temperature.cpp 56 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033
  1. /*
  2. temperature.c - temperature control
  3. Part of Marlin
  4. Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
  5. This program is free software: you can redistribute it and/or modify
  6. it under the terms of the GNU General Public License as published by
  7. the Free Software Foundation, either version 3 of the License, or
  8. (at your option) any later version.
  9. This program is distributed in the hope that it will be useful,
  10. but WITHOUT ANY WARRANTY; without even the implied warranty of
  11. MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  12. GNU General Public License for more details.
  13. You should have received a copy of the GNU General Public License
  14. along with this program. If not, see <http://www.gnu.org/licenses/>.
  15. */
  16. /*
  17. This firmware is a mashup between Sprinter and grbl.
  18. (https://github.com/kliment/Sprinter)
  19. (https://github.com/simen/grbl/tree)
  20. It has preliminary support for Matthew Roberts advance algorithm
  21. http://reprap.org/pipermail/reprap-dev/2011-May/003323.html
  22. */
  23. #include "Marlin.h"
  24. #include "ultralcd.h"
  25. #include "temperature.h"
  26. #include "watchdog.h"
  27. #include "cardreader.h"
  28. #include "Sd2PinMap.h"
  29. #include <avr/wdt.h>
  30. #include "adc.h"
  31. //===========================================================================
  32. //=============================public variables============================
  33. //===========================================================================
  34. int target_temperature[EXTRUDERS] = { 0 };
  35. int target_temperature_bed = 0;
  36. int current_temperature_raw[EXTRUDERS] = { 0 };
  37. float current_temperature[EXTRUDERS] = { 0.0 };
  38. #ifdef PINDA_THERMISTOR
  39. int current_temperature_raw_pinda = 0 ;
  40. float current_temperature_pinda = 0.0;
  41. #endif //PINDA_THERMISTOR
  42. #ifdef AMBIENT_THERMISTOR
  43. int current_temperature_raw_ambient = 0 ;
  44. float current_temperature_ambient = 0.0;
  45. #endif //AMBIENT_THERMISTOR
  46. #ifdef VOLT_PWR_PIN
  47. int current_voltage_raw_pwr = 0;
  48. #endif
  49. #ifdef VOLT_BED_PIN
  50. int current_voltage_raw_bed = 0;
  51. #endif
  52. int current_temperature_bed_raw = 0;
  53. float current_temperature_bed = 0.0;
  54. #ifdef TEMP_SENSOR_1_AS_REDUNDANT
  55. int redundant_temperature_raw = 0;
  56. float redundant_temperature = 0.0;
  57. #endif
  58. #ifdef PIDTEMP
  59. float _Kp, _Ki, _Kd;
  60. int pid_cycle, pid_number_of_cycles;
  61. bool pid_tuning_finished = false;
  62. float Kp=DEFAULT_Kp;
  63. float Ki=(DEFAULT_Ki*PID_dT);
  64. float Kd=(DEFAULT_Kd/PID_dT);
  65. #ifdef PID_ADD_EXTRUSION_RATE
  66. float Kc=DEFAULT_Kc;
  67. #endif
  68. #endif //PIDTEMP
  69. #ifdef PIDTEMPBED
  70. float bedKp=DEFAULT_bedKp;
  71. float bedKi=(DEFAULT_bedKi*PID_dT);
  72. float bedKd=(DEFAULT_bedKd/PID_dT);
  73. #endif //PIDTEMPBED
  74. #ifdef FAN_SOFT_PWM
  75. unsigned char fanSpeedSoftPwm;
  76. #endif
  77. unsigned char soft_pwm_bed;
  78. #ifdef BABYSTEPPING
  79. volatile int babystepsTodo[3]={0,0,0};
  80. #endif
  81. #ifdef FILAMENT_SENSOR
  82. int current_raw_filwidth = 0; //Holds measured filament diameter - one extruder only
  83. #endif
  84. //===========================================================================
  85. //=============================private variables============================
  86. //===========================================================================
  87. static volatile bool temp_meas_ready = false;
  88. #ifdef PIDTEMP
  89. //static cannot be external:
  90. static float temp_iState[EXTRUDERS] = { 0 };
  91. static float temp_dState[EXTRUDERS] = { 0 };
  92. static float pTerm[EXTRUDERS];
  93. static float iTerm[EXTRUDERS];
  94. static float dTerm[EXTRUDERS];
  95. //int output;
  96. static float pid_error[EXTRUDERS];
  97. static float temp_iState_min[EXTRUDERS];
  98. static float temp_iState_max[EXTRUDERS];
  99. // static float pid_input[EXTRUDERS];
  100. // static float pid_output[EXTRUDERS];
  101. static bool pid_reset[EXTRUDERS];
  102. #endif //PIDTEMP
  103. #ifdef PIDTEMPBED
  104. //static cannot be external:
  105. static float temp_iState_bed = { 0 };
  106. static float temp_dState_bed = { 0 };
  107. static float pTerm_bed;
  108. static float iTerm_bed;
  109. static float dTerm_bed;
  110. //int output;
  111. static float pid_error_bed;
  112. static float temp_iState_min_bed;
  113. static float temp_iState_max_bed;
  114. #else //PIDTEMPBED
  115. static unsigned long previous_millis_bed_heater;
  116. #endif //PIDTEMPBED
  117. static unsigned char soft_pwm[EXTRUDERS];
  118. #ifdef FAN_SOFT_PWM
  119. static unsigned char soft_pwm_fan;
  120. #endif
  121. #if (defined(EXTRUDER_0_AUTO_FAN_PIN) && EXTRUDER_0_AUTO_FAN_PIN > -1) || \
  122. (defined(EXTRUDER_1_AUTO_FAN_PIN) && EXTRUDER_1_AUTO_FAN_PIN > -1) || \
  123. (defined(EXTRUDER_2_AUTO_FAN_PIN) && EXTRUDER_2_AUTO_FAN_PIN > -1)
  124. static unsigned long extruder_autofan_last_check;
  125. #endif
  126. #if EXTRUDERS > 3
  127. # error Unsupported number of extruders
  128. #elif EXTRUDERS > 2
  129. # define ARRAY_BY_EXTRUDERS(v1, v2, v3) { v1, v2, v3 }
  130. #elif EXTRUDERS > 1
  131. # define ARRAY_BY_EXTRUDERS(v1, v2, v3) { v1, v2 }
  132. #else
  133. # define ARRAY_BY_EXTRUDERS(v1, v2, v3) { v1 }
  134. #endif
  135. // Init min and max temp with extreme values to prevent false errors during startup
  136. static int minttemp_raw[EXTRUDERS] = ARRAY_BY_EXTRUDERS( HEATER_0_RAW_LO_TEMP , HEATER_1_RAW_LO_TEMP , HEATER_2_RAW_LO_TEMP );
  137. static int maxttemp_raw[EXTRUDERS] = ARRAY_BY_EXTRUDERS( HEATER_0_RAW_HI_TEMP , HEATER_1_RAW_HI_TEMP , HEATER_2_RAW_HI_TEMP );
  138. static int minttemp[EXTRUDERS] = ARRAY_BY_EXTRUDERS( 0, 0, 0 );
  139. static int maxttemp[EXTRUDERS] = ARRAY_BY_EXTRUDERS( 16383, 16383, 16383 );
  140. #ifdef BED_MINTEMP
  141. static int bed_minttemp_raw = HEATER_BED_RAW_LO_TEMP;
  142. #endif
  143. #ifdef BED_MAXTEMP
  144. static int bed_maxttemp_raw = HEATER_BED_RAW_HI_TEMP;
  145. #endif
  146. #ifdef TEMP_SENSOR_1_AS_REDUNDANT
  147. static void *heater_ttbl_map[2] = {(void *)HEATER_0_TEMPTABLE, (void *)HEATER_1_TEMPTABLE };
  148. static uint8_t heater_ttbllen_map[2] = { HEATER_0_TEMPTABLE_LEN, HEATER_1_TEMPTABLE_LEN };
  149. #else
  150. static void *heater_ttbl_map[EXTRUDERS] = ARRAY_BY_EXTRUDERS( (void *)HEATER_0_TEMPTABLE, (void *)HEATER_1_TEMPTABLE, (void *)HEATER_2_TEMPTABLE );
  151. static uint8_t heater_ttbllen_map[EXTRUDERS] = ARRAY_BY_EXTRUDERS( HEATER_0_TEMPTABLE_LEN, HEATER_1_TEMPTABLE_LEN, HEATER_2_TEMPTABLE_LEN );
  152. #endif
  153. static float analog2temp(int raw, uint8_t e);
  154. static float analog2tempBed(int raw);
  155. static float analog2tempAmbient(int raw);
  156. static void updateTemperaturesFromRawValues();
  157. enum TempRunawayStates
  158. {
  159. TempRunaway_INACTIVE = 0,
  160. TempRunaway_PREHEAT = 1,
  161. TempRunaway_ACTIVE = 2,
  162. };
  163. #ifdef WATCH_TEMP_PERIOD
  164. int watch_start_temp[EXTRUDERS] = ARRAY_BY_EXTRUDERS(0,0,0);
  165. unsigned long watchmillis[EXTRUDERS] = ARRAY_BY_EXTRUDERS(0,0,0);
  166. #endif //WATCH_TEMP_PERIOD
  167. #ifndef SOFT_PWM_SCALE
  168. #define SOFT_PWM_SCALE 0
  169. #endif
  170. #ifdef FILAMENT_SENSOR
  171. static int meas_shift_index; //used to point to a delayed sample in buffer for filament width sensor
  172. #endif
  173. //===========================================================================
  174. //============================= functions ============================
  175. //===========================================================================
  176. void PID_autotune(float temp, int extruder, int ncycles)
  177. {
  178. pid_number_of_cycles = ncycles;
  179. pid_tuning_finished = false;
  180. float input = 0.0;
  181. pid_cycle=0;
  182. bool heating = true;
  183. unsigned long temp_millis = millis();
  184. unsigned long t1=temp_millis;
  185. unsigned long t2=temp_millis;
  186. long t_high = 0;
  187. long t_low = 0;
  188. long bias, d;
  189. float Ku, Tu;
  190. float max = 0, min = 10000;
  191. uint8_t safety_check_cycles = 0;
  192. const uint8_t safety_check_cycles_count = (extruder < 0) ? 45 : 10; //10 cycles / 20s delay for extruder and 45 cycles / 90s for heatbed
  193. float temp_ambient;
  194. #if (defined(EXTRUDER_0_AUTO_FAN_PIN) && EXTRUDER_0_AUTO_FAN_PIN > -1) || \
  195. (defined(EXTRUDER_1_AUTO_FAN_PIN) && EXTRUDER_1_AUTO_FAN_PIN > -1) || \
  196. (defined(EXTRUDER_2_AUTO_FAN_PIN) && EXTRUDER_2_AUTO_FAN_PIN > -1)
  197. unsigned long extruder_autofan_last_check = millis();
  198. #endif
  199. if ((extruder >= EXTRUDERS)
  200. #if (TEMP_BED_PIN <= -1)
  201. ||(extruder < 0)
  202. #endif
  203. ){
  204. SERIAL_ECHOLN("PID Autotune failed. Bad extruder number.");
  205. pid_tuning_finished = true;
  206. pid_cycle = 0;
  207. return;
  208. }
  209. SERIAL_ECHOLN("PID Autotune start");
  210. disable_heater(); // switch off all heaters.
