Marlin_main.cpp 180 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744374537463747374837493750375137523753375437553756375737583759376037613762376337643765376637673768376937703771377237733774377537763777377837793780378137823783378437853786378737883789379037913792379337943795379637973798379938003801380238033804380538063807380838093810381138123813381438153816381738183819382038213822382338243825382638273828382938303831383238333834383538363837383838393840384138423843384438453846384738483849385038513852385338543855385638573858385938603861386238633864386538663867386838693870387138723873387438753876387738783879388038813882388338843885388638873888388938903891389238933894389538963897389838993900390139023903390439053906390739083909391039113912391339143915391639173918391939203921392239233924392539263927392839293930393139323933393439353936393739383939394039413942394339443945394639473948394939503951395239533954395539563957395839593960396139623963396439653966396739683969397039713972397339743975397639773978397939803981398239833984398539863987398839893990399139923993399439953996399739983999400040014002400340044005400640074008400940104011401240134014401540164017401840194020402140224023402440254026402740284029403040314032403340344035403640374038403940404041404240434044404540464047404840494050405140524053405440554056405740584059406040614062406340644065406640674068406940704071407240734074407540764077407840794080408140824083408440854086408740884089409040914092409340944095409640974098409941004101410241034104410541064107410841094110411141124113411441154116411741184119412041214122412341244125412641274128412941304131413241334134413541364137413841394140414141424143414441454146414741484149415041514152415341544155415641574158415941604161416241634164416541664167416841694170417141724173417441754176417741784179418041814182418341844185418641874188418941904191419241934194419541964197419841994200420142024203420442054206420742084209421042114212421342144215421642174218421942204221422242234224422542264227422842294230423142324233423442354236423742384239424042414242424342444245424642474248424942504251425242534254425542564257425842594260426142624263426442654266426742684269427042714272427342744275427642774278427942804281428242834284428542864287428842894290429142924293429442954296429742984299430043014302430343044305430643074308430943104311431243134314431543164317431843194320432143224323432443254326432743284329433043314332433343344335433643374338433943404341434243434344434543464347434843494350435143524353435443554356435743584359436043614362436343644365436643674368436943704371437243734374437543764377437843794380438143824383438443854386438743884389439043914392439343944395439643974398439944004401440244034404440544064407440844094410441144124413441444154416441744184419442044214422442344244425442644274428442944304431443244334434443544364437443844394440444144424443444444454446444744484449445044514452445344544455445644574458445944604461446244634464446544664467446844694470447144724473447444754476447744784479448044814482448344844485448644874488448944904491449244934494449544964497449844994500450145024503450445054506450745084509451045114512451345144515451645174518451945204521452245234524452545264527452845294530453145324533453445354536453745384539454045414542454345444545454645474548454945504551455245534554455545564557455845594560456145624563456445654566456745684569457045714572457345744575457645774578457945804581458245834584458545864587458845894590459145924593459445954596459745984599460046014602460346044605460646074608460946104611461246134614461546164617461846194620462146224623462446254626462746284629463046314632463346344635463646374638463946404641464246434644464546464647464846494650465146524653465446554656465746584659466046614662466346644665466646674668466946704671467246734674467546764677467846794680468146824683468446854686468746884689469046914692469346944695469646974698469947004701470247034704470547064707470847094710471147124713471447154716471747184719472047214722472347244725472647274728472947304731473247334734473547364737473847394740474147424743474447454746474747484749475047514752475347544755475647574758475947604761476247634764476547664767476847694770477147724773477447754776477747784779478047814782478347844785478647874788478947904791479247934794479547964797479847994800480148024803480448054806480748084809481048114812481348144815481648174818481948204821482248234824482548264827482848294830483148324833483448354836483748384839484048414842484348444845484648474848484948504851485248534854485548564857485848594860486148624863486448654866486748684869487048714872487348744875487648774878487948804881488248834884488548864887488848894890489148924893489448954896489748984899490049014902490349044905490649074908490949104911491249134914491549164917491849194920492149224923492449254926492749284929493049314932493349344935493649374938493949404941494249434944494549464947494849494950495149524953495449554956495749584959496049614962496349644965496649674968496949704971497249734974497549764977497849794980498149824983498449854986498749884989499049914992499349944995499649974998499950005001500250035004500550065007500850095010501150125013501450155016501750185019502050215022502350245025502650275028502950305031503250335034503550365037503850395040504150425043504450455046504750485049505050515052505350545055505650575058505950605061506250635064506550665067506850695070507150725073507450755076507750785079508050815082508350845085508650875088508950905091509250935094509550965097509850995100510151025103510451055106510751085109511051115112511351145115511651175118511951205121512251235124512551265127512851295130513151325133513451355136513751385139514051415142514351445145514651475148514951505151515251535154515551565157515851595160516151625163516451655166516751685169517051715172517351745175517651775178517951805181518251835184518551865187518851895190519151925193519451955196519751985199520052015202520352045205520652075208520952105211
  1. /* -*- c++ -*- */
  2. /*
  3. Reprap firmware based on Sprinter and grbl.
  4. Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
  5. This program is free software: you can redistribute it and/or modify
  6. it under the terms of the GNU General Public License as published by
  7. the Free Software Foundation, either version 3 of the License, or
  8. (at your option) any later version.
  9. This program is distributed in the hope that it will be useful,
  10. but WITHOUT ANY WARRANTY; without even the implied warranty of
  11. MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  12. GNU General Public License for more details.
  13. You should have received a copy of the GNU General Public License
  14. along with this program. If not, see <http://www.gnu.org/licenses/>.
  15. */
  16. /*
  17. This firmware is a mashup between Sprinter and grbl.
  18. (https://github.com/kliment/Sprinter)
  19. (https://github.com/simen/grbl/tree)
  20. It has preliminary support for Matthew Roberts advance algorithm
  21. http://reprap.org/pipermail/reprap-dev/2011-May/003323.html
  22. */
  23. #include "Marlin.h"
  24. #ifdef ENABLE_AUTO_BED_LEVELING
  25. #include "vector_3.h"
  26. #ifdef AUTO_BED_LEVELING_GRID
  27. #include "qr_solve.h"
  28. #endif
  29. #endif // ENABLE_AUTO_BED_LEVELING
  30. #ifdef MESH_BED_LEVELING
  31. #include "mesh_bed_leveling.h"
  32. #include "mesh_bed_calibration.h"
  33. #endif
  34. #include "ultralcd.h"
  35. #include "Configuration_prusa.h"
  36. #include "planner.h"
  37. #include "stepper.h"
  38. #include "temperature.h"
  39. #include "motion_control.h"
  40. #include "cardreader.h"
  41. #include "watchdog.h"
  42. #include "ConfigurationStore.h"
  43. #include "language.h"
  44. #include "pins_arduino.h"
  45. #include "math.h"
  46. #include "util.h"
  47. #ifdef BLINKM
  48. #include "BlinkM.h"
  49. #include "Wire.h"
  50. #endif
  51. #ifdef ULTRALCD
  52. #include "ultralcd.h"
  53. #endif
  54. #if NUM_SERVOS > 0
  55. #include "Servo.h"
  56. #endif
  57. #if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
  58. #include <SPI.h>
  59. #endif
  60. #define VERSION_STRING "1.0.2"
  61. #include "ultralcd.h"
  62. // Macros for bit masks
  63. #define BIT(b) (1<<(b))
  64. #define TEST(n,b) (((n)&BIT(b))!=0)
  65. #define SET_BIT(n,b,value) (n) ^= ((-value)^(n)) & (BIT(b))
  66. // look here for descriptions of G-codes: http://linuxcnc.org/handbook/gcode/g-code.html
  67. // http://objects.reprap.org/wiki/Mendel_User_Manual:_RepRapGCodes
  68. //Implemented Codes
  69. //-------------------
  70. // PRUSA CODES
  71. // P F - Returns FW versions
  72. // P R - Returns revision of printer
  73. // G0 -> G1
  74. // G1 - Coordinated Movement X Y Z E
  75. // G2 - CW ARC
  76. // G3 - CCW ARC
  77. // G4 - Dwell S<seconds> or P<milliseconds>
  78. // G10 - retract filament according to settings of M207
  79. // G11 - retract recover filament according to settings of M208
  80. // G28 - Home all Axis
  81. // G29 - Detailed Z-Probe, probes the bed at 3 or more points. Will fail if you haven't homed yet.
  82. // G30 - Single Z Probe, probes bed at current XY location.
  83. // G31 - Dock sled (Z_PROBE_SLED only)
  84. // G32 - Undock sled (Z_PROBE_SLED only)
  85. // G80 - Automatic mesh bed leveling
  86. // G81 - Print bed profile
  87. // G90 - Use Absolute Coordinates
  88. // G91 - Use Relative Coordinates
  89. // G92 - Set current position to coordinates given
  90. // M Codes
  91. // M0 - Unconditional stop - Wait for user to press a button on the LCD (Only if ULTRA_LCD is enabled)
  92. // M1 - Same as M0
  93. // M17 - Enable/Power all stepper motors
  94. // M18 - Disable all stepper motors; same as M84
  95. // M20 - List SD card
  96. // M21 - Init SD card
  97. // M22 - Release SD card
  98. // M23 - Select SD file (M23 filename.g)
  99. // M24 - Start/resume SD print
  100. // M25 - Pause SD print
  101. // M26 - Set SD position in bytes (M26 S12345)
  102. // M27 - Report SD print status
  103. // M28 - Start SD write (M28 filename.g)
  104. // M29 - Stop SD write
  105. // M30 - Delete file from SD (M30 filename.g)
  106. // M31 - Output time since last M109 or SD card start to serial
  107. // M32 - Select file and start SD print (Can be used _while_ printing from SD card files):
  108. // syntax "M32 /path/filename#", or "M32 S<startpos bytes> !filename#"
  109. // Call gcode file : "M32 P !filename#" and return to caller file after finishing (similar to #include).
  110. // The '#' is necessary when calling from within sd files, as it stops buffer prereading
  111. // M42 - Change pin status via gcode Use M42 Px Sy to set pin x to value y, when omitting Px the onboard led will be used.
  112. // M80 - Turn on Power Supply
  113. // M81 - Turn off Power Supply
  114. // M82 - Set E codes absolute (default)
  115. // M83 - Set E codes relative while in Absolute Coordinates (G90) mode
  116. // M84 - Disable steppers until next move,
  117. // or use S<seconds> to specify an inactivity timeout, after which the steppers will be disabled. S0 to disable the timeout.
  118. // M85 - Set inactivity shutdown timer with parameter S<seconds>. To disable set zero (default)
  119. // M92 - Set axis_steps_per_unit - same syntax as G92
  120. // M104 - Set extruder target temp
  121. // M105 - Read current temp
  122. // M106 - Fan on
  123. // M107 - Fan off
  124. // M109 - Sxxx Wait for extruder current temp to reach target temp. Waits only when heating
  125. // Rxxx Wait for extruder current temp to reach target temp. Waits when heating and cooling
  126. // IF AUTOTEMP is enabled, S<mintemp> B<maxtemp> F<factor>. Exit autotemp by any M109 without F
  127. // M112 - Emergency stop
  128. // M114 - Output current position to serial port
  129. // M115 - Capabilities string
  130. // M117 - display message
  131. // M119 - Output Endstop status to serial port
  132. // M126 - Solenoid Air Valve Open (BariCUDA support by jmil)
  133. // M127 - Solenoid Air Valve Closed (BariCUDA vent to atmospheric pressure by jmil)
  134. // M128 - EtoP Open (BariCUDA EtoP = electricity to air pressure transducer by jmil)
  135. // M129 - EtoP Closed (BariCUDA EtoP = electricity to air pressure transducer by jmil)
  136. // M140 - Set bed target temp
  137. // M150 - Set BlinkM Color Output R: Red<0-255> U(!): Green<0-255> B: Blue<0-255> over i2c, G for green does not work.
  138. // M190 - Sxxx Wait for bed current temp to reach target temp. Waits only when heating
  139. // Rxxx Wait for bed current temp to reach target temp. Waits when heating and cooling
  140. // M200 D<millimeters>- set filament diameter and set E axis units to cubic millimeters (use S0 to set back to millimeters).
  141. // M201 - Set max acceleration in units/s^2 for print moves (M201 X1000 Y1000)
  142. // M202 - Set max acceleration in units/s^2 for travel moves (M202 X1000 Y1000) Unused in Marlin!!
  143. // M203 - Set maximum feedrate that your machine can sustain (M203 X200 Y200 Z300 E10000) in mm/sec
  144. // M204 - Set default acceleration: S normal moves T filament only moves (M204 S3000 T7000) in mm/sec^2 also sets minimum segment time in ms (B20000) to prevent buffer under-runs and M20 minimum feedrate
  145. // M205 - advanced settings: minimum travel speed S=while printing T=travel only, B=minimum segment time X= maximum xy jerk, Z=maximum Z jerk, E=maximum E jerk
  146. // M206 - set additional homing offset
  147. // M207 - set retract length S[positive mm] F[feedrate mm/min] Z[additional zlift/hop], stays in mm regardless of M200 setting
  148. // M208 - set recover=unretract length S[positive mm surplus to the M207 S*] F[feedrate mm/sec]
  149. // M209 - S<1=true/0=false> enable automatic retract detect if the slicer did not support G10/11: every normal extrude-only move will be classified as retract depending on the direction.
  150. // M218 - set hotend offset (in mm): T<extruder_number> X<offset_on_X> Y<offset_on_Y>
  151. // M220 S<factor in percent>- set speed factor override percentage
  152. // M221 S<factor in percent>- set extrude factor override percentage
  153. // M226 P<pin number> S<pin state>- Wait until the specified pin reaches the state required
  154. // M240 - Trigger a camera to take a photograph
  155. // M250 - Set LCD contrast C<contrast value> (value 0..63)
  156. // M280 - set servo position absolute. P: servo index, S: angle or microseconds
  157. // M300 - Play beep sound S<frequency Hz> P<duration ms>
  158. // M301 - Set PID parameters P I and D
  159. // M302 - Allow cold extrudes, or set the minimum extrude S<temperature>.
  160. // M303 - PID relay autotune S<temperature> sets the target temperature. (default target temperature = 150C)
  161. // M304 - Set bed PID parameters P I and D
  162. // M400 - Finish all moves
  163. // M401 - Lower z-probe if present
  164. // M402 - Raise z-probe if present
  165. // M404 - N<dia in mm> Enter the nominal filament width (3mm, 1.75mm ) or will display nominal filament width without parameters
  166. // M405 - Turn on Filament Sensor extrusion control. Optional D<delay in cm> to set delay in centimeters between sensor and extruder
  167. // M406 - Turn off Filament Sensor extrusion control
  168. // M407 - Displays measured filament diameter
  169. // M500 - stores parameters in EEPROM
  170. // M501 - reads parameters from EEPROM (if you need reset them after you changed them temporarily).
  171. // M502 - reverts to the default "factory settings". You still need to store them in EEPROM afterwards if you want to.
  172. // M503 - print the current settings (from memory not from EEPROM)
  173. // M509 - force language selection on next restart
  174. // M540 - Use S[0|1] to enable or disable the stop SD card print on endstop hit (requires ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED)
  175. // M600 - Pause for filament change X[pos] Y[pos] Z[relative lift] E[initial retract] L[later retract distance for removal]
  176. // M605 - Set dual x-carriage movement mode: S<mode> [ X<duplication x-offset> R<duplication temp offset> ]
  177. // M907 - Set digital trimpot motor current using axis codes.
  178. // M908 - Control digital trimpot directly.
  179. // M350 - Set microstepping mode.
  180. // M351 - Toggle MS1 MS2 pins directly.
  181. // M928 - Start SD logging (M928 filename.g) - ended by M29
  182. // M999 - Restart after being stopped by error
  183. //Stepper Movement Variables
  184. //===========================================================================
  185. //=============================imported variables============================
  186. //===========================================================================
  187. //===========================================================================
  188. //=============================public variables=============================
  189. //===========================================================================
  190. #ifdef SDSUPPORT
  191. CardReader card;
  192. #endif
  193. union Data
  194. {
  195. byte b[2];
  196. int value;
  197. };
  198. int babystepLoad[3];
  199. float homing_feedrate[] = HOMING_FEEDRATE;
  200. // Currently only the extruder axis may be switched to a relative mode.
  201. // Other axes are always absolute or relative based on the common relative_mode flag.
  202. bool axis_relative_modes[] = AXIS_RELATIVE_MODES;
  203. int feedmultiply=100; //100->1 200->2
  204. int saved_feedmultiply;
  205. int extrudemultiply=100; //100->1 200->2
  206. int extruder_multiply[EXTRUDERS] = {100
  207. #if EXTRUDERS > 1
  208. , 100
  209. #if EXTRUDERS > 2
  210. , 100
  211. #endif
  212. #endif
  213. };
  214. bool is_usb_printing = false;
  215. bool _doMeshL = false;
  216. unsigned int usb_printing_counter;
  217. int lcd_change_fil_state = 0;
  218. int feedmultiplyBckp = 100;
  219. unsigned char lang_selected = 0;
  220. unsigned long total_filament_used;
  221. unsigned int heating_status;
  222. unsigned int heating_status_counter;
  223. bool custom_message;
  224. unsigned int custom_message_type;
  225. unsigned int custom_message_state;
  226. bool volumetric_enabled = false;
  227. float filament_size[EXTRUDERS] = { DEFAULT_NOMINAL_FILAMENT_DIA
  228. #if EXTRUDERS > 1
  229. , DEFAULT_NOMINAL_FILAMENT_DIA
  230. #if EXTRUDERS > 2
  231. , DEFAULT_NOMINAL_FILAMENT_DIA
  232. #endif
  233. #endif
  234. };
  235. float volumetric_multiplier[EXTRUDERS] = {1.0
  236. #if EXTRUDERS > 1
  237. , 1.0
  238. #if EXTRUDERS > 2
  239. , 1.0
  240. #endif
  241. #endif
  242. };
  243. float current_position[NUM_AXIS] = { 0.0, 0.0, 0.0, 0.0 };
  244. float add_homing[3]={0,0,0};
  245. float min_pos[3] = { X_MIN_POS, Y_MIN_POS, Z_MIN_POS };
  246. float max_pos[3] = { X_MAX_POS, Y_MAX_POS, Z_MAX_POS };
  247. bool axis_known_position[3] = {false, false, false};
  248. float zprobe_zoffset;
  249. // Extruder offset
  250. #if EXTRUDERS > 1
  251. #ifndef DUAL_X_CARRIAGE
  252. #define NUM_EXTRUDER_OFFSETS 2 // only in XY plane
  253. #else
  254. #define NUM_EXTRUDER_OFFSETS 3 // supports offsets in XYZ plane
  255. #endif
  256. float extruder_offset[NUM_EXTRUDER_OFFSETS][EXTRUDERS] = {
  257. #if defined(EXTRUDER_OFFSET_X) && defined(EXTRUDER_OFFSET_Y)
  258. EXTRUDER_OFFSET_X, EXTRUDER_OFFSET_Y
  259. #endif
  260. };
  261. #endif
  262. uint8_t active_extruder = 0;
  263. int fanSpeed=0;
  264. #ifdef FWRETRACT
  265. bool autoretract_enabled=false;
  266. bool retracted[EXTRUDERS]={false
  267. #if EXTRUDERS > 1
  268. , false
  269. #if EXTRUDERS > 2
  270. , false
  271. #endif
  272. #endif
  273. };
  274. bool retracted_swap[EXTRUDERS]={false
  275. #if EXTRUDERS > 1
  276. , false
  277. #if EXTRUDERS > 2
  278. , false
  279. #endif
  280. #endif
  281. };
  282. float retract_length = RETRACT_LENGTH;
  283. float retract_length_swap = RETRACT_LENGTH_SWAP;
  284. float retract_feedrate = RETRACT_FEEDRATE;
  285. float retract_zlift = RETRACT_ZLIFT;
  286. float retract_recover_length = RETRACT_RECOVER_LENGTH;
  287. float retract_recover_length_swap = RETRACT_RECOVER_LENGTH_SWAP;
  288. float retract_recover_feedrate = RETRACT_RECOVER_FEEDRATE;
  289. #endif
  290. #ifdef ULTIPANEL
  291. #ifdef PS_DEFAULT_OFF
  292. bool powersupply = false;
  293. #else
  294. bool powersupply = true;
  295. #endif
  296. #endif
  297. bool cancel_heatup = false ;
  298. #ifdef FILAMENT_SENSOR
  299. //Variables for Filament Sensor input
  300. float filament_width_nominal=DEFAULT_NOMINAL_FILAMENT_DIA; //Set nominal filament width, can be changed with M404
  301. bool filament_sensor=false; //M405 turns on filament_sensor control, M406 turns it off
  302. float filament_width_meas=DEFAULT_MEASURED_FILAMENT_DIA; //Stores the measured filament diameter
  303. signed char measurement_delay[MAX_MEASUREMENT_DELAY+1]; //ring buffer to delay measurement store extruder factor after subtracting 100
  304. int delay_index1=0; //index into ring buffer
  305. int delay_index2=-1; //index into ring buffer - set to -1 on startup to indicate ring buffer needs to be initialized
  306. float delay_dist=0; //delay distance counter
  307. int meas_delay_cm = MEASUREMENT_DELAY_CM; //distance delay setting
  308. #endif
  309. const char errormagic[] PROGMEM = "Error:";
  310. const char echomagic[] PROGMEM = "echo:";
  311. //===========================================================================
  312. //=============================Private Variables=============================
  313. //===========================================================================
  314. const char axis_codes[NUM_AXIS] = {'X', 'Y', 'Z', 'E'};
  315. float destination[NUM_AXIS] = { 0.0, 0.0, 0.0, 0.0};
  316. static float delta[3] = {0.0, 0.0, 0.0};
  317. // For tracing an arc
  318. static float offset[3] = {0.0, 0.0, 0.0};
  319. static bool home_all_axis = true;
  320. static float feedrate = 1500.0, next_feedrate, saved_feedrate;
  321. static long gcode_N, gcode_LastN, Stopped_gcode_LastN = 0;
  322. // Determines Absolute or Relative Coordinates.
  323. // Also there is bool axis_relative_modes[] per axis flag.
  324. static bool relative_mode = false;
  325. // String circular buffer. Commands may be pushed to the buffer from both sides:
  326. // Chained commands will be pushed to the front, interactive (from LCD menu)
  327. // and printing commands (from serial line or from SD card) are pushed to the tail.
  328. // First character of each entry indicates the type of the entry:
  329. #define CMDBUFFER_CURRENT_TYPE_UNKNOWN 0
  330. // Command in cmdbuffer was sent over USB.
  331. #define CMDBUFFER_CURRENT_TYPE_USB 1
  332. // Command in cmdbuffer was read from SDCARD.
  333. #define CMDBUFFER_CURRENT_TYPE_SDCARD 2
  334. // Command in cmdbuffer was generated by the UI.
  335. #define CMDBUFFER_CURRENT_TYPE_UI 3
  336. // Command in cmdbuffer was generated by another G-code.
  337. #define CMDBUFFER_CURRENT_TYPE_CHAINED 4
  338. // How much space to reserve for the chained commands
  339. // of type CMDBUFFER_CURRENT_TYPE_CHAINED,
  340. // which are pushed to the front of the queue?
  341. // Maximum 5 commands of max length 20 + null terminator.
  342. #define CMDBUFFER_RESERVE_FRONT (5*21)
  343. // Reserve BUFSIZE lines of length MAX_CMD_SIZE plus CMDBUFFER_RESERVE_FRONT.
  344. static char cmdbuffer[BUFSIZE * (MAX_CMD_SIZE + 1) + CMDBUFFER_RESERVE_FRONT];
  345. // Head of the circular buffer, where to read.
  346. static int bufindr = 0;
  347. // Tail of the buffer, where to write.
  348. static int bufindw = 0;
  349. // Number of lines in cmdbuffer.
  350. static int buflen = 0;
  351. // Flag for processing the current command inside the main Arduino loop().
  352. // If a new command was pushed to the front of a command buffer while
  353. // processing another command, this replaces the command on the top.
  354. // Therefore don't remove the command from the queue in the loop() function.
  355. static bool cmdbuffer_front_already_processed = false;
  356. // Type of a command, which is to be executed right now.
  357. #define CMDBUFFER_CURRENT_TYPE (cmdbuffer[bufindr])
  358. // String of a command, which is to be executed right now.
  359. #define CMDBUFFER_CURRENT_STRING (cmdbuffer+bufindr+1)
  360. // Enable debugging of the command buffer.
  361. // Debugging information will be sent to serial line.
  362. // #define CMDBUFFER_DEBUG
  363. static int serial_count = 0;
  364. static boolean comment_mode = false;
  365. static char *strchr_pointer; // just a pointer to find chars in the command string like X, Y, Z, E, etc
  366. const int sensitive_pins[] = SENSITIVE_PINS; // Sensitive pin list for M42
  367. //static float tt = 0;
  368. //static float bt = 0;
  369. //Inactivity shutdown variables
  370. static unsigned long previous_millis_cmd = 0;
  371. unsigned long max_inactive_time = 0;
  372. static unsigned long stepper_inactive_time = DEFAULT_STEPPER_DEACTIVE_TIME*1000l;
  373. unsigned long starttime=0;
  374. unsigned long stoptime=0;
  375. unsigned long _usb_timer = 0;
  376. static uint8_t tmp_extruder;
  377. bool Stopped=false;
  378. #if NUM_SERVOS > 0
  379. Servo servos[NUM_SERVOS];
  380. #endif
  381. bool CooldownNoWait = true;
  382. bool target_direction;
  383. //Insert variables if CHDK is defined
  384. #ifdef CHDK
  385. unsigned long chdkHigh = 0;
  386. boolean chdkActive = false;
  387. #endif
  388. //===========================================================================
  389. //=============================Routines======================================
  390. //===========================================================================
  391. void get_arc_coordinates();
  392. bool setTargetedHotend(int code);
  393. void serial_echopair_P(const char *s_P, float v)
  394. { serialprintPGM(s_P); SERIAL_ECHO(v); }
  395. void serial_echopair_P(const char *s_P, double v)
  396. { serialprintPGM(s_P); SERIAL_ECHO(v); }
  397. void serial_echopair_P(const char *s_P, unsigned long v)
  398. { serialprintPGM(s_P); SERIAL_ECHO(v); }
  399. #ifdef SDSUPPORT
  400. #include "SdFatUtil.h"
  401. int freeMemory() { return SdFatUtil::FreeRam(); }
  402. #else
  403. extern "C" {
  404. extern unsigned int __bss_end;
  405. extern unsigned int __heap_start;
  406. extern void *__brkval;
  407. int freeMemory() {
  408. int free_memory;
  409. if ((int)__brkval == 0)
  410. free_memory = ((int)&free_memory) - ((int)&__bss_end);
  411. else
  412. free_memory = ((int)&free_memory) - ((int)__brkval);
  413. return free_memory;
  414. }
  415. }
  416. #endif //!SDSUPPORT
  417. // Pop the currently processed command from the queue.
  418. // It is expected, that there is at least one command in the queue.
  419. void cmdqueue_pop_front()
  420. {
  421. if (buflen > 0) {
  422. #ifdef CMDBUFFER_DEBUG
  423. SERIAL_ECHOPGM("Dequeing ");
  424. SERIAL_ECHO(cmdbuffer+bufindr+1);
  425. SERIAL_ECHOLNPGM("");
  426. SERIAL_ECHOPGM("Old indices: buflen ");
  427. SERIAL_ECHO(buflen);
  428. SERIAL_ECHOPGM(", bufindr ");
  429. SERIAL_ECHO(bufindr);
  430. SERIAL_ECHOPGM(", bufindw ");
  431. SERIAL_ECHO(bufindw);
  432. SERIAL_ECHOPGM(", serial_count ");
  433. SERIAL_ECHO(serial_count);
  434. SERIAL_ECHOPGM(", bufsize ");
  435. SERIAL_ECHO(sizeof(cmdbuffer));
  436. SERIAL_ECHOLNPGM("");
  437. #endif /* CMDBUFFER_DEBUG */
  438. if (-- buflen == 0) {
  439. // Empty buffer.
  440. if (serial_count == 0)
  441. // No serial communication is pending. Reset both pointers to zero.
