stepper.cpp 43 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441
  1. /*
  2. stepper.c - stepper motor driver: executes motion plans using stepper motors
  3. Part of Grbl
  4. Copyright (c) 2009-2011 Simen Svale Skogsrud
  5. Grbl is free software: you can redistribute it and/or modify
  6. it under the terms of the GNU General Public License as published by
  7. the Free Software Foundation, either version 3 of the License, or
  8. (at your option) any later version.
  9. Grbl is distributed in the hope that it will be useful,
  10. but WITHOUT ANY WARRANTY; without even the implied warranty of
  11. MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  12. GNU General Public License for more details.
  13. You should have received a copy of the GNU General Public License
  14. along with Grbl. If not, see <http://www.gnu.org/licenses/>.
  15. */
  16. /* The timer calculations of this module informed by the 'RepRap cartesian firmware' by Zack Smith
  17. and Philipp Tiefenbacher. */
  18. #include "Marlin.h"
  19. #include "stepper.h"
  20. #include "planner.h"
  21. #include "temperature.h"
  22. #include "ultralcd.h"
  23. #include "language.h"
  24. #include "cardreader.h"
  25. #include "speed_lookuptable.h"
  26. #if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
  27. #include <SPI.h>
  28. #endif
  29. #ifdef TMC2130
  30. #include "tmc2130.h"
  31. #endif //TMC2130
  32. #ifdef PAT9125
  33. extern uint8_t fsensor_err_cnt;
  34. #endif //PAT9125
  35. //===========================================================================
  36. //=============================public variables ============================
  37. //===========================================================================
  38. block_t *current_block; // A pointer to the block currently being traced
  39. bool x_min_endstop = false;
  40. bool x_max_endstop = false;
  41. bool y_min_endstop = false;
  42. bool y_max_endstop = false;
  43. bool z_min_endstop = false;
  44. bool z_max_endstop = false;
  45. //===========================================================================
  46. //=============================private variables ============================
  47. //===========================================================================
  48. //static makes it inpossible to be called from outside of this file by extern.!
  49. // Variables used by The Stepper Driver Interrupt
  50. static unsigned char out_bits; // The next stepping-bits to be output
  51. static int32_t counter_x, // Counter variables for the bresenham line tracer
  52. counter_y,
  53. counter_z,
  54. counter_e;
  55. volatile uint32_t step_events_completed; // The number of step events executed in the current block
  56. static int32_t acceleration_time, deceleration_time;
  57. //static unsigned long accelerate_until, decelerate_after, acceleration_rate, initial_rate, final_rate, nominal_rate;
  58. static uint16_t acc_step_rate; // needed for deccelaration start point
  59. static uint8_t step_loops;
  60. static uint16_t OCR1A_nominal;
  61. static uint8_t step_loops_nominal;
  62. volatile long endstops_trigsteps[3]={0,0,0};
  63. volatile long endstops_stepsTotal,endstops_stepsDone;
  64. static volatile bool endstop_x_hit=false;
  65. static volatile bool endstop_y_hit=false;
  66. static volatile bool endstop_z_hit=false;
  67. #ifdef ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED
  68. bool abort_on_endstop_hit = false;
  69. #endif
  70. #ifdef MOTOR_CURRENT_PWM_XY_PIN
  71. int motor_current_setting[3] = DEFAULT_PWM_MOTOR_CURRENT;
  72. int motor_current_setting_silent[3] = DEFAULT_PWM_MOTOR_CURRENT;
  73. int motor_current_setting_loud[3] = DEFAULT_PWM_MOTOR_CURRENT_LOUD;
  74. #endif
  75. static bool old_x_min_endstop=false;
  76. static bool old_x_max_endstop=false;
  77. static bool old_y_min_endstop=false;
  78. static bool old_y_max_endstop=false;
  79. static bool old_z_min_endstop=false;
  80. static bool old_z_max_endstop=false;
  81. static bool check_endstops = true;
  82. static bool check_z_endstop = false;
  83. int8_t SilentMode = 0;
  84. volatile long count_position[NUM_AXIS] = { 0, 0, 0, 0};
  85. volatile signed char count_direction[NUM_AXIS] = { 1, 1, 1, 1};
  86. uint8_t LastStepMask = 0;
  87. #ifdef LIN_ADVANCE
  88. uint16_t ADV_NEVER = 65535;
  89. static uint16_t nextMainISR = 0;
  90. static uint16_t nextAdvanceISR = ADV_NEVER;
  91. static uint16_t eISR_Rate = ADV_NEVER;
  92. static volatile int e_steps; //Extrusion steps to be executed by the stepper
  93. static int final_estep_rate; //Speed of extruder at cruising speed
  94. static int current_estep_rate; //The current speed of the extruder
  95. static int current_adv_steps; //The current pretension of filament expressed in steps
  96. #define ADV_RATE(T, L) (e_steps ? (T) * (L) / abs(e_steps) : ADV_NEVER)
  97. #define _NEXT_ISR(T) nextMainISR = T
  98. #else
  99. #define _NEXT_ISR(T) OCR1A = T
  100. #endif
  101. //===========================================================================
  102. //=============================functions ============================
  103. //===========================================================================
  104. #define CHECK_ENDSTOPS if(check_endstops)
  105. // intRes = intIn1 * intIn2 >> 16
  106. // uses:
  107. // r26 to store 0
  108. // r27 to store the byte 1 of the 24 bit result
  109. #define MultiU16X8toH16(intRes, charIn1, intIn2) \
  110. asm volatile ( \
  111. "clr r26 \n\t" \
  112. "mul %A1, %B2 \n\t" \
  113. "movw %A0, r0 \n\t" \
  114. "mul %A1, %A2 \n\t" \
  115. "add %A0, r1 \n\t" \
  116. "adc %B0, r26 \n\t" \
  117. "lsr r0 \n\t" \
  118. "adc %A0, r26 \n\t" \
  119. "adc %B0, r26 \n\t" \
  120. "clr r1 \n\t" \
  121. : \
  122. "=&r" (intRes) \
  123. : \
  124. "d" (charIn1), \
  125. "d" (intIn2) \
  126. : \
  127. "r26" \
  128. )
  129. // intRes = longIn1 * longIn2 >> 24
  130. // uses:
  131. // r26 to store 0
  132. // r27 to store the byte 1 of the 48bit result
  133. #define MultiU24X24toH16(intRes, longIn1, longIn2) \
  134. asm volatile ( \
  135. "clr r26 \n\t" \
  136. "mul %A1, %B2 \n\t" \
  137. "mov r27, r1 \n\t" \
  138. "mul %B1, %C2 \n\t" \
  139. "movw %A0, r0 \n\t" \
  140. "mul %C1, %C2 \n\t" \
  141. "add %B0, r0 \n\t" \
  142. "mul %C1, %B2 \n\t" \
  143. "add %A0, r0 \n\t" \
  144. "adc %B0, r1 \n\t" \
  145. "mul %A1, %C2 \n\t" \
  146. "add r27, r0 \n\t" \
  147. "adc %A0, r1 \n\t" \
  148. "adc %B0, r26 \n\t" \
  149. "mul %B1, %B2 \n\t" \
  150. "add r27, r0 \n\t" \
  151. "adc %A0, r1 \n\t" \
  152. "adc %B0, r26 \n\t" \
  153. "mul %C1, %A2 \n\t" \
  154. "add r27, r0 \n\t" \
  155. "adc %A0, r1 \n\t" \
  156. "adc %B0, r26 \n\t" \
  157. "mul %B1, %A2 \n\t" \
  158. "add r27, r1 \n\t" \
  159. "adc %A0, r26 \n\t" \
  160. "adc %B0, r26 \n\t" \
  161. "lsr r27 \n\t" \