  211. if (extruder<0)
  212. {
  213. soft_pwm_bed = (MAX_BED_POWER)/2;
  214. bias = d = (MAX_BED_POWER)/2;
  215. }
  216. else
  217. {
  218. soft_pwm[extruder] = (PID_MAX)/2;
  219. bias = d = (PID_MAX)/2;
  220. }
  221. for(;;) {
  222. wdt_reset();
  223. if(temp_meas_ready == true) { // temp sample ready
  224. updateTemperaturesFromRawValues();
  225. input = (extruder<0)?current_temperature_bed:current_temperature[extruder];
  226. max=max(max,input);
  227. min=min(min,input);
  228. #if (defined(EXTRUDER_0_AUTO_FAN_PIN) && EXTRUDER_0_AUTO_FAN_PIN > -1) || \
  229. (defined(EXTRUDER_1_AUTO_FAN_PIN) && EXTRUDER_1_AUTO_FAN_PIN > -1) || \
  230. (defined(EXTRUDER_2_AUTO_FAN_PIN) && EXTRUDER_2_AUTO_FAN_PIN > -1)
  231. if(millis() - extruder_autofan_last_check > 2500) {
  232. checkExtruderAutoFans();
  233. extruder_autofan_last_check = millis();
  234. }
  235. #endif
  236. if(heating == true && input > temp) {
  237. if(millis() - t2 > 5000) {
  238. heating=false;
  239. if (extruder<0)
  240. soft_pwm_bed = (bias - d) >> 1;
  241. else
  242. soft_pwm[extruder] = (bias - d) >> 1;
  243. t1=millis();
  244. t_high=t1 - t2;
  245. max=temp;
  246. }
  247. }
  248. if(heating == false && input < temp) {
  249. if(millis() - t1 > 5000) {
  250. heating=true;
  251. t2=millis();
  252. t_low=t2 - t1;
  253. if(pid_cycle > 0) {
  254. bias += (d*(t_high - t_low))/(t_low + t_high);
  255. bias = constrain(bias, 20 ,(extruder<0?(MAX_BED_POWER):(PID_MAX))-20);
  256. if(bias > (extruder<0?(MAX_BED_POWER):(PID_MAX))/2) d = (extruder<0?(MAX_BED_POWER):(PID_MAX)) - 1 - bias;
  257. else d = bias;
  258. SERIAL_PROTOCOLPGM(" bias: "); SERIAL_PROTOCOL(bias);
  259. SERIAL_PROTOCOLPGM(" d: "); SERIAL_PROTOCOL(d);
  260. SERIAL_PROTOCOLPGM(" min: "); SERIAL_PROTOCOL(min);
  261. SERIAL_PROTOCOLPGM(" max: "); SERIAL_PROTOCOLLN(max);
  262. if(pid_cycle > 2) {
  263. Ku = (4.0*d)/(3.14159*(max-min)/2.0);
  264. Tu = ((float)(t_low + t_high)/1000.0);
  265. SERIAL_PROTOCOLPGM(" Ku: "); SERIAL_PROTOCOL(Ku);
  266. SERIAL_PROTOCOLPGM(" Tu: "); SERIAL_PROTOCOLLN(Tu);
  267. _Kp = 0.6*Ku;
  268. _Ki = 2*_Kp/Tu;
  269. _Kd = _Kp*Tu/8;
  270. SERIAL_PROTOCOLLNPGM(" Classic PID ");
  271. SERIAL_PROTOCOLPGM(" Kp: "); SERIAL_PROTOCOLLN(_Kp);
  272. SERIAL_PROTOCOLPGM(" Ki: "); SERIAL_PROTOCOLLN(_Ki);
  273. SERIAL_PROTOCOLPGM(" Kd: "); SERIAL_PROTOCOLLN(_Kd);
  274. /*
  275. _Kp = 0.33*Ku;
  276. _Ki = _Kp/Tu;
  277. _Kd = _Kp*Tu/3;
  278. SERIAL_PROTOCOLLNPGM(" Some overshoot ");
  279. SERIAL_PROTOCOLPGM(" Kp: "); SERIAL_PROTOCOLLN(_Kp);
  280. SERIAL_PROTOCOLPGM(" Ki: "); SERIAL_PROTOCOLLN(_Ki);
  281. SERIAL_PROTOCOLPGM(" Kd: "); SERIAL_PROTOCOLLN(_Kd);
  282. _Kp = 0.2*Ku;
  283. _Ki = 2*_Kp/Tu;
  284. _Kd = _Kp*Tu/3;
  285. SERIAL_PROTOCOLLNPGM(" No overshoot ");
  286. SERIAL_PROTOCOLPGM(" Kp: "); SERIAL_PROTOCOLLN(_Kp);
  287. SERIAL_PROTOCOLPGM(" Ki: "); SERIAL_PROTOCOLLN(_Ki);
  288. SERIAL_PROTOCOLPGM(" Kd: "); SERIAL_PROTOCOLLN(_Kd);
  289. */
  290. }
  291. }
  292. if (extruder<0)
  293. soft_pwm_bed = (bias + d) >> 1;
  294. else
  295. soft_pwm[extruder] = (bias + d) >> 1;
  296. pid_cycle++;
  297. min=temp;
  298. }
  299. }
  300. }
  301. if(input > (temp + 20)) {
  302. SERIAL_PROTOCOLLNPGM("PID Autotune failed! Temperature too high");
  303. pid_tuning_finished = true;
  304. pid_cycle = 0;
  305. return;
  306. }
  307. if(millis() - temp_millis > 2000) {
  308. int p;
  309. if (extruder<0){
  310. p=soft_pwm_bed;
  311. SERIAL_PROTOCOLPGM("B:");
  312. }else{
  313. p=soft_pwm[extruder];
  314. SERIAL_PROTOCOLPGM("T:");
  315. }
  316. SERIAL_PROTOCOL(input);
  317. SERIAL_PROTOCOLPGM(" @:");
  318. SERIAL_PROTOCOLLN(p);
  319. if (safety_check_cycles == 0) { //save ambient temp
  320. temp_ambient = input;
  321. //SERIAL_ECHOPGM("Ambient T: ");
  322. //MYSERIAL.println(temp_ambient);
  323. safety_check_cycles++;
  324. }
  325. else if (safety_check_cycles < safety_check_cycles_count) { //delay
  326. safety_check_cycles++;
  327. }
  328. else if (safety_check_cycles == safety_check_cycles_count){ //check that temperature is rising
  329. safety_check_cycles++;
  330. //SERIAL_ECHOPGM("Time from beginning: ");
  331. //MYSERIAL.print(safety_check_cycles_count * 2);
  332. //SERIAL_ECHOPGM("s. Difference between current and ambient T: ");
  333. //MYSERIAL.println(input - temp_ambient);
  334. if (abs(input - temp_ambient) < 5.0) {
  335. temp_runaway_stop(false, (extruder<0));
  336. pid_tuning_finished = true;
  337. return;
  338. }
  339. }
  340. temp_millis = millis();
  341. }
  342. if(((millis() - t1) + (millis() - t2)) > (10L*60L*1000L*2L)) {
  343. SERIAL_PROTOCOLLNPGM("PID Autotune failed! timeout");
  344. pid_tuning_finished = true;
  345. pid_cycle = 0;
  346. return;
  347. }
  348. if(pid_cycle > ncycles) {
  349. SERIAL_PROTOCOLLNPGM("PID Autotune finished! Put the last Kp, Ki and Kd constants from above into Configuration.h");
  350. pid_tuning_finished = true;
  351. pid_cycle = 0;
  352. return;
  353. }
  354. lcd_update();
  355. }
  356. }
  357. void updatePID()
  358. {
  359. #ifdef PIDTEMP
  360. for(int e = 0; e < EXTRUDERS; e++) {
  361. temp_iState_max[e] = PID_INTEGRAL_DRIVE_MAX / Ki;
  362. }
  363. #endif
  364. #ifdef PIDTEMPBED
  365. temp_iState_max_bed = PID_INTEGRAL_DRIVE_MAX / bedKi;
  366. #endif
  367. }
  368. int getHeaterPower(int heater) {
  369. if (heater<0)
  370. return soft_pwm_bed;
  371. return soft_pwm[heater];
  372. }
  373. #if (defined(EXTRUDER_0_AUTO_FAN_PIN) && EXTRUDER_0_AUTO_FAN_PIN > -1) || \
  374. (defined(EXTRUDER_1_AUTO_FAN_PIN) && EXTRUDER_1_AUTO_FAN_PIN > -1) || \
  375. (defined(EXTRUDER_2_AUTO_FAN_PIN) && EXTRUDER_2_AUTO_FAN_PIN > -1)
  376. #if defined(FAN_PIN) && FAN_PIN > -1
  377. #if EXTRUDER_0_AUTO_FAN_PIN == FAN_PIN
  378. #error "You cannot set EXTRUDER_0_AUTO_FAN_PIN equal to FAN_PIN"
  379. #endif
  380. #if EXTRUDER_1_AUTO_FAN_PIN == FAN_PIN
  381. #error "You cannot set EXTRUDER_1_AUTO_FAN_PIN equal to FAN_PIN"
  382. #endif
  383. #if EXTRUDER_2_AUTO_FAN_PIN == FAN_PIN
  384. #error "You cannot set EXTRUDER_2_AUTO_FAN_PIN equal to FAN_PIN"
  385. #endif
  386. #endif
  387. void setExtruderAutoFanState(int pin, bool state)
  388. {
  389. unsigned char newFanSpeed = (state != 0) ? EXTRUDER_AUTO_FAN_SPEED : 0;
  390. // this idiom allows both digital and PWM fan outputs (see M42 handling).
