planner.cpp 55 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372
  1. /*
  2. planner.c - buffers movement commands and manages the acceleration profile plan
  3. Part of Grbl
  4. Copyright (c) 2009-2011 Simen Svale Skogsrud
  5. Grbl is free software: you can redistribute it and/or modify
  6. it under the terms of the GNU General Public License as published by
  7. the Free Software Foundation, either version 3 of the License, or
  8. (at your option) any later version.
  9. Grbl is distributed in the hope that it will be useful,
  10. but WITHOUT ANY WARRANTY; without even the implied warranty of
  11. MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  12. GNU General Public License for more details.
  13. You should have received a copy of the GNU General Public License
  14. along with Grbl. If not, see <http://www.gnu.org/licenses/>.
  15. */
  16. /* The ring buffer implementation gleaned from the wiring_serial library by David A. Mellis. */
  17. /*
  18. Reasoning behind the mathematics in this module (in the key of 'Mathematica'):
  19. s == speed, a == acceleration, t == time, d == distance
  20. Basic definitions:
  21. Speed[s_, a_, t_] := s + (a*t)
  22. Travel[s_, a_, t_] := Integrate[Speed[s, a, t], t]
  23. Distance to reach a specific speed with a constant acceleration:
  24. Solve[{Speed[s, a, t] == m, Travel[s, a, t] == d}, d, t]
  25. d -> (m^2 - s^2)/(2 a) --> estimate_acceleration_distance()
  26. Speed after a given distance of travel with constant acceleration:
  27. Solve[{Speed[s, a, t] == m, Travel[s, a, t] == d}, m, t]
  28. m -> Sqrt[2 a d + s^2]
  29. DestinationSpeed[s_, a_, d_] := Sqrt[2 a d + s^2]
  30. When to start braking (di) to reach a specified destionation speed (s2) after accelerating
  31. from initial speed s1 without ever stopping at a plateau:
  32. Solve[{DestinationSpeed[s1, a, di] == DestinationSpeed[s2, a, d - di]}, di]
  33. di -> (2 a d - s1^2 + s2^2)/(4 a) --> intersection_distance()
  34. IntersectionDistance[s1_, s2_, a_, d_] := (2 a d - s1^2 + s2^2)/(4 a)
  35. */
  36. #include "Marlin.h"
  37. #include "planner.h"
  38. #include "stepper.h"
  39. #include "temperature.h"
  40. #include "ultralcd.h"
  41. #include "language.h"
  42. #include "ConfigurationStore.h"
  43. #ifdef MESH_BED_LEVELING
  44. #include "mesh_bed_leveling.h"
  45. #include "mesh_bed_calibration.h"
  46. #endif
  47. #ifdef TMC2130
  48. #include "tmc2130.h"
  49. #endif //TMC2130
  50. //===========================================================================
  51. //=============================public variables ============================
  52. //===========================================================================
  53. unsigned long minsegmenttime;
  54. // Use M203 to override by software
  55. float max_feedrate_silent[NUM_AXIS]; // max speeds for silent mode
  56. float* max_feedrate = cs.max_feedrate_normal;
  57. // Use M201 to override by software
  58. unsigned long max_acceleration_units_per_sq_second_silent[NUM_AXIS];
  59. unsigned long* max_acceleration_units_per_sq_second = cs.max_acceleration_units_per_sq_second_normal;
  60. // Jerk is a maximum immediate velocity change.
  61. float max_jerk[NUM_AXIS];
  62. unsigned long axis_steps_per_sqr_second[NUM_AXIS];
  63. #ifdef ENABLE_AUTO_BED_LEVELING
  64. // this holds the required transform to compensate for bed level
  65. matrix_3x3 plan_bed_level_matrix = {
  66. 1.0, 0.0, 0.0,
  67. 0.0, 1.0, 0.0,
  68. 0.0, 0.0, 1.0,
  69. };
  70. #endif // #ifdef ENABLE_AUTO_BED_LEVELING
  71. // The current position of the tool in absolute steps
  72. long position[NUM_AXIS]; //rescaled from extern when axis_steps_per_unit are changed by gcode
  73. static float previous_speed[NUM_AXIS]; // Speed of previous path line segment
  74. static float previous_nominal_speed; // Nominal speed of previous path line segment
  75. static float previous_safe_speed; // Exit speed limited by a jerk to full halt of a previous last segment.
  76. uint8_t maxlimit_status;
  77. #ifdef AUTOTEMP
  78. float autotemp_max=250;
  79. float autotemp_min=210;
  80. float autotemp_factor=0.1;
  81. bool autotemp_enabled=false;
  82. #endif
  83. unsigned char g_uc_extruder_last_move[3] = {0,0,0};
  84. //===========================================================================
  85. //=================semi-private variables, used in inline functions =====
  86. //===========================================================================
  87. block_t block_buffer[BLOCK_BUFFER_SIZE]; // A ring buffer for motion instfructions
  88. volatile unsigned char block_buffer_head; // Index of the next block to be pushed
  89. volatile unsigned char block_buffer_tail; // Index of the block to process now
  90. #ifdef PLANNER_DIAGNOSTICS
  91. // Diagnostic function: Minimum number of planned moves since the last
  92. static uint8_t g_cntr_planner_queue_min = 0;
  93. #endif /* PLANNER_DIAGNOSTICS */
  94. //===========================================================================
  95. //=============================private variables ============================
  96. //===========================================================================
  97. #ifdef PREVENT_DANGEROUS_EXTRUDE
  98. float extrude_min_temp=EXTRUDE_MINTEMP;
  99. #endif
  100. #ifdef LIN_ADVANCE
  101. float extruder_advance_k = LIN_ADVANCE_K,
  102. advance_ed_ratio = LIN_ADVANCE_E_D_RATIO,
  103. position_float[NUM_AXIS] = { 0 };
  104. #endif
  105. // Returns the index of the next block in the ring buffer
  106. // NOTE: Removed modulo (%) operator, which uses an expensive divide and multiplication.
  107. static inline int8_t next_block_index(int8_t block_index) {
  108. if (++ block_index == BLOCK_BUFFER_SIZE)
  109. block_index = 0;
  110. return block_index;
  111. }
  112. // Returns the index of the previous block in the ring buffer
  113. static inline int8_t prev_block_index(int8_t block_index) {
  114. if (block_index == 0)
  115. block_index = BLOCK_BUFFER_SIZE;
  116. -- block_index;
  117. return block_index;
  118. }
  119. //===========================================================================
  120. //=============================functions ============================
  121. //===========================================================================
  122. // Calculates the distance (not time) it takes to accelerate from initial_rate to target_rate using the
  123. // given acceleration:
  124. FORCE_INLINE float estimate_acceleration_distance(float initial_rate, float target_rate, float acceleration)
  125. {
  126. if (acceleration!=0) {
  127. return((target_rate*target_rate-initial_rate*initial_rate)/
  128. (2.0*acceleration));
  129. }
  130. else {
  131. return 0.0; // acceleration was 0, set acceleration distance to 0
  132. }
  133. }
  134. // This function gives you the point at which you must start braking (at the rate of -acceleration) if
  135. // you started at speed initial_rate and accelerated until this point and want to end at the final_rate after
  136. // a total travel of distance. This can be used to compute the intersection point between acceleration and
  137. // deceleration in the cases where the trapezoid has no plateau (i.e. never reaches maximum speed)
  138. FORCE_INLINE float intersection_distance(float initial_rate, float final_rate, float acceleration, float distance)
  139. {
  140. if (acceleration!=0) {
  141. return((2.0*acceleration*distance-initial_rate*initial_rate+final_rate*final_rate)/
  142. (4.0*acceleration) );
  143. }
  144. else {
  145. return 0.0; // acceleration was 0, set intersection distance to 0
  146. }
  147. }
  148. // Minimum stepper rate 120Hz.
  149. #define MINIMAL_STEP_RATE 120
  150. // Calculates trapezoid parameters so that the entry- and exit-speed is compensated by the provided factors.
  151. void calculate_trapezoid_for_block(block_t *block, float entry_speed, float exit_speed)
  152. {
  153. // These two lines are the only floating point calculations performed in this routine.
  154. // initial_rate, final_rate in Hz.
  155. // Minimum stepper rate 120Hz, maximum 40kHz. If the stepper rate goes above 10kHz,
  156. // the stepper interrupt routine groups the pulses by 2 or 4 pulses per interrupt tick.
  157. uint32_t initial_rate = ceil(entry_speed * block->speed_factor); // (step/min)
  158. uint32_t final_rate = ceil(exit_speed * block->speed_factor); // (step/min)
  159. // Limit minimal step rate (Otherwise the timer will overflow.)
