Marlin_main.cpp 274 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744374537463747374837493750375137523753375437553756375737583759376037613762376337643765376637673768376937703771377237733774377537763777377837793780378137823783378437853786378737883789379037913792379337943795379637973798379938003801380238033804380538063807380838093810381138123813381438153816381738183819382038213822382338243825382638273828382938303831383238333834383538363837383838393840384138423843384438453846384738483849385038513852385338543855385638573858385938603861386238633864386538663867386838693870387138723873387438753876387738783879388038813882388338843885388638873888388938903891389238933894389538963897389838993900390139023903390439053906390739083909391039113912391339143915391639173918391939203921392239233924392539263927392839293930393139323933393439353936393739383939394039413942394339443945394639473948394939503951395239533954395539563957395839593960396139623963396439653966396739683969397039713972397339743975397639773978397939803981398239833984398539863987398839893990399139923993399439953996399739983999400040014002400340044005400640074008400940104011401240134014401540164017401840194020402140224023402440254026402740284029403040314032403340344035403640374038403940404041404240434044404540464047404840494050405140524053405440554056405740584059406040614062406340644065406640674068406940704071407240734074407540764077407840794080408140824083408440854086408740884089409040914092409340944095409640974098409941004101410241034104410541064107410841094110411141124113411441154116411741184119412041214122412341244125412641274128412941304131413241334134413541364137413841394140414141424143414441454146414741484149415041514152415341544155415641574158415941604161416241634164416541664167416841694170417141724173417441754176417741784179418041814182418341844185418641874188418941904191419241934194419541964197419841994200420142024203420442054206420742084209421042114212421342144215421642174218421942204221422242234224422542264227422842294230423142324233423442354236423742384239424042414242424342444245424642474248424942504251425242534254425542564257425842594260426142624263426442654266426742684269427042714272427342744275427642774278427942804281428242834284428542864287428842894290429142924293429442954296429742984299430043014302430343044305430643074308430943104311431243134314431543164317431843194320432143224323432443254326432743284329433043314332433343344335433643374338433943404341434243434344434543464347434843494350435143524353435443554356435743584359436043614362436343644365436643674368436943704371437243734374437543764377437843794380438143824383438443854386438743884389439043914392439343944395439643974398439944004401440244034404440544064407440844094410441144124413441444154416441744184419442044214422442344244425442644274428442944304431443244334434443544364437443844394440444144424443444444454446444744484449445044514452445344544455445644574458445944604461446244634464446544664467446844694470447144724473447444754476447744784479448044814482448344844485448644874488448944904491449244934494449544964497449844994500450145024503450445054506450745084509451045114512451345144515451645174518451945204521452245234524452545264527452845294530453145324533453445354536453745384539454045414542454345444545454645474548454945504551455245534554455545564557455845594560456145624563456445654566456745684569457045714572457345744575457645774578457945804581458245834584458545864587458845894590459145924593459445954596459745984599460046014602460346044605460646074608460946104611461246134614461546164617461846194620462146224623462446254626462746284629463046314632463346344635463646374638463946404641464246434644464546464647464846494650465146524653465446554656465746584659466046614662466346644665466646674668466946704671467246734674467546764677467846794680468146824683468446854686468746884689469046914692469346944695469646974698469947004701470247034704470547064707470847094710471147124713471447154716471747184719472047214722472347244725472647274728472947304731473247334734473547364737473847394740474147424743474447454746474747484749475047514752475347544755475647574758475947604761476247634764476547664767476847694770477147724773477447754776477747784779478047814782478347844785478647874788478947904791479247934794479547964797479847994800480148024803480448054806480748084809481048114812481348144815481648174818481948204821482248234824482548264827482848294830483148324833483448354836483748384839484048414842484348444845484648474848484948504851485248534854485548564857485848594860486148624863486448654866486748684869487048714872487348744875487648774878487948804881488248834884488548864887488848894890489148924893489448954896489748984899490049014902490349044905490649074908490949104911491249134914491549164917491849194920492149224923492449254926492749284929493049314932493349344935493649374938493949404941494249434944494549464947494849494950495149524953495449554956495749584959496049614962496349644965496649674968496949704971497249734974497549764977497849794980498149824983498449854986498749884989499049914992499349944995499649974998499950005001500250035004500550065007500850095010501150125013501450155016501750185019502050215022502350245025502650275028502950305031503250335034503550365037503850395040504150425043504450455046504750485049505050515052505350545055505650575058505950605061506250635064506550665067506850695070507150725073507450755076507750785079508050815082508350845085508650875088508950905091509250935094509550965097509850995100510151025103510451055106510751085109511051115112511351145115511651175118511951205121512251235124512551265127512851295130513151325133513451355136513751385139514051415142514351445145514651475148514951505151515251535154515551565157515851595160516151625163516451655166516751685169517051715172517351745175517651775178517951805181518251835184518551865187518851895190519151925193519451955196519751985199520052015202520352045205520652075208520952105211521252135214521552165217521852195220522152225223522452255226522752285229523052315232523352345235523652375238523952405241524252435244524552465247524852495250525152525253525452555256525752585259526052615262526352645265526652675268526952705271527252735274527552765277527852795280528152825283528452855286528752885289529052915292529352945295529652975298529953005301530253035304530553065307530853095310531153125313531453155316531753185319532053215322532353245325532653275328532953305331533253335334533553365337533853395340534153425343534453455346534753485349535053515352535353545355535653575358535953605361536253635364536553665367536853695370537153725373537453755376537753785379538053815382538353845385538653875388538953905391539253935394539553965397539853995400540154025403540454055406540754085409541054115412541354145415541654175418541954205421542254235424542554265427542854295430543154325433543454355436543754385439544054415442544354445445544654475448544954505451545254535454545554565457545854595460546154625463546454655466546754685469547054715472547354745475547654775478547954805481548254835484548554865487548854895490549154925493549454955496549754985499550055015502550355045505550655075508550955105511551255135514551555165517551855195520552155225523552455255526552755285529553055315532553355345535553655375538553955405541554255435544554555465547554855495550555155525553555455555556555755585559556055615562556355645565556655675568556955705571557255735574557555765577557855795580558155825583558455855586558755885589559055915592559355945595559655975598559956005601560256035604560556065607560856095610561156125613561456155616561756185619562056215622562356245625562656275628562956305631563256335634563556365637563856395640564156425643564456455646564756485649565056515652565356545655565656575658565956605661566256635664566556665667566856695670567156725673567456755676567756785679568056815682568356845685568656875688568956905691569256935694569556965697569856995700570157025703570457055706570757085709571057115712571357145715571657175718571957205721572257235724572557265727572857295730573157325733573457355736573757385739574057415742574357445745574657475748574957505751575257535754575557565757575857595760576157625763576457655766576757685769577057715772577357745775577657775778577957805781578257835784578557865787578857895790579157925793579457955796579757985799580058015802580358045805580658075808580958105811581258135814581558165817581858195820582158225823582458255826582758285829583058315832583358345835583658375838583958405841584258435844584558465847584858495850585158525853585458555856585758585859586058615862586358645865586658675868586958705871587258735874587558765877587858795880588158825883588458855886588758885889589058915892589358945895589658975898589959005901590259035904590559065907590859095910591159125913591459155916591759185919592059215922592359245925592659275928592959305931593259335934593559365937593859395940594159425943594459455946594759485949595059515952595359545955595659575958595959605961596259635964596559665967596859695970597159725973597459755976597759785979598059815982598359845985598659875988598959905991599259935994599559965997599859996000600160026003600460056006600760086009601060116012601360146015601660176018601960206021602260236024602560266027602860296030603160326033603460356036603760386039604060416042604360446045604660476048604960506051605260536054605560566057605860596060606160626063606460656066606760686069607060716072607360746075607660776078607960806081608260836084608560866087608860896090609160926093609460956096609760986099610061016102610361046105610661076108610961106111611261136114611561166117611861196120612161226123612461256126612761286129613061316132613361346135613661376138613961406141614261436144614561466147614861496150615161526153615461556156615761586159616061616162616361646165616661676168616961706171617261736174617561766177617861796180618161826183618461856186618761886189619061916192619361946195619661976198619962006201620262036204620562066207620862096210621162126213621462156216621762186219622062216222622362246225622662276228622962306231623262336234623562366237623862396240624162426243624462456246624762486249625062516252625362546255625662576258625962606261626262636264626562666267626862696270627162726273627462756276627762786279628062816282628362846285628662876288628962906291629262936294629562966297629862996300630163026303630463056306630763086309631063116312631363146315631663176318631963206321632263236324632563266327632863296330633163326333633463356336633763386339634063416342634363446345634663476348634963506351635263536354635563566357635863596360636163626363636463656366636763686369637063716372637363746375637663776378637963806381638263836384638563866387638863896390639163926393639463956396639763986399640064016402640364046405640664076408640964106411641264136414641564166417641864196420642164226423642464256426642764286429643064316432643364346435643664376438643964406441644264436444644564466447644864496450645164526453645464556456645764586459646064616462646364646465646664676468646964706471647264736474647564766477647864796480648164826483648464856486648764886489649064916492649364946495649664976498649965006501650265036504650565066507650865096510651165126513651465156516651765186519652065216522652365246525652665276528652965306531653265336534653565366537653865396540654165426543654465456546654765486549655065516552655365546555655665576558655965606561656265636564656565666567656865696570657165726573657465756576657765786579658065816582658365846585658665876588658965906591659265936594659565966597659865996600660166026603660466056606660766086609661066116612661366146615661666176618661966206621662266236624662566266627662866296630663166326633663466356636663766386639664066416642664366446645664666476648664966506651665266536654665566566657665866596660666166626663666466656666666766686669667066716672667366746675667666776678667966806681668266836684668566866687668866896690669166926693669466956696669766986699670067016702670367046705670667076708670967106711671267136714671567166717671867196720672167226723672467256726672767286729673067316732673367346735673667376738673967406741674267436744674567466747674867496750675167526753675467556756675767586759676067616762676367646765676667676768676967706771677267736774677567766777677867796780678167826783678467856786678767886789679067916792679367946795679667976798679968006801680268036804680568066807680868096810681168126813681468156816681768186819682068216822682368246825682668276828682968306831683268336834683568366837683868396840684168426843684468456846684768486849685068516852685368546855685668576858685968606861686268636864686568666867686868696870687168726873687468756876687768786879688068816882688368846885688668876888688968906891689268936894689568966897689868996900690169026903690469056906690769086909691069116912691369146915691669176918691969206921692269236924692569266927692869296930693169326933693469356936693769386939694069416942694369446945694669476948694969506951695269536954695569566957695869596960696169626963696469656966696769686969697069716972697369746975697669776978697969806981698269836984698569866987698869896990699169926993699469956996699769986999700070017002700370047005700670077008700970107011701270137014701570167017701870197020702170227023702470257026702770287029703070317032703370347035703670377038703970407041704270437044704570467047704870497050705170527053705470557056705770587059706070617062706370647065706670677068706970707071707270737074707570767077707870797080708170827083708470857086708770887089709070917092709370947095709670977098709971007101710271037104710571067107710871097110711171127113711471157116711771187119712071217122712371247125712671277128712971307131713271337134713571367137713871397140714171427143714471457146714771487149715071517152715371547155715671577158715971607161716271637164716571667167716871697170717171727173717471757176717771787179718071817182718371847185718671877188718971907191719271937194719571967197719871997200720172027203720472057206720772087209721072117212721372147215721672177218721972207221722272237224722572267227722872297230723172327233723472357236723772387239724072417242724372447245724672477248724972507251725272537254725572567257725872597260726172627263726472657266726772687269727072717272727372747275727672777278727972807281728272837284728572867287728872897290729172927293729472957296729772987299730073017302730373047305730673077308730973107311731273137314731573167317731873197320732173227323732473257326732773287329733073317332733373347335733673377338733973407341734273437344734573467347734873497350735173527353735473557356735773587359736073617362736373647365736673677368736973707371737273737374737573767377737873797380738173827383738473857386738773887389739073917392739373947395739673977398739974007401740274037404740574067407740874097410741174127413741474157416741774187419742074217422742374247425742674277428742974307431743274337434743574367437743874397440744174427443744474457446744774487449745074517452745374547455745674577458745974607461746274637464746574667467746874697470747174727473747474757476747774787479748074817482748374847485748674877488748974907491749274937494749574967497749874997500750175027503750475057506750775087509751075117512751375147515751675177518751975207521752275237524752575267527752875297530753175327533753475357536753775387539754075417542754375447545754675477548754975507551755275537554755575567557755875597560756175627563756475657566756775687569757075717572757375747575757675777578757975807581758275837584758575867587758875897590759175927593759475957596759775987599760076017602760376047605760676077608760976107611761276137614761576167617761876197620762176227623762476257626762776287629763076317632763376347635763676377638763976407641764276437644764576467647764876497650765176527653765476557656765776587659766076617662766376647665766676677668766976707671767276737674767576767677767876797680768176827683768476857686768776887689769076917692769376947695769676977698769977007701770277037704770577067707770877097710771177127713771477157716771777187719772077217722772377247725772677277728772977307731773277337734773577367737773877397740774177427743774477457746774777487749775077517752775377547755775677577758775977607761776277637764776577667767776877697770777177727773777477757776777777787779778077817782778377847785778677877788778977907791779277937794779577967797779877997800780178027803780478057806780778087809781078117812781378147815781678177818781978207821782278237824782578267827782878297830783178327833783478357836783778387839784078417842784378447845784678477848784978507851785278537854785578567857785878597860786178627863786478657866786778687869787078717872787378747875787678777878787978807881788278837884788578867887788878897890789178927893789478957896789778987899790079017902790379047905790679077908790979107911791279137914791579167917791879197920792179227923792479257926792779287929793079317932793379347935793679377938793979407941794279437944794579467947794879497950795179527953795479557956795779587959796079617962796379647965796679677968796979707971797279737974797579767977797879797980798179827983798479857986798779887989799079917992799379947995799679977998799980008001800280038004800580068007800880098010801180128013801480158016801780188019802080218022802380248025802680278028802980308031803280338034803580368037803880398040804180428043804480458046804780488049805080518052805380548055805680578058805980608061806280638064806580668067806880698070807180728073807480758076807780788079808080818082808380848085808680878088808980908091809280938094809580968097809880998100810181028103810481058106810781088109811081118112811381148115811681178118811981208121812281238124812581268127812881298130813181328133813481358136813781388139814081418142814381448145814681478148814981508151815281538154815581568157815881598160816181628163816481658166816781688169817081718172817381748175817681778178817981808181818281838184818581868187818881898190819181928193819481958196819781988199820082018202820382048205820682078208820982108211821282138214821582168217821882198220822182228223822482258226822782288229823082318232823382348235823682378238
  1. /* -*- c++ -*- */
  2. /*
  3. Reprap firmware based on Sprinter and grbl.
  4. Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
  5. This program is free software: you can redistribute it and/or modify
  6. it under the terms of the GNU General Public License as published by
  7. the Free Software Foundation, either version 3 of the License, or
  8. (at your option) any later version.
  9. This program is distributed in the hope that it will be useful,
  10. but WITHOUT ANY WARRANTY; without even the implied warranty of
  11. MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  12. GNU General Public License for more details.
  13. You should have received a copy of the GNU General Public License
  14. along with this program. If not, see <http://www.gnu.org/licenses/>.
  15. */
  16. /*
  17. This firmware is a mashup between Sprinter and grbl.
  18. (https://github.com/kliment/Sprinter)
  19. (https://github.com/simen/grbl/tree)
  20. It has preliminary support for Matthew Roberts advance algorithm
  21. http://reprap.org/pipermail/reprap-dev/2011-May/003323.html
  22. */
  23. #include "Marlin.h"
  24. #ifdef ENABLE_AUTO_BED_LEVELING
  25. #include "vector_3.h"
  26. #ifdef AUTO_BED_LEVELING_GRID
  27. #include "qr_solve.h"
  28. #endif
  29. #endif // ENABLE_AUTO_BED_LEVELING
  30. #ifdef MESH_BED_LEVELING
  31. #include "mesh_bed_leveling.h"
  32. #include "mesh_bed_calibration.h"
  33. #endif
  34. #include "printers.h"
  35. #include "ultralcd.h"
  36. #include "Configuration_prusa.h"
  37. #include "planner.h"
  38. #include "stepper.h"
  39. #include "temperature.h"
  40. #include "motion_control.h"
  41. #include "cardreader.h"
  42. #include "watchdog.h"
  43. #include "ConfigurationStore.h"
  44. #include "language.h"
  45. #include "pins_arduino.h"
  46. #include "math.h"
  47. #include "util.h"
  48. #include <avr/wdt.h>
  49. #include "Dcodes.h"
  50. #ifdef SWSPI
  51. #include "swspi.h"
  52. #endif //SWSPI
  53. #ifdef SWI2C
  54. #include "swi2c.h"
  55. #endif //SWI2C
  56. #ifdef PAT9125
  57. #include "pat9125.h"
  58. #include "fsensor.h"
  59. #endif //PAT9125
  60. #ifdef TMC2130
  61. #include "tmc2130.h"
  62. #endif //TMC2130
  63. #ifdef BLINKM
  64. #include "BlinkM.h"
  65. #include "Wire.h"
  66. #endif
  67. #ifdef ULTRALCD
  68. #include "ultralcd.h"
  69. #endif
  70. #if NUM_SERVOS > 0
  71. #include "Servo.h"
  72. #endif
  73. #if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
  74. #include <SPI.h>
  75. #endif
  76. #define VERSION_STRING "1.0.2"
  77. #include "ultralcd.h"
  78. #include "cmdqueue.h"
  79. // Macros for bit masks
  80. #define BIT(b) (1<<(b))
  81. #define TEST(n,b) (((n)&BIT(b))!=0)
  82. #define SET_BIT(n,b,value) (n) ^= ((-value)^(n)) & (BIT(b))
  83. //Macro for print fan speed
  84. #define FAN_PULSE_WIDTH_LIMIT ((fanSpeed > 100) ? 3 : 4) //time in ms
  85. // look here for descriptions of G-codes: http://linuxcnc.org/handbook/gcode/g-code.html
  86. // http://objects.reprap.org/wiki/Mendel_User_Manual:_RepRapGCodes
  87. //Implemented Codes
  88. //-------------------
  89. // PRUSA CODES
  90. // P F - Returns FW versions
  91. // P R - Returns revision of printer
  92. // G0 -> G1
  93. // G1 - Coordinated Movement X Y Z E
  94. // G2 - CW ARC
  95. // G3 - CCW ARC
  96. // G4 - Dwell S<seconds> or P<milliseconds>
  97. // G10 - retract filament according to settings of M207
  98. // G11 - retract recover filament according to settings of M208
  99. // G28 - Home all Axis
  100. // G29 - Detailed Z-Probe, probes the bed at 3 or more points. Will fail if you haven't homed yet.
  101. // G30 - Single Z Probe, probes bed at current XY location.
  102. // G31 - Dock sled (Z_PROBE_SLED only)
  103. // G32 - Undock sled (Z_PROBE_SLED only)
  104. // G80 - Automatic mesh bed leveling
  105. // G81 - Print bed profile
  106. // G90 - Use Absolute Coordinates
  107. // G91 - Use Relative Coordinates
  108. // G92 - Set current position to coordinates given
  109. // M Codes
  110. // M0 - Unconditional stop - Wait for user to press a button on the LCD (Only if ULTRA_LCD is enabled)
  111. // M1 - Same as M0
  112. // M17 - Enable/Power all stepper motors
  113. // M18 - Disable all stepper motors; same as M84
  114. // M20 - List SD card
  115. // M21 - Init SD card
  116. // M22 - Release SD card
  117. // M23 - Select SD file (M23 filename.g)
  118. // M24 - Start/resume SD print
  119. // M25 - Pause SD print
  120. // M26 - Set SD position in bytes (M26 S12345)
  121. // M27 - Report SD print status
  122. // M28 - Start SD write (M28 filename.g)
  123. // M29 - Stop SD write
  124. // M30 - Delete file from SD (M30 filename.g)
  125. // M31 - Output time since last M109 or SD card start to serial
  126. // M32 - Select file and start SD print (Can be used _while_ printing from SD card files):
  127. // syntax "M32 /path/filename#", or "M32 S<startpos bytes> !filename#"
  128. // Call gcode file : "M32 P !filename#" and return to caller file after finishing (similar to #include).
  129. // The '#' is necessary when calling from within sd files, as it stops buffer prereading
  130. // M42 - Change pin status via gcode Use M42 Px Sy to set pin x to value y, when omitting Px the onboard led will be used.
  131. // M80 - Turn on Power Supply
  132. // M81 - Turn off Power Supply
  133. // M82 - Set E codes absolute (default)
  134. // M83 - Set E codes relative while in Absolute Coordinates (G90) mode
  135. // M84 - Disable steppers until next move,
  136. // or use S<seconds> to specify an inactivity timeout, after which the steppers will be disabled. S0 to disable the timeout.
  137. // M85 - Set inactivity shutdown timer with parameter S<seconds>. To disable set zero (default)
  138. // M92 - Set axis_steps_per_unit - same syntax as G92
  139. // M104 - Set extruder target temp
  140. // M105 - Read current temp
  141. // M106 - Fan on
  142. // M107 - Fan off
  143. // M109 - Sxxx Wait for extruder current temp to reach target temp. Waits only when heating
  144. // Rxxx Wait for extruder current temp to reach target temp. Waits when heating and cooling
  145. // IF AUTOTEMP is enabled, S<mintemp> B<maxtemp> F<factor>. Exit autotemp by any M109 without F
  146. // M112 - Emergency stop
  147. // M113 - Get or set the timeout interval for Host Keepalive "busy" messages
  148. // M114 - Output current position to serial port
  149. // M115 - Capabilities string
  150. // M117 - display message
  151. // M119 - Output Endstop status to serial port
  152. // M126 - Solenoid Air Valve Open (BariCUDA support by jmil)
  153. // M127 - Solenoid Air Valve Closed (BariCUDA vent to atmospheric pressure by jmil)
  154. // M128 - EtoP Open (BariCUDA EtoP = electricity to air pressure transducer by jmil)
  155. // M129 - EtoP Closed (BariCUDA EtoP = electricity to air pressure transducer by jmil)
  156. // M140 - Set bed target temp
  157. // M150 - Set BlinkM Color Output R: Red<0-255> U(!): Green<0-255> B: Blue<0-255> over i2c, G for green does not work.
  158. // M190 - Sxxx Wait for bed current temp to reach target temp. Waits only when heating
  159. // Rxxx Wait for bed current temp to reach target temp. Waits when heating and cooling
  160. // M200 D<millimeters>- set filament diameter and set E axis units to cubic millimeters (use S0 to set back to millimeters).
  161. // M201 - Set max acceleration in units/s^2 for print moves (M201 X1000 Y1000)
  162. // M202 - Set max acceleration in units/s^2 for travel moves (M202 X1000 Y1000) Unused in Marlin!!
  163. // M203 - Set maximum feedrate that your machine can sustain (M203 X200 Y200 Z300 E10000) in mm/sec
  164. // M204 - Set default acceleration: S normal moves T filament only moves (M204 S3000 T7000) in mm/sec^2 also sets minimum segment time in ms (B20000) to prevent buffer under-runs and M20 minimum feedrate
  165. // M205 - advanced settings: minimum travel speed S=while printing T=travel only, B=minimum segment time X= maximum xy jerk, Z=maximum Z jerk, E=maximum E jerk
  166. // M206 - set additional homing offset
  167. // M207 - set retract length S[positive mm] F[feedrate mm/min] Z[additional zlift/hop], stays in mm regardless of M200 setting
  168. // M208 - set recover=unretract length S[positive mm surplus to the M207 S*] F[feedrate mm/sec]
  169. // M209 - S<1=true/0=false> enable automatic retract detect if the slicer did not support G10/11: every normal extrude-only move will be classified as retract depending on the direction.
  170. // M218 - set hotend offset (in mm): T<extruder_number> X<offset_on_X> Y<offset_on_Y>
  171. // M220 S<factor in percent>- set speed factor override percentage
  172. // M221 S<factor in percent>- set extrude factor override percentage
  173. // M226 P<pin number> S<pin state>- Wait until the specified pin reaches the state required
  174. // M240 - Trigger a camera to take a photograph
  175. // M250 - Set LCD contrast C<contrast value> (value 0..63)
  176. // M280 - set servo position absolute. P: servo index, S: angle or microseconds
  177. // M300 - Play beep sound S<frequency Hz> P<duration ms>
  178. // M301 - Set PID parameters P I and D
  179. // M302 - Allow cold extrudes, or set the minimum extrude S<temperature>.
  180. // M303 - PID relay autotune S<temperature> sets the target temperature. (default target temperature = 150C)
  181. // M304 - Set bed PID parameters P I and D
  182. // M400 - Finish all moves
  183. // M401 - Lower z-probe if present
  184. // M402 - Raise z-probe if present
  185. // M404 - N<dia in mm> Enter the nominal filament width (3mm, 1.75mm ) or will display nominal filament width without parameters
  186. // M405 - Turn on Filament Sensor extrusion control. Optional D<delay in cm> to set delay in centimeters between sensor and extruder
  187. // M406 - Turn off Filament Sensor extrusion control
  188. // M407 - Displays measured filament diameter
  189. // M500 - stores parameters in EEPROM
  190. // M501 - reads parameters from EEPROM (if you need reset them after you changed them temporarily).
  191. // M502 - reverts to the default "factory settings". You still need to store them in EEPROM afterwards if you want to.
  192. // M503 - print the current settings (from memory not from EEPROM)
  193. // M509 - force language selection on next restart
  194. // M540 - Use S[0|1] to enable or disable the stop SD card print on endstop hit (requires ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED)
  195. // M600 - Pause for filament change X[pos] Y[pos] Z[relative lift] E[initial retract] L[later retract distance for removal]
  196. // M605 - Set dual x-carriage movement mode: S<mode> [ X<duplication x-offset> R<duplication temp offset> ]
  197. // M900 - Set LIN_ADVANCE options, if enabled. See Configuration_adv.h for details.
  198. // M907 - Set digital trimpot motor current using axis codes.
  199. // M908 - Control digital trimpot directly.
  200. // M350 - Set microstepping mode.
  201. // M351 - Toggle MS1 MS2 pins directly.
  202. // M928 - Start SD logging (M928 filename.g) - ended by M29
  203. // M999 - Restart after being stopped by error
  204. //Stepper Movement Variables
  205. //===========================================================================
  206. //=============================imported variables============================
  207. //===========================================================================
  208. //===========================================================================
  209. //=============================public variables=============================
  210. //===========================================================================
  211. #ifdef SDSUPPORT
  212. CardReader card;
  213. #endif
  214. unsigned long PingTime = millis();
  215. union Data
  216. {
  217. byte b[2];
  218. int value;
  219. };
  220. float homing_feedrate[] = HOMING_FEEDRATE;
  221. // Currently only the extruder axis may be switched to a relative mode.
  222. // Other axes are always absolute or relative based on the common relative_mode flag.
  223. bool axis_relative_modes[] = AXIS_RELATIVE_MODES;
  224. int feedmultiply=100; //100->1 200->2
  225. int saved_feedmultiply;
  226. int extrudemultiply=100; //100->1 200->2
  227. int extruder_multiply[EXTRUDERS] = {100
  228. #if EXTRUDERS > 1
  229. , 100
  230. #if EXTRUDERS > 2
  231. , 100
  232. #endif
  233. #endif
  234. };
  235. int bowden_length[4] = {385, 385, 385, 385};
  236. bool is_usb_printing = false;
  237. bool homing_flag = false;
  238. bool temp_cal_active = false;
  239. unsigned long kicktime = millis()+100000;
  240. unsigned int usb_printing_counter;
  241. int lcd_change_fil_state = 0;
  242. int feedmultiplyBckp = 100;
  243. float HotendTempBckp = 0;
  244. int fanSpeedBckp = 0;
  245. float pause_lastpos[4];
  246. unsigned long pause_time = 0;
  247. unsigned long start_pause_print = millis();
  248. unsigned long t_fan_rising_edge = millis();
  249. //unsigned long load_filament_time;
  250. bool mesh_bed_leveling_flag = false;
  251. bool mesh_bed_run_from_menu = false;
  252. unsigned char lang_selected = 0;
  253. int8_t FarmMode = 0;
  254. bool prusa_sd_card_upload = false;
  255. unsigned int status_number = 0;
  256. unsigned long total_filament_used;
  257. unsigned int heating_status;
  258. unsigned int heating_status_counter;
  259. bool custom_message;
  260. bool loading_flag = false;
  261. unsigned int custom_message_type;
  262. unsigned int custom_message_state;
  263. char snmm_filaments_used = 0;
  264. float distance_from_min[2];
  265. bool fan_state[2];
  266. int fan_edge_counter[2];
  267. int fan_speed[2];
  268. char dir_names[3][9];
  269. bool sortAlpha = false;
  270. bool volumetric_enabled = false;
  271. float filament_size[EXTRUDERS] = { DEFAULT_NOMINAL_FILAMENT_DIA
  272. #if EXTRUDERS > 1
  273. , DEFAULT_NOMINAL_FILAMENT_DIA
  274. #if EXTRUDERS > 2
  275. , DEFAULT_NOMINAL_FILAMENT_DIA
  276. #endif
  277. #endif
  278. };
  279. float extruder_multiplier[EXTRUDERS] = {1.0
  280. #if EXTRUDERS > 1
  281. , 1.0
  282. #if EXTRUDERS > 2
  283. , 1.0
  284. #endif
  285. #endif
  286. };
  287. float current_position[NUM_AXIS] = { 0.0, 0.0, 0.0, 0.0 };
  288. float add_homing[3]={0,0,0};
  289. float min_pos[3] = { X_MIN_POS, Y_MIN_POS, Z_MIN_POS };
  290. float max_pos[3] = { X_MAX_POS, Y_MAX_POS, Z_MAX_POS };
  291. bool axis_known_position[3] = {false, false, false};
  292. float zprobe_zoffset;
  293. // Extruder offset
  294. #if EXTRUDERS > 1
  295. #define NUM_EXTRUDER_OFFSETS 2 // only in XY plane
  296. float extruder_offset[NUM_EXTRUDER_OFFSETS][EXTRUDERS] = {
  297. #if defined(EXTRUDER_OFFSET_X) && defined(EXTRUDER_OFFSET_Y)
  298. EXTRUDER_OFFSET_X, EXTRUDER_OFFSET_Y
  299. #endif
  300. };
  301. #endif
  302. uint8_t active_extruder = 0;
  303. int fanSpeed=0;
  304. #ifdef FWRETRACT
  305. bool autoretract_enabled=false;
  306. bool retracted[EXTRUDERS]={false
  307. #if EXTRUDERS > 1
  308. , false
  309. #if EXTRUDERS > 2
  310. , false
  311. #endif
  312. #endif
  313. };
  314. bool retracted_swap[EXTRUDERS]={false
  315. #if EXTRUDERS > 1
  316. , false
  317. #if EXTRUDERS > 2
  318. , false
  319. #endif
  320. #endif
  321. };
  322. float retract_length = RETRACT_LENGTH;
  323. float retract_length_swap = RETRACT_LENGTH_SWAP;
  324. float retract_feedrate = RETRACT_FEEDRATE;
  325. float retract_zlift = RETRACT_ZLIFT;
  326. float retract_recover_length = RETRACT_RECOVER_LENGTH;
  327. float retract_recover_length_swap = RETRACT_RECOVER_LENGTH_SWAP;
  328. float retract_recover_feedrate = RETRACT_RECOVER_FEEDRATE;
  329. #endif
  330. #ifdef ULTIPANEL
  331. #ifdef PS_DEFAULT_OFF
  332. bool powersupply = false;
  333. #else
  334. bool powersupply = true;
  335. #endif
  336. #endif
  337. bool cancel_heatup = false ;
  338. #ifdef HOST_KEEPALIVE_FEATURE
  339. int busy_state = NOT_BUSY;
  340. static long prev_busy_signal_ms = -1;
  341. uint8_t host_keepalive_interval = HOST_KEEPALIVE_INTERVAL;
  342. #else
  343. #define host_keepalive();
  344. #define KEEPALIVE_STATE(n);
  345. #endif
  346. const char errormagic[] PROGMEM = "Error:";
  347. const char echomagic[] PROGMEM = "echo:";
  348. //===========================================================================
  349. //=============================Private Variables=============================
  350. //===========================================================================
  351. const char axis_codes[NUM_AXIS] = {'X', 'Y', 'Z', 'E'};
  352. float destination[NUM_AXIS] = { 0.0, 0.0, 0.0, 0.0};
  353. static float delta[3] = {0.0, 0.0, 0.0};
  354. // For tracing an arc
  355. static float offset[3] = {0.0, 0.0, 0.0};
  356. static float feedrate = 1500.0, next_feedrate, saved_feedrate;
  357. // Determines Absolute or Relative Coordinates.
  358. // Also there is bool axis_relative_modes[] per axis flag.
  359. static bool relative_mode = false;
  360. #ifndef _DISABLE_M42_M226
  361. const int sensitive_pins[] = SENSITIVE_PINS; // Sensitive pin list for M42
  362. #endif //_DISABLE_M42_M226
  363. //static float tt = 0;
  364. //static float bt = 0;
  365. //Inactivity shutdown variables
  366. static unsigned long previous_millis_cmd = 0;
  367. unsigned long max_inactive_time = 0;
  368. static unsigned long stepper_inactive_time = DEFAULT_STEPPER_DEACTIVE_TIME*1000l;
  369. unsigned long starttime=0;
  370. unsigned long stoptime=0;
  371. unsigned long _usb_timer = 0;
  372. static uint8_t tmp_extruder;
  373. bool extruder_under_pressure = true;
  374. bool Stopped=false;
  375. #if NUM_SERVOS > 0
  376. Servo servos[NUM_SERVOS];
  377. #endif
  378. bool CooldownNoWait = true;
  379. bool target_direction;
  380. //Insert variables if CHDK is defined
  381. #ifdef CHDK
  382. unsigned long chdkHigh = 0;
  383. boolean chdkActive = false;
  384. #endif
  385. //===========================================================================
  386. //=============================Routines======================================
  387. //===========================================================================
  388. void get_arc_coordinates();
  389. bool setTargetedHotend(int code);
  390. void serial_echopair_P(const char *s_P, float v)
  391. { serialprintPGM(s_P); SERIAL_ECHO(v); }
  392. void serial_echopair_P(const char *s_P, double v)
  393. { serialprintPGM(s_P); SERIAL_ECHO(v); }
  394. void serial_echopair_P(const char *s_P, unsigned long v)
  395. { serialprintPGM(s_P); SERIAL_ECHO(v); }
  396. #ifdef SDSUPPORT
  397. #include "SdFatUtil.h"
  398. int freeMemory() { return SdFatUtil::FreeRam(); }
  399. #else
  400. extern "C" {
  401. extern unsigned int __bss_end;
  402. extern unsigned int __heap_start;
  403. extern void *__brkval;
  404. int freeMemory() {
  405. int free_memory;
  406. if ((int)__brkval == 0)
  407. free_memory = ((int)&free_memory) - ((int)&__bss_end);
  408. else
  409. free_memory = ((int)&free_memory) - ((int)__brkval);
  410. return free_memory;
  411. }
  412. }
  413. #endif //!SDSUPPORT
  414. void setup_killpin()
  415. {
  416. #if defined(KILL_PIN) && KILL_PIN > -1
  417. SET_INPUT(KILL_PIN);
  418. WRITE(KILL_PIN,HIGH);
  419. #endif
  420. }
  421. // Set home pin
  422. void setup_homepin(void)
  423. {
  424. #if defined(HOME_PIN) && HOME_PIN > -1
  425. SET_INPUT(HOME_PIN);
  426. WRITE(HOME_PIN,HIGH);
  427. #endif
  428. }
  429. void setup_photpin()
  430. {
  431. #if defined(PHOTOGRAPH_PIN) && PHOTOGRAPH_PIN > -1
  432. SET_OUTPUT(PHOTOGRAPH_PIN);
  433. WRITE(PHOTOGRAPH_PIN, LOW);
  434. #endif
  435. }
  436. void setup_powerhold()
  437. {
  438. #if defined(SUICIDE_PIN) && SUICIDE_PIN > -1
  439. SET_OUTPUT(SUICIDE_PIN);
  440. WRITE(SUICIDE_PIN, HIGH);
  441. #endif
  442. #if defined(PS_ON_PIN) && PS_ON_PIN > -1
  443. SET_OUTPUT(PS_ON_PIN);
  444. #if defined(PS_DEFAULT_OFF)
  445. WRITE(PS_ON_PIN, PS_ON_ASLEEP);
  446. #else
  447. WRITE(PS_ON_PIN, PS_ON_AWAKE);
  448. #endif
  449. #endif
  450. }
  451. void suicide()
  452. {
  453. #if defined(SUICIDE_PIN) && SUICIDE_PIN > -1
  454. SET_OUTPUT(SUICIDE_PIN);
  455. WRITE(SUICIDE_PIN, LOW);
  456. #endif
  457. }
  458. void servo_init()
  459. {
  460. #if (NUM_SERVOS >= 1) && defined(SERVO0_PIN) && (SERVO0_PIN > -1)
  461. servos[0].attach(SERVO0_PIN);
  462. #endif
  463. #if (NUM_SERVOS >= 2) && defined(SERVO1_PIN) && (SERVO1_PIN > -1)
  464. servos[1].attach(SERVO1_PIN);
  465. #endif
  466. #if (NUM_SERVOS >= 3) && defined(SERVO2_PIN) && (SERVO2_PIN > -1)
  467. servos[2].attach(SERVO2_PIN);
  468. #endif
  469. #if (NUM_SERVOS >= 4) && defined(SERVO3_PIN) && (SERVO3_PIN > -1)
  470. servos[3].attach(SERVO3_PIN);
  471. #endif
  472. #if (NUM_SERVOS >= 5)
  473. #error "TODO: enter initalisation code for more servos"
  474. #endif
  475. }
  476. static void lcd_language_menu();
  477. void stop_and_save_print_to_ram(float z_move, float e_move);
  478. void restore_print_from_ram_and_continue(float e_move);
  479. bool fans_check_enabled = true;
  480. bool filament_autoload_enabled = true;
  481. #ifdef TMC2130
  482. extern int8_t CrashDetectMenu;
  483. void crashdet_enable()
  484. {
  485. // MYSERIAL.println("crashdet_enable");
  486. tmc2130_sg_stop_on_crash = true;
  487. eeprom_update_byte((uint8_t*)EEPROM_CRASH_DET, 0xFF);
  488. CrashDetectMenu = 1;
  489. }
  490. void crashdet_disable()
  491. {
  492. // MYSERIAL.println("crashdet_disable");
  493. tmc2130_sg_stop_on_crash = false;
  494. tmc2130_sg_crash = 0;
  495. eeprom_update_byte((uint8_t*)EEPROM_CRASH_DET, 0x00);
  496. CrashDetectMenu = 0;
  497. }
  498. void crashdet_stop_and_save_print()
  499. {
  500. stop_and_save_print_to_ram(10, 0); //XY - no change, Z 10mm up, E - no change
  501. }
  502. void crashdet_restore_print_and_continue()
  503. {
  504. restore_print_from_ram_and_continue(0); //XYZ = orig, E - no change
  505. // babystep_apply();
  506. }
  507. void crashdet_stop_and_save_print2()
  508. {
  509. cli();
  510. planner_abort_hard(); //abort printing
  511. cmdqueue_reset(); //empty cmdqueue
  512. card.sdprinting = false;
  513. card.closefile();
  514. // Reset and re-enable the stepper timer just before the global interrupts are enabled.
  515. st_reset_timer();
  516. sei();
  517. }
  518. void crashdet_detected(uint8_t mask)
  519. {
  520. // printf("CRASH_DETECTED");
  521. /* while (!is_buffer_empty())
  522. {
  523. process_commands();
  524. cmdqueue_pop_front();
  525. }*/
  526. st_synchronize();
  527. lcd_update_enable(true);
  528. lcd_implementation_clear();
  529. lcd_update(2);
  530. if (mask & X_AXIS_MASK)
  531. {
  532. eeprom_update_byte((uint8_t*)EEPROM_CRASH_COUNT_X, eeprom_read_byte((uint8_t*)EEPROM_CRASH_COUNT_X) + 1);
  533. eeprom_update_word((uint16_t*)EEPROM_CRASH_COUNT_X_TOT, eeprom_read_word((uint16_t*)EEPROM_CRASH_COUNT_X_TOT) + 1);
  534. }
  535. if (mask & Y_AXIS_MASK)
  536. {
  537. eeprom_update_byte((uint8_t*)EEPROM_CRASH_COUNT_Y, eeprom_read_byte((uint8_t*)EEPROM_CRASH_COUNT_Y) + 1);
  538. eeprom_update_word((uint16_t*)EEPROM_CRASH_COUNT_Y_TOT, eeprom_read_word((uint16_t*)EEPROM_CRASH_COUNT_Y_TOT) + 1);
  539. }
  540. #ifdef AUTOMATIC_RECOVERY_AFTER_CRASH
  541. bool yesno = true;
  542. #else
  543. bool yesno = lcd_show_fullscreen_message_yes_no_and_wait_P(MSG_CRASH_DETECTED, false);
  544. #endif
  545. lcd_update_enable(true);
  546. lcd_update(2);
  547. lcd_setstatuspgm(MSG_CRASH_DETECTED);
  548. if (yesno)
  549. {
  550. enquecommand_P(PSTR("G28 X Y"));
  551. enquecommand_P(PSTR("CRASH_RECOVER"));
  552. }
  553. else
  554. {
  555. enquecommand_P(PSTR("CRASH_CANCEL"));
  556. }
  557. }
  558. void crashdet_recover()
  559. {
  560. crashdet_restore_print_and_continue();
  561. tmc2130_sg_stop_on_crash = true;
  562. }
  563. void crashdet_cancel()
  564. {
  565. card.sdprinting = false;
  566. card.closefile();
  567. tmc2130_sg_stop_on_crash = true;
  568. }
  569. void failstats_reset_print()
  570. {
  571. eeprom_update_byte((uint8_t *)EEPROM_CRASH_COUNT_X, 0);
  572. eeprom_update_byte((uint8_t *)EEPROM_CRASH_COUNT_Y, 0);
  573. eeprom_update_byte((uint8_t *)EEPROM_FERROR_COUNT, 0);
  574. eeprom_update_byte((uint8_t *)EEPROM_POWER_COUNT, 0);
  575. }
  576. #endif //TMC2130
  577. #ifdef MESH_BED_LEVELING
  578. enum MeshLevelingState { MeshReport, MeshStart, MeshNext, MeshSet };
  579. #endif
  580. // Factory reset function
  581. // This function is used to erase parts or whole EEPROM memory which is used for storing calibration and and so on.
  582. // Level input parameter sets depth of reset
  583. // Quiet parameter masks all waitings for user interact.
  584. int er_progress = 0;
  585. void factory_reset(char level, bool quiet)
  586. {
  587. lcd_implementation_clear();
  588. int cursor_pos = 0;
  589. switch (level) {
  590. // Level 0: Language reset
  591. case 0:
  592. WRITE(BEEPER, HIGH);
  593. _delay_ms(100);
  594. WRITE(BEEPER, LOW);
  595. lcd_force_language_selection();
  596. break;
  597. //Level 1: Reset statistics
  598. case 1:
  599. WRITE(BEEPER, HIGH);
  600. _delay_ms(100);
  601. WRITE(BEEPER, LOW);
  602. eeprom_update_dword((uint32_t *)EEPROM_TOTALTIME, 0);
  603. eeprom_update_dword((uint32_t *)EEPROM_FILAMENTUSED, 0);
  604. eeprom_update_byte((uint8_t *)EEPROM_CRASH_COUNT_X, 0);
  605. eeprom_update_byte((uint8_t *)EEPROM_CRASH_COUNT_Y, 0);
  606. eeprom_update_byte((uint8_t *)EEPROM_FERROR_COUNT, 0);
  607. eeprom_update_byte((uint8_t *)EEPROM_POWER_COUNT, 0);
  608. eeprom_update_word((uint16_t *)EEPROM_CRASH_COUNT_X_TOT, 0);
  609. eeprom_update_word((uint16_t *)EEPROM_CRASH_COUNT_Y_TOT, 0);
  610. eeprom_update_word((uint16_t *)EEPROM_FERROR_COUNT_TOT, 0);
  611. eeprom_update_word((uint16_t *)EEPROM_POWER_COUNT_TOT, 0);
  612. lcd_menu_statistics();
  613. break;
  614. // Level 2: Prepare for shipping
  615. case 2:
  616. //lcd_printPGM(PSTR("Factory RESET"));
  617. //lcd_print_at_PGM(1,2,PSTR("Shipping prep"));
  618. // Force language selection at the next boot up.
  619. lcd_force_language_selection();
  620. // Force the "Follow calibration flow" message at the next boot up.