  391. pinMode(pin, OUTPUT);
  392. digitalWrite(pin, newFanSpeed);
  393. analogWrite(pin, newFanSpeed);
  394. }
  395. #if (defined(TACH_0) && TACH_0 >-1) || (defined(TACH_1) && TACH_1 > -1)
  396. void countFanSpeed()
  397. {
  398. //SERIAL_ECHOPGM("edge counter 1:"); MYSERIAL.println(fan_edge_counter[1]);
  399. fan_speed[0] = (fan_edge_counter[0] * (float(250) / (millis() - extruder_autofan_last_check)));
  400. fan_speed[1] = (fan_edge_counter[1] * (float(250) / (millis() - extruder_autofan_last_check)));
  401. /*SERIAL_ECHOPGM("time interval: "); MYSERIAL.println(millis() - extruder_autofan_last_check);
  402. SERIAL_ECHOPGM("extruder fan speed:"); MYSERIAL.print(fan_speed[0]); SERIAL_ECHOPGM("; edge counter:"); MYSERIAL.println(fan_edge_counter[0]);
  403. SERIAL_ECHOPGM("print fan speed:"); MYSERIAL.print(fan_speed[1]); SERIAL_ECHOPGM("; edge counter:"); MYSERIAL.println(fan_edge_counter[1]);
  404. SERIAL_ECHOLNPGM(" ");*/
  405. fan_edge_counter[0] = 0;
  406. fan_edge_counter[1] = 0;
  407. }
  408. extern bool fans_check_enabled;
  409. void checkFanSpeed()
  410. {
  411. fans_check_enabled = (eeprom_read_byte((uint8_t*)EEPROM_FAN_CHECK_ENABLED) > 0);
  412. static unsigned char fan_speed_errors[2] = { 0,0 };
  413. if (fan_speed[0] == 0 && (current_temperature[0] > EXTRUDER_AUTO_FAN_TEMPERATURE)) fan_speed_errors[0]++;
  414. else fan_speed_errors[0] = 0;
  415. if ((fan_speed[1] == 0)&& (fanSpeed > MIN_PRINT_FAN_SPEED)) fan_speed_errors[1]++;
  416. else fan_speed_errors[1] = 0;
  417. if ((fan_speed_errors[0] > 5) && fans_check_enabled) fanSpeedError(0); //extruder fan
  418. if ((fan_speed_errors[1] > 15) && fans_check_enabled) fanSpeedError(1); //print fan
  419. }
  420. extern void stop_and_save_print_to_ram(float z_move, float e_move);
  421. extern void restore_print_from_ram_and_continue(float e_move);
  422. void fanSpeedError(unsigned char _fan) {
  423. if (get_message_level() != 0 && isPrintPaused) return;
  424. //to ensure that target temp. is not set to zero in case taht we are resuming print
  425. if (card.sdprinting) {
  426. if (heating_status != 0) {
  427. lcd_print_stop();
  428. }
  429. else {
  430. isPrintPaused = true;
  431. lcd_sdcard_pause();
  432. }
  433. }
  434. else {
  435. setTargetHotend0(0);
  436. SERIAL_ECHOLNPGM("// action:pause"); //for octoprint
  437. }
  438. switch (_fan) {
  439. case 0:
  440. SERIAL_ECHOLNPGM("Extruder fan speed is lower then expected");
  441. if (get_message_level() == 0) {
  442. WRITE(BEEPER, HIGH);
  443. delayMicroseconds(200);
  444. WRITE(BEEPER, LOW);
  445. delayMicroseconds(100);
  446. LCD_ALERTMESSAGEPGM("Err: EXTR. FAN ERROR");
  447. }
  448. break;
  449. case 1:
  450. SERIAL_ECHOLNPGM("Print fan speed is lower then expected");
  451. if (get_message_level() == 0) {
  452. WRITE(BEEPER, HIGH);
  453. delayMicroseconds(200);
  454. WRITE(BEEPER, LOW);
  455. delayMicroseconds(100);
  456. LCD_ALERTMESSAGEPGM("Err: PRINT FAN ERROR");
  457. }
  458. break;
  459. }
  460. }
  461. #endif //(defined(TACH_0) && TACH_0 >-1) || (defined(TACH_1) && TACH_1 > -1)
  462. void checkExtruderAutoFans()
  463. {
  464. uint8_t fanState = 0;
  465. // which fan pins need to be turned on?
  466. #if defined(EXTRUDER_0_AUTO_FAN_PIN) && EXTRUDER_0_AUTO_FAN_PIN > -1
  467. if (current_temperature[0] > EXTRUDER_AUTO_FAN_TEMPERATURE)
  468. fanState |= 1;
  469. #endif
  470. #if defined(EXTRUDER_1_AUTO_FAN_PIN) && EXTRUDER_1_AUTO_FAN_PIN > -1
  471. if (current_temperature[1] > EXTRUDER_AUTO_FAN_TEMPERATURE)
  472. {
  473. if (EXTRUDER_1_AUTO_FAN_PIN == EXTRUDER_0_AUTO_FAN_PIN)
  474. fanState |= 1;
  475. else
  476. fanState |= 2;
  477. }
  478. #endif
  479. #if defined(EXTRUDER_2_AUTO_FAN_PIN) && EXTRUDER_2_AUTO_FAN_PIN > -1
  480. if (current_temperature[2] > EXTRUDER_AUTO_FAN_TEMPERATURE)
  481. {
  482. if (EXTRUDER_2_AUTO_FAN_PIN == EXTRUDER_0_AUTO_FAN_PIN)
  483. fanState |= 1;
  484. else if (EXTRUDER_2_AUTO_FAN_PIN == EXTRUDER_1_AUTO_FAN_PIN)
  485. fanState |= 2;
  486. else
  487. fanState |= 4;
  488. }
  489. #endif
  490. // update extruder auto fan states
  491. #if defined(EXTRUDER_0_AUTO_FAN_PIN) && EXTRUDER_0_AUTO_FAN_PIN > -1
  492. setExtruderAutoFanState(EXTRUDER_0_AUTO_FAN_PIN, (fanState & 1) != 0);
  493. #endif
  494. #if defined(EXTRUDER_1_AUTO_FAN_PIN) && EXTRUDER_1_AUTO_FAN_PIN > -1
  495. if (EXTRUDER_1_AUTO_FAN_PIN != EXTRUDER_0_AUTO_FAN_PIN)
  496. setExtruderAutoFanState(EXTRUDER_1_AUTO_FAN_PIN, (fanState & 2) != 0);
  497. #endif
  498. #if defined(EXTRUDER_2_AUTO_FAN_PIN) && EXTRUDER_2_AUTO_FAN_PIN > -1
  499. if (EXTRUDER_2_AUTO_FAN_PIN != EXTRUDER_0_AUTO_FAN_PIN
  500. && EXTRUDER_2_AUTO_FAN_PIN != EXTRUDER_1_AUTO_FAN_PIN)
  501. setExtruderAutoFanState(EXTRUDER_2_AUTO_FAN_PIN, (fanState & 4) != 0);
  502. #endif
  503. }
  504. #endif // any extruder auto fan pins set
  505. void manage_heater()
  506. {
  507. wdt_reset();
  508. float pid_input;
  509. float pid_output;
  510. if(temp_meas_ready != true) //better readability
  511. return;
  512. updateTemperaturesFromRawValues();
  513. #ifdef TEMP_RUNAWAY_BED_HYSTERESIS
  514. temp_runaway_check(0, target_temperature_bed, current_temperature_bed, (int)soft_pwm_bed, true);
  515. #endif
  516. for(int e = 0; e < EXTRUDERS; e++)
  517. {
  518. #ifdef TEMP_RUNAWAY_EXTRUDER_HYSTERESIS
  519. temp_runaway_check(e+1, target_temperature[e], current_temperature[e], (int)soft_pwm[e], false);
  520. #endif
  521. #ifdef PIDTEMP
  522. pid_input = current_temperature[e];
  523. #ifndef PID_OPENLOOP
  524. pid_error[e] = target_temperature[e] - pid_input;
  525. if(pid_error[e] > PID_FUNCTIONAL_RANGE) {
  526. pid_output = BANG_MAX;
  527. pid_reset[e] = true;
  528. }
  529. else if(pid_error[e] < -PID_FUNCTIONAL_RANGE || target_temperature[e] == 0) {
  530. pid_output = 0;
  531. pid_reset[e] = true;
  532. }
  533. else {
  534. if(pid_reset[e] == true) {
  535. temp_iState[e] = 0.0;
  536. pid_reset[e] = false;
  537. }
  538. pTerm[e] = Kp * pid_error[e];
  539. temp_iState[e] += pid_error[e];
  540. temp_iState[e] = constrain(temp_iState[e], temp_iState_min[e], temp_iState_max[e]);
  541. iTerm[e] = Ki * temp_iState[e];
  542. //K1 defined in Configuration.h in the PID settings
  543. #define K2 (1.0-K1)
  544. dTerm[e] = (Kd * (pid_input - temp_dState[e]))*K2 + (K1 * dTerm[e]);
  545. pid_output = pTerm[e] + iTerm[e] - dTerm[e];
  546. if (pid_output > PID_MAX) {
  547. if (pid_error[e] > 0 ) temp_iState[e] -= pid_error[e]; // conditional un-integration
  548. pid_output=PID_MAX;
  549. } else if (pid_output < 0){
  550. if (pid_error[e] < 0 ) temp_iState[e] -= pid_error[e]; // conditional un-integration
  551. pid_output=0;
  552. }
  553. }
  554. temp_dState[e] = pid_input;
  555. #else
  556. pid_output = constrain(target_temperature[e], 0, PID_MAX);
  557. #endif //PID_OPENLOOP
  558. #ifdef PID_DEBUG
  559. SERIAL_ECHO_START;
  560. SERIAL_ECHO(" PID_DEBUG ");
  561. SERIAL_ECHO(e);
  562. SERIAL_ECHO(": Input ");
  563. SERIAL_ECHO(pid_input);
  564. SERIAL_ECHO(" Output ");
  565. SERIAL_ECHO(pid_output);
  566. SERIAL_ECHO(" pTerm ");
  567. SERIAL_ECHO(pTerm[e]);
  568. SERIAL_ECHO(" iTerm ");
  569. SERIAL_ECHO(iTerm[e]);
  570. SERIAL_ECHO(" dTerm ");
  571. SERIAL_ECHOLN(dTerm[e]);
  572. #endif //PID_DEBUG
  573. #else /* PID off */
  574. pid_output = 0;
  575. if(current_temperature[e] < target_temperature[e]) {
  576. pid_output = PID_MAX;
  577. }
  578. #endif
  579. // Check if temperature is within the correct range
  580. #ifdef AMBIENT_THERMISTOR
  581. if(((current_temperature_ambient < MINTEMP_MINAMBIENT) || (current_temperature[e] > minttemp[e])) && (current_temperature[e] < maxttemp[e]))
  582. #else //AMBIENT_THERMISTOR
  583. if((current_temperature[e] > minttemp[e]) && (current_temperature[e] < maxttemp[e]))
  584. #endif //AMBIENT_THERMISTOR
  585. {
  586. soft_pwm[e] = (int)pid_output >> 1;
  587. }
  588. else
  589. {
  590. soft_pwm[e] = 0;
  591. }
  592. #ifdef WATCH_TEMP_PERIOD
  593. if(watchmillis[e] && millis() - watchmillis[e] > WATCH_TEMP_PERIOD)
  594. {
  595. if(degHotend(e) < watch_start_temp[e] + WATCH_TEMP_INCREASE)
  596. {
  597. setTargetHotend(0, e);
  598. LCD_MESSAGEPGM("Heating failed");
  599. SERIAL_ECHO_START;
  600. SERIAL_ECHOLN("Heating failed");
  601. }else{
  602. watchmillis[e] = 0;
  603. }
  604. }
  605. #endif
  606. #ifdef TEMP_SENSOR_1_AS_REDUNDANT
  607. if(fabs(current_temperature[0] - redundant_temperature) > MAX_REDUNDANT_TEMP_SENSOR_DIFF) {
  608. disable_heater();
  609. if(IsStopped() == false) {
  610. SERIAL_ERROR_START;
  611. SERIAL_ERRORLNPGM("Extruder switched off. Temperature difference between temp sensors is too high !");
  612. LCD_ALERTMESSAGEPGM("Err: REDUNDANT TEMP ERROR");
  613. }
  614. #ifndef BOGUS_TEMPERATURE_FAILSAFE_OVERRIDE
  615. Stop();
  616. #endif
  617. }
  618. #endif
  619. } // End extruder for loop
  620. #ifndef DEBUG_DISABLE_FANCHECK
  621. #if (defined(EXTRUDER_0_AUTO_FAN_PIN) && EXTRUDER_0_AUTO_FAN_PIN > -1) || \
  622. (defined(EXTRUDER_1_AUTO_FAN_PIN) && EXTRUDER_1_AUTO_FAN_PIN > -1) || \
  623. (defined(EXTRUDER_2_AUTO_FAN_PIN) && EXTRUDER_2_AUTO_FAN_PIN > -1)
  624. if(millis() - extruder_autofan_last_check > 1000) // only need to check fan state very infrequently
  625. {
