Dcodes.cpp 25 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926
  1. #include "Dcodes.h"
  2. #include "Marlin.h"
  3. #include "Configuration.h"
  4. #include "language.h"
  5. #include "cmdqueue.h"
  6. #include "xflash.h"
  7. #include <stdio.h>
  8. #include <avr/pgmspace.h>
  9. #define SHOW_TEMP_ADC_VALUES
  10. #include "temperature.h"
  11. #define DBG(args...) printf_P(args)
  12. inline void print_hex_nibble(uint8_t val)
  13. {
  14. putchar((val > 9)?(val - 10 + 'a'):(val + '0'));
  15. }
  16. void print_hex_byte(uint8_t val)
  17. {
  18. print_hex_nibble(val >> 4);
  19. print_hex_nibble(val & 15);
  20. }
  21. // debug range address type (fits all SRAM/PROGMEM/XFLASH memory ranges)
  22. #if defined(DEBUG_DCODE6) || defined(DEBUG_DCODES)
  23. #define DADDR_SIZE 32
  24. typedef uint32_t daddr_t; // XFLASH requires 24 bits
  25. #else
  26. #define DADDR_SIZE 16
  27. typedef uint16_t daddr_t;
  28. #endif
  29. void print_hex_word(daddr_t val)
  30. {
  31. #if DADDR_SIZE > 16
  32. print_hex_byte((val >> 16) & 0xFF);
  33. #endif
  34. print_hex_byte((val >> 8) & 0xFF);
  35. print_hex_byte(val & 0xFF);
  36. }
  37. int parse_hex(char* hex, uint8_t* data, int count)
  38. {
  39. int parsed = 0;
  40. while (*hex)
  41. {
  42. if (count && (parsed >= count)) break;
  43. char c = *(hex++);
  44. if (c == ' ') continue;
  45. if (c == '\n') break;
  46. uint8_t val = 0x00;
  47. if ((c >= '0') && (c <= '9')) val |= ((c - '0') << 4);
  48. else if ((c >= 'a') && (c <= 'f')) val |= ((c - 'a' + 10) << 4);
  49. else return -parsed;
  50. c = *(hex++);
  51. if ((c >= '0') && (c <= '9')) val |= (c - '0');
  52. else if ((c >= 'a') && (c <= 'f')) val |= (c - 'a' + 10);
  53. else return -parsed;
  54. data[parsed] = val;
  55. parsed++;
  56. }
  57. return parsed;
  58. }
  59. enum class dcode_mem_t:uint8_t { sram, eeprom, progmem, xflash };
  60. void print_mem(daddr_t address, daddr_t count, dcode_mem_t type, uint8_t countperline = 16)
  61. {
  62. #if defined(DEBUG_DCODE6) || defined(DEBUG_DCODES)
  63. if(type == dcode_mem_t::xflash)
  64. XFLASH_SPI_ENTER();
  65. #endif
  66. while (count)
  67. {
  68. print_hex_word(address);
  69. putchar(' ');
  70. uint8_t count_line = countperline;
  71. while (count && count_line)
  72. {
  73. uint8_t data = 0;
  74. switch (type)
  75. {
  76. case dcode_mem_t::sram: data = *((uint8_t*)address); break;
  77. case dcode_mem_t::eeprom: data = eeprom_read_byte((uint8_t*)address); break;
  78. case dcode_mem_t::progmem: break;
  79. #if defined(DEBUG_DCODE6) || defined(DEBUG_DCODES)
  80. case dcode_mem_t::xflash: xflash_rd_data(address, &data, 1); break;
  81. #else
  82. case dcode_mem_t::xflash: break;
  83. #endif
  84. }
  85. ++address;
  86. putchar(' ');
  87. print_hex_byte(data);
  88. count_line--;
  89. count--;
  90. // sporadically call manage heaters to avoid wdt
  91. if(!((uint16_t)count % 8192))
  92. manage_heater();
  93. }
  94. putchar('\n');
  95. }
  96. }
  97. // TODO: this only handles SRAM/EEPROM 16bit addresses
  98. void write_mem(uint16_t address, uint16_t count, const uint8_t* data, const dcode_mem_t type)
  99. {
  100. for (uint16_t i = 0; i < count; i++)
  101. {
  102. switch (type)
  103. {
  104. case dcode_mem_t::sram: *((uint8_t*)address) = data[i]; break;
  105. case dcode_mem_t::eeprom: eeprom_write_byte((uint8_t*)address, data[i]); break;
  106. case dcode_mem_t::progmem: break;
  107. case dcode_mem_t::xflash: break;
  108. }
  109. ++address;
  110. }
  111. }
  112. void dcode_core(daddr_t addr_start, const daddr_t addr_end, const dcode_mem_t type,