  621. calibration_status_store(CALIBRATION_STATUS_Z_CALIBRATION);
  622. eeprom_write_byte((uint8_t*)EEPROM_WIZARD_ACTIVE, 1); //run wizard
  623. farm_no = 0;
  624. farm_mode == false;
  625. eeprom_update_byte((uint8_t*)EEPROM_FARM_MODE, farm_mode);
  626. EEPROM_save_B(EEPROM_FARM_NUMBER, &farm_no);
  627. WRITE(BEEPER, HIGH);
  628. _delay_ms(100);
  629. WRITE(BEEPER, LOW);
  630. //_delay_ms(2000);
  631. break;
  632. // Level 3: erase everything, whole EEPROM will be set to 0xFF
  633. case 3:
  634. lcd_printPGM(PSTR("Factory RESET"));
  635. lcd_print_at_PGM(1, 2, PSTR("ERASING all data"));
  636. WRITE(BEEPER, HIGH);
  637. _delay_ms(100);
  638. WRITE(BEEPER, LOW);
  639. er_progress = 0;
  640. lcd_print_at_PGM(3, 3, PSTR(" "));
  641. lcd_implementation_print_at(3, 3, er_progress);
  642. // Erase EEPROM
  643. for (int i = 0; i < 4096; i++) {
  644. eeprom_write_byte((uint8_t*)i, 0xFF);
  645. if (i % 41 == 0) {
  646. er_progress++;
  647. lcd_print_at_PGM(3, 3, PSTR(" "));
  648. lcd_implementation_print_at(3, 3, er_progress);
  649. lcd_printPGM(PSTR("%"));
  650. }
  651. }
  652. break;
  653. case 4:
  654. bowden_menu();
  655. break;
  656. default:
  657. break;
  658. }
  659. }
  660. #include "LiquidCrystal.h"
  661. extern LiquidCrystal lcd;
  662. FILE _lcdout = {0};
  663. int lcd_putchar(char c, FILE *stream)
  664. {
  665. lcd.write(c);
  666. return 0;
  667. }
  668. FILE _uartout = {0};
  669. int uart_putchar(char c, FILE *stream)
  670. {
  671. MYSERIAL.write(c);
  672. return 0;
  673. }
  674. void lcd_splash()
  675. {
  676. // lcd_print_at_PGM(0, 1, PSTR(" Original Prusa "));
  677. // lcd_print_at_PGM(0, 2, PSTR(" 3D Printers "));
  678. // lcd.print_P(PSTR("\x1b[1;3HOriginal Prusa\x1b[2;4H3D Printers"));
  679. fputs_P(PSTR(ESC_2J ESC_H(1,1) "Original Prusa i3" ESC_H(3,2) "Prusa Research"), lcdout);
  680. }
  681. void factory_reset()
  682. {
  683. KEEPALIVE_STATE(PAUSED_FOR_USER);
  684. if (!READ(BTN_ENC))
  685. {
  686. _delay_ms(1000);
  687. if (!READ(BTN_ENC))
  688. {
  689. lcd_implementation_clear();
  690. lcd_printPGM(PSTR("Factory RESET"));
  691. SET_OUTPUT(BEEPER);
  692. WRITE(BEEPER, HIGH);
  693. while (!READ(BTN_ENC));
  694. WRITE(BEEPER, LOW);
  695. _delay_ms(2000);
  696. char level = reset_menu();
  697. factory_reset(level, false);
  698. switch (level) {
  699. case 0: _delay_ms(0); break;
  700. case 1: _delay_ms(0); break;
  701. case 2: _delay_ms(0); break;
  702. case 3: _delay_ms(0); break;
  703. }
  704. // _delay_ms(100);
  705. /*
  706. #ifdef MESH_BED_LEVELING
  707. _delay_ms(2000);
  708. if (!READ(BTN_ENC))
  709. {
  710. WRITE(BEEPER, HIGH);
  711. _delay_ms(100);
  712. WRITE(BEEPER, LOW);
  713. _delay_ms(200);
  714. WRITE(BEEPER, HIGH);
  715. _delay_ms(100);
  716. WRITE(BEEPER, LOW);
  717. int _z = 0;
  718. calibration_status_store(CALIBRATION_STATUS_CALIBRATED);
  719. EEPROM_save_B(EEPROM_BABYSTEP_X, &_z);
  720. EEPROM_save_B(EEPROM_BABYSTEP_Y, &_z);
  721. EEPROM_save_B(EEPROM_BABYSTEP_Z, &_z);
  722. }
  723. else
  724. {
  725. WRITE(BEEPER, HIGH);
  726. _delay_ms(100);
  727. WRITE(BEEPER, LOW);
  728. }
  729. #endif // mesh */
  730. }
  731. }
  732. else
  733. {
  734. //_delay_ms(1000); // wait 1sec to display the splash screen // what's this and why do we need it?? - andre
  735. }
  736. KEEPALIVE_STATE(IN_HANDLER);
  737. }
  738. void show_fw_version_warnings() {
  739. if (FW_DEV_VERSION == FW_VERSION_GOLD || FW_DEV_VERSION == FW_VERSION_RC) return;
  740. switch (FW_DEV_VERSION) {
  741. case(FW_VERSION_ALPHA): lcd_show_fullscreen_message_and_wait_P(MSG_FW_VERSION_ALPHA); break;
  742. case(FW_VERSION_BETA): lcd_show_fullscreen_message_and_wait_P(MSG_FW_VERSION_BETA); break;
  743. case(FW_VERSION_DEVEL):
  744. case(FW_VERSION_DEBUG):
  745. lcd_update_enable(false);
  746. lcd_implementation_clear();
  747. #if FW_DEV_VERSION == FW_VERSION_DEVEL
  748. lcd_print_at_PGM(0, 0, PSTR("Development build !!"));
  749. #else
  750. lcd_print_at_PGM(0, 0, PSTR("Debbugging build !!!"));
  751. #endif
  752. lcd_print_at_PGM(0, 1, PSTR("May destroy printer!"));
  753. lcd_print_at_PGM(0, 2, PSTR("ver ")); lcd_printPGM(PSTR(FW_VERSION_FULL));
  754. lcd_print_at_PGM(0, 3, PSTR(FW_REPOSITORY));
  755. lcd_wait_for_click();
  756. break;
  757. default: lcd_show_fullscreen_message_and_wait_P(MSG_FW_VERSION_UNKNOWN); break;
  758. }
  759. lcd_update_enable(true);
  760. }
  761. uint8_t check_printer_version()
  762. {
  763. uint8_t version_changed = 0;
  764. uint16_t printer_type = eeprom_read_word((uint16_t*)EEPROM_PRINTER_TYPE);
  765. uint16_t motherboard = eeprom_read_word((uint16_t*)EEPROM_BOARD_TYPE);
  766. if (printer_type != PRINTER_TYPE) {
  767. if (printer_type == 0xffff) eeprom_write_word((uint16_t*)EEPROM_PRINTER_TYPE, PRINTER_TYPE);
  768. else version_changed |= 0b10;
  769. }
  770. if (motherboard != MOTHERBOARD) {
  771. if(motherboard == 0xffff) eeprom_write_word((uint16_t*)EEPROM_BOARD_TYPE, MOTHERBOARD);
  772. else version_changed |= 0b01;
  773. }
  774. return version_changed;
  775. }
  776. void erase_eeprom_section(uint16_t offset, uint16_t bytes)
  777. {
  778. for (int i = offset; i < (offset+bytes); i++) eeprom_write_byte((uint8_t*)i, 0xFF);
  779. }
  780. // "Setup" function is called by the Arduino framework on startup.
  781. // Before startup, the Timers-functions (PWM)/Analog RW and HardwareSerial provided by the Arduino-code
  782. // are initialized by the main() routine provided by the Arduino framework.
  783. void setup()
  784. {
  785. lcd_init();
  786. fdev_setup_stream(lcdout, lcd_putchar, NULL, _FDEV_SETUP_WRITE); //setup lcdout stream
  787. lcd_splash();
  788. setup_killpin();
  789. setup_powerhold();
  790. farm_mode = eeprom_read_byte((uint8_t*)EEPROM_FARM_MODE);
  791. EEPROM_read_B(EEPROM_FARM_NUMBER, &farm_no);
  792. if ((farm_mode == 0xFF && farm_no == 0) || (farm_no == 0xFFFF)) farm_mode = false; //if farm_mode has not been stored to eeprom yet and farm number is set to zero or EEPROM is fresh, deactivate farm mode
  793. if (farm_no == 0xFFFF) farm_no = 0;
  794. selectedSerialPort = eeprom_read_byte((uint8_t*)EEPROM_SECOND_SERIAL_ACTIVE);
  795. if (selectedSerialPort == 0xFF) selectedSerialPort = 0;
  796. if (farm_mode)
  797. {
  798. prusa_statistics(8);
  799. selectedSerialPort = 1;
  800. }
  801. MYSERIAL.begin(BAUDRATE);
  802. fdev_setup_stream(uartout, uart_putchar, NULL, _FDEV_SETUP_WRITE); //setup uart out stream
  803. stdout = uartout;
  804. SERIAL_PROTOCOLLNPGM("start");
  805. SERIAL_ECHO_START;
  806. printf_P(PSTR(" "FW_VERSION_FULL"\n"));
  807. #if 0
  808. SERIAL_ECHOLN("Reading eeprom from 0 to 100: start");
  809. for (int i = 0; i < 4096; ++i) {
  810. int b = eeprom_read_byte((unsigned char*)i);
  811. if (b != 255) {
  812. SERIAL_ECHO(i);
  813. SERIAL_ECHO(":");
  814. SERIAL_ECHO(b);
  815. SERIAL_ECHOLN("");
  816. }
  817. }
  818. SERIAL_ECHOLN("Reading eeprom from 0 to 100: done");
  819. #endif
  820. // Check startup - does nothing if bootloader sets MCUSR to 0
  821. byte mcu = MCUSR;
  822. /* if (mcu & 1) SERIAL_ECHOLNRPGM(MSG_POWERUP);
  823. if (mcu & 2) SERIAL_ECHOLNRPGM(MSG_EXTERNAL_RESET);
  824. if (mcu & 4) SERIAL_ECHOLNRPGM(MSG_BROWNOUT_RESET);
  825. if (mcu & 8) SERIAL_ECHOLNRPGM(MSG_WATCHDOG_RESET);
  826. if (mcu & 32) SERIAL_ECHOLNRPGM(MSG_SOFTWARE_RESET);*/
  827. if (mcu & 1) puts_P(MSG_POWERUP);
  828. if (mcu & 2) puts_P(MSG_EXTERNAL_RESET);
  829. if (mcu & 4) puts_P(MSG_BROWNOUT_RESET);
  830. if (mcu & 8) puts_P(MSG_WATCHDOG_RESET);
  831. if (mcu & 32) puts_P(MSG_SOFTWARE_RESET);
  832. MCUSR = 0;
  833. //SERIAL_ECHORPGM(MSG_MARLIN);
  834. //SERIAL_ECHOLNRPGM(VERSION_STRING);
  835. #ifdef STRING_VERSION_CONFIG_H
  836. #ifdef STRING_CONFIG_H_AUTHOR
  837. SERIAL_ECHO_START;
  838. SERIAL_ECHORPGM(MSG_CONFIGURATION_VER);
  839. SERIAL_ECHOPGM(STRING_VERSION_CONFIG_H);
  840. SERIAL_ECHORPGM(MSG_AUTHOR);
  841. SERIAL_ECHOLNPGM(STRING_CONFIG_H_AUTHOR);
  842. SERIAL_ECHOPGM("Compiled: ");
  843. SERIAL_ECHOLNPGM(__DATE__);
  844. #endif
  845. #endif
  846. SERIAL_ECHO_START;
  847. SERIAL_ECHORPGM(MSG_FREE_MEMORY);
  848. SERIAL_ECHO(freeMemory());
  849. SERIAL_ECHORPGM(MSG_PLANNER_BUFFER_BYTES);
  850. SERIAL_ECHOLN((int)sizeof(block_t)*BLOCK_BUFFER_SIZE);
  851. //lcd_update_enable(false); // why do we need this?? - andre
  852. // loads data from EEPROM if available else uses defaults (and resets step acceleration rate)
  853. bool previous_settings_retrieved = false;
  854. uint8_t hw_changed = check_printer_version();
  855. if (!(hw_changed & 0b10)) { //if printer version wasn't changed, check for eeprom version and retrieve settings from eeprom in case that version wasn't changed
  856. previous_settings_retrieved = Config_RetrieveSettings(EEPROM_OFFSET);
  857. }
  858. else { //printer version was changed so use default settings
  859. Config_ResetDefault();
  860. }
  861. SdFatUtil::set_stack_guard(); //writes magic number at the end of static variables to protect against overwriting static memory by stack
  862. tp_init(); // Initialize temperature loop
  863. lcd_splash(); // we need to do this again, because tp_init() kills lcd
  864. plan_init(); // Initialize planner;
  865. watchdog_init();
  866. factory_reset();
  867. #ifdef TMC2130
  868. uint8_t silentMode = eeprom_read_byte((uint8_t*)EEPROM_SILENT);
  869. tmc2130_mode = silentMode?TMC2130_MODE_SILENT:TMC2130_MODE_NORMAL;
  870. uint8_t crashdet = eeprom_read_byte((uint8_t*)EEPROM_CRASH_DET);
  871. if (crashdet)
  872. {
  873. crashdet_enable();
  874. MYSERIAL.println("CrashDetect ENABLED!");
  875. }
  876. else
  877. {
  878. crashdet_disable();
  879. MYSERIAL.println("CrashDetect DISABLED");
  880. }
  881. #endif //TMC2130
  882. st_init(); // Initialize stepper, this enables interrupts!
  883. setup_photpin();
  884. servo_init();
  885. // Reset the machine correction matrix.
  886. // It does not make sense to load the correction matrix until the machine is homed.
  887. world2machine_reset();
  888. #ifdef PAT9125
  889. fsensor_init();
  890. #endif //PAT9125
  891. #if defined(CONTROLLERFAN_PIN) && (CONTROLLERFAN_PIN > -1)
  892. SET_OUTPUT(CONTROLLERFAN_PIN); //Set pin used for driver cooling fan
  893. #endif
  894. #ifdef DIGIPOT_I2C
  895. digipot_i2c_init();
  896. #endif
  897. setup_homepin();
  898. #ifdef TMC2130
  899. if (1) {
  900. /// SERIAL_ECHOPGM("initial zsteps on power up: "); MYSERIAL.println(tmc2130_rd_MSCNT(Z_TMC2130_CS));
  901. // try to run to zero phase before powering the Z motor.
  902. // Move in negative direction
  903. WRITE(Z_DIR_PIN,INVERT_Z_DIR);
  904. // Round the current micro-micro steps to micro steps.
  905. for (uint16_t phase = (tmc2130_rd_MSCNT(Z_TMC2130_CS) + 8) >> 4; phase > 0; -- phase) {
  906. // Until the phase counter is reset to zero.
  907. WRITE(Z_STEP_PIN, !INVERT_Z_STEP_PIN);
  908. delay(2);
  909. WRITE(Z_STEP_PIN, INVERT_Z_STEP_PIN);
  910. delay(2);
  911. }
  912. // SERIAL_ECHOPGM("initial zsteps after reset: "); MYSERIAL.println(tmc2130_rd_MSCNT(Z_TMC2130_CS));
  913. }
  914. #endif //TMC2130
  915. #if defined(Z_AXIS_ALWAYS_ON)
  916. enable_z();
  917. #endif
  918. farm_mode = eeprom_read_byte((uint8_t*)EEPROM_FARM_MODE);
  919. EEPROM_read_B(EEPROM_FARM_NUMBER, &farm_no);
  920. if ((farm_mode == 0xFF && farm_no == 0) || (farm_no == 0xFFFF)) farm_mode = false; //if farm_mode has not been stored to eeprom yet and farm number is set to zero or EEPROM is fresh, deactivate farm mode
  921. if (farm_no == 0xFFFF) farm_no = 0;
  922. if (farm_mode)
  923. {
  924. prusa_statistics(8);
  925. }
  926. // Enable Toshiba FlashAir SD card / WiFi enahanced card.
  927. card.ToshibaFlashAir_enable(eeprom_read_byte((unsigned char*)EEPROM_TOSHIBA_FLASH_AIR_COMPATIBLITY) == 1);
  928. if (eeprom_read_dword((uint32_t*)(EEPROM_TOP - 4)) == 0x0ffffffff &&
  929. eeprom_read_dword((uint32_t*)(EEPROM_TOP - 8)) == 0x0ffffffff) {
  930. // Maiden startup. The firmware has been loaded and first started on a virgin RAMBo board,
  931. // where all the EEPROM entries are set to 0x0ff.
  932. // Once a firmware boots up, it forces at least a language selection, which changes
  933. // EEPROM_LANG to number lower than 0x0ff.
  934. // 1) Set a high power mode.
  935. #ifdef TMC2130
  936. eeprom_write_byte((uint8_t*)EEPROM_SILENT, 0);
  937. tmc2130_mode = TMC2130_MODE_NORMAL;
  938. #endif //TMC2130
  939. eeprom_write_byte((uint8_t*)EEPROM_WIZARD_ACTIVE, 1); //run wizard
  940. }
  941. // Force SD card update. Otherwise the SD card update is done from loop() on card.checkautostart(false),
  942. // but this times out if a blocking dialog is shown in setup().
  943. card.initsd();
  944. if (eeprom_read_byte((uint8_t*)EEPROM_POWER_COUNT) == 0xff) eeprom_write_byte((uint8_t*)EEPROM_POWER_COUNT, 0);
  945. if (eeprom_read_byte((uint8_t*)EEPROM_CRASH_COUNT_X) == 0xff) eeprom_write_byte((uint8_t*)EEPROM_CRASH_COUNT_X, 0);
  946. if (eeprom_read_byte((uint8_t*)EEPROM_CRASH_COUNT_Y) == 0xff) eeprom_write_byte((uint8_t*)EEPROM_CRASH_COUNT_Y, 0);
  947. if (eeprom_read_byte((uint8_t*)EEPROM_FERROR_COUNT) == 0xff) eeprom_write_byte((uint8_t*)EEPROM_FERROR_COUNT, 0);
  948. if (eeprom_read_word((uint16_t*)EEPROM_POWER_COUNT_TOT) == 0xffff) eeprom_write_word((uint16_t*)EEPROM_POWER_COUNT_TOT, 0);
  949. if (eeprom_read_word((uint16_t*)EEPROM_CRASH_COUNT_X_TOT) == 0xffff) eeprom_write_word((uint16_t*)EEPROM_CRASH_COUNT_X_TOT, 0);
  950. if (eeprom_read_word((uint16_t*)EEPROM_CRASH_COUNT_Y_TOT) == 0xffff) eeprom_write_word((uint16_t*)EEPROM_CRASH_COUNT_Y_TOT, 0);
  951. if (eeprom_read_word((uint16_t*)EEPROM_FERROR_COUNT_TOT) == 0xffff) eeprom_write_word((uint16_t*)EEPROM_FERROR_COUNT_TOT, 0);
  952. #ifdef SNMM
  953. if (eeprom_read_dword((uint32_t*)EEPROM_BOWDEN_LENGTH) == 0x0ffffffff) { //bowden length used for SNMM
  954. int _z = BOWDEN_LENGTH;
  955. for(int i = 0; i<4; i++) EEPROM_save_B(EEPROM_BOWDEN_LENGTH + i * 2, &_z);
  956. }
  957. #endif
  958. // In the future, somewhere here would one compare the current firmware version against the firmware version stored in the EEPROM.
  959. // If they differ, an update procedure may need to be performed. At the end of this block, the current firmware version
  960. // is being written into the EEPROM, so the update procedure will be triggered only once.
  961. lang_selected = eeprom_read_byte((uint8_t*)EEPROM_LANG);
  962. if (lang_selected >= LANG_NUM){
  963. lcd_mylang();
  964. }
  965. if (eeprom_read_byte((uint8_t*)EEPROM_TEMP_CAL_ACTIVE) == 255) {
  966. eeprom_write_byte((uint8_t*)EEPROM_TEMP_CAL_ACTIVE, 0);
  967. temp_cal_active = false;
  968. } else temp_cal_active = eeprom_read_byte((uint8_t*)EEPROM_TEMP_CAL_ACTIVE);
  969. if (eeprom_read_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA) == 255) {
  970. //eeprom_write_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 0);
  971. eeprom_write_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 1);
  972. eeprom_write_word(((uint16_t*)EEPROM_PROBE_TEMP_SHIFT) + 0, 8); //40C - 20um - 8usteps
  973. eeprom_write_word(((uint16_t*)EEPROM_PROBE_TEMP_SHIFT) + 1, 24); //45C - 60um - 24usteps
  974. eeprom_write_word(((uint16_t*)EEPROM_PROBE_TEMP_SHIFT) + 2, 48); //50C - 120um - 48usteps
  975. eeprom_write_word(((uint16_t*)EEPROM_PROBE_TEMP_SHIFT) + 3, 80); //55C - 200um - 80usteps
  976. eeprom_write_word(((uint16_t*)EEPROM_PROBE_TEMP_SHIFT) + 4, 120); //60C - 300um - 120usteps
  977. eeprom_write_byte((uint8_t*)EEPROM_TEMP_CAL_ACTIVE, 1);
  978. temp_cal_active = true;
  979. }
  980. if (eeprom_read_byte((uint8_t*)EEPROM_UVLO) == 255) {
  981. eeprom_write_byte((uint8_t*)EEPROM_UVLO, 0);
  982. }
  983. if (eeprom_read_byte((uint8_t*)EEPROM_SD_SORT) == 255) {
  984. eeprom_write_byte((uint8_t*)EEPROM_SD_SORT, 0);
  985. }
  986. check_babystep(); //checking if Z babystep is in allowed range
  987. #ifdef UVLO_SUPPORT
  988. setup_uvlo_interrupt();
  989. #endif //UVLO_SUPPORT
  990. #if !defined(DEBUG_DISABLE_FANCHECK) && defined(FANCHECK) && defined(TACH_1) && TACH_1 >-1
  991. setup_fan_interrupt();
  992. #endif //DEBUG_DISABLE_FANCHECK
  993. #ifdef PAT9125
  994. #ifndef DEBUG_DISABLE_FSENSORCHECK
  995. fsensor_setup_interrupt();
  996. #endif //DEBUG_DISABLE_FSENSORCHECK
  997. #endif //PAT9125
  998. for (int i = 0; i<4; i++) EEPROM_read_B(EEPROM_BOWDEN_LENGTH + i * 2, &bowden_length[i]);
  999. #ifndef DEBUG_DISABLE_STARTMSGS
  1000. KEEPALIVE_STATE(PAUSED_FOR_USER);
  1001. show_fw_version_warnings();
  1002. switch (hw_changed) {
  1003. //if motherboard or printer type was changed inform user as it can indicate flashing wrong firmware version
  1004. //if user confirms with knob, new hw version (printer and/or motherboard) is written to eeprom and message will be not shown next time
  1005. case(0b01):
  1006. lcd_show_fullscreen_message_and_wait_P(MSG_CHANGED_MOTHERBOARD);
  1007. eeprom_write_word((uint16_t*)EEPROM_BOARD_TYPE, MOTHERBOARD);
  1008. break;
  1009. case(0b10):
  1010. lcd_show_fullscreen_message_and_wait_P(MSG_CHANGED_PRINTER);
  1011. eeprom_write_word((uint16_t*)EEPROM_PRINTER_TYPE, PRINTER_TYPE);
  1012. break;
  1013. case(0b11):
  1014. lcd_show_fullscreen_message_and_wait_P(MSG_CHANGED_BOTH);
  1015. eeprom_write_word((uint16_t*)EEPROM_PRINTER_TYPE, PRINTER_TYPE);
  1016. eeprom_write_word((uint16_t*)EEPROM_BOARD_TYPE, MOTHERBOARD);
  1017. break;
  1018. default: break; //no change, show no message
  1019. }
  1020. if (!previous_settings_retrieved) {
  1021. lcd_show_fullscreen_message_and_wait_P(MSG_DEFAULT_SETTINGS_LOADED); //if EEPROM version or printer type was changed, inform user that default setting were loaded
  1022. erase_eeprom_section(EEPROM_OFFSET, 156); //erase M500 part of eeprom
  1023. }
  1024. if (eeprom_read_byte((uint8_t*)EEPROM_WIZARD_ACTIVE) == 1) {
  1025. lcd_wizard(0);
  1026. }
  1027. if (eeprom_read_byte((uint8_t*)EEPROM_WIZARD_ACTIVE) == 0) { //dont show calibration status messages if wizard is currently active
  1028. if (calibration_status() == CALIBRATION_STATUS_ASSEMBLED ||
  1029. calibration_status() == CALIBRATION_STATUS_UNKNOWN) {
  1030. // Reset the babystepping values, so the printer will not move the Z axis up when the babystepping is enabled.
  1031. eeprom_update_word((uint16_t*)EEPROM_BABYSTEP_Z, 0);
  1032. // Show the message.
  1033. lcd_show_fullscreen_message_and_wait_P(MSG_FOLLOW_CALIBRATION_FLOW);
  1034. }
  1035. else if (calibration_status() == CALIBRATION_STATUS_LIVE_ADJUST) {
  1036. // Show the message.
  1037. lcd_show_fullscreen_message_and_wait_P(MSG_BABYSTEP_Z_NOT_SET);
  1038. lcd_update_enable(true);
  1039. }
  1040. else if (calibration_status() == CALIBRATION_STATUS_CALIBRATED && temp_cal_active == true && calibration_status_pinda() == false) {
  1041. //lcd_show_fullscreen_message_and_wait_P(MSG_PINDA_NOT_CALIBRATED);
  1042. lcd_update_enable(true);
  1043. }
  1044. else if (calibration_status() == CALIBRATION_STATUS_Z_CALIBRATION) {
  1045. // Show the message.
  1046. lcd_show_fullscreen_message_and_wait_P(MSG_FOLLOW_CALIBRATION_FLOW);
  1047. }
  1048. }
  1049. KEEPALIVE_STATE(IN_PROCESS);
  1050. #endif //DEBUG_DISABLE_STARTMSGS
  1051. lcd_update_enable(true);
  1052. lcd_implementation_clear();
  1053. lcd_update(2);
  1054. // Store the currently running firmware into an eeprom,
  1055. // so the next time the firmware gets updated, it will know from which version it has been updated.
  1056. update_current_firmware_version_to_eeprom();
  1057. #ifdef UVLO_SUPPORT
  1058. if (eeprom_read_byte((uint8_t*)EEPROM_UVLO) == 1) { //previous print was terminated by UVLO
  1059. /*
  1060. if (lcd_show_fullscreen_message_yes_no_and_wait_P(MSG_RECOVER_PRINT, false)) recover_print();
  1061. else {
  1062. eeprom_update_byte((uint8_t*)EEPROM_UVLO, 0);
  1063. lcd_update_enable(true);
  1064. lcd_update(2);
  1065. lcd_setstatuspgm(WELCOME_MSG);
  1066. }
  1067. */
  1068. manage_heater(); // Update temperatures
  1069. #ifdef DEBUG_UVLO_AUTOMATIC_RECOVER
  1070. MYSERIAL.println("Power panic detected!");
  1071. MYSERIAL.print("Current bed temp:");
  1072. MYSERIAL.println(degBed());
  1073. MYSERIAL.print("Saved bed temp:");
  1074. MYSERIAL.println((float)eeprom_read_byte((uint8_t*)EEPROM_UVLO_TARGET_BED));
  1075. #endif
  1076. if ( degBed() > ( (float)eeprom_read_byte((uint8_t*)EEPROM_UVLO_TARGET_BED) - AUTOMATIC_UVLO_BED_TEMP_OFFSET) ){
  1077. #ifdef DEBUG_UVLO_AUTOMATIC_RECOVER
  1078. MYSERIAL.println("Automatic recovery!");
  1079. #endif
  1080. recover_print(1);
  1081. }
  1082. else{
  1083. #ifdef DEBUG_UVLO_AUTOMATIC_RECOVER
  1084. MYSERIAL.println("Normal recovery!");
  1085. #endif
  1086. if ( lcd_show_fullscreen_message_yes_no_and_wait_P(MSG_RECOVER_PRINT, false) ) recover_print(0);
  1087. else {
  1088. eeprom_update_byte((uint8_t*)EEPROM_UVLO, 0);
  1089. lcd_update_enable(true);
  1090. lcd_update(2);
  1091. lcd_setstatuspgm(WELCOME_MSG);
  1092. }
  1093. }
  1094. }
  1095. #endif //UVLO_SUPPORT
  1096. KEEPALIVE_STATE(NOT_BUSY);
  1097. wdt_enable(WDTO_4S);
  1098. }
  1099. #ifdef PAT9125
  1100. void fsensor_init() {
  1101. int pat9125 = pat9125_init();
  1102. printf_P(PSTR("PAT9125_init:%d\n"), pat9125);
  1103. uint8_t fsensor = eeprom_read_byte((uint8_t*)EEPROM_FSENSOR);
  1104. if (!pat9125)
  1105. {
  1106. fsensor = 0; //disable sensor
  1107. fsensor_not_responding = true;
  1108. }
  1109. else {
  1110. fsensor_not_responding = false;
  1111. }
  1112. puts_P(PSTR("FSensor "));
  1113. if (fsensor)
  1114. {
  1115. puts_P(PSTR("ENABLED\n"));
  1116. fsensor_enable();
  1117. }
  1118. else
  1119. {
  1120. puts_P(PSTR("DISABLED\n"));
  1121. fsensor_disable();
  1122. }
  1123. #ifdef DEBUG_DISABLE_FSENSORCHECK
  1124. filament_autoload_enabled = false;
  1125. fsensor_disable();
  1126. #endif //DEBUG_DISABLE_FSENSORCHECK
  1127. }
  1128. #endif //PAT9125
  1129. void trace();
  1130. #define CHUNK_SIZE 64 // bytes
  1131. #define SAFETY_MARGIN 1
  1132. char chunk[CHUNK_SIZE+SAFETY_MARGIN];
  1133. int chunkHead = 0;
  1134. int serial_read_stream() {
  1135. setTargetHotend(0, 0);
  1136. setTargetBed(0);
  1137. lcd_implementation_clear();
  1138. lcd_printPGM(PSTR(" Upload in progress"));
  1139. // first wait for how many bytes we will receive
  1140. uint32_t bytesToReceive;
  1141. // receive the four bytes
  1142. char bytesToReceiveBuffer[4];
  1143. for (int i=0; i<4; i++) {
  1144. int data;
  1145. while ((data = MYSERIAL.read()) == -1) {};
  1146. bytesToReceiveBuffer[i] = data;
  1147. }
  1148. // make it a uint32
  1149. memcpy(&bytesToReceive, &bytesToReceiveBuffer, 4);
  1150. // we're ready, notify the sender
  1151. MYSERIAL.write('+');
  1152. // lock in the routine
  1153. uint32_t receivedBytes = 0;
  1154. while (prusa_sd_card_upload) {
  1155. int i;
  1156. for (i=0; i<CHUNK_SIZE; i++) {
  1157. int data;
  1158. // check if we're not done
  1159. if (receivedBytes == bytesToReceive) {
  1160. break;
  1161. }
  1162. // read the next byte
  1163. while ((data = MYSERIAL.read()) == -1) {};
  1164. receivedBytes++;
  1165. // save it to the chunk
  1166. chunk[i] = data;
  1167. }
  1168. // write the chunk to SD
  1169. card.write_command_no_newline(&chunk[0]);
  1170. // notify the sender we're ready for more data
  1171. MYSERIAL.write('+');
  1172. // for safety
  1173. manage_heater();
  1174. // check if we're done
  1175. if(receivedBytes == bytesToReceive) {
  1176. trace(); // beep
  1177. card.closefile();
  1178. prusa_sd_card_upload = false;
  1179. SERIAL_PROTOCOLLNRPGM(MSG_FILE_SAVED);
  1180. return 0;
  1181. }
  1182. }
  1183. }
  1184. #ifdef HOST_KEEPALIVE_FEATURE
  1185. /**
  1186. * Output a "busy" message at regular intervals
  1187. * while the machine is not accepting commands.
  1188. */
  1189. void host_keepalive() {
  1190. if (farm_mode) return;
  1191. long ms = millis();
  1192. if (host_keepalive_interval && busy_state != NOT_BUSY) {
  1193. if ((ms - prev_busy_signal_ms) < (long)(1000L * host_keepalive_interval)) return;
  1194. switch (busy_state) {
  1195. case IN_HANDLER:
  1196. case IN_PROCESS:
  1197. SERIAL_ECHO_START;
  1198. SERIAL_ECHOLNPGM("busy: processing");
  1199. break;
  1200. case PAUSED_FOR_USER:
  1201. SERIAL_ECHO_START;
  1202. SERIAL_ECHOLNPGM("busy: paused for user");
  1203. break;
  1204. case PAUSED_FOR_INPUT:
  1205. SERIAL_ECHO_START;
  1206. SERIAL_ECHOLNPGM("busy: paused for input");
  1207. break;
  1208. default:
  1209. break;
  1210. }
  1211. }
  1212. prev_busy_signal_ms = ms;
  1213. }
  1214. #endif
  1215. // The loop() function is called in an endless loop by the Arduino framework from the default main() routine.
  1216. // Before loop(), the setup() function is called by the main() routine.
  1217. void loop()
  1218. {
  1219. KEEPALIVE_STATE(NOT_BUSY);
  1220. bool stack_integrity = true;
  1221. if ((usb_printing_counter > 0) && ((millis()-_usb_timer) > 1000))
  1222. {
  1223. is_usb_printing = true;
  1224. usb_printing_counter--;
  1225. _usb_timer = millis();
  1226. }
  1227. if (usb_printing_counter == 0)
  1228. {
  1229. is_usb_printing = false;
  1230. }
  1231. if (prusa_sd_card_upload)
  1232. {
  1233. //we read byte-by byte
  1234. serial_read_stream();
  1235. } else
  1236. {
  1237. get_command();
  1238. #ifdef SDSUPPORT
  1239. card.checkautostart(false);
  1240. #endif
  1241. if(buflen)
  1242. {
  1243. cmdbuffer_front_already_processed = false;
  1244. #ifdef SDSUPPORT
  1245. if(card.saving)
  1246. {
  1247. // Saving a G-code file onto an SD-card is in progress.
  1248. // Saving starts with M28, saving until M29 is seen.
  1249. if(strstr_P(CMDBUFFER_CURRENT_STRING, PSTR("M29")) == NULL) {
  1250. card.write_command(CMDBUFFER_CURRENT_STRING);
  1251. if(card.logging)
  1252. process_commands();
  1253. else
  1254. SERIAL_PROTOCOLLNRPGM(MSG_OK);
  1255. } else {
  1256. card.closefile();
  1257. SERIAL_PROTOCOLLNRPGM(MSG_FILE_SAVED);
  1258. }
  1259. } else {
  1260. process_commands();
  1261. }
  1262. #else
  1263. process_commands();
  1264. #endif //SDSUPPORT
  1265. if (! cmdbuffer_front_already_processed && buflen)
  1266. {
  1267. // ptr points to the start of the block currently being processed.
  1268. // The first character in the block is the block type.
  1269. char *ptr = cmdbuffer + bufindr;
  1270. if (*ptr == CMDBUFFER_CURRENT_TYPE_SDCARD) {
  1271. // To support power panic, move the lenght of the command on the SD card to a planner buffer.
  1272. union {
  1273. struct {
  1274. char lo;
  1275. char hi;
  1276. } lohi;
  1277. uint16_t value;
  1278. } sdlen;
  1279. sdlen.value = 0;
  1280. {
  1281. // This block locks the interrupts globally for 3.25 us,
  1282. // which corresponds to a maximum repeat frequency of 307.69 kHz.
  1283. // This blocking is safe in the context of a 10kHz stepper driver interrupt
  1284. // or a 115200 Bd serial line receive interrupt, which will not trigger faster than 12kHz.
  1285. cli();
  1286. // Reset the command to something, which will be ignored by the power panic routine,
  1287. // so this buffer length will not be counted twice.
  1288. *ptr ++ = CMDBUFFER_CURRENT_TYPE_TO_BE_REMOVED;
  1289. // Extract the current buffer length.
  1290. sdlen.lohi.lo = *ptr ++;
  1291. sdlen.lohi.hi = *ptr;
  1292. // and pass it to the planner queue.
  1293. planner_add_sd_length(sdlen.value);
  1294. sei();
  1295. }
  1296. }
  1297. // Now it is safe to release the already processed command block. If interrupted by the power panic now,
  1298. // this block's SD card length will not be counted twice as its command type has been replaced
  1299. // by CMDBUFFER_CURRENT_TYPE_TO_BE_REMOVED.
  1300. cmdqueue_pop_front();
  1301. }
  1302. host_keepalive();
  1303. }
  1304. }
  1305. //check heater every n milliseconds
  1306. manage_heater();
  1307. isPrintPaused ? manage_inactivity(true) : manage_inactivity(false);
  1308. checkHitEndstops();
  1309. lcd_update();
  1310. #ifdef PAT9125
  1311. fsensor_update();
  1312. #endif //PAT9125
  1313. #ifdef TMC2130
  1314. tmc2130_check_overtemp();
  1315. if (tmc2130_sg_crash)
  1316. {
  1317. uint8_t crash = tmc2130_sg_crash;
  1318. tmc2130_sg_crash = 0;
  1319. // crashdet_stop_and_save_print();
  1320. switch (crash)
  1321. {
  1322. case 1: enquecommand_P((PSTR("CRASH_DETECTEDX"))); break;
  1323. case 2: enquecommand_P((PSTR("CRASH_DETECTEDY"))); break;
  1324. case 3: enquecommand_P((PSTR("CRASH_DETECTEDXY"))); break;
  1325. }
  1326. }
  1327. #endif //TMC2130
  1328. }
  1329. #define DEFINE_PGM_READ_ANY(type, reader) \
  1330. static inline type pgm_read_any(const type *p) \
  1331. { return pgm_read_##reader##_near(p); }
  1332. DEFINE_PGM_READ_ANY(float, float);
  1333. DEFINE_PGM_READ_ANY(signed char, byte);
  1334. #define XYZ_CONSTS_FROM_CONFIG(type, array, CONFIG) \
  1335. static const PROGMEM type array##_P[3] = \
  1336. { X_##CONFIG, Y_##CONFIG, Z_##CONFIG }; \
  1337. static inline type array(int axis) \
  1338. { return pgm_read_any(&array##_P[axis]); } \
  1339. type array##_ext(int axis) \
  1340. { return pgm_read_any(&array##_P[axis]); }
  1341. XYZ_CONSTS_FROM_CONFIG(float, base_min_pos, MIN_POS);
  1342. XYZ_CONSTS_FROM_CONFIG(float, base_max_pos, MAX_POS);
  1343. XYZ_CONSTS_FROM_CONFIG(float, base_home_pos, HOME_POS);
  1344. XYZ_CONSTS_FROM_CONFIG(float, max_length, MAX_LENGTH);
  1345. XYZ_CONSTS_FROM_CONFIG(float, home_retract_mm, HOME_RETRACT_MM);
  1346. XYZ_CONSTS_FROM_CONFIG(signed char, home_dir, HOME_DIR);
  1347. static void axis_is_at_home(int axis) {
  1348. current_position[axis] = base_home_pos(axis) + add_homing[axis];
  1349. min_pos[axis] = base_min_pos(axis) + add_homing[axis];
  1350. max_pos[axis] = base_max_pos(axis) + add_homing[axis];
  1351. }
  1352. inline void set_current_to_destination() { memcpy(current_position, destination, sizeof(current_position)); }
  1353. inline void set_destination_to_current() { memcpy(destination, current_position, sizeof(destination)); }
  1354. static void setup_for_endstop_move(bool enable_endstops_now = true) {
  1355. saved_feedrate = feedrate;
  1356. saved_feedmultiply = feedmultiply;
  1357. feedmultiply = 100;
  1358. previous_millis_cmd = millis();
  1359. enable_endstops(enable_endstops_now);
  1360. }
  1361. static void clean_up_after_endstop_move() {
  1362. #ifdef ENDSTOPS_ONLY_FOR_HOMING
  1363. enable_endstops(false);
  1364. #endif
  1365. feedrate = saved_feedrate;
  1366. feedmultiply = saved_feedmultiply;
  1367. previous_millis_cmd = millis();
  1368. }
  1369. #ifdef ENABLE_AUTO_BED_LEVELING
  1370. #ifdef AUTO_BED_LEVELING_GRID
  1371. static void set_bed_level_equation_lsq(double *plane_equation_coefficients)
  1372. {
  1373. vector_3 planeNormal = vector_3(-plane_equation_coefficients[0], -plane_equation_coefficients[1], 1);
  1374. planeNormal.debug("planeNormal");
  1375. plan_bed_level_matrix = matrix_3x3::create_look_at(planeNormal);
  1376. //bedLevel.debug("bedLevel");
  1377. //plan_bed_level_matrix.debug("bed level before");
  1378. //vector_3 uncorrected_position = plan_get_position_mm();
  1379. //uncorrected_position.debug("position before");
  1380. vector_3 corrected_position = plan_get_position();
  1381. // corrected_position.debug("position after");
  1382. current_position[X_AXIS] = corrected_position.x;
  1383. current_position[Y_AXIS] = corrected_position.y;
  1384. current_position[Z_AXIS] = corrected_position.z;
  1385. // put the bed at 0 so we don't go below it.
  1386. current_position[Z_AXIS] = zprobe_zoffset; // in the lsq we reach here after raising the extruder due to the loop structure
  1387. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1388. }
  1389. #else // not AUTO_BED_LEVELING_GRID
  1390. static void set_bed_level_equation_3pts(float z_at_pt_1, float z_at_pt_2, float z_at_pt_3) {
  1391. plan_bed_level_matrix.set_to_identity();
  1392. vector_3 pt1 = vector_3(ABL_PROBE_PT_1_X, ABL_PROBE_PT_1_Y, z_at_pt_1);
  1393. vector_3 pt2 = vector_3(ABL_PROBE_PT_2_X, ABL_PROBE_PT_2_Y, z_at_pt_2);
  1394. vector_3 pt3 = vector_3(ABL_PROBE_PT_3_X, ABL_PROBE_PT_3_Y, z_at_pt_3);
  1395. vector_3 from_2_to_1 = (pt1 - pt2).get_normal();
  1396. vector_3 from_2_to_3 = (pt3 - pt2).get_normal();
  1397. vector_3 planeNormal = vector_3::cross(from_2_to_1, from_2_to_3).get_normal();
  1398. planeNormal = vector_3(planeNormal.x, planeNormal.y, abs(planeNormal.z));
  1399. plan_bed_level_matrix = matrix_3x3::create_look_at(planeNormal);
  1400. vector_3 corrected_position = plan_get_position();
  1401. current_position[X_AXIS] = corrected_position.x;
  1402. current_position[Y_AXIS] = corrected_position.y;
  1403. current_position[Z_AXIS] = corrected_position.z;
  1404. // put the bed at 0 so we don't go below it.
  1405. current_position[Z_AXIS] = zprobe_zoffset;
  1406. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1407. }
  1408. #endif // AUTO_BED_LEVELING_GRID
  1409. static void run_z_probe() {
  1410. plan_bed_level_matrix.set_to_identity();
  1411. feedrate = homing_feedrate[Z_AXIS];
  1412. // move down until you find the bed
  1413. float zPosition = -10;
  1414. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder);
  1415. st_synchronize();
  1416. // we have to let the planner know where we are right now as it is not where we said to go.
