Marlin_main.cpp 179 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744374537463747374837493750375137523753375437553756375737583759376037613762376337643765376637673768376937703771377237733774377537763777377837793780378137823783378437853786378737883789379037913792379337943795379637973798379938003801380238033804380538063807380838093810381138123813381438153816381738183819382038213822382338243825382638273828382938303831383238333834383538363837383838393840384138423843384438453846384738483849385038513852385338543855385638573858385938603861386238633864386538663867386838693870387138723873387438753876387738783879388038813882388338843885388638873888388938903891389238933894389538963897389838993900390139023903390439053906390739083909391039113912391339143915391639173918391939203921392239233924392539263927392839293930393139323933393439353936393739383939394039413942394339443945394639473948394939503951395239533954395539563957395839593960396139623963396439653966396739683969397039713972397339743975397639773978397939803981398239833984398539863987398839893990399139923993399439953996399739983999400040014002400340044005400640074008400940104011401240134014401540164017401840194020402140224023402440254026402740284029403040314032403340344035403640374038403940404041404240434044404540464047404840494050405140524053405440554056405740584059406040614062406340644065406640674068406940704071407240734074407540764077407840794080408140824083408440854086408740884089409040914092409340944095409640974098409941004101410241034104410541064107410841094110411141124113411441154116411741184119412041214122412341244125412641274128412941304131413241334134413541364137413841394140414141424143414441454146414741484149415041514152415341544155415641574158415941604161416241634164416541664167416841694170417141724173417441754176417741784179418041814182418341844185418641874188418941904191419241934194419541964197419841994200420142024203420442054206420742084209421042114212421342144215421642174218421942204221422242234224422542264227422842294230423142324233423442354236423742384239424042414242424342444245424642474248424942504251425242534254425542564257425842594260426142624263426442654266426742684269427042714272427342744275427642774278427942804281428242834284428542864287428842894290429142924293429442954296429742984299430043014302430343044305430643074308430943104311431243134314431543164317431843194320432143224323432443254326432743284329433043314332433343344335433643374338433943404341434243434344434543464347434843494350435143524353435443554356435743584359436043614362436343644365436643674368436943704371437243734374437543764377437843794380438143824383438443854386438743884389439043914392439343944395439643974398439944004401440244034404440544064407440844094410441144124413441444154416441744184419442044214422442344244425442644274428442944304431443244334434443544364437443844394440444144424443444444454446444744484449445044514452445344544455445644574458445944604461446244634464446544664467446844694470447144724473447444754476447744784479448044814482448344844485448644874488448944904491449244934494449544964497449844994500450145024503450445054506450745084509451045114512451345144515451645174518451945204521452245234524452545264527452845294530453145324533453445354536453745384539454045414542454345444545454645474548454945504551455245534554455545564557455845594560456145624563456445654566456745684569457045714572457345744575457645774578457945804581458245834584458545864587458845894590459145924593459445954596459745984599460046014602460346044605460646074608460946104611461246134614461546164617461846194620462146224623462446254626462746284629463046314632463346344635463646374638463946404641464246434644464546464647464846494650465146524653465446554656465746584659466046614662466346644665466646674668466946704671467246734674467546764677467846794680468146824683468446854686468746884689469046914692469346944695469646974698469947004701470247034704470547064707470847094710471147124713471447154716471747184719472047214722472347244725472647274728472947304731473247334734473547364737473847394740474147424743474447454746474747484749475047514752475347544755475647574758475947604761476247634764476547664767476847694770477147724773477447754776477747784779478047814782478347844785478647874788478947904791479247934794479547964797479847994800480148024803480448054806480748084809481048114812481348144815481648174818481948204821482248234824482548264827482848294830483148324833483448354836483748384839484048414842484348444845484648474848484948504851485248534854485548564857485848594860486148624863486448654866486748684869487048714872487348744875487648774878487948804881488248834884488548864887488848894890489148924893489448954896489748984899490049014902490349044905490649074908490949104911491249134914491549164917491849194920492149224923492449254926492749284929493049314932493349344935493649374938493949404941494249434944494549464947494849494950495149524953495449554956495749584959496049614962496349644965496649674968496949704971497249734974497549764977497849794980498149824983498449854986498749884989499049914992499349944995499649974998499950005001500250035004500550065007500850095010501150125013501450155016501750185019502050215022502350245025502650275028502950305031503250335034503550365037503850395040504150425043504450455046504750485049505050515052505350545055505650575058505950605061506250635064506550665067506850695070507150725073507450755076507750785079508050815082508350845085508650875088508950905091509250935094509550965097509850995100510151025103510451055106510751085109511051115112511351145115511651175118511951205121512251235124512551265127512851295130513151325133513451355136513751385139514051415142514351445145514651475148514951505151515251535154515551565157515851595160516151625163516451655166516751685169517051715172517351745175517651775178517951805181518251835184518551865187518851895190519151925193519451955196519751985199520052015202520352045205520652075208520952105211521252135214
  1. /* -*- c++ -*- */
  2. /*
  3. Reprap firmware based on Sprinter and grbl.
  4. Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
  5. This program is free software: you can redistribute it and/or modify
  6. it under the terms of the GNU General Public License as published by
  7. the Free Software Foundation, either version 3 of the License, or
  8. (at your option) any later version.
  9. This program is distributed in the hope that it will be useful,
  10. but WITHOUT ANY WARRANTY; without even the implied warranty of
  11. MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  12. GNU General Public License for more details.
  13. You should have received a copy of the GNU General Public License
  14. along with this program. If not, see <http://www.gnu.org/licenses/>.
  15. */
  16. /*
  17. This firmware is a mashup between Sprinter and grbl.
  18. (https://github.com/kliment/Sprinter)
  19. (https://github.com/simen/grbl/tree)
  20. It has preliminary support for Matthew Roberts advance algorithm
  21. http://reprap.org/pipermail/reprap-dev/2011-May/003323.html
  22. */
  23. #include "Marlin.h"
  24. #ifdef ENABLE_AUTO_BED_LEVELING
  25. #include "vector_3.h"
  26. #ifdef AUTO_BED_LEVELING_GRID
  27. #include "qr_solve.h"
  28. #endif
  29. #endif // ENABLE_AUTO_BED_LEVELING
  30. #ifdef MESH_BED_LEVELING
  31. #include "mesh_bed_leveling.h"
  32. #include "mesh_bed_calibration.h"
  33. #endif
  34. #include "ultralcd.h"
  35. #include "Configuration_prusa.h"
  36. #include "planner.h"
  37. #include "stepper.h"
  38. #include "temperature.h"
  39. #include "motion_control.h"
  40. #include "cardreader.h"
  41. #include "watchdog.h"
  42. #include "ConfigurationStore.h"
  43. #include "language.h"
  44. #include "pins_arduino.h"
  45. #include "math.h"
  46. #include "util.h"
  47. #ifdef BLINKM
  48. #include "BlinkM.h"
  49. #include "Wire.h"
  50. #endif
  51. #ifdef ULTRALCD
  52. #include "ultralcd.h"
  53. #endif
  54. #if NUM_SERVOS > 0
  55. #include "Servo.h"
  56. #endif
  57. #if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
  58. #include <SPI.h>
  59. #endif
  60. #define VERSION_STRING "1.0.2"
  61. #include "ultralcd.h"
  62. // Macros for bit masks
  63. #define BIT(b) (1<<(b))
  64. #define TEST(n,b) (((n)&BIT(b))!=0)
  65. #define SET_BIT(n,b,value) (n) ^= ((-value)^(n)) & (BIT(b))
  66. // look here for descriptions of G-codes: http://linuxcnc.org/handbook/gcode/g-code.html
  67. // http://objects.reprap.org/wiki/Mendel_User_Manual:_RepRapGCodes
  68. //Implemented Codes
  69. //-------------------
  70. // PRUSA CODES
  71. // P F - Returns FW versions
  72. // P R - Returns revision of printer
  73. // G0 -> G1
  74. // G1 - Coordinated Movement X Y Z E
  75. // G2 - CW ARC
  76. // G3 - CCW ARC
  77. // G4 - Dwell S<seconds> or P<milliseconds>
  78. // G10 - retract filament according to settings of M207
  79. // G11 - retract recover filament according to settings of M208
  80. // G28 - Home all Axis
  81. // G29 - Detailed Z-Probe, probes the bed at 3 or more points. Will fail if you haven't homed yet.
  82. // G30 - Single Z Probe, probes bed at current XY location.
  83. // G31 - Dock sled (Z_PROBE_SLED only)
  84. // G32 - Undock sled (Z_PROBE_SLED only)
  85. // G80 - Automatic mesh bed leveling
  86. // G81 - Print bed profile
  87. // G90 - Use Absolute Coordinates
  88. // G91 - Use Relative Coordinates
  89. // G92 - Set current position to coordinates given
  90. // M Codes
  91. // M0 - Unconditional stop - Wait for user to press a button on the LCD (Only if ULTRA_LCD is enabled)
  92. // M1 - Same as M0
  93. // M17 - Enable/Power all stepper motors
  94. // M18 - Disable all stepper motors; same as M84
  95. // M20 - List SD card
  96. // M21 - Init SD card
  97. // M22 - Release SD card
  98. // M23 - Select SD file (M23 filename.g)
  99. // M24 - Start/resume SD print
  100. // M25 - Pause SD print
  101. // M26 - Set SD position in bytes (M26 S12345)
  102. // M27 - Report SD print status
  103. // M28 - Start SD write (M28 filename.g)
  104. // M29 - Stop SD write
  105. // M30 - Delete file from SD (M30 filename.g)
  106. // M31 - Output time since last M109 or SD card start to serial
  107. // M32 - Select file and start SD print (Can be used _while_ printing from SD card files):
  108. // syntax "M32 /path/filename#", or "M32 S<startpos bytes> !filename#"
  109. // Call gcode file : "M32 P !filename#" and return to caller file after finishing (similar to #include).
  110. // The '#' is necessary when calling from within sd files, as it stops buffer prereading
  111. // M42 - Change pin status via gcode Use M42 Px Sy to set pin x to value y, when omitting Px the onboard led will be used.
  112. // M80 - Turn on Power Supply
  113. // M81 - Turn off Power Supply
  114. // M82 - Set E codes absolute (default)
  115. // M83 - Set E codes relative while in Absolute Coordinates (G90) mode
  116. // M84 - Disable steppers until next move,
  117. // or use S<seconds> to specify an inactivity timeout, after which the steppers will be disabled. S0 to disable the timeout.
  118. // M85 - Set inactivity shutdown timer with parameter S<seconds>. To disable set zero (default)
  119. // M92 - Set axis_steps_per_unit - same syntax as G92
  120. // M104 - Set extruder target temp
  121. // M105 - Read current temp
  122. // M106 - Fan on
  123. // M107 - Fan off
  124. // M109 - Sxxx Wait for extruder current temp to reach target temp. Waits only when heating
  125. // Rxxx Wait for extruder current temp to reach target temp. Waits when heating and cooling
  126. // IF AUTOTEMP is enabled, S<mintemp> B<maxtemp> F<factor>. Exit autotemp by any M109 without F
  127. // M112 - Emergency stop
  128. // M114 - Output current position to serial port
  129. // M115 - Capabilities string
  130. // M117 - display message
  131. // M119 - Output Endstop status to serial port
  132. // M126 - Solenoid Air Valve Open (BariCUDA support by jmil)
  133. // M127 - Solenoid Air Valve Closed (BariCUDA vent to atmospheric pressure by jmil)
  134. // M128 - EtoP Open (BariCUDA EtoP = electricity to air pressure transducer by jmil)
  135. // M129 - EtoP Closed (BariCUDA EtoP = electricity to air pressure transducer by jmil)
  136. // M140 - Set bed target temp
  137. // M150 - Set BlinkM Color Output R: Red<0-255> U(!): Green<0-255> B: Blue<0-255> over i2c, G for green does not work.
  138. // M190 - Sxxx Wait for bed current temp to reach target temp. Waits only when heating
  139. // Rxxx Wait for bed current temp to reach target temp. Waits when heating and cooling
  140. // M200 D<millimeters>- set filament diameter and set E axis units to cubic millimeters (use S0 to set back to millimeters).
  141. // M201 - Set max acceleration in units/s^2 for print moves (M201 X1000 Y1000)
  142. // M202 - Set max acceleration in units/s^2 for travel moves (M202 X1000 Y1000) Unused in Marlin!!
  143. // M203 - Set maximum feedrate that your machine can sustain (M203 X200 Y200 Z300 E10000) in mm/sec
  144. // M204 - Set default acceleration: S normal moves T filament only moves (M204 S3000 T7000) in mm/sec^2 also sets minimum segment time in ms (B20000) to prevent buffer under-runs and M20 minimum feedrate
  145. // M205 - advanced settings: minimum travel speed S=while printing T=travel only, B=minimum segment time X= maximum xy jerk, Z=maximum Z jerk, E=maximum E jerk
  146. // M206 - set additional homing offset
  147. // M207 - set retract length S[positive mm] F[feedrate mm/min] Z[additional zlift/hop], stays in mm regardless of M200 setting
  148. // M208 - set recover=unretract length S[positive mm surplus to the M207 S*] F[feedrate mm/sec]
  149. // M209 - S<1=true/0=false> enable automatic retract detect if the slicer did not support G10/11: every normal extrude-only move will be classified as retract depending on the direction.
  150. // M218 - set hotend offset (in mm): T<extruder_number> X<offset_on_X> Y<offset_on_Y>
  151. // M220 S<factor in percent>- set speed factor override percentage
  152. // M221 S<factor in percent>- set extrude factor override percentage
  153. // M226 P<pin number> S<pin state>- Wait until the specified pin reaches the state required
  154. // M240 - Trigger a camera to take a photograph
  155. // M250 - Set LCD contrast C<contrast value> (value 0..63)
  156. // M280 - set servo position absolute. P: servo index, S: angle or microseconds
  157. // M300 - Play beep sound S<frequency Hz> P<duration ms>
  158. // M301 - Set PID parameters P I and D
  159. // M302 - Allow cold extrudes, or set the minimum extrude S<temperature>.
  160. // M303 - PID relay autotune S<temperature> sets the target temperature. (default target temperature = 150C)
  161. // M304 - Set bed PID parameters P I and D
  162. // M400 - Finish all moves
  163. // M401 - Lower z-probe if present
  164. // M402 - Raise z-probe if present
  165. // M404 - N<dia in mm> Enter the nominal filament width (3mm, 1.75mm ) or will display nominal filament width without parameters
  166. // M405 - Turn on Filament Sensor extrusion control. Optional D<delay in cm> to set delay in centimeters between sensor and extruder
  167. // M406 - Turn off Filament Sensor extrusion control
  168. // M407 - Displays measured filament diameter
  169. // M500 - stores parameters in EEPROM
  170. // M501 - reads parameters from EEPROM (if you need reset them after you changed them temporarily).
  171. // M502 - reverts to the default "factory settings". You still need to store them in EEPROM afterwards if you want to.
  172. // M503 - print the current settings (from memory not from EEPROM)
  173. // M509 - force language selection on next restart
  174. // M540 - Use S[0|1] to enable or disable the stop SD card print on endstop hit (requires ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED)
  175. // M600 - Pause for filament change X[pos] Y[pos] Z[relative lift] E[initial retract] L[later retract distance for removal]
  176. // M605 - Set dual x-carriage movement mode: S<mode> [ X<duplication x-offset> R<duplication temp offset> ]
  177. // M907 - Set digital trimpot motor current using axis codes.
  178. // M908 - Control digital trimpot directly.
  179. // M350 - Set microstepping mode.
  180. // M351 - Toggle MS1 MS2 pins directly.
  181. // M928 - Start SD logging (M928 filename.g) - ended by M29
  182. // M999 - Restart after being stopped by error
  183. //Stepper Movement Variables
  184. //===========================================================================
  185. //=============================imported variables============================
  186. //===========================================================================
  187. //===========================================================================
  188. //=============================public variables=============================
  189. //===========================================================================
  190. #ifdef SDSUPPORT
  191. CardReader card;
  192. #endif
  193. union Data
  194. {
  195. byte b[2];
  196. int value;
  197. };
  198. float homing_feedrate[] = HOMING_FEEDRATE;
  199. // Currently only the extruder axis may be switched to a relative mode.
  200. // Other axes are always absolute or relative based on the common relative_mode flag.
  201. bool axis_relative_modes[] = AXIS_RELATIVE_MODES;
  202. int feedmultiply=100; //100->1 200->2
  203. int saved_feedmultiply;
  204. int extrudemultiply=100; //100->1 200->2
  205. int extruder_multiply[EXTRUDERS] = {100
  206. #if EXTRUDERS > 1
  207. , 100
  208. #if EXTRUDERS > 2
  209. , 100
  210. #endif
  211. #endif
  212. };
  213. bool is_usb_printing = false;
  214. unsigned int usb_printing_counter;
  215. int lcd_change_fil_state = 0;
  216. int feedmultiplyBckp = 100;
  217. unsigned char lang_selected = 0;
  218. unsigned long total_filament_used;
  219. unsigned int heating_status;
  220. unsigned int heating_status_counter;
  221. bool custom_message;
  222. unsigned int custom_message_type;
  223. unsigned int custom_message_state;
  224. bool volumetric_enabled = false;
  225. float filament_size[EXTRUDERS] = { DEFAULT_NOMINAL_FILAMENT_DIA
  226. #if EXTRUDERS > 1
  227. , DEFAULT_NOMINAL_FILAMENT_DIA
  228. #if EXTRUDERS > 2
  229. , DEFAULT_NOMINAL_FILAMENT_DIA
  230. #endif
  231. #endif
  232. };
  233. float volumetric_multiplier[EXTRUDERS] = {1.0
  234. #if EXTRUDERS > 1
  235. , 1.0
  236. #if EXTRUDERS > 2
  237. , 1.0
  238. #endif
  239. #endif
  240. };
  241. float current_position[NUM_AXIS] = { 0.0, 0.0, 0.0, 0.0 };
  242. float add_homing[3]={0,0,0};
  243. float min_pos[3] = { X_MIN_POS, Y_MIN_POS, Z_MIN_POS };
  244. float max_pos[3] = { X_MAX_POS, Y_MAX_POS, Z_MAX_POS };
  245. bool axis_known_position[3] = {false, false, false};
  246. float zprobe_zoffset;
  247. // Extruder offset
  248. #if EXTRUDERS > 1
  249. #define NUM_EXTRUDER_OFFSETS 2 // only in XY plane
  250. float extruder_offset[NUM_EXTRUDER_OFFSETS][EXTRUDERS] = {
  251. #if defined(EXTRUDER_OFFSET_X) && defined(EXTRUDER_OFFSET_Y)
  252. EXTRUDER_OFFSET_X, EXTRUDER_OFFSET_Y
  253. #endif
  254. };
  255. #endif
  256. uint8_t active_extruder = 0;
  257. int fanSpeed=0;
  258. #ifdef FWRETRACT
  259. bool autoretract_enabled=false;
  260. bool retracted[EXTRUDERS]={false
  261. #if EXTRUDERS > 1
  262. , false
  263. #if EXTRUDERS > 2
  264. , false
  265. #endif
  266. #endif
  267. };
  268. bool retracted_swap[EXTRUDERS]={false
  269. #if EXTRUDERS > 1
  270. , false
  271. #if EXTRUDERS > 2
  272. , false
  273. #endif
  274. #endif
  275. };
  276. float retract_length = RETRACT_LENGTH;
  277. float retract_length_swap = RETRACT_LENGTH_SWAP;
  278. float retract_feedrate = RETRACT_FEEDRATE;
  279. float retract_zlift = RETRACT_ZLIFT;
  280. float retract_recover_length = RETRACT_RECOVER_LENGTH;
  281. float retract_recover_length_swap = RETRACT_RECOVER_LENGTH_SWAP;
  282. float retract_recover_feedrate = RETRACT_RECOVER_FEEDRATE;
  283. #endif
  284. #ifdef ULTIPANEL
  285. #ifdef PS_DEFAULT_OFF
  286. bool powersupply = false;
  287. #else
  288. bool powersupply = true;
  289. #endif
  290. #endif
  291. bool cancel_heatup = false ;
  292. #ifdef FILAMENT_SENSOR
  293. //Variables for Filament Sensor input
  294. float filament_width_nominal=DEFAULT_NOMINAL_FILAMENT_DIA; //Set nominal filament width, can be changed with M404
  295. bool filament_sensor=false; //M405 turns on filament_sensor control, M406 turns it off
  296. float filament_width_meas=DEFAULT_MEASURED_FILAMENT_DIA; //Stores the measured filament diameter
  297. signed char measurement_delay[MAX_MEASUREMENT_DELAY+1]; //ring buffer to delay measurement store extruder factor after subtracting 100
  298. int delay_index1=0; //index into ring buffer
  299. int delay_index2=-1; //index into ring buffer - set to -1 on startup to indicate ring buffer needs to be initialized
  300. float delay_dist=0; //delay distance counter
  301. int meas_delay_cm = MEASUREMENT_DELAY_CM; //distance delay setting
  302. #endif
  303. const char errormagic[] PROGMEM = "Error:";
  304. const char echomagic[] PROGMEM = "echo:";
  305. //===========================================================================
  306. //=============================Private Variables=============================
  307. //===========================================================================
  308. const char axis_codes[NUM_AXIS] = {'X', 'Y', 'Z', 'E'};
  309. float destination[NUM_AXIS] = { 0.0, 0.0, 0.0, 0.0};
  310. static float delta[3] = {0.0, 0.0, 0.0};
  311. // For tracing an arc
  312. static float offset[3] = {0.0, 0.0, 0.0};
  313. static bool home_all_axis = true;
  314. static float feedrate = 1500.0, next_feedrate, saved_feedrate;
  315. static long gcode_N, gcode_LastN, Stopped_gcode_LastN = 0;
  316. // Determines Absolute or Relative Coordinates.
  317. // Also there is bool axis_relative_modes[] per axis flag.
  318. static bool relative_mode = false;
  319. // String circular buffer. Commands may be pushed to the buffer from both sides:
  320. // Chained commands will be pushed to the front, interactive (from LCD menu)
  321. // and printing commands (from serial line or from SD card) are pushed to the tail.
  322. // First character of each entry indicates the type of the entry:
  323. #define CMDBUFFER_CURRENT_TYPE_UNKNOWN 0
  324. // Command in cmdbuffer was sent over USB.
  325. #define CMDBUFFER_CURRENT_TYPE_USB 1
  326. // Command in cmdbuffer was read from SDCARD.
  327. #define CMDBUFFER_CURRENT_TYPE_SDCARD 2
  328. // Command in cmdbuffer was generated by the UI.
  329. #define CMDBUFFER_CURRENT_TYPE_UI 3
  330. // Command in cmdbuffer was generated by another G-code.
  331. #define CMDBUFFER_CURRENT_TYPE_CHAINED 4
  332. // How much space to reserve for the chained commands
  333. // of type CMDBUFFER_CURRENT_TYPE_CHAINED,
  334. // which are pushed to the front of the queue?
  335. // Maximum 5 commands of max length 20 + null terminator.
  336. #define CMDBUFFER_RESERVE_FRONT (5*21)
  337. // Reserve BUFSIZE lines of length MAX_CMD_SIZE plus CMDBUFFER_RESERVE_FRONT.
  338. static char cmdbuffer[BUFSIZE * (MAX_CMD_SIZE + 1) + CMDBUFFER_RESERVE_FRONT];
  339. // Head of the circular buffer, where to read.
  340. static int bufindr = 0;
  341. // Tail of the buffer, where to write.
  342. static int bufindw = 0;
  343. // Number of lines in cmdbuffer.
  344. static int buflen = 0;
  345. // Flag for processing the current command inside the main Arduino loop().
  346. // If a new command was pushed to the front of a command buffer while
  347. // processing another command, this replaces the command on the top.
  348. // Therefore don't remove the command from the queue in the loop() function.
  349. static bool cmdbuffer_front_already_processed = false;
  350. // Type of a command, which is to be executed right now.
  351. #define CMDBUFFER_CURRENT_TYPE (cmdbuffer[bufindr])
  352. // String of a command, which is to be executed right now.
  353. #define CMDBUFFER_CURRENT_STRING (cmdbuffer+bufindr+1)
  354. // Enable debugging of the command buffer.
  355. // Debugging information will be sent to serial line.
  356. // #define CMDBUFFER_DEBUG
  357. static int serial_count = 0;
  358. static boolean comment_mode = false;
  359. static char *strchr_pointer; // just a pointer to find chars in the command string like X, Y, Z, E, etc
  360. const int sensitive_pins[] = SENSITIVE_PINS; // Sensitive pin list for M42
  361. //static float tt = 0;
  362. //static float bt = 0;
  363. //Inactivity shutdown variables
  364. static unsigned long previous_millis_cmd = 0;
  365. unsigned long max_inactive_time = 0;
  366. static unsigned long stepper_inactive_time = DEFAULT_STEPPER_DEACTIVE_TIME*1000l;
  367. unsigned long starttime=0;
  368. unsigned long stoptime=0;
  369. unsigned long _usb_timer = 0;
  370. static uint8_t tmp_extruder;
  371. bool Stopped=false;
  372. #if NUM_SERVOS > 0
  373. Servo servos[NUM_SERVOS];
  374. #endif
  375. bool CooldownNoWait = true;
  376. bool target_direction;
  377. //Insert variables if CHDK is defined
  378. #ifdef CHDK
  379. unsigned long chdkHigh = 0;
  380. boolean chdkActive = false;
  381. #endif
  382. //===========================================================================
  383. //=============================Routines======================================
  384. //===========================================================================
  385. void get_arc_coordinates();
  386. bool setTargetedHotend(int code);
  387. void serial_echopair_P(const char *s_P, float v)
  388. { serialprintPGM(s_P); SERIAL_ECHO(v); }
  389. void serial_echopair_P(const char *s_P, double v)
  390. { serialprintPGM(s_P); SERIAL_ECHO(v); }
  391. void serial_echopair_P(const char *s_P, unsigned long v)
  392. { serialprintPGM(s_P); SERIAL_ECHO(v); }
  393. #ifdef SDSUPPORT
  394. #include "SdFatUtil.h"
  395. int freeMemory() { return SdFatUtil::FreeRam(); }
  396. #else
  397. extern "C" {
  398. extern unsigned int __bss_end;
  399. extern unsigned int __heap_start;
  400. extern void *__brkval;
  401. int freeMemory() {
  402. int free_memory;
  403. if ((int)__brkval == 0)
  404. free_memory = ((int)&free_memory) - ((int)&__bss_end);
  405. else
  406. free_memory = ((int)&free_memory) - ((int)__brkval);
  407. return free_memory;
  408. }
  409. }
  410. #endif //!SDSUPPORT
  411. // Pop the currently processed command from the queue.
  412. // It is expected, that there is at least one command in the queue.
  413. bool cmdqueue_pop_front()
  414. {
  415. if (buflen > 0) {
  416. #ifdef CMDBUFFER_DEBUG
  417. SERIAL_ECHOPGM("Dequeing ");
  418. SERIAL_ECHO(cmdbuffer+bufindr+1);
  419. SERIAL_ECHOLNPGM("");
  420. SERIAL_ECHOPGM("Old indices: buflen ");
  421. SERIAL_ECHO(buflen);
  422. SERIAL_ECHOPGM(", bufindr ");
  423. SERIAL_ECHO(bufindr);
  424. SERIAL_ECHOPGM(", bufindw ");
  425. SERIAL_ECHO(bufindw);
  426. SERIAL_ECHOPGM(", serial_count ");
  427. SERIAL_ECHO(serial_count);
  428. SERIAL_ECHOPGM(", bufsize ");
  429. SERIAL_ECHO(sizeof(cmdbuffer));
  430. SERIAL_ECHOLNPGM("");
  431. #endif /* CMDBUFFER_DEBUG */
  432. if (-- buflen == 0) {
  433. // Empty buffer.
  434. if (serial_count == 0)
  435. // No serial communication is pending. Reset both pointers to zero.
