temperature.cpp 53 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957
  1. /*
  2. temperature.c - temperature control
  3. Part of Marlin
  4. Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
  5. This program is free software: you can redistribute it and/or modify
  6. it under the terms of the GNU General Public License as published by
  7. the Free Software Foundation, either version 3 of the License, or
  8. (at your option) any later version.
  9. This program is distributed in the hope that it will be useful,
  10. but WITHOUT ANY WARRANTY; without even the implied warranty of
  11. MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  12. GNU General Public License for more details.
  13. You should have received a copy of the GNU General Public License
  14. along with this program. If not, see <http://www.gnu.org/licenses/>.
  15. */
  16. /*
  17. This firmware is a mashup between Sprinter and grbl.
  18. (https://github.com/kliment/Sprinter)
  19. (https://github.com/simen/grbl/tree)
  20. It has preliminary support for Matthew Roberts advance algorithm
  21. http://reprap.org/pipermail/reprap-dev/2011-May/003323.html
  22. */
  23. #include "Marlin.h"
  24. #include "ultralcd.h"
  25. #include "temperature.h"
  26. #include "watchdog.h"
  27. #include "cardreader.h"
  28. #include "Sd2PinMap.h"
  29. #include <avr/wdt.h>
  30. #include "adc.h"
  31. //===========================================================================
  32. //=============================public variables============================
  33. //===========================================================================
  34. int target_temperature[EXTRUDERS] = { 0 };
  35. int target_temperature_bed = 0;
  36. int current_temperature_raw[EXTRUDERS] = { 0 };
  37. float current_temperature[EXTRUDERS] = { 0.0 };
  38. #ifdef PINDA_THERMISTOR
  39. int current_temperature_raw_pinda = 0 ;
  40. float current_temperature_pinda = 0.0;
  41. #endif //PINDA_THERMISTOR
  42. #ifdef AMBIENT_THERMISTOR
  43. int current_temperature_raw_ambient = 0 ;
  44. float current_temperature_ambient = 0.0;
  45. #endif //AMBIENT_THERMISTOR
  46. #ifdef VOLT_PWR_PIN
  47. int current_voltage_raw_pwr = 0;
  48. #endif
  49. #ifdef VOLT_BED_PIN
  50. int current_voltage_raw_bed = 0;
  51. #endif
  52. int current_temperature_bed_raw = 0;
  53. float current_temperature_bed = 0.0;
  54. #ifdef TEMP_SENSOR_1_AS_REDUNDANT
  55. int redundant_temperature_raw = 0;
  56. float redundant_temperature = 0.0;
  57. #endif
  58. #ifdef PIDTEMP
  59. float _Kp, _Ki, _Kd;
  60. int pid_cycle, pid_number_of_cycles;
  61. bool pid_tuning_finished = false;
  62. float Kp=DEFAULT_Kp;
  63. float Ki=(DEFAULT_Ki*PID_dT);
  64. float Kd=(DEFAULT_Kd/PID_dT);
  65. #ifdef PID_ADD_EXTRUSION_RATE
  66. float Kc=DEFAULT_Kc;
  67. #endif
  68. #endif //PIDTEMP
  69. #ifdef PIDTEMPBED
  70. float bedKp=DEFAULT_bedKp;
  71. float bedKi=(DEFAULT_bedKi*PID_dT);
  72. float bedKd=(DEFAULT_bedKd/PID_dT);
  73. #endif //PIDTEMPBED
  74. #ifdef FAN_SOFT_PWM
  75. unsigned char fanSpeedSoftPwm;
  76. #endif
  77. unsigned char soft_pwm_bed;
  78. #ifdef BABYSTEPPING
  79. volatile int babystepsTodo[3]={0,0,0};
  80. #endif
  81. //===========================================================================
  82. //=============================private variables============================
  83. //===========================================================================
  84. static volatile bool temp_meas_ready = false;
  85. #ifdef PIDTEMP
  86. //static cannot be external:
  87. static float temp_iState[EXTRUDERS] = { 0 };
  88. static float temp_dState[EXTRUDERS] = { 0 };
  89. static float pTerm[EXTRUDERS];
  90. static float iTerm[EXTRUDERS];
  91. static float dTerm[EXTRUDERS];
  92. //int output;
  93. static float pid_error[EXTRUDERS];
  94. static float temp_iState_min[EXTRUDERS];
  95. static float temp_iState_max[EXTRUDERS];
  96. // static float pid_input[EXTRUDERS];
  97. // static float pid_output[EXTRUDERS];
  98. static bool pid_reset[EXTRUDERS];
  99. #endif //PIDTEMP
  100. #ifdef PIDTEMPBED
  101. //static cannot be external:
  102. static float temp_iState_bed = { 0 };
  103. static float temp_dState_bed = { 0 };
  104. static float pTerm_bed;
  105. static float iTerm_bed;
  106. static float dTerm_bed;
  107. //int output;
  108. static float pid_error_bed;
  109. static float temp_iState_min_bed;
  110. static float temp_iState_max_bed;
  111. #else //PIDTEMPBED
  112. static unsigned long previous_millis_bed_heater;
  113. #endif //PIDTEMPBED
  114. static unsigned char soft_pwm[EXTRUDERS];
  115. #ifdef FAN_SOFT_PWM
  116. static unsigned char soft_pwm_fan;
  117. #endif
  118. #if (defined(EXTRUDER_0_AUTO_FAN_PIN) && EXTRUDER_0_AUTO_FAN_PIN > -1) || \
  119. (defined(EXTRUDER_1_AUTO_FAN_PIN) && EXTRUDER_1_AUTO_FAN_PIN > -1) || \
  120. (defined(EXTRUDER_2_AUTO_FAN_PIN) && EXTRUDER_2_AUTO_FAN_PIN > -1)
  121. static unsigned long extruder_autofan_last_check;
  122. #endif
  123. #if EXTRUDERS > 3
  124. # error Unsupported number of extruders
  125. #elif EXTRUDERS > 2
  126. # define ARRAY_BY_EXTRUDERS(v1, v2, v3) { v1, v2, v3 }
  127. #elif EXTRUDERS > 1
  128. # define ARRAY_BY_EXTRUDERS(v1, v2, v3) { v1, v2 }
  129. #else
  130. # define ARRAY_BY_EXTRUDERS(v1, v2, v3) { v1 }
  131. #endif
  132. // Init min and max temp with extreme values to prevent false errors during startup
  133. static int minttemp_raw[EXTRUDERS] = ARRAY_BY_EXTRUDERS( HEATER_0_RAW_LO_TEMP , HEATER_1_RAW_LO_TEMP , HEATER_2_RAW_LO_TEMP );
  134. static int maxttemp_raw[EXTRUDERS] = ARRAY_BY_EXTRUDERS( HEATER_0_RAW_HI_TEMP , HEATER_1_RAW_HI_TEMP , HEATER_2_RAW_HI_TEMP );
  135. static int minttemp[EXTRUDERS] = ARRAY_BY_EXTRUDERS( 0, 0, 0 );
  136. static int maxttemp[EXTRUDERS] = ARRAY_BY_EXTRUDERS( 16383, 16383, 16383 );
  137. #ifdef BED_MINTEMP
  138. static int bed_minttemp_raw = HEATER_BED_RAW_LO_TEMP;
  139. #endif
  140. #ifdef BED_MAXTEMP
  141. static int bed_maxttemp_raw = HEATER_BED_RAW_HI_TEMP;
  142. #endif
  143. #ifdef TEMP_SENSOR_1_AS_REDUNDANT
  144. static void *heater_ttbl_map[2] = {(void *)HEATER_0_TEMPTABLE, (void *)HEATER_1_TEMPTABLE };
  145. static uint8_t heater_ttbllen_map[2] = { HEATER_0_TEMPTABLE_LEN, HEATER_1_TEMPTABLE_LEN };
  146. #else
  147. static void *heater_ttbl_map[EXTRUDERS] = ARRAY_BY_EXTRUDERS( (void *)HEATER_0_TEMPTABLE, (void *)HEATER_1_TEMPTABLE, (void *)HEATER_2_TEMPTABLE );
  148. static uint8_t heater_ttbllen_map[EXTRUDERS] = ARRAY_BY_EXTRUDERS( HEATER_0_TEMPTABLE_LEN, HEATER_1_TEMPTABLE_LEN, HEATER_2_TEMPTABLE_LEN );
  149. #endif
  150. static float analog2temp(int raw, uint8_t e);
  151. static float analog2tempBed(int raw);
  152. static float analog2tempAmbient(int raw);
  153. static void updateTemperaturesFromRawValues();
  154. enum TempRunawayStates
  155. {
  156. TempRunaway_INACTIVE = 0,
  157. TempRunaway_PREHEAT = 1,
  158. TempRunaway_ACTIVE = 2,
  159. };
  160. #ifdef WATCH_TEMP_PERIOD
  161. int watch_start_temp[EXTRUDERS] = ARRAY_BY_EXTRUDERS(0,0,0);
  162. unsigned long watchmillis[EXTRUDERS] = ARRAY_BY_EXTRUDERS(0,0,0);
  163. #endif //WATCH_TEMP_PERIOD
  164. #ifndef SOFT_PWM_SCALE
  165. #define SOFT_PWM_SCALE 0
  166. #endif
  167. //===========================================================================
  168. //============================= functions ============================
  169. //===========================================================================
  170. void PID_autotune(float temp, int extruder, int ncycles)
  171. {
  172. pid_number_of_cycles = ncycles;
  173. pid_tuning_finished = false;
  174. float input = 0.0;
  175. pid_cycle=0;
  176. bool heating = true;
  177. unsigned long temp_millis = millis();
  178. unsigned long t1=temp_millis;
  179. unsigned long t2=temp_millis;
  180. long t_high = 0;
  181. long t_low = 0;
  182. long bias, d;
  183. float Ku, Tu;
  184. float max = 0, min = 10000;
  185. uint8_t safety_check_cycles = 0;
  186. const uint8_t safety_check_cycles_count = (extruder < 0) ? 45 : 10; //10 cycles / 20s delay for extruder and 45 cycles / 90s for heatbed
  187. float temp_ambient;
  188. #if (defined(EXTRUDER_0_AUTO_FAN_PIN) && EXTRUDER_0_AUTO_FAN_PIN > -1) || \
  189. (defined(EXTRUDER_1_AUTO_FAN_PIN) && EXTRUDER_1_AUTO_FAN_PIN > -1) || \
  190. (defined(EXTRUDER_2_AUTO_FAN_PIN) && EXTRUDER_2_AUTO_FAN_PIN > -1)
  191. unsigned long extruder_autofan_last_check = millis();
  192. #endif
  193. if ((extruder >= EXTRUDERS)
  194. #if (TEMP_BED_PIN <= -1)
  195. ||(extruder < 0)
  196. #endif
  197. ){
  198. SERIAL_ECHOLN("PID Autotune failed. Bad extruder number.");
  199. pid_tuning_finished = true;
  200. pid_cycle = 0;
  201. return;
  202. }
  203. SERIAL_ECHOLN("PID Autotune start");
  204. disable_heater(); // switch off all heaters.
