Marlin_main.cpp 276 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744374537463747374837493750375137523753375437553756375737583759376037613762376337643765376637673768376937703771377237733774377537763777377837793780378137823783378437853786378737883789379037913792379337943795379637973798379938003801380238033804380538063807380838093810381138123813381438153816381738183819382038213822382338243825382638273828382938303831383238333834383538363837383838393840384138423843384438453846384738483849385038513852385338543855385638573858385938603861386238633864386538663867386838693870387138723873387438753876387738783879388038813882388338843885388638873888388938903891389238933894389538963897389838993900390139023903390439053906390739083909391039113912391339143915391639173918391939203921392239233924392539263927392839293930393139323933393439353936393739383939394039413942394339443945394639473948394939503951395239533954395539563957395839593960396139623963396439653966396739683969397039713972397339743975397639773978397939803981398239833984398539863987398839893990399139923993399439953996399739983999400040014002400340044005400640074008400940104011401240134014401540164017401840194020402140224023402440254026402740284029403040314032403340344035403640374038403940404041404240434044404540464047404840494050405140524053405440554056405740584059406040614062406340644065406640674068406940704071407240734074407540764077407840794080408140824083408440854086408740884089409040914092409340944095409640974098409941004101410241034104410541064107410841094110411141124113411441154116411741184119412041214122412341244125412641274128412941304131413241334134413541364137413841394140414141424143414441454146414741484149415041514152415341544155415641574158415941604161416241634164416541664167416841694170417141724173417441754176417741784179418041814182418341844185418641874188418941904191419241934194419541964197419841994200420142024203420442054206420742084209421042114212421342144215421642174218421942204221422242234224422542264227422842294230423142324233423442354236423742384239424042414242424342444245424642474248424942504251425242534254425542564257425842594260426142624263426442654266426742684269427042714272427342744275427642774278427942804281428242834284428542864287428842894290429142924293429442954296429742984299430043014302430343044305430643074308430943104311431243134314431543164317431843194320432143224323432443254326432743284329433043314332433343344335433643374338433943404341434243434344434543464347434843494350435143524353435443554356435743584359436043614362436343644365436643674368436943704371437243734374437543764377437843794380438143824383438443854386438743884389439043914392439343944395439643974398439944004401440244034404440544064407440844094410441144124413441444154416441744184419442044214422442344244425442644274428442944304431443244334434443544364437443844394440444144424443444444454446444744484449445044514452445344544455445644574458445944604461446244634464446544664467446844694470447144724473447444754476447744784479448044814482448344844485448644874488448944904491449244934494449544964497449844994500450145024503450445054506450745084509451045114512451345144515451645174518451945204521452245234524452545264527452845294530453145324533453445354536453745384539454045414542454345444545454645474548454945504551455245534554455545564557455845594560456145624563456445654566456745684569457045714572457345744575457645774578457945804581458245834584458545864587458845894590459145924593459445954596459745984599460046014602460346044605460646074608460946104611461246134614461546164617461846194620462146224623462446254626462746284629463046314632463346344635463646374638463946404641464246434644464546464647464846494650465146524653465446554656465746584659466046614662466346644665466646674668466946704671467246734674467546764677467846794680468146824683468446854686468746884689469046914692469346944695469646974698469947004701470247034704470547064707470847094710471147124713471447154716471747184719472047214722472347244725472647274728472947304731473247334734473547364737473847394740474147424743474447454746474747484749475047514752475347544755475647574758475947604761476247634764476547664767476847694770477147724773477447754776477747784779478047814782478347844785478647874788478947904791479247934794479547964797479847994800480148024803480448054806480748084809481048114812481348144815481648174818481948204821482248234824482548264827482848294830483148324833483448354836483748384839484048414842484348444845484648474848484948504851485248534854485548564857485848594860486148624863486448654866486748684869487048714872487348744875487648774878487948804881488248834884488548864887488848894890489148924893489448954896489748984899490049014902490349044905490649074908490949104911491249134914491549164917491849194920492149224923492449254926492749284929493049314932493349344935493649374938493949404941494249434944494549464947494849494950495149524953495449554956495749584959496049614962496349644965496649674968496949704971497249734974497549764977497849794980498149824983498449854986498749884989499049914992499349944995499649974998499950005001500250035004500550065007500850095010501150125013501450155016501750185019502050215022502350245025502650275028502950305031503250335034503550365037503850395040504150425043504450455046504750485049505050515052505350545055505650575058505950605061506250635064506550665067506850695070507150725073507450755076507750785079508050815082508350845085508650875088508950905091509250935094509550965097509850995100510151025103510451055106510751085109511051115112511351145115511651175118511951205121512251235124512551265127512851295130513151325133513451355136513751385139514051415142514351445145514651475148514951505151515251535154515551565157515851595160516151625163516451655166516751685169517051715172517351745175517651775178517951805181518251835184518551865187518851895190519151925193519451955196519751985199520052015202520352045205520652075208520952105211521252135214521552165217521852195220522152225223522452255226522752285229523052315232523352345235523652375238523952405241524252435244524552465247524852495250525152525253525452555256525752585259526052615262526352645265526652675268526952705271527252735274527552765277527852795280528152825283528452855286528752885289529052915292529352945295529652975298529953005301530253035304530553065307530853095310531153125313531453155316531753185319532053215322532353245325532653275328532953305331533253335334533553365337533853395340534153425343534453455346534753485349535053515352535353545355535653575358535953605361536253635364536553665367536853695370537153725373537453755376537753785379538053815382538353845385538653875388538953905391539253935394539553965397539853995400540154025403540454055406540754085409541054115412541354145415541654175418541954205421542254235424542554265427542854295430543154325433543454355436543754385439544054415442544354445445544654475448544954505451545254535454545554565457545854595460546154625463546454655466546754685469547054715472547354745475547654775478547954805481548254835484548554865487548854895490549154925493549454955496549754985499550055015502550355045505550655075508550955105511551255135514551555165517551855195520552155225523552455255526552755285529553055315532553355345535553655375538553955405541554255435544554555465547554855495550555155525553555455555556555755585559556055615562556355645565556655675568556955705571557255735574557555765577557855795580558155825583558455855586558755885589559055915592559355945595559655975598559956005601560256035604560556065607560856095610561156125613561456155616561756185619562056215622562356245625562656275628562956305631563256335634563556365637563856395640564156425643564456455646564756485649565056515652565356545655565656575658565956605661566256635664566556665667566856695670567156725673567456755676567756785679568056815682568356845685568656875688568956905691569256935694569556965697569856995700570157025703570457055706570757085709571057115712571357145715571657175718571957205721572257235724572557265727572857295730573157325733573457355736573757385739574057415742574357445745574657475748574957505751575257535754575557565757575857595760576157625763576457655766576757685769577057715772577357745775577657775778577957805781578257835784578557865787578857895790579157925793579457955796579757985799580058015802580358045805580658075808580958105811581258135814581558165817581858195820582158225823582458255826582758285829583058315832583358345835583658375838583958405841584258435844584558465847584858495850585158525853585458555856585758585859586058615862586358645865586658675868586958705871587258735874587558765877587858795880588158825883588458855886588758885889589058915892589358945895589658975898589959005901590259035904590559065907590859095910591159125913591459155916591759185919592059215922592359245925592659275928592959305931593259335934593559365937593859395940594159425943594459455946594759485949595059515952595359545955595659575958595959605961596259635964596559665967596859695970597159725973597459755976597759785979598059815982598359845985598659875988598959905991599259935994599559965997599859996000600160026003600460056006600760086009601060116012601360146015601660176018601960206021602260236024602560266027602860296030603160326033603460356036603760386039604060416042604360446045604660476048604960506051605260536054605560566057605860596060606160626063606460656066606760686069607060716072607360746075607660776078607960806081608260836084608560866087608860896090609160926093609460956096609760986099610061016102610361046105610661076108610961106111611261136114611561166117611861196120612161226123612461256126612761286129613061316132613361346135613661376138613961406141614261436144614561466147614861496150615161526153615461556156615761586159616061616162616361646165616661676168616961706171617261736174617561766177617861796180618161826183618461856186618761886189619061916192619361946195619661976198619962006201620262036204620562066207620862096210621162126213621462156216621762186219622062216222622362246225622662276228622962306231623262336234623562366237623862396240624162426243624462456246624762486249625062516252625362546255625662576258625962606261626262636264626562666267626862696270627162726273627462756276627762786279628062816282628362846285628662876288628962906291629262936294629562966297629862996300630163026303630463056306630763086309631063116312631363146315631663176318631963206321632263236324632563266327632863296330633163326333633463356336633763386339634063416342634363446345634663476348634963506351635263536354635563566357635863596360636163626363636463656366636763686369637063716372637363746375637663776378637963806381638263836384638563866387638863896390639163926393639463956396639763986399640064016402640364046405640664076408640964106411641264136414641564166417641864196420642164226423642464256426642764286429643064316432643364346435643664376438643964406441644264436444644564466447644864496450645164526453645464556456645764586459646064616462646364646465646664676468646964706471647264736474647564766477647864796480648164826483648464856486648764886489649064916492649364946495649664976498649965006501650265036504650565066507650865096510651165126513651465156516651765186519652065216522652365246525652665276528652965306531653265336534653565366537653865396540654165426543654465456546654765486549655065516552655365546555655665576558655965606561656265636564656565666567656865696570657165726573657465756576657765786579658065816582658365846585658665876588658965906591659265936594659565966597659865996600660166026603660466056606660766086609661066116612661366146615661666176618661966206621662266236624662566266627662866296630663166326633663466356636663766386639664066416642664366446645664666476648664966506651665266536654665566566657665866596660666166626663666466656666666766686669667066716672667366746675667666776678667966806681668266836684668566866687668866896690669166926693669466956696669766986699670067016702670367046705670667076708670967106711671267136714671567166717671867196720672167226723672467256726672767286729673067316732673367346735673667376738673967406741674267436744674567466747674867496750675167526753675467556756675767586759676067616762676367646765676667676768676967706771677267736774677567766777677867796780678167826783678467856786678767886789679067916792679367946795679667976798679968006801680268036804680568066807680868096810681168126813681468156816681768186819682068216822682368246825682668276828682968306831683268336834683568366837683868396840684168426843684468456846684768486849685068516852685368546855685668576858685968606861686268636864686568666867686868696870687168726873687468756876687768786879688068816882688368846885688668876888688968906891689268936894689568966897689868996900690169026903690469056906690769086909691069116912691369146915691669176918691969206921692269236924692569266927692869296930693169326933693469356936693769386939694069416942694369446945694669476948694969506951695269536954695569566957695869596960696169626963696469656966696769686969697069716972697369746975697669776978697969806981698269836984698569866987698869896990699169926993699469956996699769986999700070017002700370047005700670077008700970107011701270137014701570167017701870197020702170227023702470257026702770287029703070317032703370347035703670377038703970407041704270437044704570467047704870497050705170527053705470557056705770587059706070617062706370647065706670677068706970707071707270737074707570767077707870797080708170827083708470857086708770887089709070917092709370947095709670977098709971007101710271037104710571067107710871097110711171127113711471157116711771187119712071217122712371247125712671277128712971307131713271337134713571367137713871397140714171427143714471457146714771487149715071517152715371547155715671577158715971607161716271637164716571667167716871697170717171727173717471757176717771787179718071817182718371847185718671877188718971907191719271937194719571967197719871997200720172027203720472057206720772087209721072117212721372147215721672177218721972207221722272237224722572267227722872297230723172327233723472357236723772387239724072417242724372447245724672477248724972507251725272537254725572567257725872597260726172627263726472657266726772687269727072717272727372747275727672777278727972807281728272837284728572867287728872897290729172927293729472957296729772987299730073017302730373047305730673077308730973107311731273137314731573167317731873197320732173227323732473257326732773287329733073317332733373347335733673377338733973407341734273437344734573467347734873497350735173527353735473557356735773587359736073617362736373647365736673677368736973707371737273737374737573767377737873797380738173827383738473857386738773887389739073917392739373947395739673977398739974007401740274037404740574067407740874097410741174127413741474157416741774187419742074217422742374247425742674277428742974307431743274337434743574367437743874397440744174427443744474457446744774487449745074517452745374547455745674577458745974607461746274637464746574667467746874697470747174727473747474757476747774787479748074817482748374847485748674877488748974907491749274937494749574967497749874997500750175027503750475057506750775087509751075117512751375147515751675177518751975207521752275237524752575267527752875297530753175327533753475357536753775387539754075417542754375447545754675477548754975507551755275537554755575567557755875597560756175627563756475657566756775687569757075717572757375747575757675777578757975807581758275837584758575867587758875897590759175927593759475957596759775987599760076017602760376047605760676077608760976107611761276137614761576167617761876197620762176227623762476257626762776287629763076317632763376347635763676377638763976407641764276437644764576467647764876497650765176527653765476557656765776587659766076617662766376647665766676677668766976707671767276737674767576767677767876797680768176827683768476857686768776887689769076917692769376947695769676977698769977007701770277037704770577067707770877097710771177127713771477157716771777187719772077217722772377247725772677277728772977307731773277337734773577367737773877397740774177427743774477457746774777487749775077517752775377547755775677577758775977607761776277637764776577667767776877697770777177727773777477757776777777787779778077817782778377847785778677877788778977907791779277937794779577967797779877997800780178027803780478057806780778087809781078117812781378147815781678177818781978207821782278237824782578267827782878297830783178327833783478357836783778387839784078417842784378447845784678477848784978507851785278537854785578567857785878597860786178627863786478657866786778687869787078717872787378747875787678777878787978807881788278837884788578867887788878897890789178927893789478957896789778987899790079017902790379047905790679077908790979107911791279137914791579167917791879197920792179227923792479257926792779287929793079317932793379347935793679377938793979407941794279437944794579467947794879497950795179527953795479557956795779587959796079617962796379647965796679677968796979707971797279737974797579767977797879797980798179827983798479857986798779887989799079917992799379947995799679977998799980008001800280038004800580068007800880098010801180128013801480158016801780188019802080218022802380248025802680278028802980308031803280338034803580368037803880398040804180428043804480458046804780488049805080518052805380548055805680578058805980608061806280638064806580668067806880698070807180728073807480758076807780788079808080818082808380848085808680878088808980908091809280938094809580968097809880998100810181028103810481058106810781088109811081118112811381148115811681178118811981208121812281238124812581268127812881298130813181328133813481358136813781388139814081418142814381448145814681478148814981508151815281538154815581568157815881598160816181628163816481658166816781688169817081718172817381748175817681778178817981808181818281838184818581868187818881898190819181928193819481958196819781988199820082018202820382048205820682078208820982108211821282138214821582168217821882198220822182228223822482258226822782288229823082318232823382348235823682378238823982408241824282438244824582468247824882498250825182528253825482558256825782588259826082618262826382648265826682678268826982708271827282738274
  1. /* -*- c++ -*- */
  2. /*
  3. Reprap firmware based on Sprinter and grbl.
  4. Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
  5. This program is free software: you can redistribute it and/or modify
  6. it under the terms of the GNU General Public License as published by
  7. the Free Software Foundation, either version 3 of the License, or
  8. (at your option) any later version.
  9. This program is distributed in the hope that it will be useful,
  10. but WITHOUT ANY WARRANTY; without even the implied warranty of
  11. MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  12. GNU General Public License for more details.
  13. You should have received a copy of the GNU General Public License
  14. along with this program. If not, see <http://www.gnu.org/licenses/>.
  15. */
  16. /*
  17. This firmware is a mashup between Sprinter and grbl.
  18. (https://github.com/kliment/Sprinter)
  19. (https://github.com/simen/grbl/tree)
  20. It has preliminary support for Matthew Roberts advance algorithm
  21. http://reprap.org/pipermail/reprap-dev/2011-May/003323.html
  22. */
  23. #include "Marlin.h"
  24. #ifdef ENABLE_AUTO_BED_LEVELING
  25. #include "vector_3.h"
  26. #ifdef AUTO_BED_LEVELING_GRID
  27. #include "qr_solve.h"
  28. #endif
  29. #endif // ENABLE_AUTO_BED_LEVELING
  30. #ifdef MESH_BED_LEVELING
  31. #include "mesh_bed_leveling.h"
  32. #include "mesh_bed_calibration.h"
  33. #endif
  34. #include "ultralcd.h"
  35. #include "Configuration_prusa.h"
  36. #include "planner.h"
  37. #include "stepper.h"
  38. #include "temperature.h"
  39. #include "motion_control.h"
  40. #include "cardreader.h"
  41. #include "watchdog.h"
  42. #include "ConfigurationStore.h"
  43. #include "language.h"
  44. #include "pins_arduino.h"
  45. #include "math.h"
  46. #include "util.h"
  47. #include "Timer.h"
  48. #include <avr/wdt.h>
  49. #include "Dcodes.h"
  50. #ifdef SWSPI
  51. #include "swspi.h"
  52. #endif //SWSPI
  53. #ifdef SWI2C
  54. #include "swi2c.h"
  55. #endif //SWI2C
  56. #ifdef PAT9125
  57. #include "pat9125.h"
  58. #include "fsensor.h"
  59. #endif //PAT9125
  60. #ifdef TMC2130
  61. #include "tmc2130.h"
  62. #endif //TMC2130
  63. #ifdef BLINKM
  64. #include "BlinkM.h"
  65. #include "Wire.h"
  66. #endif
  67. #ifdef ULTRALCD
  68. #include "ultralcd.h"
  69. #endif
  70. #if NUM_SERVOS > 0
  71. #include "Servo.h"
  72. #endif
  73. #if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
  74. #include <SPI.h>
  75. #endif
  76. #define VERSION_STRING "1.0.2"
  77. #include "ultralcd.h"
  78. #include "cmdqueue.h"
  79. // Macros for bit masks
  80. #define BIT(b) (1<<(b))
  81. #define TEST(n,b) (((n)&BIT(b))!=0)
  82. #define SET_BIT(n,b,value) (n) ^= ((-value)^(n)) & (BIT(b))
  83. //Macro for print fan speed
  84. #define FAN_PULSE_WIDTH_LIMIT ((fanSpeed > 100) ? 3 : 4) //time in ms
  85. // look here for descriptions of G-codes: http://linuxcnc.org/handbook/gcode/g-code.html
  86. // http://objects.reprap.org/wiki/Mendel_User_Manual:_RepRapGCodes
  87. //Implemented Codes
  88. //-------------------
  89. // PRUSA CODES
  90. // P F - Returns FW versions
  91. // P R - Returns revision of printer
  92. // G0 -> G1
  93. // G1 - Coordinated Movement X Y Z E
  94. // G2 - CW ARC
  95. // G3 - CCW ARC
  96. // G4 - Dwell S<seconds> or P<milliseconds>
  97. // G10 - retract filament according to settings of M207
  98. // G11 - retract recover filament according to settings of M208
  99. // G28 - Home all Axis
  100. // G29 - Detailed Z-Probe, probes the bed at 3 or more points. Will fail if you haven't homed yet.
  101. // G30 - Single Z Probe, probes bed at current XY location.
  102. // G31 - Dock sled (Z_PROBE_SLED only)
  103. // G32 - Undock sled (Z_PROBE_SLED only)
  104. // G80 - Automatic mesh bed leveling
  105. // G81 - Print bed profile
  106. // G90 - Use Absolute Coordinates
  107. // G91 - Use Relative Coordinates
  108. // G92 - Set current position to coordinates given
  109. // M Codes
  110. // M0 - Unconditional stop - Wait for user to press a button on the LCD (Only if ULTRA_LCD is enabled)
  111. // M1 - Same as M0
  112. // M17 - Enable/Power all stepper motors
  113. // M18 - Disable all stepper motors; same as M84
  114. // M20 - List SD card
  115. // M21 - Init SD card
  116. // M22 - Release SD card
  117. // M23 - Select SD file (M23 filename.g)
  118. // M24 - Start/resume SD print
  119. // M25 - Pause SD print
  120. // M26 - Set SD position in bytes (M26 S12345)
  121. // M27 - Report SD print status
  122. // M28 - Start SD write (M28 filename.g)
  123. // M29 - Stop SD write
  124. // M30 - Delete file from SD (M30 filename.g)
  125. // M31 - Output time since last M109 or SD card start to serial
  126. // M32 - Select file and start SD print (Can be used _while_ printing from SD card files):
  127. // syntax "M32 /path/filename#", or "M32 S<startpos bytes> !filename#"
  128. // Call gcode file : "M32 P !filename#" and return to caller file after finishing (similar to #include).
  129. // The '#' is necessary when calling from within sd files, as it stops buffer prereading
  130. // M42 - Change pin status via gcode Use M42 Px Sy to set pin x to value y, when omitting Px the onboard led will be used.
  131. // M80 - Turn on Power Supply
  132. // M81 - Turn off Power Supply
  133. // M82 - Set E codes absolute (default)
  134. // M83 - Set E codes relative while in Absolute Coordinates (G90) mode
  135. // M84 - Disable steppers until next move,
  136. // or use S<seconds> to specify an inactivity timeout, after which the steppers will be disabled. S0 to disable the timeout.
  137. // M85 - Set inactivity shutdown timer with parameter S<seconds>. To disable set zero (default)
  138. // M92 - Set axis_steps_per_unit - same syntax as G92
  139. // M104 - Set extruder target temp
  140. // M105 - Read current temp
  141. // M106 - Fan on
  142. // M107 - Fan off
  143. // M109 - Sxxx Wait for extruder current temp to reach target temp. Waits only when heating
  144. // Rxxx Wait for extruder current temp to reach target temp. Waits when heating and cooling
  145. // IF AUTOTEMP is enabled, S<mintemp> B<maxtemp> F<factor>. Exit autotemp by any M109 without F
  146. // M112 - Emergency stop
  147. // M113 - Get or set the timeout interval for Host Keepalive "busy" messages
  148. // M114 - Output current position to serial port
  149. // M115 - Capabilities string
  150. // M117 - display message
  151. // M119 - Output Endstop status to serial port
  152. // M126 - Solenoid Air Valve Open (BariCUDA support by jmil)
  153. // M127 - Solenoid Air Valve Closed (BariCUDA vent to atmospheric pressure by jmil)
  154. // M128 - EtoP Open (BariCUDA EtoP = electricity to air pressure transducer by jmil)
  155. // M129 - EtoP Closed (BariCUDA EtoP = electricity to air pressure transducer by jmil)
  156. // M140 - Set bed target temp
  157. // M150 - Set BlinkM Color Output R: Red<0-255> U(!): Green<0-255> B: Blue<0-255> over i2c, G for green does not work.
  158. // M190 - Sxxx Wait for bed current temp to reach target temp. Waits only when heating
  159. // Rxxx Wait for bed current temp to reach target temp. Waits when heating and cooling
  160. // M200 D<millimeters>- set filament diameter and set E axis units to cubic millimeters (use S0 to set back to millimeters).
  161. // M201 - Set max acceleration in units/s^2 for print moves (M201 X1000 Y1000)
  162. // M202 - Set max acceleration in units/s^2 for travel moves (M202 X1000 Y1000) Unused in Marlin!!
  163. // M203 - Set maximum feedrate that your machine can sustain (M203 X200 Y200 Z300 E10000) in mm/sec
  164. // M204 - Set default acceleration: S normal moves T filament only moves (M204 S3000 T7000) in mm/sec^2 also sets minimum segment time in ms (B20000) to prevent buffer under-runs and M20 minimum feedrate
  165. // M205 - advanced settings: minimum travel speed S=while printing T=travel only, B=minimum segment time X= maximum xy jerk, Z=maximum Z jerk, E=maximum E jerk
  166. // M206 - set additional homing offset
  167. // M207 - set retract length S[positive mm] F[feedrate mm/min] Z[additional zlift/hop], stays in mm regardless of M200 setting
  168. // M208 - set recover=unretract length S[positive mm surplus to the M207 S*] F[feedrate mm/sec]
  169. // M209 - S<1=true/0=false> enable automatic retract detect if the slicer did not support G10/11: every normal extrude-only move will be classified as retract depending on the direction.
  170. // M218 - set hotend offset (in mm): T<extruder_number> X<offset_on_X> Y<offset_on_Y>
  171. // M220 S<factor in percent>- set speed factor override percentage
  172. // M221 S<factor in percent>- set extrude factor override percentage
  173. // M226 P<pin number> S<pin state>- Wait until the specified pin reaches the state required
  174. // M240 - Trigger a camera to take a photograph
  175. // M250 - Set LCD contrast C<contrast value> (value 0..63)
  176. // M280 - set servo position absolute. P: servo index, S: angle or microseconds
  177. // M300 - Play beep sound S<frequency Hz> P<duration ms>
  178. // M301 - Set PID parameters P I and D
  179. // M302 - Allow cold extrudes, or set the minimum extrude S<temperature>.
  180. // M303 - PID relay autotune S<temperature> sets the target temperature. (default target temperature = 150C)
  181. // M304 - Set bed PID parameters P I and D
  182. // M400 - Finish all moves
  183. // M401 - Lower z-probe if present
  184. // M402 - Raise z-probe if present
  185. // M404 - N<dia in mm> Enter the nominal filament width (3mm, 1.75mm ) or will display nominal filament width without parameters
  186. // M405 - Turn on Filament Sensor extrusion control. Optional D<delay in cm> to set delay in centimeters between sensor and extruder
  187. // M406 - Turn off Filament Sensor extrusion control
  188. // M407 - Displays measured filament diameter
  189. // M500 - stores parameters in EEPROM
  190. // M501 - reads parameters from EEPROM (if you need reset them after you changed them temporarily).
  191. // M502 - reverts to the default "factory settings". You still need to store them in EEPROM afterwards if you want to.
  192. // M503 - print the current settings (from memory not from EEPROM)
  193. // M509 - force language selection on next restart
  194. // M540 - Use S[0|1] to enable or disable the stop SD card print on endstop hit (requires ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED)
  195. // M600 - Pause for filament change X[pos] Y[pos] Z[relative lift] E[initial retract] L[later retract distance for removal]
  196. // M605 - Set dual x-carriage movement mode: S<mode> [ X<duplication x-offset> R<duplication temp offset> ]
  197. // M900 - Set LIN_ADVANCE options, if enabled. See Configuration_adv.h for details.
  198. // M907 - Set digital trimpot motor current using axis codes.
  199. // M908 - Control digital trimpot directly.
  200. // M350 - Set microstepping mode.
  201. // M351 - Toggle MS1 MS2 pins directly.
  202. // M928 - Start SD logging (M928 filename.g) - ended by M29
  203. // M999 - Restart after being stopped by error
  204. //Stepper Movement Variables
  205. //===========================================================================
  206. //=============================imported variables============================
  207. //===========================================================================
  208. //===========================================================================
  209. //=============================public variables=============================
  210. //===========================================================================
  211. #ifdef SDSUPPORT
  212. CardReader card;
  213. #endif
  214. unsigned long PingTime = millis();
  215. union Data
  216. {
  217. byte b[2];
  218. int value;
  219. };
  220. float homing_feedrate[] = HOMING_FEEDRATE;
  221. // Currently only the extruder axis may be switched to a relative mode.
  222. // Other axes are always absolute or relative based on the common relative_mode flag.
  223. bool axis_relative_modes[] = AXIS_RELATIVE_MODES;
  224. int feedmultiply=100; //100->1 200->2
  225. int saved_feedmultiply;
  226. int extrudemultiply=100; //100->1 200->2
  227. int extruder_multiply[EXTRUDERS] = {100
  228. #if EXTRUDERS > 1
  229. , 100
  230. #if EXTRUDERS > 2
  231. , 100
  232. #endif
  233. #endif
  234. };
  235. int bowden_length[4] = {385, 385, 385, 385};
  236. bool is_usb_printing = false;
  237. bool homing_flag = false;
  238. bool temp_cal_active = false;
  239. unsigned long kicktime = millis()+100000;
  240. unsigned int usb_printing_counter;
  241. int lcd_change_fil_state = 0;
  242. int feedmultiplyBckp = 100;
  243. float HotendTempBckp = 0;
  244. int fanSpeedBckp = 0;
  245. float pause_lastpos[4];
  246. unsigned long pause_time = 0;
  247. unsigned long start_pause_print = millis();
  248. unsigned long t_fan_rising_edge = millis();
  249. //unsigned long load_filament_time;
  250. bool mesh_bed_leveling_flag = false;
  251. bool mesh_bed_run_from_menu = false;
  252. unsigned char lang_selected = 0;
  253. int8_t FarmMode = 0;
  254. bool prusa_sd_card_upload = false;
  255. unsigned int status_number = 0;
  256. unsigned long total_filament_used;
  257. unsigned int heating_status;
  258. unsigned int heating_status_counter;
  259. bool custom_message;
  260. bool loading_flag = false;
  261. unsigned int custom_message_type;
  262. unsigned int custom_message_state;
  263. char snmm_filaments_used = 0;
  264. float distance_from_min[2];
  265. bool fan_state[2];
  266. int fan_edge_counter[2];
  267. int fan_speed[2];
  268. char dir_names[3][9];
  269. bool sortAlpha = false;
  270. bool volumetric_enabled = false;
  271. float filament_size[EXTRUDERS] = { DEFAULT_NOMINAL_FILAMENT_DIA
  272. #if EXTRUDERS > 1
  273. , DEFAULT_NOMINAL_FILAMENT_DIA
  274. #if EXTRUDERS > 2
  275. , DEFAULT_NOMINAL_FILAMENT_DIA
  276. #endif
  277. #endif
  278. };
  279. float extruder_multiplier[EXTRUDERS] = {1.0
  280. #if EXTRUDERS > 1
  281. , 1.0
  282. #if EXTRUDERS > 2
  283. , 1.0
  284. #endif
  285. #endif
  286. };
  287. float current_position[NUM_AXIS] = { 0.0, 0.0, 0.0, 0.0 };
  288. float add_homing[3]={0,0,0};
  289. float min_pos[3] = { X_MIN_POS, Y_MIN_POS, Z_MIN_POS };
  290. float max_pos[3] = { X_MAX_POS, Y_MAX_POS, Z_MAX_POS };
  291. bool axis_known_position[3] = {false, false, false};
  292. float zprobe_zoffset;
  293. // Extruder offset
  294. #if EXTRUDERS > 1
  295. #define NUM_EXTRUDER_OFFSETS 2 // only in XY plane
  296. float extruder_offset[NUM_EXTRUDER_OFFSETS][EXTRUDERS] = {
  297. #if defined(EXTRUDER_OFFSET_X) && defined(EXTRUDER_OFFSET_Y)
  298. EXTRUDER_OFFSET_X, EXTRUDER_OFFSET_Y
  299. #endif
  300. };
  301. #endif
  302. uint8_t active_extruder = 0;
  303. int fanSpeed=0;
  304. #ifdef FWRETRACT
  305. bool autoretract_enabled=false;
  306. bool retracted[EXTRUDERS]={false
  307. #if EXTRUDERS > 1
  308. , false
  309. #if EXTRUDERS > 2
  310. , false
  311. #endif
  312. #endif
  313. };
  314. bool retracted_swap[EXTRUDERS]={false
  315. #if EXTRUDERS > 1
  316. , false
  317. #if EXTRUDERS > 2
  318. , false
  319. #endif
  320. #endif
  321. };
  322. float retract_length = RETRACT_LENGTH;
  323. float retract_length_swap = RETRACT_LENGTH_SWAP;
  324. float retract_feedrate = RETRACT_FEEDRATE;
  325. float retract_zlift = RETRACT_ZLIFT;
  326. float retract_recover_length = RETRACT_RECOVER_LENGTH;
  327. float retract_recover_length_swap = RETRACT_RECOVER_LENGTH_SWAP;
  328. float retract_recover_feedrate = RETRACT_RECOVER_FEEDRATE;
  329. #endif
  330. #ifdef ULTIPANEL
  331. #ifdef PS_DEFAULT_OFF
  332. bool powersupply = false;
  333. #else
  334. bool powersupply = true;
  335. #endif
  336. #endif
  337. bool cancel_heatup = false ;
  338. #ifdef HOST_KEEPALIVE_FEATURE
  339. int busy_state = NOT_BUSY;
  340. static long prev_busy_signal_ms = -1;
  341. uint8_t host_keepalive_interval = HOST_KEEPALIVE_INTERVAL;
  342. #else
  343. #define host_keepalive();
  344. #define KEEPALIVE_STATE(n);
  345. #endif
  346. const char errormagic[] PROGMEM = "Error:";
  347. const char echomagic[] PROGMEM = "echo:";
  348. //===========================================================================
  349. //=============================Private Variables=============================
  350. //===========================================================================
  351. const char axis_codes[NUM_AXIS] = {'X', 'Y', 'Z', 'E'};
  352. float destination[NUM_AXIS] = { 0.0, 0.0, 0.0, 0.0};
  353. static float delta[3] = {0.0, 0.0, 0.0};
  354. // For tracing an arc
  355. static float offset[3] = {0.0, 0.0, 0.0};
  356. static float feedrate = 1500.0, next_feedrate, saved_feedrate;
  357. // Determines Absolute or Relative Coordinates.
  358. // Also there is bool axis_relative_modes[] per axis flag.
  359. static bool relative_mode = false;
  360. #ifndef _DISABLE_M42_M226
  361. const int sensitive_pins[] = SENSITIVE_PINS; // Sensitive pin list for M42
  362. #endif //_DISABLE_M42_M226
  363. //static float tt = 0;
  364. //static float bt = 0;
  365. //Inactivity shutdown variables
  366. static unsigned long previous_millis_cmd = 0;
  367. unsigned long max_inactive_time = 0;
  368. static unsigned long stepper_inactive_time = DEFAULT_STEPPER_DEACTIVE_TIME*1000l;
  369. unsigned long starttime=0;
  370. unsigned long stoptime=0;
  371. unsigned long _usb_timer = 0;
  372. static uint8_t tmp_extruder;
  373. bool extruder_under_pressure = true;
  374. bool Stopped=false;
  375. #if NUM_SERVOS > 0
  376. Servo servos[NUM_SERVOS];
  377. #endif
  378. bool CooldownNoWait = true;
  379. bool target_direction;
  380. //Insert variables if CHDK is defined
  381. #ifdef CHDK
  382. unsigned long chdkHigh = 0;
  383. boolean chdkActive = false;
  384. #endif
  385. //===========================================================================
  386. //=============================Routines======================================
  387. //===========================================================================
  388. void get_arc_coordinates();
  389. bool setTargetedHotend(int code);
  390. void serial_echopair_P(const char *s_P, float v)
  391. { serialprintPGM(s_P); SERIAL_ECHO(v); }
  392. void serial_echopair_P(const char *s_P, double v)
  393. { serialprintPGM(s_P); SERIAL_ECHO(v); }
  394. void serial_echopair_P(const char *s_P, unsigned long v)
  395. { serialprintPGM(s_P); SERIAL_ECHO(v); }
  396. #ifdef SDSUPPORT
  397. #include "SdFatUtil.h"
  398. int freeMemory() { return SdFatUtil::FreeRam(); }
  399. #else
  400. extern "C" {
  401. extern unsigned int __bss_end;
  402. extern unsigned int __heap_start;
  403. extern void *__brkval;
  404. int freeMemory() {
  405. int free_memory;
  406. if ((int)__brkval == 0)
  407. free_memory = ((int)&free_memory) - ((int)&__bss_end);
  408. else
  409. free_memory = ((int)&free_memory) - ((int)__brkval);
  410. return free_memory;
  411. }
  412. }
  413. #endif //!SDSUPPORT
  414. void setup_killpin()
  415. {
  416. #if defined(KILL_PIN) && KILL_PIN > -1
  417. SET_INPUT(KILL_PIN);
  418. WRITE(KILL_PIN,HIGH);
  419. #endif
  420. }
  421. // Set home pin
  422. void setup_homepin(void)
  423. {
  424. #if defined(HOME_PIN) && HOME_PIN > -1
  425. SET_INPUT(HOME_PIN);
  426. WRITE(HOME_PIN,HIGH);
  427. #endif
  428. }
  429. void setup_photpin()
  430. {
  431. #if defined(PHOTOGRAPH_PIN) && PHOTOGRAPH_PIN > -1
  432. SET_OUTPUT(PHOTOGRAPH_PIN);
  433. WRITE(PHOTOGRAPH_PIN, LOW);
  434. #endif
  435. }
  436. void setup_powerhold()
  437. {
  438. #if defined(SUICIDE_PIN) && SUICIDE_PIN > -1
  439. SET_OUTPUT(SUICIDE_PIN);
  440. WRITE(SUICIDE_PIN, HIGH);
  441. #endif
  442. #if defined(PS_ON_PIN) && PS_ON_PIN > -1
  443. SET_OUTPUT(PS_ON_PIN);
  444. #if defined(PS_DEFAULT_OFF)
  445. WRITE(PS_ON_PIN, PS_ON_ASLEEP);
  446. #else
  447. WRITE(PS_ON_PIN, PS_ON_AWAKE);
  448. #endif
  449. #endif
  450. }
  451. void suicide()
  452. {
  453. #if defined(SUICIDE_PIN) && SUICIDE_PIN > -1
  454. SET_OUTPUT(SUICIDE_PIN);
  455. WRITE(SUICIDE_PIN, LOW);
  456. #endif
  457. }
  458. void servo_init()
  459. {
  460. #if (NUM_SERVOS >= 1) && defined(SERVO0_PIN) && (SERVO0_PIN > -1)
  461. servos[0].attach(SERVO0_PIN);
  462. #endif
  463. #if (NUM_SERVOS >= 2) && defined(SERVO1_PIN) && (SERVO1_PIN > -1)
  464. servos[1].attach(SERVO1_PIN);
  465. #endif
  466. #if (NUM_SERVOS >= 3) && defined(SERVO2_PIN) && (SERVO2_PIN > -1)
  467. servos[2].attach(SERVO2_PIN);
  468. #endif
  469. #if (NUM_SERVOS >= 4) && defined(SERVO3_PIN) && (SERVO3_PIN > -1)
  470. servos[3].attach(SERVO3_PIN);
  471. #endif
  472. #if (NUM_SERVOS >= 5)
  473. #error "TODO: enter initalisation code for more servos"
  474. #endif
  475. }
  476. static void lcd_language_menu();
  477. void stop_and_save_print_to_ram(float z_move, float e_move);
  478. void restore_print_from_ram_and_continue(float e_move);
  479. bool fans_check_enabled = true;
  480. bool filament_autoload_enabled = true;
  481. extern int8_t CrashDetectMenu;
  482. void crashdet_enable()
  483. {
  484. // MYSERIAL.println("crashdet_enable");
  485. tmc2130_sg_stop_on_crash = true;
  486. eeprom_update_byte((uint8_t*)EEPROM_CRASH_DET, 0xFF);
  487. CrashDetectMenu = 1;
  488. }
  489. void crashdet_disable()
  490. {
  491. // MYSERIAL.println("crashdet_disable");
  492. tmc2130_sg_stop_on_crash = false;
  493. tmc2130_sg_crash = 0;
  494. eeprom_update_byte((uint8_t*)EEPROM_CRASH_DET, 0x00);
  495. CrashDetectMenu = 0;
  496. }
  497. void crashdet_stop_and_save_print()
  498. {
  499. stop_and_save_print_to_ram(10, 0); //XY - no change, Z 10mm up, E - no change
  500. }
  501. void crashdet_restore_print_and_continue()
  502. {
  503. restore_print_from_ram_and_continue(0); //XYZ = orig, E - no change
  504. // babystep_apply();
  505. }
  506. void crashdet_stop_and_save_print2()
  507. {
  508. cli();
  509. planner_abort_hard(); //abort printing
  510. cmdqueue_reset(); //empty cmdqueue
  511. card.sdprinting = false;
  512. card.closefile();
  513. // Reset and re-enable the stepper timer just before the global interrupts are enabled.
  514. st_reset_timer();
  515. sei();
  516. }
  517. void crashdet_detected(uint8_t mask)
  518. {
  519. // printf("CRASH_DETECTED");
  520. /* while (!is_buffer_empty())
  521. {
  522. process_commands();
  523. cmdqueue_pop_front();
  524. }*/
  525. st_synchronize();
  526. lcd_update_enable(true);
  527. lcd_implementation_clear();
  528. lcd_update(2);
  529. if (mask & X_AXIS_MASK)
  530. {
  531. eeprom_update_byte((uint8_t*)EEPROM_CRASH_COUNT_X, eeprom_read_byte((uint8_t*)EEPROM_CRASH_COUNT_X) + 1);
  532. eeprom_update_word((uint16_t*)EEPROM_CRASH_COUNT_X_TOT, eeprom_read_word((uint16_t*)EEPROM_CRASH_COUNT_X_TOT) + 1);
  533. }
  534. if (mask & Y_AXIS_MASK)
  535. {
  536. eeprom_update_byte((uint8_t*)EEPROM_CRASH_COUNT_Y, eeprom_read_byte((uint8_t*)EEPROM_CRASH_COUNT_Y) + 1);
  537. eeprom_update_word((uint16_t*)EEPROM_CRASH_COUNT_Y_TOT, eeprom_read_word((uint16_t*)EEPROM_CRASH_COUNT_Y_TOT) + 1);
  538. }
  539. #ifdef AUTOMATIC_RECOVERY_AFTER_CRASH
  540. bool yesno = true;
  541. #else
  542. bool yesno = lcd_show_fullscreen_message_yes_no_and_wait_P(MSG_CRASH_DETECTED, false);
  543. #endif
  544. lcd_update_enable(true);
  545. lcd_update(2);
  546. lcd_setstatuspgm(MSG_CRASH_DETECTED);
  547. if (yesno)
  548. {
  549. enquecommand_P(PSTR("G28 X Y"));
  550. enquecommand_P(PSTR("CRASH_RECOVER"));
  551. }
  552. else
  553. {
  554. enquecommand_P(PSTR("CRASH_CANCEL"));
  555. }
  556. }
  557. void crashdet_recover()
  558. {
  559. crashdet_restore_print_and_continue();
  560. tmc2130_sg_stop_on_crash = true;
  561. }
  562. void crashdet_cancel()
  563. {
  564. card.sdprinting = false;
  565. card.closefile();
  566. tmc2130_sg_stop_on_crash = true;
  567. }
  568. void failstats_reset_print()
  569. {
  570. eeprom_update_byte((uint8_t *)EEPROM_CRASH_COUNT_X, 0);
  571. eeprom_update_byte((uint8_t *)EEPROM_CRASH_COUNT_Y, 0);
  572. eeprom_update_byte((uint8_t *)EEPROM_FERROR_COUNT, 0);
  573. eeprom_update_byte((uint8_t *)EEPROM_POWER_COUNT, 0);
  574. }
  575. #ifdef MESH_BED_LEVELING
  576. enum MeshLevelingState { MeshReport, MeshStart, MeshNext, MeshSet };
  577. #endif
  578. // Factory reset function
  579. // This function is used to erase parts or whole EEPROM memory which is used for storing calibration and and so on.
  580. // Level input parameter sets depth of reset
  581. // Quiet parameter masks all waitings for user interact.
  582. int er_progress = 0;
  583. void factory_reset(char level, bool quiet)
  584. {
  585. lcd_implementation_clear();
  586. int cursor_pos = 0;
  587. switch (level) {
  588. // Level 0: Language reset
  589. case 0:
  590. WRITE(BEEPER, HIGH);
  591. _delay_ms(100);
  592. WRITE(BEEPER, LOW);
  593. lcd_force_language_selection();
  594. break;
  595. //Level 1: Reset statistics
  596. case 1:
  597. WRITE(BEEPER, HIGH);
  598. _delay_ms(100);
  599. WRITE(BEEPER, LOW);
  600. eeprom_update_dword((uint32_t *)EEPROM_TOTALTIME, 0);
  601. eeprom_update_dword((uint32_t *)EEPROM_FILAMENTUSED, 0);
  602. eeprom_update_byte((uint8_t *)EEPROM_CRASH_COUNT_X, 0);
  603. eeprom_update_byte((uint8_t *)EEPROM_CRASH_COUNT_Y, 0);
  604. eeprom_update_byte((uint8_t *)EEPROM_FERROR_COUNT, 0);
  605. eeprom_update_byte((uint8_t *)EEPROM_POWER_COUNT, 0);
  606. eeprom_update_word((uint16_t *)EEPROM_CRASH_COUNT_X_TOT, 0);
  607. eeprom_update_word((uint16_t *)EEPROM_CRASH_COUNT_Y_TOT, 0);
  608. eeprom_update_word((uint16_t *)EEPROM_FERROR_COUNT_TOT, 0);
  609. eeprom_update_word((uint16_t *)EEPROM_POWER_COUNT_TOT, 0);
  610. lcd_menu_statistics();
  611. break;
  612. // Level 2: Prepare for shipping
  613. case 2:
  614. //lcd_printPGM(PSTR("Factory RESET"));
  615. //lcd_print_at_PGM(1,2,PSTR("Shipping prep"));
  616. // Force language selection at the next boot up.
  617. lcd_force_language_selection();
  618. // Force the "Follow calibration flow" message at the next boot up.
