Marlin_main.cpp 165 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971397239733974397539763977397839793980398139823983398439853986398739883989399039913992399339943995399639973998399940004001400240034004400540064007400840094010401140124013401440154016401740184019402040214022402340244025402640274028402940304031403240334034403540364037403840394040404140424043404440454046404740484049405040514052405340544055405640574058405940604061406240634064406540664067406840694070407140724073407440754076407740784079408040814082408340844085408640874088408940904091409240934094409540964097409840994100410141024103410441054106410741084109411041114112411341144115411641174118411941204121412241234124412541264127412841294130413141324133413441354136413741384139414041414142414341444145414641474148414941504151415241534154415541564157415841594160416141624163416441654166416741684169417041714172417341744175417641774178417941804181418241834184418541864187418841894190419141924193419441954196419741984199420042014202420342044205420642074208420942104211421242134214421542164217421842194220422142224223422442254226422742284229423042314232423342344235423642374238423942404241424242434244424542464247424842494250425142524253425442554256425742584259426042614262426342644265426642674268426942704271427242734274427542764277427842794280428142824283428442854286428742884289429042914292429342944295429642974298429943004301430243034304430543064307430843094310431143124313431443154316431743184319432043214322432343244325432643274328432943304331433243334334433543364337433843394340434143424343434443454346434743484349435043514352435343544355435643574358435943604361436243634364436543664367436843694370437143724373437443754376437743784379438043814382438343844385438643874388438943904391439243934394439543964397439843994400440144024403440444054406440744084409441044114412441344144415441644174418441944204421442244234424442544264427442844294430443144324433443444354436443744384439444044414442444344444445444644474448444944504451445244534454445544564457445844594460446144624463446444654466446744684469447044714472447344744475447644774478447944804481448244834484448544864487448844894490449144924493449444954496449744984499450045014502450345044505450645074508450945104511451245134514451545164517451845194520452145224523452445254526452745284529453045314532453345344535453645374538453945404541454245434544454545464547454845494550455145524553455445554556455745584559456045614562456345644565456645674568456945704571457245734574457545764577457845794580458145824583458445854586458745884589459045914592459345944595459645974598459946004601460246034604460546064607460846094610461146124613461446154616461746184619462046214622462346244625462646274628462946304631463246334634463546364637463846394640464146424643464446454646464746484649465046514652465346544655465646574658465946604661466246634664466546664667466846694670467146724673467446754676467746784679468046814682468346844685468646874688468946904691469246934694469546964697469846994700470147024703470447054706470747084709471047114712471347144715471647174718471947204721472247234724472547264727472847294730473147324733473447354736473747384739474047414742474347444745474647474748474947504751475247534754475547564757475847594760476147624763476447654766476747684769477047714772477347744775477647774778477947804781478247834784478547864787478847894790479147924793479447954796479747984799480048014802480348044805480648074808480948104811481248134814481548164817481848194820482148224823482448254826482748284829483048314832483348344835483648374838483948404841484248434844484548464847484848494850485148524853485448554856485748584859486048614862486348644865486648674868486948704871487248734874487548764877487848794880488148824883488448854886488748884889489048914892489348944895489648974898489949004901490249034904490549064907490849094910491149124913491449154916491749184919492049214922492349244925492649274928492949304931493249334934493549364937493849394940494149424943494449454946494749484949495049514952495349544955495649574958495949604961496249634964496549664967496849694970497149724973497449754976
  1. /* -*- c++ -*- */
  2. /*
  3. Reprap firmware based on Sprinter and grbl.
  4. Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
  5. This program is free software: you can redistribute it and/or modify
  6. it under the terms of the GNU General Public License as published by
  7. the Free Software Foundation, either version 3 of the License, or
  8. (at your option) any later version.
  9. This program is distributed in the hope that it will be useful,
  10. but WITHOUT ANY WARRANTY; without even the implied warranty of
  11. MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  12. GNU General Public License for more details.
  13. You should have received a copy of the GNU General Public License
  14. along with this program. If not, see <http://www.gnu.org/licenses/>.
  15. */
  16. /*
  17. This firmware is a mashup between Sprinter and grbl.
  18. (https://github.com/kliment/Sprinter)
  19. (https://github.com/simen/grbl/tree)
  20. It has preliminary support for Matthew Roberts advance algorithm
  21. http://reprap.org/pipermail/reprap-dev/2011-May/003323.html
  22. */
  23. #include "Marlin.h"
  24. #ifdef ENABLE_AUTO_BED_LEVELING
  25. #include "vector_3.h"
  26. #ifdef AUTO_BED_LEVELING_GRID
  27. #include "qr_solve.h"
  28. #endif
  29. #endif // ENABLE_AUTO_BED_LEVELING
  30. #include "ultralcd.h"
  31. #include "Configuration_prusa.h"
  32. #include "planner.h"
  33. #include "stepper.h"
  34. #include "temperature.h"
  35. #include "motion_control.h"
  36. #include "cardreader.h"
  37. #include "watchdog.h"
  38. #include "ConfigurationStore.h"
  39. #include "language.h"
  40. #include "pins_arduino.h"
  41. #include "math.h"
  42. #ifdef BLINKM
  43. #include "BlinkM.h"
  44. #include "Wire.h"
  45. #endif
  46. #ifdef ULTRALCD
  47. #include "ultralcd.h"
  48. #endif
  49. #if NUM_SERVOS > 0
  50. #include "Servo.h"
  51. #endif
  52. #if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
  53. #include <SPI.h>
  54. #endif
  55. #define VERSION_STRING "1.0.2"
  56. #include "ultralcd.h"
  57. // look here for descriptions of G-codes: http://linuxcnc.org/handbook/gcode/g-code.html
  58. // http://objects.reprap.org/wiki/Mendel_User_Manual:_RepRapGCodes
  59. //Implemented Codes
  60. //-------------------
  61. // PRUSA CODES
  62. // P F - Returns FW versions
  63. // P R - Returns revision of printer
  64. // G0 -> G1
  65. // G1 - Coordinated Movement X Y Z E
  66. // G2 - CW ARC
  67. // G3 - CCW ARC
  68. // G4 - Dwell S<seconds> or P<milliseconds>
  69. // G10 - retract filament according to settings of M207
  70. // G11 - retract recover filament according to settings of M208
  71. // G28 - Home all Axis
  72. // G29 - Detailed Z-Probe, probes the bed at 3 or more points. Will fail if you haven't homed yet.
  73. // G30 - Single Z Probe, probes bed at current XY location.
  74. // G31 - Dock sled (Z_PROBE_SLED only)
  75. // G32 - Undock sled (Z_PROBE_SLED only)
  76. // G90 - Use Absolute Coordinates
  77. // G91 - Use Relative Coordinates
  78. // G92 - Set current position to coordinates given
  79. // M Codes
  80. // M0 - Unconditional stop - Wait for user to press a button on the LCD (Only if ULTRA_LCD is enabled)
  81. // M1 - Same as M0
  82. // M17 - Enable/Power all stepper motors
  83. // M18 - Disable all stepper motors; same as M84
  84. // M20 - List SD card
  85. // M21 - Init SD card
  86. // M22 - Release SD card
  87. // M23 - Select SD file (M23 filename.g)
  88. // M24 - Start/resume SD print
  89. // M25 - Pause SD print
  90. // M26 - Set SD position in bytes (M26 S12345)
  91. // M27 - Report SD print status
  92. // M28 - Start SD write (M28 filename.g)
  93. // M29 - Stop SD write
  94. // M30 - Delete file from SD (M30 filename.g)
  95. // M31 - Output time since last M109 or SD card start to serial
  96. // M32 - Select file and start SD print (Can be used _while_ printing from SD card files):
  97. // syntax "M32 /path/filename#", or "M32 S<startpos bytes> !filename#"
  98. // Call gcode file : "M32 P !filename#" and return to caller file after finishing (similar to #include).
  99. // The '#' is necessary when calling from within sd files, as it stops buffer prereading
  100. // M42 - Change pin status via gcode Use M42 Px Sy to set pin x to value y, when omitting Px the onboard led will be used.
  101. // M80 - Turn on Power Supply
  102. // M81 - Turn off Power Supply
  103. // M82 - Set E codes absolute (default)
  104. // M83 - Set E codes relative while in Absolute Coordinates (G90) mode
  105. // M84 - Disable steppers until next move,
  106. // or use S<seconds> to specify an inactivity timeout, after which the steppers will be disabled. S0 to disable the timeout.
  107. // M85 - Set inactivity shutdown timer with parameter S<seconds>. To disable set zero (default)
  108. // M92 - Set axis_steps_per_unit - same syntax as G92
  109. // M104 - Set extruder target temp
  110. // M105 - Read current temp
  111. // M106 - Fan on
  112. // M107 - Fan off
  113. // M109 - Sxxx Wait for extruder current temp to reach target temp. Waits only when heating
  114. // Rxxx Wait for extruder current temp to reach target temp. Waits when heating and cooling
  115. // IF AUTOTEMP is enabled, S<mintemp> B<maxtemp> F<factor>. Exit autotemp by any M109 without F
  116. // M112 - Emergency stop
  117. // M114 - Output current position to serial port
  118. // M115 - Capabilities string
  119. // M117 - display message
  120. // M119 - Output Endstop status to serial port
  121. // M126 - Solenoid Air Valve Open (BariCUDA support by jmil)
  122. // M127 - Solenoid Air Valve Closed (BariCUDA vent to atmospheric pressure by jmil)
  123. // M128 - EtoP Open (BariCUDA EtoP = electricity to air pressure transducer by jmil)
  124. // M129 - EtoP Closed (BariCUDA EtoP = electricity to air pressure transducer by jmil)
  125. // M140 - Set bed target temp
  126. // M150 - Set BlinkM Color Output R: Red<0-255> U(!): Green<0-255> B: Blue<0-255> over i2c, G for green does not work.
  127. // M190 - Sxxx Wait for bed current temp to reach target temp. Waits only when heating
  128. // Rxxx Wait for bed current temp to reach target temp. Waits when heating and cooling
  129. // M200 D<millimeters>- set filament diameter and set E axis units to cubic millimeters (use S0 to set back to millimeters).
  130. // M201 - Set max acceleration in units/s^2 for print moves (M201 X1000 Y1000)
  131. // M202 - Set max acceleration in units/s^2 for travel moves (M202 X1000 Y1000) Unused in Marlin!!
  132. // M203 - Set maximum feedrate that your machine can sustain (M203 X200 Y200 Z300 E10000) in mm/sec
  133. // M204 - Set default acceleration: S normal moves T filament only moves (M204 S3000 T7000) in mm/sec^2 also sets minimum segment time in ms (B20000) to prevent buffer under-runs and M20 minimum feedrate
  134. // M205 - advanced settings: minimum travel speed S=while printing T=travel only, B=minimum segment time X= maximum xy jerk, Z=maximum Z jerk, E=maximum E jerk
  135. // M206 - set additional homing offset
  136. // M207 - set retract length S[positive mm] F[feedrate mm/min] Z[additional zlift/hop], stays in mm regardless of M200 setting
  137. // M208 - set recover=unretract length S[positive mm surplus to the M207 S*] F[feedrate mm/sec]
  138. // M209 - S<1=true/0=false> enable automatic retract detect if the slicer did not support G10/11: every normal extrude-only move will be classified as retract depending on the direction.
  139. // M218 - set hotend offset (in mm): T<extruder_number> X<offset_on_X> Y<offset_on_Y>
  140. // M220 S<factor in percent>- set speed factor override percentage
  141. // M221 S<factor in percent>- set extrude factor override percentage
  142. // M226 P<pin number> S<pin state>- Wait until the specified pin reaches the state required
  143. // M240 - Trigger a camera to take a photograph
  144. // M250 - Set LCD contrast C<contrast value> (value 0..63)
  145. // M280 - set servo position absolute. P: servo index, S: angle or microseconds
  146. // M300 - Play beep sound S<frequency Hz> P<duration ms>
  147. // M301 - Set PID parameters P I and D
  148. // M302 - Allow cold extrudes, or set the minimum extrude S<temperature>.
  149. // M303 - PID relay autotune S<temperature> sets the target temperature. (default target temperature = 150C)
  150. // M304 - Set bed PID parameters P I and D
  151. // M400 - Finish all moves
  152. // M401 - Lower z-probe if present
  153. // M402 - Raise z-probe if present
  154. // M404 - N<dia in mm> Enter the nominal filament width (3mm, 1.75mm ) or will display nominal filament width without parameters
  155. // M405 - Turn on Filament Sensor extrusion control. Optional D<delay in cm> to set delay in centimeters between sensor and extruder
  156. // M406 - Turn off Filament Sensor extrusion control
  157. // M407 - Displays measured filament diameter
  158. // M500 - stores parameters in EEPROM
  159. // M501 - reads parameters from EEPROM (if you need reset them after you changed them temporarily).
  160. // M502 - reverts to the default "factory settings". You still need to store them in EEPROM afterwards if you want to.
  161. // M503 - print the current settings (from memory not from EEPROM)
  162. // M540 - Use S[0|1] to enable or disable the stop SD card print on endstop hit (requires ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED)
  163. // M600 - Pause for filament change X[pos] Y[pos] Z[relative lift] E[initial retract] L[later retract distance for removal]
  164. // M665 - set delta configurations
  165. // M666 - set delta endstop adjustment
  166. // M605 - Set dual x-carriage movement mode: S<mode> [ X<duplication x-offset> R<duplication temp offset> ]
  167. // M907 - Set digital trimpot motor current using axis codes.
  168. // M908 - Control digital trimpot directly.
  169. // M350 - Set microstepping mode.
  170. // M351 - Toggle MS1 MS2 pins directly.
  171. // ************ SCARA Specific - This can change to suit future G-code regulations
  172. // M360 - SCARA calibration: Move to cal-position ThetaA (0 deg calibration)
  173. // M361 - SCARA calibration: Move to cal-position ThetaB (90 deg calibration - steps per degree)
  174. // M362 - SCARA calibration: Move to cal-position PsiA (0 deg calibration)
  175. // M363 - SCARA calibration: Move to cal-position PsiB (90 deg calibration - steps per degree)
  176. // M364 - SCARA calibration: Move to cal-position PSIC (90 deg to Theta calibration position)
  177. // M365 - SCARA calibration: Scaling factor, X, Y, Z axis
  178. //************* SCARA End ***************
  179. // M928 - Start SD logging (M928 filename.g) - ended by M29
  180. // M999 - Restart after being stopped by error
  181. //Stepper Movement Variables
  182. //===========================================================================
  183. //=============================imported variables============================
  184. //===========================================================================
  185. //===========================================================================
  186. //=============================public variables=============================
  187. //===========================================================================
  188. #ifdef SDSUPPORT
  189. CardReader card;
  190. #endif
  191. union Data
  192. {
  193. byte b[2];
  194. int value;
  195. };
  196. int babystepLoad[3];
  197. float homing_feedrate[] = HOMING_FEEDRATE;
  198. bool axis_relative_modes[] = AXIS_RELATIVE_MODES;
  199. int feedmultiply=100; //100->1 200->2
  200. int saved_feedmultiply;
  201. int extrudemultiply=100; //100->1 200->2
  202. int extruder_multiply[EXTRUDERS] = {100
  203. #if EXTRUDERS > 1
  204. , 100
  205. #if EXTRUDERS > 2
  206. , 100
  207. #endif
  208. #endif
  209. };
  210. int lcd_change_fil_state = 0;
  211. int feedmultiplyBckp = 100;
  212. bool volumetric_enabled = false;
  213. float filament_size[EXTRUDERS] = { DEFAULT_NOMINAL_FILAMENT_DIA
  214. #if EXTRUDERS > 1
  215. , DEFAULT_NOMINAL_FILAMENT_DIA
  216. #if EXTRUDERS > 2
  217. , DEFAULT_NOMINAL_FILAMENT_DIA
  218. #endif
  219. #endif
  220. };
  221. float volumetric_multiplier[EXTRUDERS] = {1.0
  222. #if EXTRUDERS > 1
  223. , 1.0
  224. #if EXTRUDERS > 2
  225. , 1.0
  226. #endif
  227. #endif
  228. };
  229. float current_position[NUM_AXIS] = { 0.0, 0.0, 0.0, 0.0 };
  230. float add_homing[3]={0,0,0};
  231. #ifdef DELTA
  232. float endstop_adj[3]={0,0,0};
  233. #endif
  234. float min_pos[3] = { X_MIN_POS, Y_MIN_POS, Z_MIN_POS };
  235. float max_pos[3] = { X_MAX_POS, Y_MAX_POS, Z_MAX_POS };
  236. bool axis_known_position[3] = {false, false, false};
  237. float zprobe_zoffset;
  238. // Extruder offset
  239. #if EXTRUDERS > 1
  240. #ifndef DUAL_X_CARRIAGE
  241. #define NUM_EXTRUDER_OFFSETS 2 // only in XY plane
  242. #else
  243. #define NUM_EXTRUDER_OFFSETS 3 // supports offsets in XYZ plane
  244. #endif
  245. float extruder_offset[NUM_EXTRUDER_OFFSETS][EXTRUDERS] = {
  246. #if defined(EXTRUDER_OFFSET_X) && defined(EXTRUDER_OFFSET_Y)
  247. EXTRUDER_OFFSET_X, EXTRUDER_OFFSET_Y
  248. #endif
  249. };
  250. #endif
  251. uint8_t active_extruder = 0;
  252. int fanSpeed=0;
  253. #ifdef SERVO_ENDSTOPS
  254. int servo_endstops[] = SERVO_ENDSTOPS;
  255. int servo_endstop_angles[] = SERVO_ENDSTOP_ANGLES;
  256. #endif
  257. #ifdef BARICUDA
  258. int ValvePressure=0;
  259. int EtoPPressure=0;
  260. #endif
  261. #ifdef FWRETRACT
  262. bool autoretract_enabled=false;
  263. bool retracted[EXTRUDERS]={false
  264. #if EXTRUDERS > 1
  265. , false
  266. #if EXTRUDERS > 2
  267. , false
  268. #endif
  269. #endif
  270. };
  271. bool retracted_swap[EXTRUDERS]={false
  272. #if EXTRUDERS > 1
  273. , false
  274. #if EXTRUDERS > 2
  275. , false
  276. #endif
  277. #endif
  278. };
  279. float retract_length = RETRACT_LENGTH;
  280. float retract_length_swap = RETRACT_LENGTH_SWAP;
  281. float retract_feedrate = RETRACT_FEEDRATE;
  282. float retract_zlift = RETRACT_ZLIFT;
  283. float retract_recover_length = RETRACT_RECOVER_LENGTH;
  284. float retract_recover_length_swap = RETRACT_RECOVER_LENGTH_SWAP;
  285. float retract_recover_feedrate = RETRACT_RECOVER_FEEDRATE;
  286. #endif
  287. #ifdef ULTIPANEL
  288. #ifdef PS_DEFAULT_OFF
  289. bool powersupply = false;
  290. #else
  291. bool powersupply = true;
  292. #endif
  293. #endif
  294. #ifdef DELTA
  295. float delta[3] = {0.0, 0.0, 0.0};
  296. #define SIN_60 0.8660254037844386
  297. #define COS_60 0.5
  298. // these are the default values, can be overriden with M665
  299. float delta_radius= DELTA_RADIUS;
  300. float delta_tower1_x= -SIN_60*delta_radius; // front left tower
  301. float delta_tower1_y= -COS_60*delta_radius;
  302. float delta_tower2_x= SIN_60*delta_radius; // front right tower
  303. float delta_tower2_y= -COS_60*delta_radius;
  304. float delta_tower3_x= 0.0; // back middle tower
  305. float delta_tower3_y= delta_radius;
  306. float delta_diagonal_rod= DELTA_DIAGONAL_ROD;
  307. float delta_diagonal_rod_2= sq(delta_diagonal_rod);
  308. float delta_segments_per_second= DELTA_SEGMENTS_PER_SECOND;
  309. #endif
  310. #ifdef SCARA // Build size scaling
  311. float axis_scaling[3]={1,1,1}; // Build size scaling, default to 1
  312. #endif
  313. bool cancel_heatup = false ;
  314. #ifdef FILAMENT_SENSOR
  315. //Variables for Filament Sensor input
  316. float filament_width_nominal=DEFAULT_NOMINAL_FILAMENT_DIA; //Set nominal filament width, can be changed with M404
  317. bool filament_sensor=false; //M405 turns on filament_sensor control, M406 turns it off
  318. float filament_width_meas=DEFAULT_MEASURED_FILAMENT_DIA; //Stores the measured filament diameter
  319. signed char measurement_delay[MAX_MEASUREMENT_DELAY+1]; //ring buffer to delay measurement store extruder factor after subtracting 100
  320. int delay_index1=0; //index into ring buffer
  321. int delay_index2=-1; //index into ring buffer - set to -1 on startup to indicate ring buffer needs to be initialized
  322. float delay_dist=0; //delay distance counter
  323. int meas_delay_cm = MEASUREMENT_DELAY_CM; //distance delay setting
  324. #endif
  325. const char errormagic[] PROGMEM = "Error:";
  326. const char echomagic[] PROGMEM = "echo:";
  327. //===========================================================================
  328. //=============================Private Variables=============================
  329. //===========================================================================
  330. const char axis_codes[NUM_AXIS] = {'X', 'Y', 'Z', 'E'};
  331. static float destination[NUM_AXIS] = { 0.0, 0.0, 0.0, 0.0};
  332. #ifndef DELTA
  333. static float delta[3] = {0.0, 0.0, 0.0};
  334. #endif
  335. static float offset[3] = {0.0, 0.0, 0.0};
  336. static bool home_all_axis = true;
  337. static float feedrate = 1500.0, next_feedrate, saved_feedrate;
  338. static long gcode_N, gcode_LastN, Stopped_gcode_LastN = 0;
  339. static bool relative_mode = false; //Determines Absolute or Relative Coordinates
  340. static char cmdbuffer[BUFSIZE][MAX_CMD_SIZE];
  341. static bool fromsd[BUFSIZE];
  342. static int bufindr = 0;
  343. static int bufindw = 0;
  344. static int buflen = 0;
  345. //static int i = 0;
  346. static char serial_char;
  347. static int serial_count = 0;
  348. static boolean comment_mode = false;
  349. static char *strchr_pointer; // just a pointer to find chars in the command string like X, Y, Z, E, etc
  350. const int sensitive_pins[] = SENSITIVE_PINS; // Sensitive pin list for M42
  351. //static float tt = 0;
  352. //static float bt = 0;
  353. //Inactivity shutdown variables
  354. static unsigned long previous_millis_cmd = 0;
  355. static unsigned long max_inactive_time = 0;
  356. static unsigned long stepper_inactive_time = DEFAULT_STEPPER_DEACTIVE_TIME*1000l;
  357. unsigned long starttime=0;
  358. unsigned long stoptime=0;
  359. static uint8_t tmp_extruder;
  360. bool Stopped=false;
  361. #if NUM_SERVOS > 0
  362. Servo servos[NUM_SERVOS];
  363. #endif
  364. bool CooldownNoWait = true;
  365. bool target_direction;
  366. //Insert variables if CHDK is defined
  367. #ifdef CHDK
  368. unsigned long chdkHigh = 0;
  369. boolean chdkActive = false;
  370. #endif
  371. //===========================================================================
  372. //=============================Routines======================================
  373. //===========================================================================
  374. void get_arc_coordinates();
  375. bool setTargetedHotend(int code);
  376. void serial_echopair_P(const char *s_P, float v)
  377. { serialprintPGM(s_P); SERIAL_ECHO(v); }
  378. void serial_echopair_P(const char *s_P, double v)
  379. { serialprintPGM(s_P); SERIAL_ECHO(v); }
  380. void serial_echopair_P(const char *s_P, unsigned long v)
  381. { serialprintPGM(s_P); SERIAL_ECHO(v); }
  382. #ifdef SDSUPPORT
  383. #include "SdFatUtil.h"
  384. int freeMemory() { return SdFatUtil::FreeRam(); }
  385. #else
  386. extern "C" {
  387. extern unsigned int __bss_end;
  388. extern unsigned int __heap_start;
  389. extern void *__brkval;
  390. int freeMemory() {
  391. int free_memory;
  392. if ((int)__brkval == 0)
  393. free_memory = ((int)&free_memory) - ((int)&__bss_end);
  394. else
  395. free_memory = ((int)&free_memory) - ((int)__brkval);
  396. return free_memory;
  397. }
  398. }
  399. #endif //!SDSUPPORT
  400. //adds an command to the main command buffer
  401. //thats really done in a non-safe way.
