stepper.cpp 45 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496
  1. /*
  2. stepper.c - stepper motor driver: executes motion plans using stepper motors
  3. Part of Grbl
  4. Copyright (c) 2009-2011 Simen Svale Skogsrud
  5. Grbl is free software: you can redistribute it and/or modify
  6. it under the terms of the GNU General Public License as published by
  7. the Free Software Foundation, either version 3 of the License, or
  8. (at your option) any later version.
  9. Grbl is distributed in the hope that it will be useful,
  10. but WITHOUT ANY WARRANTY; without even the implied warranty of
  11. MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  12. GNU General Public License for more details.
  13. You should have received a copy of the GNU General Public License
  14. along with Grbl. If not, see <http://www.gnu.org/licenses/>.
  15. */
  16. /* The timer calculations of this module informed by the 'RepRap cartesian firmware' by Zack Smith
  17. and Philipp Tiefenbacher. */
  18. #include "Marlin.h"
  19. #include "stepper.h"
  20. #include "planner.h"
  21. #include "temperature.h"
  22. #include "ultralcd.h"
  23. #include "language.h"
  24. #include "cardreader.h"
  25. #include "speed_lookuptable.h"
  26. #if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
  27. #include <SPI.h>
  28. #endif
  29. #ifdef TMC2130
  30. #include "tmc2130.h"
  31. #endif //TMC2130
  32. #ifdef PAT9125
  33. #include "fsensor.h"
  34. int fsensor_counter = 0; //counter for e-steps
  35. #endif //PAT9125
  36. #ifdef DEBUG_STACK_MONITOR
  37. uint16_t SP_min = 0x21FF;
  38. #endif //DEBUG_STACK_MONITOR
  39. //===========================================================================
  40. //=============================public variables ============================
  41. //===========================================================================
  42. block_t *current_block; // A pointer to the block currently being traced
  43. bool x_min_endstop = false;
  44. bool x_max_endstop = false;
  45. bool y_min_endstop = false;
  46. bool y_max_endstop = false;
  47. bool z_min_endstop = false;
  48. bool z_max_endstop = false;
  49. //===========================================================================
  50. //=============================private variables ============================
  51. //===========================================================================
  52. //static makes it inpossible to be called from outside of this file by extern.!
  53. // Variables used by The Stepper Driver Interrupt
  54. static unsigned char out_bits; // The next stepping-bits to be output
  55. static dda_isteps_t
  56. counter_x, // Counter variables for the bresenham line tracer
  57. counter_y,
  58. counter_z,
  59. counter_e;
  60. volatile dda_usteps_t step_events_completed; // The number of step events executed in the current block
  61. static int32_t acceleration_time, deceleration_time;
  62. //static unsigned long accelerate_until, decelerate_after, acceleration_rate, initial_rate, final_rate, nominal_rate;
  63. static uint16_t acc_step_rate; // needed for deccelaration start point
  64. static uint8_t step_loops;
  65. static uint16_t OCR1A_nominal;
  66. static uint8_t step_loops_nominal;
  67. volatile long endstops_trigsteps[3]={0,0,0};
  68. volatile long endstops_stepsTotal,endstops_stepsDone;
  69. static volatile bool endstop_x_hit=false;
  70. static volatile bool endstop_y_hit=false;
  71. static volatile bool endstop_z_hit=false;
  72. #ifdef ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED
  73. bool abort_on_endstop_hit = false;
  74. #endif
  75. #ifdef MOTOR_CURRENT_PWM_XY_PIN
  76. int motor_current_setting[3] = DEFAULT_PWM_MOTOR_CURRENT;
  77. int motor_current_setting_silent[3] = DEFAULT_PWM_MOTOR_CURRENT;
  78. int motor_current_setting_loud[3] = DEFAULT_PWM_MOTOR_CURRENT_LOUD;
  79. #endif
  80. static bool old_x_min_endstop=false;
  81. static bool old_x_max_endstop=false;
  82. static bool old_y_min_endstop=false;
  83. static bool old_y_max_endstop=false;
  84. static bool old_z_min_endstop=false;
  85. static bool old_z_max_endstop=false;
  86. static bool check_endstops = true;
  87. static bool check_z_endstop = false;
  88. int8_t SilentMode = 0;
  89. volatile long count_position[NUM_AXIS] = { 0, 0, 0, 0};
  90. volatile signed char count_direction[NUM_AXIS] = { 1, 1, 1, 1};
  91. uint8_t LastStepMask = 0;
  92. #ifdef LIN_ADVANCE
  93. uint16_t ADV_NEVER = 65535;
  94. static uint16_t nextMainISR = 0;
  95. static uint16_t nextAdvanceISR = ADV_NEVER;
  96. static uint16_t eISR_Rate = ADV_NEVER;
  97. static volatile int e_steps; //Extrusion steps to be executed by the stepper
  98. static int final_estep_rate; //Speed of extruder at cruising speed
  99. static int current_estep_rate; //The current speed of the extruder
  100. static int current_adv_steps; //The current pretension of filament expressed in steps
  101. #define ADV_RATE(T, L) (e_steps ? (T) * (L) / abs(e_steps) : ADV_NEVER)
  102. #define _NEXT_ISR(T) nextMainISR = T
  103. #else
  104. #define _NEXT_ISR(T) OCR1A = T
  105. #endif
  106. #ifdef DEBUG_STEPPER_TIMER_MISSED
  107. extern bool stepper_timer_overflow_state;
  108. #endif /* DEBUG_STEPPER_TIMER_MISSED */
  109. //===========================================================================
  110. //=============================functions ============================
  111. //===========================================================================
  112. #ifndef _NO_ASM
  113. // intRes = intIn1 * intIn2 >> 16
  114. // uses:
  115. // r26 to store 0
  116. // r27 to store the byte 1 of the 24 bit result
  117. #define MultiU16X8toH16(intRes, charIn1, intIn2) \
  118. asm volatile ( \
  119. "clr r26 \n\t" \
  120. "mul %A1, %B2 \n\t" \
  121. "movw %A0, r0 \n\t" \
  122. "mul %A1, %A2 \n\t" \
  123. "add %A0, r1 \n\t" \
  124. "adc %B0, r26 \n\t" \
  125. "lsr r0 \n\t" \
  126. "adc %A0, r26 \n\t" \
  127. "adc %B0, r26 \n\t" \
  128. "clr r1 \n\t" \
  129. : \
  130. "=&r" (intRes) \
  131. : \
  132. "d" (charIn1), \
  133. "d" (intIn2) \
  134. : \
  135. "r26" \
  136. )
  137. // intRes = longIn1 * longIn2 >> 24
  138. // uses:
  139. // r26 to store 0
  140. // r27 to store the byte 1 of the 48bit result
  141. #define MultiU24X24toH16(intRes, longIn1, longIn2) \
  142. asm volatile ( \
  143. "clr r26 \n\t" \
  144. "mul %A1, %B2 \n\t" \
  145. "mov r27, r1 \n\t" \
  146. "mul %B1, %C2 \n\t" \
  147. "movw %A0, r0 \n\t" \
  148. "mul %C1, %C2 \n\t" \
  149. "add %B0, r0 \n\t" \
  150. "mul %C1, %B2 \n\t" \
  151. "add %A0, r0 \n\t" \
  152. "adc %B0, r1 \n\t" \
  153. "mul %A1, %C2 \n\t" \
  154. "add r27, r0 \n\t" \
  155. "adc %A0, r1 \n\t" \
  156. "adc %B0, r26 \n\t" \
  157. "mul %B1, %B2 \n\t" \
  158. "add r27, r0 \n\t" \
  159. "adc %A0, r1 \n\t" \
  160. "adc %B0, r26 \n\t" \
  161. "mul %C1, %A2 \n\t" \
  162. "add r27, r0 \n\t" \
  163. "adc %A0, r1 \n\t" \
  164. "adc %B0, r26 \n\t" \
  165. "mul %B1, %A2 \n\t" \
  166. "add r27, r1 \n\t" \
  167. "adc %A0, r26 \n\t" \
  168. "adc %B0, r26 \n\t" \