  113. uint8_t dcode, const char* type_desc)
  114. {
  115. KEEPALIVE_STATE(NOT_BUSY);
  116. DBG(_N("D%d - Read/Write %S\n"), dcode, type_desc);
  117. daddr_t count = -1; // RW the entire space by default
  118. if (code_seen('A'))
  119. addr_start = (strchr_pointer[1] == 'x')?strtol(strchr_pointer + 2, 0, 16):(int)code_value();
  120. if (code_seen('C'))
  121. count = code_value_long();
  122. if (addr_start > addr_end)
  123. addr_start = addr_end;
  124. if ((addr_start + count) > addr_end || (addr_start + count) < addr_start)
  125. count = addr_end - addr_start;
  126. if (code_seen('X'))
  127. {
  128. uint8_t data[16];
  129. count = parse_hex(strchr_pointer + 1, data, 16);
  130. write_mem(addr_start, count, data, type);
  131. #if DADDR_SIZE > 16
  132. DBG(_N("%u bytes written to %S at address 0x%08x\n"), count, type_desc, addr_start);
  133. #else
  134. DBG(_N("%lu bytes written to %S at address 0x%04lx\n"), count, type_desc, addr_start);
  135. #endif
  136. }
  137. print_mem(addr_start, count, type);
  138. }
  139. #if defined DEBUG_DCODE3 || defined DEBUG_DCODES
  140. #define EEPROM_SIZE 0x1000
  141. /*!
  142. ### D3 - Read/Write EEPROM <a href="https://reprap.org/wiki/G-code#D3:_Read.2FWrite_EEPROM">D3: Read/Write EEPROM</a>
  143. This command can be used without any additional parameters. It will read the entire eeprom.
  144. #### Usage
  145. D3 [ A | C | X ]
  146. #### Parameters
  147. - `A` - Address (x0000-x0fff)
  148. - `C` - Count (1-4096)
  149. - `X` - Data (hex)
  150. #### Notes
  151. - The hex address needs to be lowercase without the 0 before the x
  152. - Count is decimal
  153. - The hex data needs to be lowercase
  154. */
  155. void dcode_3()
  156. {
  157. dcode_core(0, EEPROM_SIZE, dcode_mem_t::eeprom, 3, _N("EEPROM"));
  158. }
  159. #endif //DEBUG_DCODE3
  160. #include "ConfigurationStore.h"
  161. #include "cmdqueue.h"
  162. #include "pat9125.h"
  163. #include "adc.h"
  164. #include "temperature.h"
  165. #include <avr/wdt.h>
  166. #include "bootapp.h"
  167. #if 0
  168. extern float current_temperature_pinda;
  169. extern float axis_steps_per_unit[NUM_AXIS];
  170. #define LOG(args...) printf(args)
  171. #endif //0
  172. #define LOG(args...)
  173. /*!
  174. *
  175. ### D-1 - Endless Loop <a href="https://reprap.org/wiki/G-code#G28:_Move_to_Origin_.28Home.29">D-1: Endless Loop</a>
  176. D-1
  177. *
  178. */
  179. void dcode__1()
  180. {
  181. DBG(_N("D-1 - Endless loop\n"));
  182. // cli();
  183. while (1);
  184. }
  185. #ifdef DEBUG_DCODES
  186. /*!
  187. ### D0 - Reset <a href="https://reprap.org/wiki/G-code#D0:_Reset">D0: Reset</a>
  188. #### Usage
  189. D0 [ B ]
  190. #### Parameters
  191. - `B` - Bootloader
  192. */
  193. void dcode_0()
  194. {
  195. if (*(strchr_pointer + 1) == 0) return;
  196. LOG("D0 - Reset\n");
  197. if (code_seen('B')) //bootloader
  198. {
  199. softReset();
  200. }
  201. else //reset
  202. {
  203. #ifndef _NO_ASM
  204. asm volatile("jmp 0x00000");
  205. #endif //_NO_ASM
  206. }
  207. }
  208. /*!
  209. *
  210. ### D1 - Clear EEPROM and RESET <a href="https://reprap.org/wiki/G-code#D1:_Clear_EEPROM_and_RESET">D1: Clear EEPROM and RESET</a>
  211. D1
  212. *
  213. */
  214. void dcode_1()
  215. {
  216. LOG("D1 - Clear EEPROM and RESET\n");
  217. cli();
  218. for (int i = 0; i < 8192; i++)
  219. eeprom_write_byte((unsigned char*)i, (unsigned char)0xff);
  220. softReset();
  221. }
  222. #endif
  223. #if defined DEBUG_DCODE2 || defined DEBUG_DCODES
  224. /*!
