mesh_bed_calibration.cpp 89 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064
  1. #include "Marlin.h"
  2. #include "Configuration.h"
  3. #include "language_all.h"
  4. #include "mesh_bed_calibration.h"
  5. #include "mesh_bed_leveling.h"
  6. #include "stepper.h"
  7. #include "ultralcd.h"
  8. uint8_t world2machine_correction_mode;
  9. float world2machine_rotation_and_skew[2][2];
  10. float world2machine_rotation_and_skew_inv[2][2];
  11. float world2machine_shift[2];
  12. // Weight of the Y coordinate for the least squares fitting of the bed induction sensor targets.
  13. // Only used for the first row of the points, which may not befully in reach of the sensor.
  14. #define WEIGHT_FIRST_ROW_X_HIGH (1.f)
  15. #define WEIGHT_FIRST_ROW_X_LOW (0.35f)
  16. #define WEIGHT_FIRST_ROW_Y_HIGH (0.3f)
  17. #define WEIGHT_FIRST_ROW_Y_LOW (0.0f)
  18. #define BED_ZERO_REF_X (- 22.f + X_PROBE_OFFSET_FROM_EXTRUDER)
  19. #define BED_ZERO_REF_Y (- 0.6f + Y_PROBE_OFFSET_FROM_EXTRUDER)
  20. // Scaling of the real machine axes against the programmed dimensions in the firmware.
  21. // The correction is tiny, here around 0.5mm on 250mm length.
  22. //#define MACHINE_AXIS_SCALE_X ((250.f - 0.5f) / 250.f)
  23. //#define MACHINE_AXIS_SCALE_Y ((250.f - 0.5f) / 250.f)
  24. #define MACHINE_AXIS_SCALE_X 1.f
  25. #define MACHINE_AXIS_SCALE_Y 1.f
  26. // 0.12 degrees equals to an offset of 0.5mm on 250mm length.
  27. #define BED_SKEW_ANGLE_MILD (0.12f * M_PI / 180.f)
  28. // 0.25 degrees equals to an offset of 1.1mm on 250mm length.
  29. #define BED_SKEW_ANGLE_EXTREME (0.25f * M_PI / 180.f)
  30. #define BED_CALIBRATION_POINT_OFFSET_MAX_EUCLIDIAN (0.8f)
  31. #define BED_CALIBRATION_POINT_OFFSET_MAX_1ST_ROW_X (0.8f)
  32. #define BED_CALIBRATION_POINT_OFFSET_MAX_1ST_ROW_Y (1.5f)
  33. #define MIN_BED_SENSOR_POINT_RESPONSE_DMR (2.0f)
  34. //#define Y_MIN_POS_FOR_BED_CALIBRATION (MANUAL_Y_HOME_POS-0.2f)
  35. #define Y_MIN_POS_FOR_BED_CALIBRATION (Y_MIN_POS)
  36. // Distances toward the print bed edge may not be accurate.
  37. #define Y_MIN_POS_CALIBRATION_POINT_ACCURATE (Y_MIN_POS + 3.f)
  38. // When the measured point center is out of reach of the sensor, Y coordinate will be ignored
  39. // by the Least Squares fitting and the X coordinate will be weighted low.
  40. #define Y_MIN_POS_CALIBRATION_POINT_OUT_OF_REACH (Y_MIN_POS - 0.5f)
  41. // Positions of the bed reference points in the machine coordinates, referenced to the P.I.N.D.A sensor.
  42. // The points are ordered in a zig-zag fashion to speed up the calibration.
  43. const float bed_ref_points[] PROGMEM = {
  44. 13.f - BED_ZERO_REF_X, 6.4f - BED_ZERO_REF_Y,
  45. 115.f - BED_ZERO_REF_X, 6.4f - BED_ZERO_REF_Y,
  46. 216.f - BED_ZERO_REF_X, 6.4f - BED_ZERO_REF_Y,
  47. 216.f - BED_ZERO_REF_X, 104.4f - BED_ZERO_REF_Y,
  48. 115.f - BED_ZERO_REF_X, 104.4f - BED_ZERO_REF_Y,
  49. 13.f - BED_ZERO_REF_X, 104.4f - BED_ZERO_REF_Y,
  50. 13.f - BED_ZERO_REF_X, 202.4f - BED_ZERO_REF_Y,
  51. 115.f - BED_ZERO_REF_X, 202.4f - BED_ZERO_REF_Y,
  52. 216.f - BED_ZERO_REF_X, 202.4f - BED_ZERO_REF_Y
  53. };
  54. // Positions of the bed reference points in the machine coordinates, referenced to the P.I.N.D.A sensor.
  55. // The points are the following: center front, center right, center rear, center left.
  56. const float bed_ref_points_4[] PROGMEM = {
  57. 115.f - BED_ZERO_REF_X, 6.4f - BED_ZERO_REF_Y,
  58. 216.f - BED_ZERO_REF_X, 104.4f - BED_ZERO_REF_Y,
  59. 115.f - BED_ZERO_REF_X, 202.4f - BED_ZERO_REF_Y,
  60. 13.f - BED_ZERO_REF_X, 104.4f - BED_ZERO_REF_Y
  61. };
  62. static inline float sqr(float x) { return x * x; }
  63. // Weight of a point coordinate in a least squares optimization.
  64. // The first row of points may not be fully reachable
  65. // and the y values may be shortened a bit by the bed carriage
  66. // pulling the belt up.
  67. static inline float point_weight_x(const uint8_t i, const float &y)
  68. {
  69. float w = 1.f;
  70. if (i < 3) {
  71. if (y >= Y_MIN_POS_CALIBRATION_POINT_ACCURATE) {
  72. w = WEIGHT_FIRST_ROW_X_HIGH;
  73. } else if (y < Y_MIN_POS_CALIBRATION_POINT_OUT_OF_REACH) {
  74. // If the point is fully outside, give it some weight.
  75. w = WEIGHT_FIRST_ROW_X_LOW;
  76. } else {
  77. // Linearly interpolate the weight from 1 to WEIGHT_FIRST_ROW_X.
  78. float t = (y - Y_MIN_POS_CALIBRATION_POINT_OUT_OF_REACH) / (Y_MIN_POS_CALIBRATION_POINT_ACCURATE - Y_MIN_POS_CALIBRATION_POINT_OUT_OF_REACH);
  79. w = (1.f - t) * WEIGHT_FIRST_ROW_X_LOW + t * WEIGHT_FIRST_ROW_X_HIGH;
  80. }
  81. }
  82. return w;
  83. }
  84. // Weight of a point coordinate in a least squares optimization.
  85. // The first row of points may not be fully reachable
  86. // and the y values may be shortened a bit by the bed carriage
  87. // pulling the belt up.
  88. static inline float point_weight_y(const uint8_t i, const float &y)
  89. {
  90. float w = 1.f;
  91. if (i < 3) {
  92. if (y >= Y_MIN_POS_CALIBRATION_POINT_ACCURATE) {
  93. w = WEIGHT_FIRST_ROW_Y_HIGH;
  94. } else if (y < Y_MIN_POS_CALIBRATION_POINT_OUT_OF_REACH) {
  95. // If the point is fully outside, give it some weight.
  96. w = WEIGHT_FIRST_ROW_Y_LOW;
  97. } else {
  98. // Linearly interpolate the weight from 1 to WEIGHT_FIRST_ROW_X.
  99. float t = (y - Y_MIN_POS_CALIBRATION_POINT_OUT_OF_REACH) / (Y_MIN_POS_CALIBRATION_POINT_ACCURATE - Y_MIN_POS_CALIBRATION_POINT_OUT_OF_REACH);
  100. w = (1.f - t) * WEIGHT_FIRST_ROW_Y_LOW + t * WEIGHT_FIRST_ROW_Y_HIGH;
  101. }
  102. }
  103. return w;
  104. }
  105. // Non-Linear Least Squares fitting of the bed to the measured induction points
  106. // using the Gauss-Newton method.
  107. // This method will maintain a unity length of the machine axes,
  108. // which is the correct approach if the sensor points are not measured precisely.
  109. BedSkewOffsetDetectionResultType calculate_machine_skew_and_offset_LS(
  110. // Matrix of maximum 9 2D points (18 floats)
  111. const float *measured_pts,
  112. uint8_t npts,
  113. const float *true_pts,
  114. // Resulting correction matrix.
  115. float *vec_x,
  116. float *vec_y,
  117. float *cntr,
  118. // Temporary values, 49-18-(2*3)=25 floats
  119. // , float *temp
  120. int8_t verbosity_level
  121. )
  122. {
  123. if (verbosity_level >= 10) {
  124. // Show the initial state, before the fitting.
  125. SERIAL_ECHOPGM("X vector, initial: ");
  126. MYSERIAL.print(vec_x[0], 5);
  127. SERIAL_ECHOPGM(", ");
  128. MYSERIAL.print(vec_x[1], 5);
  129. SERIAL_ECHOLNPGM("");
  130. SERIAL_ECHOPGM("Y vector, initial: ");
  131. MYSERIAL.print(vec_y[0], 5);
  132. SERIAL_ECHOPGM(", ");
  133. MYSERIAL.print(vec_y[1], 5);
  134. SERIAL_ECHOLNPGM("");
  135. SERIAL_ECHOPGM("center, initial: ");
  136. MYSERIAL.print(cntr[0], 5);
  137. SERIAL_ECHOPGM(", ");
  138. MYSERIAL.print(cntr[1], 5);
  139. SERIAL_ECHOLNPGM("");
  140. for (uint8_t i = 0; i < npts; ++i) {
  141. SERIAL_ECHOPGM("point #");
  142. MYSERIAL.print(int(i));
  143. SERIAL_ECHOPGM(" measured: (");
  144. MYSERIAL.print(measured_pts[i * 2], 5);
  145. SERIAL_ECHOPGM(", ");
  146. MYSERIAL.print(measured_pts[i * 2 + 1], 5);
  147. SERIAL_ECHOPGM("); target: (");
  148. MYSERIAL.print(pgm_read_float(true_pts + i * 2), 5);
  149. SERIAL_ECHOPGM(", ");
  150. MYSERIAL.print(pgm_read_float(true_pts + i * 2 + 1), 5);
  151. SERIAL_ECHOPGM("), error: ");
  152. MYSERIAL.print(sqrt(
  153. sqr(pgm_read_float(true_pts + i * 2) - measured_pts[i * 2]) +
  154. sqr(pgm_read_float(true_pts + i * 2 + 1) - measured_pts[i * 2 + 1])), 5);
  155. SERIAL_ECHOLNPGM("");
  156. }
  157. delay_keep_alive(100);
  158. }
  159. // Run some iterations of the Gauss-Newton method of non-linear least squares.
  160. // Initial set of parameters:
  161. // X,Y offset
  162. cntr[0] = 0.f;
  163. cntr[1] = 0.f;
  164. // Rotation of the machine X axis from the bed X axis.
  165. float a1 = 0;
  166. // Rotation of the machine Y axis from the bed Y axis.
  167. float a2 = 0;
  168. for (int8_t iter = 0; iter < 100; ++iter) {
  169. float c1 = cos(a1) * MACHINE_AXIS_SCALE_X;
  170. float s1 = sin(a1) * MACHINE_AXIS_SCALE_X;
  171. float c2 = cos(a2) * MACHINE_AXIS_SCALE_Y;
  172. float s2 = sin(a2) * MACHINE_AXIS_SCALE_Y;
  173. // Prepare the Normal equation for the Gauss-Newton method.
  174. float A[4][4] = { 0.f };
  175. float b[4] = { 0.f };
  176. float acc;
  177. for (uint8_t r = 0; r < 4; ++r) {
  178. for (uint8_t c = 0; c < 4; ++c) {
  179. acc = 0;
  180. // J^T times J
  181. for (uint8_t i = 0; i < npts; ++i) {
  182. // First for the residuum in the x axis:
  183. if (r != 1 && c != 1) {
  184. float a =
  185. (r == 0) ? 1.f :
  186. ((r == 2) ? (-s1 * measured_pts[2 * i]) :
  187. (-c2 * measured_pts[2 * i + 1]));
  188. float b =
  189. (c == 0) ? 1.f :
  190. ((c == 2) ? (-s1 * measured_pts[2 * i]) :
  191. (-c2 * measured_pts[2 * i + 1]));
  192. float w = point_weight_x(i, measured_pts[2 * i + 1]);
  193. acc += a * b * w;
  194. }
  195. // Second for the residuum in the y axis.
  196. // The first row of the points have a low weight, because their position may not be known
  197. // with a sufficient accuracy.
  198. if (r != 0 && c != 0) {
  199. float a =
  200. (r == 1) ? 1.f :
  201. ((r == 2) ? ( c1 * measured_pts[2 * i]) :
  202. (-s2 * measured_pts[2 * i + 1]));
  203. float b =
  204. (c == 1) ? 1.f :
  205. ((c == 2) ? ( c1 * measured_pts[2 * i]) :
  206. (-s2 * measured_pts[2 * i + 1]));
  207. float w = point_weight_y(i, measured_pts[2 * i + 1]);
  208. acc += a * b * w;
  209. }
  210. }
  211. A[r][c] = acc;
  212. }
  213. // J^T times f(x)
  214. acc = 0.f;
  215. for (uint8_t i = 0; i < npts; ++i) {
  216. {
  217. float j =
  218. (r == 0) ? 1.f :
  219. ((r == 1) ? 0.f :
  220. ((r == 2) ? (-s1 * measured_pts[2 * i]) :
  221. (-c2 * measured_pts[2 * i + 1])));
  222. float fx = c1 * measured_pts[2 * i] - s2 * measured_pts[2 * i + 1] + cntr[0] - pgm_read_float(true_pts + i * 2);
  223. float w = point_weight_x(i, measured_pts[2 * i + 1]);
  224. acc += j * fx * w;
  225. }
  226. {
  227. float j =
  228. (r == 0) ? 0.f :
  229. ((r == 1) ? 1.f :
  230. ((r == 2) ? ( c1 * measured_pts[2 * i]) :
  231. (-s2 * measured_pts[2 * i + 1])));
  232. float fy = s1 * measured_pts[2 * i] + c2 * measured_pts[2 * i + 1] + cntr[1] - pgm_read_float(true_pts + i * 2 + 1);
  233. float w = point_weight_y(i, measured_pts[2 * i + 1]);
  234. acc += j * fy * w;
  235. }
  236. }
  237. b[r] = -acc;
  238. }
  239. // Solve for h by a Gauss iteration method.