  442. bufindw = 0;
  443. bufindr = bufindw;
  444. } else {
  445. // There is at least one ready line in the buffer.
  446. // First skip the current command ID and iterate up to the end of the string.
  447. for (++ bufindr; cmdbuffer[bufindr] != 0; ++ bufindr) ;
  448. // Second, skip the end of string null character and iterate until a nonzero command ID is found.
  449. for (++ bufindr; bufindr < sizeof(cmdbuffer) && cmdbuffer[bufindr] == 0; ++ bufindr) ;
  450. // If the end of the buffer was empty,
  451. if (bufindr == sizeof(cmdbuffer)) {
  452. // skip to the start and find the nonzero command.
  453. for (bufindr = 0; cmdbuffer[bufindr] == 0; ++ bufindr) ;
  454. }
  455. #ifdef CMDBUFFER_DEBUG
  456. SERIAL_ECHOPGM("New indices: buflen ");
  457. SERIAL_ECHO(buflen);
  458. SERIAL_ECHOPGM(", bufindr ");
  459. SERIAL_ECHO(bufindr);
  460. SERIAL_ECHOPGM(", bufindw ");
  461. SERIAL_ECHO(bufindw);
  462. SERIAL_ECHOPGM(", serial_count ");
  463. SERIAL_ECHO(serial_count);
  464. SERIAL_ECHOPGM(" new command on the top: ");
  465. SERIAL_ECHO(cmdbuffer+bufindr+1);
  466. SERIAL_ECHOLNPGM("");
  467. #endif /* CMDBUFFER_DEBUG */
  468. }
  469. }
  470. }
  471. // How long a string could be pushed to the front of the command queue?
  472. // If yes, adjust bufindr to the new position, where the new command could be enqued.
  473. // len_asked does not contain the zero terminator size.
  474. bool cmdqueue_could_enqueue_front(int len_asked)
  475. {
  476. // MAX_CMD_SIZE has to accommodate the zero terminator.
  477. if (len_asked >= MAX_CMD_SIZE)
  478. return false;
  479. // Remove the currently processed command from the queue.
  480. if (! cmdbuffer_front_already_processed) {
  481. cmdqueue_pop_front();
  482. cmdbuffer_front_already_processed = true;
  483. }
  484. if (bufindr == bufindw && buflen > 0)
  485. // Full buffer.
  486. return false;
  487. // Adjust the end of the write buffer based on whether a partial line is in the receive buffer.
  488. int endw = (serial_count > 0) ? (bufindw + MAX_CMD_SIZE + 1) : bufindw;
  489. if (bufindw < bufindr) {
  490. int bufindr_new = bufindr - len_asked - 2;
  491. // Simple case. There is a contiguous space between the write buffer and the read buffer.
  492. if (endw <= bufindr_new) {
  493. bufindr = bufindr_new;
  494. return true;
  495. }
  496. } else {
  497. // Otherwise the free space is split between the start and end.
  498. if (len_asked + 2 <= bufindr) {
  499. // Could fit at the start.
  500. bufindr -= len_asked + 2;
  501. return true;
  502. }
  503. int bufindr_new = sizeof(cmdbuffer) - len_asked - 2;
  504. if (endw <= bufindr_new) {
  505. memset(cmdbuffer, 0, bufindr);
  506. bufindr = bufindr_new;
  507. return true;
  508. }
  509. }
  510. return false;
  511. }
  512. // Could one enqueue a command of lenthg len_asked into the buffer,
  513. // while leaving CMDBUFFER_RESERVE_FRONT at the start?
  514. // If yes, adjust bufindw to the new position, where the new command could be enqued.
  515. // len_asked does not contain the zero terminator size.
  516. bool cmdqueue_could_enqueue_back(int len_asked)
  517. {
  518. // MAX_CMD_SIZE has to accommodate the zero terminator.
  519. if (len_asked >= MAX_CMD_SIZE)
  520. return false;
  521. if (bufindr == bufindw && buflen > 0)
  522. // Full buffer.
  523. return false;
  524. if (serial_count > 0) {
  525. // If there is some data stored starting at bufindw, len_asked is certainly smaller than
  526. // the allocated data buffer. Try to reserve a new buffer and to move the already received
  527. // serial data.
  528. // How much memory to reserve for the commands pushed to the front?
  529. // End of the queue, when pushing to the end.
  530. int endw = bufindw + len_asked + 2;
  531. if (bufindw < bufindr)
  532. // Simple case. There is a contiguous space between the write buffer and the read buffer.
  533. return endw + CMDBUFFER_RESERVE_FRONT <= bufindr;
  534. // Otherwise the free space is split between the start and end.
  535. if (// Could one fit to the end, including the reserve?
  536. endw + CMDBUFFER_RESERVE_FRONT <= sizeof(cmdbuffer) ||
  537. // Could one fit to the end, and the reserve to the start?
  538. (endw <= sizeof(cmdbuffer) && CMDBUFFER_RESERVE_FRONT <= bufindr))
  539. return true;
  540. // Could one fit both to the start?
  541. if (len_asked + 2 + CMDBUFFER_RESERVE_FRONT <= bufindr) {
  542. // Mark the rest of the buffer as used.
  543. memset(cmdbuffer+bufindw, 0, sizeof(cmdbuffer)-bufindw);
  544. // and point to the start.
  545. bufindw = 0;
  546. return true;
  547. }
  548. } else {
  549. // How much memory to reserve for the commands pushed to the front?
  550. // End of the queue, when pushing to the end.
  551. int endw = bufindw + len_asked + 2;
  552. if (bufindw < bufindr)
  553. // Simple case. There is a contiguous space between the write buffer and the read buffer.
  554. return endw + CMDBUFFER_RESERVE_FRONT <= bufindr;
  555. // Otherwise the free space is split between the start and end.
  556. if (// Could one fit to the end, including the reserve?
  557. endw + CMDBUFFER_RESERVE_FRONT <= sizeof(cmdbuffer) ||
  558. // Could one fit to the end, and the reserve to the start?
  559. (endw <= sizeof(cmdbuffer) && CMDBUFFER_RESERVE_FRONT <= bufindr))
  560. return true;
  561. // Could one fit both to the start?
  562. if (len_asked + 2 + CMDBUFFER_RESERVE_FRONT <= bufindr) {
  563. // Mark the rest of the buffer as used.
  564. memset(cmdbuffer+bufindw, 0, sizeof(cmdbuffer)-bufindw);
  565. // and point to the start.
  566. bufindw = 0;
  567. return true;
  568. }
  569. }
  570. return false;
  571. }
  572. #ifdef CMDBUFFER_DEBUG
  573. static void cmdqueue_dump_to_serial_single_line(int nr, const char *p)
  574. {
  575. SERIAL_ECHOPGM("Entry nr: ");
  576. SERIAL_ECHO(nr);
  577. SERIAL_ECHOPGM(", type: ");
  578. SERIAL_ECHO(int(*p));
  579. SERIAL_ECHOPGM(", cmd: ");
  580. SERIAL_ECHO(p+1);
  581. SERIAL_ECHOLNPGM("");
  582. }
  583. static void cmdqueue_dump_to_serial()
  584. {
  585. if (buflen == 0) {
  586. SERIAL_ECHOLNPGM("The command buffer is empty.");
  587. } else {
  588. SERIAL_ECHOPGM("Content of the buffer: entries ");
  589. SERIAL_ECHO(buflen);
  590. SERIAL_ECHOPGM(", indr ");
  591. SERIAL_ECHO(bufindr);
  592. SERIAL_ECHOPGM(", indw ");
  593. SERIAL_ECHO(bufindw);
  594. SERIAL_ECHOLNPGM("");
  595. int nr = 0;
  596. if (bufindr < bufindw) {
  597. for (const char *p = cmdbuffer + bufindr; p < cmdbuffer + bufindw; ++ nr) {
  598. cmdqueue_dump_to_serial_single_line(nr, p);
  599. // Skip the command.
  600. for (++p; *p != 0; ++ p);
  601. // Skip the gaps.
  602. for (++p; p < cmdbuffer + bufindw && *p == 0; ++ p);
  603. }
  604. } else {
  605. for (const char *p = cmdbuffer + bufindr; p < cmdbuffer + sizeof(cmdbuffer); ++ nr) {
  606. cmdqueue_dump_to_serial_single_line(nr, p);
  607. // Skip the command.
  608. for (++p; *p != 0; ++ p);
  609. // Skip the gaps.
  610. for (++p; p < cmdbuffer + sizeof(cmdbuffer) && *p == 0; ++ p);
  611. }
  612. for (const char *p = cmdbuffer; p < cmdbuffer + bufindw; ++ nr) {
  613. cmdqueue_dump_to_serial_single_line(nr, p);
  614. // Skip the command.
  615. for (++p; *p != 0; ++ p);
  616. // Skip the gaps.
  617. for (++p; p < cmdbuffer + bufindw && *p == 0; ++ p);
  618. }
  619. }
  620. SERIAL_ECHOLNPGM("End of the buffer.");
  621. }
  622. }
  623. #endif /* CMDBUFFER_DEBUG */
  624. //adds an command to the main command buffer
  625. //thats really done in a non-safe way.
  626. //needs overworking someday
  627. // Currently the maximum length of a command piped through this function is around 20 characters
  628. void enquecommand(const char *cmd, bool from_progmem)
  629. {
  630. int len = from_progmem ? strlen_P(cmd) : strlen(cmd);
  631. // Does cmd fit the queue while leaving sufficient space at the front for the chained commands?
  632. // If it fits, it may move bufindw, so it points to a contiguous buffer, which fits cmd.
  633. if (cmdqueue_could_enqueue_back(len)) {
  634. // This is dangerous if a mixing of serial and this happens
  635. // This may easily be tested: If serial_count > 0, we have a problem.
  636. cmdbuffer[bufindw] = CMDBUFFER_CURRENT_TYPE_UI;
  637. if (from_progmem)
  638. strcpy_P(cmdbuffer + bufindw + 1, cmd);
  639. else
  640. strcpy(cmdbuffer + bufindw + 1, cmd);
  641. SERIAL_ECHO_START;
  642. SERIAL_ECHORPGM(MSG_Enqueing);
  643. SERIAL_ECHO(cmdbuffer + bufindw + 1);
  644. SERIAL_ECHOLNPGM("\"");
  645. bufindw += len + 2;
  646. if (bufindw == sizeof(cmdbuffer))
  647. bufindw = 0;
  648. ++ buflen;
  649. #ifdef CMDBUFFER_DEBUG
  650. cmdqueue_dump_to_serial();
  651. #endif /* CMDBUFFER_DEBUG */
  652. } else {
  653. SERIAL_ECHO_START;
  654. SERIAL_ECHORPGM(MSG_Enqueing);
  655. if (from_progmem)
  656. SERIAL_PROTOCOLRPGM(cmd);
  657. else
  658. SERIAL_ECHO(cmd);
  659. SERIAL_ECHOLNPGM("\" failed: Buffer full!");
  660. #ifdef CMDBUFFER_DEBUG
  661. cmdqueue_dump_to_serial();
  662. #endif /* CMDBUFFER_DEBUG */
  663. }
  664. }
  665. void enquecommand_front(const char *cmd, bool from_progmem)
  666. {
  667. int len = from_progmem ? strlen_P(cmd) : strlen(cmd);
  668. // Does cmd fit the queue? This call shall move bufindr, so the command may be copied.
  669. if (cmdqueue_could_enqueue_front(len)) {
  670. cmdbuffer[bufindr] = CMDBUFFER_CURRENT_TYPE_UI;
  671. if (from_progmem)
  672. strcpy_P(cmdbuffer + bufindr + 1, cmd);
  673. else
  674. strcpy(cmdbuffer + bufindr + 1, cmd);
  675. ++ buflen;
  676. SERIAL_ECHO_START;
  677. SERIAL_ECHOPGM("Enqueing to the front: \"");
  678. SERIAL_ECHO(cmdbuffer + bufindr + 1);
  679. SERIAL_ECHOLNPGM("\"");
  680. #ifdef CMDBUFFER_DEBUG
  681. cmdqueue_dump_to_serial();
  682. #endif /* CMDBUFFER_DEBUG */
  683. } else {
  684. SERIAL_ECHO_START;
  685. SERIAL_ECHOPGM("Enqueing to the front: \"");
  686. if (from_progmem)
  687. SERIAL_PROTOCOLRPGM(cmd);
  688. else
  689. SERIAL_ECHO(cmd);
  690. SERIAL_ECHOLNPGM("\" failed: Buffer full!");
  691. #ifdef CMDBUFFER_DEBUG
  692. cmdqueue_dump_to_serial();
  693. #endif /* CMDBUFFER_DEBUG */
  694. }
  695. }
  696. // Mark the command at the top of the command queue as new.
  697. // Therefore it will not be removed from the queue.
  698. void repeatcommand_front()
  699. {
  700. cmdbuffer_front_already_processed = true;
  701. }
  702. void setup_killpin()
  703. {
  704. #if defined(KILL_PIN) && KILL_PIN > -1
  705. SET_INPUT(KILL_PIN);
  706. WRITE(KILL_PIN,HIGH);
  707. #endif
  708. }
  709. // Set home pin
  710. void setup_homepin(void)
  711. {
  712. #if defined(HOME_PIN) && HOME_PIN > -1
  713. SET_INPUT(HOME_PIN);
  714. WRITE(HOME_PIN,HIGH);
  715. #endif
  716. }
  717. void setup_photpin()
  718. {
  719. #if defined(PHOTOGRAPH_PIN) && PHOTOGRAPH_PIN > -1
  720. SET_OUTPUT(PHOTOGRAPH_PIN);
  721. WRITE(PHOTOGRAPH_PIN, LOW);
  722. #endif
  723. }
  724. void setup_powerhold()
  725. {
  726. #if defined(SUICIDE_PIN) && SUICIDE_PIN > -1
  727. SET_OUTPUT(SUICIDE_PIN);
  728. WRITE(SUICIDE_PIN, HIGH);
  729. #endif
  730. #if defined(PS_ON_PIN) && PS_ON_PIN > -1
  731. SET_OUTPUT(PS_ON_PIN);
  732. #if defined(PS_DEFAULT_OFF)
  733. WRITE(PS_ON_PIN, PS_ON_ASLEEP);
  734. #else
  735. WRITE(PS_ON_PIN, PS_ON_AWAKE);
  736. #endif
  737. #endif
  738. }
  739. void suicide()
  740. {
  741. #if defined(SUICIDE_PIN) && SUICIDE_PIN > -1
  742. SET_OUTPUT(SUICIDE_PIN);
  743. WRITE(SUICIDE_PIN, LOW);
  744. #endif
  745. }
  746. void servo_init()
  747. {
  748. #if (NUM_SERVOS >= 1) && defined(SERVO0_PIN) && (SERVO0_PIN > -1)
  749. servos[0].attach(SERVO0_PIN);
  750. #endif
  751. #if (NUM_SERVOS >= 2) && defined(SERVO1_PIN) && (SERVO1_PIN > -1)
  752. servos[1].attach(SERVO1_PIN);
  753. #endif
  754. #if (NUM_SERVOS >= 3) && defined(SERVO2_PIN) && (SERVO2_PIN > -1)
  755. servos[2].attach(SERVO2_PIN);
  756. #endif
  757. #if (NUM_SERVOS >= 4) && defined(SERVO3_PIN) && (SERVO3_PIN > -1)
  758. servos[3].attach(SERVO3_PIN);
  759. #endif
  760. #if (NUM_SERVOS >= 5)
  761. #error "TODO: enter initalisation code for more servos"
  762. #endif
  763. }
  764. static void lcd_language_menu();
  765. #ifdef MESH_BED_LEVELING
  766. enum MeshLevelingState { MeshReport, MeshStart, MeshNext, MeshSet };
  767. #endif
  768. // "Setup" function is called by the Arduino framework on startup.
  769. // Before startup, the Timers-functions (PWM)/Analog RW and HardwareSerial provided by the Arduino-code
  770. // are initialized by the main() routine provided by the Arduino framework.
  771. void setup()
  772. {
  773. setup_killpin();
  774. setup_powerhold();
  775. MYSERIAL.begin(BAUDRATE);
  776. SERIAL_PROTOCOLLNPGM("start");
  777. SERIAL_ECHO_START;
  778. #if 0
  779. SERIAL_ECHOLN("Reading eeprom from 0 to 100: start");
  780. for (int i = 0; i < 4096; ++ i) {
  781. int b = eeprom_read_byte((unsigned char*)i);
  782. if (b != 255) {
  783. SERIAL_ECHO(i);
  784. SERIAL_ECHO(":");
  785. SERIAL_ECHO(b);
  786. SERIAL_ECHOLN("");
  787. }
  788. }
  789. SERIAL_ECHOLN("Reading eeprom from 0 to 100: done");
  790. #endif
  791. // Check startup - does nothing if bootloader sets MCUSR to 0
  792. byte mcu = MCUSR;
  793. if(mcu & 1) SERIAL_ECHOLNRPGM(MSG_POWERUP);
  794. if(mcu & 2) SERIAL_ECHOLNRPGM(MSG_EXTERNAL_RESET);
  795. if(mcu & 4) SERIAL_ECHOLNRPGM(MSG_BROWNOUT_RESET);
  796. if(mcu & 8) SERIAL_ECHOLNRPGM(MSG_WATCHDOG_RESET);
  797. if(mcu & 32) SERIAL_ECHOLNRPGM(MSG_SOFTWARE_RESET);
  798. MCUSR=0;
  799. //SERIAL_ECHORPGM(MSG_MARLIN);
  800. //SERIAL_ECHOLNRPGM(VERSION_STRING);
  801. #ifdef STRING_VERSION_CONFIG_H
  802. #ifdef STRING_CONFIG_H_AUTHOR
  803. SERIAL_ECHO_START;
  804. SERIAL_ECHORPGM(MSG_CONFIGURATION_VER);
  805. SERIAL_ECHOPGM(STRING_VERSION_CONFIG_H);
  806. SERIAL_ECHORPGM(MSG_AUTHOR);
  807. SERIAL_ECHOLNPGM(STRING_CONFIG_H_AUTHOR);
  808. SERIAL_ECHOPGM("Compiled: ");
  809. SERIAL_ECHOLNPGM(__DATE__);
  810. #endif
  811. #endif
  812. SERIAL_ECHO_START;
  813. SERIAL_ECHORPGM(MSG_FREE_MEMORY);
  814. SERIAL_ECHO(freeMemory());
  815. SERIAL_ECHORPGM(MSG_PLANNER_BUFFER_BYTES);
  816. SERIAL_ECHOLN((int)sizeof(block_t)*BLOCK_BUFFER_SIZE);
  817. // loads data from EEPROM if available else uses defaults (and resets step acceleration rate)
  818. Config_RetrieveSettings();
  819. tp_init(); // Initialize temperature loop
  820. plan_init(); // Initialize planner;
  821. watchdog_init();
  822. st_init(); // Initialize stepper, this enables interrupts!
  823. setup_photpin();
  824. servo_init();
  825. // Reset the machine correction matrix.
  826. // It does not make sense to load the correction matrix until the machine is homed.
  827. world2machine_reset();
  828. lcd_init();
  829. if(!READ(BTN_ENC) ){
  830. _delay_ms(1000);
  831. if(!READ(BTN_ENC) ){
  832. SET_OUTPUT(BEEPER);
  833. WRITE(BEEPER,HIGH);
  834. lcd_force_language_selection();
  835. while(!READ(BTN_ENC));
  836. WRITE(BEEPER,LOW);
  837. }
  838. }else{
  839. _delay_ms(1000); // wait 1sec to display the splash screen
  840. }
  841. #if defined(CONTROLLERFAN_PIN) && CONTROLLERFAN_PIN > -1
  842. SET_OUTPUT(CONTROLLERFAN_PIN); //Set pin used for driver cooling fan
  843. #endif
  844. #ifdef DIGIPOT_I2C
  845. digipot_i2c_init();
  846. #endif
  847. setup_homepin();
  848. #if defined(Z_AXIS_ALWAYS_ON)
  849. enable_z();
  850. #endif
  851. }
  852. // The loop() function is called in an endless loop by the Arduino framework from the default main() routine.
  853. // Before loop(), the setup() function is called by the main() routine.
  854. void loop()
  855. {
  856. if (usb_printing_counter > 0 && millis()-_usb_timer > 1000)
  857. {
  858. is_usb_printing = true;
  859. usb_printing_counter--;
  860. _usb_timer = millis();
  861. }
  862. if (usb_printing_counter == 0)
  863. {
  864. is_usb_printing = false;
  865. }
  866. get_command();
  867. #ifdef SDSUPPORT
  868. card.checkautostart(false);
  869. #endif
  870. if(buflen)
  871. {
  872. #ifdef SDSUPPORT
  873. if(card.saving)
  874. {
  875. // Saving a G-code file onto an SD-card is in progress.
  876. // Saving starts with M28, saving until M29 is seen.
  877. if(strstr_P(CMDBUFFER_CURRENT_STRING, PSTR("M29")) == NULL) {
  878. card.write_command(CMDBUFFER_CURRENT_STRING);
  879. if(card.logging)
  880. process_commands();
  881. else
  882. SERIAL_PROTOCOLLNRPGM(MSG_OK);
  883. } else {
  884. card.closefile();
  885. SERIAL_PROTOCOLLNRPGM(MSG_FILE_SAVED);
  886. }
  887. } else {
  888. process_commands();
  889. }
  890. #else
  891. process_commands();
  892. #endif //SDSUPPORT
  893. if (! cmdbuffer_front_already_processed)
  894. cmdqueue_pop_front();
  895. cmdbuffer_front_already_processed = false;
  896. }
  897. //check heater every n milliseconds
  898. manage_heater();
  899. manage_inactivity();
  900. checkHitEndstops();
  901. lcd_update();
  902. }
  903. void get_command()
  904. {
  905. // Test and reserve space for the new command string.
  906. if (! cmdqueue_could_enqueue_back(MAX_CMD_SIZE-1))
  907. return;
  908. while (MYSERIAL.available() > 0) {
  909. char serial_char = MYSERIAL.read();
  910. if(serial_char == '\n' ||
  911. serial_char == '\r' ||
  912. (serial_char == ':' && comment_mode == false) ||
  913. serial_count >= (MAX_CMD_SIZE - 1) )
  914. {
  915. if(!serial_count) { //if empty line
  916. comment_mode = false; //for new command
  917. return;
  918. }
  919. cmdbuffer[bufindw+serial_count+1] = 0; //terminate string
  920. if(!comment_mode){
  921. comment_mode = false; //for new command
  922. if ((strchr_pointer = strchr(cmdbuffer+bufindw+1, 'N')) != NULL)
  923. {
  924. // Line number met. When sending a G-code over a serial line, each line may be stamped with its index,
  925. // and Marlin tests, whether the successive lines are stamped with an increasing line number ID.
  926. gcode_N = (strtol(strchr_pointer+1, NULL, 10));
  927. if(gcode_N != gcode_LastN+1 && (strstr_P(cmdbuffer+bufindw+1, PSTR("M110")) == NULL) ) {
  928. // M110 - set current line number.
  929. // Line numbers not sent in succession.
  930. SERIAL_ERROR_START;
  931. SERIAL_ERRORRPGM(MSG_ERR_LINE_NO);
  932. SERIAL_ERRORLN(gcode_LastN);
  933. //Serial.println(gcode_N);
  934. FlushSerialRequestResend();
  935. serial_count = 0;
  936. return;
  937. }
  938. if((strchr_pointer = strchr(cmdbuffer+bufindw+1, '*')) != NULL)
  939. {
  940. byte checksum = 0;
  941. char *p = cmdbuffer+bufindw+1;
  942. while (p != strchr_pointer)
  943. checksum = checksum^(*p++);
  944. if (int(strtol(strchr_pointer+1, NULL, 10)) != int(checksum)) {
  945. SERIAL_ERROR_START;
  946. SERIAL_ERRORRPGM(MSG_ERR_CHECKSUM_MISMATCH);
  947. SERIAL_ERRORLN(gcode_LastN);
  948. FlushSerialRequestResend();
  949. serial_count = 0;
  950. return;
  951. }
  952. // If no errors, remove the checksum and continue parsing.
  953. *strchr_pointer = 0;
  954. }
  955. else
  956. {
  957. SERIAL_ERROR_START;
  958. SERIAL_ERRORRPGM(MSG_ERR_NO_CHECKSUM);
  959. SERIAL_ERRORLN(gcode_LastN);
  960. FlushSerialRequestResend();
  961. serial_count = 0;
  962. return;
  963. }
  964. gcode_LastN = gcode_N;
  965. //if no errors, continue parsing
  966. } // end of 'N' command
  967. else // if we don't receive 'N' but still see '*'
  968. {
  969. if((strchr(cmdbuffer+bufindw+1, '*') != NULL))
  970. {
  971. SERIAL_ERROR_START;
  972. SERIAL_ERRORRPGM(MSG_ERR_NO_LINENUMBER_WITH_CHECKSUM);
  973. SERIAL_ERRORLN(gcode_LastN);
  974. serial_count = 0;
  975. return;
  976. }
  977. } // end of '*' command
  978. if ((strchr_pointer = strchr(cmdbuffer+bufindw+1, 'G')) != NULL) {
  979. if (! IS_SD_PRINTING) {
  980. usb_printing_counter = 10;
  981. is_usb_printing = true;
  982. }
  983. if (Stopped == true) {
  984. int gcode = strtol(strchr_pointer+1, NULL, 10);
  985. if (gcode >= 0 && gcode <= 3) {
  986. SERIAL_ERRORLNRPGM(MSG_ERR_STOPPED);
  987. LCD_MESSAGERPGM(MSG_STOPPED);
  988. }
  989. }
  990. } // end of 'G' command
  991. //If command was e-stop process now
  992. if(strcmp(cmdbuffer+bufindw+1, "M112") == 0)
  993. kill();
  994. // Store the current line into buffer, move to the next line.
  995. cmdbuffer[bufindw] = CMDBUFFER_CURRENT_TYPE_USB;
  996. #ifdef CMDBUFFER_DEBUG
  997. SERIAL_ECHO_START;
  998. SERIAL_ECHOPGM("Storing a command line to buffer: ");
  999. SERIAL_ECHO(cmdbuffer+bufindw+1);
  1000. SERIAL_ECHOLNPGM("");
  1001. #endif /* CMDBUFFER_DEBUG */
  1002. bufindw += strlen(cmdbuffer+bufindw+1) + 2;
  1003. if (bufindw == sizeof(cmdbuffer))
  1004. bufindw = 0;
  1005. ++ buflen;
  1006. #ifdef CMDBUFFER_DEBUG
  1007. SERIAL_ECHOPGM("Number of commands in the buffer: ");
  1008. SERIAL_ECHO(buflen);
  1009. SERIAL_ECHOLNPGM("");
  1010. #endif /* CMDBUFFER_DEBUG */
  1011. } // end of 'not comment mode'
  1012. serial_count = 0; //clear buffer
  1013. // Don't call cmdqueue_could_enqueue_back if there are no characters waiting
  1014. // in the queue, as this function will reserve the memory.
  1015. if (MYSERIAL.available() == 0 || ! cmdqueue_could_enqueue_back(MAX_CMD_SIZE-1))
  1016. return;
  1017. } // end of "end of line" processing
  1018. else {
  1019. // Not an "end of line" symbol. Store the new character into a buffer.
  1020. if(serial_char == ';') comment_mode = true;
  1021. if(!comment_mode) cmdbuffer[bufindw+1+serial_count++] = serial_char;
  1022. }
  1023. } // end of serial line processing loop
  1024. #ifdef SDSUPPORT
  1025. if(!card.sdprinting || serial_count!=0){
  1026. // If there is a half filled buffer from serial line, wait until return before
  1027. // continuing with the serial line.
  1028. return;
  1029. }
  1030. //'#' stops reading from SD to the buffer prematurely, so procedural macro calls are possible
  1031. // if it occurs, stop_buffering is triggered and the buffer is ran dry.
  1032. // this character _can_ occur in serial com, due to checksums. however, no checksums are used in SD printing
  1033. static bool stop_buffering=false;
  1034. if(buflen==0) stop_buffering=false;
  1035. // Reads whole lines from the SD card. Never leaves a half-filled line in the cmdbuffer.