  402. //needs overworking someday
  403. void enquecommand(const char *cmd)
  404. {
  405. if(buflen < BUFSIZE)
  406. {
  407. //this is dangerous if a mixing of serial and this happens
  408. strcpy(&(cmdbuffer[bufindw][0]),cmd);
  409. SERIAL_ECHO_START;
  410. SERIAL_ECHOPGM(MSG_Enqueing);
  411. SERIAL_ECHO(cmdbuffer[bufindw]);
  412. SERIAL_ECHOLNPGM("\"");
  413. bufindw= (bufindw + 1)%BUFSIZE;
  414. buflen += 1;
  415. }
  416. }
  417. void enquecommand_P(const char *cmd)
  418. {
  419. if(buflen < BUFSIZE)
  420. {
  421. //this is dangerous if a mixing of serial and this happens
  422. strcpy_P(&(cmdbuffer[bufindw][0]),cmd);
  423. SERIAL_ECHO_START;
  424. SERIAL_ECHOPGM(MSG_Enqueing);
  425. SERIAL_ECHO(cmdbuffer[bufindw]);
  426. SERIAL_ECHOLNPGM("\"");
  427. bufindw= (bufindw + 1)%BUFSIZE;
  428. buflen += 1;
  429. }
  430. }
  431. void setup_killpin()
  432. {
  433. #if defined(KILL_PIN) && KILL_PIN > -1
  434. SET_INPUT(KILL_PIN);
  435. WRITE(KILL_PIN,HIGH);
  436. #endif
  437. }
  438. // Set home pin
  439. void setup_homepin(void)
  440. {
  441. #if defined(HOME_PIN) && HOME_PIN > -1
  442. SET_INPUT(HOME_PIN);
  443. WRITE(HOME_PIN,HIGH);
  444. #endif
  445. }
  446. void setup_photpin()
  447. {
  448. #if defined(PHOTOGRAPH_PIN) && PHOTOGRAPH_PIN > -1
  449. SET_OUTPUT(PHOTOGRAPH_PIN);
  450. WRITE(PHOTOGRAPH_PIN, LOW);
  451. #endif
  452. }
  453. void setup_powerhold()
  454. {
  455. #if defined(SUICIDE_PIN) && SUICIDE_PIN > -1
  456. SET_OUTPUT(SUICIDE_PIN);
  457. WRITE(SUICIDE_PIN, HIGH);
  458. #endif
  459. #if defined(PS_ON_PIN) && PS_ON_PIN > -1
  460. SET_OUTPUT(PS_ON_PIN);
  461. #if defined(PS_DEFAULT_OFF)
  462. WRITE(PS_ON_PIN, PS_ON_ASLEEP);
  463. #else
  464. WRITE(PS_ON_PIN, PS_ON_AWAKE);
  465. #endif
  466. #endif
  467. }
  468. void suicide()
  469. {
  470. #if defined(SUICIDE_PIN) && SUICIDE_PIN > -1
  471. SET_OUTPUT(SUICIDE_PIN);
  472. WRITE(SUICIDE_PIN, LOW);
  473. #endif
  474. }
  475. void servo_init()
  476. {
  477. #if (NUM_SERVOS >= 1) && defined(SERVO0_PIN) && (SERVO0_PIN > -1)
  478. servos[0].attach(SERVO0_PIN);
  479. #endif
  480. #if (NUM_SERVOS >= 2) && defined(SERVO1_PIN) && (SERVO1_PIN > -1)
  481. servos[1].attach(SERVO1_PIN);
  482. #endif
  483. #if (NUM_SERVOS >= 3) && defined(SERVO2_PIN) && (SERVO2_PIN > -1)
  484. servos[2].attach(SERVO2_PIN);
  485. #endif
  486. #if (NUM_SERVOS >= 4) && defined(SERVO3_PIN) && (SERVO3_PIN > -1)
  487. servos[3].attach(SERVO3_PIN);
  488. #endif
  489. #if (NUM_SERVOS >= 5)
  490. #error "TODO: enter initalisation code for more servos"
  491. #endif
  492. // Set position of Servo Endstops that are defined
  493. #ifdef SERVO_ENDSTOPS
  494. for(int8_t i = 0; i < 3; i++)
  495. {
  496. if(servo_endstops[i] > -1) {
  497. servos[servo_endstops[i]].write(servo_endstop_angles[i * 2 + 1]);
  498. }
  499. }
  500. #endif
  501. #if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
  502. delay(PROBE_SERVO_DEACTIVATION_DELAY);
  503. servos[servo_endstops[Z_AXIS]].detach();
  504. #endif
  505. }
  506. void setup()
  507. {
  508. setup_killpin();
  509. setup_powerhold();
  510. MYSERIAL.begin(BAUDRATE);
  511. SERIAL_PROTOCOLLNPGM("start");
  512. SERIAL_ECHO_START;
  513. // Check startup - does nothing if bootloader sets MCUSR to 0
  514. byte mcu = MCUSR;
  515. if(mcu & 1) SERIAL_ECHOLNPGM(MSG_POWERUP);
  516. if(mcu & 2) SERIAL_ECHOLNPGM(MSG_EXTERNAL_RESET);
  517. if(mcu & 4) SERIAL_ECHOLNPGM(MSG_BROWNOUT_RESET);
  518. if(mcu & 8) SERIAL_ECHOLNPGM(MSG_WATCHDOG_RESET);
  519. if(mcu & 32) SERIAL_ECHOLNPGM(MSG_SOFTWARE_RESET);
  520. MCUSR=0;
  521. SERIAL_ECHOPGM(MSG_MARLIN);
  522. SERIAL_ECHOLNPGM(VERSION_STRING);
  523. #ifdef STRING_VERSION_CONFIG_H
  524. #ifdef STRING_CONFIG_H_AUTHOR
  525. SERIAL_ECHO_START;
  526. SERIAL_ECHOPGM(MSG_CONFIGURATION_VER);
  527. SERIAL_ECHOPGM(STRING_VERSION_CONFIG_H);
  528. SERIAL_ECHOPGM(MSG_AUTHOR);
  529. SERIAL_ECHOLNPGM(STRING_CONFIG_H_AUTHOR);
  530. SERIAL_ECHOPGM("Compiled: ");
  531. SERIAL_ECHOLNPGM(__DATE__);
  532. #endif
  533. #endif
  534. SERIAL_ECHO_START;
  535. SERIAL_ECHOPGM(MSG_FREE_MEMORY);
  536. SERIAL_ECHO(freeMemory());
  537. SERIAL_ECHOPGM(MSG_PLANNER_BUFFER_BYTES);
  538. SERIAL_ECHOLN((int)sizeof(block_t)*BLOCK_BUFFER_SIZE);
  539. for(int8_t i = 0; i < BUFSIZE; i++)
  540. {
  541. fromsd[i] = false;
  542. }
  543. // loads data from EEPROM if available else uses defaults (and resets step acceleration rate)
  544. Config_RetrieveSettings();
  545. tp_init(); // Initialize temperature loop
  546. plan_init(); // Initialize planner;
  547. watchdog_init();
  548. st_init(); // Initialize stepper, this enables interrupts!
  549. setup_photpin();
  550. servo_init();
  551. lcd_init();
  552. _delay_ms(1000); // wait 1sec to display the splash screen
  553. #if defined(CONTROLLERFAN_PIN) && CONTROLLERFAN_PIN > -1
  554. SET_OUTPUT(CONTROLLERFAN_PIN); //Set pin used for driver cooling fan
  555. #endif
  556. #ifdef DIGIPOT_I2C
  557. digipot_i2c_init();
  558. #endif
  559. #ifdef Z_PROBE_SLED
  560. pinMode(SERVO0_PIN, OUTPUT);
  561. digitalWrite(SERVO0_PIN, LOW); // turn it off
  562. #endif // Z_PROBE_SLED
  563. setup_homepin();
  564. }
  565. void loop()
  566. {
  567. if(buflen < (BUFSIZE-1))
  568. get_command();
  569. #ifdef SDSUPPORT
  570. card.checkautostart(false);
  571. #endif
  572. if(buflen)
  573. {
  574. #ifdef SDSUPPORT
  575. if(card.saving)
  576. {
  577. if(strstr_P(cmdbuffer[bufindr], PSTR("M29")) == NULL)
  578. {
  579. card.write_command(cmdbuffer[bufindr]);
  580. if(card.logging)
  581. {
  582. process_commands();
  583. }
  584. else
  585. {
  586. SERIAL_PROTOCOLLNPGM(MSG_OK);
  587. }
  588. }
  589. else
  590. {
  591. card.closefile();
  592. SERIAL_PROTOCOLLNPGM(MSG_FILE_SAVED);
  593. }
  594. }
  595. else
  596. {
  597. process_commands();
  598. }
  599. #else
  600. process_commands();
  601. #endif //SDSUPPORT
  602. buflen = (buflen-1);
  603. bufindr = (bufindr + 1)%BUFSIZE;
  604. }
  605. //check heater every n milliseconds
  606. manage_heater();
  607. manage_inactivity();
  608. checkHitEndstops();
  609. lcd_update();
  610. }
  611. void get_command()
  612. {
  613. while( MYSERIAL.available() > 0 && buflen < BUFSIZE) {
  614. serial_char = MYSERIAL.read();
  615. if(serial_char == '\n' ||
  616. serial_char == '\r' ||
  617. (serial_char == ':' && comment_mode == false) ||
  618. serial_count >= (MAX_CMD_SIZE - 1) )
  619. {
  620. if(!serial_count) { //if empty line
  621. comment_mode = false; //for new command
  622. return;
  623. }
  624. cmdbuffer[bufindw][serial_count] = 0; //terminate string
  625. if(!comment_mode){
  626. comment_mode = false; //for new command
  627. fromsd[bufindw] = false;
  628. if(strchr(cmdbuffer[bufindw], 'N') != NULL)
  629. {
  630. strchr_pointer = strchr(cmdbuffer[bufindw], 'N');
  631. gcode_N = (strtol(&cmdbuffer[bufindw][strchr_pointer - cmdbuffer[bufindw] + 1], NULL, 10));
  632. if(gcode_N != gcode_LastN+1 && (strstr_P(cmdbuffer[bufindw], PSTR("M110")) == NULL) ) {
  633. SERIAL_ERROR_START;
  634. SERIAL_ERRORPGM(MSG_ERR_LINE_NO);
  635. SERIAL_ERRORLN(gcode_LastN);
  636. //Serial.println(gcode_N);
  637. FlushSerialRequestResend();
  638. serial_count = 0;
  639. return;
  640. }
  641. if(strchr(cmdbuffer[bufindw], '*') != NULL)
  642. {
  643. byte checksum = 0;
  644. byte count = 0;
  645. while(cmdbuffer[bufindw][count] != '*') checksum = checksum^cmdbuffer[bufindw][count++];
  646. strchr_pointer = strchr(cmdbuffer[bufindw], '*');
  647. if( (int)(strtod(&cmdbuffer[bufindw][strchr_pointer - cmdbuffer[bufindw] + 1], NULL)) != checksum) {
  648. SERIAL_ERROR_START;
  649. SERIAL_ERRORPGM(MSG_ERR_CHECKSUM_MISMATCH);
  650. SERIAL_ERRORLN(gcode_LastN);
  651. FlushSerialRequestResend();
  652. serial_count = 0;
  653. return;
  654. }
  655. //if no errors, continue parsing
  656. }
  657. else
  658. {
  659. SERIAL_ERROR_START;
  660. SERIAL_ERRORPGM(MSG_ERR_NO_CHECKSUM);
  661. SERIAL_ERRORLN(gcode_LastN);
  662. FlushSerialRequestResend();
  663. serial_count = 0;
  664. return;
  665. }
  666. gcode_LastN = gcode_N;
  667. //if no errors, continue parsing
  668. }
  669. else // if we don't receive 'N' but still see '*'
  670. {
  671. if((strchr(cmdbuffer[bufindw], '*') != NULL))
  672. {
  673. SERIAL_ERROR_START;
  674. SERIAL_ERRORPGM(MSG_ERR_NO_LINENUMBER_WITH_CHECKSUM);
  675. SERIAL_ERRORLN(gcode_LastN);
  676. serial_count = 0;
  677. return;
  678. }
  679. }
  680. if((strchr(cmdbuffer[bufindw], 'G') != NULL)){
  681. strchr_pointer = strchr(cmdbuffer[bufindw], 'G');
  682. switch((int)((strtod(&cmdbuffer[bufindw][strchr_pointer - cmdbuffer[bufindw] + 1], NULL)))){
  683. case 0:
  684. case 1:
  685. case 2:
  686. case 3:
  687. if (Stopped == true) {
  688. SERIAL_ERRORLNPGM(MSG_ERR_STOPPED);
  689. LCD_MESSAGEPGM(MSG_STOPPED);
  690. }
  691. break;
  692. default:
  693. break;
  694. }
  695. }
  696. //If command was e-stop process now
  697. if(strcmp(cmdbuffer[bufindw], "M112") == 0)
  698. kill();
  699. bufindw = (bufindw + 1)%BUFSIZE;
  700. buflen += 1;
  701. }
  702. serial_count = 0; //clear buffer
  703. }
  704. else
  705. {
  706. if(serial_char == ';') comment_mode = true;
  707. if(!comment_mode) cmdbuffer[bufindw][serial_count++] = serial_char;
  708. }
  709. }
  710. #ifdef SDSUPPORT
  711. if(!card.sdprinting || serial_count!=0){
  712. return;
  713. }
  714. //'#' stops reading from SD to the buffer prematurely, so procedural macro calls are possible
  715. // if it occurs, stop_buffering is triggered and the buffer is ran dry.
  716. // this character _can_ occur in serial com, due to checksums. however, no checksums are used in SD printing
  717. static bool stop_buffering=false;
  718. if(buflen==0) stop_buffering=false;
  719. while( !card.eof() && buflen < BUFSIZE && !stop_buffering) {
  720. int16_t n=card.get();
  721. serial_char = (char)n;
  722. if(serial_char == '\n' ||
  723. serial_char == '\r' ||
  724. (serial_char == '#' && comment_mode == false) ||
  725. (serial_char == ':' && comment_mode == false) ||
  726. serial_count >= (MAX_CMD_SIZE - 1)||n==-1)
  727. {
  728. if(card.eof()){
  729. SERIAL_PROTOCOLLNPGM(MSG_FILE_PRINTED);
  730. stoptime=millis();
  731. char time[30];
  732. unsigned long t=(stoptime-starttime)/1000;
  733. int hours, minutes;
  734. minutes=(t/60)%60;
  735. hours=t/60/60;
  736. sprintf_P(time, PSTR("%i hours %i minutes"),hours, minutes);
  737. SERIAL_ECHO_START;
  738. SERIAL_ECHOLN(time);
  739. lcd_setstatus(time);
  740. card.printingHasFinished();
  741. card.checkautostart(true);
  742. }
  743. if(serial_char=='#')
  744. stop_buffering=true;
  745. if(!serial_count)
  746. {
  747. comment_mode = false; //for new command
  748. return; //if empty line
  749. }
  750. cmdbuffer[bufindw][serial_count] = 0; //terminate string
  751. // if(!comment_mode){
  752. fromsd[bufindw] = true;
  753. buflen += 1;
  754. bufindw = (bufindw + 1)%BUFSIZE;
  755. // }
  756. comment_mode = false; //for new command
  757. serial_count = 0; //clear buffer
  758. }
  759. else
  760. {
  761. if(serial_char == ';') comment_mode = true;
  762. if(!comment_mode) cmdbuffer[bufindw][serial_count++] = serial_char;
  763. }
  764. }
  765. #endif //SDSUPPORT
  766. }
  767. float code_value()
  768. {
  769. return (strtod(&cmdbuffer[bufindr][strchr_pointer - cmdbuffer[bufindr] + 1], NULL));
  770. }
  771. long code_value_long()
  772. {
  773. return (strtol(&cmdbuffer[bufindr][strchr_pointer - cmdbuffer[bufindr] + 1], NULL, 10));
  774. }
  775. bool code_seen(char code)
  776. {
  777. strchr_pointer = strchr(cmdbuffer[bufindr], code);
  778. return (strchr_pointer != NULL); //Return True if a character was found
  779. }
  780. #define DEFINE_PGM_READ_ANY(type, reader) \
  781. static inline type pgm_read_any(const type *p) \
  782. { return pgm_read_##reader##_near(p); }
  783. DEFINE_PGM_READ_ANY(float, float);
  784. DEFINE_PGM_READ_ANY(signed char, byte);
  785. #define XYZ_CONSTS_FROM_CONFIG(type, array, CONFIG) \
  786. static const PROGMEM type array##_P[3] = \
  787. { X_##CONFIG, Y_##CONFIG, Z_##CONFIG }; \
  788. static inline type array(int axis) \
  789. { return pgm_read_any(&array##_P[axis]); }
  790. XYZ_CONSTS_FROM_CONFIG(float, base_min_pos, MIN_POS);
  791. XYZ_CONSTS_FROM_CONFIG(float, base_max_pos, MAX_POS);
  792. XYZ_CONSTS_FROM_CONFIG(float, base_home_pos, HOME_POS);
  793. XYZ_CONSTS_FROM_CONFIG(float, max_length, MAX_LENGTH);
  794. XYZ_CONSTS_FROM_CONFIG(float, home_retract_mm, HOME_RETRACT_MM);
  795. XYZ_CONSTS_FROM_CONFIG(signed char, home_dir, HOME_DIR);
  796. #ifdef DUAL_X_CARRIAGE
  797. #if EXTRUDERS == 1 || defined(COREXY) \
  798. || !defined(X2_ENABLE_PIN) || !defined(X2_STEP_PIN) || !defined(X2_DIR_PIN) \
  799. || !defined(X2_HOME_POS) || !defined(X2_MIN_POS) || !defined(X2_MAX_POS) \
  800. || !defined(X_MAX_PIN) || X_MAX_PIN < 0
  801. #error "Missing or invalid definitions for DUAL_X_CARRIAGE mode."
  802. #endif
  803. #if X_HOME_DIR != -1 || X2_HOME_DIR != 1
  804. #error "Please use canonical x-carriage assignment" // the x-carriages are defined by their homing directions
  805. #endif
  806. #define DXC_FULL_CONTROL_MODE 0
  807. #define DXC_AUTO_PARK_MODE 1
  808. #define DXC_DUPLICATION_MODE 2
  809. static int dual_x_carriage_mode = DEFAULT_DUAL_X_CARRIAGE_MODE;
  810. static float x_home_pos(int extruder) {
  811. if (extruder == 0)
  812. return base_home_pos(X_AXIS) + add_homing[X_AXIS];
  813. else
  814. // In dual carriage mode the extruder offset provides an override of the
  815. // second X-carriage offset when homed - otherwise X2_HOME_POS is used.
  816. // This allow soft recalibration of the second extruder offset position without firmware reflash
  817. // (through the M218 command).
  818. return (extruder_offset[X_AXIS][1] > 0) ? extruder_offset[X_AXIS][1] : X2_HOME_POS;
  819. }
  820. static int x_home_dir(int extruder) {
  821. return (extruder == 0) ? X_HOME_DIR : X2_HOME_DIR;
  822. }
  823. static float inactive_extruder_x_pos = X2_MAX_POS; // used in mode 0 & 1
  824. static bool active_extruder_parked = false; // used in mode 1 & 2
  825. static float raised_parked_position[NUM_AXIS]; // used in mode 1
  826. static unsigned long delayed_move_time = 0; // used in mode 1
  827. static float duplicate_extruder_x_offset = DEFAULT_DUPLICATION_X_OFFSET; // used in mode 2
  828. static float duplicate_extruder_temp_offset = 0; // used in mode 2
  829. bool extruder_duplication_enabled = false; // used in mode 2
  830. #endif //DUAL_X_CARRIAGE
  831. static void axis_is_at_home(int axis) {
  832. #ifdef DUAL_X_CARRIAGE
  833. if (axis == X_AXIS) {
  834. if (active_extruder != 0) {
  835. current_position[X_AXIS] = x_home_pos(active_extruder);
  836. min_pos[X_AXIS] = X2_MIN_POS;
  837. max_pos[X_AXIS] = max(extruder_offset[X_AXIS][1], X2_MAX_POS);
  838. return;
  839. }
  840. else if (dual_x_carriage_mode == DXC_DUPLICATION_MODE && active_extruder == 0) {
  841. current_position[X_AXIS] = base_home_pos(X_AXIS) + add_homing[X_AXIS];
  842. min_pos[X_AXIS] = base_min_pos(X_AXIS) + add_homing[X_AXIS];
  843. max_pos[X_AXIS] = min(base_max_pos(X_AXIS) + add_homing[X_AXIS],
  844. max(extruder_offset[X_AXIS][1], X2_MAX_POS) - duplicate_extruder_x_offset);
  845. return;
  846. }
  847. }
  848. #endif
  849. #ifdef SCARA
  850. float homeposition[3];
  851. char i;
  852. if (axis < 2)
  853. {
  854. for (i=0; i<3; i++)
  855. {
  856. homeposition[i] = base_home_pos(i);
  857. }
  858. // SERIAL_ECHOPGM("homeposition[x]= "); SERIAL_ECHO(homeposition[0]);
  859. // SERIAL_ECHOPGM("homeposition[y]= "); SERIAL_ECHOLN(homeposition[1]);
  860. // Works out real Homeposition angles using inverse kinematics,
  861. // and calculates homing offset using forward kinematics
  862. calculate_delta(homeposition);
  863. // SERIAL_ECHOPGM("base Theta= "); SERIAL_ECHO(delta[X_AXIS]);
  864. // SERIAL_ECHOPGM(" base Psi+Theta="); SERIAL_ECHOLN(delta[Y_AXIS]);
  865. for (i=0; i<2; i++)
  866. {
  867. delta[i] -= add_homing[i];
  868. }
  869. // SERIAL_ECHOPGM("addhome X="); SERIAL_ECHO(add_homing[X_AXIS]);
  870. // SERIAL_ECHOPGM(" addhome Y="); SERIAL_ECHO(add_homing[Y_AXIS]);
  871. // SERIAL_ECHOPGM(" addhome Theta="); SERIAL_ECHO(delta[X_AXIS]);
  872. // SERIAL_ECHOPGM(" addhome Psi+Theta="); SERIAL_ECHOLN(delta[Y_AXIS]);
  873. calculate_SCARA_forward_Transform(delta);
  874. // SERIAL_ECHOPGM("Delta X="); SERIAL_ECHO(delta[X_AXIS]);
  875. // SERIAL_ECHOPGM(" Delta Y="); SERIAL_ECHOLN(delta[Y_AXIS]);
  876. current_position[axis] = delta[axis];
  877. // SCARA home positions are based on configuration since the actual limits are determined by the
  878. // inverse kinematic transform.
  879. min_pos[axis] = base_min_pos(axis); // + (delta[axis] - base_home_pos(axis));
  880. max_pos[axis] = base_max_pos(axis); // + (delta[axis] - base_home_pos(axis));
  881. }
  882. else
  883. {
  884. current_position[axis] = base_home_pos(axis) + add_homing[axis];
  885. min_pos[axis] = base_min_pos(axis) + add_homing[axis];
  886. max_pos[axis] = base_max_pos(axis) + add_homing[axis];
  887. }
  888. #else
  889. current_position[axis] = base_home_pos(axis) + add_homing[axis];
  890. min_pos[axis] = base_min_pos(axis) + add_homing[axis];
  891. max_pos[axis] = base_max_pos(axis) + add_homing[axis];
  892. #endif
  893. }
  894. #ifdef ENABLE_AUTO_BED_LEVELING
  895. #ifdef AUTO_BED_LEVELING_GRID
  896. static void set_bed_level_equation_lsq(double *plane_equation_coefficients)
  897. {
  898. vector_3 planeNormal = vector_3(-plane_equation_coefficients[0], -plane_equation_coefficients[1], 1);
  899. planeNormal.debug("planeNormal");
  900. plan_bed_level_matrix = matrix_3x3::create_look_at(planeNormal);
  901. //bedLevel.debug("bedLevel");
  902. //plan_bed_level_matrix.debug("bed level before");
  903. //vector_3 uncorrected_position = plan_get_position_mm();
  904. //uncorrected_position.debug("position before");
  905. vector_3 corrected_position = plan_get_position();
  906. // corrected_position.debug("position after");
  907. current_position[X_AXIS] = corrected_position.x;
  908. current_position[Y_AXIS] = corrected_position.y;
  909. current_position[Z_AXIS] = corrected_position.z;
  910. // put the bed at 0 so we don't go below it.
  911. current_position[Z_AXIS] = zprobe_zoffset; // in the lsq we reach here after raising the extruder due to the loop structure
  912. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  913. }
  914. #else // not AUTO_BED_LEVELING_GRID
  915. static void set_bed_level_equation_3pts(float z_at_pt_1, float z_at_pt_2, float z_at_pt_3) {
  916. plan_bed_level_matrix.set_to_identity();
  917. vector_3 pt1 = vector_3(ABL_PROBE_PT_1_X, ABL_PROBE_PT_1_Y, z_at_pt_1);
  918. vector_3 pt2 = vector_3(ABL_PROBE_PT_2_X, ABL_PROBE_PT_2_Y, z_at_pt_2);
  919. vector_3 pt3 = vector_3(ABL_PROBE_PT_3_X, ABL_PROBE_PT_3_Y, z_at_pt_3);
  920. vector_3 from_2_to_1 = (pt1 - pt2).get_normal();
  921. vector_3 from_2_to_3 = (pt3 - pt2).get_normal();
  922. vector_3 planeNormal = vector_3::cross(from_2_to_1, from_2_to_3).get_normal();
  923. planeNormal = vector_3(planeNormal.x, planeNormal.y, abs(planeNormal.z));
  924. plan_bed_level_matrix = matrix_3x3::create_look_at(planeNormal);
  925. vector_3 corrected_position = plan_get_position();
  926. current_position[X_AXIS] = corrected_position.x;
  927. current_position[Y_AXIS] = corrected_position.y;
  928. current_position[Z_AXIS] = corrected_position.z;
  929. // put the bed at 0 so we don't go below it.
  930. current_position[Z_AXIS] = zprobe_zoffset;
  931. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  932. }
  933. #endif // AUTO_BED_LEVELING_GRID
  934. static void run_z_probe() {
  935. plan_bed_level_matrix.set_to_identity();
  936. feedrate = homing_feedrate[Z_AXIS];
  937. // move down until you find the bed
  938. float zPosition = -10;
  939. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder);
  940. st_synchronize();
  941. // we have to let the planner know where we are right now as it is not where we said to go.