  626. #if (defined(TACH_0) && TACH_0 >-1) || (defined(TACH_1) && TACH_1 > -1)
  627. countFanSpeed();
  628. checkFanSpeed();
  629. #endif //(defined(TACH_0) && TACH_0 >-1) || (defined(TACH_1) && TACH_1 > -1)
  630. checkExtruderAutoFans();
  631. extruder_autofan_last_check = millis();
  632. }
  633. #endif
  634. #endif //DEBUG_DISABLE_FANCHECK
  635. #ifndef PIDTEMPBED
  636. if(millis() - previous_millis_bed_heater < BED_CHECK_INTERVAL)
  637. return;
  638. previous_millis_bed_heater = millis();
  639. #endif
  640. #if TEMP_SENSOR_BED != 0
  641. #ifdef PIDTEMPBED
  642. pid_input = current_temperature_bed;
  643. #ifndef PID_OPENLOOP
  644. pid_error_bed = target_temperature_bed - pid_input;
  645. pTerm_bed = bedKp * pid_error_bed;
  646. temp_iState_bed += pid_error_bed;
  647. temp_iState_bed = constrain(temp_iState_bed, temp_iState_min_bed, temp_iState_max_bed);
  648. iTerm_bed = bedKi * temp_iState_bed;
  649. //K1 defined in Configuration.h in the PID settings
  650. #define K2 (1.0-K1)
  651. dTerm_bed= (bedKd * (pid_input - temp_dState_bed))*K2 + (K1 * dTerm_bed);
  652. temp_dState_bed = pid_input;
  653. pid_output = pTerm_bed + iTerm_bed - dTerm_bed;
  654. if (pid_output > MAX_BED_POWER) {
  655. if (pid_error_bed > 0 ) temp_iState_bed -= pid_error_bed; // conditional un-integration
  656. pid_output=MAX_BED_POWER;
  657. } else if (pid_output < 0){
  658. if (pid_error_bed < 0 ) temp_iState_bed -= pid_error_bed; // conditional un-integration
  659. pid_output=0;
  660. }
  661. #else
  662. pid_output = constrain(target_temperature_bed, 0, MAX_BED_POWER);
  663. #endif //PID_OPENLOOP
  664. #ifdef AMBIENT_THERMISTOR
  665. if(((current_temperature_bed > BED_MINTEMP) || (current_temperature_ambient < MINTEMP_MINAMBIENT)) && (current_temperature_bed < BED_MAXTEMP))
  666. #else //AMBIENT_THERMISTOR
  667. if((current_temperature_bed > BED_MINTEMP) && (current_temperature_bed < BED_MAXTEMP))
  668. #endif //AMBIENT_THERMISTOR
  669. {
  670. soft_pwm_bed = (int)pid_output >> 1;
  671. }
  672. else {
  673. soft_pwm_bed = 0;
  674. }
  675. #elif !defined(BED_LIMIT_SWITCHING)
  676. // Check if temperature is within the correct range
  677. if((current_temperature_bed > BED_MINTEMP) && (current_temperature_bed < BED_MAXTEMP))
  678. {
  679. if(current_temperature_bed >= target_temperature_bed)
  680. {
  681. soft_pwm_bed = 0;
  682. }
  683. else
  684. {
  685. soft_pwm_bed = MAX_BED_POWER>>1;
  686. }
  687. }
  688. else
  689. {
  690. soft_pwm_bed = 0;
  691. WRITE(HEATER_BED_PIN,LOW);
  692. }
  693. #else //#ifdef BED_LIMIT_SWITCHING
  694. // Check if temperature is within the correct band
  695. if((current_temperature_bed > BED_MINTEMP) && (current_temperature_bed < BED_MAXTEMP))
  696. {
  697. if(current_temperature_bed > target_temperature_bed + BED_HYSTERESIS)
  698. {
  699. soft_pwm_bed = 0;
  700. }
  701. else if(current_temperature_bed <= target_temperature_bed - BED_HYSTERESIS)
  702. {
  703. soft_pwm_bed = MAX_BED_POWER>>1;
  704. }
  705. }
  706. else
  707. {
  708. soft_pwm_bed = 0;
  709. WRITE(HEATER_BED_PIN,LOW);
  710. }
  711. #endif
  712. #endif
  713. //code for controlling the extruder rate based on the width sensor
  714. #ifdef FILAMENT_SENSOR
  715. if(filament_sensor)
  716. {
  717. meas_shift_index=delay_index1-meas_delay_cm;
  718. if(meas_shift_index<0)
  719. meas_shift_index = meas_shift_index + (MAX_MEASUREMENT_DELAY+1); //loop around buffer if needed
  720. //get the delayed info and add 100 to reconstitute to a percent of the nominal filament diameter
  721. //then square it to get an area
  722. if(meas_shift_index<0)
  723. meas_shift_index=0;
  724. else if (meas_shift_index>MAX_MEASUREMENT_DELAY)
  725. meas_shift_index=MAX_MEASUREMENT_DELAY;
  726. volumetric_multiplier[FILAMENT_SENSOR_EXTRUDER_NUM] = pow((float)(100+measurement_delay[meas_shift_index])/100.0,2);
  727. if (volumetric_multiplier[FILAMENT_SENSOR_EXTRUDER_NUM] <0.01)
  728. volumetric_multiplier[FILAMENT_SENSOR_EXTRUDER_NUM]=0.01;
  729. }
  730. #endif
  731. #ifdef HOST_KEEPALIVE_FEATURE
  732. host_keepalive();
  733. #endif
  734. }
  735. #define PGM_RD_W(x) (short)pgm_read_word(&x)
  736. // Derived from RepRap FiveD extruder::getTemperature()
  737. // For hot end temperature measurement.
  738. static float analog2temp(int raw, uint8_t e) {
  739. #ifdef TEMP_SENSOR_1_AS_REDUNDANT
  740. if(e > EXTRUDERS)
  741. #else
  742. if(e >= EXTRUDERS)
  743. #endif
  744. {
  745. SERIAL_ERROR_START;
  746. SERIAL_ERROR((int)e);
  747. SERIAL_ERRORLNPGM(" - Invalid extruder number !");
  748. kill("", 6);
  749. return 0.0;
  750. }
  751. #ifdef HEATER_0_USES_MAX6675
  752. if (e == 0)
  753. {
  754. return 0.25 * raw;
  755. }
  756. #endif
  757. if(heater_ttbl_map[e] != NULL)
  758. {
  759. float celsius = 0;
  760. uint8_t i;
  761. short (*tt)[][2] = (short (*)[][2])(heater_ttbl_map[e]);
  762. for (i=1; i<heater_ttbllen_map[e]; i++)
  763. {
  764. if (PGM_RD_W((*tt)[i][0]) > raw)
  765. {
  766. celsius = PGM_RD_W((*tt)[i-1][1]) +
  767. (raw - PGM_RD_W((*tt)[i-1][0])) *
  768. (float)(PGM_RD_W((*tt)[i][1]) - PGM_RD_W((*tt)[i-1][1])) /
  769. (float)(PGM_RD_W((*tt)[i][0]) - PGM_RD_W((*tt)[i-1][0]));
  770. break;
  771. }
  772. }
  773. // Overflow: Set to last value in the table
  774. if (i == heater_ttbllen_map[e]) celsius = PGM_RD_W((*tt)[i-1][1]);
  775. return celsius;
  776. }
  777. return ((raw * ((5.0 * 100.0) / 1024.0) / OVERSAMPLENR) * TEMP_SENSOR_AD595_GAIN) + TEMP_SENSOR_AD595_OFFSET;
  778. }
  779. // Derived from RepRap FiveD extruder::getTemperature()
  780. // For bed temperature measurement.
  781. static float analog2tempBed(int raw) {
  782. #ifdef BED_USES_THERMISTOR
  783. float celsius = 0;
  784. byte i;
  785. for (i=1; i<BEDTEMPTABLE_LEN; i++)
  786. {
  787. if (PGM_RD_W(BEDTEMPTABLE[i][0]) > raw)
  788. {
  789. celsius = PGM_RD_W(BEDTEMPTABLE[i-1][1]) +
  790. (raw - PGM_RD_W(BEDTEMPTABLE[i-1][0])) *
  791. (float)(PGM_RD_W(BEDTEMPTABLE[i][1]) - PGM_RD_W(BEDTEMPTABLE[i-1][1])) /
  792. (float)(PGM_RD_W(BEDTEMPTABLE[i][0]) - PGM_RD_W(BEDTEMPTABLE[i-1][0]));
  793. break;
  794. }
  795. }
  796. // Overflow: Set to last value in the table
  797. if (i == BEDTEMPTABLE_LEN) celsius = PGM_RD_W(BEDTEMPTABLE[i-1][1]);
  798. // temperature offset adjustment
  799. #ifdef BED_OFFSET
  800. float _offset = BED_OFFSET;
  801. float _offset_center = BED_OFFSET_CENTER;
  802. float _offset_start = BED_OFFSET_START;
  803. float _first_koef = (_offset / 2) / (_offset_center - _offset_start);
  804. float _second_koef = (_offset / 2) / (100 - _offset_center);
  805. if (celsius >= _offset_start && celsius <= _offset_center)
  806. {
  807. celsius = celsius + (_first_koef * (celsius - _offset_start));
  808. }
  809. else if (celsius > _offset_center && celsius <= 100)
  810. {
  811. celsius = celsius + (_first_koef * (_offset_center - _offset_start)) + ( _second_koef * ( celsius - ( 100 - _offset_center ) )) ;
  812. }
  813. else if (celsius > 100)
  814. {
  815. celsius = celsius + _offset;
  816. }
  817. #endif
  818. return celsius;
  819. #elif defined BED_USES_AD595
  820. return ((raw * ((5.0 * 100.0) / 1024.0) / OVERSAMPLENR) * TEMP_SENSOR_AD595_GAIN) + TEMP_SENSOR_AD595_OFFSET;
  821. #else
  822. return 0;
  823. #endif
  824. }
  825. #ifdef AMBIENT_THERMISTOR
  826. static float analog2tempAmbient(int raw)
  827. {
  828. float celsius = 0;
  829. byte i;
  830. for (i=1; i<AMBIENTTEMPTABLE_LEN; i++)
  831. {
  832. if (PGM_RD_W(AMBIENTTEMPTABLE[i][0]) > raw)
  833. {
  834. celsius = PGM_RD_W(AMBIENTTEMPTABLE[i-1][1]) +
  835. (raw - PGM_RD_W(AMBIENTTEMPTABLE[i-1][0])) *
  836. (float)(PGM_RD_W(AMBIENTTEMPTABLE[i][1]) - PGM_RD_W(AMBIENTTEMPTABLE[i-1][1])) /
  837. (float)(PGM_RD_W(AMBIENTTEMPTABLE[i][0]) - PGM_RD_W(AMBIENTTEMPTABLE[i-1][0]));
  838. break;
  839. }
  840. }
  841. // Overflow: Set to last value in the table
  842. if (i == AMBIENTTEMPTABLE_LEN) celsius = PGM_RD_W(AMBIENTTEMPTABLE[i-1][1]);
  843. return celsius;
  844. }
  845. #endif //AMBIENT_THERMISTOR
  846. /* Called to get the raw values into the the actual temperatures. The raw values are created in interrupt context,
  847. and this function is called from normal context as it is too slow to run in interrupts and will block the stepper routine otherwise */
  848. static void updateTemperaturesFromRawValues()
  849. {
  850. for(uint8_t e=0;e<EXTRUDERS;e++)
  851. {
  852. current_temperature[e] = analog2temp(current_temperature_raw[e], e);
  853. }
  854. #ifdef PINDA_THERMISTOR
  855. current_temperature_pinda = analog2tempBed(current_temperature_raw_pinda); //thermistor for pinda is the same as for bed
  856. #endif
  857. #ifdef AMBIENT_THERMISTOR
  858. current_temperature_ambient = analog2tempAmbient(current_temperature_raw_ambient); //thermistor for ambient is NTCG104LH104JT1 (2000)
  859. #endif
  860. current_temperature_bed = analog2tempBed(current_temperature_bed_raw);
  861. #ifdef TEMP_SENSOR_1_AS_REDUNDANT
  862. redundant_temperature = analog2temp(redundant_temperature_raw, 1);
  863. #endif
  864. #if defined (FILAMENT_SENSOR) && (FILWIDTH_PIN > -1) //check if a sensor is supported
  865. filament_width_meas = analog2widthFil();
  866. #endif
  867. //Reset the watchdog after we know we have a temperature measurement.