  169. "lsr r27 \n\t" \
  170. "adc %A0, r26 \n\t" \
  171. "adc %B0, r26 \n\t" \
  172. "clr r1 \n\t" \
  173. : \
  174. "=&r" (intRes) \
  175. : \
  176. "d" (longIn1), \
  177. "d" (longIn2) \
  178. : \
  179. "r26" , "r27" \
  180. )
  181. #else //_NO_ASM
  182. void MultiU16X8toH16(unsigned short& intRes, unsigned char& charIn1, unsigned short& intIn2)
  183. {
  184. }
  185. void MultiU24X24toH16(uint16_t& intRes, int32_t& longIn1, long& longIn2)
  186. {
  187. }
  188. #endif //_NO_ASM
  189. // Some useful constants
  190. void checkHitEndstops()
  191. {
  192. if( endstop_x_hit || endstop_y_hit || endstop_z_hit) {
  193. SERIAL_ECHO_START;
  194. SERIAL_ECHORPGM(MSG_ENDSTOPS_HIT);
  195. if(endstop_x_hit) {
  196. SERIAL_ECHOPAIR(" X:",(float)endstops_trigsteps[X_AXIS]/axis_steps_per_unit[X_AXIS]);
  197. LCD_MESSAGERPGM(CAT2(MSG_ENDSTOPS_HIT, PSTR("X")));
  198. }
  199. if(endstop_y_hit) {
  200. SERIAL_ECHOPAIR(" Y:",(float)endstops_trigsteps[Y_AXIS]/axis_steps_per_unit[Y_AXIS]);
  201. LCD_MESSAGERPGM(CAT2(MSG_ENDSTOPS_HIT, PSTR("Y")));
  202. }
  203. if(endstop_z_hit) {
  204. SERIAL_ECHOPAIR(" Z:",(float)endstops_trigsteps[Z_AXIS]/axis_steps_per_unit[Z_AXIS]);
  205. LCD_MESSAGERPGM(CAT2(MSG_ENDSTOPS_HIT,PSTR("Z")));
  206. }
  207. SERIAL_ECHOLN("");
  208. endstop_x_hit=false;
  209. endstop_y_hit=false;
  210. endstop_z_hit=false;
  211. #if defined(ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED) && defined(SDSUPPORT)
  212. if (abort_on_endstop_hit)
  213. {
  214. card.sdprinting = false;
  215. card.closefile();
  216. quickStop();
  217. setTargetHotend0(0);
  218. setTargetHotend1(0);
  219. setTargetHotend2(0);
  220. }
  221. #endif
  222. }
  223. }
  224. bool endstops_hit_on_purpose()
  225. {
  226. bool hit = endstop_x_hit || endstop_y_hit || endstop_z_hit;
  227. endstop_x_hit=false;
  228. endstop_y_hit=false;
  229. endstop_z_hit=false;
  230. return hit;
  231. }
  232. bool endstop_z_hit_on_purpose()
  233. {
  234. bool hit = endstop_z_hit;
  235. endstop_z_hit=false;
  236. return hit;
  237. }
  238. bool enable_endstops(bool check)
  239. {
  240. bool old = check_endstops;
  241. check_endstops = check;
  242. return old;
  243. }
  244. bool enable_z_endstop(bool check)
  245. {
  246. bool old = check_z_endstop;
  247. check_z_endstop = check;
  248. endstop_z_hit=false;
  249. return old;
  250. }
  251. // __________________________
  252. // /| |\ _________________ ^
  253. // / | | \ /| |\ |
  254. // / | | \ / | | \ s
  255. // / | | | | | \ p
  256. // / | | | | | \ e
  257. // +-----+------------------------+---+--+---------------+----+ e
  258. // | BLOCK 1 | BLOCK 2 | d
  259. //
  260. // time ----->
  261. //
  262. // The trapezoid is the shape the speed curve over time. It starts at block->initial_rate, accelerates
  263. // first block->accelerate_until step_events_completed, then keeps going at constant speed until
  264. // step_events_completed reaches block->decelerate_after after which it decelerates until the trapezoid generator is reset.
  265. // The slope of acceleration is calculated with the leib ramp alghorithm.
  266. FORCE_INLINE unsigned short calc_timer(uint16_t step_rate) {
  267. unsigned short timer;
  268. if(step_rate > MAX_STEP_FREQUENCY) step_rate = MAX_STEP_FREQUENCY;
  269. if(step_rate > 20000) { // If steprate > 20kHz >> step 4 times
  270. step_rate = (step_rate >> 2)&0x3fff;
  271. step_loops = 4;
  272. }
  273. else if(step_rate > 10000) { // If steprate > 10kHz >> step 2 times
  274. step_rate = (step_rate >> 1)&0x7fff;
  275. step_loops = 2;
  276. }
  277. else {
  278. step_loops = 1;
  279. }
  280. // step_loops = 1;
  281. if(step_rate < (F_CPU/500000)) step_rate = (F_CPU/500000);
  282. step_rate -= (F_CPU/500000); // Correct for minimal speed
  283. if(step_rate >= (8*256)){ // higher step rate
  284. unsigned short table_address = (unsigned short)&speed_lookuptable_fast[(unsigned char)(step_rate>>8)][0];
  285. unsigned char tmp_step_rate = (step_rate & 0x00ff);
  286. unsigned short gain = (unsigned short)pgm_read_word_near(table_address+2);
  287. MultiU16X8toH16(timer, tmp_step_rate, gain);
  288. timer = (unsigned short)pgm_read_word_near(table_address) - timer;
  289. }
  290. else { // lower step rates
  291. unsigned short table_address = (unsigned short)&speed_lookuptable_slow[0][0];
  292. table_address += ((step_rate)>>1) & 0xfffc;
  293. timer = (unsigned short)pgm_read_word_near(table_address);
  294. timer -= (((unsigned short)pgm_read_word_near(table_address+2) * (unsigned char)(step_rate & 0x0007))>>3);
  295. }
  296. if(timer < 100) { timer = 100; MYSERIAL.print(MSG_STEPPER_TOO_HIGH); MYSERIAL.println(step_rate); }//(20kHz this should never happen)
  297. return timer;
  298. }
  299. // Initializes the trapezoid generator from the current block. Called whenever a new
  300. // block begins.
  301. FORCE_INLINE void trapezoid_generator_reset() {
  302. deceleration_time = 0;
  303. // step_rate to timer interval
  304. OCR1A_nominal = calc_timer(uint16_t(current_block->nominal_rate));
  305. // make a note of the number of step loops required at nominal speed
  306. step_loops_nominal = step_loops;
  307. acc_step_rate = uint16_t(current_block->initial_rate);
  308. acceleration_time = calc_timer(acc_step_rate);
  309. _NEXT_ISR(acceleration_time);
  310. #ifdef LIN_ADVANCE
  311. if (current_block->use_advance_lead) {
  312. current_estep_rate = ((unsigned long)acc_step_rate * current_block->abs_adv_steps_multiplier8) >> 17;
  313. final_estep_rate = (current_block->nominal_rate * current_block->abs_adv_steps_multiplier8) >> 17;
  314. }
  315. #endif
  316. }
  317. // "The Stepper Driver Interrupt" - This timer interrupt is the workhorse.
  318. // It pops blocks from the block_buffer and executes them by pulsing the stepper pins appropriately.
  319. ISR(TIMER1_COMPA_vect) {
  320. #ifdef DEBUG_STACK_MONITOR
  321. uint16_t sp = SPL + 256 * SPH;
  322. if (sp < SP_min) SP_min = sp;
  323. #endif //DEBUG_STACK_MONITOR
  324. #ifdef LIN_ADVANCE
  325. advance_isr_scheduler();
  326. #else
  327. isr();
  328. #endif
  329. }
  330. FORCE_INLINE void stepper_next_block()
  331. {
  332. // Anything in the buffer?
  333. current_block = plan_get_current_block();
  334. if (current_block != NULL) {
  335. #ifdef PAT9125
  336. fsensor_counter = 0;
  337. fsensor_st_block_begin(current_block);
  338. #endif //PAT9125
  339. // The busy flag is set by the plan_get_current_block() call.
  340. // current_block->busy = true;
  341. trapezoid_generator_reset();
  342. if (current_block->flag & BLOCK_FLAG_DDA_LOWRES) {
  343. counter_x.lo = -(current_block->step_event_count.lo >> 1);
  344. counter_y.lo = counter_x.lo;
  345. counter_z.lo = counter_x.lo;
  346. counter_e.lo = counter_x.lo;
  347. } else {
  348. counter_x.wide = -(current_block->step_event_count.wide >> 1);
  349. counter_y.wide = counter_x.wide;
  350. counter_z.wide = counter_x.wide;
  351. counter_e.wide = counter_x.wide;
  352. }
  353. step_events_completed.wide = 0;
  354. // Set directions.