  1417. zPosition = st_get_position_mm(Z_AXIS);
  1418. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS]);
  1419. // move up the retract distance
  1420. zPosition += home_retract_mm(Z_AXIS);
  1421. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder);
  1422. st_synchronize();
  1423. // move back down slowly to find bed
  1424. feedrate = homing_feedrate[Z_AXIS]/4;
  1425. zPosition -= home_retract_mm(Z_AXIS) * 2;
  1426. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder);
  1427. st_synchronize();
  1428. current_position[Z_AXIS] = st_get_position_mm(Z_AXIS);
  1429. // make sure the planner knows where we are as it may be a bit different than we last said to move to
  1430. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1431. }
  1432. static void do_blocking_move_to(float x, float y, float z) {
  1433. float oldFeedRate = feedrate;
  1434. feedrate = homing_feedrate[Z_AXIS];
  1435. current_position[Z_AXIS] = z;
  1436. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], feedrate/60, active_extruder);
  1437. st_synchronize();
  1438. feedrate = XY_TRAVEL_SPEED;
  1439. current_position[X_AXIS] = x;
  1440. current_position[Y_AXIS] = y;
  1441. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], feedrate/60, active_extruder);
  1442. st_synchronize();
  1443. feedrate = oldFeedRate;
  1444. }
  1445. static void do_blocking_move_relative(float offset_x, float offset_y, float offset_z) {
  1446. do_blocking_move_to(current_position[X_AXIS] + offset_x, current_position[Y_AXIS] + offset_y, current_position[Z_AXIS] + offset_z);
  1447. }
  1448. /// Probe bed height at position (x,y), returns the measured z value
  1449. static float probe_pt(float x, float y, float z_before) {
  1450. // move to right place
  1451. do_blocking_move_to(current_position[X_AXIS], current_position[Y_AXIS], z_before);
  1452. do_blocking_move_to(x - X_PROBE_OFFSET_FROM_EXTRUDER, y - Y_PROBE_OFFSET_FROM_EXTRUDER, current_position[Z_AXIS]);
  1453. run_z_probe();
  1454. float measured_z = current_position[Z_AXIS];
  1455. SERIAL_PROTOCOLRPGM(MSG_BED);
  1456. SERIAL_PROTOCOLPGM(" x: ");
  1457. SERIAL_PROTOCOL(x);
  1458. SERIAL_PROTOCOLPGM(" y: ");
  1459. SERIAL_PROTOCOL(y);
  1460. SERIAL_PROTOCOLPGM(" z: ");
  1461. SERIAL_PROTOCOL(measured_z);
  1462. SERIAL_PROTOCOLPGM("\n");
  1463. return measured_z;
  1464. }
  1465. #endif // #ifdef ENABLE_AUTO_BED_LEVELING
  1466. #ifdef LIN_ADVANCE
  1467. /**
  1468. * M900: Set and/or Get advance K factor and WH/D ratio
  1469. *
  1470. * K<factor> Set advance K factor
  1471. * R<ratio> Set ratio directly (overrides WH/D)
  1472. * W<width> H<height> D<diam> Set ratio from WH/D
  1473. */
  1474. inline void gcode_M900() {
  1475. st_synchronize();
  1476. const float newK = code_seen('K') ? code_value_float() : -1;
  1477. if (newK >= 0) extruder_advance_k = newK;
  1478. float newR = code_seen('R') ? code_value_float() : -1;
  1479. if (newR < 0) {
  1480. const float newD = code_seen('D') ? code_value_float() : -1,
  1481. newW = code_seen('W') ? code_value_float() : -1,
  1482. newH = code_seen('H') ? code_value_float() : -1;
  1483. if (newD >= 0 && newW >= 0 && newH >= 0)
  1484. newR = newD ? (newW * newH) / (sq(newD * 0.5) * M_PI) : 0;
  1485. }
  1486. if (newR >= 0) advance_ed_ratio = newR;
  1487. SERIAL_ECHO_START;
  1488. SERIAL_ECHOPGM("Advance K=");
  1489. SERIAL_ECHOLN(extruder_advance_k);
  1490. SERIAL_ECHOPGM(" E/D=");
  1491. const float ratio = advance_ed_ratio;
  1492. if (ratio) SERIAL_ECHOLN(ratio); else SERIAL_ECHOLNPGM("Auto");
  1493. }
  1494. #endif // LIN_ADVANCE
  1495. bool check_commands() {
  1496. bool end_command_found = false;
  1497. while (buflen)
  1498. {
  1499. if ((code_seen("M84")) || (code_seen("M 84"))) end_command_found = true;
  1500. if (!cmdbuffer_front_already_processed)
  1501. cmdqueue_pop_front();
  1502. cmdbuffer_front_already_processed = false;
  1503. }
  1504. return end_command_found;
  1505. }
  1506. #ifdef TMC2130
  1507. bool calibrate_z_auto()
  1508. {
  1509. //lcd_display_message_fullscreen_P(MSG_CALIBRATE_Z_AUTO);
  1510. lcd_implementation_clear();
  1511. lcd_print_at_PGM(0,1, MSG_CALIBRATE_Z_AUTO);
  1512. bool endstops_enabled = enable_endstops(true);
  1513. int axis_up_dir = -home_dir(Z_AXIS);
  1514. tmc2130_home_enter(Z_AXIS_MASK);
  1515. current_position[Z_AXIS] = 0;
  1516. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1517. set_destination_to_current();
  1518. destination[Z_AXIS] += (1.1 * max_length(Z_AXIS) * axis_up_dir);
  1519. feedrate = homing_feedrate[Z_AXIS];
  1520. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1521. st_synchronize();
  1522. // current_position[axis] = 0;
  1523. // plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1524. tmc2130_home_exit();
  1525. enable_endstops(false);
  1526. current_position[Z_AXIS] = 0;
  1527. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1528. set_destination_to_current();
  1529. destination[Z_AXIS] += 10 * axis_up_dir; //10mm up
  1530. feedrate = homing_feedrate[Z_AXIS] / 2;
  1531. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1532. st_synchronize();
  1533. enable_endstops(endstops_enabled);
  1534. current_position[Z_AXIS] = Z_MAX_POS+2.0;
  1535. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1536. return true;
  1537. }
  1538. #endif //TMC2130
  1539. void homeaxis(int axis)
  1540. {
  1541. bool endstops_enabled = enable_endstops(true); //RP: endstops should be allways enabled durring homming
  1542. #define HOMEAXIS_DO(LETTER) \
  1543. ((LETTER##_MIN_PIN > -1 && LETTER##_HOME_DIR==-1) || (LETTER##_MAX_PIN > -1 && LETTER##_HOME_DIR==1))
  1544. if ((axis==X_AXIS)?HOMEAXIS_DO(X):(axis==Y_AXIS)?HOMEAXIS_DO(Y):0)
  1545. {
  1546. int axis_home_dir = home_dir(axis);
  1547. feedrate = homing_feedrate[axis];
  1548. #ifdef TMC2130
  1549. tmc2130_home_enter(X_AXIS_MASK << axis);
  1550. #endif
  1551. // Move right a bit, so that the print head does not touch the left end position,
  1552. // and the following left movement has a chance to achieve the required velocity
  1553. // for the stall guard to work.
  1554. current_position[axis] = 0;
  1555. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1556. // destination[axis] = 11.f;
  1557. destination[axis] = 3.f;
  1558. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1559. st_synchronize();
  1560. // Move left away from the possible collision with the collision detection disabled.
  1561. endstops_hit_on_purpose();
  1562. enable_endstops(false);
  1563. current_position[axis] = 0;
  1564. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1565. destination[axis] = - 1.;
  1566. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1567. st_synchronize();
  1568. // Now continue to move up to the left end stop with the collision detection enabled.
  1569. enable_endstops(true);
  1570. destination[axis] = - 1.1 * max_length(axis);
  1571. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1572. st_synchronize();
  1573. // Move right from the collision to a known distance from the left end stop with the collision detection disabled.
  1574. endstops_hit_on_purpose();
  1575. enable_endstops(false);
  1576. current_position[axis] = 0;
  1577. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1578. destination[axis] = 10.f;
  1579. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1580. st_synchronize();
  1581. endstops_hit_on_purpose();
  1582. // Now move left up to the collision, this time with a repeatable velocity.
  1583. enable_endstops(true);
  1584. destination[axis] = - 15.f;
  1585. feedrate = homing_feedrate[axis]/2;
  1586. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1587. st_synchronize();
  1588. axis_is_at_home(axis);
  1589. axis_known_position[axis] = true;
  1590. #ifdef TMC2130
  1591. tmc2130_home_exit();
  1592. #endif
  1593. // Move the X carriage away from the collision.
  1594. // If this is not done, the X cariage will jump from the collision at the instant the Trinamic driver reduces power on idle.
  1595. endstops_hit_on_purpose();
  1596. enable_endstops(false);
  1597. {
  1598. // Two full periods (4 full steps).
  1599. float gap = 0.32f * 2.f;
  1600. current_position[axis] -= gap;
  1601. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1602. current_position[axis] += gap;
  1603. }
  1604. destination[axis] = current_position[axis];
  1605. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], 0.3f*feedrate/60, active_extruder);
  1606. st_synchronize();
  1607. feedrate = 0.0;
  1608. }
  1609. else if ((axis==Z_AXIS)?HOMEAXIS_DO(Z):0)
  1610. {
  1611. int axis_home_dir = home_dir(axis);
  1612. current_position[axis] = 0;
  1613. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1614. destination[axis] = 1.5 * max_length(axis) * axis_home_dir;
  1615. feedrate = homing_feedrate[axis];
  1616. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1617. st_synchronize();
  1618. current_position[axis] = 0;
  1619. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1620. destination[axis] = -home_retract_mm(axis) * axis_home_dir;
  1621. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1622. st_synchronize();
  1623. destination[axis] = 2*home_retract_mm(axis) * axis_home_dir;
  1624. feedrate = homing_feedrate[axis]/2 ;
  1625. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1626. st_synchronize();
  1627. axis_is_at_home(axis);
  1628. destination[axis] = current_position[axis];
  1629. feedrate = 0.0;
  1630. endstops_hit_on_purpose();
  1631. axis_known_position[axis] = true;
  1632. }
  1633. enable_endstops(endstops_enabled);
  1634. }
  1635. /**/
  1636. void home_xy()
  1637. {
  1638. set_destination_to_current();
  1639. homeaxis(X_AXIS);
  1640. homeaxis(Y_AXIS);
  1641. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1642. endstops_hit_on_purpose();
  1643. }
  1644. void refresh_cmd_timeout(void)
  1645. {
  1646. previous_millis_cmd = millis();
  1647. }
  1648. #ifdef FWRETRACT
  1649. void retract(bool retracting, bool swapretract = false) {
  1650. if(retracting && !retracted[active_extruder]) {
  1651. destination[X_AXIS]=current_position[X_AXIS];
  1652. destination[Y_AXIS]=current_position[Y_AXIS];
  1653. destination[Z_AXIS]=current_position[Z_AXIS];
  1654. destination[E_AXIS]=current_position[E_AXIS];
  1655. current_position[E_AXIS]+=(swapretract?retract_length_swap:retract_length)*float(extrudemultiply)*0.01f;
  1656. plan_set_e_position(current_position[E_AXIS]);
  1657. float oldFeedrate = feedrate;
  1658. feedrate=retract_feedrate*60;
  1659. retracted[active_extruder]=true;
  1660. prepare_move();
  1661. current_position[Z_AXIS]-=retract_zlift;
  1662. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1663. prepare_move();
  1664. feedrate = oldFeedrate;
  1665. } else if(!retracting && retracted[active_extruder]) {
  1666. destination[X_AXIS]=current_position[X_AXIS];
  1667. destination[Y_AXIS]=current_position[Y_AXIS];
  1668. destination[Z_AXIS]=current_position[Z_AXIS];
  1669. destination[E_AXIS]=current_position[E_AXIS];
  1670. current_position[Z_AXIS]+=retract_zlift;
  1671. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1672. current_position[E_AXIS]-=(swapretract?(retract_length_swap+retract_recover_length_swap):(retract_length+retract_recover_length))*float(extrudemultiply)*0.01f;
  1673. plan_set_e_position(current_position[E_AXIS]);
  1674. float oldFeedrate = feedrate;
  1675. feedrate=retract_recover_feedrate*60;
  1676. retracted[active_extruder]=false;
  1677. prepare_move();
  1678. feedrate = oldFeedrate;
  1679. }
  1680. } //retract
  1681. #endif //FWRETRACT
  1682. void trace() {
  1683. tone(BEEPER, 440);
  1684. delay(25);
  1685. noTone(BEEPER);
  1686. delay(20);
  1687. }
  1688. /*
  1689. void ramming() {
  1690. // float tmp[4] = DEFAULT_MAX_FEEDRATE;
  1691. if (current_temperature[0] < 230) {
  1692. //PLA
  1693. max_feedrate[E_AXIS] = 50;
  1694. //current_position[E_AXIS] -= 8;
  1695. //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2100 / 60, active_extruder);
  1696. //current_position[E_AXIS] += 8;
  1697. //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2100 / 60, active_extruder);
  1698. current_position[E_AXIS] += 5.4;
  1699. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2800 / 60, active_extruder);
  1700. current_position[E_AXIS] += 3.2;
  1701. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  1702. current_position[E_AXIS] += 3;
  1703. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3400 / 60, active_extruder);
  1704. st_synchronize();
  1705. max_feedrate[E_AXIS] = 80;
  1706. current_position[E_AXIS] -= 82;
  1707. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 9500 / 60, active_extruder);
  1708. max_feedrate[E_AXIS] = 50;//tmp[E_AXIS];
  1709. current_position[E_AXIS] -= 20;
  1710. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 1200 / 60, active_extruder);
  1711. current_position[E_AXIS] += 5;
  1712. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400 / 60, active_extruder);
  1713. current_position[E_AXIS] += 5;
  1714. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  1715. current_position[E_AXIS] -= 10;
  1716. st_synchronize();
  1717. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  1718. current_position[E_AXIS] += 10;
  1719. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  1720. current_position[E_AXIS] -= 10;
  1721. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 800 / 60, active_extruder);
  1722. current_position[E_AXIS] += 10;
  1723. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 800 / 60, active_extruder);
  1724. current_position[E_AXIS] -= 10;
  1725. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 800 / 60, active_extruder);
  1726. st_synchronize();
  1727. }
  1728. else {
  1729. //ABS
  1730. max_feedrate[E_AXIS] = 50;
  1731. //current_position[E_AXIS] -= 8;
  1732. //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2100 / 60, active_extruder);
  1733. //current_position[E_AXIS] += 8;
  1734. //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2100 / 60, active_extruder);
  1735. current_position[E_AXIS] += 3.1;
  1736. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2000 / 60, active_extruder);
  1737. current_position[E_AXIS] += 3.1;
  1738. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2500 / 60, active_extruder);
  1739. current_position[E_AXIS] += 4;
  1740. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  1741. st_synchronize();
  1742. //current_position[X_AXIS] += 23; //delay
  1743. //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600/60, active_extruder); //delay
  1744. //current_position[X_AXIS] -= 23; //delay
  1745. //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600/60, active_extruder); //delay
  1746. delay(4700);
  1747. max_feedrate[E_AXIS] = 80;
  1748. current_position[E_AXIS] -= 92;
  1749. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 9900 / 60, active_extruder);
  1750. max_feedrate[E_AXIS] = 50;//tmp[E_AXIS];
  1751. current_position[E_AXIS] -= 5;
  1752. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 800 / 60, active_extruder);
  1753. current_position[E_AXIS] += 5;
  1754. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400 / 60, active_extruder);
  1755. current_position[E_AXIS] -= 5;
  1756. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  1757. st_synchronize();
  1758. current_position[E_AXIS] += 5;
  1759. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  1760. current_position[E_AXIS] -= 5;
  1761. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  1762. current_position[E_AXIS] += 5;
  1763. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  1764. current_position[E_AXIS] -= 5;
  1765. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  1766. st_synchronize();
  1767. }
  1768. }
  1769. */
  1770. #ifdef TMC2130
  1771. void force_high_power_mode(bool start_high_power_section) {
  1772. uint8_t silent;
  1773. silent = eeprom_read_byte((uint8_t*)EEPROM_SILENT);
  1774. if (silent == 1) {
  1775. //we are in silent mode, set to normal mode to enable crash detection
  1776. // Wait for the planner queue to drain and for the stepper timer routine to reach an idle state.
  1777. st_synchronize();
  1778. cli();
  1779. tmc2130_mode = (start_high_power_section == true) ? TMC2130_MODE_NORMAL : TMC2130_MODE_SILENT;
  1780. tmc2130_init();
  1781. // We may have missed a stepper timer interrupt due to the time spent in the tmc2130_init() routine.
  1782. // Be safe than sorry, reset the stepper timer before re-enabling interrupts.
  1783. st_reset_timer();
  1784. sei();
  1785. digipot_init();
  1786. }
  1787. }
  1788. #endif //TMC2130
  1789. bool gcode_M45(bool onlyZ, int8_t verbosity_level)
  1790. {
  1791. bool final_result = false;
  1792. #ifdef TMC2130
  1793. FORCE_HIGH_POWER_START;
  1794. #endif // TMC2130
  1795. // Only Z calibration?
  1796. if (!onlyZ)
  1797. {
  1798. setTargetBed(0);
  1799. setTargetHotend(0, 0);
  1800. setTargetHotend(0, 1);
  1801. setTargetHotend(0, 2);
  1802. adjust_bed_reset(); //reset bed level correction
  1803. }
  1804. // Disable the default update procedure of the display. We will do a modal dialog.
  1805. lcd_update_enable(false);
  1806. // Let the planner use the uncorrected coordinates.
  1807. mbl.reset();
  1808. // Reset world2machine_rotation_and_skew and world2machine_shift, therefore
  1809. // the planner will not perform any adjustments in the XY plane.
  1810. // Wait for the motors to stop and update the current position with the absolute values.
  1811. world2machine_revert_to_uncorrected();
  1812. // Reset the baby step value applied without moving the axes.
  1813. babystep_reset();
  1814. // Mark all axes as in a need for homing.
  1815. memset(axis_known_position, 0, sizeof(axis_known_position));
  1816. // Home in the XY plane.
  1817. //set_destination_to_current();
  1818. setup_for_endstop_move();
  1819. lcd_display_message_fullscreen_P(MSG_AUTO_HOME);
  1820. home_xy();
  1821. enable_endstops(false);
  1822. current_position[X_AXIS] += 5;
  1823. current_position[Y_AXIS] += 5;
  1824. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[Z_AXIS] / 40, active_extruder);
  1825. st_synchronize();
  1826. // Let the user move the Z axes up to the end stoppers.
  1827. #ifdef TMC2130
  1828. if (calibrate_z_auto())
  1829. {
  1830. #else //TMC2130
  1831. if (lcd_calibrate_z_end_stop_manual(onlyZ))
  1832. {
  1833. #endif //TMC2130
  1834. refresh_cmd_timeout();
  1835. #ifndef STEEL_SHEET
  1836. if (((degHotend(0) > MAX_HOTEND_TEMP_CALIBRATION) || (degBed() > MAX_BED_TEMP_CALIBRATION)) && (!onlyZ))
  1837. {
  1838. lcd_wait_for_cool_down();
  1839. }
  1840. #endif //STEEL_SHEET
  1841. if(!onlyZ)
  1842. {
  1843. KEEPALIVE_STATE(PAUSED_FOR_USER);
  1844. #ifdef STEEL_SHEET
  1845. bool result = lcd_show_fullscreen_message_yes_no_and_wait_P(MSG_STEEL_SHEET_CHECK, false, false);
  1846. #endif //STEEL_SHEET
  1847. if(result) lcd_show_fullscreen_message_and_wait_P(MSG_REMOVE_STEEL_SHEET);
  1848. lcd_show_fullscreen_message_and_wait_P(MSG_CONFIRM_NOZZLE_CLEAN);
  1849. lcd_show_fullscreen_message_and_wait_P(MSG_PAPER);
  1850. KEEPALIVE_STATE(IN_HANDLER);
  1851. lcd_display_message_fullscreen_P(MSG_FIND_BED_OFFSET_AND_SKEW_LINE1);
  1852. lcd_implementation_print_at(0, 2, 1);
  1853. lcd_printPGM(MSG_FIND_BED_OFFSET_AND_SKEW_LINE2);
  1854. }
  1855. // Move the print head close to the bed.
  1856. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  1857. bool endstops_enabled = enable_endstops(true);
  1858. #ifdef TMC2130
  1859. tmc2130_home_enter(Z_AXIS_MASK);
  1860. #endif //TMC2130
  1861. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[Z_AXIS] / 40, active_extruder);
  1862. st_synchronize();
  1863. #ifdef TMC2130
  1864. tmc2130_home_exit();
  1865. #endif //TMC2130
  1866. enable_endstops(endstops_enabled);
  1867. if (st_get_position_mm(Z_AXIS) == MESH_HOME_Z_SEARCH)
  1868. {
  1869. int8_t verbosity_level = 0;
  1870. if (code_seen('V'))
  1871. {
  1872. // Just 'V' without a number counts as V1.
  1873. char c = strchr_pointer[1];
  1874. verbosity_level = (c == ' ' || c == '\t' || c == 0) ? 1 : code_value_short();
  1875. }
  1876. if (onlyZ)
  1877. {
  1878. clean_up_after_endstop_move();
  1879. // Z only calibration.
  1880. // Load the machine correction matrix
  1881. world2machine_initialize();
  1882. // and correct the current_position to match the transformed coordinate system.
  1883. world2machine_update_current();
  1884. //FIXME
  1885. bool result = sample_mesh_and_store_reference();
  1886. if (result)
  1887. {
  1888. if (calibration_status() == CALIBRATION_STATUS_Z_CALIBRATION)
  1889. // Shipped, the nozzle height has been set already. The user can start printing now.
  1890. calibration_status_store(CALIBRATION_STATUS_CALIBRATED);
  1891. final_result = true;
  1892. // babystep_apply();
  1893. }
  1894. }
  1895. else
  1896. {
  1897. // Reset the baby step value and the baby step applied flag.
  1898. calibration_status_store(CALIBRATION_STATUS_XYZ_CALIBRATION);
  1899. eeprom_update_word((uint16_t*)EEPROM_BABYSTEP_Z, 0);
  1900. // Complete XYZ calibration.
  1901. uint8_t point_too_far_mask = 0;
  1902. BedSkewOffsetDetectionResultType result = find_bed_offset_and_skew(verbosity_level, point_too_far_mask);
  1903. clean_up_after_endstop_move();
  1904. // Print head up.
  1905. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  1906. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[Z_AXIS] / 40, active_extruder);
  1907. st_synchronize();
  1908. if (result >= 0)
  1909. {
  1910. #ifdef HEATBED_V2
  1911. sample_z();
  1912. #else //HEATBED_V2
  1913. point_too_far_mask = 0;
  1914. // Second half: The fine adjustment.
  1915. // Let the planner use the uncorrected coordinates.
  1916. mbl.reset();
  1917. world2machine_reset();
  1918. // Home in the XY plane.
  1919. setup_for_endstop_move();
  1920. home_xy();
  1921. result = improve_bed_offset_and_skew(1, verbosity_level, point_too_far_mask);
  1922. clean_up_after_endstop_move();
  1923. // Print head up.
  1924. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  1925. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[Z_AXIS] / 40, active_extruder);
  1926. st_synchronize();
  1927. // if (result >= 0) babystep_apply();
  1928. #endif //HEATBED_V2
  1929. }
  1930. lcd_bed_calibration_show_result(result, point_too_far_mask);
  1931. if (result >= 0)
  1932. {
  1933. // Calibration valid, the machine should be able to print. Advise the user to run the V2Calibration.gcode.
  1934. calibration_status_store(CALIBRATION_STATUS_LIVE_ADJUST);
  1935. if (eeprom_read_byte((uint8_t*)EEPROM_WIZARD_ACTIVE) != 1) lcd_show_fullscreen_message_and_wait_P(MSG_BABYSTEP_Z_NOT_SET);
  1936. final_result = true;
  1937. }
  1938. }
  1939. #ifdef TMC2130
  1940. tmc2130_home_exit();
  1941. #endif
  1942. }
  1943. else
  1944. {
  1945. lcd_show_fullscreen_message_and_wait_P(PSTR("Calibration failed! Check the axes and run again."));
  1946. final_result = false;
  1947. }
  1948. }
  1949. else
  1950. {
  1951. // Timeouted.
  1952. }
  1953. lcd_update_enable(true);
  1954. #ifdef TMC2130
  1955. FORCE_HIGH_POWER_END;
  1956. #endif // TMC2130
  1957. return final_result;
  1958. }
  1959. void gcode_M114()
  1960. {
  1961. SERIAL_PROTOCOLPGM("X:");
  1962. SERIAL_PROTOCOL(current_position[X_AXIS]);
  1963. SERIAL_PROTOCOLPGM(" Y:");
  1964. SERIAL_PROTOCOL(current_position[Y_AXIS]);
  1965. SERIAL_PROTOCOLPGM(" Z:");
  1966. SERIAL_PROTOCOL(current_position[Z_AXIS]);
  1967. SERIAL_PROTOCOLPGM(" E:");
  1968. SERIAL_PROTOCOL(current_position[E_AXIS]);
  1969. SERIAL_PROTOCOLRPGM(MSG_COUNT_X);
  1970. SERIAL_PROTOCOL(float(st_get_position(X_AXIS)) / axis_steps_per_unit[X_AXIS]);
  1971. SERIAL_PROTOCOLPGM(" Y:");
  1972. SERIAL_PROTOCOL(float(st_get_position(Y_AXIS)) / axis_steps_per_unit[Y_AXIS]);
  1973. SERIAL_PROTOCOLPGM(" Z:");
  1974. SERIAL_PROTOCOL(float(st_get_position(Z_AXIS)) / axis_steps_per_unit[Z_AXIS]);
  1975. SERIAL_PROTOCOLPGM(" E:");
  1976. SERIAL_PROTOCOL(float(st_get_position(E_AXIS)) / axis_steps_per_unit[E_AXIS]);
  1977. SERIAL_PROTOCOLLN("");
  1978. }
  1979. void gcode_M701()
  1980. {
  1981. #ifdef SNMM
  1982. extr_adj(snmm_extruder);//loads current extruder
  1983. #else
  1984. enable_z();
  1985. custom_message = true;
  1986. custom_message_type = 2;
  1987. lcd_setstatuspgm(MSG_LOADING_FILAMENT);
  1988. current_position[E_AXIS] += 70;
  1989. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400 / 60, active_extruder); //fast sequence
  1990. current_position[E_AXIS] += 25;
  1991. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 100 / 60, active_extruder); //slow sequence
  1992. st_synchronize();
  1993. tone(BEEPER, 500);
  1994. delay_keep_alive(50);
  1995. noTone(BEEPER);
  1996. if (!farm_mode && loading_flag) {
  1997. bool clean = lcd_show_fullscreen_message_yes_no_and_wait_P(MSG_FILAMENT_CLEAN, false, true);
  1998. while (!clean) {
  1999. lcd_update_enable(true);
  2000. lcd_update(2);
  2001. current_position[E_AXIS] += 25;
  2002. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 100 / 60, active_extruder); //slow sequence
  2003. st_synchronize();
  2004. clean = lcd_show_fullscreen_message_yes_no_and_wait_P(MSG_FILAMENT_CLEAN, false, true);
  2005. }
  2006. }
  2007. lcd_update_enable(true);
  2008. lcd_update(2);
  2009. lcd_setstatuspgm(WELCOME_MSG);
  2010. disable_z();
  2011. loading_flag = false;
  2012. custom_message = false;
  2013. custom_message_type = 0;
  2014. #endif
  2015. }
  2016. void process_commands()
  2017. {
  2018. #ifdef FILAMENT_RUNOUT_SUPPORT
  2019. SET_INPUT(FR_SENS);
  2020. #endif
  2021. #ifdef CMDBUFFER_DEBUG
  2022. SERIAL_ECHOPGM("Processing a GCODE command: ");
  2023. SERIAL_ECHO(cmdbuffer+bufindr+CMDHDRSIZE);
  2024. SERIAL_ECHOLNPGM("");
  2025. SERIAL_ECHOPGM("In cmdqueue: ");
  2026. SERIAL_ECHO(buflen);
  2027. SERIAL_ECHOLNPGM("");
  2028. #endif /* CMDBUFFER_DEBUG */
  2029. unsigned long codenum; //throw away variable
  2030. char *starpos = NULL;
  2031. #ifdef ENABLE_AUTO_BED_LEVELING
  2032. float x_tmp, y_tmp, z_tmp, real_z;
  2033. #endif
  2034. // PRUSA GCODES
  2035. KEEPALIVE_STATE(IN_HANDLER);
  2036. #ifdef SNMM
  2037. float tmp_motor[3] = DEFAULT_PWM_MOTOR_CURRENT;
  2038. float tmp_motor_loud[3] = DEFAULT_PWM_MOTOR_CURRENT_LOUD;
  2039. int8_t SilentMode;
  2040. #endif
  2041. if (code_seen("M117")) { //moved to highest priority place to be able to to print strings which includes "G", "PRUSA" and "^"
  2042. starpos = (strchr(strchr_pointer + 5, '*'));
  2043. if (starpos != NULL)
  2044. *(starpos) = '\0';
  2045. lcd_setstatus(strchr_pointer + 5);
  2046. }
  2047. #ifdef TMC2130
  2048. else if(code_seen("CRASH_DETECTED"))
  2049. {
  2050. uint8_t mask = 0;
  2051. if (code_seen("X")) mask |= X_AXIS_MASK;
  2052. if (code_seen("Y")) mask |= Y_AXIS_MASK;
  2053. crashdet_detected(mask);
  2054. }
  2055. else if(code_seen("CRASH_RECOVER"))
  2056. crashdet_recover();
  2057. else if(code_seen("CRASH_CANCEL"))
  2058. crashdet_cancel();
  2059. #endif //TMC2130
  2060. else if(code_seen("PRUSA")){
  2061. if (code_seen("Ping")) { //PRUSA Ping
  2062. if (farm_mode) {
  2063. PingTime = millis();
  2064. //MYSERIAL.print(farm_no); MYSERIAL.println(": OK");
  2065. }
  2066. }
  2067. else if (code_seen("PRN")) {
  2068. MYSERIAL.println(status_number);
  2069. }else if (code_seen("FAN")) {
  2070. MYSERIAL.print("E0:");
  2071. MYSERIAL.print(60*fan_speed[0]);
  2072. MYSERIAL.println(" RPM");
  2073. MYSERIAL.print("PRN0:");
  2074. MYSERIAL.print(60*fan_speed[1]);
  2075. MYSERIAL.println(" RPM");
  2076. }else if (code_seen("fn")) {
  2077. if (farm_mode) {
  2078. MYSERIAL.println(farm_no);
  2079. }
  2080. else {
  2081. MYSERIAL.println("Not in farm mode.");
  2082. }
  2083. }else if (code_seen("fv")) {
  2084. // get file version
  2085. #ifdef SDSUPPORT
  2086. card.openFile(strchr_pointer + 3,true);
  2087. while (true) {
  2088. uint16_t readByte = card.get();
  2089. MYSERIAL.write(readByte);
  2090. if (readByte=='\n') {
  2091. break;
  2092. }
  2093. }
  2094. card.closefile();
  2095. #endif // SDSUPPORT
  2096. } else if (code_seen("M28")) {
  2097. trace();
  2098. prusa_sd_card_upload = true;
  2099. card.openFile(strchr_pointer+4,false);
  2100. } else if (code_seen("SN")) {
  2101. if (farm_mode) {
  2102. selectedSerialPort = 0;
  2103. MSerial.write(";S");
  2104. // S/N is:CZPX0917X003XC13518
  2105. int numbersRead = 0;
  2106. while (numbersRead < 19) {
  2107. while (MSerial.available() > 0) {
  2108. uint8_t serial_char = MSerial.read();
  2109. selectedSerialPort = 1;
  2110. MSerial.write(serial_char);
  2111. numbersRead++;
  2112. selectedSerialPort = 0;
  2113. }
  2114. }
  2115. selectedSerialPort = 1;
  2116. MSerial.write('\n');
  2117. /*for (int b = 0; b < 3; b++) {
  2118. tone(BEEPER, 110);
  2119. delay(50);
  2120. noTone(BEEPER);
  2121. delay(50);
  2122. }*/
  2123. } else {
  2124. MYSERIAL.println("Not in farm mode.");
  2125. }
  2126. } else if(code_seen("Fir")){
  2127. SERIAL_PROTOCOLLN(FW_VERSION);
  2128. } else if(code_seen("Rev")){
  2129. SERIAL_PROTOCOLLN(FILAMENT_SIZE "-" ELECTRONICS "-" NOZZLE_TYPE );
  2130. } else if(code_seen("Lang")) {
  2131. lcd_force_language_selection();
  2132. } else if(code_seen("Lz")) {
  2133. EEPROM_save_B(EEPROM_BABYSTEP_Z,0);
  2134. } else if (code_seen("SERIAL LOW")) {
  2135. MYSERIAL.println("SERIAL LOW");
  2136. MYSERIAL.begin(BAUDRATE);
  2137. return;
  2138. } else if (code_seen("SERIAL HIGH")) {
  2139. MYSERIAL.println("SERIAL HIGH");
  2140. MYSERIAL.begin(1152000);
  2141. return;
  2142. } else if(code_seen("Beat")) {
  2143. // Kick farm link timer
  2144. kicktime = millis();
  2145. } else if(code_seen("FR")) {
  2146. // Factory full reset
  2147. factory_reset(0,true);
  2148. }
  2149. //else if (code_seen('Cal')) {
  2150. // lcd_calibration();
  2151. // }
  2152. }
  2153. else if (code_seen('^')) {
  2154. // nothing, this is a version line
  2155. } else if(code_seen('G'))
  2156. {
  2157. switch((int)code_value())
  2158. {
  2159. case 0: // G0 -> G1
  2160. case 1: // G1
  2161. if(Stopped == false) {
  2162. #ifdef FILAMENT_RUNOUT_SUPPORT
  2163. if(READ(FR_SENS)){
  2164. feedmultiplyBckp=feedmultiply;
  2165. float target[4];
  2166. float lastpos[4];
  2167. target[X_AXIS]=current_position[X_AXIS];
  2168. target[Y_AXIS]=current_position[Y_AXIS];
  2169. target[Z_AXIS]=current_position[Z_AXIS];
  2170. target[E_AXIS]=current_position[E_AXIS];
  2171. lastpos[X_AXIS]=current_position[X_AXIS];
  2172. lastpos[Y_AXIS]=current_position[Y_AXIS];
  2173. lastpos[Z_AXIS]=current_position[Z_AXIS];
  2174. lastpos[E_AXIS]=current_position[E_AXIS];
  2175. //retract by E
  2176. target[E_AXIS]+= FILAMENTCHANGE_FIRSTRETRACT ;
  2177. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 400, active_extruder);
  2178. target[Z_AXIS]+= FILAMENTCHANGE_ZADD ;
  2179. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 300, active_extruder);
  2180. target[X_AXIS]= FILAMENTCHANGE_XPOS ;
  2181. target[Y_AXIS]= FILAMENTCHANGE_YPOS ;
  2182. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 70, active_extruder);
  2183. target[E_AXIS]+= FILAMENTCHANGE_FINALRETRACT ;
  2184. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 20, active_extruder);
  2185. //finish moves
  2186. st_synchronize();
  2187. //disable extruder steppers so filament can be removed
  2188. disable_e0();
  2189. disable_e1();
  2190. disable_e2();
  2191. delay(100);
  2192. //LCD_ALERTMESSAGEPGM(MSG_FILAMENTCHANGE);
  2193. uint8_t cnt=0;
  2194. int counterBeep = 0;
  2195. lcd_wait_interact();
  2196. while(!lcd_clicked()){
  2197. cnt++;
  2198. manage_heater();
  2199. manage_inactivity(true);
  2200. //lcd_update();
  2201. if(cnt==0)
  2202. {
  2203. #if BEEPER > 0
  2204. if (counterBeep== 500){
  2205. counterBeep = 0;
  2206. }
  2207. SET_OUTPUT(BEEPER);
  2208. if (counterBeep== 0){
  2209. WRITE(BEEPER,HIGH);
  2210. }
  2211. if (counterBeep== 20){
  2212. WRITE(BEEPER,LOW);
  2213. }
  2214. counterBeep++;
  2215. #else
  2216. #if !defined(LCD_FEEDBACK_FREQUENCY_HZ) || !defined(LCD_FEEDBACK_FREQUENCY_DURATION_MS)
  2217. lcd_buzz(1000/6,100);
  2218. #else
  2219. lcd_buzz(LCD_FEEDBACK_FREQUENCY_DURATION_MS,LCD_FEEDBACK_FREQUENCY_HZ);
  2220. #endif
  2221. #endif
  2222. }
  2223. }
  2224. WRITE(BEEPER,LOW);
  2225. target[E_AXIS]+= FILAMENTCHANGE_FIRSTFEED ;
  2226. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 20, active_extruder);
  2227. target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  2228. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder);
  2229. lcd_change_fil_state = 0;
  2230. lcd_loading_filament();
  2231. while ((lcd_change_fil_state == 0)||(lcd_change_fil_state != 1)){
  2232. lcd_change_fil_state = 0;
  2233. lcd_alright();
  2234. switch(lcd_change_fil_state){
  2235. case 2:
  2236. target[E_AXIS]+= FILAMENTCHANGE_FIRSTFEED ;
  2237. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 20, active_extruder);
  2238. target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  2239. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder);
  2240. lcd_loading_filament();
  2241. break;
  2242. case 3:
  2243. target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  2244. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder);
  2245. lcd_loading_color();
  2246. break;
  2247. default:
  2248. lcd_change_success();
  2249. break;
  2250. }
  2251. }
  2252. target[E_AXIS]+= 5;
  2253. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder);
  2254. target[E_AXIS]+= FILAMENTCHANGE_FIRSTRETRACT;
  2255. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 400, active_extruder);
  2256. //current_position[E_AXIS]=target[E_AXIS]; //the long retract of L is compensated by manual filament feeding
  2257. //plan_set_e_position(current_position[E_AXIS]);
  2258. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 70, active_extruder); //should do nothing
  2259. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], target[Z_AXIS], target[E_AXIS], 70, active_extruder); //move xy back
  2260. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], target[E_AXIS], 200, active_extruder); //move z back
  2261. target[E_AXIS]= target[E_AXIS] - FILAMENTCHANGE_FIRSTRETRACT;
  2262. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], target[E_AXIS], 5, active_extruder); //final untretract
  2263. plan_set_e_position(lastpos[E_AXIS]);
  2264. feedmultiply=feedmultiplyBckp;
  2265. char cmd[9];
  2266. sprintf_P(cmd, PSTR("M220 S%i"), feedmultiplyBckp);
  2267. enquecommand(cmd);
  2268. }
  2269. #endif
  2270. get_coordinates(); // For X Y Z E F
  2271. if (total_filament_used > ((current_position[E_AXIS] - destination[E_AXIS]) * 100)) { //protection against total_filament_used overflow
  2272. total_filament_used = total_filament_used + ((destination[E_AXIS] - current_position[E_AXIS]) * 100);
  2273. }
  2274. #ifdef FWRETRACT
  2275. if(autoretract_enabled)
  2276. if( !(code_seen('X') || code_seen('Y') || code_seen('Z')) && code_seen('E')) {
  2277. float echange=destination[E_AXIS]-current_position[E_AXIS];
  2278. if((echange<-MIN_RETRACT && !retracted) || (echange>MIN_RETRACT && retracted)) { //move appears to be an attempt to retract or recover
  2279. current_position[E_AXIS] = destination[E_AXIS]; //hide the slicer-generated retract/recover from calculations
  2280. plan_set_e_position(current_position[E_AXIS]); //AND from the planner
  2281. retract(!retracted);
  2282. return;
  2283. }
  2284. }
  2285. #endif //FWRETRACT
  2286. prepare_move();
  2287. //ClearToSend();
  2288. }
  2289. break;
  2290. case 2: // G2 - CW ARC
  2291. if(Stopped == false) {
  2292. get_arc_coordinates();
  2293. prepare_arc_move(true);
  2294. }
  2295. break;
  2296. case 3: // G3 - CCW ARC
  2297. if(Stopped == false) {
  2298. get_arc_coordinates();
  2299. prepare_arc_move(false);
  2300. }
  2301. break;
  2302. case 4: // G4 dwell
  2303. codenum = 0;
  2304. if(code_seen('P')) codenum = code_value(); // milliseconds to wait
  2305. if(code_seen('S')) codenum = code_value() * 1000; // seconds to wait
  2306. if(codenum != 0) LCD_MESSAGERPGM(MSG_DWELL);
  2307. st_synchronize();
  2308. codenum += millis(); // keep track of when we started waiting
  2309. previous_millis_cmd = millis();
  2310. while(millis() < codenum) {
  2311. manage_heater();
  2312. manage_inactivity();
  2313. lcd_update();
  2314. }
  2315. break;
  2316. #ifdef FWRETRACT
  2317. case 10: // G10 retract
  2318. #if EXTRUDERS > 1
  2319. retracted_swap[active_extruder]=(code_seen('S') && code_value_long() == 1); // checks for swap retract argument
  2320. retract(true,retracted_swap[active_extruder]);
  2321. #else
  2322. retract(true);
  2323. #endif
  2324. break;
  2325. case 11: // G11 retract_recover
  2326. #if EXTRUDERS > 1
  2327. retract(false,retracted_swap[active_extruder]);
  2328. #else
  2329. retract(false);
  2330. #endif
  2331. break;
  2332. #endif //FWRETRACT
  2333. case 28: //G28 Home all Axis one at a time
  2334. {
  2335. st_synchronize();
  2336. #if 0
  2337. SERIAL_ECHOPGM("G28, initial "); print_world_coordinates();
  2338. SERIAL_ECHOPGM("G28, initial "); print_physical_coordinates();
  2339. #endif
  2340. // Flag for the display update routine and to disable the print cancelation during homing.
  2341. homing_flag = true;
  2342. // Which axes should be homed?
  2343. bool home_x = code_seen(axis_codes[X_AXIS]);
  2344. bool home_y = code_seen(axis_codes[Y_AXIS]);
  2345. bool home_z = code_seen(axis_codes[Z_AXIS]);
  2346. // Either all X,Y,Z codes are present, or none of them.
  2347. bool home_all_axes = home_x == home_y && home_x == home_z;
  2348. if (home_all_axes)
  2349. // No X/Y/Z code provided means to home all axes.
  2350. home_x = home_y = home_z = true;
  2351. #ifdef ENABLE_AUTO_BED_LEVELING
  2352. plan_bed_level_matrix.set_to_identity(); //Reset the plane ("erase" all leveling data)
  2353. #endif //ENABLE_AUTO_BED_LEVELING
  2354. // Reset world2machine_rotation_and_skew and world2machine_shift, therefore
  2355. // the planner will not perform any adjustments in the XY plane.
  2356. // Wait for the motors to stop and update the current position with the absolute values.
  2357. world2machine_revert_to_uncorrected();
  2358. // For mesh bed leveling deactivate the matrix temporarily.
  2359. // It is necessary to disable the bed leveling for the X and Y homing moves, so that the move is performed
  2360. // in a single axis only.
  2361. // In case of re-homing the X or Y axes only, the mesh bed leveling is restored after G28.
  2362. #ifdef MESH_BED_LEVELING
  2363. uint8_t mbl_was_active = mbl.active;
  2364. mbl.active = 0;
  2365. current_position[Z_AXIS] = st_get_position_mm(Z_AXIS);
  2366. #endif
  2367. // Reset baby stepping to zero, if the babystepping has already been loaded before. The babystepsTodo value will be
  2368. // consumed during the first movements following this statement.
  2369. if (home_z)
  2370. babystep_undo();
  2371. saved_feedrate = feedrate;
  2372. saved_feedmultiply = feedmultiply;
  2373. feedmultiply = 100;
  2374. previous_millis_cmd = millis();
  2375. enable_endstops(true);
  2376. memcpy(destination, current_position, sizeof(destination));
  2377. feedrate = 0.0;
  2378. #if Z_HOME_DIR > 0 // If homing away from BED do Z first
  2379. if(home_z)
  2380. homeaxis(Z_AXIS);
  2381. #endif
  2382. #ifdef QUICK_HOME
  2383. // In the quick mode, if both x and y are to be homed, a diagonal move will be performed initially.
  2384. if(home_x && home_y) //first diagonal move
  2385. {
  2386. current_position[X_AXIS] = 0;current_position[Y_AXIS] = 0;
  2387. int x_axis_home_dir = home_dir(X_AXIS);
  2388. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2389. destination[X_AXIS] = 1.5 * max_length(X_AXIS) * x_axis_home_dir;destination[Y_AXIS] = 1.5 * max_length(Y_AXIS) * home_dir(Y_AXIS);
  2390. feedrate = homing_feedrate[X_AXIS];
  2391. if(homing_feedrate[Y_AXIS]<feedrate)
  2392. feedrate = homing_feedrate[Y_AXIS];
  2393. if (max_length(X_AXIS) > max_length(Y_AXIS)) {
  2394. feedrate *= sqrt(pow(max_length(Y_AXIS) / max_length(X_AXIS), 2) + 1);
  2395. } else {
  2396. feedrate *= sqrt(pow(max_length(X_AXIS) / max_length(Y_AXIS), 2) + 1);
  2397. }
  2398. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  2399. st_synchronize();
  2400. axis_is_at_home(X_AXIS);
  2401. axis_is_at_home(Y_AXIS);
  2402. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2403. destination[X_AXIS] = current_position[X_AXIS];
  2404. destination[Y_AXIS] = current_position[Y_AXIS];
  2405. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  2406. feedrate = 0.0;
  2407. st_synchronize();
  2408. endstops_hit_on_purpose();
  2409. current_position[X_AXIS] = destination[X_AXIS];
  2410. current_position[Y_AXIS] = destination[Y_AXIS];
  2411. current_position[Z_AXIS] = destination[Z_AXIS];
  2412. }
  2413. #endif /* QUICK_HOME */
  2414. if(home_x)
  2415. homeaxis(X_AXIS);
  2416. if(home_y)
  2417. homeaxis(Y_AXIS);
  2418. if(code_seen(axis_codes[X_AXIS]) && code_value_long() != 0)
  2419. current_position[X_AXIS]=code_value()+add_homing[X_AXIS];
  2420. if(code_seen(axis_codes[Y_AXIS]) && code_value_long() != 0)
  2421. current_position[Y_AXIS]=code_value()+add_homing[Y_AXIS];
  2422. #if Z_HOME_DIR < 0 // If homing towards BED do Z last
  2423. #ifndef Z_SAFE_HOMING
  2424. if(home_z) {
  2425. #if defined (Z_RAISE_BEFORE_HOMING) && (Z_RAISE_BEFORE_HOMING > 0)
  2426. destination[Z_AXIS] = Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS) * (-1); // Set destination away from bed
  2427. feedrate = max_feedrate[Z_AXIS];
  2428. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
  2429. st_synchronize();
  2430. #endif // defined (Z_RAISE_BEFORE_HOMING) && (Z_RAISE_BEFORE_HOMING > 0)
  2431. #if (defined(MESH_BED_LEVELING) && !defined(MK1BP)) // If Mesh bed leveling, moxve X&Y to safe position for home
  2432. if (!(axis_known_position[X_AXIS] && axis_known_position[Y_AXIS] ))
  2433. {
  2434. homeaxis(X_AXIS);
  2435. homeaxis(Y_AXIS);
  2436. }
  2437. // 1st mesh bed leveling measurement point, corrected.
  2438. world2machine_initialize();
  2439. world2machine(pgm_read_float(bed_ref_points), pgm_read_float(bed_ref_points+1), destination[X_AXIS], destination[Y_AXIS]);
  2440. world2machine_reset();
  2441. if (destination[Y_AXIS] < Y_MIN_POS)
  2442. destination[Y_AXIS] = Y_MIN_POS;
  2443. destination[Z_AXIS] = MESH_HOME_Z_SEARCH; // Set destination away from bed
  2444. feedrate = homing_feedrate[Z_AXIS]/10;
  2445. current_position[Z_AXIS] = 0;
  2446. enable_endstops(false);
  2447. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2448. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
  2449. st_synchronize();
  2450. current_position[X_AXIS] = destination[X_AXIS];
  2451. current_position[Y_AXIS] = destination[Y_AXIS];
  2452. enable_endstops(true);
  2453. endstops_hit_on_purpose();
  2454. homeaxis(Z_AXIS);
  2455. #else // MESH_BED_LEVELING
  2456. homeaxis(Z_AXIS);
  2457. #endif // MESH_BED_LEVELING
  2458. }
  2459. #else // defined(Z_SAFE_HOMING): Z Safe mode activated.