  868. watchdog_reset();
  869. CRITICAL_SECTION_START;
  870. temp_meas_ready = false;
  871. CRITICAL_SECTION_END;
  872. }
  873. // For converting raw Filament Width to milimeters
  874. #ifdef FILAMENT_SENSOR
  875. float analog2widthFil() {
  876. return current_raw_filwidth/16383.0*5.0;
  877. //return current_raw_filwidth;
  878. }
  879. // For converting raw Filament Width to a ratio
  880. int widthFil_to_size_ratio() {
  881. float temp;
  882. temp=filament_width_meas;
  883. if(filament_width_meas<MEASURED_LOWER_LIMIT)
  884. temp=filament_width_nominal; //assume sensor cut out
  885. else if (filament_width_meas>MEASURED_UPPER_LIMIT)
  886. temp= MEASURED_UPPER_LIMIT;
  887. return(filament_width_nominal/temp*100);
  888. }
  889. #endif
  890. void tp_init()
  891. {
  892. #if MB(RUMBA) && ((TEMP_SENSOR_0==-1)||(TEMP_SENSOR_1==-1)||(TEMP_SENSOR_2==-1)||(TEMP_SENSOR_BED==-1))
  893. //disable RUMBA JTAG in case the thermocouple extension is plugged on top of JTAG connector
  894. MCUCR=(1<<JTD);
  895. MCUCR=(1<<JTD);
  896. #endif
  897. // Finish init of mult extruder arrays
  898. for(int e = 0; e < EXTRUDERS; e++) {
  899. // populate with the first value
  900. maxttemp[e] = maxttemp[0];
  901. #ifdef PIDTEMP
  902. temp_iState_min[e] = 0.0;
  903. temp_iState_max[e] = PID_INTEGRAL_DRIVE_MAX / Ki;
  904. #endif //PIDTEMP
  905. #ifdef PIDTEMPBED
  906. temp_iState_min_bed = 0.0;
  907. temp_iState_max_bed = PID_INTEGRAL_DRIVE_MAX / bedKi;
  908. #endif //PIDTEMPBED
  909. }
  910. #if defined(HEATER_0_PIN) && (HEATER_0_PIN > -1)
  911. SET_OUTPUT(HEATER_0_PIN);
  912. #endif
  913. #if defined(HEATER_1_PIN) && (HEATER_1_PIN > -1)
  914. SET_OUTPUT(HEATER_1_PIN);
  915. #endif
  916. #if defined(HEATER_2_PIN) && (HEATER_2_PIN > -1)
  917. SET_OUTPUT(HEATER_2_PIN);
  918. #endif
  919. #if defined(HEATER_BED_PIN) && (HEATER_BED_PIN > -1)
  920. SET_OUTPUT(HEATER_BED_PIN);
  921. #endif
  922. #if defined(FAN_PIN) && (FAN_PIN > -1)
  923. SET_OUTPUT(FAN_PIN);
  924. #ifdef FAST_PWM_FAN
  925. setPwmFrequency(FAN_PIN, 1); // No prescaling. Pwm frequency = F_CPU/256/8
  926. #endif
  927. #ifdef FAN_SOFT_PWM
  928. soft_pwm_fan = fanSpeedSoftPwm / 2;
  929. #endif
  930. #endif
  931. #ifdef HEATER_0_USES_MAX6675
  932. #ifndef SDSUPPORT
  933. SET_OUTPUT(SCK_PIN);
  934. WRITE(SCK_PIN,0);
  935. SET_OUTPUT(MOSI_PIN);
  936. WRITE(MOSI_PIN,1);
  937. SET_INPUT(MISO_PIN);
  938. WRITE(MISO_PIN,1);
  939. #endif
  940. /* Using pinMode and digitalWrite, as that was the only way I could get it to compile */
  941. //Have to toggle SD card CS pin to low first, to enable firmware to talk with SD card
  942. pinMode(SS_PIN, OUTPUT);
  943. digitalWrite(SS_PIN,0);
  944. pinMode(MAX6675_SS, OUTPUT);
  945. digitalWrite(MAX6675_SS,1);
  946. #endif
  947. adc_init();
  948. // Use timer0 for temperature measurement
  949. // Interleave temperature interrupt with millies interrupt
  950. OCR0B = 128;
  951. TIMSK0 |= (1<<OCIE0B);
  952. // Wait for temperature measurement to settle
  953. delay(250);
  954. #ifdef HEATER_0_MINTEMP
  955. minttemp[0] = HEATER_0_MINTEMP;
  956. while(analog2temp(minttemp_raw[0], 0) < HEATER_0_MINTEMP) {
  957. #if HEATER_0_RAW_LO_TEMP < HEATER_0_RAW_HI_TEMP
  958. minttemp_raw[0] += OVERSAMPLENR;
  959. #else
  960. minttemp_raw[0] -= OVERSAMPLENR;
  961. #endif
  962. }
  963. #endif //MINTEMP
  964. #ifdef HEATER_0_MAXTEMP
  965. maxttemp[0] = HEATER_0_MAXTEMP;
  966. while(analog2temp(maxttemp_raw[0], 0) > HEATER_0_MAXTEMP) {
  967. #if HEATER_0_RAW_LO_TEMP < HEATER_0_RAW_HI_TEMP
  968. maxttemp_raw[0] -= OVERSAMPLENR;
  969. #else
  970. maxttemp_raw[0] += OVERSAMPLENR;
  971. #endif
  972. }
  973. #endif //MAXTEMP
  974. #if (EXTRUDERS > 1) && defined(HEATER_1_MINTEMP)
  975. minttemp[1] = HEATER_1_MINTEMP;
  976. while(analog2temp(minttemp_raw[1], 1) < HEATER_1_MINTEMP) {
  977. #if HEATER_1_RAW_LO_TEMP < HEATER_1_RAW_HI_TEMP
  978. minttemp_raw[1] += OVERSAMPLENR;
  979. #else
  980. minttemp_raw[1] -= OVERSAMPLENR;
  981. #endif
  982. }
  983. #endif // MINTEMP 1
  984. #if (EXTRUDERS > 1) && defined(HEATER_1_MAXTEMP)
  985. maxttemp[1] = HEATER_1_MAXTEMP;
  986. while(analog2temp(maxttemp_raw[1], 1) > HEATER_1_MAXTEMP) {
  987. #if HEATER_1_RAW_LO_TEMP < HEATER_1_RAW_HI_TEMP
  988. maxttemp_raw[1] -= OVERSAMPLENR;
  989. #else
  990. maxttemp_raw[1] += OVERSAMPLENR;
  991. #endif
  992. }
  993. #endif //MAXTEMP 1
  994. #if (EXTRUDERS > 2) && defined(HEATER_2_MINTEMP)
  995. minttemp[2] = HEATER_2_MINTEMP;
  996. while(analog2temp(minttemp_raw[2], 2) < HEATER_2_MINTEMP) {
  997. #if HEATER_2_RAW_LO_TEMP < HEATER_2_RAW_HI_TEMP
  998. minttemp_raw[2] += OVERSAMPLENR;
  999. #else
  1000. minttemp_raw[2] -= OVERSAMPLENR;
  1001. #endif
  1002. }
  1003. #endif //MINTEMP 2
  1004. #if (EXTRUDERS > 2) && defined(HEATER_2_MAXTEMP)
  1005. maxttemp[2] = HEATER_2_MAXTEMP;
  1006. while(analog2temp(maxttemp_raw[2], 2) > HEATER_2_MAXTEMP) {
  1007. #if HEATER_2_RAW_LO_TEMP < HEATER_2_RAW_HI_TEMP
  1008. maxttemp_raw[2] -= OVERSAMPLENR;
  1009. #else
  1010. maxttemp_raw[2] += OVERSAMPLENR;
  1011. #endif
  1012. }
  1013. #endif //MAXTEMP 2
  1014. #ifdef BED_MINTEMP
  1015. /* No bed MINTEMP error implemented?!? */
  1016. while(analog2tempBed(bed_minttemp_raw) < BED_MINTEMP) {
  1017. #if HEATER_BED_RAW_LO_TEMP < HEATER_BED_RAW_HI_TEMP
  1018. bed_minttemp_raw += OVERSAMPLENR;
  1019. #else
  1020. bed_minttemp_raw -= OVERSAMPLENR;
  1021. #endif
  1022. }
  1023. #endif //BED_MINTEMP
  1024. #ifdef BED_MAXTEMP
  1025. while(analog2tempBed(bed_maxttemp_raw) > BED_MAXTEMP) {
  1026. #if HEATER_BED_RAW_LO_TEMP < HEATER_BED_RAW_HI_TEMP
  1027. bed_maxttemp_raw -= OVERSAMPLENR;
  1028. #else
  1029. bed_maxttemp_raw += OVERSAMPLENR;
  1030. #endif
  1031. }
  1032. #endif //BED_MAXTEMP
  1033. }
  1034. void setWatch()
  1035. {
  1036. #ifdef WATCH_TEMP_PERIOD
  1037. for (int e = 0; e < EXTRUDERS; e++)
  1038. {
  1039. if(degHotend(e) < degTargetHotend(e) - (WATCH_TEMP_INCREASE * 2))
  1040. {
  1041. watch_start_temp[e] = degHotend(e);
  1042. watchmillis[e] = millis();
  1043. }
  1044. }
  1045. #endif
  1046. }
  1047. #if (defined (TEMP_RUNAWAY_BED_HYSTERESIS) && TEMP_RUNAWAY_BED_TIMEOUT > 0) || (defined (TEMP_RUNAWAY_EXTRUDER_HYSTERESIS) && TEMP_RUNAWAY_EXTRUDER_TIMEOUT > 0)
  1048. void temp_runaway_check(int _heater_id, float _target_temperature, float _current_temperature, float _output, bool _isbed)
  1049. {
  1050. float __hysteresis = 0;
  1051. int __timeout = 0;
  1052. bool temp_runaway_check_active = false;
  1053. static float __preheat_start[2] = { 0,0}; //currently just bed and one extruder
  1054. static int __preheat_counter[2] = { 0,0};
  1055. static int __preheat_errors[2] = { 0,0};
  1056. #ifdef TEMP_RUNAWAY_BED_TIMEOUT
  1057. if (_isbed)
  1058. {
