temperature.cpp 66 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181
  1. /*
  2. temperature.c - temperature control
  3. Part of Marlin
  4. Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
  5. This program is free software: you can redistribute it and/or modify
  6. it under the terms of the GNU General Public License as published by
  7. the Free Software Foundation, either version 3 of the License, or
  8. (at your option) any later version.
  9. This program is distributed in the hope that it will be useful,
  10. but WITHOUT ANY WARRANTY; without even the implied warranty of
  11. MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  12. GNU General Public License for more details.
  13. You should have received a copy of the GNU General Public License
  14. along with this program. If not, see <http://www.gnu.org/licenses/>.
  15. */
  16. /*
  17. This firmware is a mashup between Sprinter and grbl.
  18. (https://github.com/kliment/Sprinter)
  19. (https://github.com/simen/grbl/tree)
  20. It has preliminary support for Matthew Roberts advance algorithm
  21. http://reprap.org/pipermail/reprap-dev/2011-May/003323.html
  22. */
  23. #include "Marlin.h"
  24. #include "ultralcd.h"
  25. #include "sound.h"
  26. #include "temperature.h"
  27. #include "cardreader.h"
  28. #include "Sd2PinMap.h"
  29. #include <avr/wdt.h>
  30. #include "adc.h"
  31. #include "ConfigurationStore.h"
  32. #include "messages.h"
  33. #include "Timer.h"
  34. #include "Configuration_prusa.h"
  35. #include "config.h"
  36. //===========================================================================
  37. //=============================public variables============================
  38. //===========================================================================
  39. int target_temperature[EXTRUDERS] = { 0 };
  40. int target_temperature_bed = 0;
  41. int current_temperature_raw[EXTRUDERS] = { 0 };
  42. float current_temperature[EXTRUDERS] = { 0.0 };
  43. #ifdef PINDA_THERMISTOR
  44. uint16_t current_temperature_raw_pinda = 0 ; //value with more averaging applied
  45. uint16_t current_temperature_raw_pinda_fast = 0; //value read from adc
  46. float current_temperature_pinda = 0.0;
  47. #endif //PINDA_THERMISTOR
  48. #ifdef AMBIENT_THERMISTOR
  49. int current_temperature_raw_ambient = 0 ;
  50. float current_temperature_ambient = 0.0;
  51. #endif //AMBIENT_THERMISTOR
  52. #ifdef VOLT_PWR_PIN
  53. int current_voltage_raw_pwr = 0;
  54. #endif
  55. #ifdef VOLT_BED_PIN
  56. int current_voltage_raw_bed = 0;
  57. #endif
  58. #if IR_SENSOR_ANALOG
  59. int current_voltage_raw_IR = 0;
  60. #endif //IR_SENSOR_ANALOG
  61. int current_temperature_bed_raw = 0;
  62. float current_temperature_bed = 0.0;
  63. #ifdef PIDTEMP
  64. float _Kp, _Ki, _Kd;
  65. int pid_cycle, pid_number_of_cycles;
  66. bool pid_tuning_finished = false;
  67. #ifdef PID_ADD_EXTRUSION_RATE
  68. float Kc=DEFAULT_Kc;
  69. #endif
  70. #endif //PIDTEMP
  71. #ifdef FAN_SOFT_PWM
  72. unsigned char fanSpeedSoftPwm;
  73. #endif
  74. #ifdef FANCHECK
  75. volatile uint8_t fan_check_error = EFCE_OK;
  76. #endif
  77. unsigned char soft_pwm_bed;
  78. #ifdef BABYSTEPPING
  79. volatile int babystepsTodo[3]={0,0,0};
  80. #endif
  81. //===========================================================================
  82. //=============================private variables============================
  83. //===========================================================================
  84. static volatile bool temp_meas_ready = false;
  85. #ifdef PIDTEMP
  86. //static cannot be external:
  87. static float iState_sum[EXTRUDERS] = { 0 };
  88. static float dState_last[EXTRUDERS] = { 0 };
  89. static float pTerm[EXTRUDERS];
  90. static float iTerm[EXTRUDERS];
  91. static float dTerm[EXTRUDERS];
  92. //int output;
  93. static float pid_error[EXTRUDERS];
  94. static float iState_sum_min[EXTRUDERS];
  95. static float iState_sum_max[EXTRUDERS];
  96. // static float pid_input[EXTRUDERS];
  97. // static float pid_output[EXTRUDERS];
  98. static bool pid_reset[EXTRUDERS];
  99. #endif //PIDTEMP
  100. #ifdef PIDTEMPBED
  101. //static cannot be external:
  102. static float temp_iState_bed = { 0 };
  103. static float temp_dState_bed = { 0 };
  104. static float pTerm_bed;
  105. static float iTerm_bed;
  106. static float dTerm_bed;
  107. //int output;
  108. static float pid_error_bed;
  109. static float temp_iState_min_bed;
  110. static float temp_iState_max_bed;
  111. #else //PIDTEMPBED
  112. static unsigned long previous_millis_bed_heater;
  113. #endif //PIDTEMPBED
  114. static unsigned char soft_pwm[EXTRUDERS];
  115. #ifdef FAN_SOFT_PWM
  116. static unsigned char soft_pwm_fan;
  117. #endif
  118. #if (defined(EXTRUDER_0_AUTO_FAN_PIN) && EXTRUDER_0_AUTO_FAN_PIN > -1) || \
  119. (defined(EXTRUDER_1_AUTO_FAN_PIN) && EXTRUDER_1_AUTO_FAN_PIN > -1) || \
  120. (defined(EXTRUDER_2_AUTO_FAN_PIN) && EXTRUDER_2_AUTO_FAN_PIN > -1)
  121. unsigned long extruder_autofan_last_check = _millis();
  122. uint8_t fanSpeedBckp = 255;
  123. bool fan_measuring = false;
  124. #endif
  125. #if EXTRUDERS > 3
  126. # error Unsupported number of extruders
  127. #elif EXTRUDERS > 2
  128. # define ARRAY_BY_EXTRUDERS(v1, v2, v3) { v1, v2, v3 }
  129. #elif EXTRUDERS > 1
  130. # define ARRAY_BY_EXTRUDERS(v1, v2, v3) { v1, v2 }
  131. #else
  132. # define ARRAY_BY_EXTRUDERS(v1, v2, v3) { v1 }
  133. #endif
  134. static ShortTimer oTimer4minTempHeater,oTimer4minTempBed;
  135. // Init min and max temp with extreme values to prevent false errors during startup
  136. static int minttemp_raw[EXTRUDERS] = ARRAY_BY_EXTRUDERS( HEATER_0_RAW_LO_TEMP , HEATER_1_RAW_LO_TEMP , HEATER_2_RAW_LO_TEMP );
  137. static int maxttemp_raw[EXTRUDERS] = ARRAY_BY_EXTRUDERS( HEATER_0_RAW_HI_TEMP , HEATER_1_RAW_HI_TEMP , HEATER_2_RAW_HI_TEMP );
  138. static int minttemp[EXTRUDERS] = ARRAY_BY_EXTRUDERS( 0, 0, 0 );
  139. static int maxttemp[EXTRUDERS] = ARRAY_BY_EXTRUDERS( 16383, 16383, 16383 );
  140. #ifdef BED_MINTEMP
  141. static int bed_minttemp_raw = HEATER_BED_RAW_LO_TEMP;
  142. #endif
  143. #ifdef BED_MAXTEMP
  144. static int bed_maxttemp_raw = HEATER_BED_RAW_HI_TEMP;
  145. #endif
  146. static void *heater_ttbl_map[EXTRUDERS] = ARRAY_BY_EXTRUDERS( (void *)HEATER_0_TEMPTABLE, (void *)HEATER_1_TEMPTABLE, (void *)HEATER_2_TEMPTABLE );
  147. static uint8_t heater_ttbllen_map[EXTRUDERS] = ARRAY_BY_EXTRUDERS( HEATER_0_TEMPTABLE_LEN, HEATER_1_TEMPTABLE_LEN, HEATER_2_TEMPTABLE_LEN );
  148. static float analog2temp(int raw, uint8_t e);
  149. static float analog2tempBed(int raw);
  150. static float analog2tempAmbient(int raw);
  151. static void updateTemperaturesFromRawValues();
  152. enum TempRunawayStates
  153. {
  154. TempRunaway_INACTIVE = 0,
  155. TempRunaway_PREHEAT = 1,
  156. TempRunaway_ACTIVE = 2,
  157. };
  158. #ifndef SOFT_PWM_SCALE
  159. #define SOFT_PWM_SCALE 0
  160. #endif
  161. //===========================================================================
  162. //============================= functions ============================
  163. //===========================================================================
  164. #if (defined (TEMP_RUNAWAY_BED_HYSTERESIS) && TEMP_RUNAWAY_BED_TIMEOUT > 0) || (defined (TEMP_RUNAWAY_EXTRUDER_HYSTERESIS) && TEMP_RUNAWAY_EXTRUDER_TIMEOUT > 0)
  165. static float temp_runaway_status[4];
  166. static float temp_runaway_target[4];
  167. static float temp_runaway_timer[4];
  168. static int temp_runaway_error_counter[4];
  169. static void temp_runaway_check(int _heater_id, float _target_temperature, float _current_temperature, float _output, bool _isbed);
  170. static void temp_runaway_stop(bool isPreheat, bool isBed);
  171. #endif
  172. void PID_autotune(float temp, int extruder, int ncycles)
  173. {
  174. pid_number_of_cycles = ncycles;
  175. pid_tuning_finished = false;
  176. float input = 0.0;
  177. pid_cycle=0;
  178. bool heating = true;
  179. unsigned long temp_millis = _millis();
  180. unsigned long t1=temp_millis;
  181. unsigned long t2=temp_millis;
  182. long t_high = 0;
  183. long t_low = 0;
  184. long bias, d;
  185. float Ku, Tu;
  186. float max = 0, min = 10000;
  187. uint8_t safety_check_cycles = 0;
  188. const uint8_t safety_check_cycles_count = (extruder < 0) ? 45 : 10; //10 cycles / 20s delay for extruder and 45 cycles / 90s for heatbed
  189. float temp_ambient;
  190. #if (defined(EXTRUDER_0_AUTO_FAN_PIN) && EXTRUDER_0_AUTO_FAN_PIN > -1) || \
  191. (defined(EXTRUDER_1_AUTO_FAN_PIN) && EXTRUDER_1_AUTO_FAN_PIN > -1) || \
  192. (defined(EXTRUDER_2_AUTO_FAN_PIN) && EXTRUDER_2_AUTO_FAN_PIN > -1)
  193. unsigned long extruder_autofan_last_check = _millis();
  194. #endif
  195. if ((extruder >= EXTRUDERS)
  196. #if (TEMP_BED_PIN <= -1)
  197. ||(extruder < 0)
  198. #endif
  199. ){
  200. SERIAL_ECHOLN("PID Autotune failed. Bad extruder number.");
  201. pid_tuning_finished = true;
  202. pid_cycle = 0;
  203. return;
  204. }
  205. SERIAL_ECHOLN("PID Autotune start");
  206. disable_heater(); // switch off all heaters.