  162. "adc %A0, r26 \n\t" \
  163. "adc %B0, r26 \n\t" \
  164. "clr r1 \n\t" \
  165. : \
  166. "=&r" (intRes) \
  167. : \
  168. "d" (longIn1), \
  169. "d" (longIn2) \
  170. : \
  171. "r26" , "r27" \
  172. )
  173. // Some useful constants
  174. #define ENABLE_STEPPER_DRIVER_INTERRUPT() TIMSK1 |= (1<<OCIE1A)
  175. #define DISABLE_STEPPER_DRIVER_INTERRUPT() TIMSK1 &= ~(1<<OCIE1A)
  176. void checkHitEndstops()
  177. {
  178. if( endstop_x_hit || endstop_y_hit || endstop_z_hit) {
  179. SERIAL_ECHO_START;
  180. SERIAL_ECHORPGM(MSG_ENDSTOPS_HIT);
  181. if(endstop_x_hit) {
  182. SERIAL_ECHOPAIR(" X:",(float)endstops_trigsteps[X_AXIS]/axis_steps_per_unit[X_AXIS]);
  183. LCD_MESSAGERPGM(CAT2(MSG_ENDSTOPS_HIT, PSTR("X")));
  184. }
  185. if(endstop_y_hit) {
  186. SERIAL_ECHOPAIR(" Y:",(float)endstops_trigsteps[Y_AXIS]/axis_steps_per_unit[Y_AXIS]);
  187. LCD_MESSAGERPGM(CAT2(MSG_ENDSTOPS_HIT, PSTR("Y")));
  188. }
  189. if(endstop_z_hit) {
  190. SERIAL_ECHOPAIR(" Z:",(float)endstops_trigsteps[Z_AXIS]/axis_steps_per_unit[Z_AXIS]);
  191. LCD_MESSAGERPGM(CAT2(MSG_ENDSTOPS_HIT,PSTR("Z")));
  192. }
  193. SERIAL_ECHOLN("");
  194. endstop_x_hit=false;
  195. endstop_y_hit=false;
  196. endstop_z_hit=false;
  197. #if defined(ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED) && defined(SDSUPPORT)
  198. if (abort_on_endstop_hit)
  199. {
  200. card.sdprinting = false;
  201. card.closefile();
  202. quickStop();
  203. setTargetHotend0(0);
  204. setTargetHotend1(0);
  205. setTargetHotend2(0);
  206. }
  207. #endif
  208. }
  209. }
  210. bool endstops_hit_on_purpose()
  211. {
  212. bool hit = endstop_x_hit || endstop_y_hit || endstop_z_hit;
  213. endstop_x_hit=false;
  214. endstop_y_hit=false;
  215. endstop_z_hit=false;
  216. return hit;
  217. }
  218. bool endstop_z_hit_on_purpose()
  219. {
  220. bool hit = endstop_z_hit;
  221. endstop_z_hit=false;
  222. return hit;
  223. }
  224. bool enable_endstops(bool check)
  225. {
  226. bool old = check_endstops;
  227. check_endstops = check;
  228. return old;
  229. }
  230. bool enable_z_endstop(bool check)
  231. {
  232. bool old = check_z_endstop;
  233. check_z_endstop = check;
  234. endstop_z_hit=false;
  235. return old;
  236. }
  237. // __________________________
  238. // /| |\ _________________ ^
  239. // / | | \ /| |\ |
  240. // / | | \ / | | \ s
  241. // / | | | | | \ p
  242. // / | | | | | \ e
  243. // +-----+------------------------+---+--+---------------+----+ e
  244. // | BLOCK 1 | BLOCK 2 | d
  245. //
  246. // time ----->
  247. //
  248. // The trapezoid is the shape the speed curve over time. It starts at block->initial_rate, accelerates
  249. // first block->accelerate_until step_events_completed, then keeps going at constant speed until
  250. // step_events_completed reaches block->decelerate_after after which it decelerates until the trapezoid generator is reset.
  251. // The slope of acceleration is calculated with the leib ramp alghorithm.
  252. void st_wake_up() {
  253. // TCNT1 = 0;
  254. ENABLE_STEPPER_DRIVER_INTERRUPT();
  255. }
  256. void step_wait(){
  257. for(int8_t i=0; i < 6; i++){
  258. }
  259. }
  260. FORCE_INLINE unsigned short calc_timer(unsigned short step_rate) {
  261. unsigned short timer;
  262. if(step_rate > MAX_STEP_FREQUENCY) step_rate = MAX_STEP_FREQUENCY;
  263. if(step_rate > 20000) { // If steprate > 20kHz >> step 4 times
  264. step_rate = (step_rate >> 2)&0x3fff;
  265. step_loops = 4;
  266. }
  267. else if(step_rate > 10000) { // If steprate > 10kHz >> step 2 times
  268. step_rate = (step_rate >> 1)&0x7fff;
  269. step_loops = 2;
  270. }
  271. else {
  272. step_loops = 1;
  273. }
  274. // step_loops = 1;
  275. if(step_rate < (F_CPU/500000)) step_rate = (F_CPU/500000);
  276. step_rate -= (F_CPU/500000); // Correct for minimal speed
  277. if(step_rate >= (8*256)){ // higher step rate
  278. unsigned short table_address = (unsigned short)&speed_lookuptable_fast[(unsigned char)(step_rate>>8)][0];
  279. unsigned char tmp_step_rate = (step_rate & 0x00ff);
  280. unsigned short gain = (unsigned short)pgm_read_word_near(table_address+2);
  281. MultiU16X8toH16(timer, tmp_step_rate, gain);
  282. timer = (unsigned short)pgm_read_word_near(table_address) - timer;
  283. }
  284. else { // lower step rates
  285. unsigned short table_address = (unsigned short)&speed_lookuptable_slow[0][0];
  286. table_address += ((step_rate)>>1) & 0xfffc;
  287. timer = (unsigned short)pgm_read_word_near(table_address);
  288. timer -= (((unsigned short)pgm_read_word_near(table_address+2) * (unsigned char)(step_rate & 0x0007))>>3);
  289. }
  290. if(timer < 100) { timer = 100; MYSERIAL.print(MSG_STEPPER_TOO_HIGH); MYSERIAL.println(step_rate); }//(20kHz this should never happen)
  291. return timer;
  292. }
  293. // Initializes the trapezoid generator from the current block. Called whenever a new
  294. // block begins.
  295. FORCE_INLINE void trapezoid_generator_reset() {
  296. deceleration_time = 0;
  297. // step_rate to timer interval
  298. OCR1A_nominal = calc_timer(current_block->nominal_rate);
  299. // make a note of the number of step loops required at nominal speed
  300. step_loops_nominal = step_loops;
  301. acc_step_rate = current_block->initial_rate;
  302. acceleration_time = calc_timer(acc_step_rate);
  303. _NEXT_ISR(acceleration_time);
  304. #ifdef LIN_ADVANCE
  305. if (current_block->use_advance_lead) {
  306. current_estep_rate = ((unsigned long)acc_step_rate * current_block->abs_adv_steps_multiplier8) >> 17;
  307. final_estep_rate = (current_block->nominal_rate * current_block->abs_adv_steps_multiplier8) >> 17;
  308. }
  309. #endif
  310. }
  311. // "The Stepper Driver Interrupt" - This timer interrupt is the workhorse.
  312. // It pops blocks from the block_buffer and executes them by pulsing the stepper pins appropriately.
  313. ISR(TIMER1_COMPA_vect) {
  314. #ifdef LIN_ADVANCE
  315. advance_isr_scheduler();
  316. #else
  317. isr();
  318. #endif
  319. }
  320. void isr() {
  321. //if (UVLO) uvlo();
  322. // If there is no current block, attempt to pop one from the buffer
  323. if (current_block == NULL) {
  324. // Anything in the buffer?
  325. current_block = plan_get_current_block();
  326. if (current_block != NULL) {
  327. // The busy flag is set by the plan_get_current_block() call.
  328. // current_block->busy = true;
  329. trapezoid_generator_reset();
  330. counter_x = -(current_block->step_event_count >> 1);
  331. counter_y = counter_x;
  332. counter_z = counter_x;
  333. counter_e = counter_x;
  334. step_events_completed = 0;
  335. #ifdef Z_LATE_ENABLE
  336. if(current_block->steps_z > 0) {
  337. enable_z();
  338. _NEXT_ISR(2000); //1ms wait
  339. return;
  340. }
  341. #endif
  342. }
  343. else {
  344. _NEXT_ISR(2000); // 1kHz.