  1059. __hysteresis = TEMP_RUNAWAY_BED_HYSTERESIS;
  1060. __timeout = TEMP_RUNAWAY_BED_TIMEOUT;
  1061. }
  1062. #endif
  1063. #ifdef TEMP_RUNAWAY_EXTRUDER_TIMEOUT
  1064. if (!_isbed)
  1065. {
  1066. __hysteresis = TEMP_RUNAWAY_EXTRUDER_HYSTERESIS;
  1067. __timeout = TEMP_RUNAWAY_EXTRUDER_TIMEOUT;
  1068. }
  1069. #endif
  1070. if (millis() - temp_runaway_timer[_heater_id] > 2000)
  1071. {
  1072. temp_runaway_timer[_heater_id] = millis();
  1073. if (_output == 0)
  1074. {
  1075. temp_runaway_check_active = false;
  1076. temp_runaway_error_counter[_heater_id] = 0;
  1077. }
  1078. if (temp_runaway_target[_heater_id] != _target_temperature)
  1079. {
  1080. if (_target_temperature > 0)
  1081. {
  1082. temp_runaway_status[_heater_id] = TempRunaway_PREHEAT;
  1083. temp_runaway_target[_heater_id] = _target_temperature;
  1084. __preheat_start[_heater_id] = _current_temperature;
  1085. __preheat_counter[_heater_id] = 0;
  1086. }
  1087. else
  1088. {
  1089. temp_runaway_status[_heater_id] = TempRunaway_INACTIVE;
  1090. temp_runaway_target[_heater_id] = _target_temperature;
  1091. }
  1092. }
  1093. if (temp_runaway_status[_heater_id] == TempRunaway_PREHEAT)
  1094. {
  1095. if (_current_temperature < ((_isbed) ? (0.8 * _target_temperature) : 150)) //check only in area where temperature is changing fastly for heater, check to 0.8 x target temperature for bed
  1096. {
  1097. __preheat_counter[_heater_id]++;
  1098. if (__preheat_counter[_heater_id] > ((_isbed) ? 16 : 8)) // periodicaly check if current temperature changes
  1099. {
  1100. /*SERIAL_ECHOPGM("Heater:");
  1101. MYSERIAL.print(_heater_id);
  1102. SERIAL_ECHOPGM(" T:");
  1103. MYSERIAL.print(_current_temperature);
  1104. SERIAL_ECHOPGM(" Tstart:");
  1105. MYSERIAL.print(__preheat_start[_heater_id]);*/
  1106. if (_current_temperature - __preheat_start[_heater_id] < 2) {
  1107. __preheat_errors[_heater_id]++;
  1108. /*SERIAL_ECHOPGM(" Preheat errors:");
  1109. MYSERIAL.println(__preheat_errors[_heater_id]);*/
  1110. }
  1111. else {
  1112. //SERIAL_ECHOLNPGM("");
  1113. __preheat_errors[_heater_id] = 0;
  1114. }
  1115. if (__preheat_errors[_heater_id] > ((_isbed) ? 2 : 5))
  1116. {
  1117. if (farm_mode) { prusa_statistics(0); }
  1118. temp_runaway_stop(true, _isbed);
  1119. if (farm_mode) { prusa_statistics(91); }
  1120. }
  1121. __preheat_start[_heater_id] = _current_temperature;
  1122. __preheat_counter[_heater_id] = 0;
  1123. }
  1124. }
  1125. }
  1126. if (_current_temperature >= _target_temperature && temp_runaway_status[_heater_id] == TempRunaway_PREHEAT)
  1127. {
  1128. temp_runaway_status[_heater_id] = TempRunaway_ACTIVE;
  1129. temp_runaway_check_active = false;
  1130. }
  1131. if (!temp_runaway_check_active && _output > 0)
  1132. {
  1133. temp_runaway_check_active = true;
  1134. }
  1135. if (temp_runaway_check_active)
  1136. {
  1137. // we are in range
  1138. if (_target_temperature - __hysteresis < _current_temperature && _current_temperature < _target_temperature + __hysteresis)
  1139. {
  1140. temp_runaway_check_active = false;
  1141. temp_runaway_error_counter[_heater_id] = 0;
  1142. }
  1143. else
  1144. {
  1145. if (temp_runaway_status[_heater_id] > TempRunaway_PREHEAT)
  1146. {
  1147. temp_runaway_error_counter[_heater_id]++;
  1148. if (temp_runaway_error_counter[_heater_id] * 2 > __timeout)
  1149. {
  1150. if (farm_mode) { prusa_statistics(0); }
  1151. temp_runaway_stop(false, _isbed);
  1152. if (farm_mode) { prusa_statistics(90); }
  1153. }
  1154. }
  1155. }
  1156. }
  1157. }
  1158. }
  1159. void temp_runaway_stop(bool isPreheat, bool isBed)
  1160. {
  1161. cancel_heatup = true;
  1162. quickStop();
  1163. if (card.sdprinting)
  1164. {
  1165. card.sdprinting = false;
  1166. card.closefile();
  1167. }
  1168. // Clean the input command queue
  1169. // This is necessary, because in command queue there can be commands which would later set heater or bed temperature.
  1170. cmdqueue_reset();
  1171. disable_heater();
  1172. disable_x();
  1173. disable_y();
  1174. disable_e0();
  1175. disable_e1();
  1176. disable_e2();
  1177. manage_heater();
  1178. lcd_update();
  1179. WRITE(BEEPER, HIGH);
  1180. delayMicroseconds(500);
  1181. WRITE(BEEPER, LOW);
  1182. delayMicroseconds(100);
  1183. if (isPreheat)
  1184. {
  1185. Stop();
  1186. isBed ? LCD_ALERTMESSAGEPGM("BED PREHEAT ERROR") : LCD_ALERTMESSAGEPGM("PREHEAT ERROR");
  1187. SERIAL_ERROR_START;
  1188. isBed ? SERIAL_ERRORLNPGM(" THERMAL RUNAWAY ( PREHEAT HEATBED)") : SERIAL_ERRORLNPGM(" THERMAL RUNAWAY ( PREHEAT HOTEND)");
  1189. SET_OUTPUT(EXTRUDER_0_AUTO_FAN_PIN);
  1190. SET_OUTPUT(FAN_PIN);
  1191. WRITE(EXTRUDER_0_AUTO_FAN_PIN, 1);
  1192. analogWrite(FAN_PIN, 255);
  1193. fanSpeed = 255;
  1194. delayMicroseconds(2000);
  1195. }
  1196. else
  1197. {
  1198. isBed ? LCD_ALERTMESSAGEPGM("BED THERMAL RUNAWAY") : LCD_ALERTMESSAGEPGM("THERMAL RUNAWAY");
  1199. SERIAL_ERROR_START;
  1200. isBed ? SERIAL_ERRORLNPGM(" HEATBED THERMAL RUNAWAY") : SERIAL_ERRORLNPGM(" HOTEND THERMAL RUNAWAY");
  1201. }
  1202. }
  1203. #endif
  1204. void disable_heater()
  1205. {
  1206. for(int i=0;i<EXTRUDERS;i++)
  1207. setTargetHotend(0,i);
  1208. setTargetBed(0);
  1209. #if defined(TEMP_0_PIN) && TEMP_0_PIN > -1
  1210. target_temperature[0]=0;
  1211. soft_pwm[0]=0;
  1212. #if defined(HEATER_0_PIN) && HEATER_0_PIN > -1
  1213. WRITE(HEATER_0_PIN,LOW);
  1214. #endif
  1215. #endif
  1216. #if defined(TEMP_1_PIN) && TEMP_1_PIN > -1 && EXTRUDERS > 1
  1217. target_temperature[1]=0;
  1218. soft_pwm[1]=0;
  1219. #if defined(HEATER_1_PIN) && HEATER_1_PIN > -1
  1220. WRITE(HEATER_1_PIN,LOW);
  1221. #endif
  1222. #endif
  1223. #if defined(TEMP_2_PIN) && TEMP_2_PIN > -1 && EXTRUDERS > 2
  1224. target_temperature[2]=0;
  1225. soft_pwm[2]=0;
  1226. #if defined(HEATER_2_PIN) && HEATER_2_PIN > -1
  1227. WRITE(HEATER_2_PIN,LOW);
  1228. #endif
  1229. #endif
  1230. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  1231. target_temperature_bed=0;
  1232. soft_pwm_bed=0;
  1233. #if defined(HEATER_BED_PIN) && HEATER_BED_PIN > -1
  1234. WRITE(HEATER_BED_PIN,LOW);
  1235. #endif
  1236. #endif
  1237. }
  1238. void max_temp_error(uint8_t e) {
  1239. disable_heater();
  1240. if(IsStopped() == false) {
  1241. SERIAL_ERROR_START;
  1242. SERIAL_ERRORLN((int)e);
  1243. SERIAL_ERRORLNPGM(": Extruder switched off. MAXTEMP triggered !");
  1244. LCD_ALERTMESSAGEPGM("Err: MAXTEMP");
  1245. }
  1246. #ifndef BOGUS_TEMPERATURE_FAILSAFE_OVERRIDE
  1247. Stop();
  1248. #endif
  1249. SET_OUTPUT(EXTRUDER_0_AUTO_FAN_PIN);
  1250. SET_OUTPUT(FAN_PIN);
  1251. SET_OUTPUT(BEEPER);
  1252. WRITE(FAN_PIN, 1);
  1253. WRITE(EXTRUDER_0_AUTO_FAN_PIN, 1);
  1254. WRITE(BEEPER, 1);
  1255. // fanSpeed will consumed by the check_axes_activity() routine.
