| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189 | #include "Marlin.h"#include "Configuration.h"#include "ConfigurationStore.h"#include "language.h"#include "mesh_bed_calibration.h"#include "mesh_bed_leveling.h"#include "stepper.h"#include "ultralcd.h"#ifdef TMC2130#include "tmc2130.h"#endif //TMC2130uint8_t world2machine_correction_mode;float   world2machine_rotation_and_skew[2][2];float   world2machine_rotation_and_skew_inv[2][2];float   world2machine_shift[2];// Weight of the Y coordinate for the least squares fitting of the bed induction sensor targets.// Only used for the first row of the points, which may not befully in reach of the sensor.#define WEIGHT_FIRST_ROW_X_HIGH (1.f)#define WEIGHT_FIRST_ROW_X_LOW  (0.35f)#define WEIGHT_FIRST_ROW_Y_HIGH (0.3f)#define WEIGHT_FIRST_ROW_Y_LOW  (0.0f)// Scaling of the real machine axes against the programmed dimensions in the firmware.// The correction is tiny, here around 0.5mm on 250mm length.//#define MACHINE_AXIS_SCALE_X ((250.f - 0.5f) / 250.f)//#define MACHINE_AXIS_SCALE_Y ((250.f - 0.5f) / 250.f)#define MACHINE_AXIS_SCALE_X 1.f#define MACHINE_AXIS_SCALE_Y 1.f#define BED_CALIBRATION_POINT_OFFSET_MAX_EUCLIDIAN  (0.8f)#define BED_CALIBRATION_POINT_OFFSET_MAX_1ST_ROW_X  (0.8f)#define BED_CALIBRATION_POINT_OFFSET_MAX_1ST_ROW_Y  (1.5f)#define MIN_BED_SENSOR_POINT_RESPONSE_DMR           (2.0f)//#define Y_MIN_POS_FOR_BED_CALIBRATION (MANUAL_Y_HOME_POS-0.2f)#define Y_MIN_POS_FOR_BED_CALIBRATION (Y_MIN_POS)// Distances toward the print bed edge may not be accurate.#define Y_MIN_POS_CALIBRATION_POINT_ACCURATE (Y_MIN_POS + 3.f)// When the measured point center is out of reach of the sensor, Y coordinate will be ignored// by the Least Squares fitting and the X coordinate will be weighted low.#define Y_MIN_POS_CALIBRATION_POINT_OUT_OF_REACH (Y_MIN_POS - 0.5f)// 0.12 degrees equals to an offset of 0.5mm on 250mm length.const float bed_skew_angle_mild = (0.12f * M_PI / 180.f);// 0.25 degrees equals to an offset of 1.1mm on 250mm length.const float bed_skew_angle_extreme = (0.25f * M_PI / 180.f);// Positions of the bed reference points in the machine coordinates, referenced to the P.I.N.D.A sensor.// The points are ordered in a zig-zag fashion to speed up the calibration.#ifdef HEATBED_V2/** * [0,0] bed print area point X coordinate in bed coordinates ver. 05d/24V */#define BED_PRINT_ZERO_REF_X 2.f/** * [0,0] bed print area point Y coordinate in bed coordinates ver. 05d/24V */#define BED_PRINT_ZERO_REF_Y 9.4f/** * @brief Positions of the bed reference points in print area coordinates. ver. 05d/24V * * Numeral constants are in bed coordinates, subtracting macro defined values converts it to print area coordinates. * * The points are the following: * MK2: center front, center right, center rear, center left. * MK25 and MK3: front left, front right, rear right, rear left */const float bed_ref_points_4[] PROGMEM = {	37.f - BED_PRINT_ZERO_REF_X - X_PROBE_OFFSET_FROM_EXTRUDER - SHEET_PRINT_ZERO_REF_X,	18.4f - BED_PRINT_ZERO_REF_Y - Y_PROBE_OFFSET_FROM_EXTRUDER - SHEET_PRINT_ZERO_REF_Y,	245.f - BED_PRINT_ZERO_REF_X - X_PROBE_OFFSET_FROM_EXTRUDER  - SHEET_PRINT_ZERO_REF_X,	18.4f - BED_PRINT_ZERO_REF_Y - Y_PROBE_OFFSET_FROM_EXTRUDER - SHEET_PRINT_ZERO_REF_Y,	245.f - BED_PRINT_ZERO_REF_X - X_PROBE_OFFSET_FROM_EXTRUDER  - SHEET_PRINT_ZERO_REF_X,	210.4f - BED_PRINT_ZERO_REF_Y - Y_PROBE_OFFSET_FROM_EXTRUDER - SHEET_PRINT_ZERO_REF_Y,	37.f - BED_PRINT_ZERO_REF_X - X_PROBE_OFFSET_FROM_EXTRUDER  - SHEET_PRINT_ZERO_REF_X,	210.4f - BED_PRINT_ZERO_REF_Y - Y_PROBE_OFFSET_FROM_EXTRUDER - SHEET_PRINT_ZERO_REF_Y};#else// Positions of the bed reference points in the machine coordinates, referenced to the P.I.N.D.A sensor.// The points are the following: center front, center right, center rear, center left.const float bed_ref_points_4[] PROGMEM = {	115.f - BED_ZERO_REF_X,   8.4f - BED_ZERO_REF_Y,	216.f - BED_ZERO_REF_X, 104.4f - BED_ZERO_REF_Y,	115.f - BED_ZERO_REF_X, 202.4f - BED_ZERO_REF_Y,	13.f - BED_ZERO_REF_X, 104.4f - BED_ZERO_REF_Y};#endif //not HEATBED_V2static inline float sqr(float x) { return x * x; }#ifdef HEATBED_V2static inline bool point_on_1st_row(const uint8_t /*i*/){	return false;}#else //HEATBED_V2static inline bool point_on_1st_row(const uint8_t i){	return (i < 3);}#endif //HEATBED_V2// Weight of a point coordinate in a least squares optimization.// The first row of points may not be fully reachable// and the y values may be shortened a bit by the bed carriage// pulling the belt up.static inline float point_weight_x(const uint8_t i, const float &y){    float w = 1.f;    if (point_on_1st_row(i)) {		if (y >= Y_MIN_POS_CALIBRATION_POINT_ACCURATE) {            w = WEIGHT_FIRST_ROW_X_HIGH;        } else if (y < Y_MIN_POS_CALIBRATION_POINT_OUT_OF_REACH) {            // If the point is fully outside, give it some weight.            w = WEIGHT_FIRST_ROW_X_LOW;        } else {            // Linearly interpolate the weight from 1 to WEIGHT_FIRST_ROW_X.            float t = (y - Y_MIN_POS_CALIBRATION_POINT_OUT_OF_REACH) / (Y_MIN_POS_CALIBRATION_POINT_ACCURATE - Y_MIN_POS_CALIBRATION_POINT_OUT_OF_REACH);            w = (1.f - t) * WEIGHT_FIRST_ROW_X_LOW + t * WEIGHT_FIRST_ROW_X_HIGH;        }    }    return w;}// Weight of a point coordinate in a least squares optimization.// The first row of points may not be fully reachable// and the y values may be shortened a bit by the bed carriage// pulling the belt up.static inline float point_weight_y(const uint8_t i, const float &y){    float w = 1.f;    if (point_on_1st_row(i)) {        if (y >= Y_MIN_POS_CALIBRATION_POINT_ACCURATE) {            w = WEIGHT_FIRST_ROW_Y_HIGH;        } else if (y < Y_MIN_POS_CALIBRATION_POINT_OUT_OF_REACH) {            // If the point is fully outside, give it some weight.            w = WEIGHT_FIRST_ROW_Y_LOW;        } else {            // Linearly interpolate the weight from 1 to WEIGHT_FIRST_ROW_X.            float t = (y - Y_MIN_POS_CALIBRATION_POINT_OUT_OF_REACH) / (Y_MIN_POS_CALIBRATION_POINT_ACCURATE - Y_MIN_POS_CALIBRATION_POINT_OUT_OF_REACH);            w = (1.f - t) * WEIGHT_FIRST_ROW_Y_LOW + t * WEIGHT_FIRST_ROW_Y_HIGH;        }    }    return w;}/** * @brief Calculate machine skew and offset * * Non-Linear Least Squares fitting of the bed to the measured induction points * using the Gauss-Newton method. * This method will maintain a unity length of the machine axes, * which is the correct approach if the sensor points are not measured precisely. * @param measured_pts Matrix of 2D points (maximum 18 floats) * @param npts Number of points (maximum 9) * @param true_pts * @param [out] vec_x Resulting correction matrix. X axis vector * @param [out] vec_y Resulting correction matrix. Y axis vector * @param [out] cntr  Resulting correction matrix. [0;0] pont offset * @param verbosity_level * @return BedSkewOffsetDetectionResultType */BedSkewOffsetDetectionResultType calculate_machine_skew_and_offset_LS(    const float  *measured_pts,    uint8_t       npts,    const float  *true_pts,    float        *vec_x,    float        *vec_y,    float        *cntr,    int8_t#ifdef SUPPORT_VERBOSITY    verbosity_level#endif //SUPPORT_VERBOSITY    ){	float angleDiff;	#ifdef SUPPORT_VERBOSITY    if (verbosity_level >= 10) {		SERIAL_ECHOLNPGM("calculate machine skew and offset LS");        // Show the initial state, before the fitting.        SERIAL_ECHOPGM("X vector, initial: ");        MYSERIAL.print(vec_x[0], 5);        SERIAL_ECHOPGM(", ");        MYSERIAL.print(vec_x[1], 5);        SERIAL_ECHOLNPGM("");        SERIAL_ECHOPGM("Y vector, initial: ");        MYSERIAL.print(vec_y[0], 5);        SERIAL_ECHOPGM(", ");        MYSERIAL.print(vec_y[1], 5);        SERIAL_ECHOLNPGM("");        SERIAL_ECHOPGM("center, initial: ");        MYSERIAL.print(cntr[0], 5);        SERIAL_ECHOPGM(", ");        MYSERIAL.print(cntr[1], 5);        SERIAL_ECHOLNPGM("");        for (uint8_t i = 0; i < npts; ++i) {            SERIAL_ECHOPGM("point #");            MYSERIAL.print(int(i));            SERIAL_ECHOPGM(" measured: (");            MYSERIAL.print(measured_pts[i * 2], 5);            SERIAL_ECHOPGM(", ");            MYSERIAL.print(measured_pts[i * 2 + 1], 5);            SERIAL_ECHOPGM("); target: (");            MYSERIAL.print(pgm_read_float(true_pts + i * 2), 5);            SERIAL_ECHOPGM(", ");            MYSERIAL.print(pgm_read_float(true_pts + i * 2 + 1), 5);            SERIAL_ECHOPGM("), error: ");            MYSERIAL.print(sqrt(                sqr(pgm_read_float(true_pts + i * 2) - measured_pts[i * 2]) +                sqr(pgm_read_float(true_pts + i * 2 + 1) - measured_pts[i * 2 + 1])), 5);            SERIAL_ECHOLNPGM("");        }        delay_keep_alive(100);    }	#endif // SUPPORT_VERBOSITY    // Run some iterations of the Gauss-Newton method of non-linear least squares.    // Initial set of parameters:    // X,Y offset    cntr[0] = 0.f;    cntr[1] = 0.f;    // Rotation of the machine X axis from the bed X axis.    float a1 = 0;    // Rotation of the machine Y axis from the bed Y axis.    float a2 = 0;    for (int8_t iter = 0; iter < 100; ++iter) {        float c1 = cos(a1) * MACHINE_AXIS_SCALE_X;        float s1 = sin(a1) * MACHINE_AXIS_SCALE_X;        float c2 = cos(a2) * MACHINE_AXIS_SCALE_Y;        float s2 = sin(a2) * MACHINE_AXIS_SCALE_Y;        // Prepare the Normal equation for the Gauss-Newton method.        float A[4][4] = { 0.f };        float b[4] = { 0.f };        float acc;		delay_keep_alive(0); //manage heater, reset watchdog, manage inactivity        for (uint8_t r = 0; r < 4; ++r) {            for (uint8_t c = 0; c < 4; ++c) {                acc = 0;                // J^T times J                for (uint8_t i = 0; i < npts; ++i) {                    // First for the residuum in the x axis:                    if (r != 1 && c != 1) {                        float a =                              (r == 0) ? 1.f :                            ((r == 2) ? (-s1 * measured_pts[2 * i]) :                                        (-c2 * measured_pts[2 * i + 1]));                        float b =                              (c == 0) ? 1.f :                            ((c == 2) ? (-s1 * measured_pts[2 * i]) :                                        (-c2 * measured_pts[2 * i + 1]));                        float w = point_weight_x(i, measured_pts[2 * i + 1]);                        acc += a * b * w;                    }                    // Second for the residuum in the y axis.                     // The first row of the points have a low weight, because their position may not be known                    // with a sufficient accuracy.                    if (r != 0 && c != 0) {                        float a =                              (r == 1) ? 1.f :                            ((r == 2) ? ( c1 * measured_pts[2 * i]) :                                        (-s2 * measured_pts[2 * i + 1]));                        float b =                              (c == 1) ? 1.f :                            ((c == 2) ? ( c1 * measured_pts[2 * i]) :                                        (-s2 * measured_pts[2 * i + 1]));                        float w = point_weight_y(i, measured_pts[2 * i + 1]);                        acc += a * b * w;                    }                }                A[r][c] = acc;            }            // J^T times f(x)            acc = 0.f;            for (uint8_t i = 0; i < npts; ++i) {                {                    float j =                          (r == 0) ? 1.f :                        ((r == 1) ? 0.f :                        ((r == 2) ? (-s1 * measured_pts[2 * i]) :                                    (-c2 * measured_pts[2 * i + 1])));                    float fx = c1 * measured_pts[2 * i] - s2 * measured_pts[2 * i + 1] + cntr[0] - pgm_read_float(true_pts + i * 2);                    float w = point_weight_x(i, measured_pts[2 * i + 1]);                    acc += j * fx * w;                }                {                    float j =                          (r == 0) ? 0.f :                        ((r == 1) ? 1.f :                        ((r == 2) ? ( c1 * measured_pts[2 * i]) :                                    (-s2 * measured_pts[2 * i + 1])));                    float fy = s1 * measured_pts[2 * i] + c2 * measured_pts[2 * i + 1] + cntr[1] - pgm_read_float(true_pts + i * 2 + 1);                    float w = point_weight_y(i, measured_pts[2 * i + 1]);                    acc += j * fy * w;                }            }            b[r] = -acc;        }        // Solve for h by a Gauss iteration method.        float h[4] = { 0.f };        for (uint8_t gauss_iter = 0; gauss_iter < 100; ++gauss_iter) {            h[0] = (b[0] - A[0][1] * h[1] - A[0][2] * h[2] - A[0][3] * h[3]) / A[0][0];            h[1] = (b[1] - A[1][0] * h[0] - A[1][2] * h[2] - A[1][3] * h[3]) / A[1][1];            h[2] = (b[2] - A[2][0] * h[0] - A[2][1] * h[1] - A[2][3] * h[3]) / A[2][2];            h[3] = (b[3] - A[3][0] * h[0] - A[3][1] * h[1] - A[3][2] * h[2]) / A[3][3];        }        // and update the current position with h.        // It may be better to use the Levenberg-Marquart method here,        // but because we are very close to the solution alread,        // the simple Gauss-Newton non-linear Least Squares method works well enough.        cntr[0] += h[0];        cntr[1] += h[1];        a1 += h[2];        a2 += h[3];		#ifdef SUPPORT_VERBOSITY        if (verbosity_level >= 20) {            SERIAL_ECHOPGM("iteration: ");            MYSERIAL.print(int(iter));			SERIAL_ECHOPGM("; correction vector: ");            MYSERIAL.print(h[0], 5);            SERIAL_ECHOPGM(", ");            MYSERIAL.print(h[1], 5);            SERIAL_ECHOPGM(", ");            MYSERIAL.print(h[2], 5);            SERIAL_ECHOPGM(", ");            MYSERIAL.print(h[3], 5);            SERIAL_ECHOLNPGM("");            SERIAL_ECHOPGM("corrected x/y: ");            MYSERIAL.print(cntr[0], 5);            SERIAL_ECHOPGM(", ");            MYSERIAL.print(cntr[0], 5);            SERIAL_ECHOLNPGM("");            SERIAL_ECHOPGM("corrected angles: ");            MYSERIAL.print(180.f * a1 / M_PI, 5);            SERIAL_ECHOPGM(", ");            MYSERIAL.print(180.f * a2 / M_PI, 5);            SERIAL_ECHOLNPGM("");        }		#endif // SUPPORT_VERBOSITY    }    vec_x[0] =  cos(a1) * MACHINE_AXIS_SCALE_X;    vec_x[1] =  sin(a1) * MACHINE_AXIS_SCALE_X;    vec_y[0] = -sin(a2) * MACHINE_AXIS_SCALE_Y;    vec_y[1] =  cos(a2) * MACHINE_AXIS_SCALE_Y;    BedSkewOffsetDetectionResultType result = BED_SKEW_OFFSET_DETECTION_PERFECT;    {        angleDiff = fabs(a2 - a1);		eeprom_update_float((float*)(EEPROM_XYZ_CAL_SKEW), angleDiff); //storing xyz cal. skew to be able to show in support menu later         if (angleDiff > bed_skew_angle_mild)            result = (angleDiff > bed_skew_angle_extreme) ?                BED_SKEW_OFFSET_DETECTION_SKEW_EXTREME :                BED_SKEW_OFFSET_DETECTION_SKEW_MILD;        if (fabs(a1) > bed_skew_angle_extreme ||            fabs(a2) > bed_skew_angle_extreme)            result = BED_SKEW_OFFSET_DETECTION_SKEW_EXTREME;    }	#ifdef SUPPORT_VERBOSITY    if (verbosity_level >= 1) {        SERIAL_ECHOPGM("correction angles: ");        MYSERIAL.print(180.f * a1 / M_PI, 5);        SERIAL_ECHOPGM(", ");        MYSERIAL.print(180.f * a2 / M_PI, 5);        SERIAL_ECHOLNPGM("");    }    if (verbosity_level >= 10) {        // Show the adjusted state, before the fitting.        