  345. }
  346. }
  347. LastStepMask = 0;
  348. if (current_block != NULL) {
  349. // Set directions TO DO This should be done once during init of trapezoid. Endstops -> interrupt
  350. out_bits = current_block->direction_bits;
  351. // Set the direction bits (X_AXIS=A_AXIS and Y_AXIS=B_AXIS for COREXY)
  352. if((out_bits & (1<<X_AXIS))!=0){
  353. WRITE(X_DIR_PIN, INVERT_X_DIR);
  354. count_direction[X_AXIS]=-1;
  355. }
  356. else{
  357. WRITE(X_DIR_PIN, !INVERT_X_DIR);
  358. count_direction[X_AXIS]=1;
  359. }
  360. if((out_bits & (1<<Y_AXIS))!=0){
  361. WRITE(Y_DIR_PIN, INVERT_Y_DIR);
  362. #ifdef Y_DUAL_STEPPER_DRIVERS
  363. WRITE(Y2_DIR_PIN, !(INVERT_Y_DIR == INVERT_Y2_VS_Y_DIR));
  364. #endif
  365. count_direction[Y_AXIS]=-1;
  366. }
  367. else{
  368. WRITE(Y_DIR_PIN, !INVERT_Y_DIR);
  369. #ifdef Y_DUAL_STEPPER_DRIVERS
  370. WRITE(Y2_DIR_PIN, (INVERT_Y_DIR == INVERT_Y2_VS_Y_DIR));
  371. #endif
  372. count_direction[Y_AXIS]=1;
  373. }
  374. // Set direction en check limit switches
  375. #ifndef COREXY
  376. if ((out_bits & (1<<X_AXIS)) != 0) { // stepping along -X axis
  377. #else
  378. if ((((out_bits & (1<<X_AXIS)) != 0)&&(out_bits & (1<<Y_AXIS)) != 0)) { //-X occurs for -A and -B
  379. #endif
  380. CHECK_ENDSTOPS
  381. {
  382. {
  383. #if ( (defined(X_MIN_PIN) && (X_MIN_PIN > -1)) || defined(TMC2130_SG_HOMING) ) && !defined(DEBUG_DISABLE_XMINLIMIT)
  384. #ifdef TMC2130_SG_HOMING
  385. // Stall guard homing turned on, now decide if software or hardware one
  386. #ifndef TMC2130_SG_HOMING_SW_XY
  387. x_min_endstop = (READ(X_TMC2130_DIAG) != X_MIN_ENDSTOP_INVERTING);
  388. #else //TMC2130_SG_HOMING_SW_XY
  389. x_min_endstop = tmc2130_axis_stalled[X_AXIS];
  390. #endif //TMC2130_SG_HOMING_SW_XY
  391. #else
  392. // Normal homing
  393. x_min_endstop = (READ(X_MIN_PIN) != X_MIN_ENDSTOP_INVERTING);
  394. #endif
  395. if(x_min_endstop && old_x_min_endstop && (current_block->steps_x > 0)) {
  396. endstops_trigsteps[X_AXIS] = count_position[X_AXIS];
  397. endstop_x_hit=true;
  398. step_events_completed = current_block->step_event_count;
  399. }
  400. old_x_min_endstop = x_min_endstop;
  401. #endif
  402. }
  403. }
  404. }
  405. else { // +direction
  406. CHECK_ENDSTOPS
  407. {
  408. {
  409. #if ( (defined(X_MAX_PIN) && (X_MAX_PIN > -1)) || defined(TMC2130_SG_HOMING) ) && !defined(DEBUG_DISABLE_XMAXLIMIT)
  410. #ifdef TMC2130_SG_HOMING
  411. // Stall guard homing turned on, now decide if software or hardware one
  412. #ifndef TMC2130_SG_HOMING_SW_XY
  413. x_max_endstop = (READ(X_TMC2130_DIAG) != X_MAX_ENDSTOP_INVERTING);
  414. #else //TMC2130_SG_HOMING_SW_XY
  415. x_max_endstop = tmc2130_axis_stalled[X_AXIS];
  416. #endif //TMC2130_SG_HOMING_SW_XY
  417. #else
  418. // Normal homing
  419. x_max_endstop = (READ(X_MAX_PIN) != X_MAX_ENDSTOP_INVERTING);
  420. #endif
  421. if(x_max_endstop && old_x_max_endstop && (current_block->steps_x > 0)){
  422. endstops_trigsteps[X_AXIS] = count_position[X_AXIS];
  423. endstop_x_hit=true;
  424. step_events_completed = current_block->step_event_count;
  425. }
  426. old_x_max_endstop = x_max_endstop;
  427. #endif
  428. }
  429. }
  430. }
  431. #ifndef COREXY
  432. if ((out_bits & (1<<Y_AXIS)) != 0) { // -direction
  433. #else
  434. if ((((out_bits & (1<<X_AXIS)) != 0)&&(out_bits & (1<<Y_AXIS)) == 0)) { // -Y occurs for -A and +B
  435. #endif
  436. CHECK_ENDSTOPS
  437. {
  438. #if ( (defined(Y_MIN_PIN) && (Y_MIN_PIN > -1)) || defined(TMC2130_SG_HOMING) ) && !defined(DEBUG_DISABLE_YMINLIMIT)
  439. #ifdef TMC2130_SG_HOMING
  440. // Stall guard homing turned on, now decide if software or hardware one
  441. #ifndef TMC2130_SG_HOMING_SW_XY
  442. y_min_endstop = (READ(Y_TMC2130_DIAG) != Y_MIN_ENDSTOP_INVERTING);
  443. #else //TMC2130_SG_HOMING_SW_XY
  444. y_min_endstop = tmc2130_axis_stalled[Y_AXIS];
  445. #endif //TMC2130_SG_HOMING_SW_XY
  446. #else
  447. // Normal homing
  448. y_min_endstop = (READ(Y_MIN_PIN) != Y_MIN_ENDSTOP_INVERTING);
  449. #endif
  450. if(y_min_endstop && old_y_min_endstop && (current_block->steps_y > 0)) {
  451. endstops_trigsteps[Y_AXIS] = count_position[Y_AXIS];
  452. endstop_y_hit=true;
  453. step_events_completed = current_block->step_event_count;
  454. }
  455. old_y_min_endstop = y_min_endstop;
  456. #endif
  457. }
  458. }
  459. else { // +direction
  460. CHECK_ENDSTOPS
  461. {
  462. #if ( (defined(Y_MAX_PIN) && (Y_MAX_PIN > -1)) || defined(TMC2130_SG_HOMING) ) && !defined(DEBUG_DISABLE_YMAXLIMIT)
  463. #ifdef TMC2130_SG_HOMING
  464. // Stall guard homing turned on, now decide if software or hardware one
  465. #ifndef TMC2130_SG_HOMING_SW_XY
  466. y_max_endstop = (READ(Y_TMC2130_DIAG) != Y_MAX_ENDSTOP_INVERTING);
  467. #else //TMC2130_SG_HOMING_SW_XY
  468. y_max_endstop = tmc2130_axis_stalled[Y_AXIS];
  469. #endif //TMC2130_SG_HOMING_SW_XY
  470. #else
  471. // Normal homing
  472. y_max_endstop = (READ(Y_MAX_PIN) != Y_MAX_ENDSTOP_INVERTING);
  473. #endif
  474. if(y_max_endstop && old_y_max_endstop && (current_block->steps_y > 0)){
  475. endstops_trigsteps[Y_AXIS] = count_position[Y_AXIS];
  476. endstop_y_hit=true;
  477. step_events_completed = current_block->step_event_count;
  478. }
  479. old_y_max_endstop = y_max_endstop;
  480. #endif
  481. }
  482. }
  483. if ((out_bits & (1<<Z_AXIS)) != 0) { // -direction
  484. WRITE(Z_DIR_PIN,INVERT_Z_DIR);
  485. #ifdef Z_DUAL_STEPPER_DRIVERS
  486. WRITE(Z2_DIR_PIN,INVERT_Z_DIR);
  487. #endif
  488. count_direction[Z_AXIS]=-1;
  489. if(check_endstops && ! check_z_endstop)
  490. {
  491. #if defined(Z_MIN_PIN) && (Z_MIN_PIN > -1) && !defined(DEBUG_DISABLE_ZMINLIMIT)
  492. z_min_endstop=(READ(Z_MIN_PIN) != Z_MIN_ENDSTOP_INVERTING);
  493. if(z_min_endstop && old_z_min_endstop && (current_block->steps_z > 0)) {
  494. endstops_trigsteps[Z_AXIS] = count_position[Z_AXIS];
  495. endstop_z_hit=true;
  496. step_events_completed = current_block->step_event_count;
  497. }
  498. old_z_min_endstop = z_min_endstop;
  499. #endif
  500. }
  501. }
  502. else { // +direction
  503. WRITE(Z_DIR_PIN,!INVERT_Z_DIR);
  504. #ifdef Z_DUAL_STEPPER_DRIVERS
  505. WRITE(Z2_DIR_PIN,!INVERT_Z_DIR);
  506. #endif
  507. count_direction[Z_AXIS]=1;
  508. CHECK_ENDSTOPS
  509. {
  510. #if defined(Z_MAX_PIN) && (Z_MAX_PIN > -1) && !defined(DEBUG_DISABLE_ZMAXLIMIT)
  511. #ifndef TMC2130_SG_HOMING_SW_Z
  512. z_max_endstop = (READ(Z_MAX_PIN) != Z_MAX_ENDSTOP_INVERTING);
  513. #else //TMC2130_SG_HOMING_SW_Z
  514. z_max_endstop = tmc2130_axis_stalled[Z_AXIS];
  515. #endif //TMC2130_SG_HOMING_SW_Z
  516. if(z_max_endstop && old_z_max_endstop && (current_block->steps_z > 0)) {
  517. endstops_trigsteps[Z_AXIS] = count_position[Z_AXIS];
  518. endstop_z_hit=true;
  519. step_events_completed = current_block->step_event_count;
  520. }
  521. old_z_max_endstop = z_max_endstop;
  522. #endif
  523. }
  524. }
  525. // Supporting stopping on a trigger of the Z-stop induction sensor, not only for the Z-minus movements.