  205. if (extruder<0)
  206. {
  207. soft_pwm_bed = (MAX_BED_POWER)/2;
  208. bias = d = (MAX_BED_POWER)/2;
  209. }
  210. else
  211. {
  212. soft_pwm[extruder] = (PID_MAX)/2;
  213. bias = d = (PID_MAX)/2;
  214. }
  215. for(;;) {
  216. wdt_reset();
  217. if(temp_meas_ready == true) { // temp sample ready
  218. updateTemperaturesFromRawValues();
  219. input = (extruder<0)?current_temperature_bed:current_temperature[extruder];
  220. max=max(max,input);
  221. min=min(min,input);
  222. #if (defined(EXTRUDER_0_AUTO_FAN_PIN) && EXTRUDER_0_AUTO_FAN_PIN > -1) || \
  223. (defined(EXTRUDER_1_AUTO_FAN_PIN) && EXTRUDER_1_AUTO_FAN_PIN > -1) || \
  224. (defined(EXTRUDER_2_AUTO_FAN_PIN) && EXTRUDER_2_AUTO_FAN_PIN > -1)
  225. if(millis() - extruder_autofan_last_check > 2500) {
  226. checkExtruderAutoFans();
  227. extruder_autofan_last_check = millis();
  228. }
  229. #endif
  230. if(heating == true && input > temp) {
  231. if(millis() - t2 > 5000) {
  232. heating=false;
  233. if (extruder<0)
  234. soft_pwm_bed = (bias - d) >> 1;
  235. else
  236. soft_pwm[extruder] = (bias - d) >> 1;
  237. t1=millis();
  238. t_high=t1 - t2;
  239. max=temp;
  240. }
  241. }
  242. if(heating == false && input < temp) {
  243. if(millis() - t1 > 5000) {
  244. heating=true;
  245. t2=millis();
  246. t_low=t2 - t1;
  247. if(pid_cycle > 0) {
  248. bias += (d*(t_high - t_low))/(t_low + t_high);
  249. bias = constrain(bias, 20 ,(extruder<0?(MAX_BED_POWER):(PID_MAX))-20);
  250. if(bias > (extruder<0?(MAX_BED_POWER):(PID_MAX))/2) d = (extruder<0?(MAX_BED_POWER):(PID_MAX)) - 1 - bias;
  251. else d = bias;
  252. SERIAL_PROTOCOLPGM(" bias: "); SERIAL_PROTOCOL(bias);
  253. SERIAL_PROTOCOLPGM(" d: "); SERIAL_PROTOCOL(d);
  254. SERIAL_PROTOCOLPGM(" min: "); SERIAL_PROTOCOL(min);
  255. SERIAL_PROTOCOLPGM(" max: "); SERIAL_PROTOCOLLN(max);
  256. if(pid_cycle > 2) {
  257. Ku = (4.0*d)/(3.14159*(max-min)/2.0);
  258. Tu = ((float)(t_low + t_high)/1000.0);
  259. SERIAL_PROTOCOLPGM(" Ku: "); SERIAL_PROTOCOL(Ku);
  260. SERIAL_PROTOCOLPGM(" Tu: "); SERIAL_PROTOCOLLN(Tu);
  261. _Kp = 0.6*Ku;
  262. _Ki = 2*_Kp/Tu;
  263. _Kd = _Kp*Tu/8;
  264. SERIAL_PROTOCOLLNPGM(" Classic PID ");
  265. SERIAL_PROTOCOLPGM(" Kp: "); SERIAL_PROTOCOLLN(_Kp);
  266. SERIAL_PROTOCOLPGM(" Ki: "); SERIAL_PROTOCOLLN(_Ki);
  267. SERIAL_PROTOCOLPGM(" Kd: "); SERIAL_PROTOCOLLN(_Kd);
  268. /*
  269. _Kp = 0.33*Ku;
  270. _Ki = _Kp/Tu;
  271. _Kd = _Kp*Tu/3;
  272. SERIAL_PROTOCOLLNPGM(" Some overshoot ");
  273. SERIAL_PROTOCOLPGM(" Kp: "); SERIAL_PROTOCOLLN(_Kp);
  274. SERIAL_PROTOCOLPGM(" Ki: "); SERIAL_PROTOCOLLN(_Ki);
  275. SERIAL_PROTOCOLPGM(" Kd: "); SERIAL_PROTOCOLLN(_Kd);
  276. _Kp = 0.2*Ku;
  277. _Ki = 2*_Kp/Tu;
  278. _Kd = _Kp*Tu/3;
  279. SERIAL_PROTOCOLLNPGM(" No overshoot ");
  280. SERIAL_PROTOCOLPGM(" Kp: "); SERIAL_PROTOCOLLN(_Kp);
  281. SERIAL_PROTOCOLPGM(" Ki: "); SERIAL_PROTOCOLLN(_Ki);
  282. SERIAL_PROTOCOLPGM(" Kd: "); SERIAL_PROTOCOLLN(_Kd);
  283. */
  284. }
  285. }
  286. if (extruder<0)
  287. soft_pwm_bed = (bias + d) >> 1;
  288. else
  289. soft_pwm[extruder] = (bias + d) >> 1;
  290. pid_cycle++;
  291. min=temp;
  292. }
  293. }
  294. }
  295. if(input > (temp + 20)) {
  296. SERIAL_PROTOCOLLNPGM("PID Autotune failed! Temperature too high");
  297. pid_tuning_finished = true;
  298. pid_cycle = 0;
  299. return;
  300. }
  301. if(millis() - temp_millis > 2000) {
  302. int p;
  303. if (extruder<0){
  304. p=soft_pwm_bed;
  305. SERIAL_PROTOCOLPGM("B:");
  306. }else{
  307. p=soft_pwm[extruder];
  308. SERIAL_PROTOCOLPGM("T:");
  309. }
  310. SERIAL_PROTOCOL(input);
  311. SERIAL_PROTOCOLPGM(" @:");
  312. SERIAL_PROTOCOLLN(p);
  313. if (safety_check_cycles == 0) { //save ambient temp
  314. temp_ambient = input;
  315. //SERIAL_ECHOPGM("Ambient T: ");
  316. //MYSERIAL.println(temp_ambient);
  317. safety_check_cycles++;
  318. }
  319. else if (safety_check_cycles < safety_check_cycles_count) { //delay
  320. safety_check_cycles++;
  321. }
  322. else if (safety_check_cycles == safety_check_cycles_count){ //check that temperature is rising
  323. safety_check_cycles++;
  324. //SERIAL_ECHOPGM("Time from beginning: ");
  325. //MYSERIAL.print(safety_check_cycles_count * 2);
  326. //SERIAL_ECHOPGM("s. Difference between current and ambient T: ");
  327. //MYSERIAL.println(input - temp_ambient);
  328. if (abs(input - temp_ambient) < 5.0) {
  329. temp_runaway_stop(false, (extruder<0));
  330. pid_tuning_finished = true;
  331. return;
  332. }
  333. }
  334. temp_millis = millis();
  335. }
  336. if(((millis() - t1) + (millis() - t2)) > (10L*60L*1000L*2L)) {
  337. SERIAL_PROTOCOLLNPGM("PID Autotune failed! timeout");
  338. pid_tuning_finished = true;
  339. pid_cycle = 0;
  340. return;
  341. }
  342. if(pid_cycle > ncycles) {
  343. SERIAL_PROTOCOLLNPGM("PID Autotune finished! Put the last Kp, Ki and Kd constants from above into Configuration.h");
  344. pid_tuning_finished = true;
  345. pid_cycle = 0;
  346. return;
  347. }
  348. lcd_update();
  349. }
  350. }
  351. void updatePID()
  352. {
  353. #ifdef PIDTEMP
  354. for(int e = 0; e < EXTRUDERS; e++) {
  355. temp_iState_max[e] = PID_INTEGRAL_DRIVE_MAX / Ki;
  356. }
  357. #endif
  358. #ifdef PIDTEMPBED
  359. temp_iState_max_bed = PID_INTEGRAL_DRIVE_MAX / bedKi;
  360. #endif
  361. }
  362. int getHeaterPower(int heater) {
  363. if (heater<0)
  364. return soft_pwm_bed;
  365. return soft_pwm[heater];
  366. }
  367. #if (defined(EXTRUDER_0_AUTO_FAN_PIN) && EXTRUDER_0_AUTO_FAN_PIN > -1) || \
  368. (defined(EXTRUDER_1_AUTO_FAN_PIN) && EXTRUDER_1_AUTO_FAN_PIN > -1) || \
  369. (defined(EXTRUDER_2_AUTO_FAN_PIN) && EXTRUDER_2_AUTO_FAN_PIN > -1)
  370. #if defined(FAN_PIN) && FAN_PIN > -1
  371. #if EXTRUDER_0_AUTO_FAN_PIN == FAN_PIN
  372. #error "You cannot set EXTRUDER_0_AUTO_FAN_PIN equal to FAN_PIN"
  373. #endif
  374. #if EXTRUDER_1_AUTO_FAN_PIN == FAN_PIN
  375. #error "You cannot set EXTRUDER_1_AUTO_FAN_PIN equal to FAN_PIN"
  376. #endif
  377. #if EXTRUDER_2_AUTO_FAN_PIN == FAN_PIN
  378. #error "You cannot set EXTRUDER_2_AUTO_FAN_PIN equal to FAN_PIN"
  379. #endif
  380. #endif
  381. void setExtruderAutoFanState(int pin, bool state)
  382. {
  383. unsigned char newFanSpeed = (state != 0) ? EXTRUDER_AUTO_FAN_SPEED : 0;
  384. // this idiom allows both digital and PWM fan outputs (see M42 handling).