  160. if (initial_rate < MINIMAL_STEP_RATE)
  161. initial_rate = MINIMAL_STEP_RATE;
  162. if (initial_rate > block->nominal_rate)
  163. initial_rate = block->nominal_rate;
  164. if (final_rate < MINIMAL_STEP_RATE)
  165. final_rate = MINIMAL_STEP_RATE;
  166. if (final_rate > block->nominal_rate)
  167. final_rate = block->nominal_rate;
  168. uint32_t acceleration = block->acceleration_st;
  169. if (acceleration == 0)
  170. // Don't allow zero acceleration.
  171. acceleration = 1;
  172. // estimate_acceleration_distance(float initial_rate, float target_rate, float acceleration)
  173. // (target_rate*target_rate-initial_rate*initial_rate)/(2.0*acceleration));
  174. uint32_t initial_rate_sqr = initial_rate*initial_rate;
  175. //FIXME assert that this result fits a 64bit unsigned int.
  176. uint32_t nominal_rate_sqr = block->nominal_rate*block->nominal_rate;
  177. uint32_t final_rate_sqr = final_rate*final_rate;
  178. uint32_t acceleration_x2 = acceleration << 1;
  179. // ceil(estimate_acceleration_distance(initial_rate, block->nominal_rate, acceleration));
  180. uint32_t accelerate_steps = (nominal_rate_sqr - initial_rate_sqr + acceleration_x2 - 1) / acceleration_x2;
  181. // floor(estimate_acceleration_distance(block->nominal_rate, final_rate, -acceleration));
  182. uint32_t decelerate_steps = (nominal_rate_sqr - final_rate_sqr) / acceleration_x2;
  183. uint32_t accel_decel_steps = accelerate_steps + decelerate_steps;
  184. // Size of Plateau of Nominal Rate.
  185. uint32_t plateau_steps = 0;
  186. // Is the Plateau of Nominal Rate smaller than nothing? That means no cruising, and we will
  187. // have to use intersection_distance() to calculate when to abort acceleration and start braking
  188. // in order to reach the final_rate exactly at the end of this block.
  189. if (accel_decel_steps < block->step_event_count.wide) {
  190. plateau_steps = block->step_event_count.wide - accel_decel_steps;
  191. } else {
  192. uint32_t acceleration_x4 = acceleration << 2;
  193. // Avoid negative numbers
  194. if (final_rate_sqr >= initial_rate_sqr) {
  195. // accelerate_steps = ceil(intersection_distance(initial_rate, final_rate, acceleration, block->step_event_count));
  196. // intersection_distance(float initial_rate, float final_rate, float acceleration, float distance)
  197. // (2.0*acceleration*distance-initial_rate*initial_rate+final_rate*final_rate)/(4.0*acceleration);
  198. #if 0
  199. accelerate_steps = (block->step_event_count >> 1) + (final_rate_sqr - initial_rate_sqr + acceleration_x4 - 1 + (block->step_event_count & 1) * acceleration_x2) / acceleration_x4;
  200. #else
  201. accelerate_steps = final_rate_sqr - initial_rate_sqr + acceleration_x4 - 1;
  202. if (block->step_event_count.wide & 1)
  203. accelerate_steps += acceleration_x2;
  204. accelerate_steps /= acceleration_x4;
  205. accelerate_steps += (block->step_event_count.wide >> 1);
  206. #endif
  207. if (accelerate_steps > block->step_event_count.wide)
  208. accelerate_steps = block->step_event_count.wide;
  209. } else {
  210. #if 0
  211. decelerate_steps = (block->step_event_count >> 1) + (initial_rate_sqr - final_rate_sqr + (block->step_event_count & 1) * acceleration_x2) / acceleration_x4;
  212. #else
  213. decelerate_steps = initial_rate_sqr - final_rate_sqr;
  214. if (block->step_event_count.wide & 1)
  215. decelerate_steps += acceleration_x2;
  216. decelerate_steps /= acceleration_x4;
  217. decelerate_steps += (block->step_event_count.wide >> 1);
  218. #endif
  219. if (decelerate_steps > block->step_event_count.wide)
  220. decelerate_steps = block->step_event_count.wide;
  221. accelerate_steps = block->step_event_count.wide - decelerate_steps;
  222. }
  223. }
  224. CRITICAL_SECTION_START; // Fill variables used by the stepper in a critical section
  225. // This block locks the interrupts globally for 4.38 us,
  226. // which corresponds to a maximum repeat frequency of 228.57 kHz.
  227. // This blocking is safe in the context of a 10kHz stepper driver interrupt
  228. // or a 115200 Bd serial line receive interrupt, which will not trigger faster than 12kHz.
  229. if (! block->busy) { // Don't update variables if block is busy.
  230. block->accelerate_until = accelerate_steps;
  231. block->decelerate_after = accelerate_steps+plateau_steps;
  232. block->initial_rate = initial_rate;
  233. block->final_rate = final_rate;
  234. }
  235. CRITICAL_SECTION_END;
  236. }
  237. // Calculates the maximum allowable entry speed, when you must be able to reach target_velocity using the
  238. // decceleration within the allotted distance.
  239. FORCE_INLINE float max_allowable_entry_speed(float decceleration, float target_velocity, float distance)
  240. {
  241. // assert(decceleration < 0);
  242. return sqrt(target_velocity*target_velocity-2*decceleration*distance);
  243. }
  244. // Recalculates the motion plan according to the following algorithm:
  245. //
  246. // 1. Go over every block in reverse order and calculate a junction speed reduction (i.e. block_t.entry_factor)
  247. // so that:
  248. // a. The junction jerk is within the set limit
  249. // b. No speed reduction within one block requires faster deceleration than the one, true constant
  250. // acceleration.
  251. // 2. Go over every block in chronological order and dial down junction speed reduction values if
  252. // a. The speed increase within one block would require faster accelleration than the one, true
  253. // constant acceleration.
  254. //
  255. // When these stages are complete all blocks have an entry_factor that will allow all speed changes to
  256. // be performed using only the one, true constant acceleration, and where no junction jerk is jerkier than
  257. // the set limit. Finally it will:
  258. //
  259. // 3. Recalculate trapezoids for all blocks.
  260. //
  261. //FIXME This routine is called 15x every time a new line is added to the planner,
  262. // therefore it is a bottle neck and it shall be rewritten into a Fixed Point arithmetics,
  263. // if the CPU is found lacking computational power.
  264. //
  265. // Following sources may be used to optimize the 8-bit AVR code:
  266. // http://www.mikrocontroller.net/articles/AVR_Arithmetik
  267. // http://darcy.rsgc.on.ca/ACES/ICE4M/FixedPoint/avrfix.pdf
  268. //
  269. // https://github.com/gcc-mirror/gcc/blob/master/libgcc/config/avr/lib1funcs-fixed.S
  270. // https://gcc.gnu.org/onlinedocs/gcc/Fixed-Point.html
  271. // https://gcc.gnu.org/onlinedocs/gccint/Fixed-point-fractional-library-routines.html
  272. //
  273. // https://ucexperiment.wordpress.com/2015/04/04/arduino-s15-16-fixed-point-math-routines/
  274. // https://mekonik.wordpress.com/2009/03/18/arduino-avr-gcc-multiplication/
  275. // https://github.com/rekka/avrmultiplication
  276. //
  277. // https://people.ece.cornell.edu/land/courses/ece4760/Math/Floating_point/
  278. // https://courses.cit.cornell.edu/ee476/Math/
  279. // https://courses.cit.cornell.edu/ee476/Math/GCC644/fixedPt/multASM.S
  280. //
  281. void planner_recalculate(const float &safe_final_speed)
  282. {
  283. // Reverse pass
  284. // Make a local copy of block_buffer_tail, because the interrupt can alter it
  285. // by consuming the blocks, therefore shortening the queue.
  286. unsigned char tail = block_buffer_tail;
  287. uint8_t block_index;
  288. block_t *prev, *current, *next;
  289. // SERIAL_ECHOLNPGM("planner_recalculate - 1");
  290. // At least three blocks are in the queue?
  291. unsigned char n_blocks = (block_buffer_head + BLOCK_BUFFER_SIZE - tail) & (BLOCK_BUFFER_SIZE - 1);
  292. if (n_blocks >= 3) {
  293. // Initialize the last tripple of blocks.
  294. block_index = prev_block_index(block_buffer_head);
  295. next = block_buffer + block_index;
  296. current = block_buffer + (block_index = prev_block_index(block_index));
  297. // No need to recalculate the last block, it has already been set by the plan_buffer_line() function.