  1036. while( !card.eof() && !stop_buffering) {
  1037. int16_t n=card.get();
  1038. char serial_char = (char)n;
  1039. if(serial_char == '\n' ||
  1040. serial_char == '\r' ||
  1041. (serial_char == '#' && comment_mode == false) ||
  1042. (serial_char == ':' && comment_mode == false) ||
  1043. serial_count >= (MAX_CMD_SIZE - 1)||n==-1)
  1044. {
  1045. if(card.eof()){
  1046. SERIAL_PROTOCOLLNRPGM(MSG_FILE_PRINTED);
  1047. stoptime=millis();
  1048. char time[30];
  1049. unsigned long t=(stoptime-starttime)/1000;
  1050. int hours, minutes;
  1051. minutes=(t/60)%60;
  1052. hours=t/60/60;
  1053. save_statistics(total_filament_used, t);
  1054. sprintf_P(time, PSTR("%i hours %i minutes"),hours, minutes);
  1055. SERIAL_ECHO_START;
  1056. SERIAL_ECHOLN(time);
  1057. lcd_setstatus(time);
  1058. card.printingHasFinished();
  1059. card.checkautostart(true);
  1060. }
  1061. if(serial_char=='#')
  1062. stop_buffering=true;
  1063. if(!serial_count)
  1064. {
  1065. comment_mode = false; //for new command
  1066. return; //if empty line
  1067. }
  1068. cmdbuffer[bufindw+serial_count+1] = 0; //terminate string
  1069. cmdbuffer[bufindw] = CMDBUFFER_CURRENT_TYPE_SDCARD;
  1070. ++ buflen;
  1071. bufindw += strlen(cmdbuffer+bufindw+1) + 2;
  1072. if (bufindw == sizeof(cmdbuffer))
  1073. bufindw = 0;
  1074. comment_mode = false; //for new command
  1075. serial_count = 0; //clear buffer
  1076. // The following line will reserve buffer space if available.
  1077. if (! cmdqueue_could_enqueue_back(MAX_CMD_SIZE-1))
  1078. return;
  1079. }
  1080. else
  1081. {
  1082. if(serial_char == ';') comment_mode = true;
  1083. if(!comment_mode) cmdbuffer[bufindw+1+serial_count++] = serial_char;
  1084. }
  1085. }
  1086. #endif //SDSUPPORT
  1087. }
  1088. // Return True if a character was found
  1089. static inline bool code_seen(char code) { return (strchr_pointer = strchr(CMDBUFFER_CURRENT_STRING, code)) != NULL; }
  1090. static inline bool code_seen(const char *code) { return (strchr_pointer = strstr(CMDBUFFER_CURRENT_STRING, code)) != NULL; }
  1091. static inline float code_value() { return strtod(strchr_pointer+1, NULL); }
  1092. static inline long code_value_long() { return strtol(strchr_pointer+1, NULL, 10); }
  1093. static inline int16_t code_value_short() { return int16_t(strtol(strchr_pointer+1, NULL, 10)); };
  1094. static inline uint8_t code_value_uint8() { return uint8_t(strtol(strchr_pointer+1, NULL, 10)); };
  1095. #define DEFINE_PGM_READ_ANY(type, reader) \
  1096. static inline type pgm_read_any(const type *p) \
  1097. { return pgm_read_##reader##_near(p); }
  1098. DEFINE_PGM_READ_ANY(float, float);
  1099. DEFINE_PGM_READ_ANY(signed char, byte);
  1100. #define XYZ_CONSTS_FROM_CONFIG(type, array, CONFIG) \
  1101. static const PROGMEM type array##_P[3] = \
  1102. { X_##CONFIG, Y_##CONFIG, Z_##CONFIG }; \
  1103. static inline type array(int axis) \
  1104. { return pgm_read_any(&array##_P[axis]); } \
  1105. type array##_ext(int axis) \
  1106. { return pgm_read_any(&array##_P[axis]); }
  1107. XYZ_CONSTS_FROM_CONFIG(float, base_min_pos, MIN_POS);
  1108. XYZ_CONSTS_FROM_CONFIG(float, base_max_pos, MAX_POS);
  1109. XYZ_CONSTS_FROM_CONFIG(float, base_home_pos, HOME_POS);
  1110. XYZ_CONSTS_FROM_CONFIG(float, max_length, MAX_LENGTH);
  1111. XYZ_CONSTS_FROM_CONFIG(float, home_retract_mm, HOME_RETRACT_MM);
  1112. XYZ_CONSTS_FROM_CONFIG(signed char, home_dir, HOME_DIR);
  1113. #ifdef DUAL_X_CARRIAGE
  1114. #if EXTRUDERS == 1 || defined(COREXY) \
  1115. || !defined(X2_ENABLE_PIN) || !defined(X2_STEP_PIN) || !defined(X2_DIR_PIN) \
  1116. || !defined(X2_HOME_POS) || !defined(X2_MIN_POS) || !defined(X2_MAX_POS) \
  1117. || !defined(X_MAX_PIN) || X_MAX_PIN < 0
  1118. #error "Missing or invalid definitions for DUAL_X_CARRIAGE mode."
  1119. #endif
  1120. #if X_HOME_DIR != -1 || X2_HOME_DIR != 1
  1121. #error "Please use canonical x-carriage assignment" // the x-carriages are defined by their homing directions
  1122. #endif
  1123. #define DXC_FULL_CONTROL_MODE 0
  1124. #define DXC_AUTO_PARK_MODE 1
  1125. #define DXC_DUPLICATION_MODE 2
  1126. static int dual_x_carriage_mode = DEFAULT_DUAL_X_CARRIAGE_MODE;
  1127. static float x_home_pos(int extruder) {
  1128. if (extruder == 0)
  1129. return base_home_pos(X_AXIS) + add_homing[X_AXIS];
  1130. else
  1131. // In dual carriage mode the extruder offset provides an override of the
  1132. // second X-carriage offset when homed - otherwise X2_HOME_POS is used.
  1133. // This allow soft recalibration of the second extruder offset position without firmware reflash
  1134. // (through the M218 command).
  1135. return (extruder_offset[X_AXIS][1] > 0) ? extruder_offset[X_AXIS][1] : X2_HOME_POS;
  1136. }
  1137. static int x_home_dir(int extruder) {
  1138. return (extruder == 0) ? X_HOME_DIR : X2_HOME_DIR;
  1139. }
  1140. static float inactive_extruder_x_pos = X2_MAX_POS; // used in mode 0 & 1
  1141. static bool active_extruder_parked = false; // used in mode 1 & 2
  1142. static float raised_parked_position[NUM_AXIS]; // used in mode 1
  1143. static unsigned long delayed_move_time = 0; // used in mode 1
  1144. static float duplicate_extruder_x_offset = DEFAULT_DUPLICATION_X_OFFSET; // used in mode 2
  1145. static float duplicate_extruder_temp_offset = 0; // used in mode 2
  1146. bool extruder_duplication_enabled = false; // used in mode 2
  1147. #endif //DUAL_X_CARRIAGE
  1148. static void axis_is_at_home(int axis) {
  1149. #ifdef DUAL_X_CARRIAGE
  1150. if (axis == X_AXIS) {
  1151. if (active_extruder != 0) {
  1152. current_position[X_AXIS] = x_home_pos(active_extruder);
  1153. min_pos[X_AXIS] = X2_MIN_POS;
  1154. max_pos[X_AXIS] = max(extruder_offset[X_AXIS][1], X2_MAX_POS);
  1155. return;
  1156. }
  1157. else if (dual_x_carriage_mode == DXC_DUPLICATION_MODE && active_extruder == 0) {
  1158. current_position[X_AXIS] = base_home_pos(X_AXIS) + add_homing[X_AXIS];
  1159. min_pos[X_AXIS] = base_min_pos(X_AXIS) + add_homing[X_AXIS];
  1160. max_pos[X_AXIS] = min(base_max_pos(X_AXIS) + add_homing[X_AXIS],
  1161. max(extruder_offset[X_AXIS][1], X2_MAX_POS) - duplicate_extruder_x_offset);
  1162. return;
  1163. }
  1164. }
  1165. #endif
  1166. current_position[axis] = base_home_pos(axis) + add_homing[axis];
  1167. min_pos[axis] = base_min_pos(axis) + add_homing[axis];
  1168. max_pos[axis] = base_max_pos(axis) + add_homing[axis];
  1169. }
  1170. inline void set_current_to_destination() { memcpy(current_position, destination, sizeof(current_position)); }
  1171. inline void set_destination_to_current() { memcpy(destination, current_position, sizeof(destination)); }
  1172. static void setup_for_endstop_move() {
  1173. saved_feedrate = feedrate;
  1174. saved_feedmultiply = feedmultiply;
  1175. feedmultiply = 100;
  1176. previous_millis_cmd = millis();
  1177. enable_endstops(true);
  1178. }
  1179. static void clean_up_after_endstop_move() {
  1180. #ifdef ENDSTOPS_ONLY_FOR_HOMING
  1181. enable_endstops(false);
  1182. #endif
  1183. feedrate = saved_feedrate;
  1184. feedmultiply = saved_feedmultiply;
  1185. previous_millis_cmd = millis();
  1186. }
  1187. #ifdef ENABLE_AUTO_BED_LEVELING
  1188. #ifdef AUTO_BED_LEVELING_GRID
  1189. static void set_bed_level_equation_lsq(double *plane_equation_coefficients)
  1190. {
  1191. vector_3 planeNormal = vector_3(-plane_equation_coefficients[0], -plane_equation_coefficients[1], 1);
  1192. planeNormal.debug("planeNormal");
  1193. plan_bed_level_matrix = matrix_3x3::create_look_at(planeNormal);
  1194. //bedLevel.debug("bedLevel");
  1195. //plan_bed_level_matrix.debug("bed level before");
  1196. //vector_3 uncorrected_position = plan_get_position_mm();
  1197. //uncorrected_position.debug("position before");
  1198. vector_3 corrected_position = plan_get_position();
  1199. // corrected_position.debug("position after");
  1200. current_position[X_AXIS] = corrected_position.x;
  1201. current_position[Y_AXIS] = corrected_position.y;
  1202. current_position[Z_AXIS] = corrected_position.z;
  1203. // put the bed at 0 so we don't go below it.
  1204. current_position[Z_AXIS] = zprobe_zoffset; // in the lsq we reach here after raising the extruder due to the loop structure
  1205. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1206. }
  1207. #else // not AUTO_BED_LEVELING_GRID
  1208. static void set_bed_level_equation_3pts(float z_at_pt_1, float z_at_pt_2, float z_at_pt_3) {
  1209. plan_bed_level_matrix.set_to_identity();
  1210. vector_3 pt1 = vector_3(ABL_PROBE_PT_1_X, ABL_PROBE_PT_1_Y, z_at_pt_1);
  1211. vector_3 pt2 = vector_3(ABL_PROBE_PT_2_X, ABL_PROBE_PT_2_Y, z_at_pt_2);
  1212. vector_3 pt3 = vector_3(ABL_PROBE_PT_3_X, ABL_PROBE_PT_3_Y, z_at_pt_3);
  1213. vector_3 from_2_to_1 = (pt1 - pt2).get_normal();
  1214. vector_3 from_2_to_3 = (pt3 - pt2).get_normal();
  1215. vector_3 planeNormal = vector_3::cross(from_2_to_1, from_2_to_3).get_normal();
  1216. planeNormal = vector_3(planeNormal.x, planeNormal.y, abs(planeNormal.z));
  1217. plan_bed_level_matrix = matrix_3x3::create_look_at(planeNormal);
  1218. vector_3 corrected_position = plan_get_position();
  1219. current_position[X_AXIS] = corrected_position.x;
  1220. current_position[Y_AXIS] = corrected_position.y;
  1221. current_position[Z_AXIS] = corrected_position.z;
  1222. // put the bed at 0 so we don't go below it.
  1223. current_position[Z_AXIS] = zprobe_zoffset;
  1224. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1225. }
  1226. #endif // AUTO_BED_LEVELING_GRID
  1227. static void run_z_probe() {
  1228. plan_bed_level_matrix.set_to_identity();
  1229. feedrate = homing_feedrate[Z_AXIS];
  1230. // move down until you find the bed
  1231. float zPosition = -10;
  1232. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder);
  1233. st_synchronize();
  1234. // we have to let the planner know where we are right now as it is not where we said to go.
  1235. zPosition = st_get_position_mm(Z_AXIS);
  1236. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS]);
  1237. // move up the retract distance
  1238. zPosition += home_retract_mm(Z_AXIS);
  1239. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder);
  1240. st_synchronize();
  1241. // move back down slowly to find bed
  1242. feedrate = homing_feedrate[Z_AXIS]/4;
  1243. zPosition -= home_retract_mm(Z_AXIS) * 2;
  1244. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder);
  1245. st_synchronize();
  1246. current_position[Z_AXIS] = st_get_position_mm(Z_AXIS);
  1247. // make sure the planner knows where we are as it may be a bit different than we last said to move to
  1248. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1249. }
  1250. static void do_blocking_move_to(float x, float y, float z) {
  1251. float oldFeedRate = feedrate;
  1252. feedrate = homing_feedrate[Z_AXIS];
  1253. current_position[Z_AXIS] = z;
  1254. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], feedrate/60, active_extruder);
  1255. st_synchronize();
  1256. feedrate = XY_TRAVEL_SPEED;
  1257. current_position[X_AXIS] = x;
  1258. current_position[Y_AXIS] = y;
  1259. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], feedrate/60, active_extruder);
  1260. st_synchronize();
  1261. feedrate = oldFeedRate;
  1262. }
  1263. static void do_blocking_move_relative(float offset_x, float offset_y, float offset_z) {
  1264. do_blocking_move_to(current_position[X_AXIS] + offset_x, current_position[Y_AXIS] + offset_y, current_position[Z_AXIS] + offset_z);
  1265. }
  1266. /// Probe bed height at position (x,y), returns the measured z value
  1267. static float probe_pt(float x, float y, float z_before) {
  1268. // move to right place
  1269. do_blocking_move_to(current_position[X_AXIS], current_position[Y_AXIS], z_before);
  1270. do_blocking_move_to(x - X_PROBE_OFFSET_FROM_EXTRUDER, y - Y_PROBE_OFFSET_FROM_EXTRUDER, current_position[Z_AXIS]);
  1271. run_z_probe();
  1272. float measured_z = current_position[Z_AXIS];
  1273. SERIAL_PROTOCOLRPGM(MSG_BED);
  1274. SERIAL_PROTOCOLPGM(" x: ");
  1275. SERIAL_PROTOCOL(x);
  1276. SERIAL_PROTOCOLPGM(" y: ");
  1277. SERIAL_PROTOCOL(y);
  1278. SERIAL_PROTOCOLPGM(" z: ");
  1279. SERIAL_PROTOCOL(measured_z);
  1280. SERIAL_PROTOCOLPGM("\n");
  1281. return measured_z;
  1282. }
  1283. #endif // #ifdef ENABLE_AUTO_BED_LEVELING
  1284. void homeaxis(int axis) {
  1285. #define HOMEAXIS_DO(LETTER) \
  1286. ((LETTER##_MIN_PIN > -1 && LETTER##_HOME_DIR==-1) || (LETTER##_MAX_PIN > -1 && LETTER##_HOME_DIR==1))
  1287. if (axis==X_AXIS ? HOMEAXIS_DO(X) :
  1288. axis==Y_AXIS ? HOMEAXIS_DO(Y) :
  1289. axis==Z_AXIS ? HOMEAXIS_DO(Z) :
  1290. 0) {
  1291. int axis_home_dir = home_dir(axis);
  1292. #ifdef DUAL_X_CARRIAGE
  1293. if (axis == X_AXIS)
  1294. axis_home_dir = x_home_dir(active_extruder);
  1295. #endif
  1296. current_position[axis] = 0;
  1297. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1298. destination[axis] = 1.5 * max_length(axis) * axis_home_dir;
  1299. feedrate = homing_feedrate[axis];
  1300. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1301. st_synchronize();
  1302. current_position[axis] = 0;
  1303. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1304. destination[axis] = -home_retract_mm(axis) * axis_home_dir;
  1305. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1306. st_synchronize();
  1307. destination[axis] = 2*home_retract_mm(axis) * axis_home_dir;
  1308. feedrate = homing_feedrate[axis]/2 ;
  1309. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1310. st_synchronize();
  1311. axis_is_at_home(axis);
  1312. destination[axis] = current_position[axis];
  1313. feedrate = 0.0;
  1314. endstops_hit_on_purpose();
  1315. axis_known_position[axis] = true;
  1316. }
  1317. }
  1318. void home_xy()
  1319. {
  1320. set_destination_to_current();
  1321. homeaxis(X_AXIS);
  1322. homeaxis(Y_AXIS);
  1323. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1324. endstops_hit_on_purpose();
  1325. }
  1326. void refresh_cmd_timeout(void)
  1327. {
  1328. previous_millis_cmd = millis();
  1329. }
  1330. #ifdef FWRETRACT
  1331. void retract(bool retracting, bool swapretract = false) {
  1332. if(retracting && !retracted[active_extruder]) {
  1333. destination[X_AXIS]=current_position[X_AXIS];
  1334. destination[Y_AXIS]=current_position[Y_AXIS];
  1335. destination[Z_AXIS]=current_position[Z_AXIS];
  1336. destination[E_AXIS]=current_position[E_AXIS];
  1337. if (swapretract) {
  1338. current_position[E_AXIS]+=retract_length_swap/volumetric_multiplier[active_extruder];
  1339. } else {
  1340. current_position[E_AXIS]+=retract_length/volumetric_multiplier[active_extruder];
  1341. }
  1342. plan_set_e_position(current_position[E_AXIS]);
  1343. float oldFeedrate = feedrate;
  1344. feedrate=retract_feedrate*60;
  1345. retracted[active_extruder]=true;
  1346. prepare_move();
  1347. current_position[Z_AXIS]-=retract_zlift;
  1348. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1349. prepare_move();
  1350. feedrate = oldFeedrate;
  1351. } else if(!retracting && retracted[active_extruder]) {
  1352. destination[X_AXIS]=current_position[X_AXIS];
  1353. destination[Y_AXIS]=current_position[Y_AXIS];
  1354. destination[Z_AXIS]=current_position[Z_AXIS];
  1355. destination[E_AXIS]=current_position[E_AXIS];
  1356. current_position[Z_AXIS]+=retract_zlift;
  1357. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1358. //prepare_move();
  1359. if (swapretract) {
  1360. current_position[E_AXIS]-=(retract_length_swap+retract_recover_length_swap)/volumetric_multiplier[active_extruder];
  1361. } else {
  1362. current_position[E_AXIS]-=(retract_length+retract_recover_length)/volumetric_multiplier[active_extruder];
  1363. }
  1364. plan_set_e_position(current_position[E_AXIS]);
  1365. float oldFeedrate = feedrate;
  1366. feedrate=retract_recover_feedrate*60;
  1367. retracted[active_extruder]=false;
  1368. prepare_move();
  1369. feedrate = oldFeedrate;
  1370. }
  1371. } //retract
  1372. #endif //FWRETRACT
  1373. void process_commands()
  1374. {
  1375. #ifdef FILAMENT_RUNOUT_SUPPORT
  1376. SET_INPUT(FR_SENS);
  1377. #endif
  1378. #ifdef CMDBUFFER_DEBUG
  1379. SERIAL_ECHOPGM("Processing a GCODE command: ");
  1380. SERIAL_ECHO(cmdbuffer+bufindr+1);
  1381. SERIAL_ECHOLNPGM("");
  1382. SERIAL_ECHOPGM("In cmdqueue: ");
  1383. SERIAL_ECHO(buflen);
  1384. SERIAL_ECHOLNPGM("");
  1385. #endif /* CMDBUFFER_DEBUG */
  1386. unsigned long codenum; //throw away variable
  1387. char *starpos = NULL;
  1388. #ifdef ENABLE_AUTO_BED_LEVELING
  1389. float x_tmp, y_tmp, z_tmp, real_z;
  1390. #endif
  1391. // PRUSA GCODES
  1392. if(code_seen("PRUSA")){
  1393. if(code_seen("Fir")){
  1394. SERIAL_PROTOCOLLN(FW_version);
  1395. } else if(code_seen("Rev")){
  1396. SERIAL_PROTOCOLLN(FILAMENT_SIZE "-" ELECTRONICS "-" NOZZLE_TYPE );
  1397. } else if(code_seen("Lang")) {
  1398. lcd_force_language_selection();
  1399. } else if(code_seen("Lz")) {
  1400. EEPROM_save_B(EEPROM_BABYSTEP_Z,0);
  1401. }
  1402. //else if (code_seen('Cal')) {
  1403. // lcd_calibration();
  1404. // }
  1405. }
  1406. else
  1407. if(code_seen('G'))
  1408. {
  1409. switch((int)code_value())
  1410. {
  1411. case 0: // G0 -> G1
  1412. case 1: // G1
  1413. if(Stopped == false) {
  1414. #ifdef FILAMENT_RUNOUT_SUPPORT
  1415. if(READ(FR_SENS)){
  1416. feedmultiplyBckp=feedmultiply;
  1417. float target[4];
  1418. float lastpos[4];
  1419. target[X_AXIS]=current_position[X_AXIS];
  1420. target[Y_AXIS]=current_position[Y_AXIS];
  1421. target[Z_AXIS]=current_position[Z_AXIS];
  1422. target[E_AXIS]=current_position[E_AXIS];
  1423. lastpos[X_AXIS]=current_position[X_AXIS];
  1424. lastpos[Y_AXIS]=current_position[Y_AXIS];
  1425. lastpos[Z_AXIS]=current_position[Z_AXIS];
  1426. lastpos[E_AXIS]=current_position[E_AXIS];
  1427. //retract by E
  1428. target[E_AXIS]+= FILAMENTCHANGE_FIRSTRETRACT ;
  1429. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 400, active_extruder);
  1430. target[Z_AXIS]+= FILAMENTCHANGE_ZADD ;
  1431. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 300, active_extruder);
  1432. target[X_AXIS]= FILAMENTCHANGE_XPOS ;
  1433. target[Y_AXIS]= FILAMENTCHANGE_YPOS ;
  1434. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 70, active_extruder);
  1435. target[E_AXIS]+= FILAMENTCHANGE_FINALRETRACT ;
  1436. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 20, active_extruder);
  1437. //finish moves
  1438. st_synchronize();
  1439. //disable extruder steppers so filament can be removed
  1440. disable_e0();
  1441. disable_e1();
  1442. disable_e2();
  1443. delay(100);
  1444. //LCD_ALERTMESSAGEPGM(MSG_FILAMENTCHANGE);
  1445. uint8_t cnt=0;
  1446. int counterBeep = 0;
  1447. lcd_wait_interact();
  1448. while(!lcd_clicked()){
  1449. cnt++;
  1450. manage_heater();
  1451. manage_inactivity(true);
  1452. //lcd_update();
  1453. if(cnt==0)
  1454. {
  1455. #if BEEPER > 0
  1456. if (counterBeep== 500){
  1457. counterBeep = 0;
  1458. }
  1459. SET_OUTPUT(BEEPER);
  1460. if (counterBeep== 0){
  1461. WRITE(BEEPER,HIGH);
  1462. }
  1463. if (counterBeep== 20){
  1464. WRITE(BEEPER,LOW);
  1465. }
  1466. counterBeep++;
  1467. #else
  1468. #if !defined(LCD_FEEDBACK_FREQUENCY_HZ) || !defined(LCD_FEEDBACK_FREQUENCY_DURATION_MS)
  1469. lcd_buzz(1000/6,100);
  1470. #else
  1471. lcd_buzz(LCD_FEEDBACK_FREQUENCY_DURATION_MS,LCD_FEEDBACK_FREQUENCY_HZ);
  1472. #endif
  1473. #endif
  1474. }
  1475. }
  1476. WRITE(BEEPER,LOW);
  1477. target[E_AXIS]+= FILAMENTCHANGE_FIRSTFEED ;
  1478. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 20, active_extruder);
  1479. target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  1480. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder);
  1481. lcd_change_fil_state = 0;
  1482. lcd_loading_filament();
  1483. while ((lcd_change_fil_state == 0)||(lcd_change_fil_state != 1)){
  1484. lcd_change_fil_state = 0;
  1485. lcd_alright();
  1486. switch(lcd_change_fil_state){
  1487. case 2:
  1488. target[E_AXIS]+= FILAMENTCHANGE_FIRSTFEED ;
  1489. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 20, active_extruder);
  1490. target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  1491. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder);
  1492. lcd_loading_filament();
  1493. break;
  1494. case 3:
  1495. target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  1496. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder);
  1497. lcd_loading_color();
  1498. break;
  1499. default:
  1500. lcd_change_success();
  1501. break;
  1502. }
  1503. }
  1504. target[E_AXIS]+= 5;
  1505. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder);
  1506. target[E_AXIS]+= FILAMENTCHANGE_FIRSTRETRACT;
  1507. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 400, active_extruder);
  1508. //current_position[E_AXIS]=target[E_AXIS]; //the long retract of L is compensated by manual filament feeding
  1509. //plan_set_e_position(current_position[E_AXIS]);
  1510. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 70, active_extruder); //should do nothing
  1511. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], target[Z_AXIS], target[E_AXIS], 70, active_extruder); //move xy back
  1512. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], target[E_AXIS], 200, active_extruder); //move z back
  1513. target[E_AXIS]= target[E_AXIS] - FILAMENTCHANGE_FIRSTRETRACT;
  1514. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], target[E_AXIS], 5, active_extruder); //final untretract
  1515. plan_set_e_position(lastpos[E_AXIS]);
  1516. feedmultiply=feedmultiplyBckp;
  1517. char cmd[9];
  1518. sprintf_P(cmd, PSTR("M220 S%i"), feedmultiplyBckp);
  1519. enquecommand(cmd);
  1520. }
  1521. #endif
  1522. get_coordinates(); // For X Y Z E F
  1523. total_filament_used = total_filament_used + ((destination[E_AXIS] - current_position[E_AXIS])*100);
  1524. #ifdef FWRETRACT
  1525. if(autoretract_enabled)
  1526. if( !(code_seen('X') || code_seen('Y') || code_seen('Z')) && code_seen('E')) {
  1527. float echange=destination[E_AXIS]-current_position[E_AXIS];
  1528. if((echange<-MIN_RETRACT && !retracted) || (echange>MIN_RETRACT && retracted)) { //move appears to be an attempt to retract or recover
  1529. current_position[E_AXIS] = destination[E_AXIS]; //hide the slicer-generated retract/recover from calculations
  1530. plan_set_e_position(current_position[E_AXIS]); //AND from the planner
  1531. retract(!retracted);
  1532. return;
  1533. }
  1534. }
  1535. #endif //FWRETRACT
  1536. prepare_move();
  1537. //ClearToSend();
  1538. }
  1539. break;
  1540. case 2: // G2 - CW ARC
  1541. if(Stopped == false) {
  1542. get_arc_coordinates();
  1543. prepare_arc_move(true);
  1544. }
  1545. break;
  1546. case 3: // G3 - CCW ARC
  1547. if(Stopped == false) {
  1548. get_arc_coordinates();
  1549. prepare_arc_move(false);
  1550. }
  1551. break;
  1552. case 4: // G4 dwell
  1553. LCD_MESSAGERPGM(MSG_DWELL);
  1554. codenum = 0;
  1555. if(code_seen('P')) codenum = code_value(); // milliseconds to wait
  1556. if(code_seen('S')) codenum = code_value() * 1000; // seconds to wait
  1557. st_synchronize();
  1558. codenum += millis(); // keep track of when we started waiting
  1559. previous_millis_cmd = millis();
  1560. while(millis() < codenum) {
  1561. manage_heater();
  1562. manage_inactivity();
  1563. lcd_update();
  1564. }
  1565. break;
  1566. #ifdef FWRETRACT
  1567. case 10: // G10 retract
  1568. #if EXTRUDERS > 1
  1569. retracted_swap[active_extruder]=(code_seen('S') && code_value_long() == 1); // checks for swap retract argument
  1570. retract(true,retracted_swap[active_extruder]);
  1571. #else
  1572. retract(true);
  1573. #endif
  1574. break;
  1575. case 11: // G11 retract_recover
  1576. #if EXTRUDERS > 1
  1577. retract(false,retracted_swap[active_extruder]);
  1578. #else
  1579. retract(false);
  1580. #endif
  1581. break;
  1582. #endif //FWRETRACT
  1583. case 28: //G28 Home all Axis one at a time
  1584. #ifdef ENABLE_AUTO_BED_LEVELING
  1585. plan_bed_level_matrix.set_to_identity(); //Reset the plane ("erase" all leveling data)
  1586. #endif //ENABLE_AUTO_BED_LEVELING
  1587. _doMeshL = false;
  1588. // For mesh bed leveling deactivate the matrix temporarily
  1589. #ifdef MESH_BED_LEVELING
  1590. mbl.active = 0;
  1591. #endif
  1592. // Reset world2machine_rotation_and_skew and world2machine_shift, therefore
  1593. // the planner will not perform any adjustments in the XY plane.