  385. pinMode(pin, OUTPUT);
  386. digitalWrite(pin, newFanSpeed);
  387. analogWrite(pin, newFanSpeed);
  388. }
  389. void countFanSpeed()
  390. {
  391. //SERIAL_ECHOPGM("edge counter 1:"); MYSERIAL.println(fan_edge_counter[1]);
  392. fan_speed[0] = (fan_edge_counter[0] * (float(250) / (millis() - extruder_autofan_last_check)));
  393. fan_speed[1] = (fan_edge_counter[1] * (float(250) / (millis() - extruder_autofan_last_check)));
  394. /*SERIAL_ECHOPGM("time interval: "); MYSERIAL.println(millis() - extruder_autofan_last_check);
  395. SERIAL_ECHOPGM("extruder fan speed:"); MYSERIAL.print(fan_speed[0]); SERIAL_ECHOPGM("; edge counter:"); MYSERIAL.println(fan_edge_counter[0]);
  396. SERIAL_ECHOPGM("print fan speed:"); MYSERIAL.print(fan_speed[1]); SERIAL_ECHOPGM("; edge counter:"); MYSERIAL.println(fan_edge_counter[1]);
  397. SERIAL_ECHOLNPGM(" ");*/
  398. fan_edge_counter[0] = 0;
  399. fan_edge_counter[1] = 0;
  400. }
  401. extern bool fans_check_enabled;
  402. void checkFanSpeed()
  403. {
  404. fans_check_enabled = (eeprom_read_byte((uint8_t*)EEPROM_FAN_CHECK_ENABLED) > 0);
  405. static unsigned char fan_speed_errors[2] = { 0,0 };
  406. if ((fan_speed[0] == 0) && (current_temperature[0] > EXTRUDER_AUTO_FAN_TEMPERATURE)) fan_speed_errors[0]++;
  407. else fan_speed_errors[0] = 0;
  408. if ((fan_speed[1] == 0) && ((blocks_queued()?block_buffer[block_buffer_tail].fan_speed:fanSpeed) > MIN_PRINT_FAN_SPEED)) fan_speed_errors[1]++;
  409. else fan_speed_errors[1] = 0;
  410. if ((fan_speed_errors[0] > 5) && fans_check_enabled) {
  411. fan_speed_errors[0] = 0;
  412. fanSpeedError(0); //extruder fan
  413. }
  414. if ((fan_speed_errors[1] > 15) && fans_check_enabled) {
  415. fan_speed_errors[1] = 0;
  416. fanSpeedError(1); //print fan
  417. }
  418. }
  419. extern void stop_and_save_print_to_ram(float z_move, float e_move);
  420. extern void restore_print_from_ram_and_continue(float e_move);
  421. void fanSpeedError(unsigned char _fan) {
  422. if (get_message_level() != 0 && isPrintPaused) return;
  423. //to ensure that target temp. is not set to zero in case taht we are resuming print
  424. if (card.sdprinting) {
  425. if (heating_status != 0) {
  426. lcd_print_stop();
  427. }
  428. else {
  429. isPrintPaused = true;
  430. lcd_sdcard_pause();
  431. }
  432. }
  433. else {
  434. setTargetHotend0(0);
  435. SERIAL_ECHOLNPGM("// action:pause"); //for octoprint
  436. }
  437. switch (_fan) {
  438. case 0:
  439. SERIAL_ECHOLNPGM("Extruder fan speed is lower then expected");
  440. if (get_message_level() == 0) {
  441. WRITE(BEEPER, HIGH);
  442. delayMicroseconds(200);
  443. WRITE(BEEPER, LOW);
  444. delayMicroseconds(100);
  445. LCD_ALERTMESSAGEPGM("Err: EXTR. FAN ERROR");
  446. }
  447. break;
  448. case 1:
  449. SERIAL_ECHOLNPGM("Print fan speed is lower then expected");
  450. if (get_message_level() == 0) {
  451. WRITE(BEEPER, HIGH);
  452. delayMicroseconds(200);
  453. WRITE(BEEPER, LOW);
  454. delayMicroseconds(100);
  455. LCD_ALERTMESSAGEPGM("Err: PRINT FAN ERROR");
  456. }
  457. break;
  458. }
  459. }
  460. void checkExtruderAutoFans()
  461. {
  462. uint8_t fanState = 0;
  463. // which fan pins need to be turned on?
  464. #if defined(EXTRUDER_0_AUTO_FAN_PIN) && EXTRUDER_0_AUTO_FAN_PIN > -1
  465. if (current_temperature[0] > EXTRUDER_AUTO_FAN_TEMPERATURE)
  466. fanState |= 1;
  467. #endif
  468. #if defined(EXTRUDER_1_AUTO_FAN_PIN) && EXTRUDER_1_AUTO_FAN_PIN > -1
  469. if (current_temperature[1] > EXTRUDER_AUTO_FAN_TEMPERATURE)
  470. {
  471. if (EXTRUDER_1_AUTO_FAN_PIN == EXTRUDER_0_AUTO_FAN_PIN)
  472. fanState |= 1;
  473. else
  474. fanState |= 2;
  475. }
  476. #endif
  477. #if defined(EXTRUDER_2_AUTO_FAN_PIN) && EXTRUDER_2_AUTO_FAN_PIN > -1
  478. if (current_temperature[2] > EXTRUDER_AUTO_FAN_TEMPERATURE)
  479. {
  480. if (EXTRUDER_2_AUTO_FAN_PIN == EXTRUDER_0_AUTO_FAN_PIN)
  481. fanState |= 1;
  482. else if (EXTRUDER_2_AUTO_FAN_PIN == EXTRUDER_1_AUTO_FAN_PIN)
  483. fanState |= 2;
  484. else
  485. fanState |= 4;
  486. }
  487. #endif
  488. // update extruder auto fan states
  489. #if defined(EXTRUDER_0_AUTO_FAN_PIN) && EXTRUDER_0_AUTO_FAN_PIN > -1
  490. setExtruderAutoFanState(EXTRUDER_0_AUTO_FAN_PIN, (fanState & 1) != 0);
  491. #endif
  492. #if defined(EXTRUDER_1_AUTO_FAN_PIN) && EXTRUDER_1_AUTO_FAN_PIN > -1
  493. if (EXTRUDER_1_AUTO_FAN_PIN != EXTRUDER_0_AUTO_FAN_PIN)
  494. setExtruderAutoFanState(EXTRUDER_1_AUTO_FAN_PIN, (fanState & 2) != 0);
  495. #endif
  496. #if defined(EXTRUDER_2_AUTO_FAN_PIN) && EXTRUDER_2_AUTO_FAN_PIN > -1
  497. if (EXTRUDER_2_AUTO_FAN_PIN != EXTRUDER_0_AUTO_FAN_PIN
  498. && EXTRUDER_2_AUTO_FAN_PIN != EXTRUDER_1_AUTO_FAN_PIN)
  499. setExtruderAutoFanState(EXTRUDER_2_AUTO_FAN_PIN, (fanState & 4) != 0);
  500. #endif
  501. }
  502. #endif // any extruder auto fan pins set
  503. void manage_heater()
  504. {
  505. wdt_reset();
  506. float pid_input;
  507. float pid_output;
  508. if(temp_meas_ready != true) //better readability
  509. return;
  510. updateTemperaturesFromRawValues();
  511. #ifdef TEMP_RUNAWAY_BED_HYSTERESIS
  512. temp_runaway_check(0, target_temperature_bed, current_temperature_bed, (int)soft_pwm_bed, true);
  513. #endif
  514. for(int e = 0; e < EXTRUDERS; e++)
  515. {
  516. #ifdef TEMP_RUNAWAY_EXTRUDER_HYSTERESIS
  517. temp_runaway_check(e+1, target_temperature[e], current_temperature[e], (int)soft_pwm[e], false);
  518. #endif
  519. #ifdef PIDTEMP
  520. pid_input = current_temperature[e];
  521. #ifndef PID_OPENLOOP
  522. pid_error[e] = target_temperature[e] - pid_input;
  523. if(pid_error[e] > PID_FUNCTIONAL_RANGE) {
  524. pid_output = BANG_MAX;
  525. pid_reset[e] = true;
  526. }
  527. else if(pid_error[e] < -PID_FUNCTIONAL_RANGE || target_temperature[e] == 0) {
  528. pid_output = 0;
  529. pid_reset[e] = true;
  530. }
  531. else {
  532. if(pid_reset[e] == true) {
  533. temp_iState[e] = 0.0;
  534. pid_reset[e] = false;
  535. }
  536. pTerm[e] = Kp * pid_error[e];
  537. temp_iState[e] += pid_error[e];
  538. temp_iState[e] = constrain(temp_iState[e], temp_iState_min[e], temp_iState_max[e]);
  539. iTerm[e] = Ki * temp_iState[e];
  540. //K1 defined in Configuration.h in the PID settings
  541. #define K2 (1.0-K1)
  542. dTerm[e] = (Kd * (pid_input - temp_dState[e]))*K2 + (K1 * dTerm[e]);
  543. pid_output = pTerm[e] + iTerm[e] - dTerm[e];
  544. if (pid_output > PID_MAX) {
  545. if (pid_error[e] > 0 ) temp_iState[e] -= pid_error[e]; // conditional un-integration
  546. pid_output=PID_MAX;
  547. } else if (pid_output < 0){
  548. if (pid_error[e] < 0 ) temp_iState[e] -= pid_error[e]; // conditional un-integration
  549. pid_output=0;
  550. }
  551. }
  552. temp_dState[e] = pid_input;
  553. #else
  554. pid_output = constrain(target_temperature[e], 0, PID_MAX);
  555. #endif //PID_OPENLOOP
  556. #ifdef PID_DEBUG
  557. SERIAL_ECHO_START;
  558. SERIAL_ECHO(" PID_DEBUG ");
  559. SERIAL_ECHO(e);
  560. SERIAL_ECHO(": Input ");
  561. SERIAL_ECHO(pid_input);
  562. SERIAL_ECHO(" Output ");
  563. SERIAL_ECHO(pid_output);
  564. SERIAL_ECHO(" pTerm ");
  565. SERIAL_ECHO(pTerm[e]);
  566. SERIAL_ECHO(" iTerm ");
  567. SERIAL_ECHO(iTerm[e]);
  568. SERIAL_ECHO(" dTerm ");
  569. SERIAL_ECHOLN(dTerm[e]);
  570. #endif //PID_DEBUG
  571. #else /* PID off */
  572. pid_output = 0;
  573. if(current_temperature[e] < target_temperature[e]) {
  574. pid_output = PID_MAX;
  575. }
  576. #endif
  577. // Check if temperature is within the correct range
  578. if(((current_temperature_ambient < MINTEMP_MINAMBIENT) || (current_temperature[e] > minttemp[e])) && (current_temperature[e] < maxttemp[e]))
  579. {
  580. soft_pwm[e] = (int)pid_output >> 1;
  581. }
  582. else {
  583. soft_pwm[e] = 0;
  584. }
  585. #ifdef WATCH_TEMP_PERIOD
  586. if(watchmillis[e] && millis() - watchmillis[e] > WATCH_TEMP_PERIOD)
  587. {
  588. if(degHotend(e) < watch_start_temp[e] + WATCH_TEMP_INCREASE)
  589. {
  590. setTargetHotend(0, e);
  591. LCD_MESSAGEPGM("Heating failed");
  592. SERIAL_ECHO_START;
  593. SERIAL_ECHOLN("Heating failed");
  594. }else{
  595. watchmillis[e] = 0;
  596. }
  597. }
  598. #endif
  599. #ifdef TEMP_SENSOR_1_AS_REDUNDANT
  600. if(fabs(current_temperature[0] - redundant_temperature) > MAX_REDUNDANT_TEMP_SENSOR_DIFF) {
  601. disable_heater();
  602. if(IsStopped() == false) {
  603. SERIAL_ERROR_START;
  604. SERIAL_ERRORLNPGM("Extruder switched off. Temperature difference between temp sensors is too high !");
