Marlin_main.cpp 326 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744374537463747374837493750375137523753375437553756375737583759376037613762376337643765376637673768376937703771377237733774377537763777377837793780378137823783378437853786378737883789379037913792379337943795379637973798379938003801380238033804380538063807380838093810381138123813381438153816381738183819382038213822382338243825382638273828382938303831383238333834383538363837383838393840384138423843384438453846384738483849385038513852385338543855385638573858385938603861386238633864386538663867386838693870387138723873387438753876387738783879388038813882388338843885388638873888388938903891389238933894389538963897389838993900390139023903390439053906390739083909391039113912391339143915391639173918391939203921392239233924392539263927392839293930393139323933393439353936393739383939394039413942394339443945394639473948394939503951395239533954395539563957395839593960396139623963396439653966396739683969397039713972397339743975397639773978397939803981398239833984398539863987398839893990399139923993399439953996399739983999400040014002400340044005400640074008400940104011401240134014401540164017401840194020402140224023402440254026402740284029403040314032403340344035403640374038403940404041404240434044404540464047404840494050405140524053405440554056405740584059406040614062406340644065406640674068406940704071407240734074407540764077407840794080408140824083408440854086408740884089409040914092409340944095409640974098409941004101410241034104410541064107410841094110411141124113411441154116411741184119412041214122412341244125412641274128412941304131413241334134413541364137413841394140414141424143414441454146414741484149415041514152415341544155415641574158415941604161416241634164416541664167416841694170417141724173417441754176417741784179418041814182418341844185418641874188418941904191419241934194419541964197419841994200420142024203420442054206420742084209421042114212421342144215421642174218421942204221422242234224422542264227422842294230423142324233423442354236423742384239424042414242424342444245424642474248424942504251425242534254425542564257425842594260426142624263426442654266426742684269427042714272427342744275427642774278427942804281428242834284428542864287428842894290429142924293429442954296429742984299430043014302430343044305430643074308430943104311431243134314431543164317431843194320432143224323432443254326432743284329433043314332433343344335433643374338433943404341434243434344434543464347434843494350435143524353435443554356435743584359436043614362436343644365436643674368436943704371437243734374437543764377437843794380438143824383438443854386438743884389439043914392439343944395439643974398439944004401440244034404440544064407440844094410441144124413441444154416441744184419442044214422442344244425442644274428442944304431443244334434443544364437443844394440444144424443444444454446444744484449445044514452445344544455445644574458445944604461446244634464446544664467446844694470447144724473447444754476447744784479448044814482448344844485448644874488448944904491449244934494449544964497449844994500450145024503450445054506450745084509451045114512451345144515451645174518451945204521452245234524452545264527452845294530453145324533453445354536453745384539454045414542454345444545454645474548454945504551455245534554455545564557455845594560456145624563456445654566456745684569457045714572457345744575457645774578457945804581458245834584458545864587458845894590459145924593459445954596459745984599460046014602460346044605460646074608460946104611461246134614461546164617461846194620462146224623462446254626462746284629463046314632463346344635463646374638463946404641464246434644464546464647464846494650465146524653465446554656465746584659466046614662466346644665466646674668466946704671467246734674467546764677467846794680468146824683468446854686468746884689469046914692469346944695469646974698469947004701470247034704470547064707470847094710471147124713471447154716471747184719472047214722472347244725472647274728472947304731473247334734473547364737473847394740474147424743474447454746474747484749475047514752475347544755475647574758475947604761476247634764476547664767476847694770477147724773477447754776477747784779478047814782478347844785478647874788478947904791479247934794479547964797479847994800480148024803480448054806480748084809481048114812481348144815481648174818481948204821482248234824482548264827482848294830483148324833483448354836483748384839484048414842484348444845484648474848484948504851485248534854485548564857485848594860486148624863486448654866486748684869487048714872487348744875487648774878487948804881488248834884488548864887488848894890489148924893489448954896489748984899490049014902490349044905490649074908490949104911491249134914491549164917491849194920492149224923492449254926492749284929493049314932493349344935493649374938493949404941494249434944494549464947494849494950495149524953495449554956495749584959496049614962496349644965496649674968496949704971497249734974497549764977497849794980498149824983498449854986498749884989499049914992499349944995499649974998499950005001500250035004500550065007500850095010501150125013501450155016501750185019502050215022502350245025502650275028502950305031503250335034503550365037503850395040504150425043504450455046504750485049505050515052505350545055505650575058505950605061506250635064506550665067506850695070507150725073507450755076507750785079508050815082508350845085508650875088508950905091509250935094509550965097509850995100510151025103510451055106510751085109511051115112511351145115511651175118511951205121512251235124512551265127512851295130513151325133513451355136513751385139514051415142514351445145514651475148514951505151515251535154515551565157515851595160516151625163516451655166516751685169517051715172517351745175517651775178517951805181518251835184518551865187518851895190519151925193519451955196519751985199520052015202520352045205520652075208520952105211521252135214521552165217521852195220522152225223522452255226522752285229523052315232523352345235523652375238523952405241524252435244524552465247524852495250525152525253525452555256525752585259526052615262526352645265526652675268526952705271527252735274527552765277527852795280528152825283528452855286528752885289529052915292529352945295529652975298529953005301530253035304530553065307530853095310531153125313531453155316531753185319532053215322532353245325532653275328532953305331533253335334533553365337533853395340534153425343534453455346534753485349535053515352535353545355535653575358535953605361536253635364536553665367536853695370537153725373537453755376537753785379538053815382538353845385538653875388538953905391539253935394539553965397539853995400540154025403540454055406540754085409541054115412541354145415541654175418541954205421542254235424542554265427542854295430543154325433543454355436543754385439544054415442544354445445544654475448544954505451545254535454545554565457545854595460546154625463546454655466546754685469547054715472547354745475547654775478547954805481548254835484548554865487548854895490549154925493549454955496549754985499550055015502550355045505550655075508550955105511551255135514551555165517551855195520552155225523552455255526552755285529553055315532553355345535553655375538553955405541554255435544554555465547554855495550555155525553555455555556555755585559556055615562556355645565556655675568556955705571557255735574557555765577557855795580558155825583558455855586558755885589559055915592559355945595559655975598559956005601560256035604560556065607560856095610561156125613561456155616561756185619562056215622562356245625562656275628562956305631563256335634563556365637563856395640564156425643564456455646564756485649565056515652565356545655565656575658565956605661566256635664566556665667566856695670567156725673567456755676567756785679568056815682568356845685568656875688568956905691569256935694569556965697569856995700570157025703570457055706570757085709571057115712571357145715571657175718571957205721572257235724572557265727572857295730573157325733573457355736573757385739574057415742574357445745574657475748574957505751575257535754575557565757575857595760576157625763576457655766576757685769577057715772577357745775577657775778577957805781578257835784578557865787578857895790579157925793579457955796579757985799580058015802580358045805580658075808580958105811581258135814581558165817581858195820582158225823582458255826582758285829583058315832583358345835583658375838583958405841584258435844584558465847584858495850585158525853585458555856585758585859586058615862586358645865586658675868586958705871587258735874587558765877587858795880588158825883588458855886588758885889589058915892589358945895589658975898589959005901590259035904590559065907590859095910591159125913591459155916591759185919592059215922592359245925592659275928592959305931593259335934593559365937593859395940594159425943594459455946594759485949595059515952595359545955595659575958595959605961596259635964596559665967596859695970597159725973597459755976597759785979598059815982598359845985598659875988598959905991599259935994599559965997599859996000600160026003600460056006600760086009601060116012601360146015601660176018601960206021602260236024602560266027602860296030603160326033603460356036603760386039604060416042604360446045604660476048604960506051605260536054605560566057605860596060606160626063606460656066606760686069607060716072607360746075607660776078607960806081608260836084608560866087608860896090609160926093609460956096609760986099610061016102610361046105610661076108610961106111611261136114611561166117611861196120612161226123612461256126612761286129613061316132613361346135613661376138613961406141614261436144614561466147614861496150615161526153615461556156615761586159616061616162616361646165616661676168616961706171617261736174617561766177617861796180618161826183618461856186618761886189619061916192619361946195619661976198619962006201620262036204620562066207620862096210621162126213621462156216621762186219622062216222622362246225622662276228622962306231623262336234623562366237623862396240624162426243624462456246624762486249625062516252625362546255625662576258625962606261626262636264626562666267626862696270627162726273627462756276627762786279628062816282628362846285628662876288628962906291629262936294629562966297629862996300630163026303630463056306630763086309631063116312631363146315631663176318631963206321632263236324632563266327632863296330633163326333633463356336633763386339634063416342634363446345634663476348634963506351635263536354635563566357635863596360636163626363636463656366636763686369637063716372637363746375637663776378637963806381638263836384638563866387638863896390639163926393639463956396639763986399640064016402640364046405640664076408640964106411641264136414641564166417641864196420642164226423642464256426642764286429643064316432643364346435643664376438643964406441644264436444644564466447644864496450645164526453645464556456645764586459646064616462646364646465646664676468646964706471647264736474647564766477647864796480648164826483648464856486648764886489649064916492649364946495649664976498649965006501650265036504650565066507650865096510651165126513651465156516651765186519652065216522652365246525652665276528652965306531653265336534653565366537653865396540654165426543654465456546654765486549655065516552655365546555655665576558655965606561656265636564656565666567656865696570657165726573657465756576657765786579658065816582658365846585658665876588658965906591659265936594659565966597659865996600660166026603660466056606660766086609661066116612661366146615661666176618661966206621662266236624662566266627662866296630663166326633663466356636663766386639664066416642664366446645664666476648664966506651665266536654665566566657665866596660666166626663666466656666666766686669667066716672667366746675667666776678667966806681668266836684668566866687668866896690669166926693669466956696669766986699670067016702670367046705670667076708670967106711671267136714671567166717671867196720672167226723672467256726672767286729673067316732673367346735673667376738673967406741674267436744674567466747674867496750675167526753675467556756675767586759676067616762676367646765676667676768676967706771677267736774677567766777677867796780678167826783678467856786678767886789679067916792679367946795679667976798679968006801680268036804680568066807680868096810681168126813681468156816681768186819682068216822682368246825682668276828682968306831683268336834683568366837683868396840684168426843684468456846684768486849685068516852685368546855685668576858685968606861686268636864686568666867686868696870687168726873687468756876687768786879688068816882688368846885688668876888688968906891689268936894689568966897689868996900690169026903690469056906690769086909691069116912691369146915691669176918691969206921692269236924692569266927692869296930693169326933693469356936693769386939694069416942694369446945694669476948694969506951695269536954695569566957695869596960696169626963696469656966696769686969697069716972697369746975697669776978697969806981698269836984698569866987698869896990699169926993699469956996699769986999700070017002700370047005700670077008700970107011701270137014701570167017701870197020702170227023702470257026702770287029703070317032703370347035703670377038703970407041704270437044704570467047704870497050705170527053705470557056705770587059706070617062706370647065706670677068706970707071707270737074707570767077707870797080708170827083708470857086708770887089709070917092709370947095709670977098709971007101710271037104710571067107710871097110711171127113711471157116711771187119712071217122712371247125712671277128712971307131713271337134713571367137713871397140714171427143714471457146714771487149715071517152715371547155715671577158715971607161716271637164716571667167716871697170717171727173717471757176717771787179718071817182718371847185718671877188718971907191719271937194719571967197719871997200720172027203720472057206720772087209721072117212721372147215721672177218721972207221722272237224722572267227722872297230723172327233723472357236723772387239724072417242724372447245724672477248724972507251725272537254725572567257725872597260726172627263726472657266726772687269727072717272727372747275727672777278727972807281728272837284728572867287728872897290729172927293729472957296729772987299730073017302730373047305730673077308730973107311731273137314731573167317731873197320732173227323732473257326732773287329733073317332733373347335733673377338733973407341734273437344734573467347734873497350735173527353735473557356735773587359736073617362736373647365736673677368736973707371737273737374737573767377737873797380738173827383738473857386738773887389739073917392739373947395739673977398739974007401740274037404740574067407740874097410741174127413741474157416741774187419742074217422742374247425742674277428742974307431743274337434743574367437743874397440744174427443744474457446744774487449745074517452745374547455745674577458745974607461746274637464746574667467746874697470747174727473747474757476747774787479748074817482748374847485748674877488748974907491749274937494749574967497749874997500750175027503750475057506750775087509751075117512751375147515751675177518751975207521752275237524752575267527752875297530753175327533753475357536753775387539754075417542754375447545754675477548754975507551755275537554755575567557755875597560756175627563756475657566756775687569757075717572757375747575757675777578757975807581758275837584758575867587758875897590759175927593759475957596759775987599760076017602760376047605760676077608760976107611761276137614761576167617761876197620762176227623762476257626762776287629763076317632763376347635763676377638763976407641764276437644764576467647764876497650765176527653765476557656765776587659766076617662766376647665766676677668766976707671767276737674767576767677767876797680768176827683768476857686768776887689769076917692769376947695769676977698769977007701770277037704770577067707770877097710771177127713771477157716771777187719772077217722772377247725772677277728772977307731773277337734773577367737773877397740774177427743774477457746774777487749775077517752775377547755775677577758775977607761776277637764776577667767776877697770777177727773777477757776777777787779778077817782778377847785778677877788778977907791779277937794779577967797779877997800780178027803780478057806780778087809781078117812781378147815781678177818781978207821782278237824782578267827782878297830783178327833783478357836783778387839784078417842784378447845784678477848784978507851785278537854785578567857785878597860786178627863786478657866786778687869787078717872787378747875787678777878787978807881788278837884788578867887788878897890789178927893789478957896789778987899790079017902790379047905790679077908790979107911791279137914791579167917791879197920792179227923792479257926792779287929793079317932793379347935793679377938793979407941794279437944794579467947794879497950795179527953795479557956795779587959796079617962796379647965796679677968796979707971797279737974797579767977797879797980798179827983798479857986798779887989799079917992799379947995799679977998799980008001800280038004800580068007800880098010801180128013801480158016801780188019802080218022802380248025802680278028802980308031803280338034803580368037803880398040804180428043804480458046804780488049805080518052805380548055805680578058805980608061806280638064806580668067806880698070807180728073807480758076807780788079808080818082808380848085808680878088808980908091809280938094809580968097809880998100810181028103810481058106810781088109811081118112811381148115811681178118811981208121812281238124812581268127812881298130813181328133813481358136813781388139814081418142814381448145814681478148814981508151815281538154815581568157815881598160816181628163816481658166816781688169817081718172817381748175817681778178817981808181818281838184818581868187818881898190819181928193819481958196819781988199820082018202820382048205820682078208820982108211821282138214821582168217821882198220822182228223822482258226822782288229823082318232823382348235823682378238823982408241824282438244824582468247824882498250825182528253825482558256825782588259826082618262826382648265826682678268826982708271827282738274827582768277827882798280828182828283828482858286828782888289829082918292829382948295829682978298829983008301830283038304830583068307830883098310831183128313831483158316831783188319832083218322832383248325832683278328832983308331833283338334833583368337833883398340834183428343834483458346834783488349835083518352835383548355835683578358835983608361836283638364836583668367836883698370837183728373837483758376837783788379838083818382838383848385838683878388838983908391839283938394839583968397839883998400840184028403840484058406840784088409841084118412841384148415841684178418841984208421842284238424842584268427842884298430843184328433843484358436843784388439844084418442844384448445844684478448844984508451845284538454845584568457845884598460846184628463846484658466846784688469847084718472847384748475847684778478847984808481848284838484848584868487848884898490849184928493849484958496849784988499850085018502850385048505850685078508850985108511851285138514851585168517851885198520852185228523852485258526852785288529853085318532853385348535853685378538853985408541854285438544854585468547854885498550855185528553855485558556855785588559856085618562856385648565856685678568856985708571857285738574857585768577857885798580858185828583858485858586858785888589859085918592859385948595859685978598859986008601860286038604860586068607860886098610861186128613861486158616861786188619862086218622862386248625862686278628862986308631863286338634863586368637863886398640864186428643864486458646864786488649865086518652865386548655865686578658865986608661866286638664866586668667866886698670867186728673867486758676867786788679868086818682868386848685868686878688868986908691869286938694869586968697869886998700870187028703870487058706870787088709871087118712871387148715871687178718871987208721872287238724872587268727872887298730873187328733873487358736873787388739874087418742874387448745874687478748874987508751875287538754875587568757875887598760876187628763876487658766876787688769877087718772877387748775877687778778877987808781878287838784878587868787878887898790879187928793879487958796879787988799880088018802880388048805880688078808880988108811881288138814881588168817881888198820882188228823882488258826882788288829883088318832883388348835883688378838883988408841884288438844884588468847884888498850885188528853885488558856885788588859886088618862886388648865886688678868886988708871887288738874887588768877887888798880888188828883888488858886888788888889889088918892889388948895889688978898889989008901890289038904890589068907890889098910891189128913891489158916891789188919892089218922892389248925892689278928892989308931893289338934893589368937893889398940894189428943894489458946894789488949895089518952895389548955895689578958895989608961896289638964896589668967896889698970897189728973897489758976897789788979898089818982898389848985898689878988898989908991899289938994899589968997899889999000900190029003900490059006900790089009901090119012901390149015901690179018901990209021902290239024902590269027902890299030903190329033903490359036903790389039904090419042904390449045904690479048904990509051905290539054905590569057905890599060906190629063906490659066906790689069907090719072907390749075907690779078907990809081908290839084908590869087908890899090909190929093909490959096909790989099910091019102910391049105910691079108910991109111911291139114911591169117911891199120912191229123912491259126912791289129913091319132913391349135913691379138913991409141914291439144914591469147914891499150915191529153915491559156915791589159916091619162916391649165916691679168916991709171917291739174917591769177917891799180918191829183918491859186918791889189919091919192919391949195919691979198919992009201920292039204920592069207920892099210921192129213921492159216921792189219922092219222922392249225922692279228922992309231923292339234923592369237923892399240924192429243924492459246924792489249925092519252925392549255925692579258925992609261926292639264926592669267926892699270927192729273927492759276927792789279928092819282928392849285928692879288928992909291929292939294929592969297929892999300930193029303930493059306930793089309931093119312931393149315931693179318931993209321932293239324932593269327932893299330933193329333933493359336933793389339934093419342934393449345934693479348934993509351935293539354935593569357935893599360936193629363936493659366936793689369937093719372937393749375937693779378937993809381938293839384938593869387938893899390939193929393939493959396939793989399940094019402940394049405940694079408940994109411941294139414941594169417941894199420942194229423942494259426942794289429943094319432943394349435943694379438943994409441944294439444944594469447944894499450945194529453945494559456945794589459946094619462946394649465946694679468946994709471947294739474947594769477947894799480948194829483948494859486948794889489949094919492949394949495949694979498949995009501950295039504950595069507950895099510951195129513951495159516951795189519952095219522952395249525952695279528952995309531953295339534953595369537953895399540954195429543954495459546954795489549955095519552955395549555955695579558955995609561956295639564956595669567956895699570957195729573957495759576957795789579958095819582958395849585958695879588958995909591959295939594959595969597
  1. /* -*- c++ -*- */
  2. /**
  3. * @file
  4. */
  5. /**
  6. * @mainpage Reprap 3D printer firmware based on Sprinter and grbl.
  7. *
  8. * @section intro_sec Introduction
  9. *
  10. * This firmware is a mashup between Sprinter and grbl.
  11. * https://github.com/kliment/Sprinter
  12. * https://github.com/simen/grbl/tree
  13. *
  14. * It has preliminary support for Matthew Roberts advance algorithm
  15. * http://reprap.org/pipermail/reprap-dev/2011-May/003323.html
  16. *
  17. * Prusa Research s.r.o. https://www.prusa3d.cz
  18. *
  19. * @section copyright_sec Copyright
  20. *
  21. * Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
  22. *
  23. * This program is free software: you can redistribute it and/or modify
  24. * it under the terms of the GNU General Public License as published by
  25. * the Free Software Foundation, either version 3 of the License, or
  26. * (at your option) any later version.
  27. *
  28. * This program is distributed in the hope that it will be useful,
  29. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  30. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  31. * GNU General Public License for more details.
  32. *
  33. * You should have received a copy of the GNU General Public License
  34. * along with this program. If not, see <http://www.gnu.org/licenses/>.
  35. *
  36. * @section notes_sec Notes
  37. *
  38. * * Do not create static objects in global functions.
  39. * Otherwise constructor guard against concurrent calls is generated costing
  40. * about 8B RAM and 14B flash.
  41. *
  42. *
  43. */
  44. #include "Marlin.h"
  45. #ifdef ENABLE_AUTO_BED_LEVELING
  46. #include "vector_3.h"
  47. #ifdef AUTO_BED_LEVELING_GRID
  48. #include "qr_solve.h"
  49. #endif
  50. #endif // ENABLE_AUTO_BED_LEVELING
  51. #ifdef MESH_BED_LEVELING
  52. #include "mesh_bed_leveling.h"
  53. #include "mesh_bed_calibration.h"
  54. #endif
  55. #include "printers.h"
  56. #include "menu.h"
  57. #include "ultralcd.h"
  58. #include "planner.h"
  59. #include "stepper.h"
  60. #include "temperature.h"
  61. #include "motion_control.h"
  62. #include "cardreader.h"
  63. #include "ConfigurationStore.h"
  64. #include "language.h"
  65. #include "pins_arduino.h"
  66. #include "math.h"
  67. #include "util.h"
  68. #include "Timer.h"
  69. #include <avr/wdt.h>
  70. #include <avr/pgmspace.h>
  71. #include "Dcodes.h"
  72. #include "AutoDeplete.h"
  73. #ifdef SWSPI
  74. #include "swspi.h"
  75. #endif //SWSPI
  76. #include "spi.h"
  77. #ifdef SWI2C
  78. #include "swi2c.h"
  79. #endif //SWI2C
  80. #ifdef FILAMENT_SENSOR
  81. #include "fsensor.h"
  82. #endif //FILAMENT_SENSOR
  83. #ifdef TMC2130
  84. #include "tmc2130.h"
  85. #endif //TMC2130
  86. #ifdef W25X20CL
  87. #include "w25x20cl.h"
  88. #include "optiboot_w25x20cl.h"
  89. #endif //W25X20CL
  90. #ifdef BLINKM
  91. #include "BlinkM.h"
  92. #include "Wire.h"
  93. #endif
  94. #ifdef ULTRALCD
  95. #include "ultralcd.h"
  96. #endif
  97. #if NUM_SERVOS > 0
  98. #include "Servo.h"
  99. #endif
  100. #if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
  101. #include <SPI.h>
  102. #endif
  103. #include "mmu.h"
  104. #define VERSION_STRING "1.0.2"
  105. #include "ultralcd.h"
  106. #include "sound.h"
  107. #include "cmdqueue.h"
  108. #include "io_atmega2560.h"
  109. // Macros for bit masks
  110. #define BIT(b) (1<<(b))
  111. #define TEST(n,b) (((n)&BIT(b))!=0)
  112. #define SET_BIT(n,b,value) (n) ^= ((-value)^(n)) & (BIT(b))
  113. //Macro for print fan speed
  114. #define FAN_PULSE_WIDTH_LIMIT ((fanSpeed > 100) ? 3 : 4) //time in ms
  115. #define PRINTING_TYPE_SD 0
  116. #define PRINTING_TYPE_USB 1
  117. #define PRINTING_TYPE_NONE 2
  118. //filament types
  119. #define FILAMENT_DEFAULT 0
  120. #define FILAMENT_FLEX 1
  121. #define FILAMENT_PVA 2
  122. #define FILAMENT_UNDEFINED 255
  123. //Stepper Movement Variables
  124. //===========================================================================
  125. //=============================imported variables============================
  126. //===========================================================================
  127. //===========================================================================
  128. //=============================public variables=============================
  129. //===========================================================================
  130. #ifdef SDSUPPORT
  131. CardReader card;
  132. #endif
  133. unsigned long PingTime = _millis();
  134. unsigned long NcTime;
  135. int mbl_z_probe_nr = 3; //numer of Z measurements for each point in mesh bed leveling calibration
  136. //used for PINDA temp calibration and pause print
  137. #define DEFAULT_RETRACTION 1
  138. #define DEFAULT_RETRACTION_MM 4 //MM
  139. float default_retraction = DEFAULT_RETRACTION;
  140. float homing_feedrate[] = HOMING_FEEDRATE;
  141. // Currently only the extruder axis may be switched to a relative mode.
  142. // Other axes are always absolute or relative based on the common relative_mode flag.
  143. bool axis_relative_modes[] = AXIS_RELATIVE_MODES;
  144. int feedmultiply=100; //100->1 200->2
  145. int extrudemultiply=100; //100->1 200->2
  146. int extruder_multiply[EXTRUDERS] = {100
  147. #if EXTRUDERS > 1
  148. , 100
  149. #if EXTRUDERS > 2
  150. , 100
  151. #endif
  152. #endif
  153. };
  154. int bowden_length[4] = {385, 385, 385, 385};
  155. bool is_usb_printing = false;
  156. bool homing_flag = false;
  157. bool temp_cal_active = false;
  158. unsigned long kicktime = _millis()+100000;
  159. unsigned int usb_printing_counter;
  160. int8_t lcd_change_fil_state = 0;
  161. unsigned long pause_time = 0;
  162. unsigned long start_pause_print = _millis();
  163. unsigned long t_fan_rising_edge = _millis();
  164. LongTimer safetyTimer;
  165. static LongTimer crashDetTimer;
  166. //unsigned long load_filament_time;
  167. bool mesh_bed_leveling_flag = false;
  168. bool mesh_bed_run_from_menu = false;
  169. int8_t FarmMode = 0;
  170. bool prusa_sd_card_upload = false;
  171. unsigned int status_number = 0;
  172. unsigned long total_filament_used;
  173. unsigned int heating_status;
  174. unsigned int heating_status_counter;
  175. bool loading_flag = false;
  176. char snmm_filaments_used = 0;
  177. bool fan_state[2];
  178. int fan_edge_counter[2];
  179. int fan_speed[2];
  180. char dir_names[3][9];
  181. bool sortAlpha = false;
  182. float extruder_multiplier[EXTRUDERS] = {1.0
  183. #if EXTRUDERS > 1
  184. , 1.0
  185. #if EXTRUDERS > 2
  186. , 1.0
  187. #endif
  188. #endif
  189. };
  190. float current_position[NUM_AXIS] = { 0.0, 0.0, 0.0, 0.0 };
  191. //shortcuts for more readable code
  192. #define _x current_position[X_AXIS]
  193. #define _y current_position[Y_AXIS]
  194. #define _z current_position[Z_AXIS]
  195. #define _e current_position[E_AXIS]
  196. float min_pos[3] = { X_MIN_POS, Y_MIN_POS, Z_MIN_POS };
  197. float max_pos[3] = { X_MAX_POS, Y_MAX_POS, Z_MAX_POS };
  198. bool axis_known_position[3] = {false, false, false};
  199. // Extruder offset
  200. #if EXTRUDERS > 1
  201. #define NUM_EXTRUDER_OFFSETS 2 // only in XY plane
  202. float extruder_offset[NUM_EXTRUDER_OFFSETS][EXTRUDERS] = {
  203. #if defined(EXTRUDER_OFFSET_X) && defined(EXTRUDER_OFFSET_Y)
  204. EXTRUDER_OFFSET_X, EXTRUDER_OFFSET_Y
  205. #endif
  206. };
  207. #endif
  208. uint8_t active_extruder = 0;
  209. int fanSpeed=0;
  210. #ifdef FWRETRACT
  211. bool retracted[EXTRUDERS]={false
  212. #if EXTRUDERS > 1
  213. , false
  214. #if EXTRUDERS > 2
  215. , false
  216. #endif
  217. #endif
  218. };
  219. bool retracted_swap[EXTRUDERS]={false
  220. #if EXTRUDERS > 1
  221. , false
  222. #if EXTRUDERS > 2
  223. , false
  224. #endif
  225. #endif
  226. };
  227. float retract_length_swap = RETRACT_LENGTH_SWAP;
  228. float retract_recover_length_swap = RETRACT_RECOVER_LENGTH_SWAP;
  229. #endif
  230. #ifdef PS_DEFAULT_OFF
  231. bool powersupply = false;
  232. #else
  233. bool powersupply = true;
  234. #endif
  235. bool cancel_heatup = false ;
  236. int busy_state = NOT_BUSY;
  237. static long prev_busy_signal_ms = -1;
  238. uint8_t host_keepalive_interval = HOST_KEEPALIVE_INTERVAL;
  239. const char errormagic[] PROGMEM = "Error:";
  240. const char echomagic[] PROGMEM = "echo:";
  241. bool no_response = false;
  242. uint8_t important_status;
  243. uint8_t saved_filament_type;
  244. // save/restore printing in case that mmu was not responding
  245. bool mmu_print_saved = false;
  246. // storing estimated time to end of print counted by slicer
  247. uint8_t print_percent_done_normal = PRINT_PERCENT_DONE_INIT;
  248. uint16_t print_time_remaining_normal = PRINT_TIME_REMAINING_INIT; //estimated remaining print time in minutes
  249. uint8_t print_percent_done_silent = PRINT_PERCENT_DONE_INIT;
  250. uint16_t print_time_remaining_silent = PRINT_TIME_REMAINING_INIT; //estimated remaining print time in minutes
  251. bool wizard_active = false; //autoload temporarily disabled during wizard
  252. //===========================================================================
  253. //=============================Private Variables=============================
  254. //===========================================================================
  255. #define MSG_BED_LEVELING_FAILED_TIMEOUT 30
  256. const char axis_codes[NUM_AXIS] = {'X', 'Y', 'Z', 'E'};
  257. float destination[NUM_AXIS] = { 0.0, 0.0, 0.0, 0.0};
  258. // For tracing an arc
  259. static float offset[3] = {0.0, 0.0, 0.0};
  260. static float feedrate = 1500.0, next_feedrate, saved_feedrate;
  261. // Determines Absolute or Relative Coordinates.
  262. // Also there is bool axis_relative_modes[] per axis flag.
  263. static bool relative_mode = false;
  264. const int sensitive_pins[] = SENSITIVE_PINS; // Sensitive pin list for M42
  265. //static float tt = 0;
  266. //static float bt = 0;
  267. //Inactivity shutdown variables
  268. static unsigned long previous_millis_cmd = 0;
  269. unsigned long max_inactive_time = 0;
  270. static unsigned long stepper_inactive_time = DEFAULT_STEPPER_DEACTIVE_TIME*1000l;
  271. static unsigned long safetytimer_inactive_time = DEFAULT_SAFETYTIMER_TIME_MINS*60*1000ul;
  272. unsigned long starttime=0;
  273. unsigned long stoptime=0;
  274. unsigned long _usb_timer = 0;
  275. bool extruder_under_pressure = true;
  276. bool Stopped=false;
  277. #if NUM_SERVOS > 0
  278. Servo servos[NUM_SERVOS];
  279. #endif
  280. bool CooldownNoWait = true;
  281. bool target_direction;
  282. //Insert variables if CHDK is defined
  283. #ifdef CHDK
  284. unsigned long chdkHigh = 0;
  285. boolean chdkActive = false;
  286. #endif
  287. //! @name RAM save/restore printing
  288. //! @{
  289. bool saved_printing = false; //!< Print is paused and saved in RAM
  290. static uint32_t saved_sdpos = 0; //!< SD card position, or line number in case of USB printing
  291. static uint8_t saved_printing_type = PRINTING_TYPE_SD;
  292. static float saved_pos[4] = { 0, 0, 0, 0 };
  293. //! Feedrate hopefully derived from an active block of the planner at the time the print has been canceled, in mm/min.
  294. static float saved_feedrate2 = 0;
  295. static uint8_t saved_active_extruder = 0;
  296. static float saved_extruder_temperature = 0.0; //!< Active extruder temperature
  297. static bool saved_extruder_under_pressure = false;
  298. static bool saved_extruder_relative_mode = false;
  299. static int saved_fanSpeed = 0; //!< Print fan speed
  300. //! @}
  301. static int saved_feedmultiply_mm = 100;
  302. //===========================================================================
  303. //=============================Routines======================================
  304. //===========================================================================
  305. static void get_arc_coordinates();
  306. static bool setTargetedHotend(int code, uint8_t &extruder);
  307. static void print_time_remaining_init();
  308. static void wait_for_heater(long codenum, uint8_t extruder);
  309. static void gcode_G28(bool home_x_axis, bool home_y_axis, bool home_z_axis);
  310. uint16_t gcode_in_progress = 0;
  311. uint16_t mcode_in_progress = 0;
  312. void serial_echopair_P(const char *s_P, float v)
  313. { serialprintPGM(s_P); SERIAL_ECHO(v); }
  314. void serial_echopair_P(const char *s_P, double v)
  315. { serialprintPGM(s_P); SERIAL_ECHO(v); }
  316. void serial_echopair_P(const char *s_P, unsigned long v)
  317. { serialprintPGM(s_P); SERIAL_ECHO(v); }
  318. #ifdef SDSUPPORT
  319. #include "SdFatUtil.h"
  320. int freeMemory() { return SdFatUtil::FreeRam(); }
  321. #else
  322. extern "C" {
  323. extern unsigned int __bss_end;
  324. extern unsigned int __heap_start;
  325. extern void *__brkval;
  326. int freeMemory() {
  327. int free_memory;
  328. if ((int)__brkval == 0)
  329. free_memory = ((int)&free_memory) - ((int)&__bss_end);
  330. else
  331. free_memory = ((int)&free_memory) - ((int)__brkval);
  332. return free_memory;
  333. }
  334. }
  335. #endif //!SDSUPPORT
  336. void setup_killpin()
  337. {
  338. #if defined(KILL_PIN) && KILL_PIN > -1
  339. SET_INPUT(KILL_PIN);
  340. WRITE(KILL_PIN,HIGH);
  341. #endif
  342. }
  343. // Set home pin
  344. void setup_homepin(void)
  345. {
  346. #if defined(HOME_PIN) && HOME_PIN > -1
  347. SET_INPUT(HOME_PIN);
  348. WRITE(HOME_PIN,HIGH);
  349. #endif
  350. }
  351. void setup_photpin()
  352. {
  353. #if defined(PHOTOGRAPH_PIN) && PHOTOGRAPH_PIN > -1
  354. SET_OUTPUT(PHOTOGRAPH_PIN);
  355. WRITE(PHOTOGRAPH_PIN, LOW);
  356. #endif
  357. }
  358. void setup_powerhold()
  359. {
  360. #if defined(SUICIDE_PIN) && SUICIDE_PIN > -1
  361. SET_OUTPUT(SUICIDE_PIN);
  362. WRITE(SUICIDE_PIN, HIGH);
  363. #endif
  364. #if defined(PS_ON_PIN) && PS_ON_PIN > -1
  365. SET_OUTPUT(PS_ON_PIN);
  366. #if defined(PS_DEFAULT_OFF)
  367. WRITE(PS_ON_PIN, PS_ON_ASLEEP);
  368. #else
  369. WRITE(PS_ON_PIN, PS_ON_AWAKE);
  370. #endif
  371. #endif
  372. }
  373. void suicide()
  374. {
  375. #if defined(SUICIDE_PIN) && SUICIDE_PIN > -1
  376. SET_OUTPUT(SUICIDE_PIN);
  377. WRITE(SUICIDE_PIN, LOW);
  378. #endif
  379. }
  380. void servo_init()
  381. {
  382. #if (NUM_SERVOS >= 1) && defined(SERVO0_PIN) && (SERVO0_PIN > -1)
  383. servos[0].attach(SERVO0_PIN);
  384. #endif
  385. #if (NUM_SERVOS >= 2) && defined(SERVO1_PIN) && (SERVO1_PIN > -1)
  386. servos[1].attach(SERVO1_PIN);
  387. #endif
  388. #if (NUM_SERVOS >= 3) && defined(SERVO2_PIN) && (SERVO2_PIN > -1)
  389. servos[2].attach(SERVO2_PIN);
  390. #endif
  391. #if (NUM_SERVOS >= 4) && defined(SERVO3_PIN) && (SERVO3_PIN > -1)
  392. servos[3].attach(SERVO3_PIN);
  393. #endif
  394. #if (NUM_SERVOS >= 5)
  395. #error "TODO: enter initalisation code for more servos"
  396. #endif
  397. }
  398. bool fans_check_enabled = true;
  399. #ifdef TMC2130
  400. extern int8_t CrashDetectMenu;
  401. void crashdet_enable()
  402. {
  403. tmc2130_sg_stop_on_crash = true;
  404. eeprom_update_byte((uint8_t*)EEPROM_CRASH_DET, 0xFF);
  405. CrashDetectMenu = 1;
  406. }
  407. void crashdet_disable()
  408. {
  409. tmc2130_sg_stop_on_crash = false;
  410. tmc2130_sg_crash = 0;
  411. eeprom_update_byte((uint8_t*)EEPROM_CRASH_DET, 0x00);
  412. CrashDetectMenu = 0;
  413. }
  414. void crashdet_stop_and_save_print()
  415. {
  416. stop_and_save_print_to_ram(10, -default_retraction); //XY - no change, Z 10mm up, E -1mm retract
  417. }
  418. void crashdet_restore_print_and_continue()
  419. {
  420. restore_print_from_ram_and_continue(default_retraction); //XYZ = orig, E +1mm unretract
  421. // babystep_apply();
  422. }
  423. void crashdet_stop_and_save_print2()
  424. {
  425. cli();
  426. planner_abort_hard(); //abort printing
  427. cmdqueue_reset(); //empty cmdqueue
  428. card.sdprinting = false;
  429. card.closefile();
  430. // Reset and re-enable the stepper timer just before the global interrupts are enabled.
  431. st_reset_timer();
  432. sei();
  433. }
  434. void crashdet_detected(uint8_t mask)
  435. {
  436. st_synchronize();
  437. static uint8_t crashDet_counter = 0;
  438. bool automatic_recovery_after_crash = true;
  439. if (crashDet_counter++ == 0) {
  440. crashDetTimer.start();
  441. }
  442. else if (crashDetTimer.expired(CRASHDET_TIMER * 1000ul)){
  443. crashDetTimer.stop();
  444. crashDet_counter = 0;
  445. }
  446. else if(crashDet_counter == CRASHDET_COUNTER_MAX){
  447. automatic_recovery_after_crash = false;
  448. crashDetTimer.stop();
  449. crashDet_counter = 0;
  450. }
  451. else {
  452. crashDetTimer.start();
  453. }
  454. lcd_update_enable(true);
  455. lcd_clear();
  456. lcd_update(2);
  457. if (mask & X_AXIS_MASK)
  458. {
  459. eeprom_update_byte((uint8_t*)EEPROM_CRASH_COUNT_X, eeprom_read_byte((uint8_t*)EEPROM_CRASH_COUNT_X) + 1);
  460. eeprom_update_word((uint16_t*)EEPROM_CRASH_COUNT_X_TOT, eeprom_read_word((uint16_t*)EEPROM_CRASH_COUNT_X_TOT) + 1);
  461. }
  462. if (mask & Y_AXIS_MASK)
  463. {
  464. eeprom_update_byte((uint8_t*)EEPROM_CRASH_COUNT_Y, eeprom_read_byte((uint8_t*)EEPROM_CRASH_COUNT_Y) + 1);
  465. eeprom_update_word((uint16_t*)EEPROM_CRASH_COUNT_Y_TOT, eeprom_read_word((uint16_t*)EEPROM_CRASH_COUNT_Y_TOT) + 1);
  466. }
  467. lcd_update_enable(true);
  468. lcd_update(2);
  469. lcd_setstatuspgm(_T(MSG_CRASH_DETECTED));
  470. gcode_G28(true, true, false); //home X and Y
  471. st_synchronize();
  472. if (automatic_recovery_after_crash) {
  473. enquecommand_P(PSTR("CRASH_RECOVER"));
  474. }else{
  475. setTargetHotend(0, active_extruder);
  476. bool yesno = lcd_show_fullscreen_message_yes_no_and_wait_P(_i("Crash detected. Resume print?"), false);
  477. lcd_update_enable(true);
  478. if (yesno)
  479. {
  480. enquecommand_P(PSTR("CRASH_RECOVER"));
  481. }
  482. else
  483. {
  484. enquecommand_P(PSTR("CRASH_CANCEL"));
  485. }
  486. }
  487. }
  488. void crashdet_recover()
  489. {
  490. crashdet_restore_print_and_continue();
  491. tmc2130_sg_stop_on_crash = true;
  492. }
  493. void crashdet_cancel()
  494. {
  495. saved_printing = false;
  496. tmc2130_sg_stop_on_crash = true;
  497. if (saved_printing_type == PRINTING_TYPE_SD) {
  498. lcd_print_stop();
  499. }else if(saved_printing_type == PRINTING_TYPE_USB){
  500. SERIAL_ECHOLNPGM("// action:cancel"); //for Octoprint: works the same as clicking "Abort" button in Octoprint GUI
  501. SERIAL_PROTOCOLLNRPGM(MSG_OK);
  502. }
  503. }
  504. #endif //TMC2130
  505. void failstats_reset_print()
  506. {
  507. eeprom_update_byte((uint8_t *)EEPROM_CRASH_COUNT_X, 0);
  508. eeprom_update_byte((uint8_t *)EEPROM_CRASH_COUNT_Y, 0);
  509. eeprom_update_byte((uint8_t *)EEPROM_FERROR_COUNT, 0);
  510. eeprom_update_byte((uint8_t *)EEPROM_POWER_COUNT, 0);
  511. eeprom_update_byte((uint8_t *)EEPROM_MMU_FAIL, 0);
  512. eeprom_update_byte((uint8_t *)EEPROM_MMU_LOAD_FAIL, 0);
  513. }
  514. #ifdef MESH_BED_LEVELING
  515. enum MeshLevelingState { MeshReport, MeshStart, MeshNext, MeshSet };
  516. #endif
  517. // Factory reset function
  518. // This function is used to erase parts or whole EEPROM memory which is used for storing calibration and and so on.
  519. // Level input parameter sets depth of reset
  520. int er_progress = 0;
  521. static void factory_reset(char level)
  522. {
  523. lcd_clear();
  524. switch (level) {
  525. // Level 0: Language reset
  526. case 0:
  527. if((eSoundMode==e_SOUND_MODE_LOUD)||(eSoundMode==e_SOUND_MODE_ONCE))
  528. WRITE(BEEPER, HIGH);
  529. _delay_ms(100);
  530. WRITE(BEEPER, LOW);
  531. lang_reset();
  532. break;
  533. //Level 1: Reset statistics
  534. case 1:
  535. if((eSoundMode==e_SOUND_MODE_LOUD)||(eSoundMode==e_SOUND_MODE_ONCE))
  536. WRITE(BEEPER, HIGH);
  537. _delay_ms(100);
  538. WRITE(BEEPER, LOW);
  539. eeprom_update_dword((uint32_t *)EEPROM_TOTALTIME, 0);
  540. eeprom_update_dword((uint32_t *)EEPROM_FILAMENTUSED, 0);
  541. eeprom_update_byte((uint8_t *)EEPROM_CRASH_COUNT_X, 0);
  542. eeprom_update_byte((uint8_t *)EEPROM_CRASH_COUNT_Y, 0);
  543. eeprom_update_byte((uint8_t *)EEPROM_FERROR_COUNT, 0);
  544. eeprom_update_byte((uint8_t *)EEPROM_POWER_COUNT, 0);
  545. eeprom_update_word((uint16_t *)EEPROM_CRASH_COUNT_X_TOT, 0);
  546. eeprom_update_word((uint16_t *)EEPROM_CRASH_COUNT_Y_TOT, 0);
  547. eeprom_update_word((uint16_t *)EEPROM_FERROR_COUNT_TOT, 0);
  548. eeprom_update_word((uint16_t *)EEPROM_POWER_COUNT_TOT, 0);
  549. eeprom_update_word((uint16_t *)EEPROM_MMU_FAIL_TOT, 0);
  550. eeprom_update_word((uint16_t *)EEPROM_MMU_LOAD_FAIL_TOT, 0);
  551. eeprom_update_byte((uint8_t *)EEPROM_MMU_FAIL, 0);
  552. eeprom_update_byte((uint8_t *)EEPROM_MMU_LOAD_FAIL, 0);
  553. lcd_menu_statistics();
  554. break;
  555. // Level 2: Prepare for shipping
  556. case 2:
  557. //lcd_puts_P(PSTR("Factory RESET"));
  558. //lcd_puts_at_P(1,2,PSTR("Shipping prep"));
  559. // Force language selection at the next boot up.
  560. lang_reset();
  561. // Force the "Follow calibration flow" message at the next boot up.
  562. calibration_status_store(CALIBRATION_STATUS_Z_CALIBRATION);
  563. eeprom_write_byte((uint8_t*)EEPROM_WIZARD_ACTIVE, 1); //run wizard
  564. farm_no = 0;
  565. farm_mode = false;
  566. eeprom_update_byte((uint8_t*)EEPROM_FARM_MODE, farm_mode);
  567. EEPROM_save_B(EEPROM_FARM_NUMBER, &farm_no);
  568. eeprom_update_dword((uint32_t *)EEPROM_TOTALTIME, 0);
  569. eeprom_update_dword((uint32_t *)EEPROM_FILAMENTUSED, 0);
  570. eeprom_update_word((uint16_t *)EEPROM_CRASH_COUNT_X_TOT, 0);
  571. eeprom_update_word((uint16_t *)EEPROM_CRASH_COUNT_Y_TOT, 0);
  572. eeprom_update_word((uint16_t *)EEPROM_FERROR_COUNT_TOT, 0);
  573. eeprom_update_word((uint16_t *)EEPROM_POWER_COUNT_TOT, 0);
  574. eeprom_update_word((uint16_t *)EEPROM_MMU_FAIL_TOT, 0);
  575. eeprom_update_word((uint16_t *)EEPROM_MMU_LOAD_FAIL_TOT, 0);
  576. eeprom_update_byte((uint8_t *)EEPROM_MMU_FAIL, 0);
  577. eeprom_update_byte((uint8_t *)EEPROM_MMU_LOAD_FAIL, 0);
  578. #ifdef FILAMENT_SENSOR
  579. fsensor_enable();
  580. fsensor_autoload_set(true);
  581. #endif //FILAMENT_SENSOR
  582. if((eSoundMode==e_SOUND_MODE_LOUD)||(eSoundMode==e_SOUND_MODE_ONCE))
  583. WRITE(BEEPER, HIGH);
  584. _delay_ms(100);
  585. WRITE(BEEPER, LOW);
  586. //_delay_ms(2000);
  587. break;
  588. // Level 3: erase everything, whole EEPROM will be set to 0xFF
  589. case 3:
  590. lcd_puts_P(PSTR("Factory RESET"));
  591. lcd_puts_at_P(1, 2, PSTR("ERASING all data"));
  592. if((eSoundMode==e_SOUND_MODE_LOUD)||(eSoundMode==e_SOUND_MODE_ONCE))
  593. WRITE(BEEPER, HIGH);
  594. _delay_ms(100);
  595. WRITE(BEEPER, LOW);
  596. er_progress = 0;
  597. lcd_puts_at_P(3, 3, PSTR(" "));
  598. lcd_set_cursor(3, 3);
  599. lcd_print(er_progress);
  600. // Erase EEPROM
  601. for (int i = 0; i < 4096; i++) {
  602. eeprom_update_byte((uint8_t*)i, 0xFF);
  603. if (i % 41 == 0) {
  604. er_progress++;
  605. lcd_puts_at_P(3, 3, PSTR(" "));
  606. lcd_set_cursor(3, 3);
  607. lcd_print(er_progress);
  608. lcd_puts_P(PSTR("%"));
  609. }
  610. }
  611. break;
  612. case 4:
  613. bowden_menu();
  614. break;
  615. default:
  616. break;
  617. }
  618. }
  619. extern "C" {
  620. FILE _uartout; //= {0}; Global variable is always zero initialized. No need to explicitly state this.
  621. }
  622. int uart_putchar(char c, FILE *)
  623. {
  624. MYSERIAL.write(c);
  625. return 0;
  626. }
  627. void lcd_splash()
  628. {
  629. // lcd_puts_at_P(0, 1, PSTR(" Original Prusa "));
  630. // lcd_puts_at_P(0, 2, PSTR(" 3D Printers "));
  631. // lcd_puts_P(PSTR("\x1b[1;3HOriginal Prusa\x1b[2;4H3D Printers"));
  632. // fputs_P(PSTR(ESC_2J ESC_H(1,1) "Original Prusa i3" ESC_H(3,2) "Prusa Research"), lcdout);
  633. lcd_puts_P(PSTR(ESC_2J ESC_H(1,1) "Original Prusa i3" ESC_H(3,2) "Prusa Research"));
  634. // lcd_printf_P(_N(ESC_2J "x:%.3f\ny:%.3f\nz:%.3f\ne:%.3f"), _x, _y, _z, _e);
  635. }
  636. void factory_reset()
  637. {
  638. KEEPALIVE_STATE(PAUSED_FOR_USER);
  639. if (!READ(BTN_ENC))
  640. {
  641. _delay_ms(1000);
  642. if (!READ(BTN_ENC))
  643. {
  644. lcd_clear();
  645. lcd_puts_P(PSTR("Factory RESET"));
  646. SET_OUTPUT(BEEPER);
  647. if((eSoundMode==e_SOUND_MODE_LOUD)||(eSoundMode==e_SOUND_MODE_ONCE))
  648. WRITE(BEEPER, HIGH);
  649. while (!READ(BTN_ENC));
  650. WRITE(BEEPER, LOW);
  651. _delay_ms(2000);
  652. char level = reset_menu();
  653. factory_reset(level);
  654. switch (level) {
  655. case 0: _delay_ms(0); break;
  656. case 1: _delay_ms(0); break;
  657. case 2: _delay_ms(0); break;
  658. case 3: _delay_ms(0); break;
  659. }
  660. }
  661. }
  662. KEEPALIVE_STATE(IN_HANDLER);
  663. }
  664. void show_fw_version_warnings() {
  665. if (FW_DEV_VERSION == FW_VERSION_GOLD || FW_DEV_VERSION == FW_VERSION_RC) return;
  666. switch (FW_DEV_VERSION) {
  667. case(FW_VERSION_ALPHA): lcd_show_fullscreen_message_and_wait_P(_i("You are using firmware alpha version. This is development version. Using this version is not recommended and may cause printer damage.")); break;////MSG_FW_VERSION_ALPHA c=20 r=8
  668. case(FW_VERSION_BETA): lcd_show_fullscreen_message_and_wait_P(_i("You are using firmware beta version. This is development version. Using this version is not recommended and may cause printer damage.")); break;////MSG_FW_VERSION_BETA c=20 r=8
  669. case(FW_VERSION_DEVEL):
  670. case(FW_VERSION_DEBUG):
  671. lcd_update_enable(false);
  672. lcd_clear();
  673. #if FW_DEV_VERSION == FW_VERSION_DEVEL
  674. lcd_puts_at_P(0, 0, PSTR("Development build !!"));
  675. #else
  676. lcd_puts_at_P(0, 0, PSTR("Debbugging build !!!"));
  677. #endif
  678. lcd_puts_at_P(0, 1, PSTR("May destroy printer!"));
  679. lcd_puts_at_P(0, 2, PSTR("ver ")); lcd_puts_P(PSTR(FW_VERSION_FULL));
  680. lcd_puts_at_P(0, 3, PSTR(FW_REPOSITORY));
  681. lcd_wait_for_click();
  682. break;
  683. // default: lcd_show_fullscreen_message_and_wait_P(_i("WARNING: This is an unofficial, unsupported build. Use at your own risk!")); break;////MSG_FW_VERSION_UNKNOWN c=20 r=8
  684. }
  685. lcd_update_enable(true);
  686. }
  687. uint8_t check_printer_version()
  688. {
  689. uint8_t version_changed = 0;
  690. uint16_t printer_type = eeprom_read_word((uint16_t*)EEPROM_PRINTER_TYPE);
  691. uint16_t motherboard = eeprom_read_word((uint16_t*)EEPROM_BOARD_TYPE);
  692. if (printer_type != PRINTER_TYPE) {
  693. if (printer_type == 0xffff) eeprom_write_word((uint16_t*)EEPROM_PRINTER_TYPE, PRINTER_TYPE);
  694. else version_changed |= 0b10;
  695. }
  696. if (motherboard != MOTHERBOARD) {
  697. if(motherboard == 0xffff) eeprom_write_word((uint16_t*)EEPROM_BOARD_TYPE, MOTHERBOARD);
  698. else version_changed |= 0b01;
  699. }
  700. return version_changed;
  701. }
  702. #ifdef BOOTAPP
  703. #include "bootapp.h" //bootloader support
  704. #endif //BOOTAPP
  705. #if (LANG_MODE != 0) //secondary language support
  706. #ifdef W25X20CL
  707. // language update from external flash
  708. #define LANGBOOT_BLOCKSIZE 0x1000u
  709. #define LANGBOOT_RAMBUFFER 0x0800
  710. void update_sec_lang_from_external_flash()
  711. {
  712. if ((boot_app_magic == BOOT_APP_MAGIC) && (boot_app_flags & BOOT_APP_FLG_USER0))
  713. {
  714. uint8_t lang = boot_reserved >> 4;
  715. uint8_t state = boot_reserved & 0xf;
  716. lang_table_header_t header;
  717. uint32_t src_addr;
  718. if (lang_get_header(lang, &header, &src_addr))
  719. {
  720. fputs_P(PSTR(ESC_H(1,3) "Language update."), lcdout);
  721. for (uint8_t i = 0; i < state; i++) fputc('.', lcdout);
  722. _delay(100);
  723. boot_reserved = (state + 1) | (lang << 4);
  724. if ((state * LANGBOOT_BLOCKSIZE) < header.size)
  725. {
  726. cli();
  727. uint16_t size = header.size - state * LANGBOOT_BLOCKSIZE;
  728. if (size > LANGBOOT_BLOCKSIZE) size = LANGBOOT_BLOCKSIZE;
  729. w25x20cl_rd_data(src_addr + state * LANGBOOT_BLOCKSIZE, (uint8_t*)LANGBOOT_RAMBUFFER, size);
  730. if (state == 0)
  731. {
  732. //TODO - check header integrity
  733. }
  734. bootapp_ram2flash(LANGBOOT_RAMBUFFER, _SEC_LANG_TABLE + state * LANGBOOT_BLOCKSIZE, size);
  735. }
  736. else
  737. {
  738. //TODO - check sec lang data integrity
  739. eeprom_update_byte((unsigned char *)EEPROM_LANG, LANG_ID_SEC);
  740. }
  741. }
  742. }
  743. boot_app_flags &= ~BOOT_APP_FLG_USER0;
  744. }
  745. #ifdef DEBUG_W25X20CL
  746. uint8_t lang_xflash_enum_codes(uint16_t* codes)
  747. {
  748. lang_table_header_t header;
  749. uint8_t count = 0;
  750. uint32_t addr = 0x00000;
  751. while (1)
  752. {
  753. printf_P(_n("LANGTABLE%d:"), count);
  754. w25x20cl_rd_data(addr, (uint8_t*)&header, sizeof(lang_table_header_t));
  755. if (header.magic != LANG_MAGIC)
  756. {
  757. printf_P(_n("NG!\n"));
  758. break;
  759. }
  760. printf_P(_n("OK\n"));
  761. printf_P(_n(" _lt_magic = 0x%08lx %S\n"), header.magic, (header.magic==LANG_MAGIC)?_n("OK"):_n("NA"));
  762. printf_P(_n(" _lt_size = 0x%04x (%d)\n"), header.size, header.size);
  763. printf_P(_n(" _lt_count = 0x%04x (%d)\n"), header.count, header.count);
  764. printf_P(_n(" _lt_chsum = 0x%04x\n"), header.checksum);
  765. printf_P(_n(" _lt_code = 0x%04x (%c%c)\n"), header.code, header.code >> 8, header.code & 0xff);
  766. printf_P(_n(" _lt_sign = 0x%08lx\n"), header.signature);
  767. addr += header.size;
  768. codes[count] = header.code;
  769. count ++;
  770. }
  771. return count;
  772. }
  773. void list_sec_lang_from_external_flash()
  774. {
  775. uint16_t codes[8];
  776. uint8_t count = lang_xflash_enum_codes(codes);
  777. printf_P(_n("XFlash lang count = %hhd\n"), count);
  778. }
  779. #endif //DEBUG_W25X20CL
  780. #endif //W25X20CL
  781. #endif //(LANG_MODE != 0)
  782. // "Setup" function is called by the Arduino framework on startup.
