Marlin_main.cpp 256 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892389338943895389638973898389939003901390239033904390539063907390839093910391139123913391439153916391739183919392039213922392339243925392639273928392939303931393239333934393539363937393839393940394139423943394439453946394739483949395039513952395339543955395639573958395939603961396239633964396539663967396839693970397139723973397439753976397739783979398039813982398339843985398639873988398939903991399239933994399539963997399839994000400140024003400440054006400740084009401040114012401340144015401640174018401940204021402240234024402540264027402840294030403140324033403440354036403740384039404040414042404340444045404640474048404940504051405240534054405540564057405840594060406140624063406440654066406740684069407040714072407340744075407640774078407940804081408240834084408540864087408840894090409140924093409440954096409740984099410041014102410341044105410641074108410941104111411241134114411541164117411841194120412141224123412441254126412741284129413041314132413341344135413641374138413941404141414241434144414541464147414841494150415141524153415441554156415741584159416041614162416341644165416641674168416941704171417241734174417541764177417841794180418141824183418441854186418741884189419041914192419341944195419641974198419942004201420242034204420542064207420842094210421142124213421442154216421742184219422042214222422342244225422642274228422942304231423242334234423542364237423842394240424142424243424442454246424742484249425042514252425342544255425642574258425942604261426242634264426542664267426842694270427142724273427442754276427742784279428042814282428342844285428642874288428942904291429242934294429542964297429842994300430143024303430443054306430743084309431043114312431343144315431643174318431943204321432243234324432543264327432843294330433143324333433443354336433743384339434043414342434343444345434643474348434943504351435243534354435543564357435843594360436143624363436443654366436743684369437043714372437343744375437643774378437943804381438243834384438543864387438843894390439143924393439443954396439743984399440044014402440344044405440644074408440944104411441244134414441544164417441844194420442144224423442444254426442744284429443044314432443344344435443644374438443944404441444244434444444544464447444844494450445144524453445444554456445744584459446044614462446344644465446644674468446944704471447244734474447544764477447844794480448144824483448444854486448744884489449044914492449344944495449644974498449945004501450245034504450545064507450845094510451145124513451445154516451745184519452045214522452345244525452645274528452945304531453245334534453545364537453845394540454145424543454445454546454745484549455045514552455345544555455645574558455945604561456245634564456545664567456845694570457145724573457445754576457745784579458045814582458345844585458645874588458945904591459245934594459545964597459845994600460146024603460446054606460746084609461046114612461346144615461646174618461946204621462246234624462546264627462846294630463146324633463446354636463746384639464046414642464346444645464646474648464946504651465246534654465546564657465846594660466146624663466446654666466746684669467046714672467346744675467646774678467946804681468246834684468546864687468846894690469146924693469446954696469746984699470047014702470347044705470647074708470947104711471247134714471547164717471847194720472147224723472447254726472747284729473047314732473347344735473647374738473947404741474247434744474547464747474847494750475147524753475447554756475747584759476047614762476347644765476647674768476947704771477247734774477547764777477847794780478147824783478447854786478747884789479047914792479347944795479647974798479948004801480248034804480548064807480848094810481148124813481448154816481748184819482048214822482348244825482648274828482948304831483248334834483548364837483848394840484148424843484448454846484748484849485048514852485348544855485648574858485948604861486248634864486548664867486848694870487148724873487448754876487748784879488048814882488348844885488648874888488948904891489248934894489548964897489848994900490149024903490449054906490749084909491049114912491349144915491649174918491949204921492249234924492549264927492849294930493149324933493449354936493749384939494049414942494349444945494649474948494949504951495249534954495549564957495849594960496149624963496449654966496749684969497049714972497349744975497649774978497949804981498249834984498549864987498849894990499149924993499449954996499749984999500050015002500350045005500650075008500950105011501250135014501550165017501850195020502150225023502450255026502750285029503050315032503350345035503650375038503950405041504250435044504550465047504850495050505150525053505450555056505750585059506050615062506350645065506650675068506950705071507250735074507550765077507850795080508150825083508450855086508750885089509050915092509350945095509650975098509951005101510251035104510551065107510851095110511151125113511451155116511751185119512051215122512351245125512651275128512951305131513251335134513551365137513851395140514151425143514451455146514751485149515051515152515351545155515651575158515951605161516251635164516551665167516851695170517151725173517451755176517751785179518051815182518351845185518651875188518951905191519251935194519551965197519851995200520152025203520452055206520752085209521052115212521352145215521652175218521952205221522252235224522552265227522852295230523152325233523452355236523752385239524052415242524352445245524652475248524952505251525252535254525552565257525852595260526152625263526452655266526752685269527052715272527352745275527652775278527952805281528252835284528552865287528852895290529152925293529452955296529752985299530053015302530353045305530653075308530953105311531253135314531553165317531853195320532153225323532453255326532753285329533053315332533353345335533653375338533953405341534253435344534553465347534853495350535153525353535453555356535753585359536053615362536353645365536653675368536953705371537253735374537553765377537853795380538153825383538453855386538753885389539053915392539353945395539653975398539954005401540254035404540554065407540854095410541154125413541454155416541754185419542054215422542354245425542654275428542954305431543254335434543554365437543854395440544154425443544454455446544754485449545054515452545354545455545654575458545954605461546254635464546554665467546854695470547154725473547454755476547754785479548054815482548354845485548654875488548954905491549254935494549554965497549854995500550155025503550455055506550755085509551055115512551355145515551655175518551955205521552255235524552555265527552855295530553155325533553455355536553755385539554055415542554355445545554655475548554955505551555255535554555555565557555855595560556155625563556455655566556755685569557055715572557355745575557655775578557955805581558255835584558555865587558855895590559155925593559455955596559755985599560056015602560356045605560656075608560956105611561256135614561556165617561856195620562156225623562456255626562756285629563056315632563356345635563656375638563956405641564256435644564556465647564856495650565156525653565456555656565756585659566056615662566356645665566656675668566956705671567256735674567556765677567856795680568156825683568456855686568756885689569056915692569356945695569656975698569957005701570257035704570557065707570857095710571157125713571457155716571757185719572057215722572357245725572657275728572957305731573257335734573557365737573857395740574157425743574457455746574757485749575057515752575357545755575657575758575957605761576257635764576557665767576857695770577157725773577457755776577757785779578057815782578357845785578657875788578957905791579257935794579557965797579857995800580158025803580458055806580758085809581058115812581358145815581658175818581958205821582258235824582558265827582858295830583158325833583458355836583758385839584058415842584358445845584658475848584958505851585258535854585558565857585858595860586158625863586458655866586758685869587058715872587358745875587658775878587958805881588258835884588558865887588858895890589158925893589458955896589758985899590059015902590359045905590659075908590959105911591259135914591559165917591859195920592159225923592459255926592759285929593059315932593359345935593659375938593959405941594259435944594559465947594859495950595159525953595459555956595759585959596059615962596359645965596659675968596959705971597259735974597559765977597859795980598159825983598459855986598759885989599059915992599359945995599659975998599960006001600260036004600560066007600860096010601160126013601460156016601760186019602060216022602360246025602660276028602960306031603260336034603560366037603860396040604160426043604460456046604760486049605060516052605360546055605660576058605960606061606260636064606560666067606860696070607160726073607460756076607760786079608060816082608360846085608660876088608960906091609260936094609560966097609860996100610161026103610461056106610761086109611061116112611361146115611661176118611961206121612261236124612561266127612861296130613161326133613461356136613761386139614061416142614361446145614661476148614961506151615261536154615561566157615861596160616161626163616461656166616761686169617061716172617361746175617661776178617961806181618261836184618561866187618861896190619161926193619461956196619761986199620062016202620362046205620662076208620962106211621262136214621562166217621862196220622162226223622462256226622762286229623062316232623362346235623662376238623962406241624262436244624562466247624862496250625162526253625462556256625762586259626062616262626362646265626662676268626962706271627262736274627562766277627862796280628162826283628462856286628762886289629062916292629362946295629662976298629963006301630263036304630563066307630863096310631163126313631463156316631763186319632063216322632363246325632663276328632963306331633263336334633563366337633863396340634163426343634463456346634763486349635063516352635363546355635663576358635963606361636263636364636563666367636863696370637163726373637463756376637763786379638063816382638363846385638663876388638963906391639263936394639563966397639863996400640164026403640464056406640764086409641064116412641364146415641664176418641964206421642264236424642564266427642864296430643164326433643464356436643764386439644064416442644364446445644664476448644964506451645264536454645564566457645864596460646164626463646464656466646764686469647064716472647364746475647664776478647964806481648264836484648564866487648864896490649164926493649464956496649764986499650065016502650365046505650665076508650965106511651265136514651565166517651865196520652165226523652465256526652765286529653065316532653365346535653665376538653965406541654265436544654565466547654865496550655165526553655465556556655765586559656065616562656365646565656665676568656965706571657265736574657565766577657865796580658165826583658465856586658765886589659065916592659365946595659665976598659966006601660266036604660566066607660866096610661166126613661466156616661766186619662066216622662366246625662666276628662966306631663266336634663566366637663866396640664166426643664466456646664766486649665066516652665366546655665666576658665966606661666266636664666566666667666866696670667166726673667466756676667766786679668066816682668366846685668666876688668966906691669266936694669566966697669866996700670167026703670467056706670767086709671067116712671367146715671667176718671967206721672267236724672567266727672867296730673167326733673467356736673767386739674067416742674367446745674667476748674967506751675267536754675567566757675867596760676167626763676467656766676767686769677067716772677367746775677667776778677967806781678267836784678567866787678867896790679167926793679467956796679767986799680068016802680368046805680668076808680968106811681268136814681568166817681868196820682168226823682468256826682768286829683068316832683368346835683668376838683968406841684268436844684568466847684868496850685168526853685468556856685768586859686068616862686368646865686668676868686968706871687268736874687568766877687868796880688168826883688468856886688768886889689068916892689368946895689668976898689969006901690269036904690569066907690869096910691169126913691469156916691769186919692069216922692369246925692669276928692969306931693269336934693569366937693869396940694169426943694469456946694769486949695069516952695369546955695669576958695969606961696269636964696569666967696869696970697169726973697469756976697769786979698069816982698369846985698669876988698969906991699269936994699569966997699869997000700170027003700470057006700770087009701070117012701370147015701670177018701970207021702270237024702570267027702870297030703170327033703470357036703770387039704070417042704370447045704670477048704970507051705270537054705570567057705870597060706170627063706470657066706770687069707070717072707370747075707670777078707970807081708270837084708570867087708870897090709170927093709470957096709770987099710071017102710371047105710671077108710971107111711271137114711571167117711871197120712171227123712471257126712771287129713071317132713371347135713671377138713971407141714271437144714571467147714871497150715171527153715471557156715771587159716071617162716371647165716671677168716971707171717271737174717571767177717871797180718171827183718471857186718771887189719071917192719371947195719671977198719972007201720272037204720572067207720872097210721172127213721472157216721772187219722072217222722372247225722672277228722972307231723272337234723572367237723872397240724172427243724472457246724772487249725072517252725372547255725672577258725972607261726272637264726572667267726872697270727172727273727472757276727772787279728072817282728372847285728672877288728972907291729272937294729572967297729872997300730173027303730473057306730773087309731073117312731373147315731673177318731973207321732273237324732573267327732873297330733173327333733473357336733773387339734073417342734373447345734673477348734973507351735273537354735573567357735873597360736173627363736473657366736773687369737073717372737373747375737673777378737973807381738273837384738573867387738873897390739173927393739473957396739773987399740074017402740374047405740674077408740974107411741274137414741574167417741874197420742174227423742474257426742774287429743074317432743374347435743674377438743974407441744274437444744574467447744874497450745174527453745474557456745774587459746074617462746374647465746674677468746974707471747274737474747574767477747874797480748174827483748474857486748774887489749074917492749374947495749674977498749975007501750275037504750575067507750875097510751175127513751475157516751775187519752075217522752375247525752675277528752975307531753275337534753575367537753875397540754175427543754475457546754775487549755075517552755375547555755675577558755975607561756275637564756575667567756875697570757175727573757475757576757775787579758075817582758375847585758675877588758975907591759275937594759575967597759875997600760176027603760476057606760776087609761076117612761376147615761676177618761976207621762276237624762576267627762876297630763176327633763476357636763776387639764076417642764376447645764676477648764976507651765276537654765576567657765876597660766176627663766476657666766776687669767076717672767376747675767676777678767976807681768276837684
  1. /* -*- c++ -*- */
  2. /*
  3. Reprap firmware based on Sprinter and grbl.
  4. Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
  5. This program is free software: you can redistribute it and/or modify
  6. it under the terms of the GNU General Public License as published by
  7. the Free Software Foundation, either version 3 of the License, or
  8. (at your option) any later version.
  9. This program is distributed in the hope that it will be useful,
  10. but WITHOUT ANY WARRANTY; without even the implied warranty of
  11. MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  12. GNU General Public License for more details.
  13. You should have received a copy of the GNU General Public License
  14. along with this program. If not, see <http://www.gnu.org/licenses/>.
  15. */
  16. /*
  17. This firmware is a mashup between Sprinter and grbl.
  18. (https://github.com/kliment/Sprinter)
  19. (https://github.com/simen/grbl/tree)
  20. It has preliminary support for Matthew Roberts advance algorithm
  21. http://reprap.org/pipermail/reprap-dev/2011-May/003323.html
  22. */
  23. #include "Marlin.h"
  24. #ifdef ENABLE_AUTO_BED_LEVELING
  25. #include "vector_3.h"
  26. #ifdef AUTO_BED_LEVELING_GRID
  27. #include "qr_solve.h"
  28. #endif
  29. #endif // ENABLE_AUTO_BED_LEVELING
  30. #ifdef MESH_BED_LEVELING
  31. #include "mesh_bed_leveling.h"
  32. #include "mesh_bed_calibration.h"
  33. #endif
  34. #include "ultralcd.h"
  35. #include "Configuration_prusa.h"
  36. #include "planner.h"
  37. #include "stepper.h"
  38. #include "temperature.h"
  39. #include "motion_control.h"
  40. #include "cardreader.h"
  41. #include "watchdog.h"
  42. #include "ConfigurationStore.h"
  43. #include "language.h"
  44. #include "pins_arduino.h"
  45. #include "math.h"
  46. #include "util.h"
  47. #include <avr/wdt.h>
  48. #include "Dcodes.h"
  49. #ifdef SWSPI
  50. #include "swspi.h"
  51. #endif //SWSPI
  52. #ifdef SWI2C
  53. #include "swi2c.h"
  54. #endif //SWI2C
  55. #ifdef PAT9125
  56. #include "pat9125.h"
  57. #include "fsensor.h"
  58. #endif //PAT9125
  59. #ifdef TMC2130
  60. #include "tmc2130.h"
  61. #endif //TMC2130
  62. #ifdef BLINKM
  63. #include "BlinkM.h"
  64. #include "Wire.h"
  65. #endif
  66. #ifdef ULTRALCD
  67. #include "ultralcd.h"
  68. #endif
  69. #if NUM_SERVOS > 0
  70. #include "Servo.h"
  71. #endif
  72. #if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
  73. #include <SPI.h>
  74. #endif
  75. #define VERSION_STRING "1.0.2"
  76. #include "ultralcd.h"
  77. #include "cmdqueue.h"
  78. // Macros for bit masks
  79. #define BIT(b) (1<<(b))
  80. #define TEST(n,b) (((n)&BIT(b))!=0)
  81. #define SET_BIT(n,b,value) (n) ^= ((-value)^(n)) & (BIT(b))
  82. //Macro for print fan speed
  83. #define FAN_PULSE_WIDTH_LIMIT ((fanSpeed > 100) ? 3 : 4) //time in ms
  84. // look here for descriptions of G-codes: http://linuxcnc.org/handbook/gcode/g-code.html
  85. // http://objects.reprap.org/wiki/Mendel_User_Manual:_RepRapGCodes
  86. //Implemented Codes
  87. //-------------------
  88. // PRUSA CODES
  89. // P F - Returns FW versions
  90. // P R - Returns revision of printer
  91. // G0 -> G1
  92. // G1 - Coordinated Movement X Y Z E
  93. // G2 - CW ARC
  94. // G3 - CCW ARC
  95. // G4 - Dwell S<seconds> or P<milliseconds>
  96. // G10 - retract filament according to settings of M207
  97. // G11 - retract recover filament according to settings of M208
  98. // G28 - Home all Axis
  99. // G29 - Detailed Z-Probe, probes the bed at 3 or more points. Will fail if you haven't homed yet.
  100. // G30 - Single Z Probe, probes bed at current XY location.
  101. // G31 - Dock sled (Z_PROBE_SLED only)
  102. // G32 - Undock sled (Z_PROBE_SLED only)
  103. // G80 - Automatic mesh bed leveling
  104. // G81 - Print bed profile
  105. // G90 - Use Absolute Coordinates
  106. // G91 - Use Relative Coordinates
  107. // G92 - Set current position to coordinates given
  108. // M Codes
  109. // M0 - Unconditional stop - Wait for user to press a button on the LCD (Only if ULTRA_LCD is enabled)
  110. // M1 - Same as M0
  111. // M17 - Enable/Power all stepper motors
  112. // M18 - Disable all stepper motors; same as M84
  113. // M20 - List SD card
  114. // M21 - Init SD card
  115. // M22 - Release SD card
  116. // M23 - Select SD file (M23 filename.g)
  117. // M24 - Start/resume SD print
  118. // M25 - Pause SD print
  119. // M26 - Set SD position in bytes (M26 S12345)
  120. // M27 - Report SD print status
  121. // M28 - Start SD write (M28 filename.g)
  122. // M29 - Stop SD write
  123. // M30 - Delete file from SD (M30 filename.g)
  124. // M31 - Output time since last M109 or SD card start to serial
  125. // M32 - Select file and start SD print (Can be used _while_ printing from SD card files):
  126. // syntax "M32 /path/filename#", or "M32 S<startpos bytes> !filename#"
  127. // Call gcode file : "M32 P !filename#" and return to caller file after finishing (similar to #include).
  128. // The '#' is necessary when calling from within sd files, as it stops buffer prereading
  129. // M42 - Change pin status via gcode Use M42 Px Sy to set pin x to value y, when omitting Px the onboard led will be used.
  130. // M80 - Turn on Power Supply
  131. // M81 - Turn off Power Supply
  132. // M82 - Set E codes absolute (default)
  133. // M83 - Set E codes relative while in Absolute Coordinates (G90) mode
  134. // M84 - Disable steppers until next move,
  135. // or use S<seconds> to specify an inactivity timeout, after which the steppers will be disabled. S0 to disable the timeout.
  136. // M85 - Set inactivity shutdown timer with parameter S<seconds>. To disable set zero (default)
  137. // M92 - Set axis_steps_per_unit - same syntax as G92
  138. // M104 - Set extruder target temp
  139. // M105 - Read current temp
  140. // M106 - Fan on
  141. // M107 - Fan off
  142. // M109 - Sxxx Wait for extruder current temp to reach target temp. Waits only when heating
  143. // Rxxx Wait for extruder current temp to reach target temp. Waits when heating and cooling
  144. // IF AUTOTEMP is enabled, S<mintemp> B<maxtemp> F<factor>. Exit autotemp by any M109 without F
  145. // M112 - Emergency stop
  146. // M113 - Get or set the timeout interval for Host Keepalive "busy" messages
  147. // M114 - Output current position to serial port
  148. // M115 - Capabilities string
  149. // M117 - display message
  150. // M119 - Output Endstop status to serial port
  151. // M126 - Solenoid Air Valve Open (BariCUDA support by jmil)
  152. // M127 - Solenoid Air Valve Closed (BariCUDA vent to atmospheric pressure by jmil)
  153. // M128 - EtoP Open (BariCUDA EtoP = electricity to air pressure transducer by jmil)
  154. // M129 - EtoP Closed (BariCUDA EtoP = electricity to air pressure transducer by jmil)
  155. // M140 - Set bed target temp
  156. // M150 - Set BlinkM Color Output R: Red<0-255> U(!): Green<0-255> B: Blue<0-255> over i2c, G for green does not work.
  157. // M190 - Sxxx Wait for bed current temp to reach target temp. Waits only when heating
  158. // Rxxx Wait for bed current temp to reach target temp. Waits when heating and cooling
  159. // M200 D<millimeters>- set filament diameter and set E axis units to cubic millimeters (use S0 to set back to millimeters).
  160. // M201 - Set max acceleration in units/s^2 for print moves (M201 X1000 Y1000)
  161. // M202 - Set max acceleration in units/s^2 for travel moves (M202 X1000 Y1000) Unused in Marlin!!
  162. // M203 - Set maximum feedrate that your machine can sustain (M203 X200 Y200 Z300 E10000) in mm/sec
  163. // M204 - Set default acceleration: S normal moves T filament only moves (M204 S3000 T7000) in mm/sec^2 also sets minimum segment time in ms (B20000) to prevent buffer under-runs and M20 minimum feedrate
  164. // M205 - advanced settings: minimum travel speed S=while printing T=travel only, B=minimum segment time X= maximum xy jerk, Z=maximum Z jerk, E=maximum E jerk
  165. // M206 - set additional homing offset
  166. // M207 - set retract length S[positive mm] F[feedrate mm/min] Z[additional zlift/hop], stays in mm regardless of M200 setting
  167. // M208 - set recover=unretract length S[positive mm surplus to the M207 S*] F[feedrate mm/sec]
  168. // M209 - S<1=true/0=false> enable automatic retract detect if the slicer did not support G10/11: every normal extrude-only move will be classified as retract depending on the direction.
  169. // M218 - set hotend offset (in mm): T<extruder_number> X<offset_on_X> Y<offset_on_Y>
  170. // M220 S<factor in percent>- set speed factor override percentage
  171. // M221 S<factor in percent>- set extrude factor override percentage
  172. // M226 P<pin number> S<pin state>- Wait until the specified pin reaches the state required
  173. // M240 - Trigger a camera to take a photograph
  174. // M250 - Set LCD contrast C<contrast value> (value 0..63)
  175. // M280 - set servo position absolute. P: servo index, S: angle or microseconds
  176. // M300 - Play beep sound S<frequency Hz> P<duration ms>
  177. // M301 - Set PID parameters P I and D
  178. // M302 - Allow cold extrudes, or set the minimum extrude S<temperature>.
  179. // M303 - PID relay autotune S<temperature> sets the target temperature. (default target temperature = 150C)
  180. // M304 - Set bed PID parameters P I and D
  181. // M400 - Finish all moves
  182. // M401 - Lower z-probe if present
  183. // M402 - Raise z-probe if present
  184. // M404 - N<dia in mm> Enter the nominal filament width (3mm, 1.75mm ) or will display nominal filament width without parameters
  185. // M405 - Turn on Filament Sensor extrusion control. Optional D<delay in cm> to set delay in centimeters between sensor and extruder
  186. // M406 - Turn off Filament Sensor extrusion control
  187. // M407 - Displays measured filament diameter
  188. // M500 - stores parameters in EEPROM
  189. // M501 - reads parameters from EEPROM (if you need reset them after you changed them temporarily).
  190. // M502 - reverts to the default "factory settings". You still need to store them in EEPROM afterwards if you want to.
  191. // M503 - print the current settings (from memory not from EEPROM)
  192. // M509 - force language selection on next restart
  193. // M540 - Use S[0|1] to enable or disable the stop SD card print on endstop hit (requires ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED)
  194. // M600 - Pause for filament change X[pos] Y[pos] Z[relative lift] E[initial retract] L[later retract distance for removal]
  195. // M605 - Set dual x-carriage movement mode: S<mode> [ X<duplication x-offset> R<duplication temp offset> ]
  196. // M900 - Set LIN_ADVANCE options, if enabled. See Configuration_adv.h for details.
  197. // M907 - Set digital trimpot motor current using axis codes.
  198. // M908 - Control digital trimpot directly.
  199. // M350 - Set microstepping mode.
  200. // M351 - Toggle MS1 MS2 pins directly.
  201. // M928 - Start SD logging (M928 filename.g) - ended by M29
  202. // M999 - Restart after being stopped by error
  203. //Stepper Movement Variables
  204. //===========================================================================
  205. //=============================imported variables============================
  206. //===========================================================================
  207. //===========================================================================
  208. //=============================public variables=============================
  209. //===========================================================================
  210. #ifdef SDSUPPORT
  211. CardReader card;
  212. #endif
  213. unsigned long PingTime = millis();
  214. union Data
  215. {
  216. byte b[2];
  217. int value;
  218. };
  219. float homing_feedrate[] = HOMING_FEEDRATE;
  220. // Currently only the extruder axis may be switched to a relative mode.
  221. // Other axes are always absolute or relative based on the common relative_mode flag.
  222. bool axis_relative_modes[] = AXIS_RELATIVE_MODES;
  223. int feedmultiply=100; //100->1 200->2
  224. int saved_feedmultiply;
  225. int extrudemultiply=100; //100->1 200->2
  226. int extruder_multiply[EXTRUDERS] = {100
  227. #if EXTRUDERS > 1
  228. , 100
  229. #if EXTRUDERS > 2
  230. , 100
  231. #endif
  232. #endif
  233. };
  234. int bowden_length[4] = {385, 385, 385, 385};
  235. bool is_usb_printing = false;
  236. bool homing_flag = false;
  237. bool temp_cal_active = false;
  238. unsigned long kicktime = millis()+100000;
  239. unsigned int usb_printing_counter;
  240. int lcd_change_fil_state = 0;
  241. int feedmultiplyBckp = 100;
  242. float HotendTempBckp = 0;
  243. int fanSpeedBckp = 0;
  244. float pause_lastpos[4];
  245. unsigned long pause_time = 0;
  246. unsigned long start_pause_print = millis();
  247. unsigned long t_fan_rising_edge = millis();
  248. //unsigned long load_filament_time;
  249. bool mesh_bed_leveling_flag = false;
  250. bool mesh_bed_run_from_menu = false;
  251. unsigned char lang_selected = 0;
  252. int8_t FarmMode = 0;
  253. bool prusa_sd_card_upload = false;
  254. unsigned int status_number = 0;
  255. unsigned long total_filament_used;
  256. unsigned int heating_status;
  257. unsigned int heating_status_counter;
  258. bool custom_message;
  259. bool loading_flag = false;
  260. unsigned int custom_message_type;
  261. unsigned int custom_message_state;
  262. char snmm_filaments_used = 0;
  263. float distance_from_min[2];
  264. bool fan_state[2];
  265. int fan_edge_counter[2];
  266. int fan_speed[2];
  267. char dir_names[3][9];
  268. bool volumetric_enabled = false;
  269. float filament_size[EXTRUDERS] = { DEFAULT_NOMINAL_FILAMENT_DIA
  270. #if EXTRUDERS > 1
  271. , DEFAULT_NOMINAL_FILAMENT_DIA
  272. #if EXTRUDERS > 2
  273. , DEFAULT_NOMINAL_FILAMENT_DIA
  274. #endif
  275. #endif
  276. };
  277. float volumetric_multiplier[EXTRUDERS] = {1.0
  278. #if EXTRUDERS > 1
  279. , 1.0
  280. #if EXTRUDERS > 2
  281. , 1.0
  282. #endif
  283. #endif
  284. };
  285. float current_position[NUM_AXIS] = { 0.0, 0.0, 0.0, 0.0 };
  286. float add_homing[3]={0,0,0};
  287. float min_pos[3] = { X_MIN_POS, Y_MIN_POS, Z_MIN_POS };
  288. float max_pos[3] = { X_MAX_POS, Y_MAX_POS, Z_MAX_POS };
  289. bool axis_known_position[3] = {false, false, false};
  290. float zprobe_zoffset;
  291. // Extruder offset
  292. #if EXTRUDERS > 1
  293. #define NUM_EXTRUDER_OFFSETS 2 // only in XY plane
  294. float extruder_offset[NUM_EXTRUDER_OFFSETS][EXTRUDERS] = {
  295. #if defined(EXTRUDER_OFFSET_X) && defined(EXTRUDER_OFFSET_Y)
  296. EXTRUDER_OFFSET_X, EXTRUDER_OFFSET_Y
  297. #endif
  298. };
  299. #endif
  300. uint8_t active_extruder = 0;
  301. int fanSpeed=0;
  302. #ifdef FWRETRACT
  303. bool autoretract_enabled=false;
  304. bool retracted[EXTRUDERS]={false
  305. #if EXTRUDERS > 1
  306. , false
  307. #if EXTRUDERS > 2
  308. , false
  309. #endif
  310. #endif
  311. };
  312. bool retracted_swap[EXTRUDERS]={false
  313. #if EXTRUDERS > 1
  314. , false
  315. #if EXTRUDERS > 2
  316. , false
  317. #endif
  318. #endif
  319. };
  320. float retract_length = RETRACT_LENGTH;
  321. float retract_length_swap = RETRACT_LENGTH_SWAP;
  322. float retract_feedrate = RETRACT_FEEDRATE;
  323. float retract_zlift = RETRACT_ZLIFT;
  324. float retract_recover_length = RETRACT_RECOVER_LENGTH;
  325. float retract_recover_length_swap = RETRACT_RECOVER_LENGTH_SWAP;
  326. float retract_recover_feedrate = RETRACT_RECOVER_FEEDRATE;
  327. #endif
  328. #ifdef ULTIPANEL
  329. #ifdef PS_DEFAULT_OFF
  330. bool powersupply = false;
  331. #else
  332. bool powersupply = true;
  333. #endif
  334. #endif
  335. bool cancel_heatup = false ;
  336. #ifdef HOST_KEEPALIVE_FEATURE
  337. int busy_state = NOT_BUSY;
  338. static long prev_busy_signal_ms = -1;
  339. uint8_t host_keepalive_interval = HOST_KEEPALIVE_INTERVAL;
  340. #else
  341. #define host_keepalive();
  342. #define KEEPALIVE_STATE(n);
  343. #endif
  344. #ifdef FILAMENT_SENSOR
  345. //Variables for Filament Sensor input
  346. float filament_width_nominal=DEFAULT_NOMINAL_FILAMENT_DIA; //Set nominal filament width, can be changed with M404
  347. bool filament_sensor=false; //M405 turns on filament_sensor control, M406 turns it off
  348. float filament_width_meas=DEFAULT_MEASURED_FILAMENT_DIA; //Stores the measured filament diameter
  349. signed char measurement_delay[MAX_MEASUREMENT_DELAY+1]; //ring buffer to delay measurement store extruder factor after subtracting 100
  350. int delay_index1=0; //index into ring buffer
  351. int delay_index2=-1; //index into ring buffer - set to -1 on startup to indicate ring buffer needs to be initialized
  352. float delay_dist=0; //delay distance counter
  353. int meas_delay_cm = MEASUREMENT_DELAY_CM; //distance delay setting
  354. #endif
  355. const char errormagic[] PROGMEM = "Error:";
  356. const char echomagic[] PROGMEM = "echo:";
  357. //===========================================================================
  358. //=============================Private Variables=============================
  359. //===========================================================================
  360. const char axis_codes[NUM_AXIS] = {'X', 'Y', 'Z', 'E'};
  361. float destination[NUM_AXIS] = { 0.0, 0.0, 0.0, 0.0};
  362. static float delta[3] = {0.0, 0.0, 0.0};
  363. // For tracing an arc
  364. static float offset[3] = {0.0, 0.0, 0.0};
  365. static float feedrate = 1500.0, next_feedrate, saved_feedrate;
  366. // Determines Absolute or Relative Coordinates.
  367. // Also there is bool axis_relative_modes[] per axis flag.
  368. static bool relative_mode = false;
  369. const int sensitive_pins[] = SENSITIVE_PINS; // Sensitive pin list for M42
  370. //static float tt = 0;
  371. //static float bt = 0;
  372. //Inactivity shutdown variables
  373. static unsigned long previous_millis_cmd = 0;
  374. unsigned long max_inactive_time = 0;
  375. static unsigned long stepper_inactive_time = DEFAULT_STEPPER_DEACTIVE_TIME*1000l;
  376. unsigned long starttime=0;
  377. unsigned long stoptime=0;
  378. unsigned long _usb_timer = 0;
  379. static uint8_t tmp_extruder;
  380. bool extruder_under_pressure = true;
  381. bool Stopped=false;
  382. #if NUM_SERVOS > 0
  383. Servo servos[NUM_SERVOS];
  384. #endif
  385. bool CooldownNoWait = true;
  386. bool target_direction;
  387. //Insert variables if CHDK is defined
  388. #ifdef CHDK
  389. unsigned long chdkHigh = 0;
  390. boolean chdkActive = false;
  391. #endif
  392. //===========================================================================
  393. //=============================Routines======================================
  394. //===========================================================================
  395. void get_arc_coordinates();
  396. bool setTargetedHotend(int code);
  397. void serial_echopair_P(const char *s_P, float v)
  398. { serialprintPGM(s_P); SERIAL_ECHO(v); }
  399. void serial_echopair_P(const char *s_P, double v)
  400. { serialprintPGM(s_P); SERIAL_ECHO(v); }
  401. void serial_echopair_P(const char *s_P, unsigned long v)
  402. { serialprintPGM(s_P); SERIAL_ECHO(v); }
  403. #ifdef SDSUPPORT
  404. #include "SdFatUtil.h"
  405. int freeMemory() { return SdFatUtil::FreeRam(); }
  406. #else
  407. extern "C" {
  408. extern unsigned int __bss_end;
  409. extern unsigned int __heap_start;
  410. extern void *__brkval;
  411. int freeMemory() {
  412. int free_memory;
  413. if ((int)__brkval == 0)
  414. free_memory = ((int)&free_memory) - ((int)&__bss_end);
  415. else
  416. free_memory = ((int)&free_memory) - ((int)__brkval);
  417. return free_memory;
  418. }
  419. }
  420. #endif //!SDSUPPORT
  421. void setup_killpin()
  422. {
  423. #if defined(KILL_PIN) && KILL_PIN > -1
  424. SET_INPUT(KILL_PIN);
  425. WRITE(KILL_PIN,HIGH);
  426. #endif
  427. }
  428. // Set home pin
  429. void setup_homepin(void)
  430. {
  431. #if defined(HOME_PIN) && HOME_PIN > -1
  432. SET_INPUT(HOME_PIN);
  433. WRITE(HOME_PIN,HIGH);
  434. #endif
  435. }
  436. void setup_photpin()
  437. {
  438. #if defined(PHOTOGRAPH_PIN) && PHOTOGRAPH_PIN > -1
  439. SET_OUTPUT(PHOTOGRAPH_PIN);
  440. WRITE(PHOTOGRAPH_PIN, LOW);
  441. #endif
  442. }
  443. void setup_powerhold()
  444. {
  445. #if defined(SUICIDE_PIN) && SUICIDE_PIN > -1
  446. SET_OUTPUT(SUICIDE_PIN);
  447. WRITE(SUICIDE_PIN, HIGH);
  448. #endif
  449. #if defined(PS_ON_PIN) && PS_ON_PIN > -1
  450. SET_OUTPUT(PS_ON_PIN);
  451. #if defined(PS_DEFAULT_OFF)
  452. WRITE(PS_ON_PIN, PS_ON_ASLEEP);
  453. #else
  454. WRITE(PS_ON_PIN, PS_ON_AWAKE);
  455. #endif
  456. #endif
  457. }
  458. void suicide()
  459. {
  460. #if defined(SUICIDE_PIN) && SUICIDE_PIN > -1
  461. SET_OUTPUT(SUICIDE_PIN);
  462. WRITE(SUICIDE_PIN, LOW);
  463. #endif
  464. }
  465. void servo_init()
  466. {
  467. #if (NUM_SERVOS >= 1) && defined(SERVO0_PIN) && (SERVO0_PIN > -1)
  468. servos[0].attach(SERVO0_PIN);
  469. #endif
  470. #if (NUM_SERVOS >= 2) && defined(SERVO1_PIN) && (SERVO1_PIN > -1)
  471. servos[1].attach(SERVO1_PIN);
  472. #endif
  473. #if (NUM_SERVOS >= 3) && defined(SERVO2_PIN) && (SERVO2_PIN > -1)
  474. servos[2].attach(SERVO2_PIN);
  475. #endif
  476. #if (NUM_SERVOS >= 4) && defined(SERVO3_PIN) && (SERVO3_PIN > -1)
  477. servos[3].attach(SERVO3_PIN);
  478. #endif
  479. #if (NUM_SERVOS >= 5)
  480. #error "TODO: enter initalisation code for more servos"
  481. #endif
  482. }
  483. static void lcd_language_menu();
  484. void stop_and_save_print_to_ram(float z_move, float e_move);
  485. void restore_print_from_ram_and_continue(float e_move);
  486. extern int8_t CrashDetectMenu;
  487. void crashdet_enable()
  488. {
  489. MYSERIAL.println("crashdet_enable");
  490. tmc2130_sg_stop_on_crash = true;
  491. eeprom_update_byte((uint8_t*)EEPROM_CRASH_DET, 0xFF);
  492. CrashDetectMenu = 1;
  493. }
  494. void crashdet_disable()
  495. {
  496. MYSERIAL.println("crashdet_disable");
  497. tmc2130_sg_stop_on_crash = false;
  498. eeprom_update_byte((uint8_t*)EEPROM_CRASH_DET, 0x00);
  499. CrashDetectMenu = 0;
  500. }
  501. void crashdet_stop_and_save_print()
  502. {
  503. stop_and_save_print_to_ram(10, 0); //XY - no change, Z 10mm up, E - no change
  504. }
  505. void crashdet_restore_print_and_continue()
  506. {
  507. restore_print_from_ram_and_continue(0); //XYZ = orig, E - no change
  508. // babystep_apply();
  509. }
  510. void crashdet_stop_and_save_print2()
  511. {
  512. cli();
  513. planner_abort_hard(); //abort printing
  514. cmdqueue_reset(); //empty cmdqueue
  515. card.sdprinting = false;
  516. card.closefile();
  517. sei();
  518. }
  519. void crashdet_detected()
  520. {
  521. printf("CRASH_DETECTED");
  522. /* while (!is_buffer_empty())
  523. {
  524. process_commands();
  525. cmdqueue_pop_front();
  526. }*/
  527. st_synchronize();
  528. lcd_update_enable(true);
  529. lcd_implementation_clear();
  530. lcd_update(2);
  531. // Increment crash counter
  532. uint8_t crash_count = eeprom_read_byte((uint8_t*)EEPROM_CRASH_COUNT);
  533. crash_count++;
  534. eeprom_update_byte((uint8_t*)EEPROM_CRASH_COUNT, crash_count);
  535. #ifdef AUTOMATIC_RECOVERY_AFTER_CRASH
  536. bool yesno = true;
  537. #else
  538. bool yesno = lcd_show_fullscreen_message_yes_no_and_wait_P(MSG_CRASH_DETECTED, false);
  539. #endif
  540. lcd_update_enable(true);
  541. lcd_update(2);
  542. lcd_setstatuspgm(WELCOME_MSG);
  543. if (yesno)
  544. {
  545. enquecommand_P(PSTR("G28 X"));
  546. enquecommand_P(PSTR("G28 Y"));
  547. enquecommand_P(PSTR("CRASH_RECOVER"));
  548. }
  549. else
  550. {
  551. enquecommand_P(PSTR("CRASH_CANCEL"));
  552. }
  553. }
  554. void crashdet_recover()
  555. {
  556. crashdet_restore_print_and_continue();
  557. tmc2130_sg_stop_on_crash = true;
  558. }
  559. void crashdet_cancel()
  560. {
  561. card.sdprinting = false;
  562. card.closefile();
  563. tmc2130_sg_stop_on_crash = true;
  564. }
  565. #ifdef MESH_BED_LEVELING
  566. enum MeshLevelingState { MeshReport, MeshStart, MeshNext, MeshSet };
  567. #endif
  568. // Factory reset function
  569. // This function is used to erase parts or whole EEPROM memory which is used for storing calibration and and so on.
  570. // Level input parameter sets depth of reset
  571. // Quiet parameter masks all waitings for user interact.
  572. int er_progress = 0;
  573. void factory_reset(char level, bool quiet)
  574. {
  575. lcd_implementation_clear();
  576. int cursor_pos = 0;
  577. switch (level) {
  578. // Level 0: Language reset
  579. case 0:
  580. WRITE(BEEPER, HIGH);
  581. _delay_ms(100);
  582. WRITE(BEEPER, LOW);
  583. lcd_force_language_selection();
  584. break;
  585. //Level 1: Reset statistics
  586. case 1:
  587. WRITE(BEEPER, HIGH);
  588. _delay_ms(100);
  589. WRITE(BEEPER, LOW);
  590. eeprom_update_dword((uint32_t *)EEPROM_TOTALTIME, 0);
  591. eeprom_update_dword((uint32_t *)EEPROM_FILAMENTUSED, 0);
  592. lcd_menu_statistics();
  593. break;
  594. // Level 2: Prepare for shipping
  595. case 2:
  596. //lcd_printPGM(PSTR("Factory RESET"));
  597. //lcd_print_at_PGM(1,2,PSTR("Shipping prep"));
  598. // Force language selection at the next boot up.
  599. lcd_force_language_selection();
  600. // Force the "Follow calibration flow" message at the next boot up.