  942. zPosition = st_get_position_mm(Z_AXIS);
  943. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS]);
  944. // move up the retract distance
  945. zPosition += home_retract_mm(Z_AXIS);
  946. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder);
  947. st_synchronize();
  948. // move back down slowly to find bed
  949. feedrate = homing_feedrate[Z_AXIS]/4;
  950. zPosition -= home_retract_mm(Z_AXIS) * 2;
  951. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder);
  952. st_synchronize();
  953. current_position[Z_AXIS] = st_get_position_mm(Z_AXIS);
  954. // make sure the planner knows where we are as it may be a bit different than we last said to move to
  955. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  956. }
  957. static void do_blocking_move_to(float x, float y, float z) {
  958. float oldFeedRate = feedrate;
  959. feedrate = homing_feedrate[Z_AXIS];
  960. current_position[Z_AXIS] = z;
  961. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], feedrate/60, active_extruder);
  962. st_synchronize();
  963. feedrate = XY_TRAVEL_SPEED;
  964. current_position[X_AXIS] = x;
  965. current_position[Y_AXIS] = y;
  966. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], feedrate/60, active_extruder);
  967. st_synchronize();
  968. feedrate = oldFeedRate;
  969. }
  970. static void do_blocking_move_relative(float offset_x, float offset_y, float offset_z) {
  971. do_blocking_move_to(current_position[X_AXIS] + offset_x, current_position[Y_AXIS] + offset_y, current_position[Z_AXIS] + offset_z);
  972. }
  973. static void setup_for_endstop_move() {
  974. saved_feedrate = feedrate;
  975. saved_feedmultiply = feedmultiply;
  976. feedmultiply = 100;
  977. previous_millis_cmd = millis();
  978. enable_endstops(true);
  979. }
  980. static void clean_up_after_endstop_move() {
  981. #ifdef ENDSTOPS_ONLY_FOR_HOMING
  982. enable_endstops(false);
  983. #endif
  984. feedrate = saved_feedrate;
  985. feedmultiply = saved_feedmultiply;
  986. previous_millis_cmd = millis();
  987. }
  988. static void engage_z_probe() {
  989. // Engage Z Servo endstop if enabled
  990. #ifdef SERVO_ENDSTOPS
  991. if (servo_endstops[Z_AXIS] > -1) {
  992. #if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
  993. servos[servo_endstops[Z_AXIS]].attach(0);
  994. #endif
  995. servos[servo_endstops[Z_AXIS]].write(servo_endstop_angles[Z_AXIS * 2]);
  996. #if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
  997. delay(PROBE_SERVO_DEACTIVATION_DELAY);
  998. servos[servo_endstops[Z_AXIS]].detach();
  999. #endif
  1000. }
  1001. #endif
  1002. }
  1003. static void retract_z_probe() {
  1004. // Retract Z Servo endstop if enabled
  1005. #ifdef SERVO_ENDSTOPS
  1006. if (servo_endstops[Z_AXIS] > -1) {
  1007. #if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
  1008. servos[servo_endstops[Z_AXIS]].attach(0);
  1009. #endif
  1010. servos[servo_endstops[Z_AXIS]].write(servo_endstop_angles[Z_AXIS * 2 + 1]);
  1011. #if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
  1012. delay(PROBE_SERVO_DEACTIVATION_DELAY);
  1013. servos[servo_endstops[Z_AXIS]].detach();
  1014. #endif
  1015. }
  1016. #endif
  1017. }
  1018. /// Probe bed height at position (x,y), returns the measured z value
  1019. static float probe_pt(float x, float y, float z_before) {
  1020. // move to right place
  1021. do_blocking_move_to(current_position[X_AXIS], current_position[Y_AXIS], z_before);
  1022. do_blocking_move_to(x - X_PROBE_OFFSET_FROM_EXTRUDER, y - Y_PROBE_OFFSET_FROM_EXTRUDER, current_position[Z_AXIS]);
  1023. #ifndef Z_PROBE_SLED
  1024. engage_z_probe(); // Engage Z Servo endstop if available
  1025. #endif // Z_PROBE_SLED
  1026. run_z_probe();
  1027. float measured_z = current_position[Z_AXIS];
  1028. #ifndef Z_PROBE_SLED
  1029. retract_z_probe();
  1030. #endif // Z_PROBE_SLED
  1031. SERIAL_PROTOCOLPGM(MSG_BED);
  1032. SERIAL_PROTOCOLPGM(" x: ");
  1033. SERIAL_PROTOCOL(x);
  1034. SERIAL_PROTOCOLPGM(" y: ");
  1035. SERIAL_PROTOCOL(y);
  1036. SERIAL_PROTOCOLPGM(" z: ");
  1037. SERIAL_PROTOCOL(measured_z);
  1038. SERIAL_PROTOCOLPGM("\n");
  1039. return measured_z;
  1040. }
  1041. #endif // #ifdef ENABLE_AUTO_BED_LEVELING
  1042. static void homeaxis(int axis) {
  1043. #define HOMEAXIS_DO(LETTER) \
  1044. ((LETTER##_MIN_PIN > -1 && LETTER##_HOME_DIR==-1) || (LETTER##_MAX_PIN > -1 && LETTER##_HOME_DIR==1))
  1045. if (axis==X_AXIS ? HOMEAXIS_DO(X) :
  1046. axis==Y_AXIS ? HOMEAXIS_DO(Y) :
  1047. axis==Z_AXIS ? HOMEAXIS_DO(Z) :
  1048. 0) {
  1049. int axis_home_dir = home_dir(axis);
  1050. #ifdef DUAL_X_CARRIAGE
  1051. if (axis == X_AXIS)
  1052. axis_home_dir = x_home_dir(active_extruder);
  1053. #endif
  1054. current_position[axis] = 0;
  1055. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1056. #ifndef Z_PROBE_SLED
  1057. // Engage Servo endstop if enabled
  1058. #ifdef SERVO_ENDSTOPS
  1059. #if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
  1060. if (axis==Z_AXIS) {
  1061. engage_z_probe();
  1062. }
  1063. else
  1064. #endif
  1065. if (servo_endstops[axis] > -1) {
  1066. servos[servo_endstops[axis]].write(servo_endstop_angles[axis * 2]);
  1067. }
  1068. #endif
  1069. #endif // Z_PROBE_SLED
  1070. destination[axis] = 1.5 * max_length(axis) * axis_home_dir;
  1071. feedrate = homing_feedrate[axis];
  1072. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1073. st_synchronize();
  1074. current_position[axis] = 0;
  1075. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1076. destination[axis] = -home_retract_mm(axis) * axis_home_dir;
  1077. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1078. st_synchronize();
  1079. destination[axis] = 2*home_retract_mm(axis) * axis_home_dir;
  1080. #ifdef DELTA
  1081. feedrate = homing_feedrate[axis]/10;
  1082. #else
  1083. feedrate = homing_feedrate[axis]/2 ;
  1084. #endif
  1085. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1086. st_synchronize();
  1087. #ifdef DELTA
  1088. // retrace by the amount specified in endstop_adj
  1089. if (endstop_adj[axis] * axis_home_dir < 0) {
  1090. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1091. destination[axis] = endstop_adj[axis];
  1092. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1093. st_synchronize();
  1094. }
  1095. #endif
  1096. axis_is_at_home(axis);
  1097. destination[axis] = current_position[axis];
  1098. feedrate = 0.0;
  1099. endstops_hit_on_purpose();
  1100. axis_known_position[axis] = true;
  1101. // Retract Servo endstop if enabled
  1102. #ifdef SERVO_ENDSTOPS
  1103. if (servo_endstops[axis] > -1) {
  1104. servos[servo_endstops[axis]].write(servo_endstop_angles[axis * 2 + 1]);
  1105. }
  1106. #endif
  1107. #if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
  1108. #ifndef Z_PROBE_SLED
  1109. if (axis==Z_AXIS) retract_z_probe();
  1110. #endif
  1111. #endif
  1112. }
  1113. }
  1114. #define HOMEAXIS(LETTER) homeaxis(LETTER##_AXIS)
  1115. void refresh_cmd_timeout(void)
  1116. {
  1117. previous_millis_cmd = millis();
  1118. }
  1119. #ifdef FWRETRACT
  1120. void retract(bool retracting, bool swapretract = false) {
  1121. if(retracting && !retracted[active_extruder]) {
  1122. destination[X_AXIS]=current_position[X_AXIS];
  1123. destination[Y_AXIS]=current_position[Y_AXIS];
  1124. destination[Z_AXIS]=current_position[Z_AXIS];
  1125. destination[E_AXIS]=current_position[E_AXIS];
  1126. if (swapretract) {
  1127. current_position[E_AXIS]+=retract_length_swap/volumetric_multiplier[active_extruder];
  1128. } else {
  1129. current_position[E_AXIS]+=retract_length/volumetric_multiplier[active_extruder];
  1130. }
  1131. plan_set_e_position(current_position[E_AXIS]);
  1132. float oldFeedrate = feedrate;
  1133. feedrate=retract_feedrate*60;
  1134. retracted[active_extruder]=true;
  1135. prepare_move();
  1136. current_position[Z_AXIS]-=retract_zlift;
  1137. #ifdef DELTA
  1138. calculate_delta(current_position); // change cartesian kinematic to delta kinematic;
  1139. plan_set_position(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], current_position[E_AXIS]);
  1140. #else
  1141. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1142. #endif
  1143. prepare_move();
  1144. feedrate = oldFeedrate;
  1145. } else if(!retracting && retracted[active_extruder]) {
  1146. destination[X_AXIS]=current_position[X_AXIS];
  1147. destination[Y_AXIS]=current_position[Y_AXIS];
  1148. destination[Z_AXIS]=current_position[Z_AXIS];
  1149. destination[E_AXIS]=current_position[E_AXIS];
  1150. current_position[Z_AXIS]+=retract_zlift;
  1151. #ifdef DELTA
  1152. calculate_delta(current_position); // change cartesian kinematic to delta kinematic;
  1153. plan_set_position(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], current_position[E_AXIS]);
  1154. #else
  1155. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1156. #endif
  1157. //prepare_move();
  1158. if (swapretract) {
  1159. current_position[E_AXIS]-=(retract_length_swap+retract_recover_length_swap)/volumetric_multiplier[active_extruder];
  1160. } else {
  1161. current_position[E_AXIS]-=(retract_length+retract_recover_length)/volumetric_multiplier[active_extruder];
  1162. }
  1163. plan_set_e_position(current_position[E_AXIS]);
  1164. float oldFeedrate = feedrate;
  1165. feedrate=retract_recover_feedrate*60;
  1166. retracted[active_extruder]=false;
  1167. prepare_move();
  1168. feedrate = oldFeedrate;
  1169. }
  1170. } //retract
  1171. #endif //FWRETRACT
  1172. #ifdef Z_PROBE_SLED
  1173. //
  1174. // Method to dock/undock a sled designed by Charles Bell.
  1175. //
  1176. // dock[in] If true, move to MAX_X and engage the electromagnet
  1177. // offset[in] The additional distance to move to adjust docking location
  1178. //
  1179. static void dock_sled(bool dock, int offset=0) {
  1180. int z_loc;
  1181. if (!((axis_known_position[X_AXIS]) && (axis_known_position[Y_AXIS]))) {
  1182. LCD_MESSAGEPGM(MSG_POSITION_UNKNOWN);
  1183. SERIAL_ECHO_START;
  1184. SERIAL_ECHOLNPGM(MSG_POSITION_UNKNOWN);
  1185. return;
  1186. }
  1187. if (dock) {
  1188. do_blocking_move_to(X_MAX_POS + SLED_DOCKING_OFFSET + offset,
  1189. current_position[Y_AXIS],
  1190. current_position[Z_AXIS]);
  1191. // turn off magnet
  1192. digitalWrite(SERVO0_PIN, LOW);
  1193. } else {
  1194. if (current_position[Z_AXIS] < (Z_RAISE_BEFORE_PROBING + 5))
  1195. z_loc = Z_RAISE_BEFORE_PROBING;
  1196. else
  1197. z_loc = current_position[Z_AXIS];
  1198. do_blocking_move_to(X_MAX_POS + SLED_DOCKING_OFFSET + offset,
  1199. Y_PROBE_OFFSET_FROM_EXTRUDER, z_loc);
  1200. // turn on magnet
  1201. digitalWrite(SERVO0_PIN, HIGH);
  1202. }
  1203. }
  1204. #endif
  1205. void process_commands()
  1206. {
  1207. #ifdef FILAMENT_RUNOUT_SUPPORT
  1208. SET_INPUT(FR_SENS);
  1209. #endif
  1210. unsigned long codenum; //throw away variable
  1211. char *starpos = NULL;
  1212. #ifdef ENABLE_AUTO_BED_LEVELING
  1213. float x_tmp, y_tmp, z_tmp, real_z;
  1214. #endif
  1215. // PRUSA GCODES
  1216. if(code_seen('PRUSA')){
  1217. if(code_seen('Fir')){
  1218. SERIAL_PROTOCOLLN(FW_version);
  1219. } else if(code_seen('Rev')){
  1220. SERIAL_PROTOCOLLN(REVISION);
  1221. }
  1222. }
  1223. else if(code_seen('G'))
  1224. {
  1225. switch((int)code_value())
  1226. {
  1227. case 0: // G0 -> G1
  1228. case 1: // G1
  1229. if(Stopped == false) {
  1230. #ifdef FILAMENT_RUNOUT_SUPPORT
  1231. if(READ(FR_SENS)){
  1232. feedmultiplyBckp=feedmultiply;
  1233. float target[4];
  1234. float lastpos[4];
  1235. target[X_AXIS]=current_position[X_AXIS];
  1236. target[Y_AXIS]=current_position[Y_AXIS];
  1237. target[Z_AXIS]=current_position[Z_AXIS];
  1238. target[E_AXIS]=current_position[E_AXIS];
  1239. lastpos[X_AXIS]=current_position[X_AXIS];
  1240. lastpos[Y_AXIS]=current_position[Y_AXIS];
  1241. lastpos[Z_AXIS]=current_position[Z_AXIS];
  1242. lastpos[E_AXIS]=current_position[E_AXIS];
  1243. //retract by E
  1244. target[E_AXIS]+= FILAMENTCHANGE_FIRSTRETRACT ;
  1245. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 400, active_extruder);
  1246. target[Z_AXIS]+= FILAMENTCHANGE_ZADD ;
  1247. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 300, active_extruder);
  1248. target[X_AXIS]= FILAMENTCHANGE_XPOS ;
  1249. target[Y_AXIS]= FILAMENTCHANGE_YPOS ;
  1250. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 70, active_extruder);
  1251. target[E_AXIS]+= FILAMENTCHANGE_FINALRETRACT ;
  1252. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 20, active_extruder);
  1253. //finish moves
  1254. st_synchronize();
  1255. //disable extruder steppers so filament can be removed
  1256. disable_e0();
  1257. disable_e1();
  1258. disable_e2();
  1259. delay(100);
  1260. //LCD_ALERTMESSAGEPGM(MSG_FILAMENTCHANGE);
  1261. uint8_t cnt=0;
  1262. int counterBeep = 0;
  1263. lcd_wait_interact();
  1264. while(!lcd_clicked()){
  1265. cnt++;
  1266. manage_heater();
  1267. manage_inactivity(true);
  1268. //lcd_update();
  1269. if(cnt==0)
  1270. {
  1271. #if BEEPER > 0
  1272. if (counterBeep== 500){
  1273. counterBeep = 0;
  1274. }
  1275. SET_OUTPUT(BEEPER);
  1276. if (counterBeep== 0){
  1277. WRITE(BEEPER,HIGH);
  1278. }
  1279. if (counterBeep== 20){
  1280. WRITE(BEEPER,LOW);
  1281. }
  1282. counterBeep++;
  1283. #else
  1284. #if !defined(LCD_FEEDBACK_FREQUENCY_HZ) || !defined(LCD_FEEDBACK_FREQUENCY_DURATION_MS)
  1285. lcd_buzz(1000/6,100);
  1286. #else
  1287. lcd_buzz(LCD_FEEDBACK_FREQUENCY_DURATION_MS,LCD_FEEDBACK_FREQUENCY_HZ);
  1288. #endif
  1289. #endif
  1290. }
  1291. }
  1292. WRITE(BEEPER,LOW);
  1293. target[E_AXIS]+= FILAMENTCHANGE_FIRSTFEED ;
  1294. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 20, active_extruder);
  1295. target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  1296. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder);
  1297. lcd_change_fil_state = 0;
  1298. lcd_loading_filament();
  1299. while ((lcd_change_fil_state == 0)||(lcd_change_fil_state != 1)){
  1300. lcd_change_fil_state = 0;
  1301. lcd_alright();
  1302. switch(lcd_change_fil_state){
  1303. case 2:
  1304. target[E_AXIS]+= FILAMENTCHANGE_FIRSTFEED ;
  1305. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 20, active_extruder);
  1306. target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  1307. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder);
  1308. lcd_loading_filament();
  1309. break;
  1310. case 3:
  1311. target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  1312. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder);
  1313. lcd_loading_color();
  1314. break;
  1315. default:
  1316. lcd_change_success();
  1317. break;
  1318. }
  1319. }
  1320. target[E_AXIS]+= 5;
  1321. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder);
  1322. target[E_AXIS]+= FILAMENTCHANGE_FIRSTRETRACT;
  1323. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 400, active_extruder);
  1324. //current_position[E_AXIS]=target[E_AXIS]; //the long retract of L is compensated by manual filament feeding
  1325. //plan_set_e_position(current_position[E_AXIS]);
  1326. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 70, active_extruder); //should do nothing
  1327. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], target[Z_AXIS], target[E_AXIS], 70, active_extruder); //move xy back
  1328. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], target[E_AXIS], 200, active_extruder); //move z back
  1329. target[E_AXIS]= target[E_AXIS] - FILAMENTCHANGE_FIRSTRETRACT;
  1330. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], target[E_AXIS], 5, active_extruder); //final untretract
  1331. plan_set_e_position(lastpos[E_AXIS]);
  1332. feedmultiply=feedmultiplyBckp;
  1333. char cmd[9];
  1334. sprintf_P(cmd, PSTR("M220 S%i"), feedmultiplyBckp);
  1335. enquecommand(cmd);
  1336. }
  1337. #endif
  1338. get_coordinates(); // For X Y Z E F
  1339. #ifdef FWRETRACT
  1340. if(autoretract_enabled)
  1341. if( !(code_seen('X') || code_seen('Y') || code_seen('Z')) && code_seen('E')) {
  1342. float echange=destination[E_AXIS]-current_position[E_AXIS];
  1343. if((echange<-MIN_RETRACT && !retracted) || (echange>MIN_RETRACT && retracted)) { //move appears to be an attempt to retract or recover
  1344. current_position[E_AXIS] = destination[E_AXIS]; //hide the slicer-generated retract/recover from calculations
  1345. plan_set_e_position(current_position[E_AXIS]); //AND from the planner
  1346. retract(!retracted);
  1347. return;
  1348. }
  1349. }
  1350. #endif //FWRETRACT
  1351. prepare_move();
  1352. //ClearToSend();
  1353. }
  1354. break;
  1355. #ifndef SCARA //disable arc support
  1356. case 2: // G2 - CW ARC
  1357. if(Stopped == false) {
  1358. get_arc_coordinates();
  1359. prepare_arc_move(true);
  1360. }
  1361. break;
  1362. case 3: // G3 - CCW ARC
  1363. if(Stopped == false) {
  1364. get_arc_coordinates();
  1365. prepare_arc_move(false);
  1366. }
  1367. break;
  1368. #endif
  1369. case 4: // G4 dwell
  1370. LCD_MESSAGEPGM(MSG_DWELL);
  1371. codenum = 0;
  1372. if(code_seen('P')) codenum = code_value(); // milliseconds to wait
  1373. if(code_seen('S')) codenum = code_value() * 1000; // seconds to wait
  1374. st_synchronize();
  1375. codenum += millis(); // keep track of when we started waiting
  1376. previous_millis_cmd = millis();
  1377. while(millis() < codenum) {
  1378. manage_heater();
  1379. manage_inactivity();
  1380. lcd_update();
  1381. }
  1382. break;
  1383. #ifdef FWRETRACT
  1384. case 10: // G10 retract
  1385. #if EXTRUDERS > 1
  1386. retracted_swap[active_extruder]=(code_seen('S') && code_value_long() == 1); // checks for swap retract argument
  1387. retract(true,retracted_swap[active_extruder]);
  1388. #else
  1389. retract(true);
  1390. #endif
  1391. break;
  1392. case 11: // G11 retract_recover
  1393. #if EXTRUDERS > 1
  1394. retract(false,retracted_swap[active_extruder]);
  1395. #else
  1396. retract(false);
  1397. #endif
  1398. break;
  1399. #endif //FWRETRACT
  1400. case 28: //G28 Home all Axis one at a time
  1401. #ifdef ENABLE_AUTO_BED_LEVELING
  1402. plan_bed_level_matrix.set_to_identity(); //Reset the plane ("erase" all leveling data)
  1403. #endif //ENABLE_AUTO_BED_LEVELING
  1404. saved_feedrate = feedrate;
  1405. saved_feedmultiply = feedmultiply;
  1406. feedmultiply = 100;
  1407. previous_millis_cmd = millis();
  1408. enable_endstops(true);
  1409. for(int8_t i=0; i < NUM_AXIS; i++) {
  1410. destination[i] = current_position[i];
  1411. }
  1412. feedrate = 0.0;
  1413. #ifdef DELTA
  1414. // A delta can only safely home all axis at the same time
  1415. // all axis have to home at the same time
  1416. // Move all carriages up together until the first endstop is hit.
  1417. current_position[X_AXIS] = 0;
  1418. current_position[Y_AXIS] = 0;
  1419. current_position[Z_AXIS] = 0;
  1420. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1421. destination[X_AXIS] = 3 * Z_MAX_LENGTH;
  1422. destination[Y_AXIS] = 3 * Z_MAX_LENGTH;
  1423. destination[Z_AXIS] = 3 * Z_MAX_LENGTH;
  1424. feedrate = 1.732 * homing_feedrate[X_AXIS];
  1425. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1426. st_synchronize();
  1427. endstops_hit_on_purpose();
  1428. current_position[X_AXIS] = destination[X_AXIS];
  1429. current_position[Y_AXIS] = destination[Y_AXIS];
  1430. current_position[Z_AXIS] = destination[Z_AXIS];
  1431. // take care of back off and rehome now we are all at the top
  1432. HOMEAXIS(X);
  1433. HOMEAXIS(Y);
  1434. HOMEAXIS(Z);
  1435. calculate_delta(current_position);
  1436. plan_set_position(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], current_position[E_AXIS]);
  1437. #else // NOT DELTA
  1438. home_all_axis = !((code_seen(axis_codes[X_AXIS])) || (code_seen(axis_codes[Y_AXIS])) || (code_seen(axis_codes[Z_AXIS])));
  1439. #if Z_HOME_DIR > 0 // If homing away from BED do Z first
  1440. if((home_all_axis) || (code_seen(axis_codes[Z_AXIS]))) {
  1441. HOMEAXIS(Z);
  1442. }
  1443. #endif
  1444. #ifdef QUICK_HOME
  1445. if((home_all_axis)||( code_seen(axis_codes[X_AXIS]) && code_seen(axis_codes[Y_AXIS])) ) //first diagonal move
  1446. {
  1447. current_position[X_AXIS] = 0;current_position[Y_AXIS] = 0;
  1448. #ifndef DUAL_X_CARRIAGE
  1449. int x_axis_home_dir = home_dir(X_AXIS);
  1450. #else
  1451. int x_axis_home_dir = x_home_dir(active_extruder);
  1452. extruder_duplication_enabled = false;
  1453. #endif
  1454. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1455. destination[X_AXIS] = 1.5 * max_length(X_AXIS) * x_axis_home_dir;destination[Y_AXIS] = 1.5 * max_length(Y_AXIS) * home_dir(Y_AXIS);
  1456. feedrate = homing_feedrate[X_AXIS];
  1457. if(homing_feedrate[Y_AXIS]<feedrate)
  1458. feedrate = homing_feedrate[Y_AXIS];
  1459. if (max_length(X_AXIS) > max_length(Y_AXIS)) {
  1460. feedrate *= sqrt(pow(max_length(Y_AXIS) / max_length(X_AXIS), 2) + 1);
  1461. } else {
  1462. feedrate *= sqrt(pow(max_length(X_AXIS) / max_length(Y_AXIS), 2) + 1);
  1463. }
  1464. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1465. st_synchronize();
  1466. axis_is_at_home(X_AXIS);
  1467. axis_is_at_home(Y_AXIS);
  1468. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1469. destination[X_AXIS] = current_position[X_AXIS];
  1470. destination[Y_AXIS] = current_position[Y_AXIS];
  1471. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1472. feedrate = 0.0;
  1473. st_synchronize();
  1474. endstops_hit_on_purpose();
  1475. current_position[X_AXIS] = destination[X_AXIS];
  1476. current_position[Y_AXIS] = destination[Y_AXIS];
  1477. #ifndef SCARA
  1478. current_position[Z_AXIS] = destination[Z_AXIS];
  1479. #endif
  1480. }
  1481. #endif
  1482. if((home_all_axis) || (code_seen(axis_codes[X_AXIS])))
  1483. {
  1484. #ifdef DUAL_X_CARRIAGE
  1485. int tmp_extruder = active_extruder;
  1486. extruder_duplication_enabled = false;
  1487. active_extruder = !active_extruder;
  1488. HOMEAXIS(X);
  1489. inactive_extruder_x_pos = current_position[X_AXIS];
  1490. active_extruder = tmp_extruder;
  1491. HOMEAXIS(X);
  1492. // reset state used by the different modes
  1493. memcpy(raised_parked_position, current_position, sizeof(raised_parked_position));
  1494. delayed_move_time = 0;
  1495. active_extruder_parked = true;
  1496. #else
  1497. HOMEAXIS(X);
  1498. #endif
  1499. }
  1500. if((home_all_axis) || (code_seen(axis_codes[Y_AXIS]))) {
  1501. HOMEAXIS(Y);
  1502. }
  1503. if(code_seen(axis_codes[X_AXIS]))
  1504. {
  1505. if(code_value_long() != 0) {
  1506. #ifdef SCARA
  1507. current_position[X_AXIS]=code_value();
  1508. #else
  1509. current_position[X_AXIS]=code_value()+add_homing[X_AXIS];
  1510. #endif
  1511. }
  1512. }
  1513. if(code_seen(axis_codes[Y_AXIS])) {
  1514. if(code_value_long() != 0) {
  1515. #ifdef SCARA
  1516. current_position[Y_AXIS]=code_value();
  1517. #else
  1518. current_position[Y_AXIS]=code_value()+add_homing[Y_AXIS];
  1519. #endif
  1520. }
  1521. }
  1522. #if Z_HOME_DIR < 0 // If homing towards BED do Z last
  1523. #ifndef Z_SAFE_HOMING
  1524. if((home_all_axis) || (code_seen(axis_codes[Z_AXIS]))) {
  1525. #if defined (Z_RAISE_BEFORE_HOMING) && (Z_RAISE_BEFORE_HOMING > 0)
  1526. destination[Z_AXIS] = Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS) * (-1); // Set destination away from bed
  1527. feedrate = max_feedrate[Z_AXIS];
  1528. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
  1529. st_synchronize();
  1530. #endif
  1531. HOMEAXIS(Z);
  1532. }
  1533. #else // Z Safe mode activated.
  1534. if(home_all_axis) {
  1535. destination[X_AXIS] = round(Z_SAFE_HOMING_X_POINT - X_PROBE_OFFSET_FROM_EXTRUDER);
  1536. destination[Y_AXIS] = round(Z_SAFE_HOMING_Y_POINT - Y_PROBE_OFFSET_FROM_EXTRUDER);
  1537. destination[Z_AXIS] = Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS) * (-1); // Set destination away from bed
  1538. feedrate = XY_TRAVEL_SPEED/60;
  1539. current_position[Z_AXIS] = 0;
  1540. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1541. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
  1542. st_synchronize();
  1543. current_position[X_AXIS] = destination[X_AXIS];
  1544. current_position[Y_AXIS] = destination[Y_AXIS];
  1545. HOMEAXIS(Z);
  1546. }
  1547. // Let's see if X and Y are homed and probe is inside bed area.