SERIAL_ECHOPGM("X vector new, inverted: ");        MYSERIAL.print(vec_x[0], 5);        SERIAL_ECHOPGM(", ");        MYSERIAL.print(vec_x[1], 5);        SERIAL_ECHOLNPGM("");        SERIAL_ECHOPGM("Y vector new, inverted: ");        MYSERIAL.print(vec_y[0], 5);        SERIAL_ECHOPGM(", ");        MYSERIAL.print(vec_y[1], 5);        SERIAL_ECHOLNPGM("");        SERIAL_ECHOPGM("center new, inverted: ");        MYSERIAL.print(cntr[0], 5);        SERIAL_ECHOPGM(", ");        MYSERIAL.print(cntr[1], 5);        SERIAL_ECHOLNPGM("");        delay_keep_alive(100);        SERIAL_ECHOLNPGM("Error after correction: ");    }	#endif // SUPPORT_VERBOSITY    // Measure the error after correction.    for (uint8_t i = 0; i < npts; ++i) {        float x = vec_x[0] * measured_pts[i * 2] + vec_y[0] * measured_pts[i * 2 + 1] + cntr[0];        float y = vec_x[1] * measured_pts[i * 2] + vec_y[1] * measured_pts[i * 2 + 1] + cntr[1];        float errX = sqr(pgm_read_float(true_pts + i * 2) - x);        float errY = sqr(pgm_read_float(true_pts + i * 2 + 1) - y);        float err = sqrt(errX + errY);		#ifdef SUPPORT_VERBOSITY		if (verbosity_level >= 10) {			SERIAL_ECHOPGM("point #");			MYSERIAL.print(int(i));			SERIAL_ECHOLNPGM(":");		}		#endif // SUPPORT_VERBOSITY		if (point_on_1st_row(i)) {				#ifdef SUPPORT_VERBOSITY				if(verbosity_level >= 20) SERIAL_ECHOPGM("Point on first row");				#endif // SUPPORT_VERBOSITY				float w = point_weight_y(i, measured_pts[2 * i + 1]);				if (sqrt(errX) > BED_CALIBRATION_POINT_OFFSET_MAX_1ST_ROW_X ||					(w != 0.f && sqrt(errY) > BED_CALIBRATION_POINT_OFFSET_MAX_1ST_ROW_Y)) {					result = BED_SKEW_OFFSET_DETECTION_FITTING_FAILED;					#ifdef SUPPORT_VERBOSITY					if (verbosity_level >= 20) {						SERIAL_ECHOPGM(", weigth Y: ");						MYSERIAL.print(w);						if (sqrt(errX) > BED_CALIBRATION_POINT_OFFSET_MAX_1ST_ROW_X) SERIAL_ECHOPGM(", error X > max. error X");						if (w != 0.f && sqrt(errY) > BED_CALIBRATION_POINT_OFFSET_MAX_1ST_ROW_Y) SERIAL_ECHOPGM(", error Y > max. error Y");					}					#endif // SUPPORT_VERBOSITY				}		}		else {			#ifdef SUPPORT_VERBOSITY			if(verbosity_level >=20 ) SERIAL_ECHOPGM("Point not on first row");			#endif // SUPPORT_VERBOSITY			if (err > BED_CALIBRATION_POINT_OFFSET_MAX_EUCLIDIAN) {				result = BED_SKEW_OFFSET_DETECTION_FITTING_FAILED;				#ifdef SUPPORT_VERBOSITY				if(verbosity_level >= 20) SERIAL_ECHOPGM(", error > max. error euclidian"); 				#endif // SUPPORT_VERBOSITY			}        }		#ifdef SUPPORT_VERBOSITY        if (verbosity_level >= 10) {			SERIAL_ECHOLNPGM("");            SERIAL_ECHOPGM("measured: (");            MYSERIAL.print(measured_pts[i * 2], 5);            SERIAL_ECHOPGM(", ");            MYSERIAL.print(measured_pts[i * 2 + 1], 5);            SERIAL_ECHOPGM("); corrected: (");            MYSERIAL.print(x, 5);            SERIAL_ECHOPGM(", ");            MYSERIAL.print(y, 5);            SERIAL_ECHOPGM("); target: (");            MYSERIAL.print(pgm_read_float(true_pts + i * 2), 5);            SERIAL_ECHOPGM(", ");            MYSERIAL.print(pgm_read_float(true_pts + i * 2 + 1), 5);			SERIAL_ECHOLNPGM(")");			SERIAL_ECHOPGM("error: ");            MYSERIAL.print(err);			SERIAL_ECHOPGM(", error X: ");			MYSERIAL.print(sqrt(errX));			SERIAL_ECHOPGM(", error Y: ");			MYSERIAL.print(sqrt(errY));			SERIAL_ECHOLNPGM("");			SERIAL_ECHOLNPGM("");        }		#endif // SUPPORT_VERBOSITY    }	#ifdef SUPPORT_VERBOSITY	if (verbosity_level >= 20) {		SERIAL_ECHOLNPGM("Max. errors:");		SERIAL_ECHOPGM("Max. error X:");		MYSERIAL.println(BED_CALIBRATION_POINT_OFFSET_MAX_1ST_ROW_X);		SERIAL_ECHOPGM("Max. error Y:");		MYSERIAL.println(BED_CALIBRATION_POINT_OFFSET_MAX_1ST_ROW_Y);		SERIAL_ECHOPGM("Max. error euclidian:");		MYSERIAL.println(BED_CALIBRATION_POINT_OFFSET_MAX_EUCLIDIAN);		SERIAL_ECHOLNPGM("");	}	#endif // SUPPORT_VERBOSITY    #if 0    if (result == BED_SKEW_OFFSET_DETECTION_PERFECT && fabs(a1) < bed_skew_angle_mild && fabs(a2) < bed_skew_angle_mild) {		#ifdef SUPPORT_VERBOSITY		if (verbosity_level > 0)            SERIAL_ECHOLNPGM("Very little skew detected. Disabling skew correction.");		#endif // SUPPORT_VERBOSITY        // Just disable the skew correction.        vec_x[0] = MACHINE_AXIS_SCALE_X;        vec_x[1] = 0.f;        vec_y[0] = 0.f;        vec_y[1] = MACHINE_AXIS_SCALE_Y;    }    #else    if (result == BED_SKEW_OFFSET_DETECTION_PERFECT) {		#ifdef SUPPORT_VERBOSITY		if (verbosity_level > 0)            SERIAL_ECHOLNPGM("Very little skew detected. Orthogonalizing the axes.");		#endif // SUPPORT_VERBOSITY		// Orthogonalize the axes.        a1 = 0.5f * (a1 + a2);        vec_x[0] =  cos(a1) * MACHINE_AXIS_SCALE_X;        vec_x[1] =  sin(a1) * MACHINE_AXIS_SCALE_X;        vec_y[0] = -sin(a1) * MACHINE_AXIS_SCALE_Y;        vec_y[1] =  cos(a1) * MACHINE_AXIS_SCALE_Y;        // Refresh the offset.        cntr[0] = 0.f;        cntr[1] = 0.f;        float wx = 0.f;        float wy = 0.f;        for (int8_t i = 0; i < npts; ++ i) {            float x = vec_x[0] * measured_pts[i * 2] + vec_y[0] * measured_pts[i * 2 + 1];            float y = vec_x[1] * measured_pts[i * 2] + vec_y[1] * measured_pts[i * 2 + 1];            float w = point_weight_x(i, y);			cntr[0] += w * (pgm_read_float(true_pts + i * 2) - x);			wx += w;			#ifdef SUPPORT_VERBOSITY			if (verbosity_level >= 20) {				MYSERIAL.print(i);				SERIAL_ECHOLNPGM("");				SERIAL_ECHOLNPGM("Weight_x:");				MYSERIAL.print(w);				SERIAL_ECHOLNPGM("");				SERIAL_ECHOLNPGM("cntr[0]:");				MYSERIAL.print(cntr[0]);				SERIAL_ECHOLNPGM("");				SERIAL_ECHOLNPGM("wx:");				MYSERIAL.print(wx);			}			#endif // SUPPORT_VERBOSITY            w = point_weight_y(i, y);			cntr[1] += w * (pgm_read_float(true_pts + i * 2 + 1) - y);			wy += w;			#ifdef SUPPORT_VERBOSITY			if (verbosity_level >= 20) {				SERIAL_ECHOLNPGM("");				SERIAL_ECHOLNPGM("Weight_y:");				MYSERIAL.print(w);				SERIAL_ECHOLNPGM("");				SERIAL_ECHOLNPGM("cntr[1]:");				MYSERIAL.print(cntr[1]);				SERIAL_ECHOLNPGM("");				SERIAL_ECHOLNPGM("wy:");				MYSERIAL.print(wy);				SERIAL_ECHOLNPGM("");				SERIAL_ECHOLNPGM("");			}			#endif // SUPPORT_VERBOSITY		}        cntr[0] /= wx;        cntr[1] /= wy;		#ifdef SUPPORT_VERBOSITY		if (verbosity_level >= 20) {			SERIAL_ECHOLNPGM("");			SERIAL_ECHOLNPGM("Final cntr values:");			SERIAL_ECHOLNPGM("cntr[0]:");			MYSERIAL.print(cntr[0]);			SERIAL_ECHOLNPGM("");			SERIAL_ECHOLNPGM("cntr[1]:");			MYSERIAL.print(cntr[1]);			SERIAL_ECHOLNPGM("");		}		#endif // SUPPORT_VERBOSITY    }    #endif    // Invert the transformation matrix made of vec_x, vec_y and cntr.    {        float d = vec_x[0] * vec_y[1] - vec_x[1] * vec_y[0];        float Ainv[2][2] = {            { vec_y[1] / d, -vec_y[0] / d },            { -vec_x[1] / d, vec_x[0] / d }        };        float cntrInv[2] = {            -Ainv[0][0] * cntr[0] - Ainv[0][1] * cntr[1],            -Ainv[1][0] * cntr[0] - Ainv[1][1] * cntr[1]        };        vec_x[0] = Ainv[0][0];        vec_x[1] = Ainv[1][0];        vec_y[0] = Ainv[0][1];        vec_y[1] = Ainv[1][1];        cntr[0] = cntrInv[0];        cntr[1] = cntrInv[1];    }	#ifdef SUPPORT_VERBOSITY    if (verbosity_level >= 1) {        // Show the adjusted state, before the fitting.        SERIAL_ECHOPGM("X vector, adjusted: ");        MYSERIAL.print(vec_x[0], 5);        SERIAL_ECHOPGM(", ");        MYSERIAL.print(vec_x[1], 5);        SERIAL_ECHOLNPGM("");        SERIAL_ECHOPGM("Y vector, adjusted: ");        MYSERIAL.print(vec_y[0], 5);        SERIAL_ECHOPGM(", ");        MYSERIAL.print(vec_y[1], 5);        SERIAL_ECHOLNPGM("");        SERIAL_ECHOPGM("center, adjusted: ");        MYSERIAL.print(cntr[0], 5);        SERIAL_ECHOPGM(", ");        MYSERIAL.print(cntr[1], 5);        SERIAL_ECHOLNPGM("");        delay_keep_alive(100);    }    if (verbosity_level >= 2) {        SERIAL_ECHOLNPGM("Difference after correction: ");        for (uint8_t i = 0; i < npts; ++i) {            float x = vec_x[0] * pgm_read_float(true_pts + i * 2) + vec_y[0] * pgm_read_float(true_pts + i * 2 + 1) + cntr[0];            float y = vec_x[1] * pgm_read_float(true_pts + i * 2) + vec_y[1] * pgm_read_float(true_pts + i * 2 + 1) + cntr[1];            SERIAL_ECHOPGM("point #");            MYSERIAL.print(int(i));            SERIAL_ECHOPGM("measured: (");            MYSERIAL.print(measured_pts[i * 2], 5);            SERIAL_ECHOPGM(", ");            MYSERIAL.print(measured_pts[i * 2 + 1], 5);            SERIAL_ECHOPGM("); measured-corrected: (");            MYSERIAL.print(x, 5);            SERIAL_ECHOPGM(", ");            MYSERIAL.print(y, 5);            SERIAL_ECHOPGM("); target: (");            MYSERIAL.print(pgm_read_float(true_pts + i * 2), 5);            SERIAL_ECHOPGM(", ");            MYSERIAL.print(pgm_read_float(true_pts + i * 2 + 1), 5);            SERIAL_ECHOPGM("), error: ");            MYSERIAL.print(sqrt(sqr(measured_pts[i * 2] - x) + sqr(measured_pts[i * 2 + 1] - y)));            SERIAL_ECHOLNPGM("");        }		if (verbosity_level >= 20) {			SERIAL_ECHOLNPGM("");			SERIAL_ECHOLNPGM("Calculate offset and skew returning result:");			MYSERIAL.print(int(result));			SERIAL_ECHOLNPGM("");			SERIAL_ECHOLNPGM("");		}        delay_keep_alive(100);    }	#endif // SUPPORT_VERBOSITY    return result;}/** * @brief Erase calibration data stored in EEPROM */void reset_bed_offset_and_skew(){    eeprom_update_dword((uint32_t*)(EEPROM_BED_CALIBRATION_CENTER+0), 0x0FFFFFFFF);    eeprom_update_dword((uint32_t*)(EEPROM_BED_CALIBRATION_CENTER+4), 0x0FFFFFFFF);    eeprom_update_dword((uint32_t*)(EEPROM_BED_CALIBRATION_VEC_X +0), 0x0FFFFFFFF);    eeprom_update_dword((uint32_t*)(EEPROM_BED_CALIBRATION_VEC_X +4), 0x0FFFFFFFF);    eeprom_update_dword((uint32_t*)(EEPROM_BED_CALIBRATION_VEC_Y +0), 0x0FFFFFFFF);    eeprom_update_dword((uint32_t*)(EEPROM_BED_CALIBRATION_VEC_Y +4), 0x0FFFFFFFF);    // Reset the 8 16bit offsets.    for (int8_t i = 0; i < 4; ++ i)        eeprom_update_dword((uint32_t*)(EEPROM_BED_CALIBRATION_Z_JITTER+i*4), 0x0FFFFFFFF);}bool is_bed_z_jitter_data_valid()// offsets of the Z heiths of the calibration points from the first point are saved as 16bit signed int, scaled to tenths of microns// if at least one 16bit integer has different value then -1 (0x0FFFF), data are considered valid and function returns true, otherwise it returns false{		bool data_valid = false;	for (int8_t i = 0; i < 8; ++i) {		if (eeprom_read_word((uint16_t*)(EEPROM_BED_CALIBRATION_Z_JITTER + i * 2)) != 0x0FFFF) data_valid = true;	}    return data_valid;}static void world2machine_update(const float vec_x[2], const float vec_y[2], const float cntr[2]){    world2machine_rotation_and_skew[0][0] = vec_x[0];    world2machine_rotation_and_skew[1][0] = vec_x[1];    world2machine_rotation_and_skew[0][1] = vec_y[0];    world2machine_rotation_and_skew[1][1] = vec_y[1];    world2machine_shift[0] = cntr[0];    world2machine_shift[1] = cntr[1];    // No correction.    world2machine_correction_mode = WORLD2MACHINE_CORRECTION_NONE;    if (world2machine_shift[0] != 0.f || world2machine_shift[1] != 0.f)        // Shift correction.        world2machine_correction_mode |= WORLD2MACHINE_CORRECTION_SHIFT;    if (world2machine_rotation_and_skew[0][0] != 1.f || world2machine_rotation_and_skew[0][1] != 0.f ||        world2machine_rotation_and_skew[1][0] != 0.f || world2machine_rotation_and_skew[1][1] != 1.f) {        // Rotation & skew correction.        world2machine_correction_mode |= WORLD2MACHINE_CORRECTION_SKEW;        // Invert the world2machine matrix.        float d = world2machine_rotation_and_skew[0][0] * world2machine_rotation_and_skew[1][1] - world2machine_rotation_and_skew[1][0] * world2machine_rotation_and_skew[0][1];        world2machine_rotation_and_skew_inv[0][0] =  world2machine_rotation_and_skew[1][1] / d;        world2machine_rotation_and_skew_inv[0][1] = -world2machine_rotation_and_skew[0][1] / d;        world2machine_rotation_and_skew_inv[1][0] = -world2machine_rotation_and_skew[1][0] / d;        world2machine_rotation_and_skew_inv[1][1] =  world2machine_rotation_and_skew[0][0] / d;    } else {        world2machine_rotation_and_skew_inv[0][0] = 1.f;        world2machine_rotation_and_skew_inv[0][1] = 0.f;        world2machine_rotation_and_skew_inv[1][0] = 0.f;        world2machine_rotation_and_skew_inv[1][1] = 1.f;    }}/** * @brief Set calibration matrix to identity * * In contrast with world2machine_revert_to_uncorrected(), it doesn't wait for finishing moves * nor updates the current position with the absolute values. */void world2machine_reset(){    const float vx[] = { 1.f, 0.f };    const float vy[] = { 0.f, 1.f };    const float cntr[] = { 0.f, 0.f };    world2machine_update(vx, vy, cntr);}/** * @brief Get calibration matrix default value * * This is used if no valid calibration data can be read from EEPROM. * @param [out] vec_x axis x vector * @param [out] vec_y axis y vector * @param [out] cntr offset vector */static void world2machine_default(float vec_x[2], float vec_y[2], float cntr[2]){    vec_x[0] = 1.f;    vec_x[1] = 0.f;    vec_y[0] = 0.f;    vec_y[1] = 1.f;    cntr[0] =  0.f;#ifdef DEFAULT_Y_OFFSET    cntr[1] = DEFAULT_Y_OFFSET;#else    cntr[1] = 0.f;#endif}/** * @brief Set calibration matrix to identity and update current position with absolute position * * Wait for the motors to stop and then update the current position with the absolute values. */void world2machine_revert_to_uncorrected(){    if (world2machine_correction_mode != WORLD2MACHINE_CORRECTION_NONE) {        world2machine_reset();        st_synchronize();        current_position[X_AXIS] = st_get_position_mm(X_AXIS);        current_position[Y_AXIS] = st_get_position_mm(Y_AXIS);    }}static inline bool vec_undef(const float v[2]){    const uint32_t *vx = (const uint32_t*)v;    return vx[0] == 0x0FFFFFFFF || vx[1] == 0x0FFFFFFFF;}/** * @brief Read calibration data from EEPROM * * If no calibration data has been stored in EEPROM or invalid, * world2machine_default() is used. * * If stored calibration data is invalid, EEPROM storage is cleared. * @param [out] vec_x axis x vector * @param [out] vec_y axis y vector * @param [out] cntr offset vector */void world2machine_read_valid(float vec_x[2], float vec_y[2], float cntr[2]){    vec_x[0] = eeprom_read_float((float*)(EEPROM_BED_CALIBRATION_VEC_X +0));    vec_x[1] = eeprom_read_float((float*)(EEPROM_BED_CALIBRATION_VEC_X +4));    vec_y[0] = eeprom_read_float((float*)(EEPROM_BED_CALIBRATION_VEC_Y +0));    vec_y[1] = eeprom_read_float((float*)(EEPROM_BED_CALIBRATION_VEC_Y +4));    cntr[0] = eeprom_read_float((float*)(EEPROM_BED_CALIBRATION_CENTER+0));    cntr[1] = eeprom_read_float((float*)(EEPROM_BED_CALIBRATION_CENTER+4));    bool reset = false;    if (vec_undef(cntr) || vec_undef(vec_x) || vec_undef(vec_y))    {#if 0        SERIAL_ECHOLNPGM("Undefined bed correction matrix.");#endif        reset = true;    }    else    {        // Length of the vec_x shall be close to unity.        float l = sqrt(vec_x[0] * vec_x[0] + vec_x[1] * vec_x[1]);        if (l < 0.9 || l > 1.1)        {#if 0            SERIAL_ECHOLNPGM("X vector length:");            MYSERIAL.println(l);            SERIAL_ECHOLNPGM("Invalid bed correction matrix. Length of the X vector out of range.");#endif            reset = true;        }        // Length of the vec_y shall be close to unity.        