  601. calibration_status_store(CALIBRATION_STATUS_Z_CALIBRATION);
  602. farm_no = 0;
  603. farm_mode == false;
  604. eeprom_update_byte((uint8_t*)EEPROM_FARM_MODE, farm_mode);
  605. EEPROM_save_B(EEPROM_FARM_NUMBER, &farm_no);
  606. WRITE(BEEPER, HIGH);
  607. _delay_ms(100);
  608. WRITE(BEEPER, LOW);
  609. //_delay_ms(2000);
  610. break;
  611. // Level 3: erase everything, whole EEPROM will be set to 0xFF
  612. case 3:
  613. lcd_printPGM(PSTR("Factory RESET"));
  614. lcd_print_at_PGM(1, 2, PSTR("ERASING all data"));
  615. WRITE(BEEPER, HIGH);
  616. _delay_ms(100);
  617. WRITE(BEEPER, LOW);
  618. er_progress = 0;
  619. lcd_print_at_PGM(3, 3, PSTR(" "));
  620. lcd_implementation_print_at(3, 3, er_progress);
  621. // Erase EEPROM
  622. for (int i = 0; i < 4096; i++) {
  623. eeprom_write_byte((uint8_t*)i, 0xFF);
  624. if (i % 41 == 0) {
  625. er_progress++;
  626. lcd_print_at_PGM(3, 3, PSTR(" "));
  627. lcd_implementation_print_at(3, 3, er_progress);
  628. lcd_printPGM(PSTR("%"));
  629. }
  630. }
  631. break;
  632. case 4:
  633. bowden_menu();
  634. break;
  635. default:
  636. break;
  637. }
  638. }
  639. #include "LiquidCrystal.h"
  640. extern LiquidCrystal lcd;
  641. FILE _lcdout = {0};
  642. int lcd_putchar(char c, FILE *stream)
  643. {
  644. lcd.write(c);
  645. return 0;
  646. }
  647. FILE _uartout = {0};
  648. int uart_putchar(char c, FILE *stream)
  649. {
  650. MYSERIAL.write(c);
  651. return 0;
  652. }
  653. void lcd_splash()
  654. {
  655. // lcd_print_at_PGM(0, 1, PSTR(" Original Prusa "));
  656. // lcd_print_at_PGM(0, 2, PSTR(" 3D Printers "));
  657. // lcd.print_P(PSTR("\x1b[1;3HOriginal Prusa\x1b[2;4H3D Printers"));
  658. fputs_P(PSTR(ESC_2J ESC_H(1,1) "Original Prusa i3" ESC_H(3,2) "Prusa Research"), lcdout);
  659. }
  660. // "Setup" function is called by the Arduino framework on startup.
  661. // Before startup, the Timers-functions (PWM)/Analog RW and HardwareSerial provided by the Arduino-code
  662. // are initialized by the main() routine provided by the Arduino framework.
  663. void setup()
  664. {
  665. lcd_init();
  666. fdev_setup_stream(lcdout, lcd_putchar, NULL, _FDEV_SETUP_WRITE); //setup lcdout stream
  667. lcd_splash();
  668. setup_killpin();
  669. setup_powerhold();
  670. farm_mode = eeprom_read_byte((uint8_t*)EEPROM_FARM_MODE);
  671. EEPROM_read_B(EEPROM_FARM_NUMBER, &farm_no);
  672. if ((farm_mode == 0xFF && farm_no == 0) || (farm_no == 0xFFFF)) farm_mode = false; //if farm_mode has not been stored to eeprom yet and farm number is set to zero or EEPROM is fresh, deactivate farm mode
  673. if (farm_no == 0xFFFF) farm_no = 0;
  674. if (farm_mode)
  675. {
  676. prusa_statistics(8);
  677. selectedSerialPort = 1;
  678. }
  679. else
  680. selectedSerialPort = 0;
  681. MYSERIAL.begin(BAUDRATE);
  682. fdev_setup_stream(uartout, uart_putchar, NULL, _FDEV_SETUP_WRITE); //setup uart out stream
  683. stdout = uartout;
  684. SERIAL_PROTOCOLLNPGM("start");
  685. SERIAL_ECHO_START;
  686. #if 0
  687. SERIAL_ECHOLN("Reading eeprom from 0 to 100: start");
  688. for (int i = 0; i < 4096; ++i) {
  689. int b = eeprom_read_byte((unsigned char*)i);
  690. if (b != 255) {
  691. SERIAL_ECHO(i);
  692. SERIAL_ECHO(":");
  693. SERIAL_ECHO(b);
  694. SERIAL_ECHOLN("");
  695. }
  696. }
  697. SERIAL_ECHOLN("Reading eeprom from 0 to 100: done");
  698. #endif
  699. // Check startup - does nothing if bootloader sets MCUSR to 0
  700. byte mcu = MCUSR;
  701. /* if (mcu & 1) SERIAL_ECHOLNRPGM(MSG_POWERUP);
  702. if (mcu & 2) SERIAL_ECHOLNRPGM(MSG_EXTERNAL_RESET);
  703. if (mcu & 4) SERIAL_ECHOLNRPGM(MSG_BROWNOUT_RESET);
  704. if (mcu & 8) SERIAL_ECHOLNRPGM(MSG_WATCHDOG_RESET);
  705. if (mcu & 32) SERIAL_ECHOLNRPGM(MSG_SOFTWARE_RESET);*/
  706. if (mcu & 1) puts_P(MSG_POWERUP);
  707. if (mcu & 2) puts_P(MSG_EXTERNAL_RESET);
  708. if (mcu & 4) puts_P(MSG_BROWNOUT_RESET);
  709. if (mcu & 8) puts_P(MSG_WATCHDOG_RESET);
  710. if (mcu & 32) puts_P(MSG_SOFTWARE_RESET);
  711. MCUSR = 0;
  712. //SERIAL_ECHORPGM(MSG_MARLIN);
  713. //SERIAL_ECHOLNRPGM(VERSION_STRING);
  714. #ifdef STRING_VERSION_CONFIG_H
  715. #ifdef STRING_CONFIG_H_AUTHOR
  716. SERIAL_ECHO_START;
  717. SERIAL_ECHORPGM(MSG_CONFIGURATION_VER);
  718. SERIAL_ECHOPGM(STRING_VERSION_CONFIG_H);
  719. SERIAL_ECHORPGM(MSG_AUTHOR);
  720. SERIAL_ECHOLNPGM(STRING_CONFIG_H_AUTHOR);
  721. SERIAL_ECHOPGM("Compiled: ");
  722. SERIAL_ECHOLNPGM(__DATE__);
  723. #endif
  724. #endif
  725. SERIAL_ECHO_START;
  726. SERIAL_ECHORPGM(MSG_FREE_MEMORY);
  727. SERIAL_ECHO(freeMemory());
  728. SERIAL_ECHORPGM(MSG_PLANNER_BUFFER_BYTES);
  729. SERIAL_ECHOLN((int)sizeof(block_t)*BLOCK_BUFFER_SIZE);
  730. //lcd_update_enable(false); // why do we need this?? - andre
  731. // loads data from EEPROM if available else uses defaults (and resets step acceleration rate)
  732. Config_RetrieveSettings(EEPROM_OFFSET);
  733. SdFatUtil::set_stack_guard(); //writes magic number at the end of static variables to protect against overwriting static memory by stack
  734. tp_init(); // Initialize temperature loop
  735. lcd_splash(); // we need to do this again, because tp_init() kills lcd
  736. plan_init(); // Initialize planner;
  737. watchdog_init();
  738. #ifdef TMC2130
  739. uint8_t silentMode = eeprom_read_byte((uint8_t*)EEPROM_SILENT);
  740. tmc2130_mode = silentMode?TMC2130_MODE_SILENT:TMC2130_MODE_NORMAL;
  741. uint8_t crashdet = eeprom_read_byte((uint8_t*)EEPROM_CRASH_DET);
  742. if (crashdet)
  743. {
  744. crashdet_enable();
  745. MYSERIAL.println("CrashDetect ENABLED!");
  746. }
  747. else
  748. {
  749. crashdet_disable();
  750. MYSERIAL.println("CrashDetect DISABLED");
  751. }
  752. #endif //TMC2130
  753. #ifdef PAT9125
  754. int pat9125 = pat9125_init(PAT9125_XRES, PAT9125_YRES);
  755. printf_P(PSTR("PAT9125_init:%d\n"), pat9125);
  756. uint8_t fsensor = eeprom_read_byte((uint8_t*)EEPROM_FSENSOR);
  757. if (!pat9125) fsensor = 0; //disable sensor
  758. puts_P(PSTR("FSensor "));
  759. if (fsensor)
  760. {
  761. puts_P(PSTR("ENABLED\n"));
  762. fsensor_enable();
  763. }
  764. else
  765. {
  766. puts_P(PSTR("DISABLED\n"));
  767. fsensor_disable();
  768. }
  769. #endif //PAT9125
  770. st_init(); // Initialize stepper, this enables interrupts!
  771. setup_photpin();
  772. servo_init();
  773. // Reset the machine correction matrix.
  774. // It does not make sense to load the correction matrix until the machine is homed.
  775. world2machine_reset();
  776. KEEPALIVE_STATE(PAUSED_FOR_USER);
  777. if (!READ(BTN_ENC))
  778. {
  779. _delay_ms(1000);
  780. if (!READ(BTN_ENC))
  781. {
  782. lcd_implementation_clear();
  783. lcd_printPGM(PSTR("Factory RESET"));
  784. SET_OUTPUT(BEEPER);
  785. WRITE(BEEPER, HIGH);
  786. while (!READ(BTN_ENC));
  787. WRITE(BEEPER, LOW);
  788. _delay_ms(2000);
  789. char level = reset_menu();
  790. factory_reset(level, false);
  791. switch (level) {
  792. case 0: _delay_ms(0); break;
  793. case 1: _delay_ms(0); break;
  794. case 2: _delay_ms(0); break;
  795. case 3: _delay_ms(0); break;
  796. }
  797. // _delay_ms(100);
  798. /*
  799. #ifdef MESH_BED_LEVELING
  800. _delay_ms(2000);
  801. if (!READ(BTN_ENC))
  802. {
  803. WRITE(BEEPER, HIGH);
  804. _delay_ms(100);
  805. WRITE(BEEPER, LOW);
  806. _delay_ms(200);
  807. WRITE(BEEPER, HIGH);
  808. _delay_ms(100);
  809. WRITE(BEEPER, LOW);
  810. int _z = 0;
  811. calibration_status_store(CALIBRATION_STATUS_CALIBRATED);
  812. EEPROM_save_B(EEPROM_BABYSTEP_X, &_z);
  813. EEPROM_save_B(EEPROM_BABYSTEP_Y, &_z);
  814. EEPROM_save_B(EEPROM_BABYSTEP_Z, &_z);
  815. }
  816. else
  817. {
  818. WRITE(BEEPER, HIGH);
  819. _delay_ms(100);
  820. WRITE(BEEPER, LOW);
  821. }
  822. #endif // mesh */
  823. }
  824. }
  825. else
  826. {
  827. //_delay_ms(1000); // wait 1sec to display the splash screen // what's this and why do we need it?? - andre
  828. }
  829. #if defined(CONTROLLERFAN_PIN) && (CONTROLLERFAN_PIN > -1)
  830. SET_OUTPUT(CONTROLLERFAN_PIN); //Set pin used for driver cooling fan
  831. #endif
  832. #if defined(LCD_PWM_PIN) && (LCD_PWM_PIN > -1)
  833. SET_OUTPUT(LCD_PWM_PIN); //Set pin used for driver cooling fan
  834. #endif
  835. #ifdef DIGIPOT_I2C
  836. digipot_i2c_init();
  837. #endif
  838. setup_homepin();
  839. if (1) {
  840. SERIAL_ECHOPGM("initial zsteps on power up: "); MYSERIAL.println(tmc2130_rd_MSCNT(Z_TMC2130_CS));
  841. // try to run to zero phase before powering the Z motor.
  842. // Move in negative direction
  843. WRITE(Z_DIR_PIN,INVERT_Z_DIR);
  844. // Round the current micro-micro steps to micro steps.
  845. for (uint16_t phase = (tmc2130_rd_MSCNT(Z_TMC2130_CS) + 8) >> 4; phase > 0; -- phase) {
  846. // Until the phase counter is reset to zero.
  847. WRITE(Z_STEP_PIN, !INVERT_Z_STEP_PIN);
  848. delay(2);
  849. WRITE(Z_STEP_PIN, INVERT_Z_STEP_PIN);
  850. delay(2);
  851. }
  852. SERIAL_ECHOPGM("initial zsteps after reset: "); MYSERIAL.println(tmc2130_rd_MSCNT(Z_TMC2130_CS));
  853. }
  854. #if defined(Z_AXIS_ALWAYS_ON)
  855. enable_z();
  856. #endif
  857. farm_mode = eeprom_read_byte((uint8_t*)EEPROM_FARM_MODE);
  858. EEPROM_read_B(EEPROM_FARM_NUMBER, &farm_no);
  859. if ((farm_mode == 0xFF && farm_no == 0) || (farm_no == 0xFFFF)) farm_mode = false; //if farm_mode has not been stored to eeprom yet and farm number is set to zero or EEPROM is fresh, deactivate farm mode
  860. if (farm_no == 0xFFFF) farm_no = 0;
  861. if (farm_mode)
  862. {
  863. prusa_statistics(8);
  864. }
  865. // Enable Toshiba FlashAir SD card / WiFi enahanced card.
  866. card.ToshibaFlashAir_enable(eeprom_read_byte((unsigned char*)EEPROM_TOSHIBA_FLASH_AIR_COMPATIBLITY) == 1);
  867. // Force SD card update. Otherwise the SD card update is done from loop() on card.checkautostart(false),
  868. // but this times out if a blocking dialog is shown in setup().
  869. card.initsd();
  870. if (eeprom_read_dword((uint32_t*)(EEPROM_TOP - 4)) == 0x0ffffffff &&
  871. eeprom_read_dword((uint32_t*)(EEPROM_TOP - 8)) == 0x0ffffffff &&
  872. eeprom_read_dword((uint32_t*)(EEPROM_TOP - 12)) == 0x0ffffffff) {
  873. // Maiden startup. The firmware has been loaded and first started on a virgin RAMBo board,
  874. // where all the EEPROM entries are set to 0x0ff.
  875. // Once a firmware boots up, it forces at least a language selection, which changes
  876. // EEPROM_LANG to number lower than 0x0ff.
  877. // 1) Set a high power mode.
  878. eeprom_write_byte((uint8_t*)EEPROM_SILENT, 0);
  879. eeprom_write_byte((uint8_t*)EEPROM_WIZARD_ACTIVE, 1); //run wizard
  880. }
  881. #ifdef SNMM
  882. if (eeprom_read_dword((uint32_t*)EEPROM_BOWDEN_LENGTH) == 0x0ffffffff) { //bowden length used for SNMM
  883. int _z = BOWDEN_LENGTH;
  884. for(int i = 0; i<4; i++) EEPROM_save_B(EEPROM_BOWDEN_LENGTH + i * 2, &_z);
  885. }
  886. #endif
  887. // In the future, somewhere here would one compare the current firmware version against the firmware version stored in the EEPROM.
  888. // If they differ, an update procedure may need to be performed. At the end of this block, the current firmware version
  889. // is being written into the EEPROM, so the update procedure will be triggered only once.
  890. lang_selected = eeprom_read_byte((uint8_t*)EEPROM_LANG);
  891. if (lang_selected >= LANG_NUM){
  892. lcd_mylang();
  893. }
  894. if (eeprom_read_byte((uint8_t*)EEPROM_TEMP_CAL_ACTIVE) == 255) {
  895. eeprom_write_byte((uint8_t*)EEPROM_TEMP_CAL_ACTIVE, 0);
  896. temp_cal_active = false;
  897. } else temp_cal_active = eeprom_read_byte((uint8_t*)EEPROM_TEMP_CAL_ACTIVE);
  898. if (eeprom_read_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA) == 255) {
  899. //eeprom_write_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 0);
  900. eeprom_write_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 1);
  901. eeprom_write_word(((uint16_t*)EEPROM_PROBE_TEMP_SHIFT) + 0, 8); //40C - 20um - 8usteps
  902. eeprom_write_word(((uint16_t*)EEPROM_PROBE_TEMP_SHIFT) + 1, 24); //45C - 60um - 24usteps
  903. eeprom_write_word(((uint16_t*)EEPROM_PROBE_TEMP_SHIFT) + 2, 48); //50C - 120um - 48usteps
  904. eeprom_write_word(((uint16_t*)EEPROM_PROBE_TEMP_SHIFT) + 3, 80); //55C - 200um - 80usteps
  905. eeprom_write_word(((uint16_t*)EEPROM_PROBE_TEMP_SHIFT) + 4, 120); //60C - 300um - 120usteps
  906. eeprom_write_byte((uint8_t*)EEPROM_TEMP_CAL_ACTIVE, 1);
  907. temp_cal_active = true;
  908. }
  909. if (eeprom_read_byte((uint8_t*)EEPROM_UVLO) == 255) {
  910. eeprom_write_byte((uint8_t*)EEPROM_UVLO, 0);
  911. }
  912. check_babystep(); //checking if Z babystep is in allowed range
  913. setup_uvlo_interrupt();
  914. setup_fan_interrupt();
  915. fsensor_setup_interrupt();
  916. for (int i = 0; i<4; i++) EEPROM_read_B(EEPROM_BOWDEN_LENGTH + i * 2, &bowden_length[i]);
  917. #ifndef DEBUG_DISABLE_STARTMSGS
  918. if (eeprom_read_byte((uint8_t*)EEPROM_WIZARD_ACTIVE) == 1) {
  919. lcd_wizard(0);
  920. }
  921. if (eeprom_read_byte((uint8_t*)EEPROM_WIZARD_ACTIVE) == 0) { //dont show calibration status messages if wizard is currently active
  922. if (calibration_status() == CALIBRATION_STATUS_ASSEMBLED ||
  923. calibration_status() == CALIBRATION_STATUS_UNKNOWN) {
  924. // Reset the babystepping values, so the printer will not move the Z axis up when the babystepping is enabled.
  925. eeprom_update_word((uint16_t*)EEPROM_BABYSTEP_Z, 0);
  926. // Show the message.
  927. lcd_show_fullscreen_message_and_wait_P(MSG_FOLLOW_CALIBRATION_FLOW);
  928. }
  929. else if (calibration_status() == CALIBRATION_STATUS_LIVE_ADJUST) {
  930. // Show the message.
  931. lcd_show_fullscreen_message_and_wait_P(MSG_BABYSTEP_Z_NOT_SET);
  932. lcd_update_enable(true);
  933. }
  934. else if (calibration_status() == CALIBRATION_STATUS_CALIBRATED && temp_cal_active == true && calibration_status_pinda() == false) {
  935. //lcd_show_fullscreen_message_and_wait_P(MSG_PINDA_NOT_CALIBRATED);
  936. lcd_update_enable(true);
  937. }
  938. else if (calibration_status() == CALIBRATION_STATUS_Z_CALIBRATION) {
  939. // Show the message.
  940. lcd_show_fullscreen_message_and_wait_P(MSG_FOLLOW_CALIBRATION_FLOW);
  941. }
  942. }
  943. KEEPALIVE_STATE(IN_PROCESS);
  944. #endif //DEBUG_DISABLE_STARTMSGS
  945. lcd_update_enable(true);
  946. lcd_implementation_clear();
  947. lcd_update(2);
  948. // Store the currently running firmware into an eeprom,
  949. // so the next time the firmware gets updated, it will know from which version it has been updated.
  950. update_current_firmware_version_to_eeprom();
  951. if (eeprom_read_byte((uint8_t*)EEPROM_UVLO) == 1) { //previous print was terminated by UVLO
  952. /*
  953. if (lcd_show_fullscreen_message_yes_no_and_wait_P(MSG_RECOVER_PRINT, false)) recover_print();
  954. else {
  955. eeprom_update_byte((uint8_t*)EEPROM_UVLO, 0);
  956. lcd_update_enable(true);
  957. lcd_update(2);
  958. lcd_setstatuspgm(WELCOME_MSG);
  959. }
  960. */
  961. manage_heater(); // Update temperatures
  962. #ifdef DEBUG_UVLO_AUTOMATIC_RECOVER
  963. MYSERIAL.println("Power panic detected!");
  964. MYSERIAL.print("Current bed temp:");
  965. MYSERIAL.println(degBed());
  966. MYSERIAL.print("Saved bed temp:");
  967. MYSERIAL.println((float)eeprom_read_byte((uint8_t*)EEPROM_UVLO_TARGET_BED));
  968. #endif
  969. if ( degBed() > ( (float)eeprom_read_byte((uint8_t*)EEPROM_UVLO_TARGET_BED) - AUTOMATIC_UVLO_BED_TEMP_OFFSET) ){
  970. #ifdef DEBUG_UVLO_AUTOMATIC_RECOVER
  971. MYSERIAL.println("Automatic recovery!");
  972. #endif
  973. recover_print(1);
  974. }
  975. else{
  976. #ifdef DEBUG_UVLO_AUTOMATIC_RECOVER
  977. MYSERIAL.println("Normal recovery!");
  978. #endif
  979. if ( lcd_show_fullscreen_message_yes_no_and_wait_P(MSG_RECOVER_PRINT, false) ) recover_print(0);
  980. else {
  981. eeprom_update_byte((uint8_t*)EEPROM_UVLO, 0);
  982. lcd_update_enable(true);
  983. lcd_update(2);
  984. lcd_setstatuspgm(WELCOME_MSG);
  985. }
  986. }
  987. }
  988. KEEPALIVE_STATE(NOT_BUSY);
  989. wdt_enable(WDTO_4S);
  990. }
  991. void trace();
  992. #define CHUNK_SIZE 64 // bytes
  993. #define SAFETY_MARGIN 1
  994. char chunk[CHUNK_SIZE+SAFETY_MARGIN];
  995. int chunkHead = 0;
  996. int serial_read_stream() {
  997. setTargetHotend(0, 0);
  998. setTargetBed(0);
  999. lcd_implementation_clear();
  1000. lcd_printPGM(PSTR(" Upload in progress"));
  1001. // first wait for how many bytes we will receive
  1002. uint32_t bytesToReceive;
  1003. // receive the four bytes
  1004. char bytesToReceiveBuffer[4];
  1005. for (int i=0; i<4; i++) {
  1006. int data;
  1007. while ((data = MYSERIAL.read()) == -1) {};
  1008. bytesToReceiveBuffer[i] = data;
  1009. }
  1010. // make it a uint32
  1011. memcpy(&bytesToReceive, &bytesToReceiveBuffer, 4);
  1012. // we're ready, notify the sender
  1013. MYSERIAL.write('+');
  1014. // lock in the routine
  1015. uint32_t receivedBytes = 0;
  1016. while (prusa_sd_card_upload) {
  1017. int i;
  1018. for (i=0; i<CHUNK_SIZE; i++) {
  1019. int data;
  1020. // check if we're not done
  1021. if (receivedBytes == bytesToReceive) {
  1022. break;
  1023. }
  1024. // read the next byte
  1025. while ((data = MYSERIAL.read()) == -1) {};
  1026. receivedBytes++;
  1027. // save it to the chunk
  1028. chunk[i] = data;
  1029. }
  1030. // write the chunk to SD
  1031. card.write_command_no_newline(&chunk[0]);
  1032. // notify the sender we're ready for more data
  1033. MYSERIAL.write('+');
  1034. // for safety
  1035. manage_heater();
  1036. // check if we're done
  1037. if(receivedBytes == bytesToReceive) {
  1038. trace(); // beep
  1039. card.closefile();
  1040. prusa_sd_card_upload = false;
  1041. SERIAL_PROTOCOLLNRPGM(MSG_FILE_SAVED);
  1042. return 0;
  1043. }
  1044. }
  1045. }
  1046. #ifdef HOST_KEEPALIVE_FEATURE
  1047. /**
  1048. * Output a "busy" message at regular intervals
  1049. * while the machine is not accepting commands.
  1050. */
  1051. void host_keepalive() {
  1052. if (farm_mode) return;
  1053. long ms = millis();
  1054. if (host_keepalive_interval && busy_state != NOT_BUSY) {
  1055. if ((ms - prev_busy_signal_ms) < (long)(1000L * host_keepalive_interval)) return;
  1056. switch (busy_state) {
  1057. case IN_HANDLER:
  1058. case IN_PROCESS:
  1059. SERIAL_ECHO_START;
  1060. SERIAL_ECHOLNPGM("busy: processing");
  1061. break;
  1062. case PAUSED_FOR_USER:
  1063. SERIAL_ECHO_START;
  1064. SERIAL_ECHOLNPGM("busy: paused for user");
  1065. break;
  1066. case PAUSED_FOR_INPUT:
  1067. SERIAL_ECHO_START;
  1068. SERIAL_ECHOLNPGM("busy: paused for input");
  1069. break;
  1070. default:
  1071. break;
  1072. }
  1073. }
  1074. prev_busy_signal_ms = ms;
  1075. }
  1076. #endif
  1077. // The loop() function is called in an endless loop by the Arduino framework from the default main() routine.
  1078. // Before loop(), the setup() function is called by the main() routine.
  1079. void loop()
  1080. {
  1081. KEEPALIVE_STATE(NOT_BUSY);
  1082. bool stack_integrity = true;
  1083. if (usb_printing_counter > 0 && millis()-_usb_timer > 1000)
  1084. {
  1085. is_usb_printing = true;
  1086. usb_printing_counter--;
  1087. _usb_timer = millis();
  1088. }
  1089. if (usb_printing_counter == 0)
  1090. {
  1091. is_usb_printing = false;
  1092. }
  1093. if (prusa_sd_card_upload)
  1094. {
  1095. //we read byte-by byte
  1096. serial_read_stream();
  1097. } else
  1098. {
  1099. get_command();
  1100. #ifdef SDSUPPORT
  1101. card.checkautostart(false);
  1102. #endif
  1103. if(buflen)
  1104. {
  1105. cmdbuffer_front_already_processed = false;
  1106. #ifdef SDSUPPORT
  1107. if(card.saving)
  1108. {
  1109. // Saving a G-code file onto an SD-card is in progress.
  1110. // Saving starts with M28, saving until M29 is seen.
  1111. if(strstr_P(CMDBUFFER_CURRENT_STRING, PSTR("M29")) == NULL) {
  1112. card.write_command(CMDBUFFER_CURRENT_STRING);
  1113. if(card.logging)
  1114. process_commands();
  1115. else
  1116. SERIAL_PROTOCOLLNRPGM(MSG_OK);
  1117. } else {
  1118. card.closefile();
  1119. SERIAL_PROTOCOLLNRPGM(MSG_FILE_SAVED);
  1120. }
  1121. } else {
  1122. process_commands();
  1123. }
  1124. #else
  1125. process_commands();
  1126. #endif //SDSUPPORT
  1127. if (! cmdbuffer_front_already_processed && buflen)
  1128. {
  1129. cli();
  1130. union {
  1131. struct {
  1132. char lo;
  1133. char hi;
  1134. } lohi;
  1135. uint16_t value;
  1136. } sdlen;
  1137. sdlen.value = 0;
  1138. if (CMDBUFFER_CURRENT_TYPE == CMDBUFFER_CURRENT_TYPE_SDCARD) {
  1139. sdlen.lohi.lo = cmdbuffer[bufindr + 1];
  1140. sdlen.lohi.hi = cmdbuffer[bufindr + 2];
  1141. }
  1142. cmdqueue_pop_front();
  1143. planner_add_sd_length(sdlen.value);
  1144. sei();
  1145. }
  1146. host_keepalive();
  1147. }
  1148. }
  1149. //check heater every n milliseconds
  1150. manage_heater();
  1151. isPrintPaused ? manage_inactivity(true) : manage_inactivity(false);
  1152. checkHitEndstops();
  1153. lcd_update();
  1154. #ifdef PAT9125
  1155. fsensor_update();
  1156. #endif //PAT9125
  1157. #ifdef TMC2130
  1158. tmc2130_check_overtemp();
  1159. if (tmc2130_sg_crash)
  1160. {
  1161. tmc2130_sg_crash = false;
  1162. // crashdet_stop_and_save_print();
  1163. enquecommand_P((PSTR("CRASH_DETECTED")));
  1164. }
  1165. #endif //TMC2130
  1166. }
  1167. #define DEFINE_PGM_READ_ANY(type, reader) \
  1168. static inline type pgm_read_any(const type *p) \
  1169. { return pgm_read_##reader##_near(p); }
  1170. DEFINE_PGM_READ_ANY(float, float);
  1171. DEFINE_PGM_READ_ANY(signed char, byte);
  1172. #define XYZ_CONSTS_FROM_CONFIG(type, array, CONFIG) \
  1173. static const PROGMEM type array##_P[3] = \
  1174. { X_##CONFIG, Y_##CONFIG, Z_##CONFIG }; \
  1175. static inline type array(int axis) \
  1176. { return pgm_read_any(&array##_P[axis]); } \
  1177. type array##_ext(int axis) \
  1178. { return pgm_read_any(&array##_P[axis]); }
  1179. XYZ_CONSTS_FROM_CONFIG(float, base_min_pos, MIN_POS);
  1180. XYZ_CONSTS_FROM_CONFIG(float, base_max_pos, MAX_POS);
  1181. XYZ_CONSTS_FROM_CONFIG(float, base_home_pos, HOME_POS);
  1182. XYZ_CONSTS_FROM_CONFIG(float, max_length, MAX_LENGTH);
  1183. XYZ_CONSTS_FROM_CONFIG(float, home_retract_mm, HOME_RETRACT_MM);
  1184. XYZ_CONSTS_FROM_CONFIG(signed char, home_dir, HOME_DIR);
  1185. static void axis_is_at_home(int axis) {
  1186. current_position[axis] = base_home_pos(axis) + add_homing[axis];
  1187. min_pos[axis] = base_min_pos(axis) + add_homing[axis];
  1188. max_pos[axis] = base_max_pos(axis) + add_homing[axis];
  1189. }
  1190. inline void set_current_to_destination() { memcpy(current_position, destination, sizeof(current_position)); }
  1191. inline void set_destination_to_current() { memcpy(destination, current_position, sizeof(destination)); }
  1192. static void setup_for_endstop_move(bool enable_endstops_now = true) {
  1193. saved_feedrate = feedrate;
  1194. saved_feedmultiply = feedmultiply;
  1195. feedmultiply = 100;
  1196. previous_millis_cmd = millis();
  1197. enable_endstops(enable_endstops_now);
  1198. }
  1199. static void clean_up_after_endstop_move() {
  1200. #ifdef ENDSTOPS_ONLY_FOR_HOMING
  1201. enable_endstops(false);
  1202. #endif
  1203. feedrate = saved_feedrate;
  1204. feedmultiply = saved_feedmultiply;
  1205. previous_millis_cmd = millis();
  1206. }
  1207. #ifdef ENABLE_AUTO_BED_LEVELING
  1208. #ifdef AUTO_BED_LEVELING_GRID
  1209. static void set_bed_level_equation_lsq(double *plane_equation_coefficients)
  1210. {
  1211. vector_3 planeNormal = vector_3(-plane_equation_coefficients[0], -plane_equation_coefficients[1], 1);
  1212. planeNormal.debug("planeNormal");
  1213. plan_bed_level_matrix = matrix_3x3::create_look_at(planeNormal);
  1214. //bedLevel.debug("bedLevel");
  1215. //plan_bed_level_matrix.debug("bed level before");
  1216. //vector_3 uncorrected_position = plan_get_position_mm();
  1217. //uncorrected_position.debug("position before");
  1218. vector_3 corrected_position = plan_get_position();
  1219. // corrected_position.debug("position after");
  1220. current_position[X_AXIS] = corrected_position.x;
  1221. current_position[Y_AXIS] = corrected_position.y;
  1222. current_position[Z_AXIS] = corrected_position.z;
  1223. // put the bed at 0 so we don't go below it.
  1224. current_position[Z_AXIS] = zprobe_zoffset; // in the lsq we reach here after raising the extruder due to the loop structure
  1225. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1226. }
  1227. #else // not AUTO_BED_LEVELING_GRID
  1228. static void set_bed_level_equation_3pts(float z_at_pt_1, float z_at_pt_2, float z_at_pt_3) {
  1229. plan_bed_level_matrix.set_to_identity();
  1230. vector_3 pt1 = vector_3(ABL_PROBE_PT_1_X, ABL_PROBE_PT_1_Y, z_at_pt_1);
  1231. vector_3 pt2 = vector_3(ABL_PROBE_PT_2_X, ABL_PROBE_PT_2_Y, z_at_pt_2);
  1232. vector_3 pt3 = vector_3(ABL_PROBE_PT_3_X, ABL_PROBE_PT_3_Y, z_at_pt_3);
  1233. vector_3 from_2_to_1 = (pt1 - pt2).get_normal();
  1234. vector_3 from_2_to_3 = (pt3 - pt2).get_normal();
  1235. vector_3 planeNormal = vector_3::cross(from_2_to_1, from_2_to_3).get_normal();
  1236. planeNormal = vector_3(planeNormal.x, planeNormal.y, abs(planeNormal.z));
  1237. plan_bed_level_matrix = matrix_3x3::create_look_at(planeNormal);
  1238. vector_3 corrected_position = plan_get_position();
  1239. current_position[X_AXIS] = corrected_position.x;
  1240. current_position[Y_AXIS] = corrected_position.y;
  1241. current_position[Z_AXIS] = corrected_position.z;
  1242. // put the bed at 0 so we don't go below it.
  1243. current_position[Z_AXIS] = zprobe_zoffset;
  1244. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1245. }
  1246. #endif // AUTO_BED_LEVELING_GRID
  1247. static void run_z_probe() {
  1248. plan_bed_level_matrix.set_to_identity();
  1249. feedrate = homing_feedrate[Z_AXIS];
  1250. // move down until you find the bed
  1251. float zPosition = -10;
  1252. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder);
  1253. st_synchronize();
  1254. // we have to let the planner know where we are right now as it is not where we said to go.
  1255. zPosition = st_get_position_mm(Z_AXIS);
  1256. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS]);
  1257. // move up the retract distance
  1258. zPosition += home_retract_mm(Z_AXIS);
  1259. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder);
  1260. st_synchronize();
  1261. // move back down slowly to find bed
  1262. feedrate = homing_feedrate[Z_AXIS]/4;
  1263. zPosition -= home_retract_mm(Z_AXIS) * 2;
  1264. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder);
  1265. st_synchronize();
  1266. current_position[Z_AXIS] = st_get_position_mm(Z_AXIS);
  1267. // make sure the planner knows where we are as it may be a bit different than we last said to move to
  1268. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1269. }
  1270. static void do_blocking_move_to(float x, float y, float z) {
  1271. float oldFeedRate = feedrate;
  1272. feedrate = homing_feedrate[Z_AXIS];
  1273. current_position[Z_AXIS] = z;
  1274. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], feedrate/60, active_extruder);
  1275. st_synchronize();
  1276. feedrate = XY_TRAVEL_SPEED;
  1277. current_position[X_AXIS] = x;
  1278. current_position[Y_AXIS] = y;
  1279. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], feedrate/60, active_extruder);
  1280. st_synchronize();
  1281. feedrate = oldFeedRate;
  1282. }
  1283. static void do_blocking_move_relative(float offset_x, float offset_y, float offset_z) {
  1284. do_blocking_move_to(current_position[X_AXIS] + offset_x, current_position[Y_AXIS] + offset_y, current_position[Z_AXIS] + offset_z);
  1285. }
  1286. /// Probe bed height at position (x,y), returns the measured z value
  1287. static float probe_pt(float x, float y, float z_before) {
  1288. // move to right place
  1289. do_blocking_move_to(current_position[X_AXIS], current_position[Y_AXIS], z_before);
  1290. do_blocking_move_to(x - X_PROBE_OFFSET_FROM_EXTRUDER, y - Y_PROBE_OFFSET_FROM_EXTRUDER, current_position[Z_AXIS]);
  1291. run_z_probe();
  1292. float measured_z = current_position[Z_AXIS];
  1293. SERIAL_PROTOCOLRPGM(MSG_BED);
  1294. SERIAL_PROTOCOLPGM(" x: ");
  1295. SERIAL_PROTOCOL(x);
  1296. SERIAL_PROTOCOLPGM(" y: ");
  1297. SERIAL_PROTOCOL(y);
  1298. SERIAL_PROTOCOLPGM(" z: ");
  1299. SERIAL_PROTOCOL(measured_z);
  1300. SERIAL_PROTOCOLPGM("\n");
  1301. return measured_z;
  1302. }
  1303. #endif // #ifdef ENABLE_AUTO_BED_LEVELING
  1304. #ifdef LIN_ADVANCE
  1305. /**
  1306. * M900: Set and/or Get advance K factor and WH/D ratio
  1307. *
  1308. * K<factor> Set advance K factor
  1309. * R<ratio> Set ratio directly (overrides WH/D)
  1310. * W<width> H<height> D<diam> Set ratio from WH/D
  1311. */
  1312. inline void gcode_M900() {
  1313. st_synchronize();
  1314. const float newK = code_seen('K') ? code_value_float() : -1;
  1315. if (newK >= 0) extruder_advance_k = newK;
  1316. float newR = code_seen('R') ? code_value_float() : -1;
  1317. if (newR < 0) {
  1318. const float newD = code_seen('D') ? code_value_float() : -1,
  1319. newW = code_seen('W') ? code_value_float() : -1,
  1320. newH = code_seen('H') ? code_value_float() : -1;
  1321. if (newD >= 0 && newW >= 0 && newH >= 0)
  1322. newR = newD ? (newW * newH) / (sq(newD * 0.5) * M_PI) : 0;
  1323. }
  1324. if (newR >= 0) advance_ed_ratio = newR;
  1325. SERIAL_ECHO_START;
  1326. SERIAL_ECHOPGM("Advance K=");
  1327. SERIAL_ECHOLN(extruder_advance_k);
  1328. SERIAL_ECHOPGM(" E/D=");
  1329. const float ratio = advance_ed_ratio;
  1330. if (ratio) SERIAL_ECHOLN(ratio); else SERIAL_ECHOLNPGM("Auto");
  1331. }
  1332. #endif // LIN_ADVANCE
  1333. #ifdef TMC2130
  1334. bool calibrate_z_auto()
  1335. {
  1336. //lcd_display_message_fullscreen_P(MSG_CALIBRATE_Z_AUTO);
  1337. lcd_implementation_clear();
  1338. lcd_print_at_PGM(0,1, MSG_CALIBRATE_Z_AUTO);
  1339. bool endstops_enabled = enable_endstops(true);
  1340. int axis_up_dir = -home_dir(Z_AXIS);
  1341. tmc2130_home_enter(Z_AXIS_MASK);
  1342. current_position[Z_AXIS] = 0;
  1343. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1344. set_destination_to_current();
  1345. destination[Z_AXIS] += (1.1 * max_length(Z_AXIS) * axis_up_dir);
  1346. feedrate = homing_feedrate[Z_AXIS];
  1347. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1348. tmc2130_home_restart(Z_AXIS);
  1349. st_synchronize();
  1350. // current_position[axis] = 0;
  1351. // plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1352. tmc2130_home_exit();
  1353. enable_endstops(false);
  1354. current_position[Z_AXIS] = 0;
  1355. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1356. set_destination_to_current();
  1357. destination[Z_AXIS] += 10 * axis_up_dir; //10mm up
  1358. feedrate = homing_feedrate[Z_AXIS] / 2;
  1359. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1360. st_synchronize();
  1361. enable_endstops(endstops_enabled);
  1362. current_position[Z_AXIS] = Z_MAX_POS+2.0;
  1363. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1364. return true;
  1365. }
  1366. #endif //TMC2130
  1367. void homeaxis(int axis)
  1368. {
  1369. bool endstops_enabled = enable_endstops(true); //RP: endstops should be allways enabled durring homming
  1370. #define HOMEAXIS_DO(LETTER) \
  1371. ((LETTER##_MIN_PIN > -1 && LETTER##_HOME_DIR==-1) || (LETTER##_MAX_PIN > -1 && LETTER##_HOME_DIR==1))
  1372. if ((axis==X_AXIS)?HOMEAXIS_DO(X):(axis==Y_AXIS)?HOMEAXIS_DO(Y):0)
  1373. {
  1374. int axis_home_dir = home_dir(axis);
  1375. feedrate = homing_feedrate[axis];
  1376. #ifdef TMC2130
  1377. tmc2130_home_enter(X_AXIS_MASK << axis);
  1378. #endif
  1379. // Move right a bit, so that the print head does not touch the left end position,
  1380. // and the following left movement has a chance to achieve the required velocity
  1381. // for the stall guard to work.
  1382. current_position[axis] = 0;
  1383. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1384. // destination[axis] = 11.f;
  1385. destination[axis] = 3.f;
  1386. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1387. st_synchronize();
  1388. // Move left away from the possible collision with the collision detection disabled.
  1389. endstops_hit_on_purpose();
  1390. enable_endstops(false);
  1391. current_position[axis] = 0;
  1392. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1393. destination[axis] = - 1.;
  1394. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1395. st_synchronize();
  1396. // Now continue to move up to the left end stop with the collision detection enabled.
  1397. enable_endstops(true);
  1398. destination[axis] = - 1.1 * max_length(axis);
  1399. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1400. st_synchronize();
  1401. // Move right from the collision to a known distance from the left end stop with the collision detection disabled.
  1402. endstops_hit_on_purpose();
  1403. enable_endstops(false);
  1404. current_position[axis] = 0;
  1405. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1406. destination[axis] = 10.f;
  1407. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1408. st_synchronize();
  1409. endstops_hit_on_purpose();
  1410. // Now move left up to the collision, this time with a repeatable velocity.
  1411. enable_endstops(true);
  1412. destination[axis] = - 15.f;
  1413. feedrate = homing_feedrate[axis]/2;
  1414. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1415. st_synchronize();
  1416. axis_is_at_home(axis);
  1417. axis_known_position[axis] = true;
  1418. #ifdef TMC2130
  1419. tmc2130_home_exit();
  1420. #endif
  1421. // Move the X carriage away from the collision.
  1422. // If this is not done, the X cariage will jump from the collision at the instant the Trinamic driver reduces power on idle.
  1423. endstops_hit_on_purpose();
  1424. enable_endstops(false);
  1425. {
  1426. // Two full periods (4 full steps).