  1594. // Wait for the motors to stop and update the current position with the absolute values.
  1595. world2machine_revert_to_uncorrected();
  1596. saved_feedrate = feedrate;
  1597. saved_feedmultiply = feedmultiply;
  1598. feedmultiply = 100;
  1599. previous_millis_cmd = millis();
  1600. enable_endstops(true);
  1601. for(int8_t i=0; i < NUM_AXIS; i++)
  1602. destination[i] = current_position[i];
  1603. feedrate = 0.0;
  1604. home_all_axis = !((code_seen(axis_codes[X_AXIS])) || (code_seen(axis_codes[Y_AXIS])) || (code_seen(axis_codes[Z_AXIS])));
  1605. #if Z_HOME_DIR > 0 // If homing away from BED do Z first
  1606. if((home_all_axis) || (code_seen(axis_codes[Z_AXIS]))) {
  1607. homeaxis(Z_AXIS);
  1608. }
  1609. #endif
  1610. #ifdef QUICK_HOME
  1611. // In the quick mode, if both x and y are to be homed, a diagonal move will be performed initially.
  1612. if((home_all_axis)||( code_seen(axis_codes[X_AXIS]) && code_seen(axis_codes[Y_AXIS])) ) //first diagonal move
  1613. {
  1614. current_position[X_AXIS] = 0;current_position[Y_AXIS] = 0;
  1615. #ifndef DUAL_X_CARRIAGE
  1616. int x_axis_home_dir = home_dir(X_AXIS);
  1617. #else
  1618. int x_axis_home_dir = x_home_dir(active_extruder);
  1619. extruder_duplication_enabled = false;
  1620. #endif
  1621. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1622. destination[X_AXIS] = 1.5 * max_length(X_AXIS) * x_axis_home_dir;destination[Y_AXIS] = 1.5 * max_length(Y_AXIS) * home_dir(Y_AXIS);
  1623. feedrate = homing_feedrate[X_AXIS];
  1624. if(homing_feedrate[Y_AXIS]<feedrate)
  1625. feedrate = homing_feedrate[Y_AXIS];
  1626. if (max_length(X_AXIS) > max_length(Y_AXIS)) {
  1627. feedrate *= sqrt(pow(max_length(Y_AXIS) / max_length(X_AXIS), 2) + 1);
  1628. } else {
  1629. feedrate *= sqrt(pow(max_length(X_AXIS) / max_length(Y_AXIS), 2) + 1);
  1630. }
  1631. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1632. st_synchronize();
  1633. axis_is_at_home(X_AXIS);
  1634. axis_is_at_home(Y_AXIS);
  1635. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1636. destination[X_AXIS] = current_position[X_AXIS];
  1637. destination[Y_AXIS] = current_position[Y_AXIS];
  1638. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1639. feedrate = 0.0;
  1640. st_synchronize();
  1641. endstops_hit_on_purpose();
  1642. current_position[X_AXIS] = destination[X_AXIS];
  1643. current_position[Y_AXIS] = destination[Y_AXIS];
  1644. current_position[Z_AXIS] = destination[Z_AXIS];
  1645. }
  1646. #endif /* QUICK_HOME */
  1647. if (home_all_axis)
  1648. {
  1649. _doMeshL = true;
  1650. }
  1651. if((home_all_axis) || (code_seen(axis_codes[X_AXIS])))
  1652. {
  1653. #ifdef DUAL_X_CARRIAGE
  1654. int tmp_extruder = active_extruder;
  1655. extruder_duplication_enabled = false;
  1656. active_extruder = !active_extruder;
  1657. homeaxis(X_AXIS);
  1658. inactive_extruder_x_pos = current_position[X_AXIS];
  1659. active_extruder = tmp_extruder;
  1660. homeaxis(X_AXIS);
  1661. // reset state used by the different modes
  1662. memcpy(raised_parked_position, current_position, sizeof(raised_parked_position));
  1663. delayed_move_time = 0;
  1664. active_extruder_parked = true;
  1665. #else
  1666. homeaxis(X_AXIS);
  1667. #endif
  1668. }
  1669. if((home_all_axis) || (code_seen(axis_codes[Y_AXIS]))) {
  1670. homeaxis(Y_AXIS);
  1671. }
  1672. if(code_seen(axis_codes[X_AXIS]))
  1673. {
  1674. if(code_value_long() != 0) {
  1675. current_position[X_AXIS]=code_value()+add_homing[X_AXIS];
  1676. }
  1677. }
  1678. if(code_seen(axis_codes[Y_AXIS])) {
  1679. if(code_value_long() != 0) {
  1680. current_position[Y_AXIS]=code_value()+add_homing[Y_AXIS];
  1681. }
  1682. }
  1683. #if Z_HOME_DIR < 0 // If homing towards BED do Z last
  1684. #ifndef Z_SAFE_HOMING
  1685. if((home_all_axis) || (code_seen(axis_codes[Z_AXIS]))) {
  1686. #if defined (Z_RAISE_BEFORE_HOMING) && (Z_RAISE_BEFORE_HOMING > 0)
  1687. destination[Z_AXIS] = Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS) * (-1); // Set destination away from bed
  1688. feedrate = max_feedrate[Z_AXIS];
  1689. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
  1690. st_synchronize();
  1691. #endif // defined (Z_RAISE_BEFORE_HOMING) && (Z_RAISE_BEFORE_HOMING > 0)
  1692. #ifdef MESH_BED_LEVELING // If Mesh bed leveling, moxve X&Y to safe position for home
  1693. if (!(axis_known_position[X_AXIS] && axis_known_position[Y_AXIS] ))
  1694. {
  1695. homeaxis(X_AXIS);
  1696. homeaxis(Y_AXIS);
  1697. }
  1698. // 1st mesh bed leveling measurement point, corrected.
  1699. world2machine_initialize();
  1700. world2machine(pgm_read_float(bed_ref_points), pgm_read_float(bed_ref_points+1), destination[X_AXIS], destination[Y_AXIS]);
  1701. world2machine_reset();
  1702. if (destination[Y_AXIS] < Y_MIN_POS)
  1703. destination[Y_AXIS] = Y_MIN_POS;
  1704. destination[Z_AXIS] = MESH_HOME_Z_SEARCH; // Set destination away from bed
  1705. feedrate = homing_feedrate[Z_AXIS]/10;
  1706. current_position[Z_AXIS] = 0;
  1707. enable_endstops(false);
  1708. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1709. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
  1710. st_synchronize();
  1711. current_position[X_AXIS] = destination[X_AXIS];
  1712. current_position[Y_AXIS] = destination[Y_AXIS];
  1713. enable_endstops(true);
  1714. endstops_hit_on_purpose();
  1715. homeaxis(Z_AXIS);
  1716. _doMeshL = true;
  1717. #else // MESH_BED_LEVELING
  1718. homeaxis(Z_AXIS);
  1719. #endif // MESH_BED_LEVELING
  1720. }
  1721. #else // defined(Z_SAFE_HOMING): Z Safe mode activated.
  1722. if(home_all_axis) {
  1723. destination[X_AXIS] = round(Z_SAFE_HOMING_X_POINT - X_PROBE_OFFSET_FROM_EXTRUDER);
  1724. destination[Y_AXIS] = round(Z_SAFE_HOMING_Y_POINT - Y_PROBE_OFFSET_FROM_EXTRUDER);
  1725. destination[Z_AXIS] = Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS) * (-1); // Set destination away from bed
  1726. feedrate = XY_TRAVEL_SPEED/60;
  1727. current_position[Z_AXIS] = 0;
  1728. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1729. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
  1730. st_synchronize();
  1731. current_position[X_AXIS] = destination[X_AXIS];
  1732. current_position[Y_AXIS] = destination[Y_AXIS];
  1733. homeaxis(Z_AXIS);
  1734. }
  1735. // Let's see if X and Y are homed and probe is inside bed area.
  1736. if(code_seen(axis_codes[Z_AXIS])) {
  1737. if ( (axis_known_position[X_AXIS]) && (axis_known_position[Y_AXIS]) \
  1738. && (current_position[X_AXIS]+X_PROBE_OFFSET_FROM_EXTRUDER >= X_MIN_POS) \
  1739. && (current_position[X_AXIS]+X_PROBE_OFFSET_FROM_EXTRUDER <= X_MAX_POS) \
  1740. && (current_position[Y_AXIS]+Y_PROBE_OFFSET_FROM_EXTRUDER >= Y_MIN_POS) \
  1741. && (current_position[Y_AXIS]+Y_PROBE_OFFSET_FROM_EXTRUDER <= Y_MAX_POS)) {
  1742. current_position[Z_AXIS] = 0;
  1743. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1744. destination[Z_AXIS] = Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS) * (-1); // Set destination away from bed
  1745. feedrate = max_feedrate[Z_AXIS];
  1746. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
  1747. st_synchronize();
  1748. homeaxis(Z_AXIS);
  1749. } else if (!((axis_known_position[X_AXIS]) && (axis_known_position[Y_AXIS]))) {
  1750. LCD_MESSAGERPGM(MSG_POSITION_UNKNOWN);
  1751. SERIAL_ECHO_START;
  1752. SERIAL_ECHOLNRPGM(MSG_POSITION_UNKNOWN);
  1753. } else {
  1754. LCD_MESSAGERPGM(MSG_ZPROBE_OUT);
  1755. SERIAL_ECHO_START;
  1756. SERIAL_ECHOLNRPGM(MSG_ZPROBE_OUT);
  1757. }
  1758. }
  1759. #endif // Z_SAFE_HOMING
  1760. #endif // Z_HOME_DIR < 0
  1761. if(code_seen(axis_codes[Z_AXIS])) {
  1762. if(code_value_long() != 0) {
  1763. current_position[Z_AXIS]=code_value()+add_homing[Z_AXIS];
  1764. }
  1765. }
  1766. #ifdef ENABLE_AUTO_BED_LEVELING
  1767. if((home_all_axis) || (code_seen(axis_codes[Z_AXIS]))) {
  1768. current_position[Z_AXIS] += zprobe_zoffset; //Add Z_Probe offset (the distance is negative)
  1769. }
  1770. #endif
  1771. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1772. #ifdef ENDSTOPS_ONLY_FOR_HOMING
  1773. enable_endstops(false);
  1774. #endif
  1775. feedrate = saved_feedrate;
  1776. feedmultiply = saved_feedmultiply;
  1777. previous_millis_cmd = millis();
  1778. endstops_hit_on_purpose();
  1779. #ifndef MESH_BED_LEVELING
  1780. if(card.sdprinting) {
  1781. EEPROM_read_B(EEPROM_BABYSTEP_Z,&babystepLoad[2]);
  1782. if(babystepLoad[2] != 0){
  1783. lcd_adjust_z();
  1784. }
  1785. }
  1786. #endif
  1787. // Load the machine correction matrix
  1788. world2machine_initialize();
  1789. // and correct the current_position to match the transformed coordinate system.
  1790. world2machine_update_current();
  1791. #ifdef MESH_BED_LEVELING
  1792. if (code_seen('W'))
  1793. {
  1794. _doMeshL = false;
  1795. SERIAL_ECHOLN("G80 disabled");
  1796. }
  1797. if ( _doMeshL)
  1798. {
  1799. st_synchronize();
  1800. // Push the commands to the front of the message queue in the reverse order!
  1801. // There shall be always enough space reserved for these commands.
  1802. enquecommand_front_P((PSTR("G80")));
  1803. }
  1804. #endif
  1805. break;
  1806. #ifdef ENABLE_AUTO_BED_LEVELING
  1807. case 29: // G29 Detailed Z-Probe, probes the bed at 3 or more points.
  1808. {
  1809. #if Z_MIN_PIN == -1
  1810. #error "You must have a Z_MIN endstop in order to enable Auto Bed Leveling feature! Z_MIN_PIN must point to a valid hardware pin."
  1811. #endif
  1812. // Prevent user from running a G29 without first homing in X and Y
  1813. if (! (axis_known_position[X_AXIS] && axis_known_position[Y_AXIS]) )
  1814. {
  1815. LCD_MESSAGERPGM(MSG_POSITION_UNKNOWN);
  1816. SERIAL_ECHO_START;
  1817. SERIAL_ECHOLNRPGM(MSG_POSITION_UNKNOWN);
  1818. break; // abort G29, since we don't know where we are
  1819. }
  1820. st_synchronize();
  1821. // make sure the bed_level_rotation_matrix is identity or the planner will get it incorectly
  1822. //vector_3 corrected_position = plan_get_position_mm();
  1823. //corrected_position.debug("position before G29");
  1824. plan_bed_level_matrix.set_to_identity();
  1825. vector_3 uncorrected_position = plan_get_position();
  1826. //uncorrected_position.debug("position durring G29");
  1827. current_position[X_AXIS] = uncorrected_position.x;
  1828. current_position[Y_AXIS] = uncorrected_position.y;
  1829. current_position[Z_AXIS] = uncorrected_position.z;
  1830. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1831. setup_for_endstop_move();
  1832. feedrate = homing_feedrate[Z_AXIS];
  1833. #ifdef AUTO_BED_LEVELING_GRID
  1834. // probe at the points of a lattice grid
  1835. int xGridSpacing = (RIGHT_PROBE_BED_POSITION - LEFT_PROBE_BED_POSITION) / (AUTO_BED_LEVELING_GRID_POINTS-1);
  1836. int yGridSpacing = (BACK_PROBE_BED_POSITION - FRONT_PROBE_BED_POSITION) / (AUTO_BED_LEVELING_GRID_POINTS-1);
  1837. // solve the plane equation ax + by + d = z
  1838. // A is the matrix with rows [x y 1] for all the probed points
  1839. // B is the vector of the Z positions
  1840. // the normal vector to the plane is formed by the coefficients of the plane equation in the standard form, which is Vx*x+Vy*y+Vz*z+d = 0
  1841. // so Vx = -a Vy = -b Vz = 1 (we want the vector facing towards positive Z
  1842. // "A" matrix of the linear system of equations
  1843. double eqnAMatrix[AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS*3];
  1844. // "B" vector of Z points
  1845. double eqnBVector[AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS];
  1846. int probePointCounter = 0;
  1847. bool zig = true;
  1848. for (int yProbe=FRONT_PROBE_BED_POSITION; yProbe <= BACK_PROBE_BED_POSITION; yProbe += yGridSpacing)
  1849. {
  1850. int xProbe, xInc;
  1851. if (zig)
  1852. {
  1853. xProbe = LEFT_PROBE_BED_POSITION;
  1854. //xEnd = RIGHT_PROBE_BED_POSITION;
  1855. xInc = xGridSpacing;
  1856. zig = false;
  1857. } else // zag
  1858. {
  1859. xProbe = RIGHT_PROBE_BED_POSITION;
  1860. //xEnd = LEFT_PROBE_BED_POSITION;
  1861. xInc = -xGridSpacing;
  1862. zig = true;
  1863. }
  1864. for (int xCount=0; xCount < AUTO_BED_LEVELING_GRID_POINTS; xCount++)
  1865. {
  1866. float z_before;
  1867. if (probePointCounter == 0)
  1868. {
  1869. // raise before probing
  1870. z_before = Z_RAISE_BEFORE_PROBING;
  1871. } else
  1872. {
  1873. // raise extruder
  1874. z_before = current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS;
  1875. }
  1876. float measured_z = probe_pt(xProbe, yProbe, z_before);
  1877. eqnBVector[probePointCounter] = measured_z;
  1878. eqnAMatrix[probePointCounter + 0*AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS] = xProbe;
  1879. eqnAMatrix[probePointCounter + 1*AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS] = yProbe;
  1880. eqnAMatrix[probePointCounter + 2*AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS] = 1;
  1881. probePointCounter++;
  1882. xProbe += xInc;
  1883. }
  1884. }
  1885. clean_up_after_endstop_move();
  1886. // solve lsq problem
  1887. double *plane_equation_coefficients = qr_solve(AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS, 3, eqnAMatrix, eqnBVector);
  1888. SERIAL_PROTOCOLPGM("Eqn coefficients: a: ");
  1889. SERIAL_PROTOCOL(plane_equation_coefficients[0]);
  1890. SERIAL_PROTOCOLPGM(" b: ");
  1891. SERIAL_PROTOCOL(plane_equation_coefficients[1]);
  1892. SERIAL_PROTOCOLPGM(" d: ");
  1893. SERIAL_PROTOCOLLN(plane_equation_coefficients[2]);
  1894. set_bed_level_equation_lsq(plane_equation_coefficients);
  1895. free(plane_equation_coefficients);
  1896. #else // AUTO_BED_LEVELING_GRID not defined
  1897. // Probe at 3 arbitrary points
  1898. // probe 1
  1899. float z_at_pt_1 = probe_pt(ABL_PROBE_PT_1_X, ABL_PROBE_PT_1_Y, Z_RAISE_BEFORE_PROBING);
  1900. // probe 2
  1901. float z_at_pt_2 = probe_pt(ABL_PROBE_PT_2_X, ABL_PROBE_PT_2_Y, current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS);
  1902. // probe 3
  1903. float z_at_pt_3 = probe_pt(ABL_PROBE_PT_3_X, ABL_PROBE_PT_3_Y, current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS);
  1904. clean_up_after_endstop_move();
  1905. set_bed_level_equation_3pts(z_at_pt_1, z_at_pt_2, z_at_pt_3);
  1906. #endif // AUTO_BED_LEVELING_GRID
  1907. st_synchronize();
  1908. // The following code correct the Z height difference from z-probe position and hotend tip position.
  1909. // The Z height on homing is measured by Z-Probe, but the probe is quite far from the hotend.
  1910. // When the bed is uneven, this height must be corrected.
  1911. real_z = float(st_get_position(Z_AXIS))/axis_steps_per_unit[Z_AXIS]; //get the real Z (since the auto bed leveling is already correcting the plane)
  1912. x_tmp = current_position[X_AXIS] + X_PROBE_OFFSET_FROM_EXTRUDER;
  1913. y_tmp = current_position[Y_AXIS] + Y_PROBE_OFFSET_FROM_EXTRUDER;
  1914. z_tmp = current_position[Z_AXIS];
  1915. apply_rotation_xyz(plan_bed_level_matrix, x_tmp, y_tmp, z_tmp); //Apply the correction sending the probe offset
  1916. current_position[Z_AXIS] = z_tmp - real_z + current_position[Z_AXIS]; //The difference is added to current position and sent to planner.
  1917. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1918. }
  1919. break;
  1920. #ifndef Z_PROBE_SLED
  1921. case 30: // G30 Single Z Probe
  1922. {
  1923. st_synchronize();
  1924. // TODO: make sure the bed_level_rotation_matrix is identity or the planner will get set incorectly
  1925. setup_for_endstop_move();
  1926. feedrate = homing_feedrate[Z_AXIS];
  1927. run_z_probe();
  1928. SERIAL_PROTOCOLPGM(MSG_BED);
  1929. SERIAL_PROTOCOLPGM(" X: ");
  1930. SERIAL_PROTOCOL(current_position[X_AXIS]);
  1931. SERIAL_PROTOCOLPGM(" Y: ");
  1932. SERIAL_PROTOCOL(current_position[Y_AXIS]);
  1933. SERIAL_PROTOCOLPGM(" Z: ");
  1934. SERIAL_PROTOCOL(current_position[Z_AXIS]);
  1935. SERIAL_PROTOCOLPGM("\n");
  1936. clean_up_after_endstop_move();
  1937. }
  1938. break;
  1939. #else
  1940. case 31: // dock the sled
  1941. dock_sled(true);
  1942. break;
  1943. case 32: // undock the sled
  1944. dock_sled(false);
  1945. break;
  1946. #endif // Z_PROBE_SLED
  1947. #endif // ENABLE_AUTO_BED_LEVELING
  1948. #ifdef MESH_BED_LEVELING
  1949. /**
  1950. * G80: Mesh-based Z probe, probes a grid and produces a
  1951. * mesh to compensate for variable bed height
  1952. *
  1953. * The S0 report the points as below
  1954. *
  1955. * +----> X-axis
  1956. * |
  1957. * |
  1958. * v Y-axis
  1959. *
  1960. */
  1961. case 80:
  1962. {
  1963. if (!IS_SD_PRINTING)
  1964. {
  1965. custom_message = true;
  1966. custom_message_type = 1;
  1967. custom_message_state = (MESH_MEAS_NUM_X_POINTS * MESH_MEAS_NUM_Y_POINTS) + 10;
  1968. }
  1969. // Firstly check if we know where we are
  1970. if ( !( axis_known_position[X_AXIS] && axis_known_position[Y_AXIS] && axis_known_position[Z_AXIS] ) ){
  1971. // We don't know where we are! HOME!
  1972. // Push the commands to the front of the message queue in the reverse order!
  1973. // There shall be always enough space reserved for these commands.
  1974. repeatcommand_front(); // repeat G80 with all its parameters
  1975. enquecommand_front_P((PSTR("G28 W0")));
  1976. break;
  1977. }
  1978. mbl.reset();
  1979. // Cycle through all points and probe them
  1980. // First move up.
  1981. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  1982. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[Z_AXIS]/60, active_extruder);
  1983. // The move to the first calibration point.
  1984. current_position[X_AXIS] = pgm_read_float(bed_ref_points);
  1985. current_position[Y_AXIS] = pgm_read_float(bed_ref_points+1);
  1986. world2machine_clamp(current_position[X_AXIS], current_position[Y_AXIS]);
  1987. // mbl.get_meas_xy(0, 0, current_position[X_AXIS], current_position[Y_AXIS], false);
  1988. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[X_AXIS]/30, active_extruder);
  1989. // Wait until the move is finished.
  1990. st_synchronize();
  1991. int mesh_point = 0;
  1992. int ix = 0;
  1993. int iy = 0;
  1994. int XY_AXIS_FEEDRATE = homing_feedrate[X_AXIS]/20;
  1995. int Z_PROBE_FEEDRATE = homing_feedrate[Z_AXIS]/60;
  1996. int Z_LIFT_FEEDRATE = homing_feedrate[Z_AXIS]/40;
  1997. bool has_z = is_bed_z_jitter_data_valid();
  1998. setup_for_endstop_move();
  1999. const char *kill_message = NULL;
  2000. while (mesh_point != MESH_MEAS_NUM_X_POINTS * MESH_MEAS_NUM_Y_POINTS) {
  2001. // Get coords of a measuring point.
  2002. ix = mesh_point % MESH_MEAS_NUM_X_POINTS;
  2003. iy = mesh_point / MESH_MEAS_NUM_X_POINTS;
  2004. if (iy & 1) ix = (MESH_MEAS_NUM_X_POINTS - 1) - ix; // Zig zag
  2005. float z0 = 0.f;
  2006. if (has_z && mesh_point > 0) {
  2007. uint16_t z_offset_u = eeprom_read_word((uint16_t*)(EEPROM_BED_CALIBRATION_Z_JITTER + 2 * (ix + iy * 3 - 1)));
  2008. z0 = mbl.z_values[0][0] + *reinterpret_cast<int16_t*>(&z_offset_u) * 0.01;
  2009. #if 0
  2010. SERIAL_ECHOPGM("Bed leveling, point: ");
  2011. MYSERIAL.print(mesh_point);
  2012. SERIAL_ECHOPGM(", calibration z: ");
  2013. MYSERIAL.print(z0, 5);
  2014. SERIAL_ECHOLNPGM("");
  2015. #endif
  2016. }
  2017. // Move Z to proper distance
  2018. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  2019. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], Z_LIFT_FEEDRATE, active_extruder);
  2020. st_synchronize();
  2021. current_position[X_AXIS] = pgm_read_float(bed_ref_points+2*mesh_point);
  2022. current_position[Y_AXIS] = pgm_read_float(bed_ref_points+2*mesh_point+1);
  2023. world2machine_clamp(current_position[X_AXIS], current_position[Y_AXIS]);
  2024. // mbl.get_meas_xy(ix, iy, current_position[X_AXIS], current_position[Y_AXIS], false);
  2025. enable_endstops(false);
  2026. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], XY_AXIS_FEEDRATE, active_extruder);
  2027. st_synchronize();
  2028. // Go down until endstop is hit
  2029. const float Z_CALIBRATION_THRESHOLD = 0.5f;
  2030. if (! find_bed_induction_sensor_point_z((has_z && mesh_point > 0) ? z0 - Z_CALIBRATION_THRESHOLD : -10.f)) {
  2031. kill_message = MSG_BED_LEVELING_FAILED_POINT_LOW;
  2032. break;
  2033. }
  2034. if (has_z && fabs(z0 - current_position[Z_AXIS]) > Z_CALIBRATION_THRESHOLD) {
  2035. kill_message = MSG_BED_LEVELING_FAILED_POINT_HIGH;
  2036. break;
  2037. }
  2038. mbl.set_z(ix, iy, current_position[Z_AXIS]);
  2039. if (!IS_SD_PRINTING)
  2040. {
  2041. custom_message_state--;
  2042. }
  2043. mesh_point++;
  2044. }
  2045. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  2046. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS],current_position[Z_AXIS] , current_position[E_AXIS], Z_LIFT_FEEDRATE, active_extruder);
  2047. if (mesh_point != MESH_MEAS_NUM_X_POINTS * MESH_MEAS_NUM_Y_POINTS) {
  2048. st_synchronize();
  2049. kill(kill_message);
  2050. }
  2051. clean_up_after_endstop_move();
  2052. mbl.upsample_3x3();
  2053. mbl.active = 1;
  2054. current_position[X_AXIS] = X_MIN_POS+0.2;
  2055. current_position[Y_AXIS] = Y_MIN_POS+0.2;
  2056. current_position[Z_AXIS] = Z_MIN_POS;
  2057. world2machine_clamp(current_position[X_AXIS], current_position[Y_AXIS]);
  2058. plan_buffer_line(current_position[X_AXIS], current_position[X_AXIS], current_position[Z_AXIS], current_position[E_AXIS], XY_AXIS_FEEDRATE, active_extruder);
  2059. st_synchronize();
  2060. if(card.sdprinting || is_usb_printing )
  2061. {
  2062. if(eeprom_read_byte((unsigned char*)EEPROM_BABYSTEP_Z_SET) == 0x01)
  2063. {
  2064. EEPROM_read_B(EEPROM_BABYSTEP_Z,&babystepLoad[2]);
  2065. babystepsTodo[Z_AXIS] = babystepLoad[2];
  2066. }
  2067. }
  2068. }
  2069. break;
  2070. /**
  2071. * G81: Print mesh bed leveling status and bed profile if activated
  2072. */
  2073. case 81:
  2074. if (mbl.active) {
  2075. SERIAL_PROTOCOLPGM("Num X,Y: ");
  2076. SERIAL_PROTOCOL(MESH_NUM_X_POINTS);
  2077. SERIAL_PROTOCOLPGM(",");
  2078. SERIAL_PROTOCOL(MESH_NUM_Y_POINTS);
  2079. SERIAL_PROTOCOLPGM("\nZ search height: ");
  2080. SERIAL_PROTOCOL(MESH_HOME_Z_SEARCH);
  2081. SERIAL_PROTOCOLLNPGM("\nMeasured points:");
  2082. for (int y = MESH_NUM_Y_POINTS-1; y >= 0; y--) {
  2083. for (int x = 0; x < MESH_NUM_X_POINTS; x++) {
  2084. SERIAL_PROTOCOLPGM(" ");
  2085. SERIAL_PROTOCOL_F(mbl.z_values[y][x], 5);
  2086. }
  2087. SERIAL_PROTOCOLPGM("\n");
  2088. }
  2089. }
  2090. else
  2091. SERIAL_PROTOCOLLNPGM("Mesh bed leveling not active.");
  2092. break;
  2093. /**
  2094. * G82: Single Z probe at current location
  2095. *
  2096. * WARNING! USE WITH CAUTION! If you'll try to probe where is no leveling pad, nasty things can happen!