  207. if (extruder<0)
  208. {
  209. soft_pwm_bed = (MAX_BED_POWER)/2;
  210. timer02_set_pwm0(soft_pwm_bed << 1);
  211. bias = d = (MAX_BED_POWER)/2;
  212. target_temperature_bed = (int)temp; // to display the requested target bed temperature properly on the main screen
  213. }
  214. else
  215. {
  216. soft_pwm[extruder] = (PID_MAX)/2;
  217. bias = d = (PID_MAX)/2;
  218. target_temperature[extruder] = (int)temp; // to display the requested target extruder temperature properly on the main screen
  219. }
  220. for(;;) {
  221. #ifdef WATCHDOG
  222. wdt_reset();
  223. #endif //WATCHDOG
  224. if(temp_meas_ready == true) { // temp sample ready
  225. updateTemperaturesFromRawValues();
  226. input = (extruder<0)?current_temperature_bed:current_temperature[extruder];
  227. max=max(max,input);
  228. min=min(min,input);
  229. #if (defined(EXTRUDER_0_AUTO_FAN_PIN) && EXTRUDER_0_AUTO_FAN_PIN > -1) || \
  230. (defined(EXTRUDER_1_AUTO_FAN_PIN) && EXTRUDER_1_AUTO_FAN_PIN > -1) || \
  231. (defined(EXTRUDER_2_AUTO_FAN_PIN) && EXTRUDER_2_AUTO_FAN_PIN > -1)
  232. if(_millis() - extruder_autofan_last_check > 2500) {
  233. checkExtruderAutoFans();
  234. extruder_autofan_last_check = _millis();
  235. }
  236. #endif
  237. if(heating == true && input > temp) {
  238. if(_millis() - t2 > 5000) {
  239. heating=false;
  240. if (extruder<0)
  241. {
  242. soft_pwm_bed = (bias - d) >> 1;
  243. timer02_set_pwm0(soft_pwm_bed << 1);
  244. }
  245. else
  246. soft_pwm[extruder] = (bias - d) >> 1;
  247. t1=_millis();
  248. t_high=t1 - t2;
  249. max=temp;
  250. }
  251. }
  252. if(heating == false && input < temp) {
  253. if(_millis() - t1 > 5000) {
  254. heating=true;
  255. t2=_millis();
  256. t_low=t2 - t1;
  257. if(pid_cycle > 0) {
  258. bias += (d*(t_high - t_low))/(t_low + t_high);
  259. bias = constrain(bias, 20 ,(extruder<0?(MAX_BED_POWER):(PID_MAX))-20);
  260. if(bias > (extruder<0?(MAX_BED_POWER):(PID_MAX))/2) d = (extruder<0?(MAX_BED_POWER):(PID_MAX)) - 1 - bias;
  261. else d = bias;
  262. SERIAL_PROTOCOLPGM(" bias: "); SERIAL_PROTOCOL(bias);
  263. SERIAL_PROTOCOLPGM(" d: "); SERIAL_PROTOCOL(d);
  264. SERIAL_PROTOCOLPGM(" min: "); SERIAL_PROTOCOL(min);
  265. SERIAL_PROTOCOLPGM(" max: "); SERIAL_PROTOCOLLN(max);
  266. if(pid_cycle > 2) {
  267. Ku = (4.0*d)/(3.14159*(max-min)/2.0);
  268. Tu = ((float)(t_low + t_high)/1000.0);
  269. SERIAL_PROTOCOLPGM(" Ku: "); SERIAL_PROTOCOL(Ku);
  270. SERIAL_PROTOCOLPGM(" Tu: "); SERIAL_PROTOCOLLN(Tu);
  271. _Kp = 0.6*Ku;
  272. _Ki = 2*_Kp/Tu;
  273. _Kd = _Kp*Tu/8;
  274. SERIAL_PROTOCOLLNPGM(" Classic PID ");
  275. SERIAL_PROTOCOLPGM(" Kp: "); SERIAL_PROTOCOLLN(_Kp);
  276. SERIAL_PROTOCOLPGM(" Ki: "); SERIAL_PROTOCOLLN(_Ki);
  277. SERIAL_PROTOCOLPGM(" Kd: "); SERIAL_PROTOCOLLN(_Kd);
  278. /*
  279. _Kp = 0.33*Ku;
  280. _Ki = _Kp/Tu;
  281. _Kd = _Kp*Tu/3;
  282. SERIAL_PROTOCOLLNPGM(" Some overshoot ");
  283. SERIAL_PROTOCOLPGM(" Kp: "); SERIAL_PROTOCOLLN(_Kp);
  284. SERIAL_PROTOCOLPGM(" Ki: "); SERIAL_PROTOCOLLN(_Ki);
  285. SERIAL_PROTOCOLPGM(" Kd: "); SERIAL_PROTOCOLLN(_Kd);
  286. _Kp = 0.2*Ku;
  287. _Ki = 2*_Kp/Tu;
  288. _Kd = _Kp*Tu/3;
  289. SERIAL_PROTOCOLLNPGM(" No overshoot ");
  290. SERIAL_PROTOCOLPGM(" Kp: "); SERIAL_PROTOCOLLN(_Kp);
  291. SERIAL_PROTOCOLPGM(" Ki: "); SERIAL_PROTOCOLLN(_Ki);
  292. SERIAL_PROTOCOLPGM(" Kd: "); SERIAL_PROTOCOLLN(_Kd);
  293. */
  294. }
  295. }
  296. if (extruder<0)
  297. {
  298. soft_pwm_bed = (bias + d) >> 1;
  299. timer02_set_pwm0(soft_pwm_bed << 1);
  300. }
  301. else
  302. soft_pwm[extruder] = (bias + d) >> 1;
  303. pid_cycle++;
  304. min=temp;
  305. }
  306. }
  307. }
  308. if(input > (temp + 20)) {
  309. SERIAL_PROTOCOLLNPGM("PID Autotune failed! Temperature too high");
  310. pid_tuning_finished = true;
  311. pid_cycle = 0;
  312. return;
  313. }
  314. if(_millis() - temp_millis > 2000) {
  315. int p;
  316. if (extruder<0){
  317. p=soft_pwm_bed;
  318. SERIAL_PROTOCOLPGM("B:");
  319. }else{
  320. p=soft_pwm[extruder];
  321. SERIAL_PROTOCOLPGM("T:");
  322. }
  323. SERIAL_PROTOCOL(input);
  324. SERIAL_PROTOCOLPGM(" @:");
  325. SERIAL_PROTOCOLLN(p);
  326. if (safety_check_cycles == 0) { //save ambient temp
  327. temp_ambient = input;
  328. //SERIAL_ECHOPGM("Ambient T: ");
  329. //MYSERIAL.println(temp_ambient);
  330. safety_check_cycles++;
  331. }
  332. else if (safety_check_cycles < safety_check_cycles_count) { //delay
  333. safety_check_cycles++;
  334. }
  335. else if (safety_check_cycles == safety_check_cycles_count){ //check that temperature is rising
  336. safety_check_cycles++;
  337. //SERIAL_ECHOPGM("Time from beginning: ");
  338. //MYSERIAL.print(safety_check_cycles_count * 2);
  339. //SERIAL_ECHOPGM("s. Difference between current and ambient T: ");
  340. //MYSERIAL.println(input - temp_ambient);
  341. if (abs(input - temp_ambient) < 5.0) {
  342. temp_runaway_stop(false, (extruder<0));
  343. pid_tuning_finished = true;
  344. return;
  345. }
  346. }
  347. temp_millis = _millis();
  348. }
  349. if(((_millis() - t1) + (_millis() - t2)) > (10L*60L*1000L*2L)) {
  350. SERIAL_PROTOCOLLNPGM("PID Autotune failed! timeout");
  351. pid_tuning_finished = true;
  352. pid_cycle = 0;
  353. return;
  354. }
  355. if(pid_cycle > ncycles) {
  356. SERIAL_PROTOCOLLNPGM("PID Autotune finished! Put the last Kp, Ki and Kd constants from above into Configuration.h");
  357. pid_tuning_finished = true;
  358. pid_cycle = 0;
  359. return;
  360. }
  361. lcd_update(0);
  362. }
  363. }
  364. void updatePID()
  365. {
  366. #ifdef PIDTEMP
  367. for(uint_least8_t e = 0; e < EXTRUDERS; e++) {
  368. iState_sum_max[e] = PID_INTEGRAL_DRIVE_MAX / cs.Ki;
  369. }
  370. #endif
  371. #ifdef PIDTEMPBED
  372. temp_iState_max_bed = PID_INTEGRAL_DRIVE_MAX / cs.bedKi;
  373. #endif
  374. }
  375. int getHeaterPower(int heater) {
  376. if (heater<0)
  377. return soft_pwm_bed;
  378. return soft_pwm[heater];
  379. }
  380. #if (defined(EXTRUDER_0_AUTO_FAN_PIN) && EXTRUDER_0_AUTO_FAN_PIN > -1) || \
  381. (defined(EXTRUDER_1_AUTO_FAN_PIN) && EXTRUDER_1_AUTO_FAN_PIN > -1) || \
  382. (defined(EXTRUDER_2_AUTO_FAN_PIN) && EXTRUDER_2_AUTO_FAN_PIN > -1)
  383. #if defined(FAN_PIN) && FAN_PIN > -1
  384. #if EXTRUDER_0_AUTO_FAN_PIN == FAN_PIN
  385. #error "You cannot set EXTRUDER_0_AUTO_FAN_PIN equal to FAN_PIN"
  386. #endif
  387. #if EXTRUDER_1_AUTO_FAN_PIN == FAN_PIN
  388. #error "You cannot set EXTRUDER_1_AUTO_FAN_PIN equal to FAN_PIN"
  389. #endif
  390. #if EXTRUDER_2_AUTO_FAN_PIN == FAN_PIN
  391. #error "You cannot set EXTRUDER_2_AUTO_FAN_PIN equal to FAN_PIN"
  392. #endif
  393. #endif
  394. void setExtruderAutoFanState(int pin, bool state)
  395. {
  396. unsigned char newFanSpeed = (state != 0) ? EXTRUDER_AUTO_FAN_SPEED : 0;
  397. // this idiom allows both digital and PWM fan outputs (see M42 handling).
  398. pinMode(pin, OUTPUT);
  399. digitalWrite(pin, newFanSpeed);
  400. //analogWrite(pin, newFanSpeed);
  401. }
  402. #if (defined(FANCHECK) && (((defined(TACH_0) && (TACH_0 >-1)) || (defined(TACH_1) && (TACH_1 > -1)))))
  403. void countFanSpeed()
  404. {
  405. //SERIAL_ECHOPGM("edge counter 1:"); MYSERIAL.println(fan_edge_counter[1]);
  406. fan_speed[0] = (fan_edge_counter[0] * (float(250) / (_millis() - extruder_autofan_last_check)));
  407. fan_speed[1] = (fan_edge_counter[1] * (float(250) / (_millis() - extruder_autofan_last_check)));
  408. /*SERIAL_ECHOPGM("time interval: "); MYSERIAL.println(_millis() - extruder_autofan_last_check);
  409. SERIAL_ECHOPGM("extruder fan speed:"); MYSERIAL.print(fan_speed[0]); SERIAL_ECHOPGM("; edge counter:"); MYSERIAL.println(fan_edge_counter[0]);
  410. SERIAL_ECHOPGM("print fan speed:"); MYSERIAL.print(fan_speed[1]); SERIAL_ECHOPGM("; edge counter:"); MYSERIAL.println(fan_edge_counter[1]);
  411. SERIAL_ECHOLNPGM(" ");*/
  412. fan_edge_counter[0] = 0;
  413. fan_edge_counter[1] = 0;
  414. }
  415. void checkFanSpeed()
  416. {
  417. uint8_t max_print_fan_errors = 0;
  418. uint8_t max_extruder_fan_errors = 0;
  419. #ifdef FAN_SOFT_PWM
  420. max_print_fan_errors = 3; //15 seconds
  421. max_extruder_fan_errors = 2; //10seconds
  422. #else //FAN_SOFT_PWM
  423. max_print_fan_errors = 15; //15 seconds
  424. max_extruder_fan_errors = 5; //5 seconds
  425. #endif //FAN_SOFT_PWM
  426. if(fans_check_enabled != false)
  427. fans_check_enabled = (eeprom_read_byte((uint8_t*)EEPROM_FAN_CHECK_ENABLED) > 0);
  428. static unsigned char fan_speed_errors[2] = { 0,0 };
  429. #if (defined(FANCHECK) && defined(TACH_0) && (TACH_0 >-1))
  430. if ((fan_speed[0] == 0) && (current_temperature[0] > EXTRUDER_AUTO_FAN_TEMPERATURE)){ fan_speed_errors[0]++;}
  431. else{
  432. fan_speed_errors[0] = 0;
  433. host_keepalive();
  434. }
  435. #endif
  436. #if (defined(FANCHECK) && defined(TACH_1) && (TACH_1 >-1))
  437. if ((fan_speed[1] < 5) && ((blocks_queued() ? block_buffer[block_buffer_tail].fan_speed : fanSpeed) > MIN_PRINT_FAN_SPEED)) fan_speed_errors[1]++;
  438. else fan_speed_errors[1] = 0;
  439. #endif
  440. // drop the fan_check_error flag when both fans are ok
  441. if( fan_speed_errors[0] == 0 && fan_speed_errors[1] == 0 && fan_check_error == EFCE_REPORTED){
  442. // we may even send some info to the LCD from here
  443. fan_check_error = EFCE_OK;
  444. }
  445. if ((fan_speed_errors[0] > max_extruder_fan_errors) && fans_check_enabled) {
  446. fan_speed_errors[0] = 0;
  447. fanSpeedError(0); //extruder fan
  448. }
  449. if ((fan_speed_errors[1] > max_print_fan_errors) && fans_check_enabled) {
  450. fan_speed_errors[1] = 0;
  451. fanSpeedError(1); //print fan
  452. }
  453. }
  454. //! Prints serialMsg to serial port, displays lcdMsg onto the LCD and beeps.
  455. //! Extracted from fanSpeedError to save some space.