l = sqrt(vec_y[0] * vec_y[0] + vec_y[1] * vec_y[1]);        if (l < 0.9 || l > 1.1)        {#if 0            SERIAL_ECHOLNPGM("Y vector length:");            MYSERIAL.println(l);            SERIAL_ECHOLNPGM("Invalid bed correction matrix. Length of the Y vector out of range.");#endif            reset = true;        }        // Correction of the zero point shall be reasonably small.        l = sqrt(cntr[0] * cntr[0] + cntr[1] * cntr[1]);        if (l > 15.f)        {#if 0            SERIAL_ECHOLNPGM("Zero point correction:");            MYSERIAL.println(l);            SERIAL_ECHOLNPGM("Invalid bed correction matrix. Shift out of range.");#endif            reset = true;        }        // vec_x and vec_y shall be nearly perpendicular.        l = vec_x[0] * vec_y[0] + vec_x[1] * vec_y[1];        if (fabs(l) > 0.1f)        {#if 0            SERIAL_ECHOLNPGM("Invalid bed correction matrix. X/Y axes are far from being perpendicular.");#endif            reset = true;        }    }    if (reset)    {#if 0        SERIAL_ECHOLNPGM("Invalid bed correction matrix. Resetting to identity.");#endif        reset_bed_offset_and_skew();        world2machine_default(vec_x, vec_y, cntr);    }}/** * @brief Read and apply validated calibration data from EEPROM */void world2machine_initialize(){#if 0    SERIAL_ECHOLNPGM("world2machine_initialize");#endif    float vec_x[2];    float vec_y[2];    float cntr[2];    world2machine_read_valid(vec_x, vec_y, cntr);    world2machine_update(vec_x, vec_y, cntr);#if 0    SERIAL_ECHOPGM("world2machine_initialize() loaded: ");    MYSERIAL.print(world2machine_rotation_and_skew[0][0], 5);    SERIAL_ECHOPGM(", ");    MYSERIAL.print(world2machine_rotation_and_skew[0][1], 5);    SERIAL_ECHOPGM(", ");    MYSERIAL.print(world2machine_rotation_and_skew[1][0], 5);    SERIAL_ECHOPGM(", ");    MYSERIAL.print(world2machine_rotation_and_skew[1][1], 5);    SERIAL_ECHOPGM(", offset ");    MYSERIAL.print(world2machine_shift[0], 5);    SERIAL_ECHOPGM(", ");    MYSERIAL.print(world2machine_shift[1], 5);    SERIAL_ECHOLNPGM("");#endif}/** * @brief Update current position after switching to corrected coordinates * * When switching from absolute to corrected coordinates, * this will get the absolute coordinates from the servos, * applies the inverse world2machine transformation * and stores the result into current_position[x,y]. */void world2machine_update_current(){    float x = current_position[X_AXIS] - world2machine_shift[0];    float y = current_position[Y_AXIS] - world2machine_shift[1];    current_position[X_AXIS] = world2machine_rotation_and_skew_inv[0][0] * x + world2machine_rotation_and_skew_inv[0][1] * y;    current_position[Y_AXIS] = world2machine_rotation_and_skew_inv[1][0] * x + world2machine_rotation_and_skew_inv[1][1] * y;}static inline void go_xyz(float x, float y, float z, float fr){    plan_buffer_line(x, y, z, current_position[E_AXIS], fr, active_extruder);    st_synchronize();}static inline void go_xy(float x, float y, float fr){    plan_buffer_line(x, y, current_position[Z_AXIS], current_position[E_AXIS], fr, active_extruder);    st_synchronize();}static inline void go_to_current(float fr){    plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], fr, active_extruder);    st_synchronize();}static inline void update_current_position_xyz(){      current_position[X_AXIS] = st_get_position_mm(X_AXIS);      current_position[Y_AXIS] = st_get_position_mm(Y_AXIS);      current_position[Z_AXIS] = st_get_position_mm(Z_AXIS);      plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);}static inline void update_current_position_z(){      current_position[Z_AXIS] = st_get_position_mm(Z_AXIS);      plan_set_z_position(current_position[Z_AXIS]);}// At the current position, find the Z stop.inline bool find_bed_induction_sensor_point_z(float minimum_z, uint8_t n_iter, int#ifdef SUPPORT_VERBOSITY    verbosity_level#endif //SUPPORT_VERBOSITY        ){	bool high_deviation_occured = false; #ifdef TMC2130	FORCE_HIGH_POWER_START;#endif	//printf_P(PSTR("Min. Z: %f\n"), minimum_z);	#ifdef SUPPORT_VERBOSITY    if(verbosity_level >= 10) SERIAL_ECHOLNPGM("find bed induction sensor point z");	#endif // SUPPORT_VERBOSITY	bool endstops_enabled  = enable_endstops(true);    bool endstop_z_enabled = enable_z_endstop(false);    float z = 0.f;    endstop_z_hit_on_purpose();    // move down until you find the bed    current_position[Z_AXIS] = minimum_z;    go_to_current(homing_feedrate[Z_AXIS]/60);    // we have to let the planner know where we are right now as it is not where we said to go.    update_current_position_z();    if (! endstop_z_hit_on_purpose())	{		//printf_P(PSTR("endstop not hit 1, current_pos[Z]: %f \n"), current_position[Z_AXIS]);		goto error;	}#ifdef TMC2130	if (READ(Z_TMC2130_DIAG) != 0)	{		//printf_P(PSTR("crash detected 1, current_pos[Z]: %f \n"), current_position[Z_AXIS]);		goto error; //crash Z detected	}#endif //TMC2130    for (uint8_t i = 0; i < n_iter; ++ i)	{				current_position[Z_AXIS] += high_deviation_occured ? 0.5 : 0.2;		float z_bckp = current_position[Z_AXIS];		go_to_current(homing_feedrate[Z_AXIS]/60);		// Move back down slowly to find bed.        current_position[Z_AXIS] = minimum_z;		//printf_P(PSTR("init Z = %f, min_z = %f, i = %d\n"), z_bckp, minimum_z, i);        go_to_current(homing_feedrate[Z_AXIS]/(4*60));        // we have to let the planner know where we are right now as it is not where we said to go.        update_current_position_z();		//printf_P(PSTR("Zs: %f, Z: %f, delta Z: %f"), z_bckp, current_position[Z_AXIS], (z_bckp - current_position[Z_AXIS]));		if (abs(current_position[Z_AXIS] - z_bckp) < 0.025) {			//printf_P(PSTR("PINDA triggered immediately, move Z higher and repeat measurement\n")); 			current_position[Z_AXIS] += 0.5;			go_to_current(homing_feedrate[Z_AXIS]/60);			current_position[Z_AXIS] = minimum_z;            go_to_current(homing_feedrate[Z_AXIS]/(4*60));            // we have to let the planner know where we are right now as it is not where we said to go.			update_current_position_z();		}		if (!endstop_z_hit_on_purpose())		{			//printf_P(PSTR("i = %d, endstop not hit 2, current_pos[Z]: %f \n"), i, current_position[Z_AXIS]);			goto error;		}#ifdef TMC2130		if (READ(Z_TMC2130_DIAG) != 0) {			//printf_P(PSTR("crash detected 2, current_pos[Z]: %f \n"), current_position[Z_AXIS]);			goto error; //crash Z detected		}#endif //TMC2130//        SERIAL_ECHOPGM("Bed find_bed_induction_sensor_point_z low, height: ");//        MYSERIAL.print(current_position[Z_AXIS], 5);//        SERIAL_ECHOLNPGM("");		float dz = i?abs(current_position[Z_AXIS] - (z / i)):0;        z += current_position[Z_AXIS];		//printf_P(PSTR("Z[%d] = %d, dz=%d\n"), i, (int)(current_position[Z_AXIS] * 1000), (int)(dz * 1000));		//printf_P(PSTR("Z- measurement deviation from avg value %f um\n"), dz);		if (dz > 0.05) { //deviation > 50um			if (high_deviation_occured == false) { //first occurence may be caused in some cases by mechanic resonance probably especially if printer is placed on unstable surface 				//printf_P(PSTR("high dev. first occurence\n"));				delay_keep_alive(500); //damping				//start measurement from the begining, but this time with higher movements in Z axis which should help to reduce mechanical resonance				high_deviation_occured = true;				i = -1; 				z = 0;			}			else {				goto error;			}		}		//printf_P(PSTR("PINDA triggered at %f\n"), current_position[Z_AXIS]);    }    current_position[Z_AXIS] = z;    if (n_iter > 1)        current_position[Z_AXIS] /= float(n_iter);    enable_endstops(endstops_enabled);    enable_z_endstop(endstop_z_enabled);//    SERIAL_ECHOLNPGM("find_bed_induction_sensor_point_z 3");#ifdef TMC2130	FORCE_HIGH_POWER_END;#endif	return true;error://    SERIAL_ECHOLNPGM("find_bed_induction_sensor_point_z 4");    enable_endstops(endstops_enabled);    enable_z_endstop(endstop_z_enabled);#ifdef TMC2130	FORCE_HIGH_POWER_END;#endif	return false;}#ifdef NEW_XYZCALextern bool xyzcal_find_bed_induction_sensor_point_xy();#endif //NEW_XYZCAL// Search around the current_position[X,Y],// look for the induction sensor response.// Adjust the  current_position[X,Y,Z] to the center of the target dot and its response Z coordinate.#define FIND_BED_INDUCTION_SENSOR_POINT_X_RADIUS (8.f)#define FIND_BED_INDUCTION_SENSOR_POINT_Y_RADIUS (4.f)#define FIND_BED_INDUCTION_SENSOR_POINT_XY_STEP  (1.f)#ifdef HEATBED_V2#define FIND_BED_INDUCTION_SENSOR_POINT_Z_STEP   (2.f)#define FIND_BED_INDUCTION_SENSOR_POINT_MAX_Z_ERROR  (0.03f)#else //HEATBED_V2#define FIND_BED_INDUCTION_SENSOR_POINT_Z_STEP   (0.2f)#endif //HEATBED_V2#ifdef HEATBED_V2inline bool find_bed_induction_sensor_point_xy(int#if !defined (NEW_XYZCAL) && defined (SUPPORT_VERBOSITY)        verbosity_level#endif        ){#ifdef NEW_XYZCAL	return xyzcal_find_bed_induction_sensor_point_xy();#else //NEW_XYZCAL	#ifdef SUPPORT_VERBOSITY	if (verbosity_level >= 10) MYSERIAL.println("find bed induction sensor point xy");	#endif // SUPPORT_VERBOSITY	float feedrate = homing_feedrate[X_AXIS] / 60.f;	bool found = false;	{		float x0 = current_position[X_AXIS] - FIND_BED_INDUCTION_SENSOR_POINT_X_RADIUS;		float x1 = current_position[X_AXIS] + FIND_BED_INDUCTION_SENSOR_POINT_X_RADIUS;		float y0 = current_position[Y_AXIS] - FIND_BED_INDUCTION_SENSOR_POINT_Y_RADIUS;		float y1 = current_position[Y_AXIS] + FIND_BED_INDUCTION_SENSOR_POINT_Y_RADIUS;		uint8_t nsteps_y;		uint8_t i;		if (x0 < X_MIN_POS) {			x0 = X_MIN_POS;			#ifdef SUPPORT_VERBOSITY			if (verbosity_level >= 20) SERIAL_ECHOLNPGM("X searching radius lower than X_MIN. Clamping was done.");			#endif // SUPPORT_VERBOSITY		}		if (x1 > X_MAX_POS) {			x1 = X_MAX_POS;			#ifdef SUPPORT_VERBOSITY			if (verbosity_level >= 20) SERIAL_ECHOLNPGM("X searching radius higher than X_MAX. Clamping was done.");			#endif // SUPPORT_VERBOSITY		}		if (y0 < Y_MIN_POS_FOR_BED_CALIBRATION) {			y0 = Y_MIN_POS_FOR_BED_CALIBRATION;			#ifdef SUPPORT_VERBOSITY			if (verbosity_level >= 20) SERIAL_ECHOLNPGM("Y searching radius lower than Y_MIN. Clamping was done.");			#endif // SUPPORT_VERBOSITY		}		if (y1 > Y_MAX_POS) {			y1 = Y_MAX_POS;			#ifdef SUPPORT_VERBOSITY			if (verbosity_level >= 20) SERIAL_ECHOLNPGM("Y searching radius higher than X_MAX. Clamping was done.");			#endif // SUPPORT_VERBOSITY		}		nsteps_y = int(ceil((y1 - y0) / FIND_BED_INDUCTION_SENSOR_POINT_XY_STEP));		enable_endstops(false);		bool  dir_positive = true;		float z_error = 2 * FIND_BED_INDUCTION_SENSOR_POINT_Z_STEP;		float find_bed_induction_sensor_point_z_step = FIND_BED_INDUCTION_SENSOR_POINT_Z_STEP;		float initial_z_position = current_position[Z_AXIS];		//        go_xyz(current_position[X_AXIS], current_position[Y_AXIS], MESH_HOME_Z_SEARCH, homing_feedrate[Z_AXIS]/60);		go_xyz(x0, y0, current_position[Z_AXIS], feedrate);		// Continously lower the Z axis.		endstops_hit_on_purpose();		enable_z_endstop(true);		bool direction = false;		while (current_position[Z_AXIS] > -10.f && z_error > FIND_BED_INDUCTION_SENSOR_POINT_MAX_Z_ERROR) {			// Do nsteps_y zig-zag movements.			SERIAL_ECHOPGM("z_error: ");			MYSERIAL.println(z_error);			current_position[Y_AXIS] = direction ? y1 : y0;			initial_z_position = current_position[Z_AXIS];			for (i = 0; i < (nsteps_y - 1); (direction == false) ? (current_position[Y_AXIS] += (y1 - y0) / float(nsteps_y - 1)) : (current_position[Y_AXIS] -= (y1 - y0) / float(nsteps_y - 1)), ++i) {				// Run with a slightly decreasing Z axis, zig-zag movement. Stop at the Z end-stop.				current_position[Z_AXIS] -= find_bed_induction_sensor_point_z_step / float(nsteps_y - 1);				go_xyz(dir_positive ? x1 : x0, current_position[Y_AXIS], current_position[Z_AXIS], feedrate);				dir_positive = !dir_positive;				if (endstop_z_hit_on_purpose()) {					update_current_position_xyz();					z_error = initial_z_position - current_position[Z_AXIS] + find_bed_induction_sensor_point_z_step;					if (z_error > FIND_BED_INDUCTION_SENSOR_POINT_MAX_Z_ERROR) {						find_bed_induction_sensor_point_z_step = z_error / 2;						current_position[Z_AXIS] += z_error;						enable_z_endstop(false);						(direction == false) ? go_xyz(x0, y0, current_position[Z_AXIS], feedrate) : go_xyz(x0, y1, current_position[Z_AXIS], feedrate);						enable_z_endstop(true);					}					goto endloop;				}			}			for (i = 0; i < (nsteps_y - 1); (direction == false) ? (current_position[Y_AXIS] -= (y1 - y0) / float(nsteps_y - 1)) : (current_position[Y_AXIS] += (y1 - y0) / float(nsteps_y - 1)), ++i) {				// Run with a slightly decreasing Z axis, zig-zag movement. Stop at the Z end-stop.				current_position[Z_AXIS] -= find_bed_induction_sensor_point_z_step / float(nsteps_y - 1);				go_xyz(dir_positive ? x1 : x0, current_position[Y_AXIS], current_position[Z_AXIS], feedrate);				dir_positive = !dir_positive;				if (endstop_z_hit_on_purpose()) {					update_current_position_xyz();					z_error = initial_z_position - current_position[Z_AXIS];					if (z_error > FIND_BED_INDUCTION_SENSOR_POINT_MAX_Z_ERROR) {						find_bed_induction_sensor_point_z_step = z_error / 2;						current_position[Z_AXIS] += z_error;						enable_z_endstop(false);						direction = !direction;						(direction == false) ? go_xyz(x0, y0, current_position[Z_AXIS], feedrate) : go_xyz(x0, y1, current_position[Z_AXIS], feedrate);						enable_z_endstop(true);					}					goto endloop;				}			}		endloop:;		}		#ifdef SUPPORT_VERBOSITY		if (verbosity_level >= 20) {			SERIAL_ECHO("First hit");			SERIAL_ECHO("- X: ");			MYSERIAL.print(current_position[X_AXIS]);			SERIAL_ECHO("; Y: ");			MYSERIAL.print(current_position[Y_AXIS]);			SERIAL_ECHO("; Z: ");			MYSERIAL.println(current_position[Z_AXIS]);		}		#endif //SUPPORT_VERBOSITY		//lcd_show_fullscreen_message_and_wait_P(PSTR("First hit"));		//lcd_update_enable(true);		float init_x_position = current_position[X_AXIS];		float init_y_position = current_position[Y_AXIS];		// we have to let the planner know where we are right now as it is not where we said to go.		update_current_position_xyz();		enable_z_endstop(false);				for (int8_t iter = 0; iter < 2; ++iter) {			/*SERIAL_ECHOPGM("iter: ");			MYSERIAL.println(iter);			SERIAL_ECHOPGM("1 - current_position[Z_AXIS]: ");			MYSERIAL.println(current_position[Z_AXIS]);*/			// Slightly lower the Z axis to get a reliable trigger.			current_position[Z_AXIS] -= 0.1f;			go_xyz(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], homing_feedrate[Z_AXIS] / (60 * 10));			SERIAL_ECHOPGM("2 - current_position[Z_AXIS]: ");			MYSERIAL.println(current_position[Z_AXIS]);			// Do nsteps_y zig-zag movements.			float a, b;			float avg[2] = { 0,0 };			invert_z_endstop(true);			for (int iteration = 0; iteration < 8; iteration++) {				found = false;								enable_z_endstop(true);				go_xy(init_x_position + 16.0f, current_position[Y_AXIS], feedrate / 5);				update_current_position_xyz();				if (!endstop_z_hit_on_purpose()) {					//                SERIAL_ECHOLN("Search X span 0 - not found");					continue;				}				//            SERIAL_ECHOLN("Search X span 0 - found");				a = current_position[X_AXIS];				enable_z_endstop(false);				go_xy(init_x_position, current_position[Y_AXIS], feedrate / 5);				enable_z_endstop(true);				go_xy(init_x_position - 16.0f, current_position[Y_AXIS], feedrate / 5);				update_current_position_xyz();				if (!endstop_z_hit_on_purpose()) {					//                SERIAL_ECHOLN("Search X span 1 - not found");					continue;				}				//            SERIAL_ECHOLN("Search X span 1 - found");				b = current_position[X_AXIS];				// Go to the center.				