  225. ### D2 - Read/Write RAM <a href="https://reprap.org/wiki/G-code#D2:_Read.2FWrite_RAM">D3: Read/Write RAM</a>
  226. This command can be used without any additional parameters. It will read the entire RAM.
  227. #### Usage
  228. D2 [ A | C | X ]
  229. #### Parameters
  230. - `A` - Address (x0000-x21ff)
  231. - `C` - Count (1-8704)
  232. - `X` - Data
  233. #### Notes
  234. - The hex address needs to be lowercase without the 0 before the x
  235. - Count is decimal
  236. - The hex data needs to be lowercase
  237. */
  238. void dcode_2()
  239. {
  240. dcode_core(0x200, 0x2200, dcode_mem_t::sram, 2, _N("SRAM"));
  241. }
  242. #endif
  243. #ifdef DEBUG_DCODES
  244. /*!
  245. ### D4 - Read/Write PIN <a href="https://reprap.org/wiki/G-code#D4:_Read.2FWrite_PIN">D4: Read/Write PIN</a>
  246. To read the digital value of a pin you need only to define the pin number.
  247. #### Usage
  248. D4 [ P | F | V ]
  249. #### Parameters
  250. - `P` - Pin (0-255)
  251. - `F` - Function in/out (0/1)
  252. - `V` - Value (0/1)
  253. */
  254. void dcode_4()
  255. {
  256. LOG("D4 - Read/Write PIN\n");
  257. if (code_seen('P')) // Pin (0-255)
  258. {
  259. int pin = (int)code_value();
  260. if ((pin >= 0) && (pin <= 255))
  261. {
  262. if (code_seen('F')) // Function in/out (0/1)
  263. {
  264. int fnc = (int)code_value();
  265. if (fnc == 0) pinMode(pin, INPUT);
  266. else if (fnc == 1) pinMode(pin, OUTPUT);
  267. }
  268. if (code_seen('V')) // Value (0/1)
  269. {
  270. int val = (int)code_value();
  271. if (val == 0) digitalWrite(pin, LOW);
  272. else if (val == 1) digitalWrite(pin, HIGH);
  273. }
  274. else
  275. {
  276. int val = (digitalRead(pin) != LOW)?1:0;
  277. printf("PIN%d=%d", pin, val);
  278. }
  279. }
  280. }
  281. }
  282. #endif //DEBUG_DCODES
  283. #if defined DEBUG_DCODE5 || defined DEBUG_DCODES
  284. /*!
  285. ### D5 - Read/Write FLASH <a href="https://reprap.org/wiki/G-code#D5:_Read.2FWrite_FLASH">D5: Read/Write Flash</a>
  286. This command can be used without any additional parameters. It will read the 1kb FLASH.
  287. #### Usage
  288. D5 [ A | C | X | E ]
  289. #### Parameters
  290. - `A` - Address (x00000-x3ffff)
  291. - `C` - Count (1-8192)
  292. - `X` - Data (hex)
  293. - `E` - Erase
  294. #### Notes
  295. - The hex address needs to be lowercase without the 0 before the x
  296. - Count is decimal
  297. - The hex data needs to be lowercase
  298. */
  299. void dcode_5()
  300. {
  301. puts_P(PSTR("D5 - Read/Write FLASH"));
  302. uint32_t address = 0x0000; //default 0x0000
  303. uint16_t count = 0x0400; //default 0x0400 (1kb block)
  304. if (code_seen('A')) // Address (0x00000-0x3ffff)
  305. address = (strchr_pointer[1] == 'x')?strtol(strchr_pointer + 2, 0, 16):(int)code_value();
  306. if (code_seen('C')) // Count (0x0001-0x2000)
  307. count = (int)code_value();
  308. address &= 0x3ffff;
  309. if (count > 0x2000) count = 0x2000;
  310. if ((address + count) > 0x40000) count = 0x40000 - address;
  311. bool bErase = false;
  312. bool bCopy = false;
  313. if (code_seen('E')) //Erase
  314. bErase = true;
  315. uint8_t data[16];
  316. if (code_seen('X')) // Data
  317. {
  318. count = parse_hex(strchr_pointer + 1, data, 16);
  319. if (count > 0) bCopy = true;
  320. }
  321. if (bErase || bCopy)
  322. {
  323. if (bErase)
  324. {
  325. printf_P(PSTR("%d bytes of FLASH at address %05x will be erased\n"), count, address);
  326. }
  327. if (bCopy)
  328. {
  329. printf_P(PSTR("%d bytes will be written to FLASH at address %05x\n"), count, address);
  330. }
  331. cli();
  332. boot_app_magic = 0x55aa55aa;
  333. boot_app_flags = (bErase?(BOOT_APP_FLG_ERASE):0) | (bCopy?(BOOT_APP_FLG_COPY):0);
  334. boot_copy_size = (uint16_t)count;
  335. boot_dst_addr = (uint32_t)address;
  336. boot_src_addr = (uint32_t)(&data);
  337. bootapp_print_vars();
  338. softReset();
  339. }
  340. while (count)
  341. {
  342. print_hex_nibble(address >> 16);
  343. print_hex_word(address);
  344. putchar(' ');
  345. uint8_t countperline = 16;
  346. while (count && countperline)
  347. {
  348. uint8_t data = pgm_read_byte_far((uint8_t*)address++);
  349. putchar(' ');
  350. print_hex_byte(data);
  351. countperline--;
  352. count--;
  353. }
  354. putchar('\n');
  355. }
  356. }
  357. #endif //DEBUG_DCODE5
  358. #if defined(XFLASH) && (defined DEBUG_DCODE6 || defined DEBUG_DCODES)
  359. /*!