  355. out_bits = current_block->direction_bits;
  356. // Set the direction bits (X_AXIS=A_AXIS and Y_AXIS=B_AXIS for COREXY)
  357. if((out_bits & (1<<X_AXIS))!=0){
  358. WRITE_NC(X_DIR_PIN, INVERT_X_DIR);
  359. count_direction[X_AXIS]=-1;
  360. } else {
  361. WRITE_NC(X_DIR_PIN, !INVERT_X_DIR);
  362. count_direction[X_AXIS]=1;
  363. }
  364. if((out_bits & (1<<Y_AXIS))!=0){
  365. WRITE_NC(Y_DIR_PIN, INVERT_Y_DIR);
  366. count_direction[Y_AXIS]=-1;
  367. } else {
  368. WRITE_NC(Y_DIR_PIN, !INVERT_Y_DIR);
  369. count_direction[Y_AXIS]=1;
  370. }
  371. if ((out_bits & (1<<Z_AXIS)) != 0) { // -direction
  372. WRITE_NC(Z_DIR_PIN,INVERT_Z_DIR);
  373. count_direction[Z_AXIS]=-1;
  374. } else { // +direction
  375. WRITE_NC(Z_DIR_PIN,!INVERT_Z_DIR);
  376. count_direction[Z_AXIS]=1;
  377. }
  378. #ifndef LIN_ADVANCE
  379. if ((out_bits & (1 << E_AXIS)) != 0) { // -direction
  380. WRITE(E0_DIR_PIN,
  381. #ifdef SNMM
  382. (snmm_extruder == 0 || snmm_extruder == 2) ? !INVERT_E0_DIR :
  383. #endif // SNMM
  384. INVERT_E0_DIR);
  385. count_direction[E_AXIS] = -1;
  386. } else { // +direction
  387. WRITE(E0_DIR_PIN,
  388. #ifdef SNMM
  389. (snmm_extruder == 0 || snmm_extruder == 2) ? INVERT_E0_DIR :
  390. #endif // SNMM
  391. !INVERT_E0_DIR);
  392. count_direction[E_AXIS] = 1;
  393. }
  394. #endif /* LIN_ADVANCE */
  395. }
  396. else {
  397. _NEXT_ISR(2000); // 1kHz.
  398. }
  399. }
  400. // Check limit switches.
  401. FORCE_INLINE void stepper_check_endstops()
  402. {
  403. if(check_endstops)
  404. {
  405. #ifndef COREXY
  406. if ((out_bits & (1<<X_AXIS)) != 0) // stepping along -X axis
  407. #else
  408. if ((((out_bits & (1<<X_AXIS)) != 0)&&(out_bits & (1<<Y_AXIS)) != 0)) //-X occurs for -A and -B
  409. #endif
  410. {
  411. #if ( (defined(X_MIN_PIN) && (X_MIN_PIN > -1)) || defined(TMC2130_SG_HOMING) ) && !defined(DEBUG_DISABLE_XMINLIMIT)
  412. #ifdef TMC2130_SG_HOMING
  413. // Stall guard homing turned on
  414. x_min_endstop = (READ(X_TMC2130_DIAG) != 0);
  415. #else
  416. // Normal homing
  417. x_min_endstop = (READ(X_MIN_PIN) != X_MIN_ENDSTOP_INVERTING);
  418. #endif
  419. if(x_min_endstop && old_x_min_endstop && (current_block->steps_x.wide > 0)) {
  420. endstops_trigsteps[X_AXIS] = count_position[X_AXIS];
  421. endstop_x_hit=true;
  422. step_events_completed.wide = current_block->step_event_count.wide;
  423. }
  424. old_x_min_endstop = x_min_endstop;
  425. #endif
  426. } else { // +direction
  427. #if ( (defined(X_MAX_PIN) && (X_MAX_PIN > -1)) || defined(TMC2130_SG_HOMING) ) && !defined(DEBUG_DISABLE_XMAXLIMIT)
  428. #ifdef TMC2130_SG_HOMING
  429. // Stall guard homing turned on
  430. x_max_endstop = (READ(X_TMC2130_DIAG) != 0);
  431. #else
  432. // Normal homing
  433. x_max_endstop = (READ(X_MAX_PIN) != X_MAX_ENDSTOP_INVERTING);
  434. #endif
  435. if(x_max_endstop && old_x_max_endstop && (current_block->steps_x.wide > 0)){
  436. endstops_trigsteps[X_AXIS] = count_position[X_AXIS];
  437. endstop_x_hit=true;
  438. step_events_completed.wide = current_block->step_event_count.wide;
  439. }
  440. old_x_max_endstop = x_max_endstop;
  441. #endif
  442. }
  443. #ifndef COREXY
  444. if ((out_bits & (1<<Y_AXIS)) != 0) // -direction
  445. #else
  446. if ((((out_bits & (1<<X_AXIS)) != 0)&&(out_bits & (1<<Y_AXIS)) == 0)) // -Y occurs for -A and +B
  447. #endif
  448. {
  449. #if ( (defined(Y_MIN_PIN) && (Y_MIN_PIN > -1)) || defined(TMC2130_SG_HOMING) ) && !defined(DEBUG_DISABLE_YMINLIMIT)
  450. #ifdef TMC2130_SG_HOMING
  451. // Stall guard homing turned on
  452. y_min_endstop = (READ(Y_TMC2130_DIAG) != 0);
  453. #else
  454. // Normal homing
  455. y_min_endstop = (READ(Y_MIN_PIN) != Y_MIN_ENDSTOP_INVERTING);
  456. #endif
  457. if(y_min_endstop && old_y_min_endstop && (current_block->steps_y.wide > 0)) {
  458. endstops_trigsteps[Y_AXIS] = count_position[Y_AXIS];
  459. endstop_y_hit=true;
  460. step_events_completed.wide = current_block->step_event_count.wide;
  461. }
  462. old_y_min_endstop = y_min_endstop;
  463. #endif
  464. } else { // +direction
  465. #if ( (defined(Y_MAX_PIN) && (Y_MAX_PIN > -1)) || defined(TMC2130_SG_HOMING) ) && !defined(DEBUG_DISABLE_YMAXLIMIT)
  466. #ifdef TMC2130_SG_HOMING
  467. // Stall guard homing turned on
  468. y_max_endstop = (READ(Y_TMC2130_DIAG) != 0);
  469. #else
  470. // Normal homing
  471. y_max_endstop = (READ(Y_MAX_PIN) != Y_MAX_ENDSTOP_INVERTING);
  472. #endif
  473. if(y_max_endstop && old_y_max_endstop && (current_block->steps_y.wide > 0)){
  474. endstops_trigsteps[Y_AXIS] = count_position[Y_AXIS];
  475. endstop_y_hit=true;
  476. step_events_completed.wide = current_block->step_event_count.wide;
  477. }
  478. old_y_max_endstop = y_max_endstop;
  479. #endif
  480. }
  481. if ((out_bits & (1<<Z_AXIS)) != 0) // -direction
  482. {
  483. #if defined(Z_MIN_PIN) && (Z_MIN_PIN > -1) && !defined(DEBUG_DISABLE_ZMINLIMIT)
  484. if (! check_z_endstop) {
  485. #ifdef TMC2130_SG_HOMING
  486. // Stall guard homing turned on
  487. z_min_endstop = (READ(Z_MIN_PIN) != Z_MIN_ENDSTOP_INVERTING) || (READ(Z_TMC2130_DIAG) != 0);
  488. #else
  489. z_min_endstop = (READ(Z_MIN_PIN) != Z_MIN_ENDSTOP_INVERTING);
  490. #endif //TMC2130_SG_HOMING
  491. if(z_min_endstop && old_z_min_endstop && (current_block->steps_z.wide > 0)) {
  492. endstops_trigsteps[Z_AXIS] = count_position[Z_AXIS];
  493. endstop_z_hit=true;
  494. step_events_completed.wide = current_block->step_event_count.wide;
  495. }
  496. old_z_min_endstop = z_min_endstop;
  497. }
  498. #endif
  499. } else { // +direction
  500. #if defined(Z_MAX_PIN) && (Z_MAX_PIN > -1) && !defined(DEBUG_DISABLE_ZMAXLIMIT)
  501. #ifdef TMC2130_SG_HOMING
  502. // Stall guard homing turned on
  503. z_max_endstop = (READ(Z_TMC2130_DIAG) != 0);
  504. #else
  505. z_max_endstop = (READ(Z_MAX_PIN) != Z_MAX_ENDSTOP_INVERTING);
  506. #endif //TMC2130_SG_HOMING
  507. if(z_max_endstop && old_z_max_endstop && (current_block->steps_z.wide > 0)) {
  508. endstops_trigsteps[Z_AXIS] = count_position[Z_AXIS];
  509. endstop_z_hit=true;
  510. step_events_completed.wide = current_block->step_event_count.wide;
  511. }
  512. old_z_max_endstop = z_max_endstop;
  513. #endif
  514. }
  515. }
  516. // Supporting stopping on a trigger of the Z-stop induction sensor, not only for the Z-minus movements.
  517. #if defined(Z_MIN_PIN) && (Z_MIN_PIN > -1) && !defined(DEBUG_DISABLE_ZMINLIMIT)
  518. if (check_z_endstop) {
  519. // Check the Z min end-stop no matter what.
  520. // Good for searching for the center of an induction target.
