planner.h 8.7 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210
  1. /*
  2. planner.h - buffers movement commands and manages the acceleration profile plan
  3. Part of Grbl
  4. Copyright (c) 2009-2011 Simen Svale Skogsrud
  5. Grbl is free software: you can redistribute it and/or modify
  6. it under the terms of the GNU General Public License as published by
  7. the Free Software Foundation, either version 3 of the License, or
  8. (at your option) any later version.
  9. Grbl is distributed in the hope that it will be useful,
  10. but WITHOUT ANY WARRANTY; without even the implied warranty of
  11. MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  12. GNU General Public License for more details.
  13. You should have received a copy of the GNU General Public License
  14. along with Grbl. If not, see <http://www.gnu.org/licenses/>.
  15. */
  16. // This module is to be considered a sub-module of stepper.c. Please don't include
  17. // this file from any other module.
  18. #ifndef planner_h
  19. #define planner_h
  20. #include "Marlin.h"
  21. #ifdef ENABLE_AUTO_BED_LEVELING
  22. #include "vector_3.h"
  23. #endif // ENABLE_AUTO_BED_LEVELING
  24. enum BlockFlag {
  25. // Planner flag to recalculate trapezoids on entry junction.
  26. // This flag has an optimization purpose only.
  27. BLOCK_FLAG_RECALCULATE = 1,
  28. // Planner flag for nominal speed always reached. That means, the segment is long enough, that the nominal speed
  29. // may be reached if accelerating from a safe speed (in the regard of jerking from zero speed).
  30. BLOCK_FLAG_NOMINAL_LENGTH = 2,
  31. // If set, the machine will start from a halt at the start of this block,
  32. // respecting the maximum allowed jerk.
  33. BLOCK_FLAG_START_FROM_FULL_HALT = 4,
  34. };
  35. // This struct is used when buffering the setup for each linear movement "nominal" values are as specified in
  36. // the source g-code and may never actually be reached if acceleration management is active.
  37. typedef struct {
  38. // Fields used by the bresenham algorithm for tracing the line
  39. // steps_x.y,z, step_event_count, acceleration_rate, direction_bits and active_extruder are set by plan_buffer_line().
  40. long steps_x, steps_y, steps_z, steps_e; // Step count along each axis
  41. unsigned long step_event_count; // The number of step events required to complete this block
  42. long acceleration_rate; // The acceleration rate used for acceleration calculation
  43. unsigned char direction_bits; // The direction bit set for this block (refers to *_DIRECTION_BIT in config.h)
  44. unsigned char active_extruder; // Selects the active extruder
  45. // accelerate_until and decelerate_after are set by calculate_trapezoid_for_block() and they need to be synchronized with the stepper interrupt controller.
  46. long accelerate_until; // The index of the step event on which to stop acceleration
  47. long decelerate_after; // The index of the step event on which to start decelerating
  48. // Fields used by the motion planner to manage acceleration
  49. // float speed_x, speed_y, speed_z, speed_e; // Nominal mm/sec for each axis
  50. // The nominal speed for this block in mm/sec.
  51. // This speed may or may not be reached due to the jerk and acceleration limits.
  52. float nominal_speed;
  53. // Entry speed at previous-current junction in mm/sec, respecting the acceleration and jerk limits.
  54. // The entry speed limit of the current block equals the exit speed of the preceding block.
  55. float entry_speed;
  56. // Maximum allowable junction entry speed in mm/sec. This value is also a maximum exit speed of the previous block.
  57. float max_entry_speed;
  58. // The total travel of this block in mm
  59. float millimeters;
  60. // acceleration mm/sec^2
  61. float acceleration;
  62. // Bit flags defined by the BlockFlag enum.
  63. bool flag;
  64. // Settings for the trapezoid generator (runs inside an interrupt handler).
  65. // Changing the following values in the planner needs to be synchronized with the interrupt handler by disabling the interrupts.
  66. //FIXME nominal_rate, initial_rate and final_rate are limited to uint16_t by MultiU24X24toH16 in the stepper interrupt anyway!
  67. unsigned long nominal_rate; // The nominal step rate for this block in step_events/sec
  68. unsigned long initial_rate; // The jerk-adjusted step rate at start of block
  69. unsigned long final_rate; // The minimal rate at exit
  70. unsigned long acceleration_st; // acceleration steps/sec^2
  71. //FIXME does it have to be unsigned long? Probably uint8_t would be just fine.
  72. unsigned long fan_speed;
  73. volatile char busy;
  74. // Pre-calculated division for the calculate_trapezoid_for_block() routine to run faster.
  75. float speed_factor;
  76. } block_t;
  77. #ifdef ENABLE_AUTO_BED_LEVELING
  78. // this holds the required transform to compensate for bed level
  79. extern matrix_3x3 plan_bed_level_matrix;
  80. #endif // #ifdef ENABLE_AUTO_BED_LEVELING
  81. // Initialize the motion plan subsystem
  82. void plan_init();
  83. // Add a new linear movement to the buffer. x, y and z is the signed, absolute target position in
  84. // millimaters. Feed rate specifies the speed of the motion.