  1548. if(code_seen(axis_codes[Z_AXIS])) {
  1549. if ( (axis_known_position[X_AXIS]) && (axis_known_position[Y_AXIS]) \
  1550. && (current_position[X_AXIS]+X_PROBE_OFFSET_FROM_EXTRUDER >= X_MIN_POS) \
  1551. && (current_position[X_AXIS]+X_PROBE_OFFSET_FROM_EXTRUDER <= X_MAX_POS) \
  1552. && (current_position[Y_AXIS]+Y_PROBE_OFFSET_FROM_EXTRUDER >= Y_MIN_POS) \
  1553. && (current_position[Y_AXIS]+Y_PROBE_OFFSET_FROM_EXTRUDER <= Y_MAX_POS)) {
  1554. current_position[Z_AXIS] = 0;
  1555. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1556. destination[Z_AXIS] = Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS) * (-1); // Set destination away from bed
  1557. feedrate = max_feedrate[Z_AXIS];
  1558. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
  1559. st_synchronize();
  1560. HOMEAXIS(Z);
  1561. } else if (!((axis_known_position[X_AXIS]) && (axis_known_position[Y_AXIS]))) {
  1562. LCD_MESSAGEPGM(MSG_POSITION_UNKNOWN);
  1563. SERIAL_ECHO_START;
  1564. SERIAL_ECHOLNPGM(MSG_POSITION_UNKNOWN);
  1565. } else {
  1566. LCD_MESSAGEPGM(MSG_ZPROBE_OUT);
  1567. SERIAL_ECHO_START;
  1568. SERIAL_ECHOLNPGM(MSG_ZPROBE_OUT);
  1569. }
  1570. }
  1571. #endif
  1572. #endif
  1573. if(code_seen(axis_codes[Z_AXIS])) {
  1574. if(code_value_long() != 0) {
  1575. current_position[Z_AXIS]=code_value()+add_homing[Z_AXIS];
  1576. }
  1577. }
  1578. #ifdef ENABLE_AUTO_BED_LEVELING
  1579. if((home_all_axis) || (code_seen(axis_codes[Z_AXIS]))) {
  1580. current_position[Z_AXIS] += zprobe_zoffset; //Add Z_Probe offset (the distance is negative)
  1581. }
  1582. #endif
  1583. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1584. #endif // else DELTA
  1585. #ifdef SCARA
  1586. calculate_delta(current_position);
  1587. plan_set_position(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], current_position[E_AXIS]);
  1588. #endif // SCARA
  1589. #ifdef ENDSTOPS_ONLY_FOR_HOMING
  1590. enable_endstops(false);
  1591. #endif
  1592. feedrate = saved_feedrate;
  1593. feedmultiply = saved_feedmultiply;
  1594. previous_millis_cmd = millis();
  1595. endstops_hit_on_purpose();
  1596. if(card.sdprinting) {
  1597. EEPROM_read_B(4089,&babystepLoad[2]);
  1598. if(babystepLoad[2] != 0){
  1599. lcd_adjust_z();
  1600. }
  1601. }
  1602. break;
  1603. #ifdef ENABLE_AUTO_BED_LEVELING
  1604. case 29: // G29 Detailed Z-Probe, probes the bed at 3 or more points.
  1605. {
  1606. #if Z_MIN_PIN == -1
  1607. #error "You must have a Z_MIN endstop in order to enable Auto Bed Leveling feature!!! Z_MIN_PIN must point to a valid hardware pin."
  1608. #endif
  1609. // Prevent user from running a G29 without first homing in X and Y
  1610. if (! (axis_known_position[X_AXIS] && axis_known_position[Y_AXIS]) )
  1611. {
  1612. LCD_MESSAGEPGM(MSG_POSITION_UNKNOWN);
  1613. SERIAL_ECHO_START;
  1614. SERIAL_ECHOLNPGM(MSG_POSITION_UNKNOWN);
  1615. break; // abort G29, since we don't know where we are
  1616. }
  1617. #ifdef Z_PROBE_SLED
  1618. dock_sled(false);
  1619. #endif // Z_PROBE_SLED
  1620. st_synchronize();
  1621. // make sure the bed_level_rotation_matrix is identity or the planner will get it incorectly
  1622. //vector_3 corrected_position = plan_get_position_mm();
  1623. //corrected_position.debug("position before G29");
  1624. plan_bed_level_matrix.set_to_identity();
  1625. vector_3 uncorrected_position = plan_get_position();
  1626. //uncorrected_position.debug("position durring G29");
  1627. current_position[X_AXIS] = uncorrected_position.x;
  1628. current_position[Y_AXIS] = uncorrected_position.y;
  1629. current_position[Z_AXIS] = uncorrected_position.z;
  1630. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1631. setup_for_endstop_move();
  1632. feedrate = homing_feedrate[Z_AXIS];
  1633. #ifdef AUTO_BED_LEVELING_GRID
  1634. // probe at the points of a lattice grid
  1635. int xGridSpacing = (RIGHT_PROBE_BED_POSITION - LEFT_PROBE_BED_POSITION) / (AUTO_BED_LEVELING_GRID_POINTS-1);
  1636. int yGridSpacing = (BACK_PROBE_BED_POSITION - FRONT_PROBE_BED_POSITION) / (AUTO_BED_LEVELING_GRID_POINTS-1);
  1637. // solve the plane equation ax + by + d = z
  1638. // A is the matrix with rows [x y 1] for all the probed points
  1639. // B is the vector of the Z positions
  1640. // the normal vector to the plane is formed by the coefficients of the plane equation in the standard form, which is Vx*x+Vy*y+Vz*z+d = 0
  1641. // so Vx = -a Vy = -b Vz = 1 (we want the vector facing towards positive Z
  1642. // "A" matrix of the linear system of equations
  1643. double eqnAMatrix[AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS*3];
  1644. // "B" vector of Z points
  1645. double eqnBVector[AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS];
  1646. int probePointCounter = 0;
  1647. bool zig = true;
  1648. for (int yProbe=FRONT_PROBE_BED_POSITION; yProbe <= BACK_PROBE_BED_POSITION; yProbe += yGridSpacing)
  1649. {
  1650. int xProbe, xInc;
  1651. if (zig)
  1652. {
  1653. xProbe = LEFT_PROBE_BED_POSITION;
  1654. //xEnd = RIGHT_PROBE_BED_POSITION;
  1655. xInc = xGridSpacing;
  1656. zig = false;
  1657. } else // zag
  1658. {
  1659. xProbe = RIGHT_PROBE_BED_POSITION;
  1660. //xEnd = LEFT_PROBE_BED_POSITION;
  1661. xInc = -xGridSpacing;
  1662. zig = true;
  1663. }
  1664. for (int xCount=0; xCount < AUTO_BED_LEVELING_GRID_POINTS; xCount++)
  1665. {
  1666. float z_before;
  1667. if (probePointCounter == 0)
  1668. {
  1669. // raise before probing
  1670. z_before = Z_RAISE_BEFORE_PROBING;
  1671. } else
  1672. {
  1673. // raise extruder
  1674. z_before = current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS;
  1675. }
  1676. float measured_z = probe_pt(xProbe, yProbe, z_before);
  1677. eqnBVector[probePointCounter] = measured_z;
  1678. eqnAMatrix[probePointCounter + 0*AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS] = xProbe;
  1679. eqnAMatrix[probePointCounter + 1*AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS] = yProbe;
  1680. eqnAMatrix[probePointCounter + 2*AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS] = 1;
  1681. probePointCounter++;
  1682. xProbe += xInc;
  1683. }
  1684. }
  1685. clean_up_after_endstop_move();
  1686. // solve lsq problem
  1687. double *plane_equation_coefficients = qr_solve(AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS, 3, eqnAMatrix, eqnBVector);
  1688. SERIAL_PROTOCOLPGM("Eqn coefficients: a: ");
  1689. SERIAL_PROTOCOL(plane_equation_coefficients[0]);
  1690. SERIAL_PROTOCOLPGM(" b: ");
  1691. SERIAL_PROTOCOL(plane_equation_coefficients[1]);
  1692. SERIAL_PROTOCOLPGM(" d: ");
  1693. SERIAL_PROTOCOLLN(plane_equation_coefficients[2]);
  1694. set_bed_level_equation_lsq(plane_equation_coefficients);
  1695. free(plane_equation_coefficients);
  1696. #else // AUTO_BED_LEVELING_GRID not defined
  1697. // Probe at 3 arbitrary points
  1698. // probe 1
  1699. float z_at_pt_1 = probe_pt(ABL_PROBE_PT_1_X, ABL_PROBE_PT_1_Y, Z_RAISE_BEFORE_PROBING);
  1700. // probe 2
  1701. float z_at_pt_2 = probe_pt(ABL_PROBE_PT_2_X, ABL_PROBE_PT_2_Y, current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS);
  1702. // probe 3
  1703. float z_at_pt_3 = probe_pt(ABL_PROBE_PT_3_X, ABL_PROBE_PT_3_Y, current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS);
  1704. clean_up_after_endstop_move();
  1705. set_bed_level_equation_3pts(z_at_pt_1, z_at_pt_2, z_at_pt_3);
  1706. #endif // AUTO_BED_LEVELING_GRID
  1707. st_synchronize();
  1708. // The following code correct the Z height difference from z-probe position and hotend tip position.
  1709. // The Z height on homing is measured by Z-Probe, but the probe is quite far from the hotend.
  1710. // When the bed is uneven, this height must be corrected.
  1711. real_z = float(st_get_position(Z_AXIS))/axis_steps_per_unit[Z_AXIS]; //get the real Z (since the auto bed leveling is already correcting the plane)
  1712. x_tmp = current_position[X_AXIS] + X_PROBE_OFFSET_FROM_EXTRUDER;
  1713. y_tmp = current_position[Y_AXIS] + Y_PROBE_OFFSET_FROM_EXTRUDER;
  1714. z_tmp = current_position[Z_AXIS];
  1715. apply_rotation_xyz(plan_bed_level_matrix, x_tmp, y_tmp, z_tmp); //Apply the correction sending the probe offset
  1716. current_position[Z_AXIS] = z_tmp - real_z + current_position[Z_AXIS]; //The difference is added to current position and sent to planner.
  1717. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1718. #ifdef Z_PROBE_SLED
  1719. dock_sled(true, -SLED_DOCKING_OFFSET); // correct for over travel.
  1720. #endif // Z_PROBE_SLED
  1721. }
  1722. break;
  1723. #ifndef Z_PROBE_SLED
  1724. case 30: // G30 Single Z Probe
  1725. {
  1726. engage_z_probe(); // Engage Z Servo endstop if available
  1727. st_synchronize();
  1728. // TODO: make sure the bed_level_rotation_matrix is identity or the planner will get set incorectly
  1729. setup_for_endstop_move();
  1730. feedrate = homing_feedrate[Z_AXIS];
  1731. run_z_probe();
  1732. SERIAL_PROTOCOLPGM(MSG_BED);
  1733. SERIAL_PROTOCOLPGM(" X: ");
  1734. SERIAL_PROTOCOL(current_position[X_AXIS]);
  1735. SERIAL_PROTOCOLPGM(" Y: ");
  1736. SERIAL_PROTOCOL(current_position[Y_AXIS]);
  1737. SERIAL_PROTOCOLPGM(" Z: ");
  1738. SERIAL_PROTOCOL(current_position[Z_AXIS]);
  1739. SERIAL_PROTOCOLPGM("\n");
  1740. clean_up_after_endstop_move();
  1741. retract_z_probe(); // Retract Z Servo endstop if available
  1742. }
  1743. break;
  1744. #else
  1745. case 31: // dock the sled
  1746. dock_sled(true);
  1747. break;
  1748. case 32: // undock the sled
  1749. dock_sled(false);
  1750. break;
  1751. #endif // Z_PROBE_SLED
  1752. #endif // ENABLE_AUTO_BED_LEVELING
  1753. case 90: // G90
  1754. relative_mode = false;
  1755. break;
  1756. case 91: // G91
  1757. relative_mode = true;
  1758. break;
  1759. case 92: // G92
  1760. if(!code_seen(axis_codes[E_AXIS]))
  1761. st_synchronize();
  1762. for(int8_t i=0; i < NUM_AXIS; i++) {
  1763. if(code_seen(axis_codes[i])) {
  1764. if(i == E_AXIS) {
  1765. current_position[i] = code_value();
  1766. plan_set_e_position(current_position[E_AXIS]);
  1767. }
  1768. else {
  1769. #ifdef SCARA
  1770. if (i == X_AXIS || i == Y_AXIS) {
  1771. current_position[i] = code_value();
  1772. }
  1773. else {
  1774. current_position[i] = code_value()+add_homing[i];
  1775. }
  1776. #else
  1777. current_position[i] = code_value()+add_homing[i];
  1778. #endif
  1779. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1780. }
  1781. }
  1782. }
  1783. break;
  1784. }
  1785. }
  1786. else if(code_seen('M'))
  1787. {
  1788. switch( (int)code_value() )
  1789. {
  1790. #ifdef ULTIPANEL
  1791. case 0: // M0 - Unconditional stop - Wait for user button press on LCD
  1792. case 1: // M1 - Conditional stop - Wait for user button press on LCD
  1793. {
  1794. char *src = strchr_pointer + 2;
  1795. codenum = 0;
  1796. bool hasP = false, hasS = false;
  1797. if (code_seen('P')) {
  1798. codenum = code_value(); // milliseconds to wait
  1799. hasP = codenum > 0;
  1800. }
  1801. if (code_seen('S')) {
  1802. codenum = code_value() * 1000; // seconds to wait
  1803. hasS = codenum > 0;
  1804. }
  1805. starpos = strchr(src, '*');
  1806. if (starpos != NULL) *(starpos) = '\0';
  1807. while (*src == ' ') ++src;
  1808. if (!hasP && !hasS && *src != '\0') {
  1809. lcd_setstatus(src);
  1810. } else {
  1811. LCD_MESSAGEPGM(MSG_USERWAIT);
  1812. }
  1813. lcd_ignore_click();
  1814. st_synchronize();
  1815. previous_millis_cmd = millis();
  1816. if (codenum > 0){
  1817. codenum += millis(); // keep track of when we started waiting
  1818. while(millis() < codenum && !lcd_clicked()){
  1819. manage_heater();
  1820. manage_inactivity();
  1821. lcd_update();
  1822. }
  1823. lcd_ignore_click(false);
  1824. }else{
  1825. if (!lcd_detected())
  1826. break;
  1827. while(!lcd_clicked()){
  1828. manage_heater();
  1829. manage_inactivity();
  1830. lcd_update();
  1831. }
  1832. }
  1833. if (IS_SD_PRINTING)
  1834. LCD_MESSAGEPGM(MSG_RESUMING);
  1835. else
  1836. LCD_MESSAGEPGM(WELCOME_MSG);
  1837. }
  1838. break;
  1839. #endif
  1840. case 17:
  1841. LCD_MESSAGEPGM(MSG_NO_MOVE);
  1842. enable_x();
  1843. enable_y();
  1844. enable_z();
  1845. enable_e0();
  1846. enable_e1();
  1847. enable_e2();
  1848. break;
  1849. #ifdef SDSUPPORT
  1850. case 20: // M20 - list SD card
  1851. SERIAL_PROTOCOLLNPGM(MSG_BEGIN_FILE_LIST);
  1852. card.ls();
  1853. SERIAL_PROTOCOLLNPGM(MSG_END_FILE_LIST);
  1854. break;
  1855. case 21: // M21 - init SD card
  1856. card.initsd();
  1857. break;
  1858. case 22: //M22 - release SD card
  1859. card.release();
  1860. break;
  1861. case 23: //M23 - Select file
  1862. starpos = (strchr(strchr_pointer + 4,'*'));
  1863. if(starpos!=NULL)
  1864. *(starpos)='\0';
  1865. card.openFile(strchr_pointer + 4,true);
  1866. break;
  1867. case 24: //M24 - Start SD print
  1868. card.startFileprint();
  1869. starttime=millis();
  1870. break;
  1871. case 25: //M25 - Pause SD print
  1872. card.pauseSDPrint();
  1873. break;
  1874. case 26: //M26 - Set SD index
  1875. if(card.cardOK && code_seen('S')) {
  1876. card.setIndex(code_value_long());
  1877. }
  1878. break;
  1879. case 27: //M27 - Get SD status
  1880. card.getStatus();
  1881. break;
  1882. case 28: //M28 - Start SD write
  1883. starpos = (strchr(strchr_pointer + 4,'*'));
  1884. if(starpos != NULL){
  1885. char* npos = strchr(cmdbuffer[bufindr], 'N');
  1886. strchr_pointer = strchr(npos,' ') + 1;
  1887. *(starpos) = '\0';
  1888. }
  1889. card.openFile(strchr_pointer+4,false);
  1890. break;
  1891. case 29: //M29 - Stop SD write
  1892. //processed in write to file routine above
  1893. //card,saving = false;
  1894. break;
  1895. case 30: //M30 <filename> Delete File
  1896. if (card.cardOK){
  1897. card.closefile();
  1898. starpos = (strchr(strchr_pointer + 4,'*'));
  1899. if(starpos != NULL){
  1900. char* npos = strchr(cmdbuffer[bufindr], 'N');
  1901. strchr_pointer = strchr(npos,' ') + 1;
  1902. *(starpos) = '\0';
  1903. }
  1904. card.removeFile(strchr_pointer + 4);
  1905. }
  1906. break;
  1907. case 32: //M32 - Select file and start SD print
  1908. {
  1909. if(card.sdprinting) {
  1910. st_synchronize();
  1911. }
  1912. starpos = (strchr(strchr_pointer + 4,'*'));
  1913. char* namestartpos = (strchr(strchr_pointer + 4,'!')); //find ! to indicate filename string start.
  1914. if(namestartpos==NULL)
  1915. {
  1916. namestartpos=strchr_pointer + 4; //default name position, 4 letters after the M
  1917. }
  1918. else
  1919. namestartpos++; //to skip the '!'
  1920. if(starpos!=NULL)
  1921. *(starpos)='\0';
  1922. bool call_procedure=(code_seen('P'));
  1923. if(strchr_pointer>namestartpos)
  1924. call_procedure=false; //false alert, 'P' found within filename
  1925. if( card.cardOK )
  1926. {
  1927. card.openFile(namestartpos,true,!call_procedure);
  1928. if(code_seen('S'))
  1929. if(strchr_pointer<namestartpos) //only if "S" is occuring _before_ the filename
  1930. card.setIndex(code_value_long());
  1931. card.startFileprint();
  1932. if(!call_procedure)
  1933. starttime=millis(); //procedure calls count as normal print time.
  1934. }
  1935. } break;
  1936. case 928: //M928 - Start SD write
  1937. starpos = (strchr(strchr_pointer + 5,'*'));
  1938. if(starpos != NULL){
  1939. char* npos = strchr(cmdbuffer[bufindr], 'N');
  1940. strchr_pointer = strchr(npos,' ') + 1;
  1941. *(starpos) = '\0';
  1942. }
  1943. card.openLogFile(strchr_pointer+5);
  1944. break;
  1945. #endif //SDSUPPORT
  1946. case 31: //M31 take time since the start of the SD print or an M109 command
  1947. {
  1948. stoptime=millis();
  1949. char time[30];
  1950. unsigned long t=(stoptime-starttime)/1000;
  1951. int sec,min;
  1952. min=t/60;
  1953. sec=t%60;
  1954. sprintf_P(time, PSTR("%i min, %i sec"), min, sec);
  1955. SERIAL_ECHO_START;
  1956. SERIAL_ECHOLN(time);
  1957. lcd_setstatus(time);
  1958. autotempShutdown();
  1959. }
  1960. break;
  1961. case 42: //M42 -Change pin status via gcode
  1962. if (code_seen('S'))
  1963. {
  1964. int pin_status = code_value();
  1965. int pin_number = LED_PIN;
  1966. if (code_seen('P') && pin_status >= 0 && pin_status <= 255)
  1967. pin_number = code_value();
  1968. for(int8_t i = 0; i < (int8_t)(sizeof(sensitive_pins)/sizeof(int)); i++)
  1969. {
  1970. if (sensitive_pins[i] == pin_number)
  1971. {
  1972. pin_number = -1;
  1973. break;
  1974. }
  1975. }
  1976. #if defined(FAN_PIN) && FAN_PIN > -1
  1977. if (pin_number == FAN_PIN)
  1978. fanSpeed = pin_status;
  1979. #endif
  1980. if (pin_number > -1)
  1981. {
  1982. pinMode(pin_number, OUTPUT);
  1983. digitalWrite(pin_number, pin_status);
  1984. analogWrite(pin_number, pin_status);
  1985. }
  1986. }
  1987. break;
  1988. // M48 Z-Probe repeatability measurement function.
  1989. //
  1990. // Usage: M48 <n #_samples> <X X_position_for_samples> <Y Y_position_for_samples> <V Verbose_Level> <Engage_probe_for_each_reading> <L legs_of_movement_prior_to_doing_probe>
  1991. //
  1992. // This function assumes the bed has been homed. Specificaly, that a G28 command
  1993. // as been issued prior to invoking the M48 Z-Probe repeatability measurement function.
  1994. // Any information generated by a prior G29 Bed leveling command will be lost and need to be
  1995. // regenerated.
  1996. //
  1997. // The number of samples will default to 10 if not specified. You can use upper or lower case
  1998. // letters for any of the options EXCEPT n. n must be in lower case because Marlin uses a capital
  1999. // N for its communication protocol and will get horribly confused if you send it a capital N.
  2000. //
  2001. #ifdef ENABLE_AUTO_BED_LEVELING
  2002. #ifdef Z_PROBE_REPEATABILITY_TEST
  2003. case 48: // M48 Z-Probe repeatability
  2004. {
  2005. #if Z_MIN_PIN == -1
  2006. #error "You must have a Z_MIN endstop in order to enable calculation of Z-Probe repeatability."
  2007. #endif
  2008. double sum=0.0;
  2009. double mean=0.0;
  2010. double sigma=0.0;
  2011. double sample_set[50];
  2012. int verbose_level=1, n=0, j, n_samples = 10, n_legs=0, engage_probe_for_each_reading=0 ;
  2013. double X_current, Y_current, Z_current;
  2014. double X_probe_location, Y_probe_location, Z_start_location, ext_position;
  2015. if (code_seen('V') || code_seen('v')) {
  2016. verbose_level = code_value();
  2017. if (verbose_level<0 || verbose_level>4 ) {
  2018. SERIAL_PROTOCOLPGM("?Verbose Level not plausable.\n");
  2019. goto Sigma_Exit;
  2020. }
  2021. }
  2022. if (verbose_level > 0) {
  2023. SERIAL_PROTOCOLPGM("M48 Z-Probe Repeatability test. Version 2.00\n");
  2024. SERIAL_PROTOCOLPGM("Full support at: http://3dprintboard.com/forum.php\n");
  2025. }
  2026. if (code_seen('n')) {
  2027. n_samples = code_value();
  2028. if (n_samples<4 || n_samples>50 ) {
  2029. SERIAL_PROTOCOLPGM("?Specified sample size not plausable.\n");
  2030. goto Sigma_Exit;
  2031. }
  2032. }
  2033. X_current = X_probe_location = st_get_position_mm(X_AXIS);
  2034. Y_current = Y_probe_location = st_get_position_mm(Y_AXIS);
  2035. Z_current = st_get_position_mm(Z_AXIS);
  2036. Z_start_location = st_get_position_mm(Z_AXIS) + Z_RAISE_BEFORE_PROBING;
  2037. ext_position = st_get_position_mm(E_AXIS);
  2038. if (code_seen('E') || code_seen('e') )
  2039. engage_probe_for_each_reading++;
  2040. if (code_seen('X') || code_seen('x') ) {
  2041. X_probe_location = code_value() - X_PROBE_OFFSET_FROM_EXTRUDER;
  2042. if (X_probe_location<X_MIN_POS || X_probe_location>X_MAX_POS ) {
  2043. SERIAL_PROTOCOLPGM("?Specified X position out of range.\n");
  2044. goto Sigma_Exit;
  2045. }
  2046. }
  2047. if (code_seen('Y') || code_seen('y') ) {
  2048. Y_probe_location = code_value() - Y_PROBE_OFFSET_FROM_EXTRUDER;
  2049. if (Y_probe_location<Y_MIN_POS || Y_probe_location>Y_MAX_POS ) {
  2050. SERIAL_PROTOCOLPGM("?Specified Y position out of range.\n");
  2051. goto Sigma_Exit;
  2052. }
  2053. }
  2054. if (code_seen('L') || code_seen('l') ) {
  2055. n_legs = code_value();
  2056. if ( n_legs==1 )
  2057. n_legs = 2;
  2058. if ( n_legs<0 || n_legs>15 ) {
  2059. SERIAL_PROTOCOLPGM("?Specified number of legs in movement not plausable.\n");
  2060. goto Sigma_Exit;
  2061. }
  2062. }
  2063. //
  2064. // Do all the preliminary setup work. First raise the probe.
  2065. //
  2066. st_synchronize();
  2067. plan_bed_level_matrix.set_to_identity();
  2068. plan_buffer_line( X_current, Y_current, Z_start_location,
  2069. ext_position,
  2070. homing_feedrate[Z_AXIS]/60,
  2071. active_extruder);
  2072. st_synchronize();
  2073. //
  2074. // Now get everything to the specified probe point So we can safely do a probe to
  2075. // get us close to the bed. If the Z-Axis is far from the bed, we don't want to
  2076. // use that as a starting point for each probe.
  2077. //
  2078. if (verbose_level > 2)
  2079. SERIAL_PROTOCOL("Positioning probe for the test.\n");
  2080. plan_buffer_line( X_probe_location, Y_probe_location, Z_start_location,
  2081. ext_position,
  2082. homing_feedrate[X_AXIS]/60,
  2083. active_extruder);
  2084. st_synchronize();
  2085. current_position[X_AXIS] = X_current = st_get_position_mm(X_AXIS);
  2086. current_position[Y_AXIS] = Y_current = st_get_position_mm(Y_AXIS);
  2087. current_position[Z_AXIS] = Z_current = st_get_position_mm(Z_AXIS);
  2088. current_position[E_AXIS] = ext_position = st_get_position_mm(E_AXIS);
  2089. //
  2090. // OK, do the inital probe to get us close to the bed.