  298. // Vojtech thinks, that one shall not touch the entry speed of the very first block as well, because
  299. // 1) it may already be running at the stepper interrupt,
  300. // 2) there is no way to limit it when going in the forward direction.
  301. while (block_index != tail) {
  302. if (current->flag & BLOCK_FLAG_START_FROM_FULL_HALT) {
  303. // Don't modify the entry velocity of the starting block.
  304. // Also don't modify the trapezoids before this block, they are finalized already, prepared
  305. // for the stepper interrupt routine to use them.
  306. tail = block_index;
  307. // Update the number of blocks to process.
  308. n_blocks = (block_buffer_head + BLOCK_BUFFER_SIZE - tail) & (BLOCK_BUFFER_SIZE - 1);
  309. // SERIAL_ECHOLNPGM("START");
  310. break;
  311. }
  312. // If entry speed is already at the maximum entry speed, no need to recheck. Block is cruising.
  313. // If not, block in state of acceleration or deceleration. Reset entry speed to maximum and
  314. // check for maximum allowable speed reductions to ensure maximum possible planned speed.
  315. if (current->entry_speed != current->max_entry_speed) {
  316. // assert(current->entry_speed < current->max_entry_speed);
  317. // Entry speed could be increased up to the max_entry_speed, limited by the length of the current
  318. // segment and the maximum acceleration allowed for this segment.
  319. // If nominal length true, max junction speed is guaranteed to be reached even if decelerating to a jerk-from-zero velocity.
  320. // Only compute for max allowable speed if block is decelerating and nominal length is false.
  321. // entry_speed is uint16_t, 24 bits would be sufficient for block->acceleration and block->millimiteres, if scaled to um.
  322. // therefore an optimized assembly 24bit x 24bit -> 32bit multiply would be more than sufficient
  323. // together with an assembly 32bit->16bit sqrt function.
  324. current->entry_speed = ((current->flag & BLOCK_FLAG_NOMINAL_LENGTH) || current->max_entry_speed <= next->entry_speed) ?
  325. current->max_entry_speed :
  326. // min(current->max_entry_speed, sqrt(next->entry_speed*next->entry_speed+2*current->acceleration*current->millimeters));
  327. min(current->max_entry_speed, max_allowable_entry_speed(-current->acceleration,next->entry_speed,current->millimeters));
  328. current->flag |= BLOCK_FLAG_RECALCULATE;
  329. }
  330. next = current;
  331. current = block_buffer + (block_index = prev_block_index(block_index));
  332. }
  333. }
  334. // SERIAL_ECHOLNPGM("planner_recalculate - 2");
  335. // Forward pass and recalculate the trapezoids.
  336. if (n_blocks >= 2) {
  337. // Better to limit the velocities using the already processed block, if it is available, so rather use the saved tail.
  338. block_index = tail;
  339. prev = block_buffer + block_index;
  340. current = block_buffer + (block_index = next_block_index(block_index));
  341. do {
  342. // If the previous block is an acceleration block, but it is not long enough to complete the
  343. // full speed change within the block, we need to adjust the entry speed accordingly. Entry
  344. // speeds have already been reset, maximized, and reverse planned by reverse planner.
  345. // If nominal length is true, max junction speed is guaranteed to be reached. No need to recheck.
  346. if (! (prev->flag & BLOCK_FLAG_NOMINAL_LENGTH) && prev->entry_speed < current->entry_speed) {
  347. float entry_speed = min(current->entry_speed, max_allowable_entry_speed(-prev->acceleration,prev->entry_speed,prev->millimeters));
  348. // Check for junction speed change
  349. if (current->entry_speed != entry_speed) {
  350. current->entry_speed = entry_speed;
  351. current->flag |= BLOCK_FLAG_RECALCULATE;
  352. }
  353. }
  354. // Recalculate if current block entry or exit junction speed has changed.
  355. if ((prev->flag | current->flag) & BLOCK_FLAG_RECALCULATE) {
  356. // NOTE: Entry and exit factors always > 0 by all previous logic operations.
  357. calculate_trapezoid_for_block(prev, prev->entry_speed, current->entry_speed);
  358. // Reset current only to ensure next trapezoid is computed.
  359. prev->flag &= ~BLOCK_FLAG_RECALCULATE;
  360. }
  361. prev = current;
  362. current = block_buffer + (block_index = next_block_index(block_index));
  363. } while (block_index != block_buffer_head);
  364. }
  365. // SERIAL_ECHOLNPGM("planner_recalculate - 3");
  366. // Last/newest block in buffer. Exit speed is set with safe_final_speed. Always recalculated.
  367. current = block_buffer + prev_block_index(block_buffer_head);
  368. calculate_trapezoid_for_block(current, current->entry_speed, safe_final_speed);
  369. current->flag &= ~BLOCK_FLAG_RECALCULATE;
  370. // SERIAL_ECHOLNPGM("planner_recalculate - 4");
  371. }
  372. void plan_init() {
  373. block_buffer_head = 0;
  374. block_buffer_tail = 0;
  375. memset(position, 0, sizeof(position)); // clear position
  376. #ifdef LIN_ADVANCE
  377. memset(position_float, 0, sizeof(position)); // clear position
  378. #endif
  379. previous_speed[0] = 0.0;
  380. previous_speed[1] = 0.0;
  381. previous_speed[2] = 0.0;
  382. previous_speed[3] = 0.0;
  383. previous_nominal_speed = 0.0;
  384. }
  385. #ifdef AUTOTEMP
  386. void getHighESpeed()
  387. {
  388. static float oldt=0;
  389. if(!autotemp_enabled){
  390. return;
  391. }
  392. if(degTargetHotend0()+2<autotemp_min) { //probably temperature set to zero.
  393. return; //do nothing
  394. }
  395. float high=0.0;
  396. uint8_t block_index = block_buffer_tail;
  397. while(block_index != block_buffer_head) {
  398. if((block_buffer[block_index].steps_x.wide != 0) ||
  399. (block_buffer[block_index].steps_y.wide != 0) ||
  400. (block_buffer[block_index].steps_z.wide != 0)) {
  401. float se=(float(block_buffer[block_index].steps_e.wide)/float(block_buffer[block_index].step_event_count.wide))*block_buffer[block_index].nominal_speed;
  402. //se; mm/sec;
  403. if(se>high)
  404. {
  405. high=se;
  406. }
  407. }
  408. block_index = (block_index+1) & (BLOCK_BUFFER_SIZE - 1);
  409. }
  410. float g=autotemp_min+high*autotemp_factor;
  411. float t=g;
  412. if(t<autotemp_min)
  413. t=autotemp_min;
  414. if(t>autotemp_max)
  415. t=autotemp_max;
  416. if(oldt>t)
  417. {
  418. t=AUTOTEMP_OLDWEIGHT*oldt+(1-AUTOTEMP_OLDWEIGHT)*t;
  419. }
  420. oldt=t;
  421. setTargetHotend0(t);
  422. }
  423. #endif
  424. bool e_active()
  425. {
  426. unsigned char e_active = 0;
  427. block_t *block;
  428. if(block_buffer_tail != block_buffer_head)
  429. {
  430. uint8_t block_index = block_buffer_tail;
  431. while(block_index != block_buffer_head)
  432. {
  433. block = &block_buffer[block_index];
  434. if(block->steps_e.wide != 0) e_active++;
  435. block_index = (block_index+1) & (BLOCK_BUFFER_SIZE - 1);
  436. }
  437. }
  438. return (e_active > 0) ? true : false ;
  439. }
  440. void check_axes_activity()
  441. {
  442. unsigned char x_active = 0;
  443. unsigned char y_active = 0;
  444. unsigned char z_active = 0;
  445. unsigned char e_active = 0;
  446. unsigned char tail_fan_speed = fanSpeed;
  447. block_t *block;
  448. if(block_buffer_tail != block_buffer_head)
  449. {
  450. uint8_t block_index = block_buffer_tail;
  451. tail_fan_speed = block_buffer[block_index].fan_speed;
  452. while(block_index != block_buffer_head)
  453. {
  454. block = &block_buffer[block_index];
  455. if(block->steps_x.wide != 0) x_active++;
  456. if(block->steps_y.wide != 0) y_active++;
  457. if(block->steps_z.wide != 0) z_active++;
  458. if(block->steps_e.wide != 0) e_active++;
  459. block_index = (block_index+1) & (BLOCK_BUFFER_SIZE - 1);
  460. }
  461. }
  462. if((DISABLE_X) && (x_active == 0)) disable_x();
  463. if((DISABLE_Y) && (y_active == 0)) disable_y();
  464. if((DISABLE_Z) && (z_active == 0)) disable_z();
  465. if((DISABLE_E) && (e_active == 0))
  466. {
  467. disable_e0();
  468. disable_e1();
  469. disable_e2();
  470. }
  471. #if defined(FAN_PIN) && FAN_PIN > -1
  472. #ifdef FAN_KICKSTART_TIME
  473. static unsigned long fan_kick_end;
  474. if (tail_fan_speed) {
  475. if (fan_kick_end == 0) {
  476. // Just starting up fan - run at full power.
