Marlin_main.cpp 314 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971397239733974397539763977397839793980398139823983398439853986398739883989399039913992399339943995399639973998399940004001400240034004400540064007400840094010401140124013401440154016401740184019402040214022402340244025402640274028402940304031403240334034403540364037403840394040404140424043404440454046404740484049405040514052405340544055405640574058405940604061406240634064406540664067406840694070407140724073407440754076407740784079408040814082408340844085408640874088408940904091409240934094409540964097409840994100410141024103410441054106410741084109411041114112411341144115411641174118411941204121412241234124412541264127412841294130413141324133413441354136413741384139414041414142414341444145414641474148414941504151415241534154415541564157415841594160416141624163416441654166416741684169417041714172417341744175417641774178417941804181418241834184418541864187418841894190419141924193419441954196419741984199420042014202420342044205420642074208420942104211421242134214421542164217421842194220422142224223422442254226422742284229423042314232423342344235423642374238423942404241424242434244424542464247424842494250425142524253425442554256425742584259426042614262426342644265426642674268426942704271427242734274427542764277427842794280428142824283428442854286428742884289429042914292429342944295429642974298429943004301430243034304430543064307430843094310431143124313431443154316431743184319432043214322432343244325432643274328432943304331433243334334433543364337433843394340434143424343434443454346434743484349435043514352435343544355435643574358435943604361436243634364436543664367436843694370437143724373437443754376437743784379438043814382438343844385438643874388438943904391439243934394439543964397439843994400440144024403440444054406440744084409441044114412441344144415441644174418441944204421442244234424442544264427442844294430443144324433443444354436443744384439444044414442444344444445444644474448444944504451445244534454445544564457445844594460446144624463446444654466446744684469447044714472447344744475447644774478447944804481448244834484448544864487448844894490449144924493449444954496449744984499450045014502450345044505450645074508450945104511451245134514451545164517451845194520452145224523452445254526452745284529453045314532453345344535453645374538453945404541454245434544454545464547454845494550455145524553455445554556455745584559456045614562456345644565456645674568456945704571457245734574457545764577457845794580458145824583458445854586458745884589459045914592459345944595459645974598459946004601460246034604460546064607460846094610461146124613461446154616461746184619462046214622462346244625462646274628462946304631463246334634463546364637463846394640464146424643464446454646464746484649465046514652465346544655465646574658465946604661466246634664466546664667466846694670467146724673467446754676467746784679468046814682468346844685468646874688468946904691469246934694469546964697469846994700470147024703470447054706470747084709471047114712471347144715471647174718471947204721472247234724472547264727472847294730473147324733473447354736473747384739474047414742474347444745474647474748474947504751475247534754475547564757475847594760476147624763476447654766476747684769477047714772477347744775477647774778477947804781478247834784478547864787478847894790479147924793479447954796479747984799480048014802480348044805480648074808480948104811481248134814481548164817481848194820482148224823482448254826482748284829483048314832483348344835483648374838483948404841484248434844484548464847484848494850485148524853485448554856485748584859486048614862486348644865486648674868486948704871487248734874487548764877487848794880488148824883488448854886488748884889489048914892489348944895489648974898489949004901490249034904490549064907490849094910491149124913491449154916491749184919492049214922492349244925492649274928492949304931493249334934493549364937493849394940494149424943494449454946494749484949495049514952495349544955495649574958495949604961496249634964496549664967496849694970497149724973497449754976497749784979498049814982498349844985498649874988498949904991499249934994499549964997499849995000500150025003500450055006500750085009501050115012501350145015501650175018501950205021502250235024502550265027502850295030503150325033503450355036503750385039504050415042504350445045504650475048504950505051505250535054505550565057505850595060506150625063506450655066506750685069507050715072507350745075507650775078507950805081508250835084508550865087508850895090509150925093509450955096509750985099510051015102510351045105510651075108510951105111511251135114511551165117511851195120512151225123512451255126512751285129513051315132513351345135513651375138513951405141514251435144514551465147514851495150515151525153515451555156515751585159516051615162516351645165516651675168516951705171517251735174517551765177517851795180518151825183518451855186518751885189519051915192519351945195519651975198519952005201520252035204520552065207520852095210521152125213521452155216521752185219522052215222522352245225522652275228522952305231523252335234523552365237523852395240524152425243524452455246524752485249525052515252525352545255525652575258525952605261526252635264526552665267526852695270527152725273527452755276527752785279528052815282528352845285528652875288528952905291529252935294529552965297529852995300530153025303530453055306530753085309531053115312531353145315531653175318531953205321532253235324532553265327532853295330533153325333533453355336533753385339534053415342534353445345534653475348534953505351535253535354535553565357535853595360536153625363536453655366536753685369537053715372537353745375537653775378537953805381538253835384538553865387538853895390539153925393539453955396539753985399540054015402540354045405540654075408540954105411541254135414541554165417541854195420542154225423542454255426542754285429543054315432543354345435543654375438543954405441544254435444544554465447544854495450545154525453545454555456545754585459546054615462546354645465546654675468546954705471547254735474547554765477547854795480548154825483548454855486548754885489549054915492549354945495549654975498549955005501550255035504550555065507550855095510551155125513551455155516551755185519552055215522552355245525552655275528552955305531553255335534553555365537553855395540554155425543554455455546554755485549555055515552555355545555555655575558555955605561556255635564556555665567556855695570557155725573557455755576557755785579558055815582558355845585558655875588558955905591559255935594559555965597559855995600560156025603560456055606560756085609561056115612561356145615561656175618561956205621562256235624562556265627562856295630563156325633563456355636563756385639564056415642564356445645564656475648564956505651565256535654565556565657565856595660566156625663566456655666566756685669567056715672567356745675567656775678567956805681568256835684568556865687568856895690569156925693569456955696569756985699570057015702570357045705570657075708570957105711571257135714571557165717571857195720572157225723572457255726572757285729573057315732573357345735573657375738573957405741574257435744574557465747574857495750575157525753575457555756575757585759576057615762576357645765576657675768576957705771577257735774577557765777577857795780578157825783578457855786578757885789579057915792579357945795579657975798579958005801580258035804580558065807580858095810581158125813581458155816581758185819582058215822582358245825582658275828582958305831583258335834583558365837583858395840584158425843584458455846584758485849585058515852585358545855585658575858585958605861586258635864586558665867586858695870587158725873587458755876587758785879588058815882588358845885588658875888588958905891589258935894589558965897589858995900590159025903590459055906590759085909591059115912591359145915591659175918591959205921592259235924592559265927592859295930593159325933593459355936593759385939594059415942594359445945594659475948594959505951595259535954595559565957595859595960596159625963596459655966596759685969597059715972597359745975597659775978597959805981598259835984598559865987598859895990599159925993599459955996599759985999600060016002600360046005600660076008600960106011601260136014601560166017601860196020602160226023602460256026602760286029603060316032603360346035603660376038603960406041604260436044604560466047604860496050605160526053605460556056605760586059606060616062606360646065606660676068606960706071607260736074607560766077607860796080608160826083608460856086608760886089609060916092609360946095609660976098609961006101610261036104610561066107610861096110611161126113611461156116611761186119612061216122612361246125612661276128612961306131613261336134613561366137613861396140614161426143614461456146614761486149615061516152615361546155615661576158615961606161616261636164616561666167616861696170617161726173617461756176617761786179618061816182618361846185618661876188618961906191619261936194619561966197619861996200620162026203620462056206620762086209621062116212621362146215621662176218621962206221622262236224622562266227622862296230623162326233623462356236623762386239624062416242624362446245624662476248624962506251625262536254625562566257625862596260626162626263626462656266626762686269627062716272627362746275627662776278627962806281628262836284628562866287628862896290629162926293629462956296629762986299630063016302630363046305630663076308630963106311631263136314631563166317631863196320632163226323632463256326632763286329633063316332633363346335633663376338633963406341634263436344634563466347634863496350635163526353635463556356635763586359636063616362636363646365636663676368636963706371637263736374637563766377637863796380638163826383638463856386638763886389639063916392639363946395639663976398639964006401640264036404640564066407640864096410641164126413641464156416641764186419642064216422642364246425642664276428642964306431643264336434643564366437643864396440644164426443644464456446644764486449645064516452645364546455645664576458645964606461646264636464646564666467646864696470647164726473647464756476647764786479648064816482648364846485648664876488648964906491649264936494649564966497649864996500650165026503650465056506650765086509651065116512651365146515651665176518651965206521652265236524652565266527652865296530653165326533653465356536653765386539654065416542654365446545654665476548654965506551655265536554655565566557655865596560656165626563656465656566656765686569657065716572657365746575657665776578657965806581658265836584658565866587658865896590659165926593659465956596659765986599660066016602660366046605660666076608660966106611661266136614661566166617661866196620662166226623662466256626662766286629663066316632663366346635663666376638663966406641664266436644664566466647664866496650665166526653665466556656665766586659666066616662666366646665666666676668666966706671667266736674667566766677667866796680668166826683668466856686668766886689669066916692669366946695669666976698669967006701670267036704670567066707670867096710671167126713671467156716671767186719672067216722672367246725672667276728672967306731673267336734673567366737673867396740674167426743674467456746674767486749675067516752675367546755675667576758675967606761676267636764676567666767676867696770677167726773677467756776677767786779678067816782678367846785678667876788678967906791679267936794679567966797679867996800680168026803680468056806680768086809681068116812681368146815681668176818681968206821682268236824682568266827682868296830683168326833683468356836683768386839684068416842684368446845684668476848684968506851685268536854685568566857685868596860686168626863686468656866686768686869687068716872687368746875687668776878687968806881688268836884688568866887688868896890689168926893689468956896689768986899690069016902690369046905690669076908690969106911691269136914691569166917691869196920692169226923692469256926692769286929693069316932693369346935693669376938693969406941694269436944694569466947694869496950695169526953695469556956695769586959696069616962696369646965696669676968696969706971697269736974697569766977697869796980698169826983698469856986698769886989699069916992699369946995699669976998699970007001700270037004700570067007700870097010701170127013701470157016701770187019702070217022702370247025702670277028702970307031703270337034703570367037703870397040704170427043704470457046704770487049705070517052705370547055705670577058705970607061706270637064706570667067706870697070707170727073707470757076707770787079708070817082708370847085708670877088708970907091709270937094709570967097709870997100710171027103710471057106710771087109711071117112711371147115711671177118711971207121712271237124712571267127712871297130713171327133713471357136713771387139714071417142714371447145714671477148714971507151715271537154715571567157715871597160716171627163716471657166716771687169717071717172717371747175717671777178717971807181718271837184718571867187718871897190719171927193719471957196719771987199720072017202720372047205720672077208720972107211721272137214721572167217721872197220722172227223722472257226722772287229723072317232723372347235723672377238723972407241724272437244724572467247724872497250725172527253725472557256725772587259726072617262726372647265726672677268726972707271727272737274727572767277727872797280728172827283728472857286728772887289729072917292729372947295729672977298729973007301730273037304730573067307730873097310731173127313731473157316731773187319732073217322732373247325732673277328732973307331733273337334733573367337733873397340734173427343734473457346734773487349735073517352735373547355735673577358735973607361736273637364736573667367736873697370737173727373737473757376737773787379738073817382738373847385738673877388738973907391739273937394739573967397739873997400740174027403740474057406740774087409741074117412741374147415741674177418741974207421742274237424742574267427742874297430743174327433743474357436743774387439744074417442744374447445744674477448744974507451745274537454745574567457745874597460746174627463746474657466746774687469747074717472747374747475747674777478747974807481748274837484748574867487748874897490749174927493749474957496749774987499750075017502750375047505750675077508750975107511751275137514751575167517751875197520752175227523752475257526752775287529753075317532753375347535753675377538753975407541754275437544754575467547754875497550755175527553755475557556755775587559756075617562756375647565756675677568756975707571757275737574757575767577757875797580758175827583758475857586758775887589759075917592759375947595759675977598759976007601760276037604760576067607760876097610761176127613761476157616761776187619762076217622762376247625762676277628762976307631763276337634763576367637763876397640764176427643764476457646764776487649765076517652765376547655765676577658765976607661766276637664766576667667766876697670767176727673767476757676767776787679768076817682768376847685768676877688768976907691769276937694769576967697769876997700770177027703770477057706770777087709771077117712771377147715771677177718771977207721772277237724772577267727772877297730773177327733773477357736773777387739774077417742774377447745774677477748774977507751775277537754775577567757775877597760776177627763776477657766776777687769777077717772777377747775777677777778777977807781778277837784778577867787778877897790779177927793779477957796779777987799780078017802780378047805780678077808780978107811781278137814781578167817781878197820782178227823782478257826782778287829783078317832783378347835783678377838783978407841784278437844784578467847784878497850785178527853785478557856785778587859786078617862786378647865786678677868786978707871787278737874787578767877787878797880788178827883788478857886788778887889789078917892789378947895789678977898789979007901790279037904790579067907790879097910791179127913791479157916791779187919792079217922792379247925792679277928792979307931793279337934793579367937793879397940794179427943794479457946794779487949795079517952795379547955795679577958795979607961796279637964796579667967796879697970797179727973797479757976797779787979798079817982798379847985798679877988798979907991799279937994799579967997799879998000800180028003800480058006800780088009801080118012801380148015801680178018801980208021802280238024802580268027802880298030803180328033803480358036803780388039804080418042804380448045804680478048804980508051805280538054805580568057805880598060806180628063806480658066806780688069807080718072807380748075807680778078807980808081808280838084808580868087808880898090809180928093809480958096809780988099810081018102810381048105810681078108810981108111811281138114811581168117811881198120812181228123812481258126812781288129813081318132813381348135813681378138813981408141814281438144814581468147814881498150815181528153815481558156815781588159816081618162816381648165816681678168816981708171817281738174817581768177817881798180818181828183818481858186818781888189819081918192819381948195819681978198819982008201820282038204820582068207820882098210821182128213821482158216821782188219822082218222822382248225822682278228822982308231823282338234823582368237823882398240824182428243824482458246824782488249825082518252825382548255825682578258825982608261826282638264826582668267826882698270827182728273827482758276827782788279828082818282828382848285828682878288828982908291829282938294829582968297829882998300830183028303830483058306830783088309831083118312831383148315831683178318831983208321832283238324832583268327832883298330833183328333833483358336833783388339834083418342834383448345834683478348834983508351835283538354835583568357835883598360836183628363836483658366836783688369837083718372837383748375837683778378837983808381838283838384838583868387838883898390839183928393839483958396839783988399840084018402840384048405840684078408840984108411841284138414841584168417841884198420842184228423842484258426842784288429843084318432843384348435843684378438843984408441844284438444844584468447844884498450845184528453845484558456845784588459846084618462846384648465846684678468846984708471847284738474847584768477847884798480848184828483848484858486848784888489849084918492849384948495849684978498849985008501850285038504850585068507850885098510851185128513851485158516851785188519852085218522852385248525852685278528852985308531853285338534853585368537853885398540854185428543854485458546854785488549855085518552855385548555855685578558855985608561856285638564856585668567856885698570857185728573857485758576857785788579858085818582858385848585858685878588858985908591859285938594859585968597859885998600860186028603860486058606860786088609861086118612861386148615861686178618861986208621862286238624862586268627862886298630863186328633863486358636863786388639864086418642864386448645864686478648864986508651865286538654865586568657865886598660866186628663866486658666866786688669867086718672867386748675867686778678867986808681868286838684868586868687868886898690869186928693869486958696869786988699870087018702870387048705870687078708870987108711871287138714871587168717871887198720872187228723872487258726872787288729873087318732873387348735873687378738873987408741874287438744874587468747874887498750875187528753875487558756875787588759876087618762876387648765876687678768876987708771877287738774877587768777877887798780878187828783878487858786878787888789879087918792879387948795879687978798879988008801880288038804880588068807880888098810881188128813881488158816881788188819882088218822882388248825882688278828882988308831883288338834883588368837883888398840884188428843884488458846884788488849885088518852885388548855885688578858885988608861886288638864886588668867886888698870887188728873887488758876887788788879888088818882888388848885888688878888888988908891889288938894889588968897889888998900890189028903890489058906890789088909891089118912891389148915891689178918891989208921892289238924892589268927892889298930893189328933893489358936893789388939894089418942894389448945894689478948894989508951895289538954895589568957895889598960896189628963896489658966896789688969897089718972897389748975897689778978897989808981898289838984898589868987898889898990899189928993899489958996899789988999900090019002900390049005900690079008900990109011901290139014901590169017901890199020902190229023902490259026902790289029903090319032903390349035903690379038903990409041904290439044904590469047904890499050905190529053905490559056905790589059906090619062906390649065906690679068906990709071907290739074907590769077907890799080908190829083908490859086908790889089909090919092909390949095909690979098909991009101910291039104910591069107910891099110911191129113911491159116911791189119912091219122912391249125912691279128912991309131913291339134913591369137913891399140914191429143914491459146914791489149915091519152915391549155915691579158915991609161916291639164916591669167916891699170917191729173917491759176917791789179918091819182918391849185918691879188918991909191919291939194919591969197919891999200920192029203920492059206920792089209921092119212921392149215921692179218921992209221922292239224922592269227922892299230923192329233923492359236923792389239924092419242924392449245
  1. /* -*- c++ -*- */
  2. /**
  3. * @file
  4. */
  5. /**
  6. * @mainpage Reprap 3D printer firmware based on Sprinter and grbl.
  7. *
  8. * @section intro_sec Introduction
  9. *
  10. * This firmware is a mashup between Sprinter and grbl.
  11. * https://github.com/kliment/Sprinter
  12. * https://github.com/simen/grbl/tree
  13. *
  14. * It has preliminary support for Matthew Roberts advance algorithm
  15. * http://reprap.org/pipermail/reprap-dev/2011-May/003323.html
  16. *
  17. * Prusa Research s.r.o. https://www.prusa3d.cz
  18. *
  19. * @section copyright_sec Copyright
  20. *
  21. * Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
  22. *
  23. * This program is free software: you can redistribute it and/or modify
  24. * it under the terms of the GNU General Public License as published by
  25. * the Free Software Foundation, either version 3 of the License, or
  26. * (at your option) any later version.
  27. *
  28. * This program is distributed in the hope that it will be useful,
  29. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  30. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  31. * GNU General Public License for more details.
  32. *
  33. * You should have received a copy of the GNU General Public License
  34. * along with this program. If not, see <http://www.gnu.org/licenses/>.
  35. *
  36. * @section notes_sec Notes
  37. *
  38. * * Do not create static objects in global functions.
  39. * Otherwise constructor guard against concurrent calls is generated costing
  40. * about 8B RAM and 14B flash.
  41. *
  42. *
  43. */
  44. #include "Marlin.h"
  45. #ifdef ENABLE_AUTO_BED_LEVELING
  46. #include "vector_3.h"
  47. #ifdef AUTO_BED_LEVELING_GRID
  48. #include "qr_solve.h"
  49. #endif
  50. #endif // ENABLE_AUTO_BED_LEVELING
  51. #ifdef MESH_BED_LEVELING
  52. #include "mesh_bed_leveling.h"
  53. #include "mesh_bed_calibration.h"
  54. #endif
  55. #include "printers.h"
  56. #include "menu.h"
  57. #include "ultralcd.h"
  58. #include "planner.h"
  59. #include "stepper.h"
  60. #include "temperature.h"
  61. #include "motion_control.h"
  62. #include "cardreader.h"
  63. #include "ConfigurationStore.h"
  64. #include "language.h"
  65. #include "pins_arduino.h"
  66. #include "math.h"
  67. #include "util.h"
  68. #include "Timer.h"
  69. #include <avr/wdt.h>
  70. #include <avr/pgmspace.h>
  71. #include "Dcodes.h"
  72. #include "AutoDeplete.h"
  73. #ifdef SWSPI
  74. #include "swspi.h"
  75. #endif //SWSPI
  76. #include "spi.h"
  77. #ifdef SWI2C
  78. #include "swi2c.h"
  79. #endif //SWI2C
  80. #ifdef FILAMENT_SENSOR
  81. #include "fsensor.h"
  82. #endif //FILAMENT_SENSOR
  83. #ifdef TMC2130
  84. #include "tmc2130.h"
  85. #endif //TMC2130
  86. #ifdef W25X20CL
  87. #include "w25x20cl.h"
  88. #include "optiboot_w25x20cl.h"
  89. #endif //W25X20CL
  90. #ifdef BLINKM
  91. #include "BlinkM.h"
  92. #include "Wire.h"
  93. #endif
  94. #ifdef ULTRALCD
  95. #include "ultralcd.h"
  96. #endif
  97. #if NUM_SERVOS > 0
  98. #include "Servo.h"
  99. #endif
  100. #if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
  101. #include <SPI.h>
  102. #endif
  103. #include "mmu.h"
  104. #define VERSION_STRING "1.0.2"
  105. #include "ultralcd.h"
  106. #include "sound.h"
  107. #include "cmdqueue.h"
  108. #include "io_atmega2560.h"
  109. // Macros for bit masks
  110. #define BIT(b) (1<<(b))
  111. #define TEST(n,b) (((n)&BIT(b))!=0)
  112. #define SET_BIT(n,b,value) (n) ^= ((-value)^(n)) & (BIT(b))
  113. //Macro for print fan speed
  114. #define FAN_PULSE_WIDTH_LIMIT ((fanSpeed > 100) ? 3 : 4) //time in ms
  115. #define PRINTING_TYPE_SD 0
  116. #define PRINTING_TYPE_USB 1
  117. //filament types
  118. #define FILAMENT_DEFAULT 0
  119. #define FILAMENT_FLEX 1
  120. #define FILAMENT_PVA 2
  121. #define FILAMENT_UNDEFINED 255
  122. //Stepper Movement Variables
  123. //===========================================================================
  124. //=============================imported variables============================
  125. //===========================================================================
  126. //===========================================================================
  127. //=============================public variables=============================
  128. //===========================================================================
  129. #ifdef SDSUPPORT
  130. CardReader card;
  131. #endif
  132. unsigned long PingTime = millis();
  133. unsigned long NcTime;
  134. //used for PINDA temp calibration and pause print
  135. #define DEFAULT_RETRACTION 1
  136. #define DEFAULT_RETRACTION_MM 4 //MM
  137. float default_retraction = DEFAULT_RETRACTION;
  138. float homing_feedrate[] = HOMING_FEEDRATE;
  139. // Currently only the extruder axis may be switched to a relative mode.
  140. // Other axes are always absolute or relative based on the common relative_mode flag.
  141. bool axis_relative_modes[] = AXIS_RELATIVE_MODES;
  142. int feedmultiply=100; //100->1 200->2
  143. int extrudemultiply=100; //100->1 200->2
  144. int extruder_multiply[EXTRUDERS] = {100
  145. #if EXTRUDERS > 1
  146. , 100
  147. #if EXTRUDERS > 2
  148. , 100
  149. #endif
  150. #endif
  151. };
  152. int bowden_length[4] = {385, 385, 385, 385};
  153. bool is_usb_printing = false;
  154. bool homing_flag = false;
  155. bool temp_cal_active = false;
  156. unsigned long kicktime = millis()+100000;
  157. unsigned int usb_printing_counter;
  158. int8_t lcd_change_fil_state = 0;
  159. unsigned long pause_time = 0;
  160. unsigned long start_pause_print = millis();
  161. unsigned long t_fan_rising_edge = millis();
  162. LongTimer safetyTimer;
  163. static LongTimer crashDetTimer;
  164. //unsigned long load_filament_time;
  165. bool mesh_bed_leveling_flag = false;
  166. bool mesh_bed_run_from_menu = false;
  167. int8_t FarmMode = 0;
  168. bool prusa_sd_card_upload = false;
  169. unsigned int status_number = 0;
  170. unsigned long total_filament_used;
  171. unsigned int heating_status;
  172. unsigned int heating_status_counter;
  173. bool loading_flag = false;
  174. char snmm_filaments_used = 0;
  175. bool fan_state[2];
  176. int fan_edge_counter[2];
  177. int fan_speed[2];
  178. char dir_names[3][9];
  179. bool sortAlpha = false;
  180. float extruder_multiplier[EXTRUDERS] = {1.0
  181. #if EXTRUDERS > 1
  182. , 1.0
  183. #if EXTRUDERS > 2
  184. , 1.0
  185. #endif
  186. #endif
  187. };
  188. float current_position[NUM_AXIS] = { 0.0, 0.0, 0.0, 0.0 };
  189. //shortcuts for more readable code
  190. #define _x current_position[X_AXIS]
  191. #define _y current_position[Y_AXIS]
  192. #define _z current_position[Z_AXIS]
  193. #define _e current_position[E_AXIS]
  194. float min_pos[3] = { X_MIN_POS, Y_MIN_POS, Z_MIN_POS };
  195. float max_pos[3] = { X_MAX_POS, Y_MAX_POS, Z_MAX_POS };
  196. bool axis_known_position[3] = {false, false, false};
  197. // Extruder offset
  198. #if EXTRUDERS > 1
  199. #define NUM_EXTRUDER_OFFSETS 2 // only in XY plane
  200. float extruder_offset[NUM_EXTRUDER_OFFSETS][EXTRUDERS] = {
  201. #if defined(EXTRUDER_OFFSET_X) && defined(EXTRUDER_OFFSET_Y)
  202. EXTRUDER_OFFSET_X, EXTRUDER_OFFSET_Y
  203. #endif
  204. };
  205. #endif
  206. uint8_t active_extruder = 0;
  207. int fanSpeed=0;
  208. #ifdef FWRETRACT
  209. bool retracted[EXTRUDERS]={false
  210. #if EXTRUDERS > 1
  211. , false
  212. #if EXTRUDERS > 2
  213. , false
  214. #endif
  215. #endif
  216. };
  217. bool retracted_swap[EXTRUDERS]={false
  218. #if EXTRUDERS > 1
  219. , false
  220. #if EXTRUDERS > 2
  221. , false
  222. #endif
  223. #endif
  224. };
  225. float retract_length_swap = RETRACT_LENGTH_SWAP;
  226. float retract_recover_length_swap = RETRACT_RECOVER_LENGTH_SWAP;
  227. #endif
  228. #ifdef PS_DEFAULT_OFF
  229. bool powersupply = false;
  230. #else
  231. bool powersupply = true;
  232. #endif
  233. bool cancel_heatup = false ;
  234. #ifdef HOST_KEEPALIVE_FEATURE
  235. int busy_state = NOT_BUSY;
  236. static long prev_busy_signal_ms = -1;
  237. uint8_t host_keepalive_interval = HOST_KEEPALIVE_INTERVAL;
  238. #else
  239. #define host_keepalive();
  240. #define KEEPALIVE_STATE(n);
  241. #endif
  242. const char errormagic[] PROGMEM = "Error:";
  243. const char echomagic[] PROGMEM = "echo:";
  244. bool no_response = false;
  245. uint8_t important_status;
  246. uint8_t saved_filament_type;
  247. // save/restore printing in case that mmu was not responding
  248. bool mmu_print_saved = false;
  249. // storing estimated time to end of print counted by slicer
  250. uint8_t print_percent_done_normal = PRINT_PERCENT_DONE_INIT;
  251. uint16_t print_time_remaining_normal = PRINT_TIME_REMAINING_INIT; //estimated remaining print time in minutes
  252. uint8_t print_percent_done_silent = PRINT_PERCENT_DONE_INIT;
  253. uint16_t print_time_remaining_silent = PRINT_TIME_REMAINING_INIT; //estimated remaining print time in minutes
  254. bool wizard_active = false; //autoload temporarily disabled during wizard
  255. //===========================================================================
  256. //=============================Private Variables=============================
  257. //===========================================================================
  258. #define MSG_BED_LEVELING_FAILED_TIMEOUT 30
  259. const char axis_codes[NUM_AXIS] = {'X', 'Y', 'Z', 'E'};
  260. float destination[NUM_AXIS] = { 0.0, 0.0, 0.0, 0.0};
  261. // For tracing an arc
  262. static float offset[3] = {0.0, 0.0, 0.0};
  263. static float feedrate = 1500.0, next_feedrate, saved_feedrate;
  264. // Determines Absolute or Relative Coordinates.
  265. // Also there is bool axis_relative_modes[] per axis flag.
  266. static bool relative_mode = false;
  267. const int sensitive_pins[] = SENSITIVE_PINS; // Sensitive pin list for M42
  268. //static float tt = 0;
  269. //static float bt = 0;
  270. //Inactivity shutdown variables
  271. static unsigned long previous_millis_cmd = 0;
  272. unsigned long max_inactive_time = 0;
  273. static unsigned long stepper_inactive_time = DEFAULT_STEPPER_DEACTIVE_TIME*1000l;
  274. static unsigned long safetytimer_inactive_time = DEFAULT_SAFETYTIMER_TIME_MINS*60*1000ul;
  275. unsigned long starttime=0;
  276. unsigned long stoptime=0;
  277. unsigned long _usb_timer = 0;
  278. bool extruder_under_pressure = true;
  279. bool Stopped=false;
  280. #if NUM_SERVOS > 0
  281. Servo servos[NUM_SERVOS];
  282. #endif
  283. bool CooldownNoWait = true;
  284. bool target_direction;
  285. //Insert variables if CHDK is defined
  286. #ifdef CHDK
  287. unsigned long chdkHigh = 0;
  288. boolean chdkActive = false;
  289. #endif
  290. //! @name RAM save/restore printing
  291. //! @{
  292. bool saved_printing = false; //!< Print is paused and saved in RAM
  293. static uint32_t saved_sdpos = 0; //!< SD card position, or line number in case of USB printing
  294. static uint8_t saved_printing_type = PRINTING_TYPE_SD;
  295. static float saved_pos[4] = { 0, 0, 0, 0 };
  296. //! Feedrate hopefully derived from an active block of the planner at the time the print has been canceled, in mm/min.
  297. static float saved_feedrate2 = 0;
  298. static uint8_t saved_active_extruder = 0;
  299. static float saved_extruder_temperature = 0.0; //!< Active extruder temperature
  300. static bool saved_extruder_under_pressure = false;
  301. static bool saved_extruder_relative_mode = false;
  302. static int saved_fanSpeed = 0; //!< Print fan speed
  303. //! @}
  304. static int saved_feedmultiply_mm = 100;
  305. //===========================================================================
  306. //=============================Routines======================================
  307. //===========================================================================
  308. static void get_arc_coordinates();
  309. static bool setTargetedHotend(int code, uint8_t &extruder);
  310. static void print_time_remaining_init();
  311. static void wait_for_heater(long codenum, uint8_t extruder);
  312. uint16_t gcode_in_progress = 0;
  313. uint16_t mcode_in_progress = 0;
  314. void serial_echopair_P(const char *s_P, float v)
  315. { serialprintPGM(s_P); SERIAL_ECHO(v); }
  316. void serial_echopair_P(const char *s_P, double v)
  317. { serialprintPGM(s_P); SERIAL_ECHO(v); }
  318. void serial_echopair_P(const char *s_P, unsigned long v)
  319. { serialprintPGM(s_P); SERIAL_ECHO(v); }
  320. #ifdef SDSUPPORT
  321. #include "SdFatUtil.h"
  322. int freeMemory() { return SdFatUtil::FreeRam(); }
  323. #else
  324. extern "C" {
  325. extern unsigned int __bss_end;
  326. extern unsigned int __heap_start;
  327. extern void *__brkval;
  328. int freeMemory() {
  329. int free_memory;
  330. if ((int)__brkval == 0)
  331. free_memory = ((int)&free_memory) - ((int)&__bss_end);
  332. else
  333. free_memory = ((int)&free_memory) - ((int)__brkval);
  334. return free_memory;
  335. }
  336. }
  337. #endif //!SDSUPPORT
  338. void setup_killpin()
  339. {
  340. #if defined(KILL_PIN) && KILL_PIN > -1
  341. SET_INPUT(KILL_PIN);
  342. WRITE(KILL_PIN,HIGH);
  343. #endif
  344. }
  345. // Set home pin
  346. void setup_homepin(void)
  347. {
  348. #if defined(HOME_PIN) && HOME_PIN > -1
  349. SET_INPUT(HOME_PIN);
  350. WRITE(HOME_PIN,HIGH);
  351. #endif
  352. }
  353. void setup_photpin()
  354. {
  355. #if defined(PHOTOGRAPH_PIN) && PHOTOGRAPH_PIN > -1
  356. SET_OUTPUT(PHOTOGRAPH_PIN);
  357. WRITE(PHOTOGRAPH_PIN, LOW);
  358. #endif
  359. }
  360. void setup_powerhold()
  361. {
  362. #if defined(SUICIDE_PIN) && SUICIDE_PIN > -1
  363. SET_OUTPUT(SUICIDE_PIN);
  364. WRITE(SUICIDE_PIN, HIGH);
  365. #endif
  366. #if defined(PS_ON_PIN) && PS_ON_PIN > -1
  367. SET_OUTPUT(PS_ON_PIN);
  368. #if defined(PS_DEFAULT_OFF)
  369. WRITE(PS_ON_PIN, PS_ON_ASLEEP);
  370. #else
  371. WRITE(PS_ON_PIN, PS_ON_AWAKE);
  372. #endif
  373. #endif
  374. }
  375. void suicide()
  376. {
  377. #if defined(SUICIDE_PIN) && SUICIDE_PIN > -1
  378. SET_OUTPUT(SUICIDE_PIN);
  379. WRITE(SUICIDE_PIN, LOW);
  380. #endif
  381. }
  382. void servo_init()
  383. {
  384. #if (NUM_SERVOS >= 1) && defined(SERVO0_PIN) && (SERVO0_PIN > -1)
  385. servos[0].attach(SERVO0_PIN);
  386. #endif
  387. #if (NUM_SERVOS >= 2) && defined(SERVO1_PIN) && (SERVO1_PIN > -1)
  388. servos[1].attach(SERVO1_PIN);
  389. #endif
  390. #if (NUM_SERVOS >= 3) && defined(SERVO2_PIN) && (SERVO2_PIN > -1)
  391. servos[2].attach(SERVO2_PIN);
  392. #endif
  393. #if (NUM_SERVOS >= 4) && defined(SERVO3_PIN) && (SERVO3_PIN > -1)
  394. servos[3].attach(SERVO3_PIN);
  395. #endif
  396. #if (NUM_SERVOS >= 5)
  397. #error "TODO: enter initalisation code for more servos"
  398. #endif
  399. }
  400. bool fans_check_enabled = true;
  401. #ifdef TMC2130
  402. extern int8_t CrashDetectMenu;
  403. void crashdet_enable()
  404. {
  405. tmc2130_sg_stop_on_crash = true;
  406. eeprom_update_byte((uint8_t*)EEPROM_CRASH_DET, 0xFF);
  407. CrashDetectMenu = 1;
  408. }
  409. void crashdet_disable()
  410. {
  411. tmc2130_sg_stop_on_crash = false;
  412. tmc2130_sg_crash = 0;
  413. eeprom_update_byte((uint8_t*)EEPROM_CRASH_DET, 0x00);
  414. CrashDetectMenu = 0;
  415. }
  416. void crashdet_stop_and_save_print()
  417. {
  418. stop_and_save_print_to_ram(10, -default_retraction); //XY - no change, Z 10mm up, E -1mm retract
  419. }
  420. void crashdet_restore_print_and_continue()
  421. {
  422. restore_print_from_ram_and_continue(default_retraction); //XYZ = orig, E +1mm unretract
  423. // babystep_apply();
  424. }
  425. void crashdet_stop_and_save_print2()
  426. {
  427. cli();
  428. planner_abort_hard(); //abort printing
  429. cmdqueue_reset(); //empty cmdqueue
  430. card.sdprinting = false;
  431. card.closefile();
  432. // Reset and re-enable the stepper timer just before the global interrupts are enabled.