  619. calibration_status_store(CALIBRATION_STATUS_Z_CALIBRATION);
  620. eeprom_write_byte((uint8_t*)EEPROM_WIZARD_ACTIVE, 1); //run wizard
  621. farm_no = 0;
  622. farm_mode == false;
  623. eeprom_update_byte((uint8_t*)EEPROM_FARM_MODE, farm_mode);
  624. EEPROM_save_B(EEPROM_FARM_NUMBER, &farm_no);
  625. WRITE(BEEPER, HIGH);
  626. _delay_ms(100);
  627. WRITE(BEEPER, LOW);
  628. //_delay_ms(2000);
  629. break;
  630. // Level 3: erase everything, whole EEPROM will be set to 0xFF
  631. case 3:
  632. lcd_printPGM(PSTR("Factory RESET"));
  633. lcd_print_at_PGM(1, 2, PSTR("ERASING all data"));
  634. WRITE(BEEPER, HIGH);
  635. _delay_ms(100);
  636. WRITE(BEEPER, LOW);
  637. er_progress = 0;
  638. lcd_print_at_PGM(3, 3, PSTR(" "));
  639. lcd_implementation_print_at(3, 3, er_progress);
  640. // Erase EEPROM
  641. for (int i = 0; i < 4096; i++) {
  642. eeprom_write_byte((uint8_t*)i, 0xFF);
  643. if (i % 41 == 0) {
  644. er_progress++;
  645. lcd_print_at_PGM(3, 3, PSTR(" "));
  646. lcd_implementation_print_at(3, 3, er_progress);
  647. lcd_printPGM(PSTR("%"));
  648. }
  649. }
  650. break;
  651. case 4:
  652. bowden_menu();
  653. break;
  654. default:
  655. break;
  656. }
  657. }
  658. #include "LiquidCrystal.h"
  659. extern LiquidCrystal lcd;
  660. FILE _lcdout = {0};
  661. int lcd_putchar(char c, FILE *stream)
  662. {
  663. lcd.write(c);
  664. return 0;
  665. }
  666. FILE _uartout = {0};
  667. int uart_putchar(char c, FILE *stream)
  668. {
  669. MYSERIAL.write(c);
  670. return 0;
  671. }
  672. void lcd_splash()
  673. {
  674. // lcd_print_at_PGM(0, 1, PSTR(" Original Prusa "));
  675. // lcd_print_at_PGM(0, 2, PSTR(" 3D Printers "));
  676. // lcd.print_P(PSTR("\x1b[1;3HOriginal Prusa\x1b[2;4H3D Printers"));
  677. fputs_P(PSTR(ESC_2J ESC_H(1,1) "Original Prusa i3" ESC_H(3,2) "Prusa Research"), lcdout);
  678. }
  679. void factory_reset()
  680. {
  681. KEEPALIVE_STATE(PAUSED_FOR_USER);
  682. if (!READ(BTN_ENC))
  683. {
  684. _delay_ms(1000);
  685. if (!READ(BTN_ENC))
  686. {
  687. lcd_implementation_clear();
  688. lcd_printPGM(PSTR("Factory RESET"));
  689. SET_OUTPUT(BEEPER);
  690. WRITE(BEEPER, HIGH);
  691. while (!READ(BTN_ENC));
  692. WRITE(BEEPER, LOW);
  693. _delay_ms(2000);
  694. char level = reset_menu();
  695. factory_reset(level, false);
  696. switch (level) {
  697. case 0: _delay_ms(0); break;
  698. case 1: _delay_ms(0); break;
  699. case 2: _delay_ms(0); break;
  700. case 3: _delay_ms(0); break;
  701. }
  702. // _delay_ms(100);
  703. /*
  704. #ifdef MESH_BED_LEVELING
  705. _delay_ms(2000);
  706. if (!READ(BTN_ENC))
  707. {
  708. WRITE(BEEPER, HIGH);
  709. _delay_ms(100);
  710. WRITE(BEEPER, LOW);
  711. _delay_ms(200);
  712. WRITE(BEEPER, HIGH);
  713. _delay_ms(100);
  714. WRITE(BEEPER, LOW);
  715. int _z = 0;
  716. calibration_status_store(CALIBRATION_STATUS_CALIBRATED);
  717. EEPROM_save_B(EEPROM_BABYSTEP_X, &_z);
  718. EEPROM_save_B(EEPROM_BABYSTEP_Y, &_z);
  719. EEPROM_save_B(EEPROM_BABYSTEP_Z, &_z);
  720. }
  721. else
  722. {
  723. WRITE(BEEPER, HIGH);
  724. _delay_ms(100);
  725. WRITE(BEEPER, LOW);
  726. }
  727. #endif // mesh */
  728. }
  729. }
  730. else
  731. {
  732. //_delay_ms(1000); // wait 1sec to display the splash screen // what's this and why do we need it?? - andre
  733. }
  734. KEEPALIVE_STATE(IN_HANDLER);
  735. }
  736. void show_fw_version_warnings() {
  737. if (FW_DEV_VERSION == FW_VERSION_GOLD || FW_DEV_VERSION == FW_VERSION_RC) return;
  738. switch (FW_DEV_VERSION) {
  739. case(FW_VERSION_ALPHA): lcd_show_fullscreen_message_and_wait_P(MSG_FW_VERSION_ALPHA); break;
  740. case(FW_VERSION_BETA): lcd_show_fullscreen_message_and_wait_P(MSG_FW_VERSION_BETA); break;
  741. case(FW_VERSION_DEVEL):
  742. case(FW_VERSION_DEBUG):
  743. lcd_update_enable(false);
  744. lcd_implementation_clear();
  745. #if FW_DEV_VERSION == FW_VERSION_DEVEL
  746. lcd_print_at_PGM(0, 0, PSTR("Development build !!"));
  747. #else
  748. lcd_print_at_PGM(0, 0, PSTR("Debbugging build !!!"));
  749. #endif
  750. lcd_print_at_PGM(0, 1, PSTR("May destroy printer!"));
  751. lcd_print_at_PGM(0, 2, PSTR("ver ")); lcd_printPGM(PSTR(FW_VERSION_FULL));
  752. lcd_print_at_PGM(0, 3, PSTR(FW_REPOSITORY));
  753. lcd_wait_for_click();
  754. break;
  755. default: lcd_show_fullscreen_message_and_wait_P(MSG_FW_VERSION_UNKNOWN); break;
  756. }
  757. lcd_update_enable(true);
  758. }
  759. void erase_eeprom_section(uint16_t offset, uint16_t bytes)
  760. {
  761. for (int i = offset; i < (offset+bytes); i++) eeprom_write_byte((uint8_t*)i, 0xFF);
  762. }
  763. // "Setup" function is called by the Arduino framework on startup.
  764. // Before startup, the Timers-functions (PWM)/Analog RW and HardwareSerial provided by the Arduino-code
  765. // are initialized by the main() routine provided by the Arduino framework.
  766. void setup()
  767. {
  768. lcd_init();
  769. fdev_setup_stream(lcdout, lcd_putchar, NULL, _FDEV_SETUP_WRITE); //setup lcdout stream
  770. lcd_splash();
  771. setup_killpin();
  772. setup_powerhold();
  773. farm_mode = eeprom_read_byte((uint8_t*)EEPROM_FARM_MODE);
  774. EEPROM_read_B(EEPROM_FARM_NUMBER, &farm_no);
  775. if ((farm_mode == 0xFF && farm_no == 0) || (farm_no == 0xFFFF)) farm_mode = false; //if farm_mode has not been stored to eeprom yet and farm number is set to zero or EEPROM is fresh, deactivate farm mode
  776. if (farm_no == 0xFFFF) farm_no = 0;
  777. selectedSerialPort = eeprom_read_byte((uint8_t*)EEPROM_SECOND_SERIAL_ACTIVE);
  778. if (selectedSerialPort == 0xFF) selectedSerialPort = 0;
  779. if (farm_mode)
  780. {
  781. prusa_statistics(8);
  782. selectedSerialPort = 1;
  783. }
  784. MYSERIAL.begin(BAUDRATE);
  785. fdev_setup_stream(uartout, uart_putchar, NULL, _FDEV_SETUP_WRITE); //setup uart out stream
  786. stdout = uartout;
  787. SERIAL_PROTOCOLLNPGM("start");
  788. SERIAL_ECHO_START;
  789. printf_P(PSTR(" "FW_VERSION_FULL"\n"));
  790. #if 0
  791. SERIAL_ECHOLN("Reading eeprom from 0 to 100: start");
  792. for (int i = 0; i < 4096; ++i) {
  793. int b = eeprom_read_byte((unsigned char*)i);
  794. if (b != 255) {
  795. SERIAL_ECHO(i);
  796. SERIAL_ECHO(":");
  797. SERIAL_ECHO(b);
  798. SERIAL_ECHOLN("");
  799. }
  800. }
  801. SERIAL_ECHOLN("Reading eeprom from 0 to 100: done");
  802. #endif
  803. // Check startup - does nothing if bootloader sets MCUSR to 0
  804. byte mcu = MCUSR;
  805. /* if (mcu & 1) SERIAL_ECHOLNRPGM(MSG_POWERUP);
  806. if (mcu & 2) SERIAL_ECHOLNRPGM(MSG_EXTERNAL_RESET);
  807. if (mcu & 4) SERIAL_ECHOLNRPGM(MSG_BROWNOUT_RESET);
  808. if (mcu & 8) SERIAL_ECHOLNRPGM(MSG_WATCHDOG_RESET);
  809. if (mcu & 32) SERIAL_ECHOLNRPGM(MSG_SOFTWARE_RESET);*/
  810. if (mcu & 1) puts_P(MSG_POWERUP);
  811. if (mcu & 2) puts_P(MSG_EXTERNAL_RESET);
  812. if (mcu & 4) puts_P(MSG_BROWNOUT_RESET);
  813. if (mcu & 8) puts_P(MSG_WATCHDOG_RESET);
  814. if (mcu & 32) puts_P(MSG_SOFTWARE_RESET);
  815. MCUSR = 0;
  816. //SERIAL_ECHORPGM(MSG_MARLIN);
  817. //SERIAL_ECHOLNRPGM(VERSION_STRING);
  818. #ifdef STRING_VERSION_CONFIG_H
  819. #ifdef STRING_CONFIG_H_AUTHOR
  820. SERIAL_ECHO_START;
  821. SERIAL_ECHORPGM(MSG_CONFIGURATION_VER);
  822. SERIAL_ECHOPGM(STRING_VERSION_CONFIG_H);
  823. SERIAL_ECHORPGM(MSG_AUTHOR);
  824. SERIAL_ECHOLNPGM(STRING_CONFIG_H_AUTHOR);
  825. SERIAL_ECHOPGM("Compiled: ");
  826. SERIAL_ECHOLNPGM(__DATE__);
  827. #endif
  828. #endif
  829. SERIAL_ECHO_START;
  830. SERIAL_ECHORPGM(MSG_FREE_MEMORY);
  831. SERIAL_ECHO(freeMemory());
  832. SERIAL_ECHORPGM(MSG_PLANNER_BUFFER_BYTES);
  833. SERIAL_ECHOLN((int)sizeof(block_t)*BLOCK_BUFFER_SIZE);
  834. //lcd_update_enable(false); // why do we need this?? - andre
  835. // loads data from EEPROM if available else uses defaults (and resets step acceleration rate)
  836. bool previous_settings_retrieved = Config_RetrieveSettings(EEPROM_OFFSET);
  837. SdFatUtil::set_stack_guard(); //writes magic number at the end of static variables to protect against overwriting static memory by stack
  838. tp_init(); // Initialize temperature loop
  839. lcd_splash(); // we need to do this again, because tp_init() kills lcd
  840. plan_init(); // Initialize planner;
  841. watchdog_init();
  842. factory_reset();
  843. #ifdef TMC2130
  844. uint8_t silentMode = eeprom_read_byte((uint8_t*)EEPROM_SILENT);
  845. if (silentMode == 0xff) silentMode = 0;
  846. tmc2130_mode = silentMode?TMC2130_MODE_SILENT:TMC2130_MODE_NORMAL;
  847. uint8_t crashdet = eeprom_read_byte((uint8_t*)EEPROM_CRASH_DET);
  848. if (crashdet)
  849. {
  850. crashdet_enable();
  851. MYSERIAL.println("CrashDetect ENABLED!");
  852. }
  853. else
  854. {
  855. crashdet_disable();
  856. MYSERIAL.println("CrashDetect DISABLED");
  857. }
  858. #ifdef TMC2130_LINEARITY_CORRECTION
  859. tmc2130_wave_fac[X_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_WAVE_X_FAC);
  860. tmc2130_wave_fac[Y_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_WAVE_Y_FAC);
  861. tmc2130_wave_fac[Z_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_WAVE_Z_FAC);
  862. tmc2130_wave_fac[E_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_WAVE_E_FAC);
  863. if (tmc2130_wave_fac[X_AXIS] == 0xff) tmc2130_wave_fac[X_AXIS] = 0;
  864. if (tmc2130_wave_fac[Y_AXIS] == 0xff) tmc2130_wave_fac[Y_AXIS] = 0;
  865. if (tmc2130_wave_fac[Z_AXIS] == 0xff) tmc2130_wave_fac[Z_AXIS] = 0;
  866. if (tmc2130_wave_fac[E_AXIS] == 0xff) tmc2130_wave_fac[E_AXIS] = 0;
  867. #endif //TMC2130_LINEARITY_CORRECTION
  868. #ifdef TMC2130_VARIABLE_RESOLUTION
  869. tmc2130_mres[X_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_X_MRES);
  870. tmc2130_mres[Y_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_Y_MRES);
  871. tmc2130_mres[Z_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_Z_MRES);
  872. tmc2130_mres[E_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_E_MRES);
  873. if (tmc2130_mres[X_AXIS] == 0xff) tmc2130_mres[X_AXIS] = tmc2130_usteps2mres(TMC2130_USTEPS_XY);
  874. if (tmc2130_mres[Y_AXIS] == 0xff) tmc2130_mres[Y_AXIS] = tmc2130_usteps2mres(TMC2130_USTEPS_XY);
  875. if (tmc2130_mres[Z_AXIS] == 0xff) tmc2130_mres[Z_AXIS] = tmc2130_usteps2mres(TMC2130_USTEPS_Z);
  876. if (tmc2130_mres[E_AXIS] == 0xff) tmc2130_mres[E_AXIS] = tmc2130_usteps2mres(TMC2130_USTEPS_E);
  877. eeprom_update_byte((uint8_t*)EEPROM_TMC2130_X_MRES, tmc2130_mres[X_AXIS]);
  878. eeprom_update_byte((uint8_t*)EEPROM_TMC2130_Y_MRES, tmc2130_mres[Y_AXIS]);
  879. eeprom_update_byte((uint8_t*)EEPROM_TMC2130_Z_MRES, tmc2130_mres[Z_AXIS]);
  880. eeprom_update_byte((uint8_t*)EEPROM_TMC2130_E_MRES, tmc2130_mres[E_AXIS]);
  881. #else //TMC2130_VARIABLE_RESOLUTION
  882. tmc2130_mres[X_AXIS] = tmc2130_usteps2mres(TMC2130_USTEPS_XY);
  883. tmc2130_mres[Y_AXIS] = tmc2130_usteps2mres(TMC2130_USTEPS_XY);
  884. tmc2130_mres[Z_AXIS] = tmc2130_usteps2mres(TMC2130_USTEPS_Z);
  885. tmc2130_mres[E_AXIS] = tmc2130_usteps2mres(TMC2130_USTEPS_E);
  886. #endif //TMC2130_VARIABLE_RESOLUTION
  887. #endif //TMC2130
  888. st_init(); // Initialize stepper, this enables interrupts!
  889. setup_photpin();
  890. servo_init();
  891. // Reset the machine correction matrix.
  892. // It does not make sense to load the correction matrix until the machine is homed.
  893. world2machine_reset();
  894. #ifdef PAT9125
  895. fsensor_init();
  896. #endif //PAT9125
  897. #if defined(CONTROLLERFAN_PIN) && (CONTROLLERFAN_PIN > -1)
  898. SET_OUTPUT(CONTROLLERFAN_PIN); //Set pin used for driver cooling fan
  899. #endif
  900. #ifdef DIGIPOT_I2C
  901. digipot_i2c_init();
  902. #endif
  903. setup_homepin();
  904. if (1) {
  905. /// SERIAL_ECHOPGM("initial zsteps on power up: "); MYSERIAL.println(tmc2130_rd_MSCNT(Z_AXIS));
  906. // try to run to zero phase before powering the Z motor.
  907. // Move in negative direction
  908. WRITE(Z_DIR_PIN,INVERT_Z_DIR);
  909. // Round the current micro-micro steps to micro steps.
  910. for (uint16_t phase = (tmc2130_rd_MSCNT(Z_AXIS) + 8) >> 4; phase > 0; -- phase) {
  911. // Until the phase counter is reset to zero.
  912. WRITE(Z_STEP_PIN, !INVERT_Z_STEP_PIN);
  913. delay(2);
  914. WRITE(Z_STEP_PIN, INVERT_Z_STEP_PIN);
  915. delay(2);
  916. }
  917. // SERIAL_ECHOPGM("initial zsteps after reset: "); MYSERIAL.println(tmc2130_rd_MSCNT(Z_AXIS));
  918. }
  919. #if defined(Z_AXIS_ALWAYS_ON)
  920. enable_z();
  921. #endif
  922. farm_mode = eeprom_read_byte((uint8_t*)EEPROM_FARM_MODE);
  923. EEPROM_read_B(EEPROM_FARM_NUMBER, &farm_no);
  924. if ((farm_mode == 0xFF && farm_no == 0) || (farm_no == 0xFFFF)) farm_mode = false; //if farm_mode has not been stored to eeprom yet and farm number is set to zero or EEPROM is fresh, deactivate farm mode
  925. if (farm_no == 0xFFFF) farm_no = 0;
  926. if (farm_mode)
  927. {
  928. prusa_statistics(8);
  929. }
  930. // Enable Toshiba FlashAir SD card / WiFi enahanced card.
  931. card.ToshibaFlashAir_enable(eeprom_read_byte((unsigned char*)EEPROM_TOSHIBA_FLASH_AIR_COMPATIBLITY) == 1);
  932. if (eeprom_read_dword((uint32_t*)(EEPROM_TOP - 4)) == 0x0ffffffff &&
  933. eeprom_read_dword((uint32_t*)(EEPROM_TOP - 8)) == 0x0ffffffff) {
  934. // Maiden startup. The firmware has been loaded and first started on a virgin RAMBo board,
  935. // where all the EEPROM entries are set to 0x0ff.
  936. // Once a firmware boots up, it forces at least a language selection, which changes
  937. // EEPROM_LANG to number lower than 0x0ff.
  938. // 1) Set a high power mode.
  939. eeprom_write_byte((uint8_t*)EEPROM_SILENT, 0);
  940. tmc2130_mode = TMC2130_MODE_NORMAL;
  941. eeprom_write_byte((uint8_t*)EEPROM_WIZARD_ACTIVE, 1); //run wizard
  942. }
  943. // Force SD card update. Otherwise the SD card update is done from loop() on card.checkautostart(false),
  944. // but this times out if a blocking dialog is shown in setup().
  945. card.initsd();
  946. #ifdef DEBUG_SD_SPEED_TEST
  947. if (card.cardOK)
  948. {
  949. uint8_t* buff = (uint8_t*)block_buffer;
  950. uint32_t block = 0;
  951. uint32_t sumr = 0;
  952. uint32_t sumw = 0;
  953. for (int i = 0; i < 1024; i++)
  954. {
  955. uint32_t u = micros();
  956. bool res = card.card.readBlock(i, buff);
  957. u = micros() - u;
  958. if (res)
  959. {
  960. printf_P(PSTR("readBlock %4d 512 bytes %lu us\n"), i, u);
  961. sumr += u;
  962. u = micros();
  963. res = card.card.writeBlock(i, buff);
  964. u = micros() - u;
  965. if (res)
  966. {
  967. printf_P(PSTR("writeBlock %4d 512 bytes %lu us\n"), i, u);
  968. sumw += u;
  969. }
  970. else
  971. {
  972. printf_P(PSTR("writeBlock %4d error\n"), i);
  973. break;
  974. }
  975. }
  976. else
  977. {
  978. printf_P(PSTR("readBlock %4d error\n"), i);
  979. break;
  980. }
  981. }
  982. uint32_t avg_rspeed = (1024 * 1000000) / (sumr / 512);
  983. uint32_t avg_wspeed = (1024 * 1000000) / (sumw / 512);
  984. printf_P(PSTR("avg read speed %lu bytes/s\n"), avg_rspeed);
  985. printf_P(PSTR("avg write speed %lu bytes/s\n"), avg_wspeed);
  986. }
  987. else
  988. printf_P(PSTR("Card NG!\n"));
  989. #endif DEBUG_SD_SPEED_TEST
  990. if (eeprom_read_byte((uint8_t*)EEPROM_POWER_COUNT) == 0xff) eeprom_write_byte((uint8_t*)EEPROM_POWER_COUNT, 0);
  991. if (eeprom_read_byte((uint8_t*)EEPROM_CRASH_COUNT_X) == 0xff) eeprom_write_byte((uint8_t*)EEPROM_CRASH_COUNT_X, 0);
  992. if (eeprom_read_byte((uint8_t*)EEPROM_CRASH_COUNT_Y) == 0xff) eeprom_write_byte((uint8_t*)EEPROM_CRASH_COUNT_Y, 0);
  993. if (eeprom_read_byte((uint8_t*)EEPROM_FERROR_COUNT) == 0xff) eeprom_write_byte((uint8_t*)EEPROM_FERROR_COUNT, 0);
  994. if (eeprom_read_word((uint16_t*)EEPROM_POWER_COUNT_TOT) == 0xffff) eeprom_write_word((uint16_t*)EEPROM_POWER_COUNT_TOT, 0);
  995. if (eeprom_read_word((uint16_t*)EEPROM_CRASH_COUNT_X_TOT) == 0xffff) eeprom_write_word((uint16_t*)EEPROM_CRASH_COUNT_X_TOT, 0);
  996. if (eeprom_read_word((uint16_t*)EEPROM_CRASH_COUNT_Y_TOT) == 0xffff) eeprom_write_word((uint16_t*)EEPROM_CRASH_COUNT_Y_TOT, 0);
  997. if (eeprom_read_word((uint16_t*)EEPROM_FERROR_COUNT_TOT) == 0xffff) eeprom_write_word((uint16_t*)EEPROM_FERROR_COUNT_TOT, 0);
  998. #ifdef SNMM
  999. if (eeprom_read_dword((uint32_t*)EEPROM_BOWDEN_LENGTH) == 0x0ffffffff) { //bowden length used for SNMM
  1000. int _z = BOWDEN_LENGTH;
  1001. for(int i = 0; i<4; i++) EEPROM_save_B(EEPROM_BOWDEN_LENGTH + i * 2, &_z);
  1002. }
  1003. #endif
  1004. // In the future, somewhere here would one compare the current firmware version against the firmware version stored in the EEPROM.
  1005. // If they differ, an update procedure may need to be performed. At the end of this block, the current firmware version
  1006. // is being written into the EEPROM, so the update procedure will be triggered only once.
  1007. lang_selected = eeprom_read_byte((uint8_t*)EEPROM_LANG);
  1008. if (lang_selected >= LANG_NUM){
  1009. lcd_mylang();
  1010. }
  1011. if (eeprom_read_byte((uint8_t*)EEPROM_TEMP_CAL_ACTIVE) == 255) {
  1012. eeprom_write_byte((uint8_t*)EEPROM_TEMP_CAL_ACTIVE, 0);
  1013. temp_cal_active = false;
  1014. } else temp_cal_active = eeprom_read_byte((uint8_t*)EEPROM_TEMP_CAL_ACTIVE);
  1015. if (eeprom_read_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA) == 255) {
  1016. //eeprom_write_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 0);
  1017. eeprom_write_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 1);
  1018. eeprom_write_word(((uint16_t*)EEPROM_PROBE_TEMP_SHIFT) + 0, 8); //40C - 20um - 8usteps
  1019. eeprom_write_word(((uint16_t*)EEPROM_PROBE_TEMP_SHIFT) + 1, 24); //45C - 60um - 24usteps
  1020. eeprom_write_word(((uint16_t*)EEPROM_PROBE_TEMP_SHIFT) + 2, 48); //50C - 120um - 48usteps
  1021. eeprom_write_word(((uint16_t*)EEPROM_PROBE_TEMP_SHIFT) + 3, 80); //55C - 200um - 80usteps
  1022. eeprom_write_word(((uint16_t*)EEPROM_PROBE_TEMP_SHIFT) + 4, 120); //60C - 300um - 120usteps
  1023. eeprom_write_byte((uint8_t*)EEPROM_TEMP_CAL_ACTIVE, 1);
  1024. temp_cal_active = true;
  1025. }
  1026. if (eeprom_read_byte((uint8_t*)EEPROM_UVLO) == 255) {
  1027. eeprom_write_byte((uint8_t*)EEPROM_UVLO, 0);
  1028. }
  1029. if (eeprom_read_byte((uint8_t*)EEPROM_SD_SORT) == 255) {
  1030. eeprom_write_byte((uint8_t*)EEPROM_SD_SORT, 0);
  1031. }
  1032. check_babystep(); //checking if Z babystep is in allowed range
  1033. setup_uvlo_interrupt();
  1034. #ifndef DEBUG_DISABLE_FANCHECK
  1035. setup_fan_interrupt();
  1036. #endif //DEBUG_DISABLE_FANCHECK
  1037. #ifndef DEBUG_DISABLE_FSENSORCHECK
  1038. fsensor_setup_interrupt();
  1039. #endif //DEBUG_DISABLE_FSENSORCHECK
  1040. for (int i = 0; i<4; i++) EEPROM_read_B(EEPROM_BOWDEN_LENGTH + i * 2, &bowden_length[i]);
  1041. #ifndef DEBUG_DISABLE_STARTMSGS
  1042. KEEPALIVE_STATE(PAUSED_FOR_USER);
  1043. show_fw_version_warnings();
  1044. if (!previous_settings_retrieved) {
  1045. lcd_show_fullscreen_message_and_wait_P(MSG_DEFAULT_SETTINGS_LOADED); //if EEPROM version was changed, inform user that default setting were loaded
  1046. erase_eeprom_section(EEPROM_OFFSET, 156); //erase M500 part of eeprom
  1047. }
  1048. if (eeprom_read_byte((uint8_t*)EEPROM_WIZARD_ACTIVE) == 1) {
  1049. lcd_wizard(0);
  1050. }
  1051. if (eeprom_read_byte((uint8_t*)EEPROM_WIZARD_ACTIVE) == 0) { //dont show calibration status messages if wizard is currently active
  1052. if (calibration_status() == CALIBRATION_STATUS_ASSEMBLED ||
  1053. calibration_status() == CALIBRATION_STATUS_UNKNOWN) {
  1054. // Reset the babystepping values, so the printer will not move the Z axis up when the babystepping is enabled.
  1055. eeprom_update_word((uint16_t*)EEPROM_BABYSTEP_Z, 0);
  1056. // Show the message.
  1057. lcd_show_fullscreen_message_and_wait_P(MSG_FOLLOW_CALIBRATION_FLOW);
  1058. }
  1059. else if (calibration_status() == CALIBRATION_STATUS_LIVE_ADJUST) {
  1060. // Show the message.
  1061. lcd_show_fullscreen_message_and_wait_P(MSG_BABYSTEP_Z_NOT_SET);
  1062. lcd_update_enable(true);
  1063. }
  1064. else if (calibration_status() == CALIBRATION_STATUS_CALIBRATED && temp_cal_active == true && calibration_status_pinda() == false) {
  1065. //lcd_show_fullscreen_message_and_wait_P(MSG_PINDA_NOT_CALIBRATED);
  1066. lcd_update_enable(true);
  1067. }
  1068. else if (calibration_status() == CALIBRATION_STATUS_Z_CALIBRATION) {
  1069. // Show the message.
  1070. lcd_show_fullscreen_message_and_wait_P(MSG_FOLLOW_CALIBRATION_FLOW);
  1071. }
  1072. }
  1073. if (force_selftest_if_fw_version() && calibration_status() < CALIBRATION_STATUS_ASSEMBLED ) {
  1074. lcd_show_fullscreen_message_and_wait_P(MSG_FORCE_SELFTEST);
  1075. update_current_firmware_version_to_eeprom();
  1076. lcd_selftest();
  1077. }
  1078. KEEPALIVE_STATE(IN_PROCESS);
  1079. #endif //DEBUG_DISABLE_STARTMSGS
  1080. lcd_update_enable(true);
  1081. lcd_implementation_clear();
  1082. lcd_update(2);
  1083. // Store the currently running firmware into an eeprom,
  1084. // so the next time the firmware gets updated, it will know from which version it has been updated.
  1085. update_current_firmware_version_to_eeprom();
  1086. tmc2130_home_origin[X_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_HOME_X_ORIGIN);
  1087. tmc2130_home_bsteps[X_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_HOME_X_BSTEPS);
  1088. tmc2130_home_fsteps[X_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_HOME_X_FSTEPS);
  1089. if (tmc2130_home_origin[X_AXIS] == 0xff) tmc2130_home_origin[X_AXIS] = 0;
  1090. if (tmc2130_home_bsteps[X_AXIS] == 0xff) tmc2130_home_bsteps[X_AXIS] = 48;
  1091. if (tmc2130_home_fsteps[X_AXIS] == 0xff) tmc2130_home_fsteps[X_AXIS] = 48;
  1092. tmc2130_home_origin[Y_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_HOME_Y_ORIGIN);
  1093. tmc2130_home_bsteps[Y_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_HOME_Y_BSTEPS);
  1094. tmc2130_home_fsteps[Y_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_HOME_Y_FSTEPS);
  1095. if (tmc2130_home_origin[Y_AXIS] == 0xff) tmc2130_home_origin[Y_AXIS] = 0;
  1096. if (tmc2130_home_bsteps[Y_AXIS] == 0xff) tmc2130_home_bsteps[Y_AXIS] = 48;
  1097. if (tmc2130_home_fsteps[Y_AXIS] == 0xff) tmc2130_home_fsteps[Y_AXIS] = 48;
  1098. tmc2130_home_enabled = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_HOME_ENABLED);
  1099. if (tmc2130_home_enabled == 0xff) tmc2130_home_enabled = 0;
  1100. if (eeprom_read_byte((uint8_t*)EEPROM_UVLO) == 1) { //previous print was terminated by UVLO
  1101. /*
  1102. if (lcd_show_fullscreen_message_yes_no_and_wait_P(MSG_RECOVER_PRINT, false)) recover_print();
  1103. else {
  1104. eeprom_update_byte((uint8_t*)EEPROM_UVLO, 0);
  1105. lcd_update_enable(true);
  1106. lcd_update(2);
  1107. lcd_setstatuspgm(WELCOME_MSG);
  1108. }
  1109. */
  1110. manage_heater(); // Update temperatures
  1111. #ifdef DEBUG_UVLO_AUTOMATIC_RECOVER
  1112. MYSERIAL.println("Power panic detected!");
  1113. MYSERIAL.print("Current bed temp:");
  1114. MYSERIAL.println(degBed());
  1115. MYSERIAL.print("Saved bed temp:");
  1116. MYSERIAL.println((float)eeprom_read_byte((uint8_t*)EEPROM_UVLO_TARGET_BED));
  1117. #endif
  1118. if ( degBed() > ( (float)eeprom_read_byte((uint8_t*)EEPROM_UVLO_TARGET_BED) - AUTOMATIC_UVLO_BED_TEMP_OFFSET) ){
  1119. #ifdef DEBUG_UVLO_AUTOMATIC_RECOVER
  1120. MYSERIAL.println("Automatic recovery!");
  1121. #endif
  1122. recover_print(1);
  1123. }
  1124. else{
  1125. #ifdef DEBUG_UVLO_AUTOMATIC_RECOVER
  1126. MYSERIAL.println("Normal recovery!");
  1127. #endif
  1128. if ( lcd_show_fullscreen_message_yes_no_and_wait_P(MSG_RECOVER_PRINT, false) ) recover_print(0);
  1129. else {
  1130. eeprom_update_byte((uint8_t*)EEPROM_UVLO, 0);
  1131. lcd_update_enable(true);
  1132. lcd_update(2);
  1133. lcd_setstatuspgm(WELCOME_MSG);
  1134. }
  1135. }
  1136. }
  1137. KEEPALIVE_STATE(NOT_BUSY);
  1138. wdt_enable(WDTO_4S);
  1139. }
  1140. #ifdef PAT9125
  1141. void fsensor_init() {
  1142. int pat9125 = pat9125_init();
  1143. printf_P(PSTR("PAT9125_init:%d\n"), pat9125);
  1144. uint8_t fsensor = eeprom_read_byte((uint8_t*)EEPROM_FSENSOR);
  1145. if (!pat9125)
  1146. {
  1147. fsensor = 0; //disable sensor
  1148. fsensor_not_responding = true;
  1149. }
  1150. else {
  1151. fsensor_not_responding = false;
  1152. }
  1153. puts_P(PSTR("FSensor "));
  1154. if (fsensor)
  1155. {
  1156. puts_P(PSTR("ENABLED\n"));
  1157. fsensor_enable();
  1158. }
  1159. else
  1160. {
  1161. puts_P(PSTR("DISABLED\n"));
  1162. fsensor_disable();
  1163. }
  1164. #ifdef DEBUG_DISABLE_FSENSORCHECK
  1165. filament_autoload_enabled = false;
  1166. fsensor_disable();
  1167. #endif //DEBUG_DISABLE_FSENSORCHECK
  1168. }
  1169. #endif //PAT9125
  1170. void trace();
  1171. #define CHUNK_SIZE 64 // bytes
  1172. #define SAFETY_MARGIN 1
  1173. char chunk[CHUNK_SIZE+SAFETY_MARGIN];
  1174. int chunkHead = 0;
  1175. int serial_read_stream() {
  1176. setTargetHotend(0, 0);
  1177. setTargetBed(0);
  1178. lcd_implementation_clear();
  1179. lcd_printPGM(PSTR(" Upload in progress"));
  1180. // first wait for how many bytes we will receive
  1181. uint32_t bytesToReceive;
  1182. // receive the four bytes
  1183. char bytesToReceiveBuffer[4];
  1184. for (int i=0; i<4; i++) {
  1185. int data;
  1186. while ((data = MYSERIAL.read()) == -1) {};
  1187. bytesToReceiveBuffer[i] = data;
  1188. }
  1189. // make it a uint32
  1190. memcpy(&bytesToReceive, &bytesToReceiveBuffer, 4);
  1191. // we're ready, notify the sender
  1192. MYSERIAL.write('+');
  1193. // lock in the routine
  1194. uint32_t receivedBytes = 0;
  1195. while (prusa_sd_card_upload) {
  1196. int i;
  1197. for (i=0; i<CHUNK_SIZE; i++) {
  1198. int data;
  1199. // check if we're not done
  1200. if (receivedBytes == bytesToReceive) {
  1201. break;
  1202. }
  1203. // read the next byte
  1204. while ((data = MYSERIAL.read()) == -1) {};
  1205. receivedBytes++;
  1206. // save it to the chunk
  1207. chunk[i] = data;
  1208. }
  1209. // write the chunk to SD
  1210. card.write_command_no_newline(&chunk[0]);
  1211. // notify the sender we're ready for more data
  1212. MYSERIAL.write('+');
  1213. // for safety
  1214. manage_heater();
  1215. // check if we're done
  1216. if(receivedBytes == bytesToReceive) {
  1217. trace(); // beep
  1218. card.closefile();
  1219. prusa_sd_card_upload = false;
  1220. SERIAL_PROTOCOLLNRPGM(MSG_FILE_SAVED);
  1221. return 0;
  1222. }
  1223. }
  1224. }
  1225. #ifdef HOST_KEEPALIVE_FEATURE
  1226. /**
  1227. * Output a "busy" message at regular intervals
  1228. * while the machine is not accepting commands.
  1229. */
  1230. void host_keepalive() {
  1231. if (farm_mode) return;
  1232. long ms = millis();
  1233. if (host_keepalive_interval && busy_state != NOT_BUSY) {
  1234. if ((ms - prev_busy_signal_ms) < (long)(1000L * host_keepalive_interval)) return;
  1235. switch (busy_state) {
  1236. case IN_HANDLER:
  1237. case IN_PROCESS:
  1238. SERIAL_ECHO_START;
  1239. SERIAL_ECHOLNPGM("busy: processing");
  1240. break;
  1241. case PAUSED_FOR_USER:
  1242. SERIAL_ECHO_START;
  1243. SERIAL_ECHOLNPGM("busy: paused for user");
  1244. break;
  1245. case PAUSED_FOR_INPUT:
  1246. SERIAL_ECHO_START;
  1247. SERIAL_ECHOLNPGM("busy: paused for input");
  1248. break;
  1249. default:
  1250. break;
  1251. }
  1252. }
  1253. prev_busy_signal_ms = ms;
  1254. }
  1255. #endif
  1256. // The loop() function is called in an endless loop by the Arduino framework from the default main() routine.
  1257. // Before loop(), the setup() function is called by the main() routine.
  1258. void loop()
  1259. {
  1260. KEEPALIVE_STATE(NOT_BUSY);
  1261. bool stack_integrity = true;
  1262. if ((usb_printing_counter > 0) && ((millis()-_usb_timer) > 1000))
  1263. {
  1264. is_usb_printing = true;
  1265. usb_printing_counter--;
  1266. _usb_timer = millis();
  1267. }
  1268. if (usb_printing_counter == 0)
  1269. {
  1270. is_usb_printing = false;
  1271. }
  1272. if (prusa_sd_card_upload)
  1273. {
  1274. //we read byte-by byte
  1275. serial_read_stream();
  1276. } else
  1277. {
  1278. get_command();
  1279. #ifdef SDSUPPORT
  1280. card.checkautostart(false);
  1281. #endif
  1282. if(buflen)
  1283. {
  1284. cmdbuffer_front_already_processed = false;
  1285. #ifdef SDSUPPORT
  1286. if(card.saving)
  1287. {
  1288. // Saving a G-code file onto an SD-card is in progress.
  1289. // Saving starts with M28, saving until M29 is seen.
  1290. if(strstr_P(CMDBUFFER_CURRENT_STRING, PSTR("M29")) == NULL) {
  1291. card.write_command(CMDBUFFER_CURRENT_STRING);
  1292. if(card.logging)
  1293. process_commands();
  1294. else
  1295. SERIAL_PROTOCOLLNRPGM(MSG_OK);
  1296. } else {
  1297. card.closefile();
  1298. SERIAL_PROTOCOLLNRPGM(MSG_FILE_SAVED);
  1299. }
  1300. } else {
  1301. process_commands();
  1302. }
  1303. #else
  1304. process_commands();
  1305. #endif //SDSUPPORT
  1306. if (! cmdbuffer_front_already_processed && buflen)
  1307. {
  1308. // ptr points to the start of the block currently being processed.
  1309. // The first character in the block is the block type.
  1310. char *ptr = cmdbuffer + bufindr;
  1311. if (*ptr == CMDBUFFER_CURRENT_TYPE_SDCARD) {
  1312. // To support power panic, move the lenght of the command on the SD card to a planner buffer.
  1313. union {
  1314. struct {
  1315. char lo;
  1316. char hi;
  1317. } lohi;
  1318. uint16_t value;
  1319. } sdlen;
  1320. sdlen.value = 0;
  1321. {
  1322. // This block locks the interrupts globally for 3.25 us,
  1323. // which corresponds to a maximum repeat frequency of 307.69 kHz.
  1324. // This blocking is safe in the context of a 10kHz stepper driver interrupt
  1325. // or a 115200 Bd serial line receive interrupt, which will not trigger faster than 12kHz.
  1326. cli();
  1327. // Reset the command to something, which will be ignored by the power panic routine,
  1328. // so this buffer length will not be counted twice.
  1329. *ptr ++ = CMDBUFFER_CURRENT_TYPE_TO_BE_REMOVED;
  1330. // Extract the current buffer length.
  1331. sdlen.lohi.lo = *ptr ++;
  1332. sdlen.lohi.hi = *ptr;
  1333. // and pass it to the planner queue.
  1334. planner_add_sd_length(sdlen.value);
  1335. sei();
  1336. }
  1337. }
  1338. // Now it is safe to release the already processed command block. If interrupted by the power panic now,
  1339. // this block's SD card length will not be counted twice as its command type has been replaced
  1340. // by CMDBUFFER_CURRENT_TYPE_TO_BE_REMOVED.
  1341. cmdqueue_pop_front();
  1342. }
  1343. host_keepalive();
  1344. }
  1345. }
  1346. //check heater every n milliseconds
  1347. manage_heater();
  1348. isPrintPaused ? manage_inactivity(true) : manage_inactivity(false);
  1349. checkHitEndstops();
  1350. lcd_update();
  1351. #ifdef PAT9125
  1352. fsensor_update();
  1353. #endif //PAT9125
  1354. #ifdef TMC2130
  1355. tmc2130_check_overtemp();
  1356. if (tmc2130_sg_crash)
  1357. {
  1358. uint8_t crash = tmc2130_sg_crash;
  1359. tmc2130_sg_crash = 0;
  1360. // crashdet_stop_and_save_print();
  1361. switch (crash)
  1362. {
  1363. case 1: enquecommand_P((PSTR("CRASH_DETECTEDX"))); break;
  1364. case 2: enquecommand_P((PSTR("CRASH_DETECTEDY"))); break;
  1365. case 3: enquecommand_P((PSTR("CRASH_DETECTEDXY"))); break;
  1366. }
  1367. }
  1368. #endif //TMC2130
  1369. }
  1370. #define DEFINE_PGM_READ_ANY(type, reader) \
  1371. static inline type pgm_read_any(const type *p) \
  1372. { return pgm_read_##reader##_near(p); }
  1373. DEFINE_PGM_READ_ANY(float, float);
  1374. DEFINE_PGM_READ_ANY(signed char, byte);
  1375. #define XYZ_CONSTS_FROM_CONFIG(type, array, CONFIG) \
  1376. static const PROGMEM type array##_P[3] = \
  1377. { X_##CONFIG, Y_##CONFIG, Z_##CONFIG }; \
  1378. static inline type array(int axis) \
  1379. { return pgm_read_any(&array##_P[axis]); } \
  1380. type array##_ext(int axis) \
  1381. { return pgm_read_any(&array##_P[axis]); }
  1382. XYZ_CONSTS_FROM_CONFIG(float, base_min_pos, MIN_POS);
  1383. XYZ_CONSTS_FROM_CONFIG(float, base_max_pos, MAX_POS);
  1384. XYZ_CONSTS_FROM_CONFIG(float, base_home_pos, HOME_POS);
  1385. XYZ_CONSTS_FROM_CONFIG(float, max_length, MAX_LENGTH);
  1386. XYZ_CONSTS_FROM_CONFIG(float, home_retract_mm, HOME_RETRACT_MM);
  1387. XYZ_CONSTS_FROM_CONFIG(signed char, home_dir, HOME_DIR);
  1388. static void axis_is_at_home(int axis) {
  1389. current_position[axis] = base_home_pos(axis) + add_homing[axis];
  1390. min_pos[axis] = base_min_pos(axis) + add_homing[axis];
  1391. max_pos[axis] = base_max_pos(axis) + add_homing[axis];
  1392. }
  1393. inline void set_current_to_destination() { memcpy(current_position, destination, sizeof(current_position)); }
  1394. inline void set_destination_to_current() { memcpy(destination, current_position, sizeof(destination)); }
  1395. static void setup_for_endstop_move(bool enable_endstops_now = true) {
  1396. saved_feedrate = feedrate;
  1397. saved_feedmultiply = feedmultiply;
  1398. feedmultiply = 100;
  1399. previous_millis_cmd = millis();
  1400. enable_endstops(enable_endstops_now);
  1401. }
  1402. static void clean_up_after_endstop_move() {
  1403. #ifdef ENDSTOPS_ONLY_FOR_HOMING
  1404. enable_endstops(false);
  1405. #endif
  1406. feedrate = saved_feedrate;
  1407. feedmultiply = saved_feedmultiply;
  1408. previous_millis_cmd = millis();
  1409. }
  1410. #ifdef ENABLE_AUTO_BED_LEVELING
  1411. #ifdef AUTO_BED_LEVELING_GRID
  1412. static void set_bed_level_equation_lsq(double *plane_equation_coefficients)
  1413. {
  1414. vector_3 planeNormal = vector_3(-plane_equation_coefficients[0], -plane_equation_coefficients[1], 1);
  1415. planeNormal.debug("planeNormal");
  1416. plan_bed_level_matrix = matrix_3x3::create_look_at(planeNormal);
  1417. //bedLevel.debug("bedLevel");
  1418. //plan_bed_level_matrix.debug("bed level before");
  1419. //vector_3 uncorrected_position = plan_get_position_mm();
  1420. //uncorrected_position.debug("position before");
  1421. vector_3 corrected_position = plan_get_position();
  1422. // corrected_position.debug("position after");
  1423. current_position[X_AXIS] = corrected_position.x;
  1424. current_position[Y_AXIS] = corrected_position.y;
  1425. current_position[Z_AXIS] = corrected_position.z;
  1426. // put the bed at 0 so we don't go below it.
  1427. current_position[Z_AXIS] = zprobe_zoffset; // in the lsq we reach here after raising the extruder due to the loop structure
  1428. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1429. }
  1430. #else // not AUTO_BED_LEVELING_GRID
  1431. static void set_bed_level_equation_3pts(float z_at_pt_1, float z_at_pt_2, float z_at_pt_3) {
  1432. plan_bed_level_matrix.set_to_identity();
  1433. vector_3 pt1 = vector_3(ABL_PROBE_PT_1_X, ABL_PROBE_PT_1_Y, z_at_pt_1);
  1434. vector_3 pt2 = vector_3(ABL_PROBE_PT_2_X, ABL_PROBE_PT_2_Y, z_at_pt_2);
  1435. vector_3 pt3 = vector_3(ABL_PROBE_PT_3_X, ABL_PROBE_PT_3_Y, z_at_pt_3);
  1436. vector_3 from_2_to_1 = (pt1 - pt2).get_normal();
  1437. vector_3 from_2_to_3 = (pt3 - pt2).get_normal();
  1438. vector_3 planeNormal = vector_3::cross(from_2_to_1, from_2_to_3).get_normal();
  1439. planeNormal = vector_3(planeNormal.x, planeNormal.y, abs(planeNormal.z));
  1440. plan_bed_level_matrix = matrix_3x3::create_look_at(planeNormal);
  1441. vector_3 corrected_position = plan_get_position();
  1442. current_position[X_AXIS] = corrected_position.x;
  1443. current_position[Y_AXIS] = corrected_position.y;
  1444. current_position[Z_AXIS] = corrected_position.z;
  1445. // put the bed at 0 so we don't go below it.
  1446. current_position[Z_AXIS] = zprobe_zoffset;
  1447. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1448. }
  1449. #endif // AUTO_BED_LEVELING_GRID
  1450. static void run_z_probe() {
  1451. plan_bed_level_matrix.set_to_identity();
  1452. feedrate = homing_feedrate[Z_AXIS];
  1453. // move down until you find the bed
  1454. float zPosition = -10;
  1455. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder);
  1456. st_synchronize();
  1457. // we have to let the planner know where we are right now as it is not where we said to go.