  1427. float gap = 0.32f * 2.f;
  1428. current_position[axis] -= gap;
  1429. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1430. current_position[axis] += gap;
  1431. }
  1432. destination[axis] = current_position[axis];
  1433. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], 0.3f*feedrate/60, active_extruder);
  1434. st_synchronize();
  1435. feedrate = 0.0;
  1436. }
  1437. else if ((axis==Z_AXIS)?HOMEAXIS_DO(Z):0)
  1438. {
  1439. int axis_home_dir = home_dir(axis);
  1440. current_position[axis] = 0;
  1441. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1442. destination[axis] = 1.5 * max_length(axis) * axis_home_dir;
  1443. feedrate = homing_feedrate[axis];
  1444. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1445. st_synchronize();
  1446. current_position[axis] = 0;
  1447. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1448. destination[axis] = -home_retract_mm(axis) * axis_home_dir;
  1449. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1450. st_synchronize();
  1451. destination[axis] = 2*home_retract_mm(axis) * axis_home_dir;
  1452. feedrate = homing_feedrate[axis]/2 ;
  1453. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1454. st_synchronize();
  1455. axis_is_at_home(axis);
  1456. destination[axis] = current_position[axis];
  1457. feedrate = 0.0;
  1458. endstops_hit_on_purpose();
  1459. axis_known_position[axis] = true;
  1460. }
  1461. enable_endstops(endstops_enabled);
  1462. }
  1463. /**/
  1464. void home_xy()
  1465. {
  1466. set_destination_to_current();
  1467. homeaxis(X_AXIS);
  1468. homeaxis(Y_AXIS);
  1469. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1470. endstops_hit_on_purpose();
  1471. }
  1472. void refresh_cmd_timeout(void)
  1473. {
  1474. previous_millis_cmd = millis();
  1475. }
  1476. #ifdef FWRETRACT
  1477. void retract(bool retracting, bool swapretract = false) {
  1478. if(retracting && !retracted[active_extruder]) {
  1479. destination[X_AXIS]=current_position[X_AXIS];
  1480. destination[Y_AXIS]=current_position[Y_AXIS];
  1481. destination[Z_AXIS]=current_position[Z_AXIS];
  1482. destination[E_AXIS]=current_position[E_AXIS];
  1483. if (swapretract) {
  1484. current_position[E_AXIS]+=retract_length_swap/volumetric_multiplier[active_extruder];
  1485. } else {
  1486. current_position[E_AXIS]+=retract_length/volumetric_multiplier[active_extruder];
  1487. }
  1488. plan_set_e_position(current_position[E_AXIS]);
  1489. float oldFeedrate = feedrate;
  1490. feedrate=retract_feedrate*60;
  1491. retracted[active_extruder]=true;
  1492. prepare_move();
  1493. current_position[Z_AXIS]-=retract_zlift;
  1494. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1495. prepare_move();
  1496. feedrate = oldFeedrate;
  1497. } else if(!retracting && retracted[active_extruder]) {
  1498. destination[X_AXIS]=current_position[X_AXIS];
  1499. destination[Y_AXIS]=current_position[Y_AXIS];
  1500. destination[Z_AXIS]=current_position[Z_AXIS];
  1501. destination[E_AXIS]=current_position[E_AXIS];
  1502. current_position[Z_AXIS]+=retract_zlift;
  1503. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1504. //prepare_move();
  1505. if (swapretract) {
  1506. current_position[E_AXIS]-=(retract_length_swap+retract_recover_length_swap)/volumetric_multiplier[active_extruder];
  1507. } else {
  1508. current_position[E_AXIS]-=(retract_length+retract_recover_length)/volumetric_multiplier[active_extruder];
  1509. }
  1510. plan_set_e_position(current_position[E_AXIS]);
  1511. float oldFeedrate = feedrate;
  1512. feedrate=retract_recover_feedrate*60;
  1513. retracted[active_extruder]=false;
  1514. prepare_move();
  1515. feedrate = oldFeedrate;
  1516. }
  1517. } //retract
  1518. #endif //FWRETRACT
  1519. void trace() {
  1520. tone(BEEPER, 440);
  1521. delay(25);
  1522. noTone(BEEPER);
  1523. delay(20);
  1524. }
  1525. /*
  1526. void ramming() {
  1527. // float tmp[4] = DEFAULT_MAX_FEEDRATE;
  1528. if (current_temperature[0] < 230) {
  1529. //PLA
  1530. max_feedrate[E_AXIS] = 50;
  1531. //current_position[E_AXIS] -= 8;
  1532. //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2100 / 60, active_extruder);
  1533. //current_position[E_AXIS] += 8;
  1534. //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2100 / 60, active_extruder);
  1535. current_position[E_AXIS] += 5.4;
  1536. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2800 / 60, active_extruder);
  1537. current_position[E_AXIS] += 3.2;
  1538. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  1539. current_position[E_AXIS] += 3;
  1540. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3400 / 60, active_extruder);
  1541. st_synchronize();
  1542. max_feedrate[E_AXIS] = 80;
  1543. current_position[E_AXIS] -= 82;
  1544. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 9500 / 60, active_extruder);
  1545. max_feedrate[E_AXIS] = 50;//tmp[E_AXIS];
  1546. current_position[E_AXIS] -= 20;
  1547. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 1200 / 60, active_extruder);
  1548. current_position[E_AXIS] += 5;
  1549. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400 / 60, active_extruder);
  1550. current_position[E_AXIS] += 5;
  1551. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  1552. current_position[E_AXIS] -= 10;
  1553. st_synchronize();
  1554. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  1555. current_position[E_AXIS] += 10;
  1556. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  1557. current_position[E_AXIS] -= 10;
  1558. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 800 / 60, active_extruder);
  1559. current_position[E_AXIS] += 10;
  1560. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 800 / 60, active_extruder);
  1561. current_position[E_AXIS] -= 10;
  1562. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 800 / 60, active_extruder);
  1563. st_synchronize();
  1564. }
  1565. else {
  1566. //ABS
  1567. max_feedrate[E_AXIS] = 50;
  1568. //current_position[E_AXIS] -= 8;
  1569. //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2100 / 60, active_extruder);
  1570. //current_position[E_AXIS] += 8;
  1571. //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2100 / 60, active_extruder);
  1572. current_position[E_AXIS] += 3.1;
  1573. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2000 / 60, active_extruder);
  1574. current_position[E_AXIS] += 3.1;
  1575. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2500 / 60, active_extruder);
  1576. current_position[E_AXIS] += 4;
  1577. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  1578. st_synchronize();
  1579. //current_position[X_AXIS] += 23; //delay
  1580. //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600/60, active_extruder); //delay
  1581. //current_position[X_AXIS] -= 23; //delay
  1582. //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600/60, active_extruder); //delay
  1583. delay(4700);
  1584. max_feedrate[E_AXIS] = 80;
  1585. current_position[E_AXIS] -= 92;
  1586. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 9900 / 60, active_extruder);
  1587. max_feedrate[E_AXIS] = 50;//tmp[E_AXIS];
  1588. current_position[E_AXIS] -= 5;
  1589. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 800 / 60, active_extruder);
  1590. current_position[E_AXIS] += 5;
  1591. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400 / 60, active_extruder);
  1592. current_position[E_AXIS] -= 5;
  1593. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  1594. st_synchronize();
  1595. current_position[E_AXIS] += 5;
  1596. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  1597. current_position[E_AXIS] -= 5;
  1598. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  1599. current_position[E_AXIS] += 5;
  1600. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  1601. current_position[E_AXIS] -= 5;
  1602. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  1603. st_synchronize();
  1604. }
  1605. }
  1606. */
  1607. bool gcode_M45(bool onlyZ) {
  1608. bool final_result = false;
  1609. // Only Z calibration?
  1610. if (!onlyZ) {
  1611. setTargetBed(0);
  1612. setTargetHotend(0, 0);
  1613. setTargetHotend(0, 1);
  1614. setTargetHotend(0, 2);
  1615. adjust_bed_reset(); //reset bed level correction
  1616. }
  1617. // Disable the default update procedure of the display. We will do a modal dialog.
  1618. lcd_update_enable(false);
  1619. // Let the planner use the uncorrected coordinates.
  1620. mbl.reset();
  1621. // Reset world2machine_rotation_and_skew and world2machine_shift, therefore
  1622. // the planner will not perform any adjustments in the XY plane.
  1623. // Wait for the motors to stop and update the current position with the absolute values.
  1624. world2machine_revert_to_uncorrected();
  1625. // Reset the baby step value applied without moving the axes.
  1626. babystep_reset();
  1627. // Mark all axes as in a need for homing.
  1628. memset(axis_known_position, 0, sizeof(axis_known_position));
  1629. // Home in the XY plane.
  1630. //set_destination_to_current();
  1631. setup_for_endstop_move();
  1632. lcd_display_message_fullscreen_P(MSG_AUTO_HOME);
  1633. home_xy();
  1634. // Let the user move the Z axes up to the end stoppers.
  1635. #ifdef TMC2130
  1636. if (calibrate_z_auto()) {
  1637. #else //TMC2130
  1638. if (lcd_calibrate_z_end_stop_manual(onlyZ)) {
  1639. #endif //TMC2130
  1640. refresh_cmd_timeout();
  1641. //if (((degHotend(0) > MAX_HOTEND_TEMP_CALIBRATION) || (degBed() > MAX_BED_TEMP_CALIBRATION)) && (!onlyZ)) {
  1642. // lcd_wait_for_cool_down();
  1643. //}
  1644. if(!onlyZ){
  1645. KEEPALIVE_STATE(PAUSED_FOR_USER);
  1646. bool result = lcd_show_fullscreen_message_yes_no_and_wait_P(MSG_STEEL_SHEET_CHECK, false, false);
  1647. if(result) lcd_show_fullscreen_message_and_wait_P(MSG_REMOVE_STEEL_SHEET);
  1648. lcd_show_fullscreen_message_and_wait_P(MSG_CONFIRM_NOZZLE_CLEAN);
  1649. lcd_show_fullscreen_message_and_wait_P(MSG_PAPER);
  1650. KEEPALIVE_STATE(IN_HANDLER);
  1651. lcd_display_message_fullscreen_P(MSG_FIND_BED_OFFSET_AND_SKEW_LINE1);
  1652. lcd_implementation_print_at(0, 2, 1);
  1653. lcd_printPGM(MSG_FIND_BED_OFFSET_AND_SKEW_LINE2);
  1654. }
  1655. // Move the print head close to the bed.
  1656. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  1657. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[Z_AXIS] / 40, active_extruder);
  1658. st_synchronize();
  1659. //#ifdef TMC2130
  1660. // tmc2130_home_enter(X_AXIS_MASK | Y_AXIS_MASK);
  1661. //#endif
  1662. int8_t verbosity_level = 0;
  1663. if (code_seen('V')) {
  1664. // Just 'V' without a number counts as V1.
  1665. char c = strchr_pointer[1];
  1666. verbosity_level = (c == ' ' || c == '\t' || c == 0) ? 1 : code_value_short();
  1667. }
  1668. if (onlyZ) {
  1669. clean_up_after_endstop_move();
  1670. // Z only calibration.
  1671. // Load the machine correction matrix
  1672. world2machine_initialize();
  1673. // and correct the current_position to match the transformed coordinate system.
  1674. world2machine_update_current();
  1675. //FIXME
  1676. bool result = sample_mesh_and_store_reference();
  1677. if (result) {
  1678. if (calibration_status() == CALIBRATION_STATUS_Z_CALIBRATION)
  1679. // Shipped, the nozzle height has been set already. The user can start printing now.
  1680. calibration_status_store(CALIBRATION_STATUS_CALIBRATED);
  1681. // babystep_apply();
  1682. }
  1683. }
  1684. else {
  1685. // Reset the baby step value and the baby step applied flag.
  1686. calibration_status_store(CALIBRATION_STATUS_ASSEMBLED);
  1687. eeprom_update_word((uint16_t*)EEPROM_BABYSTEP_Z, 0);
  1688. // Complete XYZ calibration.
  1689. uint8_t point_too_far_mask = 0;
  1690. BedSkewOffsetDetectionResultType result = find_bed_offset_and_skew(verbosity_level, point_too_far_mask);
  1691. clean_up_after_endstop_move();
  1692. // Print head up.
  1693. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  1694. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[Z_AXIS] / 40, active_extruder);
  1695. st_synchronize();
  1696. if (result >= 0) {
  1697. point_too_far_mask = 0;
  1698. // Second half: The fine adjustment.
  1699. // Let the planner use the uncorrected coordinates.
  1700. mbl.reset();
  1701. world2machine_reset();
  1702. // Home in the XY plane.
  1703. setup_for_endstop_move();
  1704. home_xy();
  1705. result = improve_bed_offset_and_skew(1, verbosity_level, point_too_far_mask);
  1706. clean_up_after_endstop_move();
  1707. // Print head up.
  1708. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  1709. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[Z_AXIS] / 40, active_extruder);
  1710. st_synchronize();
  1711. // if (result >= 0) babystep_apply();
  1712. }
  1713. lcd_bed_calibration_show_result(result, point_too_far_mask);
  1714. if (result >= 0) {
  1715. // Calibration valid, the machine should be able to print. Advise the user to run the V2Calibration.gcode.
  1716. calibration_status_store(CALIBRATION_STATUS_LIVE_ADJUST);
  1717. if (eeprom_read_byte((uint8_t*)EEPROM_WIZARD_ACTIVE) != 1) lcd_show_fullscreen_message_and_wait_P(MSG_BABYSTEP_Z_NOT_SET);
  1718. final_result = true;
  1719. }
  1720. }
  1721. #ifdef TMC2130
  1722. tmc2130_home_exit();
  1723. #endif
  1724. }
  1725. else {
  1726. // Timeouted.
  1727. }
  1728. lcd_update_enable(true);
  1729. return final_result;
  1730. }
  1731. void gcode_M701() {
  1732. #ifdef SNMM
  1733. extr_adj(snmm_extruder);//loads current extruder
  1734. #else
  1735. enable_z();
  1736. custom_message = true;
  1737. custom_message_type = 2;
  1738. lcd_setstatuspgm(MSG_LOADING_FILAMENT);
  1739. current_position[E_AXIS] += 70;
  1740. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400 / 60, active_extruder); //fast sequence
  1741. current_position[E_AXIS] += 25;
  1742. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 100 / 60, active_extruder); //slow sequence
  1743. st_synchronize();
  1744. if (!farm_mode && loading_flag) {
  1745. bool clean = lcd_show_fullscreen_message_yes_no_and_wait_P(MSG_FILAMENT_CLEAN, false, true);
  1746. while (!clean) {
  1747. lcd_update_enable(true);
  1748. lcd_update(2);
  1749. current_position[E_AXIS] += 25;
  1750. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 100 / 60, active_extruder); //slow sequence
  1751. st_synchronize();
  1752. clean = lcd_show_fullscreen_message_yes_no_and_wait_P(MSG_FILAMENT_CLEAN, false, true);
  1753. }
  1754. }
  1755. lcd_update_enable(true);
  1756. lcd_update(2);
  1757. lcd_setstatuspgm(WELCOME_MSG);
  1758. disable_z();
  1759. loading_flag = false;
  1760. custom_message = false;
  1761. custom_message_type = 0;
  1762. #endif
  1763. }
  1764. void process_commands()
  1765. {
  1766. #ifdef FILAMENT_RUNOUT_SUPPORT
  1767. SET_INPUT(FR_SENS);
  1768. #endif
  1769. #ifdef CMDBUFFER_DEBUG
  1770. SERIAL_ECHOPGM("Processing a GCODE command: ");
  1771. SERIAL_ECHO(cmdbuffer+bufindr+CMDHDRSIZE);
  1772. SERIAL_ECHOLNPGM("");
  1773. SERIAL_ECHOPGM("In cmdqueue: ");
  1774. SERIAL_ECHO(buflen);
  1775. SERIAL_ECHOLNPGM("");
  1776. #endif /* CMDBUFFER_DEBUG */
  1777. unsigned long codenum; //throw away variable
  1778. char *starpos = NULL;
  1779. #ifdef ENABLE_AUTO_BED_LEVELING
  1780. float x_tmp, y_tmp, z_tmp, real_z;
  1781. #endif
  1782. // PRUSA GCODES
  1783. KEEPALIVE_STATE(IN_HANDLER);
  1784. #ifdef SNMM
  1785. float tmp_motor[3] = DEFAULT_PWM_MOTOR_CURRENT;
  1786. float tmp_motor_loud[3] = DEFAULT_PWM_MOTOR_CURRENT_LOUD;
  1787. int8_t SilentMode;
  1788. #endif
  1789. if (code_seen("M117")) { //moved to highest priority place to be able to to print strings which includes "G", "PRUSA" and "^"
  1790. starpos = (strchr(strchr_pointer + 5, '*'));
  1791. if (starpos != NULL)
  1792. *(starpos) = '\0';
  1793. lcd_setstatus(strchr_pointer + 5);
  1794. }
  1795. else if(code_seen("CRASH_DETECTED"))
  1796. crashdet_detected();
  1797. else if(code_seen("CRASH_RECOVER"))
  1798. crashdet_recover();
  1799. else if(code_seen("CRASH_CANCEL"))
  1800. crashdet_cancel();
  1801. else if(code_seen("PRUSA")){
  1802. if (code_seen("Ping")) { //PRUSA Ping
  1803. if (farm_mode) {
  1804. PingTime = millis();
  1805. //MYSERIAL.print(farm_no); MYSERIAL.println(": OK");
  1806. }
  1807. }
  1808. else if (code_seen("PRN")) {
  1809. MYSERIAL.println(status_number);
  1810. }else if (code_seen("FAN")) {
  1811. MYSERIAL.print("E0:");
  1812. MYSERIAL.print(60*fan_speed[0]);
  1813. MYSERIAL.println(" RPM");
  1814. MYSERIAL.print("PRN0:");
  1815. MYSERIAL.print(60*fan_speed[1]);
  1816. MYSERIAL.println(" RPM");
  1817. }else if (code_seen("fn")) {
  1818. if (farm_mode) {
  1819. MYSERIAL.println(farm_no);
  1820. }
  1821. else {
  1822. MYSERIAL.println("Not in farm mode.");
  1823. }
  1824. }else if (code_seen("fv")) {
  1825. // get file version
  1826. #ifdef SDSUPPORT
  1827. card.openFile(strchr_pointer + 3,true);
  1828. while (true) {
  1829. uint16_t readByte = card.get();
  1830. MYSERIAL.write(readByte);
  1831. if (readByte=='\n') {
  1832. break;
  1833. }
  1834. }
  1835. card.closefile();
  1836. #endif // SDSUPPORT
  1837. } else if (code_seen("M28")) {
  1838. trace();
  1839. prusa_sd_card_upload = true;
  1840. card.openFile(strchr_pointer+4,false);
  1841. } else if (code_seen("SN")) {
  1842. if (farm_mode) {
  1843. selectedSerialPort = 0;
  1844. MSerial.write(";S");
  1845. // S/N is:CZPX0917X003XC13518
  1846. int numbersRead = 0;
  1847. while (numbersRead < 19) {
  1848. while (MSerial.available() > 0) {
  1849. uint8_t serial_char = MSerial.read();
  1850. selectedSerialPort = 1;
  1851. MSerial.write(serial_char);
  1852. numbersRead++;
  1853. selectedSerialPort = 0;
  1854. }
  1855. }
  1856. selectedSerialPort = 1;
  1857. MSerial.write('\n');
  1858. /*for (int b = 0; b < 3; b++) {
  1859. tone(BEEPER, 110);
  1860. delay(50);
  1861. noTone(BEEPER);
  1862. delay(50);
  1863. }*/
  1864. } else {
  1865. MYSERIAL.println("Not in farm mode.");
  1866. }
  1867. } else if(code_seen("Fir")){
  1868. SERIAL_PROTOCOLLN(FW_version);
  1869. } else if(code_seen("Rev")){
  1870. SERIAL_PROTOCOLLN(FILAMENT_SIZE "-" ELECTRONICS "-" NOZZLE_TYPE );
  1871. } else if(code_seen("Lang")) {
  1872. lcd_force_language_selection();
  1873. } else if(code_seen("Lz")) {
  1874. EEPROM_save_B(EEPROM_BABYSTEP_Z,0);
  1875. } else if (code_seen("SERIAL LOW")) {
  1876. MYSERIAL.println("SERIAL LOW");
  1877. MYSERIAL.begin(BAUDRATE);
  1878. return;
  1879. } else if (code_seen("SERIAL HIGH")) {
  1880. MYSERIAL.println("SERIAL HIGH");
  1881. MYSERIAL.begin(1152000);
  1882. return;
  1883. } else if(code_seen("Beat")) {
  1884. // Kick farm link timer
  1885. kicktime = millis();
  1886. } else if(code_seen("FR")) {
  1887. // Factory full reset
  1888. factory_reset(0,true);
  1889. }
  1890. //else if (code_seen('Cal')) {
  1891. // lcd_calibration();
  1892. // }
  1893. }
  1894. else if (code_seen('^')) {
  1895. // nothing, this is a version line
  1896. } else if(code_seen('G'))
  1897. {
  1898. switch((int)code_value())
  1899. {
  1900. case 0: // G0 -> G1
  1901. case 1: // G1
  1902. if(Stopped == false) {
  1903. #ifdef FILAMENT_RUNOUT_SUPPORT
  1904. if(READ(FR_SENS)){
  1905. feedmultiplyBckp=feedmultiply;
  1906. float target[4];
  1907. float lastpos[4];
  1908. target[X_AXIS]=current_position[X_AXIS];
  1909. target[Y_AXIS]=current_position[Y_AXIS];
  1910. target[Z_AXIS]=current_position[Z_AXIS];
  1911. target[E_AXIS]=current_position[E_AXIS];
  1912. lastpos[X_AXIS]=current_position[X_AXIS];
  1913. lastpos[Y_AXIS]=current_position[Y_AXIS];
  1914. lastpos[Z_AXIS]=current_position[Z_AXIS];
  1915. lastpos[E_AXIS]=current_position[E_AXIS];
  1916. //retract by E
  1917. target[E_AXIS]+= FILAMENTCHANGE_FIRSTRETRACT ;
  1918. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 400, active_extruder);
  1919. target[Z_AXIS]+= FILAMENTCHANGE_ZADD ;
  1920. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 300, active_extruder);
  1921. target[X_AXIS]= FILAMENTCHANGE_XPOS ;
  1922. target[Y_AXIS]= FILAMENTCHANGE_YPOS ;
  1923. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 70, active_extruder);
  1924. target[E_AXIS]+= FILAMENTCHANGE_FINALRETRACT ;
  1925. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 20, active_extruder);
  1926. //finish moves
  1927. st_synchronize();
  1928. //disable extruder steppers so filament can be removed
  1929. disable_e0();
  1930. disable_e1();
  1931. disable_e2();
  1932. delay(100);
  1933. //LCD_ALERTMESSAGEPGM(MSG_FILAMENTCHANGE);
  1934. uint8_t cnt=0;
  1935. int counterBeep = 0;
  1936. lcd_wait_interact();
  1937. while(!lcd_clicked()){
  1938. cnt++;
  1939. manage_heater();
  1940. manage_inactivity(true);
  1941. //lcd_update();
  1942. if(cnt==0)
  1943. {
  1944. #if BEEPER > 0
  1945. if (counterBeep== 500){
  1946. counterBeep = 0;
  1947. }
  1948. SET_OUTPUT(BEEPER);
  1949. if (counterBeep== 0){
  1950. WRITE(BEEPER,HIGH);
  1951. }
  1952. if (counterBeep== 20){
  1953. WRITE(BEEPER,LOW);
  1954. }
  1955. counterBeep++;
  1956. #else
  1957. #if !defined(LCD_FEEDBACK_FREQUENCY_HZ) || !defined(LCD_FEEDBACK_FREQUENCY_DURATION_MS)
  1958. lcd_buzz(1000/6,100);
  1959. #else
  1960. lcd_buzz(LCD_FEEDBACK_FREQUENCY_DURATION_MS,LCD_FEEDBACK_FREQUENCY_HZ);
  1961. #endif
  1962. #endif
  1963. }
  1964. }
  1965. WRITE(BEEPER,LOW);
  1966. target[E_AXIS]+= FILAMENTCHANGE_FIRSTFEED ;
  1967. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 20, active_extruder);
  1968. target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  1969. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder);
  1970. lcd_change_fil_state = 0;
  1971. lcd_loading_filament();
  1972. while ((lcd_change_fil_state == 0)||(lcd_change_fil_state != 1)){
  1973. lcd_change_fil_state = 0;
  1974. lcd_alright();
  1975. switch(lcd_change_fil_state){
  1976. case 2:
  1977. target[E_AXIS]+= FILAMENTCHANGE_FIRSTFEED ;
  1978. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 20, active_extruder);
  1979. target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  1980. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder);
  1981. lcd_loading_filament();
  1982. break;
  1983. case 3:
  1984. target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  1985. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder);
  1986. lcd_loading_color();
  1987. break;
  1988. default:
  1989. lcd_change_success();
  1990. break;
  1991. }
  1992. }
  1993. target[E_AXIS]+= 5;
  1994. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder);
  1995. target[E_AXIS]+= FILAMENTCHANGE_FIRSTRETRACT;
  1996. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 400, active_extruder);
  1997. //current_position[E_AXIS]=target[E_AXIS]; //the long retract of L is compensated by manual filament feeding
  1998. //plan_set_e_position(current_position[E_AXIS]);
  1999. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 70, active_extruder); //should do nothing
  2000. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], target[Z_AXIS], target[E_AXIS], 70, active_extruder); //move xy back
  2001. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], target[E_AXIS], 200, active_extruder); //move z back
  2002. target[E_AXIS]= target[E_AXIS] - FILAMENTCHANGE_FIRSTRETRACT;
  2003. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], target[E_AXIS], 5, active_extruder); //final untretract
  2004. plan_set_e_position(lastpos[E_AXIS]);
  2005. feedmultiply=feedmultiplyBckp;
  2006. char cmd[9];
  2007. sprintf_P(cmd, PSTR("M220 S%i"), feedmultiplyBckp);
  2008. enquecommand(cmd);
  2009. }
  2010. #endif
  2011. get_coordinates(); // For X Y Z E F
  2012. if (total_filament_used > ((current_position[E_AXIS] - destination[E_AXIS]) * 100)) { //protection against total_filament_used overflow
  2013. total_filament_used = total_filament_used + ((destination[E_AXIS] - current_position[E_AXIS]) * 100);
  2014. }
  2015. #ifdef FWRETRACT
  2016. if(autoretract_enabled)
  2017. if( !(code_seen('X') || code_seen('Y') || code_seen('Z')) && code_seen('E')) {
  2018. float echange=destination[E_AXIS]-current_position[E_AXIS];
  2019. if((echange<-MIN_RETRACT && !retracted) || (echange>MIN_RETRACT && retracted)) { //move appears to be an attempt to retract or recover
  2020. current_position[E_AXIS] = destination[E_AXIS]; //hide the slicer-generated retract/recover from calculations
  2021. plan_set_e_position(current_position[E_AXIS]); //AND from the planner
  2022. retract(!retracted);
  2023. return;
  2024. }
  2025. }
  2026. #endif //FWRETRACT
  2027. prepare_move();
  2028. //ClearToSend();
  2029. }
  2030. break;
  2031. case 2: // G2 - CW ARC
  2032. if(Stopped == false) {
  2033. get_arc_coordinates();
  2034. prepare_arc_move(true);
  2035. }
  2036. break;
  2037. case 3: // G3 - CCW ARC
  2038. if(Stopped == false) {
  2039. get_arc_coordinates();
  2040. prepare_arc_move(false);
  2041. }
  2042. break;
  2043. case 4: // G4 dwell
  2044. codenum = 0;
  2045. if(code_seen('P')) codenum = code_value(); // milliseconds to wait
  2046. if(code_seen('S')) codenum = code_value() * 1000; // seconds to wait
  2047. if(codenum != 0) LCD_MESSAGERPGM(MSG_DWELL);
  2048. st_synchronize();
  2049. codenum += millis(); // keep track of when we started waiting
  2050. previous_millis_cmd = millis();
  2051. while(millis() < codenum) {
  2052. manage_heater();
  2053. manage_inactivity();
  2054. lcd_update();
  2055. }
  2056. break;
  2057. #ifdef FWRETRACT
  2058. case 10: // G10 retract
  2059. #if EXTRUDERS > 1
  2060. retracted_swap[active_extruder]=(code_seen('S') && code_value_long() == 1); // checks for swap retract argument
  2061. retract(true,retracted_swap[active_extruder]);
  2062. #else
  2063. retract(true);
  2064. #endif
  2065. break;
  2066. case 11: // G11 retract_recover
  2067. #if EXTRUDERS > 1
  2068. retract(false,retracted_swap[active_extruder]);
  2069. #else
  2070. retract(false);
  2071. #endif
  2072. break;
  2073. #endif //FWRETRACT
  2074. case 28: //G28 Home all Axis one at a time
  2075. {
  2076. st_synchronize();
  2077. #if 1
  2078. SERIAL_ECHOPGM("G28, initial "); print_world_coordinates();
  2079. SERIAL_ECHOPGM("G28, initial "); print_physical_coordinates();
  2080. #endif
  2081. // Flag for the display update routine and to disable the print cancelation during homing.
  2082. homing_flag = true;
  2083. // Which axes should be homed?
  2084. bool home_x = code_seen(axis_codes[X_AXIS]);
  2085. bool home_y = code_seen(axis_codes[Y_AXIS]);
  2086. bool home_z = code_seen(axis_codes[Z_AXIS]);
  2087. // Either all X,Y,Z codes are present, or none of them.
  2088. bool home_all_axes = home_x == home_y && home_x == home_z;
  2089. if (home_all_axes)
  2090. // No X/Y/Z code provided means to home all axes.
  2091. home_x = home_y = home_z = true;
  2092. #ifdef ENABLE_AUTO_BED_LEVELING
  2093. plan_bed_level_matrix.set_to_identity(); //Reset the plane ("erase" all leveling data)
  2094. #endif //ENABLE_AUTO_BED_LEVELING
  2095. // Reset world2machine_rotation_and_skew and world2machine_shift, therefore
  2096. // the planner will not perform any adjustments in the XY plane.
  2097. // Wait for the motors to stop and update the current position with the absolute values.
  2098. world2machine_revert_to_uncorrected();
  2099. // For mesh bed leveling deactivate the matrix temporarily.
  2100. // It is necessary to disable the bed leveling for the X and Y homing moves, so that the move is performed
  2101. // in a single axis only.
  2102. // In case of re-homing the X or Y axes only, the mesh bed leveling is restored after G28.
  2103. #ifdef MESH_BED_LEVELING
  2104. uint8_t mbl_was_active = mbl.active;
  2105. mbl.active = 0;
  2106. current_position[Z_AXIS] = st_get_position_mm(Z_AXIS);
  2107. #endif
  2108. // Reset baby stepping to zero, if the babystepping has already been loaded before. The babystepsTodo value will be
  2109. // consumed during the first movements following this statement.
  2110. if (home_z)
  2111. babystep_undo();
  2112. saved_feedrate = feedrate;
  2113. saved_feedmultiply = feedmultiply;
  2114. feedmultiply = 100;
  2115. previous_millis_cmd = millis();
  2116. enable_endstops(true);
  2117. memcpy(destination, current_position, sizeof(destination));
  2118. feedrate = 0.0;
  2119. #if Z_HOME_DIR > 0 // If homing away from BED do Z first
  2120. if(home_z)
  2121. homeaxis(Z_AXIS);
  2122. #endif
  2123. #ifdef QUICK_HOME
  2124. // In the quick mode, if both x and y are to be homed, a diagonal move will be performed initially.
  2125. if(home_x && home_y) //first diagonal move
  2126. {
  2127. current_position[X_AXIS] = 0;current_position[Y_AXIS] = 0;
  2128. int x_axis_home_dir = home_dir(X_AXIS);
  2129. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2130. destination[X_AXIS] = 1.5 * max_length(X_AXIS) * x_axis_home_dir;destination[Y_AXIS] = 1.5 * max_length(Y_AXIS) * home_dir(Y_AXIS);
  2131. feedrate = homing_feedrate[X_AXIS];
  2132. if(homing_feedrate[Y_AXIS]<feedrate)
  2133. feedrate = homing_feedrate[Y_AXIS];
  2134. if (max_length(X_AXIS) > max_length(Y_AXIS)) {
  2135. feedrate *= sqrt(pow(max_length(Y_AXIS) / max_length(X_AXIS), 2) + 1);
  2136. } else {
  2137. feedrate *= sqrt(pow(max_length(X_AXIS) / max_length(Y_AXIS), 2) + 1);
  2138. }
  2139. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  2140. st_synchronize();
  2141. axis_is_at_home(X_AXIS);
  2142. axis_is_at_home(Y_AXIS);
  2143. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2144. destination[X_AXIS] = current_position[X_AXIS];
  2145. destination[Y_AXIS] = current_position[Y_AXIS];
  2146. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  2147. feedrate = 0.0;
  2148. st_synchronize();
  2149. endstops_hit_on_purpose();
  2150. current_position[X_AXIS] = destination[X_AXIS];
  2151. current_position[Y_AXIS] = destination[Y_AXIS];
  2152. current_position[Z_AXIS] = destination[Z_AXIS];
  2153. }
  2154. #endif /* QUICK_HOME */
  2155. if(home_x)
  2156. homeaxis(X_AXIS);
  2157. if(home_y)
  2158. homeaxis(Y_AXIS);
  2159. if(code_seen(axis_codes[X_AXIS]) && code_value_long() != 0)
  2160. current_position[X_AXIS]=code_value()+add_homing[X_AXIS];
  2161. if(code_seen(axis_codes[Y_AXIS]) && code_value_long() != 0)
  2162. current_position[Y_AXIS]=code_value()+add_homing[Y_AXIS];
  2163. #if Z_HOME_DIR < 0 // If homing towards BED do Z last
  2164. #ifndef Z_SAFE_HOMING
  2165. if(home_z) {
  2166. #if defined (Z_RAISE_BEFORE_HOMING) && (Z_RAISE_BEFORE_HOMING > 0)
  2167. destination[Z_AXIS] = Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS) * (-1); // Set destination away from bed
  2168. feedrate = max_feedrate[Z_AXIS];
  2169. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
  2170. st_synchronize();
  2171. #endif // defined (Z_RAISE_BEFORE_HOMING) && (Z_RAISE_BEFORE_HOMING > 0)
  2172. #if (defined(MESH_BED_LEVELING) && !defined(MK1BP)) // If Mesh bed leveling, moxve X&Y to safe position for home
  2173. if (!(axis_known_position[X_AXIS] && axis_known_position[Y_AXIS] ))
  2174. {
  2175. homeaxis(X_AXIS);
  2176. homeaxis(Y_AXIS);
  2177. }
  2178. // 1st mesh bed leveling measurement point, corrected.
  2179. world2machine_initialize();
  2180. world2machine(pgm_read_float(bed_ref_points), pgm_read_float(bed_ref_points+1), destination[X_AXIS], destination[Y_AXIS]);
  2181. world2machine_reset();
  2182. if (destination[Y_AXIS] < Y_MIN_POS)
  2183. destination[Y_AXIS] = Y_MIN_POS;
  2184. destination[Z_AXIS] = MESH_HOME_Z_SEARCH; // Set destination away from bed
  2185. feedrate = homing_feedrate[Z_AXIS]/10;
  2186. current_position[Z_AXIS] = 0;
  2187. enable_endstops(false);
  2188. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2189. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
  2190. st_synchronize();
  2191. current_position[X_AXIS] = destination[X_AXIS];
  2192. current_position[Y_AXIS] = destination[Y_AXIS];
  2193. enable_endstops(true);
  2194. endstops_hit_on_purpose();
  2195. homeaxis(Z_AXIS);
  2196. #else // MESH_BED_LEVELING
  2197. homeaxis(Z_AXIS);
  2198. #endif // MESH_BED_LEVELING
  2199. }
  2200. #else // defined(Z_SAFE_HOMING): Z Safe mode activated.
  2201. if(home_all_axes) {
  2202. destination[X_AXIS] = round(Z_SAFE_HOMING_X_POINT - X_PROBE_OFFSET_FROM_EXTRUDER);
  2203. destination[Y_AXIS] = round(Z_SAFE_HOMING_Y_POINT - Y_PROBE_OFFSET_FROM_EXTRUDER);
  2204. destination[Z_AXIS] = Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS) * (-1); // Set destination away from bed
  2205. feedrate = XY_TRAVEL_SPEED/60;
  2206. current_position[Z_AXIS] = 0;
  2207. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2208. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
  2209. st_synchronize();
  2210. current_position[X_AXIS] = destination[X_AXIS];
  2211. current_position[Y_AXIS] = destination[Y_AXIS];
  2212. homeaxis(Z_AXIS);
  2213. }
  2214. // Let's see if X and Y are homed and probe is inside bed area.
  2215. if(home_z) {
  2216. if ( (axis_known_position[X_AXIS]) && (axis_known_position[Y_AXIS]) \
  2217. && (current_position[X_AXIS]+X_PROBE_OFFSET_FROM_EXTRUDER >= X_MIN_POS) \
  2218. && (current_position[X_AXIS]+X_PROBE_OFFSET_FROM_EXTRUDER <= X_MAX_POS) \
  2219. && (current_position[Y_AXIS]+Y_PROBE_OFFSET_FROM_EXTRUDER >= Y_MIN_POS) \
  2220. && (current_position[Y_AXIS]+Y_PROBE_OFFSET_FROM_EXTRUDER <= Y_MAX_POS)) {
  2221. current_position[Z_AXIS] = 0;
  2222. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2223. destination[Z_AXIS] = Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS) * (-1); // Set destination away from bed
  2224. feedrate = max_feedrate[Z_AXIS];
  2225. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
  2226. st_synchronize();
  2227. homeaxis(Z_AXIS);
  2228. } else if (!((axis_known_position[X_AXIS]) && (axis_known_position[Y_AXIS]))) {
  2229. LCD_MESSAGERPGM(MSG_POSITION_UNKNOWN);
  2230. SERIAL_ECHO_START;
  2231. SERIAL_ECHOLNRPGM(MSG_POSITION_UNKNOWN);
  2232. } else {
  2233. LCD_MESSAGERPGM(MSG_ZPROBE_OUT);
  2234. SERIAL_ECHO_START;
  2235. SERIAL_ECHOLNRPGM(MSG_ZPROBE_OUT);
  2236. }
  2237. }
  2238. #endif // Z_SAFE_HOMING
  2239. #endif // Z_HOME_DIR < 0
  2240. if(code_seen(axis_codes[Z_AXIS]) && code_value_long() != 0)
  2241. current_position[Z_AXIS]=code_value()+add_homing[Z_AXIS];
  2242. #ifdef ENABLE_AUTO_BED_LEVELING
  2243. if(home_z)
  2244. current_position[Z_AXIS] += zprobe_zoffset; //Add Z_Probe offset (the distance is negative)
  2245. #endif
  2246. // Set the planner and stepper routine positions.
  2247. // At this point the mesh bed leveling and world2machine corrections are disabled and current_position
  2248. // contains the machine coordinates.
  2249. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2250. #ifdef ENDSTOPS_ONLY_FOR_HOMING
  2251. enable_endstops(false);
  2252. #endif
  2253. feedrate = saved_feedrate;
  2254. feedmultiply = saved_feedmultiply;
  2255. previous_millis_cmd = millis();
  2256. endstops_hit_on_purpose();
  2257. #ifndef MESH_BED_LEVELING
  2258. // If MESH_BED_LEVELING is not active, then it is the original Prusa i3.
  2259. // Offer the user to load the baby step value, which has been adjusted at the previous print session.
  2260. if(card.sdprinting && eeprom_read_word((uint16_t *)EEPROM_BABYSTEP_Z))
  2261. lcd_adjust_z();
  2262. #endif
  2263. // Load the machine correction matrix
  2264. world2machine_initialize();
  2265. // and correct the current_position XY axes to match the transformed coordinate system.
  2266. world2machine_update_current();
  2267. #if (defined(MESH_BED_LEVELING) && !defined(MK1BP))
  2268. if (code_seen(axis_codes[X_AXIS]) || code_seen(axis_codes[Y_AXIS]) || code_seen('W') || code_seen(axis_codes[Z_AXIS]))
  2269. {
  2270. if (! home_z && mbl_was_active) {
  2271. // Re-enable the mesh bed leveling if only the X and Y axes were re-homed.
  2272. mbl.active = true;
  2273. // and re-adjust the current logical Z axis with the bed leveling offset applicable at the current XY position.
  2274. current_position[Z_AXIS] -= mbl.get_z(st_get_position_mm(X_AXIS), st_get_position_mm(Y_AXIS));
  2275. }
  2276. }
  2277. else
  2278. {
  2279. st_synchronize();
  2280. homing_flag = false;
  2281. // Push the commands to the front of the message queue in the reverse order!
  2282. // There shall be always enough space reserved for these commands.
  2283. // enquecommand_front_P((PSTR("G80")));
  2284. goto case_G80;
  2285. }
  2286. #endif
  2287. if (farm_mode) { prusa_statistics(20); };
  2288. homing_flag = false;
  2289. SERIAL_ECHOPGM("G28, final "); print_world_coordinates();
  2290. SERIAL_ECHOPGM("G28, final "); print_physical_coordinates();
  2291. SERIAL_ECHOPGM("G28, final "); print_mesh_bed_leveling_table();
  2292. break;
  2293. }
  2294. #ifdef ENABLE_AUTO_BED_LEVELING
  2295. case 29: // G29 Detailed Z-Probe, probes the bed at 3 or more points.
  2296. {
  2297. #if Z_MIN_PIN == -1
  2298. #error "You must have a Z_MIN endstop in order to enable Auto Bed Leveling feature! Z_MIN_PIN must point to a valid hardware pin."