  240. float h[4] = { 0.f };
  241. for (uint8_t gauss_iter = 0; gauss_iter < 100; ++gauss_iter) {
  242. h[0] = (b[0] - A[0][1] * h[1] - A[0][2] * h[2] - A[0][3] * h[3]) / A[0][0];
  243. h[1] = (b[1] - A[1][0] * h[0] - A[1][2] * h[2] - A[1][3] * h[3]) / A[1][1];
  244. h[2] = (b[2] - A[2][0] * h[0] - A[2][1] * h[1] - A[2][3] * h[3]) / A[2][2];
  245. h[3] = (b[3] - A[3][0] * h[0] - A[3][1] * h[1] - A[3][2] * h[2]) / A[3][3];
  246. }
  247. // and update the current position with h.
  248. // It may be better to use the Levenberg-Marquart method here,
  249. // but because we are very close to the solution alread,
  250. // the simple Gauss-Newton non-linear Least Squares method works well enough.
  251. cntr[0] += h[0];
  252. cntr[1] += h[1];
  253. a1 += h[2];
  254. a2 += h[3];
  255. if (verbosity_level >= 20) {
  256. SERIAL_ECHOPGM("iteration: ");
  257. MYSERIAL.print(iter, 0);
  258. SERIAL_ECHOPGM("correction vector: ");
  259. MYSERIAL.print(h[0], 5);
  260. SERIAL_ECHOPGM(", ");
  261. MYSERIAL.print(h[1], 5);
  262. SERIAL_ECHOPGM(", ");
  263. MYSERIAL.print(h[2], 5);
  264. SERIAL_ECHOPGM(", ");
  265. MYSERIAL.print(h[3], 5);
  266. SERIAL_ECHOLNPGM("");
  267. SERIAL_ECHOPGM("corrected x/y: ");
  268. MYSERIAL.print(cntr[0], 5);
  269. SERIAL_ECHOPGM(", ");
  270. MYSERIAL.print(cntr[0], 5);
  271. SERIAL_ECHOLNPGM("");
  272. SERIAL_ECHOPGM("corrected angles: ");
  273. MYSERIAL.print(180.f * a1 / M_PI, 5);
  274. SERIAL_ECHOPGM(", ");
  275. MYSERIAL.print(180.f * a2 / M_PI, 5);
  276. SERIAL_ECHOLNPGM("");
  277. }
  278. }
  279. vec_x[0] = cos(a1) * MACHINE_AXIS_SCALE_X;
  280. vec_x[1] = sin(a1) * MACHINE_AXIS_SCALE_X;
  281. vec_y[0] = -sin(a2) * MACHINE_AXIS_SCALE_Y;
  282. vec_y[1] = cos(a2) * MACHINE_AXIS_SCALE_Y;
  283. BedSkewOffsetDetectionResultType result = BED_SKEW_OFFSET_DETECTION_PERFECT;
  284. {
  285. float angleDiff = fabs(a2 - a1);
  286. if (angleDiff > BED_SKEW_ANGLE_MILD)
  287. result = (angleDiff > BED_SKEW_ANGLE_EXTREME) ?
  288. BED_SKEW_OFFSET_DETECTION_SKEW_EXTREME :
  289. BED_SKEW_OFFSET_DETECTION_SKEW_MILD;
  290. if (fabs(a1) > BED_SKEW_ANGLE_EXTREME ||
  291. fabs(a2) > BED_SKEW_ANGLE_EXTREME)
  292. result = BED_SKEW_OFFSET_DETECTION_SKEW_EXTREME;
  293. }
  294. if (verbosity_level >= 1) {
  295. SERIAL_ECHOPGM("correction angles: ");
  296. MYSERIAL.print(180.f * a1 / M_PI, 5);
  297. SERIAL_ECHOPGM(", ");
  298. MYSERIAL.print(180.f * a2 / M_PI, 5);
  299. SERIAL_ECHOLNPGM("");
  300. }
  301. if (verbosity_level >= 10) {
  302. // Show the adjusted state, before the fitting.
  303. SERIAL_ECHOPGM("X vector new, inverted: ");
  304. MYSERIAL.print(vec_x[0], 5);
  305. SERIAL_ECHOPGM(", ");
  306. MYSERIAL.print(vec_x[1], 5);
  307. SERIAL_ECHOLNPGM("");
  308. SERIAL_ECHOPGM("Y vector new, inverted: ");
  309. MYSERIAL.print(vec_y[0], 5);
  310. SERIAL_ECHOPGM(", ");
  311. MYSERIAL.print(vec_y[1], 5);
  312. SERIAL_ECHOLNPGM("");
  313. SERIAL_ECHOPGM("center new, inverted: ");
  314. MYSERIAL.print(cntr[0], 5);
  315. SERIAL_ECHOPGM(", ");
  316. MYSERIAL.print(cntr[1], 5);
  317. SERIAL_ECHOLNPGM("");
  318. delay_keep_alive(100);
  319. SERIAL_ECHOLNPGM("Error after correction: ");
  320. }
  321. // Measure the error after correction.
  322. for (uint8_t i = 0; i < npts; ++i) {
  323. float x = vec_x[0] * measured_pts[i * 2] + vec_y[0] * measured_pts[i * 2 + 1] + cntr[0];
  324. float y = vec_x[1] * measured_pts[i * 2] + vec_y[1] * measured_pts[i * 2 + 1] + cntr[1];
  325. float errX = sqr(pgm_read_float(true_pts + i * 2) - x);
  326. float errY = sqr(pgm_read_float(true_pts + i * 2 + 1) - y);
  327. float err = sqrt(errX + errY);
  328. if (i < 3) {
  329. float w = point_weight_y(i, measured_pts[2 * i + 1]);
  330. if (sqrt(errX) > BED_CALIBRATION_POINT_OFFSET_MAX_1ST_ROW_X ||
  331. (w != 0.f && sqrt(errY) > BED_CALIBRATION_POINT_OFFSET_MAX_1ST_ROW_Y))
  332. result = BED_SKEW_OFFSET_DETECTION_FITTING_FAILED;
  333. } else {
  334. if (err > BED_CALIBRATION_POINT_OFFSET_MAX_EUCLIDIAN)
  335. result = BED_SKEW_OFFSET_DETECTION_FITTING_FAILED;
  336. }
  337. if (verbosity_level >= 10) {
  338. SERIAL_ECHOPGM("point #");
  339. MYSERIAL.print(int(i));
  340. SERIAL_ECHOPGM(" measured: (");
  341. MYSERIAL.print(measured_pts[i * 2], 5);
  342. SERIAL_ECHOPGM(", ");
  343. MYSERIAL.print(measured_pts[i * 2 + 1], 5);
  344. SERIAL_ECHOPGM("); corrected: (");
  345. MYSERIAL.print(x, 5);
  346. SERIAL_ECHOPGM(", ");
  347. MYSERIAL.print(y, 5);
  348. SERIAL_ECHOPGM("); target: (");
  349. MYSERIAL.print(pgm_read_float(true_pts + i * 2), 5);
  350. SERIAL_ECHOPGM(", ");
  351. MYSERIAL.print(pgm_read_float(true_pts + i * 2 + 1), 5);
  352. SERIAL_ECHOPGM("), error: ");
  353. MYSERIAL.print(err);
  354. SERIAL_ECHOLNPGM("");
  355. }
  356. }
  357. #if 0
  358. if (result == BED_SKEW_OFFSET_DETECTION_PERFECT && fabs(a1) < BED_SKEW_ANGLE_MILD && fabs(a2) < BED_SKEW_ANGLE_MILD) {
  359. if (verbosity_level > 0)
  360. SERIAL_ECHOLNPGM("Very little skew detected. Disabling skew correction.");
  361. // Just disable the skew correction.
  362. vec_x[0] = MACHINE_AXIS_SCALE_X;
  363. vec_x[1] = 0.f;
  364. vec_y[0] = 0.f;
  365. vec_y[1] = MACHINE_AXIS_SCALE_Y;
  366. }
  367. #else
  368. if (result == BED_SKEW_OFFSET_DETECTION_PERFECT) {
  369. if (verbosity_level > 0)
  370. SERIAL_ECHOLNPGM("Very little skew detected. Orthogonalizing the axes.");
  371. // Orthogonalize the axes.
  372. a1 = 0.5f * (a1 + a2);
  373. vec_x[0] = cos(a1) * MACHINE_AXIS_SCALE_X;
  374. vec_x[1] = sin(a1) * MACHINE_AXIS_SCALE_X;
  375. vec_y[0] = -sin(a1) * MACHINE_AXIS_SCALE_Y;
  376. vec_y[1] = cos(a1) * MACHINE_AXIS_SCALE_Y;
  377. // Refresh the offset.
  378. cntr[0] = 0.f;
  379. cntr[1] = 0.f;
  380. float wx = 0.f;
  381. float wy = 0.f;
  382. for (int8_t i = 0; i < 9; ++ i) {
  383. float x = vec_x[0] * measured_pts[i * 2] + vec_y[0] * measured_pts[i * 2 + 1];
  384. float y = vec_x[1] * measured_pts[i * 2] + vec_y[1] * measured_pts[i * 2 + 1];
  385. float w = point_weight_x(i, y);
  386. cntr[0] += w * (pgm_read_float(true_pts + i * 2) - x);
  387. wx += w;
  388. w = point_weight_y(i, y);
  389. cntr[1] += w * (pgm_read_float(true_pts + i * 2 + 1) - y);
  390. wy += w;
  391. }
  392. cntr[0] /= wx;
  393. cntr[1] /= wy;
  394. }
  395. #endif
  396. // Invert the transformation matrix made of vec_x, vec_y and cntr.
  397. {
  398. float d = vec_x[0] * vec_y[1] - vec_x[1] * vec_y[0];
  399. float Ainv[2][2] = {
  400. { vec_y[1] / d, -vec_y[0] / d },
  401. { -vec_x[1] / d, vec_x[0] / d }
  402. };
  403. float cntrInv[2] = {
  404. -Ainv[0][0] * cntr[0] - Ainv[0][1] * cntr[1],
  405. -Ainv[1][0] * cntr[0] - Ainv[1][1] * cntr[1]
  406. };
  407. vec_x[0] = Ainv[0][0];
  408. vec_x[1] = Ainv[1][0];
  409. vec_y[0] = Ainv[0][1];
  410. vec_y[1] = Ainv[1][1];
  411. cntr[0] = cntrInv[0];
  412. cntr[1] = cntrInv[1];
  413. }
  414. if (verbosity_level >= 1) {
  415. // Show the adjusted state, before the fitting.
  416. SERIAL_ECHOPGM("X vector, adjusted: ");
  417. MYSERIAL.print(vec_x[0], 5);
  418. SERIAL_ECHOPGM(", ");
  419. MYSERIAL.print(vec_x[1], 5);
  420. SERIAL_ECHOLNPGM("");
  421. SERIAL_ECHOPGM("Y vector, adjusted: ");
  422. MYSERIAL.print(vec_y[0], 5);
  423. SERIAL_ECHOPGM(", ");
  424. MYSERIAL.print(vec_y[1], 5);
  425. SERIAL_ECHOLNPGM("");
  426. SERIAL_ECHOPGM("center, adjusted: ");
  427. MYSERIAL.print(cntr[0], 5);
  428. SERIAL_ECHOPGM(", ");
  429. MYSERIAL.print(cntr[1], 5);
  430. SERIAL_ECHOLNPGM("");
  431. delay_keep_alive(100);
  432. }
  433. if (verbosity_level >= 2) {
  434. SERIAL_ECHOLNPGM("Difference after correction: ");
  435. for (uint8_t i = 0; i < npts; ++i) {
  436. float x = vec_x[0] * pgm_read_float(true_pts + i * 2) + vec_y[0] * pgm_read_float(true_pts + i * 2 + 1) + cntr[0];
  437. float y = vec_x[1] * pgm_read_float(true_pts + i * 2) + vec_y[1] * pgm_read_float(true_pts + i * 2 + 1) + cntr[1];
  438. SERIAL_ECHOPGM("point #");
  439. MYSERIAL.print(int(i));
  440. SERIAL_ECHOPGM("measured: (");
  441. MYSERIAL.print(measured_pts[i * 2], 5);
  442. SERIAL_ECHOPGM(", ");
  443. MYSERIAL.print(measured_pts[i * 2 + 1], 5);
  444. SERIAL_ECHOPGM("); measured-corrected: (");
  445. MYSERIAL.print(x, 5);
  446. SERIAL_ECHOPGM(", ");
  447. MYSERIAL.print(y, 5);
  448. SERIAL_ECHOPGM("); target: (");
  449. MYSERIAL.print(pgm_read_float(true_pts + i * 2), 5);
  450. SERIAL_ECHOPGM(", ");
  451. MYSERIAL.print(pgm_read_float(true_pts + i * 2 + 1), 5);
  452. SERIAL_ECHOPGM("), error: ");
  453. MYSERIAL.print(sqrt(sqr(measured_pts[i * 2] - x) + sqr(measured_pts[i * 2 + 1] - y)));
  454. SERIAL_ECHOLNPGM("");
  455. }
  456. delay_keep_alive(100);
  457. }
  458. return result;
  459. }
  460. void reset_bed_offset_and_skew()
  461. {
  462. eeprom_update_dword((uint32_t*)(EEPROM_BED_CALIBRATION_CENTER+0), 0x0FFFFFFFF);
  463. eeprom_update_dword((uint32_t*)(EEPROM_BED_CALIBRATION_CENTER+4), 0x0FFFFFFFF);
  464. eeprom_update_dword((uint32_t*)(EEPROM_BED_CALIBRATION_VEC_X +0), 0x0FFFFFFFF);
  465. eeprom_update_dword((uint32_t*)(EEPROM_BED_CALIBRATION_VEC_X +4), 0x0FFFFFFFF);
  466. eeprom_update_dword((uint32_t*)(EEPROM_BED_CALIBRATION_VEC_Y +0), 0x0FFFFFFFF);
  467. eeprom_update_dword((uint32_t*)(EEPROM_BED_CALIBRATION_VEC_Y +4), 0x0FFFFFFFF);
  468. // Reset the 8 16bit offsets.