  2097. *
  2098. */
  2099. case 82:
  2100. SERIAL_PROTOCOLLNPGM("Finding bed ");
  2101. setup_for_endstop_move();
  2102. find_bed_induction_sensor_point_z();
  2103. clean_up_after_endstop_move();
  2104. SERIAL_PROTOCOLPGM("Bed found at: ");
  2105. SERIAL_PROTOCOL_F(current_position[Z_AXIS], 5);
  2106. SERIAL_PROTOCOLPGM("\n");
  2107. break;
  2108. /**
  2109. * G83: Babystep in Z and store to EEPROM
  2110. */
  2111. case 83:
  2112. {
  2113. int babystepz = code_seen('S') ? code_value() : 0;
  2114. int BabyPosition = code_seen('P') ? code_value() : 0;
  2115. if (babystepz != 0) {
  2116. if (BabyPosition > 4) {
  2117. SERIAL_PROTOCOLLNPGM("Index out of bounds");
  2118. }else{
  2119. // Save it to the eeprom
  2120. babystepLoad[2] = babystepz;
  2121. EEPROM_save_B(EEPROM_BABYSTEP_Z0+(BabyPosition*2),&babystepLoad[2]);
  2122. // adjist the Z
  2123. babystepsTodo[Z_AXIS] = babystepLoad[2];
  2124. }
  2125. }
  2126. }
  2127. break;
  2128. /**
  2129. * G84: UNDO Babystep Z (move Z axis back)
  2130. */
  2131. case 84:
  2132. babystepsTodo[Z_AXIS] = -babystepLoad[2];
  2133. break;
  2134. /**
  2135. * G85: Pick best babystep
  2136. */
  2137. case 85:
  2138. lcd_pick_babystep();
  2139. break;
  2140. /**
  2141. * G86: Disable babystep correction after home
  2142. */
  2143. case 86:
  2144. eeprom_write_byte((unsigned char*)EEPROM_BABYSTEP_Z_SET, 0xFF);
  2145. break;
  2146. /**
  2147. * G87: Enable babystep correction after home
  2148. */
  2149. case 87:
  2150. eeprom_write_byte((unsigned char*)EEPROM_BABYSTEP_Z_SET, 0x01);
  2151. break;
  2152. case 88:
  2153. break;
  2154. #endif // ENABLE_MESH_BED_LEVELING
  2155. case 90: // G90
  2156. relative_mode = false;
  2157. break;
  2158. case 91: // G91
  2159. relative_mode = true;
  2160. break;
  2161. case 92: // G92
  2162. if(!code_seen(axis_codes[E_AXIS]))
  2163. st_synchronize();
  2164. for(int8_t i=0; i < NUM_AXIS; i++) {
  2165. if(code_seen(axis_codes[i])) {
  2166. if(i == E_AXIS) {
  2167. current_position[i] = code_value();
  2168. plan_set_e_position(current_position[E_AXIS]);
  2169. }
  2170. else {
  2171. current_position[i] = code_value()+add_homing[i];
  2172. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2173. }
  2174. }
  2175. }
  2176. break;
  2177. }
  2178. } // end if(code_seen('G'))
  2179. else if(code_seen('M'))
  2180. {
  2181. switch( (int)code_value() )
  2182. {
  2183. #ifdef ULTIPANEL
  2184. case 0: // M0 - Unconditional stop - Wait for user button press on LCD
  2185. case 1: // M1 - Conditional stop - Wait for user button press on LCD
  2186. {
  2187. char *src = strchr_pointer + 2;
  2188. codenum = 0;
  2189. bool hasP = false, hasS = false;
  2190. if (code_seen('P')) {
  2191. codenum = code_value(); // milliseconds to wait
  2192. hasP = codenum > 0;
  2193. }
  2194. if (code_seen('S')) {
  2195. codenum = code_value() * 1000; // seconds to wait
  2196. hasS = codenum > 0;
  2197. }
  2198. starpos = strchr(src, '*');
  2199. if (starpos != NULL) *(starpos) = '\0';
  2200. while (*src == ' ') ++src;
  2201. if (!hasP && !hasS && *src != '\0') {
  2202. lcd_setstatus(src);
  2203. } else {
  2204. LCD_MESSAGERPGM(MSG_USERWAIT);
  2205. }
  2206. lcd_ignore_click();
  2207. st_synchronize();
  2208. previous_millis_cmd = millis();
  2209. if (codenum > 0){
  2210. codenum += millis(); // keep track of when we started waiting
  2211. while(millis() < codenum && !lcd_clicked()){
  2212. manage_heater();
  2213. manage_inactivity();
  2214. lcd_update();
  2215. }
  2216. lcd_ignore_click(false);
  2217. }else{
  2218. if (!lcd_detected())
  2219. break;
  2220. while(!lcd_clicked()){
  2221. manage_heater();
  2222. manage_inactivity();
  2223. lcd_update();
  2224. }
  2225. }
  2226. if (IS_SD_PRINTING)
  2227. LCD_MESSAGERPGM(MSG_RESUMING);
  2228. else
  2229. LCD_MESSAGERPGM(WELCOME_MSG);
  2230. }
  2231. break;
  2232. #endif
  2233. case 17:
  2234. LCD_MESSAGERPGM(MSG_NO_MOVE);
  2235. enable_x();
  2236. enable_y();
  2237. enable_z();
  2238. enable_e0();
  2239. enable_e1();
  2240. enable_e2();
  2241. break;
  2242. #ifdef SDSUPPORT
  2243. case 20: // M20 - list SD card
  2244. SERIAL_PROTOCOLLNRPGM(MSG_BEGIN_FILE_LIST);
  2245. card.ls();
  2246. SERIAL_PROTOCOLLNRPGM(MSG_END_FILE_LIST);
  2247. break;
  2248. case 21: // M21 - init SD card
  2249. card.initsd();
  2250. break;
  2251. case 22: //M22 - release SD card
  2252. card.release();
  2253. break;
  2254. case 23: //M23 - Select file
  2255. starpos = (strchr(strchr_pointer + 4,'*'));
  2256. if(starpos!=NULL)
  2257. *(starpos)='\0';
  2258. card.openFile(strchr_pointer + 4,true);
  2259. break;
  2260. case 24: //M24 - Start SD print
  2261. card.startFileprint();
  2262. starttime=millis();
  2263. break;
  2264. case 25: //M25 - Pause SD print
  2265. card.pauseSDPrint();
  2266. break;
  2267. case 26: //M26 - Set SD index
  2268. if(card.cardOK && code_seen('S')) {
  2269. card.setIndex(code_value_long());
  2270. }
  2271. break;
  2272. case 27: //M27 - Get SD status
  2273. card.getStatus();
  2274. break;
  2275. case 28: //M28 - Start SD write
  2276. starpos = (strchr(strchr_pointer + 4,'*'));
  2277. if(starpos != NULL){
  2278. char* npos = strchr(CMDBUFFER_CURRENT_STRING, 'N');
  2279. strchr_pointer = strchr(npos,' ') + 1;
  2280. *(starpos) = '\0';
  2281. }
  2282. card.openFile(strchr_pointer+4,false);
  2283. break;
  2284. case 29: //M29 - Stop SD write
  2285. //processed in write to file routine above
  2286. //card,saving = false;
  2287. break;
  2288. case 30: //M30 <filename> Delete File
  2289. if (card.cardOK){
  2290. card.closefile();
  2291. starpos = (strchr(strchr_pointer + 4,'*'));
  2292. if(starpos != NULL){
  2293. char* npos = strchr(CMDBUFFER_CURRENT_STRING, 'N');
  2294. strchr_pointer = strchr(npos,' ') + 1;
  2295. *(starpos) = '\0';
  2296. }
  2297. card.removeFile(strchr_pointer + 4);
  2298. }
  2299. break;
  2300. case 32: //M32 - Select file and start SD print
  2301. {
  2302. if(card.sdprinting) {
  2303. st_synchronize();
  2304. }
  2305. starpos = (strchr(strchr_pointer + 4,'*'));
  2306. char* namestartpos = (strchr(strchr_pointer + 4,'!')); //find ! to indicate filename string start.
  2307. if(namestartpos==NULL)
  2308. {
  2309. namestartpos=strchr_pointer + 4; //default name position, 4 letters after the M
  2310. }
  2311. else
  2312. namestartpos++; //to skip the '!'
  2313. if(starpos!=NULL)
  2314. *(starpos)='\0';
  2315. bool call_procedure=(code_seen('P'));
  2316. if(strchr_pointer>namestartpos)
  2317. call_procedure=false; //false alert, 'P' found within filename
  2318. if( card.cardOK )
  2319. {
  2320. card.openFile(namestartpos,true,!call_procedure);
  2321. if(code_seen('S'))
  2322. if(strchr_pointer<namestartpos) //only if "S" is occuring _before_ the filename
  2323. card.setIndex(code_value_long());
  2324. card.startFileprint();
  2325. if(!call_procedure)
  2326. starttime=millis(); //procedure calls count as normal print time.
  2327. }
  2328. } break;
  2329. case 928: //M928 - Start SD write
  2330. starpos = (strchr(strchr_pointer + 5,'*'));
  2331. if(starpos != NULL){
  2332. char* npos = strchr(CMDBUFFER_CURRENT_STRING, 'N');
  2333. strchr_pointer = strchr(npos,' ') + 1;
  2334. *(starpos) = '\0';
  2335. }
  2336. card.openLogFile(strchr_pointer+5);
  2337. break;
  2338. #endif //SDSUPPORT
  2339. case 31: //M31 take time since the start of the SD print or an M109 command
  2340. {
  2341. stoptime=millis();
  2342. char time[30];
  2343. unsigned long t=(stoptime-starttime)/1000;
  2344. int sec,min;
  2345. min=t/60;
  2346. sec=t%60;
  2347. sprintf_P(time, PSTR("%i min, %i sec"), min, sec);
  2348. SERIAL_ECHO_START;
  2349. SERIAL_ECHOLN(time);
  2350. lcd_setstatus(time);
  2351. autotempShutdown();
  2352. }
  2353. break;
  2354. case 42: //M42 -Change pin status via gcode
  2355. if (code_seen('S'))
  2356. {
  2357. int pin_status = code_value();
  2358. int pin_number = LED_PIN;
  2359. if (code_seen('P') && pin_status >= 0 && pin_status <= 255)
  2360. pin_number = code_value();
  2361. for(int8_t i = 0; i < (int8_t)(sizeof(sensitive_pins)/sizeof(int)); i++)
  2362. {
  2363. if (sensitive_pins[i] == pin_number)
  2364. {
  2365. pin_number = -1;
  2366. break;
  2367. }
  2368. }
  2369. #if defined(FAN_PIN) && FAN_PIN > -1
  2370. if (pin_number == FAN_PIN)
  2371. fanSpeed = pin_status;
  2372. #endif
  2373. if (pin_number > -1)
  2374. {
  2375. pinMode(pin_number, OUTPUT);
  2376. digitalWrite(pin_number, pin_status);
  2377. analogWrite(pin_number, pin_status);
  2378. }
  2379. }
  2380. break;
  2381. case 44: // M44: Prusa3D: Reset the bed skew and offset calibration.
  2382. // Reset the skew and offset in both RAM and EEPROM.
  2383. reset_bed_offset_and_skew();
  2384. // Reset world2machine_rotation_and_skew and world2machine_shift, therefore
  2385. // the planner will not perform any adjustments in the XY plane.
  2386. // Wait for the motors to stop and update the current position with the absolute values.
  2387. world2machine_revert_to_uncorrected();
  2388. break;
  2389. case 45: // M45: Prusa3D: bed skew and offset with manual Z up
  2390. {
  2391. // Disable the default update procedure of the display. We will do a modal dialog.
  2392. lcd_update_enable(false);
  2393. // Let the planner use the uncorrected coordinates.
  2394. mbl.reset();
  2395. // Reset world2machine_rotation_and_skew and world2machine_shift, therefore
  2396. // the planner will not perform any adjustments in the XY plane.
  2397. // Wait for the motors to stop and update the current position with the absolute values.
  2398. world2machine_revert_to_uncorrected();
  2399. // Let the user move the Z axes up to the end stoppers.
  2400. if (lcd_calibrate_z_end_stop_manual()) {
  2401. refresh_cmd_timeout();
  2402. // Move the print head close to the bed.
  2403. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  2404. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS],current_position[Z_AXIS] , current_position[E_AXIS], homing_feedrate[Z_AXIS]/40, active_extruder);
  2405. st_synchronize();
  2406. // Home in the XY plane.
  2407. set_destination_to_current();
  2408. setup_for_endstop_move();
  2409. home_xy();
  2410. int8_t verbosity_level = 0;
  2411. if (code_seen('V')) {
  2412. // Just 'V' without a number counts as V1.
  2413. char c = strchr_pointer[1];
  2414. verbosity_level = (c == ' ' || c == '\t' || c == 0) ? 1 : code_value_short();
  2415. }
  2416. BedSkewOffsetDetectionResultType result = find_bed_offset_and_skew(verbosity_level);
  2417. uint8_t point_too_far_mask = 0;
  2418. clean_up_after_endstop_move();
  2419. // Print head up.
  2420. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  2421. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS],current_position[Z_AXIS] , current_position[E_AXIS], homing_feedrate[Z_AXIS]/40, active_extruder);
  2422. st_synchronize();
  2423. if (result >= 0) {
  2424. // Second half: The fine adjustment.
  2425. // Let the planner use the uncorrected coordinates.
  2426. mbl.reset();
  2427. world2machine_reset();
  2428. // Home in the XY plane.
  2429. setup_for_endstop_move();
  2430. home_xy();
  2431. result = improve_bed_offset_and_skew(1, verbosity_level, point_too_far_mask);
  2432. clean_up_after_endstop_move();
  2433. // Print head up.
  2434. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  2435. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS],current_position[Z_AXIS] , current_position[E_AXIS], homing_feedrate[Z_AXIS]/40, active_extruder);
  2436. st_synchronize();
  2437. }
  2438. lcd_bed_calibration_show_result(result, point_too_far_mask);
  2439. } else {
  2440. // Timeouted.
  2441. }
  2442. lcd_update_enable(true);
  2443. lcd_implementation_clear();
  2444. // lcd_return_to_status();
  2445. lcd_update();
  2446. break;
  2447. }
  2448. case 47:
  2449. // M47: Prusa3D: Show end stops dialog on the display.
  2450. lcd_diag_show_end_stops();
  2451. break;
  2452. #if 0
  2453. case 48: // M48: scan the bed induction sensor points, print the sensor trigger coordinates to the serial line for visualization on the PC.
  2454. {
  2455. // Disable the default update procedure of the display. We will do a modal dialog.
  2456. lcd_update_enable(false);
  2457. // Let the planner use the uncorrected coordinates.
  2458. mbl.reset();
  2459. // Reset world2machine_rotation_and_skew and world2machine_shift, therefore
  2460. // the planner will not perform any adjustments in the XY plane.
  2461. // Wait for the motors to stop and update the current position with the absolute values.
  2462. world2machine_revert_to_uncorrected();
  2463. // Move the print head close to the bed.
  2464. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  2465. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS],current_position[Z_AXIS] , current_position[E_AXIS], homing_feedrate[Z_AXIS]/40, active_extruder);
  2466. st_synchronize();
  2467. // Home in the XY plane.
  2468. set_destination_to_current();
  2469. setup_for_endstop_move();
  2470. home_xy();
  2471. int8_t verbosity_level = 0;
  2472. if (code_seen('V')) {
  2473. // Just 'V' without a number counts as V1.
  2474. char c = strchr_pointer[1];
  2475. verbosity_level = (c == ' ' || c == '\t' || c == 0) ? 1 : code_value_short();
  2476. }
  2477. bool success = scan_bed_induction_points(verbosity_level);
  2478. clean_up_after_endstop_move();
  2479. // Print head up.
  2480. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  2481. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS],current_position[Z_AXIS] , current_position[E_AXIS], homing_feedrate[Z_AXIS]/40, active_extruder);
  2482. st_synchronize();
  2483. lcd_update_enable(true);
  2484. lcd_implementation_clear();
  2485. // lcd_return_to_status();
  2486. lcd_update();
  2487. break;
  2488. }
  2489. #endif
  2490. // M48 Z-Probe repeatability measurement function.
  2491. //
  2492. // Usage: M48 <n #_samples> <X X_position_for_samples> <Y Y_position_for_samples> <V Verbose_Level> <L legs_of_movement_prior_to_doing_probe>
  2493. //
  2494. // This function assumes the bed has been homed. Specificaly, that a G28 command
  2495. // as been issued prior to invoking the M48 Z-Probe repeatability measurement function.
  2496. // Any information generated by a prior G29 Bed leveling command will be lost and need to be
  2497. // regenerated.
  2498. //
  2499. // The number of samples will default to 10 if not specified. You can use upper or lower case
  2500. // letters for any of the options EXCEPT n. n must be in lower case because Marlin uses a capital
  2501. // N for its communication protocol and will get horribly confused if you send it a capital N.
  2502. //
  2503. #ifdef ENABLE_AUTO_BED_LEVELING
  2504. #ifdef Z_PROBE_REPEATABILITY_TEST
  2505. case 48: // M48 Z-Probe repeatability
  2506. {
  2507. #if Z_MIN_PIN == -1
  2508. #error "You must have a Z_MIN endstop in order to enable calculation of Z-Probe repeatability."
  2509. #endif
  2510. double sum=0.0;
  2511. double mean=0.0;
  2512. double sigma=0.0;
  2513. double sample_set[50];
  2514. int verbose_level=1, n=0, j, n_samples = 10, n_legs=0;
  2515. double X_current, Y_current, Z_current;
  2516. double X_probe_location, Y_probe_location, Z_start_location, ext_position;
  2517. if (code_seen('V') || code_seen('v')) {
  2518. verbose_level = code_value();
  2519. if (verbose_level<0 || verbose_level>4 ) {
  2520. SERIAL_PROTOCOLPGM("?Verbose Level not plausable.\n");
  2521. goto Sigma_Exit;
  2522. }
  2523. }
  2524. if (verbose_level > 0) {
  2525. SERIAL_PROTOCOLPGM("M48 Z-Probe Repeatability test. Version 2.00\n");
  2526. SERIAL_PROTOCOLPGM("Full support at: http://3dprintboard.com/forum.php\n");
  2527. }
  2528. if (code_seen('n')) {
  2529. n_samples = code_value();
  2530. if (n_samples<4 || n_samples>50 ) {
  2531. SERIAL_PROTOCOLPGM("?Specified sample size not plausable.\n");
  2532. goto Sigma_Exit;
  2533. }
  2534. }
  2535. X_current = X_probe_location = st_get_position_mm(X_AXIS);
  2536. Y_current = Y_probe_location = st_get_position_mm(Y_AXIS);
  2537. Z_current = st_get_position_mm(Z_AXIS);
  2538. Z_start_location = st_get_position_mm(Z_AXIS) + Z_RAISE_BEFORE_PROBING;
  2539. ext_position = st_get_position_mm(E_AXIS);
  2540. if (code_seen('X') || code_seen('x') ) {
  2541. X_probe_location = code_value() - X_PROBE_OFFSET_FROM_EXTRUDER;
  2542. if (X_probe_location<X_MIN_POS || X_probe_location>X_MAX_POS ) {
  2543. SERIAL_PROTOCOLPGM("?Specified X position out of range.\n");
  2544. goto Sigma_Exit;
  2545. }
  2546. }
  2547. if (code_seen('Y') || code_seen('y') ) {
  2548. Y_probe_location = code_value() - Y_PROBE_OFFSET_FROM_EXTRUDER;
  2549. if (Y_probe_location<Y_MIN_POS || Y_probe_location>Y_MAX_POS ) {
  2550. SERIAL_PROTOCOLPGM("?Specified Y position out of range.\n");
  2551. goto Sigma_Exit;
  2552. }
  2553. }
  2554. if (code_seen('L') || code_seen('l') ) {
  2555. n_legs = code_value();
  2556. if ( n_legs==1 )
  2557. n_legs = 2;
  2558. if ( n_legs<0 || n_legs>15 ) {
  2559. SERIAL_PROTOCOLPGM("?Specified number of legs in movement not plausable.\n");
  2560. goto Sigma_Exit;
  2561. }
  2562. }
  2563. //
  2564. // Do all the preliminary setup work. First raise the probe.
  2565. //
  2566. st_synchronize();
  2567. plan_bed_level_matrix.set_to_identity();
  2568. plan_buffer_line( X_current, Y_current, Z_start_location,
  2569. ext_position,
  2570. homing_feedrate[Z_AXIS]/60,
  2571. active_extruder);
  2572. st_synchronize();
  2573. //
  2574. // Now get everything to the specified probe point So we can safely do a probe to
  2575. // get us close to the bed. If the Z-Axis is far from the bed, we don't want to
  2576. // use that as a starting point for each probe.
  2577. //
  2578. if (verbose_level > 2)
  2579. SERIAL_PROTOCOL("Positioning probe for the test.\n");
  2580. plan_buffer_line( X_probe_location, Y_probe_location, Z_start_location,
  2581. ext_position,
  2582. homing_feedrate[X_AXIS]/60,
  2583. active_extruder);
  2584. st_synchronize();
  2585. current_position[X_AXIS] = X_current = st_get_position_mm(X_AXIS);
  2586. current_position[Y_AXIS] = Y_current = st_get_position_mm(Y_AXIS);
  2587. current_position[Z_AXIS] = Z_current = st_get_position_mm(Z_AXIS);
  2588. current_position[E_AXIS] = ext_position = st_get_position_mm(E_AXIS);
  2589. //
  2590. // OK, do the inital probe to get us close to the bed.
  2591. // Then retrace the right amount and use that in subsequent probes
  2592. //
  2593. setup_for_endstop_move();
  2594. run_z_probe();
  2595. current_position[Z_AXIS] = Z_current = st_get_position_mm(Z_AXIS);
  2596. Z_start_location = st_get_position_mm(Z_AXIS) + Z_RAISE_BEFORE_PROBING;
  2597. plan_buffer_line( X_probe_location, Y_probe_location, Z_start_location,
  2598. ext_position,
  2599. homing_feedrate[X_AXIS]/60,
  2600. active_extruder);
  2601. st_synchronize();
  2602. current_position[Z_AXIS] = Z_current = st_get_position_mm(Z_AXIS);
  2603. for( n=0; n<n_samples; n++) {
  2604. do_blocking_move_to( X_probe_location, Y_probe_location, Z_start_location); // Make sure we are at the probe location
  2605. if ( n_legs) {
  2606. double radius=0.0, theta=0.0, x_sweep, y_sweep;
  2607. int rotational_direction, l;
  2608. rotational_direction = (unsigned long) millis() & 0x0001; // clockwise or counter clockwise
  2609. radius = (unsigned long) millis() % (long) (X_MAX_LENGTH/4); // limit how far out to go
  2610. theta = (float) ((unsigned long) millis() % (long) 360) / (360./(2*3.1415926)); // turn into radians
  2611. //SERIAL_ECHOPAIR("starting radius: ",radius);
  2612. //SERIAL_ECHOPAIR(" theta: ",theta);
  2613. //SERIAL_ECHOPAIR(" direction: ",rotational_direction);
  2614. //SERIAL_PROTOCOLLNPGM("");
  2615. for( l=0; l<n_legs-1; l++) {
  2616. if (rotational_direction==1)
  2617. theta += (float) ((unsigned long) millis() % (long) 20) / (360.0/(2*3.1415926)); // turn into radians
  2618. else
  2619. theta -= (float) ((unsigned long) millis() % (long) 20) / (360.0/(2*3.1415926)); // turn into radians
  2620. radius += (float) ( ((long) ((unsigned long) millis() % (long) 10)) - 5);
  2621. if ( radius<0.0 )
  2622. radius = -radius;
  2623. X_current = X_probe_location + cos(theta) * radius;
  2624. Y_current = Y_probe_location + sin(theta) * radius;
  2625. if ( X_current<X_MIN_POS) // Make sure our X & Y are sane
  2626. X_current = X_MIN_POS;
  2627. if ( X_current>X_MAX_POS)
  2628. X_current = X_MAX_POS;
  2629. if ( Y_current<Y_MIN_POS) // Make sure our X & Y are sane
  2630. Y_current = Y_MIN_POS;
  2631. if ( Y_current>Y_MAX_POS)
  2632. Y_current = Y_MAX_POS;
  2633. if (verbose_level>3 ) {
  2634. SERIAL_ECHOPAIR("x: ", X_current);
  2635. SERIAL_ECHOPAIR("y: ", Y_current);
  2636. SERIAL_PROTOCOLLNPGM("");
  2637. }
  2638. do_blocking_move_to( X_current, Y_current, Z_current );
  2639. }
  2640. do_blocking_move_to( X_probe_location, Y_probe_location, Z_start_location); // Go back to the probe location
  2641. }
  2642. setup_for_endstop_move();
  2643. run_z_probe();
  2644. sample_set[n] = current_position[Z_AXIS];
  2645. //
  2646. // Get the current mean for the data points we have so far
  2647. //
  2648. sum=0.0;
  2649. for( j=0; j<=n; j++) {
  2650. sum = sum + sample_set[j];
  2651. }
  2652. mean = sum / (double (n+1));
  2653. //
  2654. // Now, use that mean to calculate the standard deviation for the
  2655. // data points we have so far
  2656. //
  2657. sum=0.0;
  2658. for( j=0; j<=n; j++) {
  2659. sum = sum + (sample_set[j]-mean) * (sample_set[j]-mean);
  2660. }
  2661. sigma = sqrt( sum / (double (n+1)) );
  2662. if (verbose_level > 1) {
  2663. SERIAL_PROTOCOL(n+1);
  2664. SERIAL_PROTOCOL(" of ");
  2665. SERIAL_PROTOCOL(n_samples);
  2666. SERIAL_PROTOCOLPGM(" z: ");
  2667. SERIAL_PROTOCOL_F(current_position[Z_AXIS], 6);
  2668. }
  2669. if (verbose_level > 2) {
  2670. SERIAL_PROTOCOL(" mean: ");
  2671. SERIAL_PROTOCOL_F(mean,6);
  2672. SERIAL_PROTOCOL(" sigma: ");
  2673. SERIAL_PROTOCOL_F(sigma,6);
  2674. }
  2675. if (verbose_level > 0)
  2676. SERIAL_PROTOCOLPGM("\n");
  2677. plan_buffer_line( X_probe_location, Y_probe_location, Z_start_location,
  2678. current_position[E_AXIS], homing_feedrate[Z_AXIS]/60, active_extruder);
  2679. st_synchronize();
  2680. }
  2681. delay(1000);
  2682. clean_up_after_endstop_move();
  2683. // enable_endstops(true);
  2684. if (verbose_level > 0) {
  2685. SERIAL_PROTOCOLPGM("Mean: ");
  2686. SERIAL_PROTOCOL_F(mean, 6);
  2687. SERIAL_PROTOCOLPGM("\n");
  2688. }
  2689. SERIAL_PROTOCOLPGM("Standard Deviation: ");
  2690. SERIAL_PROTOCOL_F(sigma, 6);
  2691. SERIAL_PROTOCOLPGM("\n\n");
  2692. Sigma_Exit:
  2693. break;
  2694. }
  2695. #endif // Z_PROBE_REPEATABILITY_TEST
  2696. #endif // ENABLE_AUTO_BED_LEVELING
  2697. case 104: // M104
  2698. if(setTargetedHotend(104)){
  2699. break;
  2700. }
  2701. if (code_seen('S')) setTargetHotend(code_value(), tmp_extruder);
  2702. #ifdef DUAL_X_CARRIAGE
  2703. if (dual_x_carriage_mode == DXC_DUPLICATION_MODE && tmp_extruder == 0)
  2704. setTargetHotend1(code_value() == 0.0 ? 0.0 : code_value() + duplicate_extruder_temp_offset);
  2705. #endif
  2706. setWatch();
  2707. break;
  2708. case 112: // M112 -Emergency Stop
  2709. kill();
  2710. break;
  2711. case 140: // M140 set bed temp
  2712. if (code_seen('S')) setTargetBed(code_value());
  2713. break;
  2714. case 105 : // M105
  2715. if(setTargetedHotend(105)){
  2716. break;
  2717. }
  2718. #if defined(TEMP_0_PIN) && TEMP_0_PIN > -1
  2719. SERIAL_PROTOCOLPGM("ok T:");
  2720. SERIAL_PROTOCOL_F(degHotend(tmp_extruder),1);
  2721. SERIAL_PROTOCOLPGM(" /");
  2722. SERIAL_PROTOCOL_F(degTargetHotend(tmp_extruder),1);
  2723. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  2724. SERIAL_PROTOCOLPGM(" B:");
  2725. SERIAL_PROTOCOL_F(degBed(),1);
  2726. SERIAL_PROTOCOLPGM(" /");
  2727. SERIAL_PROTOCOL_F(degTargetBed(),1);
  2728. #endif //TEMP_BED_PIN
  2729. for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) {
  2730. SERIAL_PROTOCOLPGM(" T");
  2731. SERIAL_PROTOCOL(cur_extruder);
  2732. SERIAL_PROTOCOLPGM(":");
  2733. SERIAL_PROTOCOL_F(degHotend(cur_extruder),1);
  2734. SERIAL_PROTOCOLPGM(" /");
  2735. SERIAL_PROTOCOL_F(degTargetHotend(cur_extruder),1);
  2736. }
  2737. #else
  2738. SERIAL_ERROR_START;
  2739. SERIAL_ERRORLNRPGM(MSG_ERR_NO_THERMISTORS);
  2740. #endif
  2741. SERIAL_PROTOCOLPGM(" @:");
  2742. #ifdef EXTRUDER_WATTS
  2743. SERIAL_PROTOCOL((EXTRUDER_WATTS * getHeaterPower(tmp_extruder))/127);
  2744. SERIAL_PROTOCOLPGM("W");
  2745. #else
  2746. SERIAL_PROTOCOL(getHeaterPower(tmp_extruder));
  2747. #endif
  2748. SERIAL_PROTOCOLPGM(" B@:");
  2749. #ifdef BED_WATTS
  2750. SERIAL_PROTOCOL((BED_WATTS * getHeaterPower(-1))/127);
  2751. SERIAL_PROTOCOLPGM("W");
  2752. #else
  2753. SERIAL_PROTOCOL(getHeaterPower(-1));
  2754. #endif
  2755. #ifdef SHOW_TEMP_ADC_VALUES
  2756. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  2757. SERIAL_PROTOCOLPGM(" ADC B:");
  2758. SERIAL_PROTOCOL_F(degBed(),1);
  2759. SERIAL_PROTOCOLPGM("C->");
  2760. SERIAL_PROTOCOL_F(rawBedTemp()/OVERSAMPLENR,0);
  2761. #endif
  2762. for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) {
  2763. SERIAL_PROTOCOLPGM(" T");
  2764. SERIAL_PROTOCOL(cur_extruder);
  2765. SERIAL_PROTOCOLPGM(":");
  2766. SERIAL_PROTOCOL_F(degHotend(cur_extruder),1);
  2767. SERIAL_PROTOCOLPGM("C->");
  2768. SERIAL_PROTOCOL_F(rawHotendTemp(cur_extruder)/OVERSAMPLENR,0);
  2769. }
  2770. #endif
  2771. SERIAL_PROTOCOLLN("");
  2772. return;
  2773. break;
  2774. case 109:
  2775. {// M109 - Wait for extruder heater to reach target.