  2299. #endif
  2300. // Prevent user from running a G29 without first homing in X and Y
  2301. if (! (axis_known_position[X_AXIS] && axis_known_position[Y_AXIS]) )
  2302. {
  2303. LCD_MESSAGERPGM(MSG_POSITION_UNKNOWN);
  2304. SERIAL_ECHO_START;
  2305. SERIAL_ECHOLNRPGM(MSG_POSITION_UNKNOWN);
  2306. break; // abort G29, since we don't know where we are
  2307. }
  2308. st_synchronize();
  2309. // make sure the bed_level_rotation_matrix is identity or the planner will get it incorectly
  2310. //vector_3 corrected_position = plan_get_position_mm();
  2311. //corrected_position.debug("position before G29");
  2312. plan_bed_level_matrix.set_to_identity();
  2313. vector_3 uncorrected_position = plan_get_position();
  2314. //uncorrected_position.debug("position durring G29");
  2315. current_position[X_AXIS] = uncorrected_position.x;
  2316. current_position[Y_AXIS] = uncorrected_position.y;
  2317. current_position[Z_AXIS] = uncorrected_position.z;
  2318. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2319. setup_for_endstop_move();
  2320. feedrate = homing_feedrate[Z_AXIS];
  2321. #ifdef AUTO_BED_LEVELING_GRID
  2322. // probe at the points of a lattice grid
  2323. int xGridSpacing = (RIGHT_PROBE_BED_POSITION - LEFT_PROBE_BED_POSITION) / (AUTO_BED_LEVELING_GRID_POINTS-1);
  2324. int yGridSpacing = (BACK_PROBE_BED_POSITION - FRONT_PROBE_BED_POSITION) / (AUTO_BED_LEVELING_GRID_POINTS-1);
  2325. // solve the plane equation ax + by + d = z
  2326. // A is the matrix with rows [x y 1] for all the probed points
  2327. // B is the vector of the Z positions
  2328. // the normal vector to the plane is formed by the coefficients of the plane equation in the standard form, which is Vx*x+Vy*y+Vz*z+d = 0
  2329. // so Vx = -a Vy = -b Vz = 1 (we want the vector facing towards positive Z
  2330. // "A" matrix of the linear system of equations
  2331. double eqnAMatrix[AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS*3];
  2332. // "B" vector of Z points
  2333. double eqnBVector[AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS];
  2334. int probePointCounter = 0;
  2335. bool zig = true;
  2336. for (int yProbe=FRONT_PROBE_BED_POSITION; yProbe <= BACK_PROBE_BED_POSITION; yProbe += yGridSpacing)
  2337. {
  2338. int xProbe, xInc;
  2339. if (zig)
  2340. {
  2341. xProbe = LEFT_PROBE_BED_POSITION;
  2342. //xEnd = RIGHT_PROBE_BED_POSITION;
  2343. xInc = xGridSpacing;
  2344. zig = false;
  2345. } else // zag
  2346. {
  2347. xProbe = RIGHT_PROBE_BED_POSITION;
  2348. //xEnd = LEFT_PROBE_BED_POSITION;
  2349. xInc = -xGridSpacing;
  2350. zig = true;
  2351. }
  2352. for (int xCount=0; xCount < AUTO_BED_LEVELING_GRID_POINTS; xCount++)
  2353. {
  2354. float z_before;
  2355. if (probePointCounter == 0)
  2356. {
  2357. // raise before probing
  2358. z_before = Z_RAISE_BEFORE_PROBING;
  2359. } else
  2360. {
  2361. // raise extruder
  2362. z_before = current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS;
  2363. }
  2364. float measured_z = probe_pt(xProbe, yProbe, z_before);
  2365. eqnBVector[probePointCounter] = measured_z;
  2366. eqnAMatrix[probePointCounter + 0*AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS] = xProbe;
  2367. eqnAMatrix[probePointCounter + 1*AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS] = yProbe;
  2368. eqnAMatrix[probePointCounter + 2*AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS] = 1;
  2369. probePointCounter++;
  2370. xProbe += xInc;
  2371. }
  2372. }
  2373. clean_up_after_endstop_move();
  2374. // solve lsq problem
  2375. double *plane_equation_coefficients = qr_solve(AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS, 3, eqnAMatrix, eqnBVector);
  2376. SERIAL_PROTOCOLPGM("Eqn coefficients: a: ");
  2377. SERIAL_PROTOCOL(plane_equation_coefficients[0]);
  2378. SERIAL_PROTOCOLPGM(" b: ");
  2379. SERIAL_PROTOCOL(plane_equation_coefficients[1]);
  2380. SERIAL_PROTOCOLPGM(" d: ");
  2381. SERIAL_PROTOCOLLN(plane_equation_coefficients[2]);
  2382. set_bed_level_equation_lsq(plane_equation_coefficients);
  2383. free(plane_equation_coefficients);
  2384. #else // AUTO_BED_LEVELING_GRID not defined
  2385. // Probe at 3 arbitrary points
  2386. // probe 1
  2387. float z_at_pt_1 = probe_pt(ABL_PROBE_PT_1_X, ABL_PROBE_PT_1_Y, Z_RAISE_BEFORE_PROBING);
  2388. // probe 2
  2389. float z_at_pt_2 = probe_pt(ABL_PROBE_PT_2_X, ABL_PROBE_PT_2_Y, current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS);
  2390. // probe 3
  2391. float z_at_pt_3 = probe_pt(ABL_PROBE_PT_3_X, ABL_PROBE_PT_3_Y, current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS);
  2392. clean_up_after_endstop_move();
  2393. set_bed_level_equation_3pts(z_at_pt_1, z_at_pt_2, z_at_pt_3);
  2394. #endif // AUTO_BED_LEVELING_GRID
  2395. st_synchronize();
  2396. // The following code correct the Z height difference from z-probe position and hotend tip position.
  2397. // The Z height on homing is measured by Z-Probe, but the probe is quite far from the hotend.
  2398. // When the bed is uneven, this height must be corrected.
  2399. real_z = float(st_get_position(Z_AXIS))/axis_steps_per_unit[Z_AXIS]; //get the real Z (since the auto bed leveling is already correcting the plane)
  2400. x_tmp = current_position[X_AXIS] + X_PROBE_OFFSET_FROM_EXTRUDER;
  2401. y_tmp = current_position[Y_AXIS] + Y_PROBE_OFFSET_FROM_EXTRUDER;
  2402. z_tmp = current_position[Z_AXIS];
  2403. apply_rotation_xyz(plan_bed_level_matrix, x_tmp, y_tmp, z_tmp); //Apply the correction sending the probe offset
  2404. current_position[Z_AXIS] = z_tmp - real_z + current_position[Z_AXIS]; //The difference is added to current position and sent to planner.
  2405. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2406. }
  2407. break;
  2408. #ifndef Z_PROBE_SLED
  2409. case 30: // G30 Single Z Probe
  2410. {
  2411. st_synchronize();
  2412. // TODO: make sure the bed_level_rotation_matrix is identity or the planner will get set incorectly
  2413. setup_for_endstop_move();
  2414. feedrate = homing_feedrate[Z_AXIS];
  2415. run_z_probe();
  2416. SERIAL_PROTOCOLPGM(MSG_BED);
  2417. SERIAL_PROTOCOLPGM(" X: ");
  2418. SERIAL_PROTOCOL(current_position[X_AXIS]);
  2419. SERIAL_PROTOCOLPGM(" Y: ");
  2420. SERIAL_PROTOCOL(current_position[Y_AXIS]);
  2421. SERIAL_PROTOCOLPGM(" Z: ");
  2422. SERIAL_PROTOCOL(current_position[Z_AXIS]);
  2423. SERIAL_PROTOCOLPGM("\n");
  2424. clean_up_after_endstop_move();
  2425. }
  2426. break;
  2427. #else
  2428. case 31: // dock the sled
  2429. dock_sled(true);
  2430. break;
  2431. case 32: // undock the sled
  2432. dock_sled(false);
  2433. break;
  2434. #endif // Z_PROBE_SLED
  2435. #endif // ENABLE_AUTO_BED_LEVELING
  2436. #ifdef MESH_BED_LEVELING
  2437. case 30: // G30 Single Z Probe
  2438. {
  2439. st_synchronize();
  2440. // TODO: make sure the bed_level_rotation_matrix is identity or the planner will get set incorectly
  2441. setup_for_endstop_move();
  2442. feedrate = homing_feedrate[Z_AXIS];
  2443. find_bed_induction_sensor_point_z(-10.f, 3);
  2444. SERIAL_PROTOCOLRPGM(MSG_BED);
  2445. SERIAL_PROTOCOLPGM(" X: ");
  2446. MYSERIAL.print(current_position[X_AXIS], 5);
  2447. SERIAL_PROTOCOLPGM(" Y: ");
  2448. MYSERIAL.print(current_position[Y_AXIS], 5);
  2449. SERIAL_PROTOCOLPGM(" Z: ");
  2450. MYSERIAL.print(current_position[Z_AXIS], 5);
  2451. SERIAL_PROTOCOLPGM("\n");
  2452. clean_up_after_endstop_move();
  2453. }
  2454. break;
  2455. case 75:
  2456. {
  2457. for (int i = 40; i <= 110; i++) {
  2458. MYSERIAL.print(i);
  2459. MYSERIAL.print(" ");
  2460. MYSERIAL.println(temp_comp_interpolation(i));// / axis_steps_per_unit[Z_AXIS]);
  2461. }
  2462. }
  2463. break;
  2464. case 76: //PINDA probe temperature calibration
  2465. {
  2466. #ifdef PINDA_THERMISTOR
  2467. if (true)
  2468. {
  2469. if (!(axis_known_position[X_AXIS] && axis_known_position[Y_AXIS] && axis_known_position[Z_AXIS])) {
  2470. // We don't know where we are! HOME!
  2471. // Push the commands to the front of the message queue in the reverse order!
  2472. // There shall be always enough space reserved for these commands.
  2473. repeatcommand_front(); // repeat G76 with all its parameters
  2474. enquecommand_front_P((PSTR("G28 W0")));
  2475. break;
  2476. }
  2477. KEEPALIVE_STATE(NOT_BUSY); //no need to print busy messages as we print current temperatures periodicaly
  2478. SERIAL_ECHOLNPGM("PINDA probe calibration start");
  2479. float zero_z;
  2480. int z_shift = 0; //unit: steps
  2481. float start_temp = 5 * (int)(current_temperature_pinda / 5);
  2482. if (start_temp < 35) start_temp = 35;
  2483. if (start_temp < current_temperature_pinda) start_temp += 5;
  2484. SERIAL_ECHOPGM("start temperature: ");
  2485. MYSERIAL.println(start_temp);
  2486. // setTargetHotend(200, 0);
  2487. setTargetBed(70 + (start_temp - 30));
  2488. custom_message = true;
  2489. custom_message_type = 4;
  2490. custom_message_state = 1;
  2491. custom_message = MSG_TEMP_CALIBRATION;
  2492. current_position[X_AXIS] = PINDA_PREHEAT_X;
  2493. current_position[Y_AXIS] = PINDA_PREHEAT_Y;
  2494. current_position[Z_AXIS] = PINDA_PREHEAT_Z;
  2495. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  2496. st_synchronize();
  2497. while (current_temperature_pinda < start_temp)
  2498. {
  2499. delay_keep_alive(1000);
  2500. serialecho_temperatures();
  2501. }
  2502. eeprom_update_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 0); //invalidate temp. calibration in case that in will be aborted during the calibration process
  2503. current_position[Z_AXIS] = 5;
  2504. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  2505. current_position[X_AXIS] = pgm_read_float(bed_ref_points);
  2506. current_position[Y_AXIS] = pgm_read_float(bed_ref_points + 1);
  2507. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  2508. st_synchronize();
  2509. find_bed_induction_sensor_point_z(-1.f);
  2510. zero_z = current_position[Z_AXIS];
  2511. //current_position[Z_AXIS]
  2512. SERIAL_ECHOLNPGM("");
  2513. SERIAL_ECHOPGM("ZERO: ");
  2514. MYSERIAL.print(current_position[Z_AXIS]);
  2515. SERIAL_ECHOLNPGM("");
  2516. int i = -1; for (; i < 5; i++)
  2517. {
  2518. float temp = (40 + i * 5);
  2519. SERIAL_ECHOPGM("Step: ");
  2520. MYSERIAL.print(i + 2);
  2521. SERIAL_ECHOLNPGM("/6 (skipped)");
  2522. SERIAL_ECHOPGM("PINDA temperature: ");
  2523. MYSERIAL.print((40 + i*5));
  2524. SERIAL_ECHOPGM(" Z shift (mm):");
  2525. MYSERIAL.print(0);
  2526. SERIAL_ECHOLNPGM("");
  2527. if (i >= 0) EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + i * 2, &z_shift);
  2528. if (start_temp <= temp) break;
  2529. }
  2530. for (i++; i < 5; i++)
  2531. {
  2532. float temp = (40 + i * 5);
  2533. SERIAL_ECHOPGM("Step: ");
  2534. MYSERIAL.print(i + 2);
  2535. SERIAL_ECHOLNPGM("/6");
  2536. custom_message_state = i + 2;
  2537. setTargetBed(50 + 10 * (temp - 30) / 5);
  2538. // setTargetHotend(255, 0);
  2539. current_position[X_AXIS] = PINDA_PREHEAT_X;
  2540. current_position[Y_AXIS] = PINDA_PREHEAT_Y;
  2541. current_position[Z_AXIS] = PINDA_PREHEAT_Z;
  2542. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  2543. st_synchronize();
  2544. while (current_temperature_pinda < temp)
  2545. {
  2546. delay_keep_alive(1000);
  2547. serialecho_temperatures();
  2548. }
  2549. current_position[Z_AXIS] = 5;
  2550. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  2551. current_position[X_AXIS] = pgm_read_float(bed_ref_points);
  2552. current_position[Y_AXIS] = pgm_read_float(bed_ref_points + 1);
  2553. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  2554. st_synchronize();
  2555. find_bed_induction_sensor_point_z(-1.f);
  2556. z_shift = (int)((current_position[Z_AXIS] - zero_z)*axis_steps_per_unit[Z_AXIS]);
  2557. SERIAL_ECHOLNPGM("");
  2558. SERIAL_ECHOPGM("PINDA temperature: ");
  2559. MYSERIAL.print(current_temperature_pinda);
  2560. SERIAL_ECHOPGM(" Z shift (mm):");
  2561. MYSERIAL.print(current_position[Z_AXIS] - zero_z);
  2562. SERIAL_ECHOLNPGM("");
  2563. EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + i * 2, &z_shift);
  2564. }
  2565. custom_message_type = 0;
  2566. custom_message = false;
  2567. eeprom_update_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 1);
  2568. SERIAL_ECHOLNPGM("Temperature calibration done. Continue with pressing the knob.");
  2569. disable_x();
  2570. disable_y();
  2571. disable_z();
  2572. disable_e0();
  2573. disable_e1();
  2574. disable_e2();
  2575. lcd_show_fullscreen_message_and_wait_P(MSG_TEMP_CALIBRATION_DONE);
  2576. lcd_update_enable(true);
  2577. lcd_update(2);
  2578. setTargetBed(0); //set bed target temperature back to 0
  2579. // setTargetHotend(0,0); //set hotend target temperature back to 0
  2580. break;
  2581. }
  2582. #endif //PINDA_THERMISTOR
  2583. setTargetBed(PINDA_MIN_T);
  2584. float zero_z;
  2585. int z_shift = 0; //unit: steps
  2586. int t_c; // temperature
  2587. if (!(axis_known_position[X_AXIS] && axis_known_position[Y_AXIS] && axis_known_position[Z_AXIS])) {
  2588. // We don't know where we are! HOME!
  2589. // Push the commands to the front of the message queue in the reverse order!
  2590. // There shall be always enough space reserved for these commands.
  2591. repeatcommand_front(); // repeat G76 with all its parameters
  2592. enquecommand_front_P((PSTR("G28 W0")));
  2593. break;
  2594. }
  2595. SERIAL_ECHOLNPGM("PINDA probe calibration start");
  2596. custom_message = true;
  2597. custom_message_type = 4;
  2598. custom_message_state = 1;
  2599. custom_message = MSG_TEMP_CALIBRATION;
  2600. current_position[X_AXIS] = PINDA_PREHEAT_X;
  2601. current_position[Y_AXIS] = PINDA_PREHEAT_Y;
  2602. current_position[Z_AXIS] = PINDA_PREHEAT_Z;
  2603. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  2604. st_synchronize();
  2605. while (abs(degBed() - PINDA_MIN_T) > 1) {
  2606. delay_keep_alive(1000);
  2607. serialecho_temperatures();
  2608. }
  2609. //enquecommand_P(PSTR("M190 S50"));
  2610. for (int i = 0; i < PINDA_HEAT_T; i++) {
  2611. delay_keep_alive(1000);
  2612. serialecho_temperatures();
  2613. }
  2614. eeprom_update_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 0); //invalidate temp. calibration in case that in will be aborted during the calibration process
  2615. current_position[Z_AXIS] = 5;
  2616. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  2617. current_position[X_AXIS] = pgm_read_float(bed_ref_points);
  2618. current_position[Y_AXIS] = pgm_read_float(bed_ref_points + 1);
  2619. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  2620. st_synchronize();
  2621. find_bed_induction_sensor_point_z(-1.f);
  2622. zero_z = current_position[Z_AXIS];
  2623. //current_position[Z_AXIS]
  2624. SERIAL_ECHOLNPGM("");
  2625. SERIAL_ECHOPGM("ZERO: ");
  2626. MYSERIAL.print(current_position[Z_AXIS]);
  2627. SERIAL_ECHOLNPGM("");
  2628. for (int i = 0; i<5; i++) {
  2629. SERIAL_ECHOPGM("Step: ");
  2630. MYSERIAL.print(i+2);
  2631. SERIAL_ECHOLNPGM("/6");
  2632. custom_message_state = i + 2;
  2633. t_c = 60 + i * 10;
  2634. setTargetBed(t_c);
  2635. current_position[X_AXIS] = PINDA_PREHEAT_X;
  2636. current_position[Y_AXIS] = PINDA_PREHEAT_Y;
  2637. current_position[Z_AXIS] = PINDA_PREHEAT_Z;
  2638. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  2639. st_synchronize();
  2640. while (degBed() < t_c) {
  2641. delay_keep_alive(1000);
  2642. serialecho_temperatures();
  2643. }
  2644. for (int i = 0; i < PINDA_HEAT_T; i++) {
  2645. delay_keep_alive(1000);
  2646. serialecho_temperatures();
  2647. }
  2648. current_position[Z_AXIS] = 5;
  2649. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  2650. current_position[X_AXIS] = pgm_read_float(bed_ref_points);
  2651. current_position[Y_AXIS] = pgm_read_float(bed_ref_points + 1);
  2652. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  2653. st_synchronize();
  2654. find_bed_induction_sensor_point_z(-1.f);
  2655. z_shift = (int)((current_position[Z_AXIS] - zero_z)*axis_steps_per_unit[Z_AXIS]);
  2656. SERIAL_ECHOLNPGM("");
  2657. SERIAL_ECHOPGM("Temperature: ");
  2658. MYSERIAL.print(t_c);
  2659. SERIAL_ECHOPGM(" Z shift (mm):");
  2660. MYSERIAL.print(current_position[Z_AXIS] - zero_z);
  2661. SERIAL_ECHOLNPGM("");
  2662. EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + i*2, &z_shift);
  2663. }
  2664. custom_message_type = 0;
  2665. custom_message = false;
  2666. eeprom_update_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 1);
  2667. SERIAL_ECHOLNPGM("Temperature calibration done. Continue with pressing the knob.");
  2668. disable_x();
  2669. disable_y();
  2670. disable_z();
  2671. disable_e0();
  2672. disable_e1();
  2673. disable_e2();
  2674. setTargetBed(0); //set bed target temperature back to 0
  2675. lcd_show_fullscreen_message_and_wait_P(MSG_TEMP_CALIBRATION_DONE);
  2676. lcd_update_enable(true);
  2677. lcd_update(2);
  2678. }
  2679. break;
  2680. #ifdef DIS
  2681. case 77:
  2682. {
  2683. //G77 X200 Y150 XP100 YP15 XO10 Y015
  2684. //for 9 point mesh bed leveling G77 X203 Y196 XP3 YP3 XO0 YO0
  2685. //G77 X232 Y218 XP116 YP109 XO-11 YO0
  2686. float dimension_x = 40;
  2687. float dimension_y = 40;
  2688. int points_x = 40;
  2689. int points_y = 40;
  2690. float offset_x = 74;
  2691. float offset_y = 33;
  2692. if (code_seen('X')) dimension_x = code_value();
  2693. if (code_seen('Y')) dimension_y = code_value();
  2694. if (code_seen('XP')) points_x = code_value();
  2695. if (code_seen('YP')) points_y = code_value();
  2696. if (code_seen('XO')) offset_x = code_value();
  2697. if (code_seen('YO')) offset_y = code_value();
  2698. bed_analysis(dimension_x,dimension_y,points_x,points_y,offset_x,offset_y);
  2699. } break;
  2700. #endif
  2701. case 79: {
  2702. for (int i = 255; i > 0; i = i - 5) {
  2703. fanSpeed = i;
  2704. //delay_keep_alive(2000);
  2705. for (int j = 0; j < 100; j++) {
  2706. delay_keep_alive(100);
  2707. }
  2708. fan_speed[1];
  2709. MYSERIAL.print(i); SERIAL_ECHOPGM(": "); MYSERIAL.println(fan_speed[1]);
  2710. }
  2711. }break;
  2712. /**
  2713. * G80: Mesh-based Z probe, probes a grid and produces a
  2714. * mesh to compensate for variable bed height
  2715. *
  2716. * The S0 report the points as below
  2717. *
  2718. * +----> X-axis
  2719. * |
  2720. * |
  2721. * v Y-axis
  2722. *
  2723. */
  2724. case 80:
  2725. #ifdef MK1BP
  2726. break;
  2727. #endif //MK1BP
  2728. case_G80:
  2729. {
  2730. mesh_bed_leveling_flag = true;
  2731. int8_t verbosity_level = 0;
  2732. static bool run = false;
  2733. if (code_seen('V')) {
  2734. // Just 'V' without a number counts as V1.
  2735. char c = strchr_pointer[1];
  2736. verbosity_level = (c == ' ' || c == '\t' || c == 0) ? 1 : code_value_short();
  2737. }
  2738. // Firstly check if we know where we are
  2739. if (!(axis_known_position[X_AXIS] && axis_known_position[Y_AXIS] && axis_known_position[Z_AXIS])) {
  2740. // We don't know where we are! HOME!
  2741. // Push the commands to the front of the message queue in the reverse order!
  2742. // There shall be always enough space reserved for these commands.
  2743. if (lcd_commands_type != LCD_COMMAND_STOP_PRINT) {
  2744. repeatcommand_front(); // repeat G80 with all its parameters
  2745. enquecommand_front_P((PSTR("G28 W0")));
  2746. }
  2747. else {
  2748. mesh_bed_leveling_flag = false;
  2749. }
  2750. break;
  2751. }
  2752. bool temp_comp_start = true;
  2753. #ifdef PINDA_THERMISTOR
  2754. temp_comp_start = false;
  2755. #endif //PINDA_THERMISTOR
  2756. if (temp_comp_start)
  2757. if (run == false && temp_cal_active == true && calibration_status_pinda() == true && target_temperature_bed >= 50) {
  2758. if (lcd_commands_type != LCD_COMMAND_STOP_PRINT) {
  2759. temp_compensation_start();
  2760. run = true;
  2761. repeatcommand_front(); // repeat G80 with all its parameters
  2762. enquecommand_front_P((PSTR("G28 W0")));
  2763. }
  2764. else {
  2765. mesh_bed_leveling_flag = false;
  2766. }
  2767. break;
  2768. }
  2769. run = false;
  2770. if (lcd_commands_type == LCD_COMMAND_STOP_PRINT) {
  2771. mesh_bed_leveling_flag = false;
  2772. break;
  2773. }
  2774. // Save custom message state, set a new custom message state to display: Calibrating point 9.
  2775. bool custom_message_old = custom_message;
  2776. unsigned int custom_message_type_old = custom_message_type;
  2777. unsigned int custom_message_state_old = custom_message_state;
  2778. custom_message = true;
  2779. custom_message_type = 1;
  2780. custom_message_state = (MESH_MEAS_NUM_X_POINTS * MESH_MEAS_NUM_Y_POINTS) + 10;
  2781. lcd_update(1);
  2782. mbl.reset(); //reset mesh bed leveling
  2783. // Reset baby stepping to zero, if the babystepping has already been loaded before. The babystepsTodo value will be
  2784. // consumed during the first movements following this statement.
  2785. babystep_undo();
  2786. // Cycle through all points and probe them
  2787. // First move up. During this first movement, the babystepping will be reverted.
  2788. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  2789. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[Z_AXIS] / 60, active_extruder);
  2790. // The move to the first calibration point.
  2791. current_position[X_AXIS] = pgm_read_float(bed_ref_points);
  2792. current_position[Y_AXIS] = pgm_read_float(bed_ref_points + 1);
  2793. bool clamped = world2machine_clamp(current_position[X_AXIS], current_position[Y_AXIS]);
  2794. #ifdef SUPPORT_VERBOSITY
  2795. if (verbosity_level >= 1) {
  2796. clamped ? SERIAL_PROTOCOLPGM("First calibration point clamped.\n") : SERIAL_PROTOCOLPGM("No clamping for first calibration point.\n");
  2797. }
  2798. #endif //SUPPORT_VERBOSITY
  2799. // mbl.get_meas_xy(0, 0, current_position[X_AXIS], current_position[Y_AXIS], false);
  2800. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[X_AXIS] / 30, active_extruder);
  2801. // Wait until the move is finished.
  2802. st_synchronize();
  2803. int mesh_point = 0; //index number of calibration point
  2804. int ix = 0;
  2805. int iy = 0;
  2806. int XY_AXIS_FEEDRATE = homing_feedrate[X_AXIS] / 20;
  2807. int Z_PROBE_FEEDRATE = homing_feedrate[Z_AXIS] / 60;
  2808. int Z_LIFT_FEEDRATE = homing_feedrate[Z_AXIS] / 40;
  2809. bool has_z = is_bed_z_jitter_data_valid(); //checks if we have data from Z calibration (offsets of the Z heiths of the 8 calibration points from the first point)
  2810. #ifdef SUPPORT_VERBOSITY
  2811. if (verbosity_level >= 1) {
  2812. has_z ? SERIAL_PROTOCOLPGM("Z jitter data from Z cal. valid.\n") : SERIAL_PROTOCOLPGM("Z jitter data from Z cal. not valid.\n");
  2813. }
  2814. #endif // SUPPORT_VERBOSITY
  2815. setup_for_endstop_move(false); //save feedrate and feedmultiply, sets feedmultiply to 100
  2816. const char *kill_message = NULL;
  2817. while (mesh_point != MESH_MEAS_NUM_X_POINTS * MESH_MEAS_NUM_Y_POINTS) {
  2818. // Get coords of a measuring point.
  2819. ix = mesh_point % MESH_MEAS_NUM_X_POINTS; // from 0 to MESH_NUM_X_POINTS - 1
  2820. iy = mesh_point / MESH_MEAS_NUM_X_POINTS;
  2821. if (iy & 1) ix = (MESH_MEAS_NUM_X_POINTS - 1) - ix; // Zig zag
  2822. float z0 = 0.f;
  2823. if (has_z && mesh_point > 0) {
  2824. uint16_t z_offset_u = eeprom_read_word((uint16_t*)(EEPROM_BED_CALIBRATION_Z_JITTER + 2 * (ix + iy * 3 - 1)));
  2825. z0 = mbl.z_values[0][0] + *reinterpret_cast<int16_t*>(&z_offset_u) * 0.01;
  2826. //#if 0
  2827. #ifdef SUPPORT_VERBOSITY
  2828. if (verbosity_level >= 1) {
  2829. SERIAL_ECHOLNPGM("");
  2830. SERIAL_ECHOPGM("Bed leveling, point: ");
  2831. MYSERIAL.print(mesh_point);
  2832. SERIAL_ECHOPGM(", calibration z: ");
  2833. MYSERIAL.print(z0, 5);
  2834. SERIAL_ECHOLNPGM("");
  2835. }
  2836. #endif // SUPPORT_VERBOSITY
  2837. //#endif
  2838. }
  2839. // Move Z up to MESH_HOME_Z_SEARCH.
  2840. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  2841. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], Z_LIFT_FEEDRATE, active_extruder);
  2842. st_synchronize();
  2843. // Move to XY position of the sensor point.
  2844. current_position[X_AXIS] = pgm_read_float(bed_ref_points + 2 * mesh_point);
  2845. current_position[Y_AXIS] = pgm_read_float(bed_ref_points + 2 * mesh_point + 1);
  2846. world2machine_clamp(current_position[X_AXIS], current_position[Y_AXIS]);
  2847. #ifdef SUPPORT_VERBOSITY
  2848. if (verbosity_level >= 1) {
  2849. SERIAL_PROTOCOL(mesh_point);
  2850. clamped ? SERIAL_PROTOCOLPGM(": xy clamped.\n") : SERIAL_PROTOCOLPGM(": no xy clamping\n");
  2851. }
  2852. #endif // SUPPORT_VERBOSITY
  2853. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], XY_AXIS_FEEDRATE, active_extruder);
  2854. st_synchronize();
  2855. // Go down until endstop is hit
  2856. const float Z_CALIBRATION_THRESHOLD = 1.f;
  2857. if (!find_bed_induction_sensor_point_z((has_z && mesh_point > 0) ? z0 - Z_CALIBRATION_THRESHOLD : -10.f)) { //if we have data from z calibration max allowed difference is 1mm for each point, if we dont have data max difference is 10mm from initial point
  2858. kill_message = MSG_BED_LEVELING_FAILED_POINT_LOW;
  2859. break;
  2860. }
  2861. if (MESH_HOME_Z_SEARCH - current_position[Z_AXIS] < 0.1f) {
  2862. kill_message = MSG_BED_LEVELING_FAILED_PROBE_DISCONNECTED;
  2863. break;
  2864. }
  2865. if (has_z && fabs(z0 - current_position[Z_AXIS]) > Z_CALIBRATION_THRESHOLD) { //if we have data from z calibration, max. allowed difference is 1mm for each point
  2866. kill_message = MSG_BED_LEVELING_FAILED_POINT_HIGH;
  2867. break;
  2868. }
  2869. #ifdef SUPPORT_VERBOSITY
  2870. if (verbosity_level >= 10) {
  2871. SERIAL_ECHOPGM("X: ");
  2872. MYSERIAL.print(current_position[X_AXIS], 5);
  2873. SERIAL_ECHOLNPGM("");
  2874. SERIAL_ECHOPGM("Y: ");
  2875. MYSERIAL.print(current_position[Y_AXIS], 5);
  2876. SERIAL_PROTOCOLPGM("\n");
  2877. }
  2878. #endif // SUPPORT_VERBOSITY
  2879. float offset_z = 0;
  2880. #ifdef PINDA_THERMISTOR
  2881. offset_z = temp_compensation_pinda_thermistor_offset(current_temperature_pinda);
  2882. #endif //PINDA_THERMISTOR
  2883. // #ifdef SUPPORT_VERBOSITY
  2884. // if (verbosity_level >= 1)
  2885. {
  2886. SERIAL_ECHOPGM("mesh bed leveling: ");
  2887. MYSERIAL.print(current_position[Z_AXIS], 5);
  2888. SERIAL_ECHOPGM(" offset: ");
  2889. MYSERIAL.print(offset_z, 5);
  2890. SERIAL_ECHOLNPGM("");
  2891. }
  2892. // #endif // SUPPORT_VERBOSITY
  2893. mbl.set_z(ix, iy, current_position[Z_AXIS] - offset_z); //store measured z values z_values[iy][ix] = z - offset_z;
  2894. custom_message_state--;
  2895. mesh_point++;
  2896. lcd_update(1);
  2897. }
  2898. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  2899. #ifdef SUPPORT_VERBOSITY
  2900. if (verbosity_level >= 20) {
  2901. SERIAL_ECHOLNPGM("Mesh bed leveling while loop finished.");
  2902. SERIAL_ECHOLNPGM("MESH_HOME_Z_SEARCH: ");
  2903. MYSERIAL.print(current_position[Z_AXIS], 5);
  2904. }
  2905. #endif // SUPPORT_VERBOSITY
  2906. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], Z_LIFT_FEEDRATE, active_extruder);
  2907. st_synchronize();
  2908. if (mesh_point != MESH_MEAS_NUM_X_POINTS * MESH_MEAS_NUM_Y_POINTS) {
  2909. kill(kill_message);
  2910. SERIAL_ECHOLNPGM("killed");
  2911. }
  2912. clean_up_after_endstop_move();
  2913. SERIAL_ECHOLNPGM("clean up finished ");
  2914. bool apply_temp_comp = true;
  2915. #ifdef PINDA_THERMISTOR
  2916. apply_temp_comp = false;
  2917. #endif
  2918. if (apply_temp_comp)
  2919. if(temp_cal_active == true && calibration_status_pinda() == true) temp_compensation_apply(); //apply PINDA temperature compensation
  2920. babystep_apply(); // Apply Z height correction aka baby stepping before mesh bed leveing gets activated.
  2921. SERIAL_ECHOLNPGM("babystep applied");
  2922. bool eeprom_bed_correction_valid = eeprom_read_byte((unsigned char*)EEPROM_BED_CORRECTION_VALID) == 1;
  2923. #ifdef SUPPORT_VERBOSITY
  2924. if (verbosity_level >= 1) {
  2925. eeprom_bed_correction_valid ? SERIAL_PROTOCOLPGM("Bed correction data valid\n") : SERIAL_PROTOCOLPGM("Bed correction data not valid\n");
  2926. }
  2927. #endif // SUPPORT_VERBOSITY
  2928. for (uint8_t i = 0; i < 4; ++i) {
  2929. unsigned char codes[4] = { 'L', 'R', 'F', 'B' };
  2930. long correction = 0;
  2931. if (code_seen(codes[i]))
  2932. correction = code_value_long();
  2933. else if (eeprom_bed_correction_valid) {
  2934. unsigned char *addr = (i < 2) ?
  2935. ((i == 0) ? (unsigned char*)EEPROM_BED_CORRECTION_LEFT : (unsigned char*)EEPROM_BED_CORRECTION_RIGHT) :
  2936. ((i == 2) ? (unsigned char*)EEPROM_BED_CORRECTION_FRONT : (unsigned char*)EEPROM_BED_CORRECTION_REAR);
  2937. correction = eeprom_read_int8(addr);
  2938. }
  2939. if (correction == 0)
  2940. continue;
  2941. float offset = float(correction) * 0.001f;
  2942. if (fabs(offset) > 0.101f) {
  2943. SERIAL_ERROR_START;
  2944. SERIAL_ECHOPGM("Excessive bed leveling correction: ");
  2945. SERIAL_ECHO(offset);
  2946. SERIAL_ECHOLNPGM(" microns");
  2947. }
  2948. else {
  2949. switch (i) {
  2950. case 0:
  2951. for (uint8_t row = 0; row < 3; ++row) {
  2952. mbl.z_values[row][1] += 0.5f * offset;
  2953. mbl.z_values[row][0] += offset;
  2954. }
  2955. break;
  2956. case 1:
  2957. for (uint8_t row = 0; row < 3; ++row) {
  2958. mbl.z_values[row][1] += 0.5f * offset;
  2959. mbl.z_values[row][2] += offset;
  2960. }
  2961. break;
  2962. case 2:
  2963. for (uint8_t col = 0; col < 3; ++col) {
  2964. mbl.z_values[1][col] += 0.5f * offset;
  2965. mbl.z_values[0][col] += offset;
  2966. }
  2967. break;
  2968. case 3:
  2969. for (uint8_t col = 0; col < 3; ++col) {
  2970. mbl.z_values[1][col] += 0.5f * offset;
  2971. mbl.z_values[2][col] += offset;
  2972. }
  2973. break;
  2974. }
  2975. }
  2976. }
  2977. SERIAL_ECHOLNPGM("Bed leveling correction finished");
  2978. mbl.upsample_3x3(); //bilinear interpolation from 3x3 to 7x7 points while using the same array z_values[iy][ix] for storing (just coppying measured data to new destination and interpolating between them)
  2979. SERIAL_ECHOLNPGM("Upsample finished");
  2980. mbl.active = 1; //activate mesh bed leveling
  2981. SERIAL_ECHOLNPGM("Mesh bed leveling activated");
  2982. go_home_with_z_lift();
  2983. SERIAL_ECHOLNPGM("Go home finished");
  2984. //unretract (after PINDA preheat retraction)
  2985. if (degHotend(active_extruder) > EXTRUDE_MINTEMP && temp_cal_active == true && calibration_status_pinda() == true && target_temperature_bed >= 50) {
  2986. current_position[E_AXIS] += DEFAULT_RETRACTION;
  2987. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400, active_extruder);
  2988. }
  2989. KEEPALIVE_STATE(NOT_BUSY);
  2990. // Restore custom message state
  2991. custom_message = custom_message_old;
  2992. custom_message_type = custom_message_type_old;
  2993. custom_message_state = custom_message_state_old;
  2994. mesh_bed_leveling_flag = false;
  2995. mesh_bed_run_from_menu = false;
  2996. lcd_update(2);
  2997. }
  2998. break;
  2999. /**
  3000. * G81: Print mesh bed leveling status and bed profile if activated
  3001. */
  3002. case 81:
  3003. if (mbl.active) {
  3004. SERIAL_PROTOCOLPGM("Num X,Y: ");
  3005. SERIAL_PROTOCOL(MESH_NUM_X_POINTS);
  3006. SERIAL_PROTOCOLPGM(",");
  3007. SERIAL_PROTOCOL(MESH_NUM_Y_POINTS);
  3008. SERIAL_PROTOCOLPGM("\nZ search height: ");
  3009. SERIAL_PROTOCOL(MESH_HOME_Z_SEARCH);
  3010. SERIAL_PROTOCOLLNPGM("\nMeasured points:");
  3011. for (int y = MESH_NUM_Y_POINTS-1; y >= 0; y--) {
  3012. for (int x = 0; x < MESH_NUM_X_POINTS; x++) {
  3013. SERIAL_PROTOCOLPGM(" ");
  3014. SERIAL_PROTOCOL_F(mbl.z_values[y][x], 5);
  3015. }
  3016. SERIAL_PROTOCOLPGM("\n");
  3017. }
  3018. }
  3019. else
  3020. SERIAL_PROTOCOLLNPGM("Mesh bed leveling not active.");
  3021. break;
  3022. #if 0
  3023. /**
  3024. * G82: Single Z probe at current location
  3025. *
  3026. * WARNING! USE WITH CAUTION! If you'll try to probe where is no leveling pad, nasty things can happen!
  3027. *
  3028. */
  3029. case 82:
  3030. SERIAL_PROTOCOLLNPGM("Finding bed ");
  3031. setup_for_endstop_move();
  3032. find_bed_induction_sensor_point_z();
  3033. clean_up_after_endstop_move();
  3034. SERIAL_PROTOCOLPGM("Bed found at: ");
  3035. SERIAL_PROTOCOL_F(current_position[Z_AXIS], 5);
  3036. SERIAL_PROTOCOLPGM("\n");
  3037. break;
  3038. /**
  3039. * G83: Prusa3D specific: Babystep in Z and store to EEPROM
  3040. */
  3041. case 83:
  3042. {
  3043. int babystepz = code_seen('S') ? code_value() : 0;
  3044. int BabyPosition = code_seen('P') ? code_value() : 0;
  3045. if (babystepz != 0) {
  3046. //FIXME Vojtech: What shall be the index of the axis Z: 3 or 4?
  3047. // Is the axis indexed starting with zero or one?
  3048. if (BabyPosition > 4) {
  3049. SERIAL_PROTOCOLLNPGM("Index out of bounds");
  3050. }else{
  3051. // Save it to the eeprom
  3052. babystepLoadZ = babystepz;
  3053. EEPROM_save_B(EEPROM_BABYSTEP_Z0+(BabyPosition*2),&babystepLoadZ);
  3054. // adjust the Z
  3055. babystepsTodoZadd(babystepLoadZ);
  3056. }
  3057. }
  3058. }
  3059. break;
  3060. /**
  3061. * G84: Prusa3D specific: UNDO Babystep Z (move Z axis back)
  3062. */
  3063. case 84:
  3064. babystepsTodoZsubtract(babystepLoadZ);
  3065. // babystepLoadZ = 0;
  3066. break;
  3067. /**
  3068. * G85: Prusa3D specific: Pick best babystep
  3069. */
  3070. case 85:
  3071. lcd_pick_babystep();
  3072. break;
  3073. #endif
  3074. /**
  3075. * G86: Prusa3D specific: Disable babystep correction after home.
  3076. * This G-code will be performed at the start of a calibration script.
  3077. */
  3078. case 86:
  3079. calibration_status_store(CALIBRATION_STATUS_LIVE_ADJUST);
  3080. break;
  3081. /**
  3082. * G87: Prusa3D specific: Enable babystep correction after home
  3083. * This G-code will be performed at the end of a calibration script.
  3084. */
  3085. case 87:
  3086. calibration_status_store(CALIBRATION_STATUS_CALIBRATED);
  3087. break;
  3088. /**
  3089. * G88: Prusa3D specific: Don't know what it is for, it is in V2Calibration.gcode
  3090. */
  3091. case 88:
  3092. break;
  3093. #endif // ENABLE_MESH_BED_LEVELING
  3094. case 90: // G90
  3095. relative_mode = false;
  3096. break;
  3097. case 91: // G91
  3098. relative_mode = true;
  3099. break;
  3100. case 92: // G92
  3101. if(!code_seen(axis_codes[E_AXIS]))
  3102. st_synchronize();
  3103. for(int8_t i=0; i < NUM_AXIS; i++) {
  3104. if(code_seen(axis_codes[i])) {
  3105. if(i == E_AXIS) {
  3106. current_position[i] = code_value();
  3107. plan_set_e_position(current_position[E_AXIS]);
  3108. }
  3109. else {
  3110. current_position[i] = code_value()+add_homing[i];
  3111. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  3112. }
  3113. }
  3114. }
  3115. break;
  3116. case 98: //activate farm mode
  3117. farm_mode = 1;
  3118. PingTime = millis();
  3119. eeprom_update_byte((unsigned char *)EEPROM_FARM_MODE, farm_mode);
  3120. break;
  3121. case 99: //deactivate farm mode
  3122. farm_mode = 0;
  3123. lcd_printer_connected();
  3124. eeprom_update_byte((unsigned char *)EEPROM_FARM_MODE, farm_mode);
  3125. lcd_update(2);
  3126. break;
  3127. }
  3128. } // end if(code_seen('G'))
  3129. else if(code_seen('M'))
  3130. {
  3131. int index;
  3132. for (index = 1; *(strchr_pointer + index) == ' ' || *(strchr_pointer + index) == '\t'; index++);
  3133. /*for (++strchr_pointer; *strchr_pointer == ' ' || *strchr_pointer == '\t'; ++strchr_pointer);*/
  3134. if (*(strchr_pointer+index) < '0' || *(strchr_pointer+index) > '9') {
  3135. SERIAL_ECHOLNPGM("Invalid M code");
  3136. } else
  3137. switch((int)code_value())
  3138. {
  3139. #ifdef ULTIPANEL
  3140. case 0: // M0 - Unconditional stop - Wait for user button press on LCD
  3141. case 1: // M1 - Conditional stop - Wait for user button press on LCD
  3142. {
  3143. char *src = strchr_pointer + 2;
  3144. codenum = 0;
  3145. bool hasP = false, hasS = false;
  3146. if (code_seen('P')) {
  3147. codenum = code_value(); // milliseconds to wait
  3148. hasP = codenum > 0;
  3149. }
  3150. if (code_seen('S')) {
  3151. codenum = code_value() * 1000; // seconds to wait
  3152. hasS = codenum > 0;
  3153. }
  3154. starpos = strchr(src, '*');
  3155. if (starpos != NULL) *(starpos) = '\0';
  3156. while (*src == ' ') ++src;
  3157. if (!hasP && !hasS && *src != '\0') {
  3158. lcd_setstatus(src);
  3159. } else {
  3160. LCD_MESSAGERPGM(MSG_USERWAIT);
  3161. }
  3162. lcd_ignore_click(); //call lcd_ignore_click aslo for else ???