  477. fan_kick_end = millis() + FAN_KICKSTART_TIME;
  478. tail_fan_speed = 255;
  479. } else if (fan_kick_end > millis())
  480. // Fan still spinning up.
  481. tail_fan_speed = 255;
  482. } else {
  483. fan_kick_end = 0;
  484. }
  485. #endif//FAN_KICKSTART_TIME
  486. #ifdef FAN_SOFT_PWM
  487. fanSpeedSoftPwm = tail_fan_speed;
  488. #else
  489. analogWrite(FAN_PIN,tail_fan_speed);
  490. #endif//!FAN_SOFT_PWM
  491. #endif//FAN_PIN > -1
  492. #ifdef AUTOTEMP
  493. getHighESpeed();
  494. #endif
  495. }
  496. bool waiting_inside_plan_buffer_line_print_aborted = false;
  497. /*
  498. void planner_abort_soft()
  499. {
  500. // Empty the queue.
  501. while (blocks_queued()) plan_discard_current_block();
  502. // Relay to planner wait routine, that the current line shall be canceled.
  503. waiting_inside_plan_buffer_line_print_aborted = true;
  504. //current_position[i]
  505. }
  506. */
  507. #ifdef PLANNER_DIAGNOSTICS
  508. static inline void planner_update_queue_min_counter()
  509. {
  510. uint8_t new_counter = moves_planned();
  511. if (new_counter < g_cntr_planner_queue_min)
  512. g_cntr_planner_queue_min = new_counter;
  513. }
  514. #endif /* PLANNER_DIAGNOSTICS */
  515. extern volatile uint32_t step_events_completed; // The number of step events executed in the current block
  516. void planner_abort_hard()
  517. {
  518. // Abort the stepper routine and flush the planner queue.
  519. DISABLE_STEPPER_DRIVER_INTERRUPT();
  520. // Now the front-end (the Marlin_main.cpp with its current_position) is out of sync.
  521. // First update the planner's current position in the physical motor steps.
  522. position[X_AXIS] = st_get_position(X_AXIS);
  523. position[Y_AXIS] = st_get_position(Y_AXIS);
  524. position[Z_AXIS] = st_get_position(Z_AXIS);
  525. position[E_AXIS] = st_get_position(E_AXIS);
  526. // Second update the current position of the front end.
  527. current_position[X_AXIS] = st_get_position_mm(X_AXIS);
  528. current_position[Y_AXIS] = st_get_position_mm(Y_AXIS);
  529. current_position[Z_AXIS] = st_get_position_mm(Z_AXIS);
  530. current_position[E_AXIS] = st_get_position_mm(E_AXIS);
  531. // Apply the mesh bed leveling correction to the Z axis.
  532. #ifdef MESH_BED_LEVELING
  533. if (mbl.active) {
  534. #if 1
  535. // Undo the bed level correction so the current Z position is reversible wrt. the machine coordinates.
  536. // This does not necessary mean that the Z position will be the same as linearly interpolated from the source G-code line.
  537. current_position[Z_AXIS] -= mbl.get_z(current_position[X_AXIS], current_position[Y_AXIS]);
  538. #else
  539. // Undo the bed level correction so that the current Z position is the same as linearly interpolated from the source G-code line.
  540. if (current_block == NULL || (current_block->steps_x == 0 && current_block->steps_y == 0))
  541. current_position[Z_AXIS] -= mbl.get_z(current_position[X_AXIS], current_position[Y_AXIS]);
  542. else {
  543. float t = float(step_events_completed) / float(current_block->step_event_count);
  544. float vec[3] = {
  545. current_block->steps_x / cs.axis_steps_per_unit[X_AXIS],
  546. current_block->steps_y / cs.axis_steps_per_unit[Y_AXIS],
  547. current_block->steps_z / cs.axis_steps_per_unit[Z_AXIS]
  548. };
  549. float pos1[3], pos2[3];
  550. for (int8_t i = 0; i < 3; ++ i) {
  551. if (current_block->direction_bits & (1<<i))
  552. vec[i] = - vec[i];
  553. pos1[i] = current_position[i] - vec[i] * t;
  554. pos2[i] = current_position[i] + vec[i] * (1.f - t);
  555. }
  556. pos1[Z_AXIS] -= mbl.get_z(pos1[X_AXIS], pos1[Y_AXIS]);
  557. pos2[Z_AXIS] -= mbl.get_z(pos2[X_AXIS], pos2[Y_AXIS]);
  558. current_position[Z_AXIS] = pos1[Z_AXIS] * t + pos2[Z_AXIS] * (1.f - t);
  559. }
  560. #endif
  561. }
  562. #endif
  563. // Clear the planner queue, reset and re-enable the stepper timer.
  564. quickStop();
  565. // Apply inverse world correction matrix.
  566. machine2world(current_position[X_AXIS], current_position[Y_AXIS]);
  567. memcpy(destination, current_position, sizeof(destination));
  568. // Resets planner junction speeds. Assumes start from rest.
  569. previous_nominal_speed = 0.0;
  570. previous_speed[0] = 0.0;
  571. previous_speed[1] = 0.0;
  572. previous_speed[2] = 0.0;
  573. previous_speed[3] = 0.0;
  574. // Relay to planner wait routine, that the current line shall be canceled.
  575. waiting_inside_plan_buffer_line_print_aborted = true;
  576. }
  577. float junction_deviation = 0.1;
  578. // Add a new linear movement to the buffer. steps_x, _y and _z is the absolute position in
  579. // mm. Microseconds specify how many microseconds the move should take to perform. To aid acceleration
  580. // calculation the caller must also provide the physical length of the line in millimeters.
  581. void plan_buffer_line(float x, float y, float z, const float &e, float feed_rate, const uint8_t &extruder)
  582. {
  583. // Calculate the buffer head after we push this byte
  584. int next_buffer_head = next_block_index(block_buffer_head);
  585. // If the buffer is full: good! That means we are well ahead of the robot.
  586. // Rest here until there is room in the buffer.
  587. if (block_buffer_tail == next_buffer_head) {
  588. waiting_inside_plan_buffer_line_print_aborted = false;
  589. do {
  590. manage_heater();
  591. // Vojtech: Don't disable motors inside the planner!
  592. manage_inactivity(false);
  593. lcd_update(0);
  594. } while (block_buffer_tail == next_buffer_head);
  595. if (waiting_inside_plan_buffer_line_print_aborted) {
  596. // Inside the lcd_update(0) routine the print has been aborted.
  597. // Cancel the print, do not plan the current line this routine is waiting on.
  598. #ifdef PLANNER_DIAGNOSTICS
  599. planner_update_queue_min_counter();
  600. #endif /* PLANNER_DIAGNOSTICS */
  601. return;
  602. }
  603. }
  604. #ifdef PLANNER_DIAGNOSTICS
  605. planner_update_queue_min_counter();
  606. #endif /* PLANNER_DIAGNOSTICS */
  607. #ifdef ENABLE_AUTO_BED_LEVELING
  608. apply_rotation_xyz(plan_bed_level_matrix, x, y, z);
  609. #endif // ENABLE_AUTO_BED_LEVELING
  610. // Apply the machine correction matrix.