  456. //! @param serialMsg pointer into PROGMEM, this text will be printed to the serial port
  457. //! @param lcdMsg pointer into PROGMEM, this text will be printed onto the LCD
  458. static void fanSpeedErrorBeep(const char *serialMsg, const char *lcdMsg){
  459. SERIAL_ECHOLNRPGM(serialMsg);
  460. if (get_message_level() == 0) {
  461. Sound_MakeCustom(200,0,true);
  462. LCD_ALERTMESSAGERPGM(lcdMsg);
  463. }
  464. }
  465. void fanSpeedError(unsigned char _fan) {
  466. if (get_message_level() != 0 && isPrintPaused) return;
  467. //to ensure that target temp. is not set to zero in case taht we are resuming print
  468. if (card.sdprinting || is_usb_printing) {
  469. if (heating_status != 0) {
  470. lcd_print_stop();
  471. }
  472. else {
  473. fan_check_error = EFCE_DETECTED;
  474. }
  475. }
  476. else {
  477. SERIAL_PROTOCOLLNRPGM(MSG_OCTOPRINT_PAUSE); //for octoprint
  478. setTargetHotend0(0);
  479. heating_status = 0;
  480. fan_check_error = EFCE_REPORTED;
  481. }
  482. switch (_fan) {
  483. case 0: // extracting the same code from case 0 and case 1 into a function saves 72B
  484. fanSpeedErrorBeep(PSTR("Extruder fan speed is lower than expected"), PSTR("Err: EXTR. FAN ERROR") );
  485. break;
  486. case 1:
  487. fanSpeedErrorBeep(PSTR("Print fan speed is lower than expected"), PSTR("Err: PRINT FAN ERROR") );
  488. break;
  489. }
  490. SERIAL_PROTOCOLLNRPGM(MSG_OK);
  491. }
  492. #endif //(defined(TACH_0) && TACH_0 >-1) || (defined(TACH_1) && TACH_1 > -1)
  493. void checkExtruderAutoFans()
  494. {
  495. uint8_t fanState = 0;
  496. // which fan pins need to be turned on?
  497. #if defined(EXTRUDER_0_AUTO_FAN_PIN) && EXTRUDER_0_AUTO_FAN_PIN > -1
  498. if (current_temperature[0] > EXTRUDER_AUTO_FAN_TEMPERATURE)
  499. fanState |= 1;
  500. #endif
  501. #if defined(EXTRUDER_1_AUTO_FAN_PIN) && EXTRUDER_1_AUTO_FAN_PIN > -1
  502. if (current_temperature[1] > EXTRUDER_AUTO_FAN_TEMPERATURE)
  503. {
  504. if (EXTRUDER_1_AUTO_FAN_PIN == EXTRUDER_0_AUTO_FAN_PIN)
  505. fanState |= 1;
  506. else
  507. fanState |= 2;
  508. }
  509. #endif
  510. #if defined(EXTRUDER_2_AUTO_FAN_PIN) && EXTRUDER_2_AUTO_FAN_PIN > -1
  511. if (current_temperature[2] > EXTRUDER_AUTO_FAN_TEMPERATURE)
  512. {
  513. if (EXTRUDER_2_AUTO_FAN_PIN == EXTRUDER_0_AUTO_FAN_PIN)
  514. fanState |= 1;
  515. else if (EXTRUDER_2_AUTO_FAN_PIN == EXTRUDER_1_AUTO_FAN_PIN)
  516. fanState |= 2;
  517. else
  518. fanState |= 4;
  519. }
  520. #endif
  521. // update extruder auto fan states
  522. #if defined(EXTRUDER_0_AUTO_FAN_PIN) && EXTRUDER_0_AUTO_FAN_PIN > -1
  523. setExtruderAutoFanState(EXTRUDER_0_AUTO_FAN_PIN, (fanState & 1) != 0);
  524. #endif
  525. #if defined(EXTRUDER_1_AUTO_FAN_PIN) && EXTRUDER_1_AUTO_FAN_PIN > -1
  526. if (EXTRUDER_1_AUTO_FAN_PIN != EXTRUDER_0_AUTO_FAN_PIN)
  527. setExtruderAutoFanState(EXTRUDER_1_AUTO_FAN_PIN, (fanState & 2) != 0);
  528. #endif
  529. #if defined(EXTRUDER_2_AUTO_FAN_PIN) && EXTRUDER_2_AUTO_FAN_PIN > -1
  530. if (EXTRUDER_2_AUTO_FAN_PIN != EXTRUDER_0_AUTO_FAN_PIN
  531. && EXTRUDER_2_AUTO_FAN_PIN != EXTRUDER_1_AUTO_FAN_PIN)
  532. setExtruderAutoFanState(EXTRUDER_2_AUTO_FAN_PIN, (fanState & 4) != 0);
  533. #endif
  534. }
  535. #endif // any extruder auto fan pins set
  536. // ready for eventually parameters adjusting
  537. void resetPID(uint8_t) // only for compiler-warning elimination (if function do nothing)
  538. //void resetPID(uint8_t extruder)
  539. {
  540. }
  541. void manage_heater()
  542. {
  543. #ifdef WATCHDOG
  544. wdt_reset();
  545. #endif //WATCHDOG
  546. float pid_input;
  547. float pid_output;
  548. if(temp_meas_ready != true) //better readability
  549. return;
  550. // more precisely - this condition partially stabilizes time interval for regulation values evaluation (@ ~ 230ms)
  551. updateTemperaturesFromRawValues();
  552. check_max_temp();
  553. check_min_temp();
  554. #ifdef TEMP_RUNAWAY_BED_HYSTERESIS
  555. temp_runaway_check(0, target_temperature_bed, current_temperature_bed, (int)soft_pwm_bed, true);
  556. #endif
  557. for(int e = 0; e < EXTRUDERS; e++)
  558. {
  559. #ifdef TEMP_RUNAWAY_EXTRUDER_HYSTERESIS
  560. temp_runaway_check(e+1, target_temperature[e], current_temperature[e], (int)soft_pwm[e], false);
  561. #endif
  562. #ifdef PIDTEMP
  563. pid_input = current_temperature[e];
  564. #ifndef PID_OPENLOOP
  565. if(target_temperature[e] == 0) {
  566. pid_output = 0;
  567. pid_reset[e] = true;
  568. } else {
  569. pid_error[e] = target_temperature[e] - pid_input;
  570. if(pid_reset[e]) {
  571. iState_sum[e] = 0.0;
  572. dTerm[e] = 0.0; // 'dState_last[e]' initial setting is not necessary (see end of if-statement)
  573. pid_reset[e] = false;
  574. }
  575. #ifndef PonM
  576. pTerm[e] = cs.Kp * pid_error[e];
  577. iState_sum[e] += pid_error[e];
  578. iState_sum[e] = constrain(iState_sum[e], iState_sum_min[e], iState_sum_max[e]);
  579. iTerm[e] = cs.Ki * iState_sum[e];
  580. // PID_K1 defined in Configuration.h in the PID settings
  581. #define K2 (1.0-PID_K1)
  582. dTerm[e] = (cs.Kd * (pid_input - dState_last[e]))*K2 + (PID_K1 * dTerm[e]); // e.g. digital filtration of derivative term changes
  583. pid_output = pTerm[e] + iTerm[e] - dTerm[e]; // subtraction due to "Derivative on Measurement" method (i.e. derivative of input instead derivative of error is used)
  584. if (pid_output > PID_MAX) {
  585. if (pid_error[e] > 0 ) iState_sum[e] -= pid_error[e]; // conditional un-integration
  586. pid_output=PID_MAX;
  587. } else if (pid_output < 0) {
  588. if (pid_error[e] < 0 ) iState_sum[e] -= pid_error[e]; // conditional un-integration
  589. pid_output=0;
  590. }
  591. #else // PonM ("Proportional on Measurement" method)
  592. iState_sum[e] += cs.Ki * pid_error[e];
  593. iState_sum[e] -= cs.Kp * (pid_input - dState_last[e]);
  594. iState_sum[e] = constrain(iState_sum[e], 0, PID_INTEGRAL_DRIVE_MAX);
  595. dTerm[e] = cs.Kd * (pid_input - dState_last[e]);
  596. pid_output = iState_sum[e] - dTerm[e]; // subtraction due to "Derivative on Measurement" method (i.e. derivative of input instead derivative of error is used)
  597. pid_output = constrain(pid_output, 0, PID_MAX);
  598. #endif // PonM
  599. }
  600. dState_last[e] = pid_input;
  601. #else
  602. pid_output = constrain(target_temperature[e], 0, PID_MAX);
  603. #endif //PID_OPENLOOP
  604. #ifdef PID_DEBUG
  605. SERIAL_ECHO_START;
  606. SERIAL_ECHO(" PID_DEBUG ");
  607. SERIAL_ECHO(e);
  608. SERIAL_ECHO(": Input ");
  609. SERIAL_ECHO(pid_input);
  610. SERIAL_ECHO(" Output ");
  611. SERIAL_ECHO(pid_output);
  612. SERIAL_ECHO(" pTerm ");
  613. SERIAL_ECHO(pTerm[e]);
  614. SERIAL_ECHO(" iTerm ");
  615. SERIAL_ECHO(iTerm[e]);
  616. SERIAL_ECHO(" dTerm ");
  617. SERIAL_ECHOLN(-dTerm[e]);
  618. #endif //PID_DEBUG
  619. #else /* PID off */
  620. pid_output = 0;
  621. if(current_temperature[e] < target_temperature[e]) {
  622. pid_output = PID_MAX;
  623. }
  624. #endif
  625. // Check if temperature is within the correct range
  626. if((current_temperature[e] < maxttemp[e]) && (target_temperature[e] != 0))
  627. {
  628. soft_pwm[e] = (int)pid_output >> 1;
  629. }
  630. else
  631. {
  632. soft_pwm[e] = 0;
  633. }
  634. } // End extruder for loop
  635. #define FAN_CHECK_PERIOD 5000 //5s
  636. #define FAN_CHECK_DURATION 100 //100ms
  637. #ifndef DEBUG_DISABLE_FANCHECK
  638. #if (defined(EXTRUDER_0_AUTO_FAN_PIN) && EXTRUDER_0_AUTO_FAN_PIN > -1) || \
  639. (defined(EXTRUDER_1_AUTO_FAN_PIN) && EXTRUDER_1_AUTO_FAN_PIN > -1) || \
  640. (defined(EXTRUDER_2_AUTO_FAN_PIN) && EXTRUDER_2_AUTO_FAN_PIN > -1)
  641. #ifdef FAN_SOFT_PWM
  642. #ifdef FANCHECK
  643. if ((_millis() - extruder_autofan_last_check > FAN_CHECK_PERIOD) && (!fan_measuring)) {
  644. extruder_autofan_last_check = _millis();
  645. fanSpeedBckp = fanSpeedSoftPwm;
  646. if (fanSpeedSoftPwm >= MIN_PRINT_FAN_SPEED) { //if we are in rage where we are doing fan check, set full PWM range for a short time to measure fan RPM by reading tacho signal without modulation by PWM signal
  647. // printf_P(PSTR("fanSpeedSoftPwm 1: %d\n"), fanSpeedSoftPwm);
  648. fanSpeedSoftPwm = 255;
  649. }
  650. fan_measuring = true;
  651. }
  652. if ((_millis() - extruder_autofan_last_check > FAN_CHECK_DURATION) && (fan_measuring)) {
  653. countFanSpeed();
  654. checkFanSpeed();
  655. //printf_P(PSTR("fanSpeedSoftPwm 1: %d\n"), fanSpeedSoftPwm);
  656. fanSpeedSoftPwm = fanSpeedBckp;
  657. //printf_P(PSTR("fan PWM: %d; extr fanSpeed measured: %d; print fan speed measured: %d \n"), fanSpeedBckp, fan_speed[0], fan_speed[1]);
  658. extruder_autofan_last_check = _millis();
  659. fan_measuring = false;
  660. }
  661. #endif //FANCHECK
  662. checkExtruderAutoFans();
  663. #else //FAN_SOFT_PWM
  664. if(_millis() - extruder_autofan_last_check > 1000) // only need to check fan state very infrequently
  665. {
  666. #if (defined(FANCHECK) && ((defined(TACH_0) && (TACH_0 >-1)) || (defined(TACH_1) && (TACH_1 > -1))))
  667. countFanSpeed();
  668. checkFanSpeed();
  669. #endif //(defined(TACH_0) && TACH_0 >-1) || (defined(TACH_1) && TACH_1 > -1)
  670. checkExtruderAutoFans();
  671. extruder_autofan_last_check = _millis();
  672. }
  673. #endif //FAN_SOFT_PWM
  674. #endif
  675. #endif //DEBUG_DISABLE_FANCHECK
  676. #ifndef PIDTEMPBED
  677. if(_millis() - previous_millis_bed_heater < BED_CHECK_INTERVAL)
  678. return;
  679. previous_millis_bed_heater = _millis();
  680. #endif
  681. #if TEMP_SENSOR_BED != 0
  682. #ifdef PIDTEMPBED
  683. pid_input = current_temperature_bed;
  684. #ifndef PID_OPENLOOP
  685. pid_error_bed = target_temperature_bed - pid_input;
  686. pTerm_bed = cs.bedKp * pid_error_bed;
  687. temp_iState_bed += pid_error_bed;
  688. temp_iState_bed = constrain(temp_iState_bed, temp_iState_min_bed, temp_iState_max_bed);
  689. iTerm_bed = cs.bedKi * temp_iState_bed;
  690. //PID_K1 defined in Configuration.h in the PID settings
  691. #define K2 (1.0-PID_K1)
  692. dTerm_bed= (cs.bedKd * (pid_input - temp_dState_bed))*K2 + (PID_K1 * dTerm_bed);
  693. temp_dState_bed = pid_input;
  694. pid_output = pTerm_bed + iTerm_bed - dTerm_bed;
  695. if (pid_output > MAX_BED_POWER) {
  696. if (pid_error_bed > 0 ) temp_iState_bed -= pid_error_bed; // conditional un-integration
  697. pid_output=MAX_BED_POWER;
  698. } else if (pid_output < 0){
  699. if (pid_error_bed < 0 ) temp_iState_bed -= pid_error_bed; // conditional un-integration
  700. pid_output=0;
  701. }
  702. #else
  703. pid_output = constrain(target_temperature_bed, 0, MAX_BED_POWER);
  704. #endif //PID_OPENLOOP
  705. if(current_temperature_bed < BED_MAXTEMP)
  706. {
  707. soft_pwm_bed = (int)pid_output >> 1;
  708. timer02_set_pwm0(soft_pwm_bed << 1);
  709. }
  710. else {
  711. soft_pwm_bed = 0;
  712. timer02_set_pwm0(soft_pwm_bed << 1);
  713. }
  714. #elif !defined(BED_LIMIT_SWITCHING)
  715. // Check if temperature is within the correct range
  716. if(current_temperature_bed < BED_MAXTEMP)
  717. {
  718. if(current_temperature_bed >= target_temperature_bed)
  719. {
  720. soft_pwm_bed = 0;
  721. timer02_set_pwm0(soft_pwm_bed << 1);
  722. }
  723. else
  724. {
  725. soft_pwm_bed = MAX_BED_POWER>>1;
  726. timer02_set_pwm0(soft_pwm_bed << 1);
  727. }
  728. }
  729. else
  730. {
  731. soft_pwm_bed = 0;
  732. timer02_set_pwm0(soft_pwm_bed << 1);
  733. WRITE(HEATER_BED_PIN,LOW);
  734. }
  735. #else //#ifdef BED_LIMIT_SWITCHING
  736. // Check if temperature is within the correct band
  737. if(current_temperature_bed < BED_MAXTEMP)
  738. {
  739. if(current_temperature_bed > target_temperature_bed + BED_HYSTERESIS)
  740. {
  741. soft_pwm_bed = 0;
  742. timer02_set_pwm0(soft_pwm_bed << 1);
  743. }
  744. else if(current_temperature_bed <= target_temperature_bed - BED_HYSTERESIS)
  745. {
  746. soft_pwm_bed = MAX_BED_POWER>>1;
  747. timer02_set_pwm0(soft_pwm_bed << 1);
  748. }
  749. }
  750. else
  751. {
  752. soft_pwm_bed = 0;
  753. timer02_set_pwm0(soft_pwm_bed << 1);
  754. WRITE(HEATER_BED_PIN,LOW);
  755. }
  756. #endif
  757. if(target_temperature_bed==0)
  758. {
  759. soft_pwm_bed = 0;
  760. timer02_set_pwm0(soft_pwm_bed << 1);
  761. }
  762. #endif
  763. host_keepalive();
  764. }
  765. #define PGM_RD_W(x) (short)pgm_read_word(&x)
  766. // Derived from RepRap FiveD extruder::getTemperature()
  767. // For hot end temperature measurement.