  469. for (int8_t i = 0; i < 4; ++ i)
  470. eeprom_update_dword((uint32_t*)(EEPROM_BED_CALIBRATION_Z_JITTER+i*4), 0x0FFFFFFFF);
  471. }
  472. bool is_bed_z_jitter_data_valid()
  473. {
  474. for (int8_t i = 0; i < 8; ++ i)
  475. if (eeprom_read_word((uint16_t*)(EEPROM_BED_CALIBRATION_Z_JITTER+i*2)) == 0x0FFFF)
  476. return false;
  477. return true;
  478. }
  479. static void world2machine_update(const float vec_x[2], const float vec_y[2], const float cntr[2])
  480. {
  481. world2machine_rotation_and_skew[0][0] = vec_x[0];
  482. world2machine_rotation_and_skew[1][0] = vec_x[1];
  483. world2machine_rotation_and_skew[0][1] = vec_y[0];
  484. world2machine_rotation_and_skew[1][1] = vec_y[1];
  485. world2machine_shift[0] = cntr[0];
  486. world2machine_shift[1] = cntr[1];
  487. // No correction.
  488. world2machine_correction_mode = WORLD2MACHINE_CORRECTION_NONE;
  489. if (world2machine_shift[0] != 0.f || world2machine_shift[1] != 0.f)
  490. // Shift correction.
  491. world2machine_correction_mode |= WORLD2MACHINE_CORRECTION_SHIFT;
  492. if (world2machine_rotation_and_skew[0][0] != 1.f || world2machine_rotation_and_skew[0][1] != 0.f ||
  493. world2machine_rotation_and_skew[1][0] != 0.f || world2machine_rotation_and_skew[1][1] != 1.f) {
  494. // Rotation & skew correction.
  495. world2machine_correction_mode |= WORLD2MACHINE_CORRECTION_SKEW;
  496. // Invert the world2machine matrix.
  497. float d = world2machine_rotation_and_skew[0][0] * world2machine_rotation_and_skew[1][1] - world2machine_rotation_and_skew[1][0] * world2machine_rotation_and_skew[0][1];
  498. world2machine_rotation_and_skew_inv[0][0] = world2machine_rotation_and_skew[1][1] / d;
  499. world2machine_rotation_and_skew_inv[0][1] = -world2machine_rotation_and_skew[0][1] / d;
  500. world2machine_rotation_and_skew_inv[1][0] = -world2machine_rotation_and_skew[1][0] / d;
  501. world2machine_rotation_and_skew_inv[1][1] = world2machine_rotation_and_skew[0][0] / d;
  502. } else {
  503. world2machine_rotation_and_skew_inv[0][0] = 1.f;
  504. world2machine_rotation_and_skew_inv[0][1] = 0.f;
  505. world2machine_rotation_and_skew_inv[1][0] = 0.f;
  506. world2machine_rotation_and_skew_inv[1][1] = 1.f;
  507. }
  508. }
  509. void world2machine_reset()
  510. {
  511. const float vx[] = { 1.f, 0.f };
  512. const float vy[] = { 0.f, 1.f };
  513. const float cntr[] = { 0.f, 0.f };
  514. world2machine_update(vx, vy, cntr);
  515. }
  516. void world2machine_revert_to_uncorrected()
  517. {
  518. if (world2machine_correction_mode != WORLD2MACHINE_CORRECTION_NONE) {
  519. // Reset the machine correction matrix.
  520. const float vx[] = { 1.f, 0.f };
  521. const float vy[] = { 0.f, 1.f };
  522. const float cntr[] = { 0.f, 0.f };
  523. world2machine_update(vx, vy, cntr);
  524. // Wait for the motors to stop and update the current position with the absolute values.
  525. st_synchronize();
  526. current_position[X_AXIS] = st_get_position_mm(X_AXIS);
  527. current_position[Y_AXIS] = st_get_position_mm(Y_AXIS);
  528. }
  529. }
  530. static inline bool vec_undef(const float v[2])
  531. {
  532. const uint32_t *vx = (const uint32_t*)v;
  533. return vx[0] == 0x0FFFFFFFF || vx[1] == 0x0FFFFFFFF;
  534. }
  535. void world2machine_initialize()
  536. {
  537. SERIAL_ECHOLNPGM("world2machine_initialize()");
  538. float cntr[2] = {
  539. eeprom_read_float((float*)(EEPROM_BED_CALIBRATION_CENTER+0)),
  540. eeprom_read_float((float*)(EEPROM_BED_CALIBRATION_CENTER+4))
  541. };
  542. float vec_x[2] = {
  543. eeprom_read_float((float*)(EEPROM_BED_CALIBRATION_VEC_X +0)),
  544. eeprom_read_float((float*)(EEPROM_BED_CALIBRATION_VEC_X +4))
  545. };
  546. float vec_y[2] = {
  547. eeprom_read_float((float*)(EEPROM_BED_CALIBRATION_VEC_Y +0)),
  548. eeprom_read_float((float*)(EEPROM_BED_CALIBRATION_VEC_Y +4))
  549. };
  550. bool reset = false;
  551. if (vec_undef(cntr) || vec_undef(vec_x) || vec_undef(vec_y)) {
  552. SERIAL_ECHOLNPGM("Undefined bed correction matrix.");
  553. reset = true;
  554. }
  555. else {
  556. // Length of the vec_x shall be close to unity.
  557. float l = sqrt(vec_x[0] * vec_x[0] + vec_x[1] * vec_x[1]);
  558. if (l < 0.9 || l > 1.1) {
  559. SERIAL_ECHOLNPGM("Invalid bed correction matrix. Length of the X vector out of range.");
  560. reset = true;
  561. }
  562. // Length of the vec_y shall be close to unity.
  563. l = sqrt(vec_y[0] * vec_y[0] + vec_y[1] * vec_y[1]);
  564. if (l < 0.9 || l > 1.1) {
  565. SERIAL_ECHOLNPGM("Invalid bed correction matrix. Length of the X vector out of range.");
  566. reset = true;
  567. }
  568. // Correction of the zero point shall be reasonably small.
  569. l = sqrt(cntr[0] * cntr[0] + cntr[1] * cntr[1]);
  570. if (l > 15.f) {
  571. SERIAL_ECHOLNPGM("Invalid bed correction matrix. Shift out of range.");
  572. reset = true;
  573. }
  574. // vec_x and vec_y shall be nearly perpendicular.
  575. l = vec_x[0] * vec_y[0] + vec_x[1] * vec_y[1];
  576. if (fabs(l) > 0.1f) {
  577. SERIAL_ECHOLNPGM("Invalid bed correction matrix. X/Y axes are far from being perpendicular.");
  578. reset = true;
  579. }
  580. }
  581. if (reset) {
  582. SERIAL_ECHOLNPGM("Invalid bed correction matrix. Resetting to identity.");
  583. reset_bed_offset_and_skew();
  584. world2machine_reset();
  585. } else {
  586. world2machine_update(vec_x, vec_y, cntr);
  587. SERIAL_ECHOPGM("world2machine_initialize() loaded: ");
  588. MYSERIAL.print(world2machine_rotation_and_skew[0][0], 5);
  589. SERIAL_ECHOPGM(", ");
  590. MYSERIAL.print(world2machine_rotation_and_skew[0][1], 5);
  591. SERIAL_ECHOPGM(", ");
  592. MYSERIAL.print(world2machine_rotation_and_skew[1][0], 5);
  593. SERIAL_ECHOPGM(", ");
  594. MYSERIAL.print(world2machine_rotation_and_skew[1][1], 5);
  595. SERIAL_ECHOPGM(", offset ");
  596. MYSERIAL.print(world2machine_shift[0], 5);
  597. SERIAL_ECHOPGM(", ");
  598. MYSERIAL.print(world2machine_shift[1], 5);
  599. SERIAL_ECHOLNPGM("");
  600. }
  601. }
  602. // When switching from absolute to corrected coordinates,
  603. // this will get the absolute coordinates from the servos,
  604. // applies the inverse world2machine transformation
  605. // and stores the result into current_position[x,y].
  606. void world2machine_update_current()
  607. {
  608. float x = current_position[X_AXIS] - world2machine_shift[0];
  609. float y = current_position[Y_AXIS] - world2machine_shift[1];
  610. current_position[X_AXIS] = world2machine_rotation_and_skew_inv[0][0] * x + world2machine_rotation_and_skew_inv[0][1] * y;
  611. current_position[Y_AXIS] = world2machine_rotation_and_skew_inv[1][0] * x + world2machine_rotation_and_skew_inv[1][1] * y;
  612. }
  613. static inline void go_xyz(float x, float y, float z, float fr)
  614. {
  615. plan_buffer_line(x, y, z, current_position[E_AXIS], fr, active_extruder);
  616. st_synchronize();
  617. }
  618. static inline void go_xy(float x, float y, float fr)
  619. {
  620. plan_buffer_line(x, y, current_position[Z_AXIS], current_position[E_AXIS], fr, active_extruder);
  621. st_synchronize();
  622. }
  623. static inline void go_to_current(float fr)
  624. {
  625. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], fr, active_extruder);
  626. st_synchronize();
  627. }
  628. static inline void update_current_position_xyz()
  629. {
  630. current_position[X_AXIS] = st_get_position_mm(X_AXIS);
  631. current_position[Y_AXIS] = st_get_position_mm(Y_AXIS);
  632. current_position[Z_AXIS] = st_get_position_mm(Z_AXIS);
  633. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  634. }
  635. static inline void update_current_position_z()
  636. {
  637. current_position[Z_AXIS] = st_get_position_mm(Z_AXIS);
  638. plan_set_z_position(current_position[Z_AXIS]);
  639. }
  640. // At the current position, find the Z stop.
  641. inline bool find_bed_induction_sensor_point_z(float minimum_z, uint8_t n_iter)
  642. {
  643. SERIAL_ECHOLNPGM("find_bed_induction_sensor_point_z 1");
  644. bool endstops_enabled = enable_endstops(true);
  645. bool endstop_z_enabled = enable_z_endstop(false);
  646. float z = 0.f;
  647. endstop_z_hit_on_purpose();
  648. // move down until you find the bed
  649. current_position[Z_AXIS] = minimum_z;
  650. go_to_current(homing_feedrate[Z_AXIS]/60);
  651. // we have to let the planner know where we are right now as it is not where we said to go.
  652. update_current_position_z();
  653. if (! endstop_z_hit_on_purpose())
  654. goto error;
  655. for (uint8_t i = 0; i < n_iter; ++ i) {
  656. // Move up the retract distance.
  657. current_position[Z_AXIS] += .5f;
  658. go_to_current(homing_feedrate[Z_AXIS]/60);
  659. // Move back down slowly to find bed.
  660. current_position[Z_AXIS] = minimum_z;
  661. go_to_current(homing_feedrate[Z_AXIS]/(4*60));
  662. // we have to let the planner know where we are right now as it is not where we said to go.
  663. update_current_position_z();
  664. if (! endstop_z_hit_on_purpose())
  665. goto error;
  666. SERIAL_ECHOPGM("Bed find_bed_induction_sensor_point_z low, height: ");
  667. MYSERIAL.print(current_position[Z_AXIS], 5);
  668. SERIAL_ECHOLNPGM("");
  669. z += current_position[Z_AXIS];
  670. }
  671. current_position[Z_AXIS] = z;
  672. if (n_iter > 1)
  673. current_position[Z_AXIS] /= float(n_iter);
  674. enable_endstops(endstops_enabled);
  675. enable_z_endstop(endstop_z_enabled);
  676. SERIAL_ECHOLNPGM("find_bed_induction_sensor_point_z 3");
  677. return true;
  678. error:
  679. SERIAL_ECHOLNPGM("find_bed_induction_sensor_point_z 4");
  680. enable_endstops(endstops_enabled);
  681. enable_z_endstop(endstop_z_enabled);
  682. return false;
  683. }
  684. // Search around the current_position[X,Y],
  685. // look for the induction sensor response.
  686. // Adjust the current_position[X,Y,Z] to the center of the target dot and its response Z coordinate.