  611. {
  612. #if 0
  613. SERIAL_ECHOPGM("Planner, current position - servos: ");
  614. MYSERIAL.print(st_get_position_mm(X_AXIS), 5);
  615. SERIAL_ECHOPGM(", ");
  616. MYSERIAL.print(st_get_position_mm(Y_AXIS), 5);
  617. SERIAL_ECHOPGM(", ");
  618. MYSERIAL.print(st_get_position_mm(Z_AXIS), 5);
  619. SERIAL_ECHOLNPGM("");
  620. SERIAL_ECHOPGM("Planner, target position, initial: ");
  621. MYSERIAL.print(x, 5);
  622. SERIAL_ECHOPGM(", ");
  623. MYSERIAL.print(y, 5);
  624. SERIAL_ECHOLNPGM("");
  625. SERIAL_ECHOPGM("Planner, world2machine: ");
  626. MYSERIAL.print(world2machine_rotation_and_skew[0][0], 5);
  627. SERIAL_ECHOPGM(", ");
  628. MYSERIAL.print(world2machine_rotation_and_skew[0][1], 5);
  629. SERIAL_ECHOPGM(", ");
  630. MYSERIAL.print(world2machine_rotation_and_skew[1][0], 5);
  631. SERIAL_ECHOPGM(", ");
  632. MYSERIAL.print(world2machine_rotation_and_skew[1][1], 5);
  633. SERIAL_ECHOLNPGM("");
  634. SERIAL_ECHOPGM("Planner, offset: ");
  635. MYSERIAL.print(world2machine_shift[0], 5);
  636. SERIAL_ECHOPGM(", ");
  637. MYSERIAL.print(world2machine_shift[1], 5);
  638. SERIAL_ECHOLNPGM("");
  639. #endif
  640. world2machine(x, y);
  641. #if 0
  642. SERIAL_ECHOPGM("Planner, target position, corrected: ");
  643. MYSERIAL.print(x, 5);
  644. SERIAL_ECHOPGM(", ");
  645. MYSERIAL.print(y, 5);
  646. SERIAL_ECHOLNPGM("");
  647. #endif
  648. }
  649. // The target position of the tool in absolute steps
  650. // Calculate target position in absolute steps
  651. //this should be done after the wait, because otherwise a M92 code within the gcode disrupts this calculation somehow
  652. long target[4];
  653. target[X_AXIS] = lround(x*cs.axis_steps_per_unit[X_AXIS]);
  654. target[Y_AXIS] = lround(y*cs.axis_steps_per_unit[Y_AXIS]);
  655. #ifdef MESH_BED_LEVELING
  656. if (mbl.active){
  657. target[Z_AXIS] = lround((z+mbl.get_z(x, y))*cs.axis_steps_per_unit[Z_AXIS]);
  658. }else{
  659. target[Z_AXIS] = lround(z*cs.axis_steps_per_unit[Z_AXIS]);
  660. }
  661. #else
  662. target[Z_AXIS] = lround(z*cs.axis_steps_per_unit[Z_AXIS]);
  663. #endif // ENABLE_MESH_BED_LEVELING
  664. target[E_AXIS] = lround(e*cs.axis_steps_per_unit[E_AXIS]);
  665. #ifdef LIN_ADVANCE
  666. const float mm_D_float = sqrt(sq(x - position_float[X_AXIS]) + sq(y - position_float[Y_AXIS]));
  667. float de_float = e - position_float[E_AXIS];
  668. #endif
  669. #ifdef PREVENT_DANGEROUS_EXTRUDE
  670. if(target[E_AXIS]!=position[E_AXIS])
  671. {
  672. if(degHotend(active_extruder)<extrude_min_temp)
  673. {
  674. position[E_AXIS]=target[E_AXIS]; //behave as if the move really took place, but ignore E part
  675. #ifdef LIN_ADVANCE
  676. position_float[E_AXIS] = e;
  677. de_float = 0;
  678. #endif
  679. SERIAL_ECHO_START;
  680. SERIAL_ECHOLNRPGM(_i(" cold extrusion prevented"));////MSG_ERR_COLD_EXTRUDE_STOP c=0 r=0
  681. }
  682. #ifdef PREVENT_LENGTHY_EXTRUDE
  683. if(labs(target[E_AXIS]-position[E_AXIS])>cs.axis_steps_per_unit[E_AXIS]*EXTRUDE_MAXLENGTH)
  684. {
  685. position[E_AXIS]=target[E_AXIS]; //behave as if the move really took place, but ignore E part
  686. #ifdef LIN_ADVANCE
  687. position_float[E_AXIS] = e;
  688. de_float = 0;
  689. #endif
  690. SERIAL_ECHO_START;
  691. SERIAL_ECHOLNRPGM(_n(" too long extrusion prevented"));////MSG_ERR_LONG_EXTRUDE_STOP c=0 r=0
  692. }
  693. #endif
  694. }
  695. #endif
  696. // Prepare to set up new block
  697. block_t *block = &block_buffer[block_buffer_head];
  698. // Set sdlen for calculating sd position
  699. block->sdlen = 0;
  700. // Mark block as not busy (Not executed by the stepper interrupt, could be still tinkered with.)
  701. block->busy = false;
  702. // Number of steps for each axis
  703. #ifndef COREXY
  704. // default non-h-bot planning
  705. block->steps_x.wide = labs(target[X_AXIS]-position[X_AXIS]);
  706. block->steps_y.wide = labs(target[Y_AXIS]-position[Y_AXIS]);
  707. #else
  708. // corexy planning
  709. // these equations follow the form of the dA and dB equations on http://www.corexy.com/theory.html
  710. block->steps_x.wide = labs((target[X_AXIS]-position[X_AXIS]) + (target[Y_AXIS]-position[Y_AXIS]));
  711. block->steps_y.wide = labs((target[X_AXIS]-position[X_AXIS]) - (target[Y_AXIS]-position[Y_AXIS]));
  712. #endif
  713. block->steps_z.wide = labs(target[Z_AXIS]-position[Z_AXIS]);
  714. block->steps_e.wide = labs(target[E_AXIS]-position[E_AXIS]);
  715. block->step_event_count.wide = max(block->steps_x.wide, max(block->steps_y.wide, max(block->steps_z.wide, block->steps_e.wide)));
  716. // Bail if this is a zero-length block
  717. if (block->step_event_count.wide <= dropsegments)
  718. {
  719. #ifdef PLANNER_DIAGNOSTICS
  720. planner_update_queue_min_counter();
  721. #endif /* PLANNER_DIAGNOSTICS */
  722. return;
  723. }
  724. block->fan_speed = fanSpeed;
  725. // Compute direction bits for this block
  726. block->direction_bits = 0;
  727. #ifndef COREXY
  728. if (target[X_AXIS] < position[X_AXIS])
  729. {
  730. block->direction_bits |= (1<<X_AXIS);
  731. }
  732. if (target[Y_AXIS] < position[Y_AXIS])
  733. {
  734. block->direction_bits |= (1<<Y_AXIS);
  735. }
  736. #else
  737. if ((target[X_AXIS]-position[X_AXIS]) + (target[Y_AXIS]-position[Y_AXIS]) < 0)
  738. {
  739. block->direction_bits |= (1<<X_AXIS);
  740. }
  741. if ((target[X_AXIS]-position[X_AXIS]) - (target[Y_AXIS]-position[Y_AXIS]) < 0)
  742. {
  743. block->direction_bits |= (1<<Y_AXIS);
  744. }
  745. #endif
  746. if (target[Z_AXIS] < position[Z_AXIS])
  747. {
  748. block->direction_bits |= (1<<Z_AXIS);
  749. }
  750. if (target[E_AXIS] < position[E_AXIS])
  751. {
  752. block->direction_bits |= (1<<E_AXIS);
  753. }
  754. block->active_extruder = extruder;
  755. //enable active axes
  756. #ifdef COREXY
  757. if((block->steps_x.wide != 0) || (block->steps_y.wide != 0))
  758. {
  759. enable_x();
  760. enable_y();
  761. }
  762. #else
  763. if(block->steps_x.wide != 0) enable_x();
  764. if(block->steps_y.wide != 0) enable_y();
  765. #endif
  766. if(block->steps_z.wide != 0) enable_z();
  767. // Enable extruder(s)
  768. if(block->steps_e.wide != 0)
  769. {
  770. if (DISABLE_INACTIVE_EXTRUDER) //enable only selected extruder
  771. {
  772. if(g_uc_extruder_last_move[0] > 0) g_uc_extruder_last_move[0]--;
  773. if(g_uc_extruder_last_move[1] > 0) g_uc_extruder_last_move[1]--;
  774. if(g_uc_extruder_last_move[2] > 0) g_uc_extruder_last_move[2]--;
  775. switch(extruder)
  776. {
  777. case 0:
  778. enable_e0();
  779. g_uc_extruder_last_move[0] = BLOCK_BUFFER_SIZE*2;
  780. if(g_uc_extruder_last_move[1] == 0) disable_e1();
  781. if(g_uc_extruder_last_move[2] == 0) disable_e2();
  782. break;
  783. case 1:
  784. enable_e1();
  785. g_uc_extruder_last_move[1] = BLOCK_BUFFER_SIZE*2;
  786. if(g_uc_extruder_last_move[0] == 0) disable_e0();
  787. if(g_uc_extruder_last_move[2] == 0) disable_e2();
  788. break;
  789. case 2:
  790. enable_e2();
  791. g_uc_extruder_last_move[2] = BLOCK_BUFFER_SIZE*2;
  792. if(g_uc_extruder_last_move[0] == 0) disable_e0();
  793. if(g_uc_extruder_last_move[1] == 0) disable_e1();
  794. break;
  795. }
  796. }
  797. else //enable all
  798. {
  799. enable_e0();
  800. enable_e1();
  801. enable_e2();
  802. }
  803. }
  804. if (block->steps_e.wide == 0)
  805. {
  806. if(feed_rate<cs.mintravelfeedrate) feed_rate=cs.mintravelfeedrate;
  807. }
  808. else
  809. {
  810. if(feed_rate<cs.minimumfeedrate) feed_rate=cs.minimumfeedrate;
  811. }
  812. /* This part of the code calculates the total length of the movement.