  783. // Before startup, the Timers-functions (PWM)/Analog RW and HardwareSerial provided by the Arduino-code
  784. // are initialized by the main() routine provided by the Arduino framework.
  785. void setup()
  786. {
  787. mmu_init();
  788. ultralcd_init();
  789. #if (LCD_BL_PIN != -1) && defined (LCD_BL_PIN)
  790. analogWrite(LCD_BL_PIN, 255); //set full brightnes
  791. #endif //(LCD_BL_PIN != -1) && defined (LCD_BL_PIN)
  792. spi_init();
  793. lcd_splash();
  794. Sound_Init(); // also guarantee "SET_OUTPUT(BEEPER)"
  795. #ifdef W25X20CL
  796. if (!w25x20cl_init())
  797. kill(_i("External SPI flash W25X20CL not responding."));
  798. // Enter an STK500 compatible Optiboot boot loader waiting for flashing the languages to an external flash memory.
  799. optiboot_w25x20cl_enter();
  800. #endif
  801. #if (LANG_MODE != 0) //secondary language support
  802. #ifdef W25X20CL
  803. if (w25x20cl_init())
  804. update_sec_lang_from_external_flash();
  805. #endif //W25X20CL
  806. #endif //(LANG_MODE != 0)
  807. setup_killpin();
  808. setup_powerhold();
  809. farm_mode = eeprom_read_byte((uint8_t*)EEPROM_FARM_MODE);
  810. EEPROM_read_B(EEPROM_FARM_NUMBER, &farm_no);
  811. if ((farm_mode == 0xFF && farm_no == 0) || ((uint16_t)farm_no == 0xFFFF))
  812. farm_mode = false; //if farm_mode has not been stored to eeprom yet and farm number is set to zero or EEPROM is fresh, deactivate farm mode
  813. if ((uint16_t)farm_no == 0xFFFF) farm_no = 0;
  814. selectedSerialPort = eeprom_read_byte((uint8_t*)EEPROM_SECOND_SERIAL_ACTIVE);
  815. if (selectedSerialPort == 0xFF) selectedSerialPort = 0;
  816. if (farm_mode)
  817. {
  818. no_response = true; //we need confirmation by recieving PRUSA thx
  819. important_status = 8;
  820. prusa_statistics(8);
  821. selectedSerialPort = 1;
  822. #ifdef TMC2130
  823. //increased extruder current (PFW363)
  824. tmc2130_current_h[E_AXIS] = 36;
  825. tmc2130_current_r[E_AXIS] = 36;
  826. #endif //TMC2130
  827. #ifdef FILAMENT_SENSOR
  828. //disabled filament autoload (PFW360)
  829. fsensor_autoload_set(false);
  830. #endif //FILAMENT_SENSOR
  831. }
  832. MYSERIAL.begin(BAUDRATE);
  833. fdev_setup_stream(uartout, uart_putchar, NULL, _FDEV_SETUP_WRITE); //setup uart out stream
  834. #ifndef W25X20CL
  835. SERIAL_PROTOCOLLNPGM("start");
  836. #endif //W25X20CL
  837. stdout = uartout;
  838. SERIAL_ECHO_START;
  839. printf_P(PSTR(" " FW_VERSION_FULL "\n"));
  840. #ifdef DEBUG_SEC_LANG
  841. lang_table_header_t header;
  842. uint32_t src_addr = 0x00000;
  843. if (lang_get_header(1, &header, &src_addr))
  844. {
  845. //this is comparsion of some printing-methods regarding to flash space usage and code size/readability
  846. #define LT_PRINT_TEST 2
  847. // flash usage
  848. // total p.test
  849. //0 252718 t+c text code
  850. //1 253142 424 170 254
  851. //2 253040 322 164 158
  852. //3 253248 530 135 395
  853. #if (LT_PRINT_TEST==1) //not optimized printf
  854. printf_P(_n(" _src_addr = 0x%08lx\n"), src_addr);
  855. printf_P(_n(" _lt_magic = 0x%08lx %S\n"), header.magic, (header.magic==LANG_MAGIC)?_n("OK"):_n("NA"));
  856. printf_P(_n(" _lt_size = 0x%04x (%d)\n"), header.size, header.size);
  857. printf_P(_n(" _lt_count = 0x%04x (%d)\n"), header.count, header.count);
  858. printf_P(_n(" _lt_chsum = 0x%04x\n"), header.checksum);
  859. printf_P(_n(" _lt_code = 0x%04x (%c%c)\n"), header.code, header.code >> 8, header.code & 0xff);
  860. printf_P(_n(" _lt_sign = 0x%08lx\n"), header.signature);
  861. #elif (LT_PRINT_TEST==2) //optimized printf
  862. printf_P(
  863. _n(
  864. " _src_addr = 0x%08lx\n"
  865. " _lt_magic = 0x%08lx %S\n"
  866. " _lt_size = 0x%04x (%d)\n"
  867. " _lt_count = 0x%04x (%d)\n"
  868. " _lt_chsum = 0x%04x\n"
  869. " _lt_code = 0x%04x (%c%c)\n"
  870. " _lt_resv1 = 0x%08lx\n"
  871. ),
  872. src_addr,
  873. header.magic, (header.magic==LANG_MAGIC)?_n("OK"):_n("NA"),
  874. header.size, header.size,
  875. header.count, header.count,
  876. header.checksum,
  877. header.code, header.code >> 8, header.code & 0xff,
  878. header.signature
  879. );
  880. #elif (LT_PRINT_TEST==3) //arduino print/println (leading zeros not solved)
  881. MYSERIAL.print(" _src_addr = 0x");
  882. MYSERIAL.println(src_addr, 16);
  883. MYSERIAL.print(" _lt_magic = 0x");
  884. MYSERIAL.print(header.magic, 16);
  885. MYSERIAL.println((header.magic==LANG_MAGIC)?" OK":" NA");
  886. MYSERIAL.print(" _lt_size = 0x");
  887. MYSERIAL.print(header.size, 16);
  888. MYSERIAL.print(" (");
  889. MYSERIAL.print(header.size, 10);
  890. MYSERIAL.println(")");
  891. MYSERIAL.print(" _lt_count = 0x");
  892. MYSERIAL.print(header.count, 16);
  893. MYSERIAL.print(" (");
  894. MYSERIAL.print(header.count, 10);
  895. MYSERIAL.println(")");
  896. MYSERIAL.print(" _lt_chsum = 0x");
  897. MYSERIAL.println(header.checksum, 16);
  898. MYSERIAL.print(" _lt_code = 0x");
  899. MYSERIAL.print(header.code, 16);
  900. MYSERIAL.print(" (");
  901. MYSERIAL.print((char)(header.code >> 8), 0);
  902. MYSERIAL.print((char)(header.code & 0xff), 0);
  903. MYSERIAL.println(")");
  904. MYSERIAL.print(" _lt_resv1 = 0x");
  905. MYSERIAL.println(header.signature, 16);
  906. #endif //(LT_PRINT_TEST==)
  907. #undef LT_PRINT_TEST
  908. #if 0
  909. w25x20cl_rd_data(0x25ba, (uint8_t*)&block_buffer, 1024);
  910. for (uint16_t i = 0; i < 1024; i++)
  911. {
  912. if ((i % 16) == 0) printf_P(_n("%04x:"), 0x25ba+i);
  913. printf_P(_n(" %02x"), ((uint8_t*)&block_buffer)[i]);
  914. if ((i % 16) == 15) putchar('\n');
  915. }
  916. #endif
  917. uint16_t sum = 0;
  918. for (uint16_t i = 0; i < header.size; i++)
  919. sum += (uint16_t)pgm_read_byte((uint8_t*)(_SEC_LANG_TABLE + i)) << ((i & 1)?0:8);
  920. printf_P(_n("_SEC_LANG_TABLE checksum = %04x\n"), sum);
  921. sum -= header.checksum; //subtract checksum
  922. printf_P(_n("_SEC_LANG_TABLE checksum = %04x\n"), sum);
  923. sum = (sum >> 8) | ((sum & 0xff) << 8); //swap bytes
  924. if (sum == header.checksum)
  925. printf_P(_n("Checksum OK\n"), sum);
  926. else
  927. printf_P(_n("Checksum NG\n"), sum);
  928. }
  929. else
  930. printf_P(_n("lang_get_header failed!\n"));
  931. #if 0
  932. for (uint16_t i = 0; i < 1024*10; i++)
  933. {
  934. if ((i % 16) == 0) printf_P(_n("%04x:"), _SEC_LANG_TABLE+i);
  935. printf_P(_n(" %02x"), pgm_read_byte((uint8_t*)(_SEC_LANG_TABLE+i)));
  936. if ((i % 16) == 15) putchar('\n');
  937. }
  938. #endif
  939. #if 0
  940. SERIAL_ECHOLN("Reading eeprom from 0 to 100: start");
  941. for (int i = 0; i < 4096; ++i) {
  942. int b = eeprom_read_byte((unsigned char*)i);
  943. if (b != 255) {
  944. SERIAL_ECHO(i);
  945. SERIAL_ECHO(":");
  946. SERIAL_ECHO(b);
  947. SERIAL_ECHOLN("");
  948. }
  949. }
  950. SERIAL_ECHOLN("Reading eeprom from 0 to 100: done");
  951. #endif
  952. #endif //DEBUG_SEC_LANG
  953. // Check startup - does nothing if bootloader sets MCUSR to 0
  954. byte mcu = MCUSR;
  955. /* if (mcu & 1) SERIAL_ECHOLNRPGM(MSG_POWERUP);
  956. if (mcu & 2) SERIAL_ECHOLNRPGM(MSG_EXTERNAL_RESET);
  957. if (mcu & 4) SERIAL_ECHOLNRPGM(MSG_BROWNOUT_RESET);
  958. if (mcu & 8) SERIAL_ECHOLNRPGM(MSG_WATCHDOG_RESET);
  959. if (mcu & 32) SERIAL_ECHOLNRPGM(MSG_SOFTWARE_RESET);*/
  960. if (mcu & 1) puts_P(MSG_POWERUP);
  961. if (mcu & 2) puts_P(MSG_EXTERNAL_RESET);
  962. if (mcu & 4) puts_P(MSG_BROWNOUT_RESET);
  963. if (mcu & 8) puts_P(MSG_WATCHDOG_RESET);
  964. if (mcu & 32) puts_P(MSG_SOFTWARE_RESET);
  965. MCUSR = 0;
  966. //SERIAL_ECHORPGM(MSG_MARLIN);
  967. //SERIAL_ECHOLNRPGM(VERSION_STRING);
  968. #ifdef STRING_VERSION_CONFIG_H
  969. #ifdef STRING_CONFIG_H_AUTHOR
  970. SERIAL_ECHO_START;
  971. SERIAL_ECHORPGM(_n(" Last Updated: "));////MSG_CONFIGURATION_VER c=0 r=0
  972. SERIAL_ECHOPGM(STRING_VERSION_CONFIG_H);
  973. SERIAL_ECHORPGM(_n(" | Author: "));////MSG_AUTHOR c=0 r=0
  974. SERIAL_ECHOLNPGM(STRING_CONFIG_H_AUTHOR);
  975. SERIAL_ECHOPGM("Compiled: ");
  976. SERIAL_ECHOLNPGM(__DATE__);
  977. #endif
  978. #endif
  979. SERIAL_ECHO_START;
  980. SERIAL_ECHORPGM(_n(" Free Memory: "));////MSG_FREE_MEMORY c=0 r=0
  981. SERIAL_ECHO(freeMemory());
  982. SERIAL_ECHORPGM(_n(" PlannerBufferBytes: "));////MSG_PLANNER_BUFFER_BYTES c=0 r=0
  983. SERIAL_ECHOLN((int)sizeof(block_t)*BLOCK_BUFFER_SIZE);
  984. //lcd_update_enable(false); // why do we need this?? - andre
  985. // loads data from EEPROM if available else uses defaults (and resets step acceleration rate)
  986. bool previous_settings_retrieved = false;
  987. uint8_t hw_changed = check_printer_version();
  988. if (!(hw_changed & 0b10)) { //if printer version wasn't changed, check for eeprom version and retrieve settings from eeprom in case that version wasn't changed
  989. previous_settings_retrieved = Config_RetrieveSettings();
  990. }
  991. else { //printer version was changed so use default settings
  992. Config_ResetDefault();
  993. }
  994. SdFatUtil::set_stack_guard(); //writes magic number at the end of static variables to protect against overwriting static memory by stack
  995. tp_init(); // Initialize temperature loop
  996. lcd_splash(); // we need to do this again, because tp_init() kills lcd
  997. plan_init(); // Initialize planner;
  998. factory_reset();
  999. lcd_encoder_diff=0;
  1000. #ifdef TMC2130
  1001. uint8_t silentMode = eeprom_read_byte((uint8_t*)EEPROM_SILENT);
  1002. if (silentMode == 0xff) silentMode = 0;
  1003. tmc2130_mode = TMC2130_MODE_NORMAL;
  1004. uint8_t crashdet = eeprom_read_byte((uint8_t*)EEPROM_CRASH_DET);
  1005. if (crashdet && !farm_mode)
  1006. {
  1007. crashdet_enable();
  1008. puts_P(_N("CrashDetect ENABLED!"));
  1009. }
  1010. else
  1011. {
  1012. crashdet_disable();
  1013. puts_P(_N("CrashDetect DISABLED"));
  1014. }
  1015. #ifdef TMC2130_LINEARITY_CORRECTION
  1016. #ifdef TMC2130_LINEARITY_CORRECTION_XYZ
  1017. tmc2130_wave_fac[X_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_WAVE_X_FAC);
  1018. tmc2130_wave_fac[Y_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_WAVE_Y_FAC);
  1019. tmc2130_wave_fac[Z_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_WAVE_Z_FAC);
  1020. #endif //TMC2130_LINEARITY_CORRECTION_XYZ
  1021. tmc2130_wave_fac[E_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_WAVE_E_FAC);
  1022. if (tmc2130_wave_fac[X_AXIS] == 0xff) tmc2130_wave_fac[X_AXIS] = 0;
  1023. if (tmc2130_wave_fac[Y_AXIS] == 0xff) tmc2130_wave_fac[Y_AXIS] = 0;
  1024. if (tmc2130_wave_fac[Z_AXIS] == 0xff) tmc2130_wave_fac[Z_AXIS] = 0;
  1025. if (tmc2130_wave_fac[E_AXIS] == 0xff) tmc2130_wave_fac[E_AXIS] = 0;
  1026. #endif //TMC2130_LINEARITY_CORRECTION
  1027. #ifdef TMC2130_VARIABLE_RESOLUTION
  1028. tmc2130_mres[X_AXIS] = tmc2130_usteps2mres(cs.axis_ustep_resolution[X_AXIS]);
  1029. tmc2130_mres[Y_AXIS] = tmc2130_usteps2mres(cs.axis_ustep_resolution[Y_AXIS]);
  1030. tmc2130_mres[Z_AXIS] = tmc2130_usteps2mres(cs.axis_ustep_resolution[Z_AXIS]);
  1031. tmc2130_mres[E_AXIS] = tmc2130_usteps2mres(cs.axis_ustep_resolution[E_AXIS]);
  1032. #else //TMC2130_VARIABLE_RESOLUTION
  1033. tmc2130_mres[X_AXIS] = tmc2130_usteps2mres(TMC2130_USTEPS_XY);
  1034. tmc2130_mres[Y_AXIS] = tmc2130_usteps2mres(TMC2130_USTEPS_XY);
  1035. tmc2130_mres[Z_AXIS] = tmc2130_usteps2mres(TMC2130_USTEPS_Z);
  1036. tmc2130_mres[E_AXIS] = tmc2130_usteps2mres(TMC2130_USTEPS_E);
  1037. #endif //TMC2130_VARIABLE_RESOLUTION
  1038. #endif //TMC2130
  1039. st_init(); // Initialize stepper, this enables interrupts!
  1040. #ifdef TMC2130
  1041. tmc2130_mode = silentMode?TMC2130_MODE_SILENT:TMC2130_MODE_NORMAL;
  1042. update_mode_profile();
  1043. tmc2130_init();
  1044. #endif //TMC2130
  1045. setup_photpin();
  1046. servo_init();
  1047. // Reset the machine correction matrix.
  1048. // It does not make sense to load the correction matrix until the machine is homed.
  1049. world2machine_reset();
  1050. #ifdef FILAMENT_SENSOR
  1051. fsensor_init();
  1052. #endif //FILAMENT_SENSOR
  1053. #if defined(CONTROLLERFAN_PIN) && (CONTROLLERFAN_PIN > -1)
  1054. SET_OUTPUT(CONTROLLERFAN_PIN); //Set pin used for driver cooling fan
  1055. #endif
  1056. setup_homepin();
  1057. #ifdef TMC2130
  1058. if (1) {
  1059. // try to run to zero phase before powering the Z motor.
  1060. // Move in negative direction
  1061. WRITE(Z_DIR_PIN,INVERT_Z_DIR);
  1062. // Round the current micro-micro steps to micro steps.
  1063. for (uint16_t phase = (tmc2130_rd_MSCNT(Z_AXIS) + 8) >> 4; phase > 0; -- phase) {
  1064. // Until the phase counter is reset to zero.
  1065. WRITE(Z_STEP_PIN, !INVERT_Z_STEP_PIN);
  1066. _delay(2);
  1067. WRITE(Z_STEP_PIN, INVERT_Z_STEP_PIN);
  1068. _delay(2);
  1069. }
  1070. }
  1071. #endif //TMC2130
  1072. #if defined(Z_AXIS_ALWAYS_ON)
  1073. enable_z();
  1074. #endif
  1075. farm_mode = eeprom_read_byte((uint8_t*)EEPROM_FARM_MODE);
  1076. EEPROM_read_B(EEPROM_FARM_NUMBER, &farm_no);
  1077. if ((farm_mode == 0xFF && farm_no == 0) || (farm_no == static_cast<int>(0xFFFF))) farm_mode = false; //if farm_mode has not been stored to eeprom yet and farm number is set to zero or EEPROM is fresh, deactivate farm mode
  1078. if (farm_no == static_cast<int>(0xFFFF)) farm_no = 0;
  1079. if (farm_mode)
  1080. {
  1081. prusa_statistics(8);
  1082. }
  1083. // Enable Toshiba FlashAir SD card / WiFi enahanced card.
  1084. card.ToshibaFlashAir_enable(eeprom_read_byte((unsigned char*)EEPROM_TOSHIBA_FLASH_AIR_COMPATIBLITY) == 1);
  1085. if (eeprom_read_dword((uint32_t*)(EEPROM_TOP - 4)) == 0x0ffffffff &&
  1086. eeprom_read_dword((uint32_t*)(EEPROM_TOP - 8)) == 0x0ffffffff) {
  1087. // Maiden startup. The firmware has been loaded and first started on a virgin RAMBo board,
  1088. // where all the EEPROM entries are set to 0x0ff.
  1089. // Once a firmware boots up, it forces at least a language selection, which changes
  1090. // EEPROM_LANG to number lower than 0x0ff.
  1091. // 1) Set a high power mode.
  1092. #ifdef TMC2130
  1093. eeprom_write_byte((uint8_t*)EEPROM_SILENT, 0);
  1094. tmc2130_mode = TMC2130_MODE_NORMAL;
  1095. #endif //TMC2130
  1096. eeprom_write_byte((uint8_t*)EEPROM_WIZARD_ACTIVE, 1); //run wizard
  1097. }
  1098. // Force SD card update. Otherwise the SD card update is done from loop() on card.checkautostart(false),
  1099. // but this times out if a blocking dialog is shown in setup().
  1100. card.initsd();
  1101. #ifdef DEBUG_SD_SPEED_TEST
  1102. if (card.cardOK)
  1103. {
  1104. uint8_t* buff = (uint8_t*)block_buffer;
  1105. uint32_t block = 0;
  1106. uint32_t sumr = 0;
  1107. uint32_t sumw = 0;
  1108. for (int i = 0; i < 1024; i++)
  1109. {
  1110. uint32_t u = _micros();
  1111. bool res = card.card.readBlock(i, buff);
  1112. u = _micros() - u;
  1113. if (res)
  1114. {
  1115. printf_P(PSTR("readBlock %4d 512 bytes %lu us\n"), i, u);
  1116. sumr += u;
  1117. u = _micros();
  1118. res = card.card.writeBlock(i, buff);
  1119. u = _micros() - u;
  1120. if (res)
  1121. {
  1122. printf_P(PSTR("writeBlock %4d 512 bytes %lu us\n"), i, u);
  1123. sumw += u;
  1124. }
  1125. else
  1126. {
  1127. printf_P(PSTR("writeBlock %4d error\n"), i);
  1128. break;
  1129. }
  1130. }
  1131. else
  1132. {
  1133. printf_P(PSTR("readBlock %4d error\n"), i);
  1134. break;
  1135. }
  1136. }
  1137. uint32_t avg_rspeed = (1024 * 1000000) / (sumr / 512);
  1138. uint32_t avg_wspeed = (1024 * 1000000) / (sumw / 512);
  1139. printf_P(PSTR("avg read speed %lu bytes/s\n"), avg_rspeed);
  1140. printf_P(PSTR("avg write speed %lu bytes/s\n"), avg_wspeed);
  1141. }
  1142. else
  1143. printf_P(PSTR("Card NG!\n"));
  1144. #endif //DEBUG_SD_SPEED_TEST
  1145. if (eeprom_read_byte((uint8_t*)EEPROM_POWER_COUNT) == 0xff) eeprom_write_byte((uint8_t*)EEPROM_POWER_COUNT, 0);
  1146. if (eeprom_read_byte((uint8_t*)EEPROM_CRASH_COUNT_X) == 0xff) eeprom_write_byte((uint8_t*)EEPROM_CRASH_COUNT_X, 0);
  1147. if (eeprom_read_byte((uint8_t*)EEPROM_CRASH_COUNT_Y) == 0xff) eeprom_write_byte((uint8_t*)EEPROM_CRASH_COUNT_Y, 0);
  1148. if (eeprom_read_byte((uint8_t*)EEPROM_FERROR_COUNT) == 0xff) eeprom_write_byte((uint8_t*)EEPROM_FERROR_COUNT, 0);
  1149. if (eeprom_read_word((uint16_t*)EEPROM_POWER_COUNT_TOT) == 0xffff) eeprom_write_word((uint16_t*)EEPROM_POWER_COUNT_TOT, 0);
  1150. if (eeprom_read_word((uint16_t*)EEPROM_CRASH_COUNT_X_TOT) == 0xffff) eeprom_write_word((uint16_t*)EEPROM_CRASH_COUNT_X_TOT, 0);
  1151. if (eeprom_read_word((uint16_t*)EEPROM_CRASH_COUNT_Y_TOT) == 0xffff) eeprom_write_word((uint16_t*)EEPROM_CRASH_COUNT_Y_TOT, 0);
  1152. if (eeprom_read_word((uint16_t*)EEPROM_FERROR_COUNT_TOT) == 0xffff) eeprom_write_word((uint16_t*)EEPROM_FERROR_COUNT_TOT, 0);
  1153. if (eeprom_read_word((uint16_t*)EEPROM_MMU_FAIL_TOT) == 0xffff) eeprom_update_word((uint16_t *)EEPROM_MMU_FAIL_TOT, 0);
  1154. if (eeprom_read_word((uint16_t*)EEPROM_MMU_LOAD_FAIL_TOT) == 0xffff) eeprom_update_word((uint16_t *)EEPROM_MMU_LOAD_FAIL_TOT, 0);
  1155. if (eeprom_read_byte((uint8_t*)EEPROM_MMU_FAIL) == 0xff) eeprom_update_byte((uint8_t *)EEPROM_MMU_FAIL, 0);
  1156. if (eeprom_read_byte((uint8_t*)EEPROM_MMU_LOAD_FAIL) == 0xff) eeprom_update_byte((uint8_t *)EEPROM_MMU_LOAD_FAIL, 0);
  1157. #ifdef SNMM
  1158. if (eeprom_read_dword((uint32_t*)EEPROM_BOWDEN_LENGTH) == 0x0ffffffff) { //bowden length used for SNMM
  1159. int _z = BOWDEN_LENGTH;
  1160. for(int i = 0; i<4; i++) EEPROM_save_B(EEPROM_BOWDEN_LENGTH + i * 2, &_z);
  1161. }
  1162. #endif
  1163. // In the future, somewhere here would one compare the current firmware version against the firmware version stored in the EEPROM.
  1164. // If they differ, an update procedure may need to be performed. At the end of this block, the current firmware version
  1165. // is being written into the EEPROM, so the update procedure will be triggered only once.
  1166. #if (LANG_MODE != 0) //secondary language support
  1167. #ifdef DEBUG_W25X20CL
  1168. W25X20CL_SPI_ENTER();
  1169. uint8_t uid[8]; // 64bit unique id
  1170. w25x20cl_rd_uid(uid);
  1171. puts_P(_n("W25X20CL UID="));
  1172. for (uint8_t i = 0; i < 8; i ++)
  1173. printf_P(PSTR("%02hhx"), uid[i]);
  1174. putchar('\n');
  1175. list_sec_lang_from_external_flash();
  1176. #endif //DEBUG_W25X20CL
  1177. // lang_reset();
  1178. if (!lang_select(eeprom_read_byte((uint8_t*)EEPROM_LANG)))
  1179. lcd_language();
  1180. #ifdef DEBUG_SEC_LANG
  1181. uint16_t sec_lang_code = lang_get_code(1);
  1182. uint16_t ui = _SEC_LANG_TABLE; //table pointer
  1183. printf_P(_n("lang_selected=%d\nlang_table=0x%04x\nSEC_LANG_CODE=0x%04x (%c%c)\n"), lang_selected, ui, sec_lang_code, sec_lang_code >> 8, sec_lang_code & 0xff);
  1184. lang_print_sec_lang(uartout);
  1185. #endif //DEBUG_SEC_LANG
  1186. #endif //(LANG_MODE != 0)
  1187. if (eeprom_read_byte((uint8_t*)EEPROM_TEMP_CAL_ACTIVE) == 255) {
  1188. eeprom_write_byte((uint8_t*)EEPROM_TEMP_CAL_ACTIVE, 0);
  1189. temp_cal_active = false;
  1190. } else temp_cal_active = eeprom_read_byte((uint8_t*)EEPROM_TEMP_CAL_ACTIVE);
  1191. if (eeprom_read_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA) == 255) {
  1192. //eeprom_write_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 0);
  1193. eeprom_write_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 1);
  1194. int16_t z_shift = 0;
  1195. for (uint8_t i = 0; i < 5; i++) EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + i * 2, &z_shift);
  1196. eeprom_write_byte((uint8_t*)EEPROM_TEMP_CAL_ACTIVE, 0);
  1197. temp_cal_active = false;
  1198. }
  1199. if (eeprom_read_byte((uint8_t*)EEPROM_UVLO) == 255) {
  1200. eeprom_write_byte((uint8_t*)EEPROM_UVLO, 0);
  1201. }
  1202. if (eeprom_read_byte((uint8_t*)EEPROM_SD_SORT) == 255) {
  1203. eeprom_write_byte((uint8_t*)EEPROM_SD_SORT, 0);
  1204. }
  1205. //mbl_mode_init();
  1206. mbl_settings_init();
  1207. SilentModeMenu_MMU = eeprom_read_byte((uint8_t*)EEPROM_MMU_STEALTH);
  1208. if (SilentModeMenu_MMU == 255) {
  1209. SilentModeMenu_MMU = 1;
  1210. eeprom_write_byte((uint8_t*)EEPROM_MMU_STEALTH, SilentModeMenu_MMU);
  1211. }
  1212. check_babystep(); //checking if Z babystep is in allowed range
  1213. #ifdef UVLO_SUPPORT
  1214. setup_uvlo_interrupt();
  1215. #endif //UVLO_SUPPORT
  1216. #if !defined(DEBUG_DISABLE_FANCHECK) && defined(FANCHECK) && defined(TACH_1) && TACH_1 >-1
  1217. setup_fan_interrupt();
  1218. #endif //DEBUG_DISABLE_FANCHECK
  1219. #ifdef PAT9125
  1220. fsensor_setup_interrupt();
  1221. #endif //PAT9125
  1222. for (int i = 0; i<4; i++) EEPROM_read_B(EEPROM_BOWDEN_LENGTH + i * 2, &bowden_length[i]);
  1223. #ifndef DEBUG_DISABLE_STARTMSGS
  1224. KEEPALIVE_STATE(PAUSED_FOR_USER);
  1225. show_fw_version_warnings();
  1226. switch (hw_changed) {
  1227. //if motherboard or printer type was changed inform user as it can indicate flashing wrong firmware version
  1228. //if user confirms with knob, new hw version (printer and/or motherboard) is written to eeprom and message will be not shown next time
  1229. case(0b01):
  1230. lcd_show_fullscreen_message_and_wait_P(_i("Warning: motherboard type changed.")); ////MSG_CHANGED_MOTHERBOARD c=20 r=4
  1231. eeprom_write_word((uint16_t*)EEPROM_BOARD_TYPE, MOTHERBOARD);
  1232. break;
  1233. case(0b10):
  1234. lcd_show_fullscreen_message_and_wait_P(_i("Warning: printer type changed.")); ////MSG_CHANGED_PRINTER c=20 r=4
  1235. eeprom_write_word((uint16_t*)EEPROM_PRINTER_TYPE, PRINTER_TYPE);
  1236. break;
  1237. case(0b11):
  1238. lcd_show_fullscreen_message_and_wait_P(_i("Warning: both printer type and motherboard type changed.")); ////MSG_CHANGED_BOTH c=20 r=4
  1239. eeprom_write_word((uint16_t*)EEPROM_PRINTER_TYPE, PRINTER_TYPE);
  1240. eeprom_write_word((uint16_t*)EEPROM_BOARD_TYPE, MOTHERBOARD);
  1241. break;
  1242. default: break; //no change, show no message
  1243. }
  1244. if (!previous_settings_retrieved) {
  1245. lcd_show_fullscreen_message_and_wait_P(_i("Old settings found. Default PID, Esteps etc. will be set.")); //if EEPROM version or printer type was changed, inform user that default setting were loaded////MSG_DEFAULT_SETTINGS_LOADED c=20 r=4
  1246. Config_StoreSettings();
  1247. }
  1248. if (eeprom_read_byte((uint8_t*)EEPROM_WIZARD_ACTIVE) == 1) {
  1249. lcd_wizard(WizState::Run);
  1250. }
  1251. if (eeprom_read_byte((uint8_t*)EEPROM_WIZARD_ACTIVE) == 0) { //dont show calibration status messages if wizard is currently active
  1252. if (calibration_status() == CALIBRATION_STATUS_ASSEMBLED ||
  1253. calibration_status() == CALIBRATION_STATUS_UNKNOWN ||
  1254. calibration_status() == CALIBRATION_STATUS_XYZ_CALIBRATION) {
  1255. // Reset the babystepping values, so the printer will not move the Z axis up when the babystepping is enabled.
  1256. eeprom_update_word((uint16_t*)EEPROM_BABYSTEP_Z, 0);
  1257. // Show the message.
  1258. lcd_show_fullscreen_message_and_wait_P(_T(MSG_FOLLOW_CALIBRATION_FLOW));
  1259. }
  1260. else if (calibration_status() == CALIBRATION_STATUS_LIVE_ADJUST) {
  1261. // Show the message.
  1262. lcd_show_fullscreen_message_and_wait_P(_T(MSG_BABYSTEP_Z_NOT_SET));
  1263. lcd_update_enable(true);
  1264. }
  1265. else if (calibration_status() == CALIBRATION_STATUS_CALIBRATED && temp_cal_active == true && calibration_status_pinda() == false) {
  1266. //lcd_show_fullscreen_message_and_wait_P(_i("Temperature calibration has not been run yet"));////MSG_PINDA_NOT_CALIBRATED c=20 r=4
  1267. lcd_update_enable(true);
  1268. }
  1269. else if (calibration_status() == CALIBRATION_STATUS_Z_CALIBRATION) {
  1270. // Show the message.
  1271. lcd_show_fullscreen_message_and_wait_P(_T(MSG_FOLLOW_Z_CALIBRATION_FLOW));
  1272. }
  1273. }
  1274. #if !defined (DEBUG_DISABLE_FORCE_SELFTEST) && defined (TMC2130)
  1275. if (force_selftest_if_fw_version() && calibration_status() < CALIBRATION_STATUS_ASSEMBLED) {
  1276. lcd_show_fullscreen_message_and_wait_P(_i("Selftest will be run to calibrate accurate sensorless rehoming."));////MSG_FORCE_SELFTEST c=20 r=8
  1277. update_current_firmware_version_to_eeprom();
  1278. lcd_selftest();
  1279. }
  1280. #endif //TMC2130 && !DEBUG_DISABLE_FORCE_SELFTEST
  1281. KEEPALIVE_STATE(IN_PROCESS);
  1282. #endif //DEBUG_DISABLE_STARTMSGS
  1283. lcd_update_enable(true);
  1284. lcd_clear();
  1285. lcd_update(2);
  1286. // Store the currently running firmware into an eeprom,
  1287. // so the next time the firmware gets updated, it will know from which version it has been updated.
  1288. update_current_firmware_version_to_eeprom();
  1289. #ifdef TMC2130
  1290. tmc2130_home_origin[X_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_HOME_X_ORIGIN);
  1291. tmc2130_home_bsteps[X_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_HOME_X_BSTEPS);
  1292. tmc2130_home_fsteps[X_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_HOME_X_FSTEPS);
  1293. if (tmc2130_home_origin[X_AXIS] == 0xff) tmc2130_home_origin[X_AXIS] = 0;
  1294. if (tmc2130_home_bsteps[X_AXIS] == 0xff) tmc2130_home_bsteps[X_AXIS] = 48;
  1295. if (tmc2130_home_fsteps[X_AXIS] == 0xff) tmc2130_home_fsteps[X_AXIS] = 48;
  1296. tmc2130_home_origin[Y_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_HOME_Y_ORIGIN);
  1297. tmc2130_home_bsteps[Y_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_HOME_Y_BSTEPS);
  1298. tmc2130_home_fsteps[Y_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_HOME_Y_FSTEPS);
  1299. if (tmc2130_home_origin[Y_AXIS] == 0xff) tmc2130_home_origin[Y_AXIS] = 0;
  1300. if (tmc2130_home_bsteps[Y_AXIS] == 0xff) tmc2130_home_bsteps[Y_AXIS] = 48;
  1301. if (tmc2130_home_fsteps[Y_AXIS] == 0xff) tmc2130_home_fsteps[Y_AXIS] = 48;
  1302. tmc2130_home_enabled = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_HOME_ENABLED);
  1303. if (tmc2130_home_enabled == 0xff) tmc2130_home_enabled = 0;
  1304. #endif //TMC2130
  1305. #ifdef UVLO_SUPPORT
  1306. if (eeprom_read_byte((uint8_t*)EEPROM_UVLO) != 0) { //previous print was terminated by UVLO
  1307. /*
  1308. if (lcd_show_fullscreen_message_yes_no_and_wait_P(_T(MSG_RECOVER_PRINT), false)) recover_print();
  1309. else {
  1310. eeprom_update_byte((uint8_t*)EEPROM_UVLO, 0);
  1311. lcd_update_enable(true);
  1312. lcd_update(2);
  1313. lcd_setstatuspgm(_T(WELCOME_MSG));
  1314. }
  1315. */
  1316. manage_heater(); // Update temperatures
  1317. #ifdef DEBUG_UVLO_AUTOMATIC_RECOVER
  1318. printf_P(_N("Power panic detected!\nCurrent bed temp:%d\nSaved bed temp:%d\n"), (int)degBed(), eeprom_read_byte((uint8_t*)EEPROM_UVLO_TARGET_BED));
  1319. #endif
  1320. if ( degBed() > ( (float)eeprom_read_byte((uint8_t*)EEPROM_UVLO_TARGET_BED) - AUTOMATIC_UVLO_BED_TEMP_OFFSET) ){
  1321. #ifdef DEBUG_UVLO_AUTOMATIC_RECOVER
  1322. puts_P(_N("Automatic recovery!"));
  1323. #endif
  1324. recover_print(1);
  1325. }
  1326. else{
  1327. #ifdef DEBUG_UVLO_AUTOMATIC_RECOVER
  1328. puts_P(_N("Normal recovery!"));
  1329. #endif
  1330. if ( lcd_show_fullscreen_message_yes_no_and_wait_P(_T(MSG_RECOVER_PRINT), false) ) recover_print(0);
  1331. else {
  1332. eeprom_update_byte((uint8_t*)EEPROM_UVLO, 0);
  1333. lcd_update_enable(true);
  1334. lcd_update(2);
  1335. lcd_setstatuspgm(_T(WELCOME_MSG));
  1336. }
  1337. }
  1338. }
  1339. #endif //UVLO_SUPPORT
  1340. KEEPALIVE_STATE(NOT_BUSY);
  1341. #ifdef WATCHDOG
  1342. wdt_enable(WDTO_4S);
  1343. #endif //WATCHDOG
  1344. }
  1345. void trace();
  1346. #define CHUNK_SIZE 64 // bytes
  1347. #define SAFETY_MARGIN 1
  1348. char chunk[CHUNK_SIZE+SAFETY_MARGIN];
  1349. int chunkHead = 0;
  1350. void serial_read_stream() {
  1351. setAllTargetHotends(0);
  1352. setTargetBed(0);
  1353. lcd_clear();
  1354. lcd_puts_P(PSTR(" Upload in progress"));
  1355. // first wait for how many bytes we will receive
  1356. uint32_t bytesToReceive;
  1357. // receive the four bytes
  1358. char bytesToReceiveBuffer[4];
  1359. for (int i=0; i<4; i++) {
  1360. int data;
  1361. while ((data = MYSERIAL.read()) == -1) {};
  1362. bytesToReceiveBuffer[i] = data;
  1363. }
  1364. // make it a uint32
  1365. memcpy(&bytesToReceive, &bytesToReceiveBuffer, 4);
  1366. // we're ready, notify the sender
  1367. MYSERIAL.write('+');
  1368. // lock in the routine
  1369. uint32_t receivedBytes = 0;
  1370. while (prusa_sd_card_upload) {
  1371. int i;
  1372. for (i=0; i<CHUNK_SIZE; i++) {
  1373. int data;
  1374. // check if we're not done
  1375. if (receivedBytes == bytesToReceive) {
  1376. break;
  1377. }
  1378. // read the next byte
  1379. while ((data = MYSERIAL.read()) == -1) {};
  1380. receivedBytes++;
  1381. // save it to the chunk
  1382. chunk[i] = data;
  1383. }
  1384. // write the chunk to SD
  1385. card.write_command_no_newline(&chunk[0]);
  1386. // notify the sender we're ready for more data
  1387. MYSERIAL.write('+');
  1388. // for safety
  1389. manage_heater();
  1390. // check if we're done
  1391. if(receivedBytes == bytesToReceive) {
  1392. trace(); // beep
  1393. card.closefile();
  1394. prusa_sd_card_upload = false;
  1395. SERIAL_PROTOCOLLNRPGM(MSG_FILE_SAVED);
  1396. }
  1397. }
  1398. }
  1399. /**
  1400. * Output a "busy" message at regular intervals
  1401. * while the machine is not accepting commands.
  1402. */
  1403. void host_keepalive() {
  1404. #ifndef HOST_KEEPALIVE_FEATURE
  1405. return;
  1406. #endif //HOST_KEEPALIVE_FEATURE
  1407. if (farm_mode) return;
  1408. long ms = _millis();
  1409. if (host_keepalive_interval && busy_state != NOT_BUSY) {
  1410. if ((ms - prev_busy_signal_ms) < (long)(1000L * host_keepalive_interval)) return;
  1411. switch (busy_state) {
  1412. case IN_HANDLER:
  1413. case IN_PROCESS:
  1414. SERIAL_ECHO_START;
  1415. SERIAL_ECHOLNPGM("busy: processing");
  1416. break;
  1417. case PAUSED_FOR_USER:
  1418. SERIAL_ECHO_START;
  1419. SERIAL_ECHOLNPGM("busy: paused for user");
  1420. break;
  1421. case PAUSED_FOR_INPUT:
  1422. SERIAL_ECHO_START;
  1423. SERIAL_ECHOLNPGM("busy: paused for input");
  1424. break;
  1425. default:
  1426. break;
  1427. }
  1428. }
  1429. prev_busy_signal_ms = ms;
  1430. }
  1431. // The loop() function is called in an endless loop by the Arduino framework from the default main() routine.
  1432. // Before loop(), the setup() function is called by the main() routine.
  1433. void loop()
  1434. {
  1435. KEEPALIVE_STATE(NOT_BUSY);
  1436. if ((usb_printing_counter > 0) && ((_millis()-_usb_timer) > 1000))
  1437. {
  1438. is_usb_printing = true;
  1439. usb_printing_counter--;
  1440. _usb_timer = _millis();
  1441. }
  1442. if (usb_printing_counter == 0)
  1443. {
  1444. is_usb_printing = false;
  1445. }
  1446. if (prusa_sd_card_upload)
  1447. {
  1448. //we read byte-by byte
  1449. serial_read_stream();
  1450. } else
  1451. {
  1452. get_command();
  1453. #ifdef SDSUPPORT
  1454. card.checkautostart(false);
  1455. #endif
  1456. if(buflen)
  1457. {
  1458. cmdbuffer_front_already_processed = false;
  1459. #ifdef SDSUPPORT
  1460. if(card.saving)
  1461. {
  1462. // Saving a G-code file onto an SD-card is in progress.
  1463. // Saving starts with M28, saving until M29 is seen.
  1464. if(strstr_P(CMDBUFFER_CURRENT_STRING, PSTR("M29")) == NULL) {
  1465. card.write_command(CMDBUFFER_CURRENT_STRING);
  1466. if(card.logging)
  1467. process_commands();
  1468. else
  1469. SERIAL_PROTOCOLLNRPGM(MSG_OK);
  1470. } else {
  1471. card.closefile();
  1472. SERIAL_PROTOCOLLNRPGM(MSG_FILE_SAVED);
  1473. }
  1474. } else {
  1475. process_commands();
  1476. }
  1477. #else
  1478. process_commands();
  1479. #endif //SDSUPPORT
  1480. if (! cmdbuffer_front_already_processed && buflen)
  1481. {
  1482. // ptr points to the start of the block currently being processed.
  1483. // The first character in the block is the block type.
  1484. char *ptr = cmdbuffer + bufindr;
  1485. if (*ptr == CMDBUFFER_CURRENT_TYPE_SDCARD) {
  1486. // To support power panic, move the lenght of the command on the SD card to a planner buffer.
  1487. union {
  1488. struct {
  1489. char lo;
  1490. char hi;
  1491. } lohi;
  1492. uint16_t value;
  1493. } sdlen;
  1494. sdlen.value = 0;
  1495. {
  1496. // This block locks the interrupts globally for 3.25 us,
  1497. // which corresponds to a maximum repeat frequency of 307.69 kHz.
  1498. // This blocking is safe in the context of a 10kHz stepper driver interrupt
  1499. // or a 115200 Bd serial line receive interrupt, which will not trigger faster than 12kHz.
  1500. cli();
  1501. // Reset the command to something, which will be ignored by the power panic routine,
  1502. // so this buffer length will not be counted twice.
  1503. *ptr ++ = CMDBUFFER_CURRENT_TYPE_TO_BE_REMOVED;
  1504. // Extract the current buffer length.
  1505. sdlen.lohi.lo = *ptr ++;
  1506. sdlen.lohi.hi = *ptr;
  1507. // and pass it to the planner queue.
  1508. planner_add_sd_length(sdlen.value);
  1509. sei();
  1510. }
  1511. }
  1512. else if((*ptr == CMDBUFFER_CURRENT_TYPE_USB_WITH_LINENR) && !IS_SD_PRINTING){
  1513. cli();
  1514. *ptr ++ = CMDBUFFER_CURRENT_TYPE_TO_BE_REMOVED;
  1515. // and one for each command to previous block in the planner queue.
  1516. planner_add_sd_length(1);
  1517. sei();
  1518. }
  1519. // Now it is safe to release the already processed command block. If interrupted by the power panic now,
  1520. // this block's SD card length will not be counted twice as its command type has been replaced
  1521. // by CMDBUFFER_CURRENT_TYPE_TO_BE_REMOVED.
  1522. cmdqueue_pop_front();
  1523. }
  1524. host_keepalive();
  1525. }
  1526. }
  1527. //check heater every n milliseconds
  1528. manage_heater();
  1529. isPrintPaused ? manage_inactivity(true) : manage_inactivity(false);
  1530. checkHitEndstops();
  1531. lcd_update(0);
  1532. #ifdef TMC2130
  1533. tmc2130_check_overtemp();
  1534. if (tmc2130_sg_crash)
  1535. {
  1536. uint8_t crash = tmc2130_sg_crash;
  1537. tmc2130_sg_crash = 0;
  1538. // crashdet_stop_and_save_print();
  1539. switch (crash)
  1540. {
  1541. case 1: enquecommand_P((PSTR("CRASH_DETECTEDX"))); break;
  1542. case 2: enquecommand_P((PSTR("CRASH_DETECTEDY"))); break;
  1543. case 3: enquecommand_P((PSTR("CRASH_DETECTEDXY"))); break;
  1544. }
  1545. }
  1546. #endif //TMC2130
  1547. mmu_loop();
  1548. }
  1549. #define DEFINE_PGM_READ_ANY(type, reader) \
  1550. static inline type pgm_read_any(const type *p) \
  1551. { return pgm_read_##reader##_near(p); }
  1552. DEFINE_PGM_READ_ANY(float, float);
  1553. DEFINE_PGM_READ_ANY(signed char, byte);
  1554. #define XYZ_CONSTS_FROM_CONFIG(type, array, CONFIG) \
  1555. static const PROGMEM type array##_P[3] = \
  1556. { X_##CONFIG, Y_##CONFIG, Z_##CONFIG }; \
  1557. static inline type array(int axis) \
  1558. { return pgm_read_any(&array##_P[axis]); } \
  1559. type array##_ext(int axis) \
  1560. { return pgm_read_any(&array##_P[axis]); }
  1561. XYZ_CONSTS_FROM_CONFIG(float, base_min_pos, MIN_POS);
  1562. XYZ_CONSTS_FROM_CONFIG(float, base_max_pos, MAX_POS);
  1563. XYZ_CONSTS_FROM_CONFIG(float, base_home_pos, HOME_POS);
  1564. XYZ_CONSTS_FROM_CONFIG(float, max_length, MAX_LENGTH);
  1565. XYZ_CONSTS_FROM_CONFIG(float, home_retract_mm, HOME_RETRACT_MM);
  1566. XYZ_CONSTS_FROM_CONFIG(signed char, home_dir, HOME_DIR);
  1567. static void axis_is_at_home(int axis) {
  1568. current_position[axis] = base_home_pos(axis) + cs.add_homing[axis];
  1569. min_pos[axis] = base_min_pos(axis) + cs.add_homing[axis];
  1570. max_pos[axis] = base_max_pos(axis) + cs.add_homing[axis];
  1571. }
  1572. inline void set_current_to_destination() { memcpy(current_position, destination, sizeof(current_position)); }
  1573. inline void set_destination_to_current() { memcpy(destination, current_position, sizeof(destination)); }
  1574. //! @return original feedmultiply
  1575. static int setup_for_endstop_move(bool enable_endstops_now = true) {
  1576. saved_feedrate = feedrate;
  1577. int l_feedmultiply = feedmultiply;
  1578. feedmultiply = 100;
  1579. previous_millis_cmd = _millis();
  1580. enable_endstops(enable_endstops_now);
  1581. return l_feedmultiply;
  1582. }
  1583. //! @param original_feedmultiply feedmultiply to restore
  1584. static void clean_up_after_endstop_move(int original_feedmultiply) {
  1585. #ifdef ENDSTOPS_ONLY_FOR_HOMING
  1586. enable_endstops(false);
  1587. #endif
  1588. feedrate = saved_feedrate;
  1589. feedmultiply = original_feedmultiply;
  1590. previous_millis_cmd = _millis();
  1591. }
  1592. #ifdef ENABLE_AUTO_BED_LEVELING
  1593. #ifdef AUTO_BED_LEVELING_GRID
  1594. static void set_bed_level_equation_lsq(double *plane_equation_coefficients)
  1595. {
  1596. vector_3 planeNormal = vector_3(-plane_equation_coefficients[0], -plane_equation_coefficients[1], 1);
  1597. planeNormal.debug("planeNormal");
  1598. plan_bed_level_matrix = matrix_3x3::create_look_at(planeNormal);
  1599. //bedLevel.debug("bedLevel");
  1600. //plan_bed_level_matrix.debug("bed level before");
  1601. //vector_3 uncorrected_position = plan_get_position_mm();
  1602. //uncorrected_position.debug("position before");
  1603. vector_3 corrected_position = plan_get_position();
  1604. // corrected_position.debug("position after");
  1605. current_position[X_AXIS] = corrected_position.x;
  1606. current_position[Y_AXIS] = corrected_position.y;
  1607. current_position[Z_AXIS] = corrected_position.z;
  1608. // put the bed at 0 so we don't go below it.
  1609. current_position[Z_AXIS] = cs.zprobe_zoffset; // in the lsq we reach here after raising the extruder due to the loop structure
  1610. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1611. }
  1612. #else // not AUTO_BED_LEVELING_GRID
  1613. static void set_bed_level_equation_3pts(float z_at_pt_1, float z_at_pt_2, float z_at_pt_3) {
  1614. plan_bed_level_matrix.set_to_identity();
  1615. vector_3 pt1 = vector_3(ABL_PROBE_PT_1_X, ABL_PROBE_PT_1_Y, z_at_pt_1);
  1616. vector_3 pt2 = vector_3(ABL_PROBE_PT_2_X, ABL_PROBE_PT_2_Y, z_at_pt_2);
  1617. vector_3 pt3 = vector_3(ABL_PROBE_PT_3_X, ABL_PROBE_PT_3_Y, z_at_pt_3);
  1618. vector_3 from_2_to_1 = (pt1 - pt2).get_normal();
  1619. vector_3 from_2_to_3 = (pt3 - pt2).get_normal();
  1620. vector_3 planeNormal = vector_3::cross(from_2_to_1, from_2_to_3).get_normal();
  1621. planeNormal = vector_3(planeNormal.x, planeNormal.y, abs(planeNormal.z));
  1622. plan_bed_level_matrix = matrix_3x3::create_look_at(planeNormal);
  1623. vector_3 corrected_position = plan_get_position();
  1624. current_position[X_AXIS] = corrected_position.x;
  1625. current_position[Y_AXIS] = corrected_position.y;
  1626. current_position[Z_AXIS] = corrected_position.z;
  1627. // put the bed at 0 so we don't go below it.
  1628. current_position[Z_AXIS] = cs.zprobe_zoffset;
  1629. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1630. }
  1631. #endif // AUTO_BED_LEVELING_GRID
  1632. static void run_z_probe() {
  1633. plan_bed_level_matrix.set_to_identity();
  1634. feedrate = homing_feedrate[Z_AXIS];
  1635. // move down until you find the bed
  1636. float zPosition = -10;
  1637. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder);
  1638. st_synchronize();
  1639. // we have to let the planner know where we are right now as it is not where we said to go.
  1640. zPosition = st_get_position_mm(Z_AXIS);
  1641. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS]);
  1642. // move up the retract distance
  1643. zPosition += home_retract_mm(Z_AXIS);
  1644. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder);
  1645. st_synchronize();
  1646. // move back down slowly to find bed
  1647. feedrate = homing_feedrate[Z_AXIS]/4;
  1648. zPosition -= home_retract_mm(Z_AXIS) * 2;
  1649. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder);
  1650. st_synchronize();
  1651. current_position[Z_AXIS] = st_get_position_mm(Z_AXIS);
  1652. // make sure the planner knows where we are as it may be a bit different than we last said to move to
  1653. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1654. }
  1655. static void do_blocking_move_to(float x, float y, float z) {
  1656. float oldFeedRate = feedrate;
  1657. feedrate = homing_feedrate[Z_AXIS];
  1658. current_position[Z_AXIS] = z;
  1659. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], feedrate/60, active_extruder);
  1660. st_synchronize();
  1661. feedrate = XY_TRAVEL_SPEED;
  1662. current_position[X_AXIS] = x;
  1663. current_position[Y_AXIS] = y;
  1664. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], feedrate/60, active_extruder);
  1665. st_synchronize();
  1666. feedrate = oldFeedRate;
  1667. }
  1668. static void do_blocking_move_relative(float offset_x, float offset_y, float offset_z) {
  1669. do_blocking_move_to(current_position[X_AXIS] + offset_x, current_position[Y_AXIS] + offset_y, current_position[Z_AXIS] + offset_z);
  1670. }
  1671. /// Probe bed height at position (x,y), returns the measured z value
  1672. static float probe_pt(float x, float y, float z_before) {
  1673. // move to right place
  1674. do_blocking_move_to(current_position[X_AXIS], current_position[Y_AXIS], z_before);
  1675. do_blocking_move_to(x - X_PROBE_OFFSET_FROM_EXTRUDER, y - Y_PROBE_OFFSET_FROM_EXTRUDER, current_position[Z_AXIS]);
  1676. run_z_probe();
  1677. float measured_z = current_position[Z_AXIS];
  1678. SERIAL_PROTOCOLRPGM(_T(MSG_BED));
  1679. SERIAL_PROTOCOLPGM(" x: ");
  1680. SERIAL_PROTOCOL(x);
  1681. SERIAL_PROTOCOLPGM(" y: ");
  1682. SERIAL_PROTOCOL(y);
  1683. SERIAL_PROTOCOLPGM(" z: ");
  1684. SERIAL_PROTOCOL(measured_z);
  1685. SERIAL_PROTOCOLPGM("\n");
  1686. return measured_z;
  1687. }
  1688. #endif // #ifdef ENABLE_AUTO_BED_LEVELING
  1689. #ifdef LIN_ADVANCE
  1690. /**
  1691. * M900: Set and/or Get advance K factor and WH/D ratio
  1692. *
  1693. * K<factor> Set advance K factor
  1694. * R<ratio> Set ratio directly (overrides WH/D)
  1695. * W<width> H<height> D<diam> Set ratio from WH/D
  1696. */
  1697. inline void gcode_M900() {
  1698. st_synchronize();
  1699. const float newK = code_seen('K') ? code_value_float() : -1;
  1700. if (newK >= 0) extruder_advance_k = newK;
  1701. float newR = code_seen('R') ? code_value_float() : -1;
  1702. if (newR < 0) {
  1703. const float newD = code_seen('D') ? code_value_float() : -1,
  1704. newW = code_seen('W') ? code_value_float() : -1,
  1705. newH = code_seen('H') ? code_value_float() : -1;
  1706. if (newD >= 0 && newW >= 0 && newH >= 0)
  1707. newR = newD ? (newW * newH) / (sq(newD * 0.5) * M_PI) : 0;
  1708. }
  1709. if (newR >= 0) advance_ed_ratio = newR;
  1710. SERIAL_ECHO_START;
  1711. SERIAL_ECHOPGM("Advance K=");
  1712. SERIAL_ECHOLN(extruder_advance_k);
  1713. SERIAL_ECHOPGM(" E/D=");
  1714. const float ratio = advance_ed_ratio;
  1715. if (ratio) SERIAL_ECHOLN(ratio); else SERIAL_ECHOLNPGM("Auto");
  1716. }
  1717. #endif // LIN_ADVANCE
  1718. bool check_commands() {
  1719. bool end_command_found = false;
  1720. while (buflen)
  1721. {
  1722. if ((code_seen("M84")) || (code_seen("M 84"))) end_command_found = true;
  1723. if (!cmdbuffer_front_already_processed)
  1724. cmdqueue_pop_front();
  1725. cmdbuffer_front_already_processed = false;
  1726. }
  1727. return end_command_found;
  1728. }
  1729. #ifdef TMC2130
  1730. bool calibrate_z_auto()
  1731. {
  1732. //lcd_display_message_fullscreen_P(_T(MSG_CALIBRATE_Z_AUTO));
  1733. lcd_clear();
  1734. lcd_puts_at_P(0, 1, _T(MSG_CALIBRATE_Z_AUTO));
  1735. bool endstops_enabled = enable_endstops(true);
  1736. int axis_up_dir = -home_dir(Z_AXIS);
  1737. tmc2130_home_enter(Z_AXIS_MASK);
  1738. current_position[Z_AXIS] = 0;
  1739. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1740. set_destination_to_current();
  1741. destination[Z_AXIS] += (1.1 * max_length(Z_AXIS) * axis_up_dir);
  1742. feedrate = homing_feedrate[Z_AXIS];
  1743. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate / 60, active_extruder);
  1744. st_synchronize();
  1745. // current_position[axis] = 0;
  1746. // plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1747. tmc2130_home_exit();
  1748. enable_endstops(false);
  1749. current_position[Z_AXIS] = 0;
  1750. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1751. set_destination_to_current();
  1752. destination[Z_AXIS] += 10 * axis_up_dir; //10mm up
  1753. feedrate = homing_feedrate[Z_AXIS] / 2;
  1754. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate / 60, active_extruder);
  1755. st_synchronize();
  1756. enable_endstops(endstops_enabled);
  1757. if (PRINTER_TYPE == PRINTER_MK3) {
  1758. current_position[Z_AXIS] = Z_MAX_POS + 2.0;
  1759. }
  1760. else {
  1761. current_position[Z_AXIS] = Z_MAX_POS + 9.0;
  1762. }
  1763. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1764. return true;
  1765. }
  1766. #endif //TMC2130
  1767. #ifdef TMC2130
  1768. void homeaxis(int axis, uint8_t cnt, uint8_t* pstep)
  1769. #else
  1770. void homeaxis(int axis, uint8_t cnt)
  1771. #endif //TMC2130
  1772. {
  1773. bool endstops_enabled = enable_endstops(true); //RP: endstops should be allways enabled durring homing
  1774. #define HOMEAXIS_DO(LETTER) \
  1775. ((LETTER##_MIN_PIN > -1 && LETTER##_HOME_DIR==-1) || (LETTER##_MAX_PIN > -1 && LETTER##_HOME_DIR==1))
  1776. if ((axis==X_AXIS)?HOMEAXIS_DO(X):(axis==Y_AXIS)?HOMEAXIS_DO(Y):0)
  1777. {
  1778. int axis_home_dir = home_dir(axis);
  1779. feedrate = homing_feedrate[axis];
  1780. #ifdef TMC2130
  1781. tmc2130_home_enter(X_AXIS_MASK << axis);
  1782. #endif //TMC2130
  1783. // Move away a bit, so that the print head does not touch the end position,
  1784. // and the following movement to endstop has a chance to achieve the required velocity
  1785. // for the stall guard to work.