  360. ### D6 - Read/Write external FLASH <a href="https://reprap.org/wiki/G-code#D6:_Read.2FWrite_external_FLASH">D6: Read/Write external Flash</a>
  361. This command can be used without any additional parameters. It will read the entire XFLASH.
  362. #### Usage
  363. D6 [ A | C | X ]
  364. #### Parameters
  365. - `A` - Address (x0000-x3ffff)
  366. - `C` - Count (1-262144)
  367. - `X` - Data
  368. #### Notes
  369. - The hex address needs to be lowercase without the 0 before the x
  370. - Count is decimal
  371. - The hex data needs to be lowercase
  372. - Writing is currently not implemented
  373. */
  374. void dcode_6()
  375. {
  376. dcode_core(0x0, 0x40000, dcode_mem_t::xflash, 6, _N("XFLASH"));
  377. }
  378. #endif
  379. #ifdef DEBUG_DCODES
  380. /*!
  381. ### D7 - Read/Write Bootloader <a href="https://reprap.org/wiki/G-code#D7:_Read.2FWrite_Bootloader">D7: Read/Write Bootloader</a>
  382. Reserved
  383. */
  384. void dcode_7()
  385. {
  386. LOG("D7 - Read/Write Bootloader\n");
  387. /*
  388. cli();
  389. boot_app_magic = 0x55aa55aa;
  390. boot_app_flags = BOOT_APP_FLG_ERASE | BOOT_APP_FLG_COPY | BOOT_APP_FLG_FLASH;
  391. boot_copy_size = (uint16_t)0xc00;
  392. boot_src_addr = (uint32_t)0x0003e400;
  393. boot_dst_addr = (uint32_t)0x0003f400;
  394. softReset();
  395. */
  396. }
  397. /*!
  398. ### D8 - Read/Write PINDA <a href="https://reprap.org/wiki/G-code#D8:_Read.2FWrite_PINDA">D8: Read/Write PINDA</a>
  399. #### Usage
  400. D8 [ ? | ! | P | Z ]
  401. #### Parameters
  402. - `?` - Read PINDA temperature shift values
  403. - `!` - Reset PINDA temperature shift values to default
  404. - `P` - Pinda temperature [C]
  405. - `Z` - Z Offset [mm]
  406. */
  407. void dcode_8()
  408. {
  409. puts_P(PSTR("D8 - Read/Write PINDA"));
  410. uint8_t cal_status = calibration_status_pinda();
  411. float temp_pinda = current_temperature_pinda;
  412. float offset_z = temp_compensation_pinda_thermistor_offset(temp_pinda);
  413. if ((strchr_pointer[1+1] == '?') || (strchr_pointer[1+1] == 0))
  414. {
  415. printf_P(PSTR("cal_status=%d\n"), cal_status?1:0);
  416. for (uint8_t i = 0; i < 6; i++)
  417. {
  418. uint16_t offs = 0;
  419. if (i > 0) offs = eeprom_read_word(((uint16_t*)EEPROM_PROBE_TEMP_SHIFT) + (i - 1));
  420. float foffs = ((float)offs) / cs.axis_steps_per_unit[Z_AXIS];
  421. offs = 1000 * foffs;
  422. printf_P(PSTR("temp_pinda=%dC temp_shift=%dum\n"), 35 + i * 5, offs);
  423. }
  424. }
  425. else if (strchr_pointer[1+1] == '!')