  813. For cartesian bots, the X_AXIS is the real X movement and same for Y_AXIS.
  814. But for corexy bots, that is not true. The "X_AXIS" and "Y_AXIS" motors (that should be named to A_AXIS
  815. and B_AXIS) cannot be used for X and Y length, because A=X+Y and B=X-Y.
  816. So we need to create other 2 "AXIS", named X_HEAD and Y_HEAD, meaning the real displacement of the Head.
  817. Having the real displacement of the head, we can calculate the total movement length and apply the desired speed.
  818. */
  819. #ifndef COREXY
  820. float delta_mm[4];
  821. delta_mm[X_AXIS] = (target[X_AXIS]-position[X_AXIS])/cs.axis_steps_per_unit[X_AXIS];
  822. delta_mm[Y_AXIS] = (target[Y_AXIS]-position[Y_AXIS])/cs.axis_steps_per_unit[Y_AXIS];
  823. #else
  824. float delta_mm[6];
  825. delta_mm[X_HEAD] = (target[X_AXIS]-position[X_AXIS])/cs.axis_steps_per_unit[X_AXIS];
  826. delta_mm[Y_HEAD] = (target[Y_AXIS]-position[Y_AXIS])/cs.axis_steps_per_unit[Y_AXIS];
  827. delta_mm[X_AXIS] = ((target[X_AXIS]-position[X_AXIS]) + (target[Y_AXIS]-position[Y_AXIS]))/cs.axis_steps_per_unit[X_AXIS];
  828. delta_mm[Y_AXIS] = ((target[X_AXIS]-position[X_AXIS]) - (target[Y_AXIS]-position[Y_AXIS]))/cs.axis_steps_per_unit[Y_AXIS];
  829. #endif
  830. delta_mm[Z_AXIS] = (target[Z_AXIS]-position[Z_AXIS])/cs.axis_steps_per_unit[Z_AXIS];
  831. delta_mm[E_AXIS] = (target[E_AXIS]-position[E_AXIS])/cs.axis_steps_per_unit[E_AXIS];
  832. if ( block->steps_x.wide <=dropsegments && block->steps_y.wide <=dropsegments && block->steps_z.wide <=dropsegments )
  833. {
  834. block->millimeters = fabs(delta_mm[E_AXIS]);
  835. }
  836. else
  837. {
  838. #ifndef COREXY
  839. block->millimeters = sqrt(square(delta_mm[X_AXIS]) + square(delta_mm[Y_AXIS]) + square(delta_mm[Z_AXIS]));
  840. #else
  841. block->millimeters = sqrt(square(delta_mm[X_HEAD]) + square(delta_mm[Y_HEAD]) + square(delta_mm[Z_AXIS]));
  842. #endif
  843. }
  844. float inverse_millimeters = 1.0/block->millimeters; // Inverse millimeters to remove multiple divides
  845. // Calculate speed in mm/second for each axis. No divide by zero due to previous checks.
  846. float inverse_second = feed_rate * inverse_millimeters;
  847. int moves_queued = moves_planned();
  848. // slow down when de buffer starts to empty, rather than wait at the corner for a buffer refill
  849. #ifdef SLOWDOWN
  850. //FIXME Vojtech: Why moves_queued > 1? Why not >=1?
  851. // Can we somehow differentiate the filling of the buffer at the start of a g-code from a buffer draining situation?
  852. if (moves_queued > 1 && moves_queued < (BLOCK_BUFFER_SIZE >> 1)) {
  853. // segment time in micro seconds
  854. unsigned long segment_time = lround(1000000.0/inverse_second);
  855. if (segment_time < minsegmenttime)
  856. // buffer is draining, add extra time. The amount of time added increases if the buffer is still emptied more.
  857. inverse_second=1000000.0/(segment_time+lround(2*(minsegmenttime-segment_time)/moves_queued));
  858. }
  859. #endif // SLOWDOWN
  860. block->nominal_speed = block->millimeters * inverse_second; // (mm/sec) Always > 0
  861. block->nominal_rate = ceil(block->step_event_count.wide * inverse_second); // (step/sec) Always > 0
  862. // Calculate and limit speed in mm/sec for each axis
  863. float current_speed[4];
  864. float speed_factor = 1.0; //factor <=1 do decrease speed
  865. // maxlimit_status &= ~0xf;
  866. for(int i=0; i < 4; i++)
  867. {
  868. current_speed[i] = delta_mm[i] * inverse_second;
  869. if(fabs(current_speed[i]) > max_feedrate[i])
  870. {
  871. speed_factor = min(speed_factor, max_feedrate[i] / fabs(current_speed[i]));
  872. maxlimit_status |= (1 << i);
  873. }
  874. }
  875. // Correct the speed
  876. if( speed_factor < 1.0)
  877. {
  878. for(unsigned char i=0; i < 4; i++)
  879. {
  880. current_speed[i] *= speed_factor;
  881. }
  882. block->nominal_speed *= speed_factor;
  883. block->nominal_rate *= speed_factor;
  884. }
  885. // Compute and limit the acceleration rate for the trapezoid generator.
  886. // block->step_event_count ... event count of the fastest axis
  887. // block->millimeters ... Euclidian length of the XYZ movement or the E length, if no XYZ movement.
  888. float steps_per_mm = block->step_event_count.wide/block->millimeters;
  889. if(block->steps_x.wide == 0 && block->steps_y.wide == 0 && block->steps_z.wide == 0)
  890. {
  891. block->acceleration_st = ceil(cs.retract_acceleration * steps_per_mm); // convert to: acceleration steps/sec^2
  892. }
  893. else
  894. {
  895. block->acceleration_st = ceil(cs.acceleration * steps_per_mm); // convert to: acceleration steps/sec^2
  896. // Limit acceleration per axis
  897. //FIXME Vojtech: One shall rather limit a projection of the acceleration vector instead of using the limit.
  898. if(((float)block->acceleration_st * (float)block->steps_x.wide / (float)block->step_event_count.wide) > axis_steps_per_sqr_second[X_AXIS])
  899. { block->acceleration_st = axis_steps_per_sqr_second[X_AXIS]; maxlimit_status |= (X_AXIS_MASK << 4); }
  900. if(((float)block->acceleration_st * (float)block->steps_y.wide / (float)block->step_event_count.wide) > axis_steps_per_sqr_second[Y_AXIS])
  901. { block->acceleration_st = axis_steps_per_sqr_second[Y_AXIS]; maxlimit_status |= (Y_AXIS_MASK << 4); }
  902. if(((float)block->acceleration_st * (float)block->steps_e.wide / (float)block->step_event_count.wide) > axis_steps_per_sqr_second[E_AXIS])
  903. { block->acceleration_st = axis_steps_per_sqr_second[E_AXIS]; maxlimit_status |= (Z_AXIS_MASK << 4); }
  904. if(((float)block->acceleration_st * (float)block->steps_z.wide / (float)block->step_event_count.wide ) > axis_steps_per_sqr_second[Z_AXIS])
  905. { block->acceleration_st = axis_steps_per_sqr_second[Z_AXIS]; maxlimit_status |= (E_AXIS_MASK << 4); }
  906. }
  907. // Acceleration of the segment, in mm/sec^2
  908. block->acceleration = block->acceleration_st / steps_per_mm;
  909. #if 0
  910. // Oversample diagonal movements by a power of 2 up to 8x
  911. // to achieve more accurate diagonal movements.
  912. uint8_t bresenham_oversample = 1;
  913. for (uint8_t i = 0; i < 3; ++ i) {
  914. if (block->nominal_rate >= 5000) // 5kHz
  915. break;
  916. block->nominal_rate << 1;
  917. bresenham_oversample << 1;
  918. block->step_event_count << 1;
  919. }
  920. if (bresenham_oversample > 1)
  921. // Lower the acceleration steps/sec^2 to account for the oversampling.