  687. #define FIND_BED_INDUCTION_SENSOR_POINT_X_RADIUS (8.f)
  688. #define FIND_BED_INDUCTION_SENSOR_POINT_Y_RADIUS (6.f)
  689. #define FIND_BED_INDUCTION_SENSOR_POINT_XY_STEP (1.f)
  690. #define FIND_BED_INDUCTION_SENSOR_POINT_Z_STEP (0.5f)
  691. inline bool find_bed_induction_sensor_point_xy()
  692. {
  693. float feedrate = homing_feedrate[X_AXIS] / 60.f;
  694. bool found = false;
  695. {
  696. float x0 = current_position[X_AXIS] - FIND_BED_INDUCTION_SENSOR_POINT_X_RADIUS;
  697. float x1 = current_position[X_AXIS] + FIND_BED_INDUCTION_SENSOR_POINT_X_RADIUS;
  698. float y0 = current_position[Y_AXIS] - FIND_BED_INDUCTION_SENSOR_POINT_Y_RADIUS;
  699. float y1 = current_position[Y_AXIS] + FIND_BED_INDUCTION_SENSOR_POINT_Y_RADIUS;
  700. uint8_t nsteps_y;
  701. uint8_t i;
  702. if (x0 < X_MIN_POS)
  703. x0 = X_MIN_POS;
  704. if (x1 > X_MAX_POS)
  705. x1 = X_MAX_POS;
  706. if (y0 < Y_MIN_POS_FOR_BED_CALIBRATION)
  707. y0 = Y_MIN_POS_FOR_BED_CALIBRATION;
  708. if (y1 > Y_MAX_POS)
  709. y1 = Y_MAX_POS;
  710. nsteps_y = int(ceil((y1 - y0) / FIND_BED_INDUCTION_SENSOR_POINT_XY_STEP));
  711. enable_endstops(false);
  712. bool dir_positive = true;
  713. // go_xyz(current_position[X_AXIS], current_position[Y_AXIS], MESH_HOME_Z_SEARCH, homing_feedrate[Z_AXIS]/60);
  714. go_xyz(x0, y0, current_position[Z_AXIS], feedrate);
  715. // Continously lower the Z axis.
  716. endstops_hit_on_purpose();
  717. enable_z_endstop(true);
  718. while (current_position[Z_AXIS] > -10.f) {
  719. // Do nsteps_y zig-zag movements.
  720. current_position[Y_AXIS] = y0;
  721. for (i = 0; i < nsteps_y; current_position[Y_AXIS] += (y1 - y0) / float(nsteps_y - 1), ++ i) {
  722. // Run with a slightly decreasing Z axis, zig-zag movement. Stop at the Z end-stop.
  723. current_position[Z_AXIS] -= FIND_BED_INDUCTION_SENSOR_POINT_Z_STEP / float(nsteps_y);
  724. go_xyz(dir_positive ? x1 : x0, current_position[Y_AXIS], current_position[Z_AXIS], feedrate);
  725. dir_positive = ! dir_positive;
  726. if (endstop_z_hit_on_purpose())
  727. goto endloop;
  728. }
  729. for (i = 0; i < nsteps_y; current_position[Y_AXIS] -= (y1 - y0) / float(nsteps_y - 1), ++ i) {
  730. // Run with a slightly decreasing Z axis, zig-zag movement. Stop at the Z end-stop.
  731. current_position[Z_AXIS] -= FIND_BED_INDUCTION_SENSOR_POINT_Z_STEP / float(nsteps_y);
  732. go_xyz(dir_positive ? x1 : x0, current_position[Y_AXIS], current_position[Z_AXIS], feedrate);
  733. dir_positive = ! dir_positive;
  734. if (endstop_z_hit_on_purpose())
  735. goto endloop;
  736. }
  737. }
  738. endloop:
  739. // SERIAL_ECHOLN("First hit");
  740. // we have to let the planner know where we are right now as it is not where we said to go.
  741. update_current_position_xyz();
  742. // Search in this plane for the first hit. Zig-zag first in X, then in Y axis.
  743. for (int8_t iter = 0; iter < 3; ++ iter) {
  744. if (iter > 0) {
  745. // Slightly lower the Z axis to get a reliable trigger.
  746. current_position[Z_AXIS] -= 0.02f;
  747. go_xyz(current_position[X_AXIS], current_position[Y_AXIS], MESH_HOME_Z_SEARCH, homing_feedrate[Z_AXIS]/60);
  748. }
  749. // Do nsteps_y zig-zag movements.
  750. float a, b;
  751. enable_endstops(false);
  752. enable_z_endstop(false);
  753. current_position[Y_AXIS] = y0;
  754. go_xy(x0, current_position[Y_AXIS], feedrate);
  755. enable_z_endstop(true);
  756. found = false;
  757. for (i = 0, dir_positive = true; i < nsteps_y; current_position[Y_AXIS] += (y1 - y0) / float(nsteps_y - 1), ++ i, dir_positive = ! dir_positive) {
  758. go_xy(dir_positive ? x1 : x0, current_position[Y_AXIS], feedrate);
  759. if (endstop_z_hit_on_purpose()) {
  760. found = true;
  761. break;
  762. }
  763. }
  764. update_current_position_xyz();
  765. if (! found) {
  766. // SERIAL_ECHOLN("Search in Y - not found");
  767. continue;
  768. }
  769. // SERIAL_ECHOLN("Search in Y - found");
  770. a = current_position[Y_AXIS];
  771. enable_z_endstop(false);
  772. current_position[Y_AXIS] = y1;
  773. go_xy(x0, current_position[Y_AXIS], feedrate);
  774. enable_z_endstop(true);
  775. found = false;
  776. for (i = 0, dir_positive = true; i < nsteps_y; current_position[Y_AXIS] -= (y1 - y0) / float(nsteps_y - 1), ++ i, dir_positive = ! dir_positive) {
  777. go_xy(dir_positive ? x1 : x0, current_position[Y_AXIS], feedrate);
  778. if (endstop_z_hit_on_purpose()) {
  779. found = true;
  780. break;
  781. }
  782. }
  783. update_current_position_xyz();
  784. if (! found) {
  785. // SERIAL_ECHOLN("Search in Y2 - not found");
  786. continue;
  787. }
  788. // SERIAL_ECHOLN("Search in Y2 - found");
  789. b = current_position[Y_AXIS];
  790. current_position[Y_AXIS] = 0.5f * (a + b);
  791. // Search in the X direction along a cross.
  792. found = false;
  793. enable_z_endstop(false);
  794. go_xy(x0, current_position[Y_AXIS], feedrate);
  795. enable_z_endstop(true);
  796. go_xy(x1, current_position[Y_AXIS], feedrate);
  797. update_current_position_xyz();
  798. if (! endstop_z_hit_on_purpose()) {
  799. // SERIAL_ECHOLN("Search X span 0 - not found");
  800. continue;
  801. }
  802. // SERIAL_ECHOLN("Search X span 0 - found");
  803. a = current_position[X_AXIS];
  804. enable_z_endstop(false);
  805. go_xy(x1, current_position[Y_AXIS], feedrate);
  806. enable_z_endstop(true);
  807. go_xy(x0, current_position[Y_AXIS], feedrate);
  808. update_current_position_xyz();
  809. if (! endstop_z_hit_on_purpose()) {
  810. // SERIAL_ECHOLN("Search X span 1 - not found");
  811. continue;
  812. }
  813. // SERIAL_ECHOLN("Search X span 1 - found");
  814. b = current_position[X_AXIS];
  815. // Go to the center.
  816. enable_z_endstop(false);
  817. current_position[X_AXIS] = 0.5f * (a + b);
  818. go_xy(current_position[X_AXIS], current_position[Y_AXIS], feedrate);
  819. found = true;
  820. #if 1
  821. // Search in the Y direction along a cross.
  822. found = false;
  823. enable_z_endstop(false);
  824. go_xy(current_position[X_AXIS], y0, feedrate);
  825. enable_z_endstop(true);
  826. go_xy(current_position[X_AXIS], y1, feedrate);
  827. update_current_position_xyz();
  828. if (! endstop_z_hit_on_purpose()) {
  829. // SERIAL_ECHOLN("Search Y2 span 0 - not found");
  830. continue;
  831. }
  832. // SERIAL_ECHOLN("Search Y2 span 0 - found");
  833. a = current_position[Y_AXIS];
  834. enable_z_endstop(false);
  835. go_xy(current_position[X_AXIS], y1, feedrate);
  836. enable_z_endstop(true);
  837. go_xy(current_position[X_AXIS], y0, feedrate);
  838. update_current_position_xyz();
  839. if (! endstop_z_hit_on_purpose()) {
  840. // SERIAL_ECHOLN("Search Y2 span 1 - not found");
  841. continue;
  842. }
  843. // SERIAL_ECHOLN("Search Y2 span 1 - found");
  844. b = current_position[Y_AXIS];
  845. // Go to the center.
  846. enable_z_endstop(false);
  847. current_position[Y_AXIS] = 0.5f * (a + b);
  848. go_xy(current_position[X_AXIS], current_position[Y_AXIS], feedrate);
  849. found = true;
  850. #endif
  851. break;
  852. }
  853. }
  854. enable_z_endstop(false);
  855. return found;
  856. }
  857. // Search around the current_position[X,Y,Z].
  858. // It is expected, that the induction sensor is switched on at the current position.
  859. // Look around this center point by painting a star around the point.
  860. inline bool improve_bed_induction_sensor_point()
  861. {
  862. static const float search_radius = 8.f;
  863. bool endstops_enabled = enable_endstops(false);
  864. bool endstop_z_enabled = enable_z_endstop(false);
  865. bool found = false;
  866. float feedrate = homing_feedrate[X_AXIS] / 60.f;
  867. float center_old_x = current_position[X_AXIS];
  868. float center_old_y = current_position[Y_AXIS];
  869. float center_x = 0.f;
  870. float center_y = 0.f;
  871. for (uint8_t iter = 0; iter < 4; ++ iter) {
  872. switch (iter) {
  873. case 0:
  874. destination[X_AXIS] = center_old_x - search_radius * 0.707;
  875. destination[Y_AXIS] = center_old_y - search_radius * 0.707;
  876. break;
  877. case 1:
  878. destination[X_AXIS] = center_old_x + search_radius * 0.707;
  879. destination[Y_AXIS] = center_old_y + search_radius * 0.707;
  880. break;
  881. case 2:
  882. destination[X_AXIS] = center_old_x + search_radius * 0.707;
  883. destination[Y_AXIS] = center_old_y - search_radius * 0.707;
  884. break;
  885. case 3:
  886. default:
  887. destination[X_AXIS] = center_old_x - search_radius * 0.707;
  888. destination[Y_AXIS] = center_old_y + search_radius * 0.707;
  889. break;
  890. }
  891. // Trim the vector from center_old_[x,y] to destination[x,y] by the bed dimensions.
  892. float vx = destination[X_AXIS] - center_old_x;
  893. float vy = destination[Y_AXIS] - center_old_y;
  894. float l = sqrt(vx*vx+vy*vy);
  895. float t;
  896. if (destination[X_AXIS] < X_MIN_POS) {
  897. // Exiting the bed at xmin.
  898. t = (center_x - X_MIN_POS) / l;
  899. destination[X_AXIS] = X_MIN_POS;
  900. destination[Y_AXIS] = center_old_y + t * vy;
  901. } else if (destination[X_AXIS] > X_MAX_POS) {
  902. // Exiting the bed at xmax.
  903. t = (X_MAX_POS - center_x) / l;
  904. destination[X_AXIS] = X_MAX_POS;
  905. destination[Y_AXIS] = center_old_y + t * vy;
  906. }
  907. if (destination[Y_AXIS] < Y_MIN_POS_FOR_BED_CALIBRATION) {
  908. // Exiting the bed at ymin.
  909. t = (center_y - Y_MIN_POS_FOR_BED_CALIBRATION) / l;
  910. destination[X_AXIS] = center_old_x + t * vx;
  911. destination[Y_AXIS] = Y_MIN_POS_FOR_BED_CALIBRATION;
  912. } else if (destination[Y_AXIS] > Y_MAX_POS) {
  913. // Exiting the bed at xmax.
  914. t = (Y_MAX_POS - center_y) / l;
  915. destination[X_AXIS] = center_old_x + t * vx;
  916. destination[Y_AXIS] = Y_MAX_POS;
  917. }
  918. // Move away from the measurement point.
  919. enable_endstops(false);
  920. go_xy(destination[X_AXIS], destination[Y_AXIS], feedrate);
  921. // Move towards the measurement point, until the induction sensor triggers.
  922. enable_endstops(true);
  923. go_xy(center_old_x, center_old_y, feedrate);
  924. update_current_position_xyz();
  925. // if (! endstop_z_hit_on_purpose()) return false;
  926. center_x += current_position[X_AXIS];
  927. center_y += current_position[Y_AXIS];
  928. }
  929. // Calculate the new center, move to the new center.
  930. center_x /= 4.f;
  931. center_y /= 4.f;
  932. current_position[X_AXIS] = center_x;
  933. current_position[Y_AXIS] = center_y;
  934. enable_endstops(false);
  935. go_xy(current_position[X_AXIS], current_position[Y_AXIS], feedrate);
  936. enable_endstops(endstops_enabled);
  937. enable_z_endstop(endstop_z_enabled);
  938. return found;
  939. }
  940. static inline void debug_output_point(const char *type, const float &x, const float &y, const float &z)
  941. {
  942. SERIAL_ECHOPGM("Measured ");
  943. SERIAL_ECHORPGM(type);
  944. SERIAL_ECHOPGM(" ");
  945. MYSERIAL.print(x, 5);
  946. SERIAL_ECHOPGM(", ");
  947. MYSERIAL.print(y, 5);
  948. SERIAL_ECHOPGM(", ");
  949. MYSERIAL.print(z, 5);
  950. SERIAL_ECHOLNPGM("");
  951. }
  952. // Search around the current_position[X,Y,Z].
  953. // It is expected, that the induction sensor is switched on at the current position.
  954. // Look around this center point by painting a star around the point.
  955. #define IMPROVE_BED_INDUCTION_SENSOR_SEARCH_RADIUS (8.f)
  956. inline bool improve_bed_induction_sensor_point2(bool lift_z_on_min_y, int8_t verbosity_level)
  957. {
  958. float center_old_x = current_position[X_AXIS];
  959. float center_old_y = current_position[Y_AXIS];
  960. float a, b;
  961. enable_endstops(false);
  962. {
  963. float x0 = center_old_x - IMPROVE_BED_INDUCTION_SENSOR_SEARCH_RADIUS;
  964. float x1 = center_old_x + IMPROVE_BED_INDUCTION_SENSOR_SEARCH_RADIUS;
  965. if (x0 < X_MIN_POS)
  966. x0 = X_MIN_POS;
  967. if (x1 > X_MAX_POS)
  968. x1 = X_MAX_POS;
  969. // Search in the X direction along a cross.