  768. static float analog2temp(int raw, uint8_t e) {
  769. if(e >= EXTRUDERS)
  770. {
  771. SERIAL_ERROR_START;
  772. SERIAL_ERROR((int)e);
  773. SERIAL_ERRORLNPGM(" - Invalid extruder number !");
  774. kill(PSTR(""), 6);
  775. return 0.0;
  776. }
  777. #ifdef HEATER_0_USES_MAX6675
  778. if (e == 0)
  779. {
  780. return 0.25 * raw;
  781. }
  782. #endif
  783. if(heater_ttbl_map[e] != NULL)
  784. {
  785. float celsius = 0;
  786. uint8_t i;
  787. short (*tt)[][2] = (short (*)[][2])(heater_ttbl_map[e]);
  788. for (i=1; i<heater_ttbllen_map[e]; i++)
  789. {
  790. if (PGM_RD_W((*tt)[i][0]) > raw)
  791. {
  792. celsius = PGM_RD_W((*tt)[i-1][1]) +
  793. (raw - PGM_RD_W((*tt)[i-1][0])) *
  794. (float)(PGM_RD_W((*tt)[i][1]) - PGM_RD_W((*tt)[i-1][1])) /
  795. (float)(PGM_RD_W((*tt)[i][0]) - PGM_RD_W((*tt)[i-1][0]));
  796. break;
  797. }
  798. }
  799. // Overflow: Set to last value in the table
  800. if (i == heater_ttbllen_map[e]) celsius = PGM_RD_W((*tt)[i-1][1]);
  801. return celsius;
  802. }
  803. return ((raw * ((5.0 * 100.0) / 1024.0) / OVERSAMPLENR) * TEMP_SENSOR_AD595_GAIN) + TEMP_SENSOR_AD595_OFFSET;
  804. }
  805. // Derived from RepRap FiveD extruder::getTemperature()
  806. // For bed temperature measurement.
  807. static float analog2tempBed(int raw) {
  808. #ifdef BED_USES_THERMISTOR
  809. float celsius = 0;
  810. byte i;
  811. for (i=1; i<BEDTEMPTABLE_LEN; i++)
  812. {
  813. if (PGM_RD_W(BEDTEMPTABLE[i][0]) > raw)
  814. {
  815. celsius = PGM_RD_W(BEDTEMPTABLE[i-1][1]) +
  816. (raw - PGM_RD_W(BEDTEMPTABLE[i-1][0])) *
  817. (float)(PGM_RD_W(BEDTEMPTABLE[i][1]) - PGM_RD_W(BEDTEMPTABLE[i-1][1])) /
  818. (float)(PGM_RD_W(BEDTEMPTABLE[i][0]) - PGM_RD_W(BEDTEMPTABLE[i-1][0]));
  819. break;
  820. }
  821. }
  822. // Overflow: Set to last value in the table
  823. if (i == BEDTEMPTABLE_LEN) celsius = PGM_RD_W(BEDTEMPTABLE[i-1][1]);
  824. // temperature offset adjustment
  825. #ifdef BED_OFFSET
  826. float _offset = BED_OFFSET;
  827. float _offset_center = BED_OFFSET_CENTER;
  828. float _offset_start = BED_OFFSET_START;
  829. float _first_koef = (_offset / 2) / (_offset_center - _offset_start);
  830. float _second_koef = (_offset / 2) / (100 - _offset_center);
  831. if (celsius >= _offset_start && celsius <= _offset_center)
  832. {
  833. celsius = celsius + (_first_koef * (celsius - _offset_start));
  834. }
  835. else if (celsius > _offset_center && celsius <= 100)
  836. {
  837. celsius = celsius + (_first_koef * (_offset_center - _offset_start)) + ( _second_koef * ( celsius - ( 100 - _offset_center ) )) ;
  838. }
  839. else if (celsius > 100)
  840. {
  841. celsius = celsius + _offset;
  842. }
  843. #endif
  844. return celsius;
  845. #elif defined BED_USES_AD595
  846. return ((raw * ((5.0 * 100.0) / 1024.0) / OVERSAMPLENR) * TEMP_SENSOR_AD595_GAIN) + TEMP_SENSOR_AD595_OFFSET;
  847. #else
  848. return 0;
  849. #endif
  850. }
  851. #ifdef AMBIENT_THERMISTOR
  852. static float analog2tempAmbient(int raw)
  853. {
  854. float celsius = 0;
  855. byte i;
  856. for (i=1; i<AMBIENTTEMPTABLE_LEN; i++)
  857. {
  858. if (PGM_RD_W(AMBIENTTEMPTABLE[i][0]) > raw)
  859. {
  860. celsius = PGM_RD_W(AMBIENTTEMPTABLE[i-1][1]) +
  861. (raw - PGM_RD_W(AMBIENTTEMPTABLE[i-1][0])) *
  862. (float)(PGM_RD_W(AMBIENTTEMPTABLE[i][1]) - PGM_RD_W(AMBIENTTEMPTABLE[i-1][1])) /
  863. (float)(PGM_RD_W(AMBIENTTEMPTABLE[i][0]) - PGM_RD_W(AMBIENTTEMPTABLE[i-1][0]));
  864. break;
  865. }
  866. }
  867. // Overflow: Set to last value in the table
  868. if (i == AMBIENTTEMPTABLE_LEN) celsius = PGM_RD_W(AMBIENTTEMPTABLE[i-1][1]);
  869. return celsius;
  870. }
  871. #endif //AMBIENT_THERMISTOR
  872. /* Called to get the raw values into the the actual temperatures. The raw values are created in interrupt context,
  873. and this function is called from normal context as it is too slow to run in interrupts and will block the stepper routine otherwise */
  874. static void updateTemperaturesFromRawValues()
  875. {
  876. for(uint8_t e=0;e<EXTRUDERS;e++)
  877. {
  878. current_temperature[e] = analog2temp(current_temperature_raw[e], e);
  879. }
  880. #ifdef PINDA_THERMISTOR
  881. current_temperature_raw_pinda = (uint16_t)((uint32_t)current_temperature_raw_pinda * 3 + current_temperature_raw_pinda_fast) >> 2;
  882. current_temperature_pinda = analog2tempBed(current_temperature_raw_pinda);
  883. #endif
  884. #ifdef AMBIENT_THERMISTOR
  885. current_temperature_ambient = analog2tempAmbient(current_temperature_raw_ambient); //thermistor for ambient is NTCG104LH104JT1 (2000)
  886. #endif
  887. #ifdef DEBUG_HEATER_BED_SIM
  888. current_temperature_bed = target_temperature_bed;
  889. #else //DEBUG_HEATER_BED_SIM
  890. current_temperature_bed = analog2tempBed(current_temperature_bed_raw);
  891. #endif //DEBUG_HEATER_BED_SIM
  892. CRITICAL_SECTION_START;
  893. temp_meas_ready = false;
  894. CRITICAL_SECTION_END;
  895. }
  896. void tp_init()
  897. {
  898. #if MB(RUMBA) && ((TEMP_SENSOR_0==-1)||(TEMP_SENSOR_1==-1)||(TEMP_SENSOR_2==-1)||(TEMP_SENSOR_BED==-1))
  899. //disable RUMBA JTAG in case the thermocouple extension is plugged on top of JTAG connector
  900. MCUCR=(1<<JTD);
  901. MCUCR=(1<<JTD);
  902. #endif
  903. // Finish init of mult extruder arrays
  904. for(int e = 0; e < EXTRUDERS; e++) {
  905. // populate with the first value
  906. maxttemp[e] = maxttemp[0];
  907. #ifdef PIDTEMP
  908. iState_sum_min[e] = 0.0;
  909. iState_sum_max[e] = PID_INTEGRAL_DRIVE_MAX / cs.Ki;
  910. #endif //PIDTEMP
  911. #ifdef PIDTEMPBED
  912. temp_iState_min_bed = 0.0;
  913. temp_iState_max_bed = PID_INTEGRAL_DRIVE_MAX / cs.bedKi;
  914. #endif //PIDTEMPBED
  915. }
  916. #if defined(HEATER_0_PIN) && (HEATER_0_PIN > -1)
  917. SET_OUTPUT(HEATER_0_PIN);
  918. #endif
  919. #if defined(HEATER_1_PIN) && (HEATER_1_PIN > -1)
  920. SET_OUTPUT(HEATER_1_PIN);
  921. #endif
  922. #if defined(HEATER_2_PIN) && (HEATER_2_PIN > -1)
  923. SET_OUTPUT(HEATER_2_PIN);
  924. #endif
  925. #if defined(HEATER_BED_PIN) && (HEATER_BED_PIN > -1)
  926. SET_OUTPUT(HEATER_BED_PIN);
  927. #endif
  928. #if defined(FAN_PIN) && (FAN_PIN > -1)
  929. SET_OUTPUT(FAN_PIN);
  930. #ifdef FAST_PWM_FAN
  931. setPwmFrequency(FAN_PIN, 1); // No prescaling. Pwm frequency = F_CPU/256/8
  932. #endif
  933. #ifdef FAN_SOFT_PWM
  934. soft_pwm_fan = fanSpeedSoftPwm / (1 << (8 - FAN_SOFT_PWM_BITS));
  935. #endif
  936. #endif
  937. #ifdef HEATER_0_USES_MAX6675
  938. #ifndef SDSUPPORT
  939. SET_OUTPUT(SCK_PIN);
  940. WRITE(SCK_PIN,0);
  941. SET_OUTPUT(MOSI_PIN);
  942. WRITE(MOSI_PIN,1);
  943. SET_INPUT(MISO_PIN);
  944. WRITE(MISO_PIN,1);
  945. #endif
  946. /* Using pinMode and digitalWrite, as that was the only way I could get it to compile */
  947. //Have to toggle SD card CS pin to low first, to enable firmware to talk with SD card
  948. pinMode(SS_PIN, OUTPUT);
  949. digitalWrite(SS_PIN,0);
  950. pinMode(MAX6675_SS, OUTPUT);
  951. digitalWrite(MAX6675_SS,1);
  952. #endif
  953. adc_init();
  954. timer0_init();
  955. OCR2B = 128;
  956. TIMSK2 |= (1<<OCIE2B);
  957. // Wait for temperature measurement to settle
  958. _delay(250);
  959. #ifdef HEATER_0_MINTEMP
  960. minttemp[0] = HEATER_0_MINTEMP;
  961. while(analog2temp(minttemp_raw[0], 0) < HEATER_0_MINTEMP) {
  962. #if HEATER_0_RAW_LO_TEMP < HEATER_0_RAW_HI_TEMP
  963. minttemp_raw[0] += OVERSAMPLENR;
  964. #else
  965. minttemp_raw[0] -= OVERSAMPLENR;
  966. #endif
  967. }
  968. #endif //MINTEMP
  969. #ifdef HEATER_0_MAXTEMP
  970. maxttemp[0] = HEATER_0_MAXTEMP;
  971. while(analog2temp(maxttemp_raw[0], 0) > HEATER_0_MAXTEMP) {