  436. bufindw = 0;
  437. bufindr = bufindw;
  438. } else {
  439. // There is at least one ready line in the buffer.
  440. // First skip the current command ID and iterate up to the end of the string.
  441. for (++ bufindr; cmdbuffer[bufindr] != 0; ++ bufindr) ;
  442. // Second, skip the end of string null character and iterate until a nonzero command ID is found.
  443. for (++ bufindr; bufindr < sizeof(cmdbuffer) && cmdbuffer[bufindr] == 0; ++ bufindr) ;
  444. // If the end of the buffer was empty,
  445. if (bufindr == sizeof(cmdbuffer)) {
  446. // skip to the start and find the nonzero command.
  447. for (bufindr = 0; cmdbuffer[bufindr] == 0; ++ bufindr) ;
  448. }
  449. #ifdef CMDBUFFER_DEBUG
  450. SERIAL_ECHOPGM("New indices: buflen ");
  451. SERIAL_ECHO(buflen);
  452. SERIAL_ECHOPGM(", bufindr ");
  453. SERIAL_ECHO(bufindr);
  454. SERIAL_ECHOPGM(", bufindw ");
  455. SERIAL_ECHO(bufindw);
  456. SERIAL_ECHOPGM(", serial_count ");
  457. SERIAL_ECHO(serial_count);
  458. SERIAL_ECHOPGM(" new command on the top: ");
  459. SERIAL_ECHO(cmdbuffer+bufindr+1);
  460. SERIAL_ECHOLNPGM("");
  461. #endif /* CMDBUFFER_DEBUG */
  462. }
  463. return true;
  464. }
  465. return false;
  466. }
  467. void cmdqueue_reset()
  468. {
  469. while (cmdqueue_pop_front()) ;
  470. }
  471. // How long a string could be pushed to the front of the command queue?
  472. // If yes, adjust bufindr to the new position, where the new command could be enqued.
  473. // len_asked does not contain the zero terminator size.
  474. bool cmdqueue_could_enqueue_front(int len_asked)
  475. {
  476. // MAX_CMD_SIZE has to accommodate the zero terminator.
  477. if (len_asked >= MAX_CMD_SIZE)
  478. return false;
  479. // Remove the currently processed command from the queue.
  480. if (! cmdbuffer_front_already_processed) {
  481. cmdqueue_pop_front();
  482. cmdbuffer_front_already_processed = true;
  483. }
  484. if (bufindr == bufindw && buflen > 0)
  485. // Full buffer.
  486. return false;
  487. // Adjust the end of the write buffer based on whether a partial line is in the receive buffer.
  488. int endw = (serial_count > 0) ? (bufindw + MAX_CMD_SIZE + 1) : bufindw;
  489. if (bufindw < bufindr) {
  490. int bufindr_new = bufindr - len_asked - 2;
  491. // Simple case. There is a contiguous space between the write buffer and the read buffer.
  492. if (endw <= bufindr_new) {
  493. bufindr = bufindr_new;
  494. return true;
  495. }
  496. } else {
  497. // Otherwise the free space is split between the start and end.
  498. if (len_asked + 2 <= bufindr) {
  499. // Could fit at the start.
  500. bufindr -= len_asked + 2;
  501. return true;
  502. }
  503. int bufindr_new = sizeof(cmdbuffer) - len_asked - 2;
  504. if (endw <= bufindr_new) {
  505. memset(cmdbuffer, 0, bufindr);
  506. bufindr = bufindr_new;
  507. return true;
  508. }
  509. }
  510. return false;
  511. }
  512. // Could one enqueue a command of lenthg len_asked into the buffer,
  513. // while leaving CMDBUFFER_RESERVE_FRONT at the start?
  514. // If yes, adjust bufindw to the new position, where the new command could be enqued.
  515. // len_asked does not contain the zero terminator size.
  516. bool cmdqueue_could_enqueue_back(int len_asked)
  517. {
  518. // MAX_CMD_SIZE has to accommodate the zero terminator.
  519. if (len_asked >= MAX_CMD_SIZE)
  520. return false;
  521. if (bufindr == bufindw && buflen > 0)
  522. // Full buffer.
  523. return false;
  524. if (serial_count > 0) {
  525. // If there is some data stored starting at bufindw, len_asked is certainly smaller than
  526. // the allocated data buffer. Try to reserve a new buffer and to move the already received
  527. // serial data.
  528. // How much memory to reserve for the commands pushed to the front?
  529. // End of the queue, when pushing to the end.
  530. int endw = bufindw + len_asked + 2;
  531. if (bufindw < bufindr)
  532. // Simple case. There is a contiguous space between the write buffer and the read buffer.
  533. return endw + CMDBUFFER_RESERVE_FRONT <= bufindr;
  534. // Otherwise the free space is split between the start and end.
  535. if (// Could one fit to the end, including the reserve?
  536. endw + CMDBUFFER_RESERVE_FRONT <= sizeof(cmdbuffer) ||
  537. // Could one fit to the end, and the reserve to the start?
  538. (endw <= sizeof(cmdbuffer) && CMDBUFFER_RESERVE_FRONT <= bufindr))
  539. return true;
  540. // Could one fit both to the start?
  541. if (len_asked + 2 + CMDBUFFER_RESERVE_FRONT <= bufindr) {
  542. // Mark the rest of the buffer as used.
  543. memset(cmdbuffer+bufindw, 0, sizeof(cmdbuffer)-bufindw);
  544. // and point to the start.
  545. bufindw = 0;
  546. return true;
  547. }
  548. } else {
  549. // How much memory to reserve for the commands pushed to the front?
  550. // End of the queue, when pushing to the end.
  551. int endw = bufindw + len_asked + 2;
  552. if (bufindw < bufindr)
  553. // Simple case. There is a contiguous space between the write buffer and the read buffer.
  554. return endw + CMDBUFFER_RESERVE_FRONT <= bufindr;
  555. // Otherwise the free space is split between the start and end.
  556. if (// Could one fit to the end, including the reserve?
  557. endw + CMDBUFFER_RESERVE_FRONT <= sizeof(cmdbuffer) ||
  558. // Could one fit to the end, and the reserve to the start?
  559. (endw <= sizeof(cmdbuffer) && CMDBUFFER_RESERVE_FRONT <= bufindr))
  560. return true;
  561. // Could one fit both to the start?
  562. if (len_asked + 2 + CMDBUFFER_RESERVE_FRONT <= bufindr) {
  563. // Mark the rest of the buffer as used.
  564. memset(cmdbuffer+bufindw, 0, sizeof(cmdbuffer)-bufindw);
  565. // and point to the start.
  566. bufindw = 0;
  567. return true;
  568. }
  569. }
  570. return false;
  571. }
  572. #ifdef CMDBUFFER_DEBUG
  573. static void cmdqueue_dump_to_serial_single_line(int nr, const char *p)
  574. {
  575. SERIAL_ECHOPGM("Entry nr: ");
  576. SERIAL_ECHO(nr);
  577. SERIAL_ECHOPGM(", type: ");
  578. SERIAL_ECHO(int(*p));
  579. SERIAL_ECHOPGM(", cmd: ");
  580. SERIAL_ECHO(p+1);
  581. SERIAL_ECHOLNPGM("");
  582. }
  583. static void cmdqueue_dump_to_serial()
  584. {
  585. if (buflen == 0) {
  586. SERIAL_ECHOLNPGM("The command buffer is empty.");
  587. } else {
  588. SERIAL_ECHOPGM("Content of the buffer: entries ");
  589. SERIAL_ECHO(buflen);
  590. SERIAL_ECHOPGM(", indr ");
  591. SERIAL_ECHO(bufindr);
  592. SERIAL_ECHOPGM(", indw ");
  593. SERIAL_ECHO(bufindw);
  594. SERIAL_ECHOLNPGM("");
  595. int nr = 0;
  596. if (bufindr < bufindw) {
  597. for (const char *p = cmdbuffer + bufindr; p < cmdbuffer + bufindw; ++ nr) {
  598. cmdqueue_dump_to_serial_single_line(nr, p);
  599. // Skip the command.
  600. for (++p; *p != 0; ++ p);
  601. // Skip the gaps.
  602. for (++p; p < cmdbuffer + bufindw && *p == 0; ++ p);
  603. }
  604. } else {
  605. for (const char *p = cmdbuffer + bufindr; p < cmdbuffer + sizeof(cmdbuffer); ++ nr) {
  606. cmdqueue_dump_to_serial_single_line(nr, p);
  607. // Skip the command.
  608. for (++p; *p != 0; ++ p);
  609. // Skip the gaps.
  610. for (++p; p < cmdbuffer + sizeof(cmdbuffer) && *p == 0; ++ p);
  611. }
  612. for (const char *p = cmdbuffer; p < cmdbuffer + bufindw; ++ nr) {
  613. cmdqueue_dump_to_serial_single_line(nr, p);
  614. // Skip the command.
  615. for (++p; *p != 0; ++ p);
  616. // Skip the gaps.
  617. for (++p; p < cmdbuffer + bufindw && *p == 0; ++ p);
  618. }
  619. }
  620. SERIAL_ECHOLNPGM("End of the buffer.");
  621. }
  622. }
  623. #endif /* CMDBUFFER_DEBUG */
  624. //adds an command to the main command buffer
  625. //thats really done in a non-safe way.
  626. //needs overworking someday
  627. // Currently the maximum length of a command piped through this function is around 20 characters
  628. void enquecommand(const char *cmd, bool from_progmem)
  629. {
  630. int len = from_progmem ? strlen_P(cmd) : strlen(cmd);
  631. // Does cmd fit the queue while leaving sufficient space at the front for the chained commands?
  632. // If it fits, it may move bufindw, so it points to a contiguous buffer, which fits cmd.
  633. if (cmdqueue_could_enqueue_back(len)) {
  634. // This is dangerous if a mixing of serial and this happens
  635. // This may easily be tested: If serial_count > 0, we have a problem.
  636. cmdbuffer[bufindw] = CMDBUFFER_CURRENT_TYPE_UI;
  637. if (from_progmem)
  638. strcpy_P(cmdbuffer + bufindw + 1, cmd);
  639. else
  640. strcpy(cmdbuffer + bufindw + 1, cmd);
  641. SERIAL_ECHO_START;
  642. SERIAL_ECHORPGM(MSG_Enqueing);
  643. SERIAL_ECHO(cmdbuffer + bufindw + 1);
  644. SERIAL_ECHOLNPGM("\"");
  645. bufindw += len + 2;
  646. if (bufindw == sizeof(cmdbuffer))
  647. bufindw = 0;
  648. ++ buflen;
  649. #ifdef CMDBUFFER_DEBUG
  650. cmdqueue_dump_to_serial();
  651. #endif /* CMDBUFFER_DEBUG */
  652. } else {
  653. SERIAL_ERROR_START;
  654. SERIAL_ECHORPGM(MSG_Enqueing);
  655. if (from_progmem)
  656. SERIAL_PROTOCOLRPGM(cmd);
  657. else
  658. SERIAL_ECHO(cmd);
  659. SERIAL_ECHOLNPGM("\" failed: Buffer full!");
  660. #ifdef CMDBUFFER_DEBUG
  661. cmdqueue_dump_to_serial();
  662. #endif /* CMDBUFFER_DEBUG */
  663. }
  664. }
  665. void enquecommand_front(const char *cmd, bool from_progmem)
  666. {
  667. int len = from_progmem ? strlen_P(cmd) : strlen(cmd);
  668. // Does cmd fit the queue? This call shall move bufindr, so the command may be copied.
  669. if (cmdqueue_could_enqueue_front(len)) {
  670. cmdbuffer[bufindr] = CMDBUFFER_CURRENT_TYPE_UI;
  671. if (from_progmem)
  672. strcpy_P(cmdbuffer + bufindr + 1, cmd);
  673. else
  674. strcpy(cmdbuffer + bufindr + 1, cmd);
  675. ++ buflen;
  676. SERIAL_ECHO_START;
  677. SERIAL_ECHOPGM("Enqueing to the front: \"");
  678. SERIAL_ECHO(cmdbuffer + bufindr + 1);
  679. SERIAL_ECHOLNPGM("\"");
  680. #ifdef CMDBUFFER_DEBUG
  681. cmdqueue_dump_to_serial();
  682. #endif /* CMDBUFFER_DEBUG */
  683. } else {
  684. SERIAL_ERROR_START;
  685. SERIAL_ECHOPGM("Enqueing to the front: \"");
  686. if (from_progmem)
  687. SERIAL_PROTOCOLRPGM(cmd);
  688. else
  689. SERIAL_ECHO(cmd);
  690. SERIAL_ECHOLNPGM("\" failed: Buffer full!");
  691. #ifdef CMDBUFFER_DEBUG
  692. cmdqueue_dump_to_serial();
  693. #endif /* CMDBUFFER_DEBUG */
  694. }
  695. }
  696. // Mark the command at the top of the command queue as new.
  697. // Therefore it will not be removed from the queue.
  698. void repeatcommand_front()
  699. {
  700. cmdbuffer_front_already_processed = true;
  701. }
  702. void setup_killpin()
  703. {
  704. #if defined(KILL_PIN) && KILL_PIN > -1
  705. SET_INPUT(KILL_PIN);
  706. WRITE(KILL_PIN,HIGH);
  707. #endif
  708. }
  709. // Set home pin
  710. void setup_homepin(void)
  711. {
  712. #if defined(HOME_PIN) && HOME_PIN > -1
  713. SET_INPUT(HOME_PIN);
  714. WRITE(HOME_PIN,HIGH);
  715. #endif
  716. }
  717. void setup_photpin()
  718. {
  719. #if defined(PHOTOGRAPH_PIN) && PHOTOGRAPH_PIN > -1
  720. SET_OUTPUT(PHOTOGRAPH_PIN);
  721. WRITE(PHOTOGRAPH_PIN, LOW);
  722. #endif
  723. }
  724. void setup_powerhold()
  725. {
  726. #if defined(SUICIDE_PIN) && SUICIDE_PIN > -1
  727. SET_OUTPUT(SUICIDE_PIN);
  728. WRITE(SUICIDE_PIN, HIGH);
  729. #endif
  730. #if defined(PS_ON_PIN) && PS_ON_PIN > -1
  731. SET_OUTPUT(PS_ON_PIN);
  732. #if defined(PS_DEFAULT_OFF)
  733. WRITE(PS_ON_PIN, PS_ON_ASLEEP);
  734. #else
  735. WRITE(PS_ON_PIN, PS_ON_AWAKE);
  736. #endif
  737. #endif
  738. }
  739. void suicide()
  740. {
  741. #if defined(SUICIDE_PIN) && SUICIDE_PIN > -1
  742. SET_OUTPUT(SUICIDE_PIN);
  743. WRITE(SUICIDE_PIN, LOW);
  744. #endif
  745. }
  746. void servo_init()
  747. {
  748. #if (NUM_SERVOS >= 1) && defined(SERVO0_PIN) && (SERVO0_PIN > -1)
  749. servos[0].attach(SERVO0_PIN);
  750. #endif
  751. #if (NUM_SERVOS >= 2) && defined(SERVO1_PIN) && (SERVO1_PIN > -1)
  752. servos[1].attach(SERVO1_PIN);
  753. #endif
  754. #if (NUM_SERVOS >= 3) && defined(SERVO2_PIN) && (SERVO2_PIN > -1)
  755. servos[2].attach(SERVO2_PIN);
  756. #endif
  757. #if (NUM_SERVOS >= 4) && defined(SERVO3_PIN) && (SERVO3_PIN > -1)
  758. servos[3].attach(SERVO3_PIN);
  759. #endif
  760. #if (NUM_SERVOS >= 5)
  761. #error "TODO: enter initalisation code for more servos"
  762. #endif
  763. }
  764. static void lcd_language_menu();
  765. #ifdef MESH_BED_LEVELING
  766. enum MeshLevelingState { MeshReport, MeshStart, MeshNext, MeshSet };
  767. #endif
  768. // "Setup" function is called by the Arduino framework on startup.
  769. // Before startup, the Timers-functions (PWM)/Analog RW and HardwareSerial provided by the Arduino-code
  770. // are initialized by the main() routine provided by the Arduino framework.
  771. void setup()
  772. {
  773. setup_killpin();
  774. setup_powerhold();
  775. MYSERIAL.begin(BAUDRATE);
  776. SERIAL_PROTOCOLLNPGM("start");
  777. SERIAL_ECHO_START;
  778. #if 0
  779. SERIAL_ECHOLN("Reading eeprom from 0 to 100: start");
  780. for (int i = 0; i < 4096; ++ i) {
  781. int b = eeprom_read_byte((unsigned char*)i);
  782. if (b != 255) {
  783. SERIAL_ECHO(i);
  784. SERIAL_ECHO(":");
  785. SERIAL_ECHO(b);
  786. SERIAL_ECHOLN("");
  787. }
  788. }
  789. SERIAL_ECHOLN("Reading eeprom from 0 to 100: done");
  790. #endif
  791. // Check startup - does nothing if bootloader sets MCUSR to 0
  792. byte mcu = MCUSR;
  793. if(mcu & 1) SERIAL_ECHOLNRPGM(MSG_POWERUP);
  794. if(mcu & 2) SERIAL_ECHOLNRPGM(MSG_EXTERNAL_RESET);
  795. if(mcu & 4) SERIAL_ECHOLNRPGM(MSG_BROWNOUT_RESET);
  796. if(mcu & 8) SERIAL_ECHOLNRPGM(MSG_WATCHDOG_RESET);
  797. if(mcu & 32) SERIAL_ECHOLNRPGM(MSG_SOFTWARE_RESET);
  798. MCUSR=0;
  799. //SERIAL_ECHORPGM(MSG_MARLIN);
  800. //SERIAL_ECHOLNRPGM(VERSION_STRING);
  801. #ifdef STRING_VERSION_CONFIG_H
  802. #ifdef STRING_CONFIG_H_AUTHOR
  803. SERIAL_ECHO_START;
  804. SERIAL_ECHORPGM(MSG_CONFIGURATION_VER);
  805. SERIAL_ECHOPGM(STRING_VERSION_CONFIG_H);
  806. SERIAL_ECHORPGM(MSG_AUTHOR);
  807. SERIAL_ECHOLNPGM(STRING_CONFIG_H_AUTHOR);
  808. SERIAL_ECHOPGM("Compiled: ");
  809. SERIAL_ECHOLNPGM(__DATE__);
  810. #endif
  811. #endif
  812. SERIAL_ECHO_START;
  813. SERIAL_ECHORPGM(MSG_FREE_MEMORY);
  814. SERIAL_ECHO(freeMemory());
  815. SERIAL_ECHORPGM(MSG_PLANNER_BUFFER_BYTES);
  816. SERIAL_ECHOLN((int)sizeof(block_t)*BLOCK_BUFFER_SIZE);
  817. // loads data from EEPROM if available else uses defaults (and resets step acceleration rate)
  818. Config_RetrieveSettings();
  819. tp_init(); // Initialize temperature loop
  820. plan_init(); // Initialize planner;
  821. watchdog_init();
  822. st_init(); // Initialize stepper, this enables interrupts!
  823. setup_photpin();
  824. servo_init();
  825. // Reset the machine correction matrix.
  826. // It does not make sense to load the correction matrix until the machine is homed.
  827. world2machine_reset();
  828. lcd_init();
  829. if (!READ(BTN_ENC))
  830. {
  831. _delay_ms(1000);
  832. if (!READ(BTN_ENC))
  833. {
  834. SET_OUTPUT(BEEPER);
  835. WRITE(BEEPER, HIGH);
  836. lcd_force_language_selection();
  837. farm_no = 0;
  838. EEPROM_save_B(EEPROM_FARM_MODE, &farm_no);
  839. farm_mode = false;
  840. while (!READ(BTN_ENC));
  841. WRITE(BEEPER, LOW);
  842. #ifdef MESH_BED_LEVELING
  843. _delay_ms(2000);
  844. if (!READ(BTN_ENC))
  845. {
  846. WRITE(BEEPER, HIGH);
  847. _delay_ms(100);
  848. WRITE(BEEPER, LOW);
  849. _delay_ms(200);
  850. WRITE(BEEPER, HIGH);
  851. _delay_ms(100);
  852. WRITE(BEEPER, LOW);
  853. int _z = 0;
  854. eeprom_write_byte((unsigned char*)EEPROM_BABYSTEP_Z_SET, 0x01);
  855. EEPROM_save_B(EEPROM_BABYSTEP_X, &_z);
  856. EEPROM_save_B(EEPROM_BABYSTEP_Y, &_z);
  857. EEPROM_save_B(EEPROM_BABYSTEP_Z, &_z);
  858. }
  859. else
  860. {
  861. WRITE(BEEPER, HIGH);
  862. _delay_ms(100);
  863. WRITE(BEEPER, LOW);
  864. }
  865. #endif // mesh
  866. }
  867. }
  868. else
  869. {
  870. _delay_ms(1000); // wait 1sec to display the splash screen
  871. }
  872. #if defined(CONTROLLERFAN_PIN) && CONTROLLERFAN_PIN > -1
  873. SET_OUTPUT(CONTROLLERFAN_PIN); //Set pin used for driver cooling fan
  874. #endif
  875. #ifdef DIGIPOT_I2C
  876. digipot_i2c_init();
  877. #endif
  878. setup_homepin();
  879. #if defined(Z_AXIS_ALWAYS_ON)
  880. enable_z();
  881. #endif
  882. EEPROM_read_B(EEPROM_FARM_MODE, &farm_no);
  883. if (farm_no > 0)
  884. {
  885. farm_mode = true;
  886. farm_no = farm_no;
  887. prusa_statistics(8);
  888. }
  889. else
  890. {
  891. farm_mode = false;
  892. farm_no = 0;
  893. }
  894. // Enable Toshiba FlashAir SD card / WiFi enahanced card.
  895. card.ToshibaFlashAir_enable(eeprom_read_byte((unsigned char*)EEPROM_TOSHIBA_FLASH_AIR_COMPATIBLITY) == 1);
  896. if (eeprom_read_dword((uint32_t*)(EEPROM_TOP-4)) == 0x0ffffffff &&
  897. eeprom_read_dword((uint32_t*)(EEPROM_TOP-8)) == 0x0ffffffff &&
  898. eeprom_read_dword((uint32_t*)(EEPROM_TOP-12)) == 0x0ffffffff) {
  899. // Maiden startup. The firmware has been loaded and first started on a virgin RAMBo board,
  900. // where all the EEPROM entries are set to 0x0ff.
  901. // Once a firmware boots up, it forces at least a language selection, which changes
  902. // EEPROM_LANG to number lower than 0x0ff.
  903. // 1) Set a high power mode.
  904. eeprom_write_byte((uint8_t*)EEPROM_SILENT, 0);
  905. }
  906. // In the future, somewhere here would one compare the current firmware version against the firmware version stored in the EEPROM.
  907. // If they differ, an update procedure may need to be performed. At the end of this block, the current firmware version
  908. // is being written into the EEPROM, so the update procedure will be triggered only once.
  909. lang_selected = eeprom_read_byte((uint8_t*)EEPROM_LANG);
  910. if (lang_selected >= LANG_NUM){
  911. lcd_mylang();
  912. }
  913. if (eeprom_read_byte((uint8_t*)EEPROM_BABYSTEP_Z_SET) == 0x0ff) {
  914. // Reset the babystepping values, so the printer will not move the Z axis up when the babystepping is enabled.
  915. // eeprom_update_byte((uint8_t*)EEPROM_BABYSTEP_X, 0x0ff);
  916. // eeprom_update_byte((uint8_t*)EEPROM_BABYSTEP_Y, 0x0ff);
  917. eeprom_update_byte((uint8_t*)EEPROM_BABYSTEP_Z, 0x0ff);
  918. // Get the selected laugnage index before display update.
  919. lang_selected = eeprom_read_byte((uint8_t*)EEPROM_LANG);
  920. if (lang_selected >= LANG_NUM)
  921. lang_selected = LANG_ID_DEFAULT; // Czech language
  922. // Show the message.
  923. lcd_show_fullscreen_message_and_wait_P(MSG_BABYSTEP_Z_NOT_SET);
  924. lcd_update_enable(true);
  925. lcd_implementation_clear();
  926. }
  927. // Store the currently running firmware into an eeprom,
  928. // so the next time the firmware gets updated, it will know from which version it has been updated.
  929. update_current_firmware_version_to_eeprom();
  930. }
  931. // The loop() function is called in an endless loop by the Arduino framework from the default main() routine.
  932. // Before loop(), the setup() function is called by the main() routine.
  933. void loop()
  934. {
  935. if (usb_printing_counter > 0 && millis()-_usb_timer > 1000)
  936. {
  937. is_usb_printing = true;
  938. usb_printing_counter--;
  939. _usb_timer = millis();
  940. }
  941. if (usb_printing_counter == 0)
  942. {
  943. is_usb_printing = false;
  944. }
  945. get_command();
  946. #ifdef SDSUPPORT
  947. card.checkautostart(false);
  948. #endif
  949. if(buflen)
  950. {
  951. #ifdef SDSUPPORT
  952. if(card.saving)
  953. {
  954. // Saving a G-code file onto an SD-card is in progress.
  955. // Saving starts with M28, saving until M29 is seen.
  956. if(strstr_P(CMDBUFFER_CURRENT_STRING, PSTR("M29")) == NULL) {
  957. card.write_command(CMDBUFFER_CURRENT_STRING);
  958. if(card.logging)
  959. process_commands();
  960. else
  961. SERIAL_PROTOCOLLNRPGM(MSG_OK);
  962. } else {
  963. card.closefile();
  964. SERIAL_PROTOCOLLNRPGM(MSG_FILE_SAVED);
  965. }
  966. } else {
  967. process_commands();
  968. }
  969. #else
  970. process_commands();
  971. #endif //SDSUPPORT
  972. if (! cmdbuffer_front_already_processed)
  973. cmdqueue_pop_front();
  974. cmdbuffer_front_already_processed = false;
  975. }
  976. //check heater every n milliseconds
  977. manage_heater();
  978. manage_inactivity();
  979. checkHitEndstops();
  980. lcd_update();
  981. }
  982. void get_command()
  983. {
  984. // Test and reserve space for the new command string.
  985. if (! cmdqueue_could_enqueue_back(MAX_CMD_SIZE-1))
  986. return;
  987. while (MYSERIAL.available() > 0) {
  988. char serial_char = MYSERIAL.read();
  989. if (serial_char < 0)
  990. // Ignore extended ASCII characters. These characters have no meaning in the G-code apart from the file names
  991. // and Marlin does not support such file names anyway.
  992. // Serial characters with a highest bit set to 1 are generated when the USB cable is unplugged, leading
  993. // to a hang-up of the print process from an SD card.
  994. continue;
  995. if(serial_char == '\n' ||
  996. serial_char == '\r' ||
  997. (serial_char == ':' && comment_mode == false) ||
  998. serial_count >= (MAX_CMD_SIZE - 1) )
  999. {
  1000. if(!serial_count) { //if empty line
  1001. comment_mode = false; //for new command
  1002. return;
  1003. }
  1004. cmdbuffer[bufindw+serial_count+1] = 0; //terminate string
  1005. if(!comment_mode){
  1006. comment_mode = false; //for new command
  1007. if ((strchr_pointer = strchr(cmdbuffer+bufindw+1, 'N')) != NULL)
  1008. {
  1009. // Line number met. When sending a G-code over a serial line, each line may be stamped with its index,
  1010. // and Marlin tests, whether the successive lines are stamped with an increasing line number ID.
  1011. gcode_N = (strtol(strchr_pointer+1, NULL, 10));
  1012. if(gcode_N != gcode_LastN+1 && (strstr_P(cmdbuffer+bufindw+1, PSTR("M110")) == NULL) ) {
  1013. // M110 - set current line number.
  1014. // Line numbers not sent in succession.