  922. block->acceleration_st = (block->acceleration_st + (bresenham_oversample >> 1)) / bresenham_oversample;
  923. #endif
  924. block->acceleration_rate = (long)((float)block->acceleration_st * (16777216.0 / (F_CPU / 8.0)));
  925. // Start with a safe speed.
  926. // Safe speed is the speed, from which the machine may halt to stop immediately.
  927. float safe_speed = block->nominal_speed;
  928. bool limited = false;
  929. for (uint8_t axis = 0; axis < 4; ++ axis) {
  930. float jerk = fabs(current_speed[axis]);
  931. if (jerk > max_jerk[axis]) {
  932. // The actual jerk is lower, if it has been limited by the XY jerk.
  933. if (limited) {
  934. // Spare one division by a following gymnastics:
  935. // Instead of jerk *= safe_speed / block->nominal_speed,
  936. // multiply max_jerk[axis] by the divisor.
  937. jerk *= safe_speed;
  938. float mjerk = max_jerk[axis] * block->nominal_speed;
  939. if (jerk > mjerk) {
  940. safe_speed *= mjerk / jerk;
  941. limited = true;
  942. }
  943. } else {
  944. safe_speed = max_jerk[axis];
  945. limited = true;
  946. }
  947. }
  948. }
  949. // Reset the block flag.
  950. block->flag = 0;
  951. // Initial limit on the segment entry velocity.
  952. float vmax_junction;
  953. //FIXME Vojtech: Why only if at least two lines are planned in the queue?
  954. // Is it because we don't want to tinker with the first buffer line, which
  955. // is likely to be executed by the stepper interrupt routine soon?
  956. if (moves_queued > 1 && previous_nominal_speed > 0.0001f) {
  957. // Estimate a maximum velocity allowed at a joint of two successive segments.
  958. // If this maximum velocity allowed is lower than the minimum of the entry / exit safe velocities,
  959. // then the machine is not coasting anymore and the safe entry / exit velocities shall be used.
  960. // The junction velocity will be shared between successive segments. Limit the junction velocity to their minimum.
  961. bool prev_speed_larger = previous_nominal_speed > block->nominal_speed;
  962. float smaller_speed_factor = prev_speed_larger ? (block->nominal_speed / previous_nominal_speed) : (previous_nominal_speed / block->nominal_speed);
  963. // Pick the smaller of the nominal speeds. Higher speed shall not be achieved at the junction during coasting.
  964. vmax_junction = prev_speed_larger ? block->nominal_speed : previous_nominal_speed;
  965. // Factor to multiply the previous / current nominal velocities to get componentwise limited velocities.
  966. float v_factor = 1.f;
  967. limited = false;
  968. // Now limit the jerk in all axes.
  969. for (uint8_t axis = 0; axis < 4; ++ axis) {
  970. // Limit an axis. We have to differentiate coasting from the reversal of an axis movement, or a full stop.
  971. float v_exit = previous_speed[axis];
  972. float v_entry = current_speed [axis];
  973. if (prev_speed_larger)
  974. v_exit *= smaller_speed_factor;
  975. if (limited) {
  976. v_exit *= v_factor;
  977. v_entry *= v_factor;
  978. }
  979. // Calculate the jerk depending on whether the axis is coasting in the same direction or reversing a direction.
  980. float jerk =
  981. (v_exit > v_entry) ?
  982. ((v_entry > 0.f || v_exit < 0.f) ?
  983. // coasting
  984. (v_exit - v_entry) :
  985. // axis reversal
  986. max(v_exit, - v_entry)) :
  987. // v_exit <= v_entry
  988. ((v_entry < 0.f || v_exit > 0.f) ?
  989. // coasting
  990. (v_entry - v_exit) :
  991. // axis reversal
  992. max(- v_exit, v_entry));
  993. if (jerk > max_jerk[axis]) {
  994. v_factor *= max_jerk[axis] / jerk;
  995. limited = true;
  996. }
  997. }
  998. if (limited)
  999. vmax_junction *= v_factor;
  1000. // Now the transition velocity is known, which maximizes the shared exit / entry velocity while
  1001. // respecting the jerk factors, it may be possible, that applying separate safe exit / entry velocities will achieve faster prints.
  1002. float vmax_junction_threshold = vmax_junction * 0.99f;
  1003. if (previous_safe_speed > vmax_junction_threshold && safe_speed > vmax_junction_threshold) {
  1004. // Not coasting. The machine will stop and start the movements anyway,
  1005. // better to start the segment from start.
  1006. block->flag |= BLOCK_FLAG_START_FROM_FULL_HALT;
  1007. vmax_junction = safe_speed;
  1008. }
  1009. } else {
  1010. block->flag |= BLOCK_FLAG_START_FROM_FULL_HALT;
  1011. vmax_junction = safe_speed;
  1012. }
  1013. // Max entry speed of this block equals the max exit speed of the previous block.
  1014. block->max_entry_speed = vmax_junction;
  1015. // Initialize block entry speed. Compute based on deceleration to safe_speed.
  1016. double v_allowable = max_allowable_entry_speed(-block->acceleration,safe_speed,block->millimeters);
  1017. block->entry_speed = min(vmax_junction, v_allowable);
  1018. // Initialize planner efficiency flags
  1019. // Set flag if block will always reach maximum junction speed regardless of entry/exit speeds.
  1020. // If a block can de/ac-celerate from nominal speed to zero within the length of the block, then
  1021. // the current block and next block junction speeds are guaranteed to always be at their maximum
  1022. // junction speeds in deceleration and acceleration, respectively. This is due to how the current
  1023. // block nominal speed limits both the current and next maximum junction speeds. Hence, in both
  1024. // the reverse and forward planners, the corresponding block junction speed will always be at the
  1025. // the maximum junction speed and may always be ignored for any speed reduction checks.
  1026. // Always calculate trapezoid for new block
  1027. block->flag |= (block->nominal_speed <= v_allowable) ? (BLOCK_FLAG_NOMINAL_LENGTH | BLOCK_FLAG_RECALCULATE) : BLOCK_FLAG_RECALCULATE;
  1028. // Update previous path unit_vector and nominal speed
  1029. memcpy(previous_speed, current_speed, sizeof(previous_speed)); // previous_speed[] = current_speed[]
  1030. previous_nominal_speed = block->nominal_speed;
  1031. previous_safe_speed = safe_speed;
  1032. #ifdef LIN_ADVANCE
  1033. //
  1034. // Use LIN_ADVANCE for blocks if all these are true:
  1035. //
  1036. // esteps : We have E steps todo (a printing move)
  1037. //
  1038. // block->steps[X_AXIS] || block->steps[Y_AXIS] : We have a movement in XY direction (i.e., not retract / prime).
  1039. //
  1040. // extruder_advance_k : There is an advance factor set.
  1041. //
  1042. // block->steps[E_AXIS] != block->step_event_count : A problem occurs if the move before a retract is too small.
  1043. // In that case, the retract and move will be executed together.
  1044. // This leads to too many advance steps due to a huge e_acceleration.
  1045. // The math is good, but we must avoid retract moves with advance!
  1046. // de_float > 0.0 : Extruder is running forward (e.g., for "Wipe while retracting" (Slic3r) or "Combing" (Cura) moves)
  1047. //
  1048. block->use_advance_lead = block->steps_e.wide
  1049. && (block->steps_x.wide || block->steps_y.wide)
  1050. && extruder_advance_k
  1051. && (uint32_t)block->steps_e.wide != block->step_event_count.wide
  1052. && de_float > 0.0;
  1053. if (block->use_advance_lead)
  1054. block->abs_adv_steps_multiplier8 = lround(
  1055. extruder_advance_k
  1056. * ((advance_ed_ratio < 0.000001) ? de_float / mm_D_float : advance_ed_ratio) // Use the fixed ratio, if set
  1057. * (block->nominal_speed / (float)block->nominal_rate)
  1058. * cs.axis_steps_per_unit[E_AXIS] * 256.0
  1059. );
  1060. #endif
  1061. // Precalculate the division, so when all the trapezoids in the planner queue get recalculated, the division is not repeated.
  1062. block->speed_factor = block->nominal_rate / block->nominal_speed;
  1063. calculate_trapezoid_for_block(block, block->entry_speed, safe_speed);
  1064. if (block->step_event_count.wide <= 32767)
  1065. block->flag |= BLOCK_FLAG_DDA_LOWRES;
  1066. // Move the buffer head. From now the block may be picked up by the stepper interrupt controller.