  970. enable_z_endstop(false);
  971. go_xy(x0, current_position[Y_AXIS], homing_feedrate[X_AXIS] / 60.f);
  972. enable_z_endstop(true);
  973. go_xy(x1, current_position[Y_AXIS], homing_feedrate[X_AXIS] / 60.f);
  974. update_current_position_xyz();
  975. if (! endstop_z_hit_on_purpose()) {
  976. current_position[X_AXIS] = center_old_x;
  977. goto canceled;
  978. }
  979. a = current_position[X_AXIS];
  980. enable_z_endstop(false);
  981. go_xy(x1, current_position[Y_AXIS], homing_feedrate[X_AXIS] / 60.f);
  982. enable_z_endstop(true);
  983. go_xy(x0, current_position[Y_AXIS], homing_feedrate[X_AXIS] / 60.f);
  984. update_current_position_xyz();
  985. if (! endstop_z_hit_on_purpose()) {
  986. current_position[X_AXIS] = center_old_x;
  987. goto canceled;
  988. }
  989. b = current_position[X_AXIS];
  990. if (b - a < MIN_BED_SENSOR_POINT_RESPONSE_DMR) {
  991. if (verbosity_level >= 5) {
  992. SERIAL_ECHOPGM("Point width too small: ");
  993. SERIAL_ECHO(b - a);
  994. SERIAL_ECHOLNPGM("");
  995. }
  996. // We force the calibration routine to move the Z axis slightly down to make the response more pronounced.
  997. current_position[X_AXIS] = center_old_x;
  998. goto canceled;
  999. }
  1000. if (verbosity_level >= 5) {
  1001. debug_output_point(PSTR("left" ), a, current_position[Y_AXIS], current_position[Z_AXIS]);
  1002. debug_output_point(PSTR("right"), b, current_position[Y_AXIS], current_position[Z_AXIS]);
  1003. }
  1004. // Go to the center.
  1005. enable_z_endstop(false);
  1006. current_position[X_AXIS] = 0.5f * (a + b);
  1007. go_xy(current_position[X_AXIS], current_position[Y_AXIS], homing_feedrate[X_AXIS] / 60.f);
  1008. }
  1009. {
  1010. float y0 = center_old_y - IMPROVE_BED_INDUCTION_SENSOR_SEARCH_RADIUS;
  1011. float y1 = center_old_y + IMPROVE_BED_INDUCTION_SENSOR_SEARCH_RADIUS;
  1012. if (y0 < Y_MIN_POS_FOR_BED_CALIBRATION)
  1013. y0 = Y_MIN_POS_FOR_BED_CALIBRATION;
  1014. if (y1 > Y_MAX_POS)
  1015. y1 = Y_MAX_POS;
  1016. // Search in the Y direction along a cross.
  1017. enable_z_endstop(false);
  1018. go_xy(current_position[X_AXIS], y0, homing_feedrate[X_AXIS] / 60.f);
  1019. if (lift_z_on_min_y) {
  1020. // The first row of points are very close to the end stop.
  1021. // Lift the sensor to disengage the trigger. This is necessary because of the sensor hysteresis.
  1022. go_xyz(current_position[X_AXIS], y0, current_position[Z_AXIS]+1.5f, homing_feedrate[Z_AXIS] / 60.f);
  1023. // and go back.
  1024. go_xyz(current_position[X_AXIS], y0, current_position[Z_AXIS], homing_feedrate[Z_AXIS] / 60.f);
  1025. }
  1026. if (lift_z_on_min_y && (READ(Z_MIN_PIN) ^ Z_MIN_ENDSTOP_INVERTING) == 1) {
  1027. // Already triggering before we started the move.
  1028. // Shift the trigger point slightly outwards.
  1029. // a = current_position[Y_AXIS] - 1.5f;
  1030. a = current_position[Y_AXIS];
  1031. } else {
  1032. enable_z_endstop(true);
  1033. go_xy(current_position[X_AXIS], y1, homing_feedrate[X_AXIS] / 60.f);
  1034. update_current_position_xyz();
  1035. if (! endstop_z_hit_on_purpose()) {
  1036. current_position[Y_AXIS] = center_old_y;
  1037. goto canceled;
  1038. }
  1039. a = current_position[Y_AXIS];
  1040. }
  1041. enable_z_endstop(false);
  1042. go_xy(current_position[X_AXIS], y1, homing_feedrate[X_AXIS] / 60.f);
  1043. enable_z_endstop(true);
  1044. go_xy(current_position[X_AXIS], y0, homing_feedrate[X_AXIS] / 60.f);
  1045. update_current_position_xyz();
  1046. if (! endstop_z_hit_on_purpose()) {
  1047. current_position[Y_AXIS] = center_old_y;
  1048. goto canceled;
  1049. }
  1050. b = current_position[Y_AXIS];
  1051. if (b - a < MIN_BED_SENSOR_POINT_RESPONSE_DMR) {
  1052. // We force the calibration routine to move the Z axis slightly down to make the response more pronounced.
  1053. if (verbosity_level >= 5) {
  1054. SERIAL_ECHOPGM("Point height too small: ");
  1055. SERIAL_ECHO(b - a);
  1056. SERIAL_ECHOLNPGM("");
  1057. }
  1058. current_position[Y_AXIS] = center_old_y;
  1059. goto canceled;
  1060. }
  1061. if (verbosity_level >= 5) {
  1062. debug_output_point(PSTR("top" ), current_position[X_AXIS], a, current_position[Z_AXIS]);
  1063. debug_output_point(PSTR("bottom"), current_position[X_AXIS], b, current_position[Z_AXIS]);
  1064. }
  1065. // Go to the center.
  1066. enable_z_endstop(false);
  1067. current_position[Y_AXIS] = 0.5f * (a + b);
  1068. go_xy(current_position[X_AXIS], current_position[Y_AXIS], homing_feedrate[X_AXIS] / 60.f);
  1069. }
  1070. return true;
  1071. canceled:
  1072. // Go back to the center.
  1073. enable_z_endstop(false);
  1074. go_xy(current_position[X_AXIS], current_position[Y_AXIS], homing_feedrate[X_AXIS] / 60.f);
  1075. return false;
  1076. }
  1077. // Searching the front points, where one cannot move the sensor head in front of the sensor point.
  1078. // Searching in a zig-zag movement in a plane for the maximum width of the response.
  1079. // This function may set the current_position[Y_AXIS] below Y_MIN_POS, if the function succeeded.
  1080. // If this function failed, the Y coordinate will never be outside the working space.
  1081. #define IMPROVE_BED_INDUCTION_SENSOR_POINT3_SEARCH_RADIUS (4.f)
  1082. #define IMPROVE_BED_INDUCTION_SENSOR_POINT3_SEARCH_STEP_FINE_Y (0.1f)
  1083. inline bool improve_bed_induction_sensor_point3(int verbosity_level)
  1084. {
  1085. float center_old_x = current_position[X_AXIS];
  1086. float center_old_y = current_position[Y_AXIS];
  1087. float a, b;
  1088. bool result = true;
  1089. // Was the sensor point detected too far in the minus Y axis?
  1090. // If yes, the center of the induction point cannot be reached by the machine.
  1091. {
  1092. float x0 = center_old_x - IMPROVE_BED_INDUCTION_SENSOR_POINT3_SEARCH_RADIUS;
  1093. float x1 = center_old_x + IMPROVE_BED_INDUCTION_SENSOR_POINT3_SEARCH_RADIUS;
  1094. float y0 = center_old_y - IMPROVE_BED_INDUCTION_SENSOR_POINT3_SEARCH_RADIUS;
  1095. float y1 = center_old_y + IMPROVE_BED_INDUCTION_SENSOR_POINT3_SEARCH_RADIUS;
  1096. float y = y0;
  1097. if (x0 < X_MIN_POS)
  1098. x0 = X_MIN_POS;
  1099. if (x1 > X_MAX_POS)
  1100. x1 = X_MAX_POS;
  1101. if (y0 < Y_MIN_POS_FOR_BED_CALIBRATION)
  1102. y0 = Y_MIN_POS_FOR_BED_CALIBRATION;
  1103. if (y1 > Y_MAX_POS)
  1104. y1 = Y_MAX_POS;
  1105. if (verbosity_level >= 20) {
  1106. SERIAL_ECHOPGM("Initial position: ");
  1107. SERIAL_ECHO(center_old_x);
  1108. SERIAL_ECHOPGM(", ");
  1109. SERIAL_ECHO(center_old_y);
  1110. SERIAL_ECHOLNPGM("");
  1111. }
  1112. // Search in the positive Y direction, until a maximum diameter is found.
  1113. // (the next diameter is smaller than the current one.)
  1114. float dmax = 0.f;
  1115. float xmax1 = 0.f;
  1116. float xmax2 = 0.f;
  1117. for (y = y0; y < y1; y += IMPROVE_BED_INDUCTION_SENSOR_POINT3_SEARCH_STEP_FINE_Y) {
  1118. enable_z_endstop(false);
  1119. go_xy(x0, y, homing_feedrate[X_AXIS] / 60.f);
  1120. enable_z_endstop(true);
  1121. go_xy(x1, y, homing_feedrate[X_AXIS] / 60.f);
  1122. update_current_position_xyz();
  1123. if (! endstop_z_hit_on_purpose()) {
  1124. continue;
  1125. // SERIAL_PROTOCOLPGM("Failed 1\n");
  1126. // current_position[X_AXIS] = center_old_x;
  1127. // goto canceled;
  1128. }
  1129. a = current_position[X_AXIS];
  1130. enable_z_endstop(false);
  1131. go_xy(x1, y, homing_feedrate[X_AXIS] / 60.f);
  1132. enable_z_endstop(true);
  1133. go_xy(x0, y, homing_feedrate[X_AXIS] / 60.f);
  1134. update_current_position_xyz();
  1135. if (! endstop_z_hit_on_purpose()) {
  1136. continue;
  1137. // SERIAL_PROTOCOLPGM("Failed 2\n");
  1138. // current_position[X_AXIS] = center_old_x;
  1139. // goto canceled;
  1140. }
  1141. b = current_position[X_AXIS];
  1142. if (verbosity_level >= 5) {
  1143. debug_output_point(PSTR("left" ), a, current_position[Y_AXIS], current_position[Z_AXIS]);
  1144. debug_output_point(PSTR("right"), b, current_position[Y_AXIS], current_position[Z_AXIS]);
  1145. }
  1146. float d = b - a;
  1147. if (d > dmax) {
  1148. xmax1 = 0.5f * (a + b);
  1149. dmax = d;
  1150. } else if (dmax > 0.) {
  1151. y0 = y - IMPROVE_BED_INDUCTION_SENSOR_POINT3_SEARCH_STEP_FINE_Y;
  1152. break;
  1153. }
  1154. }
  1155. if (dmax == 0.) {
  1156. if (verbosity_level > 0)
  1157. SERIAL_PROTOCOLPGM("failed - not found\n");
  1158. current_position[X_AXIS] = center_old_x;
  1159. current_position[Y_AXIS] = center_old_y;
  1160. goto canceled;
  1161. }
  1162. {
  1163. // Find the positive Y hit. This gives the extreme Y value for the search of the maximum diameter in the -Y direction.
  1164. enable_z_endstop(false);
  1165. go_xy(xmax1, y0 + IMPROVE_BED_INDUCTION_SENSOR_SEARCH_RADIUS, homing_feedrate[X_AXIS] / 60.f);
  1166. enable_z_endstop(true);
  1167. go_xy(xmax1, max(y0 - IMPROVE_BED_INDUCTION_SENSOR_SEARCH_RADIUS, Y_MIN_POS_FOR_BED_CALIBRATION), homing_feedrate[X_AXIS] / 60.f);
  1168. update_current_position_xyz();
  1169. if (! endstop_z_hit_on_purpose()) {
  1170. current_position[Y_AXIS] = center_old_y;
  1171. goto canceled;
  1172. }
  1173. if (verbosity_level >= 5)
  1174. debug_output_point(PSTR("top" ), current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS]);
  1175. y1 = current_position[Y_AXIS];
  1176. }
  1177. if (y1 <= y0) {
  1178. // Either the induction sensor is too high, or the induction sensor target is out of reach.
  1179. current_position[Y_AXIS] = center_old_y;
  1180. goto canceled;
  1181. }
  1182. // Search in the negative Y direction, until a maximum diameter is found.