  433. st_reset_timer();
  434. sei();
  435. }
  436. void crashdet_detected(uint8_t mask)
  437. {
  438. st_synchronize();
  439. static uint8_t crashDet_counter = 0;
  440. bool automatic_recovery_after_crash = true;
  441. if (crashDet_counter++ == 0) {
  442. crashDetTimer.start();
  443. }
  444. else if (crashDetTimer.expired(CRASHDET_TIMER * 1000ul)){
  445. crashDetTimer.stop();
  446. crashDet_counter = 0;
  447. }
  448. else if(crashDet_counter == CRASHDET_COUNTER_MAX){
  449. automatic_recovery_after_crash = false;
  450. crashDetTimer.stop();
  451. crashDet_counter = 0;
  452. }
  453. else {
  454. crashDetTimer.start();
  455. }
  456. lcd_update_enable(true);
  457. lcd_clear();
  458. lcd_update(2);
  459. if (mask & X_AXIS_MASK)
  460. {
  461. eeprom_update_byte((uint8_t*)EEPROM_CRASH_COUNT_X, eeprom_read_byte((uint8_t*)EEPROM_CRASH_COUNT_X) + 1);
  462. eeprom_update_word((uint16_t*)EEPROM_CRASH_COUNT_X_TOT, eeprom_read_word((uint16_t*)EEPROM_CRASH_COUNT_X_TOT) + 1);
  463. }
  464. if (mask & Y_AXIS_MASK)
  465. {
  466. eeprom_update_byte((uint8_t*)EEPROM_CRASH_COUNT_Y, eeprom_read_byte((uint8_t*)EEPROM_CRASH_COUNT_Y) + 1);
  467. eeprom_update_word((uint16_t*)EEPROM_CRASH_COUNT_Y_TOT, eeprom_read_word((uint16_t*)EEPROM_CRASH_COUNT_Y_TOT) + 1);
  468. }
  469. lcd_update_enable(true);
  470. lcd_update(2);
  471. lcd_setstatuspgm(_T(MSG_CRASH_DETECTED));
  472. gcode_G28(true, true, false); //home X and Y
  473. st_synchronize();
  474. if (automatic_recovery_after_crash) {
  475. enquecommand_P(PSTR("CRASH_RECOVER"));
  476. }else{
  477. setTargetHotend(0, active_extruder);
  478. bool yesno = lcd_show_fullscreen_message_yes_no_and_wait_P(_i("Crash detected. Resume print?"), false);
  479. lcd_update_enable(true);
  480. if (yesno)
  481. {
  482. enquecommand_P(PSTR("CRASH_RECOVER"));
  483. }
  484. else
  485. {
  486. enquecommand_P(PSTR("CRASH_CANCEL"));
  487. }
  488. }
  489. }
  490. void crashdet_recover()
  491. {
  492. crashdet_restore_print_and_continue();
  493. tmc2130_sg_stop_on_crash = true;
  494. }
  495. void crashdet_cancel()
  496. {
  497. saved_printing = false;
  498. tmc2130_sg_stop_on_crash = true;
  499. if (saved_printing_type == PRINTING_TYPE_SD) {
  500. lcd_print_stop();
  501. }else if(saved_printing_type == PRINTING_TYPE_USB){
  502. SERIAL_ECHOLNPGM("// action:cancel"); //for Octoprint: works the same as clicking "Abort" button in Octoprint GUI
  503. SERIAL_PROTOCOLLNRPGM(MSG_OK);
  504. }
  505. }
  506. #endif //TMC2130
  507. void failstats_reset_print()
  508. {
  509. eeprom_update_byte((uint8_t *)EEPROM_CRASH_COUNT_X, 0);
  510. eeprom_update_byte((uint8_t *)EEPROM_CRASH_COUNT_Y, 0);
  511. eeprom_update_byte((uint8_t *)EEPROM_FERROR_COUNT, 0);
  512. eeprom_update_byte((uint8_t *)EEPROM_POWER_COUNT, 0);
  513. eeprom_update_byte((uint8_t *)EEPROM_MMU_FAIL, 0);
  514. eeprom_update_byte((uint8_t *)EEPROM_MMU_LOAD_FAIL, 0);
  515. }
  516. #ifdef MESH_BED_LEVELING
  517. enum MeshLevelingState { MeshReport, MeshStart, MeshNext, MeshSet };
  518. #endif
  519. // Factory reset function
  520. // This function is used to erase parts or whole EEPROM memory which is used for storing calibration and and so on.
  521. // Level input parameter sets depth of reset
  522. int er_progress = 0;
  523. static void factory_reset(char level)
  524. {
  525. lcd_clear();
  526. switch (level) {
  527. // Level 0: Language reset
  528. case 0:
  529. if((eSoundMode==e_SOUND_MODE_LOUD)||(eSoundMode==e_SOUND_MODE_ONCE))
  530. WRITE(BEEPER, HIGH);
  531. _delay_ms(100);
  532. WRITE(BEEPER, LOW);
  533. lang_reset();
  534. break;
  535. //Level 1: Reset statistics
  536. case 1:
  537. if((eSoundMode==e_SOUND_MODE_LOUD)||(eSoundMode==e_SOUND_MODE_ONCE))
  538. WRITE(BEEPER, HIGH);
  539. _delay_ms(100);
  540. WRITE(BEEPER, LOW);
  541. eeprom_update_dword((uint32_t *)EEPROM_TOTALTIME, 0);
  542. eeprom_update_dword((uint32_t *)EEPROM_FILAMENTUSED, 0);
  543. eeprom_update_byte((uint8_t *)EEPROM_CRASH_COUNT_X, 0);
  544. eeprom_update_byte((uint8_t *)EEPROM_CRASH_COUNT_Y, 0);
  545. eeprom_update_byte((uint8_t *)EEPROM_FERROR_COUNT, 0);
  546. eeprom_update_byte((uint8_t *)EEPROM_POWER_COUNT, 0);
  547. eeprom_update_word((uint16_t *)EEPROM_CRASH_COUNT_X_TOT, 0);
  548. eeprom_update_word((uint16_t *)EEPROM_CRASH_COUNT_Y_TOT, 0);
  549. eeprom_update_word((uint16_t *)EEPROM_FERROR_COUNT_TOT, 0);
  550. eeprom_update_word((uint16_t *)EEPROM_POWER_COUNT_TOT, 0);
  551. eeprom_update_word((uint16_t *)EEPROM_MMU_FAIL_TOT, 0);
  552. eeprom_update_word((uint16_t *)EEPROM_MMU_LOAD_FAIL_TOT, 0);
  553. eeprom_update_byte((uint8_t *)EEPROM_MMU_FAIL, 0);
  554. eeprom_update_byte((uint8_t *)EEPROM_MMU_LOAD_FAIL, 0);
  555. lcd_menu_statistics();
  556. break;
  557. // Level 2: Prepare for shipping
  558. case 2:
  559. //lcd_puts_P(PSTR("Factory RESET"));
  560. //lcd_puts_at_P(1,2,PSTR("Shipping prep"));
  561. // Force language selection at the next boot up.
  562. lang_reset();
  563. // Force the "Follow calibration flow" message at the next boot up.
  564. calibration_status_store(CALIBRATION_STATUS_Z_CALIBRATION);
  565. eeprom_write_byte((uint8_t*)EEPROM_WIZARD_ACTIVE, 1); //run wizard
  566. farm_no = 0;
  567. farm_mode = false;
  568. eeprom_update_byte((uint8_t*)EEPROM_FARM_MODE, farm_mode);
  569. EEPROM_save_B(EEPROM_FARM_NUMBER, &farm_no);
  570. eeprom_update_dword((uint32_t *)EEPROM_TOTALTIME, 0);
  571. eeprom_update_dword((uint32_t *)EEPROM_FILAMENTUSED, 0);
  572. eeprom_update_word((uint16_t *)EEPROM_CRASH_COUNT_X_TOT, 0);
  573. eeprom_update_word((uint16_t *)EEPROM_CRASH_COUNT_Y_TOT, 0);
  574. eeprom_update_word((uint16_t *)EEPROM_FERROR_COUNT_TOT, 0);
  575. eeprom_update_word((uint16_t *)EEPROM_POWER_COUNT_TOT, 0);
  576. eeprom_update_word((uint16_t *)EEPROM_MMU_FAIL_TOT, 0);
  577. eeprom_update_word((uint16_t *)EEPROM_MMU_LOAD_FAIL_TOT, 0);
  578. eeprom_update_byte((uint8_t *)EEPROM_MMU_FAIL, 0);
  579. eeprom_update_byte((uint8_t *)EEPROM_MMU_LOAD_FAIL, 0);
  580. #ifdef FILAMENT_SENSOR
  581. fsensor_enable();
  582. fsensor_autoload_set(true);
  583. #endif //FILAMENT_SENSOR
  584. if((eSoundMode==e_SOUND_MODE_LOUD)||(eSoundMode==e_SOUND_MODE_ONCE))
  585. WRITE(BEEPER, HIGH);
  586. _delay_ms(100);
  587. WRITE(BEEPER, LOW);
  588. //_delay_ms(2000);
  589. break;
  590. // Level 3: erase everything, whole EEPROM will be set to 0xFF
  591. case 3:
  592. lcd_puts_P(PSTR("Factory RESET"));
  593. lcd_puts_at_P(1, 2, PSTR("ERASING all data"));
  594. if((eSoundMode==e_SOUND_MODE_LOUD)||(eSoundMode==e_SOUND_MODE_ONCE))
  595. WRITE(BEEPER, HIGH);
  596. _delay_ms(100);
  597. WRITE(BEEPER, LOW);
  598. er_progress = 0;
  599. lcd_puts_at_P(3, 3, PSTR(" "));
  600. lcd_set_cursor(3, 3);
  601. lcd_print(er_progress);
  602. // Erase EEPROM
  603. for (int i = 0; i < 4096; i++) {
  604. eeprom_update_byte((uint8_t*)i, 0xFF);
  605. if (i % 41 == 0) {
  606. er_progress++;
  607. lcd_puts_at_P(3, 3, PSTR(" "));
  608. lcd_set_cursor(3, 3);
  609. lcd_print(er_progress);
  610. lcd_puts_P(PSTR("%"));
  611. }
  612. }
  613. break;
  614. case 4:
  615. bowden_menu();
  616. break;
  617. default:
  618. break;
  619. }
  620. }
  621. extern "C" {
  622. FILE _uartout; //= {0}; Global variable is always zero initialized. No need to explicitly state this.
  623. }
  624. int uart_putchar(char c, FILE *)
  625. {
  626. MYSERIAL.write(c);
  627. return 0;
  628. }
  629. void lcd_splash()
  630. {
  631. // lcd_puts_at_P(0, 1, PSTR(" Original Prusa "));
  632. // lcd_puts_at_P(0, 2, PSTR(" 3D Printers "));
  633. // lcd_puts_P(PSTR("\x1b[1;3HOriginal Prusa\x1b[2;4H3D Printers"));
  634. // fputs_P(PSTR(ESC_2J ESC_H(1,1) "Original Prusa i3" ESC_H(3,2) "Prusa Research"), lcdout);
  635. lcd_puts_P(PSTR(ESC_2J ESC_H(1,1) "Original Prusa i3" ESC_H(3,2) "Prusa Research"));
  636. // lcd_printf_P(_N(ESC_2J "x:%.3f\ny:%.3f\nz:%.3f\ne:%.3f"), _x, _y, _z, _e);
  637. }
  638. void factory_reset()
  639. {
  640. KEEPALIVE_STATE(PAUSED_FOR_USER);
  641. if (!READ(BTN_ENC))
  642. {
  643. _delay_ms(1000);
  644. if (!READ(BTN_ENC))
  645. {
  646. lcd_clear();
  647. lcd_puts_P(PSTR("Factory RESET"));
  648. SET_OUTPUT(BEEPER);
  649. if((eSoundMode==e_SOUND_MODE_LOUD)||(eSoundMode==e_SOUND_MODE_ONCE))
  650. WRITE(BEEPER, HIGH);
  651. while (!READ(BTN_ENC));
  652. WRITE(BEEPER, LOW);
  653. _delay_ms(2000);
  654. char level = reset_menu();
  655. factory_reset(level);
  656. switch (level) {
  657. case 0: _delay_ms(0); break;
  658. case 1: _delay_ms(0); break;
  659. case 2: _delay_ms(0); break;
  660. case 3: _delay_ms(0); break;
  661. }
  662. }
  663. }
  664. KEEPALIVE_STATE(IN_HANDLER);
  665. }
  666. void show_fw_version_warnings() {
  667. if (FW_DEV_VERSION == FW_VERSION_GOLD || FW_DEV_VERSION == FW_VERSION_RC) return;
  668. switch (FW_DEV_VERSION) {
  669. case(FW_VERSION_ALPHA): lcd_show_fullscreen_message_and_wait_P(_i("You are using firmware alpha version. This is development version. Using this version is not recommended and may cause printer damage.")); break;////MSG_FW_VERSION_ALPHA c=20 r=8
  670. case(FW_VERSION_BETA): lcd_show_fullscreen_message_and_wait_P(_i("You are using firmware beta version. This is development version. Using this version is not recommended and may cause printer damage.")); break;////MSG_FW_VERSION_BETA c=20 r=8
  671. case(FW_VERSION_DEVEL):
  672. case(FW_VERSION_DEBUG):
  673. lcd_update_enable(false);
  674. lcd_clear();
  675. #if FW_DEV_VERSION == FW_VERSION_DEVEL
  676. lcd_puts_at_P(0, 0, PSTR("Development build !!"));
  677. #else
  678. lcd_puts_at_P(0, 0, PSTR("Debbugging build !!!"));
  679. #endif
  680. lcd_puts_at_P(0, 1, PSTR("May destroy printer!"));
  681. lcd_puts_at_P(0, 2, PSTR("ver ")); lcd_puts_P(PSTR(FW_VERSION_FULL));
  682. lcd_puts_at_P(0, 3, PSTR(FW_REPOSITORY));
  683. lcd_wait_for_click();
  684. break;
  685. // default: lcd_show_fullscreen_message_and_wait_P(_i("WARNING: This is an unofficial, unsupported build. Use at your own risk!")); break;////MSG_FW_VERSION_UNKNOWN c=20 r=8
  686. }
  687. lcd_update_enable(true);
  688. }
  689. uint8_t check_printer_version()
  690. {
  691. uint8_t version_changed = 0;
  692. uint16_t printer_type = eeprom_read_word((uint16_t*)EEPROM_PRINTER_TYPE);
  693. uint16_t motherboard = eeprom_read_word((uint16_t*)EEPROM_BOARD_TYPE);
  694. if (printer_type != PRINTER_TYPE) {
  695. if (printer_type == 0xffff) eeprom_write_word((uint16_t*)EEPROM_PRINTER_TYPE, PRINTER_TYPE);
  696. else version_changed |= 0b10;
  697. }
  698. if (motherboard != MOTHERBOARD) {
  699. if(motherboard == 0xffff) eeprom_write_word((uint16_t*)EEPROM_BOARD_TYPE, MOTHERBOARD);
  700. else version_changed |= 0b01;
  701. }
  702. return version_changed;
  703. }
  704. #ifdef BOOTAPP
  705. #include "bootapp.h" //bootloader support
  706. #endif //BOOTAPP
  707. #if (LANG_MODE != 0) //secondary language support
  708. #ifdef W25X20CL
  709. // language update from external flash
  710. #define LANGBOOT_BLOCKSIZE 0x1000u
  711. #define LANGBOOT_RAMBUFFER 0x0800
  712. void update_sec_lang_from_external_flash()
  713. {
  714. if ((boot_app_magic == BOOT_APP_MAGIC) && (boot_app_flags & BOOT_APP_FLG_USER0))
  715. {
  716. uint8_t lang = boot_reserved >> 4;
  717. uint8_t state = boot_reserved & 0xf;
  718. lang_table_header_t header;
  719. uint32_t src_addr;
  720. if (lang_get_header(lang, &header, &src_addr))
  721. {
  722. fputs_P(PSTR(ESC_H(1,3) "Language update."), lcdout);
  723. for (uint8_t i = 0; i < state; i++) fputc('.', lcdout);
  724. delay(100);
  725. boot_reserved = (state + 1) | (lang << 4);
  726. if ((state * LANGBOOT_BLOCKSIZE) < header.size)
  727. {
  728. cli();
  729. uint16_t size = header.size - state * LANGBOOT_BLOCKSIZE;
  730. if (size > LANGBOOT_BLOCKSIZE) size = LANGBOOT_BLOCKSIZE;
  731. w25x20cl_rd_data(src_addr + state * LANGBOOT_BLOCKSIZE, (uint8_t*)LANGBOOT_RAMBUFFER, size);
  732. if (state == 0)
  733. {
  734. //TODO - check header integrity
  735. }
  736. bootapp_ram2flash(LANGBOOT_RAMBUFFER, _SEC_LANG_TABLE + state * LANGBOOT_BLOCKSIZE, size);
  737. }
  738. else
  739. {
  740. //TODO - check sec lang data integrity
  741. eeprom_update_byte((unsigned char *)EEPROM_LANG, LANG_ID_SEC);
  742. }
  743. }
  744. }
  745. boot_app_flags &= ~BOOT_APP_FLG_USER0;
  746. }
  747. #ifdef DEBUG_W25X20CL
  748. uint8_t lang_xflash_enum_codes(uint16_t* codes)
  749. {
  750. lang_table_header_t header;
  751. uint8_t count = 0;
  752. uint32_t addr = 0x00000;
  753. while (1)
  754. {
  755. printf_P(_n("LANGTABLE%d:"), count);
  756. w25x20cl_rd_data(addr, (uint8_t*)&header, sizeof(lang_table_header_t));
  757. if (header.magic != LANG_MAGIC)
  758. {
  759. printf_P(_n("NG!\n"));
  760. break;
  761. }
  762. printf_P(_n("OK\n"));
  763. printf_P(_n(" _lt_magic = 0x%08lx %S\n"), header.magic, (header.magic==LANG_MAGIC)?_n("OK"):_n("NA"));
  764. printf_P(_n(" _lt_size = 0x%04x (%d)\n"), header.size, header.size);
  765. printf_P(_n(" _lt_count = 0x%04x (%d)\n"), header.count, header.count);
  766. printf_P(_n(" _lt_chsum = 0x%04x\n"), header.checksum);
  767. printf_P(_n(" _lt_code = 0x%04x (%c%c)\n"), header.code, header.code >> 8, header.code & 0xff);
  768. printf_P(_n(" _lt_sign = 0x%08lx\n"), header.signature);
  769. addr += header.size;
  770. codes[count] = header.code;
  771. count ++;
  772. }
  773. return count;
  774. }
  775. void list_sec_lang_from_external_flash()
  776. {
  777. uint16_t codes[8];
  778. uint8_t count = lang_xflash_enum_codes(codes);
  779. printf_P(_n("XFlash lang count = %hhd\n"), count);
  780. }
  781. #endif //DEBUG_W25X20CL
  782. #endif //W25X20CL
  783. #endif //(LANG_MODE != 0)
  784. // "Setup" function is called by the Arduino framework on startup.
  785. // Before startup, the Timers-functions (PWM)/Analog RW and HardwareSerial provided by the Arduino-code
  786. // are initialized by the main() routine provided by the Arduino framework.
  787. void setup()
  788. {
  789. mmu_init();
  790. ultralcd_init();
  791. #if (LCD_BL_PIN != -1)
  792. analogWrite(LCD_BL_PIN, 255); //set full brightnes
  793. #endif //(LCD_BL_PIN != -1)
  794. spi_init();
  795. lcd_splash();
  796. Sound_Init(); // also guarantee "SET_OUTPUT(BEEPER)"
  797. #ifdef W25X20CL
  798. if (!w25x20cl_init())
  799. kill(_i("External SPI flash W25X20CL not responding."));
  800. // Enter an STK500 compatible Optiboot boot loader waiting for flashing the languages to an external flash memory.
  801. optiboot_w25x20cl_enter();
  802. #endif
  803. #if (LANG_MODE != 0) //secondary language support
  804. #ifdef W25X20CL
  805. if (w25x20cl_init())
  806. update_sec_lang_from_external_flash();
  807. #endif //W25X20CL
  808. #endif //(LANG_MODE != 0)
  809. setup_killpin();
  810. setup_powerhold();
  811. farm_mode = eeprom_read_byte((uint8_t*)EEPROM_FARM_MODE);
  812. EEPROM_read_B(EEPROM_FARM_NUMBER, &farm_no);
  813. if ((farm_mode == 0xFF && farm_no == 0) || ((uint16_t)farm_no == 0xFFFF))
  814. farm_mode = false; //if farm_mode has not been stored to eeprom yet and farm number is set to zero or EEPROM is fresh, deactivate farm mode
  815. if ((uint16_t)farm_no == 0xFFFF) farm_no = 0;
  816. selectedSerialPort = eeprom_read_byte((uint8_t*)EEPROM_SECOND_SERIAL_ACTIVE);
  817. if (selectedSerialPort == 0xFF) selectedSerialPort = 0;
  818. if (farm_mode)
  819. {
  820. no_response = true; //we need confirmation by recieving PRUSA thx
  821. important_status = 8;
  822. prusa_statistics(8);
  823. selectedSerialPort = 1;
  824. #ifdef TMC2130
  825. //increased extruder current (PFW363)
  826. tmc2130_current_h[E_AXIS] = 36;
  827. tmc2130_current_r[E_AXIS] = 36;
  828. #endif //TMC2130
  829. #ifdef FILAMENT_SENSOR
  830. //disabled filament autoload (PFW360)
  831. fsensor_autoload_set(false);
  832. #endif //FILAMENT_SENSOR
  833. }
  834. MYSERIAL.begin(BAUDRATE);
  835. fdev_setup_stream(uartout, uart_putchar, NULL, _FDEV_SETUP_WRITE); //setup uart out stream
  836. #ifndef W25X20CL
  837. SERIAL_PROTOCOLLNPGM("start");
  838. #endif //W25X20CL
  839. stdout = uartout;
  840. SERIAL_ECHO_START;
  841. printf_P(PSTR(" " FW_VERSION_FULL "\n"));
  842. #ifdef DEBUG_SEC_LANG
  843. lang_table_header_t header;
  844. uint32_t src_addr = 0x00000;
  845. if (lang_get_header(1, &header, &src_addr))
  846. {
  847. //this is comparsion of some printing-methods regarding to flash space usage and code size/readability
  848. #define LT_PRINT_TEST 2
  849. // flash usage
  850. // total p.test
  851. //0 252718 t+c text code
  852. //1 253142 424 170 254
  853. //2 253040 322 164 158
  854. //3 253248 530 135 395
  855. #if (LT_PRINT_TEST==1) //not optimized printf
  856. printf_P(_n(" _src_addr = 0x%08lx\n"), src_addr);
  857. printf_P(_n(" _lt_magic = 0x%08lx %S\n"), header.magic, (header.magic==LANG_MAGIC)?_n("OK"):_n("NA"));
  858. printf_P(_n(" _lt_size = 0x%04x (%d)\n"), header.size, header.size);
  859. printf_P(_n(" _lt_count = 0x%04x (%d)\n"), header.count, header.count);
  860. printf_P(_n(" _lt_chsum = 0x%04x\n"), header.checksum);
  861. printf_P(_n(" _lt_code = 0x%04x (%c%c)\n"), header.code, header.code >> 8, header.code & 0xff);
  862. printf_P(_n(" _lt_sign = 0x%08lx\n"), header.signature);
  863. #elif (LT_PRINT_TEST==2) //optimized printf
  864. printf_P(
  865. _n(
  866. " _src_addr = 0x%08lx\n"
  867. " _lt_magic = 0x%08lx %S\n"
  868. " _lt_size = 0x%04x (%d)\n"
  869. " _lt_count = 0x%04x (%d)\n"
  870. " _lt_chsum = 0x%04x\n"
  871. " _lt_code = 0x%04x (%c%c)\n"
  872. " _lt_resv1 = 0x%08lx\n"
  873. ),
  874. src_addr,
  875. header.magic, (header.magic==LANG_MAGIC)?_n("OK"):_n("NA"),
  876. header.size, header.size,
  877. header.count, header.count,
  878. header.checksum,
  879. header.code, header.code >> 8, header.code & 0xff,
  880. header.signature
  881. );
  882. #elif (LT_PRINT_TEST==3) //arduino print/println (leading zeros not solved)
  883. MYSERIAL.print(" _src_addr = 0x");
  884. MYSERIAL.println(src_addr, 16);
  885. MYSERIAL.print(" _lt_magic = 0x");
  886. MYSERIAL.print(header.magic, 16);
  887. MYSERIAL.println((header.magic==LANG_MAGIC)?" OK":" NA");
  888. MYSERIAL.print(" _lt_size = 0x");
  889. MYSERIAL.print(header.size, 16);
  890. MYSERIAL.print(" (");
  891. MYSERIAL.print(header.size, 10);
  892. MYSERIAL.println(")");
  893. MYSERIAL.print(" _lt_count = 0x");
  894. MYSERIAL.print(header.count, 16);
  895. MYSERIAL.print(" (");
  896. MYSERIAL.print(header.count, 10);
  897. MYSERIAL.println(")");
  898. MYSERIAL.print(" _lt_chsum = 0x");
  899. MYSERIAL.println(header.checksum, 16);
  900. MYSERIAL.print(" _lt_code = 0x");
  901. MYSERIAL.print(header.code, 16);
  902. MYSERIAL.print(" (");
  903. MYSERIAL.print((char)(header.code >> 8), 0);
  904. MYSERIAL.print((char)(header.code & 0xff), 0);
  905. MYSERIAL.println(")");
  906. MYSERIAL.print(" _lt_resv1 = 0x");
  907. MYSERIAL.println(header.signature, 16);
  908. #endif //(LT_PRINT_TEST==)
  909. #undef LT_PRINT_TEST
  910. #if 0
  911. w25x20cl_rd_data(0x25ba, (uint8_t*)&block_buffer, 1024);
  912. for (uint16_t i = 0; i < 1024; i++)
  913. {
  914. if ((i % 16) == 0) printf_P(_n("%04x:"), 0x25ba+i);
  915. printf_P(_n(" %02x"), ((uint8_t*)&block_buffer)[i]);
  916. if ((i % 16) == 15) putchar('\n');
  917. }
  918. #endif
  919. uint16_t sum = 0;
  920. for (uint16_t i = 0; i < header.size; i++)
  921. sum += (uint16_t)pgm_read_byte((uint8_t*)(_SEC_LANG_TABLE + i)) << ((i & 1)?0:8);
  922. printf_P(_n("_SEC_LANG_TABLE checksum = %04x\n"), sum);
  923. sum -= header.checksum; //subtract checksum
  924. printf_P(_n("_SEC_LANG_TABLE checksum = %04x\n"), sum);
  925. sum = (sum >> 8) | ((sum & 0xff) << 8); //swap bytes
  926. if (sum == header.checksum)
  927. printf_P(_n("Checksum OK\n"), sum);
  928. else
  929. printf_P(_n("Checksum NG\n"), sum);
  930. }
  931. else
  932. printf_P(_n("lang_get_header failed!\n"));
  933. #if 0
  934. for (uint16_t i = 0; i < 1024*10; i++)
  935. {
  936. if ((i % 16) == 0) printf_P(_n("%04x:"), _SEC_LANG_TABLE+i);
  937. printf_P(_n(" %02x"), pgm_read_byte((uint8_t*)(_SEC_LANG_TABLE+i)));
  938. if ((i % 16) == 15) putchar('\n');
  939. }
  940. #endif
  941. #if 0
  942. SERIAL_ECHOLN("Reading eeprom from 0 to 100: start");
  943. for (int i = 0; i < 4096; ++i) {
  944. int b = eeprom_read_byte((unsigned char*)i);
  945. if (b != 255) {
  946. SERIAL_ECHO(i);
  947. SERIAL_ECHO(":");
  948. SERIAL_ECHO(b);
  949. SERIAL_ECHOLN("");
  950. }
  951. }
  952. SERIAL_ECHOLN("Reading eeprom from 0 to 100: done");
  953. #endif
  954. #endif //DEBUG_SEC_LANG
  955. // Check startup - does nothing if bootloader sets MCUSR to 0
  956. byte mcu = MCUSR;
  957. /* if (mcu & 1) SERIAL_ECHOLNRPGM(MSG_POWERUP);
  958. if (mcu & 2) SERIAL_ECHOLNRPGM(MSG_EXTERNAL_RESET);
  959. if (mcu & 4) SERIAL_ECHOLNRPGM(MSG_BROWNOUT_RESET);
  960. if (mcu & 8) SERIAL_ECHOLNRPGM(MSG_WATCHDOG_RESET);
  961. if (mcu & 32) SERIAL_ECHOLNRPGM(MSG_SOFTWARE_RESET);*/
  962. if (mcu & 1) puts_P(MSG_POWERUP);
  963. if (mcu & 2) puts_P(MSG_EXTERNAL_RESET);
  964. if (mcu & 4) puts_P(MSG_BROWNOUT_RESET);
  965. if (mcu & 8) puts_P(MSG_WATCHDOG_RESET);
  966. if (mcu & 32) puts_P(MSG_SOFTWARE_RESET);
  967. MCUSR = 0;
  968. //SERIAL_ECHORPGM(MSG_MARLIN);
  969. //SERIAL_ECHOLNRPGM(VERSION_STRING);
  970. #ifdef STRING_VERSION_CONFIG_H
  971. #ifdef STRING_CONFIG_H_AUTHOR
  972. SERIAL_ECHO_START;
  973. SERIAL_ECHORPGM(_n(" Last Updated: "));////MSG_CONFIGURATION_VER c=0 r=0
  974. SERIAL_ECHOPGM(STRING_VERSION_CONFIG_H);
  975. SERIAL_ECHORPGM(_n(" | Author: "));////MSG_AUTHOR c=0 r=0
  976. SERIAL_ECHOLNPGM(STRING_CONFIG_H_AUTHOR);
  977. SERIAL_ECHOPGM("Compiled: ");
  978. SERIAL_ECHOLNPGM(__DATE__);
  979. #endif
  980. #endif
  981. SERIAL_ECHO_START;
  982. SERIAL_ECHORPGM(_n(" Free Memory: "));////MSG_FREE_MEMORY c=0 r=0
  983. SERIAL_ECHO(freeMemory());
  984. SERIAL_ECHORPGM(_n(" PlannerBufferBytes: "));////MSG_PLANNER_BUFFER_BYTES c=0 r=0
  985. SERIAL_ECHOLN((int)sizeof(block_t)*BLOCK_BUFFER_SIZE);
  986. //lcd_update_enable(false); // why do we need this?? - andre
  987. // loads data from EEPROM if available else uses defaults (and resets step acceleration rate)
  988. bool previous_settings_retrieved = false;
  989. uint8_t hw_changed = check_printer_version();
  990. if (!(hw_changed & 0b10)) { //if printer version wasn't changed, check for eeprom version and retrieve settings from eeprom in case that version wasn't changed
  991. previous_settings_retrieved = Config_RetrieveSettings();
  992. }
  993. else { //printer version was changed so use default settings
  994. Config_ResetDefault();
  995. }
  996. SdFatUtil::set_stack_guard(); //writes magic number at the end of static variables to protect against overwriting static memory by stack
  997. tp_init(); // Initialize temperature loop
  998. lcd_splash(); // we need to do this again, because tp_init() kills lcd
  999. plan_init(); // Initialize planner;
  1000. factory_reset();
  1001. lcd_encoder_diff=0;
  1002. #ifdef TMC2130
  1003. uint8_t silentMode = eeprom_read_byte((uint8_t*)EEPROM_SILENT);
  1004. if (silentMode == 0xff) silentMode = 0;
  1005. tmc2130_mode = TMC2130_MODE_NORMAL;
  1006. uint8_t crashdet = eeprom_read_byte((uint8_t*)EEPROM_CRASH_DET);
  1007. if (crashdet && !farm_mode)
  1008. {
  1009. crashdet_enable();
  1010. puts_P(_N("CrashDetect ENABLED!"));
  1011. }
  1012. else
  1013. {
  1014. crashdet_disable();
  1015. puts_P(_N("CrashDetect DISABLED"));
  1016. }
  1017. #ifdef TMC2130_LINEARITY_CORRECTION
  1018. #ifdef TMC2130_LINEARITY_CORRECTION_XYZ
  1019. tmc2130_wave_fac[X_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_WAVE_X_FAC);
  1020. tmc2130_wave_fac[Y_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_WAVE_Y_FAC);
  1021. tmc2130_wave_fac[Z_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_WAVE_Z_FAC);
  1022. #endif //TMC2130_LINEARITY_CORRECTION_XYZ
  1023. tmc2130_wave_fac[E_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_WAVE_E_FAC);
  1024. if (tmc2130_wave_fac[X_AXIS] == 0xff) tmc2130_wave_fac[X_AXIS] = 0;
  1025. if (tmc2130_wave_fac[Y_AXIS] == 0xff) tmc2130_wave_fac[Y_AXIS] = 0;
  1026. if (tmc2130_wave_fac[Z_AXIS] == 0xff) tmc2130_wave_fac[Z_AXIS] = 0;
  1027. if (tmc2130_wave_fac[E_AXIS] == 0xff) tmc2130_wave_fac[E_AXIS] = 0;
  1028. #endif //TMC2130_LINEARITY_CORRECTION
  1029. #ifdef TMC2130_VARIABLE_RESOLUTION
  1030. tmc2130_mres[X_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_X_MRES);
  1031. tmc2130_mres[Y_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_Y_MRES);
  1032. tmc2130_mres[Z_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_Z_MRES);
  1033. tmc2130_mres[E_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_E_MRES);
  1034. if (tmc2130_mres[X_AXIS] == 0xff) tmc2130_mres[X_AXIS] = tmc2130_usteps2mres(TMC2130_USTEPS_XY);
  1035. if (tmc2130_mres[Y_AXIS] == 0xff) tmc2130_mres[Y_AXIS] = tmc2130_usteps2mres(TMC2130_USTEPS_XY);
  1036. if (tmc2130_mres[Z_AXIS] == 0xff) tmc2130_mres[Z_AXIS] = tmc2130_usteps2mres(TMC2130_USTEPS_Z);
  1037. if (tmc2130_mres[E_AXIS] == 0xff) tmc2130_mres[E_AXIS] = tmc2130_usteps2mres(TMC2130_USTEPS_E);
  1038. eeprom_update_byte((uint8_t*)EEPROM_TMC2130_X_MRES, tmc2130_mres[X_AXIS]);
  1039. eeprom_update_byte((uint8_t*)EEPROM_TMC2130_Y_MRES, tmc2130_mres[Y_AXIS]);
  1040. eeprom_update_byte((uint8_t*)EEPROM_TMC2130_Z_MRES, tmc2130_mres[Z_AXIS]);
  1041. eeprom_update_byte((uint8_t*)EEPROM_TMC2130_E_MRES, tmc2130_mres[E_AXIS]);
  1042. #else //TMC2130_VARIABLE_RESOLUTION
  1043. tmc2130_mres[X_AXIS] = tmc2130_usteps2mres(TMC2130_USTEPS_XY);
  1044. tmc2130_mres[Y_AXIS] = tmc2130_usteps2mres(TMC2130_USTEPS_XY);
  1045. tmc2130_mres[Z_AXIS] = tmc2130_usteps2mres(TMC2130_USTEPS_Z);
  1046. tmc2130_mres[E_AXIS] = tmc2130_usteps2mres(TMC2130_USTEPS_E);
  1047. #endif //TMC2130_VARIABLE_RESOLUTION
  1048. #endif //TMC2130
  1049. st_init(); // Initialize stepper, this enables interrupts!