  1786. current_position[axis] = 0;
  1787. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1788. set_destination_to_current();
  1789. // destination[axis] = 11.f;
  1790. destination[axis] = -3.f * axis_home_dir;
  1791. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1792. st_synchronize();
  1793. // Move away from the possible collision with opposite endstop with the collision detection disabled.
  1794. endstops_hit_on_purpose();
  1795. enable_endstops(false);
  1796. current_position[axis] = 0;
  1797. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1798. destination[axis] = 1. * axis_home_dir;
  1799. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1800. st_synchronize();
  1801. // Now continue to move up to the left end stop with the collision detection enabled.
  1802. enable_endstops(true);
  1803. destination[axis] = 1.1 * axis_home_dir * max_length(axis);
  1804. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1805. st_synchronize();
  1806. for (uint8_t i = 0; i < cnt; i++)
  1807. {
  1808. // Move away from the collision to a known distance from the left end stop with the collision detection disabled.
  1809. endstops_hit_on_purpose();
  1810. enable_endstops(false);
  1811. current_position[axis] = 0;
  1812. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1813. destination[axis] = -10.f * axis_home_dir;
  1814. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1815. st_synchronize();
  1816. endstops_hit_on_purpose();
  1817. // Now move left up to the collision, this time with a repeatable velocity.
  1818. enable_endstops(true);
  1819. destination[axis] = 11.f * axis_home_dir;
  1820. #ifdef TMC2130
  1821. feedrate = homing_feedrate[axis];
  1822. #else //TMC2130
  1823. feedrate = homing_feedrate[axis] / 2;
  1824. #endif //TMC2130
  1825. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1826. st_synchronize();
  1827. #ifdef TMC2130
  1828. uint16_t mscnt = tmc2130_rd_MSCNT(axis);
  1829. if (pstep) pstep[i] = mscnt >> 4;
  1830. printf_P(PSTR("%3d step=%2d mscnt=%4d\n"), i, mscnt >> 4, mscnt);
  1831. #endif //TMC2130
  1832. }
  1833. endstops_hit_on_purpose();
  1834. enable_endstops(false);
  1835. #ifdef TMC2130
  1836. uint8_t orig = tmc2130_home_origin[axis];
  1837. uint8_t back = tmc2130_home_bsteps[axis];
  1838. if (tmc2130_home_enabled && (orig <= 63))
  1839. {
  1840. tmc2130_goto_step(axis, orig, 2, 1000, tmc2130_get_res(axis));
  1841. if (back > 0)
  1842. tmc2130_do_steps(axis, back, -axis_home_dir, 1000);
  1843. }
  1844. else
  1845. tmc2130_do_steps(axis, 8, -axis_home_dir, 1000);
  1846. tmc2130_home_exit();
  1847. #endif //TMC2130
  1848. axis_is_at_home(axis);
  1849. axis_known_position[axis] = true;
  1850. // Move from minimum
  1851. #ifdef TMC2130
  1852. float dist = - axis_home_dir * 0.01f * tmc2130_home_fsteps[axis];
  1853. #else //TMC2130
  1854. float dist = - axis_home_dir * 0.01f * 64;
  1855. #endif //TMC2130
  1856. current_position[axis] -= dist;
  1857. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1858. current_position[axis] += dist;
  1859. destination[axis] = current_position[axis];
  1860. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], 0.5f*feedrate/60, active_extruder);
  1861. st_synchronize();
  1862. feedrate = 0.0;
  1863. }
  1864. else if ((axis==Z_AXIS)?HOMEAXIS_DO(Z):0)
  1865. {
  1866. #ifdef TMC2130
  1867. FORCE_HIGH_POWER_START;
  1868. #endif
  1869. int axis_home_dir = home_dir(axis);
  1870. current_position[axis] = 0;
  1871. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1872. destination[axis] = 1.5 * max_length(axis) * axis_home_dir;
  1873. feedrate = homing_feedrate[axis];
  1874. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1875. st_synchronize();
  1876. #ifdef TMC2130
  1877. if (READ(Z_TMC2130_DIAG) != 0) { //Z crash
  1878. FORCE_HIGH_POWER_END;
  1879. kill(_T(MSG_BED_LEVELING_FAILED_POINT_LOW));
  1880. return;
  1881. }
  1882. #endif //TMC2130
  1883. current_position[axis] = 0;
  1884. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1885. destination[axis] = -home_retract_mm(axis) * axis_home_dir;
  1886. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1887. st_synchronize();
  1888. destination[axis] = 2*home_retract_mm(axis) * axis_home_dir;
  1889. feedrate = homing_feedrate[axis]/2 ;
  1890. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1891. st_synchronize();
  1892. #ifdef TMC2130
  1893. if (READ(Z_TMC2130_DIAG) != 0) { //Z crash
  1894. FORCE_HIGH_POWER_END;
  1895. kill(_T(MSG_BED_LEVELING_FAILED_POINT_LOW));
  1896. return;
  1897. }
  1898. #endif //TMC2130
  1899. axis_is_at_home(axis);
  1900. destination[axis] = current_position[axis];
  1901. feedrate = 0.0;
  1902. endstops_hit_on_purpose();
  1903. axis_known_position[axis] = true;
  1904. #ifdef TMC2130
  1905. FORCE_HIGH_POWER_END;
  1906. #endif
  1907. }
  1908. enable_endstops(endstops_enabled);
  1909. }
  1910. /**/
  1911. void home_xy()
  1912. {
  1913. set_destination_to_current();
  1914. homeaxis(X_AXIS);
  1915. homeaxis(Y_AXIS);
  1916. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1917. endstops_hit_on_purpose();
  1918. }
  1919. void refresh_cmd_timeout(void)
  1920. {
  1921. previous_millis_cmd = _millis();
  1922. }
  1923. #ifdef FWRETRACT
  1924. void retract(bool retracting, bool swapretract = false) {
  1925. if(retracting && !retracted[active_extruder]) {
  1926. destination[X_AXIS]=current_position[X_AXIS];
  1927. destination[Y_AXIS]=current_position[Y_AXIS];
  1928. destination[Z_AXIS]=current_position[Z_AXIS];
  1929. destination[E_AXIS]=current_position[E_AXIS];
  1930. current_position[E_AXIS]+=(swapretract?retract_length_swap:cs.retract_length)*float(extrudemultiply)*0.01f;
  1931. plan_set_e_position(current_position[E_AXIS]);
  1932. float oldFeedrate = feedrate;
  1933. feedrate=cs.retract_feedrate*60;
  1934. retracted[active_extruder]=true;
  1935. prepare_move();
  1936. current_position[Z_AXIS]-=cs.retract_zlift;
  1937. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1938. prepare_move();
  1939. feedrate = oldFeedrate;
  1940. } else if(!retracting && retracted[active_extruder]) {
  1941. destination[X_AXIS]=current_position[X_AXIS];
  1942. destination[Y_AXIS]=current_position[Y_AXIS];
  1943. destination[Z_AXIS]=current_position[Z_AXIS];
  1944. destination[E_AXIS]=current_position[E_AXIS];
  1945. current_position[Z_AXIS]+=cs.retract_zlift;
  1946. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1947. current_position[E_AXIS]-=(swapretract?(retract_length_swap+retract_recover_length_swap):(cs.retract_length+cs.retract_recover_length))*float(extrudemultiply)*0.01f;
  1948. plan_set_e_position(current_position[E_AXIS]);
  1949. float oldFeedrate = feedrate;
  1950. feedrate=cs.retract_recover_feedrate*60;
  1951. retracted[active_extruder]=false;
  1952. prepare_move();
  1953. feedrate = oldFeedrate;
  1954. }
  1955. } //retract
  1956. #endif //FWRETRACT
  1957. void trace() {
  1958. //if((eSoundMode==e_SOUND_MODE_LOUD)||(eSoundMode==e_SOUND_MODE_ONCE))
  1959. _tone(BEEPER, 440);
  1960. _delay(25);
  1961. _noTone(BEEPER);
  1962. _delay(20);
  1963. }
  1964. /*
  1965. void ramming() {
  1966. // float tmp[4] = DEFAULT_MAX_FEEDRATE;
  1967. if (current_temperature[0] < 230) {
  1968. //PLA
  1969. max_feedrate[E_AXIS] = 50;
  1970. //current_position[E_AXIS] -= 8;
  1971. //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2100 / 60, active_extruder);
  1972. //current_position[E_AXIS] += 8;
  1973. //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2100 / 60, active_extruder);
  1974. current_position[E_AXIS] += 5.4;
  1975. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2800 / 60, active_extruder);
  1976. current_position[E_AXIS] += 3.2;
  1977. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  1978. current_position[E_AXIS] += 3;
  1979. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3400 / 60, active_extruder);
  1980. st_synchronize();
  1981. max_feedrate[E_AXIS] = 80;
  1982. current_position[E_AXIS] -= 82;
  1983. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 9500 / 60, active_extruder);
  1984. max_feedrate[E_AXIS] = 50;//tmp[E_AXIS];
  1985. current_position[E_AXIS] -= 20;
  1986. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 1200 / 60, active_extruder);
  1987. current_position[E_AXIS] += 5;
  1988. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400 / 60, active_extruder);
  1989. current_position[E_AXIS] += 5;
  1990. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  1991. current_position[E_AXIS] -= 10;
  1992. st_synchronize();
  1993. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  1994. current_position[E_AXIS] += 10;
  1995. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  1996. current_position[E_AXIS] -= 10;
  1997. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 800 / 60, active_extruder);
  1998. current_position[E_AXIS] += 10;
  1999. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 800 / 60, active_extruder);
  2000. current_position[E_AXIS] -= 10;
  2001. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 800 / 60, active_extruder);
  2002. st_synchronize();
  2003. }
  2004. else {
  2005. //ABS
  2006. max_feedrate[E_AXIS] = 50;
  2007. //current_position[E_AXIS] -= 8;
  2008. //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2100 / 60, active_extruder);
  2009. //current_position[E_AXIS] += 8;
  2010. //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2100 / 60, active_extruder);
  2011. current_position[E_AXIS] += 3.1;
  2012. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2000 / 60, active_extruder);
  2013. current_position[E_AXIS] += 3.1;
  2014. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2500 / 60, active_extruder);
  2015. current_position[E_AXIS] += 4;
  2016. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  2017. st_synchronize();
  2018. //current_position[X_AXIS] += 23; //delay
  2019. //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600/60, active_extruder); //delay
  2020. //current_position[X_AXIS] -= 23; //delay
  2021. //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600/60, active_extruder); //delay
  2022. _delay(4700);
  2023. max_feedrate[E_AXIS] = 80;
  2024. current_position[E_AXIS] -= 92;
  2025. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 9900 / 60, active_extruder);
  2026. max_feedrate[E_AXIS] = 50;//tmp[E_AXIS];
  2027. current_position[E_AXIS] -= 5;
  2028. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 800 / 60, active_extruder);
  2029. current_position[E_AXIS] += 5;
  2030. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400 / 60, active_extruder);
  2031. current_position[E_AXIS] -= 5;
  2032. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  2033. st_synchronize();
  2034. current_position[E_AXIS] += 5;
  2035. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  2036. current_position[E_AXIS] -= 5;
  2037. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  2038. current_position[E_AXIS] += 5;
  2039. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  2040. current_position[E_AXIS] -= 5;
  2041. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  2042. st_synchronize();
  2043. }
  2044. }
  2045. */
  2046. #ifdef TMC2130
  2047. void force_high_power_mode(bool start_high_power_section) {
  2048. uint8_t silent;
  2049. silent = eeprom_read_byte((uint8_t*)EEPROM_SILENT);
  2050. if (silent == 1) {
  2051. //we are in silent mode, set to normal mode to enable crash detection
  2052. // Wait for the planner queue to drain and for the stepper timer routine to reach an idle state.
  2053. st_synchronize();
  2054. cli();
  2055. tmc2130_mode = (start_high_power_section == true) ? TMC2130_MODE_NORMAL : TMC2130_MODE_SILENT;
  2056. update_mode_profile();
  2057. tmc2130_init();
  2058. // We may have missed a stepper timer interrupt due to the time spent in the tmc2130_init() routine.
  2059. // Be safe than sorry, reset the stepper timer before re-enabling interrupts.
  2060. st_reset_timer();
  2061. sei();
  2062. }
  2063. }
  2064. #endif //TMC2130
  2065. #ifdef TMC2130
  2066. static void gcode_G28(bool home_x_axis, long home_x_value, bool home_y_axis, long home_y_value, bool home_z_axis, long home_z_value, bool calib, bool without_mbl)
  2067. #else
  2068. static void gcode_G28(bool home_x_axis, long home_x_value, bool home_y_axis, long home_y_value, bool home_z_axis, long home_z_value, bool without_mbl)
  2069. #endif //TMC2130
  2070. {
  2071. st_synchronize();
  2072. #if 0
  2073. SERIAL_ECHOPGM("G28, initial "); print_world_coordinates();
  2074. SERIAL_ECHOPGM("G28, initial "); print_physical_coordinates();
  2075. #endif
  2076. // Flag for the display update routine and to disable the print cancelation during homing.
  2077. homing_flag = true;
  2078. // Which axes should be homed?
  2079. bool home_x = home_x_axis;
  2080. bool home_y = home_y_axis;
  2081. bool home_z = home_z_axis;
  2082. // Either all X,Y,Z codes are present, or none of them.
  2083. bool home_all_axes = home_x == home_y && home_x == home_z;
  2084. if (home_all_axes)
  2085. // No X/Y/Z code provided means to home all axes.
  2086. home_x = home_y = home_z = true;
  2087. //if we are homing all axes, first move z higher to protect heatbed/steel sheet
  2088. if (home_all_axes) {
  2089. current_position[Z_AXIS] += MESH_HOME_Z_SEARCH;
  2090. feedrate = homing_feedrate[Z_AXIS];
  2091. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], feedrate / 60, active_extruder);
  2092. st_synchronize();
  2093. }
  2094. #ifdef ENABLE_AUTO_BED_LEVELING
  2095. plan_bed_level_matrix.set_to_identity(); //Reset the plane ("erase" all leveling data)
  2096. #endif //ENABLE_AUTO_BED_LEVELING
  2097. // Reset world2machine_rotation_and_skew and world2machine_shift, therefore
  2098. // the planner will not perform any adjustments in the XY plane.
  2099. // Wait for the motors to stop and update the current position with the absolute values.
  2100. world2machine_revert_to_uncorrected();
  2101. // For mesh bed leveling deactivate the matrix temporarily.
  2102. // It is necessary to disable the bed leveling for the X and Y homing moves, so that the move is performed
  2103. // in a single axis only.
  2104. // In case of re-homing the X or Y axes only, the mesh bed leveling is restored after G28.
  2105. #ifdef MESH_BED_LEVELING
  2106. uint8_t mbl_was_active = mbl.active;
  2107. mbl.active = 0;
  2108. current_position[Z_AXIS] = st_get_position_mm(Z_AXIS);
  2109. #endif
  2110. // Reset baby stepping to zero, if the babystepping has already been loaded before. The babystepsTodo value will be
  2111. // consumed during the first movements following this statement.
  2112. if (home_z)
  2113. babystep_undo();
  2114. saved_feedrate = feedrate;
  2115. int l_feedmultiply = feedmultiply;
  2116. feedmultiply = 100;
  2117. previous_millis_cmd = _millis();
  2118. enable_endstops(true);
  2119. memcpy(destination, current_position, sizeof(destination));
  2120. feedrate = 0.0;
  2121. #if Z_HOME_DIR > 0 // If homing away from BED do Z first
  2122. if(home_z)
  2123. homeaxis(Z_AXIS);
  2124. #endif
  2125. #ifdef QUICK_HOME
  2126. // In the quick mode, if both x and y are to be homed, a diagonal move will be performed initially.
  2127. if(home_x && home_y) //first diagonal move
  2128. {
  2129. current_position[X_AXIS] = 0;current_position[Y_AXIS] = 0;
  2130. int x_axis_home_dir = home_dir(X_AXIS);
  2131. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2132. destination[X_AXIS] = 1.5 * max_length(X_AXIS) * x_axis_home_dir;destination[Y_AXIS] = 1.5 * max_length(Y_AXIS) * home_dir(Y_AXIS);
  2133. feedrate = homing_feedrate[X_AXIS];
  2134. if(homing_feedrate[Y_AXIS]<feedrate)
  2135. feedrate = homing_feedrate[Y_AXIS];
  2136. if (max_length(X_AXIS) > max_length(Y_AXIS)) {
  2137. feedrate *= sqrt(pow(max_length(Y_AXIS) / max_length(X_AXIS), 2) + 1);
  2138. } else {
  2139. feedrate *= sqrt(pow(max_length(X_AXIS) / max_length(Y_AXIS), 2) + 1);
  2140. }
  2141. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  2142. st_synchronize();
  2143. axis_is_at_home(X_AXIS);
  2144. axis_is_at_home(Y_AXIS);
  2145. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2146. destination[X_AXIS] = current_position[X_AXIS];
  2147. destination[Y_AXIS] = current_position[Y_AXIS];
  2148. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  2149. feedrate = 0.0;
  2150. st_synchronize();
  2151. endstops_hit_on_purpose();
  2152. current_position[X_AXIS] = destination[X_AXIS];
  2153. current_position[Y_AXIS] = destination[Y_AXIS];
  2154. current_position[Z_AXIS] = destination[Z_AXIS];
  2155. }
  2156. #endif /* QUICK_HOME */
  2157. #ifdef TMC2130
  2158. if(home_x)
  2159. {
  2160. if (!calib)
  2161. homeaxis(X_AXIS);
  2162. else
  2163. tmc2130_home_calibrate(X_AXIS);
  2164. }
  2165. if(home_y)
  2166. {
  2167. if (!calib)
  2168. homeaxis(Y_AXIS);
  2169. else
  2170. tmc2130_home_calibrate(Y_AXIS);
  2171. }
  2172. #else //TMC2130
  2173. if(home_x) homeaxis(X_AXIS);
  2174. if(home_y) homeaxis(Y_AXIS);
  2175. #endif //TMC2130
  2176. if(home_x_axis && home_x_value != 0)
  2177. current_position[X_AXIS]=home_x_value+cs.add_homing[X_AXIS];
  2178. if(home_y_axis && home_y_value != 0)
  2179. current_position[Y_AXIS]=home_y_value+cs.add_homing[Y_AXIS];
  2180. #if Z_HOME_DIR < 0 // If homing towards BED do Z last
  2181. #ifndef Z_SAFE_HOMING
  2182. if(home_z) {
  2183. #if defined (Z_RAISE_BEFORE_HOMING) && (Z_RAISE_BEFORE_HOMING > 0)
  2184. destination[Z_AXIS] = Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS) * (-1); // Set destination away from bed
  2185. feedrate = max_feedrate[Z_AXIS];
  2186. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
  2187. st_synchronize();
  2188. #endif // defined (Z_RAISE_BEFORE_HOMING) && (Z_RAISE_BEFORE_HOMING > 0)
  2189. #if (defined(MESH_BED_LEVELING) && !defined(MK1BP)) // If Mesh bed leveling, move X&Y to safe position for home
  2190. if (!(axis_known_position[X_AXIS] && axis_known_position[Y_AXIS] ))
  2191. {
  2192. homeaxis(X_AXIS);
  2193. homeaxis(Y_AXIS);
  2194. }
  2195. // 1st mesh bed leveling measurement point, corrected.
  2196. world2machine_initialize();
  2197. world2machine(pgm_read_float(bed_ref_points_4), pgm_read_float(bed_ref_points_4+1), destination[X_AXIS], destination[Y_AXIS]);
  2198. world2machine_reset();
  2199. if (destination[Y_AXIS] < Y_MIN_POS)
  2200. destination[Y_AXIS] = Y_MIN_POS;
  2201. destination[Z_AXIS] = MESH_HOME_Z_SEARCH; // Set destination away from bed
  2202. feedrate = homing_feedrate[Z_AXIS]/10;
  2203. current_position[Z_AXIS] = 0;
  2204. enable_endstops(false);
  2205. #ifdef DEBUG_BUILD
  2206. SERIAL_ECHOLNPGM("plan_set_position()");
  2207. MYSERIAL.println(current_position[X_AXIS]);MYSERIAL.println(current_position[Y_AXIS]);
  2208. MYSERIAL.println(current_position[Z_AXIS]);MYSERIAL.println(current_position[E_AXIS]);
  2209. #endif
  2210. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2211. #ifdef DEBUG_BUILD
  2212. SERIAL_ECHOLNPGM("plan_buffer_line()");
  2213. MYSERIAL.println(destination[X_AXIS]);MYSERIAL.println(destination[Y_AXIS]);
  2214. MYSERIAL.println(destination[Z_AXIS]);MYSERIAL.println(destination[E_AXIS]);
  2215. MYSERIAL.println(feedrate);MYSERIAL.println(active_extruder);
  2216. #endif
  2217. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
  2218. st_synchronize();
  2219. current_position[X_AXIS] = destination[X_AXIS];
  2220. current_position[Y_AXIS] = destination[Y_AXIS];
  2221. enable_endstops(true);
  2222. endstops_hit_on_purpose();
  2223. homeaxis(Z_AXIS);
  2224. #else // MESH_BED_LEVELING
  2225. homeaxis(Z_AXIS);
  2226. #endif // MESH_BED_LEVELING
  2227. }
  2228. #else // defined(Z_SAFE_HOMING): Z Safe mode activated.
  2229. if(home_all_axes) {
  2230. destination[X_AXIS] = round(Z_SAFE_HOMING_X_POINT - X_PROBE_OFFSET_FROM_EXTRUDER);
  2231. destination[Y_AXIS] = round(Z_SAFE_HOMING_Y_POINT - Y_PROBE_OFFSET_FROM_EXTRUDER);
  2232. destination[Z_AXIS] = Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS) * (-1); // Set destination away from bed
  2233. feedrate = XY_TRAVEL_SPEED/60;
  2234. current_position[Z_AXIS] = 0;
  2235. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2236. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
  2237. st_synchronize();
  2238. current_position[X_AXIS] = destination[X_AXIS];
  2239. current_position[Y_AXIS] = destination[Y_AXIS];
  2240. homeaxis(Z_AXIS);
  2241. }
  2242. // Let's see if X and Y are homed and probe is inside bed area.
  2243. if(home_z) {
  2244. if ( (axis_known_position[X_AXIS]) && (axis_known_position[Y_AXIS]) \
  2245. && (current_position[X_AXIS]+X_PROBE_OFFSET_FROM_EXTRUDER >= X_MIN_POS) \
  2246. && (current_position[X_AXIS]+X_PROBE_OFFSET_FROM_EXTRUDER <= X_MAX_POS) \
  2247. && (current_position[Y_AXIS]+Y_PROBE_OFFSET_FROM_EXTRUDER >= Y_MIN_POS) \
  2248. && (current_position[Y_AXIS]+Y_PROBE_OFFSET_FROM_EXTRUDER <= Y_MAX_POS)) {
  2249. current_position[Z_AXIS] = 0;
  2250. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2251. destination[Z_AXIS] = Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS) * (-1); // Set destination away from bed
  2252. feedrate = max_feedrate[Z_AXIS];
  2253. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
  2254. st_synchronize();
  2255. homeaxis(Z_AXIS);
  2256. } else if (!((axis_known_position[X_AXIS]) && (axis_known_position[Y_AXIS]))) {
  2257. LCD_MESSAGERPGM(MSG_POSITION_UNKNOWN);
  2258. SERIAL_ECHO_START;
  2259. SERIAL_ECHOLNRPGM(MSG_POSITION_UNKNOWN);
  2260. } else {
  2261. LCD_MESSAGERPGM(MSG_ZPROBE_OUT);
  2262. SERIAL_ECHO_START;
  2263. SERIAL_ECHOLNRPGM(MSG_ZPROBE_OUT);
  2264. }
  2265. }
  2266. #endif // Z_SAFE_HOMING
  2267. #endif // Z_HOME_DIR < 0
  2268. if(home_z_axis && home_z_value != 0)
  2269. current_position[Z_AXIS]=home_z_value+cs.add_homing[Z_AXIS];
  2270. #ifdef ENABLE_AUTO_BED_LEVELING
  2271. if(home_z)
  2272. current_position[Z_AXIS] += cs.zprobe_zoffset; //Add Z_Probe offset (the distance is negative)
  2273. #endif
  2274. // Set the planner and stepper routine positions.
  2275. // At this point the mesh bed leveling and world2machine corrections are disabled and current_position
  2276. // contains the machine coordinates.
  2277. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2278. #ifdef ENDSTOPS_ONLY_FOR_HOMING
  2279. enable_endstops(false);
  2280. #endif
  2281. feedrate = saved_feedrate;
  2282. feedmultiply = l_feedmultiply;
  2283. previous_millis_cmd = _millis();
  2284. endstops_hit_on_purpose();
  2285. #ifndef MESH_BED_LEVELING
  2286. // If MESH_BED_LEVELING is not active, then it is the original Prusa i3.
  2287. // Offer the user to load the baby step value, which has been adjusted at the previous print session.
  2288. if(card.sdprinting && eeprom_read_word((uint16_t *)EEPROM_BABYSTEP_Z))
  2289. lcd_adjust_z();
  2290. #endif
  2291. // Load the machine correction matrix
  2292. world2machine_initialize();
  2293. // and correct the current_position XY axes to match the transformed coordinate system.
  2294. world2machine_update_current();
  2295. #if (defined(MESH_BED_LEVELING) && !defined(MK1BP))
  2296. if (home_x_axis || home_y_axis || without_mbl || home_z_axis)
  2297. {
  2298. if (! home_z && mbl_was_active) {
  2299. // Re-enable the mesh bed leveling if only the X and Y axes were re-homed.
  2300. mbl.active = true;
  2301. // and re-adjust the current logical Z axis with the bed leveling offset applicable at the current XY position.
  2302. current_position[Z_AXIS] -= mbl.get_z(st_get_position_mm(X_AXIS), st_get_position_mm(Y_AXIS));
  2303. }
  2304. }
  2305. else
  2306. {
  2307. st_synchronize();
  2308. homing_flag = false;
  2309. }
  2310. #endif
  2311. if (farm_mode) { prusa_statistics(20); };
  2312. homing_flag = false;
  2313. #if 0
  2314. SERIAL_ECHOPGM("G28, final "); print_world_coordinates();
  2315. SERIAL_ECHOPGM("G28, final "); print_physical_coordinates();
  2316. SERIAL_ECHOPGM("G28, final "); print_mesh_bed_leveling_table();
  2317. #endif
  2318. }
  2319. static void gcode_G28(bool home_x_axis, bool home_y_axis, bool home_z_axis)
  2320. {
  2321. #ifdef TMC2130
  2322. gcode_G28(home_x_axis, 0, home_y_axis, 0, home_z_axis, 0, false, true);
  2323. #else
  2324. gcode_G28(home_x_axis, 0, home_y_axis, 0, home_z_axis, 0, true);
  2325. #endif //TMC2130
  2326. }
  2327. void adjust_bed_reset()
  2328. {
  2329. eeprom_update_byte((unsigned char*)EEPROM_BED_CORRECTION_VALID, 1);
  2330. eeprom_update_byte((unsigned char*)EEPROM_BED_CORRECTION_LEFT, 0);
  2331. eeprom_update_byte((unsigned char*)EEPROM_BED_CORRECTION_RIGHT, 0);
  2332. eeprom_update_byte((unsigned char*)EEPROM_BED_CORRECTION_FRONT, 0);
  2333. eeprom_update_byte((unsigned char*)EEPROM_BED_CORRECTION_REAR, 0);
  2334. }
  2335. //! @brief Calibrate XYZ
  2336. //! @param onlyZ if true, calibrate only Z axis
  2337. //! @param verbosity_level
  2338. //! @retval true Succeeded
  2339. //! @retval false Failed
  2340. bool gcode_M45(bool onlyZ, int8_t verbosity_level)
  2341. {
  2342. bool final_result = false;
  2343. #ifdef TMC2130
  2344. FORCE_HIGH_POWER_START;
  2345. #endif // TMC2130
  2346. // Only Z calibration?
  2347. if (!onlyZ)
  2348. {
  2349. setTargetBed(0);
  2350. setAllTargetHotends(0);
  2351. adjust_bed_reset(); //reset bed level correction
  2352. }
  2353. // Disable the default update procedure of the display. We will do a modal dialog.
  2354. lcd_update_enable(false);
  2355. // Let the planner use the uncorrected coordinates.
  2356. mbl.reset();
  2357. // Reset world2machine_rotation_and_skew and world2machine_shift, therefore
  2358. // the planner will not perform any adjustments in the XY plane.
  2359. // Wait for the motors to stop and update the current position with the absolute values.
  2360. world2machine_revert_to_uncorrected();
  2361. // Reset the baby step value applied without moving the axes.
  2362. babystep_reset();
  2363. // Mark all axes as in a need for homing.
  2364. memset(axis_known_position, 0, sizeof(axis_known_position));
  2365. // Home in the XY plane.
  2366. //set_destination_to_current();
  2367. int l_feedmultiply = setup_for_endstop_move();
  2368. lcd_display_message_fullscreen_P(_T(MSG_AUTO_HOME));
  2369. home_xy();
  2370. enable_endstops(false);
  2371. current_position[X_AXIS] += 5;
  2372. current_position[Y_AXIS] += 5;
  2373. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[Z_AXIS] / 40, active_extruder);
  2374. st_synchronize();
  2375. // Let the user move the Z axes up to the end stoppers.
  2376. #ifdef TMC2130
  2377. if (calibrate_z_auto())
  2378. {
  2379. #else //TMC2130
  2380. if (lcd_calibrate_z_end_stop_manual(onlyZ))
  2381. {
  2382. #endif //TMC2130
  2383. lcd_show_fullscreen_message_and_wait_P(_T(MSG_CONFIRM_NOZZLE_CLEAN));
  2384. if(onlyZ){
  2385. lcd_display_message_fullscreen_P(_T(MSG_MEASURE_BED_REFERENCE_HEIGHT_LINE1));
  2386. lcd_set_cursor(0, 3);
  2387. lcd_print(1);
  2388. lcd_puts_P(_T(MSG_MEASURE_BED_REFERENCE_HEIGHT_LINE2));
  2389. }else{
  2390. //lcd_show_fullscreen_message_and_wait_P(_T(MSG_PAPER));
  2391. lcd_display_message_fullscreen_P(_T(MSG_FIND_BED_OFFSET_AND_SKEW_LINE1));
  2392. lcd_set_cursor(0, 2);
  2393. lcd_print(1);
  2394. lcd_puts_P(_T(MSG_FIND_BED_OFFSET_AND_SKEW_LINE2));
  2395. }
  2396. refresh_cmd_timeout();
  2397. #ifndef STEEL_SHEET
  2398. if (((degHotend(0) > MAX_HOTEND_TEMP_CALIBRATION) || (degBed() > MAX_BED_TEMP_CALIBRATION)) && (!onlyZ))
  2399. {
  2400. lcd_wait_for_cool_down();
  2401. }
  2402. #endif //STEEL_SHEET
  2403. if(!onlyZ)
  2404. {
  2405. KEEPALIVE_STATE(PAUSED_FOR_USER);
  2406. #ifdef STEEL_SHEET
  2407. bool result = lcd_show_fullscreen_message_yes_no_and_wait_P(_T(MSG_STEEL_SHEET_CHECK), false, false);
  2408. if(result) lcd_show_fullscreen_message_and_wait_P(_T(MSG_REMOVE_STEEL_SHEET));
  2409. #endif //STEEL_SHEET
  2410. lcd_show_fullscreen_message_and_wait_P(_T(MSG_PAPER));
  2411. KEEPALIVE_STATE(IN_HANDLER);
  2412. lcd_display_message_fullscreen_P(_T(MSG_FIND_BED_OFFSET_AND_SKEW_LINE1));
  2413. lcd_set_cursor(0, 2);
  2414. lcd_print(1);
  2415. lcd_puts_P(_T(MSG_FIND_BED_OFFSET_AND_SKEW_LINE2));
  2416. }
  2417. bool endstops_enabled = enable_endstops(false);
  2418. current_position[Z_AXIS] -= 1; //move 1mm down with disabled endstop
  2419. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[Z_AXIS] / 40, active_extruder);
  2420. st_synchronize();
  2421. // Move the print head close to the bed.
  2422. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  2423. enable_endstops(true);
  2424. #ifdef TMC2130
  2425. tmc2130_home_enter(Z_AXIS_MASK);
  2426. #endif //TMC2130
  2427. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[Z_AXIS] / 40, active_extruder);
  2428. st_synchronize();
  2429. #ifdef TMC2130
  2430. tmc2130_home_exit();
  2431. #endif //TMC2130
  2432. enable_endstops(endstops_enabled);
  2433. if (st_get_position_mm(Z_AXIS) == MESH_HOME_Z_SEARCH)
  2434. {
  2435. if (onlyZ)
  2436. {
  2437. clean_up_after_endstop_move(l_feedmultiply);
  2438. // Z only calibration.
  2439. // Load the machine correction matrix
  2440. world2machine_initialize();
  2441. // and correct the current_position to match the transformed coordinate system.
  2442. world2machine_update_current();
  2443. //FIXME
  2444. bool result = sample_mesh_and_store_reference();
  2445. if (result)
  2446. {
  2447. if (calibration_status() == CALIBRATION_STATUS_Z_CALIBRATION)
  2448. // Shipped, the nozzle height has been set already. The user can start printing now.
  2449. calibration_status_store(CALIBRATION_STATUS_CALIBRATED);
  2450. final_result = true;
  2451. // babystep_apply();
  2452. }
  2453. }
  2454. else
  2455. {
  2456. // Reset the baby step value and the baby step applied flag.
  2457. calibration_status_store(CALIBRATION_STATUS_XYZ_CALIBRATION);
  2458. eeprom_update_word((uint16_t*)EEPROM_BABYSTEP_Z, 0);
  2459. // Complete XYZ calibration.
  2460. uint8_t point_too_far_mask = 0;
  2461. BedSkewOffsetDetectionResultType result = find_bed_offset_and_skew(verbosity_level, point_too_far_mask);
  2462. clean_up_after_endstop_move(l_feedmultiply);
  2463. // Print head up.
  2464. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  2465. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[Z_AXIS] / 40, active_extruder);
  2466. st_synchronize();
  2467. //#ifndef NEW_XYZCAL
  2468. if (result >= 0)
  2469. {
  2470. #ifdef HEATBED_V2
  2471. sample_z();
  2472. #else //HEATBED_V2
  2473. point_too_far_mask = 0;
  2474. // Second half: The fine adjustment.
  2475. // Let the planner use the uncorrected coordinates.
  2476. mbl.reset();
  2477. world2machine_reset();
  2478. // Home in the XY plane.
  2479. int l_feedmultiply = setup_for_endstop_move();
  2480. home_xy();
  2481. result = improve_bed_offset_and_skew(1, verbosity_level, point_too_far_mask);
  2482. clean_up_after_endstop_move(l_feedmultiply);
  2483. // Print head up.
  2484. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  2485. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[Z_AXIS] / 40, active_extruder);
  2486. st_synchronize();
  2487. // if (result >= 0) babystep_apply();
  2488. #endif //HEATBED_V2
  2489. }
  2490. //#endif //NEW_XYZCAL
  2491. lcd_update_enable(true);
  2492. lcd_update(2);
  2493. lcd_bed_calibration_show_result(result, point_too_far_mask);
  2494. if (result >= 0)
  2495. {
  2496. // Calibration valid, the machine should be able to print. Advise the user to run the V2Calibration.gcode.
  2497. calibration_status_store(CALIBRATION_STATUS_LIVE_ADJUST);
  2498. if (eeprom_read_byte((uint8_t*)EEPROM_WIZARD_ACTIVE) != 1) lcd_show_fullscreen_message_and_wait_P(_T(MSG_BABYSTEP_Z_NOT_SET));
  2499. final_result = true;
  2500. }
  2501. }
  2502. #ifdef TMC2130
  2503. tmc2130_home_exit();
  2504. #endif
  2505. }
  2506. else
  2507. {
  2508. lcd_show_fullscreen_message_and_wait_P(PSTR("Calibration failed! Check the axes and run again."));
  2509. final_result = false;
  2510. }
  2511. }
  2512. else
  2513. {
  2514. // Timeouted.
  2515. }
  2516. lcd_update_enable(true);
  2517. #ifdef TMC2130
  2518. FORCE_HIGH_POWER_END;
  2519. #endif // TMC2130
  2520. return final_result;
  2521. }
  2522. void gcode_M114()
  2523. {
  2524. SERIAL_PROTOCOLPGM("X:");
  2525. SERIAL_PROTOCOL(current_position[X_AXIS]);
  2526. SERIAL_PROTOCOLPGM(" Y:");
  2527. SERIAL_PROTOCOL(current_position[Y_AXIS]);
  2528. SERIAL_PROTOCOLPGM(" Z:");
  2529. SERIAL_PROTOCOL(current_position[Z_AXIS]);
  2530. SERIAL_PROTOCOLPGM(" E:");
  2531. SERIAL_PROTOCOL(current_position[E_AXIS]);
  2532. SERIAL_PROTOCOLRPGM(_n(" Count X: "));////MSG_COUNT_X c=0 r=0
  2533. SERIAL_PROTOCOL(float(st_get_position(X_AXIS)) / cs.axis_steps_per_unit[X_AXIS]);
  2534. SERIAL_PROTOCOLPGM(" Y:");
  2535. SERIAL_PROTOCOL(float(st_get_position(Y_AXIS)) / cs.axis_steps_per_unit[Y_AXIS]);
  2536. SERIAL_PROTOCOLPGM(" Z:");
  2537. SERIAL_PROTOCOL(float(st_get_position(Z_AXIS)) / cs.axis_steps_per_unit[Z_AXIS]);
  2538. SERIAL_PROTOCOLPGM(" E:");
  2539. SERIAL_PROTOCOL(float(st_get_position(E_AXIS)) / cs.axis_steps_per_unit[E_AXIS]);
  2540. SERIAL_PROTOCOLLN("");
  2541. }
  2542. static void gcode_M600(bool automatic, float x_position, float y_position, float z_shift, float e_shift, float /*e_shift_late*/)
  2543. {
  2544. st_synchronize();
  2545. float lastpos[4];
  2546. if (farm_mode)
  2547. {
  2548. prusa_statistics(22);
  2549. }
  2550. //First backup current position and settings
  2551. int feedmultiplyBckp = feedmultiply;
  2552. float HotendTempBckp = degTargetHotend(active_extruder);
  2553. int fanSpeedBckp = fanSpeed;
  2554. lastpos[X_AXIS] = current_position[X_AXIS];
  2555. lastpos[Y_AXIS] = current_position[Y_AXIS];
  2556. lastpos[Z_AXIS] = current_position[Z_AXIS];
  2557. lastpos[E_AXIS] = current_position[E_AXIS];
  2558. //Retract E
  2559. current_position[E_AXIS] += e_shift;
  2560. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS],
  2561. current_position[E_AXIS], FILAMENTCHANGE_RFEED, active_extruder);
  2562. st_synchronize();
  2563. //Lift Z
  2564. current_position[Z_AXIS] += z_shift;
  2565. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS],
  2566. current_position[E_AXIS], FILAMENTCHANGE_ZFEED, active_extruder);
  2567. st_synchronize();
  2568. //Move XY to side
  2569. current_position[X_AXIS] = x_position;
  2570. current_position[Y_AXIS] = y_position;
  2571. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS],
  2572. current_position[E_AXIS], FILAMENTCHANGE_XYFEED, active_extruder);
  2573. st_synchronize();
  2574. //Beep, manage nozzle heater and wait for user to start unload filament
  2575. if(!mmu_enabled) M600_wait_for_user(HotendTempBckp);
  2576. lcd_change_fil_state = 0;
  2577. // Unload filament
  2578. if (mmu_enabled) extr_unload(); //unload just current filament for multimaterial printers (used also in M702)
  2579. else unload_filament(); //unload filament for single material (used also in M702)
  2580. //finish moves
  2581. st_synchronize();
  2582. if (!mmu_enabled)
  2583. {
  2584. KEEPALIVE_STATE(PAUSED_FOR_USER);
  2585. lcd_change_fil_state = lcd_show_fullscreen_message_yes_no_and_wait_P(_i("Was filament unload successful?"),
  2586. false, true); ////MSG_UNLOAD_SUCCESSFUL c=20 r=2
  2587. if (lcd_change_fil_state == 0)
  2588. {
  2589. lcd_clear();
  2590. lcd_set_cursor(0, 2);
  2591. lcd_puts_P(_T(MSG_PLEASE_WAIT));
  2592. current_position[X_AXIS] -= 100;
  2593. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS],
  2594. current_position[E_AXIS], FILAMENTCHANGE_XYFEED, active_extruder);
  2595. st_synchronize();
  2596. lcd_show_fullscreen_message_and_wait_P(_i("Please open idler and remove filament manually."));////MSG_CHECK_IDLER c=20 r=4
  2597. }
  2598. }
  2599. if (mmu_enabled)
  2600. {
  2601. if (!automatic) {
  2602. if (saved_printing) mmu_eject_filament(mmu_extruder, false); //if M600 was invoked by filament senzor (FINDA) eject filament so user can easily remove it
  2603. mmu_M600_wait_and_beep();
  2604. if (saved_printing) {
  2605. lcd_clear();
  2606. lcd_set_cursor(0, 2);
  2607. lcd_puts_P(_T(MSG_PLEASE_WAIT));
  2608. mmu_command(MmuCmd::R0);
  2609. manage_response(false, false);
  2610. }
  2611. }
  2612. mmu_M600_load_filament(automatic, HotendTempBckp);
  2613. }
  2614. else
  2615. M600_load_filament();
  2616. if (!automatic) M600_check_state(HotendTempBckp);
  2617. lcd_update_enable(true);
  2618. //Not let's go back to print
  2619. fanSpeed = fanSpeedBckp;
  2620. //Feed a little of filament to stabilize pressure
  2621. if (!automatic)
  2622. {
  2623. current_position[E_AXIS] += FILAMENTCHANGE_RECFEED;
  2624. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS],
  2625. current_position[E_AXIS], FILAMENTCHANGE_EXFEED, active_extruder);
  2626. }
  2627. //Move XY back
  2628. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS],
  2629. FILAMENTCHANGE_XYFEED, active_extruder);
  2630. st_synchronize();
  2631. //Move Z back
  2632. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], current_position[E_AXIS],
  2633. FILAMENTCHANGE_ZFEED, active_extruder);
  2634. st_synchronize();
  2635. //Set E position to original
  2636. plan_set_e_position(lastpos[E_AXIS]);
  2637. memcpy(current_position, lastpos, sizeof(lastpos));
  2638. memcpy(destination, current_position, sizeof(current_position));
  2639. //Recover feed rate
  2640. feedmultiply = feedmultiplyBckp;
  2641. char cmd[9];
  2642. sprintf_P(cmd, PSTR("M220 S%i"), feedmultiplyBckp);
  2643. enquecommand(cmd);
  2644. #ifdef IR_SENSOR
  2645. //this will set fsensor_watch_autoload to correct value and prevent possible M701 gcode enqueuing when M600 is finished
  2646. fsensor_check_autoload();
  2647. #endif //IR_SENSOR
  2648. lcd_setstatuspgm(_T(WELCOME_MSG));
  2649. custom_message_type = CUSTOM_MSG_TYPE_STATUS;
  2650. }
  2651. void gcode_M701()
  2652. {
  2653. printf_P(PSTR("gcode_M701 begin\n"));
  2654. if (mmu_enabled)
  2655. {
  2656. extr_adj(tmp_extruder);//loads current extruder
  2657. mmu_extruder = tmp_extruder;
  2658. }
  2659. else
  2660. {
  2661. enable_z();
  2662. custom_message_type = CUSTOM_MSG_TYPE_F_LOAD;
  2663. #ifdef FSENSOR_QUALITY
  2664. fsensor_oq_meassure_start(40);
  2665. #endif //FSENSOR_QUALITY
  2666. lcd_setstatuspgm(_T(MSG_LOADING_FILAMENT));
  2667. current_position[E_AXIS] += 40;
  2668. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400 / 60, active_extruder); //fast sequence
  2669. st_synchronize();
  2670. if (current_position[Z_AXIS] < 20) current_position[Z_AXIS] += 30;
  2671. current_position[E_AXIS] += 30;
  2672. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400 / 60, active_extruder); //fast sequence
  2673. load_filament_final_feed(); //slow sequence
  2674. st_synchronize();
  2675. if((eSoundMode==e_SOUND_MODE_LOUD)||(eSoundMode==e_SOUND_MODE_ONCE)) _tone(BEEPER, 500);
  2676. delay_keep_alive(50);
  2677. _noTone(BEEPER);
  2678. if (!farm_mode && loading_flag) {
  2679. lcd_load_filament_color_check();
  2680. }
  2681. lcd_update_enable(true);
  2682. lcd_update(2);
  2683. lcd_setstatuspgm(_T(WELCOME_MSG));
  2684. disable_z();
  2685. loading_flag = false;
  2686. custom_message_type = CUSTOM_MSG_TYPE_STATUS;
  2687. #ifdef FSENSOR_QUALITY
  2688. fsensor_oq_meassure_stop();
  2689. if (!fsensor_oq_result())
  2690. {
  2691. bool disable = lcd_show_fullscreen_message_yes_no_and_wait_P(_i("Fil. sensor response is poor, disable it?"), false, true);
  2692. lcd_update_enable(true);
  2693. lcd_update(2);
  2694. if (disable)
  2695. fsensor_disable();
  2696. }
  2697. #endif //FSENSOR_QUALITY
  2698. }
  2699. }
  2700. /**
  2701. * @brief Get serial number from 32U2 processor
  2702. *
  2703. * Typical format of S/N is:CZPX0917X003XC13518
  2704. *
  2705. * Command operates only in farm mode, if not in farm mode, "Not in farm mode." is written to MYSERIAL.
  2706. *
  2707. * Send command ;S to serial port 0 to retrieve serial number stored in 32U2 processor,
  2708. * reply is transmitted to serial port 1 character by character.
  2709. * Operation takes typically 23 ms. If the retransmit is not finished until 100 ms,
  2710. * it is interrupted, so less, or no characters are retransmitted, only newline character is send
  2711. * in any case.
  2712. */
  2713. static void gcode_PRUSA_SN()
  2714. {
  2715. if (farm_mode) {
  2716. selectedSerialPort = 0;
  2717. putchar(';');
  2718. putchar('S');
  2719. int numbersRead = 0;
  2720. ShortTimer timeout;
  2721. timeout.start();
  2722. while (numbersRead < 19) {
  2723. while (MSerial.available() > 0) {
  2724. uint8_t serial_char = MSerial.read();
  2725. selectedSerialPort = 1;
  2726. putchar(serial_char);
  2727. numbersRead++;
  2728. selectedSerialPort = 0;
  2729. }
  2730. if (timeout.expired(100u)) break;
  2731. }
  2732. selectedSerialPort = 1;
  2733. putchar('\n');
  2734. #if 0
  2735. for (int b = 0; b < 3; b++) {
  2736. _tone(BEEPER, 110);
  2737. _delay(50);
  2738. _noTone(BEEPER);
  2739. _delay(50);
  2740. }
  2741. #endif
  2742. } else {
  2743. puts_P(_N("Not in farm mode."));
  2744. }
  2745. }
  2746. #ifdef BACKLASH_X
  2747. extern uint8_t st_backlash_x;
  2748. #endif //BACKLASH_X
  2749. #ifdef BACKLASH_Y
  2750. extern uint8_t st_backlash_y;
  2751. #endif //BACKLASH_Y
  2752. //! @brief Parse and process commands
  2753. //!
  2754. //! look here for descriptions of G-codes: http://linuxcnc.org/handbook/gcode/g-code.html
  2755. //! http://objects.reprap.org/wiki/Mendel_User_Manual:_RepRapGCodes
  2756. //!
  2757. //! Implemented Codes
  2758. //! -------------------
  2759. //!
  2760. //!@n PRUSA CODES
  2761. //!@n P F - Returns FW versions
  2762. //!@n P R - Returns revision of printer
  2763. //!
  2764. //!@n G0 -> G1
  2765. //!@n G1 - Coordinated Movement X Y Z E
  2766. //!@n G2 - CW ARC
  2767. //!@n G3 - CCW ARC
  2768. //!@n G4 - Dwell S<seconds> or P<milliseconds>
  2769. //!@n G10 - retract filament according to settings of M207
  2770. //!@n G11 - retract recover filament according to settings of M208
  2771. //!@n G28 - Home all Axis
  2772. //!@n G29 - Detailed Z-Probe, probes the bed at 3 or more points. Will fail if you haven't homed yet.
  2773. //!@n G30 - Single Z Probe, probes bed at current XY location.
  2774. //!@n G31 - Dock sled (Z_PROBE_SLED only)
  2775. //!@n G32 - Undock sled (Z_PROBE_SLED only)
  2776. //!@n G80 - Automatic mesh bed leveling
  2777. //!@n G81 - Print bed profile
  2778. //!@n G90 - Use Absolute Coordinates
  2779. //!@n G91 - Use Relative Coordinates
  2780. //!@n G92 - Set current position to coordinates given
  2781. //!
  2782. //!@n M Codes
  2783. //!@n M0 - Unconditional stop - Wait for user to press a button on the LCD
  2784. //!@n M1 - Same as M0
  2785. //!@n M17 - Enable/Power all stepper motors
  2786. //!@n M18 - Disable all stepper motors; same as M84
  2787. //!@n M20 - List SD card
  2788. //!@n M21 - Init SD card
  2789. //!@n M22 - Release SD card
  2790. //!@n M23 - Select SD file (M23 filename.g)
  2791. //!@n M24 - Start/resume SD print
  2792. //!@n M25 - Pause SD print
  2793. //!@n M26 - Set SD position in bytes (M26 S12345)
  2794. //!@n M27 - Report SD print status
  2795. //!@n M28 - Start SD write (M28 filename.g)
  2796. //!@n M29 - Stop SD write
  2797. //!@n M30 - Delete file from SD (M30 filename.g)
  2798. //!@n M31 - Output time since last M109 or SD card start to serial
  2799. //!@n M32 - Select file and start SD print (Can be used _while_ printing from SD card files):
  2800. //! syntax "M32 /path/filename#", or "M32 S<startpos bytes> !filename#"
  2801. //! Call gcode file : "M32 P !filename#" and return to caller file after finishing (similar to #include).
  2802. //! The '#' is necessary when calling from within sd files, as it stops buffer prereading
  2803. //!@n M42 - Change pin status via gcode Use M42 Px Sy to set pin x to value y, when omitting Px the onboard led will be used.
  2804. //!@n M73 - Show percent done and print time remaining
  2805. //!@n M80 - Turn on Power Supply
  2806. //!@n M81 - Turn off Power Supply
  2807. //!@n M82 - Set E codes absolute (default)
  2808. //!@n M83 - Set E codes relative while in Absolute Coordinates (G90) mode
  2809. //!@n M84 - Disable steppers until next move,
  2810. //! or use S<seconds> to specify an inactivity timeout, after which the steppers will be disabled. S0 to disable the timeout.
  2811. //!@n M85 - Set inactivity shutdown timer with parameter S<seconds>. To disable set zero (default)
  2812. //!@n M86 - Set safety timer expiration time with parameter S<seconds>; M86 S0 will disable safety timer
  2813. //!@n M92 - Set axis_steps_per_unit - same syntax as G92
  2814. //!@n M104 - Set extruder target temp
  2815. //!@n M105 - Read current temp
  2816. //!@n M106 - Fan on
  2817. //!@n M107 - Fan off
  2818. //!@n M109 - Sxxx Wait for extruder current temp to reach target temp. Waits only when heating
  2819. //! Rxxx Wait for extruder current temp to reach target temp. Waits when heating and cooling
  2820. //! IF AUTOTEMP is enabled, S<mintemp> B<maxtemp> F<factor>. Exit autotemp by any M109 without F
  2821. //!@n M112 - Emergency stop
  2822. //!@n M113 - Get or set the timeout interval for Host Keepalive "busy" messages
  2823. //!@n M114 - Output current position to serial port
  2824. //!@n M115 - Capabilities string
  2825. //!@n M117 - display message
  2826. //!@n M119 - Output Endstop status to serial port
  2827. //!@n M126 - Solenoid Air Valve Open (BariCUDA support by jmil)
  2828. //!@n M127 - Solenoid Air Valve Closed (BariCUDA vent to atmospheric pressure by jmil)
  2829. //!@n M128 - EtoP Open (BariCUDA EtoP = electricity to air pressure transducer by jmil)
  2830. //!@n M129 - EtoP Closed (BariCUDA EtoP = electricity to air pressure transducer by jmil)
  2831. //!@n M140 - Set bed target temp
  2832. //!@n M150 - Set BlinkM Color Output R: Red<0-255> U(!): Green<0-255> B: Blue<0-255> over i2c, G for green does not work.
  2833. //!@n M190 - Sxxx Wait for bed current temp to reach target temp. Waits only when heating
  2834. //! Rxxx Wait for bed current temp to reach target temp. Waits when heating and cooling
  2835. //!@n M200 D<millimeters>- set filament diameter and set E axis units to cubic millimeters (use S0 to set back to millimeters).