  1458. zPosition = st_get_position_mm(Z_AXIS);
  1459. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS]);
  1460. // move up the retract distance
  1461. zPosition += home_retract_mm(Z_AXIS);
  1462. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder);
  1463. st_synchronize();
  1464. // move back down slowly to find bed
  1465. feedrate = homing_feedrate[Z_AXIS]/4;
  1466. zPosition -= home_retract_mm(Z_AXIS) * 2;
  1467. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder);
  1468. st_synchronize();
  1469. current_position[Z_AXIS] = st_get_position_mm(Z_AXIS);
  1470. // make sure the planner knows where we are as it may be a bit different than we last said to move to
  1471. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1472. }
  1473. static void do_blocking_move_to(float x, float y, float z) {
  1474. float oldFeedRate = feedrate;
  1475. feedrate = homing_feedrate[Z_AXIS];
  1476. current_position[Z_AXIS] = z;
  1477. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], feedrate/60, active_extruder);
  1478. st_synchronize();
  1479. feedrate = XY_TRAVEL_SPEED;
  1480. current_position[X_AXIS] = x;
  1481. current_position[Y_AXIS] = y;
  1482. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], feedrate/60, active_extruder);
  1483. st_synchronize();
  1484. feedrate = oldFeedRate;
  1485. }
  1486. static void do_blocking_move_relative(float offset_x, float offset_y, float offset_z) {
  1487. do_blocking_move_to(current_position[X_AXIS] + offset_x, current_position[Y_AXIS] + offset_y, current_position[Z_AXIS] + offset_z);
  1488. }
  1489. /// Probe bed height at position (x,y), returns the measured z value
  1490. static float probe_pt(float x, float y, float z_before) {
  1491. // move to right place
  1492. do_blocking_move_to(current_position[X_AXIS], current_position[Y_AXIS], z_before);
  1493. do_blocking_move_to(x - X_PROBE_OFFSET_FROM_EXTRUDER, y - Y_PROBE_OFFSET_FROM_EXTRUDER, current_position[Z_AXIS]);
  1494. run_z_probe();
  1495. float measured_z = current_position[Z_AXIS];
  1496. SERIAL_PROTOCOLRPGM(MSG_BED);
  1497. SERIAL_PROTOCOLPGM(" x: ");
  1498. SERIAL_PROTOCOL(x);
  1499. SERIAL_PROTOCOLPGM(" y: ");
  1500. SERIAL_PROTOCOL(y);
  1501. SERIAL_PROTOCOLPGM(" z: ");
  1502. SERIAL_PROTOCOL(measured_z);
  1503. SERIAL_PROTOCOLPGM("\n");
  1504. return measured_z;
  1505. }
  1506. #endif // #ifdef ENABLE_AUTO_BED_LEVELING
  1507. #ifdef LIN_ADVANCE
  1508. /**
  1509. * M900: Set and/or Get advance K factor and WH/D ratio
  1510. *
  1511. * K<factor> Set advance K factor
  1512. * R<ratio> Set ratio directly (overrides WH/D)
  1513. * W<width> H<height> D<diam> Set ratio from WH/D
  1514. */
  1515. inline void gcode_M900() {
  1516. st_synchronize();
  1517. const float newK = code_seen('K') ? code_value_float() : -1;
  1518. if (newK >= 0) extruder_advance_k = newK;
  1519. float newR = code_seen('R') ? code_value_float() : -1;
  1520. if (newR < 0) {
  1521. const float newD = code_seen('D') ? code_value_float() : -1,
  1522. newW = code_seen('W') ? code_value_float() : -1,
  1523. newH = code_seen('H') ? code_value_float() : -1;
  1524. if (newD >= 0 && newW >= 0 && newH >= 0)
  1525. newR = newD ? (newW * newH) / (sq(newD * 0.5) * M_PI) : 0;
  1526. }
  1527. if (newR >= 0) advance_ed_ratio = newR;
  1528. SERIAL_ECHO_START;
  1529. SERIAL_ECHOPGM("Advance K=");
  1530. SERIAL_ECHOLN(extruder_advance_k);
  1531. SERIAL_ECHOPGM(" E/D=");
  1532. const float ratio = advance_ed_ratio;
  1533. if (ratio) SERIAL_ECHOLN(ratio); else SERIAL_ECHOLNPGM("Auto");
  1534. }
  1535. #endif // LIN_ADVANCE
  1536. bool check_commands() {
  1537. bool end_command_found = false;
  1538. while (buflen)
  1539. {
  1540. if ((code_seen("M84")) || (code_seen("M 84"))) end_command_found = true;
  1541. if (!cmdbuffer_front_already_processed)
  1542. cmdqueue_pop_front();
  1543. cmdbuffer_front_already_processed = false;
  1544. }
  1545. return end_command_found;
  1546. }
  1547. #ifdef TMC2130
  1548. bool calibrate_z_auto()
  1549. {
  1550. //lcd_display_message_fullscreen_P(MSG_CALIBRATE_Z_AUTO);
  1551. lcd_implementation_clear();
  1552. lcd_print_at_PGM(0,1, MSG_CALIBRATE_Z_AUTO);
  1553. bool endstops_enabled = enable_endstops(true);
  1554. int axis_up_dir = -home_dir(Z_AXIS);
  1555. tmc2130_home_enter(Z_AXIS_MASK);
  1556. current_position[Z_AXIS] = 0;
  1557. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1558. set_destination_to_current();
  1559. destination[Z_AXIS] += (1.1 * max_length(Z_AXIS) * axis_up_dir);
  1560. feedrate = homing_feedrate[Z_AXIS];
  1561. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1562. st_synchronize();
  1563. // current_position[axis] = 0;
  1564. // plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1565. tmc2130_home_exit();
  1566. enable_endstops(false);
  1567. current_position[Z_AXIS] = 0;
  1568. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1569. set_destination_to_current();
  1570. destination[Z_AXIS] += 10 * axis_up_dir; //10mm up
  1571. feedrate = homing_feedrate[Z_AXIS] / 2;
  1572. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1573. st_synchronize();
  1574. enable_endstops(endstops_enabled);
  1575. current_position[Z_AXIS] = Z_MAX_POS+2.0;
  1576. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1577. return true;
  1578. }
  1579. #endif //TMC2130
  1580. void homeaxis(int axis, uint8_t cnt, uint8_t* pstep)
  1581. {
  1582. bool endstops_enabled = enable_endstops(true); //RP: endstops should be allways enabled durring homing
  1583. #define HOMEAXIS_DO(LETTER) \
  1584. ((LETTER##_MIN_PIN > -1 && LETTER##_HOME_DIR==-1) || (LETTER##_MAX_PIN > -1 && LETTER##_HOME_DIR==1))
  1585. if ((axis==X_AXIS)?HOMEAXIS_DO(X):(axis==Y_AXIS)?HOMEAXIS_DO(Y):0)
  1586. {
  1587. int axis_home_dir = home_dir(axis);
  1588. feedrate = homing_feedrate[axis];
  1589. #ifdef TMC2130
  1590. tmc2130_home_enter(X_AXIS_MASK << axis);
  1591. #endif //TMC2130
  1592. // Move right a bit, so that the print head does not touch the left end position,
  1593. // and the following left movement has a chance to achieve the required velocity
  1594. // for the stall guard to work.
  1595. current_position[axis] = 0;
  1596. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1597. set_destination_to_current();
  1598. // destination[axis] = 11.f;
  1599. destination[axis] = 3.f;
  1600. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1601. st_synchronize();
  1602. // Move left away from the possible collision with the collision detection disabled.
  1603. endstops_hit_on_purpose();
  1604. enable_endstops(false);
  1605. current_position[axis] = 0;
  1606. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1607. destination[axis] = - 1.;
  1608. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1609. st_synchronize();
  1610. // Now continue to move up to the left end stop with the collision detection enabled.
  1611. enable_endstops(true);
  1612. destination[axis] = - 1.1 * max_length(axis);
  1613. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1614. st_synchronize();
  1615. for (uint8_t i = 0; i < cnt; i++)
  1616. {
  1617. // Move right from the collision to a known distance from the left end stop with the collision detection disabled.
  1618. endstops_hit_on_purpose();
  1619. enable_endstops(false);
  1620. current_position[axis] = 0;
  1621. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1622. destination[axis] = 10.f;
  1623. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1624. st_synchronize();
  1625. endstops_hit_on_purpose();
  1626. // Now move left up to the collision, this time with a repeatable velocity.
  1627. enable_endstops(true);
  1628. destination[axis] = - 11.f;
  1629. #ifdef TMC2130
  1630. feedrate = homing_feedrate[axis];
  1631. #else //TMC2130
  1632. feedrate = homing_feedrate[axis] / 2;
  1633. #endif //TMC2130
  1634. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1635. st_synchronize();
  1636. #ifdef TMC2130
  1637. uint16_t mscnt = tmc2130_rd_MSCNT(axis);
  1638. if (pstep) pstep[i] = mscnt >> 4;
  1639. printf_P(PSTR("%3d step=%2d mscnt=%4d\n"), i, mscnt >> 4, mscnt);
  1640. #endif //TMC2130
  1641. }
  1642. endstops_hit_on_purpose();
  1643. enable_endstops(false);
  1644. #ifdef TMC2130
  1645. uint8_t orig = tmc2130_home_origin[axis];
  1646. uint8_t back = tmc2130_home_bsteps[axis];
  1647. if (tmc2130_home_enabled && (orig <= 63))
  1648. {
  1649. tmc2130_goto_step(axis, orig, 2, 1000, tmc2130_get_res(axis));
  1650. if (back > 0)
  1651. tmc2130_do_steps(axis, back, 1, 1000);
  1652. }
  1653. else
  1654. tmc2130_do_steps(axis, 8, 2, 1000);
  1655. tmc2130_home_exit();
  1656. #endif //TMC2130
  1657. axis_is_at_home(axis);
  1658. axis_known_position[axis] = true;
  1659. // Move from minimum
  1660. #ifdef TMC2130
  1661. float dist = 0.01f * tmc2130_home_fsteps[axis];
  1662. #else //TMC2130
  1663. float dist = 0.01f * 64;
  1664. #endif //TMC2130
  1665. current_position[axis] -= dist;
  1666. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1667. current_position[axis] += dist;
  1668. destination[axis] = current_position[axis];
  1669. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], 0.5f*feedrate/60, active_extruder);
  1670. st_synchronize();
  1671. feedrate = 0.0;
  1672. }
  1673. else if ((axis==Z_AXIS)?HOMEAXIS_DO(Z):0)
  1674. {
  1675. int axis_home_dir = home_dir(axis);
  1676. current_position[axis] = 0;
  1677. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1678. destination[axis] = 1.5 * max_length(axis) * axis_home_dir;
  1679. feedrate = homing_feedrate[axis];
  1680. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1681. st_synchronize();
  1682. current_position[axis] = 0;
  1683. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1684. destination[axis] = -home_retract_mm(axis) * axis_home_dir;
  1685. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1686. st_synchronize();
  1687. destination[axis] = 2*home_retract_mm(axis) * axis_home_dir;
  1688. feedrate = homing_feedrate[axis]/2 ;
  1689. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1690. st_synchronize();
  1691. axis_is_at_home(axis);
  1692. destination[axis] = current_position[axis];
  1693. feedrate = 0.0;
  1694. endstops_hit_on_purpose();
  1695. axis_known_position[axis] = true;
  1696. }
  1697. enable_endstops(endstops_enabled);
  1698. }
  1699. /**/
  1700. void home_xy()
  1701. {
  1702. set_destination_to_current();
  1703. homeaxis(X_AXIS);
  1704. homeaxis(Y_AXIS);
  1705. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1706. endstops_hit_on_purpose();
  1707. }
  1708. void refresh_cmd_timeout(void)
  1709. {
  1710. previous_millis_cmd = millis();
  1711. }
  1712. #ifdef FWRETRACT
  1713. void retract(bool retracting, bool swapretract = false) {
  1714. if(retracting && !retracted[active_extruder]) {
  1715. destination[X_AXIS]=current_position[X_AXIS];
  1716. destination[Y_AXIS]=current_position[Y_AXIS];
  1717. destination[Z_AXIS]=current_position[Z_AXIS];
  1718. destination[E_AXIS]=current_position[E_AXIS];
  1719. current_position[E_AXIS]+=(swapretract?retract_length_swap:retract_length)*float(extrudemultiply)*0.01f;
  1720. plan_set_e_position(current_position[E_AXIS]);
  1721. float oldFeedrate = feedrate;
  1722. feedrate=retract_feedrate*60;
  1723. retracted[active_extruder]=true;
  1724. prepare_move();
  1725. current_position[Z_AXIS]-=retract_zlift;
  1726. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1727. prepare_move();
  1728. feedrate = oldFeedrate;
  1729. } else if(!retracting && retracted[active_extruder]) {
  1730. destination[X_AXIS]=current_position[X_AXIS];
  1731. destination[Y_AXIS]=current_position[Y_AXIS];
  1732. destination[Z_AXIS]=current_position[Z_AXIS];
  1733. destination[E_AXIS]=current_position[E_AXIS];
  1734. current_position[Z_AXIS]+=retract_zlift;
  1735. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1736. current_position[E_AXIS]-=(swapretract?(retract_length_swap+retract_recover_length_swap):(retract_length+retract_recover_length))*float(extrudemultiply)*0.01f;
  1737. plan_set_e_position(current_position[E_AXIS]);
  1738. float oldFeedrate = feedrate;
  1739. feedrate=retract_recover_feedrate*60;
  1740. retracted[active_extruder]=false;
  1741. prepare_move();
  1742. feedrate = oldFeedrate;
  1743. }
  1744. } //retract
  1745. #endif //FWRETRACT
  1746. void trace() {
  1747. tone(BEEPER, 440);
  1748. delay(25);
  1749. noTone(BEEPER);
  1750. delay(20);
  1751. }
  1752. /*
  1753. void ramming() {
  1754. // float tmp[4] = DEFAULT_MAX_FEEDRATE;
  1755. if (current_temperature[0] < 230) {
  1756. //PLA
  1757. max_feedrate[E_AXIS] = 50;
  1758. //current_position[E_AXIS] -= 8;
  1759. //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2100 / 60, active_extruder);
  1760. //current_position[E_AXIS] += 8;
  1761. //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2100 / 60, active_extruder);
  1762. current_position[E_AXIS] += 5.4;
  1763. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2800 / 60, active_extruder);
  1764. current_position[E_AXIS] += 3.2;
  1765. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  1766. current_position[E_AXIS] += 3;
  1767. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3400 / 60, active_extruder);
  1768. st_synchronize();
  1769. max_feedrate[E_AXIS] = 80;
  1770. current_position[E_AXIS] -= 82;
  1771. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 9500 / 60, active_extruder);
  1772. max_feedrate[E_AXIS] = 50;//tmp[E_AXIS];
  1773. current_position[E_AXIS] -= 20;
  1774. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 1200 / 60, active_extruder);
  1775. current_position[E_AXIS] += 5;
  1776. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400 / 60, active_extruder);
  1777. current_position[E_AXIS] += 5;
  1778. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  1779. current_position[E_AXIS] -= 10;
  1780. st_synchronize();
  1781. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  1782. current_position[E_AXIS] += 10;
  1783. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  1784. current_position[E_AXIS] -= 10;
  1785. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 800 / 60, active_extruder);
  1786. current_position[E_AXIS] += 10;
  1787. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 800 / 60, active_extruder);
  1788. current_position[E_AXIS] -= 10;
  1789. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 800 / 60, active_extruder);
  1790. st_synchronize();
  1791. }
  1792. else {
  1793. //ABS
  1794. max_feedrate[E_AXIS] = 50;
  1795. //current_position[E_AXIS] -= 8;
  1796. //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2100 / 60, active_extruder);
  1797. //current_position[E_AXIS] += 8;
  1798. //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2100 / 60, active_extruder);
  1799. current_position[E_AXIS] += 3.1;
  1800. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2000 / 60, active_extruder);
  1801. current_position[E_AXIS] += 3.1;
  1802. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2500 / 60, active_extruder);
  1803. current_position[E_AXIS] += 4;
  1804. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  1805. st_synchronize();
  1806. //current_position[X_AXIS] += 23; //delay
  1807. //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600/60, active_extruder); //delay
  1808. //current_position[X_AXIS] -= 23; //delay
  1809. //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600/60, active_extruder); //delay
  1810. delay(4700);
  1811. max_feedrate[E_AXIS] = 80;
  1812. current_position[E_AXIS] -= 92;
  1813. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 9900 / 60, active_extruder);
  1814. max_feedrate[E_AXIS] = 50;//tmp[E_AXIS];
  1815. current_position[E_AXIS] -= 5;
  1816. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 800 / 60, active_extruder);
  1817. current_position[E_AXIS] += 5;
  1818. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400 / 60, active_extruder);
  1819. current_position[E_AXIS] -= 5;
  1820. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  1821. st_synchronize();
  1822. current_position[E_AXIS] += 5;
  1823. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  1824. current_position[E_AXIS] -= 5;
  1825. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  1826. current_position[E_AXIS] += 5;
  1827. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  1828. current_position[E_AXIS] -= 5;
  1829. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  1830. st_synchronize();
  1831. }
  1832. }
  1833. */
  1834. #ifdef TMC2130
  1835. void force_high_power_mode(bool start_high_power_section) {
  1836. uint8_t silent;
  1837. silent = eeprom_read_byte((uint8_t*)EEPROM_SILENT);
  1838. if (silent == 1) {
  1839. //we are in silent mode, set to normal mode to enable crash detection
  1840. // Wait for the planner queue to drain and for the stepper timer routine to reach an idle state.
  1841. st_synchronize();
  1842. cli();
  1843. tmc2130_mode = (start_high_power_section == true) ? TMC2130_MODE_NORMAL : TMC2130_MODE_SILENT;
  1844. tmc2130_init();
  1845. // We may have missed a stepper timer interrupt due to the time spent in the tmc2130_init() routine.
  1846. // Be safe than sorry, reset the stepper timer before re-enabling interrupts.
  1847. st_reset_timer();
  1848. sei();
  1849. digipot_init();
  1850. }
  1851. }
  1852. #endif //TMC2130
  1853. bool gcode_M45(bool onlyZ)
  1854. {
  1855. bool final_result = false;
  1856. #ifdef TMC2130
  1857. FORCE_HIGH_POWER_START;
  1858. #endif // TMC2130
  1859. // Only Z calibration?
  1860. if (!onlyZ)
  1861. {
  1862. setTargetBed(0);
  1863. setTargetHotend(0, 0);
  1864. setTargetHotend(0, 1);
  1865. setTargetHotend(0, 2);
  1866. adjust_bed_reset(); //reset bed level correction
  1867. }
  1868. // Disable the default update procedure of the display. We will do a modal dialog.
  1869. lcd_update_enable(false);
  1870. // Let the planner use the uncorrected coordinates.
  1871. mbl.reset();
  1872. // Reset world2machine_rotation_and_skew and world2machine_shift, therefore
  1873. // the planner will not perform any adjustments in the XY plane.
  1874. // Wait for the motors to stop and update the current position with the absolute values.
  1875. world2machine_revert_to_uncorrected();
  1876. // Reset the baby step value applied without moving the axes.
  1877. babystep_reset();
  1878. // Mark all axes as in a need for homing.
  1879. memset(axis_known_position, 0, sizeof(axis_known_position));
  1880. // Home in the XY plane.
  1881. //set_destination_to_current();
  1882. setup_for_endstop_move();
  1883. lcd_display_message_fullscreen_P(MSG_AUTO_HOME);
  1884. home_xy();
  1885. enable_endstops(false);
  1886. current_position[X_AXIS] += 5;
  1887. current_position[Y_AXIS] += 5;
  1888. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[Z_AXIS] / 40, active_extruder);
  1889. st_synchronize();
  1890. // Let the user move the Z axes up to the end stoppers.
  1891. #ifdef TMC2130
  1892. if (calibrate_z_auto())
  1893. {
  1894. #else //TMC2130
  1895. if (lcd_calibrate_z_end_stop_manual(onlyZ))
  1896. {
  1897. #endif //TMC2130
  1898. refresh_cmd_timeout();
  1899. //if (((degHotend(0) > MAX_HOTEND_TEMP_CALIBRATION) || (degBed() > MAX_BED_TEMP_CALIBRATION)) && (!onlyZ))
  1900. //{
  1901. // lcd_wait_for_cool_down();
  1902. //}
  1903. if(!onlyZ)
  1904. {
  1905. KEEPALIVE_STATE(PAUSED_FOR_USER);
  1906. bool result = lcd_show_fullscreen_message_yes_no_and_wait_P(MSG_STEEL_SHEET_CHECK, false, false);
  1907. if(result) lcd_show_fullscreen_message_and_wait_P(MSG_REMOVE_STEEL_SHEET);
  1908. lcd_show_fullscreen_message_and_wait_P(MSG_CONFIRM_NOZZLE_CLEAN);
  1909. lcd_show_fullscreen_message_and_wait_P(MSG_PAPER);
  1910. KEEPALIVE_STATE(IN_HANDLER);
  1911. lcd_display_message_fullscreen_P(MSG_FIND_BED_OFFSET_AND_SKEW_LINE1);
  1912. lcd_implementation_print_at(0, 2, 1);
  1913. lcd_printPGM(MSG_FIND_BED_OFFSET_AND_SKEW_LINE2);
  1914. }
  1915. // Move the print head close to the bed.
  1916. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  1917. bool endstops_enabled = enable_endstops(true);
  1918. tmc2130_home_enter(Z_AXIS_MASK);
  1919. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[Z_AXIS] / 40, active_extruder);
  1920. st_synchronize();
  1921. tmc2130_home_exit();
  1922. enable_endstops(endstops_enabled);
  1923. if (st_get_position_mm(Z_AXIS) == MESH_HOME_Z_SEARCH)
  1924. {
  1925. //#ifdef TMC2130
  1926. // tmc2130_home_enter(X_AXIS_MASK | Y_AXIS_MASK);
  1927. //#endif
  1928. int8_t verbosity_level = 0;
  1929. if (code_seen('V'))
  1930. {
  1931. // Just 'V' without a number counts as V1.
  1932. char c = strchr_pointer[1];
  1933. verbosity_level = (c == ' ' || c == '\t' || c == 0) ? 1 : code_value_short();
  1934. }
  1935. if (onlyZ)
  1936. {
  1937. clean_up_after_endstop_move();
  1938. // Z only calibration.
  1939. // Load the machine correction matrix
  1940. world2machine_initialize();
  1941. // and correct the current_position to match the transformed coordinate system.
  1942. world2machine_update_current();
  1943. //FIXME
  1944. bool result = sample_mesh_and_store_reference();
  1945. if (result)
  1946. {
  1947. if (calibration_status() == CALIBRATION_STATUS_Z_CALIBRATION)
  1948. // Shipped, the nozzle height has been set already. The user can start printing now.
  1949. calibration_status_store(CALIBRATION_STATUS_CALIBRATED);
  1950. final_result = true;
  1951. // babystep_apply();
  1952. }
  1953. }
  1954. else
  1955. {
  1956. // Reset the baby step value and the baby step applied flag.
  1957. calibration_status_store(CALIBRATION_STATUS_XYZ_CALIBRATION);
  1958. eeprom_update_word((uint16_t*)EEPROM_BABYSTEP_Z, 0);
  1959. // Complete XYZ calibration.
  1960. uint8_t point_too_far_mask = 0;
  1961. BedSkewOffsetDetectionResultType result = find_bed_offset_and_skew(verbosity_level, point_too_far_mask);
  1962. clean_up_after_endstop_move();
  1963. // Print head up.
  1964. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  1965. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[Z_AXIS] / 40, active_extruder);
  1966. st_synchronize();
  1967. #ifndef NEW_XYZCAL
  1968. if (result >= 0)
  1969. {
  1970. point_too_far_mask = 0;
  1971. // Second half: The fine adjustment.
  1972. // Let the planner use the uncorrected coordinates.
  1973. mbl.reset();
  1974. world2machine_reset();
  1975. // Home in the XY plane.
  1976. setup_for_endstop_move();
  1977. home_xy();
  1978. result = improve_bed_offset_and_skew(1, verbosity_level, point_too_far_mask);
  1979. clean_up_after_endstop_move();
  1980. // Print head up.
  1981. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  1982. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[Z_AXIS] / 40, active_extruder);
  1983. st_synchronize();
  1984. // if (result >= 0) babystep_apply();
  1985. }
  1986. #endif //NEW_XYZCAL
  1987. lcd_bed_calibration_show_result(result, point_too_far_mask);
  1988. if (result >= 0)
  1989. {
  1990. // Calibration valid, the machine should be able to print. Advise the user to run the V2Calibration.gcode.
  1991. calibration_status_store(CALIBRATION_STATUS_LIVE_ADJUST);
  1992. if (eeprom_read_byte((uint8_t*)EEPROM_WIZARD_ACTIVE) != 1) lcd_show_fullscreen_message_and_wait_P(MSG_BABYSTEP_Z_NOT_SET);
  1993. final_result = true;
  1994. }
  1995. }
  1996. #ifdef TMC2130
  1997. tmc2130_home_exit();
  1998. #endif
  1999. }
  2000. else
  2001. {
  2002. lcd_show_fullscreen_message_and_wait_P(PSTR("Calibration failed! Check the axes and run again."));
  2003. final_result = false;
  2004. }
  2005. }
  2006. else
  2007. {
  2008. // Timeouted.
  2009. }
  2010. lcd_update_enable(true);
  2011. #ifdef TMC2130
  2012. FORCE_HIGH_POWER_END;
  2013. #endif // TMC2130
  2014. return final_result;
  2015. }
  2016. void gcode_M701()
  2017. {
  2018. #ifdef SNMM
  2019. extr_adj(snmm_extruder);//loads current extruder
  2020. #else
  2021. enable_z();
  2022. custom_message = true;
  2023. custom_message_type = 2;
  2024. lcd_setstatuspgm(MSG_LOADING_FILAMENT);
  2025. current_position[E_AXIS] += 70;
  2026. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400 / 60, active_extruder); //fast sequence
  2027. current_position[E_AXIS] += 25;
  2028. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 100 / 60, active_extruder); //slow sequence
  2029. st_synchronize();
  2030. tone(BEEPER, 500);
  2031. delay_keep_alive(50);
  2032. noTone(BEEPER);
  2033. if (!farm_mode && loading_flag) {
  2034. bool clean = lcd_show_fullscreen_message_yes_no_and_wait_P(MSG_FILAMENT_CLEAN, false, true);
  2035. while (!clean) {
  2036. lcd_update_enable(true);
  2037. lcd_update(2);
  2038. current_position[E_AXIS] += 25;
  2039. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 100 / 60, active_extruder); //slow sequence
  2040. st_synchronize();
  2041. clean = lcd_show_fullscreen_message_yes_no_and_wait_P(MSG_FILAMENT_CLEAN, false, true);
  2042. }
  2043. }
  2044. lcd_update_enable(true);
  2045. lcd_update(2);
  2046. lcd_setstatuspgm(WELCOME_MSG);
  2047. disable_z();
  2048. loading_flag = false;
  2049. custom_message = false;
  2050. custom_message_type = 0;
  2051. #endif
  2052. }
  2053. void process_commands()
  2054. {
  2055. #ifdef FILAMENT_RUNOUT_SUPPORT
  2056. SET_INPUT(FR_SENS);
  2057. #endif
  2058. #ifdef CMDBUFFER_DEBUG
  2059. SERIAL_ECHOPGM("Processing a GCODE command: ");
  2060. SERIAL_ECHO(cmdbuffer+bufindr+CMDHDRSIZE);
  2061. SERIAL_ECHOLNPGM("");
  2062. SERIAL_ECHOPGM("In cmdqueue: ");
  2063. SERIAL_ECHO(buflen);
  2064. SERIAL_ECHOLNPGM("");
  2065. #endif /* CMDBUFFER_DEBUG */
  2066. unsigned long codenum; //throw away variable
  2067. char *starpos = NULL;
  2068. #ifdef ENABLE_AUTO_BED_LEVELING
  2069. float x_tmp, y_tmp, z_tmp, real_z;
  2070. #endif
  2071. // PRUSA GCODES
  2072. KEEPALIVE_STATE(IN_HANDLER);
  2073. #ifdef SNMM
  2074. float tmp_motor[3] = DEFAULT_PWM_MOTOR_CURRENT;
  2075. float tmp_motor_loud[3] = DEFAULT_PWM_MOTOR_CURRENT_LOUD;
  2076. int8_t SilentMode;
  2077. #endif
  2078. if (code_seen("M117")) { //moved to highest priority place to be able to to print strings which includes "G", "PRUSA" and "^"
  2079. starpos = (strchr(strchr_pointer + 5, '*'));
  2080. if (starpos != NULL)
  2081. *(starpos) = '\0';
  2082. lcd_setstatus(strchr_pointer + 5);
  2083. }
  2084. else if(code_seen("CRASH_DETECTED"))
  2085. {
  2086. uint8_t mask = 0;
  2087. if (code_seen("X")) mask |= X_AXIS_MASK;
  2088. if (code_seen("Y")) mask |= Y_AXIS_MASK;
  2089. crashdet_detected(mask);
  2090. }
  2091. else if(code_seen("CRASH_RECOVER"))
  2092. crashdet_recover();
  2093. else if(code_seen("CRASH_CANCEL"))
  2094. crashdet_cancel();
  2095. else if(code_seen("PRUSA")){
  2096. if (code_seen("Ping")) { //PRUSA Ping
  2097. if (farm_mode) {
  2098. PingTime = millis();
  2099. //MYSERIAL.print(farm_no); MYSERIAL.println(": OK");
  2100. }
  2101. }
  2102. else if (code_seen("PRN")) {
  2103. MYSERIAL.println(status_number);
  2104. }else if (code_seen("FAN")) {
  2105. MYSERIAL.print("E0:");
  2106. MYSERIAL.print(60*fan_speed[0]);
  2107. MYSERIAL.println(" RPM");
  2108. MYSERIAL.print("PRN0:");
  2109. MYSERIAL.print(60*fan_speed[1]);
  2110. MYSERIAL.println(" RPM");
  2111. }else if (code_seen("fn")) {
  2112. if (farm_mode) {
  2113. MYSERIAL.println(farm_no);
  2114. }
  2115. else {
  2116. MYSERIAL.println("Not in farm mode.");
  2117. }
  2118. }else if (code_seen("fv")) {
  2119. // get file version
  2120. #ifdef SDSUPPORT
  2121. card.openFile(strchr_pointer + 3,true);
  2122. while (true) {
  2123. uint16_t readByte = card.get();
  2124. MYSERIAL.write(readByte);
  2125. if (readByte=='\n') {
  2126. break;
  2127. }
  2128. }
  2129. card.closefile();
  2130. #endif // SDSUPPORT
  2131. } else if (code_seen("M28")) {
  2132. trace();
  2133. prusa_sd_card_upload = true;
  2134. card.openFile(strchr_pointer+4,false);
  2135. } else if (code_seen("SN")) {
  2136. if (farm_mode) {
  2137. selectedSerialPort = 0;
  2138. MSerial.write(";S");
  2139. // S/N is:CZPX0917X003XC13518
  2140. int numbersRead = 0;
  2141. while (numbersRead < 19) {
  2142. while (MSerial.available() > 0) {
  2143. uint8_t serial_char = MSerial.read();
  2144. selectedSerialPort = 1;
  2145. MSerial.write(serial_char);
  2146. numbersRead++;
  2147. selectedSerialPort = 0;
  2148. }
  2149. }
  2150. selectedSerialPort = 1;
  2151. MSerial.write('\n');
  2152. /*for (int b = 0; b < 3; b++) {
  2153. tone(BEEPER, 110);
  2154. delay(50);
  2155. noTone(BEEPER);
  2156. delay(50);
  2157. }*/
  2158. } else {
  2159. MYSERIAL.println("Not in farm mode.");
  2160. }
  2161. } else if(code_seen("Fir")){
  2162. SERIAL_PROTOCOLLN(FW_VERSION);
  2163. } else if(code_seen("Rev")){
  2164. SERIAL_PROTOCOLLN(FILAMENT_SIZE "-" ELECTRONICS "-" NOZZLE_TYPE );
  2165. } else if(code_seen("Lang")) {
  2166. lcd_force_language_selection();
  2167. } else if(code_seen("Lz")) {
  2168. EEPROM_save_B(EEPROM_BABYSTEP_Z,0);
  2169. } else if (code_seen("SERIAL LOW")) {
  2170. MYSERIAL.println("SERIAL LOW");
  2171. MYSERIAL.begin(BAUDRATE);
  2172. return;
  2173. } else if (code_seen("SERIAL HIGH")) {
  2174. MYSERIAL.println("SERIAL HIGH");
  2175. MYSERIAL.begin(1152000);
  2176. return;
  2177. } else if(code_seen("Beat")) {
  2178. // Kick farm link timer
  2179. kicktime = millis();
  2180. } else if(code_seen("FR")) {
  2181. // Factory full reset
  2182. factory_reset(0,true);
  2183. }
  2184. //else if (code_seen('Cal')) {
  2185. // lcd_calibration();
  2186. // }
  2187. }
  2188. else if (code_seen('^')) {
  2189. // nothing, this is a version line
  2190. } else if(code_seen('G'))
  2191. {
  2192. switch((int)code_value())
  2193. {
  2194. case 0: // G0 -> G1
  2195. case 1: // G1
  2196. if(Stopped == false) {
  2197. #ifdef FILAMENT_RUNOUT_SUPPORT
  2198. if(READ(FR_SENS)){
  2199. feedmultiplyBckp=feedmultiply;
  2200. float target[4];
  2201. float lastpos[4];
  2202. target[X_AXIS]=current_position[X_AXIS];
  2203. target[Y_AXIS]=current_position[Y_AXIS];
  2204. target[Z_AXIS]=current_position[Z_AXIS];
  2205. target[E_AXIS]=current_position[E_AXIS];
  2206. lastpos[X_AXIS]=current_position[X_AXIS];
  2207. lastpos[Y_AXIS]=current_position[Y_AXIS];
  2208. lastpos[Z_AXIS]=current_position[Z_AXIS];
  2209. lastpos[E_AXIS]=current_position[E_AXIS];
  2210. //retract by E
  2211. target[E_AXIS]+= FILAMENTCHANGE_FIRSTRETRACT ;
  2212. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 400, active_extruder);
  2213. target[Z_AXIS]+= FILAMENTCHANGE_ZADD ;
  2214. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 300, active_extruder);
  2215. target[X_AXIS]= FILAMENTCHANGE_XPOS ;
  2216. target[Y_AXIS]= FILAMENTCHANGE_YPOS ;
  2217. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 70, active_extruder);
  2218. target[E_AXIS]+= FILAMENTCHANGE_FINALRETRACT ;
  2219. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 20, active_extruder);
  2220. //finish moves
  2221. st_synchronize();
  2222. //disable extruder steppers so filament can be removed
  2223. disable_e0();
  2224. disable_e1();
  2225. disable_e2();
  2226. delay(100);
  2227. //LCD_ALERTMESSAGEPGM(MSG_FILAMENTCHANGE);
  2228. uint8_t cnt=0;
  2229. int counterBeep = 0;
  2230. lcd_wait_interact();
  2231. while(!lcd_clicked()){
  2232. cnt++;
  2233. manage_heater();
  2234. manage_inactivity(true);
  2235. //lcd_update();
  2236. if(cnt==0)
  2237. {
  2238. #if BEEPER > 0
  2239. if (counterBeep== 500){
  2240. counterBeep = 0;
  2241. }
  2242. SET_OUTPUT(BEEPER);
  2243. if (counterBeep== 0){
  2244. WRITE(BEEPER,HIGH);
  2245. }
  2246. if (counterBeep== 20){
  2247. WRITE(BEEPER,LOW);
  2248. }
  2249. counterBeep++;
  2250. #else
  2251. #if !defined(LCD_FEEDBACK_FREQUENCY_HZ) || !defined(LCD_FEEDBACK_FREQUENCY_DURATION_MS)
  2252. lcd_buzz(1000/6,100);
  2253. #else
  2254. lcd_buzz(LCD_FEEDBACK_FREQUENCY_DURATION_MS,LCD_FEEDBACK_FREQUENCY_HZ);
  2255. #endif
  2256. #endif
  2257. }
  2258. }
  2259. WRITE(BEEPER,LOW);
  2260. target[E_AXIS]+= FILAMENTCHANGE_FIRSTFEED ;
  2261. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 20, active_extruder);
  2262. target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  2263. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder);
  2264. lcd_change_fil_state = 0;
  2265. lcd_loading_filament();
  2266. while ((lcd_change_fil_state == 0)||(lcd_change_fil_state != 1)){
  2267. lcd_change_fil_state = 0;
  2268. lcd_alright();
  2269. switch(lcd_change_fil_state){
  2270. case 2:
  2271. target[E_AXIS]+= FILAMENTCHANGE_FIRSTFEED ;
  2272. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 20, active_extruder);
  2273. target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  2274. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder);
  2275. lcd_loading_filament();
  2276. break;
  2277. case 3:
  2278. target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  2279. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder);
  2280. lcd_loading_color();
  2281. break;
  2282. default:
  2283. lcd_change_success();
  2284. break;
  2285. }
  2286. }
  2287. target[E_AXIS]+= 5;
  2288. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder);
  2289. target[E_AXIS]+= FILAMENTCHANGE_FIRSTRETRACT;
  2290. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 400, active_extruder);
  2291. //current_position[E_AXIS]=target[E_AXIS]; //the long retract of L is compensated by manual filament feeding
  2292. //plan_set_e_position(current_position[E_AXIS]);
  2293. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 70, active_extruder); //should do nothing
  2294. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], target[Z_AXIS], target[E_AXIS], 70, active_extruder); //move xy back
  2295. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], target[E_AXIS], 200, active_extruder); //move z back
  2296. target[E_AXIS]= target[E_AXIS] - FILAMENTCHANGE_FIRSTRETRACT;
  2297. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], target[E_AXIS], 5, active_extruder); //final untretract
  2298. plan_set_e_position(lastpos[E_AXIS]);
  2299. feedmultiply=feedmultiplyBckp;
  2300. char cmd[9];
  2301. sprintf_P(cmd, PSTR("M220 S%i"), feedmultiplyBckp);
  2302. enquecommand(cmd);
  2303. }
  2304. #endif
  2305. get_coordinates(); // For X Y Z E F
  2306. if (total_filament_used > ((current_position[E_AXIS] - destination[E_AXIS]) * 100)) { //protection against total_filament_used overflow
  2307. total_filament_used = total_filament_used + ((destination[E_AXIS] - current_position[E_AXIS]) * 100);
  2308. }
  2309. #ifdef FWRETRACT
  2310. if(autoretract_enabled)
  2311. if( !(code_seen('X') || code_seen('Y') || code_seen('Z')) && code_seen('E')) {
  2312. float echange=destination[E_AXIS]-current_position[E_AXIS];
  2313. if((echange<-MIN_RETRACT && !retracted) || (echange>MIN_RETRACT && retracted)) { //move appears to be an attempt to retract or recover
  2314. current_position[E_AXIS] = destination[E_AXIS]; //hide the slicer-generated retract/recover from calculations
  2315. plan_set_e_position(current_position[E_AXIS]); //AND from the planner
  2316. retract(!retracted);
  2317. return;
  2318. }
  2319. }
  2320. #endif //FWRETRACT
  2321. prepare_move();
  2322. //ClearToSend();
  2323. }
  2324. break;
  2325. case 2: // G2 - CW ARC
  2326. if(Stopped == false) {
  2327. get_arc_coordinates();
  2328. prepare_arc_move(true);
  2329. }
  2330. break;
  2331. case 3: // G3 - CCW ARC
  2332. if(Stopped == false) {
  2333. get_arc_coordinates();
  2334. prepare_arc_move(false);
  2335. }
  2336. break;
  2337. case 4: // G4 dwell
  2338. codenum = 0;
  2339. if(code_seen('P')) codenum = code_value(); // milliseconds to wait
  2340. if(code_seen('S')) codenum = code_value() * 1000; // seconds to wait
  2341. if(codenum != 0) LCD_MESSAGERPGM(MSG_DWELL);
  2342. st_synchronize();
  2343. codenum += millis(); // keep track of when we started waiting
  2344. previous_millis_cmd = millis();
  2345. while(millis() < codenum) {
  2346. manage_heater();
  2347. manage_inactivity();
  2348. lcd_update();
  2349. }
  2350. break;
  2351. #ifdef FWRETRACT
  2352. case 10: // G10 retract
  2353. #if EXTRUDERS > 1
  2354. retracted_swap[active_extruder]=(code_seen('S') && code_value_long() == 1); // checks for swap retract argument
  2355. retract(true,retracted_swap[active_extruder]);
  2356. #else
  2357. retract(true);
  2358. #endif
  2359. break;
  2360. case 11: // G11 retract_recover
  2361. #if EXTRUDERS > 1
  2362. retract(false,retracted_swap[active_extruder]);
  2363. #else
  2364. retract(false);
  2365. #endif
  2366. break;
  2367. #endif //FWRETRACT
  2368. case 28: //G28 Home all Axis one at a time
  2369. {
  2370. st_synchronize();
  2371. #if 0
  2372. SERIAL_ECHOPGM("G28, initial "); print_world_coordinates();
  2373. SERIAL_ECHOPGM("G28, initial "); print_physical_coordinates();
  2374. #endif
  2375. // Flag for the display update routine and to disable the print cancelation during homing.
  2376. homing_flag = true;
  2377. // Which axes should be homed?
  2378. bool home_x = code_seen(axis_codes[X_AXIS]);
  2379. bool home_y = code_seen(axis_codes[Y_AXIS]);
  2380. bool home_z = code_seen(axis_codes[Z_AXIS]);
  2381. // calibrate?
  2382. bool calib = code_seen('C');
  2383. // Either all X,Y,Z codes are present, or none of them.
  2384. bool home_all_axes = home_x == home_y && home_x == home_z;
  2385. if (home_all_axes)
  2386. // No X/Y/Z code provided means to home all axes.
  2387. home_x = home_y = home_z = true;
  2388. #ifdef ENABLE_AUTO_BED_LEVELING
  2389. plan_bed_level_matrix.set_to_identity(); //Reset the plane ("erase" all leveling data)
  2390. #endif //ENABLE_AUTO_BED_LEVELING
  2391. // Reset world2machine_rotation_and_skew and world2machine_shift, therefore
  2392. // the planner will not perform any adjustments in the XY plane.
  2393. // Wait for the motors to stop and update the current position with the absolute values.
  2394. world2machine_revert_to_uncorrected();
  2395. // For mesh bed leveling deactivate the matrix temporarily.
  2396. // It is necessary to disable the bed leveling for the X and Y homing moves, so that the move is performed
  2397. // in a single axis only.
  2398. // In case of re-homing the X or Y axes only, the mesh bed leveling is restored after G28.
  2399. #ifdef MESH_BED_LEVELING
  2400. uint8_t mbl_was_active = mbl.active;
  2401. mbl.active = 0;
  2402. current_position[Z_AXIS] = st_get_position_mm(Z_AXIS);
  2403. #endif
  2404. // Reset baby stepping to zero, if the babystepping has already been loaded before. The babystepsTodo value will be
  2405. // consumed during the first movements following this statement.
  2406. if (home_z)
  2407. babystep_undo();
  2408. saved_feedrate = feedrate;
  2409. saved_feedmultiply = feedmultiply;
  2410. feedmultiply = 100;
  2411. previous_millis_cmd = millis();
  2412. enable_endstops(true);
  2413. memcpy(destination, current_position, sizeof(destination));
  2414. feedrate = 0.0;
  2415. #if Z_HOME_DIR > 0 // If homing away from BED do Z first
  2416. if(home_z)
  2417. homeaxis(Z_AXIS);
  2418. #endif
  2419. #ifdef QUICK_HOME
  2420. // In the quick mode, if both x and y are to be homed, a diagonal move will be performed initially.
  2421. if(home_x && home_y) //first diagonal move
  2422. {
  2423. current_position[X_AXIS] = 0;current_position[Y_AXIS] = 0;
  2424. int x_axis_home_dir = home_dir(X_AXIS);
  2425. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2426. destination[X_AXIS] = 1.5 * max_length(X_AXIS) * x_axis_home_dir;destination[Y_AXIS] = 1.5 * max_length(Y_AXIS) * home_dir(Y_AXIS);
  2427. feedrate = homing_feedrate[X_AXIS];
  2428. if(homing_feedrate[Y_AXIS]<feedrate)
  2429. feedrate = homing_feedrate[Y_AXIS];
  2430. if (max_length(X_AXIS) > max_length(Y_AXIS)) {
  2431. feedrate *= sqrt(pow(max_length(Y_AXIS) / max_length(X_AXIS), 2) + 1);
  2432. } else {
  2433. feedrate *= sqrt(pow(max_length(X_AXIS) / max_length(Y_AXIS), 2) + 1);
  2434. }
  2435. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  2436. st_synchronize();
  2437. axis_is_at_home(X_AXIS);
  2438. axis_is_at_home(Y_AXIS);
  2439. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2440. destination[X_AXIS] = current_position[X_AXIS];
  2441. destination[Y_AXIS] = current_position[Y_AXIS];
  2442. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  2443. feedrate = 0.0;
  2444. st_synchronize();
  2445. endstops_hit_on_purpose();
  2446. current_position[X_AXIS] = destination[X_AXIS];
  2447. current_position[Y_AXIS] = destination[Y_AXIS];
  2448. current_position[Z_AXIS] = destination[Z_AXIS];
  2449. }
  2450. #endif /* QUICK_HOME */
  2451. if(home_x)
  2452. {
  2453. if (!calib)
  2454. homeaxis(X_AXIS);
  2455. else
  2456. tmc2130_home_calibrate(X_AXIS);
  2457. }
  2458. if(home_y)
  2459. {
  2460. if (!calib)
  2461. homeaxis(Y_AXIS);
  2462. else
  2463. tmc2130_home_calibrate(Y_AXIS);
  2464. }
  2465. if(code_seen(axis_codes[X_AXIS]) && code_value_long() != 0)
  2466. current_position[X_AXIS]=code_value()+add_homing[X_AXIS];
  2467. if(code_seen(axis_codes[Y_AXIS]) && code_value_long() != 0)
  2468. current_position[Y_AXIS]=code_value()+add_homing[Y_AXIS];
  2469. #if Z_HOME_DIR < 0 // If homing towards BED do Z last
  2470. #ifndef Z_SAFE_HOMING
  2471. if(home_z) {
  2472. #if defined (Z_RAISE_BEFORE_HOMING) && (Z_RAISE_BEFORE_HOMING > 0)
  2473. destination[Z_AXIS] = Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS) * (-1); // Set destination away from bed
  2474. feedrate = max_feedrate[Z_AXIS];
  2475. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
  2476. st_synchronize();
  2477. #endif // defined (Z_RAISE_BEFORE_HOMING) && (Z_RAISE_BEFORE_HOMING > 0)
  2478. #if (defined(MESH_BED_LEVELING) && !defined(MK1BP)) // If Mesh bed leveling, moxve X&Y to safe position for home
  2479. if (!(axis_known_position[X_AXIS] && axis_known_position[Y_AXIS] ))
  2480. {
  2481. homeaxis(X_AXIS);
  2482. homeaxis(Y_AXIS);
  2483. }
  2484. // 1st mesh bed leveling measurement point, corrected.