  1015. SERIAL_ERROR_START;
  1016. SERIAL_ERRORRPGM(MSG_ERR_LINE_NO);
  1017. SERIAL_ERRORLN(gcode_LastN);
  1018. //Serial.println(gcode_N);
  1019. FlushSerialRequestResend();
  1020. serial_count = 0;
  1021. return;
  1022. }
  1023. if((strchr_pointer = strchr(cmdbuffer+bufindw+1, '*')) != NULL)
  1024. {
  1025. byte checksum = 0;
  1026. char *p = cmdbuffer+bufindw+1;
  1027. while (p != strchr_pointer)
  1028. checksum = checksum^(*p++);
  1029. if (int(strtol(strchr_pointer+1, NULL, 10)) != int(checksum)) {
  1030. SERIAL_ERROR_START;
  1031. SERIAL_ERRORRPGM(MSG_ERR_CHECKSUM_MISMATCH);
  1032. SERIAL_ERRORLN(gcode_LastN);
  1033. FlushSerialRequestResend();
  1034. serial_count = 0;
  1035. return;
  1036. }
  1037. // If no errors, remove the checksum and continue parsing.
  1038. *strchr_pointer = 0;
  1039. }
  1040. else
  1041. {
  1042. SERIAL_ERROR_START;
  1043. SERIAL_ERRORRPGM(MSG_ERR_NO_CHECKSUM);
  1044. SERIAL_ERRORLN(gcode_LastN);
  1045. FlushSerialRequestResend();
  1046. serial_count = 0;
  1047. return;
  1048. }
  1049. gcode_LastN = gcode_N;
  1050. //if no errors, continue parsing
  1051. } // end of 'N' command
  1052. else // if we don't receive 'N' but still see '*'
  1053. {
  1054. if((strchr(cmdbuffer+bufindw+1, '*') != NULL))
  1055. {
  1056. SERIAL_ERROR_START;
  1057. SERIAL_ERRORRPGM(MSG_ERR_NO_LINENUMBER_WITH_CHECKSUM);
  1058. SERIAL_ERRORLN(gcode_LastN);
  1059. serial_count = 0;
  1060. return;
  1061. }
  1062. } // end of '*' command
  1063. if ((strchr_pointer = strchr(cmdbuffer+bufindw+1, 'G')) != NULL) {
  1064. if (! IS_SD_PRINTING) {
  1065. usb_printing_counter = 10;
  1066. is_usb_printing = true;
  1067. }
  1068. if (Stopped == true) {
  1069. int gcode = strtol(strchr_pointer+1, NULL, 10);
  1070. if (gcode >= 0 && gcode <= 3) {
  1071. SERIAL_ERRORLNRPGM(MSG_ERR_STOPPED);
  1072. LCD_MESSAGERPGM(MSG_STOPPED);
  1073. }
  1074. }
  1075. } // end of 'G' command
  1076. //If command was e-stop process now
  1077. if(strcmp(cmdbuffer+bufindw+1, "M112") == 0)
  1078. kill();
  1079. // Store the current line into buffer, move to the next line.
  1080. cmdbuffer[bufindw] = CMDBUFFER_CURRENT_TYPE_USB;
  1081. #ifdef CMDBUFFER_DEBUG
  1082. SERIAL_ECHO_START;
  1083. SERIAL_ECHOPGM("Storing a command line to buffer: ");
  1084. SERIAL_ECHO(cmdbuffer+bufindw+1);
  1085. SERIAL_ECHOLNPGM("");
  1086. #endif /* CMDBUFFER_DEBUG */
  1087. bufindw += strlen(cmdbuffer+bufindw+1) + 2;
  1088. if (bufindw == sizeof(cmdbuffer))
  1089. bufindw = 0;
  1090. ++ buflen;
  1091. #ifdef CMDBUFFER_DEBUG
  1092. SERIAL_ECHOPGM("Number of commands in the buffer: ");
  1093. SERIAL_ECHO(buflen);
  1094. SERIAL_ECHOLNPGM("");
  1095. #endif /* CMDBUFFER_DEBUG */
  1096. } // end of 'not comment mode'
  1097. serial_count = 0; //clear buffer
  1098. // Don't call cmdqueue_could_enqueue_back if there are no characters waiting
  1099. // in the queue, as this function will reserve the memory.
  1100. if (MYSERIAL.available() == 0 || ! cmdqueue_could_enqueue_back(MAX_CMD_SIZE-1))
  1101. return;
  1102. } // end of "end of line" processing
  1103. else {
  1104. // Not an "end of line" symbol. Store the new character into a buffer.
  1105. if(serial_char == ';') comment_mode = true;
  1106. if(!comment_mode) cmdbuffer[bufindw+1+serial_count++] = serial_char;
  1107. }
  1108. } // end of serial line processing loop
  1109. #ifdef SDSUPPORT
  1110. if(!card.sdprinting || serial_count!=0){
  1111. // If there is a half filled buffer from serial line, wait until return before
  1112. // continuing with the serial line.
  1113. return;
  1114. }
  1115. //'#' stops reading from SD to the buffer prematurely, so procedural macro calls are possible
  1116. // if it occurs, stop_buffering is triggered and the buffer is ran dry.
  1117. // this character _can_ occur in serial com, due to checksums. however, no checksums are used in SD printing
  1118. static bool stop_buffering=false;
  1119. if(buflen==0) stop_buffering=false;
  1120. // Reads whole lines from the SD card. Never leaves a half-filled line in the cmdbuffer.
  1121. while( !card.eof() && !stop_buffering) {
  1122. int16_t n=card.get();
  1123. char serial_char = (char)n;
  1124. if(serial_char == '\n' ||
  1125. serial_char == '\r' ||
  1126. (serial_char == '#' && comment_mode == false) ||
  1127. (serial_char == ':' && comment_mode == false) ||
  1128. serial_count >= (MAX_CMD_SIZE - 1)||n==-1)
  1129. {
  1130. if(card.eof()){
  1131. SERIAL_PROTOCOLLNRPGM(MSG_FILE_PRINTED);
  1132. stoptime=millis();
  1133. char time[30];
  1134. unsigned long t=(stoptime-starttime)/1000;
  1135. int hours, minutes;
  1136. minutes=(t/60)%60;
  1137. hours=t/60/60;
  1138. save_statistics(total_filament_used, t);
  1139. sprintf_P(time, PSTR("%i hours %i minutes"),hours, minutes);
  1140. SERIAL_ECHO_START;
  1141. SERIAL_ECHOLN(time);
  1142. lcd_setstatus(time);
  1143. card.printingHasFinished();
  1144. card.checkautostart(true);
  1145. if (farm_mode)
  1146. {
  1147. prusa_statistics(6);
  1148. lcd_commands_type = LCD_COMMAND_FARM_MODE_CONFIRM;
  1149. }
  1150. }
  1151. if(serial_char=='#')
  1152. stop_buffering=true;
  1153. if(!serial_count)
  1154. {
  1155. comment_mode = false; //for new command
  1156. return; //if empty line
  1157. }
  1158. cmdbuffer[bufindw+serial_count+1] = 0; //terminate string
  1159. cmdbuffer[bufindw] = CMDBUFFER_CURRENT_TYPE_SDCARD;
  1160. ++ buflen;
  1161. bufindw += strlen(cmdbuffer+bufindw+1) + 2;
  1162. if (bufindw == sizeof(cmdbuffer))
  1163. bufindw = 0;
  1164. comment_mode = false; //for new command
  1165. serial_count = 0; //clear buffer
  1166. // The following line will reserve buffer space if available.
  1167. if (! cmdqueue_could_enqueue_back(MAX_CMD_SIZE-1))
  1168. return;
  1169. }
  1170. else
  1171. {
  1172. if(serial_char == ';') comment_mode = true;
  1173. if(!comment_mode) cmdbuffer[bufindw+1+serial_count++] = serial_char;
  1174. }
  1175. }
  1176. #endif //SDSUPPORT
  1177. }
  1178. // Return True if a character was found
  1179. static inline bool code_seen(char code) { return (strchr_pointer = strchr(CMDBUFFER_CURRENT_STRING, code)) != NULL; }
  1180. static inline bool code_seen(const char *code) { return (strchr_pointer = strstr(CMDBUFFER_CURRENT_STRING, code)) != NULL; }
  1181. static inline float code_value() { return strtod(strchr_pointer+1, NULL); }
  1182. static inline long code_value_long() { return strtol(strchr_pointer+1, NULL, 10); }
  1183. static inline int16_t code_value_short() { return int16_t(strtol(strchr_pointer+1, NULL, 10)); };
  1184. static inline uint8_t code_value_uint8() { return uint8_t(strtol(strchr_pointer+1, NULL, 10)); };
  1185. #define DEFINE_PGM_READ_ANY(type, reader) \
  1186. static inline type pgm_read_any(const type *p) \
  1187. { return pgm_read_##reader##_near(p); }
  1188. DEFINE_PGM_READ_ANY(float, float);
  1189. DEFINE_PGM_READ_ANY(signed char, byte);
  1190. #define XYZ_CONSTS_FROM_CONFIG(type, array, CONFIG) \
  1191. static const PROGMEM type array##_P[3] = \
  1192. { X_##CONFIG, Y_##CONFIG, Z_##CONFIG }; \
  1193. static inline type array(int axis) \
  1194. { return pgm_read_any(&array##_P[axis]); } \
  1195. type array##_ext(int axis) \
  1196. { return pgm_read_any(&array##_P[axis]); }
  1197. XYZ_CONSTS_FROM_CONFIG(float, base_min_pos, MIN_POS);
  1198. XYZ_CONSTS_FROM_CONFIG(float, base_max_pos, MAX_POS);
  1199. XYZ_CONSTS_FROM_CONFIG(float, base_home_pos, HOME_POS);
  1200. XYZ_CONSTS_FROM_CONFIG(float, max_length, MAX_LENGTH);
  1201. XYZ_CONSTS_FROM_CONFIG(float, home_retract_mm, HOME_RETRACT_MM);
  1202. XYZ_CONSTS_FROM_CONFIG(signed char, home_dir, HOME_DIR);
  1203. static void axis_is_at_home(int axis) {
  1204. current_position[axis] = base_home_pos(axis) + add_homing[axis];
  1205. min_pos[axis] = base_min_pos(axis) + add_homing[axis];
  1206. max_pos[axis] = base_max_pos(axis) + add_homing[axis];
  1207. }
  1208. inline void set_current_to_destination() { memcpy(current_position, destination, sizeof(current_position)); }
  1209. inline void set_destination_to_current() { memcpy(destination, current_position, sizeof(destination)); }
  1210. static void setup_for_endstop_move() {
  1211. saved_feedrate = feedrate;
  1212. saved_feedmultiply = feedmultiply;
  1213. feedmultiply = 100;
  1214. previous_millis_cmd = millis();
  1215. enable_endstops(true);
  1216. }
  1217. static void clean_up_after_endstop_move() {
  1218. #ifdef ENDSTOPS_ONLY_FOR_HOMING
  1219. enable_endstops(false);
  1220. #endif
  1221. feedrate = saved_feedrate;
  1222. feedmultiply = saved_feedmultiply;
  1223. previous_millis_cmd = millis();
  1224. }
  1225. #ifdef ENABLE_AUTO_BED_LEVELING
  1226. #ifdef AUTO_BED_LEVELING_GRID
  1227. static void set_bed_level_equation_lsq(double *plane_equation_coefficients)
  1228. {
  1229. vector_3 planeNormal = vector_3(-plane_equation_coefficients[0], -plane_equation_coefficients[1], 1);
  1230. planeNormal.debug("planeNormal");
  1231. plan_bed_level_matrix = matrix_3x3::create_look_at(planeNormal);
  1232. //bedLevel.debug("bedLevel");
  1233. //plan_bed_level_matrix.debug("bed level before");
  1234. //vector_3 uncorrected_position = plan_get_position_mm();
  1235. //uncorrected_position.debug("position before");
  1236. vector_3 corrected_position = plan_get_position();
  1237. // corrected_position.debug("position after");
  1238. current_position[X_AXIS] = corrected_position.x;
  1239. current_position[Y_AXIS] = corrected_position.y;
  1240. current_position[Z_AXIS] = corrected_position.z;
  1241. // put the bed at 0 so we don't go below it.
  1242. current_position[Z_AXIS] = zprobe_zoffset; // in the lsq we reach here after raising the extruder due to the loop structure
  1243. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1244. }
  1245. #else // not AUTO_BED_LEVELING_GRID
  1246. static void set_bed_level_equation_3pts(float z_at_pt_1, float z_at_pt_2, float z_at_pt_3) {
  1247. plan_bed_level_matrix.set_to_identity();
  1248. vector_3 pt1 = vector_3(ABL_PROBE_PT_1_X, ABL_PROBE_PT_1_Y, z_at_pt_1);
  1249. vector_3 pt2 = vector_3(ABL_PROBE_PT_2_X, ABL_PROBE_PT_2_Y, z_at_pt_2);
  1250. vector_3 pt3 = vector_3(ABL_PROBE_PT_3_X, ABL_PROBE_PT_3_Y, z_at_pt_3);
  1251. vector_3 from_2_to_1 = (pt1 - pt2).get_normal();
  1252. vector_3 from_2_to_3 = (pt3 - pt2).get_normal();
  1253. vector_3 planeNormal = vector_3::cross(from_2_to_1, from_2_to_3).get_normal();
  1254. planeNormal = vector_3(planeNormal.x, planeNormal.y, abs(planeNormal.z));
  1255. plan_bed_level_matrix = matrix_3x3::create_look_at(planeNormal);
  1256. vector_3 corrected_position = plan_get_position();
  1257. current_position[X_AXIS] = corrected_position.x;
  1258. current_position[Y_AXIS] = corrected_position.y;
  1259. current_position[Z_AXIS] = corrected_position.z;
  1260. // put the bed at 0 so we don't go below it.
  1261. current_position[Z_AXIS] = zprobe_zoffset;
  1262. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1263. }
  1264. #endif // AUTO_BED_LEVELING_GRID
  1265. static void run_z_probe() {
  1266. plan_bed_level_matrix.set_to_identity();
  1267. feedrate = homing_feedrate[Z_AXIS];
  1268. // move down until you find the bed
  1269. float zPosition = -10;
  1270. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder);
  1271. st_synchronize();
  1272. // we have to let the planner know where we are right now as it is not where we said to go.
  1273. zPosition = st_get_position_mm(Z_AXIS);
  1274. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS]);
  1275. // move up the retract distance
  1276. zPosition += home_retract_mm(Z_AXIS);
  1277. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder);
  1278. st_synchronize();
  1279. // move back down slowly to find bed
  1280. feedrate = homing_feedrate[Z_AXIS]/4;
  1281. zPosition -= home_retract_mm(Z_AXIS) * 2;
  1282. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder);
  1283. st_synchronize();
  1284. current_position[Z_AXIS] = st_get_position_mm(Z_AXIS);
  1285. // make sure the planner knows where we are as it may be a bit different than we last said to move to
  1286. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1287. }
  1288. static void do_blocking_move_to(float x, float y, float z) {
  1289. float oldFeedRate = feedrate;
  1290. feedrate = homing_feedrate[Z_AXIS];
  1291. current_position[Z_AXIS] = z;
  1292. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], feedrate/60, active_extruder);
  1293. st_synchronize();
  1294. feedrate = XY_TRAVEL_SPEED;
  1295. current_position[X_AXIS] = x;
  1296. current_position[Y_AXIS] = y;
  1297. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], feedrate/60, active_extruder);
  1298. st_synchronize();
  1299. feedrate = oldFeedRate;
  1300. }
  1301. static void do_blocking_move_relative(float offset_x, float offset_y, float offset_z) {
  1302. do_blocking_move_to(current_position[X_AXIS] + offset_x, current_position[Y_AXIS] + offset_y, current_position[Z_AXIS] + offset_z);
  1303. }
  1304. /// Probe bed height at position (x,y), returns the measured z value
  1305. static float probe_pt(float x, float y, float z_before) {
  1306. // move to right place
  1307. do_blocking_move_to(current_position[X_AXIS], current_position[Y_AXIS], z_before);
  1308. do_blocking_move_to(x - X_PROBE_OFFSET_FROM_EXTRUDER, y - Y_PROBE_OFFSET_FROM_EXTRUDER, current_position[Z_AXIS]);
  1309. run_z_probe();
  1310. float measured_z = current_position[Z_AXIS];
  1311. SERIAL_PROTOCOLRPGM(MSG_BED);
  1312. SERIAL_PROTOCOLPGM(" x: ");
  1313. SERIAL_PROTOCOL(x);
  1314. SERIAL_PROTOCOLPGM(" y: ");
  1315. SERIAL_PROTOCOL(y);
  1316. SERIAL_PROTOCOLPGM(" z: ");
  1317. SERIAL_PROTOCOL(measured_z);
  1318. SERIAL_PROTOCOLPGM("\n");
  1319. return measured_z;
  1320. }
  1321. #endif // #ifdef ENABLE_AUTO_BED_LEVELING
  1322. void homeaxis(int axis) {
  1323. #define HOMEAXIS_DO(LETTER) \
  1324. ((LETTER##_MIN_PIN > -1 && LETTER##_HOME_DIR==-1) || (LETTER##_MAX_PIN > -1 && LETTER##_HOME_DIR==1))
  1325. if (axis==X_AXIS ? HOMEAXIS_DO(X) :
  1326. axis==Y_AXIS ? HOMEAXIS_DO(Y) :
  1327. axis==Z_AXIS ? HOMEAXIS_DO(Z) :
  1328. 0) {
  1329. int axis_home_dir = home_dir(axis);
  1330. current_position[axis] = 0;
  1331. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1332. destination[axis] = 1.5 * max_length(axis) * axis_home_dir;
  1333. feedrate = homing_feedrate[axis];
  1334. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1335. st_synchronize();
  1336. current_position[axis] = 0;
  1337. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1338. destination[axis] = -home_retract_mm(axis) * axis_home_dir;
  1339. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1340. st_synchronize();
  1341. destination[axis] = 2*home_retract_mm(axis) * axis_home_dir;
  1342. feedrate = homing_feedrate[axis]/2 ;
  1343. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1344. st_synchronize();
  1345. axis_is_at_home(axis);
  1346. destination[axis] = current_position[axis];
  1347. feedrate = 0.0;
  1348. endstops_hit_on_purpose();
  1349. axis_known_position[axis] = true;
  1350. }
  1351. }
  1352. void home_xy()
  1353. {
  1354. set_destination_to_current();
  1355. homeaxis(X_AXIS);
  1356. homeaxis(Y_AXIS);
  1357. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1358. endstops_hit_on_purpose();
  1359. }
  1360. void refresh_cmd_timeout(void)
  1361. {
  1362. previous_millis_cmd = millis();
  1363. }
  1364. #ifdef FWRETRACT
  1365. void retract(bool retracting, bool swapretract = false) {
  1366. if(retracting && !retracted[active_extruder]) {
  1367. destination[X_AXIS]=current_position[X_AXIS];
  1368. destination[Y_AXIS]=current_position[Y_AXIS];
  1369. destination[Z_AXIS]=current_position[Z_AXIS];
  1370. destination[E_AXIS]=current_position[E_AXIS];
  1371. if (swapretract) {
  1372. current_position[E_AXIS]+=retract_length_swap/volumetric_multiplier[active_extruder];
  1373. } else {
  1374. current_position[E_AXIS]+=retract_length/volumetric_multiplier[active_extruder];
  1375. }
  1376. plan_set_e_position(current_position[E_AXIS]);
  1377. float oldFeedrate = feedrate;
  1378. feedrate=retract_feedrate*60;
  1379. retracted[active_extruder]=true;
  1380. prepare_move();
  1381. current_position[Z_AXIS]-=retract_zlift;
  1382. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1383. prepare_move();
  1384. feedrate = oldFeedrate;
  1385. } else if(!retracting && retracted[active_extruder]) {
  1386. destination[X_AXIS]=current_position[X_AXIS];
  1387. destination[Y_AXIS]=current_position[Y_AXIS];
  1388. destination[Z_AXIS]=current_position[Z_AXIS];
  1389. destination[E_AXIS]=current_position[E_AXIS];
  1390. current_position[Z_AXIS]+=retract_zlift;
  1391. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1392. //prepare_move();
  1393. if (swapretract) {
  1394. current_position[E_AXIS]-=(retract_length_swap+retract_recover_length_swap)/volumetric_multiplier[active_extruder];
  1395. } else {
  1396. current_position[E_AXIS]-=(retract_length+retract_recover_length)/volumetric_multiplier[active_extruder];
  1397. }
  1398. plan_set_e_position(current_position[E_AXIS]);
  1399. float oldFeedrate = feedrate;
  1400. feedrate=retract_recover_feedrate*60;
  1401. retracted[active_extruder]=false;
  1402. prepare_move();
  1403. feedrate = oldFeedrate;
  1404. }
  1405. } //retract
  1406. #endif //FWRETRACT
  1407. void process_commands()
  1408. {
  1409. #ifdef FILAMENT_RUNOUT_SUPPORT
  1410. SET_INPUT(FR_SENS);
  1411. #endif
  1412. #ifdef CMDBUFFER_DEBUG
  1413. SERIAL_ECHOPGM("Processing a GCODE command: ");
  1414. SERIAL_ECHO(cmdbuffer+bufindr+1);
  1415. SERIAL_ECHOLNPGM("");
  1416. SERIAL_ECHOPGM("In cmdqueue: ");
  1417. SERIAL_ECHO(buflen);
  1418. SERIAL_ECHOLNPGM("");
  1419. #endif /* CMDBUFFER_DEBUG */
  1420. unsigned long codenum; //throw away variable
  1421. char *starpos = NULL;
  1422. #ifdef ENABLE_AUTO_BED_LEVELING
  1423. float x_tmp, y_tmp, z_tmp, real_z;
  1424. #endif
  1425. // PRUSA GCODES
  1426. if(code_seen("PRUSA")){
  1427. if(code_seen("Fir")){
  1428. SERIAL_PROTOCOLLN(FW_version);
  1429. } else if(code_seen("Rev")){
  1430. SERIAL_PROTOCOLLN(FILAMENT_SIZE "-" ELECTRONICS "-" NOZZLE_TYPE );
  1431. } else if(code_seen("Lang")) {
  1432. lcd_force_language_selection();
  1433. } else if(code_seen("Lz")) {
  1434. EEPROM_save_B(EEPROM_BABYSTEP_Z,0);
  1435. }
  1436. //else if (code_seen('Cal')) {
  1437. // lcd_calibration();
  1438. // }
  1439. }
  1440. else
  1441. if(code_seen('G'))
  1442. {
  1443. switch((int)code_value())
  1444. {
  1445. case 0: // G0 -> G1
  1446. case 1: // G1
  1447. if(Stopped == false) {
  1448. #ifdef FILAMENT_RUNOUT_SUPPORT
  1449. if(READ(FR_SENS)){
  1450. feedmultiplyBckp=feedmultiply;
  1451. float target[4];
  1452. float lastpos[4];
  1453. target[X_AXIS]=current_position[X_AXIS];
  1454. target[Y_AXIS]=current_position[Y_AXIS];
  1455. target[Z_AXIS]=current_position[Z_AXIS];
  1456. target[E_AXIS]=current_position[E_AXIS];
  1457. lastpos[X_AXIS]=current_position[X_AXIS];
  1458. lastpos[Y_AXIS]=current_position[Y_AXIS];
  1459. lastpos[Z_AXIS]=current_position[Z_AXIS];
  1460. lastpos[E_AXIS]=current_position[E_AXIS];
  1461. //retract by E
  1462. target[E_AXIS]+= FILAMENTCHANGE_FIRSTRETRACT ;
  1463. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 400, active_extruder);
  1464. target[Z_AXIS]+= FILAMENTCHANGE_ZADD ;
  1465. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 300, active_extruder);
  1466. target[X_AXIS]= FILAMENTCHANGE_XPOS ;
  1467. target[Y_AXIS]= FILAMENTCHANGE_YPOS ;
  1468. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 70, active_extruder);
  1469. target[E_AXIS]+= FILAMENTCHANGE_FINALRETRACT ;
  1470. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 20, active_extruder);
  1471. //finish moves
  1472. st_synchronize();
  1473. //disable extruder steppers so filament can be removed
  1474. disable_e0();
  1475. disable_e1();
  1476. disable_e2();
  1477. delay(100);
  1478. //LCD_ALERTMESSAGEPGM(MSG_FILAMENTCHANGE);
  1479. uint8_t cnt=0;
  1480. int counterBeep = 0;
  1481. lcd_wait_interact();
  1482. while(!lcd_clicked()){
  1483. cnt++;
  1484. manage_heater();
  1485. manage_inactivity(true);
  1486. //lcd_update();
  1487. if(cnt==0)
  1488. {
  1489. #if BEEPER > 0
  1490. if (counterBeep== 500){
  1491. counterBeep = 0;
  1492. }
  1493. SET_OUTPUT(BEEPER);
  1494. if (counterBeep== 0){
  1495. WRITE(BEEPER,HIGH);
  1496. }
  1497. if (counterBeep== 20){
  1498. WRITE(BEEPER,LOW);
  1499. }
  1500. counterBeep++;
  1501. #else
  1502. #if !defined(LCD_FEEDBACK_FREQUENCY_HZ) || !defined(LCD_FEEDBACK_FREQUENCY_DURATION_MS)
  1503. lcd_buzz(1000/6,100);
  1504. #else
  1505. lcd_buzz(LCD_FEEDBACK_FREQUENCY_DURATION_MS,LCD_FEEDBACK_FREQUENCY_HZ);
  1506. #endif
  1507. #endif
  1508. }
  1509. }
  1510. WRITE(BEEPER,LOW);
  1511. target[E_AXIS]+= FILAMENTCHANGE_FIRSTFEED ;
  1512. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 20, active_extruder);
  1513. target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  1514. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder);
  1515. lcd_change_fil_state = 0;
  1516. lcd_loading_filament();
  1517. while ((lcd_change_fil_state == 0)||(lcd_change_fil_state != 1)){
  1518. lcd_change_fil_state = 0;
  1519. lcd_alright();
  1520. switch(lcd_change_fil_state){
  1521. case 2:
  1522. target[E_AXIS]+= FILAMENTCHANGE_FIRSTFEED ;
  1523. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 20, active_extruder);
  1524. target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  1525. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder);
  1526. lcd_loading_filament();
  1527. break;
  1528. case 3:
  1529. target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  1530. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder);
  1531. lcd_loading_color();
  1532. break;
  1533. default:
  1534. lcd_change_success();
  1535. break;
  1536. }
  1537. }
  1538. target[E_AXIS]+= 5;
  1539. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder);
  1540. target[E_AXIS]+= FILAMENTCHANGE_FIRSTRETRACT;
  1541. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 400, active_extruder);
  1542. //current_position[E_AXIS]=target[E_AXIS]; //the long retract of L is compensated by manual filament feeding
  1543. //plan_set_e_position(current_position[E_AXIS]);
  1544. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 70, active_extruder); //should do nothing
  1545. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], target[Z_AXIS], target[E_AXIS], 70, active_extruder); //move xy back
  1546. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], target[E_AXIS], 200, active_extruder); //move z back
  1547. target[E_AXIS]= target[E_AXIS] - FILAMENTCHANGE_FIRSTRETRACT;
  1548. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], target[E_AXIS], 5, active_extruder); //final untretract
  1549. plan_set_e_position(lastpos[E_AXIS]);
  1550. feedmultiply=feedmultiplyBckp;
  1551. char cmd[9];
  1552. sprintf_P(cmd, PSTR("M220 S%i"), feedmultiplyBckp);
  1553. enquecommand(cmd);
  1554. }
  1555. #endif
  1556. get_coordinates(); // For X Y Z E F
  1557. total_filament_used = total_filament_used + ((destination[E_AXIS] - current_position[E_AXIS])*100);
  1558. #ifdef FWRETRACT
  1559. if(autoretract_enabled)
  1560. if( !(code_seen('X') || code_seen('Y') || code_seen('Z')) && code_seen('E')) {
  1561. float echange=destination[E_AXIS]-current_position[E_AXIS];
  1562. if((echange<-MIN_RETRACT && !retracted) || (echange>MIN_RETRACT && retracted)) { //move appears to be an attempt to retract or recover
  1563. current_position[E_AXIS] = destination[E_AXIS]; //hide the slicer-generated retract/recover from calculations
  1564. plan_set_e_position(current_position[E_AXIS]); //AND from the planner
  1565. retract(!retracted);
  1566. return;
  1567. }
  1568. }
  1569. #endif //FWRETRACT
  1570. prepare_move();
  1571. //ClearToSend();
  1572. }
  1573. break;
  1574. case 2: // G2 - CW ARC
  1575. if(Stopped == false) {
  1576. get_arc_coordinates();
  1577. prepare_arc_move(true);
  1578. }
  1579. break;
  1580. case 3: // G3 - CCW ARC
  1581. if(Stopped == false) {
  1582. get_arc_coordinates();
  1583. prepare_arc_move(false);
  1584. }
  1585. break;
  1586. case 4: // G4 dwell
  1587. LCD_MESSAGERPGM(MSG_DWELL);
  1588. codenum = 0;
  1589. if(code_seen('P')) codenum = code_value(); // milliseconds to wait
  1590. if(code_seen('S')) codenum = code_value() * 1000; // seconds to wait
  1591. st_synchronize();
  1592. codenum += millis(); // keep track of when we started waiting
  1593. previous_millis_cmd = millis();
  1594. while(millis() < codenum) {
  1595. manage_heater();
  1596. manage_inactivity();
  1597. lcd_update();
  1598. }
  1599. break;
  1600. #ifdef FWRETRACT
  1601. case 10: // G10 retract
  1602. #if EXTRUDERS > 1
  1603. retracted_swap[active_extruder]=(code_seen('S') && code_value_long() == 1); // checks for swap retract argument
  1604. retract(true,retracted_swap[active_extruder]);
  1605. #else
  1606. retract(true);
  1607. #endif
  1608. break;
  1609. case 11: // G11 retract_recover
  1610. #if EXTRUDERS > 1
  1611. retract(false,retracted_swap[active_extruder]);
  1612. #else
  1613. retract(false);
  1614. #endif
  1615. break;
  1616. #endif //FWRETRACT
  1617. case 28: //G28 Home all Axis one at a time
  1618. #ifdef ENABLE_AUTO_BED_LEVELING
  1619. plan_bed_level_matrix.set_to_identity(); //Reset the plane ("erase" all leveling data)
  1620. #endif //ENABLE_AUTO_BED_LEVELING
  1621. // For mesh bed leveling deactivate the matrix temporarily
  1622. #ifdef MESH_BED_LEVELING
  1623. mbl.active = 0;
  1624. #endif
  1625. // Reset world2machine_rotation_and_skew and world2machine_shift, therefore
  1626. // the planner will not perform any adjustments in the XY plane.