  526. #if defined(Z_MIN_PIN) && (Z_MIN_PIN > -1) && !defined(DEBUG_DISABLE_ZMINLIMIT)
  527. if(check_z_endstop) {
  528. // Check the Z min end-stop no matter what.
  529. // Good for searching for the center of an induction target.
  530. z_min_endstop=(READ(Z_MIN_PIN) != Z_MIN_ENDSTOP_INVERTING);
  531. if(z_min_endstop && old_z_min_endstop) {
  532. endstops_trigsteps[Z_AXIS] = count_position[Z_AXIS];
  533. endstop_z_hit=true;
  534. step_events_completed = current_block->step_event_count;
  535. }
  536. old_z_min_endstop = z_min_endstop;
  537. }
  538. #endif
  539. if ((out_bits & (1 << E_AXIS)) != 0)
  540. { // -direction
  541. //AKU
  542. #ifdef SNMM
  543. if (snmm_extruder == 0 || snmm_extruder == 2)
  544. {
  545. NORM_E_DIR();
  546. }
  547. else
  548. {
  549. REV_E_DIR();
  550. }
  551. #else
  552. REV_E_DIR();
  553. #endif // SNMM
  554. count_direction[E_AXIS] = -1;
  555. }
  556. else
  557. { // +direction
  558. #ifdef SNMM
  559. if (snmm_extruder == 0 || snmm_extruder == 2)
  560. {
  561. REV_E_DIR();
  562. }
  563. else
  564. {
  565. NORM_E_DIR();
  566. }
  567. #else
  568. NORM_E_DIR();
  569. #endif // SNMM
  570. count_direction[E_AXIS] = 1;
  571. }
  572. for(uint8_t i=0; i < step_loops; i++) { // Take multiple steps per interrupt (For high speed moves)
  573. #ifndef AT90USB
  574. MSerial.checkRx(); // Check for serial chars.
  575. #endif
  576. #ifdef LIN_ADVANCE
  577. counter_e += current_block->steps_e;
  578. if (counter_e > 0) {
  579. counter_e -= current_block->step_event_count;
  580. count_position[E_AXIS] += count_direction[E_AXIS];
  581. ((out_bits&(1<<E_AXIS))!=0) ? --e_steps : ++e_steps;
  582. }
  583. #endif
  584. counter_x += current_block->steps_x;
  585. if (counter_x > 0) {
  586. WRITE(X_STEP_PIN, !INVERT_X_STEP_PIN);
  587. LastStepMask |= X_AXIS_MASK;
  588. #ifdef DEBUG_XSTEP_DUP_PIN
  589. WRITE(DEBUG_XSTEP_DUP_PIN,!INVERT_X_STEP_PIN);
  590. #endif //DEBUG_XSTEP_DUP_PIN
  591. counter_x -= current_block->step_event_count;
  592. count_position[X_AXIS]+=count_direction[X_AXIS];
  593. WRITE(X_STEP_PIN, INVERT_X_STEP_PIN);
  594. #ifdef DEBUG_XSTEP_DUP_PIN
  595. WRITE(DEBUG_XSTEP_DUP_PIN,INVERT_X_STEP_PIN);
  596. #endif //DEBUG_XSTEP_DUP_PIN
  597. }
  598. counter_y += current_block->steps_y;
  599. if (counter_y > 0) {
  600. WRITE(Y_STEP_PIN, !INVERT_Y_STEP_PIN);
  601. LastStepMask |= Y_AXIS_MASK;
  602. #ifdef DEBUG_YSTEP_DUP_PIN
  603. WRITE(DEBUG_YSTEP_DUP_PIN,!INVERT_Y_STEP_PIN);
  604. #endif //DEBUG_YSTEP_DUP_PIN
  605. #ifdef Y_DUAL_STEPPER_DRIVERS
  606. WRITE(Y2_STEP_PIN, !INVERT_Y_STEP_PIN);
  607. #endif
  608. counter_y -= current_block->step_event_count;
  609. count_position[Y_AXIS]+=count_direction[Y_AXIS];
  610. WRITE(Y_STEP_PIN, INVERT_Y_STEP_PIN);
  611. #ifdef DEBUG_YSTEP_DUP_PIN
  612. WRITE(DEBUG_YSTEP_DUP_PIN,INVERT_Y_STEP_PIN);
  613. #endif //DEBUG_YSTEP_DUP_PIN
  614. #ifdef Y_DUAL_STEPPER_DRIVERS
  615. WRITE(Y2_STEP_PIN, INVERT_Y_STEP_PIN);
  616. #endif
  617. }
  618. counter_z += current_block->steps_z;
  619. if (counter_z > 0) {
  620. WRITE(Z_STEP_PIN, !INVERT_Z_STEP_PIN);
  621. LastStepMask |= Z_AXIS_MASK;
  622. #ifdef Z_DUAL_STEPPER_DRIVERS
  623. WRITE(Z2_STEP_PIN, !INVERT_Z_STEP_PIN);
  624. #endif
  625. counter_z -= current_block->step_event_count;
  626. count_position[Z_AXIS]+=count_direction[Z_AXIS];
  627. WRITE(Z_STEP_PIN, INVERT_Z_STEP_PIN);
  628. #ifdef Z_DUAL_STEPPER_DRIVERS
  629. WRITE(Z2_STEP_PIN, INVERT_Z_STEP_PIN);
  630. #endif
  631. }
  632. #ifndef LIN_ADVANCE
  633. counter_e += current_block->steps_e;
  634. if (counter_e > 0) {
  635. WRITE_E_STEP(!INVERT_E_STEP_PIN);
  636. counter_e -= current_block->step_event_count;
  637. count_position[E_AXIS]+=count_direction[E_AXIS];
  638. WRITE_E_STEP(INVERT_E_STEP_PIN);
  639. }
  640. #endif
  641. step_events_completed += 1;
  642. if(step_events_completed >= current_block->step_event_count) break;
  643. }
  644. #ifdef LIN_ADVANCE
  645. if (current_block->use_advance_lead) {
  646. const int delta_adv_steps = current_estep_rate - current_adv_steps;
  647. current_adv_steps += delta_adv_steps;
  648. e_steps += delta_adv_steps;
  649. }
  650. // If we have esteps to execute, fire the next advance_isr "now"
  651. if (e_steps) nextAdvanceISR = 0;
  652. #endif
  653. // Calculare new timer value
  654. unsigned short timer;
  655. unsigned short step_rate;
  656. if (step_events_completed <= (unsigned long int)current_block->accelerate_until) {
  657. // v = t * a -> acc_step_rate = acceleration_time * current_block->acceleration_rate
  658. MultiU24X24toH16(acc_step_rate, acceleration_time, current_block->acceleration_rate);
  659. acc_step_rate += current_block->initial_rate;
  660. // upper limit
  661. if(acc_step_rate > current_block->nominal_rate)
  662. acc_step_rate = current_block->nominal_rate;
  663. // step_rate to timer interval
  664. timer = calc_timer(acc_step_rate);
  665. _NEXT_ISR(timer);
  666. acceleration_time += timer;
  667. #ifdef LIN_ADVANCE
  668. if (current_block->use_advance_lead) {
  669. current_estep_rate = ((uint32_t)acc_step_rate * current_block->abs_adv_steps_multiplier8) >> 17;
  670. }
  671. eISR_Rate = ADV_RATE(timer, step_loops);
  672. #endif
  673. }
  674. else if (step_events_completed > (unsigned long int)current_block->decelerate_after) {
  675. MultiU24X24toH16(step_rate, deceleration_time, current_block->acceleration_rate);
  676. if(step_rate > acc_step_rate) { // Check step_rate stays positive
  677. step_rate = current_block->final_rate;
  678. }
  679. else {
  680. step_rate = acc_step_rate - step_rate; // Decelerate from aceleration end point.
