Setting to 0");
  7241. EEPROM_save_B(EEPROM_BABYSTEP_Z, &babystep_z);
  7242. lcd_show_fullscreen_message_and_wait_P(PSTR("Z live adjust out of range. Setting to 0. Click to continue."));
  7243. lcd_update_enable(true);
  7244. }
  7245. }
  7246. #ifdef HEATBED_ANALYSIS
  7247. void d_setup()
  7248. {
  7249. pinMode(D_DATACLOCK, INPUT_PULLUP);
  7250. pinMode(D_DATA, INPUT_PULLUP);
  7251. pinMode(D_REQUIRE, OUTPUT);
  7252. digitalWrite(D_REQUIRE, HIGH);
  7253. }
  7254. float d_ReadData()
  7255. {
  7256. int digit[13];
  7257. String mergeOutput;
  7258. float output;
  7259. digitalWrite(D_REQUIRE, HIGH);
  7260. for (int i = 0; i<13; i++)
  7261. {
  7262. for (int j = 0; j < 4; j++)
  7263. {
  7264. while (digitalRead(D_DATACLOCK) == LOW) {}
  7265. while (digitalRead(D_DATACLOCK) == HIGH) {}
  7266. bitWrite(digit[i], j, digitalRead(D_DATA));
  7267. }
  7268. }
  7269. digitalWrite(D_REQUIRE, LOW);
  7270. mergeOutput = "";
  7271. output = 0;
  7272. for (int r = 5; r <= 10; r++) //Merge digits
  7273. {
  7274. mergeOutput += digit[r];
  7275. }
  7276. output = mergeOutput.toFloat();
  7277. if (digit[4] == 8) //Handle sign
  7278. {
  7279. output *= -1;
  7280. }
  7281. for (int i = digit[11]; i > 0; i--) //Handle floating point
  7282. {
  7283. output /= 10;
  7284. }
  7285. return output;
  7286. }
  7287. void bed_check(float x_dimension, float y_dimension, int x_points_num, int y_points_num, float shift_x, float shift_y) {
  7288. int t1 = 0;
  7289. int t_delay = 0;
  7290. int digit[13];
  7291. int m;
  7292. char str[3];
  7293. //String mergeOutput;
  7294. char mergeOutput[15];
  7295. float output;
  7296. int mesh_point = 0; //index number of calibration point
  7297. float bed_zero_ref_x = (-22.f + X_PROBE_OFFSET_FROM_EXTRUDER); //shift between zero point on bed and target and between probe and nozzle
  7298. float bed_zero_ref_y = (-0.6f + Y_PROBE_OFFSET_FROM_EXTRUDER);
  7299. float mesh_home_z_search = 4;
  7300. float measure_z_height = 0.2f;
  7301. float row[x_points_num];
  7302. int ix = 0;
  7303. int iy = 0;
  7304. const char* filename_wldsd = "mesh.txt";
  7305. char data_wldsd[x_points_num * 7 + 1]; //6 chars(" -A.BCD")for each measurement + null
  7306. char numb_wldsd[8]; // (" -A.BCD" + null)
  7307. #ifdef MICROMETER_LOGGING
  7308. d_setup();
  7309. #endif //MICROMETER_LOGGING
  7310. int XY_AXIS_FEEDRATE = homing_feedrate[X_AXIS] / 20;
  7311. int Z_LIFT_FEEDRATE = homing_feedrate[Z_AXIS] / 40;
  7312. unsigned int custom_message_type_old = custom_message_type;
  7313. unsigned int custom_message_state_old = custom_message_state;
  7314. custom_message_type = CustomMsg::MeshBedLeveling;
  7315. custom_message_state = (x_points_num * y_points_num) + 10;
  7316. lcd_update(1);
  7317. //mbl.reset();
  7318. babystep_undo();
  7319. card.openFile(filename_wldsd, false);
  7320. /*destination[Z_AXIS] = mesh_home_z_search;
  7321. //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], Z_LIFT_FEEDRATE, active_extruder);
  7322. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], Z_LIFT_FEEDRATE, active_extruder);
  7323. for(int8_t i=0; i < NUM_AXIS; i++) {
  7324. current_position[i] = destination[i];
  7325. }
  7326. st_synchronize();
  7327. */
  7328. destination[Z_AXIS] = measure_z_height;
  7329. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], Z_LIFT_FEEDRATE, active_extruder);
  7330. for(int8_t i=0; i < NUM_AXIS; i++) {
  7331. current_position[i] = destination[i];
  7332. }
  7333. st_synchronize();
  7334. /*int l_feedmultiply = */setup_for_endstop_move(false);
  7335. SERIAL_PROTOCOLPGM("Num X,Y: ");
  7336. SERIAL_PROTOCOL(x_points_num);
  7337. SERIAL_PROTOCOLPGM(",");
  7338. SERIAL_PROTOCOL(y_points_num);
  7339. SERIAL_PROTOCOLPGM("\nZ search height: ");
  7340. SERIAL_PROTOCOL(mesh_home_z_search);
  7341. SERIAL_PROTOCOLPGM("\nDimension X,Y: ");
  7342. SERIAL_PROTOCOL(x_dimension);
  7343. SERIAL_PROTOCOLPGM(",");
  7344. SERIAL_PROTOCOL(y_dimension);
  7345. SERIAL_PROTOCOLLNPGM("\nMeasured points:");
  7346. while (mesh_point != x_points_num * y_points_num) {
  7347. ix = mesh_point % x_points_num; // from 0 to MESH_NUM_X_POINTS - 1
  7348. iy = mesh_point / x_points_num;
  7349. if (iy & 1) ix = (x_points_num - 1) - ix; // Zig zag
  7350. float z0 = 0.f;
  7351. /*destination[Z_AXIS] = mesh_home_z_search;
  7352. //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], Z_LIFT_FEEDRATE, active_extruder);
  7353. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], Z_LIFT_FEEDRATE, active_extruder);
  7354. for(int8_t i=0; i < NUM_AXIS; i++) {
  7355. current_position[i] = destination[i];
  7356. }
  7357. st_synchronize();*/
  7358. //current_position[X_AXIS] = 13.f + ix * (x_dimension / (x_points_num - 1)) - bed_zero_ref_x + shift_x;
  7359. //current_position[Y_AXIS] = 6.4f + iy * (y_dimension / (y_points_num - 1)) - bed_zero_ref_y + shift_y;
  7360. destination[X_AXIS] = ix * (x_dimension / (x_points_num - 1)) + shift_x;
  7361. destination[Y_AXIS] = iy * (y_dimension / (y_points_num - 1)) + shift_y;
  7362. mesh_plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], XY_AXIS_FEEDRATE/6, active_extruder);
  7363. for(int8_t i=0; i < NUM_AXIS; i++) {
  7364. current_position[i] = destination[i];
  7365. }
  7366. st_synchronize();
  7367. // printf_P(PSTR("X = %f; Y= %f \n"), current_position[X_AXIS], current_position[Y_AXIS]);
  7368. delay_keep_alive(1000);
  7369. #ifdef MICROMETER_LOGGING
  7370. //memset(numb_wldsd, 0, sizeof(numb_wldsd));
  7371. //dtostrf(d_ReadData(), 8, 5, numb_wldsd);
  7372. //strcat(data_wldsd, numb_wldsd);
  7373. //MYSERIAL.println(data_wldsd);
  7374. //delay(1000);
  7375. //delay(3000);
  7376. //t1 = millis();
  7377. //while (digitalRead(D_DATACLOCK) == LOW) {}
  7378. //while (digitalRead(D_DATACLOCK) == HIGH) {}
  7379. memset(digit, 0, sizeof(digit));
  7380. //cli();
  7381. digitalWrite(D_REQUIRE, LOW);
  7382. for (int i = 0; i<13; i++)
  7383. {
  7384. //t1 = millis();
  7385. for (int j = 0; j < 4; j++)
  7386. {
  7387. while (digitalRead(D_DATACLOCK) == LOW) {}
  7388. while (digitalRead(D_DATACLOCK) == HIGH) {}
  7389. //printf_P(PSTR("Done %d\n"), j);
  7390. bitWrite(digit[i], j, digitalRead(D_DATA));
  7391. }
  7392. //t_delay = (millis() - t1);
  7393. //SERIAL_PROTOCOLPGM(" ");
  7394. //SERIAL_PROTOCOL_F(t_delay, 5);
  7395. //SERIAL_PROTOCOLPGM(" ");
  7396. }
  7397. //sei();
  7398. digitalWrite(D_REQUIRE, HIGH);
  7399. mergeOutput[0] = '\0';
  7400. output = 0;
  7401. for (int r = 5; r <= 10; r++) //Merge digits
  7402. {
  7403. sprintf(str, "%d", digit[r]);
  7404. strcat(mergeOutput, str);
  7405. }
  7406. output = atof(mergeOutput);
  7407. if (digit[4] == 8) //Handle sign
  7408. {
  7409. output *= -1;
  7410. }
  7411. for (int i = digit[11]; i > 0; i--) //Handle floating point
  7412. {
  7413. output *= 0.1;
  7414. }
  7415. //output = d_ReadData();
  7416. //row[ix] = current_position[Z_AXIS];
  7417. //row[ix] = d_ReadData();
  7418. row[ix] = output;
  7419. if (iy % 2 == 1 ? ix == 0 : ix == x_points_num - 1) {
  7420. memset(data_wldsd, 0, sizeof(data_wldsd));
  7421. for (int i = 0; i < x_points_num; i++) {
  7422. SERIAL_PROTOCOLPGM(" ");
  7423. SERIAL_PROTOCOL_F(row[i], 5);
  7424. memset(numb_wldsd, 0, sizeof(numb_wldsd));
  7425. dtostrf(row[i], 7, 3, numb_wldsd);
  7426. strcat(data_wldsd, numb_wldsd);
  7427. }
  7428. card.write_command(data_wldsd);
  7429. SERIAL_PROTOCOLPGM("\n");
  7430. }
  7431. custom_message_state--;
  7432. mesh_point++;
  7433. lcd_update(1);
  7434. }
  7435. #endif //MICROMETER_LOGGING
  7436. card.closefile();
  7437. //clean_up_after_endstop_move(l_feedmultiply);
  7438. }
  7439. void bed_analysis(float x_dimension, float y_dimension, int x_points_num, int y_points_num, float shift_x, float shift_y) {
  7440. int t1 = 0;
  7441. int t_delay = 0;
  7442. int digit[13];
  7443. int m;
  7444. char str[3];
  7445. //String mergeOutput;
  7446. char mergeOutput[15];
  7447. float output;
  7448. int mesh_point = 0; //index number of calibration point
  7449. float bed_zero_ref_x = (-22.f + X_PROBE_OFFSET_FROM_EXTRUDER); //shift between zero point on bed and target and between probe and nozzle
  7450. float bed_zero_ref_y = (-0.6f + Y_PROBE_OFFSET_FROM_EXTRUDER);
  7451. float mesh_home_z_search = 4;
  7452. float row[x_points_num];
  7453. int ix = 0;
  7454. int iy = 0;
  7455. const char* filename_wldsd = "wldsd.txt";
  7456. char data_wldsd[70];
  7457. char numb_wldsd[10];
  7458. d_setup();
  7459. if (!(axis_known_position[X_AXIS] && axis_known_position[Y_AXIS] && axis_known_position[Z_AXIS])) {
  7460. // We don't know where we are! HOME!