  2485. world2machine_initialize();
  2486. world2machine(pgm_read_float(bed_ref_points), pgm_read_float(bed_ref_points+1), destination[X_AXIS], destination[Y_AXIS]);
  2487. world2machine_reset();
  2488. if (destination[Y_AXIS] < Y_MIN_POS)
  2489. destination[Y_AXIS] = Y_MIN_POS;
  2490. destination[Z_AXIS] = MESH_HOME_Z_SEARCH; // Set destination away from bed
  2491. feedrate = homing_feedrate[Z_AXIS]/10;
  2492. current_position[Z_AXIS] = 0;
  2493. enable_endstops(false);
  2494. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2495. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
  2496. st_synchronize();
  2497. current_position[X_AXIS] = destination[X_AXIS];
  2498. current_position[Y_AXIS] = destination[Y_AXIS];
  2499. enable_endstops(true);
  2500. endstops_hit_on_purpose();
  2501. homeaxis(Z_AXIS);
  2502. #else // MESH_BED_LEVELING
  2503. homeaxis(Z_AXIS);
  2504. #endif // MESH_BED_LEVELING
  2505. }
  2506. #else // defined(Z_SAFE_HOMING): Z Safe mode activated.
  2507. if(home_all_axes) {
  2508. destination[X_AXIS] = round(Z_SAFE_HOMING_X_POINT - X_PROBE_OFFSET_FROM_EXTRUDER);
  2509. destination[Y_AXIS] = round(Z_SAFE_HOMING_Y_POINT - Y_PROBE_OFFSET_FROM_EXTRUDER);
  2510. destination[Z_AXIS] = Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS) * (-1); // Set destination away from bed
  2511. feedrate = XY_TRAVEL_SPEED/60;
  2512. current_position[Z_AXIS] = 0;
  2513. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2514. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
  2515. st_synchronize();
  2516. current_position[X_AXIS] = destination[X_AXIS];
  2517. current_position[Y_AXIS] = destination[Y_AXIS];
  2518. homeaxis(Z_AXIS);
  2519. }
  2520. // Let's see if X and Y are homed and probe is inside bed area.
  2521. if(home_z) {
  2522. if ( (axis_known_position[X_AXIS]) && (axis_known_position[Y_AXIS]) \
  2523. && (current_position[X_AXIS]+X_PROBE_OFFSET_FROM_EXTRUDER >= X_MIN_POS) \
  2524. && (current_position[X_AXIS]+X_PROBE_OFFSET_FROM_EXTRUDER <= X_MAX_POS) \
  2525. && (current_position[Y_AXIS]+Y_PROBE_OFFSET_FROM_EXTRUDER >= Y_MIN_POS) \
  2526. && (current_position[Y_AXIS]+Y_PROBE_OFFSET_FROM_EXTRUDER <= Y_MAX_POS)) {
  2527. current_position[Z_AXIS] = 0;
  2528. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2529. destination[Z_AXIS] = Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS) * (-1); // Set destination away from bed
  2530. feedrate = max_feedrate[Z_AXIS];
  2531. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
  2532. st_synchronize();
  2533. homeaxis(Z_AXIS);
  2534. } else if (!((axis_known_position[X_AXIS]) && (axis_known_position[Y_AXIS]))) {
  2535. LCD_MESSAGERPGM(MSG_POSITION_UNKNOWN);
  2536. SERIAL_ECHO_START;
  2537. SERIAL_ECHOLNRPGM(MSG_POSITION_UNKNOWN);
  2538. } else {
  2539. LCD_MESSAGERPGM(MSG_ZPROBE_OUT);
  2540. SERIAL_ECHO_START;
  2541. SERIAL_ECHOLNRPGM(MSG_ZPROBE_OUT);
  2542. }
  2543. }
  2544. #endif // Z_SAFE_HOMING
  2545. #endif // Z_HOME_DIR < 0
  2546. if(code_seen(axis_codes[Z_AXIS]) && code_value_long() != 0)
  2547. current_position[Z_AXIS]=code_value()+add_homing[Z_AXIS];
  2548. #ifdef ENABLE_AUTO_BED_LEVELING
  2549. if(home_z)
  2550. current_position[Z_AXIS] += zprobe_zoffset; //Add Z_Probe offset (the distance is negative)
  2551. #endif
  2552. // Set the planner and stepper routine positions.
  2553. // At this point the mesh bed leveling and world2machine corrections are disabled and current_position
  2554. // contains the machine coordinates.
  2555. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2556. #ifdef ENDSTOPS_ONLY_FOR_HOMING
  2557. enable_endstops(false);
  2558. #endif
  2559. feedrate = saved_feedrate;
  2560. feedmultiply = saved_feedmultiply;
  2561. previous_millis_cmd = millis();
  2562. endstops_hit_on_purpose();
  2563. #ifndef MESH_BED_LEVELING
  2564. // If MESH_BED_LEVELING is not active, then it is the original Prusa i3.
  2565. // Offer the user to load the baby step value, which has been adjusted at the previous print session.
  2566. if(card.sdprinting && eeprom_read_word((uint16_t *)EEPROM_BABYSTEP_Z))
  2567. lcd_adjust_z();
  2568. #endif
  2569. // Load the machine correction matrix
  2570. world2machine_initialize();
  2571. // and correct the current_position XY axes to match the transformed coordinate system.
  2572. world2machine_update_current();
  2573. #if (defined(MESH_BED_LEVELING) && !defined(MK1BP))
  2574. if (code_seen(axis_codes[X_AXIS]) || code_seen(axis_codes[Y_AXIS]) || code_seen('W') || code_seen(axis_codes[Z_AXIS]))
  2575. {
  2576. if (! home_z && mbl_was_active) {
  2577. // Re-enable the mesh bed leveling if only the X and Y axes were re-homed.
  2578. mbl.active = true;
  2579. // and re-adjust the current logical Z axis with the bed leveling offset applicable at the current XY position.
  2580. current_position[Z_AXIS] -= mbl.get_z(st_get_position_mm(X_AXIS), st_get_position_mm(Y_AXIS));
  2581. }
  2582. }
  2583. else
  2584. {
  2585. st_synchronize();
  2586. homing_flag = false;
  2587. // Push the commands to the front of the message queue in the reverse order!
  2588. // There shall be always enough space reserved for these commands.
  2589. // enquecommand_front_P((PSTR("G80")));
  2590. goto case_G80;
  2591. }
  2592. #endif
  2593. if (farm_mode) { prusa_statistics(20); };
  2594. homing_flag = false;
  2595. #if 0
  2596. SERIAL_ECHOPGM("G28, final "); print_world_coordinates();
  2597. SERIAL_ECHOPGM("G28, final "); print_physical_coordinates();
  2598. SERIAL_ECHOPGM("G28, final "); print_mesh_bed_leveling_table();
  2599. #endif
  2600. break;
  2601. }
  2602. #ifdef ENABLE_AUTO_BED_LEVELING
  2603. case 29: // G29 Detailed Z-Probe, probes the bed at 3 or more points.
  2604. {
  2605. #if Z_MIN_PIN == -1
  2606. #error "You must have a Z_MIN endstop in order to enable Auto Bed Leveling feature! Z_MIN_PIN must point to a valid hardware pin."
  2607. #endif
  2608. // Prevent user from running a G29 without first homing in X and Y
  2609. if (! (axis_known_position[X_AXIS] && axis_known_position[Y_AXIS]) )
  2610. {
  2611. LCD_MESSAGERPGM(MSG_POSITION_UNKNOWN);
  2612. SERIAL_ECHO_START;
  2613. SERIAL_ECHOLNRPGM(MSG_POSITION_UNKNOWN);
  2614. break; // abort G29, since we don't know where we are
  2615. }
  2616. st_synchronize();
  2617. // make sure the bed_level_rotation_matrix is identity or the planner will get it incorectly
  2618. //vector_3 corrected_position = plan_get_position_mm();
  2619. //corrected_position.debug("position before G29");
  2620. plan_bed_level_matrix.set_to_identity();
  2621. vector_3 uncorrected_position = plan_get_position();
  2622. //uncorrected_position.debug("position durring G29");
  2623. current_position[X_AXIS] = uncorrected_position.x;
  2624. current_position[Y_AXIS] = uncorrected_position.y;
  2625. current_position[Z_AXIS] = uncorrected_position.z;
  2626. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2627. setup_for_endstop_move();
  2628. feedrate = homing_feedrate[Z_AXIS];
  2629. #ifdef AUTO_BED_LEVELING_GRID
  2630. // probe at the points of a lattice grid
  2631. int xGridSpacing = (RIGHT_PROBE_BED_POSITION - LEFT_PROBE_BED_POSITION) / (AUTO_BED_LEVELING_GRID_POINTS-1);
  2632. int yGridSpacing = (BACK_PROBE_BED_POSITION - FRONT_PROBE_BED_POSITION) / (AUTO_BED_LEVELING_GRID_POINTS-1);
  2633. // solve the plane equation ax + by + d = z
  2634. // A is the matrix with rows [x y 1] for all the probed points
  2635. // B is the vector of the Z positions
  2636. // the normal vector to the plane is formed by the coefficients of the plane equation in the standard form, which is Vx*x+Vy*y+Vz*z+d = 0
  2637. // so Vx = -a Vy = -b Vz = 1 (we want the vector facing towards positive Z
  2638. // "A" matrix of the linear system of equations
  2639. double eqnAMatrix[AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS*3];
  2640. // "B" vector of Z points
  2641. double eqnBVector[AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS];
  2642. int probePointCounter = 0;
  2643. bool zig = true;
  2644. for (int yProbe=FRONT_PROBE_BED_POSITION; yProbe <= BACK_PROBE_BED_POSITION; yProbe += yGridSpacing)
  2645. {
  2646. int xProbe, xInc;
  2647. if (zig)
  2648. {
  2649. xProbe = LEFT_PROBE_BED_POSITION;
  2650. //xEnd = RIGHT_PROBE_BED_POSITION;
  2651. xInc = xGridSpacing;
  2652. zig = false;
  2653. } else // zag
  2654. {
  2655. xProbe = RIGHT_PROBE_BED_POSITION;
  2656. //xEnd = LEFT_PROBE_BED_POSITION;
  2657. xInc = -xGridSpacing;
  2658. zig = true;
  2659. }
  2660. for (int xCount=0; xCount < AUTO_BED_LEVELING_GRID_POINTS; xCount++)
  2661. {
  2662. float z_before;
  2663. if (probePointCounter == 0)
  2664. {
  2665. // raise before probing
  2666. z_before = Z_RAISE_BEFORE_PROBING;
  2667. } else
  2668. {
  2669. // raise extruder
  2670. z_before = current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS;
  2671. }
  2672. float measured_z = probe_pt(xProbe, yProbe, z_before);
  2673. eqnBVector[probePointCounter] = measured_z;
  2674. eqnAMatrix[probePointCounter + 0*AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS] = xProbe;
  2675. eqnAMatrix[probePointCounter + 1*AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS] = yProbe;
  2676. eqnAMatrix[probePointCounter + 2*AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS] = 1;
  2677. probePointCounter++;
  2678. xProbe += xInc;
  2679. }
  2680. }
  2681. clean_up_after_endstop_move();
  2682. // solve lsq problem
  2683. double *plane_equation_coefficients = qr_solve(AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS, 3, eqnAMatrix, eqnBVector);
  2684. SERIAL_PROTOCOLPGM("Eqn coefficients: a: ");
  2685. SERIAL_PROTOCOL(plane_equation_coefficients[0]);
  2686. SERIAL_PROTOCOLPGM(" b: ");
  2687. SERIAL_PROTOCOL(plane_equation_coefficients[1]);
  2688. SERIAL_PROTOCOLPGM(" d: ");
  2689. SERIAL_PROTOCOLLN(plane_equation_coefficients[2]);
  2690. set_bed_level_equation_lsq(plane_equation_coefficients);
  2691. free(plane_equation_coefficients);
  2692. #else // AUTO_BED_LEVELING_GRID not defined
  2693. // Probe at 3 arbitrary points
  2694. // probe 1
  2695. float z_at_pt_1 = probe_pt(ABL_PROBE_PT_1_X, ABL_PROBE_PT_1_Y, Z_RAISE_BEFORE_PROBING);
  2696. // probe 2
  2697. float z_at_pt_2 = probe_pt(ABL_PROBE_PT_2_X, ABL_PROBE_PT_2_Y, current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS);
  2698. // probe 3
  2699. float z_at_pt_3 = probe_pt(ABL_PROBE_PT_3_X, ABL_PROBE_PT_3_Y, current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS);
  2700. clean_up_after_endstop_move();
  2701. set_bed_level_equation_3pts(z_at_pt_1, z_at_pt_2, z_at_pt_3);
  2702. #endif // AUTO_BED_LEVELING_GRID
  2703. st_synchronize();
  2704. // The following code correct the Z height difference from z-probe position and hotend tip position.
  2705. // The Z height on homing is measured by Z-Probe, but the probe is quite far from the hotend.
  2706. // When the bed is uneven, this height must be corrected.
  2707. real_z = float(st_get_position(Z_AXIS))/axis_steps_per_unit[Z_AXIS]; //get the real Z (since the auto bed leveling is already correcting the plane)
  2708. x_tmp = current_position[X_AXIS] + X_PROBE_OFFSET_FROM_EXTRUDER;
  2709. y_tmp = current_position[Y_AXIS] + Y_PROBE_OFFSET_FROM_EXTRUDER;
  2710. z_tmp = current_position[Z_AXIS];
  2711. apply_rotation_xyz(plan_bed_level_matrix, x_tmp, y_tmp, z_tmp); //Apply the correction sending the probe offset
  2712. current_position[Z_AXIS] = z_tmp - real_z + current_position[Z_AXIS]; //The difference is added to current position and sent to planner.
  2713. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2714. }
  2715. break;
  2716. #ifndef Z_PROBE_SLED
  2717. case 30: // G30 Single Z Probe
  2718. {
  2719. st_synchronize();
  2720. // TODO: make sure the bed_level_rotation_matrix is identity or the planner will get set incorectly
  2721. setup_for_endstop_move();
  2722. feedrate = homing_feedrate[Z_AXIS];
  2723. run_z_probe();
  2724. SERIAL_PROTOCOLPGM(MSG_BED);
  2725. SERIAL_PROTOCOLPGM(" X: ");
  2726. SERIAL_PROTOCOL(current_position[X_AXIS]);
  2727. SERIAL_PROTOCOLPGM(" Y: ");
  2728. SERIAL_PROTOCOL(current_position[Y_AXIS]);
  2729. SERIAL_PROTOCOLPGM(" Z: ");
  2730. SERIAL_PROTOCOL(current_position[Z_AXIS]);
  2731. SERIAL_PROTOCOLPGM("\n");
  2732. clean_up_after_endstop_move();
  2733. }
  2734. break;
  2735. #else
  2736. case 31: // dock the sled
  2737. dock_sled(true);
  2738. break;
  2739. case 32: // undock the sled
  2740. dock_sled(false);
  2741. break;
  2742. #endif // Z_PROBE_SLED
  2743. #endif // ENABLE_AUTO_BED_LEVELING
  2744. #ifdef MESH_BED_LEVELING
  2745. case 30: // G30 Single Z Probe
  2746. {
  2747. st_synchronize();
  2748. // TODO: make sure the bed_level_rotation_matrix is identity or the planner will get set incorectly
  2749. setup_for_endstop_move();
  2750. feedrate = homing_feedrate[Z_AXIS];
  2751. find_bed_induction_sensor_point_z(-10.f, 3);
  2752. SERIAL_PROTOCOLRPGM(MSG_BED);
  2753. SERIAL_PROTOCOLPGM(" X: ");
  2754. MYSERIAL.print(current_position[X_AXIS], 5);
  2755. SERIAL_PROTOCOLPGM(" Y: ");
  2756. MYSERIAL.print(current_position[Y_AXIS], 5);
  2757. SERIAL_PROTOCOLPGM(" Z: ");
  2758. MYSERIAL.print(current_position[Z_AXIS], 5);
  2759. SERIAL_PROTOCOLPGM("\n");
  2760. clean_up_after_endstop_move();
  2761. }
  2762. break;
  2763. case 75:
  2764. {
  2765. for (int i = 40; i <= 110; i++) {
  2766. MYSERIAL.print(i);
  2767. MYSERIAL.print(" ");
  2768. MYSERIAL.println(temp_comp_interpolation(i));// / axis_steps_per_unit[Z_AXIS]);
  2769. }
  2770. }
  2771. break;
  2772. case 76: //PINDA probe temperature calibration
  2773. {
  2774. #ifdef PINDA_THERMISTOR
  2775. if (true)
  2776. {
  2777. if (!(axis_known_position[X_AXIS] && axis_known_position[Y_AXIS] && axis_known_position[Z_AXIS]))
  2778. {
  2779. // We don't know where we are! HOME!
  2780. // Push the commands to the front of the message queue in the reverse order!
  2781. // There shall be always enough space reserved for these commands.
  2782. repeatcommand_front(); // repeat G76 with all its parameters
  2783. enquecommand_front_P((PSTR("G28 W0")));
  2784. break;
  2785. }
  2786. lcd_show_fullscreen_message_and_wait_P(MSG_TEMP_CAL_WARNING);
  2787. bool result = lcd_show_fullscreen_message_yes_no_and_wait_P(MSG_STEEL_SHEET_CHECK, false, false);
  2788. if (result)
  2789. {
  2790. current_position[Z_AXIS] = 50;
  2791. current_position[Y_AXIS] = 190;
  2792. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  2793. st_synchronize();
  2794. lcd_show_fullscreen_message_and_wait_P(MSG_REMOVE_STEEL_SHEET);
  2795. }
  2796. lcd_update_enable(true);
  2797. KEEPALIVE_STATE(NOT_BUSY); //no need to print busy messages as we print current temperatures periodicaly
  2798. SERIAL_ECHOLNPGM("PINDA probe calibration start");
  2799. float zero_z;
  2800. int z_shift = 0; //unit: steps
  2801. float start_temp = 5 * (int)(current_temperature_pinda / 5);
  2802. if (start_temp < 35) start_temp = 35;
  2803. if (start_temp < current_temperature_pinda) start_temp += 5;
  2804. SERIAL_ECHOPGM("start temperature: ");
  2805. MYSERIAL.println(start_temp);
  2806. // setTargetHotend(200, 0);
  2807. setTargetBed(70 + (start_temp - 30));
  2808. custom_message = true;
  2809. custom_message_type = 4;
  2810. custom_message_state = 1;
  2811. custom_message = MSG_TEMP_CALIBRATION;
  2812. current_position[X_AXIS] = PINDA_PREHEAT_X;
  2813. current_position[Y_AXIS] = PINDA_PREHEAT_Y;
  2814. current_position[Z_AXIS] = PINDA_PREHEAT_Z;
  2815. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  2816. st_synchronize();
  2817. while (current_temperature_pinda < start_temp)
  2818. {
  2819. delay_keep_alive(1000);
  2820. serialecho_temperatures();
  2821. }
  2822. eeprom_update_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 0); //invalidate temp. calibration in case that in will be aborted during the calibration process
  2823. current_position[Z_AXIS] = 5;
  2824. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  2825. current_position[X_AXIS] = pgm_read_float(bed_ref_points);
  2826. current_position[Y_AXIS] = pgm_read_float(bed_ref_points + 1);
  2827. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  2828. st_synchronize();
  2829. find_bed_induction_sensor_point_z(-1.f);
  2830. zero_z = current_position[Z_AXIS];
  2831. //current_position[Z_AXIS]
  2832. SERIAL_ECHOLNPGM("");
  2833. SERIAL_ECHOPGM("ZERO: ");
  2834. MYSERIAL.print(current_position[Z_AXIS]);
  2835. SERIAL_ECHOLNPGM("");
  2836. int i = -1; for (; i < 5; i++)
  2837. {
  2838. float temp = (40 + i * 5);
  2839. SERIAL_ECHOPGM("Step: ");
  2840. MYSERIAL.print(i + 2);
  2841. SERIAL_ECHOLNPGM("/6 (skipped)");
  2842. SERIAL_ECHOPGM("PINDA temperature: ");
  2843. MYSERIAL.print((40 + i*5));
  2844. SERIAL_ECHOPGM(" Z shift (mm):");
  2845. MYSERIAL.print(0);
  2846. SERIAL_ECHOLNPGM("");
  2847. if (i >= 0) EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + i * 2, &z_shift);
  2848. if (start_temp <= temp) break;
  2849. }
  2850. for (i++; i < 5; i++)
  2851. {
  2852. float temp = (40 + i * 5);
  2853. SERIAL_ECHOPGM("Step: ");
  2854. MYSERIAL.print(i + 2);
  2855. SERIAL_ECHOLNPGM("/6");
  2856. custom_message_state = i + 2;
  2857. setTargetBed(50 + 10 * (temp - 30) / 5);
  2858. // setTargetHotend(255, 0);
  2859. current_position[X_AXIS] = PINDA_PREHEAT_X;
  2860. current_position[Y_AXIS] = PINDA_PREHEAT_Y;
  2861. current_position[Z_AXIS] = PINDA_PREHEAT_Z;
  2862. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  2863. st_synchronize();
  2864. while (current_temperature_pinda < temp)
  2865. {
  2866. delay_keep_alive(1000);
  2867. serialecho_temperatures();
  2868. }
  2869. current_position[Z_AXIS] = 5;
  2870. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  2871. current_position[X_AXIS] = pgm_read_float(bed_ref_points);
  2872. current_position[Y_AXIS] = pgm_read_float(bed_ref_points + 1);
  2873. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  2874. st_synchronize();
  2875. find_bed_induction_sensor_point_z(-1.f);
  2876. z_shift = (int)((current_position[Z_AXIS] - zero_z)*axis_steps_per_unit[Z_AXIS]);
  2877. SERIAL_ECHOLNPGM("");
  2878. SERIAL_ECHOPGM("PINDA temperature: ");
  2879. MYSERIAL.print(current_temperature_pinda);
  2880. SERIAL_ECHOPGM(" Z shift (mm):");
  2881. MYSERIAL.print(current_position[Z_AXIS] - zero_z);
  2882. SERIAL_ECHOLNPGM("");
  2883. EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + i * 2, &z_shift);
  2884. }
  2885. custom_message_type = 0;
  2886. custom_message = false;
  2887. eeprom_update_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 1);
  2888. SERIAL_ECHOLNPGM("Temperature calibration done. Continue with pressing the knob.");
  2889. disable_x();
  2890. disable_y();
  2891. disable_z();
  2892. disable_e0();
  2893. disable_e1();
  2894. disable_e2();
  2895. setTargetBed(0); //set bed target temperature back to 0
  2896. // setTargetHotend(0,0); //set hotend target temperature back to 0
  2897. lcd_show_fullscreen_message_and_wait_P(MSG_TEMP_CALIBRATION_DONE);
  2898. lcd_update_enable(true);
  2899. lcd_update(2);
  2900. break;
  2901. }
  2902. #endif //PINDA_THERMISTOR
  2903. setTargetBed(PINDA_MIN_T);
  2904. float zero_z;
  2905. int z_shift = 0; //unit: steps
  2906. int t_c; // temperature
  2907. if (!(axis_known_position[X_AXIS] && axis_known_position[Y_AXIS] && axis_known_position[Z_AXIS])) {
  2908. // We don't know where we are! HOME!
  2909. // Push the commands to the front of the message queue in the reverse order!
  2910. // There shall be always enough space reserved for these commands.
  2911. repeatcommand_front(); // repeat G76 with all its parameters
  2912. enquecommand_front_P((PSTR("G28 W0")));
  2913. break;
  2914. }
  2915. SERIAL_ECHOLNPGM("PINDA probe calibration start");
  2916. custom_message = true;
  2917. custom_message_type = 4;
  2918. custom_message_state = 1;
  2919. custom_message = MSG_TEMP_CALIBRATION;
  2920. current_position[X_AXIS] = PINDA_PREHEAT_X;
  2921. current_position[Y_AXIS] = PINDA_PREHEAT_Y;
  2922. current_position[Z_AXIS] = PINDA_PREHEAT_Z;
  2923. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  2924. st_synchronize();
  2925. while (abs(degBed() - PINDA_MIN_T) > 1) {
  2926. delay_keep_alive(1000);
  2927. serialecho_temperatures();
  2928. }
  2929. //enquecommand_P(PSTR("M190 S50"));
  2930. for (int i = 0; i < PINDA_HEAT_T; i++) {
  2931. delay_keep_alive(1000);
  2932. serialecho_temperatures();
  2933. }
  2934. eeprom_update_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 0); //invalidate temp. calibration in case that in will be aborted during the calibration process
  2935. current_position[Z_AXIS] = 5;
  2936. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  2937. current_position[X_AXIS] = pgm_read_float(bed_ref_points);
  2938. current_position[Y_AXIS] = pgm_read_float(bed_ref_points + 1);
  2939. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  2940. st_synchronize();
  2941. find_bed_induction_sensor_point_z(-1.f);
  2942. zero_z = current_position[Z_AXIS];
  2943. //current_position[Z_AXIS]
  2944. SERIAL_ECHOLNPGM("");
  2945. SERIAL_ECHOPGM("ZERO: ");
  2946. MYSERIAL.print(current_position[Z_AXIS]);
  2947. SERIAL_ECHOLNPGM("");
  2948. for (int i = 0; i<5; i++) {
  2949. SERIAL_ECHOPGM("Step: ");
  2950. MYSERIAL.print(i+2);
  2951. SERIAL_ECHOLNPGM("/6");
  2952. custom_message_state = i + 2;
  2953. t_c = 60 + i * 10;
  2954. setTargetBed(t_c);
  2955. current_position[X_AXIS] = PINDA_PREHEAT_X;
  2956. current_position[Y_AXIS] = PINDA_PREHEAT_Y;
  2957. current_position[Z_AXIS] = PINDA_PREHEAT_Z;
  2958. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  2959. st_synchronize();
  2960. while (degBed() < t_c) {
  2961. delay_keep_alive(1000);
  2962. serialecho_temperatures();
  2963. }
  2964. for (int i = 0; i < PINDA_HEAT_T; i++) {
  2965. delay_keep_alive(1000);
  2966. serialecho_temperatures();
  2967. }
  2968. current_position[Z_AXIS] = 5;
  2969. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  2970. current_position[X_AXIS] = pgm_read_float(bed_ref_points);
  2971. current_position[Y_AXIS] = pgm_read_float(bed_ref_points + 1);
  2972. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  2973. st_synchronize();
  2974. find_bed_induction_sensor_point_z(-1.f);
  2975. z_shift = (int)((current_position[Z_AXIS] - zero_z)*axis_steps_per_unit[Z_AXIS]);
  2976. SERIAL_ECHOLNPGM("");
  2977. SERIAL_ECHOPGM("Temperature: ");
  2978. MYSERIAL.print(t_c);
  2979. SERIAL_ECHOPGM(" Z shift (mm):");
  2980. MYSERIAL.print(current_position[Z_AXIS] - zero_z);
  2981. SERIAL_ECHOLNPGM("");
  2982. EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + i*2, &z_shift);
  2983. }
  2984. custom_message_type = 0;
  2985. custom_message = false;
  2986. eeprom_update_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 1);
  2987. SERIAL_ECHOLNPGM("Temperature calibration done. Continue with pressing the knob.");
  2988. disable_x();
  2989. disable_y();
  2990. disable_z();
  2991. disable_e0();
  2992. disable_e1();
  2993. disable_e2();
  2994. setTargetBed(0); //set bed target temperature back to 0
  2995. lcd_show_fullscreen_message_and_wait_P(MSG_TEMP_CALIBRATION_DONE);
  2996. lcd_update_enable(true);
  2997. lcd_update(2);
  2998. }
  2999. break;
  3000. #ifdef DIS
  3001. case 77:
  3002. {
  3003. //G77 X200 Y150 XP100 YP15 XO10 Y015
  3004. //for 9 point mesh bed leveling G77 X203 Y196 XP3 YP3 XO0 YO0
  3005. //G77 X232 Y218 XP116 YP109 XO-11 YO0
  3006. float dimension_x = 40;
  3007. float dimension_y = 40;
  3008. int points_x = 40;
  3009. int points_y = 40;
  3010. float offset_x = 74;
  3011. float offset_y = 33;
  3012. if (code_seen('X')) dimension_x = code_value();
  3013. if (code_seen('Y')) dimension_y = code_value();
  3014. if (code_seen('XP')) points_x = code_value();
  3015. if (code_seen('YP')) points_y = code_value();
  3016. if (code_seen('XO')) offset_x = code_value();
  3017. if (code_seen('YO')) offset_y = code_value();
  3018. bed_analysis(dimension_x,dimension_y,points_x,points_y,offset_x,offset_y);
  3019. } break;
  3020. #endif
  3021. case 79: {
  3022. for (int i = 255; i > 0; i = i - 5) {
  3023. fanSpeed = i;
  3024. //delay_keep_alive(2000);
  3025. for (int j = 0; j < 100; j++) {
  3026. delay_keep_alive(100);
  3027. }
  3028. fan_speed[1];
  3029. MYSERIAL.print(i); SERIAL_ECHOPGM(": "); MYSERIAL.println(fan_speed[1]);
  3030. }
  3031. }break;
  3032. /**
  3033. * G80: Mesh-based Z probe, probes a grid and produces a
  3034. * mesh to compensate for variable bed height
  3035. *
  3036. * The S0 report the points as below
  3037. *
  3038. * +----> X-axis
  3039. * |
  3040. * |
  3041. * v Y-axis
  3042. *
  3043. */
  3044. case 80:
  3045. #ifdef MK1BP
  3046. break;
  3047. #endif //MK1BP
  3048. case_G80:
  3049. {
  3050. mesh_bed_leveling_flag = true;
  3051. int8_t verbosity_level = 0;
  3052. static bool run = false;
  3053. if (code_seen('V')) {
  3054. // Just 'V' without a number counts as V1.
  3055. char c = strchr_pointer[1];
  3056. verbosity_level = (c == ' ' || c == '\t' || c == 0) ? 1 : code_value_short();
  3057. }
  3058. // Firstly check if we know where we are
  3059. if (!(axis_known_position[X_AXIS] && axis_known_position[Y_AXIS] && axis_known_position[Z_AXIS])) {
  3060. // We don't know where we are! HOME!
  3061. // Push the commands to the front of the message queue in the reverse order!
  3062. // There shall be always enough space reserved for these commands.
  3063. if (lcd_commands_type != LCD_COMMAND_STOP_PRINT) {
  3064. repeatcommand_front(); // repeat G80 with all its parameters
  3065. enquecommand_front_P((PSTR("G28 W0")));
  3066. }
  3067. else {
  3068. mesh_bed_leveling_flag = false;
  3069. }
  3070. break;
  3071. }
  3072. bool temp_comp_start = true;
  3073. #ifdef PINDA_THERMISTOR
  3074. temp_comp_start = false;
  3075. #endif //PINDA_THERMISTOR
  3076. if (temp_comp_start)
  3077. if (run == false && temp_cal_active == true && calibration_status_pinda() == true && target_temperature_bed >= 50) {
  3078. if (lcd_commands_type != LCD_COMMAND_STOP_PRINT) {
  3079. temp_compensation_start();
  3080. run = true;
  3081. repeatcommand_front(); // repeat G80 with all its parameters
  3082. enquecommand_front_P((PSTR("G28 W0")));
  3083. }
  3084. else {
  3085. mesh_bed_leveling_flag = false;
  3086. }
  3087. break;
  3088. }
  3089. run = false;
  3090. if (lcd_commands_type == LCD_COMMAND_STOP_PRINT) {
  3091. mesh_bed_leveling_flag = false;
  3092. break;
  3093. }
  3094. // Save custom message state, set a new custom message state to display: Calibrating point 9.
  3095. bool custom_message_old = custom_message;
  3096. unsigned int custom_message_type_old = custom_message_type;
  3097. unsigned int custom_message_state_old = custom_message_state;
  3098. custom_message = true;
  3099. custom_message_type = 1;
  3100. custom_message_state = (MESH_MEAS_NUM_X_POINTS * MESH_MEAS_NUM_Y_POINTS) + 10;
  3101. lcd_update(1);
  3102. mbl.reset(); //reset mesh bed leveling
  3103. // Reset baby stepping to zero, if the babystepping has already been loaded before. The babystepsTodo value will be
  3104. // consumed during the first movements following this statement.
  3105. babystep_undo();
  3106. // Cycle through all points and probe them
  3107. // First move up. During this first movement, the babystepping will be reverted.
  3108. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3109. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[Z_AXIS] / 60, active_extruder);
  3110. // The move to the first calibration point.
  3111. current_position[X_AXIS] = pgm_read_float(bed_ref_points);
  3112. current_position[Y_AXIS] = pgm_read_float(bed_ref_points + 1);
  3113. bool clamped = world2machine_clamp(current_position[X_AXIS], current_position[Y_AXIS]);
  3114. #ifdef SUPPORT_VERBOSITY
  3115. if (verbosity_level >= 1) {
  3116. clamped ? SERIAL_PROTOCOLPGM("First calibration point clamped.\n") : SERIAL_PROTOCOLPGM("No clamping for first calibration point.\n");
  3117. }
  3118. #endif //SUPPORT_VERBOSITY
  3119. // mbl.get_meas_xy(0, 0, current_position[X_AXIS], current_position[Y_AXIS], false);
  3120. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[X_AXIS] / 30, active_extruder);
  3121. // Wait until the move is finished.
  3122. st_synchronize();
  3123. int mesh_point = 0; //index number of calibration point
  3124. int ix = 0;
  3125. int iy = 0;
  3126. int XY_AXIS_FEEDRATE = homing_feedrate[X_AXIS] / 20;
  3127. int Z_PROBE_FEEDRATE = homing_feedrate[Z_AXIS] / 60;
  3128. int Z_LIFT_FEEDRATE = homing_feedrate[Z_AXIS] / 40;
  3129. bool has_z = is_bed_z_jitter_data_valid(); //checks if we have data from Z calibration (offsets of the Z heiths of the 8 calibration points from the first point)
  3130. #ifdef SUPPORT_VERBOSITY
  3131. if (verbosity_level >= 1) {
  3132. has_z ? SERIAL_PROTOCOLPGM("Z jitter data from Z cal. valid.\n") : SERIAL_PROTOCOLPGM("Z jitter data from Z cal. not valid.\n");
  3133. }
  3134. #endif // SUPPORT_VERBOSITY
  3135. setup_for_endstop_move(false); //save feedrate and feedmultiply, sets feedmultiply to 100
  3136. const char *kill_message = NULL;
  3137. while (mesh_point != MESH_MEAS_NUM_X_POINTS * MESH_MEAS_NUM_Y_POINTS) {
  3138. // Get coords of a measuring point.
  3139. ix = mesh_point % MESH_MEAS_NUM_X_POINTS; // from 0 to MESH_NUM_X_POINTS - 1
  3140. iy = mesh_point / MESH_MEAS_NUM_X_POINTS;
  3141. if (iy & 1) ix = (MESH_MEAS_NUM_X_POINTS - 1) - ix; // Zig zag
  3142. float z0 = 0.f;
  3143. if (has_z && mesh_point > 0) {
  3144. uint16_t z_offset_u = eeprom_read_word((uint16_t*)(EEPROM_BED_CALIBRATION_Z_JITTER + 2 * (ix + iy * 3 - 1)));
  3145. z0 = mbl.z_values[0][0] + *reinterpret_cast<int16_t*>(&z_offset_u) * 0.01;
  3146. //#if 0
  3147. #ifdef SUPPORT_VERBOSITY
  3148. if (verbosity_level >= 1) {
  3149. SERIAL_ECHOLNPGM("");
  3150. SERIAL_ECHOPGM("Bed leveling, point: ");
  3151. MYSERIAL.print(mesh_point);
  3152. SERIAL_ECHOPGM(", calibration z: ");
  3153. MYSERIAL.print(z0, 5);
  3154. SERIAL_ECHOLNPGM("");
  3155. }
  3156. #endif // SUPPORT_VERBOSITY
  3157. //#endif
  3158. }
  3159. // Move Z up to MESH_HOME_Z_SEARCH.
  3160. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3161. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], Z_LIFT_FEEDRATE, active_extruder);
  3162. st_synchronize();
  3163. // Move to XY position of the sensor point.
  3164. current_position[X_AXIS] = pgm_read_float(bed_ref_points + 2 * mesh_point);
  3165. current_position[Y_AXIS] = pgm_read_float(bed_ref_points + 2 * mesh_point + 1);
  3166. world2machine_clamp(current_position[X_AXIS], current_position[Y_AXIS]);
  3167. #ifdef SUPPORT_VERBOSITY
  3168. if (verbosity_level >= 1) {
  3169. SERIAL_PROTOCOL(mesh_point);
  3170. clamped ? SERIAL_PROTOCOLPGM(": xy clamped.\n") : SERIAL_PROTOCOLPGM(": no xy clamping\n");
  3171. }
  3172. #endif // SUPPORT_VERBOSITY
  3173. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], XY_AXIS_FEEDRATE, active_extruder);
  3174. st_synchronize();
  3175. // Go down until endstop is hit
  3176. const float Z_CALIBRATION_THRESHOLD = 1.f;
  3177. if (!find_bed_induction_sensor_point_z((has_z && mesh_point > 0) ? z0 - Z_CALIBRATION_THRESHOLD : -10.f)) { //if we have data from z calibration max allowed difference is 1mm for each point, if we dont have data max difference is 10mm from initial point
  3178. kill_message = MSG_BED_LEVELING_FAILED_POINT_LOW;
  3179. break;
  3180. }
  3181. if (MESH_HOME_Z_SEARCH - current_position[Z_AXIS] < 0.1f) {
  3182. kill_message = MSG_BED_LEVELING_FAILED_PROBE_DISCONNECTED;
  3183. break;
  3184. }
  3185. if (has_z && fabs(z0 - current_position[Z_AXIS]) > Z_CALIBRATION_THRESHOLD) { //if we have data from z calibration, max. allowed difference is 1mm for each point
  3186. kill_message = MSG_BED_LEVELING_FAILED_POINT_HIGH;
  3187. break;
  3188. }
  3189. #ifdef SUPPORT_VERBOSITY
  3190. if (verbosity_level >= 10) {
  3191. SERIAL_ECHOPGM("X: ");
  3192. MYSERIAL.print(current_position[X_AXIS], 5);
  3193. SERIAL_ECHOLNPGM("");
  3194. SERIAL_ECHOPGM("Y: ");
  3195. MYSERIAL.print(current_position[Y_AXIS], 5);
  3196. SERIAL_PROTOCOLPGM("\n");
  3197. }
  3198. #endif // SUPPORT_VERBOSITY
  3199. float offset_z = 0;
  3200. #ifdef PINDA_THERMISTOR
  3201. offset_z = temp_compensation_pinda_thermistor_offset(current_temperature_pinda);
  3202. #endif //PINDA_THERMISTOR
  3203. // #ifdef SUPPORT_VERBOSITY
  3204. /* if (verbosity_level >= 1)
  3205. {
  3206. SERIAL_ECHOPGM("mesh bed leveling: ");
  3207. MYSERIAL.print(current_position[Z_AXIS], 5);
  3208. SERIAL_ECHOPGM(" offset: ");
  3209. MYSERIAL.print(offset_z, 5);
  3210. SERIAL_ECHOLNPGM("");
  3211. }*/
  3212. // #endif // SUPPORT_VERBOSITY
  3213. mbl.set_z(ix, iy, current_position[Z_AXIS] - offset_z); //store measured z values z_values[iy][ix] = z - offset_z;
  3214. custom_message_state--;
  3215. mesh_point++;
  3216. lcd_update(1);
  3217. }
  3218. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3219. #ifdef SUPPORT_VERBOSITY
  3220. if (verbosity_level >= 20) {
  3221. SERIAL_ECHOLNPGM("Mesh bed leveling while loop finished.");
  3222. SERIAL_ECHOLNPGM("MESH_HOME_Z_SEARCH: ");
  3223. MYSERIAL.print(current_position[Z_AXIS], 5);
  3224. }
  3225. #endif // SUPPORT_VERBOSITY
  3226. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], Z_LIFT_FEEDRATE, active_extruder);
  3227. st_synchronize();
  3228. if (mesh_point != MESH_MEAS_NUM_X_POINTS * MESH_MEAS_NUM_Y_POINTS) {
  3229. kill(kill_message);
  3230. SERIAL_ECHOLNPGM("killed");
  3231. }
  3232. clean_up_after_endstop_move();
  3233. // SERIAL_ECHOLNPGM("clean up finished ");
  3234. bool apply_temp_comp = true;
  3235. #ifdef PINDA_THERMISTOR
  3236. apply_temp_comp = false;
  3237. #endif
  3238. if (apply_temp_comp)
  3239. if(temp_cal_active == true && calibration_status_pinda() == true) temp_compensation_apply(); //apply PINDA temperature compensation
  3240. babystep_apply(); // Apply Z height correction aka baby stepping before mesh bed leveing gets activated.
  3241. // SERIAL_ECHOLNPGM("babystep applied");
  3242. bool eeprom_bed_correction_valid = eeprom_read_byte((unsigned char*)EEPROM_BED_CORRECTION_VALID) == 1;
  3243. #ifdef SUPPORT_VERBOSITY
  3244. if (verbosity_level >= 1) {
  3245. eeprom_bed_correction_valid ? SERIAL_PROTOCOLPGM("Bed correction data valid\n") : SERIAL_PROTOCOLPGM("Bed correction data not valid\n");
  3246. }
  3247. #endif // SUPPORT_VERBOSITY
  3248. for (uint8_t i = 0; i < 4; ++i) {
  3249. unsigned char codes[4] = { 'L', 'R', 'F', 'B' };
  3250. long correction = 0;
  3251. if (code_seen(codes[i]))
  3252. correction = code_value_long();
  3253. else if (eeprom_bed_correction_valid) {
  3254. unsigned char *addr = (i < 2) ?
  3255. ((i == 0) ? (unsigned char*)EEPROM_BED_CORRECTION_LEFT : (unsigned char*)EEPROM_BED_CORRECTION_RIGHT) :
  3256. ((i == 2) ? (unsigned char*)EEPROM_BED_CORRECTION_FRONT : (unsigned char*)EEPROM_BED_CORRECTION_REAR);
  3257. correction = eeprom_read_int8(addr);
  3258. }
  3259. if (correction == 0)
  3260. continue;
  3261. float offset = float(correction) * 0.001f;
  3262. if (fabs(offset) > 0.101f) {
  3263. SERIAL_ERROR_START;
  3264. SERIAL_ECHOPGM("Excessive bed leveling correction: ");
  3265. SERIAL_ECHO(offset);
  3266. SERIAL_ECHOLNPGM(" microns");
  3267. }
  3268. else {
  3269. switch (i) {
  3270. case 0:
  3271. for (uint8_t row = 0; row < 3; ++row) {
  3272. mbl.z_values[row][1] += 0.5f * offset;
  3273. mbl.z_values[row][0] += offset;
  3274. }
  3275. break;
  3276. case 1:
  3277. for (uint8_t row = 0; row < 3; ++row) {
  3278. mbl.z_values[row][1] += 0.5f * offset;
  3279. mbl.z_values[row][2] += offset;
  3280. }
  3281. break;
  3282. case 2:
  3283. for (uint8_t col = 0; col < 3; ++col) {
  3284. mbl.z_values[1][col] += 0.5f * offset;
  3285. mbl.z_values[0][col] += offset;
  3286. }
  3287. break;
  3288. case 3:
  3289. for (uint8_t col = 0; col < 3; ++col) {
  3290. mbl.z_values[1][col] += 0.5f * offset;
  3291. mbl.z_values[2][col] += offset;
  3292. }
  3293. break;
  3294. }
  3295. }
  3296. }
  3297. // SERIAL_ECHOLNPGM("Bed leveling correction finished");
  3298. mbl.upsample_3x3(); //bilinear interpolation from 3x3 to 7x7 points while using the same array z_values[iy][ix] for storing (just coppying measured data to new destination and interpolating between them)
  3299. // SERIAL_ECHOLNPGM("Upsample finished");
  3300. mbl.active = 1; //activate mesh bed leveling
  3301. // SERIAL_ECHOLNPGM("Mesh bed leveling activated");
  3302. go_home_with_z_lift();
  3303. // SERIAL_ECHOLNPGM("Go home finished");
  3304. //unretract (after PINDA preheat retraction)
  3305. if (degHotend(active_extruder) > EXTRUDE_MINTEMP && temp_cal_active == true && calibration_status_pinda() == true && target_temperature_bed >= 50) {
  3306. current_position[E_AXIS] += DEFAULT_RETRACTION;
  3307. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400, active_extruder);
  3308. }
  3309. KEEPALIVE_STATE(NOT_BUSY);
  3310. // Restore custom message state
  3311. custom_message = custom_message_old;
  3312. custom_message_type = custom_message_type_old;
  3313. custom_message_state = custom_message_state_old;
  3314. mesh_bed_leveling_flag = false;
  3315. mesh_bed_run_from_menu = false;
  3316. lcd_update(2);
  3317. }
  3318. break;
  3319. /**
  3320. * G81: Print mesh bed leveling status and bed profile if activated
  3321. */
  3322. case 81:
  3323. if (mbl.active) {
  3324. SERIAL_PROTOCOLPGM("Num X,Y: ");
  3325. SERIAL_PROTOCOL(MESH_NUM_X_POINTS);
  3326. SERIAL_PROTOCOLPGM(",");
  3327. SERIAL_PROTOCOL(MESH_NUM_Y_POINTS);
  3328. SERIAL_PROTOCOLPGM("\nZ search height: ");
  3329. SERIAL_PROTOCOL(MESH_HOME_Z_SEARCH);
  3330. SERIAL_PROTOCOLLNPGM("\nMeasured points:");
  3331. for (int y = MESH_NUM_Y_POINTS-1; y >= 0; y--) {
  3332. for (int x = 0; x < MESH_NUM_X_POINTS; x++) {
  3333. SERIAL_PROTOCOLPGM(" ");
  3334. SERIAL_PROTOCOL_F(mbl.z_values[y][x], 5);
  3335. }
  3336. SERIAL_PROTOCOLPGM("\n");
  3337. }
  3338. }
  3339. else
  3340. SERIAL_PROTOCOLLNPGM("Mesh bed leveling not active.");
  3341. break;
  3342. #if 0
  3343. /**
  3344. * G82: Single Z probe at current location
  3345. *
  3346. * WARNING! USE WITH CAUTION! If you'll try to probe where is no leveling pad, nasty things can happen!