  1256. fanSpeed=255;
  1257. if (farm_mode) { prusa_statistics(93); }
  1258. }
  1259. void min_temp_error(uint8_t e) {
  1260. #ifdef DEBUG_DISABLE_MINTEMP
  1261. return;
  1262. #endif
  1263. //if (current_temperature_ambient < MINTEMP_MINAMBIENT) return;
  1264. disable_heater();
  1265. if(IsStopped() == false) {
  1266. SERIAL_ERROR_START;
  1267. SERIAL_ERRORLN((int)e);
  1268. SERIAL_ERRORLNPGM(": Extruder switched off. MINTEMP triggered !");
  1269. LCD_ALERTMESSAGEPGM("Err: MINTEMP");
  1270. }
  1271. #ifndef BOGUS_TEMPERATURE_FAILSAFE_OVERRIDE
  1272. Stop();
  1273. #endif
  1274. if (farm_mode) { prusa_statistics(92); }
  1275. }
  1276. void bed_max_temp_error(void) {
  1277. #if HEATER_BED_PIN > -1
  1278. WRITE(HEATER_BED_PIN, 0);
  1279. #endif
  1280. if(IsStopped() == false) {
  1281. SERIAL_ERROR_START;
  1282. SERIAL_ERRORLNPGM("Temperature heated bed switched off. MAXTEMP triggered !");
  1283. LCD_ALERTMESSAGEPGM("Err: MAXTEMP BED");
  1284. }
  1285. #ifndef BOGUS_TEMPERATURE_FAILSAFE_OVERRIDE
  1286. Stop();
  1287. #endif
  1288. }
  1289. void bed_min_temp_error(void) {
  1290. #ifdef DEBUG_DISABLE_MINTEMP
  1291. return;
  1292. #endif
  1293. //if (current_temperature_ambient < MINTEMP_MINAMBIENT) return;
  1294. #if HEATER_BED_PIN > -1
  1295. WRITE(HEATER_BED_PIN, 0);
  1296. #endif
  1297. if(IsStopped() == false) {
  1298. SERIAL_ERROR_START;
  1299. SERIAL_ERRORLNPGM("Temperature heated bed switched off. MINTEMP triggered !");
  1300. LCD_ALERTMESSAGEPGM("Err: MINTEMP BED");
  1301. }
  1302. #ifndef BOGUS_TEMPERATURE_FAILSAFE_OVERRIDE
  1303. Stop();
  1304. #endif*/
  1305. }
  1306. #ifdef HEATER_0_USES_MAX6675
  1307. #define MAX6675_HEAT_INTERVAL 250
  1308. long max6675_previous_millis = MAX6675_HEAT_INTERVAL;
  1309. int max6675_temp = 2000;
  1310. int read_max6675()
  1311. {
  1312. if (millis() - max6675_previous_millis < MAX6675_HEAT_INTERVAL)
  1313. return max6675_temp;
  1314. max6675_previous_millis = millis();
  1315. max6675_temp = 0;
  1316. #ifdef PRR
  1317. PRR &= ~(1<<PRSPI);
  1318. #elif defined PRR0
  1319. PRR0 &= ~(1<<PRSPI);
  1320. #endif
  1321. SPCR = (1<<MSTR) | (1<<SPE) | (1<<SPR0);
  1322. // enable TT_MAX6675
  1323. WRITE(MAX6675_SS, 0);
  1324. // ensure 100ns delay - a bit extra is fine
  1325. asm("nop");//50ns on 20Mhz, 62.5ns on 16Mhz
  1326. asm("nop");//50ns on 20Mhz, 62.5ns on 16Mhz
  1327. // read MSB
  1328. SPDR = 0;
  1329. for (;(SPSR & (1<<SPIF)) == 0;);
  1330. max6675_temp = SPDR;
  1331. max6675_temp <<= 8;
  1332. // read LSB
  1333. SPDR = 0;
  1334. for (;(SPSR & (1<<SPIF)) == 0;);
  1335. max6675_temp |= SPDR;
  1336. // disable TT_MAX6675
  1337. WRITE(MAX6675_SS, 1);
  1338. if (max6675_temp & 4)
  1339. {
  1340. // thermocouple open
  1341. max6675_temp = 2000;
  1342. }
  1343. else
  1344. {
  1345. max6675_temp = max6675_temp >> 3;
  1346. }
  1347. return max6675_temp;
  1348. }
  1349. #endif
  1350. extern "C" {
  1351. void adc_ready(void) //callback from adc when sampling finished
  1352. {
  1353. current_temperature_raw[0] = adc_values[0];
  1354. current_temperature_bed_raw = adc_values[2];
  1355. current_temperature_raw_pinda = adc_values[3];
  1356. current_voltage_raw_pwr = adc_values[4];
  1357. #ifdef AMBIENT_THERMISTOR
  1358. current_temperature_raw_ambient = adc_values[5];
  1359. #endif //AMBIENT_THERMISTOR
  1360. current_voltage_raw_bed = adc_values[6];
  1361. temp_meas_ready = true;
  1362. }
  1363. } // extern "C"
  1364. // Timer 0 is shared with millies
  1365. ISR(TIMER0_COMPB_vect)
  1366. {
  1367. static bool _lock = false;
  1368. if (_lock) return;
  1369. _lock = true;
  1370. asm("sei");
  1371. if (!temp_meas_ready) adc_cycle();
  1372. else
  1373. {
  1374. check_max_temp();
  1375. check_min_temp();
  1376. }
  1377. lcd_buttons_update();
  1378. static unsigned char pwm_count = (1 << SOFT_PWM_SCALE);
  1379. static unsigned char soft_pwm_0;
  1380. #ifdef SLOW_PWM_HEATERS
  1381. static unsigned char slow_pwm_count = 0;
  1382. static unsigned char state_heater_0 = 0;
  1383. static unsigned char state_timer_heater_0 = 0;
  1384. #endif
  1385. #if (EXTRUDERS > 1) || defined(HEATERS_PARALLEL)
  1386. static unsigned char soft_pwm_1;
  1387. #ifdef SLOW_PWM_HEATERS
  1388. static unsigned char state_heater_1 = 0;
  1389. static unsigned char state_timer_heater_1 = 0;
  1390. #endif
  1391. #endif
  1392. #if EXTRUDERS > 2
  1393. static unsigned char soft_pwm_2;
  1394. #ifdef SLOW_PWM_HEATERS
  1395. static unsigned char state_heater_2 = 0;
  1396. static unsigned char state_timer_heater_2 = 0;
  1397. #endif
  1398. #endif
  1399. #if HEATER_BED_PIN > -1
  1400. static unsigned char soft_pwm_b;
  1401. #ifdef SLOW_PWM_HEATERS
  1402. static unsigned char state_heater_b = 0;
  1403. static unsigned char state_timer_heater_b = 0;
  1404. #endif
  1405. #endif
  1406. #if defined(FILWIDTH_PIN) &&(FILWIDTH_PIN > -1)
  1407. static unsigned long raw_filwidth_value = 0; //added for filament width sensor
  1408. #endif
  1409. #ifndef SLOW_PWM_HEATERS
  1410. /*
  1411. * standard PWM modulation
  1412. */
  1413. if (pwm_count == 0)
  1414. {
  1415. soft_pwm_0 = soft_pwm[0];
  1416. if(soft_pwm_0 > 0)
  1417. {
  1418. WRITE(HEATER_0_PIN,1);
  1419. #ifdef HEATERS_PARALLEL
  1420. WRITE(HEATER_1_PIN,1);
  1421. #endif
  1422. } else WRITE(HEATER_0_PIN,0);
  1423. #if EXTRUDERS > 1
  1424. soft_pwm_1 = soft_pwm[1];
  1425. if(soft_pwm_1 > 0) WRITE(HEATER_1_PIN,1); else WRITE(HEATER_1_PIN,0);
  1426. #endif
  1427. #if EXTRUDERS > 2
  1428. soft_pwm_2 = soft_pwm[2];
  1429. if(soft_pwm_2 > 0) WRITE(HEATER_2_PIN,1); else WRITE(HEATER_2_PIN,0);
  1430. #endif
  1431. #if defined(HEATER_BED_PIN) && HEATER_BED_PIN > -1
  1432. soft_pwm_b = soft_pwm_bed;
  1433. if(soft_pwm_b > 0) WRITE(HEATER_BED_PIN,1); else WRITE(HEATER_BED_PIN,0);
  1434. #endif
  1435. #ifdef FAN_SOFT_PWM
  1436. soft_pwm_fan = fanSpeedSoftPwm / 2;
  1437. if(soft_pwm_fan > 0) WRITE(FAN_PIN,1); else WRITE(FAN_PIN,0);
  1438. #endif
  1439. }
  1440. if(soft_pwm_0 < pwm_count)
  1441. {
  1442. WRITE(HEATER_0_PIN,0);
  1443. #ifdef HEATERS_PARALLEL
  1444. WRITE(HEATER_1_PIN,0);
  1445. #endif
  1446. }
  1447. #if EXTRUDERS > 1
  1448. if(soft_pwm_1 < pwm_count) WRITE(HEATER_1_PIN,0);
  1449. #endif
  1450. #if EXTRUDERS > 2
  1451. if(soft_pwm_2 < pwm_count) WRITE(HEATER_2_PIN,0);
  1452. #endif
  1453. #if defined(HEATER_BED_PIN) && HEATER_BED_PIN > -1
  1454. if(soft_pwm_b < pwm_count) WRITE(HEATER_BED_PIN,0);
  1455. #endif
  1456. #ifdef FAN_SOFT_PWM
  1457. if(soft_pwm_fan < pwm_count) WRITE(FAN_PIN,0);
  1458. #endif
  1459. pwm_count += (1 << SOFT_PWM_SCALE);
  1460. pwm_count &= 0x7f;
  1461. #else //ifndef SLOW_PWM_HEATERS
  1462. /*
  1463. * SLOW PWM HEATERS
  1464. *
  1465. * for heaters drived by relay
  1466. */
  1467. #ifndef MIN_STATE_TIME
  1468. #define MIN_STATE_TIME 16 // MIN_STATE_TIME * 65.5 = time in milliseconds
  1469. #endif
  1470. if (slow_pwm_count == 0) {
  1471. // EXTRUDER 0
  1472. soft_pwm_0 = soft_pwm[0];
  1473. if (soft_pwm_0 > 0) {
  1474. // turn ON heather only if the minimum time is up
  1475. if (state_timer_heater_0 == 0) {
  1476. // if change state set timer
  1477. if (state_heater_0 == 0) {
  1478. state_timer_heater_0 = MIN_STATE_TIME;
  1479. }
  1480. state_heater_0 = 1;
  1481. WRITE(HEATER_0_PIN, 1);
  1482. #ifdef HEATERS_PARALLEL
  1483. WRITE(HEATER_1_PIN, 1);
  1484. #endif
  1485. }
  1486. } else {
  1487. // turn OFF heather only if the minimum time is up
  1488. if (state_timer_heater_0 == 0) {
  1489. // if change state set timer
  1490. if (state_heater_0 == 1) {
  1491. state_timer_heater_0 = MIN_STATE_TIME;
  1492. }
  1493. state_heater_0 = 0;
  1494. WRITE(HEATER_0_PIN, 0);
  1495. #ifdef HEATERS_PARALLEL
  1496. WRITE(HEATER_1_PIN, 0);
  1497. #endif
  1498. }
  1499. }
  1500. #if EXTRUDERS > 1
  1501. // EXTRUDER 1
  1502. soft_pwm_1 = soft_pwm[1];
  1503. if (soft_pwm_1 > 0) {
  1504. // turn ON heather only if the minimum time is up
  1505. if (state_timer_heater_1 == 0) {
  1506. // if change state set timer
  1507. if (state_heater_1 == 0) {
  1508. state_timer_heater_1 = MIN_STATE_TIME;
  1509. }
  1510. state_heater_1 = 1;