  1627. // Wait for the motors to stop and update the current position with the absolute values.
  1628. world2machine_revert_to_uncorrected();
  1629. // Reset baby stepping to zero, if the babystepping has already been loaded before. The babystepsTodo value will be
  1630. // consumed during the first movements following this statement.
  1631. babystep_undo();
  1632. saved_feedrate = feedrate;
  1633. saved_feedmultiply = feedmultiply;
  1634. feedmultiply = 100;
  1635. previous_millis_cmd = millis();
  1636. enable_endstops(true);
  1637. for(int8_t i=0; i < NUM_AXIS; i++)
  1638. destination[i] = current_position[i];
  1639. feedrate = 0.0;
  1640. home_all_axis = !((code_seen(axis_codes[X_AXIS])) || (code_seen(axis_codes[Y_AXIS])) || (code_seen(axis_codes[Z_AXIS])));
  1641. #if Z_HOME_DIR > 0 // If homing away from BED do Z first
  1642. if((home_all_axis) || (code_seen(axis_codes[Z_AXIS]))) {
  1643. homeaxis(Z_AXIS);
  1644. }
  1645. #endif
  1646. #ifdef QUICK_HOME
  1647. // In the quick mode, if both x and y are to be homed, a diagonal move will be performed initially.
  1648. if((home_all_axis)||( code_seen(axis_codes[X_AXIS]) && code_seen(axis_codes[Y_AXIS])) ) //first diagonal move
  1649. {
  1650. current_position[X_AXIS] = 0;current_position[Y_AXIS] = 0;
  1651. int x_axis_home_dir = home_dir(X_AXIS);
  1652. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1653. destination[X_AXIS] = 1.5 * max_length(X_AXIS) * x_axis_home_dir;destination[Y_AXIS] = 1.5 * max_length(Y_AXIS) * home_dir(Y_AXIS);
  1654. feedrate = homing_feedrate[X_AXIS];
  1655. if(homing_feedrate[Y_AXIS]<feedrate)
  1656. feedrate = homing_feedrate[Y_AXIS];
  1657. if (max_length(X_AXIS) > max_length(Y_AXIS)) {
  1658. feedrate *= sqrt(pow(max_length(Y_AXIS) / max_length(X_AXIS), 2) + 1);
  1659. } else {
  1660. feedrate *= sqrt(pow(max_length(X_AXIS) / max_length(Y_AXIS), 2) + 1);
  1661. }
  1662. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1663. st_synchronize();
  1664. axis_is_at_home(X_AXIS);
  1665. axis_is_at_home(Y_AXIS);
  1666. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1667. destination[X_AXIS] = current_position[X_AXIS];
  1668. destination[Y_AXIS] = current_position[Y_AXIS];
  1669. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1670. feedrate = 0.0;
  1671. st_synchronize();
  1672. endstops_hit_on_purpose();
  1673. current_position[X_AXIS] = destination[X_AXIS];
  1674. current_position[Y_AXIS] = destination[Y_AXIS];
  1675. current_position[Z_AXIS] = destination[Z_AXIS];
  1676. }
  1677. #endif /* QUICK_HOME */
  1678. if((home_all_axis) || (code_seen(axis_codes[X_AXIS])))
  1679. homeaxis(X_AXIS);
  1680. if((home_all_axis) || (code_seen(axis_codes[Y_AXIS])))
  1681. homeaxis(Y_AXIS);
  1682. if(code_seen(axis_codes[X_AXIS]) && code_value_long() != 0)
  1683. current_position[X_AXIS]=code_value()+add_homing[X_AXIS];
  1684. if(code_seen(axis_codes[Y_AXIS]) && code_value_long() != 0)
  1685. current_position[Y_AXIS]=code_value()+add_homing[Y_AXIS];
  1686. #if Z_HOME_DIR < 0 // If homing towards BED do Z last
  1687. #ifndef Z_SAFE_HOMING
  1688. if((home_all_axis) || (code_seen(axis_codes[Z_AXIS]))) {
  1689. #if defined (Z_RAISE_BEFORE_HOMING) && (Z_RAISE_BEFORE_HOMING > 0)
  1690. destination[Z_AXIS] = Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS) * (-1); // Set destination away from bed
  1691. feedrate = max_feedrate[Z_AXIS];
  1692. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
  1693. st_synchronize();
  1694. #endif // defined (Z_RAISE_BEFORE_HOMING) && (Z_RAISE_BEFORE_HOMING > 0)
  1695. #ifdef MESH_BED_LEVELING // If Mesh bed leveling, moxve X&Y to safe position for home
  1696. if (!(axis_known_position[X_AXIS] && axis_known_position[Y_AXIS] ))
  1697. {
  1698. homeaxis(X_AXIS);
  1699. homeaxis(Y_AXIS);
  1700. }
  1701. // 1st mesh bed leveling measurement point, corrected.
  1702. world2machine_initialize();
  1703. world2machine(pgm_read_float(bed_ref_points), pgm_read_float(bed_ref_points+1), destination[X_AXIS], destination[Y_AXIS]);
  1704. world2machine_reset();
  1705. if (destination[Y_AXIS] < Y_MIN_POS)
  1706. destination[Y_AXIS] = Y_MIN_POS;
  1707. destination[Z_AXIS] = MESH_HOME_Z_SEARCH; // Set destination away from bed
  1708. feedrate = homing_feedrate[Z_AXIS]/10;
  1709. current_position[Z_AXIS] = 0;
  1710. enable_endstops(false);
  1711. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1712. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
  1713. st_synchronize();
  1714. current_position[X_AXIS] = destination[X_AXIS];
  1715. current_position[Y_AXIS] = destination[Y_AXIS];
  1716. enable_endstops(true);
  1717. endstops_hit_on_purpose();
  1718. homeaxis(Z_AXIS);
  1719. #else // MESH_BED_LEVELING
  1720. homeaxis(Z_AXIS);
  1721. #endif // MESH_BED_LEVELING
  1722. }
  1723. #else // defined(Z_SAFE_HOMING): Z Safe mode activated.
  1724. if(home_all_axis) {
  1725. destination[X_AXIS] = round(Z_SAFE_HOMING_X_POINT - X_PROBE_OFFSET_FROM_EXTRUDER);
  1726. destination[Y_AXIS] = round(Z_SAFE_HOMING_Y_POINT - Y_PROBE_OFFSET_FROM_EXTRUDER);
  1727. destination[Z_AXIS] = Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS) * (-1); // Set destination away from bed
  1728. feedrate = XY_TRAVEL_SPEED/60;
  1729. current_position[Z_AXIS] = 0;
  1730. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1731. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
  1732. st_synchronize();
  1733. current_position[X_AXIS] = destination[X_AXIS];
  1734. current_position[Y_AXIS] = destination[Y_AXIS];
  1735. homeaxis(Z_AXIS);
  1736. }
  1737. // Let's see if X and Y are homed and probe is inside bed area.
  1738. if(code_seen(axis_codes[Z_AXIS])) {
  1739. if ( (axis_known_position[X_AXIS]) && (axis_known_position[Y_AXIS]) \
  1740. && (current_position[X_AXIS]+X_PROBE_OFFSET_FROM_EXTRUDER >= X_MIN_POS) \
  1741. && (current_position[X_AXIS]+X_PROBE_OFFSET_FROM_EXTRUDER <= X_MAX_POS) \
  1742. && (current_position[Y_AXIS]+Y_PROBE_OFFSET_FROM_EXTRUDER >= Y_MIN_POS) \
  1743. && (current_position[Y_AXIS]+Y_PROBE_OFFSET_FROM_EXTRUDER <= Y_MAX_POS)) {
  1744. current_position[Z_AXIS] = 0;
  1745. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1746. destination[Z_AXIS] = Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS) * (-1); // Set destination away from bed
  1747. feedrate = max_feedrate[Z_AXIS];
  1748. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
  1749. st_synchronize();
  1750. homeaxis(Z_AXIS);
  1751. } else if (!((axis_known_position[X_AXIS]) && (axis_known_position[Y_AXIS]))) {
  1752. LCD_MESSAGERPGM(MSG_POSITION_UNKNOWN);
  1753. SERIAL_ECHO_START;
  1754. SERIAL_ECHOLNRPGM(MSG_POSITION_UNKNOWN);
  1755. } else {
  1756. LCD_MESSAGERPGM(MSG_ZPROBE_OUT);
  1757. SERIAL_ECHO_START;
  1758. SERIAL_ECHOLNRPGM(MSG_ZPROBE_OUT);
  1759. }
  1760. }
  1761. #endif // Z_SAFE_HOMING
  1762. #endif // Z_HOME_DIR < 0
  1763. if(code_seen(axis_codes[Z_AXIS])) {
  1764. if(code_value_long() != 0) {
  1765. current_position[Z_AXIS]=code_value()+add_homing[Z_AXIS];
  1766. }
  1767. }
  1768. #ifdef ENABLE_AUTO_BED_LEVELING
  1769. if((home_all_axis) || (code_seen(axis_codes[Z_AXIS]))) {
  1770. current_position[Z_AXIS] += zprobe_zoffset; //Add Z_Probe offset (the distance is negative)
  1771. }
  1772. #endif
  1773. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1774. #ifdef ENDSTOPS_ONLY_FOR_HOMING
  1775. enable_endstops(false);
  1776. #endif
  1777. feedrate = saved_feedrate;
  1778. feedmultiply = saved_feedmultiply;
  1779. previous_millis_cmd = millis();
  1780. endstops_hit_on_purpose();
  1781. #ifndef MESH_BED_LEVELING
  1782. // If MESH_BED_LEVELING is not active, then it is the original Prusa i3.
  1783. // Offer the user to load the baby step value, which has been adjusted at the previous print session.
  1784. if(card.sdprinting && eeprom_read_word((uint16_t *)EEPROM_BABYSTEP_Z))
  1785. lcd_adjust_z();
  1786. #endif
  1787. // Load the machine correction matrix
  1788. world2machine_initialize();
  1789. // and correct the current_position to match the transformed coordinate system.
  1790. world2machine_update_current();
  1791. #ifdef MESH_BED_LEVELING
  1792. if (code_seen(axis_codes[X_AXIS]) || code_seen(axis_codes[Y_AXIS]) || code_seen('W') || code_seen(axis_codes[Z_AXIS]))
  1793. {
  1794. }
  1795. else
  1796. {
  1797. st_synchronize();
  1798. // Push the commands to the front of the message queue in the reverse order!
  1799. // There shall be always enough space reserved for these commands.
  1800. // enquecommand_front_P((PSTR("G80")));
  1801. goto case_G80;
  1802. }
  1803. #endif
  1804. if (farm_mode) { prusa_statistics(20); };
  1805. break;
  1806. #ifdef ENABLE_AUTO_BED_LEVELING
  1807. case 29: // G29 Detailed Z-Probe, probes the bed at 3 or more points.
  1808. {
  1809. #if Z_MIN_PIN == -1
  1810. #error "You must have a Z_MIN endstop in order to enable Auto Bed Leveling feature! Z_MIN_PIN must point to a valid hardware pin."
  1811. #endif
  1812. // Prevent user from running a G29 without first homing in X and Y
  1813. if (! (axis_known_position[X_AXIS] && axis_known_position[Y_AXIS]) )
  1814. {
  1815. LCD_MESSAGERPGM(MSG_POSITION_UNKNOWN);
  1816. SERIAL_ECHO_START;
  1817. SERIAL_ECHOLNRPGM(MSG_POSITION_UNKNOWN);
  1818. break; // abort G29, since we don't know where we are
  1819. }
  1820. st_synchronize();
  1821. // make sure the bed_level_rotation_matrix is identity or the planner will get it incorectly
  1822. //vector_3 corrected_position = plan_get_position_mm();
  1823. //corrected_position.debug("position before G29");
  1824. plan_bed_level_matrix.set_to_identity();
  1825. vector_3 uncorrected_position = plan_get_position();
  1826. //uncorrected_position.debug("position durring G29");
  1827. current_position[X_AXIS] = uncorrected_position.x;
  1828. current_position[Y_AXIS] = uncorrected_position.y;
  1829. current_position[Z_AXIS] = uncorrected_position.z;
  1830. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1831. setup_for_endstop_move();
  1832. feedrate = homing_feedrate[Z_AXIS];
  1833. #ifdef AUTO_BED_LEVELING_GRID
  1834. // probe at the points of a lattice grid
  1835. int xGridSpacing = (RIGHT_PROBE_BED_POSITION - LEFT_PROBE_BED_POSITION) / (AUTO_BED_LEVELING_GRID_POINTS-1);
  1836. int yGridSpacing = (BACK_PROBE_BED_POSITION - FRONT_PROBE_BED_POSITION) / (AUTO_BED_LEVELING_GRID_POINTS-1);
  1837. // solve the plane equation ax + by + d = z
  1838. // A is the matrix with rows [x y 1] for all the probed points
  1839. // B is the vector of the Z positions
  1840. // the normal vector to the plane is formed by the coefficients of the plane equation in the standard form, which is Vx*x+Vy*y+Vz*z+d = 0
  1841. // so Vx = -a Vy = -b Vz = 1 (we want the vector facing towards positive Z
  1842. // "A" matrix of the linear system of equations
  1843. double eqnAMatrix[AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS*3];
  1844. // "B" vector of Z points
  1845. double eqnBVector[AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS];
  1846. int probePointCounter = 0;
  1847. bool zig = true;
  1848. for (int yProbe=FRONT_PROBE_BED_POSITION; yProbe <= BACK_PROBE_BED_POSITION; yProbe += yGridSpacing)
  1849. {
  1850. int xProbe, xInc;
  1851. if (zig)
  1852. {
  1853. xProbe = LEFT_PROBE_BED_POSITION;
  1854. //xEnd = RIGHT_PROBE_BED_POSITION;
  1855. xInc = xGridSpacing;
  1856. zig = false;
  1857. } else // zag
  1858. {
  1859. xProbe = RIGHT_PROBE_BED_POSITION;
  1860. //xEnd = LEFT_PROBE_BED_POSITION;
  1861. xInc = -xGridSpacing;
  1862. zig = true;
  1863. }
  1864. for (int xCount=0; xCount < AUTO_BED_LEVELING_GRID_POINTS; xCount++)
  1865. {
  1866. float z_before;
  1867. if (probePointCounter == 0)
  1868. {
  1869. // raise before probing
  1870. z_before = Z_RAISE_BEFORE_PROBING;
  1871. } else
  1872. {
  1873. // raise extruder
  1874. z_before = current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS;
  1875. }
  1876. float measured_z = probe_pt(xProbe, yProbe, z_before);
  1877. eqnBVector[probePointCounter] = measured_z;
  1878. eqnAMatrix[probePointCounter + 0*AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS] = xProbe;
  1879. eqnAMatrix[probePointCounter + 1*AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS] = yProbe;
  1880. eqnAMatrix[probePointCounter + 2*AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS] = 1;
  1881. probePointCounter++;
  1882. xProbe += xInc;
  1883. }
  1884. }
  1885. clean_up_after_endstop_move();
  1886. // solve lsq problem
  1887. double *plane_equation_coefficients = qr_solve(AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS, 3, eqnAMatrix, eqnBVector);
  1888. SERIAL_PROTOCOLPGM("Eqn coefficients: a: ");
  1889. SERIAL_PROTOCOL(plane_equation_coefficients[0]);
  1890. SERIAL_PROTOCOLPGM(" b: ");
  1891. SERIAL_PROTOCOL(plane_equation_coefficients[1]);
  1892. SERIAL_PROTOCOLPGM(" d: ");
  1893. SERIAL_PROTOCOLLN(plane_equation_coefficients[2]);
  1894. set_bed_level_equation_lsq(plane_equation_coefficients);
  1895. free(plane_equation_coefficients);
  1896. #else // AUTO_BED_LEVELING_GRID not defined
  1897. // Probe at 3 arbitrary points
  1898. // probe 1
  1899. float z_at_pt_1 = probe_pt(ABL_PROBE_PT_1_X, ABL_PROBE_PT_1_Y, Z_RAISE_BEFORE_PROBING);
  1900. // probe 2
  1901. float z_at_pt_2 = probe_pt(ABL_PROBE_PT_2_X, ABL_PROBE_PT_2_Y, current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS);
  1902. // probe 3
  1903. float z_at_pt_3 = probe_pt(ABL_PROBE_PT_3_X, ABL_PROBE_PT_3_Y, current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS);
  1904. clean_up_after_endstop_move();
  1905. set_bed_level_equation_3pts(z_at_pt_1, z_at_pt_2, z_at_pt_3);
  1906. #endif // AUTO_BED_LEVELING_GRID
  1907. st_synchronize();
  1908. // The following code correct the Z height difference from z-probe position and hotend tip position.
  1909. // The Z height on homing is measured by Z-Probe, but the probe is quite far from the hotend.
  1910. // When the bed is uneven, this height must be corrected.
  1911. real_z = float(st_get_position(Z_AXIS))/axis_steps_per_unit[Z_AXIS]; //get the real Z (since the auto bed leveling is already correcting the plane)
  1912. x_tmp = current_position[X_AXIS] + X_PROBE_OFFSET_FROM_EXTRUDER;
  1913. y_tmp = current_position[Y_AXIS] + Y_PROBE_OFFSET_FROM_EXTRUDER;
  1914. z_tmp = current_position[Z_AXIS];
  1915. apply_rotation_xyz(plan_bed_level_matrix, x_tmp, y_tmp, z_tmp); //Apply the correction sending the probe offset
  1916. current_position[Z_AXIS] = z_tmp - real_z + current_position[Z_AXIS]; //The difference is added to current position and sent to planner.
  1917. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1918. }
  1919. break;
  1920. #ifndef Z_PROBE_SLED
  1921. case 30: // G30 Single Z Probe
  1922. {
  1923. st_synchronize();
  1924. // TODO: make sure the bed_level_rotation_matrix is identity or the planner will get set incorectly
  1925. setup_for_endstop_move();
  1926. feedrate = homing_feedrate[Z_AXIS];
  1927. run_z_probe();
  1928. SERIAL_PROTOCOLPGM(MSG_BED);
  1929. SERIAL_PROTOCOLPGM(" X: ");
  1930. SERIAL_PROTOCOL(current_position[X_AXIS]);
  1931. SERIAL_PROTOCOLPGM(" Y: ");
  1932. SERIAL_PROTOCOL(current_position[Y_AXIS]);
  1933. SERIAL_PROTOCOLPGM(" Z: ");
  1934. SERIAL_PROTOCOL(current_position[Z_AXIS]);
  1935. SERIAL_PROTOCOLPGM("\n");
  1936. clean_up_after_endstop_move();
  1937. }
  1938. break;
  1939. #else
  1940. case 31: // dock the sled
  1941. dock_sled(true);
  1942. break;
  1943. case 32: // undock the sled
  1944. dock_sled(false);
  1945. break;
  1946. #endif // Z_PROBE_SLED
  1947. #endif // ENABLE_AUTO_BED_LEVELING
  1948. #ifdef MESH_BED_LEVELING
  1949. case 30: // G30 Single Z Probe
  1950. {
  1951. st_synchronize();
  1952. // TODO: make sure the bed_level_rotation_matrix is identity or the planner will get set incorectly
  1953. setup_for_endstop_move();
  1954. feedrate = homing_feedrate[Z_AXIS];
  1955. find_bed_induction_sensor_point_z(-10.f, 3);
  1956. SERIAL_PROTOCOLRPGM(MSG_BED);
  1957. SERIAL_PROTOCOLPGM(" X: ");
  1958. MYSERIAL.print(current_position[X_AXIS], 5);
  1959. SERIAL_PROTOCOLPGM(" Y: ");
  1960. MYSERIAL.print(current_position[Y_AXIS], 5);
  1961. SERIAL_PROTOCOLPGM(" Z: ");
  1962. MYSERIAL.print(current_position[Z_AXIS], 5);
  1963. SERIAL_PROTOCOLPGM("\n");
  1964. clean_up_after_endstop_move();
  1965. }
  1966. break;
  1967. /**
  1968. * G80: Mesh-based Z probe, probes a grid and produces a
  1969. * mesh to compensate for variable bed height
  1970. *
  1971. * The S0 report the points as below
  1972. *
  1973. * +----> X-axis
  1974. * |
  1975. * |
  1976. * v Y-axis
  1977. *
  1978. */
  1979. case 80:
  1980. case_G80:
  1981. {
  1982. // Firstly check if we know where we are
  1983. if ( !( axis_known_position[X_AXIS] && axis_known_position[Y_AXIS] && axis_known_position[Z_AXIS] ) ){
  1984. // We don't know where we are! HOME!
  1985. // Push the commands to the front of the message queue in the reverse order!
  1986. // There shall be always enough space reserved for these commands.
  1987. repeatcommand_front(); // repeat G80 with all its parameters
  1988. enquecommand_front_P((PSTR("G28 W0")));
  1989. break;
  1990. }
  1991. // Save custom message state, set a new custom message state to display: Calibrating point 9.
  1992. bool custom_message_old = custom_message;
  1993. unsigned int custom_message_type_old = custom_message_type;
  1994. unsigned int custom_message_state_old = custom_message_state;
  1995. custom_message = true;
  1996. custom_message_type = 1;
  1997. custom_message_state = (MESH_MEAS_NUM_X_POINTS * MESH_MEAS_NUM_Y_POINTS) + 10;
  1998. lcd_update(1);
  1999. mbl.reset();
  2000. // Reset baby stepping to zero, if the babystepping has already been loaded before. The babystepsTodo value will be
  2001. // consumed during the first movements following this statement.
  2002. babystep_undo();
  2003. // Cycle through all points and probe them
  2004. // First move up. During this first movement, the babystepping will be reverted.
  2005. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  2006. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[Z_AXIS]/60, active_extruder);
  2007. // The move to the first calibration point.
  2008. current_position[X_AXIS] = pgm_read_float(bed_ref_points);
  2009. current_position[Y_AXIS] = pgm_read_float(bed_ref_points+1);
  2010. world2machine_clamp(current_position[X_AXIS], current_position[Y_AXIS]);
  2011. // mbl.get_meas_xy(0, 0, current_position[X_AXIS], current_position[Y_AXIS], false);
  2012. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[X_AXIS]/30, active_extruder);
  2013. // Wait until the move is finished.
  2014. st_synchronize();
  2015. int mesh_point = 0;
  2016. int ix = 0;
  2017. int iy = 0;
  2018. int XY_AXIS_FEEDRATE = homing_feedrate[X_AXIS]/20;
  2019. int Z_PROBE_FEEDRATE = homing_feedrate[Z_AXIS]/60;
  2020. int Z_LIFT_FEEDRATE = homing_feedrate[Z_AXIS]/40;
  2021. bool has_z = is_bed_z_jitter_data_valid();
  2022. setup_for_endstop_move();
  2023. const char *kill_message = NULL;
  2024. while (mesh_point != MESH_MEAS_NUM_X_POINTS * MESH_MEAS_NUM_Y_POINTS) {
  2025. // Get coords of a measuring point.
  2026. ix = mesh_point % MESH_MEAS_NUM_X_POINTS;
  2027. iy = mesh_point / MESH_MEAS_NUM_X_POINTS;
  2028. if (iy & 1) ix = (MESH_MEAS_NUM_X_POINTS - 1) - ix; // Zig zag
  2029. float z0 = 0.f;
  2030. if (has_z && mesh_point > 0) {
  2031. uint16_t z_offset_u = eeprom_read_word((uint16_t*)(EEPROM_BED_CALIBRATION_Z_JITTER + 2 * (ix + iy * 3 - 1)));
  2032. z0 = mbl.z_values[0][0] + *reinterpret_cast<int16_t*>(&z_offset_u) * 0.01;
  2033. #if 0
  2034. SERIAL_ECHOPGM("Bed leveling, point: ");
  2035. MYSERIAL.print(mesh_point);
  2036. SERIAL_ECHOPGM(", calibration z: ");
  2037. MYSERIAL.print(z0, 5);
  2038. SERIAL_ECHOLNPGM("");
  2039. #endif
  2040. }
  2041. // Move Z to proper distance
  2042. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  2043. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], Z_LIFT_FEEDRATE, active_extruder);
  2044. st_synchronize();
  2045. current_position[X_AXIS] = pgm_read_float(bed_ref_points+2*mesh_point);
  2046. current_position[Y_AXIS] = pgm_read_float(bed_ref_points+2*mesh_point+1);
  2047. world2machine_clamp(current_position[X_AXIS], current_position[Y_AXIS]);
  2048. // mbl.get_meas_xy(ix, iy, current_position[X_AXIS], current_position[Y_AXIS], false);
  2049. enable_endstops(false);
  2050. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], XY_AXIS_FEEDRATE, active_extruder);
  2051. st_synchronize();
  2052. // Go down until endstop is hit
  2053. const float Z_CALIBRATION_THRESHOLD = 1.f;
  2054. if (! find_bed_induction_sensor_point_z((has_z && mesh_point > 0) ? z0 - Z_CALIBRATION_THRESHOLD : -10.f)) {
  2055. kill_message = MSG_BED_LEVELING_FAILED_POINT_LOW;
  2056. break;
  2057. }
  2058. if (MESH_HOME_Z_SEARCH - current_position[Z_AXIS] < 0.1f) {
  2059. kill_message = MSG_BED_LEVELING_FAILED_PROBE_DISCONNECTED;
  2060. break;
  2061. }
  2062. if (has_z && fabs(z0 - current_position[Z_AXIS]) > Z_CALIBRATION_THRESHOLD) {
  2063. kill_message = MSG_BED_LEVELING_FAILED_POINT_HIGH;
  2064. break;
  2065. }
  2066. mbl.set_z(ix, iy, current_position[Z_AXIS]);
  2067. custom_message_state--;
  2068. mesh_point++;
  2069. lcd_update(1);
  2070. }
  2071. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  2072. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS],current_position[Z_AXIS] , current_position[E_AXIS], Z_LIFT_FEEDRATE, active_extruder);
  2073. if (mesh_point != MESH_MEAS_NUM_X_POINTS * MESH_MEAS_NUM_Y_POINTS) {
  2074. st_synchronize();
  2075. kill(kill_message);
  2076. }
  2077. clean_up_after_endstop_move();
  2078. // Apply Z height correction aka baby stepping before mesh bed leveing gets activated.