  521. #ifdef TMC2130_SG_HOMING
  522. // Stall guard homing turned on
  523. z_min_endstop = (READ(Z_MIN_PIN) != Z_MIN_ENDSTOP_INVERTING) || (READ(Z_TMC2130_DIAG) != 0);
  524. #else
  525. z_min_endstop = (READ(Z_MIN_PIN) != Z_MIN_ENDSTOP_INVERTING);
  526. #endif //TMC2130_SG_HOMING
  527. if(z_min_endstop && old_z_min_endstop) {
  528. endstops_trigsteps[Z_AXIS] = count_position[Z_AXIS];
  529. endstop_z_hit=true;
  530. step_events_completed.wide = current_block->step_event_count.wide;
  531. }
  532. old_z_min_endstop = z_min_endstop;
  533. }
  534. #endif
  535. }
  536. FORCE_INLINE void stepper_tick_lowres()
  537. {
  538. for (uint8_t i=0; i < step_loops; ++ i) { // Take multiple steps per interrupt (For high speed moves)
  539. MSerial.checkRx(); // Check for serial chars.
  540. #ifdef LIN_ADVANCE
  541. counter_e.lo += current_block->steps_e.lo;
  542. if (counter_e.lo > 0) {
  543. counter_e.lo -= current_block->step_event_count.lo;
  544. count_position[E_AXIS] += count_direction[E_AXIS];
  545. ((out_bits&(1<<E_AXIS))!=0) ? --e_steps : ++e_steps;
  546. }
  547. #endif
  548. // Step in X axis
  549. counter_x.lo += current_block->steps_x.lo;
  550. if (counter_x.lo > 0) {
  551. WRITE_NC(X_STEP_PIN, !INVERT_X_STEP_PIN);
  552. LastStepMask |= X_AXIS_MASK;
  553. #ifdef DEBUG_XSTEP_DUP_PIN
  554. WRITE_NC(DEBUG_XSTEP_DUP_PIN,!INVERT_X_STEP_PIN);
  555. #endif //DEBUG_XSTEP_DUP_PIN
  556. counter_x.lo -= current_block->step_event_count.lo;
  557. count_position[X_AXIS]+=count_direction[X_AXIS];
  558. WRITE_NC(X_STEP_PIN, INVERT_X_STEP_PIN);
  559. #ifdef DEBUG_XSTEP_DUP_PIN
  560. WRITE_NC(DEBUG_XSTEP_DUP_PIN,INVERT_X_STEP_PIN);
  561. #endif //DEBUG_XSTEP_DUP_PIN
  562. }
  563. // Step in Y axis
  564. counter_y.lo += current_block->steps_y.lo;
  565. if (counter_y.lo > 0) {
  566. WRITE_NC(Y_STEP_PIN, !INVERT_Y_STEP_PIN);
  567. LastStepMask |= Y_AXIS_MASK;
  568. #ifdef DEBUG_YSTEP_DUP_PIN
  569. WRITE_NC(DEBUG_YSTEP_DUP_PIN,!INVERT_Y_STEP_PIN);
  570. #endif //DEBUG_YSTEP_DUP_PIN
  571. counter_y.lo -= current_block->step_event_count.lo;
  572. count_position[Y_AXIS]+=count_direction[Y_AXIS];
  573. WRITE_NC(Y_STEP_PIN, INVERT_Y_STEP_PIN);
  574. #ifdef DEBUG_YSTEP_DUP_PIN
  575. WRITE_NC(DEBUG_YSTEP_DUP_PIN,INVERT_Y_STEP_PIN);
  576. #endif //DEBUG_YSTEP_DUP_PIN
  577. }
  578. // Step in Z axis
  579. counter_z.lo += current_block->steps_z.lo;
  580. if (counter_z.lo > 0) {
  581. WRITE_NC(Z_STEP_PIN, !INVERT_Z_STEP_PIN);
  582. LastStepMask |= Z_AXIS_MASK;
  583. counter_z.lo -= current_block->step_event_count.lo;
  584. count_position[Z_AXIS]+=count_direction[Z_AXIS];
  585. WRITE_NC(Z_STEP_PIN, INVERT_Z_STEP_PIN);
  586. }
  587. #ifndef LIN_ADVANCE
  588. // Step in E axis
  589. counter_e.lo += current_block->steps_e.lo;
  590. if (counter_e.lo > 0) {
  591. WRITE(E0_STEP_PIN, !INVERT_E_STEP_PIN);
  592. counter_e.lo -= current_block->step_event_count.lo;
  593. count_position[E_AXIS]+=count_direction[E_AXIS];
  594. WRITE(E0_STEP_PIN, INVERT_E_STEP_PIN);
  595. #ifdef PAT9125
  596. ++ fsensor_counter;
  597. #endif //PAT9125
  598. }
  599. #endif
  600. if(++ step_events_completed.lo >= current_block->step_event_count.lo)
  601. break;
  602. }
  603. }
  604. FORCE_INLINE void stepper_tick_highres()
  605. {
  606. for (uint8_t i=0; i < step_loops; ++ i) { // Take multiple steps per interrupt (For high speed moves)
  607. MSerial.checkRx(); // Check for serial chars.
  608. #ifdef LIN_ADVANCE
  609. counter_e.wide += current_block->steps_e.wide;
  610. if (counter_e.wide > 0) {
  611. counter_e.wide -= current_block->step_event_count.wide;
  612. count_position[E_AXIS] += count_direction[E_AXIS];
  613. ((out_bits&(1<<E_AXIS))!=0) ? --e_steps : ++e_steps;
  614. }
  615. #endif
  616. // Step in X axis
  617. counter_x.wide += current_block->steps_x.wide;
  618. if (counter_x.wide > 0) {
  619. WRITE_NC(X_STEP_PIN, !INVERT_X_STEP_PIN);
  620. LastStepMask |= X_AXIS_MASK;
  621. #ifdef DEBUG_XSTEP_DUP_PIN
  622. WRITE_NC(DEBUG_XSTEP_DUP_PIN,!INVERT_X_STEP_PIN);
  623. #endif //DEBUG_XSTEP_DUP_PIN
  624. counter_x.wide -= current_block->step_event_count.wide;
  625. count_position[X_AXIS]+=count_direction[X_AXIS];
  626. WRITE_NC(X_STEP_PIN, INVERT_X_STEP_PIN);
  627. #ifdef DEBUG_XSTEP_DUP_PIN
  628. WRITE_NC(DEBUG_XSTEP_DUP_PIN,INVERT_X_STEP_PIN);
  629. #endif //DEBUG_XSTEP_DUP_PIN
  630. }
  631. // Step in Y axis
  632. counter_y.wide += current_block->steps_y.wide;
  633. if (counter_y.wide > 0) {
  634. WRITE_NC(Y_STEP_PIN, !INVERT_Y_STEP_PIN);
  635. LastStepMask |= Y_AXIS_MASK;
  636. #ifdef DEBUG_YSTEP_DUP_PIN
  637. WRITE_NC(DEBUG_YSTEP_DUP_PIN,!INVERT_Y_STEP_PIN);
  638. #endif //DEBUG_YSTEP_DUP_PIN
  639. counter_y.wide -= current_block->step_event_count.wide;
  640. count_position[Y_AXIS]+=count_direction[Y_AXIS];
  641. WRITE_NC(Y_STEP_PIN, INVERT_Y_STEP_PIN);
  642. #ifdef DEBUG_YSTEP_DUP_PIN
  643. WRITE_NC(DEBUG_YSTEP_DUP_PIN,INVERT_Y_STEP_PIN);
  644. #endif //DEBUG_YSTEP_DUP_PIN
  645. }
  646. // Step in Z axis
  647. counter_z.wide += current_block->steps_z.wide;
  648. if (counter_z.wide > 0) {
  649. WRITE_NC(Z_STEP_PIN, !INVERT_Z_STEP_PIN);
  650. LastStepMask |= Z_AXIS_MASK;
  651. counter_z.wide -= current_block->step_event_count.wide;
  652. count_position[Z_AXIS]+=count_direction[Z_AXIS];
  653. WRITE_NC(Z_STEP_PIN, INVERT_Z_STEP_PIN);
  654. }
  655. #ifndef LIN_ADVANCE
  656. // Step in E axis
  657. counter_e.wide += current_block->steps_e.wide;
  658. if (counter_e.wide > 0) {
  659. WRITE(E0_STEP_PIN, !INVERT_E_STEP_PIN);
  660. counter_e.wide -= current_block->step_event_count.wide;
  661. count_position[E_AXIS]+=count_direction[E_AXIS];
  662. WRITE(E0_STEP_PIN, INVERT_E_STEP_PIN);
  663. #ifdef PAT9125
  664. ++ fsensor_counter;
  665. #endif //PAT9125
  666. }
  667. #endif
  668. if(++ step_events_completed.wide >= current_block->step_event_count.wide)
  669. break;
  670. }
  671. }
  672. void isr() {
  673. //if (UVLO) uvlo();
  674. // If there is no current block, attempt to pop one from the buffer
  675. if (current_block == NULL)
  676. stepper_next_block();
  677. LastStepMask = 0;
  678. if (current_block != NULL)
  679. {
  680. stepper_check_endstops();
  681. if (current_block->flag & BLOCK_FLAG_DDA_LOWRES)
  682. stepper_tick_lowres();
  683. else
  684. stepper_tick_highres();
  685. #ifdef LIN_ADVANCE
  686. if (current_block->use_advance_lead) {
  687. const int delta_adv_steps = current_estep_rate - current_adv_steps;
  688. current_adv_steps += delta_adv_steps;
  689. e_steps += delta_adv_steps;
  690. }
  691. // If we have esteps to execute, fire the next advance_isr "now"
  692. if (e_steps) nextAdvanceISR = 0;
  693. #endif
  694. // Calculare new timer value
  695. unsigned short timer;
  696. uint16_t step_rate;
  697. if (step_events_completed.wide <= (unsigned long int)current_block->accelerate_until) {
  698. // v = t * a -> acc_step_rate = acceleration_time * current_block->acceleration_rate
  699. MultiU24X24toH16(acc_step_rate, acceleration_time, current_block->acceleration_rate);
  700. acc_step_rate += uint16_t(current_block->initial_rate);
  701. // upper limit
  702. if(acc_step_rate > uint16_t(current_block->nominal_rate))
  703. acc_step_rate = current_block->nominal_rate;
  704. // step_rate to timer interval
  705. timer = calc_timer(acc_step_rate);
  706. _NEXT_ISR(timer);
  707. acceleration_time += timer;
  708. #ifdef LIN_ADVANCE
  709. if (current_block->use_advance_lead) {
  710. current_estep_rate = ((uint32_t)acc_step_rate * current_block->abs_adv_steps_multiplier8) >> 17;
  711. }
  712. eISR_Rate = ADV_RATE(timer, step_loops);
  713. #endif
  714. }
  715. else if (step_events_completed.wide > (unsigned long int)current_block->decelerate_after) {
  716. MultiU24X24toH16(step_rate, deceleration_time, current_block->acceleration_rate);
  717. if(step_rate > acc_step_rate) { // Check step_rate stays positive
  718. step_rate = uint16_t(current_block->final_rate);
  719. }
  720. else {
  721. step_rate = acc_step_rate - step_rate; // Decelerate from aceleration end point.