  2836. //!@n M201 - Set max acceleration in units/s^2 for print moves (M201 X1000 Y1000)
  2837. //!@n M202 - Set max acceleration in units/s^2 for travel moves (M202 X1000 Y1000) Unused in Marlin!!
  2838. //!@n M203 - Set maximum feedrate that your machine can sustain (M203 X200 Y200 Z300 E10000) in mm/sec
  2839. //!@n M204 - Set default acceleration: S normal moves T filament only moves (M204 S3000 T7000) in mm/sec^2 also sets minimum segment time in ms (B20000) to prevent buffer under-runs and M20 minimum feedrate
  2840. //!@n M205 - advanced settings: minimum travel speed S=while printing T=travel only, B=minimum segment time X= maximum xy jerk, Z=maximum Z jerk, E=maximum E jerk
  2841. //!@n M206 - set additional homing offset
  2842. //!@n M207 - set retract length S[positive mm] F[feedrate mm/min] Z[additional zlift/hop], stays in mm regardless of M200 setting
  2843. //!@n M208 - set recover=unretract length S[positive mm surplus to the M207 S*] F[feedrate mm/sec]
  2844. //!@n M209 - S<1=true/0=false> enable automatic retract detect if the slicer did not support G10/11: every normal extrude-only move will be classified as retract depending on the direction.
  2845. //!@n M218 - set hotend offset (in mm): T<extruder_number> X<offset_on_X> Y<offset_on_Y>
  2846. //!@n M220 S<factor in percent>- set speed factor override percentage
  2847. //!@n M221 S<factor in percent>- set extrude factor override percentage
  2848. //!@n M226 P<pin number> S<pin state>- Wait until the specified pin reaches the state required
  2849. //!@n M240 - Trigger a camera to take a photograph
  2850. //!@n M250 - Set LCD contrast C<contrast value> (value 0..63)
  2851. //!@n M280 - set servo position absolute. P: servo index, S: angle or microseconds
  2852. //!@n M300 - Play beep sound S<frequency Hz> P<duration ms>
  2853. //!@n M301 - Set PID parameters P I and D
  2854. //!@n M302 - Allow cold extrudes, or set the minimum extrude S<temperature>.
  2855. //!@n M303 - PID relay autotune S<temperature> sets the target temperature. (default target temperature = 150C)
  2856. //!@n M304 - Set bed PID parameters P I and D
  2857. //!@n M400 - Finish all moves
  2858. //!@n M401 - Lower z-probe if present
  2859. //!@n M402 - Raise z-probe if present
  2860. //!@n M404 - N<dia in mm> Enter the nominal filament width (3mm, 1.75mm ) or will display nominal filament width without parameters
  2861. //!@n M405 - Turn on Filament Sensor extrusion control. Optional D<delay in cm> to set delay in centimeters between sensor and extruder
  2862. //!@n M406 - Turn off Filament Sensor extrusion control
  2863. //!@n M407 - Displays measured filament diameter
  2864. //!@n M500 - stores parameters in EEPROM
  2865. //!@n M501 - reads parameters from EEPROM (if you need reset them after you changed them temporarily).
  2866. //!@n M502 - reverts to the default "factory settings". You still need to store them in EEPROM afterwards if you want to.
  2867. //!@n M503 - print the current settings (from memory not from EEPROM)
  2868. //!@n M509 - force language selection on next restart
  2869. //!@n M540 - Use S[0|1] to enable or disable the stop SD card print on endstop hit (requires ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED)
  2870. //!@n M600 - Pause for filament change X[pos] Y[pos] Z[relative lift] E[initial retract] L[later retract distance for removal]
  2871. //!@n M605 - Set dual x-carriage movement mode: S<mode> [ X<duplication x-offset> R<duplication temp offset> ]
  2872. //!@n M860 - Wait for PINDA thermistor to reach target temperature.
  2873. //!@n M861 - Set / Read PINDA temperature compensation offsets
  2874. //!@n M900 - Set LIN_ADVANCE options, if enabled. See Configuration_adv.h for details.
  2875. //!@n M907 - Set digital trimpot motor current using axis codes.
  2876. //!@n M908 - Control digital trimpot directly.
  2877. //!@n M350 - Set microstepping mode.
  2878. //!@n M351 - Toggle MS1 MS2 pins directly.
  2879. //!
  2880. //!@n M928 - Start SD logging (M928 filename.g) - ended by M29
  2881. //!@n M999 - Restart after being stopped by error
  2882. void process_commands()
  2883. {
  2884. if (!buflen) return; //empty command
  2885. #ifdef FILAMENT_RUNOUT_SUPPORT
  2886. SET_INPUT(FR_SENS);
  2887. #endif
  2888. #ifdef CMDBUFFER_DEBUG
  2889. SERIAL_ECHOPGM("Processing a GCODE command: ");
  2890. SERIAL_ECHO(cmdbuffer+bufindr+CMDHDRSIZE);
  2891. SERIAL_ECHOLNPGM("");
  2892. SERIAL_ECHOPGM("In cmdqueue: ");
  2893. SERIAL_ECHO(buflen);
  2894. SERIAL_ECHOLNPGM("");
  2895. #endif /* CMDBUFFER_DEBUG */
  2896. unsigned long codenum; //throw away variable
  2897. char *starpos = NULL;
  2898. #ifdef ENABLE_AUTO_BED_LEVELING
  2899. float x_tmp, y_tmp, z_tmp, real_z;
  2900. #endif
  2901. // PRUSA GCODES
  2902. KEEPALIVE_STATE(IN_HANDLER);
  2903. #ifdef SNMM
  2904. float tmp_motor[3] = DEFAULT_PWM_MOTOR_CURRENT;
  2905. float tmp_motor_loud[3] = DEFAULT_PWM_MOTOR_CURRENT_LOUD;
  2906. int8_t SilentMode;
  2907. #endif
  2908. if (code_seen("M117")) { //moved to highest priority place to be able to to print strings which includes "G", "PRUSA" and "^"
  2909. starpos = (strchr(strchr_pointer + 5, '*'));
  2910. if (starpos != NULL)
  2911. *(starpos) = '\0';
  2912. lcd_setstatus(strchr_pointer + 5);
  2913. }
  2914. #ifdef TMC2130
  2915. else if (strncmp_P(CMDBUFFER_CURRENT_STRING, PSTR("CRASH_"), 6) == 0)
  2916. {
  2917. if(code_seen("CRASH_DETECTED")) //! CRASH_DETECTED
  2918. {
  2919. uint8_t mask = 0;
  2920. if (code_seen('X')) mask |= X_AXIS_MASK;
  2921. if (code_seen('Y')) mask |= Y_AXIS_MASK;
  2922. crashdet_detected(mask);
  2923. }
  2924. else if(code_seen("CRASH_RECOVER")) //! CRASH_RECOVER
  2925. crashdet_recover();
  2926. else if(code_seen("CRASH_CANCEL")) //! CRASH_CANCEL
  2927. crashdet_cancel();
  2928. }
  2929. else if (strncmp_P(CMDBUFFER_CURRENT_STRING, PSTR("TMC_"), 4) == 0)
  2930. {
  2931. if (strncmp_P(CMDBUFFER_CURRENT_STRING + 4, PSTR("SET_WAVE_"), 9) == 0) //! TMC_SET_WAVE_
  2932. {
  2933. uint8_t axis = *(CMDBUFFER_CURRENT_STRING + 13);
  2934. axis = (axis == 'E')?3:(axis - 'X');
  2935. if (axis < 4)
  2936. {
  2937. uint8_t fac = (uint8_t)strtol(CMDBUFFER_CURRENT_STRING + 14, NULL, 10);
  2938. tmc2130_set_wave(axis, 247, fac);
  2939. }
  2940. }
  2941. else if (strncmp_P(CMDBUFFER_CURRENT_STRING + 4, PSTR("SET_STEP_"), 9) == 0) //! TMC_SET_STEP_
  2942. {
  2943. uint8_t axis = *(CMDBUFFER_CURRENT_STRING + 13);
  2944. axis = (axis == 'E')?3:(axis - 'X');
  2945. if (axis < 4)
  2946. {
  2947. uint8_t step = (uint8_t)strtol(CMDBUFFER_CURRENT_STRING + 14, NULL, 10);
  2948. uint16_t res = tmc2130_get_res(axis);
  2949. tmc2130_goto_step(axis, step & (4*res - 1), 2, 1000, res);
  2950. }
  2951. }
  2952. else if (strncmp_P(CMDBUFFER_CURRENT_STRING + 4, PSTR("SET_CHOP_"), 9) == 0) //! TMC_SET_CHOP_
  2953. {
  2954. uint8_t axis = *(CMDBUFFER_CURRENT_STRING + 13);
  2955. axis = (axis == 'E')?3:(axis - 'X');
  2956. if (axis < 4)
  2957. {
  2958. uint8_t chop0 = tmc2130_chopper_config[axis].toff;
  2959. uint8_t chop1 = tmc2130_chopper_config[axis].hstr;
  2960. uint8_t chop2 = tmc2130_chopper_config[axis].hend;
  2961. uint8_t chop3 = tmc2130_chopper_config[axis].tbl;
  2962. char* str_end = 0;
  2963. if (CMDBUFFER_CURRENT_STRING[14])
  2964. {
  2965. chop0 = (uint8_t)strtol(CMDBUFFER_CURRENT_STRING + 14, &str_end, 10) & 15;
  2966. if (str_end && *str_end)
  2967. {
  2968. chop1 = (uint8_t)strtol(str_end, &str_end, 10) & 7;
  2969. if (str_end && *str_end)
  2970. {
  2971. chop2 = (uint8_t)strtol(str_end, &str_end, 10) & 15;
  2972. if (str_end && *str_end)
  2973. chop3 = (uint8_t)strtol(str_end, &str_end, 10) & 3;
  2974. }
  2975. }
  2976. }
  2977. tmc2130_chopper_config[axis].toff = chop0;
  2978. tmc2130_chopper_config[axis].hstr = chop1 & 7;
  2979. tmc2130_chopper_config[axis].hend = chop2 & 15;
  2980. tmc2130_chopper_config[axis].tbl = chop3 & 3;
  2981. tmc2130_setup_chopper(axis, tmc2130_mres[axis], tmc2130_current_h[axis], tmc2130_current_r[axis]);
  2982. //printf_P(_N("TMC_SET_CHOP_%c %hhd %hhd %hhd %hhd\n"), "xyze"[axis], chop0, chop1, chop2, chop3);
  2983. }
  2984. }
  2985. }
  2986. #ifdef BACKLASH_X
  2987. else if (strncmp_P(CMDBUFFER_CURRENT_STRING, PSTR("BACKLASH_X"), 10) == 0)
  2988. {
  2989. uint8_t bl = (uint8_t)strtol(CMDBUFFER_CURRENT_STRING + 10, NULL, 10);
  2990. st_backlash_x = bl;
  2991. printf_P(_N("st_backlash_x = %hhd\n"), st_backlash_x);
  2992. }
  2993. #endif //BACKLASH_X
  2994. #ifdef BACKLASH_Y
  2995. else if (strncmp_P(CMDBUFFER_CURRENT_STRING, PSTR("BACKLASH_Y"), 10) == 0)
  2996. {
  2997. uint8_t bl = (uint8_t)strtol(CMDBUFFER_CURRENT_STRING + 10, NULL, 10);
  2998. st_backlash_y = bl;
  2999. printf_P(_N("st_backlash_y = %hhd\n"), st_backlash_y);
  3000. }
  3001. #endif //BACKLASH_Y
  3002. #endif //TMC2130
  3003. else if(code_seen("PRUSA")){
  3004. if (code_seen("Ping")) { //! PRUSA Ping
  3005. if (farm_mode) {
  3006. PingTime = _millis();
  3007. //MYSERIAL.print(farm_no); MYSERIAL.println(": OK");
  3008. }
  3009. }
  3010. else if (code_seen("PRN")) { //! PRUSA PRN
  3011. printf_P(_N("%d"), status_number);
  3012. }else if (code_seen("FAN")) { //! PRUSA FAN
  3013. printf_P(_N("E0:%d RPM\nPRN0:%d RPM\n"), 60*fan_speed[0], 60*fan_speed[1]);
  3014. }else if (code_seen("fn")) { //! PRUSA fn
  3015. if (farm_mode) {
  3016. printf_P(_N("%d"), farm_no);
  3017. }
  3018. else {
  3019. puts_P(_N("Not in farm mode."));
  3020. }
  3021. }
  3022. else if (code_seen("thx")) //! PRUSA thx
  3023. {
  3024. no_response = false;
  3025. }
  3026. else if (code_seen("uvlo")) //! PRUSA uvlo
  3027. {
  3028. eeprom_update_byte((uint8_t*)EEPROM_UVLO,0);
  3029. enquecommand_P(PSTR("M24"));
  3030. }
  3031. #ifdef FILAMENT_SENSOR
  3032. else if (code_seen("fsensor_recover")) //! PRUSA fsensor_recover
  3033. {
  3034. fsensor_restore_print_and_continue();
  3035. }
  3036. #endif //FILAMENT_SENSOR
  3037. else if (code_seen("MMURES")) //! PRUSA MMURES
  3038. {
  3039. mmu_reset();
  3040. }
  3041. else if (code_seen("RESET")) { //! PRUSA RESET
  3042. // careful!
  3043. if (farm_mode) {
  3044. #ifdef WATCHDOG
  3045. boot_app_magic = BOOT_APP_MAGIC;
  3046. boot_app_flags = BOOT_APP_FLG_RUN;
  3047. wdt_enable(WDTO_15MS);
  3048. cli();
  3049. while(1);
  3050. #else //WATCHDOG
  3051. asm volatile("jmp 0x3E000");
  3052. #endif //WATCHDOG
  3053. }
  3054. else {
  3055. MYSERIAL.println("Not in farm mode.");
  3056. }
  3057. }else if (code_seen("fv")) { //! PRUSA fv
  3058. // get file version
  3059. #ifdef SDSUPPORT
  3060. card.openFile(strchr_pointer + 3,true);
  3061. while (true) {
  3062. uint16_t readByte = card.get();
  3063. MYSERIAL.write(readByte);
  3064. if (readByte=='\n') {
  3065. break;
  3066. }
  3067. }
  3068. card.closefile();
  3069. #endif // SDSUPPORT
  3070. } else if (code_seen("M28")) { //! PRUSA M28
  3071. trace();
  3072. prusa_sd_card_upload = true;
  3073. card.openFile(strchr_pointer+4,false);
  3074. } else if (code_seen("SN")) { //! PRUSA SN
  3075. gcode_PRUSA_SN();
  3076. } else if(code_seen("Fir")){ //! PRUSA Fir
  3077. SERIAL_PROTOCOLLN(FW_VERSION_FULL);
  3078. } else if(code_seen("Rev")){ //! PRUSA Rev
  3079. SERIAL_PROTOCOLLN(FILAMENT_SIZE "-" ELECTRONICS "-" NOZZLE_TYPE );
  3080. } else if(code_seen("Lang")) { //! PRUSA Lang
  3081. lang_reset();
  3082. } else if(code_seen("Lz")) { //! PRUSA Lz
  3083. EEPROM_save_B(EEPROM_BABYSTEP_Z,0);
  3084. } else if(code_seen("Beat")) { //! PRUSA Beat
  3085. // Kick farm link timer
  3086. kicktime = _millis();
  3087. } else if(code_seen("FR")) { //! PRUSA FR
  3088. // Factory full reset
  3089. factory_reset(0);
  3090. }
  3091. //else if (code_seen('Cal')) {
  3092. // lcd_calibration();
  3093. // }
  3094. }
  3095. else if (code_seen('^')) {
  3096. // nothing, this is a version line
  3097. } else if(code_seen('G'))
  3098. {
  3099. gcode_in_progress = (int)code_value();
  3100. // printf_P(_N("BEGIN G-CODE=%u\n"), gcode_in_progress);
  3101. switch (gcode_in_progress)
  3102. {
  3103. case 0: // G0 -> G1
  3104. case 1: // G1
  3105. if(Stopped == false) {
  3106. #ifdef FILAMENT_RUNOUT_SUPPORT
  3107. if(READ(FR_SENS)){
  3108. int feedmultiplyBckp=feedmultiply;
  3109. float target[4];
  3110. float lastpos[4];
  3111. target[X_AXIS]=current_position[X_AXIS];
  3112. target[Y_AXIS]=current_position[Y_AXIS];
  3113. target[Z_AXIS]=current_position[Z_AXIS];
  3114. target[E_AXIS]=current_position[E_AXIS];
  3115. lastpos[X_AXIS]=current_position[X_AXIS];
  3116. lastpos[Y_AXIS]=current_position[Y_AXIS];
  3117. lastpos[Z_AXIS]=current_position[Z_AXIS];
  3118. lastpos[E_AXIS]=current_position[E_AXIS];
  3119. //retract by E
  3120. target[E_AXIS]+= FILAMENTCHANGE_FIRSTRETRACT ;
  3121. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 400, active_extruder);
  3122. target[Z_AXIS]+= FILAMENTCHANGE_ZADD ;
  3123. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 300, active_extruder);
  3124. target[X_AXIS]= FILAMENTCHANGE_XPOS ;
  3125. target[Y_AXIS]= FILAMENTCHANGE_YPOS ;
  3126. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 70, active_extruder);
  3127. target[E_AXIS]+= FILAMENTCHANGE_FINALRETRACT ;
  3128. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 20, active_extruder);
  3129. //finish moves
  3130. st_synchronize();
  3131. //disable extruder steppers so filament can be removed
  3132. disable_e0();
  3133. disable_e1();
  3134. disable_e2();
  3135. _delay(100);
  3136. //LCD_ALERTMESSAGEPGM(_T(MSG_FILAMENTCHANGE));
  3137. uint8_t cnt=0;
  3138. int counterBeep = 0;
  3139. lcd_wait_interact();
  3140. while(!lcd_clicked()){
  3141. cnt++;
  3142. manage_heater();
  3143. manage_inactivity(true);
  3144. //lcd_update(0);
  3145. if(cnt==0)
  3146. {
  3147. #if BEEPER > 0
  3148. if (counterBeep== 500){
  3149. counterBeep = 0;
  3150. }
  3151. SET_OUTPUT(BEEPER);
  3152. if (counterBeep== 0){
  3153. if((eSoundMode==e_SOUND_MODE_LOUD)||(eSoundMode==e_SOUND_MODE_ONCE))
  3154. WRITE(BEEPER,HIGH);
  3155. }
  3156. if (counterBeep== 20){
  3157. WRITE(BEEPER,LOW);
  3158. }
  3159. counterBeep++;
  3160. #else
  3161. #endif
  3162. }
  3163. }
  3164. WRITE(BEEPER,LOW);
  3165. target[E_AXIS]+= FILAMENTCHANGE_FIRSTFEED ;
  3166. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 20, active_extruder);
  3167. target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  3168. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder);
  3169. lcd_change_fil_state = 0;
  3170. lcd_loading_filament();
  3171. while ((lcd_change_fil_state == 0)||(lcd_change_fil_state != 1)){
  3172. lcd_change_fil_state = 0;
  3173. lcd_alright();
  3174. switch(lcd_change_fil_state){
  3175. case 2:
  3176. target[E_AXIS]+= FILAMENTCHANGE_FIRSTFEED ;
  3177. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 20, active_extruder);
  3178. target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  3179. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder);
  3180. lcd_loading_filament();
  3181. break;
  3182. case 3:
  3183. target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  3184. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder);
  3185. lcd_loading_color();
  3186. break;
  3187. default:
  3188. lcd_change_success();
  3189. break;
  3190. }
  3191. }
  3192. target[E_AXIS]+= 5;
  3193. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder);
  3194. target[E_AXIS]+= FILAMENTCHANGE_FIRSTRETRACT;
  3195. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 400, active_extruder);
  3196. //current_position[E_AXIS]=target[E_AXIS]; //the long retract of L is compensated by manual filament feeding
  3197. //plan_set_e_position(current_position[E_AXIS]);
  3198. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 70, active_extruder); //should do nothing
  3199. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], target[Z_AXIS], target[E_AXIS], 70, active_extruder); //move xy back
  3200. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], target[E_AXIS], 200, active_extruder); //move z back
  3201. target[E_AXIS]= target[E_AXIS] - FILAMENTCHANGE_FIRSTRETRACT;
  3202. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], target[E_AXIS], 5, active_extruder); //final untretract
  3203. plan_set_e_position(lastpos[E_AXIS]);
  3204. feedmultiply=feedmultiplyBckp;
  3205. char cmd[9];
  3206. sprintf_P(cmd, PSTR("M220 S%i"), feedmultiplyBckp);
  3207. enquecommand(cmd);
  3208. }
  3209. #endif
  3210. get_coordinates(); // For X Y Z E F
  3211. if (total_filament_used > ((current_position[E_AXIS] - destination[E_AXIS]) * 100)) { //protection against total_filament_used overflow
  3212. total_filament_used = total_filament_used + ((destination[E_AXIS] - current_position[E_AXIS]) * 100);
  3213. }
  3214. #ifdef FWRETRACT
  3215. if(cs.autoretract_enabled)
  3216. if( !(code_seen('X') || code_seen('Y') || code_seen('Z')) && code_seen('E')) {
  3217. float echange=destination[E_AXIS]-current_position[E_AXIS];
  3218. if((echange<-MIN_RETRACT && !retracted[active_extruder]) || (echange>MIN_RETRACT && retracted[active_extruder])) { //move appears to be an attempt to retract or recover
  3219. current_position[E_AXIS] = destination[E_AXIS]; //hide the slicer-generated retract/recover from calculations
  3220. plan_set_e_position(current_position[E_AXIS]); //AND from the planner
  3221. retract(!retracted[active_extruder]);
  3222. return;
  3223. }
  3224. }
  3225. #endif //FWRETRACT
  3226. prepare_move();
  3227. //ClearToSend();
  3228. }
  3229. break;
  3230. case 2: // G2 - CW ARC
  3231. if(Stopped == false) {
  3232. get_arc_coordinates();
  3233. prepare_arc_move(true);
  3234. }
  3235. break;
  3236. case 3: // G3 - CCW ARC
  3237. if(Stopped == false) {
  3238. get_arc_coordinates();
  3239. prepare_arc_move(false);
  3240. }
  3241. break;
  3242. case 4: // G4 dwell
  3243. codenum = 0;
  3244. if(code_seen('P')) codenum = code_value(); // milliseconds to wait
  3245. if(code_seen('S')) codenum = code_value() * 1000; // seconds to wait
  3246. if(codenum != 0) LCD_MESSAGERPGM(_n("Sleep..."));////MSG_DWELL c=0 r=0
  3247. st_synchronize();
  3248. codenum += _millis(); // keep track of when we started waiting
  3249. previous_millis_cmd = _millis();
  3250. while(_millis() < codenum) {
  3251. manage_heater();
  3252. manage_inactivity();
  3253. lcd_update(0);
  3254. }
  3255. break;
  3256. #ifdef FWRETRACT
  3257. case 10: // G10 retract
  3258. #if EXTRUDERS > 1
  3259. retracted_swap[active_extruder]=(code_seen('S') && code_value_long() == 1); // checks for swap retract argument
  3260. retract(true,retracted_swap[active_extruder]);
  3261. #else
  3262. retract(true);
  3263. #endif
  3264. break;
  3265. case 11: // G11 retract_recover
  3266. #if EXTRUDERS > 1
  3267. retract(false,retracted_swap[active_extruder]);
  3268. #else
  3269. retract(false);
  3270. #endif
  3271. break;
  3272. #endif //FWRETRACT
  3273. case 28: //G28 Home all Axis one at a time
  3274. {
  3275. long home_x_value = 0;
  3276. long home_y_value = 0;
  3277. long home_z_value = 0;
  3278. // Which axes should be homed?
  3279. bool home_x = code_seen(axis_codes[X_AXIS]);
  3280. home_x_value = code_value_long();
  3281. bool home_y = code_seen(axis_codes[Y_AXIS]);
  3282. home_y_value = code_value_long();
  3283. bool home_z = code_seen(axis_codes[Z_AXIS]);
  3284. home_z_value = code_value_long();
  3285. bool without_mbl = code_seen('W');
  3286. // calibrate?
  3287. #ifdef TMC2130
  3288. bool calib = code_seen('C');
  3289. gcode_G28(home_x, home_x_value, home_y, home_y_value, home_z, home_z_value, calib, without_mbl);
  3290. #else
  3291. gcode_G28(home_x, home_x_value, home_y, home_y_value, home_z, home_z_value, without_mbl);
  3292. #endif //TMC2130
  3293. if ((home_x || home_y || without_mbl || home_z) == false) {
  3294. // Push the commands to the front of the message queue in the reverse order!
  3295. // There shall be always enough space reserved for these commands.
  3296. goto case_G80;
  3297. }
  3298. break;
  3299. }
  3300. #ifdef ENABLE_AUTO_BED_LEVELING
  3301. case 29: // G29 Detailed Z-Probe, probes the bed at 3 or more points.
  3302. {
  3303. #if Z_MIN_PIN == -1
  3304. #error "You must have a Z_MIN endstop in order to enable Auto Bed Leveling feature! Z_MIN_PIN must point to a valid hardware pin."
  3305. #endif
  3306. // Prevent user from running a G29 without first homing in X and Y
  3307. if (! (axis_known_position[X_AXIS] && axis_known_position[Y_AXIS]) )
  3308. {
  3309. LCD_MESSAGERPGM(MSG_POSITION_UNKNOWN);
  3310. SERIAL_ECHO_START;
  3311. SERIAL_ECHOLNRPGM(MSG_POSITION_UNKNOWN);
  3312. break; // abort G29, since we don't know where we are
  3313. }
  3314. st_synchronize();
  3315. // make sure the bed_level_rotation_matrix is identity or the planner will get it incorectly
  3316. //vector_3 corrected_position = plan_get_position_mm();
  3317. //corrected_position.debug("position before G29");
  3318. plan_bed_level_matrix.set_to_identity();
  3319. vector_3 uncorrected_position = plan_get_position();
  3320. //uncorrected_position.debug("position durring G29");
  3321. current_position[X_AXIS] = uncorrected_position.x;
  3322. current_position[Y_AXIS] = uncorrected_position.y;
  3323. current_position[Z_AXIS] = uncorrected_position.z;
  3324. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  3325. int l_feedmultiply = setup_for_endstop_move();
  3326. feedrate = homing_feedrate[Z_AXIS];
  3327. #ifdef AUTO_BED_LEVELING_GRID
  3328. // probe at the points of a lattice grid
  3329. int xGridSpacing = (RIGHT_PROBE_BED_POSITION - LEFT_PROBE_BED_POSITION) / (AUTO_BED_LEVELING_GRID_POINTS-1);
  3330. int yGridSpacing = (BACK_PROBE_BED_POSITION - FRONT_PROBE_BED_POSITION) / (AUTO_BED_LEVELING_GRID_POINTS-1);
  3331. // solve the plane equation ax + by + d = z
  3332. // A is the matrix with rows [x y 1] for all the probed points
  3333. // B is the vector of the Z positions
  3334. // the normal vector to the plane is formed by the coefficients of the plane equation in the standard form, which is Vx*x+Vy*y+Vz*z+d = 0
  3335. // so Vx = -a Vy = -b Vz = 1 (we want the vector facing towards positive Z
  3336. // "A" matrix of the linear system of equations
  3337. double eqnAMatrix[AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS*3];
  3338. // "B" vector of Z points
  3339. double eqnBVector[AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS];
  3340. int probePointCounter = 0;
  3341. bool zig = true;
  3342. for (int yProbe=FRONT_PROBE_BED_POSITION; yProbe <= BACK_PROBE_BED_POSITION; yProbe += yGridSpacing)
  3343. {
  3344. int xProbe, xInc;
  3345. if (zig)
  3346. {
  3347. xProbe = LEFT_PROBE_BED_POSITION;
  3348. //xEnd = RIGHT_PROBE_BED_POSITION;
  3349. xInc = xGridSpacing;
  3350. zig = false;
  3351. } else // zag
  3352. {
  3353. xProbe = RIGHT_PROBE_BED_POSITION;
  3354. //xEnd = LEFT_PROBE_BED_POSITION;
  3355. xInc = -xGridSpacing;
  3356. zig = true;
  3357. }
  3358. for (int xCount=0; xCount < AUTO_BED_LEVELING_GRID_POINTS; xCount++)
  3359. {
  3360. float z_before;
  3361. if (probePointCounter == 0)
  3362. {
  3363. // raise before probing
  3364. z_before = Z_RAISE_BEFORE_PROBING;
  3365. } else
  3366. {
  3367. // raise extruder
  3368. z_before = current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS;
  3369. }
  3370. float measured_z = probe_pt(xProbe, yProbe, z_before);
  3371. eqnBVector[probePointCounter] = measured_z;
  3372. eqnAMatrix[probePointCounter + 0*AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS] = xProbe;
  3373. eqnAMatrix[probePointCounter + 1*AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS] = yProbe;
  3374. eqnAMatrix[probePointCounter + 2*AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS] = 1;
  3375. probePointCounter++;
  3376. xProbe += xInc;
  3377. }
  3378. }
  3379. clean_up_after_endstop_move(l_feedmultiply);
  3380. // solve lsq problem
  3381. double *plane_equation_coefficients = qr_solve(AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS, 3, eqnAMatrix, eqnBVector);
  3382. SERIAL_PROTOCOLPGM("Eqn coefficients: a: ");
  3383. SERIAL_PROTOCOL(plane_equation_coefficients[0]);
  3384. SERIAL_PROTOCOLPGM(" b: ");
  3385. SERIAL_PROTOCOL(plane_equation_coefficients[1]);
  3386. SERIAL_PROTOCOLPGM(" d: ");
  3387. SERIAL_PROTOCOLLN(plane_equation_coefficients[2]);
  3388. set_bed_level_equation_lsq(plane_equation_coefficients);
  3389. free(plane_equation_coefficients);
  3390. #else // AUTO_BED_LEVELING_GRID not defined
  3391. // Probe at 3 arbitrary points
  3392. // probe 1
  3393. float z_at_pt_1 = probe_pt(ABL_PROBE_PT_1_X, ABL_PROBE_PT_1_Y, Z_RAISE_BEFORE_PROBING);
  3394. // probe 2
  3395. float z_at_pt_2 = probe_pt(ABL_PROBE_PT_2_X, ABL_PROBE_PT_2_Y, current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS);
  3396. // probe 3
  3397. float z_at_pt_3 = probe_pt(ABL_PROBE_PT_3_X, ABL_PROBE_PT_3_Y, current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS);
  3398. clean_up_after_endstop_move(l_feedmultiply);
  3399. set_bed_level_equation_3pts(z_at_pt_1, z_at_pt_2, z_at_pt_3);
  3400. #endif // AUTO_BED_LEVELING_GRID
  3401. st_synchronize();
  3402. // The following code correct the Z height difference from z-probe position and hotend tip position.
  3403. // The Z height on homing is measured by Z-Probe, but the probe is quite far from the hotend.
  3404. // When the bed is uneven, this height must be corrected.
  3405. real_z = float(st_get_position(Z_AXIS))/cs.axis_steps_per_unit[Z_AXIS]; //get the real Z (since the auto bed leveling is already correcting the plane)
  3406. x_tmp = current_position[X_AXIS] + X_PROBE_OFFSET_FROM_EXTRUDER;
  3407. y_tmp = current_position[Y_AXIS] + Y_PROBE_OFFSET_FROM_EXTRUDER;
  3408. z_tmp = current_position[Z_AXIS];
  3409. apply_rotation_xyz(plan_bed_level_matrix, x_tmp, y_tmp, z_tmp); //Apply the correction sending the probe offset
  3410. current_position[Z_AXIS] = z_tmp - real_z + current_position[Z_AXIS]; //The difference is added to current position and sent to planner.
  3411. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  3412. }
  3413. break;
  3414. #ifndef Z_PROBE_SLED
  3415. case 30: // G30 Single Z Probe
  3416. {
  3417. st_synchronize();
  3418. // TODO: make sure the bed_level_rotation_matrix is identity or the planner will get set incorectly
  3419. int l_feedmultiply = setup_for_endstop_move();
  3420. feedrate = homing_feedrate[Z_AXIS];
  3421. run_z_probe();
  3422. SERIAL_PROTOCOLPGM(_T(MSG_BED));
  3423. SERIAL_PROTOCOLPGM(" X: ");
  3424. SERIAL_PROTOCOL(current_position[X_AXIS]);
  3425. SERIAL_PROTOCOLPGM(" Y: ");
  3426. SERIAL_PROTOCOL(current_position[Y_AXIS]);
  3427. SERIAL_PROTOCOLPGM(" Z: ");
  3428. SERIAL_PROTOCOL(current_position[Z_AXIS]);
  3429. SERIAL_PROTOCOLPGM("\n");
  3430. clean_up_after_endstop_move(l_feedmultiply);
  3431. }
  3432. break;
  3433. #else
  3434. case 31: // dock the sled
  3435. dock_sled(true);
  3436. break;
  3437. case 32: // undock the sled
  3438. dock_sled(false);
  3439. break;
  3440. #endif // Z_PROBE_SLED
  3441. #endif // ENABLE_AUTO_BED_LEVELING
  3442. #ifdef MESH_BED_LEVELING
  3443. case 30: // G30 Single Z Probe
  3444. {
  3445. st_synchronize();
  3446. // TODO: make sure the bed_level_rotation_matrix is identity or the planner will get set incorectly
  3447. int l_feedmultiply = setup_for_endstop_move();
  3448. feedrate = homing_feedrate[Z_AXIS];
  3449. find_bed_induction_sensor_point_z(-10.f, 3);
  3450. printf_P(_N("%S X: %.5f Y: %.5f Z: %.5f\n"), _T(MSG_BED), _x, _y, _z);
  3451. clean_up_after_endstop_move(l_feedmultiply);
  3452. }
  3453. break;
  3454. case 75:
  3455. {
  3456. for (int i = 40; i <= 110; i++)
  3457. printf_P(_N("%d %.2f"), i, temp_comp_interpolation(i));
  3458. }
  3459. break;
  3460. case 76: //! G76 - PINDA probe temperature calibration
  3461. {
  3462. #ifdef PINDA_THERMISTOR
  3463. if (true)
  3464. {
  3465. if (calibration_status() >= CALIBRATION_STATUS_XYZ_CALIBRATION) {
  3466. //we need to know accurate position of first calibration point
  3467. //if xyz calibration was not performed yet, interrupt temperature calibration and inform user that xyz cal. is needed
  3468. lcd_show_fullscreen_message_and_wait_P(_i("Please run XYZ calibration first."));
  3469. break;
  3470. }
  3471. if (!(axis_known_position[X_AXIS] && axis_known_position[Y_AXIS] && axis_known_position[Z_AXIS]))
  3472. {
  3473. // We don't know where we are! HOME!
  3474. // Push the commands to the front of the message queue in the reverse order!
  3475. // There shall be always enough space reserved for these commands.
  3476. repeatcommand_front(); // repeat G76 with all its parameters
  3477. enquecommand_front_P((PSTR("G28 W0")));
  3478. break;
  3479. }
  3480. lcd_show_fullscreen_message_and_wait_P(_i("Stable ambient temperature 21-26C is needed a rigid stand is required."));////MSG_TEMP_CAL_WARNING c=20 r=4
  3481. bool result = lcd_show_fullscreen_message_yes_no_and_wait_P(_T(MSG_STEEL_SHEET_CHECK), false, false);
  3482. if (result)
  3483. {
  3484. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3485. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3486. current_position[Z_AXIS] = 50;
  3487. current_position[Y_AXIS] = 180;
  3488. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3489. st_synchronize();
  3490. lcd_show_fullscreen_message_and_wait_P(_T(MSG_REMOVE_STEEL_SHEET));
  3491. current_position[Y_AXIS] = pgm_read_float(bed_ref_points_4 + 1);
  3492. current_position[X_AXIS] = pgm_read_float(bed_ref_points_4);
  3493. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3494. st_synchronize();
  3495. gcode_G28(false, false, true);
  3496. }
  3497. if ((current_temperature_pinda > 35) && (farm_mode == false)) {
  3498. //waiting for PIDNA probe to cool down in case that we are not in farm mode
  3499. current_position[Z_AXIS] = 100;
  3500. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3501. if (lcd_wait_for_pinda(35) == false) { //waiting for PINDA probe to cool, if this takes more then time expected, temp. cal. fails
  3502. lcd_temp_cal_show_result(false);
  3503. break;
  3504. }
  3505. }
  3506. lcd_update_enable(true);
  3507. KEEPALIVE_STATE(NOT_BUSY); //no need to print busy messages as we print current temperatures periodicaly
  3508. SERIAL_ECHOLNPGM("PINDA probe calibration start");
  3509. float zero_z;
  3510. int z_shift = 0; //unit: steps
  3511. float start_temp = 5 * (int)(current_temperature_pinda / 5);
  3512. if (start_temp < 35) start_temp = 35;
  3513. if (start_temp < current_temperature_pinda) start_temp += 5;
  3514. printf_P(_N("start temperature: %.1f\n"), start_temp);
  3515. // setTargetHotend(200, 0);
  3516. setTargetBed(70 + (start_temp - 30));
  3517. custom_message_type = CUSTOM_MSG_TYPE_TEMCAL;
  3518. custom_message_state = 1;
  3519. lcd_setstatuspgm(_T(MSG_TEMP_CALIBRATION));
  3520. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3521. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3522. current_position[X_AXIS] = PINDA_PREHEAT_X;
  3523. current_position[Y_AXIS] = PINDA_PREHEAT_Y;
  3524. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3525. current_position[Z_AXIS] = PINDA_PREHEAT_Z;
  3526. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3527. st_synchronize();
  3528. while (current_temperature_pinda < start_temp)
  3529. {
  3530. delay_keep_alive(1000);
  3531. serialecho_temperatures();
  3532. }
  3533. eeprom_update_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 0); //invalidate temp. calibration in case that in will be aborted during the calibration process
  3534. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3535. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3536. current_position[X_AXIS] = pgm_read_float(bed_ref_points_4);
  3537. current_position[Y_AXIS] = pgm_read_float(bed_ref_points_4 + 1);
  3538. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3539. st_synchronize();
  3540. bool find_z_result = find_bed_induction_sensor_point_z(-1.f);
  3541. if (find_z_result == false) {
  3542. lcd_temp_cal_show_result(find_z_result);
  3543. break;
  3544. }
  3545. zero_z = current_position[Z_AXIS];
  3546. printf_P(_N("\nZERO: %.3f\n"), current_position[Z_AXIS]);
  3547. int i = -1; for (; i < 5; i++)
  3548. {
  3549. float temp = (40 + i * 5);
  3550. printf_P(_N("\nStep: %d/6 (skipped)\nPINDA temperature: %d Z shift (mm):0\n"), i + 2, (40 + i*5));
  3551. if (i >= 0) EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + i * 2, &z_shift);
  3552. if (start_temp <= temp) break;
  3553. }
  3554. for (i++; i < 5; i++)
  3555. {
  3556. float temp = (40 + i * 5);
  3557. printf_P(_N("\nStep: %d/6\n"), i + 2);
  3558. custom_message_state = i + 2;
  3559. setTargetBed(50 + 10 * (temp - 30) / 5);
  3560. // setTargetHotend(255, 0);
  3561. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3562. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3563. current_position[X_AXIS] = PINDA_PREHEAT_X;
  3564. current_position[Y_AXIS] = PINDA_PREHEAT_Y;
  3565. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3566. current_position[Z_AXIS] = PINDA_PREHEAT_Z;
  3567. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3568. st_synchronize();
  3569. while (current_temperature_pinda < temp)
  3570. {
  3571. delay_keep_alive(1000);
  3572. serialecho_temperatures();
  3573. }
  3574. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3575. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3576. current_position[X_AXIS] = pgm_read_float(bed_ref_points_4);
  3577. current_position[Y_AXIS] = pgm_read_float(bed_ref_points_4 + 1);
  3578. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3579. st_synchronize();
  3580. find_z_result = find_bed_induction_sensor_point_z(-1.f);
  3581. if (find_z_result == false) {
  3582. lcd_temp_cal_show_result(find_z_result);
  3583. break;
  3584. }
  3585. z_shift = (int)((current_position[Z_AXIS] - zero_z)*cs.axis_steps_per_unit[Z_AXIS]);
  3586. printf_P(_N("\nPINDA temperature: %.1f Z shift (mm): %.3f"), current_temperature_pinda, current_position[Z_AXIS] - zero_z);
  3587. EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + i * 2, &z_shift);
  3588. }
  3589. lcd_temp_cal_show_result(true);
  3590. break;
  3591. }
  3592. #endif //PINDA_THERMISTOR
  3593. setTargetBed(PINDA_MIN_T);
  3594. float zero_z;
  3595. int z_shift = 0; //unit: steps
  3596. int t_c; // temperature
  3597. if (!(axis_known_position[X_AXIS] && axis_known_position[Y_AXIS] && axis_known_position[Z_AXIS])) {
  3598. // We don't know where we are! HOME!
  3599. // Push the commands to the front of the message queue in the reverse order!
  3600. // There shall be always enough space reserved for these commands.
  3601. repeatcommand_front(); // repeat G76 with all its parameters
  3602. enquecommand_front_P((PSTR("G28 W0")));
  3603. break;
  3604. }
  3605. puts_P(_N("PINDA probe calibration start"));
  3606. custom_message_type = CUSTOM_MSG_TYPE_TEMCAL;
  3607. custom_message_state = 1;
  3608. lcd_setstatuspgm(_T(MSG_TEMP_CALIBRATION));
  3609. current_position[X_AXIS] = PINDA_PREHEAT_X;
  3610. current_position[Y_AXIS] = PINDA_PREHEAT_Y;
  3611. current_position[Z_AXIS] = PINDA_PREHEAT_Z;
  3612. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3613. st_synchronize();
  3614. while (abs(degBed() - PINDA_MIN_T) > 1) {
  3615. delay_keep_alive(1000);
  3616. serialecho_temperatures();
  3617. }
  3618. //enquecommand_P(PSTR("M190 S50"));
  3619. for (int i = 0; i < PINDA_HEAT_T; i++) {
  3620. delay_keep_alive(1000);
  3621. serialecho_temperatures();
  3622. }
  3623. eeprom_update_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 0); //invalidate temp. calibration in case that in will be aborted during the calibration process
  3624. current_position[Z_AXIS] = 5;
  3625. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3626. current_position[X_AXIS] = BED_X0;
  3627. current_position[Y_AXIS] = BED_Y0;
  3628. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3629. st_synchronize();
  3630. find_bed_induction_sensor_point_z(-1.f);
  3631. zero_z = current_position[Z_AXIS];
  3632. printf_P(_N("\nZERO: %.3f\n"), current_position[Z_AXIS]);
  3633. for (int i = 0; i<5; i++) {
  3634. printf_P(_N("\nStep: %d/6\n"), i + 2);
  3635. custom_message_state = i + 2;
  3636. t_c = 60 + i * 10;
  3637. setTargetBed(t_c);
  3638. current_position[X_AXIS] = PINDA_PREHEAT_X;
  3639. current_position[Y_AXIS] = PINDA_PREHEAT_Y;
  3640. current_position[Z_AXIS] = PINDA_PREHEAT_Z;
  3641. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3642. st_synchronize();
  3643. while (degBed() < t_c) {
  3644. delay_keep_alive(1000);
  3645. serialecho_temperatures();
  3646. }
  3647. for (int i = 0; i < PINDA_HEAT_T; i++) {
  3648. delay_keep_alive(1000);
  3649. serialecho_temperatures();
  3650. }
  3651. current_position[Z_AXIS] = 5;
  3652. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3653. current_position[X_AXIS] = BED_X0;
  3654. current_position[Y_AXIS] = BED_Y0;
  3655. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3656. st_synchronize();
  3657. find_bed_induction_sensor_point_z(-1.f);
  3658. z_shift = (int)((current_position[Z_AXIS] - zero_z)*cs.axis_steps_per_unit[Z_AXIS]);
  3659. printf_P(_N("\nTemperature: %d Z shift (mm): %.3f\n"), t_c, current_position[Z_AXIS] - zero_z);
  3660. EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + i*2, &z_shift);
  3661. }
  3662. custom_message_type = CUSTOM_MSG_TYPE_STATUS;
  3663. eeprom_update_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 1);
  3664. puts_P(_N("Temperature calibration done."));
  3665. disable_x();
  3666. disable_y();
  3667. disable_z();
  3668. disable_e0();
  3669. disable_e1();
  3670. disable_e2();
  3671. setTargetBed(0); //set bed target temperature back to 0
  3672. lcd_show_fullscreen_message_and_wait_P(_T(MSG_TEMP_CALIBRATION_DONE));
  3673. temp_cal_active = true;
  3674. eeprom_update_byte((unsigned char *)EEPROM_TEMP_CAL_ACTIVE, 1);
  3675. lcd_update_enable(true);
  3676. lcd_update(2);
  3677. }
  3678. break;
  3679. /**
  3680. * G80: Mesh-based Z probe, probes a grid and produces a
  3681. * mesh to compensate for variable bed height
  3682. *
  3683. * The S0 report the points as below
  3684. * @code{.unparsed}
  3685. * +----> X-axis
  3686. * |
  3687. * |
  3688. * v Y-axis
  3689. * @endcode
  3690. */
  3691. case 80:
  3692. #ifdef MK1BP
  3693. break;
  3694. #endif //MK1BP
  3695. case_G80:
  3696. {
  3697. mesh_bed_leveling_flag = true;
  3698. static bool run = false;
  3699. #ifdef SUPPORT_VERBOSITY
  3700. int8_t verbosity_level = 0;
  3701. if (code_seen('V')) {
  3702. // Just 'V' without a number counts as V1.
  3703. char c = strchr_pointer[1];
  3704. verbosity_level = (c == ' ' || c == '\t' || c == 0) ? 1 : code_value_short();
  3705. }
  3706. #endif //SUPPORT_VERBOSITY
  3707. // Firstly check if we know where we are
  3708. if (!(axis_known_position[X_AXIS] && axis_known_position[Y_AXIS] && axis_known_position[Z_AXIS])) {
  3709. // We don't know where we are! HOME!
  3710. // Push the commands to the front of the message queue in the reverse order!
  3711. // There shall be always enough space reserved for these commands.
  3712. if (lcd_commands_type != LCD_COMMAND_STOP_PRINT) {
  3713. repeatcommand_front(); // repeat G80 with all its parameters
  3714. enquecommand_front_P((PSTR("G28 W0")));
  3715. }
  3716. else {
  3717. mesh_bed_leveling_flag = false;
  3718. }
  3719. break;
  3720. }
  3721. uint8_t nMeasPoints = MESH_MEAS_NUM_X_POINTS;
  3722. if (code_seen('N')) {
  3723. nMeasPoints = code_value_uint8();
  3724. if (nMeasPoints != 7) {
  3725. nMeasPoints = 3;
  3726. }
  3727. }
  3728. else {
  3729. nMeasPoints = eeprom_read_byte((uint8_t*)EEPROM_MBL_POINTS_NR);
  3730. }
  3731. uint8_t nProbeRetry = 3;
  3732. if (code_seen('R')) {
  3733. nProbeRetry = code_value_uint8();
  3734. if (nProbeRetry > 10) {
  3735. nProbeRetry = 10;
  3736. }
  3737. }
  3738. else {
  3739. nProbeRetry = eeprom_read_byte((uint8_t*)EEPROM_MBL_PROBE_NR);
  3740. }
  3741. bool magnet_elimination = (eeprom_read_byte((uint8_t*)EEPROM_MBL_MAGNET_ELIMINATION) > 0);
  3742. bool temp_comp_start = true;
  3743. #ifdef PINDA_THERMISTOR
  3744. temp_comp_start = false;
  3745. #endif //PINDA_THERMISTOR
  3746. if (temp_comp_start)
  3747. if (run == false && temp_cal_active == true && calibration_status_pinda() == true && target_temperature_bed >= 50) {
  3748. if (lcd_commands_type != LCD_COMMAND_STOP_PRINT) {
  3749. temp_compensation_start();
  3750. run = true;
  3751. repeatcommand_front(); // repeat G80 with all its parameters
  3752. enquecommand_front_P((PSTR("G28 W0")));
  3753. }
  3754. else {
  3755. mesh_bed_leveling_flag = false;
  3756. }
  3757. break;
  3758. }
  3759. run = false;
  3760. if (lcd_commands_type == LCD_COMMAND_STOP_PRINT) {
  3761. mesh_bed_leveling_flag = false;
  3762. break;
  3763. }
  3764. // Save custom message state, set a new custom message state to display: Calibrating point 9.
  3765. unsigned int custom_message_type_old = custom_message_type;
  3766. unsigned int custom_message_state_old = custom_message_state;
  3767. custom_message_type = CUSTOM_MSG_TYPE_MESHBL;
  3768. custom_message_state = (nMeasPoints * nMeasPoints) + 10;
  3769. lcd_update(1);
  3770. mbl.reset(); //reset mesh bed leveling
  3771. // Reset baby stepping to zero, if the babystepping has already been loaded before. The babystepsTodo value will be
  3772. // consumed during the first movements following this statement.
  3773. babystep_undo();
  3774. // Cycle through all points and probe them
  3775. // First move up. During this first movement, the babystepping will be reverted.
  3776. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3777. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[Z_AXIS] / 60, active_extruder);
  3778. // The move to the first calibration point.
  3779. current_position[X_AXIS] = BED_X0;
  3780. current_position[Y_AXIS] = BED_Y0;
  3781. #ifdef SUPPORT_VERBOSITY
  3782. if (verbosity_level >= 1)
  3783. {
  3784. bool clamped = world2machine_clamp(current_position[X_AXIS], current_position[Y_AXIS]);
  3785. clamped ? SERIAL_PROTOCOLPGM("First calibration point clamped.\n") : SERIAL_PROTOCOLPGM("No clamping for first calibration point.\n");
  3786. }
  3787. #endif //SUPPORT_VERBOSITY
  3788. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[X_AXIS] / 30, active_extruder);
  3789. // Wait until the move is finished.
  3790. st_synchronize();
  3791. uint8_t mesh_point = 0; //index number of calibration point
  3792. int XY_AXIS_FEEDRATE = homing_feedrate[X_AXIS] / 20;
  3793. int Z_LIFT_FEEDRATE = homing_feedrate[Z_AXIS] / 40;
  3794. bool has_z = is_bed_z_jitter_data_valid(); //checks if we have data from Z calibration (offsets of the Z heiths of the 8 calibration points from the first point)
  3795. #ifdef SUPPORT_VERBOSITY
  3796. if (verbosity_level >= 1) {
  3797. has_z ? SERIAL_PROTOCOLPGM("Z jitter data from Z cal. valid.\n") : SERIAL_PROTOCOLPGM("Z jitter data from Z cal. not valid.\n");
  3798. }
  3799. #endif // SUPPORT_VERBOSITY
  3800. int l_feedmultiply = setup_for_endstop_move(false); //save feedrate and feedmultiply, sets feedmultiply to 100
  3801. const char *kill_message = NULL;
  3802. while (mesh_point != nMeasPoints * nMeasPoints) {
  3803. // Get coords of a measuring point.
  3804. uint8_t ix = mesh_point % nMeasPoints; // from 0 to MESH_NUM_X_POINTS - 1
  3805. uint8_t iy = mesh_point / nMeasPoints;
  3806. /*if (!mbl_point_measurement_valid(ix, iy, nMeasPoints, true)) {
  3807. printf_P(PSTR("Skipping point [%d;%d] \n"), ix, iy);
  3808. custom_message_state--;
  3809. mesh_point++;
  3810. continue; //skip
  3811. }*/
  3812. if (iy & 1) ix = (nMeasPoints - 1) - ix; // Zig zag
  3813. if (nMeasPoints == 7) //if we have 7x7 mesh, compare with Z-calibration for points which are in 3x3 mesh
  3814. {
  3815. has_z = ((ix % 3 == 0) && (iy % 3 == 0)) && is_bed_z_jitter_data_valid();
  3816. }
  3817. float z0 = 0.f;
  3818. if (has_z && (mesh_point > 0)) {
  3819. uint16_t z_offset_u = 0;
  3820. if (nMeasPoints == 7) {
  3821. z_offset_u = eeprom_read_word((uint16_t*)(EEPROM_BED_CALIBRATION_Z_JITTER + 2 * ((ix/3) + iy - 1)));
  3822. }
  3823. else {
  3824. z_offset_u = eeprom_read_word((uint16_t*)(EEPROM_BED_CALIBRATION_Z_JITTER + 2 * (ix + iy * 3 - 1)));
  3825. }
  3826. z0 = mbl.z_values[0][0] + *reinterpret_cast<int16_t*>(&z_offset_u) * 0.01;
  3827. #ifdef SUPPORT_VERBOSITY
  3828. if (verbosity_level >= 1) {
  3829. printf_P(PSTR("Bed leveling, point: %d, calibration Z stored in eeprom: %d, calibration z: %f \n"), mesh_point, z_offset_u, z0);
  3830. }
  3831. #endif // SUPPORT_VERBOSITY
  3832. }
  3833. // Move Z up to MESH_HOME_Z_SEARCH.
  3834. if((ix == 0) && (iy == 0)) current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3835. else current_position[Z_AXIS] += 2.f / nMeasPoints; //use relative movement from Z coordinate where PINDa triggered on previous point. This makes calibration faster.
  3836. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], Z_LIFT_FEEDRATE, active_extruder);
  3837. st_synchronize();
  3838. // Move to XY position of the sensor point.
  3839. current_position[X_AXIS] = BED_X(ix, nMeasPoints);
  3840. current_position[Y_AXIS] = BED_Y(iy, nMeasPoints);
  3841. //printf_P(PSTR("[%f;%f]\n"), current_position[X_AXIS], current_position[Y_AXIS]);
  3842. world2machine_clamp(current_position[X_AXIS], current_position[Y_AXIS]);
  3843. #ifdef SUPPORT_VERBOSITY
  3844. if (verbosity_level >= 1) {
  3845. SERIAL_PROTOCOL(mesh_point);
  3846. clamped ? SERIAL_PROTOCOLPGM(": xy clamped.\n") : SERIAL_PROTOCOLPGM(": no xy clamping\n");
  3847. }
  3848. #endif // SUPPORT_VERBOSITY
  3849. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], XY_AXIS_FEEDRATE, active_extruder);
  3850. st_synchronize();
  3851. // Go down until endstop is hit
  3852. const float Z_CALIBRATION_THRESHOLD = 1.f;
  3853. if (!find_bed_induction_sensor_point_z((has_z && mesh_point > 0) ? z0 - Z_CALIBRATION_THRESHOLD : -10.f, nProbeRetry)) { //if we have data from z calibration max allowed difference is 1mm for each point, if we dont have data max difference is 10mm from initial point
  3854. printf_P(_T(MSG_BED_LEVELING_FAILED_POINT_LOW));
  3855. break;
  3856. }
  3857. if (MESH_HOME_Z_SEARCH - current_position[Z_AXIS] < 0.1f) { //broken cable or initial Z coordinate too low. Go to MESH_HOME_Z_SEARCH and repeat last step (z-probe) again to distinguish between these two cases.