  681. }
  682. // lower limit
  683. if(step_rate < current_block->final_rate)
  684. step_rate = current_block->final_rate;
  685. // step_rate to timer interval
  686. timer = calc_timer(step_rate);
  687. _NEXT_ISR(timer);
  688. deceleration_time += timer;
  689. #ifdef LIN_ADVANCE
  690. if (current_block->use_advance_lead) {
  691. current_estep_rate = ((uint32_t)step_rate * current_block->abs_adv_steps_multiplier8) >> 17;
  692. }
  693. eISR_Rate = ADV_RATE(timer, step_loops);
  694. #endif
  695. }
  696. else {
  697. #ifdef LIN_ADVANCE
  698. if (current_block->use_advance_lead)
  699. current_estep_rate = final_estep_rate;
  700. eISR_Rate = ADV_RATE(OCR1A_nominal, step_loops_nominal);
  701. #endif
  702. _NEXT_ISR(OCR1A_nominal);
  703. // ensure we're running at the correct step rate, even if we just came off an acceleration
  704. step_loops = step_loops_nominal;
  705. }
  706. // If current block is finished, reset pointer
  707. if (step_events_completed >= current_block->step_event_count) {
  708. #ifdef PAT9125
  709. if (current_block->steps_e < 0) //black magic - decrement filament sensor errors for negative extruder move
  710. if (fsensor_err_cnt) fsensor_err_cnt--;
  711. #endif //PAT9125
  712. current_block = NULL;
  713. plan_discard_current_block();
  714. }
  715. }
  716. #ifdef TMC2130
  717. tmc2130_st_isr(LastStepMask);
  718. #endif //TMC2130
  719. }
  720. #ifdef LIN_ADVANCE
  721. // Timer interrupt for E. e_steps is set in the main routine.
  722. void advance_isr() {
  723. nextAdvanceISR = eISR_Rate;
  724. if (e_steps) {
  725. bool dir =
  726. #ifdef SNMM
  727. ((e_steps < 0) == (snmm_extruder & 1))
  728. #else
  729. (e_steps < 0)
  730. #endif
  731. ? INVERT_E0_DIR : !INVERT_E0_DIR; //If we have SNMM, reverse every second extruder.
  732. WRITE(E0_DIR_PIN, dir);
  733. for (uint8_t i = step_loops; e_steps && i--;) {
  734. WRITE(E0_STEP_PIN, !INVERT_E_STEP_PIN);
  735. e_steps < 0 ? ++e_steps : --e_steps;
  736. WRITE(E0_STEP_PIN, INVERT_E_STEP_PIN);
  737. }
  738. }
  739. }
  740. void advance_isr_scheduler() {
  741. // Run main stepping ISR if flagged
  742. if (!nextMainISR) isr();
  743. // Run Advance stepping ISR if flagged
  744. if (!nextAdvanceISR) advance_isr();
  745. // Is the next advance ISR scheduled before the next main ISR?
  746. if (nextAdvanceISR <= nextMainISR) {
  747. // Set up the next interrupt
  748. OCR1A = nextAdvanceISR;
  749. // New interval for the next main ISR
  750. if (nextMainISR) nextMainISR -= nextAdvanceISR;
  751. // Will call Stepper::advance_isr on the next interrupt
  752. nextAdvanceISR = 0;
  753. }
  754. else {
  755. // The next main ISR comes first
  756. OCR1A = nextMainISR;
  757. // New interval for the next advance ISR, if any
  758. if (nextAdvanceISR && nextAdvanceISR != ADV_NEVER)
  759. nextAdvanceISR -= nextMainISR;
  760. // Will call Stepper::isr on the next interrupt
  761. nextMainISR = 0;
  762. }
  763. // Don't run the ISR faster than possible
  764. if (OCR1A < TCNT1 + 16) OCR1A = TCNT1 + 16;
  765. }
  766. void clear_current_adv_vars() {
  767. e_steps = 0; //Should be already 0 at an filament change event, but just to be sure..
  768. current_adv_steps = 0;
  769. }
  770. #endif // LIN_ADVANCE
  771. void st_init()
  772. {
  773. #ifdef TMC2130
  774. tmc2130_init();
  775. #endif //TMC2130
  776. digipot_init(); //Initialize Digipot Motor Current
  777. microstep_init(); //Initialize Microstepping Pins
  778. //Initialize Dir Pins
  779. #if defined(X_DIR_PIN) && X_DIR_PIN > -1
  780. SET_OUTPUT(X_DIR_PIN);
  781. #endif
  782. #if defined(X2_DIR_PIN) && X2_DIR_PIN > -1
  783. SET_OUTPUT(X2_DIR_PIN);
  784. #endif
  785. #if defined(Y_DIR_PIN) && Y_DIR_PIN > -1
  786. SET_OUTPUT(Y_DIR_PIN);
  787. #if defined(Y_DUAL_STEPPER_DRIVERS) && defined(Y2_DIR_PIN) && (Y2_DIR_PIN > -1)
  788. SET_OUTPUT(Y2_DIR_PIN);
  789. #endif
  790. #endif
  791. #if defined(Z_DIR_PIN) && Z_DIR_PIN > -1
  792. SET_OUTPUT(Z_DIR_PIN);
  793. #if defined(Z_DUAL_STEPPER_DRIVERS) && defined(Z2_DIR_PIN) && (Z2_DIR_PIN > -1)
  794. SET_OUTPUT(Z2_DIR_PIN);
  795. #endif
  796. #endif
  797. #if defined(E0_DIR_PIN) && E0_DIR_PIN > -1
  798. SET_OUTPUT(E0_DIR_PIN);
  799. #endif
  800. #if defined(E1_DIR_PIN) && (E1_DIR_PIN > -1)
  801. SET_OUTPUT(E1_DIR_PIN);
  802. #endif
  803. #if defined(E2_DIR_PIN) && (E2_DIR_PIN > -1)
  804. SET_OUTPUT(E2_DIR_PIN);
  805. #endif
  806. //Initialize Enable Pins - steppers default to disabled.