enable_z_endstop(false);				current_position[X_AXIS] = 0.5f * (a + b);				go_xy(current_position[X_AXIS], init_y_position, feedrate / 5);				found = true;								// Search in the Y direction along a cross.				found = false;				enable_z_endstop(true);				go_xy(current_position[X_AXIS], init_y_position + 16.0f, feedrate / 5);				update_current_position_xyz();				if (!endstop_z_hit_on_purpose()) {					//                SERIAL_ECHOLN("Search Y2 span 0 - not found");					continue;				}				//            SERIAL_ECHOLN("Search Y2 span 0 - found");				a = current_position[Y_AXIS];				enable_z_endstop(false);				go_xy(current_position[X_AXIS], init_y_position, feedrate / 5);				enable_z_endstop(true);				go_xy(current_position[X_AXIS], init_y_position - 16.0f, feedrate / 5);				update_current_position_xyz();				if (!endstop_z_hit_on_purpose()) {					//                SERIAL_ECHOLN("Search Y2 span 1 - not found");					continue;				}				//            SERIAL_ECHOLN("Search Y2 span 1 - found");				b = current_position[Y_AXIS];				// Go to the center.				enable_z_endstop(false);				current_position[Y_AXIS] = 0.5f * (a + b);				go_xy(current_position[X_AXIS], current_position[Y_AXIS], feedrate / 5);				#ifdef SUPPORT_VERBOSITY				if (verbosity_level >= 20) {					SERIAL_ECHOPGM("ITERATION: ");					MYSERIAL.println(iteration);					SERIAL_ECHOPGM("CURRENT POSITION X: ");					MYSERIAL.println(current_position[X_AXIS]);					SERIAL_ECHOPGM("CURRENT POSITION Y: ");					MYSERIAL.println(current_position[Y_AXIS]);				}				#endif //SUPPORT_VERBOSITY				if (iteration > 0) {					// Average the last 7 measurements.					avg[X_AXIS] += current_position[X_AXIS];					avg[Y_AXIS] += current_position[Y_AXIS];				}				init_x_position = current_position[X_AXIS];				init_y_position = current_position[Y_AXIS];				found = true;			}			invert_z_endstop(false);			avg[X_AXIS] *= (1.f / 7.f);			avg[Y_AXIS] *= (1.f / 7.f);			current_position[X_AXIS] = avg[X_AXIS];			current_position[Y_AXIS] = avg[Y_AXIS];			#ifdef SUPPORT_VERBOSITY			if (verbosity_level >= 20) {				SERIAL_ECHOPGM("AVG CURRENT POSITION X: ");				MYSERIAL.println(current_position[X_AXIS]);				SERIAL_ECHOPGM("AVG CURRENT POSITION Y: ");				MYSERIAL.println(current_position[Y_AXIS]);			}			#endif // SUPPORT_VERBOSITY			go_xy(current_position[X_AXIS], current_position[Y_AXIS], feedrate);			#ifdef SUPPORT_VERBOSITY			if (verbosity_level >= 20) {				lcd_show_fullscreen_message_and_wait_P(PSTR("Final position"));				lcd_update_enable(true);			}			#endif //SUPPORT_VERBOSITY			break;		}	}		enable_z_endstop(false);	invert_z_endstop(false);	return found;#endif //NEW_XYZCAL}#else //HEATBED_V2inline bool find_bed_induction_sensor_point_xy(int verbosity_level){#ifdef NEW_XYZCAL	return xyzcal_find_bed_induction_sensor_point_xy();#else //NEW_XYZCAL	#ifdef SUPPORT_VERBOSITY	if (verbosity_level >= 10) MYSERIAL.println("find bed induction sensor point xy");	#endif // SUPPORT_VERBOSITY	float feedrate = homing_feedrate[X_AXIS] / 60.f;	bool found = false;	{		float x0 = current_position[X_AXIS] - FIND_BED_INDUCTION_SENSOR_POINT_X_RADIUS;		float x1 = current_position[X_AXIS] + FIND_BED_INDUCTION_SENSOR_POINT_X_RADIUS;		float y0 = current_position[Y_AXIS] - FIND_BED_INDUCTION_SENSOR_POINT_Y_RADIUS;		float y1 = current_position[Y_AXIS] + FIND_BED_INDUCTION_SENSOR_POINT_Y_RADIUS;		uint8_t nsteps_y;		uint8_t i;		if (x0 < X_MIN_POS) {			x0 = X_MIN_POS;			#ifdef SUPPORT_VERBOSITY			if (verbosity_level >= 20) SERIAL_ECHOLNPGM("X searching radius lower than X_MIN. Clamping was done.");			#endif // SUPPORT_VERBOSITY		}		if (x1 > X_MAX_POS) {			x1 = X_MAX_POS;			#ifdef SUPPORT_VERBOSITY			if (verbosity_level >= 20) SERIAL_ECHOLNPGM("X searching radius higher than X_MAX. Clamping was done.");			#endif // SUPPORT_VERBOSITY		}		if (y0 < Y_MIN_POS_FOR_BED_CALIBRATION) {			y0 = Y_MIN_POS_FOR_BED_CALIBRATION;			#ifdef SUPPORT_VERBOSITY			if (verbosity_level >= 20) SERIAL_ECHOLNPGM("Y searching radius lower than Y_MIN. Clamping was done.");			#endif // SUPPORT_VERBOSITY		}		if (y1 > Y_MAX_POS) {			y1 = Y_MAX_POS;			#ifdef SUPPORT_VERBOSITY			if (verbosity_level >= 20) SERIAL_ECHOLNPGM("Y searching radius higher than X_MAX. Clamping was done.");			#endif // SUPPORT_VERBOSITY		}		nsteps_y = int(ceil((y1 - y0) / FIND_BED_INDUCTION_SENSOR_POINT_XY_STEP));		enable_endstops(false);		bool  dir_positive = true;		//        go_xyz(current_position[X_AXIS], current_position[Y_AXIS], MESH_HOME_Z_SEARCH, homing_feedrate[Z_AXIS]/60);		go_xyz(x0, y0, current_position[Z_AXIS], feedrate);		// Continously lower the Z axis.		endstops_hit_on_purpose();		enable_z_endstop(true);		while (current_position[Z_AXIS] > -10.f) {			// Do nsteps_y zig-zag movements.			current_position[Y_AXIS] = y0;			for (i = 0; i < nsteps_y; current_position[Y_AXIS] += (y1 - y0) / float(nsteps_y - 1), ++i) {				// Run with a slightly decreasing Z axis, zig-zag movement. Stop at the Z end-stop.				current_position[Z_AXIS] -= FIND_BED_INDUCTION_SENSOR_POINT_Z_STEP / float(nsteps_y);				go_xyz(dir_positive ? x1 : x0, current_position[Y_AXIS], current_position[Z_AXIS], feedrate);				dir_positive = !dir_positive;				if (endstop_z_hit_on_purpose())					goto endloop;			}			for (i = 0; i < nsteps_y; current_position[Y_AXIS] -= (y1 - y0) / float(nsteps_y - 1), ++i) {				// Run with a slightly decreasing Z axis, zig-zag movement. Stop at the Z end-stop.				current_position[Z_AXIS] -= FIND_BED_INDUCTION_SENSOR_POINT_Z_STEP / float(nsteps_y);				go_xyz(dir_positive ? x1 : x0, current_position[Y_AXIS], current_position[Z_AXIS], feedrate);				dir_positive = !dir_positive;				if (endstop_z_hit_on_purpose())					goto endloop;			}		}	endloop:		//        SERIAL_ECHOLN("First hit");		// we have to let the planner know where we are right now as it is not where we said to go.		update_current_position_xyz();		// Search in this plane for the first hit. Zig-zag first in X, then in Y axis.		for (int8_t iter = 0; iter < 3; ++iter) {			if (iter > 0) {				// Slightly lower the Z axis to get a reliable trigger.				current_position[Z_AXIS] -= 0.02f;				go_xyz(current_position[X_AXIS], current_position[Y_AXIS], MESH_HOME_Z_SEARCH, homing_feedrate[Z_AXIS] / 60);			}			// Do nsteps_y zig-zag movements.			float a, b;			enable_endstops(false);			enable_z_endstop(false);			current_position[Y_AXIS] = y0;			go_xy(x0, current_position[Y_AXIS], feedrate);			enable_z_endstop(true);			found = false;			for (i = 0, dir_positive = true; i < nsteps_y; current_position[Y_AXIS] += (y1 - y0) / float(nsteps_y - 1), ++i, dir_positive = !dir_positive) {				go_xy(dir_positive ? x1 : x0, current_position[Y_AXIS], feedrate);				if (endstop_z_hit_on_purpose()) {					found = true;					break;				}			}			update_current_position_xyz();			if (!found) {				//                SERIAL_ECHOLN("Search in Y - not found");				continue;			}			//            SERIAL_ECHOLN("Search in Y - found");			a = current_position[Y_AXIS];			enable_z_endstop(false);			current_position[Y_AXIS] = y1;			go_xy(x0, current_position[Y_AXIS], feedrate);			enable_z_endstop(true);			found = false;			for (i = 0, dir_positive = true; i < nsteps_y; current_position[Y_AXIS] -= (y1 - y0) / float(nsteps_y - 1), ++i, dir_positive = !dir_positive) {				go_xy(dir_positive ? x1 : x0, current_position[Y_AXIS], feedrate);				if (endstop_z_hit_on_purpose()) {					found = true;					break;				}			}			update_current_position_xyz();			if (!found) {				//                SERIAL_ECHOLN("Search in Y2 - not found");				continue;			}			//            SERIAL_ECHOLN("Search in Y2 - found");			b = current_position[Y_AXIS];			current_position[Y_AXIS] = 0.5f * (a + b);			// Search in the X direction along a cross.			found = false;			enable_z_endstop(false);			go_xy(x0, current_position[Y_AXIS], feedrate);			enable_z_endstop(true);			go_xy(x1, current_position[Y_AXIS], feedrate);			update_current_position_xyz();			if (!endstop_z_hit_on_purpose()) {				//                SERIAL_ECHOLN("Search X span 0 - not found");				continue;			}			//            SERIAL_ECHOLN("Search X span 0 - found");			a = current_position[X_AXIS];			enable_z_endstop(false);			go_xy(x1, current_position[Y_AXIS], feedrate);			enable_z_endstop(true);			go_xy(x0, current_position[Y_AXIS], feedrate);			update_current_position_xyz();			if (!endstop_z_hit_on_purpose()) {				//                SERIAL_ECHOLN("Search X span 1 - not found");				continue;			}			//            SERIAL_ECHOLN("Search X span 1 - found");			b = current_position[X_AXIS];			// Go to the center.			enable_z_endstop(false);			current_position[X_AXIS] = 0.5f * (a + b);			go_xy(current_position[X_AXIS], current_position[Y_AXIS], feedrate);			found = true;#if 1			// Search in the Y direction along a cross.			found = false;			enable_z_endstop(false);			go_xy(current_position[X_AXIS], y0, feedrate);			enable_z_endstop(true);			go_xy(current_position[X_AXIS], y1, feedrate);			update_current_position_xyz();			if (!endstop_z_hit_on_purpose()) {				//                SERIAL_ECHOLN("Search Y2 span 0 - not found");				continue;			}			//            SERIAL_ECHOLN("Search Y2 span 0 - found");			a = current_position[Y_AXIS];			enable_z_endstop(false);			go_xy(current_position[X_AXIS], y1, feedrate);			enable_z_endstop(true);			go_xy(current_position[X_AXIS], y0, feedrate);			update_current_position_xyz();			if (!endstop_z_hit_on_purpose()) {				//                SERIAL_ECHOLN("Search Y2 span 1 - not found");				continue;			}			//            SERIAL_ECHOLN("Search Y2 span 1 - found");			b = current_position[Y_AXIS];			// Go to the center.			enable_z_endstop(false);			current_position[Y_AXIS] = 0.5f * (a + b);			go_xy(current_position[X_AXIS], current_position[Y_AXIS], feedrate);			found = true;#endif			break;		}	}	enable_z_endstop(false);	return found;#endif //NEW_XYZCAL}#endif //HEATBED_V2#ifndef NEW_XYZCAL// Search around the current_position[X,Y,Z].// It is expected, that the induction sensor is switched on at the current position.// Look around this center point by painting a star around the point.inline bool improve_bed_induction_sensor_point(){    static const float search_radius = 8.f;    bool  endstops_enabled  = enable_endstops(false);    bool  endstop_z_enabled = enable_z_endstop(false);    bool  found = false;    float feedrate = homing_feedrate[X_AXIS] / 60.f;    float center_old_x = current_position[X_AXIS];    float center_old_y = current_position[Y_AXIS];    float center_x = 0.f;    float center_y = 0.f;    for (uint8_t iter = 0; iter < 4; ++ iter) {        switch (iter) {        case 0:            destination[X_AXIS] = center_old_x - search_radius * 0.707;            destination[Y_AXIS] = center_old_y - search_radius * 0.707;            break;        case 1:            destination[X_AXIS] = center_old_x + search_radius * 0.707;            destination[Y_AXIS] = center_old_y + search_radius * 0.707;            break;        case 2:            destination[X_AXIS] = center_old_x + search_radius * 0.707;            destination[Y_AXIS] = center_old_y - search_radius * 0.707;            break;        case 3:        default:            destination[X_AXIS] = center_old_x - search_radius * 0.707;            destination[Y_AXIS] = center_old_y + search_radius * 0.707;            break;        }        // Trim the vector from center_old_[x,y] to destination[x,y] by the bed dimensions.        float vx = destination[X_AXIS] - center_old_x;        float vy = destination[Y_AXIS] - center_old_y;        float l  = sqrt(vx*vx+vy*vy);        float t;        if (destination[X_AXIS] < X_MIN_POS) {            // Exiting the bed at xmin.            t = (center_x - X_MIN_POS) / l;            destination[X_AXIS] = X_MIN_POS;            destination[Y_AXIS] = center_old_y + t * vy;        } else if (destination[X_AXIS] > X_MAX_POS) {            // Exiting the bed at xmax.            t = (X_MAX_POS - center_x) / l;            destination[X_AXIS] = X_MAX_POS;            destination[Y_AXIS] = center_old_y + t * vy;        }        if (destination[Y_AXIS] < Y_MIN_POS_FOR_BED_CALIBRATION) {            // Exiting the bed at ymin.            t = (center_y - Y_MIN_POS_FOR_BED_CALIBRATION) / l;            destination[X_AXIS] = center_old_x + t * vx;            destination[Y_AXIS] = Y_MIN_POS_FOR_BED_CALIBRATION;        } else if (destination[Y_AXIS] > Y_MAX_POS) {            // Exiting the bed at xmax.            t = (Y_MAX_POS - center_y) / l;            destination[X_AXIS] = center_old_x + t * vx;            destination[Y_AXIS] = Y_MAX_POS;        }        // Move away from the measurement point.        enable_endstops(false);        go_xy(destination[X_AXIS], destination[Y_AXIS], feedrate);        // Move towards the measurement point, until the induction sensor triggers.        enable_endstops(true);        go_xy(center_old_x, center_old_y, feedrate);        update_current_position_xyz();//        if (! endstop_z_hit_on_purpose()) return false;        center_x += current_position[X_AXIS];        center_y += current_position[Y_AXIS];    }    // Calculate the new center, move to the new center.    center_x /= 4.f;    center_y /= 4.f;    current_position[X_AXIS] = center_x;    current_position[Y_AXIS] = center_y;    enable_endstops(false);    go_xy(current_position[X_AXIS], current_position[Y_AXIS], feedrate);    enable_endstops(endstops_enabled);    enable_z_endstop(endstop_z_enabled);    return found;}#endif //NEW_XYZCAL#ifndef NEW_XYZCALstatic inline void debug_output_point(const char *type, const float &x, const float &y, const float &z){    SERIAL_ECHOPGM("Measured ");    SERIAL_ECHORPGM(type);    SERIAL_ECHOPGM(" ");    MYSERIAL.print(x, 5);    SERIAL_ECHOPGM(", ");    MYSERIAL.print(y, 5);    SERIAL_ECHOPGM(", ");    MYSERIAL.print(z, 5);    SERIAL_ECHOLNPGM("");}#endif //NEW_XYZCAL#ifndef NEW_XYZCAL// Search around the current_position[X,Y,Z].// It is expected, that the induction sensor is switched on at the current position.// Look around this center point by painting a star around the point.#define IMPROVE_BED_INDUCTION_SENSOR_SEARCH_RADIUS (8.f)inline bool improve_bed_induction_sensor_point2(bool lift_z_on_min_y, int8_t verbosity_level){    float center_old_x = current_position[X_AXIS];    float center_old_y = current_position[Y_AXIS];    float a, b;    bool  point_small = false;    enable_endstops(false);    {        float x0 = center_old_x - IMPROVE_BED_INDUCTION_SENSOR_SEARCH_RADIUS;        float x1 = center_old_x + IMPROVE_BED_INDUCTION_SENSOR_SEARCH_RADIUS;        if (x0 < X_MIN_POS)            x0 = X_MIN_POS;        if (x1 > X_MAX_POS)            x1 = X_MAX_POS;        // Search in the X direction along a cross.        