  3858. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3859. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], Z_LIFT_FEEDRATE, active_extruder);
  3860. st_synchronize();
  3861. if (!find_bed_induction_sensor_point_z((has_z && mesh_point > 0) ? z0 - Z_CALIBRATION_THRESHOLD : -10.f, nProbeRetry)) { //if we have data from z calibration max allowed difference is 1mm for each point, if we dont have data max difference is 10mm from initial point
  3862. printf_P(_T(MSG_BED_LEVELING_FAILED_POINT_LOW));
  3863. break;
  3864. }
  3865. if (MESH_HOME_Z_SEARCH - current_position[Z_AXIS] < 0.1f) {
  3866. printf_P(PSTR("Bed leveling failed. Sensor disconnected or cable broken. Waiting for reset.\n"));
  3867. break;
  3868. }
  3869. }
  3870. if (has_z && fabs(z0 - current_position[Z_AXIS]) > Z_CALIBRATION_THRESHOLD) { //if we have data from z calibration, max. allowed difference is 1mm for each point
  3871. printf_P(PSTR("Bed leveling failed. Sensor triggered too high. Waiting for reset.\n"));
  3872. break;
  3873. }
  3874. #ifdef SUPPORT_VERBOSITY
  3875. if (verbosity_level >= 10) {
  3876. SERIAL_ECHOPGM("X: ");
  3877. MYSERIAL.print(current_position[X_AXIS], 5);
  3878. SERIAL_ECHOLNPGM("");
  3879. SERIAL_ECHOPGM("Y: ");
  3880. MYSERIAL.print(current_position[Y_AXIS], 5);
  3881. SERIAL_PROTOCOLPGM("\n");
  3882. }
  3883. #endif // SUPPORT_VERBOSITY
  3884. float offset_z = 0;
  3885. #ifdef PINDA_THERMISTOR
  3886. offset_z = temp_compensation_pinda_thermistor_offset(current_temperature_pinda);
  3887. #endif //PINDA_THERMISTOR
  3888. // #ifdef SUPPORT_VERBOSITY
  3889. /* if (verbosity_level >= 1)
  3890. {
  3891. SERIAL_ECHOPGM("mesh bed leveling: ");
  3892. MYSERIAL.print(current_position[Z_AXIS], 5);
  3893. SERIAL_ECHOPGM(" offset: ");
  3894. MYSERIAL.print(offset_z, 5);
  3895. SERIAL_ECHOLNPGM("");
  3896. }*/
  3897. // #endif // SUPPORT_VERBOSITY
  3898. mbl.set_z(ix, iy, current_position[Z_AXIS] - offset_z); //store measured z values z_values[iy][ix] = z - offset_z;
  3899. custom_message_state--;
  3900. mesh_point++;
  3901. lcd_update(1);
  3902. }
  3903. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3904. #ifdef SUPPORT_VERBOSITY
  3905. if (verbosity_level >= 20) {
  3906. SERIAL_ECHOLNPGM("Mesh bed leveling while loop finished.");
  3907. SERIAL_ECHOLNPGM("MESH_HOME_Z_SEARCH: ");
  3908. MYSERIAL.print(current_position[Z_AXIS], 5);
  3909. }
  3910. #endif // SUPPORT_VERBOSITY
  3911. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], Z_LIFT_FEEDRATE, active_extruder);
  3912. st_synchronize();
  3913. if (mesh_point != nMeasPoints * nMeasPoints) {
  3914. Sound_MakeSound(e_SOUND_TYPE_StandardAlert);
  3915. bool bState;
  3916. do { // repeat until Z-leveling o.k.
  3917. lcd_display_message_fullscreen_P(_i("Some problem encountered, Z-leveling enforced ..."));
  3918. #ifdef TMC2130
  3919. lcd_wait_for_click_delay(MSG_BED_LEVELING_FAILED_TIMEOUT);
  3920. calibrate_z_auto(); // Z-leveling (X-assembly stay up!!!)
  3921. #else // TMC2130
  3922. lcd_wait_for_click_delay(0); // ~ no timeout
  3923. lcd_calibrate_z_end_stop_manual(true); // Z-leveling (X-assembly stay up!!!)
  3924. #endif // TMC2130
  3925. // ~ Z-homing (can not be used "G28", because X & Y-homing would have been done before (Z-homing))
  3926. bState=enable_z_endstop(false);
  3927. current_position[Z_AXIS] -= 1;
  3928. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[Z_AXIS] / 40, active_extruder);
  3929. st_synchronize();
  3930. enable_z_endstop(true);
  3931. #ifdef TMC2130
  3932. tmc2130_home_enter(Z_AXIS_MASK);
  3933. #endif // TMC2130
  3934. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3935. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[Z_AXIS] / 40, active_extruder);
  3936. st_synchronize();
  3937. #ifdef TMC2130
  3938. tmc2130_home_exit();
  3939. #endif // TMC2130
  3940. enable_z_endstop(bState);
  3941. } while (st_get_position_mm(Z_AXIS) > MESH_HOME_Z_SEARCH); // i.e. Z-leveling not o.k.
  3942. // plan_set_z_position(MESH_HOME_Z_SEARCH); // is not necessary ('do-while' loop always ends at the expected Z-position)
  3943. custom_message_type=CUSTOM_MSG_TYPE_STATUS; // display / status-line recovery
  3944. lcd_update_enable(true); // display / status-line recovery
  3945. gcode_G28(true, true, true); // X & Y & Z-homing (must be after individual Z-homing (problem with spool-holder)!)
  3946. repeatcommand_front(); // re-run (i.e. of "G80")
  3947. break;
  3948. }
  3949. clean_up_after_endstop_move(l_feedmultiply);
  3950. // SERIAL_ECHOLNPGM("clean up finished ");
  3951. bool apply_temp_comp = true;
  3952. #ifdef PINDA_THERMISTOR
  3953. apply_temp_comp = false;
  3954. #endif
  3955. if (apply_temp_comp)
  3956. if(temp_cal_active == true && calibration_status_pinda() == true) temp_compensation_apply(); //apply PINDA temperature compensation
  3957. babystep_apply(); // Apply Z height correction aka baby stepping before mesh bed leveing gets activated.
  3958. // SERIAL_ECHOLNPGM("babystep applied");
  3959. bool eeprom_bed_correction_valid = eeprom_read_byte((unsigned char*)EEPROM_BED_CORRECTION_VALID) == 1;
  3960. #ifdef SUPPORT_VERBOSITY
  3961. if (verbosity_level >= 1) {
  3962. eeprom_bed_correction_valid ? SERIAL_PROTOCOLPGM("Bed correction data valid\n") : SERIAL_PROTOCOLPGM("Bed correction data not valid\n");
  3963. }
  3964. #endif // SUPPORT_VERBOSITY
  3965. for (uint8_t i = 0; i < 4; ++i) {
  3966. unsigned char codes[4] = { 'L', 'R', 'F', 'B' };
  3967. long correction = 0;
  3968. if (code_seen(codes[i]))
  3969. correction = code_value_long();
  3970. else if (eeprom_bed_correction_valid) {
  3971. unsigned char *addr = (i < 2) ?
  3972. ((i == 0) ? (unsigned char*)EEPROM_BED_CORRECTION_LEFT : (unsigned char*)EEPROM_BED_CORRECTION_RIGHT) :
  3973. ((i == 2) ? (unsigned char*)EEPROM_BED_CORRECTION_FRONT : (unsigned char*)EEPROM_BED_CORRECTION_REAR);
  3974. correction = eeprom_read_int8(addr);
  3975. }
  3976. if (correction == 0)
  3977. continue;
  3978. if (labs(correction) > BED_ADJUSTMENT_UM_MAX) {
  3979. SERIAL_ERROR_START;
  3980. SERIAL_ECHOPGM("Excessive bed leveling correction: ");
  3981. SERIAL_ECHO(correction);
  3982. SERIAL_ECHOLNPGM(" microns");
  3983. }
  3984. else {
  3985. float offset = float(correction) * 0.001f;
  3986. switch (i) {
  3987. case 0:
  3988. for (uint8_t row = 0; row < nMeasPoints; ++row) {
  3989. for (uint8_t col = 0; col < nMeasPoints - 1; ++col) {
  3990. mbl.z_values[row][col] += offset * (nMeasPoints - 1 - col) / (nMeasPoints - 1);
  3991. }
  3992. }
  3993. break;
  3994. case 1:
  3995. for (uint8_t row = 0; row < nMeasPoints; ++row) {
  3996. for (uint8_t col = 1; col < nMeasPoints; ++col) {
  3997. mbl.z_values[row][col] += offset * col / (nMeasPoints - 1);
  3998. }
  3999. }
  4000. break;
  4001. case 2:
  4002. for (uint8_t col = 0; col < nMeasPoints; ++col) {
  4003. for (uint8_t row = 0; row < nMeasPoints; ++row) {
  4004. mbl.z_values[row][col] += offset * (nMeasPoints - 1 - row) / (nMeasPoints - 1);
  4005. }
  4006. }
  4007. break;
  4008. case 3:
  4009. for (uint8_t col = 0; col < nMeasPoints; ++col) {
  4010. for (uint8_t row = 1; row < nMeasPoints; ++row) {
  4011. mbl.z_values[row][col] += offset * row / (nMeasPoints - 1);
  4012. }
  4013. }
  4014. break;
  4015. }
  4016. }
  4017. }
  4018. // SERIAL_ECHOLNPGM("Bed leveling correction finished");
  4019. if (nMeasPoints == 3) {
  4020. mbl.upsample_3x3(); //interpolation from 3x3 to 7x7 points using largrangian polynomials while using the same array z_values[iy][ix] for storing (just coppying measured data to new destination and interpolating between them)
  4021. }
  4022. /*
  4023. SERIAL_PROTOCOLPGM("Num X,Y: ");
  4024. SERIAL_PROTOCOL(MESH_NUM_X_POINTS);
  4025. SERIAL_PROTOCOLPGM(",");
  4026. SERIAL_PROTOCOL(MESH_NUM_Y_POINTS);
  4027. SERIAL_PROTOCOLPGM("\nZ search height: ");
  4028. SERIAL_PROTOCOL(MESH_HOME_Z_SEARCH);
  4029. SERIAL_PROTOCOLLNPGM("\nMeasured points:");
  4030. for (int y = MESH_NUM_Y_POINTS-1; y >= 0; y--) {
  4031. for (int x = 0; x < MESH_NUM_X_POINTS; x++) {
  4032. SERIAL_PROTOCOLPGM(" ");
  4033. SERIAL_PROTOCOL_F(mbl.z_values[y][x], 5);
  4034. }
  4035. SERIAL_PROTOCOLPGM("\n");
  4036. }
  4037. */
  4038. if (nMeasPoints == 7 && magnet_elimination) {
  4039. mbl_interpolation(nMeasPoints);
  4040. }
  4041. /*
  4042. SERIAL_PROTOCOLPGM("Num X,Y: ");
  4043. SERIAL_PROTOCOL(MESH_NUM_X_POINTS);
  4044. SERIAL_PROTOCOLPGM(",");
  4045. SERIAL_PROTOCOL(MESH_NUM_Y_POINTS);
  4046. SERIAL_PROTOCOLPGM("\nZ search height: ");
  4047. SERIAL_PROTOCOL(MESH_HOME_Z_SEARCH);
  4048. SERIAL_PROTOCOLLNPGM("\nMeasured points:");
  4049. for (int y = MESH_NUM_Y_POINTS-1; y >= 0; y--) {
  4050. for (int x = 0; x < MESH_NUM_X_POINTS; x++) {
  4051. SERIAL_PROTOCOLPGM(" ");
  4052. SERIAL_PROTOCOL_F(mbl.z_values[y][x], 5);
  4053. }
  4054. SERIAL_PROTOCOLPGM("\n");
  4055. }
  4056. */
  4057. // SERIAL_ECHOLNPGM("Upsample finished");
  4058. mbl.active = 1; //activate mesh bed leveling
  4059. // SERIAL_ECHOLNPGM("Mesh bed leveling activated");
  4060. go_home_with_z_lift();
  4061. // SERIAL_ECHOLNPGM("Go home finished");
  4062. //unretract (after PINDA preheat retraction)
  4063. if (degHotend(active_extruder) > EXTRUDE_MINTEMP && temp_cal_active == true && calibration_status_pinda() == true && target_temperature_bed >= 50) {
  4064. current_position[E_AXIS] += default_retraction;
  4065. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400, active_extruder);
  4066. }
  4067. KEEPALIVE_STATE(NOT_BUSY);
  4068. // Restore custom message state
  4069. lcd_setstatuspgm(_T(WELCOME_MSG));
  4070. custom_message_type = custom_message_type_old;
  4071. custom_message_state = custom_message_state_old;
  4072. mesh_bed_leveling_flag = false;
  4073. mesh_bed_run_from_menu = false;
  4074. lcd_update(2);
  4075. }
  4076. break;
  4077. /**
  4078. * G81: Print mesh bed leveling status and bed profile if activated
  4079. */
  4080. case 81:
  4081. if (mbl.active) {
  4082. SERIAL_PROTOCOLPGM("Num X,Y: ");
  4083. SERIAL_PROTOCOL(MESH_NUM_X_POINTS);
  4084. SERIAL_PROTOCOLPGM(",");
  4085. SERIAL_PROTOCOL(MESH_NUM_Y_POINTS);
  4086. SERIAL_PROTOCOLPGM("\nZ search height: ");
  4087. SERIAL_PROTOCOL(MESH_HOME_Z_SEARCH);
  4088. SERIAL_PROTOCOLLNPGM("\nMeasured points:");
  4089. for (int y = MESH_NUM_Y_POINTS-1; y >= 0; y--) {
  4090. for (int x = 0; x < MESH_NUM_X_POINTS; x++) {
  4091. SERIAL_PROTOCOLPGM(" ");
  4092. SERIAL_PROTOCOL_F(mbl.z_values[y][x], 5);
  4093. }
  4094. SERIAL_PROTOCOLPGM("\n");
  4095. }
  4096. }
  4097. else
  4098. SERIAL_PROTOCOLLNPGM("Mesh bed leveling not active.");
  4099. break;
  4100. #if 0
  4101. /**
  4102. * G82: Single Z probe at current location
  4103. *
  4104. * WARNING! USE WITH CAUTION! If you'll try to probe where is no leveling pad, nasty things can happen!
  4105. *
  4106. */
  4107. case 82:
  4108. SERIAL_PROTOCOLLNPGM("Finding bed ");
  4109. int l_feedmultiply = setup_for_endstop_move();
  4110. find_bed_induction_sensor_point_z();
  4111. clean_up_after_endstop_move(l_feedmultiply);
  4112. SERIAL_PROTOCOLPGM("Bed found at: ");
  4113. SERIAL_PROTOCOL_F(current_position[Z_AXIS], 5);
  4114. SERIAL_PROTOCOLPGM("\n");
  4115. break;
  4116. /**
  4117. * G83: Prusa3D specific: Babystep in Z and store to EEPROM
  4118. */
  4119. case 83:
  4120. {
  4121. int babystepz = code_seen('S') ? code_value() : 0;
  4122. int BabyPosition = code_seen('P') ? code_value() : 0;
  4123. if (babystepz != 0) {
  4124. //FIXME Vojtech: What shall be the index of the axis Z: 3 or 4?
  4125. // Is the axis indexed starting with zero or one?
  4126. if (BabyPosition > 4) {
  4127. SERIAL_PROTOCOLLNPGM("Index out of bounds");
  4128. }else{
  4129. // Save it to the eeprom
  4130. babystepLoadZ = babystepz;
  4131. EEPROM_save_B(EEPROM_BABYSTEP_Z0+(BabyPosition*2),&babystepLoadZ);
  4132. // adjust the Z
  4133. babystepsTodoZadd(babystepLoadZ);
  4134. }
  4135. }
  4136. }
  4137. break;
  4138. /**
  4139. * G84: Prusa3D specific: UNDO Babystep Z (move Z axis back)
  4140. */
  4141. case 84:
  4142. babystepsTodoZsubtract(babystepLoadZ);
  4143. // babystepLoadZ = 0;
  4144. break;
  4145. /**
  4146. * G85: Prusa3D specific: Pick best babystep
  4147. */
  4148. case 85:
  4149. lcd_pick_babystep();
  4150. break;
  4151. #endif
  4152. /**
  4153. * G86: Prusa3D specific: Disable babystep correction after home.
  4154. * This G-code will be performed at the start of a calibration script.
  4155. */
  4156. case 86:
  4157. calibration_status_store(CALIBRATION_STATUS_LIVE_ADJUST);
  4158. break;
  4159. /**
  4160. * G87: Prusa3D specific: Enable babystep correction after home
  4161. * This G-code will be performed at the end of a calibration script.
  4162. */
  4163. case 87:
  4164. calibration_status_store(CALIBRATION_STATUS_CALIBRATED);
  4165. break;
  4166. /**
  4167. * G88: Prusa3D specific: Don't know what it is for, it is in V2Calibration.gcode
  4168. */
  4169. case 88:
  4170. break;
  4171. #endif // ENABLE_MESH_BED_LEVELING
  4172. case 90: // G90
  4173. relative_mode = false;
  4174. break;
  4175. case 91: // G91
  4176. relative_mode = true;
  4177. break;
  4178. case 92: // G92
  4179. if(!code_seen(axis_codes[E_AXIS]))
  4180. st_synchronize();
  4181. for(int8_t i=0; i < NUM_AXIS; i++) {
  4182. if(code_seen(axis_codes[i])) {
  4183. if(i == E_AXIS) {
  4184. current_position[i] = code_value();
  4185. plan_set_e_position(current_position[E_AXIS]);
  4186. }
  4187. else {
  4188. current_position[i] = code_value()+cs.add_homing[i];
  4189. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  4190. }
  4191. }
  4192. }
  4193. break;
  4194. case 98: //! G98 (activate farm mode)
  4195. farm_mode = 1;
  4196. PingTime = _millis();
  4197. eeprom_update_byte((unsigned char *)EEPROM_FARM_MODE, farm_mode);
  4198. EEPROM_save_B(EEPROM_FARM_NUMBER, &farm_no);
  4199. SilentModeMenu = SILENT_MODE_OFF;
  4200. eeprom_update_byte((unsigned char *)EEPROM_SILENT, SilentModeMenu);
  4201. break;
  4202. case 99: //! G99 (deactivate farm mode)
  4203. farm_mode = 0;
  4204. lcd_printer_connected();
  4205. eeprom_update_byte((unsigned char *)EEPROM_FARM_MODE, farm_mode);
  4206. lcd_update(2);
  4207. break;
  4208. default:
  4209. printf_P(PSTR("Unknown G code: %s \n"), cmdbuffer + bufindr + CMDHDRSIZE);
  4210. }
  4211. // printf_P(_N("END G-CODE=%u\n"), gcode_in_progress);
  4212. gcode_in_progress = 0;
  4213. } // end if(code_seen('G'))
  4214. else if(code_seen('M'))
  4215. {
  4216. int index;
  4217. for (index = 1; *(strchr_pointer + index) == ' ' || *(strchr_pointer + index) == '\t'; index++);
  4218. /*for (++strchr_pointer; *strchr_pointer == ' ' || *strchr_pointer == '\t'; ++strchr_pointer);*/
  4219. if (*(strchr_pointer+index) < '0' || *(strchr_pointer+index) > '9') {
  4220. printf_P(PSTR("Invalid M code: %s \n"), cmdbuffer + bufindr + CMDHDRSIZE);
  4221. } else
  4222. {
  4223. mcode_in_progress = (int)code_value();
  4224. // printf_P(_N("BEGIN M-CODE=%u\n"), mcode_in_progress);
  4225. switch(mcode_in_progress)
  4226. {
  4227. case 0: // M0 - Unconditional stop - Wait for user button press on LCD
  4228. case 1: // M1 - Conditional stop - Wait for user button press on LCD
  4229. {
  4230. char *src = strchr_pointer + 2;
  4231. codenum = 0;
  4232. bool hasP = false, hasS = false;
  4233. if (code_seen('P')) {
  4234. codenum = code_value(); // milliseconds to wait
  4235. hasP = codenum > 0;
  4236. }
  4237. if (code_seen('S')) {
  4238. codenum = code_value() * 1000; // seconds to wait
  4239. hasS = codenum > 0;
  4240. }
  4241. starpos = strchr(src, '*');
  4242. if (starpos != NULL) *(starpos) = '\0';
  4243. while (*src == ' ') ++src;
  4244. if (!hasP && !hasS && *src != '\0') {
  4245. lcd_setstatus(src);
  4246. } else {
  4247. LCD_MESSAGERPGM(_i("Wait for user..."));////MSG_USERWAIT c=0 r=0
  4248. }
  4249. lcd_ignore_click(); //call lcd_ignore_click aslo for else ???
  4250. st_synchronize();
  4251. previous_millis_cmd = _millis();
  4252. if (codenum > 0){
  4253. codenum += _millis(); // keep track of when we started waiting
  4254. KEEPALIVE_STATE(PAUSED_FOR_USER);
  4255. while(_millis() < codenum && !lcd_clicked()){
  4256. manage_heater();
  4257. manage_inactivity(true);
  4258. lcd_update(0);
  4259. }
  4260. KEEPALIVE_STATE(IN_HANDLER);
  4261. lcd_ignore_click(false);
  4262. }else{
  4263. KEEPALIVE_STATE(PAUSED_FOR_USER);
  4264. while(!lcd_clicked()){
  4265. manage_heater();
  4266. manage_inactivity(true);
  4267. lcd_update(0);
  4268. }
  4269. KEEPALIVE_STATE(IN_HANDLER);
  4270. }
  4271. if (IS_SD_PRINTING)
  4272. LCD_MESSAGERPGM(_T(MSG_RESUMING_PRINT));
  4273. else
  4274. LCD_MESSAGERPGM(_T(WELCOME_MSG));
  4275. }
  4276. break;
  4277. case 17:
  4278. LCD_MESSAGERPGM(_i("No move."));////MSG_NO_MOVE c=0 r=0
  4279. enable_x();
  4280. enable_y();
  4281. enable_z();
  4282. enable_e0();
  4283. enable_e1();
  4284. enable_e2();
  4285. break;
  4286. #ifdef SDSUPPORT
  4287. case 20: // M20 - list SD card
  4288. SERIAL_PROTOCOLLNRPGM(_N("Begin file list"));////MSG_BEGIN_FILE_LIST c=0 r=0
  4289. card.ls();
  4290. SERIAL_PROTOCOLLNRPGM(_N("End file list"));////MSG_END_FILE_LIST c=0 r=0
  4291. break;
  4292. case 21: // M21 - init SD card
  4293. card.initsd();
  4294. break;
  4295. case 22: //M22 - release SD card
  4296. card.release();
  4297. break;
  4298. case 23: //M23 - Select file
  4299. starpos = (strchr(strchr_pointer + 4,'*'));
  4300. if(starpos!=NULL)
  4301. *(starpos)='\0';
  4302. card.openFile(strchr_pointer + 4,true);
  4303. break;
  4304. case 24: //M24 - Start SD print
  4305. if (!card.paused)
  4306. failstats_reset_print();
  4307. card.startFileprint();
  4308. starttime=_millis();
  4309. break;
  4310. case 25: //M25 - Pause SD print
  4311. card.pauseSDPrint();
  4312. break;
  4313. case 26: //M26 - Set SD index
  4314. if(card.cardOK && code_seen('S')) {
  4315. card.setIndex(code_value_long());
  4316. }
  4317. break;
  4318. case 27: //M27 - Get SD status
  4319. card.getStatus();
  4320. break;
  4321. case 28: //M28 - Start SD write
  4322. starpos = (strchr(strchr_pointer + 4,'*'));
  4323. if(starpos != NULL){
  4324. char* npos = strchr(CMDBUFFER_CURRENT_STRING, 'N');
  4325. strchr_pointer = strchr(npos,' ') + 1;
  4326. *(starpos) = '\0';
  4327. }
  4328. card.openFile(strchr_pointer+4,false);
  4329. break;
  4330. case 29: //M29 - Stop SD write
  4331. //processed in write to file routine above
  4332. //card,saving = false;
  4333. break;
  4334. case 30: //M30 <filename> Delete File
  4335. if (card.cardOK){
  4336. card.closefile();
  4337. starpos = (strchr(strchr_pointer + 4,'*'));
  4338. if(starpos != NULL){
  4339. char* npos = strchr(CMDBUFFER_CURRENT_STRING, 'N');
  4340. strchr_pointer = strchr(npos,' ') + 1;
  4341. *(starpos) = '\0';
  4342. }
  4343. card.removeFile(strchr_pointer + 4);
  4344. }
  4345. break;
  4346. case 32: //M32 - Select file and start SD print
  4347. {
  4348. if(card.sdprinting) {
  4349. st_synchronize();
  4350. }
  4351. starpos = (strchr(strchr_pointer + 4,'*'));
  4352. char* namestartpos = (strchr(strchr_pointer + 4,'!')); //find ! to indicate filename string start.
  4353. if(namestartpos==NULL)
  4354. {
  4355. namestartpos=strchr_pointer + 4; //default name position, 4 letters after the M
  4356. }
  4357. else
  4358. namestartpos++; //to skip the '!'
  4359. if(starpos!=NULL)
  4360. *(starpos)='\0';
  4361. bool call_procedure=(code_seen('P'));
  4362. if(strchr_pointer>namestartpos)
  4363. call_procedure=false; //false alert, 'P' found within filename
  4364. if( card.cardOK )
  4365. {
  4366. card.openFile(namestartpos,true,!call_procedure);
  4367. if(code_seen('S'))
  4368. if(strchr_pointer<namestartpos) //only if "S" is occuring _before_ the filename
  4369. card.setIndex(code_value_long());
  4370. card.startFileprint();
  4371. if(!call_procedure)
  4372. starttime=_millis(); //procedure calls count as normal print time.
  4373. }
  4374. } break;
  4375. case 928: //M928 - Start SD write
  4376. starpos = (strchr(strchr_pointer + 5,'*'));
  4377. if(starpos != NULL){
  4378. char* npos = strchr(CMDBUFFER_CURRENT_STRING, 'N');
  4379. strchr_pointer = strchr(npos,' ') + 1;
  4380. *(starpos) = '\0';
  4381. }
  4382. card.openLogFile(strchr_pointer+5);
  4383. break;
  4384. #endif //SDSUPPORT
  4385. case 31: //M31 take time since the start of the SD print or an M109 command
  4386. {
  4387. stoptime=_millis();
  4388. char time[30];
  4389. unsigned long t=(stoptime-starttime)/1000;
  4390. int sec,min;
  4391. min=t/60;
  4392. sec=t%60;
  4393. sprintf_P(time, PSTR("%i min, %i sec"), min, sec);
  4394. SERIAL_ECHO_START;
  4395. SERIAL_ECHOLN(time);
  4396. lcd_setstatus(time);
  4397. autotempShutdown();
  4398. }
  4399. break;
  4400. case 42: //M42 -Change pin status via gcode
  4401. if (code_seen('S'))
  4402. {
  4403. int pin_status = code_value();
  4404. int pin_number = LED_PIN;
  4405. if (code_seen('P') && pin_status >= 0 && pin_status <= 255)
  4406. pin_number = code_value();
  4407. for(int8_t i = 0; i < (int8_t)(sizeof(sensitive_pins)/sizeof(int)); i++)
  4408. {
  4409. if (sensitive_pins[i] == pin_number)
  4410. {
  4411. pin_number = -1;
  4412. break;
  4413. }
  4414. }
  4415. #if defined(FAN_PIN) && FAN_PIN > -1
  4416. if (pin_number == FAN_PIN)
  4417. fanSpeed = pin_status;
  4418. #endif
  4419. if (pin_number > -1)
  4420. {
  4421. pinMode(pin_number, OUTPUT);
  4422. digitalWrite(pin_number, pin_status);
  4423. analogWrite(pin_number, pin_status);
  4424. }
  4425. }
  4426. break;
  4427. case 44: //! M44: Prusa3D: Reset the bed skew and offset calibration.
  4428. // Reset the baby step value and the baby step applied flag.
  4429. calibration_status_store(CALIBRATION_STATUS_ASSEMBLED);
  4430. eeprom_update_word((uint16_t*)EEPROM_BABYSTEP_Z, 0);
  4431. // Reset the skew and offset in both RAM and EEPROM.
  4432. reset_bed_offset_and_skew();
  4433. // Reset world2machine_rotation_and_skew and world2machine_shift, therefore
  4434. // the planner will not perform any adjustments in the XY plane.
  4435. // Wait for the motors to stop and update the current position with the absolute values.
  4436. world2machine_revert_to_uncorrected();
  4437. break;
  4438. case 45: //! M45: Prusa3D: bed skew and offset with manual Z up
  4439. {
  4440. int8_t verbosity_level = 0;
  4441. bool only_Z = code_seen('Z');
  4442. #ifdef SUPPORT_VERBOSITY
  4443. if (code_seen('V'))
  4444. {
  4445. // Just 'V' without a number counts as V1.
  4446. char c = strchr_pointer[1];
  4447. verbosity_level = (c == ' ' || c == '\t' || c == 0) ? 1 : code_value_short();
  4448. }
  4449. #endif //SUPPORT_VERBOSITY
  4450. gcode_M45(only_Z, verbosity_level);
  4451. }
  4452. break;
  4453. /*
  4454. case 46:
  4455. {
  4456. // M46: Prusa3D: Show the assigned IP address.
  4457. uint8_t ip[4];
  4458. bool hasIP = card.ToshibaFlashAir_GetIP(ip);
  4459. if (hasIP) {
  4460. SERIAL_ECHOPGM("Toshiba FlashAir current IP: ");
  4461. SERIAL_ECHO(int(ip[0]));
  4462. SERIAL_ECHOPGM(".");
  4463. SERIAL_ECHO(int(ip[1]));
  4464. SERIAL_ECHOPGM(".");
  4465. SERIAL_ECHO(int(ip[2]));
  4466. SERIAL_ECHOPGM(".");
  4467. SERIAL_ECHO(int(ip[3]));
  4468. SERIAL_ECHOLNPGM("");
  4469. } else {
  4470. SERIAL_ECHOLNPGM("Toshiba FlashAir GetIP failed");
  4471. }
  4472. break;
  4473. }
  4474. */
  4475. case 47:
  4476. //! M47: Prusa3D: Show end stops dialog on the display.
  4477. KEEPALIVE_STATE(PAUSED_FOR_USER);
  4478. lcd_diag_show_end_stops();
  4479. KEEPALIVE_STATE(IN_HANDLER);
  4480. break;
  4481. #if 0
  4482. case 48: //! M48: scan the bed induction sensor points, print the sensor trigger coordinates to the serial line for visualization on the PC.
  4483. {
  4484. // Disable the default update procedure of the display. We will do a modal dialog.
  4485. lcd_update_enable(false);
  4486. // Let the planner use the uncorrected coordinates.
  4487. mbl.reset();
  4488. // Reset world2machine_rotation_and_skew and world2machine_shift, therefore
  4489. // the planner will not perform any adjustments in the XY plane.
  4490. // Wait for the motors to stop and update the current position with the absolute values.
  4491. world2machine_revert_to_uncorrected();
  4492. // Move the print head close to the bed.
  4493. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  4494. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS],current_position[Z_AXIS] , current_position[E_AXIS], homing_feedrate[Z_AXIS]/40, active_extruder);
  4495. st_synchronize();
  4496. // Home in the XY plane.
  4497. set_destination_to_current();
  4498. int l_feedmultiply = setup_for_endstop_move();
  4499. home_xy();
  4500. int8_t verbosity_level = 0;
  4501. if (code_seen('V')) {
  4502. // Just 'V' without a number counts as V1.
  4503. char c = strchr_pointer[1];
  4504. verbosity_level = (c == ' ' || c == '\t' || c == 0) ? 1 : code_value_short();
  4505. }
  4506. bool success = scan_bed_induction_points(verbosity_level);
  4507. clean_up_after_endstop_move(l_feedmultiply);
  4508. // Print head up.
  4509. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  4510. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS],current_position[Z_AXIS] , current_position[E_AXIS], homing_feedrate[Z_AXIS]/40, active_extruder);
  4511. st_synchronize();
  4512. lcd_update_enable(true);
  4513. break;
  4514. }
  4515. #endif
  4516. #ifdef ENABLE_AUTO_BED_LEVELING
  4517. #ifdef Z_PROBE_REPEATABILITY_TEST
  4518. //! M48 Z-Probe repeatability measurement function.
  4519. //!
  4520. //! Usage: M48 <n #_samples> <X X_position_for_samples> <Y Y_position_for_samples> <V Verbose_Level> <L legs_of_movement_prior_to_doing_probe>
  4521. //!
  4522. //! This function assumes the bed has been homed. Specificaly, that a G28 command
  4523. //! as been issued prior to invoking the M48 Z-Probe repeatability measurement function.
  4524. //! Any information generated by a prior G29 Bed leveling command will be lost and need to be
  4525. //! regenerated.
  4526. //!
  4527. //! The number of samples will default to 10 if not specified. You can use upper or lower case
  4528. //! letters for any of the options EXCEPT n. n must be in lower case because Marlin uses a capital
  4529. //! N for its communication protocol and will get horribly confused if you send it a capital N.
  4530. //!
  4531. case 48: // M48 Z-Probe repeatability
  4532. {
  4533. #if Z_MIN_PIN == -1
  4534. #error "You must have a Z_MIN endstop in order to enable calculation of Z-Probe repeatability."
  4535. #endif
  4536. double sum=0.0;
  4537. double mean=0.0;
  4538. double sigma=0.0;
  4539. double sample_set[50];
  4540. int verbose_level=1, n=0, j, n_samples = 10, n_legs=0;
  4541. double X_current, Y_current, Z_current;
  4542. double X_probe_location, Y_probe_location, Z_start_location, ext_position;
  4543. if (code_seen('V') || code_seen('v')) {
  4544. verbose_level = code_value();
  4545. if (verbose_level<0 || verbose_level>4 ) {
  4546. SERIAL_PROTOCOLPGM("?Verbose Level not plausable.\n");
  4547. goto Sigma_Exit;
  4548. }
  4549. }
  4550. if (verbose_level > 0) {
  4551. SERIAL_PROTOCOLPGM("M48 Z-Probe Repeatability test. Version 2.00\n");
  4552. SERIAL_PROTOCOLPGM("Full support at: http://3dprintboard.com/forum.php\n");
  4553. }
  4554. if (code_seen('n')) {
  4555. n_samples = code_value();
  4556. if (n_samples<4 || n_samples>50 ) {
  4557. SERIAL_PROTOCOLPGM("?Specified sample size not plausable.\n");
  4558. goto Sigma_Exit;
  4559. }
  4560. }
  4561. X_current = X_probe_location = st_get_position_mm(X_AXIS);
  4562. Y_current = Y_probe_location = st_get_position_mm(Y_AXIS);
  4563. Z_current = st_get_position_mm(Z_AXIS);
  4564. Z_start_location = st_get_position_mm(Z_AXIS) + Z_RAISE_BEFORE_PROBING;
  4565. ext_position = st_get_position_mm(E_AXIS);
  4566. if (code_seen('X') || code_seen('x') ) {
  4567. X_probe_location = code_value() - X_PROBE_OFFSET_FROM_EXTRUDER;
  4568. if (X_probe_location<X_MIN_POS || X_probe_location>X_MAX_POS ) {
  4569. SERIAL_PROTOCOLPGM("?Specified X position out of range.\n");
  4570. goto Sigma_Exit;
  4571. }
  4572. }
  4573. if (code_seen('Y') || code_seen('y') ) {
  4574. Y_probe_location = code_value() - Y_PROBE_OFFSET_FROM_EXTRUDER;
  4575. if (Y_probe_location<Y_MIN_POS || Y_probe_location>Y_MAX_POS ) {
  4576. SERIAL_PROTOCOLPGM("?Specified Y position out of range.\n");
  4577. goto Sigma_Exit;
  4578. }
  4579. }
  4580. if (code_seen('L') || code_seen('l') ) {
  4581. n_legs = code_value();
  4582. if ( n_legs==1 )
  4583. n_legs = 2;
  4584. if ( n_legs<0 || n_legs>15 ) {
  4585. SERIAL_PROTOCOLPGM("?Specified number of legs in movement not plausable.\n");
  4586. goto Sigma_Exit;
  4587. }
  4588. }
  4589. //
  4590. // Do all the preliminary setup work. First raise the probe.
  4591. //
  4592. st_synchronize();
  4593. plan_bed_level_matrix.set_to_identity();
  4594. plan_buffer_line( X_current, Y_current, Z_start_location,
  4595. ext_position,
  4596. homing_feedrate[Z_AXIS]/60,
  4597. active_extruder);
  4598. st_synchronize();
  4599. //
  4600. // Now get everything to the specified probe point So we can safely do a probe to
  4601. // get us close to the bed. If the Z-Axis is far from the bed, we don't want to
  4602. // use that as a starting point for each probe.
  4603. //
  4604. if (verbose_level > 2)
  4605. SERIAL_PROTOCOL("Positioning probe for the test.\n");
  4606. plan_buffer_line( X_probe_location, Y_probe_location, Z_start_location,
  4607. ext_position,
  4608. homing_feedrate[X_AXIS]/60,
  4609. active_extruder);
  4610. st_synchronize();
  4611. current_position[X_AXIS] = X_current = st_get_position_mm(X_AXIS);
  4612. current_position[Y_AXIS] = Y_current = st_get_position_mm(Y_AXIS);
  4613. current_position[Z_AXIS] = Z_current = st_get_position_mm(Z_AXIS);
  4614. current_position[E_AXIS] = ext_position = st_get_position_mm(E_AXIS);
  4615. //
  4616. // OK, do the inital probe to get us close to the bed.
  4617. // Then retrace the right amount and use that in subsequent probes
  4618. //
  4619. int l_feedmultiply = setup_for_endstop_move();
  4620. run_z_probe();
  4621. current_position[Z_AXIS] = Z_current = st_get_position_mm(Z_AXIS);
  4622. Z_start_location = st_get_position_mm(Z_AXIS) + Z_RAISE_BEFORE_PROBING;
  4623. plan_buffer_line( X_probe_location, Y_probe_location, Z_start_location,
  4624. ext_position,
  4625. homing_feedrate[X_AXIS]/60,
  4626. active_extruder);
  4627. st_synchronize();
  4628. current_position[Z_AXIS] = Z_current = st_get_position_mm(Z_AXIS);
  4629. for( n=0; n<n_samples; n++) {
  4630. do_blocking_move_to( X_probe_location, Y_probe_location, Z_start_location); // Make sure we are at the probe location
  4631. if ( n_legs) {
  4632. double radius=0.0, theta=0.0, x_sweep, y_sweep;
  4633. int rotational_direction, l;
  4634. rotational_direction = (unsigned long) _millis() & 0x0001; // clockwise or counter clockwise
  4635. radius = (unsigned long) _millis() % (long) (X_MAX_LENGTH/4); // limit how far out to go
  4636. theta = (float) ((unsigned long) _millis() % (long) 360) / (360./(2*3.1415926)); // turn into radians
  4637. //SERIAL_ECHOPAIR("starting radius: ",radius);
  4638. //SERIAL_ECHOPAIR(" theta: ",theta);
  4639. //SERIAL_ECHOPAIR(" direction: ",rotational_direction);
  4640. //SERIAL_PROTOCOLLNPGM("");
  4641. for( l=0; l<n_legs-1; l++) {
  4642. if (rotational_direction==1)
  4643. theta += (float) ((unsigned long) _millis() % (long) 20) / (360.0/(2*3.1415926)); // turn into radians
  4644. else
  4645. theta -= (float) ((unsigned long) _millis() % (long) 20) / (360.0/(2*3.1415926)); // turn into radians
  4646. radius += (float) ( ((long) ((unsigned long) _millis() % (long) 10)) - 5);
  4647. if ( radius<0.0 )
  4648. radius = -radius;
  4649. X_current = X_probe_location + cos(theta) * radius;
  4650. Y_current = Y_probe_location + sin(theta) * radius;
  4651. if ( X_current<X_MIN_POS) // Make sure our X & Y are sane
  4652. X_current = X_MIN_POS;
  4653. if ( X_current>X_MAX_POS)
  4654. X_current = X_MAX_POS;
  4655. if ( Y_current<Y_MIN_POS) // Make sure our X & Y are sane
  4656. Y_current = Y_MIN_POS;
  4657. if ( Y_current>Y_MAX_POS)
  4658. Y_current = Y_MAX_POS;
  4659. if (verbose_level>3 ) {
  4660. SERIAL_ECHOPAIR("x: ", X_current);
  4661. SERIAL_ECHOPAIR("y: ", Y_current);
  4662. SERIAL_PROTOCOLLNPGM("");
  4663. }
  4664. do_blocking_move_to( X_current, Y_current, Z_current );
  4665. }
  4666. do_blocking_move_to( X_probe_location, Y_probe_location, Z_start_location); // Go back to the probe location
  4667. }
  4668. int l_feedmultiply = setup_for_endstop_move();
  4669. run_z_probe();
  4670. sample_set[n] = current_position[Z_AXIS];
  4671. //
  4672. // Get the current mean for the data points we have so far
  4673. //
  4674. sum=0.0;
  4675. for( j=0; j<=n; j++) {
  4676. sum = sum + sample_set[j];
  4677. }
  4678. mean = sum / (double (n+1));
  4679. //
  4680. // Now, use that mean to calculate the standard deviation for the
  4681. // data points we have so far
  4682. //
  4683. sum=0.0;
  4684. for( j=0; j<=n; j++) {
  4685. sum = sum + (sample_set[j]-mean) * (sample_set[j]-mean);
  4686. }
  4687. sigma = sqrt( sum / (double (n+1)) );
  4688. if (verbose_level > 1) {
  4689. SERIAL_PROTOCOL(n+1);
  4690. SERIAL_PROTOCOL(" of ");
  4691. SERIAL_PROTOCOL(n_samples);
  4692. SERIAL_PROTOCOLPGM(" z: ");
  4693. SERIAL_PROTOCOL_F(current_position[Z_AXIS], 6);
  4694. }
  4695. if (verbose_level > 2) {
  4696. SERIAL_PROTOCOL(" mean: ");
  4697. SERIAL_PROTOCOL_F(mean,6);
  4698. SERIAL_PROTOCOL(" sigma: ");
  4699. SERIAL_PROTOCOL_F(sigma,6);
  4700. }
  4701. if (verbose_level > 0)
  4702. SERIAL_PROTOCOLPGM("\n");
  4703. plan_buffer_line( X_probe_location, Y_probe_location, Z_start_location,
  4704. current_position[E_AXIS], homing_feedrate[Z_AXIS]/60, active_extruder);
  4705. st_synchronize();
  4706. }
  4707. _delay(1000);
  4708. clean_up_after_endstop_move(l_feedmultiply);
  4709. // enable_endstops(true);
  4710. if (verbose_level > 0) {
  4711. SERIAL_PROTOCOLPGM("Mean: ");
  4712. SERIAL_PROTOCOL_F(mean, 6);
  4713. SERIAL_PROTOCOLPGM("\n");
  4714. }
  4715. SERIAL_PROTOCOLPGM("Standard Deviation: ");
  4716. SERIAL_PROTOCOL_F(sigma, 6);
  4717. SERIAL_PROTOCOLPGM("\n\n");
  4718. Sigma_Exit:
  4719. break;
  4720. }
  4721. #endif // Z_PROBE_REPEATABILITY_TEST
  4722. #endif // ENABLE_AUTO_BED_LEVELING
  4723. case 73: //M73 show percent done and time remaining
  4724. if(code_seen('P')) print_percent_done_normal = code_value();
  4725. if(code_seen('R')) print_time_remaining_normal = code_value();
  4726. if(code_seen('Q')) print_percent_done_silent = code_value();
  4727. if(code_seen('S')) print_time_remaining_silent = code_value();
  4728. {
  4729. const char* _msg_mode_done_remain = _N("%S MODE: Percent done: %d; print time remaining in mins: %d\n");
  4730. printf_P(_msg_mode_done_remain, _N("NORMAL"), int(print_percent_done_normal), print_time_remaining_normal);
  4731. printf_P(_msg_mode_done_remain, _N("SILENT"), int(print_percent_done_silent), print_time_remaining_silent);
  4732. }
  4733. break;
  4734. case 104: // M104
  4735. {
  4736. uint8_t extruder;
  4737. if(setTargetedHotend(104,extruder)){
  4738. break;
  4739. }
  4740. if (code_seen('S'))
  4741. {
  4742. setTargetHotendSafe(code_value(), extruder);
  4743. }
  4744. setWatch();
  4745. break;
  4746. }
  4747. case 112: // M112 -Emergency Stop
  4748. kill(_n(""), 3);
  4749. break;
  4750. case 140: // M140 set bed temp
  4751. if (code_seen('S')) setTargetBed(code_value());
  4752. break;
  4753. case 105 : // M105
  4754. {
  4755. uint8_t extruder;
  4756. if(setTargetedHotend(105, extruder)){
  4757. break;
  4758. }
  4759. #if defined(TEMP_0_PIN) && TEMP_0_PIN > -1
  4760. SERIAL_PROTOCOLPGM("ok T:");
  4761. SERIAL_PROTOCOL_F(degHotend(extruder),1);
  4762. SERIAL_PROTOCOLPGM(" /");
  4763. SERIAL_PROTOCOL_F(degTargetHotend(extruder),1);
  4764. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  4765. SERIAL_PROTOCOLPGM(" B:");
  4766. SERIAL_PROTOCOL_F(degBed(),1);
  4767. SERIAL_PROTOCOLPGM(" /");
  4768. SERIAL_PROTOCOL_F(degTargetBed(),1);
  4769. #endif //TEMP_BED_PIN
  4770. for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) {
  4771. SERIAL_PROTOCOLPGM(" T");
  4772. SERIAL_PROTOCOL(cur_extruder);
  4773. SERIAL_PROTOCOLPGM(":");
  4774. SERIAL_PROTOCOL_F(degHotend(cur_extruder),1);
  4775. SERIAL_PROTOCOLPGM(" /");
  4776. SERIAL_PROTOCOL_F(degTargetHotend(cur_extruder),1);
  4777. }
  4778. #else
  4779. SERIAL_ERROR_START;
  4780. SERIAL_ERRORLNRPGM(_i("No thermistors - no temperature"));////MSG_ERR_NO_THERMISTORS c=0 r=0
  4781. #endif
  4782. SERIAL_PROTOCOLPGM(" @:");
  4783. #ifdef EXTRUDER_WATTS
  4784. SERIAL_PROTOCOL((EXTRUDER_WATTS * getHeaterPower(tmp_extruder))/127);
  4785. SERIAL_PROTOCOLPGM("W");
  4786. #else
  4787. SERIAL_PROTOCOL(getHeaterPower(extruder));
  4788. #endif
  4789. SERIAL_PROTOCOLPGM(" B@:");
  4790. #ifdef BED_WATTS
  4791. SERIAL_PROTOCOL((BED_WATTS * getHeaterPower(-1))/127);
  4792. SERIAL_PROTOCOLPGM("W");
  4793. #else
  4794. SERIAL_PROTOCOL(getHeaterPower(-1));
  4795. #endif
  4796. #ifdef PINDA_THERMISTOR
  4797. SERIAL_PROTOCOLPGM(" P:");
  4798. SERIAL_PROTOCOL_F(current_temperature_pinda,1);
  4799. #endif //PINDA_THERMISTOR
  4800. #ifdef AMBIENT_THERMISTOR
  4801. SERIAL_PROTOCOLPGM(" A:");
  4802. SERIAL_PROTOCOL_F(current_temperature_ambient,1);
  4803. #endif //AMBIENT_THERMISTOR
  4804. #ifdef SHOW_TEMP_ADC_VALUES
  4805. {float raw = 0.0;
  4806. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  4807. SERIAL_PROTOCOLPGM(" ADC B:");
  4808. SERIAL_PROTOCOL_F(degBed(),1);
  4809. SERIAL_PROTOCOLPGM("C->");
  4810. raw = rawBedTemp();
  4811. SERIAL_PROTOCOL_F(raw/OVERSAMPLENR,5);
  4812. SERIAL_PROTOCOLPGM(" Rb->");
  4813. SERIAL_PROTOCOL_F(100 * (1 + (PtA * (raw/OVERSAMPLENR)) + (PtB * sq((raw/OVERSAMPLENR)))), 5);
  4814. SERIAL_PROTOCOLPGM(" Rxb->");
  4815. SERIAL_PROTOCOL_F(raw, 5);
  4816. #endif
  4817. for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) {
  4818. SERIAL_PROTOCOLPGM(" T");
  4819. SERIAL_PROTOCOL(cur_extruder);
  4820. SERIAL_PROTOCOLPGM(":");
  4821. SERIAL_PROTOCOL_F(degHotend(cur_extruder),1);
  4822. SERIAL_PROTOCOLPGM("C->");
  4823. raw = rawHotendTemp(cur_extruder);
  4824. SERIAL_PROTOCOL_F(raw/OVERSAMPLENR,5);
  4825. SERIAL_PROTOCOLPGM(" Rt");
  4826. SERIAL_PROTOCOL(cur_extruder);
  4827. SERIAL_PROTOCOLPGM("->");
  4828. SERIAL_PROTOCOL_F(100 * (1 + (PtA * (raw/OVERSAMPLENR)) + (PtB * sq((raw/OVERSAMPLENR)))), 5);
  4829. SERIAL_PROTOCOLPGM(" Rx");
  4830. SERIAL_PROTOCOL(cur_extruder);
  4831. SERIAL_PROTOCOLPGM("->");
  4832. SERIAL_PROTOCOL_F(raw, 5);
  4833. }}
  4834. #endif
  4835. SERIAL_PROTOCOLLN("");
  4836. KEEPALIVE_STATE(NOT_BUSY);
  4837. return;
  4838. break;
  4839. }
  4840. case 109:
  4841. {// M109 - Wait for extruder heater to reach target.
  4842. uint8_t extruder;
  4843. if(setTargetedHotend(109, extruder)){
  4844. break;
  4845. }
  4846. LCD_MESSAGERPGM(_T(MSG_HEATING));
  4847. heating_status = 1;
  4848. if (farm_mode) { prusa_statistics(1); };
  4849. #ifdef AUTOTEMP
  4850. autotemp_enabled=false;
  4851. #endif
  4852. if (code_seen('S')) {
  4853. setTargetHotendSafe(code_value(), extruder);
  4854. CooldownNoWait = true;
  4855. } else if (code_seen('R')) {
  4856. setTargetHotendSafe(code_value(), extruder);
  4857. CooldownNoWait = false;
  4858. }
  4859. #ifdef AUTOTEMP
  4860. if (code_seen('S')) autotemp_min=code_value();
  4861. if (code_seen('B')) autotemp_max=code_value();
  4862. if (code_seen('F'))
  4863. {
  4864. autotemp_factor=code_value();
  4865. autotemp_enabled=true;
  4866. }
  4867. #endif
  4868. setWatch();
  4869. codenum = _millis();
  4870. /* See if we are heating up or cooling down */
  4871. target_direction = isHeatingHotend(extruder); // true if heating, false if cooling
  4872. KEEPALIVE_STATE(NOT_BUSY);
  4873. cancel_heatup = false;
  4874. wait_for_heater(codenum, extruder); //loops until target temperature is reached
  4875. LCD_MESSAGERPGM(_T(MSG_HEATING_COMPLETE));
  4876. KEEPALIVE_STATE(IN_HANDLER);
  4877. heating_status = 2;
  4878. if (farm_mode) { prusa_statistics(2); };
  4879. //starttime=_millis();
  4880. previous_millis_cmd = _millis();
  4881. }
  4882. break;
  4883. case 190: // M190 - Wait for bed heater to reach target.
  4884. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  4885. LCD_MESSAGERPGM(_T(MSG_BED_HEATING));
  4886. heating_status = 3;
  4887. if (farm_mode) { prusa_statistics(1); };
  4888. if (code_seen('S'))
  4889. {
  4890. setTargetBed(code_value());
  4891. CooldownNoWait = true;
  4892. }
  4893. else if (code_seen('R'))
  4894. {
  4895. setTargetBed(code_value());
  4896. CooldownNoWait = false;
  4897. }
  4898. codenum = _millis();
  4899. cancel_heatup = false;
  4900. target_direction = isHeatingBed(); // true if heating, false if cooling
  4901. KEEPALIVE_STATE(NOT_BUSY);
  4902. while ( (target_direction)&&(!cancel_heatup) ? (isHeatingBed()) : (isCoolingBed()&&(CooldownNoWait==false)) )
  4903. {
  4904. if(( _millis() - codenum) > 1000 ) //Print Temp Reading every 1 second while heating up.
  4905. {
  4906. if (!farm_mode) {
  4907. float tt = degHotend(active_extruder);
  4908. SERIAL_PROTOCOLPGM("T:");
  4909. SERIAL_PROTOCOL(tt);
  4910. SERIAL_PROTOCOLPGM(" E:");
  4911. SERIAL_PROTOCOL((int)active_extruder);
  4912. SERIAL_PROTOCOLPGM(" B:");
  4913. SERIAL_PROTOCOL_F(degBed(), 1);
  4914. SERIAL_PROTOCOLLN("");
  4915. }
  4916. codenum = _millis();
  4917. }
  4918. manage_heater();
  4919. manage_inactivity();
  4920. lcd_update(0);
  4921. }
  4922. LCD_MESSAGERPGM(_T(MSG_BED_DONE));
  4923. KEEPALIVE_STATE(IN_HANDLER);
  4924. heating_status = 4;
  4925. previous_millis_cmd = _millis();
  4926. #endif
  4927. break;
  4928. #if defined(FAN_PIN) && FAN_PIN > -1
  4929. case 106: //!M106 Sxxx Fan On S<speed> 0 .. 255
  4930. if (code_seen('S')){
  4931. fanSpeed=constrain(code_value(),0,255);
  4932. }
  4933. else {
  4934. fanSpeed=255;
  4935. }
  4936. break;
  4937. case 107: //M107 Fan Off
  4938. fanSpeed = 0;
  4939. break;
  4940. #endif //FAN_PIN
  4941. #if defined(PS_ON_PIN) && PS_ON_PIN > -1
  4942. case 80: // M80 - Turn on Power Supply
  4943. SET_OUTPUT(PS_ON_PIN); //GND
  4944. WRITE(PS_ON_PIN, PS_ON_AWAKE);
  4945. // If you have a switch on suicide pin, this is useful
  4946. // if you want to start another print with suicide feature after
  4947. // a print without suicide...
  4948. #if defined SUICIDE_PIN && SUICIDE_PIN > -1
  4949. SET_OUTPUT(SUICIDE_PIN);
  4950. WRITE(SUICIDE_PIN, HIGH);
  4951. #endif
  4952. powersupply = true;
  4953. LCD_MESSAGERPGM(_T(WELCOME_MSG));
  4954. lcd_update(0);
  4955. break;
  4956. #endif
  4957. case 81: // M81 - Turn off Power Supply
  4958. disable_heater();
  4959. st_synchronize();
  4960. disable_e0();
  4961. disable_e1();
  4962. disable_e2();
  4963. finishAndDisableSteppers();
  4964. fanSpeed = 0;
  4965. _delay(1000); // Wait a little before to switch off
  4966. #if defined(SUICIDE_PIN) && SUICIDE_PIN > -1
  4967. st_synchronize();
  4968. suicide();
  4969. #elif defined(PS_ON_PIN) && PS_ON_PIN > -1
  4970. SET_OUTPUT(PS_ON_PIN);
  4971. WRITE(PS_ON_PIN, PS_ON_ASLEEP);
  4972. #endif
  4973. powersupply = false;
  4974. LCD_MESSAGERPGM(CAT4(CUSTOM_MENDEL_NAME,PSTR(" "),MSG_OFF,PSTR(".")));
  4975. lcd_update(0);
  4976. break;
  4977. case 82:
  4978. axis_relative_modes[3] = false;
  4979. break;
  4980. case 83:
  4981. axis_relative_modes[3] = true;
  4982. break;
  4983. case 18: //compatibility
  4984. case 84: // M84
  4985. if(code_seen('S')){
  4986. stepper_inactive_time = code_value() * 1000;
  4987. }
  4988. else
  4989. {
  4990. bool all_axis = !((code_seen(axis_codes[X_AXIS])) || (code_seen(axis_codes[Y_AXIS])) || (code_seen(axis_codes[Z_AXIS]))|| (code_seen(axis_codes[E_AXIS])));
  4991. if(all_axis)
  4992. {
  4993. st_synchronize();
  4994. disable_e0();
  4995. disable_e1();
  4996. disable_e2();
  4997. finishAndDisableSteppers();
  4998. }
  4999. else
  5000. {
  5001. st_synchronize();
  5002. if (code_seen('X')) disable_x();
  5003. if (code_seen('Y')) disable_y();
  5004. if (code_seen('Z')) disable_z();
  5005. #if ((E0_ENABLE_PIN != X_ENABLE_PIN) && (E1_ENABLE_PIN != Y_ENABLE_PIN)) // Only enable on boards that have seperate ENABLE_PINS
  5006. if (code_seen('E')) {
  5007. disable_e0();
  5008. disable_e1();
  5009. disable_e2();
  5010. }
  5011. #endif
  5012. }
  5013. }
  5014. //in the end of print set estimated time to end of print and extruders used during print to default values for next print
  5015. print_time_remaining_init();
  5016. snmm_filaments_used = 0;
  5017. break;
  5018. case 85: // M85
  5019. if(code_seen('S')) {
  5020. max_inactive_time = code_value() * 1000;
  5021. }
  5022. break;
  5023. #ifdef SAFETYTIMER
  5024. case 86: // M86 - set safety timer expiration time in seconds; M86 S0 will disable safety timer
  5025. //when safety timer expires heatbed and nozzle target temperatures are set to zero
  5026. if (code_seen('S')) {
  5027. safetytimer_inactive_time = code_value() * 1000;
  5028. safetyTimer.start();
  5029. }
  5030. break;
  5031. #endif
  5032. case 92: // M92
  5033. for(int8_t i=0; i < NUM_AXIS; i++)
  5034. {
  5035. if(code_seen(axis_codes[i]))
  5036. {
  5037. if(i == 3) { // E
  5038. float value = code_value();
  5039. if(value < 20.0) {
  5040. float factor = cs.axis_steps_per_unit[i] / value; // increase e constants if M92 E14 is given for netfab.