  2776. if(setTargetedHotend(109)){
  2777. break;
  2778. }
  2779. LCD_MESSAGERPGM(MSG_HEATING);
  2780. heating_status = 1;
  2781. #ifdef AUTOTEMP
  2782. autotemp_enabled=false;
  2783. #endif
  2784. if (code_seen('S')) {
  2785. setTargetHotend(code_value(), tmp_extruder);
  2786. #ifdef DUAL_X_CARRIAGE
  2787. if (dual_x_carriage_mode == DXC_DUPLICATION_MODE && tmp_extruder == 0)
  2788. setTargetHotend1(code_value() == 0.0 ? 0.0 : code_value() + duplicate_extruder_temp_offset);
  2789. #endif
  2790. CooldownNoWait = true;
  2791. } else if (code_seen('R')) {
  2792. setTargetHotend(code_value(), tmp_extruder);
  2793. #ifdef DUAL_X_CARRIAGE
  2794. if (dual_x_carriage_mode == DXC_DUPLICATION_MODE && tmp_extruder == 0)
  2795. setTargetHotend1(code_value() == 0.0 ? 0.0 : code_value() + duplicate_extruder_temp_offset);
  2796. #endif
  2797. CooldownNoWait = false;
  2798. }
  2799. #ifdef AUTOTEMP
  2800. if (code_seen('S')) autotemp_min=code_value();
  2801. if (code_seen('B')) autotemp_max=code_value();
  2802. if (code_seen('F'))
  2803. {
  2804. autotemp_factor=code_value();
  2805. autotemp_enabled=true;
  2806. }
  2807. #endif
  2808. setWatch();
  2809. codenum = millis();
  2810. /* See if we are heating up or cooling down */
  2811. target_direction = isHeatingHotend(tmp_extruder); // true if heating, false if cooling
  2812. cancel_heatup = false;
  2813. #ifdef TEMP_RESIDENCY_TIME
  2814. long residencyStart;
  2815. residencyStart = -1;
  2816. /* continue to loop until we have reached the target temp
  2817. _and_ until TEMP_RESIDENCY_TIME hasn't passed since we reached it */
  2818. while((!cancel_heatup)&&((residencyStart == -1) ||
  2819. (residencyStart >= 0 && (((unsigned int) (millis() - residencyStart)) < (TEMP_RESIDENCY_TIME * 1000UL)))) ) {
  2820. #else
  2821. while ( target_direction ? (isHeatingHotend(tmp_extruder)) : (isCoolingHotend(tmp_extruder)&&(CooldownNoWait==false)) ) {
  2822. #endif //TEMP_RESIDENCY_TIME
  2823. if( (millis() - codenum) > 1000UL )
  2824. { //Print Temp Reading and remaining time every 1 second while heating up/cooling down
  2825. SERIAL_PROTOCOLPGM("T:");
  2826. SERIAL_PROTOCOL_F(degHotend(tmp_extruder),1);
  2827. SERIAL_PROTOCOLPGM(" E:");
  2828. SERIAL_PROTOCOL((int)tmp_extruder);
  2829. #ifdef TEMP_RESIDENCY_TIME
  2830. SERIAL_PROTOCOLPGM(" W:");
  2831. if(residencyStart > -1)
  2832. {
  2833. codenum = ((TEMP_RESIDENCY_TIME * 1000UL) - (millis() - residencyStart)) / 1000UL;
  2834. SERIAL_PROTOCOLLN( codenum );
  2835. }
  2836. else
  2837. {
  2838. SERIAL_PROTOCOLLN( "?" );
  2839. }
  2840. #else
  2841. SERIAL_PROTOCOLLN("");
  2842. #endif
  2843. codenum = millis();
  2844. }
  2845. manage_heater();
  2846. manage_inactivity();
  2847. lcd_update();
  2848. #ifdef TEMP_RESIDENCY_TIME
  2849. /* start/restart the TEMP_RESIDENCY_TIME timer whenever we reach target temp for the first time
  2850. or when current temp falls outside the hysteresis after target temp was reached */
  2851. if ((residencyStart == -1 && target_direction && (degHotend(tmp_extruder) >= (degTargetHotend(tmp_extruder)-TEMP_WINDOW))) ||
  2852. (residencyStart == -1 && !target_direction && (degHotend(tmp_extruder) <= (degTargetHotend(tmp_extruder)+TEMP_WINDOW))) ||
  2853. (residencyStart > -1 && labs(degHotend(tmp_extruder) - degTargetHotend(tmp_extruder)) > TEMP_HYSTERESIS) )
  2854. {
  2855. residencyStart = millis();
  2856. }
  2857. #endif //TEMP_RESIDENCY_TIME
  2858. }
  2859. LCD_MESSAGERPGM(MSG_HEATING_COMPLETE);
  2860. heating_status = 2;
  2861. starttime=millis();
  2862. previous_millis_cmd = millis();
  2863. }
  2864. break;
  2865. case 190: // M190 - Wait for bed heater to reach target.
  2866. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  2867. LCD_MESSAGERPGM(MSG_BED_HEATING);
  2868. heating_status = 3;
  2869. if (code_seen('S'))
  2870. {
  2871. setTargetBed(code_value());
  2872. CooldownNoWait = true;
  2873. }
  2874. else if (code_seen('R'))
  2875. {
  2876. setTargetBed(code_value());
  2877. CooldownNoWait = false;
  2878. }
  2879. codenum = millis();
  2880. cancel_heatup = false;
  2881. target_direction = isHeatingBed(); // true if heating, false if cooling
  2882. while ( (target_direction)&&(!cancel_heatup) ? (isHeatingBed()) : (isCoolingBed()&&(CooldownNoWait==false)) )
  2883. {
  2884. if(( millis() - codenum) > 1000 ) //Print Temp Reading every 1 second while heating up.
  2885. {
  2886. float tt=degHotend(active_extruder);
  2887. SERIAL_PROTOCOLPGM("T:");
  2888. SERIAL_PROTOCOL(tt);
  2889. SERIAL_PROTOCOLPGM(" E:");
  2890. SERIAL_PROTOCOL((int)active_extruder);
  2891. SERIAL_PROTOCOLPGM(" B:");
  2892. SERIAL_PROTOCOL_F(degBed(),1);
  2893. SERIAL_PROTOCOLLN("");
  2894. codenum = millis();
  2895. }
  2896. manage_heater();
  2897. manage_inactivity();
  2898. lcd_update();
  2899. }
  2900. LCD_MESSAGERPGM(MSG_BED_DONE);
  2901. heating_status = 4;
  2902. previous_millis_cmd = millis();
  2903. #endif
  2904. break;
  2905. #if defined(FAN_PIN) && FAN_PIN > -1
  2906. case 106: //M106 Fan On
  2907. if (code_seen('S')){
  2908. fanSpeed=constrain(code_value(),0,255);
  2909. }
  2910. else {
  2911. fanSpeed=255;
  2912. }
  2913. break;
  2914. case 107: //M107 Fan Off
  2915. fanSpeed = 0;
  2916. break;
  2917. #endif //FAN_PIN
  2918. #if defined(PS_ON_PIN) && PS_ON_PIN > -1
  2919. case 80: // M80 - Turn on Power Supply
  2920. SET_OUTPUT(PS_ON_PIN); //GND
  2921. WRITE(PS_ON_PIN, PS_ON_AWAKE);
  2922. // If you have a switch on suicide pin, this is useful
  2923. // if you want to start another print with suicide feature after
  2924. // a print without suicide...
  2925. #if defined SUICIDE_PIN && SUICIDE_PIN > -1
  2926. SET_OUTPUT(SUICIDE_PIN);
  2927. WRITE(SUICIDE_PIN, HIGH);
  2928. #endif
  2929. #ifdef ULTIPANEL
  2930. powersupply = true;
  2931. LCD_MESSAGERPGM(WELCOME_MSG);
  2932. lcd_update();
  2933. #endif
  2934. break;
  2935. #endif
  2936. case 81: // M81 - Turn off Power Supply
  2937. disable_heater();
  2938. st_synchronize();
  2939. disable_e0();
  2940. disable_e1();
  2941. disable_e2();
  2942. finishAndDisableSteppers();
  2943. fanSpeed = 0;
  2944. delay(1000); // Wait a little before to switch off
  2945. #if defined(SUICIDE_PIN) && SUICIDE_PIN > -1
  2946. st_synchronize();
  2947. suicide();
  2948. #elif defined(PS_ON_PIN) && PS_ON_PIN > -1
  2949. SET_OUTPUT(PS_ON_PIN);
  2950. WRITE(PS_ON_PIN, PS_ON_ASLEEP);
  2951. #endif
  2952. #ifdef ULTIPANEL
  2953. powersupply = false;
  2954. LCD_MESSAGERPGM(CAT4(CUSTOM_MENDEL_NAME,PSTR(" "),MSG_OFF,PSTR("."))); //!!
  2955. /*
  2956. MACHNAME = "Prusa i3"
  2957. MSGOFF = "Vypnuto"
  2958. "Prusai3"" ""vypnuto""."
  2959. "Prusa i3"" "MSG_ALL[lang_selected][50]"."
  2960. */
  2961. lcd_update();
  2962. #endif
  2963. break;
  2964. case 82:
  2965. axis_relative_modes[3] = false;
  2966. break;
  2967. case 83:
  2968. axis_relative_modes[3] = true;
  2969. break;
  2970. case 18: //compatibility
  2971. case 84: // M84
  2972. if(code_seen('S')){
  2973. stepper_inactive_time = code_value() * 1000;
  2974. }
  2975. else
  2976. {
  2977. bool all_axis = !((code_seen(axis_codes[X_AXIS])) || (code_seen(axis_codes[Y_AXIS])) || (code_seen(axis_codes[Z_AXIS]))|| (code_seen(axis_codes[E_AXIS])));
  2978. if(all_axis)
  2979. {
  2980. st_synchronize();
  2981. disable_e0();
  2982. disable_e1();
  2983. disable_e2();
  2984. finishAndDisableSteppers();
  2985. }
  2986. else
  2987. {
  2988. st_synchronize();
  2989. if(code_seen('X')) disable_x();
  2990. if(code_seen('Y')) disable_y();
  2991. if(code_seen('Z')) disable_z();
  2992. #if ((E0_ENABLE_PIN != X_ENABLE_PIN) && (E1_ENABLE_PIN != Y_ENABLE_PIN)) // Only enable on boards that have seperate ENABLE_PINS
  2993. if(code_seen('E')) {
  2994. disable_e0();
  2995. disable_e1();
  2996. disable_e2();
  2997. }
  2998. #endif
  2999. }
  3000. }
  3001. break;
  3002. case 85: // M85
  3003. if(code_seen('S')) {
  3004. max_inactive_time = code_value() * 1000;
  3005. }
  3006. break;
  3007. case 92: // M92
  3008. for(int8_t i=0; i < NUM_AXIS; i++)
  3009. {
  3010. if(code_seen(axis_codes[i]))
  3011. {
  3012. if(i == 3) { // E
  3013. float value = code_value();
  3014. if(value < 20.0) {
  3015. float factor = axis_steps_per_unit[i] / value; // increase e constants if M92 E14 is given for netfab.
  3016. max_e_jerk *= factor;
  3017. max_feedrate[i] *= factor;
  3018. axis_steps_per_sqr_second[i] *= factor;
  3019. }
  3020. axis_steps_per_unit[i] = value;
  3021. }
  3022. else {
  3023. axis_steps_per_unit[i] = code_value();
  3024. }
  3025. }
  3026. }
  3027. break;
  3028. case 115: // M115
  3029. if (code_seen('V')) {
  3030. // Report the Prusa version number.
  3031. SERIAL_PROTOCOLLNRPGM(FW_VERSION_STR_P());
  3032. } else if (code_seen('U')) {
  3033. // Check the firmware version provided. If the firmware version provided by the U code is higher than the currently running firmware,
  3034. // pause the print and ask the user to upgrade the firmware.
  3035. show_upgrade_dialog_if_version_newer(++ strchr_pointer);
  3036. } else {
  3037. SERIAL_PROTOCOLRPGM(MSG_M115_REPORT);
  3038. }
  3039. break;
  3040. case 117: // M117 display message
  3041. starpos = (strchr(strchr_pointer + 5,'*'));
  3042. if(starpos!=NULL)
  3043. *(starpos)='\0';
  3044. lcd_setstatus(strchr_pointer + 5);
  3045. break;
  3046. case 114: // M114
  3047. SERIAL_PROTOCOLPGM("X:");
  3048. SERIAL_PROTOCOL(current_position[X_AXIS]);
  3049. SERIAL_PROTOCOLPGM(" Y:");
  3050. SERIAL_PROTOCOL(current_position[Y_AXIS]);
  3051. SERIAL_PROTOCOLPGM(" Z:");
  3052. SERIAL_PROTOCOL(current_position[Z_AXIS]);
  3053. SERIAL_PROTOCOLPGM(" E:");
  3054. SERIAL_PROTOCOL(current_position[E_AXIS]);
  3055. SERIAL_PROTOCOLRPGM(MSG_COUNT_X);
  3056. SERIAL_PROTOCOL(float(st_get_position(X_AXIS))/axis_steps_per_unit[X_AXIS]);
  3057. SERIAL_PROTOCOLPGM(" Y:");
  3058. SERIAL_PROTOCOL(float(st_get_position(Y_AXIS))/axis_steps_per_unit[Y_AXIS]);
  3059. SERIAL_PROTOCOLPGM(" Z:");
  3060. SERIAL_PROTOCOL(float(st_get_position(Z_AXIS))/axis_steps_per_unit[Z_AXIS]);
  3061. SERIAL_PROTOCOLLN("");
  3062. break;
  3063. case 120: // M120
  3064. enable_endstops(false) ;
  3065. break;
  3066. case 121: // M121
  3067. enable_endstops(true) ;
  3068. break;
  3069. case 119: // M119
  3070. SERIAL_PROTOCOLRPGM(MSG_M119_REPORT);
  3071. SERIAL_PROTOCOLLN("");
  3072. #if defined(X_MIN_PIN) && X_MIN_PIN > -1
  3073. SERIAL_PROTOCOLRPGM(MSG_X_MIN);
  3074. if(READ(X_MIN_PIN)^X_MIN_ENDSTOP_INVERTING){
  3075. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_HIT);
  3076. }else{
  3077. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_OPEN);
  3078. }
  3079. SERIAL_PROTOCOLLN("");
  3080. #endif
  3081. #if defined(X_MAX_PIN) && X_MAX_PIN > -1
  3082. SERIAL_PROTOCOLRPGM(MSG_X_MAX);
  3083. if(READ(X_MAX_PIN)^X_MAX_ENDSTOP_INVERTING){
  3084. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_HIT);
  3085. }else{
  3086. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_OPEN);
  3087. }
  3088. SERIAL_PROTOCOLLN("");
  3089. #endif
  3090. #if defined(Y_MIN_PIN) && Y_MIN_PIN > -1
  3091. SERIAL_PROTOCOLRPGM(MSG_Y_MIN);
  3092. if(READ(Y_MIN_PIN)^Y_MIN_ENDSTOP_INVERTING){
  3093. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_HIT);
  3094. }else{
  3095. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_OPEN);
  3096. }
  3097. SERIAL_PROTOCOLLN("");
  3098. #endif
  3099. #if defined(Y_MAX_PIN) && Y_MAX_PIN > -1
  3100. SERIAL_PROTOCOLRPGM(MSG_Y_MAX);
  3101. if(READ(Y_MAX_PIN)^Y_MAX_ENDSTOP_INVERTING){
  3102. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_HIT);
  3103. }else{
  3104. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_OPEN);
  3105. }
  3106. SERIAL_PROTOCOLLN("");
  3107. #endif
  3108. #if defined(Z_MIN_PIN) && Z_MIN_PIN > -1
  3109. SERIAL_PROTOCOLRPGM(MSG_Z_MIN);
  3110. if(READ(Z_MIN_PIN)^Z_MIN_ENDSTOP_INVERTING){
  3111. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_HIT);
  3112. }else{
  3113. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_OPEN);
  3114. }
  3115. SERIAL_PROTOCOLLN("");
  3116. #endif
  3117. #if defined(Z_MAX_PIN) && Z_MAX_PIN > -1
  3118. SERIAL_PROTOCOLRPGM(MSG_Z_MAX);
  3119. if(READ(Z_MAX_PIN)^Z_MAX_ENDSTOP_INVERTING){
  3120. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_HIT);
  3121. }else{
  3122. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_OPEN);
  3123. }
  3124. SERIAL_PROTOCOLLN("");
  3125. #endif
  3126. break;
  3127. //TODO: update for all axis, use for loop
  3128. #ifdef BLINKM
  3129. case 150: // M150
  3130. {
  3131. byte red;
  3132. byte grn;
  3133. byte blu;
  3134. if(code_seen('R')) red = code_value();
  3135. if(code_seen('U')) grn = code_value();
  3136. if(code_seen('B')) blu = code_value();
  3137. SendColors(red,grn,blu);
  3138. }
  3139. break;
  3140. #endif //BLINKM
  3141. case 200: // M200 D<millimeters> set filament diameter and set E axis units to cubic millimeters (use S0 to set back to millimeters).
  3142. {
  3143. tmp_extruder = active_extruder;
  3144. if(code_seen('T')) {
  3145. tmp_extruder = code_value();
  3146. if(tmp_extruder >= EXTRUDERS) {
  3147. SERIAL_ECHO_START;
  3148. SERIAL_ECHO(MSG_M200_INVALID_EXTRUDER);
  3149. break;
  3150. }
  3151. }
  3152. float area = .0;
  3153. if(code_seen('D')) {
  3154. float diameter = (float)code_value();
  3155. if (diameter == 0.0) {
  3156. // setting any extruder filament size disables volumetric on the assumption that
  3157. // slicers either generate in extruder values as cubic mm or as as filament feeds
  3158. // for all extruders
  3159. volumetric_enabled = false;
  3160. } else {
  3161. filament_size[tmp_extruder] = (float)code_value();
  3162. // make sure all extruders have some sane value for the filament size
  3163. filament_size[0] = (filament_size[0] == 0.0 ? DEFAULT_NOMINAL_FILAMENT_DIA : filament_size[0]);
  3164. #if EXTRUDERS > 1
  3165. filament_size[1] = (filament_size[1] == 0.0 ? DEFAULT_NOMINAL_FILAMENT_DIA : filament_size[1]);
  3166. #if EXTRUDERS > 2
  3167. filament_size[2] = (filament_size[2] == 0.0 ? DEFAULT_NOMINAL_FILAMENT_DIA : filament_size[2]);
  3168. #endif
  3169. #endif
  3170. volumetric_enabled = true;
  3171. }
  3172. } else {
  3173. //reserved for setting filament diameter via UFID or filament measuring device
  3174. break;
  3175. }
  3176. calculate_volumetric_multipliers();
  3177. }
  3178. break;
  3179. case 201: // M201
  3180. for(int8_t i=0; i < NUM_AXIS; i++)
  3181. {
  3182. if(code_seen(axis_codes[i]))
  3183. {
  3184. max_acceleration_units_per_sq_second[i] = code_value();
  3185. }
  3186. }
  3187. // steps per sq second need to be updated to agree with the units per sq second (as they are what is used in the planner)
  3188. reset_acceleration_rates();
  3189. break;
  3190. #if 0 // Not used for Sprinter/grbl gen6
  3191. case 202: // M202
  3192. for(int8_t i=0; i < NUM_AXIS; i++) {
  3193. if(code_seen(axis_codes[i])) axis_travel_steps_per_sqr_second[i] = code_value() * axis_steps_per_unit[i];
  3194. }
  3195. break;
  3196. #endif
  3197. case 203: // M203 max feedrate mm/sec
  3198. for(int8_t i=0; i < NUM_AXIS; i++) {
  3199. if(code_seen(axis_codes[i])) max_feedrate[i] = code_value();
  3200. }
  3201. break;
  3202. case 204: // M204 acclereration S normal moves T filmanent only moves
  3203. {
  3204. if(code_seen('S')) acceleration = code_value() ;
  3205. if(code_seen('T')) retract_acceleration = code_value() ;
  3206. }
  3207. break;
  3208. case 205: //M205 advanced settings: minimum travel speed S=while printing T=travel only, B=minimum segment time X= maximum xy jerk, Z=maximum Z jerk
  3209. {
  3210. if(code_seen('S')) minimumfeedrate = code_value();
  3211. if(code_seen('T')) mintravelfeedrate = code_value();
  3212. if(code_seen('B')) minsegmenttime = code_value() ;
  3213. if(code_seen('X')) max_xy_jerk = code_value() ;
  3214. if(code_seen('Z')) max_z_jerk = code_value() ;
  3215. if(code_seen('E')) max_e_jerk = code_value() ;
  3216. }
  3217. break;
  3218. case 206: // M206 additional homing offset
  3219. for(int8_t i=0; i < 3; i++)
  3220. {
  3221. if(code_seen(axis_codes[i])) add_homing[i] = code_value();
  3222. }
  3223. break;
  3224. #ifdef FWRETRACT
  3225. case 207: //M207 - set retract length S[positive mm] F[feedrate mm/min] Z[additional zlift/hop]
  3226. {
  3227. if(code_seen('S'))
  3228. {
  3229. retract_length = code_value() ;
  3230. }
  3231. if(code_seen('F'))
  3232. {
  3233. retract_feedrate = code_value()/60 ;
  3234. }
  3235. if(code_seen('Z'))
  3236. {
  3237. retract_zlift = code_value() ;
  3238. }
  3239. }break;
  3240. case 208: // M208 - set retract recover length S[positive mm surplus to the M207 S*] F[feedrate mm/min]
  3241. {
  3242. if(code_seen('S'))
  3243. {
  3244. retract_recover_length = code_value() ;
  3245. }
  3246. if(code_seen('F'))
  3247. {
  3248. retract_recover_feedrate = code_value()/60 ;
  3249. }
  3250. }break;
  3251. case 209: // M209 - S<1=true/0=false> enable automatic retract detect if the slicer did not support G10/11: every normal extrude-only move will be classified as retract depending on the direction.