  3163. st_synchronize();
  3164. previous_millis_cmd = millis();
  3165. if (codenum > 0){
  3166. codenum += millis(); // keep track of when we started waiting
  3167. KEEPALIVE_STATE(PAUSED_FOR_USER);
  3168. while(millis() < codenum && !lcd_clicked()){
  3169. manage_heater();
  3170. manage_inactivity(true);
  3171. lcd_update();
  3172. }
  3173. KEEPALIVE_STATE(IN_HANDLER);
  3174. lcd_ignore_click(false);
  3175. }else{
  3176. if (!lcd_detected())
  3177. break;
  3178. KEEPALIVE_STATE(PAUSED_FOR_USER);
  3179. while(!lcd_clicked()){
  3180. manage_heater();
  3181. manage_inactivity(true);
  3182. lcd_update();
  3183. }
  3184. KEEPALIVE_STATE(IN_HANDLER);
  3185. }
  3186. if (IS_SD_PRINTING)
  3187. LCD_MESSAGERPGM(MSG_RESUMING);
  3188. else
  3189. LCD_MESSAGERPGM(WELCOME_MSG);
  3190. }
  3191. break;
  3192. #endif
  3193. case 17:
  3194. LCD_MESSAGERPGM(MSG_NO_MOVE);
  3195. enable_x();
  3196. enable_y();
  3197. enable_z();
  3198. enable_e0();
  3199. enable_e1();
  3200. enable_e2();
  3201. break;
  3202. #ifdef SDSUPPORT
  3203. case 20: // M20 - list SD card
  3204. SERIAL_PROTOCOLLNRPGM(MSG_BEGIN_FILE_LIST);
  3205. card.ls();
  3206. SERIAL_PROTOCOLLNRPGM(MSG_END_FILE_LIST);
  3207. break;
  3208. case 21: // M21 - init SD card
  3209. card.initsd();
  3210. break;
  3211. case 22: //M22 - release SD card
  3212. card.release();
  3213. break;
  3214. case 23: //M23 - Select file
  3215. starpos = (strchr(strchr_pointer + 4,'*'));
  3216. if(starpos!=NULL)
  3217. *(starpos)='\0';
  3218. card.openFile(strchr_pointer + 4,true);
  3219. break;
  3220. case 24: //M24 - Start SD print
  3221. card.startFileprint();
  3222. starttime=millis();
  3223. break;
  3224. case 25: //M25 - Pause SD print
  3225. card.pauseSDPrint();
  3226. break;
  3227. case 26: //M26 - Set SD index
  3228. if(card.cardOK && code_seen('S')) {
  3229. card.setIndex(code_value_long());
  3230. }
  3231. break;
  3232. case 27: //M27 - Get SD status
  3233. card.getStatus();
  3234. break;
  3235. case 28: //M28 - Start SD write
  3236. starpos = (strchr(strchr_pointer + 4,'*'));
  3237. if(starpos != NULL){
  3238. char* npos = strchr(CMDBUFFER_CURRENT_STRING, 'N');
  3239. strchr_pointer = strchr(npos,' ') + 1;
  3240. *(starpos) = '\0';
  3241. }
  3242. card.openFile(strchr_pointer+4,false);
  3243. break;
  3244. case 29: //M29 - Stop SD write
  3245. //processed in write to file routine above
  3246. //card,saving = false;
  3247. break;
  3248. case 30: //M30 <filename> Delete File
  3249. if (card.cardOK){
  3250. card.closefile();
  3251. starpos = (strchr(strchr_pointer + 4,'*'));
  3252. if(starpos != NULL){
  3253. char* npos = strchr(CMDBUFFER_CURRENT_STRING, 'N');
  3254. strchr_pointer = strchr(npos,' ') + 1;
  3255. *(starpos) = '\0';
  3256. }
  3257. card.removeFile(strchr_pointer + 4);
  3258. }
  3259. break;
  3260. case 32: //M32 - Select file and start SD print
  3261. {
  3262. if(card.sdprinting) {
  3263. st_synchronize();
  3264. }
  3265. starpos = (strchr(strchr_pointer + 4,'*'));
  3266. char* namestartpos = (strchr(strchr_pointer + 4,'!')); //find ! to indicate filename string start.
  3267. if(namestartpos==NULL)
  3268. {
  3269. namestartpos=strchr_pointer + 4; //default name position, 4 letters after the M
  3270. }
  3271. else
  3272. namestartpos++; //to skip the '!'
  3273. if(starpos!=NULL)
  3274. *(starpos)='\0';
  3275. bool call_procedure=(code_seen('P'));
  3276. if(strchr_pointer>namestartpos)
  3277. call_procedure=false; //false alert, 'P' found within filename
  3278. if( card.cardOK )
  3279. {
  3280. card.openFile(namestartpos,true,!call_procedure);
  3281. if(code_seen('S'))
  3282. if(strchr_pointer<namestartpos) //only if "S" is occuring _before_ the filename
  3283. card.setIndex(code_value_long());
  3284. card.startFileprint();
  3285. if(!call_procedure)
  3286. starttime=millis(); //procedure calls count as normal print time.
  3287. }
  3288. } break;
  3289. case 928: //M928 - Start SD write
  3290. starpos = (strchr(strchr_pointer + 5,'*'));
  3291. if(starpos != NULL){
  3292. char* npos = strchr(CMDBUFFER_CURRENT_STRING, 'N');
  3293. strchr_pointer = strchr(npos,' ') + 1;
  3294. *(starpos) = '\0';
  3295. }
  3296. card.openLogFile(strchr_pointer+5);
  3297. break;
  3298. #endif //SDSUPPORT
  3299. case 31: //M31 take time since the start of the SD print or an M109 command
  3300. {
  3301. stoptime=millis();
  3302. char time[30];
  3303. unsigned long t=(stoptime-starttime)/1000;
  3304. int sec,min;
  3305. min=t/60;
  3306. sec=t%60;
  3307. sprintf_P(time, PSTR("%i min, %i sec"), min, sec);
  3308. SERIAL_ECHO_START;
  3309. SERIAL_ECHOLN(time);
  3310. lcd_setstatus(time);
  3311. autotempShutdown();
  3312. }
  3313. break;
  3314. case 42: //M42 -Change pin status via gcode
  3315. if (code_seen('S'))
  3316. {
  3317. int pin_status = code_value();
  3318. int pin_number = LED_PIN;
  3319. if (code_seen('P') && pin_status >= 0 && pin_status <= 255)
  3320. pin_number = code_value();
  3321. for(int8_t i = 0; i < (int8_t)(sizeof(sensitive_pins)/sizeof(int)); i++)
  3322. {
  3323. if (sensitive_pins[i] == pin_number)
  3324. {
  3325. pin_number = -1;
  3326. break;
  3327. }
  3328. }
  3329. #if defined(FAN_PIN) && FAN_PIN > -1
  3330. if (pin_number == FAN_PIN)
  3331. fanSpeed = pin_status;
  3332. #endif
  3333. if (pin_number > -1)
  3334. {
  3335. pinMode(pin_number, OUTPUT);
  3336. digitalWrite(pin_number, pin_status);
  3337. analogWrite(pin_number, pin_status);
  3338. }
  3339. }
  3340. break;
  3341. case 44: // M44: Prusa3D: Reset the bed skew and offset calibration.
  3342. // Reset the baby step value and the baby step applied flag.
  3343. calibration_status_store(CALIBRATION_STATUS_ASSEMBLED);
  3344. eeprom_update_word((uint16_t*)EEPROM_BABYSTEP_Z, 0);
  3345. // Reset the skew and offset in both RAM and EEPROM.
  3346. reset_bed_offset_and_skew();
  3347. // Reset world2machine_rotation_and_skew and world2machine_shift, therefore
  3348. // the planner will not perform any adjustments in the XY plane.
  3349. // Wait for the motors to stop and update the current position with the absolute values.
  3350. world2machine_revert_to_uncorrected();
  3351. break;
  3352. case 45: // M45: Prusa3D: bed skew and offset with manual Z up
  3353. {
  3354. bool only_Z = code_seen('Z');
  3355. gcode_M45(only_Z);
  3356. }
  3357. break;
  3358. /*
  3359. case 46:
  3360. {
  3361. // M46: Prusa3D: Show the assigned IP address.
  3362. uint8_t ip[4];
  3363. bool hasIP = card.ToshibaFlashAir_GetIP(ip);
  3364. if (hasIP) {
  3365. SERIAL_ECHOPGM("Toshiba FlashAir current IP: ");
  3366. SERIAL_ECHO(int(ip[0]));
  3367. SERIAL_ECHOPGM(".");
  3368. SERIAL_ECHO(int(ip[1]));
  3369. SERIAL_ECHOPGM(".");
  3370. SERIAL_ECHO(int(ip[2]));
  3371. SERIAL_ECHOPGM(".");
  3372. SERIAL_ECHO(int(ip[3]));
  3373. SERIAL_ECHOLNPGM("");
  3374. } else {
  3375. SERIAL_ECHOLNPGM("Toshiba FlashAir GetIP failed");
  3376. }
  3377. break;
  3378. }
  3379. */
  3380. case 47:
  3381. // M47: Prusa3D: Show end stops dialog on the display.
  3382. KEEPALIVE_STATE(PAUSED_FOR_USER);
  3383. lcd_diag_show_end_stops();
  3384. KEEPALIVE_STATE(IN_HANDLER);
  3385. break;
  3386. #if 0
  3387. case 48: // M48: scan the bed induction sensor points, print the sensor trigger coordinates to the serial line for visualization on the PC.
  3388. {
  3389. // Disable the default update procedure of the display. We will do a modal dialog.
  3390. lcd_update_enable(false);
  3391. // Let the planner use the uncorrected coordinates.
  3392. mbl.reset();
  3393. // Reset world2machine_rotation_and_skew and world2machine_shift, therefore
  3394. // the planner will not perform any adjustments in the XY plane.
  3395. // Wait for the motors to stop and update the current position with the absolute values.
  3396. world2machine_revert_to_uncorrected();
  3397. // Move the print head close to the bed.
  3398. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3399. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS],current_position[Z_AXIS] , current_position[E_AXIS], homing_feedrate[Z_AXIS]/40, active_extruder);
  3400. st_synchronize();
  3401. // Home in the XY plane.
  3402. set_destination_to_current();
  3403. setup_for_endstop_move();
  3404. home_xy();
  3405. int8_t verbosity_level = 0;
  3406. if (code_seen('V')) {
  3407. // Just 'V' without a number counts as V1.
  3408. char c = strchr_pointer[1];
  3409. verbosity_level = (c == ' ' || c == '\t' || c == 0) ? 1 : code_value_short();
  3410. }
  3411. bool success = scan_bed_induction_points(verbosity_level);
  3412. clean_up_after_endstop_move();
  3413. // Print head up.
  3414. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3415. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS],current_position[Z_AXIS] , current_position[E_AXIS], homing_feedrate[Z_AXIS]/40, active_extruder);
  3416. st_synchronize();
  3417. lcd_update_enable(true);
  3418. break;
  3419. }
  3420. #endif
  3421. // M48 Z-Probe repeatability measurement function.
  3422. //
  3423. // Usage: M48 <n #_samples> <X X_position_for_samples> <Y Y_position_for_samples> <V Verbose_Level> <L legs_of_movement_prior_to_doing_probe>
  3424. //
  3425. // This function assumes the bed has been homed. Specificaly, that a G28 command
  3426. // as been issued prior to invoking the M48 Z-Probe repeatability measurement function.
  3427. // Any information generated by a prior G29 Bed leveling command will be lost and need to be
  3428. // regenerated.
  3429. //
  3430. // The number of samples will default to 10 if not specified. You can use upper or lower case
  3431. // letters for any of the options EXCEPT n. n must be in lower case because Marlin uses a capital
  3432. // N for its communication protocol and will get horribly confused if you send it a capital N.
  3433. //
  3434. #ifdef ENABLE_AUTO_BED_LEVELING
  3435. #ifdef Z_PROBE_REPEATABILITY_TEST
  3436. case 48: // M48 Z-Probe repeatability
  3437. {
  3438. #if Z_MIN_PIN == -1
  3439. #error "You must have a Z_MIN endstop in order to enable calculation of Z-Probe repeatability."
  3440. #endif
  3441. double sum=0.0;
  3442. double mean=0.0;
  3443. double sigma=0.0;
  3444. double sample_set[50];
  3445. int verbose_level=1, n=0, j, n_samples = 10, n_legs=0;
  3446. double X_current, Y_current, Z_current;
  3447. double X_probe_location, Y_probe_location, Z_start_location, ext_position;
  3448. if (code_seen('V') || code_seen('v')) {
  3449. verbose_level = code_value();
  3450. if (verbose_level<0 || verbose_level>4 ) {
  3451. SERIAL_PROTOCOLPGM("?Verbose Level not plausable.\n");
  3452. goto Sigma_Exit;
  3453. }
  3454. }
  3455. if (verbose_level > 0) {
  3456. SERIAL_PROTOCOLPGM("M48 Z-Probe Repeatability test. Version 2.00\n");
  3457. SERIAL_PROTOCOLPGM("Full support at: http://3dprintboard.com/forum.php\n");
  3458. }
  3459. if (code_seen('n')) {
  3460. n_samples = code_value();
  3461. if (n_samples<4 || n_samples>50 ) {
  3462. SERIAL_PROTOCOLPGM("?Specified sample size not plausable.\n");
  3463. goto Sigma_Exit;
  3464. }
  3465. }
  3466. X_current = X_probe_location = st_get_position_mm(X_AXIS);
  3467. Y_current = Y_probe_location = st_get_position_mm(Y_AXIS);
  3468. Z_current = st_get_position_mm(Z_AXIS);
  3469. Z_start_location = st_get_position_mm(Z_AXIS) + Z_RAISE_BEFORE_PROBING;
  3470. ext_position = st_get_position_mm(E_AXIS);
  3471. if (code_seen('X') || code_seen('x') ) {
  3472. X_probe_location = code_value() - X_PROBE_OFFSET_FROM_EXTRUDER;
  3473. if (X_probe_location<X_MIN_POS || X_probe_location>X_MAX_POS ) {
  3474. SERIAL_PROTOCOLPGM("?Specified X position out of range.\n");
  3475. goto Sigma_Exit;
  3476. }
  3477. }
  3478. if (code_seen('Y') || code_seen('y') ) {
  3479. Y_probe_location = code_value() - Y_PROBE_OFFSET_FROM_EXTRUDER;
  3480. if (Y_probe_location<Y_MIN_POS || Y_probe_location>Y_MAX_POS ) {
  3481. SERIAL_PROTOCOLPGM("?Specified Y position out of range.\n");
  3482. goto Sigma_Exit;
  3483. }
  3484. }
  3485. if (code_seen('L') || code_seen('l') ) {
  3486. n_legs = code_value();
  3487. if ( n_legs==1 )
  3488. n_legs = 2;
  3489. if ( n_legs<0 || n_legs>15 ) {
  3490. SERIAL_PROTOCOLPGM("?Specified number of legs in movement not plausable.\n");
  3491. goto Sigma_Exit;
  3492. }
  3493. }
  3494. //
  3495. // Do all the preliminary setup work. First raise the probe.
  3496. //
  3497. st_synchronize();
  3498. plan_bed_level_matrix.set_to_identity();
  3499. plan_buffer_line( X_current, Y_current, Z_start_location,
  3500. ext_position,
  3501. homing_feedrate[Z_AXIS]/60,
  3502. active_extruder);
  3503. st_synchronize();
  3504. //
  3505. // Now get everything to the specified probe point So we can safely do a probe to
  3506. // get us close to the bed. If the Z-Axis is far from the bed, we don't want to
  3507. // use that as a starting point for each probe.
  3508. //
  3509. if (verbose_level > 2)
  3510. SERIAL_PROTOCOL("Positioning probe for the test.\n");
  3511. plan_buffer_line( X_probe_location, Y_probe_location, Z_start_location,
  3512. ext_position,
  3513. homing_feedrate[X_AXIS]/60,
  3514. active_extruder);
  3515. st_synchronize();
  3516. current_position[X_AXIS] = X_current = st_get_position_mm(X_AXIS);
  3517. current_position[Y_AXIS] = Y_current = st_get_position_mm(Y_AXIS);
  3518. current_position[Z_AXIS] = Z_current = st_get_position_mm(Z_AXIS);
  3519. current_position[E_AXIS] = ext_position = st_get_position_mm(E_AXIS);
  3520. //
  3521. // OK, do the inital probe to get us close to the bed.
  3522. // Then retrace the right amount and use that in subsequent probes
  3523. //
  3524. setup_for_endstop_move();
  3525. run_z_probe();
  3526. current_position[Z_AXIS] = Z_current = st_get_position_mm(Z_AXIS);
  3527. Z_start_location = st_get_position_mm(Z_AXIS) + Z_RAISE_BEFORE_PROBING;
  3528. plan_buffer_line( X_probe_location, Y_probe_location, Z_start_location,
  3529. ext_position,
  3530. homing_feedrate[X_AXIS]/60,
  3531. active_extruder);
  3532. st_synchronize();
  3533. current_position[Z_AXIS] = Z_current = st_get_position_mm(Z_AXIS);
  3534. for( n=0; n<n_samples; n++) {
  3535. do_blocking_move_to( X_probe_location, Y_probe_location, Z_start_location); // Make sure we are at the probe location
  3536. if ( n_legs) {
  3537. double radius=0.0, theta=0.0, x_sweep, y_sweep;
  3538. int rotational_direction, l;
  3539. rotational_direction = (unsigned long) millis() & 0x0001; // clockwise or counter clockwise
  3540. radius = (unsigned long) millis() % (long) (X_MAX_LENGTH/4); // limit how far out to go
  3541. theta = (float) ((unsigned long) millis() % (long) 360) / (360./(2*3.1415926)); // turn into radians
  3542. //SERIAL_ECHOPAIR("starting radius: ",radius);
  3543. //SERIAL_ECHOPAIR(" theta: ",theta);
  3544. //SERIAL_ECHOPAIR(" direction: ",rotational_direction);
  3545. //SERIAL_PROTOCOLLNPGM("");
  3546. for( l=0; l<n_legs-1; l++) {
  3547. if (rotational_direction==1)
  3548. theta += (float) ((unsigned long) millis() % (long) 20) / (360.0/(2*3.1415926)); // turn into radians
  3549. else
  3550. theta -= (float) ((unsigned long) millis() % (long) 20) / (360.0/(2*3.1415926)); // turn into radians
  3551. radius += (float) ( ((long) ((unsigned long) millis() % (long) 10)) - 5);
  3552. if ( radius<0.0 )
  3553. radius = -radius;
  3554. X_current = X_probe_location + cos(theta) * radius;
  3555. Y_current = Y_probe_location + sin(theta) * radius;
  3556. if ( X_current<X_MIN_POS) // Make sure our X & Y are sane
  3557. X_current = X_MIN_POS;
  3558. if ( X_current>X_MAX_POS)
  3559. X_current = X_MAX_POS;
  3560. if ( Y_current<Y_MIN_POS) // Make sure our X & Y are sane
  3561. Y_current = Y_MIN_POS;
  3562. if ( Y_current>Y_MAX_POS)
  3563. Y_current = Y_MAX_POS;
  3564. if (verbose_level>3 ) {
  3565. SERIAL_ECHOPAIR("x: ", X_current);
  3566. SERIAL_ECHOPAIR("y: ", Y_current);
  3567. SERIAL_PROTOCOLLNPGM("");
  3568. }
  3569. do_blocking_move_to( X_current, Y_current, Z_current );
  3570. }
  3571. do_blocking_move_to( X_probe_location, Y_probe_location, Z_start_location); // Go back to the probe location
  3572. }
  3573. setup_for_endstop_move();
  3574. run_z_probe();
  3575. sample_set[n] = current_position[Z_AXIS];
  3576. //
  3577. // Get the current mean for the data points we have so far
  3578. //
  3579. sum=0.0;
  3580. for( j=0; j<=n; j++) {
  3581. sum = sum + sample_set[j];
  3582. }
  3583. mean = sum / (double (n+1));
  3584. //
  3585. // Now, use that mean to calculate the standard deviation for the
  3586. // data points we have so far
  3587. //
  3588. sum=0.0;
  3589. for( j=0; j<=n; j++) {
  3590. sum = sum + (sample_set[j]-mean) * (sample_set[j]-mean);
  3591. }
  3592. sigma = sqrt( sum / (double (n+1)) );
  3593. if (verbose_level > 1) {
  3594. SERIAL_PROTOCOL(n+1);
  3595. SERIAL_PROTOCOL(" of ");
  3596. SERIAL_PROTOCOL(n_samples);
  3597. SERIAL_PROTOCOLPGM(" z: ");
  3598. SERIAL_PROTOCOL_F(current_position[Z_AXIS], 6);
  3599. }
  3600. if (verbose_level > 2) {
  3601. SERIAL_PROTOCOL(" mean: ");
  3602. SERIAL_PROTOCOL_F(mean,6);
  3603. SERIAL_PROTOCOL(" sigma: ");
  3604. SERIAL_PROTOCOL_F(sigma,6);
  3605. }
  3606. if (verbose_level > 0)
  3607. SERIAL_PROTOCOLPGM("\n");
  3608. plan_buffer_line( X_probe_location, Y_probe_location, Z_start_location,
  3609. current_position[E_AXIS], homing_feedrate[Z_AXIS]/60, active_extruder);
  3610. st_synchronize();
  3611. }
  3612. delay(1000);
  3613. clean_up_after_endstop_move();
  3614. // enable_endstops(true);
  3615. if (verbose_level > 0) {
  3616. SERIAL_PROTOCOLPGM("Mean: ");
  3617. SERIAL_PROTOCOL_F(mean, 6);
  3618. SERIAL_PROTOCOLPGM("\n");
  3619. }
  3620. SERIAL_PROTOCOLPGM("Standard Deviation: ");
  3621. SERIAL_PROTOCOL_F(sigma, 6);
  3622. SERIAL_PROTOCOLPGM("\n\n");
  3623. Sigma_Exit:
  3624. break;
  3625. }
  3626. #endif // Z_PROBE_REPEATABILITY_TEST
  3627. #endif // ENABLE_AUTO_BED_LEVELING
  3628. case 104: // M104
  3629. if(setTargetedHotend(104)){
  3630. break;
  3631. }
  3632. if (code_seen('S')) setTargetHotend(code_value(), tmp_extruder);
  3633. setWatch();
  3634. break;
  3635. case 112: // M112 -Emergency Stop
  3636. kill("", 3);
  3637. break;
  3638. case 140: // M140 set bed temp
  3639. if (code_seen('S')) setTargetBed(code_value());
  3640. break;
  3641. case 105 : // M105
  3642. if(setTargetedHotend(105)){
  3643. break;
  3644. }
  3645. #if defined(TEMP_0_PIN) && TEMP_0_PIN > -1
  3646. SERIAL_PROTOCOLPGM("ok T:");
  3647. SERIAL_PROTOCOL_F(degHotend(tmp_extruder),1);
  3648. SERIAL_PROTOCOLPGM(" /");
  3649. SERIAL_PROTOCOL_F(degTargetHotend(tmp_extruder),1);
  3650. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  3651. SERIAL_PROTOCOLPGM(" B:");
  3652. SERIAL_PROTOCOL_F(degBed(),1);
  3653. SERIAL_PROTOCOLPGM(" /");
  3654. SERIAL_PROTOCOL_F(degTargetBed(),1);
  3655. #endif //TEMP_BED_PIN
  3656. for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) {
  3657. SERIAL_PROTOCOLPGM(" T");
  3658. SERIAL_PROTOCOL(cur_extruder);
  3659. SERIAL_PROTOCOLPGM(":");
  3660. SERIAL_PROTOCOL_F(degHotend(cur_extruder),1);
  3661. SERIAL_PROTOCOLPGM(" /");
  3662. SERIAL_PROTOCOL_F(degTargetHotend(cur_extruder),1);
  3663. }
  3664. #else
  3665. SERIAL_ERROR_START;
  3666. SERIAL_ERRORLNRPGM(MSG_ERR_NO_THERMISTORS);
  3667. #endif
  3668. SERIAL_PROTOCOLPGM(" @:");
  3669. #ifdef EXTRUDER_WATTS
  3670. SERIAL_PROTOCOL((EXTRUDER_WATTS * getHeaterPower(tmp_extruder))/127);
  3671. SERIAL_PROTOCOLPGM("W");
  3672. #else
  3673. SERIAL_PROTOCOL(getHeaterPower(tmp_extruder));
  3674. #endif
  3675. SERIAL_PROTOCOLPGM(" B@:");
  3676. #ifdef BED_WATTS
  3677. SERIAL_PROTOCOL((BED_WATTS * getHeaterPower(-1))/127);
  3678. SERIAL_PROTOCOLPGM("W");
  3679. #else
  3680. SERIAL_PROTOCOL(getHeaterPower(-1));
  3681. #endif
  3682. #ifdef PINDA_THERMISTOR
  3683. SERIAL_PROTOCOLPGM(" P:");
  3684. SERIAL_PROTOCOL_F(current_temperature_pinda,1);
  3685. #endif //PINDA_THERMISTOR
  3686. #ifdef AMBIENT_THERMISTOR
  3687. SERIAL_PROTOCOLPGM(" A:");
  3688. SERIAL_PROTOCOL_F(current_temperature_ambient,1);
  3689. #endif //AMBIENT_THERMISTOR
  3690. #ifdef SHOW_TEMP_ADC_VALUES
  3691. {float raw = 0.0;
  3692. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  3693. SERIAL_PROTOCOLPGM(" ADC B:");
  3694. SERIAL_PROTOCOL_F(degBed(),1);
  3695. SERIAL_PROTOCOLPGM("C->");
  3696. raw = rawBedTemp();
  3697. SERIAL_PROTOCOL_F(raw/OVERSAMPLENR,5);
  3698. SERIAL_PROTOCOLPGM(" Rb->");
  3699. SERIAL_PROTOCOL_F(100 * (1 + (PtA * (raw/OVERSAMPLENR)) + (PtB * sq((raw/OVERSAMPLENR)))), 5);
  3700. SERIAL_PROTOCOLPGM(" Rxb->");
  3701. SERIAL_PROTOCOL_F(raw, 5);
  3702. #endif
  3703. for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) {
  3704. SERIAL_PROTOCOLPGM(" T");
  3705. SERIAL_PROTOCOL(cur_extruder);
  3706. SERIAL_PROTOCOLPGM(":");
  3707. SERIAL_PROTOCOL_F(degHotend(cur_extruder),1);
  3708. SERIAL_PROTOCOLPGM("C->");
  3709. raw = rawHotendTemp(cur_extruder);
  3710. SERIAL_PROTOCOL_F(raw/OVERSAMPLENR,5);
  3711. SERIAL_PROTOCOLPGM(" Rt");
  3712. SERIAL_PROTOCOL(cur_extruder);
  3713. SERIAL_PROTOCOLPGM("->");
  3714. SERIAL_PROTOCOL_F(100 * (1 + (PtA * (raw/OVERSAMPLENR)) + (PtB * sq((raw/OVERSAMPLENR)))), 5);
  3715. SERIAL_PROTOCOLPGM(" Rx");
  3716. SERIAL_PROTOCOL(cur_extruder);
  3717. SERIAL_PROTOCOLPGM("->");
  3718. SERIAL_PROTOCOL_F(raw, 5);
  3719. }}
  3720. #endif
  3721. SERIAL_PROTOCOLLN("");
  3722. KEEPALIVE_STATE(NOT_BUSY);
  3723. return;
  3724. break;
  3725. case 109:
  3726. {// M109 - Wait for extruder heater to reach target.
  3727. if(setTargetedHotend(109)){
  3728. break;
  3729. }
  3730. LCD_MESSAGERPGM(MSG_HEATING);
  3731. heating_status = 1;
  3732. if (farm_mode) { prusa_statistics(1); };
  3733. #ifdef AUTOTEMP
  3734. autotemp_enabled=false;
  3735. #endif
  3736. if (code_seen('S')) {
  3737. setTargetHotend(code_value(), tmp_extruder);
  3738. CooldownNoWait = true;
  3739. } else if (code_seen('R')) {
  3740. setTargetHotend(code_value(), tmp_extruder);
  3741. CooldownNoWait = false;
  3742. }
  3743. #ifdef AUTOTEMP
  3744. if (code_seen('S')) autotemp_min=code_value();
  3745. if (code_seen('B')) autotemp_max=code_value();
  3746. if (code_seen('F'))
  3747. {
  3748. autotemp_factor=code_value();
  3749. autotemp_enabled=true;
  3750. }
  3751. #endif
  3752. setWatch();
  3753. codenum = millis();
  3754. /* See if we are heating up or cooling down */
  3755. target_direction = isHeatingHotend(tmp_extruder); // true if heating, false if cooling
  3756. KEEPALIVE_STATE(NOT_BUSY);
  3757. cancel_heatup = false;
  3758. wait_for_heater(codenum); //loops until target temperature is reached
  3759. LCD_MESSAGERPGM(MSG_HEATING_COMPLETE);
  3760. KEEPALIVE_STATE(IN_HANDLER);
  3761. heating_status = 2;
  3762. if (farm_mode) { prusa_statistics(2); };
  3763. //starttime=millis();
  3764. previous_millis_cmd = millis();
  3765. }
  3766. break;
  3767. case 190: // M190 - Wait for bed heater to reach target.
  3768. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  3769. LCD_MESSAGERPGM(MSG_BED_HEATING);
  3770. heating_status = 3;
  3771. if (farm_mode) { prusa_statistics(1); };
  3772. if (code_seen('S'))
  3773. {
  3774. setTargetBed(code_value());
  3775. CooldownNoWait = true;
  3776. }
  3777. else if (code_seen('R'))
  3778. {
  3779. setTargetBed(code_value());
  3780. CooldownNoWait = false;
  3781. }
  3782. codenum = millis();
  3783. cancel_heatup = false;
  3784. target_direction = isHeatingBed(); // true if heating, false if cooling
  3785. KEEPALIVE_STATE(NOT_BUSY);
  3786. while ( (target_direction)&&(!cancel_heatup) ? (isHeatingBed()) : (isCoolingBed()&&(CooldownNoWait==false)) )
  3787. {
  3788. if(( millis() - codenum) > 1000 ) //Print Temp Reading every 1 second while heating up.
  3789. {
  3790. if (!farm_mode) {
  3791. float tt = degHotend(active_extruder);
  3792. SERIAL_PROTOCOLPGM("T:");
  3793. SERIAL_PROTOCOL(tt);
  3794. SERIAL_PROTOCOLPGM(" E:");
  3795. SERIAL_PROTOCOL((int)active_extruder);
  3796. SERIAL_PROTOCOLPGM(" B:");
  3797. SERIAL_PROTOCOL_F(degBed(), 1);
  3798. SERIAL_PROTOCOLLN("");
  3799. }
  3800. codenum = millis();
  3801. }
  3802. manage_heater();
  3803. manage_inactivity();
  3804. lcd_update();
  3805. }
  3806. LCD_MESSAGERPGM(MSG_BED_DONE);
  3807. KEEPALIVE_STATE(IN_HANDLER);
  3808. heating_status = 4;
  3809. previous_millis_cmd = millis();
  3810. #endif
  3811. break;
  3812. #if defined(FAN_PIN) && FAN_PIN > -1
  3813. case 106: //M106 Fan On
  3814. if (code_seen('S')){
  3815. fanSpeed=constrain(code_value(),0,255);
  3816. }
  3817. else {
  3818. fanSpeed=255;
  3819. }
  3820. break;
  3821. case 107: //M107 Fan Off
  3822. fanSpeed = 0;
  3823. break;
  3824. #endif //FAN_PIN
  3825. #if defined(PS_ON_PIN) && PS_ON_PIN > -1
  3826. case 80: // M80 - Turn on Power Supply
  3827. SET_OUTPUT(PS_ON_PIN); //GND
  3828. WRITE(PS_ON_PIN, PS_ON_AWAKE);
  3829. // If you have a switch on suicide pin, this is useful
  3830. // if you want to start another print with suicide feature after
  3831. // a print without suicide...
  3832. #if defined SUICIDE_PIN && SUICIDE_PIN > -1
  3833. SET_OUTPUT(SUICIDE_PIN);
  3834. WRITE(SUICIDE_PIN, HIGH);
  3835. #endif
  3836. #ifdef ULTIPANEL
  3837. powersupply = true;
  3838. LCD_MESSAGERPGM(WELCOME_MSG);
  3839. lcd_update();
  3840. #endif
  3841. break;
  3842. #endif
  3843. case 81: // M81 - Turn off Power Supply
  3844. disable_heater();
  3845. st_synchronize();
  3846. disable_e0();
  3847. disable_e1();
  3848. disable_e2();
  3849. finishAndDisableSteppers();
  3850. fanSpeed = 0;
  3851. delay(1000); // Wait a little before to switch off
  3852. #if defined(SUICIDE_PIN) && SUICIDE_PIN > -1
  3853. st_synchronize();
  3854. suicide();
  3855. #elif defined(PS_ON_PIN) && PS_ON_PIN > -1
  3856. SET_OUTPUT(PS_ON_PIN);
  3857. WRITE(PS_ON_PIN, PS_ON_ASLEEP);
  3858. #endif
  3859. #ifdef ULTIPANEL
  3860. powersupply = false;
  3861. LCD_MESSAGERPGM(CAT4(CUSTOM_MENDEL_NAME,PSTR(" "),MSG_OFF,PSTR("."))); //!!
  3862. /*
  3863. MACHNAME = "Prusa i3"
  3864. MSGOFF = "Vypnuto"
  3865. "Prusai3"" ""vypnuto""."
  3866. "Prusa i3"" "MSG_ALL[lang_selected][50]"."
  3867. */
  3868. lcd_update();
  3869. #endif
  3870. break;
  3871. case 82:
  3872. axis_relative_modes[3] = false;
  3873. break;
  3874. case 83:
  3875. axis_relative_modes[3] = true;
  3876. break;
  3877. case 18: //compatibility
  3878. case 84: // M84
  3879. if(code_seen('S')){
  3880. stepper_inactive_time = code_value() * 1000;
  3881. }
  3882. else
  3883. {
  3884. bool all_axis = !((code_seen(axis_codes[X_AXIS])) || (code_seen(axis_codes[Y_AXIS])) || (code_seen(axis_codes[Z_AXIS]))|| (code_seen(axis_codes[E_AXIS])));
  3885. if(all_axis)
  3886. {
  3887. st_synchronize();
  3888. disable_e0();
  3889. disable_e1();
  3890. disable_e2();
  3891. finishAndDisableSteppers();
  3892. }
  3893. else
  3894. {
  3895. st_synchronize();
  3896. if (code_seen('X')) disable_x();
  3897. if (code_seen('Y')) disable_y();
  3898. if (code_seen('Z')) disable_z();
  3899. #if ((E0_ENABLE_PIN != X_ENABLE_PIN) && (E1_ENABLE_PIN != Y_ENABLE_PIN)) // Only enable on boards that have seperate ENABLE_PINS
  3900. if (code_seen('E')) {
  3901. disable_e0();
  3902. disable_e1();
  3903. disable_e2();
  3904. }
  3905. #endif
  3906. }
  3907. }
  3908. snmm_filaments_used = 0;
  3909. break;
  3910. case 85: // M85
  3911. if(code_seen('S')) {
  3912. max_inactive_time = code_value() * 1000;
  3913. }
  3914. break;
  3915. case 92: // M92
  3916. for(int8_t i=0; i < NUM_AXIS; i++)
  3917. {
  3918. if(code_seen(axis_codes[i]))
  3919. {
  3920. if(i == 3) { // E
  3921. float value = code_value();
  3922. if(value < 20.0) {
  3923. float factor = axis_steps_per_unit[i] / value; // increase e constants if M92 E14 is given for netfab.
  3924. max_jerk[E_AXIS] *= factor;
  3925. max_feedrate[i] *= factor;
  3926. axis_steps_per_sqr_second[i] *= factor;
  3927. }
  3928. axis_steps_per_unit[i] = value;
  3929. }
  3930. else {
  3931. axis_steps_per_unit[i] = code_value();
  3932. }
  3933. }
  3934. }
  3935. break;
  3936. #ifdef HOST_KEEPALIVE_FEATURE
  3937. case 113: // M113 - Get or set Host Keepalive interval
  3938. if (code_seen('S')) {
  3939. host_keepalive_interval = (uint8_t)code_value_short();
  3940. // NOMORE(host_keepalive_interval, 60);
  3941. }
  3942. else {
  3943. SERIAL_ECHO_START;
  3944. SERIAL_ECHOPAIR("M113 S", (unsigned long)host_keepalive_interval);
  3945. SERIAL_PROTOCOLLN("");
  3946. }
  3947. break;
  3948. #endif
  3949. case 115: // M115
  3950. if (code_seen('V')) {
  3951. // Report the Prusa version number.
  3952. SERIAL_PROTOCOLLNRPGM(FW_VERSION_STR_P());
  3953. } else if (code_seen('U')) {
  3954. // Check the firmware version provided. If the firmware version provided by the U code is higher than the currently running firmware,
  3955. // pause the print and ask the user to upgrade the firmware.
  3956. show_upgrade_dialog_if_version_newer(++ strchr_pointer);
  3957. } else {
  3958. SERIAL_PROTOCOLRPGM(MSG_M115_REPORT);
  3959. }
  3960. break;
  3961. /* case 117: // M117 display message
  3962. starpos = (strchr(strchr_pointer + 5,'*'));
  3963. if(starpos!=NULL)
  3964. *(starpos)='\0';
  3965. lcd_setstatus(strchr_pointer + 5);
  3966. break;*/
  3967. case 114: // M114
  3968. SERIAL_PROTOCOLPGM("X:");
  3969. SERIAL_PROTOCOL(current_position[X_AXIS]);
  3970. SERIAL_PROTOCOLPGM(" Y:");
  3971. SERIAL_PROTOCOL(current_position[Y_AXIS]);
  3972. SERIAL_PROTOCOLPGM(" Z:");
  3973. SERIAL_PROTOCOL(current_position[Z_AXIS]);
  3974. SERIAL_PROTOCOLPGM(" E:");
  3975. SERIAL_PROTOCOL(current_position[E_AXIS]);
  3976. SERIAL_PROTOCOLRPGM(MSG_COUNT_X);
  3977. SERIAL_PROTOCOL(float(st_get_position(X_AXIS))/axis_steps_per_unit[X_AXIS]);
  3978. SERIAL_PROTOCOLPGM(" Y:");
  3979. SERIAL_PROTOCOL(float(st_get_position(Y_AXIS))/axis_steps_per_unit[Y_AXIS]);
  3980. SERIAL_PROTOCOLPGM(" Z:");
  3981. SERIAL_PROTOCOL(float(st_get_position(Z_AXIS))/axis_steps_per_unit[Z_AXIS]);
  3982. SERIAL_PROTOCOLPGM(" E:");
  3983. SERIAL_PROTOCOL(float(st_get_position(E_AXIS))/axis_steps_per_unit[E_AXIS]);
  3984. SERIAL_PROTOCOLLN("");
  3985. break;
  3986. case 120: // M120
  3987. enable_endstops(false) ;
  3988. break;
  3989. case 121: // M121
  3990. enable_endstops(true) ;
  3991. break;
  3992. case 119: // M119
  3993. SERIAL_PROTOCOLRPGM(MSG_M119_REPORT);
  3994. SERIAL_PROTOCOLLN("");
  3995. #if defined(X_MIN_PIN) && X_MIN_PIN > -1
  3996. SERIAL_PROTOCOLRPGM(MSG_X_MIN);
  3997. if(READ(X_MIN_PIN)^X_MIN_ENDSTOP_INVERTING){
  3998. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_HIT);
  3999. }else{
  4000. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_OPEN);
  4001. }
  4002. SERIAL_PROTOCOLLN("");
  4003. #endif
  4004. #if defined(X_MAX_PIN) && X_MAX_PIN > -1
  4005. SERIAL_PROTOCOLRPGM(MSG_X_MAX);
  4006. if(READ(X_MAX_PIN)^X_MAX_ENDSTOP_INVERTING){
  4007. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_HIT);
  4008. }else{
  4009. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_OPEN);
  4010. }
  4011. SERIAL_PROTOCOLLN("");
  4012. #endif
  4013. #if defined(Y_MIN_PIN) && Y_MIN_PIN > -1
  4014. SERIAL_PROTOCOLRPGM(MSG_Y_MIN);
  4015. if(READ(Y_MIN_PIN)^Y_MIN_ENDSTOP_INVERTING){
  4016. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_HIT);
  4017. }else{
  4018. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_OPEN);
  4019. }
  4020. SERIAL_PROTOCOLLN("");
  4021. #endif
  4022. #if defined(Y_MAX_PIN) && Y_MAX_PIN > -1
  4023. SERIAL_PROTOCOLRPGM(MSG_Y_MAX);
  4024. if(READ(Y_MAX_PIN)^Y_MAX_ENDSTOP_INVERTING){
  4025. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_HIT);
  4026. }else{
  4027. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_OPEN);
  4028. }
  4029. SERIAL_PROTOCOLLN("");
  4030. #endif
  4031. #if defined(Z_MIN_PIN) && Z_MIN_PIN > -1
  4032. SERIAL_PROTOCOLRPGM(MSG_Z_MIN);
  4033. if(READ(Z_MIN_PIN)^Z_MIN_ENDSTOP_INVERTING){
  4034. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_HIT);
  4035. }else{
  4036. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_OPEN);
  4037. }
  4038. SERIAL_PROTOCOLLN("");
  4039. #endif
  4040. #if defined(Z_MAX_PIN) && Z_MAX_PIN > -1
  4041. SERIAL_PROTOCOLRPGM(MSG_Z_MAX);
  4042. if(READ(Z_MAX_PIN)^Z_MAX_ENDSTOP_INVERTING){
  4043. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_HIT);
  4044. }else{
  4045. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_OPEN);
  4046. }
  4047. SERIAL_PROTOCOLLN("");
  4048. #endif
  4049. break;
  4050. //TODO: update for all axis, use for loop
  4051. #ifdef BLINKM
  4052. case 150: // M150
  4053. {
  4054. byte red;
  4055. byte grn;
  4056. byte blu;
  4057. if(code_seen('R')) red = code_value();
  4058. if(code_seen('U')) grn = code_value();
  4059. if(code_seen('B')) blu = code_value();
  4060. SendColors(red,grn,blu);
  4061. }
  4062. break;
  4063. #endif //BLINKM
  4064. case 200: // M200 D<millimeters> set filament diameter and set E axis units to cubic millimeters (use S0 to set back to millimeters).