  3347. *
  3348. */
  3349. case 82:
  3350. SERIAL_PROTOCOLLNPGM("Finding bed ");
  3351. setup_for_endstop_move();
  3352. find_bed_induction_sensor_point_z();
  3353. clean_up_after_endstop_move();
  3354. SERIAL_PROTOCOLPGM("Bed found at: ");
  3355. SERIAL_PROTOCOL_F(current_position[Z_AXIS], 5);
  3356. SERIAL_PROTOCOLPGM("\n");
  3357. break;
  3358. /**
  3359. * G83: Prusa3D specific: Babystep in Z and store to EEPROM
  3360. */
  3361. case 83:
  3362. {
  3363. int babystepz = code_seen('S') ? code_value() : 0;
  3364. int BabyPosition = code_seen('P') ? code_value() : 0;
  3365. if (babystepz != 0) {
  3366. //FIXME Vojtech: What shall be the index of the axis Z: 3 or 4?
  3367. // Is the axis indexed starting with zero or one?
  3368. if (BabyPosition > 4) {
  3369. SERIAL_PROTOCOLLNPGM("Index out of bounds");
  3370. }else{
  3371. // Save it to the eeprom
  3372. babystepLoadZ = babystepz;
  3373. EEPROM_save_B(EEPROM_BABYSTEP_Z0+(BabyPosition*2),&babystepLoadZ);
  3374. // adjust the Z
  3375. babystepsTodoZadd(babystepLoadZ);
  3376. }
  3377. }
  3378. }
  3379. break;
  3380. /**
  3381. * G84: Prusa3D specific: UNDO Babystep Z (move Z axis back)
  3382. */
  3383. case 84:
  3384. babystepsTodoZsubtract(babystepLoadZ);
  3385. // babystepLoadZ = 0;
  3386. break;
  3387. /**
  3388. * G85: Prusa3D specific: Pick best babystep
  3389. */
  3390. case 85:
  3391. lcd_pick_babystep();
  3392. break;
  3393. #endif
  3394. /**
  3395. * G86: Prusa3D specific: Disable babystep correction after home.
  3396. * This G-code will be performed at the start of a calibration script.
  3397. */
  3398. case 86:
  3399. calibration_status_store(CALIBRATION_STATUS_LIVE_ADJUST);
  3400. break;
  3401. /**
  3402. * G87: Prusa3D specific: Enable babystep correction after home
  3403. * This G-code will be performed at the end of a calibration script.
  3404. */
  3405. case 87:
  3406. calibration_status_store(CALIBRATION_STATUS_CALIBRATED);
  3407. break;
  3408. /**
  3409. * G88: Prusa3D specific: Don't know what it is for, it is in V2Calibration.gcode
  3410. */
  3411. case 88:
  3412. break;
  3413. #endif // ENABLE_MESH_BED_LEVELING
  3414. case 90: // G90
  3415. relative_mode = false;
  3416. break;
  3417. case 91: // G91
  3418. relative_mode = true;
  3419. break;
  3420. case 92: // G92
  3421. if(!code_seen(axis_codes[E_AXIS]))
  3422. st_synchronize();
  3423. for(int8_t i=0; i < NUM_AXIS; i++) {
  3424. if(code_seen(axis_codes[i])) {
  3425. if(i == E_AXIS) {
  3426. current_position[i] = code_value();
  3427. plan_set_e_position(current_position[E_AXIS]);
  3428. }
  3429. else {
  3430. current_position[i] = code_value()+add_homing[i];
  3431. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  3432. }
  3433. }
  3434. }
  3435. break;
  3436. case 98: //activate farm mode
  3437. farm_mode = 1;
  3438. PingTime = millis();
  3439. eeprom_update_byte((unsigned char *)EEPROM_FARM_MODE, farm_mode);
  3440. break;
  3441. case 99: //deactivate farm mode
  3442. farm_mode = 0;
  3443. lcd_printer_connected();
  3444. eeprom_update_byte((unsigned char *)EEPROM_FARM_MODE, farm_mode);
  3445. lcd_update(2);
  3446. break;
  3447. default:
  3448. printf_P(PSTR("Unknown G code: %s \n"), cmdbuffer + bufindr + CMDHDRSIZE);
  3449. }
  3450. } // end if(code_seen('G'))
  3451. else if(code_seen('M'))
  3452. {
  3453. int index;
  3454. for (index = 1; *(strchr_pointer + index) == ' ' || *(strchr_pointer + index) == '\t'; index++);
  3455. /*for (++strchr_pointer; *strchr_pointer == ' ' || *strchr_pointer == '\t'; ++strchr_pointer);*/
  3456. if (*(strchr_pointer+index) < '0' || *(strchr_pointer+index) > '9') {
  3457. printf_P(PSTR("Invalid M code: %s \n"), cmdbuffer + bufindr + CMDHDRSIZE);
  3458. } else
  3459. switch((int)code_value())
  3460. {
  3461. #ifdef ULTIPANEL
  3462. case 0: // M0 - Unconditional stop - Wait for user button press on LCD
  3463. case 1: // M1 - Conditional stop - Wait for user button press on LCD
  3464. {
  3465. char *src = strchr_pointer + 2;
  3466. codenum = 0;
  3467. bool hasP = false, hasS = false;
  3468. if (code_seen('P')) {
  3469. codenum = code_value(); // milliseconds to wait
  3470. hasP = codenum > 0;
  3471. }
  3472. if (code_seen('S')) {
  3473. codenum = code_value() * 1000; // seconds to wait
  3474. hasS = codenum > 0;
  3475. }
  3476. starpos = strchr(src, '*');
  3477. if (starpos != NULL) *(starpos) = '\0';
  3478. while (*src == ' ') ++src;
  3479. if (!hasP && !hasS && *src != '\0') {
  3480. lcd_setstatus(src);
  3481. } else {
  3482. LCD_MESSAGERPGM(MSG_USERWAIT);
  3483. }
  3484. lcd_ignore_click(); //call lcd_ignore_click aslo for else ???
  3485. st_synchronize();
  3486. previous_millis_cmd = millis();
  3487. if (codenum > 0){
  3488. codenum += millis(); // keep track of when we started waiting
  3489. KEEPALIVE_STATE(PAUSED_FOR_USER);
  3490. while(millis() < codenum && !lcd_clicked()){
  3491. manage_heater();
  3492. manage_inactivity(true);
  3493. lcd_update();
  3494. }
  3495. KEEPALIVE_STATE(IN_HANDLER);
  3496. lcd_ignore_click(false);
  3497. }else{
  3498. if (!lcd_detected())
  3499. break;
  3500. KEEPALIVE_STATE(PAUSED_FOR_USER);
  3501. while(!lcd_clicked()){
  3502. manage_heater();
  3503. manage_inactivity(true);
  3504. lcd_update();
  3505. }
  3506. KEEPALIVE_STATE(IN_HANDLER);
  3507. }
  3508. if (IS_SD_PRINTING)
  3509. LCD_MESSAGERPGM(MSG_RESUMING);
  3510. else
  3511. LCD_MESSAGERPGM(WELCOME_MSG);
  3512. }
  3513. break;
  3514. #endif
  3515. case 17:
  3516. LCD_MESSAGERPGM(MSG_NO_MOVE);
  3517. enable_x();
  3518. enable_y();
  3519. enable_z();
  3520. enable_e0();
  3521. enable_e1();
  3522. enable_e2();
  3523. break;
  3524. #ifdef SDSUPPORT
  3525. case 20: // M20 - list SD card
  3526. SERIAL_PROTOCOLLNRPGM(MSG_BEGIN_FILE_LIST);
  3527. card.ls();
  3528. SERIAL_PROTOCOLLNRPGM(MSG_END_FILE_LIST);
  3529. break;
  3530. case 21: // M21 - init SD card
  3531. card.initsd();
  3532. break;
  3533. case 22: //M22 - release SD card
  3534. card.release();
  3535. break;
  3536. case 23: //M23 - Select file
  3537. starpos = (strchr(strchr_pointer + 4,'*'));
  3538. if(starpos!=NULL)
  3539. *(starpos)='\0';
  3540. card.openFile(strchr_pointer + 4,true);
  3541. break;
  3542. case 24: //M24 - Start SD print
  3543. if (!card.paused)
  3544. failstats_reset_print();
  3545. card.startFileprint();
  3546. starttime=millis();
  3547. break;
  3548. case 25: //M25 - Pause SD print
  3549. card.pauseSDPrint();
  3550. break;
  3551. case 26: //M26 - Set SD index
  3552. if(card.cardOK && code_seen('S')) {
  3553. card.setIndex(code_value_long());
  3554. }
  3555. break;
  3556. case 27: //M27 - Get SD status
  3557. card.getStatus();
  3558. break;
  3559. case 28: //M28 - Start SD write
  3560. starpos = (strchr(strchr_pointer + 4,'*'));
  3561. if(starpos != NULL){
  3562. char* npos = strchr(CMDBUFFER_CURRENT_STRING, 'N');
  3563. strchr_pointer = strchr(npos,' ') + 1;
  3564. *(starpos) = '\0';
  3565. }
  3566. card.openFile(strchr_pointer+4,false);
  3567. break;
  3568. case 29: //M29 - Stop SD write
  3569. //processed in write to file routine above
  3570. //card,saving = false;
  3571. break;
  3572. case 30: //M30 <filename> Delete File
  3573. if (card.cardOK){
  3574. card.closefile();
  3575. starpos = (strchr(strchr_pointer + 4,'*'));
  3576. if(starpos != NULL){
  3577. char* npos = strchr(CMDBUFFER_CURRENT_STRING, 'N');
  3578. strchr_pointer = strchr(npos,' ') + 1;
  3579. *(starpos) = '\0';
  3580. }
  3581. card.removeFile(strchr_pointer + 4);
  3582. }
  3583. break;
  3584. case 32: //M32 - Select file and start SD print
  3585. {
  3586. if(card.sdprinting) {
  3587. st_synchronize();
  3588. }
  3589. starpos = (strchr(strchr_pointer + 4,'*'));
  3590. char* namestartpos = (strchr(strchr_pointer + 4,'!')); //find ! to indicate filename string start.
  3591. if(namestartpos==NULL)
  3592. {
  3593. namestartpos=strchr_pointer + 4; //default name position, 4 letters after the M
  3594. }
  3595. else
  3596. namestartpos++; //to skip the '!'
  3597. if(starpos!=NULL)
  3598. *(starpos)='\0';
  3599. bool call_procedure=(code_seen('P'));
  3600. if(strchr_pointer>namestartpos)
  3601. call_procedure=false; //false alert, 'P' found within filename
  3602. if( card.cardOK )
  3603. {
  3604. card.openFile(namestartpos,true,!call_procedure);
  3605. if(code_seen('S'))
  3606. if(strchr_pointer<namestartpos) //only if "S" is occuring _before_ the filename
  3607. card.setIndex(code_value_long());
  3608. card.startFileprint();
  3609. if(!call_procedure)
  3610. starttime=millis(); //procedure calls count as normal print time.
  3611. }
  3612. } break;
  3613. case 928: //M928 - Start SD write
  3614. starpos = (strchr(strchr_pointer + 5,'*'));
  3615. if(starpos != NULL){
  3616. char* npos = strchr(CMDBUFFER_CURRENT_STRING, 'N');
  3617. strchr_pointer = strchr(npos,' ') + 1;
  3618. *(starpos) = '\0';
  3619. }
  3620. card.openLogFile(strchr_pointer+5);
  3621. break;
  3622. #endif //SDSUPPORT
  3623. case 31: //M31 take time since the start of the SD print or an M109 command
  3624. {
  3625. stoptime=millis();
  3626. char time[30];
  3627. unsigned long t=(stoptime-starttime)/1000;
  3628. int sec,min;
  3629. min=t/60;
  3630. sec=t%60;
  3631. sprintf_P(time, PSTR("%i min, %i sec"), min, sec);
  3632. SERIAL_ECHO_START;
  3633. SERIAL_ECHOLN(time);
  3634. lcd_setstatus(time);
  3635. autotempShutdown();
  3636. }
  3637. break;
  3638. #ifndef _DISABLE_M42_M226
  3639. case 42: //M42 -Change pin status via gcode
  3640. if (code_seen('S'))
  3641. {
  3642. int pin_status = code_value();
  3643. int pin_number = LED_PIN;
  3644. if (code_seen('P') && pin_status >= 0 && pin_status <= 255)
  3645. pin_number = code_value();
  3646. for(int8_t i = 0; i < (int8_t)(sizeof(sensitive_pins)/sizeof(int)); i++)
  3647. {
  3648. if (sensitive_pins[i] == pin_number)
  3649. {
  3650. pin_number = -1;
  3651. break;
  3652. }
  3653. }
  3654. #if defined(FAN_PIN) && FAN_PIN > -1
  3655. if (pin_number == FAN_PIN)
  3656. fanSpeed = pin_status;
  3657. #endif
  3658. if (pin_number > -1)
  3659. {
  3660. pinMode(pin_number, OUTPUT);
  3661. digitalWrite(pin_number, pin_status);
  3662. analogWrite(pin_number, pin_status);
  3663. }
  3664. }
  3665. break;
  3666. #endif //_DISABLE_M42_M226
  3667. case 44: // M44: Prusa3D: Reset the bed skew and offset calibration.
  3668. // Reset the baby step value and the baby step applied flag.
  3669. calibration_status_store(CALIBRATION_STATUS_ASSEMBLED);
  3670. eeprom_update_word((uint16_t*)EEPROM_BABYSTEP_Z, 0);
  3671. // Reset the skew and offset in both RAM and EEPROM.
  3672. reset_bed_offset_and_skew();
  3673. // Reset world2machine_rotation_and_skew and world2machine_shift, therefore
  3674. // the planner will not perform any adjustments in the XY plane.
  3675. // Wait for the motors to stop and update the current position with the absolute values.
  3676. world2machine_revert_to_uncorrected();
  3677. break;
  3678. case 45: // M45: Prusa3D: bed skew and offset with manual Z up
  3679. {
  3680. bool only_Z = code_seen('Z');
  3681. gcode_M45(only_Z);
  3682. }
  3683. break;
  3684. /*
  3685. case 46:
  3686. {
  3687. // M46: Prusa3D: Show the assigned IP address.
  3688. uint8_t ip[4];
  3689. bool hasIP = card.ToshibaFlashAir_GetIP(ip);
  3690. if (hasIP) {
  3691. SERIAL_ECHOPGM("Toshiba FlashAir current IP: ");
  3692. SERIAL_ECHO(int(ip[0]));
  3693. SERIAL_ECHOPGM(".");
  3694. SERIAL_ECHO(int(ip[1]));
  3695. SERIAL_ECHOPGM(".");
  3696. SERIAL_ECHO(int(ip[2]));
  3697. SERIAL_ECHOPGM(".");
  3698. SERIAL_ECHO(int(ip[3]));
  3699. SERIAL_ECHOLNPGM("");
  3700. } else {
  3701. SERIAL_ECHOLNPGM("Toshiba FlashAir GetIP failed");
  3702. }
  3703. break;
  3704. }
  3705. */
  3706. case 47:
  3707. // M47: Prusa3D: Show end stops dialog on the display.
  3708. KEEPALIVE_STATE(PAUSED_FOR_USER);
  3709. lcd_diag_show_end_stops();
  3710. KEEPALIVE_STATE(IN_HANDLER);
  3711. break;
  3712. #if 0
  3713. case 48: // M48: scan the bed induction sensor points, print the sensor trigger coordinates to the serial line for visualization on the PC.
  3714. {
  3715. // Disable the default update procedure of the display. We will do a modal dialog.
  3716. lcd_update_enable(false);
  3717. // Let the planner use the uncorrected coordinates.
  3718. mbl.reset();
  3719. // Reset world2machine_rotation_and_skew and world2machine_shift, therefore
  3720. // the planner will not perform any adjustments in the XY plane.
  3721. // Wait for the motors to stop and update the current position with the absolute values.
  3722. world2machine_revert_to_uncorrected();
  3723. // Move the print head close to the bed.
  3724. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3725. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS],current_position[Z_AXIS] , current_position[E_AXIS], homing_feedrate[Z_AXIS]/40, active_extruder);
  3726. st_synchronize();
  3727. // Home in the XY plane.
  3728. set_destination_to_current();
  3729. setup_for_endstop_move();
  3730. home_xy();
  3731. int8_t verbosity_level = 0;
  3732. if (code_seen('V')) {
  3733. // Just 'V' without a number counts as V1.
  3734. char c = strchr_pointer[1];
  3735. verbosity_level = (c == ' ' || c == '\t' || c == 0) ? 1 : code_value_short();
  3736. }
  3737. bool success = scan_bed_induction_points(verbosity_level);
  3738. clean_up_after_endstop_move();
  3739. // Print head up.
  3740. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3741. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS],current_position[Z_AXIS] , current_position[E_AXIS], homing_feedrate[Z_AXIS]/40, active_extruder);
  3742. st_synchronize();
  3743. lcd_update_enable(true);
  3744. break;
  3745. }
  3746. #endif
  3747. // M48 Z-Probe repeatability measurement function.
  3748. //
  3749. // Usage: M48 <n #_samples> <X X_position_for_samples> <Y Y_position_for_samples> <V Verbose_Level> <L legs_of_movement_prior_to_doing_probe>
  3750. //
  3751. // This function assumes the bed has been homed. Specificaly, that a G28 command
  3752. // as been issued prior to invoking the M48 Z-Probe repeatability measurement function.
  3753. // Any information generated by a prior G29 Bed leveling command will be lost and need to be
  3754. // regenerated.
  3755. //
  3756. // The number of samples will default to 10 if not specified. You can use upper or lower case
  3757. // letters for any of the options EXCEPT n. n must be in lower case because Marlin uses a capital
  3758. // N for its communication protocol and will get horribly confused if you send it a capital N.
  3759. //
  3760. #ifdef ENABLE_AUTO_BED_LEVELING
  3761. #ifdef Z_PROBE_REPEATABILITY_TEST
  3762. case 48: // M48 Z-Probe repeatability
  3763. {
  3764. #if Z_MIN_PIN == -1
  3765. #error "You must have a Z_MIN endstop in order to enable calculation of Z-Probe repeatability."
  3766. #endif
  3767. double sum=0.0;
  3768. double mean=0.0;
  3769. double sigma=0.0;
  3770. double sample_set[50];
  3771. int verbose_level=1, n=0, j, n_samples = 10, n_legs=0;
  3772. double X_current, Y_current, Z_current;
  3773. double X_probe_location, Y_probe_location, Z_start_location, ext_position;
  3774. if (code_seen('V') || code_seen('v')) {
  3775. verbose_level = code_value();
  3776. if (verbose_level<0 || verbose_level>4 ) {
  3777. SERIAL_PROTOCOLPGM("?Verbose Level not plausable.\n");
  3778. goto Sigma_Exit;
  3779. }
  3780. }
  3781. if (verbose_level > 0) {
  3782. SERIAL_PROTOCOLPGM("M48 Z-Probe Repeatability test. Version 2.00\n");
  3783. SERIAL_PROTOCOLPGM("Full support at: http://3dprintboard.com/forum.php\n");
  3784. }
  3785. if (code_seen('n')) {
  3786. n_samples = code_value();
  3787. if (n_samples<4 || n_samples>50 ) {
  3788. SERIAL_PROTOCOLPGM("?Specified sample size not plausable.\n");
  3789. goto Sigma_Exit;
  3790. }
  3791. }
  3792. X_current = X_probe_location = st_get_position_mm(X_AXIS);
  3793. Y_current = Y_probe_location = st_get_position_mm(Y_AXIS);
  3794. Z_current = st_get_position_mm(Z_AXIS);
  3795. Z_start_location = st_get_position_mm(Z_AXIS) + Z_RAISE_BEFORE_PROBING;
  3796. ext_position = st_get_position_mm(E_AXIS);
  3797. if (code_seen('X') || code_seen('x') ) {
  3798. X_probe_location = code_value() - X_PROBE_OFFSET_FROM_EXTRUDER;
  3799. if (X_probe_location<X_MIN_POS || X_probe_location>X_MAX_POS ) {
  3800. SERIAL_PROTOCOLPGM("?Specified X position out of range.\n");
  3801. goto Sigma_Exit;
  3802. }
  3803. }
  3804. if (code_seen('Y') || code_seen('y') ) {
  3805. Y_probe_location = code_value() - Y_PROBE_OFFSET_FROM_EXTRUDER;
  3806. if (Y_probe_location<Y_MIN_POS || Y_probe_location>Y_MAX_POS ) {
  3807. SERIAL_PROTOCOLPGM("?Specified Y position out of range.\n");
  3808. goto Sigma_Exit;
  3809. }
  3810. }
  3811. if (code_seen('L') || code_seen('l') ) {
  3812. n_legs = code_value();
  3813. if ( n_legs==1 )
  3814. n_legs = 2;
  3815. if ( n_legs<0 || n_legs>15 ) {
  3816. SERIAL_PROTOCOLPGM("?Specified number of legs in movement not plausable.\n");
  3817. goto Sigma_Exit;
  3818. }
  3819. }
  3820. //
  3821. // Do all the preliminary setup work. First raise the probe.
  3822. //
  3823. st_synchronize();
  3824. plan_bed_level_matrix.set_to_identity();
  3825. plan_buffer_line( X_current, Y_current, Z_start_location,
  3826. ext_position,
  3827. homing_feedrate[Z_AXIS]/60,
  3828. active_extruder);
  3829. st_synchronize();
  3830. //
  3831. // Now get everything to the specified probe point So we can safely do a probe to
  3832. // get us close to the bed. If the Z-Axis is far from the bed, we don't want to
  3833. // use that as a starting point for each probe.
  3834. //
  3835. if (verbose_level > 2)
  3836. SERIAL_PROTOCOL("Positioning probe for the test.\n");
  3837. plan_buffer_line( X_probe_location, Y_probe_location, Z_start_location,
  3838. ext_position,
  3839. homing_feedrate[X_AXIS]/60,
  3840. active_extruder);
  3841. st_synchronize();
  3842. current_position[X_AXIS] = X_current = st_get_position_mm(X_AXIS);
  3843. current_position[Y_AXIS] = Y_current = st_get_position_mm(Y_AXIS);
  3844. current_position[Z_AXIS] = Z_current = st_get_position_mm(Z_AXIS);
  3845. current_position[E_AXIS] = ext_position = st_get_position_mm(E_AXIS);
  3846. //
  3847. // OK, do the inital probe to get us close to the bed.
  3848. // Then retrace the right amount and use that in subsequent probes
  3849. //
  3850. setup_for_endstop_move();
  3851. run_z_probe();
  3852. current_position[Z_AXIS] = Z_current = st_get_position_mm(Z_AXIS);
  3853. Z_start_location = st_get_position_mm(Z_AXIS) + Z_RAISE_BEFORE_PROBING;
  3854. plan_buffer_line( X_probe_location, Y_probe_location, Z_start_location,
  3855. ext_position,
  3856. homing_feedrate[X_AXIS]/60,
  3857. active_extruder);
  3858. st_synchronize();
  3859. current_position[Z_AXIS] = Z_current = st_get_position_mm(Z_AXIS);
  3860. for( n=0; n<n_samples; n++) {
  3861. do_blocking_move_to( X_probe_location, Y_probe_location, Z_start_location); // Make sure we are at the probe location
  3862. if ( n_legs) {
  3863. double radius=0.0, theta=0.0, x_sweep, y_sweep;
  3864. int rotational_direction, l;
  3865. rotational_direction = (unsigned long) millis() & 0x0001; // clockwise or counter clockwise
  3866. radius = (unsigned long) millis() % (long) (X_MAX_LENGTH/4); // limit how far out to go
  3867. theta = (float) ((unsigned long) millis() % (long) 360) / (360./(2*3.1415926)); // turn into radians
  3868. //SERIAL_ECHOPAIR("starting radius: ",radius);
  3869. //SERIAL_ECHOPAIR(" theta: ",theta);
  3870. //SERIAL_ECHOPAIR(" direction: ",rotational_direction);
  3871. //SERIAL_PROTOCOLLNPGM("");
  3872. for( l=0; l<n_legs-1; l++) {
  3873. if (rotational_direction==1)
  3874. theta += (float) ((unsigned long) millis() % (long) 20) / (360.0/(2*3.1415926)); // turn into radians
  3875. else
  3876. theta -= (float) ((unsigned long) millis() % (long) 20) / (360.0/(2*3.1415926)); // turn into radians
  3877. radius += (float) ( ((long) ((unsigned long) millis() % (long) 10)) - 5);
  3878. if ( radius<0.0 )
  3879. radius = -radius;
  3880. X_current = X_probe_location + cos(theta) * radius;
  3881. Y_current = Y_probe_location + sin(theta) * radius;
  3882. if ( X_current<X_MIN_POS) // Make sure our X & Y are sane
  3883. X_current = X_MIN_POS;
  3884. if ( X_current>X_MAX_POS)
  3885. X_current = X_MAX_POS;
  3886. if ( Y_current<Y_MIN_POS) // Make sure our X & Y are sane
  3887. Y_current = Y_MIN_POS;
  3888. if ( Y_current>Y_MAX_POS)
  3889. Y_current = Y_MAX_POS;
  3890. if (verbose_level>3 ) {
  3891. SERIAL_ECHOPAIR("x: ", X_current);
  3892. SERIAL_ECHOPAIR("y: ", Y_current);
  3893. SERIAL_PROTOCOLLNPGM("");
  3894. }
  3895. do_blocking_move_to( X_current, Y_current, Z_current );
  3896. }
  3897. do_blocking_move_to( X_probe_location, Y_probe_location, Z_start_location); // Go back to the probe location
  3898. }
  3899. setup_for_endstop_move();
  3900. run_z_probe();
  3901. sample_set[n] = current_position[Z_AXIS];
  3902. //
  3903. // Get the current mean for the data points we have so far
  3904. //
  3905. sum=0.0;
  3906. for( j=0; j<=n; j++) {
  3907. sum = sum + sample_set[j];
  3908. }
  3909. mean = sum / (double (n+1));
  3910. //
  3911. // Now, use that mean to calculate the standard deviation for the
  3912. // data points we have so far
  3913. //
  3914. sum=0.0;
  3915. for( j=0; j<=n; j++) {
  3916. sum = sum + (sample_set[j]-mean) * (sample_set[j]-mean);
  3917. }
  3918. sigma = sqrt( sum / (double (n+1)) );
  3919. if (verbose_level > 1) {
  3920. SERIAL_PROTOCOL(n+1);
  3921. SERIAL_PROTOCOL(" of ");
  3922. SERIAL_PROTOCOL(n_samples);
  3923. SERIAL_PROTOCOLPGM(" z: ");
  3924. SERIAL_PROTOCOL_F(current_position[Z_AXIS], 6);
  3925. }
  3926. if (verbose_level > 2) {
  3927. SERIAL_PROTOCOL(" mean: ");
  3928. SERIAL_PROTOCOL_F(mean,6);
  3929. SERIAL_PROTOCOL(" sigma: ");
  3930. SERIAL_PROTOCOL_F(sigma,6);
  3931. }
  3932. if (verbose_level > 0)
  3933. SERIAL_PROTOCOLPGM("\n");
  3934. plan_buffer_line( X_probe_location, Y_probe_location, Z_start_location,
  3935. current_position[E_AXIS], homing_feedrate[Z_AXIS]/60, active_extruder);
  3936. st_synchronize();
  3937. }
  3938. delay(1000);
  3939. clean_up_after_endstop_move();
  3940. // enable_endstops(true);
  3941. if (verbose_level > 0) {
  3942. SERIAL_PROTOCOLPGM("Mean: ");
  3943. SERIAL_PROTOCOL_F(mean, 6);
  3944. SERIAL_PROTOCOLPGM("\n");
  3945. }
  3946. SERIAL_PROTOCOLPGM("Standard Deviation: ");
  3947. SERIAL_PROTOCOL_F(sigma, 6);
  3948. SERIAL_PROTOCOLPGM("\n\n");
  3949. Sigma_Exit:
  3950. break;
  3951. }
  3952. #endif // Z_PROBE_REPEATABILITY_TEST
  3953. #endif // ENABLE_AUTO_BED_LEVELING
  3954. case 104: // M104
  3955. if(setTargetedHotend(104)){
  3956. break;
  3957. }
  3958. if (code_seen('S')) setTargetHotend(code_value(), tmp_extruder);
  3959. setWatch();
  3960. break;
  3961. case 112: // M112 -Emergency Stop
  3962. kill("", 3);
  3963. break;
  3964. case 140: // M140 set bed temp
  3965. if (code_seen('S')) setTargetBed(code_value());
  3966. break;
  3967. case 105 : // M105
  3968. if(setTargetedHotend(105)){
  3969. break;
  3970. }
  3971. #if defined(TEMP_0_PIN) && TEMP_0_PIN > -1
  3972. SERIAL_PROTOCOLPGM("ok T:");
  3973. SERIAL_PROTOCOL_F(degHotend(tmp_extruder),1);
  3974. SERIAL_PROTOCOLPGM(" /");
  3975. SERIAL_PROTOCOL_F(degTargetHotend(tmp_extruder),1);
  3976. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  3977. SERIAL_PROTOCOLPGM(" B:");
  3978. SERIAL_PROTOCOL_F(degBed(),1);
  3979. SERIAL_PROTOCOLPGM(" /");
  3980. SERIAL_PROTOCOL_F(degTargetBed(),1);
  3981. #endif //TEMP_BED_PIN
  3982. for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) {
  3983. SERIAL_PROTOCOLPGM(" T");
  3984. SERIAL_PROTOCOL(cur_extruder);
  3985. SERIAL_PROTOCOLPGM(":");
  3986. SERIAL_PROTOCOL_F(degHotend(cur_extruder),1);
  3987. SERIAL_PROTOCOLPGM(" /");
  3988. SERIAL_PROTOCOL_F(degTargetHotend(cur_extruder),1);
  3989. }
  3990. #else
  3991. SERIAL_ERROR_START;
  3992. SERIAL_ERRORLNRPGM(MSG_ERR_NO_THERMISTORS);
  3993. #endif
  3994. SERIAL_PROTOCOLPGM(" @:");
  3995. #ifdef EXTRUDER_WATTS
  3996. SERIAL_PROTOCOL((EXTRUDER_WATTS * getHeaterPower(tmp_extruder))/127);
  3997. SERIAL_PROTOCOLPGM("W");
  3998. #else
  3999. SERIAL_PROTOCOL(getHeaterPower(tmp_extruder));
  4000. #endif
  4001. SERIAL_PROTOCOLPGM(" B@:");
  4002. #ifdef BED_WATTS
  4003. SERIAL_PROTOCOL((BED_WATTS * getHeaterPower(-1))/127);
  4004. SERIAL_PROTOCOLPGM("W");
  4005. #else
  4006. SERIAL_PROTOCOL(getHeaterPower(-1));
  4007. #endif
  4008. #ifdef PINDA_THERMISTOR
  4009. SERIAL_PROTOCOLPGM(" P:");
  4010. SERIAL_PROTOCOL_F(current_temperature_pinda,1);
  4011. #endif //PINDA_THERMISTOR
  4012. #ifdef AMBIENT_THERMISTOR
  4013. SERIAL_PROTOCOLPGM(" A:");
  4014. SERIAL_PROTOCOL_F(current_temperature_ambient,1);
  4015. #endif //AMBIENT_THERMISTOR
  4016. #ifdef SHOW_TEMP_ADC_VALUES
  4017. {float raw = 0.0;
  4018. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  4019. SERIAL_PROTOCOLPGM(" ADC B:");
  4020. SERIAL_PROTOCOL_F(degBed(),1);
  4021. SERIAL_PROTOCOLPGM("C->");
  4022. raw = rawBedTemp();
  4023. SERIAL_PROTOCOL_F(raw/OVERSAMPLENR,5);
  4024. SERIAL_PROTOCOLPGM(" Rb->");
  4025. SERIAL_PROTOCOL_F(100 * (1 + (PtA * (raw/OVERSAMPLENR)) + (PtB * sq((raw/OVERSAMPLENR)))), 5);
  4026. SERIAL_PROTOCOLPGM(" Rxb->");
  4027. SERIAL_PROTOCOL_F(raw, 5);
  4028. #endif
  4029. for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) {
  4030. SERIAL_PROTOCOLPGM(" T");
  4031. SERIAL_PROTOCOL(cur_extruder);
  4032. SERIAL_PROTOCOLPGM(":");
  4033. SERIAL_PROTOCOL_F(degHotend(cur_extruder),1);
  4034. SERIAL_PROTOCOLPGM("C->");
  4035. raw = rawHotendTemp(cur_extruder);
  4036. SERIAL_PROTOCOL_F(raw/OVERSAMPLENR,5);
  4037. SERIAL_PROTOCOLPGM(" Rt");
  4038. SERIAL_PROTOCOL(cur_extruder);
  4039. SERIAL_PROTOCOLPGM("->");
  4040. SERIAL_PROTOCOL_F(100 * (1 + (PtA * (raw/OVERSAMPLENR)) + (PtB * sq((raw/OVERSAMPLENR)))), 5);
  4041. SERIAL_PROTOCOLPGM(" Rx");
  4042. SERIAL_PROTOCOL(cur_extruder);
  4043. SERIAL_PROTOCOLPGM("->");
  4044. SERIAL_PROTOCOL_F(raw, 5);
  4045. }}
  4046. #endif
  4047. SERIAL_PROTOCOLLN("");
  4048. KEEPALIVE_STATE(NOT_BUSY);
  4049. return;
  4050. break;
  4051. case 109:
  4052. {// M109 - Wait for extruder heater to reach target.
  4053. if(setTargetedHotend(109)){
  4054. break;
  4055. }
  4056. LCD_MESSAGERPGM(MSG_HEATING);
  4057. heating_status = 1;
  4058. if (farm_mode) { prusa_statistics(1); };
  4059. #ifdef AUTOTEMP
  4060. autotemp_enabled=false;
  4061. #endif
  4062. if (code_seen('S')) {
  4063. setTargetHotend(code_value(), tmp_extruder);
  4064. CooldownNoWait = true;
  4065. } else if (code_seen('R')) {
  4066. setTargetHotend(code_value(), tmp_extruder);
  4067. CooldownNoWait = false;
  4068. }
  4069. #ifdef AUTOTEMP
  4070. if (code_seen('S')) autotemp_min=code_value();
  4071. if (code_seen('B')) autotemp_max=code_value();
  4072. if (code_seen('F'))
  4073. {
  4074. autotemp_factor=code_value();
  4075. autotemp_enabled=true;
  4076. }
  4077. #endif
  4078. setWatch();
  4079. codenum = millis();
  4080. /* See if we are heating up or cooling down */
  4081. target_direction = isHeatingHotend(tmp_extruder); // true if heating, false if cooling
  4082. KEEPALIVE_STATE(NOT_BUSY);
  4083. cancel_heatup = false;
  4084. wait_for_heater(codenum); //loops until target temperature is reached
  4085. LCD_MESSAGERPGM(MSG_HEATING_COMPLETE);
  4086. KEEPALIVE_STATE(IN_HANDLER);
  4087. heating_status = 2;
  4088. if (farm_mode) { prusa_statistics(2); };
  4089. //starttime=millis();
  4090. previous_millis_cmd = millis();
  4091. }
  4092. break;
  4093. case 190: // M190 - Wait for bed heater to reach target.
  4094. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  4095. LCD_MESSAGERPGM(MSG_BED_HEATING);
  4096. heating_status = 3;
  4097. if (farm_mode) { prusa_statistics(1); };
  4098. if (code_seen('S'))
  4099. {
  4100. setTargetBed(code_value());
  4101. CooldownNoWait = true;
  4102. }
  4103. else if (code_seen('R'))
  4104. {
  4105. setTargetBed(code_value());
  4106. CooldownNoWait = false;
  4107. }
  4108. codenum = millis();
  4109. cancel_heatup = false;
  4110. target_direction = isHeatingBed(); // true if heating, false if cooling
  4111. KEEPALIVE_STATE(NOT_BUSY);
  4112. while ( (target_direction)&&(!cancel_heatup) ? (isHeatingBed()) : (isCoolingBed()&&(CooldownNoWait==false)) )
  4113. {
  4114. if(( millis() - codenum) > 1000 ) //Print Temp Reading every 1 second while heating up.
  4115. {
  4116. if (!farm_mode) {
  4117. float tt = degHotend(active_extruder);
  4118. SERIAL_PROTOCOLPGM("T:");
  4119. SERIAL_PROTOCOL(tt);
  4120. SERIAL_PROTOCOLPGM(" E:");
  4121. SERIAL_PROTOCOL((int)active_extruder);
  4122. SERIAL_PROTOCOLPGM(" B:");
  4123. SERIAL_PROTOCOL_F(degBed(), 1);
  4124. SERIAL_PROTOCOLLN("");
  4125. }
  4126. codenum = millis();
  4127. }
  4128. manage_heater();
  4129. manage_inactivity();
  4130. lcd_update();
  4131. }
  4132. LCD_MESSAGERPGM(MSG_BED_DONE);
  4133. KEEPALIVE_STATE(IN_HANDLER);
  4134. heating_status = 4;
  4135. previous_millis_cmd = millis();
  4136. #endif
  4137. break;
  4138. #if defined(FAN_PIN) && FAN_PIN > -1
  4139. case 106: //M106 Fan On
  4140. if (code_seen('S')){
  4141. fanSpeed=constrain(code_value(),0,255);
  4142. }
  4143. else {
  4144. fanSpeed=255;
  4145. }
  4146. break;
  4147. case 107: //M107 Fan Off
  4148. fanSpeed = 0;
  4149. break;
  4150. #endif //FAN_PIN
  4151. #if defined(PS_ON_PIN) && PS_ON_PIN > -1
  4152. case 80: // M80 - Turn on Power Supply
  4153. SET_OUTPUT(PS_ON_PIN); //GND
  4154. WRITE(PS_ON_PIN, PS_ON_AWAKE);
  4155. // If you have a switch on suicide pin, this is useful
  4156. // if you want to start another print with suicide feature after
  4157. // a print without suicide...
  4158. #if defined SUICIDE_PIN && SUICIDE_PIN > -1
  4159. SET_OUTPUT(SUICIDE_PIN);
  4160. WRITE(SUICIDE_PIN, HIGH);
  4161. #endif
  4162. #ifdef ULTIPANEL
  4163. powersupply = true;
  4164. LCD_MESSAGERPGM(WELCOME_MSG);
  4165. lcd_update();
  4166. #endif
  4167. break;
  4168. #endif
  4169. case 81: // M81 - Turn off Power Supply
  4170. disable_heater();
  4171. st_synchronize();
  4172. disable_e0();
  4173. disable_e1();
  4174. disable_e2();
  4175. finishAndDisableSteppers();
  4176. fanSpeed = 0;
  4177. delay(1000); // Wait a little before to switch off
  4178. #if defined(SUICIDE_PIN) && SUICIDE_PIN > -1
  4179. st_synchronize();
  4180. suicide();
  4181. #elif defined(PS_ON_PIN) && PS_ON_PIN > -1
  4182. SET_OUTPUT(PS_ON_PIN);
  4183. WRITE(PS_ON_PIN, PS_ON_ASLEEP);
  4184. #endif
  4185. #ifdef ULTIPANEL
  4186. powersupply = false;
  4187. LCD_MESSAGERPGM(CAT4(CUSTOM_MENDEL_NAME,PSTR(" "),MSG_OFF,PSTR("."))); //!!
  4188. /*
  4189. MACHNAME = "Prusa i3"
  4190. MSGOFF = "Vypnuto"
  4191. "Prusai3"" ""vypnuto""."
  4192. "Prusa i3"" "MSG_ALL[lang_selected][50]"."
  4193. */
  4194. lcd_update();
  4195. #endif
  4196. break;
  4197. case 82:
  4198. axis_relative_modes[3] = false;
  4199. break;
  4200. case 83:
  4201. axis_relative_modes[3] = true;
  4202. break;
  4203. case 18: //compatibility
  4204. case 84: // M84
  4205. if(code_seen('S')){
  4206. stepper_inactive_time = code_value() * 1000;
  4207. }
  4208. else
  4209. {
  4210. bool all_axis = !((code_seen(axis_codes[X_AXIS])) || (code_seen(axis_codes[Y_AXIS])) || (code_seen(axis_codes[Z_AXIS]))|| (code_seen(axis_codes[E_AXIS])));
  4211. if(all_axis)
  4212. {
  4213. st_synchronize();
  4214. disable_e0();
  4215. disable_e1();
  4216. disable_e2();
  4217. finishAndDisableSteppers();
  4218. }
  4219. else
  4220. {
  4221. st_synchronize();
  4222. if (code_seen('X')) disable_x();
  4223. if (code_seen('Y')) disable_y();
  4224. if (code_seen('Z')) disable_z();
  4225. #if ((E0_ENABLE_PIN != X_ENABLE_PIN) && (E1_ENABLE_PIN != Y_ENABLE_PIN)) // Only enable on boards that have seperate ENABLE_PINS
  4226. if (code_seen('E')) {
  4227. disable_e0();
  4228. disable_e1();
  4229. disable_e2();
  4230. }
  4231. #endif
  4232. }
  4233. }
  4234. snmm_filaments_used = 0;
  4235. break;
  4236. case 85: // M85
  4237. if(code_seen('S')) {
  4238. max_inactive_time = code_value() * 1000;
  4239. }
  4240. break;
  4241. case 92: // M92
  4242. for(int8_t i=0; i < NUM_AXIS; i++)
  4243. {
  4244. if(code_seen(axis_codes[i]))
  4245. {
  4246. if(i == 3) { // E
  4247. float value = code_value();
  4248. if(value < 20.0) {
  4249. float factor = axis_steps_per_unit[i] / value; // increase e constants if M92 E14 is given for netfab.
  4250. max_jerk[E_AXIS] *= factor;
  4251. max_feedrate[i] *= factor;
  4252. axis_steps_per_sqr_second[i] *= factor;
  4253. }
  4254. axis_steps_per_unit[i] = value;
  4255. }
  4256. else {
  4257. axis_steps_per_unit[i] = code_value();
  4258. }
  4259. }
  4260. }
  4261. break;
  4262. case 110: // M110 - reset line pos
  4263. if (code_seen('N'))
  4264. gcode_LastN = code_value_long();
  4265. break;
  4266. #ifdef HOST_KEEPALIVE_FEATURE
  4267. case 113: // M113 - Get or set Host Keepalive interval
  4268. if (code_seen('S')) {
  4269. host_keepalive_interval = (uint8_t)code_value_short();
  4270. // NOMORE(host_keepalive_interval, 60);
  4271. }
  4272. else {
  4273. SERIAL_ECHO_START;
  4274. SERIAL_ECHOPAIR("M113 S", (unsigned long)host_keepalive_interval);
  4275. SERIAL_PROTOCOLLN("");
  4276. }
  4277. break;
  4278. #endif
  4279. case 115: // M115
  4280. if (code_seen('V')) {
  4281. // Report the Prusa version number.
  4282. SERIAL_PROTOCOLLNRPGM(FW_VERSION_STR_P());
  4283. } else if (code_seen('U')) {
  4284. // Check the firmware version provided. If the firmware version provided by the U code is higher than the currently running firmware,
  4285. // pause the print and ask the user to upgrade the firmware.