  3252. {
  3253. if(code_seen('S'))
  3254. {
  3255. int t= code_value() ;
  3256. switch(t)
  3257. {
  3258. case 0:
  3259. {
  3260. autoretract_enabled=false;
  3261. retracted[0]=false;
  3262. #if EXTRUDERS > 1
  3263. retracted[1]=false;
  3264. #endif
  3265. #if EXTRUDERS > 2
  3266. retracted[2]=false;
  3267. #endif
  3268. }break;
  3269. case 1:
  3270. {
  3271. autoretract_enabled=true;
  3272. retracted[0]=false;
  3273. #if EXTRUDERS > 1
  3274. retracted[1]=false;
  3275. #endif
  3276. #if EXTRUDERS > 2
  3277. retracted[2]=false;
  3278. #endif
  3279. }break;
  3280. default:
  3281. SERIAL_ECHO_START;
  3282. SERIAL_ECHORPGM(MSG_UNKNOWN_COMMAND);
  3283. SERIAL_ECHO(CMDBUFFER_CURRENT_STRING);
  3284. SERIAL_ECHOLNPGM("\"");
  3285. }
  3286. }
  3287. }break;
  3288. #endif // FWRETRACT
  3289. #if EXTRUDERS > 1
  3290. case 218: // M218 - set hotend offset (in mm), T<extruder_number> X<offset_on_X> Y<offset_on_Y>
  3291. {
  3292. if(setTargetedHotend(218)){
  3293. break;
  3294. }
  3295. if(code_seen('X'))
  3296. {
  3297. extruder_offset[X_AXIS][tmp_extruder] = code_value();
  3298. }
  3299. if(code_seen('Y'))
  3300. {
  3301. extruder_offset[Y_AXIS][tmp_extruder] = code_value();
  3302. }
  3303. #ifdef DUAL_X_CARRIAGE
  3304. if(code_seen('Z'))
  3305. {
  3306. extruder_offset[Z_AXIS][tmp_extruder] = code_value();
  3307. }
  3308. #endif
  3309. SERIAL_ECHO_START;
  3310. SERIAL_ECHORPGM(MSG_HOTEND_OFFSET);
  3311. for(tmp_extruder = 0; tmp_extruder < EXTRUDERS; tmp_extruder++)
  3312. {
  3313. SERIAL_ECHO(" ");
  3314. SERIAL_ECHO(extruder_offset[X_AXIS][tmp_extruder]);
  3315. SERIAL_ECHO(",");
  3316. SERIAL_ECHO(extruder_offset[Y_AXIS][tmp_extruder]);
  3317. #ifdef DUAL_X_CARRIAGE
  3318. SERIAL_ECHO(",");
  3319. SERIAL_ECHO(extruder_offset[Z_AXIS][tmp_extruder]);
  3320. #endif
  3321. }
  3322. SERIAL_ECHOLN("");
  3323. }break;
  3324. #endif
  3325. case 220: // M220 S<factor in percent>- set speed factor override percentage
  3326. {
  3327. if(code_seen('S'))
  3328. {
  3329. feedmultiply = code_value() ;
  3330. }
  3331. }
  3332. break;
  3333. case 221: // M221 S<factor in percent>- set extrude factor override percentage
  3334. {
  3335. if(code_seen('S'))
  3336. {
  3337. int tmp_code = code_value();
  3338. if (code_seen('T'))
  3339. {
  3340. if(setTargetedHotend(221)){
  3341. break;
  3342. }
  3343. extruder_multiply[tmp_extruder] = tmp_code;
  3344. }
  3345. else
  3346. {
  3347. extrudemultiply = tmp_code ;
  3348. }
  3349. }
  3350. }
  3351. break;
  3352. case 226: // M226 P<pin number> S<pin state>- Wait until the specified pin reaches the state required
  3353. {
  3354. if(code_seen('P')){
  3355. int pin_number = code_value(); // pin number
  3356. int pin_state = -1; // required pin state - default is inverted
  3357. if(code_seen('S')) pin_state = code_value(); // required pin state
  3358. if(pin_state >= -1 && pin_state <= 1){
  3359. for(int8_t i = 0; i < (int8_t)(sizeof(sensitive_pins)/sizeof(int)); i++)
  3360. {
  3361. if (sensitive_pins[i] == pin_number)
  3362. {
  3363. pin_number = -1;
  3364. break;
  3365. }
  3366. }
  3367. if (pin_number > -1)
  3368. {
  3369. int target = LOW;
  3370. st_synchronize();
  3371. pinMode(pin_number, INPUT);
  3372. switch(pin_state){
  3373. case 1:
  3374. target = HIGH;
  3375. break;
  3376. case 0:
  3377. target = LOW;
  3378. break;
  3379. case -1:
  3380. target = !digitalRead(pin_number);
  3381. break;
  3382. }
  3383. while(digitalRead(pin_number) != target){
  3384. manage_heater();
  3385. manage_inactivity();
  3386. lcd_update();
  3387. }
  3388. }
  3389. }
  3390. }
  3391. }
  3392. break;
  3393. #if NUM_SERVOS > 0
  3394. case 280: // M280 - set servo position absolute. P: servo index, S: angle or microseconds
  3395. {
  3396. int servo_index = -1;
  3397. int servo_position = 0;
  3398. if (code_seen('P'))
  3399. servo_index = code_value();
  3400. if (code_seen('S')) {
  3401. servo_position = code_value();
  3402. if ((servo_index >= 0) && (servo_index < NUM_SERVOS)) {
  3403. #if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
  3404. servos[servo_index].attach(0);
  3405. #endif
  3406. servos[servo_index].write(servo_position);
  3407. #if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
  3408. delay(PROBE_SERVO_DEACTIVATION_DELAY);
  3409. servos[servo_index].detach();
  3410. #endif
  3411. }
  3412. else {
  3413. SERIAL_ECHO_START;
  3414. SERIAL_ECHO("Servo ");
  3415. SERIAL_ECHO(servo_index);
  3416. SERIAL_ECHOLN(" out of range");
  3417. }
  3418. }
  3419. else if (servo_index >= 0) {
  3420. SERIAL_PROTOCOL(MSG_OK);
  3421. SERIAL_PROTOCOL(" Servo ");
  3422. SERIAL_PROTOCOL(servo_index);
  3423. SERIAL_PROTOCOL(": ");
  3424. SERIAL_PROTOCOL(servos[servo_index].read());
  3425. SERIAL_PROTOCOLLN("");
  3426. }
  3427. }
  3428. break;
  3429. #endif // NUM_SERVOS > 0
  3430. #if (LARGE_FLASH == true && ( BEEPER > 0 || defined(ULTRALCD) || defined(LCD_USE_I2C_BUZZER)))
  3431. case 300: // M300
  3432. {
  3433. int beepS = code_seen('S') ? code_value() : 110;
  3434. int beepP = code_seen('P') ? code_value() : 1000;
  3435. if (beepS > 0)
  3436. {
  3437. #if BEEPER > 0
  3438. tone(BEEPER, beepS);
  3439. delay(beepP);
  3440. noTone(BEEPER);
  3441. #elif defined(ULTRALCD)
  3442. lcd_buzz(beepS, beepP);
  3443. #elif defined(LCD_USE_I2C_BUZZER)
  3444. lcd_buzz(beepP, beepS);
  3445. #endif
  3446. }
  3447. else
  3448. {
  3449. delay(beepP);
  3450. }
  3451. }
  3452. break;
  3453. #endif // M300
  3454. #ifdef PIDTEMP
  3455. case 301: // M301
  3456. {
  3457. if(code_seen('P')) Kp = code_value();
  3458. if(code_seen('I')) Ki = scalePID_i(code_value());
  3459. if(code_seen('D')) Kd = scalePID_d(code_value());
  3460. #ifdef PID_ADD_EXTRUSION_RATE
  3461. if(code_seen('C')) Kc = code_value();
  3462. #endif
  3463. updatePID();
  3464. SERIAL_PROTOCOL(MSG_OK);
  3465. SERIAL_PROTOCOL(" p:");
  3466. SERIAL_PROTOCOL(Kp);
  3467. SERIAL_PROTOCOL(" i:");
  3468. SERIAL_PROTOCOL(unscalePID_i(Ki));
  3469. SERIAL_PROTOCOL(" d:");
  3470. SERIAL_PROTOCOL(unscalePID_d(Kd));
  3471. #ifdef PID_ADD_EXTRUSION_RATE
  3472. SERIAL_PROTOCOL(" c:");
  3473. //Kc does not have scaling applied above, or in resetting defaults
  3474. SERIAL_PROTOCOL(Kc);
  3475. #endif
  3476. SERIAL_PROTOCOLLN("");
  3477. }
  3478. break;
  3479. #endif //PIDTEMP
  3480. #ifdef PIDTEMPBED
  3481. case 304: // M304
  3482. {
  3483. if(code_seen('P')) bedKp = code_value();
  3484. if(code_seen('I')) bedKi = scalePID_i(code_value());
  3485. if(code_seen('D')) bedKd = scalePID_d(code_value());
  3486. updatePID();
  3487. SERIAL_PROTOCOL(MSG_OK);
  3488. SERIAL_PROTOCOL(" p:");
  3489. SERIAL_PROTOCOL(bedKp);
  3490. SERIAL_PROTOCOL(" i:");
  3491. SERIAL_PROTOCOL(unscalePID_i(bedKi));
  3492. SERIAL_PROTOCOL(" d:");
  3493. SERIAL_PROTOCOL(unscalePID_d(bedKd));
  3494. SERIAL_PROTOCOLLN("");
  3495. }
  3496. break;
  3497. #endif //PIDTEMP
  3498. case 240: // M240 Triggers a camera by emulating a Canon RC-1 : http://www.doc-diy.net/photo/rc-1_hacked/
  3499. {
  3500. #ifdef CHDK
  3501. SET_OUTPUT(CHDK);
  3502. WRITE(CHDK, HIGH);
  3503. chdkHigh = millis();
  3504. chdkActive = true;
  3505. #else
  3506. #if defined(PHOTOGRAPH_PIN) && PHOTOGRAPH_PIN > -1
  3507. const uint8_t NUM_PULSES=16;
  3508. const float PULSE_LENGTH=0.01524;
  3509. for(int i=0; i < NUM_PULSES; i++) {
  3510. WRITE(PHOTOGRAPH_PIN, HIGH);
  3511. _delay_ms(PULSE_LENGTH);
  3512. WRITE(PHOTOGRAPH_PIN, LOW);
  3513. _delay_ms(PULSE_LENGTH);
  3514. }
  3515. delay(7.33);
  3516. for(int i=0; i < NUM_PULSES; i++) {
  3517. WRITE(PHOTOGRAPH_PIN, HIGH);
  3518. _delay_ms(PULSE_LENGTH);
  3519. WRITE(PHOTOGRAPH_PIN, LOW);
  3520. _delay_ms(PULSE_LENGTH);
  3521. }
  3522. #endif
  3523. #endif //chdk end if
  3524. }
  3525. break;
  3526. #ifdef DOGLCD
  3527. case 250: // M250 Set LCD contrast value: C<value> (value 0..63)
  3528. {
  3529. if (code_seen('C')) {
  3530. lcd_setcontrast( ((int)code_value())&63 );
  3531. }
  3532. SERIAL_PROTOCOLPGM("lcd contrast value: ");
  3533. SERIAL_PROTOCOL(lcd_contrast);
  3534. SERIAL_PROTOCOLLN("");
  3535. }
  3536. break;
  3537. #endif
  3538. #ifdef PREVENT_DANGEROUS_EXTRUDE
  3539. case 302: // allow cold extrudes, or set the minimum extrude temperature
  3540. {
  3541. float temp = .0;
  3542. if (code_seen('S')) temp=code_value();
  3543. set_extrude_min_temp(temp);
  3544. }
  3545. break;
  3546. #endif
  3547. case 303: // M303 PID autotune
  3548. {
  3549. float temp = 150.0;
  3550. int e=0;
  3551. int c=5;
  3552. if (code_seen('E')) e=code_value();
  3553. if (e<0)
  3554. temp=70;
  3555. if (code_seen('S')) temp=code_value();
  3556. if (code_seen('C')) c=code_value();
  3557. PID_autotune(temp, e, c);
  3558. }
  3559. break;
  3560. case 400: // M400 finish all moves
  3561. {
  3562. st_synchronize();
  3563. }
  3564. break;
  3565. #ifdef FILAMENT_SENSOR
  3566. case 404: //M404 Enter the nominal filament width (3mm, 1.75mm ) N<3.0> or display nominal filament width
  3567. {
  3568. #if (FILWIDTH_PIN > -1)
  3569. if(code_seen('N')) filament_width_nominal=code_value();
  3570. else{
  3571. SERIAL_PROTOCOLPGM("Filament dia (nominal mm):");
  3572. SERIAL_PROTOCOLLN(filament_width_nominal);
  3573. }
  3574. #endif
  3575. }
  3576. break;
  3577. case 405: //M405 Turn on filament sensor for control
  3578. {
  3579. if(code_seen('D')) meas_delay_cm=code_value();
  3580. if(meas_delay_cm> MAX_MEASUREMENT_DELAY)
  3581. meas_delay_cm = MAX_MEASUREMENT_DELAY;
  3582. if(delay_index2 == -1) //initialize the ring buffer if it has not been done since startup
  3583. {
  3584. int temp_ratio = widthFil_to_size_ratio();
  3585. for (delay_index1=0; delay_index1<(MAX_MEASUREMENT_DELAY+1); ++delay_index1 ){
  3586. measurement_delay[delay_index1]=temp_ratio-100; //subtract 100 to scale within a signed byte
  3587. }
  3588. delay_index1=0;
  3589. delay_index2=0;
  3590. }
  3591. filament_sensor = true ;
  3592. //SERIAL_PROTOCOLPGM("Filament dia (measured mm):");
  3593. //SERIAL_PROTOCOL(filament_width_meas);
  3594. //SERIAL_PROTOCOLPGM("Extrusion ratio(%):");
  3595. //SERIAL_PROTOCOL(extrudemultiply);
  3596. }
  3597. break;
  3598. case 406: //M406 Turn off filament sensor for control
  3599. {
  3600. filament_sensor = false ;
  3601. }
  3602. break;
  3603. case 407: //M407 Display measured filament diameter
  3604. {
  3605. SERIAL_PROTOCOLPGM("Filament dia (measured mm):");
  3606. SERIAL_PROTOCOLLN(filament_width_meas);
  3607. }
  3608. break;
  3609. #endif
  3610. case 500: // M500 Store settings in EEPROM
  3611. {
  3612. Config_StoreSettings();
  3613. }
  3614. break;
  3615. case 501: // M501 Read settings from EEPROM
  3616. {
  3617. Config_RetrieveSettings();
  3618. }
  3619. break;
  3620. case 502: // M502 Revert to default settings
  3621. {
  3622. Config_ResetDefault();
  3623. }
  3624. break;
  3625. case 503: // M503 print settings currently in memory
  3626. {
  3627. Config_PrintSettings();
  3628. }
  3629. break;
  3630. case 509: //M509 Force language selection
  3631. {
  3632. lcd_force_language_selection();
  3633. SERIAL_ECHO_START;
  3634. SERIAL_PROTOCOLPGM(("LANG SEL FORCED"));
  3635. }
  3636. break;
  3637. #ifdef ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED
  3638. case 540:
  3639. {
  3640. if(code_seen('S')) abort_on_endstop_hit = code_value() > 0;
  3641. }
  3642. break;
  3643. #endif
  3644. #ifdef CUSTOM_M_CODE_SET_Z_PROBE_OFFSET
  3645. case CUSTOM_M_CODE_SET_Z_PROBE_OFFSET:
  3646. {
  3647. float value;
  3648. if (code_seen('Z'))
  3649. {
  3650. value = code_value();
  3651. if ((Z_PROBE_OFFSET_RANGE_MIN <= value) && (value <= Z_PROBE_OFFSET_RANGE_MAX))
  3652. {
  3653. zprobe_zoffset = -value; // compare w/ line 278 of ConfigurationStore.cpp
  3654. SERIAL_ECHO_START;
  3655. SERIAL_ECHOLNRPGM(CAT4(MSG_ZPROBE_ZOFFSET, " ", MSG_OK,PSTR("")));
  3656. SERIAL_PROTOCOLLN("");
  3657. }
  3658. else
  3659. {
  3660. SERIAL_ECHO_START;
  3661. SERIAL_ECHORPGM(MSG_ZPROBE_ZOFFSET);
  3662. SERIAL_ECHORPGM(MSG_Z_MIN);
  3663. SERIAL_ECHO(Z_PROBE_OFFSET_RANGE_MIN);
  3664. SERIAL_ECHORPGM(MSG_Z_MAX);
  3665. SERIAL_ECHO(Z_PROBE_OFFSET_RANGE_MAX);
  3666. SERIAL_PROTOCOLLN("");
  3667. }
  3668. }
  3669. else
  3670. {
  3671. SERIAL_ECHO_START;
  3672. SERIAL_ECHOLNRPGM(CAT2(MSG_ZPROBE_ZOFFSET, PSTR(" : ")));
  3673. SERIAL_ECHO(-zprobe_zoffset);
  3674. SERIAL_PROTOCOLLN("");
  3675. }
  3676. break;
  3677. }
  3678. #endif // CUSTOM_M_CODE_SET_Z_PROBE_OFFSET
  3679. #ifdef FILAMENTCHANGEENABLE
  3680. case 600: //Pause for filament change X[pos] Y[pos] Z[relative lift] E[initial retract] L[later retract distance for removal]
  3681. {
  3682. st_synchronize();
  3683. feedmultiplyBckp=feedmultiply;
  3684. int8_t TooLowZ = 0;
  3685. float target[4];
  3686. float lastpos[4];
  3687. target[X_AXIS]=current_position[X_AXIS];
  3688. target[Y_AXIS]=current_position[Y_AXIS];
  3689. target[Z_AXIS]=current_position[Z_AXIS];
  3690. target[E_AXIS]=current_position[E_AXIS];
  3691. lastpos[X_AXIS]=current_position[X_AXIS];
  3692. lastpos[Y_AXIS]=current_position[Y_AXIS];
  3693. lastpos[Z_AXIS]=current_position[Z_AXIS];
  3694. lastpos[E_AXIS]=current_position[E_AXIS];
  3695. //Restract extruder
  3696. if(code_seen('E'))
  3697. {
  3698. target[E_AXIS]+= code_value();
  3699. }
  3700. else
  3701. {
  3702. #ifdef FILAMENTCHANGE_FIRSTRETRACT
  3703. target[E_AXIS]+= FILAMENTCHANGE_FIRSTRETRACT ;
  3704. #endif
  3705. }
  3706. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_RFEED, active_extruder);
  3707. //Lift Z
  3708. if(code_seen('Z'))
  3709. {
  3710. target[Z_AXIS]+= code_value();
  3711. }
  3712. else
  3713. {
  3714. #ifdef FILAMENTCHANGE_ZADD
  3715. target[Z_AXIS]+= FILAMENTCHANGE_ZADD ;
  3716. if(target[Z_AXIS] < 10){
  3717. target[Z_AXIS]+= 10 ;
  3718. TooLowZ = 1;
  3719. }else{
  3720. TooLowZ = 0;
  3721. }
  3722. #endif
  3723. }
  3724. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_ZFEED, active_extruder);
  3725. //Move XY to side
  3726. if(code_seen('X'))
  3727. {
  3728. target[X_AXIS]+= code_value();
  3729. }
  3730. else
  3731. {
  3732. #ifdef FILAMENTCHANGE_XPOS
  3733. target[X_AXIS]= FILAMENTCHANGE_XPOS ;
  3734. #endif
  3735. }
  3736. if(code_seen('Y'))
  3737. {
  3738. target[Y_AXIS]= code_value();
  3739. }
  3740. else
  3741. {
  3742. #ifdef FILAMENTCHANGE_YPOS
  3743. target[Y_AXIS]= FILAMENTCHANGE_YPOS ;
  3744. #endif
  3745. }
  3746. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_XYFEED, active_extruder);
  3747. // Unload filament
  3748. if(code_seen('L'))
  3749. {
  3750. target[E_AXIS]+= code_value();
  3751. }
  3752. else
  3753. {
  3754. #ifdef FILAMENTCHANGE_FINALRETRACT
  3755. target[E_AXIS]+= FILAMENTCHANGE_FINALRETRACT ;
  3756. #endif
  3757. }
  3758. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_RFEED, active_extruder);
  3759. //finish moves
  3760. st_synchronize();
  3761. //disable extruder steppers so filament can be removed
  3762. disable_e0();
  3763. disable_e1();
  3764. disable_e2();
  3765. delay(100);
  3766. //Wait for user to insert filament
  3767. uint8_t cnt=0;
  3768. int counterBeep = 0;
  3769. lcd_wait_interact();
  3770. while(!lcd_clicked()){
  3771. cnt++;
  3772. manage_heater();
  3773. manage_inactivity(true);
  3774. if(cnt==0)
  3775. {
  3776. #if BEEPER > 0
  3777. if (counterBeep== 500){
  3778. counterBeep = 0;
  3779. }
  3780. SET_OUTPUT(BEEPER);
  3781. if (counterBeep== 0){
  3782. WRITE(BEEPER,HIGH);
  3783. }
  3784. if (counterBeep== 20){
  3785. WRITE(BEEPER,LOW);
  3786. }
  3787. counterBeep++;
  3788. #else
  3789. #if !defined(LCD_FEEDBACK_FREQUENCY_HZ) || !defined(LCD_FEEDBACK_FREQUENCY_DURATION_MS)
  3790. lcd_buzz(1000/6,100);
  3791. #else
  3792. lcd_buzz(LCD_FEEDBACK_FREQUENCY_DURATION_MS,LCD_FEEDBACK_FREQUENCY_HZ);
  3793. #endif
  3794. #endif
  3795. }
  3796. }
  3797. //Filament inserted
  3798. WRITE(BEEPER,LOW);
  3799. //Feed the filament to the end of nozzle quickly
  3800. target[E_AXIS]+= FILAMENTCHANGE_FIRSTFEED ;
  3801. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_EFEED, active_extruder);
  3802. //Extrude some filament
  3803. target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  3804. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_EXFEED, active_extruder);
  3805. //Wait for user to check the state
  3806. lcd_change_fil_state = 0;
  3807. lcd_loading_filament();
  3808. while ((lcd_change_fil_state == 0)||(lcd_change_fil_state != 1)){
  3809. lcd_change_fil_state = 0;
  3810. lcd_alright();
  3811. switch(lcd_change_fil_state){
  3812. // Filament failed to load so load it again
  3813. case 2:
  3814. target[E_AXIS]+= FILAMENTCHANGE_FIRSTFEED ;
  3815. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_EFEED, active_extruder);
  3816. target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  3817. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_EXFEED, active_extruder);
  3818. lcd_loading_filament();
  3819. break;
  3820. // Filament loaded properly but color is not clear
  3821. case 3:
  3822. target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  3823. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder);
  3824. lcd_loading_color();
  3825. break;
  3826. // Everything good
  3827. default:
  3828. lcd_change_success();
  3829. break;
  3830. }
  3831. }
  3832. //Not let's go back to print
  3833. //Feed a little of filament to stabilize pressure
  3834. target[E_AXIS]+= FILAMENTCHANGE_RECFEED;
  3835. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_EXFEED, active_extruder);
  3836. //Retract
  3837. target[E_AXIS]+= FILAMENTCHANGE_FIRSTRETRACT;
  3838. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_RFEED, active_extruder);
  3839. //plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 70, active_extruder); //should do nothing
  3840. //Move XY back
  3841. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_XYFEED, active_extruder);
  3842. //Move Z back
  3843. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_ZFEED, active_extruder);
  3844. target[E_AXIS]= target[E_AXIS] - FILAMENTCHANGE_FIRSTRETRACT;
  3845. //Unretract
  3846. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_RFEED, active_extruder);
  3847. //Set E position to original
  3848. plan_set_e_position(lastpos[E_AXIS]);
  3849. //Recover feed rate
  3850. feedmultiply=feedmultiplyBckp;
  3851. char cmd[9];
  3852. sprintf_P(cmd, PSTR("M220 S%i"), feedmultiplyBckp);
  3853. enquecommand(cmd);
  3854. }
  3855. break;
  3856. #endif //FILAMENTCHANGEENABLE
  3857. #ifdef DUAL_X_CARRIAGE
  3858. case 605: // Set dual x-carriage movement mode:
  3859. // M605 S0: Full control mode. The slicer has full control over x-carriage movement
  3860. // M605 S1: Auto-park mode. The inactive head will auto park/unpark without slicer involvement
  3861. // M605 S2 [Xnnn] [Rmmm]: Duplication mode. The second extruder will duplicate the first with nnn
  3862. // millimeters x-offset and an optional differential hotend temperature of
  3863. // mmm degrees. E.g., with "M605 S2 X100 R2" the second extruder will duplicate
  3864. // the first with a spacing of 100mm in the x direction and 2 degrees hotter.
  3865. //
  3866. // Note: the X axis should be homed after changing dual x-carriage mode.
  3867. {
  3868. st_synchronize();
  3869. if (code_seen('S'))
  3870. dual_x_carriage_mode = code_value();
  3871. if (dual_x_carriage_mode == DXC_DUPLICATION_MODE)
  3872. {
  3873. if (code_seen('X'))
  3874. duplicate_extruder_x_offset = max(code_value(),X2_MIN_POS - x_home_pos(0));
  3875. if (code_seen('R'))
  3876. duplicate_extruder_temp_offset = code_value();
  3877. SERIAL_ECHO_START;
  3878. SERIAL_ECHORPGM(MSG_HOTEND_OFFSET);
  3879. SERIAL_ECHO(" ");
  3880. SERIAL_ECHO(extruder_offset[X_AXIS][0]);
  3881. SERIAL_ECHO(",");
  3882. SERIAL_ECHO(extruder_offset[Y_AXIS][0]);
  3883. SERIAL_ECHO(" ");
  3884. SERIAL_ECHO(duplicate_extruder_x_offset);
  3885. SERIAL_ECHO(",");
  3886. SERIAL_ECHOLN(extruder_offset[Y_AXIS][1]);
  3887. }
  3888. else if (dual_x_carriage_mode != DXC_FULL_CONTROL_MODE && dual_x_carriage_mode != DXC_AUTO_PARK_MODE)
  3889. {
  3890. dual_x_carriage_mode = DEFAULT_DUAL_X_CARRIAGE_MODE;
  3891. }
  3892. active_extruder_parked = false;
  3893. extruder_duplication_enabled = false;
  3894. delayed_move_time = 0;
  3895. }
  3896. break;
  3897. #endif //DUAL_X_CARRIAGE
  3898. case 907: // M907 Set digital trimpot motor current using axis codes.
  3899. {
  3900. #if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
  3901. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) digipot_current(i,code_value());
  3902. if(code_seen('B')) digipot_current(4,code_value());
  3903. if(code_seen('S')) for(int i=0;i<=4;i++) digipot_current(i,code_value());
  3904. #endif
  3905. #ifdef MOTOR_CURRENT_PWM_XY_PIN
  3906. if(code_seen('X')) digipot_current(0, code_value());
  3907. #endif
  3908. #ifdef MOTOR_CURRENT_PWM_Z_PIN
  3909. if(code_seen('Z')) digipot_current(1, code_value());
  3910. #endif
  3911. #ifdef MOTOR_CURRENT_PWM_E_PIN
  3912. if(code_seen('E')) digipot_current(2, code_value());
  3913. #endif
  3914. #ifdef DIGIPOT_I2C
  3915. // this one uses actual amps in floating point
  3916. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) digipot_i2c_set_current(i, code_value());
  3917. // for each additional extruder (named B,C,D,E..., channels 4,5,6,7...)
  3918. for(int i=NUM_AXIS;i<DIGIPOT_I2C_NUM_CHANNELS;i++) if(code_seen('B'+i-NUM_AXIS)) digipot_i2c_set_current(i, code_value());
  3919. #endif
  3920. }
  3921. break;
  3922. case 908: // M908 Control digital trimpot directly.
  3923. {
  3924. #if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
  3925. uint8_t channel,current;
  3926. if(code_seen('P')) channel=code_value();
  3927. if(code_seen('S')) current=code_value();
  3928. digitalPotWrite(channel, current);
  3929. #endif
  3930. }
  3931. break;
  3932. case 350: // M350 Set microstepping mode. Warning: Steps per unit remains unchanged. S code sets stepping mode for all drivers.
  3933. {
  3934. #if defined(X_MS1_PIN) && X_MS1_PIN > -1
  3935. if(code_seen('S')) for(int i=0;i<=4;i++) microstep_mode(i,code_value());
  3936. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) microstep_mode(i,(uint8_t)code_value());
  3937. if(code_seen('B')) microstep_mode(4,code_value());
  3938. microstep_readings();
  3939. #endif
  3940. }
  3941. break;
  3942. case 351: // M351 Toggle MS1 MS2 pins directly, S# determines MS1 or MS2, X# sets the pin high/low.