  2460. if(home_all_axes) {
  2461. destination[X_AXIS] = round(Z_SAFE_HOMING_X_POINT - X_PROBE_OFFSET_FROM_EXTRUDER);
  2462. destination[Y_AXIS] = round(Z_SAFE_HOMING_Y_POINT - Y_PROBE_OFFSET_FROM_EXTRUDER);
  2463. destination[Z_AXIS] = Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS) * (-1); // Set destination away from bed
  2464. feedrate = XY_TRAVEL_SPEED/60;
  2465. current_position[Z_AXIS] = 0;
  2466. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2467. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
  2468. st_synchronize();
  2469. current_position[X_AXIS] = destination[X_AXIS];
  2470. current_position[Y_AXIS] = destination[Y_AXIS];
  2471. homeaxis(Z_AXIS);
  2472. }
  2473. // Let's see if X and Y are homed and probe is inside bed area.
  2474. if(home_z) {
  2475. if ( (axis_known_position[X_AXIS]) && (axis_known_position[Y_AXIS]) \
  2476. && (current_position[X_AXIS]+X_PROBE_OFFSET_FROM_EXTRUDER >= X_MIN_POS) \
  2477. && (current_position[X_AXIS]+X_PROBE_OFFSET_FROM_EXTRUDER <= X_MAX_POS) \
  2478. && (current_position[Y_AXIS]+Y_PROBE_OFFSET_FROM_EXTRUDER >= Y_MIN_POS) \
  2479. && (current_position[Y_AXIS]+Y_PROBE_OFFSET_FROM_EXTRUDER <= Y_MAX_POS)) {
  2480. current_position[Z_AXIS] = 0;
  2481. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2482. destination[Z_AXIS] = Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS) * (-1); // Set destination away from bed
  2483. feedrate = max_feedrate[Z_AXIS];
  2484. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
  2485. st_synchronize();
  2486. homeaxis(Z_AXIS);
  2487. } else if (!((axis_known_position[X_AXIS]) && (axis_known_position[Y_AXIS]))) {
  2488. LCD_MESSAGERPGM(MSG_POSITION_UNKNOWN);
  2489. SERIAL_ECHO_START;
  2490. SERIAL_ECHOLNRPGM(MSG_POSITION_UNKNOWN);
  2491. } else {
  2492. LCD_MESSAGERPGM(MSG_ZPROBE_OUT);
  2493. SERIAL_ECHO_START;
  2494. SERIAL_ECHOLNRPGM(MSG_ZPROBE_OUT);
  2495. }
  2496. }
  2497. #endif // Z_SAFE_HOMING
  2498. #endif // Z_HOME_DIR < 0
  2499. if(code_seen(axis_codes[Z_AXIS]) && code_value_long() != 0)
  2500. current_position[Z_AXIS]=code_value()+add_homing[Z_AXIS];
  2501. #ifdef ENABLE_AUTO_BED_LEVELING
  2502. if(home_z)
  2503. current_position[Z_AXIS] += zprobe_zoffset; //Add Z_Probe offset (the distance is negative)
  2504. #endif
  2505. // Set the planner and stepper routine positions.
  2506. // At this point the mesh bed leveling and world2machine corrections are disabled and current_position
  2507. // contains the machine coordinates.
  2508. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2509. #ifdef ENDSTOPS_ONLY_FOR_HOMING
  2510. enable_endstops(false);
  2511. #endif
  2512. feedrate = saved_feedrate;
  2513. feedmultiply = saved_feedmultiply;
  2514. previous_millis_cmd = millis();
  2515. endstops_hit_on_purpose();
  2516. #ifndef MESH_BED_LEVELING
  2517. // If MESH_BED_LEVELING is not active, then it is the original Prusa i3.
  2518. // Offer the user to load the baby step value, which has been adjusted at the previous print session.
  2519. if(card.sdprinting && eeprom_read_word((uint16_t *)EEPROM_BABYSTEP_Z))
  2520. lcd_adjust_z();
  2521. #endif
  2522. // Load the machine correction matrix
  2523. world2machine_initialize();
  2524. // and correct the current_position XY axes to match the transformed coordinate system.
  2525. world2machine_update_current();
  2526. #if (defined(MESH_BED_LEVELING) && !defined(MK1BP))
  2527. if (code_seen(axis_codes[X_AXIS]) || code_seen(axis_codes[Y_AXIS]) || code_seen('W') || code_seen(axis_codes[Z_AXIS]))
  2528. {
  2529. if (! home_z && mbl_was_active) {
  2530. // Re-enable the mesh bed leveling if only the X and Y axes were re-homed.
  2531. mbl.active = true;
  2532. // and re-adjust the current logical Z axis with the bed leveling offset applicable at the current XY position.
  2533. current_position[Z_AXIS] -= mbl.get_z(st_get_position_mm(X_AXIS), st_get_position_mm(Y_AXIS));
  2534. }
  2535. }
  2536. else
  2537. {
  2538. st_synchronize();
  2539. homing_flag = false;
  2540. // Push the commands to the front of the message queue in the reverse order!
  2541. // There shall be always enough space reserved for these commands.
  2542. // enquecommand_front_P((PSTR("G80")));
  2543. goto case_G80;
  2544. }
  2545. #endif
  2546. if (farm_mode) { prusa_statistics(20); };
  2547. homing_flag = false;
  2548. #if 0
  2549. SERIAL_ECHOPGM("G28, final "); print_world_coordinates();
  2550. SERIAL_ECHOPGM("G28, final "); print_physical_coordinates();
  2551. SERIAL_ECHOPGM("G28, final "); print_mesh_bed_leveling_table();
  2552. #endif
  2553. break;
  2554. }
  2555. #ifdef ENABLE_AUTO_BED_LEVELING
  2556. case 29: // G29 Detailed Z-Probe, probes the bed at 3 or more points.
  2557. {
  2558. #if Z_MIN_PIN == -1
  2559. #error "You must have a Z_MIN endstop in order to enable Auto Bed Leveling feature! Z_MIN_PIN must point to a valid hardware pin."
  2560. #endif
  2561. // Prevent user from running a G29 without first homing in X and Y
  2562. if (! (axis_known_position[X_AXIS] && axis_known_position[Y_AXIS]) )
  2563. {
  2564. LCD_MESSAGERPGM(MSG_POSITION_UNKNOWN);
  2565. SERIAL_ECHO_START;
  2566. SERIAL_ECHOLNRPGM(MSG_POSITION_UNKNOWN);
  2567. break; // abort G29, since we don't know where we are
  2568. }
  2569. st_synchronize();
  2570. // make sure the bed_level_rotation_matrix is identity or the planner will get it incorectly
  2571. //vector_3 corrected_position = plan_get_position_mm();
  2572. //corrected_position.debug("position before G29");
  2573. plan_bed_level_matrix.set_to_identity();
  2574. vector_3 uncorrected_position = plan_get_position();
  2575. //uncorrected_position.debug("position durring G29");
  2576. current_position[X_AXIS] = uncorrected_position.x;
  2577. current_position[Y_AXIS] = uncorrected_position.y;
  2578. current_position[Z_AXIS] = uncorrected_position.z;
  2579. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2580. setup_for_endstop_move();
  2581. feedrate = homing_feedrate[Z_AXIS];
  2582. #ifdef AUTO_BED_LEVELING_GRID
  2583. // probe at the points of a lattice grid
  2584. int xGridSpacing = (RIGHT_PROBE_BED_POSITION - LEFT_PROBE_BED_POSITION) / (AUTO_BED_LEVELING_GRID_POINTS-1);
  2585. int yGridSpacing = (BACK_PROBE_BED_POSITION - FRONT_PROBE_BED_POSITION) / (AUTO_BED_LEVELING_GRID_POINTS-1);
  2586. // solve the plane equation ax + by + d = z
  2587. // A is the matrix with rows [x y 1] for all the probed points
  2588. // B is the vector of the Z positions
  2589. // the normal vector to the plane is formed by the coefficients of the plane equation in the standard form, which is Vx*x+Vy*y+Vz*z+d = 0
  2590. // so Vx = -a Vy = -b Vz = 1 (we want the vector facing towards positive Z
  2591. // "A" matrix of the linear system of equations
  2592. double eqnAMatrix[AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS*3];
  2593. // "B" vector of Z points
  2594. double eqnBVector[AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS];
  2595. int probePointCounter = 0;
  2596. bool zig = true;
  2597. for (int yProbe=FRONT_PROBE_BED_POSITION; yProbe <= BACK_PROBE_BED_POSITION; yProbe += yGridSpacing)
  2598. {
  2599. int xProbe, xInc;
  2600. if (zig)
  2601. {
  2602. xProbe = LEFT_PROBE_BED_POSITION;
  2603. //xEnd = RIGHT_PROBE_BED_POSITION;
  2604. xInc = xGridSpacing;
  2605. zig = false;
  2606. } else // zag
  2607. {
  2608. xProbe = RIGHT_PROBE_BED_POSITION;
  2609. //xEnd = LEFT_PROBE_BED_POSITION;
  2610. xInc = -xGridSpacing;
  2611. zig = true;
  2612. }
  2613. for (int xCount=0; xCount < AUTO_BED_LEVELING_GRID_POINTS; xCount++)
  2614. {
  2615. float z_before;
  2616. if (probePointCounter == 0)
  2617. {
  2618. // raise before probing
  2619. z_before = Z_RAISE_BEFORE_PROBING;
  2620. } else
  2621. {
  2622. // raise extruder
  2623. z_before = current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS;
  2624. }
  2625. float measured_z = probe_pt(xProbe, yProbe, z_before);
  2626. eqnBVector[probePointCounter] = measured_z;
  2627. eqnAMatrix[probePointCounter + 0*AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS] = xProbe;
  2628. eqnAMatrix[probePointCounter + 1*AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS] = yProbe;
  2629. eqnAMatrix[probePointCounter + 2*AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS] = 1;
  2630. probePointCounter++;
  2631. xProbe += xInc;
  2632. }
  2633. }
  2634. clean_up_after_endstop_move();
  2635. // solve lsq problem
  2636. double *plane_equation_coefficients = qr_solve(AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS, 3, eqnAMatrix, eqnBVector);
  2637. SERIAL_PROTOCOLPGM("Eqn coefficients: a: ");
  2638. SERIAL_PROTOCOL(plane_equation_coefficients[0]);
  2639. SERIAL_PROTOCOLPGM(" b: ");
  2640. SERIAL_PROTOCOL(plane_equation_coefficients[1]);
  2641. SERIAL_PROTOCOLPGM(" d: ");
  2642. SERIAL_PROTOCOLLN(plane_equation_coefficients[2]);
  2643. set_bed_level_equation_lsq(plane_equation_coefficients);
  2644. free(plane_equation_coefficients);
  2645. #else // AUTO_BED_LEVELING_GRID not defined
  2646. // Probe at 3 arbitrary points
  2647. // probe 1
  2648. float z_at_pt_1 = probe_pt(ABL_PROBE_PT_1_X, ABL_PROBE_PT_1_Y, Z_RAISE_BEFORE_PROBING);
  2649. // probe 2
  2650. float z_at_pt_2 = probe_pt(ABL_PROBE_PT_2_X, ABL_PROBE_PT_2_Y, current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS);
  2651. // probe 3
  2652. float z_at_pt_3 = probe_pt(ABL_PROBE_PT_3_X, ABL_PROBE_PT_3_Y, current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS);
  2653. clean_up_after_endstop_move();
  2654. set_bed_level_equation_3pts(z_at_pt_1, z_at_pt_2, z_at_pt_3);
  2655. #endif // AUTO_BED_LEVELING_GRID
  2656. st_synchronize();
  2657. // The following code correct the Z height difference from z-probe position and hotend tip position.
  2658. // The Z height on homing is measured by Z-Probe, but the probe is quite far from the hotend.
  2659. // When the bed is uneven, this height must be corrected.
  2660. real_z = float(st_get_position(Z_AXIS))/axis_steps_per_unit[Z_AXIS]; //get the real Z (since the auto bed leveling is already correcting the plane)
  2661. x_tmp = current_position[X_AXIS] + X_PROBE_OFFSET_FROM_EXTRUDER;
  2662. y_tmp = current_position[Y_AXIS] + Y_PROBE_OFFSET_FROM_EXTRUDER;
  2663. z_tmp = current_position[Z_AXIS];
  2664. apply_rotation_xyz(plan_bed_level_matrix, x_tmp, y_tmp, z_tmp); //Apply the correction sending the probe offset
  2665. current_position[Z_AXIS] = z_tmp - real_z + current_position[Z_AXIS]; //The difference is added to current position and sent to planner.
  2666. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2667. }
  2668. break;
  2669. #ifndef Z_PROBE_SLED
  2670. case 30: // G30 Single Z Probe
  2671. {
  2672. st_synchronize();
  2673. // TODO: make sure the bed_level_rotation_matrix is identity or the planner will get set incorectly
  2674. setup_for_endstop_move();
  2675. feedrate = homing_feedrate[Z_AXIS];
  2676. run_z_probe();
  2677. SERIAL_PROTOCOLPGM(MSG_BED);
  2678. SERIAL_PROTOCOLPGM(" X: ");
  2679. SERIAL_PROTOCOL(current_position[X_AXIS]);
  2680. SERIAL_PROTOCOLPGM(" Y: ");
  2681. SERIAL_PROTOCOL(current_position[Y_AXIS]);
  2682. SERIAL_PROTOCOLPGM(" Z: ");
  2683. SERIAL_PROTOCOL(current_position[Z_AXIS]);
  2684. SERIAL_PROTOCOLPGM("\n");
  2685. clean_up_after_endstop_move();
  2686. }
  2687. break;
  2688. #else
  2689. case 31: // dock the sled
  2690. dock_sled(true);
  2691. break;
  2692. case 32: // undock the sled
  2693. dock_sled(false);
  2694. break;
  2695. #endif // Z_PROBE_SLED
  2696. #endif // ENABLE_AUTO_BED_LEVELING
  2697. #ifdef MESH_BED_LEVELING
  2698. case 30: // G30 Single Z Probe
  2699. {
  2700. st_synchronize();
  2701. // TODO: make sure the bed_level_rotation_matrix is identity or the planner will get set incorectly
  2702. setup_for_endstop_move();
  2703. feedrate = homing_feedrate[Z_AXIS];
  2704. find_bed_induction_sensor_point_z(-10.f, 3);
  2705. SERIAL_PROTOCOLRPGM(MSG_BED);
  2706. SERIAL_PROTOCOLPGM(" X: ");
  2707. MYSERIAL.print(current_position[X_AXIS], 5);
  2708. SERIAL_PROTOCOLPGM(" Y: ");
  2709. MYSERIAL.print(current_position[Y_AXIS], 5);
  2710. SERIAL_PROTOCOLPGM(" Z: ");
  2711. MYSERIAL.print(current_position[Z_AXIS], 5);
  2712. SERIAL_PROTOCOLPGM("\n");
  2713. clean_up_after_endstop_move();
  2714. }
  2715. break;
  2716. case 75:
  2717. {
  2718. for (int i = 40; i <= 110; i++) {
  2719. MYSERIAL.print(i);
  2720. MYSERIAL.print(" ");
  2721. MYSERIAL.println(temp_comp_interpolation(i));// / axis_steps_per_unit[Z_AXIS]);
  2722. }
  2723. }
  2724. break;
  2725. case 76: //PINDA probe temperature calibration
  2726. {
  2727. #ifdef PINDA_THERMISTOR
  2728. if (true)
  2729. {
  2730. lcd_show_fullscreen_message_and_wait_P(MSG_TEMP_CAL_WARNING);
  2731. bool result = lcd_show_fullscreen_message_yes_no_and_wait_P(MSG_STEEL_SHEET_CHECK, false, false);
  2732. if(result) lcd_show_fullscreen_message_and_wait_P(MSG_REMOVE_STEEL_SHEET);
  2733. if (!(axis_known_position[X_AXIS] && axis_known_position[Y_AXIS] && axis_known_position[Z_AXIS])) {
  2734. // We don't know where we are! HOME!
  2735. // Push the commands to the front of the message queue in the reverse order!
  2736. // There shall be always enough space reserved for these commands.
  2737. repeatcommand_front(); // repeat G76 with all its parameters
  2738. enquecommand_front_P((PSTR("G28 W0")));
  2739. break;
  2740. }
  2741. KEEPALIVE_STATE(NOT_BUSY); //no need to print busy messages as we print current temperatures periodicaly
  2742. SERIAL_ECHOLNPGM("PINDA probe calibration start");
  2743. float zero_z;
  2744. int z_shift = 0; //unit: steps
  2745. float start_temp = 5 * (int)(current_temperature_pinda / 5);
  2746. if (start_temp < 35) start_temp = 35;
  2747. if (start_temp < current_temperature_pinda) start_temp += 5;
  2748. SERIAL_ECHOPGM("start temperature: ");
  2749. MYSERIAL.println(start_temp);
  2750. // setTargetHotend(200, 0);
  2751. setTargetBed(70 + (start_temp - 30));
  2752. custom_message = true;
  2753. custom_message_type = 4;
  2754. custom_message_state = 1;
  2755. custom_message = MSG_TEMP_CALIBRATION;
  2756. current_position[X_AXIS] = PINDA_PREHEAT_X;
  2757. current_position[Y_AXIS] = PINDA_PREHEAT_Y;
  2758. current_position[Z_AXIS] = PINDA_PREHEAT_Z;
  2759. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  2760. st_synchronize();
  2761. while (current_temperature_pinda < start_temp)
  2762. {
  2763. delay_keep_alive(1000);
  2764. serialecho_temperatures();
  2765. }
  2766. eeprom_update_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 0); //invalidate temp. calibration in case that in will be aborted during the calibration process
  2767. current_position[Z_AXIS] = 5;
  2768. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  2769. current_position[X_AXIS] = pgm_read_float(bed_ref_points);
  2770. current_position[Y_AXIS] = pgm_read_float(bed_ref_points + 1);
  2771. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  2772. st_synchronize();
  2773. find_bed_induction_sensor_point_z(-1.f);
  2774. zero_z = current_position[Z_AXIS];
  2775. //current_position[Z_AXIS]
  2776. SERIAL_ECHOLNPGM("");
  2777. SERIAL_ECHOPGM("ZERO: ");
  2778. MYSERIAL.print(current_position[Z_AXIS]);
  2779. SERIAL_ECHOLNPGM("");
  2780. int i = -1; for (; i < 5; i++)
  2781. {
  2782. float temp = (40 + i * 5);
  2783. SERIAL_ECHOPGM("Step: ");
  2784. MYSERIAL.print(i + 2);
  2785. SERIAL_ECHOLNPGM("/6 (skipped)");
  2786. SERIAL_ECHOPGM("PINDA temperature: ");
  2787. MYSERIAL.print((40 + i*5));
  2788. SERIAL_ECHOPGM(" Z shift (mm):");
  2789. MYSERIAL.print(0);
  2790. SERIAL_ECHOLNPGM("");
  2791. if (i >= 0) EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + i * 2, &z_shift);
  2792. if (start_temp <= temp) break;
  2793. }
  2794. for (i++; i < 5; i++)
  2795. {
  2796. float temp = (40 + i * 5);
  2797. SERIAL_ECHOPGM("Step: ");
  2798. MYSERIAL.print(i + 2);
  2799. SERIAL_ECHOLNPGM("/6");
  2800. custom_message_state = i + 2;
  2801. setTargetBed(50 + 10 * (temp - 30) / 5);
  2802. // setTargetHotend(255, 0);
  2803. current_position[X_AXIS] = PINDA_PREHEAT_X;
  2804. current_position[Y_AXIS] = PINDA_PREHEAT_Y;
  2805. current_position[Z_AXIS] = PINDA_PREHEAT_Z;
  2806. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  2807. st_synchronize();
  2808. while (current_temperature_pinda < temp)
  2809. {
  2810. delay_keep_alive(1000);
  2811. serialecho_temperatures();
  2812. }
  2813. current_position[Z_AXIS] = 5;
  2814. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  2815. current_position[X_AXIS] = pgm_read_float(bed_ref_points);
  2816. current_position[Y_AXIS] = pgm_read_float(bed_ref_points + 1);
  2817. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  2818. st_synchronize();
  2819. find_bed_induction_sensor_point_z(-1.f);
  2820. z_shift = (int)((current_position[Z_AXIS] - zero_z)*axis_steps_per_unit[Z_AXIS]);
  2821. SERIAL_ECHOLNPGM("");
  2822. SERIAL_ECHOPGM("PINDA temperature: ");
  2823. MYSERIAL.print(current_temperature_pinda);
  2824. SERIAL_ECHOPGM(" Z shift (mm):");
  2825. MYSERIAL.print(current_position[Z_AXIS] - zero_z);
  2826. SERIAL_ECHOLNPGM("");
  2827. EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + i * 2, &z_shift);
  2828. }
  2829. custom_message_type = 0;
  2830. custom_message = false;
  2831. eeprom_update_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 1);
  2832. SERIAL_ECHOLNPGM("Temperature calibration done. Continue with pressing the knob.");
  2833. disable_x();
  2834. disable_y();
  2835. disable_z();
  2836. disable_e0();
  2837. disable_e1();
  2838. disable_e2();
  2839. setTargetBed(0); //set bed target temperature back to 0
  2840. // setTargetHotend(0,0); //set hotend target temperature back to 0
  2841. lcd_show_fullscreen_message_and_wait_P(MSG_TEMP_CALIBRATION_DONE);
  2842. lcd_update_enable(true);
  2843. lcd_update(2);
  2844. break;
  2845. }
  2846. #endif //PINDA_THERMISTOR
  2847. setTargetBed(PINDA_MIN_T);
  2848. float zero_z;
  2849. int z_shift = 0; //unit: steps
  2850. int t_c; // temperature
  2851. if (!(axis_known_position[X_AXIS] && axis_known_position[Y_AXIS] && axis_known_position[Z_AXIS])) {
  2852. // We don't know where we are! HOME!
  2853. // Push the commands to the front of the message queue in the reverse order!
  2854. // There shall be always enough space reserved for these commands.
  2855. repeatcommand_front(); // repeat G76 with all its parameters
  2856. enquecommand_front_P((PSTR("G28 W0")));
  2857. break;
  2858. }
  2859. SERIAL_ECHOLNPGM("PINDA probe calibration start");
  2860. custom_message = true;
  2861. custom_message_type = 4;
  2862. custom_message_state = 1;
  2863. custom_message = MSG_TEMP_CALIBRATION;
  2864. current_position[X_AXIS] = PINDA_PREHEAT_X;
  2865. current_position[Y_AXIS] = PINDA_PREHEAT_Y;
  2866. current_position[Z_AXIS] = PINDA_PREHEAT_Z;
  2867. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  2868. st_synchronize();
  2869. while (abs(degBed() - PINDA_MIN_T) > 1) {
  2870. delay_keep_alive(1000);
  2871. serialecho_temperatures();
  2872. }
  2873. //enquecommand_P(PSTR("M190 S50"));
  2874. for (int i = 0; i < PINDA_HEAT_T; i++) {
  2875. delay_keep_alive(1000);
  2876. serialecho_temperatures();
  2877. }
  2878. eeprom_update_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 0); //invalidate temp. calibration in case that in will be aborted during the calibration process
  2879. current_position[Z_AXIS] = 5;
  2880. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  2881. current_position[X_AXIS] = pgm_read_float(bed_ref_points);
  2882. current_position[Y_AXIS] = pgm_read_float(bed_ref_points + 1);
  2883. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  2884. st_synchronize();
  2885. find_bed_induction_sensor_point_z(-1.f);
  2886. zero_z = current_position[Z_AXIS];
  2887. //current_position[Z_AXIS]
  2888. SERIAL_ECHOLNPGM("");
  2889. SERIAL_ECHOPGM("ZERO: ");
  2890. MYSERIAL.print(current_position[Z_AXIS]);
  2891. SERIAL_ECHOLNPGM("");
  2892. for (int i = 0; i<5; i++) {
  2893. SERIAL_ECHOPGM("Step: ");
  2894. MYSERIAL.print(i+2);
  2895. SERIAL_ECHOLNPGM("/6");
  2896. custom_message_state = i + 2;
  2897. t_c = 60 + i * 10;
  2898. setTargetBed(t_c);
  2899. current_position[X_AXIS] = PINDA_PREHEAT_X;
  2900. current_position[Y_AXIS] = PINDA_PREHEAT_Y;
  2901. current_position[Z_AXIS] = PINDA_PREHEAT_Z;
  2902. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  2903. st_synchronize();
  2904. while (degBed() < t_c) {
  2905. delay_keep_alive(1000);
  2906. serialecho_temperatures();
  2907. }
  2908. for (int i = 0; i < PINDA_HEAT_T; i++) {
  2909. delay_keep_alive(1000);
  2910. serialecho_temperatures();
  2911. }
  2912. current_position[Z_AXIS] = 5;
  2913. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  2914. current_position[X_AXIS] = pgm_read_float(bed_ref_points);
  2915. current_position[Y_AXIS] = pgm_read_float(bed_ref_points + 1);
  2916. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  2917. st_synchronize();
  2918. find_bed_induction_sensor_point_z(-1.f);
  2919. z_shift = (int)((current_position[Z_AXIS] - zero_z)*axis_steps_per_unit[Z_AXIS]);
  2920. SERIAL_ECHOLNPGM("");
  2921. SERIAL_ECHOPGM("Temperature: ");
  2922. MYSERIAL.print(t_c);
  2923. SERIAL_ECHOPGM(" Z shift (mm):");
  2924. MYSERIAL.print(current_position[Z_AXIS] - zero_z);
  2925. SERIAL_ECHOLNPGM("");
  2926. EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + i*2, &z_shift);
  2927. }
  2928. custom_message_type = 0;
  2929. custom_message = false;
  2930. eeprom_update_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 1);
  2931. SERIAL_ECHOLNPGM("Temperature calibration done. Continue with pressing the knob.");
  2932. disable_x();
  2933. disable_y();
  2934. disable_z();
  2935. disable_e0();
  2936. disable_e1();
  2937. disable_e2();
  2938. setTargetBed(0); //set bed target temperature back to 0
  2939. lcd_show_fullscreen_message_and_wait_P(MSG_TEMP_CALIBRATION_DONE);
  2940. lcd_update_enable(true);
  2941. lcd_update(2);
  2942. }
  2943. break;
  2944. #ifdef DIS
  2945. case 77:
  2946. {
  2947. //G77 X200 Y150 XP100 YP15 XO10 Y015
  2948. //for 9 point mesh bed leveling G77 X203 Y196 XP3 YP3 XO0 YO0
  2949. //G77 X232 Y218 XP116 YP109 XO-11 YO0
  2950. float dimension_x = 40;
  2951. float dimension_y = 40;
  2952. int points_x = 40;
  2953. int points_y = 40;
  2954. float offset_x = 74;
  2955. float offset_y = 33;
  2956. if (code_seen('X')) dimension_x = code_value();
  2957. if (code_seen('Y')) dimension_y = code_value();
  2958. if (code_seen('XP')) points_x = code_value();
  2959. if (code_seen('YP')) points_y = code_value();
  2960. if (code_seen('XO')) offset_x = code_value();
  2961. if (code_seen('YO')) offset_y = code_value();
  2962. bed_analysis(dimension_x,dimension_y,points_x,points_y,offset_x,offset_y);
  2963. } break;
  2964. #endif
  2965. case 79: {
  2966. for (int i = 255; i > 0; i = i - 5) {
  2967. fanSpeed = i;
  2968. //delay_keep_alive(2000);
  2969. for (int j = 0; j < 100; j++) {
  2970. delay_keep_alive(100);
  2971. }
  2972. fan_speed[1];
  2973. MYSERIAL.print(i); SERIAL_ECHOPGM(": "); MYSERIAL.println(fan_speed[1]);
  2974. }
  2975. }break;
  2976. /**
  2977. * G80: Mesh-based Z probe, probes a grid and produces a
  2978. * mesh to compensate for variable bed height
  2979. *
  2980. * The S0 report the points as below
  2981. *
  2982. * +----> X-axis
  2983. * |
  2984. * |
  2985. * v Y-axis
  2986. *
  2987. */
  2988. case 80:
  2989. #ifdef MK1BP
  2990. break;
  2991. #endif //MK1BP
  2992. case_G80:
  2993. {
  2994. mesh_bed_leveling_flag = true;
  2995. int8_t verbosity_level = 0;
  2996. static bool run = false;
  2997. if (code_seen('V')) {
  2998. // Just 'V' without a number counts as V1.
  2999. char c = strchr_pointer[1];
  3000. verbosity_level = (c == ' ' || c == '\t' || c == 0) ? 1 : code_value_short();
  3001. }
  3002. // Firstly check if we know where we are
  3003. if (!(axis_known_position[X_AXIS] && axis_known_position[Y_AXIS] && axis_known_position[Z_AXIS])) {
  3004. // We don't know where we are! HOME!
  3005. // Push the commands to the front of the message queue in the reverse order!
  3006. // There shall be always enough space reserved for these commands.
  3007. if (lcd_commands_type != LCD_COMMAND_STOP_PRINT) {
  3008. repeatcommand_front(); // repeat G80 with all its parameters
  3009. enquecommand_front_P((PSTR("G28 W0")));
  3010. }
  3011. else {
  3012. mesh_bed_leveling_flag = false;
  3013. }
  3014. break;
  3015. }
  3016. bool temp_comp_start = true;
  3017. #ifdef PINDA_THERMISTOR
  3018. temp_comp_start = false;
  3019. #endif //PINDA_THERMISTOR
  3020. if (temp_comp_start)
  3021. if (run == false && temp_cal_active == true && calibration_status_pinda() == true && target_temperature_bed >= 50) {
  3022. if (lcd_commands_type != LCD_COMMAND_STOP_PRINT) {
  3023. temp_compensation_start();
  3024. run = true;
  3025. repeatcommand_front(); // repeat G80 with all its parameters
  3026. enquecommand_front_P((PSTR("G28 W0")));
  3027. }
  3028. else {
  3029. mesh_bed_leveling_flag = false;
  3030. }
  3031. break;
  3032. }
  3033. run = false;
  3034. if (lcd_commands_type == LCD_COMMAND_STOP_PRINT) {
  3035. mesh_bed_leveling_flag = false;
  3036. break;
  3037. }
  3038. // Save custom message state, set a new custom message state to display: Calibrating point 9.
  3039. bool custom_message_old = custom_message;
  3040. unsigned int custom_message_type_old = custom_message_type;
  3041. unsigned int custom_message_state_old = custom_message_state;
  3042. custom_message = true;
  3043. custom_message_type = 1;
  3044. custom_message_state = (MESH_MEAS_NUM_X_POINTS * MESH_MEAS_NUM_Y_POINTS) + 10;
  3045. lcd_update(1);
  3046. mbl.reset(); //reset mesh bed leveling
  3047. // Reset baby stepping to zero, if the babystepping has already been loaded before. The babystepsTodo value will be
  3048. // consumed during the first movements following this statement.
  3049. babystep_undo();
  3050. // Cycle through all points and probe them
  3051. // First move up. During this first movement, the babystepping will be reverted.
  3052. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3053. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[Z_AXIS] / 60, active_extruder);
  3054. // The move to the first calibration point.
  3055. current_position[X_AXIS] = pgm_read_float(bed_ref_points);
  3056. current_position[Y_AXIS] = pgm_read_float(bed_ref_points + 1);
  3057. bool clamped = world2machine_clamp(current_position[X_AXIS], current_position[Y_AXIS]);
  3058. #ifdef SUPPORT_VERBOSITY
  3059. if (verbosity_level >= 1) {
  3060. clamped ? SERIAL_PROTOCOLPGM("First calibration point clamped.\n") : SERIAL_PROTOCOLPGM("No clamping for first calibration point.\n");
  3061. }
  3062. #endif //SUPPORT_VERBOSITY
  3063. // mbl.get_meas_xy(0, 0, current_position[X_AXIS], current_position[Y_AXIS], false);
  3064. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[X_AXIS] / 30, active_extruder);
  3065. // Wait until the move is finished.
  3066. st_synchronize();
  3067. int mesh_point = 0; //index number of calibration point
  3068. int ix = 0;
  3069. int iy = 0;
  3070. int XY_AXIS_FEEDRATE = homing_feedrate[X_AXIS] / 20;
  3071. int Z_PROBE_FEEDRATE = homing_feedrate[Z_AXIS] / 60;
  3072. int Z_LIFT_FEEDRATE = homing_feedrate[Z_AXIS] / 40;
  3073. bool has_z = is_bed_z_jitter_data_valid(); //checks if we have data from Z calibration (offsets of the Z heiths of the 8 calibration points from the first point)
  3074. #ifdef SUPPORT_VERBOSITY
  3075. if (verbosity_level >= 1) {
  3076. has_z ? SERIAL_PROTOCOLPGM("Z jitter data from Z cal. valid.\n") : SERIAL_PROTOCOLPGM("Z jitter data from Z cal. not valid.\n");
  3077. }
  3078. #endif // SUPPORT_VERBOSITY
  3079. setup_for_endstop_move(false); //save feedrate and feedmultiply, sets feedmultiply to 100
  3080. const char *kill_message = NULL;
  3081. while (mesh_point != MESH_MEAS_NUM_X_POINTS * MESH_MEAS_NUM_Y_POINTS) {
  3082. // Get coords of a measuring point.
  3083. ix = mesh_point % MESH_MEAS_NUM_X_POINTS; // from 0 to MESH_NUM_X_POINTS - 1
  3084. iy = mesh_point / MESH_MEAS_NUM_X_POINTS;
  3085. if (iy & 1) ix = (MESH_MEAS_NUM_X_POINTS - 1) - ix; // Zig zag
  3086. float z0 = 0.f;
  3087. if (has_z && mesh_point > 0) {
  3088. uint16_t z_offset_u = eeprom_read_word((uint16_t*)(EEPROM_BED_CALIBRATION_Z_JITTER + 2 * (ix + iy * 3 - 1)));
  3089. z0 = mbl.z_values[0][0] + *reinterpret_cast<int16_t*>(&z_offset_u) * 0.01;
  3090. //#if 0
  3091. #ifdef SUPPORT_VERBOSITY
  3092. if (verbosity_level >= 1) {
  3093. SERIAL_ECHOLNPGM("");
  3094. SERIAL_ECHOPGM("Bed leveling, point: ");
  3095. MYSERIAL.print(mesh_point);
  3096. SERIAL_ECHOPGM(", calibration z: ");
  3097. MYSERIAL.print(z0, 5);
  3098. SERIAL_ECHOLNPGM("");
  3099. }
  3100. #endif // SUPPORT_VERBOSITY
  3101. //#endif
  3102. }
  3103. // Move Z up to MESH_HOME_Z_SEARCH.
  3104. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3105. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], Z_LIFT_FEEDRATE, active_extruder);
  3106. st_synchronize();
  3107. // Move to XY position of the sensor point.
  3108. current_position[X_AXIS] = pgm_read_float(bed_ref_points + 2 * mesh_point);
  3109. current_position[Y_AXIS] = pgm_read_float(bed_ref_points + 2 * mesh_point + 1);
  3110. world2machine_clamp(current_position[X_AXIS], current_position[Y_AXIS]);
  3111. #ifdef SUPPORT_VERBOSITY
  3112. if (verbosity_level >= 1) {
  3113. SERIAL_PROTOCOL(mesh_point);
  3114. clamped ? SERIAL_PROTOCOLPGM(": xy clamped.\n") : SERIAL_PROTOCOLPGM(": no xy clamping\n");
  3115. }
  3116. #endif // SUPPORT_VERBOSITY
  3117. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], XY_AXIS_FEEDRATE, active_extruder);
  3118. st_synchronize();
  3119. // Go down until endstop is hit
  3120. const float Z_CALIBRATION_THRESHOLD = 1.f;
  3121. if (!find_bed_induction_sensor_point_z((has_z && mesh_point > 0) ? z0 - Z_CALIBRATION_THRESHOLD : -10.f)) { //if we have data from z calibration max allowed difference is 1mm for each point, if we dont have data max difference is 10mm from initial point
  3122. kill_message = MSG_BED_LEVELING_FAILED_POINT_LOW;
  3123. break;
  3124. }
  3125. if (MESH_HOME_Z_SEARCH - current_position[Z_AXIS] < 0.1f) {
  3126. kill_message = MSG_BED_LEVELING_FAILED_PROBE_DISCONNECTED;
  3127. break;
  3128. }
  3129. if (has_z && fabs(z0 - current_position[Z_AXIS]) > Z_CALIBRATION_THRESHOLD) { //if we have data from z calibration, max. allowed difference is 1mm for each point
  3130. kill_message = MSG_BED_LEVELING_FAILED_POINT_HIGH;
  3131. break;
  3132. }
  3133. #ifdef SUPPORT_VERBOSITY
  3134. if (verbosity_level >= 10) {
  3135. SERIAL_ECHOPGM("X: ");
  3136. MYSERIAL.print(current_position[X_AXIS], 5);
  3137. SERIAL_ECHOLNPGM("");
  3138. SERIAL_ECHOPGM("Y: ");
  3139. MYSERIAL.print(current_position[Y_AXIS], 5);
  3140. SERIAL_PROTOCOLPGM("\n");
  3141. }
  3142. #endif // SUPPORT_VERBOSITY
  3143. float offset_z = 0;
  3144. #ifdef PINDA_THERMISTOR
  3145. offset_z = temp_compensation_pinda_thermistor_offset(current_temperature_pinda);
  3146. #endif //PINDA_THERMISTOR
  3147. // #ifdef SUPPORT_VERBOSITY
  3148. /* if (verbosity_level >= 1)
  3149. {
  3150. SERIAL_ECHOPGM("mesh bed leveling: ");
  3151. MYSERIAL.print(current_position[Z_AXIS], 5);
  3152. SERIAL_ECHOPGM(" offset: ");
  3153. MYSERIAL.print(offset_z, 5);
  3154. SERIAL_ECHOLNPGM("");
  3155. }*/
  3156. // #endif // SUPPORT_VERBOSITY
  3157. mbl.set_z(ix, iy, current_position[Z_AXIS] - offset_z); //store measured z values z_values[iy][ix] = z - offset_z;
  3158. custom_message_state--;
  3159. mesh_point++;
  3160. lcd_update(1);
  3161. }
  3162. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3163. #ifdef SUPPORT_VERBOSITY
  3164. if (verbosity_level >= 20) {
  3165. SERIAL_ECHOLNPGM("Mesh bed leveling while loop finished.");
  3166. SERIAL_ECHOLNPGM("MESH_HOME_Z_SEARCH: ");
  3167. MYSERIAL.print(current_position[Z_AXIS], 5);
  3168. }
  3169. #endif // SUPPORT_VERBOSITY
  3170. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], Z_LIFT_FEEDRATE, active_extruder);
  3171. st_synchronize();
  3172. if (mesh_point != MESH_MEAS_NUM_X_POINTS * MESH_MEAS_NUM_Y_POINTS) {
  3173. kill(kill_message);
  3174. SERIAL_ECHOLNPGM("killed");
  3175. }
  3176. clean_up_after_endstop_move();
  3177. // SERIAL_ECHOLNPGM("clean up finished ");
  3178. bool apply_temp_comp = true;
  3179. #ifdef PINDA_THERMISTOR
  3180. apply_temp_comp = false;
  3181. #endif
  3182. if (apply_temp_comp)
  3183. if(temp_cal_active == true && calibration_status_pinda() == true) temp_compensation_apply(); //apply PINDA temperature compensation
  3184. babystep_apply(); // Apply Z height correction aka baby stepping before mesh bed leveing gets activated.
  3185. // SERIAL_ECHOLNPGM("babystep applied");
  3186. bool eeprom_bed_correction_valid = eeprom_read_byte((unsigned char*)EEPROM_BED_CORRECTION_VALID) == 1;
  3187. #ifdef SUPPORT_VERBOSITY
  3188. if (verbosity_level >= 1) {
  3189. eeprom_bed_correction_valid ? SERIAL_PROTOCOLPGM("Bed correction data valid\n") : SERIAL_PROTOCOLPGM("Bed correction data not valid\n");
  3190. }
  3191. #endif // SUPPORT_VERBOSITY
  3192. for (uint8_t i = 0; i < 4; ++i) {
  3193. unsigned char codes[4] = { 'L', 'R', 'F', 'B' };
  3194. long correction = 0;
  3195. if (code_seen(codes[i]))
  3196. correction = code_value_long();
  3197. else if (eeprom_bed_correction_valid) {
  3198. unsigned char *addr = (i < 2) ?
  3199. ((i == 0) ? (unsigned char*)EEPROM_BED_CORRECTION_LEFT : (unsigned char*)EEPROM_BED_CORRECTION_RIGHT) :
  3200. ((i == 2) ? (unsigned char*)EEPROM_BED_CORRECTION_FRONT : (unsigned char*)EEPROM_BED_CORRECTION_REAR);
  3201. correction = eeprom_read_int8(addr);
  3202. }
  3203. if (correction == 0)
  3204. continue;
  3205. float offset = float(correction) * 0.001f;
  3206. if (fabs(offset) > 0.101f) {
  3207. SERIAL_ERROR_START;
  3208. SERIAL_ECHOPGM("Excessive bed leveling correction: ");
  3209. SERIAL_ECHO(offset);
  3210. SERIAL_ECHOLNPGM(" microns");
  3211. }
  3212. else {
  3213. switch (i) {
  3214. case 0:
  3215. for (uint8_t row = 0; row < 3; ++row) {
  3216. mbl.z_values[row][1] += 0.5f * offset;
  3217. mbl.z_values[row][0] += offset;
  3218. }
  3219. break;
  3220. case 1:
  3221. for (uint8_t row = 0; row < 3; ++row) {
  3222. mbl.z_values[row][1] += 0.5f * offset;
  3223. mbl.z_values[row][2] += offset;
  3224. }
  3225. break;
  3226. case 2:
  3227. for (uint8_t col = 0; col < 3; ++col) {
  3228. mbl.z_values[1][col] += 0.5f * offset;
  3229. mbl.z_values[0][col] += offset;
  3230. }
  3231. break;
  3232. case 3:
  3233. for (uint8_t col = 0; col < 3; ++col) {
  3234. mbl.z_values[1][col] += 0.5f * offset;
  3235. mbl.z_values[2][col] += offset;
  3236. }
  3237. break;
  3238. }
  3239. }
  3240. }
  3241. // SERIAL_ECHOLNPGM("Bed leveling correction finished");
  3242. mbl.upsample_3x3(); //bilinear interpolation from 3x3 to 7x7 points while using the same array z_values[iy][ix] for storing (just coppying measured data to new destination and interpolating between them)
  3243. // SERIAL_ECHOLNPGM("Upsample finished");
  3244. mbl.active = 1; //activate mesh bed leveling
  3245. // SERIAL_ECHOLNPGM("Mesh bed leveling activated");
  3246. go_home_with_z_lift();
  3247. // SERIAL_ECHOLNPGM("Go home finished");
  3248. //unretract (after PINDA preheat retraction)
  3249. if (degHotend(active_extruder) > EXTRUDE_MINTEMP && temp_cal_active == true && calibration_status_pinda() == true && target_temperature_bed >= 50) {
  3250. current_position[E_AXIS] += DEFAULT_RETRACTION;
  3251. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400, active_extruder);
  3252. }
  3253. KEEPALIVE_STATE(NOT_BUSY);
  3254. // Restore custom message state
  3255. custom_message = custom_message_old;
  3256. custom_message_type = custom_message_type_old;
  3257. custom_message_state = custom_message_state_old;
  3258. mesh_bed_leveling_flag = false;
  3259. mesh_bed_run_from_menu = false;
  3260. lcd_update(2);
  3261. }
  3262. break;
  3263. /**
  3264. * G81: Print mesh bed leveling status and bed profile if activated
  3265. */
  3266. case 81:
  3267. if (mbl.active) {
  3268. SERIAL_PROTOCOLPGM("Num X,Y: ");
  3269. SERIAL_PROTOCOL(MESH_NUM_X_POINTS);
  3270. SERIAL_PROTOCOLPGM(",");
  3271. SERIAL_PROTOCOL(MESH_NUM_Y_POINTS);
  3272. SERIAL_PROTOCOLPGM("\nZ search height: ");
  3273. SERIAL_PROTOCOL(MESH_HOME_Z_SEARCH);
  3274. SERIAL_PROTOCOLLNPGM("\nMeasured points:");
  3275. for (int y = MESH_NUM_Y_POINTS-1; y >= 0; y--) {
  3276. for (int x = 0; x < MESH_NUM_X_POINTS; x++) {
  3277. SERIAL_PROTOCOLPGM(" ");
  3278. SERIAL_PROTOCOL_F(mbl.z_values[y][x], 5);
  3279. }
  3280. SERIAL_PROTOCOLPGM("\n");
  3281. }
  3282. }
  3283. else
  3284. SERIAL_PROTOCOLLNPGM("Mesh bed leveling not active.");
  3285. break;
  3286. #if 0
  3287. /**
  3288. * G82: Single Z probe at current location
  3289. *
  3290. * WARNING! USE WITH CAUTION! If you'll try to probe where is no leveling pad, nasty things can happen!
  3291. *
  3292. */
  3293. case 82:
  3294. SERIAL_PROTOCOLLNPGM("Finding bed ");
  3295. setup_for_endstop_move();
  3296. find_bed_induction_sensor_point_z();
  3297. clean_up_after_endstop_move();
  3298. SERIAL_PROTOCOLPGM("Bed found at: ");
  3299. SERIAL_PROTOCOL_F(current_position[Z_AXIS], 5);
  3300. SERIAL_PROTOCOLPGM("\n");
  3301. break;
  3302. /**
  3303. * G83: Prusa3D specific: Babystep in Z and store to EEPROM
  3304. */
  3305. case 83:
  3306. {
  3307. int babystepz = code_seen('S') ? code_value() : 0;
  3308. int BabyPosition = code_seen('P') ? code_value() : 0;
  3309. if (babystepz != 0) {
  3310. //FIXME Vojtech: What shall be the index of the axis Z: 3 or 4?
  3311. // Is the axis indexed starting with zero or one?