  1050. #ifdef TMC2130
  1051. tmc2130_mode = silentMode?TMC2130_MODE_SILENT:TMC2130_MODE_NORMAL;
  1052. update_mode_profile();
  1053. tmc2130_init();
  1054. #endif //TMC2130
  1055. setup_photpin();
  1056. servo_init();
  1057. // Reset the machine correction matrix.
  1058. // It does not make sense to load the correction matrix until the machine is homed.
  1059. world2machine_reset();
  1060. #ifdef FILAMENT_SENSOR
  1061. fsensor_init();
  1062. #endif //FILAMENT_SENSOR
  1063. #if defined(CONTROLLERFAN_PIN) && (CONTROLLERFAN_PIN > -1)
  1064. SET_OUTPUT(CONTROLLERFAN_PIN); //Set pin used for driver cooling fan
  1065. #endif
  1066. setup_homepin();
  1067. #ifdef TMC2130
  1068. if (1) {
  1069. // try to run to zero phase before powering the Z motor.
  1070. // Move in negative direction
  1071. WRITE(Z_DIR_PIN,INVERT_Z_DIR);
  1072. // Round the current micro-micro steps to micro steps.
  1073. for (uint16_t phase = (tmc2130_rd_MSCNT(Z_AXIS) + 8) >> 4; phase > 0; -- phase) {
  1074. // Until the phase counter is reset to zero.
  1075. WRITE(Z_STEP_PIN, !INVERT_Z_STEP_PIN);
  1076. delay(2);
  1077. WRITE(Z_STEP_PIN, INVERT_Z_STEP_PIN);
  1078. delay(2);
  1079. }
  1080. }
  1081. #endif //TMC2130
  1082. #if defined(Z_AXIS_ALWAYS_ON)
  1083. enable_z();
  1084. #endif
  1085. farm_mode = eeprom_read_byte((uint8_t*)EEPROM_FARM_MODE);
  1086. EEPROM_read_B(EEPROM_FARM_NUMBER, &farm_no);
  1087. if ((farm_mode == 0xFF && farm_no == 0) || (farm_no == static_cast<int>(0xFFFF))) farm_mode = false; //if farm_mode has not been stored to eeprom yet and farm number is set to zero or EEPROM is fresh, deactivate farm mode
  1088. if (farm_no == static_cast<int>(0xFFFF)) farm_no = 0;
  1089. if (farm_mode)
  1090. {
  1091. prusa_statistics(8);
  1092. }
  1093. // Enable Toshiba FlashAir SD card / WiFi enahanced card.
  1094. card.ToshibaFlashAir_enable(eeprom_read_byte((unsigned char*)EEPROM_TOSHIBA_FLASH_AIR_COMPATIBLITY) == 1);
  1095. if (eeprom_read_dword((uint32_t*)(EEPROM_TOP - 4)) == 0x0ffffffff &&
  1096. eeprom_read_dword((uint32_t*)(EEPROM_TOP - 8)) == 0x0ffffffff) {
  1097. // Maiden startup. The firmware has been loaded and first started on a virgin RAMBo board,
  1098. // where all the EEPROM entries are set to 0x0ff.
  1099. // Once a firmware boots up, it forces at least a language selection, which changes
  1100. // EEPROM_LANG to number lower than 0x0ff.
  1101. // 1) Set a high power mode.
  1102. #ifdef TMC2130
  1103. eeprom_write_byte((uint8_t*)EEPROM_SILENT, 0);
  1104. tmc2130_mode = TMC2130_MODE_NORMAL;
  1105. #endif //TMC2130
  1106. eeprom_write_byte((uint8_t*)EEPROM_WIZARD_ACTIVE, 1); //run wizard
  1107. }
  1108. // Force SD card update. Otherwise the SD card update is done from loop() on card.checkautostart(false),
  1109. // but this times out if a blocking dialog is shown in setup().
  1110. card.initsd();
  1111. #ifdef DEBUG_SD_SPEED_TEST
  1112. if (card.cardOK)
  1113. {
  1114. uint8_t* buff = (uint8_t*)block_buffer;
  1115. uint32_t block = 0;
  1116. uint32_t sumr = 0;
  1117. uint32_t sumw = 0;
  1118. for (int i = 0; i < 1024; i++)
  1119. {
  1120. uint32_t u = micros();
  1121. bool res = card.card.readBlock(i, buff);
  1122. u = micros() - u;
  1123. if (res)
  1124. {
  1125. printf_P(PSTR("readBlock %4d 512 bytes %lu us\n"), i, u);
  1126. sumr += u;
  1127. u = micros();
  1128. res = card.card.writeBlock(i, buff);
  1129. u = micros() - u;
  1130. if (res)
  1131. {
  1132. printf_P(PSTR("writeBlock %4d 512 bytes %lu us\n"), i, u);
  1133. sumw += u;
  1134. }
  1135. else
  1136. {
  1137. printf_P(PSTR("writeBlock %4d error\n"), i);
  1138. break;
  1139. }
  1140. }
  1141. else
  1142. {
  1143. printf_P(PSTR("readBlock %4d error\n"), i);
  1144. break;
  1145. }
  1146. }
  1147. uint32_t avg_rspeed = (1024 * 1000000) / (sumr / 512);
  1148. uint32_t avg_wspeed = (1024 * 1000000) / (sumw / 512);
  1149. printf_P(PSTR("avg read speed %lu bytes/s\n"), avg_rspeed);
  1150. printf_P(PSTR("avg write speed %lu bytes/s\n"), avg_wspeed);
  1151. }
  1152. else
  1153. printf_P(PSTR("Card NG!\n"));
  1154. #endif //DEBUG_SD_SPEED_TEST
  1155. if (eeprom_read_byte((uint8_t*)EEPROM_POWER_COUNT) == 0xff) eeprom_write_byte((uint8_t*)EEPROM_POWER_COUNT, 0);
  1156. if (eeprom_read_byte((uint8_t*)EEPROM_CRASH_COUNT_X) == 0xff) eeprom_write_byte((uint8_t*)EEPROM_CRASH_COUNT_X, 0);
  1157. if (eeprom_read_byte((uint8_t*)EEPROM_CRASH_COUNT_Y) == 0xff) eeprom_write_byte((uint8_t*)EEPROM_CRASH_COUNT_Y, 0);
  1158. if (eeprom_read_byte((uint8_t*)EEPROM_FERROR_COUNT) == 0xff) eeprom_write_byte((uint8_t*)EEPROM_FERROR_COUNT, 0);
  1159. if (eeprom_read_word((uint16_t*)EEPROM_POWER_COUNT_TOT) == 0xffff) eeprom_write_word((uint16_t*)EEPROM_POWER_COUNT_TOT, 0);
  1160. if (eeprom_read_word((uint16_t*)EEPROM_CRASH_COUNT_X_TOT) == 0xffff) eeprom_write_word((uint16_t*)EEPROM_CRASH_COUNT_X_TOT, 0);
  1161. if (eeprom_read_word((uint16_t*)EEPROM_CRASH_COUNT_Y_TOT) == 0xffff) eeprom_write_word((uint16_t*)EEPROM_CRASH_COUNT_Y_TOT, 0);
  1162. if (eeprom_read_word((uint16_t*)EEPROM_FERROR_COUNT_TOT) == 0xffff) eeprom_write_word((uint16_t*)EEPROM_FERROR_COUNT_TOT, 0);
  1163. if (eeprom_read_word((uint16_t*)EEPROM_MMU_FAIL_TOT) == 0xffff) eeprom_update_word((uint16_t *)EEPROM_MMU_FAIL_TOT, 0);
  1164. if (eeprom_read_word((uint16_t*)EEPROM_MMU_LOAD_FAIL_TOT) == 0xffff) eeprom_update_word((uint16_t *)EEPROM_MMU_LOAD_FAIL_TOT, 0);
  1165. if (eeprom_read_byte((uint8_t*)EEPROM_MMU_FAIL) == 0xff) eeprom_update_byte((uint8_t *)EEPROM_MMU_FAIL, 0);
  1166. if (eeprom_read_byte((uint8_t*)EEPROM_MMU_LOAD_FAIL) == 0xff) eeprom_update_byte((uint8_t *)EEPROM_MMU_LOAD_FAIL, 0);
  1167. #ifdef SNMM
  1168. if (eeprom_read_dword((uint32_t*)EEPROM_BOWDEN_LENGTH) == 0x0ffffffff) { //bowden length used for SNMM
  1169. int _z = BOWDEN_LENGTH;
  1170. for(int i = 0; i<4; i++) EEPROM_save_B(EEPROM_BOWDEN_LENGTH + i * 2, &_z);
  1171. }
  1172. #endif
  1173. // In the future, somewhere here would one compare the current firmware version against the firmware version stored in the EEPROM.
  1174. // If they differ, an update procedure may need to be performed. At the end of this block, the current firmware version
  1175. // is being written into the EEPROM, so the update procedure will be triggered only once.
  1176. #if (LANG_MODE != 0) //secondary language support
  1177. #ifdef DEBUG_W25X20CL
  1178. W25X20CL_SPI_ENTER();
  1179. uint8_t uid[8]; // 64bit unique id
  1180. w25x20cl_rd_uid(uid);
  1181. puts_P(_n("W25X20CL UID="));
  1182. for (uint8_t i = 0; i < 8; i ++)
  1183. printf_P(PSTR("%02hhx"), uid[i]);
  1184. putchar('\n');
  1185. list_sec_lang_from_external_flash();
  1186. #endif //DEBUG_W25X20CL
  1187. // lang_reset();
  1188. if (!lang_select(eeprom_read_byte((uint8_t*)EEPROM_LANG)))
  1189. lcd_language();
  1190. #ifdef DEBUG_SEC_LANG
  1191. uint16_t sec_lang_code = lang_get_code(1);
  1192. uint16_t ui = _SEC_LANG_TABLE; //table pointer
  1193. printf_P(_n("lang_selected=%d\nlang_table=0x%04x\nSEC_LANG_CODE=0x%04x (%c%c)\n"), lang_selected, ui, sec_lang_code, sec_lang_code >> 8, sec_lang_code & 0xff);
  1194. lang_print_sec_lang(uartout);
  1195. #endif //DEBUG_SEC_LANG
  1196. #endif //(LANG_MODE != 0)
  1197. if (eeprom_read_byte((uint8_t*)EEPROM_TEMP_CAL_ACTIVE) == 255) {
  1198. eeprom_write_byte((uint8_t*)EEPROM_TEMP_CAL_ACTIVE, 0);
  1199. temp_cal_active = false;
  1200. } else temp_cal_active = eeprom_read_byte((uint8_t*)EEPROM_TEMP_CAL_ACTIVE);
  1201. if (eeprom_read_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA) == 255) {
  1202. //eeprom_write_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 0);
  1203. eeprom_write_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 1);
  1204. int16_t z_shift = 0;
  1205. for (uint8_t i = 0; i < 5; i++) EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + i * 2, &z_shift);
  1206. eeprom_write_byte((uint8_t*)EEPROM_TEMP_CAL_ACTIVE, 0);
  1207. temp_cal_active = false;
  1208. }
  1209. if (eeprom_read_byte((uint8_t*)EEPROM_UVLO) == 255) {
  1210. eeprom_write_byte((uint8_t*)EEPROM_UVLO, 0);
  1211. }
  1212. if (eeprom_read_byte((uint8_t*)EEPROM_SD_SORT) == 255) {
  1213. eeprom_write_byte((uint8_t*)EEPROM_SD_SORT, 0);
  1214. }
  1215. check_babystep(); //checking if Z babystep is in allowed range
  1216. #ifdef UVLO_SUPPORT
  1217. setup_uvlo_interrupt();
  1218. #endif //UVLO_SUPPORT
  1219. #if !defined(DEBUG_DISABLE_FANCHECK) && defined(FANCHECK) && defined(TACH_1) && TACH_1 >-1
  1220. setup_fan_interrupt();
  1221. #endif //DEBUG_DISABLE_FANCHECK
  1222. #ifdef PAT9125
  1223. fsensor_setup_interrupt();
  1224. #endif //PAT9125
  1225. for (int i = 0; i<4; i++) EEPROM_read_B(EEPROM_BOWDEN_LENGTH + i * 2, &bowden_length[i]);
  1226. #ifndef DEBUG_DISABLE_STARTMSGS
  1227. KEEPALIVE_STATE(PAUSED_FOR_USER);
  1228. show_fw_version_warnings();
  1229. switch (hw_changed) {
  1230. //if motherboard or printer type was changed inform user as it can indicate flashing wrong firmware version
  1231. //if user confirms with knob, new hw version (printer and/or motherboard) is written to eeprom and message will be not shown next time
  1232. case(0b01):
  1233. lcd_show_fullscreen_message_and_wait_P(_i("Warning: motherboard type changed.")); ////MSG_CHANGED_MOTHERBOARD c=20 r=4
  1234. eeprom_write_word((uint16_t*)EEPROM_BOARD_TYPE, MOTHERBOARD);
  1235. break;
  1236. case(0b10):
  1237. lcd_show_fullscreen_message_and_wait_P(_i("Warning: printer type changed.")); ////MSG_CHANGED_PRINTER c=20 r=4
  1238. eeprom_write_word((uint16_t*)EEPROM_PRINTER_TYPE, PRINTER_TYPE);
  1239. break;
  1240. case(0b11):
  1241. lcd_show_fullscreen_message_and_wait_P(_i("Warning: both printer type and motherboard type changed.")); ////MSG_CHANGED_BOTH c=20 r=4
  1242. eeprom_write_word((uint16_t*)EEPROM_PRINTER_TYPE, PRINTER_TYPE);
  1243. eeprom_write_word((uint16_t*)EEPROM_BOARD_TYPE, MOTHERBOARD);
  1244. break;
  1245. default: break; //no change, show no message
  1246. }
  1247. if (!previous_settings_retrieved) {
  1248. lcd_show_fullscreen_message_and_wait_P(_i("Old settings found. Default PID, Esteps etc. will be set.")); //if EEPROM version or printer type was changed, inform user that default setting were loaded////MSG_DEFAULT_SETTINGS_LOADED c=20 r=4
  1249. Config_StoreSettings();
  1250. }
  1251. if (eeprom_read_byte((uint8_t*)EEPROM_WIZARD_ACTIVE) == 1) {
  1252. lcd_wizard(WizState::Run);
  1253. }
  1254. if (eeprom_read_byte((uint8_t*)EEPROM_WIZARD_ACTIVE) == 0) { //dont show calibration status messages if wizard is currently active
  1255. if (calibration_status() == CALIBRATION_STATUS_ASSEMBLED ||
  1256. calibration_status() == CALIBRATION_STATUS_UNKNOWN ||
  1257. calibration_status() == CALIBRATION_STATUS_XYZ_CALIBRATION) {
  1258. // Reset the babystepping values, so the printer will not move the Z axis up when the babystepping is enabled.
  1259. eeprom_update_word((uint16_t*)EEPROM_BABYSTEP_Z, 0);
  1260. // Show the message.
  1261. lcd_show_fullscreen_message_and_wait_P(_T(MSG_FOLLOW_CALIBRATION_FLOW));
  1262. }
  1263. else if (calibration_status() == CALIBRATION_STATUS_LIVE_ADJUST) {
  1264. // Show the message.
  1265. lcd_show_fullscreen_message_and_wait_P(_T(MSG_BABYSTEP_Z_NOT_SET));
  1266. lcd_update_enable(true);
  1267. }
  1268. else if (calibration_status() == CALIBRATION_STATUS_CALIBRATED && temp_cal_active == true && calibration_status_pinda() == false) {
  1269. //lcd_show_fullscreen_message_and_wait_P(_i("Temperature calibration has not been run yet"));////MSG_PINDA_NOT_CALIBRATED c=20 r=4
  1270. lcd_update_enable(true);
  1271. }
  1272. else if (calibration_status() == CALIBRATION_STATUS_Z_CALIBRATION) {
  1273. // Show the message.
  1274. lcd_show_fullscreen_message_and_wait_P(_T(MSG_FOLLOW_Z_CALIBRATION_FLOW));
  1275. }
  1276. }
  1277. #if !defined (DEBUG_DISABLE_FORCE_SELFTEST) && defined (TMC2130)
  1278. if (force_selftest_if_fw_version() && calibration_status() < CALIBRATION_STATUS_ASSEMBLED) {
  1279. lcd_show_fullscreen_message_and_wait_P(_i("Selftest will be run to calibrate accurate sensorless rehoming."));////MSG_FORCE_SELFTEST c=20 r=8
  1280. update_current_firmware_version_to_eeprom();
  1281. lcd_selftest();
  1282. }
  1283. #endif //TMC2130 && !DEBUG_DISABLE_FORCE_SELFTEST
  1284. KEEPALIVE_STATE(IN_PROCESS);
  1285. #endif //DEBUG_DISABLE_STARTMSGS
  1286. lcd_update_enable(true);
  1287. lcd_clear();
  1288. lcd_update(2);
  1289. // Store the currently running firmware into an eeprom,
  1290. // so the next time the firmware gets updated, it will know from which version it has been updated.
  1291. update_current_firmware_version_to_eeprom();
  1292. #ifdef TMC2130
  1293. tmc2130_home_origin[X_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_HOME_X_ORIGIN);
  1294. tmc2130_home_bsteps[X_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_HOME_X_BSTEPS);
  1295. tmc2130_home_fsteps[X_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_HOME_X_FSTEPS);
  1296. if (tmc2130_home_origin[X_AXIS] == 0xff) tmc2130_home_origin[X_AXIS] = 0;
  1297. if (tmc2130_home_bsteps[X_AXIS] == 0xff) tmc2130_home_bsteps[X_AXIS] = 48;
  1298. if (tmc2130_home_fsteps[X_AXIS] == 0xff) tmc2130_home_fsteps[X_AXIS] = 48;
  1299. tmc2130_home_origin[Y_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_HOME_Y_ORIGIN);
  1300. tmc2130_home_bsteps[Y_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_HOME_Y_BSTEPS);
  1301. tmc2130_home_fsteps[Y_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_HOME_Y_FSTEPS);
  1302. if (tmc2130_home_origin[Y_AXIS] == 0xff) tmc2130_home_origin[Y_AXIS] = 0;
  1303. if (tmc2130_home_bsteps[Y_AXIS] == 0xff) tmc2130_home_bsteps[Y_AXIS] = 48;
  1304. if (tmc2130_home_fsteps[Y_AXIS] == 0xff) tmc2130_home_fsteps[Y_AXIS] = 48;
  1305. tmc2130_home_enabled = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_HOME_ENABLED);
  1306. if (tmc2130_home_enabled == 0xff) tmc2130_home_enabled = 0;
  1307. #endif //TMC2130
  1308. #ifdef UVLO_SUPPORT
  1309. if (eeprom_read_byte((uint8_t*)EEPROM_UVLO) != 0) { //previous print was terminated by UVLO
  1310. /*
  1311. if (lcd_show_fullscreen_message_yes_no_and_wait_P(_T(MSG_RECOVER_PRINT), false)) recover_print();
  1312. else {
  1313. eeprom_update_byte((uint8_t*)EEPROM_UVLO, 0);
  1314. lcd_update_enable(true);
  1315. lcd_update(2);
  1316. lcd_setstatuspgm(_T(WELCOME_MSG));
  1317. }
  1318. */
  1319. manage_heater(); // Update temperatures
  1320. #ifdef DEBUG_UVLO_AUTOMATIC_RECOVER
  1321. printf_P(_N("Power panic detected!\nCurrent bed temp:%d\nSaved bed temp:%d\n"), (int)degBed(), eeprom_read_byte((uint8_t*)EEPROM_UVLO_TARGET_BED))
  1322. #endif
  1323. if ( degBed() > ( (float)eeprom_read_byte((uint8_t*)EEPROM_UVLO_TARGET_BED) - AUTOMATIC_UVLO_BED_TEMP_OFFSET) ){
  1324. #ifdef DEBUG_UVLO_AUTOMATIC_RECOVER
  1325. puts_P(_N("Automatic recovery!"));
  1326. #endif
  1327. recover_print(1);
  1328. }
  1329. else{
  1330. #ifdef DEBUG_UVLO_AUTOMATIC_RECOVER
  1331. puts_P(_N("Normal recovery!"));
  1332. #endif
  1333. if ( lcd_show_fullscreen_message_yes_no_and_wait_P(_T(MSG_RECOVER_PRINT), false) ) recover_print(0);
  1334. else {
  1335. eeprom_update_byte((uint8_t*)EEPROM_UVLO, 0);
  1336. lcd_update_enable(true);
  1337. lcd_update(2);
  1338. lcd_setstatuspgm(_T(WELCOME_MSG));
  1339. }
  1340. }
  1341. }
  1342. #endif //UVLO_SUPPORT
  1343. KEEPALIVE_STATE(NOT_BUSY);
  1344. #ifdef WATCHDOG
  1345. wdt_enable(WDTO_4S);
  1346. #endif //WATCHDOG
  1347. }
  1348. void trace();
  1349. #define CHUNK_SIZE 64 // bytes
  1350. #define SAFETY_MARGIN 1
  1351. char chunk[CHUNK_SIZE+SAFETY_MARGIN];
  1352. int chunkHead = 0;
  1353. void serial_read_stream() {
  1354. setAllTargetHotends(0);
  1355. setTargetBed(0);
  1356. lcd_clear();
  1357. lcd_puts_P(PSTR(" Upload in progress"));
  1358. // first wait for how many bytes we will receive
  1359. uint32_t bytesToReceive;
  1360. // receive the four bytes
  1361. char bytesToReceiveBuffer[4];
  1362. for (int i=0; i<4; i++) {
  1363. int data;
  1364. while ((data = MYSERIAL.read()) == -1) {};
  1365. bytesToReceiveBuffer[i] = data;
  1366. }
  1367. // make it a uint32
  1368. memcpy(&bytesToReceive, &bytesToReceiveBuffer, 4);
  1369. // we're ready, notify the sender
  1370. MYSERIAL.write('+');
  1371. // lock in the routine
  1372. uint32_t receivedBytes = 0;
  1373. while (prusa_sd_card_upload) {
  1374. int i;
  1375. for (i=0; i<CHUNK_SIZE; i++) {
  1376. int data;
  1377. // check if we're not done
  1378. if (receivedBytes == bytesToReceive) {
  1379. break;
  1380. }
  1381. // read the next byte
  1382. while ((data = MYSERIAL.read()) == -1) {};
  1383. receivedBytes++;
  1384. // save it to the chunk
  1385. chunk[i] = data;
  1386. }
  1387. // write the chunk to SD
  1388. card.write_command_no_newline(&chunk[0]);
  1389. // notify the sender we're ready for more data
  1390. MYSERIAL.write('+');
  1391. // for safety
  1392. manage_heater();
  1393. // check if we're done
  1394. if(receivedBytes == bytesToReceive) {
  1395. trace(); // beep
  1396. card.closefile();
  1397. prusa_sd_card_upload = false;
  1398. SERIAL_PROTOCOLLNRPGM(MSG_FILE_SAVED);
  1399. }
  1400. }
  1401. }
  1402. #ifdef HOST_KEEPALIVE_FEATURE
  1403. /**
  1404. * Output a "busy" message at regular intervals
  1405. * while the machine is not accepting commands.
  1406. */
  1407. void host_keepalive() {
  1408. if (farm_mode) return;
  1409. long ms = millis();
  1410. if (host_keepalive_interval && busy_state != NOT_BUSY) {
  1411. if ((ms - prev_busy_signal_ms) < (long)(1000L * host_keepalive_interval)) return;
  1412. switch (busy_state) {
  1413. case IN_HANDLER:
  1414. case IN_PROCESS:
  1415. SERIAL_ECHO_START;
  1416. SERIAL_ECHOLNPGM("busy: processing");
  1417. break;
  1418. case PAUSED_FOR_USER:
  1419. SERIAL_ECHO_START;
  1420. SERIAL_ECHOLNPGM("busy: paused for user");
  1421. break;
  1422. case PAUSED_FOR_INPUT:
  1423. SERIAL_ECHO_START;
  1424. SERIAL_ECHOLNPGM("busy: paused for input");
  1425. break;
  1426. default:
  1427. break;
  1428. }
  1429. }
  1430. prev_busy_signal_ms = ms;
  1431. }
  1432. #endif
  1433. // The loop() function is called in an endless loop by the Arduino framework from the default main() routine.
  1434. // Before loop(), the setup() function is called by the main() routine.
  1435. void loop()
  1436. {
  1437. KEEPALIVE_STATE(NOT_BUSY);
  1438. if ((usb_printing_counter > 0) && ((millis()-_usb_timer) > 1000))
  1439. {
  1440. is_usb_printing = true;
  1441. usb_printing_counter--;
  1442. _usb_timer = millis();
  1443. }
  1444. if (usb_printing_counter == 0)
  1445. {
  1446. is_usb_printing = false;
  1447. }
  1448. if (prusa_sd_card_upload)
  1449. {
  1450. //we read byte-by byte
  1451. serial_read_stream();
  1452. } else
  1453. {
  1454. get_command();
  1455. #ifdef SDSUPPORT
  1456. card.checkautostart(false);
  1457. #endif
  1458. if(buflen)
  1459. {
  1460. cmdbuffer_front_already_processed = false;
  1461. #ifdef SDSUPPORT
  1462. if(card.saving)
  1463. {
  1464. // Saving a G-code file onto an SD-card is in progress.
  1465. // Saving starts with M28, saving until M29 is seen.
  1466. if(strstr_P(CMDBUFFER_CURRENT_STRING, PSTR("M29")) == NULL) {
  1467. card.write_command(CMDBUFFER_CURRENT_STRING);
  1468. if(card.logging)
  1469. process_commands();
  1470. else
  1471. SERIAL_PROTOCOLLNRPGM(MSG_OK);
  1472. } else {
  1473. card.closefile();
  1474. SERIAL_PROTOCOLLNRPGM(MSG_FILE_SAVED);
  1475. }
  1476. } else {
  1477. process_commands();
  1478. }
  1479. #else
  1480. process_commands();
  1481. #endif //SDSUPPORT
  1482. if (! cmdbuffer_front_already_processed && buflen)
  1483. {
  1484. // ptr points to the start of the block currently being processed.
  1485. // The first character in the block is the block type.
  1486. char *ptr = cmdbuffer + bufindr;
  1487. if (*ptr == CMDBUFFER_CURRENT_TYPE_SDCARD) {
  1488. // To support power panic, move the lenght of the command on the SD card to a planner buffer.
  1489. union {
  1490. struct {
  1491. char lo;
  1492. char hi;
  1493. } lohi;
  1494. uint16_t value;
  1495. } sdlen;
  1496. sdlen.value = 0;
  1497. {
  1498. // This block locks the interrupts globally for 3.25 us,
  1499. // which corresponds to a maximum repeat frequency of 307.69 kHz.
  1500. // This blocking is safe in the context of a 10kHz stepper driver interrupt
  1501. // or a 115200 Bd serial line receive interrupt, which will not trigger faster than 12kHz.
  1502. cli();
  1503. // Reset the command to something, which will be ignored by the power panic routine,
  1504. // so this buffer length will not be counted twice.
  1505. *ptr ++ = CMDBUFFER_CURRENT_TYPE_TO_BE_REMOVED;
  1506. // Extract the current buffer length.
  1507. sdlen.lohi.lo = *ptr ++;
  1508. sdlen.lohi.hi = *ptr;
  1509. // and pass it to the planner queue.
  1510. planner_add_sd_length(sdlen.value);
  1511. sei();
  1512. }
  1513. }
  1514. else if((*ptr == CMDBUFFER_CURRENT_TYPE_USB_WITH_LINENR) && !IS_SD_PRINTING){
  1515. cli();
  1516. *ptr ++ = CMDBUFFER_CURRENT_TYPE_TO_BE_REMOVED;
  1517. // and one for each command to previous block in the planner queue.
  1518. planner_add_sd_length(1);
  1519. sei();
  1520. }
  1521. // Now it is safe to release the already processed command block. If interrupted by the power panic now,
  1522. // this block's SD card length will not be counted twice as its command type has been replaced
  1523. // by CMDBUFFER_CURRENT_TYPE_TO_BE_REMOVED.
  1524. cmdqueue_pop_front();
  1525. }
  1526. host_keepalive();
  1527. }
  1528. }
  1529. //check heater every n milliseconds
  1530. manage_heater();
  1531. isPrintPaused ? manage_inactivity(true) : manage_inactivity(false);
  1532. checkHitEndstops();
  1533. lcd_update(0);
  1534. #ifdef TMC2130
  1535. tmc2130_check_overtemp();
  1536. if (tmc2130_sg_crash)
  1537. {
  1538. uint8_t crash = tmc2130_sg_crash;
  1539. tmc2130_sg_crash = 0;
  1540. // crashdet_stop_and_save_print();
  1541. switch (crash)
  1542. {
  1543. case 1: enquecommand_P((PSTR("CRASH_DETECTEDX"))); break;
  1544. case 2: enquecommand_P((PSTR("CRASH_DETECTEDY"))); break;
  1545. case 3: enquecommand_P((PSTR("CRASH_DETECTEDXY"))); break;
  1546. }
  1547. }
  1548. #endif //TMC2130
  1549. mmu_loop();
  1550. }
  1551. #define DEFINE_PGM_READ_ANY(type, reader) \
  1552. static inline type pgm_read_any(const type *p) \
  1553. { return pgm_read_##reader##_near(p); }
  1554. DEFINE_PGM_READ_ANY(float, float);
  1555. DEFINE_PGM_READ_ANY(signed char, byte);
  1556. #define XYZ_CONSTS_FROM_CONFIG(type, array, CONFIG) \
  1557. static const PROGMEM type array##_P[3] = \
  1558. { X_##CONFIG, Y_##CONFIG, Z_##CONFIG }; \
  1559. static inline type array(int axis) \
  1560. { return pgm_read_any(&array##_P[axis]); } \
  1561. type array##_ext(int axis) \
  1562. { return pgm_read_any(&array##_P[axis]); }
  1563. XYZ_CONSTS_FROM_CONFIG(float, base_min_pos, MIN_POS);
  1564. XYZ_CONSTS_FROM_CONFIG(float, base_max_pos, MAX_POS);
  1565. XYZ_CONSTS_FROM_CONFIG(float, base_home_pos, HOME_POS);
  1566. XYZ_CONSTS_FROM_CONFIG(float, max_length, MAX_LENGTH);
  1567. XYZ_CONSTS_FROM_CONFIG(float, home_retract_mm, HOME_RETRACT_MM);
  1568. XYZ_CONSTS_FROM_CONFIG(signed char, home_dir, HOME_DIR);
  1569. static void axis_is_at_home(int axis) {
  1570. current_position[axis] = base_home_pos(axis) + cs.add_homing[axis];
  1571. min_pos[axis] = base_min_pos(axis) + cs.add_homing[axis];
  1572. max_pos[axis] = base_max_pos(axis) + cs.add_homing[axis];
  1573. }
  1574. inline void set_current_to_destination() { memcpy(current_position, destination, sizeof(current_position)); }
  1575. inline void set_destination_to_current() { memcpy(destination, current_position, sizeof(destination)); }
  1576. //! @return original feedmultiply
  1577. static int setup_for_endstop_move(bool enable_endstops_now = true) {
  1578. saved_feedrate = feedrate;
  1579. int l_feedmultiply = feedmultiply;
  1580. feedmultiply = 100;
  1581. previous_millis_cmd = millis();
  1582. enable_endstops(enable_endstops_now);
  1583. return l_feedmultiply;
  1584. }
  1585. //! @param original_feedmultiply feedmultiply to restore
  1586. static void clean_up_after_endstop_move(int original_feedmultiply) {
  1587. #ifdef ENDSTOPS_ONLY_FOR_HOMING
  1588. enable_endstops(false);
  1589. #endif
  1590. feedrate = saved_feedrate;
  1591. feedmultiply = original_feedmultiply;
  1592. previous_millis_cmd = millis();
  1593. }
  1594. #ifdef ENABLE_AUTO_BED_LEVELING
  1595. #ifdef AUTO_BED_LEVELING_GRID
  1596. static void set_bed_level_equation_lsq(double *plane_equation_coefficients)
  1597. {
  1598. vector_3 planeNormal = vector_3(-plane_equation_coefficients[0], -plane_equation_coefficients[1], 1);
  1599. planeNormal.debug("planeNormal");
  1600. plan_bed_level_matrix = matrix_3x3::create_look_at(planeNormal);
  1601. //bedLevel.debug("bedLevel");
  1602. //plan_bed_level_matrix.debug("bed level before");
  1603. //vector_3 uncorrected_position = plan_get_position_mm();
  1604. //uncorrected_position.debug("position before");
  1605. vector_3 corrected_position = plan_get_position();
  1606. // corrected_position.debug("position after");
  1607. current_position[X_AXIS] = corrected_position.x;
  1608. current_position[Y_AXIS] = corrected_position.y;
  1609. current_position[Z_AXIS] = corrected_position.z;
  1610. // put the bed at 0 so we don't go below it.
  1611. current_position[Z_AXIS] = cs.zprobe_zoffset; // in the lsq we reach here after raising the extruder due to the loop structure
  1612. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1613. }
  1614. #else // not AUTO_BED_LEVELING_GRID
  1615. static void set_bed_level_equation_3pts(float z_at_pt_1, float z_at_pt_2, float z_at_pt_3) {
  1616. plan_bed_level_matrix.set_to_identity();
  1617. vector_3 pt1 = vector_3(ABL_PROBE_PT_1_X, ABL_PROBE_PT_1_Y, z_at_pt_1);
  1618. vector_3 pt2 = vector_3(ABL_PROBE_PT_2_X, ABL_PROBE_PT_2_Y, z_at_pt_2);
  1619. vector_3 pt3 = vector_3(ABL_PROBE_PT_3_X, ABL_PROBE_PT_3_Y, z_at_pt_3);
  1620. vector_3 from_2_to_1 = (pt1 - pt2).get_normal();
  1621. vector_3 from_2_to_3 = (pt3 - pt2).get_normal();
  1622. vector_3 planeNormal = vector_3::cross(from_2_to_1, from_2_to_3).get_normal();
  1623. planeNormal = vector_3(planeNormal.x, planeNormal.y, abs(planeNormal.z));
  1624. plan_bed_level_matrix = matrix_3x3::create_look_at(planeNormal);
  1625. vector_3 corrected_position = plan_get_position();
  1626. current_position[X_AXIS] = corrected_position.x;
  1627. current_position[Y_AXIS] = corrected_position.y;
  1628. current_position[Z_AXIS] = corrected_position.z;
  1629. // put the bed at 0 so we don't go below it.
  1630. current_position[Z_AXIS] = cs.zprobe_zoffset;
  1631. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1632. }
  1633. #endif // AUTO_BED_LEVELING_GRID
  1634. static void run_z_probe() {
  1635. plan_bed_level_matrix.set_to_identity();
  1636. feedrate = homing_feedrate[Z_AXIS];
  1637. // move down until you find the bed
  1638. float zPosition = -10;
  1639. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder);
  1640. st_synchronize();
  1641. // we have to let the planner know where we are right now as it is not where we said to go.