enable_z_endstop(false);        go_xy(x0, current_position[Y_AXIS], homing_feedrate[X_AXIS] / 60.f);        enable_z_endstop(true);        go_xy(x1, current_position[Y_AXIS], homing_feedrate[X_AXIS] / 60.f);        update_current_position_xyz();        if (! endstop_z_hit_on_purpose()) {            current_position[X_AXIS] = center_old_x;            goto canceled;        }        a = current_position[X_AXIS];        enable_z_endstop(false);        go_xy(x1, current_position[Y_AXIS], homing_feedrate[X_AXIS] / 60.f);        enable_z_endstop(true);        go_xy(x0, current_position[Y_AXIS], homing_feedrate[X_AXIS] / 60.f);        update_current_position_xyz();        if (! endstop_z_hit_on_purpose()) {            current_position[X_AXIS] = center_old_x;            goto canceled;        }        b = current_position[X_AXIS];        if (b - a < MIN_BED_SENSOR_POINT_RESPONSE_DMR) {			#ifdef SUPPORT_VERBOSITY            if (verbosity_level >= 5) {                SERIAL_ECHOPGM("Point width too small: ");                SERIAL_ECHO(b - a);                SERIAL_ECHOLNPGM("");            }			#endif // SUPPORT_VERBOSITY            // We force the calibration routine to move the Z axis slightly down to make the response more pronounced.            if (b - a < 0.5f * MIN_BED_SENSOR_POINT_RESPONSE_DMR) {                // Don't use the new X value.                current_position[X_AXIS] = center_old_x;                goto canceled;            } else {                // Use the new value, but force the Z axis to go a bit lower.                point_small = true;            }        }		#ifdef SUPPORT_VERBOSITY        if (verbosity_level >= 5) {            debug_output_point(PSTR("left" ), a, current_position[Y_AXIS], current_position[Z_AXIS]);            debug_output_point(PSTR("right"), b, current_position[Y_AXIS], current_position[Z_AXIS]);        }		#endif // SUPPORT_VERBOSITY        // Go to the center.        enable_z_endstop(false);        current_position[X_AXIS] = 0.5f * (a + b);        go_xy(current_position[X_AXIS], current_position[Y_AXIS], homing_feedrate[X_AXIS] / 60.f);    }    {        float y0 = center_old_y - IMPROVE_BED_INDUCTION_SENSOR_SEARCH_RADIUS;        float y1 = center_old_y + IMPROVE_BED_INDUCTION_SENSOR_SEARCH_RADIUS;        if (y0 < Y_MIN_POS_FOR_BED_CALIBRATION)            y0 = Y_MIN_POS_FOR_BED_CALIBRATION;        if (y1 > Y_MAX_POS)            y1 = Y_MAX_POS;        // Search in the Y direction along a cross.        enable_z_endstop(false);        go_xy(current_position[X_AXIS], y0, homing_feedrate[X_AXIS] / 60.f);        if (lift_z_on_min_y) {            // The first row of points are very close to the end stop.            // Lift the sensor to disengage the trigger. This is necessary because of the sensor hysteresis.            go_xyz(current_position[X_AXIS], y0, current_position[Z_AXIS]+1.5f, homing_feedrate[Z_AXIS] / 60.f);            // and go back.            go_xyz(current_position[X_AXIS], y0, current_position[Z_AXIS], homing_feedrate[Z_AXIS] / 60.f);        }        if (lift_z_on_min_y && (READ(Z_MIN_PIN) ^ Z_MIN_ENDSTOP_INVERTING) == 1) {            // Already triggering before we started the move.            // Shift the trigger point slightly outwards.            // a = current_position[Y_AXIS] - 1.5f;            a = current_position[Y_AXIS];        } else {            enable_z_endstop(true);            go_xy(current_position[X_AXIS], y1, homing_feedrate[X_AXIS] / 60.f);            update_current_position_xyz();            if (! endstop_z_hit_on_purpose()) {                current_position[Y_AXIS] = center_old_y;                goto canceled;            }            a = current_position[Y_AXIS];        }        enable_z_endstop(false);        go_xy(current_position[X_AXIS], y1, homing_feedrate[X_AXIS] / 60.f);        enable_z_endstop(true);        go_xy(current_position[X_AXIS], y0, homing_feedrate[X_AXIS] / 60.f);        update_current_position_xyz();        if (! endstop_z_hit_on_purpose()) {            current_position[Y_AXIS] = center_old_y;            goto canceled;        }        b = current_position[Y_AXIS];        if (b - a < MIN_BED_SENSOR_POINT_RESPONSE_DMR) {            // We force the calibration routine to move the Z axis slightly down to make the response more pronounced.			#ifdef SUPPORT_VERBOSITY			if (verbosity_level >= 5) {                SERIAL_ECHOPGM("Point height too small: ");                SERIAL_ECHO(b - a);                SERIAL_ECHOLNPGM("");            }			#endif // SUPPORT_VERBOSITY            if (b - a < 0.5f * MIN_BED_SENSOR_POINT_RESPONSE_DMR) {                // Don't use the new Y value.                current_position[Y_AXIS] = center_old_y;                goto canceled;            } else {                // Use the new value, but force the Z axis to go a bit lower.                point_small = true;            }        }		#ifdef SUPPORT_VERBOSITY        if (verbosity_level >= 5) {            debug_output_point(PSTR("top" ), current_position[X_AXIS], a, current_position[Z_AXIS]);            debug_output_point(PSTR("bottom"), current_position[X_AXIS], b, current_position[Z_AXIS]);        }		#endif // SUPPORT_VERBOSITY        // Go to the center.        enable_z_endstop(false);        current_position[Y_AXIS] = 0.5f * (a + b);        go_xy(current_position[X_AXIS], current_position[Y_AXIS], homing_feedrate[X_AXIS] / 60.f);    }    // If point is small but not too small, then force the Z axis to be lowered a bit,    // but use the new value. This is important when the initial position was off in one axis,    // for example if the initial calibration was shifted in the Y axis systematically.    // Then this first step will center.    return ! point_small;canceled:    // Go back to the center.    enable_z_endstop(false);    go_xy(current_position[X_AXIS], current_position[Y_AXIS], homing_feedrate[X_AXIS] / 60.f);    return false;}#endif //NEW_XYZCAL#ifndef NEW_XYZCAL// Searching the front points, where one cannot move the sensor head in front of the sensor point.// Searching in a zig-zag movement in a plane for the maximum width of the response.// This function may set the current_position[Y_AXIS] below Y_MIN_POS, if the function succeeded.// If this function failed, the Y coordinate will never be outside the working space.#define IMPROVE_BED_INDUCTION_SENSOR_POINT3_SEARCH_RADIUS (8.f)#define IMPROVE_BED_INDUCTION_SENSOR_POINT3_SEARCH_STEP_FINE_Y (0.1f)inline bool improve_bed_induction_sensor_point3(int verbosity_level){	    float center_old_x = current_position[X_AXIS];    float center_old_y = current_position[Y_AXIS];    float a, b;    bool  result = true;	#ifdef SUPPORT_VERBOSITY	if (verbosity_level >= 20) MYSERIAL.println("Improve bed induction sensor point3");	#endif // SUPPORT_VERBOSITY    // Was the sensor point detected too far in the minus Y axis?    // If yes, the center of the induction point cannot be reached by the machine.    {        float x0 = center_old_x - IMPROVE_BED_INDUCTION_SENSOR_POINT3_SEARCH_RADIUS;        float x1 = center_old_x + IMPROVE_BED_INDUCTION_SENSOR_POINT3_SEARCH_RADIUS;        float y0 = center_old_y - IMPROVE_BED_INDUCTION_SENSOR_POINT3_SEARCH_RADIUS;        float y1 = center_old_y + IMPROVE_BED_INDUCTION_SENSOR_POINT3_SEARCH_RADIUS;        float y = y0;        if (x0 < X_MIN_POS)            x0 = X_MIN_POS;        if (x1 > X_MAX_POS)            x1 = X_MAX_POS;        if (y0 < Y_MIN_POS_FOR_BED_CALIBRATION)            y0 = Y_MIN_POS_FOR_BED_CALIBRATION;        if (y1 > Y_MAX_POS)            y1 = Y_MAX_POS;		#ifdef SUPPORT_VERBOSITY        if (verbosity_level >= 20) {            SERIAL_ECHOPGM("Initial position: ");            SERIAL_ECHO(center_old_x);            SERIAL_ECHOPGM(", ");            SERIAL_ECHO(center_old_y);            SERIAL_ECHOLNPGM("");        }		#endif // SUPPORT_VERBOSITY        // Search in the positive Y direction, until a maximum diameter is found.        // (the next diameter is smaller than the current one.)        float dmax = 0.f;        float xmax1 = 0.f;        float xmax2 = 0.f;        for (y = y0; y < y1; y += IMPROVE_BED_INDUCTION_SENSOR_POINT3_SEARCH_STEP_FINE_Y) {            enable_z_endstop(false);            go_xy(x0, y, homing_feedrate[X_AXIS] / 60.f);            enable_z_endstop(true);            go_xy(x1, y, homing_feedrate[X_AXIS] / 60.f);            update_current_position_xyz();            if (! endstop_z_hit_on_purpose()) {                continue;                // SERIAL_PROTOCOLPGM("Failed 1\n");                // current_position[X_AXIS] = center_old_x;                // goto canceled;            }            a = current_position[X_AXIS];            enable_z_endstop(false);            go_xy(x1, y, homing_feedrate[X_AXIS] / 60.f);            enable_z_endstop(true);            go_xy(x0, y, homing_feedrate[X_AXIS] / 60.f);            update_current_position_xyz();            if (! endstop_z_hit_on_purpose()) {                continue;                // SERIAL_PROTOCOLPGM("Failed 2\n");                // current_position[X_AXIS] = center_old_x;                // goto canceled;            }            b = current_position[X_AXIS];			#ifdef SUPPORT_VERBOSITY            if (verbosity_level >= 5) {                debug_output_point(PSTR("left" ), a, current_position[Y_AXIS], current_position[Z_AXIS]);                debug_output_point(PSTR("right"), b, current_position[Y_AXIS], current_position[Z_AXIS]);            }			#endif // SUPPORT_VERBOSITY            float d = b - a;            if (d > dmax) {                xmax1 = 0.5f * (a + b);                dmax = d;            } else if (dmax > 0.) {                y0 = y - IMPROVE_BED_INDUCTION_SENSOR_POINT3_SEARCH_STEP_FINE_Y;                break;            }        }        if (dmax == 0.) {			#ifdef SUPPORT_VERBOSITY            if (verbosity_level > 0)                SERIAL_PROTOCOLPGM("failed - not found\n");			#endif // SUPPORT_VERBOSITY			current_position[X_AXIS] = center_old_x;            current_position[Y_AXIS] = center_old_y;            goto canceled;        }        {            // Find the positive Y hit. This gives the extreme Y value for the search of the maximum diameter in the -Y direction.            enable_z_endstop(false);            go_xy(xmax1, y0 + IMPROVE_BED_INDUCTION_SENSOR_SEARCH_RADIUS, homing_feedrate[X_AXIS] / 60.f);            enable_z_endstop(true);            go_xy(xmax1, max(y0 - IMPROVE_BED_INDUCTION_SENSOR_SEARCH_RADIUS, Y_MIN_POS_FOR_BED_CALIBRATION), homing_feedrate[X_AXIS] / 60.f);            update_current_position_xyz();            if (! endstop_z_hit_on_purpose()) {                current_position[Y_AXIS] = center_old_y;                goto canceled;            }			#ifdef SUPPORT_VERBOSITY            if (verbosity_level >= 5)                debug_output_point(PSTR("top" ), current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS]);			#endif // SUPPORT_VERBOSITY			y1 = current_position[Y_AXIS];        }        if (y1 <= y0) {            // Either the induction sensor is too high, or the induction sensor target is out of reach.            current_position[Y_AXIS] = center_old_y;            goto canceled;        }        // Search in the negative Y direction, until a maximum diameter is found.        dmax = 0.f;        // if (y0 + 1.f < y1)        //    y1 = y0 + 1.f;        for (y = y1; y >= y0; y -= IMPROVE_BED_INDUCTION_SENSOR_POINT3_SEARCH_STEP_FINE_Y) {            enable_z_endstop(false);            go_xy(x0, y, homing_feedrate[X_AXIS] / 60.f);            enable_z_endstop(true);            go_xy(x1, y, homing_feedrate[X_AXIS] / 60.f);            update_current_position_xyz();            if (! endstop_z_hit_on_purpose()) {                continue;                /*                current_position[X_AXIS] = center_old_x;                SERIAL_PROTOCOLPGM("Failed 3\n");                goto canceled;                */            }            a = current_position[X_AXIS];            enable_z_endstop(false);            go_xy(x1, y, homing_feedrate[X_AXIS] / 60.f);            enable_z_endstop(true);            go_xy(x0, y, homing_feedrate[X_AXIS] / 60.f);            update_current_position_xyz();            if (! endstop_z_hit_on_purpose()) {                continue;                /*                current_position[X_AXIS] = center_old_x;                SERIAL_PROTOCOLPGM("Failed 4\n");                goto canceled;                */            }            b = current_position[X_AXIS];			#ifdef SUPPORT_VERBOSITY            if (verbosity_level >= 5) {                debug_output_point(PSTR("left" ), a, current_position[Y_AXIS], current_position[Z_AXIS]);                debug_output_point(PSTR("right"), b, current_position[Y_AXIS], current_position[Z_AXIS]);            }			#endif // SUPPORT_VERBOSITY            float d = b - a;            if (d > dmax) {                xmax2 = 0.5f * (a + b);                dmax = d;            } else if (dmax > 0.) {                y1 = y + IMPROVE_BED_INDUCTION_SENSOR_POINT3_SEARCH_STEP_FINE_Y;                break;            }        }        float xmax, ymax;        if (dmax == 0.f) {            // Only the hit in the positive direction found.            xmax = xmax1;            ymax = y0;        } else {            // Both positive and negative directions found.            xmax = xmax2;            ymax = 0.5f * (y0 + y1);            for (; y >= y0; y -= IMPROVE_BED_INDUCTION_SENSOR_POINT3_SEARCH_STEP_FINE_Y) {                enable_z_endstop(false);                go_xy(x0, y, homing_feedrate[X_AXIS] / 60.f);                enable_z_endstop(true);                go_xy(x1, y, homing_feedrate[X_AXIS] / 60.f);                update_current_position_xyz();                if (! endstop_z_hit_on_purpose()) {                    continue;                    /*                    current_position[X_AXIS] = center_old_x;                    SERIAL_PROTOCOLPGM("Failed 3\n");                    goto canceled;                    */                }                a = current_position[X_AXIS];                enable_z_endstop(false);                go_xy(x1, y, homing_feedrate[X_AXIS] / 60.f);                enable_z_endstop(true);                go_xy(x0, y, homing_feedrate[X_AXIS] / 60.f);                update_current_position_xyz();                if (! endstop_z_hit_on_purpose()) {                    continue;                    /*                    current_position[X_AXIS] = center_old_x;                    SERIAL_PROTOCOLPGM("Failed 4\n");                    goto canceled;                    */                }                b = current_position[X_AXIS];				#ifdef SUPPORT_VERBOSITY                if (verbosity_level >= 5) {                    debug_output_point(PSTR("left" ), a, current_position[Y_AXIS], current_position[Z_AXIS]);                    debug_output_point(PSTR("right"), b, current_position[Y_AXIS], current_position[Z_AXIS]);                }				#endif // SUPPORT_VERBOSITY                float d = b - a;                if (d > dmax) {                    xmax = 0.5f * (a + b);                    ymax = y;                    dmax = d;                }            }        }        {            // Compare the distance in the Y+ direction with the diameter in the X direction.            // Find the positive Y hit once again, this time along the Y axis going through the X point with the highest diameter.            