  3312. if (BabyPosition > 4) {
  3313. SERIAL_PROTOCOLLNPGM("Index out of bounds");
  3314. }else{
  3315. // Save it to the eeprom
  3316. babystepLoadZ = babystepz;
  3317. EEPROM_save_B(EEPROM_BABYSTEP_Z0+(BabyPosition*2),&babystepLoadZ);
  3318. // adjust the Z
  3319. babystepsTodoZadd(babystepLoadZ);
  3320. }
  3321. }
  3322. }
  3323. break;
  3324. /**
  3325. * G84: Prusa3D specific: UNDO Babystep Z (move Z axis back)
  3326. */
  3327. case 84:
  3328. babystepsTodoZsubtract(babystepLoadZ);
  3329. // babystepLoadZ = 0;
  3330. break;
  3331. /**
  3332. * G85: Prusa3D specific: Pick best babystep
  3333. */
  3334. case 85:
  3335. lcd_pick_babystep();
  3336. break;
  3337. #endif
  3338. /**
  3339. * G86: Prusa3D specific: Disable babystep correction after home.
  3340. * This G-code will be performed at the start of a calibration script.
  3341. */
  3342. case 86:
  3343. calibration_status_store(CALIBRATION_STATUS_LIVE_ADJUST);
  3344. break;
  3345. /**
  3346. * G87: Prusa3D specific: Enable babystep correction after home
  3347. * This G-code will be performed at the end of a calibration script.
  3348. */
  3349. case 87:
  3350. calibration_status_store(CALIBRATION_STATUS_CALIBRATED);
  3351. break;
  3352. /**
  3353. * G88: Prusa3D specific: Don't know what it is for, it is in V2Calibration.gcode
  3354. */
  3355. case 88:
  3356. break;
  3357. #endif // ENABLE_MESH_BED_LEVELING
  3358. case 90: // G90
  3359. relative_mode = false;
  3360. break;
  3361. case 91: // G91
  3362. relative_mode = true;
  3363. break;
  3364. case 92: // G92
  3365. if(!code_seen(axis_codes[E_AXIS]))
  3366. st_synchronize();
  3367. for(int8_t i=0; i < NUM_AXIS; i++) {
  3368. if(code_seen(axis_codes[i])) {
  3369. if(i == E_AXIS) {
  3370. current_position[i] = code_value();
  3371. plan_set_e_position(current_position[E_AXIS]);
  3372. }
  3373. else {
  3374. current_position[i] = code_value()+add_homing[i];
  3375. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  3376. }
  3377. }
  3378. }
  3379. break;
  3380. case 98: //activate farm mode
  3381. farm_mode = 1;
  3382. PingTime = millis();
  3383. eeprom_update_byte((unsigned char *)EEPROM_FARM_MODE, farm_mode);
  3384. break;
  3385. case 99: //deactivate farm mode
  3386. farm_mode = 0;
  3387. lcd_printer_connected();
  3388. eeprom_update_byte((unsigned char *)EEPROM_FARM_MODE, farm_mode);
  3389. lcd_update(2);
  3390. break;
  3391. default:
  3392. printf_P(PSTR("Unknown G code: %s \n"), cmdbuffer + bufindr + CMDHDRSIZE);
  3393. }
  3394. } // end if(code_seen('G'))
  3395. else if(code_seen('M'))
  3396. {
  3397. int index;
  3398. for (index = 1; *(strchr_pointer + index) == ' ' || *(strchr_pointer + index) == '\t'; index++);
  3399. /*for (++strchr_pointer; *strchr_pointer == ' ' || *strchr_pointer == '\t'; ++strchr_pointer);*/
  3400. if (*(strchr_pointer+index) < '0' || *(strchr_pointer+index) > '9') {
  3401. printf_P(PSTR("Invalid M code: %s \n"), cmdbuffer + bufindr + CMDHDRSIZE);
  3402. } else
  3403. switch((int)code_value())
  3404. {
  3405. #ifdef ULTIPANEL
  3406. case 0: // M0 - Unconditional stop - Wait for user button press on LCD
  3407. case 1: // M1 - Conditional stop - Wait for user button press on LCD
  3408. {
  3409. char *src = strchr_pointer + 2;
  3410. codenum = 0;
  3411. bool hasP = false, hasS = false;
  3412. if (code_seen('P')) {
  3413. codenum = code_value(); // milliseconds to wait
  3414. hasP = codenum > 0;
  3415. }
  3416. if (code_seen('S')) {
  3417. codenum = code_value() * 1000; // seconds to wait
  3418. hasS = codenum > 0;
  3419. }
  3420. starpos = strchr(src, '*');
  3421. if (starpos != NULL) *(starpos) = '\0';
  3422. while (*src == ' ') ++src;
  3423. if (!hasP && !hasS && *src != '\0') {
  3424. lcd_setstatus(src);
  3425. } else {
  3426. LCD_MESSAGERPGM(MSG_USERWAIT);
  3427. }
  3428. lcd_ignore_click(); //call lcd_ignore_click aslo for else ???
  3429. st_synchronize();
  3430. previous_millis_cmd = millis();
  3431. if (codenum > 0){
  3432. codenum += millis(); // keep track of when we started waiting
  3433. KEEPALIVE_STATE(PAUSED_FOR_USER);
  3434. while(millis() < codenum && !lcd_clicked()){
  3435. manage_heater();
  3436. manage_inactivity(true);
  3437. lcd_update();
  3438. }
  3439. KEEPALIVE_STATE(IN_HANDLER);
  3440. lcd_ignore_click(false);
  3441. }else{
  3442. if (!lcd_detected())
  3443. break;
  3444. KEEPALIVE_STATE(PAUSED_FOR_USER);
  3445. while(!lcd_clicked()){
  3446. manage_heater();
  3447. manage_inactivity(true);
  3448. lcd_update();
  3449. }
  3450. KEEPALIVE_STATE(IN_HANDLER);
  3451. }
  3452. if (IS_SD_PRINTING)
  3453. LCD_MESSAGERPGM(MSG_RESUMING);
  3454. else
  3455. LCD_MESSAGERPGM(WELCOME_MSG);
  3456. }
  3457. break;
  3458. #endif
  3459. case 17:
  3460. LCD_MESSAGERPGM(MSG_NO_MOVE);
  3461. enable_x();
  3462. enable_y();
  3463. enable_z();
  3464. enable_e0();
  3465. enable_e1();
  3466. enable_e2();
  3467. break;
  3468. #ifdef SDSUPPORT
  3469. case 20: // M20 - list SD card
  3470. SERIAL_PROTOCOLLNRPGM(MSG_BEGIN_FILE_LIST);
  3471. card.ls();
  3472. SERIAL_PROTOCOLLNRPGM(MSG_END_FILE_LIST);
  3473. break;
  3474. case 21: // M21 - init SD card
  3475. card.initsd();
  3476. break;
  3477. case 22: //M22 - release SD card
  3478. card.release();
  3479. break;
  3480. case 23: //M23 - Select file
  3481. starpos = (strchr(strchr_pointer + 4,'*'));
  3482. if(starpos!=NULL)
  3483. *(starpos)='\0';
  3484. card.openFile(strchr_pointer + 4,true);
  3485. break;
  3486. case 24: //M24 - Start SD print
  3487. #ifdef TMC2130
  3488. if (!card.paused)
  3489. failstats_reset_print();
  3490. #endif //TMC2130
  3491. card.startFileprint();
  3492. starttime=millis();
  3493. break;
  3494. case 25: //M25 - Pause SD print
  3495. card.pauseSDPrint();
  3496. break;
  3497. case 26: //M26 - Set SD index
  3498. if(card.cardOK && code_seen('S')) {
  3499. card.setIndex(code_value_long());
  3500. }
  3501. break;
  3502. case 27: //M27 - Get SD status
  3503. card.getStatus();
  3504. break;
  3505. case 28: //M28 - Start SD write
  3506. starpos = (strchr(strchr_pointer + 4,'*'));
  3507. if(starpos != NULL){
  3508. char* npos = strchr(CMDBUFFER_CURRENT_STRING, 'N');
  3509. strchr_pointer = strchr(npos,' ') + 1;
  3510. *(starpos) = '\0';
  3511. }
  3512. card.openFile(strchr_pointer+4,false);
  3513. break;
  3514. case 29: //M29 - Stop SD write
  3515. //processed in write to file routine above
  3516. //card,saving = false;
  3517. break;
  3518. case 30: //M30 <filename> Delete File
  3519. if (card.cardOK){
  3520. card.closefile();
  3521. starpos = (strchr(strchr_pointer + 4,'*'));
  3522. if(starpos != NULL){
  3523. char* npos = strchr(CMDBUFFER_CURRENT_STRING, 'N');
  3524. strchr_pointer = strchr(npos,' ') + 1;
  3525. *(starpos) = '\0';
  3526. }
  3527. card.removeFile(strchr_pointer + 4);
  3528. }
  3529. break;
  3530. case 32: //M32 - Select file and start SD print
  3531. {
  3532. if(card.sdprinting) {
  3533. st_synchronize();
  3534. }
  3535. starpos = (strchr(strchr_pointer + 4,'*'));
  3536. char* namestartpos = (strchr(strchr_pointer + 4,'!')); //find ! to indicate filename string start.
  3537. if(namestartpos==NULL)
  3538. {
  3539. namestartpos=strchr_pointer + 4; //default name position, 4 letters after the M
  3540. }
  3541. else
  3542. namestartpos++; //to skip the '!'
  3543. if(starpos!=NULL)
  3544. *(starpos)='\0';
  3545. bool call_procedure=(code_seen('P'));
  3546. if(strchr_pointer>namestartpos)
  3547. call_procedure=false; //false alert, 'P' found within filename
  3548. if( card.cardOK )
  3549. {
  3550. card.openFile(namestartpos,true,!call_procedure);
  3551. if(code_seen('S'))
  3552. if(strchr_pointer<namestartpos) //only if "S" is occuring _before_ the filename
  3553. card.setIndex(code_value_long());
  3554. card.startFileprint();
  3555. if(!call_procedure)
  3556. starttime=millis(); //procedure calls count as normal print time.
  3557. }
  3558. } break;
  3559. case 928: //M928 - Start SD write
  3560. starpos = (strchr(strchr_pointer + 5,'*'));
  3561. if(starpos != NULL){
  3562. char* npos = strchr(CMDBUFFER_CURRENT_STRING, 'N');
  3563. strchr_pointer = strchr(npos,' ') + 1;
  3564. *(starpos) = '\0';
  3565. }
  3566. card.openLogFile(strchr_pointer+5);
  3567. break;
  3568. #endif //SDSUPPORT
  3569. case 31: //M31 take time since the start of the SD print or an M109 command
  3570. {
  3571. stoptime=millis();
  3572. char time[30];
  3573. unsigned long t=(stoptime-starttime)/1000;
  3574. int sec,min;
  3575. min=t/60;
  3576. sec=t%60;
  3577. sprintf_P(time, PSTR("%i min, %i sec"), min, sec);
  3578. SERIAL_ECHO_START;
  3579. SERIAL_ECHOLN(time);
  3580. lcd_setstatus(time);
  3581. autotempShutdown();
  3582. }
  3583. break;
  3584. #ifndef _DISABLE_M42_M226
  3585. case 42: //M42 -Change pin status via gcode
  3586. if (code_seen('S'))
  3587. {
  3588. int pin_status = code_value();
  3589. int pin_number = LED_PIN;
  3590. if (code_seen('P') && pin_status >= 0 && pin_status <= 255)
  3591. pin_number = code_value();
  3592. for(int8_t i = 0; i < (int8_t)(sizeof(sensitive_pins)/sizeof(int)); i++)
  3593. {
  3594. if (sensitive_pins[i] == pin_number)
  3595. {
  3596. pin_number = -1;
  3597. break;
  3598. }
  3599. }
  3600. #if defined(FAN_PIN) && FAN_PIN > -1
  3601. if (pin_number == FAN_PIN)
  3602. fanSpeed = pin_status;
  3603. #endif
  3604. if (pin_number > -1)
  3605. {
  3606. pinMode(pin_number, OUTPUT);
  3607. digitalWrite(pin_number, pin_status);
  3608. analogWrite(pin_number, pin_status);
  3609. }
  3610. }
  3611. break;
  3612. #endif //_DISABLE_M42_M226
  3613. case 44: // M44: Prusa3D: Reset the bed skew and offset calibration.
  3614. // Reset the baby step value and the baby step applied flag.
  3615. calibration_status_store(CALIBRATION_STATUS_ASSEMBLED);
  3616. eeprom_update_word((uint16_t*)EEPROM_BABYSTEP_Z, 0);
  3617. // Reset the skew and offset in both RAM and EEPROM.
  3618. reset_bed_offset_and_skew();
  3619. // Reset world2machine_rotation_and_skew and world2machine_shift, therefore
  3620. // the planner will not perform any adjustments in the XY plane.
  3621. // Wait for the motors to stop and update the current position with the absolute values.
  3622. world2machine_revert_to_uncorrected();
  3623. break;
  3624. case 45: // M45: Prusa3D: bed skew and offset with manual Z up
  3625. {
  3626. int8_t verbosity_level = 0;
  3627. bool only_Z = code_seen('Z');
  3628. #ifdef SUPPORT_VERBOSITY
  3629. if (code_seen('V'))
  3630. {
  3631. // Just 'V' without a number counts as V1.
  3632. char c = strchr_pointer[1];
  3633. verbosity_level = (c == ' ' || c == '\t' || c == 0) ? 1 : code_value_short();
  3634. }
  3635. #endif //SUPPORT_VERBOSITY
  3636. gcode_M45(only_Z, verbosity_level);
  3637. }
  3638. break;
  3639. /*
  3640. case 46:
  3641. {
  3642. // M46: Prusa3D: Show the assigned IP address.
  3643. uint8_t ip[4];
  3644. bool hasIP = card.ToshibaFlashAir_GetIP(ip);
  3645. if (hasIP) {
  3646. SERIAL_ECHOPGM("Toshiba FlashAir current IP: ");
  3647. SERIAL_ECHO(int(ip[0]));
  3648. SERIAL_ECHOPGM(".");
  3649. SERIAL_ECHO(int(ip[1]));
  3650. SERIAL_ECHOPGM(".");
  3651. SERIAL_ECHO(int(ip[2]));
  3652. SERIAL_ECHOPGM(".");
  3653. SERIAL_ECHO(int(ip[3]));
  3654. SERIAL_ECHOLNPGM("");
  3655. } else {
  3656. SERIAL_ECHOLNPGM("Toshiba FlashAir GetIP failed");
  3657. }
  3658. break;
  3659. }
  3660. */
  3661. case 47:
  3662. // M47: Prusa3D: Show end stops dialog on the display.
  3663. KEEPALIVE_STATE(PAUSED_FOR_USER);
  3664. lcd_diag_show_end_stops();
  3665. KEEPALIVE_STATE(IN_HANDLER);
  3666. break;
  3667. #if 0
  3668. case 48: // M48: scan the bed induction sensor points, print the sensor trigger coordinates to the serial line for visualization on the PC.
  3669. {
  3670. // Disable the default update procedure of the display. We will do a modal dialog.
  3671. lcd_update_enable(false);
  3672. // Let the planner use the uncorrected coordinates.
  3673. mbl.reset();
  3674. // Reset world2machine_rotation_and_skew and world2machine_shift, therefore
  3675. // the planner will not perform any adjustments in the XY plane.
  3676. // Wait for the motors to stop and update the current position with the absolute values.
  3677. world2machine_revert_to_uncorrected();
  3678. // Move the print head close to the bed.
  3679. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3680. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS],current_position[Z_AXIS] , current_position[E_AXIS], homing_feedrate[Z_AXIS]/40, active_extruder);
  3681. st_synchronize();
  3682. // Home in the XY plane.
  3683. set_destination_to_current();
  3684. setup_for_endstop_move();
  3685. home_xy();
  3686. int8_t verbosity_level = 0;
  3687. if (code_seen('V')) {
  3688. // Just 'V' without a number counts as V1.
  3689. char c = strchr_pointer[1];
  3690. verbosity_level = (c == ' ' || c == '\t' || c == 0) ? 1 : code_value_short();
  3691. }
  3692. bool success = scan_bed_induction_points(verbosity_level);
  3693. clean_up_after_endstop_move();
  3694. // Print head up.
  3695. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3696. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS],current_position[Z_AXIS] , current_position[E_AXIS], homing_feedrate[Z_AXIS]/40, active_extruder);
  3697. st_synchronize();
  3698. lcd_update_enable(true);
  3699. break;
  3700. }
  3701. #endif
  3702. // M48 Z-Probe repeatability measurement function.
  3703. //
  3704. // Usage: M48 <n #_samples> <X X_position_for_samples> <Y Y_position_for_samples> <V Verbose_Level> <L legs_of_movement_prior_to_doing_probe>
  3705. //
  3706. // This function assumes the bed has been homed. Specificaly, that a G28 command
  3707. // as been issued prior to invoking the M48 Z-Probe repeatability measurement function.
  3708. // Any information generated by a prior G29 Bed leveling command will be lost and need to be
  3709. // regenerated.
  3710. //
  3711. // The number of samples will default to 10 if not specified. You can use upper or lower case
  3712. // letters for any of the options EXCEPT n. n must be in lower case because Marlin uses a capital
  3713. // N for its communication protocol and will get horribly confused if you send it a capital N.
  3714. //
  3715. #ifdef ENABLE_AUTO_BED_LEVELING
  3716. #ifdef Z_PROBE_REPEATABILITY_TEST
  3717. case 48: // M48 Z-Probe repeatability
  3718. {
  3719. #if Z_MIN_PIN == -1
  3720. #error "You must have a Z_MIN endstop in order to enable calculation of Z-Probe repeatability."
  3721. #endif
  3722. double sum=0.0;
  3723. double mean=0.0;
  3724. double sigma=0.0;
  3725. double sample_set[50];
  3726. int verbose_level=1, n=0, j, n_samples = 10, n_legs=0;
  3727. double X_current, Y_current, Z_current;
  3728. double X_probe_location, Y_probe_location, Z_start_location, ext_position;
  3729. if (code_seen('V') || code_seen('v')) {
  3730. verbose_level = code_value();
  3731. if (verbose_level<0 || verbose_level>4 ) {
  3732. SERIAL_PROTOCOLPGM("?Verbose Level not plausable.\n");
  3733. goto Sigma_Exit;
  3734. }
  3735. }
  3736. if (verbose_level > 0) {
  3737. SERIAL_PROTOCOLPGM("M48 Z-Probe Repeatability test. Version 2.00\n");
  3738. SERIAL_PROTOCOLPGM("Full support at: http://3dprintboard.com/forum.php\n");
  3739. }
  3740. if (code_seen('n')) {
  3741. n_samples = code_value();
  3742. if (n_samples<4 || n_samples>50 ) {
  3743. SERIAL_PROTOCOLPGM("?Specified sample size not plausable.\n");
  3744. goto Sigma_Exit;
  3745. }
  3746. }
  3747. X_current = X_probe_location = st_get_position_mm(X_AXIS);
  3748. Y_current = Y_probe_location = st_get_position_mm(Y_AXIS);
  3749. Z_current = st_get_position_mm(Z_AXIS);
  3750. Z_start_location = st_get_position_mm(Z_AXIS) + Z_RAISE_BEFORE_PROBING;
  3751. ext_position = st_get_position_mm(E_AXIS);
  3752. if (code_seen('X') || code_seen('x') ) {
  3753. X_probe_location = code_value() - X_PROBE_OFFSET_FROM_EXTRUDER;
  3754. if (X_probe_location<X_MIN_POS || X_probe_location>X_MAX_POS ) {
  3755. SERIAL_PROTOCOLPGM("?Specified X position out of range.\n");
  3756. goto Sigma_Exit;
  3757. }
  3758. }
  3759. if (code_seen('Y') || code_seen('y') ) {
  3760. Y_probe_location = code_value() - Y_PROBE_OFFSET_FROM_EXTRUDER;
  3761. if (Y_probe_location<Y_MIN_POS || Y_probe_location>Y_MAX_POS ) {
  3762. SERIAL_PROTOCOLPGM("?Specified Y position out of range.\n");
  3763. goto Sigma_Exit;
  3764. }
  3765. }
  3766. if (code_seen('L') || code_seen('l') ) {
  3767. n_legs = code_value();
  3768. if ( n_legs==1 )
  3769. n_legs = 2;
  3770. if ( n_legs<0 || n_legs>15 ) {
  3771. SERIAL_PROTOCOLPGM("?Specified number of legs in movement not plausable.\n");
  3772. goto Sigma_Exit;
  3773. }
  3774. }
  3775. //
  3776. // Do all the preliminary setup work. First raise the probe.
  3777. //
  3778. st_synchronize();
  3779. plan_bed_level_matrix.set_to_identity();
  3780. plan_buffer_line( X_current, Y_current, Z_start_location,
  3781. ext_position,
  3782. homing_feedrate[Z_AXIS]/60,
  3783. active_extruder);
  3784. st_synchronize();
  3785. //
  3786. // Now get everything to the specified probe point So we can safely do a probe to
  3787. // get us close to the bed. If the Z-Axis is far from the bed, we don't want to
  3788. // use that as a starting point for each probe.
  3789. //
  3790. if (verbose_level > 2)
  3791. SERIAL_PROTOCOL("Positioning probe for the test.\n");
  3792. plan_buffer_line( X_probe_location, Y_probe_location, Z_start_location,
  3793. ext_position,
  3794. homing_feedrate[X_AXIS]/60,
  3795. active_extruder);
  3796. st_synchronize();
  3797. current_position[X_AXIS] = X_current = st_get_position_mm(X_AXIS);
  3798. current_position[Y_AXIS] = Y_current = st_get_position_mm(Y_AXIS);
  3799. current_position[Z_AXIS] = Z_current = st_get_position_mm(Z_AXIS);
  3800. current_position[E_AXIS] = ext_position = st_get_position_mm(E_AXIS);
  3801. //
  3802. // OK, do the inital probe to get us close to the bed.
  3803. // Then retrace the right amount and use that in subsequent probes
  3804. //
  3805. setup_for_endstop_move();
  3806. run_z_probe();
  3807. current_position[Z_AXIS] = Z_current = st_get_position_mm(Z_AXIS);
  3808. Z_start_location = st_get_position_mm(Z_AXIS) + Z_RAISE_BEFORE_PROBING;
  3809. plan_buffer_line( X_probe_location, Y_probe_location, Z_start_location,
  3810. ext_position,
  3811. homing_feedrate[X_AXIS]/60,
  3812. active_extruder);
  3813. st_synchronize();
  3814. current_position[Z_AXIS] = Z_current = st_get_position_mm(Z_AXIS);
  3815. for( n=0; n<n_samples; n++) {
  3816. do_blocking_move_to( X_probe_location, Y_probe_location, Z_start_location); // Make sure we are at the probe location
  3817. if ( n_legs) {
  3818. double radius=0.0, theta=0.0, x_sweep, y_sweep;
  3819. int rotational_direction, l;
  3820. rotational_direction = (unsigned long) millis() & 0x0001; // clockwise or counter clockwise
  3821. radius = (unsigned long) millis() % (long) (X_MAX_LENGTH/4); // limit how far out to go
  3822. theta = (float) ((unsigned long) millis() % (long) 360) / (360./(2*3.1415926)); // turn into radians
  3823. //SERIAL_ECHOPAIR("starting radius: ",radius);
  3824. //SERIAL_ECHOPAIR(" theta: ",theta);
  3825. //SERIAL_ECHOPAIR(" direction: ",rotational_direction);
  3826. //SERIAL_PROTOCOLLNPGM("");
  3827. for( l=0; l<n_legs-1; l++) {
  3828. if (rotational_direction==1)
  3829. theta += (float) ((unsigned long) millis() % (long) 20) / (360.0/(2*3.1415926)); // turn into radians
  3830. else
  3831. theta -= (float) ((unsigned long) millis() % (long) 20) / (360.0/(2*3.1415926)); // turn into radians
  3832. radius += (float) ( ((long) ((unsigned long) millis() % (long) 10)) - 5);
  3833. if ( radius<0.0 )
  3834. radius = -radius;
  3835. X_current = X_probe_location + cos(theta) * radius;
  3836. Y_current = Y_probe_location + sin(theta) * radius;
  3837. if ( X_current<X_MIN_POS) // Make sure our X & Y are sane
  3838. X_current = X_MIN_POS;
  3839. if ( X_current>X_MAX_POS)
  3840. X_current = X_MAX_POS;
  3841. if ( Y_current<Y_MIN_POS) // Make sure our X & Y are sane
  3842. Y_current = Y_MIN_POS;
  3843. if ( Y_current>Y_MAX_POS)
  3844. Y_current = Y_MAX_POS;
  3845. if (verbose_level>3 ) {
  3846. SERIAL_ECHOPAIR("x: ", X_current);
  3847. SERIAL_ECHOPAIR("y: ", Y_current);
  3848. SERIAL_PROTOCOLLNPGM("");
  3849. }
  3850. do_blocking_move_to( X_current, Y_current, Z_current );
  3851. }
  3852. do_blocking_move_to( X_probe_location, Y_probe_location, Z_start_location); // Go back to the probe location
  3853. }
  3854. setup_for_endstop_move();
  3855. run_z_probe();
  3856. sample_set[n] = current_position[Z_AXIS];
  3857. //
  3858. // Get the current mean for the data points we have so far
  3859. //
  3860. sum=0.0;
  3861. for( j=0; j<=n; j++) {
  3862. sum = sum + sample_set[j];
  3863. }
  3864. mean = sum / (double (n+1));
  3865. //
  3866. // Now, use that mean to calculate the standard deviation for the
  3867. // data points we have so far
  3868. //
  3869. sum=0.0;
  3870. for( j=0; j<=n; j++) {
  3871. sum = sum + (sample_set[j]-mean) * (sample_set[j]-mean);
  3872. }
  3873. sigma = sqrt( sum / (double (n+1)) );
  3874. if (verbose_level > 1) {
  3875. SERIAL_PROTOCOL(n+1);
  3876. SERIAL_PROTOCOL(" of ");
  3877. SERIAL_PROTOCOL(n_samples);
  3878. SERIAL_PROTOCOLPGM(" z: ");
  3879. SERIAL_PROTOCOL_F(current_position[Z_AXIS], 6);
  3880. }
  3881. if (verbose_level > 2) {
  3882. SERIAL_PROTOCOL(" mean: ");
  3883. SERIAL_PROTOCOL_F(mean,6);
  3884. SERIAL_PROTOCOL(" sigma: ");
  3885. SERIAL_PROTOCOL_F(sigma,6);
  3886. }
  3887. if (verbose_level > 0)
  3888. SERIAL_PROTOCOLPGM("\n");
  3889. plan_buffer_line( X_probe_location, Y_probe_location, Z_start_location,
  3890. current_position[E_AXIS], homing_feedrate[Z_AXIS]/60, active_extruder);
  3891. st_synchronize();
  3892. }
  3893. delay(1000);
  3894. clean_up_after_endstop_move();
  3895. // enable_endstops(true);
  3896. if (verbose_level > 0) {
  3897. SERIAL_PROTOCOLPGM("Mean: ");
  3898. SERIAL_PROTOCOL_F(mean, 6);
  3899. SERIAL_PROTOCOLPGM("\n");
  3900. }
  3901. SERIAL_PROTOCOLPGM("Standard Deviation: ");
  3902. SERIAL_PROTOCOL_F(sigma, 6);
  3903. SERIAL_PROTOCOLPGM("\n\n");
  3904. Sigma_Exit:
  3905. break;
  3906. }
  3907. #endif // Z_PROBE_REPEATABILITY_TEST
  3908. #endif // ENABLE_AUTO_BED_LEVELING
  3909. case 104: // M104
  3910. if(setTargetedHotend(104)){
  3911. break;
  3912. }
  3913. if (code_seen('S')) setTargetHotend(code_value(), tmp_extruder);
  3914. setWatch();
  3915. break;
  3916. case 112: // M112 -Emergency Stop
  3917. kill("", 3);
  3918. break;
  3919. case 140: // M140 set bed temp
  3920. if (code_seen('S')) setTargetBed(code_value());
  3921. break;
  3922. case 105 : // M105
  3923. if(setTargetedHotend(105)){
  3924. break;
  3925. }
  3926. #if defined(TEMP_0_PIN) && TEMP_0_PIN > -1
  3927. SERIAL_PROTOCOLPGM("ok T:");
  3928. SERIAL_PROTOCOL_F(degHotend(tmp_extruder),1);
  3929. SERIAL_PROTOCOLPGM(" /");
  3930. SERIAL_PROTOCOL_F(degTargetHotend(tmp_extruder),1);
  3931. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  3932. SERIAL_PROTOCOLPGM(" B:");
  3933. SERIAL_PROTOCOL_F(degBed(),1);
  3934. SERIAL_PROTOCOLPGM(" /");
  3935. SERIAL_PROTOCOL_F(degTargetBed(),1);
  3936. #endif //TEMP_BED_PIN
  3937. for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) {
  3938. SERIAL_PROTOCOLPGM(" T");
  3939. SERIAL_PROTOCOL(cur_extruder);
  3940. SERIAL_PROTOCOLPGM(":");
  3941. SERIAL_PROTOCOL_F(degHotend(cur_extruder),1);
  3942. SERIAL_PROTOCOLPGM(" /");
  3943. SERIAL_PROTOCOL_F(degTargetHotend(cur_extruder),1);
  3944. }
  3945. #else
  3946. SERIAL_ERROR_START;
  3947. SERIAL_ERRORLNRPGM(MSG_ERR_NO_THERMISTORS);
  3948. #endif
  3949. SERIAL_PROTOCOLPGM(" @:");
  3950. #ifdef EXTRUDER_WATTS
  3951. SERIAL_PROTOCOL((EXTRUDER_WATTS * getHeaterPower(tmp_extruder))/127);
  3952. SERIAL_PROTOCOLPGM("W");
  3953. #else
  3954. SERIAL_PROTOCOL(getHeaterPower(tmp_extruder));
  3955. #endif
  3956. SERIAL_PROTOCOLPGM(" B@:");
  3957. #ifdef BED_WATTS
  3958. SERIAL_PROTOCOL((BED_WATTS * getHeaterPower(-1))/127);
  3959. SERIAL_PROTOCOLPGM("W");
  3960. #else
  3961. SERIAL_PROTOCOL(getHeaterPower(-1));
  3962. #endif
  3963. #ifdef PINDA_THERMISTOR
  3964. SERIAL_PROTOCOLPGM(" P:");
  3965. SERIAL_PROTOCOL_F(current_temperature_pinda,1);
  3966. #endif //PINDA_THERMISTOR
  3967. #ifdef AMBIENT_THERMISTOR
  3968. SERIAL_PROTOCOLPGM(" A:");
  3969. SERIAL_PROTOCOL_F(current_temperature_ambient,1);
  3970. #endif //AMBIENT_THERMISTOR
  3971. #ifdef SHOW_TEMP_ADC_VALUES
  3972. {float raw = 0.0;
  3973. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  3974. SERIAL_PROTOCOLPGM(" ADC B:");
  3975. SERIAL_PROTOCOL_F(degBed(),1);
  3976. SERIAL_PROTOCOLPGM("C->");
  3977. raw = rawBedTemp();
  3978. SERIAL_PROTOCOL_F(raw/OVERSAMPLENR,5);
  3979. SERIAL_PROTOCOLPGM(" Rb->");
  3980. SERIAL_PROTOCOL_F(100 * (1 + (PtA * (raw/OVERSAMPLENR)) + (PtB * sq((raw/OVERSAMPLENR)))), 5);
  3981. SERIAL_PROTOCOLPGM(" Rxb->");
  3982. SERIAL_PROTOCOL_F(raw, 5);
  3983. #endif
  3984. for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) {
  3985. SERIAL_PROTOCOLPGM(" T");
  3986. SERIAL_PROTOCOL(cur_extruder);
  3987. SERIAL_PROTOCOLPGM(":");
  3988. SERIAL_PROTOCOL_F(degHotend(cur_extruder),1);
  3989. SERIAL_PROTOCOLPGM("C->");
  3990. raw = rawHotendTemp(cur_extruder);
  3991. SERIAL_PROTOCOL_F(raw/OVERSAMPLENR,5);
  3992. SERIAL_PROTOCOLPGM(" Rt");
  3993. SERIAL_PROTOCOL(cur_extruder);
  3994. SERIAL_PROTOCOLPGM("->");
  3995. SERIAL_PROTOCOL_F(100 * (1 + (PtA * (raw/OVERSAMPLENR)) + (PtB * sq((raw/OVERSAMPLENR)))), 5);
  3996. SERIAL_PROTOCOLPGM(" Rx");
  3997. SERIAL_PROTOCOL(cur_extruder);
  3998. SERIAL_PROTOCOLPGM("->");
  3999. SERIAL_PROTOCOL_F(raw, 5);
  4000. }}
  4001. #endif
  4002. SERIAL_PROTOCOLLN("");
  4003. KEEPALIVE_STATE(NOT_BUSY);
  4004. return;
  4005. break;
  4006. case 109:
  4007. {// M109 - Wait for extruder heater to reach target.
  4008. if(setTargetedHotend(109)){
  4009. break;
  4010. }
  4011. LCD_MESSAGERPGM(MSG_HEATING);
  4012. heating_status = 1;
  4013. if (farm_mode) { prusa_statistics(1); };
  4014. #ifdef AUTOTEMP
  4015. autotemp_enabled=false;
  4016. #endif
  4017. if (code_seen('S')) {
  4018. setTargetHotend(code_value(), tmp_extruder);
  4019. CooldownNoWait = true;
  4020. } else if (code_seen('R')) {
  4021. setTargetHotend(code_value(), tmp_extruder);
  4022. CooldownNoWait = false;
  4023. }
  4024. #ifdef AUTOTEMP
  4025. if (code_seen('S')) autotemp_min=code_value();
  4026. if (code_seen('B')) autotemp_max=code_value();
  4027. if (code_seen('F'))
  4028. {
  4029. autotemp_factor=code_value();
  4030. autotemp_enabled=true;
  4031. }
  4032. #endif
  4033. setWatch();
  4034. codenum = millis();
  4035. /* See if we are heating up or cooling down */
  4036. target_direction = isHeatingHotend(tmp_extruder); // true if heating, false if cooling
  4037. KEEPALIVE_STATE(NOT_BUSY);
  4038. cancel_heatup = false;
  4039. wait_for_heater(codenum); //loops until target temperature is reached
  4040. LCD_MESSAGERPGM(MSG_HEATING_COMPLETE);
  4041. KEEPALIVE_STATE(IN_HANDLER);
  4042. heating_status = 2;
  4043. if (farm_mode) { prusa_statistics(2); };
  4044. //starttime=millis();
  4045. previous_millis_cmd = millis();
  4046. }
  4047. break;
  4048. case 190: // M190 - Wait for bed heater to reach target.
  4049. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  4050. LCD_MESSAGERPGM(MSG_BED_HEATING);
  4051. heating_status = 3;
  4052. if (farm_mode) { prusa_statistics(1); };
  4053. if (code_seen('S'))
  4054. {
  4055. setTargetBed(code_value());
  4056. CooldownNoWait = true;
  4057. }
  4058. else if (code_seen('R'))
  4059. {
  4060. setTargetBed(code_value());
  4061. CooldownNoWait = false;
  4062. }
  4063. codenum = millis();
  4064. cancel_heatup = false;
  4065. target_direction = isHeatingBed(); // true if heating, false if cooling
  4066. KEEPALIVE_STATE(NOT_BUSY);
  4067. while ( (target_direction)&&(!cancel_heatup) ? (isHeatingBed()) : (isCoolingBed()&&(CooldownNoWait==false)) )
  4068. {
  4069. if(( millis() - codenum) > 1000 ) //Print Temp Reading every 1 second while heating up.
  4070. {
  4071. if (!farm_mode) {
  4072. float tt = degHotend(active_extruder);
  4073. SERIAL_PROTOCOLPGM("T:");
  4074. SERIAL_PROTOCOL(tt);
  4075. SERIAL_PROTOCOLPGM(" E:");
  4076. SERIAL_PROTOCOL((int)active_extruder);
  4077. SERIAL_PROTOCOLPGM(" B:");
  4078. SERIAL_PROTOCOL_F(degBed(), 1);
  4079. SERIAL_PROTOCOLLN("");
  4080. }
  4081. codenum = millis();
  4082. }
  4083. manage_heater();
  4084. manage_inactivity();
  4085. lcd_update();
  4086. }
  4087. LCD_MESSAGERPGM(MSG_BED_DONE);
  4088. KEEPALIVE_STATE(IN_HANDLER);
  4089. heating_status = 4;
  4090. previous_millis_cmd = millis();
  4091. #endif
  4092. break;
  4093. #if defined(FAN_PIN) && FAN_PIN > -1
  4094. case 106: //M106 Fan On
  4095. if (code_seen('S')){
  4096. fanSpeed=constrain(code_value(),0,255);
  4097. }
  4098. else {
  4099. fanSpeed=255;
  4100. }
  4101. break;
  4102. case 107: //M107 Fan Off
  4103. fanSpeed = 0;
  4104. break;
  4105. #endif //FAN_PIN
  4106. #if defined(PS_ON_PIN) && PS_ON_PIN > -1
  4107. case 80: // M80 - Turn on Power Supply
  4108. SET_OUTPUT(PS_ON_PIN); //GND
  4109. WRITE(PS_ON_PIN, PS_ON_AWAKE);
  4110. // If you have a switch on suicide pin, this is useful
  4111. // if you want to start another print with suicide feature after
  4112. // a print without suicide...
  4113. #if defined SUICIDE_PIN && SUICIDE_PIN > -1
  4114. SET_OUTPUT(SUICIDE_PIN);
  4115. WRITE(SUICIDE_PIN, HIGH);
  4116. #endif
  4117. #ifdef ULTIPANEL
  4118. powersupply = true;
  4119. LCD_MESSAGERPGM(WELCOME_MSG);
  4120. lcd_update();
  4121. #endif
  4122. break;
  4123. #endif
  4124. case 81: // M81 - Turn off Power Supply
  4125. disable_heater();
  4126. st_synchronize();
  4127. disable_e0();
  4128. disable_e1();
  4129. disable_e2();
  4130. finishAndDisableSteppers();
  4131. fanSpeed = 0;
  4132. delay(1000); // Wait a little before to switch off
  4133. #if defined(SUICIDE_PIN) && SUICIDE_PIN > -1
  4134. st_synchronize();
  4135. suicide();
  4136. #elif defined(PS_ON_PIN) && PS_ON_PIN > -1
  4137. SET_OUTPUT(PS_ON_PIN);
  4138. WRITE(PS_ON_PIN, PS_ON_ASLEEP);
  4139. #endif
  4140. #ifdef ULTIPANEL
  4141. powersupply = false;
  4142. LCD_MESSAGERPGM(CAT4(CUSTOM_MENDEL_NAME,PSTR(" "),MSG_OFF,PSTR("."))); //!!
  4143. /*
  4144. MACHNAME = "Prusa i3"
  4145. MSGOFF = "Vypnuto"
  4146. "Prusai3"" ""vypnuto""."
  4147. "Prusa i3"" "MSG_ALL[lang_selected][50]"."
  4148. */
  4149. lcd_update();
  4150. #endif
  4151. break;
  4152. case 82:
  4153. axis_relative_modes[3] = false;
  4154. break;
  4155. case 83:
  4156. axis_relative_modes[3] = true;
  4157. break;
  4158. case 18: //compatibility
  4159. case 84: // M84
  4160. if(code_seen('S')){
  4161. stepper_inactive_time = code_value() * 1000;
  4162. }
  4163. else
  4164. {
  4165. bool all_axis = !((code_seen(axis_codes[X_AXIS])) || (code_seen(axis_codes[Y_AXIS])) || (code_seen(axis_codes[Z_AXIS]))|| (code_seen(axis_codes[E_AXIS])));
  4166. if(all_axis)
  4167. {
  4168. st_synchronize();
  4169. disable_e0();
  4170. disable_e1();
  4171. disable_e2();
  4172. finishAndDisableSteppers();
  4173. }
  4174. else
  4175. {
  4176. st_synchronize();
  4177. if (code_seen('X')) disable_x();
  4178. if (code_seen('Y')) disable_y();
  4179. if (code_seen('Z')) disable_z();
  4180. #if ((E0_ENABLE_PIN != X_ENABLE_PIN) && (E1_ENABLE_PIN != Y_ENABLE_PIN)) // Only enable on boards that have seperate ENABLE_PINS
  4181. if (code_seen('E')) {
  4182. disable_e0();
  4183. disable_e1();
  4184. disable_e2();
  4185. }
  4186. #endif
  4187. }
  4188. }
  4189. snmm_filaments_used = 0;
  4190. break;
  4191. case 85: // M85
  4192. if(code_seen('S')) {
  4193. max_inactive_time = code_value() * 1000;
  4194. }
  4195. break;
  4196. case 92: // M92
  4197. for(int8_t i=0; i < NUM_AXIS; i++)
  4198. {
  4199. if(code_seen(axis_codes[i]))
  4200. {
  4201. if(i == 3) { // E
  4202. float value = code_value();
  4203. if(value < 20.0) {
  4204. float factor = axis_steps_per_unit[i] / value; // increase e constants if M92 E14 is given for netfab.
  4205. max_jerk[E_AXIS] *= factor;
  4206. max_feedrate[i] *= factor;
  4207. axis_steps_per_sqr_second[i] *= factor;
  4208. }
  4209. axis_steps_per_unit[i] = value;
  4210. }
  4211. else {
  4212. axis_steps_per_unit[i] = code_value();
  4213. }
  4214. }
  4215. }
  4216. break;
  4217. case 110: // M110 - reset line pos
  4218. if (code_seen('N'))
  4219. gcode_LastN = code_value_long();
  4220. break;
  4221. #ifdef HOST_KEEPALIVE_FEATURE
  4222. case 113: // M113 - Get or set Host Keepalive interval
  4223. if (code_seen('S')) {
  4224. host_keepalive_interval = (uint8_t)code_value_short();
  4225. // NOMORE(host_keepalive_interval, 60);
  4226. }
  4227. else {
  4228. SERIAL_ECHO_START;
  4229. SERIAL_ECHOPAIR("M113 S", (unsigned long)host_keepalive_interval);
  4230. SERIAL_PROTOCOLLN("");
  4231. }
  4232. break;
  4233. #endif
  4234. case 115: // M115
  4235. if (code_seen('V')) {
  4236. // Report the Prusa version number.
  4237. SERIAL_PROTOCOLLNRPGM(FW_VERSION_STR_P());
  4238. } else if (code_seen('U')) {
  4239. // Check the firmware version provided. If the firmware version provided by the U code is higher than the currently running firmware,
  4240. // pause the print and ask the user to upgrade the firmware.
  4241. show_upgrade_dialog_if_version_newer(++ strchr_pointer);
  4242. } else {
  4243. SERIAL_PROTOCOLRPGM(MSG_M115_REPORT);
  4244. }
  4245. break;
  4246. /* case 117: // M117 display message
  4247. starpos = (strchr(strchr_pointer + 5,'*'));
  4248. if(starpos!=NULL)
  4249. *(starpos)='\0';
  4250. lcd_setstatus(strchr_pointer + 5);
  4251. break;*/
  4252. case 114: // M114
  4253. gcode_M114();
  4254. break;
  4255. case 120: // M120
  4256. enable_endstops(false) ;
  4257. break;
  4258. case 121: // M121
  4259. enable_endstops(true) ;
  4260. break;
  4261. case 119: // M119
  4262. SERIAL_PROTOCOLRPGM(MSG_M119_REPORT);
  4263. SERIAL_PROTOCOLLN("");
  4264. #if defined(X_MIN_PIN) && X_MIN_PIN > -1
  4265. SERIAL_PROTOCOLRPGM(MSG_X_MIN);
  4266. if(READ(X_MIN_PIN)^X_MIN_ENDSTOP_INVERTING){
  4267. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_HIT);
  4268. }else{
  4269. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_OPEN);
  4270. }
  4271. SERIAL_PROTOCOLLN("");
  4272. #endif
  4273. #if defined(X_MAX_PIN) && X_MAX_PIN > -1
  4274. SERIAL_PROTOCOLRPGM(MSG_X_MAX);
  4275. if(READ(X_MAX_PIN)^X_MAX_ENDSTOP_INVERTING){
  4276. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_HIT);
  4277. }else{
  4278. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_OPEN);
  4279. }
  4280. SERIAL_PROTOCOLLN("");
  4281. #endif
  4282. #if defined(Y_MIN_PIN) && Y_MIN_PIN > -1
  4283. SERIAL_PROTOCOLRPGM(MSG_Y_MIN);
  4284. if(READ(Y_MIN_PIN)^Y_MIN_ENDSTOP_INVERTING){
  4285. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_HIT);
  4286. }else{
  4287. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_OPEN);
  4288. }
  4289. SERIAL_PROTOCOLLN("");
  4290. #endif
  4291. #if defined(Y_MAX_PIN) && Y_MAX_PIN > -1
  4292. SERIAL_PROTOCOLRPGM(MSG_Y_MAX);
  4293. if(READ(Y_MAX_PIN)^Y_MAX_ENDSTOP_INVERTING){
  4294. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_HIT);
  4295. }else{
  4296. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_OPEN);
  4297. }
  4298. SERIAL_PROTOCOLLN("");
  4299. #endif
  4300. #if defined(Z_MIN_PIN) && Z_MIN_PIN > -1
  4301. SERIAL_PROTOCOLRPGM(MSG_Z_MIN);
  4302. if(READ(Z_MIN_PIN)^Z_MIN_ENDSTOP_INVERTING){
  4303. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_HIT);
  4304. }else{
  4305. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_OPEN);
  4306. }
  4307. SERIAL_PROTOCOLLN("");
  4308. #endif
  4309. #if defined(Z_MAX_PIN) && Z_MAX_PIN > -1
  4310. SERIAL_PROTOCOLRPGM(MSG_Z_MAX);
  4311. if(READ(Z_MAX_PIN)^Z_MAX_ENDSTOP_INVERTING){
  4312. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_HIT);
  4313. }else{
  4314. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_OPEN);
  4315. }
  4316. SERIAL_PROTOCOLLN("");
  4317. #endif
  4318. break;
  4319. //TODO: update for all axis, use for loop
  4320. #ifdef BLINKM
  4321. case 150: // M150
  4322. {
  4323. byte red;
  4324. byte grn;
  4325. byte blu;
  4326. if(code_seen('R')) red = code_value();
  4327. if(code_seen('U')) grn = code_value();
  4328. if(code_seen('B')) blu = code_value();
  4329. SendColors(red,grn,blu);
  4330. }
  4331. break;
  4332. #endif //BLINKM
  4333. case 200: // M200 D<millimeters> set filament diameter and set E axis units to cubic millimeters (use S0 to set back to millimeters).