  2079. babystep_apply();
  2080. bool eeprom_bed_correction_valid = eeprom_read_byte((unsigned char*)EEPROM_BED_CORRECTION_VALID) == 1;
  2081. for (uint8_t i = 0; i < 4; ++ i) {
  2082. unsigned char codes[4] = { 'L', 'R', 'F', 'B' };
  2083. long correction = 0;
  2084. if (code_seen(codes[i]))
  2085. correction = code_value_long();
  2086. else if (eeprom_bed_correction_valid) {
  2087. unsigned char *addr = (i < 2) ?
  2088. ((i == 0) ? (unsigned char*)EEPROM_BED_CORRECTION_LEFT : (unsigned char*)EEPROM_BED_CORRECTION_RIGHT) :
  2089. ((i == 2) ? (unsigned char*)EEPROM_BED_CORRECTION_FRONT : (unsigned char*)EEPROM_BED_CORRECTION_REAR);
  2090. correction = eeprom_read_int8(addr);
  2091. }
  2092. if (correction == 0)
  2093. continue;
  2094. float offset = float(correction) * 0.001f;
  2095. if (fabs(offset) > 0.101f) {
  2096. SERIAL_ERROR_START;
  2097. SERIAL_ECHOPGM("Excessive bed leveling correction: ");
  2098. SERIAL_ECHO(offset);
  2099. SERIAL_ECHOLNPGM(" microns");
  2100. } else {
  2101. switch (i) {
  2102. case 0:
  2103. for (uint8_t row = 0; row < 3; ++ row) {
  2104. mbl.z_values[row][1] += 0.5f * offset;
  2105. mbl.z_values[row][0] += offset;
  2106. }
  2107. break;
  2108. case 1:
  2109. for (uint8_t row = 0; row < 3; ++ row) {
  2110. mbl.z_values[row][1] += 0.5f * offset;
  2111. mbl.z_values[row][2] += offset;
  2112. }
  2113. break;
  2114. case 2:
  2115. for (uint8_t col = 0; col < 3; ++ col) {
  2116. mbl.z_values[1][col] += 0.5f * offset;
  2117. mbl.z_values[0][col] += offset;
  2118. }
  2119. break;
  2120. case 3:
  2121. for (uint8_t col = 0; col < 3; ++ col) {
  2122. mbl.z_values[1][col] += 0.5f * offset;
  2123. mbl.z_values[2][col] += offset;
  2124. }
  2125. break;
  2126. }
  2127. }
  2128. }
  2129. mbl.upsample_3x3();
  2130. mbl.active = 1;
  2131. current_position[X_AXIS] = X_MIN_POS+0.2;
  2132. current_position[Y_AXIS] = Y_MIN_POS+0.2;
  2133. current_position[Z_AXIS] = Z_MIN_POS;
  2134. world2machine_clamp(current_position[X_AXIS], current_position[Y_AXIS]);
  2135. plan_buffer_line(current_position[X_AXIS], current_position[X_AXIS], current_position[Z_AXIS], current_position[E_AXIS], XY_AXIS_FEEDRATE, active_extruder);
  2136. st_synchronize();
  2137. // Restore custom message state
  2138. custom_message = custom_message_old;
  2139. custom_message_type = custom_message_type_old;
  2140. custom_message_state = custom_message_state_old;
  2141. lcd_update(1);
  2142. }
  2143. break;
  2144. /**
  2145. * G81: Print mesh bed leveling status and bed profile if activated
  2146. */
  2147. case 81:
  2148. if (mbl.active) {
  2149. SERIAL_PROTOCOLPGM("Num X,Y: ");
  2150. SERIAL_PROTOCOL(MESH_NUM_X_POINTS);
  2151. SERIAL_PROTOCOLPGM(",");
  2152. SERIAL_PROTOCOL(MESH_NUM_Y_POINTS);
  2153. SERIAL_PROTOCOLPGM("\nZ search height: ");
  2154. SERIAL_PROTOCOL(MESH_HOME_Z_SEARCH);
  2155. SERIAL_PROTOCOLLNPGM("\nMeasured points:");
  2156. for (int y = MESH_NUM_Y_POINTS-1; y >= 0; y--) {
  2157. for (int x = 0; x < MESH_NUM_X_POINTS; x++) {
  2158. SERIAL_PROTOCOLPGM(" ");
  2159. SERIAL_PROTOCOL_F(mbl.z_values[y][x], 5);
  2160. }
  2161. SERIAL_PROTOCOLPGM("\n");
  2162. }
  2163. }
  2164. else
  2165. SERIAL_PROTOCOLLNPGM("Mesh bed leveling not active.");
  2166. break;
  2167. #if 0
  2168. /**
  2169. * G82: Single Z probe at current location
  2170. *
  2171. * WARNING! USE WITH CAUTION! If you'll try to probe where is no leveling pad, nasty things can happen!
  2172. *
  2173. */
  2174. case 82:
  2175. SERIAL_PROTOCOLLNPGM("Finding bed ");
  2176. setup_for_endstop_move();
  2177. find_bed_induction_sensor_point_z();
  2178. clean_up_after_endstop_move();
  2179. SERIAL_PROTOCOLPGM("Bed found at: ");
  2180. SERIAL_PROTOCOL_F(current_position[Z_AXIS], 5);
  2181. SERIAL_PROTOCOLPGM("\n");
  2182. break;
  2183. /**
  2184. * G83: Prusa3D specific: Babystep in Z and store to EEPROM
  2185. */
  2186. case 83:
  2187. {
  2188. int babystepz = code_seen('S') ? code_value() : 0;
  2189. int BabyPosition = code_seen('P') ? code_value() : 0;
  2190. if (babystepz != 0) {
  2191. //FIXME Vojtech: What shall be the index of the axis Z: 3 or 4?
  2192. // Is the axis indexed starting with zero or one?
  2193. if (BabyPosition > 4) {
  2194. SERIAL_PROTOCOLLNPGM("Index out of bounds");
  2195. }else{
  2196. // Save it to the eeprom
  2197. babystepLoadZ = babystepz;
  2198. EEPROM_save_B(EEPROM_BABYSTEP_Z0+(BabyPosition*2),&babystepLoadZ);
  2199. // adjust the Z
  2200. babystepsTodoZadd(babystepLoadZ);
  2201. }
  2202. }
  2203. }
  2204. break;
  2205. /**
  2206. * G84: Prusa3D specific: UNDO Babystep Z (move Z axis back)
  2207. */
  2208. case 84:
  2209. babystepsTodoZsubtract(babystepLoadZ);
  2210. // babystepLoadZ = 0;
  2211. break;
  2212. /**
  2213. * G85: Prusa3D specific: Pick best babystep
  2214. */
  2215. case 85:
  2216. lcd_pick_babystep();
  2217. break;
  2218. #endif
  2219. /**
  2220. * G86: Prusa3D specific: Disable babystep correction after home.
  2221. * This G-code will be performed at the start of a calibration script.
  2222. */
  2223. case 86:
  2224. eeprom_write_byte((unsigned char*)EEPROM_BABYSTEP_Z_SET, 0xFF);
  2225. break;
  2226. /**
  2227. * G87: Prusa3D specific: Enable babystep correction after home
  2228. * This G-code will be performed at the end of a calibration script.
  2229. */
  2230. case 87:
  2231. eeprom_write_byte((unsigned char*)EEPROM_BABYSTEP_Z_SET, 0x01);
  2232. break;
  2233. /**
  2234. * G88: Prusa3D specific: Don't know what it is for, it is in V2Calibration.gcode
  2235. */
  2236. case 88:
  2237. break;
  2238. #endif // ENABLE_MESH_BED_LEVELING
  2239. case 90: // G90
  2240. relative_mode = false;
  2241. break;
  2242. case 91: // G91
  2243. relative_mode = true;
  2244. break;
  2245. case 92: // G92
  2246. if(!code_seen(axis_codes[E_AXIS]))
  2247. st_synchronize();
  2248. for(int8_t i=0; i < NUM_AXIS; i++) {
  2249. if(code_seen(axis_codes[i])) {
  2250. if(i == E_AXIS) {
  2251. current_position[i] = code_value();
  2252. plan_set_e_position(current_position[E_AXIS]);
  2253. }
  2254. else {
  2255. current_position[i] = code_value()+add_homing[i];
  2256. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2257. }
  2258. }
  2259. }
  2260. break;
  2261. case 98:
  2262. farm_no = 21;
  2263. EEPROM_save_B(EEPROM_FARM_MODE, &farm_no);
  2264. farm_mode = true;
  2265. break;
  2266. case 99:
  2267. farm_no = 0;
  2268. EEPROM_save_B(EEPROM_FARM_MODE, &farm_no);
  2269. farm_mode = false;
  2270. break;
  2271. }
  2272. } // end if(code_seen('G'))
  2273. else if(code_seen('M'))
  2274. {
  2275. switch( (int)code_value() )
  2276. {
  2277. #ifdef ULTIPANEL
  2278. case 0: // M0 - Unconditional stop - Wait for user button press on LCD
  2279. case 1: // M1 - Conditional stop - Wait for user button press on LCD
  2280. {
  2281. char *src = strchr_pointer + 2;
  2282. codenum = 0;
  2283. bool hasP = false, hasS = false;
  2284. if (code_seen('P')) {
  2285. codenum = code_value(); // milliseconds to wait
  2286. hasP = codenum > 0;
  2287. }
  2288. if (code_seen('S')) {
  2289. codenum = code_value() * 1000; // seconds to wait
  2290. hasS = codenum > 0;
  2291. }
  2292. starpos = strchr(src, '*');
  2293. if (starpos != NULL) *(starpos) = '\0';
  2294. while (*src == ' ') ++src;
  2295. if (!hasP && !hasS && *src != '\0') {
  2296. lcd_setstatus(src);
  2297. } else {
  2298. LCD_MESSAGERPGM(MSG_USERWAIT);
  2299. }
  2300. lcd_ignore_click();
  2301. st_synchronize();
  2302. previous_millis_cmd = millis();
  2303. if (codenum > 0){
  2304. codenum += millis(); // keep track of when we started waiting
  2305. while(millis() < codenum && !lcd_clicked()){
  2306. manage_heater();
  2307. manage_inactivity();
  2308. lcd_update();
  2309. }
  2310. lcd_ignore_click(false);
  2311. }else{
  2312. if (!lcd_detected())
  2313. break;
  2314. while(!lcd_clicked()){
  2315. manage_heater();
  2316. manage_inactivity();
  2317. lcd_update();
  2318. }
  2319. }
  2320. if (IS_SD_PRINTING)
  2321. LCD_MESSAGERPGM(MSG_RESUMING);
  2322. else
  2323. LCD_MESSAGERPGM(WELCOME_MSG);
  2324. }
  2325. break;
  2326. #endif
  2327. case 17:
  2328. LCD_MESSAGERPGM(MSG_NO_MOVE);
  2329. enable_x();
  2330. enable_y();
  2331. enable_z();
  2332. enable_e0();
  2333. enable_e1();
  2334. enable_e2();
  2335. break;
  2336. #ifdef SDSUPPORT
  2337. case 20: // M20 - list SD card
  2338. SERIAL_PROTOCOLLNRPGM(MSG_BEGIN_FILE_LIST);
  2339. card.ls();
  2340. SERIAL_PROTOCOLLNRPGM(MSG_END_FILE_LIST);
  2341. break;
  2342. case 21: // M21 - init SD card
  2343. card.initsd();
  2344. break;
  2345. case 22: //M22 - release SD card
  2346. card.release();
  2347. break;
  2348. case 23: //M23 - Select file
  2349. starpos = (strchr(strchr_pointer + 4,'*'));
  2350. if(starpos!=NULL)
  2351. *(starpos)='\0';
  2352. card.openFile(strchr_pointer + 4,true);
  2353. break;
  2354. case 24: //M24 - Start SD print
  2355. card.startFileprint();
  2356. starttime=millis();
  2357. break;
  2358. case 25: //M25 - Pause SD print
  2359. card.pauseSDPrint();
  2360. break;
  2361. case 26: //M26 - Set SD index
  2362. if(card.cardOK && code_seen('S')) {
  2363. card.setIndex(code_value_long());
  2364. }
  2365. break;
  2366. case 27: //M27 - Get SD status
  2367. card.getStatus();
  2368. break;
  2369. case 28: //M28 - Start SD write
  2370. starpos = (strchr(strchr_pointer + 4,'*'));
  2371. if(starpos != NULL){
  2372. char* npos = strchr(CMDBUFFER_CURRENT_STRING, 'N');
  2373. strchr_pointer = strchr(npos,' ') + 1;
  2374. *(starpos) = '\0';
  2375. }
  2376. card.openFile(strchr_pointer+4,false);
  2377. break;
  2378. case 29: //M29 - Stop SD write
  2379. //processed in write to file routine above
  2380. //card,saving = false;
  2381. break;
  2382. case 30: //M30 <filename> Delete File
  2383. if (card.cardOK){
  2384. card.closefile();
  2385. starpos = (strchr(strchr_pointer + 4,'*'));
  2386. if(starpos != NULL){
  2387. char* npos = strchr(CMDBUFFER_CURRENT_STRING, 'N');
  2388. strchr_pointer = strchr(npos,' ') + 1;
  2389. *(starpos) = '\0';
  2390. }
  2391. card.removeFile(strchr_pointer + 4);
  2392. }
  2393. break;
  2394. case 32: //M32 - Select file and start SD print
  2395. {
  2396. if(card.sdprinting) {
  2397. st_synchronize();
  2398. }
  2399. starpos = (strchr(strchr_pointer + 4,'*'));
  2400. char* namestartpos = (strchr(strchr_pointer + 4,'!')); //find ! to indicate filename string start.
  2401. if(namestartpos==NULL)
  2402. {
  2403. namestartpos=strchr_pointer + 4; //default name position, 4 letters after the M
  2404. }
  2405. else
  2406. namestartpos++; //to skip the '!'
  2407. if(starpos!=NULL)
  2408. *(starpos)='\0';
  2409. bool call_procedure=(code_seen('P'));
  2410. if(strchr_pointer>namestartpos)
  2411. call_procedure=false; //false alert, 'P' found within filename
  2412. if( card.cardOK )
  2413. {
  2414. card.openFile(namestartpos,true,!call_procedure);
  2415. if(code_seen('S'))
  2416. if(strchr_pointer<namestartpos) //only if "S" is occuring _before_ the filename
  2417. card.setIndex(code_value_long());
  2418. card.startFileprint();
  2419. if(!call_procedure)
  2420. starttime=millis(); //procedure calls count as normal print time.
  2421. }
  2422. } break;
  2423. case 928: //M928 - Start SD write
  2424. starpos = (strchr(strchr_pointer + 5,'*'));
  2425. if(starpos != NULL){
  2426. char* npos = strchr(CMDBUFFER_CURRENT_STRING, 'N');
  2427. strchr_pointer = strchr(npos,' ') + 1;
  2428. *(starpos) = '\0';
  2429. }
  2430. card.openLogFile(strchr_pointer+5);
  2431. break;
  2432. #endif //SDSUPPORT
  2433. case 31: //M31 take time since the start of the SD print or an M109 command
  2434. {
  2435. stoptime=millis();
  2436. char time[30];
  2437. unsigned long t=(stoptime-starttime)/1000;
  2438. int sec,min;
  2439. min=t/60;
  2440. sec=t%60;
  2441. sprintf_P(time, PSTR("%i min, %i sec"), min, sec);
  2442. SERIAL_ECHO_START;
  2443. SERIAL_ECHOLN(time);
  2444. lcd_setstatus(time);
  2445. autotempShutdown();
  2446. }
  2447. break;
  2448. case 42: //M42 -Change pin status via gcode
  2449. if (code_seen('S'))
  2450. {
  2451. int pin_status = code_value();
  2452. int pin_number = LED_PIN;
  2453. if (code_seen('P') && pin_status >= 0 && pin_status <= 255)
  2454. pin_number = code_value();
  2455. for(int8_t i = 0; i < (int8_t)(sizeof(sensitive_pins)/sizeof(int)); i++)
  2456. {
  2457. if (sensitive_pins[i] == pin_number)
  2458. {
  2459. pin_number = -1;
  2460. break;
  2461. }
  2462. }
  2463. #if defined(FAN_PIN) && FAN_PIN > -1
  2464. if (pin_number == FAN_PIN)
  2465. fanSpeed = pin_status;
  2466. #endif
  2467. if (pin_number > -1)
  2468. {
  2469. pinMode(pin_number, OUTPUT);
  2470. digitalWrite(pin_number, pin_status);
  2471. analogWrite(pin_number, pin_status);
  2472. }
  2473. }
  2474. break;
  2475. case 44: // M44: Prusa3D: Reset the bed skew and offset calibration.
  2476. // Reset the skew and offset in both RAM and EEPROM.
  2477. reset_bed_offset_and_skew();
  2478. // Reset world2machine_rotation_and_skew and world2machine_shift, therefore
  2479. // the planner will not perform any adjustments in the XY plane.
  2480. // Wait for the motors to stop and update the current position with the absolute values.
  2481. world2machine_revert_to_uncorrected();
  2482. break;
  2483. case 45: // M45: Prusa3D: bed skew and offset with manual Z up
  2484. {
  2485. // Disable the default update procedure of the display. We will do a modal dialog.
  2486. lcd_update_enable(false);
  2487. // Let the planner use the uncorrected coordinates.
  2488. mbl.reset();
  2489. // Reset world2machine_rotation_and_skew and world2machine_shift, therefore
  2490. // the planner will not perform any adjustments in the XY plane.
  2491. // Wait for the motors to stop and update the current position with the absolute values.
  2492. world2machine_revert_to_uncorrected();
  2493. // Reset the baby step value applied without moving the axes.
  2494. babystep_reset();
  2495. // Mark all axes as in a need for homing.
  2496. memset(axis_known_position, 0, sizeof(axis_known_position));
  2497. // Only Z calibration?
  2498. bool onlyZ = code_seen('Z');
  2499. // Let the user move the Z axes up to the end stoppers.
  2500. if (lcd_calibrate_z_end_stop_manual( onlyZ )) {
  2501. refresh_cmd_timeout();
  2502. // Move the print head close to the bed.
  2503. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  2504. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS],current_position[Z_AXIS] , current_position[E_AXIS], homing_feedrate[Z_AXIS]/40, active_extruder);
  2505. st_synchronize();
  2506. // Home in the XY plane.
  2507. set_destination_to_current();
  2508. setup_for_endstop_move();
  2509. home_xy();
  2510. int8_t verbosity_level = 0;
  2511. if (code_seen('V')) {
  2512. // Just 'V' without a number counts as V1.
  2513. char c = strchr_pointer[1];
  2514. verbosity_level = (c == ' ' || c == '\t' || c == 0) ? 1 : code_value_short();
  2515. }
  2516. if (onlyZ) {
  2517. clean_up_after_endstop_move();
  2518. // Z only calibration.
  2519. // Load the machine correction matrix
  2520. world2machine_initialize();
  2521. // and correct the current_position to match the transformed coordinate system.
  2522. world2machine_update_current();
  2523. //FIXME
  2524. bool result = sample_mesh_and_store_reference();
  2525. // if (result) babystep_apply();
  2526. } else {
  2527. // Complete XYZ calibration.
  2528. BedSkewOffsetDetectionResultType result = find_bed_offset_and_skew(verbosity_level);
  2529. uint8_t point_too_far_mask = 0;
  2530. clean_up_after_endstop_move();
  2531. // Print head up.
  2532. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  2533. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS],current_position[Z_AXIS] , current_position[E_AXIS], homing_feedrate[Z_AXIS]/40, active_extruder);
  2534. st_synchronize();
  2535. if (result >= 0) {
  2536. // Second half: The fine adjustment.
  2537. // Let the planner use the uncorrected coordinates.
  2538. mbl.reset();
  2539. world2machine_reset();
  2540. // Home in the XY plane.
  2541. setup_for_endstop_move();
  2542. home_xy();
  2543. result = improve_bed_offset_and_skew(1, verbosity_level, point_too_far_mask);
  2544. clean_up_after_endstop_move();
  2545. // Print head up.
  2546. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  2547. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS],current_position[Z_AXIS] , current_position[E_AXIS], homing_feedrate[Z_AXIS]/40, active_extruder);
  2548. st_synchronize();
  2549. // if (result >= 0) babystep_apply();
  2550. }
  2551. lcd_bed_calibration_show_result(result, point_too_far_mask);
  2552. }
  2553. } else {
  2554. // Timeouted.
  2555. }
  2556. lcd_update_enable(true);
  2557. lcd_implementation_clear();
  2558. // lcd_return_to_status();
  2559. lcd_update();
  2560. break;
  2561. }
  2562. /*
  2563. case 46:
  2564. {
  2565. // M46: Prusa3D: Show the assigned IP address.
  2566. uint8_t ip[4];
  2567. bool hasIP = card.ToshibaFlashAir_GetIP(ip);
  2568. if (hasIP) {
  2569. SERIAL_ECHOPGM("Toshiba FlashAir current IP: ");
  2570. SERIAL_ECHO(int(ip[0]));
  2571. SERIAL_ECHOPGM(".");
  2572. SERIAL_ECHO(int(ip[1]));
  2573. SERIAL_ECHOPGM(".");
  2574. SERIAL_ECHO(int(ip[2]));
  2575. SERIAL_ECHOPGM(".");
  2576. SERIAL_ECHO(int(ip[3]));
  2577. SERIAL_ECHOLNPGM("");
  2578. } else {
  2579. SERIAL_ECHOLNPGM("Toshiba FlashAir GetIP failed");
  2580. }
  2581. break;
  2582. }
  2583. */
  2584. case 47:
  2585. // M47: Prusa3D: Show end stops dialog on the display.
  2586. lcd_diag_show_end_stops();
  2587. break;
  2588. #if 0
  2589. case 48: // M48: scan the bed induction sensor points, print the sensor trigger coordinates to the serial line for visualization on the PC.
  2590. {
  2591. // Disable the default update procedure of the display. We will do a modal dialog.
  2592. lcd_update_enable(false);
  2593. // Let the planner use the uncorrected coordinates.
  2594. mbl.reset();
  2595. // Reset world2machine_rotation_and_skew and world2machine_shift, therefore
  2596. // the planner will not perform any adjustments in the XY plane.
  2597. // Wait for the motors to stop and update the current position with the absolute values.
  2598. world2machine_revert_to_uncorrected();
  2599. // Move the print head close to the bed.
  2600. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  2601. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS],current_position[Z_AXIS] , current_position[E_AXIS], homing_feedrate[Z_AXIS]/40, active_extruder);
  2602. st_synchronize();
  2603. // Home in the XY plane.
  2604. set_destination_to_current();
  2605. setup_for_endstop_move();
  2606. home_xy();
  2607. int8_t verbosity_level = 0;
  2608. if (code_seen('V')) {
  2609. // Just 'V' without a number counts as V1.
  2610. char c = strchr_pointer[1];
  2611. verbosity_level = (c == ' ' || c == '\t' || c == 0) ? 1 : code_value_short();
  2612. }
  2613. bool success = scan_bed_induction_points(verbosity_level);
  2614. clean_up_after_endstop_move();
  2615. // Print head up.
  2616. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  2617. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS],current_position[Z_AXIS] , current_position[E_AXIS], homing_feedrate[Z_AXIS]/40, active_extruder);
  2618. st_synchronize();
  2619. lcd_update_enable(true);
  2620. lcd_implementation_clear();
  2621. // lcd_return_to_status();
  2622. lcd_update();
  2623. break;
  2624. }
  2625. #endif
  2626. // M48 Z-Probe repeatability measurement function.
  2627. //
  2628. // Usage: M48 <n #_samples> <X X_position_for_samples> <Y Y_position_for_samples> <V Verbose_Level> <L legs_of_movement_prior_to_doing_probe>
  2629. //
  2630. // This function assumes the bed has been homed. Specificaly, that a G28 command
  2631. // as been issued prior to invoking the M48 Z-Probe repeatability measurement function.
  2632. // Any information generated by a prior G29 Bed leveling command will be lost and need to be
  2633. // regenerated.
  2634. //
  2635. // The number of samples will default to 10 if not specified. You can use upper or lower case
  2636. // letters for any of the options EXCEPT n. n must be in lower case because Marlin uses a capital
  2637. // N for its communication protocol and will get horribly confused if you send it a capital N.
  2638. //
  2639. #ifdef ENABLE_AUTO_BED_LEVELING
  2640. #ifdef Z_PROBE_REPEATABILITY_TEST
  2641. case 48: // M48 Z-Probe repeatability
  2642. {
  2643. #if Z_MIN_PIN == -1
  2644. #error "You must have a Z_MIN endstop in order to enable calculation of Z-Probe repeatability."
  2645. #endif
  2646. double sum=0.0;
  2647. double mean=0.0;
  2648. double sigma=0.0;
  2649. double sample_set[50];
  2650. int verbose_level=1, n=0, j, n_samples = 10, n_legs=0;
  2651. double X_current, Y_current, Z_current;
  2652. double X_probe_location, Y_probe_location, Z_start_location, ext_position;
  2653. if (code_seen('V') || code_seen('v')) {
  2654. verbose_level = code_value();
  2655. if (verbose_level<0 || verbose_level>4 ) {
  2656. SERIAL_PROTOCOLPGM("?Verbose Level not plausable.\n");
  2657. goto Sigma_Exit;
  2658. }
  2659. }
  2660. if (verbose_level > 0) {
  2661. SERIAL_PROTOCOLPGM("M48 Z-Probe Repeatability test. Version 2.00\n");
  2662. SERIAL_PROTOCOLPGM("Full support at: http://3dprintboard.com/forum.php\n");
  2663. }
  2664. if (code_seen('n')) {
  2665. n_samples = code_value();
  2666. if (n_samples<4 || n_samples>50 ) {
  2667. SERIAL_PROTOCOLPGM("?Specified sample size not plausable.\n");
  2668. goto Sigma_Exit;
  2669. }
  2670. }
  2671. X_current = X_probe_location = st_get_position_mm(X_AXIS);
  2672. Y_current = Y_probe_location = st_get_position_mm(Y_AXIS);
  2673. Z_current = st_get_position_mm(Z_AXIS);
  2674. Z_start_location = st_get_position_mm(Z_AXIS) + Z_RAISE_BEFORE_PROBING;
  2675. ext_position = st_get_position_mm(E_AXIS);
  2676. if (code_seen('X') || code_seen('x') ) {
  2677. X_probe_location = code_value() - X_PROBE_OFFSET_FROM_EXTRUDER;
  2678. if (X_probe_location<X_MIN_POS || X_probe_location>X_MAX_POS ) {
  2679. SERIAL_PROTOCOLPGM("?Specified X position out of range.\n");
  2680. goto Sigma_Exit;
  2681. }
  2682. }
  2683. if (code_seen('Y') || code_seen('y') ) {
  2684. Y_probe_location = code_value() - Y_PROBE_OFFSET_FROM_EXTRUDER;
  2685. if (Y_probe_location<Y_MIN_POS || Y_probe_location>Y_MAX_POS ) {
  2686. SERIAL_PROTOCOLPGM("?Specified Y position out of range.\n");
  2687. goto Sigma_Exit;
  2688. }
  2689. }
  2690. if (code_seen('L') || code_seen('l') ) {
  2691. n_legs = code_value();
  2692. if ( n_legs==1 )
  2693. n_legs = 2;
  2694. if ( n_legs<0 || n_legs>15 ) {
  2695. SERIAL_PROTOCOLPGM("?Specified number of legs in movement not plausable.\n");
  2696. goto Sigma_Exit;
  2697. }
  2698. }
  2699. //
  2700. // Do all the preliminary setup work. First raise the probe.