  605. LCD_ALERTMESSAGEPGM("Err: REDUNDANT TEMP ERROR");
  606. }
  607. #ifndef BOGUS_TEMPERATURE_FAILSAFE_OVERRIDE
  608. Stop();
  609. #endif
  610. }
  611. #endif
  612. } // End extruder for loop
  613. #ifndef DEBUG_DISABLE_FANCHECK
  614. #if (defined(EXTRUDER_0_AUTO_FAN_PIN) && EXTRUDER_0_AUTO_FAN_PIN > -1) || \
  615. (defined(EXTRUDER_1_AUTO_FAN_PIN) && EXTRUDER_1_AUTO_FAN_PIN > -1) || \
  616. (defined(EXTRUDER_2_AUTO_FAN_PIN) && EXTRUDER_2_AUTO_FAN_PIN > -1)
  617. if(millis() - extruder_autofan_last_check > 1000) // only need to check fan state very infrequently
  618. {
  619. countFanSpeed();
  620. checkFanSpeed();
  621. checkExtruderAutoFans();
  622. extruder_autofan_last_check = millis();
  623. }
  624. #endif
  625. #endif //DEBUG_DISABLE_FANCHECK
  626. #ifndef PIDTEMPBED
  627. if(millis() - previous_millis_bed_heater < BED_CHECK_INTERVAL)
  628. return;
  629. previous_millis_bed_heater = millis();
  630. #endif
  631. #if TEMP_SENSOR_BED != 0
  632. #ifdef PIDTEMPBED
  633. pid_input = current_temperature_bed;
  634. #ifndef PID_OPENLOOP
  635. pid_error_bed = target_temperature_bed - pid_input;
  636. pTerm_bed = bedKp * pid_error_bed;
  637. temp_iState_bed += pid_error_bed;
  638. temp_iState_bed = constrain(temp_iState_bed, temp_iState_min_bed, temp_iState_max_bed);
  639. iTerm_bed = bedKi * temp_iState_bed;
  640. //K1 defined in Configuration.h in the PID settings
  641. #define K2 (1.0-K1)
  642. dTerm_bed= (bedKd * (pid_input - temp_dState_bed))*K2 + (K1 * dTerm_bed);
  643. temp_dState_bed = pid_input;
  644. pid_output = pTerm_bed + iTerm_bed - dTerm_bed;
  645. if (pid_output > MAX_BED_POWER) {
  646. if (pid_error_bed > 0 ) temp_iState_bed -= pid_error_bed; // conditional un-integration
  647. pid_output=MAX_BED_POWER;
  648. } else if (pid_output < 0){
  649. if (pid_error_bed < 0 ) temp_iState_bed -= pid_error_bed; // conditional un-integration
  650. pid_output=0;
  651. }
  652. #else
  653. pid_output = constrain(target_temperature_bed, 0, MAX_BED_POWER);
  654. #endif //PID_OPENLOOP
  655. if(((current_temperature_bed > BED_MINTEMP) || (current_temperature_ambient < MINTEMP_MINAMBIENT)) && (current_temperature_bed < BED_MAXTEMP))
  656. {
  657. soft_pwm_bed = (int)pid_output >> 1;
  658. }
  659. else {
  660. soft_pwm_bed = 0;
  661. }
  662. #elif !defined(BED_LIMIT_SWITCHING)
  663. // Check if temperature is within the correct range
  664. if((current_temperature_bed > BED_MINTEMP) && (current_temperature_bed < BED_MAXTEMP))
  665. {
  666. if(current_temperature_bed >= target_temperature_bed)
  667. {
  668. soft_pwm_bed = 0;
  669. }
  670. else
  671. {
  672. soft_pwm_bed = MAX_BED_POWER>>1;
  673. }
  674. }
  675. else
  676. {
  677. soft_pwm_bed = 0;
  678. WRITE(HEATER_BED_PIN,LOW);
  679. }
  680. #else //#ifdef BED_LIMIT_SWITCHING
  681. // Check if temperature is within the correct band
  682. if((current_temperature_bed > BED_MINTEMP) && (current_temperature_bed < BED_MAXTEMP))
  683. {
  684. if(current_temperature_bed > target_temperature_bed + BED_HYSTERESIS)
  685. {
  686. soft_pwm_bed = 0;
  687. }
  688. else if(current_temperature_bed <= target_temperature_bed - BED_HYSTERESIS)
  689. {
  690. soft_pwm_bed = MAX_BED_POWER>>1;
  691. }
  692. }
  693. else
  694. {
  695. soft_pwm_bed = 0;
  696. WRITE(HEATER_BED_PIN,LOW);
  697. }
  698. #endif
  699. #endif
  700. #ifdef HOST_KEEPALIVE_FEATURE
  701. host_keepalive();
  702. #endif
  703. }
  704. #define PGM_RD_W(x) (short)pgm_read_word(&x)
  705. // Derived from RepRap FiveD extruder::getTemperature()
  706. // For hot end temperature measurement.
  707. static float analog2temp(int raw, uint8_t e) {
  708. #ifdef TEMP_SENSOR_1_AS_REDUNDANT
  709. if(e > EXTRUDERS)
  710. #else
  711. if(e >= EXTRUDERS)
  712. #endif
  713. {
  714. SERIAL_ERROR_START;
  715. SERIAL_ERROR((int)e);
  716. SERIAL_ERRORLNPGM(" - Invalid extruder number !");
  717. kill("", 6);
  718. return 0.0;
  719. }
  720. #ifdef HEATER_0_USES_MAX6675
  721. if (e == 0)
  722. {
  723. return 0.25 * raw;
  724. }
  725. #endif
  726. if(heater_ttbl_map[e] != NULL)
  727. {
  728. float celsius = 0;
  729. uint8_t i;
  730. short (*tt)[][2] = (short (*)[][2])(heater_ttbl_map[e]);
  731. for (i=1; i<heater_ttbllen_map[e]; i++)
  732. {
  733. if (PGM_RD_W((*tt)[i][0]) > raw)
  734. {
  735. celsius = PGM_RD_W((*tt)[i-1][1]) +
  736. (raw - PGM_RD_W((*tt)[i-1][0])) *
  737. (float)(PGM_RD_W((*tt)[i][1]) - PGM_RD_W((*tt)[i-1][1])) /
  738. (float)(PGM_RD_W((*tt)[i][0]) - PGM_RD_W((*tt)[i-1][0]));
  739. break;
  740. }
  741. }
  742. // Overflow: Set to last value in the table
  743. if (i == heater_ttbllen_map[e]) celsius = PGM_RD_W((*tt)[i-1][1]);
  744. return celsius;
  745. }
  746. return ((raw * ((5.0 * 100.0) / 1024.0) / OVERSAMPLENR) * TEMP_SENSOR_AD595_GAIN) + TEMP_SENSOR_AD595_OFFSET;
  747. }
  748. // Derived from RepRap FiveD extruder::getTemperature()
  749. // For bed temperature measurement.
  750. static float analog2tempBed(int raw) {
  751. #ifdef BED_USES_THERMISTOR
  752. float celsius = 0;
  753. byte i;
  754. for (i=1; i<BEDTEMPTABLE_LEN; i++)
  755. {
  756. if (PGM_RD_W(BEDTEMPTABLE[i][0]) > raw)
  757. {
  758. celsius = PGM_RD_W(BEDTEMPTABLE[i-1][1]) +
  759. (raw - PGM_RD_W(BEDTEMPTABLE[i-1][0])) *
  760. (float)(PGM_RD_W(BEDTEMPTABLE[i][1]) - PGM_RD_W(BEDTEMPTABLE[i-1][1])) /
  761. (float)(PGM_RD_W(BEDTEMPTABLE[i][0]) - PGM_RD_W(BEDTEMPTABLE[i-1][0]));
  762. break;
  763. }
  764. }
  765. // Overflow: Set to last value in the table
  766. if (i == BEDTEMPTABLE_LEN) celsius = PGM_RD_W(BEDTEMPTABLE[i-1][1]);
  767. // temperature offset adjustment
  768. #ifdef BED_OFFSET
  769. float _offset = BED_OFFSET;
  770. float _offset_center = BED_OFFSET_CENTER;
  771. float _offset_start = BED_OFFSET_START;
  772. float _first_koef = (_offset / 2) / (_offset_center - _offset_start);
  773. float _second_koef = (_offset / 2) / (100 - _offset_center);
  774. if (celsius >= _offset_start && celsius <= _offset_center)
  775. {
  776. celsius = celsius + (_first_koef * (celsius - _offset_start));
  777. }
  778. else if (celsius > _offset_center && celsius <= 100)
  779. {
  780. celsius = celsius + (_first_koef * (_offset_center - _offset_start)) + ( _second_koef * ( celsius - ( 100 - _offset_center ) )) ;
  781. }
  782. else if (celsius > 100)
  783. {
  784. celsius = celsius + _offset;
  785. }
  786. #endif
  787. return celsius;
  788. #elif defined BED_USES_AD595
  789. return ((raw * ((5.0 * 100.0) / 1024.0) / OVERSAMPLENR) * TEMP_SENSOR_AD595_GAIN) + TEMP_SENSOR_AD595_OFFSET;
  790. #else
  791. return 0;
  792. #endif
  793. }
  794. static float analog2tempAmbient(int raw)
  795. {
  796. float celsius = 0;
  797. byte i;
  798. for (i=1; i<AMBIENTTEMPTABLE_LEN; i++)
  799. {
  800. if (PGM_RD_W(AMBIENTTEMPTABLE[i][0]) > raw)
  801. {
  802. celsius = PGM_RD_W(AMBIENTTEMPTABLE[i-1][1]) +
  803. (raw - PGM_RD_W(AMBIENTTEMPTABLE[i-1][0])) *
  804. (float)(PGM_RD_W(AMBIENTTEMPTABLE[i][1]) - PGM_RD_W(AMBIENTTEMPTABLE[i-1][1])) /
  805. (float)(PGM_RD_W(AMBIENTTEMPTABLE[i][0]) - PGM_RD_W(AMBIENTTEMPTABLE[i-1][0]));
  806. break;
  807. }
  808. }
  809. // Overflow: Set to last value in the table
  810. if (i == AMBIENTTEMPTABLE_LEN) celsius = PGM_RD_W(AMBIENTTEMPTABLE[i-1][1]);
  811. return celsius;
  812. }
  813. /* Called to get the raw values into the the actual temperatures. The raw values are created in interrupt context,
  814. and this function is called from normal context as it is too slow to run in interrupts and will block the stepper routine otherwise */
  815. static void updateTemperaturesFromRawValues()
  816. {
  817. for(uint8_t e=0;e<EXTRUDERS;e++)
  818. {
  819. current_temperature[e] = analog2temp(current_temperature_raw[e], e);
  820. }
  821. #ifdef PINDA_THERMISTOR
  822. current_temperature_pinda = analog2tempBed(current_temperature_raw_pinda); //thermistor for pinda is the same as for bed
  823. #endif
  824. #ifdef AMBIENT_THERMISTOR
  825. current_temperature_ambient = analog2tempAmbient(current_temperature_raw_ambient); //thermistor for ambient is NTCG104LH104JT1 (2000)
  826. #endif
  827. current_temperature_bed = analog2tempBed(current_temperature_bed_raw);
  828. #ifdef TEMP_SENSOR_1_AS_REDUNDANT
  829. redundant_temperature = analog2temp(redundant_temperature_raw, 1);
  830. #endif
  831. //Reset the watchdog after we know we have a temperature measurement.