  5041. cs.max_jerk[E_AXIS] *= factor;
  5042. max_feedrate[i] *= factor;
  5043. axis_steps_per_sqr_second[i] *= factor;
  5044. }
  5045. cs.axis_steps_per_unit[i] = value;
  5046. }
  5047. else {
  5048. cs.axis_steps_per_unit[i] = code_value();
  5049. }
  5050. }
  5051. }
  5052. break;
  5053. case 110: //! M110 N<line number> - reset line pos
  5054. if (code_seen('N'))
  5055. gcode_LastN = code_value_long();
  5056. break;
  5057. case 113: // M113 - Get or set Host Keepalive interval
  5058. if (code_seen('S')) {
  5059. host_keepalive_interval = (uint8_t)code_value_short();
  5060. // NOMORE(host_keepalive_interval, 60);
  5061. }
  5062. else {
  5063. SERIAL_ECHO_START;
  5064. SERIAL_ECHOPAIR("M113 S", (unsigned long)host_keepalive_interval);
  5065. SERIAL_PROTOCOLLN("");
  5066. }
  5067. break;
  5068. case 115: // M115
  5069. if (code_seen('V')) {
  5070. // Report the Prusa version number.
  5071. SERIAL_PROTOCOLLNRPGM(FW_VERSION_STR_P());
  5072. } else if (code_seen('U')) {
  5073. // Check the firmware version provided. If the firmware version provided by the U code is higher than the currently running firmware,
  5074. // pause the print and ask the user to upgrade the firmware.
  5075. show_upgrade_dialog_if_version_newer(++ strchr_pointer);
  5076. } else {
  5077. SERIAL_ECHOPGM("FIRMWARE_NAME:Prusa-Firmware ");
  5078. SERIAL_ECHORPGM(FW_VERSION_STR_P());
  5079. SERIAL_ECHOPGM(" based on Marlin FIRMWARE_URL:https://github.com/prusa3d/Prusa-Firmware PROTOCOL_VERSION:");
  5080. SERIAL_ECHOPGM(PROTOCOL_VERSION);
  5081. SERIAL_ECHOPGM(" MACHINE_TYPE:");
  5082. SERIAL_ECHOPGM(CUSTOM_MENDEL_NAME);
  5083. SERIAL_ECHOPGM(" EXTRUDER_COUNT:");
  5084. SERIAL_ECHOPGM(STRINGIFY(EXTRUDERS));
  5085. SERIAL_ECHOPGM(" UUID:");
  5086. SERIAL_ECHOLNPGM(MACHINE_UUID);
  5087. }
  5088. break;
  5089. /* case 117: // M117 display message
  5090. starpos = (strchr(strchr_pointer + 5,'*'));
  5091. if(starpos!=NULL)
  5092. *(starpos)='\0';
  5093. lcd_setstatus(strchr_pointer + 5);
  5094. break;*/
  5095. case 114: // M114
  5096. gcode_M114();
  5097. break;
  5098. case 120: //! M120 - Disable endstops
  5099. enable_endstops(false) ;
  5100. break;
  5101. case 121: //! M121 - Enable endstops
  5102. enable_endstops(true) ;
  5103. break;
  5104. case 119: // M119
  5105. SERIAL_PROTOCOLRPGM(_N("Reporting endstop status"));////MSG_M119_REPORT c=0 r=0
  5106. SERIAL_PROTOCOLLN("");
  5107. #if defined(X_MIN_PIN) && X_MIN_PIN > -1
  5108. SERIAL_PROTOCOLRPGM(_n("x_min: "));////MSG_X_MIN c=0 r=0
  5109. if(READ(X_MIN_PIN)^X_MIN_ENDSTOP_INVERTING){
  5110. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_HIT);
  5111. }else{
  5112. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_OPEN);
  5113. }
  5114. SERIAL_PROTOCOLLN("");
  5115. #endif
  5116. #if defined(X_MAX_PIN) && X_MAX_PIN > -1
  5117. SERIAL_PROTOCOLRPGM(_n("x_max: "));////MSG_X_MAX c=0 r=0
  5118. if(READ(X_MAX_PIN)^X_MAX_ENDSTOP_INVERTING){
  5119. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_HIT);
  5120. }else{
  5121. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_OPEN);
  5122. }
  5123. SERIAL_PROTOCOLLN("");
  5124. #endif
  5125. #if defined(Y_MIN_PIN) && Y_MIN_PIN > -1
  5126. SERIAL_PROTOCOLRPGM(_n("y_min: "));////MSG_Y_MIN c=0 r=0
  5127. if(READ(Y_MIN_PIN)^Y_MIN_ENDSTOP_INVERTING){
  5128. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_HIT);
  5129. }else{
  5130. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_OPEN);
  5131. }
  5132. SERIAL_PROTOCOLLN("");
  5133. #endif
  5134. #if defined(Y_MAX_PIN) && Y_MAX_PIN > -1
  5135. SERIAL_PROTOCOLRPGM(_n("y_max: "));////MSG_Y_MAX c=0 r=0
  5136. if(READ(Y_MAX_PIN)^Y_MAX_ENDSTOP_INVERTING){
  5137. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_HIT);
  5138. }else{
  5139. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_OPEN);
  5140. }
  5141. SERIAL_PROTOCOLLN("");
  5142. #endif
  5143. #if defined(Z_MIN_PIN) && Z_MIN_PIN > -1
  5144. SERIAL_PROTOCOLRPGM(MSG_Z_MIN);
  5145. if(READ(Z_MIN_PIN)^Z_MIN_ENDSTOP_INVERTING){
  5146. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_HIT);
  5147. }else{
  5148. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_OPEN);
  5149. }
  5150. SERIAL_PROTOCOLLN("");
  5151. #endif
  5152. #if defined(Z_MAX_PIN) && Z_MAX_PIN > -1
  5153. SERIAL_PROTOCOLRPGM(MSG_Z_MAX);
  5154. if(READ(Z_MAX_PIN)^Z_MAX_ENDSTOP_INVERTING){
  5155. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_HIT);
  5156. }else{
  5157. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_OPEN);
  5158. }
  5159. SERIAL_PROTOCOLLN("");
  5160. #endif
  5161. break;
  5162. //TODO: update for all axis, use for loop
  5163. #ifdef BLINKM
  5164. case 150: // M150
  5165. {
  5166. byte red;
  5167. byte grn;
  5168. byte blu;
  5169. if(code_seen('R')) red = code_value();
  5170. if(code_seen('U')) grn = code_value();
  5171. if(code_seen('B')) blu = code_value();
  5172. SendColors(red,grn,blu);
  5173. }
  5174. break;
  5175. #endif //BLINKM
  5176. case 200: // M200 D<millimeters> set filament diameter and set E axis units to cubic millimeters (use S0 to set back to millimeters).
  5177. {
  5178. uint8_t extruder = active_extruder;
  5179. if(code_seen('T')) {
  5180. extruder = code_value();
  5181. if(extruder >= EXTRUDERS) {
  5182. SERIAL_ECHO_START;
  5183. SERIAL_ECHO(_n("M200 Invalid extruder "));////MSG_M200_INVALID_EXTRUDER c=0 r=0
  5184. break;
  5185. }
  5186. }
  5187. if(code_seen('D')) {
  5188. float diameter = (float)code_value();
  5189. if (diameter == 0.0) {
  5190. // setting any extruder filament size disables volumetric on the assumption that
  5191. // slicers either generate in extruder values as cubic mm or as as filament feeds
  5192. // for all extruders
  5193. cs.volumetric_enabled = false;
  5194. } else {
  5195. cs.filament_size[extruder] = (float)code_value();
  5196. // make sure all extruders have some sane value for the filament size
  5197. cs.filament_size[0] = (cs.filament_size[0] == 0.0 ? DEFAULT_NOMINAL_FILAMENT_DIA : cs.filament_size[0]);
  5198. #if EXTRUDERS > 1
  5199. cs.filament_size[1] = (cs.filament_size[1] == 0.0 ? DEFAULT_NOMINAL_FILAMENT_DIA : cs.filament_size[1]);
  5200. #if EXTRUDERS > 2
  5201. cs.filament_size[2] = (cs.filament_size[2] == 0.0 ? DEFAULT_NOMINAL_FILAMENT_DIA : cs.filament_size[2]);
  5202. #endif
  5203. #endif
  5204. cs.volumetric_enabled = true;
  5205. }
  5206. } else {
  5207. //reserved for setting filament diameter via UFID or filament measuring device
  5208. break;
  5209. }
  5210. calculate_extruder_multipliers();
  5211. }
  5212. break;
  5213. case 201: // M201
  5214. for (int8_t i = 0; i < NUM_AXIS; i++)
  5215. {
  5216. if (code_seen(axis_codes[i]))
  5217. {
  5218. unsigned long val = code_value();
  5219. #ifdef TMC2130
  5220. unsigned long val_silent = val;
  5221. if ((i == X_AXIS) || (i == Y_AXIS))
  5222. {
  5223. if (val > NORMAL_MAX_ACCEL_XY)
  5224. val = NORMAL_MAX_ACCEL_XY;
  5225. if (val_silent > SILENT_MAX_ACCEL_XY)
  5226. val_silent = SILENT_MAX_ACCEL_XY;
  5227. }
  5228. cs.max_acceleration_units_per_sq_second_normal[i] = val;
  5229. cs.max_acceleration_units_per_sq_second_silent[i] = val_silent;
  5230. #else //TMC2130
  5231. max_acceleration_units_per_sq_second[i] = val;
  5232. #endif //TMC2130
  5233. }
  5234. }
  5235. // steps per sq second need to be updated to agree with the units per sq second (as they are what is used in the planner)
  5236. reset_acceleration_rates();
  5237. break;
  5238. #if 0 // Not used for Sprinter/grbl gen6
  5239. case 202: // M202
  5240. for(int8_t i=0; i < NUM_AXIS; i++) {
  5241. if(code_seen(axis_codes[i])) axis_travel_steps_per_sqr_second[i] = code_value() * cs.axis_steps_per_unit[i];
  5242. }
  5243. break;
  5244. #endif
  5245. case 203: // M203 max feedrate mm/sec
  5246. for (int8_t i = 0; i < NUM_AXIS; i++)
  5247. {
  5248. if (code_seen(axis_codes[i]))
  5249. {
  5250. float val = code_value();
  5251. #ifdef TMC2130
  5252. float val_silent = val;
  5253. if ((i == X_AXIS) || (i == Y_AXIS))
  5254. {
  5255. if (val > NORMAL_MAX_FEEDRATE_XY)
  5256. val = NORMAL_MAX_FEEDRATE_XY;
  5257. if (val_silent > SILENT_MAX_FEEDRATE_XY)
  5258. val_silent = SILENT_MAX_FEEDRATE_XY;
  5259. }
  5260. cs.max_feedrate_normal[i] = val;
  5261. cs.max_feedrate_silent[i] = val_silent;
  5262. #else //TMC2130
  5263. max_feedrate[i] = val;
  5264. #endif //TMC2130
  5265. }
  5266. }
  5267. break;
  5268. case 204:
  5269. //! M204 acclereration settings.
  5270. //!@n Supporting old format: M204 S[normal moves] T[filmanent only moves]
  5271. //!@n and new format: M204 P[printing moves] R[filmanent only moves] T[travel moves] (as of now T is ignored)
  5272. {
  5273. if(code_seen('S')) {
  5274. // Legacy acceleration format. This format is used by the legacy Marlin, MK2 or MK3 firmware,
  5275. // and it is also generated by Slic3r to control acceleration per extrusion type
  5276. // (there is a separate acceleration settings in Slicer for perimeter, first layer etc).
  5277. cs.acceleration = code_value();
  5278. // Interpret the T value as retract acceleration in the old Marlin format.
  5279. if(code_seen('T'))
  5280. cs.retract_acceleration = code_value();
  5281. } else {
  5282. // New acceleration format, compatible with the upstream Marlin.
  5283. if(code_seen('P'))
  5284. cs.acceleration = code_value();
  5285. if(code_seen('R'))
  5286. cs.retract_acceleration = code_value();
  5287. if(code_seen('T')) {
  5288. // Interpret the T value as the travel acceleration in the new Marlin format.
  5289. //FIXME Prusa3D firmware currently does not support travel acceleration value independent from the extruding acceleration value.
  5290. // travel_acceleration = code_value();
  5291. }
  5292. }
  5293. }
  5294. break;
  5295. case 205: //M205 advanced settings: minimum travel speed S=while printing T=travel only, B=minimum segment time X= maximum xy jerk, Z=maximum Z jerk
  5296. {
  5297. if(code_seen('S')) cs.minimumfeedrate = code_value();
  5298. if(code_seen('T')) cs.mintravelfeedrate = code_value();
  5299. if(code_seen('B')) cs.minsegmenttime = code_value() ;
  5300. if(code_seen('X')) cs.max_jerk[X_AXIS] = cs.max_jerk[Y_AXIS] = code_value();
  5301. if(code_seen('Y')) cs.max_jerk[Y_AXIS] = code_value();
  5302. if(code_seen('Z')) cs.max_jerk[Z_AXIS] = code_value();
  5303. if(code_seen('E')) cs.max_jerk[E_AXIS] = code_value();
  5304. if (cs.max_jerk[X_AXIS] > DEFAULT_XJERK) cs.max_jerk[X_AXIS] = DEFAULT_XJERK;
  5305. if (cs.max_jerk[Y_AXIS] > DEFAULT_YJERK) cs.max_jerk[Y_AXIS] = DEFAULT_YJERK;
  5306. }
  5307. break;
  5308. case 206: // M206 additional homing offset
  5309. for(int8_t i=0; i < 3; i++)
  5310. {
  5311. if(code_seen(axis_codes[i])) cs.add_homing[i] = code_value();
  5312. }
  5313. break;
  5314. #ifdef FWRETRACT
  5315. case 207: //M207 - set retract length S[positive mm] F[feedrate mm/min] Z[additional zlift/hop]
  5316. {
  5317. if(code_seen('S'))
  5318. {
  5319. cs.retract_length = code_value() ;
  5320. }
  5321. if(code_seen('F'))
  5322. {
  5323. cs.retract_feedrate = code_value()/60 ;
  5324. }
  5325. if(code_seen('Z'))
  5326. {
  5327. cs.retract_zlift = code_value() ;
  5328. }
  5329. }break;
  5330. case 208: // M208 - set retract recover length S[positive mm surplus to the M207 S*] F[feedrate mm/min]
  5331. {
  5332. if(code_seen('S'))
  5333. {
  5334. cs.retract_recover_length = code_value() ;
  5335. }
  5336. if(code_seen('F'))
  5337. {
  5338. cs.retract_recover_feedrate = code_value()/60 ;
  5339. }
  5340. }break;
  5341. case 209: // M209 - S<1=true/0=false> enable automatic retract detect if the slicer did not support G10/11: every normal extrude-only move will be classified as retract depending on the direction.
  5342. {
  5343. if(code_seen('S'))
  5344. {
  5345. int t= code_value() ;
  5346. switch(t)
  5347. {
  5348. case 0:
  5349. {
  5350. cs.autoretract_enabled=false;
  5351. retracted[0]=false;
  5352. #if EXTRUDERS > 1
  5353. retracted[1]=false;
  5354. #endif
  5355. #if EXTRUDERS > 2
  5356. retracted[2]=false;
  5357. #endif
  5358. }break;
  5359. case 1:
  5360. {
  5361. cs.autoretract_enabled=true;
  5362. retracted[0]=false;
  5363. #if EXTRUDERS > 1
  5364. retracted[1]=false;
  5365. #endif
  5366. #if EXTRUDERS > 2
  5367. retracted[2]=false;
  5368. #endif
  5369. }break;
  5370. default:
  5371. SERIAL_ECHO_START;
  5372. SERIAL_ECHORPGM(MSG_UNKNOWN_COMMAND);
  5373. SERIAL_ECHO(CMDBUFFER_CURRENT_STRING);
  5374. SERIAL_ECHOLNPGM("\"(1)");
  5375. }
  5376. }
  5377. }break;
  5378. #endif // FWRETRACT
  5379. #if EXTRUDERS > 1
  5380. case 218: // M218 - set hotend offset (in mm), T<extruder_number> X<offset_on_X> Y<offset_on_Y>
  5381. {
  5382. uint8_t extruder;
  5383. if(setTargetedHotend(218, extruder)){
  5384. break;
  5385. }
  5386. if(code_seen('X'))
  5387. {
  5388. extruder_offset[X_AXIS][extruder] = code_value();
  5389. }
  5390. if(code_seen('Y'))
  5391. {
  5392. extruder_offset[Y_AXIS][extruder] = code_value();
  5393. }
  5394. SERIAL_ECHO_START;
  5395. SERIAL_ECHORPGM(MSG_HOTEND_OFFSET);
  5396. for(extruder = 0; extruder < EXTRUDERS; extruder++)
  5397. {
  5398. SERIAL_ECHO(" ");
  5399. SERIAL_ECHO(extruder_offset[X_AXIS][extruder]);
  5400. SERIAL_ECHO(",");
  5401. SERIAL_ECHO(extruder_offset[Y_AXIS][extruder]);
  5402. }
  5403. SERIAL_ECHOLN("");
  5404. }break;
  5405. #endif
  5406. case 220: // M220 S<factor in percent>- set speed factor override percentage
  5407. {
  5408. if (code_seen('B')) //backup current speed factor
  5409. {
  5410. saved_feedmultiply_mm = feedmultiply;
  5411. }
  5412. if(code_seen('S'))
  5413. {
  5414. feedmultiply = code_value() ;
  5415. }
  5416. if (code_seen('R')) { //restore previous feedmultiply
  5417. feedmultiply = saved_feedmultiply_mm;
  5418. }
  5419. }
  5420. break;
  5421. case 221: // M221 S<factor in percent>- set extrude factor override percentage
  5422. {
  5423. if(code_seen('S'))
  5424. {
  5425. int tmp_code = code_value();
  5426. if (code_seen('T'))
  5427. {
  5428. uint8_t extruder;
  5429. if(setTargetedHotend(221, extruder)){
  5430. break;
  5431. }
  5432. extruder_multiply[extruder] = tmp_code;
  5433. }
  5434. else
  5435. {
  5436. extrudemultiply = tmp_code ;
  5437. }
  5438. }
  5439. calculate_extruder_multipliers();
  5440. }
  5441. break;
  5442. case 226: // M226 P<pin number> S<pin state>- Wait until the specified pin reaches the state required
  5443. {
  5444. if(code_seen('P')){
  5445. int pin_number = code_value(); // pin number
  5446. int pin_state = -1; // required pin state - default is inverted
  5447. if(code_seen('S')) pin_state = code_value(); // required pin state
  5448. if(pin_state >= -1 && pin_state <= 1){
  5449. for(int8_t i = 0; i < (int8_t)(sizeof(sensitive_pins)/sizeof(int)); i++)
  5450. {
  5451. if (sensitive_pins[i] == pin_number)
  5452. {
  5453. pin_number = -1;
  5454. break;
  5455. }
  5456. }
  5457. if (pin_number > -1)
  5458. {
  5459. int target = LOW;
  5460. st_synchronize();
  5461. pinMode(pin_number, INPUT);
  5462. switch(pin_state){
  5463. case 1:
  5464. target = HIGH;
  5465. break;
  5466. case 0:
  5467. target = LOW;
  5468. break;
  5469. case -1:
  5470. target = !digitalRead(pin_number);
  5471. break;
  5472. }
  5473. while(digitalRead(pin_number) != target){
  5474. manage_heater();
  5475. manage_inactivity();
  5476. lcd_update(0);
  5477. }
  5478. }
  5479. }
  5480. }
  5481. }
  5482. break;
  5483. #if NUM_SERVOS > 0
  5484. case 280: // M280 - set servo position absolute. P: servo index, S: angle or microseconds
  5485. {
  5486. int servo_index = -1;
  5487. int servo_position = 0;
  5488. if (code_seen('P'))
  5489. servo_index = code_value();
  5490. if (code_seen('S')) {
  5491. servo_position = code_value();
  5492. if ((servo_index >= 0) && (servo_index < NUM_SERVOS)) {
  5493. #if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
  5494. servos[servo_index].attach(0);
  5495. #endif
  5496. servos[servo_index].write(servo_position);
  5497. #if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
  5498. _delay(PROBE_SERVO_DEACTIVATION_DELAY);
  5499. servos[servo_index].detach();
  5500. #endif
  5501. }
  5502. else {
  5503. SERIAL_ECHO_START;
  5504. SERIAL_ECHO("Servo ");
  5505. SERIAL_ECHO(servo_index);
  5506. SERIAL_ECHOLN(" out of range");
  5507. }
  5508. }
  5509. else if (servo_index >= 0) {
  5510. SERIAL_PROTOCOL(MSG_OK);
  5511. SERIAL_PROTOCOL(" Servo ");
  5512. SERIAL_PROTOCOL(servo_index);
  5513. SERIAL_PROTOCOL(": ");
  5514. SERIAL_PROTOCOL(servos[servo_index].read());
  5515. SERIAL_PROTOCOLLN("");
  5516. }
  5517. }
  5518. break;
  5519. #endif // NUM_SERVOS > 0
  5520. #if (LARGE_FLASH == true && ( BEEPER > 0 || defined(ULTRALCD) || defined(LCD_USE_I2C_BUZZER)))
  5521. case 300: // M300
  5522. {
  5523. int beepS = code_seen('S') ? code_value() : 110;
  5524. int beepP = code_seen('P') ? code_value() : 1000;
  5525. if (beepS > 0)
  5526. {
  5527. #if BEEPER > 0
  5528. if((eSoundMode==e_SOUND_MODE_LOUD)||(eSoundMode==e_SOUND_MODE_ONCE))
  5529. _tone(BEEPER, beepS);
  5530. _delay(beepP);
  5531. _noTone(BEEPER);
  5532. #endif
  5533. }
  5534. else
  5535. {
  5536. _delay(beepP);
  5537. }
  5538. }
  5539. break;
  5540. #endif // M300
  5541. #ifdef PIDTEMP
  5542. case 301: // M301
  5543. {
  5544. if(code_seen('P')) cs.Kp = code_value();
  5545. if(code_seen('I')) cs.Ki = scalePID_i(code_value());
  5546. if(code_seen('D')) cs.Kd = scalePID_d(code_value());
  5547. #ifdef PID_ADD_EXTRUSION_RATE
  5548. if(code_seen('C')) Kc = code_value();
  5549. #endif
  5550. updatePID();
  5551. SERIAL_PROTOCOLRPGM(MSG_OK);
  5552. SERIAL_PROTOCOL(" p:");
  5553. SERIAL_PROTOCOL(cs.Kp);
  5554. SERIAL_PROTOCOL(" i:");
  5555. SERIAL_PROTOCOL(unscalePID_i(cs.Ki));
  5556. SERIAL_PROTOCOL(" d:");
  5557. SERIAL_PROTOCOL(unscalePID_d(cs.Kd));
  5558. #ifdef PID_ADD_EXTRUSION_RATE
  5559. SERIAL_PROTOCOL(" c:");
  5560. //Kc does not have scaling applied above, or in resetting defaults
  5561. SERIAL_PROTOCOL(Kc);
  5562. #endif
  5563. SERIAL_PROTOCOLLN("");
  5564. }
  5565. break;
  5566. #endif //PIDTEMP
  5567. #ifdef PIDTEMPBED
  5568. case 304: // M304
  5569. {
  5570. if(code_seen('P')) cs.bedKp = code_value();
  5571. if(code_seen('I')) cs.bedKi = scalePID_i(code_value());
  5572. if(code_seen('D')) cs.bedKd = scalePID_d(code_value());
  5573. updatePID();
  5574. SERIAL_PROTOCOLRPGM(MSG_OK);
  5575. SERIAL_PROTOCOL(" p:");
  5576. SERIAL_PROTOCOL(cs.bedKp);
  5577. SERIAL_PROTOCOL(" i:");
  5578. SERIAL_PROTOCOL(unscalePID_i(cs.bedKi));
  5579. SERIAL_PROTOCOL(" d:");
  5580. SERIAL_PROTOCOL(unscalePID_d(cs.bedKd));
  5581. SERIAL_PROTOCOLLN("");
  5582. }
  5583. break;
  5584. #endif //PIDTEMP
  5585. case 240: // M240 Triggers a camera by emulating a Canon RC-1 : http://www.doc-diy.net/photo/rc-1_hacked/
  5586. {
  5587. #ifdef CHDK
  5588. SET_OUTPUT(CHDK);
  5589. WRITE(CHDK, HIGH);
  5590. chdkHigh = _millis();
  5591. chdkActive = true;
  5592. #else
  5593. #if defined(PHOTOGRAPH_PIN) && PHOTOGRAPH_PIN > -1
  5594. const uint8_t NUM_PULSES=16;
  5595. const float PULSE_LENGTH=0.01524;
  5596. for(int i=0; i < NUM_PULSES; i++) {
  5597. WRITE(PHOTOGRAPH_PIN, HIGH);
  5598. _delay_ms(PULSE_LENGTH);
  5599. WRITE(PHOTOGRAPH_PIN, LOW);
  5600. _delay_ms(PULSE_LENGTH);
  5601. }
  5602. _delay(7.33);
  5603. for(int i=0; i < NUM_PULSES; i++) {
  5604. WRITE(PHOTOGRAPH_PIN, HIGH);
  5605. _delay_ms(PULSE_LENGTH);
  5606. WRITE(PHOTOGRAPH_PIN, LOW);
  5607. _delay_ms(PULSE_LENGTH);
  5608. }
  5609. #endif
  5610. #endif //chdk end if
  5611. }
  5612. break;
  5613. #ifdef PREVENT_DANGEROUS_EXTRUDE
  5614. case 302: // allow cold extrudes, or set the minimum extrude temperature
  5615. {
  5616. float temp = .0;
  5617. if (code_seen('S')) temp=code_value();
  5618. set_extrude_min_temp(temp);
  5619. }
  5620. break;
  5621. #endif
  5622. case 303: // M303 PID autotune
  5623. {
  5624. float temp = 150.0;
  5625. int e=0;
  5626. int c=5;
  5627. if (code_seen('E')) e=code_value();
  5628. if (e<0)
  5629. temp=70;
  5630. if (code_seen('S')) temp=code_value();
  5631. if (code_seen('C')) c=code_value();
  5632. PID_autotune(temp, e, c);
  5633. }
  5634. break;
  5635. case 400: // M400 finish all moves
  5636. {
  5637. st_synchronize();
  5638. }
  5639. break;
  5640. case 403: //! M403 set filament type (material) for particular extruder and send this information to mmu
  5641. {
  5642. //! currently three different materials are needed (default, flex and PVA)
  5643. //! add storing this information for different load/unload profiles etc. in the future
  5644. //!firmware does not wait for "ok" from mmu
  5645. if (mmu_enabled)
  5646. {
  5647. uint8_t extruder = 255;
  5648. uint8_t filament = FILAMENT_UNDEFINED;
  5649. if(code_seen('E')) extruder = code_value();
  5650. if(code_seen('F')) filament = code_value();
  5651. mmu_set_filament_type(extruder, filament);
  5652. }
  5653. }
  5654. break;
  5655. case 500: // M500 Store settings in EEPROM
  5656. {
  5657. Config_StoreSettings();
  5658. }
  5659. break;
  5660. case 501: // M501 Read settings from EEPROM
  5661. {
  5662. Config_RetrieveSettings();
  5663. }
  5664. break;
  5665. case 502: // M502 Revert to default settings
  5666. {
  5667. Config_ResetDefault();
  5668. }
  5669. break;
  5670. case 503: // M503 print settings currently in memory
  5671. {
  5672. Config_PrintSettings();
  5673. }
  5674. break;
  5675. case 509: //M509 Force language selection
  5676. {
  5677. lang_reset();
  5678. SERIAL_ECHO_START;
  5679. SERIAL_PROTOCOLPGM(("LANG SEL FORCED"));
  5680. }
  5681. break;
  5682. #ifdef ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED
  5683. case 540:
  5684. {
  5685. if(code_seen('S')) abort_on_endstop_hit = code_value() > 0;
  5686. }
  5687. break;
  5688. #endif
  5689. #ifdef CUSTOM_M_CODE_SET_Z_PROBE_OFFSET
  5690. case CUSTOM_M_CODE_SET_Z_PROBE_OFFSET:
  5691. {
  5692. float value;
  5693. if (code_seen('Z'))
  5694. {
  5695. value = code_value();
  5696. if ((Z_PROBE_OFFSET_RANGE_MIN <= value) && (value <= Z_PROBE_OFFSET_RANGE_MAX))
  5697. {
  5698. cs.zprobe_zoffset = -value; // compare w/ line 278 of ConfigurationStore.cpp
  5699. SERIAL_ECHO_START;
  5700. SERIAL_ECHOLNRPGM(CAT4(MSG_ZPROBE_ZOFFSET, " ", MSG_OK,PSTR("")));
  5701. SERIAL_PROTOCOLLN("");
  5702. }
  5703. else
  5704. {
  5705. SERIAL_ECHO_START;
  5706. SERIAL_ECHORPGM(MSG_ZPROBE_ZOFFSET);
  5707. SERIAL_ECHORPGM(MSG_Z_MIN);
  5708. SERIAL_ECHO(Z_PROBE_OFFSET_RANGE_MIN);
  5709. SERIAL_ECHORPGM(MSG_Z_MAX);
  5710. SERIAL_ECHO(Z_PROBE_OFFSET_RANGE_MAX);
  5711. SERIAL_PROTOCOLLN("");
  5712. }
  5713. }
  5714. else
  5715. {
  5716. SERIAL_ECHO_START;
  5717. SERIAL_ECHOLNRPGM(CAT2(MSG_ZPROBE_ZOFFSET, PSTR(" : ")));
  5718. SERIAL_ECHO(-cs.zprobe_zoffset);
  5719. SERIAL_PROTOCOLLN("");
  5720. }
  5721. break;
  5722. }
  5723. #endif // CUSTOM_M_CODE_SET_Z_PROBE_OFFSET
  5724. #ifdef FILAMENTCHANGEENABLE
  5725. case 600: //Pause for filament change X[pos] Y[pos] Z[relative lift] E[initial retract] L[later retract distance for removal]
  5726. {
  5727. st_synchronize();
  5728. float x_position = current_position[X_AXIS];
  5729. float y_position = current_position[Y_AXIS];
  5730. float z_shift = 0;
  5731. float e_shift_init = 0;
  5732. float e_shift_late = 0;
  5733. bool automatic = false;
  5734. //Retract extruder
  5735. if(code_seen('E'))
  5736. {
  5737. e_shift_init = code_value();
  5738. }
  5739. else
  5740. {
  5741. #ifdef FILAMENTCHANGE_FIRSTRETRACT
  5742. e_shift_init = FILAMENTCHANGE_FIRSTRETRACT ;
  5743. #endif
  5744. }
  5745. //currently don't work as we are using the same unload sequence as in M702, needs re-work
  5746. if (code_seen('L'))
  5747. {
  5748. e_shift_late = code_value();
  5749. }
  5750. else
  5751. {
  5752. #ifdef FILAMENTCHANGE_FINALRETRACT
  5753. e_shift_late = FILAMENTCHANGE_FINALRETRACT;
  5754. #endif
  5755. }
  5756. //Lift Z
  5757. if(code_seen('Z'))
  5758. {
  5759. z_shift = code_value();
  5760. }
  5761. else
  5762. {
  5763. #ifdef FILAMENTCHANGE_ZADD
  5764. z_shift= FILAMENTCHANGE_ZADD ;
  5765. if(current_position[Z_AXIS] < 25) z_shift+= 25 ;
  5766. #endif
  5767. }
  5768. //Move XY to side
  5769. if(code_seen('X'))
  5770. {
  5771. x_position = code_value();
  5772. }
  5773. else
  5774. {
  5775. #ifdef FILAMENTCHANGE_XPOS
  5776. x_position = FILAMENTCHANGE_XPOS;
  5777. #endif
  5778. }
  5779. if(code_seen('Y'))
  5780. {
  5781. y_position = code_value();
  5782. }
  5783. else
  5784. {
  5785. #ifdef FILAMENTCHANGE_YPOS
  5786. y_position = FILAMENTCHANGE_YPOS ;
  5787. #endif
  5788. }
  5789. if (mmu_enabled && code_seen("AUTO"))
  5790. automatic = true;
  5791. gcode_M600(automatic, x_position, y_position, z_shift, e_shift_init, e_shift_late);
  5792. }
  5793. break;
  5794. #endif //FILAMENTCHANGEENABLE
  5795. case 601: //! M601 - Pause print
  5796. {
  5797. cmdqueue_pop_front(); //trick because we want skip this command (M601) after restore
  5798. lcd_pause_print();
  5799. }
  5800. break;
  5801. case 602: { //! M602 - Resume print
  5802. lcd_resume_print();
  5803. }
  5804. break;
  5805. #ifdef PINDA_THERMISTOR
  5806. case 860: // M860 - Wait for PINDA thermistor to reach target temperature.
  5807. {
  5808. int set_target_pinda = 0;
  5809. if (code_seen('S')) {
  5810. set_target_pinda = code_value();
  5811. }
  5812. else {
  5813. break;
  5814. }
  5815. LCD_MESSAGERPGM(_T(MSG_PLEASE_WAIT));
  5816. SERIAL_PROTOCOLPGM("Wait for PINDA target temperature:");
  5817. SERIAL_PROTOCOL(set_target_pinda);
  5818. SERIAL_PROTOCOLLN("");
  5819. codenum = _millis();
  5820. cancel_heatup = false;
  5821. bool is_pinda_cooling = false;
  5822. if ((degTargetBed() == 0) && (degTargetHotend(0) == 0)) {
  5823. is_pinda_cooling = true;
  5824. }
  5825. while ( ((!is_pinda_cooling) && (!cancel_heatup) && (current_temperature_pinda < set_target_pinda)) || (is_pinda_cooling && (current_temperature_pinda > set_target_pinda)) ) {
  5826. if ((_millis() - codenum) > 1000) //Print Temp Reading every 1 second while waiting.
  5827. {
  5828. SERIAL_PROTOCOLPGM("P:");
  5829. SERIAL_PROTOCOL_F(current_temperature_pinda, 1);
  5830. SERIAL_PROTOCOLPGM("/");
  5831. SERIAL_PROTOCOL(set_target_pinda);
  5832. SERIAL_PROTOCOLLN("");
  5833. codenum = _millis();
  5834. }
  5835. manage_heater();
  5836. manage_inactivity();
  5837. lcd_update(0);
  5838. }
  5839. LCD_MESSAGERPGM(MSG_OK);
  5840. break;
  5841. }
  5842. case 861: // M861 - Set/Read PINDA temperature compensation offsets
  5843. if (code_seen('?')) { // ? - Print out current EEPROM offset values
  5844. uint8_t cal_status = calibration_status_pinda();
  5845. int16_t usteps = 0;
  5846. cal_status ? SERIAL_PROTOCOLLN("PINDA cal status: 1") : SERIAL_PROTOCOLLN("PINDA cal status: 0");
  5847. SERIAL_PROTOCOLLN("index, temp, ustep, um");
  5848. for (uint8_t i = 0; i < 6; i++)
  5849. {
  5850. if(i>0) EEPROM_read_B(EEPROM_PROBE_TEMP_SHIFT + (i-1) * 2, &usteps);
  5851. float mm = ((float)usteps) / cs.axis_steps_per_unit[Z_AXIS];
  5852. i == 0 ? SERIAL_PROTOCOLPGM("n/a") : SERIAL_PROTOCOL(i - 1);
  5853. SERIAL_PROTOCOLPGM(", ");
  5854. SERIAL_PROTOCOL(35 + (i * 5));
  5855. SERIAL_PROTOCOLPGM(", ");
  5856. SERIAL_PROTOCOL(usteps);
  5857. SERIAL_PROTOCOLPGM(", ");
  5858. SERIAL_PROTOCOL(mm * 1000);
  5859. SERIAL_PROTOCOLLN("");
  5860. }
  5861. }
  5862. else if (code_seen('!')) { // ! - Set factory default values
  5863. eeprom_write_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 1);
  5864. int16_t z_shift = 8; //40C - 20um - 8usteps
  5865. EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT, &z_shift);
  5866. z_shift = 24; //45C - 60um - 24usteps
  5867. EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + 2, &z_shift);
  5868. z_shift = 48; //50C - 120um - 48usteps
  5869. EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + 4, &z_shift);
  5870. z_shift = 80; //55C - 200um - 80usteps
  5871. EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + 6, &z_shift);
  5872. z_shift = 120; //60C - 300um - 120usteps
  5873. EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + 8, &z_shift);
  5874. SERIAL_PROTOCOLLN("factory restored");
  5875. }
  5876. else if (code_seen('Z')) { // Z - Set all values to 0 (effectively disabling PINDA temperature compensation)
  5877. eeprom_write_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 1);
  5878. int16_t z_shift = 0;
  5879. for (uint8_t i = 0; i < 5; i++) EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + i * 2, &z_shift);
  5880. SERIAL_PROTOCOLLN("zerorized");
  5881. }
  5882. else if (code_seen('S')) { // Sxxx Iyyy - Set compensation ustep value S for compensation table index I
  5883. int16_t usteps = code_value();
  5884. if (code_seen('I')) {
  5885. uint8_t index = code_value();
  5886. if (index < 5) {
  5887. EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + index * 2, &usteps);
  5888. SERIAL_PROTOCOLLN("OK");
  5889. SERIAL_PROTOCOLLN("index, temp, ustep, um");
  5890. for (uint8_t i = 0; i < 6; i++)
  5891. {
  5892. usteps = 0;
  5893. if (i>0) EEPROM_read_B(EEPROM_PROBE_TEMP_SHIFT + (i - 1) * 2, &usteps);
  5894. float mm = ((float)usteps) / cs.axis_steps_per_unit[Z_AXIS];
  5895. i == 0 ? SERIAL_PROTOCOLPGM("n/a") : SERIAL_PROTOCOL(i - 1);
  5896. SERIAL_PROTOCOLPGM(", ");
  5897. SERIAL_PROTOCOL(35 + (i * 5));
  5898. SERIAL_PROTOCOLPGM(", ");
  5899. SERIAL_PROTOCOL(usteps);
  5900. SERIAL_PROTOCOLPGM(", ");
  5901. SERIAL_PROTOCOL(mm * 1000);
  5902. SERIAL_PROTOCOLLN("");
  5903. }
  5904. }
  5905. }
  5906. }
  5907. else {
  5908. SERIAL_PROTOCOLPGM("no valid command");
  5909. }
  5910. break;
  5911. #endif //PINDA_THERMISTOR
  5912. #ifdef LIN_ADVANCE
  5913. case 900: // M900: Set LIN_ADVANCE options.
  5914. gcode_M900();
  5915. break;
  5916. #endif
  5917. case 907: // M907 Set digital trimpot motor current using axis codes.
  5918. {
  5919. #ifdef TMC2130
  5920. for (int i = 0; i < NUM_AXIS; i++)
  5921. if(code_seen(axis_codes[i]))
  5922. {
  5923. long cur_mA = code_value_long();
  5924. uint8_t val = tmc2130_cur2val(cur_mA);
  5925. tmc2130_set_current_h(i, val);
  5926. tmc2130_set_current_r(i, val);
  5927. //if (i == E_AXIS) printf_P(PSTR("E-axis current=%ldmA\n"), cur_mA);
  5928. }
  5929. #else //TMC2130
  5930. #if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
  5931. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) st_current_set(i,code_value());
  5932. if(code_seen('B')) st_current_set(4,code_value());
  5933. if(code_seen('S')) for(int i=0;i<=4;i++) st_current_set(i,code_value());
  5934. #endif
  5935. #ifdef MOTOR_CURRENT_PWM_XY_PIN
  5936. if(code_seen('X')) st_current_set(0, code_value());
  5937. #endif
  5938. #ifdef MOTOR_CURRENT_PWM_Z_PIN
  5939. if(code_seen('Z')) st_current_set(1, code_value());
  5940. #endif
  5941. #ifdef MOTOR_CURRENT_PWM_E_PIN
  5942. if(code_seen('E')) st_current_set(2, code_value());
  5943. #endif
  5944. #endif //TMC2130
  5945. }
  5946. break;
  5947. case 908: // M908 Control digital trimpot directly.
  5948. {
  5949. #if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
  5950. uint8_t channel,current;
  5951. if(code_seen('P')) channel=code_value();
  5952. if(code_seen('S')) current=code_value();
  5953. digitalPotWrite(channel, current);
  5954. #endif
  5955. }
  5956. break;
  5957. #ifdef TMC2130_SERVICE_CODES_M910_M918
  5958. case 910: //! M910 - TMC2130 init
  5959. {
  5960. tmc2130_init();
  5961. }
  5962. break;
  5963. case 911: //! M911 - Set TMC2130 holding currents
  5964. {
  5965. if (code_seen('X')) tmc2130_set_current_h(0, code_value());
  5966. if (code_seen('Y')) tmc2130_set_current_h(1, code_value());
  5967. if (code_seen('Z')) tmc2130_set_current_h(2, code_value());
  5968. if (code_seen('E')) tmc2130_set_current_h(3, code_value());
  5969. }
  5970. break;
  5971. case 912: //! M912 - Set TMC2130 running currents
  5972. {
  5973. if (code_seen('X')) tmc2130_set_current_r(0, code_value());
  5974. if (code_seen('Y')) tmc2130_set_current_r(1, code_value());
  5975. if (code_seen('Z')) tmc2130_set_current_r(2, code_value());
  5976. if (code_seen('E')) tmc2130_set_current_r(3, code_value());
  5977. }
  5978. break;
  5979. case 913: //! M913 - Print TMC2130 currents
  5980. {
  5981. tmc2130_print_currents();
  5982. }
  5983. break;
  5984. case 914: //! M914 - Set normal mode
  5985. {
  5986. tmc2130_mode = TMC2130_MODE_NORMAL;
  5987. update_mode_profile();
  5988. tmc2130_init();
  5989. }
  5990. break;
  5991. case 915: //! M915 - Set silent mode
  5992. {
  5993. tmc2130_mode = TMC2130_MODE_SILENT;
  5994. update_mode_profile();
  5995. tmc2130_init();
  5996. }
  5997. break;
  5998. case 916: //! M916 - Set sg_thrs
  5999. {
  6000. if (code_seen('X')) tmc2130_sg_thr[X_AXIS] = code_value();
  6001. if (code_seen('Y')) tmc2130_sg_thr[Y_AXIS] = code_value();
  6002. if (code_seen('Z')) tmc2130_sg_thr[Z_AXIS] = code_value();
  6003. if (code_seen('E')) tmc2130_sg_thr[E_AXIS] = code_value();
  6004. for (uint8_t a = X_AXIS; a <= E_AXIS; a++)
  6005. printf_P(_N("tmc2130_sg_thr[%c]=%d\n"), "XYZE"[a], tmc2130_sg_thr[a]);
  6006. }
  6007. break;
  6008. case 917: //! M917 - Set TMC2130 pwm_ampl
  6009. {
  6010. if (code_seen('X')) tmc2130_set_pwm_ampl(0, code_value());
  6011. if (code_seen('Y')) tmc2130_set_pwm_ampl(1, code_value());
  6012. if (code_seen('Z')) tmc2130_set_pwm_ampl(2, code_value());
  6013. if (code_seen('E')) tmc2130_set_pwm_ampl(3, code_value());
  6014. }
  6015. break;
  6016. case 918: //! M918 - Set TMC2130 pwm_grad
  6017. {
  6018. if (code_seen('X')) tmc2130_set_pwm_grad(0, code_value());
  6019. if (code_seen('Y')) tmc2130_set_pwm_grad(1, code_value());
  6020. if (code_seen('Z')) tmc2130_set_pwm_grad(2, code_value());
  6021. if (code_seen('E')) tmc2130_set_pwm_grad(3, code_value());
  6022. }
  6023. break;
  6024. #endif //TMC2130_SERVICE_CODES_M910_M918
  6025. case 350: //! M350 - Set microstepping mode. Warning: Steps per unit remains unchanged. S code sets stepping mode for all drivers.
  6026. {
  6027. #ifdef TMC2130
  6028. if(code_seen('E'))
  6029. {
  6030. uint16_t res_new = code_value();
  6031. if ((res_new == 8) || (res_new == 16) || (res_new == 32) || (res_new == 64) || (res_new == 128))
  6032. {
  6033. st_synchronize();
  6034. uint8_t axis = E_AXIS;
  6035. uint16_t res = tmc2130_get_res(axis);
  6036. tmc2130_set_res(axis, res_new);
  6037. cs.axis_ustep_resolution[axis] = res_new;
  6038. if (res_new > res)
  6039. {
  6040. uint16_t fac = (res_new / res);
  6041. cs.axis_steps_per_unit[axis] *= fac;
  6042. position[E_AXIS] *= fac;
  6043. }
  6044. else
  6045. {
  6046. uint16_t fac = (res / res_new);
  6047. cs.axis_steps_per_unit[axis] /= fac;
  6048. position[E_AXIS] /= fac;
  6049. }
  6050. }
  6051. }
  6052. #else //TMC2130
  6053. #if defined(X_MS1_PIN) && X_MS1_PIN > -1
  6054. if(code_seen('S')) for(int i=0;i<=4;i++) microstep_mode(i,code_value());
  6055. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) microstep_mode(i,(uint8_t)code_value());
  6056. if(code_seen('B')) microstep_mode(4,code_value());
  6057. microstep_readings();
  6058. #endif
  6059. #endif //TMC2130
  6060. }
  6061. break;
  6062. case 351: //! M351 - Toggle MS1 MS2 pins directly, S# determines MS1 or MS2, X# sets the pin high/low.
  6063. {
  6064. #if defined(X_MS1_PIN) && X_MS1_PIN > -1
  6065. if(code_seen('S')) switch((int)code_value())
  6066. {
  6067. case 1:
  6068. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) microstep_ms(i,code_value(),-1);
  6069. if(code_seen('B')) microstep_ms(4,code_value(),-1);
  6070. break;
  6071. case 2:
  6072. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) microstep_ms(i,-1,code_value());
  6073. if(code_seen('B')) microstep_ms(4,-1,code_value());
  6074. break;
  6075. }
  6076. microstep_readings();
  6077. #endif
  6078. }
  6079. break;
  6080. case 701: //! M701 - load filament
  6081. {
  6082. if (mmu_enabled && code_seen('E'))
  6083. tmp_extruder = code_value();
  6084. gcode_M701();
  6085. }
  6086. break;
  6087. case 702: //! M702 [U C] -
  6088. {
  6089. #ifdef SNMM
  6090. if (code_seen('U'))
  6091. extr_unload_used(); //! if "U" unload all filaments which were used in current print
  6092. else if (code_seen('C'))
  6093. extr_unload(); //! if "C" unload just current filament
  6094. else
  6095. extr_unload_all(); //! otherwise unload all filaments
  6096. #else
  6097. if (code_seen('C')) {
  6098. if(mmu_enabled) extr_unload(); //! if "C" unload current filament; if mmu is not present no action is performed
  6099. }
  6100. else {
  6101. if(mmu_enabled) extr_unload(); //! unload current filament
  6102. else unload_filament();
  6103. }
  6104. #endif //SNMM
  6105. }
  6106. break;
  6107. case 999: // M999: Restart after being stopped
  6108. Stopped = false;
  6109. lcd_reset_alert_level();
  6110. gcode_LastN = Stopped_gcode_LastN;
  6111. FlushSerialRequestResend();
  6112. break;
  6113. default:
  6114. printf_P(PSTR("Unknown M code: %s \n"), cmdbuffer + bufindr + CMDHDRSIZE);
  6115. }
  6116. // printf_P(_N("END M-CODE=%u\n"), mcode_in_progress);
  6117. mcode_in_progress = 0;
  6118. }
  6119. }
  6120. // end if(code_seen('M')) (end of M codes)
  6121. //! T<extruder nr.> - select extruder in case of multi extruder printer
  6122. //! select filament in case of MMU_V2
  6123. //! if extruder is "?", open menu to let the user select extruder/filament
  6124. //!
  6125. //! For MMU_V2:
  6126. //! @n T<n> Gcode to extrude at least 38.10 mm at feedrate 19.02 mm/s must follow immediately to load to extruder wheels.
  6127. //! @n T? Gcode to extrude shouldn't have to follow, load to extruder wheels is done automatically
  6128. //! @n Tx Same as T?, except nozzle doesn't have to be preheated. Tc must be placed after extruder nozzle is preheated to finish filament load.
  6129. //! @n Tc Load to nozzle after filament was prepared by Tc and extruder nozzle is already heated.
  6130. else if(code_seen('T'))
  6131. {
  6132. int index;
  6133. bool load_to_nozzle = false;
  6134. for (index = 1; *(strchr_pointer + index) == ' ' || *(strchr_pointer + index) == '\t'; index++);
  6135. *(strchr_pointer + index) = tolower(*(strchr_pointer + index));
  6136. if ((*(strchr_pointer + index) < '0' || *(strchr_pointer + index) > '4') && *(strchr_pointer + index) != '?' && *(strchr_pointer + index) != 'x' && *(strchr_pointer + index) != 'c') {
  6137. SERIAL_ECHOLNPGM("Invalid T code.");
  6138. }
  6139. else if (*(strchr_pointer + index) == 'x'){ //load to bondtech gears; if mmu is not present do nothing
  6140. if (mmu_enabled)
  6141. {
  6142. tmp_extruder = choose_menu_P(_T(MSG_CHOOSE_FILAMENT), _T(MSG_FILAMENT));
  6143. if ((tmp_extruder == mmu_extruder) && mmu_fil_loaded) {
  6144. printf_P(PSTR("Duplicit T-code ignored.\n"));
  6145. return; //dont execute the same T-code twice in a row
  6146. }
  6147. st_synchronize();
  6148. mmu_command(MmuCmd::T0 + tmp_extruder);
  6149. manage_response(true, true, MMU_TCODE_MOVE);
  6150. }
  6151. }
  6152. else if (*(strchr_pointer + index) == 'c') { //load to from bondtech gears to nozzle (nozzle should be preheated)
  6153. if (mmu_enabled)
  6154. {
  6155. st_synchronize();
  6156. mmu_continue_loading();
  6157. mmu_extruder = tmp_extruder; //filament change is finished
  6158. mmu_load_to_nozzle();
  6159. }
  6160. }
  6161. else {
  6162. if (*(strchr_pointer + index) == '?')
  6163. {
  6164. if(mmu_enabled)
  6165. {
  6166. tmp_extruder = choose_menu_P(_T(MSG_CHOOSE_FILAMENT), _T(MSG_FILAMENT));
  6167. load_to_nozzle = true;
  6168. } else
  6169. {
  6170. tmp_extruder = choose_menu_P(_T(MSG_CHOOSE_EXTRUDER), _T(MSG_EXTRUDER));
  6171. }
  6172. }
  6173. else {
  6174. tmp_extruder = code_value();
  6175. if (mmu_enabled && lcd_autoDepleteEnabled())
  6176. {
  6177. tmp_extruder = ad_getAlternative(tmp_extruder);
  6178. }
  6179. }
  6180. st_synchronize();
  6181. snmm_filaments_used |= (1 << tmp_extruder); //for stop print
  6182. if (mmu_enabled)
  6183. {
  6184. if ((tmp_extruder == mmu_extruder) && mmu_fil_loaded) {
  6185. printf_P(PSTR("Duplicit T-code ignored.\n"));
  6186. return; //dont execute the same T-code twice in a row
  6187. }
  6188. mmu_command(MmuCmd::T0 + tmp_extruder);
  6189. manage_response(true, true, MMU_TCODE_MOVE);
  6190. mmu_continue_loading();
  6191. mmu_extruder = tmp_extruder; //filament change is finished
  6192. if (load_to_nozzle)// for single material usage with mmu
  6193. {
  6194. mmu_load_to_nozzle();
  6195. }
  6196. }
  6197. else
  6198. {
  6199. #ifdef SNMM
  6200. #ifdef LIN_ADVANCE
  6201. if (mmu_extruder != tmp_extruder)
  6202. clear_current_adv_vars(); //Check if the selected extruder is not the active one and reset LIN_ADVANCE variables if so.