  2091. // Then retrace the right amount and use that in subsequent probes
  2092. //
  2093. engage_z_probe();
  2094. setup_for_endstop_move();
  2095. run_z_probe();
  2096. current_position[Z_AXIS] = Z_current = st_get_position_mm(Z_AXIS);
  2097. Z_start_location = st_get_position_mm(Z_AXIS) + Z_RAISE_BEFORE_PROBING;
  2098. plan_buffer_line( X_probe_location, Y_probe_location, Z_start_location,
  2099. ext_position,
  2100. homing_feedrate[X_AXIS]/60,
  2101. active_extruder);
  2102. st_synchronize();
  2103. current_position[Z_AXIS] = Z_current = st_get_position_mm(Z_AXIS);
  2104. if (engage_probe_for_each_reading)
  2105. retract_z_probe();
  2106. for( n=0; n<n_samples; n++) {
  2107. do_blocking_move_to( X_probe_location, Y_probe_location, Z_start_location); // Make sure we are at the probe location
  2108. if ( n_legs) {
  2109. double radius=0.0, theta=0.0, x_sweep, y_sweep;
  2110. int rotational_direction, l;
  2111. rotational_direction = (unsigned long) millis() & 0x0001; // clockwise or counter clockwise
  2112. radius = (unsigned long) millis() % (long) (X_MAX_LENGTH/4); // limit how far out to go
  2113. theta = (float) ((unsigned long) millis() % (long) 360) / (360./(2*3.1415926)); // turn into radians
  2114. //SERIAL_ECHOPAIR("starting radius: ",radius);
  2115. //SERIAL_ECHOPAIR(" theta: ",theta);
  2116. //SERIAL_ECHOPAIR(" direction: ",rotational_direction);
  2117. //SERIAL_PROTOCOLLNPGM("");
  2118. for( l=0; l<n_legs-1; l++) {
  2119. if (rotational_direction==1)
  2120. theta += (float) ((unsigned long) millis() % (long) 20) / (360.0/(2*3.1415926)); // turn into radians
  2121. else
  2122. theta -= (float) ((unsigned long) millis() % (long) 20) / (360.0/(2*3.1415926)); // turn into radians
  2123. radius += (float) ( ((long) ((unsigned long) millis() % (long) 10)) - 5);
  2124. if ( radius<0.0 )
  2125. radius = -radius;
  2126. X_current = X_probe_location + cos(theta) * radius;
  2127. Y_current = Y_probe_location + sin(theta) * radius;
  2128. if ( X_current<X_MIN_POS) // Make sure our X & Y are sane
  2129. X_current = X_MIN_POS;
  2130. if ( X_current>X_MAX_POS)
  2131. X_current = X_MAX_POS;
  2132. if ( Y_current<Y_MIN_POS) // Make sure our X & Y are sane
  2133. Y_current = Y_MIN_POS;
  2134. if ( Y_current>Y_MAX_POS)
  2135. Y_current = Y_MAX_POS;
  2136. if (verbose_level>3 ) {
  2137. SERIAL_ECHOPAIR("x: ", X_current);
  2138. SERIAL_ECHOPAIR("y: ", Y_current);
  2139. SERIAL_PROTOCOLLNPGM("");
  2140. }
  2141. do_blocking_move_to( X_current, Y_current, Z_current );
  2142. }
  2143. do_blocking_move_to( X_probe_location, Y_probe_location, Z_start_location); // Go back to the probe location
  2144. }
  2145. if (engage_probe_for_each_reading) {
  2146. engage_z_probe();
  2147. delay(1000);
  2148. }
  2149. setup_for_endstop_move();
  2150. run_z_probe();
  2151. sample_set[n] = current_position[Z_AXIS];
  2152. //
  2153. // Get the current mean for the data points we have so far
  2154. //
  2155. sum=0.0;
  2156. for( j=0; j<=n; j++) {
  2157. sum = sum + sample_set[j];
  2158. }
  2159. mean = sum / (double (n+1));
  2160. //
  2161. // Now, use that mean to calculate the standard deviation for the
  2162. // data points we have so far
  2163. //
  2164. sum=0.0;
  2165. for( j=0; j<=n; j++) {
  2166. sum = sum + (sample_set[j]-mean) * (sample_set[j]-mean);
  2167. }
  2168. sigma = sqrt( sum / (double (n+1)) );
  2169. if (verbose_level > 1) {
  2170. SERIAL_PROTOCOL(n+1);
  2171. SERIAL_PROTOCOL(" of ");
  2172. SERIAL_PROTOCOL(n_samples);
  2173. SERIAL_PROTOCOLPGM(" z: ");
  2174. SERIAL_PROTOCOL_F(current_position[Z_AXIS], 6);
  2175. }
  2176. if (verbose_level > 2) {
  2177. SERIAL_PROTOCOL(" mean: ");
  2178. SERIAL_PROTOCOL_F(mean,6);
  2179. SERIAL_PROTOCOL(" sigma: ");
  2180. SERIAL_PROTOCOL_F(sigma,6);
  2181. }
  2182. if (verbose_level > 0)
  2183. SERIAL_PROTOCOLPGM("\n");
  2184. plan_buffer_line( X_probe_location, Y_probe_location, Z_start_location,
  2185. current_position[E_AXIS], homing_feedrate[Z_AXIS]/60, active_extruder);
  2186. st_synchronize();
  2187. if (engage_probe_for_each_reading) {
  2188. retract_z_probe();
  2189. delay(1000);
  2190. }
  2191. }
  2192. retract_z_probe();
  2193. delay(1000);
  2194. clean_up_after_endstop_move();
  2195. // enable_endstops(true);
  2196. if (verbose_level > 0) {
  2197. SERIAL_PROTOCOLPGM("Mean: ");
  2198. SERIAL_PROTOCOL_F(mean, 6);
  2199. SERIAL_PROTOCOLPGM("\n");
  2200. }
  2201. SERIAL_PROTOCOLPGM("Standard Deviation: ");
  2202. SERIAL_PROTOCOL_F(sigma, 6);
  2203. SERIAL_PROTOCOLPGM("\n\n");
  2204. Sigma_Exit:
  2205. break;
  2206. }
  2207. #endif // Z_PROBE_REPEATABILITY_TEST
  2208. #endif // ENABLE_AUTO_BED_LEVELING
  2209. case 104: // M104
  2210. if(setTargetedHotend(104)){
  2211. break;
  2212. }
  2213. if (code_seen('S')) setTargetHotend(code_value(), tmp_extruder);
  2214. #ifdef DUAL_X_CARRIAGE
  2215. if (dual_x_carriage_mode == DXC_DUPLICATION_MODE && tmp_extruder == 0)
  2216. setTargetHotend1(code_value() == 0.0 ? 0.0 : code_value() + duplicate_extruder_temp_offset);
  2217. #endif
  2218. setWatch();
  2219. break;
  2220. case 112: // M112 -Emergency Stop
  2221. kill();
  2222. break;
  2223. case 140: // M140 set bed temp
  2224. if (code_seen('S')) setTargetBed(code_value());
  2225. break;
  2226. case 105 : // M105
  2227. if(setTargetedHotend(105)){
  2228. break;
  2229. }
  2230. #if defined(TEMP_0_PIN) && TEMP_0_PIN > -1
  2231. SERIAL_PROTOCOLPGM("ok T:");
  2232. SERIAL_PROTOCOL_F(degHotend(tmp_extruder),1);
  2233. SERIAL_PROTOCOLPGM(" /");
  2234. SERIAL_PROTOCOL_F(degTargetHotend(tmp_extruder),1);
  2235. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  2236. SERIAL_PROTOCOLPGM(" B:");
  2237. SERIAL_PROTOCOL_F(degBed(),1);
  2238. SERIAL_PROTOCOLPGM(" /");
  2239. SERIAL_PROTOCOL_F(degTargetBed(),1);
  2240. #endif //TEMP_BED_PIN
  2241. for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) {
  2242. SERIAL_PROTOCOLPGM(" T");
  2243. SERIAL_PROTOCOL(cur_extruder);
  2244. SERIAL_PROTOCOLPGM(":");
  2245. SERIAL_PROTOCOL_F(degHotend(cur_extruder),1);
  2246. SERIAL_PROTOCOLPGM(" /");
  2247. SERIAL_PROTOCOL_F(degTargetHotend(cur_extruder),1);
  2248. }
  2249. #else
  2250. SERIAL_ERROR_START;
  2251. SERIAL_ERRORLNPGM(MSG_ERR_NO_THERMISTORS);
  2252. #endif
  2253. SERIAL_PROTOCOLPGM(" @:");
  2254. #ifdef EXTRUDER_WATTS
  2255. SERIAL_PROTOCOL((EXTRUDER_WATTS * getHeaterPower(tmp_extruder))/127);
  2256. SERIAL_PROTOCOLPGM("W");
  2257. #else
  2258. SERIAL_PROTOCOL(getHeaterPower(tmp_extruder));
  2259. #endif
  2260. SERIAL_PROTOCOLPGM(" B@:");
  2261. #ifdef BED_WATTS
  2262. SERIAL_PROTOCOL((BED_WATTS * getHeaterPower(-1))/127);
  2263. SERIAL_PROTOCOLPGM("W");
  2264. #else
  2265. SERIAL_PROTOCOL(getHeaterPower(-1));
  2266. #endif
  2267. #ifdef SHOW_TEMP_ADC_VALUES
  2268. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  2269. SERIAL_PROTOCOLPGM(" ADC B:");
  2270. SERIAL_PROTOCOL_F(degBed(),1);
  2271. SERIAL_PROTOCOLPGM("C->");
  2272. SERIAL_PROTOCOL_F(rawBedTemp()/OVERSAMPLENR,0);
  2273. #endif
  2274. for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) {
  2275. SERIAL_PROTOCOLPGM(" T");
  2276. SERIAL_PROTOCOL(cur_extruder);
  2277. SERIAL_PROTOCOLPGM(":");
  2278. SERIAL_PROTOCOL_F(degHotend(cur_extruder),1);
  2279. SERIAL_PROTOCOLPGM("C->");
  2280. SERIAL_PROTOCOL_F(rawHotendTemp(cur_extruder)/OVERSAMPLENR,0);
  2281. }
  2282. #endif
  2283. SERIAL_PROTOCOLLN("");
  2284. return;
  2285. break;
  2286. case 109:
  2287. {// M109 - Wait for extruder heater to reach target.
  2288. if(setTargetedHotend(109)){
  2289. break;
  2290. }
  2291. LCD_MESSAGEPGM(MSG_HEATING);
  2292. #ifdef AUTOTEMP
  2293. autotemp_enabled=false;
  2294. #endif
  2295. if (code_seen('S')) {
  2296. setTargetHotend(code_value(), tmp_extruder);
  2297. #ifdef DUAL_X_CARRIAGE
  2298. if (dual_x_carriage_mode == DXC_DUPLICATION_MODE && tmp_extruder == 0)
  2299. setTargetHotend1(code_value() == 0.0 ? 0.0 : code_value() + duplicate_extruder_temp_offset);
  2300. #endif
  2301. CooldownNoWait = true;
  2302. } else if (code_seen('R')) {
  2303. setTargetHotend(code_value(), tmp_extruder);
  2304. #ifdef DUAL_X_CARRIAGE
  2305. if (dual_x_carriage_mode == DXC_DUPLICATION_MODE && tmp_extruder == 0)
  2306. setTargetHotend1(code_value() == 0.0 ? 0.0 : code_value() + duplicate_extruder_temp_offset);
  2307. #endif
  2308. CooldownNoWait = false;
  2309. }
  2310. #ifdef AUTOTEMP
  2311. if (code_seen('S')) autotemp_min=code_value();
  2312. if (code_seen('B')) autotemp_max=code_value();
  2313. if (code_seen('F'))
  2314. {
  2315. autotemp_factor=code_value();
  2316. autotemp_enabled=true;
  2317. }
  2318. #endif
  2319. setWatch();
  2320. codenum = millis();
  2321. /* See if we are heating up or cooling down */
  2322. target_direction = isHeatingHotend(tmp_extruder); // true if heating, false if cooling
  2323. cancel_heatup = false;
  2324. #ifdef TEMP_RESIDENCY_TIME
  2325. long residencyStart;
  2326. residencyStart = -1;
  2327. /* continue to loop until we have reached the target temp
  2328. _and_ until TEMP_RESIDENCY_TIME hasn't passed since we reached it */
  2329. while((!cancel_heatup)&&((residencyStart == -1) ||
  2330. (residencyStart >= 0 && (((unsigned int) (millis() - residencyStart)) < (TEMP_RESIDENCY_TIME * 1000UL)))) ) {
  2331. #else
  2332. while ( target_direction ? (isHeatingHotend(tmp_extruder)) : (isCoolingHotend(tmp_extruder)&&(CooldownNoWait==false)) ) {
  2333. #endif //TEMP_RESIDENCY_TIME
  2334. if( (millis() - codenum) > 1000UL )
  2335. { //Print Temp Reading and remaining time every 1 second while heating up/cooling down
  2336. SERIAL_PROTOCOLPGM("T:");
  2337. SERIAL_PROTOCOL_F(degHotend(tmp_extruder),1);
  2338. SERIAL_PROTOCOLPGM(" E:");
  2339. SERIAL_PROTOCOL((int)tmp_extruder);
  2340. #ifdef TEMP_RESIDENCY_TIME
  2341. SERIAL_PROTOCOLPGM(" W:");
  2342. if(residencyStart > -1)
  2343. {
  2344. codenum = ((TEMP_RESIDENCY_TIME * 1000UL) - (millis() - residencyStart)) / 1000UL;
  2345. SERIAL_PROTOCOLLN( codenum );
  2346. }
  2347. else
  2348. {
  2349. SERIAL_PROTOCOLLN( "?" );
  2350. }
  2351. #else
  2352. SERIAL_PROTOCOLLN("");
  2353. #endif
  2354. codenum = millis();
  2355. }
  2356. manage_heater();
  2357. manage_inactivity();
  2358. lcd_update();
  2359. #ifdef TEMP_RESIDENCY_TIME
  2360. /* start/restart the TEMP_RESIDENCY_TIME timer whenever we reach target temp for the first time
  2361. or when current temp falls outside the hysteresis after target temp was reached */
  2362. if ((residencyStart == -1 && target_direction && (degHotend(tmp_extruder) >= (degTargetHotend(tmp_extruder)-TEMP_WINDOW))) ||
  2363. (residencyStart == -1 && !target_direction && (degHotend(tmp_extruder) <= (degTargetHotend(tmp_extruder)+TEMP_WINDOW))) ||
  2364. (residencyStart > -1 && labs(degHotend(tmp_extruder) - degTargetHotend(tmp_extruder)) > TEMP_HYSTERESIS) )
  2365. {
  2366. residencyStart = millis();
  2367. }
  2368. #endif //TEMP_RESIDENCY_TIME
  2369. }
  2370. LCD_MESSAGEPGM(MSG_HEATING_COMPLETE);
  2371. if(IS_SD_PRINTING){
  2372. lcd_setstatus("SD-PRINTING ");
  2373. }
  2374. starttime=millis();
  2375. previous_millis_cmd = millis();
  2376. }
  2377. break;
  2378. case 190: // M190 - Wait for bed heater to reach target.
  2379. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  2380. LCD_MESSAGEPGM(MSG_BED_HEATING);
  2381. if (code_seen('S')) {
  2382. setTargetBed(code_value());
  2383. CooldownNoWait = true;
  2384. } else if (code_seen('R')) {
  2385. setTargetBed(code_value());
  2386. CooldownNoWait = false;
  2387. }
  2388. codenum = millis();
  2389. cancel_heatup = false;
  2390. target_direction = isHeatingBed(); // true if heating, false if cooling
  2391. while ( (target_direction)&&(!cancel_heatup) ? (isHeatingBed()) : (isCoolingBed()&&(CooldownNoWait==false)) )
  2392. {
  2393. if(( millis() - codenum) > 1000 ) //Print Temp Reading every 1 second while heating up.
  2394. {
  2395. float tt=degHotend(active_extruder);
  2396. SERIAL_PROTOCOLPGM("T:");
  2397. SERIAL_PROTOCOL(tt);
  2398. SERIAL_PROTOCOLPGM(" E:");
  2399. SERIAL_PROTOCOL((int)active_extruder);
  2400. SERIAL_PROTOCOLPGM(" B:");
  2401. SERIAL_PROTOCOL_F(degBed(),1);
  2402. SERIAL_PROTOCOLLN("");
  2403. codenum = millis();
  2404. }
  2405. manage_heater();
  2406. manage_inactivity();
  2407. lcd_update();
  2408. }
  2409. LCD_MESSAGEPGM(MSG_BED_DONE);
  2410. if(IS_SD_PRINTING){
  2411. lcd_setstatus("SD-PRINTING ");
  2412. }
  2413. previous_millis_cmd = millis();
  2414. #endif
  2415. break;
  2416. #if defined(FAN_PIN) && FAN_PIN > -1
  2417. case 106: //M106 Fan On
  2418. if (code_seen('S')){
  2419. fanSpeed=constrain(code_value(),0,255);
  2420. }
  2421. else {
  2422. fanSpeed=255;
  2423. }
  2424. break;
  2425. case 107: //M107 Fan Off
  2426. fanSpeed = 0;
  2427. break;
  2428. #endif //FAN_PIN
  2429. #ifdef BARICUDA
  2430. // PWM for HEATER_1_PIN
  2431. #if defined(HEATER_1_PIN) && HEATER_1_PIN > -1
  2432. case 126: //M126 valve open
  2433. if (code_seen('S')){
  2434. ValvePressure=constrain(code_value(),0,255);
  2435. }
  2436. else {
  2437. ValvePressure=255;
  2438. }
  2439. break;
  2440. case 127: //M127 valve closed
  2441. ValvePressure = 0;
  2442. break;
  2443. #endif //HEATER_1_PIN
  2444. // PWM for HEATER_2_PIN
  2445. #if defined(HEATER_2_PIN) && HEATER_2_PIN > -1
  2446. case 128: //M128 valve open
  2447. if (code_seen('S')){
  2448. EtoPPressure=constrain(code_value(),0,255);
  2449. }
  2450. else {
  2451. EtoPPressure=255;
  2452. }
  2453. break;
  2454. case 129: //M129 valve closed
  2455. EtoPPressure = 0;
  2456. break;
  2457. #endif //HEATER_2_PIN
  2458. #endif
  2459. #if defined(PS_ON_PIN) && PS_ON_PIN > -1
  2460. case 80: // M80 - Turn on Power Supply
  2461. SET_OUTPUT(PS_ON_PIN); //GND
  2462. WRITE(PS_ON_PIN, PS_ON_AWAKE);
  2463. // If you have a switch on suicide pin, this is useful
  2464. // if you want to start another print with suicide feature after
  2465. // a print without suicide...
  2466. #if defined SUICIDE_PIN && SUICIDE_PIN > -1
  2467. SET_OUTPUT(SUICIDE_PIN);
  2468. WRITE(SUICIDE_PIN, HIGH);
  2469. #endif
  2470. #ifdef ULTIPANEL
  2471. powersupply = true;
  2472. LCD_MESSAGEPGM(WELCOME_MSG);
  2473. lcd_update();
  2474. #endif
  2475. break;
  2476. #endif
  2477. case 81: // M81 - Turn off Power Supply
  2478. disable_heater();
  2479. st_synchronize();
  2480. disable_e0();
  2481. disable_e1();
  2482. disable_e2();
  2483. finishAndDisableSteppers();
  2484. fanSpeed = 0;
  2485. delay(1000); // Wait a little before to switch off
  2486. #if defined(SUICIDE_PIN) && SUICIDE_PIN > -1
  2487. st_synchronize();
  2488. suicide();
  2489. #elif defined(PS_ON_PIN) && PS_ON_PIN > -1
  2490. SET_OUTPUT(PS_ON_PIN);
  2491. WRITE(PS_ON_PIN, PS_ON_ASLEEP);
  2492. #endif
  2493. #ifdef ULTIPANEL
  2494. powersupply = false;
  2495. LCD_MESSAGEPGM(MACHINE_NAME" "MSG_OFF".");
  2496. lcd_update();
  2497. #endif
  2498. break;
  2499. case 82:
  2500. axis_relative_modes[3] = false;
  2501. break;
  2502. case 83:
  2503. axis_relative_modes[3] = true;
  2504. break;
  2505. case 18: //compatibility
  2506. case 84: // M84
  2507. if(code_seen('S')){
  2508. stepper_inactive_time = code_value() * 1000;
  2509. }
  2510. else
  2511. {
  2512. bool all_axis = !((code_seen(axis_codes[X_AXIS])) || (code_seen(axis_codes[Y_AXIS])) || (code_seen(axis_codes[Z_AXIS]))|| (code_seen(axis_codes[E_AXIS])));
  2513. if(all_axis)
  2514. {
  2515. st_synchronize();
  2516. disable_e0();
  2517. disable_e1();
  2518. disable_e2();
  2519. finishAndDisableSteppers();
  2520. }
  2521. else
  2522. {
  2523. st_synchronize();
  2524. if(code_seen('X')) disable_x();
  2525. if(code_seen('Y')) disable_y();
  2526. if(code_seen('Z')) disable_z();
  2527. #if ((E0_ENABLE_PIN != X_ENABLE_PIN) && (E1_ENABLE_PIN != Y_ENABLE_PIN)) // Only enable on boards that have seperate ENABLE_PINS
  2528. if(code_seen('E')) {
  2529. disable_e0();
  2530. disable_e1();
  2531. disable_e2();
  2532. }
  2533. #endif
  2534. }
  2535. }
  2536. break;
  2537. case 85: // M85
  2538. if(code_seen('S')) {
  2539. max_inactive_time = code_value() * 1000;
  2540. }
  2541. break;
  2542. case 92: // M92
  2543. for(int8_t i=0; i < NUM_AXIS; i++)
  2544. {
  2545. if(code_seen(axis_codes[i]))
  2546. {
  2547. if(i == 3) { // E
  2548. float value = code_value();
  2549. if(value < 20.0) {
  2550. float factor = axis_steps_per_unit[i] / value; // increase e constants if M92 E14 is given for netfab.
  2551. max_e_jerk *= factor;
  2552. max_feedrate[i] *= factor;
  2553. axis_steps_per_sqr_second[i] *= factor;
  2554. }
  2555. axis_steps_per_unit[i] = value;
  2556. }
  2557. else {
  2558. axis_steps_per_unit[i] = code_value();
  2559. }
  2560. }
  2561. }
  2562. break;
  2563. case 115: // M115
  2564. SERIAL_PROTOCOLPGM(MSG_M115_REPORT);
  2565. break;
  2566. case 117: // M117 display message
  2567. starpos = (strchr(strchr_pointer + 5,'*'));
  2568. if(starpos!=NULL)
  2569. *(starpos)='\0';
  2570. lcd_setstatus(strchr_pointer + 5);
  2571. break;
  2572. case 114: // M114
  2573. SERIAL_PROTOCOLPGM("X:");
  2574. SERIAL_PROTOCOL(current_position[X_AXIS]);
  2575. SERIAL_PROTOCOLPGM(" Y:");
  2576. SERIAL_PROTOCOL(current_position[Y_AXIS]);
  2577. SERIAL_PROTOCOLPGM(" Z:");
  2578. SERIAL_PROTOCOL(current_position[Z_AXIS]);
  2579. SERIAL_PROTOCOLPGM(" E:");
  2580. SERIAL_PROTOCOL(current_position[E_AXIS]);
  2581. SERIAL_PROTOCOLPGM(MSG_COUNT_X);
  2582. SERIAL_PROTOCOL(float(st_get_position(X_AXIS))/axis_steps_per_unit[X_AXIS]);
  2583. SERIAL_PROTOCOLPGM(" Y:");
  2584. SERIAL_PROTOCOL(float(st_get_position(Y_AXIS))/axis_steps_per_unit[Y_AXIS]);
  2585. SERIAL_PROTOCOLPGM(" Z:");
  2586. SERIAL_PROTOCOL(float(st_get_position(Z_AXIS))/axis_steps_per_unit[Z_AXIS]);
  2587. SERIAL_PROTOCOLLN("");
  2588. #ifdef SCARA
  2589. SERIAL_PROTOCOLPGM("SCARA Theta:");
  2590. SERIAL_PROTOCOL(delta[X_AXIS]);
  2591. SERIAL_PROTOCOLPGM(" Psi+Theta:");
  2592. SERIAL_PROTOCOL(delta[Y_AXIS]);
  2593. SERIAL_PROTOCOLLN("");
  2594. SERIAL_PROTOCOLPGM("SCARA Cal - Theta:");
  2595. SERIAL_PROTOCOL(delta[X_AXIS]+add_homing[X_AXIS]);
  2596. SERIAL_PROTOCOLPGM(" Psi+Theta (90):");
  2597. SERIAL_PROTOCOL(delta[Y_AXIS]-delta[X_AXIS]-90+add_homing[Y_AXIS]);
  2598. SERIAL_PROTOCOLLN("");
  2599. SERIAL_PROTOCOLPGM("SCARA step Cal - Theta:");
  2600. SERIAL_PROTOCOL(delta[X_AXIS]/90*axis_steps_per_unit[X_AXIS]);
  2601. SERIAL_PROTOCOLPGM(" Psi+Theta:");
  2602. SERIAL_PROTOCOL((delta[Y_AXIS]-delta[X_AXIS])/90*axis_steps_per_unit[Y_AXIS]);
  2603. SERIAL_PROTOCOLLN("");
  2604. SERIAL_PROTOCOLLN("");
  2605. #endif
  2606. break;
  2607. case 120: // M120
  2608. enable_endstops(false) ;
  2609. break;
  2610. case 121: // M121
  2611. enable_endstops(true) ;
  2612. break;
  2613. case 119: // M119
  2614. SERIAL_PROTOCOLLN(MSG_M119_REPORT);
  2615. #if defined(X_MIN_PIN) && X_MIN_PIN > -1
  2616. SERIAL_PROTOCOLPGM(MSG_X_MIN);
  2617. SERIAL_PROTOCOLLN(((READ(X_MIN_PIN)^X_MIN_ENDSTOP_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN));
  2618. #endif
  2619. #if defined(X_MAX_PIN) && X_MAX_PIN > -1
  2620. SERIAL_PROTOCOLPGM(MSG_X_MAX);
  2621. SERIAL_PROTOCOLLN(((READ(X_MAX_PIN)^X_MAX_ENDSTOP_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN));
  2622. #endif
  2623. #if defined(Y_MIN_PIN) && Y_MIN_PIN > -1
  2624. SERIAL_PROTOCOLPGM(MSG_Y_MIN);
  2625. SERIAL_PROTOCOLLN(((READ(Y_MIN_PIN)^Y_MIN_ENDSTOP_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN));
  2626. #endif
  2627. #if defined(Y_MAX_PIN) && Y_MAX_PIN > -1
  2628. SERIAL_PROTOCOLPGM(MSG_Y_MAX);
  2629. SERIAL_PROTOCOLLN(((READ(Y_MAX_PIN)^Y_MAX_ENDSTOP_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN));
  2630. #endif
  2631. #if defined(Z_MIN_PIN) && Z_MIN_PIN > -1
  2632. SERIAL_PROTOCOLPGM(MSG_Z_MIN);
  2633. SERIAL_PROTOCOLLN(((READ(Z_MIN_PIN)^Z_MIN_ENDSTOP_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN));
  2634. #endif
  2635. #if defined(Z_MAX_PIN) && Z_MAX_PIN > -1
  2636. SERIAL_PROTOCOLPGM(MSG_Z_MAX);
  2637. SERIAL_PROTOCOLLN(((READ(Z_MAX_PIN)^Z_MAX_ENDSTOP_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN));
  2638. #endif
  2639. break;
  2640. //TODO: update for all axis, use for loop
  2641. #ifdef BLINKM
  2642. case 150: // M150
  2643. {
  2644. byte red;
  2645. byte grn;
  2646. byte blu;
  2647. if(code_seen('R')) red = code_value();
  2648. if(code_seen('U')) grn = code_value();
  2649. if(code_seen('B')) blu = code_value();
  2650. SendColors(red,grn,blu);
  2651. }
  2652. break;
  2653. #endif //BLINKM
  2654. case 200: // M200 D<millimeters> set filament diameter and set E axis units to cubic millimeters (use S0 to set back to millimeters).