  722. }
  723. // lower limit
  724. if(step_rate < uint16_t(current_block->final_rate))
  725. step_rate = uint16_t(current_block->final_rate);
  726. // step_rate to timer interval
  727. timer = calc_timer(step_rate);
  728. _NEXT_ISR(timer);
  729. deceleration_time += timer;
  730. #ifdef LIN_ADVANCE
  731. if (current_block->use_advance_lead) {
  732. current_estep_rate = ((uint32_t)step_rate * current_block->abs_adv_steps_multiplier8) >> 17;
  733. }
  734. eISR_Rate = ADV_RATE(timer, step_loops);
  735. #endif
  736. }
  737. else {
  738. #ifdef LIN_ADVANCE
  739. if (current_block->use_advance_lead)
  740. current_estep_rate = final_estep_rate;
  741. eISR_Rate = ADV_RATE(OCR1A_nominal, step_loops_nominal);
  742. #endif
  743. _NEXT_ISR(OCR1A_nominal);
  744. // ensure we're running at the correct step rate, even if we just came off an acceleration
  745. step_loops = step_loops_nominal;
  746. }
  747. // If current block is finished, reset pointer
  748. if (step_events_completed.wide >= current_block->step_event_count.wide) {
  749. #ifdef PAT9125
  750. fsensor_st_block_chunk(current_block, fsensor_counter);
  751. fsensor_counter = 0;
  752. #endif //PAT9125
  753. current_block = NULL;
  754. plan_discard_current_block();
  755. }
  756. #ifdef PAT9125
  757. else if (fsensor_counter >= fsensor_chunk_len)
  758. {
  759. fsensor_st_block_chunk(current_block, fsensor_counter);
  760. fsensor_counter = 0;
  761. }
  762. #endif //PAT9125
  763. }
  764. #ifdef TMC2130
  765. tmc2130_st_isr(LastStepMask);
  766. #endif //TMC2130
  767. #ifdef DEBUG_STEPPER_TIMER_MISSED
  768. // Verify whether the next planned timer interrupt has not been missed already.
  769. // This debugging test takes < 1.125us
  770. // This skews the profiling slightly as the fastest stepper timer
  771. // interrupt repeats at a 100us rate (10kHz).
  772. if (OCR1A < TCNT1) {
  773. stepper_timer_overflow_state = true;
  774. WRITE_NC(BEEPER, HIGH);
  775. SERIAL_PROTOCOLPGM("Stepper timer overflow ");
  776. SERIAL_PROTOCOL(OCR1A);
  777. SERIAL_PROTOCOLPGM("<");
  778. SERIAL_PROTOCOL(TCNT1);
  779. SERIAL_PROTOCOLLN("!");
  780. }
  781. #endif
  782. }
  783. #ifdef LIN_ADVANCE
  784. // Timer interrupt for E. e_steps is set in the main routine.
  785. void advance_isr() {
  786. if (e_steps) {
  787. bool dir =
  788. #ifdef SNMM
  789. ((e_steps < 0) == (snmm_extruder & 1))
  790. #else
  791. (e_steps < 0)
  792. #endif
  793. ? INVERT_E0_DIR : !INVERT_E0_DIR; //If we have SNMM, reverse every second extruder.
  794. WRITE_NC(E0_DIR_PIN, dir);
  795. for (uint8_t i = step_loops; e_steps && i--;) {
  796. WRITE_NC(E0_STEP_PIN, !INVERT_E_STEP_PIN);
  797. e_steps < 0 ? ++e_steps : --e_steps;
  798. WRITE_NC(E0_STEP_PIN, INVERT_E_STEP_PIN);
  799. #ifdef PAT9125
  800. fsensor_counter++;
  801. #endif //PAT9125
  802. }
  803. }
  804. else {
  805. eISR_Rate = ADV_NEVER;
  806. }
  807. nextAdvanceISR = eISR_Rate;
  808. }
  809. void advance_isr_scheduler() {
  810. // Run main stepping ISR if flagged
  811. if (!nextMainISR) isr();
  812. // Run Advance stepping ISR if flagged
  813. if (!nextAdvanceISR) advance_isr();
  814. // Is the next advance ISR scheduled before the next main ISR?
  815. if (nextAdvanceISR <= nextMainISR) {
  816. // Set up the next interrupt
  817. OCR1A = nextAdvanceISR;
  818. // New interval for the next main ISR
  819. if (nextMainISR) nextMainISR -= nextAdvanceISR;
  820. // Will call Stepper::advance_isr on the next interrupt
  821. nextAdvanceISR = 0;
  822. }
  823. else {
  824. // The next main ISR comes first
  825. OCR1A = nextMainISR;
  826. // New interval for the next advance ISR, if any
  827. if (nextAdvanceISR && nextAdvanceISR != ADV_NEVER)
  828. nextAdvanceISR -= nextMainISR;
  829. // Will call Stepper::isr on the next interrupt
  830. nextMainISR = 0;
  831. }
  832. // Don't run the ISR faster than possible
  833. if (OCR1A < TCNT1 + 16) OCR1A = TCNT1 + 16;
  834. }
  835. void clear_current_adv_vars() {
  836. e_steps = 0; //Should be already 0 at an filament change event, but just to be sure..
  837. current_adv_steps = 0;
  838. }
  839. #endif // LIN_ADVANCE
  840. void st_init()
  841. {
  842. #ifdef TMC2130
  843. tmc2130_init();
  844. #endif //TMC2130
  845. digipot_init(); //Initialize Digipot Motor Current
  846. microstep_init(); //Initialize Microstepping Pins
  847. //Initialize Dir Pins
  848. #if defined(X_DIR_PIN) && X_DIR_PIN > -1
  849. SET_OUTPUT(X_DIR_PIN);
  850. #endif
  851. #if defined(X2_DIR_PIN) && X2_DIR_PIN > -1
  852. SET_OUTPUT(X2_DIR_PIN);
  853. #endif
  854. #if defined(Y_DIR_PIN) && Y_DIR_PIN > -1
  855. SET_OUTPUT(Y_DIR_PIN);
  856. #if defined(Y_DUAL_STEPPER_DRIVERS) && defined(Y2_DIR_PIN) && (Y2_DIR_PIN > -1)
  857. SET_OUTPUT(Y2_DIR_PIN);
  858. #endif
  859. #endif
  860. #if defined(Z_DIR_PIN) && Z_DIR_PIN > -1
  861. SET_OUTPUT(Z_DIR_PIN);
  862. #if defined(Z_DUAL_STEPPER_DRIVERS) && defined(Z2_DIR_PIN) && (Z2_DIR_PIN > -1)
  863. SET_OUTPUT(Z2_DIR_PIN);
  864. #endif
  865. #endif
  866. #if defined(E0_DIR_PIN) && E0_DIR_PIN > -1
  867. SET_OUTPUT(E0_DIR_PIN);
  868. #endif
  869. #if defined(E1_DIR_PIN) && (E1_DIR_PIN > -1)
  870. SET_OUTPUT(E1_DIR_PIN);
  871. #endif
  872. #if defined(E2_DIR_PIN) && (E2_DIR_PIN > -1)
  873. SET_OUTPUT(E2_DIR_PIN);
  874. #endif
  875. //Initialize Enable Pins - steppers default to disabled.