  832. watchdog_reset();
  833. CRITICAL_SECTION_START;
  834. temp_meas_ready = false;
  835. CRITICAL_SECTION_END;
  836. }
  837. void tp_init()
  838. {
  839. #if MB(RUMBA) && ((TEMP_SENSOR_0==-1)||(TEMP_SENSOR_1==-1)||(TEMP_SENSOR_2==-1)||(TEMP_SENSOR_BED==-1))
  840. //disable RUMBA JTAG in case the thermocouple extension is plugged on top of JTAG connector
  841. MCUCR=(1<<JTD);
  842. MCUCR=(1<<JTD);
  843. #endif
  844. // Finish init of mult extruder arrays
  845. for(int e = 0; e < EXTRUDERS; e++) {
  846. // populate with the first value
  847. maxttemp[e] = maxttemp[0];
  848. #ifdef PIDTEMP
  849. temp_iState_min[e] = 0.0;
  850. temp_iState_max[e] = PID_INTEGRAL_DRIVE_MAX / Ki;
  851. #endif //PIDTEMP
  852. #ifdef PIDTEMPBED
  853. temp_iState_min_bed = 0.0;
  854. temp_iState_max_bed = PID_INTEGRAL_DRIVE_MAX / bedKi;
  855. #endif //PIDTEMPBED
  856. }
  857. #if defined(HEATER_0_PIN) && (HEATER_0_PIN > -1)
  858. SET_OUTPUT(HEATER_0_PIN);
  859. #endif
  860. #if defined(HEATER_1_PIN) && (HEATER_1_PIN > -1)
  861. SET_OUTPUT(HEATER_1_PIN);
  862. #endif
  863. #if defined(HEATER_2_PIN) && (HEATER_2_PIN > -1)
  864. SET_OUTPUT(HEATER_2_PIN);
  865. #endif
  866. #if defined(HEATER_BED_PIN) && (HEATER_BED_PIN > -1)
  867. SET_OUTPUT(HEATER_BED_PIN);
  868. #endif
  869. #if defined(FAN_PIN) && (FAN_PIN > -1)
  870. SET_OUTPUT(FAN_PIN);
  871. #ifdef FAST_PWM_FAN
  872. setPwmFrequency(FAN_PIN, 1); // No prescaling. Pwm frequency = F_CPU/256/8
  873. #endif
  874. #ifdef FAN_SOFT_PWM
  875. soft_pwm_fan = fanSpeedSoftPwm / 2;
  876. #endif
  877. #endif
  878. #ifdef HEATER_0_USES_MAX6675
  879. #ifndef SDSUPPORT
  880. SET_OUTPUT(SCK_PIN);
  881. WRITE(SCK_PIN,0);
  882. SET_OUTPUT(MOSI_PIN);
  883. WRITE(MOSI_PIN,1);
  884. SET_INPUT(MISO_PIN);
  885. WRITE(MISO_PIN,1);
  886. #endif
  887. /* Using pinMode and digitalWrite, as that was the only way I could get it to compile */
  888. //Have to toggle SD card CS pin to low first, to enable firmware to talk with SD card
  889. pinMode(SS_PIN, OUTPUT);
  890. digitalWrite(SS_PIN,0);
  891. pinMode(MAX6675_SS, OUTPUT);
  892. digitalWrite(MAX6675_SS,1);
  893. #endif
  894. adc_init();
  895. // Use timer0 for temperature measurement
  896. // Interleave temperature interrupt with millies interrupt
  897. OCR0B = 128;
  898. TIMSK0 |= (1<<OCIE0B);
  899. // Wait for temperature measurement to settle
  900. delay(250);
  901. #ifdef HEATER_0_MINTEMP
  902. minttemp[0] = HEATER_0_MINTEMP;
  903. while(analog2temp(minttemp_raw[0], 0) < HEATER_0_MINTEMP) {
  904. #if HEATER_0_RAW_LO_TEMP < HEATER_0_RAW_HI_TEMP
  905. minttemp_raw[0] += OVERSAMPLENR;
  906. #else
  907. minttemp_raw[0] -= OVERSAMPLENR;
  908. #endif
  909. }
  910. #endif //MINTEMP
  911. #ifdef HEATER_0_MAXTEMP
  912. maxttemp[0] = HEATER_0_MAXTEMP;
  913. while(analog2temp(maxttemp_raw[0], 0) > HEATER_0_MAXTEMP) {
  914. #if HEATER_0_RAW_LO_TEMP < HEATER_0_RAW_HI_TEMP
  915. maxttemp_raw[0] -= OVERSAMPLENR;
  916. #else
  917. maxttemp_raw[0] += OVERSAMPLENR;
  918. #endif
  919. }
  920. #endif //MAXTEMP
  921. #if (EXTRUDERS > 1) && defined(HEATER_1_MINTEMP)
  922. minttemp[1] = HEATER_1_MINTEMP;
  923. while(analog2temp(minttemp_raw[1], 1) < HEATER_1_MINTEMP) {
  924. #if HEATER_1_RAW_LO_TEMP < HEATER_1_RAW_HI_TEMP
  925. minttemp_raw[1] += OVERSAMPLENR;
  926. #else
  927. minttemp_raw[1] -= OVERSAMPLENR;
  928. #endif
  929. }
  930. #endif // MINTEMP 1
  931. #if (EXTRUDERS > 1) && defined(HEATER_1_MAXTEMP)
  932. maxttemp[1] = HEATER_1_MAXTEMP;
  933. while(analog2temp(maxttemp_raw[1], 1) > HEATER_1_MAXTEMP) {
  934. #if HEATER_1_RAW_LO_TEMP < HEATER_1_RAW_HI_TEMP
  935. maxttemp_raw[1] -= OVERSAMPLENR;
  936. #else
  937. maxttemp_raw[1] += OVERSAMPLENR;
  938. #endif
  939. }
  940. #endif //MAXTEMP 1
  941. #if (EXTRUDERS > 2) && defined(HEATER_2_MINTEMP)
  942. minttemp[2] = HEATER_2_MINTEMP;
  943. while(analog2temp(minttemp_raw[2], 2) < HEATER_2_MINTEMP) {
  944. #if HEATER_2_RAW_LO_TEMP < HEATER_2_RAW_HI_TEMP
  945. minttemp_raw[2] += OVERSAMPLENR;
  946. #else
  947. minttemp_raw[2] -= OVERSAMPLENR;
  948. #endif
  949. }
  950. #endif //MINTEMP 2
  951. #if (EXTRUDERS > 2) && defined(HEATER_2_MAXTEMP)
  952. maxttemp[2] = HEATER_2_MAXTEMP;
  953. while(analog2temp(maxttemp_raw[2], 2) > HEATER_2_MAXTEMP) {
  954. #if HEATER_2_RAW_LO_TEMP < HEATER_2_RAW_HI_TEMP
  955. maxttemp_raw[2] -= OVERSAMPLENR;
  956. #else
  957. maxttemp_raw[2] += OVERSAMPLENR;
  958. #endif
  959. }
  960. #endif //MAXTEMP 2
  961. #ifdef BED_MINTEMP
  962. /* No bed MINTEMP error implemented?!? */
  963. while(analog2tempBed(bed_minttemp_raw) < BED_MINTEMP) {
  964. #if HEATER_BED_RAW_LO_TEMP < HEATER_BED_RAW_HI_TEMP
  965. bed_minttemp_raw += OVERSAMPLENR;
  966. #else
  967. bed_minttemp_raw -= OVERSAMPLENR;
  968. #endif
  969. }
  970. #endif //BED_MINTEMP
  971. #ifdef BED_MAXTEMP
  972. while(analog2tempBed(bed_maxttemp_raw) > BED_MAXTEMP) {
  973. #if HEATER_BED_RAW_LO_TEMP < HEATER_BED_RAW_HI_TEMP
  974. bed_maxttemp_raw -= OVERSAMPLENR;
  975. #else
  976. bed_maxttemp_raw += OVERSAMPLENR;
  977. #endif
  978. }
  979. #endif //BED_MAXTEMP
  980. }
  981. void setWatch()
  982. {
  983. #ifdef WATCH_TEMP_PERIOD
  984. for (int e = 0; e < EXTRUDERS; e++)
  985. {
  986. if(degHotend(e) < degTargetHotend(e) - (WATCH_TEMP_INCREASE * 2))
  987. {
  988. watch_start_temp[e] = degHotend(e);
  989. watchmillis[e] = millis();
  990. }
  991. }
  992. #endif
  993. }
  994. #if (defined (TEMP_RUNAWAY_BED_HYSTERESIS) && TEMP_RUNAWAY_BED_TIMEOUT > 0) || (defined (TEMP_RUNAWAY_EXTRUDER_HYSTERESIS) && TEMP_RUNAWAY_EXTRUDER_TIMEOUT > 0)
  995. void temp_runaway_check(int _heater_id, float _target_temperature, float _current_temperature, float _output, bool _isbed)
  996. {
  997. float __hysteresis = 0;
  998. int __timeout = 0;
  999. bool temp_runaway_check_active = false;
  1000. static float __preheat_start[2] = { 0,0}; //currently just bed and one extruder
  1001. static int __preheat_counter[2] = { 0,0};
  1002. static int __preheat_errors[2] = { 0,0};
  1003. #ifdef TEMP_RUNAWAY_BED_TIMEOUT
  1004. if (_isbed)
  1005. {
  1006. __hysteresis = TEMP_RUNAWAY_BED_HYSTERESIS;
  1007. __timeout = TEMP_RUNAWAY_BED_TIMEOUT;
  1008. }
  1009. #endif
  1010. #ifdef TEMP_RUNAWAY_EXTRUDER_TIMEOUT
  1011. if (!_isbed)
  1012. {
  1013. __hysteresis = TEMP_RUNAWAY_EXTRUDER_HYSTERESIS;
  1014. __timeout = TEMP_RUNAWAY_EXTRUDER_TIMEOUT;
  1015. }
  1016. #endif
  1017. if (millis() - temp_runaway_timer[_heater_id] > 2000)