  4334. {
  4335. tmp_extruder = active_extruder;
  4336. if(code_seen('T')) {
  4337. tmp_extruder = code_value();
  4338. if(tmp_extruder >= EXTRUDERS) {
  4339. SERIAL_ECHO_START;
  4340. SERIAL_ECHO(MSG_M200_INVALID_EXTRUDER);
  4341. break;
  4342. }
  4343. }
  4344. float area = .0;
  4345. if(code_seen('D')) {
  4346. float diameter = (float)code_value();
  4347. if (diameter == 0.0) {
  4348. // setting any extruder filament size disables volumetric on the assumption that
  4349. // slicers either generate in extruder values as cubic mm or as as filament feeds
  4350. // for all extruders
  4351. volumetric_enabled = false;
  4352. } else {
  4353. filament_size[tmp_extruder] = (float)code_value();
  4354. // make sure all extruders have some sane value for the filament size
  4355. filament_size[0] = (filament_size[0] == 0.0 ? DEFAULT_NOMINAL_FILAMENT_DIA : filament_size[0]);
  4356. #if EXTRUDERS > 1
  4357. filament_size[1] = (filament_size[1] == 0.0 ? DEFAULT_NOMINAL_FILAMENT_DIA : filament_size[1]);
  4358. #if EXTRUDERS > 2
  4359. filament_size[2] = (filament_size[2] == 0.0 ? DEFAULT_NOMINAL_FILAMENT_DIA : filament_size[2]);
  4360. #endif
  4361. #endif
  4362. volumetric_enabled = true;
  4363. }
  4364. } else {
  4365. //reserved for setting filament diameter via UFID or filament measuring device
  4366. break;
  4367. }
  4368. calculate_extruder_multipliers();
  4369. }
  4370. break;
  4371. case 201: // M201
  4372. for(int8_t i=0; i < NUM_AXIS; i++)
  4373. {
  4374. if(code_seen(axis_codes[i]))
  4375. {
  4376. max_acceleration_units_per_sq_second[i] = code_value();
  4377. }
  4378. }
  4379. // steps per sq second need to be updated to agree with the units per sq second (as they are what is used in the planner)
  4380. reset_acceleration_rates();
  4381. break;
  4382. #if 0 // Not used for Sprinter/grbl gen6
  4383. case 202: // M202
  4384. for(int8_t i=0; i < NUM_AXIS; i++) {
  4385. if(code_seen(axis_codes[i])) axis_travel_steps_per_sqr_second[i] = code_value() * axis_steps_per_unit[i];
  4386. }
  4387. break;
  4388. #endif
  4389. case 203: // M203 max feedrate mm/sec
  4390. for(int8_t i=0; i < NUM_AXIS; i++) {
  4391. if(code_seen(axis_codes[i])) max_feedrate[i] = code_value();
  4392. }
  4393. break;
  4394. case 204: // M204 acclereration S normal moves T filmanent only moves
  4395. {
  4396. if(code_seen('S')) acceleration = code_value() ;
  4397. if(code_seen('T')) retract_acceleration = code_value() ;
  4398. }
  4399. break;
  4400. case 205: //M205 advanced settings: minimum travel speed S=while printing T=travel only, B=minimum segment time X= maximum xy jerk, Z=maximum Z jerk
  4401. {
  4402. if(code_seen('S')) minimumfeedrate = code_value();
  4403. if(code_seen('T')) mintravelfeedrate = code_value();
  4404. if(code_seen('B')) minsegmenttime = code_value() ;
  4405. if(code_seen('X')) max_jerk[X_AXIS] = max_jerk[Y_AXIS] = code_value();
  4406. if(code_seen('Y')) max_jerk[Y_AXIS] = code_value();
  4407. if(code_seen('Z')) max_jerk[Z_AXIS] = code_value();
  4408. if(code_seen('E')) max_jerk[E_AXIS] = code_value();
  4409. if (max_jerk[X_AXIS] > DEFAULT_XJERK) max_jerk[X_AXIS] = DEFAULT_XJERK;
  4410. if (max_jerk[Y_AXIS] > DEFAULT_YJERK) max_jerk[Y_AXIS] = DEFAULT_YJERK;
  4411. }
  4412. break;
  4413. case 206: // M206 additional homing offset
  4414. for(int8_t i=0; i < 3; i++)
  4415. {
  4416. if(code_seen(axis_codes[i])) add_homing[i] = code_value();
  4417. }
  4418. break;
  4419. #ifdef FWRETRACT
  4420. case 207: //M207 - set retract length S[positive mm] F[feedrate mm/min] Z[additional zlift/hop]
  4421. {
  4422. if(code_seen('S'))
  4423. {
  4424. retract_length = code_value() ;
  4425. }
  4426. if(code_seen('F'))
  4427. {
  4428. retract_feedrate = code_value()/60 ;
  4429. }
  4430. if(code_seen('Z'))
  4431. {
  4432. retract_zlift = code_value() ;
  4433. }
  4434. }break;
  4435. case 208: // M208 - set retract recover length S[positive mm surplus to the M207 S*] F[feedrate mm/min]
  4436. {
  4437. if(code_seen('S'))
  4438. {
  4439. retract_recover_length = code_value() ;
  4440. }
  4441. if(code_seen('F'))
  4442. {
  4443. retract_recover_feedrate = code_value()/60 ;
  4444. }
  4445. }break;
  4446. case 209: // M209 - S<1=true/0=false> enable automatic retract detect if the slicer did not support G10/11: every normal extrude-only move will be classified as retract depending on the direction.
  4447. {
  4448. if(code_seen('S'))
  4449. {
  4450. int t= code_value() ;
  4451. switch(t)
  4452. {
  4453. case 0:
  4454. {
  4455. autoretract_enabled=false;
  4456. retracted[0]=false;
  4457. #if EXTRUDERS > 1
  4458. retracted[1]=false;
  4459. #endif
  4460. #if EXTRUDERS > 2
  4461. retracted[2]=false;
  4462. #endif
  4463. }break;
  4464. case 1:
  4465. {
  4466. autoretract_enabled=true;
  4467. retracted[0]=false;
  4468. #if EXTRUDERS > 1
  4469. retracted[1]=false;
  4470. #endif
  4471. #if EXTRUDERS > 2
  4472. retracted[2]=false;
  4473. #endif
  4474. }break;
  4475. default:
  4476. SERIAL_ECHO_START;
  4477. SERIAL_ECHORPGM(MSG_UNKNOWN_COMMAND);
  4478. SERIAL_ECHO(CMDBUFFER_CURRENT_STRING);
  4479. SERIAL_ECHOLNPGM("\"(1)");
  4480. }
  4481. }
  4482. }break;
  4483. #endif // FWRETRACT
  4484. #if EXTRUDERS > 1
  4485. case 218: // M218 - set hotend offset (in mm), T<extruder_number> X<offset_on_X> Y<offset_on_Y>
  4486. {
  4487. if(setTargetedHotend(218)){
  4488. break;
  4489. }
  4490. if(code_seen('X'))
  4491. {
  4492. extruder_offset[X_AXIS][tmp_extruder] = code_value();
  4493. }
  4494. if(code_seen('Y'))
  4495. {
  4496. extruder_offset[Y_AXIS][tmp_extruder] = code_value();
  4497. }
  4498. SERIAL_ECHO_START;
  4499. SERIAL_ECHORPGM(MSG_HOTEND_OFFSET);
  4500. for(tmp_extruder = 0; tmp_extruder < EXTRUDERS; tmp_extruder++)
  4501. {
  4502. SERIAL_ECHO(" ");
  4503. SERIAL_ECHO(extruder_offset[X_AXIS][tmp_extruder]);
  4504. SERIAL_ECHO(",");
  4505. SERIAL_ECHO(extruder_offset[Y_AXIS][tmp_extruder]);
  4506. }
  4507. SERIAL_ECHOLN("");
  4508. }break;
  4509. #endif
  4510. case 220: // M220 S<factor in percent>- set speed factor override percentage
  4511. {
  4512. if(code_seen('S'))
  4513. {
  4514. feedmultiply = code_value() ;
  4515. }
  4516. }
  4517. break;
  4518. case 221: // M221 S<factor in percent>- set extrude factor override percentage
  4519. {
  4520. if(code_seen('S'))
  4521. {
  4522. int tmp_code = code_value();
  4523. if (code_seen('T'))
  4524. {
  4525. if(setTargetedHotend(221)){
  4526. break;
  4527. }
  4528. extruder_multiply[tmp_extruder] = tmp_code;
  4529. }
  4530. else
  4531. {
  4532. extrudemultiply = tmp_code ;
  4533. }
  4534. }
  4535. calculate_extruder_multipliers();
  4536. }
  4537. break;
  4538. #ifndef _DISABLE_M42_M226
  4539. case 226: // M226 P<pin number> S<pin state>- Wait until the specified pin reaches the state required
  4540. {
  4541. if(code_seen('P')){
  4542. int pin_number = code_value(); // pin number
  4543. int pin_state = -1; // required pin state - default is inverted
  4544. if(code_seen('S')) pin_state = code_value(); // required pin state
  4545. if(pin_state >= -1 && pin_state <= 1){
  4546. for(int8_t i = 0; i < (int8_t)(sizeof(sensitive_pins)/sizeof(int)); i++)
  4547. {
  4548. if (sensitive_pins[i] == pin_number)
  4549. {
  4550. pin_number = -1;
  4551. break;
  4552. }
  4553. }
  4554. if (pin_number > -1)
  4555. {
  4556. int target = LOW;
  4557. st_synchronize();
  4558. pinMode(pin_number, INPUT);
  4559. switch(pin_state){
  4560. case 1:
  4561. target = HIGH;
  4562. break;
  4563. case 0:
  4564. target = LOW;
  4565. break;
  4566. case -1:
  4567. target = !digitalRead(pin_number);
  4568. break;
  4569. }
  4570. while(digitalRead(pin_number) != target){
  4571. manage_heater();
  4572. manage_inactivity();
  4573. lcd_update();
  4574. }
  4575. }
  4576. }
  4577. }
  4578. }
  4579. break;
  4580. #endif //_DISABLE_M42_M226
  4581. #if NUM_SERVOS > 0
  4582. case 280: // M280 - set servo position absolute. P: servo index, S: angle or microseconds
  4583. {
  4584. int servo_index = -1;
  4585. int servo_position = 0;
  4586. if (code_seen('P'))
  4587. servo_index = code_value();
  4588. if (code_seen('S')) {
  4589. servo_position = code_value();
  4590. if ((servo_index >= 0) && (servo_index < NUM_SERVOS)) {
  4591. #if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
  4592. servos[servo_index].attach(0);
  4593. #endif
  4594. servos[servo_index].write(servo_position);
  4595. #if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
  4596. delay(PROBE_SERVO_DEACTIVATION_DELAY);
  4597. servos[servo_index].detach();
  4598. #endif
  4599. }
  4600. else {
  4601. SERIAL_ECHO_START;
  4602. SERIAL_ECHO("Servo ");
  4603. SERIAL_ECHO(servo_index);
  4604. SERIAL_ECHOLN(" out of range");
  4605. }
  4606. }
  4607. else if (servo_index >= 0) {
  4608. SERIAL_PROTOCOL(MSG_OK);
  4609. SERIAL_PROTOCOL(" Servo ");
  4610. SERIAL_PROTOCOL(servo_index);
  4611. SERIAL_PROTOCOL(": ");
  4612. SERIAL_PROTOCOL(servos[servo_index].read());
  4613. SERIAL_PROTOCOLLN("");
  4614. }
  4615. }
  4616. break;
  4617. #endif // NUM_SERVOS > 0
  4618. #if (LARGE_FLASH == true && ( BEEPER > 0 || defined(ULTRALCD) || defined(LCD_USE_I2C_BUZZER)))
  4619. case 300: // M300
  4620. {
  4621. int beepS = code_seen('S') ? code_value() : 110;
  4622. int beepP = code_seen('P') ? code_value() : 1000;
  4623. if (beepS > 0)
  4624. {
  4625. #if BEEPER > 0
  4626. tone(BEEPER, beepS);
  4627. delay(beepP);
  4628. noTone(BEEPER);
  4629. #elif defined(ULTRALCD)
  4630. lcd_buzz(beepS, beepP);
  4631. #elif defined(LCD_USE_I2C_BUZZER)
  4632. lcd_buzz(beepP, beepS);
  4633. #endif
  4634. }
  4635. else
  4636. {
  4637. delay(beepP);
  4638. }
  4639. }
  4640. break;
  4641. #endif // M300
  4642. #ifdef PIDTEMP
  4643. case 301: // M301
  4644. {
  4645. if(code_seen('P')) Kp = code_value();
  4646. if(code_seen('I')) Ki = scalePID_i(code_value());
  4647. if(code_seen('D')) Kd = scalePID_d(code_value());
  4648. #ifdef PID_ADD_EXTRUSION_RATE
  4649. if(code_seen('C')) Kc = code_value();
  4650. #endif
  4651. updatePID();
  4652. SERIAL_PROTOCOLRPGM(MSG_OK);
  4653. SERIAL_PROTOCOL(" p:");
  4654. SERIAL_PROTOCOL(Kp);
  4655. SERIAL_PROTOCOL(" i:");
  4656. SERIAL_PROTOCOL(unscalePID_i(Ki));
  4657. SERIAL_PROTOCOL(" d:");
  4658. SERIAL_PROTOCOL(unscalePID_d(Kd));
  4659. #ifdef PID_ADD_EXTRUSION_RATE
  4660. SERIAL_PROTOCOL(" c:");
  4661. //Kc does not have scaling applied above, or in resetting defaults
  4662. SERIAL_PROTOCOL(Kc);
  4663. #endif
  4664. SERIAL_PROTOCOLLN("");
  4665. }
  4666. break;
  4667. #endif //PIDTEMP
  4668. #ifdef PIDTEMPBED
  4669. case 304: // M304
  4670. {
  4671. if(code_seen('P')) bedKp = code_value();
  4672. if(code_seen('I')) bedKi = scalePID_i(code_value());
  4673. if(code_seen('D')) bedKd = scalePID_d(code_value());
  4674. updatePID();
  4675. SERIAL_PROTOCOLRPGM(MSG_OK);
  4676. SERIAL_PROTOCOL(" p:");
  4677. SERIAL_PROTOCOL(bedKp);
  4678. SERIAL_PROTOCOL(" i:");
  4679. SERIAL_PROTOCOL(unscalePID_i(bedKi));
  4680. SERIAL_PROTOCOL(" d:");
  4681. SERIAL_PROTOCOL(unscalePID_d(bedKd));
  4682. SERIAL_PROTOCOLLN("");
  4683. }
  4684. break;
  4685. #endif //PIDTEMP
  4686. case 240: // M240 Triggers a camera by emulating a Canon RC-1 : http://www.doc-diy.net/photo/rc-1_hacked/
  4687. {
  4688. #ifdef CHDK
  4689. SET_OUTPUT(CHDK);
  4690. WRITE(CHDK, HIGH);
  4691. chdkHigh = millis();
  4692. chdkActive = true;
  4693. #else
  4694. #if defined(PHOTOGRAPH_PIN) && PHOTOGRAPH_PIN > -1
  4695. const uint8_t NUM_PULSES=16;
  4696. const float PULSE_LENGTH=0.01524;
  4697. for(int i=0; i < NUM_PULSES; i++) {
  4698. WRITE(PHOTOGRAPH_PIN, HIGH);
  4699. _delay_ms(PULSE_LENGTH);
  4700. WRITE(PHOTOGRAPH_PIN, LOW);
  4701. _delay_ms(PULSE_LENGTH);
  4702. }
  4703. delay(7.33);
  4704. for(int i=0; i < NUM_PULSES; i++) {
  4705. WRITE(PHOTOGRAPH_PIN, HIGH);
  4706. _delay_ms(PULSE_LENGTH);
  4707. WRITE(PHOTOGRAPH_PIN, LOW);
  4708. _delay_ms(PULSE_LENGTH);
  4709. }
  4710. #endif
  4711. #endif //chdk end if
  4712. }
  4713. break;
  4714. #ifdef DOGLCD
  4715. case 250: // M250 Set LCD contrast value: C<value> (value 0..63)
  4716. {
  4717. if (code_seen('C')) {
  4718. lcd_setcontrast( ((int)code_value())&63 );
  4719. }
  4720. SERIAL_PROTOCOLPGM("lcd contrast value: ");
  4721. SERIAL_PROTOCOL(lcd_contrast);
  4722. SERIAL_PROTOCOLLN("");
  4723. }
  4724. break;
  4725. #endif
  4726. #ifdef PREVENT_DANGEROUS_EXTRUDE
  4727. case 302: // allow cold extrudes, or set the minimum extrude temperature
  4728. {
  4729. float temp = .0;
  4730. if (code_seen('S')) temp=code_value();
  4731. set_extrude_min_temp(temp);
  4732. }
  4733. break;
  4734. #endif
  4735. case 303: // M303 PID autotune
  4736. {
  4737. float temp = 150.0;
  4738. int e=0;
  4739. int c=5;
  4740. if (code_seen('E')) e=code_value();
  4741. if (e<0)
  4742. temp=70;
  4743. if (code_seen('S')) temp=code_value();
  4744. if (code_seen('C')) c=code_value();
  4745. PID_autotune(temp, e, c);
  4746. }
  4747. break;
  4748. case 400: // M400 finish all moves
  4749. {
  4750. st_synchronize();
  4751. }
  4752. break;
  4753. case 500: // M500 Store settings in EEPROM
  4754. {
  4755. Config_StoreSettings(EEPROM_OFFSET);
  4756. }
  4757. break;
  4758. case 501: // M501 Read settings from EEPROM
  4759. {
  4760. Config_RetrieveSettings(EEPROM_OFFSET);
  4761. }
  4762. break;
  4763. case 502: // M502 Revert to default settings
  4764. {
  4765. Config_ResetDefault();
  4766. }
  4767. break;
  4768. case 503: // M503 print settings currently in memory
  4769. {
  4770. Config_PrintSettings();
  4771. }
  4772. break;
  4773. case 509: //M509 Force language selection
  4774. {
  4775. lcd_force_language_selection();
  4776. SERIAL_ECHO_START;
  4777. SERIAL_PROTOCOLPGM(("LANG SEL FORCED"));
  4778. }
  4779. break;
  4780. #ifdef ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED
  4781. case 540:
  4782. {
  4783. if(code_seen('S')) abort_on_endstop_hit = code_value() > 0;
  4784. }
  4785. break;
  4786. #endif
  4787. #ifdef CUSTOM_M_CODE_SET_Z_PROBE_OFFSET
  4788. case CUSTOM_M_CODE_SET_Z_PROBE_OFFSET:
  4789. {
  4790. float value;
  4791. if (code_seen('Z'))
  4792. {
  4793. value = code_value();
  4794. if ((Z_PROBE_OFFSET_RANGE_MIN <= value) && (value <= Z_PROBE_OFFSET_RANGE_MAX))
  4795. {
  4796. zprobe_zoffset = -value; // compare w/ line 278 of ConfigurationStore.cpp
  4797. SERIAL_ECHO_START;
  4798. SERIAL_ECHOLNRPGM(CAT4(MSG_ZPROBE_ZOFFSET, " ", MSG_OK,PSTR("")));
  4799. SERIAL_PROTOCOLLN("");
  4800. }
  4801. else
  4802. {
  4803. SERIAL_ECHO_START;
  4804. SERIAL_ECHORPGM(MSG_ZPROBE_ZOFFSET);
  4805. SERIAL_ECHORPGM(MSG_Z_MIN);
  4806. SERIAL_ECHO(Z_PROBE_OFFSET_RANGE_MIN);
  4807. SERIAL_ECHORPGM(MSG_Z_MAX);
  4808. SERIAL_ECHO(Z_PROBE_OFFSET_RANGE_MAX);
  4809. SERIAL_PROTOCOLLN("");
  4810. }
  4811. }
  4812. else
  4813. {
  4814. SERIAL_ECHO_START;
  4815. SERIAL_ECHOLNRPGM(CAT2(MSG_ZPROBE_ZOFFSET, PSTR(" : ")));
  4816. SERIAL_ECHO(-zprobe_zoffset);
  4817. SERIAL_PROTOCOLLN("");
  4818. }
  4819. break;
  4820. }
  4821. #endif // CUSTOM_M_CODE_SET_Z_PROBE_OFFSET
  4822. #ifdef FILAMENTCHANGEENABLE
  4823. case 600: //Pause for filament change X[pos] Y[pos] Z[relative lift] E[initial retract] L[later retract distance for removal]
  4824. {
  4825. #ifdef PAT9125
  4826. bool old_fsensor_enabled = fsensor_enabled;
  4827. fsensor_enabled = false; //temporary solution for unexpected restarting
  4828. #endif //PAT9125
  4829. st_synchronize();
  4830. float target[4];
  4831. float lastpos[4];
  4832. if (farm_mode)
  4833. {
  4834. prusa_statistics(22);
  4835. }
  4836. feedmultiplyBckp=feedmultiply;
  4837. int8_t TooLowZ = 0;
  4838. float HotendTempBckp = degTargetHotend(active_extruder);
  4839. int fanSpeedBckp = fanSpeed;
  4840. target[X_AXIS]=current_position[X_AXIS];
  4841. target[Y_AXIS]=current_position[Y_AXIS];
  4842. target[Z_AXIS]=current_position[Z_AXIS];
  4843. target[E_AXIS]=current_position[E_AXIS];
  4844. lastpos[X_AXIS]=current_position[X_AXIS];
  4845. lastpos[Y_AXIS]=current_position[Y_AXIS];
  4846. lastpos[Z_AXIS]=current_position[Z_AXIS];
  4847. lastpos[E_AXIS]=current_position[E_AXIS];
  4848. //Restract extruder
  4849. if(code_seen('E'))
  4850. {
  4851. target[E_AXIS]+= code_value();
  4852. }
  4853. else
  4854. {
  4855. #ifdef FILAMENTCHANGE_FIRSTRETRACT
  4856. target[E_AXIS]+= FILAMENTCHANGE_FIRSTRETRACT ;
  4857. #endif
  4858. }
  4859. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_RFEED, active_extruder);
  4860. //Lift Z
  4861. if(code_seen('Z'))
  4862. {
  4863. target[Z_AXIS]+= code_value();
  4864. }
  4865. else
  4866. {
  4867. #ifdef FILAMENTCHANGE_ZADD
  4868. target[Z_AXIS]+= FILAMENTCHANGE_ZADD ;
  4869. if(target[Z_AXIS] < 10){
  4870. target[Z_AXIS]+= 10 ;
  4871. TooLowZ = 1;
  4872. }else{
  4873. TooLowZ = 0;
  4874. }
  4875. #endif
  4876. }
  4877. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_ZFEED, active_extruder);
  4878. //Move XY to side
  4879. if(code_seen('X'))
  4880. {
  4881. target[X_AXIS]+= code_value();
  4882. }
  4883. else
  4884. {
  4885. #ifdef FILAMENTCHANGE_XPOS
  4886. target[X_AXIS]= FILAMENTCHANGE_XPOS ;
  4887. #endif
  4888. }
  4889. if(code_seen('Y'))
  4890. {
  4891. target[Y_AXIS]= code_value();
  4892. }
  4893. else
  4894. {
  4895. #ifdef FILAMENTCHANGE_YPOS
  4896. target[Y_AXIS]= FILAMENTCHANGE_YPOS ;
  4897. #endif
  4898. }
  4899. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_XYFEED, active_extruder);
  4900. st_synchronize();
  4901. KEEPALIVE_STATE(PAUSED_FOR_USER);
  4902. uint8_t cnt = 0;
  4903. int counterBeep = 0;
  4904. fanSpeed = 0;
  4905. unsigned long waiting_start_time = millis();
  4906. uint8_t wait_for_user_state = 0;
  4907. lcd_display_message_fullscreen_P(MSG_PRESS_TO_UNLOAD);
  4908. while (!(wait_for_user_state == 0 && lcd_clicked())){
  4909. //cnt++;
  4910. manage_heater();
  4911. manage_inactivity(true);
  4912. /*#ifdef SNMM
  4913. target[E_AXIS] += 0.002;
  4914. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 500, active_extruder);
  4915. #endif // SNMM*/
  4916. //if (cnt == 0)
  4917. {
  4918. #if BEEPER > 0
  4919. if (counterBeep == 500) {
  4920. counterBeep = 0;
  4921. }
  4922. SET_OUTPUT(BEEPER);
  4923. if (counterBeep == 0) {
  4924. WRITE(BEEPER, HIGH);
  4925. }
  4926. if (counterBeep == 20) {
  4927. WRITE(BEEPER, LOW);
  4928. }
  4929. counterBeep++;
  4930. #else
  4931. #if !defined(LCD_FEEDBACK_FREQUENCY_HZ) || !defined(LCD_FEEDBACK_FREQUENCY_DURATION_MS)
  4932. lcd_buzz(1000 / 6, 100);
  4933. #else
  4934. lcd_buzz(LCD_FEEDBACK_FREQUENCY_DURATION_MS, LCD_FEEDBACK_FREQUENCY_HZ);
  4935. #endif
  4936. #endif
  4937. }
  4938. switch (wait_for_user_state) {
  4939. case 0:
  4940. delay_keep_alive(4);
  4941. if (millis() > waiting_start_time + (unsigned long)M600_TIMEOUT * 1000) {
  4942. lcd_display_message_fullscreen_P(MSG_PRESS_TO_PREHEAT);
  4943. wait_for_user_state = 1;
  4944. setTargetHotend(0, 0);
  4945. setTargetHotend(0, 1);
  4946. setTargetHotend(0, 2);
  4947. st_synchronize();
  4948. disable_e0();
  4949. disable_e1();
  4950. disable_e2();
  4951. }
  4952. break;
  4953. case 1:
  4954. delay_keep_alive(4);
  4955. if (lcd_clicked()) {
  4956. setTargetHotend(HotendTempBckp, active_extruder);
  4957. lcd_wait_for_heater();
  4958. wait_for_user_state = 2;
  4959. }
  4960. break;
  4961. case 2:
  4962. if (abs(degTargetHotend(active_extruder) - degHotend(active_extruder)) < 1) {
  4963. lcd_display_message_fullscreen_P(MSG_PRESS_TO_UNLOAD);
  4964. waiting_start_time = millis();
  4965. wait_for_user_state = 0;
  4966. }
  4967. else {
  4968. counterBeep = 20; //beeper will be inactive during waiting for nozzle preheat
  4969. lcd.setCursor(1, 4);
  4970. lcd.print(ftostr3(degHotend(active_extruder)));
  4971. }
  4972. break;
  4973. }
  4974. }
  4975. WRITE(BEEPER, LOW);
  4976. lcd_change_fil_state = 0;
  4977. // Unload filament
  4978. lcd_display_message_fullscreen_P(MSG_UNLOADING_FILAMENT);
  4979. KEEPALIVE_STATE(IN_HANDLER);
  4980. custom_message = true;
  4981. lcd_setstatuspgm(MSG_UNLOADING_FILAMENT);
  4982. if (code_seen('L'))
  4983. {
  4984. target[E_AXIS] += code_value();
  4985. }
  4986. else
  4987. {
  4988. #ifdef SNMM
  4989. #else
  4990. #ifdef FILAMENTCHANGE_FINALRETRACT
  4991. target[E_AXIS] += FILAMENTCHANGE_FINALRETRACT;
  4992. #endif
  4993. #endif // SNMM
  4994. }
  4995. #ifdef SNMM
  4996. target[E_AXIS] += 12;
  4997. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 3500, active_extruder);
  4998. target[E_AXIS] += 6;
  4999. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 5000, active_extruder);
  5000. target[E_AXIS] += (FIL_LOAD_LENGTH * -1);
  5001. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 5000, active_extruder);
  5002. st_synchronize();
  5003. target[E_AXIS] += (FIL_COOLING);
  5004. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 50, active_extruder);
  5005. target[E_AXIS] += (FIL_COOLING*-1);
  5006. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 50, active_extruder);
  5007. target[E_AXIS] += (bowden_length[snmm_extruder] * -1);
  5008. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 3000, active_extruder);
  5009. st_synchronize();
  5010. #else
  5011. // plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_RFEED, active_extruder);
  5012. //plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 3500 / 60, active_extruder);
  5013. target[E_AXIS] -= FILAMENTCHANGE_FINALRETRACT;
  5014. st_synchronize();
  5015. #ifdef TMC2130
  5016. uint8_t tmc2130_current_r_bckp = tmc2130_current_r[E_AXIS];
  5017. tmc2130_set_current_r(E_AXIS, TMC2130_UNLOAD_CURRENT_R);
  5018. #else
  5019. digipot_current(2, 200); //set lower E motor current for unload to protect filament sensor and ptfe tube
  5020. float tmp_motor[3] = DEFAULT_PWM_MOTOR_CURRENT;
  5021. float tmp_motor_loud[3] = DEFAULT_PWM_MOTOR_CURRENT_LOUD;
  5022. #endif //TMC2130
  5023. target[E_AXIS] -= 45;
  5024. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 5200 / 60, active_extruder);
  5025. st_synchronize();
  5026. target[E_AXIS] -= 15;
  5027. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 1000 / 60, active_extruder);
  5028. st_synchronize();
  5029. target[E_AXIS] -= 20;
  5030. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 1000 / 60, active_extruder);
  5031. st_synchronize();
  5032. #ifdef TMC2130
  5033. tmc2130_set_current_r(E_AXIS, tmc2130_current_r_bckp);
  5034. #else
  5035. uint8_t silentMode = eeprom_read_byte((uint8_t*)EEPROM_SILENT);
  5036. if(silentMode) digipot_current(2, tmp_motor[2]); //set E back to normal operation currents
  5037. else digipot_current(2, tmp_motor_loud[2]);
  5038. #endif //TMC2130
  5039. #endif // SNMM
  5040. //finish moves
  5041. st_synchronize();
  5042. lcd_display_message_fullscreen_P(MSG_PULL_OUT_FILAMENT);
  5043. //disable extruder steppers so filament can be removed
  5044. disable_e0();
  5045. disable_e1();
  5046. disable_e2();
  5047. delay(100);
  5048. WRITE(BEEPER, HIGH);
  5049. counterBeep = 0;
  5050. while(!lcd_clicked() && (counterBeep < 50)) {
  5051. if(counterBeep > 5) WRITE(BEEPER, LOW);
  5052. delay_keep_alive(100);
  5053. counterBeep++;
  5054. }
  5055. WRITE(BEEPER, LOW);
  5056. KEEPALIVE_STATE(PAUSED_FOR_USER);
  5057. lcd_change_fil_state = lcd_show_fullscreen_message_yes_no_and_wait_P(MSG_UNLOAD_SUCCESSFUL, false, true);
  5058. if (lcd_change_fil_state == 0) lcd_show_fullscreen_message_and_wait_P(MSG_CHECK_IDLER);
  5059. //lcd_return_to_status();
  5060. lcd_update_enable(true);
  5061. //Wait for user to insert filament
  5062. lcd_wait_interact();
  5063. //load_filament_time = millis();
  5064. KEEPALIVE_STATE(PAUSED_FOR_USER);
  5065. #ifdef PAT9125
  5066. if (filament_autoload_enabled && (old_fsensor_enabled || fsensor_M600)) fsensor_autoload_check_start();
  5067. #endif //PAT9125
  5068. // printf_P(PSTR("M600 PAT9125 filament_autoload_enabled=%d, old_fsensor_enabled=%d, fsensor_M600=%d"), filament_autoload_enabled, old_fsensor_enabled, fsensor_M600);
  5069. while(!lcd_clicked())
  5070. {
  5071. manage_heater();
  5072. manage_inactivity(true);
  5073. #ifdef PAT9125
  5074. if (filament_autoload_enabled && (old_fsensor_enabled || fsensor_M600) && fsensor_check_autoload())
  5075. {
  5076. tone(BEEPER, 1000);
  5077. delay_keep_alive(50);
  5078. noTone(BEEPER);
  5079. break;
  5080. }
  5081. #endif //PAT9125
  5082. /*#ifdef SNMM
  5083. target[E_AXIS] += 0.002;
  5084. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 500, active_extruder);
  5085. #endif // SNMM*/
  5086. }
  5087. #ifdef PAT9125
  5088. if (filament_autoload_enabled && (old_fsensor_enabled || fsensor_M600)) fsensor_autoload_check_stop();
  5089. #endif //PAT9125
  5090. //WRITE(BEEPER, LOW);
  5091. KEEPALIVE_STATE(IN_HANDLER);
  5092. #ifdef SNMM
  5093. display_loading();
  5094. KEEPALIVE_STATE(PAUSED_FOR_USER);
  5095. do {
  5096. target[E_AXIS] += 0.002;
  5097. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 500, active_extruder);
  5098. delay_keep_alive(2);
  5099. } while (!lcd_clicked());
  5100. KEEPALIVE_STATE(IN_HANDLER);
  5101. /*if (millis() - load_filament_time > 2) {
  5102. load_filament_time = millis();
  5103. target[E_AXIS] += 0.001;
  5104. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 1000, active_extruder);
  5105. }*/
  5106. //Filament inserted
  5107. //Feed the filament to the end of nozzle quickly
  5108. st_synchronize();
  5109. target[E_AXIS] += bowden_length[snmm_extruder];
  5110. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 3000, active_extruder);
  5111. target[E_AXIS] += FIL_LOAD_LENGTH - 60;
  5112. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 1400, active_extruder);
  5113. target[E_AXIS] += 40;
  5114. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 400, active_extruder);
  5115. target[E_AXIS] += 10;
  5116. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 50, active_extruder);
  5117. #else
  5118. target[E_AXIS] += FILAMENTCHANGE_FIRSTFEED;
  5119. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_EFEED, active_extruder);
  5120. #endif // SNMM
  5121. //Extrude some filament
  5122. target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  5123. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_EXFEED, active_extruder);
  5124. //Wait for user to check the state
  5125. lcd_change_fil_state = 0;
  5126. lcd_loading_filament();
  5127. tone(BEEPER, 500);
  5128. delay_keep_alive(50);
  5129. noTone(BEEPER);
  5130. while ((lcd_change_fil_state == 0)||(lcd_change_fil_state != 1)){
  5131. lcd_change_fil_state = 0;
  5132. KEEPALIVE_STATE(PAUSED_FOR_USER);
  5133. lcd_alright();
  5134. KEEPALIVE_STATE(IN_HANDLER);
  5135. switch(lcd_change_fil_state){
  5136. // Filament failed to load so load it again
  5137. case 2:
  5138. #ifdef SNMM
  5139. display_loading();
  5140. do {
  5141. target[E_AXIS] += 0.002;
  5142. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 500, active_extruder);
  5143. delay_keep_alive(2);
  5144. } while (!lcd_clicked());
  5145. st_synchronize();
  5146. target[E_AXIS] += bowden_length[snmm_extruder];
  5147. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 3000, active_extruder);
  5148. target[E_AXIS] += FIL_LOAD_LENGTH - 60;
  5149. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 1400, active_extruder);
  5150. target[E_AXIS] += 40;
  5151. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 400, active_extruder);
  5152. target[E_AXIS] += 10;
  5153. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 50, active_extruder);
  5154. #else
  5155. target[E_AXIS]+= FILAMENTCHANGE_FIRSTFEED ;
  5156. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_EFEED, active_extruder);
  5157. #endif
  5158. target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  5159. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_EXFEED, active_extruder);
  5160. lcd_loading_filament();
  5161. break;
  5162. // Filament loaded properly but color is not clear
  5163. case 3:
  5164. target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  5165. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder);
  5166. lcd_loading_color();
  5167. break;
  5168. // Everything good
  5169. default:
  5170. lcd_change_success();
  5171. lcd_update_enable(true);
  5172. break;
  5173. }
  5174. }
  5175. //Not let's go back to print
  5176. fanSpeed = fanSpeedBckp;
  5177. //Feed a little of filament to stabilize pressure
  5178. target[E_AXIS]+= FILAMENTCHANGE_RECFEED;
  5179. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_EXFEED, active_extruder);
  5180. //Retract
  5181. target[E_AXIS]+= FILAMENTCHANGE_FIRSTRETRACT;
  5182. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_RFEED, active_extruder);
  5183. //plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 70, active_extruder); //should do nothing
  5184. //Move XY back
  5185. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_XYFEED, active_extruder);
  5186. //Move Z back
  5187. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_ZFEED, active_extruder);
  5188. target[E_AXIS]= target[E_AXIS] - FILAMENTCHANGE_FIRSTRETRACT;
  5189. //Unretract
  5190. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_RFEED, active_extruder);
  5191. //Set E position to original
  5192. plan_set_e_position(lastpos[E_AXIS]);
  5193. //Recover feed rate
  5194. feedmultiply=feedmultiplyBckp;
  5195. char cmd[9];
  5196. sprintf_P(cmd, PSTR("M220 S%i"), feedmultiplyBckp);
  5197. enquecommand(cmd);
  5198. lcd_setstatuspgm(WELCOME_MSG);
  5199. custom_message = false;
  5200. custom_message_type = 0;
  5201. #ifdef PAT9125
  5202. fsensor_enabled = old_fsensor_enabled; //temporary solution for unexpected restarting
  5203. if (fsensor_M600)
  5204. {
  5205. cmdqueue_pop_front(); //hack because M600 repeated 2x when enqueued to front
  5206. st_synchronize();
  5207. while (!is_buffer_empty())
  5208. {
  5209. process_commands();
  5210. cmdqueue_pop_front();
  5211. }
  5212. fsensor_enable();
  5213. fsensor_restore_print_and_continue();
  5214. }
  5215. #endif //PAT9125
  5216. }
  5217. break;
  5218. #endif //FILAMENTCHANGEENABLE
  5219. case 601: {
  5220. if(lcd_commands_type == 0) lcd_commands_type = LCD_COMMAND_LONG_PAUSE;
  5221. }
  5222. break;
  5223. case 602: {
  5224. if(lcd_commands_type == 0) lcd_commands_type = LCD_COMMAND_LONG_PAUSE_RESUME;
  5225. }
  5226. break;
  5227. #ifdef LIN_ADVANCE
  5228. case 900: // M900: Set LIN_ADVANCE options.
  5229. gcode_M900();
  5230. break;
  5231. #endif
  5232. case 907: // M907 Set digital trimpot motor current using axis codes.
  5233. {
  5234. #if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
  5235. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) digipot_current(i,code_value());
  5236. if(code_seen('B')) digipot_current(4,code_value());
  5237. if(code_seen('S')) for(int i=0;i<=4;i++) digipot_current(i,code_value());
  5238. #endif
  5239. #ifdef MOTOR_CURRENT_PWM_XY_PIN
  5240. if(code_seen('X')) digipot_current(0, code_value());
  5241. #endif
  5242. #ifdef MOTOR_CURRENT_PWM_Z_PIN
  5243. if(code_seen('Z')) digipot_current(1, code_value());
  5244. #endif
  5245. #ifdef MOTOR_CURRENT_PWM_E_PIN
  5246. if(code_seen('E')) digipot_current(2, code_value());
  5247. #endif
  5248. #ifdef DIGIPOT_I2C
  5249. // this one uses actual amps in floating point
  5250. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) digipot_i2c_set_current(i, code_value());
  5251. // for each additional extruder (named B,C,D,E..., channels 4,5,6,7...)
  5252. for(int i=NUM_AXIS;i<DIGIPOT_I2C_NUM_CHANNELS;i++) if(code_seen('B'+i-NUM_AXIS)) digipot_i2c_set_current(i, code_value());
  5253. #endif
  5254. }
  5255. break;
  5256. case 908: // M908 Control digital trimpot directly.
  5257. {
  5258. #if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
  5259. uint8_t channel,current;
  5260. if(code_seen('P')) channel=code_value();
  5261. if(code_seen('S')) current=code_value();
  5262. digitalPotWrite(channel, current);
  5263. #endif
  5264. }
  5265. break;
  5266. #ifdef TMC2130
  5267. case 910: // M910 TMC2130 init
  5268. {
  5269. tmc2130_init();
  5270. }
  5271. break;
  5272. case 911: // M911 Set TMC2130 holding currents
  5273. {
  5274. if (code_seen('X')) tmc2130_set_current_h(0, code_value());
  5275. if (code_seen('Y')) tmc2130_set_current_h(1, code_value());
  5276. if (code_seen('Z')) tmc2130_set_current_h(2, code_value());
  5277. if (code_seen('E')) tmc2130_set_current_h(3, code_value());
  5278. }
  5279. break;
  5280. case 912: // M912 Set TMC2130 running currents
  5281. {
  5282. if (code_seen('X')) tmc2130_set_current_r(0, code_value());
  5283. if (code_seen('Y')) tmc2130_set_current_r(1, code_value());
  5284. if (code_seen('Z')) tmc2130_set_current_r(2, code_value());
  5285. if (code_seen('E')) tmc2130_set_current_r(3, code_value());
  5286. }
  5287. break;
  5288. case 913: // M913 Print TMC2130 currents
  5289. {
  5290. tmc2130_print_currents();
  5291. }
  5292. break;
  5293. case 914: // M914 Set normal mode
  5294. {
  5295. tmc2130_mode = TMC2130_MODE_NORMAL;
  5296. tmc2130_init();
  5297. }
  5298. break;
  5299. case 915: // M915 Set silent mode
  5300. {
  5301. tmc2130_mode = TMC2130_MODE_SILENT;
  5302. tmc2130_init();
  5303. }
  5304. break;
  5305. case 916: // M916 Set sg_thrs
  5306. {
  5307. if (code_seen('X')) tmc2130_sg_thr[X_AXIS] = code_value();
  5308. if (code_seen('Y')) tmc2130_sg_thr[Y_AXIS] = code_value();
  5309. if (code_seen('Z')) tmc2130_sg_thr[Z_AXIS] = code_value();
  5310. if (code_seen('E')) tmc2130_sg_thr[E_AXIS] = code_value();
  5311. MYSERIAL.print("tmc2130_sg_thr[X]=");
  5312. MYSERIAL.println(tmc2130_sg_thr[X_AXIS], DEC);
  5313. MYSERIAL.print("tmc2130_sg_thr[Y]=");
  5314. MYSERIAL.println(tmc2130_sg_thr[Y_AXIS], DEC);
  5315. MYSERIAL.print("tmc2130_sg_thr[Z]=");
  5316. MYSERIAL.println(tmc2130_sg_thr[Z_AXIS], DEC);
  5317. MYSERIAL.print("tmc2130_sg_thr[E]=");
  5318. MYSERIAL.println(tmc2130_sg_thr[E_AXIS], DEC);
  5319. }
  5320. break;
  5321. case 917: // M917 Set TMC2130 pwm_ampl
  5322. {
  5323. if (code_seen('X')) tmc2130_set_pwm_ampl(0, code_value());
  5324. if (code_seen('Y')) tmc2130_set_pwm_ampl(1, code_value());
  5325. if (code_seen('Z')) tmc2130_set_pwm_ampl(2, code_value());
  5326. if (code_seen('E')) tmc2130_set_pwm_ampl(3, code_value());
  5327. }
  5328. break;
  5329. case 918: // M918 Set TMC2130 pwm_grad
  5330. {
  5331. if (code_seen('X')) tmc2130_set_pwm_grad(0, code_value());
  5332. if (code_seen('Y')) tmc2130_set_pwm_grad(1, code_value());
  5333. if (code_seen('Z')) tmc2130_set_pwm_grad(2, code_value());
  5334. if (code_seen('E')) tmc2130_set_pwm_grad(3, code_value());
  5335. }
  5336. break;
  5337. #endif //TMC2130
  5338. case 350: // M350 Set microstepping mode. Warning: Steps per unit remains unchanged. S code sets stepping mode for all drivers.
  5339. {
  5340. #if defined(X_MS1_PIN) && X_MS1_PIN > -1
  5341. if(code_seen('S')) for(int i=0;i<=4;i++) microstep_mode(i,code_value());
  5342. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) microstep_mode(i,(uint8_t)code_value());
  5343. if(code_seen('B')) microstep_mode(4,code_value());
  5344. microstep_readings();
  5345. #endif
  5346. }
  5347. break;
  5348. case 351: // M351 Toggle MS1 MS2 pins directly, S# determines MS1 or MS2, X# sets the pin high/low.