  1511. WRITE(HEATER_1_PIN, 1);
  1512. }
  1513. } else {
  1514. // turn OFF heather only if the minimum time is up
  1515. if (state_timer_heater_1 == 0) {
  1516. // if change state set timer
  1517. if (state_heater_1 == 1) {
  1518. state_timer_heater_1 = MIN_STATE_TIME;
  1519. }
  1520. state_heater_1 = 0;
  1521. WRITE(HEATER_1_PIN, 0);
  1522. }
  1523. }
  1524. #endif
  1525. #if EXTRUDERS > 2
  1526. // EXTRUDER 2
  1527. soft_pwm_2 = soft_pwm[2];
  1528. if (soft_pwm_2 > 0) {
  1529. // turn ON heather only if the minimum time is up
  1530. if (state_timer_heater_2 == 0) {
  1531. // if change state set timer
  1532. if (state_heater_2 == 0) {
  1533. state_timer_heater_2 = MIN_STATE_TIME;
  1534. }
  1535. state_heater_2 = 1;
  1536. WRITE(HEATER_2_PIN, 1);
  1537. }
  1538. } else {
  1539. // turn OFF heather only if the minimum time is up
  1540. if (state_timer_heater_2 == 0) {
  1541. // if change state set timer
  1542. if (state_heater_2 == 1) {
  1543. state_timer_heater_2 = MIN_STATE_TIME;
  1544. }
  1545. state_heater_2 = 0;
  1546. WRITE(HEATER_2_PIN, 0);
  1547. }
  1548. }
  1549. #endif
  1550. #if defined(HEATER_BED_PIN) && HEATER_BED_PIN > -1
  1551. // BED
  1552. soft_pwm_b = soft_pwm_bed;
  1553. if (soft_pwm_b > 0) {
  1554. // turn ON heather only if the minimum time is up
  1555. if (state_timer_heater_b == 0) {
  1556. // if change state set timer
  1557. if (state_heater_b == 0) {
  1558. state_timer_heater_b = MIN_STATE_TIME;
  1559. }
  1560. state_heater_b = 1;
  1561. WRITE(HEATER_BED_PIN, 1);
  1562. }
  1563. } else {
  1564. // turn OFF heather only if the minimum time is up
  1565. if (state_timer_heater_b == 0) {
  1566. // if change state set timer
  1567. if (state_heater_b == 1) {
  1568. state_timer_heater_b = MIN_STATE_TIME;
  1569. }
  1570. state_heater_b = 0;
  1571. WRITE(HEATER_BED_PIN, 0);
  1572. }
  1573. }
  1574. #endif
  1575. } // if (slow_pwm_count == 0)
  1576. // EXTRUDER 0
  1577. if (soft_pwm_0 < slow_pwm_count) {
  1578. // turn OFF heather only if the minimum time is up
  1579. if (state_timer_heater_0 == 0) {
  1580. // if change state set timer
  1581. if (state_heater_0 == 1) {
  1582. state_timer_heater_0 = MIN_STATE_TIME;
  1583. }
  1584. state_heater_0 = 0;
  1585. WRITE(HEATER_0_PIN, 0);
  1586. #ifdef HEATERS_PARALLEL
  1587. WRITE(HEATER_1_PIN, 0);
  1588. #endif
  1589. }
  1590. }
  1591. #if EXTRUDERS > 1
  1592. // EXTRUDER 1
  1593. if (soft_pwm_1 < slow_pwm_count) {
  1594. // turn OFF heather only if the minimum time is up
  1595. if (state_timer_heater_1 == 0) {
  1596. // if change state set timer
  1597. if (state_heater_1 == 1) {
  1598. state_timer_heater_1 = MIN_STATE_TIME;
  1599. }
  1600. state_heater_1 = 0;
  1601. WRITE(HEATER_1_PIN, 0);
  1602. }
  1603. }
  1604. #endif
  1605. #if EXTRUDERS > 2
  1606. // EXTRUDER 2
  1607. if (soft_pwm_2 < slow_pwm_count) {
  1608. // turn OFF heather only if the minimum time is up
  1609. if (state_timer_heater_2 == 0) {
  1610. // if change state set timer
  1611. if (state_heater_2 == 1) {
  1612. state_timer_heater_2 = MIN_STATE_TIME;
  1613. }
  1614. state_heater_2 = 0;
  1615. WRITE(HEATER_2_PIN, 0);
  1616. }
  1617. }
  1618. #endif
  1619. #if defined(HEATER_BED_PIN) && HEATER_BED_PIN > -1
  1620. // BED
  1621. if (soft_pwm_b < slow_pwm_count) {
  1622. // turn OFF heather only if the minimum time is up
  1623. if (state_timer_heater_b == 0) {
  1624. // if change state set timer
  1625. if (state_heater_b == 1) {
  1626. state_timer_heater_b = MIN_STATE_TIME;
  1627. }
  1628. state_heater_b = 0;
  1629. WRITE(HEATER_BED_PIN, 0);
  1630. }
  1631. }
  1632. #endif
  1633. #ifdef FAN_SOFT_PWM
  1634. if (pwm_count == 0){
  1635. soft_pwm_fan = fanSpeedSoftPwm / 2;
  1636. if (soft_pwm_fan > 0) WRITE(FAN_PIN,1); else WRITE(FAN_PIN,0);
  1637. }
  1638. if (soft_pwm_fan < pwm_count) WRITE(FAN_PIN,0);
  1639. #endif
  1640. pwm_count += (1 << SOFT_PWM_SCALE);
  1641. pwm_count &= 0x7f;
  1642. // increment slow_pwm_count only every 64 pwm_count circa 65.5ms
  1643. if ((pwm_count % 64) == 0) {
  1644. slow_pwm_count++;
  1645. slow_pwm_count &= 0x7f;
  1646. // Extruder 0
  1647. if (state_timer_heater_0 > 0) {
  1648. state_timer_heater_0--;
  1649. }
  1650. #if EXTRUDERS > 1
  1651. // Extruder 1
  1652. if (state_timer_heater_1 > 0)
  1653. state_timer_heater_1--;
  1654. #endif
  1655. #if EXTRUDERS > 2
  1656. // Extruder 2
  1657. if (state_timer_heater_2 > 0)
  1658. state_timer_heater_2--;
  1659. #endif
  1660. #if defined(HEATER_BED_PIN) && HEATER_BED_PIN > -1
  1661. // Bed
  1662. if (state_timer_heater_b > 0)
  1663. state_timer_heater_b--;
  1664. #endif
  1665. } //if ((pwm_count % 64) == 0) {
  1666. #endif //ifndef SLOW_PWM_HEATERS
  1667. #ifdef BABYSTEPPING
  1668. for(uint8_t axis=0;axis<3;axis++)
  1669. {
  1670. int curTodo=babystepsTodo[axis]; //get rid of volatile for performance
  1671. if(curTodo>0)
  1672. {
  1673. asm("cli");
  1674. babystep(axis,/*fwd*/true);
  1675. babystepsTodo[axis]--; //less to do next time
  1676. asm("sei");
  1677. }
  1678. else
  1679. if(curTodo<0)
  1680. {
  1681. asm("cli");
  1682. babystep(axis,/*fwd*/false);
  1683. babystepsTodo[axis]++; //less to do next time
  1684. asm("sei");
  1685. }
  1686. }
  1687. #endif //BABYSTEPPING
  1688. #if (defined(TACH_0) && TACH_0 > -1)
  1689. check_fans();
  1690. #endif //(defined(TACH_0))
  1691. _lock = false;
  1692. }
  1693. void check_max_temp()
  1694. {
  1695. //heater
  1696. #if HEATER_0_RAW_LO_TEMP > HEATER_0_RAW_HI_TEMP
  1697. if (current_temperature_raw[0] <= maxttemp_raw[0]) {
  1698. #else
  1699. if (current_temperature_raw[0] >= maxttemp_raw[0]) {
  1700. #endif
  1701. max_temp_error(0);
  1702. }
  1703. //bed
  1704. #if defined(BED_MAXTEMP) && (TEMP_SENSOR_BED != 0)
  1705. #if HEATER_BED_RAW_LO_TEMP > HEATER_BED_RAW_HI_TEMP
  1706. if (current_temperature_bed_raw <= bed_maxttemp_raw) {
  1707. #else
  1708. if (current_temperature_bed_raw >= bed_maxttemp_raw) {
  1709. #endif
  1710. target_temperature_bed = 0;
  1711. bed_max_temp_error();
  1712. }
  1713. #endif
  1714. }
  1715. void check_min_temp_heater0()
  1716. {
  1717. //heater
  1718. #if HEATER_0_RAW_LO_TEMP > HEATER_0_RAW_HI_TEMP
  1719. if (current_temperature_raw[0] >= minttemp_raw[0]) {
  1720. #else
  1721. if (current_temperature_raw[0] <= minttemp_raw[0]) {
  1722. #endif
  1723. min_temp_error(0);
  1724. }
  1725. }
  1726. void check_min_temp_bed()
  1727. {
  1728. #if HEATER_BED_RAW_LO_TEMP > HEATER_BED_RAW_HI_TEMP
  1729. if (current_temperature_bed_raw >= bed_minttemp_raw) {
  1730. #else
  1731. if (current_temperature_bed_raw <= bed_minttemp_raw) {
  1732. #endif
  1733. bed_min_temp_error();
  1734. }
  1735. }
  1736. void check_min_temp()
  1737. {
  1738. #ifdef AMBIENT_THERMISTOR
  1739. static uint8_t heat_cycles = 0;
  1740. if (current_temperature_raw_ambient > OVERSAMPLENR*MINTEMP_MINAMBIENT_RAW)
  1741. {
  1742. if (READ(HEATER_0_PIN) == HIGH)
  1743. {
  1744. // if ((heat_cycles % 10) == 0)
  1745. // printf_P(PSTR("X%d\n"), heat_cycles);
  1746. if (heat_cycles > 50) //reaction time 5-10s
  1747. check_min_temp_heater0();
  1748. else
  1749. heat_cycles++;
  1750. }
  1751. else
  1752. heat_cycles = 0;
  1753. return;
  1754. }
  1755. #endif //AMBIENT_THERMISTOR
  1756. check_min_temp_heater0();
  1757. check_min_temp_bed();
  1758. }
  1759. #if (defined(TACH_0) && TACH_0 > -1)
  1760. void check_fans() {
  1761. if (READ(TACH_0) != fan_state[0]) {
  1762. fan_edge_counter[0] ++;
  1763. fan_state[0] = !fan_state[0];
  1764. }
  1765. //if (READ(TACH_1) != fan_state[1]) {
  1766. // fan_edge_counter[1] ++;
  1767. // fan_state[1] = !fan_state[1];
  1768. //}
  1769. }
  1770. #endif //TACH_0
  1771. #ifdef PIDTEMP
  1772. // Apply the scale factors to the PID values
  1773. float scalePID_i(float i)
  1774. {
  1775. return i*PID_dT;
  1776. }
  1777. float unscalePID_i(float i)
  1778. {
  1779. return i/PID_dT;
  1780. }
  1781. float scalePID_d(float d)
  1782. {
  1783. return d/PID_dT;
  1784. }
  1785. float unscalePID_d(float d)
  1786. {
  1787. return d*PID_dT;
  1788. }
  1789. #endif //PIDTEMP