enable_z_endstop(false);            go_xy(xmax, ymax + IMPROVE_BED_INDUCTION_SENSOR_SEARCH_RADIUS, homing_feedrate[X_AXIS] / 60.f);            enable_z_endstop(true);            go_xy(xmax, max(ymax - IMPROVE_BED_INDUCTION_SENSOR_SEARCH_RADIUS, Y_MIN_POS_FOR_BED_CALIBRATION), homing_feedrate[X_AXIS] / 60.f);            update_current_position_xyz();            if (! endstop_z_hit_on_purpose()) {                current_position[Y_AXIS] = center_old_y;                goto canceled;            }			#ifdef SUPPORT_VERBOSITY            if (verbosity_level >= 5)                debug_output_point(PSTR("top" ), current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS]);			#endif // SUPPORT_VERBOSITY			if (current_position[Y_AXIS] - Y_MIN_POS_FOR_BED_CALIBRATION < 0.5f * dmax) {                // Probably not even a half circle was detected. The induction point is likely too far in the minus Y direction.                // First verify, if the measurement has been done at a sufficient height. If no, lower the Z axis a bit.                if (current_position[Y_AXIS] < ymax || dmax < 0.5f * MIN_BED_SENSOR_POINT_RESPONSE_DMR) {					#ifdef SUPPORT_VERBOSITY					if (verbosity_level >= 5) {                        SERIAL_ECHOPGM("Partial point diameter too small: ");                        SERIAL_ECHO(dmax);                        SERIAL_ECHOLNPGM("");                    }					#endif // SUPPORT_VERBOSITY                    result = false;                } else {                    // Estimate the circle radius from the maximum diameter and height:                    float h = current_position[Y_AXIS] - ymax;                    float r = dmax * dmax / (8.f * h) + 0.5f * h;                    if (r < 0.8f * MIN_BED_SENSOR_POINT_RESPONSE_DMR) {						#ifdef SUPPORT_VERBOSITY						if (verbosity_level >= 5) {                            SERIAL_ECHOPGM("Partial point estimated radius too small: ");                            SERIAL_ECHO(r);                            SERIAL_ECHOPGM(", dmax:");                            SERIAL_ECHO(dmax);                            SERIAL_ECHOPGM(", h:");                            SERIAL_ECHO(h);                            SERIAL_ECHOLNPGM("");                        }						#endif // SUPPORT_VERBOSITY                        result = false;                    } else {                        // The point may end up outside of the machine working space.                        // That is all right as it helps to improve the accuracy of the measurement point                        // due to averaging.                        // For the y correction, use an average of dmax/2 and the estimated radius.                        r = 0.5f * (0.5f * dmax + r);                        ymax = current_position[Y_AXIS] - r;                    }                }            } else {                // If the diameter of the detected spot was smaller than a minimum allowed,                // the induction sensor is probably too high. Returning false will force                // the sensor to be lowered a tiny bit.                result = xmax >= MIN_BED_SENSOR_POINT_RESPONSE_DMR;                if (y0 > Y_MIN_POS_FOR_BED_CALIBRATION + 0.2f)                    // Only in case both left and right y tangents are known, use them.                    // If y0 is close to the bed edge, it may not be symmetric to the right tangent.                    ymax = 0.5f * ymax + 0.25f * (y0 + y1);            }        }        // Go to the center.        enable_z_endstop(false);        current_position[X_AXIS] = xmax;        current_position[Y_AXIS] = ymax;		#ifdef SUPPORT_VERBOSITY        if (verbosity_level >= 20) {            SERIAL_ECHOPGM("Adjusted position: ");            SERIAL_ECHO(current_position[X_AXIS]);            SERIAL_ECHOPGM(", ");            SERIAL_ECHO(current_position[Y_AXIS]);            SERIAL_ECHOLNPGM("");        }		#endif // SUPPORT_VERBOSITY        // Don't clamp current_position[Y_AXIS], because the out-of-reach Y coordinate may actually be true.        // Only clamp the coordinate to go.        go_xy(current_position[X_AXIS], max(Y_MIN_POS, current_position[Y_AXIS]), homing_feedrate[X_AXIS] / 60.f);        // delay_keep_alive(3000);    }    if (result)        return true;    // otherwise clamp the Y coordinatecanceled:    // Go back to the center.    enable_z_endstop(false);    if (current_position[Y_AXIS] < Y_MIN_POS)        current_position[Y_AXIS] = Y_MIN_POS;    go_xy(current_position[X_AXIS], current_position[Y_AXIS], homing_feedrate[X_AXIS] / 60.f);    return false;}#endif //NEW_XYZCAL#ifndef NEW_XYZCAL// Scan the mesh bed induction points one by one by a left-right zig-zag movement,// write the trigger coordinates to the serial line.// Useful for visualizing the behavior of the bed induction detector.inline void scan_bed_induction_sensor_point(){    float center_old_x = current_position[X_AXIS];    float center_old_y = current_position[Y_AXIS];    float x0 = center_old_x - IMPROVE_BED_INDUCTION_SENSOR_POINT3_SEARCH_RADIUS;    float x1 = center_old_x + IMPROVE_BED_INDUCTION_SENSOR_POINT3_SEARCH_RADIUS;    float y0 = center_old_y - IMPROVE_BED_INDUCTION_SENSOR_POINT3_SEARCH_RADIUS;    float y1 = center_old_y + IMPROVE_BED_INDUCTION_SENSOR_POINT3_SEARCH_RADIUS;    float y = y0;    if (x0 < X_MIN_POS)        x0 = X_MIN_POS;    if (x1 > X_MAX_POS)        x1 = X_MAX_POS;    if (y0 < Y_MIN_POS_FOR_BED_CALIBRATION)        y0 = Y_MIN_POS_FOR_BED_CALIBRATION;    if (y1 > Y_MAX_POS)        y1 = Y_MAX_POS;    for (float y = y0; y < y1; y += IMPROVE_BED_INDUCTION_SENSOR_POINT3_SEARCH_STEP_FINE_Y) {        enable_z_endstop(false);        go_xy(x0, y, homing_feedrate[X_AXIS] / 60.f);        enable_z_endstop(true);        go_xy(x1, y, homing_feedrate[X_AXIS] / 60.f);        update_current_position_xyz();        if (endstop_z_hit_on_purpose())            debug_output_point(PSTR("left" ), current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS]);        enable_z_endstop(false);        go_xy(x1, y, homing_feedrate[X_AXIS] / 60.f);        enable_z_endstop(true);        go_xy(x0, y, homing_feedrate[X_AXIS] / 60.f);        update_current_position_xyz();        if (endstop_z_hit_on_purpose())            debug_output_point(PSTR("right"), current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS]);    }    enable_z_endstop(false);    current_position[X_AXIS] = center_old_x;    current_position[Y_AXIS] = center_old_y;    go_xy(current_position[X_AXIS], current_position[Y_AXIS], homing_feedrate[X_AXIS] / 60.f);}#endif //NEW_XYZCAL#define MESH_BED_CALIBRATION_SHOW_LCDBedSkewOffsetDetectionResultType find_bed_offset_and_skew(int8_t verbosity_level, uint8_t &too_far_mask){	    // Don't let the manage_inactivity() function remove power from the motors.    refresh_cmd_timeout();    // Reusing the z_values memory for the measurement cache.    // 7x7=49 floats, good for 16 (x,y,z) vectors.    float *pts = &mbl.z_values[0][0];    float *vec_x = pts + 2 * 4;    float *vec_y = vec_x + 2;    float *cntr  = vec_y + 2;    memset(pts, 0, sizeof(float) * 7 * 7);	uint8_t iteration = 0; 	BedSkewOffsetDetectionResultType result;//    SERIAL_ECHOLNPGM("find_bed_offset_and_skew verbosity level: ");//    SERIAL_ECHO(int(verbosity_level));//    SERIAL_ECHOPGM("");	#ifdef NEW_XYZCAL	{#else //NEW_XYZCAL	while (iteration < 3) {#endif //NEW_XYZCAL		SERIAL_ECHOPGM("Iteration: ");		MYSERIAL.println(int(iteration + 1));		#ifdef SUPPORT_VERBOSITY		if (verbosity_level >= 20) {		SERIAL_ECHOLNPGM("Vectors: ");					SERIAL_ECHOPGM("vec_x[0]:");			MYSERIAL.print(vec_x[0], 5);			SERIAL_ECHOLNPGM("");			SERIAL_ECHOPGM("vec_x[1]:");			MYSERIAL.print(vec_x[1], 5);			SERIAL_ECHOLNPGM("");			SERIAL_ECHOPGM("vec_y[0]:");			MYSERIAL.print(vec_y[0], 5);			SERIAL_ECHOLNPGM("");			SERIAL_ECHOPGM("vec_y[1]:");			MYSERIAL.print(vec_y[1], 5);			SERIAL_ECHOLNPGM("");			SERIAL_ECHOPGM("cntr[0]:");			MYSERIAL.print(cntr[0], 5);			SERIAL_ECHOLNPGM("");			SERIAL_ECHOPGM("cntr[1]:");			MYSERIAL.print(cntr[1], 5);			SERIAL_ECHOLNPGM("");		}		#endif // SUPPORT_VERBOSITY#ifdef MESH_BED_CALIBRATION_SHOW_LCD    uint8_t next_line;    lcd_display_message_fullscreen_P(_T(MSG_FIND_BED_OFFSET_AND_SKEW_LINE1), next_line);    if (next_line > 3)        next_line = 3;#endif /* MESH_BED_CALIBRATION_SHOW_LCD */    // Collect the rear 2x3 points.	current_position[Z_AXIS] = MESH_HOME_Z_SEARCH + FIND_BED_INDUCTION_SENSOR_POINT_Z_STEP * iteration * 0.3;	for (int k = 0; k < 4; ++k) {		// Don't let the manage_inactivity() function remove power from the motors.		refresh_cmd_timeout();#ifdef MESH_BED_CALIBRATION_SHOW_LCD		lcd_set_cursor(0, next_line);		lcd_print(k + 1);		lcd_puts_P(_T(MSG_FIND_BED_OFFSET_AND_SKEW_LINE2));		if (iteration > 0) {			lcd_puts_at_P(0, next_line + 1, _i("Iteration "));////MSG_FIND_BED_OFFSET_AND_SKEW_ITERATION c=20			lcd_print(int(iteration + 1));		}#endif /* MESH_BED_CALIBRATION_SHOW_LCD */		float *pt = pts + k * 2;		// Go up to z_initial.		go_to_current(homing_feedrate[Z_AXIS] / 60.f);		#ifdef SUPPORT_VERBOSITY		if (verbosity_level >= 20) {			// Go to Y0, wait, then go to Y-4.			current_position[Y_AXIS] = 0.f;			go_to_current(homing_feedrate[X_AXIS] / 60.f);			SERIAL_ECHOLNPGM("At Y0");			delay_keep_alive(5000);			current_position[Y_AXIS] = Y_MIN_POS;			go_to_current(homing_feedrate[X_AXIS] / 60.f);			SERIAL_ECHOLNPGM("At Y-4");			delay_keep_alive(5000);		}		#endif // SUPPORT_VERBOSITY		// Go to the measurement point position.		//if (iteration == 0) {			current_position[X_AXIS] = pgm_read_float(bed_ref_points_4 + k * 2);			current_position[Y_AXIS] = pgm_read_float(bed_ref_points_4 + k * 2 + 1);		/*}		else {			// if first iteration failed, count corrected point coordinates as initial			// Use the coorrected coordinate, which is a result of find_bed_offset_and_skew().						current_position[X_AXIS] = vec_x[0] * pgm_read_float(bed_ref_points_4 + k * 2) + vec_y[0] * pgm_read_float(bed_ref_points_4 + k * 2 + 1) + cntr[0];			current_position[Y_AXIS] = vec_x[1] * pgm_read_float(bed_ref_points_4 + k * 2) + vec_y[1] * pgm_read_float(bed_ref_points_4 + k * 2 + 1) + cntr[1];			// The calibration points are very close to the min Y.			if (current_position[Y_AXIS] < Y_MIN_POS_FOR_BED_CALIBRATION)				current_position[Y_AXIS] = Y_MIN_POS_FOR_BED_CALIBRATION;		}*/		#ifdef SUPPORT_VERBOSITY		if (verbosity_level >= 20) {			SERIAL_ECHOPGM("current_position[X_AXIS]:");			MYSERIAL.print(current_position[X_AXIS], 5);			SERIAL_ECHOLNPGM("");			SERIAL_ECHOPGM("current_position[Y_AXIS]:");			MYSERIAL.print(current_position[Y_AXIS], 5);			SERIAL_ECHOLNPGM("");			SERIAL_ECHOPGM("current_position[Z_AXIS]:");			MYSERIAL.print(current_position[Z_AXIS], 5);			SERIAL_ECHOLNPGM("");		}		#endif // SUPPORT_VERBOSITY		go_to_current(homing_feedrate[X_AXIS] / 60.f);		#ifdef SUPPORT_VERBOSITY		if (verbosity_level >= 10)			delay_keep_alive(3000);		#endif // SUPPORT_VERBOSITY		if (!find_bed_induction_sensor_point_xy(verbosity_level))			return BED_SKEW_OFFSET_DETECTION_POINT_NOT_FOUND;#ifndef NEW_XYZCAL#ifndef HEATBED_V2					if (k == 0 || k == 1) {				// Improve the position of the 1st row sensor points by a zig-zag movement.				find_bed_induction_sensor_point_z();				int8_t i = 4;				for (;;) {					if (improve_bed_induction_sensor_point3(verbosity_level))						break;					if (--i == 0)						return BED_SKEW_OFFSET_DETECTION_POINT_NOT_FOUND;					// Try to move the Z axis down a bit to increase a chance of the sensor to trigger.					current_position[Z_AXIS] -= 0.025f;					enable_endstops(false);					enable_z_endstop(false);					go_to_current(homing_feedrate[Z_AXIS]);				}				if (i == 0)					// not found					return BED_SKEW_OFFSET_DETECTION_POINT_NOT_FOUND;			}#endif //HEATBED_V2#endif			#ifdef SUPPORT_VERBOSITY			if (verbosity_level >= 10)				delay_keep_alive(3000);			#endif // SUPPORT_VERBOSITY			// Save the detected point position and then clamp the Y coordinate, which may have been estimated			// to lie outside the machine working space.			#ifdef SUPPORT_VERBOSITY			if (verbosity_level >= 20) {				SERIAL_ECHOLNPGM("Measured:");				MYSERIAL.println(current_position[X_AXIS]);				MYSERIAL.println(current_position[Y_AXIS]);			}			#endif // SUPPORT_VERBOSITY			pt[0] = (pt[0] * iteration) / (iteration + 1);			pt[0] += (current_position[X_AXIS]/(iteration + 1)); //count average			pt[1] = (pt[1] * iteration) / (iteration + 1);			pt[1] += (current_position[Y_AXIS] / (iteration + 1));									//pt[0] += current_position[X_AXIS];			//if(iteration > 0) pt[0] = pt[0] / 2;									//pt[1] += current_position[Y_AXIS];			//if (iteration > 0) pt[1] = pt[1] / 2;			#ifdef SUPPORT_VERBOSITY			if (verbosity_level >= 20) {				SERIAL_ECHOLNPGM("");				SERIAL_ECHOPGM("pt[0]:");				MYSERIAL.println(pt[0]);				SERIAL_ECHOPGM("pt[1]:");				MYSERIAL.println(pt[1]);			}			#endif // SUPPORT_VERBOSITY			if (current_position[Y_AXIS] < Y_MIN_POS)				current_position[Y_AXIS] = Y_MIN_POS;			// Start searching for the other points at 3mm above the last point.			current_position[Z_AXIS] += 3.f + FIND_BED_INDUCTION_SENSOR_POINT_Z_STEP * iteration * 0.3;			//cntr[0] += pt[0];			//cntr[1] += pt[1];			#ifdef SUPPORT_VERBOSITY			if (verbosity_level >= 10 && k == 0) {				// Show the zero. Test, whether the Y motor skipped steps.				current_position[Y_AXIS] = MANUAL_Y_HOME_POS;				go_to_current(homing_feedrate[X_AXIS] / 60.f);				delay_keep_alive(3000);			}			#endif // SUPPORT_VERBOSITY		}		delay_keep_alive(0); //manage_heater, reset watchdog, manage inactivity				#ifdef SUPPORT_VERBOSITY		if (verbosity_level >= 20) {			// Test the positions. Are the positions reproducible? Now the calibration is active in the planner.			delay_keep_alive(3000);			for (int8_t mesh_point = 0; mesh_point < 4; ++mesh_point) {				// Don't let the manage_inactivity() function remove power from the motors.				refresh_cmd_timeout();				// Go to the measurement point.				// Use the coorrected coordinate, which is a result of find_bed_offset_and_skew().				current_position[X_AXIS] = pts[mesh_point * 2];				current_position[Y_AXIS] = pts[mesh_point * 2 + 1];				go_to_current(homing_feedrate[X_AXIS] / 60);				delay_keep_alive(3000);			}		}		#endif // SUPPORT_VERBOSITY		if (pts[1] < Y_MIN_POS_CALIBRATION_POINT_OUT_OF_REACH) {			too_far_mask |= 1 << 1; //front center point is out of reach				SERIAL_ECHOLNPGM("");				SERIAL_ECHOPGM("WARNING: Front point not reachable. Y coordinate:");				MYSERIAL.print(pts[1]);				SERIAL_ECHOPGM(" < ");				MYSERIAL.println(Y_MIN_POS_CALIBRATION_POINT_OUT_OF_REACH);		}		result = calculate_machine_skew_and_offset_LS(pts, 4, bed_ref_points_4, vec_x, vec_y, cntr, verbosity_level);		delay_keep_alive(0); //manage_heater, reset watchdog, manage inactivity				if (result >= 0) {			world2machine_update(vec_x, vec_y, cntr);#if 1			// Fearlessly store the calibration values into the eeprom.			eeprom_update_float((float*)(EEPROM_BED_CALIBRATION_CENTER + 0), cntr[0]);			eeprom_update_float((float*)(EEPROM_BED_CALIBRATION_CENTER + 4), cntr[1]);			eeprom_update_float((float*)(EEPROM_BED_CALIBRATION_VEC_X + 0), vec_x[0]);			eeprom_update_float((float*)(EEPROM_BED_CALIBRATION_VEC_X + 4), vec_x[1]);			eeprom_update_float((float*)(EEPROM_BED_CALIBRATION_VEC_Y + 0), vec_y[0]);			eeprom_update_float((float*)(EEPROM_BED_CALIBRATION_VEC_Y + 4), vec_y[1]);#endif			#ifdef SUPPORT_VERBOSITY			if (verbosity_level >= 10) {				// Length of the vec_x				float l = sqrt(vec_x[0] * vec_x[0] + vec_x[1] * vec_x[1]);				SERIAL_ECHOLNPGM("X vector length:");				MYSERIAL.println(l);				// Length of the vec_y				l = sqrt(vec_y[0] * vec_y[0] + vec_y[1] * vec_y[1]);				SERIAL_ECHOLNPGM("Y vector length:");				MYSERIAL.println(l);				// Zero point correction				l = sqrt(cntr[0] * cntr[0] + cntr[1] * cntr[1]);				SERIAL_ECHOLNPGM("Zero point correction:");				MYSERIAL.println(l);				// vec_x and vec_y shall be nearly perpendicular.				