  972. #if HEATER_0_RAW_LO_TEMP < HEATER_0_RAW_HI_TEMP
  973. maxttemp_raw[0] -= OVERSAMPLENR;
  974. #else
  975. maxttemp_raw[0] += OVERSAMPLENR;
  976. #endif
  977. }
  978. #endif //MAXTEMP
  979. #if (EXTRUDERS > 1) && defined(HEATER_1_MINTEMP)
  980. minttemp[1] = HEATER_1_MINTEMP;
  981. while(analog2temp(minttemp_raw[1], 1) < HEATER_1_MINTEMP) {
  982. #if HEATER_1_RAW_LO_TEMP < HEATER_1_RAW_HI_TEMP
  983. minttemp_raw[1] += OVERSAMPLENR;
  984. #else
  985. minttemp_raw[1] -= OVERSAMPLENR;
  986. #endif
  987. }
  988. #endif // MINTEMP 1
  989. #if (EXTRUDERS > 1) && defined(HEATER_1_MAXTEMP)
  990. maxttemp[1] = HEATER_1_MAXTEMP;
  991. while(analog2temp(maxttemp_raw[1], 1) > HEATER_1_MAXTEMP) {
  992. #if HEATER_1_RAW_LO_TEMP < HEATER_1_RAW_HI_TEMP
  993. maxttemp_raw[1] -= OVERSAMPLENR;
  994. #else
  995. maxttemp_raw[1] += OVERSAMPLENR;
  996. #endif
  997. }
  998. #endif //MAXTEMP 1
  999. #if (EXTRUDERS > 2) && defined(HEATER_2_MINTEMP)
  1000. minttemp[2] = HEATER_2_MINTEMP;
  1001. while(analog2temp(minttemp_raw[2], 2) < HEATER_2_MINTEMP) {
  1002. #if HEATER_2_RAW_LO_TEMP < HEATER_2_RAW_HI_TEMP
  1003. minttemp_raw[2] += OVERSAMPLENR;
  1004. #else
  1005. minttemp_raw[2] -= OVERSAMPLENR;
  1006. #endif
  1007. }
  1008. #endif //MINTEMP 2
  1009. #if (EXTRUDERS > 2) && defined(HEATER_2_MAXTEMP)
  1010. maxttemp[2] = HEATER_2_MAXTEMP;
  1011. while(analog2temp(maxttemp_raw[2], 2) > HEATER_2_MAXTEMP) {
  1012. #if HEATER_2_RAW_LO_TEMP < HEATER_2_RAW_HI_TEMP
  1013. maxttemp_raw[2] -= OVERSAMPLENR;
  1014. #else
  1015. maxttemp_raw[2] += OVERSAMPLENR;
  1016. #endif
  1017. }
  1018. #endif //MAXTEMP 2
  1019. #ifdef BED_MINTEMP
  1020. /* No bed MINTEMP error implemented?!? */
  1021. while(analog2tempBed(bed_minttemp_raw) < BED_MINTEMP) {
  1022. #if HEATER_BED_RAW_LO_TEMP < HEATER_BED_RAW_HI_TEMP
  1023. bed_minttemp_raw += OVERSAMPLENR;
  1024. #else
  1025. bed_minttemp_raw -= OVERSAMPLENR;
  1026. #endif
  1027. }
  1028. #endif //BED_MINTEMP
  1029. #ifdef BED_MAXTEMP
  1030. while(analog2tempBed(bed_maxttemp_raw) > BED_MAXTEMP) {
  1031. #if HEATER_BED_RAW_LO_TEMP < HEATER_BED_RAW_HI_TEMP
  1032. bed_maxttemp_raw -= OVERSAMPLENR;
  1033. #else
  1034. bed_maxttemp_raw += OVERSAMPLENR;
  1035. #endif
  1036. }
  1037. #endif //BED_MAXTEMP
  1038. }
  1039. #if (defined (TEMP_RUNAWAY_BED_HYSTERESIS) && TEMP_RUNAWAY_BED_TIMEOUT > 0) || (defined (TEMP_RUNAWAY_EXTRUDER_HYSTERESIS) && TEMP_RUNAWAY_EXTRUDER_TIMEOUT > 0)
  1040. void temp_runaway_check(int _heater_id, float _target_temperature, float _current_temperature, float _output, bool _isbed)
  1041. {
  1042. float __delta;
  1043. float __hysteresis = 0;
  1044. int __timeout = 0;
  1045. bool temp_runaway_check_active = false;
  1046. static float __preheat_start[2] = { 0,0}; //currently just bed and one extruder
  1047. static int __preheat_counter[2] = { 0,0};
  1048. static int __preheat_errors[2] = { 0,0};
  1049. if (_millis() - temp_runaway_timer[_heater_id] > 2000)
  1050. {
  1051. #ifdef TEMP_RUNAWAY_BED_TIMEOUT
  1052. if (_isbed)
  1053. {
  1054. __hysteresis = TEMP_RUNAWAY_BED_HYSTERESIS;
  1055. __timeout = TEMP_RUNAWAY_BED_TIMEOUT;
  1056. }
  1057. #endif
  1058. #ifdef TEMP_RUNAWAY_EXTRUDER_TIMEOUT
  1059. if (!_isbed)
  1060. {
  1061. __hysteresis = TEMP_RUNAWAY_EXTRUDER_HYSTERESIS;
  1062. __timeout = TEMP_RUNAWAY_EXTRUDER_TIMEOUT;
  1063. }
  1064. #endif
  1065. temp_runaway_timer[_heater_id] = _millis();
  1066. if (_output == 0)
  1067. {
  1068. temp_runaway_check_active = false;
  1069. temp_runaway_error_counter[_heater_id] = 0;
  1070. }
  1071. if (temp_runaway_target[_heater_id] != _target_temperature)
  1072. {
  1073. if (_target_temperature > 0)
  1074. {
  1075. temp_runaway_status[_heater_id] = TempRunaway_PREHEAT;
  1076. temp_runaway_target[_heater_id] = _target_temperature;
  1077. __preheat_start[_heater_id] = _current_temperature;
  1078. __preheat_counter[_heater_id] = 0;
  1079. }
  1080. else
  1081. {
  1082. temp_runaway_status[_heater_id] = TempRunaway_INACTIVE;
  1083. temp_runaway_target[_heater_id] = _target_temperature;
  1084. }
  1085. }
  1086. if ((_current_temperature < _target_temperature) && (temp_runaway_status[_heater_id] == TempRunaway_PREHEAT))
  1087. {
  1088. __preheat_counter[_heater_id]++;
  1089. if (__preheat_counter[_heater_id] > ((_isbed) ? 16 : 8)) // periodicaly check if current temperature changes
  1090. {
  1091. /*SERIAL_ECHOPGM("Heater:");
  1092. MYSERIAL.print(_heater_id);
  1093. SERIAL_ECHOPGM(" T:");
  1094. MYSERIAL.print(_current_temperature);
  1095. SERIAL_ECHOPGM(" Tstart:");
  1096. MYSERIAL.print(__preheat_start[_heater_id]);
  1097. SERIAL_ECHOPGM(" delta:");
  1098. MYSERIAL.print(_current_temperature-__preheat_start[_heater_id]);*/
  1099. //-// if (_current_temperature - __preheat_start[_heater_id] < 2) {
  1100. //-// if (_current_temperature - __preheat_start[_heater_id] < ((_isbed && (_current_temperature>105.0))?0.6:2.0)) {
  1101. __delta=2.0;
  1102. if(_isbed)
  1103. {
  1104. __delta=3.0;
  1105. if(_current_temperature>90.0) __delta=2.0;
  1106. if(_current_temperature>105.0) __delta=0.6;
  1107. }
  1108. if (_current_temperature - __preheat_start[_heater_id] < __delta) {
  1109. __preheat_errors[_heater_id]++;
  1110. /*SERIAL_ECHOPGM(" Preheat errors:");
  1111. MYSERIAL.println(__preheat_errors[_heater_id]);*/
  1112. }
  1113. else {
  1114. //SERIAL_ECHOLNPGM("");
  1115. __preheat_errors[_heater_id] = 0;
  1116. }
  1117. if (__preheat_errors[_heater_id] > ((_isbed) ? 3 : 5))
  1118. {
  1119. if (farm_mode) { prusa_statistics(0); }
  1120. temp_runaway_stop(true, _isbed);
  1121. if (farm_mode) { prusa_statistics(91); }
  1122. }
  1123. __preheat_start[_heater_id] = _current_temperature;
  1124. __preheat_counter[_heater_id] = 0;
  1125. }
  1126. }
  1127. //-// if (_current_temperature >= _target_temperature && temp_runaway_status[_heater_id] == TempRunaway_PREHEAT)
  1128. if ((_current_temperature > (_target_temperature - __hysteresis)) && temp_runaway_status[_heater_id] == TempRunaway_PREHEAT)
  1129. {
  1130. /*SERIAL_ECHOPGM("Heater:");
  1131. MYSERIAL.print(_heater_id);
  1132. MYSERIAL.println(" ->tempRunaway");*/
  1133. temp_runaway_status[_heater_id] = TempRunaway_ACTIVE;
  1134. temp_runaway_check_active = false;
  1135. temp_runaway_error_counter[_heater_id] = 0;
  1136. }
  1137. if (_output > 0)
  1138. {
  1139. temp_runaway_check_active = true;
  1140. }
  1141. if (temp_runaway_check_active)
  1142. {
  1143. // we are in range
  1144. if ((_current_temperature > (_target_temperature - __hysteresis)) && (_current_temperature < (_target_temperature + __hysteresis)))
  1145. {
  1146. temp_runaway_check_active = false;
  1147. temp_runaway_error_counter[_heater_id] = 0;
  1148. }
  1149. else
  1150. {
  1151. if (temp_runaway_status[_heater_id] > TempRunaway_PREHEAT)
  1152. {
  1153. temp_runaway_error_counter[_heater_id]++;
  1154. if (temp_runaway_error_counter[_heater_id] * 2 > __timeout)
  1155. {
  1156. if (farm_mode) { prusa_statistics(0); }
  1157. temp_runaway_stop(false, _isbed);
  1158. if (farm_mode) { prusa_statistics(90); }
  1159. }
  1160. }
  1161. }
  1162. }
  1163. }
  1164. }
  1165. void temp_runaway_stop(bool isPreheat, bool isBed)
  1166. {
  1167. cancel_heatup = true;
  1168. quickStop();
  1169. if (card.sdprinting)
  1170. {
  1171. card.sdprinting = false;
  1172. card.closefile();
  1173. }
  1174. // Clean the input command queue
  1175. // This is necessary, because in command queue there can be commands which would later set heater or bed temperature.