  4286. show_upgrade_dialog_if_version_newer(++ strchr_pointer);
  4287. } else {
  4288. SERIAL_PROTOCOLRPGM(MSG_M115_REPORT);
  4289. }
  4290. break;
  4291. /* case 117: // M117 display message
  4292. starpos = (strchr(strchr_pointer + 5,'*'));
  4293. if(starpos!=NULL)
  4294. *(starpos)='\0';
  4295. lcd_setstatus(strchr_pointer + 5);
  4296. break;*/
  4297. case 114: // M114
  4298. SERIAL_PROTOCOLPGM("X:");
  4299. SERIAL_PROTOCOL(current_position[X_AXIS]);
  4300. SERIAL_PROTOCOLPGM(" Y:");
  4301. SERIAL_PROTOCOL(current_position[Y_AXIS]);
  4302. SERIAL_PROTOCOLPGM(" Z:");
  4303. SERIAL_PROTOCOL(current_position[Z_AXIS]);
  4304. SERIAL_PROTOCOLPGM(" E:");
  4305. SERIAL_PROTOCOL(current_position[E_AXIS]);
  4306. SERIAL_PROTOCOLRPGM(MSG_COUNT_X);
  4307. SERIAL_PROTOCOL(float(st_get_position(X_AXIS))/axis_steps_per_unit[X_AXIS]);
  4308. SERIAL_PROTOCOLPGM(" Y:");
  4309. SERIAL_PROTOCOL(float(st_get_position(Y_AXIS))/axis_steps_per_unit[Y_AXIS]);
  4310. SERIAL_PROTOCOLPGM(" Z:");
  4311. SERIAL_PROTOCOL(float(st_get_position(Z_AXIS))/axis_steps_per_unit[Z_AXIS]);
  4312. SERIAL_PROTOCOLPGM(" E:");
  4313. SERIAL_PROTOCOL(float(st_get_position(E_AXIS))/axis_steps_per_unit[E_AXIS]);
  4314. SERIAL_PROTOCOLLN("");
  4315. break;
  4316. case 120: // M120
  4317. enable_endstops(false) ;
  4318. break;
  4319. case 121: // M121
  4320. enable_endstops(true) ;
  4321. break;
  4322. case 119: // M119
  4323. SERIAL_PROTOCOLRPGM(MSG_M119_REPORT);
  4324. SERIAL_PROTOCOLLN("");
  4325. #if defined(X_MIN_PIN) && X_MIN_PIN > -1
  4326. SERIAL_PROTOCOLRPGM(MSG_X_MIN);
  4327. if(READ(X_MIN_PIN)^X_MIN_ENDSTOP_INVERTING){
  4328. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_HIT);
  4329. }else{
  4330. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_OPEN);
  4331. }
  4332. SERIAL_PROTOCOLLN("");
  4333. #endif
  4334. #if defined(X_MAX_PIN) && X_MAX_PIN > -1
  4335. SERIAL_PROTOCOLRPGM(MSG_X_MAX);
  4336. if(READ(X_MAX_PIN)^X_MAX_ENDSTOP_INVERTING){
  4337. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_HIT);
  4338. }else{
  4339. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_OPEN);
  4340. }
  4341. SERIAL_PROTOCOLLN("");
  4342. #endif
  4343. #if defined(Y_MIN_PIN) && Y_MIN_PIN > -1
  4344. SERIAL_PROTOCOLRPGM(MSG_Y_MIN);
  4345. if(READ(Y_MIN_PIN)^Y_MIN_ENDSTOP_INVERTING){
  4346. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_HIT);
  4347. }else{
  4348. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_OPEN);
  4349. }
  4350. SERIAL_PROTOCOLLN("");
  4351. #endif
  4352. #if defined(Y_MAX_PIN) && Y_MAX_PIN > -1
  4353. SERIAL_PROTOCOLRPGM(MSG_Y_MAX);
  4354. if(READ(Y_MAX_PIN)^Y_MAX_ENDSTOP_INVERTING){
  4355. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_HIT);
  4356. }else{
  4357. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_OPEN);
  4358. }
  4359. SERIAL_PROTOCOLLN("");
  4360. #endif
  4361. #if defined(Z_MIN_PIN) && Z_MIN_PIN > -1
  4362. SERIAL_PROTOCOLRPGM(MSG_Z_MIN);
  4363. if(READ(Z_MIN_PIN)^Z_MIN_ENDSTOP_INVERTING){
  4364. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_HIT);
  4365. }else{
  4366. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_OPEN);
  4367. }
  4368. SERIAL_PROTOCOLLN("");
  4369. #endif
  4370. #if defined(Z_MAX_PIN) && Z_MAX_PIN > -1
  4371. SERIAL_PROTOCOLRPGM(MSG_Z_MAX);
  4372. if(READ(Z_MAX_PIN)^Z_MAX_ENDSTOP_INVERTING){
  4373. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_HIT);
  4374. }else{
  4375. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_OPEN);
  4376. }
  4377. SERIAL_PROTOCOLLN("");
  4378. #endif
  4379. break;
  4380. //TODO: update for all axis, use for loop
  4381. #ifdef BLINKM
  4382. case 150: // M150
  4383. {
  4384. byte red;
  4385. byte grn;
  4386. byte blu;
  4387. if(code_seen('R')) red = code_value();
  4388. if(code_seen('U')) grn = code_value();
  4389. if(code_seen('B')) blu = code_value();
  4390. SendColors(red,grn,blu);
  4391. }
  4392. break;
  4393. #endif //BLINKM
  4394. case 200: // M200 D<millimeters> set filament diameter and set E axis units to cubic millimeters (use S0 to set back to millimeters).
  4395. {
  4396. tmp_extruder = active_extruder;
  4397. if(code_seen('T')) {
  4398. tmp_extruder = code_value();
  4399. if(tmp_extruder >= EXTRUDERS) {
  4400. SERIAL_ECHO_START;
  4401. SERIAL_ECHO(MSG_M200_INVALID_EXTRUDER);
  4402. break;
  4403. }
  4404. }
  4405. float area = .0;
  4406. if(code_seen('D')) {
  4407. float diameter = (float)code_value();
  4408. if (diameter == 0.0) {
  4409. // setting any extruder filament size disables volumetric on the assumption that
  4410. // slicers either generate in extruder values as cubic mm or as as filament feeds
  4411. // for all extruders
  4412. volumetric_enabled = false;
  4413. } else {
  4414. filament_size[tmp_extruder] = (float)code_value();
  4415. // make sure all extruders have some sane value for the filament size
  4416. filament_size[0] = (filament_size[0] == 0.0 ? DEFAULT_NOMINAL_FILAMENT_DIA : filament_size[0]);
  4417. #if EXTRUDERS > 1
  4418. filament_size[1] = (filament_size[1] == 0.0 ? DEFAULT_NOMINAL_FILAMENT_DIA : filament_size[1]);
  4419. #if EXTRUDERS > 2
  4420. filament_size[2] = (filament_size[2] == 0.0 ? DEFAULT_NOMINAL_FILAMENT_DIA : filament_size[2]);
  4421. #endif
  4422. #endif
  4423. volumetric_enabled = true;
  4424. }
  4425. } else {
  4426. //reserved for setting filament diameter via UFID or filament measuring device
  4427. break;
  4428. }
  4429. calculate_extruder_multipliers();
  4430. }
  4431. break;
  4432. case 201: // M201
  4433. for(int8_t i=0; i < NUM_AXIS; i++)
  4434. {
  4435. if(code_seen(axis_codes[i]))
  4436. {
  4437. max_acceleration_units_per_sq_second[i] = code_value();
  4438. }
  4439. }
  4440. // steps per sq second need to be updated to agree with the units per sq second (as they are what is used in the planner)
  4441. reset_acceleration_rates();
  4442. break;
  4443. #if 0 // Not used for Sprinter/grbl gen6
  4444. case 202: // M202
  4445. for(int8_t i=0; i < NUM_AXIS; i++) {
  4446. if(code_seen(axis_codes[i])) axis_travel_steps_per_sqr_second[i] = code_value() * axis_steps_per_unit[i];
  4447. }
  4448. break;
  4449. #endif
  4450. case 203: // M203 max feedrate mm/sec
  4451. for(int8_t i=0; i < NUM_AXIS; i++) {
  4452. if(code_seen(axis_codes[i])) max_feedrate[i] = code_value();
  4453. }
  4454. break;
  4455. case 204: // M204 acclereration S normal moves T filmanent only moves
  4456. {
  4457. if(code_seen('S')) acceleration = code_value() ;
  4458. if(code_seen('T')) retract_acceleration = code_value() ;
  4459. }
  4460. break;
  4461. case 205: //M205 advanced settings: minimum travel speed S=while printing T=travel only, B=minimum segment time X= maximum xy jerk, Z=maximum Z jerk
  4462. {
  4463. if(code_seen('S')) minimumfeedrate = code_value();
  4464. if(code_seen('T')) mintravelfeedrate = code_value();
  4465. if(code_seen('B')) minsegmenttime = code_value() ;
  4466. if(code_seen('X')) max_jerk[X_AXIS] = max_jerk[Y_AXIS] = code_value();
  4467. if(code_seen('Y')) max_jerk[Y_AXIS] = code_value();
  4468. if(code_seen('Z')) max_jerk[Z_AXIS] = code_value();
  4469. if(code_seen('E')) max_jerk[E_AXIS] = code_value();
  4470. if (max_jerk[X_AXIS] > DEFAULT_XJERK) max_jerk[X_AXIS] = DEFAULT_XJERK;
  4471. if (max_jerk[Y_AXIS] > DEFAULT_YJERK) max_jerk[Y_AXIS] = DEFAULT_YJERK;
  4472. }
  4473. break;
  4474. case 206: // M206 additional homing offset
  4475. for(int8_t i=0; i < 3; i++)
  4476. {
  4477. if(code_seen(axis_codes[i])) add_homing[i] = code_value();
  4478. }
  4479. break;
  4480. #ifdef FWRETRACT
  4481. case 207: //M207 - set retract length S[positive mm] F[feedrate mm/min] Z[additional zlift/hop]
  4482. {
  4483. if(code_seen('S'))
  4484. {
  4485. retract_length = code_value() ;
  4486. }
  4487. if(code_seen('F'))
  4488. {
  4489. retract_feedrate = code_value()/60 ;
  4490. }
  4491. if(code_seen('Z'))
  4492. {
  4493. retract_zlift = code_value() ;
  4494. }
  4495. }break;
  4496. case 208: // M208 - set retract recover length S[positive mm surplus to the M207 S*] F[feedrate mm/min]
  4497. {
  4498. if(code_seen('S'))
  4499. {
  4500. retract_recover_length = code_value() ;
  4501. }
  4502. if(code_seen('F'))
  4503. {
  4504. retract_recover_feedrate = code_value()/60 ;
  4505. }
  4506. }break;
  4507. case 209: // M209 - S<1=true/0=false> enable automatic retract detect if the slicer did not support G10/11: every normal extrude-only move will be classified as retract depending on the direction.
  4508. {
  4509. if(code_seen('S'))
  4510. {
  4511. int t= code_value() ;
  4512. switch(t)
  4513. {
  4514. case 0:
  4515. {
  4516. autoretract_enabled=false;
  4517. retracted[0]=false;
  4518. #if EXTRUDERS > 1
  4519. retracted[1]=false;
  4520. #endif
  4521. #if EXTRUDERS > 2
  4522. retracted[2]=false;
  4523. #endif
  4524. }break;
  4525. case 1:
  4526. {
  4527. autoretract_enabled=true;
  4528. retracted[0]=false;
  4529. #if EXTRUDERS > 1
  4530. retracted[1]=false;
  4531. #endif
  4532. #if EXTRUDERS > 2
  4533. retracted[2]=false;
  4534. #endif
  4535. }break;
  4536. default:
  4537. SERIAL_ECHO_START;
  4538. SERIAL_ECHORPGM(MSG_UNKNOWN_COMMAND);
  4539. SERIAL_ECHO(CMDBUFFER_CURRENT_STRING);
  4540. SERIAL_ECHOLNPGM("\"(1)");
  4541. }
  4542. }
  4543. }break;
  4544. #endif // FWRETRACT
  4545. #if EXTRUDERS > 1
  4546. case 218: // M218 - set hotend offset (in mm), T<extruder_number> X<offset_on_X> Y<offset_on_Y>
  4547. {
  4548. if(setTargetedHotend(218)){
  4549. break;
  4550. }
  4551. if(code_seen('X'))
  4552. {
  4553. extruder_offset[X_AXIS][tmp_extruder] = code_value();
  4554. }
  4555. if(code_seen('Y'))
  4556. {
  4557. extruder_offset[Y_AXIS][tmp_extruder] = code_value();
  4558. }
  4559. SERIAL_ECHO_START;
  4560. SERIAL_ECHORPGM(MSG_HOTEND_OFFSET);
  4561. for(tmp_extruder = 0; tmp_extruder < EXTRUDERS; tmp_extruder++)
  4562. {
  4563. SERIAL_ECHO(" ");
  4564. SERIAL_ECHO(extruder_offset[X_AXIS][tmp_extruder]);
  4565. SERIAL_ECHO(",");
  4566. SERIAL_ECHO(extruder_offset[Y_AXIS][tmp_extruder]);
  4567. }
  4568. SERIAL_ECHOLN("");
  4569. }break;
  4570. #endif
  4571. case 220: // M220 S<factor in percent>- set speed factor override percentage
  4572. {
  4573. if(code_seen('S'))
  4574. {
  4575. feedmultiply = code_value() ;
  4576. }
  4577. }
  4578. break;
  4579. case 221: // M221 S<factor in percent>- set extrude factor override percentage
  4580. {
  4581. if(code_seen('S'))
  4582. {
  4583. int tmp_code = code_value();
  4584. if (code_seen('T'))
  4585. {
  4586. if(setTargetedHotend(221)){
  4587. break;
  4588. }
  4589. extruder_multiply[tmp_extruder] = tmp_code;
  4590. }
  4591. else
  4592. {
  4593. extrudemultiply = tmp_code ;
  4594. }
  4595. }
  4596. calculate_extruder_multipliers();
  4597. }
  4598. break;
  4599. #ifndef _DISABLE_M42_M226
  4600. case 226: // M226 P<pin number> S<pin state>- Wait until the specified pin reaches the state required
  4601. {
  4602. if(code_seen('P')){
  4603. int pin_number = code_value(); // pin number
  4604. int pin_state = -1; // required pin state - default is inverted
  4605. if(code_seen('S')) pin_state = code_value(); // required pin state
  4606. if(pin_state >= -1 && pin_state <= 1){
  4607. for(int8_t i = 0; i < (int8_t)(sizeof(sensitive_pins)/sizeof(int)); i++)
  4608. {
  4609. if (sensitive_pins[i] == pin_number)
  4610. {
  4611. pin_number = -1;
  4612. break;
  4613. }
  4614. }
  4615. if (pin_number > -1)
  4616. {
  4617. int target = LOW;
  4618. st_synchronize();
  4619. pinMode(pin_number, INPUT);
  4620. switch(pin_state){
  4621. case 1:
  4622. target = HIGH;
  4623. break;
  4624. case 0:
  4625. target = LOW;
  4626. break;
  4627. case -1:
  4628. target = !digitalRead(pin_number);
  4629. break;
  4630. }
  4631. while(digitalRead(pin_number) != target){
  4632. manage_heater();
  4633. manage_inactivity();
  4634. lcd_update();
  4635. }
  4636. }
  4637. }
  4638. }
  4639. }
  4640. break;
  4641. #endif //_DISABLE_M42_M226
  4642. #if NUM_SERVOS > 0
  4643. case 280: // M280 - set servo position absolute. P: servo index, S: angle or microseconds
  4644. {
  4645. int servo_index = -1;
  4646. int servo_position = 0;
  4647. if (code_seen('P'))
  4648. servo_index = code_value();
  4649. if (code_seen('S')) {
  4650. servo_position = code_value();
  4651. if ((servo_index >= 0) && (servo_index < NUM_SERVOS)) {
  4652. #if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
  4653. servos[servo_index].attach(0);
  4654. #endif
  4655. servos[servo_index].write(servo_position);
  4656. #if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
  4657. delay(PROBE_SERVO_DEACTIVATION_DELAY);
  4658. servos[servo_index].detach();
  4659. #endif
  4660. }
  4661. else {
  4662. SERIAL_ECHO_START;
  4663. SERIAL_ECHO("Servo ");
  4664. SERIAL_ECHO(servo_index);
  4665. SERIAL_ECHOLN(" out of range");
  4666. }
  4667. }
  4668. else if (servo_index >= 0) {
  4669. SERIAL_PROTOCOL(MSG_OK);
  4670. SERIAL_PROTOCOL(" Servo ");
  4671. SERIAL_PROTOCOL(servo_index);
  4672. SERIAL_PROTOCOL(": ");
  4673. SERIAL_PROTOCOL(servos[servo_index].read());
  4674. SERIAL_PROTOCOLLN("");
  4675. }
  4676. }
  4677. break;
  4678. #endif // NUM_SERVOS > 0
  4679. #if (LARGE_FLASH == true && ( BEEPER > 0 || defined(ULTRALCD) || defined(LCD_USE_I2C_BUZZER)))
  4680. case 300: // M300
  4681. {
  4682. int beepS = code_seen('S') ? code_value() : 110;
  4683. int beepP = code_seen('P') ? code_value() : 1000;
  4684. if (beepS > 0)
  4685. {
  4686. #if BEEPER > 0
  4687. tone(BEEPER, beepS);
  4688. delay(beepP);
  4689. noTone(BEEPER);
  4690. #elif defined(ULTRALCD)
  4691. lcd_buzz(beepS, beepP);
  4692. #elif defined(LCD_USE_I2C_BUZZER)
  4693. lcd_buzz(beepP, beepS);
  4694. #endif
  4695. }
  4696. else
  4697. {
  4698. delay(beepP);
  4699. }
  4700. }
  4701. break;
  4702. #endif // M300
  4703. #ifdef PIDTEMP
  4704. case 301: // M301
  4705. {
  4706. if(code_seen('P')) Kp = code_value();
  4707. if(code_seen('I')) Ki = scalePID_i(code_value());
  4708. if(code_seen('D')) Kd = scalePID_d(code_value());
  4709. #ifdef PID_ADD_EXTRUSION_RATE
  4710. if(code_seen('C')) Kc = code_value();
  4711. #endif
  4712. updatePID();
  4713. SERIAL_PROTOCOLRPGM(MSG_OK);
  4714. SERIAL_PROTOCOL(" p:");
  4715. SERIAL_PROTOCOL(Kp);
  4716. SERIAL_PROTOCOL(" i:");
  4717. SERIAL_PROTOCOL(unscalePID_i(Ki));
  4718. SERIAL_PROTOCOL(" d:");
  4719. SERIAL_PROTOCOL(unscalePID_d(Kd));
  4720. #ifdef PID_ADD_EXTRUSION_RATE
  4721. SERIAL_PROTOCOL(" c:");
  4722. //Kc does not have scaling applied above, or in resetting defaults
  4723. SERIAL_PROTOCOL(Kc);
  4724. #endif
  4725. SERIAL_PROTOCOLLN("");
  4726. }
  4727. break;
  4728. #endif //PIDTEMP
  4729. #ifdef PIDTEMPBED
  4730. case 304: // M304
  4731. {
  4732. if(code_seen('P')) bedKp = code_value();
  4733. if(code_seen('I')) bedKi = scalePID_i(code_value());
  4734. if(code_seen('D')) bedKd = scalePID_d(code_value());
  4735. updatePID();
  4736. SERIAL_PROTOCOLRPGM(MSG_OK);
  4737. SERIAL_PROTOCOL(" p:");
  4738. SERIAL_PROTOCOL(bedKp);
  4739. SERIAL_PROTOCOL(" i:");
  4740. SERIAL_PROTOCOL(unscalePID_i(bedKi));
  4741. SERIAL_PROTOCOL(" d:");
  4742. SERIAL_PROTOCOL(unscalePID_d(bedKd));
  4743. SERIAL_PROTOCOLLN("");
  4744. }
  4745. break;
  4746. #endif //PIDTEMP
  4747. case 240: // M240 Triggers a camera by emulating a Canon RC-1 : http://www.doc-diy.net/photo/rc-1_hacked/
  4748. {
  4749. #ifdef CHDK
  4750. SET_OUTPUT(CHDK);
  4751. WRITE(CHDK, HIGH);
  4752. chdkHigh = millis();
  4753. chdkActive = true;
  4754. #else
  4755. #if defined(PHOTOGRAPH_PIN) && PHOTOGRAPH_PIN > -1
  4756. const uint8_t NUM_PULSES=16;
  4757. const float PULSE_LENGTH=0.01524;
  4758. for(int i=0; i < NUM_PULSES; i++) {
  4759. WRITE(PHOTOGRAPH_PIN, HIGH);
  4760. _delay_ms(PULSE_LENGTH);
  4761. WRITE(PHOTOGRAPH_PIN, LOW);
  4762. _delay_ms(PULSE_LENGTH);
  4763. }
  4764. delay(7.33);
  4765. for(int i=0; i < NUM_PULSES; i++) {
  4766. WRITE(PHOTOGRAPH_PIN, HIGH);
  4767. _delay_ms(PULSE_LENGTH);
  4768. WRITE(PHOTOGRAPH_PIN, LOW);
  4769. _delay_ms(PULSE_LENGTH);
  4770. }
  4771. #endif
  4772. #endif //chdk end if
  4773. }
  4774. break;
  4775. #ifdef DOGLCD
  4776. case 250: // M250 Set LCD contrast value: C<value> (value 0..63)
  4777. {
  4778. if (code_seen('C')) {
  4779. lcd_setcontrast( ((int)code_value())&63 );
  4780. }
  4781. SERIAL_PROTOCOLPGM("lcd contrast value: ");
  4782. SERIAL_PROTOCOL(lcd_contrast);
  4783. SERIAL_PROTOCOLLN("");
  4784. }
  4785. break;
  4786. #endif
  4787. #ifdef PREVENT_DANGEROUS_EXTRUDE
  4788. case 302: // allow cold extrudes, or set the minimum extrude temperature
  4789. {
  4790. float temp = .0;
  4791. if (code_seen('S')) temp=code_value();
  4792. set_extrude_min_temp(temp);
  4793. }
  4794. break;
  4795. #endif
  4796. case 303: // M303 PID autotune
  4797. {
  4798. float temp = 150.0;
  4799. int e=0;
  4800. int c=5;
  4801. if (code_seen('E')) e=code_value();
  4802. if (e<0)
  4803. temp=70;
  4804. if (code_seen('S')) temp=code_value();
  4805. if (code_seen('C')) c=code_value();
  4806. PID_autotune(temp, e, c);
  4807. }
  4808. break;
  4809. case 400: // M400 finish all moves
  4810. {
  4811. st_synchronize();
  4812. }
  4813. break;
  4814. case 500: // M500 Store settings in EEPROM
  4815. {
  4816. Config_StoreSettings(EEPROM_OFFSET);
  4817. }
  4818. break;
  4819. case 501: // M501 Read settings from EEPROM
  4820. {
  4821. Config_RetrieveSettings(EEPROM_OFFSET);
  4822. }
  4823. break;
  4824. case 502: // M502 Revert to default settings
  4825. {
  4826. Config_ResetDefault();
  4827. }
  4828. break;
  4829. case 503: // M503 print settings currently in memory
  4830. {
  4831. Config_PrintSettings();
  4832. }
  4833. break;
  4834. case 509: //M509 Force language selection
  4835. {
  4836. lcd_force_language_selection();
  4837. SERIAL_ECHO_START;
  4838. SERIAL_PROTOCOLPGM(("LANG SEL FORCED"));
  4839. }
  4840. break;
  4841. #ifdef ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED
  4842. case 540:
  4843. {
  4844. if(code_seen('S')) abort_on_endstop_hit = code_value() > 0;
  4845. }
  4846. break;
  4847. #endif
  4848. #ifdef CUSTOM_M_CODE_SET_Z_PROBE_OFFSET
  4849. case CUSTOM_M_CODE_SET_Z_PROBE_OFFSET:
  4850. {
  4851. float value;
  4852. if (code_seen('Z'))
  4853. {
  4854. value = code_value();
  4855. if ((Z_PROBE_OFFSET_RANGE_MIN <= value) && (value <= Z_PROBE_OFFSET_RANGE_MAX))
  4856. {
  4857. zprobe_zoffset = -value; // compare w/ line 278 of ConfigurationStore.cpp
  4858. SERIAL_ECHO_START;
  4859. SERIAL_ECHOLNRPGM(CAT4(MSG_ZPROBE_ZOFFSET, " ", MSG_OK,PSTR("")));
  4860. SERIAL_PROTOCOLLN("");
  4861. }
  4862. else
  4863. {
  4864. SERIAL_ECHO_START;
  4865. SERIAL_ECHORPGM(MSG_ZPROBE_ZOFFSET);
  4866. SERIAL_ECHORPGM(MSG_Z_MIN);
  4867. SERIAL_ECHO(Z_PROBE_OFFSET_RANGE_MIN);
  4868. SERIAL_ECHORPGM(MSG_Z_MAX);
  4869. SERIAL_ECHO(Z_PROBE_OFFSET_RANGE_MAX);
  4870. SERIAL_PROTOCOLLN("");
  4871. }
  4872. }
  4873. else
  4874. {
  4875. SERIAL_ECHO_START;
  4876. SERIAL_ECHOLNRPGM(CAT2(MSG_ZPROBE_ZOFFSET, PSTR(" : ")));
  4877. SERIAL_ECHO(-zprobe_zoffset);
  4878. SERIAL_PROTOCOLLN("");
  4879. }
  4880. break;
  4881. }
  4882. #endif // CUSTOM_M_CODE_SET_Z_PROBE_OFFSET
  4883. #ifdef FILAMENTCHANGEENABLE
  4884. case 600: //Pause for filament change X[pos] Y[pos] Z[relative lift] E[initial retract] L[later retract distance for removal]
  4885. {
  4886. bool old_fsensor_enabled = fsensor_enabled;
  4887. fsensor_enabled = false; //temporary solution for unexpected restarting
  4888. st_synchronize();
  4889. float target[4];
  4890. float lastpos[4];
  4891. if (farm_mode)
  4892. {
  4893. prusa_statistics(22);
  4894. }
  4895. feedmultiplyBckp=feedmultiply;
  4896. int8_t TooLowZ = 0;
  4897. float HotendTempBckp = degTargetHotend(active_extruder);
  4898. int fanSpeedBckp = fanSpeed;
  4899. target[X_AXIS]=current_position[X_AXIS];
  4900. target[Y_AXIS]=current_position[Y_AXIS];
  4901. target[Z_AXIS]=current_position[Z_AXIS];
  4902. target[E_AXIS]=current_position[E_AXIS];
  4903. lastpos[X_AXIS]=current_position[X_AXIS];
  4904. lastpos[Y_AXIS]=current_position[Y_AXIS];
  4905. lastpos[Z_AXIS]=current_position[Z_AXIS];
  4906. lastpos[E_AXIS]=current_position[E_AXIS];
  4907. //Restract extruder
  4908. if(code_seen('E'))
  4909. {
  4910. target[E_AXIS]+= code_value();
  4911. }
  4912. else
  4913. {
  4914. #ifdef FILAMENTCHANGE_FIRSTRETRACT
  4915. target[E_AXIS]+= FILAMENTCHANGE_FIRSTRETRACT ;
  4916. #endif
  4917. }
  4918. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_RFEED, active_extruder);
  4919. //Lift Z
  4920. if(code_seen('Z'))
  4921. {
  4922. target[Z_AXIS]+= code_value();
  4923. }
  4924. else
  4925. {
  4926. #ifdef FILAMENTCHANGE_ZADD
  4927. target[Z_AXIS]+= FILAMENTCHANGE_ZADD ;
  4928. if(target[Z_AXIS] < 10){
  4929. target[Z_AXIS]+= 10 ;
  4930. TooLowZ = 1;
  4931. }else{
  4932. TooLowZ = 0;
  4933. }
  4934. #endif
  4935. }
  4936. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_ZFEED, active_extruder);
  4937. //Move XY to side
  4938. if(code_seen('X'))
  4939. {
  4940. target[X_AXIS]+= code_value();
  4941. }
  4942. else
  4943. {
  4944. #ifdef FILAMENTCHANGE_XPOS
  4945. target[X_AXIS]= FILAMENTCHANGE_XPOS ;
  4946. #endif
  4947. }
  4948. if(code_seen('Y'))
  4949. {
  4950. target[Y_AXIS]= code_value();
  4951. }
  4952. else
  4953. {
  4954. #ifdef FILAMENTCHANGE_YPOS
  4955. target[Y_AXIS]= FILAMENTCHANGE_YPOS ;
  4956. #endif
  4957. }
  4958. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_XYFEED, active_extruder);
  4959. st_synchronize();
  4960. KEEPALIVE_STATE(PAUSED_FOR_USER);
  4961. uint8_t cnt = 0;
  4962. int counterBeep = 0;
  4963. fanSpeed = 0;
  4964. unsigned long waiting_start_time = millis();
  4965. uint8_t wait_for_user_state = 0;
  4966. lcd_display_message_fullscreen_P(MSG_PRESS_TO_UNLOAD);
  4967. while (!(wait_for_user_state == 0 && lcd_clicked())){
  4968. //cnt++;
  4969. manage_heater();
  4970. manage_inactivity(true);
  4971. /*#ifdef SNMM
  4972. target[E_AXIS] += 0.002;
  4973. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 500, active_extruder);
  4974. #endif // SNMM*/
  4975. //if (cnt == 0)
  4976. {
  4977. #if BEEPER > 0
  4978. if (counterBeep == 500) {
  4979. counterBeep = 0;
  4980. }
  4981. SET_OUTPUT(BEEPER);
  4982. if (counterBeep == 0) {
  4983. WRITE(BEEPER, HIGH);
  4984. }
  4985. if (counterBeep == 20) {
  4986. WRITE(BEEPER, LOW);
  4987. }
  4988. counterBeep++;
  4989. #else
  4990. #if !defined(LCD_FEEDBACK_FREQUENCY_HZ) || !defined(LCD_FEEDBACK_FREQUENCY_DURATION_MS)
  4991. lcd_buzz(1000 / 6, 100);
  4992. #else
  4993. lcd_buzz(LCD_FEEDBACK_FREQUENCY_DURATION_MS, LCD_FEEDBACK_FREQUENCY_HZ);
  4994. #endif
  4995. #endif
  4996. }
  4997. switch (wait_for_user_state) {
  4998. case 0:
  4999. delay_keep_alive(4);
  5000. if (millis() > waiting_start_time + (unsigned long)M600_TIMEOUT * 1000) {
  5001. lcd_display_message_fullscreen_P(MSG_PRESS_TO_PREHEAT);
  5002. wait_for_user_state = 1;
  5003. setTargetHotend(0, 0);
  5004. setTargetHotend(0, 1);
  5005. setTargetHotend(0, 2);
  5006. st_synchronize();
  5007. disable_e0();
  5008. disable_e1();
  5009. disable_e2();
  5010. }
  5011. break;
  5012. case 1:
  5013. delay_keep_alive(4);
  5014. if (lcd_clicked()) {
  5015. setTargetHotend(HotendTempBckp, active_extruder);
  5016. lcd_wait_for_heater();
  5017. wait_for_user_state = 2;
  5018. }
  5019. break;
  5020. case 2:
  5021. if (abs(degTargetHotend(active_extruder) - degHotend(active_extruder)) < 1) {
  5022. lcd_display_message_fullscreen_P(MSG_PRESS_TO_UNLOAD);
  5023. waiting_start_time = millis();
  5024. wait_for_user_state = 0;
  5025. }
  5026. else {
  5027. counterBeep = 20; //beeper will be inactive during waiting for nozzle preheat
  5028. lcd.setCursor(1, 4);
  5029. lcd.print(ftostr3(degHotend(active_extruder)));
  5030. }
  5031. break;
  5032. }
  5033. }
  5034. WRITE(BEEPER, LOW);
  5035. lcd_change_fil_state = 0;
  5036. // Unload filament
  5037. lcd_display_message_fullscreen_P(MSG_UNLOADING_FILAMENT);
  5038. KEEPALIVE_STATE(IN_HANDLER);
  5039. custom_message = true;
  5040. lcd_setstatuspgm(MSG_UNLOADING_FILAMENT);
  5041. if (code_seen('L'))
  5042. {
  5043. target[E_AXIS] += code_value();
  5044. }
  5045. else
  5046. {
  5047. #ifdef SNMM
  5048. #else
  5049. #ifdef FILAMENTCHANGE_FINALRETRACT
  5050. target[E_AXIS] += FILAMENTCHANGE_FINALRETRACT;
  5051. #endif
  5052. #endif // SNMM
  5053. }
  5054. #ifdef SNMM
  5055. target[E_AXIS] += 12;
  5056. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 3500, active_extruder);
  5057. target[E_AXIS] += 6;
  5058. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 5000, active_extruder);
  5059. target[E_AXIS] += (FIL_LOAD_LENGTH * -1);
  5060. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 5000, active_extruder);
  5061. st_synchronize();
  5062. target[E_AXIS] += (FIL_COOLING);
  5063. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 50, active_extruder);
  5064. target[E_AXIS] += (FIL_COOLING*-1);
  5065. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 50, active_extruder);
  5066. target[E_AXIS] += (bowden_length[snmm_extruder] * -1);
  5067. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 3000, active_extruder);
  5068. st_synchronize();
  5069. #else
  5070. // plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_RFEED, active_extruder);
  5071. //plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 3500 / 60, active_extruder);
  5072. target[E_AXIS] -= FILAMENTCHANGE_FINALRETRACT;
  5073. st_synchronize();
  5074. uint8_t tmc2130_current_r_bckp = tmc2130_current_r[E_AXIS];
  5075. tmc2130_set_current_r(E_AXIS, TMC2130_UNLOAD_CURRENT_R);
  5076. target[E_AXIS] -= 45;
  5077. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 5200 / 60, active_extruder);
  5078. st_synchronize();
  5079. target[E_AXIS] -= 15;
  5080. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 1000 / 60, active_extruder);
  5081. st_synchronize();
  5082. target[E_AXIS] -= 20;
  5083. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 1000 / 60, active_extruder);
  5084. st_synchronize();
  5085. tmc2130_set_current_r(E_AXIS, tmc2130_current_r_bckp);
  5086. #endif // SNMM
  5087. //finish moves
  5088. st_synchronize();
  5089. lcd_display_message_fullscreen_P(MSG_PULL_OUT_FILAMENT);
  5090. //disable extruder steppers so filament can be removed
  5091. disable_e0();
  5092. disable_e1();
  5093. disable_e2();
  5094. delay(100);
  5095. WRITE(BEEPER, HIGH);
  5096. counterBeep = 0;
  5097. while(!lcd_clicked() && (counterBeep < 50)) {
  5098. if(counterBeep > 5) WRITE(BEEPER, LOW);
  5099. delay_keep_alive(100);
  5100. counterBeep++;
  5101. }
  5102. WRITE(BEEPER, LOW);
  5103. KEEPALIVE_STATE(PAUSED_FOR_USER);
  5104. lcd_change_fil_state = lcd_show_fullscreen_message_yes_no_and_wait_P(MSG_UNLOAD_SUCCESSFUL, false, true);
  5105. if (lcd_change_fil_state == 0) lcd_show_fullscreen_message_and_wait_P(MSG_CHECK_IDLER);
  5106. //lcd_return_to_status();
  5107. lcd_update_enable(true);
  5108. //Wait for user to insert filament
  5109. lcd_wait_interact();
  5110. //load_filament_time = millis();
  5111. KEEPALIVE_STATE(PAUSED_FOR_USER);
  5112. #ifdef PAT9125
  5113. if (filament_autoload_enabled && (old_fsensor_enabled || fsensor_M600)) fsensor_autoload_check_start();
  5114. #endif //PAT9125
  5115. // printf_P(PSTR("M600 PAT9125 filament_autoload_enabled=%d, old_fsensor_enabled=%d, fsensor_M600=%d"), filament_autoload_enabled, old_fsensor_enabled, fsensor_M600);
  5116. while(!lcd_clicked())
  5117. {
  5118. manage_heater();
  5119. manage_inactivity(true);
  5120. #ifdef PAT9125
  5121. if (filament_autoload_enabled && (old_fsensor_enabled || fsensor_M600) && fsensor_check_autoload())
  5122. {
  5123. tone(BEEPER, 1000);
  5124. delay_keep_alive(50);
  5125. noTone(BEEPER);
  5126. break;
  5127. }
  5128. #endif //PAT9125
  5129. /*#ifdef SNMM
  5130. target[E_AXIS] += 0.002;
  5131. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 500, active_extruder);
  5132. #endif // SNMM*/
  5133. }
  5134. #ifdef PAT9125
  5135. if (filament_autoload_enabled && (old_fsensor_enabled || fsensor_M600)) fsensor_autoload_check_stop();
  5136. #endif //PAT9125
  5137. //WRITE(BEEPER, LOW);
  5138. KEEPALIVE_STATE(IN_HANDLER);
  5139. #ifdef SNMM
  5140. display_loading();
  5141. KEEPALIVE_STATE(PAUSED_FOR_USER);
  5142. do {
  5143. target[E_AXIS] += 0.002;
  5144. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 500, active_extruder);
  5145. delay_keep_alive(2);
  5146. } while (!lcd_clicked());
  5147. KEEPALIVE_STATE(IN_HANDLER);
  5148. /*if (millis() - load_filament_time > 2) {
  5149. load_filament_time = millis();
  5150. target[E_AXIS] += 0.001;
  5151. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 1000, active_extruder);
  5152. }*/
  5153. //Filament inserted
  5154. //Feed the filament to the end of nozzle quickly
  5155. st_synchronize();
  5156. target[E_AXIS] += bowden_length[snmm_extruder];
  5157. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 3000, active_extruder);
  5158. target[E_AXIS] += FIL_LOAD_LENGTH - 60;
  5159. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 1400, active_extruder);
  5160. target[E_AXIS] += 40;
  5161. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 400, active_extruder);
  5162. target[E_AXIS] += 10;
  5163. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 50, active_extruder);
  5164. #else
  5165. target[E_AXIS] += FILAMENTCHANGE_FIRSTFEED;
  5166. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_EFEED, active_extruder);
  5167. #endif // SNMM
  5168. //Extrude some filament
  5169. target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  5170. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_EXFEED, active_extruder);
  5171. //Wait for user to check the state
  5172. lcd_change_fil_state = 0;
  5173. lcd_loading_filament();
  5174. tone(BEEPER, 500);
  5175. delay_keep_alive(50);
  5176. noTone(BEEPER);
  5177. while ((lcd_change_fil_state == 0)||(lcd_change_fil_state != 1)){
  5178. lcd_change_fil_state = 0;
  5179. KEEPALIVE_STATE(PAUSED_FOR_USER);
  5180. lcd_alright();
  5181. KEEPALIVE_STATE(IN_HANDLER);
  5182. switch(lcd_change_fil_state){
  5183. // Filament failed to load so load it again
  5184. case 2:
  5185. #ifdef SNMM
  5186. display_loading();
  5187. do {
  5188. target[E_AXIS] += 0.002;
  5189. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 500, active_extruder);
  5190. delay_keep_alive(2);
  5191. } while (!lcd_clicked());
  5192. st_synchronize();
  5193. target[E_AXIS] += bowden_length[snmm_extruder];
  5194. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 3000, active_extruder);
  5195. target[E_AXIS] += FIL_LOAD_LENGTH - 60;
  5196. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 1400, active_extruder);
  5197. target[E_AXIS] += 40;
  5198. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 400, active_extruder);
  5199. target[E_AXIS] += 10;
  5200. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 50, active_extruder);
  5201. #else
  5202. target[E_AXIS]+= FILAMENTCHANGE_FIRSTFEED ;
  5203. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_EFEED, active_extruder);
  5204. #endif
  5205. target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  5206. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_EXFEED, active_extruder);
  5207. lcd_loading_filament();
  5208. break;
  5209. // Filament loaded properly but color is not clear
  5210. case 3:
  5211. target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  5212. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder);
  5213. lcd_loading_color();
  5214. break;
  5215. // Everything good
  5216. default:
  5217. lcd_change_success();
  5218. lcd_update_enable(true);
  5219. break;
  5220. }
  5221. }
  5222. //Not let's go back to print
  5223. fanSpeed = fanSpeedBckp;
  5224. //Feed a little of filament to stabilize pressure
  5225. target[E_AXIS]+= FILAMENTCHANGE_RECFEED;
  5226. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_EXFEED, active_extruder);
  5227. //Retract
  5228. target[E_AXIS]+= FILAMENTCHANGE_FIRSTRETRACT;
  5229. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_RFEED, active_extruder);
  5230. //plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 70, active_extruder); //should do nothing
  5231. //Move XY back
  5232. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_XYFEED, active_extruder);
  5233. //Move Z back
  5234. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_ZFEED, active_extruder);
  5235. target[E_AXIS]= target[E_AXIS] - FILAMENTCHANGE_FIRSTRETRACT;
  5236. //Unretract
  5237. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_RFEED, active_extruder);
  5238. //Set E position to original
  5239. plan_set_e_position(lastpos[E_AXIS]);
  5240. //Recover feed rate
  5241. feedmultiply=feedmultiplyBckp;
  5242. char cmd[9];
  5243. sprintf_P(cmd, PSTR("M220 S%i"), feedmultiplyBckp);
  5244. enquecommand(cmd);
  5245. lcd_setstatuspgm(WELCOME_MSG);
  5246. custom_message = false;
  5247. custom_message_type = 0;
  5248. fsensor_enabled = old_fsensor_enabled; //temporary solution for unexpected restarting
  5249. #ifdef PAT9125
  5250. if (fsensor_M600)
  5251. {
  5252. cmdqueue_pop_front(); //hack because M600 repeated 2x when enqueued to front
  5253. st_synchronize();
  5254. while (!is_buffer_empty())
  5255. {
  5256. process_commands();
  5257. cmdqueue_pop_front();
  5258. }
  5259. fsensor_enable();
  5260. fsensor_restore_print_and_continue();
  5261. }
  5262. #endif //PAT9125
  5263. }
  5264. break;
  5265. #endif //FILAMENTCHANGEENABLE
  5266. case 601: {
  5267. if(lcd_commands_type == 0) lcd_commands_type = LCD_COMMAND_LONG_PAUSE;
  5268. }
  5269. break;
  5270. case 602: {
  5271. if(lcd_commands_type == 0) lcd_commands_type = LCD_COMMAND_LONG_PAUSE_RESUME;
  5272. }
  5273. break;
  5274. #ifdef LIN_ADVANCE
  5275. case 900: // M900: Set LIN_ADVANCE options.
  5276. gcode_M900();
  5277. break;
  5278. #endif
  5279. case 907: // M907 Set digital trimpot motor current using axis codes.
  5280. {
  5281. #if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
  5282. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) digipot_current(i,code_value());
  5283. if(code_seen('B')) digipot_current(4,code_value());
  5284. if(code_seen('S')) for(int i=0;i<=4;i++) digipot_current(i,code_value());
  5285. #endif
  5286. #ifdef MOTOR_CURRENT_PWM_XY_PIN
  5287. if(code_seen('X')) digipot_current(0, code_value());
  5288. #endif
  5289. #ifdef MOTOR_CURRENT_PWM_Z_PIN
  5290. if(code_seen('Z')) digipot_current(1, code_value());
  5291. #endif
  5292. #ifdef MOTOR_CURRENT_PWM_E_PIN
  5293. if(code_seen('E')) digipot_current(2, code_value());
  5294. #endif
  5295. #ifdef DIGIPOT_I2C
  5296. // this one uses actual amps in floating point
  5297. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) digipot_i2c_set_current(i, code_value());
  5298. // for each additional extruder (named B,C,D,E..., channels 4,5,6,7...)
  5299. for(int i=NUM_AXIS;i<DIGIPOT_I2C_NUM_CHANNELS;i++) if(code_seen('B'+i-NUM_AXIS)) digipot_i2c_set_current(i, code_value());
  5300. #endif
  5301. }
  5302. break;
  5303. case 908: // M908 Control digital trimpot directly.
  5304. {
  5305. #if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
  5306. uint8_t channel,current;
  5307. if(code_seen('P')) channel=code_value();
  5308. if(code_seen('S')) current=code_value();
  5309. digitalPotWrite(channel, current);
  5310. #endif
  5311. }
  5312. break;
  5313. case 910: // M910 TMC2130 init
  5314. {
  5315. tmc2130_init();
  5316. }
  5317. break;
  5318. case 911: // M911 Set TMC2130 holding currents
  5319. {
  5320. if (code_seen('X')) tmc2130_set_current_h(0, code_value());
  5321. if (code_seen('Y')) tmc2130_set_current_h(1, code_value());
  5322. if (code_seen('Z')) tmc2130_set_current_h(2, code_value());
  5323. if (code_seen('E')) tmc2130_set_current_h(3, code_value());
  5324. }
  5325. break;
  5326. case 912: // M912 Set TMC2130 running currents
  5327. {
  5328. if (code_seen('X')) tmc2130_set_current_r(0, code_value());
  5329. if (code_seen('Y')) tmc2130_set_current_r(1, code_value());
  5330. if (code_seen('Z')) tmc2130_set_current_r(2, code_value());
  5331. if (code_seen('E')) tmc2130_set_current_r(3, code_value());
  5332. }
  5333. break;
  5334. case 913: // M913 Print TMC2130 currents
  5335. {
  5336. tmc2130_print_currents();
  5337. }
  5338. break;
  5339. case 914: // M914 Set normal mode
  5340. {
  5341. tmc2130_mode = TMC2130_MODE_NORMAL;
  5342. tmc2130_init();
  5343. }
  5344. break;
  5345. case 915: // M915 Set silent mode
  5346. {
  5347. tmc2130_mode = TMC2130_MODE_SILENT;
  5348. tmc2130_init();
  5349. }
  5350. break;
  5351. case 916: // M916 Set sg_thrs
  5352. {
  5353. if (code_seen('X')) tmc2130_sg_thr[X_AXIS] = code_value();
  5354. if (code_seen('Y')) tmc2130_sg_thr[Y_AXIS] = code_value();
  5355. if (code_seen('Z')) tmc2130_sg_thr[Z_AXIS] = code_value();
  5356. if (code_seen('E')) tmc2130_sg_thr[E_AXIS] = code_value();
  5357. MYSERIAL.print("tmc2130_sg_thr[X]=");
  5358. MYSERIAL.println(tmc2130_sg_thr[X_AXIS], DEC);
  5359. MYSERIAL.print("tmc2130_sg_thr[Y]=");
  5360. MYSERIAL.println(tmc2130_sg_thr[Y_AXIS], DEC);
  5361. MYSERIAL.print("tmc2130_sg_thr[Z]=");
  5362. MYSERIAL.println(tmc2130_sg_thr[Z_AXIS], DEC);
  5363. MYSERIAL.print("tmc2130_sg_thr[E]=");
  5364. MYSERIAL.println(tmc2130_sg_thr[E_AXIS], DEC);
  5365. }
  5366. break;
  5367. case 917: // M917 Set TMC2130 pwm_ampl
  5368. {
  5369. if (code_seen('X')) tmc2130_set_pwm_ampl(0, code_value());
  5370. if (code_seen('Y')) tmc2130_set_pwm_ampl(1, code_value());
  5371. if (code_seen('Z')) tmc2130_set_pwm_ampl(2, code_value());
  5372. if (code_seen('E')) tmc2130_set_pwm_ampl(3, code_value());
  5373. }
  5374. break;
  5375. case 918: // M918 Set TMC2130 pwm_grad
  5376. {
  5377. if (code_seen('X')) tmc2130_set_pwm_grad(0, code_value());
  5378. if (code_seen('Y')) tmc2130_set_pwm_grad(1, code_value());
  5379. if (code_seen('Z')) tmc2130_set_pwm_grad(2, code_value());
  5380. if (code_seen('E')) tmc2130_set_pwm_grad(3, code_value());
  5381. }
  5382. break;
  5383. case 350: // M350 Set microstepping mode. Warning: Steps per unit remains unchanged. S code sets stepping mode for all drivers.