  7461. // Push the commands to the front of the message queue in the reverse order!
  7462. // There shall be always enough space reserved for these commands.
  7463. repeatcommand_front(); // repeat G80 with all its parameters
  7464. enquecommand_front_P((PSTR("G28 W0")));
  7465. enquecommand_front_P((PSTR("G1 Z5")));
  7466. return;
  7467. }
  7468. unsigned int custom_message_type_old = custom_message_type;
  7469. unsigned int custom_message_state_old = custom_message_state;
  7470. custom_message_type = CustomMsg::MeshBedLeveling;
  7471. custom_message_state = (x_points_num * y_points_num) + 10;
  7472. lcd_update(1);
  7473. mbl.reset();
  7474. babystep_undo();
  7475. card.openFile(filename_wldsd, false);
  7476. current_position[Z_AXIS] = mesh_home_z_search;
  7477. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[Z_AXIS] / 60, active_extruder);
  7478. int XY_AXIS_FEEDRATE = homing_feedrate[X_AXIS] / 20;
  7479. int Z_LIFT_FEEDRATE = homing_feedrate[Z_AXIS] / 40;
  7480. int l_feedmultiply = setup_for_endstop_move(false);
  7481. SERIAL_PROTOCOLPGM("Num X,Y: ");
  7482. SERIAL_PROTOCOL(x_points_num);
  7483. SERIAL_PROTOCOLPGM(",");
  7484. SERIAL_PROTOCOL(y_points_num);
  7485. SERIAL_PROTOCOLPGM("\nZ search height: ");
  7486. SERIAL_PROTOCOL(mesh_home_z_search);
  7487. SERIAL_PROTOCOLPGM("\nDimension X,Y: ");
  7488. SERIAL_PROTOCOL(x_dimension);
  7489. SERIAL_PROTOCOLPGM(",");
  7490. SERIAL_PROTOCOL(y_dimension);
  7491. SERIAL_PROTOCOLLNPGM("\nMeasured points:");
  7492. while (mesh_point != x_points_num * y_points_num) {
  7493. ix = mesh_point % x_points_num; // from 0 to MESH_NUM_X_POINTS - 1
  7494. iy = mesh_point / x_points_num;
  7495. if (iy & 1) ix = (x_points_num - 1) - ix; // Zig zag
  7496. float z0 = 0.f;
  7497. current_position[Z_AXIS] = mesh_home_z_search;
  7498. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], Z_LIFT_FEEDRATE, active_extruder);
  7499. st_synchronize();
  7500. current_position[X_AXIS] = 13.f + ix * (x_dimension / (x_points_num - 1)) - bed_zero_ref_x + shift_x;
  7501. current_position[Y_AXIS] = 6.4f + iy * (y_dimension / (y_points_num - 1)) - bed_zero_ref_y + shift_y;
  7502. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], XY_AXIS_FEEDRATE, active_extruder);
  7503. st_synchronize();
  7504. if (!find_bed_induction_sensor_point_z(-10.f)) { //if we have data from z calibration max allowed difference is 1mm for each point, if we dont have data max difference is 10mm from initial point
  7505. break;
  7506. card.closefile();
  7507. }
  7508. //memset(numb_wldsd, 0, sizeof(numb_wldsd));
  7509. //dtostrf(d_ReadData(), 8, 5, numb_wldsd);
  7510. //strcat(data_wldsd, numb_wldsd);
  7511. //MYSERIAL.println(data_wldsd);
  7512. //_delay(1000);
  7513. //_delay(3000);
  7514. //t1 = _millis();
  7515. //while (digitalRead(D_DATACLOCK) == LOW) {}
  7516. //while (digitalRead(D_DATACLOCK) == HIGH) {}
  7517. memset(digit, 0, sizeof(digit));
  7518. //cli();
  7519. digitalWrite(D_REQUIRE, LOW);
  7520. for (int i = 0; i<13; i++)
  7521. {
  7522. //t1 = _millis();
  7523. for (int j = 0; j < 4; j++)
  7524. {
  7525. while (digitalRead(D_DATACLOCK) == LOW) {}
  7526. while (digitalRead(D_DATACLOCK) == HIGH) {}
  7527. bitWrite(digit[i], j, digitalRead(D_DATA));
  7528. }
  7529. //t_delay = (_millis() - t1);
  7530. //SERIAL_PROTOCOLPGM(" ");
  7531. //SERIAL_PROTOCOL_F(t_delay, 5);
  7532. //SERIAL_PROTOCOLPGM(" ");
  7533. }
  7534. //sei();
  7535. digitalWrite(D_REQUIRE, HIGH);
  7536. mergeOutput[0] = '\0';
  7537. output = 0;
  7538. for (int r = 5; r <= 10; r++) //Merge digits
  7539. {
  7540. sprintf(str, "%d", digit[r]);
  7541. strcat(mergeOutput, str);
  7542. }
  7543. output = atof(mergeOutput);
  7544. if (digit[4] == 8) //Handle sign
  7545. {
  7546. output *= -1;
  7547. }
  7548. for (int i = digit[11]; i > 0; i--) //Handle floating point
  7549. {
  7550. output *= 0.1;
  7551. }
  7552. //output = d_ReadData();
  7553. //row[ix] = current_position[Z_AXIS];
  7554. memset(data_wldsd, 0, sizeof(data_wldsd));
  7555. for (int i = 0; i <3; i++) {
  7556. memset(numb_wldsd, 0, sizeof(numb_wldsd));
  7557. dtostrf(current_position[i], 8, 5, numb_wldsd);
  7558. strcat(data_wldsd, numb_wldsd);
  7559. strcat(data_wldsd, ";");
  7560. }
  7561. memset(numb_wldsd, 0, sizeof(numb_wldsd));
  7562. dtostrf(output, 8, 5, numb_wldsd);
  7563. strcat(data_wldsd, numb_wldsd);
  7564. //strcat(data_wldsd, ";");
  7565. card.write_command(data_wldsd);
  7566. //row[ix] = d_ReadData();
  7567. row[ix] = output; // current_position[Z_AXIS];
  7568. if (iy % 2 == 1 ? ix == 0 : ix == x_points_num - 1) {
  7569. for (int i = 0; i < x_points_num; i++) {
  7570. SERIAL_PROTOCOLPGM(" ");
  7571. SERIAL_PROTOCOL_F(row[i], 5);
  7572. }
  7573. SERIAL_PROTOCOLPGM("\n");
  7574. }
  7575. custom_message_state--;
  7576. mesh_point++;
  7577. lcd_update(1);
  7578. }
  7579. card.closefile();
  7580. clean_up_after_endstop_move(l_feedmultiply);
  7581. }
  7582. #endif //HEATBED_ANALYSIS
  7583. void temp_compensation_start() {
  7584. custom_message_type = CustomMsg::TempCompPreheat;
  7585. custom_message_state = PINDA_HEAT_T + 1;
  7586. lcd_update(2);
  7587. if (degHotend(active_extruder) > EXTRUDE_MINTEMP) {
  7588. current_position[E_AXIS] -= default_retraction;
  7589. }
  7590. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400, active_extruder);
  7591. current_position[X_AXIS] = PINDA_PREHEAT_X;
  7592. current_position[Y_AXIS] = PINDA_PREHEAT_Y;
  7593. current_position[Z_AXIS] = PINDA_PREHEAT_Z;
  7594. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  7595. st_synchronize();
  7596. while (fabs(degBed() - target_temperature_bed) > 1) delay_keep_alive(1000);
  7597. for (int i = 0; i < PINDA_HEAT_T; i++) {
  7598. delay_keep_alive(1000);
  7599. custom_message_state = PINDA_HEAT_T - i;
  7600. if (custom_message_state == 99 || custom_message_state == 9) lcd_update(2); //force whole display redraw if number of digits changed
  7601. else lcd_update(1);
  7602. }
  7603. custom_message_type = CustomMsg::Status;
  7604. custom_message_state = 0;
  7605. }
  7606. void temp_compensation_apply() {
  7607. int i_add;
  7608. int z_shift = 0;
  7609. float z_shift_mm;
  7610. if (calibration_status() == CALIBRATION_STATUS_CALIBRATED) {
  7611. if (target_temperature_bed % 10 == 0 && target_temperature_bed >= 60 && target_temperature_bed <= 100) {
  7612. i_add = (target_temperature_bed - 60) / 10;
  7613. EEPROM_read_B(EEPROM_PROBE_TEMP_SHIFT + i_add * 2, &z_shift);
  7614. z_shift_mm = z_shift / cs.axis_steps_per_unit[Z_AXIS];
  7615. }else {
  7616. //interpolation
  7617. z_shift_mm = temp_comp_interpolation(target_temperature_bed) / cs.axis_steps_per_unit[Z_AXIS];