l = vec_x[0] * vec_y[0] + vec_x[1] * vec_y[1];				SERIAL_ECHOLNPGM("Perpendicularity");				MYSERIAL.println(fabs(l));				SERIAL_ECHOLNPGM("Saving bed calibration vectors to EEPROM");			}			#endif // SUPPORT_VERBOSITY			// Correct the current_position to match the transformed coordinate system after world2machine_rotation_and_skew and world2machine_shift were set.			world2machine_update_current();			#ifdef SUPPORT_VERBOSITY			if (verbosity_level >= 20) {				// Test the positions. Are the positions reproducible? Now the calibration is active in the planner.				delay_keep_alive(3000);				for (int8_t mesh_point = 0; mesh_point < 9; ++mesh_point) {					// Don't let the manage_inactivity() function remove power from the motors.					refresh_cmd_timeout();					// Go to the measurement point.					// Use the coorrected coordinate, which is a result of find_bed_offset_and_skew().					uint8_t ix = mesh_point % MESH_MEAS_NUM_X_POINTS; // from 0 to MESH_NUM_X_POINTS - 1					uint8_t iy = mesh_point / MESH_MEAS_NUM_X_POINTS;					if (iy & 1) ix = (MESH_MEAS_NUM_X_POINTS - 1) - ix;					current_position[X_AXIS] = BED_X(ix, MESH_MEAS_NUM_X_POINTS);					current_position[Y_AXIS] = BED_Y(iy, MESH_MEAS_NUM_Y_POINTS);					go_to_current(homing_feedrate[X_AXIS] / 60);					delay_keep_alive(3000);				}			}			#endif // SUPPORT_VERBOSITY			return result;		}				if (result == BED_SKEW_OFFSET_DETECTION_FITTING_FAILED && too_far_mask == 2) return result; //if fitting failed and front center point is out of reach, terminate calibration and inform user		iteration++;	}	return result;    }#ifndef NEW_XYZCALBedSkewOffsetDetectionResultType improve_bed_offset_and_skew(int8_t method, int8_t verbosity_level, uint8_t &too_far_mask){    // Don't let the manage_inactivity() function remove power from the motors.    refresh_cmd_timeout();    // Mask of the first three points. Are they too far?    too_far_mask = 0;    // Reusing the z_values memory for the measurement cache.    // 7x7=49 floats, good for 16 (x,y,z) vectors.    float *pts = &mbl.z_values[0][0];    float *vec_x = pts + 2 * 9;    float *vec_y = vec_x + 2;    float *cntr  = vec_y + 2;    memset(pts, 0, sizeof(float) * 7 * 7);	#ifdef SUPPORT_VERBOSITY	if (verbosity_level >= 10) SERIAL_ECHOLNPGM("Improving bed offset and skew");	#endif // SUPPORT_VERBOSITY    // Cache the current correction matrix.    world2machine_initialize();    vec_x[0] = world2machine_rotation_and_skew[0][0];    vec_x[1] = world2machine_rotation_and_skew[1][0];    vec_y[0] = world2machine_rotation_and_skew[0][1];    vec_y[1] = world2machine_rotation_and_skew[1][1];    cntr[0] = world2machine_shift[0];    cntr[1] = world2machine_shift[1];    // and reset the correction matrix, so the planner will not do anything.    world2machine_reset();    bool endstops_enabled  = enable_endstops(false);    bool endstop_z_enabled = enable_z_endstop(false);#ifdef MESH_BED_CALIBRATION_SHOW_LCD    uint8_t next_line;    lcd_display_message_fullscreen_P(_i("Improving bed calibration point"), next_line);////MSG_IMPROVE_BED_OFFSET_AND_SKEW_LINE1 c=60    if (next_line > 3)        next_line = 3;#endif /* MESH_BED_CALIBRATION_SHOW_LCD */    // Collect a matrix of 9x9 points.    BedSkewOffsetDetectionResultType result = BED_SKEW_OFFSET_DETECTION_PERFECT;    for (int8_t mesh_point = 0; mesh_point < 4; ++ mesh_point) {        // Don't let the manage_inactivity() function remove power from the motors.        refresh_cmd_timeout();        // Print the decrasing ID of the measurement point.#ifdef MESH_BED_CALIBRATION_SHOW_LCD        lcd_set_cursor(0, next_line);		lcd_print(mesh_point+1);        lcd_puts_P(_T(MSG_FIND_BED_OFFSET_AND_SKEW_LINE2));////MSG_IMPROVE_BED_OFFSET_AND_SKEW_LINE2 c=14#endif /* MESH_BED_CALIBRATION_SHOW_LCD */        // Move up.        current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;        enable_endstops(false);        enable_z_endstop(false);        go_to_current(homing_feedrate[Z_AXIS]/60);		#ifdef SUPPORT_VERBOSITY        if (verbosity_level >= 20) {            // Go to Y0, wait, then go to Y-4.            current_position[Y_AXIS] = 0.f;            go_to_current(homing_feedrate[X_AXIS] / 60.f);            SERIAL_ECHOLNPGM("At Y0");            delay_keep_alive(5000);            current_position[Y_AXIS] = Y_MIN_POS;            go_to_current(homing_feedrate[X_AXIS] / 60.f);			SERIAL_ECHOLNPGM("At Y_MIN_POS");            delay_keep_alive(5000);        }		#endif // SUPPORT_VERBOSITY        // Go to the measurement point.        // Use the coorrected coordinate, which is a result of find_bed_offset_and_skew().        current_position[X_AXIS] = vec_x[0] * pgm_read_float(bed_ref_points_4+mesh_point*2) + vec_y[0] * pgm_read_float(bed_ref_points_4+mesh_point*2+1) + cntr[0];        current_position[Y_AXIS] = vec_x[1] * pgm_read_float(bed_ref_points_4+mesh_point*2) + vec_y[1] * pgm_read_float(bed_ref_points_4+mesh_point*2+1) + cntr[1];        // The calibration points are very close to the min Y.        if (current_position[Y_AXIS] < Y_MIN_POS_FOR_BED_CALIBRATION){            current_position[Y_AXIS] = Y_MIN_POS_FOR_BED_CALIBRATION;			#ifdef SUPPORT_VERBOSITY			if (verbosity_level >= 20) {				SERIAL_ECHOPGM("Calibration point ");				SERIAL_ECHO(mesh_point);				SERIAL_ECHOPGM("lower than Ymin. Y coordinate clamping was used.");				SERIAL_ECHOLNPGM("");			}			#endif // SUPPORT_VERBOSITY		}        go_to_current(homing_feedrate[X_AXIS]/60);        // Find its Z position by running the normal vertical search.		#ifdef SUPPORT_VERBOSITY		if (verbosity_level >= 10)            delay_keep_alive(3000);		#endif // SUPPORT_VERBOSITY		find_bed_induction_sensor_point_z();		#ifdef SUPPORT_VERBOSITY		if (verbosity_level >= 10)            delay_keep_alive(3000);		#endif // SUPPORT_VERBOSITY		// Try to move the Z axis down a bit to increase a chance of the sensor to trigger.        current_position[Z_AXIS] -= 0.025f;        // Improve the point position by searching its center in a current plane.        int8_t n_errors = 3;        for (int8_t iter = 0; iter < 8; ) {			#ifdef SUPPORT_VERBOSITY            if (verbosity_level > 20) {                SERIAL_ECHOPGM("Improving bed point ");                SERIAL_ECHO(mesh_point);                SERIAL_ECHOPGM(", iteration ");                SERIAL_ECHO(iter);                SERIAL_ECHOPGM(", z");                MYSERIAL.print(current_position[Z_AXIS], 5);                SERIAL_ECHOLNPGM("");            }			#endif // SUPPORT_VERBOSITY            bool found = false;            if (mesh_point < 2) {                // Because the sensor cannot move in front of the first row                // of the sensor points, the y position cannot be measured                // by a cross center method.                // Use a zig-zag search for the first row of the points.                found = improve_bed_induction_sensor_point3(verbosity_level);            } else {                switch (method) {                    case 0: found = improve_bed_induction_sensor_point(); break;                    case 1: found = improve_bed_induction_sensor_point2(mesh_point < 2, verbosity_level); break;                    default: break;                }            }            if (found) {                if (iter > 3) {                    // Average the last 4 measurements.                    pts[mesh_point*2  ] += current_position[X_AXIS];                    pts[mesh_point*2+1] += current_position[Y_AXIS];                }                if (current_position[Y_AXIS] < Y_MIN_POS)                    current_position[Y_AXIS] = Y_MIN_POS;                ++ iter;            } else if (n_errors -- == 0) {                // Give up.                result = BED_SKEW_OFFSET_DETECTION_POINT_NOT_FOUND;                goto canceled;            } else {                // Try to move the Z axis down a bit to increase a chance of the sensor to trigger.                current_position[Z_AXIS] -= 0.05f;                enable_endstops(false);                enable_z_endstop(false);                go_to_current(homing_feedrate[Z_AXIS]);				#ifdef SUPPORT_VERBOSITY                if (verbosity_level >= 5) {                    SERIAL_ECHOPGM("Improving bed point ");                    SERIAL_ECHO(mesh_point);                    SERIAL_ECHOPGM(", iteration ");                    SERIAL_ECHO(iter);                    SERIAL_ECHOPGM(" failed. Lowering z to ");                    MYSERIAL.print(current_position[Z_AXIS], 5);                    SERIAL_ECHOLNPGM("");                }				#endif // SUPPORT_VERBOSITY            }        }		#ifdef SUPPORT_VERBOSITY        if (verbosity_level >= 10)            delay_keep_alive(3000);		#endif // SUPPORT_VERBOSITY    }    // Don't let the manage_inactivity() function remove power from the motors.    refresh_cmd_timeout();    // Average the last 4 measurements.    for (int8_t i = 0; i < 8; ++ i)        pts[i] *= (1.f/4.f);    enable_endstops(false);    enable_z_endstop(false);	#ifdef SUPPORT_VERBOSITY    if (verbosity_level >= 5) {        // Test the positions. Are the positions reproducible?		current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;        for (int8_t mesh_point = 0; mesh_point < 4; ++ mesh_point) {            // Don't let the manage_inactivity() function remove power from the motors.            refresh_cmd_timeout();            // Go to the measurement point.            // Use the coorrected coordinate, which is a result of find_bed_offset_and_skew().            current_position[X_AXIS] = pts[mesh_point*2];            current_position[Y_AXIS] = pts[mesh_point*2+1];            if (verbosity_level >= 10) {                go_to_current(homing_feedrate[X_AXIS]/60);                delay_keep_alive(3000);            }            SERIAL_ECHOPGM("Final measured bed point ");            SERIAL_ECHO(mesh_point);            SERIAL_ECHOPGM(": ");            MYSERIAL.print(current_position[X_AXIS], 5);            SERIAL_ECHOPGM(", ");            MYSERIAL.print(current_position[Y_AXIS], 5);            SERIAL_ECHOLNPGM("");        }    }	#endif // SUPPORT_VERBOSITY    {        // First fill in the too_far_mask from the measured points.        for (uint8_t mesh_point = 0; mesh_point < 2; ++ mesh_point)            if (pts[mesh_point * 2 + 1] < Y_MIN_POS_CALIBRATION_POINT_OUT_OF_REACH)                too_far_mask |= 1 << mesh_point;        result = calculate_machine_skew_and_offset_LS(pts, 4, bed_ref_points_4, vec_x, vec_y, cntr, verbosity_level);        if (result < 0) {            SERIAL_ECHOLNPGM("Calculation of the machine skew and offset failed.");            goto canceled;        }        // In case of success, update the too_far_mask from the calculated points.        for (uint8_t mesh_point = 0; mesh_point < 2; ++ mesh_point) {            float y = vec_x[1] * pgm_read_float(bed_ref_points_4+mesh_point*2) + vec_y[1] * pgm_read_float(bed_ref_points_4+mesh_point*2+1) + cntr[1];			#ifdef SUPPORT_VERBOSITY			if (verbosity_level >= 20) {				SERIAL_ECHOLNPGM("");				SERIAL_ECHOPGM("Distance from min:");				MYSERIAL.print(y - Y_MIN_POS_CALIBRATION_POINT_OUT_OF_REACH);				SERIAL_ECHOLNPGM("");				SERIAL_ECHOPGM("y:");				MYSERIAL.print(y);				SERIAL_ECHOLNPGM("");			}			#endif // SUPPORT_VERBOSITY			if (y < Y_MIN_POS_CALIBRATION_POINT_OUT_OF_REACH)                too_far_mask |= 1 << mesh_point;        }    }    world2machine_update(vec_x, vec_y, cntr);#if 1    // Fearlessly store the calibration values into the eeprom.    eeprom_update_float((float*)(EEPROM_BED_CALIBRATION_CENTER+0), cntr [0]);    eeprom_update_float((float*)(EEPROM_BED_CALIBRATION_CENTER+4), cntr [1]);    eeprom_update_float((float*)(EEPROM_BED_CALIBRATION_VEC_X +0), vec_x[0]);    eeprom_update_float((float*)(EEPROM_BED_CALIBRATION_VEC_X +4), vec_x[1]);    eeprom_update_float((float*)(EEPROM_BED_CALIBRATION_VEC_Y +0), vec_y[0]);    eeprom_update_float((float*)(EEPROM_BED_CALIBRATION_VEC_Y +4), vec_y[1]);#endif    // Correct the current_position to match the transformed coordinate system after world2machine_rotation_and_skew and world2machine_shift were set.	world2machine_update_current();    enable_endstops(false);    enable_z_endstop(false);	#ifdef SUPPORT_VERBOSITY    if (verbosity_level >= 5) {        // Test the positions. Are the positions reproducible? Now the calibration is active in the planner.        delay_keep_alive(3000);		current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;        for (int8_t mesh_point = 0; mesh_point < 4; ++ mesh_point) {            // Don't let the manage_inactivity() function remove power from the motors.            refresh_cmd_timeout();            // Go to the measurement point.            // Use the coorrected coordinate, which is a result of find_bed_offset_and_skew().            current_position[X_AXIS] = pgm_read_float(bed_ref_points_4+mesh_point*2);            current_position[Y_AXIS] = pgm_read_float(bed_ref_points_4+mesh_point*2+1);            if (verbosity_level >= 10) {                go_to_current(homing_feedrate[X_AXIS]/60);                delay_keep_alive(3000);            }            {                float x, y;                world2machine(current_position[X_AXIS], current_position[Y_AXIS], x, y);                SERIAL_ECHOPGM("Final calculated bed point ");                SERIAL_ECHO(mesh_point);                SERIAL_ECHOPGM(": ");                MYSERIAL.print(x, 5);                SERIAL_ECHOPGM(", ");                MYSERIAL.print(y, 5);                SERIAL_ECHOLNPGM("");            }        }    }	#endif // SUPPORT_VERBOSITY	if(!sample_z())        goto canceled;    enable_endstops(endstops_enabled);    enable_z_endstop(endstop_z_enabled);    // Don't let the manage_inactivity() function remove power from the motors.    refresh_cmd_timeout();    return result;canceled:    // Don't let the manage_inactivity() function remove power from the motors.    refresh_cmd_timeout();    // Print head up.    current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;    go_to_current(homing_feedrate[Z_AXIS]/60);    // Store the identity matrix to EEPROM.    reset_bed_offset_and_skew();    enable_endstops(endstops_enabled);    enable_z_endstop(endstop_z_enabled);    return result;}#endif //NEW_XYZCALbool sample_z() {	bool sampled = true;	//make space	current_position[Z_AXIS] += 150;	go_to_current(homing_feedrate[Z_AXIS] / 60);	//plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], feedrate, active_extruder););	lcd_show_fullscreen_message_and_wait_P(_T(MSG_PLACE_STEEL_SHEET));	// Sample Z heights for the mesh bed leveling.	// In addition, store the results into an eeprom, to be used later for verification of the bed leveling process.	if (!sample_mesh_and_store_reference()) sampled = false;	return sampled;}void go_home_with_z_lift(){    // Don't let the manage_inactivity() function remove power from the motors.    refresh_cmd_timeout();    // Go home.    // First move up to a safe height.    current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;    go_to_current(homing_feedrate[Z_AXIS]/60);    // Second move to XY [0, 0].    