  1642. zPosition = st_get_position_mm(Z_AXIS);
  1643. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS]);
  1644. // move up the retract distance
  1645. zPosition += home_retract_mm(Z_AXIS);
  1646. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder);
  1647. st_synchronize();
  1648. // move back down slowly to find bed
  1649. feedrate = homing_feedrate[Z_AXIS]/4;
  1650. zPosition -= home_retract_mm(Z_AXIS) * 2;
  1651. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder);
  1652. st_synchronize();
  1653. current_position[Z_AXIS] = st_get_position_mm(Z_AXIS);
  1654. // make sure the planner knows where we are as it may be a bit different than we last said to move to
  1655. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1656. }
  1657. static void do_blocking_move_to(float x, float y, float z) {
  1658. float oldFeedRate = feedrate;
  1659. feedrate = homing_feedrate[Z_AXIS];
  1660. current_position[Z_AXIS] = z;
  1661. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], feedrate/60, active_extruder);
  1662. st_synchronize();
  1663. feedrate = XY_TRAVEL_SPEED;
  1664. current_position[X_AXIS] = x;
  1665. current_position[Y_AXIS] = y;
  1666. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], feedrate/60, active_extruder);
  1667. st_synchronize();
  1668. feedrate = oldFeedRate;
  1669. }
  1670. static void do_blocking_move_relative(float offset_x, float offset_y, float offset_z) {
  1671. do_blocking_move_to(current_position[X_AXIS] + offset_x, current_position[Y_AXIS] + offset_y, current_position[Z_AXIS] + offset_z);
  1672. }
  1673. /// Probe bed height at position (x,y), returns the measured z value
  1674. static float probe_pt(float x, float y, float z_before) {
  1675. // move to right place
  1676. do_blocking_move_to(current_position[X_AXIS], current_position[Y_AXIS], z_before);
  1677. do_blocking_move_to(x - X_PROBE_OFFSET_FROM_EXTRUDER, y - Y_PROBE_OFFSET_FROM_EXTRUDER, current_position[Z_AXIS]);
  1678. run_z_probe();
  1679. float measured_z = current_position[Z_AXIS];
  1680. SERIAL_PROTOCOLRPGM(_T(MSG_BED));
  1681. SERIAL_PROTOCOLPGM(" x: ");
  1682. SERIAL_PROTOCOL(x);
  1683. SERIAL_PROTOCOLPGM(" y: ");
  1684. SERIAL_PROTOCOL(y);
  1685. SERIAL_PROTOCOLPGM(" z: ");
  1686. SERIAL_PROTOCOL(measured_z);
  1687. SERIAL_PROTOCOLPGM("\n");
  1688. return measured_z;
  1689. }
  1690. #endif // #ifdef ENABLE_AUTO_BED_LEVELING
  1691. #ifdef LIN_ADVANCE
  1692. /**
  1693. * M900: Set and/or Get advance K factor and WH/D ratio
  1694. *
  1695. * K<factor> Set advance K factor
  1696. * R<ratio> Set ratio directly (overrides WH/D)
  1697. * W<width> H<height> D<diam> Set ratio from WH/D
  1698. */
  1699. inline void gcode_M900() {
  1700. st_synchronize();
  1701. const float newK = code_seen('K') ? code_value_float() : -1;
  1702. if (newK >= 0) extruder_advance_k = newK;
  1703. float newR = code_seen('R') ? code_value_float() : -1;
  1704. if (newR < 0) {
  1705. const float newD = code_seen('D') ? code_value_float() : -1,
  1706. newW = code_seen('W') ? code_value_float() : -1,
  1707. newH = code_seen('H') ? code_value_float() : -1;
  1708. if (newD >= 0 && newW >= 0 && newH >= 0)
  1709. newR = newD ? (newW * newH) / (sq(newD * 0.5) * M_PI) : 0;
  1710. }
  1711. if (newR >= 0) advance_ed_ratio = newR;
  1712. SERIAL_ECHO_START;
  1713. SERIAL_ECHOPGM("Advance K=");
  1714. SERIAL_ECHOLN(extruder_advance_k);
  1715. SERIAL_ECHOPGM(" E/D=");
  1716. const float ratio = advance_ed_ratio;
  1717. if (ratio) SERIAL_ECHOLN(ratio); else SERIAL_ECHOLNPGM("Auto");
  1718. }
  1719. #endif // LIN_ADVANCE
  1720. bool check_commands() {
  1721. bool end_command_found = false;
  1722. while (buflen)
  1723. {
  1724. if ((code_seen("M84")) || (code_seen("M 84"))) end_command_found = true;
  1725. if (!cmdbuffer_front_already_processed)
  1726. cmdqueue_pop_front();
  1727. cmdbuffer_front_already_processed = false;
  1728. }
  1729. return end_command_found;
  1730. }
  1731. #ifdef TMC2130
  1732. bool calibrate_z_auto()
  1733. {
  1734. //lcd_display_message_fullscreen_P(_T(MSG_CALIBRATE_Z_AUTO));
  1735. lcd_clear();
  1736. lcd_puts_at_P(0,1, _T(MSG_CALIBRATE_Z_AUTO));
  1737. bool endstops_enabled = enable_endstops(true);
  1738. int axis_up_dir = -home_dir(Z_AXIS);
  1739. tmc2130_home_enter(Z_AXIS_MASK);
  1740. current_position[Z_AXIS] = 0;
  1741. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1742. set_destination_to_current();
  1743. destination[Z_AXIS] += (1.1 * max_length(Z_AXIS) * axis_up_dir);
  1744. feedrate = homing_feedrate[Z_AXIS];
  1745. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1746. st_synchronize();
  1747. // current_position[axis] = 0;
  1748. // plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1749. tmc2130_home_exit();
  1750. enable_endstops(false);
  1751. current_position[Z_AXIS] = 0;
  1752. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1753. set_destination_to_current();
  1754. destination[Z_AXIS] += 10 * axis_up_dir; //10mm up
  1755. feedrate = homing_feedrate[Z_AXIS] / 2;
  1756. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1757. st_synchronize();
  1758. enable_endstops(endstops_enabled);
  1759. current_position[Z_AXIS] = Z_MAX_POS+2.0;
  1760. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1761. return true;
  1762. }
  1763. #endif //TMC2130
  1764. void homeaxis(int axis, uint8_t cnt, uint8_t* pstep)
  1765. {
  1766. bool endstops_enabled = enable_endstops(true); //RP: endstops should be allways enabled durring homing
  1767. #define HOMEAXIS_DO(LETTER) \
  1768. ((LETTER##_MIN_PIN > -1 && LETTER##_HOME_DIR==-1) || (LETTER##_MAX_PIN > -1 && LETTER##_HOME_DIR==1))
  1769. if ((axis==X_AXIS)?HOMEAXIS_DO(X):(axis==Y_AXIS)?HOMEAXIS_DO(Y):0)
  1770. {
  1771. int axis_home_dir = home_dir(axis);
  1772. feedrate = homing_feedrate[axis];
  1773. #ifdef TMC2130
  1774. tmc2130_home_enter(X_AXIS_MASK << axis);
  1775. #endif //TMC2130
  1776. // Move away a bit, so that the print head does not touch the end position,
  1777. // and the following movement to endstop has a chance to achieve the required velocity
  1778. // for the stall guard to work.
  1779. current_position[axis] = 0;
  1780. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1781. set_destination_to_current();
  1782. // destination[axis] = 11.f;
  1783. destination[axis] = -3.f * axis_home_dir;
  1784. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1785. st_synchronize();
  1786. // Move away from the possible collision with opposite endstop with the collision detection disabled.
  1787. endstops_hit_on_purpose();
  1788. enable_endstops(false);
  1789. current_position[axis] = 0;
  1790. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1791. destination[axis] = 1. * axis_home_dir;
  1792. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1793. st_synchronize();
  1794. // Now continue to move up to the left end stop with the collision detection enabled.
  1795. enable_endstops(true);
  1796. destination[axis] = 1.1 * axis_home_dir * max_length(axis);
  1797. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1798. st_synchronize();
  1799. for (uint8_t i = 0; i < cnt; i++)
  1800. {
  1801. // Move away from the collision to a known distance from the left end stop with the collision detection disabled.
  1802. endstops_hit_on_purpose();
  1803. enable_endstops(false);
  1804. current_position[axis] = 0;
  1805. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1806. destination[axis] = -10.f * axis_home_dir;
  1807. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1808. st_synchronize();
  1809. endstops_hit_on_purpose();
  1810. // Now move left up to the collision, this time with a repeatable velocity.
  1811. enable_endstops(true);
  1812. destination[axis] = 11.f * axis_home_dir;
  1813. #ifdef TMC2130
  1814. feedrate = homing_feedrate[axis];
  1815. #else //TMC2130
  1816. feedrate = homing_feedrate[axis] / 2;
  1817. #endif //TMC2130
  1818. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1819. st_synchronize();
  1820. #ifdef TMC2130
  1821. uint16_t mscnt = tmc2130_rd_MSCNT(axis);
  1822. if (pstep) pstep[i] = mscnt >> 4;
  1823. printf_P(PSTR("%3d step=%2d mscnt=%4d\n"), i, mscnt >> 4, mscnt);
  1824. #endif //TMC2130
  1825. }
  1826. endstops_hit_on_purpose();
  1827. enable_endstops(false);
  1828. #ifdef TMC2130
  1829. uint8_t orig = tmc2130_home_origin[axis];
  1830. uint8_t back = tmc2130_home_bsteps[axis];
  1831. if (tmc2130_home_enabled && (orig <= 63))
  1832. {
  1833. tmc2130_goto_step(axis, orig, 2, 1000, tmc2130_get_res(axis));
  1834. if (back > 0)
  1835. tmc2130_do_steps(axis, back, -axis_home_dir, 1000);
  1836. }
  1837. else
  1838. tmc2130_do_steps(axis, 8, -axis_home_dir, 1000);
  1839. tmc2130_home_exit();
  1840. #endif //TMC2130
  1841. axis_is_at_home(axis);
  1842. axis_known_position[axis] = true;
  1843. // Move from minimum
  1844. #ifdef TMC2130
  1845. float dist = - axis_home_dir * 0.01f * tmc2130_home_fsteps[axis];
  1846. #else //TMC2130
  1847. float dist = - axis_home_dir * 0.01f * 64;
  1848. #endif //TMC2130
  1849. current_position[axis] -= dist;
  1850. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1851. current_position[axis] += dist;
  1852. destination[axis] = current_position[axis];
  1853. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], 0.5f*feedrate/60, active_extruder);
  1854. st_synchronize();
  1855. feedrate = 0.0;
  1856. }
  1857. else if ((axis==Z_AXIS)?HOMEAXIS_DO(Z):0)
  1858. {
  1859. #ifdef TMC2130
  1860. FORCE_HIGH_POWER_START;
  1861. #endif
  1862. int axis_home_dir = home_dir(axis);
  1863. current_position[axis] = 0;
  1864. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1865. destination[axis] = 1.5 * max_length(axis) * axis_home_dir;
  1866. feedrate = homing_feedrate[axis];
  1867. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1868. st_synchronize();
  1869. #ifdef TMC2130
  1870. if (READ(Z_TMC2130_DIAG) != 0) { //Z crash
  1871. FORCE_HIGH_POWER_END;
  1872. kill(_T(MSG_BED_LEVELING_FAILED_POINT_LOW));
  1873. return;
  1874. }
  1875. #endif //TMC2130
  1876. current_position[axis] = 0;
  1877. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1878. destination[axis] = -home_retract_mm(axis) * axis_home_dir;
  1879. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1880. st_synchronize();
  1881. destination[axis] = 2*home_retract_mm(axis) * axis_home_dir;
  1882. feedrate = homing_feedrate[axis]/2 ;
  1883. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1884. st_synchronize();
  1885. #ifdef TMC2130
  1886. if (READ(Z_TMC2130_DIAG) != 0) { //Z crash
  1887. FORCE_HIGH_POWER_END;
  1888. kill(_T(MSG_BED_LEVELING_FAILED_POINT_LOW));
  1889. return;
  1890. }
  1891. #endif //TMC2130
  1892. axis_is_at_home(axis);
  1893. destination[axis] = current_position[axis];
  1894. feedrate = 0.0;
  1895. endstops_hit_on_purpose();
  1896. axis_known_position[axis] = true;
  1897. #ifdef TMC2130
  1898. FORCE_HIGH_POWER_END;
  1899. #endif
  1900. }
  1901. enable_endstops(endstops_enabled);
  1902. }
  1903. /**/
  1904. void home_xy()
  1905. {
  1906. set_destination_to_current();
  1907. homeaxis(X_AXIS);
  1908. homeaxis(Y_AXIS);
  1909. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1910. endstops_hit_on_purpose();
  1911. }
  1912. void refresh_cmd_timeout(void)
  1913. {
  1914. previous_millis_cmd = millis();
  1915. }
  1916. #ifdef FWRETRACT
  1917. void retract(bool retracting, bool swapretract = false) {
  1918. if(retracting && !retracted[active_extruder]) {
  1919. destination[X_AXIS]=current_position[X_AXIS];
  1920. destination[Y_AXIS]=current_position[Y_AXIS];
  1921. destination[Z_AXIS]=current_position[Z_AXIS];
  1922. destination[E_AXIS]=current_position[E_AXIS];
  1923. current_position[E_AXIS]+=(swapretract?retract_length_swap:cs.retract_length)*float(extrudemultiply)*0.01f;
  1924. plan_set_e_position(current_position[E_AXIS]);
  1925. float oldFeedrate = feedrate;
  1926. feedrate=cs.retract_feedrate*60;
  1927. retracted[active_extruder]=true;
  1928. prepare_move();
  1929. current_position[Z_AXIS]-=cs.retract_zlift;
  1930. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1931. prepare_move();
  1932. feedrate = oldFeedrate;
  1933. } else if(!retracting && retracted[active_extruder]) {
  1934. destination[X_AXIS]=current_position[X_AXIS];
  1935. destination[Y_AXIS]=current_position[Y_AXIS];
  1936. destination[Z_AXIS]=current_position[Z_AXIS];
  1937. destination[E_AXIS]=current_position[E_AXIS];
  1938. current_position[Z_AXIS]+=cs.retract_zlift;
  1939. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1940. current_position[E_AXIS]-=(swapretract?(retract_length_swap+retract_recover_length_swap):(cs.retract_length+cs.retract_recover_length))*float(extrudemultiply)*0.01f;
  1941. plan_set_e_position(current_position[E_AXIS]);
  1942. float oldFeedrate = feedrate;
  1943. feedrate=cs.retract_recover_feedrate*60;
  1944. retracted[active_extruder]=false;
  1945. prepare_move();
  1946. feedrate = oldFeedrate;
  1947. }
  1948. } //retract
  1949. #endif //FWRETRACT
  1950. void trace() {
  1951. //if((eSoundMode==e_SOUND_MODE_LOUD)||(eSoundMode==e_SOUND_MODE_ONCE))
  1952. tone(BEEPER, 440);
  1953. delay(25);
  1954. noTone(BEEPER);
  1955. delay(20);
  1956. }
  1957. /*
  1958. void ramming() {
  1959. // float tmp[4] = DEFAULT_MAX_FEEDRATE;
  1960. if (current_temperature[0] < 230) {
  1961. //PLA
  1962. max_feedrate[E_AXIS] = 50;
  1963. //current_position[E_AXIS] -= 8;
  1964. //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2100 / 60, active_extruder);
  1965. //current_position[E_AXIS] += 8;
  1966. //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2100 / 60, active_extruder);
  1967. current_position[E_AXIS] += 5.4;
  1968. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2800 / 60, active_extruder);
  1969. current_position[E_AXIS] += 3.2;
  1970. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  1971. current_position[E_AXIS] += 3;
  1972. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3400 / 60, active_extruder);
  1973. st_synchronize();
  1974. max_feedrate[E_AXIS] = 80;
  1975. current_position[E_AXIS] -= 82;
  1976. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 9500 / 60, active_extruder);
  1977. max_feedrate[E_AXIS] = 50;//tmp[E_AXIS];
  1978. current_position[E_AXIS] -= 20;
  1979. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 1200 / 60, active_extruder);
  1980. current_position[E_AXIS] += 5;
  1981. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400 / 60, active_extruder);
  1982. current_position[E_AXIS] += 5;
  1983. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  1984. current_position[E_AXIS] -= 10;
  1985. st_synchronize();
  1986. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  1987. current_position[E_AXIS] += 10;
  1988. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  1989. current_position[E_AXIS] -= 10;
  1990. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 800 / 60, active_extruder);
  1991. current_position[E_AXIS] += 10;
  1992. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 800 / 60, active_extruder);
  1993. current_position[E_AXIS] -= 10;
  1994. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 800 / 60, active_extruder);
  1995. st_synchronize();
  1996. }
  1997. else {
  1998. //ABS
  1999. max_feedrate[E_AXIS] = 50;
  2000. //current_position[E_AXIS] -= 8;
  2001. //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2100 / 60, active_extruder);
  2002. //current_position[E_AXIS] += 8;
  2003. //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2100 / 60, active_extruder);
  2004. current_position[E_AXIS] += 3.1;
  2005. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2000 / 60, active_extruder);
  2006. current_position[E_AXIS] += 3.1;
  2007. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2500 / 60, active_extruder);
  2008. current_position[E_AXIS] += 4;
  2009. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  2010. st_synchronize();
  2011. //current_position[X_AXIS] += 23; //delay
  2012. //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600/60, active_extruder); //delay
  2013. //current_position[X_AXIS] -= 23; //delay
  2014. //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600/60, active_extruder); //delay
  2015. delay(4700);
  2016. max_feedrate[E_AXIS] = 80;
  2017. current_position[E_AXIS] -= 92;
  2018. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 9900 / 60, active_extruder);
  2019. max_feedrate[E_AXIS] = 50;//tmp[E_AXIS];
  2020. current_position[E_AXIS] -= 5;
  2021. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 800 / 60, active_extruder);
  2022. current_position[E_AXIS] += 5;
  2023. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400 / 60, active_extruder);
  2024. current_position[E_AXIS] -= 5;
  2025. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  2026. st_synchronize();
  2027. current_position[E_AXIS] += 5;
  2028. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  2029. current_position[E_AXIS] -= 5;
  2030. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  2031. current_position[E_AXIS] += 5;
  2032. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  2033. current_position[E_AXIS] -= 5;
  2034. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  2035. st_synchronize();
  2036. }
  2037. }
  2038. */
  2039. #ifdef TMC2130
  2040. void force_high_power_mode(bool start_high_power_section) {
  2041. uint8_t silent;
  2042. silent = eeprom_read_byte((uint8_t*)EEPROM_SILENT);
  2043. if (silent == 1) {
  2044. //we are in silent mode, set to normal mode to enable crash detection
  2045. // Wait for the planner queue to drain and for the stepper timer routine to reach an idle state.
  2046. st_synchronize();
  2047. cli();
  2048. tmc2130_mode = (start_high_power_section == true) ? TMC2130_MODE_NORMAL : TMC2130_MODE_SILENT;
  2049. update_mode_profile();
  2050. tmc2130_init();
  2051. // We may have missed a stepper timer interrupt due to the time spent in the tmc2130_init() routine.
  2052. // Be safe than sorry, reset the stepper timer before re-enabling interrupts.
  2053. st_reset_timer();
  2054. sei();
  2055. }
  2056. }
  2057. #endif //TMC2130
  2058. void gcode_G28(bool home_x_axis, bool home_y_axis, bool home_z_axis) {
  2059. gcode_G28(home_x_axis, 0, home_y_axis, 0, home_z_axis, 0, false, true);
  2060. }
  2061. void gcode_G28(bool home_x_axis, long home_x_value, bool home_y_axis, long home_y_value, bool home_z_axis, long home_z_value, bool calib, bool without_mbl) {
  2062. st_synchronize();
  2063. #if 0
  2064. SERIAL_ECHOPGM("G28, initial "); print_world_coordinates();
  2065. SERIAL_ECHOPGM("G28, initial "); print_physical_coordinates();
  2066. #endif
  2067. // Flag for the display update routine and to disable the print cancelation during homing.
  2068. homing_flag = true;
  2069. // Which axes should be homed?
  2070. bool home_x = home_x_axis;
  2071. bool home_y = home_y_axis;
  2072. bool home_z = home_z_axis;
  2073. // Either all X,Y,Z codes are present, or none of them.
  2074. bool home_all_axes = home_x == home_y && home_x == home_z;
  2075. if (home_all_axes)
  2076. // No X/Y/Z code provided means to home all axes.
  2077. home_x = home_y = home_z = true;
  2078. //if we are homing all axes, first move z higher to protect heatbed/steel sheet
  2079. if (home_all_axes) {
  2080. current_position[Z_AXIS] += MESH_HOME_Z_SEARCH;
  2081. feedrate = homing_feedrate[Z_AXIS];
  2082. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], feedrate / 60, active_extruder);
  2083. st_synchronize();
  2084. }
  2085. #ifdef ENABLE_AUTO_BED_LEVELING
  2086. plan_bed_level_matrix.set_to_identity(); //Reset the plane ("erase" all leveling data)
  2087. #endif //ENABLE_AUTO_BED_LEVELING
  2088. // Reset world2machine_rotation_and_skew and world2machine_shift, therefore
  2089. // the planner will not perform any adjustments in the XY plane.
  2090. // Wait for the motors to stop and update the current position with the absolute values.
  2091. world2machine_revert_to_uncorrected();
  2092. // For mesh bed leveling deactivate the matrix temporarily.
  2093. // It is necessary to disable the bed leveling for the X and Y homing moves, so that the move is performed
  2094. // in a single axis only.
  2095. // In case of re-homing the X or Y axes only, the mesh bed leveling is restored after G28.
  2096. #ifdef MESH_BED_LEVELING
  2097. uint8_t mbl_was_active = mbl.active;
  2098. mbl.active = 0;
  2099. current_position[Z_AXIS] = st_get_position_mm(Z_AXIS);
  2100. #endif
  2101. // Reset baby stepping to zero, if the babystepping has already been loaded before. The babystepsTodo value will be
  2102. // consumed during the first movements following this statement.
  2103. if (home_z)
  2104. babystep_undo();
  2105. saved_feedrate = feedrate;
  2106. int l_feedmultiply = feedmultiply;
  2107. feedmultiply = 100;
  2108. previous_millis_cmd = millis();
  2109. enable_endstops(true);
  2110. memcpy(destination, current_position, sizeof(destination));
  2111. feedrate = 0.0;
  2112. #if Z_HOME_DIR > 0 // If homing away from BED do Z first
  2113. if(home_z)
  2114. homeaxis(Z_AXIS);
  2115. #endif
  2116. #ifdef QUICK_HOME
  2117. // In the quick mode, if both x and y are to be homed, a diagonal move will be performed initially.
  2118. if(home_x && home_y) //first diagonal move
  2119. {
  2120. current_position[X_AXIS] = 0;current_position[Y_AXIS] = 0;
  2121. int x_axis_home_dir = home_dir(X_AXIS);
  2122. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2123. destination[X_AXIS] = 1.5 * max_length(X_AXIS) * x_axis_home_dir;destination[Y_AXIS] = 1.5 * max_length(Y_AXIS) * home_dir(Y_AXIS);
  2124. feedrate = homing_feedrate[X_AXIS];
  2125. if(homing_feedrate[Y_AXIS]<feedrate)
  2126. feedrate = homing_feedrate[Y_AXIS];
  2127. if (max_length(X_AXIS) > max_length(Y_AXIS)) {
  2128. feedrate *= sqrt(pow(max_length(Y_AXIS) / max_length(X_AXIS), 2) + 1);
  2129. } else {
  2130. feedrate *= sqrt(pow(max_length(X_AXIS) / max_length(Y_AXIS), 2) + 1);
  2131. }
  2132. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  2133. st_synchronize();
  2134. axis_is_at_home(X_AXIS);
  2135. axis_is_at_home(Y_AXIS);
  2136. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2137. destination[X_AXIS] = current_position[X_AXIS];
  2138. destination[Y_AXIS] = current_position[Y_AXIS];
  2139. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  2140. feedrate = 0.0;
  2141. st_synchronize();
  2142. endstops_hit_on_purpose();
  2143. current_position[X_AXIS] = destination[X_AXIS];
  2144. current_position[Y_AXIS] = destination[Y_AXIS];
  2145. current_position[Z_AXIS] = destination[Z_AXIS];
  2146. }
  2147. #endif /* QUICK_HOME */
  2148. #ifdef TMC2130
  2149. if(home_x)
  2150. {
  2151. if (!calib)
  2152. homeaxis(X_AXIS);
  2153. else
  2154. tmc2130_home_calibrate(X_AXIS);
  2155. }
  2156. if(home_y)
  2157. {
  2158. if (!calib)
  2159. homeaxis(Y_AXIS);
  2160. else
  2161. tmc2130_home_calibrate(Y_AXIS);
  2162. }
  2163. #else //TMC2130
  2164. if(home_x) homeaxis(X_AXIS);
  2165. if(home_y) homeaxis(Y_AXIS);
  2166. #endif //TMC2130
  2167. if(home_x_axis && home_x_value != 0)
  2168. current_position[X_AXIS]=home_x_value+cs.add_homing[X_AXIS];
  2169. if(home_y_axis && home_y_value != 0)
  2170. current_position[Y_AXIS]=home_y_value+cs.add_homing[Y_AXIS];
  2171. #if Z_HOME_DIR < 0 // If homing towards BED do Z last
  2172. #ifndef Z_SAFE_HOMING
  2173. if(home_z) {
  2174. #if defined (Z_RAISE_BEFORE_HOMING) && (Z_RAISE_BEFORE_HOMING > 0)
  2175. destination[Z_AXIS] = Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS) * (-1); // Set destination away from bed
  2176. feedrate = max_feedrate[Z_AXIS];
  2177. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
  2178. st_synchronize();
  2179. #endif // defined (Z_RAISE_BEFORE_HOMING) && (Z_RAISE_BEFORE_HOMING > 0)
  2180. #if (defined(MESH_BED_LEVELING) && !defined(MK1BP)) // If Mesh bed leveling, move X&Y to safe position for home
  2181. if (!(axis_known_position[X_AXIS] && axis_known_position[Y_AXIS] ))
  2182. {
  2183. homeaxis(X_AXIS);
  2184. homeaxis(Y_AXIS);
  2185. }
  2186. // 1st mesh bed leveling measurement point, corrected.
  2187. world2machine_initialize();
  2188. world2machine(pgm_read_float(bed_ref_points_4), pgm_read_float(bed_ref_points_4+1), destination[X_AXIS], destination[Y_AXIS]);
  2189. world2machine_reset();
  2190. if (destination[Y_AXIS] < Y_MIN_POS)
  2191. destination[Y_AXIS] = Y_MIN_POS;
  2192. destination[Z_AXIS] = MESH_HOME_Z_SEARCH; // Set destination away from bed
  2193. feedrate = homing_feedrate[Z_AXIS]/10;
  2194. current_position[Z_AXIS] = 0;
  2195. enable_endstops(false);
  2196. #ifdef DEBUG_BUILD
  2197. SERIAL_ECHOLNPGM("plan_set_position()");
  2198. MYSERIAL.println(current_position[X_AXIS]);MYSERIAL.println(current_position[Y_AXIS]);
  2199. MYSERIAL.println(current_position[Z_AXIS]);MYSERIAL.println(current_position[E_AXIS]);
  2200. #endif
  2201. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2202. #ifdef DEBUG_BUILD
  2203. SERIAL_ECHOLNPGM("plan_buffer_line()");
  2204. MYSERIAL.println(destination[X_AXIS]);MYSERIAL.println(destination[Y_AXIS]);
  2205. MYSERIAL.println(destination[Z_AXIS]);MYSERIAL.println(destination[E_AXIS]);
  2206. MYSERIAL.println(feedrate);MYSERIAL.println(active_extruder);
  2207. #endif
  2208. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
  2209. st_synchronize();
  2210. current_position[X_AXIS] = destination[X_AXIS];
  2211. current_position[Y_AXIS] = destination[Y_AXIS];
  2212. enable_endstops(true);
  2213. endstops_hit_on_purpose();
  2214. homeaxis(Z_AXIS);
  2215. #else // MESH_BED_LEVELING
  2216. homeaxis(Z_AXIS);
  2217. #endif // MESH_BED_LEVELING
  2218. }
  2219. #else // defined(Z_SAFE_HOMING): Z Safe mode activated.
  2220. if(home_all_axes) {
  2221. destination[X_AXIS] = round(Z_SAFE_HOMING_X_POINT - X_PROBE_OFFSET_FROM_EXTRUDER);
  2222. destination[Y_AXIS] = round(Z_SAFE_HOMING_Y_POINT - Y_PROBE_OFFSET_FROM_EXTRUDER);
  2223. destination[Z_AXIS] = Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS) * (-1); // Set destination away from bed
  2224. feedrate = XY_TRAVEL_SPEED/60;
  2225. current_position[Z_AXIS] = 0;
  2226. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2227. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
  2228. st_synchronize();
  2229. current_position[X_AXIS] = destination[X_AXIS];
  2230. current_position[Y_AXIS] = destination[Y_AXIS];
  2231. homeaxis(Z_AXIS);
  2232. }
  2233. // Let's see if X and Y are homed and probe is inside bed area.
  2234. if(home_z) {
  2235. if ( (axis_known_position[X_AXIS]) && (axis_known_position[Y_AXIS]) \
  2236. && (current_position[X_AXIS]+X_PROBE_OFFSET_FROM_EXTRUDER >= X_MIN_POS) \
  2237. && (current_position[X_AXIS]+X_PROBE_OFFSET_FROM_EXTRUDER <= X_MAX_POS) \
  2238. && (current_position[Y_AXIS]+Y_PROBE_OFFSET_FROM_EXTRUDER >= Y_MIN_POS) \
  2239. && (current_position[Y_AXIS]+Y_PROBE_OFFSET_FROM_EXTRUDER <= Y_MAX_POS)) {
  2240. current_position[Z_AXIS] = 0;
  2241. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2242. destination[Z_AXIS] = Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS) * (-1); // Set destination away from bed
  2243. feedrate = max_feedrate[Z_AXIS];
  2244. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
  2245. st_synchronize();
  2246. homeaxis(Z_AXIS);
  2247. } else if (!((axis_known_position[X_AXIS]) && (axis_known_position[Y_AXIS]))) {
  2248. LCD_MESSAGERPGM(MSG_POSITION_UNKNOWN);
  2249. SERIAL_ECHO_START;
  2250. SERIAL_ECHOLNRPGM(MSG_POSITION_UNKNOWN);
  2251. } else {
  2252. LCD_MESSAGERPGM(MSG_ZPROBE_OUT);
  2253. SERIAL_ECHO_START;
  2254. SERIAL_ECHOLNRPGM(MSG_ZPROBE_OUT);
  2255. }
  2256. }
  2257. #endif // Z_SAFE_HOMING
  2258. #endif // Z_HOME_DIR < 0
  2259. if(home_z_axis && home_z_value != 0)
  2260. current_position[Z_AXIS]=home_z_value+cs.add_homing[Z_AXIS];
  2261. #ifdef ENABLE_AUTO_BED_LEVELING
  2262. if(home_z)
  2263. current_position[Z_AXIS] += cs.zprobe_zoffset; //Add Z_Probe offset (the distance is negative)
  2264. #endif
  2265. // Set the planner and stepper routine positions.
  2266. // At this point the mesh bed leveling and world2machine corrections are disabled and current_position
  2267. // contains the machine coordinates.
  2268. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2269. #ifdef ENDSTOPS_ONLY_FOR_HOMING
  2270. enable_endstops(false);
  2271. #endif
  2272. feedrate = saved_feedrate;
  2273. feedmultiply = l_feedmultiply;
  2274. previous_millis_cmd = millis();
  2275. endstops_hit_on_purpose();
  2276. #ifndef MESH_BED_LEVELING
  2277. // If MESH_BED_LEVELING is not active, then it is the original Prusa i3.
  2278. // Offer the user to load the baby step value, which has been adjusted at the previous print session.
  2279. if(card.sdprinting && eeprom_read_word((uint16_t *)EEPROM_BABYSTEP_Z))
  2280. lcd_adjust_z();
  2281. #endif
  2282. // Load the machine correction matrix
  2283. world2machine_initialize();
  2284. // and correct the current_position XY axes to match the transformed coordinate system.
  2285. world2machine_update_current();
  2286. #if (defined(MESH_BED_LEVELING) && !defined(MK1BP))
  2287. if (home_x_axis || home_y_axis || without_mbl || home_z_axis)
  2288. {
  2289. if (! home_z && mbl_was_active) {
  2290. // Re-enable the mesh bed leveling if only the X and Y axes were re-homed.
  2291. mbl.active = true;
  2292. // and re-adjust the current logical Z axis with the bed leveling offset applicable at the current XY position.
  2293. current_position[Z_AXIS] -= mbl.get_z(st_get_position_mm(X_AXIS), st_get_position_mm(Y_AXIS));
  2294. }
  2295. }
  2296. else
  2297. {
  2298. st_synchronize();
  2299. homing_flag = false;
  2300. }
  2301. #endif
  2302. if (farm_mode) { prusa_statistics(20); };
  2303. homing_flag = false;
  2304. #if 0
  2305. SERIAL_ECHOPGM("G28, final "); print_world_coordinates();
  2306. SERIAL_ECHOPGM("G28, final "); print_physical_coordinates();
  2307. SERIAL_ECHOPGM("G28, final "); print_mesh_bed_leveling_table();
  2308. #endif
  2309. }
  2310. void adjust_bed_reset()
  2311. {
  2312. eeprom_update_byte((unsigned char*)EEPROM_BED_CORRECTION_VALID, 1);
  2313. eeprom_update_byte((unsigned char*)EEPROM_BED_CORRECTION_LEFT, 0);
  2314. eeprom_update_byte((unsigned char*)EEPROM_BED_CORRECTION_RIGHT, 0);
  2315. eeprom_update_byte((unsigned char*)EEPROM_BED_CORRECTION_FRONT, 0);
  2316. eeprom_update_byte((unsigned char*)EEPROM_BED_CORRECTION_REAR, 0);
  2317. }
  2318. //! @brief Calibrate XYZ
  2319. //! @param onlyZ if true, calibrate only Z axis
  2320. //! @param verbosity_level
  2321. //! @retval true Succeeded
  2322. //! @retval false Failed
  2323. bool gcode_M45(bool onlyZ, int8_t verbosity_level)
  2324. {
  2325. bool final_result = false;
  2326. #ifdef TMC2130
  2327. FORCE_HIGH_POWER_START;
  2328. #endif // TMC2130
  2329. // Only Z calibration?
  2330. if (!onlyZ)
  2331. {
  2332. setTargetBed(0);
  2333. setAllTargetHotends(0);
  2334. adjust_bed_reset(); //reset bed level correction
  2335. }
  2336. // Disable the default update procedure of the display. We will do a modal dialog.
  2337. lcd_update_enable(false);
  2338. // Let the planner use the uncorrected coordinates.
  2339. mbl.reset();
  2340. // Reset world2machine_rotation_and_skew and world2machine_shift, therefore
  2341. // the planner will not perform any adjustments in the XY plane.
  2342. // Wait for the motors to stop and update the current position with the absolute values.
  2343. world2machine_revert_to_uncorrected();
  2344. // Reset the baby step value applied without moving the axes.
  2345. babystep_reset();
  2346. // Mark all axes as in a need for homing.
  2347. memset(axis_known_position, 0, sizeof(axis_known_position));
  2348. // Home in the XY plane.
  2349. //set_destination_to_current();
  2350. int l_feedmultiply = setup_for_endstop_move();
  2351. lcd_display_message_fullscreen_P(_T(MSG_AUTO_HOME));
  2352. home_xy();
  2353. enable_endstops(false);
  2354. current_position[X_AXIS] += 5;
  2355. current_position[Y_AXIS] += 5;
  2356. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[Z_AXIS] / 40, active_extruder);
  2357. st_synchronize();
  2358. // Let the user move the Z axes up to the end stoppers.