  2655. {
  2656. tmp_extruder = active_extruder;
  2657. if(code_seen('T')) {
  2658. tmp_extruder = code_value();
  2659. if(tmp_extruder >= EXTRUDERS) {
  2660. SERIAL_ECHO_START;
  2661. SERIAL_ECHO(MSG_M200_INVALID_EXTRUDER);
  2662. break;
  2663. }
  2664. }
  2665. float area = .0;
  2666. if(code_seen('D')) {
  2667. float diameter = (float)code_value();
  2668. if (diameter == 0.0) {
  2669. // setting any extruder filament size disables volumetric on the assumption that
  2670. // slicers either generate in extruder values as cubic mm or as as filament feeds
  2671. // for all extruders
  2672. volumetric_enabled = false;
  2673. } else {
  2674. filament_size[tmp_extruder] = (float)code_value();
  2675. // make sure all extruders have some sane value for the filament size
  2676. filament_size[0] = (filament_size[0] == 0.0 ? DEFAULT_NOMINAL_FILAMENT_DIA : filament_size[0]);
  2677. #if EXTRUDERS > 1
  2678. filament_size[1] = (filament_size[1] == 0.0 ? DEFAULT_NOMINAL_FILAMENT_DIA : filament_size[1]);
  2679. #if EXTRUDERS > 2
  2680. filament_size[2] = (filament_size[2] == 0.0 ? DEFAULT_NOMINAL_FILAMENT_DIA : filament_size[2]);
  2681. #endif
  2682. #endif
  2683. volumetric_enabled = true;
  2684. }
  2685. } else {
  2686. //reserved for setting filament diameter via UFID or filament measuring device
  2687. break;
  2688. }
  2689. calculate_volumetric_multipliers();
  2690. }
  2691. break;
  2692. case 201: // M201
  2693. for(int8_t i=0; i < NUM_AXIS; i++)
  2694. {
  2695. if(code_seen(axis_codes[i]))
  2696. {
  2697. max_acceleration_units_per_sq_second[i] = code_value();
  2698. }
  2699. }
  2700. // steps per sq second need to be updated to agree with the units per sq second (as they are what is used in the planner)
  2701. reset_acceleration_rates();
  2702. break;
  2703. #if 0 // Not used for Sprinter/grbl gen6
  2704. case 202: // M202
  2705. for(int8_t i=0; i < NUM_AXIS; i++) {
  2706. if(code_seen(axis_codes[i])) axis_travel_steps_per_sqr_second[i] = code_value() * axis_steps_per_unit[i];
  2707. }
  2708. break;
  2709. #endif
  2710. case 203: // M203 max feedrate mm/sec
  2711. for(int8_t i=0; i < NUM_AXIS; i++) {
  2712. if(code_seen(axis_codes[i])) max_feedrate[i] = code_value();
  2713. }
  2714. break;
  2715. case 204: // M204 acclereration S normal moves T filmanent only moves
  2716. {
  2717. if(code_seen('S')) acceleration = code_value() ;
  2718. if(code_seen('T')) retract_acceleration = code_value() ;
  2719. }
  2720. break;
  2721. case 205: //M205 advanced settings: minimum travel speed S=while printing T=travel only, B=minimum segment time X= maximum xy jerk, Z=maximum Z jerk
  2722. {
  2723. if(code_seen('S')) minimumfeedrate = code_value();
  2724. if(code_seen('T')) mintravelfeedrate = code_value();
  2725. if(code_seen('B')) minsegmenttime = code_value() ;
  2726. if(code_seen('X')) max_xy_jerk = code_value() ;
  2727. if(code_seen('Z')) max_z_jerk = code_value() ;
  2728. if(code_seen('E')) max_e_jerk = code_value() ;
  2729. }
  2730. break;
  2731. case 206: // M206 additional homing offset
  2732. for(int8_t i=0; i < 3; i++)
  2733. {
  2734. if(code_seen(axis_codes[i])) add_homing[i] = code_value();
  2735. }
  2736. #ifdef SCARA
  2737. if(code_seen('T')) // Theta
  2738. {
  2739. add_homing[X_AXIS] = code_value() ;
  2740. }
  2741. if(code_seen('P')) // Psi
  2742. {
  2743. add_homing[Y_AXIS] = code_value() ;
  2744. }
  2745. #endif
  2746. break;
  2747. #ifdef DELTA
  2748. case 665: // M665 set delta configurations L<diagonal_rod> R<delta_radius> S<segments_per_sec>
  2749. if(code_seen('L')) {
  2750. delta_diagonal_rod= code_value();
  2751. }
  2752. if(code_seen('R')) {
  2753. delta_radius= code_value();
  2754. }
  2755. if(code_seen('S')) {
  2756. delta_segments_per_second= code_value();
  2757. }
  2758. recalc_delta_settings(delta_radius, delta_diagonal_rod);
  2759. break;
  2760. case 666: // M666 set delta endstop adjustemnt
  2761. for(int8_t i=0; i < 3; i++)
  2762. {
  2763. if(code_seen(axis_codes[i])) endstop_adj[i] = code_value();
  2764. }
  2765. break;
  2766. #endif
  2767. #ifdef FWRETRACT
  2768. case 207: //M207 - set retract length S[positive mm] F[feedrate mm/min] Z[additional zlift/hop]
  2769. {
  2770. if(code_seen('S'))
  2771. {
  2772. retract_length = code_value() ;
  2773. }
  2774. if(code_seen('F'))
  2775. {
  2776. retract_feedrate = code_value()/60 ;
  2777. }
  2778. if(code_seen('Z'))
  2779. {
  2780. retract_zlift = code_value() ;
  2781. }
  2782. }break;
  2783. case 208: // M208 - set retract recover length S[positive mm surplus to the M207 S*] F[feedrate mm/min]
  2784. {
  2785. if(code_seen('S'))
  2786. {
  2787. retract_recover_length = code_value() ;
  2788. }
  2789. if(code_seen('F'))
  2790. {
  2791. retract_recover_feedrate = code_value()/60 ;
  2792. }
  2793. }break;
  2794. case 209: // M209 - S<1=true/0=false> enable automatic retract detect if the slicer did not support G10/11: every normal extrude-only move will be classified as retract depending on the direction.
  2795. {
  2796. if(code_seen('S'))
  2797. {
  2798. int t= code_value() ;
  2799. switch(t)
  2800. {
  2801. case 0:
  2802. {
  2803. autoretract_enabled=false;
  2804. retracted[0]=false;
  2805. #if EXTRUDERS > 1
  2806. retracted[1]=false;
  2807. #endif
  2808. #if EXTRUDERS > 2
  2809. retracted[2]=false;
  2810. #endif
  2811. }break;
  2812. case 1:
  2813. {
  2814. autoretract_enabled=true;
  2815. retracted[0]=false;
  2816. #if EXTRUDERS > 1
  2817. retracted[1]=false;
  2818. #endif
  2819. #if EXTRUDERS > 2
  2820. retracted[2]=false;
  2821. #endif
  2822. }break;
  2823. default:
  2824. SERIAL_ECHO_START;
  2825. SERIAL_ECHOPGM(MSG_UNKNOWN_COMMAND);
  2826. SERIAL_ECHO(cmdbuffer[bufindr]);
  2827. SERIAL_ECHOLNPGM("\"");
  2828. }
  2829. }
  2830. }break;
  2831. #endif // FWRETRACT
  2832. #if EXTRUDERS > 1
  2833. case 218: // M218 - set hotend offset (in mm), T<extruder_number> X<offset_on_X> Y<offset_on_Y>
  2834. {
  2835. if(setTargetedHotend(218)){
  2836. break;
  2837. }
  2838. if(code_seen('X'))
  2839. {
  2840. extruder_offset[X_AXIS][tmp_extruder] = code_value();
  2841. }
  2842. if(code_seen('Y'))
  2843. {
  2844. extruder_offset[Y_AXIS][tmp_extruder] = code_value();
  2845. }
  2846. #ifdef DUAL_X_CARRIAGE
  2847. if(code_seen('Z'))
  2848. {
  2849. extruder_offset[Z_AXIS][tmp_extruder] = code_value();
  2850. }
  2851. #endif
  2852. SERIAL_ECHO_START;
  2853. SERIAL_ECHOPGM(MSG_HOTEND_OFFSET);
  2854. for(tmp_extruder = 0; tmp_extruder < EXTRUDERS; tmp_extruder++)
  2855. {
  2856. SERIAL_ECHO(" ");
  2857. SERIAL_ECHO(extruder_offset[X_AXIS][tmp_extruder]);
  2858. SERIAL_ECHO(",");
  2859. SERIAL_ECHO(extruder_offset[Y_AXIS][tmp_extruder]);
  2860. #ifdef DUAL_X_CARRIAGE
  2861. SERIAL_ECHO(",");
  2862. SERIAL_ECHO(extruder_offset[Z_AXIS][tmp_extruder]);
  2863. #endif
  2864. }
  2865. SERIAL_ECHOLN("");
  2866. }break;
  2867. #endif
  2868. case 220: // M220 S<factor in percent>- set speed factor override percentage
  2869. {
  2870. if(code_seen('S'))
  2871. {
  2872. feedmultiply = code_value() ;
  2873. }
  2874. }
  2875. break;
  2876. case 221: // M221 S<factor in percent>- set extrude factor override percentage
  2877. {
  2878. if(code_seen('S'))
  2879. {
  2880. int tmp_code = code_value();
  2881. if (code_seen('T'))
  2882. {
  2883. if(setTargetedHotend(221)){
  2884. break;
  2885. }
  2886. extruder_multiply[tmp_extruder] = tmp_code;
  2887. }
  2888. else
  2889. {
  2890. extrudemultiply = tmp_code ;
  2891. }
  2892. }
  2893. }
  2894. break;
  2895. case 226: // M226 P<pin number> S<pin state>- Wait until the specified pin reaches the state required
  2896. {
  2897. if(code_seen('P')){
  2898. int pin_number = code_value(); // pin number
  2899. int pin_state = -1; // required pin state - default is inverted
  2900. if(code_seen('S')) pin_state = code_value(); // required pin state
  2901. if(pin_state >= -1 && pin_state <= 1){
  2902. for(int8_t i = 0; i < (int8_t)(sizeof(sensitive_pins)/sizeof(int)); i++)
  2903. {
  2904. if (sensitive_pins[i] == pin_number)
  2905. {
  2906. pin_number = -1;
  2907. break;
  2908. }
  2909. }
  2910. if (pin_number > -1)
  2911. {
  2912. int target = LOW;
  2913. st_synchronize();
  2914. pinMode(pin_number, INPUT);
  2915. switch(pin_state){
  2916. case 1:
  2917. target = HIGH;
  2918. break;
  2919. case 0:
  2920. target = LOW;
  2921. break;
  2922. case -1:
  2923. target = !digitalRead(pin_number);
  2924. break;
  2925. }
  2926. while(digitalRead(pin_number) != target){
  2927. manage_heater();
  2928. manage_inactivity();
  2929. lcd_update();
  2930. }
  2931. }
  2932. }
  2933. }
  2934. }
  2935. break;
  2936. #if NUM_SERVOS > 0
  2937. case 280: // M280 - set servo position absolute. P: servo index, S: angle or microseconds
  2938. {
  2939. int servo_index = -1;
  2940. int servo_position = 0;
  2941. if (code_seen('P'))
  2942. servo_index = code_value();
  2943. if (code_seen('S')) {
  2944. servo_position = code_value();
  2945. if ((servo_index >= 0) && (servo_index < NUM_SERVOS)) {
  2946. #if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
  2947. servos[servo_index].attach(0);
  2948. #endif
  2949. servos[servo_index].write(servo_position);
  2950. #if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
  2951. delay(PROBE_SERVO_DEACTIVATION_DELAY);
  2952. servos[servo_index].detach();
  2953. #endif
  2954. }
  2955. else {
  2956. SERIAL_ECHO_START;
  2957. SERIAL_ECHO("Servo ");
  2958. SERIAL_ECHO(servo_index);
  2959. SERIAL_ECHOLN(" out of range");
  2960. }
  2961. }
  2962. else if (servo_index >= 0) {
  2963. SERIAL_PROTOCOL(MSG_OK);
  2964. SERIAL_PROTOCOL(" Servo ");
  2965. SERIAL_PROTOCOL(servo_index);
  2966. SERIAL_PROTOCOL(": ");
  2967. SERIAL_PROTOCOL(servos[servo_index].read());
  2968. SERIAL_PROTOCOLLN("");
  2969. }
  2970. }
  2971. break;
  2972. #endif // NUM_SERVOS > 0
  2973. #if (LARGE_FLASH == true && ( BEEPER > 0 || defined(ULTRALCD) || defined(LCD_USE_I2C_BUZZER)))
  2974. case 300: // M300
  2975. {
  2976. int beepS = code_seen('S') ? code_value() : 110;
  2977. int beepP = code_seen('P') ? code_value() : 1000;
  2978. if (beepS > 0)
  2979. {
  2980. #if BEEPER > 0
  2981. tone(BEEPER, beepS);
  2982. delay(beepP);
  2983. noTone(BEEPER);
  2984. #elif defined(ULTRALCD)
  2985. lcd_buzz(beepS, beepP);
  2986. #elif defined(LCD_USE_I2C_BUZZER)
  2987. lcd_buzz(beepP, beepS);
  2988. #endif
  2989. }
  2990. else
  2991. {
  2992. delay(beepP);
  2993. }
  2994. }
  2995. break;
  2996. #endif // M300
  2997. #ifdef PIDTEMP
  2998. case 301: // M301
  2999. {
  3000. if(code_seen('P')) Kp = code_value();
  3001. if(code_seen('I')) Ki = scalePID_i(code_value());
  3002. if(code_seen('D')) Kd = scalePID_d(code_value());
  3003. #ifdef PID_ADD_EXTRUSION_RATE
  3004. if(code_seen('C')) Kc = code_value();
  3005. #endif
  3006. updatePID();
  3007. SERIAL_PROTOCOL(MSG_OK);
  3008. SERIAL_PROTOCOL(" p:");
  3009. SERIAL_PROTOCOL(Kp);
  3010. SERIAL_PROTOCOL(" i:");
  3011. SERIAL_PROTOCOL(unscalePID_i(Ki));
  3012. SERIAL_PROTOCOL(" d:");
  3013. SERIAL_PROTOCOL(unscalePID_d(Kd));
  3014. #ifdef PID_ADD_EXTRUSION_RATE
  3015. SERIAL_PROTOCOL(" c:");
  3016. //Kc does not have scaling applied above, or in resetting defaults
  3017. SERIAL_PROTOCOL(Kc);
  3018. #endif
  3019. SERIAL_PROTOCOLLN("");
  3020. }
  3021. break;
  3022. #endif //PIDTEMP
  3023. #ifdef PIDTEMPBED
  3024. case 304: // M304
  3025. {
  3026. if(code_seen('P')) bedKp = code_value();
  3027. if(code_seen('I')) bedKi = scalePID_i(code_value());
  3028. if(code_seen('D')) bedKd = scalePID_d(code_value());
  3029. updatePID();
  3030. SERIAL_PROTOCOL(MSG_OK);
  3031. SERIAL_PROTOCOL(" p:");
  3032. SERIAL_PROTOCOL(bedKp);
  3033. SERIAL_PROTOCOL(" i:");
  3034. SERIAL_PROTOCOL(unscalePID_i(bedKi));
  3035. SERIAL_PROTOCOL(" d:");
  3036. SERIAL_PROTOCOL(unscalePID_d(bedKd));
  3037. SERIAL_PROTOCOLLN("");
  3038. }
  3039. break;
  3040. #endif //PIDTEMP
  3041. case 240: // M240 Triggers a camera by emulating a Canon RC-1 : http://www.doc-diy.net/photo/rc-1_hacked/
  3042. {
  3043. #ifdef CHDK
  3044. SET_OUTPUT(CHDK);
  3045. WRITE(CHDK, HIGH);
  3046. chdkHigh = millis();
  3047. chdkActive = true;
  3048. #else
  3049. #if defined(PHOTOGRAPH_PIN) && PHOTOGRAPH_PIN > -1
  3050. const uint8_t NUM_PULSES=16;
  3051. const float PULSE_LENGTH=0.01524;
  3052. for(int i=0; i < NUM_PULSES; i++) {
  3053. WRITE(PHOTOGRAPH_PIN, HIGH);
  3054. _delay_ms(PULSE_LENGTH);
  3055. WRITE(PHOTOGRAPH_PIN, LOW);
  3056. _delay_ms(PULSE_LENGTH);
  3057. }
  3058. delay(7.33);
  3059. for(int i=0; i < NUM_PULSES; i++) {
  3060. WRITE(PHOTOGRAPH_PIN, HIGH);
  3061. _delay_ms(PULSE_LENGTH);
  3062. WRITE(PHOTOGRAPH_PIN, LOW);
  3063. _delay_ms(PULSE_LENGTH);
  3064. }
  3065. #endif
  3066. #endif //chdk end if
  3067. }
  3068. break;
  3069. #ifdef DOGLCD
  3070. case 250: // M250 Set LCD contrast value: C<value> (value 0..63)
  3071. {
  3072. if (code_seen('C')) {
  3073. lcd_setcontrast( ((int)code_value())&63 );
  3074. }
  3075. SERIAL_PROTOCOLPGM("lcd contrast value: ");
  3076. SERIAL_PROTOCOL(lcd_contrast);
  3077. SERIAL_PROTOCOLLN("");
  3078. }
  3079. break;
  3080. #endif
  3081. #ifdef PREVENT_DANGEROUS_EXTRUDE
  3082. case 302: // allow cold extrudes, or set the minimum extrude temperature
  3083. {
  3084. float temp = .0;
  3085. if (code_seen('S')) temp=code_value();
  3086. set_extrude_min_temp(temp);
  3087. }
  3088. break;
  3089. #endif
  3090. case 303: // M303 PID autotune
  3091. {
  3092. float temp = 150.0;
  3093. int e=0;
  3094. int c=5;
  3095. if (code_seen('E')) e=code_value();
  3096. if (e<0)
  3097. temp=70;
  3098. if (code_seen('S')) temp=code_value();
  3099. if (code_seen('C')) c=code_value();
  3100. PID_autotune(temp, e, c);
  3101. }
  3102. break;
  3103. #ifdef SCARA
  3104. case 360: // M360 SCARA Theta pos1
  3105. SERIAL_ECHOLN(" Cal: Theta 0 ");
  3106. //SoftEndsEnabled = false; // Ignore soft endstops during calibration
  3107. //SERIAL_ECHOLN(" Soft endstops disabled ");
  3108. if(Stopped == false) {
  3109. //get_coordinates(); // For X Y Z E F
  3110. delta[X_AXIS] = 0;
  3111. delta[Y_AXIS] = 120;
  3112. calculate_SCARA_forward_Transform(delta);
  3113. destination[X_AXIS] = delta[X_AXIS]/axis_scaling[X_AXIS];
  3114. destination[Y_AXIS] = delta[Y_AXIS]/axis_scaling[Y_AXIS];
  3115. prepare_move();
  3116. //ClearToSend();
  3117. return;
  3118. }
  3119. break;
  3120. case 361: // SCARA Theta pos2
  3121. SERIAL_ECHOLN(" Cal: Theta 90 ");
  3122. //SoftEndsEnabled = false; // Ignore soft endstops during calibration
  3123. //SERIAL_ECHOLN(" Soft endstops disabled ");
  3124. if(Stopped == false) {
  3125. //get_coordinates(); // For X Y Z E F
  3126. delta[X_AXIS] = 90;
  3127. delta[Y_AXIS] = 130;
  3128. calculate_SCARA_forward_Transform(delta);
  3129. destination[X_AXIS] = delta[X_AXIS]/axis_scaling[X_AXIS];
  3130. destination[Y_AXIS] = delta[Y_AXIS]/axis_scaling[Y_AXIS];
  3131. prepare_move();
  3132. //ClearToSend();
  3133. return;
  3134. }
  3135. break;
  3136. case 362: // SCARA Psi pos1
  3137. SERIAL_ECHOLN(" Cal: Psi 0 ");
  3138. //SoftEndsEnabled = false; // Ignore soft endstops during calibration
  3139. //SERIAL_ECHOLN(" Soft endstops disabled ");
  3140. if(Stopped == false) {
  3141. //get_coordinates(); // For X Y Z E F
  3142. delta[X_AXIS] = 60;
  3143. delta[Y_AXIS] = 180;
  3144. calculate_SCARA_forward_Transform(delta);
  3145. destination[X_AXIS] = delta[X_AXIS]/axis_scaling[X_AXIS];
  3146. destination[Y_AXIS] = delta[Y_AXIS]/axis_scaling[Y_AXIS];
  3147. prepare_move();
  3148. //ClearToSend();
  3149. return;
  3150. }
  3151. break;
  3152. case 363: // SCARA Psi pos2
  3153. SERIAL_ECHOLN(" Cal: Psi 90 ");
  3154. //SoftEndsEnabled = false; // Ignore soft endstops during calibration
  3155. //SERIAL_ECHOLN(" Soft endstops disabled ");
  3156. if(Stopped == false) {
  3157. //get_coordinates(); // For X Y Z E F
  3158. delta[X_AXIS] = 50;
  3159. delta[Y_AXIS] = 90;
  3160. calculate_SCARA_forward_Transform(delta);
  3161. destination[X_AXIS] = delta[X_AXIS]/axis_scaling[X_AXIS];
  3162. destination[Y_AXIS] = delta[Y_AXIS]/axis_scaling[Y_AXIS];
  3163. prepare_move();
  3164. //ClearToSend();
  3165. return;
  3166. }
  3167. break;
  3168. case 364: // SCARA Psi pos3 (90 deg to Theta)
  3169. SERIAL_ECHOLN(" Cal: Theta-Psi 90 ");
  3170. // SoftEndsEnabled = false; // Ignore soft endstops during calibration
  3171. //SERIAL_ECHOLN(" Soft endstops disabled ");
  3172. if(Stopped == false) {
  3173. //get_coordinates(); // For X Y Z E F
  3174. delta[X_AXIS] = 45;
  3175. delta[Y_AXIS] = 135;
  3176. calculate_SCARA_forward_Transform(delta);
  3177. destination[X_AXIS] = delta[X_AXIS]/axis_scaling[X_AXIS];
  3178. destination[Y_AXIS] = delta[Y_AXIS]/axis_scaling[Y_AXIS];
  3179. prepare_move();
  3180. //ClearToSend();
  3181. return;
  3182. }
  3183. break;
  3184. case 365: // M364 Set SCARA scaling for X Y Z
  3185. for(int8_t i=0; i < 3; i++)
  3186. {
  3187. if(code_seen(axis_codes[i]))
  3188. {
  3189. axis_scaling[i] = code_value();
  3190. }
  3191. }
  3192. break;
  3193. #endif
  3194. case 400: // M400 finish all moves
  3195. {
  3196. st_synchronize();
  3197. }
  3198. break;
  3199. #if defined(ENABLE_AUTO_BED_LEVELING) && defined(SERVO_ENDSTOPS) && not defined(Z_PROBE_SLED)
  3200. case 401:
  3201. {
  3202. engage_z_probe(); // Engage Z Servo endstop if available
  3203. }
  3204. break;
  3205. case 402:
  3206. {
  3207. retract_z_probe(); // Retract Z Servo endstop if enabled
  3208. }
  3209. break;
  3210. #endif
  3211. #ifdef FILAMENT_SENSOR
  3212. case 404: //M404 Enter the nominal filament width (3mm, 1.75mm ) N<3.0> or display nominal filament width
  3213. {
  3214. #if (FILWIDTH_PIN > -1)
  3215. if(code_seen('N')) filament_width_nominal=code_value();
  3216. else{
  3217. SERIAL_PROTOCOLPGM("Filament dia (nominal mm):");
  3218. SERIAL_PROTOCOLLN(filament_width_nominal);
  3219. }
  3220. #endif
  3221. }
  3222. break;
  3223. case 405: //M405 Turn on filament sensor for control
  3224. {
  3225. if(code_seen('D')) meas_delay_cm=code_value();
  3226. if(meas_delay_cm> MAX_MEASUREMENT_DELAY)
  3227. meas_delay_cm = MAX_MEASUREMENT_DELAY;
  3228. if(delay_index2 == -1) //initialize the ring buffer if it has not been done since startup
  3229. {
  3230. int temp_ratio = widthFil_to_size_ratio();
  3231. for (delay_index1=0; delay_index1<(MAX_MEASUREMENT_DELAY+1); ++delay_index1 ){
  3232. measurement_delay[delay_index1]=temp_ratio-100; //subtract 100 to scale within a signed byte
  3233. }
  3234. delay_index1=0;
  3235. delay_index2=0;
  3236. }
  3237. filament_sensor = true ;
  3238. //SERIAL_PROTOCOLPGM("Filament dia (measured mm):");
  3239. //SERIAL_PROTOCOL(filament_width_meas);
  3240. //SERIAL_PROTOCOLPGM("Extrusion ratio(%):");
  3241. //SERIAL_PROTOCOL(extrudemultiply);
  3242. }
  3243. break;
  3244. case 406: //M406 Turn off filament sensor for control
  3245. {
  3246. filament_sensor = false ;
  3247. }
  3248. break;
  3249. case 407: //M407 Display measured filament diameter
  3250. {
  3251. SERIAL_PROTOCOLPGM("Filament dia (measured mm):");
  3252. SERIAL_PROTOCOLLN(filament_width_meas);
  3253. }
  3254. break;
  3255. #endif
  3256. case 500: // M500 Store settings in EEPROM
  3257. {
  3258. Config_StoreSettings();
  3259. }
  3260. break;
  3261. case 501: // M501 Read settings from EEPROM
  3262. {
  3263. Config_RetrieveSettings();
  3264. }
  3265. break;
  3266. case 502: // M502 Revert to default settings
  3267. {
  3268. Config_ResetDefault();
  3269. }
  3270. break;
  3271. case 503: // M503 print settings currently in memory
  3272. {
  3273. Config_PrintSettings();
  3274. }
  3275. break;
  3276. #ifdef ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED
  3277. case 540:
  3278. {
  3279. if(code_seen('S')) abort_on_endstop_hit = code_value() > 0;
  3280. }
  3281. break;
  3282. #endif
  3283. #ifdef CUSTOM_M_CODE_SET_Z_PROBE_OFFSET
  3284. case CUSTOM_M_CODE_SET_Z_PROBE_OFFSET:
  3285. {
  3286. float value;
  3287. if (code_seen('Z'))
  3288. {
  3289. value = code_value();
  3290. if ((Z_PROBE_OFFSET_RANGE_MIN <= value) && (value <= Z_PROBE_OFFSET_RANGE_MAX))
  3291. {
  3292. zprobe_zoffset = -value; // compare w/ line 278 of ConfigurationStore.cpp
  3293. SERIAL_ECHO_START;
  3294. SERIAL_ECHOLNPGM(MSG_ZPROBE_ZOFFSET " " MSG_OK);
  3295. SERIAL_PROTOCOLLN("");
  3296. }
  3297. else
  3298. {
  3299. SERIAL_ECHO_START;
  3300. SERIAL_ECHOPGM(MSG_ZPROBE_ZOFFSET);
  3301. SERIAL_ECHOPGM(MSG_Z_MIN);
  3302. SERIAL_ECHO(Z_PROBE_OFFSET_RANGE_MIN);
  3303. SERIAL_ECHOPGM(MSG_Z_MAX);
  3304. SERIAL_ECHO(Z_PROBE_OFFSET_RANGE_MAX);
  3305. SERIAL_PROTOCOLLN("");
  3306. }
  3307. }
  3308. else
  3309. {
  3310. SERIAL_ECHO_START;
  3311. SERIAL_ECHOLNPGM(MSG_ZPROBE_ZOFFSET " : ");
  3312. SERIAL_ECHO(-zprobe_zoffset);
  3313. SERIAL_PROTOCOLLN("");
  3314. }
  3315. break;
  3316. }
  3317. #endif // CUSTOM_M_CODE_SET_Z_PROBE_OFFSET
  3318. #ifdef FILAMENTCHANGEENABLE
  3319. case 600: //Pause for filament change X[pos] Y[pos] Z[relative lift] E[initial retract] L[later retract distance for removal]
  3320. {
  3321. feedmultiplyBckp=feedmultiply;
  3322. int8_t TooLowZ = 0;
  3323. float target[4];
  3324. float lastpos[4];
  3325. target[X_AXIS]=current_position[X_AXIS];
  3326. target[Y_AXIS]=current_position[Y_AXIS];
  3327. target[Z_AXIS]=current_position[Z_AXIS];
  3328. target[E_AXIS]=current_position[E_AXIS];
  3329. lastpos[X_AXIS]=current_position[X_AXIS];
  3330. lastpos[Y_AXIS]=current_position[Y_AXIS];
  3331. lastpos[Z_AXIS]=current_position[Z_AXIS];
  3332. lastpos[E_AXIS]=current_position[E_AXIS];
  3333. //Restract extruder