  807. #if defined(X_ENABLE_PIN) && X_ENABLE_PIN > -1
  808. SET_OUTPUT(X_ENABLE_PIN);
  809. if(!X_ENABLE_ON) WRITE(X_ENABLE_PIN,HIGH);
  810. #endif
  811. #if defined(X2_ENABLE_PIN) && X2_ENABLE_PIN > -1
  812. SET_OUTPUT(X2_ENABLE_PIN);
  813. if(!X_ENABLE_ON) WRITE(X2_ENABLE_PIN,HIGH);
  814. #endif
  815. #if defined(Y_ENABLE_PIN) && Y_ENABLE_PIN > -1
  816. SET_OUTPUT(Y_ENABLE_PIN);
  817. if(!Y_ENABLE_ON) WRITE(Y_ENABLE_PIN,HIGH);
  818. #if defined(Y_DUAL_STEPPER_DRIVERS) && defined(Y2_ENABLE_PIN) && (Y2_ENABLE_PIN > -1)
  819. SET_OUTPUT(Y2_ENABLE_PIN);
  820. if(!Y_ENABLE_ON) WRITE(Y2_ENABLE_PIN,HIGH);
  821. #endif
  822. #endif
  823. #if defined(Z_ENABLE_PIN) && Z_ENABLE_PIN > -1
  824. SET_OUTPUT(Z_ENABLE_PIN);
  825. if(!Z_ENABLE_ON) WRITE(Z_ENABLE_PIN,HIGH);
  826. #if defined(Z_DUAL_STEPPER_DRIVERS) && defined(Z2_ENABLE_PIN) && (Z2_ENABLE_PIN > -1)
  827. SET_OUTPUT(Z2_ENABLE_PIN);
  828. if(!Z_ENABLE_ON) WRITE(Z2_ENABLE_PIN,HIGH);
  829. #endif
  830. #endif
  831. #if defined(E0_ENABLE_PIN) && (E0_ENABLE_PIN > -1)
  832. SET_OUTPUT(E0_ENABLE_PIN);
  833. if(!E_ENABLE_ON) WRITE(E0_ENABLE_PIN,HIGH);
  834. #endif
  835. #if defined(E1_ENABLE_PIN) && (E1_ENABLE_PIN > -1)
  836. SET_OUTPUT(E1_ENABLE_PIN);
  837. if(!E_ENABLE_ON) WRITE(E1_ENABLE_PIN,HIGH);
  838. #endif
  839. #if defined(E2_ENABLE_PIN) && (E2_ENABLE_PIN > -1)
  840. SET_OUTPUT(E2_ENABLE_PIN);
  841. if(!E_ENABLE_ON) WRITE(E2_ENABLE_PIN,HIGH);
  842. #endif
  843. //endstops and pullups
  844. #ifdef TMC2130_SG_HOMING
  845. SET_INPUT(X_TMC2130_DIAG);
  846. WRITE(X_TMC2130_DIAG,HIGH);
  847. SET_INPUT(Y_TMC2130_DIAG);
  848. WRITE(Y_TMC2130_DIAG,HIGH);
  849. SET_INPUT(Z_TMC2130_DIAG);
  850. WRITE(Z_TMC2130_DIAG,HIGH);
  851. #endif
  852. #if defined(X_MIN_PIN) && X_MIN_PIN > -1
  853. SET_INPUT(X_MIN_PIN);
  854. #ifdef ENDSTOPPULLUP_XMIN
  855. WRITE(X_MIN_PIN,HIGH);
  856. #endif
  857. #endif
  858. #if defined(Y_MIN_PIN) && Y_MIN_PIN > -1
  859. SET_INPUT(Y_MIN_PIN);
  860. #ifdef ENDSTOPPULLUP_YMIN
  861. WRITE(Y_MIN_PIN,HIGH);
  862. #endif
  863. #endif
  864. #if defined(Z_MIN_PIN) && Z_MIN_PIN > -1
  865. SET_INPUT(Z_MIN_PIN);
  866. #ifdef ENDSTOPPULLUP_ZMIN
  867. WRITE(Z_MIN_PIN,HIGH);
  868. #endif
  869. #endif
  870. #if defined(X_MAX_PIN) && X_MAX_PIN > -1
  871. SET_INPUT(X_MAX_PIN);
  872. #ifdef ENDSTOPPULLUP_XMAX
  873. WRITE(X_MAX_PIN,HIGH);
  874. #endif
  875. #endif
  876. #if defined(Y_MAX_PIN) && Y_MAX_PIN > -1
  877. SET_INPUT(Y_MAX_PIN);
  878. #ifdef ENDSTOPPULLUP_YMAX
  879. WRITE(Y_MAX_PIN,HIGH);
  880. #endif
  881. #endif
  882. #if defined(Z_MAX_PIN) && Z_MAX_PIN > -1
  883. SET_INPUT(Z_MAX_PIN);
  884. #ifdef ENDSTOPPULLUP_ZMAX
  885. WRITE(Z_MAX_PIN,HIGH);
  886. #endif
  887. #endif
  888. //Initialize Step Pins
  889. #if defined(X_STEP_PIN) && (X_STEP_PIN > -1)
  890. SET_OUTPUT(X_STEP_PIN);
  891. WRITE(X_STEP_PIN,INVERT_X_STEP_PIN);
  892. #ifdef DEBUG_XSTEP_DUP_PIN
  893. SET_OUTPUT(DEBUG_XSTEP_DUP_PIN);
  894. WRITE(DEBUG_XSTEP_DUP_PIN,INVERT_X_STEP_PIN);
  895. #endif //DEBUG_XSTEP_DUP_PIN
  896. disable_x();
  897. #endif
  898. #if defined(X2_STEP_PIN) && (X2_STEP_PIN > -1)
  899. SET_OUTPUT(X2_STEP_PIN);
  900. WRITE(X2_STEP_PIN,INVERT_X_STEP_PIN);
  901. disable_x();
  902. #endif
  903. #if defined(Y_STEP_PIN) && (Y_STEP_PIN > -1)
  904. SET_OUTPUT(Y_STEP_PIN);
  905. WRITE(Y_STEP_PIN,INVERT_Y_STEP_PIN);
  906. #ifdef DEBUG_YSTEP_DUP_PIN
  907. SET_OUTPUT(DEBUG_YSTEP_DUP_PIN);
  908. WRITE(DEBUG_YSTEP_DUP_PIN,INVERT_Y_STEP_PIN);
  909. #endif //DEBUG_YSTEP_DUP_PIN
  910. #if defined(Y_DUAL_STEPPER_DRIVERS) && defined(Y2_STEP_PIN) && (Y2_STEP_PIN > -1)
  911. SET_OUTPUT(Y2_STEP_PIN);
  912. WRITE(Y2_STEP_PIN,INVERT_Y_STEP_PIN);
  913. #endif
  914. disable_y();
  915. #endif
  916. #if defined(Z_STEP_PIN) && (Z_STEP_PIN > -1)
  917. SET_OUTPUT(Z_STEP_PIN);
  918. WRITE(Z_STEP_PIN,INVERT_Z_STEP_PIN);
  919. #if defined(Z_DUAL_STEPPER_DRIVERS) && defined(Z2_STEP_PIN) && (Z2_STEP_PIN > -1)
  920. SET_OUTPUT(Z2_STEP_PIN);
  921. WRITE(Z2_STEP_PIN,INVERT_Z_STEP_PIN);
  922. #endif
  923. disable_z();
  924. #endif
  925. #if defined(E0_STEP_PIN) && (E0_STEP_PIN > -1)
  926. SET_OUTPUT(E0_STEP_PIN);
  927. WRITE(E0_STEP_PIN,INVERT_E_STEP_PIN);
  928. disable_e0();
  929. #endif
  930. #if defined(E1_STEP_PIN) && (E1_STEP_PIN > -1)
  931. SET_OUTPUT(E1_STEP_PIN);
  932. WRITE(E1_STEP_PIN,INVERT_E_STEP_PIN);
  933. disable_e1();
  934. #endif
  935. #if defined(E2_STEP_PIN) && (E2_STEP_PIN > -1)
  936. SET_OUTPUT(E2_STEP_PIN);
  937. WRITE(E2_STEP_PIN,INVERT_E_STEP_PIN);
  938. disable_e2();
  939. #endif
  940. // waveform generation = 0100 = CTC
  941. TCCR1B &= ~(1<<WGM13);
  942. TCCR1B |= (1<<WGM12);
  943. TCCR1A &= ~(1<<WGM11);
  944. TCCR1A &= ~(1<<WGM10);
  945. // output mode = 00 (disconnected)
  946. TCCR1A &= ~(3<<COM1A0);
  947. TCCR1A &= ~(3<<COM1B0);
  948. // Set the timer pre-scaler
  949. // Generally we use a divider of 8, resulting in a 2MHz timer
  950. // frequency on a 16MHz MCU. If you are going to change this, be
  951. // sure to regenerate speed_lookuptable.h with
  952. // create_speed_lookuptable.py
  953. TCCR1B = (TCCR1B & ~(0x07<<CS10)) | (2<<CS10);
  954. OCR1A = 0x4000;
  955. TCNT1 = 0;
  956. ENABLE_STEPPER_DRIVER_INTERRUPT();
  957. #ifdef LIN_ADVANCE
  958. e_steps = 0;
  959. current_adv_steps = 0;
  960. #endif
  961. enable_endstops(true); // Start with endstops active. After homing they can be disabled
  962. sei();
  963. }
  964. // Block until all buffered steps are executed
  965. void st_synchronize()
  966. {
  967. while(blocks_queued())
  968. {
  969. #ifdef TMC2130
  970. manage_heater();
  971. // Vojtech: Don't disable motors inside the planner!