  5349. {
  5350. #if defined(X_MS1_PIN) && X_MS1_PIN > -1
  5351. if(code_seen('S')) switch((int)code_value())
  5352. {
  5353. case 1:
  5354. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) microstep_ms(i,code_value(),-1);
  5355. if(code_seen('B')) microstep_ms(4,code_value(),-1);
  5356. break;
  5357. case 2:
  5358. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) microstep_ms(i,-1,code_value());
  5359. if(code_seen('B')) microstep_ms(4,-1,code_value());
  5360. break;
  5361. }
  5362. microstep_readings();
  5363. #endif
  5364. }
  5365. break;
  5366. case 701: //M701: load filament
  5367. {
  5368. gcode_M701();
  5369. }
  5370. break;
  5371. case 702:
  5372. {
  5373. #ifdef SNMM
  5374. if (code_seen('U')) {
  5375. extr_unload_used(); //unload all filaments which were used in current print
  5376. }
  5377. else if (code_seen('C')) {
  5378. extr_unload(); //unload just current filament
  5379. }
  5380. else {
  5381. extr_unload_all(); //unload all filaments
  5382. }
  5383. #else
  5384. #ifdef PAT9125
  5385. bool old_fsensor_enabled = fsensor_enabled;
  5386. fsensor_enabled = false;
  5387. #endif //PAT9125
  5388. custom_message = true;
  5389. custom_message_type = 2;
  5390. lcd_setstatuspgm(MSG_UNLOADING_FILAMENT);
  5391. // extr_unload2();
  5392. current_position[E_AXIS] -= 45;
  5393. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 5200 / 60, active_extruder);
  5394. st_synchronize();
  5395. current_position[E_AXIS] -= 15;
  5396. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 1000 / 60, active_extruder);
  5397. st_synchronize();
  5398. current_position[E_AXIS] -= 20;
  5399. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 1000 / 60, active_extruder);
  5400. st_synchronize();
  5401. lcd_display_message_fullscreen_P(MSG_PULL_OUT_FILAMENT);
  5402. //disable extruder steppers so filament can be removed
  5403. disable_e0();
  5404. disable_e1();
  5405. disable_e2();
  5406. delay(100);
  5407. WRITE(BEEPER, HIGH);
  5408. uint8_t counterBeep = 0;
  5409. while (!lcd_clicked() && (counterBeep < 50)) {
  5410. if (counterBeep > 5) WRITE(BEEPER, LOW);
  5411. delay_keep_alive(100);
  5412. counterBeep++;
  5413. }
  5414. WRITE(BEEPER, LOW);
  5415. st_synchronize();
  5416. while (lcd_clicked()) delay_keep_alive(100);
  5417. lcd_update_enable(true);
  5418. lcd_setstatuspgm(WELCOME_MSG);
  5419. custom_message = false;
  5420. custom_message_type = 0;
  5421. #ifdef PAT9125
  5422. fsensor_enabled = old_fsensor_enabled;
  5423. #endif //PAT9125
  5424. #endif
  5425. }
  5426. break;
  5427. case 999: // M999: Restart after being stopped
  5428. Stopped = false;
  5429. lcd_reset_alert_level();
  5430. gcode_LastN = Stopped_gcode_LastN;
  5431. FlushSerialRequestResend();
  5432. break;
  5433. default:
  5434. printf_P(PSTR("Unknown M code: %s \n"), cmdbuffer + bufindr + CMDHDRSIZE);
  5435. }
  5436. } // end if(code_seen('M')) (end of M codes)
  5437. else if(code_seen('T'))
  5438. {
  5439. int index;
  5440. st_synchronize();
  5441. for (index = 1; *(strchr_pointer + index) == ' ' || *(strchr_pointer + index) == '\t'; index++);
  5442. if ((*(strchr_pointer + index) < '0' || *(strchr_pointer + index) > '9') && *(strchr_pointer + index) != '?') {
  5443. SERIAL_ECHOLNPGM("Invalid T code.");
  5444. }
  5445. else {
  5446. if (*(strchr_pointer + index) == '?') {
  5447. tmp_extruder = choose_extruder_menu();
  5448. }
  5449. else {
  5450. tmp_extruder = code_value();
  5451. }
  5452. snmm_filaments_used |= (1 << tmp_extruder); //for stop print
  5453. #ifdef SNMM
  5454. #ifdef LIN_ADVANCE
  5455. if (snmm_extruder != tmp_extruder)
  5456. clear_current_adv_vars(); //Check if the selected extruder is not the active one and reset LIN_ADVANCE variables if so.
  5457. #endif
  5458. snmm_extruder = tmp_extruder;
  5459. delay(100);
  5460. disable_e0();
  5461. disable_e1();
  5462. disable_e2();
  5463. pinMode(E_MUX0_PIN, OUTPUT);
  5464. pinMode(E_MUX1_PIN, OUTPUT);
  5465. pinMode(E_MUX2_PIN, OUTPUT);
  5466. delay(100);
  5467. SERIAL_ECHO_START;
  5468. SERIAL_ECHO("T:");
  5469. SERIAL_ECHOLN((int)tmp_extruder);
  5470. switch (tmp_extruder) {
  5471. case 1:
  5472. WRITE(E_MUX0_PIN, HIGH);
  5473. WRITE(E_MUX1_PIN, LOW);
  5474. WRITE(E_MUX2_PIN, LOW);
  5475. break;
  5476. case 2:
  5477. WRITE(E_MUX0_PIN, LOW);
  5478. WRITE(E_MUX1_PIN, HIGH);
  5479. WRITE(E_MUX2_PIN, LOW);
  5480. break;
  5481. case 3:
  5482. WRITE(E_MUX0_PIN, HIGH);
  5483. WRITE(E_MUX1_PIN, HIGH);
  5484. WRITE(E_MUX2_PIN, LOW);
  5485. break;
  5486. default:
  5487. WRITE(E_MUX0_PIN, LOW);
  5488. WRITE(E_MUX1_PIN, LOW);
  5489. WRITE(E_MUX2_PIN, LOW);
  5490. break;
  5491. }
  5492. delay(100);
  5493. #else
  5494. if (tmp_extruder >= EXTRUDERS) {
  5495. SERIAL_ECHO_START;
  5496. SERIAL_ECHOPGM("T");
  5497. SERIAL_PROTOCOLLN((int)tmp_extruder);
  5498. SERIAL_ECHOLNRPGM(MSG_INVALID_EXTRUDER);
  5499. }
  5500. else {
  5501. boolean make_move = false;
  5502. if (code_seen('F')) {
  5503. make_move = true;
  5504. next_feedrate = code_value();
  5505. if (next_feedrate > 0.0) {
  5506. feedrate = next_feedrate;
  5507. }
  5508. }
  5509. #if EXTRUDERS > 1
  5510. if (tmp_extruder != active_extruder) {
  5511. // Save current position to return to after applying extruder offset
  5512. memcpy(destination, current_position, sizeof(destination));
  5513. // Offset extruder (only by XY)
  5514. int i;
  5515. for (i = 0; i < 2; i++) {
  5516. current_position[i] = current_position[i] -
  5517. extruder_offset[i][active_extruder] +
  5518. extruder_offset[i][tmp_extruder];
  5519. }
  5520. // Set the new active extruder and position
  5521. active_extruder = tmp_extruder;
  5522. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  5523. // Move to the old position if 'F' was in the parameters
  5524. if (make_move && Stopped == false) {
  5525. prepare_move();
  5526. }
  5527. }
  5528. #endif
  5529. SERIAL_ECHO_START;
  5530. SERIAL_ECHORPGM(MSG_ACTIVE_EXTRUDER);
  5531. SERIAL_PROTOCOLLN((int)active_extruder);
  5532. }
  5533. #endif
  5534. }
  5535. } // end if(code_seen('T')) (end of T codes)
  5536. #ifdef DEBUG_DCODES
  5537. else if (code_seen('D')) // D codes (debug)
  5538. {
  5539. switch((int)code_value())
  5540. {
  5541. case -1: // D-1 - Endless loop
  5542. dcode__1(); break;
  5543. case 0: // D0 - Reset
  5544. dcode_0(); break;
  5545. case 1: // D1 - Clear EEPROM
  5546. dcode_1(); break;
  5547. case 2: // D2 - Read/Write RAM
  5548. dcode_2(); break;
  5549. case 3: // D3 - Read/Write EEPROM
  5550. dcode_3(); break;
  5551. case 4: // D4 - Read/Write PIN
  5552. dcode_4(); break;
  5553. case 5: // D5 - Read/Write FLASH
  5554. // dcode_5(); break;
  5555. break;
  5556. case 6: // D6 - Read/Write external FLASH
  5557. dcode_6(); break;
  5558. case 7: // D7 - Read/Write Bootloader
  5559. dcode_7(); break;
  5560. case 8: // D8 - Read/Write PINDA
  5561. dcode_8(); break;
  5562. case 9: // D9 - Read/Write ADC
  5563. dcode_9(); break;
  5564. case 10: // D10 - XYZ calibration = OK
  5565. dcode_10(); break;
  5566. case 12: //D12 - Reset failstat counters
  5567. dcode_12(); break;
  5568. #ifdef TMC2130
  5569. case 2130: // D9125 - TMC2130
  5570. dcode_2130(); break;
  5571. #endif //TMC2130
  5572. #ifdef PAT9125
  5573. case 9125: // D9125 - PAT9125
  5574. dcode_9125(); break;
  5575. #endif //PAT9125
  5576. }
  5577. }
  5578. #endif //DEBUG_DCODES
  5579. else
  5580. {
  5581. SERIAL_ECHO_START;
  5582. SERIAL_ECHORPGM(MSG_UNKNOWN_COMMAND);
  5583. SERIAL_ECHO(CMDBUFFER_CURRENT_STRING);
  5584. SERIAL_ECHOLNPGM("\"(2)");
  5585. }
  5586. KEEPALIVE_STATE(NOT_BUSY);
  5587. ClearToSend();
  5588. }
  5589. void FlushSerialRequestResend()
  5590. {
  5591. //char cmdbuffer[bufindr][100]="Resend:";
  5592. MYSERIAL.flush();
  5593. SERIAL_PROTOCOLRPGM(MSG_RESEND);
  5594. SERIAL_PROTOCOLLN(gcode_LastN + 1);
  5595. previous_millis_cmd = millis();
  5596. SERIAL_PROTOCOLLNRPGM(MSG_OK);
  5597. }
  5598. // Confirm the execution of a command, if sent from a serial line.
  5599. // Execution of a command from a SD card will not be confirmed.
  5600. void ClearToSend()
  5601. {
  5602. previous_millis_cmd = millis();
  5603. if (CMDBUFFER_CURRENT_TYPE == CMDBUFFER_CURRENT_TYPE_USB)
  5604. SERIAL_PROTOCOLLNRPGM(MSG_OK);
  5605. }
  5606. void update_currents() {
  5607. float current_high[3] = DEFAULT_PWM_MOTOR_CURRENT_LOUD;
  5608. float current_low[3] = DEFAULT_PWM_MOTOR_CURRENT;
  5609. float tmp_motor[3];
  5610. //SERIAL_ECHOLNPGM("Currents updated: ");
  5611. if (destination[Z_AXIS] < Z_SILENT) {
  5612. //SERIAL_ECHOLNPGM("LOW");
  5613. for (uint8_t i = 0; i < 3; i++) {
  5614. digipot_current(i, current_low[i]);
  5615. /*MYSERIAL.print(int(i));
  5616. SERIAL_ECHOPGM(": ");
  5617. MYSERIAL.println(current_low[i]);*/
  5618. }
  5619. }
  5620. else if (destination[Z_AXIS] > Z_HIGH_POWER) {
  5621. //SERIAL_ECHOLNPGM("HIGH");
  5622. for (uint8_t i = 0; i < 3; i++) {
  5623. digipot_current(i, current_high[i]);
  5624. /*MYSERIAL.print(int(i));
  5625. SERIAL_ECHOPGM(": ");
  5626. MYSERIAL.println(current_high[i]);*/
  5627. }
  5628. }
  5629. else {
  5630. for (uint8_t i = 0; i < 3; i++) {
  5631. float q = current_low[i] - Z_SILENT*((current_high[i] - current_low[i]) / (Z_HIGH_POWER - Z_SILENT));
  5632. tmp_motor[i] = ((current_high[i] - current_low[i]) / (Z_HIGH_POWER - Z_SILENT))*destination[Z_AXIS] + q;
  5633. digipot_current(i, tmp_motor[i]);
  5634. /*MYSERIAL.print(int(i));
  5635. SERIAL_ECHOPGM(": ");
  5636. MYSERIAL.println(tmp_motor[i]);*/
  5637. }
  5638. }
  5639. }
  5640. void get_coordinates()
  5641. {
  5642. bool seen[4]={false,false,false,false};
  5643. for(int8_t i=0; i < NUM_AXIS; i++) {
  5644. if(code_seen(axis_codes[i]))
  5645. {
  5646. bool relative = axis_relative_modes[i] || relative_mode;
  5647. destination[i] = (float)code_value();
  5648. if (i == E_AXIS) {
  5649. float emult = extruder_multiplier[active_extruder];
  5650. if (emult != 1.) {
  5651. if (! relative) {
  5652. destination[i] -= current_position[i];
  5653. relative = true;
  5654. }
  5655. destination[i] *= emult;
  5656. }
  5657. }
  5658. if (relative)
  5659. destination[i] += current_position[i];
  5660. seen[i]=true;
  5661. if (i == Z_AXIS && SilentModeMenu == 2) update_currents();
  5662. }
  5663. else destination[i] = current_position[i]; //Are these else lines really needed?
  5664. }
  5665. if(code_seen('F')) {
  5666. next_feedrate = code_value();
  5667. #ifdef MAX_SILENT_FEEDRATE
  5668. if (tmc2130_mode == TMC2130_MODE_SILENT)
  5669. if (next_feedrate > MAX_SILENT_FEEDRATE) next_feedrate = MAX_SILENT_FEEDRATE;
  5670. #endif //MAX_SILENT_FEEDRATE
  5671. if(next_feedrate > 0.0) feedrate = next_feedrate;
  5672. }
  5673. }
  5674. void get_arc_coordinates()
  5675. {
  5676. #ifdef SF_ARC_FIX
  5677. bool relative_mode_backup = relative_mode;
  5678. relative_mode = true;
  5679. #endif
  5680. get_coordinates();
  5681. #ifdef SF_ARC_FIX
  5682. relative_mode=relative_mode_backup;
  5683. #endif
  5684. if(code_seen('I')) {
  5685. offset[0] = code_value();
  5686. }
  5687. else {
  5688. offset[0] = 0.0;
  5689. }
  5690. if(code_seen('J')) {
  5691. offset[1] = code_value();
  5692. }
  5693. else {
  5694. offset[1] = 0.0;
  5695. }
  5696. }
  5697. void clamp_to_software_endstops(float target[3])
  5698. {
  5699. #ifdef DEBUG_DISABLE_SWLIMITS
  5700. return;
  5701. #endif //DEBUG_DISABLE_SWLIMITS
  5702. world2machine_clamp(target[0], target[1]);
  5703. // Clamp the Z coordinate.
  5704. if (min_software_endstops) {
  5705. float negative_z_offset = 0;
  5706. #ifdef ENABLE_AUTO_BED_LEVELING
  5707. if (Z_PROBE_OFFSET_FROM_EXTRUDER < 0) negative_z_offset = negative_z_offset + Z_PROBE_OFFSET_FROM_EXTRUDER;
  5708. if (add_homing[Z_AXIS] < 0) negative_z_offset = negative_z_offset + add_homing[Z_AXIS];
  5709. #endif
  5710. if (target[Z_AXIS] < min_pos[Z_AXIS]+negative_z_offset) target[Z_AXIS] = min_pos[Z_AXIS]+negative_z_offset;
  5711. }
  5712. if (max_software_endstops) {
  5713. if (target[Z_AXIS] > max_pos[Z_AXIS]) target[Z_AXIS] = max_pos[Z_AXIS];
  5714. }
  5715. }
  5716. #ifdef MESH_BED_LEVELING
  5717. void mesh_plan_buffer_line(const float &x, const float &y, const float &z, const float &e, const float &feed_rate, const uint8_t extruder) {
  5718. float dx = x - current_position[X_AXIS];
  5719. float dy = y - current_position[Y_AXIS];
  5720. float dz = z - current_position[Z_AXIS];
  5721. int n_segments = 0;
  5722. if (mbl.active) {
  5723. float len = abs(dx) + abs(dy);
  5724. if (len > 0)
  5725. // Split to 3cm segments or shorter.
  5726. n_segments = int(ceil(len / 30.f));
  5727. }
  5728. if (n_segments > 1) {
  5729. float de = e - current_position[E_AXIS];
  5730. for (int i = 1; i < n_segments; ++ i) {
  5731. float t = float(i) / float(n_segments);
  5732. plan_buffer_line(
  5733. current_position[X_AXIS] + t * dx,
  5734. current_position[Y_AXIS] + t * dy,
  5735. current_position[Z_AXIS] + t * dz,
  5736. current_position[E_AXIS] + t * de,
  5737. feed_rate, extruder);
  5738. }
  5739. }
  5740. // The rest of the path.
  5741. plan_buffer_line(x, y, z, e, feed_rate, extruder);
  5742. current_position[X_AXIS] = x;
  5743. current_position[Y_AXIS] = y;
  5744. current_position[Z_AXIS] = z;
  5745. current_position[E_AXIS] = e;
  5746. }
  5747. #endif // MESH_BED_LEVELING
  5748. void prepare_move()
  5749. {
  5750. clamp_to_software_endstops(destination);
  5751. previous_millis_cmd = millis();
  5752. // Do not use feedmultiply for E or Z only moves
  5753. if( (current_position[X_AXIS] == destination [X_AXIS]) && (current_position[Y_AXIS] == destination [Y_AXIS])) {
  5754. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  5755. }
  5756. else {
  5757. #ifdef MESH_BED_LEVELING
  5758. mesh_plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate*feedmultiply*(1./(60.f*100.f)), active_extruder);
  5759. #else
  5760. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate*feedmultiply*(1./(60.f*100.f)), active_extruder);
  5761. #endif
  5762. }
  5763. for(int8_t i=0; i < NUM_AXIS; i++) {
  5764. current_position[i] = destination[i];
  5765. }
  5766. }
  5767. void prepare_arc_move(char isclockwise) {
  5768. float r = hypot(offset[X_AXIS], offset[Y_AXIS]); // Compute arc radius for mc_arc
  5769. // Trace the arc
  5770. mc_arc(current_position, destination, offset, X_AXIS, Y_AXIS, Z_AXIS, feedrate*feedmultiply/60/100.0, r, isclockwise, active_extruder);
  5771. // As far as the parser is concerned, the position is now == target. In reality the
  5772. // motion control system might still be processing the action and the real tool position
  5773. // in any intermediate location.
  5774. for(int8_t i=0; i < NUM_AXIS; i++) {
  5775. current_position[i] = destination[i];
  5776. }
  5777. previous_millis_cmd = millis();
  5778. }
  5779. #if defined(CONTROLLERFAN_PIN) && CONTROLLERFAN_PIN > -1
  5780. #if defined(FAN_PIN)
  5781. #if CONTROLLERFAN_PIN == FAN_PIN
  5782. #error "You cannot set CONTROLLERFAN_PIN equal to FAN_PIN"
  5783. #endif
  5784. #endif
  5785. unsigned long lastMotor = 0; //Save the time for when a motor was turned on last
  5786. unsigned long lastMotorCheck = 0;
  5787. void controllerFan()
  5788. {
  5789. if ((millis() - lastMotorCheck) >= 2500) //Not a time critical function, so we only check every 2500ms
  5790. {
  5791. lastMotorCheck = millis();
  5792. if(!READ(X_ENABLE_PIN) || !READ(Y_ENABLE_PIN) || !READ(Z_ENABLE_PIN) || (soft_pwm_bed > 0)
  5793. #if EXTRUDERS > 2
  5794. || !READ(E2_ENABLE_PIN)
  5795. #endif
  5796. #if EXTRUDER > 1
  5797. #if defined(X2_ENABLE_PIN) && X2_ENABLE_PIN > -1
  5798. || !READ(X2_ENABLE_PIN)
  5799. #endif
  5800. || !READ(E1_ENABLE_PIN)
  5801. #endif
  5802. || !READ(E0_ENABLE_PIN)) //If any of the drivers are enabled...
  5803. {
  5804. lastMotor = millis(); //... set time to NOW so the fan will turn on
  5805. }
  5806. if ((millis() - lastMotor) >= (CONTROLLERFAN_SECS*1000UL) || lastMotor == 0) //If the last time any driver was enabled, is longer since than CONTROLLERSEC...
  5807. {
  5808. digitalWrite(CONTROLLERFAN_PIN, 0);
  5809. analogWrite(CONTROLLERFAN_PIN, 0);
  5810. }
  5811. else
  5812. {
  5813. // allows digital or PWM fan output to be used (see M42 handling)
  5814. digitalWrite(CONTROLLERFAN_PIN, CONTROLLERFAN_SPEED);
  5815. analogWrite(CONTROLLERFAN_PIN, CONTROLLERFAN_SPEED);
  5816. }
  5817. }
  5818. }
  5819. #endif
  5820. #ifdef TEMP_STAT_LEDS
  5821. static bool blue_led = false;
  5822. static bool red_led = false;
  5823. static uint32_t stat_update = 0;
  5824. void handle_status_leds(void) {
  5825. float max_temp = 0.0;
  5826. if(millis() > stat_update) {
  5827. stat_update += 500; // Update every 0.5s
  5828. for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) {
  5829. max_temp = max(max_temp, degHotend(cur_extruder));
  5830. max_temp = max(max_temp, degTargetHotend(cur_extruder));
  5831. }
  5832. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  5833. max_temp = max(max_temp, degTargetBed());
  5834. max_temp = max(max_temp, degBed());
  5835. #endif
  5836. if((max_temp > 55.0) && (red_led == false)) {
  5837. digitalWrite(STAT_LED_RED, 1);
  5838. digitalWrite(STAT_LED_BLUE, 0);
  5839. red_led = true;
  5840. blue_led = false;
  5841. }
  5842. if((max_temp < 54.0) && (blue_led == false)) {
  5843. digitalWrite(STAT_LED_RED, 0);
  5844. digitalWrite(STAT_LED_BLUE, 1);
  5845. red_led = false;
  5846. blue_led = true;
  5847. }
  5848. }
  5849. }
  5850. #endif
  5851. void manage_inactivity(bool ignore_stepper_queue/*=false*/) //default argument set in Marlin.h
  5852. {
  5853. #ifdef PAT9125
  5854. if (fsensor_enabled && filament_autoload_enabled && !fsensor_M600 && !moves_planned() && !IS_SD_PRINTING && !is_usb_printing && (lcd_commands_type != LCD_COMMAND_V2_CAL))
  5855. {
  5856. if (fsensor_autoload_enabled)
  5857. {
  5858. if (fsensor_check_autoload())
  5859. {
  5860. if (degHotend0() > EXTRUDE_MINTEMP)
  5861. {
  5862. fsensor_autoload_check_stop();
  5863. tone(BEEPER, 1000);
  5864. delay_keep_alive(50);
  5865. noTone(BEEPER);
  5866. loading_flag = true;
  5867. enquecommand_front_P((PSTR("M701")));
  5868. }
  5869. else
  5870. {
  5871. lcd_update_enable(false);
  5872. lcd_implementation_clear();
  5873. lcd.setCursor(0, 0);
  5874. lcd_printPGM(MSG_ERROR);
  5875. lcd.setCursor(0, 2);
  5876. lcd_printPGM(MSG_PREHEAT_NOZZLE);
  5877. delay(2000);
  5878. lcd_implementation_clear();
  5879. lcd_update_enable(true);
  5880. }
  5881. }
  5882. }
  5883. else
  5884. fsensor_autoload_check_start();
  5885. }
  5886. else
  5887. if (fsensor_autoload_enabled)
  5888. fsensor_autoload_check_stop();
  5889. #endif //PAT9125
  5890. #if defined(KILL_PIN) && KILL_PIN > -1
  5891. static int killCount = 0; // make the inactivity button a bit less responsive
  5892. const int KILL_DELAY = 10000;
  5893. #endif
  5894. if(buflen < (BUFSIZE-1)){
  5895. get_command();
  5896. }
  5897. if( (millis() - previous_millis_cmd) > max_inactive_time )
  5898. if(max_inactive_time)
  5899. kill("", 4);
  5900. if(stepper_inactive_time) {
  5901. if( (millis() - previous_millis_cmd) > stepper_inactive_time )
  5902. {
  5903. if(blocks_queued() == false && ignore_stepper_queue == false) {
  5904. disable_x();
  5905. // SERIAL_ECHOLNPGM("manage_inactivity - disable Y");
  5906. disable_y();
  5907. disable_z();
  5908. disable_e0();
  5909. disable_e1();
  5910. disable_e2();
  5911. }
  5912. }
  5913. }
  5914. #ifdef CHDK //Check if pin should be set to LOW after M240 set it to HIGH
  5915. if (chdkActive && (millis() - chdkHigh > CHDK_DELAY))
  5916. {
  5917. chdkActive = false;
  5918. WRITE(CHDK, LOW);
  5919. }
  5920. #endif
  5921. #if defined(KILL_PIN) && KILL_PIN > -1
  5922. // Check if the kill button was pressed and wait just in case it was an accidental
  5923. // key kill key press
  5924. // -------------------------------------------------------------------------------
  5925. if( 0 == READ(KILL_PIN) )
  5926. {
  5927. killCount++;
  5928. }
  5929. else if (killCount > 0)
  5930. {
  5931. killCount--;
  5932. }
  5933. // Exceeded threshold and we can confirm that it was not accidental
  5934. // KILL the machine
  5935. // ----------------------------------------------------------------
  5936. if ( killCount >= KILL_DELAY)
  5937. {
  5938. kill("", 5);
  5939. }
  5940. #endif
  5941. #if defined(CONTROLLERFAN_PIN) && CONTROLLERFAN_PIN > -1
  5942. controllerFan(); //Check if fan should be turned on to cool stepper drivers down
  5943. #endif
  5944. #ifdef EXTRUDER_RUNOUT_PREVENT
  5945. if( (millis() - previous_millis_cmd) > EXTRUDER_RUNOUT_SECONDS*1000 )
  5946. if(degHotend(active_extruder)>EXTRUDER_RUNOUT_MINTEMP)
  5947. {
  5948. bool oldstatus=READ(E0_ENABLE_PIN);
  5949. enable_e0();
  5950. float oldepos=current_position[E_AXIS];
  5951. float oldedes=destination[E_AXIS];
  5952. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS],
  5953. destination[E_AXIS]+EXTRUDER_RUNOUT_EXTRUDE*EXTRUDER_RUNOUT_ESTEPS/axis_steps_per_unit[E_AXIS],
  5954. EXTRUDER_RUNOUT_SPEED/60.*EXTRUDER_RUNOUT_ESTEPS/axis_steps_per_unit[E_AXIS], active_extruder);
  5955. current_position[E_AXIS]=oldepos;
  5956. destination[E_AXIS]=oldedes;
  5957. plan_set_e_position(oldepos);
  5958. previous_millis_cmd=millis();
  5959. st_synchronize();
  5960. WRITE(E0_ENABLE_PIN,oldstatus);
  5961. }
  5962. #endif
  5963. #ifdef TEMP_STAT_LEDS
  5964. handle_status_leds();
  5965. #endif
  5966. check_axes_activity();
  5967. }
  5968. void kill(const char *full_screen_message, unsigned char id)
  5969. {
  5970. SERIAL_ECHOPGM("KILL: ");
  5971. MYSERIAL.println(int(id));
  5972. //return;
  5973. cli(); // Stop interrupts
  5974. disable_heater();
  5975. disable_x();
  5976. // SERIAL_ECHOLNPGM("kill - disable Y");
  5977. disable_y();
  5978. disable_z();
  5979. disable_e0();
  5980. disable_e1();
  5981. disable_e2();
  5982. #if defined(PS_ON_PIN) && PS_ON_PIN > -1
  5983. pinMode(PS_ON_PIN,INPUT);
  5984. #endif
  5985. SERIAL_ERROR_START;
  5986. SERIAL_ERRORLNRPGM(MSG_ERR_KILLED);
  5987. if (full_screen_message != NULL) {
  5988. SERIAL_ERRORLNRPGM(full_screen_message);
  5989. lcd_display_message_fullscreen_P(full_screen_message);
  5990. } else {
  5991. LCD_ALERTMESSAGERPGM(MSG_KILLED);
  5992. }
  5993. // FMC small patch to update the LCD before ending
  5994. sei(); // enable interrupts
  5995. for ( int i=5; i--; lcd_update())
  5996. {
  5997. delay(200);
  5998. }
  5999. cli(); // disable interrupts
  6000. suicide();
  6001. while(1)
  6002. {
  6003. wdt_reset();
  6004. /* Intentionally left empty */
  6005. } // Wait for reset
  6006. }
  6007. void Stop()
  6008. {
  6009. disable_heater();
  6010. if(Stopped == false) {
  6011. Stopped = true;
  6012. Stopped_gcode_LastN = gcode_LastN; // Save last g_code for restart
  6013. SERIAL_ERROR_START;
  6014. SERIAL_ERRORLNRPGM(MSG_ERR_STOPPED);
  6015. LCD_MESSAGERPGM(MSG_STOPPED);
  6016. }
  6017. }
  6018. bool IsStopped() { return Stopped; };
  6019. #ifdef FAST_PWM_FAN
  6020. void setPwmFrequency(uint8_t pin, int val)
  6021. {
  6022. val &= 0x07;
  6023. switch(digitalPinToTimer(pin))
  6024. {
  6025. #if defined(TCCR0A)
  6026. case TIMER0A:
  6027. case TIMER0B:
  6028. // TCCR0B &= ~(_BV(CS00) | _BV(CS01) | _BV(CS02));
  6029. // TCCR0B |= val;
  6030. break;
  6031. #endif
  6032. #if defined(TCCR1A)
  6033. case TIMER1A:
  6034. case TIMER1B:
  6035. // TCCR1B &= ~(_BV(CS10) | _BV(CS11) | _BV(CS12));
  6036. // TCCR1B |= val;
  6037. break;
  6038. #endif
  6039. #if defined(TCCR2)
  6040. case TIMER2:
  6041. case TIMER2:
  6042. TCCR2 &= ~(_BV(CS10) | _BV(CS11) | _BV(CS12));
  6043. TCCR2 |= val;
  6044. break;
  6045. #endif
  6046. #if defined(TCCR2A)
  6047. case TIMER2A:
  6048. case TIMER2B:
  6049. TCCR2B &= ~(_BV(CS20) | _BV(CS21) | _BV(CS22));
  6050. TCCR2B |= val;
  6051. break;
  6052. #endif
  6053. #if defined(TCCR3A)
  6054. case TIMER3A:
  6055. case TIMER3B:
  6056. case TIMER3C:
  6057. TCCR3B &= ~(_BV(CS30) | _BV(CS31) | _BV(CS32));
  6058. TCCR3B |= val;
  6059. break;
  6060. #endif
  6061. #if defined(TCCR4A)
  6062. case TIMER4A:
  6063. case TIMER4B:
  6064. case TIMER4C:
  6065. TCCR4B &= ~(_BV(CS40) | _BV(CS41) | _BV(CS42));
  6066. TCCR4B |= val;
  6067. break;
  6068. #endif
  6069. #if defined(TCCR5A)
  6070. case TIMER5A:
  6071. case TIMER5B:
  6072. case TIMER5C:
  6073. TCCR5B &= ~(_BV(CS50) | _BV(CS51) | _BV(CS52));
  6074. TCCR5B |= val;
  6075. break;
  6076. #endif
  6077. }
  6078. }
  6079. #endif //FAST_PWM_FAN
  6080. bool setTargetedHotend(int code){
  6081. tmp_extruder = active_extruder;
  6082. if(code_seen('T')) {
  6083. tmp_extruder = code_value();
  6084. if(tmp_extruder >= EXTRUDERS) {
  6085. SERIAL_ECHO_START;
  6086. switch(code){
  6087. case 104:
  6088. SERIAL_ECHORPGM(MSG_M104_INVALID_EXTRUDER);
  6089. break;
  6090. case 105:
  6091. SERIAL_ECHO(MSG_M105_INVALID_EXTRUDER);
  6092. break;
  6093. case 109:
  6094. SERIAL_ECHO(MSG_M109_INVALID_EXTRUDER);
  6095. break;
  6096. case 218:
  6097. SERIAL_ECHO(MSG_M218_INVALID_EXTRUDER);
  6098. break;
  6099. case 221:
  6100. SERIAL_ECHO(MSG_M221_INVALID_EXTRUDER);
  6101. break;
  6102. }
  6103. SERIAL_PROTOCOLLN((int)tmp_extruder);
  6104. return true;
  6105. }
  6106. }
  6107. return false;
  6108. }
  6109. void save_statistics(unsigned long _total_filament_used, unsigned long _total_print_time) //_total_filament_used unit: mm/100; print time in s
  6110. {
  6111. if (eeprom_read_byte((uint8_t *)EEPROM_TOTALTIME) == 255 && eeprom_read_byte((uint8_t *)EEPROM_TOTALTIME + 1) == 255 && eeprom_read_byte((uint8_t *)EEPROM_TOTALTIME + 2) == 255 && eeprom_read_byte((uint8_t *)EEPROM_TOTALTIME + 3) == 255)
  6112. {
  6113. eeprom_update_dword((uint32_t *)EEPROM_TOTALTIME, 0);
  6114. eeprom_update_dword((uint32_t *)EEPROM_FILAMENTUSED, 0);
  6115. }
  6116. unsigned long _previous_filament = eeprom_read_dword((uint32_t *)EEPROM_FILAMENTUSED); //_previous_filament unit: cm
  6117. unsigned long _previous_time = eeprom_read_dword((uint32_t *)EEPROM_TOTALTIME); //_previous_time unit: min
  6118. eeprom_update_dword((uint32_t *)EEPROM_TOTALTIME, _previous_time + (_total_print_time/60)); //EEPROM_TOTALTIME unit: min
  6119. eeprom_update_dword((uint32_t *)EEPROM_FILAMENTUSED, _previous_filament + (_total_filament_used / 1000));
  6120. total_filament_used = 0;
  6121. }
  6122. float calculate_extruder_multiplier(float diameter) {
  6123. bool enabled = volumetric_enabled && diameter > 0;
  6124. float area = enabled ? (M_PI * pow(diameter * .5, 2)) : 0;
  6125. return (extrudemultiply == 100) ?
  6126. (enabled ? (1.f / area) : 1.f) :
  6127. (enabled ? ((float(extrudemultiply) * 0.01f) / area) : 1.f);
  6128. }
  6129. void calculate_extruder_multipliers() {
  6130. extruder_multiplier[0] = calculate_extruder_multiplier(filament_size[0]);
  6131. #if EXTRUDERS > 1
  6132. extruder_multiplier[1] = calculate_extruder_multiplier(filament_size[1]);
  6133. #if EXTRUDERS > 2
  6134. extruder_multiplier[2] = calculate_extruder_multiplier(filament_size[2]);
  6135. #endif
  6136. #endif
  6137. }
  6138. void delay_keep_alive(unsigned int ms)
  6139. {
  6140. for (;;) {
  6141. manage_heater();
  6142. // Manage inactivity, but don't disable steppers on timeout.
  6143. manage_inactivity(true);
  6144. lcd_update();
  6145. if (ms == 0)
  6146. break;
  6147. else if (ms >= 50) {
  6148. delay(50);
  6149. ms -= 50;
  6150. } else {
  6151. delay(ms);
  6152. ms = 0;
  6153. }
  6154. }
  6155. }
  6156. void wait_for_heater(long codenum) {
  6157. #ifdef TEMP_RESIDENCY_TIME
  6158. long residencyStart;
  6159. residencyStart = -1;
  6160. /* continue to loop until we have reached the target temp
  6161. _and_ until TEMP_RESIDENCY_TIME hasn't passed since we reached it */
  6162. while ((!cancel_heatup) && ((residencyStart == -1) ||
  6163. (residencyStart >= 0 && (((unsigned int)(millis() - residencyStart)) < (TEMP_RESIDENCY_TIME * 1000UL))))) {
  6164. #else
  6165. while (target_direction ? (isHeatingHotend(tmp_extruder)) : (isCoolingHotend(tmp_extruder) && (CooldownNoWait == false))) {
  6166. #endif //TEMP_RESIDENCY_TIME
  6167. if ((millis() - codenum) > 1000UL)
  6168. { //Print Temp Reading and remaining time every 1 second while heating up/cooling down
  6169. if (!farm_mode) {
  6170. SERIAL_PROTOCOLPGM("T:");
  6171. SERIAL_PROTOCOL_F(degHotend(tmp_extruder), 1);
  6172. SERIAL_PROTOCOLPGM(" E:");
  6173. SERIAL_PROTOCOL((int)tmp_extruder);
  6174. #ifdef TEMP_RESIDENCY_TIME
  6175. SERIAL_PROTOCOLPGM(" W:");
  6176. if (residencyStart > -1)
  6177. {
  6178. codenum = ((TEMP_RESIDENCY_TIME * 1000UL) - (millis() - residencyStart)) / 1000UL;
  6179. SERIAL_PROTOCOLLN(codenum);
  6180. }
  6181. else
  6182. {
  6183. SERIAL_PROTOCOLLN("?");
  6184. }
  6185. }
  6186. #else
  6187. SERIAL_PROTOCOLLN("");
  6188. #endif
  6189. codenum = millis();
  6190. }
  6191. manage_heater();
  6192. manage_inactivity();
  6193. lcd_update();
  6194. #ifdef TEMP_RESIDENCY_TIME
  6195. /* start/restart the TEMP_RESIDENCY_TIME timer whenever we reach target temp for the first time
  6196. or when current temp falls outside the hysteresis after target temp was reached */
  6197. if ((residencyStart == -1 && target_direction && (degHotend(tmp_extruder) >= (degTargetHotend(tmp_extruder) - TEMP_WINDOW))) ||
  6198. (residencyStart == -1 && !target_direction && (degHotend(tmp_extruder) <= (degTargetHotend(tmp_extruder) + TEMP_WINDOW))) ||
  6199. (residencyStart > -1 && labs(degHotend(tmp_extruder) - degTargetHotend(tmp_extruder)) > TEMP_HYSTERESIS))
  6200. {
  6201. residencyStart = millis();
  6202. }
  6203. #endif //TEMP_RESIDENCY_TIME
  6204. }
  6205. }
  6206. void check_babystep() {
  6207. int babystep_z;
  6208. EEPROM_read_B(EEPROM_BABYSTEP_Z, &babystep_z);
  6209. if ((babystep_z < Z_BABYSTEP_MIN) || (babystep_z > Z_BABYSTEP_MAX)) {
  6210. babystep_z = 0; //if babystep value is out of min max range, set it to 0
  6211. SERIAL_ECHOLNPGM("Z live adjust out of range. Setting to 0");
  6212. EEPROM_save_B(EEPROM_BABYSTEP_Z, &babystep_z);
  6213. lcd_show_fullscreen_message_and_wait_P(PSTR("Z live adjust out of range. Setting to 0. Click to continue."));
  6214. lcd_update_enable(true);
  6215. }
  6216. }
  6217. #ifdef DIS
  6218. void d_setup()
  6219. {
  6220. pinMode(D_DATACLOCK, INPUT_PULLUP);
  6221. pinMode(D_DATA, INPUT_PULLUP);
  6222. pinMode(D_REQUIRE, OUTPUT);
  6223. digitalWrite(D_REQUIRE, HIGH);
  6224. }
  6225. float d_ReadData()
  6226. {
  6227. int digit[13];
  6228. String mergeOutput;
  6229. float output;
  6230. digitalWrite(D_REQUIRE, HIGH);
  6231. for (int i = 0; i<13; i++)
  6232. {
  6233. for (int j = 0; j < 4; j++)
  6234. {
  6235. while (digitalRead(D_DATACLOCK) == LOW) {}
  6236. while (digitalRead(D_DATACLOCK) == HIGH) {}
  6237. bitWrite(digit[i], j, digitalRead(D_DATA));
  6238. }
  6239. }
  6240. digitalWrite(D_REQUIRE, LOW);
  6241. mergeOutput = "";
  6242. output = 0;
  6243. for (int r = 5; r <= 10; r++) //Merge digits
  6244. {
  6245. mergeOutput += digit[r];
  6246. }
  6247. output = mergeOutput.toFloat();
  6248. if (digit[4] == 8) //Handle sign
  6249. {
  6250. output *= -1;
  6251. }
  6252. for (int i = digit[11]; i > 0; i--) //Handle floating point
  6253. {
  6254. output /= 10;
  6255. }
  6256. return output;
  6257. }
  6258. void bed_analysis(float x_dimension, float y_dimension, int x_points_num, int y_points_num, float shift_x, float shift_y) {
  6259. int t1 = 0;
  6260. int t_delay = 0;
  6261. int digit[13];
  6262. int m;
  6263. char str[3];
  6264. //String mergeOutput;
  6265. char mergeOutput[15];
  6266. float output;
  6267. int mesh_point = 0; //index number of calibration point
  6268. float bed_zero_ref_x = (-22.f + X_PROBE_OFFSET_FROM_EXTRUDER); //shift between zero point on bed and target and between probe and nozzle
  6269. float bed_zero_ref_y = (-0.6f + Y_PROBE_OFFSET_FROM_EXTRUDER);
  6270. float mesh_home_z_search = 4;
  6271. float row[x_points_num];
  6272. int ix = 0;
  6273. int iy = 0;
  6274. char* filename_wldsd = "wldsd.txt";
  6275. char data_wldsd[70];
  6276. char numb_wldsd[10];
  6277. d_setup();
  6278. if (!(axis_known_position[X_AXIS] && axis_known_position[Y_AXIS] && axis_known_position[Z_AXIS])) {
  6279. // We don't know where we are! HOME!
  6280. // Push the commands to the front of the message queue in the reverse order!
  6281. // There shall be always enough space reserved for these commands.