  5384. {
  5385. #ifdef TMC2130
  5386. if(code_seen('E'))
  5387. {
  5388. uint16_t res_new = code_value();
  5389. if ((res_new == 8) || (res_new == 16) || (res_new == 32) || (res_new == 64) || (res_new == 128))
  5390. {
  5391. st_synchronize();
  5392. uint8_t axis = E_AXIS;
  5393. uint16_t res = tmc2130_get_res(axis);
  5394. tmc2130_set_res(axis, res_new);
  5395. if (res_new > res)
  5396. {
  5397. uint16_t fac = (res_new / res);
  5398. axis_steps_per_unit[axis] *= fac;
  5399. position[E_AXIS] *= fac;
  5400. }
  5401. else
  5402. {
  5403. uint16_t fac = (res / res_new);
  5404. axis_steps_per_unit[axis] /= fac;
  5405. position[E_AXIS] /= fac;
  5406. }
  5407. }
  5408. }
  5409. #else //TMC2130
  5410. #if defined(X_MS1_PIN) && X_MS1_PIN > -1
  5411. if(code_seen('S')) for(int i=0;i<=4;i++) microstep_mode(i,code_value());
  5412. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) microstep_mode(i,(uint8_t)code_value());
  5413. if(code_seen('B')) microstep_mode(4,code_value());
  5414. microstep_readings();
  5415. #endif
  5416. #endif //TMC2130
  5417. }
  5418. break;
  5419. case 351: // M351 Toggle MS1 MS2 pins directly, S# determines MS1 or MS2, X# sets the pin high/low.
  5420. {
  5421. #if defined(X_MS1_PIN) && X_MS1_PIN > -1
  5422. if(code_seen('S')) switch((int)code_value())
  5423. {
  5424. case 1:
  5425. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) microstep_ms(i,code_value(),-1);
  5426. if(code_seen('B')) microstep_ms(4,code_value(),-1);
  5427. break;
  5428. case 2:
  5429. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) microstep_ms(i,-1,code_value());
  5430. if(code_seen('B')) microstep_ms(4,-1,code_value());
  5431. break;
  5432. }
  5433. microstep_readings();
  5434. #endif
  5435. }
  5436. break;
  5437. case 701: //M701: load filament
  5438. {
  5439. gcode_M701();
  5440. }
  5441. break;
  5442. case 702:
  5443. {
  5444. #ifdef SNMM
  5445. if (code_seen('U')) {
  5446. extr_unload_used(); //unload all filaments which were used in current print
  5447. }
  5448. else if (code_seen('C')) {
  5449. extr_unload(); //unload just current filament
  5450. }
  5451. else {
  5452. extr_unload_all(); //unload all filaments
  5453. }
  5454. #else
  5455. bool old_fsensor_enabled = fsensor_enabled;
  5456. fsensor_enabled = false;
  5457. custom_message = true;
  5458. custom_message_type = 2;
  5459. lcd_setstatuspgm(MSG_UNLOADING_FILAMENT);
  5460. // extr_unload2();
  5461. current_position[E_AXIS] -= 45;
  5462. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 5200 / 60, active_extruder);
  5463. st_synchronize();
  5464. current_position[E_AXIS] -= 15;
  5465. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 1000 / 60, active_extruder);
  5466. st_synchronize();
  5467. current_position[E_AXIS] -= 20;
  5468. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 1000 / 60, active_extruder);
  5469. st_synchronize();
  5470. lcd_display_message_fullscreen_P(MSG_PULL_OUT_FILAMENT);
  5471. //disable extruder steppers so filament can be removed
  5472. disable_e0();
  5473. disable_e1();
  5474. disable_e2();
  5475. delay(100);
  5476. WRITE(BEEPER, HIGH);
  5477. uint8_t counterBeep = 0;
  5478. while (!lcd_clicked() && (counterBeep < 50)) {
  5479. if (counterBeep > 5) WRITE(BEEPER, LOW);
  5480. delay_keep_alive(100);
  5481. counterBeep++;
  5482. }
  5483. WRITE(BEEPER, LOW);
  5484. st_synchronize();
  5485. while (lcd_clicked()) delay_keep_alive(100);
  5486. lcd_update_enable(true);
  5487. lcd_setstatuspgm(WELCOME_MSG);
  5488. custom_message = false;
  5489. custom_message_type = 0;
  5490. fsensor_enabled = old_fsensor_enabled;
  5491. #endif
  5492. }
  5493. break;
  5494. case 999: // M999: Restart after being stopped
  5495. Stopped = false;
  5496. lcd_reset_alert_level();
  5497. gcode_LastN = Stopped_gcode_LastN;
  5498. FlushSerialRequestResend();
  5499. break;
  5500. default:
  5501. printf_P(PSTR("Unknown M code: %s \n"), cmdbuffer + bufindr + CMDHDRSIZE);
  5502. }
  5503. } // end if(code_seen('M')) (end of M codes)
  5504. else if(code_seen('T'))
  5505. {
  5506. int index;
  5507. st_synchronize();
  5508. for (index = 1; *(strchr_pointer + index) == ' ' || *(strchr_pointer + index) == '\t'; index++);
  5509. if ((*(strchr_pointer + index) < '0' || *(strchr_pointer + index) > '9') && *(strchr_pointer + index) != '?') {
  5510. SERIAL_ECHOLNPGM("Invalid T code.");
  5511. }
  5512. else {
  5513. if (*(strchr_pointer + index) == '?') {
  5514. tmp_extruder = choose_extruder_menu();
  5515. }
  5516. else {
  5517. tmp_extruder = code_value();
  5518. }
  5519. snmm_filaments_used |= (1 << tmp_extruder); //for stop print
  5520. #ifdef SNMM
  5521. #ifdef LIN_ADVANCE
  5522. if (snmm_extruder != tmp_extruder)
  5523. clear_current_adv_vars(); //Check if the selected extruder is not the active one and reset LIN_ADVANCE variables if so.
  5524. #endif
  5525. snmm_extruder = tmp_extruder;
  5526. delay(100);
  5527. disable_e0();
  5528. disable_e1();
  5529. disable_e2();
  5530. pinMode(E_MUX0_PIN, OUTPUT);
  5531. pinMode(E_MUX1_PIN, OUTPUT);
  5532. pinMode(E_MUX2_PIN, OUTPUT);
  5533. delay(100);
  5534. SERIAL_ECHO_START;
  5535. SERIAL_ECHO("T:");
  5536. SERIAL_ECHOLN((int)tmp_extruder);
  5537. switch (tmp_extruder) {
  5538. case 1:
  5539. WRITE(E_MUX0_PIN, HIGH);
  5540. WRITE(E_MUX1_PIN, LOW);
  5541. WRITE(E_MUX2_PIN, LOW);
  5542. break;
  5543. case 2:
  5544. WRITE(E_MUX0_PIN, LOW);
  5545. WRITE(E_MUX1_PIN, HIGH);
  5546. WRITE(E_MUX2_PIN, LOW);
  5547. break;
  5548. case 3:
  5549. WRITE(E_MUX0_PIN, HIGH);
  5550. WRITE(E_MUX1_PIN, HIGH);
  5551. WRITE(E_MUX2_PIN, LOW);
  5552. break;
  5553. default:
  5554. WRITE(E_MUX0_PIN, LOW);
  5555. WRITE(E_MUX1_PIN, LOW);
  5556. WRITE(E_MUX2_PIN, LOW);
  5557. break;
  5558. }
  5559. delay(100);
  5560. #else
  5561. if (tmp_extruder >= EXTRUDERS) {
  5562. SERIAL_ECHO_START;
  5563. SERIAL_ECHOPGM("T");
  5564. SERIAL_PROTOCOLLN((int)tmp_extruder);
  5565. SERIAL_ECHOLNRPGM(MSG_INVALID_EXTRUDER);
  5566. }
  5567. else {
  5568. boolean make_move = false;
  5569. if (code_seen('F')) {
  5570. make_move = true;
  5571. next_feedrate = code_value();
  5572. if (next_feedrate > 0.0) {
  5573. feedrate = next_feedrate;
  5574. }
  5575. }
  5576. #if EXTRUDERS > 1
  5577. if (tmp_extruder != active_extruder) {
  5578. // Save current position to return to after applying extruder offset
  5579. memcpy(destination, current_position, sizeof(destination));
  5580. // Offset extruder (only by XY)
  5581. int i;
  5582. for (i = 0; i < 2; i++) {
  5583. current_position[i] = current_position[i] -
  5584. extruder_offset[i][active_extruder] +
  5585. extruder_offset[i][tmp_extruder];
  5586. }
  5587. // Set the new active extruder and position
  5588. active_extruder = tmp_extruder;
  5589. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  5590. // Move to the old position if 'F' was in the parameters
  5591. if (make_move && Stopped == false) {
  5592. prepare_move();
  5593. }
  5594. }
  5595. #endif
  5596. SERIAL_ECHO_START;
  5597. SERIAL_ECHORPGM(MSG_ACTIVE_EXTRUDER);
  5598. SERIAL_PROTOCOLLN((int)active_extruder);
  5599. }
  5600. #endif
  5601. }
  5602. } // end if(code_seen('T')) (end of T codes)
  5603. #ifdef DEBUG_DCODES
  5604. else if (code_seen('D')) // D codes (debug)
  5605. {
  5606. switch((int)code_value())
  5607. {
  5608. case -1: // D-1 - Endless loop
  5609. dcode__1(); break;
  5610. case 0: // D0 - Reset
  5611. dcode_0(); break;
  5612. case 1: // D1 - Clear EEPROM
  5613. dcode_1(); break;
  5614. case 2: // D2 - Read/Write RAM
  5615. dcode_2(); break;
  5616. case 3: // D3 - Read/Write EEPROM
  5617. dcode_3(); break;
  5618. case 4: // D4 - Read/Write PIN
  5619. dcode_4(); break;
  5620. case 5: // D5 - Read/Write FLASH
  5621. // dcode_5(); break;
  5622. break;
  5623. case 6: // D6 - Read/Write external FLASH
  5624. dcode_6(); break;
  5625. case 7: // D7 - Read/Write Bootloader
  5626. dcode_7(); break;
  5627. case 8: // D8 - Read/Write PINDA
  5628. dcode_8(); break;
  5629. case 9: // D9 - Read/Write ADC
  5630. dcode_9(); break;
  5631. case 10: // D10 - XYZ calibration = OK
  5632. dcode_10(); break;
  5633. case 2130: // D9125 - TMC2130
  5634. dcode_2130(); break;
  5635. case 9125: // D9125 - PAT9125
  5636. dcode_9125(); break;
  5637. }
  5638. }
  5639. #endif //DEBUG_DCODES
  5640. else
  5641. {
  5642. SERIAL_ECHO_START;
  5643. SERIAL_ECHORPGM(MSG_UNKNOWN_COMMAND);
  5644. SERIAL_ECHO(CMDBUFFER_CURRENT_STRING);
  5645. SERIAL_ECHOLNPGM("\"(2)");
  5646. }
  5647. KEEPALIVE_STATE(NOT_BUSY);
  5648. ClearToSend();
  5649. }
  5650. void FlushSerialRequestResend()
  5651. {
  5652. //char cmdbuffer[bufindr][100]="Resend:";
  5653. MYSERIAL.flush();
  5654. SERIAL_PROTOCOLRPGM(MSG_RESEND);
  5655. SERIAL_PROTOCOLLN(gcode_LastN + 1);
  5656. previous_millis_cmd = millis();
  5657. SERIAL_PROTOCOLLNRPGM(MSG_OK);
  5658. }
  5659. // Confirm the execution of a command, if sent from a serial line.
  5660. // Execution of a command from a SD card will not be confirmed.
  5661. void ClearToSend()
  5662. {
  5663. previous_millis_cmd = millis();
  5664. if (CMDBUFFER_CURRENT_TYPE == CMDBUFFER_CURRENT_TYPE_USB)
  5665. SERIAL_PROTOCOLLNRPGM(MSG_OK);
  5666. }
  5667. void get_coordinates()
  5668. {
  5669. bool seen[4]={false,false,false,false};
  5670. for(int8_t i=0; i < NUM_AXIS; i++) {
  5671. if(code_seen(axis_codes[i]))
  5672. {
  5673. bool relative = axis_relative_modes[i] || relative_mode;
  5674. destination[i] = (float)code_value();
  5675. if (i == E_AXIS) {
  5676. float emult = extruder_multiplier[active_extruder];
  5677. if (emult != 1.) {
  5678. if (! relative) {
  5679. destination[i] -= current_position[i];
  5680. relative = true;
  5681. }
  5682. destination[i] *= emult;
  5683. }
  5684. }
  5685. if (relative)
  5686. destination[i] += current_position[i];
  5687. seen[i]=true;
  5688. }
  5689. else destination[i] = current_position[i]; //Are these else lines really needed?
  5690. }
  5691. if(code_seen('F')) {
  5692. next_feedrate = code_value();
  5693. #ifdef MAX_SILENT_FEEDRATE
  5694. if (tmc2130_mode == TMC2130_MODE_SILENT)
  5695. if (next_feedrate > MAX_SILENT_FEEDRATE) next_feedrate = MAX_SILENT_FEEDRATE;
  5696. #endif //MAX_SILENT_FEEDRATE
  5697. if(next_feedrate > 0.0) feedrate = next_feedrate;
  5698. if (!seen[0] && !seen[1] && !seen[2] && seen[3])
  5699. {
  5700. // float e_max_speed =
  5701. // printf_P(PSTR("E MOVE speed %7.3f\n"), feedrate / 60)
  5702. }
  5703. }
  5704. }
  5705. void get_arc_coordinates()
  5706. {
  5707. #ifdef SF_ARC_FIX
  5708. bool relative_mode_backup = relative_mode;
  5709. relative_mode = true;
  5710. #endif
  5711. get_coordinates();
  5712. #ifdef SF_ARC_FIX
  5713. relative_mode=relative_mode_backup;
  5714. #endif
  5715. if(code_seen('I')) {
  5716. offset[0] = code_value();
  5717. }
  5718. else {
  5719. offset[0] = 0.0;
  5720. }
  5721. if(code_seen('J')) {
  5722. offset[1] = code_value();
  5723. }
  5724. else {
  5725. offset[1] = 0.0;
  5726. }
  5727. }
  5728. void clamp_to_software_endstops(float target[3])
  5729. {
  5730. #ifdef DEBUG_DISABLE_SWLIMITS
  5731. return;
  5732. #endif //DEBUG_DISABLE_SWLIMITS
  5733. world2machine_clamp(target[0], target[1]);
  5734. // Clamp the Z coordinate.
  5735. if (min_software_endstops) {
  5736. float negative_z_offset = 0;
  5737. #ifdef ENABLE_AUTO_BED_LEVELING
  5738. if (Z_PROBE_OFFSET_FROM_EXTRUDER < 0) negative_z_offset = negative_z_offset + Z_PROBE_OFFSET_FROM_EXTRUDER;
  5739. if (add_homing[Z_AXIS] < 0) negative_z_offset = negative_z_offset + add_homing[Z_AXIS];
  5740. #endif
  5741. if (target[Z_AXIS] < min_pos[Z_AXIS]+negative_z_offset) target[Z_AXIS] = min_pos[Z_AXIS]+negative_z_offset;
  5742. }
  5743. if (max_software_endstops) {
  5744. if (target[Z_AXIS] > max_pos[Z_AXIS]) target[Z_AXIS] = max_pos[Z_AXIS];
  5745. }
  5746. }
  5747. #ifdef MESH_BED_LEVELING
  5748. void mesh_plan_buffer_line(const float &x, const float &y, const float &z, const float &e, const float &feed_rate, const uint8_t extruder) {
  5749. float dx = x - current_position[X_AXIS];
  5750. float dy = y - current_position[Y_AXIS];
  5751. float dz = z - current_position[Z_AXIS];
  5752. int n_segments = 0;
  5753. if (mbl.active) {
  5754. float len = abs(dx) + abs(dy);
  5755. if (len > 0)
  5756. // Split to 3cm segments or shorter.
  5757. n_segments = int(ceil(len / 30.f));
  5758. }
  5759. if (n_segments > 1) {
  5760. float de = e - current_position[E_AXIS];
  5761. for (int i = 1; i < n_segments; ++ i) {
  5762. float t = float(i) / float(n_segments);
  5763. plan_buffer_line(
  5764. current_position[X_AXIS] + t * dx,
  5765. current_position[Y_AXIS] + t * dy,
  5766. current_position[Z_AXIS] + t * dz,
  5767. current_position[E_AXIS] + t * de,
  5768. feed_rate, extruder);
  5769. }
  5770. }
  5771. // The rest of the path.
  5772. plan_buffer_line(x, y, z, e, feed_rate, extruder);
  5773. current_position[X_AXIS] = x;
  5774. current_position[Y_AXIS] = y;
  5775. current_position[Z_AXIS] = z;
  5776. current_position[E_AXIS] = e;
  5777. }
  5778. #endif // MESH_BED_LEVELING
  5779. void prepare_move()
  5780. {
  5781. clamp_to_software_endstops(destination);
  5782. previous_millis_cmd = millis();
  5783. // Do not use feedmultiply for E or Z only moves
  5784. if( (current_position[X_AXIS] == destination [X_AXIS]) && (current_position[Y_AXIS] == destination [Y_AXIS])) {
  5785. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  5786. }
  5787. else {
  5788. #ifdef MESH_BED_LEVELING
  5789. mesh_plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate*feedmultiply*(1./(60.f*100.f)), active_extruder);
  5790. #else
  5791. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate*feedmultiply*(1./(60.f*100.f)), active_extruder);
  5792. #endif
  5793. }
  5794. for(int8_t i=0; i < NUM_AXIS; i++) {
  5795. current_position[i] = destination[i];
  5796. }
  5797. }
  5798. void prepare_arc_move(char isclockwise) {
  5799. float r = hypot(offset[X_AXIS], offset[Y_AXIS]); // Compute arc radius for mc_arc
  5800. // Trace the arc
  5801. mc_arc(current_position, destination, offset, X_AXIS, Y_AXIS, Z_AXIS, feedrate*feedmultiply/60/100.0, r, isclockwise, active_extruder);
  5802. // As far as the parser is concerned, the position is now == target. In reality the
  5803. // motion control system might still be processing the action and the real tool position
  5804. // in any intermediate location.
  5805. for(int8_t i=0; i < NUM_AXIS; i++) {
  5806. current_position[i] = destination[i];
  5807. }
  5808. previous_millis_cmd = millis();
  5809. }
  5810. #if defined(CONTROLLERFAN_PIN) && CONTROLLERFAN_PIN > -1
  5811. #if defined(FAN_PIN)
  5812. #if CONTROLLERFAN_PIN == FAN_PIN
  5813. #error "You cannot set CONTROLLERFAN_PIN equal to FAN_PIN"
  5814. #endif
  5815. #endif
  5816. unsigned long lastMotor = 0; //Save the time for when a motor was turned on last
  5817. unsigned long lastMotorCheck = 0;
  5818. void controllerFan()
  5819. {
  5820. if ((millis() - lastMotorCheck) >= 2500) //Not a time critical function, so we only check every 2500ms
  5821. {
  5822. lastMotorCheck = millis();
  5823. if(!READ(X_ENABLE_PIN) || !READ(Y_ENABLE_PIN) || !READ(Z_ENABLE_PIN) || (soft_pwm_bed > 0)
  5824. #if EXTRUDERS > 2
  5825. || !READ(E2_ENABLE_PIN)
  5826. #endif
  5827. #if EXTRUDER > 1
  5828. #if defined(X2_ENABLE_PIN) && X2_ENABLE_PIN > -1
  5829. || !READ(X2_ENABLE_PIN)
  5830. #endif
  5831. || !READ(E1_ENABLE_PIN)
  5832. #endif
  5833. || !READ(E0_ENABLE_PIN)) //If any of the drivers are enabled...
  5834. {
  5835. lastMotor = millis(); //... set time to NOW so the fan will turn on
  5836. }
  5837. if ((millis() - lastMotor) >= (CONTROLLERFAN_SECS*1000UL) || lastMotor == 0) //If the last time any driver was enabled, is longer since than CONTROLLERSEC...
  5838. {
  5839. digitalWrite(CONTROLLERFAN_PIN, 0);
  5840. analogWrite(CONTROLLERFAN_PIN, 0);
  5841. }
  5842. else
  5843. {
  5844. // allows digital or PWM fan output to be used (see M42 handling)
  5845. digitalWrite(CONTROLLERFAN_PIN, CONTROLLERFAN_SPEED);
  5846. analogWrite(CONTROLLERFAN_PIN, CONTROLLERFAN_SPEED);
  5847. }
  5848. }
  5849. }
  5850. #endif
  5851. #ifdef TEMP_STAT_LEDS
  5852. static bool blue_led = false;
  5853. static bool red_led = false;
  5854. static uint32_t stat_update = 0;
  5855. void handle_status_leds(void) {
  5856. float max_temp = 0.0;
  5857. if(millis() > stat_update) {
  5858. stat_update += 500; // Update every 0.5s
  5859. for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) {
  5860. max_temp = max(max_temp, degHotend(cur_extruder));
  5861. max_temp = max(max_temp, degTargetHotend(cur_extruder));
  5862. }
  5863. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  5864. max_temp = max(max_temp, degTargetBed());
  5865. max_temp = max(max_temp, degBed());
  5866. #endif
  5867. if((max_temp > 55.0) && (red_led == false)) {
  5868. digitalWrite(STAT_LED_RED, 1);
  5869. digitalWrite(STAT_LED_BLUE, 0);
  5870. red_led = true;
  5871. blue_led = false;
  5872. }
  5873. if((max_temp < 54.0) && (blue_led == false)) {
  5874. digitalWrite(STAT_LED_RED, 0);
  5875. digitalWrite(STAT_LED_BLUE, 1);
  5876. red_led = false;
  5877. blue_led = true;
  5878. }
  5879. }
  5880. }
  5881. #endif
  5882. #ifdef SAFETYTIMER
  5883. /**
  5884. * @brief Turn off heating after 15 minutes of inactivity
  5885. */
  5886. static void handleSafetyTimer()
  5887. {
  5888. #if (EXTRUDERS > 1)
  5889. #error Implemented only for one extruder.
  5890. #endif //(EXTRUDERS > 1)
  5891. static Timer safetyTimer;
  5892. if (IS_SD_PRINTING || is_usb_printing || (custom_message_type == 4) || (lcd_commands_type == LCD_COMMAND_V2_CAL) ||
  5893. (!degTargetBed() && !degTargetHotend(0)))
  5894. {
  5895. safetyTimer.stop();
  5896. }
  5897. else if ((degTargetBed() || degTargetHotend(0)) && (!safetyTimer.running()))
  5898. {
  5899. safetyTimer.start();
  5900. }
  5901. else if (safetyTimer.expired(15*60*1000))
  5902. {
  5903. setTargetBed(0);
  5904. setTargetHotend(0, 0);
  5905. }
  5906. }
  5907. #endif //SAFETYTIMER
  5908. void manage_inactivity(bool ignore_stepper_queue/*=false*/) //default argument set in Marlin.h
  5909. {
  5910. if (fsensor_enabled && filament_autoload_enabled && !fsensor_M600 && !moves_planned() && !IS_SD_PRINTING && !is_usb_printing && (lcd_commands_type != LCD_COMMAND_V2_CAL))
  5911. {
  5912. if (fsensor_autoload_enabled)
  5913. {
  5914. if (fsensor_check_autoload())
  5915. {
  5916. if (degHotend0() > EXTRUDE_MINTEMP)
  5917. {
  5918. fsensor_autoload_check_stop();
  5919. tone(BEEPER, 1000);
  5920. delay_keep_alive(50);
  5921. noTone(BEEPER);
  5922. loading_flag = true;
  5923. enquecommand_front_P((PSTR("M701")));
  5924. }
  5925. else
  5926. {
  5927. lcd_update_enable(false);
  5928. lcd_implementation_clear();
  5929. lcd.setCursor(0, 0);
  5930. lcd_printPGM(MSG_ERROR);
  5931. lcd.setCursor(0, 2);
  5932. lcd_printPGM(MSG_PREHEAT_NOZZLE);
  5933. delay(2000);
  5934. lcd_implementation_clear();
  5935. lcd_update_enable(true);
  5936. }
  5937. }
  5938. }
  5939. else
  5940. fsensor_autoload_check_start();
  5941. }
  5942. else
  5943. if (fsensor_autoload_enabled)
  5944. fsensor_autoload_check_stop();
  5945. #ifdef SAFETYTIMER
  5946. handleSafetyTimer();
  5947. #endif //SAFETYTIMER
  5948. #if defined(KILL_PIN) && KILL_PIN > -1
  5949. static int killCount = 0; // make the inactivity button a bit less responsive
  5950. const int KILL_DELAY = 10000;
  5951. #endif
  5952. if(buflen < (BUFSIZE-1)){
  5953. get_command();
  5954. }
  5955. if( (millis() - previous_millis_cmd) > max_inactive_time )
  5956. if(max_inactive_time)
  5957. kill("", 4);
  5958. if(stepper_inactive_time) {
  5959. if( (millis() - previous_millis_cmd) > stepper_inactive_time )
  5960. {
  5961. if(blocks_queued() == false && ignore_stepper_queue == false) {
  5962. disable_x();
  5963. // SERIAL_ECHOLNPGM("manage_inactivity - disable Y");
  5964. disable_y();
  5965. disable_z();
  5966. disable_e0();
  5967. disable_e1();
  5968. disable_e2();
  5969. }
  5970. }
  5971. }
  5972. #ifdef CHDK //Check if pin should be set to LOW after M240 set it to HIGH
  5973. if (chdkActive && (millis() - chdkHigh > CHDK_DELAY))
  5974. {
  5975. chdkActive = false;
  5976. WRITE(CHDK, LOW);
  5977. }
  5978. #endif
  5979. #if defined(KILL_PIN) && KILL_PIN > -1
  5980. // Check if the kill button was pressed and wait just in case it was an accidental
  5981. // key kill key press
  5982. // -------------------------------------------------------------------------------
  5983. if( 0 == READ(KILL_PIN) )
  5984. {
  5985. killCount++;
  5986. }
  5987. else if (killCount > 0)
  5988. {
  5989. killCount--;
  5990. }
  5991. // Exceeded threshold and we can confirm that it was not accidental
  5992. // KILL the machine
  5993. // ----------------------------------------------------------------
  5994. if ( killCount >= KILL_DELAY)
  5995. {
  5996. kill("", 5);
  5997. }
  5998. #endif
  5999. #if defined(CONTROLLERFAN_PIN) && CONTROLLERFAN_PIN > -1
  6000. controllerFan(); //Check if fan should be turned on to cool stepper drivers down
  6001. #endif
  6002. #ifdef EXTRUDER_RUNOUT_PREVENT
  6003. if( (millis() - previous_millis_cmd) > EXTRUDER_RUNOUT_SECONDS*1000 )
  6004. if(degHotend(active_extruder)>EXTRUDER_RUNOUT_MINTEMP)
  6005. {
  6006. bool oldstatus=READ(E0_ENABLE_PIN);
  6007. enable_e0();
  6008. float oldepos=current_position[E_AXIS];
  6009. float oldedes=destination[E_AXIS];
  6010. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS],
  6011. destination[E_AXIS]+EXTRUDER_RUNOUT_EXTRUDE*EXTRUDER_RUNOUT_ESTEPS/axis_steps_per_unit[E_AXIS],
  6012. EXTRUDER_RUNOUT_SPEED/60.*EXTRUDER_RUNOUT_ESTEPS/axis_steps_per_unit[E_AXIS], active_extruder);
  6013. current_position[E_AXIS]=oldepos;
  6014. destination[E_AXIS]=oldedes;
  6015. plan_set_e_position(oldepos);
  6016. previous_millis_cmd=millis();
  6017. st_synchronize();
  6018. WRITE(E0_ENABLE_PIN,oldstatus);
  6019. }
  6020. #endif
  6021. #ifdef TEMP_STAT_LEDS
  6022. handle_status_leds();
  6023. #endif
  6024. check_axes_activity();
  6025. }
  6026. void kill(const char *full_screen_message, unsigned char id)
  6027. {
  6028. SERIAL_ECHOPGM("KILL: ");
  6029. MYSERIAL.println(int(id));
  6030. //return;
  6031. cli(); // Stop interrupts
  6032. disable_heater();
  6033. disable_x();
  6034. // SERIAL_ECHOLNPGM("kill - disable Y");
  6035. disable_y();
  6036. disable_z();
  6037. disable_e0();
  6038. disable_e1();
  6039. disable_e2();
  6040. #if defined(PS_ON_PIN) && PS_ON_PIN > -1
  6041. pinMode(PS_ON_PIN,INPUT);
  6042. #endif
  6043. SERIAL_ERROR_START;
  6044. SERIAL_ERRORLNRPGM(MSG_ERR_KILLED);
  6045. if (full_screen_message != NULL) {
  6046. SERIAL_ERRORLNRPGM(full_screen_message);
  6047. lcd_display_message_fullscreen_P(full_screen_message);
  6048. } else {
  6049. LCD_ALERTMESSAGERPGM(MSG_KILLED);
  6050. }
  6051. // FMC small patch to update the LCD before ending
  6052. sei(); // enable interrupts
  6053. for ( int i=5; i--; lcd_update())
  6054. {
  6055. delay(200);
  6056. }
  6057. cli(); // disable interrupts
  6058. suicide();
  6059. while(1)
  6060. {
  6061. wdt_reset();
  6062. /* Intentionally left empty */
  6063. } // Wait for reset
  6064. }
  6065. void Stop()
  6066. {
  6067. disable_heater();
  6068. if(Stopped == false) {
  6069. Stopped = true;
  6070. Stopped_gcode_LastN = gcode_LastN; // Save last g_code for restart
  6071. SERIAL_ERROR_START;
  6072. SERIAL_ERRORLNRPGM(MSG_ERR_STOPPED);
  6073. LCD_MESSAGERPGM(MSG_STOPPED);
  6074. }
  6075. }
  6076. bool IsStopped() { return Stopped; };
  6077. #ifdef FAST_PWM_FAN
  6078. void setPwmFrequency(uint8_t pin, int val)
  6079. {
  6080. val &= 0x07;
  6081. switch(digitalPinToTimer(pin))
  6082. {
  6083. #if defined(TCCR0A)
  6084. case TIMER0A:
  6085. case TIMER0B:
  6086. // TCCR0B &= ~(_BV(CS00) | _BV(CS01) | _BV(CS02));
  6087. // TCCR0B |= val;
  6088. break;
  6089. #endif
  6090. #if defined(TCCR1A)
  6091. case TIMER1A:
  6092. case TIMER1B:
  6093. // TCCR1B &= ~(_BV(CS10) | _BV(CS11) | _BV(CS12));
  6094. // TCCR1B |= val;
  6095. break;
  6096. #endif
  6097. #if defined(TCCR2)
  6098. case TIMER2:
  6099. case TIMER2:
  6100. TCCR2 &= ~(_BV(CS10) | _BV(CS11) | _BV(CS12));
  6101. TCCR2 |= val;
  6102. break;
  6103. #endif
  6104. #if defined(TCCR2A)
  6105. case TIMER2A:
  6106. case TIMER2B:
  6107. TCCR2B &= ~(_BV(CS20) | _BV(CS21) | _BV(CS22));
  6108. TCCR2B |= val;
  6109. break;
  6110. #endif
  6111. #if defined(TCCR3A)
  6112. case TIMER3A:
  6113. case TIMER3B:
  6114. case TIMER3C:
  6115. TCCR3B &= ~(_BV(CS30) | _BV(CS31) | _BV(CS32));
  6116. TCCR3B |= val;
  6117. break;
  6118. #endif
  6119. #if defined(TCCR4A)
  6120. case TIMER4A:
  6121. case TIMER4B:
  6122. case TIMER4C:
  6123. TCCR4B &= ~(_BV(CS40) | _BV(CS41) | _BV(CS42));
  6124. TCCR4B |= val;
  6125. break;
  6126. #endif
  6127. #if defined(TCCR5A)
  6128. case TIMER5A:
  6129. case TIMER5B:
  6130. case TIMER5C:
  6131. TCCR5B &= ~(_BV(CS50) | _BV(CS51) | _BV(CS52));
  6132. TCCR5B |= val;
  6133. break;
  6134. #endif
  6135. }
  6136. }
  6137. #endif //FAST_PWM_FAN
  6138. bool setTargetedHotend(int code){
  6139. tmp_extruder = active_extruder;
  6140. if(code_seen('T')) {
  6141. tmp_extruder = code_value();
  6142. if(tmp_extruder >= EXTRUDERS) {
  6143. SERIAL_ECHO_START;
  6144. switch(code){
  6145. case 104:
  6146. SERIAL_ECHORPGM(MSG_M104_INVALID_EXTRUDER);
  6147. break;
  6148. case 105:
  6149. SERIAL_ECHO(MSG_M105_INVALID_EXTRUDER);
  6150. break;
  6151. case 109:
  6152. SERIAL_ECHO(MSG_M109_INVALID_EXTRUDER);
  6153. break;
  6154. case 218:
  6155. SERIAL_ECHO(MSG_M218_INVALID_EXTRUDER);
  6156. break;
  6157. case 221:
  6158. SERIAL_ECHO(MSG_M221_INVALID_EXTRUDER);
  6159. break;
  6160. }
  6161. SERIAL_PROTOCOLLN((int)tmp_extruder);
  6162. return true;
  6163. }
  6164. }
  6165. return false;
  6166. }
  6167. void save_statistics(unsigned long _total_filament_used, unsigned long _total_print_time) //_total_filament_used unit: mm/100; print time in s
  6168. {
  6169. if (eeprom_read_byte((uint8_t *)EEPROM_TOTALTIME) == 255 && eeprom_read_byte((uint8_t *)EEPROM_TOTALTIME + 1) == 255 && eeprom_read_byte((uint8_t *)EEPROM_TOTALTIME + 2) == 255 && eeprom_read_byte((uint8_t *)EEPROM_TOTALTIME + 3) == 255)
  6170. {
  6171. eeprom_update_dword((uint32_t *)EEPROM_TOTALTIME, 0);
  6172. eeprom_update_dword((uint32_t *)EEPROM_FILAMENTUSED, 0);
  6173. }
  6174. unsigned long _previous_filament = eeprom_read_dword((uint32_t *)EEPROM_FILAMENTUSED); //_previous_filament unit: cm
  6175. unsigned long _previous_time = eeprom_read_dword((uint32_t *)EEPROM_TOTALTIME); //_previous_time unit: min
  6176. eeprom_update_dword((uint32_t *)EEPROM_TOTALTIME, _previous_time + (_total_print_time/60)); //EEPROM_TOTALTIME unit: min
  6177. eeprom_update_dword((uint32_t *)EEPROM_FILAMENTUSED, _previous_filament + (_total_filament_used / 1000));
  6178. total_filament_used = 0;
  6179. }
  6180. float calculate_extruder_multiplier(float diameter) {
  6181. float out = 1.f;
  6182. if (volumetric_enabled && diameter > 0.f) {
  6183. float area = M_PI * diameter * diameter * 0.25;
  6184. out = 1.f / area;
  6185. }
  6186. if (extrudemultiply != 100)
  6187. out *= float(extrudemultiply) * 0.01f;
  6188. return out;
  6189. }
  6190. void calculate_extruder_multipliers() {
  6191. extruder_multiplier[0] = calculate_extruder_multiplier(filament_size[0]);
  6192. #if EXTRUDERS > 1
  6193. extruder_multiplier[1] = calculate_extruder_multiplier(filament_size[1]);
  6194. #if EXTRUDERS > 2
  6195. extruder_multiplier[2] = calculate_extruder_multiplier(filament_size[2]);
  6196. #endif
  6197. #endif
  6198. }
  6199. void delay_keep_alive(unsigned int ms)
  6200. {
  6201. for (;;) {
  6202. manage_heater();
  6203. // Manage inactivity, but don't disable steppers on timeout.
  6204. manage_inactivity(true);
  6205. lcd_update();
  6206. if (ms == 0)
  6207. break;
  6208. else if (ms >= 50) {
  6209. delay(50);
  6210. ms -= 50;
  6211. } else {
  6212. delay(ms);
  6213. ms = 0;
  6214. }
  6215. }
  6216. }
  6217. void wait_for_heater(long codenum) {
  6218. #ifdef TEMP_RESIDENCY_TIME
  6219. long residencyStart;
  6220. residencyStart = -1;
  6221. /* continue to loop until we have reached the target temp
  6222. _and_ until TEMP_RESIDENCY_TIME hasn't passed since we reached it */
  6223. while ((!cancel_heatup) && ((residencyStart == -1) ||
  6224. (residencyStart >= 0 && (((unsigned int)(millis() - residencyStart)) < (TEMP_RESIDENCY_TIME * 1000UL))))) {
  6225. #else
  6226. while (target_direction ? (isHeatingHotend(tmp_extruder)) : (isCoolingHotend(tmp_extruder) && (CooldownNoWait == false))) {
  6227. #endif //TEMP_RESIDENCY_TIME
  6228. if ((millis() - codenum) > 1000UL)
  6229. { //Print Temp Reading and remaining time every 1 second while heating up/cooling down
  6230. if (!farm_mode) {
  6231. SERIAL_PROTOCOLPGM("T:");
  6232. SERIAL_PROTOCOL_F(degHotend(tmp_extruder), 1);
  6233. SERIAL_PROTOCOLPGM(" E:");
  6234. SERIAL_PROTOCOL((int)tmp_extruder);
  6235. #ifdef TEMP_RESIDENCY_TIME
  6236. SERIAL_PROTOCOLPGM(" W:");
  6237. if (residencyStart > -1)
  6238. {
  6239. codenum = ((TEMP_RESIDENCY_TIME * 1000UL) - (millis() - residencyStart)) / 1000UL;
  6240. SERIAL_PROTOCOLLN(codenum);
  6241. }
  6242. else
  6243. {
  6244. SERIAL_PROTOCOLLN("?");
  6245. }
  6246. }
  6247. #else
  6248. SERIAL_PROTOCOLLN("");
  6249. #endif
  6250. codenum = millis();
  6251. }
  6252. manage_heater();
  6253. manage_inactivity();
  6254. lcd_update();
  6255. #ifdef TEMP_RESIDENCY_TIME
  6256. /* start/restart the TEMP_RESIDENCY_TIME timer whenever we reach target temp for the first time
  6257. or when current temp falls outside the hysteresis after target temp was reached */
  6258. if ((residencyStart == -1 && target_direction && (degHotend(tmp_extruder) >= (degTargetHotend(tmp_extruder) - TEMP_WINDOW))) ||
  6259. (residencyStart == -1 && !target_direction && (degHotend(tmp_extruder) <= (degTargetHotend(tmp_extruder) + TEMP_WINDOW))) ||
  6260. (residencyStart > -1 && labs(degHotend(tmp_extruder) - degTargetHotend(tmp_extruder)) > TEMP_HYSTERESIS))
  6261. {
  6262. residencyStart = millis();
  6263. }
  6264. #endif //TEMP_RESIDENCY_TIME
  6265. }
  6266. }
  6267. void check_babystep() {
  6268. int babystep_z;
  6269. EEPROM_read_B(EEPROM_BABYSTEP_Z, &babystep_z);
  6270. if ((babystep_z < Z_BABYSTEP_MIN) || (babystep_z > Z_BABYSTEP_MAX)) {
  6271. babystep_z = 0; //if babystep value is out of min max range, set it to 0
  6272. SERIAL_ECHOLNPGM("Z live adjust out of range. Setting to 0");
  6273. EEPROM_save_B(EEPROM_BABYSTEP_Z, &babystep_z);
  6274. lcd_show_fullscreen_message_and_wait_P(PSTR("Z live adjust out of range. Setting to 0. Click to continue."));
  6275. lcd_update_enable(true);
  6276. }
  6277. }
  6278. #ifdef DIS
  6279. void d_setup()
  6280. {
  6281. pinMode(D_DATACLOCK, INPUT_PULLUP);
  6282. pinMode(D_DATA, INPUT_PULLUP);
  6283. pinMode(D_REQUIRE, OUTPUT);
  6284. digitalWrite(D_REQUIRE, HIGH);
  6285. }
  6286. float d_ReadData()
  6287. {
  6288. int digit[13];
  6289. String mergeOutput;
  6290. float output;
  6291. digitalWrite(D_REQUIRE, HIGH);
  6292. for (int i = 0; i<13; i++)
  6293. {
  6294. for (int j = 0; j < 4; j++)
  6295. {
  6296. while (digitalRead(D_DATACLOCK) == LOW) {}
  6297. while (digitalRead(D_DATACLOCK) == HIGH) {}
  6298. bitWrite(digit[i], j, digitalRead(D_DATA));
  6299. }
  6300. }
  6301. digitalWrite(D_REQUIRE, LOW);
  6302. mergeOutput = "";
  6303. output = 0;
  6304. for (int r = 5; r <= 10; r++) //Merge digits
  6305. {
  6306. mergeOutput += digit[r];
  6307. }
  6308. output = mergeOutput.toFloat();
  6309. if (digit[4] == 8) //Handle sign
  6310. {
  6311. output *= -1;
  6312. }
  6313. for (int i = digit[11]; i > 0; i--) //Handle floating point
  6314. {
  6315. output /= 10;
  6316. }
  6317. return output;
  6318. }
  6319. void bed_analysis(float x_dimension, float y_dimension, int x_points_num, int y_points_num, float shift_x, float shift_y) {
  6320. int t1 = 0;
  6321. int t_delay = 0;
  6322. int digit[13];
  6323. int m;
  6324. char str[3];
  6325. //String mergeOutput;
  6326. char mergeOutput[15];
  6327. float output;
  6328. int mesh_point = 0; //index number of calibration point
  6329. float bed_zero_ref_x = (-22.f + X_PROBE_OFFSET_FROM_EXTRUDER); //shift between zero point on bed and target and between probe and nozzle
  6330. float bed_zero_ref_y = (-0.6f + Y_PROBE_OFFSET_FROM_EXTRUDER);
  6331. float mesh_home_z_search = 4;
  6332. float row[x_points_num];
  6333. int ix = 0;
  6334. int iy = 0;
  6335. char* filename_wldsd = "wldsd.txt";
  6336. char data_wldsd[70];
  6337. char numb_wldsd[10];
  6338. d_setup();
  6339. if (!(axis_known_position[X_AXIS] && axis_known_position[Y_AXIS] && axis_known_position[Z_AXIS])) {
  6340. // We don't know where we are! HOME!
  6341. // Push the commands to the front of the message queue in the reverse order!
  6342. // There shall be always enough space reserved for these commands.