  426. {
  427. cal_status = 1;
  428. eeprom_write_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, cal_status);
  429. eeprom_write_word(((uint16_t*)EEPROM_PROBE_TEMP_SHIFT) + 0, 8); //40C - 20um - 8usteps
  430. eeprom_write_word(((uint16_t*)EEPROM_PROBE_TEMP_SHIFT) + 1, 24); //45C - 60um - 24usteps
  431. eeprom_write_word(((uint16_t*)EEPROM_PROBE_TEMP_SHIFT) + 2, 48); //50C - 120um - 48usteps
  432. eeprom_write_word(((uint16_t*)EEPROM_PROBE_TEMP_SHIFT) + 3, 80); //55C - 200um - 80usteps
  433. eeprom_write_word(((uint16_t*)EEPROM_PROBE_TEMP_SHIFT) + 4, 120); //60C - 300um - 120usteps
  434. }
  435. else
  436. {
  437. if (code_seen('P')) // Pinda temperature [C]
  438. temp_pinda = code_value();
  439. offset_z = temp_compensation_pinda_thermistor_offset(temp_pinda);
  440. if (code_seen('Z')) // Z Offset [mm]
  441. {
  442. offset_z = code_value();
  443. }
  444. }
  445. printf_P(PSTR("temp_pinda=%d offset_z=%d.%03d\n"), (int)temp_pinda, (int)offset_z, ((int)(1000 * offset_z) % 1000));
  446. }
  447. /*!
  448. ### D9 - Read ADC <a href="https://reprap.org/wiki/G-code#D9:_Read.2FWrite_ADC">D9: Read ADC</a>
  449. #### Usage
  450. D9 [ I | V ]
  451. #### Parameters
  452. - `I` - ADC channel index
  453. - `0` - Heater 0 temperature
  454. - `1` - Heater 1 temperature
  455. - `2` - Bed temperature
  456. - `3` - PINDA temperature
  457. - `4` - PWR voltage
  458. - `5` - Ambient temperature
  459. - `6` - BED voltage
  460. - `V` Value to be written as simulated
  461. */
  462. const char* dcode_9_ADC_name(uint8_t i)
  463. {
  464. switch (i)
  465. {
  466. case 0: return PSTR("TEMP_HEATER0");
  467. case 1: return PSTR("TEMP_HEATER1");
  468. case 2: return PSTR("TEMP_BED");
  469. case 3: return PSTR("TEMP_PINDA");
  470. case 4: return PSTR("VOLT_PWR");
  471. case 5: return PSTR("TEMP_AMBIENT");
  472. case 6: return PSTR("VOLT_BED");
  473. }
  474. return 0;
  475. }
  476. #ifdef AMBIENT_THERMISTOR
  477. extern int current_temperature_raw_ambient;
  478. #endif //AMBIENT_THERMISTOR
  479. #ifdef VOLT_PWR_PIN
  480. extern int current_voltage_raw_pwr;
  481. #endif //VOLT_PWR_PIN
  482. #ifdef VOLT_BED_PIN
  483. extern int current_voltage_raw_bed;
  484. #endif //VOLT_BED_PIN
  485. uint16_t dcode_9_ADC_val(uint8_t i)
  486. {
  487. switch (i)
  488. {
  489. case 0: return current_temperature_raw[0];
  490. case 1: return 0;
  491. case 2: return current_temperature_bed_raw;
  492. case 3: return current_temperature_raw_pinda;
  493. #ifdef VOLT_PWR_PIN
  494. case 4: return current_voltage_raw_pwr;
  495. #endif //VOLT_PWR_PIN
  496. #ifdef AMBIENT_THERMISTOR
  497. case 5: return current_temperature_raw_ambient;
  498. #endif //AMBIENT_THERMISTOR
  499. #ifdef VOLT_BED_PIN
  500. case 6: return current_voltage_raw_bed;
  501. #endif //VOLT_BED_PIN
  502. }
  503. return 0;
  504. }
  505. void dcode_9()
  506. {
  507. puts_P(PSTR("D9 - Read/Write ADC"));
  508. if ((strchr_pointer[1+1] == '?') || (strchr_pointer[1+1] == 0))
  509. {
  510. for (uint8_t i = 0; i < ADC_CHAN_CNT; i++)
  511. printf_P(PSTR("\tADC%d=%4d\t(%S)\n"), i, dcode_9_ADC_val(i) >> 4, dcode_9_ADC_name(i));
  512. }
  513. else
  514. {
  515. uint8_t index = 0xff;
  516. if (code_seen('I')) // index (index of used channel, not avr channel index)
  517. index = code_value();
  518. if (index < ADC_CHAN_CNT)
  519. {
  520. if (code_seen('V')) // value to be written as simulated
  521. {
  522. adc_sim_mask |= (1 << index);
  523. adc_values[index] = (((int)code_value()) << 4);
  524. printf_P(PSTR("ADC%d=%4d\n"), index, adc_values[index] >> 4);
  525. }
  526. }
  527. }
  528. }
  529. /*!