  3334. if(code_seen('E'))
  3335. {
  3336. target[E_AXIS]+= code_value();
  3337. }
  3338. else
  3339. {
  3340. #ifdef FILAMENTCHANGE_FIRSTRETRACT
  3341. target[E_AXIS]+= FILAMENTCHANGE_FIRSTRETRACT ;
  3342. #endif
  3343. }
  3344. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_RFEED, active_extruder);
  3345. //Lift Z
  3346. if(code_seen('Z'))
  3347. {
  3348. target[Z_AXIS]+= code_value();
  3349. }
  3350. else
  3351. {
  3352. #ifdef FILAMENTCHANGE_ZADD
  3353. target[Z_AXIS]+= FILAMENTCHANGE_ZADD ;
  3354. if(target[Z_AXIS] < 10){
  3355. target[Z_AXIS]+= 10 ;
  3356. TooLowZ = 1;
  3357. }else{
  3358. TooLowZ = 0;
  3359. }
  3360. #endif
  3361. }
  3362. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_ZFEED, active_extruder);
  3363. //Move XY to side
  3364. if(code_seen('X'))
  3365. {
  3366. target[X_AXIS]+= code_value();
  3367. }
  3368. else
  3369. {
  3370. #ifdef FILAMENTCHANGE_XPOS
  3371. target[X_AXIS]= FILAMENTCHANGE_XPOS ;
  3372. #endif
  3373. }
  3374. if(code_seen('Y'))
  3375. {
  3376. target[Y_AXIS]= code_value();
  3377. }
  3378. else
  3379. {
  3380. #ifdef FILAMENTCHANGE_YPOS
  3381. target[Y_AXIS]= FILAMENTCHANGE_YPOS ;
  3382. #endif
  3383. }
  3384. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_XYFEED, active_extruder);
  3385. // Unload filament
  3386. if(code_seen('L'))
  3387. {
  3388. target[E_AXIS]+= code_value();
  3389. }
  3390. else
  3391. {
  3392. #ifdef FILAMENTCHANGE_FINALRETRACT
  3393. target[E_AXIS]+= FILAMENTCHANGE_FINALRETRACT ;
  3394. #endif
  3395. }
  3396. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_RFEED, active_extruder);
  3397. //finish moves
  3398. st_synchronize();
  3399. //disable extruder steppers so filament can be removed
  3400. disable_e0();
  3401. disable_e1();
  3402. disable_e2();
  3403. delay(100);
  3404. //Wait for user to insert filament
  3405. uint8_t cnt=0;
  3406. int counterBeep = 0;
  3407. lcd_wait_interact();
  3408. while(!lcd_clicked()){
  3409. cnt++;
  3410. manage_heater();
  3411. manage_inactivity(true);
  3412. if(cnt==0)
  3413. {
  3414. #if BEEPER > 0
  3415. if (counterBeep== 500){
  3416. counterBeep = 0;
  3417. }
  3418. SET_OUTPUT(BEEPER);
  3419. if (counterBeep== 0){
  3420. WRITE(BEEPER,HIGH);
  3421. }
  3422. if (counterBeep== 20){
  3423. WRITE(BEEPER,LOW);
  3424. }
  3425. counterBeep++;
  3426. #else
  3427. #if !defined(LCD_FEEDBACK_FREQUENCY_HZ) || !defined(LCD_FEEDBACK_FREQUENCY_DURATION_MS)
  3428. lcd_buzz(1000/6,100);
  3429. #else
  3430. lcd_buzz(LCD_FEEDBACK_FREQUENCY_DURATION_MS,LCD_FEEDBACK_FREQUENCY_HZ);
  3431. #endif
  3432. #endif
  3433. }
  3434. }
  3435. //Filament inserted
  3436. WRITE(BEEPER,LOW);
  3437. //Feed the filament to the end of nozzle quickly
  3438. target[E_AXIS]+= FILAMENTCHANGE_FIRSTFEED ;
  3439. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_EFEED, active_extruder);
  3440. //Extrude some filament
  3441. target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  3442. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_EXFEED, active_extruder);
  3443. //Wait for user to check the state
  3444. lcd_change_fil_state = 0;
  3445. lcd_loading_filament();
  3446. while ((lcd_change_fil_state == 0)||(lcd_change_fil_state != 1)){
  3447. lcd_change_fil_state = 0;
  3448. lcd_alright();
  3449. switch(lcd_change_fil_state){
  3450. // Filament failed to load so load it again
  3451. case 2:
  3452. target[E_AXIS]+= FILAMENTCHANGE_FIRSTFEED ;
  3453. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_EFEED, active_extruder);
  3454. target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  3455. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_EXFEED, active_extruder);
  3456. lcd_loading_filament();
  3457. break;
  3458. // Filament loaded properly but color is not clear
  3459. case 3:
  3460. target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  3461. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder);
  3462. lcd_loading_color();
  3463. break;
  3464. // Everything good
  3465. default:
  3466. lcd_change_success();
  3467. break;
  3468. }
  3469. }
  3470. //Not let's go back to print
  3471. //Feed a little of filament to stabilize pressure
  3472. target[E_AXIS]+= FILAMENTCHANGE_RECFEED;
  3473. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_EXFEED, active_extruder);
  3474. //Retract
  3475. target[E_AXIS]+= FILAMENTCHANGE_FIRSTRETRACT;
  3476. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_RFEED, active_extruder);
  3477. //plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 70, active_extruder); //should do nothing
  3478. //Move XY back
  3479. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_XYFEED, active_extruder);
  3480. //Move Z back
  3481. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_ZFEED, active_extruder);
  3482. target[E_AXIS]= target[E_AXIS] - FILAMENTCHANGE_FIRSTRETRACT;
  3483. //Unretract
  3484. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_RFEED, active_extruder);
  3485. //Set E position to original
  3486. plan_set_e_position(lastpos[E_AXIS]);
  3487. //Recover feed rate
  3488. feedmultiply=feedmultiplyBckp;
  3489. char cmd[9];
  3490. sprintf_P(cmd, PSTR("M220 S%i"), feedmultiplyBckp);
  3491. enquecommand(cmd);
  3492. }
  3493. break;
  3494. #endif //FILAMENTCHANGEENABLE
  3495. #ifdef DUAL_X_CARRIAGE
  3496. case 605: // Set dual x-carriage movement mode:
  3497. // M605 S0: Full control mode. The slicer has full control over x-carriage movement
  3498. // M605 S1: Auto-park mode. The inactive head will auto park/unpark without slicer involvement
  3499. // M605 S2 [Xnnn] [Rmmm]: Duplication mode. The second extruder will duplicate the first with nnn
  3500. // millimeters x-offset and an optional differential hotend temperature of
  3501. // mmm degrees. E.g., with "M605 S2 X100 R2" the second extruder will duplicate
  3502. // the first with a spacing of 100mm in the x direction and 2 degrees hotter.
  3503. //
  3504. // Note: the X axis should be homed after changing dual x-carriage mode.
  3505. {
  3506. st_synchronize();
  3507. if (code_seen('S'))
  3508. dual_x_carriage_mode = code_value();
  3509. if (dual_x_carriage_mode == DXC_DUPLICATION_MODE)
  3510. {
  3511. if (code_seen('X'))
  3512. duplicate_extruder_x_offset = max(code_value(),X2_MIN_POS - x_home_pos(0));
  3513. if (code_seen('R'))
  3514. duplicate_extruder_temp_offset = code_value();
  3515. SERIAL_ECHO_START;
  3516. SERIAL_ECHOPGM(MSG_HOTEND_OFFSET);
  3517. SERIAL_ECHO(" ");
  3518. SERIAL_ECHO(extruder_offset[X_AXIS][0]);
  3519. SERIAL_ECHO(",");
  3520. SERIAL_ECHO(extruder_offset[Y_AXIS][0]);
  3521. SERIAL_ECHO(" ");
  3522. SERIAL_ECHO(duplicate_extruder_x_offset);
  3523. SERIAL_ECHO(",");
  3524. SERIAL_ECHOLN(extruder_offset[Y_AXIS][1]);
  3525. }
  3526. else if (dual_x_carriage_mode != DXC_FULL_CONTROL_MODE && dual_x_carriage_mode != DXC_AUTO_PARK_MODE)
  3527. {
  3528. dual_x_carriage_mode = DEFAULT_DUAL_X_CARRIAGE_MODE;
  3529. }
  3530. active_extruder_parked = false;
  3531. extruder_duplication_enabled = false;
  3532. delayed_move_time = 0;
  3533. }
  3534. break;
  3535. #endif //DUAL_X_CARRIAGE
  3536. case 907: // M907 Set digital trimpot motor current using axis codes.
  3537. {
  3538. #if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
  3539. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) digipot_current(i,code_value());
  3540. if(code_seen('B')) digipot_current(4,code_value());
  3541. if(code_seen('S')) for(int i=0;i<=4;i++) digipot_current(i,code_value());
  3542. #endif
  3543. #ifdef MOTOR_CURRENT_PWM_XY_PIN
  3544. if(code_seen('X')) digipot_current(0, code_value());
  3545. #endif
  3546. #ifdef MOTOR_CURRENT_PWM_Z_PIN
  3547. if(code_seen('Z')) digipot_current(1, code_value());
  3548. #endif
  3549. #ifdef MOTOR_CURRENT_PWM_E_PIN
  3550. if(code_seen('E')) digipot_current(2, code_value());
  3551. #endif
  3552. #ifdef DIGIPOT_I2C
  3553. // this one uses actual amps in floating point
  3554. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) digipot_i2c_set_current(i, code_value());
  3555. // for each additional extruder (named B,C,D,E..., channels 4,5,6,7...)
  3556. for(int i=NUM_AXIS;i<DIGIPOT_I2C_NUM_CHANNELS;i++) if(code_seen('B'+i-NUM_AXIS)) digipot_i2c_set_current(i, code_value());
  3557. #endif
  3558. }
  3559. break;
  3560. case 908: // M908 Control digital trimpot directly.
  3561. {
  3562. #if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
  3563. uint8_t channel,current;
  3564. if(code_seen('P')) channel=code_value();
  3565. if(code_seen('S')) current=code_value();
  3566. digitalPotWrite(channel, current);
  3567. #endif
  3568. }
  3569. break;
  3570. case 350: // M350 Set microstepping mode. Warning: Steps per unit remains unchanged. S code sets stepping mode for all drivers.
  3571. {
  3572. #if defined(X_MS1_PIN) && X_MS1_PIN > -1
  3573. if(code_seen('S')) for(int i=0;i<=4;i++) microstep_mode(i,code_value());
  3574. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) microstep_mode(i,(uint8_t)code_value());
  3575. if(code_seen('B')) microstep_mode(4,code_value());
  3576. microstep_readings();
  3577. #endif
  3578. }
  3579. break;
  3580. case 351: // M351 Toggle MS1 MS2 pins directly, S# determines MS1 or MS2, X# sets the pin high/low.
  3581. {
  3582. #if defined(X_MS1_PIN) && X_MS1_PIN > -1
  3583. if(code_seen('S')) switch((int)code_value())
  3584. {
  3585. case 1:
  3586. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) microstep_ms(i,code_value(),-1);
  3587. if(code_seen('B')) microstep_ms(4,code_value(),-1);
  3588. break;
  3589. case 2:
  3590. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) microstep_ms(i,-1,code_value());
  3591. if(code_seen('B')) microstep_ms(4,-1,code_value());
  3592. break;
  3593. }
  3594. microstep_readings();
  3595. #endif
  3596. }
  3597. break;
  3598. case 999: // M999: Restart after being stopped
  3599. Stopped = false;
  3600. lcd_reset_alert_level();
  3601. gcode_LastN = Stopped_gcode_LastN;
  3602. FlushSerialRequestResend();
  3603. break;
  3604. }
  3605. }
  3606. else if(code_seen('T'))
  3607. {
  3608. tmp_extruder = code_value();
  3609. if(tmp_extruder >= EXTRUDERS) {
  3610. SERIAL_ECHO_START;
  3611. SERIAL_ECHO("T");
  3612. SERIAL_ECHO(tmp_extruder);
  3613. SERIAL_ECHOLN(MSG_INVALID_EXTRUDER);
  3614. }
  3615. else {
  3616. boolean make_move = false;
  3617. if(code_seen('F')) {
  3618. make_move = true;
  3619. next_feedrate = code_value();
  3620. if(next_feedrate > 0.0) {
  3621. feedrate = next_feedrate;
  3622. }
  3623. }
  3624. #if EXTRUDERS > 1
  3625. if(tmp_extruder != active_extruder) {
  3626. // Save current position to return to after applying extruder offset
  3627. memcpy(destination, current_position, sizeof(destination));
  3628. #ifdef DUAL_X_CARRIAGE
  3629. if (dual_x_carriage_mode == DXC_AUTO_PARK_MODE && Stopped == false &&
  3630. (delayed_move_time != 0 || current_position[X_AXIS] != x_home_pos(active_extruder)))
  3631. {
  3632. // Park old head: 1) raise 2) move to park position 3) lower
  3633. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS] + TOOLCHANGE_PARK_ZLIFT,
  3634. current_position[E_AXIS], max_feedrate[Z_AXIS], active_extruder);
  3635. plan_buffer_line(x_home_pos(active_extruder), current_position[Y_AXIS], current_position[Z_AXIS] + TOOLCHANGE_PARK_ZLIFT,
  3636. current_position[E_AXIS], max_feedrate[X_AXIS], active_extruder);
  3637. plan_buffer_line(x_home_pos(active_extruder), current_position[Y_AXIS], current_position[Z_AXIS],
  3638. current_position[E_AXIS], max_feedrate[Z_AXIS], active_extruder);
  3639. st_synchronize();
  3640. }
  3641. // apply Y & Z extruder offset (x offset is already used in determining home pos)
  3642. current_position[Y_AXIS] = current_position[Y_AXIS] -
  3643. extruder_offset[Y_AXIS][active_extruder] +
  3644. extruder_offset[Y_AXIS][tmp_extruder];
  3645. current_position[Z_AXIS] = current_position[Z_AXIS] -
  3646. extruder_offset[Z_AXIS][active_extruder] +
  3647. extruder_offset[Z_AXIS][tmp_extruder];
  3648. active_extruder = tmp_extruder;
  3649. // This function resets the max/min values - the current position may be overwritten below.
  3650. axis_is_at_home(X_AXIS);
  3651. if (dual_x_carriage_mode == DXC_FULL_CONTROL_MODE)
  3652. {
  3653. current_position[X_AXIS] = inactive_extruder_x_pos;
  3654. inactive_extruder_x_pos = destination[X_AXIS];
  3655. }
  3656. else if (dual_x_carriage_mode == DXC_DUPLICATION_MODE)
  3657. {
  3658. active_extruder_parked = (active_extruder == 0); // this triggers the second extruder to move into the duplication position
  3659. if (active_extruder == 0 || active_extruder_parked)
  3660. current_position[X_AXIS] = inactive_extruder_x_pos;
  3661. else
  3662. current_position[X_AXIS] = destination[X_AXIS] + duplicate_extruder_x_offset;
  3663. inactive_extruder_x_pos = destination[X_AXIS];
  3664. extruder_duplication_enabled = false;
  3665. }
  3666. else
  3667. {
  3668. // record raised toolhead position for use by unpark
  3669. memcpy(raised_parked_position, current_position, sizeof(raised_parked_position));
  3670. raised_parked_position[Z_AXIS] += TOOLCHANGE_UNPARK_ZLIFT;
  3671. active_extruder_parked = true;
  3672. delayed_move_time = 0;
  3673. }
  3674. #else
  3675. // Offset extruder (only by XY)
  3676. int i;
  3677. for(i = 0; i < 2; i++) {
  3678. current_position[i] = current_position[i] -
  3679. extruder_offset[i][active_extruder] +
  3680. extruder_offset[i][tmp_extruder];
  3681. }
  3682. // Set the new active extruder and position
  3683. active_extruder = tmp_extruder;
  3684. #endif //else DUAL_X_CARRIAGE
  3685. #ifdef DELTA
  3686. calculate_delta(current_position); // change cartesian kinematic to delta kinematic;
  3687. //sent position to plan_set_position();
  3688. plan_set_position(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS],current_position[E_AXIS]);
  3689. #else
  3690. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  3691. #endif
  3692. // Move to the old position if 'F' was in the parameters
  3693. if(make_move && Stopped == false) {
  3694. prepare_move();
  3695. }
  3696. }
  3697. #endif
  3698. SERIAL_ECHO_START;
  3699. SERIAL_ECHO(MSG_ACTIVE_EXTRUDER);
  3700. SERIAL_PROTOCOLLN((int)active_extruder);
  3701. }
  3702. }
  3703. else
  3704. {
  3705. SERIAL_ECHO_START;
  3706. SERIAL_ECHOPGM(MSG_UNKNOWN_COMMAND);
  3707. SERIAL_ECHO(cmdbuffer[bufindr]);
  3708. SERIAL_ECHOLNPGM("\"");
  3709. }
  3710. ClearToSend();
  3711. }
  3712. void FlushSerialRequestResend()
  3713. {
  3714. //char cmdbuffer[bufindr][100]="Resend:";
  3715. MYSERIAL.flush();
  3716. SERIAL_PROTOCOLPGM(MSG_RESEND);
  3717. SERIAL_PROTOCOLLN(gcode_LastN + 1);
  3718. ClearToSend();
  3719. }
  3720. void ClearToSend()
  3721. {
  3722. previous_millis_cmd = millis();
  3723. #ifdef SDSUPPORT
  3724. if(fromsd[bufindr])
  3725. return;
  3726. #endif //SDSUPPORT
  3727. SERIAL_PROTOCOLLNPGM(MSG_OK);
  3728. }
  3729. void get_coordinates()
  3730. {
  3731. bool seen[4]={false,false,false,false};
  3732. for(int8_t i=0; i < NUM_AXIS; i++) {
  3733. if(code_seen(axis_codes[i]))
  3734. {
  3735. destination[i] = (float)code_value() + (axis_relative_modes[i] || relative_mode)*current_position[i];
  3736. seen[i]=true;
  3737. }
  3738. else destination[i] = current_position[i]; //Are these else lines really needed?
  3739. }
  3740. if(code_seen('F')) {
  3741. next_feedrate = code_value();
  3742. if(next_feedrate > 0.0) feedrate = next_feedrate;
  3743. }
  3744. }
  3745. void get_arc_coordinates()
  3746. {
  3747. #ifdef SF_ARC_FIX
  3748. bool relative_mode_backup = relative_mode;
  3749. relative_mode = true;
  3750. #endif
  3751. get_coordinates();
  3752. #ifdef SF_ARC_FIX
  3753. relative_mode=relative_mode_backup;
  3754. #endif
  3755. if(code_seen('I')) {
  3756. offset[0] = code_value();
  3757. }
  3758. else {
  3759. offset[0] = 0.0;
  3760. }
  3761. if(code_seen('J')) {
  3762. offset[1] = code_value();
  3763. }
  3764. else {
  3765. offset[1] = 0.0;
  3766. }
  3767. }
  3768. void clamp_to_software_endstops(float target[3])
  3769. {
  3770. if (min_software_endstops) {
  3771. if (target[X_AXIS] < min_pos[X_AXIS]) target[X_AXIS] = min_pos[X_AXIS];
  3772. if (target[Y_AXIS] < min_pos[Y_AXIS]) target[Y_AXIS] = min_pos[Y_AXIS];
  3773. float negative_z_offset = 0;
  3774. #ifdef ENABLE_AUTO_BED_LEVELING
  3775. if (Z_PROBE_OFFSET_FROM_EXTRUDER < 0) negative_z_offset = negative_z_offset + Z_PROBE_OFFSET_FROM_EXTRUDER;
  3776. if (add_homing[Z_AXIS] < 0) negative_z_offset = negative_z_offset + add_homing[Z_AXIS];
  3777. #endif
  3778. if (target[Z_AXIS] < min_pos[Z_AXIS]+negative_z_offset) target[Z_AXIS] = min_pos[Z_AXIS]+negative_z_offset;
  3779. }
  3780. if (max_software_endstops) {
  3781. if (target[X_AXIS] > max_pos[X_AXIS]) target[X_AXIS] = max_pos[X_AXIS];
  3782. if (target[Y_AXIS] > max_pos[Y_AXIS]) target[Y_AXIS] = max_pos[Y_AXIS];
  3783. if (target[Z_AXIS] > max_pos[Z_AXIS]) target[Z_AXIS] = max_pos[Z_AXIS];
  3784. }
  3785. }
  3786. #ifdef DELTA
  3787. void recalc_delta_settings(float radius, float diagonal_rod)
  3788. {
  3789. delta_tower1_x= -SIN_60*radius; // front left tower
  3790. delta_tower1_y= -COS_60*radius;
  3791. delta_tower2_x= SIN_60*radius; // front right tower
  3792. delta_tower2_y= -COS_60*radius;
  3793. delta_tower3_x= 0.0; // back middle tower
  3794. delta_tower3_y= radius;
  3795. delta_diagonal_rod_2= sq(diagonal_rod);
  3796. }
  3797. void calculate_delta(float cartesian[3])
  3798. {
  3799. delta[X_AXIS] = sqrt(delta_diagonal_rod_2
  3800. - sq(delta_tower1_x-cartesian[X_AXIS])
  3801. - sq(delta_tower1_y-cartesian[Y_AXIS])
  3802. ) + cartesian[Z_AXIS];
  3803. delta[Y_AXIS] = sqrt(delta_diagonal_rod_2
  3804. - sq(delta_tower2_x-cartesian[X_AXIS])
  3805. - sq(delta_tower2_y-cartesian[Y_AXIS])
  3806. ) + cartesian[Z_AXIS];
  3807. delta[Z_AXIS] = sqrt(delta_diagonal_rod_2
  3808. - sq(delta_tower3_x-cartesian[X_AXIS])
  3809. - sq(delta_tower3_y-cartesian[Y_AXIS])
  3810. ) + cartesian[Z_AXIS];
  3811. /*
  3812. SERIAL_ECHOPGM("cartesian x="); SERIAL_ECHO(cartesian[X_AXIS]);
  3813. SERIAL_ECHOPGM(" y="); SERIAL_ECHO(cartesian[Y_AXIS]);
  3814. SERIAL_ECHOPGM(" z="); SERIAL_ECHOLN(cartesian[Z_AXIS]);
  3815. SERIAL_ECHOPGM("delta x="); SERIAL_ECHO(delta[X_AXIS]);
  3816. SERIAL_ECHOPGM(" y="); SERIAL_ECHO(delta[Y_AXIS]);
  3817. SERIAL_ECHOPGM(" z="); SERIAL_ECHOLN(delta[Z_AXIS]);
  3818. */
  3819. }
  3820. #endif
  3821. void prepare_move()
  3822. {
  3823. clamp_to_software_endstops(destination);
  3824. previous_millis_cmd = millis();
  3825. #ifdef SCARA //for now same as delta-code
  3826. float difference[NUM_AXIS];
  3827. for (int8_t i=0; i < NUM_AXIS; i++) {
  3828. difference[i] = destination[i] - current_position[i];
  3829. }
  3830. float cartesian_mm = sqrt( sq(difference[X_AXIS]) +
  3831. sq(difference[Y_AXIS]) +
  3832. sq(difference[Z_AXIS]));
  3833. if (cartesian_mm < 0.000001) { cartesian_mm = abs(difference[E_AXIS]); }
  3834. if (cartesian_mm < 0.000001) { return; }
  3835. float seconds = 6000 * cartesian_mm / feedrate / feedmultiply;
  3836. int steps = max(1, int(scara_segments_per_second * seconds));
  3837. //SERIAL_ECHOPGM("mm="); SERIAL_ECHO(cartesian_mm);
  3838. //SERIAL_ECHOPGM(" seconds="); SERIAL_ECHO(seconds);
  3839. //SERIAL_ECHOPGM(" steps="); SERIAL_ECHOLN(steps);
  3840. for (int s = 1; s <= steps; s++) {
  3841. float fraction = float(s) / float(steps);
  3842. for(int8_t i=0; i < NUM_AXIS; i++) {
  3843. destination[i] = current_position[i] + difference[i] * fraction;
  3844. }
  3845. calculate_delta(destination);
  3846. //SERIAL_ECHOPGM("destination[X_AXIS]="); SERIAL_ECHOLN(destination[X_AXIS]);
  3847. //SERIAL_ECHOPGM("destination[Y_AXIS]="); SERIAL_ECHOLN(destination[Y_AXIS]);
  3848. //SERIAL_ECHOPGM("destination[Z_AXIS]="); SERIAL_ECHOLN(destination[Z_AXIS]);
  3849. //SERIAL_ECHOPGM("delta[X_AXIS]="); SERIAL_ECHOLN(delta[X_AXIS]);
  3850. //SERIAL_ECHOPGM("delta[Y_AXIS]="); SERIAL_ECHOLN(delta[Y_AXIS]);
  3851. //SERIAL_ECHOPGM("delta[Z_AXIS]="); SERIAL_ECHOLN(delta[Z_AXIS]);
  3852. plan_buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS],
  3853. destination[E_AXIS], feedrate*feedmultiply/60/100.0,
  3854. active_extruder);
  3855. }
  3856. #endif // SCARA
  3857. #ifdef DELTA
  3858. float difference[NUM_AXIS];
  3859. for (int8_t i=0; i < NUM_AXIS; i++) {
  3860. difference[i] = destination[i] - current_position[i];
  3861. }
  3862. float cartesian_mm = sqrt(sq(difference[X_AXIS]) +
  3863. sq(difference[Y_AXIS]) +
  3864. sq(difference[Z_AXIS]));
  3865. if (cartesian_mm < 0.000001) { cartesian_mm = abs(difference[E_AXIS]); }
  3866. if (cartesian_mm < 0.000001) { return; }
  3867. float seconds = 6000 * cartesian_mm / feedrate / feedmultiply;
  3868. int steps = max(1, int(delta_segments_per_second * seconds));
  3869. // SERIAL_ECHOPGM("mm="); SERIAL_ECHO(cartesian_mm);
  3870. // SERIAL_ECHOPGM(" seconds="); SERIAL_ECHO(seconds);
  3871. // SERIAL_ECHOPGM(" steps="); SERIAL_ECHOLN(steps);
  3872. for (int s = 1; s <= steps; s++) {
  3873. float fraction = float(s) / float(steps);
  3874. for(int8_t i=0; i < NUM_AXIS; i++) {
  3875. destination[i] = current_position[i] + difference[i] * fraction;
  3876. }
  3877. calculate_delta(destination);
  3878. plan_buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS],
  3879. destination[E_AXIS], feedrate*feedmultiply/60/100.0,
  3880. active_extruder);
  3881. }
  3882. #endif // DELTA
  3883. #ifdef DUAL_X_CARRIAGE
  3884. if (active_extruder_parked)
  3885. {
  3886. if (dual_x_carriage_mode == DXC_DUPLICATION_MODE && active_extruder == 0)
  3887. {
  3888. // move duplicate extruder into correct duplication position.