  7618. }
  7619. printf_P(_N("\nZ shift applied:%.3f\n"), z_shift_mm);
  7620. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS] - z_shift_mm, current_position[E_AXIS], homing_feedrate[Z_AXIS] / 40, active_extruder);
  7621. st_synchronize();
  7622. plan_set_z_position(current_position[Z_AXIS]);
  7623. }
  7624. else {
  7625. //we have no temp compensation data
  7626. }
  7627. }
  7628. float temp_comp_interpolation(float inp_temperature) {
  7629. //cubic spline interpolation
  7630. int n, i, j;
  7631. float h[10], a, b, c, d, sum, s[10] = { 0 }, x[10], F[10], f[10], m[10][10] = { 0 }, temp;
  7632. int shift[10];
  7633. int temp_C[10];
  7634. n = 6; //number of measured points
  7635. shift[0] = 0;
  7636. for (i = 0; i < n; i++) {
  7637. if (i>0) EEPROM_read_B(EEPROM_PROBE_TEMP_SHIFT + (i-1) * 2, &shift[i]); //read shift in steps from EEPROM
  7638. temp_C[i] = 50 + i * 10; //temperature in C
  7639. #ifdef PINDA_THERMISTOR
  7640. temp_C[i] = 35 + i * 5; //temperature in C
  7641. #else
  7642. temp_C[i] = 50 + i * 10; //temperature in C
  7643. #endif
  7644. x[i] = (float)temp_C[i];
  7645. f[i] = (float)shift[i];
  7646. }
  7647. if (inp_temperature < x[0]) return 0;
  7648. for (i = n - 1; i>0; i--) {
  7649. F[i] = (f[i] - f[i - 1]) / (x[i] - x[i - 1]);
  7650. h[i - 1] = x[i] - x[i - 1];
  7651. }
  7652. //*********** formation of h, s , f matrix **************
  7653. for (i = 1; i<n - 1; i++) {
  7654. m[i][i] = 2 * (h[i - 1] + h[i]);
  7655. if (i != 1) {
  7656. m[i][i - 1] = h[i - 1];
  7657. m[i - 1][i] = h[i - 1];
  7658. }
  7659. m[i][n - 1] = 6 * (F[i + 1] - F[i]);
  7660. }
  7661. //*********** forward elimination **************
  7662. for (i = 1; i<n - 2; i++) {
  7663. temp = (m[i + 1][i] / m[i][i]);
  7664. for (j = 1; j <= n - 1; j++)
  7665. m[i + 1][j] -= temp*m[i][j];
  7666. }
  7667. //*********** backward substitution *********
  7668. for (i = n - 2; i>0; i--) {
  7669. sum = 0;
  7670. for (j = i; j <= n - 2; j++)
  7671. sum += m[i][j] * s[j];
  7672. s[i] = (m[i][n - 1] - sum) / m[i][i];
  7673. }
  7674. for (i = 0; i<n - 1; i++)
  7675. if ((x[i] <= inp_temperature && inp_temperature <= x[i + 1]) || (i == n-2 && inp_temperature > x[i + 1])) {
  7676. a = (s[i + 1] - s[i]) / (6 * h[i]);
  7677. b = s[i] / 2;
  7678. c = (f[i + 1] - f[i]) / h[i] - (2 * h[i] * s[i] + s[i + 1] * h[i]) / 6;
  7679. d = f[i];
  7680. sum = a*pow((inp_temperature - x[i]), 3) + b*pow((inp_temperature - x[i]), 2) + c*(inp_temperature - x[i]) + d;
  7681. }
  7682. return sum;
  7683. }
  7684. #ifdef PINDA_THERMISTOR
  7685. float temp_compensation_pinda_thermistor_offset(float temperature_pinda)
  7686. {
  7687. if (!temp_cal_active) return 0;
  7688. if (!calibration_status_pinda()) return 0;
  7689. return temp_comp_interpolation(temperature_pinda) / cs.axis_steps_per_unit[Z_AXIS];
  7690. }
  7691. #endif //PINDA_THERMISTOR
  7692. void long_pause() //long pause print
  7693. {
  7694. st_synchronize();
  7695. start_pause_print = _millis();
  7696. //retract
  7697. current_position[E_AXIS] -= default_retraction;
  7698. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400, active_extruder);
  7699. //lift z
  7700. current_position[Z_AXIS] += Z_PAUSE_LIFT;
  7701. if (current_position[Z_AXIS] > Z_MAX_POS) current_position[Z_AXIS] = Z_MAX_POS;
  7702. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 15, active_extruder);
  7703. //Move XY to side
  7704. current_position[X_AXIS] = X_PAUSE_POS;
  7705. current_position[Y_AXIS] = Y_PAUSE_POS;
  7706. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 50, active_extruder);
  7707. // Turn off the print fan
  7708. fanSpeed = 0;
  7709. st_synchronize();
  7710. }
  7711. void serialecho_temperatures() {
  7712. float tt = degHotend(active_extruder);
  7713. SERIAL_PROTOCOLPGM("T:");
  7714. SERIAL_PROTOCOL(tt);
  7715. SERIAL_PROTOCOLPGM(" E:");
  7716. SERIAL_PROTOCOL((int)active_extruder);
  7717. SERIAL_PROTOCOLPGM(" B:");
  7718. SERIAL_PROTOCOL_F(degBed(), 1);
  7719. SERIAL_PROTOCOLLN("");
  7720. }
  7721. extern uint32_t sdpos_atomic;
  7722. #ifdef UVLO_SUPPORT
  7723. void uvlo_()
  7724. {
  7725. unsigned long time_start = _millis();
  7726. bool sd_print = card.sdprinting;
  7727. // Conserve power as soon as possible.
  7728. disable_x();
  7729. disable_y();
  7730. #ifdef TMC2130
  7731. tmc2130_set_current_h(Z_AXIS, 20);
  7732. tmc2130_set_current_r(Z_AXIS, 20);
  7733. tmc2130_set_current_h(E_AXIS, 20);
  7734. tmc2130_set_current_r(E_AXIS, 20);
  7735. #endif //TMC2130
  7736. // Indicate that the interrupt has been triggered.
  7737. // SERIAL_ECHOLNPGM("UVLO");
  7738. // Read out the current Z motor microstep counter. This will be later used
  7739. // for reaching the zero full step before powering off.
  7740. uint16_t z_microsteps = 0;
  7741. #ifdef TMC2130
  7742. z_microsteps = tmc2130_rd_MSCNT(Z_TMC2130_CS);
  7743. #endif //TMC2130
  7744. // Calculate the file position, from which to resume this print.
  7745. long sd_position = sdpos_atomic; //atomic sd position of last command added in queue
  7746. {
  7747. uint16_t sdlen_planner = planner_calc_sd_length(); //length of sd commands in planner
  7748. sd_position -= sdlen_planner;
  7749. uint16_t sdlen_cmdqueue = cmdqueue_calc_sd_length(); //length of sd commands in cmdqueue
  7750. sd_position -= sdlen_cmdqueue;
  7751. if (sd_position < 0) sd_position = 0;
  7752. }
  7753. // Backup the feedrate in mm/min.
  7754. int feedrate_bckp = blocks_queued() ? (block_buffer[block_buffer_tail].nominal_speed * 60.f) : feedrate;
  7755. // After this call, the planner queue is emptied and the current_position is set to a current logical coordinate.
  7756. // The logical coordinate will likely differ from the machine coordinate if the skew calibration and mesh bed leveling
  7757. // are in action.
  7758. planner_abort_hard();
  7759. // Store the current extruder position.
  7760. eeprom_update_float((float*)(EEPROM_UVLO_CURRENT_POSITION_E), st_get_position_mm(E_AXIS));
  7761. eeprom_update_byte((uint8_t*)EEPROM_UVLO_E_ABS, axis_relative_modes[3]?0:1);
  7762. // Clean the input command queue.
  7763. cmdqueue_reset();
  7764. card.sdprinting = false;
  7765. // card.closefile();
  7766. // Enable stepper driver interrupt to move Z axis.
  7767. // This should be fine as the planner and command queues are empty and the SD card printing is disabled.
  7768. //FIXME one may want to disable serial lines at this point of time to avoid interfering with the command queue,
  7769. // though it should not happen that the command queue is touched as the plan_buffer_line always succeed without blocking.