  1018. {
  1019. temp_runaway_timer[_heater_id] = millis();
  1020. if (_output == 0)
  1021. {
  1022. temp_runaway_check_active = false;
  1023. temp_runaway_error_counter[_heater_id] = 0;
  1024. }
  1025. if (temp_runaway_target[_heater_id] != _target_temperature)
  1026. {
  1027. if (_target_temperature > 0)
  1028. {
  1029. temp_runaway_status[_heater_id] = TempRunaway_PREHEAT;
  1030. temp_runaway_target[_heater_id] = _target_temperature;
  1031. __preheat_start[_heater_id] = _current_temperature;
  1032. __preheat_counter[_heater_id] = 0;
  1033. }
  1034. else
  1035. {
  1036. temp_runaway_status[_heater_id] = TempRunaway_INACTIVE;
  1037. temp_runaway_target[_heater_id] = _target_temperature;
  1038. }
  1039. }
  1040. if (temp_runaway_status[_heater_id] == TempRunaway_PREHEAT)
  1041. {
  1042. if (_current_temperature < ((_isbed) ? (0.8 * _target_temperature) : 150)) //check only in area where temperature is changing fastly for heater, check to 0.8 x target temperature for bed
  1043. {
  1044. __preheat_counter[_heater_id]++;
  1045. if (__preheat_counter[_heater_id] > ((_isbed) ? 16 : 8)) // periodicaly check if current temperature changes
  1046. {
  1047. /*SERIAL_ECHOPGM("Heater:");
  1048. MYSERIAL.print(_heater_id);
  1049. SERIAL_ECHOPGM(" T:");
  1050. MYSERIAL.print(_current_temperature);
  1051. SERIAL_ECHOPGM(" Tstart:");
  1052. MYSERIAL.print(__preheat_start[_heater_id]);*/
  1053. if (_current_temperature - __preheat_start[_heater_id] < 2) {
  1054. __preheat_errors[_heater_id]++;
  1055. /*SERIAL_ECHOPGM(" Preheat errors:");
  1056. MYSERIAL.println(__preheat_errors[_heater_id]);*/
  1057. }
  1058. else {
  1059. //SERIAL_ECHOLNPGM("");
  1060. __preheat_errors[_heater_id] = 0;
  1061. }
  1062. if (__preheat_errors[_heater_id] > ((_isbed) ? 2 : 5))
  1063. {
  1064. if (farm_mode) { prusa_statistics(0); }
  1065. temp_runaway_stop(true, _isbed);
  1066. if (farm_mode) { prusa_statistics(91); }
  1067. }
  1068. __preheat_start[_heater_id] = _current_temperature;
  1069. __preheat_counter[_heater_id] = 0;
  1070. }
  1071. }
  1072. }
  1073. if (_current_temperature >= _target_temperature && temp_runaway_status[_heater_id] == TempRunaway_PREHEAT)
  1074. {
  1075. temp_runaway_status[_heater_id] = TempRunaway_ACTIVE;
  1076. temp_runaway_check_active = false;
  1077. }
  1078. if (!temp_runaway_check_active && _output > 0)
  1079. {
  1080. temp_runaway_check_active = true;
  1081. }
  1082. if (temp_runaway_check_active)
  1083. {
  1084. // we are in range
  1085. if (_target_temperature - __hysteresis < _current_temperature && _current_temperature < _target_temperature + __hysteresis)
  1086. {
  1087. temp_runaway_check_active = false;
  1088. temp_runaway_error_counter[_heater_id] = 0;
  1089. }
  1090. else
  1091. {
  1092. if (temp_runaway_status[_heater_id] > TempRunaway_PREHEAT)
  1093. {
  1094. temp_runaway_error_counter[_heater_id]++;
  1095. if (temp_runaway_error_counter[_heater_id] * 2 > __timeout)
  1096. {
  1097. if (farm_mode) { prusa_statistics(0); }
  1098. temp_runaway_stop(false, _isbed);
  1099. if (farm_mode) { prusa_statistics(90); }
  1100. }
  1101. }
  1102. }
  1103. }
  1104. }
  1105. }
  1106. void temp_runaway_stop(bool isPreheat, bool isBed)
  1107. {
  1108. cancel_heatup = true;
  1109. quickStop();
  1110. if (card.sdprinting)
  1111. {
  1112. card.sdprinting = false;
  1113. card.closefile();
  1114. }
  1115. // Clean the input command queue
  1116. // This is necessary, because in command queue there can be commands which would later set heater or bed temperature.
  1117. cmdqueue_reset();
  1118. disable_heater();
  1119. disable_x();
  1120. disable_y();
  1121. disable_e0();
  1122. disable_e1();
  1123. disable_e2();
  1124. manage_heater();
  1125. lcd_update();
  1126. WRITE(BEEPER, HIGH);
  1127. delayMicroseconds(500);
  1128. WRITE(BEEPER, LOW);
  1129. delayMicroseconds(100);
  1130. if (isPreheat)
  1131. {
  1132. Stop();
  1133. isBed ? LCD_ALERTMESSAGEPGM("BED PREHEAT ERROR") : LCD_ALERTMESSAGEPGM("PREHEAT ERROR");
  1134. SERIAL_ERROR_START;
  1135. isBed ? SERIAL_ERRORLNPGM(" THERMAL RUNAWAY ( PREHEAT HEATBED)") : SERIAL_ERRORLNPGM(" THERMAL RUNAWAY ( PREHEAT HOTEND)");
  1136. SET_OUTPUT(EXTRUDER_0_AUTO_FAN_PIN);
  1137. SET_OUTPUT(FAN_PIN);
  1138. WRITE(EXTRUDER_0_AUTO_FAN_PIN, 1);
  1139. analogWrite(FAN_PIN, 255);
  1140. fanSpeed = 255;
  1141. delayMicroseconds(2000);
  1142. }
  1143. else
  1144. {
  1145. isBed ? LCD_ALERTMESSAGEPGM("BED THERMAL RUNAWAY") : LCD_ALERTMESSAGEPGM("THERMAL RUNAWAY");
  1146. SERIAL_ERROR_START;
  1147. isBed ? SERIAL_ERRORLNPGM(" HEATBED THERMAL RUNAWAY") : SERIAL_ERRORLNPGM(" HOTEND THERMAL RUNAWAY");
  1148. }
  1149. }
  1150. #endif
  1151. void disable_heater()
  1152. {
  1153. for(int i=0;i<EXTRUDERS;i++)
  1154. setTargetHotend(0,i);
  1155. setTargetBed(0);
  1156. #if defined(TEMP_0_PIN) && TEMP_0_PIN > -1
  1157. target_temperature[0]=0;
  1158. soft_pwm[0]=0;
  1159. #if defined(HEATER_0_PIN) && HEATER_0_PIN > -1
  1160. WRITE(HEATER_0_PIN,LOW);
  1161. #endif
  1162. #endif
  1163. #if defined(TEMP_1_PIN) && TEMP_1_PIN > -1 && EXTRUDERS > 1
  1164. target_temperature[1]=0;
  1165. soft_pwm[1]=0;
  1166. #if defined(HEATER_1_PIN) && HEATER_1_PIN > -1
  1167. WRITE(HEATER_1_PIN,LOW);
  1168. #endif
  1169. #endif
  1170. #if defined(TEMP_2_PIN) && TEMP_2_PIN > -1 && EXTRUDERS > 2
  1171. target_temperature[2]=0;
  1172. soft_pwm[2]=0;
  1173. #if defined(HEATER_2_PIN) && HEATER_2_PIN > -1
  1174. WRITE(HEATER_2_PIN,LOW);
  1175. #endif
  1176. #endif
  1177. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  1178. target_temperature_bed=0;
  1179. soft_pwm_bed=0;
  1180. #if defined(HEATER_BED_PIN) && HEATER_BED_PIN > -1
  1181. WRITE(HEATER_BED_PIN,LOW);
  1182. #endif
  1183. #endif
  1184. }
  1185. void max_temp_error(uint8_t e) {
  1186. disable_heater();
  1187. if(IsStopped() == false) {
  1188. SERIAL_ERROR_START;
  1189. SERIAL_ERRORLN((int)e);
  1190. SERIAL_ERRORLNPGM(": Extruder switched off. MAXTEMP triggered !");
  1191. LCD_ALERTMESSAGEPGM("Err: MAXTEMP");
  1192. }
  1193. #ifndef BOGUS_TEMPERATURE_FAILSAFE_OVERRIDE
  1194. Stop();
  1195. #endif
  1196. SET_OUTPUT(EXTRUDER_0_AUTO_FAN_PIN);
  1197. SET_OUTPUT(FAN_PIN);
  1198. SET_OUTPUT(BEEPER);
  1199. WRITE(FAN_PIN, 1);
  1200. WRITE(EXTRUDER_0_AUTO_FAN_PIN, 1);
  1201. WRITE(BEEPER, 1);
  1202. // fanSpeed will consumed by the check_axes_activity() routine.