  1176. cmdqueue_reset();
  1177. disable_heater();
  1178. disable_x();
  1179. disable_y();
  1180. disable_e0();
  1181. disable_e1();
  1182. disable_e2();
  1183. manage_heater();
  1184. lcd_update(0);
  1185. Sound_MakeCustom(200,0,true);
  1186. if (isPreheat)
  1187. {
  1188. Stop();
  1189. isBed ? LCD_ALERTMESSAGEPGM("BED PREHEAT ERROR") : LCD_ALERTMESSAGEPGM("PREHEAT ERROR");
  1190. SERIAL_ERROR_START;
  1191. isBed ? SERIAL_ERRORLNPGM(" THERMAL RUNAWAY ( PREHEAT HEATBED)") : SERIAL_ERRORLNPGM(" THERMAL RUNAWAY ( PREHEAT HOTEND)");
  1192. SET_OUTPUT(EXTRUDER_0_AUTO_FAN_PIN);
  1193. SET_OUTPUT(FAN_PIN);
  1194. WRITE(EXTRUDER_0_AUTO_FAN_PIN, 1);
  1195. #ifdef FAN_SOFT_PWM
  1196. fanSpeedSoftPwm = 255;
  1197. #else //FAN_SOFT_PWM
  1198. analogWrite(FAN_PIN, 255);
  1199. #endif //FAN_SOFT_PWM
  1200. fanSpeed = 255;
  1201. delayMicroseconds(2000);
  1202. }
  1203. else
  1204. {
  1205. isBed ? LCD_ALERTMESSAGEPGM("BED THERMAL RUNAWAY") : LCD_ALERTMESSAGEPGM("THERMAL RUNAWAY");
  1206. SERIAL_ERROR_START;
  1207. isBed ? SERIAL_ERRORLNPGM(" HEATBED THERMAL RUNAWAY") : SERIAL_ERRORLNPGM(" HOTEND THERMAL RUNAWAY");
  1208. }
  1209. }
  1210. #endif
  1211. void disable_heater()
  1212. {
  1213. setAllTargetHotends(0);
  1214. setTargetBed(0);
  1215. #if defined(TEMP_0_PIN) && TEMP_0_PIN > -1
  1216. target_temperature[0]=0;
  1217. soft_pwm[0]=0;
  1218. #if defined(HEATER_0_PIN) && HEATER_0_PIN > -1
  1219. WRITE(HEATER_0_PIN,LOW);
  1220. #endif
  1221. #endif
  1222. #if defined(TEMP_1_PIN) && TEMP_1_PIN > -1 && EXTRUDERS > 1
  1223. target_temperature[1]=0;
  1224. soft_pwm[1]=0;
  1225. #if defined(HEATER_1_PIN) && HEATER_1_PIN > -1
  1226. WRITE(HEATER_1_PIN,LOW);
  1227. #endif
  1228. #endif
  1229. #if defined(TEMP_2_PIN) && TEMP_2_PIN > -1 && EXTRUDERS > 2
  1230. target_temperature[2]=0;
  1231. soft_pwm[2]=0;
  1232. #if defined(HEATER_2_PIN) && HEATER_2_PIN > -1
  1233. WRITE(HEATER_2_PIN,LOW);
  1234. #endif
  1235. #endif
  1236. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  1237. target_temperature_bed=0;
  1238. soft_pwm_bed=0;
  1239. timer02_set_pwm0(soft_pwm_bed << 1);
  1240. #if defined(HEATER_BED_PIN) && HEATER_BED_PIN > -1
  1241. //WRITE(HEATER_BED_PIN,LOW);
  1242. #endif
  1243. #endif
  1244. }
  1245. //! codes of alert messages for the LCD - it is shorter to compare an uin8_t
  1246. //! than raw const char * of the messages themselves.
  1247. //! Could be used for MAXTEMP situations too - after reaching MAXTEMP and turning off the heater automagically
  1248. //! the heater/bed may cool down and a similar alert message like "MAXTERM fixed..." may be displayed.
  1249. enum { LCDALERT_NONE = 0, LCDALERT_HEATERMINTEMP, LCDALERT_BEDMINTEMP, LCDALERT_MINTEMPFIXED, LCDALERT_PLEASERESTART };
  1250. //! remember the last alert message sent to the LCD
  1251. //! to prevent flicker and improve speed
  1252. uint8_t last_alert_sent_to_lcd = LCDALERT_NONE;
  1253. void max_temp_error(uint8_t e) {
  1254. disable_heater();
  1255. if(IsStopped() == false) {
  1256. SERIAL_ERROR_START;
  1257. SERIAL_ERRORLN((int)e);
  1258. SERIAL_ERRORLNPGM(": Extruder switched off. MAXTEMP triggered !");
  1259. LCD_ALERTMESSAGEPGM("Err: MAXTEMP");
  1260. }
  1261. #ifndef BOGUS_TEMPERATURE_FAILSAFE_OVERRIDE
  1262. Stop();
  1263. #endif
  1264. SET_OUTPUT(EXTRUDER_0_AUTO_FAN_PIN);
  1265. SET_OUTPUT(FAN_PIN);
  1266. SET_OUTPUT(BEEPER);
  1267. WRITE(FAN_PIN, 1);
  1268. WRITE(EXTRUDER_0_AUTO_FAN_PIN, 1);
  1269. WRITE(BEEPER, 1);
  1270. // fanSpeed will consumed by the check_axes_activity() routine.
  1271. fanSpeed=255;
  1272. if (farm_mode) { prusa_statistics(93); }
  1273. }
  1274. void min_temp_error(uint8_t e) {
  1275. #ifdef DEBUG_DISABLE_MINTEMP
  1276. return;
  1277. #endif
  1278. //if (current_temperature_ambient < MINTEMP_MINAMBIENT) return;
  1279. disable_heater();
  1280. static const char err[] PROGMEM = "Err: MINTEMP";
  1281. if(IsStopped() == false) {
  1282. SERIAL_ERROR_START;
  1283. SERIAL_ERRORLN((int)e);
  1284. SERIAL_ERRORLNPGM(": Extruder switched off. MINTEMP triggered !");
  1285. lcd_setalertstatuspgm(err);
  1286. last_alert_sent_to_lcd = LCDALERT_HEATERMINTEMP;
  1287. } else if( last_alert_sent_to_lcd != LCDALERT_HEATERMINTEMP ){ // only update, if the lcd message is to be changed (i.e. not the same as last time)
  1288. // we are already stopped due to some error, only update the status message without flickering
  1289. lcd_updatestatuspgm(err);
  1290. last_alert_sent_to_lcd = LCDALERT_HEATERMINTEMP;
  1291. }
  1292. #ifndef BOGUS_TEMPERATURE_FAILSAFE_OVERRIDE
  1293. // if( last_alert_sent_to_lcd != LCDALERT_HEATERMINTEMP ){
  1294. // last_alert_sent_to_lcd = LCDALERT_HEATERMINTEMP;
  1295. // lcd_print_stop();
  1296. // }
  1297. Stop();
  1298. #endif
  1299. if (farm_mode) { prusa_statistics(92); }
  1300. }
  1301. void bed_max_temp_error(void) {
  1302. #if HEATER_BED_PIN > -1
  1303. //WRITE(HEATER_BED_PIN, 0);
  1304. #endif
  1305. if(IsStopped() == false) {
  1306. SERIAL_ERROR_START;
  1307. SERIAL_ERRORLNPGM("Temperature heated bed switched off. MAXTEMP triggered !");
  1308. LCD_ALERTMESSAGEPGM("Err: MAXTEMP BED");
  1309. }
  1310. #ifndef BOGUS_TEMPERATURE_FAILSAFE_OVERRIDE
  1311. Stop();
  1312. #endif
  1313. }
  1314. void bed_min_temp_error(void) {
  1315. #ifdef DEBUG_DISABLE_MINTEMP
  1316. return;
  1317. #endif
  1318. //if (current_temperature_ambient < MINTEMP_MINAMBIENT) return;
  1319. #if HEATER_BED_PIN > -1
  1320. //WRITE(HEATER_BED_PIN, 0);
  1321. #endif
  1322. static const char err[] PROGMEM = "Err: MINTEMP BED";
  1323. if(IsStopped() == false) {
  1324. SERIAL_ERROR_START;
  1325. SERIAL_ERRORLNPGM("Temperature heated bed switched off. MINTEMP triggered !");
  1326. lcd_setalertstatuspgm(err);
  1327. last_alert_sent_to_lcd = LCDALERT_BEDMINTEMP;
  1328. } else if( last_alert_sent_to_lcd != LCDALERT_BEDMINTEMP ){ // only update, if the lcd message is to be changed (i.e. not the same as last time)
  1329. // we are already stopped due to some error, only update the status message without flickering
  1330. lcd_updatestatuspgm(err);
  1331. last_alert_sent_to_lcd = LCDALERT_BEDMINTEMP;
  1332. }
  1333. #ifndef BOGUS_TEMPERATURE_FAILSAFE_OVERRIDE
  1334. Stop();
  1335. #endif
  1336. }
  1337. #ifdef HEATER_0_USES_MAX6675
  1338. #define MAX6675_HEAT_INTERVAL 250
  1339. long max6675_previous_millis = MAX6675_HEAT_INTERVAL;
  1340. int max6675_temp = 2000;
  1341. int read_max6675()
  1342. {
  1343. if (_millis() - max6675_previous_millis < MAX6675_HEAT_INTERVAL)
  1344. return max6675_temp;
  1345. max6675_previous_millis = _millis();
  1346. max6675_temp = 0;
  1347. #ifdef PRR
  1348. PRR &= ~(1<<PRSPI);
  1349. #elif defined PRR0
  1350. PRR0 &= ~(1<<PRSPI);
  1351. #endif
  1352. SPCR = (1<<MSTR) | (1<<SPE) | (1<<SPR0);
  1353. // enable TT_MAX6675
  1354. WRITE(MAX6675_SS, 0);
  1355. // ensure 100ns delay - a bit extra is fine
  1356. asm("nop");//50ns on 20Mhz, 62.5ns on 16Mhz
  1357. asm("nop");//50ns on 20Mhz, 62.5ns on 16Mhz
  1358. // read MSB
  1359. SPDR = 0;
  1360. for (;(SPSR & (1<<SPIF)) == 0;);
  1361. max6675_temp = SPDR;
  1362. max6675_temp <<= 8;
  1363. // read LSB
  1364. SPDR = 0;
  1365. for (;(SPSR & (1<<SPIF)) == 0;);
  1366. max6675_temp |= SPDR;
  1367. // disable TT_MAX6675
  1368. WRITE(MAX6675_SS, 1);
  1369. if (max6675_temp & 4)
  1370. {
  1371. // thermocouple open
  1372. max6675_temp = 2000;
  1373. }
  1374. else
  1375. {
  1376. max6675_temp = max6675_temp >> 3;
  1377. }
  1378. return max6675_temp;
  1379. }
  1380. #endif
  1381. extern "C" {
  1382. void adc_ready(void) //callback from adc when sampling finished
  1383. {
  1384. current_temperature_raw[0] = adc_values[ADC_PIN_IDX(TEMP_0_PIN)]; //heater
  1385. current_temperature_raw_pinda_fast = adc_values[ADC_PIN_IDX(TEMP_PINDA_PIN)];
  1386. current_temperature_bed_raw = adc_values[ADC_PIN_IDX(TEMP_BED_PIN)];
  1387. #ifdef VOLT_PWR_PIN
  1388. current_voltage_raw_pwr = adc_values[ADC_PIN_IDX(VOLT_PWR_PIN)];
  1389. #endif
  1390. #ifdef AMBIENT_THERMISTOR
  1391. current_temperature_raw_ambient = adc_values[ADC_PIN_IDX(TEMP_AMBIENT_PIN)]; // 5->6
  1392. #endif //AMBIENT_THERMISTOR
  1393. #ifdef VOLT_BED_PIN
  1394. current_voltage_raw_bed = adc_values[ADC_PIN_IDX(VOLT_BED_PIN)]; // 6->9
  1395. #endif
  1396. #if IR_SENSOR_ANALOG
  1397. current_voltage_raw_IR = adc_values[ADC_PIN_IDX(VOLT_IR_PIN)];
  1398. #endif //IR_SENSOR_ANALOG
  1399. temp_meas_ready = true;
  1400. }
  1401. } // extern "C"
  1402. // Timer2 (originaly timer0) is shared with millies
  1403. #ifdef SYSTEM_TIMER_2
  1404. ISR(TIMER2_COMPB_vect)
  1405. #else //SYSTEM_TIMER_2
  1406. ISR(TIMER0_COMPB_vect)
  1407. #endif //SYSTEM_TIMER_2
  1408. {
  1409. static bool _lock = false;
  1410. if (_lock) return;
  1411. _lock = true;
  1412. asm("sei");
  1413. if (!temp_meas_ready) adc_cycle();
  1414. lcd_buttons_update();
  1415. static uint8_t pwm_count = (1 << SOFT_PWM_SCALE);
  1416. static uint8_t soft_pwm_0;
  1417. #ifdef SLOW_PWM_HEATERS
  1418. static unsigned char slow_pwm_count = 0;
  1419. static unsigned char state_heater_0 = 0;
  1420. static unsigned char state_timer_heater_0 = 0;
  1421. #endif
  1422. #if (EXTRUDERS > 1) || defined(HEATERS_PARALLEL)
  1423. static unsigned char soft_pwm_1;
  1424. #ifdef SLOW_PWM_HEATERS