  7770. sei();
  7771. plan_buffer_line(
  7772. current_position[X_AXIS],
  7773. current_position[Y_AXIS],
  7774. current_position[Z_AXIS],
  7775. current_position[E_AXIS] - default_retraction,
  7776. 95, active_extruder);
  7777. st_synchronize();
  7778. disable_e0();
  7779. plan_buffer_line(
  7780. current_position[X_AXIS],
  7781. current_position[Y_AXIS],
  7782. current_position[Z_AXIS] + UVLO_Z_AXIS_SHIFT + float((1024 - z_microsteps + 7) >> 4) / cs.axis_steps_per_unit[Z_AXIS],
  7783. current_position[E_AXIS] - default_retraction,
  7784. 40, active_extruder);
  7785. st_synchronize();
  7786. disable_e0();
  7787. plan_buffer_line(
  7788. current_position[X_AXIS],
  7789. current_position[Y_AXIS],
  7790. current_position[Z_AXIS] + UVLO_Z_AXIS_SHIFT + float((1024 - z_microsteps + 7) >> 4) / cs.axis_steps_per_unit[Z_AXIS],
  7791. current_position[E_AXIS] - default_retraction,
  7792. 40, active_extruder);
  7793. st_synchronize();
  7794. disable_e0();
  7795. disable_z();
  7796. // Move Z up to the next 0th full step.
  7797. // Write the file position.
  7798. eeprom_update_dword((uint32_t*)(EEPROM_FILE_POSITION), sd_position);
  7799. // Store the mesh bed leveling offsets. This is 2*7*7=98 bytes, which takes 98*3.4us=333us in worst case.
  7800. for (int8_t mesh_point = 0; mesh_point < MESH_NUM_X_POINTS * MESH_NUM_Y_POINTS; ++ mesh_point) {
  7801. uint8_t ix = mesh_point % MESH_NUM_X_POINTS; // from 0 to MESH_NUM_X_POINTS - 1
  7802. uint8_t iy = mesh_point / MESH_NUM_X_POINTS;
  7803. // Scale the z value to 1u resolution.
  7804. int16_t v = mbl.active ? int16_t(floor(mbl.z_values[iy][ix] * 1000.f + 0.5f)) : 0;
  7805. eeprom_update_word((uint16_t*)(EEPROM_UVLO_MESH_BED_LEVELING_FULL +2*mesh_point), *reinterpret_cast<uint16_t*>(&v));
  7806. }
  7807. // Read out the current Z motor microstep counter. This will be later used
  7808. // for reaching the zero full step before powering off.
  7809. eeprom_update_word((uint16_t*)(EEPROM_UVLO_Z_MICROSTEPS), z_microsteps);
  7810. // Store the current position.
  7811. eeprom_update_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 0), current_position[X_AXIS]);
  7812. eeprom_update_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 4), current_position[Y_AXIS]);
  7813. eeprom_update_float((float*)EEPROM_UVLO_CURRENT_POSITION_Z , current_position[Z_AXIS]);
  7814. // Store the current feed rate, temperatures, fan speed and extruder multipliers (flow rates)
  7815. EEPROM_save_B(EEPROM_UVLO_FEEDRATE, &feedrate_bckp);
  7816. eeprom_update_byte((uint8_t*)EEPROM_UVLO_TARGET_HOTEND, target_temperature[active_extruder]);
  7817. eeprom_update_byte((uint8_t*)EEPROM_UVLO_TARGET_BED, target_temperature_bed);
  7818. eeprom_update_byte((uint8_t*)EEPROM_UVLO_FAN_SPEED, fanSpeed);
  7819. eeprom_update_float((float*)(EEPROM_EXTRUDER_MULTIPLIER_0), extruder_multiplier[0]);
  7820. #if EXTRUDERS > 1
  7821. eeprom_update_float((float*)(EEPROM_EXTRUDER_MULTIPLIER_1), extruder_multiplier[1]);
  7822. #if EXTRUDERS > 2
  7823. eeprom_update_float((float*)(EEPROM_EXTRUDER_MULTIPLIER_2), extruder_multiplier[2]);
  7824. #endif
  7825. #endif
  7826. eeprom_update_word((uint16_t*)(EEPROM_EXTRUDEMULTIPLY), (uint16_t)extrudemultiply);
  7827. // Finaly store the "power outage" flag.
  7828. if(sd_print) eeprom_update_byte((uint8_t*)EEPROM_UVLO, 1);
  7829. st_synchronize();
  7830. printf_P(_N("stps%d\n"), tmc2130_rd_MSCNT(Z_AXIS));
  7831. disable_z();
  7832. // Increment power failure counter
  7833. eeprom_update_byte((uint8_t*)EEPROM_POWER_COUNT, eeprom_read_byte((uint8_t*)EEPROM_POWER_COUNT) + 1);
  7834. eeprom_update_word((uint16_t*)EEPROM_POWER_COUNT_TOT, eeprom_read_word((uint16_t*)EEPROM_POWER_COUNT_TOT) + 1);
  7835. printf_P(_N("UVLO - end %d\n"), _millis() - time_start);
  7836. #if 0
  7837. // Move the print head to the side of the print until all the power stored in the power supply capacitors is depleted.
  7838. current_position[X_AXIS] = (current_position[X_AXIS] < 0.5f * (X_MIN_POS + X_MAX_POS)) ? X_MIN_POS : X_MAX_POS;
  7839. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 500, active_extruder);
  7840. st_synchronize();
  7841. #endif
  7842. wdt_enable(WDTO_500MS);
  7843. WRITE(BEEPER,HIGH);
  7844. while(1)
  7845. ;
  7846. }
  7847. void uvlo_tiny()
  7848. {
  7849. uint16_t z_microsteps=0;
  7850. // Conserve power as soon as possible.
  7851. disable_x();
  7852. disable_y();
  7853. disable_e0();
  7854. #ifdef TMC2130
  7855. tmc2130_set_current_h(Z_AXIS, 20);
  7856. tmc2130_set_current_r(Z_AXIS, 20);
  7857. #endif //TMC2130
  7858. // Read out the current Z motor microstep counter
  7859. #ifdef TMC2130
  7860. z_microsteps=tmc2130_rd_MSCNT(Z_TMC2130_CS);
  7861. #endif //TMC2130
  7862. planner_abort_hard();
  7863. disable_z();
  7864. //save current position only in case, where the printer is moving on Z axis, which is only when EEPROM_UVLO is 1
  7865. //EEPROM_UVLO is 1 after normal uvlo or after recover_print(), when the extruder is moving on Z axis after rehome
  7866. if(eeprom_read_byte((uint8_t*)EEPROM_UVLO)!=2){
  7867. eeprom_update_float((float*)(EEPROM_UVLO_TINY_CURRENT_POSITION_Z), current_position[Z_AXIS]);
  7868. eeprom_update_word((uint16_t*)(EEPROM_UVLO_TINY_Z_MICROSTEPS),z_microsteps);
  7869. }
  7870. //after multiple power panics current Z axis is unknow
  7871. //in this case we set EEPROM_UVLO_TINY_CURRENT_POSITION_Z to last know position which is EEPROM_UVLO_CURRENT_POSITION_Z
  7872. if(eeprom_read_float((float*)EEPROM_UVLO_TINY_CURRENT_POSITION_Z) < 0.001f){
  7873. eeprom_update_float((float*)(EEPROM_UVLO_TINY_CURRENT_POSITION_Z), eeprom_read_float((float*)EEPROM_UVLO_CURRENT_POSITION_Z));
  7874. eeprom_update_word((uint16_t*)(EEPROM_UVLO_TINY_Z_MICROSTEPS), eeprom_read_word((uint16_t*)EEPROM_UVLO_Z_MICROSTEPS));
  7875. }
  7876. // Finaly store the "power outage" flag.
  7877. eeprom_update_byte((uint8_t*)EEPROM_UVLO,2);
  7878. // Increment power failure counter
  7879. eeprom_update_byte((uint8_t*)EEPROM_POWER_COUNT, eeprom_read_byte((uint8_t*)EEPROM_POWER_COUNT) + 1);
  7880. eeprom_update_word((uint16_t*)EEPROM_POWER_COUNT_TOT, eeprom_read_word((uint16_t*)EEPROM_POWER_COUNT_TOT) + 1);
  7881. wdt_enable(WDTO_500MS);
  7882. WRITE(BEEPER,HIGH);
  7883. while(1)
  7884. ;
  7885. }
  7886. #endif //UVLO_SUPPORT
  7887. #if (defined(FANCHECK) && defined(TACH_1) && (TACH_1 >-1))
  7888. void setup_fan_interrupt() {
  7889. //INT7
  7890. DDRE &= ~(1 << 7); //input pin
  7891. PORTE &= ~(1 << 7); //no internal pull-up
  7892. //start with sensing rising edge
  7893. EICRB &= ~(1 << 6);
  7894. EICRB |= (1 << 7);
  7895. //enable INT7 interrupt
  7896. EIMSK |= (1 << 7);
  7897. }
  7898. // The fan interrupt is triggered at maximum 325Hz (may be a bit more due to component tollerances),
  7899. // and it takes 4.24 us to process (the interrupt invocation overhead not taken into account).