  6203. #endif
  6204. mmu_extruder = tmp_extruder;
  6205. _delay(100);
  6206. disable_e0();
  6207. disable_e1();
  6208. disable_e2();
  6209. pinMode(E_MUX0_PIN, OUTPUT);
  6210. pinMode(E_MUX1_PIN, OUTPUT);
  6211. _delay(100);
  6212. SERIAL_ECHO_START;
  6213. SERIAL_ECHO("T:");
  6214. SERIAL_ECHOLN((int)tmp_extruder);
  6215. switch (tmp_extruder) {
  6216. case 1:
  6217. WRITE(E_MUX0_PIN, HIGH);
  6218. WRITE(E_MUX1_PIN, LOW);
  6219. break;
  6220. case 2:
  6221. WRITE(E_MUX0_PIN, LOW);
  6222. WRITE(E_MUX1_PIN, HIGH);
  6223. break;
  6224. case 3:
  6225. WRITE(E_MUX0_PIN, HIGH);
  6226. WRITE(E_MUX1_PIN, HIGH);
  6227. break;
  6228. default:
  6229. WRITE(E_MUX0_PIN, LOW);
  6230. WRITE(E_MUX1_PIN, LOW);
  6231. break;
  6232. }
  6233. _delay(100);
  6234. #else //SNMM
  6235. if (tmp_extruder >= EXTRUDERS) {
  6236. SERIAL_ECHO_START;
  6237. SERIAL_ECHOPGM("T");
  6238. SERIAL_PROTOCOLLN((int)tmp_extruder);
  6239. SERIAL_ECHOLNRPGM(_n("Invalid extruder"));////MSG_INVALID_EXTRUDER c=0 r=0
  6240. }
  6241. else {
  6242. #if EXTRUDERS > 1
  6243. boolean make_move = false;
  6244. #endif
  6245. if (code_seen('F')) {
  6246. #if EXTRUDERS > 1
  6247. make_move = true;
  6248. #endif
  6249. next_feedrate = code_value();
  6250. if (next_feedrate > 0.0) {
  6251. feedrate = next_feedrate;
  6252. }
  6253. }
  6254. #if EXTRUDERS > 1
  6255. if (tmp_extruder != active_extruder) {
  6256. // Save current position to return to after applying extruder offset
  6257. memcpy(destination, current_position, sizeof(destination));
  6258. // Offset extruder (only by XY)
  6259. int i;
  6260. for (i = 0; i < 2; i++) {
  6261. current_position[i] = current_position[i] -
  6262. extruder_offset[i][active_extruder] +
  6263. extruder_offset[i][tmp_extruder];
  6264. }
  6265. // Set the new active extruder and position
  6266. active_extruder = tmp_extruder;
  6267. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  6268. // Move to the old position if 'F' was in the parameters
  6269. if (make_move && Stopped == false) {
  6270. prepare_move();
  6271. }
  6272. }
  6273. #endif
  6274. SERIAL_ECHO_START;
  6275. SERIAL_ECHORPGM(_n("Active Extruder: "));////MSG_ACTIVE_EXTRUDER c=0 r=0
  6276. SERIAL_PROTOCOLLN((int)active_extruder);
  6277. }
  6278. #endif //SNMM
  6279. }
  6280. }
  6281. } // end if(code_seen('T')) (end of T codes)
  6282. else if (code_seen('D')) // D codes (debug)
  6283. {
  6284. switch((int)code_value())
  6285. {
  6286. #ifdef DEBUG_DCODES
  6287. case -1: //! D-1 - Endless loop
  6288. dcode__1(); break;
  6289. case 0: //! D0 - Reset
  6290. dcode_0(); break;
  6291. case 1: //! D1 - Clear EEPROM
  6292. dcode_1(); break;
  6293. case 2: //! D2 - Read/Write RAM
  6294. dcode_2(); break;
  6295. #endif //DEBUG_DCODES
  6296. #ifdef DEBUG_DCODE3
  6297. case 3: //! D3 - Read/Write EEPROM
  6298. dcode_3(); break;
  6299. #endif //DEBUG_DCODE3
  6300. #ifdef DEBUG_DCODES
  6301. case 4: //! D4 - Read/Write PIN
  6302. dcode_4(); break;
  6303. #endif //DEBUG_DCODES
  6304. #ifdef DEBUG_DCODE5
  6305. case 5: // D5 - Read/Write FLASH
  6306. dcode_5(); break;
  6307. break;
  6308. #endif //DEBUG_DCODE5
  6309. #ifdef DEBUG_DCODES
  6310. case 6: // D6 - Read/Write external FLASH
  6311. dcode_6(); break;
  6312. case 7: //! D7 - Read/Write Bootloader
  6313. dcode_7(); break;
  6314. case 8: //! D8 - Read/Write PINDA
  6315. dcode_8(); break;
  6316. case 9: //! D9 - Read/Write ADC
  6317. dcode_9(); break;
  6318. case 10: //! D10 - XYZ calibration = OK
  6319. dcode_10(); break;
  6320. #endif //DEBUG_DCODES
  6321. #ifdef HEATBED_ANALYSIS
  6322. case 80:
  6323. {
  6324. float dimension_x = 40;
  6325. float dimension_y = 40;
  6326. int points_x = 40;
  6327. int points_y = 40;
  6328. float offset_x = 74;
  6329. float offset_y = 33;
  6330. if (code_seen('E')) dimension_x = code_value();
  6331. if (code_seen('F')) dimension_y = code_value();
  6332. if (code_seen('G')) {points_x = code_value(); }
  6333. if (code_seen('H')) {points_y = code_value(); }
  6334. if (code_seen('I')) {offset_x = code_value(); }
  6335. if (code_seen('J')) {offset_y = code_value(); }
  6336. printf_P(PSTR("DIM X: %f\n"), dimension_x);
  6337. printf_P(PSTR("DIM Y: %f\n"), dimension_y);
  6338. printf_P(PSTR("POINTS X: %d\n"), points_x);
  6339. printf_P(PSTR("POINTS Y: %d\n"), points_y);
  6340. printf_P(PSTR("OFFSET X: %f\n"), offset_x);
  6341. printf_P(PSTR("OFFSET Y: %f\n"), offset_y);
  6342. bed_check(dimension_x,dimension_y,points_x,points_y,offset_x,offset_y);
  6343. }break;
  6344. case 81:
  6345. {
  6346. float dimension_x = 40;
  6347. float dimension_y = 40;
  6348. int points_x = 40;
  6349. int points_y = 40;
  6350. float offset_x = 74;
  6351. float offset_y = 33;
  6352. if (code_seen('E')) dimension_x = code_value();
  6353. if (code_seen('F')) dimension_y = code_value();
  6354. if (code_seen("G")) { strchr_pointer+=1; points_x = code_value(); }
  6355. if (code_seen("H")) { strchr_pointer+=1; points_y = code_value(); }
  6356. if (code_seen("I")) { strchr_pointer+=1; offset_x = code_value(); }
  6357. if (code_seen("J")) { strchr_pointer+=1; offset_y = code_value(); }
  6358. bed_analysis(dimension_x,dimension_y,points_x,points_y,offset_x,offset_y);
  6359. } break;
  6360. #endif //HEATBED_ANALYSIS
  6361. #ifdef DEBUG_DCODES
  6362. case 106: //D106 print measured fan speed for different pwm values
  6363. {
  6364. for (int i = 255; i > 0; i = i - 5) {
  6365. fanSpeed = i;
  6366. //delay_keep_alive(2000);
  6367. for (int j = 0; j < 100; j++) {
  6368. delay_keep_alive(100);
  6369. }
  6370. printf_P(_N("%d: %d\n"), i, fan_speed[1]);
  6371. }
  6372. }break;
  6373. #ifdef TMC2130
  6374. case 2130: //! D2130 - TMC2130
  6375. dcode_2130(); break;
  6376. #endif //TMC2130
  6377. #ifdef FILAMENT_SENSOR
  6378. case 9125: //! D9125 - FILAMENT_SENSOR
  6379. dcode_9125(); break;
  6380. #endif //FILAMENT_SENSOR
  6381. #endif //DEBUG_DCODES
  6382. }
  6383. }
  6384. else
  6385. {
  6386. SERIAL_ECHO_START;
  6387. SERIAL_ECHORPGM(MSG_UNKNOWN_COMMAND);
  6388. SERIAL_ECHO(CMDBUFFER_CURRENT_STRING);
  6389. SERIAL_ECHOLNPGM("\"(2)");
  6390. }
  6391. KEEPALIVE_STATE(NOT_BUSY);
  6392. ClearToSend();
  6393. }
  6394. void FlushSerialRequestResend()
  6395. {
  6396. //char cmdbuffer[bufindr][100]="Resend:";
  6397. MYSERIAL.flush();
  6398. printf_P(_N("%S: %ld\n%S\n"), _n("Resend"), gcode_LastN + 1, MSG_OK);
  6399. }
  6400. // Confirm the execution of a command, if sent from a serial line.
  6401. // Execution of a command from a SD card will not be confirmed.
  6402. void ClearToSend()
  6403. {
  6404. previous_millis_cmd = _millis();
  6405. if ((CMDBUFFER_CURRENT_TYPE == CMDBUFFER_CURRENT_TYPE_USB) || (CMDBUFFER_CURRENT_TYPE == CMDBUFFER_CURRENT_TYPE_USB_WITH_LINENR))
  6406. SERIAL_PROTOCOLLNRPGM(MSG_OK);
  6407. }
  6408. #if MOTHERBOARD == BOARD_RAMBO_MINI_1_0 || MOTHERBOARD == BOARD_RAMBO_MINI_1_3
  6409. void update_currents() {
  6410. float current_high[3] = DEFAULT_PWM_MOTOR_CURRENT_LOUD;
  6411. float current_low[3] = DEFAULT_PWM_MOTOR_CURRENT;
  6412. float tmp_motor[3];
  6413. //SERIAL_ECHOLNPGM("Currents updated: ");
  6414. if (destination[Z_AXIS] < Z_SILENT) {
  6415. //SERIAL_ECHOLNPGM("LOW");
  6416. for (uint8_t i = 0; i < 3; i++) {
  6417. st_current_set(i, current_low[i]);
  6418. /*MYSERIAL.print(int(i));
  6419. SERIAL_ECHOPGM(": ");
  6420. MYSERIAL.println(current_low[i]);*/
  6421. }
  6422. }
  6423. else if (destination[Z_AXIS] > Z_HIGH_POWER) {
  6424. //SERIAL_ECHOLNPGM("HIGH");
  6425. for (uint8_t i = 0; i < 3; i++) {
  6426. st_current_set(i, current_high[i]);
  6427. /*MYSERIAL.print(int(i));
  6428. SERIAL_ECHOPGM(": ");
  6429. MYSERIAL.println(current_high[i]);*/
  6430. }
  6431. }
  6432. else {
  6433. for (uint8_t i = 0; i < 3; i++) {
  6434. float q = current_low[i] - Z_SILENT*((current_high[i] - current_low[i]) / (Z_HIGH_POWER - Z_SILENT));
  6435. tmp_motor[i] = ((current_high[i] - current_low[i]) / (Z_HIGH_POWER - Z_SILENT))*destination[Z_AXIS] + q;
  6436. st_current_set(i, tmp_motor[i]);
  6437. /*MYSERIAL.print(int(i));
  6438. SERIAL_ECHOPGM(": ");
  6439. MYSERIAL.println(tmp_motor[i]);*/
  6440. }
  6441. }
  6442. }
  6443. #endif //MOTHERBOARD == BOARD_RAMBO_MINI_1_0 || MOTHERBOARD == BOARD_RAMBO_MINI_1_3
  6444. void get_coordinates()
  6445. {
  6446. bool seen[4]={false,false,false,false};
  6447. for(int8_t i=0; i < NUM_AXIS; i++) {
  6448. if(code_seen(axis_codes[i]))
  6449. {
  6450. bool relative = axis_relative_modes[i] || relative_mode;
  6451. destination[i] = (float)code_value();
  6452. if (i == E_AXIS) {
  6453. float emult = extruder_multiplier[active_extruder];
  6454. if (emult != 1.) {
  6455. if (! relative) {
  6456. destination[i] -= current_position[i];
  6457. relative = true;
  6458. }
  6459. destination[i] *= emult;
  6460. }
  6461. }
  6462. if (relative)
  6463. destination[i] += current_position[i];
  6464. seen[i]=true;
  6465. #if MOTHERBOARD == BOARD_RAMBO_MINI_1_0 || MOTHERBOARD == BOARD_RAMBO_MINI_1_3
  6466. if (i == Z_AXIS && SilentModeMenu == SILENT_MODE_AUTO) update_currents();
  6467. #endif //MOTHERBOARD == BOARD_RAMBO_MINI_1_0 || MOTHERBOARD == BOARD_RAMBO_MINI_1_3
  6468. }
  6469. else destination[i] = current_position[i]; //Are these else lines really needed?
  6470. }
  6471. if(code_seen('F')) {
  6472. next_feedrate = code_value();
  6473. #ifdef MAX_SILENT_FEEDRATE
  6474. if (tmc2130_mode == TMC2130_MODE_SILENT)
  6475. if (next_feedrate > MAX_SILENT_FEEDRATE) next_feedrate = MAX_SILENT_FEEDRATE;
  6476. #endif //MAX_SILENT_FEEDRATE
  6477. if(next_feedrate > 0.0) feedrate = next_feedrate;
  6478. if (!seen[0] && !seen[1] && !seen[2] && seen[3])
  6479. {
  6480. // float e_max_speed =
  6481. // printf_P(PSTR("E MOVE speed %7.3f\n"), feedrate / 60)
  6482. }
  6483. }
  6484. }
  6485. void get_arc_coordinates()
  6486. {
  6487. #ifdef SF_ARC_FIX
  6488. bool relative_mode_backup = relative_mode;
  6489. relative_mode = true;
  6490. #endif
  6491. get_coordinates();
  6492. #ifdef SF_ARC_FIX
  6493. relative_mode=relative_mode_backup;
  6494. #endif
  6495. if(code_seen('I')) {
  6496. offset[0] = code_value();
  6497. }
  6498. else {
  6499. offset[0] = 0.0;
  6500. }
  6501. if(code_seen('J')) {
  6502. offset[1] = code_value();
  6503. }
  6504. else {
  6505. offset[1] = 0.0;
  6506. }
  6507. }
  6508. void clamp_to_software_endstops(float target[3])
  6509. {
  6510. #ifdef DEBUG_DISABLE_SWLIMITS
  6511. return;
  6512. #endif //DEBUG_DISABLE_SWLIMITS
  6513. world2machine_clamp(target[0], target[1]);
  6514. // Clamp the Z coordinate.
  6515. if (min_software_endstops) {
  6516. float negative_z_offset = 0;
  6517. #ifdef ENABLE_AUTO_BED_LEVELING
  6518. if (Z_PROBE_OFFSET_FROM_EXTRUDER < 0) negative_z_offset = negative_z_offset + Z_PROBE_OFFSET_FROM_EXTRUDER;
  6519. if (cs.add_homing[Z_AXIS] < 0) negative_z_offset = negative_z_offset + cs.add_homing[Z_AXIS];
  6520. #endif
  6521. if (target[Z_AXIS] < min_pos[Z_AXIS]+negative_z_offset) target[Z_AXIS] = min_pos[Z_AXIS]+negative_z_offset;
  6522. }
  6523. if (max_software_endstops) {
  6524. if (target[Z_AXIS] > max_pos[Z_AXIS]) target[Z_AXIS] = max_pos[Z_AXIS];
  6525. }
  6526. }
  6527. #ifdef MESH_BED_LEVELING
  6528. void mesh_plan_buffer_line(const float &x, const float &y, const float &z, const float &e, const float &feed_rate, const uint8_t extruder) {
  6529. float dx = x - current_position[X_AXIS];
  6530. float dy = y - current_position[Y_AXIS];
  6531. float dz = z - current_position[Z_AXIS];
  6532. int n_segments = 0;
  6533. if (mbl.active) {
  6534. float len = abs(dx) + abs(dy);
  6535. if (len > 0)
  6536. // Split to 3cm segments or shorter.
  6537. n_segments = int(ceil(len / 30.f));
  6538. }
  6539. if (n_segments > 1) {
  6540. float de = e - current_position[E_AXIS];
  6541. for (int i = 1; i < n_segments; ++ i) {
  6542. float t = float(i) / float(n_segments);
  6543. if (saved_printing || (mbl.active == false)) return;
  6544. plan_buffer_line(
  6545. current_position[X_AXIS] + t * dx,
  6546. current_position[Y_AXIS] + t * dy,
  6547. current_position[Z_AXIS] + t * dz,
  6548. current_position[E_AXIS] + t * de,
  6549. feed_rate, extruder);
  6550. }
  6551. }
  6552. // The rest of the path.
  6553. plan_buffer_line(x, y, z, e, feed_rate, extruder);
  6554. current_position[X_AXIS] = x;
  6555. current_position[Y_AXIS] = y;
  6556. current_position[Z_AXIS] = z;
  6557. current_position[E_AXIS] = e;
  6558. }
  6559. #endif // MESH_BED_LEVELING
  6560. void prepare_move()
  6561. {
  6562. clamp_to_software_endstops(destination);
  6563. previous_millis_cmd = _millis();
  6564. // Do not use feedmultiply for E or Z only moves
  6565. if( (current_position[X_AXIS] == destination [X_AXIS]) && (current_position[Y_AXIS] == destination [Y_AXIS])) {
  6566. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  6567. }
  6568. else {
  6569. #ifdef MESH_BED_LEVELING
  6570. mesh_plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate*feedmultiply*(1./(60.f*100.f)), active_extruder);
  6571. #else
  6572. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate*feedmultiply*(1./(60.f*100.f)), active_extruder);
  6573. #endif
  6574. }
  6575. for(int8_t i=0; i < NUM_AXIS; i++) {
  6576. current_position[i] = destination[i];
  6577. }
  6578. }
  6579. void prepare_arc_move(char isclockwise) {
  6580. float r = hypot(offset[X_AXIS], offset[Y_AXIS]); // Compute arc radius for mc_arc
  6581. // Trace the arc
  6582. mc_arc(current_position, destination, offset, X_AXIS, Y_AXIS, Z_AXIS, feedrate*feedmultiply/60/100.0, r, isclockwise, active_extruder);
  6583. // As far as the parser is concerned, the position is now == target. In reality the
  6584. // motion control system might still be processing the action and the real tool position
  6585. // in any intermediate location.
  6586. for(int8_t i=0; i < NUM_AXIS; i++) {
  6587. current_position[i] = destination[i];
  6588. }
  6589. previous_millis_cmd = _millis();
  6590. }
  6591. #if defined(CONTROLLERFAN_PIN) && CONTROLLERFAN_PIN > -1
  6592. #if defined(FAN_PIN)
  6593. #if CONTROLLERFAN_PIN == FAN_PIN
  6594. #error "You cannot set CONTROLLERFAN_PIN equal to FAN_PIN"
  6595. #endif
  6596. #endif
  6597. unsigned long lastMotor = 0; //Save the time for when a motor was turned on last
  6598. unsigned long lastMotorCheck = 0;
  6599. void controllerFan()
  6600. {
  6601. if ((_millis() - lastMotorCheck) >= 2500) //Not a time critical function, so we only check every 2500ms
  6602. {
  6603. lastMotorCheck = _millis();
  6604. if(!READ(X_ENABLE_PIN) || !READ(Y_ENABLE_PIN) || !READ(Z_ENABLE_PIN) || (soft_pwm_bed > 0)
  6605. #if EXTRUDERS > 2
  6606. || !READ(E2_ENABLE_PIN)
  6607. #endif
  6608. #if EXTRUDER > 1
  6609. #if defined(X2_ENABLE_PIN) && X2_ENABLE_PIN > -1
  6610. || !READ(X2_ENABLE_PIN)
  6611. #endif
  6612. || !READ(E1_ENABLE_PIN)
  6613. #endif
  6614. || !READ(E0_ENABLE_PIN)) //If any of the drivers are enabled...
  6615. {
  6616. lastMotor = _millis(); //... set time to NOW so the fan will turn on
  6617. }
  6618. if ((_millis() - lastMotor) >= (CONTROLLERFAN_SECS*1000UL) || lastMotor == 0) //If the last time any driver was enabled, is longer since than CONTROLLERSEC...
  6619. {
  6620. digitalWrite(CONTROLLERFAN_PIN, 0);
  6621. analogWrite(CONTROLLERFAN_PIN, 0);
  6622. }
  6623. else
  6624. {
  6625. // allows digital or PWM fan output to be used (see M42 handling)
  6626. digitalWrite(CONTROLLERFAN_PIN, CONTROLLERFAN_SPEED);
  6627. analogWrite(CONTROLLERFAN_PIN, CONTROLLERFAN_SPEED);
  6628. }
  6629. }
  6630. }
  6631. #endif
  6632. #ifdef TEMP_STAT_LEDS
  6633. static bool blue_led = false;
  6634. static bool red_led = false;
  6635. static uint32_t stat_update = 0;
  6636. void handle_status_leds(void) {
  6637. float max_temp = 0.0;
  6638. if(_millis() > stat_update) {
  6639. stat_update += 500; // Update every 0.5s
  6640. for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) {
  6641. max_temp = max(max_temp, degHotend(cur_extruder));
  6642. max_temp = max(max_temp, degTargetHotend(cur_extruder));
  6643. }
  6644. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  6645. max_temp = max(max_temp, degTargetBed());
  6646. max_temp = max(max_temp, degBed());
  6647. #endif
  6648. if((max_temp > 55.0) && (red_led == false)) {
  6649. digitalWrite(STAT_LED_RED, 1);
  6650. digitalWrite(STAT_LED_BLUE, 0);
  6651. red_led = true;
  6652. blue_led = false;
  6653. }
  6654. if((max_temp < 54.0) && (blue_led == false)) {
  6655. digitalWrite(STAT_LED_RED, 0);
  6656. digitalWrite(STAT_LED_BLUE, 1);
  6657. red_led = false;
  6658. blue_led = true;
  6659. }
  6660. }
  6661. }
  6662. #endif
  6663. #ifdef SAFETYTIMER
  6664. /**
  6665. * @brief Turn off heating after safetytimer_inactive_time milliseconds of inactivity
  6666. *
  6667. * Full screen blocking notification message is shown after heater turning off.
  6668. * Paused print is not considered inactivity, as nozzle is cooled anyway and bed cooling would
  6669. * damage print.
  6670. *
  6671. * If safetytimer_inactive_time is zero, feature is disabled (heating is never turned off because of inactivity)
  6672. */
  6673. static void handleSafetyTimer()
  6674. {
  6675. #if (EXTRUDERS > 1)
  6676. #error Implemented only for one extruder.
  6677. #endif //(EXTRUDERS > 1)
  6678. if ((PRINTER_ACTIVE) || (!degTargetBed() && !degTargetHotend(0)) || (!safetytimer_inactive_time))
  6679. {
  6680. safetyTimer.stop();
  6681. }
  6682. else if ((degTargetBed() || degTargetHotend(0)) && (!safetyTimer.running()))
  6683. {
  6684. safetyTimer.start();
  6685. }
  6686. else if (safetyTimer.expired(safetytimer_inactive_time))
  6687. {
  6688. setTargetBed(0);
  6689. setAllTargetHotends(0);
  6690. lcd_show_fullscreen_message_and_wait_P(_i("Heating disabled by safety timer."));////MSG_BED_HEATING_SAFETY_DISABLED c=0 r=0
  6691. }
  6692. }
  6693. #endif //SAFETYTIMER
  6694. void manage_inactivity(bool ignore_stepper_queue/*=false*/) //default argument set in Marlin.h
  6695. {
  6696. bool bInhibitFlag;
  6697. #ifdef FILAMENT_SENSOR
  6698. if (mmu_enabled == false)
  6699. {
  6700. //-// if (mcode_in_progress != 600) //M600 not in progress
  6701. #ifdef PAT9125
  6702. bInhibitFlag=(menu_menu==lcd_menu_extruder_info); // Support::ExtruderInfo menu active
  6703. #endif // PAT9125
  6704. #ifdef IR_SENSOR
  6705. bInhibitFlag=(menu_menu==lcd_menu_show_sensors_state); // Support::SensorInfo menu active
  6706. #endif // IR_SENSOR
  6707. if ((mcode_in_progress != 600) && (eFilamentAction != e_FILAMENT_ACTION_autoLoad) && (!bInhibitFlag)) //M600 not in progress, preHeat @ autoLoad menu not active, Support::ExtruderInfo/SensorInfo menu not active
  6708. {
  6709. if (!moves_planned() && !IS_SD_PRINTING && !is_usb_printing && (lcd_commands_type != LCD_COMMAND_V2_CAL) && !wizard_active)
  6710. {
  6711. if (fsensor_check_autoload())
  6712. {
  6713. #ifdef PAT9125
  6714. fsensor_autoload_check_stop();
  6715. #endif //PAT9125
  6716. //-// if (degHotend0() > EXTRUDE_MINTEMP)
  6717. if(0)
  6718. {
  6719. if ((eSoundMode == e_SOUND_MODE_LOUD) || (eSoundMode == e_SOUND_MODE_ONCE))
  6720. _tone(BEEPER, 1000);
  6721. delay_keep_alive(50);
  6722. _noTone(BEEPER);
  6723. loading_flag = true;
  6724. enquecommand_front_P((PSTR("M701")));
  6725. }
  6726. else
  6727. {
  6728. /*
  6729. lcd_update_enable(false);
  6730. show_preheat_nozzle_warning();
  6731. lcd_update_enable(true);
  6732. */
  6733. eFilamentAction=e_FILAMENT_ACTION_autoLoad;
  6734. bFilamentFirstRun=false;
  6735. if(target_temperature[0]>=EXTRUDE_MINTEMP)
  6736. {
  6737. bFilamentPreheatState=true;
  6738. // mFilamentItem(target_temperature[0],target_temperature_bed);
  6739. menu_submenu(mFilamentItemForce);
  6740. }
  6741. else
  6742. {
  6743. menu_submenu(mFilamentMenu);
  6744. lcd_timeoutToStatus.start();
  6745. }
  6746. }
  6747. }
  6748. }
  6749. else
  6750. {
  6751. #ifdef PAT9125
  6752. fsensor_autoload_check_stop();
  6753. #endif //PAT9125
  6754. fsensor_update();
  6755. }
  6756. }
  6757. }
  6758. #endif //FILAMENT_SENSOR
  6759. #ifdef SAFETYTIMER
  6760. handleSafetyTimer();
  6761. #endif //SAFETYTIMER
  6762. #if defined(KILL_PIN) && KILL_PIN > -1
  6763. static int killCount = 0; // make the inactivity button a bit less responsive
  6764. const int KILL_DELAY = 10000;
  6765. #endif
  6766. if(buflen < (BUFSIZE-1)){
  6767. get_command();
  6768. }
  6769. if( (_millis() - previous_millis_cmd) > max_inactive_time )
  6770. if(max_inactive_time)
  6771. kill(_n(""), 4);
  6772. if(stepper_inactive_time) {
  6773. if( (_millis() - previous_millis_cmd) > stepper_inactive_time )
  6774. {
  6775. if(blocks_queued() == false && ignore_stepper_queue == false) {
  6776. disable_x();
  6777. disable_y();
  6778. disable_z();
  6779. disable_e0();
  6780. disable_e1();
  6781. disable_e2();
  6782. }
  6783. }
  6784. }
  6785. #ifdef CHDK //Check if pin should be set to LOW after M240 set it to HIGH
  6786. if (chdkActive && (_millis() - chdkHigh > CHDK_DELAY))
  6787. {
  6788. chdkActive = false;
  6789. WRITE(CHDK, LOW);
  6790. }
  6791. #endif
  6792. #if defined(KILL_PIN) && KILL_PIN > -1
  6793. // Check if the kill button was pressed and wait just in case it was an accidental
  6794. // key kill key press
  6795. // -------------------------------------------------------------------------------
  6796. if( 0 == READ(KILL_PIN) )
  6797. {
  6798. killCount++;
  6799. }
  6800. else if (killCount > 0)
  6801. {
  6802. killCount--;
  6803. }
  6804. // Exceeded threshold and we can confirm that it was not accidental
  6805. // KILL the machine
  6806. // ----------------------------------------------------------------
  6807. if ( killCount >= KILL_DELAY)
  6808. {
  6809. kill("", 5);
  6810. }
  6811. #endif
  6812. #if defined(CONTROLLERFAN_PIN) && CONTROLLERFAN_PIN > -1
  6813. controllerFan(); //Check if fan should be turned on to cool stepper drivers down
  6814. #endif
  6815. #ifdef EXTRUDER_RUNOUT_PREVENT
  6816. if( (_millis() - previous_millis_cmd) > EXTRUDER_RUNOUT_SECONDS*1000 )
  6817. if(degHotend(active_extruder)>EXTRUDER_RUNOUT_MINTEMP)
  6818. {
  6819. bool oldstatus=READ(E0_ENABLE_PIN);
  6820. enable_e0();
  6821. float oldepos=current_position[E_AXIS];
  6822. float oldedes=destination[E_AXIS];
  6823. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS],
  6824. destination[E_AXIS]+EXTRUDER_RUNOUT_EXTRUDE*EXTRUDER_RUNOUT_ESTEPS/cs.axis_steps_per_unit[E_AXIS],
  6825. EXTRUDER_RUNOUT_SPEED/60.*EXTRUDER_RUNOUT_ESTEPS/cs.axis_steps_per_unit[E_AXIS], active_extruder);
  6826. current_position[E_AXIS]=oldepos;
  6827. destination[E_AXIS]=oldedes;
  6828. plan_set_e_position(oldepos);
  6829. previous_millis_cmd=_millis();
  6830. st_synchronize();
  6831. WRITE(E0_ENABLE_PIN,oldstatus);
  6832. }
  6833. #endif
  6834. #ifdef TEMP_STAT_LEDS
  6835. handle_status_leds();
  6836. #endif
  6837. check_axes_activity();
  6838. mmu_loop();
  6839. }
  6840. void kill(const char *full_screen_message, unsigned char id)
  6841. {
  6842. printf_P(_N("KILL: %d\n"), id);
  6843. //return;
  6844. cli(); // Stop interrupts
  6845. disable_heater();
  6846. disable_x();
  6847. // SERIAL_ECHOLNPGM("kill - disable Y");
  6848. disable_y();
  6849. disable_z();
  6850. disable_e0();
  6851. disable_e1();
  6852. disable_e2();
  6853. #if defined(PS_ON_PIN) && PS_ON_PIN > -1
  6854. pinMode(PS_ON_PIN,INPUT);
  6855. #endif
  6856. SERIAL_ERROR_START;
  6857. SERIAL_ERRORLNRPGM(_n("Printer halted. kill() called!"));////MSG_ERR_KILLED c=0 r=0
  6858. if (full_screen_message != NULL) {
  6859. SERIAL_ERRORLNRPGM(full_screen_message);
  6860. lcd_display_message_fullscreen_P(full_screen_message);
  6861. } else {
  6862. LCD_ALERTMESSAGERPGM(_n("KILLED. "));////MSG_KILLED c=0 r=0
  6863. }
  6864. // FMC small patch to update the LCD before ending
  6865. sei(); // enable interrupts
  6866. for ( int i=5; i--; lcd_update(0))
  6867. {
  6868. _delay(200);
  6869. }
  6870. cli(); // disable interrupts
  6871. suicide();
  6872. while(1)
  6873. {
  6874. #ifdef WATCHDOG
  6875. wdt_reset();
  6876. #endif //WATCHDOG
  6877. /* Intentionally left empty */
  6878. } // Wait for reset
  6879. }
  6880. void Stop()
  6881. {
  6882. disable_heater();
  6883. if(Stopped == false) {
  6884. Stopped = true;
  6885. lcd_print_stop();
  6886. Stopped_gcode_LastN = gcode_LastN; // Save last g_code for restart
  6887. SERIAL_ERROR_START;
  6888. SERIAL_ERRORLNRPGM(MSG_ERR_STOPPED);
  6889. LCD_MESSAGERPGM(_T(MSG_STOPPED));
  6890. }
  6891. }
  6892. bool IsStopped() { return Stopped; };
  6893. #ifdef FAST_PWM_FAN
  6894. void setPwmFrequency(uint8_t pin, int val)
  6895. {
  6896. val &= 0x07;
  6897. switch(digitalPinToTimer(pin))
  6898. {
  6899. #if defined(TCCR0A)
  6900. case TIMER0A:
  6901. case TIMER0B:
  6902. // TCCR0B &= ~(_BV(CS00) | _BV(CS01) | _BV(CS02));
  6903. // TCCR0B |= val;
  6904. break;
  6905. #endif
  6906. #if defined(TCCR1A)
  6907. case TIMER1A:
  6908. case TIMER1B:
  6909. // TCCR1B &= ~(_BV(CS10) | _BV(CS11) | _BV(CS12));
  6910. // TCCR1B |= val;
  6911. break;
  6912. #endif
  6913. #if defined(TCCR2)
  6914. case TIMER2:
  6915. case TIMER2:
  6916. TCCR2 &= ~(_BV(CS10) | _BV(CS11) | _BV(CS12));
  6917. TCCR2 |= val;
  6918. break;
  6919. #endif
  6920. #if defined(TCCR2A)
  6921. case TIMER2A:
  6922. case TIMER2B:
  6923. TCCR2B &= ~(_BV(CS20) | _BV(CS21) | _BV(CS22));
  6924. TCCR2B |= val;
  6925. break;
  6926. #endif
  6927. #if defined(TCCR3A)
  6928. case TIMER3A:
  6929. case TIMER3B:
  6930. case TIMER3C:
  6931. TCCR3B &= ~(_BV(CS30) | _BV(CS31) | _BV(CS32));
  6932. TCCR3B |= val;
  6933. break;
  6934. #endif
  6935. #if defined(TCCR4A)
  6936. case TIMER4A:
  6937. case TIMER4B:
  6938. case TIMER4C:
  6939. TCCR4B &= ~(_BV(CS40) | _BV(CS41) | _BV(CS42));
  6940. TCCR4B |= val;
  6941. break;
  6942. #endif
  6943. #if defined(TCCR5A)
  6944. case TIMER5A:
  6945. case TIMER5B:
  6946. case TIMER5C:
  6947. TCCR5B &= ~(_BV(CS50) | _BV(CS51) | _BV(CS52));
  6948. TCCR5B |= val;
  6949. break;
  6950. #endif
  6951. }
  6952. }
  6953. #endif //FAST_PWM_FAN
  6954. //! @brief Get and validate extruder number
  6955. //!
  6956. //! If it is not specified, active_extruder is returned in parameter extruder.
  6957. //! @param [in] code M code number
  6958. //! @param [out] extruder
  6959. //! @return error
  6960. //! @retval true Invalid extruder specified in T code
  6961. //! @retval false Valid extruder specified in T code, or not specifiead
  6962. bool setTargetedHotend(int code, uint8_t &extruder)
  6963. {
  6964. extruder = active_extruder;
  6965. if(code_seen('T')) {
  6966. extruder = code_value();
  6967. if(extruder >= EXTRUDERS) {
  6968. SERIAL_ECHO_START;
  6969. switch(code){
  6970. case 104:
  6971. SERIAL_ECHORPGM(_n("M104 Invalid extruder "));////MSG_M104_INVALID_EXTRUDER c=0 r=0
  6972. break;
  6973. case 105:
  6974. SERIAL_ECHO(_n("M105 Invalid extruder "));////MSG_M105_INVALID_EXTRUDER c=0 r=0
  6975. break;
  6976. case 109:
  6977. SERIAL_ECHO(_n("M109 Invalid extruder "));////MSG_M109_INVALID_EXTRUDER c=0 r=0
  6978. break;
  6979. case 218:
  6980. SERIAL_ECHO(_n("M218 Invalid extruder "));////MSG_M218_INVALID_EXTRUDER c=0 r=0
  6981. break;
  6982. case 221:
  6983. SERIAL_ECHO(_n("M221 Invalid extruder "));////MSG_M221_INVALID_EXTRUDER c=0 r=0
  6984. break;
  6985. }
  6986. SERIAL_PROTOCOLLN((int)extruder);
  6987. return true;
  6988. }
  6989. }
  6990. return false;
  6991. }
  6992. void save_statistics(unsigned long _total_filament_used, unsigned long _total_print_time) //_total_filament_used unit: mm/100; print time in s
  6993. {
  6994. if (eeprom_read_byte((uint8_t *)EEPROM_TOTALTIME) == 255 && eeprom_read_byte((uint8_t *)EEPROM_TOTALTIME + 1) == 255 && eeprom_read_byte((uint8_t *)EEPROM_TOTALTIME + 2) == 255 && eeprom_read_byte((uint8_t *)EEPROM_TOTALTIME + 3) == 255)
  6995. {
  6996. eeprom_update_dword((uint32_t *)EEPROM_TOTALTIME, 0);
  6997. eeprom_update_dword((uint32_t *)EEPROM_FILAMENTUSED, 0);
  6998. }
  6999. unsigned long _previous_filament = eeprom_read_dword((uint32_t *)EEPROM_FILAMENTUSED); //_previous_filament unit: cm
  7000. unsigned long _previous_time = eeprom_read_dword((uint32_t *)EEPROM_TOTALTIME); //_previous_time unit: min
  7001. eeprom_update_dword((uint32_t *)EEPROM_TOTALTIME, _previous_time + (_total_print_time/60)); //EEPROM_TOTALTIME unit: min
  7002. eeprom_update_dword((uint32_t *)EEPROM_FILAMENTUSED, _previous_filament + (_total_filament_used / 1000));
  7003. total_filament_used = 0;
  7004. }
  7005. float calculate_extruder_multiplier(float diameter) {
  7006. float out = 1.f;
  7007. if (cs.volumetric_enabled && diameter > 0.f) {
  7008. float area = M_PI * diameter * diameter * 0.25;
  7009. out = 1.f / area;
  7010. }
  7011. if (extrudemultiply != 100)
  7012. out *= float(extrudemultiply) * 0.01f;
  7013. return out;
  7014. }
  7015. void calculate_extruder_multipliers() {
  7016. extruder_multiplier[0] = calculate_extruder_multiplier(cs.filament_size[0]);
  7017. #if EXTRUDERS > 1
  7018. extruder_multiplier[1] = calculate_extruder_multiplier(cs.filament_size[1]);
  7019. #if EXTRUDERS > 2
  7020. extruder_multiplier[2] = calculate_extruder_multiplier(cs.filament_size[2]);
  7021. #endif
  7022. #endif
  7023. }
  7024. void delay_keep_alive(unsigned int ms)
  7025. {
  7026. for (;;) {
  7027. manage_heater();
  7028. // Manage inactivity, but don't disable steppers on timeout.
  7029. manage_inactivity(true);
  7030. lcd_update(0);
  7031. if (ms == 0)
  7032. break;
  7033. else if (ms >= 50) {
  7034. _delay(50);
  7035. ms -= 50;
  7036. } else {
  7037. _delay(ms);
  7038. ms = 0;
  7039. }
  7040. }
  7041. }
  7042. static void wait_for_heater(long codenum, uint8_t extruder) {
  7043. #ifdef TEMP_RESIDENCY_TIME
  7044. long residencyStart;
  7045. residencyStart = -1;
  7046. /* continue to loop until we have reached the target temp
  7047. _and_ until TEMP_RESIDENCY_TIME hasn't passed since we reached it */
  7048. while ((!cancel_heatup) && ((residencyStart == -1) ||
  7049. (residencyStart >= 0 && (((unsigned int)(_millis() - residencyStart)) < (TEMP_RESIDENCY_TIME * 1000UL))))) {
  7050. #else
  7051. while (target_direction ? (isHeatingHotend(tmp_extruder)) : (isCoolingHotend(tmp_extruder) && (CooldownNoWait == false))) {
  7052. #endif //TEMP_RESIDENCY_TIME
  7053. if ((_millis() - codenum) > 1000UL)
  7054. { //Print Temp Reading and remaining time every 1 second while heating up/cooling down
  7055. if (!farm_mode) {
  7056. SERIAL_PROTOCOLPGM("T:");
  7057. SERIAL_PROTOCOL_F(degHotend(extruder), 1);
  7058. SERIAL_PROTOCOLPGM(" E:");
  7059. SERIAL_PROTOCOL((int)extruder);
  7060. #ifdef TEMP_RESIDENCY_TIME
  7061. SERIAL_PROTOCOLPGM(" W:");
  7062. if (residencyStart > -1)
  7063. {
  7064. codenum = ((TEMP_RESIDENCY_TIME * 1000UL) - (_millis() - residencyStart)) / 1000UL;
  7065. SERIAL_PROTOCOLLN(codenum);
  7066. }
  7067. else
  7068. {
  7069. SERIAL_PROTOCOLLN("?");
  7070. }
  7071. }
  7072. #else
  7073. SERIAL_PROTOCOLLN("");
  7074. #endif
  7075. codenum = _millis();
  7076. }
  7077. manage_heater();
  7078. manage_inactivity(true); //do not disable steppers
  7079. lcd_update(0);
  7080. #ifdef TEMP_RESIDENCY_TIME
  7081. /* start/restart the TEMP_RESIDENCY_TIME timer whenever we reach target temp for the first time
  7082. or when current temp falls outside the hysteresis after target temp was reached */
  7083. if ((residencyStart == -1 && target_direction && (degHotend(extruder) >= (degTargetHotend(extruder) - TEMP_WINDOW))) ||
  7084. (residencyStart == -1 && !target_direction && (degHotend(extruder) <= (degTargetHotend(extruder) + TEMP_WINDOW))) ||
  7085. (residencyStart > -1 && labs(degHotend(extruder) - degTargetHotend(extruder)) > TEMP_HYSTERESIS))
  7086. {
  7087. residencyStart = _millis();
  7088. }
  7089. #endif //TEMP_RESIDENCY_TIME
  7090. }
  7091. }
  7092. void check_babystep()
  7093. {
  7094. int babystep_z;
  7095. EEPROM_read_B(EEPROM_BABYSTEP_Z, &babystep_z);
  7096. if ((babystep_z < Z_BABYSTEP_MIN) || (babystep_z > Z_BABYSTEP_MAX)) {
  7097. babystep_z = 0; //if babystep value is out of min max range, set it to 0
  7098. SERIAL_ECHOLNPGM("Z live adjust out of range. Setting to 0");
  7099. EEPROM_save_B(EEPROM_BABYSTEP_Z, &babystep_z);
  7100. lcd_show_fullscreen_message_and_wait_P(PSTR("Z live adjust out of range. Setting to 0. Click to continue."));
  7101. lcd_update_enable(true);
  7102. }
  7103. }
  7104. #ifdef HEATBED_ANALYSIS
  7105. void d_setup()
  7106. {
  7107. pinMode(D_DATACLOCK, INPUT_PULLUP);
  7108. pinMode(D_DATA, INPUT_PULLUP);
  7109. pinMode(D_REQUIRE, OUTPUT);
  7110. digitalWrite(D_REQUIRE, HIGH);
  7111. }
  7112. float d_ReadData()
  7113. {
  7114. int digit[13];
  7115. String mergeOutput;
  7116. float output;
  7117. digitalWrite(D_REQUIRE, HIGH);
  7118. for (int i = 0; i<13; i++)
  7119. {
  7120. for (int j = 0; j < 4; j++)
  7121. {
  7122. while (digitalRead(D_DATACLOCK) == LOW) {}
  7123. while (digitalRead(D_DATACLOCK) == HIGH) {}
  7124. bitWrite(digit[i], j, digitalRead(D_DATA));
  7125. }
  7126. }
  7127. digitalWrite(D_REQUIRE, LOW);
  7128. mergeOutput = "";
  7129. output = 0;
  7130. for (int r = 5; r <= 10; r++) //Merge digits
  7131. {
  7132. mergeOutput += digit[r];
  7133. }
  7134. output = mergeOutput.toFloat();
  7135. if (digit[4] == 8) //Handle sign
  7136. {
  7137. output *= -1;
  7138. }
  7139. for (int i = digit[11]; i > 0; i--) //Handle floating point
  7140. {
  7141. output /= 10;
  7142. }
  7143. return output;
  7144. }
  7145. void bed_check(float x_dimension, float y_dimension, int x_points_num, int y_points_num, float shift_x, float shift_y) {
  7146. int t1 = 0;
  7147. int t_delay = 0;
  7148. int digit[13];
  7149. int m;
  7150. char str[3];
  7151. //String mergeOutput;
  7152. char mergeOutput[15];
  7153. float output;
  7154. int mesh_point = 0; //index number of calibration point
  7155. float bed_zero_ref_x = (-22.f + X_PROBE_OFFSET_FROM_EXTRUDER); //shift between zero point on bed and target and between probe and nozzle
  7156. float bed_zero_ref_y = (-0.6f + Y_PROBE_OFFSET_FROM_EXTRUDER);
  7157. float mesh_home_z_search = 4;
  7158. float measure_z_heigth = 0.2f;
  7159. float row[x_points_num];
  7160. int ix = 0;
  7161. int iy = 0;
  7162. const char* filename_wldsd = "mesh.txt";
  7163. char data_wldsd[x_points_num * 7 + 1]; //6 chars(" -A.BCD")for each measurement + null
  7164. char numb_wldsd[8]; // (" -A.BCD" + null)
  7165. #ifdef MICROMETER_LOGGING
  7166. d_setup();
  7167. #endif //MICROMETER_LOGGING
  7168. int XY_AXIS_FEEDRATE = homing_feedrate[X_AXIS] / 20;
  7169. int Z_LIFT_FEEDRATE = homing_feedrate[Z_AXIS] / 40;
  7170. unsigned int custom_message_type_old = custom_message_type;
  7171. unsigned int custom_message_state_old = custom_message_state;
  7172. custom_message_type = CUSTOM_MSG_TYPE_MESHBL;
  7173. custom_message_state = (x_points_num * y_points_num) + 10;
  7174. lcd_update(1);
  7175. //mbl.reset();
  7176. babystep_undo();
  7177. card.openFile(filename_wldsd, false);
  7178. /*destination[Z_AXIS] = mesh_home_z_search;
  7179. //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], Z_LIFT_FEEDRATE, active_extruder);
  7180. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], Z_LIFT_FEEDRATE, active_extruder);
  7181. for(int8_t i=0; i < NUM_AXIS; i++) {
  7182. current_position[i] = destination[i];
  7183. }
  7184. st_synchronize();
  7185. */
  7186. destination[Z_AXIS] = measure_z_heigth;
  7187. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], Z_LIFT_FEEDRATE, active_extruder);
  7188. for(int8_t i=0; i < NUM_AXIS; i++) {
  7189. current_position[i] = destination[i];
  7190. }
  7191. st_synchronize();
  7192. /*int l_feedmultiply = */setup_for_endstop_move(false);
  7193. SERIAL_PROTOCOLPGM("Num X,Y: ");
  7194. SERIAL_PROTOCOL(x_points_num);
  7195. SERIAL_PROTOCOLPGM(",");
  7196. SERIAL_PROTOCOL(y_points_num);
  7197. SERIAL_PROTOCOLPGM("\nZ search height: ");
  7198. SERIAL_PROTOCOL(mesh_home_z_search);
  7199. SERIAL_PROTOCOLPGM("\nDimension X,Y: ");
  7200. SERIAL_PROTOCOL(x_dimension);
  7201. SERIAL_PROTOCOLPGM(",");
  7202. SERIAL_PROTOCOL(y_dimension);
  7203. SERIAL_PROTOCOLLNPGM("\nMeasured points:");
  7204. while (mesh_point != x_points_num * y_points_num) {
  7205. ix = mesh_point % x_points_num; // from 0 to MESH_NUM_X_POINTS - 1
  7206. iy = mesh_point / x_points_num;
  7207. if (iy & 1) ix = (x_points_num - 1) - ix; // Zig zag
  7208. float z0 = 0.f;
  7209. /*destination[Z_AXIS] = mesh_home_z_search;
  7210. //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], Z_LIFT_FEEDRATE, active_extruder);
  7211. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], Z_LIFT_FEEDRATE, active_extruder);
  7212. for(int8_t i=0; i < NUM_AXIS; i++) {
  7213. current_position[i] = destination[i];
  7214. }
  7215. st_synchronize();*/
  7216. //current_position[X_AXIS] = 13.f + ix * (x_dimension / (x_points_num - 1)) - bed_zero_ref_x + shift_x;
  7217. //current_position[Y_AXIS] = 6.4f + iy * (y_dimension / (y_points_num - 1)) - bed_zero_ref_y + shift_y;
  7218. destination[X_AXIS] = ix * (x_dimension / (x_points_num - 1)) + shift_x;
  7219. destination[Y_AXIS] = iy * (y_dimension / (y_points_num - 1)) + shift_y;
  7220. mesh_plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], XY_AXIS_FEEDRATE/6, active_extruder);
  7221. for(int8_t i=0; i < NUM_AXIS; i++) {
  7222. current_position[i] = destination[i];
  7223. }
  7224. st_synchronize();
  7225. // printf_P(PSTR("X = %f; Y= %f \n"), current_position[X_AXIS], current_position[Y_AXIS]);
  7226. delay_keep_alive(1000);
  7227. #ifdef MICROMETER_LOGGING
  7228. //memset(numb_wldsd, 0, sizeof(numb_wldsd));
  7229. //dtostrf(d_ReadData(), 8, 5, numb_wldsd);
  7230. //strcat(data_wldsd, numb_wldsd);
  7231. //MYSERIAL.println(data_wldsd);
  7232. //delay(1000);
  7233. //delay(3000);
  7234. //t1 = millis();
  7235. //while (digitalRead(D_DATACLOCK) == LOW) {}
  7236. //while (digitalRead(D_DATACLOCK) == HIGH) {}
  7237. memset(digit, 0, sizeof(digit));
  7238. //cli();
  7239. digitalWrite(D_REQUIRE, LOW);
  7240. for (int i = 0; i<13; i++)
  7241. {
  7242. //t1 = millis();
  7243. for (int j = 0; j < 4; j++)
  7244. {
  7245. while (digitalRead(D_DATACLOCK) == LOW) {}
  7246. while (digitalRead(D_DATACLOCK) == HIGH) {}
  7247. //printf_P(PSTR("Done %d\n"), j);
  7248. bitWrite(digit[i], j, digitalRead(D_DATA));
  7249. }
  7250. //t_delay = (millis() - t1);
  7251. //SERIAL_PROTOCOLPGM(" ");
  7252. //SERIAL_PROTOCOL_F(t_delay, 5);
  7253. //SERIAL_PROTOCOLPGM(" ");
  7254. }
  7255. //sei();
  7256. digitalWrite(D_REQUIRE, HIGH);
  7257. mergeOutput[0] = '\0';
  7258. output = 0;
  7259. for (int r = 5; r <= 10; r++) //Merge digits
  7260. {
  7261. sprintf(str, "%d", digit[r]);
  7262. strcat(mergeOutput, str);
  7263. }
  7264. output = atof(mergeOutput);
  7265. if (digit[4] == 8) //Handle sign
  7266. {
  7267. output *= -1;
  7268. }
  7269. for (int i = digit[11]; i > 0; i--) //Handle floating point
  7270. {
  7271. output *= 0.1;
  7272. }
  7273. //output = d_ReadData();
  7274. //row[ix] = current_position[Z_AXIS];
  7275. //row[ix] = d_ReadData();
  7276. row[ix] = output;
  7277. if (iy % 2 == 1 ? ix == 0 : ix == x_points_num - 1) {
  7278. memset(data_wldsd, 0, sizeof(data_wldsd));
  7279. for (int i = 0; i < x_points_num; i++) {
  7280. SERIAL_PROTOCOLPGM(" ");
  7281. SERIAL_PROTOCOL_F(row[i], 5);
  7282. memset(numb_wldsd, 0, sizeof(numb_wldsd));
  7283. dtostrf(row[i], 7, 3, numb_wldsd);
  7284. strcat(data_wldsd, numb_wldsd);
  7285. }
  7286. card.write_command(data_wldsd);
  7287. SERIAL_PROTOCOLPGM("\n");
  7288. }
  7289. custom_message_state--;
  7290. mesh_point++;
  7291. lcd_update(1);
  7292. }
  7293. #endif //MICROMETER_LOGGING
  7294. card.closefile();
  7295. //clean_up_after_endstop_move(l_feedmultiply);
  7296. }
  7297. void bed_analysis(float x_dimension, float y_dimension, int x_points_num, int y_points_num, float shift_x, float shift_y) {
  7298. int t1 = 0;
  7299. int t_delay = 0;
  7300. int digit[13];
  7301. int m;
  7302. char str[3];
  7303. //String mergeOutput;
  7304. char mergeOutput[15];
  7305. float output;
  7306. int mesh_point = 0; //index number of calibration point
  7307. float bed_zero_ref_x = (-22.f + X_PROBE_OFFSET_FROM_EXTRUDER); //shift between zero point on bed and target and between probe and nozzle
  7308. float bed_zero_ref_y = (-0.6f + Y_PROBE_OFFSET_FROM_EXTRUDER);
  7309. float mesh_home_z_search = 4;
  7310. float row[x_points_num];
  7311. int ix = 0;
  7312. int iy = 0;
  7313. const char* filename_wldsd = "wldsd.txt";
  7314. char data_wldsd[70];
  7315. char numb_wldsd[10];
  7316. d_setup();
  7317. if (!(axis_known_position[X_AXIS] && axis_known_position[Y_AXIS] && axis_known_position[Z_AXIS])) {
  7318. // We don't know where we are! HOME!
  7319. // Push the commands to the front of the message queue in the reverse order!
  7320. // There shall be always enough space reserved for these commands.