  1425. static unsigned char state_heater_1 = 0;
  1426. static unsigned char state_timer_heater_1 = 0;
  1427. #endif
  1428. #endif
  1429. #if EXTRUDERS > 2
  1430. static unsigned char soft_pwm_2;
  1431. #ifdef SLOW_PWM_HEATERS
  1432. static unsigned char state_heater_2 = 0;
  1433. static unsigned char state_timer_heater_2 = 0;
  1434. #endif
  1435. #endif
  1436. #if HEATER_BED_PIN > -1
  1437. // @@DR static unsigned char soft_pwm_b;
  1438. #ifdef SLOW_PWM_HEATERS
  1439. static unsigned char state_heater_b = 0;
  1440. static unsigned char state_timer_heater_b = 0;
  1441. #endif
  1442. #endif
  1443. #if defined(FILWIDTH_PIN) &&(FILWIDTH_PIN > -1)
  1444. static unsigned long raw_filwidth_value = 0; //added for filament width sensor
  1445. #endif
  1446. #ifndef SLOW_PWM_HEATERS
  1447. /*
  1448. * standard PWM modulation
  1449. */
  1450. if (pwm_count == 0)
  1451. {
  1452. soft_pwm_0 = soft_pwm[0];
  1453. if(soft_pwm_0 > 0)
  1454. {
  1455. WRITE(HEATER_0_PIN,1);
  1456. #ifdef HEATERS_PARALLEL
  1457. WRITE(HEATER_1_PIN,1);
  1458. #endif
  1459. } else WRITE(HEATER_0_PIN,0);
  1460. #if EXTRUDERS > 1
  1461. soft_pwm_1 = soft_pwm[1];
  1462. if(soft_pwm_1 > 0) WRITE(HEATER_1_PIN,1); else WRITE(HEATER_1_PIN,0);
  1463. #endif
  1464. #if EXTRUDERS > 2
  1465. soft_pwm_2 = soft_pwm[2];
  1466. if(soft_pwm_2 > 0) WRITE(HEATER_2_PIN,1); else WRITE(HEATER_2_PIN,0);
  1467. #endif
  1468. }
  1469. #if defined(HEATER_BED_PIN) && HEATER_BED_PIN > -1
  1470. #if 0 // @@DR vypnuto pro hw pwm bedu
  1471. // tuhle prasarnu bude potreba poustet ve stanovenych intervalech, jinak nemam moc sanci zareagovat
  1472. // teoreticky by se tato cast uz vubec nemusela poustet
  1473. if ((pwm_count & ((1 << HEATER_BED_SOFT_PWM_BITS) - 1)) == 0)
  1474. {
  1475. soft_pwm_b = soft_pwm_bed >> (7 - HEATER_BED_SOFT_PWM_BITS);
  1476. # ifndef SYSTEM_TIMER_2
  1477. // tady budu krokovat pomalou frekvenci na automatu - tohle je rizeni spinani a rozepinani
  1478. // jako ridici frekvenci mam 2khz, jako vystupni frekvenci mam 30hz
  1479. // 2kHz jsou ovsem ve slysitelnem pasmu, mozna bude potreba jit s frekvenci nahoru (a tomu taky prizpusobit ostatni veci)
  1480. // Teoreticky bych mohl stahnout OCR0B citac na 6, cimz bych se dostal nekam ke 40khz a tady potom honit PWM rychleji nebo i pomaleji
  1481. // to nicemu nevadi. Soft PWM scale by se 20x zvetsilo (no dobre, 16x), cimz by se to posunulo k puvodnimu 30Hz PWM
  1482. //if(soft_pwm_b > 0) WRITE(HEATER_BED_PIN,1); else WRITE(HEATER_BED_PIN,0);
  1483. # endif //SYSTEM_TIMER_2
  1484. }
  1485. #endif
  1486. #endif
  1487. #ifdef FAN_SOFT_PWM
  1488. if ((pwm_count & ((1 << FAN_SOFT_PWM_BITS) - 1)) == 0)
  1489. {
  1490. soft_pwm_fan = fanSpeedSoftPwm / (1 << (8 - FAN_SOFT_PWM_BITS));
  1491. if(soft_pwm_fan > 0) WRITE(FAN_PIN,1); else WRITE(FAN_PIN,0);
  1492. }
  1493. #endif
  1494. if(soft_pwm_0 < pwm_count)
  1495. {
  1496. WRITE(HEATER_0_PIN,0);
  1497. #ifdef HEATERS_PARALLEL
  1498. WRITE(HEATER_1_PIN,0);
  1499. #endif
  1500. }
  1501. #if EXTRUDERS > 1
  1502. if(soft_pwm_1 < pwm_count) WRITE(HEATER_1_PIN,0);
  1503. #endif
  1504. #if EXTRUDERS > 2
  1505. if(soft_pwm_2 < pwm_count) WRITE(HEATER_2_PIN,0);
  1506. #endif
  1507. #if 0 // @@DR
  1508. #if defined(HEATER_BED_PIN) && HEATER_BED_PIN > -1
  1509. if (soft_pwm_b < (pwm_count & ((1 << HEATER_BED_SOFT_PWM_BITS) - 1))){
  1510. //WRITE(HEATER_BED_PIN,0);
  1511. }
  1512. //WRITE(HEATER_BED_PIN, pwm_count & 1 );
  1513. #endif
  1514. #endif
  1515. #ifdef FAN_SOFT_PWM
  1516. if (soft_pwm_fan < (pwm_count & ((1 << FAN_SOFT_PWM_BITS) - 1))) WRITE(FAN_PIN,0);
  1517. #endif
  1518. pwm_count += (1 << SOFT_PWM_SCALE);
  1519. pwm_count &= 0x7f;
  1520. #else //ifndef SLOW_PWM_HEATERS
  1521. /*
  1522. * SLOW PWM HEATERS
  1523. *
  1524. * for heaters drived by relay
  1525. */
  1526. #ifndef MIN_STATE_TIME
  1527. #define MIN_STATE_TIME 16 // MIN_STATE_TIME * 65.5 = time in milliseconds
  1528. #endif
  1529. if (slow_pwm_count == 0) {
  1530. // EXTRUDER 0
  1531. soft_pwm_0 = soft_pwm[0];
  1532. if (soft_pwm_0 > 0) {
  1533. // turn ON heather only if the minimum time is up
  1534. if (state_timer_heater_0 == 0) {
  1535. // if change state set timer
  1536. if (state_heater_0 == 0) {
  1537. state_timer_heater_0 = MIN_STATE_TIME;
  1538. }
  1539. state_heater_0 = 1;
  1540. WRITE(HEATER_0_PIN, 1);
  1541. #ifdef HEATERS_PARALLEL
  1542. WRITE(HEATER_1_PIN, 1);
  1543. #endif
  1544. }
  1545. } else {
  1546. // turn OFF heather only if the minimum time is up
  1547. if (state_timer_heater_0 == 0) {
  1548. // if change state set timer
  1549. if (state_heater_0 == 1) {
  1550. state_timer_heater_0 = MIN_STATE_TIME;
  1551. }
  1552. state_heater_0 = 0;
  1553. WRITE(HEATER_0_PIN, 0);
  1554. #ifdef HEATERS_PARALLEL
  1555. WRITE(HEATER_1_PIN, 0);
  1556. #endif
  1557. }
  1558. }
  1559. #if EXTRUDERS > 1
  1560. // EXTRUDER 1
  1561. soft_pwm_1 = soft_pwm[1];
  1562. if (soft_pwm_1 > 0) {
  1563. // turn ON heather only if the minimum time is up
  1564. if (state_timer_heater_1 == 0) {
  1565. // if change state set timer
  1566. if (state_heater_1 == 0) {
  1567. state_timer_heater_1 = MIN_STATE_TIME;
  1568. }
  1569. state_heater_1 = 1;
  1570. WRITE(HEATER_1_PIN, 1);
  1571. }
  1572. } else {
  1573. // turn OFF heather only if the minimum time is up
  1574. if (state_timer_heater_1 == 0) {
  1575. // if change state set timer
  1576. if (state_heater_1 == 1) {
  1577. state_timer_heater_1 = MIN_STATE_TIME;
  1578. }
  1579. state_heater_1 = 0;
  1580. WRITE(HEATER_1_PIN, 0);
  1581. }
  1582. }
  1583. #endif
  1584. #if EXTRUDERS > 2
  1585. // EXTRUDER 2
  1586. soft_pwm_2 = soft_pwm[2];
  1587. if (soft_pwm_2 > 0) {
  1588. // turn ON heather only if the minimum time is up
  1589. if (state_timer_heater_2 == 0) {
  1590. // if change state set timer
  1591. if (state_heater_2 == 0) {
  1592. state_timer_heater_2 = MIN_STATE_TIME;
  1593. }
  1594. state_heater_2 = 1;
  1595. WRITE(HEATER_2_PIN, 1);
  1596. }
  1597. } else {
  1598. // turn OFF heather only if the minimum time is up
  1599. if (state_timer_heater_2 == 0) {
  1600. // if change state set timer
  1601. if (state_heater_2 == 1) {
  1602. state_timer_heater_2 = MIN_STATE_TIME;
  1603. }
  1604. state_heater_2 = 0;
  1605. WRITE(HEATER_2_PIN, 0);
  1606. }
  1607. }
  1608. #endif
  1609. #if defined(HEATER_BED_PIN) && HEATER_BED_PIN > -1
  1610. // BED
  1611. soft_pwm_b = soft_pwm_bed;
  1612. if (soft_pwm_b > 0) {
  1613. // turn ON heather only if the minimum time is up
  1614. if (state_timer_heater_b == 0) {
  1615. // if change state set timer
  1616. if (state_heater_b == 0) {
  1617. state_timer_heater_b = MIN_STATE_TIME;
  1618. }
  1619. state_heater_b = 1;
  1620. //WRITE(HEATER_BED_PIN, 1);
  1621. }
  1622. } else {
  1623. // turn OFF heather only if the minimum time is up
  1624. if (state_timer_heater_b == 0) {
  1625. // if change state set timer
  1626. if (state_heater_b == 1) {
  1627. state_timer_heater_b = MIN_STATE_TIME;
  1628. }
  1629. state_heater_b = 0;
  1630. WRITE(HEATER_BED_PIN, 0);
  1631. }
  1632. }
  1633. #endif
  1634. } // if (slow_pwm_count == 0)
  1635. // EXTRUDER 0
  1636. if (soft_pwm_0 < slow_pwm_count) {
  1637. // turn OFF heather only if the minimum time is up
  1638. if (state_timer_heater_0 == 0) {
  1639. // if change state set timer
  1640. if (state_heater_0 == 1) {
  1641. state_timer_heater_0 = MIN_STATE_TIME;
  1642. }
  1643. state_heater_0 = 0;
  1644. WRITE(HEATER_0_PIN, 0);
  1645. #ifdef HEATERS_PARALLEL
  1646. WRITE(HEATER_1_PIN, 0);
  1647. #endif
  1648. }
  1649. }
  1650. #if EXTRUDERS > 1
  1651. // EXTRUDER 1
  1652. if (soft_pwm_1 < slow_pwm_count) {
  1653. // turn OFF heather only if the minimum time is up
  1654. if (state_timer_heater_1 == 0) {
  1655. // if change state set timer
  1656. if (state_heater_1 == 1) {
  1657. state_timer_heater_1 = MIN_STATE_TIME;
  1658. }
  1659. state_heater_1 = 0;
  1660. WRITE(HEATER_1_PIN, 0);
  1661. }
  1662. }
  1663. #endif
  1664. #if EXTRUDERS > 2
  1665. // EXTRUDER 2
  1666. if (soft_pwm_2 < slow_pwm_count) {
  1667. // turn OFF heather only if the minimum time is up
  1668. if (state_timer_heater_2 == 0) {
  1669. // if change state set timer
  1670. if (state_heater_2 == 1) {
  1671. state_timer_heater_2 = MIN_STATE_TIME;
  1672. }
  1673. state_heater_2 = 0;
  1674. WRITE(HEATER_2_PIN, 0);
  1675. }
  1676. }
  1677. #endif
  1678. #if defined(HEATER_BED_PIN) && HEATER_BED_PIN > -1
  1679. // BED
  1680. if (soft_pwm_b < slow_pwm_count) {
  1681. // turn OFF heather only if the minimum time is up
  1682. if (state_timer_heater_b == 0) {
  1683. // if change state set timer
  1684. if (state_heater_b == 1) {
  1685. state_timer_heater_b = MIN_STATE_TIME;
  1686. }
  1687. state_heater_b = 0;
  1688. WRITE(HEATER_BED_PIN, 0);
  1689. }
  1690. }
  1691. #endif
  1692. #ifdef FAN_SOFT_PWM
  1693. if ((pwm_count & ((1 << FAN_SOFT_PWM_BITS) - 1)) == 0)
  1694. soft_pwm_fan = fanSpeedSoftPwm / (1 << (8 - FAN_SOFT_PWM_BITS));
  1695. if (soft_pwm_fan > 0) WRITE(FAN_PIN,1); else WRITE(FAN_PIN,0);
  1696. }
  1697. if (soft_pwm_fan < pwm_count) WRITE(FAN_PIN,0);
  1698. #endif
  1699. pwm_count += (1 << SOFT_PWM_SCALE);
  1700. pwm_count &= 0x7f;
  1701. // increment slow_pwm_count only every 64 pwm_count circa 65.5ms