  7900. ISR(INT7_vect) {
  7901. //measuring speed now works for fanSpeed > 18 (approximately), which is sufficient because MIN_PRINT_FAN_SPEED is higher
  7902. #ifdef FAN_SOFT_PWM
  7903. if (!fan_measuring || (fanSpeedSoftPwm < MIN_PRINT_FAN_SPEED)) return;
  7904. #else //FAN_SOFT_PWM
  7905. if (fanSpeed < MIN_PRINT_FAN_SPEED) return;
  7906. #endif //FAN_SOFT_PWM
  7907. if ((1 << 6) & EICRB) { //interrupt was triggered by rising edge
  7908. t_fan_rising_edge = millis_nc();
  7909. }
  7910. else { //interrupt was triggered by falling edge
  7911. if ((millis_nc() - t_fan_rising_edge) >= FAN_PULSE_WIDTH_LIMIT) {//this pulse was from sensor and not from pwm
  7912. fan_edge_counter[1] += 2; //we are currently counting all edges so lets count two edges for one pulse
  7913. }
  7914. }
  7915. EICRB ^= (1 << 6); //change edge
  7916. }
  7917. #endif
  7918. #ifdef UVLO_SUPPORT
  7919. void setup_uvlo_interrupt() {
  7920. DDRE &= ~(1 << 4); //input pin
  7921. PORTE &= ~(1 << 4); //no internal pull-up
  7922. //sensing falling edge
  7923. EICRB |= (1 << 0);
  7924. EICRB &= ~(1 << 1);
  7925. //enable INT4 interrupt
  7926. EIMSK |= (1 << 4);
  7927. }
  7928. ISR(INT4_vect) {
  7929. EIMSK &= ~(1 << 4); //disable INT4 interrupt to make sure that this code will be executed just once
  7930. SERIAL_ECHOLNPGM("INT4");
  7931. //fire normal uvlo only in case where EEPROM_UVLO is 0 or if IS_SD_PRINTING is 1.
  7932. //Don't change || to && because in some case the printer can be moving although IS_SD_PRINTING is zero
  7933. if((IS_SD_PRINTING ) || (!(eeprom_read_byte((uint8_t*)EEPROM_UVLO)))) uvlo_();
  7934. if(eeprom_read_byte((uint8_t*)EEPROM_UVLO)) uvlo_tiny();
  7935. }
  7936. void recover_print(uint8_t automatic) {
  7937. char cmd[30];
  7938. lcd_update_enable(true);
  7939. lcd_update(2);
  7940. lcd_setstatuspgm(_i("Recovering print "));////MSG_RECOVERING_PRINT c=20 r=1
  7941. bool bTiny=(eeprom_read_byte((uint8_t*)EEPROM_UVLO)==2);
  7942. recover_machine_state_after_power_panic(bTiny); //recover position, temperatures and extrude_multipliers
  7943. // Lift the print head, so one may remove the excess priming material.
  7944. if(!bTiny&&(current_position[Z_AXIS]<25))
  7945. enquecommand_P(PSTR("G1 Z25 F800"));
  7946. // Home X and Y axes. Homing just X and Y shall not touch the babystep and the world2machine transformation status.
  7947. enquecommand_P(PSTR("G28 X Y"));
  7948. // Set the target bed and nozzle temperatures and wait.
  7949. sprintf_P(cmd, PSTR("M109 S%d"), target_temperature[active_extruder]);
  7950. enquecommand(cmd);
  7951. sprintf_P(cmd, PSTR("M190 S%d"), target_temperature_bed);
  7952. enquecommand(cmd);
  7953. enquecommand_P(PSTR("M83")); //E axis relative mode
  7954. //enquecommand_P(PSTR("G1 E5 F120")); //Extrude some filament to stabilize pessure
  7955. // If not automatically recoreverd (long power loss), extrude extra filament to stabilize
  7956. if(automatic == 0){
  7957. enquecommand_P(PSTR("G1 E5 F120")); //Extrude some filament to stabilize pessure
  7958. }
  7959. enquecommand_P(PSTR("G1 E" STRINGIFY(-default_retraction)" F480"));
  7960. printf_P(_N("After waiting for temp:\nCurrent pos X_AXIS:%.3f\nCurrent pos Y_AXIS:%.3f\n"), current_position[X_AXIS], current_position[Y_AXIS]);
  7961. // Restart the print.
  7962. restore_print_from_eeprom();
  7963. printf_P(_N("Current pos Z_AXIS:%.3f\nCurrent pos E_AXIS:%.3f\n"), current_position[Z_AXIS], current_position[E_AXIS]);
  7964. }
  7965. void recover_machine_state_after_power_panic(bool bTiny)
  7966. {
  7967. char cmd[30];
  7968. // 1) Recover the logical cordinates at the time of the power panic.
  7969. // The logical XY coordinates are needed to recover the machine Z coordinate corrected by the mesh bed leveling.
  7970. current_position[X_AXIS] = eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 0));
  7971. current_position[Y_AXIS] = eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 4));
  7972. // 2) Restore the mesh bed leveling offsets. This is 2*7*7=98 bytes, which takes 98*3.4us=333us in worst case.
  7973. mbl.active = false;
  7974. for (int8_t mesh_point = 0; mesh_point < MESH_NUM_X_POINTS * MESH_NUM_Y_POINTS; ++ mesh_point) {
  7975. uint8_t ix = mesh_point % MESH_NUM_X_POINTS; // from 0 to MESH_NUM_X_POINTS - 1
  7976. uint8_t iy = mesh_point / MESH_NUM_X_POINTS;
  7977. // Scale the z value to 10u resolution.
  7978. int16_t v;
  7979. eeprom_read_block(&v, (void*)(EEPROM_UVLO_MESH_BED_LEVELING_FULL+2*mesh_point), 2);
  7980. if (v != 0)
  7981. mbl.active = true;
  7982. mbl.z_values[iy][ix] = float(v) * 0.001f;
  7983. }
  7984. // Recover the logical coordinate of the Z axis at the time of the power panic.
  7985. // The current position after power panic is moved to the next closest 0th full step.
  7986. if(bTiny){
  7987. current_position[Z_AXIS] = eeprom_read_float((float*)(EEPROM_UVLO_TINY_CURRENT_POSITION_Z))
  7988. + float((1024 - eeprom_read_word((uint16_t*)(EEPROM_UVLO_TINY_Z_MICROSTEPS))
  7989. + 7) >> 4) / cs.axis_steps_per_unit[Z_AXIS];
  7990. //after multiple power panics the print is slightly in the air so get it little bit down.
  7991. //Not exactly sure why is this happening, but it has something to do with bed leveling and world2machine coordinates
  7992. current_position[Z_AXIS] -= 0.4*mbl.get_z(current_position[X_AXIS], current_position[Y_AXIS]);
  7993. }
  7994. else{
  7995. current_position[Z_AXIS] = eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION_Z)) +
  7996. UVLO_Z_AXIS_SHIFT + float((1024 - eeprom_read_word((uint16_t*)(EEPROM_UVLO_Z_MICROSTEPS))
  7997. + 7) >> 4) / cs.axis_steps_per_unit[Z_AXIS];
  7998. }
  7999. if (eeprom_read_byte((uint8_t*)EEPROM_UVLO_E_ABS)) {
  8000. current_position[E_AXIS] = eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION_E));
  8001. sprintf_P(cmd, PSTR("G92 E"));
  8002. dtostrf(current_position[E_AXIS], 6, 3, cmd + strlen(cmd));
  8003. enquecommand(cmd);
  8004. }
  8005. memcpy(destination, current_position, sizeof(destination));
  8006. SERIAL_ECHOPGM("recover_machine_state_after_power_panic, initial ");
  8007. print_world_coordinates();
  8008. // 3) Initialize the logical to physical coordinate system transformation.
  8009. world2machine_initialize();
  8010. // SERIAL_ECHOPGM("recover_machine_state_after_power_panic, initial ");
  8011. // print_mesh_bed_leveling_table();
  8012. // 4) Load the baby stepping value, which is expected to be active at the time of power panic.
  8013. // The baby stepping value is used to reset the physical Z axis when rehoming the Z axis.
  8014. babystep_load();
  8015. // 5) Set the physical positions from the logical positions using the world2machine transformation and the active bed leveling.
  8016. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  8017. // 6) Power up the motors, mark their positions as known.
  8018. //FIXME Verfiy, whether the X and Y axes should be powered up here, as they will later be re-homed anyway.
  8019. axis_known_position[X_AXIS] = true; enable_x();
  8020. axis_known_position[Y_AXIS] = true; enable_y();
  8021. axis_known_position[Z_AXIS] = true; enable_z();
  8022. SERIAL_ECHOPGM("recover_machine_state_after_power_panic, initial ");
  8023. print_physical_coordinates();
  8024. // 7) Recover the target temperatures.