  972. if (!tmc2130_update_sg())
  973. {
  974. manage_inactivity(true);
  975. lcd_update();
  976. }
  977. #else //TMC2130
  978. manage_heater();
  979. // Vojtech: Don't disable motors inside the planner!
  980. manage_inactivity(true);
  981. lcd_update();
  982. #endif //TMC2130
  983. }
  984. }
  985. void st_set_position(const long &x, const long &y, const long &z, const long &e)
  986. {
  987. CRITICAL_SECTION_START;
  988. count_position[X_AXIS] = x;
  989. count_position[Y_AXIS] = y;
  990. count_position[Z_AXIS] = z;
  991. count_position[E_AXIS] = e;
  992. CRITICAL_SECTION_END;
  993. }
  994. void st_set_e_position(const long &e)
  995. {
  996. CRITICAL_SECTION_START;
  997. count_position[E_AXIS] = e;
  998. CRITICAL_SECTION_END;
  999. }
  1000. long st_get_position(uint8_t axis)
  1001. {
  1002. long count_pos;
  1003. CRITICAL_SECTION_START;
  1004. count_pos = count_position[axis];
  1005. CRITICAL_SECTION_END;
  1006. return count_pos;
  1007. }
  1008. void st_get_position_xy(long &x, long &y)
  1009. {
  1010. CRITICAL_SECTION_START;
  1011. x = count_position[X_AXIS];
  1012. y = count_position[Y_AXIS];
  1013. CRITICAL_SECTION_END;
  1014. }
  1015. float st_get_position_mm(uint8_t axis)
  1016. {
  1017. float steper_position_in_steps = st_get_position(axis);
  1018. return steper_position_in_steps / axis_steps_per_unit[axis];
  1019. }
  1020. void finishAndDisableSteppers()
  1021. {
  1022. st_synchronize();
  1023. disable_x();
  1024. disable_y();
  1025. disable_z();
  1026. disable_e0();
  1027. disable_e1();
  1028. disable_e2();
  1029. }
  1030. void quickStop()
  1031. {
  1032. DISABLE_STEPPER_DRIVER_INTERRUPT();
  1033. while (blocks_queued()) plan_discard_current_block();
  1034. current_block = NULL;
  1035. ENABLE_STEPPER_DRIVER_INTERRUPT();
  1036. }
  1037. #ifdef BABYSTEPPING
  1038. void babystep(const uint8_t axis,const bool direction)
  1039. {
  1040. //MUST ONLY BE CALLED BY A ISR, it depends on that no other ISR interrupts this
  1041. //store initial pin states
  1042. switch(axis)
  1043. {
  1044. case X_AXIS:
  1045. {
  1046. enable_x();
  1047. uint8_t old_x_dir_pin= READ(X_DIR_PIN); //if dualzstepper, both point to same direction.
  1048. //setup new step
  1049. WRITE(X_DIR_PIN,(INVERT_X_DIR)^direction);
  1050. //perform step
  1051. WRITE(X_STEP_PIN, !INVERT_X_STEP_PIN);
  1052. LastStepMask |= X_AXIS_MASK;
  1053. #ifdef DEBUG_XSTEP_DUP_PIN
  1054. WRITE(DEBUG_XSTEP_DUP_PIN,!INVERT_X_STEP_PIN);
  1055. #endif //DEBUG_XSTEP_DUP_PIN
  1056. {
  1057. volatile float x=1./float(axis+1)/float(axis+2); //wait a tiny bit
  1058. }
  1059. WRITE(X_STEP_PIN, INVERT_X_STEP_PIN);
  1060. #ifdef DEBUG_XSTEP_DUP_PIN
  1061. WRITE(DEBUG_XSTEP_DUP_PIN,INVERT_X_STEP_PIN);
  1062. #endif //DEBUG_XSTEP_DUP_PIN
  1063. //get old pin state back.
  1064. WRITE(X_DIR_PIN,old_x_dir_pin);
  1065. }
  1066. break;
  1067. case Y_AXIS:
  1068. {
  1069. enable_y();
  1070. uint8_t old_y_dir_pin= READ(Y_DIR_PIN); //if dualzstepper, both point to same direction.
  1071. //setup new step
  1072. WRITE(Y_DIR_PIN,(INVERT_Y_DIR)^direction);
  1073. //perform step
  1074. WRITE(Y_STEP_PIN, !INVERT_Y_STEP_PIN);
  1075. LastStepMask |= Y_AXIS_MASK;
  1076. #ifdef DEBUG_YSTEP_DUP_PIN
  1077. WRITE(DEBUG_YSTEP_DUP_PIN,!INVERT_Y_STEP_PIN);
  1078. #endif //DEBUG_YSTEP_DUP_PIN
  1079. {
  1080. volatile float x=1./float(axis+1)/float(axis+2); //wait a tiny bit
  1081. }
  1082. WRITE(Y_STEP_PIN, INVERT_Y_STEP_PIN);
  1083. #ifdef DEBUG_YSTEP_DUP_PIN
  1084. WRITE(DEBUG_YSTEP_DUP_PIN,INVERT_Y_STEP_PIN);
  1085. #endif //DEBUG_YSTEP_DUP_PIN
  1086. //get old pin state back.
  1087. WRITE(Y_DIR_PIN,old_y_dir_pin);
  1088. }
  1089. break;
  1090. case Z_AXIS:
  1091. {
  1092. enable_z();
  1093. uint8_t old_z_dir_pin= READ(Z_DIR_PIN); //if dualzstepper, both point to same direction.
  1094. //setup new step
  1095. WRITE(Z_DIR_PIN,(INVERT_Z_DIR)^direction^BABYSTEP_INVERT_Z);
  1096. #ifdef Z_DUAL_STEPPER_DRIVERS
  1097. WRITE(Z2_DIR_PIN,(INVERT_Z_DIR)^direction^BABYSTEP_INVERT_Z);
  1098. #endif
  1099. //perform step
  1100. WRITE(Z_STEP_PIN, !INVERT_Z_STEP_PIN);
  1101. LastStepMask |= Z_AXIS_MASK;
  1102. #ifdef Z_DUAL_STEPPER_DRIVERS
  1103. WRITE(Z2_STEP_PIN, !INVERT_Z_STEP_PIN);
  1104. #endif
  1105. //wait a tiny bit
  1106. {
  1107. volatile float x=1./float(axis+1); //absolutely useless
  1108. }
  1109. WRITE(Z_STEP_PIN, INVERT_Z_STEP_PIN);
  1110. #ifdef Z_DUAL_STEPPER_DRIVERS
  1111. WRITE(Z2_STEP_PIN, INVERT_Z_STEP_PIN);
  1112. #endif
  1113. //get old pin state back.