  530. ### D10 - Set XYZ calibration = OK <a href="https://reprap.org/wiki/G-code#D10:_Set_XYZ_calibration_.3D_OK">D10: Set XYZ calibration = OK</a>
  531. */
  532. void dcode_10()
  533. {//Tell the printer that XYZ calibration went OK
  534. LOG("D10 - XYZ calibration = OK\n");
  535. calibration_status_store(CALIBRATION_STATUS_LIVE_ADJUST);
  536. }
  537. /*!
  538. ### D12 - Time <a href="https://reprap.org/wiki/G-code#D12:_Time">D12: Time</a>
  539. Writes the current time in the log file.
  540. */
  541. void dcode_12()
  542. {//Time
  543. LOG("D12 - Time\n");
  544. }
  545. #ifdef HEATBED_ANALYSIS
  546. /*!
  547. ### D80 - Bed check <a href="https://reprap.org/wiki/G-code#D80:_Bed_check">D80: Bed check</a>
  548. This command will log data to SD card file "mesh.txt".
  549. #### Usage
  550. D80 [ E | F | G | H | I | J ]
  551. #### Parameters
  552. - `E` - Dimension X (default 40)
  553. - `F` - Dimention Y (default 40)
  554. - `G` - Points X (default 40)
  555. - `H` - Points Y (default 40)
  556. - `I` - Offset X (default 74)
  557. - `J` - Offset Y (default 34)
  558. */
  559. void dcode_80()
  560. {
  561. float dimension_x = 40;
  562. float dimension_y = 40;
  563. int points_x = 40;
  564. int points_y = 40;
  565. float offset_x = 74;
  566. float offset_y = 33;
  567. if (code_seen('E')) dimension_x = code_value();
  568. if (code_seen('F')) dimension_y = code_value();
  569. if (code_seen('G')) {points_x = code_value(); }
  570. if (code_seen('H')) {points_y = code_value(); }
  571. if (code_seen('I')) {offset_x = code_value(); }
  572. if (code_seen('J')) {offset_y = code_value(); }
  573. printf_P(PSTR("DIM X: %f\n"), dimension_x);
  574. printf_P(PSTR("DIM Y: %f\n"), dimension_y);
  575. printf_P(PSTR("POINTS X: %d\n"), points_x);
  576. printf_P(PSTR("POINTS Y: %d\n"), points_y);
  577. printf_P(PSTR("OFFSET X: %f\n"), offset_x);
  578. printf_P(PSTR("OFFSET Y: %f\n"), offset_y);
  579. bed_check(dimension_x,dimension_y,points_x,points_y,offset_x,offset_y);
  580. }
  581. /*!
  582. ### D81 - Bed analysis <a href="https://reprap.org/wiki/G-code#D81:_Bed_analysis">D80: Bed analysis</a>
  583. This command will log data to SD card file "wldsd.txt".
  584. #### Usage
  585. D81 [ E | F | G | H | I | J ]
  586. #### Parameters
  587. - `E` - Dimension X (default 40)
  588. - `F` - Dimention Y (default 40)
  589. - `G` - Points X (default 40)
  590. - `H` - Points Y (default 40)
  591. - `I` - Offset X (default 74)
  592. - `J` - Offset Y (default 34)
  593. */
  594. void dcode_81()
  595. {
  596. float dimension_x = 40;
  597. float dimension_y = 40;
  598. int points_x = 40;
  599. int points_y = 40;
  600. float offset_x = 74;
  601. float offset_y = 33;
  602. if (code_seen('E')) dimension_x = code_value();
  603. if (code_seen('F')) dimension_y = code_value();
  604. if (code_seen("G")) { strchr_pointer+=1; points_x = code_value(); }
  605. if (code_seen("H")) { strchr_pointer+=1; points_y = code_value(); }
  606. if (code_seen("I")) { strchr_pointer+=1; offset_x = code_value(); }
  607. if (code_seen("J")) { strchr_pointer+=1; offset_y = code_value(); }
  608. bed_analysis(dimension_x,dimension_y,points_x,points_y,offset_x,offset_y);
  609. }
  610. #endif //HEATBED_ANALYSIS
  611. /*!
  612. ### D106 - Print measured fan speed for different pwm values <a href="https://reprap.org/wiki/G-code#D106:_Print_measured_fan_speed_for_different_pwm_values">D106: Print measured fan speed for different pwm values</a>
  613. */
  614. void dcode_106()
  615. {
  616. for (int i = 255; i > 0; i = i - 5) {
  617. fanSpeed = i;
  618. //delay_keep_alive(2000);
  619. for (int j = 0; j < 100; j++) {
  620. delay_keep_alive(100);
  621. }
  622. printf_P(_N("%d: %d\n"), i, fan_speed[1]);
  623. }
  624. }
  625. #ifdef TMC2130
  626. #include "planner.h"
  627. #include "tmc2130.h"
  628. extern void st_synchronize();
  629. /*!