  2359. #ifdef TMC2130
  2360. if (calibrate_z_auto())
  2361. {
  2362. #else //TMC2130
  2363. if (lcd_calibrate_z_end_stop_manual(onlyZ))
  2364. {
  2365. #endif //TMC2130
  2366. lcd_show_fullscreen_message_and_wait_P(_T(MSG_CONFIRM_NOZZLE_CLEAN));
  2367. if(onlyZ){
  2368. lcd_display_message_fullscreen_P(_T(MSG_MEASURE_BED_REFERENCE_HEIGHT_LINE1));
  2369. lcd_set_cursor(0, 3);
  2370. lcd_print(1);
  2371. lcd_puts_P(_T(MSG_MEASURE_BED_REFERENCE_HEIGHT_LINE2));
  2372. }else{
  2373. //lcd_show_fullscreen_message_and_wait_P(_T(MSG_PAPER));
  2374. lcd_display_message_fullscreen_P(_T(MSG_FIND_BED_OFFSET_AND_SKEW_LINE1));
  2375. lcd_set_cursor(0, 2);
  2376. lcd_print(1);
  2377. lcd_puts_P(_T(MSG_FIND_BED_OFFSET_AND_SKEW_LINE2));
  2378. }
  2379. refresh_cmd_timeout();
  2380. #ifndef STEEL_SHEET
  2381. if (((degHotend(0) > MAX_HOTEND_TEMP_CALIBRATION) || (degBed() > MAX_BED_TEMP_CALIBRATION)) && (!onlyZ))
  2382. {
  2383. lcd_wait_for_cool_down();
  2384. }
  2385. #endif //STEEL_SHEET
  2386. if(!onlyZ)
  2387. {
  2388. KEEPALIVE_STATE(PAUSED_FOR_USER);
  2389. #ifdef STEEL_SHEET
  2390. bool result = lcd_show_fullscreen_message_yes_no_and_wait_P(_T(MSG_STEEL_SHEET_CHECK), false, false);
  2391. if(result) lcd_show_fullscreen_message_and_wait_P(_T(MSG_REMOVE_STEEL_SHEET));
  2392. #endif //STEEL_SHEET
  2393. lcd_show_fullscreen_message_and_wait_P(_T(MSG_PAPER));
  2394. KEEPALIVE_STATE(IN_HANDLER);
  2395. lcd_display_message_fullscreen_P(_T(MSG_FIND_BED_OFFSET_AND_SKEW_LINE1));
  2396. lcd_set_cursor(0, 2);
  2397. lcd_print(1);
  2398. lcd_puts_P(_T(MSG_FIND_BED_OFFSET_AND_SKEW_LINE2));
  2399. }
  2400. bool endstops_enabled = enable_endstops(false);
  2401. current_position[Z_AXIS] -= 1; //move 1mm down with disabled endstop
  2402. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[Z_AXIS] / 40, active_extruder);
  2403. st_synchronize();
  2404. // Move the print head close to the bed.
  2405. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  2406. enable_endstops(true);
  2407. #ifdef TMC2130
  2408. tmc2130_home_enter(Z_AXIS_MASK);
  2409. #endif //TMC2130
  2410. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[Z_AXIS] / 40, active_extruder);
  2411. st_synchronize();
  2412. #ifdef TMC2130
  2413. tmc2130_home_exit();
  2414. #endif //TMC2130
  2415. enable_endstops(endstops_enabled);
  2416. if (st_get_position_mm(Z_AXIS) == MESH_HOME_Z_SEARCH)
  2417. {
  2418. if (onlyZ)
  2419. {
  2420. clean_up_after_endstop_move(l_feedmultiply);
  2421. // Z only calibration.
  2422. // Load the machine correction matrix
  2423. world2machine_initialize();
  2424. // and correct the current_position to match the transformed coordinate system.
  2425. world2machine_update_current();
  2426. //FIXME
  2427. bool result = sample_mesh_and_store_reference();
  2428. if (result)
  2429. {
  2430. if (calibration_status() == CALIBRATION_STATUS_Z_CALIBRATION)
  2431. // Shipped, the nozzle height has been set already. The user can start printing now.
  2432. calibration_status_store(CALIBRATION_STATUS_CALIBRATED);
  2433. final_result = true;
  2434. // babystep_apply();
  2435. }
  2436. }
  2437. else
  2438. {
  2439. // Reset the baby step value and the baby step applied flag.
  2440. calibration_status_store(CALIBRATION_STATUS_XYZ_CALIBRATION);
  2441. eeprom_update_word((uint16_t*)EEPROM_BABYSTEP_Z, 0);
  2442. // Complete XYZ calibration.
  2443. uint8_t point_too_far_mask = 0;
  2444. BedSkewOffsetDetectionResultType result = find_bed_offset_and_skew(verbosity_level, point_too_far_mask);
  2445. clean_up_after_endstop_move(l_feedmultiply);
  2446. // Print head up.
  2447. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  2448. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[Z_AXIS] / 40, active_extruder);
  2449. st_synchronize();
  2450. //#ifndef NEW_XYZCAL
  2451. if (result >= 0)
  2452. {
  2453. #ifdef HEATBED_V2
  2454. sample_z();
  2455. #else //HEATBED_V2
  2456. point_too_far_mask = 0;
  2457. // Second half: The fine adjustment.
  2458. // Let the planner use the uncorrected coordinates.
  2459. mbl.reset();
  2460. world2machine_reset();
  2461. // Home in the XY plane.
  2462. int l_feedmultiply = setup_for_endstop_move();
  2463. home_xy();
  2464. result = improve_bed_offset_and_skew(1, verbosity_level, point_too_far_mask);
  2465. clean_up_after_endstop_move(l_feedmultiply);
  2466. // Print head up.
  2467. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  2468. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[Z_AXIS] / 40, active_extruder);
  2469. st_synchronize();
  2470. // if (result >= 0) babystep_apply();
  2471. #endif //HEATBED_V2
  2472. }
  2473. //#endif //NEW_XYZCAL
  2474. lcd_update_enable(true);
  2475. lcd_update(2);
  2476. lcd_bed_calibration_show_result(result, point_too_far_mask);
  2477. if (result >= 0)
  2478. {
  2479. // Calibration valid, the machine should be able to print. Advise the user to run the V2Calibration.gcode.
  2480. calibration_status_store(CALIBRATION_STATUS_LIVE_ADJUST);
  2481. if (eeprom_read_byte((uint8_t*)EEPROM_WIZARD_ACTIVE) != 1) lcd_show_fullscreen_message_and_wait_P(_T(MSG_BABYSTEP_Z_NOT_SET));
  2482. final_result = true;
  2483. }
  2484. }
  2485. #ifdef TMC2130
  2486. tmc2130_home_exit();
  2487. #endif
  2488. }
  2489. else
  2490. {
  2491. lcd_show_fullscreen_message_and_wait_P(PSTR("Calibration failed! Check the axes and run again."));
  2492. final_result = false;
  2493. }
  2494. }
  2495. else
  2496. {
  2497. // Timeouted.
  2498. }
  2499. lcd_update_enable(true);
  2500. #ifdef TMC2130
  2501. FORCE_HIGH_POWER_END;
  2502. #endif // TMC2130
  2503. return final_result;
  2504. }
  2505. void gcode_M114()
  2506. {
  2507. SERIAL_PROTOCOLPGM("X:");
  2508. SERIAL_PROTOCOL(current_position[X_AXIS]);
  2509. SERIAL_PROTOCOLPGM(" Y:");
  2510. SERIAL_PROTOCOL(current_position[Y_AXIS]);
  2511. SERIAL_PROTOCOLPGM(" Z:");
  2512. SERIAL_PROTOCOL(current_position[Z_AXIS]);
  2513. SERIAL_PROTOCOLPGM(" E:");
  2514. SERIAL_PROTOCOL(current_position[E_AXIS]);
  2515. SERIAL_PROTOCOLRPGM(_n(" Count X: "));////MSG_COUNT_X c=0 r=0
  2516. SERIAL_PROTOCOL(float(st_get_position(X_AXIS)) / cs.axis_steps_per_unit[X_AXIS]);
  2517. SERIAL_PROTOCOLPGM(" Y:");
  2518. SERIAL_PROTOCOL(float(st_get_position(Y_AXIS)) / cs.axis_steps_per_unit[Y_AXIS]);
  2519. SERIAL_PROTOCOLPGM(" Z:");
  2520. SERIAL_PROTOCOL(float(st_get_position(Z_AXIS)) / cs.axis_steps_per_unit[Z_AXIS]);
  2521. SERIAL_PROTOCOLPGM(" E:");
  2522. SERIAL_PROTOCOL(float(st_get_position(E_AXIS)) / cs.axis_steps_per_unit[E_AXIS]);
  2523. SERIAL_PROTOCOLLN("");
  2524. }
  2525. static void gcode_M600(bool automatic, float x_position, float y_position, float z_shift, float e_shift, float /*e_shift_late*/)
  2526. {
  2527. st_synchronize();
  2528. float lastpos[4];
  2529. if (farm_mode)
  2530. {
  2531. prusa_statistics(22);
  2532. }
  2533. //First backup current position and settings
  2534. int feedmultiplyBckp = feedmultiply;
  2535. float HotendTempBckp = degTargetHotend(active_extruder);
  2536. int fanSpeedBckp = fanSpeed;
  2537. lastpos[X_AXIS] = current_position[X_AXIS];
  2538. lastpos[Y_AXIS] = current_position[Y_AXIS];
  2539. lastpos[Z_AXIS] = current_position[Z_AXIS];
  2540. lastpos[E_AXIS] = current_position[E_AXIS];
  2541. //Retract E
  2542. current_position[E_AXIS] += e_shift;
  2543. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS],
  2544. current_position[E_AXIS], FILAMENTCHANGE_RFEED, active_extruder);
  2545. st_synchronize();
  2546. //Lift Z
  2547. current_position[Z_AXIS] += z_shift;
  2548. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS],
  2549. current_position[E_AXIS], FILAMENTCHANGE_ZFEED, active_extruder);
  2550. st_synchronize();
  2551. //Move XY to side
  2552. current_position[X_AXIS] = x_position;
  2553. current_position[Y_AXIS] = y_position;
  2554. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS],
  2555. current_position[E_AXIS], FILAMENTCHANGE_XYFEED, active_extruder);
  2556. st_synchronize();
  2557. //Beep, manage nozzle heater and wait for user to start unload filament
  2558. if(!mmu_enabled) M600_wait_for_user(HotendTempBckp);
  2559. lcd_change_fil_state = 0;
  2560. // Unload filament
  2561. if (mmu_enabled) extr_unload(); //unload just current filament for multimaterial printers (used also in M702)
  2562. else unload_filament(); //unload filament for single material (used also in M702)
  2563. //finish moves
  2564. st_synchronize();
  2565. if (!mmu_enabled)
  2566. {
  2567. KEEPALIVE_STATE(PAUSED_FOR_USER);
  2568. lcd_change_fil_state = lcd_show_fullscreen_message_yes_no_and_wait_P(_i("Was filament unload successful?"),
  2569. false, true); ////MSG_UNLOAD_SUCCESSFUL c=20 r=2
  2570. if (lcd_change_fil_state == 0)
  2571. {
  2572. lcd_clear();
  2573. lcd_set_cursor(0, 2);
  2574. lcd_puts_P(_T(MSG_PLEASE_WAIT));
  2575. current_position[X_AXIS] -= 100;
  2576. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS],
  2577. current_position[E_AXIS], FILAMENTCHANGE_XYFEED, active_extruder);
  2578. st_synchronize();
  2579. lcd_show_fullscreen_message_and_wait_P(_i("Please open idler and remove filament manually."));////MSG_CHECK_IDLER c=20 r=4
  2580. }
  2581. }
  2582. if (mmu_enabled)
  2583. {
  2584. if (!automatic) {
  2585. if (saved_printing) mmu_eject_filament(mmu_extruder, false); //if M600 was invoked by filament senzor (FINDA) eject filament so user can easily remove it
  2586. mmu_M600_wait_and_beep();
  2587. if (saved_printing) {
  2588. lcd_clear();
  2589. lcd_set_cursor(0, 2);
  2590. lcd_puts_P(_T(MSG_PLEASE_WAIT));
  2591. mmu_command(MMU_CMD_R0);
  2592. manage_response(false, false);
  2593. }
  2594. }
  2595. mmu_M600_load_filament(automatic);
  2596. }
  2597. else
  2598. M600_load_filament();
  2599. if (!automatic) M600_check_state();
  2600. lcd_update_enable(true);
  2601. //Not let's go back to print
  2602. fanSpeed = fanSpeedBckp;
  2603. //Feed a little of filament to stabilize pressure
  2604. if (!automatic)
  2605. {
  2606. current_position[E_AXIS] += FILAMENTCHANGE_RECFEED;
  2607. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS],
  2608. current_position[E_AXIS], FILAMENTCHANGE_EXFEED, active_extruder);
  2609. }
  2610. //Move XY back
  2611. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS],
  2612. FILAMENTCHANGE_XYFEED, active_extruder);
  2613. st_synchronize();
  2614. //Move Z back
  2615. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], current_position[E_AXIS],
  2616. FILAMENTCHANGE_ZFEED, active_extruder);
  2617. st_synchronize();
  2618. //Set E position to original
  2619. plan_set_e_position(lastpos[E_AXIS]);
  2620. memcpy(current_position, lastpos, sizeof(lastpos));
  2621. memcpy(destination, current_position, sizeof(current_position));
  2622. //Recover feed rate
  2623. feedmultiply = feedmultiplyBckp;
  2624. char cmd[9];
  2625. sprintf_P(cmd, PSTR("M220 S%i"), feedmultiplyBckp);
  2626. enquecommand(cmd);
  2627. lcd_setstatuspgm(_T(WELCOME_MSG));
  2628. custom_message_type = CUSTOM_MSG_TYPE_STATUS;
  2629. }
  2630. void gcode_M701()
  2631. {
  2632. printf_P(PSTR("gcode_M701 begin\n"));
  2633. if (mmu_enabled)
  2634. {
  2635. extr_adj(tmp_extruder);//loads current extruder
  2636. mmu_extruder = tmp_extruder;
  2637. }
  2638. else
  2639. {
  2640. enable_z();
  2641. custom_message_type = CUSTOM_MSG_TYPE_F_LOAD;
  2642. #ifdef FSENSOR_QUALITY
  2643. fsensor_oq_meassure_start(40);
  2644. #endif //FSENSOR_QUALITY
  2645. lcd_setstatuspgm(_T(MSG_LOADING_FILAMENT));
  2646. current_position[E_AXIS] += 40;
  2647. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400 / 60, active_extruder); //fast sequence
  2648. st_synchronize();
  2649. if (current_position[Z_AXIS] < 20) current_position[Z_AXIS] += 30;
  2650. current_position[E_AXIS] += 30;
  2651. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400 / 60, active_extruder); //fast sequence
  2652. load_filament_final_feed(); //slow sequence
  2653. st_synchronize();
  2654. if((eSoundMode==e_SOUND_MODE_LOUD)||(eSoundMode==e_SOUND_MODE_ONCE)) tone(BEEPER, 500);
  2655. delay_keep_alive(50);
  2656. noTone(BEEPER);
  2657. if (!farm_mode && loading_flag) {
  2658. lcd_load_filament_color_check();
  2659. }
  2660. lcd_update_enable(true);
  2661. lcd_update(2);
  2662. lcd_setstatuspgm(_T(WELCOME_MSG));
  2663. disable_z();
  2664. loading_flag = false;
  2665. custom_message_type = CUSTOM_MSG_TYPE_STATUS;
  2666. #ifdef FSENSOR_QUALITY
  2667. fsensor_oq_meassure_stop();
  2668. if (!fsensor_oq_result())
  2669. {
  2670. bool disable = lcd_show_fullscreen_message_yes_no_and_wait_P(_i("Fil. sensor response is poor, disable it?"), false, true);
  2671. lcd_update_enable(true);
  2672. lcd_update(2);
  2673. if (disable)
  2674. fsensor_disable();
  2675. }
  2676. #endif //FSENSOR_QUALITY
  2677. }
  2678. }
  2679. /**
  2680. * @brief Get serial number from 32U2 processor
  2681. *
  2682. * Typical format of S/N is:CZPX0917X003XC13518
  2683. *
  2684. * Command operates only in farm mode, if not in farm mode, "Not in farm mode." is written to MYSERIAL.
  2685. *
  2686. * Send command ;S to serial port 0 to retrieve serial number stored in 32U2 processor,
  2687. * reply is transmitted to serial port 1 character by character.
  2688. * Operation takes typically 23 ms. If the retransmit is not finished until 100 ms,
  2689. * it is interrupted, so less, or no characters are retransmitted, only newline character is send
  2690. * in any case.
  2691. */
  2692. static void gcode_PRUSA_SN()
  2693. {
  2694. if (farm_mode) {
  2695. selectedSerialPort = 0;
  2696. putchar(';');
  2697. putchar('S');
  2698. int numbersRead = 0;
  2699. ShortTimer timeout;
  2700. timeout.start();
  2701. while (numbersRead < 19) {
  2702. while (MSerial.available() > 0) {
  2703. uint8_t serial_char = MSerial.read();
  2704. selectedSerialPort = 1;
  2705. putchar(serial_char);
  2706. numbersRead++;
  2707. selectedSerialPort = 0;
  2708. }
  2709. if (timeout.expired(100u)) break;
  2710. }
  2711. selectedSerialPort = 1;
  2712. putchar('\n');
  2713. #if 0
  2714. for (int b = 0; b < 3; b++) {
  2715. tone(BEEPER, 110);
  2716. delay(50);
  2717. noTone(BEEPER);
  2718. delay(50);
  2719. }
  2720. #endif
  2721. } else {
  2722. puts_P(_N("Not in farm mode."));
  2723. }
  2724. }
  2725. #ifdef BACKLASH_X
  2726. extern uint8_t st_backlash_x;
  2727. #endif //BACKLASH_X
  2728. #ifdef BACKLASH_Y
  2729. extern uint8_t st_backlash_y;
  2730. #endif //BACKLASH_Y
  2731. //! @brief Parse and process commands
  2732. //!
  2733. //! look here for descriptions of G-codes: http://linuxcnc.org/handbook/gcode/g-code.html
  2734. //! http://objects.reprap.org/wiki/Mendel_User_Manual:_RepRapGCodes
  2735. //!
  2736. //! Implemented Codes
  2737. //! -------------------
  2738. //!
  2739. //!@n PRUSA CODES
  2740. //!@n P F - Returns FW versions
  2741. //!@n P R - Returns revision of printer
  2742. //!
  2743. //!@n G0 -> G1
  2744. //!@n G1 - Coordinated Movement X Y Z E
  2745. //!@n G2 - CW ARC
  2746. //!@n G3 - CCW ARC
  2747. //!@n G4 - Dwell S<seconds> or P<milliseconds>
  2748. //!@n G10 - retract filament according to settings of M207
  2749. //!@n G11 - retract recover filament according to settings of M208
  2750. //!@n G28 - Home all Axis
  2751. //!@n G29 - Detailed Z-Probe, probes the bed at 3 or more points. Will fail if you haven't homed yet.
  2752. //!@n G30 - Single Z Probe, probes bed at current XY location.
  2753. //!@n G31 - Dock sled (Z_PROBE_SLED only)
  2754. //!@n G32 - Undock sled (Z_PROBE_SLED only)
  2755. //!@n G80 - Automatic mesh bed leveling
  2756. //!@n G81 - Print bed profile
  2757. //!@n G90 - Use Absolute Coordinates
  2758. //!@n G91 - Use Relative Coordinates
  2759. //!@n G92 - Set current position to coordinates given
  2760. //!
  2761. //!@n M Codes
  2762. //!@n M0 - Unconditional stop - Wait for user to press a button on the LCD
  2763. //!@n M1 - Same as M0
  2764. //!@n M17 - Enable/Power all stepper motors
  2765. //!@n M18 - Disable all stepper motors; same as M84
  2766. //!@n M20 - List SD card
  2767. //!@n M21 - Init SD card
  2768. //!@n M22 - Release SD card
  2769. //!@n M23 - Select SD file (M23 filename.g)
  2770. //!@n M24 - Start/resume SD print
  2771. //!@n M25 - Pause SD print
  2772. //!@n M26 - Set SD position in bytes (M26 S12345)
  2773. //!@n M27 - Report SD print status
  2774. //!@n M28 - Start SD write (M28 filename.g)
  2775. //!@n M29 - Stop SD write
  2776. //!@n M30 - Delete file from SD (M30 filename.g)
  2777. //!@n M31 - Output time since last M109 or SD card start to serial
  2778. //!@n M32 - Select file and start SD print (Can be used _while_ printing from SD card files):
  2779. //! syntax "M32 /path/filename#", or "M32 S<startpos bytes> !filename#"
  2780. //! Call gcode file : "M32 P !filename#" and return to caller file after finishing (similar to #include).
  2781. //! The '#' is necessary when calling from within sd files, as it stops buffer prereading
  2782. //!@n M42 - Change pin status via gcode Use M42 Px Sy to set pin x to value y, when omitting Px the onboard led will be used.
  2783. //!@n M73 - Show percent done and print time remaining
  2784. //!@n M80 - Turn on Power Supply
  2785. //!@n M81 - Turn off Power Supply
  2786. //!@n M82 - Set E codes absolute (default)
  2787. //!@n M83 - Set E codes relative while in Absolute Coordinates (G90) mode
  2788. //!@n M84 - Disable steppers until next move,
  2789. //! or use S<seconds> to specify an inactivity timeout, after which the steppers will be disabled. S0 to disable the timeout.
  2790. //!@n M85 - Set inactivity shutdown timer with parameter S<seconds>. To disable set zero (default)
  2791. //!@n M86 - Set safety timer expiration time with parameter S<seconds>; M86 S0 will disable safety timer
  2792. //!@n M92 - Set axis_steps_per_unit - same syntax as G92
  2793. //!@n M104 - Set extruder target temp
  2794. //!@n M105 - Read current temp
  2795. //!@n M106 - Fan on
  2796. //!@n M107 - Fan off
  2797. //!@n M109 - Sxxx Wait for extruder current temp to reach target temp. Waits only when heating
  2798. //! Rxxx Wait for extruder current temp to reach target temp. Waits when heating and cooling
  2799. //! IF AUTOTEMP is enabled, S<mintemp> B<maxtemp> F<factor>. Exit autotemp by any M109 without F
  2800. //!@n M112 - Emergency stop
  2801. //!@n M113 - Get or set the timeout interval for Host Keepalive "busy" messages
  2802. //!@n M114 - Output current position to serial port
  2803. //!@n M115 - Capabilities string
  2804. //!@n M117 - display message
  2805. //!@n M119 - Output Endstop status to serial port
  2806. //!@n M126 - Solenoid Air Valve Open (BariCUDA support by jmil)
  2807. //!@n M127 - Solenoid Air Valve Closed (BariCUDA vent to atmospheric pressure by jmil)
  2808. //!@n M128 - EtoP Open (BariCUDA EtoP = electricity to air pressure transducer by jmil)
  2809. //!@n M129 - EtoP Closed (BariCUDA EtoP = electricity to air pressure transducer by jmil)
  2810. //!@n M140 - Set bed target temp
  2811. //!@n M150 - Set BlinkM Color Output R: Red<0-255> U(!): Green<0-255> B: Blue<0-255> over i2c, G for green does not work.
  2812. //!@n M190 - Sxxx Wait for bed current temp to reach target temp. Waits only when heating
  2813. //! Rxxx Wait for bed current temp to reach target temp. Waits when heating and cooling
  2814. //!@n M200 D<millimeters>- set filament diameter and set E axis units to cubic millimeters (use S0 to set back to millimeters).
  2815. //!@n M201 - Set max acceleration in units/s^2 for print moves (M201 X1000 Y1000)
  2816. //!@n M202 - Set max acceleration in units/s^2 for travel moves (M202 X1000 Y1000) Unused in Marlin!!
  2817. //!@n M203 - Set maximum feedrate that your machine can sustain (M203 X200 Y200 Z300 E10000) in mm/sec
  2818. //!@n M204 - Set default acceleration: S normal moves T filament only moves (M204 S3000 T7000) in mm/sec^2 also sets minimum segment time in ms (B20000) to prevent buffer under-runs and M20 minimum feedrate
  2819. //!@n M205 - advanced settings: minimum travel speed S=while printing T=travel only, B=minimum segment time X= maximum xy jerk, Z=maximum Z jerk, E=maximum E jerk
  2820. //!@n M206 - set additional homing offset
  2821. //!@n M207 - set retract length S[positive mm] F[feedrate mm/min] Z[additional zlift/hop], stays in mm regardless of M200 setting
  2822. //!@n M208 - set recover=unretract length S[positive mm surplus to the M207 S*] F[feedrate mm/sec]
  2823. //!@n M209 - S<1=true/0=false> enable automatic retract detect if the slicer did not support G10/11: every normal extrude-only move will be classified as retract depending on the direction.
  2824. //!@n M218 - set hotend offset (in mm): T<extruder_number> X<offset_on_X> Y<offset_on_Y>
  2825. //!@n M220 S<factor in percent>- set speed factor override percentage
  2826. //!@n M221 S<factor in percent>- set extrude factor override percentage
  2827. //!@n M226 P<pin number> S<pin state>- Wait until the specified pin reaches the state required
  2828. //!@n M240 - Trigger a camera to take a photograph
  2829. //!@n M250 - Set LCD contrast C<contrast value> (value 0..63)
  2830. //!@n M280 - set servo position absolute. P: servo index, S: angle or microseconds
  2831. //!@n M300 - Play beep sound S<frequency Hz> P<duration ms>
  2832. //!@n M301 - Set PID parameters P I and D
  2833. //!@n M302 - Allow cold extrudes, or set the minimum extrude S<temperature>.
  2834. //!@n M303 - PID relay autotune S<temperature> sets the target temperature. (default target temperature = 150C)
  2835. //!@n M304 - Set bed PID parameters P I and D
  2836. //!@n M400 - Finish all moves
  2837. //!@n M401 - Lower z-probe if present
  2838. //!@n M402 - Raise z-probe if present
  2839. //!@n M404 - N<dia in mm> Enter the nominal filament width (3mm, 1.75mm ) or will display nominal filament width without parameters
  2840. //!@n M405 - Turn on Filament Sensor extrusion control. Optional D<delay in cm> to set delay in centimeters between sensor and extruder
  2841. //!@n M406 - Turn off Filament Sensor extrusion control
  2842. //!@n M407 - Displays measured filament diameter
  2843. //!@n M500 - stores parameters in EEPROM
  2844. //!@n M501 - reads parameters from EEPROM (if you need reset them after you changed them temporarily).
  2845. //!@n M502 - reverts to the default "factory settings". You still need to store them in EEPROM afterwards if you want to.
  2846. //!@n M503 - print the current settings (from memory not from EEPROM)
  2847. //!@n M509 - force language selection on next restart
  2848. //!@n M540 - Use S[0|1] to enable or disable the stop SD card print on endstop hit (requires ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED)
  2849. //!@n M600 - Pause for filament change X[pos] Y[pos] Z[relative lift] E[initial retract] L[later retract distance for removal]
  2850. //!@n M605 - Set dual x-carriage movement mode: S<mode> [ X<duplication x-offset> R<duplication temp offset> ]
  2851. //!@n M860 - Wait for PINDA thermistor to reach target temperature.
  2852. //!@n M861 - Set / Read PINDA temperature compensation offsets
  2853. //!@n M900 - Set LIN_ADVANCE options, if enabled. See Configuration_adv.h for details.
  2854. //!@n M907 - Set digital trimpot motor current using axis codes.
  2855. //!@n M908 - Control digital trimpot directly.
  2856. //!@n M350 - Set microstepping mode.
  2857. //!@n M351 - Toggle MS1 MS2 pins directly.
  2858. //!
  2859. //!@n M928 - Start SD logging (M928 filename.g) - ended by M29
  2860. //!@n M999 - Restart after being stopped by error
  2861. void process_commands()
  2862. {
  2863. if (!buflen) return; //empty command
  2864. #ifdef FILAMENT_RUNOUT_SUPPORT
  2865. SET_INPUT(FR_SENS);
  2866. #endif
  2867. #ifdef CMDBUFFER_DEBUG
  2868. SERIAL_ECHOPGM("Processing a GCODE command: ");
  2869. SERIAL_ECHO(cmdbuffer+bufindr+CMDHDRSIZE);
  2870. SERIAL_ECHOLNPGM("");
  2871. SERIAL_ECHOPGM("In cmdqueue: ");
  2872. SERIAL_ECHO(buflen);
  2873. SERIAL_ECHOLNPGM("");
  2874. #endif /* CMDBUFFER_DEBUG */
  2875. unsigned long codenum; //throw away variable
  2876. char *starpos = NULL;
  2877. #ifdef ENABLE_AUTO_BED_LEVELING
  2878. float x_tmp, y_tmp, z_tmp, real_z;
  2879. #endif
  2880. // PRUSA GCODES
  2881. KEEPALIVE_STATE(IN_HANDLER);
  2882. #ifdef SNMM
  2883. float tmp_motor[3] = DEFAULT_PWM_MOTOR_CURRENT;
  2884. float tmp_motor_loud[3] = DEFAULT_PWM_MOTOR_CURRENT_LOUD;
  2885. int8_t SilentMode;
  2886. #endif
  2887. if (code_seen("M117")) { //moved to highest priority place to be able to to print strings which includes "G", "PRUSA" and "^"
  2888. starpos = (strchr(strchr_pointer + 5, '*'));
  2889. if (starpos != NULL)
  2890. *(starpos) = '\0';
  2891. lcd_setstatus(strchr_pointer + 5);
  2892. }
  2893. #ifdef TMC2130
  2894. else if (strncmp_P(CMDBUFFER_CURRENT_STRING, PSTR("CRASH_"), 6) == 0)
  2895. {
  2896. if(code_seen("CRASH_DETECTED")) //! CRASH_DETECTED
  2897. {
  2898. uint8_t mask = 0;
  2899. if (code_seen('X')) mask |= X_AXIS_MASK;
  2900. if (code_seen('Y')) mask |= Y_AXIS_MASK;
  2901. crashdet_detected(mask);
  2902. }
  2903. else if(code_seen("CRASH_RECOVER")) //! CRASH_RECOVER
  2904. crashdet_recover();
  2905. else if(code_seen("CRASH_CANCEL")) //! CRASH_CANCEL
  2906. crashdet_cancel();
  2907. }
  2908. else if (strncmp_P(CMDBUFFER_CURRENT_STRING, PSTR("TMC_"), 4) == 0)
  2909. {
  2910. if (strncmp_P(CMDBUFFER_CURRENT_STRING + 4, PSTR("SET_WAVE_"), 9) == 0) //! TMC_SET_WAVE_
  2911. {
  2912. uint8_t axis = *(CMDBUFFER_CURRENT_STRING + 13);
  2913. axis = (axis == 'E')?3:(axis - 'X');
  2914. if (axis < 4)
  2915. {
  2916. uint8_t fac = (uint8_t)strtol(CMDBUFFER_CURRENT_STRING + 14, NULL, 10);
  2917. tmc2130_set_wave(axis, 247, fac);
  2918. }
  2919. }
  2920. else if (strncmp_P(CMDBUFFER_CURRENT_STRING + 4, PSTR("SET_STEP_"), 9) == 0) //! TMC_SET_STEP_
  2921. {
  2922. uint8_t axis = *(CMDBUFFER_CURRENT_STRING + 13);
  2923. axis = (axis == 'E')?3:(axis - 'X');
  2924. if (axis < 4)
  2925. {
  2926. uint8_t step = (uint8_t)strtol(CMDBUFFER_CURRENT_STRING + 14, NULL, 10);
  2927. uint16_t res = tmc2130_get_res(axis);
  2928. tmc2130_goto_step(axis, step & (4*res - 1), 2, 1000, res);
  2929. }
  2930. }
  2931. else if (strncmp_P(CMDBUFFER_CURRENT_STRING + 4, PSTR("SET_CHOP_"), 9) == 0) //! TMC_SET_CHOP_
  2932. {
  2933. uint8_t axis = *(CMDBUFFER_CURRENT_STRING + 13);
  2934. axis = (axis == 'E')?3:(axis - 'X');
  2935. if (axis < 4)
  2936. {
  2937. uint8_t chop0 = tmc2130_chopper_config[axis].toff;
  2938. uint8_t chop1 = tmc2130_chopper_config[axis].hstr;
  2939. uint8_t chop2 = tmc2130_chopper_config[axis].hend;
  2940. uint8_t chop3 = tmc2130_chopper_config[axis].tbl;
  2941. char* str_end = 0;
  2942. if (CMDBUFFER_CURRENT_STRING[14])
  2943. {
  2944. chop0 = (uint8_t)strtol(CMDBUFFER_CURRENT_STRING + 14, &str_end, 10) & 15;
  2945. if (str_end && *str_end)
  2946. {
  2947. chop1 = (uint8_t)strtol(str_end, &str_end, 10) & 7;
  2948. if (str_end && *str_end)
  2949. {
  2950. chop2 = (uint8_t)strtol(str_end, &str_end, 10) & 15;
  2951. if (str_end && *str_end)
  2952. chop3 = (uint8_t)strtol(str_end, &str_end, 10) & 3;
  2953. }
  2954. }
  2955. }
  2956. tmc2130_chopper_config[axis].toff = chop0;
  2957. tmc2130_chopper_config[axis].hstr = chop1 & 7;
  2958. tmc2130_chopper_config[axis].hend = chop2 & 15;
  2959. tmc2130_chopper_config[axis].tbl = chop3 & 3;
  2960. tmc2130_setup_chopper(axis, tmc2130_mres[axis], tmc2130_current_h[axis], tmc2130_current_r[axis]);
  2961. //printf_P(_N("TMC_SET_CHOP_%c %hhd %hhd %hhd %hhd\n"), "xyze"[axis], chop0, chop1, chop2, chop3);
  2962. }
  2963. }
  2964. }
  2965. #ifdef BACKLASH_X
  2966. else if (strncmp_P(CMDBUFFER_CURRENT_STRING, PSTR("BACKLASH_X"), 10) == 0)
  2967. {
  2968. uint8_t bl = (uint8_t)strtol(CMDBUFFER_CURRENT_STRING + 10, NULL, 10);
  2969. st_backlash_x = bl;
  2970. printf_P(_N("st_backlash_x = %hhd\n"), st_backlash_x);
  2971. }
  2972. #endif //BACKLASH_X
  2973. #ifdef BACKLASH_Y
  2974. else if (strncmp_P(CMDBUFFER_CURRENT_STRING, PSTR("BACKLASH_Y"), 10) == 0)
  2975. {
  2976. uint8_t bl = (uint8_t)strtol(CMDBUFFER_CURRENT_STRING + 10, NULL, 10);
  2977. st_backlash_y = bl;
  2978. printf_P(_N("st_backlash_y = %hhd\n"), st_backlash_y);
  2979. }
  2980. #endif //BACKLASH_Y
  2981. #endif //TMC2130
  2982. #ifdef FILAMENT_SENSOR
  2983. else if (code_seen("FSENSOR_RECOVER")) { //! FSENSOR_RECOVER
  2984. fsensor_restore_print_and_continue();
  2985. }
  2986. #endif //FILAMENT_SENSOR
  2987. else if(code_seen("PRUSA")){
  2988. if (code_seen("Ping")) { //! PRUSA Ping
  2989. if (farm_mode) {
  2990. PingTime = millis();
  2991. //MYSERIAL.print(farm_no); MYSERIAL.println(": OK");
  2992. }
  2993. }
  2994. else if (code_seen("PRN")) { //! PRUSA PRN
  2995. printf_P(_N("%d"), status_number);
  2996. }else if (code_seen("FAN")) { //! PRUSA FAN
  2997. printf_P(_N("E0:%d RPM\nPRN0:%d RPM\n"), 60*fan_speed[0], 60*fan_speed[1]);
  2998. }else if (code_seen("fn")) { //! PRUSA fn
  2999. if (farm_mode) {
  3000. printf_P(_N("%d"), farm_no);
  3001. }
  3002. else {
  3003. puts_P(_N("Not in farm mode."));
  3004. }
  3005. }
  3006. else if (code_seen("thx")) //! PRUSA thx
  3007. {
  3008. no_response = false;
  3009. }
  3010. else if (code_seen("uvlo")) //! PRUSA uvlo
  3011. {
  3012. eeprom_update_byte((uint8_t*)EEPROM_UVLO,0);
  3013. enquecommand_P(PSTR("M24"));
  3014. }
  3015. else if (code_seen("MMURES")) //! PRUSA MMURES
  3016. {
  3017. mmu_reset();
  3018. }
  3019. else if (code_seen("RESET")) { //! PRUSA RESET
  3020. // careful!