  8025. target_temperature[active_extruder] = eeprom_read_byte((uint8_t*)EEPROM_UVLO_TARGET_HOTEND);
  8026. target_temperature_bed = eeprom_read_byte((uint8_t*)EEPROM_UVLO_TARGET_BED);
  8027. // 8) Recover extruder multipilers
  8028. extruder_multiplier[0] = eeprom_read_float((float*)(EEPROM_EXTRUDER_MULTIPLIER_0));
  8029. #if EXTRUDERS > 1
  8030. extruder_multiplier[1] = eeprom_read_float((float*)(EEPROM_EXTRUDER_MULTIPLIER_1));
  8031. #if EXTRUDERS > 2
  8032. extruder_multiplier[2] = eeprom_read_float((float*)(EEPROM_EXTRUDER_MULTIPLIER_2));
  8033. #endif
  8034. #endif
  8035. extrudemultiply = (int)eeprom_read_word((uint16_t*)(EEPROM_EXTRUDEMULTIPLY));
  8036. }
  8037. void restore_print_from_eeprom() {
  8038. int feedrate_rec;
  8039. uint8_t fan_speed_rec;
  8040. char cmd[30];
  8041. char filename[13];
  8042. uint8_t depth = 0;
  8043. char dir_name[9];
  8044. fan_speed_rec = eeprom_read_byte((uint8_t*)EEPROM_UVLO_FAN_SPEED);
  8045. EEPROM_read_B(EEPROM_UVLO_FEEDRATE, &feedrate_rec);
  8046. SERIAL_ECHOPGM("Feedrate:");
  8047. MYSERIAL.println(feedrate_rec);
  8048. depth = eeprom_read_byte((uint8_t*)EEPROM_DIR_DEPTH);
  8049. MYSERIAL.println(int(depth));
  8050. for (int i = 0; i < depth; i++) {
  8051. for (int j = 0; j < 8; j++) {
  8052. dir_name[j] = eeprom_read_byte((uint8_t*)EEPROM_DIRS + j + 8 * i);
  8053. }
  8054. dir_name[8] = '\0';
  8055. MYSERIAL.println(dir_name);
  8056. strcpy(dir_names[i], dir_name);
  8057. card.chdir(dir_name);
  8058. }
  8059. for (int i = 0; i < 8; i++) {
  8060. filename[i] = eeprom_read_byte((uint8_t*)EEPROM_FILENAME + i);
  8061. }
  8062. filename[8] = '\0';
  8063. MYSERIAL.print(filename);
  8064. strcat_P(filename, PSTR(".gco"));
  8065. sprintf_P(cmd, PSTR("M23 %s"), filename);
  8066. enquecommand(cmd);
  8067. uint32_t position = eeprom_read_dword((uint32_t*)(EEPROM_FILE_POSITION));
  8068. SERIAL_ECHOPGM("Position read from eeprom:");
  8069. MYSERIAL.println(position);
  8070. // E axis relative mode.
  8071. enquecommand_P(PSTR("M83"));
  8072. // Move to the XY print position in logical coordinates, where the print has been killed.
  8073. strcpy_P(cmd, PSTR("G1 X")); strcat(cmd, ftostr32(eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 0))));
  8074. strcat_P(cmd, PSTR(" Y")); strcat(cmd, ftostr32(eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 4))));
  8075. strcat_P(cmd, PSTR(" F2000"));
  8076. enquecommand(cmd);
  8077. //moving on Z axis ahead, set EEPROM_UVLO to 1, so normal uvlo can fire
  8078. eeprom_update_byte((uint8_t*)EEPROM_UVLO,1);
  8079. // Move the Z axis down to the print, in logical coordinates.
  8080. strcpy_P(cmd, PSTR("G1 Z")); strcat(cmd, ftostr32(eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION_Z))));
  8081. enquecommand(cmd);
  8082. // Unretract.
  8083. enquecommand_P(PSTR("G1 E" STRINGIFY(2*default_retraction)" F480"));
  8084. // Set the feedrate saved at the power panic.
  8085. sprintf_P(cmd, PSTR("G1 F%d"), feedrate_rec);
  8086. enquecommand(cmd);
  8087. if (eeprom_read_byte((uint8_t*)EEPROM_UVLO_E_ABS))
  8088. {
  8089. enquecommand_P(PSTR("M82")); //E axis abslute mode
  8090. }
  8091. // Set the fan speed saved at the power panic.
  8092. strcpy_P(cmd, PSTR("M106 S"));
  8093. strcat(cmd, itostr3(int(fan_speed_rec)));
  8094. enquecommand(cmd);
  8095. // Set a position in the file.
  8096. sprintf_P(cmd, PSTR("M26 S%lu"), position);
  8097. enquecommand(cmd);
  8098. enquecommand_P(PSTR("G4 S0"));
  8099. enquecommand_P(PSTR("PRUSA uvlo"));
  8100. }
  8101. #endif //UVLO_SUPPORT
  8102. //! @brief Immediately stop print moves
  8103. //!
  8104. //! Immediately stop print moves, save current extruder temperature and position to RAM.
  8105. //! If printing from sd card, position in file is saved.
  8106. //! If printing from USB, line number is saved.
  8107. //!
  8108. //! @param z_move
  8109. //! @param e_move
  8110. void stop_and_save_print_to_ram(float z_move, float e_move)
  8111. {
  8112. if (saved_printing) return;
  8113. #if 0
  8114. unsigned char nplanner_blocks;
  8115. #endif
  8116. unsigned char nlines;
  8117. uint16_t sdlen_planner;
  8118. uint16_t sdlen_cmdqueue;
  8119. cli();
  8120. if (card.sdprinting) {
  8121. #if 0
  8122. nplanner_blocks = number_of_blocks();
  8123. #endif
  8124. saved_sdpos = sdpos_atomic; //atomic sd position of last command added in queue
  8125. sdlen_planner = planner_calc_sd_length(); //length of sd commands in planner
  8126. saved_sdpos -= sdlen_planner;
  8127. sdlen_cmdqueue = cmdqueue_calc_sd_length(); //length of sd commands in cmdqueue
  8128. saved_sdpos -= sdlen_cmdqueue;
  8129. saved_printing_type = PRINTING_TYPE_SD;
  8130. }
  8131. else if (is_usb_printing) { //reuse saved_sdpos for storing line number
  8132. saved_sdpos = gcode_LastN; //start with line number of command added recently to cmd queue
  8133. //reuse planner_calc_sd_length function for getting number of lines of commands in planner:
  8134. nlines = planner_calc_sd_length(); //number of lines of commands in planner
  8135. saved_sdpos -= nlines;
  8136. saved_sdpos -= buflen; //number of blocks in cmd buffer
  8137. saved_printing_type = PRINTING_TYPE_USB;
  8138. }
  8139. else {
  8140. saved_printing_type = PRINTING_TYPE_NONE;
  8141. //not sd printing nor usb printing
  8142. }
  8143. #if 0
  8144. SERIAL_ECHOPGM("SDPOS_ATOMIC="); MYSERIAL.println(sdpos_atomic, DEC);
  8145. SERIAL_ECHOPGM("SDPOS="); MYSERIAL.println(card.get_sdpos(), DEC);
  8146. SERIAL_ECHOPGM("SDLEN_PLAN="); MYSERIAL.println(sdlen_planner, DEC);
  8147. SERIAL_ECHOPGM("SDLEN_CMDQ="); MYSERIAL.println(sdlen_cmdqueue, DEC);
  8148. SERIAL_ECHOPGM("PLANNERBLOCKS="); MYSERIAL.println(int(nplanner_blocks), DEC);
  8149. SERIAL_ECHOPGM("SDSAVED="); MYSERIAL.println(saved_sdpos, DEC);
  8150. //SERIAL_ECHOPGM("SDFILELEN="); MYSERIAL.println(card.fileSize(), DEC);
  8151. {
  8152. card.setIndex(saved_sdpos);
  8153. SERIAL_ECHOLNPGM("Content of planner buffer: ");
  8154. for (unsigned int idx = 0; idx < sdlen_planner; ++ idx)
  8155. MYSERIAL.print(char(card.get()));
  8156. SERIAL_ECHOLNPGM("Content of command buffer: ");
  8157. for (unsigned int idx = 0; idx < sdlen_cmdqueue; ++ idx)
  8158. MYSERIAL.print(char(card.get()));
  8159. SERIAL_ECHOLNPGM("End of command buffer");
  8160. }
  8161. {
  8162. // Print the content of the planner buffer, line by line:
  8163. card.setIndex(saved_sdpos);
  8164. int8_t iline = 0;
  8165. for (unsigned char idx = block_buffer_tail; idx != block_buffer_head; idx = (idx + 1) & (BLOCK_BUFFER_SIZE - 1), ++ iline) {
  8166. SERIAL_ECHOPGM("Planner line (from file): ");
  8167. MYSERIAL.print(int(iline), DEC);
  8168. SERIAL_ECHOPGM(", length: ");
  8169. MYSERIAL.print(block_buffer[idx].sdlen, DEC);
  8170. SERIAL_ECHOPGM(", steps: (");
  8171. MYSERIAL.print(block_buffer[idx].steps_x, DEC);
  8172. SERIAL_ECHOPGM(",");
  8173. MYSERIAL.print(block_buffer[idx].steps_y, DEC);
  8174. SERIAL_ECHOPGM(",");
  8175. MYSERIAL.print(block_buffer[idx].steps_z, DEC);
  8176. SERIAL_ECHOPGM(",");
  8177. MYSERIAL.print(block_buffer[idx].steps_e, DEC);
  8178. SERIAL_ECHOPGM("), events: ");
  8179. MYSERIAL.println(block_buffer[idx].step_event_count, DEC);
  8180. for (int len = block_buffer[idx].sdlen; len > 0; -- len)
  8181. MYSERIAL.print(char(card.get()));
  8182. }
  8183. }
  8184. {
  8185. // Print the content of the command buffer, line by line:
  8186. int8_t iline = 0;
  8187. union {
  8188. struct {
  8189. char lo;
  8190. char hi;
  8191. } lohi;
  8192. uint16_t value;
  8193. } sdlen_single;
  8194. int _bufindr = bufindr;
  8195. for (int _buflen = buflen; _buflen > 0; ++ iline) {
  8196. if (cmdbuffer[_bufindr] == CMDBUFFER_CURRENT_TYPE_SDCARD) {
  8197. sdlen_single.lohi.lo = cmdbuffer[_bufindr + 1];
  8198. sdlen_single.lohi.hi = cmdbuffer[_bufindr + 2];
  8199. }
  8200. SERIAL_ECHOPGM("Buffer line (from buffer): ");
  8201. MYSERIAL.print(int(iline), DEC);
  8202. SERIAL_ECHOPGM(", type: ");
  8203. MYSERIAL.print(int(cmdbuffer[_bufindr]), DEC);
  8204. SERIAL_ECHOPGM(", len: ");
  8205. MYSERIAL.println(sdlen_single.value, DEC);
  8206. // Print the content of the buffer line.