  6282. repeatcommand_front(); // repeat G80 with all its parameters
  6283. enquecommand_front_P((PSTR("G28 W0")));
  6284. enquecommand_front_P((PSTR("G1 Z5")));
  6285. return;
  6286. }
  6287. bool custom_message_old = custom_message;
  6288. unsigned int custom_message_type_old = custom_message_type;
  6289. unsigned int custom_message_state_old = custom_message_state;
  6290. custom_message = true;
  6291. custom_message_type = 1;
  6292. custom_message_state = (x_points_num * y_points_num) + 10;
  6293. lcd_update(1);
  6294. mbl.reset();
  6295. babystep_undo();
  6296. card.openFile(filename_wldsd, false);
  6297. current_position[Z_AXIS] = mesh_home_z_search;
  6298. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[Z_AXIS] / 60, active_extruder);
  6299. int XY_AXIS_FEEDRATE = homing_feedrate[X_AXIS] / 20;
  6300. int Z_PROBE_FEEDRATE = homing_feedrate[Z_AXIS] / 60;
  6301. int Z_LIFT_FEEDRATE = homing_feedrate[Z_AXIS] / 40;
  6302. setup_for_endstop_move(false);
  6303. SERIAL_PROTOCOLPGM("Num X,Y: ");
  6304. SERIAL_PROTOCOL(x_points_num);
  6305. SERIAL_PROTOCOLPGM(",");
  6306. SERIAL_PROTOCOL(y_points_num);
  6307. SERIAL_PROTOCOLPGM("\nZ search height: ");
  6308. SERIAL_PROTOCOL(mesh_home_z_search);
  6309. SERIAL_PROTOCOLPGM("\nDimension X,Y: ");
  6310. SERIAL_PROTOCOL(x_dimension);
  6311. SERIAL_PROTOCOLPGM(",");
  6312. SERIAL_PROTOCOL(y_dimension);
  6313. SERIAL_PROTOCOLLNPGM("\nMeasured points:");
  6314. while (mesh_point != x_points_num * y_points_num) {
  6315. ix = mesh_point % x_points_num; // from 0 to MESH_NUM_X_POINTS - 1
  6316. iy = mesh_point / x_points_num;
  6317. if (iy & 1) ix = (x_points_num - 1) - ix; // Zig zag
  6318. float z0 = 0.f;
  6319. current_position[Z_AXIS] = mesh_home_z_search;
  6320. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], Z_LIFT_FEEDRATE, active_extruder);
  6321. st_synchronize();
  6322. current_position[X_AXIS] = 13.f + ix * (x_dimension / (x_points_num - 1)) - bed_zero_ref_x + shift_x;
  6323. current_position[Y_AXIS] = 6.4f + iy * (y_dimension / (y_points_num - 1)) - bed_zero_ref_y + shift_y;
  6324. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], XY_AXIS_FEEDRATE, active_extruder);
  6325. st_synchronize();
  6326. if (!find_bed_induction_sensor_point_z(-10.f)) { //if we have data from z calibration max allowed difference is 1mm for each point, if we dont have data max difference is 10mm from initial point
  6327. break;
  6328. card.closefile();
  6329. }
  6330. //memset(numb_wldsd, 0, sizeof(numb_wldsd));
  6331. //dtostrf(d_ReadData(), 8, 5, numb_wldsd);
  6332. //strcat(data_wldsd, numb_wldsd);
  6333. //MYSERIAL.println(data_wldsd);
  6334. //delay(1000);
  6335. //delay(3000);
  6336. //t1 = millis();
  6337. //while (digitalRead(D_DATACLOCK) == LOW) {}
  6338. //while (digitalRead(D_DATACLOCK) == HIGH) {}
  6339. memset(digit, 0, sizeof(digit));
  6340. //cli();
  6341. digitalWrite(D_REQUIRE, LOW);
  6342. for (int i = 0; i<13; i++)
  6343. {
  6344. //t1 = millis();
  6345. for (int j = 0; j < 4; j++)
  6346. {
  6347. while (digitalRead(D_DATACLOCK) == LOW) {}
  6348. while (digitalRead(D_DATACLOCK) == HIGH) {}
  6349. bitWrite(digit[i], j, digitalRead(D_DATA));
  6350. }
  6351. //t_delay = (millis() - t1);
  6352. //SERIAL_PROTOCOLPGM(" ");
  6353. //SERIAL_PROTOCOL_F(t_delay, 5);
  6354. //SERIAL_PROTOCOLPGM(" ");
  6355. }
  6356. //sei();
  6357. digitalWrite(D_REQUIRE, HIGH);
  6358. mergeOutput[0] = '\0';
  6359. output = 0;
  6360. for (int r = 5; r <= 10; r++) //Merge digits
  6361. {
  6362. sprintf(str, "%d", digit[r]);
  6363. strcat(mergeOutput, str);
  6364. }
  6365. output = atof(mergeOutput);
  6366. if (digit[4] == 8) //Handle sign
  6367. {
  6368. output *= -1;
  6369. }
  6370. for (int i = digit[11]; i > 0; i--) //Handle floating point
  6371. {
  6372. output *= 0.1;
  6373. }
  6374. //output = d_ReadData();
  6375. //row[ix] = current_position[Z_AXIS];
  6376. memset(data_wldsd, 0, sizeof(data_wldsd));
  6377. for (int i = 0; i <3; i++) {
  6378. memset(numb_wldsd, 0, sizeof(numb_wldsd));
  6379. dtostrf(current_position[i], 8, 5, numb_wldsd);
  6380. strcat(data_wldsd, numb_wldsd);
  6381. strcat(data_wldsd, ";");
  6382. }
  6383. memset(numb_wldsd, 0, sizeof(numb_wldsd));
  6384. dtostrf(output, 8, 5, numb_wldsd);
  6385. strcat(data_wldsd, numb_wldsd);
  6386. //strcat(data_wldsd, ";");
  6387. card.write_command(data_wldsd);
  6388. //row[ix] = d_ReadData();
  6389. row[ix] = output; // current_position[Z_AXIS];
  6390. if (iy % 2 == 1 ? ix == 0 : ix == x_points_num - 1) {
  6391. for (int i = 0; i < x_points_num; i++) {
  6392. SERIAL_PROTOCOLPGM(" ");
  6393. SERIAL_PROTOCOL_F(row[i], 5);
  6394. }
  6395. SERIAL_PROTOCOLPGM("\n");
  6396. }
  6397. custom_message_state--;
  6398. mesh_point++;
  6399. lcd_update(1);
  6400. }
  6401. card.closefile();
  6402. }
  6403. #endif
  6404. void temp_compensation_start() {
  6405. custom_message = true;
  6406. custom_message_type = 5;
  6407. custom_message_state = PINDA_HEAT_T + 1;
  6408. lcd_update(2);
  6409. if (degHotend(active_extruder) > EXTRUDE_MINTEMP) {
  6410. current_position[E_AXIS] -= DEFAULT_RETRACTION;
  6411. }
  6412. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400, active_extruder);
  6413. current_position[X_AXIS] = PINDA_PREHEAT_X;
  6414. current_position[Y_AXIS] = PINDA_PREHEAT_Y;
  6415. current_position[Z_AXIS] = PINDA_PREHEAT_Z;
  6416. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  6417. st_synchronize();
  6418. while (fabs(degBed() - target_temperature_bed) > 1) delay_keep_alive(1000);
  6419. for (int i = 0; i < PINDA_HEAT_T; i++) {
  6420. delay_keep_alive(1000);
  6421. custom_message_state = PINDA_HEAT_T - i;
  6422. if (custom_message_state == 99 || custom_message_state == 9) lcd_update(2); //force whole display redraw if number of digits changed
  6423. else lcd_update(1);
  6424. }
  6425. custom_message_type = 0;
  6426. custom_message_state = 0;
  6427. custom_message = false;
  6428. }
  6429. void temp_compensation_apply() {
  6430. int i_add;
  6431. int compensation_value;
  6432. int z_shift = 0;
  6433. float z_shift_mm;
  6434. if (calibration_status() == CALIBRATION_STATUS_CALIBRATED) {
  6435. if (target_temperature_bed % 10 == 0 && target_temperature_bed >= 60 && target_temperature_bed <= 100) {
  6436. i_add = (target_temperature_bed - 60) / 10;
  6437. EEPROM_read_B(EEPROM_PROBE_TEMP_SHIFT + i_add * 2, &z_shift);
  6438. z_shift_mm = z_shift / axis_steps_per_unit[Z_AXIS];
  6439. }else {
  6440. //interpolation
  6441. z_shift_mm = temp_comp_interpolation(target_temperature_bed) / axis_steps_per_unit[Z_AXIS];
  6442. }
  6443. SERIAL_PROTOCOLPGM("\n");
  6444. SERIAL_PROTOCOLPGM("Z shift applied:");
  6445. MYSERIAL.print(z_shift_mm);
  6446. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS] - z_shift_mm, current_position[E_AXIS], homing_feedrate[Z_AXIS] / 40, active_extruder);
  6447. st_synchronize();
  6448. plan_set_z_position(current_position[Z_AXIS]);
  6449. }
  6450. else {
  6451. //we have no temp compensation data
  6452. }
  6453. }
  6454. float temp_comp_interpolation(float inp_temperature) {
  6455. //cubic spline interpolation
  6456. int n, i, j, k;
  6457. float h[10], a, b, c, d, sum, s[10] = { 0 }, x[10], F[10], f[10], m[10][10] = { 0 }, temp;
  6458. int shift[10];
  6459. int temp_C[10];
  6460. n = 6; //number of measured points
  6461. shift[0] = 0;
  6462. for (i = 0; i < n; i++) {
  6463. if (i>0) EEPROM_read_B(EEPROM_PROBE_TEMP_SHIFT + (i-1) * 2, &shift[i]); //read shift in steps from EEPROM
  6464. temp_C[i] = 50 + i * 10; //temperature in C
  6465. #ifdef PINDA_THERMISTOR
  6466. temp_C[i] = 35 + i * 5; //temperature in C
  6467. #else
  6468. temp_C[i] = 50 + i * 10; //temperature in C
  6469. #endif
  6470. x[i] = (float)temp_C[i];
  6471. f[i] = (float)shift[i];
  6472. }
  6473. if (inp_temperature < x[0]) return 0;
  6474. for (i = n - 1; i>0; i--) {
  6475. F[i] = (f[i] - f[i - 1]) / (x[i] - x[i - 1]);
  6476. h[i - 1] = x[i] - x[i - 1];
  6477. }
  6478. //*********** formation of h, s , f matrix **************
  6479. for (i = 1; i<n - 1; i++) {
  6480. m[i][i] = 2 * (h[i - 1] + h[i]);
  6481. if (i != 1) {
  6482. m[i][i - 1] = h[i - 1];
  6483. m[i - 1][i] = h[i - 1];
  6484. }
  6485. m[i][n - 1] = 6 * (F[i + 1] - F[i]);
  6486. }
  6487. //*********** forward elimination **************
  6488. for (i = 1; i<n - 2; i++) {
  6489. temp = (m[i + 1][i] / m[i][i]);
  6490. for (j = 1; j <= n - 1; j++)
  6491. m[i + 1][j] -= temp*m[i][j];
  6492. }
  6493. //*********** backward substitution *********
  6494. for (i = n - 2; i>0; i--) {
  6495. sum = 0;
  6496. for (j = i; j <= n - 2; j++)
  6497. sum += m[i][j] * s[j];
  6498. s[i] = (m[i][n - 1] - sum) / m[i][i];
  6499. }
  6500. for (i = 0; i<n - 1; i++)
  6501. if ((x[i] <= inp_temperature && inp_temperature <= x[i + 1]) || (i == n-2 && inp_temperature > x[i + 1])) {
  6502. a = (s[i + 1] - s[i]) / (6 * h[i]);
  6503. b = s[i] / 2;
  6504. c = (f[i + 1] - f[i]) / h[i] - (2 * h[i] * s[i] + s[i + 1] * h[i]) / 6;
  6505. d = f[i];
  6506. sum = a*pow((inp_temperature - x[i]), 3) + b*pow((inp_temperature - x[i]), 2) + c*(inp_temperature - x[i]) + d;
  6507. }
  6508. return sum;
  6509. }
  6510. #ifdef PINDA_THERMISTOR
  6511. float temp_compensation_pinda_thermistor_offset(float temperature_pinda)
  6512. {
  6513. if (!temp_cal_active) return 0;
  6514. if (!calibration_status_pinda()) return 0;
  6515. return temp_comp_interpolation(temperature_pinda) / axis_steps_per_unit[Z_AXIS];
  6516. }
  6517. #endif //PINDA_THERMISTOR
  6518. void long_pause() //long pause print
  6519. {
  6520. st_synchronize();
  6521. //save currently set parameters to global variables
  6522. saved_feedmultiply = feedmultiply;
  6523. HotendTempBckp = degTargetHotend(active_extruder);
  6524. fanSpeedBckp = fanSpeed;
  6525. start_pause_print = millis();
  6526. //save position
  6527. pause_lastpos[X_AXIS] = current_position[X_AXIS];
  6528. pause_lastpos[Y_AXIS] = current_position[Y_AXIS];
  6529. pause_lastpos[Z_AXIS] = current_position[Z_AXIS];
  6530. pause_lastpos[E_AXIS] = current_position[E_AXIS];
  6531. //retract
  6532. current_position[E_AXIS] -= DEFAULT_RETRACTION;
  6533. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400, active_extruder);
  6534. //lift z
  6535. current_position[Z_AXIS] += Z_PAUSE_LIFT;
  6536. if (current_position[Z_AXIS] > Z_MAX_POS) current_position[Z_AXIS] = Z_MAX_POS;
  6537. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 15, active_extruder);
  6538. //set nozzle target temperature to 0
  6539. setTargetHotend(0, 0);
  6540. setTargetHotend(0, 1);
  6541. setTargetHotend(0, 2);
  6542. //Move XY to side
  6543. current_position[X_AXIS] = X_PAUSE_POS;
  6544. current_position[Y_AXIS] = Y_PAUSE_POS;
  6545. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 50, active_extruder);
  6546. // Turn off the print fan
  6547. fanSpeed = 0;
  6548. st_synchronize();
  6549. }
  6550. void serialecho_temperatures() {
  6551. float tt = degHotend(active_extruder);
  6552. SERIAL_PROTOCOLPGM("T:");
  6553. SERIAL_PROTOCOL(tt);
  6554. SERIAL_PROTOCOLPGM(" E:");
  6555. SERIAL_PROTOCOL((int)active_extruder);
  6556. SERIAL_PROTOCOLPGM(" B:");
  6557. SERIAL_PROTOCOL_F(degBed(), 1);
  6558. SERIAL_PROTOCOLLN("");
  6559. }
  6560. extern uint32_t sdpos_atomic;
  6561. #ifdef UVLO_SUPPORT
  6562. void uvlo_()
  6563. {
  6564. unsigned long time_start = millis();
  6565. bool sd_print = card.sdprinting;
  6566. // Conserve power as soon as possible.
  6567. disable_x();
  6568. disable_y();
  6569. disable_e0();
  6570. #ifdef TMC2130
  6571. tmc2130_set_current_h(Z_AXIS, 20);
  6572. tmc2130_set_current_r(Z_AXIS, 20);
  6573. tmc2130_set_current_h(E_AXIS, 20);
  6574. tmc2130_set_current_r(E_AXIS, 20);
  6575. #endif //TMC2130
  6576. // Indicate that the interrupt has been triggered.
  6577. // SERIAL_ECHOLNPGM("UVLO");
  6578. // Read out the current Z motor microstep counter. This will be later used
  6579. // for reaching the zero full step before powering off.
  6580. uint16_t z_microsteps = 0;
  6581. #ifdef TMC2130
  6582. z_microsteps = tmc2130_rd_MSCNT(Z_TMC2130_CS);
  6583. #endif //TMC2130
  6584. // Calculate the file position, from which to resume this print.
  6585. long sd_position = sdpos_atomic; //atomic sd position of last command added in queue
  6586. {
  6587. uint16_t sdlen_planner = planner_calc_sd_length(); //length of sd commands in planner
  6588. sd_position -= sdlen_planner;
  6589. uint16_t sdlen_cmdqueue = cmdqueue_calc_sd_length(); //length of sd commands in cmdqueue
  6590. sd_position -= sdlen_cmdqueue;
  6591. if (sd_position < 0) sd_position = 0;
  6592. }
  6593. // Backup the feedrate in mm/min.
  6594. int feedrate_bckp = blocks_queued() ? (block_buffer[block_buffer_tail].nominal_speed * 60.f) : feedrate;
  6595. // After this call, the planner queue is emptied and the current_position is set to a current logical coordinate.
  6596. // The logical coordinate will likely differ from the machine coordinate if the skew calibration and mesh bed leveling
  6597. // are in action.
  6598. planner_abort_hard();
  6599. // Store the current extruder position.
  6600. eeprom_update_float((float*)(EEPROM_UVLO_CURRENT_POSITION_E), st_get_position_mm(E_AXIS));
  6601. eeprom_update_byte((uint8_t*)EEPROM_UVLO_E_ABS, axis_relative_modes[3]?0:1);
  6602. // Clean the input command queue.
  6603. cmdqueue_reset();
  6604. card.sdprinting = false;
  6605. // card.closefile();
  6606. // Enable stepper driver interrupt to move Z axis.
  6607. // This should be fine as the planner and command queues are empty and the SD card printing is disabled.
  6608. //FIXME one may want to disable serial lines at this point of time to avoid interfering with the command queue,
  6609. // though it should not happen that the command queue is touched as the plan_buffer_line always succeed without blocking.
  6610. sei();
  6611. plan_buffer_line(
  6612. current_position[X_AXIS],
  6613. current_position[Y_AXIS],
  6614. current_position[Z_AXIS],
  6615. current_position[E_AXIS] - DEFAULT_RETRACTION,
  6616. 95, active_extruder);
  6617. st_synchronize();
  6618. disable_e0();
  6619. plan_buffer_line(
  6620. current_position[X_AXIS],
  6621. current_position[Y_AXIS],
  6622. current_position[Z_AXIS] + UVLO_Z_AXIS_SHIFT + float((1024 - z_microsteps + 7) >> 4) / axis_steps_per_unit[Z_AXIS],
  6623. current_position[E_AXIS] - DEFAULT_RETRACTION,
  6624. 40, active_extruder);
  6625. st_synchronize();
  6626. disable_e0();
  6627. plan_buffer_line(
  6628. current_position[X_AXIS],
  6629. current_position[Y_AXIS],
  6630. current_position[Z_AXIS] + UVLO_Z_AXIS_SHIFT + float((1024 - z_microsteps + 7) >> 4) / axis_steps_per_unit[Z_AXIS],
  6631. current_position[E_AXIS] - DEFAULT_RETRACTION,
  6632. 40, active_extruder);
  6633. st_synchronize();
  6634. disable_e0();
  6635. disable_z();
  6636. // Move Z up to the next 0th full step.
  6637. // Write the file position.
  6638. eeprom_update_dword((uint32_t*)(EEPROM_FILE_POSITION), sd_position);
  6639. // Store the mesh bed leveling offsets. This is 2*9=18 bytes, which takes 18*3.4us=52us in worst case.
  6640. for (int8_t mesh_point = 0; mesh_point < 9; ++ mesh_point) {
  6641. uint8_t ix = mesh_point % MESH_MEAS_NUM_X_POINTS; // from 0 to MESH_NUM_X_POINTS - 1
  6642. uint8_t iy = mesh_point / MESH_MEAS_NUM_X_POINTS;
  6643. // Scale the z value to 1u resolution.
  6644. int16_t v = mbl.active ? int16_t(floor(mbl.z_values[iy*3][ix*3] * 1000.f + 0.5f)) : 0;
  6645. eeprom_update_word((uint16_t*)(EEPROM_UVLO_MESH_BED_LEVELING+2*mesh_point), *reinterpret_cast<uint16_t*>(&v));
  6646. }
  6647. // Read out the current Z motor microstep counter. This will be later used
  6648. // for reaching the zero full step before powering off.
  6649. eeprom_update_word((uint16_t*)(EEPROM_UVLO_Z_MICROSTEPS), z_microsteps);
  6650. // Store the current position.
  6651. eeprom_update_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 0), current_position[X_AXIS]);
  6652. eeprom_update_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 4), current_position[Y_AXIS]);
  6653. eeprom_update_float((float*)(EEPROM_UVLO_CURRENT_POSITION_Z), current_position[Z_AXIS]);
  6654. // Store the current feed rate, temperatures and fan speed.
  6655. EEPROM_save_B(EEPROM_UVLO_FEEDRATE, &feedrate_bckp);
  6656. eeprom_update_byte((uint8_t*)EEPROM_UVLO_TARGET_HOTEND, target_temperature[active_extruder]);
  6657. eeprom_update_byte((uint8_t*)EEPROM_UVLO_TARGET_BED, target_temperature_bed);
  6658. eeprom_update_byte((uint8_t*)EEPROM_UVLO_FAN_SPEED, fanSpeed);
  6659. // Finaly store the "power outage" flag.
  6660. if(sd_print) eeprom_update_byte((uint8_t*)EEPROM_UVLO, 1);
  6661. st_synchronize();
  6662. SERIAL_ECHOPGM("stps");
  6663. MYSERIAL.println(tmc2130_rd_MSCNT(Z_TMC2130_CS));
  6664. disable_z();
  6665. // Increment power failure counter
  6666. eeprom_update_byte((uint8_t*)EEPROM_POWER_COUNT, eeprom_read_byte((uint8_t*)EEPROM_POWER_COUNT) + 1);
  6667. eeprom_update_word((uint16_t*)EEPROM_POWER_COUNT_TOT, eeprom_read_word((uint16_t*)EEPROM_POWER_COUNT_TOT) + 1);
  6668. SERIAL_ECHOLNPGM("UVLO - end");
  6669. MYSERIAL.println(millis() - time_start);
  6670. #if 0
  6671. // Move the print head to the side of the print until all the power stored in the power supply capacitors is depleted.
  6672. current_position[X_AXIS] = (current_position[X_AXIS] < 0.5f * (X_MIN_POS + X_MAX_POS)) ? X_MIN_POS : X_MAX_POS;
  6673. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 500, active_extruder);
  6674. st_synchronize();
  6675. #endif
  6676. cli();
  6677. volatile unsigned int ppcount = 0;
  6678. SET_OUTPUT(BEEPER);
  6679. WRITE(BEEPER, HIGH);
  6680. for(ppcount = 0; ppcount < 2000; ppcount ++){
  6681. asm("nop");//50ns on 20Mhz, 62.5ns on 16Mhz
  6682. }
  6683. WRITE(BEEPER, LOW);
  6684. while(1){
  6685. #if 1
  6686. WRITE(BEEPER, LOW);
  6687. for(ppcount = 0; ppcount < 8000; ppcount ++){
  6688. asm("nop");//50ns on 20Mhz, 62.5ns on 16Mhz
  6689. }
  6690. #endif
  6691. };
  6692. }
  6693. #endif //UVLO_SUPPORT
  6694. #if (defined(FANCHECK) && defined(TACH_1) && (TACH_1 >-1))
  6695. void setup_fan_interrupt() {
  6696. //INT7
  6697. DDRE &= ~(1 << 7); //input pin
  6698. PORTE &= ~(1 << 7); //no internal pull-up
  6699. //start with sensing rising edge
  6700. EICRB &= ~(1 << 6);
  6701. EICRB |= (1 << 7);
  6702. //enable INT7 interrupt
  6703. EIMSK |= (1 << 7);
  6704. }
  6705. // The fan interrupt is triggered at maximum 325Hz (may be a bit more due to component tollerances),
  6706. // and it takes 4.24 us to process (the interrupt invocation overhead not taken into account).
  6707. ISR(INT7_vect) {
  6708. //measuring speed now works for fanSpeed > 18 (approximately), which is sufficient because MIN_PRINT_FAN_SPEED is higher
  6709. if (fanSpeed < MIN_PRINT_FAN_SPEED) return;
  6710. if ((1 << 6) & EICRB) { //interrupt was triggered by rising edge
  6711. t_fan_rising_edge = millis_nc();
  6712. }
  6713. else { //interrupt was triggered by falling edge
  6714. if ((millis_nc() - t_fan_rising_edge) >= FAN_PULSE_WIDTH_LIMIT) {//this pulse was from sensor and not from pwm
  6715. fan_edge_counter[1] += 2; //we are currently counting all edges so lets count two edges for one pulse
  6716. }
  6717. }
  6718. EICRB ^= (1 << 6); //change edge
  6719. }
  6720. #endif
  6721. #ifdef UVLO_SUPPORT
  6722. void setup_uvlo_interrupt() {
  6723. DDRE &= ~(1 << 4); //input pin
  6724. PORTE &= ~(1 << 4); //no internal pull-up
  6725. //sensing falling edge
  6726. EICRB |= (1 << 0);
  6727. EICRB &= ~(1 << 1);
  6728. //enable INT4 interrupt
  6729. EIMSK |= (1 << 4);
  6730. }
  6731. ISR(INT4_vect) {
  6732. EIMSK &= ~(1 << 4); //disable INT4 interrupt to make sure that this code will be executed just once
  6733. SERIAL_ECHOLNPGM("INT4");
  6734. if (IS_SD_PRINTING) uvlo_();
  6735. }
  6736. void recover_print(uint8_t automatic) {
  6737. char cmd[30];
  6738. lcd_update_enable(true);
  6739. lcd_update(2);
  6740. lcd_setstatuspgm(MSG_RECOVERING_PRINT);
  6741. recover_machine_state_after_power_panic();
  6742. // Set the target bed and nozzle temperatures.
  6743. sprintf_P(cmd, PSTR("M104 S%d"), target_temperature[active_extruder]);
  6744. enquecommand(cmd);
  6745. sprintf_P(cmd, PSTR("M140 S%d"), target_temperature_bed);
  6746. enquecommand(cmd);
  6747. // Lift the print head, so one may remove the excess priming material.
  6748. if (current_position[Z_AXIS] < 25)
  6749. enquecommand_P(PSTR("G1 Z25 F800"));
  6750. // Home X and Y axes. Homing just X and Y shall not touch the babystep and the world2machine transformation status.
  6751. enquecommand_P(PSTR("G28 X Y"));
  6752. // Set the target bed and nozzle temperatures and wait.
  6753. sprintf_P(cmd, PSTR("M109 S%d"), target_temperature[active_extruder]);
  6754. enquecommand(cmd);
  6755. sprintf_P(cmd, PSTR("M190 S%d"), target_temperature_bed);
  6756. enquecommand(cmd);
  6757. enquecommand_P(PSTR("M83")); //E axis relative mode
  6758. //enquecommand_P(PSTR("G1 E5 F120")); //Extrude some filament to stabilize pessure
  6759. // If not automatically recoreverd (long power loss), extrude extra filament to stabilize
  6760. if(automatic == 0){
  6761. enquecommand_P(PSTR("G1 E5 F120")); //Extrude some filament to stabilize pessure
  6762. }
  6763. enquecommand_P(PSTR("G1 E" STRINGIFY(-DEFAULT_RETRACTION)" F480"));
  6764. // Mark the power panic status as inactive.
  6765. eeprom_update_byte((uint8_t*)EEPROM_UVLO, 0);
  6766. /*while ((abs(degHotend(0)- target_temperature[0])>5) || (abs(degBed() -target_temperature_bed)>3)) { //wait for heater and bed to reach target temp
  6767. delay_keep_alive(1000);
  6768. }*/
  6769. SERIAL_ECHOPGM("After waiting for temp:");
  6770. SERIAL_ECHOPGM("Current position X_AXIS:");
  6771. MYSERIAL.println(current_position[X_AXIS]);
  6772. SERIAL_ECHOPGM("Current position Y_AXIS:");
  6773. MYSERIAL.println(current_position[Y_AXIS]);
  6774. // Restart the print.
  6775. restore_print_from_eeprom();
  6776. SERIAL_ECHOPGM("current_position[Z_AXIS]:");
  6777. MYSERIAL.print(current_position[Z_AXIS]);
  6778. SERIAL_ECHOPGM("current_position[E_AXIS]:");
  6779. MYSERIAL.print(current_position[E_AXIS]);
  6780. }
  6781. void recover_machine_state_after_power_panic()
  6782. {
  6783. char cmd[30];
  6784. // 1) Recover the logical cordinates at the time of the power panic.
  6785. // The logical XY coordinates are needed to recover the machine Z coordinate corrected by the mesh bed leveling.
  6786. current_position[X_AXIS] = eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 0));
  6787. current_position[Y_AXIS] = eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 4));
  6788. // Recover the logical coordinate of the Z axis at the time of the power panic.
  6789. // The current position after power panic is moved to the next closest 0th full step.
  6790. current_position[Z_AXIS] = eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION_Z)) +
  6791. UVLO_Z_AXIS_SHIFT + float((1024 - eeprom_read_word((uint16_t*)(EEPROM_UVLO_Z_MICROSTEPS)) + 7) >> 4) / axis_steps_per_unit[Z_AXIS];
  6792. if (eeprom_read_byte((uint8_t*)EEPROM_UVLO_E_ABS)) {
  6793. current_position[E_AXIS] = eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION_E));
  6794. sprintf_P(cmd, PSTR("G92 E"));
  6795. dtostrf(current_position[E_AXIS], 6, 3, cmd + strlen(cmd));
  6796. enquecommand(cmd);
  6797. }
  6798. memcpy(destination, current_position, sizeof(destination));
  6799. SERIAL_ECHOPGM("recover_machine_state_after_power_panic, initial ");
  6800. print_world_coordinates();
  6801. // 2) Initialize the logical to physical coordinate system transformation.
  6802. world2machine_initialize();
  6803. // 3) Restore the mesh bed leveling offsets. This is 2*9=18 bytes, which takes 18*3.4us=52us in worst case.
  6804. mbl.active = false;
  6805. for (int8_t mesh_point = 0; mesh_point < 9; ++ mesh_point) {
  6806. uint8_t ix = mesh_point % MESH_MEAS_NUM_X_POINTS; // from 0 to MESH_NUM_X_POINTS - 1
  6807. uint8_t iy = mesh_point / MESH_MEAS_NUM_X_POINTS;
  6808. // Scale the z value to 10u resolution.
  6809. int16_t v;
  6810. eeprom_read_block(&v, (void*)(EEPROM_UVLO_MESH_BED_LEVELING+2*mesh_point), 2);
  6811. if (v != 0)
  6812. mbl.active = true;
  6813. mbl.z_values[iy][ix] = float(v) * 0.001f;
  6814. }
  6815. if (mbl.active)
  6816. mbl.upsample_3x3();
  6817. // SERIAL_ECHOPGM("recover_machine_state_after_power_panic, initial ");
  6818. // print_mesh_bed_leveling_table();
  6819. // 4) Load the baby stepping value, which is expected to be active at the time of power panic.
  6820. // The baby stepping value is used to reset the physical Z axis when rehoming the Z axis.
  6821. babystep_load();
  6822. // 5) Set the physical positions from the logical positions using the world2machine transformation and the active bed leveling.
  6823. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  6824. // 6) Power up the motors, mark their positions as known.
  6825. //FIXME Verfiy, whether the X and Y axes should be powered up here, as they will later be re-homed anyway.
  6826. axis_known_position[X_AXIS] = true; enable_x();
  6827. axis_known_position[Y_AXIS] = true; enable_y();
  6828. axis_known_position[Z_AXIS] = true; enable_z();
  6829. SERIAL_ECHOPGM("recover_machine_state_after_power_panic, initial ");
  6830. print_physical_coordinates();
  6831. // 7) Recover the target temperatures.
  6832. target_temperature[active_extruder] = eeprom_read_byte((uint8_t*)EEPROM_UVLO_TARGET_HOTEND);
  6833. target_temperature_bed = eeprom_read_byte((uint8_t*)EEPROM_UVLO_TARGET_BED);
  6834. }
  6835. void restore_print_from_eeprom() {
  6836. float x_rec, y_rec, z_pos;
  6837. int feedrate_rec;
  6838. uint8_t fan_speed_rec;
  6839. char cmd[30];
  6840. char* c;
  6841. char filename[13];
  6842. uint8_t depth = 0;
  6843. char dir_name[9];
  6844. fan_speed_rec = eeprom_read_byte((uint8_t*)EEPROM_UVLO_FAN_SPEED);
  6845. EEPROM_read_B(EEPROM_UVLO_FEEDRATE, &feedrate_rec);
  6846. SERIAL_ECHOPGM("Feedrate:");
  6847. MYSERIAL.println(feedrate_rec);
  6848. depth = eeprom_read_byte((uint8_t*)EEPROM_DIR_DEPTH);
  6849. MYSERIAL.println(int(depth));
  6850. for (int i = 0; i < depth; i++) {
  6851. for (int j = 0; j < 8; j++) {
  6852. dir_name[j] = eeprom_read_byte((uint8_t*)EEPROM_DIRS + j + 8 * i);
  6853. }
  6854. dir_name[8] = '\0';
  6855. MYSERIAL.println(dir_name);
  6856. card.chdir(dir_name);
  6857. }
  6858. for (int i = 0; i < 8; i++) {
  6859. filename[i] = eeprom_read_byte((uint8_t*)EEPROM_FILENAME + i);
  6860. }
  6861. filename[8] = '\0';
  6862. MYSERIAL.print(filename);
  6863. strcat_P(filename, PSTR(".gco"));
  6864. sprintf_P(cmd, PSTR("M23 %s"), filename);
  6865. for (c = &cmd[4]; *c; c++)
  6866. *c = tolower(*c);
  6867. enquecommand(cmd);
  6868. uint32_t position = eeprom_read_dword((uint32_t*)(EEPROM_FILE_POSITION));
  6869. SERIAL_ECHOPGM("Position read from eeprom:");
  6870. MYSERIAL.println(position);
  6871. // E axis relative mode.
  6872. enquecommand_P(PSTR("M83"));
  6873. // Move to the XY print position in logical coordinates, where the print has been killed.
  6874. strcpy_P(cmd, PSTR("G1 X")); strcat(cmd, ftostr32(eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 0))));
  6875. strcat_P(cmd, PSTR(" Y")); strcat(cmd, ftostr32(eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 4))));
  6876. strcat_P(cmd, PSTR(" F2000"));
  6877. enquecommand(cmd);
  6878. // Move the Z axis down to the print, in logical coordinates.
  6879. strcpy_P(cmd, PSTR("G1 Z")); strcat(cmd, ftostr32(eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION_Z))));
  6880. enquecommand(cmd);
  6881. // Unretract.
  6882. enquecommand_P(PSTR("G1 E" STRINGIFY(2*DEFAULT_RETRACTION)" F480"));
  6883. // Set the feedrate saved at the power panic.
  6884. sprintf_P(cmd, PSTR("G1 F%d"), feedrate_rec);
  6885. enquecommand(cmd);
  6886. if (eeprom_read_byte((uint8_t*)EEPROM_UVLO_E_ABS))
  6887. {
  6888. float extruder_abs_pos = eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION_E));
  6889. enquecommand_P(PSTR("M82")); //E axis abslute mode
  6890. }
  6891. // Set the fan speed saved at the power panic.
  6892. strcpy_P(cmd, PSTR("M106 S"));
  6893. strcat(cmd, itostr3(int(fan_speed_rec)));
  6894. enquecommand(cmd);
  6895. // Set a position in the file.
  6896. sprintf_P(cmd, PSTR("M26 S%lu"), position);
  6897. enquecommand(cmd);
  6898. // Start SD print.
  6899. enquecommand_P(PSTR("M24"));
  6900. }
  6901. #endif //UVLO_SUPPORT
  6902. ////////////////////////////////////////////////////////////////////////////////
  6903. // new save/restore printing
  6904. //extern uint32_t sdpos_atomic;
  6905. bool saved_printing = false;
  6906. uint32_t saved_sdpos = 0;
  6907. float saved_pos[4] = {0, 0, 0, 0};
  6908. // Feedrate hopefully derived from an active block of the planner at the time the print has been canceled, in mm/min.
  6909. float saved_feedrate2 = 0;
  6910. uint8_t saved_active_extruder = 0;
  6911. bool saved_extruder_under_pressure = false;
  6912. void stop_and_save_print_to_ram(float z_move, float e_move)
  6913. {
  6914. if (saved_printing) return;
  6915. cli();
  6916. unsigned char nplanner_blocks = number_of_blocks();
  6917. saved_sdpos = sdpos_atomic; //atomic sd position of last command added in queue
  6918. uint16_t sdlen_planner = planner_calc_sd_length(); //length of sd commands in planner
  6919. saved_sdpos -= sdlen_planner;
  6920. uint16_t sdlen_cmdqueue = cmdqueue_calc_sd_length(); //length of sd commands in cmdqueue
  6921. saved_sdpos -= sdlen_cmdqueue;
  6922. #if 0
  6923. SERIAL_ECHOPGM("SDPOS_ATOMIC="); MYSERIAL.println(sdpos_atomic, DEC);
  6924. SERIAL_ECHOPGM("SDPOS="); MYSERIAL.println(card.get_sdpos(), DEC);
  6925. SERIAL_ECHOPGM("SDLEN_PLAN="); MYSERIAL.println(sdlen_planner, DEC);
  6926. SERIAL_ECHOPGM("SDLEN_CMDQ="); MYSERIAL.println(sdlen_cmdqueue, DEC);
  6927. SERIAL_ECHOPGM("PLANNERBLOCKS="); MYSERIAL.println(int(nplanner_blocks), DEC);
  6928. SERIAL_ECHOPGM("SDSAVED="); MYSERIAL.println(saved_sdpos, DEC);
  6929. SERIAL_ECHOPGM("SDFILELEN="); MYSERIAL.println(card.fileSize(), DEC);
  6930. {
  6931. card.setIndex(saved_sdpos);
  6932. SERIAL_ECHOLNPGM("Content of planner buffer: ");
  6933. for (unsigned int idx = 0; idx < sdlen_planner; ++ idx)
  6934. MYSERIAL.print(char(card.get()));
  6935. SERIAL_ECHOLNPGM("Content of command buffer: ");
  6936. for (unsigned int idx = 0; idx < sdlen_cmdqueue; ++ idx)
  6937. MYSERIAL.print(char(card.get()));
  6938. SERIAL_ECHOLNPGM("End of command buffer");
  6939. }
  6940. {
  6941. // Print the content of the planner buffer, line by line:
  6942. card.setIndex(saved_sdpos);
  6943. int8_t iline = 0;
  6944. for (unsigned char idx = block_buffer_tail; idx != block_buffer_head; idx = (idx + 1) & (BLOCK_BUFFER_SIZE - 1), ++ iline) {
  6945. SERIAL_ECHOPGM("Planner line (from file): ");
  6946. MYSERIAL.print(int(iline), DEC);
  6947. SERIAL_ECHOPGM(", length: ");
  6948. MYSERIAL.print(block_buffer[idx].sdlen, DEC);
  6949. SERIAL_ECHOPGM(", steps: (");
  6950. MYSERIAL.print(block_buffer[idx].steps_x, DEC);
  6951. SERIAL_ECHOPGM(",");
  6952. MYSERIAL.print(block_buffer[idx].steps_y, DEC);
  6953. SERIAL_ECHOPGM(",");
  6954. MYSERIAL.print(block_buffer[idx].steps_z, DEC);
  6955. SERIAL_ECHOPGM(",");
  6956. MYSERIAL.print(block_buffer[idx].steps_e, DEC);
  6957. SERIAL_ECHOPGM("), events: ");
  6958. MYSERIAL.println(block_buffer[idx].step_event_count, DEC);
  6959. for (int len = block_buffer[idx].sdlen; len > 0; -- len)
  6960. MYSERIAL.print(char(card.get()));
  6961. }
  6962. }
  6963. {
  6964. // Print the content of the command buffer, line by line:
  6965. int8_t iline = 0;
  6966. union {
  6967. struct {
  6968. char lo;
  6969. char hi;
  6970. } lohi;
  6971. uint16_t value;
  6972. } sdlen_single;
  6973. int _bufindr = bufindr;
  6974. for (int _buflen = buflen; _buflen > 0; ++ iline) {
  6975. if (cmdbuffer[_bufindr] == CMDBUFFER_CURRENT_TYPE_SDCARD) {
  6976. sdlen_single.lohi.lo = cmdbuffer[_bufindr + 1];
  6977. sdlen_single.lohi.hi = cmdbuffer[_bufindr + 2];
  6978. }
  6979. SERIAL_ECHOPGM("Buffer line (from buffer): ");
  6980. MYSERIAL.print(int(iline), DEC);
  6981. SERIAL_ECHOPGM(", type: ");
  6982. MYSERIAL.print(int(cmdbuffer[_bufindr]), DEC);
  6983. SERIAL_ECHOPGM(", len: ");
  6984. MYSERIAL.println(sdlen_single.value, DEC);
  6985. // Print the content of the buffer line.
  6986. MYSERIAL.println(cmdbuffer + _bufindr + CMDHDRSIZE);
  6987. SERIAL_ECHOPGM("Buffer line (from file): ");
  6988. MYSERIAL.print(int(iline), DEC);
  6989. MYSERIAL.println(int(iline), DEC);
  6990. for (; sdlen_single.value > 0; -- sdlen_single.value)
  6991. MYSERIAL.print(char(card.get()));
  6992. if (-- _buflen == 0)
  6993. break;
  6994. // First skip the current command ID and iterate up to the end of the string.
  6995. for (_bufindr += CMDHDRSIZE; cmdbuffer[_bufindr] != 0; ++ _bufindr) ;
  6996. // Second, skip the end of string null character and iterate until a nonzero command ID is found.
  6997. for (++ _bufindr; _bufindr < sizeof(cmdbuffer) && cmdbuffer[_bufindr] == 0; ++ _bufindr) ;
  6998. // If the end of the buffer was empty,
  6999. if (_bufindr == sizeof(cmdbuffer)) {
  7000. // skip to the start and find the nonzero command.
  7001. for (_bufindr = 0; cmdbuffer[_bufindr] == 0; ++ _bufindr) ;
  7002. }
  7003. }
  7004. }
  7005. #endif
  7006. #if 0
  7007. saved_feedrate2 = feedrate; //save feedrate
  7008. #else
  7009. // Try to deduce the feedrate from the first block of the planner.
  7010. // Speed is in mm/min.
  7011. saved_feedrate2 = blocks_queued() ? (block_buffer[block_buffer_tail].nominal_speed * 60.f) : feedrate;
  7012. #endif
  7013. planner_abort_hard(); //abort printing
  7014. memcpy(saved_pos, current_position, sizeof(saved_pos));
  7015. saved_active_extruder = active_extruder; //save active_extruder
  7016. saved_extruder_under_pressure = extruder_under_pressure; //extruder under pressure flag - currently unused
  7017. cmdqueue_reset(); //empty cmdqueue
  7018. card.sdprinting = false;
  7019. // card.closefile();
  7020. saved_printing = true;
  7021. // We may have missed a stepper timer interrupt. Be safe than sorry, reset the stepper timer before re-enabling interrupts.
  7022. st_reset_timer();
  7023. sei();
  7024. if ((z_move != 0) || (e_move != 0)) { // extruder or z move
  7025. #if 1
  7026. // Rather than calling plan_buffer_line directly, push the move into the command queue,
  7027. char buf[48];
  7028. strcpy_P(buf, PSTR("G1 Z"));
  7029. dtostrf(saved_pos[Z_AXIS] + z_move, 8, 3, buf + strlen(buf));
  7030. strcat_P(buf, PSTR(" E"));
  7031. // Relative extrusion
  7032. dtostrf(e_move, 6, 3, buf + strlen(buf));
  7033. strcat_P(buf, PSTR(" F"));
  7034. dtostrf(homing_feedrate[Z_AXIS], 8, 3, buf + strlen(buf));
  7035. // At this point the command queue is empty.
  7036. enquecommand(buf, false);
  7037. // If this call is invoked from the main Arduino loop() function, let the caller know that the command
  7038. // in the command queue is not the original command, but a new one, so it should not be removed from the queue.
  7039. repeatcommand_front();
  7040. #else
  7041. plan_buffer_line(saved_pos[X_AXIS], saved_pos[Y_AXIS], saved_pos[Z_AXIS] + z_move, saved_pos[E_AXIS] + e_move, homing_feedrate[Z_AXIS], active_extruder);
  7042. st_synchronize(); //wait moving
  7043. memcpy(current_position, saved_pos, sizeof(saved_pos));
  7044. memcpy(destination, current_position, sizeof(destination));
  7045. #endif
  7046. }
  7047. }
  7048. void restore_print_from_ram_and_continue(float e_move)
  7049. {
  7050. if (!saved_printing) return;
  7051. // for (int axis = X_AXIS; axis <= E_AXIS; axis++)
  7052. // current_position[axis] = st_get_position_mm(axis);
  7053. active_extruder = saved_active_extruder; //restore active_extruder
  7054. feedrate = saved_feedrate2; //restore feedrate
  7055. float e = saved_pos[E_AXIS] - e_move;
  7056. plan_set_e_position(e);
  7057. plan_buffer_line(saved_pos[X_AXIS], saved_pos[Y_AXIS], saved_pos[Z_AXIS], saved_pos[E_AXIS], homing_feedrate[Z_AXIS]/13, active_extruder);
  7058. st_synchronize();
  7059. memcpy(current_position, saved_pos, sizeof(saved_pos));
  7060. memcpy(destination, current_position, sizeof(destination));
  7061. card.setIndex(saved_sdpos);
  7062. sdpos_atomic = saved_sdpos;
  7063. card.sdprinting = true;
  7064. saved_printing = false;
  7065. printf_P(PSTR("ok\n")); //dummy response because of octoprint is waiting for this
  7066. }
  7067. void print_world_coordinates()
  7068. {
  7069. SERIAL_ECHOPGM("world coordinates: (");
  7070. MYSERIAL.print(current_position[X_AXIS], 3);
  7071. SERIAL_ECHOPGM(", ");
  7072. MYSERIAL.print(current_position[Y_AXIS], 3);
  7073. SERIAL_ECHOPGM(", ");
  7074. MYSERIAL.print(current_position[Z_AXIS], 3);
  7075. SERIAL_ECHOLNPGM(")");
  7076. }
  7077. void print_physical_coordinates()
  7078. {
  7079. SERIAL_ECHOPGM("physical coordinates: (");
  7080. MYSERIAL.print(st_get_position_mm(X_AXIS), 3);
  7081. SERIAL_ECHOPGM(", ");
  7082. MYSERIAL.print(st_get_position_mm(Y_AXIS), 3);
  7083. SERIAL_ECHOPGM(", ");
  7084. MYSERIAL.print(st_get_position_mm(Z_AXIS), 3);
  7085. SERIAL_ECHOLNPGM(")");
  7086. }
  7087. void print_mesh_bed_leveling_table()
  7088. {
  7089. SERIAL_ECHOPGM("mesh bed leveling: ");
  7090. for (int8_t y = 0; y < MESH_NUM_Y_POINTS; ++ y)
  7091. for (int8_t x = 0; x < MESH_NUM_Y_POINTS; ++ x) {
  7092. MYSERIAL.print(mbl.z_values[y][x], 3);
  7093. SERIAL_ECHOPGM(" ");
  7094. }
  7095. SERIAL_ECHOLNPGM("");
  7096. }
  7097. #define FIL_LOAD_LENGTH 60
  7098. void extr_unload2() { //unloads filament
  7099. // float tmp_motor[3] = DEFAULT_PWM_MOTOR_CURRENT;
  7100. // float tmp_motor_loud[3] = DEFAULT_PWM_MOTOR_CURRENT_LOUD;
  7101. // int8_t SilentMode;
  7102. uint8_t snmm_extruder = 0;
  7103. if (degHotend0() > EXTRUDE_MINTEMP) {
  7104. lcd_implementation_clear();
  7105. lcd_display_message_fullscreen_P(PSTR(""));
  7106. max_feedrate[E_AXIS] = 50;
  7107. lcd.setCursor(0, 0); lcd_printPGM(MSG_UNLOADING_FILAMENT);
  7108. // lcd.print(" ");
  7109. // lcd.print(snmm_extruder + 1);
  7110. lcd.setCursor(0, 2); lcd_printPGM(MSG_PLEASE_WAIT);
  7111. if (current_position[Z_AXIS] < 15) {
  7112. current_position[Z_AXIS] += 15; //lifting in Z direction to make space for extrusion
  7113. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 25, active_extruder);
  7114. }
  7115. current_position[E_AXIS] += 10; //extrusion
  7116. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 10, active_extruder);
  7117. // digipot_current(2, E_MOTOR_HIGH_CURRENT);
  7118. if (current_temperature[0] < 230) { //PLA & all other filaments
  7119. current_position[E_AXIS] += 5.4;
  7120. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2800 / 60, active_extruder);
  7121. current_position[E_AXIS] += 3.2;
  7122. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  7123. current_position[E_AXIS] += 3;
  7124. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3400 / 60, active_extruder);
  7125. }
  7126. else { //ABS
  7127. current_position[E_AXIS] += 3.1;
  7128. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2000 / 60, active_extruder);
  7129. current_position[E_AXIS] += 3.1;
  7130. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2500 / 60, active_extruder);
  7131. current_position[E_AXIS] += 4;
  7132. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  7133. /*current_position[X_AXIS] += 23; //delay
  7134. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder); //delay
  7135. current_position[X_AXIS] -= 23; //delay
  7136. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder); //delay*/
  7137. delay_keep_alive(4700);
  7138. }
  7139. max_feedrate[E_AXIS] = 80;
  7140. current_position[E_AXIS] -= (bowden_length[snmm_extruder] + 60 + FIL_LOAD_LENGTH) / 2;
  7141. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 500, active_extruder);
  7142. current_position[E_AXIS] -= (bowden_length[snmm_extruder] + 60 + FIL_LOAD_LENGTH) / 2;
  7143. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 500, active_extruder);
  7144. st_synchronize();
  7145. //digipot_init();
  7146. // if (SilentMode == 1) digipot_current(2, tmp_motor[2]); //set back to normal operation currents
  7147. // else digipot_current(2, tmp_motor_loud[2]);
  7148. lcd_update_enable(true);
  7149. // lcd_return_to_status();
  7150. max_feedrate[E_AXIS] = 50;
  7151. }
  7152. else {
  7153. lcd_implementation_clear();
  7154. lcd.setCursor(0, 0);
  7155. lcd_printPGM(MSG_ERROR);
  7156. lcd.setCursor(0, 2);
  7157. lcd_printPGM(MSG_PREHEAT_NOZZLE);
  7158. delay(2000);
  7159. lcd_implementation_clear();
  7160. }
  7161. // lcd_return_to_status();
  7162. }