  876. #if defined(X_ENABLE_PIN) && X_ENABLE_PIN > -1
  877. SET_OUTPUT(X_ENABLE_PIN);
  878. if(!X_ENABLE_ON) WRITE(X_ENABLE_PIN,HIGH);
  879. #endif
  880. #if defined(X2_ENABLE_PIN) && X2_ENABLE_PIN > -1
  881. SET_OUTPUT(X2_ENABLE_PIN);
  882. if(!X_ENABLE_ON) WRITE(X2_ENABLE_PIN,HIGH);
  883. #endif
  884. #if defined(Y_ENABLE_PIN) && Y_ENABLE_PIN > -1
  885. SET_OUTPUT(Y_ENABLE_PIN);
  886. if(!Y_ENABLE_ON) WRITE(Y_ENABLE_PIN,HIGH);
  887. #if defined(Y_DUAL_STEPPER_DRIVERS) && defined(Y2_ENABLE_PIN) && (Y2_ENABLE_PIN > -1)
  888. SET_OUTPUT(Y2_ENABLE_PIN);
  889. if(!Y_ENABLE_ON) WRITE(Y2_ENABLE_PIN,HIGH);
  890. #endif
  891. #endif
  892. #if defined(Z_ENABLE_PIN) && Z_ENABLE_PIN > -1
  893. SET_OUTPUT(Z_ENABLE_PIN);
  894. if(!Z_ENABLE_ON) WRITE(Z_ENABLE_PIN,HIGH);
  895. #if defined(Z_DUAL_STEPPER_DRIVERS) && defined(Z2_ENABLE_PIN) && (Z2_ENABLE_PIN > -1)
  896. SET_OUTPUT(Z2_ENABLE_PIN);
  897. if(!Z_ENABLE_ON) WRITE(Z2_ENABLE_PIN,HIGH);
  898. #endif
  899. #endif
  900. #if defined(E0_ENABLE_PIN) && (E0_ENABLE_PIN > -1)
  901. SET_OUTPUT(E0_ENABLE_PIN);
  902. if(!E_ENABLE_ON) WRITE(E0_ENABLE_PIN,HIGH);
  903. #endif
  904. #if defined(E1_ENABLE_PIN) && (E1_ENABLE_PIN > -1)
  905. SET_OUTPUT(E1_ENABLE_PIN);
  906. if(!E_ENABLE_ON) WRITE(E1_ENABLE_PIN,HIGH);
  907. #endif
  908. #if defined(E2_ENABLE_PIN) && (E2_ENABLE_PIN > -1)
  909. SET_OUTPUT(E2_ENABLE_PIN);
  910. if(!E_ENABLE_ON) WRITE(E2_ENABLE_PIN,HIGH);
  911. #endif
  912. //endstops and pullups
  913. #ifdef TMC2130_SG_HOMING
  914. SET_INPUT(X_TMC2130_DIAG);
  915. WRITE(X_TMC2130_DIAG,HIGH);
  916. SET_INPUT(Y_TMC2130_DIAG);
  917. WRITE(Y_TMC2130_DIAG,HIGH);
  918. SET_INPUT(Z_TMC2130_DIAG);
  919. WRITE(Z_TMC2130_DIAG,HIGH);
  920. SET_INPUT(E0_TMC2130_DIAG);
  921. WRITE(E0_TMC2130_DIAG,HIGH);
  922. #endif
  923. #if defined(X_MIN_PIN) && X_MIN_PIN > -1
  924. SET_INPUT(X_MIN_PIN);
  925. #ifdef ENDSTOPPULLUP_XMIN
  926. WRITE(X_MIN_PIN,HIGH);
  927. #endif
  928. #endif
  929. #if defined(Y_MIN_PIN) && Y_MIN_PIN > -1
  930. SET_INPUT(Y_MIN_PIN);
  931. #ifdef ENDSTOPPULLUP_YMIN
  932. WRITE(Y_MIN_PIN,HIGH);
  933. #endif
  934. #endif
  935. #if defined(Z_MIN_PIN) && Z_MIN_PIN > -1
  936. SET_INPUT(Z_MIN_PIN);
  937. #ifdef ENDSTOPPULLUP_ZMIN
  938. WRITE(Z_MIN_PIN,HIGH);
  939. #endif
  940. #endif
  941. #if defined(X_MAX_PIN) && X_MAX_PIN > -1
  942. SET_INPUT(X_MAX_PIN);
  943. #ifdef ENDSTOPPULLUP_XMAX
  944. WRITE(X_MAX_PIN,HIGH);
  945. #endif
  946. #endif
  947. #if defined(Y_MAX_PIN) && Y_MAX_PIN > -1
  948. SET_INPUT(Y_MAX_PIN);
  949. #ifdef ENDSTOPPULLUP_YMAX
  950. WRITE(Y_MAX_PIN,HIGH);
  951. #endif
  952. #endif
  953. #if defined(Z_MAX_PIN) && Z_MAX_PIN > -1
  954. SET_INPUT(Z_MAX_PIN);
  955. #ifdef ENDSTOPPULLUP_ZMAX
  956. WRITE(Z_MAX_PIN,HIGH);
  957. #endif
  958. #endif
  959. //Initialize Step Pins
  960. #if defined(X_STEP_PIN) && (X_STEP_PIN > -1)
  961. SET_OUTPUT(X_STEP_PIN);
  962. WRITE(X_STEP_PIN,INVERT_X_STEP_PIN);
  963. #ifdef DEBUG_XSTEP_DUP_PIN
  964. SET_OUTPUT(DEBUG_XSTEP_DUP_PIN);
  965. WRITE(DEBUG_XSTEP_DUP_PIN,INVERT_X_STEP_PIN);
  966. #endif //DEBUG_XSTEP_DUP_PIN
  967. disable_x();
  968. #endif
  969. #if defined(X2_STEP_PIN) && (X2_STEP_PIN > -1)
  970. SET_OUTPUT(X2_STEP_PIN);
  971. WRITE(X2_STEP_PIN,INVERT_X_STEP_PIN);
  972. disable_x();
  973. #endif
  974. #if defined(Y_STEP_PIN) && (Y_STEP_PIN > -1)
  975. SET_OUTPUT(Y_STEP_PIN);
  976. WRITE(Y_STEP_PIN,INVERT_Y_STEP_PIN);
  977. #ifdef DEBUG_YSTEP_DUP_PIN
  978. SET_OUTPUT(DEBUG_YSTEP_DUP_PIN);
  979. WRITE(DEBUG_YSTEP_DUP_PIN,INVERT_Y_STEP_PIN);
  980. #endif //DEBUG_YSTEP_DUP_PIN
  981. #if defined(Y_DUAL_STEPPER_DRIVERS) && defined(Y2_STEP_PIN) && (Y2_STEP_PIN > -1)
  982. SET_OUTPUT(Y2_STEP_PIN);
  983. WRITE(Y2_STEP_PIN,INVERT_Y_STEP_PIN);
  984. #endif
  985. disable_y();
  986. #endif
  987. #if defined(Z_STEP_PIN) && (Z_STEP_PIN > -1)
  988. SET_OUTPUT(Z_STEP_PIN);
  989. WRITE(Z_STEP_PIN,INVERT_Z_STEP_PIN);
  990. #if defined(Z_DUAL_STEPPER_DRIVERS) && defined(Z2_STEP_PIN) && (Z2_STEP_PIN > -1)
  991. SET_OUTPUT(Z2_STEP_PIN);
  992. WRITE(Z2_STEP_PIN,INVERT_Z_STEP_PIN);
  993. #endif
  994. disable_z();
  995. #endif
  996. #if defined(E0_STEP_PIN) && (E0_STEP_PIN > -1)
  997. SET_OUTPUT(E0_STEP_PIN);
  998. WRITE(E0_STEP_PIN,INVERT_E_STEP_PIN);
  999. disable_e0();
  1000. #endif
  1001. #if defined(E1_STEP_PIN) && (E1_STEP_PIN > -1)
  1002. SET_OUTPUT(E1_STEP_PIN);
  1003. WRITE(E1_STEP_PIN,INVERT_E_STEP_PIN);
  1004. disable_e1();
  1005. #endif
  1006. #if defined(E2_STEP_PIN) && (E2_STEP_PIN > -1)
  1007. SET_OUTPUT(E2_STEP_PIN);
  1008. WRITE(E2_STEP_PIN,INVERT_E_STEP_PIN);
  1009. disable_e2();
  1010. #endif
  1011. // waveform generation = 0100 = CTC
  1012. TCCR1B &= ~(1<<WGM13);
  1013. TCCR1B |= (1<<WGM12);
  1014. TCCR1A &= ~(1<<WGM11);
  1015. TCCR1A &= ~(1<<WGM10);
  1016. // output mode = 00 (disconnected)
  1017. TCCR1A &= ~(3<<COM1A0);
  1018. TCCR1A &= ~(3<<COM1B0);
  1019. // Set the timer pre-scaler
  1020. // Generally we use a divider of 8, resulting in a 2MHz timer
  1021. // frequency on a 16MHz MCU. If you are going to change this, be
  1022. // sure to regenerate speed_lookuptable.h with
  1023. // create_speed_lookuptable.py
  1024. TCCR1B = (TCCR1B & ~(0x07<<CS10)) | (2<<CS10);
  1025. // Plan the first interrupt after 8ms from now.