  1702. if ((pwm_count % 64) == 0) {
  1703. slow_pwm_count++;
  1704. slow_pwm_count &= 0x7f;
  1705. // Extruder 0
  1706. if (state_timer_heater_0 > 0) {
  1707. state_timer_heater_0--;
  1708. }
  1709. #if EXTRUDERS > 1
  1710. // Extruder 1
  1711. if (state_timer_heater_1 > 0)
  1712. state_timer_heater_1--;
  1713. #endif
  1714. #if EXTRUDERS > 2
  1715. // Extruder 2
  1716. if (state_timer_heater_2 > 0)
  1717. state_timer_heater_2--;
  1718. #endif
  1719. #if defined(HEATER_BED_PIN) && HEATER_BED_PIN > -1
  1720. // Bed
  1721. if (state_timer_heater_b > 0)
  1722. state_timer_heater_b--;
  1723. #endif
  1724. } //if ((pwm_count % 64) == 0) {
  1725. #endif //ifndef SLOW_PWM_HEATERS
  1726. #ifdef BABYSTEPPING
  1727. for(uint8_t axis=0;axis<3;axis++)
  1728. {
  1729. int curTodo=babystepsTodo[axis]; //get rid of volatile for performance
  1730. if(curTodo>0)
  1731. {
  1732. asm("cli");
  1733. babystep(axis,/*fwd*/true);
  1734. babystepsTodo[axis]--; //less to do next time
  1735. asm("sei");
  1736. }
  1737. else
  1738. if(curTodo<0)
  1739. {
  1740. asm("cli");
  1741. babystep(axis,/*fwd*/false);
  1742. babystepsTodo[axis]++; //less to do next time
  1743. asm("sei");
  1744. }
  1745. }
  1746. #endif //BABYSTEPPING
  1747. #if (defined(FANCHECK) && defined(TACH_0) && (TACH_0 > -1))
  1748. check_fans();
  1749. #endif //(defined(TACH_0))
  1750. _lock = false;
  1751. }
  1752. void check_max_temp()
  1753. {
  1754. //heater
  1755. #if HEATER_0_RAW_LO_TEMP > HEATER_0_RAW_HI_TEMP
  1756. if (current_temperature_raw[0] <= maxttemp_raw[0]) {
  1757. #else
  1758. if (current_temperature_raw[0] >= maxttemp_raw[0]) {
  1759. #endif
  1760. max_temp_error(0);
  1761. }
  1762. //bed
  1763. #if defined(BED_MAXTEMP) && (TEMP_SENSOR_BED != 0)
  1764. #if HEATER_BED_RAW_LO_TEMP > HEATER_BED_RAW_HI_TEMP
  1765. if (current_temperature_bed_raw <= bed_maxttemp_raw) {
  1766. #else
  1767. if (current_temperature_bed_raw >= bed_maxttemp_raw) {
  1768. #endif
  1769. target_temperature_bed = 0;
  1770. bed_max_temp_error();
  1771. }
  1772. #endif
  1773. }
  1774. //! number of repeating the same state with consecutive step() calls
  1775. //! used to slow down text switching
  1776. struct alert_automaton_mintemp {
  1777. private:
  1778. enum { ALERT_AUTOMATON_SPEED_DIV = 5 };
  1779. enum class States : uint8_t { Init = 0, TempAboveMintemp, ShowPleaseRestart, ShowMintemp };
  1780. States state = States::Init;
  1781. uint8_t repeat = ALERT_AUTOMATON_SPEED_DIV;
  1782. void substep(States next_state){
  1783. if( repeat == 0 ){
  1784. state = next_state; // advance to the next state
  1785. repeat = ALERT_AUTOMATON_SPEED_DIV; // and prepare repeating for it too
  1786. } else {
  1787. --repeat;
  1788. }
  1789. }
  1790. public:
  1791. //! brief state automaton step routine
  1792. //! @param current_temp current hotend/bed temperature (for computing simple hysteresis)
  1793. //! @param mintemp minimal temperature including hysteresis to check current_temp against
  1794. void step(float current_temp, float mintemp){
  1795. static const char m2[] PROGMEM = "MINTEMP fixed";
  1796. static const char m1[] PROGMEM = "Please restart";
  1797. switch(state){
  1798. case States::Init: // initial state - check hysteresis
  1799. if( current_temp > mintemp ){
  1800. state = States::TempAboveMintemp;
  1801. }
  1802. // otherwise keep the Err MINTEMP alert message on the display,
  1803. // i.e. do not transfer to state 1
  1804. break;
  1805. case States::TempAboveMintemp: // the temperature has risen above the hysteresis check
  1806. lcd_setalertstatuspgm(m2);
  1807. substep(States::ShowMintemp);
  1808. last_alert_sent_to_lcd = LCDALERT_MINTEMPFIXED;
  1809. break;
  1810. case States::ShowPleaseRestart: // displaying "Please restart"
  1811. lcd_updatestatuspgm(m1);
  1812. substep(States::ShowMintemp);
  1813. last_alert_sent_to_lcd = LCDALERT_PLEASERESTART;
  1814. break;
  1815. case States::ShowMintemp: // displaying "MINTEMP fixed"
  1816. lcd_updatestatuspgm(m2);
  1817. substep(States::ShowPleaseRestart);
  1818. last_alert_sent_to_lcd = LCDALERT_MINTEMPFIXED;
  1819. break;
  1820. }
  1821. }
  1822. };
  1823. static alert_automaton_mintemp alert_automaton_hotend, alert_automaton_bed;
  1824. void check_min_temp_heater0()
  1825. {
  1826. //heater
  1827. #if HEATER_0_RAW_LO_TEMP > HEATER_0_RAW_HI_TEMP
  1828. if (current_temperature_raw[0] >= minttemp_raw[0]) {
  1829. #else
  1830. if (current_temperature_raw[0] <= minttemp_raw[0]) {
  1831. #endif
  1832. menu_set_serious_error(SERIOUS_ERR_MINTEMP_HEATER);
  1833. min_temp_error(0);
  1834. } else if( menu_is_serious_error(SERIOUS_ERR_MINTEMP_HEATER) ) {
  1835. // no recovery, just force the user to restart the printer
  1836. // which is a safer variant than just continuing printing
  1837. // The automaton also checks for hysteresis - the temperature must have reached a few degrees above the MINTEMP, before
  1838. // we shall signalize, that MINTEMP has been fixed
  1839. // Code notice: normally the alert_automaton instance would have been placed here
  1840. // as static alert_automaton_mintemp alert_automaton_hotend, but
  1841. // due to stupid compiler that takes 16 more bytes.
  1842. alert_automaton_hotend.step(current_temperature[0], minttemp[0] + TEMP_HYSTERESIS);
  1843. }
  1844. }
  1845. void check_min_temp_bed()
  1846. {
  1847. #if HEATER_BED_RAW_LO_TEMP > HEATER_BED_RAW_HI_TEMP
  1848. if (current_temperature_bed_raw >= bed_minttemp_raw) {
  1849. #else
  1850. if (current_temperature_bed_raw <= bed_minttemp_raw) {
  1851. #endif
  1852. menu_set_serious_error(SERIOUS_ERR_MINTEMP_BED);
  1853. bed_min_temp_error();
  1854. } else if( menu_is_serious_error(SERIOUS_ERR_MINTEMP_BED) ){
  1855. // no recovery, just force the user to restart the printer
  1856. // which is a safer variant than just continuing printing
  1857. alert_automaton_bed.step(current_temperature_bed, BED_MINTEMP + TEMP_HYSTERESIS);
  1858. }
  1859. }
  1860. void check_min_temp()
  1861. {
  1862. static bool bCheckingOnHeater=false; // state variable, which allows to short no-checking delay (is set, when temperature is (first time) over heaterMintemp)
  1863. static bool bCheckingOnBed=false; // state variable, which allows to short no-checking delay (is set, when temperature is (first time) over bedMintemp)
  1864. #ifdef AMBIENT_THERMISTOR
  1865. if(current_temperature_raw_ambient>(OVERSAMPLENR*MINTEMP_MINAMBIENT_RAW)) // thermistor is NTC type, so operator is ">" ;-)
  1866. { // ambient temperature is low
  1867. #endif //AMBIENT_THERMISTOR
  1868. // *** 'common' part of code for MK2.5 & MK3
  1869. // * nozzle checking
  1870. if(target_temperature[active_extruder]>minttemp[active_extruder])
  1871. { // ~ nozzle heating is on
  1872. bCheckingOnHeater=bCheckingOnHeater||(current_temperature[active_extruder]>(minttemp[active_extruder]+TEMP_HYSTERESIS)); // for eventually delay cutting
  1873. if(oTimer4minTempHeater.expired(HEATER_MINTEMP_DELAY)||(!oTimer4minTempHeater.running())||bCheckingOnHeater)
  1874. {
  1875. bCheckingOnHeater=true; // not necessary
  1876. check_min_temp_heater0(); // delay is elapsed or temperature is/was over minTemp => periodical checking is active
  1877. }
  1878. }
  1879. else { // ~ nozzle heating is off
  1880. oTimer4minTempHeater.start();
  1881. bCheckingOnHeater=false;
  1882. }
  1883. // * bed checking
  1884. if(target_temperature_bed>BED_MINTEMP)
  1885. { // ~ bed heating is on
  1886. bCheckingOnBed=bCheckingOnBed||(current_temperature_bed>(BED_MINTEMP+TEMP_HYSTERESIS)); // for eventually delay cutting
  1887. if(oTimer4minTempBed.expired(BED_MINTEMP_DELAY)||(!oTimer4minTempBed.running())||bCheckingOnBed)
  1888. {
  1889. bCheckingOnBed=true; // not necessary
  1890. check_min_temp_bed(); // delay is elapsed or temperature is/was over minTemp => periodical checking is active
  1891. }
  1892. }
  1893. else { // ~ bed heating is off
  1894. oTimer4minTempBed.start();
  1895. bCheckingOnBed=false;
  1896. }
  1897. // *** end of 'common' part
  1898. #ifdef AMBIENT_THERMISTOR
  1899. }
  1900. else { // ambient temperature is standard
  1901. check_min_temp_heater0();
  1902. check_min_temp_bed();
  1903. }
  1904. #endif //AMBIENT_THERMISTOR
  1905. }
  1906. #if (defined(FANCHECK) && defined(TACH_0) && (TACH_0 > -1))
  1907. void check_fans() {
  1908. #ifdef FAN_SOFT_PWM
  1909. if (READ(TACH_0) != fan_state[0]) {
  1910. if(fan_measuring) fan_edge_counter[0] ++;
  1911. fan_state[0] = !fan_state[0];
  1912. }
  1913. #else //FAN_SOFT_PWM
  1914. if (READ(TACH_0) != fan_state[0]) {
  1915. fan_edge_counter[0] ++;
  1916. fan_state[0] = !fan_state[0];
  1917. }
  1918. #endif
  1919. //if (READ(TACH_1) != fan_state[1]) {
  1920. // fan_edge_counter[1] ++;
  1921. // fan_state[1] = !fan_state[1];
  1922. //}
  1923. }
  1924. #endif //TACH_0
  1925. #ifdef PIDTEMP
  1926. // Apply the scale factors to the PID values
  1927. float scalePID_i(float i)
  1928. {
  1929. return i*PID_dT;
  1930. }
  1931. float unscalePID_i(float i)
  1932. {
  1933. return i/PID_dT;
  1934. }
  1935. float scalePID_d(float d)
  1936. {
  1937. return d/PID_dT;
  1938. }
  1939. float unscalePID_d(float d)
  1940. {
  1941. return d*PID_dT;
  1942. }
  1943. #endif //PIDTEMP