  3021. if (farm_mode) {
  3022. #ifdef WATCHDOG
  3023. boot_app_magic = BOOT_APP_MAGIC;
  3024. boot_app_flags = BOOT_APP_FLG_RUN;
  3025. wdt_enable(WDTO_15MS);
  3026. cli();
  3027. while(1);
  3028. #else //WATCHDOG
  3029. asm volatile("jmp 0x3E000");
  3030. #endif //WATCHDOG
  3031. }
  3032. else {
  3033. MYSERIAL.println("Not in farm mode.");
  3034. }
  3035. }else if (code_seen("fv")) { //! PRUSA fv
  3036. // get file version
  3037. #ifdef SDSUPPORT
  3038. card.openFile(strchr_pointer + 3,true);
  3039. while (true) {
  3040. uint16_t readByte = card.get();
  3041. MYSERIAL.write(readByte);
  3042. if (readByte=='\n') {
  3043. break;
  3044. }
  3045. }
  3046. card.closefile();
  3047. #endif // SDSUPPORT
  3048. } else if (code_seen("M28")) { //! PRUSA M28
  3049. trace();
  3050. prusa_sd_card_upload = true;
  3051. card.openFile(strchr_pointer+4,false);
  3052. } else if (code_seen("SN")) { //! PRUSA SN
  3053. gcode_PRUSA_SN();
  3054. } else if(code_seen("Fir")){ //! PRUSA Fir
  3055. SERIAL_PROTOCOLLN(FW_VERSION_FULL);
  3056. } else if(code_seen("Rev")){ //! PRUSA Rev
  3057. SERIAL_PROTOCOLLN(FILAMENT_SIZE "-" ELECTRONICS "-" NOZZLE_TYPE );
  3058. } else if(code_seen("Lang")) { //! PRUSA Lang
  3059. lang_reset();
  3060. } else if(code_seen("Lz")) { //! PRUSA Lz
  3061. EEPROM_save_B(EEPROM_BABYSTEP_Z,0);
  3062. } else if(code_seen("Beat")) { //! PRUSA Beat
  3063. // Kick farm link timer
  3064. kicktime = millis();
  3065. } else if(code_seen("FR")) { //! PRUSA FR
  3066. // Factory full reset
  3067. factory_reset(0);
  3068. }
  3069. //else if (code_seen('Cal')) {
  3070. // lcd_calibration();
  3071. // }
  3072. }
  3073. else if (code_seen('^')) {
  3074. // nothing, this is a version line
  3075. } else if(code_seen('G'))
  3076. {
  3077. gcode_in_progress = (int)code_value();
  3078. // printf_P(_N("BEGIN G-CODE=%u\n"), gcode_in_progress);
  3079. switch (gcode_in_progress)
  3080. {
  3081. case 0: // G0 -> G1
  3082. case 1: // G1
  3083. if(Stopped == false) {
  3084. #ifdef FILAMENT_RUNOUT_SUPPORT
  3085. if(READ(FR_SENS)){
  3086. int feedmultiplyBckp=feedmultiply;
  3087. float target[4];
  3088. float lastpos[4];
  3089. target[X_AXIS]=current_position[X_AXIS];
  3090. target[Y_AXIS]=current_position[Y_AXIS];
  3091. target[Z_AXIS]=current_position[Z_AXIS];
  3092. target[E_AXIS]=current_position[E_AXIS];
  3093. lastpos[X_AXIS]=current_position[X_AXIS];
  3094. lastpos[Y_AXIS]=current_position[Y_AXIS];
  3095. lastpos[Z_AXIS]=current_position[Z_AXIS];
  3096. lastpos[E_AXIS]=current_position[E_AXIS];
  3097. //retract by E
  3098. target[E_AXIS]+= FILAMENTCHANGE_FIRSTRETRACT ;
  3099. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 400, active_extruder);
  3100. target[Z_AXIS]+= FILAMENTCHANGE_ZADD ;
  3101. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 300, active_extruder);
  3102. target[X_AXIS]= FILAMENTCHANGE_XPOS ;
  3103. target[Y_AXIS]= FILAMENTCHANGE_YPOS ;
  3104. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 70, active_extruder);
  3105. target[E_AXIS]+= FILAMENTCHANGE_FINALRETRACT ;
  3106. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 20, active_extruder);
  3107. //finish moves
  3108. st_synchronize();
  3109. //disable extruder steppers so filament can be removed
  3110. disable_e0();
  3111. disable_e1();
  3112. disable_e2();
  3113. delay(100);
  3114. //LCD_ALERTMESSAGEPGM(_T(MSG_FILAMENTCHANGE));
  3115. uint8_t cnt=0;
  3116. int counterBeep = 0;
  3117. lcd_wait_interact();
  3118. while(!lcd_clicked()){
  3119. cnt++;
  3120. manage_heater();
  3121. manage_inactivity(true);
  3122. //lcd_update(0);
  3123. if(cnt==0)
  3124. {
  3125. #if BEEPER > 0
  3126. if (counterBeep== 500){
  3127. counterBeep = 0;
  3128. }
  3129. SET_OUTPUT(BEEPER);
  3130. if (counterBeep== 0){
  3131. if((eSoundMode==e_SOUND_MODE_LOUD)||(eSoundMode==e_SOUND_MODE_ONCE))
  3132. WRITE(BEEPER,HIGH);
  3133. }
  3134. if (counterBeep== 20){
  3135. WRITE(BEEPER,LOW);
  3136. }
  3137. counterBeep++;
  3138. #else
  3139. #endif
  3140. }
  3141. }
  3142. WRITE(BEEPER,LOW);
  3143. target[E_AXIS]+= FILAMENTCHANGE_FIRSTFEED ;
  3144. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 20, active_extruder);
  3145. target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  3146. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder);
  3147. lcd_change_fil_state = 0;
  3148. lcd_loading_filament();
  3149. while ((lcd_change_fil_state == 0)||(lcd_change_fil_state != 1)){
  3150. lcd_change_fil_state = 0;
  3151. lcd_alright();
  3152. switch(lcd_change_fil_state){
  3153. case 2:
  3154. target[E_AXIS]+= FILAMENTCHANGE_FIRSTFEED ;
  3155. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 20, active_extruder);
  3156. target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  3157. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder);
  3158. lcd_loading_filament();
  3159. break;
  3160. case 3:
  3161. target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  3162. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder);
  3163. lcd_loading_color();
  3164. break;
  3165. default:
  3166. lcd_change_success();
  3167. break;
  3168. }
  3169. }
  3170. target[E_AXIS]+= 5;
  3171. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder);
  3172. target[E_AXIS]+= FILAMENTCHANGE_FIRSTRETRACT;
  3173. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 400, active_extruder);
  3174. //current_position[E_AXIS]=target[E_AXIS]; //the long retract of L is compensated by manual filament feeding
  3175. //plan_set_e_position(current_position[E_AXIS]);
  3176. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 70, active_extruder); //should do nothing
  3177. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], target[Z_AXIS], target[E_AXIS], 70, active_extruder); //move xy back
  3178. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], target[E_AXIS], 200, active_extruder); //move z back
  3179. target[E_AXIS]= target[E_AXIS] - FILAMENTCHANGE_FIRSTRETRACT;
  3180. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], target[E_AXIS], 5, active_extruder); //final untretract
  3181. plan_set_e_position(lastpos[E_AXIS]);
  3182. feedmultiply=feedmultiplyBckp;
  3183. char cmd[9];
  3184. sprintf_P(cmd, PSTR("M220 S%i"), feedmultiplyBckp);
  3185. enquecommand(cmd);
  3186. }
  3187. #endif
  3188. get_coordinates(); // For X Y Z E F
  3189. if (total_filament_used > ((current_position[E_AXIS] - destination[E_AXIS]) * 100)) { //protection against total_filament_used overflow
  3190. total_filament_used = total_filament_used + ((destination[E_AXIS] - current_position[E_AXIS]) * 100);
  3191. }
  3192. #ifdef FWRETRACT
  3193. if(cs.autoretract_enabled)
  3194. if( !(code_seen('X') || code_seen('Y') || code_seen('Z')) && code_seen('E')) {
  3195. float echange=destination[E_AXIS]-current_position[E_AXIS];
  3196. if((echange<-MIN_RETRACT && !retracted[active_extruder]) || (echange>MIN_RETRACT && retracted[active_extruder])) { //move appears to be an attempt to retract or recover
  3197. current_position[E_AXIS] = destination[E_AXIS]; //hide the slicer-generated retract/recover from calculations
  3198. plan_set_e_position(current_position[E_AXIS]); //AND from the planner
  3199. retract(!retracted[active_extruder]);
  3200. return;
  3201. }
  3202. }
  3203. #endif //FWRETRACT
  3204. prepare_move();
  3205. //ClearToSend();
  3206. }
  3207. break;
  3208. case 2: // G2 - CW ARC
  3209. if(Stopped == false) {
  3210. get_arc_coordinates();
  3211. prepare_arc_move(true);
  3212. }
  3213. break;
  3214. case 3: // G3 - CCW ARC
  3215. if(Stopped == false) {
  3216. get_arc_coordinates();
  3217. prepare_arc_move(false);
  3218. }
  3219. break;
  3220. case 4: // G4 dwell
  3221. codenum = 0;
  3222. if(code_seen('P')) codenum = code_value(); // milliseconds to wait
  3223. if(code_seen('S')) codenum = code_value() * 1000; // seconds to wait
  3224. if(codenum != 0) LCD_MESSAGERPGM(_n("Sleep..."));////MSG_DWELL c=0 r=0
  3225. st_synchronize();
  3226. codenum += millis(); // keep track of when we started waiting
  3227. previous_millis_cmd = millis();
  3228. while(millis() < codenum) {
  3229. manage_heater();
  3230. manage_inactivity();
  3231. lcd_update(0);
  3232. }
  3233. break;
  3234. #ifdef FWRETRACT
  3235. case 10: // G10 retract
  3236. #if EXTRUDERS > 1
  3237. retracted_swap[active_extruder]=(code_seen('S') && code_value_long() == 1); // checks for swap retract argument
  3238. retract(true,retracted_swap[active_extruder]);
  3239. #else
  3240. retract(true);
  3241. #endif
  3242. break;
  3243. case 11: // G11 retract_recover
  3244. #if EXTRUDERS > 1
  3245. retract(false,retracted_swap[active_extruder]);
  3246. #else
  3247. retract(false);
  3248. #endif
  3249. break;
  3250. #endif //FWRETRACT
  3251. case 28: //G28 Home all Axis one at a time
  3252. {
  3253. long home_x_value = 0;
  3254. long home_y_value = 0;
  3255. long home_z_value = 0;
  3256. // Which axes should be homed?
  3257. bool home_x = code_seen(axis_codes[X_AXIS]);
  3258. home_x_value = code_value_long();
  3259. bool home_y = code_seen(axis_codes[Y_AXIS]);
  3260. home_y_value = code_value_long();
  3261. bool home_z = code_seen(axis_codes[Z_AXIS]);
  3262. home_z_value = code_value_long();
  3263. bool without_mbl = code_seen('W');
  3264. // calibrate?
  3265. bool calib = code_seen('C');
  3266. gcode_G28(home_x, home_x_value, home_y, home_y_value, home_z, home_z_value, calib, without_mbl);
  3267. if ((home_x || home_y || without_mbl || home_z) == false) {
  3268. // Push the commands to the front of the message queue in the reverse order!
  3269. // There shall be always enough space reserved for these commands.
  3270. goto case_G80;
  3271. }
  3272. break;
  3273. }
  3274. #ifdef ENABLE_AUTO_BED_LEVELING
  3275. case 29: // G29 Detailed Z-Probe, probes the bed at 3 or more points.
  3276. {
  3277. #if Z_MIN_PIN == -1
  3278. #error "You must have a Z_MIN endstop in order to enable Auto Bed Leveling feature! Z_MIN_PIN must point to a valid hardware pin."
  3279. #endif
  3280. // Prevent user from running a G29 without first homing in X and Y
  3281. if (! (axis_known_position[X_AXIS] && axis_known_position[Y_AXIS]) )
  3282. {
  3283. LCD_MESSAGERPGM(MSG_POSITION_UNKNOWN);
  3284. SERIAL_ECHO_START;
  3285. SERIAL_ECHOLNRPGM(MSG_POSITION_UNKNOWN);
  3286. break; // abort G29, since we don't know where we are
  3287. }
  3288. st_synchronize();
  3289. // make sure the bed_level_rotation_matrix is identity or the planner will get it incorectly
  3290. //vector_3 corrected_position = plan_get_position_mm();
  3291. //corrected_position.debug("position before G29");
  3292. plan_bed_level_matrix.set_to_identity();
  3293. vector_3 uncorrected_position = plan_get_position();
  3294. //uncorrected_position.debug("position durring G29");
  3295. current_position[X_AXIS] = uncorrected_position.x;
  3296. current_position[Y_AXIS] = uncorrected_position.y;
  3297. current_position[Z_AXIS] = uncorrected_position.z;
  3298. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  3299. int l_feedmultiply = setup_for_endstop_move();
  3300. feedrate = homing_feedrate[Z_AXIS];
  3301. #ifdef AUTO_BED_LEVELING_GRID
  3302. // probe at the points of a lattice grid
  3303. int xGridSpacing = (RIGHT_PROBE_BED_POSITION - LEFT_PROBE_BED_POSITION) / (AUTO_BED_LEVELING_GRID_POINTS-1);
  3304. int yGridSpacing = (BACK_PROBE_BED_POSITION - FRONT_PROBE_BED_POSITION) / (AUTO_BED_LEVELING_GRID_POINTS-1);
  3305. // solve the plane equation ax + by + d = z
  3306. // A is the matrix with rows [x y 1] for all the probed points
  3307. // B is the vector of the Z positions
  3308. // the normal vector to the plane is formed by the coefficients of the plane equation in the standard form, which is Vx*x+Vy*y+Vz*z+d = 0
  3309. // so Vx = -a Vy = -b Vz = 1 (we want the vector facing towards positive Z
  3310. // "A" matrix of the linear system of equations
  3311. double eqnAMatrix[AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS*3];
  3312. // "B" vector of Z points
  3313. double eqnBVector[AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS];
  3314. int probePointCounter = 0;
  3315. bool zig = true;
  3316. for (int yProbe=FRONT_PROBE_BED_POSITION; yProbe <= BACK_PROBE_BED_POSITION; yProbe += yGridSpacing)
  3317. {
  3318. int xProbe, xInc;
  3319. if (zig)
  3320. {
  3321. xProbe = LEFT_PROBE_BED_POSITION;
  3322. //xEnd = RIGHT_PROBE_BED_POSITION;
  3323. xInc = xGridSpacing;
  3324. zig = false;
  3325. } else // zag
  3326. {
  3327. xProbe = RIGHT_PROBE_BED_POSITION;
  3328. //xEnd = LEFT_PROBE_BED_POSITION;
  3329. xInc = -xGridSpacing;
  3330. zig = true;
  3331. }
  3332. for (int xCount=0; xCount < AUTO_BED_LEVELING_GRID_POINTS; xCount++)
  3333. {
  3334. float z_before;
  3335. if (probePointCounter == 0)
  3336. {
  3337. // raise before probing
  3338. z_before = Z_RAISE_BEFORE_PROBING;
  3339. } else
  3340. {
  3341. // raise extruder
  3342. z_before = current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS;
  3343. }
  3344. float measured_z = probe_pt(xProbe, yProbe, z_before);
  3345. eqnBVector[probePointCounter] = measured_z;
  3346. eqnAMatrix[probePointCounter + 0*AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS] = xProbe;
  3347. eqnAMatrix[probePointCounter + 1*AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS] = yProbe;
  3348. eqnAMatrix[probePointCounter + 2*AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS] = 1;
  3349. probePointCounter++;
  3350. xProbe += xInc;
  3351. }
  3352. }
  3353. clean_up_after_endstop_move(l_feedmultiply);
  3354. // solve lsq problem
  3355. double *plane_equation_coefficients = qr_solve(AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS, 3, eqnAMatrix, eqnBVector);
  3356. SERIAL_PROTOCOLPGM("Eqn coefficients: a: ");
  3357. SERIAL_PROTOCOL(plane_equation_coefficients[0]);
  3358. SERIAL_PROTOCOLPGM(" b: ");
  3359. SERIAL_PROTOCOL(plane_equation_coefficients[1]);
  3360. SERIAL_PROTOCOLPGM(" d: ");
  3361. SERIAL_PROTOCOLLN(plane_equation_coefficients[2]);
  3362. set_bed_level_equation_lsq(plane_equation_coefficients);
  3363. free(plane_equation_coefficients);
  3364. #else // AUTO_BED_LEVELING_GRID not defined
  3365. // Probe at 3 arbitrary points
  3366. // probe 1
  3367. float z_at_pt_1 = probe_pt(ABL_PROBE_PT_1_X, ABL_PROBE_PT_1_Y, Z_RAISE_BEFORE_PROBING);
  3368. // probe 2
  3369. float z_at_pt_2 = probe_pt(ABL_PROBE_PT_2_X, ABL_PROBE_PT_2_Y, current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS);
  3370. // probe 3
  3371. float z_at_pt_3 = probe_pt(ABL_PROBE_PT_3_X, ABL_PROBE_PT_3_Y, current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS);
  3372. clean_up_after_endstop_move(l_feedmultiply);
  3373. set_bed_level_equation_3pts(z_at_pt_1, z_at_pt_2, z_at_pt_3);
  3374. #endif // AUTO_BED_LEVELING_GRID
  3375. st_synchronize();
  3376. // The following code correct the Z height difference from z-probe position and hotend tip position.
  3377. // The Z height on homing is measured by Z-Probe, but the probe is quite far from the hotend.
  3378. // When the bed is uneven, this height must be corrected.
  3379. real_z = float(st_get_position(Z_AXIS))/cs.axis_steps_per_unit[Z_AXIS]; //get the real Z (since the auto bed leveling is already correcting the plane)
  3380. x_tmp = current_position[X_AXIS] + X_PROBE_OFFSET_FROM_EXTRUDER;
  3381. y_tmp = current_position[Y_AXIS] + Y_PROBE_OFFSET_FROM_EXTRUDER;
  3382. z_tmp = current_position[Z_AXIS];
  3383. apply_rotation_xyz(plan_bed_level_matrix, x_tmp, y_tmp, z_tmp); //Apply the correction sending the probe offset
  3384. current_position[Z_AXIS] = z_tmp - real_z + current_position[Z_AXIS]; //The difference is added to current position and sent to planner.
  3385. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  3386. }
  3387. break;
  3388. #ifndef Z_PROBE_SLED
  3389. case 30: // G30 Single Z Probe
  3390. {
  3391. st_synchronize();
  3392. // TODO: make sure the bed_level_rotation_matrix is identity or the planner will get set incorectly
  3393. int l_feedmultiply = setup_for_endstop_move();
  3394. feedrate = homing_feedrate[Z_AXIS];
  3395. run_z_probe();
  3396. SERIAL_PROTOCOLPGM(_T(MSG_BED));
  3397. SERIAL_PROTOCOLPGM(" X: ");
  3398. SERIAL_PROTOCOL(current_position[X_AXIS]);
  3399. SERIAL_PROTOCOLPGM(" Y: ");
  3400. SERIAL_PROTOCOL(current_position[Y_AXIS]);
  3401. SERIAL_PROTOCOLPGM(" Z: ");
  3402. SERIAL_PROTOCOL(current_position[Z_AXIS]);
  3403. SERIAL_PROTOCOLPGM("\n");
  3404. clean_up_after_endstop_move(l_feedmultiply);
  3405. }
  3406. break;
  3407. #else
  3408. case 31: // dock the sled
  3409. dock_sled(true);
  3410. break;
  3411. case 32: // undock the sled
  3412. dock_sled(false);
  3413. break;
  3414. #endif // Z_PROBE_SLED
  3415. #endif // ENABLE_AUTO_BED_LEVELING
  3416. #ifdef MESH_BED_LEVELING
  3417. case 30: // G30 Single Z Probe
  3418. {
  3419. st_synchronize();
  3420. // TODO: make sure the bed_level_rotation_matrix is identity or the planner will get set incorectly
  3421. int l_feedmultiply = setup_for_endstop_move();
  3422. feedrate = homing_feedrate[Z_AXIS];
  3423. find_bed_induction_sensor_point_z(-10.f, 3);
  3424. printf_P(_N("%S X: %.5f Y: %.5f Z: %.5f\n"), _T(MSG_BED), _x, _y, _z);
  3425. clean_up_after_endstop_move(l_feedmultiply);
  3426. }
  3427. break;
  3428. case 75:
  3429. {
  3430. for (int i = 40; i <= 110; i++)
  3431. printf_P(_N("%d %.2f"), i, temp_comp_interpolation(i));
  3432. }
  3433. break;
  3434. case 76: //! G76 - PINDA probe temperature calibration
  3435. {
  3436. #ifdef PINDA_THERMISTOR
  3437. if (true)
  3438. {
  3439. if (calibration_status() >= CALIBRATION_STATUS_XYZ_CALIBRATION) {
  3440. //we need to know accurate position of first calibration point
  3441. //if xyz calibration was not performed yet, interrupt temperature calibration and inform user that xyz cal. is needed
  3442. lcd_show_fullscreen_message_and_wait_P(_i("Please run XYZ calibration first."));
  3443. break;
  3444. }
  3445. if (!(axis_known_position[X_AXIS] && axis_known_position[Y_AXIS] && axis_known_position[Z_AXIS]))
  3446. {
  3447. // We don't know where we are! HOME!
  3448. // Push the commands to the front of the message queue in the reverse order!
  3449. // There shall be always enough space reserved for these commands.
  3450. repeatcommand_front(); // repeat G76 with all its parameters
  3451. enquecommand_front_P((PSTR("G28 W0")));
  3452. break;
  3453. }
  3454. lcd_show_fullscreen_message_and_wait_P(_i("Stable ambient temperature 21-26C is needed a rigid stand is required."));////MSG_TEMP_CAL_WARNING c=20 r=4
  3455. bool result = lcd_show_fullscreen_message_yes_no_and_wait_P(_T(MSG_STEEL_SHEET_CHECK), false, false);
  3456. if (result)
  3457. {
  3458. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3459. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3460. current_position[Z_AXIS] = 50;
  3461. current_position[Y_AXIS] = 180;
  3462. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3463. st_synchronize();
  3464. lcd_show_fullscreen_message_and_wait_P(_T(MSG_REMOVE_STEEL_SHEET));
  3465. current_position[Y_AXIS] = pgm_read_float(bed_ref_points_4 + 1);
  3466. current_position[X_AXIS] = pgm_read_float(bed_ref_points_4);
  3467. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3468. st_synchronize();
  3469. gcode_G28(false, false, true);
  3470. }
  3471. if ((current_temperature_pinda > 35) && (farm_mode == false)) {
  3472. //waiting for PIDNA probe to cool down in case that we are not in farm mode
  3473. current_position[Z_AXIS] = 100;
  3474. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3475. if (lcd_wait_for_pinda(35) == false) { //waiting for PINDA probe to cool, if this takes more then time expected, temp. cal. fails
  3476. lcd_temp_cal_show_result(false);
  3477. break;
  3478. }
  3479. }
  3480. lcd_update_enable(true);
  3481. KEEPALIVE_STATE(NOT_BUSY); //no need to print busy messages as we print current temperatures periodicaly
  3482. SERIAL_ECHOLNPGM("PINDA probe calibration start");
  3483. float zero_z;
  3484. int z_shift = 0; //unit: steps
  3485. float start_temp = 5 * (int)(current_temperature_pinda / 5);
  3486. if (start_temp < 35) start_temp = 35;
  3487. if (start_temp < current_temperature_pinda) start_temp += 5;
  3488. printf_P(_N("start temperature: %.1f\n"), start_temp);
  3489. // setTargetHotend(200, 0);
  3490. setTargetBed(70 + (start_temp - 30));
  3491. custom_message_type = CUSTOM_MSG_TYPE_TEMCAL;
  3492. custom_message_state = 1;
  3493. lcd_setstatuspgm(_T(MSG_TEMP_CALIBRATION));
  3494. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3495. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3496. current_position[X_AXIS] = PINDA_PREHEAT_X;
  3497. current_position[Y_AXIS] = PINDA_PREHEAT_Y;
  3498. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3499. current_position[Z_AXIS] = PINDA_PREHEAT_Z;
  3500. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3501. st_synchronize();
  3502. while (current_temperature_pinda < start_temp)
  3503. {
  3504. delay_keep_alive(1000);
  3505. serialecho_temperatures();
  3506. }
  3507. eeprom_update_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 0); //invalidate temp. calibration in case that in will be aborted during the calibration process
  3508. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3509. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3510. current_position[X_AXIS] = pgm_read_float(bed_ref_points_4);
  3511. current_position[Y_AXIS] = pgm_read_float(bed_ref_points_4 + 1);
  3512. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3513. st_synchronize();
  3514. bool find_z_result = find_bed_induction_sensor_point_z(-1.f);
  3515. if (find_z_result == false) {
  3516. lcd_temp_cal_show_result(find_z_result);
  3517. break;
  3518. }
  3519. zero_z = current_position[Z_AXIS];
  3520. printf_P(_N("\nZERO: %.3f\n"), current_position[Z_AXIS]);
  3521. int i = -1; for (; i < 5; i++)
  3522. {
  3523. float temp = (40 + i * 5);
  3524. printf_P(_N("\nStep: %d/6 (skipped)\nPINDA temperature: %d Z shift (mm):0\n"), i + 2, (40 + i*5));
  3525. if (i >= 0) EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + i * 2, &z_shift);
  3526. if (start_temp <= temp) break;
  3527. }
  3528. for (i++; i < 5; i++)
  3529. {
  3530. float temp = (40 + i * 5);
  3531. printf_P(_N("\nStep: %d/6\n"), i + 2);
  3532. custom_message_state = i + 2;
  3533. setTargetBed(50 + 10 * (temp - 30) / 5);
  3534. // setTargetHotend(255, 0);
  3535. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3536. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3537. current_position[X_AXIS] = PINDA_PREHEAT_X;
  3538. current_position[Y_AXIS] = PINDA_PREHEAT_Y;
  3539. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3540. current_position[Z_AXIS] = PINDA_PREHEAT_Z;
  3541. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3542. st_synchronize();
  3543. while (current_temperature_pinda < temp)
  3544. {
  3545. delay_keep_alive(1000);
  3546. serialecho_temperatures();
  3547. }
  3548. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3549. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3550. current_position[X_AXIS] = pgm_read_float(bed_ref_points_4);
  3551. current_position[Y_AXIS] = pgm_read_float(bed_ref_points_4 + 1);
  3552. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3553. st_synchronize();
  3554. find_z_result = find_bed_induction_sensor_point_z(-1.f);
  3555. if (find_z_result == false) {
  3556. lcd_temp_cal_show_result(find_z_result);
  3557. break;
  3558. }
  3559. z_shift = (int)((current_position[Z_AXIS] - zero_z)*cs.axis_steps_per_unit[Z_AXIS]);
  3560. printf_P(_N("\nPINDA temperature: %.1f Z shift (mm): %.3f"), current_temperature_pinda, current_position[Z_AXIS] - zero_z);
  3561. EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + i * 2, &z_shift);
  3562. }
  3563. lcd_temp_cal_show_result(true);
  3564. break;
  3565. }
  3566. #endif //PINDA_THERMISTOR
  3567. setTargetBed(PINDA_MIN_T);
  3568. float zero_z;
  3569. int z_shift = 0; //unit: steps
  3570. int t_c; // temperature
  3571. if (!(axis_known_position[X_AXIS] && axis_known_position[Y_AXIS] && axis_known_position[Z_AXIS])) {
  3572. // We don't know where we are! HOME!
  3573. // Push the commands to the front of the message queue in the reverse order!
  3574. // There shall be always enough space reserved for these commands.
  3575. repeatcommand_front(); // repeat G76 with all its parameters
  3576. enquecommand_front_P((PSTR("G28 W0")));
  3577. break;
  3578. }
  3579. puts_P(_N("PINDA probe calibration start"));
  3580. custom_message_type = CUSTOM_MSG_TYPE_TEMCAL;
  3581. custom_message_state = 1;
  3582. lcd_setstatuspgm(_T(MSG_TEMP_CALIBRATION));
  3583. current_position[X_AXIS] = PINDA_PREHEAT_X;
  3584. current_position[Y_AXIS] = PINDA_PREHEAT_Y;
  3585. current_position[Z_AXIS] = PINDA_PREHEAT_Z;
  3586. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3587. st_synchronize();
  3588. while (abs(degBed() - PINDA_MIN_T) > 1) {
  3589. delay_keep_alive(1000);
  3590. serialecho_temperatures();
  3591. }
  3592. //enquecommand_P(PSTR("M190 S50"));
  3593. for (int i = 0; i < PINDA_HEAT_T; i++) {
  3594. delay_keep_alive(1000);
  3595. serialecho_temperatures();
  3596. }
  3597. eeprom_update_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 0); //invalidate temp. calibration in case that in will be aborted during the calibration process
  3598. current_position[Z_AXIS] = 5;
  3599. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3600. current_position[X_AXIS] = pgm_read_float(bed_ref_points);
  3601. current_position[Y_AXIS] = pgm_read_float(bed_ref_points + 1);
  3602. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3603. st_synchronize();
  3604. find_bed_induction_sensor_point_z(-1.f);
  3605. zero_z = current_position[Z_AXIS];
  3606. printf_P(_N("\nZERO: %.3f\n"), current_position[Z_AXIS]);
  3607. for (int i = 0; i<5; i++) {
  3608. printf_P(_N("\nStep: %d/6\n"), i + 2);
  3609. custom_message_state = i + 2;
  3610. t_c = 60 + i * 10;
  3611. setTargetBed(t_c);
  3612. current_position[X_AXIS] = PINDA_PREHEAT_X;
  3613. current_position[Y_AXIS] = PINDA_PREHEAT_Y;
  3614. current_position[Z_AXIS] = PINDA_PREHEAT_Z;
  3615. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3616. st_synchronize();
  3617. while (degBed() < t_c) {
  3618. delay_keep_alive(1000);
  3619. serialecho_temperatures();
  3620. }
  3621. for (int i = 0; i < PINDA_HEAT_T; i++) {
  3622. delay_keep_alive(1000);
  3623. serialecho_temperatures();
  3624. }
  3625. current_position[Z_AXIS] = 5;
  3626. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3627. current_position[X_AXIS] = pgm_read_float(bed_ref_points);
  3628. current_position[Y_AXIS] = pgm_read_float(bed_ref_points + 1);
  3629. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3630. st_synchronize();
  3631. find_bed_induction_sensor_point_z(-1.f);
  3632. z_shift = (int)((current_position[Z_AXIS] - zero_z)*cs.axis_steps_per_unit[Z_AXIS]);
  3633. printf_P(_N("\nTemperature: %d Z shift (mm): %.3f\n"), t_c, current_position[Z_AXIS] - zero_z);
  3634. EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + i*2, &z_shift);
  3635. }
  3636. custom_message_type = CUSTOM_MSG_TYPE_STATUS;
  3637. eeprom_update_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 1);
  3638. puts_P(_N("Temperature calibration done."));
  3639. disable_x();
  3640. disable_y();
  3641. disable_z();
  3642. disable_e0();
  3643. disable_e1();
  3644. disable_e2();
  3645. setTargetBed(0); //set bed target temperature back to 0
  3646. lcd_show_fullscreen_message_and_wait_P(_T(MSG_TEMP_CALIBRATION_DONE));
  3647. temp_cal_active = true;
  3648. eeprom_update_byte((unsigned char *)EEPROM_TEMP_CAL_ACTIVE, 1);
  3649. lcd_update_enable(true);
  3650. lcd_update(2);
  3651. }
  3652. break;
  3653. #ifdef DIS
  3654. case 77:
  3655. {
  3656. //! G77 X200 Y150 XP100 YP15 XO10 Y015
  3657. //! for 9 point mesh bed leveling G77 X203 Y196 XP3 YP3 XO0 YO0
  3658. //! G77 X232 Y218 XP116 YP109 XO-11 YO0
  3659. float dimension_x = 40;
  3660. float dimension_y = 40;
  3661. int points_x = 40;
  3662. int points_y = 40;
  3663. float offset_x = 74;
  3664. float offset_y = 33;
  3665. if (code_seen('X')) dimension_x = code_value();
  3666. if (code_seen('Y')) dimension_y = code_value();
  3667. if (code_seen("XP")) { strchr_pointer+=1; points_x = code_value(); }
  3668. if (code_seen("YP")) { strchr_pointer+=1; points_y = code_value(); }
  3669. if (code_seen("XO")) { strchr_pointer+=1; offset_x = code_value(); }
  3670. if (code_seen("YO")) { strchr_pointer+=1; offset_y = code_value(); }
  3671. bed_analysis(dimension_x,dimension_y,points_x,points_y,offset_x,offset_y);
  3672. } break;
  3673. #endif
  3674. case 79: {
  3675. for (int i = 255; i > 0; i = i - 5) {
  3676. fanSpeed = i;
  3677. //delay_keep_alive(2000);
  3678. for (int j = 0; j < 100; j++) {
  3679. delay_keep_alive(100);
  3680. }
  3681. printf_P(_N("%d: %d\n"), i, fan_speed[1]);
  3682. }
  3683. }break;
  3684. /**
  3685. * G80: Mesh-based Z probe, probes a grid and produces a
  3686. * mesh to compensate for variable bed height
  3687. *
  3688. * The S0 report the points as below
  3689. * @code{.unparsed}
  3690. * +----> X-axis
  3691. * |
  3692. * |
  3693. * v Y-axis
  3694. * @endcode
  3695. */
  3696. case 80:
  3697. #ifdef MK1BP
  3698. break;
  3699. #endif //MK1BP
  3700. case_G80:
  3701. {
  3702. mesh_bed_leveling_flag = true;
  3703. static bool run = false;
  3704. #ifdef SUPPORT_VERBOSITY
  3705. int8_t verbosity_level = 0;
  3706. if (code_seen('V')) {
  3707. // Just 'V' without a number counts as V1.
  3708. char c = strchr_pointer[1];
  3709. verbosity_level = (c == ' ' || c == '\t' || c == 0) ? 1 : code_value_short();
  3710. }
  3711. #endif //SUPPORT_VERBOSITY
  3712. // Firstly check if we know where we are
  3713. if (!(axis_known_position[X_AXIS] && axis_known_position[Y_AXIS] && axis_known_position[Z_AXIS])) {
  3714. // We don't know where we are! HOME!
  3715. // Push the commands to the front of the message queue in the reverse order!
  3716. // There shall be always enough space reserved for these commands.