  630. ### D2130 - Trinamic stepper controller <a href="https://reprap.org/wiki/G-code#D2130:_Trinamic_stepper_controller">D2130: Trinamic stepper controller</a>
  631. @todo Please review by owner of the code. RepRap Wiki Gcode needs to be updated after review of owner as well.
  632. #### Usage
  633. D2130 [ Axis | Command | Subcommand | Value ]
  634. #### Parameters
  635. - Axis
  636. - `X` - X stepper driver
  637. - `Y` - Y stepper driver
  638. - `Z` - Z stepper driver
  639. - `E` - Extruder stepper driver
  640. - Commands
  641. - `0` - Current off
  642. - `1` - Current on
  643. - `+` - Single step
  644. - `-` - Single step oposite direction
  645. - `NNN` - Value sereval steps
  646. - `?` - Read register
  647. - Subcommands for read register
  648. - `mres` - Micro step resolution. More information in datasheet '5.5.2 CHOPCONF – Chopper Configuration'
  649. - `step` - Step
  650. - `mscnt` - Microstep counter. More information in datasheet '5.5 Motor Driver Registers'
  651. - `mscuract` - Actual microstep current for motor. More information in datasheet '5.5 Motor Driver Registers'
  652. - `wave` - Microstep linearity compensation curve
  653. - `!` - Set register
  654. - Subcommands for set register
  655. - `mres` - Micro step resolution
  656. - `step` - Step
  657. - `wave` - Microstep linearity compensation curve
  658. - Values for set register
  659. - `0, 180 --> 250` - Off
  660. - `0.9 --> 1.25` - Valid values (recommended is 1.1)
  661. - `@` - Home calibrate axis
  662. Examples:
  663. D2130E?wave
  664. Print extruder microstep linearity compensation curve
  665. D2130E!wave0
  666. Disable extruder linearity compensation curve, (sine curve is used)
  667. D2130E!wave220
  668. (sin(x))^1.1 extruder microstep compensation curve used
  669. Notes:
  670. For more information see https://www.trinamic.com/fileadmin/assets/Products/ICs_Documents/TMC2130_datasheet.pdf
  671. *
  672. */
  673. void dcode_2130()
  674. {
  675. puts_P(PSTR("D2130 - TMC2130"));
  676. uint8_t axis = 0xff;
  677. switch (strchr_pointer[1+4])
  678. {
  679. case 'X': axis = X_AXIS; break;
  680. case 'Y': axis = Y_AXIS; break;
  681. case 'Z': axis = Z_AXIS; break;
  682. case 'E': axis = E_AXIS; break;
  683. }
  684. if (axis != 0xff)
  685. {
  686. char ch_axis = strchr_pointer[1+4];
  687. if (strchr_pointer[1+5] == '0') { tmc2130_set_pwr(axis, 0); }
  688. else if (strchr_pointer[1+5] == '1') { tmc2130_set_pwr(axis, 1); }
  689. else if (strchr_pointer[1+5] == '+')
  690. {
  691. if (strchr_pointer[1+6] == 0)
  692. {
  693. tmc2130_set_dir(axis, 0);
  694. tmc2130_do_step(axis);
  695. }
  696. else
  697. {
  698. uint8_t steps = atoi(strchr_pointer + 1 + 6);
  699. tmc2130_do_steps(axis, steps, 0, 1000);
  700. }
  701. }
  702. else if (strchr_pointer[1+5] == '-')
  703. {
  704. if (strchr_pointer[1+6] == 0)
  705. {
  706. tmc2130_set_dir(axis, 1);
  707. tmc2130_do_step(axis);
  708. }
  709. else
  710. {
  711. uint8_t steps = atoi(strchr_pointer + 1 + 6);
  712. tmc2130_do_steps(axis, steps, 1, 1000);
  713. }
  714. }
  715. else if (strchr_pointer[1+5] == '?')
  716. {
  717. if (strcmp(strchr_pointer + 7, "mres") == 0) printf_P(PSTR("%c mres=%d\n"), ch_axis, tmc2130_mres[axis]);
  718. else if (strcmp(strchr_pointer + 7, "step") == 0) printf_P(PSTR("%c step=%d\n"), ch_axis, tmc2130_rd_MSCNT(axis) >> tmc2130_mres[axis]);
  719. else if (strcmp(strchr_pointer + 7, "mscnt") == 0) printf_P(PSTR("%c MSCNT=%d\n"), ch_axis, tmc2130_rd_MSCNT(axis));
  720. else if (strcmp(strchr_pointer + 7, "mscuract") == 0)
  721. {
  722. uint32_t val = tmc2130_rd_MSCURACT(axis);
  723. int curA = (val & 0xff);
  724. int curB = ((val >> 16) & 0xff);
  725. if ((val << 7) & 0x8000) curA -= 256;
  726. if ((val >> 9) & 0x8000) curB -= 256;
  727. printf_P(PSTR("%c MSCURACT=0x%08lx A=%d B=%d\n"), ch_axis, val, curA, curB);
  728. }
  729. else if (strcmp(strchr_pointer + 7, "wave") == 0)
  730. {
  731. tmc2130_get_wave(axis, 0, stdout);
  732. }
  733. }
  734. else if (strchr_pointer[1+5] == '!')