  1183. dmax = 0.f;
  1184. // if (y0 + 1.f < y1)
  1185. // y1 = y0 + 1.f;
  1186. for (y = y1; y >= y0; y -= IMPROVE_BED_INDUCTION_SENSOR_POINT3_SEARCH_STEP_FINE_Y) {
  1187. enable_z_endstop(false);
  1188. go_xy(x0, y, homing_feedrate[X_AXIS] / 60.f);
  1189. enable_z_endstop(true);
  1190. go_xy(x1, y, homing_feedrate[X_AXIS] / 60.f);
  1191. update_current_position_xyz();
  1192. if (! endstop_z_hit_on_purpose()) {
  1193. continue;
  1194. /*
  1195. current_position[X_AXIS] = center_old_x;
  1196. SERIAL_PROTOCOLPGM("Failed 3\n");
  1197. goto canceled;
  1198. */
  1199. }
  1200. a = current_position[X_AXIS];
  1201. enable_z_endstop(false);
  1202. go_xy(x1, y, homing_feedrate[X_AXIS] / 60.f);
  1203. enable_z_endstop(true);
  1204. go_xy(x0, y, homing_feedrate[X_AXIS] / 60.f);
  1205. update_current_position_xyz();
  1206. if (! endstop_z_hit_on_purpose()) {
  1207. continue;
  1208. /*
  1209. current_position[X_AXIS] = center_old_x;
  1210. SERIAL_PROTOCOLPGM("Failed 4\n");
  1211. goto canceled;
  1212. */
  1213. }
  1214. b = current_position[X_AXIS];
  1215. if (verbosity_level >= 5) {
  1216. debug_output_point(PSTR("left" ), a, current_position[Y_AXIS], current_position[Z_AXIS]);
  1217. debug_output_point(PSTR("right"), b, current_position[Y_AXIS], current_position[Z_AXIS]);
  1218. }
  1219. float d = b - a;
  1220. if (d > dmax) {
  1221. xmax2 = 0.5f * (a + b);
  1222. dmax = d;
  1223. } else if (dmax > 0.) {
  1224. y1 = y + IMPROVE_BED_INDUCTION_SENSOR_POINT3_SEARCH_STEP_FINE_Y;
  1225. break;
  1226. }
  1227. }
  1228. float xmax, ymax;
  1229. if (dmax == 0.f) {
  1230. // Only the hit in the positive direction found.
  1231. xmax = xmax1;
  1232. ymax = y0;
  1233. } else {
  1234. // Both positive and negative directions found.
  1235. xmax = xmax2;
  1236. ymax = 0.5f * (y0 + y1);
  1237. for (; y >= y0; y -= IMPROVE_BED_INDUCTION_SENSOR_POINT3_SEARCH_STEP_FINE_Y) {
  1238. enable_z_endstop(false);
  1239. go_xy(x0, y, homing_feedrate[X_AXIS] / 60.f);
  1240. enable_z_endstop(true);
  1241. go_xy(x1, y, homing_feedrate[X_AXIS] / 60.f);
  1242. update_current_position_xyz();
  1243. if (! endstop_z_hit_on_purpose()) {
  1244. continue;
  1245. /*
  1246. current_position[X_AXIS] = center_old_x;
  1247. SERIAL_PROTOCOLPGM("Failed 3\n");
  1248. goto canceled;
  1249. */
  1250. }
  1251. a = current_position[X_AXIS];
  1252. enable_z_endstop(false);
  1253. go_xy(x1, y, homing_feedrate[X_AXIS] / 60.f);
  1254. enable_z_endstop(true);
  1255. go_xy(x0, y, homing_feedrate[X_AXIS] / 60.f);
  1256. update_current_position_xyz();
  1257. if (! endstop_z_hit_on_purpose()) {
  1258. continue;
  1259. /*
  1260. current_position[X_AXIS] = center_old_x;
  1261. SERIAL_PROTOCOLPGM("Failed 4\n");
  1262. goto canceled;
  1263. */
  1264. }
  1265. b = current_position[X_AXIS];
  1266. if (verbosity_level >= 5) {
  1267. debug_output_point(PSTR("left" ), a, current_position[Y_AXIS], current_position[Z_AXIS]);
  1268. debug_output_point(PSTR("right"), b, current_position[Y_AXIS], current_position[Z_AXIS]);
  1269. }
  1270. float d = b - a;
  1271. if (d > dmax) {
  1272. xmax = 0.5f * (a + b);
  1273. ymax = y;
  1274. dmax = d;
  1275. }
  1276. }
  1277. }
  1278. {
  1279. // Compare the distance in the Y+ direction with the diameter in the X direction.
  1280. // Find the positive Y hit once again, this time along the Y axis going through the X point with the highest diameter.
  1281. enable_z_endstop(false);
  1282. go_xy(xmax, ymax + IMPROVE_BED_INDUCTION_SENSOR_SEARCH_RADIUS, homing_feedrate[X_AXIS] / 60.f);
  1283. enable_z_endstop(true);
  1284. go_xy(xmax, max(ymax - IMPROVE_BED_INDUCTION_SENSOR_SEARCH_RADIUS, Y_MIN_POS_FOR_BED_CALIBRATION), homing_feedrate[X_AXIS] / 60.f);
  1285. update_current_position_xyz();
  1286. if (! endstop_z_hit_on_purpose()) {
  1287. current_position[Y_AXIS] = center_old_y;
  1288. goto canceled;
  1289. }
  1290. if (verbosity_level >= 5)
  1291. debug_output_point(PSTR("top" ), current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS]);
  1292. if (current_position[Y_AXIS] - Y_MIN_POS_FOR_BED_CALIBRATION < 0.5f * dmax) {
  1293. // Probably not even a half circle was detected. The induction point is likely too far in the minus Y direction.
  1294. // First verify, if the measurement has been done at a sufficient height. If no, lower the Z axis a bit.
  1295. if (current_position[Y_AXIS] < ymax || dmax < 0.5f * MIN_BED_SENSOR_POINT_RESPONSE_DMR) {
  1296. if (verbosity_level >= 5) {
  1297. SERIAL_ECHOPGM("Partial point diameter too small: ");
  1298. SERIAL_ECHO(dmax);
  1299. SERIAL_ECHOLNPGM("");
  1300. }
  1301. result = false;
  1302. } else {
  1303. // Estimate the circle radius from the maximum diameter and height:
  1304. float h = current_position[Y_AXIS] - ymax;
  1305. float r = dmax * dmax / (8.f * h) + 0.5f * h;
  1306. if (r < 0.8f * MIN_BED_SENSOR_POINT_RESPONSE_DMR) {
  1307. if (verbosity_level >= 5) {
  1308. SERIAL_ECHOPGM("Partial point estimated radius too small: ");
  1309. SERIAL_ECHO(r);
  1310. SERIAL_ECHOPGM(", dmax:");
  1311. SERIAL_ECHO(dmax);
  1312. SERIAL_ECHOPGM(", h:");
  1313. SERIAL_ECHO(h);
  1314. SERIAL_ECHOLNPGM("");
  1315. }
  1316. result = false;
  1317. } else {
  1318. // The point may end up outside of the machine working space.
  1319. // That is all right as it helps to improve the accuracy of the measurement point
  1320. // due to averaging.
  1321. // For the y correction, use an average of dmax/2 and the estimated radius.
  1322. r = 0.5f * (0.5f * dmax + r);
  1323. ymax = current_position[Y_AXIS] - r;
  1324. }
  1325. }
  1326. } else {
  1327. // If the diameter of the detected spot was smaller than a minimum allowed,
  1328. // the induction sensor is probably too high. Returning false will force
  1329. // the sensor to be lowered a tiny bit.
  1330. result = xmax >= MIN_BED_SENSOR_POINT_RESPONSE_DMR;
  1331. if (y0 > Y_MIN_POS_FOR_BED_CALIBRATION + 0.2f)
  1332. // Only in case both left and right y tangents are known, use them.
  1333. // If y0 is close to the bed edge, it may not be symmetric to the right tangent.
  1334. ymax = 0.5f * ymax + 0.25f * (y0 + y1);
  1335. }
  1336. }
  1337. // Go to the center.
  1338. enable_z_endstop(false);
  1339. current_position[X_AXIS] = xmax;
  1340. current_position[Y_AXIS] = ymax;
  1341. if (verbosity_level >= 20) {
  1342. SERIAL_ECHOPGM("Adjusted position: ");
  1343. SERIAL_ECHO(current_position[X_AXIS]);
  1344. SERIAL_ECHOPGM(", ");
  1345. SERIAL_ECHO(current_position[Y_AXIS]);
  1346. SERIAL_ECHOLNPGM("");
  1347. }
  1348. // Don't clamp current_position[Y_AXIS], because the out-of-reach Y coordinate may actually be true.
  1349. // Only clamp the coordinate to go.
  1350. go_xy(current_position[X_AXIS], max(Y_MIN_POS, current_position[Y_AXIS]), homing_feedrate[X_AXIS] / 60.f);
  1351. // delay_keep_alive(3000);
  1352. }
  1353. if (result)
  1354. return true;
  1355. // otherwise clamp the Y coordinate
  1356. canceled:
  1357. // Go back to the center.
  1358. enable_z_endstop(false);
  1359. if (current_position[Y_AXIS] < Y_MIN_POS)
  1360. current_position[Y_AXIS] = Y_MIN_POS;
  1361. go_xy(current_position[X_AXIS], current_position[Y_AXIS], homing_feedrate[X_AXIS] / 60.f);
  1362. return false;
  1363. }
  1364. // Scan the mesh bed induction points one by one by a left-right zig-zag movement,
  1365. // write the trigger coordinates to the serial line.
  1366. // Useful for visualizing the behavior of the bed induction detector.
  1367. inline void scan_bed_induction_sensor_point()
  1368. {
  1369. float center_old_x = current_position[X_AXIS];
  1370. float center_old_y = current_position[Y_AXIS];
  1371. float x0 = center_old_x - IMPROVE_BED_INDUCTION_SENSOR_POINT3_SEARCH_RADIUS;
  1372. float x1 = center_old_x + IMPROVE_BED_INDUCTION_SENSOR_POINT3_SEARCH_RADIUS;
  1373. float y0 = center_old_y - IMPROVE_BED_INDUCTION_SENSOR_POINT3_SEARCH_RADIUS;
  1374. float y1 = center_old_y + IMPROVE_BED_INDUCTION_SENSOR_POINT3_SEARCH_RADIUS;
  1375. float y = y0;
  1376. if (x0 < X_MIN_POS)
  1377. x0 = X_MIN_POS;
  1378. if (x1 > X_MAX_POS)
  1379. x1 = X_MAX_POS;
  1380. if (y0 < Y_MIN_POS_FOR_BED_CALIBRATION)
  1381. y0 = Y_MIN_POS_FOR_BED_CALIBRATION;
  1382. if (y1 > Y_MAX_POS)
  1383. y1 = Y_MAX_POS;
  1384. for (float y = y0; y < y1; y += IMPROVE_BED_INDUCTION_SENSOR_POINT3_SEARCH_STEP_FINE_Y) {
  1385. enable_z_endstop(false);
  1386. go_xy(x0, y, homing_feedrate[X_AXIS] / 60.f);
  1387. enable_z_endstop(true);
  1388. go_xy(x1, y, homing_feedrate[X_AXIS] / 60.f);
  1389. update_current_position_xyz();
  1390. if (endstop_z_hit_on_purpose())
  1391. debug_output_point(PSTR("left" ), current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS]);
  1392. enable_z_endstop(false);
  1393. go_xy(x1, y, homing_feedrate[X_AXIS] / 60.f);
  1394. enable_z_endstop(true);
  1395. go_xy(x0, y, homing_feedrate[X_AXIS] / 60.f);
  1396. update_current_position_xyz();
  1397. if (endstop_z_hit_on_purpose())
  1398. debug_output_point(PSTR("right"), current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS]);
  1399. }
  1400. enable_z_endstop(false);
  1401. current_position[X_AXIS] = center_old_x;
  1402. current_position[Y_AXIS] = center_old_y;
  1403. go_xy(current_position[X_AXIS], current_position[Y_AXIS], homing_feedrate[X_AXIS] / 60.f);
  1404. }
  1405. #define MESH_BED_CALIBRATION_SHOW_LCD
  1406. BedSkewOffsetDetectionResultType find_bed_offset_and_skew(int8_t verbosity_level)
  1407. {
  1408. // Don't let the manage_inactivity() function remove power from the motors.
  1409. refresh_cmd_timeout();
  1410. // Reusing the z_values memory for the measurement cache.
  1411. // 7x7=49 floats, good for 16 (x,y,z) vectors.
  1412. float *pts = &mbl.z_values[0][0];
  1413. float *vec_x = pts + 2 * 4;
  1414. float *vec_y = vec_x + 2;
  1415. float *cntr = vec_y + 2;
  1416. memset(pts, 0, sizeof(float) * 7 * 7);
  1417. // SERIAL_ECHOLNPGM("find_bed_offset_and_skew verbosity level: ");
  1418. // SERIAL_ECHO(int(verbosity_level));
  1419. // SERIAL_ECHOPGM("");
  1420. #ifdef MESH_BED_CALIBRATION_SHOW_LCD
  1421. lcd_implementation_clear();
  1422. lcd_print_at_PGM(0, 0, MSG_FIND_BED_OFFSET_AND_SKEW_LINE1);
  1423. #endif /* MESH_BED_CALIBRATION_SHOW_LCD */
  1424. // Collect the rear 2x3 points.
  1425. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  1426. for (int k = 0; k < 4; ++ k) {
  1427. // Don't let the manage_inactivity() function remove power from the motors.
  1428. refresh_cmd_timeout();
  1429. #ifdef MESH_BED_CALIBRATION_SHOW_LCD
  1430. lcd_print_at_PGM(0, 1, MSG_FIND_BED_OFFSET_AND_SKEW_LINE2);
  1431. lcd_implementation_print_at(0, 2, k+1);
  1432. lcd_printPGM(MSG_FIND_BED_OFFSET_AND_SKEW_LINE3);
  1433. #endif /* MESH_BED_CALIBRATION_SHOW_LCD */
  1434. float *pt = pts + k * 2;
  1435. // Go up to z_initial.
  1436. go_to_current(homing_feedrate[Z_AXIS] / 60.f);
  1437. if (verbosity_level >= 20) {
  1438. // Go to Y0, wait, then go to Y-4.
  1439. current_position[Y_AXIS] = 0.f;
  1440. go_to_current(homing_feedrate[X_AXIS] / 60.f);
  1441. SERIAL_ECHOLNPGM("At Y0");
  1442. delay_keep_alive(5000);
  1443. current_position[Y_AXIS] = Y_MIN_POS;
  1444. go_to_current(homing_feedrate[X_AXIS] / 60.f);
  1445. SERIAL_ECHOLNPGM("At Y-4");
  1446. delay_keep_alive(5000);
  1447. }
  1448. // Go to the measurement point position.