  6343. repeatcommand_front(); // repeat G80 with all its parameters
  6344. enquecommand_front_P((PSTR("G28 W0")));
  6345. enquecommand_front_P((PSTR("G1 Z5")));
  6346. return;
  6347. }
  6348. bool custom_message_old = custom_message;
  6349. unsigned int custom_message_type_old = custom_message_type;
  6350. unsigned int custom_message_state_old = custom_message_state;
  6351. custom_message = true;
  6352. custom_message_type = 1;
  6353. custom_message_state = (x_points_num * y_points_num) + 10;
  6354. lcd_update(1);
  6355. mbl.reset();
  6356. babystep_undo();
  6357. card.openFile(filename_wldsd, false);
  6358. current_position[Z_AXIS] = mesh_home_z_search;
  6359. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[Z_AXIS] / 60, active_extruder);
  6360. int XY_AXIS_FEEDRATE = homing_feedrate[X_AXIS] / 20;
  6361. int Z_PROBE_FEEDRATE = homing_feedrate[Z_AXIS] / 60;
  6362. int Z_LIFT_FEEDRATE = homing_feedrate[Z_AXIS] / 40;
  6363. setup_for_endstop_move(false);
  6364. SERIAL_PROTOCOLPGM("Num X,Y: ");
  6365. SERIAL_PROTOCOL(x_points_num);
  6366. SERIAL_PROTOCOLPGM(",");
  6367. SERIAL_PROTOCOL(y_points_num);
  6368. SERIAL_PROTOCOLPGM("\nZ search height: ");
  6369. SERIAL_PROTOCOL(mesh_home_z_search);
  6370. SERIAL_PROTOCOLPGM("\nDimension X,Y: ");
  6371. SERIAL_PROTOCOL(x_dimension);
  6372. SERIAL_PROTOCOLPGM(",");
  6373. SERIAL_PROTOCOL(y_dimension);
  6374. SERIAL_PROTOCOLLNPGM("\nMeasured points:");
  6375. while (mesh_point != x_points_num * y_points_num) {
  6376. ix = mesh_point % x_points_num; // from 0 to MESH_NUM_X_POINTS - 1
  6377. iy = mesh_point / x_points_num;
  6378. if (iy & 1) ix = (x_points_num - 1) - ix; // Zig zag
  6379. float z0 = 0.f;
  6380. current_position[Z_AXIS] = mesh_home_z_search;
  6381. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], Z_LIFT_FEEDRATE, active_extruder);
  6382. st_synchronize();
  6383. current_position[X_AXIS] = 13.f + ix * (x_dimension / (x_points_num - 1)) - bed_zero_ref_x + shift_x;
  6384. current_position[Y_AXIS] = 6.4f + iy * (y_dimension / (y_points_num - 1)) - bed_zero_ref_y + shift_y;
  6385. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], XY_AXIS_FEEDRATE, active_extruder);
  6386. st_synchronize();
  6387. if (!find_bed_induction_sensor_point_z(-10.f)) { //if we have data from z calibration max allowed difference is 1mm for each point, if we dont have data max difference is 10mm from initial point
  6388. break;
  6389. card.closefile();
  6390. }
  6391. //memset(numb_wldsd, 0, sizeof(numb_wldsd));
  6392. //dtostrf(d_ReadData(), 8, 5, numb_wldsd);
  6393. //strcat(data_wldsd, numb_wldsd);
  6394. //MYSERIAL.println(data_wldsd);
  6395. //delay(1000);
  6396. //delay(3000);
  6397. //t1 = millis();
  6398. //while (digitalRead(D_DATACLOCK) == LOW) {}
  6399. //while (digitalRead(D_DATACLOCK) == HIGH) {}
  6400. memset(digit, 0, sizeof(digit));
  6401. //cli();
  6402. digitalWrite(D_REQUIRE, LOW);
  6403. for (int i = 0; i<13; i++)
  6404. {
  6405. //t1 = millis();
  6406. for (int j = 0; j < 4; j++)
  6407. {
  6408. while (digitalRead(D_DATACLOCK) == LOW) {}
  6409. while (digitalRead(D_DATACLOCK) == HIGH) {}
  6410. bitWrite(digit[i], j, digitalRead(D_DATA));
  6411. }
  6412. //t_delay = (millis() - t1);
  6413. //SERIAL_PROTOCOLPGM(" ");
  6414. //SERIAL_PROTOCOL_F(t_delay, 5);
  6415. //SERIAL_PROTOCOLPGM(" ");
  6416. }
  6417. //sei();
  6418. digitalWrite(D_REQUIRE, HIGH);
  6419. mergeOutput[0] = '\0';
  6420. output = 0;
  6421. for (int r = 5; r <= 10; r++) //Merge digits
  6422. {
  6423. sprintf(str, "%d", digit[r]);
  6424. strcat(mergeOutput, str);
  6425. }
  6426. output = atof(mergeOutput);
  6427. if (digit[4] == 8) //Handle sign
  6428. {
  6429. output *= -1;
  6430. }
  6431. for (int i = digit[11]; i > 0; i--) //Handle floating point
  6432. {
  6433. output *= 0.1;
  6434. }
  6435. //output = d_ReadData();
  6436. //row[ix] = current_position[Z_AXIS];
  6437. memset(data_wldsd, 0, sizeof(data_wldsd));
  6438. for (int i = 0; i <3; i++) {
  6439. memset(numb_wldsd, 0, sizeof(numb_wldsd));
  6440. dtostrf(current_position[i], 8, 5, numb_wldsd);
  6441. strcat(data_wldsd, numb_wldsd);
  6442. strcat(data_wldsd, ";");
  6443. }
  6444. memset(numb_wldsd, 0, sizeof(numb_wldsd));
  6445. dtostrf(output, 8, 5, numb_wldsd);
  6446. strcat(data_wldsd, numb_wldsd);
  6447. //strcat(data_wldsd, ";");
  6448. card.write_command(data_wldsd);
  6449. //row[ix] = d_ReadData();
  6450. row[ix] = output; // current_position[Z_AXIS];
  6451. if (iy % 2 == 1 ? ix == 0 : ix == x_points_num - 1) {
  6452. for (int i = 0; i < x_points_num; i++) {
  6453. SERIAL_PROTOCOLPGM(" ");
  6454. SERIAL_PROTOCOL_F(row[i], 5);
  6455. }
  6456. SERIAL_PROTOCOLPGM("\n");
  6457. }
  6458. custom_message_state--;
  6459. mesh_point++;
  6460. lcd_update(1);
  6461. }
  6462. card.closefile();
  6463. }
  6464. #endif
  6465. void temp_compensation_start() {
  6466. custom_message = true;
  6467. custom_message_type = 5;
  6468. custom_message_state = PINDA_HEAT_T + 1;
  6469. lcd_update(2);
  6470. if (degHotend(active_extruder) > EXTRUDE_MINTEMP) {
  6471. current_position[E_AXIS] -= DEFAULT_RETRACTION;
  6472. }
  6473. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400, active_extruder);
  6474. current_position[X_AXIS] = PINDA_PREHEAT_X;
  6475. current_position[Y_AXIS] = PINDA_PREHEAT_Y;
  6476. current_position[Z_AXIS] = PINDA_PREHEAT_Z;
  6477. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  6478. st_synchronize();
  6479. while (fabs(degBed() - target_temperature_bed) > 1) delay_keep_alive(1000);
  6480. for (int i = 0; i < PINDA_HEAT_T; i++) {
  6481. delay_keep_alive(1000);
  6482. custom_message_state = PINDA_HEAT_T - i;
  6483. if (custom_message_state == 99 || custom_message_state == 9) lcd_update(2); //force whole display redraw if number of digits changed
  6484. else lcd_update(1);
  6485. }
  6486. custom_message_type = 0;
  6487. custom_message_state = 0;
  6488. custom_message = false;
  6489. }
  6490. void temp_compensation_apply() {
  6491. int i_add;
  6492. int compensation_value;
  6493. int z_shift = 0;
  6494. float z_shift_mm;
  6495. if (calibration_status() == CALIBRATION_STATUS_CALIBRATED) {
  6496. if (target_temperature_bed % 10 == 0 && target_temperature_bed >= 60 && target_temperature_bed <= 100) {
  6497. i_add = (target_temperature_bed - 60) / 10;
  6498. EEPROM_read_B(EEPROM_PROBE_TEMP_SHIFT + i_add * 2, &z_shift);
  6499. z_shift_mm = z_shift / axis_steps_per_unit[Z_AXIS];
  6500. }else {
  6501. //interpolation
  6502. z_shift_mm = temp_comp_interpolation(target_temperature_bed) / axis_steps_per_unit[Z_AXIS];
  6503. }
  6504. SERIAL_PROTOCOLPGM("\n");
  6505. SERIAL_PROTOCOLPGM("Z shift applied:");
  6506. MYSERIAL.print(z_shift_mm);
  6507. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS] - z_shift_mm, current_position[E_AXIS], homing_feedrate[Z_AXIS] / 40, active_extruder);
  6508. st_synchronize();
  6509. plan_set_z_position(current_position[Z_AXIS]);
  6510. }
  6511. else {
  6512. //we have no temp compensation data
  6513. }
  6514. }
  6515. float temp_comp_interpolation(float inp_temperature) {
  6516. //cubic spline interpolation
  6517. int n, i, j, k;
  6518. float h[10], a, b, c, d, sum, s[10] = { 0 }, x[10], F[10], f[10], m[10][10] = { 0 }, temp;
  6519. int shift[10];
  6520. int temp_C[10];
  6521. n = 6; //number of measured points
  6522. shift[0] = 0;
  6523. for (i = 0; i < n; i++) {
  6524. if (i>0) EEPROM_read_B(EEPROM_PROBE_TEMP_SHIFT + (i-1) * 2, &shift[i]); //read shift in steps from EEPROM
  6525. temp_C[i] = 50 + i * 10; //temperature in C
  6526. #ifdef PINDA_THERMISTOR
  6527. temp_C[i] = 35 + i * 5; //temperature in C
  6528. #else
  6529. temp_C[i] = 50 + i * 10; //temperature in C
  6530. #endif
  6531. x[i] = (float)temp_C[i];
  6532. f[i] = (float)shift[i];
  6533. }
  6534. if (inp_temperature < x[0]) return 0;
  6535. for (i = n - 1; i>0; i--) {
  6536. F[i] = (f[i] - f[i - 1]) / (x[i] - x[i - 1]);
  6537. h[i - 1] = x[i] - x[i - 1];
  6538. }
  6539. //*********** formation of h, s , f matrix **************
  6540. for (i = 1; i<n - 1; i++) {
  6541. m[i][i] = 2 * (h[i - 1] + h[i]);
  6542. if (i != 1) {
  6543. m[i][i - 1] = h[i - 1];
  6544. m[i - 1][i] = h[i - 1];
  6545. }
  6546. m[i][n - 1] = 6 * (F[i + 1] - F[i]);
  6547. }
  6548. //*********** forward elimination **************
  6549. for (i = 1; i<n - 2; i++) {
  6550. temp = (m[i + 1][i] / m[i][i]);
  6551. for (j = 1; j <= n - 1; j++)
  6552. m[i + 1][j] -= temp*m[i][j];
  6553. }
  6554. //*********** backward substitution *********
  6555. for (i = n - 2; i>0; i--) {
  6556. sum = 0;
  6557. for (j = i; j <= n - 2; j++)
  6558. sum += m[i][j] * s[j];
  6559. s[i] = (m[i][n - 1] - sum) / m[i][i];
  6560. }
  6561. for (i = 0; i<n - 1; i++)
  6562. if ((x[i] <= inp_temperature && inp_temperature <= x[i + 1]) || (i == n-2 && inp_temperature > x[i + 1])) {
  6563. a = (s[i + 1] - s[i]) / (6 * h[i]);
  6564. b = s[i] / 2;
  6565. c = (f[i + 1] - f[i]) / h[i] - (2 * h[i] * s[i] + s[i + 1] * h[i]) / 6;
  6566. d = f[i];
  6567. sum = a*pow((inp_temperature - x[i]), 3) + b*pow((inp_temperature - x[i]), 2) + c*(inp_temperature - x[i]) + d;
  6568. }
  6569. return sum;
  6570. }
  6571. #ifdef PINDA_THERMISTOR
  6572. float temp_compensation_pinda_thermistor_offset(float temperature_pinda)
  6573. {
  6574. if (!temp_cal_active) return 0;
  6575. if (!calibration_status_pinda()) return 0;
  6576. return temp_comp_interpolation(temperature_pinda) / axis_steps_per_unit[Z_AXIS];
  6577. }
  6578. #endif //PINDA_THERMISTOR
  6579. void long_pause() //long pause print
  6580. {
  6581. st_synchronize();
  6582. //save currently set parameters to global variables
  6583. saved_feedmultiply = feedmultiply;
  6584. HotendTempBckp = degTargetHotend(active_extruder);
  6585. fanSpeedBckp = fanSpeed;
  6586. start_pause_print = millis();
  6587. //save position
  6588. pause_lastpos[X_AXIS] = current_position[X_AXIS];
  6589. pause_lastpos[Y_AXIS] = current_position[Y_AXIS];
  6590. pause_lastpos[Z_AXIS] = current_position[Z_AXIS];
  6591. pause_lastpos[E_AXIS] = current_position[E_AXIS];
  6592. //retract
  6593. current_position[E_AXIS] -= DEFAULT_RETRACTION;
  6594. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400, active_extruder);
  6595. //lift z
  6596. current_position[Z_AXIS] += Z_PAUSE_LIFT;
  6597. if (current_position[Z_AXIS] > Z_MAX_POS) current_position[Z_AXIS] = Z_MAX_POS;
  6598. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 15, active_extruder);
  6599. //set nozzle target temperature to 0
  6600. setTargetHotend(0, 0);
  6601. setTargetHotend(0, 1);
  6602. setTargetHotend(0, 2);
  6603. //Move XY to side
  6604. current_position[X_AXIS] = X_PAUSE_POS;
  6605. current_position[Y_AXIS] = Y_PAUSE_POS;
  6606. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 50, active_extruder);
  6607. // Turn off the print fan
  6608. fanSpeed = 0;
  6609. st_synchronize();
  6610. }
  6611. void serialecho_temperatures() {
  6612. float tt = degHotend(active_extruder);
  6613. SERIAL_PROTOCOLPGM("T:");
  6614. SERIAL_PROTOCOL(tt);
  6615. SERIAL_PROTOCOLPGM(" E:");
  6616. SERIAL_PROTOCOL((int)active_extruder);
  6617. SERIAL_PROTOCOLPGM(" B:");
  6618. SERIAL_PROTOCOL_F(degBed(), 1);
  6619. SERIAL_PROTOCOLLN("");
  6620. }
  6621. extern uint32_t sdpos_atomic;
  6622. void uvlo_()
  6623. {
  6624. unsigned long time_start = millis();
  6625. bool sd_print = card.sdprinting;
  6626. // Conserve power as soon as possible.
  6627. disable_x();
  6628. disable_y();
  6629. disable_e0();
  6630. tmc2130_set_current_h(Z_AXIS, 20);
  6631. tmc2130_set_current_r(Z_AXIS, 20);
  6632. tmc2130_set_current_h(E_AXIS, 20);
  6633. tmc2130_set_current_r(E_AXIS, 20);
  6634. // Indicate that the interrupt has been triggered.
  6635. // SERIAL_ECHOLNPGM("UVLO");
  6636. // Read out the current Z motor microstep counter. This will be later used
  6637. // for reaching the zero full step before powering off.
  6638. uint16_t z_microsteps = tmc2130_rd_MSCNT(Z_AXIS);
  6639. // Calculate the file position, from which to resume this print.
  6640. long sd_position = sdpos_atomic; //atomic sd position of last command added in queue
  6641. {
  6642. uint16_t sdlen_planner = planner_calc_sd_length(); //length of sd commands in planner
  6643. sd_position -= sdlen_planner;
  6644. uint16_t sdlen_cmdqueue = cmdqueue_calc_sd_length(); //length of sd commands in cmdqueue
  6645. sd_position -= sdlen_cmdqueue;
  6646. if (sd_position < 0) sd_position = 0;
  6647. }
  6648. // Backup the feedrate in mm/min.
  6649. int feedrate_bckp = blocks_queued() ? (block_buffer[block_buffer_tail].nominal_speed * 60.f) : feedrate;
  6650. // After this call, the planner queue is emptied and the current_position is set to a current logical coordinate.
  6651. // The logical coordinate will likely differ from the machine coordinate if the skew calibration and mesh bed leveling
  6652. // are in action.
  6653. planner_abort_hard();
  6654. // Store the current extruder position.
  6655. eeprom_update_float((float*)(EEPROM_UVLO_CURRENT_POSITION_E), st_get_position_mm(E_AXIS));
  6656. eeprom_update_byte((uint8_t*)EEPROM_UVLO_E_ABS, axis_relative_modes[3]?0:1);
  6657. // Clean the input command queue.
  6658. cmdqueue_reset();
  6659. card.sdprinting = false;
  6660. // card.closefile();
  6661. // Enable stepper driver interrupt to move Z axis.
  6662. // This should be fine as the planner and command queues are empty and the SD card printing is disabled.
  6663. //FIXME one may want to disable serial lines at this point of time to avoid interfering with the command queue,
  6664. // though it should not happen that the command queue is touched as the plan_buffer_line always succeed without blocking.
  6665. sei();
  6666. plan_buffer_line(
  6667. current_position[X_AXIS],
  6668. current_position[Y_AXIS],
  6669. current_position[Z_AXIS],
  6670. current_position[E_AXIS] - DEFAULT_RETRACTION,
  6671. 95, active_extruder);
  6672. st_synchronize();
  6673. disable_e0();
  6674. plan_buffer_line(
  6675. current_position[X_AXIS],
  6676. current_position[Y_AXIS],
  6677. current_position[Z_AXIS] + UVLO_Z_AXIS_SHIFT + float((1024 - z_microsteps + 7) >> 4) / axis_steps_per_unit[Z_AXIS],
  6678. current_position[E_AXIS] - DEFAULT_RETRACTION,
  6679. 40, active_extruder);
  6680. st_synchronize();
  6681. disable_e0();
  6682. plan_buffer_line(
  6683. current_position[X_AXIS],
  6684. current_position[Y_AXIS],
  6685. current_position[Z_AXIS] + UVLO_Z_AXIS_SHIFT + float((1024 - z_microsteps + 7) >> 4) / axis_steps_per_unit[Z_AXIS],
  6686. current_position[E_AXIS] - DEFAULT_RETRACTION,
  6687. 40, active_extruder);
  6688. st_synchronize();
  6689. disable_e0();
  6690. disable_z();
  6691. // Move Z up to the next 0th full step.
  6692. // Write the file position.
  6693. eeprom_update_dword((uint32_t*)(EEPROM_FILE_POSITION), sd_position);
  6694. // Store the mesh bed leveling offsets. This is 2*9=18 bytes, which takes 18*3.4us=52us in worst case.
  6695. for (int8_t mesh_point = 0; mesh_point < 9; ++ mesh_point) {
  6696. uint8_t ix = mesh_point % MESH_MEAS_NUM_X_POINTS; // from 0 to MESH_NUM_X_POINTS - 1
  6697. uint8_t iy = mesh_point / MESH_MEAS_NUM_X_POINTS;
  6698. // Scale the z value to 1u resolution.
  6699. int16_t v = mbl.active ? int16_t(floor(mbl.z_values[iy*3][ix*3] * 1000.f + 0.5f)) : 0;
  6700. eeprom_update_word((uint16_t*)(EEPROM_UVLO_MESH_BED_LEVELING+2*mesh_point), *reinterpret_cast<uint16_t*>(&v));
  6701. }
  6702. // Read out the current Z motor microstep counter. This will be later used
  6703. // for reaching the zero full step before powering off.
  6704. eeprom_update_word((uint16_t*)(EEPROM_UVLO_Z_MICROSTEPS), z_microsteps);
  6705. // Store the current position.
  6706. eeprom_update_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 0), current_position[X_AXIS]);
  6707. eeprom_update_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 4), current_position[Y_AXIS]);
  6708. eeprom_update_float((float*)(EEPROM_UVLO_CURRENT_POSITION_Z), current_position[Z_AXIS]);
  6709. // Store the current feed rate, temperatures and fan speed.
  6710. EEPROM_save_B(EEPROM_UVLO_FEEDRATE, &feedrate_bckp);
  6711. eeprom_update_byte((uint8_t*)EEPROM_UVLO_TARGET_HOTEND, target_temperature[active_extruder]);
  6712. eeprom_update_byte((uint8_t*)EEPROM_UVLO_TARGET_BED, target_temperature_bed);
  6713. eeprom_update_byte((uint8_t*)EEPROM_UVLO_FAN_SPEED, fanSpeed);
  6714. // Finaly store the "power outage" flag.
  6715. if(sd_print) eeprom_update_byte((uint8_t*)EEPROM_UVLO, 1);
  6716. st_synchronize();
  6717. SERIAL_ECHOPGM("stps");
  6718. MYSERIAL.println(tmc2130_rd_MSCNT(Z_AXIS));
  6719. disable_z();
  6720. // Increment power failure counter
  6721. eeprom_update_byte((uint8_t*)EEPROM_POWER_COUNT, eeprom_read_byte((uint8_t*)EEPROM_POWER_COUNT) + 1);
  6722. eeprom_update_word((uint16_t*)EEPROM_POWER_COUNT_TOT, eeprom_read_word((uint16_t*)EEPROM_POWER_COUNT_TOT) + 1);
  6723. SERIAL_ECHOLNPGM("UVLO - end");
  6724. MYSERIAL.println(millis() - time_start);
  6725. #if 0
  6726. // Move the print head to the side of the print until all the power stored in the power supply capacitors is depleted.
  6727. current_position[X_AXIS] = (current_position[X_AXIS] < 0.5f * (X_MIN_POS + X_MAX_POS)) ? X_MIN_POS : X_MAX_POS;
  6728. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 500, active_extruder);
  6729. st_synchronize();
  6730. #endif
  6731. cli();
  6732. volatile unsigned int ppcount = 0;
  6733. SET_OUTPUT(BEEPER);
  6734. WRITE(BEEPER, HIGH);
  6735. for(ppcount = 0; ppcount < 2000; ppcount ++){
  6736. asm("nop");//50ns on 20Mhz, 62.5ns on 16Mhz
  6737. }
  6738. WRITE(BEEPER, LOW);
  6739. while(1){
  6740. #if 1
  6741. WRITE(BEEPER, LOW);
  6742. for(ppcount = 0; ppcount < 8000; ppcount ++){
  6743. asm("nop");//50ns on 20Mhz, 62.5ns on 16Mhz
  6744. }
  6745. #endif
  6746. };
  6747. }
  6748. void setup_fan_interrupt() {
  6749. //INT7
  6750. DDRE &= ~(1 << 7); //input pin
  6751. PORTE &= ~(1 << 7); //no internal pull-up
  6752. //start with sensing rising edge
  6753. EICRB &= ~(1 << 6);
  6754. EICRB |= (1 << 7);
  6755. //enable INT7 interrupt
  6756. EIMSK |= (1 << 7);
  6757. }
  6758. // The fan interrupt is triggered at maximum 325Hz (may be a bit more due to component tollerances),
  6759. // and it takes 4.24 us to process (the interrupt invocation overhead not taken into account).
  6760. ISR(INT7_vect) {
  6761. //measuring speed now works for fanSpeed > 18 (approximately), which is sufficient because MIN_PRINT_FAN_SPEED is higher
  6762. if (fanSpeed < MIN_PRINT_FAN_SPEED) return;
  6763. if ((1 << 6) & EICRB) { //interrupt was triggered by rising edge
  6764. t_fan_rising_edge = millis_nc();
  6765. }
  6766. else { //interrupt was triggered by falling edge
  6767. if ((millis_nc() - t_fan_rising_edge) >= FAN_PULSE_WIDTH_LIMIT) {//this pulse was from sensor and not from pwm
  6768. fan_edge_counter[1] += 2; //we are currently counting all edges so lets count two edges for one pulse
  6769. }
  6770. }
  6771. EICRB ^= (1 << 6); //change edge
  6772. }
  6773. void setup_uvlo_interrupt() {
  6774. DDRE &= ~(1 << 4); //input pin
  6775. PORTE &= ~(1 << 4); //no internal pull-up
  6776. //sensing falling edge
  6777. EICRB |= (1 << 0);
  6778. EICRB &= ~(1 << 1);
  6779. //enable INT4 interrupt
  6780. EIMSK |= (1 << 4);
  6781. }
  6782. ISR(INT4_vect) {
  6783. EIMSK &= ~(1 << 4); //disable INT4 interrupt to make sure that this code will be executed just once
  6784. SERIAL_ECHOLNPGM("INT4");
  6785. if (IS_SD_PRINTING) uvlo_();
  6786. }
  6787. void recover_print(uint8_t automatic) {
  6788. char cmd[30];
  6789. lcd_update_enable(true);
  6790. lcd_update(2);
  6791. lcd_setstatuspgm(MSG_RECOVERING_PRINT);
  6792. recover_machine_state_after_power_panic();
  6793. // Set the target bed and nozzle temperatures.
  6794. sprintf_P(cmd, PSTR("M104 S%d"), target_temperature[active_extruder]);
  6795. enquecommand(cmd);
  6796. sprintf_P(cmd, PSTR("M140 S%d"), target_temperature_bed);
  6797. enquecommand(cmd);
  6798. // Lift the print head, so one may remove the excess priming material.
  6799. if (current_position[Z_AXIS] < 25)
  6800. enquecommand_P(PSTR("G1 Z25 F800"));
  6801. // Home X and Y axes. Homing just X and Y shall not touch the babystep and the world2machine transformation status.
  6802. enquecommand_P(PSTR("G28 X Y"));
  6803. // Set the target bed and nozzle temperatures and wait.
  6804. sprintf_P(cmd, PSTR("M109 S%d"), target_temperature[active_extruder]);
  6805. enquecommand(cmd);
  6806. sprintf_P(cmd, PSTR("M190 S%d"), target_temperature_bed);
  6807. enquecommand(cmd);
  6808. enquecommand_P(PSTR("M83")); //E axis relative mode
  6809. //enquecommand_P(PSTR("G1 E5 F120")); //Extrude some filament to stabilize pessure
  6810. // If not automatically recoreverd (long power loss), extrude extra filament to stabilize
  6811. if(automatic == 0){
  6812. enquecommand_P(PSTR("G1 E5 F120")); //Extrude some filament to stabilize pessure
  6813. }
  6814. enquecommand_P(PSTR("G1 E" STRINGIFY(-DEFAULT_RETRACTION)" F480"));
  6815. // Mark the power panic status as inactive.
  6816. eeprom_update_byte((uint8_t*)EEPROM_UVLO, 0);
  6817. /*while ((abs(degHotend(0)- target_temperature[0])>5) || (abs(degBed() -target_temperature_bed)>3)) { //wait for heater and bed to reach target temp
  6818. delay_keep_alive(1000);
  6819. }*/
  6820. SERIAL_ECHOPGM("After waiting for temp:");
  6821. SERIAL_ECHOPGM("Current position X_AXIS:");
  6822. MYSERIAL.println(current_position[X_AXIS]);
  6823. SERIAL_ECHOPGM("Current position Y_AXIS:");
  6824. MYSERIAL.println(current_position[Y_AXIS]);
  6825. // Restart the print.
  6826. restore_print_from_eeprom();
  6827. SERIAL_ECHOPGM("current_position[Z_AXIS]:");
  6828. MYSERIAL.print(current_position[Z_AXIS]);
  6829. SERIAL_ECHOPGM("current_position[E_AXIS]:");
  6830. MYSERIAL.print(current_position[E_AXIS]);
  6831. }
  6832. void recover_machine_state_after_power_panic()
  6833. {
  6834. char cmd[30];
  6835. // 1) Recover the logical cordinates at the time of the power panic.
  6836. // The logical XY coordinates are needed to recover the machine Z coordinate corrected by the mesh bed leveling.
  6837. current_position[X_AXIS] = eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 0));
  6838. current_position[Y_AXIS] = eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 4));
  6839. // Recover the logical coordinate of the Z axis at the time of the power panic.
  6840. // The current position after power panic is moved to the next closest 0th full step.
  6841. current_position[Z_AXIS] = eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION_Z)) +
  6842. UVLO_Z_AXIS_SHIFT + float((1024 - eeprom_read_word((uint16_t*)(EEPROM_UVLO_Z_MICROSTEPS)) + 7) >> 4) / axis_steps_per_unit[Z_AXIS];
  6843. if (eeprom_read_byte((uint8_t*)EEPROM_UVLO_E_ABS)) {
  6844. current_position[E_AXIS] = eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION_E));
  6845. sprintf_P(cmd, PSTR("G92 E"));
  6846. dtostrf(current_position[E_AXIS], 6, 3, cmd + strlen(cmd));
  6847. enquecommand(cmd);
  6848. }
  6849. memcpy(destination, current_position, sizeof(destination));
  6850. SERIAL_ECHOPGM("recover_machine_state_after_power_panic, initial ");
  6851. print_world_coordinates();
  6852. // 2) Initialize the logical to physical coordinate system transformation.
  6853. world2machine_initialize();
  6854. // 3) Restore the mesh bed leveling offsets. This is 2*9=18 bytes, which takes 18*3.4us=52us in worst case.
  6855. mbl.active = false;
  6856. for (int8_t mesh_point = 0; mesh_point < 9; ++ mesh_point) {
  6857. uint8_t ix = mesh_point % MESH_MEAS_NUM_X_POINTS; // from 0 to MESH_NUM_X_POINTS - 1
  6858. uint8_t iy = mesh_point / MESH_MEAS_NUM_X_POINTS;
  6859. // Scale the z value to 10u resolution.
  6860. int16_t v;
  6861. eeprom_read_block(&v, (void*)(EEPROM_UVLO_MESH_BED_LEVELING+2*mesh_point), 2);
  6862. if (v != 0)
  6863. mbl.active = true;
  6864. mbl.z_values[iy][ix] = float(v) * 0.001f;
  6865. }
  6866. if (mbl.active)
  6867. mbl.upsample_3x3();
  6868. // SERIAL_ECHOPGM("recover_machine_state_after_power_panic, initial ");
  6869. // print_mesh_bed_leveling_table();
  6870. // 4) Load the baby stepping value, which is expected to be active at the time of power panic.
  6871. // The baby stepping value is used to reset the physical Z axis when rehoming the Z axis.
  6872. babystep_load();
  6873. // 5) Set the physical positions from the logical positions using the world2machine transformation and the active bed leveling.
  6874. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  6875. // 6) Power up the motors, mark their positions as known.
  6876. //FIXME Verfiy, whether the X and Y axes should be powered up here, as they will later be re-homed anyway.
  6877. axis_known_position[X_AXIS] = true; enable_x();
  6878. axis_known_position[Y_AXIS] = true; enable_y();
  6879. axis_known_position[Z_AXIS] = true; enable_z();
  6880. SERIAL_ECHOPGM("recover_machine_state_after_power_panic, initial ");
  6881. print_physical_coordinates();
  6882. // 7) Recover the target temperatures.
  6883. target_temperature[active_extruder] = eeprom_read_byte((uint8_t*)EEPROM_UVLO_TARGET_HOTEND);
  6884. target_temperature_bed = eeprom_read_byte((uint8_t*)EEPROM_UVLO_TARGET_BED);
  6885. }
  6886. void restore_print_from_eeprom() {
  6887. float x_rec, y_rec, z_pos;
  6888. int feedrate_rec;
  6889. uint8_t fan_speed_rec;
  6890. char cmd[30];
  6891. char* c;
  6892. char filename[13];
  6893. uint8_t depth = 0;
  6894. char dir_name[9];
  6895. fan_speed_rec = eeprom_read_byte((uint8_t*)EEPROM_UVLO_FAN_SPEED);
  6896. EEPROM_read_B(EEPROM_UVLO_FEEDRATE, &feedrate_rec);
  6897. SERIAL_ECHOPGM("Feedrate:");
  6898. MYSERIAL.println(feedrate_rec);
  6899. depth = eeprom_read_byte((uint8_t*)EEPROM_DIR_DEPTH);
  6900. MYSERIAL.println(int(depth));
  6901. for (int i = 0; i < depth; i++) {
  6902. for (int j = 0; j < 8; j++) {
  6903. dir_name[j] = eeprom_read_byte((uint8_t*)EEPROM_DIRS + j + 8 * i);
  6904. }
  6905. dir_name[8] = '\0';
  6906. MYSERIAL.println(dir_name);
  6907. card.chdir(dir_name);
  6908. }
  6909. for (int i = 0; i < 8; i++) {
  6910. filename[i] = eeprom_read_byte((uint8_t*)EEPROM_FILENAME + i);
  6911. }
  6912. filename[8] = '\0';
  6913. MYSERIAL.print(filename);
  6914. strcat_P(filename, PSTR(".gco"));
  6915. sprintf_P(cmd, PSTR("M23 %s"), filename);
  6916. for (c = &cmd[4]; *c; c++)
  6917. *c = tolower(*c);
  6918. enquecommand(cmd);
  6919. uint32_t position = eeprom_read_dword((uint32_t*)(EEPROM_FILE_POSITION));
  6920. SERIAL_ECHOPGM("Position read from eeprom:");
  6921. MYSERIAL.println(position);
  6922. // E axis relative mode.
  6923. enquecommand_P(PSTR("M83"));
  6924. // Move to the XY print position in logical coordinates, where the print has been killed.
  6925. strcpy_P(cmd, PSTR("G1 X")); strcat(cmd, ftostr32(eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 0))));
  6926. strcat_P(cmd, PSTR(" Y")); strcat(cmd, ftostr32(eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 4))));
  6927. strcat_P(cmd, PSTR(" F2000"));
  6928. enquecommand(cmd);
  6929. // Move the Z axis down to the print, in logical coordinates.
  6930. strcpy_P(cmd, PSTR("G1 Z")); strcat(cmd, ftostr32(eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION_Z))));
  6931. enquecommand(cmd);
  6932. // Unretract.
  6933. enquecommand_P(PSTR("G1 E" STRINGIFY(2*DEFAULT_RETRACTION)" F480"));
  6934. // Set the feedrate saved at the power panic.
  6935. sprintf_P(cmd, PSTR("G1 F%d"), feedrate_rec);
  6936. enquecommand(cmd);
  6937. if (eeprom_read_byte((uint8_t*)EEPROM_UVLO_E_ABS))
  6938. {
  6939. float extruder_abs_pos = eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION_E));
  6940. enquecommand_P(PSTR("M82")); //E axis abslute mode
  6941. }
  6942. // Set the fan speed saved at the power panic.
  6943. strcpy_P(cmd, PSTR("M106 S"));
  6944. strcat(cmd, itostr3(int(fan_speed_rec)));
  6945. enquecommand(cmd);
  6946. // Set a position in the file.
  6947. sprintf_P(cmd, PSTR("M26 S%lu"), position);
  6948. enquecommand(cmd);
  6949. // Start SD print.
  6950. enquecommand_P(PSTR("M24"));
  6951. }
  6952. ////////////////////////////////////////////////////////////////////////////////
  6953. // new save/restore printing
  6954. //extern uint32_t sdpos_atomic;
  6955. bool saved_printing = false;
  6956. uint32_t saved_sdpos = 0;
  6957. float saved_pos[4] = {0, 0, 0, 0};
  6958. // Feedrate hopefully derived from an active block of the planner at the time the print has been canceled, in mm/min.
  6959. float saved_feedrate2 = 0;
  6960. uint8_t saved_active_extruder = 0;
  6961. bool saved_extruder_under_pressure = false;
  6962. void stop_and_save_print_to_ram(float z_move, float e_move)
  6963. {
  6964. if (saved_printing) return;
  6965. cli();
  6966. unsigned char nplanner_blocks = number_of_blocks();
  6967. saved_sdpos = sdpos_atomic; //atomic sd position of last command added in queue
  6968. uint16_t sdlen_planner = planner_calc_sd_length(); //length of sd commands in planner
  6969. saved_sdpos -= sdlen_planner;
  6970. uint16_t sdlen_cmdqueue = cmdqueue_calc_sd_length(); //length of sd commands in cmdqueue
  6971. saved_sdpos -= sdlen_cmdqueue;
  6972. #if 0
  6973. SERIAL_ECHOPGM("SDPOS_ATOMIC="); MYSERIAL.println(sdpos_atomic, DEC);
  6974. SERIAL_ECHOPGM("SDPOS="); MYSERIAL.println(card.get_sdpos(), DEC);
  6975. SERIAL_ECHOPGM("SDLEN_PLAN="); MYSERIAL.println(sdlen_planner, DEC);
  6976. SERIAL_ECHOPGM("SDLEN_CMDQ="); MYSERIAL.println(sdlen_cmdqueue, DEC);
  6977. SERIAL_ECHOPGM("PLANNERBLOCKS="); MYSERIAL.println(int(nplanner_blocks), DEC);
  6978. SERIAL_ECHOPGM("SDSAVED="); MYSERIAL.println(saved_sdpos, DEC);
  6979. SERIAL_ECHOPGM("SDFILELEN="); MYSERIAL.println(card.fileSize(), DEC);
  6980. {
  6981. card.setIndex(saved_sdpos);
  6982. SERIAL_ECHOLNPGM("Content of planner buffer: ");
  6983. for (unsigned int idx = 0; idx < sdlen_planner; ++ idx)
  6984. MYSERIAL.print(char(card.get()));
  6985. SERIAL_ECHOLNPGM("Content of command buffer: ");
  6986. for (unsigned int idx = 0; idx < sdlen_cmdqueue; ++ idx)
  6987. MYSERIAL.print(char(card.get()));
  6988. SERIAL_ECHOLNPGM("End of command buffer");
  6989. }
  6990. {
  6991. // Print the content of the planner buffer, line by line:
  6992. card.setIndex(saved_sdpos);
  6993. int8_t iline = 0;
  6994. for (unsigned char idx = block_buffer_tail; idx != block_buffer_head; idx = (idx + 1) & (BLOCK_BUFFER_SIZE - 1), ++ iline) {
  6995. SERIAL_ECHOPGM("Planner line (from file): ");
  6996. MYSERIAL.print(int(iline), DEC);
  6997. SERIAL_ECHOPGM(", length: ");
  6998. MYSERIAL.print(block_buffer[idx].sdlen, DEC);
  6999. SERIAL_ECHOPGM(", steps: (");
  7000. MYSERIAL.print(block_buffer[idx].steps_x, DEC);
  7001. SERIAL_ECHOPGM(",");
  7002. MYSERIAL.print(block_buffer[idx].steps_y, DEC);
  7003. SERIAL_ECHOPGM(",");
  7004. MYSERIAL.print(block_buffer[idx].steps_z, DEC);
  7005. SERIAL_ECHOPGM(",");
  7006. MYSERIAL.print(block_buffer[idx].steps_e, DEC);
  7007. SERIAL_ECHOPGM("), events: ");
  7008. MYSERIAL.println(block_buffer[idx].step_event_count, DEC);
  7009. for (int len = block_buffer[idx].sdlen; len > 0; -- len)
  7010. MYSERIAL.print(char(card.get()));
  7011. }
  7012. }
  7013. {
  7014. // Print the content of the command buffer, line by line:
  7015. int8_t iline = 0;
  7016. union {
  7017. struct {
  7018. char lo;
  7019. char hi;
  7020. } lohi;
  7021. uint16_t value;
  7022. } sdlen_single;
  7023. int _bufindr = bufindr;
  7024. for (int _buflen = buflen; _buflen > 0; ++ iline) {
  7025. if (cmdbuffer[_bufindr] == CMDBUFFER_CURRENT_TYPE_SDCARD) {
  7026. sdlen_single.lohi.lo = cmdbuffer[_bufindr + 1];
  7027. sdlen_single.lohi.hi = cmdbuffer[_bufindr + 2];
  7028. }
  7029. SERIAL_ECHOPGM("Buffer line (from buffer): ");
  7030. MYSERIAL.print(int(iline), DEC);
  7031. SERIAL_ECHOPGM(", type: ");
  7032. MYSERIAL.print(int(cmdbuffer[_bufindr]), DEC);
  7033. SERIAL_ECHOPGM(", len: ");
  7034. MYSERIAL.println(sdlen_single.value, DEC);
  7035. // Print the content of the buffer line.
  7036. MYSERIAL.println(cmdbuffer + _bufindr + CMDHDRSIZE);
  7037. SERIAL_ECHOPGM("Buffer line (from file): ");
  7038. MYSERIAL.print(int(iline), DEC);
  7039. MYSERIAL.println(int(iline), DEC);
  7040. for (; sdlen_single.value > 0; -- sdlen_single.value)
  7041. MYSERIAL.print(char(card.get()));
  7042. if (-- _buflen == 0)
  7043. break;
  7044. // First skip the current command ID and iterate up to the end of the string.
  7045. for (_bufindr += CMDHDRSIZE; cmdbuffer[_bufindr] != 0; ++ _bufindr) ;
  7046. // Second, skip the end of string null character and iterate until a nonzero command ID is found.
  7047. for (++ _bufindr; _bufindr < sizeof(cmdbuffer) && cmdbuffer[_bufindr] == 0; ++ _bufindr) ;
  7048. // If the end of the buffer was empty,
  7049. if (_bufindr == sizeof(cmdbuffer)) {
  7050. // skip to the start and find the nonzero command.
  7051. for (_bufindr = 0; cmdbuffer[_bufindr] == 0; ++ _bufindr) ;
  7052. }
  7053. }
  7054. }
  7055. #endif
  7056. #if 0
  7057. saved_feedrate2 = feedrate; //save feedrate
  7058. #else
  7059. // Try to deduce the feedrate from the first block of the planner.
  7060. // Speed is in mm/min.
  7061. saved_feedrate2 = blocks_queued() ? (block_buffer[block_buffer_tail].nominal_speed * 60.f) : feedrate;
  7062. #endif
  7063. planner_abort_hard(); //abort printing
  7064. memcpy(saved_pos, current_position, sizeof(saved_pos));
  7065. saved_active_extruder = active_extruder; //save active_extruder
  7066. saved_extruder_under_pressure = extruder_under_pressure; //extruder under pressure flag - currently unused
  7067. cmdqueue_reset(); //empty cmdqueue
  7068. card.sdprinting = false;
  7069. // card.closefile();
  7070. saved_printing = true;
  7071. // We may have missed a stepper timer interrupt. Be safe than sorry, reset the stepper timer before re-enabling interrupts.
  7072. st_reset_timer();
  7073. sei();
  7074. if ((z_move != 0) || (e_move != 0)) { // extruder or z move
  7075. #if 1
  7076. // Rather than calling plan_buffer_line directly, push the move into the command queue,
  7077. char buf[48];
  7078. strcpy_P(buf, PSTR("G1 Z"));
  7079. dtostrf(saved_pos[Z_AXIS] + z_move, 8, 3, buf + strlen(buf));
  7080. strcat_P(buf, PSTR(" E"));
  7081. // Relative extrusion
  7082. dtostrf(e_move, 6, 3, buf + strlen(buf));
  7083. strcat_P(buf, PSTR(" F"));
  7084. dtostrf(homing_feedrate[Z_AXIS], 8, 3, buf + strlen(buf));
  7085. // At this point the command queue is empty.
  7086. enquecommand(buf, false);
  7087. // If this call is invoked from the main Arduino loop() function, let the caller know that the command
  7088. // in the command queue is not the original command, but a new one, so it should not be removed from the queue.
  7089. repeatcommand_front();
  7090. #else
  7091. plan_buffer_line(saved_pos[X_AXIS], saved_pos[Y_AXIS], saved_pos[Z_AXIS] + z_move, saved_pos[E_AXIS] + e_move, homing_feedrate[Z_AXIS], active_extruder);
  7092. st_synchronize(); //wait moving
  7093. memcpy(current_position, saved_pos, sizeof(saved_pos));
  7094. memcpy(destination, current_position, sizeof(destination));
  7095. #endif
  7096. }
  7097. }
  7098. void restore_print_from_ram_and_continue(float e_move)
  7099. {
  7100. if (!saved_printing) return;
  7101. // for (int axis = X_AXIS; axis <= E_AXIS; axis++)
  7102. // current_position[axis] = st_get_position_mm(axis);
  7103. active_extruder = saved_active_extruder; //restore active_extruder
  7104. feedrate = saved_feedrate2; //restore feedrate
  7105. float e = saved_pos[E_AXIS] - e_move;
  7106. plan_set_e_position(e);
  7107. plan_buffer_line(saved_pos[X_AXIS], saved_pos[Y_AXIS], saved_pos[Z_AXIS], saved_pos[E_AXIS], homing_feedrate[Z_AXIS]/13, active_extruder);
  7108. st_synchronize();
  7109. memcpy(current_position, saved_pos, sizeof(saved_pos));
  7110. memcpy(destination, current_position, sizeof(destination));
  7111. card.setIndex(saved_sdpos);
  7112. sdpos_atomic = saved_sdpos;
  7113. card.sdprinting = true;
  7114. saved_printing = false;
  7115. printf_P(PSTR("ok\n")); //dummy response because of octoprint is waiting for this
  7116. }
  7117. void print_world_coordinates()
  7118. {
  7119. SERIAL_ECHOPGM("world coordinates: (");
  7120. MYSERIAL.print(current_position[X_AXIS], 3);
  7121. SERIAL_ECHOPGM(", ");
  7122. MYSERIAL.print(current_position[Y_AXIS], 3);
  7123. SERIAL_ECHOPGM(", ");
  7124. MYSERIAL.print(current_position[Z_AXIS], 3);
  7125. SERIAL_ECHOLNPGM(")");
  7126. }
  7127. void print_physical_coordinates()
  7128. {
  7129. SERIAL_ECHOPGM("physical coordinates: (");
  7130. MYSERIAL.print(st_get_position_mm(X_AXIS), 3);
  7131. SERIAL_ECHOPGM(", ");
  7132. MYSERIAL.print(st_get_position_mm(Y_AXIS), 3);
  7133. SERIAL_ECHOPGM(", ");
  7134. MYSERIAL.print(st_get_position_mm(Z_AXIS), 3);
  7135. SERIAL_ECHOLNPGM(")");
  7136. }
  7137. void print_mesh_bed_leveling_table()
  7138. {
  7139. SERIAL_ECHOPGM("mesh bed leveling: ");
  7140. for (int8_t y = 0; y < MESH_NUM_Y_POINTS; ++ y)
  7141. for (int8_t x = 0; x < MESH_NUM_Y_POINTS; ++ x) {
  7142. MYSERIAL.print(mbl.z_values[y][x], 3);
  7143. SERIAL_ECHOPGM(" ");
  7144. }
  7145. SERIAL_ECHOLNPGM("");
  7146. }
  7147. #define FIL_LOAD_LENGTH 60
  7148. void extr_unload2() { //unloads filament
  7149. // float tmp_motor[3] = DEFAULT_PWM_MOTOR_CURRENT;
  7150. // float tmp_motor_loud[3] = DEFAULT_PWM_MOTOR_CURRENT_LOUD;
  7151. // int8_t SilentMode;
  7152. uint8_t snmm_extruder = 0;
  7153. if (degHotend0() > EXTRUDE_MINTEMP) {
  7154. lcd_implementation_clear();
  7155. lcd_display_message_fullscreen_P(PSTR(""));
  7156. max_feedrate[E_AXIS] = 50;
  7157. lcd.setCursor(0, 0); lcd_printPGM(MSG_UNLOADING_FILAMENT);
  7158. // lcd.print(" ");
  7159. // lcd.print(snmm_extruder + 1);
  7160. lcd.setCursor(0, 2); lcd_printPGM(MSG_PLEASE_WAIT);
  7161. if (current_position[Z_AXIS] < 15) {
  7162. current_position[Z_AXIS] += 15; //lifting in Z direction to make space for extrusion
  7163. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 25, active_extruder);
  7164. }
  7165. current_position[E_AXIS] += 10; //extrusion
  7166. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 10, active_extruder);
  7167. // digipot_current(2, E_MOTOR_HIGH_CURRENT);
  7168. if (current_temperature[0] < 230) { //PLA & all other filaments
  7169. current_position[E_AXIS] += 5.4;
  7170. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2800 / 60, active_extruder);
  7171. current_position[E_AXIS] += 3.2;
  7172. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  7173. current_position[E_AXIS] += 3;
  7174. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3400 / 60, active_extruder);
  7175. }
  7176. else { //ABS
  7177. current_position[E_AXIS] += 3.1;
  7178. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2000 / 60, active_extruder);
  7179. current_position[E_AXIS] += 3.1;
  7180. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2500 / 60, active_extruder);
  7181. current_position[E_AXIS] += 4;
  7182. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  7183. /*current_position[X_AXIS] += 23; //delay
  7184. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder); //delay
  7185. current_position[X_AXIS] -= 23; //delay
  7186. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder); //delay*/
  7187. delay_keep_alive(4700);
  7188. }
  7189. max_feedrate[E_AXIS] = 80;
  7190. current_position[E_AXIS] -= (bowden_length[snmm_extruder] + 60 + FIL_LOAD_LENGTH) / 2;
  7191. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 500, active_extruder);
  7192. current_position[E_AXIS] -= (bowden_length[snmm_extruder] + 60 + FIL_LOAD_LENGTH) / 2;
  7193. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 500, active_extruder);
  7194. st_synchronize();
  7195. //digipot_init();
  7196. // if (SilentMode == 1) digipot_current(2, tmp_motor[2]); //set back to normal operation currents
  7197. // else digipot_current(2, tmp_motor_loud[2]);
  7198. lcd_update_enable(true);
  7199. // lcd_return_to_status();
  7200. max_feedrate[E_AXIS] = 50;
  7201. }
  7202. else {
  7203. lcd_implementation_clear();
  7204. lcd.setCursor(0, 0);
  7205. lcd_printPGM(MSG_ERROR);
  7206. lcd.setCursor(0, 2);
  7207. lcd_printPGM(MSG_PREHEAT_NOZZLE);
  7208. delay(2000);
  7209. lcd_implementation_clear();
  7210. }
  7211. // lcd_return_to_status();
  7212. }