  3943. {
  3944. #if defined(X_MS1_PIN) && X_MS1_PIN > -1
  3945. if(code_seen('S')) switch((int)code_value())
  3946. {
  3947. case 1:
  3948. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) microstep_ms(i,code_value(),-1);
  3949. if(code_seen('B')) microstep_ms(4,code_value(),-1);
  3950. break;
  3951. case 2:
  3952. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) microstep_ms(i,-1,code_value());
  3953. if(code_seen('B')) microstep_ms(4,-1,code_value());
  3954. break;
  3955. }
  3956. microstep_readings();
  3957. #endif
  3958. }
  3959. break;
  3960. case 999: // M999: Restart after being stopped
  3961. Stopped = false;
  3962. lcd_reset_alert_level();
  3963. gcode_LastN = Stopped_gcode_LastN;
  3964. FlushSerialRequestResend();
  3965. break;
  3966. }
  3967. } // end if(code_seen('M')) (end of M codes)
  3968. else if(code_seen('T'))
  3969. {
  3970. tmp_extruder = code_value();
  3971. if(tmp_extruder >= EXTRUDERS) {
  3972. SERIAL_ECHO_START;
  3973. SERIAL_ECHO("T");
  3974. SERIAL_ECHO(tmp_extruder);
  3975. SERIAL_ECHOLN(MSG_INVALID_EXTRUDER);
  3976. }
  3977. else {
  3978. boolean make_move = false;
  3979. if(code_seen('F')) {
  3980. make_move = true;
  3981. next_feedrate = code_value();
  3982. if(next_feedrate > 0.0) {
  3983. feedrate = next_feedrate;
  3984. }
  3985. }
  3986. #if EXTRUDERS > 1
  3987. if(tmp_extruder != active_extruder) {
  3988. // Save current position to return to after applying extruder offset
  3989. memcpy(destination, current_position, sizeof(destination));
  3990. #ifdef DUAL_X_CARRIAGE
  3991. if (dual_x_carriage_mode == DXC_AUTO_PARK_MODE && Stopped == false &&
  3992. (delayed_move_time != 0 || current_position[X_AXIS] != x_home_pos(active_extruder)))
  3993. {
  3994. // Park old head: 1) raise 2) move to park position 3) lower
  3995. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS] + TOOLCHANGE_PARK_ZLIFT,
  3996. current_position[E_AXIS], max_feedrate[Z_AXIS], active_extruder);
  3997. plan_buffer_line(x_home_pos(active_extruder), current_position[Y_AXIS], current_position[Z_AXIS] + TOOLCHANGE_PARK_ZLIFT,
  3998. current_position[E_AXIS], max_feedrate[X_AXIS], active_extruder);
  3999. plan_buffer_line(x_home_pos(active_extruder), current_position[Y_AXIS], current_position[Z_AXIS],
  4000. current_position[E_AXIS], max_feedrate[Z_AXIS], active_extruder);
  4001. st_synchronize();
  4002. }
  4003. // apply Y & Z extruder offset (x offset is already used in determining home pos)
  4004. current_position[Y_AXIS] = current_position[Y_AXIS] -
  4005. extruder_offset[Y_AXIS][active_extruder] +
  4006. extruder_offset[Y_AXIS][tmp_extruder];
  4007. current_position[Z_AXIS] = current_position[Z_AXIS] -
  4008. extruder_offset[Z_AXIS][active_extruder] +
  4009. extruder_offset[Z_AXIS][tmp_extruder];
  4010. active_extruder = tmp_extruder;
  4011. // This function resets the max/min values - the current position may be overwritten below.
  4012. axis_is_at_home(X_AXIS);
  4013. if (dual_x_carriage_mode == DXC_FULL_CONTROL_MODE)
  4014. {
  4015. current_position[X_AXIS] = inactive_extruder_x_pos;
  4016. inactive_extruder_x_pos = destination[X_AXIS];
  4017. }
  4018. else if (dual_x_carriage_mode == DXC_DUPLICATION_MODE)
  4019. {
  4020. active_extruder_parked = (active_extruder == 0); // this triggers the second extruder to move into the duplication position
  4021. if (active_extruder == 0 || active_extruder_parked)
  4022. current_position[X_AXIS] = inactive_extruder_x_pos;
  4023. else
  4024. current_position[X_AXIS] = destination[X_AXIS] + duplicate_extruder_x_offset;
  4025. inactive_extruder_x_pos = destination[X_AXIS];
  4026. extruder_duplication_enabled = false;
  4027. }
  4028. else
  4029. {
  4030. // record raised toolhead position for use by unpark
  4031. memcpy(raised_parked_position, current_position, sizeof(raised_parked_position));
  4032. raised_parked_position[Z_AXIS] += TOOLCHANGE_UNPARK_ZLIFT;
  4033. active_extruder_parked = true;
  4034. delayed_move_time = 0;
  4035. }
  4036. #else
  4037. // Offset extruder (only by XY)
  4038. int i;
  4039. for(i = 0; i < 2; i++) {
  4040. current_position[i] = current_position[i] -
  4041. extruder_offset[i][active_extruder] +
  4042. extruder_offset[i][tmp_extruder];
  4043. }
  4044. // Set the new active extruder and position
  4045. active_extruder = tmp_extruder;
  4046. #endif //else DUAL_X_CARRIAGE
  4047. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  4048. // Move to the old position if 'F' was in the parameters
  4049. if(make_move && Stopped == false) {
  4050. prepare_move();
  4051. }
  4052. }
  4053. #endif
  4054. SERIAL_ECHO_START;
  4055. SERIAL_ECHO(MSG_ACTIVE_EXTRUDER);
  4056. SERIAL_PROTOCOLLN((int)active_extruder);
  4057. }
  4058. } // end if(code_seen('T')) (end of T codes)
  4059. else
  4060. {
  4061. SERIAL_ECHO_START;
  4062. SERIAL_ECHORPGM(MSG_UNKNOWN_COMMAND);
  4063. SERIAL_ECHO(CMDBUFFER_CURRENT_STRING);
  4064. SERIAL_ECHOLNPGM("\"");
  4065. }
  4066. ClearToSend();
  4067. }
  4068. void FlushSerialRequestResend()
  4069. {
  4070. //char cmdbuffer[bufindr][100]="Resend:";
  4071. MYSERIAL.flush();
  4072. SERIAL_PROTOCOLRPGM(MSG_RESEND);
  4073. SERIAL_PROTOCOLLN(gcode_LastN + 1);
  4074. ClearToSend();
  4075. }
  4076. // Confirm the execution of a command, if sent from a serial line.
  4077. // Execution of a command from a SD card will not be confirmed.
  4078. void ClearToSend()
  4079. {
  4080. previous_millis_cmd = millis();
  4081. if (CMDBUFFER_CURRENT_TYPE == CMDBUFFER_CURRENT_TYPE_USB)
  4082. SERIAL_PROTOCOLLNRPGM(MSG_OK);
  4083. }
  4084. void get_coordinates()
  4085. {
  4086. bool seen[4]={false,false,false,false};
  4087. for(int8_t i=0; i < NUM_AXIS; i++) {
  4088. if(code_seen(axis_codes[i]))
  4089. {
  4090. destination[i] = (float)code_value() + (axis_relative_modes[i] || relative_mode)*current_position[i];
  4091. seen[i]=true;
  4092. }
  4093. else destination[i] = current_position[i]; //Are these else lines really needed?
  4094. }
  4095. if(code_seen('F')) {
  4096. next_feedrate = code_value();
  4097. if(next_feedrate > 0.0) feedrate = next_feedrate;
  4098. }
  4099. }
  4100. void get_arc_coordinates()
  4101. {
  4102. #ifdef SF_ARC_FIX
  4103. bool relative_mode_backup = relative_mode;
  4104. relative_mode = true;
  4105. #endif
  4106. get_coordinates();
  4107. #ifdef SF_ARC_FIX
  4108. relative_mode=relative_mode_backup;
  4109. #endif
  4110. if(code_seen('I')) {
  4111. offset[0] = code_value();
  4112. }
  4113. else {
  4114. offset[0] = 0.0;
  4115. }
  4116. if(code_seen('J')) {
  4117. offset[1] = code_value();
  4118. }
  4119. else {
  4120. offset[1] = 0.0;
  4121. }
  4122. }
  4123. void clamp_to_software_endstops(float target[3])
  4124. {
  4125. world2machine_clamp(target[0], target[1]);
  4126. // Clamp the Z coordinate.
  4127. if (min_software_endstops) {
  4128. float negative_z_offset = 0;
  4129. #ifdef ENABLE_AUTO_BED_LEVELING
  4130. if (Z_PROBE_OFFSET_FROM_EXTRUDER < 0) negative_z_offset = negative_z_offset + Z_PROBE_OFFSET_FROM_EXTRUDER;
  4131. if (add_homing[Z_AXIS] < 0) negative_z_offset = negative_z_offset + add_homing[Z_AXIS];
  4132. #endif
  4133. if (target[Z_AXIS] < min_pos[Z_AXIS]+negative_z_offset) target[Z_AXIS] = min_pos[Z_AXIS]+negative_z_offset;
  4134. }
  4135. if (max_software_endstops) {
  4136. if (target[Z_AXIS] > max_pos[Z_AXIS]) target[Z_AXIS] = max_pos[Z_AXIS];
  4137. }
  4138. }
  4139. #ifdef MESH_BED_LEVELING
  4140. void mesh_plan_buffer_line(const float &x, const float &y, const float &z, const float &e, const float &feed_rate, const uint8_t extruder) {
  4141. float dx = x - current_position[X_AXIS];
  4142. float dy = y - current_position[Y_AXIS];
  4143. float dz = z - current_position[Z_AXIS];
  4144. int n_segments = 0;
  4145. if (mbl.active) {
  4146. float len = abs(dx) + abs(dy) + abs(dz);
  4147. if (len > 0)
  4148. n_segments = int(floor(len / 30.f));
  4149. }
  4150. if (n_segments > 1) {
  4151. float de = e - current_position[E_AXIS];
  4152. for (int i = 1; i < n_segments; ++ i) {
  4153. float t = float(i) / float(n_segments);
  4154. plan_buffer_line(
  4155. current_position[X_AXIS] + t * dx,
  4156. current_position[Y_AXIS] + t * dy,
  4157. current_position[Z_AXIS] + t * dz,
  4158. current_position[E_AXIS] + t * de,
  4159. feed_rate, extruder);
  4160. }
  4161. }
  4162. // The rest of the path.
  4163. plan_buffer_line(x, y, z, e, feed_rate, extruder);
  4164. set_current_to_destination();
  4165. }
  4166. #endif // MESH_BED_LEVELING
  4167. void prepare_move()
  4168. {
  4169. clamp_to_software_endstops(destination);
  4170. previous_millis_cmd = millis();
  4171. #ifdef DUAL_X_CARRIAGE
  4172. if (active_extruder_parked)
  4173. {
  4174. if (dual_x_carriage_mode == DXC_DUPLICATION_MODE && active_extruder == 0)
  4175. {
  4176. // move duplicate extruder into correct duplication position.
  4177. plan_set_position(inactive_extruder_x_pos, current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  4178. plan_buffer_line(current_position[X_AXIS] + duplicate_extruder_x_offset, current_position[Y_AXIS], current_position[Z_AXIS],
  4179. current_position[E_AXIS], max_feedrate[X_AXIS], 1);
  4180. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  4181. st_synchronize();
  4182. extruder_duplication_enabled = true;
  4183. active_extruder_parked = false;
  4184. }
  4185. else if (dual_x_carriage_mode == DXC_AUTO_PARK_MODE) // handle unparking of head
  4186. {
  4187. if (current_position[E_AXIS] == destination[E_AXIS])
  4188. {
  4189. // this is a travel move - skit it but keep track of current position (so that it can later
  4190. // be used as start of first non-travel move)
  4191. if (delayed_move_time != 0xFFFFFFFFUL)
  4192. {
  4193. memcpy(current_position, destination, sizeof(current_position));
  4194. if (destination[Z_AXIS] > raised_parked_position[Z_AXIS])
  4195. raised_parked_position[Z_AXIS] = destination[Z_AXIS];
  4196. delayed_move_time = millis();
  4197. return;
  4198. }
  4199. }
  4200. delayed_move_time = 0;
  4201. // unpark extruder: 1) raise, 2) move into starting XY position, 3) lower
  4202. plan_buffer_line(raised_parked_position[X_AXIS], raised_parked_position[Y_AXIS], raised_parked_position[Z_AXIS], current_position[E_AXIS], max_feedrate[Z_AXIS], active_extruder);
  4203. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], raised_parked_position[Z_AXIS],
  4204. current_position[E_AXIS], min(max_feedrate[X_AXIS],max_feedrate[Y_AXIS]), active_extruder);
  4205. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS],
  4206. current_position[E_AXIS], max_feedrate[Z_AXIS], active_extruder);
  4207. active_extruder_parked = false;
  4208. }
  4209. }
  4210. #endif //DUAL_X_CARRIAGE
  4211. // Do not use feedmultiply for E or Z only moves
  4212. if( (current_position[X_AXIS] == destination [X_AXIS]) && (current_position[Y_AXIS] == destination [Y_AXIS])) {
  4213. #ifdef MESH_BED_LEVELING
  4214. mesh_plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  4215. #else
  4216. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  4217. #endif
  4218. }
  4219. else {
  4220. #ifdef MESH_BED_LEVELING
  4221. mesh_plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate*feedmultiply/60/100.0, active_extruder);
  4222. #else
  4223. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate*feedmultiply/60/100.0, active_extruder);
  4224. #endif
  4225. }
  4226. for(int8_t i=0; i < NUM_AXIS; i++) {
  4227. current_position[i] = destination[i];
  4228. }
  4229. }
  4230. void prepare_arc_move(char isclockwise) {
  4231. float r = hypot(offset[X_AXIS], offset[Y_AXIS]); // Compute arc radius for mc_arc
  4232. // Trace the arc
  4233. mc_arc(current_position, destination, offset, X_AXIS, Y_AXIS, Z_AXIS, feedrate*feedmultiply/60/100.0, r, isclockwise, active_extruder);
  4234. // As far as the parser is concerned, the position is now == target. In reality the
  4235. // motion control system might still be processing the action and the real tool position
  4236. // in any intermediate location.
  4237. for(int8_t i=0; i < NUM_AXIS; i++) {
  4238. current_position[i] = destination[i];
  4239. }
  4240. previous_millis_cmd = millis();
  4241. }
  4242. #if defined(CONTROLLERFAN_PIN) && CONTROLLERFAN_PIN > -1
  4243. #if defined(FAN_PIN)
  4244. #if CONTROLLERFAN_PIN == FAN_PIN
  4245. #error "You cannot set CONTROLLERFAN_PIN equal to FAN_PIN"
  4246. #endif
  4247. #endif
  4248. unsigned long lastMotor = 0; //Save the time for when a motor was turned on last
  4249. unsigned long lastMotorCheck = 0;
  4250. void controllerFan()
  4251. {
  4252. if ((millis() - lastMotorCheck) >= 2500) //Not a time critical function, so we only check every 2500ms
  4253. {
  4254. lastMotorCheck = millis();
  4255. if(!READ(X_ENABLE_PIN) || !READ(Y_ENABLE_PIN) || !READ(Z_ENABLE_PIN) || (soft_pwm_bed > 0)
  4256. #if EXTRUDERS > 2
  4257. || !READ(E2_ENABLE_PIN)
  4258. #endif
  4259. #if EXTRUDER > 1
  4260. #if defined(X2_ENABLE_PIN) && X2_ENABLE_PIN > -1
  4261. || !READ(X2_ENABLE_PIN)
  4262. #endif
  4263. || !READ(E1_ENABLE_PIN)
  4264. #endif
  4265. || !READ(E0_ENABLE_PIN)) //If any of the drivers are enabled...
  4266. {
  4267. lastMotor = millis(); //... set time to NOW so the fan will turn on
  4268. }
  4269. if ((millis() - lastMotor) >= (CONTROLLERFAN_SECS*1000UL) || lastMotor == 0) //If the last time any driver was enabled, is longer since than CONTROLLERSEC...
  4270. {
  4271. digitalWrite(CONTROLLERFAN_PIN, 0);
  4272. analogWrite(CONTROLLERFAN_PIN, 0);
  4273. }
  4274. else
  4275. {
  4276. // allows digital or PWM fan output to be used (see M42 handling)
  4277. digitalWrite(CONTROLLERFAN_PIN, CONTROLLERFAN_SPEED);
  4278. analogWrite(CONTROLLERFAN_PIN, CONTROLLERFAN_SPEED);
  4279. }
  4280. }
  4281. }
  4282. #endif
  4283. #ifdef TEMP_STAT_LEDS
  4284. static bool blue_led = false;
  4285. static bool red_led = false;
  4286. static uint32_t stat_update = 0;
  4287. void handle_status_leds(void) {
  4288. float max_temp = 0.0;
  4289. if(millis() > stat_update) {
  4290. stat_update += 500; // Update every 0.5s
  4291. for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) {
  4292. max_temp = max(max_temp, degHotend(cur_extruder));
  4293. max_temp = max(max_temp, degTargetHotend(cur_extruder));
  4294. }
  4295. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  4296. max_temp = max(max_temp, degTargetBed());
  4297. max_temp = max(max_temp, degBed());
  4298. #endif
  4299. if((max_temp > 55.0) && (red_led == false)) {
  4300. digitalWrite(STAT_LED_RED, 1);
  4301. digitalWrite(STAT_LED_BLUE, 0);
  4302. red_led = true;
  4303. blue_led = false;
  4304. }
  4305. if((max_temp < 54.0) && (blue_led == false)) {
  4306. digitalWrite(STAT_LED_RED, 0);
  4307. digitalWrite(STAT_LED_BLUE, 1);
  4308. red_led = false;
  4309. blue_led = true;
  4310. }
  4311. }
  4312. }
  4313. #endif
  4314. void manage_inactivity(bool ignore_stepper_queue/*=false*/) //default argument set in Marlin.h
  4315. {
  4316. #if defined(KILL_PIN) && KILL_PIN > -1
  4317. static int killCount = 0; // make the inactivity button a bit less responsive
  4318. const int KILL_DELAY = 10000;
  4319. #endif
  4320. if(buflen < (BUFSIZE-1))
  4321. get_command();
  4322. if( (millis() - previous_millis_cmd) > max_inactive_time )
  4323. if(max_inactive_time)
  4324. kill();
  4325. if(stepper_inactive_time) {
  4326. if( (millis() - previous_millis_cmd) > stepper_inactive_time )
  4327. {
  4328. if(blocks_queued() == false && ignore_stepper_queue == false) {
  4329. disable_x();
  4330. // SERIAL_ECHOLNPGM("manage_inactivity - disable Y");
  4331. disable_y();
  4332. disable_z();
  4333. disable_e0();
  4334. disable_e1();
  4335. disable_e2();
  4336. }
  4337. }
  4338. }
  4339. #ifdef CHDK //Check if pin should be set to LOW after M240 set it to HIGH
  4340. if (chdkActive && (millis() - chdkHigh > CHDK_DELAY))
  4341. {
  4342. chdkActive = false;
  4343. WRITE(CHDK, LOW);
  4344. }
  4345. #endif
  4346. #if defined(KILL_PIN) && KILL_PIN > -1
  4347. // Check if the kill button was pressed and wait just in case it was an accidental
  4348. // key kill key press
  4349. // -------------------------------------------------------------------------------
  4350. if( 0 == READ(KILL_PIN) )
  4351. {
  4352. killCount++;
  4353. }
  4354. else if (killCount > 0)
  4355. {
  4356. killCount--;
  4357. }
  4358. // Exceeded threshold and we can confirm that it was not accidental
  4359. // KILL the machine
  4360. // ----------------------------------------------------------------
  4361. if ( killCount >= KILL_DELAY)
  4362. {
  4363. kill();
  4364. }
  4365. #endif
  4366. #if defined(CONTROLLERFAN_PIN) && CONTROLLERFAN_PIN > -1
  4367. controllerFan(); //Check if fan should be turned on to cool stepper drivers down
  4368. #endif
  4369. #ifdef EXTRUDER_RUNOUT_PREVENT
  4370. if( (millis() - previous_millis_cmd) > EXTRUDER_RUNOUT_SECONDS*1000 )
  4371. if(degHotend(active_extruder)>EXTRUDER_RUNOUT_MINTEMP)
  4372. {
  4373. bool oldstatus=READ(E0_ENABLE_PIN);
  4374. enable_e0();
  4375. float oldepos=current_position[E_AXIS];
  4376. float oldedes=destination[E_AXIS];
  4377. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS],
  4378. destination[E_AXIS]+EXTRUDER_RUNOUT_EXTRUDE*EXTRUDER_RUNOUT_ESTEPS/axis_steps_per_unit[E_AXIS],
  4379. EXTRUDER_RUNOUT_SPEED/60.*EXTRUDER_RUNOUT_ESTEPS/axis_steps_per_unit[E_AXIS], active_extruder);
  4380. current_position[E_AXIS]=oldepos;
  4381. destination[E_AXIS]=oldedes;
  4382. plan_set_e_position(oldepos);
  4383. previous_millis_cmd=millis();
  4384. st_synchronize();
  4385. WRITE(E0_ENABLE_PIN,oldstatus);
  4386. }
  4387. #endif
  4388. #if defined(DUAL_X_CARRIAGE)
  4389. // handle delayed move timeout
  4390. if (delayed_move_time != 0 && (millis() - delayed_move_time) > 1000 && Stopped == false)
  4391. {
  4392. // travel moves have been received so enact them
  4393. delayed_move_time = 0xFFFFFFFFUL; // force moves to be done
  4394. memcpy(destination,current_position,sizeof(destination));
  4395. prepare_move();
  4396. }
  4397. #endif
  4398. #ifdef TEMP_STAT_LEDS
  4399. handle_status_leds();
  4400. #endif
  4401. check_axes_activity();
  4402. }
  4403. void kill(const char *full_screen_message)
  4404. {
  4405. cli(); // Stop interrupts
  4406. disable_heater();
  4407. disable_x();
  4408. // SERIAL_ECHOLNPGM("kill - disable Y");
  4409. disable_y();
  4410. disable_z();
  4411. disable_e0();
  4412. disable_e1();
  4413. disable_e2();
  4414. #if defined(PS_ON_PIN) && PS_ON_PIN > -1
  4415. pinMode(PS_ON_PIN,INPUT);
  4416. #endif
  4417. SERIAL_ERROR_START;
  4418. SERIAL_ERRORLNRPGM(MSG_ERR_KILLED);
  4419. if (full_screen_message != NULL) {
  4420. SERIAL_ERRORLNRPGM(full_screen_message);
  4421. lcd_display_message_fullscreen_P(full_screen_message);
  4422. } else {
  4423. LCD_ALERTMESSAGERPGM(MSG_KILLED);
  4424. }
  4425. // FMC small patch to update the LCD before ending
  4426. sei(); // enable interrupts
  4427. for ( int i=5; i--; lcd_update())
  4428. {
  4429. delay(200);
  4430. }
  4431. cli(); // disable interrupts
  4432. suicide();
  4433. while(1) { /* Intentionally left empty */ } // Wait for reset
  4434. }
  4435. void Stop()
  4436. {
  4437. disable_heater();
  4438. if(Stopped == false) {
  4439. Stopped = true;
  4440. Stopped_gcode_LastN = gcode_LastN; // Save last g_code for restart
  4441. SERIAL_ERROR_START;
  4442. SERIAL_ERRORLNRPGM(MSG_ERR_STOPPED);
  4443. LCD_MESSAGERPGM(MSG_STOPPED);
  4444. }
  4445. }
  4446. bool IsStopped() { return Stopped; };
  4447. #ifdef FAST_PWM_FAN
  4448. void setPwmFrequency(uint8_t pin, int val)
  4449. {
  4450. val &= 0x07;
  4451. switch(digitalPinToTimer(pin))
  4452. {
  4453. #if defined(TCCR0A)
  4454. case TIMER0A:
  4455. case TIMER0B:
  4456. // TCCR0B &= ~(_BV(CS00) | _BV(CS01) | _BV(CS02));
  4457. // TCCR0B |= val;
  4458. break;
  4459. #endif
  4460. #if defined(TCCR1A)
  4461. case TIMER1A:
  4462. case TIMER1B:
  4463. // TCCR1B &= ~(_BV(CS10) | _BV(CS11) | _BV(CS12));
  4464. // TCCR1B |= val;
  4465. break;
  4466. #endif
  4467. #if defined(TCCR2)
  4468. case TIMER2:
  4469. case TIMER2:
  4470. TCCR2 &= ~(_BV(CS10) | _BV(CS11) | _BV(CS12));
  4471. TCCR2 |= val;
  4472. break;
  4473. #endif
  4474. #if defined(TCCR2A)
  4475. case TIMER2A:
  4476. case TIMER2B:
  4477. TCCR2B &= ~(_BV(CS20) | _BV(CS21) | _BV(CS22));
  4478. TCCR2B |= val;
  4479. break;
  4480. #endif
  4481. #if defined(TCCR3A)
  4482. case TIMER3A:
  4483. case TIMER3B:
  4484. case TIMER3C:
  4485. TCCR3B &= ~(_BV(CS30) | _BV(CS31) | _BV(CS32));
  4486. TCCR3B |= val;
  4487. break;
  4488. #endif
  4489. #if defined(TCCR4A)
  4490. case TIMER4A:
  4491. case TIMER4B:
  4492. case TIMER4C:
  4493. TCCR4B &= ~(_BV(CS40) | _BV(CS41) | _BV(CS42));
  4494. TCCR4B |= val;
  4495. break;
  4496. #endif
  4497. #if defined(TCCR5A)
  4498. case TIMER5A:
  4499. case TIMER5B:
  4500. case TIMER5C:
  4501. TCCR5B &= ~(_BV(CS50) | _BV(CS51) | _BV(CS52));
  4502. TCCR5B |= val;
  4503. break;
  4504. #endif
  4505. }
  4506. }
  4507. #endif //FAST_PWM_FAN
  4508. bool setTargetedHotend(int code){
  4509. tmp_extruder = active_extruder;
  4510. if(code_seen('T')) {
  4511. tmp_extruder = code_value();
  4512. if(tmp_extruder >= EXTRUDERS) {
  4513. SERIAL_ECHO_START;
  4514. switch(code){
  4515. case 104:
  4516. SERIAL_ECHO(MSG_M104_INVALID_EXTRUDER);
  4517. break;
  4518. case 105:
  4519. SERIAL_ECHO(MSG_M105_INVALID_EXTRUDER);
  4520. break;
  4521. case 109:
  4522. SERIAL_ECHO(MSG_M109_INVALID_EXTRUDER);
  4523. break;
  4524. case 218:
  4525. SERIAL_ECHO(MSG_M218_INVALID_EXTRUDER);
  4526. break;
  4527. case 221:
  4528. SERIAL_ECHO(MSG_M221_INVALID_EXTRUDER);
  4529. break;
  4530. }
  4531. SERIAL_ECHOLN(tmp_extruder);
  4532. return true;
  4533. }
  4534. }
  4535. return false;
  4536. }
  4537. void save_statistics(unsigned long _total_filament_used, unsigned long _total_print_time)
  4538. {
  4539. if (eeprom_read_byte((uint8_t *)EEPROM_TOTALTIME) == 255 && eeprom_read_byte((uint8_t *)EEPROM_TOTALTIME + 1) == 255 && eeprom_read_byte((uint8_t *)EEPROM_TOTALTIME + 2) == 255 && eeprom_read_byte((uint8_t *)EEPROM_TOTALTIME + 3) == 255)
  4540. {
  4541. eeprom_update_dword((uint32_t *)EEPROM_TOTALTIME, 0);
  4542. eeprom_update_dword((uint32_t *)EEPROM_FILAMENTUSED, 0);
  4543. }
  4544. unsigned long _previous_filament = eeprom_read_dword((uint32_t *)EEPROM_FILAMENTUSED);
  4545. unsigned long _previous_time = eeprom_read_dword((uint32_t *)EEPROM_TOTALTIME);
  4546. eeprom_update_dword((uint32_t *)EEPROM_TOTALTIME, _previous_time + (_total_print_time/60));
  4547. eeprom_update_dword((uint32_t *)EEPROM_FILAMENTUSED, _previous_filament + (_total_filament_used / 1000));
  4548. total_filament_used = 0;
  4549. }
  4550. float calculate_volumetric_multiplier(float diameter) {
  4551. float area = .0;
  4552. float radius = .0;
  4553. radius = diameter * .5;
  4554. if (! volumetric_enabled || radius == 0) {
  4555. area = 1;
  4556. }
  4557. else {
  4558. area = M_PI * pow(radius, 2);
  4559. }
  4560. return 1.0 / area;
  4561. }
  4562. void calculate_volumetric_multipliers() {
  4563. volumetric_multiplier[0] = calculate_volumetric_multiplier(filament_size[0]);
  4564. #if EXTRUDERS > 1
  4565. volumetric_multiplier[1] = calculate_volumetric_multiplier(filament_size[1]);
  4566. #if EXTRUDERS > 2
  4567. volumetric_multiplier[2] = calculate_volumetric_multiplier(filament_size[2]);
  4568. #endif
  4569. #endif
  4570. }
  4571. void delay_keep_alive(int ms)
  4572. {
  4573. for (;;) {
  4574. manage_heater();
  4575. // Manage inactivity, but don't disable steppers on timeout.
  4576. manage_inactivity(true);
  4577. lcd_update();
  4578. if (ms == 0)
  4579. break;
  4580. else if (ms >= 50) {
  4581. delay(50);
  4582. ms -= 50;
  4583. } else {
  4584. delay(ms);
  4585. ms = 0;
  4586. }
  4587. }
  4588. }