  1449. current_position[X_AXIS] = pgm_read_float(bed_ref_points_4+k*2);
  1450. current_position[Y_AXIS] = pgm_read_float(bed_ref_points_4+k*2+1);
  1451. go_to_current(homing_feedrate[X_AXIS] / 60.f);
  1452. if (verbosity_level >= 10)
  1453. delay_keep_alive(3000);
  1454. if (! find_bed_induction_sensor_point_xy())
  1455. return BED_SKEW_OFFSET_DETECTION_POINT_NOT_FOUND;
  1456. #if 1
  1457. if (k == 0) {
  1458. // Improve the position of the 1st row sensor points by a zig-zag movement.
  1459. find_bed_induction_sensor_point_z();
  1460. int8_t i = 4;
  1461. for (;;) {
  1462. if (improve_bed_induction_sensor_point3(verbosity_level))
  1463. break;
  1464. if (-- i == 0)
  1465. return BED_SKEW_OFFSET_DETECTION_POINT_NOT_FOUND;
  1466. // Try to move the Z axis down a bit to increase a chance of the sensor to trigger.
  1467. current_position[Z_AXIS] -= 0.025f;
  1468. enable_endstops(false);
  1469. enable_z_endstop(false);
  1470. go_to_current(homing_feedrate[Z_AXIS]);
  1471. }
  1472. if (i == 0)
  1473. // not found
  1474. return BED_SKEW_OFFSET_DETECTION_POINT_NOT_FOUND;
  1475. }
  1476. #endif
  1477. if (verbosity_level >= 10)
  1478. delay_keep_alive(3000);
  1479. // Save the detected point position and then clamp the Y coordinate, which may have been estimated
  1480. // to lie outside the machine working space.
  1481. pt[0] = current_position[X_AXIS];
  1482. pt[1] = current_position[Y_AXIS];
  1483. if (current_position[Y_AXIS] < Y_MIN_POS)
  1484. current_position[Y_AXIS] = Y_MIN_POS;
  1485. // Start searching for the other points at 3mm above the last point.
  1486. current_position[Z_AXIS] += 3.f;
  1487. cntr[0] += pt[0];
  1488. cntr[1] += pt[1];
  1489. if (verbosity_level >= 10 && k == 0) {
  1490. // Show the zero. Test, whether the Y motor skipped steps.
  1491. current_position[Y_AXIS] = MANUAL_Y_HOME_POS;
  1492. go_to_current(homing_feedrate[X_AXIS] / 60.f);
  1493. delay_keep_alive(3000);
  1494. }
  1495. }
  1496. if (verbosity_level >= 20) {
  1497. // Test the positions. Are the positions reproducible? Now the calibration is active in the planner.
  1498. delay_keep_alive(3000);
  1499. for (int8_t mesh_point = 0; mesh_point < 4; ++ mesh_point) {
  1500. // Don't let the manage_inactivity() function remove power from the motors.
  1501. refresh_cmd_timeout();
  1502. // Go to the measurement point.
  1503. // Use the coorrected coordinate, which is a result of find_bed_offset_and_skew().
  1504. current_position[X_AXIS] = pts[mesh_point*2];
  1505. current_position[Y_AXIS] = pts[mesh_point*2+1];
  1506. go_to_current(homing_feedrate[X_AXIS]/60);
  1507. delay_keep_alive(3000);
  1508. }
  1509. }
  1510. BedSkewOffsetDetectionResultType result = calculate_machine_skew_and_offset_LS(pts, 4, bed_ref_points_4, vec_x, vec_y, cntr, verbosity_level);
  1511. if (result >= 0) {
  1512. world2machine_update(vec_x, vec_y, cntr);
  1513. #if 1
  1514. // Fearlessly store the calibration values into the eeprom.
  1515. eeprom_update_float((float*)(EEPROM_BED_CALIBRATION_CENTER+0), cntr [0]);
  1516. eeprom_update_float((float*)(EEPROM_BED_CALIBRATION_CENTER+4), cntr [1]);
  1517. eeprom_update_float((float*)(EEPROM_BED_CALIBRATION_VEC_X +0), vec_x[0]);
  1518. eeprom_update_float((float*)(EEPROM_BED_CALIBRATION_VEC_X +4), vec_x[1]);
  1519. eeprom_update_float((float*)(EEPROM_BED_CALIBRATION_VEC_Y +0), vec_y[0]);
  1520. eeprom_update_float((float*)(EEPROM_BED_CALIBRATION_VEC_Y +4), vec_y[1]);
  1521. #endif
  1522. // Correct the current_position to match the transformed coordinate system after world2machine_rotation_and_skew and world2machine_shift were set.
  1523. world2machine_update_current();
  1524. if (verbosity_level >= 20) {
  1525. // Test the positions. Are the positions reproducible? Now the calibration is active in the planner.
  1526. delay_keep_alive(3000);
  1527. for (int8_t mesh_point = 0; mesh_point < 9; ++ mesh_point) {
  1528. // Don't let the manage_inactivity() function remove power from the motors.
  1529. refresh_cmd_timeout();
  1530. // Go to the measurement point.
  1531. // Use the coorrected coordinate, which is a result of find_bed_offset_and_skew().
  1532. current_position[X_AXIS] = pgm_read_float(bed_ref_points+mesh_point*2);
  1533. current_position[Y_AXIS] = pgm_read_float(bed_ref_points+mesh_point*2+1);
  1534. go_to_current(homing_feedrate[X_AXIS]/60);
  1535. delay_keep_alive(3000);
  1536. }
  1537. }
  1538. }
  1539. return result;
  1540. }
  1541. BedSkewOffsetDetectionResultType improve_bed_offset_and_skew(int8_t method, int8_t verbosity_level, uint8_t &too_far_mask)
  1542. {
  1543. // Don't let the manage_inactivity() function remove power from the motors.
  1544. refresh_cmd_timeout();
  1545. // Mask of the first three points. Are they too far?
  1546. too_far_mask = 0;
  1547. // Reusing the z_values memory for the measurement cache.
  1548. // 7x7=49 floats, good for 16 (x,y,z) vectors.
  1549. float *pts = &mbl.z_values[0][0];
  1550. float *vec_x = pts + 2 * 9;
  1551. float *vec_y = vec_x + 2;
  1552. float *cntr = vec_y + 2;
  1553. memset(pts, 0, sizeof(float) * 7 * 7);
  1554. // Cache the current correction matrix.
  1555. world2machine_initialize();
  1556. vec_x[0] = world2machine_rotation_and_skew[0][0];
  1557. vec_x[1] = world2machine_rotation_and_skew[1][0];
  1558. vec_y[0] = world2machine_rotation_and_skew[0][1];
  1559. vec_y[1] = world2machine_rotation_and_skew[1][1];
  1560. cntr[0] = world2machine_shift[0];
  1561. cntr[1] = world2machine_shift[1];
  1562. // and reset the correction matrix, so the planner will not do anything.
  1563. world2machine_reset();
  1564. bool endstops_enabled = enable_endstops(false);
  1565. bool endstop_z_enabled = enable_z_endstop(false);
  1566. #ifdef MESH_BED_CALIBRATION_SHOW_LCD
  1567. lcd_implementation_clear();
  1568. lcd_print_at_PGM(0, 0, MSG_IMPROVE_BED_OFFSET_AND_SKEW_LINE1);
  1569. #endif /* MESH_BED_CALIBRATION_SHOW_LCD */
  1570. // Collect a matrix of 9x9 points.
  1571. BedSkewOffsetDetectionResultType result = BED_SKEW_OFFSET_DETECTION_PERFECT;
  1572. for (int8_t mesh_point = 0; mesh_point < 9; ++ mesh_point) {
  1573. // Don't let the manage_inactivity() function remove power from the motors.
  1574. refresh_cmd_timeout();
  1575. // Print the decrasing ID of the measurement point.
  1576. #ifdef MESH_BED_CALIBRATION_SHOW_LCD
  1577. lcd_print_at_PGM(0, 1, MSG_IMPROVE_BED_OFFSET_AND_SKEW_LINE2);
  1578. lcd_implementation_print_at(0, 2, mesh_point+1);
  1579. lcd_printPGM(MSG_IMPROVE_BED_OFFSET_AND_SKEW_LINE3);
  1580. #endif /* MESH_BED_CALIBRATION_SHOW_LCD */
  1581. // Move up.
  1582. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  1583. enable_endstops(false);
  1584. enable_z_endstop(false);
  1585. go_to_current(homing_feedrate[Z_AXIS]/60);
  1586. if (verbosity_level >= 20) {
  1587. // Go to Y0, wait, then go to Y-4.
  1588. current_position[Y_AXIS] = 0.f;
  1589. go_to_current(homing_feedrate[X_AXIS] / 60.f);
  1590. SERIAL_ECHOLNPGM("At Y0");
  1591. delay_keep_alive(5000);
  1592. current_position[Y_AXIS] = Y_MIN_POS;
  1593. go_to_current(homing_feedrate[X_AXIS] / 60.f);
  1594. SERIAL_ECHOLNPGM("At Y-4");
  1595. delay_keep_alive(5000);
  1596. }
  1597. // Go to the measurement point.
  1598. // Use the coorrected coordinate, which is a result of find_bed_offset_and_skew().
  1599. current_position[X_AXIS] = vec_x[0] * pgm_read_float(bed_ref_points+mesh_point*2) + vec_y[0] * pgm_read_float(bed_ref_points+mesh_point*2+1) + cntr[0];
  1600. current_position[Y_AXIS] = vec_x[1] * pgm_read_float(bed_ref_points+mesh_point*2) + vec_y[1] * pgm_read_float(bed_ref_points+mesh_point*2+1) + cntr[1];
  1601. // The calibration points are very close to the min Y.
  1602. if (current_position[Y_AXIS] < Y_MIN_POS_FOR_BED_CALIBRATION)
  1603. current_position[Y_AXIS] = Y_MIN_POS_FOR_BED_CALIBRATION;
  1604. go_to_current(homing_feedrate[X_AXIS]/60);
  1605. // Find its Z position by running the normal vertical search.
  1606. if (verbosity_level >= 10)
  1607. delay_keep_alive(3000);
  1608. find_bed_induction_sensor_point_z();
  1609. if (verbosity_level >= 10)
  1610. delay_keep_alive(3000);
  1611. // Try to move the Z axis down a bit to increase a chance of the sensor to trigger.
  1612. current_position[Z_AXIS] -= 0.025f;
  1613. // Improve the point position by searching its center in a current plane.
  1614. int8_t n_errors = 3;
  1615. for (int8_t iter = 0; iter < 8; ) {
  1616. if (verbosity_level > 20) {
  1617. SERIAL_ECHOPGM("Improving bed point ");
  1618. SERIAL_ECHO(mesh_point);
  1619. SERIAL_ECHOPGM(", iteration ");
  1620. SERIAL_ECHO(iter);
  1621. SERIAL_ECHOPGM(", z");
  1622. MYSERIAL.print(current_position[Z_AXIS], 5);
  1623. SERIAL_ECHOLNPGM("");
  1624. }
  1625. bool found = false;
  1626. if (mesh_point < 3) {
  1627. // Because the sensor cannot move in front of the first row
  1628. // of the sensor points, the y position cannot be measured
  1629. // by a cross center method.
  1630. // Use a zig-zag search for the first row of the points.
  1631. found = improve_bed_induction_sensor_point3(verbosity_level);
  1632. } else {
  1633. switch (method) {
  1634. case 0: found = improve_bed_induction_sensor_point(); break;
  1635. case 1: found = improve_bed_induction_sensor_point2(mesh_point < 3, verbosity_level); break;
  1636. default: break;
  1637. }
  1638. }
  1639. if (found) {
  1640. if (iter > 3) {
  1641. // Average the last 4 measurements.
  1642. pts[mesh_point*2 ] += current_position[X_AXIS];
  1643. pts[mesh_point*2+1] += current_position[Y_AXIS];
  1644. }
  1645. if (current_position[Y_AXIS] < Y_MIN_POS)
  1646. current_position[Y_AXIS] = Y_MIN_POS;
  1647. ++ iter;
  1648. } else if (n_errors -- == 0) {
  1649. // Give up.
  1650. result = BED_SKEW_OFFSET_DETECTION_POINT_NOT_FOUND;
  1651. goto canceled;
  1652. } else {
  1653. // Try to move the Z axis down a bit to increase a chance of the sensor to trigger.
  1654. current_position[Z_AXIS] -= 0.05f;
  1655. enable_endstops(false);
  1656. enable_z_endstop(false);
  1657. go_to_current(homing_feedrate[Z_AXIS]);
  1658. if (verbosity_level >= 5) {
  1659. SERIAL_ECHOPGM("Improving bed point ");
  1660. SERIAL_ECHO(mesh_point);
  1661. SERIAL_ECHOPGM(", iteration ");
  1662. SERIAL_ECHO(iter);
  1663. SERIAL_ECHOPGM(" failed. Lowering z to ");
  1664. MYSERIAL.print(current_position[Z_AXIS], 5);
  1665. SERIAL_ECHOLNPGM("");
  1666. }
  1667. }
  1668. }
  1669. if (verbosity_level >= 10)
  1670. delay_keep_alive(3000);
  1671. }
  1672. // Don't let the manage_inactivity() function remove power from the motors.
  1673. refresh_cmd_timeout();
  1674. // Average the last 4 measurements.
  1675. for (int8_t i = 0; i < 18; ++ i)
  1676. pts[i] *= (1.f/4.f);
  1677. enable_endstops(false);
  1678. enable_z_endstop(false);
  1679. if (verbosity_level >= 5) {
  1680. // Test the positions. Are the positions reproducible?
  1681. for (int8_t mesh_point = 0; mesh_point < 9; ++ mesh_point) {
  1682. // Don't let the manage_inactivity() function remove power from the motors.