current_position[X_AXIS] = X_MIN_POS+0.2;    current_position[Y_AXIS] = Y_MIN_POS+0.2;    // Clamp to the physical coordinates.    world2machine_clamp(current_position[X_AXIS], current_position[Y_AXIS]);	go_to_current(homing_feedrate[X_AXIS]/20);    // Third move up to a safe height.    current_position[Z_AXIS] = Z_MIN_POS;    go_to_current(homing_feedrate[Z_AXIS]/60);    }// Sample the 9 points of the bed and store them into the EEPROM as a reference.// When calling this function, the X, Y, Z axes should be already homed,// and the world2machine correction matrix should be active.// Returns false if the reference values are more than 3mm far away.bool sample_mesh_and_store_reference(){    bool endstops_enabled  = enable_endstops(false);    bool endstop_z_enabled = enable_z_endstop(false);    // Don't let the manage_inactivity() function remove power from the motors.    refresh_cmd_timeout();#ifdef MESH_BED_CALIBRATION_SHOW_LCD    uint8_t next_line;    lcd_display_message_fullscreen_P(_T(MSG_MEASURE_BED_REFERENCE_HEIGHT_LINE1), next_line);    if (next_line > 3)        next_line = 3;    // display "point xx of yy"	lcd_set_cursor(0, next_line);    lcd_print(1);    lcd_puts_P(_T(MSG_MEASURE_BED_REFERENCE_HEIGHT_LINE2));#endif /* MESH_BED_CALIBRATION_SHOW_LCD */    // Sample Z heights for the mesh bed leveling.    // In addition, store the results into an eeprom, to be used later for verification of the bed leveling process.    {        // The first point defines the reference.        current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;        go_to_current(homing_feedrate[Z_AXIS]/60);        current_position[X_AXIS] = BED_X0;        current_position[Y_AXIS] = BED_Y0;        world2machine_clamp(current_position[X_AXIS], current_position[Y_AXIS]);        go_to_current(homing_feedrate[X_AXIS]/60);        memcpy(destination, current_position, sizeof(destination));        enable_endstops(true);        homeaxis(Z_AXIS);#ifdef TMC2130		if (!axis_known_position[Z_AXIS] && (READ(Z_TMC2130_DIAG) != 0)) //Z crash		{			kill(_T(MSG_BED_LEVELING_FAILED_POINT_LOW));			return false;		}#endif //TMC2130        enable_endstops(false);		if (!find_bed_induction_sensor_point_z()) //Z crash or deviation > 50um		{			kill(_T(MSG_BED_LEVELING_FAILED_POINT_LOW));			return false;		}        mbl.set_z(0, 0, current_position[Z_AXIS]);    }    for (int8_t mesh_point = 1; mesh_point != MESH_MEAS_NUM_X_POINTS * MESH_MEAS_NUM_Y_POINTS; ++ mesh_point) {        // Don't let the manage_inactivity() function remove power from the motors.        refresh_cmd_timeout();        // Print the decrasing ID of the measurement point.        current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;        go_to_current(homing_feedrate[Z_AXIS]/60);		int8_t ix = mesh_point % MESH_MEAS_NUM_X_POINTS;		int8_t iy = mesh_point / MESH_MEAS_NUM_X_POINTS;		if (iy & 1) ix = (MESH_MEAS_NUM_X_POINTS - 1) - ix; // Zig zag		current_position[X_AXIS] = BED_X(ix, MESH_MEAS_NUM_X_POINTS);		current_position[Y_AXIS] = BED_Y(iy, MESH_MEAS_NUM_Y_POINTS);        world2machine_clamp(current_position[X_AXIS], current_position[Y_AXIS]);        go_to_current(homing_feedrate[X_AXIS]/60);#ifdef MESH_BED_CALIBRATION_SHOW_LCD        // display "point xx of yy"		lcd_set_cursor(0, next_line);        lcd_print(mesh_point+1);        lcd_puts_P(_T(MSG_MEASURE_BED_REFERENCE_HEIGHT_LINE2));#endif /* MESH_BED_CALIBRATION_SHOW_LCD */		if (!find_bed_induction_sensor_point_z()) //Z crash or deviation > 50um		{			kill(_T(MSG_BED_LEVELING_FAILED_POINT_LOW));			return false;		}        // Get cords of measuring point               mbl.set_z(ix, iy, current_position[Z_AXIS]);    }    {        // Verify the span of the Z values.        float zmin = mbl.z_values[0][0];        float zmax = zmin;        for (int8_t j = 0; j < 3; ++ j)           for (int8_t i = 0; i < 3; ++ i) {                zmin = min(zmin, mbl.z_values[j][i]);                zmax = max(zmax, mbl.z_values[j][i]);           }        if (zmax - zmin > 3.f) {            // The span of the Z offsets is extreme. Give up.            // Homing failed on some of the points.            SERIAL_PROTOCOLLNPGM("Exreme span of the Z values!");            return false;        }    }    // Store the correction values to EEPROM.    // Offsets of the Z heiths of the calibration points from the first point.    // The offsets are saved as 16bit signed int, scaled to tenths of microns.    {        uint16_t addr = EEPROM_BED_CALIBRATION_Z_JITTER;        for (int8_t j = 0; j < 3; ++ j)            for (int8_t i = 0; i < 3; ++ i) {                if (i == 0 && j == 0)                    continue;                float dif = mbl.z_values[j][i] - mbl.z_values[0][0];                int16_t dif_quantized = int16_t(floor(dif * 100.f + 0.5f));                eeprom_update_word((uint16_t*)addr, *reinterpret_cast<uint16_t*>(&dif_quantized));                #if 0                {                    uint16_t z_offset_u = eeprom_read_word((uint16_t*)addr);                    float dif2 = *reinterpret_cast<int16_t*>(&z_offset_u) * 0.01;                    SERIAL_ECHOPGM("Bed point ");                    SERIAL_ECHO(i);                    SERIAL_ECHOPGM(",");                    SERIAL_ECHO(j);                    SERIAL_ECHOPGM(", differences: written ");                    MYSERIAL.print(dif, 5);                    SERIAL_ECHOPGM(", read: ");                    MYSERIAL.print(dif2, 5);                    SERIAL_ECHOLNPGM("");                }                #endif                addr += 2;            }    }    mbl.upsample_3x3();    mbl.active = true;    go_home_with_z_lift();    enable_endstops(endstops_enabled);    enable_z_endstop(endstop_z_enabled);    return true;}#ifndef NEW_XYZCALbool scan_bed_induction_points(int8_t verbosity_level){    // Don't let the manage_inactivity() function remove power from the motors.    refresh_cmd_timeout();    // Reusing the z_values memory for the measurement cache.    // 7x7=49 floats, good for 16 (x,y,z) vectors.    float *pts = &mbl.z_values[0][0];    float *vec_x = pts + 2 * 9;    float *vec_y = vec_x + 2;    float *cntr  = vec_y + 2;    memset(pts, 0, sizeof(float) * 7 * 7);    // Cache the current correction matrix.    world2machine_initialize();    vec_x[0] = world2machine_rotation_and_skew[0][0];    vec_x[1] = world2machine_rotation_and_skew[1][0];    vec_y[0] = world2machine_rotation_and_skew[0][1];    vec_y[1] = world2machine_rotation_and_skew[1][1];    cntr[0] = world2machine_shift[0];    cntr[1] = world2machine_shift[1];    // and reset the correction matrix, so the planner will not do anything.    world2machine_reset();    bool endstops_enabled  = enable_endstops(false);    bool endstop_z_enabled = enable_z_endstop(false);    // Collect a matrix of 9x9 points.    for (int8_t mesh_point = 0; mesh_point < 9; ++ mesh_point) {        // Don't let the manage_inactivity() function remove power from the motors.        refresh_cmd_timeout();        // Move up.        current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;        enable_endstops(false);        enable_z_endstop(false);        go_to_current(homing_feedrate[Z_AXIS]/60);        // Go to the measurement point.        // Use the coorrected coordinate, which is a result of find_bed_offset_and_skew().		uint8_t ix = mesh_point % MESH_MEAS_NUM_X_POINTS; // from 0 to MESH_NUM_X_POINTS - 1		uint8_t iy = mesh_point / MESH_MEAS_NUM_X_POINTS;		if (iy & 1) ix = (MESH_MEAS_NUM_X_POINTS - 1) - ix;		float bedX = BED_X(ix, MESH_MEAS_NUM_X_POINTS);		float bedY = BED_Y(iy, MESH_MEAS_NUM_Y_POINTS);        current_position[X_AXIS] = vec_x[0] * bedX + vec_y[0] * bedY + cntr[0];        current_position[Y_AXIS] = vec_x[1] * bedX + vec_y[1] * bedY + cntr[1];        // The calibration points are very close to the min Y.        if (current_position[Y_AXIS] < Y_MIN_POS_FOR_BED_CALIBRATION)            current_position[Y_AXIS] = Y_MIN_POS_FOR_BED_CALIBRATION;        go_to_current(homing_feedrate[X_AXIS]/60);        find_bed_induction_sensor_point_z();		scan_bed_induction_sensor_point();    }    // Don't let the manage_inactivity() function remove power from the motors.    refresh_cmd_timeout();    enable_endstops(false);    enable_z_endstop(false);    // Don't let the manage_inactivity() function remove power from the motors.    refresh_cmd_timeout();    enable_endstops(endstops_enabled);    enable_z_endstop(endstop_z_enabled);    return true;}#endif //NEW_XYZCAL// Shift a Z axis by a given delta.// To replace loading of the babystep correction.static void shift_z(float delta){    plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS] - delta, current_position[E_AXIS], homing_feedrate[Z_AXIS]/40, active_extruder);    st_synchronize();    plan_set_z_position(current_position[Z_AXIS]);}#define BABYSTEP_LOADZ_BY_PLANNER// Number of baby steps appliedstatic int babystepLoadZ = 0;void babystep_load(){	babystepLoadZ = 0;    // Apply Z height correction aka baby stepping before mesh bed leveling gets activated.    if (calibration_status() < CALIBRATION_STATUS_LIVE_ADJUST)    {        check_babystep(); //checking if babystep is in allowed range, otherwise setting babystep to 0                // End of G80: Apply the baby stepping value.        EEPROM_read_B(EEPROM_BABYSTEP_Z, &babystepLoadZ);                                #if 0        SERIAL_ECHO("Z baby step: ");        SERIAL_ECHO(babystepLoadZ);        SERIAL_ECHO(", current Z: ");        SERIAL_ECHO(current_position[Z_AXIS]);        SERIAL_ECHO("correction: ");        SERIAL_ECHO(float(babystepLoadZ) / float(axis_steps_per_unit[Z_AXIS]));        SERIAL_ECHOLN("");    #endif    }}void babystep_apply(){    babystep_load();#ifdef BABYSTEP_LOADZ_BY_PLANNER    shift_z(- float(babystepLoadZ) / float(cs.axis_steps_per_unit[Z_AXIS]));#else    babystepsTodoZadd(babystepLoadZ);#endif /* BABYSTEP_LOADZ_BY_PLANNER */}void babystep_undo(){#ifdef BABYSTEP_LOADZ_BY_PLANNER      shift_z(float(babystepLoadZ) / float(cs.axis_steps_per_unit[Z_AXIS]));#else      babystepsTodoZsubtract(babystepLoadZ);#endif /* BABYSTEP_LOADZ_BY_PLANNER */      babystepLoadZ = 0;}void babystep_reset(){	babystepLoadZ = 0;    }void count_xyz_details(float (&distanceMin)[2]) {	float cntr[2] = {		eeprom_read_float((float*)(EEPROM_BED_CALIBRATION_CENTER + 0)),		eeprom_read_float((float*)(EEPROM_BED_CALIBRATION_CENTER + 4))	};	float vec_x[2] = {		eeprom_read_float((float*)(EEPROM_BED_CALIBRATION_VEC_X + 0)),		eeprom_read_float((float*)(EEPROM_BED_CALIBRATION_VEC_X + 4))	};	float vec_y[2] = {		eeprom_read_float((float*)(EEPROM_BED_CALIBRATION_VEC_Y + 0)),		eeprom_read_float((float*)(EEPROM_BED_CALIBRATION_VEC_Y + 4))	};#if 0	a2 = -1 * asin(vec_y[0] / MACHINE_AXIS_SCALE_Y);	a1 = asin(vec_x[1] / MACHINE_AXIS_SCALE_X);	angleDiff = fabs(a2 - a1);#endif	for (uint8_t mesh_point = 0; mesh_point < 2; ++mesh_point) {		float y = vec_x[1] * pgm_read_float(bed_ref_points_4 + mesh_point * 2) + vec_y[1] * pgm_read_float(bed_ref_points_4 + mesh_point * 2 + 1) + cntr[1];		distanceMin[mesh_point] = (y - Y_MIN_POS_CALIBRATION_POINT_OUT_OF_REACH);	}}/*e_MBL_TYPE e_mbl_type = e_MBL_OPTIMAL;void mbl_mode_set() {	switch (e_mbl_type) {		case e_MBL_OPTIMAL: e_mbl_type = e_MBL_PREC; break;		case e_MBL_PREC: e_mbl_type = e_MBL_FAST; break;		case e_MBL_FAST: e_mbl_type = e_MBL_OPTIMAL; break;		default: e_mbl_type = e_MBL_OPTIMAL; break;	}	eeprom_update_byte((uint8_t*)EEPROM_MBL_TYPE,(uint8_t)e_mbl_type);}void mbl_mode_init() {	uint8_t mbl_type = eeprom_read_byte((uint8_t*)EEPROM_MBL_TYPE);	if (mbl_type == 0xFF) e_mbl_type = e_MBL_OPTIMAL;	else e_mbl_type = mbl_type;}*/void mbl_settings_init() {//3x3 mesh; 3 Z-probes on each point, magnet elimination on//magnet elimination: use aaproximate Z-coordinate instead of measured values for points which are near magnets	if (eeprom_read_byte((uint8_t*)EEPROM_MBL_MAGNET_ELIMINATION) == 0xFF) {		eeprom_update_byte((uint8_t*)EEPROM_MBL_MAGNET_ELIMINATION, 1);	}	if (eeprom_read_byte((uint8_t*)EEPROM_MBL_POINTS_NR) == 0xFF) {		eeprom_update_byte((uint8_t*)EEPROM_MBL_POINTS_NR, 3);	}	mbl_z_probe_nr = eeprom_read_byte((uint8_t*)EEPROM_MBL_PROBE_NR);	if (mbl_z_probe_nr == 0xFF) {		mbl_z_probe_nr = 3;		eeprom_update_byte((uint8_t*)EEPROM_MBL_PROBE_NR, mbl_z_probe_nr);	}}//parameter ix: index of mesh bed leveling point in X-axis (for meas_points == 7 is valid range from 0 to 6; for meas_points == 3 is valid range from 0 to 2 )  //parameter iy: index of mesh bed leveling point in Y-axis (for meas_points == 7 is valid range from 0 to 6; for meas_points == 3 is valid range from 0 to 2 ) //parameter meas_points: number of mesh bed leveling points in one axis; currently designed and tested for values 3 and 7//parameter zigzag: false if ix is considered 0 on left side of bed and ix rises with rising X coordinate; true if ix is considered 0 on the right side of heatbed for odd iy values (zig zag mesh bed leveling movements)  //function returns true if point is considered valid (typicaly in safe distance from magnet or another object which inflences PINDA measurements)bool mbl_point_measurement_valid(uint8_t ix, uint8_t iy, uint8_t meas_points, bool zigzag) {	    //"human readable" heatbed plan		//magnet proximity influence Z coordinate measurements significantly (40 - 100 um)		//0 - measurement point is above magnet and Z coordinate can be influenced negatively		//1 - we should be in safe distance from magnets, measurement should be accurate		if ((ix >= meas_points) || (iy >= meas_points)) return false;		uint8_t valid_points_mask[7] = {					//[X_MAX,Y_MAX]			//0123456			0b1111111,//6			0b1111111,//5			0b1110111,//4			0b1111011,//3			0b1110111,//2			0b1111111,//1			0b1111111,//0		//[0,0]		};		if (meas_points == 3) {			ix *= 3;			iy *= 3;		}		if (zigzag) {			if ((iy % 2) == 0)	return (valid_points_mask[6 - iy] & (1 << (6 - ix)));			else return (valid_points_mask[6 - iy] & (1 << ix));		}		else {			return (valid_points_mask[6 - iy] & (1 << (6 - ix)));		}}void mbl_single_point_interpolation(uint8_t x, uint8_t y, uint8_t meas_points) {	//printf_P(PSTR("x = %d; y = %d \n"), x, y);		uint8_t count = 0;		float z = 0;		if (mbl_point_measurement_valid(x, y + 1, meas_points, false)) { z += mbl.z_values[y + 1][x]; /*printf_P(PSTR("x; y+1: Z = %f \n"), mbl.z_values[y + 1][x]);*/ count++; }		if (mbl_point_measurement_valid(x, y - 1, meas_points, false)) { z += mbl.z_values[y - 1][x]; /*printf_P(PSTR("x; y-1: Z = %f \n"), mbl.z_values[y - 1][x]);*/ count++; }		if (mbl_point_measurement_valid(x + 1, y, meas_points, false)) { z += mbl.z_values[y][x + 1]; /*printf_P(PSTR("x+1; y: Z = %f \n"), mbl.z_values[y][x + 1]);*/ count++; }		if (mbl_point_measurement_valid(x - 1, y, meas_points, false)) { z += mbl.z_values[y][x - 1]; /*printf_P(PSTR("x-1; y: Z = %f \n"), mbl.z_values[y][x - 1]);*/ count++; }		if(count != 0) mbl.z_values[y][x] = z / count; //if we have at least one valid point in surrounding area use average value, otherwise use inaccurately measured Z-coordinate		//printf_P(PSTR("result: Z = %f \n\n"), mbl.z_values[y][x]);}void mbl_interpolation(uint8_t meas_points) {	for (uint8_t x = 0; x < meas_points; x++) {		for (uint8_t y = 0; y < meas_points; y++) {			if (!mbl_point_measurement_valid(x, y, meas_points, false)) {				mbl_single_point_interpolation(x, y, meas_points);			}		}	}}
 |