  2701. //
  2702. st_synchronize();
  2703. plan_bed_level_matrix.set_to_identity();
  2704. plan_buffer_line( X_current, Y_current, Z_start_location,
  2705. ext_position,
  2706. homing_feedrate[Z_AXIS]/60,
  2707. active_extruder);
  2708. st_synchronize();
  2709. //
  2710. // Now get everything to the specified probe point So we can safely do a probe to
  2711. // get us close to the bed. If the Z-Axis is far from the bed, we don't want to
  2712. // use that as a starting point for each probe.
  2713. //
  2714. if (verbose_level > 2)
  2715. SERIAL_PROTOCOL("Positioning probe for the test.\n");
  2716. plan_buffer_line( X_probe_location, Y_probe_location, Z_start_location,
  2717. ext_position,
  2718. homing_feedrate[X_AXIS]/60,
  2719. active_extruder);
  2720. st_synchronize();
  2721. current_position[X_AXIS] = X_current = st_get_position_mm(X_AXIS);
  2722. current_position[Y_AXIS] = Y_current = st_get_position_mm(Y_AXIS);
  2723. current_position[Z_AXIS] = Z_current = st_get_position_mm(Z_AXIS);
  2724. current_position[E_AXIS] = ext_position = st_get_position_mm(E_AXIS);
  2725. //
  2726. // OK, do the inital probe to get us close to the bed.
  2727. // Then retrace the right amount and use that in subsequent probes
  2728. //
  2729. setup_for_endstop_move();
  2730. run_z_probe();
  2731. current_position[Z_AXIS] = Z_current = st_get_position_mm(Z_AXIS);
  2732. Z_start_location = st_get_position_mm(Z_AXIS) + Z_RAISE_BEFORE_PROBING;
  2733. plan_buffer_line( X_probe_location, Y_probe_location, Z_start_location,
  2734. ext_position,
  2735. homing_feedrate[X_AXIS]/60,
  2736. active_extruder);
  2737. st_synchronize();
  2738. current_position[Z_AXIS] = Z_current = st_get_position_mm(Z_AXIS);
  2739. for( n=0; n<n_samples; n++) {
  2740. do_blocking_move_to( X_probe_location, Y_probe_location, Z_start_location); // Make sure we are at the probe location
  2741. if ( n_legs) {
  2742. double radius=0.0, theta=0.0, x_sweep, y_sweep;
  2743. int rotational_direction, l;
  2744. rotational_direction = (unsigned long) millis() & 0x0001; // clockwise or counter clockwise
  2745. radius = (unsigned long) millis() % (long) (X_MAX_LENGTH/4); // limit how far out to go
  2746. theta = (float) ((unsigned long) millis() % (long) 360) / (360./(2*3.1415926)); // turn into radians
  2747. //SERIAL_ECHOPAIR("starting radius: ",radius);
  2748. //SERIAL_ECHOPAIR(" theta: ",theta);
  2749. //SERIAL_ECHOPAIR(" direction: ",rotational_direction);
  2750. //SERIAL_PROTOCOLLNPGM("");
  2751. for( l=0; l<n_legs-1; l++) {
  2752. if (rotational_direction==1)
  2753. theta += (float) ((unsigned long) millis() % (long) 20) / (360.0/(2*3.1415926)); // turn into radians
  2754. else
  2755. theta -= (float) ((unsigned long) millis() % (long) 20) / (360.0/(2*3.1415926)); // turn into radians
  2756. radius += (float) ( ((long) ((unsigned long) millis() % (long) 10)) - 5);
  2757. if ( radius<0.0 )
  2758. radius = -radius;
  2759. X_current = X_probe_location + cos(theta) * radius;
  2760. Y_current = Y_probe_location + sin(theta) * radius;
  2761. if ( X_current<X_MIN_POS) // Make sure our X & Y are sane
  2762. X_current = X_MIN_POS;
  2763. if ( X_current>X_MAX_POS)
  2764. X_current = X_MAX_POS;
  2765. if ( Y_current<Y_MIN_POS) // Make sure our X & Y are sane
  2766. Y_current = Y_MIN_POS;
  2767. if ( Y_current>Y_MAX_POS)
  2768. Y_current = Y_MAX_POS;
  2769. if (verbose_level>3 ) {
  2770. SERIAL_ECHOPAIR("x: ", X_current);
  2771. SERIAL_ECHOPAIR("y: ", Y_current);
  2772. SERIAL_PROTOCOLLNPGM("");
  2773. }
  2774. do_blocking_move_to( X_current, Y_current, Z_current );
  2775. }
  2776. do_blocking_move_to( X_probe_location, Y_probe_location, Z_start_location); // Go back to the probe location
  2777. }
  2778. setup_for_endstop_move();
  2779. run_z_probe();
  2780. sample_set[n] = current_position[Z_AXIS];
  2781. //
  2782. // Get the current mean for the data points we have so far
  2783. //
  2784. sum=0.0;
  2785. for( j=0; j<=n; j++) {
  2786. sum = sum + sample_set[j];
  2787. }
  2788. mean = sum / (double (n+1));
  2789. //
  2790. // Now, use that mean to calculate the standard deviation for the
  2791. // data points we have so far
  2792. //
  2793. sum=0.0;
  2794. for( j=0; j<=n; j++) {
  2795. sum = sum + (sample_set[j]-mean) * (sample_set[j]-mean);
  2796. }
  2797. sigma = sqrt( sum / (double (n+1)) );
  2798. if (verbose_level > 1) {
  2799. SERIAL_PROTOCOL(n+1);
  2800. SERIAL_PROTOCOL(" of ");
  2801. SERIAL_PROTOCOL(n_samples);
  2802. SERIAL_PROTOCOLPGM(" z: ");
  2803. SERIAL_PROTOCOL_F(current_position[Z_AXIS], 6);
  2804. }
  2805. if (verbose_level > 2) {
  2806. SERIAL_PROTOCOL(" mean: ");
  2807. SERIAL_PROTOCOL_F(mean,6);
  2808. SERIAL_PROTOCOL(" sigma: ");
  2809. SERIAL_PROTOCOL_F(sigma,6);
  2810. }
  2811. if (verbose_level > 0)
  2812. SERIAL_PROTOCOLPGM("\n");
  2813. plan_buffer_line( X_probe_location, Y_probe_location, Z_start_location,
  2814. current_position[E_AXIS], homing_feedrate[Z_AXIS]/60, active_extruder);
  2815. st_synchronize();
  2816. }
  2817. delay(1000);
  2818. clean_up_after_endstop_move();
  2819. // enable_endstops(true);
  2820. if (verbose_level > 0) {
  2821. SERIAL_PROTOCOLPGM("Mean: ");
  2822. SERIAL_PROTOCOL_F(mean, 6);
  2823. SERIAL_PROTOCOLPGM("\n");
  2824. }
  2825. SERIAL_PROTOCOLPGM("Standard Deviation: ");
  2826. SERIAL_PROTOCOL_F(sigma, 6);
  2827. SERIAL_PROTOCOLPGM("\n\n");
  2828. Sigma_Exit:
  2829. break;
  2830. }
  2831. #endif // Z_PROBE_REPEATABILITY_TEST
  2832. #endif // ENABLE_AUTO_BED_LEVELING
  2833. case 104: // M104
  2834. if(setTargetedHotend(104)){
  2835. break;
  2836. }
  2837. if (code_seen('S')) setTargetHotend(code_value(), tmp_extruder);
  2838. setWatch();
  2839. break;
  2840. case 112: // M112 -Emergency Stop
  2841. kill();
  2842. break;
  2843. case 140: // M140 set bed temp
  2844. if (code_seen('S')) setTargetBed(code_value());
  2845. break;
  2846. case 105 : // M105
  2847. if(setTargetedHotend(105)){
  2848. break;
  2849. }
  2850. #if defined(TEMP_0_PIN) && TEMP_0_PIN > -1
  2851. SERIAL_PROTOCOLPGM("ok T:");
  2852. SERIAL_PROTOCOL_F(degHotend(tmp_extruder),1);
  2853. SERIAL_PROTOCOLPGM(" /");
  2854. SERIAL_PROTOCOL_F(degTargetHotend(tmp_extruder),1);
  2855. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  2856. SERIAL_PROTOCOLPGM(" B:");
  2857. SERIAL_PROTOCOL_F(degBed(),1);
  2858. SERIAL_PROTOCOLPGM(" /");
  2859. SERIAL_PROTOCOL_F(degTargetBed(),1);
  2860. #endif //TEMP_BED_PIN
  2861. for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) {
  2862. SERIAL_PROTOCOLPGM(" T");
  2863. SERIAL_PROTOCOL(cur_extruder);
  2864. SERIAL_PROTOCOLPGM(":");
  2865. SERIAL_PROTOCOL_F(degHotend(cur_extruder),1);
  2866. SERIAL_PROTOCOLPGM(" /");
  2867. SERIAL_PROTOCOL_F(degTargetHotend(cur_extruder),1);
  2868. }
  2869. #else
  2870. SERIAL_ERROR_START;
  2871. SERIAL_ERRORLNRPGM(MSG_ERR_NO_THERMISTORS);
  2872. #endif
  2873. SERIAL_PROTOCOLPGM(" @:");
  2874. #ifdef EXTRUDER_WATTS
  2875. SERIAL_PROTOCOL((EXTRUDER_WATTS * getHeaterPower(tmp_extruder))/127);
  2876. SERIAL_PROTOCOLPGM("W");
  2877. #else
  2878. SERIAL_PROTOCOL(getHeaterPower(tmp_extruder));
  2879. #endif
  2880. SERIAL_PROTOCOLPGM(" B@:");
  2881. #ifdef BED_WATTS
  2882. SERIAL_PROTOCOL((BED_WATTS * getHeaterPower(-1))/127);
  2883. SERIAL_PROTOCOLPGM("W");
  2884. #else
  2885. SERIAL_PROTOCOL(getHeaterPower(-1));
  2886. #endif
  2887. #ifdef SHOW_TEMP_ADC_VALUES
  2888. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  2889. SERIAL_PROTOCOLPGM(" ADC B:");
  2890. SERIAL_PROTOCOL_F(degBed(),1);
  2891. SERIAL_PROTOCOLPGM("C->");
  2892. SERIAL_PROTOCOL_F(rawBedTemp()/OVERSAMPLENR,0);
  2893. #endif
  2894. for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) {
  2895. SERIAL_PROTOCOLPGM(" T");
  2896. SERIAL_PROTOCOL(cur_extruder);
  2897. SERIAL_PROTOCOLPGM(":");
  2898. SERIAL_PROTOCOL_F(degHotend(cur_extruder),1);
  2899. SERIAL_PROTOCOLPGM("C->");
  2900. SERIAL_PROTOCOL_F(rawHotendTemp(cur_extruder)/OVERSAMPLENR,0);
  2901. }
  2902. #endif
  2903. SERIAL_PROTOCOLLN("");
  2904. return;
  2905. break;
  2906. case 109:
  2907. {// M109 - Wait for extruder heater to reach target.
  2908. if(setTargetedHotend(109)){
  2909. break;
  2910. }
  2911. LCD_MESSAGERPGM(MSG_HEATING);
  2912. heating_status = 1;
  2913. if (farm_mode) { prusa_statistics(1); };
  2914. #ifdef AUTOTEMP
  2915. autotemp_enabled=false;
  2916. #endif
  2917. if (code_seen('S')) {
  2918. setTargetHotend(code_value(), tmp_extruder);
  2919. CooldownNoWait = true;
  2920. } else if (code_seen('R')) {
  2921. setTargetHotend(code_value(), tmp_extruder);
  2922. CooldownNoWait = false;
  2923. }
  2924. #ifdef AUTOTEMP
  2925. if (code_seen('S')) autotemp_min=code_value();
  2926. if (code_seen('B')) autotemp_max=code_value();
  2927. if (code_seen('F'))
  2928. {
  2929. autotemp_factor=code_value();
  2930. autotemp_enabled=true;
  2931. }
  2932. #endif
  2933. setWatch();
  2934. codenum = millis();
  2935. /* See if we are heating up or cooling down */
  2936. target_direction = isHeatingHotend(tmp_extruder); // true if heating, false if cooling
  2937. cancel_heatup = false;
  2938. #ifdef TEMP_RESIDENCY_TIME
  2939. long residencyStart;
  2940. residencyStart = -1;
  2941. /* continue to loop until we have reached the target temp
  2942. _and_ until TEMP_RESIDENCY_TIME hasn't passed since we reached it */
  2943. while((!cancel_heatup)&&((residencyStart == -1) ||
  2944. (residencyStart >= 0 && (((unsigned int) (millis() - residencyStart)) < (TEMP_RESIDENCY_TIME * 1000UL)))) ) {
  2945. #else
  2946. while ( target_direction ? (isHeatingHotend(tmp_extruder)) : (isCoolingHotend(tmp_extruder)&&(CooldownNoWait==false)) ) {
  2947. #endif //TEMP_RESIDENCY_TIME
  2948. if( (millis() - codenum) > 1000UL )
  2949. { //Print Temp Reading and remaining time every 1 second while heating up/cooling down
  2950. SERIAL_PROTOCOLPGM("T:");
  2951. SERIAL_PROTOCOL_F(degHotend(tmp_extruder),1);
  2952. SERIAL_PROTOCOLPGM(" E:");
  2953. SERIAL_PROTOCOL((int)tmp_extruder);
  2954. #ifdef TEMP_RESIDENCY_TIME
  2955. SERIAL_PROTOCOLPGM(" W:");
  2956. if(residencyStart > -1)
  2957. {
  2958. codenum = ((TEMP_RESIDENCY_TIME * 1000UL) - (millis() - residencyStart)) / 1000UL;
  2959. SERIAL_PROTOCOLLN( codenum );
  2960. }
  2961. else
  2962. {
  2963. SERIAL_PROTOCOLLN( "?" );
  2964. }
  2965. #else
  2966. SERIAL_PROTOCOLLN("");
  2967. #endif
  2968. codenum = millis();
  2969. }
  2970. manage_heater();
  2971. manage_inactivity();
  2972. lcd_update();
  2973. #ifdef TEMP_RESIDENCY_TIME
  2974. /* start/restart the TEMP_RESIDENCY_TIME timer whenever we reach target temp for the first time
  2975. or when current temp falls outside the hysteresis after target temp was reached */
  2976. if ((residencyStart == -1 && target_direction && (degHotend(tmp_extruder) >= (degTargetHotend(tmp_extruder)-TEMP_WINDOW))) ||
  2977. (residencyStart == -1 && !target_direction && (degHotend(tmp_extruder) <= (degTargetHotend(tmp_extruder)+TEMP_WINDOW))) ||
  2978. (residencyStart > -1 && labs(degHotend(tmp_extruder) - degTargetHotend(tmp_extruder)) > TEMP_HYSTERESIS) )
  2979. {
  2980. residencyStart = millis();
  2981. }
  2982. #endif //TEMP_RESIDENCY_TIME
  2983. }
  2984. LCD_MESSAGERPGM(MSG_HEATING_COMPLETE);
  2985. heating_status = 2;
  2986. if (farm_mode) { prusa_statistics(2); };
  2987. starttime=millis();
  2988. previous_millis_cmd = millis();
  2989. }
  2990. break;
  2991. case 190: // M190 - Wait for bed heater to reach target.
  2992. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  2993. LCD_MESSAGERPGM(MSG_BED_HEATING);
  2994. heating_status = 3;
  2995. if (farm_mode) { prusa_statistics(1); };
  2996. if (code_seen('S'))
  2997. {
  2998. setTargetBed(code_value());
  2999. CooldownNoWait = true;
  3000. }
  3001. else if (code_seen('R'))
  3002. {
  3003. setTargetBed(code_value());
  3004. CooldownNoWait = false;
  3005. }
  3006. codenum = millis();
  3007. cancel_heatup = false;
  3008. target_direction = isHeatingBed(); // true if heating, false if cooling
  3009. while ( (target_direction)&&(!cancel_heatup) ? (isHeatingBed()) : (isCoolingBed()&&(CooldownNoWait==false)) )
  3010. {
  3011. if(( millis() - codenum) > 1000 ) //Print Temp Reading every 1 second while heating up.
  3012. {
  3013. float tt=degHotend(active_extruder);
  3014. SERIAL_PROTOCOLPGM("T:");
  3015. SERIAL_PROTOCOL(tt);
  3016. SERIAL_PROTOCOLPGM(" E:");
  3017. SERIAL_PROTOCOL((int)active_extruder);
  3018. SERIAL_PROTOCOLPGM(" B:");
  3019. SERIAL_PROTOCOL_F(degBed(),1);
  3020. SERIAL_PROTOCOLLN("");
  3021. codenum = millis();
  3022. }
  3023. manage_heater();
  3024. manage_inactivity();
  3025. lcd_update();
  3026. }
  3027. LCD_MESSAGERPGM(MSG_BED_DONE);
  3028. heating_status = 4;
  3029. previous_millis_cmd = millis();
  3030. #endif
  3031. break;
  3032. #if defined(FAN_PIN) && FAN_PIN > -1
  3033. case 106: //M106 Fan On
  3034. if (code_seen('S')){
  3035. fanSpeed=constrain(code_value(),0,255);
  3036. }
  3037. else {
  3038. fanSpeed=255;
  3039. }
  3040. break;
  3041. case 107: //M107 Fan Off
  3042. fanSpeed = 0;
  3043. break;
  3044. #endif //FAN_PIN
  3045. #if defined(PS_ON_PIN) && PS_ON_PIN > -1
  3046. case 80: // M80 - Turn on Power Supply
  3047. SET_OUTPUT(PS_ON_PIN); //GND
  3048. WRITE(PS_ON_PIN, PS_ON_AWAKE);
  3049. // If you have a switch on suicide pin, this is useful
  3050. // if you want to start another print with suicide feature after
  3051. // a print without suicide...
  3052. #if defined SUICIDE_PIN && SUICIDE_PIN > -1
  3053. SET_OUTPUT(SUICIDE_PIN);
  3054. WRITE(SUICIDE_PIN, HIGH);
  3055. #endif
  3056. #ifdef ULTIPANEL
  3057. powersupply = true;
  3058. LCD_MESSAGERPGM(WELCOME_MSG);
  3059. lcd_update();
  3060. #endif
  3061. break;
  3062. #endif
  3063. case 81: // M81 - Turn off Power Supply
  3064. disable_heater();
  3065. st_synchronize();
  3066. disable_e0();
  3067. disable_e1();
  3068. disable_e2();
  3069. finishAndDisableSteppers();
  3070. fanSpeed = 0;
  3071. delay(1000); // Wait a little before to switch off
  3072. #if defined(SUICIDE_PIN) && SUICIDE_PIN > -1
  3073. st_synchronize();
  3074. suicide();
  3075. #elif defined(PS_ON_PIN) && PS_ON_PIN > -1
  3076. SET_OUTPUT(PS_ON_PIN);
  3077. WRITE(PS_ON_PIN, PS_ON_ASLEEP);
  3078. #endif
  3079. #ifdef ULTIPANEL
  3080. powersupply = false;
  3081. LCD_MESSAGERPGM(CAT4(CUSTOM_MENDEL_NAME,PSTR(" "),MSG_OFF,PSTR("."))); //!!
  3082. /*
  3083. MACHNAME = "Prusa i3"
  3084. MSGOFF = "Vypnuto"
  3085. "Prusai3"" ""vypnuto""."
  3086. "Prusa i3"" "MSG_ALL[lang_selected][50]"."
  3087. */
  3088. lcd_update();
  3089. #endif
  3090. break;
  3091. case 82:
  3092. axis_relative_modes[3] = false;
  3093. break;
  3094. case 83:
  3095. axis_relative_modes[3] = true;
  3096. break;
  3097. case 18: //compatibility
  3098. case 84: // M84
  3099. if(code_seen('S')){
  3100. stepper_inactive_time = code_value() * 1000;
  3101. }
  3102. else
  3103. {
  3104. bool all_axis = !((code_seen(axis_codes[X_AXIS])) || (code_seen(axis_codes[Y_AXIS])) || (code_seen(axis_codes[Z_AXIS]))|| (code_seen(axis_codes[E_AXIS])));
  3105. if(all_axis)
  3106. {
  3107. st_synchronize();
  3108. disable_e0();
  3109. disable_e1();
  3110. disable_e2();
  3111. finishAndDisableSteppers();
  3112. }
  3113. else
  3114. {
  3115. st_synchronize();
  3116. if(code_seen('X')) disable_x();
  3117. if(code_seen('Y')) disable_y();
  3118. if(code_seen('Z')) disable_z();
  3119. #if ((E0_ENABLE_PIN != X_ENABLE_PIN) && (E1_ENABLE_PIN != Y_ENABLE_PIN)) // Only enable on boards that have seperate ENABLE_PINS
  3120. if(code_seen('E')) {
  3121. disable_e0();
  3122. disable_e1();
  3123. disable_e2();
  3124. }
  3125. #endif
  3126. }
  3127. }
  3128. break;
  3129. case 85: // M85
  3130. if(code_seen('S')) {
  3131. max_inactive_time = code_value() * 1000;
  3132. }
  3133. break;
  3134. case 92: // M92
  3135. for(int8_t i=0; i < NUM_AXIS; i++)
  3136. {
  3137. if(code_seen(axis_codes[i]))
  3138. {
  3139. if(i == 3) { // E
  3140. float value = code_value();
  3141. if(value < 20.0) {
  3142. float factor = axis_steps_per_unit[i] / value; // increase e constants if M92 E14 is given for netfab.
  3143. max_jerk[E_AXIS] *= factor;
  3144. max_feedrate[i] *= factor;
  3145. axis_steps_per_sqr_second[i] *= factor;
  3146. }
  3147. axis_steps_per_unit[i] = value;
  3148. }
  3149. else {
  3150. axis_steps_per_unit[i] = code_value();
  3151. }
  3152. }
  3153. }
  3154. break;
  3155. case 115: // M115
  3156. if (code_seen('V')) {
  3157. // Report the Prusa version number.
  3158. SERIAL_PROTOCOLLNRPGM(FW_VERSION_STR_P());
  3159. } else if (code_seen('U')) {
  3160. // Check the firmware version provided. If the firmware version provided by the U code is higher than the currently running firmware,
  3161. // pause the print and ask the user to upgrade the firmware.
  3162. show_upgrade_dialog_if_version_newer(++ strchr_pointer);
  3163. } else {
  3164. SERIAL_PROTOCOLRPGM(MSG_M115_REPORT);
  3165. }
  3166. break;
  3167. case 117: // M117 display message
  3168. starpos = (strchr(strchr_pointer + 5,'*'));
  3169. if(starpos!=NULL)
  3170. *(starpos)='\0';
  3171. lcd_setstatus(strchr_pointer + 5);
  3172. break;
  3173. case 114: // M114
  3174. SERIAL_PROTOCOLPGM("X:");
  3175. SERIAL_PROTOCOL(current_position[X_AXIS]);
  3176. SERIAL_PROTOCOLPGM(" Y:");
  3177. SERIAL_PROTOCOL(current_position[Y_AXIS]);
  3178. SERIAL_PROTOCOLPGM(" Z:");
  3179. SERIAL_PROTOCOL(current_position[Z_AXIS]);
  3180. SERIAL_PROTOCOLPGM(" E:");
  3181. SERIAL_PROTOCOL(current_position[E_AXIS]);
  3182. SERIAL_PROTOCOLRPGM(MSG_COUNT_X);
  3183. SERIAL_PROTOCOL(float(st_get_position(X_AXIS))/axis_steps_per_unit[X_AXIS]);
  3184. SERIAL_PROTOCOLPGM(" Y:");
  3185. SERIAL_PROTOCOL(float(st_get_position(Y_AXIS))/axis_steps_per_unit[Y_AXIS]);
  3186. SERIAL_PROTOCOLPGM(" Z:");
  3187. SERIAL_PROTOCOL(float(st_get_position(Z_AXIS))/axis_steps_per_unit[Z_AXIS]);
  3188. SERIAL_PROTOCOLLN("");
  3189. break;
  3190. case 120: // M120
  3191. enable_endstops(false) ;
  3192. break;
  3193. case 121: // M121
  3194. enable_endstops(true) ;
  3195. break;
  3196. case 119: // M119
  3197. SERIAL_PROTOCOLRPGM(MSG_M119_REPORT);
  3198. SERIAL_PROTOCOLLN("");
  3199. #if defined(X_MIN_PIN) && X_MIN_PIN > -1
  3200. SERIAL_PROTOCOLRPGM(MSG_X_MIN);
  3201. if(READ(X_MIN_PIN)^X_MIN_ENDSTOP_INVERTING){
  3202. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_HIT);
  3203. }else{
  3204. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_OPEN);
  3205. }
  3206. SERIAL_PROTOCOLLN("");
  3207. #endif
  3208. #if defined(X_MAX_PIN) && X_MAX_PIN > -1
  3209. SERIAL_PROTOCOLRPGM(MSG_X_MAX);
  3210. if(READ(X_MAX_PIN)^X_MAX_ENDSTOP_INVERTING){
  3211. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_HIT);
  3212. }else{
  3213. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_OPEN);
  3214. }
  3215. SERIAL_PROTOCOLLN("");
  3216. #endif
  3217. #if defined(Y_MIN_PIN) && Y_MIN_PIN > -1
  3218. SERIAL_PROTOCOLRPGM(MSG_Y_MIN);
  3219. if(READ(Y_MIN_PIN)^Y_MIN_ENDSTOP_INVERTING){
  3220. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_HIT);
  3221. }else{
  3222. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_OPEN);
  3223. }
  3224. SERIAL_PROTOCOLLN("");
  3225. #endif
  3226. #if defined(Y_MAX_PIN) && Y_MAX_PIN > -1
  3227. SERIAL_PROTOCOLRPGM(MSG_Y_MAX);
  3228. if(READ(Y_MAX_PIN)^Y_MAX_ENDSTOP_INVERTING){
  3229. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_HIT);
  3230. }else{
  3231. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_OPEN);
  3232. }
  3233. SERIAL_PROTOCOLLN("");
  3234. #endif
  3235. #if defined(Z_MIN_PIN) && Z_MIN_PIN > -1
  3236. SERIAL_PROTOCOLRPGM(MSG_Z_MIN);
  3237. if(READ(Z_MIN_PIN)^Z_MIN_ENDSTOP_INVERTING){
  3238. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_HIT);
  3239. }else{
  3240. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_OPEN);
  3241. }
  3242. SERIAL_PROTOCOLLN("");
  3243. #endif
  3244. #if defined(Z_MAX_PIN) && Z_MAX_PIN > -1
  3245. SERIAL_PROTOCOLRPGM(MSG_Z_MAX);
  3246. if(READ(Z_MAX_PIN)^Z_MAX_ENDSTOP_INVERTING){
  3247. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_HIT);
  3248. }else{
  3249. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_OPEN);
  3250. }
  3251. SERIAL_PROTOCOLLN("");
  3252. #endif
  3253. break;
  3254. //TODO: update for all axis, use for loop
  3255. #ifdef BLINKM
  3256. case 150: // M150
  3257. {
  3258. byte red;
  3259. byte grn;
  3260. byte blu;
  3261. if(code_seen('R')) red = code_value();
  3262. if(code_seen('U')) grn = code_value();
  3263. if(code_seen('B')) blu = code_value();
  3264. SendColors(red,grn,blu);
  3265. }
  3266. break;
  3267. #endif //BLINKM
  3268. case 200: // M200 D<millimeters> set filament diameter and set E axis units to cubic millimeters (use S0 to set back to millimeters).