  4065. {
  4066. tmp_extruder = active_extruder;
  4067. if(code_seen('T')) {
  4068. tmp_extruder = code_value();
  4069. if(tmp_extruder >= EXTRUDERS) {
  4070. SERIAL_ECHO_START;
  4071. SERIAL_ECHO(MSG_M200_INVALID_EXTRUDER);
  4072. break;
  4073. }
  4074. }
  4075. float area = .0;
  4076. if(code_seen('D')) {
  4077. float diameter = (float)code_value();
  4078. if (diameter == 0.0) {
  4079. // setting any extruder filament size disables volumetric on the assumption that
  4080. // slicers either generate in extruder values as cubic mm or as as filament feeds
  4081. // for all extruders
  4082. volumetric_enabled = false;
  4083. } else {
  4084. filament_size[tmp_extruder] = (float)code_value();
  4085. // make sure all extruders have some sane value for the filament size
  4086. filament_size[0] = (filament_size[0] == 0.0 ? DEFAULT_NOMINAL_FILAMENT_DIA : filament_size[0]);
  4087. #if EXTRUDERS > 1
  4088. filament_size[1] = (filament_size[1] == 0.0 ? DEFAULT_NOMINAL_FILAMENT_DIA : filament_size[1]);
  4089. #if EXTRUDERS > 2
  4090. filament_size[2] = (filament_size[2] == 0.0 ? DEFAULT_NOMINAL_FILAMENT_DIA : filament_size[2]);
  4091. #endif
  4092. #endif
  4093. volumetric_enabled = true;
  4094. }
  4095. } else {
  4096. //reserved for setting filament diameter via UFID or filament measuring device
  4097. break;
  4098. }
  4099. calculate_volumetric_multipliers();
  4100. }
  4101. break;
  4102. case 201: // M201
  4103. for(int8_t i=0; i < NUM_AXIS; i++)
  4104. {
  4105. if(code_seen(axis_codes[i]))
  4106. {
  4107. max_acceleration_units_per_sq_second[i] = code_value();
  4108. }
  4109. }
  4110. // steps per sq second need to be updated to agree with the units per sq second (as they are what is used in the planner)
  4111. reset_acceleration_rates();
  4112. break;
  4113. #if 0 // Not used for Sprinter/grbl gen6
  4114. case 202: // M202
  4115. for(int8_t i=0; i < NUM_AXIS; i++) {
  4116. if(code_seen(axis_codes[i])) axis_travel_steps_per_sqr_second[i] = code_value() * axis_steps_per_unit[i];
  4117. }
  4118. break;
  4119. #endif
  4120. case 203: // M203 max feedrate mm/sec
  4121. for(int8_t i=0; i < NUM_AXIS; i++) {
  4122. if(code_seen(axis_codes[i])) max_feedrate[i] = code_value();
  4123. }
  4124. break;
  4125. case 204: // M204 acclereration S normal moves T filmanent only moves
  4126. {
  4127. if(code_seen('S')) acceleration = code_value() ;
  4128. if(code_seen('T')) retract_acceleration = code_value() ;
  4129. }
  4130. break;
  4131. case 205: //M205 advanced settings: minimum travel speed S=while printing T=travel only, B=minimum segment time X= maximum xy jerk, Z=maximum Z jerk
  4132. {
  4133. if(code_seen('S')) minimumfeedrate = code_value();
  4134. if(code_seen('T')) mintravelfeedrate = code_value();
  4135. if(code_seen('B')) minsegmenttime = code_value() ;
  4136. if(code_seen('X')) max_jerk[X_AXIS] = max_jerk[Y_AXIS] = code_value();
  4137. if(code_seen('Y')) max_jerk[Y_AXIS] = code_value();
  4138. if(code_seen('Z')) max_jerk[Z_AXIS] = code_value();
  4139. if(code_seen('E')) max_jerk[E_AXIS] = code_value();
  4140. }
  4141. break;
  4142. case 206: // M206 additional homing offset
  4143. for(int8_t i=0; i < 3; i++)
  4144. {
  4145. if(code_seen(axis_codes[i])) add_homing[i] = code_value();
  4146. }
  4147. break;
  4148. #ifdef FWRETRACT
  4149. case 207: //M207 - set retract length S[positive mm] F[feedrate mm/min] Z[additional zlift/hop]
  4150. {
  4151. if(code_seen('S'))
  4152. {
  4153. retract_length = code_value() ;
  4154. }
  4155. if(code_seen('F'))
  4156. {
  4157. retract_feedrate = code_value()/60 ;
  4158. }
  4159. if(code_seen('Z'))
  4160. {
  4161. retract_zlift = code_value() ;
  4162. }
  4163. }break;
  4164. case 208: // M208 - set retract recover length S[positive mm surplus to the M207 S*] F[feedrate mm/min]
  4165. {
  4166. if(code_seen('S'))
  4167. {
  4168. retract_recover_length = code_value() ;
  4169. }
  4170. if(code_seen('F'))
  4171. {
  4172. retract_recover_feedrate = code_value()/60 ;
  4173. }
  4174. }break;
  4175. case 209: // M209 - S<1=true/0=false> enable automatic retract detect if the slicer did not support G10/11: every normal extrude-only move will be classified as retract depending on the direction.
  4176. {
  4177. if(code_seen('S'))
  4178. {
  4179. int t= code_value() ;
  4180. switch(t)
  4181. {
  4182. case 0:
  4183. {
  4184. autoretract_enabled=false;
  4185. retracted[0]=false;
  4186. #if EXTRUDERS > 1
  4187. retracted[1]=false;
  4188. #endif
  4189. #if EXTRUDERS > 2
  4190. retracted[2]=false;
  4191. #endif
  4192. }break;
  4193. case 1:
  4194. {
  4195. autoretract_enabled=true;
  4196. retracted[0]=false;
  4197. #if EXTRUDERS > 1
  4198. retracted[1]=false;
  4199. #endif
  4200. #if EXTRUDERS > 2
  4201. retracted[2]=false;
  4202. #endif
  4203. }break;
  4204. default:
  4205. SERIAL_ECHO_START;
  4206. SERIAL_ECHORPGM(MSG_UNKNOWN_COMMAND);
  4207. SERIAL_ECHO(CMDBUFFER_CURRENT_STRING);
  4208. SERIAL_ECHOLNPGM("\"(1)");
  4209. }
  4210. }
  4211. }break;
  4212. #endif // FWRETRACT
  4213. #if EXTRUDERS > 1
  4214. case 218: // M218 - set hotend offset (in mm), T<extruder_number> X<offset_on_X> Y<offset_on_Y>
  4215. {
  4216. if(setTargetedHotend(218)){
  4217. break;
  4218. }
  4219. if(code_seen('X'))
  4220. {
  4221. extruder_offset[X_AXIS][tmp_extruder] = code_value();
  4222. }
  4223. if(code_seen('Y'))
  4224. {
  4225. extruder_offset[Y_AXIS][tmp_extruder] = code_value();
  4226. }
  4227. SERIAL_ECHO_START;
  4228. SERIAL_ECHORPGM(MSG_HOTEND_OFFSET);
  4229. for(tmp_extruder = 0; tmp_extruder < EXTRUDERS; tmp_extruder++)
  4230. {
  4231. SERIAL_ECHO(" ");
  4232. SERIAL_ECHO(extruder_offset[X_AXIS][tmp_extruder]);
  4233. SERIAL_ECHO(",");
  4234. SERIAL_ECHO(extruder_offset[Y_AXIS][tmp_extruder]);
  4235. }
  4236. SERIAL_ECHOLN("");
  4237. }break;
  4238. #endif
  4239. case 220: // M220 S<factor in percent>- set speed factor override percentage
  4240. {
  4241. if(code_seen('S'))
  4242. {
  4243. feedmultiply = code_value() ;
  4244. }
  4245. }
  4246. break;
  4247. case 221: // M221 S<factor in percent>- set extrude factor override percentage
  4248. {
  4249. if(code_seen('S'))
  4250. {
  4251. int tmp_code = code_value();
  4252. if (code_seen('T'))
  4253. {
  4254. if(setTargetedHotend(221)){
  4255. break;
  4256. }
  4257. extruder_multiply[tmp_extruder] = tmp_code;
  4258. }
  4259. else
  4260. {
  4261. extrudemultiply = tmp_code ;
  4262. }
  4263. }
  4264. }
  4265. break;
  4266. case 226: // M226 P<pin number> S<pin state>- Wait until the specified pin reaches the state required
  4267. {
  4268. if(code_seen('P')){
  4269. int pin_number = code_value(); // pin number
  4270. int pin_state = -1; // required pin state - default is inverted
  4271. if(code_seen('S')) pin_state = code_value(); // required pin state
  4272. if(pin_state >= -1 && pin_state <= 1){
  4273. for(int8_t i = 0; i < (int8_t)(sizeof(sensitive_pins)/sizeof(int)); i++)
  4274. {
  4275. if (sensitive_pins[i] == pin_number)
  4276. {
  4277. pin_number = -1;
  4278. break;
  4279. }
  4280. }
  4281. if (pin_number > -1)
  4282. {
  4283. int target = LOW;
  4284. st_synchronize();
  4285. pinMode(pin_number, INPUT);
  4286. switch(pin_state){
  4287. case 1:
  4288. target = HIGH;
  4289. break;
  4290. case 0:
  4291. target = LOW;
  4292. break;
  4293. case -1:
  4294. target = !digitalRead(pin_number);
  4295. break;
  4296. }
  4297. while(digitalRead(pin_number) != target){
  4298. manage_heater();
  4299. manage_inactivity();
  4300. lcd_update();
  4301. }
  4302. }
  4303. }
  4304. }
  4305. }
  4306. break;
  4307. #if NUM_SERVOS > 0
  4308. case 280: // M280 - set servo position absolute. P: servo index, S: angle or microseconds
  4309. {
  4310. int servo_index = -1;
  4311. int servo_position = 0;
  4312. if (code_seen('P'))
  4313. servo_index = code_value();
  4314. if (code_seen('S')) {
  4315. servo_position = code_value();
  4316. if ((servo_index >= 0) && (servo_index < NUM_SERVOS)) {
  4317. #if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
  4318. servos[servo_index].attach(0);
  4319. #endif
  4320. servos[servo_index].write(servo_position);
  4321. #if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
  4322. delay(PROBE_SERVO_DEACTIVATION_DELAY);
  4323. servos[servo_index].detach();
  4324. #endif
  4325. }
  4326. else {
  4327. SERIAL_ECHO_START;
  4328. SERIAL_ECHO("Servo ");
  4329. SERIAL_ECHO(servo_index);
  4330. SERIAL_ECHOLN(" out of range");
  4331. }
  4332. }
  4333. else if (servo_index >= 0) {
  4334. SERIAL_PROTOCOL(MSG_OK);
  4335. SERIAL_PROTOCOL(" Servo ");
  4336. SERIAL_PROTOCOL(servo_index);
  4337. SERIAL_PROTOCOL(": ");
  4338. SERIAL_PROTOCOL(servos[servo_index].read());
  4339. SERIAL_PROTOCOLLN("");
  4340. }
  4341. }
  4342. break;
  4343. #endif // NUM_SERVOS > 0
  4344. #if (LARGE_FLASH == true && ( BEEPER > 0 || defined(ULTRALCD) || defined(LCD_USE_I2C_BUZZER)))
  4345. case 300: // M300
  4346. {
  4347. int beepS = code_seen('S') ? code_value() : 110;
  4348. int beepP = code_seen('P') ? code_value() : 1000;
  4349. if (beepS > 0)
  4350. {
  4351. #if BEEPER > 0
  4352. tone(BEEPER, beepS);
  4353. delay(beepP);
  4354. noTone(BEEPER);
  4355. #elif defined(ULTRALCD)
  4356. lcd_buzz(beepS, beepP);
  4357. #elif defined(LCD_USE_I2C_BUZZER)
  4358. lcd_buzz(beepP, beepS);
  4359. #endif
  4360. }
  4361. else
  4362. {
  4363. delay(beepP);
  4364. }
  4365. }
  4366. break;
  4367. #endif // M300
  4368. #ifdef PIDTEMP
  4369. case 301: // M301
  4370. {
  4371. if(code_seen('P')) Kp = code_value();
  4372. if(code_seen('I')) Ki = scalePID_i(code_value());
  4373. if(code_seen('D')) Kd = scalePID_d(code_value());
  4374. #ifdef PID_ADD_EXTRUSION_RATE
  4375. if(code_seen('C')) Kc = code_value();
  4376. #endif
  4377. updatePID();
  4378. SERIAL_PROTOCOLRPGM(MSG_OK);
  4379. SERIAL_PROTOCOL(" p:");
  4380. SERIAL_PROTOCOL(Kp);
  4381. SERIAL_PROTOCOL(" i:");
  4382. SERIAL_PROTOCOL(unscalePID_i(Ki));
  4383. SERIAL_PROTOCOL(" d:");
  4384. SERIAL_PROTOCOL(unscalePID_d(Kd));
  4385. #ifdef PID_ADD_EXTRUSION_RATE
  4386. SERIAL_PROTOCOL(" c:");
  4387. //Kc does not have scaling applied above, or in resetting defaults
  4388. SERIAL_PROTOCOL(Kc);
  4389. #endif
  4390. SERIAL_PROTOCOLLN("");
  4391. }
  4392. break;
  4393. #endif //PIDTEMP
  4394. #ifdef PIDTEMPBED
  4395. case 304: // M304
  4396. {
  4397. if(code_seen('P')) bedKp = code_value();
  4398. if(code_seen('I')) bedKi = scalePID_i(code_value());
  4399. if(code_seen('D')) bedKd = scalePID_d(code_value());
  4400. updatePID();
  4401. SERIAL_PROTOCOLRPGM(MSG_OK);
  4402. SERIAL_PROTOCOL(" p:");
  4403. SERIAL_PROTOCOL(bedKp);
  4404. SERIAL_PROTOCOL(" i:");
  4405. SERIAL_PROTOCOL(unscalePID_i(bedKi));
  4406. SERIAL_PROTOCOL(" d:");
  4407. SERIAL_PROTOCOL(unscalePID_d(bedKd));
  4408. SERIAL_PROTOCOLLN("");
  4409. }
  4410. break;
  4411. #endif //PIDTEMP
  4412. case 240: // M240 Triggers a camera by emulating a Canon RC-1 : http://www.doc-diy.net/photo/rc-1_hacked/
  4413. {
  4414. #ifdef CHDK
  4415. SET_OUTPUT(CHDK);
  4416. WRITE(CHDK, HIGH);
  4417. chdkHigh = millis();
  4418. chdkActive = true;
  4419. #else
  4420. #if defined(PHOTOGRAPH_PIN) && PHOTOGRAPH_PIN > -1
  4421. const uint8_t NUM_PULSES=16;
  4422. const float PULSE_LENGTH=0.01524;
  4423. for(int i=0; i < NUM_PULSES; i++) {
  4424. WRITE(PHOTOGRAPH_PIN, HIGH);
  4425. _delay_ms(PULSE_LENGTH);
  4426. WRITE(PHOTOGRAPH_PIN, LOW);
  4427. _delay_ms(PULSE_LENGTH);
  4428. }
  4429. delay(7.33);
  4430. for(int i=0; i < NUM_PULSES; i++) {
  4431. WRITE(PHOTOGRAPH_PIN, HIGH);
  4432. _delay_ms(PULSE_LENGTH);
  4433. WRITE(PHOTOGRAPH_PIN, LOW);
  4434. _delay_ms(PULSE_LENGTH);
  4435. }
  4436. #endif
  4437. #endif //chdk end if
  4438. }
  4439. break;
  4440. #ifdef DOGLCD
  4441. case 250: // M250 Set LCD contrast value: C<value> (value 0..63)
  4442. {
  4443. if (code_seen('C')) {
  4444. lcd_setcontrast( ((int)code_value())&63 );
  4445. }
  4446. SERIAL_PROTOCOLPGM("lcd contrast value: ");
  4447. SERIAL_PROTOCOL(lcd_contrast);
  4448. SERIAL_PROTOCOLLN("");
  4449. }
  4450. break;
  4451. #endif
  4452. #ifdef PREVENT_DANGEROUS_EXTRUDE
  4453. case 302: // allow cold extrudes, or set the minimum extrude temperature
  4454. {
  4455. float temp = .0;
  4456. if (code_seen('S')) temp=code_value();
  4457. set_extrude_min_temp(temp);
  4458. }
  4459. break;
  4460. #endif
  4461. case 303: // M303 PID autotune
  4462. {
  4463. float temp = 150.0;
  4464. int e=0;
  4465. int c=5;
  4466. if (code_seen('E')) e=code_value();
  4467. if (e<0)
  4468. temp=70;
  4469. if (code_seen('S')) temp=code_value();
  4470. if (code_seen('C')) c=code_value();
  4471. PID_autotune(temp, e, c);
  4472. }
  4473. break;
  4474. case 400: // M400 finish all moves
  4475. {
  4476. st_synchronize();
  4477. }
  4478. break;
  4479. #ifdef FILAMENT_SENSOR
  4480. case 404: //M404 Enter the nominal filament width (3mm, 1.75mm ) N<3.0> or display nominal filament width
  4481. {
  4482. #if (FILWIDTH_PIN > -1)
  4483. if(code_seen('N')) filament_width_nominal=code_value();
  4484. else{
  4485. SERIAL_PROTOCOLPGM("Filament dia (nominal mm):");
  4486. SERIAL_PROTOCOLLN(filament_width_nominal);
  4487. }
  4488. #endif
  4489. }
  4490. break;
  4491. case 405: //M405 Turn on filament sensor for control
  4492. {
  4493. if(code_seen('D')) meas_delay_cm=code_value();
  4494. if(meas_delay_cm> MAX_MEASUREMENT_DELAY)
  4495. meas_delay_cm = MAX_MEASUREMENT_DELAY;
  4496. if(delay_index2 == -1) //initialize the ring buffer if it has not been done since startup
  4497. {
  4498. int temp_ratio = widthFil_to_size_ratio();
  4499. for (delay_index1=0; delay_index1<(MAX_MEASUREMENT_DELAY+1); ++delay_index1 ){
  4500. measurement_delay[delay_index1]=temp_ratio-100; //subtract 100 to scale within a signed byte
  4501. }
  4502. delay_index1=0;
  4503. delay_index2=0;
  4504. }
  4505. filament_sensor = true ;
  4506. //SERIAL_PROTOCOLPGM("Filament dia (measured mm):");
  4507. //SERIAL_PROTOCOL(filament_width_meas);
  4508. //SERIAL_PROTOCOLPGM("Extrusion ratio(%):");
  4509. //SERIAL_PROTOCOL(extrudemultiply);
  4510. }
  4511. break;
  4512. case 406: //M406 Turn off filament sensor for control
  4513. {
  4514. filament_sensor = false ;
  4515. }
  4516. break;
  4517. case 407: //M407 Display measured filament diameter
  4518. {
  4519. SERIAL_PROTOCOLPGM("Filament dia (measured mm):");
  4520. SERIAL_PROTOCOLLN(filament_width_meas);
  4521. }
  4522. break;
  4523. #endif
  4524. case 500: // M500 Store settings in EEPROM
  4525. {
  4526. Config_StoreSettings(EEPROM_OFFSET);
  4527. }
  4528. break;
  4529. case 501: // M501 Read settings from EEPROM
  4530. {
  4531. Config_RetrieveSettings(EEPROM_OFFSET);
  4532. }
  4533. break;
  4534. case 502: // M502 Revert to default settings
  4535. {
  4536. Config_ResetDefault();
  4537. }
  4538. break;
  4539. case 503: // M503 print settings currently in memory
  4540. {
  4541. Config_PrintSettings();
  4542. }
  4543. break;
  4544. case 509: //M509 Force language selection
  4545. {
  4546. lcd_force_language_selection();
  4547. SERIAL_ECHO_START;
  4548. SERIAL_PROTOCOLPGM(("LANG SEL FORCED"));
  4549. }
  4550. break;
  4551. #ifdef ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED
  4552. case 540:
  4553. {
  4554. if(code_seen('S')) abort_on_endstop_hit = code_value() > 0;
  4555. }
  4556. break;
  4557. #endif
  4558. #ifdef CUSTOM_M_CODE_SET_Z_PROBE_OFFSET
  4559. case CUSTOM_M_CODE_SET_Z_PROBE_OFFSET:
  4560. {
  4561. float value;
  4562. if (code_seen('Z'))
  4563. {
  4564. value = code_value();
  4565. if ((Z_PROBE_OFFSET_RANGE_MIN <= value) && (value <= Z_PROBE_OFFSET_RANGE_MAX))
  4566. {
  4567. zprobe_zoffset = -value; // compare w/ line 278 of ConfigurationStore.cpp
  4568. SERIAL_ECHO_START;
  4569. SERIAL_ECHOLNRPGM(CAT4(MSG_ZPROBE_ZOFFSET, " ", MSG_OK,PSTR("")));
  4570. SERIAL_PROTOCOLLN("");
  4571. }
  4572. else
  4573. {
  4574. SERIAL_ECHO_START;
  4575. SERIAL_ECHORPGM(MSG_ZPROBE_ZOFFSET);
  4576. SERIAL_ECHORPGM(MSG_Z_MIN);
  4577. SERIAL_ECHO(Z_PROBE_OFFSET_RANGE_MIN);
  4578. SERIAL_ECHORPGM(MSG_Z_MAX);
  4579. SERIAL_ECHO(Z_PROBE_OFFSET_RANGE_MAX);
  4580. SERIAL_PROTOCOLLN("");
  4581. }
  4582. }
  4583. else
  4584. {
  4585. SERIAL_ECHO_START;
  4586. SERIAL_ECHOLNRPGM(CAT2(MSG_ZPROBE_ZOFFSET, PSTR(" : ")));
  4587. SERIAL_ECHO(-zprobe_zoffset);
  4588. SERIAL_PROTOCOLLN("");
  4589. }
  4590. break;
  4591. }
  4592. #endif // CUSTOM_M_CODE_SET_Z_PROBE_OFFSET
  4593. #ifdef FILAMENTCHANGEENABLE
  4594. case 600: //Pause for filament change X[pos] Y[pos] Z[relative lift] E[initial retract] L[later retract distance for removal]
  4595. {
  4596. MYSERIAL.println("!!!!M600!!!!");
  4597. bool old_fsensor_enabled = fsensor_enabled;
  4598. fsensor_enabled = false; //temporary solution for unexpected restarting
  4599. st_synchronize();
  4600. float target[4];
  4601. float lastpos[4];
  4602. if (farm_mode)
  4603. {
  4604. prusa_statistics(22);
  4605. }
  4606. feedmultiplyBckp=feedmultiply;
  4607. int8_t TooLowZ = 0;
  4608. target[X_AXIS]=current_position[X_AXIS];
  4609. target[Y_AXIS]=current_position[Y_AXIS];
  4610. target[Z_AXIS]=current_position[Z_AXIS];
  4611. target[E_AXIS]=current_position[E_AXIS];
  4612. lastpos[X_AXIS]=current_position[X_AXIS];
  4613. lastpos[Y_AXIS]=current_position[Y_AXIS];
  4614. lastpos[Z_AXIS]=current_position[Z_AXIS];
  4615. lastpos[E_AXIS]=current_position[E_AXIS];
  4616. //Restract extruder
  4617. if(code_seen('E'))
  4618. {
  4619. target[E_AXIS]+= code_value();
  4620. }
  4621. else
  4622. {
  4623. #ifdef FILAMENTCHANGE_FIRSTRETRACT
  4624. target[E_AXIS]+= FILAMENTCHANGE_FIRSTRETRACT ;
  4625. #endif
  4626. }
  4627. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_RFEED, active_extruder);
  4628. //Lift Z
  4629. if(code_seen('Z'))
  4630. {
  4631. target[Z_AXIS]+= code_value();
  4632. }
  4633. else
  4634. {
  4635. #ifdef FILAMENTCHANGE_ZADD
  4636. target[Z_AXIS]+= FILAMENTCHANGE_ZADD ;
  4637. if(target[Z_AXIS] < 10){
  4638. target[Z_AXIS]+= 10 ;
  4639. TooLowZ = 1;
  4640. }else{
  4641. TooLowZ = 0;
  4642. }
  4643. #endif
  4644. }
  4645. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_ZFEED, active_extruder);
  4646. //Move XY to side
  4647. if(code_seen('X'))
  4648. {
  4649. target[X_AXIS]+= code_value();
  4650. }
  4651. else
  4652. {
  4653. #ifdef FILAMENTCHANGE_XPOS
  4654. target[X_AXIS]= FILAMENTCHANGE_XPOS ;
  4655. #endif
  4656. }
  4657. if(code_seen('Y'))
  4658. {
  4659. target[Y_AXIS]= code_value();
  4660. }
  4661. else
  4662. {
  4663. #ifdef FILAMENTCHANGE_YPOS
  4664. target[Y_AXIS]= FILAMENTCHANGE_YPOS ;
  4665. #endif
  4666. }
  4667. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_XYFEED, active_extruder);
  4668. st_synchronize();
  4669. KEEPALIVE_STATE(PAUSED_FOR_USER);
  4670. uint8_t cnt = 0;
  4671. int counterBeep = 0;
  4672. lcd_display_message_fullscreen_P(MSG_PRESS_TO_UNLOAD);
  4673. while (!lcd_clicked()) {
  4674. cnt++;
  4675. manage_heater();
  4676. manage_inactivity(true);
  4677. /*#ifdef SNMM
  4678. target[E_AXIS] += 0.002;
  4679. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 500, active_extruder);
  4680. #endif // SNMM*/
  4681. if (cnt == 0)
  4682. {
  4683. #if BEEPER > 0
  4684. if (counterBeep == 500) {
  4685. counterBeep = 0;
  4686. }
  4687. SET_OUTPUT(BEEPER);
  4688. if (counterBeep == 0) {
  4689. WRITE(BEEPER, HIGH);
  4690. }
  4691. if (counterBeep == 20) {
  4692. WRITE(BEEPER, LOW);
  4693. }
  4694. counterBeep++;
  4695. #else
  4696. #if !defined(LCD_FEEDBACK_FREQUENCY_HZ) || !defined(LCD_FEEDBACK_FREQUENCY_DURATION_MS)
  4697. lcd_buzz(1000 / 6, 100);
  4698. #else
  4699. lcd_buzz(LCD_FEEDBACK_FREQUENCY_DURATION_MS, LCD_FEEDBACK_FREQUENCY_HZ);
  4700. #endif
  4701. #endif
  4702. }
  4703. }
  4704. WRITE(BEEPER, LOW);
  4705. lcd_change_fil_state = 0;
  4706. while (lcd_change_fil_state == 0) {
  4707. lcd_display_message_fullscreen_P(MSG_UNLOADING_FILAMENT);
  4708. KEEPALIVE_STATE(IN_HANDLER);
  4709. custom_message = true;
  4710. lcd_setstatuspgm(MSG_UNLOADING_FILAMENT);
  4711. // Unload filament
  4712. if (code_seen('L'))
  4713. {
  4714. target[E_AXIS] += code_value();
  4715. }
  4716. else
  4717. {
  4718. #ifdef SNMM
  4719. #else
  4720. #ifdef FILAMENTCHANGE_FINALRETRACT
  4721. target[E_AXIS] += FILAMENTCHANGE_FINALRETRACT;
  4722. #endif
  4723. #endif // SNMM
  4724. }
  4725. #ifdef SNMM
  4726. target[E_AXIS] += 12;
  4727. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 3500, active_extruder);
  4728. target[E_AXIS] += 6;
  4729. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 5000, active_extruder);
  4730. target[E_AXIS] += (FIL_LOAD_LENGTH * -1);
  4731. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 5000, active_extruder);
  4732. st_synchronize();
  4733. target[E_AXIS] += (FIL_COOLING);
  4734. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 50, active_extruder);
  4735. target[E_AXIS] += (FIL_COOLING*-1);
  4736. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 50, active_extruder);
  4737. target[E_AXIS] += (bowden_length[snmm_extruder] * -1);
  4738. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 3000, active_extruder);
  4739. st_synchronize();
  4740. #else
  4741. // plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_RFEED, active_extruder);
  4742. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 3500 / 60, active_extruder);
  4743. #endif // SNMM
  4744. //finish moves
  4745. st_synchronize();
  4746. //disable extruder steppers so filament can be removed
  4747. disable_e0();
  4748. disable_e1();
  4749. disable_e2();
  4750. delay(100);
  4751. KEEPALIVE_STATE(PAUSED_FOR_USER);
  4752. lcd_change_fil_state = !lcd_show_fullscreen_message_yes_no_and_wait_P(MSG_UNLOAD_SUCCESSFULL, false, false);
  4753. //lcd_return_to_status();
  4754. lcd_update_enable(true);
  4755. }
  4756. //Wait for user to insert filament
  4757. lcd_wait_interact();
  4758. //load_filament_time = millis();
  4759. KEEPALIVE_STATE(PAUSED_FOR_USER);
  4760. while(!lcd_clicked()){
  4761. manage_heater();
  4762. manage_inactivity(true);
  4763. /*#ifdef SNMM
  4764. target[E_AXIS] += 0.002;
  4765. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 500, active_extruder);
  4766. #endif // SNMM*/
  4767. }
  4768. //WRITE(BEEPER, LOW);
  4769. KEEPALIVE_STATE(IN_HANDLER);
  4770. #ifdef SNMM
  4771. display_loading();
  4772. KEEPALIVE_STATE(PAUSED_FOR_USER);
  4773. do {
  4774. target[E_AXIS] += 0.002;
  4775. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 500, active_extruder);
  4776. delay_keep_alive(2);
  4777. } while (!lcd_clicked());
  4778. KEEPALIVE_STATE(IN_HANDLER);
  4779. /*if (millis() - load_filament_time > 2) {
  4780. load_filament_time = millis();
  4781. target[E_AXIS] += 0.001;
  4782. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 1000, active_extruder);
  4783. }*/
  4784. //Filament inserted
  4785. //Feed the filament to the end of nozzle quickly
  4786. st_synchronize();
  4787. target[E_AXIS] += bowden_length[snmm_extruder];
  4788. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 3000, active_extruder);
  4789. target[E_AXIS] += FIL_LOAD_LENGTH - 60;
  4790. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 1400, active_extruder);
  4791. target[E_AXIS] += 40;
  4792. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 400, active_extruder);
  4793. target[E_AXIS] += 10;
  4794. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 50, active_extruder);
  4795. #else
  4796. target[E_AXIS] += FILAMENTCHANGE_FIRSTFEED;
  4797. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_EFEED, active_extruder);
  4798. #endif // SNMM
  4799. //Extrude some filament
  4800. target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  4801. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_EXFEED, active_extruder);
  4802. //Wait for user to check the state
  4803. lcd_change_fil_state = 0;
  4804. lcd_loading_filament();
  4805. while ((lcd_change_fil_state == 0)||(lcd_change_fil_state != 1)){
  4806. lcd_change_fil_state = 0;
  4807. KEEPALIVE_STATE(PAUSED_FOR_USER);
  4808. lcd_alright();
  4809. KEEPALIVE_STATE(IN_HANDLER);
  4810. switch(lcd_change_fil_state){
  4811. // Filament failed to load so load it again
  4812. case 2:
  4813. #ifdef SNMM
  4814. display_loading();
  4815. do {
  4816. target[E_AXIS] += 0.002;
  4817. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 500, active_extruder);
  4818. delay_keep_alive(2);
  4819. } while (!lcd_clicked());
  4820. st_synchronize();
  4821. target[E_AXIS] += bowden_length[snmm_extruder];
  4822. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 3000, active_extruder);
  4823. target[E_AXIS] += FIL_LOAD_LENGTH - 60;
  4824. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 1400, active_extruder);
  4825. target[E_AXIS] += 40;
  4826. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 400, active_extruder);
  4827. target[E_AXIS] += 10;
  4828. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 50, active_extruder);
  4829. #else
  4830. target[E_AXIS]+= FILAMENTCHANGE_FIRSTFEED ;
  4831. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_EFEED, active_extruder);
  4832. #endif
  4833. target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  4834. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_EXFEED, active_extruder);
  4835. lcd_loading_filament();
  4836. break;
  4837. // Filament loaded properly but color is not clear
  4838. case 3:
  4839. target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  4840. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder);
  4841. lcd_loading_color();
  4842. break;
  4843. // Everything good
  4844. default:
  4845. lcd_change_success();
  4846. lcd_update_enable(true);
  4847. break;
  4848. }
  4849. }
  4850. //Not let's go back to print
  4851. //Feed a little of filament to stabilize pressure
  4852. target[E_AXIS]+= FILAMENTCHANGE_RECFEED;
  4853. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_EXFEED, active_extruder);
  4854. //Retract
  4855. target[E_AXIS]+= FILAMENTCHANGE_FIRSTRETRACT;
  4856. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_RFEED, active_extruder);
  4857. //plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 70, active_extruder); //should do nothing
  4858. //Move XY back
  4859. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_XYFEED, active_extruder);
  4860. //Move Z back
  4861. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_ZFEED, active_extruder);
  4862. target[E_AXIS]= target[E_AXIS] - FILAMENTCHANGE_FIRSTRETRACT;
  4863. //Unretract
  4864. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_RFEED, active_extruder);
  4865. //Set E position to original
  4866. plan_set_e_position(lastpos[E_AXIS]);
  4867. //Recover feed rate
  4868. feedmultiply=feedmultiplyBckp;
  4869. char cmd[9];
  4870. sprintf_P(cmd, PSTR("M220 S%i"), feedmultiplyBckp);
  4871. enquecommand(cmd);
  4872. lcd_setstatuspgm(WELCOME_MSG);
  4873. custom_message = false;
  4874. custom_message_type = 0;
  4875. fsensor_enabled = old_fsensor_enabled; //temporary solution for unexpected restarting
  4876. #ifdef PAT9125
  4877. if (fsensor_M600)
  4878. {
  4879. cmdqueue_pop_front(); //hack because M600 repeated 2x when enqueued to front
  4880. st_synchronize();
  4881. while (!is_buffer_empty())
  4882. {
  4883. process_commands();
  4884. cmdqueue_pop_front();
  4885. }
  4886. fsensor_enable();
  4887. fsensor_restore_print_and_continue();
  4888. }
  4889. #endif //PAT9125
  4890. }
  4891. break;
  4892. #endif //FILAMENTCHANGEENABLE
  4893. case 601: {
  4894. if(lcd_commands_type == 0) lcd_commands_type = LCD_COMMAND_LONG_PAUSE;
  4895. }
  4896. break;
  4897. case 602: {
  4898. if(lcd_commands_type == 0) lcd_commands_type = LCD_COMMAND_LONG_PAUSE_RESUME;
  4899. }
  4900. break;
  4901. #ifdef LIN_ADVANCE
  4902. case 900: // M900: Set LIN_ADVANCE options.
  4903. gcode_M900();
  4904. break;
  4905. #endif
  4906. case 907: // M907 Set digital trimpot motor current using axis codes.
  4907. {
  4908. #if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
  4909. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) digipot_current(i,code_value());
  4910. if(code_seen('B')) digipot_current(4,code_value());
  4911. if(code_seen('S')) for(int i=0;i<=4;i++) digipot_current(i,code_value());
  4912. #endif
  4913. #ifdef MOTOR_CURRENT_PWM_XY_PIN
  4914. if(code_seen('X')) digipot_current(0, code_value());
  4915. #endif
  4916. #ifdef MOTOR_CURRENT_PWM_Z_PIN
  4917. if(code_seen('Z')) digipot_current(1, code_value());
  4918. #endif
  4919. #ifdef MOTOR_CURRENT_PWM_E_PIN
  4920. if(code_seen('E')) digipot_current(2, code_value());
  4921. #endif
  4922. #ifdef DIGIPOT_I2C
  4923. // this one uses actual amps in floating point
  4924. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) digipot_i2c_set_current(i, code_value());
  4925. // for each additional extruder (named B,C,D,E..., channels 4,5,6,7...)
  4926. for(int i=NUM_AXIS;i<DIGIPOT_I2C_NUM_CHANNELS;i++) if(code_seen('B'+i-NUM_AXIS)) digipot_i2c_set_current(i, code_value());
  4927. #endif
  4928. }
  4929. break;
  4930. case 908: // M908 Control digital trimpot directly.
  4931. {
  4932. #if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
  4933. uint8_t channel,current;
  4934. if(code_seen('P')) channel=code_value();
  4935. if(code_seen('S')) current=code_value();
  4936. digitalPotWrite(channel, current);
  4937. #endif
  4938. }
  4939. break;
  4940. case 910: // M910 TMC2130 init
  4941. {
  4942. tmc2130_init();
  4943. }
  4944. break;
  4945. case 911: // M911 Set TMC2130 holding currents
  4946. {
  4947. if (code_seen('X')) tmc2130_set_current_h(0, code_value());
  4948. if (code_seen('Y')) tmc2130_set_current_h(1, code_value());
  4949. if (code_seen('Z')) tmc2130_set_current_h(2, code_value());
  4950. if (code_seen('E')) tmc2130_set_current_h(3, code_value());
  4951. }
  4952. break;
  4953. case 912: // M912 Set TMC2130 running currents
  4954. {
  4955. if (code_seen('X')) tmc2130_set_current_r(0, code_value());
  4956. if (code_seen('Y')) tmc2130_set_current_r(1, code_value());
  4957. if (code_seen('Z')) tmc2130_set_current_r(2, code_value());
  4958. if (code_seen('E')) tmc2130_set_current_r(3, code_value());
  4959. }
  4960. break;
  4961. case 913: // M913 Print TMC2130 currents
  4962. {
  4963. tmc2130_print_currents();
  4964. }
  4965. break;
  4966. case 914: // M914 Set normal mode
  4967. {
  4968. tmc2130_mode = TMC2130_MODE_NORMAL;
  4969. tmc2130_init();
  4970. }
  4971. break;
  4972. case 915: // M915 Set silent mode
  4973. {
  4974. tmc2130_mode = TMC2130_MODE_SILENT;
  4975. tmc2130_init();
  4976. }
  4977. break;
  4978. case 916: // M916 Set sg_thrs
  4979. {
  4980. if (code_seen('X')) tmc2130_sg_thr[X_AXIS] = code_value();
  4981. if (code_seen('Y')) tmc2130_sg_thr[Y_AXIS] = code_value();
  4982. if (code_seen('Z')) tmc2130_sg_thr[Z_AXIS] = code_value();
  4983. if (code_seen('E')) tmc2130_sg_thr[E_AXIS] = code_value();
  4984. MYSERIAL.print("tmc2130_sg_thr[X]=");
  4985. MYSERIAL.println(tmc2130_sg_thr[X_AXIS], DEC);
  4986. MYSERIAL.print("tmc2130_sg_thr[Y]=");
  4987. MYSERIAL.println(tmc2130_sg_thr[Y_AXIS], DEC);
  4988. MYSERIAL.print("tmc2130_sg_thr[Z]=");
  4989. MYSERIAL.println(tmc2130_sg_thr[Z_AXIS], DEC);
  4990. MYSERIAL.print("tmc2130_sg_thr[E]=");
  4991. MYSERIAL.println(tmc2130_sg_thr[E_AXIS], DEC);
  4992. }
  4993. break;
  4994. case 917: // M917 Set TMC2130 pwm_ampl
  4995. {
  4996. if (code_seen('X')) tmc2130_set_pwm_ampl(0, code_value());
  4997. if (code_seen('Y')) tmc2130_set_pwm_ampl(1, code_value());
  4998. if (code_seen('Z')) tmc2130_set_pwm_ampl(2, code_value());
  4999. if (code_seen('E')) tmc2130_set_pwm_ampl(3, code_value());
  5000. }
  5001. break;
  5002. case 918: // M918 Set TMC2130 pwm_grad
  5003. {
  5004. if (code_seen('X')) tmc2130_set_pwm_grad(0, code_value());
  5005. if (code_seen('Y')) tmc2130_set_pwm_grad(1, code_value());
  5006. if (code_seen('Z')) tmc2130_set_pwm_grad(2, code_value());
  5007. if (code_seen('E')) tmc2130_set_pwm_grad(3, code_value());
  5008. }
  5009. break;
  5010. case 350: // M350 Set microstepping mode. Warning: Steps per unit remains unchanged. S code sets stepping mode for all drivers.