  3717. if (lcd_commands_type != LCD_COMMAND_STOP_PRINT) {
  3718. repeatcommand_front(); // repeat G80 with all its parameters
  3719. enquecommand_front_P((PSTR("G28 W0")));
  3720. }
  3721. else {
  3722. mesh_bed_leveling_flag = false;
  3723. }
  3724. break;
  3725. }
  3726. bool temp_comp_start = true;
  3727. #ifdef PINDA_THERMISTOR
  3728. temp_comp_start = false;
  3729. #endif //PINDA_THERMISTOR
  3730. if (temp_comp_start)
  3731. if (run == false && temp_cal_active == true && calibration_status_pinda() == true && target_temperature_bed >= 50) {
  3732. if (lcd_commands_type != LCD_COMMAND_STOP_PRINT) {
  3733. temp_compensation_start();
  3734. run = true;
  3735. repeatcommand_front(); // repeat G80 with all its parameters
  3736. enquecommand_front_P((PSTR("G28 W0")));
  3737. }
  3738. else {
  3739. mesh_bed_leveling_flag = false;
  3740. }
  3741. break;
  3742. }
  3743. run = false;
  3744. if (lcd_commands_type == LCD_COMMAND_STOP_PRINT) {
  3745. mesh_bed_leveling_flag = false;
  3746. break;
  3747. }
  3748. // Save custom message state, set a new custom message state to display: Calibrating point 9.
  3749. unsigned int custom_message_type_old = custom_message_type;
  3750. unsigned int custom_message_state_old = custom_message_state;
  3751. custom_message_type = CUSTOM_MSG_TYPE_MESHBL;
  3752. custom_message_state = (MESH_MEAS_NUM_X_POINTS * MESH_MEAS_NUM_Y_POINTS) + 10;
  3753. lcd_update(1);
  3754. mbl.reset(); //reset mesh bed leveling
  3755. // Reset baby stepping to zero, if the babystepping has already been loaded before. The babystepsTodo value will be
  3756. // consumed during the first movements following this statement.
  3757. babystep_undo();
  3758. // Cycle through all points and probe them
  3759. // First move up. During this first movement, the babystepping will be reverted.
  3760. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3761. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[Z_AXIS] / 60, active_extruder);
  3762. // The move to the first calibration point.
  3763. current_position[X_AXIS] = pgm_read_float(bed_ref_points);
  3764. current_position[Y_AXIS] = pgm_read_float(bed_ref_points + 1);
  3765. #ifdef SUPPORT_VERBOSITY
  3766. if (verbosity_level >= 1)
  3767. {
  3768. bool clamped = world2machine_clamp(current_position[X_AXIS], current_position[Y_AXIS]);
  3769. clamped ? SERIAL_PROTOCOLPGM("First calibration point clamped.\n") : SERIAL_PROTOCOLPGM("No clamping for first calibration point.\n");
  3770. }
  3771. #endif //SUPPORT_VERBOSITY
  3772. // mbl.get_meas_xy(0, 0, current_position[X_AXIS], current_position[Y_AXIS], false);
  3773. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[X_AXIS] / 30, active_extruder);
  3774. // Wait until the move is finished.
  3775. st_synchronize();
  3776. int mesh_point = 0; //index number of calibration point
  3777. int ix = 0;
  3778. int iy = 0;
  3779. int XY_AXIS_FEEDRATE = homing_feedrate[X_AXIS] / 20;
  3780. int Z_LIFT_FEEDRATE = homing_feedrate[Z_AXIS] / 40;
  3781. bool has_z = is_bed_z_jitter_data_valid(); //checks if we have data from Z calibration (offsets of the Z heiths of the 8 calibration points from the first point)
  3782. #ifdef SUPPORT_VERBOSITY
  3783. if (verbosity_level >= 1) {
  3784. has_z ? SERIAL_PROTOCOLPGM("Z jitter data from Z cal. valid.\n") : SERIAL_PROTOCOLPGM("Z jitter data from Z cal. not valid.\n");
  3785. }
  3786. #endif // SUPPORT_VERBOSITY
  3787. int l_feedmultiply = setup_for_endstop_move(false); //save feedrate and feedmultiply, sets feedmultiply to 100
  3788. const char *kill_message = NULL;
  3789. while (mesh_point != MESH_MEAS_NUM_X_POINTS * MESH_MEAS_NUM_Y_POINTS) {
  3790. // Get coords of a measuring point.
  3791. ix = mesh_point % MESH_MEAS_NUM_X_POINTS; // from 0 to MESH_NUM_X_POINTS - 1
  3792. iy = mesh_point / MESH_MEAS_NUM_X_POINTS;
  3793. if (iy & 1) ix = (MESH_MEAS_NUM_X_POINTS - 1) - ix; // Zig zag
  3794. float z0 = 0.f;
  3795. if (has_z && mesh_point > 0) {
  3796. uint16_t z_offset_u = eeprom_read_word((uint16_t*)(EEPROM_BED_CALIBRATION_Z_JITTER + 2 * (ix + iy * 3 - 1)));
  3797. z0 = mbl.z_values[0][0] + *reinterpret_cast<int16_t*>(&z_offset_u) * 0.01;
  3798. //#if 0
  3799. #ifdef SUPPORT_VERBOSITY
  3800. if (verbosity_level >= 1) {
  3801. SERIAL_ECHOLNPGM("");
  3802. SERIAL_ECHOPGM("Bed leveling, point: ");
  3803. MYSERIAL.print(mesh_point);
  3804. SERIAL_ECHOPGM(", calibration z: ");
  3805. MYSERIAL.print(z0, 5);
  3806. SERIAL_ECHOLNPGM("");
  3807. }
  3808. #endif // SUPPORT_VERBOSITY
  3809. //#endif
  3810. }
  3811. // Move Z up to MESH_HOME_Z_SEARCH.
  3812. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3813. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], Z_LIFT_FEEDRATE, active_extruder);
  3814. st_synchronize();
  3815. // Move to XY position of the sensor point.
  3816. current_position[X_AXIS] = pgm_read_float(bed_ref_points + 2 * mesh_point);
  3817. current_position[Y_AXIS] = pgm_read_float(bed_ref_points + 2 * mesh_point + 1);
  3818. world2machine_clamp(current_position[X_AXIS], current_position[Y_AXIS]);
  3819. #ifdef SUPPORT_VERBOSITY
  3820. if (verbosity_level >= 1) {
  3821. SERIAL_PROTOCOL(mesh_point);
  3822. clamped ? SERIAL_PROTOCOLPGM(": xy clamped.\n") : SERIAL_PROTOCOLPGM(": no xy clamping\n");
  3823. }
  3824. #endif // SUPPORT_VERBOSITY
  3825. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], XY_AXIS_FEEDRATE, active_extruder);
  3826. st_synchronize();
  3827. // Go down until endstop is hit
  3828. const float Z_CALIBRATION_THRESHOLD = 1.f;
  3829. if (!find_bed_induction_sensor_point_z((has_z && mesh_point > 0) ? z0 - Z_CALIBRATION_THRESHOLD : -10.f)) { //if we have data from z calibration max allowed difference is 1mm for each point, if we dont have data max difference is 10mm from initial point
  3830. kill_message = _T(MSG_BED_LEVELING_FAILED_POINT_LOW);
  3831. break;
  3832. }
  3833. if (MESH_HOME_Z_SEARCH - current_position[Z_AXIS] < 0.1f) {
  3834. kill_message = _i("Bed leveling failed. Sensor disconnected or cable broken. Waiting for reset.");////MSG_BED_LEVELING_FAILED_PROBE_DISCONNECTED c=20 r=4
  3835. break;
  3836. }
  3837. if (has_z && fabs(z0 - current_position[Z_AXIS]) > Z_CALIBRATION_THRESHOLD) { //if we have data from z calibration, max. allowed difference is 1mm for each point
  3838. kill_message = _i("Bed leveling failed. Sensor triggered too high. Waiting for reset.");////MSG_BED_LEVELING_FAILED_POINT_HIGH c=20 r=4
  3839. break;
  3840. }
  3841. #ifdef SUPPORT_VERBOSITY
  3842. if (verbosity_level >= 10) {
  3843. SERIAL_ECHOPGM("X: ");
  3844. MYSERIAL.print(current_position[X_AXIS], 5);
  3845. SERIAL_ECHOLNPGM("");
  3846. SERIAL_ECHOPGM("Y: ");
  3847. MYSERIAL.print(current_position[Y_AXIS], 5);
  3848. SERIAL_PROTOCOLPGM("\n");
  3849. }
  3850. #endif // SUPPORT_VERBOSITY
  3851. float offset_z = 0;
  3852. #ifdef PINDA_THERMISTOR
  3853. offset_z = temp_compensation_pinda_thermistor_offset(current_temperature_pinda);
  3854. #endif //PINDA_THERMISTOR
  3855. // #ifdef SUPPORT_VERBOSITY
  3856. /* if (verbosity_level >= 1)
  3857. {
  3858. SERIAL_ECHOPGM("mesh bed leveling: ");
  3859. MYSERIAL.print(current_position[Z_AXIS], 5);
  3860. SERIAL_ECHOPGM(" offset: ");
  3861. MYSERIAL.print(offset_z, 5);
  3862. SERIAL_ECHOLNPGM("");
  3863. }*/
  3864. // #endif // SUPPORT_VERBOSITY
  3865. mbl.set_z(ix, iy, current_position[Z_AXIS] - offset_z); //store measured z values z_values[iy][ix] = z - offset_z;
  3866. custom_message_state--;
  3867. mesh_point++;
  3868. lcd_update(1);
  3869. }
  3870. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3871. #ifdef SUPPORT_VERBOSITY
  3872. if (verbosity_level >= 20) {
  3873. SERIAL_ECHOLNPGM("Mesh bed leveling while loop finished.");
  3874. SERIAL_ECHOLNPGM("MESH_HOME_Z_SEARCH: ");
  3875. MYSERIAL.print(current_position[Z_AXIS], 5);
  3876. }
  3877. #endif // SUPPORT_VERBOSITY
  3878. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], Z_LIFT_FEEDRATE, active_extruder);
  3879. st_synchronize();
  3880. if (mesh_point != MESH_MEAS_NUM_X_POINTS * MESH_MEAS_NUM_Y_POINTS) {
  3881. Sound_MakeSound(e_SOUND_TYPE_StandardAlert);
  3882. bool bState;
  3883. do { // repeat until Z-leveling o.k.
  3884. lcd_display_message_fullscreen_P(_i("Some problem encountered, Z-leveling enforced ..."));
  3885. #ifdef TMC2130
  3886. lcd_wait_for_click_delay(MSG_BED_LEVELING_FAILED_TIMEOUT);
  3887. calibrate_z_auto(); // Z-leveling (X-assembly stay up!!!)
  3888. #else // TMC2130
  3889. lcd_wait_for_click_delay(0); // ~ no timeout
  3890. lcd_calibrate_z_end_stop_manual(true); // Z-leveling (X-assembly stay up!!!)
  3891. #endif // TMC2130
  3892. // ~ Z-homing (can not be used "G28", because X & Y-homing would have been done before (Z-homing))
  3893. bState=enable_z_endstop(false);
  3894. current_position[Z_AXIS] -= 1;
  3895. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[Z_AXIS] / 40, active_extruder);
  3896. st_synchronize();
  3897. enable_z_endstop(true);
  3898. #ifdef TMC2130
  3899. tmc2130_home_enter(Z_AXIS_MASK);
  3900. #endif // TMC2130
  3901. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3902. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[Z_AXIS] / 40, active_extruder);
  3903. st_synchronize();
  3904. #ifdef TMC2130
  3905. tmc2130_home_exit();
  3906. #endif // TMC2130
  3907. enable_z_endstop(bState);
  3908. } while (st_get_position_mm(Z_AXIS) > MESH_HOME_Z_SEARCH); // i.e. Z-leveling not o.k.
  3909. // plan_set_z_position(MESH_HOME_Z_SEARCH); // is not necessary ('do-while' loop always ends at the expected Z-position)
  3910. custom_message_type=CUSTOM_MSG_TYPE_STATUS; // display / status-line recovery
  3911. lcd_update_enable(true); // display / status-line recovery
  3912. gcode_G28(true, true, true); // X & Y & Z-homing (must be after individual Z-homing (problem with spool-holder)!)
  3913. repeatcommand_front(); // re-run (i.e. of "G80")
  3914. break;
  3915. }
  3916. clean_up_after_endstop_move(l_feedmultiply);
  3917. // SERIAL_ECHOLNPGM("clean up finished ");
  3918. bool apply_temp_comp = true;
  3919. #ifdef PINDA_THERMISTOR
  3920. apply_temp_comp = false;
  3921. #endif
  3922. if (apply_temp_comp)
  3923. if(temp_cal_active == true && calibration_status_pinda() == true) temp_compensation_apply(); //apply PINDA temperature compensation
  3924. babystep_apply(); // Apply Z height correction aka baby stepping before mesh bed leveing gets activated.
  3925. // SERIAL_ECHOLNPGM("babystep applied");
  3926. bool eeprom_bed_correction_valid = eeprom_read_byte((unsigned char*)EEPROM_BED_CORRECTION_VALID) == 1;
  3927. #ifdef SUPPORT_VERBOSITY
  3928. if (verbosity_level >= 1) {
  3929. eeprom_bed_correction_valid ? SERIAL_PROTOCOLPGM("Bed correction data valid\n") : SERIAL_PROTOCOLPGM("Bed correction data not valid\n");
  3930. }
  3931. #endif // SUPPORT_VERBOSITY
  3932. for (uint8_t i = 0; i < 4; ++i) {
  3933. unsigned char codes[4] = { 'L', 'R', 'F', 'B' };
  3934. long correction = 0;
  3935. if (code_seen(codes[i]))
  3936. correction = code_value_long();
  3937. else if (eeprom_bed_correction_valid) {
  3938. unsigned char *addr = (i < 2) ?
  3939. ((i == 0) ? (unsigned char*)EEPROM_BED_CORRECTION_LEFT : (unsigned char*)EEPROM_BED_CORRECTION_RIGHT) :
  3940. ((i == 2) ? (unsigned char*)EEPROM_BED_CORRECTION_FRONT : (unsigned char*)EEPROM_BED_CORRECTION_REAR);
  3941. correction = eeprom_read_int8(addr);
  3942. }
  3943. if (correction == 0)
  3944. continue;
  3945. float offset = float(correction) * 0.001f;
  3946. if (fabs(offset) > 0.101f) {
  3947. SERIAL_ERROR_START;
  3948. SERIAL_ECHOPGM("Excessive bed leveling correction: ");
  3949. SERIAL_ECHO(offset);
  3950. SERIAL_ECHOLNPGM(" microns");
  3951. }
  3952. else {
  3953. switch (i) {
  3954. case 0:
  3955. for (uint8_t row = 0; row < 3; ++row) {
  3956. mbl.z_values[row][1] += 0.5f * offset;
  3957. mbl.z_values[row][0] += offset;
  3958. }
  3959. break;
  3960. case 1:
  3961. for (uint8_t row = 0; row < 3; ++row) {
  3962. mbl.z_values[row][1] += 0.5f * offset;
  3963. mbl.z_values[row][2] += offset;
  3964. }
  3965. break;
  3966. case 2:
  3967. for (uint8_t col = 0; col < 3; ++col) {
  3968. mbl.z_values[1][col] += 0.5f * offset;
  3969. mbl.z_values[0][col] += offset;
  3970. }
  3971. break;
  3972. case 3:
  3973. for (uint8_t col = 0; col < 3; ++col) {
  3974. mbl.z_values[1][col] += 0.5f * offset;
  3975. mbl.z_values[2][col] += offset;
  3976. }
  3977. break;
  3978. }
  3979. }
  3980. }
  3981. // SERIAL_ECHOLNPGM("Bed leveling correction finished");
  3982. mbl.upsample_3x3(); //bilinear interpolation from 3x3 to 7x7 points while using the same array z_values[iy][ix] for storing (just coppying measured data to new destination and interpolating between them)
  3983. // SERIAL_ECHOLNPGM("Upsample finished");
  3984. mbl.active = 1; //activate mesh bed leveling
  3985. // SERIAL_ECHOLNPGM("Mesh bed leveling activated");
  3986. go_home_with_z_lift();
  3987. // SERIAL_ECHOLNPGM("Go home finished");
  3988. //unretract (after PINDA preheat retraction)
  3989. if (degHotend(active_extruder) > EXTRUDE_MINTEMP && temp_cal_active == true && calibration_status_pinda() == true && target_temperature_bed >= 50) {
  3990. current_position[E_AXIS] += default_retraction;
  3991. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400, active_extruder);
  3992. }
  3993. KEEPALIVE_STATE(NOT_BUSY);
  3994. // Restore custom message state
  3995. lcd_setstatuspgm(_T(WELCOME_MSG));
  3996. custom_message_type = custom_message_type_old;
  3997. custom_message_state = custom_message_state_old;
  3998. mesh_bed_leveling_flag = false;
  3999. mesh_bed_run_from_menu = false;
  4000. lcd_update(2);
  4001. }
  4002. break;
  4003. /**
  4004. * G81: Print mesh bed leveling status and bed profile if activated
  4005. */
  4006. case 81:
  4007. if (mbl.active) {
  4008. SERIAL_PROTOCOLPGM("Num X,Y: ");
  4009. SERIAL_PROTOCOL(MESH_NUM_X_POINTS);
  4010. SERIAL_PROTOCOLPGM(",");
  4011. SERIAL_PROTOCOL(MESH_NUM_Y_POINTS);
  4012. SERIAL_PROTOCOLPGM("\nZ search height: ");
  4013. SERIAL_PROTOCOL(MESH_HOME_Z_SEARCH);
  4014. SERIAL_PROTOCOLLNPGM("\nMeasured points:");
  4015. for (int y = MESH_NUM_Y_POINTS-1; y >= 0; y--) {
  4016. for (int x = 0; x < MESH_NUM_X_POINTS; x++) {
  4017. SERIAL_PROTOCOLPGM(" ");
  4018. SERIAL_PROTOCOL_F(mbl.z_values[y][x], 5);
  4019. }
  4020. SERIAL_PROTOCOLPGM("\n");
  4021. }
  4022. }
  4023. else
  4024. SERIAL_PROTOCOLLNPGM("Mesh bed leveling not active.");
  4025. break;
  4026. #if 0
  4027. /**
  4028. * G82: Single Z probe at current location
  4029. *
  4030. * WARNING! USE WITH CAUTION! If you'll try to probe where is no leveling pad, nasty things can happen!
  4031. *
  4032. */
  4033. case 82:
  4034. SERIAL_PROTOCOLLNPGM("Finding bed ");
  4035. int l_feedmultiply = setup_for_endstop_move();
  4036. find_bed_induction_sensor_point_z();
  4037. clean_up_after_endstop_move(l_feedmultiply);
  4038. SERIAL_PROTOCOLPGM("Bed found at: ");
  4039. SERIAL_PROTOCOL_F(current_position[Z_AXIS], 5);
  4040. SERIAL_PROTOCOLPGM("\n");
  4041. break;
  4042. /**
  4043. * G83: Prusa3D specific: Babystep in Z and store to EEPROM
  4044. */
  4045. case 83:
  4046. {
  4047. int babystepz = code_seen('S') ? code_value() : 0;
  4048. int BabyPosition = code_seen('P') ? code_value() : 0;
  4049. if (babystepz != 0) {
  4050. //FIXME Vojtech: What shall be the index of the axis Z: 3 or 4?
  4051. // Is the axis indexed starting with zero or one?
  4052. if (BabyPosition > 4) {
  4053. SERIAL_PROTOCOLLNPGM("Index out of bounds");
  4054. }else{
  4055. // Save it to the eeprom
  4056. babystepLoadZ = babystepz;
  4057. EEPROM_save_B(EEPROM_BABYSTEP_Z0+(BabyPosition*2),&babystepLoadZ);
  4058. // adjust the Z
  4059. babystepsTodoZadd(babystepLoadZ);
  4060. }
  4061. }
  4062. }
  4063. break;
  4064. /**
  4065. * G84: Prusa3D specific: UNDO Babystep Z (move Z axis back)
  4066. */
  4067. case 84:
  4068. babystepsTodoZsubtract(babystepLoadZ);
  4069. // babystepLoadZ = 0;
  4070. break;
  4071. /**
  4072. * G85: Prusa3D specific: Pick best babystep
  4073. */
  4074. case 85:
  4075. lcd_pick_babystep();
  4076. break;
  4077. #endif
  4078. /**
  4079. * G86: Prusa3D specific: Disable babystep correction after home.
  4080. * This G-code will be performed at the start of a calibration script.
  4081. */
  4082. case 86:
  4083. calibration_status_store(CALIBRATION_STATUS_LIVE_ADJUST);
  4084. break;
  4085. /**
  4086. * G87: Prusa3D specific: Enable babystep correction after home
  4087. * This G-code will be performed at the end of a calibration script.
  4088. */
  4089. case 87:
  4090. calibration_status_store(CALIBRATION_STATUS_CALIBRATED);
  4091. break;
  4092. /**
  4093. * G88: Prusa3D specific: Don't know what it is for, it is in V2Calibration.gcode
  4094. */
  4095. case 88:
  4096. break;
  4097. #endif // ENABLE_MESH_BED_LEVELING
  4098. case 90: // G90
  4099. relative_mode = false;
  4100. break;
  4101. case 91: // G91
  4102. relative_mode = true;
  4103. break;
  4104. case 92: // G92
  4105. if(!code_seen(axis_codes[E_AXIS]))
  4106. st_synchronize();
  4107. for(int8_t i=0; i < NUM_AXIS; i++) {
  4108. if(code_seen(axis_codes[i])) {
  4109. if(i == E_AXIS) {
  4110. current_position[i] = code_value();
  4111. plan_set_e_position(current_position[E_AXIS]);
  4112. }
  4113. else {
  4114. current_position[i] = code_value()+cs.add_homing[i];
  4115. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  4116. }
  4117. }
  4118. }
  4119. break;
  4120. case 98: //! G98 (activate farm mode)
  4121. farm_mode = 1;
  4122. PingTime = millis();
  4123. eeprom_update_byte((unsigned char *)EEPROM_FARM_MODE, farm_mode);
  4124. EEPROM_save_B(EEPROM_FARM_NUMBER, &farm_no);
  4125. SilentModeMenu = SILENT_MODE_OFF;
  4126. eeprom_update_byte((unsigned char *)EEPROM_SILENT, SilentModeMenu);
  4127. break;
  4128. case 99: //! G99 (deactivate farm mode)
  4129. farm_mode = 0;
  4130. lcd_printer_connected();
  4131. eeprom_update_byte((unsigned char *)EEPROM_FARM_MODE, farm_mode);
  4132. lcd_update(2);
  4133. break;
  4134. default:
  4135. printf_P(PSTR("Unknown G code: %s \n"), cmdbuffer + bufindr + CMDHDRSIZE);
  4136. }
  4137. // printf_P(_N("END G-CODE=%u\n"), gcode_in_progress);
  4138. gcode_in_progress = 0;
  4139. } // end if(code_seen('G'))
  4140. else if(code_seen('M'))
  4141. {
  4142. int index;
  4143. for (index = 1; *(strchr_pointer + index) == ' ' || *(strchr_pointer + index) == '\t'; index++);
  4144. /*for (++strchr_pointer; *strchr_pointer == ' ' || *strchr_pointer == '\t'; ++strchr_pointer);*/
  4145. if (*(strchr_pointer+index) < '0' || *(strchr_pointer+index) > '9') {
  4146. printf_P(PSTR("Invalid M code: %s \n"), cmdbuffer + bufindr + CMDHDRSIZE);
  4147. } else
  4148. {
  4149. mcode_in_progress = (int)code_value();
  4150. // printf_P(_N("BEGIN M-CODE=%u\n"), mcode_in_progress);
  4151. switch(mcode_in_progress)
  4152. {
  4153. case 0: // M0 - Unconditional stop - Wait for user button press on LCD
  4154. case 1: // M1 - Conditional stop - Wait for user button press on LCD
  4155. {
  4156. char *src = strchr_pointer + 2;
  4157. codenum = 0;
  4158. bool hasP = false, hasS = false;
  4159. if (code_seen('P')) {
  4160. codenum = code_value(); // milliseconds to wait
  4161. hasP = codenum > 0;
  4162. }
  4163. if (code_seen('S')) {
  4164. codenum = code_value() * 1000; // seconds to wait
  4165. hasS = codenum > 0;
  4166. }
  4167. starpos = strchr(src, '*');
  4168. if (starpos != NULL) *(starpos) = '\0';
  4169. while (*src == ' ') ++src;
  4170. if (!hasP && !hasS && *src != '\0') {
  4171. lcd_setstatus(src);
  4172. } else {
  4173. LCD_MESSAGERPGM(_i("Wait for user..."));////MSG_USERWAIT c=0 r=0
  4174. }
  4175. lcd_ignore_click(); //call lcd_ignore_click aslo for else ???
  4176. st_synchronize();
  4177. previous_millis_cmd = millis();
  4178. if (codenum > 0){
  4179. codenum += millis(); // keep track of when we started waiting
  4180. KEEPALIVE_STATE(PAUSED_FOR_USER);
  4181. while(millis() < codenum && !lcd_clicked()){
  4182. manage_heater();
  4183. manage_inactivity(true);
  4184. lcd_update(0);
  4185. }
  4186. KEEPALIVE_STATE(IN_HANDLER);
  4187. lcd_ignore_click(false);
  4188. }else{
  4189. KEEPALIVE_STATE(PAUSED_FOR_USER);
  4190. while(!lcd_clicked()){
  4191. manage_heater();
  4192. manage_inactivity(true);
  4193. lcd_update(0);
  4194. }
  4195. KEEPALIVE_STATE(IN_HANDLER);
  4196. }
  4197. if (IS_SD_PRINTING)
  4198. LCD_MESSAGERPGM(_T(MSG_RESUMING_PRINT));
  4199. else
  4200. LCD_MESSAGERPGM(_T(WELCOME_MSG));
  4201. }
  4202. break;
  4203. case 17:
  4204. LCD_MESSAGERPGM(_i("No move."));////MSG_NO_MOVE c=0 r=0
  4205. enable_x();
  4206. enable_y();
  4207. enable_z();
  4208. enable_e0();
  4209. enable_e1();
  4210. enable_e2();
  4211. break;
  4212. #ifdef SDSUPPORT
  4213. case 20: // M20 - list SD card
  4214. SERIAL_PROTOCOLLNRPGM(_N("Begin file list"));////MSG_BEGIN_FILE_LIST c=0 r=0
  4215. card.ls();
  4216. SERIAL_PROTOCOLLNRPGM(_N("End file list"));////MSG_END_FILE_LIST c=0 r=0
  4217. break;
  4218. case 21: // M21 - init SD card
  4219. card.initsd();
  4220. break;
  4221. case 22: //M22 - release SD card
  4222. card.release();
  4223. break;
  4224. case 23: //M23 - Select file
  4225. starpos = (strchr(strchr_pointer + 4,'*'));
  4226. if(starpos!=NULL)
  4227. *(starpos)='\0';
  4228. card.openFile(strchr_pointer + 4,true);
  4229. break;
  4230. case 24: //M24 - Start SD print
  4231. if (!card.paused)
  4232. failstats_reset_print();
  4233. card.startFileprint();
  4234. starttime=millis();
  4235. break;
  4236. case 25: //M25 - Pause SD print
  4237. card.pauseSDPrint();
  4238. break;
  4239. case 26: //M26 - Set SD index
  4240. if(card.cardOK && code_seen('S')) {
  4241. card.setIndex(code_value_long());
  4242. }
  4243. break;
  4244. case 27: //M27 - Get SD status
  4245. card.getStatus();
  4246. break;
  4247. case 28: //M28 - Start SD write
  4248. starpos = (strchr(strchr_pointer + 4,'*'));
  4249. if(starpos != NULL){
  4250. char* npos = strchr(CMDBUFFER_CURRENT_STRING, 'N');
  4251. strchr_pointer = strchr(npos,' ') + 1;
  4252. *(starpos) = '\0';
  4253. }
  4254. card.openFile(strchr_pointer+4,false);
  4255. break;
  4256. case 29: //M29 - Stop SD write
  4257. //processed in write to file routine above
  4258. //card,saving = false;
  4259. break;
  4260. case 30: //M30 <filename> Delete File
  4261. if (card.cardOK){
  4262. card.closefile();
  4263. starpos = (strchr(strchr_pointer + 4,'*'));
  4264. if(starpos != NULL){
  4265. char* npos = strchr(CMDBUFFER_CURRENT_STRING, 'N');
  4266. strchr_pointer = strchr(npos,' ') + 1;
  4267. *(starpos) = '\0';
  4268. }
  4269. card.removeFile(strchr_pointer + 4);
  4270. }
  4271. break;
  4272. case 32: //M32 - Select file and start SD print
  4273. {
  4274. if(card.sdprinting) {
  4275. st_synchronize();
  4276. }
  4277. starpos = (strchr(strchr_pointer + 4,'*'));
  4278. char* namestartpos = (strchr(strchr_pointer + 4,'!')); //find ! to indicate filename string start.
  4279. if(namestartpos==NULL)
  4280. {
  4281. namestartpos=strchr_pointer + 4; //default name position, 4 letters after the M
  4282. }
  4283. else
  4284. namestartpos++; //to skip the '!'
  4285. if(starpos!=NULL)
  4286. *(starpos)='\0';
  4287. bool call_procedure=(code_seen('P'));
  4288. if(strchr_pointer>namestartpos)
  4289. call_procedure=false; //false alert, 'P' found within filename
  4290. if( card.cardOK )
  4291. {
  4292. card.openFile(namestartpos,true,!call_procedure);
  4293. if(code_seen('S'))
  4294. if(strchr_pointer<namestartpos) //only if "S" is occuring _before_ the filename
  4295. card.setIndex(code_value_long());
  4296. card.startFileprint();
  4297. if(!call_procedure)
  4298. starttime=millis(); //procedure calls count as normal print time.
  4299. }
  4300. } break;
  4301. case 928: //M928 - Start SD write
  4302. starpos = (strchr(strchr_pointer + 5,'*'));
  4303. if(starpos != NULL){
  4304. char* npos = strchr(CMDBUFFER_CURRENT_STRING, 'N');
  4305. strchr_pointer = strchr(npos,' ') + 1;
  4306. *(starpos) = '\0';
  4307. }
  4308. card.openLogFile(strchr_pointer+5);
  4309. break;
  4310. #endif //SDSUPPORT
  4311. case 31: //M31 take time since the start of the SD print or an M109 command
  4312. {
  4313. stoptime=millis();
  4314. char time[30];
  4315. unsigned long t=(stoptime-starttime)/1000;
  4316. int sec,min;
  4317. min=t/60;
  4318. sec=t%60;
  4319. sprintf_P(time, PSTR("%i min, %i sec"), min, sec);
  4320. SERIAL_ECHO_START;
  4321. SERIAL_ECHOLN(time);
  4322. lcd_setstatus(time);
  4323. autotempShutdown();
  4324. }
  4325. break;
  4326. case 42: //M42 -Change pin status via gcode
  4327. if (code_seen('S'))
  4328. {
  4329. int pin_status = code_value();
  4330. int pin_number = LED_PIN;
  4331. if (code_seen('P') && pin_status >= 0 && pin_status <= 255)
  4332. pin_number = code_value();
  4333. for(int8_t i = 0; i < (int8_t)(sizeof(sensitive_pins)/sizeof(int)); i++)
  4334. {
  4335. if (sensitive_pins[i] == pin_number)
  4336. {
  4337. pin_number = -1;
  4338. break;
  4339. }
  4340. }
  4341. #if defined(FAN_PIN) && FAN_PIN > -1
  4342. if (pin_number == FAN_PIN)
  4343. fanSpeed = pin_status;
  4344. #endif
  4345. if (pin_number > -1)
  4346. {
  4347. pinMode(pin_number, OUTPUT);
  4348. digitalWrite(pin_number, pin_status);
  4349. analogWrite(pin_number, pin_status);
  4350. }
  4351. }
  4352. break;
  4353. case 44: //! M44: Prusa3D: Reset the bed skew and offset calibration.
  4354. // Reset the baby step value and the baby step applied flag.
  4355. calibration_status_store(CALIBRATION_STATUS_ASSEMBLED);
  4356. eeprom_update_word((uint16_t*)EEPROM_BABYSTEP_Z, 0);
  4357. // Reset the skew and offset in both RAM and EEPROM.
  4358. reset_bed_offset_and_skew();
  4359. // Reset world2machine_rotation_and_skew and world2machine_shift, therefore
  4360. // the planner will not perform any adjustments in the XY plane.
  4361. // Wait for the motors to stop and update the current position with the absolute values.
  4362. world2machine_revert_to_uncorrected();
  4363. break;
  4364. case 45: //! M45: Prusa3D: bed skew and offset with manual Z up
  4365. {
  4366. int8_t verbosity_level = 0;
  4367. bool only_Z = code_seen('Z');
  4368. #ifdef SUPPORT_VERBOSITY
  4369. if (code_seen('V'))
  4370. {
  4371. // Just 'V' without a number counts as V1.
  4372. char c = strchr_pointer[1];
  4373. verbosity_level = (c == ' ' || c == '\t' || c == 0) ? 1 : code_value_short();
  4374. }
  4375. #endif //SUPPORT_VERBOSITY
  4376. gcode_M45(only_Z, verbosity_level);
  4377. }
  4378. break;
  4379. /*
  4380. case 46:
  4381. {
  4382. // M46: Prusa3D: Show the assigned IP address.
  4383. uint8_t ip[4];
  4384. bool hasIP = card.ToshibaFlashAir_GetIP(ip);
  4385. if (hasIP) {
  4386. SERIAL_ECHOPGM("Toshiba FlashAir current IP: ");
  4387. SERIAL_ECHO(int(ip[0]));
  4388. SERIAL_ECHOPGM(".");
  4389. SERIAL_ECHO(int(ip[1]));
  4390. SERIAL_ECHOPGM(".");
  4391. SERIAL_ECHO(int(ip[2]));
  4392. SERIAL_ECHOPGM(".");
  4393. SERIAL_ECHO(int(ip[3]));
  4394. SERIAL_ECHOLNPGM("");
  4395. } else {
  4396. SERIAL_ECHOLNPGM("Toshiba FlashAir GetIP failed");
  4397. }
  4398. break;
  4399. }
  4400. */
  4401. case 47:
  4402. //! M47: Prusa3D: Show end stops dialog on the display.
  4403. KEEPALIVE_STATE(PAUSED_FOR_USER);
  4404. lcd_diag_show_end_stops();
  4405. KEEPALIVE_STATE(IN_HANDLER);
  4406. break;
  4407. #if 0
  4408. case 48: //! M48: scan the bed induction sensor points, print the sensor trigger coordinates to the serial line for visualization on the PC.
  4409. {
  4410. // Disable the default update procedure of the display. We will do a modal dialog.
  4411. lcd_update_enable(false);
  4412. // Let the planner use the uncorrected coordinates.
  4413. mbl.reset();
  4414. // Reset world2machine_rotation_and_skew and world2machine_shift, therefore
  4415. // the planner will not perform any adjustments in the XY plane.
  4416. // Wait for the motors to stop and update the current position with the absolute values.
  4417. world2machine_revert_to_uncorrected();
  4418. // Move the print head close to the bed.
  4419. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  4420. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS],current_position[Z_AXIS] , current_position[E_AXIS], homing_feedrate[Z_AXIS]/40, active_extruder);
  4421. st_synchronize();
  4422. // Home in the XY plane.