  7321. repeatcommand_front(); // repeat G80 with all its parameters
  7322. enquecommand_front_P((PSTR("G28 W0")));
  7323. enquecommand_front_P((PSTR("G1 Z5")));
  7324. return;
  7325. }
  7326. unsigned int custom_message_type_old = custom_message_type;
  7327. unsigned int custom_message_state_old = custom_message_state;
  7328. custom_message_type = CUSTOM_MSG_TYPE_MESHBL;
  7329. custom_message_state = (x_points_num * y_points_num) + 10;
  7330. lcd_update(1);
  7331. mbl.reset();
  7332. babystep_undo();
  7333. card.openFile(filename_wldsd, false);
  7334. current_position[Z_AXIS] = mesh_home_z_search;
  7335. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[Z_AXIS] / 60, active_extruder);
  7336. int XY_AXIS_FEEDRATE = homing_feedrate[X_AXIS] / 20;
  7337. int Z_LIFT_FEEDRATE = homing_feedrate[Z_AXIS] / 40;
  7338. int l_feedmultiply = setup_for_endstop_move(false);
  7339. SERIAL_PROTOCOLPGM("Num X,Y: ");
  7340. SERIAL_PROTOCOL(x_points_num);
  7341. SERIAL_PROTOCOLPGM(",");
  7342. SERIAL_PROTOCOL(y_points_num);
  7343. SERIAL_PROTOCOLPGM("\nZ search height: ");
  7344. SERIAL_PROTOCOL(mesh_home_z_search);
  7345. SERIAL_PROTOCOLPGM("\nDimension X,Y: ");
  7346. SERIAL_PROTOCOL(x_dimension);
  7347. SERIAL_PROTOCOLPGM(",");
  7348. SERIAL_PROTOCOL(y_dimension);
  7349. SERIAL_PROTOCOLLNPGM("\nMeasured points:");
  7350. while (mesh_point != x_points_num * y_points_num) {
  7351. ix = mesh_point % x_points_num; // from 0 to MESH_NUM_X_POINTS - 1
  7352. iy = mesh_point / x_points_num;
  7353. if (iy & 1) ix = (x_points_num - 1) - ix; // Zig zag
  7354. float z0 = 0.f;
  7355. current_position[Z_AXIS] = mesh_home_z_search;
  7356. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], Z_LIFT_FEEDRATE, active_extruder);
  7357. st_synchronize();
  7358. current_position[X_AXIS] = 13.f + ix * (x_dimension / (x_points_num - 1)) - bed_zero_ref_x + shift_x;
  7359. current_position[Y_AXIS] = 6.4f + iy * (y_dimension / (y_points_num - 1)) - bed_zero_ref_y + shift_y;
  7360. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], XY_AXIS_FEEDRATE, active_extruder);
  7361. st_synchronize();
  7362. if (!find_bed_induction_sensor_point_z(-10.f)) { //if we have data from z calibration max allowed difference is 1mm for each point, if we dont have data max difference is 10mm from initial point
  7363. break;
  7364. card.closefile();
  7365. }
  7366. //memset(numb_wldsd, 0, sizeof(numb_wldsd));
  7367. //dtostrf(d_ReadData(), 8, 5, numb_wldsd);
  7368. //strcat(data_wldsd, numb_wldsd);
  7369. //MYSERIAL.println(data_wldsd);
  7370. //_delay(1000);
  7371. //_delay(3000);
  7372. //t1 = _millis();
  7373. //while (digitalRead(D_DATACLOCK) == LOW) {}
  7374. //while (digitalRead(D_DATACLOCK) == HIGH) {}
  7375. memset(digit, 0, sizeof(digit));
  7376. //cli();
  7377. digitalWrite(D_REQUIRE, LOW);
  7378. for (int i = 0; i<13; i++)
  7379. {
  7380. //t1 = _millis();
  7381. for (int j = 0; j < 4; j++)
  7382. {
  7383. while (digitalRead(D_DATACLOCK) == LOW) {}
  7384. while (digitalRead(D_DATACLOCK) == HIGH) {}
  7385. bitWrite(digit[i], j, digitalRead(D_DATA));
  7386. }
  7387. //t_delay = (_millis() - t1);
  7388. //SERIAL_PROTOCOLPGM(" ");
  7389. //SERIAL_PROTOCOL_F(t_delay, 5);
  7390. //SERIAL_PROTOCOLPGM(" ");
  7391. }
  7392. //sei();
  7393. digitalWrite(D_REQUIRE, HIGH);
  7394. mergeOutput[0] = '\0';
  7395. output = 0;
  7396. for (int r = 5; r <= 10; r++) //Merge digits
  7397. {
  7398. sprintf(str, "%d", digit[r]);
  7399. strcat(mergeOutput, str);
  7400. }
  7401. output = atof(mergeOutput);
  7402. if (digit[4] == 8) //Handle sign
  7403. {
  7404. output *= -1;
  7405. }
  7406. for (int i = digit[11]; i > 0; i--) //Handle floating point
  7407. {
  7408. output *= 0.1;
  7409. }
  7410. //output = d_ReadData();
  7411. //row[ix] = current_position[Z_AXIS];
  7412. memset(data_wldsd, 0, sizeof(data_wldsd));
  7413. for (int i = 0; i <3; i++) {
  7414. memset(numb_wldsd, 0, sizeof(numb_wldsd));
  7415. dtostrf(current_position[i], 8, 5, numb_wldsd);
  7416. strcat(data_wldsd, numb_wldsd);
  7417. strcat(data_wldsd, ";");
  7418. }
  7419. memset(numb_wldsd, 0, sizeof(numb_wldsd));
  7420. dtostrf(output, 8, 5, numb_wldsd);
  7421. strcat(data_wldsd, numb_wldsd);
  7422. //strcat(data_wldsd, ";");
  7423. card.write_command(data_wldsd);
  7424. //row[ix] = d_ReadData();
  7425. row[ix] = output; // current_position[Z_AXIS];
  7426. if (iy % 2 == 1 ? ix == 0 : ix == x_points_num - 1) {
  7427. for (int i = 0; i < x_points_num; i++) {
  7428. SERIAL_PROTOCOLPGM(" ");
  7429. SERIAL_PROTOCOL_F(row[i], 5);
  7430. }
  7431. SERIAL_PROTOCOLPGM("\n");
  7432. }
  7433. custom_message_state--;
  7434. mesh_point++;
  7435. lcd_update(1);
  7436. }
  7437. card.closefile();
  7438. clean_up_after_endstop_move(l_feedmultiply);
  7439. }
  7440. #endif //HEATBED_ANALYSIS
  7441. void temp_compensation_start() {
  7442. custom_message_type = CUSTOM_MSG_TYPE_TEMPRE;
  7443. custom_message_state = PINDA_HEAT_T + 1;
  7444. lcd_update(2);
  7445. if (degHotend(active_extruder) > EXTRUDE_MINTEMP) {
  7446. current_position[E_AXIS] -= default_retraction;
  7447. }
  7448. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400, active_extruder);
  7449. current_position[X_AXIS] = PINDA_PREHEAT_X;
  7450. current_position[Y_AXIS] = PINDA_PREHEAT_Y;
  7451. current_position[Z_AXIS] = PINDA_PREHEAT_Z;
  7452. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  7453. st_synchronize();
  7454. while (fabs(degBed() - target_temperature_bed) > 1) delay_keep_alive(1000);
  7455. for (int i = 0; i < PINDA_HEAT_T; i++) {
  7456. delay_keep_alive(1000);
  7457. custom_message_state = PINDA_HEAT_T - i;
  7458. if (custom_message_state == 99 || custom_message_state == 9) lcd_update(2); //force whole display redraw if number of digits changed
  7459. else lcd_update(1);
  7460. }
  7461. custom_message_type = CUSTOM_MSG_TYPE_STATUS;
  7462. custom_message_state = 0;
  7463. }
  7464. void temp_compensation_apply() {
  7465. int i_add;
  7466. int z_shift = 0;
  7467. float z_shift_mm;
  7468. if (calibration_status() == CALIBRATION_STATUS_CALIBRATED) {
  7469. if (target_temperature_bed % 10 == 0 && target_temperature_bed >= 60 && target_temperature_bed <= 100) {
  7470. i_add = (target_temperature_bed - 60) / 10;
  7471. EEPROM_read_B(EEPROM_PROBE_TEMP_SHIFT + i_add * 2, &z_shift);
  7472. z_shift_mm = z_shift / cs.axis_steps_per_unit[Z_AXIS];
  7473. }else {
  7474. //interpolation
  7475. z_shift_mm = temp_comp_interpolation(target_temperature_bed) / cs.axis_steps_per_unit[Z_AXIS];
  7476. }
  7477. printf_P(_N("\nZ shift applied:%.3f\n"), z_shift_mm);
  7478. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS] - z_shift_mm, current_position[E_AXIS], homing_feedrate[Z_AXIS] / 40, active_extruder);
  7479. st_synchronize();
  7480. plan_set_z_position(current_position[Z_AXIS]);
  7481. }
  7482. else {
  7483. //we have no temp compensation data
  7484. }
  7485. }
  7486. float temp_comp_interpolation(float inp_temperature) {
  7487. //cubic spline interpolation
  7488. int n, i, j;
  7489. float h[10], a, b, c, d, sum, s[10] = { 0 }, x[10], F[10], f[10], m[10][10] = { 0 }, temp;
  7490. int shift[10];
  7491. int temp_C[10];
  7492. n = 6; //number of measured points
  7493. shift[0] = 0;
  7494. for (i = 0; i < n; i++) {
  7495. if (i>0) EEPROM_read_B(EEPROM_PROBE_TEMP_SHIFT + (i-1) * 2, &shift[i]); //read shift in steps from EEPROM
  7496. temp_C[i] = 50 + i * 10; //temperature in C
  7497. #ifdef PINDA_THERMISTOR
  7498. temp_C[i] = 35 + i * 5; //temperature in C
  7499. #else
  7500. temp_C[i] = 50 + i * 10; //temperature in C
  7501. #endif
  7502. x[i] = (float)temp_C[i];
  7503. f[i] = (float)shift[i];
  7504. }
  7505. if (inp_temperature < x[0]) return 0;
  7506. for (i = n - 1; i>0; i--) {
  7507. F[i] = (f[i] - f[i - 1]) / (x[i] - x[i - 1]);
  7508. h[i - 1] = x[i] - x[i - 1];
  7509. }
  7510. //*********** formation of h, s , f matrix **************
  7511. for (i = 1; i<n - 1; i++) {
  7512. m[i][i] = 2 * (h[i - 1] + h[i]);
  7513. if (i != 1) {
  7514. m[i][i - 1] = h[i - 1];
  7515. m[i - 1][i] = h[i - 1];
  7516. }
  7517. m[i][n - 1] = 6 * (F[i + 1] - F[i]);
  7518. }
  7519. //*********** forward elimination **************
  7520. for (i = 1; i<n - 2; i++) {
  7521. temp = (m[i + 1][i] / m[i][i]);
  7522. for (j = 1; j <= n - 1; j++)
  7523. m[i + 1][j] -= temp*m[i][j];
  7524. }
  7525. //*********** backward substitution *********
  7526. for (i = n - 2; i>0; i--) {
  7527. sum = 0;
  7528. for (j = i; j <= n - 2; j++)
  7529. sum += m[i][j] * s[j];
  7530. s[i] = (m[i][n - 1] - sum) / m[i][i];
  7531. }
  7532. for (i = 0; i<n - 1; i++)
  7533. if ((x[i] <= inp_temperature && inp_temperature <= x[i + 1]) || (i == n-2 && inp_temperature > x[i + 1])) {
  7534. a = (s[i + 1] - s[i]) / (6 * h[i]);
  7535. b = s[i] / 2;
  7536. c = (f[i + 1] - f[i]) / h[i] - (2 * h[i] * s[i] + s[i + 1] * h[i]) / 6;
  7537. d = f[i];
  7538. sum = a*pow((inp_temperature - x[i]), 3) + b*pow((inp_temperature - x[i]), 2) + c*(inp_temperature - x[i]) + d;
  7539. }
  7540. return sum;
  7541. }
  7542. #ifdef PINDA_THERMISTOR
  7543. float temp_compensation_pinda_thermistor_offset(float temperature_pinda)
  7544. {
  7545. if (!temp_cal_active) return 0;
  7546. if (!calibration_status_pinda()) return 0;
  7547. return temp_comp_interpolation(temperature_pinda) / cs.axis_steps_per_unit[Z_AXIS];
  7548. }
  7549. #endif //PINDA_THERMISTOR
  7550. void long_pause() //long pause print
  7551. {
  7552. st_synchronize();
  7553. start_pause_print = _millis();
  7554. //retract
  7555. current_position[E_AXIS] -= default_retraction;
  7556. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400, active_extruder);
  7557. //lift z
  7558. current_position[Z_AXIS] += Z_PAUSE_LIFT;
  7559. if (current_position[Z_AXIS] > Z_MAX_POS) current_position[Z_AXIS] = Z_MAX_POS;
  7560. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 15, active_extruder);
  7561. //Move XY to side
  7562. current_position[X_AXIS] = X_PAUSE_POS;
  7563. current_position[Y_AXIS] = Y_PAUSE_POS;
  7564. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 50, active_extruder);
  7565. // Turn off the print fan
  7566. fanSpeed = 0;
  7567. st_synchronize();
  7568. }
  7569. void serialecho_temperatures() {
  7570. float tt = degHotend(active_extruder);
  7571. SERIAL_PROTOCOLPGM("T:");
  7572. SERIAL_PROTOCOL(tt);
  7573. SERIAL_PROTOCOLPGM(" E:");
  7574. SERIAL_PROTOCOL((int)active_extruder);
  7575. SERIAL_PROTOCOLPGM(" B:");
  7576. SERIAL_PROTOCOL_F(degBed(), 1);
  7577. SERIAL_PROTOCOLLN("");
  7578. }
  7579. extern uint32_t sdpos_atomic;
  7580. #ifdef UVLO_SUPPORT
  7581. void uvlo_()
  7582. {
  7583. unsigned long time_start = _millis();
  7584. bool sd_print = card.sdprinting;
  7585. // Conserve power as soon as possible.
  7586. disable_x();
  7587. disable_y();
  7588. #ifdef TMC2130
  7589. tmc2130_set_current_h(Z_AXIS, 20);
  7590. tmc2130_set_current_r(Z_AXIS, 20);
  7591. tmc2130_set_current_h(E_AXIS, 20);
  7592. tmc2130_set_current_r(E_AXIS, 20);
  7593. #endif //TMC2130
  7594. // Indicate that the interrupt has been triggered.
  7595. // SERIAL_ECHOLNPGM("UVLO");
  7596. // Read out the current Z motor microstep counter. This will be later used
  7597. // for reaching the zero full step before powering off.
  7598. uint16_t z_microsteps = 0;
  7599. #ifdef TMC2130
  7600. z_microsteps = tmc2130_rd_MSCNT(Z_TMC2130_CS);
  7601. #endif //TMC2130
  7602. // Calculate the file position, from which to resume this print.
  7603. long sd_position = sdpos_atomic; //atomic sd position of last command added in queue
  7604. {
  7605. uint16_t sdlen_planner = planner_calc_sd_length(); //length of sd commands in planner
  7606. sd_position -= sdlen_planner;
  7607. uint16_t sdlen_cmdqueue = cmdqueue_calc_sd_length(); //length of sd commands in cmdqueue
  7608. sd_position -= sdlen_cmdqueue;
  7609. if (sd_position < 0) sd_position = 0;
  7610. }
  7611. // Backup the feedrate in mm/min.
  7612. int feedrate_bckp = blocks_queued() ? (block_buffer[block_buffer_tail].nominal_speed * 60.f) : feedrate;
  7613. // After this call, the planner queue is emptied and the current_position is set to a current logical coordinate.
  7614. // The logical coordinate will likely differ from the machine coordinate if the skew calibration and mesh bed leveling
  7615. // are in action.
  7616. planner_abort_hard();
  7617. // Store the current extruder position.
  7618. eeprom_update_float((float*)(EEPROM_UVLO_CURRENT_POSITION_E), st_get_position_mm(E_AXIS));
  7619. eeprom_update_byte((uint8_t*)EEPROM_UVLO_E_ABS, axis_relative_modes[3]?0:1);
  7620. // Clean the input command queue.
  7621. cmdqueue_reset();
  7622. card.sdprinting = false;
  7623. // card.closefile();
  7624. // Enable stepper driver interrupt to move Z axis.
  7625. // This should be fine as the planner and command queues are empty and the SD card printing is disabled.
  7626. //FIXME one may want to disable serial lines at this point of time to avoid interfering with the command queue,
  7627. // though it should not happen that the command queue is touched as the plan_buffer_line always succeed without blocking.
  7628. sei();
  7629. plan_buffer_line(
  7630. current_position[X_AXIS],
  7631. current_position[Y_AXIS],
  7632. current_position[Z_AXIS],
  7633. current_position[E_AXIS] - default_retraction,
  7634. 95, active_extruder);
  7635. st_synchronize();
  7636. disable_e0();
  7637. plan_buffer_line(
  7638. current_position[X_AXIS],
  7639. current_position[Y_AXIS],
  7640. current_position[Z_AXIS] + UVLO_Z_AXIS_SHIFT + float((1024 - z_microsteps + 7) >> 4) / cs.axis_steps_per_unit[Z_AXIS],
  7641. current_position[E_AXIS] - default_retraction,
  7642. 40, active_extruder);
  7643. st_synchronize();
  7644. disable_e0();
  7645. plan_buffer_line(
  7646. current_position[X_AXIS],
  7647. current_position[Y_AXIS],
  7648. current_position[Z_AXIS] + UVLO_Z_AXIS_SHIFT + float((1024 - z_microsteps + 7) >> 4) / cs.axis_steps_per_unit[Z_AXIS],
  7649. current_position[E_AXIS] - default_retraction,
  7650. 40, active_extruder);
  7651. st_synchronize();
  7652. disable_e0();
  7653. disable_z();
  7654. // Move Z up to the next 0th full step.
  7655. // Write the file position.
  7656. eeprom_update_dword((uint32_t*)(EEPROM_FILE_POSITION), sd_position);
  7657. // Store the mesh bed leveling offsets. This is 2*7*7=98 bytes, which takes 98*3.4us=333us in worst case.
  7658. for (int8_t mesh_point = 0; mesh_point < MESH_NUM_X_POINTS * MESH_NUM_Y_POINTS; ++ mesh_point) {
  7659. uint8_t ix = mesh_point % MESH_NUM_X_POINTS; // from 0 to MESH_NUM_X_POINTS - 1
  7660. uint8_t iy = mesh_point / MESH_NUM_X_POINTS;
  7661. // Scale the z value to 1u resolution.
  7662. int16_t v = mbl.active ? int16_t(floor(mbl.z_values[iy][ix] * 1000.f + 0.5f)) : 0;
  7663. eeprom_update_word((uint16_t*)(EEPROM_UVLO_MESH_BED_LEVELING_FULL +2*mesh_point), *reinterpret_cast<uint16_t*>(&v));
  7664. }
  7665. // Read out the current Z motor microstep counter. This will be later used
  7666. // for reaching the zero full step before powering off.
  7667. eeprom_update_word((uint16_t*)(EEPROM_UVLO_Z_MICROSTEPS), z_microsteps);
  7668. // Store the current position.
  7669. eeprom_update_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 0), current_position[X_AXIS]);
  7670. eeprom_update_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 4), current_position[Y_AXIS]);
  7671. eeprom_update_float((float*)(EEPROM_UVLO_CURRENT_POSITION_Z), current_position[Z_AXIS]);
  7672. // Store the current feed rate, temperatures, fan speed and extruder multipliers (flow rates)
  7673. EEPROM_save_B(EEPROM_UVLO_FEEDRATE, &feedrate_bckp);
  7674. eeprom_update_byte((uint8_t*)EEPROM_UVLO_TARGET_HOTEND, target_temperature[active_extruder]);
  7675. eeprom_update_byte((uint8_t*)EEPROM_UVLO_TARGET_BED, target_temperature_bed);
  7676. eeprom_update_byte((uint8_t*)EEPROM_UVLO_FAN_SPEED, fanSpeed);
  7677. eeprom_update_float((float*)(EEPROM_EXTRUDER_MULTIPLIER_0), extruder_multiplier[0]);
  7678. #if EXTRUDERS > 1
  7679. eeprom_update_float((float*)(EEPROM_EXTRUDER_MULTIPLIER_1), extruder_multiplier[1]);
  7680. #if EXTRUDERS > 2
  7681. eeprom_update_float((float*)(EEPROM_EXTRUDER_MULTIPLIER_2), extruder_multiplier[2]);
  7682. #endif
  7683. #endif
  7684. eeprom_update_word((uint16_t*)(EEPROM_EXTRUDEMULTIPLY), (uint16_t)extrudemultiply);
  7685. // Finaly store the "power outage" flag.
  7686. if(sd_print) eeprom_update_byte((uint8_t*)EEPROM_UVLO, 1);
  7687. st_synchronize();
  7688. printf_P(_N("stps%d\n"), tmc2130_rd_MSCNT(Z_AXIS));
  7689. disable_z();
  7690. // Increment power failure counter
  7691. eeprom_update_byte((uint8_t*)EEPROM_POWER_COUNT, eeprom_read_byte((uint8_t*)EEPROM_POWER_COUNT) + 1);
  7692. eeprom_update_word((uint16_t*)EEPROM_POWER_COUNT_TOT, eeprom_read_word((uint16_t*)EEPROM_POWER_COUNT_TOT) + 1);
  7693. printf_P(_N("UVLO - end %d\n"), _millis() - time_start);
  7694. #if 0
  7695. // Move the print head to the side of the print until all the power stored in the power supply capacitors is depleted.
  7696. current_position[X_AXIS] = (current_position[X_AXIS] < 0.5f * (X_MIN_POS + X_MAX_POS)) ? X_MIN_POS : X_MAX_POS;
  7697. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 500, active_extruder);
  7698. st_synchronize();
  7699. #endif
  7700. wdt_enable(WDTO_500MS);
  7701. WRITE(BEEPER,HIGH);
  7702. while(1)
  7703. ;
  7704. }
  7705. void uvlo_tiny()
  7706. {
  7707. uint16_t z_microsteps=0;
  7708. // Conserve power as soon as possible.
  7709. disable_x();
  7710. disable_y();
  7711. disable_e0();
  7712. #ifdef TMC2130
  7713. tmc2130_set_current_h(Z_AXIS, 20);
  7714. tmc2130_set_current_r(Z_AXIS, 20);
  7715. #endif //TMC2130
  7716. // Read out the current Z motor microstep counter
  7717. #ifdef TMC2130
  7718. z_microsteps=tmc2130_rd_MSCNT(Z_TMC2130_CS);
  7719. #endif //TMC2130
  7720. planner_abort_hard();
  7721. sei();
  7722. plan_buffer_line(
  7723. current_position[X_AXIS],
  7724. current_position[Y_AXIS],
  7725. // current_position[Z_AXIS]+float((1024-z_microsteps+7)>>4)/axis_steps_per_unit[Z_AXIS],
  7726. current_position[Z_AXIS]+UVLO_Z_AXIS_SHIFT+float((1024-z_microsteps+7)>>4)/cs.axis_steps_per_unit[Z_AXIS],
  7727. current_position[E_AXIS],
  7728. 40, active_extruder);
  7729. st_synchronize();
  7730. disable_z();
  7731. // Finaly store the "power outage" flag.
  7732. //if(sd_print)
  7733. eeprom_update_byte((uint8_t*)EEPROM_UVLO,2);
  7734. eeprom_update_word((uint16_t*)(EEPROM_UVLO_TINY_Z_MICROSTEPS),z_microsteps);
  7735. eeprom_update_float((float*)(EEPROM_UVLO_TINY_CURRENT_POSITION_Z), current_position[Z_AXIS]);
  7736. // Increment power failure counter
  7737. eeprom_update_byte((uint8_t*)EEPROM_POWER_COUNT, eeprom_read_byte((uint8_t*)EEPROM_POWER_COUNT) + 1);
  7738. eeprom_update_word((uint16_t*)EEPROM_POWER_COUNT_TOT, eeprom_read_word((uint16_t*)EEPROM_POWER_COUNT_TOT) + 1);
  7739. wdt_enable(WDTO_500MS);
  7740. WRITE(BEEPER,HIGH);
  7741. while(1)
  7742. ;
  7743. }
  7744. #endif //UVLO_SUPPORT
  7745. #if (defined(FANCHECK) && defined(TACH_1) && (TACH_1 >-1))
  7746. void setup_fan_interrupt() {
  7747. //INT7
  7748. DDRE &= ~(1 << 7); //input pin
  7749. PORTE &= ~(1 << 7); //no internal pull-up
  7750. //start with sensing rising edge
  7751. EICRB &= ~(1 << 6);
  7752. EICRB |= (1 << 7);
  7753. //enable INT7 interrupt
  7754. EIMSK |= (1 << 7);
  7755. }
  7756. // The fan interrupt is triggered at maximum 325Hz (may be a bit more due to component tollerances),
  7757. // and it takes 4.24 us to process (the interrupt invocation overhead not taken into account).
  7758. ISR(INT7_vect) {
  7759. //measuring speed now works for fanSpeed > 18 (approximately), which is sufficient because MIN_PRINT_FAN_SPEED is higher
  7760. #ifdef FAN_SOFT_PWM
  7761. if (!fan_measuring || (fanSpeedSoftPwm < MIN_PRINT_FAN_SPEED)) return;
  7762. #else //FAN_SOFT_PWM
  7763. if (fanSpeed < MIN_PRINT_FAN_SPEED) return;
  7764. #endif //FAN_SOFT_PWM
  7765. if ((1 << 6) & EICRB) { //interrupt was triggered by rising edge
  7766. t_fan_rising_edge = millis_nc();
  7767. }
  7768. else { //interrupt was triggered by falling edge
  7769. if ((millis_nc() - t_fan_rising_edge) >= FAN_PULSE_WIDTH_LIMIT) {//this pulse was from sensor and not from pwm
  7770. fan_edge_counter[1] += 2; //we are currently counting all edges so lets count two edges for one pulse
  7771. }
  7772. }
  7773. EICRB ^= (1 << 6); //change edge
  7774. }
  7775. #endif
  7776. #ifdef UVLO_SUPPORT
  7777. void setup_uvlo_interrupt() {
  7778. DDRE &= ~(1 << 4); //input pin
  7779. PORTE &= ~(1 << 4); //no internal pull-up
  7780. //sensing falling edge
  7781. EICRB |= (1 << 0);
  7782. EICRB &= ~(1 << 1);
  7783. //enable INT4 interrupt
  7784. EIMSK |= (1 << 4);
  7785. }
  7786. ISR(INT4_vect) {
  7787. EIMSK &= ~(1 << 4); //disable INT4 interrupt to make sure that this code will be executed just once
  7788. SERIAL_ECHOLNPGM("INT4");
  7789. if(IS_SD_PRINTING && (!(eeprom_read_byte((uint8_t*)EEPROM_UVLO))) ) uvlo_();
  7790. if(eeprom_read_byte((uint8_t*)EEPROM_UVLO)) uvlo_tiny();
  7791. }
  7792. void recover_print(uint8_t automatic) {
  7793. char cmd[30];
  7794. lcd_update_enable(true);
  7795. lcd_update(2);
  7796. lcd_setstatuspgm(_i("Recovering print "));////MSG_RECOVERING_PRINT c=20 r=1
  7797. bool bTiny=(eeprom_read_byte((uint8_t*)EEPROM_UVLO)==2);
  7798. recover_machine_state_after_power_panic(bTiny); //recover position, temperatures and extrude_multipliers
  7799. // Lift the print head, so one may remove the excess priming material.
  7800. if(!bTiny&&(current_position[Z_AXIS]<25))
  7801. enquecommand_P(PSTR("G1 Z25 F800"));
  7802. // Home X and Y axes. Homing just X and Y shall not touch the babystep and the world2machine transformation status.
  7803. enquecommand_P(PSTR("G28 X Y"));
  7804. // Set the target bed and nozzle temperatures and wait.
  7805. sprintf_P(cmd, PSTR("M109 S%d"), target_temperature[active_extruder]);
  7806. enquecommand(cmd);
  7807. sprintf_P(cmd, PSTR("M190 S%d"), target_temperature_bed);
  7808. enquecommand(cmd);
  7809. enquecommand_P(PSTR("M83")); //E axis relative mode
  7810. //enquecommand_P(PSTR("G1 E5 F120")); //Extrude some filament to stabilize pessure
  7811. // If not automatically recoreverd (long power loss), extrude extra filament to stabilize
  7812. if(automatic == 0){
  7813. enquecommand_P(PSTR("G1 E5 F120")); //Extrude some filament to stabilize pessure
  7814. }
  7815. enquecommand_P(PSTR("G1 E" STRINGIFY(-default_retraction)" F480"));
  7816. printf_P(_N("After waiting for temp:\nCurrent pos X_AXIS:%.3f\nCurrent pos Y_AXIS:%.3f\n"), current_position[X_AXIS], current_position[Y_AXIS]);
  7817. // Restart the print.
  7818. restore_print_from_eeprom();
  7819. printf_P(_N("Current pos Z_AXIS:%.3f\nCurrent pos E_AXIS:%.3f\n"), current_position[Z_AXIS], current_position[E_AXIS]);
  7820. }
  7821. void recover_machine_state_after_power_panic(bool bTiny)
  7822. {
  7823. char cmd[30];
  7824. // 1) Recover the logical cordinates at the time of the power panic.
  7825. // The logical XY coordinates are needed to recover the machine Z coordinate corrected by the mesh bed leveling.
  7826. current_position[X_AXIS] = eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 0));
  7827. current_position[Y_AXIS] = eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 4));
  7828. // Recover the logical coordinate of the Z axis at the time of the power panic.
  7829. // The current position after power panic is moved to the next closest 0th full step.
  7830. if(bTiny)
  7831. current_position[Z_AXIS] = eeprom_read_float((float*)(EEPROM_UVLO_TINY_CURRENT_POSITION_Z)) +
  7832. UVLO_Z_AXIS_SHIFT + float((1024 - eeprom_read_word((uint16_t*)(EEPROM_UVLO_TINY_Z_MICROSTEPS)) + 7) >> 4) / cs.axis_steps_per_unit[Z_AXIS];
  7833. else
  7834. current_position[Z_AXIS] = eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION_Z)) +
  7835. UVLO_Z_AXIS_SHIFT + float((1024 - eeprom_read_word((uint16_t*)(EEPROM_UVLO_Z_MICROSTEPS)) + 7) >> 4) / cs.axis_steps_per_unit[Z_AXIS];
  7836. if (eeprom_read_byte((uint8_t*)EEPROM_UVLO_E_ABS)) {
  7837. current_position[E_AXIS] = eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION_E));
  7838. sprintf_P(cmd, PSTR("G92 E"));
  7839. dtostrf(current_position[E_AXIS], 6, 3, cmd + strlen(cmd));
  7840. enquecommand(cmd);
  7841. }
  7842. memcpy(destination, current_position, sizeof(destination));
  7843. SERIAL_ECHOPGM("recover_machine_state_after_power_panic, initial ");
  7844. print_world_coordinates();
  7845. // 2) Initialize the logical to physical coordinate system transformation.
  7846. world2machine_initialize();
  7847. // 3) Restore the mesh bed leveling offsets. This is 2*7*7=98 bytes, which takes 98*3.4us=333us in worst case.
  7848. mbl.active = false;
  7849. for (int8_t mesh_point = 0; mesh_point < MESH_NUM_X_POINTS * MESH_NUM_Y_POINTS; ++ mesh_point) {
  7850. uint8_t ix = mesh_point % MESH_NUM_X_POINTS; // from 0 to MESH_NUM_X_POINTS - 1
  7851. uint8_t iy = mesh_point / MESH_NUM_X_POINTS;
  7852. // Scale the z value to 10u resolution.
  7853. int16_t v;
  7854. eeprom_read_block(&v, (void*)(EEPROM_UVLO_MESH_BED_LEVELING_FULL+2*mesh_point), 2);
  7855. if (v != 0)
  7856. mbl.active = true;
  7857. mbl.z_values[iy][ix] = float(v) * 0.001f;
  7858. }
  7859. // SERIAL_ECHOPGM("recover_machine_state_after_power_panic, initial ");
  7860. // print_mesh_bed_leveling_table();
  7861. // 4) Load the baby stepping value, which is expected to be active at the time of power panic.
  7862. // The baby stepping value is used to reset the physical Z axis when rehoming the Z axis.
  7863. babystep_load();
  7864. // 5) Set the physical positions from the logical positions using the world2machine transformation and the active bed leveling.
  7865. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  7866. // 6) Power up the motors, mark their positions as known.
  7867. //FIXME Verfiy, whether the X and Y axes should be powered up here, as they will later be re-homed anyway.
  7868. axis_known_position[X_AXIS] = true; enable_x();
  7869. axis_known_position[Y_AXIS] = true; enable_y();
  7870. axis_known_position[Z_AXIS] = true; enable_z();
  7871. SERIAL_ECHOPGM("recover_machine_state_after_power_panic, initial ");
  7872. print_physical_coordinates();
  7873. // 7) Recover the target temperatures.
  7874. target_temperature[active_extruder] = eeprom_read_byte((uint8_t*)EEPROM_UVLO_TARGET_HOTEND);
  7875. target_temperature_bed = eeprom_read_byte((uint8_t*)EEPROM_UVLO_TARGET_BED);
  7876. // 8) Recover extruder multipilers
  7877. extruder_multiplier[0] = eeprom_read_float((float*)(EEPROM_EXTRUDER_MULTIPLIER_0));
  7878. #if EXTRUDERS > 1
  7879. extruder_multiplier[1] = eeprom_read_float((float*)(EEPROM_EXTRUDER_MULTIPLIER_1));
  7880. #if EXTRUDERS > 2
  7881. extruder_multiplier[2] = eeprom_read_float((float*)(EEPROM_EXTRUDER_MULTIPLIER_2));
  7882. #endif
  7883. #endif
  7884. extrudemultiply = (int)eeprom_read_word((uint16_t*)(EEPROM_EXTRUDEMULTIPLY));
  7885. }
  7886. void restore_print_from_eeprom() {
  7887. int feedrate_rec;
  7888. uint8_t fan_speed_rec;
  7889. char cmd[30];
  7890. char filename[13];
  7891. uint8_t depth = 0;
  7892. char dir_name[9];
  7893. fan_speed_rec = eeprom_read_byte((uint8_t*)EEPROM_UVLO_FAN_SPEED);
  7894. EEPROM_read_B(EEPROM_UVLO_FEEDRATE, &feedrate_rec);
  7895. SERIAL_ECHOPGM("Feedrate:");
  7896. MYSERIAL.println(feedrate_rec);
  7897. depth = eeprom_read_byte((uint8_t*)EEPROM_DIR_DEPTH);
  7898. MYSERIAL.println(int(depth));
  7899. for (int i = 0; i < depth; i++) {
  7900. for (int j = 0; j < 8; j++) {
  7901. dir_name[j] = eeprom_read_byte((uint8_t*)EEPROM_DIRS + j + 8 * i);
  7902. }
  7903. dir_name[8] = '\0';
  7904. MYSERIAL.println(dir_name);
  7905. strcpy(dir_names[i], dir_name);
  7906. card.chdir(dir_name);
  7907. }
  7908. for (int i = 0; i < 8; i++) {
  7909. filename[i] = eeprom_read_byte((uint8_t*)EEPROM_FILENAME + i);
  7910. }
  7911. filename[8] = '\0';
  7912. MYSERIAL.print(filename);
  7913. strcat_P(filename, PSTR(".gco"));
  7914. sprintf_P(cmd, PSTR("M23 %s"), filename);
  7915. enquecommand(cmd);
  7916. uint32_t position = eeprom_read_dword((uint32_t*)(EEPROM_FILE_POSITION));
  7917. SERIAL_ECHOPGM("Position read from eeprom:");
  7918. MYSERIAL.println(position);
  7919. // E axis relative mode.
  7920. enquecommand_P(PSTR("M83"));
  7921. // Move to the XY print position in logical coordinates, where the print has been killed.
  7922. strcpy_P(cmd, PSTR("G1 X")); strcat(cmd, ftostr32(eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 0))));
  7923. strcat_P(cmd, PSTR(" Y")); strcat(cmd, ftostr32(eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 4))));
  7924. strcat_P(cmd, PSTR(" F2000"));
  7925. enquecommand(cmd);
  7926. // Move the Z axis down to the print, in logical coordinates.
  7927. strcpy_P(cmd, PSTR("G1 Z")); strcat(cmd, ftostr32(eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION_Z))));
  7928. enquecommand(cmd);
  7929. // Unretract.
  7930. enquecommand_P(PSTR("G1 E" STRINGIFY(2*default_retraction)" F480"));
  7931. // Set the feedrate saved at the power panic.
  7932. sprintf_P(cmd, PSTR("G1 F%d"), feedrate_rec);
  7933. enquecommand(cmd);
  7934. if (eeprom_read_byte((uint8_t*)EEPROM_UVLO_E_ABS))
  7935. {
  7936. enquecommand_P(PSTR("M82")); //E axis abslute mode
  7937. }
  7938. // Set the fan speed saved at the power panic.
  7939. strcpy_P(cmd, PSTR("M106 S"));
  7940. strcat(cmd, itostr3(int(fan_speed_rec)));
  7941. enquecommand(cmd);
  7942. // Set a position in the file.
  7943. sprintf_P(cmd, PSTR("M26 S%lu"), position);
  7944. enquecommand(cmd);
  7945. enquecommand_P(PSTR("G4 S0"));
  7946. enquecommand_P(PSTR("PRUSA uvlo"));
  7947. }
  7948. #endif //UVLO_SUPPORT
  7949. //! @brief Immediately stop print moves
  7950. //!
  7951. //! Immediately stop print moves, save current extruder temperature and position to RAM.
  7952. //! If printing from sd card, position in file is saved.
  7953. //! If printing from USB, line number is saved.
  7954. //!
  7955. //! @param z_move
  7956. //! @param e_move
  7957. void stop_and_save_print_to_ram(float z_move, float e_move)
  7958. {
  7959. if (saved_printing) return;
  7960. #if 0
  7961. unsigned char nplanner_blocks;
  7962. #endif
  7963. unsigned char nlines;
  7964. uint16_t sdlen_planner;
  7965. uint16_t sdlen_cmdqueue;
  7966. cli();
  7967. if (card.sdprinting) {
  7968. #if 0
  7969. nplanner_blocks = number_of_blocks();
  7970. #endif
  7971. saved_sdpos = sdpos_atomic; //atomic sd position of last command added in queue
  7972. sdlen_planner = planner_calc_sd_length(); //length of sd commands in planner
  7973. saved_sdpos -= sdlen_planner;
  7974. sdlen_cmdqueue = cmdqueue_calc_sd_length(); //length of sd commands in cmdqueue
  7975. saved_sdpos -= sdlen_cmdqueue;
  7976. saved_printing_type = PRINTING_TYPE_SD;
  7977. }
  7978. else if (is_usb_printing) { //reuse saved_sdpos for storing line number
  7979. saved_sdpos = gcode_LastN; //start with line number of command added recently to cmd queue
  7980. //reuse planner_calc_sd_length function for getting number of lines of commands in planner:
  7981. nlines = planner_calc_sd_length(); //number of lines of commands in planner
  7982. saved_sdpos -= nlines;
  7983. saved_sdpos -= buflen; //number of blocks in cmd buffer
  7984. saved_printing_type = PRINTING_TYPE_USB;
  7985. }
  7986. else {
  7987. saved_printing_type = PRINTING_TYPE_NONE;
  7988. //not sd printing nor usb printing
  7989. }
  7990. #if 0
  7991. SERIAL_ECHOPGM("SDPOS_ATOMIC="); MYSERIAL.println(sdpos_atomic, DEC);
  7992. SERIAL_ECHOPGM("SDPOS="); MYSERIAL.println(card.get_sdpos(), DEC);
  7993. SERIAL_ECHOPGM("SDLEN_PLAN="); MYSERIAL.println(sdlen_planner, DEC);
  7994. SERIAL_ECHOPGM("SDLEN_CMDQ="); MYSERIAL.println(sdlen_cmdqueue, DEC);
  7995. SERIAL_ECHOPGM("PLANNERBLOCKS="); MYSERIAL.println(int(nplanner_blocks), DEC);
  7996. SERIAL_ECHOPGM("SDSAVED="); MYSERIAL.println(saved_sdpos, DEC);
  7997. //SERIAL_ECHOPGM("SDFILELEN="); MYSERIAL.println(card.fileSize(), DEC);
  7998. {
  7999. card.setIndex(saved_sdpos);
  8000. SERIAL_ECHOLNPGM("Content of planner buffer: ");
  8001. for (unsigned int idx = 0; idx < sdlen_planner; ++ idx)
  8002. MYSERIAL.print(char(card.get()));
  8003. SERIAL_ECHOLNPGM("Content of command buffer: ");
  8004. for (unsigned int idx = 0; idx < sdlen_cmdqueue; ++ idx)
  8005. MYSERIAL.print(char(card.get()));
  8006. SERIAL_ECHOLNPGM("End of command buffer");
  8007. }
  8008. {
  8009. // Print the content of the planner buffer, line by line:
  8010. card.setIndex(saved_sdpos);
  8011. int8_t iline = 0;
  8012. for (unsigned char idx = block_buffer_tail; idx != block_buffer_head; idx = (idx + 1) & (BLOCK_BUFFER_SIZE - 1), ++ iline) {
  8013. SERIAL_ECHOPGM("Planner line (from file): ");
  8014. MYSERIAL.print(int(iline), DEC);
  8015. SERIAL_ECHOPGM(", length: ");
  8016. MYSERIAL.print(block_buffer[idx].sdlen, DEC);
  8017. SERIAL_ECHOPGM(", steps: (");
  8018. MYSERIAL.print(block_buffer[idx].steps_x, DEC);
  8019. SERIAL_ECHOPGM(",");
  8020. MYSERIAL.print(block_buffer[idx].steps_y, DEC);
  8021. SERIAL_ECHOPGM(",");
  8022. MYSERIAL.print(block_buffer[idx].steps_z, DEC);
  8023. SERIAL_ECHOPGM(",");
  8024. MYSERIAL.print(block_buffer[idx].steps_e, DEC);
  8025. SERIAL_ECHOPGM("), events: ");
  8026. MYSERIAL.println(block_buffer[idx].step_event_count, DEC);
  8027. for (int len = block_buffer[idx].sdlen; len > 0; -- len)
  8028. MYSERIAL.print(char(card.get()));
  8029. }
  8030. }
  8031. {
  8032. // Print the content of the command buffer, line by line:
  8033. int8_t iline = 0;
  8034. union {
  8035. struct {
  8036. char lo;
  8037. char hi;
  8038. } lohi;
  8039. uint16_t value;
  8040. } sdlen_single;
  8041. int _bufindr = bufindr;
  8042. for (int _buflen = buflen; _buflen > 0; ++ iline) {
  8043. if (cmdbuffer[_bufindr] == CMDBUFFER_CURRENT_TYPE_SDCARD) {
  8044. sdlen_single.lohi.lo = cmdbuffer[_bufindr + 1];
  8045. sdlen_single.lohi.hi = cmdbuffer[_bufindr + 2];
  8046. }
  8047. SERIAL_ECHOPGM("Buffer line (from buffer): ");
  8048. MYSERIAL.print(int(iline), DEC);
  8049. SERIAL_ECHOPGM(", type: ");
  8050. MYSERIAL.print(int(cmdbuffer[_bufindr]), DEC);
  8051. SERIAL_ECHOPGM(", len: ");
  8052. MYSERIAL.println(sdlen_single.value, DEC);
  8053. // Print the content of the buffer line.
  8054. MYSERIAL.println(cmdbuffer + _bufindr + CMDHDRSIZE);
  8055. SERIAL_ECHOPGM("Buffer line (from file): ");
  8056. MYSERIAL.println(int(iline), DEC);
  8057. for (; sdlen_single.value > 0; -- sdlen_single.value)
  8058. MYSERIAL.print(char(card.get()));
  8059. if (-- _buflen == 0)
  8060. break;
  8061. // First skip the current command ID and iterate up to the end of the string.
  8062. for (_bufindr += CMDHDRSIZE; cmdbuffer[_bufindr] != 0; ++ _bufindr) ;
  8063. // Second, skip the end of string null character and iterate until a nonzero command ID is found.
  8064. for (++ _bufindr; _bufindr < sizeof(cmdbuffer) && cmdbuffer[_bufindr] == 0; ++ _bufindr) ;
  8065. // If the end of the buffer was empty,
  8066. if (_bufindr == sizeof(cmdbuffer)) {
  8067. // skip to the start and find the nonzero command.
  8068. for (_bufindr = 0; cmdbuffer[_bufindr] == 0; ++ _bufindr) ;
  8069. }
  8070. }
  8071. }
  8072. #endif
  8073. #if 0
  8074. saved_feedrate2 = feedrate; //save feedrate
  8075. #else
  8076. // Try to deduce the feedrate from the first block of the planner.
  8077. // Speed is in mm/min.
  8078. saved_feedrate2 = blocks_queued() ? (block_buffer[block_buffer_tail].nominal_speed * 60.f) : feedrate;
  8079. #endif
  8080. planner_abort_hard(); //abort printing
  8081. memcpy(saved_pos, current_position, sizeof(saved_pos));
  8082. saved_active_extruder = active_extruder; //save active_extruder
  8083. saved_extruder_temperature = degTargetHotend(active_extruder);
  8084. saved_extruder_under_pressure = extruder_under_pressure; //extruder under pressure flag - currently unused
  8085. saved_extruder_relative_mode = axis_relative_modes[E_AXIS];
  8086. saved_fanSpeed = fanSpeed;
  8087. cmdqueue_reset(); //empty cmdqueue
  8088. card.sdprinting = false;
  8089. // card.closefile();
  8090. saved_printing = true;
  8091. // We may have missed a stepper timer interrupt. Be safe than sorry, reset the stepper timer before re-enabling interrupts.
  8092. st_reset_timer();
  8093. sei();
  8094. if ((z_move != 0) || (e_move != 0)) { // extruder or z move
  8095. #if 1
  8096. // Rather than calling plan_buffer_line directly, push the move into the command queue,
  8097. char buf[48];
  8098. // First unretract (relative extrusion)
  8099. if(!saved_extruder_relative_mode){
  8100. strcpy_P(buf, PSTR("M83"));
  8101. enquecommand(buf, false);
  8102. }
  8103. //retract 45mm/s
  8104. strcpy_P(buf, PSTR("G1 E"));
  8105. dtostrf(e_move, 6, 3, buf + strlen(buf));
  8106. strcat_P(buf, PSTR(" F"));
  8107. dtostrf(2700, 8, 3, buf + strlen(buf));
  8108. enquecommand(buf, false);
  8109. // Then lift Z axis
  8110. strcpy_P(buf, PSTR("G1 Z"));
  8111. dtostrf(saved_pos[Z_AXIS] + z_move, 8, 3, buf + strlen(buf));
  8112. strcat_P(buf, PSTR(" F"));
  8113. dtostrf(homing_feedrate[Z_AXIS], 8, 3, buf + strlen(buf));
  8114. // At this point the command queue is empty.
  8115. enquecommand(buf, false);
  8116. // If this call is invoked from the main Arduino loop() function, let the caller know that the command
  8117. // in the command queue is not the original command, but a new one, so it should not be removed from the queue.
  8118. repeatcommand_front();
  8119. #else
  8120. plan_buffer_line(saved_pos[X_AXIS], saved_pos[Y_AXIS], saved_pos[Z_AXIS] + z_move, saved_pos[E_AXIS] + e_move, homing_feedrate[Z_AXIS], active_extruder);
  8121. st_synchronize(); //wait moving
  8122. memcpy(current_position, saved_pos, sizeof(saved_pos));
  8123. memcpy(destination, current_position, sizeof(destination));
  8124. #endif
  8125. }
  8126. }
  8127. //! @brief Restore print from ram
  8128. //!
  8129. //! Restore print saved by stop_and_save_print_to_ram(). Is blocking,
  8130. //! waits for extruder temperature restore, then restores position and continues
  8131. //! print moves.
  8132. //! Internaly lcd_update() is called by wait_for_heater().
  8133. //!
  8134. //! @param e_move
  8135. void restore_print_from_ram_and_continue(float e_move)
  8136. {
  8137. if (!saved_printing) return;
  8138. // for (int axis = X_AXIS; axis <= E_AXIS; axis++)
  8139. // current_position[axis] = st_get_position_mm(axis);
  8140. active_extruder = saved_active_extruder; //restore active_extruder
  8141. if (saved_extruder_temperature) {
  8142. setTargetHotendSafe(saved_extruder_temperature, saved_active_extruder);
  8143. heating_status = 1;
  8144. wait_for_heater(_millis(), saved_active_extruder);
  8145. heating_status = 2;
  8146. }
  8147. feedrate = saved_feedrate2; //restore feedrate
  8148. axis_relative_modes[E_AXIS] = saved_extruder_relative_mode;
  8149. fanSpeed = saved_fanSpeed;
  8150. float e = saved_pos[E_AXIS] - e_move;
  8151. plan_set_e_position(e);
  8152. //first move print head in XY to the saved position:
  8153. plan_buffer_line(saved_pos[X_AXIS], saved_pos[Y_AXIS], current_position[Z_AXIS], saved_pos[E_AXIS] - e_move, homing_feedrate[Z_AXIS]/13, active_extruder);
  8154. st_synchronize();
  8155. //then move Z
  8156. plan_buffer_line(saved_pos[X_AXIS], saved_pos[Y_AXIS], saved_pos[Z_AXIS], saved_pos[E_AXIS] - e_move, homing_feedrate[Z_AXIS]/13, active_extruder);
  8157. st_synchronize();
  8158. //and finaly unretract (35mm/s)
  8159. plan_buffer_line(saved_pos[X_AXIS], saved_pos[Y_AXIS], saved_pos[Z_AXIS], saved_pos[E_AXIS], 35, active_extruder);
  8160. st_synchronize();
  8161. memcpy(current_position, saved_pos, sizeof(saved_pos));
  8162. memcpy(destination, current_position, sizeof(destination));
  8163. if (saved_printing_type == PRINTING_TYPE_SD) { //was sd printing
  8164. card.setIndex(saved_sdpos);
  8165. sdpos_atomic = saved_sdpos;
  8166. card.sdprinting = true;
  8167. printf_P(PSTR("ok\n")); //dummy response because of octoprint is waiting for this
  8168. }
  8169. else if (saved_printing_type == PRINTING_TYPE_USB) { //was usb printing
  8170. gcode_LastN = saved_sdpos; //saved_sdpos was reused for storing line number when usb printing
  8171. serial_count = 0;
  8172. FlushSerialRequestResend();
  8173. }
  8174. else {
  8175. //not sd printing nor usb printing
  8176. }
  8177. lcd_setstatuspgm(_T(WELCOME_MSG));
  8178. saved_printing = false;
  8179. }
  8180. void print_world_coordinates()
  8181. {
  8182. printf_P(_N("world coordinates: (%.3f, %.3f, %.3f)\n"), current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS]);
  8183. }
  8184. void print_physical_coordinates()
  8185. {
  8186. printf_P(_N("physical coordinates: (%.3f, %.3f, %.3f)\n"), st_get_position_mm(X_AXIS), st_get_position_mm(Y_AXIS), st_get_position_mm(Z_AXIS));
  8187. }
  8188. void print_mesh_bed_leveling_table()
  8189. {
  8190. SERIAL_ECHOPGM("mesh bed leveling: ");
  8191. for (int8_t y = 0; y < MESH_NUM_Y_POINTS; ++ y)
  8192. for (int8_t x = 0; x < MESH_NUM_Y_POINTS; ++ x) {
  8193. MYSERIAL.print(mbl.z_values[y][x], 3);
  8194. SERIAL_ECHOPGM(" ");
  8195. }
  8196. SERIAL_ECHOLNPGM("");
  8197. }
  8198. uint16_t print_time_remaining() {
  8199. uint16_t print_t = PRINT_TIME_REMAINING_INIT;
  8200. #ifdef TMC2130
  8201. if (SilentModeMenu == SILENT_MODE_OFF) print_t = print_time_remaining_normal;
  8202. else print_t = print_time_remaining_silent;
  8203. #else
  8204. print_t = print_time_remaining_normal;
  8205. #endif //TMC2130
  8206. if ((print_t != PRINT_TIME_REMAINING_INIT) && (feedmultiply != 0)) print_t = 100ul * print_t / feedmultiply;
  8207. return print_t;
  8208. }
  8209. uint8_t calc_percent_done()
  8210. {
  8211. //in case that we have information from M73 gcode return percentage counted by slicer, else return percentage counted as byte_printed/filesize
  8212. uint8_t percent_done = 0;
  8213. #ifdef TMC2130
  8214. if (SilentModeMenu == SILENT_MODE_OFF && print_percent_done_normal <= 100) {
  8215. percent_done = print_percent_done_normal;
  8216. }
  8217. else if (print_percent_done_silent <= 100) {
  8218. percent_done = print_percent_done_silent;
  8219. }
  8220. #else
  8221. if (print_percent_done_normal <= 100) {
  8222. percent_done = print_percent_done_normal;
  8223. }
  8224. #endif //TMC2130
  8225. else {
  8226. percent_done = card.percentDone();
  8227. }
  8228. return percent_done;
  8229. }
  8230. static void print_time_remaining_init()
  8231. {
  8232. print_time_remaining_normal = PRINT_TIME_REMAINING_INIT;
  8233. print_time_remaining_silent = PRINT_TIME_REMAINING_INIT;
  8234. print_percent_done_normal = PRINT_PERCENT_DONE_INIT;
  8235. print_percent_done_silent = PRINT_PERCENT_DONE_INIT;
  8236. }
  8237. void load_filament_final_feed()
  8238. {
  8239. current_position[E_AXIS]+= FILAMENTCHANGE_FINALFEED;
  8240. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], FILAMENTCHANGE_EFEED_FINAL, active_extruder);
  8241. }
  8242. //! @brief Wait for user to check the state
  8243. //! @par nozzle_temp nozzle temperature to load filament
  8244. void M600_check_state(float nozzle_temp)
  8245. {
  8246. lcd_change_fil_state = 0;
  8247. while (lcd_change_fil_state != 1)
  8248. {
  8249. lcd_change_fil_state = 0;
  8250. KEEPALIVE_STATE(PAUSED_FOR_USER);
  8251. lcd_alright();
  8252. KEEPALIVE_STATE(IN_HANDLER);
  8253. switch(lcd_change_fil_state)
  8254. {
  8255. // Filament failed to load so load it again
  8256. case 2:
  8257. if (mmu_enabled)
  8258. mmu_M600_load_filament(false, nozzle_temp); //nonautomatic load; change to "wrong filament loaded" option?
  8259. else
  8260. M600_load_filament_movements();
  8261. break;
  8262. // Filament loaded properly but color is not clear
  8263. case 3:
  8264. st_synchronize();
  8265. load_filament_final_feed();
  8266. lcd_loading_color();
  8267. st_synchronize();
  8268. break;
  8269. // Everything good
  8270. default:
  8271. lcd_change_success();
  8272. break;
  8273. }
  8274. }
  8275. }
  8276. //! @brief Wait for user action
  8277. //!
  8278. //! Beep, manage nozzle heater and wait for user to start unload filament
  8279. //! If times out, active extruder temperature is set to 0.
  8280. //!
  8281. //! @param HotendTempBckp Temperature to be restored for active extruder, after user resolves MMU problem.
  8282. void M600_wait_for_user(float HotendTempBckp) {
  8283. KEEPALIVE_STATE(PAUSED_FOR_USER);
  8284. int counterBeep = 0;
  8285. unsigned long waiting_start_time = _millis();
  8286. uint8_t wait_for_user_state = 0;
  8287. lcd_display_message_fullscreen_P(_T(MSG_PRESS_TO_UNLOAD));
  8288. bool bFirst=true;
  8289. while (!(wait_for_user_state == 0 && lcd_clicked())){
  8290. manage_heater();
  8291. manage_inactivity(true);
  8292. #if BEEPER > 0
  8293. if (counterBeep == 500) {
  8294. counterBeep = 0;
  8295. }
  8296. SET_OUTPUT(BEEPER);
  8297. if (counterBeep == 0) {
  8298. if((eSoundMode==e_SOUND_MODE_LOUD)||((eSoundMode==e_SOUND_MODE_ONCE)&&bFirst))
  8299. {
  8300. bFirst=false;
  8301. WRITE(BEEPER, HIGH);
  8302. }
  8303. }
  8304. if (counterBeep == 20) {
  8305. WRITE(BEEPER, LOW);
  8306. }
  8307. counterBeep++;
  8308. #endif //BEEPER > 0
  8309. switch (wait_for_user_state) {
  8310. case 0: //nozzle is hot, waiting for user to press the knob to unload filament
  8311. delay_keep_alive(4);
  8312. if (_millis() > waiting_start_time + (unsigned long)M600_TIMEOUT * 1000) {
  8313. lcd_display_message_fullscreen_P(_i("Press knob to preheat nozzle and continue."));////MSG_PRESS_TO_PREHEAT c=20 r=4
  8314. wait_for_user_state = 1;
  8315. setAllTargetHotends(0);
  8316. st_synchronize();
  8317. disable_e0();
  8318. disable_e1();
  8319. disable_e2();
  8320. }
  8321. break;
  8322. case 1: //nozzle target temperature is set to zero, waiting for user to start nozzle preheat
  8323. delay_keep_alive(4);
  8324. if (lcd_clicked()) {
  8325. setTargetHotend(HotendTempBckp, active_extruder);
  8326. lcd_wait_for_heater();
  8327. wait_for_user_state = 2;
  8328. }
  8329. break;
  8330. case 2: //waiting for nozzle to reach target temperature
  8331. if (abs(degTargetHotend(active_extruder) - degHotend(active_extruder)) < 1) {
  8332. lcd_display_message_fullscreen_P(_T(MSG_PRESS_TO_UNLOAD));
  8333. waiting_start_time = _millis();
  8334. wait_for_user_state = 0;
  8335. }
  8336. else {
  8337. counterBeep = 20; //beeper will be inactive during waiting for nozzle preheat
  8338. lcd_set_cursor(1, 4);
  8339. lcd_print(ftostr3(degHotend(active_extruder)));
  8340. }
  8341. break;
  8342. }
  8343. }
  8344. WRITE(BEEPER, LOW);
  8345. }
  8346. void M600_load_filament_movements()
  8347. {
  8348. #ifdef SNMM
  8349. display_loading();
  8350. do
  8351. {
  8352. current_position[E_AXIS] += 0.002;
  8353. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 500, active_extruder);
  8354. delay_keep_alive(2);
  8355. }
  8356. while (!lcd_clicked());
  8357. st_synchronize();
  8358. current_position[E_AXIS] += bowden_length[mmu_extruder];
  8359. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000, active_extruder);
  8360. current_position[E_AXIS] += FIL_LOAD_LENGTH - 60;
  8361. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 1400, active_extruder);
  8362. current_position[E_AXIS] += 40;
  8363. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400, active_extruder);
  8364. current_position[E_AXIS] += 10;
  8365. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 50, active_extruder);
  8366. #else
  8367. current_position[E_AXIS]+= FILAMENTCHANGE_FIRSTFEED ;
  8368. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], FILAMENTCHANGE_EFEED_FIRST, active_extruder);
  8369. #endif
  8370. load_filament_final_feed();
  8371. lcd_loading_filament();
  8372. st_synchronize();
  8373. }
  8374. void M600_load_filament() {
  8375. //load filament for single material and SNMM
  8376. lcd_wait_interact();
  8377. //load_filament_time = _millis();
  8378. KEEPALIVE_STATE(PAUSED_FOR_USER);
  8379. #ifdef PAT9125
  8380. fsensor_autoload_check_start();
  8381. #endif //PAT9125
  8382. while(!lcd_clicked())
  8383. {
  8384. manage_heater();
  8385. manage_inactivity(true);
  8386. #ifdef FILAMENT_SENSOR
  8387. if (fsensor_check_autoload())
  8388. {
  8389. if((eSoundMode==e_SOUND_MODE_LOUD)||(eSoundMode==e_SOUND_MODE_ONCE))
  8390. _tone(BEEPER, 1000);
  8391. delay_keep_alive(50);
  8392. _noTone(BEEPER);
  8393. break;
  8394. }
  8395. #endif //FILAMENT_SENSOR
  8396. }
  8397. #ifdef PAT9125
  8398. fsensor_autoload_check_stop();
  8399. #endif //PAT9125
  8400. KEEPALIVE_STATE(IN_HANDLER);
  8401. #ifdef FSENSOR_QUALITY
  8402. fsensor_oq_meassure_start(70);
  8403. #endif //FSENSOR_QUALITY
  8404. M600_load_filament_movements();
  8405. if((eSoundMode==e_SOUND_MODE_LOUD)||(eSoundMode==e_SOUND_MODE_ONCE))
  8406. _tone(BEEPER, 500);
  8407. delay_keep_alive(50);
  8408. _noTone(BEEPER);
  8409. #ifdef FSENSOR_QUALITY
  8410. fsensor_oq_meassure_stop();
  8411. if (!fsensor_oq_result())
  8412. {
  8413. bool disable = lcd_show_fullscreen_message_yes_no_and_wait_P(_i("Fil. sensor response is poor, disable it?"), false, true);
  8414. lcd_update_enable(true);
  8415. lcd_update(2);
  8416. if (disable)
  8417. fsensor_disable();
  8418. }
  8419. #endif //FSENSOR_QUALITY
  8420. lcd_update_enable(false);
  8421. }
  8422. #define FIL_LOAD_LENGTH 60