  3269. {
  3270. tmp_extruder = active_extruder;
  3271. if(code_seen('T')) {
  3272. tmp_extruder = code_value();
  3273. if(tmp_extruder >= EXTRUDERS) {
  3274. SERIAL_ECHO_START;
  3275. SERIAL_ECHO(MSG_M200_INVALID_EXTRUDER);
  3276. break;
  3277. }
  3278. }
  3279. float area = .0;
  3280. if(code_seen('D')) {
  3281. float diameter = (float)code_value();
  3282. if (diameter == 0.0) {
  3283. // setting any extruder filament size disables volumetric on the assumption that
  3284. // slicers either generate in extruder values as cubic mm or as as filament feeds
  3285. // for all extruders
  3286. volumetric_enabled = false;
  3287. } else {
  3288. filament_size[tmp_extruder] = (float)code_value();
  3289. // make sure all extruders have some sane value for the filament size
  3290. filament_size[0] = (filament_size[0] == 0.0 ? DEFAULT_NOMINAL_FILAMENT_DIA : filament_size[0]);
  3291. #if EXTRUDERS > 1
  3292. filament_size[1] = (filament_size[1] == 0.0 ? DEFAULT_NOMINAL_FILAMENT_DIA : filament_size[1]);
  3293. #if EXTRUDERS > 2
  3294. filament_size[2] = (filament_size[2] == 0.0 ? DEFAULT_NOMINAL_FILAMENT_DIA : filament_size[2]);
  3295. #endif
  3296. #endif
  3297. volumetric_enabled = true;
  3298. }
  3299. } else {
  3300. //reserved for setting filament diameter via UFID or filament measuring device
  3301. break;
  3302. }
  3303. calculate_volumetric_multipliers();
  3304. }
  3305. break;
  3306. case 201: // M201
  3307. for(int8_t i=0; i < NUM_AXIS; i++)
  3308. {
  3309. if(code_seen(axis_codes[i]))
  3310. {
  3311. max_acceleration_units_per_sq_second[i] = code_value();
  3312. }
  3313. }
  3314. // steps per sq second need to be updated to agree with the units per sq second (as they are what is used in the planner)
  3315. reset_acceleration_rates();
  3316. break;
  3317. #if 0 // Not used for Sprinter/grbl gen6
  3318. case 202: // M202
  3319. for(int8_t i=0; i < NUM_AXIS; i++) {
  3320. if(code_seen(axis_codes[i])) axis_travel_steps_per_sqr_second[i] = code_value() * axis_steps_per_unit[i];
  3321. }
  3322. break;
  3323. #endif
  3324. case 203: // M203 max feedrate mm/sec
  3325. for(int8_t i=0; i < NUM_AXIS; i++) {
  3326. if(code_seen(axis_codes[i])) max_feedrate[i] = code_value();
  3327. }
  3328. break;
  3329. case 204: // M204 acclereration S normal moves T filmanent only moves
  3330. {
  3331. if(code_seen('S')) acceleration = code_value() ;
  3332. if(code_seen('T')) retract_acceleration = code_value() ;
  3333. }
  3334. break;
  3335. case 205: //M205 advanced settings: minimum travel speed S=while printing T=travel only, B=minimum segment time X= maximum xy jerk, Z=maximum Z jerk
  3336. {
  3337. if(code_seen('S')) minimumfeedrate = code_value();
  3338. if(code_seen('T')) mintravelfeedrate = code_value();
  3339. if(code_seen('B')) minsegmenttime = code_value() ;
  3340. if(code_seen('X')) max_jerk[X_AXIS] = max_jerk[Y_AXIS] = code_value();
  3341. if(code_seen('Y')) max_jerk[Y_AXIS] = code_value();
  3342. if(code_seen('Z')) max_jerk[Z_AXIS] = code_value();
  3343. if(code_seen('E')) max_jerk[E_AXIS] = code_value();
  3344. }
  3345. break;
  3346. case 206: // M206 additional homing offset
  3347. for(int8_t i=0; i < 3; i++)
  3348. {
  3349. if(code_seen(axis_codes[i])) add_homing[i] = code_value();
  3350. }
  3351. break;
  3352. #ifdef FWRETRACT
  3353. case 207: //M207 - set retract length S[positive mm] F[feedrate mm/min] Z[additional zlift/hop]
  3354. {
  3355. if(code_seen('S'))
  3356. {
  3357. retract_length = code_value() ;
  3358. }
  3359. if(code_seen('F'))
  3360. {
  3361. retract_feedrate = code_value()/60 ;
  3362. }
  3363. if(code_seen('Z'))
  3364. {
  3365. retract_zlift = code_value() ;
  3366. }
  3367. }break;
  3368. case 208: // M208 - set retract recover length S[positive mm surplus to the M207 S*] F[feedrate mm/min]
  3369. {
  3370. if(code_seen('S'))
  3371. {
  3372. retract_recover_length = code_value() ;
  3373. }
  3374. if(code_seen('F'))
  3375. {
  3376. retract_recover_feedrate = code_value()/60 ;
  3377. }
  3378. }break;
  3379. case 209: // M209 - S<1=true/0=false> enable automatic retract detect if the slicer did not support G10/11: every normal extrude-only move will be classified as retract depending on the direction.
  3380. {
  3381. if(code_seen('S'))
  3382. {
  3383. int t= code_value() ;
  3384. switch(t)
  3385. {
  3386. case 0:
  3387. {
  3388. autoretract_enabled=false;
  3389. retracted[0]=false;
  3390. #if EXTRUDERS > 1
  3391. retracted[1]=false;
  3392. #endif
  3393. #if EXTRUDERS > 2
  3394. retracted[2]=false;
  3395. #endif
  3396. }break;
  3397. case 1:
  3398. {
  3399. autoretract_enabled=true;
  3400. retracted[0]=false;
  3401. #if EXTRUDERS > 1
  3402. retracted[1]=false;
  3403. #endif
  3404. #if EXTRUDERS > 2
  3405. retracted[2]=false;
  3406. #endif
  3407. }break;
  3408. default:
  3409. SERIAL_ECHO_START;
  3410. SERIAL_ECHORPGM(MSG_UNKNOWN_COMMAND);
  3411. SERIAL_ECHO(CMDBUFFER_CURRENT_STRING);
  3412. SERIAL_ECHOLNPGM("\"");
  3413. }
  3414. }
  3415. }break;
  3416. #endif // FWRETRACT
  3417. #if EXTRUDERS > 1
  3418. case 218: // M218 - set hotend offset (in mm), T<extruder_number> X<offset_on_X> Y<offset_on_Y>
  3419. {
  3420. if(setTargetedHotend(218)){
  3421. break;
  3422. }
  3423. if(code_seen('X'))
  3424. {
  3425. extruder_offset[X_AXIS][tmp_extruder] = code_value();
  3426. }
  3427. if(code_seen('Y'))
  3428. {
  3429. extruder_offset[Y_AXIS][tmp_extruder] = code_value();
  3430. }
  3431. SERIAL_ECHO_START;
  3432. SERIAL_ECHORPGM(MSG_HOTEND_OFFSET);
  3433. for(tmp_extruder = 0; tmp_extruder < EXTRUDERS; tmp_extruder++)
  3434. {
  3435. SERIAL_ECHO(" ");
  3436. SERIAL_ECHO(extruder_offset[X_AXIS][tmp_extruder]);
  3437. SERIAL_ECHO(",");
  3438. SERIAL_ECHO(extruder_offset[Y_AXIS][tmp_extruder]);
  3439. }
  3440. SERIAL_ECHOLN("");
  3441. }break;
  3442. #endif
  3443. case 220: // M220 S<factor in percent>- set speed factor override percentage
  3444. {
  3445. if(code_seen('S'))
  3446. {
  3447. feedmultiply = code_value() ;
  3448. }
  3449. }
  3450. break;
  3451. case 221: // M221 S<factor in percent>- set extrude factor override percentage
  3452. {
  3453. if(code_seen('S'))
  3454. {
  3455. int tmp_code = code_value();
  3456. if (code_seen('T'))
  3457. {
  3458. if(setTargetedHotend(221)){
  3459. break;
  3460. }
  3461. extruder_multiply[tmp_extruder] = tmp_code;
  3462. }
  3463. else
  3464. {
  3465. extrudemultiply = tmp_code ;
  3466. }
  3467. }
  3468. }
  3469. break;
  3470. case 226: // M226 P<pin number> S<pin state>- Wait until the specified pin reaches the state required
  3471. {
  3472. if(code_seen('P')){
  3473. int pin_number = code_value(); // pin number
  3474. int pin_state = -1; // required pin state - default is inverted
  3475. if(code_seen('S')) pin_state = code_value(); // required pin state
  3476. if(pin_state >= -1 && pin_state <= 1){
  3477. for(int8_t i = 0; i < (int8_t)(sizeof(sensitive_pins)/sizeof(int)); i++)
  3478. {
  3479. if (sensitive_pins[i] == pin_number)
  3480. {
  3481. pin_number = -1;
  3482. break;
  3483. }
  3484. }
  3485. if (pin_number > -1)
  3486. {
  3487. int target = LOW;
  3488. st_synchronize();
  3489. pinMode(pin_number, INPUT);
  3490. switch(pin_state){
  3491. case 1:
  3492. target = HIGH;
  3493. break;
  3494. case 0:
  3495. target = LOW;
  3496. break;
  3497. case -1:
  3498. target = !digitalRead(pin_number);
  3499. break;
  3500. }
  3501. while(digitalRead(pin_number) != target){
  3502. manage_heater();
  3503. manage_inactivity();
  3504. lcd_update();
  3505. }
  3506. }
  3507. }
  3508. }
  3509. }
  3510. break;
  3511. #if NUM_SERVOS > 0
  3512. case 280: // M280 - set servo position absolute. P: servo index, S: angle or microseconds
  3513. {
  3514. int servo_index = -1;
  3515. int servo_position = 0;
  3516. if (code_seen('P'))
  3517. servo_index = code_value();
  3518. if (code_seen('S')) {
  3519. servo_position = code_value();
  3520. if ((servo_index >= 0) && (servo_index < NUM_SERVOS)) {
  3521. #if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
  3522. servos[servo_index].attach(0);
  3523. #endif
  3524. servos[servo_index].write(servo_position);
  3525. #if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
  3526. delay(PROBE_SERVO_DEACTIVATION_DELAY);
  3527. servos[servo_index].detach();
  3528. #endif
  3529. }
  3530. else {
  3531. SERIAL_ECHO_START;
  3532. SERIAL_ECHO("Servo ");
  3533. SERIAL_ECHO(servo_index);
  3534. SERIAL_ECHOLN(" out of range");
  3535. }
  3536. }
  3537. else if (servo_index >= 0) {
  3538. SERIAL_PROTOCOL(MSG_OK);
  3539. SERIAL_PROTOCOL(" Servo ");
  3540. SERIAL_PROTOCOL(servo_index);
  3541. SERIAL_PROTOCOL(": ");
  3542. SERIAL_PROTOCOL(servos[servo_index].read());
  3543. SERIAL_PROTOCOLLN("");
  3544. }
  3545. }
  3546. break;
  3547. #endif // NUM_SERVOS > 0
  3548. #if (LARGE_FLASH == true && ( BEEPER > 0 || defined(ULTRALCD) || defined(LCD_USE_I2C_BUZZER)))
  3549. case 300: // M300
  3550. {
  3551. int beepS = code_seen('S') ? code_value() : 110;
  3552. int beepP = code_seen('P') ? code_value() : 1000;
  3553. if (beepS > 0)
  3554. {
  3555. #if BEEPER > 0
  3556. tone(BEEPER, beepS);
  3557. delay(beepP);
  3558. noTone(BEEPER);
  3559. #elif defined(ULTRALCD)
  3560. lcd_buzz(beepS, beepP);
  3561. #elif defined(LCD_USE_I2C_BUZZER)
  3562. lcd_buzz(beepP, beepS);
  3563. #endif
  3564. }
  3565. else
  3566. {
  3567. delay(beepP);
  3568. }
  3569. }
  3570. break;
  3571. #endif // M300
  3572. #ifdef PIDTEMP
  3573. case 301: // M301
  3574. {
  3575. if(code_seen('P')) Kp = code_value();
  3576. if(code_seen('I')) Ki = scalePID_i(code_value());
  3577. if(code_seen('D')) Kd = scalePID_d(code_value());
  3578. #ifdef PID_ADD_EXTRUSION_RATE
  3579. if(code_seen('C')) Kc = code_value();
  3580. #endif
  3581. updatePID();
  3582. SERIAL_PROTOCOL(MSG_OK);
  3583. SERIAL_PROTOCOL(" p:");
  3584. SERIAL_PROTOCOL(Kp);
  3585. SERIAL_PROTOCOL(" i:");
  3586. SERIAL_PROTOCOL(unscalePID_i(Ki));
  3587. SERIAL_PROTOCOL(" d:");
  3588. SERIAL_PROTOCOL(unscalePID_d(Kd));
  3589. #ifdef PID_ADD_EXTRUSION_RATE
  3590. SERIAL_PROTOCOL(" c:");
  3591. //Kc does not have scaling applied above, or in resetting defaults
  3592. SERIAL_PROTOCOL(Kc);
  3593. #endif
  3594. SERIAL_PROTOCOLLN("");
  3595. }
  3596. break;
  3597. #endif //PIDTEMP
  3598. #ifdef PIDTEMPBED
  3599. case 304: // M304
  3600. {
  3601. if(code_seen('P')) bedKp = code_value();
  3602. if(code_seen('I')) bedKi = scalePID_i(code_value());
  3603. if(code_seen('D')) bedKd = scalePID_d(code_value());
  3604. updatePID();
  3605. SERIAL_PROTOCOL(MSG_OK);
  3606. SERIAL_PROTOCOL(" p:");
  3607. SERIAL_PROTOCOL(bedKp);
  3608. SERIAL_PROTOCOL(" i:");
  3609. SERIAL_PROTOCOL(unscalePID_i(bedKi));
  3610. SERIAL_PROTOCOL(" d:");
  3611. SERIAL_PROTOCOL(unscalePID_d(bedKd));
  3612. SERIAL_PROTOCOLLN("");
  3613. }
  3614. break;
  3615. #endif //PIDTEMP
  3616. case 240: // M240 Triggers a camera by emulating a Canon RC-1 : http://www.doc-diy.net/photo/rc-1_hacked/
  3617. {
  3618. #ifdef CHDK
  3619. SET_OUTPUT(CHDK);
  3620. WRITE(CHDK, HIGH);
  3621. chdkHigh = millis();
  3622. chdkActive = true;
  3623. #else
  3624. #if defined(PHOTOGRAPH_PIN) && PHOTOGRAPH_PIN > -1
  3625. const uint8_t NUM_PULSES=16;
  3626. const float PULSE_LENGTH=0.01524;
  3627. for(int i=0; i < NUM_PULSES; i++) {
  3628. WRITE(PHOTOGRAPH_PIN, HIGH);
  3629. _delay_ms(PULSE_LENGTH);
  3630. WRITE(PHOTOGRAPH_PIN, LOW);
  3631. _delay_ms(PULSE_LENGTH);
  3632. }
  3633. delay(7.33);
  3634. for(int i=0; i < NUM_PULSES; i++) {
  3635. WRITE(PHOTOGRAPH_PIN, HIGH);
  3636. _delay_ms(PULSE_LENGTH);
  3637. WRITE(PHOTOGRAPH_PIN, LOW);
  3638. _delay_ms(PULSE_LENGTH);
  3639. }
  3640. #endif
  3641. #endif //chdk end if
  3642. }
  3643. break;
  3644. #ifdef DOGLCD
  3645. case 250: // M250 Set LCD contrast value: C<value> (value 0..63)
  3646. {
  3647. if (code_seen('C')) {
  3648. lcd_setcontrast( ((int)code_value())&63 );
  3649. }
  3650. SERIAL_PROTOCOLPGM("lcd contrast value: ");
  3651. SERIAL_PROTOCOL(lcd_contrast);
  3652. SERIAL_PROTOCOLLN("");
  3653. }
  3654. break;
  3655. #endif
  3656. #ifdef PREVENT_DANGEROUS_EXTRUDE
  3657. case 302: // allow cold extrudes, or set the minimum extrude temperature
  3658. {
  3659. float temp = .0;
  3660. if (code_seen('S')) temp=code_value();
  3661. set_extrude_min_temp(temp);
  3662. }
  3663. break;
  3664. #endif
  3665. case 303: // M303 PID autotune
  3666. {
  3667. float temp = 150.0;
  3668. int e=0;
  3669. int c=5;
  3670. if (code_seen('E')) e=code_value();
  3671. if (e<0)
  3672. temp=70;
  3673. if (code_seen('S')) temp=code_value();
  3674. if (code_seen('C')) c=code_value();
  3675. PID_autotune(temp, e, c);
  3676. }
  3677. break;
  3678. case 400: // M400 finish all moves
  3679. {
  3680. st_synchronize();
  3681. }
  3682. break;
  3683. #ifdef FILAMENT_SENSOR
  3684. case 404: //M404 Enter the nominal filament width (3mm, 1.75mm ) N<3.0> or display nominal filament width
  3685. {
  3686. #if (FILWIDTH_PIN > -1)
  3687. if(code_seen('N')) filament_width_nominal=code_value();
  3688. else{
  3689. SERIAL_PROTOCOLPGM("Filament dia (nominal mm):");
  3690. SERIAL_PROTOCOLLN(filament_width_nominal);
  3691. }
  3692. #endif
  3693. }
  3694. break;
  3695. case 405: //M405 Turn on filament sensor for control
  3696. {
  3697. if(code_seen('D')) meas_delay_cm=code_value();
  3698. if(meas_delay_cm> MAX_MEASUREMENT_DELAY)
  3699. meas_delay_cm = MAX_MEASUREMENT_DELAY;
  3700. if(delay_index2 == -1) //initialize the ring buffer if it has not been done since startup
  3701. {
  3702. int temp_ratio = widthFil_to_size_ratio();
  3703. for (delay_index1=0; delay_index1<(MAX_MEASUREMENT_DELAY+1); ++delay_index1 ){
  3704. measurement_delay[delay_index1]=temp_ratio-100; //subtract 100 to scale within a signed byte
  3705. }
  3706. delay_index1=0;
  3707. delay_index2=0;
  3708. }
  3709. filament_sensor = true ;
  3710. //SERIAL_PROTOCOLPGM("Filament dia (measured mm):");
  3711. //SERIAL_PROTOCOL(filament_width_meas);
  3712. //SERIAL_PROTOCOLPGM("Extrusion ratio(%):");
  3713. //SERIAL_PROTOCOL(extrudemultiply);
  3714. }
  3715. break;
  3716. case 406: //M406 Turn off filament sensor for control
  3717. {
  3718. filament_sensor = false ;
  3719. }
  3720. break;
  3721. case 407: //M407 Display measured filament diameter
  3722. {
  3723. SERIAL_PROTOCOLPGM("Filament dia (measured mm):");
  3724. SERIAL_PROTOCOLLN(filament_width_meas);
  3725. }
  3726. break;
  3727. #endif
  3728. case 500: // M500 Store settings in EEPROM
  3729. {
  3730. Config_StoreSettings();
  3731. }
  3732. break;
  3733. case 501: // M501 Read settings from EEPROM
  3734. {
  3735. Config_RetrieveSettings();
  3736. }
  3737. break;
  3738. case 502: // M502 Revert to default settings
  3739. {
  3740. Config_ResetDefault();
  3741. }
  3742. break;
  3743. case 503: // M503 print settings currently in memory
  3744. {
  3745. Config_PrintSettings();
  3746. }
  3747. break;
  3748. case 509: //M509 Force language selection
  3749. {
  3750. lcd_force_language_selection();
  3751. SERIAL_ECHO_START;
  3752. SERIAL_PROTOCOLPGM(("LANG SEL FORCED"));
  3753. }
  3754. break;
  3755. #ifdef ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED
  3756. case 540:
  3757. {
  3758. if(code_seen('S')) abort_on_endstop_hit = code_value() > 0;
  3759. }
  3760. break;
  3761. #endif
  3762. #ifdef CUSTOM_M_CODE_SET_Z_PROBE_OFFSET
  3763. case CUSTOM_M_CODE_SET_Z_PROBE_OFFSET:
  3764. {
  3765. float value;
  3766. if (code_seen('Z'))
  3767. {
  3768. value = code_value();
  3769. if ((Z_PROBE_OFFSET_RANGE_MIN <= value) && (value <= Z_PROBE_OFFSET_RANGE_MAX))
  3770. {
  3771. zprobe_zoffset = -value; // compare w/ line 278 of ConfigurationStore.cpp
  3772. SERIAL_ECHO_START;
  3773. SERIAL_ECHOLNRPGM(CAT4(MSG_ZPROBE_ZOFFSET, " ", MSG_OK,PSTR("")));
  3774. SERIAL_PROTOCOLLN("");
  3775. }
  3776. else
  3777. {
  3778. SERIAL_ECHO_START;
  3779. SERIAL_ECHORPGM(MSG_ZPROBE_ZOFFSET);
  3780. SERIAL_ECHORPGM(MSG_Z_MIN);
  3781. SERIAL_ECHO(Z_PROBE_OFFSET_RANGE_MIN);
  3782. SERIAL_ECHORPGM(MSG_Z_MAX);
  3783. SERIAL_ECHO(Z_PROBE_OFFSET_RANGE_MAX);
  3784. SERIAL_PROTOCOLLN("");
  3785. }
  3786. }
  3787. else
  3788. {
  3789. SERIAL_ECHO_START;
  3790. SERIAL_ECHOLNRPGM(CAT2(MSG_ZPROBE_ZOFFSET, PSTR(" : ")));
  3791. SERIAL_ECHO(-zprobe_zoffset);
  3792. SERIAL_PROTOCOLLN("");
  3793. }
  3794. break;
  3795. }
  3796. #endif // CUSTOM_M_CODE_SET_Z_PROBE_OFFSET
  3797. #ifdef FILAMENTCHANGEENABLE
  3798. case 600: //Pause for filament change X[pos] Y[pos] Z[relative lift] E[initial retract] L[later retract distance for removal]
  3799. {
  3800. st_synchronize();
  3801. feedmultiplyBckp=feedmultiply;
  3802. int8_t TooLowZ = 0;
  3803. float target[4];
  3804. float lastpos[4];
  3805. target[X_AXIS]=current_position[X_AXIS];
  3806. target[Y_AXIS]=current_position[Y_AXIS];
  3807. target[Z_AXIS]=current_position[Z_AXIS];
  3808. target[E_AXIS]=current_position[E_AXIS];
  3809. lastpos[X_AXIS]=current_position[X_AXIS];
  3810. lastpos[Y_AXIS]=current_position[Y_AXIS];
  3811. lastpos[Z_AXIS]=current_position[Z_AXIS];
  3812. lastpos[E_AXIS]=current_position[E_AXIS];
  3813. //Restract extruder
  3814. if(code_seen('E'))
  3815. {
  3816. target[E_AXIS]+= code_value();
  3817. }
  3818. else
  3819. {
  3820. #ifdef FILAMENTCHANGE_FIRSTRETRACT
  3821. target[E_AXIS]+= FILAMENTCHANGE_FIRSTRETRACT ;
  3822. #endif
  3823. }
  3824. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_RFEED, active_extruder);
  3825. //Lift Z
  3826. if(code_seen('Z'))
  3827. {
  3828. target[Z_AXIS]+= code_value();
  3829. }
  3830. else
  3831. {
  3832. #ifdef FILAMENTCHANGE_ZADD
  3833. target[Z_AXIS]+= FILAMENTCHANGE_ZADD ;
  3834. if(target[Z_AXIS] < 10){
  3835. target[Z_AXIS]+= 10 ;
  3836. TooLowZ = 1;
  3837. }else{
  3838. TooLowZ = 0;
  3839. }
  3840. #endif
  3841. }
  3842. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_ZFEED, active_extruder);
  3843. //Move XY to side
  3844. if(code_seen('X'))
  3845. {
  3846. target[X_AXIS]+= code_value();
  3847. }
  3848. else
  3849. {
  3850. #ifdef FILAMENTCHANGE_XPOS
  3851. target[X_AXIS]= FILAMENTCHANGE_XPOS ;
  3852. #endif
  3853. }
  3854. if(code_seen('Y'))
  3855. {
  3856. target[Y_AXIS]= code_value();
  3857. }
  3858. else
  3859. {
  3860. #ifdef FILAMENTCHANGE_YPOS
  3861. target[Y_AXIS]= FILAMENTCHANGE_YPOS ;
  3862. #endif
  3863. }
  3864. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_XYFEED, active_extruder);
  3865. // Unload filament
  3866. if(code_seen('L'))
  3867. {
  3868. target[E_AXIS]+= code_value();
  3869. }
  3870. else
  3871. {
  3872. #ifdef FILAMENTCHANGE_FINALRETRACT
  3873. target[E_AXIS]+= FILAMENTCHANGE_FINALRETRACT ;
  3874. #endif
  3875. }
  3876. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_RFEED, active_extruder);
  3877. //finish moves
  3878. st_synchronize();
  3879. //disable extruder steppers so filament can be removed
  3880. disable_e0();
  3881. disable_e1();
  3882. disable_e2();
  3883. delay(100);
  3884. //Wait for user to insert filament
  3885. uint8_t cnt=0;
  3886. int counterBeep = 0;
  3887. lcd_wait_interact();
  3888. while(!lcd_clicked()){
  3889. cnt++;
  3890. manage_heater();
  3891. manage_inactivity(true);
  3892. if(cnt==0)
  3893. {
  3894. #if BEEPER > 0
  3895. if (counterBeep== 500){
  3896. counterBeep = 0;
  3897. }
  3898. SET_OUTPUT(BEEPER);
  3899. if (counterBeep== 0){
  3900. WRITE(BEEPER,HIGH);
  3901. }
  3902. if (counterBeep== 20){
  3903. WRITE(BEEPER,LOW);
  3904. }
  3905. counterBeep++;
  3906. #else
  3907. #if !defined(LCD_FEEDBACK_FREQUENCY_HZ) || !defined(LCD_FEEDBACK_FREQUENCY_DURATION_MS)
  3908. lcd_buzz(1000/6,100);
  3909. #else
  3910. lcd_buzz(LCD_FEEDBACK_FREQUENCY_DURATION_MS,LCD_FEEDBACK_FREQUENCY_HZ);
  3911. #endif
  3912. #endif
  3913. }
  3914. }
  3915. //Filament inserted
  3916. WRITE(BEEPER,LOW);
  3917. //Feed the filament to the end of nozzle quickly
  3918. target[E_AXIS]+= FILAMENTCHANGE_FIRSTFEED ;
  3919. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_EFEED, active_extruder);
  3920. //Extrude some filament
  3921. target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  3922. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_EXFEED, active_extruder);
  3923. //Wait for user to check the state
  3924. lcd_change_fil_state = 0;
  3925. lcd_loading_filament();
  3926. while ((lcd_change_fil_state == 0)||(lcd_change_fil_state != 1)){
  3927. lcd_change_fil_state = 0;
  3928. lcd_alright();
  3929. switch(lcd_change_fil_state){
  3930. // Filament failed to load so load it again
  3931. case 2:
  3932. target[E_AXIS]+= FILAMENTCHANGE_FIRSTFEED ;
  3933. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_EFEED, active_extruder);
  3934. target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  3935. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_EXFEED, active_extruder);
  3936. lcd_loading_filament();
  3937. break;
  3938. // Filament loaded properly but color is not clear
  3939. case 3:
  3940. target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  3941. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder);
  3942. lcd_loading_color();
  3943. break;
  3944. // Everything good
  3945. default:
  3946. lcd_change_success();
  3947. break;
  3948. }
  3949. }
  3950. //Not let's go back to print
  3951. //Feed a little of filament to stabilize pressure
  3952. target[E_AXIS]+= FILAMENTCHANGE_RECFEED;
  3953. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_EXFEED, active_extruder);
  3954. //Retract
  3955. target[E_AXIS]+= FILAMENTCHANGE_FIRSTRETRACT;
  3956. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_RFEED, active_extruder);
  3957. //plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 70, active_extruder); //should do nothing
  3958. //Move XY back
  3959. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_XYFEED, active_extruder);
  3960. //Move Z back
  3961. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_ZFEED, active_extruder);
  3962. target[E_AXIS]= target[E_AXIS] - FILAMENTCHANGE_FIRSTRETRACT;
  3963. //Unretract
  3964. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_RFEED, active_extruder);
  3965. //Set E position to original
  3966. plan_set_e_position(lastpos[E_AXIS]);
  3967. //Recover feed rate
  3968. feedmultiply=feedmultiplyBckp;
  3969. char cmd[9];
  3970. sprintf_P(cmd, PSTR("M220 S%i"), feedmultiplyBckp);
  3971. enquecommand(cmd);
  3972. }
  3973. break;
  3974. #endif //FILAMENTCHANGEENABLE
  3975. case 907: // M907 Set digital trimpot motor current using axis codes.