  5011. {
  5012. #if defined(X_MS1_PIN) && X_MS1_PIN > -1
  5013. if(code_seen('S')) for(int i=0;i<=4;i++) microstep_mode(i,code_value());
  5014. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) microstep_mode(i,(uint8_t)code_value());
  5015. if(code_seen('B')) microstep_mode(4,code_value());
  5016. microstep_readings();
  5017. #endif
  5018. }
  5019. break;
  5020. case 351: // M351 Toggle MS1 MS2 pins directly, S# determines MS1 or MS2, X# sets the pin high/low.
  5021. {
  5022. #if defined(X_MS1_PIN) && X_MS1_PIN > -1
  5023. if(code_seen('S')) switch((int)code_value())
  5024. {
  5025. case 1:
  5026. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) microstep_ms(i,code_value(),-1);
  5027. if(code_seen('B')) microstep_ms(4,code_value(),-1);
  5028. break;
  5029. case 2:
  5030. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) microstep_ms(i,-1,code_value());
  5031. if(code_seen('B')) microstep_ms(4,-1,code_value());
  5032. break;
  5033. }
  5034. microstep_readings();
  5035. #endif
  5036. }
  5037. break;
  5038. case 701: //M701: load filament
  5039. {
  5040. gcode_M701();
  5041. }
  5042. break;
  5043. case 702:
  5044. {
  5045. #ifdef SNMM
  5046. if (code_seen('U')) {
  5047. extr_unload_used(); //unload all filaments which were used in current print
  5048. }
  5049. else if (code_seen('C')) {
  5050. extr_unload(); //unload just current filament
  5051. }
  5052. else {
  5053. extr_unload_all(); //unload all filaments
  5054. }
  5055. #else
  5056. bool old_fsensor_enabled = fsensor_enabled;
  5057. fsensor_enabled = false;
  5058. custom_message = true;
  5059. custom_message_type = 2;
  5060. lcd_setstatuspgm(MSG_UNLOADING_FILAMENT);
  5061. // extr_unload2();
  5062. current_position[E_AXIS] -= 80;
  5063. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 7000 / 60, active_extruder);
  5064. st_synchronize();
  5065. lcd_setstatuspgm(WELCOME_MSG);
  5066. custom_message = false;
  5067. custom_message_type = 0;
  5068. fsensor_enabled = old_fsensor_enabled;
  5069. #endif
  5070. }
  5071. break;
  5072. case 999: // M999: Restart after being stopped
  5073. Stopped = false;
  5074. lcd_reset_alert_level();
  5075. gcode_LastN = Stopped_gcode_LastN;
  5076. FlushSerialRequestResend();
  5077. break;
  5078. default: SERIAL_ECHOLNPGM("Invalid M code.");
  5079. }
  5080. } // end if(code_seen('M')) (end of M codes)
  5081. else if(code_seen('T'))
  5082. {
  5083. int index;
  5084. st_synchronize();
  5085. for (index = 1; *(strchr_pointer + index) == ' ' || *(strchr_pointer + index) == '\t'; index++);
  5086. if ((*(strchr_pointer + index) < '0' || *(strchr_pointer + index) > '9') && *(strchr_pointer + index) != '?') {
  5087. SERIAL_ECHOLNPGM("Invalid T code.");
  5088. }
  5089. else {
  5090. if (*(strchr_pointer + index) == '?') {
  5091. tmp_extruder = choose_extruder_menu();
  5092. }
  5093. else {
  5094. tmp_extruder = code_value();
  5095. }
  5096. snmm_filaments_used |= (1 << tmp_extruder); //for stop print
  5097. #ifdef SNMM
  5098. #ifdef LIN_ADVANCE
  5099. if (snmm_extruder != tmp_extruder)
  5100. clear_current_adv_vars(); //Check if the selected extruder is not the active one and reset LIN_ADVANCE variables if so.
  5101. #endif
  5102. snmm_extruder = tmp_extruder;
  5103. delay(100);
  5104. disable_e0();
  5105. disable_e1();
  5106. disable_e2();
  5107. pinMode(E_MUX0_PIN, OUTPUT);
  5108. pinMode(E_MUX1_PIN, OUTPUT);
  5109. pinMode(E_MUX2_PIN, OUTPUT);
  5110. delay(100);
  5111. SERIAL_ECHO_START;
  5112. SERIAL_ECHO("T:");
  5113. SERIAL_ECHOLN((int)tmp_extruder);
  5114. switch (tmp_extruder) {
  5115. case 1:
  5116. WRITE(E_MUX0_PIN, HIGH);
  5117. WRITE(E_MUX1_PIN, LOW);
  5118. WRITE(E_MUX2_PIN, LOW);
  5119. break;
  5120. case 2:
  5121. WRITE(E_MUX0_PIN, LOW);
  5122. WRITE(E_MUX1_PIN, HIGH);
  5123. WRITE(E_MUX2_PIN, LOW);
  5124. break;
  5125. case 3:
  5126. WRITE(E_MUX0_PIN, HIGH);
  5127. WRITE(E_MUX1_PIN, HIGH);
  5128. WRITE(E_MUX2_PIN, LOW);
  5129. break;
  5130. default:
  5131. WRITE(E_MUX0_PIN, LOW);
  5132. WRITE(E_MUX1_PIN, LOW);
  5133. WRITE(E_MUX2_PIN, LOW);
  5134. break;
  5135. }
  5136. delay(100);
  5137. #else
  5138. if (tmp_extruder >= EXTRUDERS) {
  5139. SERIAL_ECHO_START;
  5140. SERIAL_ECHOPGM("T");
  5141. SERIAL_PROTOCOLLN((int)tmp_extruder);
  5142. SERIAL_ECHOLNRPGM(MSG_INVALID_EXTRUDER);
  5143. }
  5144. else {
  5145. boolean make_move = false;
  5146. if (code_seen('F')) {
  5147. make_move = true;
  5148. next_feedrate = code_value();
  5149. if (next_feedrate > 0.0) {
  5150. feedrate = next_feedrate;
  5151. }
  5152. }
  5153. #if EXTRUDERS > 1
  5154. if (tmp_extruder != active_extruder) {
  5155. // Save current position to return to after applying extruder offset
  5156. memcpy(destination, current_position, sizeof(destination));
  5157. // Offset extruder (only by XY)
  5158. int i;
  5159. for (i = 0; i < 2; i++) {
  5160. current_position[i] = current_position[i] -
  5161. extruder_offset[i][active_extruder] +
  5162. extruder_offset[i][tmp_extruder];
  5163. }
  5164. // Set the new active extruder and position
  5165. active_extruder = tmp_extruder;
  5166. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  5167. // Move to the old position if 'F' was in the parameters
  5168. if (make_move && Stopped == false) {
  5169. prepare_move();
  5170. }
  5171. }
  5172. #endif
  5173. SERIAL_ECHO_START;
  5174. SERIAL_ECHORPGM(MSG_ACTIVE_EXTRUDER);
  5175. SERIAL_PROTOCOLLN((int)active_extruder);
  5176. }
  5177. #endif
  5178. }
  5179. } // end if(code_seen('T')) (end of T codes)
  5180. #ifdef DEBUG_DCODES
  5181. else if (code_seen('D')) // D codes (debug)
  5182. {
  5183. switch((int)code_value())
  5184. {
  5185. case -1: // D-1 - Endless loop
  5186. dcode__1(); break;
  5187. case 0: // D0 - Reset
  5188. dcode_0(); break;
  5189. case 1: // D1 - Clear EEPROM
  5190. dcode_1(); break;
  5191. case 2: // D2 - Read/Write RAM
  5192. dcode_2(); break;
  5193. case 3: // D3 - Read/Write EEPROM
  5194. dcode_3(); break;
  5195. case 4: // D4 - Read/Write PIN
  5196. dcode_4(); break;
  5197. case 5: // D5 - Read/Write FLASH
  5198. // dcode_5(); break;
  5199. break;
  5200. case 6: // D6 - Read/Write external FLASH
  5201. dcode_6(); break;
  5202. case 7: // D7 - Read/Write Bootloader
  5203. dcode_7(); break;
  5204. case 8: // D8 - Read/Write PINDA
  5205. dcode_8(); break;
  5206. case 10: // D10 - XYZ calibration = OK
  5207. dcode_10(); break;
  5208. case 12: //D12 - Reset failstat counters
  5209. dcode_12(); break;
  5210. case 2130: // D9125 - TMC2130
  5211. dcode_2130(); break;
  5212. case 9125: // D9125 - PAT9125
  5213. dcode_9125(); break;
  5214. }
  5215. }
  5216. #endif //DEBUG_DCODES
  5217. else
  5218. {
  5219. SERIAL_ECHO_START;
  5220. SERIAL_ECHORPGM(MSG_UNKNOWN_COMMAND);
  5221. SERIAL_ECHO(CMDBUFFER_CURRENT_STRING);
  5222. SERIAL_ECHOLNPGM("\"(2)");
  5223. }
  5224. KEEPALIVE_STATE(NOT_BUSY);
  5225. ClearToSend();
  5226. }
  5227. void FlushSerialRequestResend()
  5228. {
  5229. //char cmdbuffer[bufindr][100]="Resend:";
  5230. MYSERIAL.flush();
  5231. SERIAL_PROTOCOLRPGM(MSG_RESEND);
  5232. SERIAL_PROTOCOLLN(gcode_LastN + 1);
  5233. ClearToSend();
  5234. }
  5235. // Confirm the execution of a command, if sent from a serial line.
  5236. // Execution of a command from a SD card will not be confirmed.
  5237. void ClearToSend()
  5238. {
  5239. previous_millis_cmd = millis();
  5240. if (CMDBUFFER_CURRENT_TYPE == CMDBUFFER_CURRENT_TYPE_USB)
  5241. SERIAL_PROTOCOLLNRPGM(MSG_OK);
  5242. }
  5243. void get_coordinates()
  5244. {
  5245. bool seen[4]={false,false,false,false};
  5246. for(int8_t i=0; i < NUM_AXIS; i++) {
  5247. if(code_seen(axis_codes[i]))
  5248. {
  5249. destination[i] = (float)code_value() + (axis_relative_modes[i] || relative_mode)*current_position[i];
  5250. seen[i]=true;
  5251. }
  5252. else destination[i] = current_position[i]; //Are these else lines really needed?
  5253. }
  5254. if(code_seen('F')) {
  5255. next_feedrate = code_value();
  5256. #ifdef MAX_SILENT_FEEDRATE
  5257. if (tmc2130_mode == TMC2130_MODE_SILENT)
  5258. if (next_feedrate > MAX_SILENT_FEEDRATE) next_feedrate = MAX_SILENT_FEEDRATE;
  5259. #endif //MAX_SILENT_FEEDRATE
  5260. if(next_feedrate > 0.0) feedrate = next_feedrate;
  5261. }
  5262. }
  5263. void get_arc_coordinates()
  5264. {
  5265. #ifdef SF_ARC_FIX
  5266. bool relative_mode_backup = relative_mode;
  5267. relative_mode = true;
  5268. #endif
  5269. get_coordinates();
  5270. #ifdef SF_ARC_FIX
  5271. relative_mode=relative_mode_backup;
  5272. #endif
  5273. if(code_seen('I')) {
  5274. offset[0] = code_value();
  5275. }
  5276. else {
  5277. offset[0] = 0.0;
  5278. }
  5279. if(code_seen('J')) {
  5280. offset[1] = code_value();
  5281. }
  5282. else {
  5283. offset[1] = 0.0;
  5284. }
  5285. }
  5286. void clamp_to_software_endstops(float target[3])
  5287. {
  5288. #ifdef DEBUG_DISABLE_SWLIMITS
  5289. return;
  5290. #endif //DEBUG_DISABLE_SWLIMITS
  5291. world2machine_clamp(target[0], target[1]);
  5292. // Clamp the Z coordinate.
  5293. if (min_software_endstops) {
  5294. float negative_z_offset = 0;
  5295. #ifdef ENABLE_AUTO_BED_LEVELING
  5296. if (Z_PROBE_OFFSET_FROM_EXTRUDER < 0) negative_z_offset = negative_z_offset + Z_PROBE_OFFSET_FROM_EXTRUDER;
  5297. if (add_homing[Z_AXIS] < 0) negative_z_offset = negative_z_offset + add_homing[Z_AXIS];
  5298. #endif
  5299. if (target[Z_AXIS] < min_pos[Z_AXIS]+negative_z_offset) target[Z_AXIS] = min_pos[Z_AXIS]+negative_z_offset;
  5300. }
  5301. if (max_software_endstops) {
  5302. if (target[Z_AXIS] > max_pos[Z_AXIS]) target[Z_AXIS] = max_pos[Z_AXIS];
  5303. }
  5304. }
  5305. #ifdef MESH_BED_LEVELING
  5306. void mesh_plan_buffer_line(const float &x, const float &y, const float &z, const float &e, const float &feed_rate, const uint8_t extruder) {
  5307. float dx = x - current_position[X_AXIS];
  5308. float dy = y - current_position[Y_AXIS];
  5309. float dz = z - current_position[Z_AXIS];
  5310. int n_segments = 0;
  5311. if (mbl.active) {
  5312. float len = abs(dx) + abs(dy);
  5313. if (len > 0)
  5314. // Split to 3cm segments or shorter.
  5315. n_segments = int(ceil(len / 30.f));
  5316. }
  5317. if (n_segments > 1) {
  5318. float de = e - current_position[E_AXIS];
  5319. for (int i = 1; i < n_segments; ++ i) {
  5320. float t = float(i) / float(n_segments);
  5321. plan_buffer_line(
  5322. current_position[X_AXIS] + t * dx,
  5323. current_position[Y_AXIS] + t * dy,
  5324. current_position[Z_AXIS] + t * dz,
  5325. current_position[E_AXIS] + t * de,
  5326. feed_rate, extruder);
  5327. }
  5328. }
  5329. // The rest of the path.
  5330. plan_buffer_line(x, y, z, e, feed_rate, extruder);
  5331. current_position[X_AXIS] = x;
  5332. current_position[Y_AXIS] = y;
  5333. current_position[Z_AXIS] = z;
  5334. current_position[E_AXIS] = e;
  5335. }
  5336. #endif // MESH_BED_LEVELING
  5337. void prepare_move()
  5338. {
  5339. clamp_to_software_endstops(destination);
  5340. previous_millis_cmd = millis();
  5341. // Do not use feedmultiply for E or Z only moves
  5342. if( (current_position[X_AXIS] == destination [X_AXIS]) && (current_position[Y_AXIS] == destination [Y_AXIS])) {
  5343. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  5344. }
  5345. else {
  5346. #ifdef MESH_BED_LEVELING
  5347. mesh_plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate*feedmultiply*(1./(60.f*100.f)), active_extruder);
  5348. #else
  5349. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate*feedmultiply*(1./(60.f*100.f)), active_extruder);
  5350. #endif
  5351. }
  5352. for(int8_t i=0; i < NUM_AXIS; i++) {
  5353. current_position[i] = destination[i];
  5354. }
  5355. }
  5356. void prepare_arc_move(char isclockwise) {
  5357. float r = hypot(offset[X_AXIS], offset[Y_AXIS]); // Compute arc radius for mc_arc
  5358. // Trace the arc
  5359. mc_arc(current_position, destination, offset, X_AXIS, Y_AXIS, Z_AXIS, feedrate*feedmultiply/60/100.0, r, isclockwise, active_extruder);
  5360. // As far as the parser is concerned, the position is now == target. In reality the
  5361. // motion control system might still be processing the action and the real tool position
  5362. // in any intermediate location.
  5363. for(int8_t i=0; i < NUM_AXIS; i++) {
  5364. current_position[i] = destination[i];
  5365. }
  5366. previous_millis_cmd = millis();
  5367. }
  5368. #if defined(CONTROLLERFAN_PIN) && CONTROLLERFAN_PIN > -1
  5369. #if defined(FAN_PIN)
  5370. #if CONTROLLERFAN_PIN == FAN_PIN
  5371. #error "You cannot set CONTROLLERFAN_PIN equal to FAN_PIN"
  5372. #endif
  5373. #endif
  5374. unsigned long lastMotor = 0; //Save the time for when a motor was turned on last
  5375. unsigned long lastMotorCheck = 0;
  5376. void controllerFan()
  5377. {
  5378. if ((millis() - lastMotorCheck) >= 2500) //Not a time critical function, so we only check every 2500ms
  5379. {
  5380. lastMotorCheck = millis();
  5381. if(!READ(X_ENABLE_PIN) || !READ(Y_ENABLE_PIN) || !READ(Z_ENABLE_PIN) || (soft_pwm_bed > 0)
  5382. #if EXTRUDERS > 2
  5383. || !READ(E2_ENABLE_PIN)
  5384. #endif
  5385. #if EXTRUDER > 1
  5386. #if defined(X2_ENABLE_PIN) && X2_ENABLE_PIN > -1
  5387. || !READ(X2_ENABLE_PIN)
  5388. #endif
  5389. || !READ(E1_ENABLE_PIN)
  5390. #endif
  5391. || !READ(E0_ENABLE_PIN)) //If any of the drivers are enabled...
  5392. {
  5393. lastMotor = millis(); //... set time to NOW so the fan will turn on
  5394. }
  5395. if ((millis() - lastMotor) >= (CONTROLLERFAN_SECS*1000UL) || lastMotor == 0) //If the last time any driver was enabled, is longer since than CONTROLLERSEC...
  5396. {
  5397. digitalWrite(CONTROLLERFAN_PIN, 0);
  5398. analogWrite(CONTROLLERFAN_PIN, 0);
  5399. }
  5400. else
  5401. {
  5402. // allows digital or PWM fan output to be used (see M42 handling)
  5403. digitalWrite(CONTROLLERFAN_PIN, CONTROLLERFAN_SPEED);
  5404. analogWrite(CONTROLLERFAN_PIN, CONTROLLERFAN_SPEED);
  5405. }
  5406. }
  5407. }
  5408. #endif
  5409. #ifdef TEMP_STAT_LEDS
  5410. static bool blue_led = false;
  5411. static bool red_led = false;
  5412. static uint32_t stat_update = 0;
  5413. void handle_status_leds(void) {
  5414. float max_temp = 0.0;
  5415. if(millis() > stat_update) {
  5416. stat_update += 500; // Update every 0.5s
  5417. for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) {
  5418. max_temp = max(max_temp, degHotend(cur_extruder));
  5419. max_temp = max(max_temp, degTargetHotend(cur_extruder));
  5420. }
  5421. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  5422. max_temp = max(max_temp, degTargetBed());
  5423. max_temp = max(max_temp, degBed());
  5424. #endif
  5425. if((max_temp > 55.0) && (red_led == false)) {
  5426. digitalWrite(STAT_LED_RED, 1);
  5427. digitalWrite(STAT_LED_BLUE, 0);
  5428. red_led = true;
  5429. blue_led = false;
  5430. }
  5431. if((max_temp < 54.0) && (blue_led == false)) {
  5432. digitalWrite(STAT_LED_RED, 0);
  5433. digitalWrite(STAT_LED_BLUE, 1);
  5434. red_led = false;
  5435. blue_led = true;
  5436. }
  5437. }
  5438. }
  5439. #endif
  5440. void manage_inactivity(bool ignore_stepper_queue/*=false*/) //default argument set in Marlin.h
  5441. {
  5442. #if defined(KILL_PIN) && KILL_PIN > -1
  5443. static int killCount = 0; // make the inactivity button a bit less responsive
  5444. const int KILL_DELAY = 10000;
  5445. #endif
  5446. if(buflen < (BUFSIZE-1)){
  5447. get_command();
  5448. }
  5449. if( (millis() - previous_millis_cmd) > max_inactive_time )
  5450. if(max_inactive_time)
  5451. kill("", 4);
  5452. if(stepper_inactive_time) {
  5453. if( (millis() - previous_millis_cmd) > stepper_inactive_time )
  5454. {
  5455. if(blocks_queued() == false && ignore_stepper_queue == false) {
  5456. disable_x();
  5457. // SERIAL_ECHOLNPGM("manage_inactivity - disable Y");
  5458. disable_y();
  5459. disable_z();
  5460. disable_e0();
  5461. disable_e1();
  5462. disable_e2();
  5463. }
  5464. }
  5465. }
  5466. #ifdef CHDK //Check if pin should be set to LOW after M240 set it to HIGH
  5467. if (chdkActive && (millis() - chdkHigh > CHDK_DELAY))
  5468. {
  5469. chdkActive = false;
  5470. WRITE(CHDK, LOW);
  5471. }
  5472. #endif
  5473. #if defined(KILL_PIN) && KILL_PIN > -1
  5474. // Check if the kill button was pressed and wait just in case it was an accidental
  5475. // key kill key press
  5476. // -------------------------------------------------------------------------------
  5477. if( 0 == READ(KILL_PIN) )
  5478. {
  5479. killCount++;
  5480. }
  5481. else if (killCount > 0)
  5482. {
  5483. killCount--;
  5484. }
  5485. // Exceeded threshold and we can confirm that it was not accidental
  5486. // KILL the machine
  5487. // ----------------------------------------------------------------
  5488. if ( killCount >= KILL_DELAY)
  5489. {
  5490. kill("", 5);
  5491. }
  5492. #endif
  5493. #if defined(CONTROLLERFAN_PIN) && CONTROLLERFAN_PIN > -1
  5494. controllerFan(); //Check if fan should be turned on to cool stepper drivers down
  5495. #endif
  5496. #ifdef EXTRUDER_RUNOUT_PREVENT
  5497. if( (millis() - previous_millis_cmd) > EXTRUDER_RUNOUT_SECONDS*1000 )
  5498. if(degHotend(active_extruder)>EXTRUDER_RUNOUT_MINTEMP)
  5499. {
  5500. bool oldstatus=READ(E0_ENABLE_PIN);
  5501. enable_e0();
  5502. float oldepos=current_position[E_AXIS];
  5503. float oldedes=destination[E_AXIS];
  5504. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS],
  5505. destination[E_AXIS]+EXTRUDER_RUNOUT_EXTRUDE*EXTRUDER_RUNOUT_ESTEPS/axis_steps_per_unit[E_AXIS],
  5506. EXTRUDER_RUNOUT_SPEED/60.*EXTRUDER_RUNOUT_ESTEPS/axis_steps_per_unit[E_AXIS], active_extruder);
  5507. current_position[E_AXIS]=oldepos;
  5508. destination[E_AXIS]=oldedes;
  5509. plan_set_e_position(oldepos);
  5510. previous_millis_cmd=millis();
  5511. st_synchronize();
  5512. WRITE(E0_ENABLE_PIN,oldstatus);
  5513. }
  5514. #endif
  5515. #ifdef TEMP_STAT_LEDS
  5516. handle_status_leds();
  5517. #endif
  5518. check_axes_activity();
  5519. }
  5520. void kill(const char *full_screen_message, unsigned char id)
  5521. {
  5522. SERIAL_ECHOPGM("KILL: ");
  5523. MYSERIAL.println(int(id));
  5524. //return;
  5525. cli(); // Stop interrupts
  5526. disable_heater();
  5527. disable_x();
  5528. // SERIAL_ECHOLNPGM("kill - disable Y");
  5529. disable_y();
  5530. disable_z();
  5531. disable_e0();
  5532. disable_e1();
  5533. disable_e2();
  5534. #if defined(PS_ON_PIN) && PS_ON_PIN > -1
  5535. pinMode(PS_ON_PIN,INPUT);
  5536. #endif
  5537. SERIAL_ERROR_START;
  5538. SERIAL_ERRORLNRPGM(MSG_ERR_KILLED);
  5539. if (full_screen_message != NULL) {
  5540. SERIAL_ERRORLNRPGM(full_screen_message);
  5541. lcd_display_message_fullscreen_P(full_screen_message);
  5542. } else {
  5543. LCD_ALERTMESSAGERPGM(MSG_KILLED);
  5544. }
  5545. // FMC small patch to update the LCD before ending
  5546. sei(); // enable interrupts
  5547. for ( int i=5; i--; lcd_update())
  5548. {
  5549. delay(200);
  5550. }
  5551. cli(); // disable interrupts
  5552. suicide();
  5553. while(1)
  5554. {
  5555. wdt_reset();
  5556. /* Intentionally left empty */
  5557. } // Wait for reset
  5558. }
  5559. void Stop()
  5560. {
  5561. disable_heater();
  5562. if(Stopped == false) {
  5563. Stopped = true;
  5564. Stopped_gcode_LastN = gcode_LastN; // Save last g_code for restart
  5565. SERIAL_ERROR_START;
  5566. SERIAL_ERRORLNRPGM(MSG_ERR_STOPPED);
  5567. LCD_MESSAGERPGM(MSG_STOPPED);
  5568. }
  5569. }
  5570. bool IsStopped() { return Stopped; };
  5571. #ifdef FAST_PWM_FAN
  5572. void setPwmFrequency(uint8_t pin, int val)
  5573. {
  5574. val &= 0x07;
  5575. switch(digitalPinToTimer(pin))
  5576. {
  5577. #if defined(TCCR0A)
  5578. case TIMER0A:
  5579. case TIMER0B:
  5580. // TCCR0B &= ~(_BV(CS00) | _BV(CS01) | _BV(CS02));
  5581. // TCCR0B |= val;
  5582. break;
  5583. #endif
  5584. #if defined(TCCR1A)
  5585. case TIMER1A:
  5586. case TIMER1B:
  5587. // TCCR1B &= ~(_BV(CS10) | _BV(CS11) | _BV(CS12));
  5588. // TCCR1B |= val;
  5589. break;
  5590. #endif
  5591. #if defined(TCCR2)
  5592. case TIMER2:
  5593. case TIMER2:
  5594. TCCR2 &= ~(_BV(CS10) | _BV(CS11) | _BV(CS12));
  5595. TCCR2 |= val;
  5596. break;
  5597. #endif
  5598. #if defined(TCCR2A)
  5599. case TIMER2A:
  5600. case TIMER2B:
  5601. TCCR2B &= ~(_BV(CS20) | _BV(CS21) | _BV(CS22));
  5602. TCCR2B |= val;
  5603. break;
  5604. #endif
  5605. #if defined(TCCR3A)
  5606. case TIMER3A:
  5607. case TIMER3B:
  5608. case TIMER3C:
  5609. TCCR3B &= ~(_BV(CS30) | _BV(CS31) | _BV(CS32));
  5610. TCCR3B |= val;
  5611. break;
  5612. #endif
  5613. #if defined(TCCR4A)
  5614. case TIMER4A:
  5615. case TIMER4B:
  5616. case TIMER4C:
  5617. TCCR4B &= ~(_BV(CS40) | _BV(CS41) | _BV(CS42));
  5618. TCCR4B |= val;
  5619. break;
  5620. #endif
  5621. #if defined(TCCR5A)
  5622. case TIMER5A:
  5623. case TIMER5B:
  5624. case TIMER5C:
  5625. TCCR5B &= ~(_BV(CS50) | _BV(CS51) | _BV(CS52));
  5626. TCCR5B |= val;
  5627. break;
  5628. #endif
  5629. }
  5630. }
  5631. #endif //FAST_PWM_FAN
  5632. bool setTargetedHotend(int code){
  5633. tmp_extruder = active_extruder;
  5634. if(code_seen('T')) {
  5635. tmp_extruder = code_value();
  5636. if(tmp_extruder >= EXTRUDERS) {
  5637. SERIAL_ECHO_START;
  5638. switch(code){
  5639. case 104:
  5640. SERIAL_ECHORPGM(MSG_M104_INVALID_EXTRUDER);
  5641. break;
  5642. case 105:
  5643. SERIAL_ECHO(MSG_M105_INVALID_EXTRUDER);
  5644. break;
  5645. case 109:
  5646. SERIAL_ECHO(MSG_M109_INVALID_EXTRUDER);
  5647. break;
  5648. case 218:
  5649. SERIAL_ECHO(MSG_M218_INVALID_EXTRUDER);
  5650. break;
  5651. case 221:
  5652. SERIAL_ECHO(MSG_M221_INVALID_EXTRUDER);
  5653. break;
  5654. }
  5655. SERIAL_PROTOCOLLN((int)tmp_extruder);
  5656. return true;
  5657. }
  5658. }
  5659. return false;
  5660. }
  5661. void save_statistics(unsigned long _total_filament_used, unsigned long _total_print_time) //_total_filament_used unit: mm/100; print time in s
  5662. {
  5663. if (eeprom_read_byte((uint8_t *)EEPROM_TOTALTIME) == 255 && eeprom_read_byte((uint8_t *)EEPROM_TOTALTIME + 1) == 255 && eeprom_read_byte((uint8_t *)EEPROM_TOTALTIME + 2) == 255 && eeprom_read_byte((uint8_t *)EEPROM_TOTALTIME + 3) == 255)
  5664. {
  5665. eeprom_update_dword((uint32_t *)EEPROM_TOTALTIME, 0);
  5666. eeprom_update_dword((uint32_t *)EEPROM_FILAMENTUSED, 0);
  5667. }
  5668. unsigned long _previous_filament = eeprom_read_dword((uint32_t *)EEPROM_FILAMENTUSED); //_previous_filament unit: cm
  5669. unsigned long _previous_time = eeprom_read_dword((uint32_t *)EEPROM_TOTALTIME); //_previous_time unit: min
  5670. eeprom_update_dword((uint32_t *)EEPROM_TOTALTIME, _previous_time + (_total_print_time/60)); //EEPROM_TOTALTIME unit: min
  5671. eeprom_update_dword((uint32_t *)EEPROM_FILAMENTUSED, _previous_filament + (_total_filament_used / 1000));
  5672. total_filament_used = 0;
  5673. }
  5674. float calculate_volumetric_multiplier(float diameter) {
  5675. float area = .0;
  5676. float radius = .0;
  5677. radius = diameter * .5;
  5678. if (! volumetric_enabled || radius == 0) {
  5679. area = 1;
  5680. }
  5681. else {
  5682. area = M_PI * pow(radius, 2);
  5683. }
  5684. return 1.0 / area;
  5685. }
  5686. void calculate_volumetric_multipliers() {
  5687. volumetric_multiplier[0] = calculate_volumetric_multiplier(filament_size[0]);
  5688. #if EXTRUDERS > 1
  5689. volumetric_multiplier[1] = calculate_volumetric_multiplier(filament_size[1]);
  5690. #if EXTRUDERS > 2
  5691. volumetric_multiplier[2] = calculate_volumetric_multiplier(filament_size[2]);
  5692. #endif
  5693. #endif
  5694. }
  5695. void delay_keep_alive(unsigned int ms)
  5696. {
  5697. for (;;) {
  5698. manage_heater();
  5699. // Manage inactivity, but don't disable steppers on timeout.
  5700. manage_inactivity(true);
  5701. lcd_update();
  5702. if (ms == 0)
  5703. break;
  5704. else if (ms >= 50) {
  5705. delay(50);
  5706. ms -= 50;
  5707. } else {
  5708. delay(ms);
  5709. ms = 0;
  5710. }
  5711. }
  5712. }
  5713. void wait_for_heater(long codenum) {
  5714. #ifdef TEMP_RESIDENCY_TIME
  5715. long residencyStart;
  5716. residencyStart = -1;
  5717. /* continue to loop until we have reached the target temp
  5718. _and_ until TEMP_RESIDENCY_TIME hasn't passed since we reached it */
  5719. while ((!cancel_heatup) && ((residencyStart == -1) ||
  5720. (residencyStart >= 0 && (((unsigned int)(millis() - residencyStart)) < (TEMP_RESIDENCY_TIME * 1000UL))))) {
  5721. #else
  5722. while (target_direction ? (isHeatingHotend(tmp_extruder)) : (isCoolingHotend(tmp_extruder) && (CooldownNoWait == false))) {
  5723. #endif //TEMP_RESIDENCY_TIME
  5724. if ((millis() - codenum) > 1000UL)
  5725. { //Print Temp Reading and remaining time every 1 second while heating up/cooling down
  5726. if (!farm_mode) {
  5727. SERIAL_PROTOCOLPGM("T:");
  5728. SERIAL_PROTOCOL_F(degHotend(tmp_extruder), 1);
  5729. SERIAL_PROTOCOLPGM(" E:");
  5730. SERIAL_PROTOCOL((int)tmp_extruder);
  5731. #ifdef TEMP_RESIDENCY_TIME
  5732. SERIAL_PROTOCOLPGM(" W:");
  5733. if (residencyStart > -1)
  5734. {
  5735. codenum = ((TEMP_RESIDENCY_TIME * 1000UL) - (millis() - residencyStart)) / 1000UL;
  5736. SERIAL_PROTOCOLLN(codenum);
  5737. }
  5738. else
  5739. {
  5740. SERIAL_PROTOCOLLN("?");
  5741. }
  5742. }
  5743. #else
  5744. SERIAL_PROTOCOLLN("");
  5745. #endif
  5746. codenum = millis();
  5747. }
  5748. manage_heater();
  5749. manage_inactivity();
  5750. lcd_update();
  5751. #ifdef TEMP_RESIDENCY_TIME
  5752. /* start/restart the TEMP_RESIDENCY_TIME timer whenever we reach target temp for the first time
  5753. or when current temp falls outside the hysteresis after target temp was reached */
  5754. if ((residencyStart == -1 && target_direction && (degHotend(tmp_extruder) >= (degTargetHotend(tmp_extruder) - TEMP_WINDOW))) ||
  5755. (residencyStart == -1 && !target_direction && (degHotend(tmp_extruder) <= (degTargetHotend(tmp_extruder) + TEMP_WINDOW))) ||
  5756. (residencyStart > -1 && labs(degHotend(tmp_extruder) - degTargetHotend(tmp_extruder)) > TEMP_HYSTERESIS))
  5757. {
  5758. residencyStart = millis();
  5759. }
  5760. #endif //TEMP_RESIDENCY_TIME
  5761. }
  5762. }
  5763. void check_babystep() {
  5764. int babystep_z;
  5765. EEPROM_read_B(EEPROM_BABYSTEP_Z, &babystep_z);
  5766. if ((babystep_z < Z_BABYSTEP_MIN) || (babystep_z > Z_BABYSTEP_MAX)) {
  5767. babystep_z = 0; //if babystep value is out of min max range, set it to 0
  5768. SERIAL_ECHOLNPGM("Z live adjust out of range. Setting to 0");
  5769. EEPROM_save_B(EEPROM_BABYSTEP_Z, &babystep_z);
  5770. lcd_show_fullscreen_message_and_wait_P(PSTR("Z live adjust out of range. Setting to 0. Click to continue."));
  5771. lcd_update_enable(true);
  5772. }
  5773. }
  5774. #ifdef DIS
  5775. void d_setup()
  5776. {
  5777. pinMode(D_DATACLOCK, INPUT_PULLUP);
  5778. pinMode(D_DATA, INPUT_PULLUP);
  5779. pinMode(D_REQUIRE, OUTPUT);
  5780. digitalWrite(D_REQUIRE, HIGH);
  5781. }
  5782. float d_ReadData()
  5783. {
  5784. int digit[13];
  5785. String mergeOutput;
  5786. float output;
  5787. digitalWrite(D_REQUIRE, HIGH);
  5788. for (int i = 0; i<13; i++)
  5789. {
  5790. for (int j = 0; j < 4; j++)
  5791. {
  5792. while (digitalRead(D_DATACLOCK) == LOW) {}
  5793. while (digitalRead(D_DATACLOCK) == HIGH) {}
  5794. bitWrite(digit[i], j, digitalRead(D_DATA));
  5795. }
  5796. }
  5797. digitalWrite(D_REQUIRE, LOW);
  5798. mergeOutput = "";
  5799. output = 0;
  5800. for (int r = 5; r <= 10; r++) //Merge digits
  5801. {
  5802. mergeOutput += digit[r];
  5803. }
  5804. output = mergeOutput.toFloat();
  5805. if (digit[4] == 8) //Handle sign
  5806. {
  5807. output *= -1;
  5808. }
  5809. for (int i = digit[11]; i > 0; i--) //Handle floating point
  5810. {
  5811. output /= 10;
  5812. }
  5813. return output;
  5814. }
  5815. void bed_analysis(float x_dimension, float y_dimension, int x_points_num, int y_points_num, float shift_x, float shift_y) {
  5816. int t1 = 0;
  5817. int t_delay = 0;
  5818. int digit[13];
  5819. int m;
  5820. char str[3];
  5821. //String mergeOutput;
  5822. char mergeOutput[15];
  5823. float output;
  5824. int mesh_point = 0; //index number of calibration point
  5825. float bed_zero_ref_x = (-22.f + X_PROBE_OFFSET_FROM_EXTRUDER); //shift between zero point on bed and target and between probe and nozzle
  5826. float bed_zero_ref_y = (-0.6f + Y_PROBE_OFFSET_FROM_EXTRUDER);
  5827. float mesh_home_z_search = 4;
  5828. float row[x_points_num];
  5829. int ix = 0;
  5830. int iy = 0;
  5831. char* filename_wldsd = "wldsd.txt";
  5832. char data_wldsd[70];
  5833. char numb_wldsd[10];
  5834. d_setup();
  5835. if (!(axis_known_position[X_AXIS] && axis_known_position[Y_AXIS] && axis_known_position[Z_AXIS])) {
  5836. // We don't know where we are! HOME!
  5837. // Push the commands to the front of the message queue in the reverse order!
  5838. // There shall be always enough space reserved for these commands.