  85. #ifdef ENABLE_AUTO_BED_LEVELING
  86. void plan_buffer_line(float x, float y, float z, const float &e, float feed_rate, const uint8_t &extruder);
  87. // Get the position applying the bed level matrix if enabled
  88. vector_3 plan_get_position();
  89. #else
  90. void plan_buffer_line(float x, float y, float z, const float &e, float feed_rate, const uint8_t &extruder);
  91. //void plan_buffer_line(const float &x, const float &y, const float &z, const float &e, float feed_rate, const uint8_t &extruder);
  92. #endif // ENABLE_AUTO_BED_LEVELING
  93. // Set position. Used for G92 instructions.
  94. //#ifdef ENABLE_AUTO_BED_LEVELING
  95. void plan_set_position(float x, float y, float z, const float &e);
  96. //#else
  97. //void plan_set_position(const float &x, const float &y, const float &z, const float &e);
  98. //#endif // ENABLE_AUTO_BED_LEVELING
  99. void plan_set_z_position(const float &z);
  100. void plan_set_e_position(const float &e);
  101. void check_axes_activity();
  102. extern unsigned long minsegmenttime;
  103. extern float max_feedrate[NUM_AXIS]; // set the max speeds
  104. extern float axis_steps_per_unit[NUM_AXIS];
  105. extern unsigned long max_acceleration_units_per_sq_second[NUM_AXIS]; // Use M201 to override by software
  106. extern float minimumfeedrate;
  107. extern float acceleration; // Normal acceleration mm/s^2 THIS IS THE DEFAULT ACCELERATION for all moves. M204 SXXXX
  108. extern float retract_acceleration; // mm/s^2 filament pull-pack and push-forward while standing still in the other axis M204 TXXXX
  109. // Jerk is a maximum immediate velocity change.
  110. extern float max_jerk[NUM_AXIS];
  111. extern float mintravelfeedrate;
  112. extern unsigned long axis_steps_per_sqr_second[NUM_AXIS];
  113. #ifdef AUTOTEMP
  114. extern bool autotemp_enabled;
  115. extern float autotemp_max;
  116. extern float autotemp_min;
  117. extern float autotemp_factor;
  118. #endif
  119. extern block_t block_buffer[BLOCK_BUFFER_SIZE]; // A ring buffer for motion instfructions
  120. extern volatile unsigned char block_buffer_head; // Index of the next block to be pushed
  121. extern volatile unsigned char block_buffer_tail;
  122. // Called when the current block is no longer needed. Discards the block and makes the memory
  123. // available for new blocks.
  124. FORCE_INLINE void plan_discard_current_block()
  125. {
  126. if (block_buffer_head != block_buffer_tail) {
  127. block_buffer_tail = (block_buffer_tail + 1) & (BLOCK_BUFFER_SIZE - 1);
  128. }
  129. }
  130. // Gets the current block. Returns NULL if buffer empty
  131. FORCE_INLINE block_t *plan_get_current_block()
  132. {
  133. if (block_buffer_head == block_buffer_tail) {
  134. return(NULL);
  135. }
  136. block_t *block = &block_buffer[block_buffer_tail];
  137. block->busy = true;
  138. return(block);
  139. }
  140. // Returns true if the buffer has a queued block, false otherwise
  141. FORCE_INLINE bool blocks_queued() {
  142. return (block_buffer_head != block_buffer_tail);
  143. }
  144. //return the nr of buffered moves
  145. FORCE_INLINE uint8_t moves_planned() {
  146. return (block_buffer_head + BLOCK_BUFFER_SIZE - block_buffer_tail) & (BLOCK_BUFFER_SIZE - 1);
  147. }
  148. FORCE_INLINE bool planner_queue_full() {
  149. unsigned char next_block_index = block_buffer_head;
  150. if (++ next_block_index == BLOCK_BUFFER_SIZE)
  151. next_block_index = 0;
  152. return block_buffer_tail == next_block_index;
  153. }
  154. // Abort the stepper routine, clean up the block queue,
  155. // wait for the steppers to stop,
  156. // update planner's current position and the current_position of the front end.
  157. extern void planner_abort_hard();
  158. #ifdef PREVENT_DANGEROUS_EXTRUDE
  159. void set_extrude_min_temp(float temp);
  160. #endif
  161. void reset_acceleration_rates();
  162. #endif
  163. unsigned char number_of_blocks();
  164. // #define PLANNER_DIAGNOSTICS
  165. #ifdef PLANNER_DIAGNOSTICS
  166. // Diagnostic functions to display planner buffer underflow on the display.
  167. extern uint8_t planner_queue_min();
  168. // Diagnostic function: Reset the minimum planner segments.
  169. extern void planner_queue_min_reset();
  170. #endif /* PLANNER_DIAGNOSTICS */