  1026. OCR1A = 0x4000;
  1027. TCNT1 = 0;
  1028. ENABLE_STEPPER_DRIVER_INTERRUPT();
  1029. #ifdef LIN_ADVANCE
  1030. e_steps = 0;
  1031. current_adv_steps = 0;
  1032. #endif
  1033. enable_endstops(true); // Start with endstops active. After homing they can be disabled
  1034. sei();
  1035. }
  1036. // Block until all buffered steps are executed
  1037. void st_synchronize()
  1038. {
  1039. while(blocks_queued())
  1040. {
  1041. #ifdef TMC2130
  1042. manage_heater();
  1043. // Vojtech: Don't disable motors inside the planner!
  1044. if (!tmc2130_update_sg())
  1045. {
  1046. manage_inactivity(true);
  1047. lcd_update();
  1048. }
  1049. #else //TMC2130
  1050. manage_heater();
  1051. // Vojtech: Don't disable motors inside the planner!
  1052. manage_inactivity(true);
  1053. lcd_update();
  1054. #endif //TMC2130
  1055. }
  1056. }
  1057. void st_set_position(const long &x, const long &y, const long &z, const long &e)
  1058. {
  1059. CRITICAL_SECTION_START;
  1060. // Copy 4x4B.
  1061. // This block locks the interrupts globally for 4.56 us,
  1062. // which corresponds to a maximum repeat frequency of 219.18 kHz.
  1063. // This blocking is safe in the context of a 10kHz stepper driver interrupt
  1064. // or a 115200 Bd serial line receive interrupt, which will not trigger faster than 12kHz.
  1065. count_position[X_AXIS] = x;
  1066. count_position[Y_AXIS] = y;
  1067. count_position[Z_AXIS] = z;
  1068. count_position[E_AXIS] = e;
  1069. CRITICAL_SECTION_END;
  1070. }
  1071. void st_set_e_position(const long &e)
  1072. {
  1073. CRITICAL_SECTION_START;
  1074. count_position[E_AXIS] = e;
  1075. CRITICAL_SECTION_END;
  1076. }
  1077. long st_get_position(uint8_t axis)
  1078. {
  1079. long count_pos;
  1080. CRITICAL_SECTION_START;
  1081. count_pos = count_position[axis];
  1082. CRITICAL_SECTION_END;
  1083. return count_pos;
  1084. }
  1085. void st_get_position_xy(long &x, long &y)
  1086. {
  1087. CRITICAL_SECTION_START;
  1088. x = count_position[X_AXIS];
  1089. y = count_position[Y_AXIS];
  1090. CRITICAL_SECTION_END;
  1091. }
  1092. float st_get_position_mm(uint8_t axis)
  1093. {
  1094. float steper_position_in_steps = st_get_position(axis);
  1095. return steper_position_in_steps / axis_steps_per_unit[axis];
  1096. }
  1097. void finishAndDisableSteppers()
  1098. {
  1099. st_synchronize();
  1100. disable_x();
  1101. disable_y();
  1102. disable_z();
  1103. disable_e0();
  1104. disable_e1();
  1105. disable_e2();
  1106. }
  1107. void quickStop()
  1108. {
  1109. DISABLE_STEPPER_DRIVER_INTERRUPT();
  1110. while (blocks_queued()) plan_discard_current_block();
  1111. current_block = NULL;
  1112. st_reset_timer();
  1113. ENABLE_STEPPER_DRIVER_INTERRUPT();
  1114. }
  1115. #ifdef BABYSTEPPING
  1116. void babystep(const uint8_t axis,const bool direction)
  1117. {
  1118. //MUST ONLY BE CALLED BY A ISR, it depends on that no other ISR interrupts this
  1119. //store initial pin states
  1120. switch(axis)
  1121. {
  1122. case X_AXIS:
  1123. {
  1124. enable_x();
  1125. uint8_t old_x_dir_pin= READ(X_DIR_PIN); //if dualzstepper, both point to same direction.
  1126. //setup new step
  1127. WRITE(X_DIR_PIN,(INVERT_X_DIR)^direction);
  1128. //perform step
  1129. WRITE(X_STEP_PIN, !INVERT_X_STEP_PIN);
  1130. LastStepMask |= X_AXIS_MASK;
  1131. #ifdef DEBUG_XSTEP_DUP_PIN
  1132. WRITE(DEBUG_XSTEP_DUP_PIN,!INVERT_X_STEP_PIN);
  1133. #endif //DEBUG_XSTEP_DUP_PIN
  1134. {
  1135. volatile float x=1./float(axis+1)/float(axis+2); //wait a tiny bit
  1136. }
  1137. WRITE(X_STEP_PIN, INVERT_X_STEP_PIN);
  1138. #ifdef DEBUG_XSTEP_DUP_PIN
  1139. WRITE(DEBUG_XSTEP_DUP_PIN,INVERT_X_STEP_PIN);
  1140. #endif //DEBUG_XSTEP_DUP_PIN
  1141. //get old pin state back.
  1142. WRITE(X_DIR_PIN,old_x_dir_pin);
  1143. }
  1144. break;
  1145. case Y_AXIS:
  1146. {
  1147. enable_y();
  1148. uint8_t old_y_dir_pin= READ(Y_DIR_PIN); //if dualzstepper, both point to same direction.
  1149. //setup new step
  1150. WRITE(Y_DIR_PIN,(INVERT_Y_DIR)^direction);
  1151. //perform step
  1152. WRITE(Y_STEP_PIN, !INVERT_Y_STEP_PIN);
  1153. LastStepMask |= Y_AXIS_MASK;
  1154. #ifdef DEBUG_YSTEP_DUP_PIN
  1155. WRITE(DEBUG_YSTEP_DUP_PIN,!INVERT_Y_STEP_PIN);
  1156. #endif //DEBUG_YSTEP_DUP_PIN
  1157. {
  1158. volatile float x=1./float(axis+1)/float(axis+2); //wait a tiny bit
  1159. }
  1160. WRITE(Y_STEP_PIN, INVERT_Y_STEP_PIN);
  1161. #ifdef DEBUG_YSTEP_DUP_PIN
  1162. WRITE(DEBUG_YSTEP_DUP_PIN,INVERT_Y_STEP_PIN);
  1163. #endif //DEBUG_YSTEP_DUP_PIN
  1164. //get old pin state back.
  1165. WRITE(Y_DIR_PIN,old_y_dir_pin);
  1166. }
  1167. break;
  1168. case Z_AXIS:
  1169. {
  1170. enable_z();
  1171. uint8_t old_z_dir_pin= READ(Z_DIR_PIN); //if dualzstepper, both point to same direction.
  1172. //setup new step
  1173. WRITE(Z_DIR_PIN,(INVERT_Z_DIR)^direction^BABYSTEP_INVERT_Z);
  1174. #ifdef Z_DUAL_STEPPER_DRIVERS
  1175. WRITE(Z2_DIR_PIN,(INVERT_Z_DIR)^direction^BABYSTEP_INVERT_Z);
  1176. #endif
  1177. //perform step
  1178. WRITE(Z_STEP_PIN, !INVERT_Z_STEP_PIN);
  1179. LastStepMask |= Z_AXIS_MASK;
  1180. #ifdef Z_DUAL_STEPPER_DRIVERS
  1181. WRITE(Z2_STEP_PIN, !INVERT_Z_STEP_PIN);
  1182. #endif
  1183. //wait a tiny bit
  1184. {
  1185. volatile float x=1./float(axis+1); //absolutely useless
  1186. }
  1187. WRITE(Z_STEP_PIN, INVERT_Z_STEP_PIN);
  1188. #ifdef Z_DUAL_STEPPER_DRIVERS
  1189. WRITE(Z2_STEP_PIN, INVERT_Z_STEP_PIN);
  1190. #endif
  1191. //get old pin state back.