  735. {
  736. if (strncmp(strchr_pointer + 7, "step", 4) == 0)
  737. {
  738. uint8_t step = atoi(strchr_pointer + 11);
  739. uint16_t res = tmc2130_get_res(axis);
  740. tmc2130_goto_step(axis, step & (4*res - 1), 2, 1000, res);
  741. }
  742. else if (strncmp(strchr_pointer + 7, "mres", 4) == 0)
  743. {
  744. uint8_t mres = strchr_pointer[11] - '0';
  745. if (mres <= 8)
  746. {
  747. st_synchronize();
  748. uint16_t res = tmc2130_get_res(axis);
  749. uint16_t res_new = tmc2130_mres2usteps(mres);
  750. tmc2130_set_res(axis, res_new);
  751. if (res_new > res)
  752. cs.axis_steps_per_unit[axis] *= (res_new / res);
  753. else
  754. cs.axis_steps_per_unit[axis] /= (res / res_new);
  755. }
  756. }
  757. else if (strncmp(strchr_pointer + 7, "wave", 4) == 0)
  758. {
  759. uint8_t fac1000 = atoi(strchr_pointer + 11) & 0xffff;
  760. if (fac1000 < TMC2130_WAVE_FAC1000_MIN) fac1000 = 0;
  761. if (fac1000 > TMC2130_WAVE_FAC1000_MAX) fac1000 = TMC2130_WAVE_FAC1000_MAX;
  762. tmc2130_set_wave(axis, 247, fac1000);
  763. tmc2130_wave_fac[axis] = fac1000;
  764. }
  765. }
  766. else if (strchr_pointer[1+5] == '@')
  767. {
  768. tmc2130_home_calibrate(axis);
  769. }
  770. }
  771. }
  772. #endif //TMC2130
  773. #ifdef PAT9125
  774. /*!
  775. ### D9125 - PAT9125 filament sensor <a href="https://reprap.org/wiki/G-code#D9:_Read.2FWrite_ADC">D9125: PAT9125 filament sensor</a>
  776. #### Usage
  777. D9125 [ ? | ! | R | X | Y | L ]
  778. #### Parameters
  779. - `?` - Print values
  780. - `!` - Print values
  781. - `R` - Resolution. Not active in code
  782. - `X` - X values
  783. - `Y` - Y values
  784. - `L` - Activate filament sensor log
  785. */
  786. void dcode_9125()
  787. {
  788. LOG("D9125 - PAT9125\n");
  789. if ((strchr_pointer[1+4] == '?') || (strchr_pointer[1+4] == 0))
  790. {
  791. // printf("res_x=%d res_y=%d x=%d y=%d b=%d s=%d\n", pat9125_xres, pat9125_yres, pat9125_x, pat9125_y, pat9125_b, pat9125_s);
  792. printf("x=%d y=%d b=%d s=%d\n", pat9125_x, pat9125_y, pat9125_b, pat9125_s);
  793. return;
  794. }
  795. if (strchr_pointer[1+4] == '!')
  796. {
  797. pat9125_update();
  798. printf("x=%d y=%d b=%d s=%d\n", pat9125_x, pat9125_y, pat9125_b, pat9125_s);
  799. return;
  800. }
  801. /*
  802. if (code_seen('R'))
  803. {
  804. unsigned char res = (int)code_value();
  805. LOG("pat9125_init(xres=yres=%d)=%d\n", res, pat9125_init(res, res));
  806. }
  807. */
  808. if (code_seen('X'))
  809. {
  810. pat9125_x = (int)code_value();
  811. LOG("pat9125_x=%d\n", pat9125_x);
  812. }
  813. if (code_seen('Y'))
  814. {
  815. pat9125_y = (int)code_value();
  816. LOG("pat9125_y=%d\n", pat9125_y);
  817. }
  818. #ifdef DEBUG_FSENSOR_LOG
  819. if (code_seen('L'))
  820. {
  821. fsensor_log = (int)code_value();
  822. LOG("fsensor_log=%d\n", fsensor_log);
  823. }
  824. #endif //DEBUG_FSENSOR_LOG
  825. }
  826. #endif //PAT9125
  827. #endif //DEBUG_DCODES