  5839. repeatcommand_front(); // repeat G80 with all its parameters
  5840. enquecommand_front_P((PSTR("G28 W0")));
  5841. enquecommand_front_P((PSTR("G1 Z5")));
  5842. return;
  5843. }
  5844. bool custom_message_old = custom_message;
  5845. unsigned int custom_message_type_old = custom_message_type;
  5846. unsigned int custom_message_state_old = custom_message_state;
  5847. custom_message = true;
  5848. custom_message_type = 1;
  5849. custom_message_state = (x_points_num * y_points_num) + 10;
  5850. lcd_update(1);
  5851. mbl.reset();
  5852. babystep_undo();
  5853. card.openFile(filename_wldsd, false);
  5854. current_position[Z_AXIS] = mesh_home_z_search;
  5855. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[Z_AXIS] / 60, active_extruder);
  5856. int XY_AXIS_FEEDRATE = homing_feedrate[X_AXIS] / 20;
  5857. int Z_PROBE_FEEDRATE = homing_feedrate[Z_AXIS] / 60;
  5858. int Z_LIFT_FEEDRATE = homing_feedrate[Z_AXIS] / 40;
  5859. setup_for_endstop_move(false);
  5860. SERIAL_PROTOCOLPGM("Num X,Y: ");
  5861. SERIAL_PROTOCOL(x_points_num);
  5862. SERIAL_PROTOCOLPGM(",");
  5863. SERIAL_PROTOCOL(y_points_num);
  5864. SERIAL_PROTOCOLPGM("\nZ search height: ");
  5865. SERIAL_PROTOCOL(mesh_home_z_search);
  5866. SERIAL_PROTOCOLPGM("\nDimension X,Y: ");
  5867. SERIAL_PROTOCOL(x_dimension);
  5868. SERIAL_PROTOCOLPGM(",");
  5869. SERIAL_PROTOCOL(y_dimension);
  5870. SERIAL_PROTOCOLLNPGM("\nMeasured points:");
  5871. while (mesh_point != x_points_num * y_points_num) {
  5872. ix = mesh_point % x_points_num; // from 0 to MESH_NUM_X_POINTS - 1
  5873. iy = mesh_point / x_points_num;
  5874. if (iy & 1) ix = (x_points_num - 1) - ix; // Zig zag
  5875. float z0 = 0.f;
  5876. current_position[Z_AXIS] = mesh_home_z_search;
  5877. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], Z_LIFT_FEEDRATE, active_extruder);
  5878. st_synchronize();
  5879. current_position[X_AXIS] = 13.f + ix * (x_dimension / (x_points_num - 1)) - bed_zero_ref_x + shift_x;
  5880. current_position[Y_AXIS] = 6.4f + iy * (y_dimension / (y_points_num - 1)) - bed_zero_ref_y + shift_y;
  5881. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], XY_AXIS_FEEDRATE, active_extruder);
  5882. st_synchronize();
  5883. if (!find_bed_induction_sensor_point_z(-10.f)) { //if we have data from z calibration max allowed difference is 1mm for each point, if we dont have data max difference is 10mm from initial point
  5884. break;
  5885. card.closefile();
  5886. }
  5887. //memset(numb_wldsd, 0, sizeof(numb_wldsd));
  5888. //dtostrf(d_ReadData(), 8, 5, numb_wldsd);
  5889. //strcat(data_wldsd, numb_wldsd);
  5890. //MYSERIAL.println(data_wldsd);
  5891. //delay(1000);
  5892. //delay(3000);
  5893. //t1 = millis();
  5894. //while (digitalRead(D_DATACLOCK) == LOW) {}
  5895. //while (digitalRead(D_DATACLOCK) == HIGH) {}
  5896. memset(digit, 0, sizeof(digit));
  5897. //cli();
  5898. digitalWrite(D_REQUIRE, LOW);
  5899. for (int i = 0; i<13; i++)
  5900. {
  5901. //t1 = millis();
  5902. for (int j = 0; j < 4; j++)
  5903. {
  5904. while (digitalRead(D_DATACLOCK) == LOW) {}
  5905. while (digitalRead(D_DATACLOCK) == HIGH) {}
  5906. bitWrite(digit[i], j, digitalRead(D_DATA));
  5907. }
  5908. //t_delay = (millis() - t1);
  5909. //SERIAL_PROTOCOLPGM(" ");
  5910. //SERIAL_PROTOCOL_F(t_delay, 5);
  5911. //SERIAL_PROTOCOLPGM(" ");
  5912. }
  5913. //sei();
  5914. digitalWrite(D_REQUIRE, HIGH);
  5915. mergeOutput[0] = '\0';
  5916. output = 0;
  5917. for (int r = 5; r <= 10; r++) //Merge digits
  5918. {
  5919. sprintf(str, "%d", digit[r]);
  5920. strcat(mergeOutput, str);
  5921. }
  5922. output = atof(mergeOutput);
  5923. if (digit[4] == 8) //Handle sign
  5924. {
  5925. output *= -1;
  5926. }
  5927. for (int i = digit[11]; i > 0; i--) //Handle floating point
  5928. {
  5929. output *= 0.1;
  5930. }
  5931. //output = d_ReadData();
  5932. //row[ix] = current_position[Z_AXIS];
  5933. memset(data_wldsd, 0, sizeof(data_wldsd));
  5934. for (int i = 0; i <3; i++) {
  5935. memset(numb_wldsd, 0, sizeof(numb_wldsd));
  5936. dtostrf(current_position[i], 8, 5, numb_wldsd);
  5937. strcat(data_wldsd, numb_wldsd);
  5938. strcat(data_wldsd, ";");
  5939. }
  5940. memset(numb_wldsd, 0, sizeof(numb_wldsd));
  5941. dtostrf(output, 8, 5, numb_wldsd);
  5942. strcat(data_wldsd, numb_wldsd);
  5943. //strcat(data_wldsd, ";");
  5944. card.write_command(data_wldsd);
  5945. //row[ix] = d_ReadData();
  5946. row[ix] = output; // current_position[Z_AXIS];
  5947. if (iy % 2 == 1 ? ix == 0 : ix == x_points_num - 1) {
  5948. for (int i = 0; i < x_points_num; i++) {
  5949. SERIAL_PROTOCOLPGM(" ");
  5950. SERIAL_PROTOCOL_F(row[i], 5);
  5951. }
  5952. SERIAL_PROTOCOLPGM("\n");
  5953. }
  5954. custom_message_state--;
  5955. mesh_point++;
  5956. lcd_update(1);
  5957. }
  5958. card.closefile();
  5959. }
  5960. #endif
  5961. void temp_compensation_start() {
  5962. custom_message = true;
  5963. custom_message_type = 5;
  5964. custom_message_state = PINDA_HEAT_T + 1;
  5965. lcd_update(2);
  5966. if (degHotend(active_extruder) > EXTRUDE_MINTEMP) {
  5967. current_position[E_AXIS] -= DEFAULT_RETRACTION;
  5968. }
  5969. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400, active_extruder);
  5970. current_position[X_AXIS] = PINDA_PREHEAT_X;
  5971. current_position[Y_AXIS] = PINDA_PREHEAT_Y;
  5972. current_position[Z_AXIS] = PINDA_PREHEAT_Z;
  5973. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  5974. st_synchronize();
  5975. while (fabs(degBed() - target_temperature_bed) > 1) delay_keep_alive(1000);
  5976. for (int i = 0; i < PINDA_HEAT_T; i++) {
  5977. delay_keep_alive(1000);
  5978. custom_message_state = PINDA_HEAT_T - i;
  5979. if (custom_message_state == 99 || custom_message_state == 9) lcd_update(2); //force whole display redraw if number of digits changed
  5980. else lcd_update(1);
  5981. }
  5982. custom_message_type = 0;
  5983. custom_message_state = 0;
  5984. custom_message = false;
  5985. }
  5986. void temp_compensation_apply() {
  5987. int i_add;
  5988. int compensation_value;
  5989. int z_shift = 0;
  5990. float z_shift_mm;
  5991. if (calibration_status() == CALIBRATION_STATUS_CALIBRATED) {
  5992. if (target_temperature_bed % 10 == 0 && target_temperature_bed >= 60 && target_temperature_bed <= 100) {
  5993. i_add = (target_temperature_bed - 60) / 10;
  5994. EEPROM_read_B(EEPROM_PROBE_TEMP_SHIFT + i_add * 2, &z_shift);
  5995. z_shift_mm = z_shift / axis_steps_per_unit[Z_AXIS];
  5996. }else {
  5997. //interpolation
  5998. z_shift_mm = temp_comp_interpolation(target_temperature_bed) / axis_steps_per_unit[Z_AXIS];
  5999. }
  6000. SERIAL_PROTOCOLPGM("\n");
  6001. SERIAL_PROTOCOLPGM("Z shift applied:");
  6002. MYSERIAL.print(z_shift_mm);
  6003. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS] - z_shift_mm, current_position[E_AXIS], homing_feedrate[Z_AXIS] / 40, active_extruder);
  6004. st_synchronize();
  6005. plan_set_z_position(current_position[Z_AXIS]);
  6006. }
  6007. else {
  6008. //we have no temp compensation data
  6009. }
  6010. }
  6011. float temp_comp_interpolation(float inp_temperature) {
  6012. //cubic spline interpolation
  6013. int n, i, j, k;
  6014. float h[10], a, b, c, d, sum, s[10] = { 0 }, x[10], F[10], f[10], m[10][10] = { 0 }, temp;
  6015. int shift[10];
  6016. int temp_C[10];
  6017. n = 6; //number of measured points
  6018. shift[0] = 0;
  6019. for (i = 0; i < n; i++) {
  6020. if (i>0) EEPROM_read_B(EEPROM_PROBE_TEMP_SHIFT + (i-1) * 2, &shift[i]); //read shift in steps from EEPROM
  6021. temp_C[i] = 50 + i * 10; //temperature in C
  6022. #ifdef PINDA_THERMISTOR
  6023. temp_C[i] = 35 + i * 5; //temperature in C
  6024. #else
  6025. temp_C[i] = 50 + i * 10; //temperature in C
  6026. #endif
  6027. x[i] = (float)temp_C[i];
  6028. f[i] = (float)shift[i];
  6029. }
  6030. if (inp_temperature < x[0]) return 0;
  6031. for (i = n - 1; i>0; i--) {
  6032. F[i] = (f[i] - f[i - 1]) / (x[i] - x[i - 1]);
  6033. h[i - 1] = x[i] - x[i - 1];
  6034. }
  6035. //*********** formation of h, s , f matrix **************
  6036. for (i = 1; i<n - 1; i++) {
  6037. m[i][i] = 2 * (h[i - 1] + h[i]);
  6038. if (i != 1) {
  6039. m[i][i - 1] = h[i - 1];
  6040. m[i - 1][i] = h[i - 1];
  6041. }
  6042. m[i][n - 1] = 6 * (F[i + 1] - F[i]);
  6043. }
  6044. //*********** forward elimination **************
  6045. for (i = 1; i<n - 2; i++) {
  6046. temp = (m[i + 1][i] / m[i][i]);
  6047. for (j = 1; j <= n - 1; j++)
  6048. m[i + 1][j] -= temp*m[i][j];
  6049. }
  6050. //*********** backward substitution *********
  6051. for (i = n - 2; i>0; i--) {
  6052. sum = 0;
  6053. for (j = i; j <= n - 2; j++)
  6054. sum += m[i][j] * s[j];
  6055. s[i] = (m[i][n - 1] - sum) / m[i][i];
  6056. }
  6057. for (i = 0; i<n - 1; i++)
  6058. if ((x[i] <= inp_temperature && inp_temperature <= x[i + 1]) || (i == n-2 && inp_temperature > x[i + 1])) {
  6059. a = (s[i + 1] - s[i]) / (6 * h[i]);
  6060. b = s[i] / 2;
  6061. c = (f[i + 1] - f[i]) / h[i] - (2 * h[i] * s[i] + s[i + 1] * h[i]) / 6;
  6062. d = f[i];
  6063. sum = a*pow((inp_temperature - x[i]), 3) + b*pow((inp_temperature - x[i]), 2) + c*(inp_temperature - x[i]) + d;
  6064. }
  6065. return sum;
  6066. }
  6067. #ifdef PINDA_THERMISTOR
  6068. float temp_compensation_pinda_thermistor_offset(float temperature_pinda)
  6069. {
  6070. if (!temp_cal_active) return 0;
  6071. if (!calibration_status_pinda()) return 0;
  6072. return temp_comp_interpolation(temperature_pinda) / axis_steps_per_unit[Z_AXIS];
  6073. }
  6074. #endif //PINDA_THERMISTOR
  6075. void long_pause() //long pause print
  6076. {
  6077. st_synchronize();
  6078. //save currently set parameters to global variables
  6079. saved_feedmultiply = feedmultiply;
  6080. HotendTempBckp = degTargetHotend(active_extruder);
  6081. fanSpeedBckp = fanSpeed;
  6082. start_pause_print = millis();
  6083. //save position
  6084. pause_lastpos[X_AXIS] = current_position[X_AXIS];
  6085. pause_lastpos[Y_AXIS] = current_position[Y_AXIS];
  6086. pause_lastpos[Z_AXIS] = current_position[Z_AXIS];
  6087. pause_lastpos[E_AXIS] = current_position[E_AXIS];
  6088. //retract
  6089. current_position[E_AXIS] -= DEFAULT_RETRACTION;
  6090. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400, active_extruder);
  6091. //lift z
  6092. current_position[Z_AXIS] += Z_PAUSE_LIFT;
  6093. if (current_position[Z_AXIS] > Z_MAX_POS) current_position[Z_AXIS] = Z_MAX_POS;
  6094. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 15, active_extruder);
  6095. //set nozzle target temperature to 0
  6096. setTargetHotend(0, 0);
  6097. setTargetHotend(0, 1);
  6098. setTargetHotend(0, 2);
  6099. //Move XY to side
  6100. current_position[X_AXIS] = X_PAUSE_POS;
  6101. current_position[Y_AXIS] = Y_PAUSE_POS;
  6102. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 50, active_extruder);
  6103. // Turn off the print fan
  6104. fanSpeed = 0;
  6105. st_synchronize();
  6106. }
  6107. void serialecho_temperatures() {
  6108. float tt = degHotend(active_extruder);
  6109. SERIAL_PROTOCOLPGM("T:");
  6110. SERIAL_PROTOCOL(tt);
  6111. SERIAL_PROTOCOLPGM(" E:");
  6112. SERIAL_PROTOCOL((int)active_extruder);
  6113. SERIAL_PROTOCOLPGM(" B:");
  6114. SERIAL_PROTOCOL_F(degBed(), 1);
  6115. SERIAL_PROTOCOLLN("");
  6116. }
  6117. extern uint32_t sdpos_atomic;
  6118. void uvlo_()
  6119. {
  6120. unsigned long time_start = millis();
  6121. bool sd_print = card.sdprinting;
  6122. // Conserve power as soon as possible.
  6123. disable_x();
  6124. disable_y();
  6125. tmc2130_set_current_h(Z_AXIS, 12);
  6126. tmc2130_set_current_r(Z_AXIS, 12);
  6127. tmc2130_set_current_h(E_AXIS, 20);
  6128. tmc2130_set_current_r(E_AXIS, 20);
  6129. // Indicate that the interrupt has been triggered.
  6130. SERIAL_ECHOLNPGM("UVLO");
  6131. // Read out the current Z motor microstep counter. This will be later used
  6132. // for reaching the zero full step before powering off.
  6133. uint16_t z_microsteps = tmc2130_rd_MSCNT(Z_TMC2130_CS);
  6134. // Calculate the file position, from which to resume this print.
  6135. long sd_position = sdpos_atomic; //atomic sd position of last command added in queue
  6136. {
  6137. uint16_t sdlen_planner = planner_calc_sd_length(); //length of sd commands in planner
  6138. sd_position -= sdlen_planner;
  6139. uint16_t sdlen_cmdqueue = cmdqueue_calc_sd_length(); //length of sd commands in cmdqueue
  6140. sd_position -= sdlen_cmdqueue;
  6141. if (sd_position < 0) sd_position = 0;
  6142. }
  6143. // Backup the feedrate in mm/min.
  6144. int feedrate_bckp = blocks_queued() ? (block_buffer[block_buffer_tail].nominal_speed * 60.f) : feedrate;
  6145. // After this call, the planner queue is emptied and the current_position is set to a current logical coordinate.
  6146. // The logical coordinate will likely differ from the machine coordinate if the skew calibration and mesh bed leveling
  6147. // are in action.
  6148. planner_abort_hard();
  6149. // Clean the input command queue.
  6150. cmdqueue_reset();
  6151. card.sdprinting = false;
  6152. // card.closefile();
  6153. // Enable stepper driver interrupt to move Z axis.
  6154. // This should be fine as the planner and command queues are empty and the SD card printing is disabled.
  6155. //FIXME one may want to disable serial lines at this point of time to avoid interfering with the command queue,
  6156. // though it should not happen that the command queue is touched as the plan_buffer_line always succeed without blocking.
  6157. sei();
  6158. plan_buffer_line(
  6159. current_position[X_AXIS],
  6160. current_position[Y_AXIS],
  6161. current_position[Z_AXIS],
  6162. current_position[E_AXIS] - DEFAULT_RETRACTION,
  6163. 400, active_extruder);
  6164. plan_buffer_line(
  6165. current_position[X_AXIS],
  6166. current_position[Y_AXIS],
  6167. current_position[Z_AXIS] + UVLO_Z_AXIS_SHIFT + float((1024 - z_microsteps + 7) >> 4) / axis_steps_per_unit[Z_AXIS],
  6168. current_position[E_AXIS] - DEFAULT_RETRACTION,
  6169. 40, active_extruder);
  6170. // Move Z up to the next 0th full step.
  6171. // Write the file position.
  6172. eeprom_update_dword((uint32_t*)(EEPROM_FILE_POSITION), sd_position);
  6173. // Store the mesh bed leveling offsets. This is 2*9=18 bytes, which takes 18*3.4us=52us in worst case.
  6174. for (int8_t mesh_point = 0; mesh_point < 9; ++ mesh_point) {
  6175. uint8_t ix = mesh_point % MESH_MEAS_NUM_X_POINTS; // from 0 to MESH_NUM_X_POINTS - 1
  6176. uint8_t iy = mesh_point / MESH_MEAS_NUM_X_POINTS;
  6177. // Scale the z value to 1u resolution.
  6178. int16_t v = mbl.active ? int16_t(floor(mbl.z_values[iy*3][ix*3] * 1000.f + 0.5f)) : 0;
  6179. eeprom_update_word((uint16_t*)(EEPROM_UVLO_MESH_BED_LEVELING+2*mesh_point), *reinterpret_cast<uint16_t*>(&v));
  6180. }
  6181. // Read out the current Z motor microstep counter. This will be later used
  6182. // for reaching the zero full step before powering off.
  6183. eeprom_update_word((uint16_t*)(EEPROM_UVLO_Z_MICROSTEPS), z_microsteps);
  6184. // Store the current position.
  6185. eeprom_update_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 0), current_position[X_AXIS]);
  6186. eeprom_update_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 4), current_position[Y_AXIS]);
  6187. eeprom_update_float((float*)(EEPROM_UVLO_CURRENT_POSITION_Z), current_position[Z_AXIS]);
  6188. // Store the current feed rate, temperatures and fan speed.
  6189. EEPROM_save_B(EEPROM_UVLO_FEEDRATE, &feedrate_bckp);
  6190. eeprom_update_byte((uint8_t*)EEPROM_UVLO_TARGET_HOTEND, target_temperature[active_extruder]);
  6191. eeprom_update_byte((uint8_t*)EEPROM_UVLO_TARGET_BED, target_temperature_bed);
  6192. eeprom_update_byte((uint8_t*)EEPROM_UVLO_FAN_SPEED, fanSpeed);
  6193. // Finaly store the "power outage" flag.
  6194. if(sd_print) eeprom_update_byte((uint8_t*)EEPROM_UVLO, 1);
  6195. st_synchronize();
  6196. SERIAL_ECHOPGM("stps");
  6197. MYSERIAL.println(tmc2130_rd_MSCNT(Z_TMC2130_CS));
  6198. #if 0
  6199. // Move the print head to the side of the print until all the power stored in the power supply capacitors is depleted.
  6200. current_position[X_AXIS] = (current_position[X_AXIS] < 0.5f * (X_MIN_POS + X_MAX_POS)) ? X_MIN_POS : X_MAX_POS;
  6201. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 500, active_extruder);
  6202. st_synchronize();
  6203. #endif
  6204. disable_z();
  6205. // Increment power failure counter
  6206. uint8_t power_count = eeprom_read_byte((uint8_t*)EEPROM_POWER_COUNT);
  6207. power_count++;
  6208. eeprom_update_byte((uint8_t*)EEPROM_POWER_COUNT, power_count);
  6209. SERIAL_ECHOLNPGM("UVLO - end");
  6210. MYSERIAL.println(millis() - time_start);
  6211. cli();
  6212. while(1);
  6213. }
  6214. void setup_fan_interrupt() {
  6215. //INT7
  6216. DDRE &= ~(1 << 7); //input pin
  6217. PORTE &= ~(1 << 7); //no internal pull-up
  6218. //start with sensing rising edge
  6219. EICRB &= ~(1 << 6);
  6220. EICRB |= (1 << 7);
  6221. //enable INT7 interrupt
  6222. EIMSK |= (1 << 7);
  6223. }
  6224. ISR(INT7_vect) {
  6225. //measuring speed now works for fanSpeed > 18 (approximately), which is sufficient because MIN_PRINT_FAN_SPEED is higher
  6226. if (fanSpeed < MIN_PRINT_FAN_SPEED) return;
  6227. if ((1 << 6) & EICRB) { //interrupt was triggered by rising edge
  6228. t_fan_rising_edge = millis();
  6229. }
  6230. else { //interrupt was triggered by falling edge
  6231. if ((millis() - t_fan_rising_edge) >= FAN_PULSE_WIDTH_LIMIT) {//this pulse was from sensor and not from pwm
  6232. fan_edge_counter[1] += 2; //we are currently counting all edges so lets count two edges for one pulse
  6233. }
  6234. }
  6235. EICRB ^= (1 << 6); //change edge
  6236. }
  6237. void setup_uvlo_interrupt() {
  6238. DDRE &= ~(1 << 4); //input pin
  6239. PORTE &= ~(1 << 4); //no internal pull-up
  6240. //sensing falling edge
  6241. EICRB |= (1 << 0);
  6242. EICRB &= ~(1 << 1);
  6243. //enable INT4 interrupt
  6244. EIMSK |= (1 << 4);
  6245. }
  6246. ISR(INT4_vect) {
  6247. EIMSK &= ~(1 << 4); //disable INT4 interrupt to make sure that this code will be executed just once
  6248. SERIAL_ECHOLNPGM("INT4");
  6249. if (IS_SD_PRINTING) uvlo_();
  6250. }
  6251. void recover_print(uint8_t automatic) {
  6252. char cmd[30];
  6253. lcd_update_enable(true);
  6254. lcd_update(2);
  6255. lcd_setstatuspgm(MSG_RECOVERING_PRINT);
  6256. recover_machine_state_after_power_panic();
  6257. // Set the target bed and nozzle temperatures.
  6258. sprintf_P(cmd, PSTR("M104 S%d"), target_temperature[active_extruder]);
  6259. enquecommand(cmd);
  6260. sprintf_P(cmd, PSTR("M140 S%d"), target_temperature_bed);
  6261. enquecommand(cmd);
  6262. // Lift the print head, so one may remove the excess priming material.
  6263. if (current_position[Z_AXIS] < 25)
  6264. enquecommand_P(PSTR("G1 Z25 F800"));
  6265. // Home X and Y axes. Homing just X and Y shall not touch the babystep and the world2machine transformation status.
  6266. enquecommand_P(PSTR("G28 X Y"));
  6267. // Set the target bed and nozzle temperatures and wait.
  6268. sprintf_P(cmd, PSTR("M109 S%d"), target_temperature[active_extruder]);
  6269. enquecommand(cmd);
  6270. sprintf_P(cmd, PSTR("M190 S%d"), target_temperature_bed);
  6271. enquecommand(cmd);
  6272. enquecommand_P(PSTR("M83")); //E axis relative mode
  6273. //enquecommand_P(PSTR("G1 E5 F120")); //Extrude some filament to stabilize pessure
  6274. // If not automatically recoreverd (long power loss), extrude extra filament to stabilize
  6275. if(automatic == 0){
  6276. enquecommand_P(PSTR("G1 E5 F120")); //Extrude some filament to stabilize pessure
  6277. }
  6278. enquecommand_P(PSTR("G1 E" STRINGIFY(-DEFAULT_RETRACTION)" F480"));
  6279. // Mark the power panic status as inactive.
  6280. eeprom_update_byte((uint8_t*)EEPROM_UVLO, 0);
  6281. /*while ((abs(degHotend(0)- target_temperature[0])>5) || (abs(degBed() -target_temperature_bed)>3)) { //wait for heater and bed to reach target temp
  6282. delay_keep_alive(1000);
  6283. }*/
  6284. SERIAL_ECHOPGM("After waiting for temp:");
  6285. SERIAL_ECHOPGM("Current position X_AXIS:");
  6286. MYSERIAL.println(current_position[X_AXIS]);
  6287. SERIAL_ECHOPGM("Current position Y_AXIS:");
  6288. MYSERIAL.println(current_position[Y_AXIS]);
  6289. // Restart the print.
  6290. restore_print_from_eeprom();
  6291. SERIAL_ECHOPGM("current_position[Z_AXIS]:");
  6292. MYSERIAL.print(current_position[Z_AXIS]);
  6293. }
  6294. void recover_machine_state_after_power_panic()
  6295. {
  6296. // 1) Recover the logical cordinates at the time of the power panic.
  6297. // The logical XY coordinates are needed to recover the machine Z coordinate corrected by the mesh bed leveling.
  6298. current_position[X_AXIS] = eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 0));
  6299. current_position[Y_AXIS] = eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 4));
  6300. // Recover the logical coordinate of the Z axis at the time of the power panic.
  6301. // The current position after power panic is moved to the next closest 0th full step.
  6302. current_position[Z_AXIS] = eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION_Z)) +
  6303. UVLO_Z_AXIS_SHIFT + float((1024 - eeprom_read_word((uint16_t*)(EEPROM_UVLO_Z_MICROSTEPS)) + 7) >> 4) / axis_steps_per_unit[Z_AXIS];
  6304. memcpy(destination, current_position, sizeof(destination));
  6305. SERIAL_ECHOPGM("recover_machine_state_after_power_panic, initial ");
  6306. print_world_coordinates();
  6307. // 2) Initialize the logical to physical coordinate system transformation.
  6308. world2machine_initialize();
  6309. // 3) Restore the mesh bed leveling offsets. This is 2*9=18 bytes, which takes 18*3.4us=52us in worst case.
  6310. mbl.active = false;
  6311. for (int8_t mesh_point = 0; mesh_point < 9; ++ mesh_point) {
  6312. uint8_t ix = mesh_point % MESH_MEAS_NUM_X_POINTS; // from 0 to MESH_NUM_X_POINTS - 1
  6313. uint8_t iy = mesh_point / MESH_MEAS_NUM_X_POINTS;
  6314. // Scale the z value to 10u resolution.
  6315. int16_t v;
  6316. eeprom_read_block(&v, (void*)(EEPROM_UVLO_MESH_BED_LEVELING+2*mesh_point), 2);
  6317. if (v != 0)
  6318. mbl.active = true;
  6319. mbl.z_values[iy][ix] = float(v) * 0.001f;
  6320. }
  6321. if (mbl.active)
  6322. mbl.upsample_3x3();
  6323. SERIAL_ECHOPGM("recover_machine_state_after_power_panic, initial ");
  6324. print_mesh_bed_leveling_table();
  6325. // 4) Load the baby stepping value, which is expected to be active at the time of power panic.
  6326. // The baby stepping value is used to reset the physical Z axis when rehoming the Z axis.
  6327. babystep_load();
  6328. // 5) Set the physical positions from the logical positions using the world2machine transformation and the active bed leveling.
  6329. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  6330. // 6) Power up the motors, mark their positions as known.
  6331. //FIXME Verfiy, whether the X and Y axes should be powered up here, as they will later be re-homed anyway.
  6332. axis_known_position[X_AXIS] = true; enable_x();
  6333. axis_known_position[Y_AXIS] = true; enable_y();
  6334. axis_known_position[Z_AXIS] = true; enable_z();
  6335. SERIAL_ECHOPGM("recover_machine_state_after_power_panic, initial ");
  6336. print_physical_coordinates();
  6337. // 7) Recover the target temperatures.
  6338. target_temperature[active_extruder] = eeprom_read_byte((uint8_t*)EEPROM_UVLO_TARGET_HOTEND);
  6339. target_temperature_bed = eeprom_read_byte((uint8_t*)EEPROM_UVLO_TARGET_BED);
  6340. }
  6341. void restore_print_from_eeprom() {
  6342. float x_rec, y_rec, z_pos;
  6343. int feedrate_rec;
  6344. uint8_t fan_speed_rec;
  6345. char cmd[30];
  6346. char* c;
  6347. char filename[13];
  6348. uint8_t depth = 0;
  6349. char dir_name[9];
  6350. fan_speed_rec = eeprom_read_byte((uint8_t*)EEPROM_UVLO_FAN_SPEED);
  6351. EEPROM_read_B(EEPROM_UVLO_FEEDRATE, &feedrate_rec);
  6352. SERIAL_ECHOPGM("Feedrate:");
  6353. MYSERIAL.println(feedrate_rec);
  6354. depth = eeprom_read_byte((uint8_t*)EEPROM_DIR_DEPTH);
  6355. MYSERIAL.println(int(depth));
  6356. for (int i = 0; i < depth; i++) {
  6357. for (int j = 0; j < 8; j++) {
  6358. dir_name[j] = eeprom_read_byte((uint8_t*)EEPROM_DIRS + j + 8 * i);
  6359. }
  6360. dir_name[8] = '\0';
  6361. MYSERIAL.println(dir_name);
  6362. card.chdir(dir_name);
  6363. }
  6364. for (int i = 0; i < 8; i++) {
  6365. filename[i] = eeprom_read_byte((uint8_t*)EEPROM_FILENAME + i);
  6366. }
  6367. filename[8] = '\0';
  6368. MYSERIAL.print(filename);
  6369. strcat_P(filename, PSTR(".gco"));
  6370. sprintf_P(cmd, PSTR("M23 %s"), filename);
  6371. for (c = &cmd[4]; *c; c++)
  6372. *c = tolower(*c);
  6373. enquecommand(cmd);
  6374. uint32_t position = eeprom_read_dword((uint32_t*)(EEPROM_FILE_POSITION));
  6375. SERIAL_ECHOPGM("Position read from eeprom:");
  6376. MYSERIAL.println(position);
  6377. // E axis relative mode.
  6378. enquecommand_P(PSTR("M83"));
  6379. // Move to the XY print position in logical coordinates, where the print has been killed.
  6380. strcpy_P(cmd, PSTR("G1 X")); strcat(cmd, ftostr32(eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 0))));
  6381. strcat_P(cmd, PSTR(" Y")); strcat(cmd, ftostr32(eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 4))));
  6382. strcat_P(cmd, PSTR(" F2000"));
  6383. enquecommand(cmd);
  6384. // Move the Z axis down to the print, in logical coordinates.
  6385. strcpy_P(cmd, PSTR("G1 Z")); strcat(cmd, ftostr32(eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION_Z))));
  6386. enquecommand(cmd);
  6387. // Unretract.
  6388. enquecommand_P(PSTR("G1 E" STRINGIFY(DEFAULT_RETRACTION)" F480"));
  6389. // Set the feedrate saved at the power panic.
  6390. sprintf_P(cmd, PSTR("G1 F%d"), feedrate_rec);
  6391. enquecommand(cmd);
  6392. // Set the fan speed saved at the power panic.
  6393. strcpy_P(cmd, PSTR("M106 S"));
  6394. strcat(cmd, itostr3(int(fan_speed_rec)));
  6395. enquecommand(cmd);
  6396. // Set a position in the file.
  6397. sprintf_P(cmd, PSTR("M26 S%lu"), position);
  6398. enquecommand(cmd);
  6399. // Start SD print.
  6400. enquecommand_P(PSTR("M24"));
  6401. }
  6402. ////////////////////////////////////////////////////////////////////////////////
  6403. // new save/restore printing
  6404. //extern uint32_t sdpos_atomic;
  6405. bool saved_printing = false;
  6406. uint32_t saved_sdpos = 0;
  6407. float saved_pos[4] = {0, 0, 0, 0};
  6408. // Feedrate hopefully derived from an active block of the planner at the time the print has been canceled, in mm/min.
  6409. float saved_feedrate2 = 0;
  6410. uint8_t saved_active_extruder = 0;
  6411. bool saved_extruder_under_pressure = false;
  6412. void stop_and_save_print_to_ram(float z_move, float e_move)
  6413. {
  6414. if (saved_printing) return;
  6415. cli();
  6416. unsigned char nplanner_blocks = number_of_blocks();
  6417. saved_sdpos = sdpos_atomic; //atomic sd position of last command added in queue
  6418. uint16_t sdlen_planner = planner_calc_sd_length(); //length of sd commands in planner
  6419. saved_sdpos -= sdlen_planner;
  6420. uint16_t sdlen_cmdqueue = cmdqueue_calc_sd_length(); //length of sd commands in cmdqueue
  6421. saved_sdpos -= sdlen_cmdqueue;
  6422. #if 0
  6423. SERIAL_ECHOPGM("SDPOS_ATOMIC="); MYSERIAL.println(sdpos_atomic, DEC);
  6424. SERIAL_ECHOPGM("SDPOS="); MYSERIAL.println(card.get_sdpos(), DEC);
  6425. SERIAL_ECHOPGM("SDLEN_PLAN="); MYSERIAL.println(sdlen_planner, DEC);
  6426. SERIAL_ECHOPGM("SDLEN_CMDQ="); MYSERIAL.println(sdlen_cmdqueue, DEC);
  6427. SERIAL_ECHOPGM("PLANNERBLOCKS="); MYSERIAL.println(int(nplanner_blocks), DEC);
  6428. SERIAL_ECHOPGM("SDSAVED="); MYSERIAL.println(saved_sdpos, DEC);
  6429. SERIAL_ECHOPGM("SDFILELEN="); MYSERIAL.println(card.fileSize(), DEC);
  6430. {
  6431. card.setIndex(saved_sdpos);
  6432. SERIAL_ECHOLNPGM("Content of planner buffer: ");
  6433. for (unsigned int idx = 0; idx < sdlen_planner; ++ idx)
  6434. MYSERIAL.print(char(card.get()));
  6435. SERIAL_ECHOLNPGM("Content of command buffer: ");
  6436. for (unsigned int idx = 0; idx < sdlen_cmdqueue; ++ idx)
  6437. MYSERIAL.print(char(card.get()));
  6438. SERIAL_ECHOLNPGM("End of command buffer");
  6439. }
  6440. {
  6441. // Print the content of the planner buffer, line by line:
  6442. card.setIndex(saved_sdpos);
  6443. int8_t iline = 0;
  6444. for (unsigned char idx = block_buffer_tail; idx != block_buffer_head; idx = (idx + 1) & (BLOCK_BUFFER_SIZE - 1), ++ iline) {
  6445. SERIAL_ECHOPGM("Planner line (from file): ");
  6446. MYSERIAL.print(int(iline), DEC);
  6447. SERIAL_ECHOPGM(", length: ");
  6448. MYSERIAL.print(block_buffer[idx].sdlen, DEC);
  6449. SERIAL_ECHOPGM(", steps: (");
  6450. MYSERIAL.print(block_buffer[idx].steps_x, DEC);
  6451. SERIAL_ECHOPGM(",");
  6452. MYSERIAL.print(block_buffer[idx].steps_y, DEC);
  6453. SERIAL_ECHOPGM(",");
  6454. MYSERIAL.print(block_buffer[idx].steps_z, DEC);
  6455. SERIAL_ECHOPGM(",");
  6456. MYSERIAL.print(block_buffer[idx].steps_e, DEC);
  6457. SERIAL_ECHOPGM("), events: ");
  6458. MYSERIAL.println(block_buffer[idx].step_event_count, DEC);
  6459. for (int len = block_buffer[idx].sdlen; len > 0; -- len)
  6460. MYSERIAL.print(char(card.get()));
  6461. }
  6462. }
  6463. {
  6464. // Print the content of the command buffer, line by line:
  6465. int8_t iline = 0;
  6466. union {
  6467. struct {
  6468. char lo;
  6469. char hi;
  6470. } lohi;
  6471. uint16_t value;
  6472. } sdlen_single;
  6473. int _bufindr = bufindr;
  6474. for (int _buflen = buflen; _buflen > 0; ++ iline) {
  6475. if (cmdbuffer[_bufindr] == CMDBUFFER_CURRENT_TYPE_SDCARD) {
  6476. sdlen_single.lohi.lo = cmdbuffer[_bufindr + 1];
  6477. sdlen_single.lohi.hi = cmdbuffer[_bufindr + 2];
  6478. }
  6479. SERIAL_ECHOPGM("Buffer line (from buffer): ");
  6480. MYSERIAL.print(int(iline), DEC);
  6481. SERIAL_ECHOPGM(", type: ");
  6482. MYSERIAL.print(int(cmdbuffer[_bufindr]), DEC);
  6483. SERIAL_ECHOPGM(", len: ");
  6484. MYSERIAL.println(sdlen_single.value, DEC);
  6485. // Print the content of the buffer line.
  6486. MYSERIAL.println(cmdbuffer + _bufindr + CMDHDRSIZE);
  6487. SERIAL_ECHOPGM("Buffer line (from file): ");
  6488. MYSERIAL.print(int(iline), DEC);
  6489. MYSERIAL.println(int(iline), DEC);
  6490. for (; sdlen_single.value > 0; -- sdlen_single.value)
  6491. MYSERIAL.print(char(card.get()));
  6492. if (-- _buflen == 0)
  6493. break;
  6494. // First skip the current command ID and iterate up to the end of the string.
  6495. for (_bufindr += CMDHDRSIZE; cmdbuffer[_bufindr] != 0; ++ _bufindr) ;
  6496. // Second, skip the end of string null character and iterate until a nonzero command ID is found.
  6497. for (++ _bufindr; _bufindr < sizeof(cmdbuffer) && cmdbuffer[_bufindr] == 0; ++ _bufindr) ;
  6498. // If the end of the buffer was empty,
  6499. if (_bufindr == sizeof(cmdbuffer)) {
  6500. // skip to the start and find the nonzero command.
  6501. for (_bufindr = 0; cmdbuffer[_bufindr] == 0; ++ _bufindr) ;
  6502. }
  6503. }
  6504. }
  6505. #endif
  6506. #if 0
  6507. saved_feedrate2 = feedrate; //save feedrate
  6508. #else
  6509. // Try to deduce the feedrate from the first block of the planner.
  6510. // Speed is in mm/min.
  6511. saved_feedrate2 = blocks_queued() ? (block_buffer[block_buffer_tail].nominal_speed * 60.f) : feedrate;
  6512. #endif
  6513. planner_abort_hard(); //abort printing
  6514. memcpy(saved_pos, current_position, sizeof(saved_pos));
  6515. saved_active_extruder = active_extruder; //save active_extruder
  6516. saved_extruder_under_pressure = extruder_under_pressure; //extruder under pressure flag - currently unused
  6517. cmdqueue_reset(); //empty cmdqueue
  6518. card.sdprinting = false;
  6519. // card.closefile();
  6520. saved_printing = true;
  6521. sei();
  6522. if ((z_move != 0) || (e_move != 0)) { // extruder or z move
  6523. #if 1
  6524. // Rather than calling plan_buffer_line directly, push the move into the command queue,
  6525. char buf[48];
  6526. strcpy_P(buf, PSTR("G1 Z"));
  6527. dtostrf(saved_pos[Z_AXIS] + z_move, 8, 3, buf + strlen(buf));
  6528. strcat_P(buf, PSTR(" E"));
  6529. // Relative extrusion
  6530. dtostrf(e_move, 6, 3, buf + strlen(buf));
  6531. strcat_P(buf, PSTR(" F"));
  6532. dtostrf(homing_feedrate[Z_AXIS], 8, 3, buf + strlen(buf));
  6533. // At this point the command queue is empty.
  6534. enquecommand(buf, false);
  6535. // If this call is invoked from the main Arduino loop() function, let the caller know that the command
  6536. // in the command queue is not the original command, but a new one, so it should not be removed from the queue.
  6537. repeatcommand_front();
  6538. #else
  6539. plan_buffer_line(saved_pos[X_AXIS], saved_pos[Y_AXIS], saved_pos[Z_AXIS] + z_move, saved_pos[E_AXIS] + e_move, homing_feedrate[Z_AXIS], active_extruder);
  6540. st_synchronize(); //wait moving
  6541. memcpy(current_position, saved_pos, sizeof(saved_pos));
  6542. memcpy(destination, current_position, sizeof(destination));
  6543. #endif
  6544. }
  6545. }
  6546. void restore_print_from_ram_and_continue(float e_move)
  6547. {
  6548. if (!saved_printing) return;
  6549. // for (int axis = X_AXIS; axis <= E_AXIS; axis++)
  6550. // current_position[axis] = st_get_position_mm(axis);
  6551. active_extruder = saved_active_extruder; //restore active_extruder
  6552. feedrate = saved_feedrate2; //restore feedrate
  6553. float e = saved_pos[E_AXIS] - e_move;
  6554. plan_set_e_position(e);
  6555. plan_buffer_line(saved_pos[X_AXIS], saved_pos[Y_AXIS], saved_pos[Z_AXIS], saved_pos[E_AXIS], homing_feedrate[Z_AXIS]/13, active_extruder);
  6556. st_synchronize();
  6557. memcpy(current_position, saved_pos, sizeof(saved_pos));
  6558. memcpy(destination, current_position, sizeof(destination));
  6559. card.setIndex(saved_sdpos);
  6560. sdpos_atomic = saved_sdpos;
  6561. card.sdprinting = true;
  6562. saved_printing = false;
  6563. }
  6564. void print_world_coordinates()
  6565. {
  6566. SERIAL_ECHOPGM("world coordinates: (");
  6567. MYSERIAL.print(current_position[X_AXIS], 3);
  6568. SERIAL_ECHOPGM(", ");
  6569. MYSERIAL.print(current_position[Y_AXIS], 3);
  6570. SERIAL_ECHOPGM(", ");
  6571. MYSERIAL.print(current_position[Z_AXIS], 3);
  6572. SERIAL_ECHOLNPGM(")");
  6573. }
  6574. void print_physical_coordinates()
  6575. {
  6576. SERIAL_ECHOPGM("physical coordinates: (");
  6577. MYSERIAL.print(st_get_position_mm(X_AXIS), 3);
  6578. SERIAL_ECHOPGM(", ");
  6579. MYSERIAL.print(st_get_position_mm(Y_AXIS), 3);
  6580. SERIAL_ECHOPGM(", ");
  6581. MYSERIAL.print(st_get_position_mm(Z_AXIS), 3);
  6582. SERIAL_ECHOLNPGM(")");
  6583. }
  6584. void print_mesh_bed_leveling_table()
  6585. {
  6586. SERIAL_ECHOPGM("mesh bed leveling: ");
  6587. for (int8_t y = 0; y < MESH_NUM_Y_POINTS; ++ y)
  6588. for (int8_t x = 0; x < MESH_NUM_Y_POINTS; ++ x) {
  6589. MYSERIAL.print(mbl.z_values[y][x], 3);
  6590. SERIAL_ECHOPGM(" ");
  6591. }
  6592. SERIAL_ECHOLNPGM("");
  6593. }
  6594. #define FIL_LOAD_LENGTH 60
  6595. void extr_unload2() { //unloads filament
  6596. // float tmp_motor[3] = DEFAULT_PWM_MOTOR_CURRENT;
  6597. // float tmp_motor_loud[3] = DEFAULT_PWM_MOTOR_CURRENT_LOUD;
  6598. // int8_t SilentMode;
  6599. uint8_t snmm_extruder = 0;
  6600. if (degHotend0() > EXTRUDE_MINTEMP) {
  6601. lcd_implementation_clear();
  6602. lcd_display_message_fullscreen_P(PSTR(""));
  6603. max_feedrate[E_AXIS] = 50;
  6604. lcd.setCursor(0, 0); lcd_printPGM(MSG_UNLOADING_FILAMENT);
  6605. // lcd.print(" ");
  6606. // lcd.print(snmm_extruder + 1);
  6607. lcd.setCursor(0, 2); lcd_printPGM(MSG_PLEASE_WAIT);
  6608. if (current_position[Z_AXIS] < 15) {
  6609. current_position[Z_AXIS] += 15; //lifting in Z direction to make space for extrusion
  6610. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 25, active_extruder);
  6611. }
  6612. current_position[E_AXIS] += 10; //extrusion
  6613. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 10, active_extruder);
  6614. // digipot_current(2, E_MOTOR_HIGH_CURRENT);
  6615. if (current_temperature[0] < 230) { //PLA & all other filaments
  6616. current_position[E_AXIS] += 5.4;
  6617. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2800 / 60, active_extruder);
  6618. current_position[E_AXIS] += 3.2;
  6619. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  6620. current_position[E_AXIS] += 3;
  6621. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3400 / 60, active_extruder);
  6622. }
  6623. else { //ABS
  6624. current_position[E_AXIS] += 3.1;
  6625. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2000 / 60, active_extruder);
  6626. current_position[E_AXIS] += 3.1;
  6627. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2500 / 60, active_extruder);
  6628. current_position[E_AXIS] += 4;
  6629. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  6630. /*current_position[X_AXIS] += 23; //delay
  6631. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder); //delay
  6632. current_position[X_AXIS] -= 23; //delay
  6633. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder); //delay*/
  6634. delay_keep_alive(4700);
  6635. }
  6636. max_feedrate[E_AXIS] = 80;
  6637. current_position[E_AXIS] -= (bowden_length[snmm_extruder] + 60 + FIL_LOAD_LENGTH) / 2;
  6638. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 500, active_extruder);
  6639. current_position[E_AXIS] -= (bowden_length[snmm_extruder] + 60 + FIL_LOAD_LENGTH) / 2;
  6640. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 500, active_extruder);
  6641. st_synchronize();
  6642. //digipot_init();
  6643. // if (SilentMode == 1) digipot_current(2, tmp_motor[2]); //set back to normal operation currents
  6644. // else digipot_current(2, tmp_motor_loud[2]);
  6645. lcd_update_enable(true);
  6646. // lcd_return_to_status();
  6647. max_feedrate[E_AXIS] = 50;
  6648. }
  6649. else {
  6650. lcd_implementation_clear();
  6651. lcd.setCursor(0, 0);
  6652. lcd_printPGM(MSG_ERROR);
  6653. lcd.setCursor(0, 2);
  6654. lcd_printPGM(MSG_PREHEAT_NOZZLE);
  6655. delay(2000);
  6656. lcd_implementation_clear();
  6657. }
  6658. // lcd_return_to_status();
  6659. }