  1683. refresh_cmd_timeout();
  1684. // Go to the measurement point.
  1685. // Use the coorrected coordinate, which is a result of find_bed_offset_and_skew().
  1686. current_position[X_AXIS] = pts[mesh_point*2];
  1687. current_position[Y_AXIS] = pts[mesh_point*2+1];
  1688. if (verbosity_level >= 10) {
  1689. go_to_current(homing_feedrate[X_AXIS]/60);
  1690. delay_keep_alive(3000);
  1691. }
  1692. SERIAL_ECHOPGM("Final measured bed point ");
  1693. SERIAL_ECHO(mesh_point);
  1694. SERIAL_ECHOPGM(": ");
  1695. MYSERIAL.print(current_position[X_AXIS], 5);
  1696. SERIAL_ECHOPGM(", ");
  1697. MYSERIAL.print(current_position[Y_AXIS], 5);
  1698. SERIAL_ECHOLNPGM("");
  1699. }
  1700. }
  1701. {
  1702. // First fill in the too_far_mask from the measured points.
  1703. for (uint8_t mesh_point = 0; mesh_point < 3; ++ mesh_point)
  1704. if (pts[mesh_point * 2 + 1] < Y_MIN_POS_CALIBRATION_POINT_OUT_OF_REACH)
  1705. too_far_mask |= 1 << mesh_point;
  1706. result = calculate_machine_skew_and_offset_LS(pts, 9, bed_ref_points, vec_x, vec_y, cntr, verbosity_level);
  1707. if (result < 0) {
  1708. SERIAL_ECHOLNPGM("Calculation of the machine skew and offset failed.");
  1709. goto canceled;
  1710. }
  1711. // In case of success, update the too_far_mask from the calculated points.
  1712. for (uint8_t mesh_point = 0; mesh_point < 3; ++ mesh_point) {
  1713. float y = vec_x[1] * pgm_read_float(bed_ref_points+mesh_point*2) + vec_y[1] * pgm_read_float(bed_ref_points+mesh_point*2+1) + cntr[1];
  1714. if (y < Y_MIN_POS_CALIBRATION_POINT_OUT_OF_REACH)
  1715. too_far_mask |= 1 << mesh_point;
  1716. }
  1717. }
  1718. world2machine_update(vec_x, vec_y, cntr);
  1719. #if 1
  1720. // Fearlessly store the calibration values into the eeprom.
  1721. eeprom_update_float((float*)(EEPROM_BED_CALIBRATION_CENTER+0), cntr [0]);
  1722. eeprom_update_float((float*)(EEPROM_BED_CALIBRATION_CENTER+4), cntr [1]);
  1723. eeprom_update_float((float*)(EEPROM_BED_CALIBRATION_VEC_X +0), vec_x[0]);
  1724. eeprom_update_float((float*)(EEPROM_BED_CALIBRATION_VEC_X +4), vec_x[1]);
  1725. eeprom_update_float((float*)(EEPROM_BED_CALIBRATION_VEC_Y +0), vec_y[0]);
  1726. eeprom_update_float((float*)(EEPROM_BED_CALIBRATION_VEC_Y +4), vec_y[1]);
  1727. #endif
  1728. // Correct the current_position to match the transformed coordinate system after world2machine_rotation_and_skew and world2machine_shift were set.
  1729. world2machine_update_current();
  1730. enable_endstops(false);
  1731. enable_z_endstop(false);
  1732. if (verbosity_level >= 5) {
  1733. // Test the positions. Are the positions reproducible? Now the calibration is active in the planner.
  1734. delay_keep_alive(3000);
  1735. for (int8_t mesh_point = 0; mesh_point < 9; ++ mesh_point) {
  1736. // Don't let the manage_inactivity() function remove power from the motors.
  1737. refresh_cmd_timeout();
  1738. // Go to the measurement point.
  1739. // Use the coorrected coordinate, which is a result of find_bed_offset_and_skew().
  1740. current_position[X_AXIS] = pgm_read_float(bed_ref_points+mesh_point*2);
  1741. current_position[Y_AXIS] = pgm_read_float(bed_ref_points+mesh_point*2+1);
  1742. if (verbosity_level >= 10) {
  1743. go_to_current(homing_feedrate[X_AXIS]/60);
  1744. delay_keep_alive(3000);
  1745. }
  1746. {
  1747. float x, y;
  1748. world2machine(current_position[X_AXIS], current_position[Y_AXIS], x, y);
  1749. SERIAL_ECHOPGM("Final calculated bed point ");
  1750. SERIAL_ECHO(mesh_point);
  1751. SERIAL_ECHOPGM(": ");
  1752. MYSERIAL.print(x, 5);
  1753. SERIAL_ECHOPGM(", ");
  1754. MYSERIAL.print(y, 5);
  1755. SERIAL_ECHOLNPGM("");
  1756. }
  1757. }
  1758. }
  1759. // Sample Z heights for the mesh bed leveling.
  1760. // In addition, store the results into an eeprom, to be used later for verification of the bed leveling process.
  1761. {
  1762. // The first point defines the reference.
  1763. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  1764. go_to_current(homing_feedrate[Z_AXIS]/60);
  1765. current_position[X_AXIS] = pgm_read_float(bed_ref_points);
  1766. current_position[Y_AXIS] = pgm_read_float(bed_ref_points+1);
  1767. world2machine_clamp(current_position[X_AXIS], current_position[Y_AXIS]);
  1768. go_to_current(homing_feedrate[X_AXIS]/60);
  1769. memcpy(destination, current_position, sizeof(destination));
  1770. enable_endstops(true);
  1771. homeaxis(Z_AXIS);
  1772. enable_endstops(false);
  1773. find_bed_induction_sensor_point_z();
  1774. mbl.set_z(0, 0, current_position[Z_AXIS]);
  1775. }
  1776. for (int8_t mesh_point = 1; mesh_point != MESH_MEAS_NUM_X_POINTS * MESH_MEAS_NUM_Y_POINTS; ++ mesh_point) {
  1777. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  1778. go_to_current(homing_feedrate[Z_AXIS]/60);
  1779. current_position[X_AXIS] = pgm_read_float(bed_ref_points+2*mesh_point);
  1780. current_position[Y_AXIS] = pgm_read_float(bed_ref_points+2*mesh_point+1);
  1781. world2machine_clamp(current_position[X_AXIS], current_position[Y_AXIS]);
  1782. go_to_current(homing_feedrate[X_AXIS]/60);
  1783. find_bed_induction_sensor_point_z();
  1784. // Get cords of measuring point
  1785. int8_t ix = mesh_point % MESH_MEAS_NUM_X_POINTS;
  1786. int8_t iy = mesh_point / MESH_MEAS_NUM_X_POINTS;
  1787. if (iy & 1) ix = (MESH_MEAS_NUM_X_POINTS - 1) - ix; // Zig zag
  1788. mbl.set_z(ix, iy, current_position[Z_AXIS]);
  1789. }
  1790. {
  1791. // Verify the span of the Z values.
  1792. float zmin = mbl.z_values[0][0];
  1793. float zmax = zmax;
  1794. for (int8_t j = 0; j < 3; ++ j)
  1795. for (int8_t i = 0; i < 3; ++ i) {
  1796. zmin = min(zmin, mbl.z_values[j][i]);
  1797. zmax = min(zmax, mbl.z_values[j][i]);
  1798. }
  1799. if (zmax - zmin > 3.f) {
  1800. // The span of the Z offsets is extreme. Give up.
  1801. // Homing failed on some of the points.
  1802. SERIAL_PROTOCOLLNPGM("Exreme span of the Z values!");
  1803. goto canceled;
  1804. }
  1805. }
  1806. // Store the correction values to EEPROM.
  1807. // Offsets of the Z heiths of the calibration points from the first point.
  1808. // The offsets are saved as 16bit signed int, scaled to tenths of microns.
  1809. {
  1810. uint16_t addr = EEPROM_BED_CALIBRATION_Z_JITTER;
  1811. for (int8_t j = 0; j < 3; ++ j)
  1812. for (int8_t i = 0; i < 3; ++ i) {
  1813. if (i == 0 && j == 0)
  1814. continue;
  1815. float dif = mbl.z_values[j][i] - mbl.z_values[0][0];
  1816. int16_t dif_quantized = int16_t(floor(dif * 100.f + 0.5f));
  1817. eeprom_update_word((uint16_t*)addr, *reinterpret_cast<uint16_t*>(&dif_quantized));
  1818. {
  1819. uint16_t z_offset_u = eeprom_read_word((uint16_t*)addr);
  1820. float dif2 = *reinterpret_cast<int16_t*>(&z_offset_u) * 0.01;
  1821. SERIAL_ECHOPGM("Bed point ");
  1822. SERIAL_ECHO(i);
  1823. SERIAL_ECHOPGM(",");
  1824. SERIAL_ECHO(j);
  1825. SERIAL_ECHOPGM(", differences: written ");
  1826. MYSERIAL.print(dif, 5);
  1827. SERIAL_ECHOPGM(", read: ");
  1828. MYSERIAL.print(dif2, 5);
  1829. SERIAL_ECHOLNPGM("");
  1830. }
  1831. addr += 2;
  1832. }
  1833. }
  1834. mbl.upsample_3x3();
  1835. mbl.active = true;
  1836. // Don't let the manage_inactivity() function remove power from the motors.
  1837. refresh_cmd_timeout();
  1838. // Go home.
  1839. current_position[Z_AXIS] = Z_MIN_POS;
  1840. go_to_current(homing_feedrate[Z_AXIS]/60);
  1841. current_position[X_AXIS] = X_MIN_POS+0.2;
  1842. current_position[Y_AXIS] = Y_MIN_POS+0.2;
  1843. // Clamp to the physical coordinates.
  1844. world2machine_clamp(current_position[X_AXIS], current_position[Y_AXIS]);
  1845. go_to_current(homing_feedrate[X_AXIS]/60);
  1846. enable_endstops(endstops_enabled);
  1847. enable_z_endstop(endstop_z_enabled);
  1848. // Don't let the manage_inactivity() function remove power from the motors.
  1849. refresh_cmd_timeout();
  1850. return result;
  1851. canceled:
  1852. // Don't let the manage_inactivity() function remove power from the motors.
  1853. refresh_cmd_timeout();
  1854. // Print head up.
  1855. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  1856. go_to_current(homing_feedrate[Z_AXIS]/60);
  1857. // Store the identity matrix to EEPROM.
  1858. reset_bed_offset_and_skew();
  1859. enable_endstops(endstops_enabled);
  1860. enable_z_endstop(endstop_z_enabled);
  1861. return result;
  1862. }
  1863. bool scan_bed_induction_points(int8_t verbosity_level)
  1864. {
  1865. // Don't let the manage_inactivity() function remove power from the motors.
  1866. refresh_cmd_timeout();
  1867. // Reusing the z_values memory for the measurement cache.
  1868. // 7x7=49 floats, good for 16 (x,y,z) vectors.
  1869. float *pts = &mbl.z_values[0][0];
  1870. float *vec_x = pts + 2 * 9;
  1871. float *vec_y = vec_x + 2;
  1872. float *cntr = vec_y + 2;
  1873. memset(pts, 0, sizeof(float) * 7 * 7);
  1874. // Cache the current correction matrix.
  1875. world2machine_initialize();
  1876. vec_x[0] = world2machine_rotation_and_skew[0][0];
  1877. vec_x[1] = world2machine_rotation_and_skew[1][0];
  1878. vec_y[0] = world2machine_rotation_and_skew[0][1];
  1879. vec_y[1] = world2machine_rotation_and_skew[1][1];
  1880. cntr[0] = world2machine_shift[0];
  1881. cntr[1] = world2machine_shift[1];
  1882. // and reset the correction matrix, so the planner will not do anything.
  1883. world2machine_reset();
  1884. bool endstops_enabled = enable_endstops(false);
  1885. bool endstop_z_enabled = enable_z_endstop(false);
  1886. // Collect a matrix of 9x9 points.
  1887. for (int8_t mesh_point = 0; mesh_point < 9; ++ mesh_point) {
  1888. // Don't let the manage_inactivity() function remove power from the motors.
  1889. refresh_cmd_timeout();
  1890. // Move up.
  1891. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  1892. enable_endstops(false);
  1893. enable_z_endstop(false);
  1894. go_to_current(homing_feedrate[Z_AXIS]/60);
  1895. // Go to the measurement point.
  1896. // Use the coorrected coordinate, which is a result of find_bed_offset_and_skew().
  1897. current_position[X_AXIS] = vec_x[0] * pgm_read_float(bed_ref_points+mesh_point*2) + vec_y[0] * pgm_read_float(bed_ref_points+mesh_point*2+1) + cntr[0];
  1898. current_position[Y_AXIS] = vec_x[1] * pgm_read_float(bed_ref_points+mesh_point*2) + vec_y[1] * pgm_read_float(bed_ref_points+mesh_point*2+1) + cntr[1];
  1899. // The calibration points are very close to the min Y.
  1900. if (current_position[Y_AXIS] < Y_MIN_POS_FOR_BED_CALIBRATION)
  1901. current_position[Y_AXIS] = Y_MIN_POS_FOR_BED_CALIBRATION;
  1902. go_to_current(homing_feedrate[X_AXIS]/60);
  1903. find_bed_induction_sensor_point_z();
  1904. scan_bed_induction_sensor_point();
  1905. }
  1906. // Don't let the manage_inactivity() function remove power from the motors.
  1907. refresh_cmd_timeout();
  1908. enable_endstops(false);
  1909. enable_z_endstop(false);
  1910. // Don't let the manage_inactivity() function remove power from the motors.
  1911. refresh_cmd_timeout();
  1912. enable_endstops(endstops_enabled);
  1913. enable_z_endstop(endstop_z_enabled);
  1914. return true;
  1915. }