  3889. plan_set_position(inactive_extruder_x_pos, current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  3890. plan_buffer_line(current_position[X_AXIS] + duplicate_extruder_x_offset, current_position[Y_AXIS], current_position[Z_AXIS],
  3891. current_position[E_AXIS], max_feedrate[X_AXIS], 1);
  3892. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  3893. st_synchronize();
  3894. extruder_duplication_enabled = true;
  3895. active_extruder_parked = false;
  3896. }
  3897. else if (dual_x_carriage_mode == DXC_AUTO_PARK_MODE) // handle unparking of head
  3898. {
  3899. if (current_position[E_AXIS] == destination[E_AXIS])
  3900. {
  3901. // this is a travel move - skit it but keep track of current position (so that it can later
  3902. // be used as start of first non-travel move)
  3903. if (delayed_move_time != 0xFFFFFFFFUL)
  3904. {
  3905. memcpy(current_position, destination, sizeof(current_position));
  3906. if (destination[Z_AXIS] > raised_parked_position[Z_AXIS])
  3907. raised_parked_position[Z_AXIS] = destination[Z_AXIS];
  3908. delayed_move_time = millis();
  3909. return;
  3910. }
  3911. }
  3912. delayed_move_time = 0;
  3913. // unpark extruder: 1) raise, 2) move into starting XY position, 3) lower
  3914. plan_buffer_line(raised_parked_position[X_AXIS], raised_parked_position[Y_AXIS], raised_parked_position[Z_AXIS], current_position[E_AXIS], max_feedrate[Z_AXIS], active_extruder);
  3915. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], raised_parked_position[Z_AXIS],
  3916. current_position[E_AXIS], min(max_feedrate[X_AXIS],max_feedrate[Y_AXIS]), active_extruder);
  3917. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS],
  3918. current_position[E_AXIS], max_feedrate[Z_AXIS], active_extruder);
  3919. active_extruder_parked = false;
  3920. }
  3921. }
  3922. #endif //DUAL_X_CARRIAGE
  3923. #if ! (defined DELTA || defined SCARA)
  3924. // Do not use feedmultiply for E or Z only moves
  3925. if( (current_position[X_AXIS] == destination [X_AXIS]) && (current_position[Y_AXIS] == destination [Y_AXIS])) {
  3926. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  3927. }
  3928. else {
  3929. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate*feedmultiply/60/100.0, active_extruder);
  3930. }
  3931. #endif // !(DELTA || SCARA)
  3932. for(int8_t i=0; i < NUM_AXIS; i++) {
  3933. current_position[i] = destination[i];
  3934. }
  3935. }
  3936. void prepare_arc_move(char isclockwise) {
  3937. float r = hypot(offset[X_AXIS], offset[Y_AXIS]); // Compute arc radius for mc_arc
  3938. // Trace the arc
  3939. mc_arc(current_position, destination, offset, X_AXIS, Y_AXIS, Z_AXIS, feedrate*feedmultiply/60/100.0, r, isclockwise, active_extruder);
  3940. // As far as the parser is concerned, the position is now == target. In reality the
  3941. // motion control system might still be processing the action and the real tool position
  3942. // in any intermediate location.
  3943. for(int8_t i=0; i < NUM_AXIS; i++) {
  3944. current_position[i] = destination[i];
  3945. }
  3946. previous_millis_cmd = millis();
  3947. }
  3948. #if defined(CONTROLLERFAN_PIN) && CONTROLLERFAN_PIN > -1
  3949. #if defined(FAN_PIN)
  3950. #if CONTROLLERFAN_PIN == FAN_PIN
  3951. #error "You cannot set CONTROLLERFAN_PIN equal to FAN_PIN"
  3952. #endif
  3953. #endif
  3954. unsigned long lastMotor = 0; //Save the time for when a motor was turned on last
  3955. unsigned long lastMotorCheck = 0;
  3956. void controllerFan()
  3957. {
  3958. if ((millis() - lastMotorCheck) >= 2500) //Not a time critical function, so we only check every 2500ms
  3959. {
  3960. lastMotorCheck = millis();
  3961. if(!READ(X_ENABLE_PIN) || !READ(Y_ENABLE_PIN) || !READ(Z_ENABLE_PIN) || (soft_pwm_bed > 0)
  3962. #if EXTRUDERS > 2
  3963. || !READ(E2_ENABLE_PIN)
  3964. #endif
  3965. #if EXTRUDER > 1
  3966. #if defined(X2_ENABLE_PIN) && X2_ENABLE_PIN > -1
  3967. || !READ(X2_ENABLE_PIN)
  3968. #endif
  3969. || !READ(E1_ENABLE_PIN)
  3970. #endif
  3971. || !READ(E0_ENABLE_PIN)) //If any of the drivers are enabled...
  3972. {
  3973. lastMotor = millis(); //... set time to NOW so the fan will turn on
  3974. }
  3975. if ((millis() - lastMotor) >= (CONTROLLERFAN_SECS*1000UL) || lastMotor == 0) //If the last time any driver was enabled, is longer since than CONTROLLERSEC...
  3976. {
  3977. digitalWrite(CONTROLLERFAN_PIN, 0);
  3978. analogWrite(CONTROLLERFAN_PIN, 0);
  3979. }
  3980. else
  3981. {
  3982. // allows digital or PWM fan output to be used (see M42 handling)
  3983. digitalWrite(CONTROLLERFAN_PIN, CONTROLLERFAN_SPEED);
  3984. analogWrite(CONTROLLERFAN_PIN, CONTROLLERFAN_SPEED);
  3985. }
  3986. }
  3987. }
  3988. #endif
  3989. #ifdef SCARA
  3990. void calculate_SCARA_forward_Transform(float f_scara[3])
  3991. {
  3992. // Perform forward kinematics, and place results in delta[3]
  3993. // The maths and first version has been done by QHARLEY . Integrated into masterbranch 06/2014 and slightly restructured by Joachim Cerny in June 2014
  3994. float x_sin, x_cos, y_sin, y_cos;
  3995. //SERIAL_ECHOPGM("f_delta x="); SERIAL_ECHO(f_scara[X_AXIS]);
  3996. //SERIAL_ECHOPGM(" y="); SERIAL_ECHO(f_scara[Y_AXIS]);
  3997. x_sin = sin(f_scara[X_AXIS]/SCARA_RAD2DEG) * Linkage_1;
  3998. x_cos = cos(f_scara[X_AXIS]/SCARA_RAD2DEG) * Linkage_1;
  3999. y_sin = sin(f_scara[Y_AXIS]/SCARA_RAD2DEG) * Linkage_2;
  4000. y_cos = cos(f_scara[Y_AXIS]/SCARA_RAD2DEG) * Linkage_2;
  4001. // SERIAL_ECHOPGM(" x_sin="); SERIAL_ECHO(x_sin);
  4002. // SERIAL_ECHOPGM(" x_cos="); SERIAL_ECHO(x_cos);
  4003. // SERIAL_ECHOPGM(" y_sin="); SERIAL_ECHO(y_sin);
  4004. // SERIAL_ECHOPGM(" y_cos="); SERIAL_ECHOLN(y_cos);
  4005. delta[X_AXIS] = x_cos + y_cos + SCARA_offset_x; //theta
  4006. delta[Y_AXIS] = x_sin + y_sin + SCARA_offset_y; //theta+phi
  4007. //SERIAL_ECHOPGM(" delta[X_AXIS]="); SERIAL_ECHO(delta[X_AXIS]);
  4008. //SERIAL_ECHOPGM(" delta[Y_AXIS]="); SERIAL_ECHOLN(delta[Y_AXIS]);
  4009. }
  4010. void calculate_delta(float cartesian[3]){
  4011. //reverse kinematics.
  4012. // Perform reversed kinematics, and place results in delta[3]
  4013. // The maths and first version has been done by QHARLEY . Integrated into masterbranch 06/2014 and slightly restructured by Joachim Cerny in June 2014
  4014. float SCARA_pos[2];
  4015. static float SCARA_C2, SCARA_S2, SCARA_K1, SCARA_K2, SCARA_theta, SCARA_psi;
  4016. SCARA_pos[X_AXIS] = cartesian[X_AXIS] * axis_scaling[X_AXIS] - SCARA_offset_x; //Translate SCARA to standard X Y
  4017. SCARA_pos[Y_AXIS] = cartesian[Y_AXIS] * axis_scaling[Y_AXIS] - SCARA_offset_y; // With scaling factor.
  4018. #if (Linkage_1 == Linkage_2)
  4019. SCARA_C2 = ( ( sq(SCARA_pos[X_AXIS]) + sq(SCARA_pos[Y_AXIS]) ) / (2 * (float)L1_2) ) - 1;
  4020. #else
  4021. SCARA_C2 = ( sq(SCARA_pos[X_AXIS]) + sq(SCARA_pos[Y_AXIS]) - (float)L1_2 - (float)L2_2 ) / 45000;
  4022. #endif
  4023. SCARA_S2 = sqrt( 1 - sq(SCARA_C2) );
  4024. SCARA_K1 = Linkage_1 + Linkage_2 * SCARA_C2;
  4025. SCARA_K2 = Linkage_2 * SCARA_S2;
  4026. SCARA_theta = ( atan2(SCARA_pos[X_AXIS],SCARA_pos[Y_AXIS])-atan2(SCARA_K1, SCARA_K2) ) * -1;
  4027. SCARA_psi = atan2(SCARA_S2,SCARA_C2);
  4028. delta[X_AXIS] = SCARA_theta * SCARA_RAD2DEG; // Multiply by 180/Pi - theta is support arm angle
  4029. delta[Y_AXIS] = (SCARA_theta + SCARA_psi) * SCARA_RAD2DEG; // - equal to sub arm angle (inverted motor)
  4030. delta[Z_AXIS] = cartesian[Z_AXIS];
  4031. /*
  4032. SERIAL_ECHOPGM("cartesian x="); SERIAL_ECHO(cartesian[X_AXIS]);
  4033. SERIAL_ECHOPGM(" y="); SERIAL_ECHO(cartesian[Y_AXIS]);
  4034. SERIAL_ECHOPGM(" z="); SERIAL_ECHOLN(cartesian[Z_AXIS]);
  4035. SERIAL_ECHOPGM("scara x="); SERIAL_ECHO(SCARA_pos[X_AXIS]);
  4036. SERIAL_ECHOPGM(" y="); SERIAL_ECHOLN(SCARA_pos[Y_AXIS]);
  4037. SERIAL_ECHOPGM("delta x="); SERIAL_ECHO(delta[X_AXIS]);
  4038. SERIAL_ECHOPGM(" y="); SERIAL_ECHO(delta[Y_AXIS]);
  4039. SERIAL_ECHOPGM(" z="); SERIAL_ECHOLN(delta[Z_AXIS]);
  4040. SERIAL_ECHOPGM("C2="); SERIAL_ECHO(SCARA_C2);
  4041. SERIAL_ECHOPGM(" S2="); SERIAL_ECHO(SCARA_S2);
  4042. SERIAL_ECHOPGM(" Theta="); SERIAL_ECHO(SCARA_theta);
  4043. SERIAL_ECHOPGM(" Psi="); SERIAL_ECHOLN(SCARA_psi);
  4044. SERIAL_ECHOLN(" ");*/
  4045. }
  4046. #endif
  4047. #ifdef TEMP_STAT_LEDS
  4048. static bool blue_led = false;
  4049. static bool red_led = false;
  4050. static uint32_t stat_update = 0;
  4051. void handle_status_leds(void) {
  4052. float max_temp = 0.0;
  4053. if(millis() > stat_update) {
  4054. stat_update += 500; // Update every 0.5s
  4055. for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) {
  4056. max_temp = max(max_temp, degHotend(cur_extruder));
  4057. max_temp = max(max_temp, degTargetHotend(cur_extruder));
  4058. }
  4059. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  4060. max_temp = max(max_temp, degTargetBed());
  4061. max_temp = max(max_temp, degBed());
  4062. #endif
  4063. if((max_temp > 55.0) && (red_led == false)) {
  4064. digitalWrite(STAT_LED_RED, 1);
  4065. digitalWrite(STAT_LED_BLUE, 0);
  4066. red_led = true;
  4067. blue_led = false;
  4068. }
  4069. if((max_temp < 54.0) && (blue_led == false)) {
  4070. digitalWrite(STAT_LED_RED, 0);
  4071. digitalWrite(STAT_LED_BLUE, 1);
  4072. red_led = false;
  4073. blue_led = true;
  4074. }
  4075. }
  4076. }
  4077. #endif
  4078. void manage_inactivity(bool ignore_stepper_queue/*=false*/) //default argument set in Marlin.h
  4079. {
  4080. #if defined(KILL_PIN) && KILL_PIN > -1
  4081. static int killCount = 0; // make the inactivity button a bit less responsive
  4082. const int KILL_DELAY = 10000;
  4083. #endif
  4084. #if defined(HOME_PIN) && HOME_PIN > -1
  4085. static int homeDebounceCount = 0; // poor man's debouncing count
  4086. const int HOME_DEBOUNCE_DELAY = 10000;
  4087. #endif
  4088. if(buflen < (BUFSIZE-1))
  4089. get_command();
  4090. if( (millis() - previous_millis_cmd) > max_inactive_time )
  4091. if(max_inactive_time)
  4092. kill();
  4093. if(stepper_inactive_time) {
  4094. if( (millis() - previous_millis_cmd) > stepper_inactive_time )
  4095. {
  4096. if(blocks_queued() == false && ignore_stepper_queue == false) {
  4097. disable_x();
  4098. disable_y();
  4099. disable_z();
  4100. disable_e0();
  4101. disable_e1();
  4102. disable_e2();
  4103. }
  4104. }
  4105. }
  4106. #ifdef CHDK //Check if pin should be set to LOW after M240 set it to HIGH
  4107. if (chdkActive && (millis() - chdkHigh > CHDK_DELAY))
  4108. {
  4109. chdkActive = false;
  4110. WRITE(CHDK, LOW);
  4111. }
  4112. #endif
  4113. #if defined(KILL_PIN) && KILL_PIN > -1
  4114. // Check if the kill button was pressed and wait just in case it was an accidental
  4115. // key kill key press
  4116. // -------------------------------------------------------------------------------
  4117. if( 0 == READ(KILL_PIN) )
  4118. {
  4119. killCount++;
  4120. }
  4121. else if (killCount > 0)
  4122. {
  4123. killCount--;
  4124. }
  4125. // Exceeded threshold and we can confirm that it was not accidental
  4126. // KILL the machine
  4127. // ----------------------------------------------------------------
  4128. if ( killCount >= KILL_DELAY)
  4129. {
  4130. kill();
  4131. }
  4132. #endif
  4133. #if defined(HOME_PIN) && HOME_PIN > -1
  4134. // Check to see if we have to home, use poor man's debouncer
  4135. // ---------------------------------------------------------
  4136. if ( 0 == READ(HOME_PIN) )
  4137. {
  4138. if (homeDebounceCount == 0)
  4139. {
  4140. enquecommand_P((PSTR("G28")));
  4141. homeDebounceCount++;
  4142. LCD_ALERTMESSAGEPGM(MSG_AUTO_HOME);
  4143. }
  4144. else if (homeDebounceCount < HOME_DEBOUNCE_DELAY)
  4145. {
  4146. homeDebounceCount++;
  4147. }
  4148. else
  4149. {
  4150. homeDebounceCount = 0;
  4151. }
  4152. }
  4153. #endif
  4154. #if defined(CONTROLLERFAN_PIN) && CONTROLLERFAN_PIN > -1
  4155. controllerFan(); //Check if fan should be turned on to cool stepper drivers down
  4156. #endif
  4157. #ifdef EXTRUDER_RUNOUT_PREVENT
  4158. if( (millis() - previous_millis_cmd) > EXTRUDER_RUNOUT_SECONDS*1000 )
  4159. if(degHotend(active_extruder)>EXTRUDER_RUNOUT_MINTEMP)
  4160. {
  4161. bool oldstatus=READ(E0_ENABLE_PIN);
  4162. enable_e0();
  4163. float oldepos=current_position[E_AXIS];
  4164. float oldedes=destination[E_AXIS];
  4165. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS],
  4166. destination[E_AXIS]+EXTRUDER_RUNOUT_EXTRUDE*EXTRUDER_RUNOUT_ESTEPS/axis_steps_per_unit[E_AXIS],
  4167. EXTRUDER_RUNOUT_SPEED/60.*EXTRUDER_RUNOUT_ESTEPS/axis_steps_per_unit[E_AXIS], active_extruder);
  4168. current_position[E_AXIS]=oldepos;
  4169. destination[E_AXIS]=oldedes;
  4170. plan_set_e_position(oldepos);
  4171. previous_millis_cmd=millis();
  4172. st_synchronize();
  4173. WRITE(E0_ENABLE_PIN,oldstatus);
  4174. }
  4175. #endif
  4176. #if defined(DUAL_X_CARRIAGE)
  4177. // handle delayed move timeout
  4178. if (delayed_move_time != 0 && (millis() - delayed_move_time) > 1000 && Stopped == false)
  4179. {
  4180. // travel moves have been received so enact them
  4181. delayed_move_time = 0xFFFFFFFFUL; // force moves to be done
  4182. memcpy(destination,current_position,sizeof(destination));
  4183. prepare_move();
  4184. }
  4185. #endif
  4186. #ifdef TEMP_STAT_LEDS
  4187. handle_status_leds();
  4188. #endif
  4189. check_axes_activity();
  4190. }
  4191. void kill()
  4192. {
  4193. cli(); // Stop interrupts
  4194. disable_heater();
  4195. disable_x();
  4196. disable_y();
  4197. disable_z();
  4198. disable_e0();
  4199. disable_e1();
  4200. disable_e2();
  4201. #if defined(PS_ON_PIN) && PS_ON_PIN > -1
  4202. pinMode(PS_ON_PIN,INPUT);
  4203. #endif
  4204. SERIAL_ERROR_START;
  4205. SERIAL_ERRORLNPGM(MSG_ERR_KILLED);
  4206. LCD_ALERTMESSAGEPGM(MSG_KILLED);
  4207. // FMC small patch to update the LCD before ending
  4208. sei(); // enable interrupts
  4209. for ( int i=5; i--; lcd_update())
  4210. {
  4211. delay(200);
  4212. }
  4213. cli(); // disable interrupts
  4214. suicide();
  4215. while(1) { /* Intentionally left empty */ } // Wait for reset
  4216. }
  4217. void Stop()
  4218. {
  4219. disable_heater();
  4220. if(Stopped == false) {
  4221. Stopped = true;
  4222. Stopped_gcode_LastN = gcode_LastN; // Save last g_code for restart
  4223. SERIAL_ERROR_START;
  4224. SERIAL_ERRORLNPGM(MSG_ERR_STOPPED);
  4225. LCD_MESSAGEPGM(MSG_STOPPED);
  4226. }
  4227. }
  4228. bool IsStopped() { return Stopped; };
  4229. #ifdef FAST_PWM_FAN
  4230. void setPwmFrequency(uint8_t pin, int val)
  4231. {
  4232. val &= 0x07;
  4233. switch(digitalPinToTimer(pin))
  4234. {
  4235. #if defined(TCCR0A)
  4236. case TIMER0A:
  4237. case TIMER0B:
  4238. // TCCR0B &= ~(_BV(CS00) | _BV(CS01) | _BV(CS02));
  4239. // TCCR0B |= val;
  4240. break;
  4241. #endif
  4242. #if defined(TCCR1A)
  4243. case TIMER1A:
  4244. case TIMER1B:
  4245. // TCCR1B &= ~(_BV(CS10) | _BV(CS11) | _BV(CS12));
  4246. // TCCR1B |= val;
  4247. break;
  4248. #endif
  4249. #if defined(TCCR2)
  4250. case TIMER2:
  4251. case TIMER2:
  4252. TCCR2 &= ~(_BV(CS10) | _BV(CS11) | _BV(CS12));
  4253. TCCR2 |= val;
  4254. break;
  4255. #endif
  4256. #if defined(TCCR2A)
  4257. case TIMER2A:
  4258. case TIMER2B:
  4259. TCCR2B &= ~(_BV(CS20) | _BV(CS21) | _BV(CS22));
  4260. TCCR2B |= val;
  4261. break;
  4262. #endif
  4263. #if defined(TCCR3A)
  4264. case TIMER3A:
  4265. case TIMER3B:
  4266. case TIMER3C:
  4267. TCCR3B &= ~(_BV(CS30) | _BV(CS31) | _BV(CS32));
  4268. TCCR3B |= val;
  4269. break;
  4270. #endif
  4271. #if defined(TCCR4A)
  4272. case TIMER4A:
  4273. case TIMER4B:
  4274. case TIMER4C:
  4275. TCCR4B &= ~(_BV(CS40) | _BV(CS41) | _BV(CS42));
  4276. TCCR4B |= val;
  4277. break;
  4278. #endif
  4279. #if defined(TCCR5A)
  4280. case TIMER5A:
  4281. case TIMER5B:
  4282. case TIMER5C:
  4283. TCCR5B &= ~(_BV(CS50) | _BV(CS51) | _BV(CS52));
  4284. TCCR5B |= val;
  4285. break;
  4286. #endif
  4287. }
  4288. }
  4289. #endif //FAST_PWM_FAN
  4290. bool setTargetedHotend(int code){
  4291. tmp_extruder = active_extruder;
  4292. if(code_seen('T')) {
  4293. tmp_extruder = code_value();
  4294. if(tmp_extruder >= EXTRUDERS) {
  4295. SERIAL_ECHO_START;
  4296. switch(code){
  4297. case 104:
  4298. SERIAL_ECHO(MSG_M104_INVALID_EXTRUDER);
  4299. break;
  4300. case 105:
  4301. SERIAL_ECHO(MSG_M105_INVALID_EXTRUDER);
  4302. break;
  4303. case 109:
  4304. SERIAL_ECHO(MSG_M109_INVALID_EXTRUDER);
  4305. break;
  4306. case 218:
  4307. SERIAL_ECHO(MSG_M218_INVALID_EXTRUDER);
  4308. break;
  4309. case 221:
  4310. SERIAL_ECHO(MSG_M221_INVALID_EXTRUDER);
  4311. break;
  4312. }
  4313. SERIAL_ECHOLN(tmp_extruder);
  4314. return true;
  4315. }
  4316. }
  4317. return false;
  4318. }
  4319. float calculate_volumetric_multiplier(float diameter) {
  4320. float area = .0;
  4321. float radius = .0;
  4322. radius = diameter * .5;
  4323. if (! volumetric_enabled || radius == 0) {
  4324. area = 1;
  4325. }
  4326. else {
  4327. area = M_PI * pow(radius, 2);
  4328. }
  4329. return 1.0 / area;
  4330. }
  4331. void calculate_volumetric_multipliers() {
  4332. volumetric_multiplier[0] = calculate_volumetric_multiplier(filament_size[0]);
  4333. #if EXTRUDERS > 1
  4334. volumetric_multiplier[1] = calculate_volumetric_multiplier(filament_size[1]);
  4335. #if EXTRUDERS > 2
  4336. volumetric_multiplier[2] = calculate_volumetric_multiplier(filament_size[2]);
  4337. #endif
  4338. #endif
  4339. }