  8207. MYSERIAL.println(cmdbuffer + _bufindr + CMDHDRSIZE);
  8208. SERIAL_ECHOPGM("Buffer line (from file): ");
  8209. MYSERIAL.println(int(iline), DEC);
  8210. for (; sdlen_single.value > 0; -- sdlen_single.value)
  8211. MYSERIAL.print(char(card.get()));
  8212. if (-- _buflen == 0)
  8213. break;
  8214. // First skip the current command ID and iterate up to the end of the string.
  8215. for (_bufindr += CMDHDRSIZE; cmdbuffer[_bufindr] != 0; ++ _bufindr) ;
  8216. // Second, skip the end of string null character and iterate until a nonzero command ID is found.
  8217. for (++ _bufindr; _bufindr < sizeof(cmdbuffer) && cmdbuffer[_bufindr] == 0; ++ _bufindr) ;
  8218. // If the end of the buffer was empty,
  8219. if (_bufindr == sizeof(cmdbuffer)) {
  8220. // skip to the start and find the nonzero command.
  8221. for (_bufindr = 0; cmdbuffer[_bufindr] == 0; ++ _bufindr) ;
  8222. }
  8223. }
  8224. }
  8225. #endif
  8226. #if 0
  8227. saved_feedrate2 = feedrate; //save feedrate
  8228. #else
  8229. // Try to deduce the feedrate from the first block of the planner.
  8230. // Speed is in mm/min.
  8231. saved_feedrate2 = blocks_queued() ? (block_buffer[block_buffer_tail].nominal_speed * 60.f) : feedrate;
  8232. #endif
  8233. planner_abort_hard(); //abort printing
  8234. memcpy(saved_pos, current_position, sizeof(saved_pos));
  8235. saved_active_extruder = active_extruder; //save active_extruder
  8236. saved_extruder_temperature = degTargetHotend(active_extruder);
  8237. saved_extruder_under_pressure = extruder_under_pressure; //extruder under pressure flag - currently unused
  8238. saved_extruder_relative_mode = axis_relative_modes[E_AXIS];
  8239. saved_fanSpeed = fanSpeed;
  8240. cmdqueue_reset(); //empty cmdqueue
  8241. card.sdprinting = false;
  8242. // card.closefile();
  8243. saved_printing = true;
  8244. // We may have missed a stepper timer interrupt. Be safe than sorry, reset the stepper timer before re-enabling interrupts.
  8245. st_reset_timer();
  8246. sei();
  8247. if ((z_move != 0) || (e_move != 0)) { // extruder or z move
  8248. #if 1
  8249. // Rather than calling plan_buffer_line directly, push the move into the command queue,
  8250. char buf[48];
  8251. // First unretract (relative extrusion)
  8252. if(!saved_extruder_relative_mode){
  8253. enquecommand(PSTR("M83"), true);
  8254. }
  8255. //retract 45mm/s
  8256. // A single sprintf may not be faster, but is definitely 20B shorter
  8257. // than a sequence of commands building the string piece by piece
  8258. // A snprintf would have been a safer call, but since it is not used
  8259. // in the whole program, its implementation would bring more bytes to the total size
  8260. // The behavior of dtostrf 8,3 should be roughly the same as %-0.3
  8261. sprintf_P(buf, PSTR("G1 E%-0.3f F2700"), e_move);
  8262. enquecommand(buf, false);
  8263. // Then lift Z axis
  8264. sprintf_P(buf, PSTR("G1 Z%-0.3f F%-0.3f"), saved_pos[Z_AXIS] + z_move, homing_feedrate[Z_AXIS]);
  8265. // At this point the command queue is empty.
  8266. enquecommand(buf, false);
  8267. // If this call is invoked from the main Arduino loop() function, let the caller know that the command
  8268. // in the command queue is not the original command, but a new one, so it should not be removed from the queue.
  8269. repeatcommand_front();
  8270. #else
  8271. plan_buffer_line(saved_pos[X_AXIS], saved_pos[Y_AXIS], saved_pos[Z_AXIS] + z_move, saved_pos[E_AXIS] + e_move, homing_feedrate[Z_AXIS], active_extruder);
  8272. st_synchronize(); //wait moving
  8273. memcpy(current_position, saved_pos, sizeof(saved_pos));
  8274. memcpy(destination, current_position, sizeof(destination));
  8275. #endif
  8276. }
  8277. }
  8278. //! @brief Restore print from ram
  8279. //!
  8280. //! Restore print saved by stop_and_save_print_to_ram(). Is blocking,
  8281. //! waits for extruder temperature restore, then restores position and continues
  8282. //! print moves.
  8283. //! Internaly lcd_update() is called by wait_for_heater().
  8284. //!
  8285. //! @param e_move
  8286. void restore_print_from_ram_and_continue(float e_move)
  8287. {
  8288. if (!saved_printing) return;
  8289. #ifdef FANCHECK
  8290. // Do not allow resume printing if fans are still not ok
  8291. if( fan_check_error != EFCE_OK )return;
  8292. #endif
  8293. // for (int axis = X_AXIS; axis <= E_AXIS; axis++)
  8294. // current_position[axis] = st_get_position_mm(axis);
  8295. active_extruder = saved_active_extruder; //restore active_extruder
  8296. if (saved_extruder_temperature) {
  8297. setTargetHotendSafe(saved_extruder_temperature, saved_active_extruder);
  8298. heating_status = 1;
  8299. wait_for_heater(_millis(), saved_active_extruder);
  8300. heating_status = 2;
  8301. }
  8302. feedrate = saved_feedrate2; //restore feedrate
  8303. axis_relative_modes[E_AXIS] = saved_extruder_relative_mode;
  8304. fanSpeed = saved_fanSpeed;
  8305. float e = saved_pos[E_AXIS] - e_move;
  8306. plan_set_e_position(e);
  8307. //first move print head in XY to the saved position:
  8308. plan_buffer_line(saved_pos[X_AXIS], saved_pos[Y_AXIS], current_position[Z_AXIS], saved_pos[E_AXIS] - e_move, homing_feedrate[Z_AXIS]/13, active_extruder);
  8309. st_synchronize();
  8310. //then move Z
  8311. plan_buffer_line(saved_pos[X_AXIS], saved_pos[Y_AXIS], saved_pos[Z_AXIS], saved_pos[E_AXIS] - e_move, homing_feedrate[Z_AXIS]/13, active_extruder);
  8312. st_synchronize();
  8313. //and finaly unretract (35mm/s)
  8314. plan_buffer_line(saved_pos[X_AXIS], saved_pos[Y_AXIS], saved_pos[Z_AXIS], saved_pos[E_AXIS], 35, active_extruder);
  8315. st_synchronize();
  8316. memcpy(current_position, saved_pos, sizeof(saved_pos));
  8317. memcpy(destination, current_position, sizeof(destination));
  8318. if (saved_printing_type == PRINTING_TYPE_SD) { //was sd printing
  8319. card.setIndex(saved_sdpos);
  8320. sdpos_atomic = saved_sdpos;
  8321. card.sdprinting = true;
  8322. printf_P(PSTR("ok\n")); //dummy response because of octoprint is waiting for this
  8323. }
  8324. else if (saved_printing_type == PRINTING_TYPE_USB) { //was usb printing
  8325. gcode_LastN = saved_sdpos; //saved_sdpos was reused for storing line number when usb printing
  8326. serial_count = 0;
  8327. FlushSerialRequestResend();
  8328. }
  8329. else {
  8330. //not sd printing nor usb printing
  8331. }
  8332. lcd_setstatuspgm(_T(WELCOME_MSG));
  8333. saved_printing = false;
  8334. }
  8335. void print_world_coordinates()
  8336. {
  8337. printf_P(_N("world coordinates: (%.3f, %.3f, %.3f)\n"), current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS]);
  8338. }
  8339. void print_physical_coordinates()
  8340. {
  8341. printf_P(_N("physical coordinates: (%.3f, %.3f, %.3f)\n"), st_get_position_mm(X_AXIS), st_get_position_mm(Y_AXIS), st_get_position_mm(Z_AXIS));
  8342. }
  8343. void print_mesh_bed_leveling_table()
  8344. {
  8345. SERIAL_ECHOPGM("mesh bed leveling: ");
  8346. for (int8_t y = 0; y < MESH_NUM_Y_POINTS; ++ y)
  8347. for (int8_t x = 0; x < MESH_NUM_Y_POINTS; ++ x) {
  8348. MYSERIAL.print(mbl.z_values[y][x], 3);
  8349. SERIAL_ECHOPGM(" ");
  8350. }
  8351. SERIAL_ECHOLNPGM("");
  8352. }
  8353. uint16_t print_time_remaining() {
  8354. uint16_t print_t = PRINT_TIME_REMAINING_INIT;
  8355. #ifdef TMC2130
  8356. if (SilentModeMenu == SILENT_MODE_OFF) print_t = print_time_remaining_normal;
  8357. else print_t = print_time_remaining_silent;
  8358. #else
  8359. print_t = print_time_remaining_normal;
  8360. #endif //TMC2130
  8361. if ((print_t != PRINT_TIME_REMAINING_INIT) && (feedmultiply != 0)) print_t = 100ul * print_t / feedmultiply;
  8362. return print_t;
  8363. }
  8364. uint8_t calc_percent_done()
  8365. {
  8366. //in case that we have information from M73 gcode return percentage counted by slicer, else return percentage counted as byte_printed/filesize
  8367. uint8_t percent_done = 0;
  8368. #ifdef TMC2130
  8369. if (SilentModeMenu == SILENT_MODE_OFF && print_percent_done_normal <= 100) {
  8370. percent_done = print_percent_done_normal;
  8371. }
  8372. else if (print_percent_done_silent <= 100) {
  8373. percent_done = print_percent_done_silent;
  8374. }
  8375. #else
  8376. if (print_percent_done_normal <= 100) {
  8377. percent_done = print_percent_done_normal;
  8378. }
  8379. #endif //TMC2130
  8380. else {
  8381. percent_done = card.percentDone();
  8382. }
  8383. return percent_done;
  8384. }
  8385. static void print_time_remaining_init()
  8386. {
  8387. print_time_remaining_normal = PRINT_TIME_REMAINING_INIT;
  8388. print_time_remaining_silent = PRINT_TIME_REMAINING_INIT;
  8389. print_percent_done_normal = PRINT_PERCENT_DONE_INIT;
  8390. print_percent_done_silent = PRINT_PERCENT_DONE_INIT;
  8391. }
  8392. void load_filament_final_feed()
  8393. {
  8394. current_position[E_AXIS]+= FILAMENTCHANGE_FINALFEED;
  8395. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], FILAMENTCHANGE_EFEED_FINAL, active_extruder);
  8396. }
  8397. //! @brief Wait for user to check the state
  8398. //! @par nozzle_temp nozzle temperature to load filament
  8399. void M600_check_state(float nozzle_temp)
  8400. {
  8401. lcd_change_fil_state = 0;
  8402. while (lcd_change_fil_state != 1)
  8403. {
  8404. lcd_change_fil_state = 0;
  8405. KEEPALIVE_STATE(PAUSED_FOR_USER);
  8406. lcd_alright();
  8407. KEEPALIVE_STATE(IN_HANDLER);
  8408. switch(lcd_change_fil_state)
  8409. {
  8410. // Filament failed to load so load it again
  8411. case 2:
  8412. if (mmu_enabled)
  8413. mmu_M600_load_filament(false, nozzle_temp); //nonautomatic load; change to "wrong filament loaded" option?