  1067. block_buffer_head = next_buffer_head;
  1068. // Update position
  1069. memcpy(position, target, sizeof(target)); // position[] = target[]
  1070. #ifdef LIN_ADVANCE
  1071. position_float[X_AXIS] = x;
  1072. position_float[Y_AXIS] = y;
  1073. position_float[Z_AXIS] = z;
  1074. position_float[E_AXIS] = e;
  1075. #endif
  1076. // Recalculate the trapezoids to maximize speed at the segment transitions while respecting
  1077. // the machine limits (maximum acceleration and maximum jerk).
  1078. // This runs asynchronously with the stepper interrupt controller, which may
  1079. // interfere with the process.
  1080. planner_recalculate(safe_speed);
  1081. // SERIAL_ECHOPGM("Q");
  1082. // SERIAL_ECHO(int(moves_planned()));
  1083. // SERIAL_ECHOLNPGM("");
  1084. #ifdef PLANNER_DIAGNOSTICS
  1085. planner_update_queue_min_counter();
  1086. #endif /* PLANNER_DIAGNOSTIC */
  1087. // The stepper timer interrupt will run continuously from now on.
  1088. // If there are no planner blocks to be executed by the stepper routine,
  1089. // the stepper interrupt ticks at 1kHz to wake up and pick a block
  1090. // from the planner queue if available.
  1091. ENABLE_STEPPER_DRIVER_INTERRUPT();
  1092. }
  1093. #ifdef ENABLE_AUTO_BED_LEVELING
  1094. vector_3 plan_get_position() {
  1095. vector_3 position = vector_3(st_get_position_mm(X_AXIS), st_get_position_mm(Y_AXIS), st_get_position_mm(Z_AXIS));
  1096. //position.debug("in plan_get position");
  1097. //plan_bed_level_matrix.debug("in plan_get bed_level");
  1098. matrix_3x3 inverse = matrix_3x3::transpose(plan_bed_level_matrix);
  1099. //inverse.debug("in plan_get inverse");
  1100. position.apply_rotation(inverse);
  1101. //position.debug("after rotation");
  1102. return position;
  1103. }
  1104. #endif // ENABLE_AUTO_BED_LEVELING
  1105. void plan_set_position(float x, float y, float z, const float &e)
  1106. {
  1107. #ifdef ENABLE_AUTO_BED_LEVELING
  1108. apply_rotation_xyz(plan_bed_level_matrix, x, y, z);
  1109. #endif // ENABLE_AUTO_BED_LEVELING
  1110. // Apply the machine correction matrix.
  1111. if (world2machine_correction_mode != WORLD2MACHINE_CORRECTION_NONE)
  1112. {
  1113. float tmpx = x;
  1114. float tmpy = y;
  1115. x = world2machine_rotation_and_skew[0][0] * tmpx + world2machine_rotation_and_skew[0][1] * tmpy + world2machine_shift[0];
  1116. y = world2machine_rotation_and_skew[1][0] * tmpx + world2machine_rotation_and_skew[1][1] * tmpy + world2machine_shift[1];
  1117. }
  1118. position[X_AXIS] = lround(x*cs.axis_steps_per_unit[X_AXIS]);
  1119. position[Y_AXIS] = lround(y*cs.axis_steps_per_unit[Y_AXIS]);
  1120. #ifdef MESH_BED_LEVELING
  1121. position[Z_AXIS] = mbl.active ?
  1122. lround((z+mbl.get_z(x, y))*cs.axis_steps_per_unit[Z_AXIS]) :
  1123. lround(z*cs.axis_steps_per_unit[Z_AXIS]);
  1124. #else
  1125. position[Z_AXIS] = lround(z*cs.axis_steps_per_unit[Z_AXIS]);
  1126. #endif // ENABLE_MESH_BED_LEVELING
  1127. position[E_AXIS] = lround(e*cs.axis_steps_per_unit[E_AXIS]);
  1128. #ifdef LIN_ADVANCE
  1129. position_float[X_AXIS] = x;
  1130. position_float[Y_AXIS] = y;
  1131. position_float[Z_AXIS] = z;
  1132. position_float[E_AXIS] = e;
  1133. #endif
  1134. st_set_position(position[X_AXIS], position[Y_AXIS], position[Z_AXIS], position[E_AXIS]);
  1135. previous_nominal_speed = 0.0; // Resets planner junction speeds. Assumes start from rest.
  1136. previous_speed[0] = 0.0;
  1137. previous_speed[1] = 0.0;
  1138. previous_speed[2] = 0.0;
  1139. previous_speed[3] = 0.0;
  1140. }
  1141. // Only useful in the bed leveling routine, when the mesh bed leveling is off.
  1142. void plan_set_z_position(const float &z)
  1143. {
  1144. #ifdef LIN_ADVANCE
  1145. position_float[Z_AXIS] = z;
  1146. #endif
  1147. position[Z_AXIS] = lround(z*cs.axis_steps_per_unit[Z_AXIS]);
  1148. st_set_position(position[X_AXIS], position[Y_AXIS], position[Z_AXIS], position[E_AXIS]);
  1149. }
  1150. void plan_set_e_position(const float &e)
  1151. {
  1152. #ifdef LIN_ADVANCE
  1153. position_float[E_AXIS] = e;
  1154. #endif
  1155. position[E_AXIS] = lround(e*cs.axis_steps_per_unit[E_AXIS]);
  1156. st_set_e_position(position[E_AXIS]);
  1157. }
  1158. #ifdef PREVENT_DANGEROUS_EXTRUDE
  1159. void set_extrude_min_temp(float temp)
  1160. {
  1161. extrude_min_temp=temp;
  1162. }
  1163. #endif
  1164. // Calculate the steps/s^2 acceleration rates, based on the mm/s^s
  1165. void reset_acceleration_rates()
  1166. {
  1167. for(int8_t i=0; i < NUM_AXIS; i++)
  1168. axis_steps_per_sqr_second[i] = max_acceleration_units_per_sq_second[i] * cs.axis_steps_per_unit[i];
  1169. }
  1170. #ifdef TMC2130
  1171. void update_mode_profile()
  1172. {
  1173. if (tmc2130_mode == TMC2130_MODE_NORMAL)
  1174. {
  1175. max_feedrate = cs.max_feedrate_normal;
  1176. max_acceleration_units_per_sq_second = cs.max_acceleration_units_per_sq_second_normal;
  1177. }
  1178. else if (tmc2130_mode == TMC2130_MODE_SILENT)
  1179. {
  1180. max_feedrate = max_feedrate_silent;
  1181. max_acceleration_units_per_sq_second = max_acceleration_units_per_sq_second_silent;
  1182. }
  1183. reset_acceleration_rates();
  1184. }
  1185. #endif //TMC2130
  1186. unsigned char number_of_blocks()
  1187. {
  1188. return (block_buffer_head + BLOCK_BUFFER_SIZE - block_buffer_tail) & (BLOCK_BUFFER_SIZE - 1);
  1189. }
  1190. #ifdef PLANNER_DIAGNOSTICS
  1191. uint8_t planner_queue_min()
  1192. {
  1193. return g_cntr_planner_queue_min;
  1194. }
  1195. void planner_queue_min_reset()
  1196. {
  1197. g_cntr_planner_queue_min = moves_planned();
  1198. }
  1199. #endif /* PLANNER_DIAGNOSTICS */
  1200. void planner_add_sd_length(uint16_t sdlen)
  1201. {
  1202. if (block_buffer_head != block_buffer_tail) {
  1203. // The planner buffer is not empty. Get the index of the last buffer line entered,
  1204. // which is (block_buffer_head - 1) modulo BLOCK_BUFFER_SIZE.
  1205. block_buffer[prev_block_index(block_buffer_head)].sdlen += sdlen;
  1206. } else {
  1207. // There is no line stored in the planner buffer, which means the last command does not need to be revertible,
  1208. // at a power panic, so the length of this command may be forgotten.
  1209. }
  1210. }
  1211. uint16_t planner_calc_sd_length()
  1212. {
  1213. unsigned char _block_buffer_head = block_buffer_head;
  1214. unsigned char _block_buffer_tail = block_buffer_tail;
  1215. uint16_t sdlen = 0;
  1216. while (_block_buffer_head != _block_buffer_tail)
  1217. {
  1218. sdlen += block_buffer[_block_buffer_tail].sdlen;
  1219. _block_buffer_tail = (_block_buffer_tail + 1) & (BLOCK_BUFFER_SIZE - 1);
  1220. }
  1221. return sdlen;
  1222. }