  1192. WRITE(Z_DIR_PIN,old_z_dir_pin);
  1193. #ifdef Z_DUAL_STEPPER_DRIVERS
  1194. WRITE(Z2_DIR_PIN,old_z_dir_pin);
  1195. #endif
  1196. }
  1197. break;
  1198. default: break;
  1199. }
  1200. }
  1201. #endif //BABYSTEPPING
  1202. void digitalPotWrite(int address, int value) // From Arduino DigitalPotControl example
  1203. {
  1204. #if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
  1205. digitalWrite(DIGIPOTSS_PIN,LOW); // take the SS pin low to select the chip
  1206. SPI.transfer(address); // send in the address and value via SPI:
  1207. SPI.transfer(value);
  1208. digitalWrite(DIGIPOTSS_PIN,HIGH); // take the SS pin high to de-select the chip:
  1209. //delay(10);
  1210. #endif
  1211. }
  1212. void EEPROM_read_st(int pos, uint8_t* value, uint8_t size)
  1213. {
  1214. do
  1215. {
  1216. *value = eeprom_read_byte((unsigned char*)pos);
  1217. pos++;
  1218. value++;
  1219. }while(--size);
  1220. }
  1221. void digipot_init() //Initialize Digipot Motor Current
  1222. {
  1223. EEPROM_read_st(EEPROM_SILENT,(uint8_t*)&SilentMode,sizeof(SilentMode));
  1224. #if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
  1225. if(SilentMode == 0){
  1226. const uint8_t digipot_motor_current[] = DIGIPOT_MOTOR_CURRENT_LOUD;
  1227. }else{
  1228. const uint8_t digipot_motor_current[] = DIGIPOT_MOTOR_CURRENT;
  1229. }
  1230. SPI.begin();
  1231. pinMode(DIGIPOTSS_PIN, OUTPUT);
  1232. for(int i=0;i<=4;i++)
  1233. //digitalPotWrite(digipot_ch[i], digipot_motor_current[i]);
  1234. digipot_current(i,digipot_motor_current[i]);
  1235. #endif
  1236. #ifdef MOTOR_CURRENT_PWM_XY_PIN
  1237. pinMode(MOTOR_CURRENT_PWM_XY_PIN, OUTPUT);
  1238. pinMode(MOTOR_CURRENT_PWM_Z_PIN, OUTPUT);
  1239. pinMode(MOTOR_CURRENT_PWM_E_PIN, OUTPUT);
  1240. if((SilentMode == 0) || (farm_mode) ){
  1241. motor_current_setting[0] = motor_current_setting_loud[0];
  1242. motor_current_setting[1] = motor_current_setting_loud[1];
  1243. motor_current_setting[2] = motor_current_setting_loud[2];
  1244. }else{
  1245. motor_current_setting[0] = motor_current_setting_silent[0];
  1246. motor_current_setting[1] = motor_current_setting_silent[1];
  1247. motor_current_setting[2] = motor_current_setting_silent[2];
  1248. }
  1249. digipot_current(0, motor_current_setting[0]);
  1250. digipot_current(1, motor_current_setting[1]);
  1251. digipot_current(2, motor_current_setting[2]);
  1252. //Set timer5 to 31khz so the PWM of the motor power is as constant as possible. (removes a buzzing noise)
  1253. TCCR5B = (TCCR5B & ~(_BV(CS50) | _BV(CS51) | _BV(CS52))) | _BV(CS50);
  1254. #endif
  1255. }
  1256. void digipot_current(uint8_t driver, int current)
  1257. {
  1258. #if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
  1259. const uint8_t digipot_ch[] = DIGIPOT_CHANNELS;
  1260. digitalPotWrite(digipot_ch[driver], current);
  1261. #endif
  1262. #ifdef MOTOR_CURRENT_PWM_XY_PIN
  1263. if (driver == 0) analogWrite(MOTOR_CURRENT_PWM_XY_PIN, (long)current * 255L / (long)MOTOR_CURRENT_PWM_RANGE);
  1264. if (driver == 1) analogWrite(MOTOR_CURRENT_PWM_Z_PIN, (long)current * 255L / (long)MOTOR_CURRENT_PWM_RANGE);
  1265. if (driver == 2) analogWrite(MOTOR_CURRENT_PWM_E_PIN, (long)current * 255L / (long)MOTOR_CURRENT_PWM_RANGE);
  1266. #endif
  1267. }
  1268. void microstep_init()
  1269. {
  1270. const uint8_t microstep_modes[] = MICROSTEP_MODES;
  1271. #if defined(E1_MS1_PIN) && E1_MS1_PIN > -1
  1272. pinMode(E1_MS1_PIN,OUTPUT);
  1273. pinMode(E1_MS2_PIN,OUTPUT);
  1274. #endif
  1275. #if defined(X_MS1_PIN) && X_MS1_PIN > -1
  1276. pinMode(X_MS1_PIN,OUTPUT);
  1277. pinMode(X_MS2_PIN,OUTPUT);
  1278. pinMode(Y_MS1_PIN,OUTPUT);
  1279. pinMode(Y_MS2_PIN,OUTPUT);
  1280. pinMode(Z_MS1_PIN,OUTPUT);
  1281. pinMode(Z_MS2_PIN,OUTPUT);
  1282. pinMode(E0_MS1_PIN,OUTPUT);
  1283. pinMode(E0_MS2_PIN,OUTPUT);
  1284. for(int i=0;i<=4;i++) microstep_mode(i,microstep_modes[i]);
  1285. #endif
  1286. }
  1287. void microstep_ms(uint8_t driver, int8_t ms1, int8_t ms2)
  1288. {
  1289. if(ms1 > -1) switch(driver)
  1290. {
  1291. case 0: digitalWrite( X_MS1_PIN,ms1); break;
  1292. case 1: digitalWrite( Y_MS1_PIN,ms1); break;
  1293. case 2: digitalWrite( Z_MS1_PIN,ms1); break;
  1294. case 3: digitalWrite(E0_MS1_PIN,ms1); break;
  1295. #if defined(E1_MS1_PIN) && E1_MS1_PIN > -1
  1296. case 4: digitalWrite(E1_MS1_PIN,ms1); break;
  1297. #endif
  1298. }
  1299. if(ms2 > -1) switch(driver)
  1300. {
  1301. case 0: digitalWrite( X_MS2_PIN,ms2); break;
  1302. case 1: digitalWrite( Y_MS2_PIN,ms2); break;
  1303. case 2: digitalWrite( Z_MS2_PIN,ms2); break;
  1304. case 3: digitalWrite(E0_MS2_PIN,ms2); break;
  1305. #if defined(E1_MS2_PIN) && E1_MS2_PIN > -1
  1306. case 4: digitalWrite(E1_MS2_PIN,ms2); break;
  1307. #endif
  1308. }
  1309. }
  1310. void microstep_mode(uint8_t driver, uint8_t stepping_mode)
  1311. {
  1312. switch(stepping_mode)
  1313. {
  1314. case 1: microstep_ms(driver,MICROSTEP1); break;
  1315. case 2: microstep_ms(driver,MICROSTEP2); break;
  1316. case 4: microstep_ms(driver,MICROSTEP4); break;
  1317. case 8: microstep_ms(driver,MICROSTEP8); break;
  1318. case 16: microstep_ms(driver,MICROSTEP16); break;
  1319. }
  1320. }
  1321. void microstep_readings()
  1322. {
  1323. SERIAL_PROTOCOLPGM("MS1,MS2 Pins\n");
  1324. SERIAL_PROTOCOLPGM("X: ");
  1325. SERIAL_PROTOCOL( digitalRead(X_MS1_PIN));
  1326. SERIAL_PROTOCOLLN( digitalRead(X_MS2_PIN));
  1327. SERIAL_PROTOCOLPGM("Y: ");
  1328. SERIAL_PROTOCOL( digitalRead(Y_MS1_PIN));
  1329. SERIAL_PROTOCOLLN( digitalRead(Y_MS2_PIN));
  1330. SERIAL_PROTOCOLPGM("Z: ");
  1331. SERIAL_PROTOCOL( digitalRead(Z_MS1_PIN));
  1332. SERIAL_PROTOCOLLN( digitalRead(Z_MS2_PIN));
  1333. SERIAL_PROTOCOLPGM("E0: ");
  1334. SERIAL_PROTOCOL( digitalRead(E0_MS1_PIN));
  1335. SERIAL_PROTOCOLLN( digitalRead(E0_MS2_PIN));
  1336. #if defined(E1_MS1_PIN) && E1_MS1_PIN > -1
  1337. SERIAL_PROTOCOLPGM("E1: ");
  1338. SERIAL_PROTOCOL( digitalRead(E1_MS1_PIN));
  1339. SERIAL_PROTOCOLLN( digitalRead(E1_MS2_PIN));
  1340. #endif
  1341. }