  1114. WRITE(Z_DIR_PIN,old_z_dir_pin);
  1115. #ifdef Z_DUAL_STEPPER_DRIVERS
  1116. WRITE(Z2_DIR_PIN,old_z_dir_pin);
  1117. #endif
  1118. }
  1119. break;
  1120. default: break;
  1121. }
  1122. }
  1123. #endif //BABYSTEPPING
  1124. void digitalPotWrite(int address, int value) // From Arduino DigitalPotControl example
  1125. {
  1126. #if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
  1127. digitalWrite(DIGIPOTSS_PIN,LOW); // take the SS pin low to select the chip
  1128. SPI.transfer(address); // send in the address and value via SPI:
  1129. SPI.transfer(value);
  1130. digitalWrite(DIGIPOTSS_PIN,HIGH); // take the SS pin high to de-select the chip:
  1131. //delay(10);
  1132. #endif
  1133. }
  1134. void EEPROM_read_st(int pos, uint8_t* value, uint8_t size)
  1135. {
  1136. do
  1137. {
  1138. *value = eeprom_read_byte((unsigned char*)pos);
  1139. pos++;
  1140. value++;
  1141. }while(--size);
  1142. }
  1143. void digipot_init() //Initialize Digipot Motor Current
  1144. {
  1145. EEPROM_read_st(EEPROM_SILENT,(uint8_t*)&SilentMode,sizeof(SilentMode));
  1146. #if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
  1147. if(SilentMode == 0){
  1148. const uint8_t digipot_motor_current[] = DIGIPOT_MOTOR_CURRENT_LOUD;
  1149. }else{
  1150. const uint8_t digipot_motor_current[] = DIGIPOT_MOTOR_CURRENT;
  1151. }
  1152. SPI.begin();
  1153. pinMode(DIGIPOTSS_PIN, OUTPUT);
  1154. for(int i=0;i<=4;i++)
  1155. //digitalPotWrite(digipot_ch[i], digipot_motor_current[i]);
  1156. digipot_current(i,digipot_motor_current[i]);
  1157. #endif
  1158. #ifdef MOTOR_CURRENT_PWM_XY_PIN
  1159. pinMode(MOTOR_CURRENT_PWM_XY_PIN, OUTPUT);
  1160. pinMode(MOTOR_CURRENT_PWM_Z_PIN, OUTPUT);
  1161. pinMode(MOTOR_CURRENT_PWM_E_PIN, OUTPUT);
  1162. if((SilentMode == 0) || (farm_mode) ){
  1163. motor_current_setting[0] = motor_current_setting_loud[0];
  1164. motor_current_setting[1] = motor_current_setting_loud[1];
  1165. motor_current_setting[2] = motor_current_setting_loud[2];
  1166. }else{
  1167. motor_current_setting[0] = motor_current_setting_silent[0];
  1168. motor_current_setting[1] = motor_current_setting_silent[1];
  1169. motor_current_setting[2] = motor_current_setting_silent[2];
  1170. }
  1171. digipot_current(0, motor_current_setting[0]);
  1172. digipot_current(1, motor_current_setting[1]);
  1173. digipot_current(2, motor_current_setting[2]);
  1174. //Set timer5 to 31khz so the PWM of the motor power is as constant as possible. (removes a buzzing noise)
  1175. TCCR5B = (TCCR5B & ~(_BV(CS50) | _BV(CS51) | _BV(CS52))) | _BV(CS50);
  1176. #endif
  1177. }
  1178. void digipot_current(uint8_t driver, int current)
  1179. {
  1180. #if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
  1181. const uint8_t digipot_ch[] = DIGIPOT_CHANNELS;
  1182. digitalPotWrite(digipot_ch[driver], current);
  1183. #endif
  1184. #ifdef MOTOR_CURRENT_PWM_XY_PIN
  1185. if (driver == 0) analogWrite(MOTOR_CURRENT_PWM_XY_PIN, (long)current * 255L / (long)MOTOR_CURRENT_PWM_RANGE);
  1186. if (driver == 1) analogWrite(MOTOR_CURRENT_PWM_Z_PIN, (long)current * 255L / (long)MOTOR_CURRENT_PWM_RANGE);
  1187. if (driver == 2) analogWrite(MOTOR_CURRENT_PWM_E_PIN, (long)current * 255L / (long)MOTOR_CURRENT_PWM_RANGE);
  1188. #endif
  1189. }
  1190. void microstep_init()
  1191. {
  1192. const uint8_t microstep_modes[] = MICROSTEP_MODES;
  1193. #if defined(E1_MS1_PIN) && E1_MS1_PIN > -1
  1194. pinMode(E1_MS1_PIN,OUTPUT);
  1195. pinMode(E1_MS2_PIN,OUTPUT);
  1196. #endif
  1197. #if defined(X_MS1_PIN) && X_MS1_PIN > -1
  1198. pinMode(X_MS1_PIN,OUTPUT);
  1199. pinMode(X_MS2_PIN,OUTPUT);
  1200. pinMode(Y_MS1_PIN,OUTPUT);
  1201. pinMode(Y_MS2_PIN,OUTPUT);
  1202. pinMode(Z_MS1_PIN,OUTPUT);
  1203. pinMode(Z_MS2_PIN,OUTPUT);
  1204. pinMode(E0_MS1_PIN,OUTPUT);
  1205. pinMode(E0_MS2_PIN,OUTPUT);
  1206. for(int i=0;i<=4;i++) microstep_mode(i,microstep_modes[i]);
  1207. #endif
  1208. }
  1209. void microstep_ms(uint8_t driver, int8_t ms1, int8_t ms2)
  1210. {
  1211. if(ms1 > -1) switch(driver)
  1212. {
  1213. case 0: digitalWrite( X_MS1_PIN,ms1); break;
  1214. case 1: digitalWrite( Y_MS1_PIN,ms1); break;
  1215. case 2: digitalWrite( Z_MS1_PIN,ms1); break;
  1216. case 3: digitalWrite(E0_MS1_PIN,ms1); break;
  1217. #if defined(E1_MS1_PIN) && E1_MS1_PIN > -1
  1218. case 4: digitalWrite(E1_MS1_PIN,ms1); break;
  1219. #endif
  1220. }
  1221. if(ms2 > -1) switch(driver)
  1222. {
  1223. case 0: digitalWrite( X_MS2_PIN,ms2); break;
  1224. case 1: digitalWrite( Y_MS2_PIN,ms2); break;
  1225. case 2: digitalWrite( Z_MS2_PIN,ms2); break;
  1226. case 3: digitalWrite(E0_MS2_PIN,ms2); break;
  1227. #if defined(E1_MS2_PIN) && E1_MS2_PIN > -1
  1228. case 4: digitalWrite(E1_MS2_PIN,ms2); break;
  1229. #endif
  1230. }
  1231. }
  1232. void microstep_mode(uint8_t driver, uint8_t stepping_mode)
  1233. {
  1234. switch(stepping_mode)
  1235. {
  1236. case 1: microstep_ms(driver,MICROSTEP1); break;
  1237. case 2: microstep_ms(driver,MICROSTEP2); break;
  1238. case 4: microstep_ms(driver,MICROSTEP4); break;
  1239. case 8: microstep_ms(driver,MICROSTEP8); break;
  1240. case 16: microstep_ms(driver,MICROSTEP16); break;
  1241. }
  1242. }
  1243. void microstep_readings()
  1244. {
  1245. SERIAL_PROTOCOLPGM("MS1,MS2 Pins\n");
  1246. SERIAL_PROTOCOLPGM("X: ");
  1247. SERIAL_PROTOCOL( digitalRead(X_MS1_PIN));
  1248. SERIAL_PROTOCOLLN( digitalRead(X_MS2_PIN));
  1249. SERIAL_PROTOCOLPGM("Y: ");
  1250. SERIAL_PROTOCOL( digitalRead(Y_MS1_PIN));
  1251. SERIAL_PROTOCOLLN( digitalRead(Y_MS2_PIN));
  1252. SERIAL_PROTOCOLPGM("Z: ");
  1253. SERIAL_PROTOCOL( digitalRead(Z_MS1_PIN));
  1254. SERIAL_PROTOCOLLN( digitalRead(Z_MS2_PIN));
  1255. SERIAL_PROTOCOLPGM("E0: ");
  1256. SERIAL_PROTOCOL( digitalRead(E0_MS1_PIN));
  1257. SERIAL_PROTOCOLLN( digitalRead(E0_MS2_PIN));
  1258. #if defined(E1_MS1_PIN) && E1_MS1_PIN > -1
  1259. SERIAL_PROTOCOLPGM("E1: ");
  1260. SERIAL_PROTOCOL( digitalRead(E1_MS1_PIN));
  1261. SERIAL_PROTOCOLLN( digitalRead(E1_MS2_PIN));
  1262. #endif
  1263. }