  1203. fanSpeed=255;
  1204. if (farm_mode) { prusa_statistics(93); }
  1205. }
  1206. void min_temp_error(uint8_t e) {
  1207. #ifdef DEBUG_DISABLE_MINTEMP
  1208. return;
  1209. #endif
  1210. //if (current_temperature_ambient < MINTEMP_MINAMBIENT) return;
  1211. disable_heater();
  1212. if(IsStopped() == false) {
  1213. SERIAL_ERROR_START;
  1214. SERIAL_ERRORLN((int)e);
  1215. SERIAL_ERRORLNPGM(": Extruder switched off. MINTEMP triggered !");
  1216. LCD_ALERTMESSAGEPGM("Err: MINTEMP");
  1217. }
  1218. #ifndef BOGUS_TEMPERATURE_FAILSAFE_OVERRIDE
  1219. Stop();
  1220. #endif
  1221. if (farm_mode) { prusa_statistics(92); }
  1222. }
  1223. void bed_max_temp_error(void) {
  1224. #if HEATER_BED_PIN > -1
  1225. WRITE(HEATER_BED_PIN, 0);
  1226. #endif
  1227. if(IsStopped() == false) {
  1228. SERIAL_ERROR_START;
  1229. SERIAL_ERRORLNPGM("Temperature heated bed switched off. MAXTEMP triggered !");
  1230. LCD_ALERTMESSAGEPGM("Err: MAXTEMP BED");
  1231. }
  1232. #ifndef BOGUS_TEMPERATURE_FAILSAFE_OVERRIDE
  1233. Stop();
  1234. #endif
  1235. }
  1236. void bed_min_temp_error(void) {
  1237. #ifdef DEBUG_DISABLE_MINTEMP
  1238. return;
  1239. #endif
  1240. //if (current_temperature_ambient < MINTEMP_MINAMBIENT) return;
  1241. #if HEATER_BED_PIN > -1
  1242. WRITE(HEATER_BED_PIN, 0);
  1243. #endif
  1244. if(IsStopped() == false) {
  1245. SERIAL_ERROR_START;
  1246. SERIAL_ERRORLNPGM("Temperature heated bed switched off. MINTEMP triggered !");
  1247. LCD_ALERTMESSAGEPGM("Err: MINTEMP BED");
  1248. }
  1249. #ifndef BOGUS_TEMPERATURE_FAILSAFE_OVERRIDE
  1250. Stop();
  1251. #endif*/
  1252. }
  1253. #ifdef HEATER_0_USES_MAX6675
  1254. #define MAX6675_HEAT_INTERVAL 250
  1255. long max6675_previous_millis = MAX6675_HEAT_INTERVAL;
  1256. int max6675_temp = 2000;
  1257. int read_max6675()
  1258. {
  1259. if (millis() - max6675_previous_millis < MAX6675_HEAT_INTERVAL)
  1260. return max6675_temp;
  1261. max6675_previous_millis = millis();
  1262. max6675_temp = 0;
  1263. #ifdef PRR
  1264. PRR &= ~(1<<PRSPI);
  1265. #elif defined PRR0
  1266. PRR0 &= ~(1<<PRSPI);
  1267. #endif
  1268. SPCR = (1<<MSTR) | (1<<SPE) | (1<<SPR0);
  1269. // enable TT_MAX6675
  1270. WRITE(MAX6675_SS, 0);
  1271. // ensure 100ns delay - a bit extra is fine
  1272. asm("nop");//50ns on 20Mhz, 62.5ns on 16Mhz
  1273. asm("nop");//50ns on 20Mhz, 62.5ns on 16Mhz
  1274. // read MSB
  1275. SPDR = 0;
  1276. for (;(SPSR & (1<<SPIF)) == 0;);
  1277. max6675_temp = SPDR;
  1278. max6675_temp <<= 8;
  1279. // read LSB
  1280. SPDR = 0;
  1281. for (;(SPSR & (1<<SPIF)) == 0;);
  1282. max6675_temp |= SPDR;
  1283. // disable TT_MAX6675
  1284. WRITE(MAX6675_SS, 1);
  1285. if (max6675_temp & 4)
  1286. {
  1287. // thermocouple open
  1288. max6675_temp = 2000;
  1289. }
  1290. else
  1291. {
  1292. max6675_temp = max6675_temp >> 3;
  1293. }
  1294. return max6675_temp;
  1295. }
  1296. #endif
  1297. extern "C" {
  1298. void adc_ready(void) //callback from adc when sampling finished
  1299. {
  1300. current_temperature_raw[0] = adc_values[0];
  1301. current_temperature_bed_raw = adc_values[2];
  1302. current_temperature_raw_pinda = adc_values[3];
  1303. current_voltage_raw_pwr = adc_values[4];
  1304. current_temperature_raw_ambient = adc_values[5];
  1305. current_voltage_raw_bed = adc_values[6];
  1306. temp_meas_ready = true;
  1307. }
  1308. } // extern "C"
  1309. // Timer 0 is shared with millies
  1310. ISR(TIMER0_COMPB_vect)
  1311. {
  1312. static bool _lock = false;
  1313. if (_lock) return;
  1314. _lock = true;
  1315. asm("sei");
  1316. if (!temp_meas_ready) adc_cycle();
  1317. else
  1318. {
  1319. check_max_temp();
  1320. check_min_temp();
  1321. }
  1322. lcd_buttons_update();
  1323. static unsigned char pwm_count = (1 << SOFT_PWM_SCALE);
  1324. static unsigned char soft_pwm_0;
  1325. #ifdef SLOW_PWM_HEATERS
  1326. static unsigned char slow_pwm_count = 0;
  1327. static unsigned char state_heater_0 = 0;
  1328. static unsigned char state_timer_heater_0 = 0;
  1329. #endif
  1330. #if (EXTRUDERS > 1) || defined(HEATERS_PARALLEL)
  1331. static unsigned char soft_pwm_1;
  1332. #ifdef SLOW_PWM_HEATERS
  1333. static unsigned char state_heater_1 = 0;
  1334. static unsigned char state_timer_heater_1 = 0;
  1335. #endif
  1336. #endif
  1337. #if EXTRUDERS > 2
  1338. static unsigned char soft_pwm_2;
  1339. #ifdef SLOW_PWM_HEATERS
  1340. static unsigned char state_heater_2 = 0;
  1341. static unsigned char state_timer_heater_2 = 0;
  1342. #endif
  1343. #endif
  1344. #if HEATER_BED_PIN > -1
  1345. static unsigned char soft_pwm_b;
  1346. #ifdef SLOW_PWM_HEATERS
  1347. static unsigned char state_heater_b = 0;
  1348. static unsigned char state_timer_heater_b = 0;
  1349. #endif
  1350. #endif
  1351. #if defined(FILWIDTH_PIN) &&(FILWIDTH_PIN > -1)
  1352. static unsigned long raw_filwidth_value = 0; //added for filament width sensor
  1353. #endif
  1354. #ifndef SLOW_PWM_HEATERS
  1355. /*
  1356. * standard PWM modulation
  1357. */
  1358. if (pwm_count == 0)
  1359. {
  1360. soft_pwm_0 = soft_pwm[0];
  1361. if(soft_pwm_0 > 0)
  1362. {
  1363. WRITE(HEATER_0_PIN,1);
  1364. #ifdef HEATERS_PARALLEL
  1365. WRITE(HEATER_1_PIN,1);
  1366. #endif
  1367. } else WRITE(HEATER_0_PIN,0);
  1368. #if EXTRUDERS > 1
  1369. soft_pwm_1 = soft_pwm[1];
  1370. if(soft_pwm_1 > 0) WRITE(HEATER_1_PIN,1); else WRITE(HEATER_1_PIN,0);
  1371. #endif
  1372. #if EXTRUDERS > 2
  1373. soft_pwm_2 = soft_pwm[2];
  1374. if(soft_pwm_2 > 0) WRITE(HEATER_2_PIN,1); else WRITE(HEATER_2_PIN,0);
  1375. #endif
  1376. #if defined(HEATER_BED_PIN) && HEATER_BED_PIN > -1
  1377. soft_pwm_b = soft_pwm_bed;
  1378. if(soft_pwm_b > 0) WRITE(HEATER_BED_PIN,1); else WRITE(HEATER_BED_PIN,0);
  1379. #endif
  1380. #ifdef FAN_SOFT_PWM
  1381. soft_pwm_fan = fanSpeedSoftPwm / 2;
  1382. if(soft_pwm_fan > 0) WRITE(FAN_PIN,1); else WRITE(FAN_PIN,0);
  1383. #endif
  1384. }
  1385. if(soft_pwm_0 < pwm_count)
  1386. {
  1387. WRITE(HEATER_0_PIN,0);
  1388. #ifdef HEATERS_PARALLEL
  1389. WRITE(HEATER_1_PIN,0);
  1390. #endif
  1391. }
  1392. #if EXTRUDERS > 1
  1393. if(soft_pwm_1 < pwm_count) WRITE(HEATER_1_PIN,0);
  1394. #endif
  1395. #if EXTRUDERS > 2
  1396. if(soft_pwm_2 < pwm_count) WRITE(HEATER_2_PIN,0);
  1397. #endif
  1398. #if defined(HEATER_BED_PIN) && HEATER_BED_PIN > -1
  1399. if(soft_pwm_b < pwm_count) WRITE(HEATER_BED_PIN,0);
  1400. #endif
  1401. #ifdef FAN_SOFT_PWM
  1402. if(soft_pwm_fan < pwm_count) WRITE(FAN_PIN,0);
  1403. #endif
  1404. pwm_count += (1 << SOFT_PWM_SCALE);
  1405. pwm_count &= 0x7f;
  1406. #else //ifndef SLOW_PWM_HEATERS
  1407. /*
  1408. * SLOW PWM HEATERS
  1409. *
  1410. * for heaters drived by relay
  1411. */
  1412. #ifndef MIN_STATE_TIME
  1413. #define MIN_STATE_TIME 16 // MIN_STATE_TIME * 65.5 = time in milliseconds
  1414. #endif
  1415. if (slow_pwm_count == 0) {
  1416. // EXTRUDER 0
  1417. soft_pwm_0 = soft_pwm[0];
  1418. if (soft_pwm_0 > 0) {
  1419. // turn ON heather only if the minimum time is up
  1420. if (state_timer_heater_0 == 0) {
  1421. // if change state set timer
  1422. if (state_heater_0 == 0) {
  1423. state_timer_heater_0 = MIN_STATE_TIME;
  1424. }
  1425. state_heater_0 = 1;
  1426. WRITE(HEATER_0_PIN, 1);
  1427. #ifdef HEATERS_PARALLEL
  1428. WRITE(HEATER_1_PIN, 1);
  1429. #endif
  1430. }
  1431. } else {
  1432. // turn OFF heather only if the minimum time is up
  1433. if (state_timer_heater_0 == 0) {
  1434. // if change state set timer
  1435. if (state_heater_0 == 1) {
  1436. state_timer_heater_0 = MIN_STATE_TIME;
  1437. }
  1438. state_heater_0 = 0;
  1439. WRITE(HEATER_0_PIN, 0);
  1440. #ifdef HEATERS_PARALLEL
  1441. WRITE(HEATER_1_PIN, 0);
  1442. #endif
  1443. }
  1444. }
  1445. #if EXTRUDERS > 1
  1446. // EXTRUDER 1
  1447. soft_pwm_1 = soft_pwm[1];
  1448. if (soft_pwm_1 > 0) {
  1449. // turn ON heather only if the minimum time is up
  1450. if (state_timer_heater_1 == 0) {
  1451. // if change state set timer
  1452. if (state_heater_1 == 0) {