  3976. {
  3977. #if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
  3978. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) digipot_current(i,code_value());
  3979. if(code_seen('B')) digipot_current(4,code_value());
  3980. if(code_seen('S')) for(int i=0;i<=4;i++) digipot_current(i,code_value());
  3981. #endif
  3982. #ifdef MOTOR_CURRENT_PWM_XY_PIN
  3983. if(code_seen('X')) digipot_current(0, code_value());
  3984. #endif
  3985. #ifdef MOTOR_CURRENT_PWM_Z_PIN
  3986. if(code_seen('Z')) digipot_current(1, code_value());
  3987. #endif
  3988. #ifdef MOTOR_CURRENT_PWM_E_PIN
  3989. if(code_seen('E')) digipot_current(2, code_value());
  3990. #endif
  3991. #ifdef DIGIPOT_I2C
  3992. // this one uses actual amps in floating point
  3993. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) digipot_i2c_set_current(i, code_value());
  3994. // for each additional extruder (named B,C,D,E..., channels 4,5,6,7...)
  3995. for(int i=NUM_AXIS;i<DIGIPOT_I2C_NUM_CHANNELS;i++) if(code_seen('B'+i-NUM_AXIS)) digipot_i2c_set_current(i, code_value());
  3996. #endif
  3997. }
  3998. break;
  3999. case 908: // M908 Control digital trimpot directly.
  4000. {
  4001. #if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
  4002. uint8_t channel,current;
  4003. if(code_seen('P')) channel=code_value();
  4004. if(code_seen('S')) current=code_value();
  4005. digitalPotWrite(channel, current);
  4006. #endif
  4007. }
  4008. break;
  4009. case 350: // M350 Set microstepping mode. Warning: Steps per unit remains unchanged. S code sets stepping mode for all drivers.
  4010. {
  4011. #if defined(X_MS1_PIN) && X_MS1_PIN > -1
  4012. if(code_seen('S')) for(int i=0;i<=4;i++) microstep_mode(i,code_value());
  4013. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) microstep_mode(i,(uint8_t)code_value());
  4014. if(code_seen('B')) microstep_mode(4,code_value());
  4015. microstep_readings();
  4016. #endif
  4017. }
  4018. break;
  4019. case 351: // M351 Toggle MS1 MS2 pins directly, S# determines MS1 or MS2, X# sets the pin high/low.
  4020. {
  4021. #if defined(X_MS1_PIN) && X_MS1_PIN > -1
  4022. if(code_seen('S')) switch((int)code_value())
  4023. {
  4024. case 1:
  4025. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) microstep_ms(i,code_value(),-1);
  4026. if(code_seen('B')) microstep_ms(4,code_value(),-1);
  4027. break;
  4028. case 2:
  4029. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) microstep_ms(i,-1,code_value());
  4030. if(code_seen('B')) microstep_ms(4,-1,code_value());
  4031. break;
  4032. }
  4033. microstep_readings();
  4034. #endif
  4035. }
  4036. break;
  4037. case 999: // M999: Restart after being stopped
  4038. Stopped = false;
  4039. lcd_reset_alert_level();
  4040. gcode_LastN = Stopped_gcode_LastN;
  4041. FlushSerialRequestResend();
  4042. break;
  4043. }
  4044. } // end if(code_seen('M')) (end of M codes)
  4045. else if(code_seen('T'))
  4046. {
  4047. tmp_extruder = code_value();
  4048. if(tmp_extruder >= EXTRUDERS) {
  4049. SERIAL_ECHO_START;
  4050. SERIAL_ECHO("T");
  4051. SERIAL_ECHO(tmp_extruder);
  4052. SERIAL_ECHOLN(MSG_INVALID_EXTRUDER);
  4053. }
  4054. else {
  4055. boolean make_move = false;
  4056. if(code_seen('F')) {
  4057. make_move = true;
  4058. next_feedrate = code_value();
  4059. if(next_feedrate > 0.0) {
  4060. feedrate = next_feedrate;
  4061. }
  4062. }
  4063. #if EXTRUDERS > 1
  4064. if(tmp_extruder != active_extruder) {
  4065. // Save current position to return to after applying extruder offset
  4066. memcpy(destination, current_position, sizeof(destination));
  4067. // Offset extruder (only by XY)
  4068. int i;
  4069. for(i = 0; i < 2; i++) {
  4070. current_position[i] = current_position[i] -
  4071. extruder_offset[i][active_extruder] +
  4072. extruder_offset[i][tmp_extruder];
  4073. }
  4074. // Set the new active extruder and position
  4075. active_extruder = tmp_extruder;
  4076. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  4077. // Move to the old position if 'F' was in the parameters
  4078. if(make_move && Stopped == false) {
  4079. prepare_move();
  4080. }
  4081. }
  4082. #endif
  4083. SERIAL_ECHO_START;
  4084. SERIAL_ECHO(MSG_ACTIVE_EXTRUDER);
  4085. SERIAL_PROTOCOLLN((int)active_extruder);
  4086. }
  4087. } // end if(code_seen('T')) (end of T codes)
  4088. else
  4089. {
  4090. SERIAL_ECHO_START;
  4091. SERIAL_ECHORPGM(MSG_UNKNOWN_COMMAND);
  4092. SERIAL_ECHO(CMDBUFFER_CURRENT_STRING);
  4093. SERIAL_ECHOLNPGM("\"");
  4094. }
  4095. ClearToSend();
  4096. }
  4097. void FlushSerialRequestResend()
  4098. {
  4099. //char cmdbuffer[bufindr][100]="Resend:";
  4100. MYSERIAL.flush();
  4101. SERIAL_PROTOCOLRPGM(MSG_RESEND);
  4102. SERIAL_PROTOCOLLN(gcode_LastN + 1);
  4103. ClearToSend();
  4104. }
  4105. // Confirm the execution of a command, if sent from a serial line.
  4106. // Execution of a command from a SD card will not be confirmed.
  4107. void ClearToSend()
  4108. {
  4109. previous_millis_cmd = millis();
  4110. if (CMDBUFFER_CURRENT_TYPE == CMDBUFFER_CURRENT_TYPE_USB)
  4111. SERIAL_PROTOCOLLNRPGM(MSG_OK);
  4112. }
  4113. void get_coordinates()
  4114. {
  4115. bool seen[4]={false,false,false,false};
  4116. for(int8_t i=0; i < NUM_AXIS; i++) {
  4117. if(code_seen(axis_codes[i]))
  4118. {
  4119. destination[i] = (float)code_value() + (axis_relative_modes[i] || relative_mode)*current_position[i];
  4120. seen[i]=true;
  4121. }
  4122. else destination[i] = current_position[i]; //Are these else lines really needed?
  4123. }
  4124. if(code_seen('F')) {
  4125. next_feedrate = code_value();
  4126. if(next_feedrate > 0.0) feedrate = next_feedrate;
  4127. }
  4128. }
  4129. void get_arc_coordinates()
  4130. {
  4131. #ifdef SF_ARC_FIX
  4132. bool relative_mode_backup = relative_mode;
  4133. relative_mode = true;
  4134. #endif
  4135. get_coordinates();
  4136. #ifdef SF_ARC_FIX
  4137. relative_mode=relative_mode_backup;
  4138. #endif
  4139. if(code_seen('I')) {
  4140. offset[0] = code_value();
  4141. }
  4142. else {
  4143. offset[0] = 0.0;
  4144. }
  4145. if(code_seen('J')) {
  4146. offset[1] = code_value();
  4147. }
  4148. else {
  4149. offset[1] = 0.0;
  4150. }
  4151. }
  4152. void clamp_to_software_endstops(float target[3])
  4153. {
  4154. world2machine_clamp(target[0], target[1]);
  4155. // Clamp the Z coordinate.
  4156. if (min_software_endstops) {
  4157. float negative_z_offset = 0;
  4158. #ifdef ENABLE_AUTO_BED_LEVELING
  4159. if (Z_PROBE_OFFSET_FROM_EXTRUDER < 0) negative_z_offset = negative_z_offset + Z_PROBE_OFFSET_FROM_EXTRUDER;
  4160. if (add_homing[Z_AXIS] < 0) negative_z_offset = negative_z_offset + add_homing[Z_AXIS];
  4161. #endif
  4162. if (target[Z_AXIS] < min_pos[Z_AXIS]+negative_z_offset) target[Z_AXIS] = min_pos[Z_AXIS]+negative_z_offset;
  4163. }
  4164. if (max_software_endstops) {
  4165. if (target[Z_AXIS] > max_pos[Z_AXIS]) target[Z_AXIS] = max_pos[Z_AXIS];
  4166. }
  4167. }
  4168. #ifdef MESH_BED_LEVELING
  4169. void mesh_plan_buffer_line(const float &x, const float &y, const float &z, const float &e, const float &feed_rate, const uint8_t extruder) {
  4170. float dx = x - current_position[X_AXIS];
  4171. float dy = y - current_position[Y_AXIS];
  4172. float dz = z - current_position[Z_AXIS];
  4173. int n_segments = 0;
  4174. if (mbl.active) {
  4175. float len = abs(dx) + abs(dy);
  4176. if (len > 0)
  4177. // Split to 3cm segments or shorter.
  4178. n_segments = int(ceil(len / 30.f));
  4179. }
  4180. if (n_segments > 1) {
  4181. float de = e - current_position[E_AXIS];
  4182. for (int i = 1; i < n_segments; ++ i) {
  4183. float t = float(i) / float(n_segments);
  4184. plan_buffer_line(
  4185. current_position[X_AXIS] + t * dx,
  4186. current_position[Y_AXIS] + t * dy,
  4187. current_position[Z_AXIS] + t * dz,
  4188. current_position[E_AXIS] + t * de,
  4189. feed_rate, extruder);
  4190. }
  4191. }
  4192. // The rest of the path.
  4193. plan_buffer_line(x, y, z, e, feed_rate, extruder);
  4194. current_position[X_AXIS] = x;
  4195. current_position[Y_AXIS] = y;
  4196. current_position[Z_AXIS] = z;
  4197. current_position[E_AXIS] = e;
  4198. }
  4199. #endif // MESH_BED_LEVELING
  4200. void prepare_move()
  4201. {
  4202. clamp_to_software_endstops(destination);
  4203. previous_millis_cmd = millis();
  4204. // Do not use feedmultiply for E or Z only moves
  4205. if( (current_position[X_AXIS] == destination [X_AXIS]) && (current_position[Y_AXIS] == destination [Y_AXIS])) {
  4206. #ifdef MESH_BED_LEVELING
  4207. mesh_plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  4208. #else
  4209. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  4210. #endif
  4211. }
  4212. else {
  4213. #ifdef MESH_BED_LEVELING
  4214. mesh_plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate*feedmultiply*(1./(60.f*100.f)), active_extruder);
  4215. #else
  4216. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate*feedmultiply*(1./(60.f*100.f)), active_extruder);
  4217. #endif
  4218. }
  4219. for(int8_t i=0; i < NUM_AXIS; i++) {
  4220. current_position[i] = destination[i];
  4221. }
  4222. }
  4223. void prepare_arc_move(char isclockwise) {
  4224. float r = hypot(offset[X_AXIS], offset[Y_AXIS]); // Compute arc radius for mc_arc
  4225. // Trace the arc
  4226. mc_arc(current_position, destination, offset, X_AXIS, Y_AXIS, Z_AXIS, feedrate*feedmultiply/60/100.0, r, isclockwise, active_extruder);
  4227. // As far as the parser is concerned, the position is now == target. In reality the
  4228. // motion control system might still be processing the action and the real tool position
  4229. // in any intermediate location.
  4230. for(int8_t i=0; i < NUM_AXIS; i++) {
  4231. current_position[i] = destination[i];
  4232. }
  4233. previous_millis_cmd = millis();
  4234. }
  4235. #if defined(CONTROLLERFAN_PIN) && CONTROLLERFAN_PIN > -1
  4236. #if defined(FAN_PIN)
  4237. #if CONTROLLERFAN_PIN == FAN_PIN
  4238. #error "You cannot set CONTROLLERFAN_PIN equal to FAN_PIN"
  4239. #endif
  4240. #endif
  4241. unsigned long lastMotor = 0; //Save the time for when a motor was turned on last
  4242. unsigned long lastMotorCheck = 0;
  4243. void controllerFan()
  4244. {
  4245. if ((millis() - lastMotorCheck) >= 2500) //Not a time critical function, so we only check every 2500ms
  4246. {
  4247. lastMotorCheck = millis();
  4248. if(!READ(X_ENABLE_PIN) || !READ(Y_ENABLE_PIN) || !READ(Z_ENABLE_PIN) || (soft_pwm_bed > 0)
  4249. #if EXTRUDERS > 2
  4250. || !READ(E2_ENABLE_PIN)
  4251. #endif
  4252. #if EXTRUDER > 1
  4253. #if defined(X2_ENABLE_PIN) && X2_ENABLE_PIN > -1
  4254. || !READ(X2_ENABLE_PIN)
  4255. #endif
  4256. || !READ(E1_ENABLE_PIN)
  4257. #endif
  4258. || !READ(E0_ENABLE_PIN)) //If any of the drivers are enabled...
  4259. {
  4260. lastMotor = millis(); //... set time to NOW so the fan will turn on
  4261. }
  4262. if ((millis() - lastMotor) >= (CONTROLLERFAN_SECS*1000UL) || lastMotor == 0) //If the last time any driver was enabled, is longer since than CONTROLLERSEC...
  4263. {
  4264. digitalWrite(CONTROLLERFAN_PIN, 0);
  4265. analogWrite(CONTROLLERFAN_PIN, 0);
  4266. }
  4267. else
  4268. {
  4269. // allows digital or PWM fan output to be used (see M42 handling)
  4270. digitalWrite(CONTROLLERFAN_PIN, CONTROLLERFAN_SPEED);
  4271. analogWrite(CONTROLLERFAN_PIN, CONTROLLERFAN_SPEED);
  4272. }
  4273. }
  4274. }
  4275. #endif
  4276. #ifdef TEMP_STAT_LEDS
  4277. static bool blue_led = false;
  4278. static bool red_led = false;
  4279. static uint32_t stat_update = 0;
  4280. void handle_status_leds(void) {
  4281. float max_temp = 0.0;
  4282. if(millis() > stat_update) {
  4283. stat_update += 500; // Update every 0.5s
  4284. for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) {
  4285. max_temp = max(max_temp, degHotend(cur_extruder));
  4286. max_temp = max(max_temp, degTargetHotend(cur_extruder));
  4287. }
  4288. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  4289. max_temp = max(max_temp, degTargetBed());
  4290. max_temp = max(max_temp, degBed());
  4291. #endif
  4292. if((max_temp > 55.0) && (red_led == false)) {
  4293. digitalWrite(STAT_LED_RED, 1);
  4294. digitalWrite(STAT_LED_BLUE, 0);
  4295. red_led = true;
  4296. blue_led = false;
  4297. }
  4298. if((max_temp < 54.0) && (blue_led == false)) {
  4299. digitalWrite(STAT_LED_RED, 0);
  4300. digitalWrite(STAT_LED_BLUE, 1);
  4301. red_led = false;
  4302. blue_led = true;
  4303. }
  4304. }
  4305. }
  4306. #endif
  4307. void manage_inactivity(bool ignore_stepper_queue/*=false*/) //default argument set in Marlin.h
  4308. {
  4309. #if defined(KILL_PIN) && KILL_PIN > -1
  4310. static int killCount = 0; // make the inactivity button a bit less responsive
  4311. const int KILL_DELAY = 10000;
  4312. #endif
  4313. if(buflen < (BUFSIZE-1))
  4314. get_command();
  4315. if( (millis() - previous_millis_cmd) > max_inactive_time )
  4316. if(max_inactive_time)
  4317. kill();
  4318. if(stepper_inactive_time) {
  4319. if( (millis() - previous_millis_cmd) > stepper_inactive_time )
  4320. {
  4321. if(blocks_queued() == false && ignore_stepper_queue == false) {
  4322. disable_x();
  4323. // SERIAL_ECHOLNPGM("manage_inactivity - disable Y");
  4324. disable_y();
  4325. disable_z();
  4326. disable_e0();
  4327. disable_e1();
  4328. disable_e2();
  4329. }
  4330. }
  4331. }
  4332. #ifdef CHDK //Check if pin should be set to LOW after M240 set it to HIGH
  4333. if (chdkActive && (millis() - chdkHigh > CHDK_DELAY))
  4334. {
  4335. chdkActive = false;
  4336. WRITE(CHDK, LOW);
  4337. }
  4338. #endif
  4339. #if defined(KILL_PIN) && KILL_PIN > -1
  4340. // Check if the kill button was pressed and wait just in case it was an accidental
  4341. // key kill key press
  4342. // -------------------------------------------------------------------------------
  4343. if( 0 == READ(KILL_PIN) )
  4344. {
  4345. killCount++;
  4346. }
  4347. else if (killCount > 0)
  4348. {
  4349. killCount--;
  4350. }
  4351. // Exceeded threshold and we can confirm that it was not accidental
  4352. // KILL the machine
  4353. // ----------------------------------------------------------------
  4354. if ( killCount >= KILL_DELAY)
  4355. {
  4356. kill();
  4357. }
  4358. #endif
  4359. #if defined(CONTROLLERFAN_PIN) && CONTROLLERFAN_PIN > -1
  4360. controllerFan(); //Check if fan should be turned on to cool stepper drivers down
  4361. #endif
  4362. #ifdef EXTRUDER_RUNOUT_PREVENT
  4363. if( (millis() - previous_millis_cmd) > EXTRUDER_RUNOUT_SECONDS*1000 )
  4364. if(degHotend(active_extruder)>EXTRUDER_RUNOUT_MINTEMP)
  4365. {
  4366. bool oldstatus=READ(E0_ENABLE_PIN);
  4367. enable_e0();
  4368. float oldepos=current_position[E_AXIS];
  4369. float oldedes=destination[E_AXIS];
  4370. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS],
  4371. destination[E_AXIS]+EXTRUDER_RUNOUT_EXTRUDE*EXTRUDER_RUNOUT_ESTEPS/axis_steps_per_unit[E_AXIS],
  4372. EXTRUDER_RUNOUT_SPEED/60.*EXTRUDER_RUNOUT_ESTEPS/axis_steps_per_unit[E_AXIS], active_extruder);
  4373. current_position[E_AXIS]=oldepos;
  4374. destination[E_AXIS]=oldedes;
  4375. plan_set_e_position(oldepos);
  4376. previous_millis_cmd=millis();
  4377. st_synchronize();
  4378. WRITE(E0_ENABLE_PIN,oldstatus);
  4379. }
  4380. #endif
  4381. #ifdef TEMP_STAT_LEDS
  4382. handle_status_leds();
  4383. #endif
  4384. check_axes_activity();
  4385. }
  4386. void kill(const char *full_screen_message)
  4387. {
  4388. cli(); // Stop interrupts
  4389. disable_heater();
  4390. disable_x();
  4391. // SERIAL_ECHOLNPGM("kill - disable Y");
  4392. disable_y();
  4393. disable_z();
  4394. disable_e0();
  4395. disable_e1();
  4396. disable_e2();
  4397. #if defined(PS_ON_PIN) && PS_ON_PIN > -1
  4398. pinMode(PS_ON_PIN,INPUT);
  4399. #endif
  4400. SERIAL_ERROR_START;
  4401. SERIAL_ERRORLNRPGM(MSG_ERR_KILLED);
  4402. if (full_screen_message != NULL) {
  4403. SERIAL_ERRORLNRPGM(full_screen_message);
  4404. lcd_display_message_fullscreen_P(full_screen_message);
  4405. } else {
  4406. LCD_ALERTMESSAGERPGM(MSG_KILLED);
  4407. }
  4408. // FMC small patch to update the LCD before ending
  4409. sei(); // enable interrupts
  4410. for ( int i=5; i--; lcd_update())
  4411. {
  4412. delay(200);
  4413. }
  4414. cli(); // disable interrupts
  4415. suicide();
  4416. while(1) { /* Intentionally left empty */ } // Wait for reset
  4417. }
  4418. void Stop()
  4419. {
  4420. disable_heater();
  4421. if(Stopped == false) {
  4422. Stopped = true;
  4423. Stopped_gcode_LastN = gcode_LastN; // Save last g_code for restart
  4424. SERIAL_ERROR_START;
  4425. SERIAL_ERRORLNRPGM(MSG_ERR_STOPPED);
  4426. LCD_MESSAGERPGM(MSG_STOPPED);
  4427. }
  4428. }
  4429. bool IsStopped() { return Stopped; };
  4430. #ifdef FAST_PWM_FAN
  4431. void setPwmFrequency(uint8_t pin, int val)
  4432. {
  4433. val &= 0x07;
  4434. switch(digitalPinToTimer(pin))
  4435. {
  4436. #if defined(TCCR0A)
  4437. case TIMER0A:
  4438. case TIMER0B:
  4439. // TCCR0B &= ~(_BV(CS00) | _BV(CS01) | _BV(CS02));
  4440. // TCCR0B |= val;
  4441. break;
  4442. #endif
  4443. #if defined(TCCR1A)
  4444. case TIMER1A:
  4445. case TIMER1B:
  4446. // TCCR1B &= ~(_BV(CS10) | _BV(CS11) | _BV(CS12));
  4447. // TCCR1B |= val;
  4448. break;
  4449. #endif
  4450. #if defined(TCCR2)
  4451. case TIMER2:
  4452. case TIMER2:
  4453. TCCR2 &= ~(_BV(CS10) | _BV(CS11) | _BV(CS12));
  4454. TCCR2 |= val;
  4455. break;
  4456. #endif
  4457. #if defined(TCCR2A)
  4458. case TIMER2A:
  4459. case TIMER2B:
  4460. TCCR2B &= ~(_BV(CS20) | _BV(CS21) | _BV(CS22));
  4461. TCCR2B |= val;
  4462. break;
  4463. #endif
  4464. #if defined(TCCR3A)
  4465. case TIMER3A:
  4466. case TIMER3B:
  4467. case TIMER3C:
  4468. TCCR3B &= ~(_BV(CS30) | _BV(CS31) | _BV(CS32));
  4469. TCCR3B |= val;
  4470. break;
  4471. #endif
  4472. #if defined(TCCR4A)
  4473. case TIMER4A:
  4474. case TIMER4B:
  4475. case TIMER4C:
  4476. TCCR4B &= ~(_BV(CS40) | _BV(CS41) | _BV(CS42));
  4477. TCCR4B |= val;
  4478. break;
  4479. #endif
  4480. #if defined(TCCR5A)
  4481. case TIMER5A:
  4482. case TIMER5B:
  4483. case TIMER5C:
  4484. TCCR5B &= ~(_BV(CS50) | _BV(CS51) | _BV(CS52));
  4485. TCCR5B |= val;
  4486. break;
  4487. #endif
  4488. }
  4489. }
  4490. #endif //FAST_PWM_FAN
  4491. bool setTargetedHotend(int code){
  4492. tmp_extruder = active_extruder;
  4493. if(code_seen('T')) {
  4494. tmp_extruder = code_value();
  4495. if(tmp_extruder >= EXTRUDERS) {
  4496. SERIAL_ECHO_START;
  4497. switch(code){
  4498. case 104:
  4499. SERIAL_ECHO(MSG_M104_INVALID_EXTRUDER);
  4500. break;
  4501. case 105:
  4502. SERIAL_ECHO(MSG_M105_INVALID_EXTRUDER);
  4503. break;
  4504. case 109:
  4505. SERIAL_ECHO(MSG_M109_INVALID_EXTRUDER);
  4506. break;
  4507. case 218:
  4508. SERIAL_ECHO(MSG_M218_INVALID_EXTRUDER);
  4509. break;
  4510. case 221:
  4511. SERIAL_ECHO(MSG_M221_INVALID_EXTRUDER);
  4512. break;
  4513. }
  4514. SERIAL_ECHOLN(tmp_extruder);
  4515. return true;
  4516. }
  4517. }
  4518. return false;
  4519. }
  4520. void save_statistics(unsigned long _total_filament_used, unsigned long _total_print_time)
  4521. {
  4522. if (eeprom_read_byte((uint8_t *)EEPROM_TOTALTIME) == 255 && eeprom_read_byte((uint8_t *)EEPROM_TOTALTIME + 1) == 255 && eeprom_read_byte((uint8_t *)EEPROM_TOTALTIME + 2) == 255 && eeprom_read_byte((uint8_t *)EEPROM_TOTALTIME + 3) == 255)
  4523. {
  4524. eeprom_update_dword((uint32_t *)EEPROM_TOTALTIME, 0);
  4525. eeprom_update_dword((uint32_t *)EEPROM_FILAMENTUSED, 0);
  4526. }
  4527. unsigned long _previous_filament = eeprom_read_dword((uint32_t *)EEPROM_FILAMENTUSED);
  4528. unsigned long _previous_time = eeprom_read_dword((uint32_t *)EEPROM_TOTALTIME);
  4529. eeprom_update_dword((uint32_t *)EEPROM_TOTALTIME, _previous_time + (_total_print_time/60));
  4530. eeprom_update_dword((uint32_t *)EEPROM_FILAMENTUSED, _previous_filament + (_total_filament_used / 1000));
  4531. total_filament_used = 0;
  4532. }
  4533. float calculate_volumetric_multiplier(float diameter) {
  4534. float area = .0;
  4535. float radius = .0;
  4536. radius = diameter * .5;
  4537. if (! volumetric_enabled || radius == 0) {
  4538. area = 1;
  4539. }
  4540. else {
  4541. area = M_PI * pow(radius, 2);
  4542. }
  4543. return 1.0 / area;
  4544. }
  4545. void calculate_volumetric_multipliers() {
  4546. volumetric_multiplier[0] = calculate_volumetric_multiplier(filament_size[0]);
  4547. #if EXTRUDERS > 1
  4548. volumetric_multiplier[1] = calculate_volumetric_multiplier(filament_size[1]);
  4549. #if EXTRUDERS > 2
  4550. volumetric_multiplier[2] = calculate_volumetric_multiplier(filament_size[2]);
  4551. #endif
  4552. #endif
  4553. }
  4554. void delay_keep_alive(int ms)
  4555. {
  4556. for (;;) {
  4557. manage_heater();
  4558. // Manage inactivity, but don't disable steppers on timeout.
  4559. manage_inactivity(true);
  4560. lcd_update();
  4561. if (ms == 0)
  4562. break;
  4563. else if (ms >= 50) {
  4564. delay(50);
  4565. ms -= 50;
  4566. } else {
  4567. delay(ms);
  4568. ms = 0;
  4569. }
  4570. }
  4571. }