  8414. else
  8415. M600_load_filament_movements();
  8416. break;
  8417. // Filament loaded properly but color is not clear
  8418. case 3:
  8419. st_synchronize();
  8420. load_filament_final_feed();
  8421. lcd_loading_color();
  8422. st_synchronize();
  8423. break;
  8424. // Everything good
  8425. default:
  8426. lcd_change_success();
  8427. break;
  8428. }
  8429. }
  8430. }
  8431. //! @brief Wait for user action
  8432. //!
  8433. //! Beep, manage nozzle heater and wait for user to start unload filament
  8434. //! If times out, active extruder temperature is set to 0.
  8435. //!
  8436. //! @param HotendTempBckp Temperature to be restored for active extruder, after user resolves MMU problem.
  8437. void M600_wait_for_user(float HotendTempBckp) {
  8438. KEEPALIVE_STATE(PAUSED_FOR_USER);
  8439. int counterBeep = 0;
  8440. unsigned long waiting_start_time = _millis();
  8441. uint8_t wait_for_user_state = 0;
  8442. lcd_display_message_fullscreen_P(_T(MSG_PRESS_TO_UNLOAD));
  8443. bool bFirst=true;
  8444. while (!(wait_for_user_state == 0 && lcd_clicked())){
  8445. manage_heater();
  8446. manage_inactivity(true);
  8447. #if BEEPER > 0
  8448. if (counterBeep == 500) {
  8449. counterBeep = 0;
  8450. }
  8451. SET_OUTPUT(BEEPER);
  8452. if (counterBeep == 0) {
  8453. if((eSoundMode==e_SOUND_MODE_LOUD)||((eSoundMode==e_SOUND_MODE_ONCE)&&bFirst))
  8454. {
  8455. bFirst=false;
  8456. WRITE(BEEPER, HIGH);
  8457. }
  8458. }
  8459. if (counterBeep == 20) {
  8460. WRITE(BEEPER, LOW);
  8461. }
  8462. counterBeep++;
  8463. #endif //BEEPER > 0
  8464. switch (wait_for_user_state) {
  8465. case 0: //nozzle is hot, waiting for user to press the knob to unload filament
  8466. delay_keep_alive(4);
  8467. if (_millis() > waiting_start_time + (unsigned long)M600_TIMEOUT * 1000) {
  8468. lcd_display_message_fullscreen_P(_i("Press knob to preheat nozzle and continue."));////MSG_PRESS_TO_PREHEAT c=20 r=4
  8469. wait_for_user_state = 1;
  8470. setAllTargetHotends(0);
  8471. st_synchronize();
  8472. disable_e0();
  8473. disable_e1();
  8474. disable_e2();
  8475. }
  8476. break;
  8477. case 1: //nozzle target temperature is set to zero, waiting for user to start nozzle preheat
  8478. delay_keep_alive(4);
  8479. if (lcd_clicked()) {
  8480. setTargetHotend(HotendTempBckp, active_extruder);
  8481. lcd_wait_for_heater();
  8482. wait_for_user_state = 2;
  8483. }
  8484. break;
  8485. case 2: //waiting for nozzle to reach target temperature
  8486. if (abs(degTargetHotend(active_extruder) - degHotend(active_extruder)) < 1) {
  8487. lcd_display_message_fullscreen_P(_T(MSG_PRESS_TO_UNLOAD));
  8488. waiting_start_time = _millis();
  8489. wait_for_user_state = 0;
  8490. }
  8491. else {
  8492. counterBeep = 20; //beeper will be inactive during waiting for nozzle preheat
  8493. lcd_set_cursor(1, 4);
  8494. lcd_print(ftostr3(degHotend(active_extruder)));
  8495. }
  8496. break;
  8497. }
  8498. }
  8499. WRITE(BEEPER, LOW);
  8500. }
  8501. void M600_load_filament_movements()
  8502. {
  8503. #ifdef SNMM
  8504. display_loading();
  8505. do
  8506. {
  8507. current_position[E_AXIS] += 0.002;
  8508. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 500, active_extruder);
  8509. delay_keep_alive(2);
  8510. }
  8511. while (!lcd_clicked());
  8512. st_synchronize();
  8513. current_position[E_AXIS] += bowden_length[mmu_extruder];
  8514. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000, active_extruder);
  8515. current_position[E_AXIS] += FIL_LOAD_LENGTH - 60;
  8516. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 1400, active_extruder);
  8517. current_position[E_AXIS] += 40;
  8518. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400, active_extruder);
  8519. current_position[E_AXIS] += 10;
  8520. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 50, active_extruder);
  8521. #else
  8522. current_position[E_AXIS]+= FILAMENTCHANGE_FIRSTFEED ;
  8523. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], FILAMENTCHANGE_EFEED_FIRST, active_extruder);
  8524. #endif
  8525. load_filament_final_feed();
  8526. lcd_loading_filament();
  8527. st_synchronize();
  8528. }
  8529. void M600_load_filament() {
  8530. //load filament for single material and SNMM
  8531. lcd_wait_interact();
  8532. //load_filament_time = _millis();
  8533. KEEPALIVE_STATE(PAUSED_FOR_USER);
  8534. #ifdef PAT9125
  8535. fsensor_autoload_check_start();
  8536. #endif //PAT9125
  8537. while(!lcd_clicked())
  8538. {
  8539. manage_heater();
  8540. manage_inactivity(true);
  8541. #ifdef FILAMENT_SENSOR
  8542. if (fsensor_check_autoload())
  8543. {
  8544. if((eSoundMode==e_SOUND_MODE_LOUD)||(eSoundMode==e_SOUND_MODE_ONCE))
  8545. _tone(BEEPER, 1000);
  8546. delay_keep_alive(50);
  8547. _noTone(BEEPER);
  8548. break;
  8549. }
  8550. #endif //FILAMENT_SENSOR
  8551. }
  8552. #ifdef PAT9125
  8553. fsensor_autoload_check_stop();
  8554. #endif //PAT9125
  8555. KEEPALIVE_STATE(IN_HANDLER);
  8556. #ifdef FSENSOR_QUALITY
  8557. fsensor_oq_meassure_start(70);
  8558. #endif //FSENSOR_QUALITY
  8559. M600_load_filament_movements();
  8560. if((eSoundMode==e_SOUND_MODE_LOUD)||(eSoundMode==e_SOUND_MODE_ONCE))
  8561. _tone(BEEPER, 500);
  8562. delay_keep_alive(50);
  8563. _noTone(BEEPER);
  8564. #ifdef FSENSOR_QUALITY
  8565. fsensor_oq_meassure_stop();
  8566. if (!fsensor_oq_result())
  8567. {
  8568. bool disable = lcd_show_fullscreen_message_yes_no_and_wait_P(_i("Fil. sensor response is poor, disable it?"), false, true);
  8569. lcd_update_enable(true);
  8570. lcd_update(2);
  8571. if (disable)
  8572. fsensor_disable();
  8573. }
  8574. #endif //FSENSOR_QUALITY
  8575. lcd_update_enable(false);
  8576. }
  8577. //! @brief Wait for click
  8578. //!
  8579. //! Set
  8580. void marlin_wait_for_click()
  8581. {
  8582. int8_t busy_state_backup = busy_state;
  8583. KEEPALIVE_STATE(PAUSED_FOR_USER);
  8584. lcd_consume_click();
  8585. while(!lcd_clicked())
  8586. {
  8587. manage_heater();
  8588. manage_inactivity(true);
  8589. lcd_update(0);
  8590. }
  8591. KEEPALIVE_STATE(busy_state_backup);
  8592. }
  8593. #define FIL_LOAD_LENGTH 60