  1453. state_timer_heater_1 = MIN_STATE_TIME;
  1454. }
  1455. state_heater_1 = 1;
  1456. WRITE(HEATER_1_PIN, 1);
  1457. }
  1458. } else {
  1459. // turn OFF heather only if the minimum time is up
  1460. if (state_timer_heater_1 == 0) {
  1461. // if change state set timer
  1462. if (state_heater_1 == 1) {
  1463. state_timer_heater_1 = MIN_STATE_TIME;
  1464. }
  1465. state_heater_1 = 0;
  1466. WRITE(HEATER_1_PIN, 0);
  1467. }
  1468. }
  1469. #endif
  1470. #if EXTRUDERS > 2
  1471. // EXTRUDER 2
  1472. soft_pwm_2 = soft_pwm[2];
  1473. if (soft_pwm_2 > 0) {
  1474. // turn ON heather only if the minimum time is up
  1475. if (state_timer_heater_2 == 0) {
  1476. // if change state set timer
  1477. if (state_heater_2 == 0) {
  1478. state_timer_heater_2 = MIN_STATE_TIME;
  1479. }
  1480. state_heater_2 = 1;
  1481. WRITE(HEATER_2_PIN, 1);
  1482. }
  1483. } else {
  1484. // turn OFF heather only if the minimum time is up
  1485. if (state_timer_heater_2 == 0) {
  1486. // if change state set timer
  1487. if (state_heater_2 == 1) {
  1488. state_timer_heater_2 = MIN_STATE_TIME;
  1489. }
  1490. state_heater_2 = 0;
  1491. WRITE(HEATER_2_PIN, 0);
  1492. }
  1493. }
  1494. #endif
  1495. #if defined(HEATER_BED_PIN) && HEATER_BED_PIN > -1
  1496. // BED
  1497. soft_pwm_b = soft_pwm_bed;
  1498. if (soft_pwm_b > 0) {
  1499. // turn ON heather only if the minimum time is up
  1500. if (state_timer_heater_b == 0) {
  1501. // if change state set timer
  1502. if (state_heater_b == 0) {
  1503. state_timer_heater_b = MIN_STATE_TIME;
  1504. }
  1505. state_heater_b = 1;
  1506. WRITE(HEATER_BED_PIN, 1);
  1507. }
  1508. } else {
  1509. // turn OFF heather only if the minimum time is up
  1510. if (state_timer_heater_b == 0) {
  1511. // if change state set timer
  1512. if (state_heater_b == 1) {
  1513. state_timer_heater_b = MIN_STATE_TIME;
  1514. }
  1515. state_heater_b = 0;
  1516. WRITE(HEATER_BED_PIN, 0);
  1517. }
  1518. }
  1519. #endif
  1520. } // if (slow_pwm_count == 0)
  1521. // EXTRUDER 0
  1522. if (soft_pwm_0 < slow_pwm_count) {
  1523. // turn OFF heather only if the minimum time is up
  1524. if (state_timer_heater_0 == 0) {
  1525. // if change state set timer
  1526. if (state_heater_0 == 1) {
  1527. state_timer_heater_0 = MIN_STATE_TIME;
  1528. }
  1529. state_heater_0 = 0;
  1530. WRITE(HEATER_0_PIN, 0);
  1531. #ifdef HEATERS_PARALLEL
  1532. WRITE(HEATER_1_PIN, 0);
  1533. #endif
  1534. }
  1535. }
  1536. #if EXTRUDERS > 1
  1537. // EXTRUDER 1
  1538. if (soft_pwm_1 < slow_pwm_count) {
  1539. // turn OFF heather only if the minimum time is up
  1540. if (state_timer_heater_1 == 0) {
  1541. // if change state set timer
  1542. if (state_heater_1 == 1) {
  1543. state_timer_heater_1 = MIN_STATE_TIME;
  1544. }
  1545. state_heater_1 = 0;
  1546. WRITE(HEATER_1_PIN, 0);
  1547. }
  1548. }
  1549. #endif
  1550. #if EXTRUDERS > 2
  1551. // EXTRUDER 2
  1552. if (soft_pwm_2 < slow_pwm_count) {
  1553. // turn OFF heather only if the minimum time is up
  1554. if (state_timer_heater_2 == 0) {
  1555. // if change state set timer
  1556. if (state_heater_2 == 1) {
  1557. state_timer_heater_2 = MIN_STATE_TIME;
  1558. }
  1559. state_heater_2 = 0;
  1560. WRITE(HEATER_2_PIN, 0);
  1561. }
  1562. }
  1563. #endif
  1564. #if defined(HEATER_BED_PIN) && HEATER_BED_PIN > -1
  1565. // BED
  1566. if (soft_pwm_b < slow_pwm_count) {
  1567. // turn OFF heather only if the minimum time is up
  1568. if (state_timer_heater_b == 0) {
  1569. // if change state set timer
  1570. if (state_heater_b == 1) {
  1571. state_timer_heater_b = MIN_STATE_TIME;
  1572. }
  1573. state_heater_b = 0;
  1574. WRITE(HEATER_BED_PIN, 0);
  1575. }
  1576. }
  1577. #endif
  1578. #ifdef FAN_SOFT_PWM
  1579. if (pwm_count == 0){
  1580. soft_pwm_fan = fanSpeedSoftPwm / 2;
  1581. if (soft_pwm_fan > 0) WRITE(FAN_PIN,1); else WRITE(FAN_PIN,0);
  1582. }
  1583. if (soft_pwm_fan < pwm_count) WRITE(FAN_PIN,0);
  1584. #endif
  1585. pwm_count += (1 << SOFT_PWM_SCALE);
  1586. pwm_count &= 0x7f;
  1587. // increment slow_pwm_count only every 64 pwm_count circa 65.5ms
  1588. if ((pwm_count % 64) == 0) {
  1589. slow_pwm_count++;
  1590. slow_pwm_count &= 0x7f;
  1591. // Extruder 0
  1592. if (state_timer_heater_0 > 0) {
  1593. state_timer_heater_0--;
  1594. }
  1595. #if EXTRUDERS > 1
  1596. // Extruder 1
  1597. if (state_timer_heater_1 > 0)
  1598. state_timer_heater_1--;
  1599. #endif
  1600. #if EXTRUDERS > 2
  1601. // Extruder 2
  1602. if (state_timer_heater_2 > 0)
  1603. state_timer_heater_2--;
  1604. #endif
  1605. #if defined(HEATER_BED_PIN) && HEATER_BED_PIN > -1
  1606. // Bed
  1607. if (state_timer_heater_b > 0)
  1608. state_timer_heater_b--;
  1609. #endif
  1610. } //if ((pwm_count % 64) == 0) {
  1611. #endif //ifndef SLOW_PWM_HEATERS
  1612. #ifdef BABYSTEPPING
  1613. for(uint8_t axis=0;axis<3;axis++)
  1614. {
  1615. int curTodo=babystepsTodo[axis]; //get rid of volatile for performance
  1616. if(curTodo>0)
  1617. {
  1618. asm("cli");
  1619. babystep(axis,/*fwd*/true);
  1620. babystepsTodo[axis]--; //less to do next time
  1621. asm("sei");
  1622. }
  1623. else
  1624. if(curTodo<0)
  1625. {
  1626. asm("cli");
  1627. babystep(axis,/*fwd*/false);
  1628. babystepsTodo[axis]++; //less to do next time
  1629. asm("sei");
  1630. }
  1631. }
  1632. #endif //BABYSTEPPING
  1633. check_fans();
  1634. _lock = false;
  1635. }
  1636. void check_max_temp()
  1637. {
  1638. //heater
  1639. #if HEATER_0_RAW_LO_TEMP > HEATER_0_RAW_HI_TEMP
  1640. if (current_temperature_raw[0] <= maxttemp_raw[0]) {
  1641. #else
  1642. if (current_temperature_raw[0] >= maxttemp_raw[0]) {
  1643. #endif
  1644. max_temp_error(0);
  1645. }
  1646. //bed
  1647. #if defined(BED_MAXTEMP) && (TEMP_SENSOR_BED != 0)
  1648. #if HEATER_BED_RAW_LO_TEMP > HEATER_BED_RAW_HI_TEMP
  1649. if (current_temperature_bed_raw <= bed_maxttemp_raw) {
  1650. #else
  1651. if (current_temperature_bed_raw >= bed_maxttemp_raw) {
  1652. #endif
  1653. target_temperature_bed = 0;
  1654. bed_max_temp_error();
  1655. }
  1656. #endif
  1657. }
  1658. void check_min_temp_heater0()
  1659. {
  1660. //heater
  1661. #if HEATER_0_RAW_LO_TEMP > HEATER_0_RAW_HI_TEMP
  1662. if (current_temperature_raw[0] >= minttemp_raw[0]) {
  1663. #else
  1664. if (current_temperature_raw[0] <= minttemp_raw[0]) {
  1665. #endif
  1666. min_temp_error(0);
  1667. }
  1668. }
  1669. void check_min_temp_bed()
  1670. {
  1671. #if HEATER_BED_RAW_LO_TEMP > HEATER_BED_RAW_HI_TEMP
  1672. if (current_temperature_bed_raw >= bed_minttemp_raw) {
  1673. #else
  1674. if (current_temperature_bed_raw <= bed_minttemp_raw) {
  1675. #endif
  1676. bed_min_temp_error();
  1677. }
  1678. }
  1679. void check_min_temp()
  1680. {
  1681. static uint8_t heat_cycles = 0;
  1682. if (current_temperature_raw_ambient > OVERSAMPLENR*MINTEMP_MINAMBIENT_RAW)
  1683. {
  1684. if (READ(HEATER_0_PIN) == HIGH)
  1685. {
  1686. // if ((heat_cycles % 10) == 0)
  1687. // printf_P(PSTR("X%d\n"), heat_cycles);
  1688. if (heat_cycles > 50) //reaction time 5-10s
  1689. check_min_temp_heater0();
  1690. else
  1691. heat_cycles++;
  1692. }
  1693. else
  1694. heat_cycles = 0;
  1695. return;
  1696. }
  1697. check_min_temp_heater0();
  1698. check_min_temp_bed();
  1699. }
  1700. void check_fans() {
  1701. if (READ(TACH_0) != fan_state[0]) {
  1702. fan_edge_counter[0] ++;
  1703. fan_state[0] = !fan_state[0];
  1704. }
  1705. //if (READ(TACH_1) != fan_state[1]) {
  1706. // fan_edge_counter[1] ++;
  1707. // fan_state[1] = !fan_state[1];
  1708. //}
  1709. }
  1710. #ifdef PIDTEMP
  1711. // Apply the scale factors to the PID values
  1712. float scalePID_i(float i)
  1713. {
  1714. return i*PID_dT;
  1715. }
  1716. float unscalePID_i(float i)
  1717. {
  1718. return i/PID_dT;
  1719. }
  1720. float scalePID_d(float d)
  1721. {
  1722. return d/PID_dT;
  1723. }
  1724. float unscalePID_d(float d)
  1725. {
  1726. return d*PID_dT;
  1727. }
  1728. #endif //PIDTEMP