  4423. set_destination_to_current();
  4424. int l_feedmultiply = setup_for_endstop_move();
  4425. home_xy();
  4426. int8_t verbosity_level = 0;
  4427. if (code_seen('V')) {
  4428. // Just 'V' without a number counts as V1.
  4429. char c = strchr_pointer[1];
  4430. verbosity_level = (c == ' ' || c == '\t' || c == 0) ? 1 : code_value_short();
  4431. }
  4432. bool success = scan_bed_induction_points(verbosity_level);
  4433. clean_up_after_endstop_move(l_feedmultiply);
  4434. // Print head up.
  4435. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  4436. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS],current_position[Z_AXIS] , current_position[E_AXIS], homing_feedrate[Z_AXIS]/40, active_extruder);
  4437. st_synchronize();
  4438. lcd_update_enable(true);
  4439. break;
  4440. }
  4441. #endif
  4442. #ifdef ENABLE_AUTO_BED_LEVELING
  4443. #ifdef Z_PROBE_REPEATABILITY_TEST
  4444. //! M48 Z-Probe repeatability measurement function.
  4445. //!
  4446. //! Usage: M48 <n #_samples> <X X_position_for_samples> <Y Y_position_for_samples> <V Verbose_Level> <L legs_of_movement_prior_to_doing_probe>
  4447. //!
  4448. //! This function assumes the bed has been homed. Specificaly, that a G28 command
  4449. //! as been issued prior to invoking the M48 Z-Probe repeatability measurement function.
  4450. //! Any information generated by a prior G29 Bed leveling command will be lost and need to be
  4451. //! regenerated.
  4452. //!
  4453. //! The number of samples will default to 10 if not specified. You can use upper or lower case
  4454. //! letters for any of the options EXCEPT n. n must be in lower case because Marlin uses a capital
  4455. //! N for its communication protocol and will get horribly confused if you send it a capital N.
  4456. //!
  4457. case 48: // M48 Z-Probe repeatability
  4458. {
  4459. #if Z_MIN_PIN == -1
  4460. #error "You must have a Z_MIN endstop in order to enable calculation of Z-Probe repeatability."
  4461. #endif
  4462. double sum=0.0;
  4463. double mean=0.0;
  4464. double sigma=0.0;
  4465. double sample_set[50];
  4466. int verbose_level=1, n=0, j, n_samples = 10, n_legs=0;
  4467. double X_current, Y_current, Z_current;
  4468. double X_probe_location, Y_probe_location, Z_start_location, ext_position;
  4469. if (code_seen('V') || code_seen('v')) {
  4470. verbose_level = code_value();
  4471. if (verbose_level<0 || verbose_level>4 ) {
  4472. SERIAL_PROTOCOLPGM("?Verbose Level not plausable.\n");
  4473. goto Sigma_Exit;
  4474. }
  4475. }
  4476. if (verbose_level > 0) {
  4477. SERIAL_PROTOCOLPGM("M48 Z-Probe Repeatability test. Version 2.00\n");
  4478. SERIAL_PROTOCOLPGM("Full support at: http://3dprintboard.com/forum.php\n");
  4479. }
  4480. if (code_seen('n')) {
  4481. n_samples = code_value();
  4482. if (n_samples<4 || n_samples>50 ) {
  4483. SERIAL_PROTOCOLPGM("?Specified sample size not plausable.\n");
  4484. goto Sigma_Exit;
  4485. }
  4486. }
  4487. X_current = X_probe_location = st_get_position_mm(X_AXIS);
  4488. Y_current = Y_probe_location = st_get_position_mm(Y_AXIS);
  4489. Z_current = st_get_position_mm(Z_AXIS);
  4490. Z_start_location = st_get_position_mm(Z_AXIS) + Z_RAISE_BEFORE_PROBING;
  4491. ext_position = st_get_position_mm(E_AXIS);
  4492. if (code_seen('X') || code_seen('x') ) {
  4493. X_probe_location = code_value() - X_PROBE_OFFSET_FROM_EXTRUDER;
  4494. if (X_probe_location<X_MIN_POS || X_probe_location>X_MAX_POS ) {
  4495. SERIAL_PROTOCOLPGM("?Specified X position out of range.\n");
  4496. goto Sigma_Exit;
  4497. }
  4498. }
  4499. if (code_seen('Y') || code_seen('y') ) {
  4500. Y_probe_location = code_value() - Y_PROBE_OFFSET_FROM_EXTRUDER;
  4501. if (Y_probe_location<Y_MIN_POS || Y_probe_location>Y_MAX_POS ) {
  4502. SERIAL_PROTOCOLPGM("?Specified Y position out of range.\n");
  4503. goto Sigma_Exit;
  4504. }
  4505. }
  4506. if (code_seen('L') || code_seen('l') ) {
  4507. n_legs = code_value();
  4508. if ( n_legs==1 )
  4509. n_legs = 2;
  4510. if ( n_legs<0 || n_legs>15 ) {
  4511. SERIAL_PROTOCOLPGM("?Specified number of legs in movement not plausable.\n");
  4512. goto Sigma_Exit;
  4513. }
  4514. }
  4515. //
  4516. // Do all the preliminary setup work. First raise the probe.
  4517. //
  4518. st_synchronize();
  4519. plan_bed_level_matrix.set_to_identity();
  4520. plan_buffer_line( X_current, Y_current, Z_start_location,
  4521. ext_position,
  4522. homing_feedrate[Z_AXIS]/60,
  4523. active_extruder);
  4524. st_synchronize();
  4525. //
  4526. // Now get everything to the specified probe point So we can safely do a probe to
  4527. // get us close to the bed. If the Z-Axis is far from the bed, we don't want to
  4528. // use that as a starting point for each probe.
  4529. //
  4530. if (verbose_level > 2)
  4531. SERIAL_PROTOCOL("Positioning probe for the test.\n");
  4532. plan_buffer_line( X_probe_location, Y_probe_location, Z_start_location,
  4533. ext_position,
  4534. homing_feedrate[X_AXIS]/60,
  4535. active_extruder);
  4536. st_synchronize();
  4537. current_position[X_AXIS] = X_current = st_get_position_mm(X_AXIS);
  4538. current_position[Y_AXIS] = Y_current = st_get_position_mm(Y_AXIS);
  4539. current_position[Z_AXIS] = Z_current = st_get_position_mm(Z_AXIS);
  4540. current_position[E_AXIS] = ext_position = st_get_position_mm(E_AXIS);
  4541. //
  4542. // OK, do the inital probe to get us close to the bed.
  4543. // Then retrace the right amount and use that in subsequent probes
  4544. //
  4545. int l_feedmultiply = setup_for_endstop_move();
  4546. run_z_probe();
  4547. current_position[Z_AXIS] = Z_current = st_get_position_mm(Z_AXIS);
  4548. Z_start_location = st_get_position_mm(Z_AXIS) + Z_RAISE_BEFORE_PROBING;
  4549. plan_buffer_line( X_probe_location, Y_probe_location, Z_start_location,
  4550. ext_position,
  4551. homing_feedrate[X_AXIS]/60,
  4552. active_extruder);
  4553. st_synchronize();
  4554. current_position[Z_AXIS] = Z_current = st_get_position_mm(Z_AXIS);
  4555. for( n=0; n<n_samples; n++) {
  4556. do_blocking_move_to( X_probe_location, Y_probe_location, Z_start_location); // Make sure we are at the probe location
  4557. if ( n_legs) {
  4558. double radius=0.0, theta=0.0, x_sweep, y_sweep;
  4559. int rotational_direction, l;
  4560. rotational_direction = (unsigned long) millis() & 0x0001; // clockwise or counter clockwise
  4561. radius = (unsigned long) millis() % (long) (X_MAX_LENGTH/4); // limit how far out to go
  4562. theta = (float) ((unsigned long) millis() % (long) 360) / (360./(2*3.1415926)); // turn into radians
  4563. //SERIAL_ECHOPAIR("starting radius: ",radius);
  4564. //SERIAL_ECHOPAIR(" theta: ",theta);
  4565. //SERIAL_ECHOPAIR(" direction: ",rotational_direction);
  4566. //SERIAL_PROTOCOLLNPGM("");
  4567. for( l=0; l<n_legs-1; l++) {
  4568. if (rotational_direction==1)
  4569. theta += (float) ((unsigned long) millis() % (long) 20) / (360.0/(2*3.1415926)); // turn into radians
  4570. else
  4571. theta -= (float) ((unsigned long) millis() % (long) 20) / (360.0/(2*3.1415926)); // turn into radians
  4572. radius += (float) ( ((long) ((unsigned long) millis() % (long) 10)) - 5);
  4573. if ( radius<0.0 )
  4574. radius = -radius;
  4575. X_current = X_probe_location + cos(theta) * radius;
  4576. Y_current = Y_probe_location + sin(theta) * radius;
  4577. if ( X_current<X_MIN_POS) // Make sure our X & Y are sane
  4578. X_current = X_MIN_POS;
  4579. if ( X_current>X_MAX_POS)
  4580. X_current = X_MAX_POS;
  4581. if ( Y_current<Y_MIN_POS) // Make sure our X & Y are sane
  4582. Y_current = Y_MIN_POS;
  4583. if ( Y_current>Y_MAX_POS)
  4584. Y_current = Y_MAX_POS;
  4585. if (verbose_level>3 ) {
  4586. SERIAL_ECHOPAIR("x: ", X_current);
  4587. SERIAL_ECHOPAIR("y: ", Y_current);
  4588. SERIAL_PROTOCOLLNPGM("");
  4589. }
  4590. do_blocking_move_to( X_current, Y_current, Z_current );
  4591. }
  4592. do_blocking_move_to( X_probe_location, Y_probe_location, Z_start_location); // Go back to the probe location
  4593. }
  4594. int l_feedmultiply = setup_for_endstop_move();
  4595. run_z_probe();
  4596. sample_set[n] = current_position[Z_AXIS];
  4597. //
  4598. // Get the current mean for the data points we have so far
  4599. //
  4600. sum=0.0;
  4601. for( j=0; j<=n; j++) {
  4602. sum = sum + sample_set[j];
  4603. }
  4604. mean = sum / (double (n+1));
  4605. //
  4606. // Now, use that mean to calculate the standard deviation for the
  4607. // data points we have so far
  4608. //
  4609. sum=0.0;
  4610. for( j=0; j<=n; j++) {
  4611. sum = sum + (sample_set[j]-mean) * (sample_set[j]-mean);
  4612. }
  4613. sigma = sqrt( sum / (double (n+1)) );
  4614. if (verbose_level > 1) {
  4615. SERIAL_PROTOCOL(n+1);
  4616. SERIAL_PROTOCOL(" of ");
  4617. SERIAL_PROTOCOL(n_samples);
  4618. SERIAL_PROTOCOLPGM(" z: ");
  4619. SERIAL_PROTOCOL_F(current_position[Z_AXIS], 6);
  4620. }
  4621. if (verbose_level > 2) {
  4622. SERIAL_PROTOCOL(" mean: ");
  4623. SERIAL_PROTOCOL_F(mean,6);
  4624. SERIAL_PROTOCOL(" sigma: ");
  4625. SERIAL_PROTOCOL_F(sigma,6);
  4626. }
  4627. if (verbose_level > 0)
  4628. SERIAL_PROTOCOLPGM("\n");
  4629. plan_buffer_line( X_probe_location, Y_probe_location, Z_start_location,
  4630. current_position[E_AXIS], homing_feedrate[Z_AXIS]/60, active_extruder);
  4631. st_synchronize();
  4632. }
  4633. delay(1000);
  4634. clean_up_after_endstop_move(l_feedmultiply);
  4635. // enable_endstops(true);
  4636. if (verbose_level > 0) {
  4637. SERIAL_PROTOCOLPGM("Mean: ");
  4638. SERIAL_PROTOCOL_F(mean, 6);
  4639. SERIAL_PROTOCOLPGM("\n");
  4640. }
  4641. SERIAL_PROTOCOLPGM("Standard Deviation: ");
  4642. SERIAL_PROTOCOL_F(sigma, 6);
  4643. SERIAL_PROTOCOLPGM("\n\n");
  4644. Sigma_Exit:
  4645. break;
  4646. }
  4647. #endif // Z_PROBE_REPEATABILITY_TEST
  4648. #endif // ENABLE_AUTO_BED_LEVELING
  4649. case 73: //M73 show percent done and time remaining
  4650. if(code_seen('P')) print_percent_done_normal = code_value();
  4651. if(code_seen('R')) print_time_remaining_normal = code_value();
  4652. if(code_seen('Q')) print_percent_done_silent = code_value();
  4653. if(code_seen('S')) print_time_remaining_silent = code_value();
  4654. {
  4655. const char* _msg_mode_done_remain = _N("%S MODE: Percent done: %d; print time remaining in mins: %d\n");
  4656. printf_P(_msg_mode_done_remain, _N("NORMAL"), int(print_percent_done_normal), print_time_remaining_normal);
  4657. printf_P(_msg_mode_done_remain, _N("SILENT"), int(print_percent_done_silent), print_time_remaining_silent);
  4658. }
  4659. break;
  4660. case 104: // M104
  4661. {
  4662. uint8_t extruder;
  4663. if(setTargetedHotend(104,extruder)){
  4664. break;
  4665. }
  4666. if (code_seen('S'))
  4667. {
  4668. setTargetHotendSafe(code_value(), extruder);
  4669. }
  4670. setWatch();
  4671. break;
  4672. }
  4673. case 112: // M112 -Emergency Stop
  4674. kill(_n(""), 3);
  4675. break;
  4676. case 140: // M140 set bed temp
  4677. if (code_seen('S')) setTargetBed(code_value());
  4678. break;
  4679. case 105 : // M105
  4680. {
  4681. uint8_t extruder;
  4682. if(setTargetedHotend(105, extruder)){
  4683. break;
  4684. }
  4685. #if defined(TEMP_0_PIN) && TEMP_0_PIN > -1
  4686. SERIAL_PROTOCOLPGM("ok T:");
  4687. SERIAL_PROTOCOL_F(degHotend(extruder),1);
  4688. SERIAL_PROTOCOLPGM(" /");
  4689. SERIAL_PROTOCOL_F(degTargetHotend(extruder),1);
  4690. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  4691. SERIAL_PROTOCOLPGM(" B:");
  4692. SERIAL_PROTOCOL_F(degBed(),1);
  4693. SERIAL_PROTOCOLPGM(" /");
  4694. SERIAL_PROTOCOL_F(degTargetBed(),1);
  4695. #endif //TEMP_BED_PIN
  4696. for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) {
  4697. SERIAL_PROTOCOLPGM(" T");
  4698. SERIAL_PROTOCOL(cur_extruder);
  4699. SERIAL_PROTOCOLPGM(":");
  4700. SERIAL_PROTOCOL_F(degHotend(cur_extruder),1);
  4701. SERIAL_PROTOCOLPGM(" /");
  4702. SERIAL_PROTOCOL_F(degTargetHotend(cur_extruder),1);
  4703. }
  4704. #else
  4705. SERIAL_ERROR_START;
  4706. SERIAL_ERRORLNRPGM(_i("No thermistors - no temperature"));////MSG_ERR_NO_THERMISTORS c=0 r=0
  4707. #endif
  4708. SERIAL_PROTOCOLPGM(" @:");
  4709. #ifdef EXTRUDER_WATTS
  4710. SERIAL_PROTOCOL((EXTRUDER_WATTS * getHeaterPower(tmp_extruder))/127);
  4711. SERIAL_PROTOCOLPGM("W");
  4712. #else
  4713. SERIAL_PROTOCOL(getHeaterPower(extruder));
  4714. #endif
  4715. SERIAL_PROTOCOLPGM(" B@:");
  4716. #ifdef BED_WATTS
  4717. SERIAL_PROTOCOL((BED_WATTS * getHeaterPower(-1))/127);
  4718. SERIAL_PROTOCOLPGM("W");
  4719. #else
  4720. SERIAL_PROTOCOL(getHeaterPower(-1));
  4721. #endif
  4722. #ifdef PINDA_THERMISTOR
  4723. SERIAL_PROTOCOLPGM(" P:");
  4724. SERIAL_PROTOCOL_F(current_temperature_pinda,1);
  4725. #endif //PINDA_THERMISTOR
  4726. #ifdef AMBIENT_THERMISTOR
  4727. SERIAL_PROTOCOLPGM(" A:");
  4728. SERIAL_PROTOCOL_F(current_temperature_ambient,1);
  4729. #endif //AMBIENT_THERMISTOR
  4730. #ifdef SHOW_TEMP_ADC_VALUES
  4731. {float raw = 0.0;
  4732. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  4733. SERIAL_PROTOCOLPGM(" ADC B:");
  4734. SERIAL_PROTOCOL_F(degBed(),1);
  4735. SERIAL_PROTOCOLPGM("C->");
  4736. raw = rawBedTemp();
  4737. SERIAL_PROTOCOL_F(raw/OVERSAMPLENR,5);
  4738. SERIAL_PROTOCOLPGM(" Rb->");
  4739. SERIAL_PROTOCOL_F(100 * (1 + (PtA * (raw/OVERSAMPLENR)) + (PtB * sq((raw/OVERSAMPLENR)))), 5);
  4740. SERIAL_PROTOCOLPGM(" Rxb->");
  4741. SERIAL_PROTOCOL_F(raw, 5);
  4742. #endif
  4743. for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) {
  4744. SERIAL_PROTOCOLPGM(" T");
  4745. SERIAL_PROTOCOL(cur_extruder);
  4746. SERIAL_PROTOCOLPGM(":");
  4747. SERIAL_PROTOCOL_F(degHotend(cur_extruder),1);
  4748. SERIAL_PROTOCOLPGM("C->");
  4749. raw = rawHotendTemp(cur_extruder);
  4750. SERIAL_PROTOCOL_F(raw/OVERSAMPLENR,5);
  4751. SERIAL_PROTOCOLPGM(" Rt");
  4752. SERIAL_PROTOCOL(cur_extruder);
  4753. SERIAL_PROTOCOLPGM("->");
  4754. SERIAL_PROTOCOL_F(100 * (1 + (PtA * (raw/OVERSAMPLENR)) + (PtB * sq((raw/OVERSAMPLENR)))), 5);
  4755. SERIAL_PROTOCOLPGM(" Rx");
  4756. SERIAL_PROTOCOL(cur_extruder);
  4757. SERIAL_PROTOCOLPGM("->");
  4758. SERIAL_PROTOCOL_F(raw, 5);
  4759. }}
  4760. #endif
  4761. SERIAL_PROTOCOLLN("");
  4762. KEEPALIVE_STATE(NOT_BUSY);
  4763. return;
  4764. break;
  4765. }
  4766. case 109:
  4767. {// M109 - Wait for extruder heater to reach target.
  4768. uint8_t extruder;
  4769. if(setTargetedHotend(109, extruder)){
  4770. break;
  4771. }
  4772. LCD_MESSAGERPGM(_T(MSG_HEATING));
  4773. heating_status = 1;
  4774. if (farm_mode) { prusa_statistics(1); };
  4775. #ifdef AUTOTEMP
  4776. autotemp_enabled=false;
  4777. #endif
  4778. if (code_seen('S')) {
  4779. setTargetHotendSafe(code_value(), extruder);
  4780. CooldownNoWait = true;
  4781. } else if (code_seen('R')) {
  4782. setTargetHotendSafe(code_value(), extruder);
  4783. CooldownNoWait = false;
  4784. }
  4785. #ifdef AUTOTEMP
  4786. if (code_seen('S')) autotemp_min=code_value();
  4787. if (code_seen('B')) autotemp_max=code_value();
  4788. if (code_seen('F'))
  4789. {
  4790. autotemp_factor=code_value();
  4791. autotemp_enabled=true;
  4792. }
  4793. #endif
  4794. setWatch();
  4795. codenum = millis();
  4796. /* See if we are heating up or cooling down */
  4797. target_direction = isHeatingHotend(extruder); // true if heating, false if cooling
  4798. KEEPALIVE_STATE(NOT_BUSY);
  4799. cancel_heatup = false;
  4800. wait_for_heater(codenum, extruder); //loops until target temperature is reached
  4801. LCD_MESSAGERPGM(_T(MSG_HEATING_COMPLETE));
  4802. KEEPALIVE_STATE(IN_HANDLER);
  4803. heating_status = 2;
  4804. if (farm_mode) { prusa_statistics(2); };
  4805. //starttime=millis();
  4806. previous_millis_cmd = millis();
  4807. }
  4808. break;
  4809. case 190: // M190 - Wait for bed heater to reach target.
  4810. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  4811. LCD_MESSAGERPGM(_T(MSG_BED_HEATING));
  4812. heating_status = 3;
  4813. if (farm_mode) { prusa_statistics(1); };
  4814. if (code_seen('S'))
  4815. {
  4816. setTargetBed(code_value());
  4817. CooldownNoWait = true;
  4818. }
  4819. else if (code_seen('R'))
  4820. {
  4821. setTargetBed(code_value());
  4822. CooldownNoWait = false;
  4823. }
  4824. codenum = millis();
  4825. cancel_heatup = false;
  4826. target_direction = isHeatingBed(); // true if heating, false if cooling
  4827. KEEPALIVE_STATE(NOT_BUSY);
  4828. while ( (target_direction)&&(!cancel_heatup) ? (isHeatingBed()) : (isCoolingBed()&&(CooldownNoWait==false)) )
  4829. {
  4830. if(( millis() - codenum) > 1000 ) //Print Temp Reading every 1 second while heating up.
  4831. {
  4832. if (!farm_mode) {
  4833. float tt = degHotend(active_extruder);
  4834. SERIAL_PROTOCOLPGM("T:");
  4835. SERIAL_PROTOCOL(tt);
  4836. SERIAL_PROTOCOLPGM(" E:");
  4837. SERIAL_PROTOCOL((int)active_extruder);
  4838. SERIAL_PROTOCOLPGM(" B:");
  4839. SERIAL_PROTOCOL_F(degBed(), 1);
  4840. SERIAL_PROTOCOLLN("");
  4841. }
  4842. codenum = millis();
  4843. }
  4844. manage_heater();
  4845. manage_inactivity();
  4846. lcd_update(0);
  4847. }
  4848. LCD_MESSAGERPGM(_T(MSG_BED_DONE));
  4849. KEEPALIVE_STATE(IN_HANDLER);
  4850. heating_status = 4;
  4851. previous_millis_cmd = millis();
  4852. #endif
  4853. break;
  4854. #if defined(FAN_PIN) && FAN_PIN > -1
  4855. case 106: //!M106 Sxxx Fan On S<speed> 0 .. 255
  4856. if (code_seen('S')){
  4857. fanSpeed=constrain(code_value(),0,255);
  4858. }
  4859. else {
  4860. fanSpeed=255;
  4861. }
  4862. break;
  4863. case 107: //M107 Fan Off
  4864. fanSpeed = 0;
  4865. break;
  4866. #endif //FAN_PIN
  4867. #if defined(PS_ON_PIN) && PS_ON_PIN > -1
  4868. case 80: // M80 - Turn on Power Supply
  4869. SET_OUTPUT(PS_ON_PIN); //GND
  4870. WRITE(PS_ON_PIN, PS_ON_AWAKE);
  4871. // If you have a switch on suicide pin, this is useful
  4872. // if you want to start another print with suicide feature after
  4873. // a print without suicide...
  4874. #if defined SUICIDE_PIN && SUICIDE_PIN > -1
  4875. SET_OUTPUT(SUICIDE_PIN);
  4876. WRITE(SUICIDE_PIN, HIGH);
  4877. #endif
  4878. powersupply = true;
  4879. LCD_MESSAGERPGM(_T(WELCOME_MSG));
  4880. lcd_update(0);
  4881. break;
  4882. #endif
  4883. case 81: // M81 - Turn off Power Supply
  4884. disable_heater();
  4885. st_synchronize();
  4886. disable_e0();
  4887. disable_e1();
  4888. disable_e2();
  4889. finishAndDisableSteppers();
  4890. fanSpeed = 0;
  4891. delay(1000); // Wait a little before to switch off
  4892. #if defined(SUICIDE_PIN) && SUICIDE_PIN > -1
  4893. st_synchronize();
  4894. suicide();
  4895. #elif defined(PS_ON_PIN) && PS_ON_PIN > -1
  4896. SET_OUTPUT(PS_ON_PIN);
  4897. WRITE(PS_ON_PIN, PS_ON_ASLEEP);
  4898. #endif
  4899. powersupply = false;
  4900. LCD_MESSAGERPGM(CAT4(CUSTOM_MENDEL_NAME,PSTR(" "),MSG_OFF,PSTR(".")));
  4901. lcd_update(0);
  4902. break;
  4903. case 82:
  4904. axis_relative_modes[3] = false;
  4905. break;
  4906. case 83:
  4907. axis_relative_modes[3] = true;
  4908. break;
  4909. case 18: //compatibility
  4910. case 84: // M84
  4911. if(code_seen('S')){
  4912. stepper_inactive_time = code_value() * 1000;
  4913. }
  4914. else
  4915. {
  4916. bool all_axis = !((code_seen(axis_codes[X_AXIS])) || (code_seen(axis_codes[Y_AXIS])) || (code_seen(axis_codes[Z_AXIS]))|| (code_seen(axis_codes[E_AXIS])));
  4917. if(all_axis)
  4918. {
  4919. st_synchronize();
  4920. disable_e0();
  4921. disable_e1();
  4922. disable_e2();
  4923. finishAndDisableSteppers();
  4924. }
  4925. else
  4926. {
  4927. st_synchronize();
  4928. if (code_seen('X')) disable_x();
  4929. if (code_seen('Y')) disable_y();
  4930. if (code_seen('Z')) disable_z();
  4931. #if ((E0_ENABLE_PIN != X_ENABLE_PIN) && (E1_ENABLE_PIN != Y_ENABLE_PIN)) // Only enable on boards that have seperate ENABLE_PINS
  4932. if (code_seen('E')) {
  4933. disable_e0();
  4934. disable_e1();
  4935. disable_e2();
  4936. }
  4937. #endif
  4938. }
  4939. }
  4940. //in the end of print set estimated time to end of print and extruders used during print to default values for next print
  4941. print_time_remaining_init();
  4942. snmm_filaments_used = 0;
  4943. break;
  4944. case 85: // M85
  4945. if(code_seen('S')) {
  4946. max_inactive_time = code_value() * 1000;
  4947. }
  4948. break;
  4949. #ifdef SAFETYTIMER
  4950. case 86: // M86 - set safety timer expiration time in seconds; M86 S0 will disable safety timer
  4951. //when safety timer expires heatbed and nozzle target temperatures are set to zero
  4952. if (code_seen('S')) {
  4953. safetytimer_inactive_time = code_value() * 1000;
  4954. safetyTimer.start();
  4955. }
  4956. break;
  4957. #endif
  4958. case 92: // M92
  4959. for(int8_t i=0; i < NUM_AXIS; i++)
  4960. {
  4961. if(code_seen(axis_codes[i]))
  4962. {
  4963. if(i == 3) { // E
  4964. float value = code_value();
  4965. if(value < 20.0) {
  4966. float factor = cs.axis_steps_per_unit[i] / value; // increase e constants if M92 E14 is given for netfab.
  4967. cs.max_jerk[E_AXIS] *= factor;
  4968. max_feedrate[i] *= factor;
  4969. axis_steps_per_sqr_second[i] *= factor;
  4970. }
  4971. cs.axis_steps_per_unit[i] = value;
  4972. }
  4973. else {
  4974. cs.axis_steps_per_unit[i] = code_value();
  4975. }
  4976. }
  4977. }
  4978. break;
  4979. case 110: //! M110 N<line number> - reset line pos
  4980. if (code_seen('N'))
  4981. gcode_LastN = code_value_long();
  4982. break;
  4983. #ifdef HOST_KEEPALIVE_FEATURE
  4984. case 113: // M113 - Get or set Host Keepalive interval
  4985. if (code_seen('S')) {
  4986. host_keepalive_interval = (uint8_t)code_value_short();
  4987. // NOMORE(host_keepalive_interval, 60);
  4988. }
  4989. else {
  4990. SERIAL_ECHO_START;
  4991. SERIAL_ECHOPAIR("M113 S", (unsigned long)host_keepalive_interval);
  4992. SERIAL_PROTOCOLLN("");
  4993. }
  4994. break;
  4995. #endif
  4996. case 115: // M115
  4997. if (code_seen('V')) {
  4998. // Report the Prusa version number.
  4999. SERIAL_PROTOCOLLNRPGM(FW_VERSION_STR_P());
  5000. } else if (code_seen('U')) {
  5001. // Check the firmware version provided. If the firmware version provided by the U code is higher than the currently running firmware,
  5002. // pause the print and ask the user to upgrade the firmware.
  5003. show_upgrade_dialog_if_version_newer(++ strchr_pointer);
  5004. } else {
  5005. SERIAL_ECHOPGM("FIRMWARE_NAME:Prusa-Firmware ");
  5006. SERIAL_ECHORPGM(FW_VERSION_STR_P());
  5007. SERIAL_ECHOPGM(" based on Marlin FIRMWARE_URL:https://github.com/prusa3d/Prusa-Firmware PROTOCOL_VERSION:");
  5008. SERIAL_ECHOPGM(PROTOCOL_VERSION);
  5009. SERIAL_ECHOPGM(" MACHINE_TYPE:");
  5010. SERIAL_ECHOPGM(CUSTOM_MENDEL_NAME);
  5011. SERIAL_ECHOPGM(" EXTRUDER_COUNT:");
  5012. SERIAL_ECHOPGM(STRINGIFY(EXTRUDERS));
  5013. SERIAL_ECHOPGM(" UUID:");
  5014. SERIAL_ECHOLNPGM(MACHINE_UUID);
  5015. }
  5016. break;
  5017. /* case 117: // M117 display message
  5018. starpos = (strchr(strchr_pointer + 5,'*'));
  5019. if(starpos!=NULL)
  5020. *(starpos)='\0';
  5021. lcd_setstatus(strchr_pointer + 5);
  5022. break;*/
  5023. case 114: // M114
  5024. gcode_M114();
  5025. break;
  5026. case 120: //! M120 - Disable endstops
  5027. enable_endstops(false) ;
  5028. break;
  5029. case 121: //! M121 - Enable endstops
  5030. enable_endstops(true) ;
  5031. break;
  5032. case 119: // M119
  5033. SERIAL_PROTOCOLRPGM(_N("Reporting endstop status"));////MSG_M119_REPORT c=0 r=0
  5034. SERIAL_PROTOCOLLN("");
  5035. #if defined(X_MIN_PIN) && X_MIN_PIN > -1
  5036. SERIAL_PROTOCOLRPGM(_n("x_min: "));////MSG_X_MIN c=0 r=0
  5037. if(READ(X_MIN_PIN)^X_MIN_ENDSTOP_INVERTING){
  5038. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_HIT);
  5039. }else{
  5040. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_OPEN);
  5041. }
  5042. SERIAL_PROTOCOLLN("");
  5043. #endif
  5044. #if defined(X_MAX_PIN) && X_MAX_PIN > -1
  5045. SERIAL_PROTOCOLRPGM(_n("x_max: "));////MSG_X_MAX c=0 r=0
  5046. if(READ(X_MAX_PIN)^X_MAX_ENDSTOP_INVERTING){
  5047. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_HIT);
  5048. }else{
  5049. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_OPEN);
  5050. }
  5051. SERIAL_PROTOCOLLN("");
  5052. #endif
  5053. #if defined(Y_MIN_PIN) && Y_MIN_PIN > -1
  5054. SERIAL_PROTOCOLRPGM(_n("y_min: "));////MSG_Y_MIN c=0 r=0
  5055. if(READ(Y_MIN_PIN)^Y_MIN_ENDSTOP_INVERTING){
  5056. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_HIT);
  5057. }else{
  5058. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_OPEN);
  5059. }
  5060. SERIAL_PROTOCOLLN("");
  5061. #endif
  5062. #if defined(Y_MAX_PIN) && Y_MAX_PIN > -1
  5063. SERIAL_PROTOCOLRPGM(_n("y_max: "));////MSG_Y_MAX c=0 r=0
  5064. if(READ(Y_MAX_PIN)^Y_MAX_ENDSTOP_INVERTING){
  5065. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_HIT);
  5066. }else{
  5067. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_OPEN);
  5068. }
  5069. SERIAL_PROTOCOLLN("");
  5070. #endif
  5071. #if defined(Z_MIN_PIN) && Z_MIN_PIN > -1
  5072. SERIAL_PROTOCOLRPGM(MSG_Z_MIN);
  5073. if(READ(Z_MIN_PIN)^Z_MIN_ENDSTOP_INVERTING){
  5074. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_HIT);
  5075. }else{
  5076. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_OPEN);
  5077. }
  5078. SERIAL_PROTOCOLLN("");
  5079. #endif
  5080. #if defined(Z_MAX_PIN) && Z_MAX_PIN > -1
  5081. SERIAL_PROTOCOLRPGM(MSG_Z_MAX);
  5082. if(READ(Z_MAX_PIN)^Z_MAX_ENDSTOP_INVERTING){
  5083. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_HIT);
  5084. }else{
  5085. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_OPEN);
  5086. }
  5087. SERIAL_PROTOCOLLN("");
  5088. #endif
  5089. break;
  5090. //TODO: update for all axis, use for loop
  5091. #ifdef BLINKM
  5092. case 150: // M150
  5093. {
  5094. byte red;
  5095. byte grn;
  5096. byte blu;
  5097. if(code_seen('R')) red = code_value();
  5098. if(code_seen('U')) grn = code_value();
  5099. if(code_seen('B')) blu = code_value();
  5100. SendColors(red,grn,blu);
  5101. }
  5102. break;
  5103. #endif //BLINKM
  5104. case 200: // M200 D<millimeters> set filament diameter and set E axis units to cubic millimeters (use S0 to set back to millimeters).
  5105. {
  5106. uint8_t extruder = active_extruder;
  5107. if(code_seen('T')) {
  5108. extruder = code_value();
  5109. if(extruder >= EXTRUDERS) {
  5110. SERIAL_ECHO_START;
  5111. SERIAL_ECHO(_n("M200 Invalid extruder "));////MSG_M200_INVALID_EXTRUDER c=0 r=0
  5112. break;
  5113. }
  5114. }
  5115. if(code_seen('D')) {
  5116. float diameter = (float)code_value();
  5117. if (diameter == 0.0) {
  5118. // setting any extruder filament size disables volumetric on the assumption that
  5119. // slicers either generate in extruder values as cubic mm or as as filament feeds
  5120. // for all extruders
  5121. cs.volumetric_enabled = false;
  5122. } else {
  5123. cs.filament_size[extruder] = (float)code_value();
  5124. // make sure all extruders have some sane value for the filament size
  5125. cs.filament_size[0] = (cs.filament_size[0] == 0.0 ? DEFAULT_NOMINAL_FILAMENT_DIA : cs.filament_size[0]);
  5126. #if EXTRUDERS > 1
  5127. cs.filament_size[1] = (cs.filament_size[1] == 0.0 ? DEFAULT_NOMINAL_FILAMENT_DIA : cs.filament_size[1]);
  5128. #if EXTRUDERS > 2
  5129. cs.filament_size[2] = (cs.filament_size[2] == 0.0 ? DEFAULT_NOMINAL_FILAMENT_DIA : cs.filament_size[2]);
  5130. #endif
  5131. #endif
  5132. cs.volumetric_enabled = true;
  5133. }
  5134. } else {
  5135. //reserved for setting filament diameter via UFID or filament measuring device
  5136. break;
  5137. }
  5138. calculate_extruder_multipliers();
  5139. }
  5140. break;
  5141. case 201: // M201
  5142. for (int8_t i = 0; i < NUM_AXIS; i++)
  5143. {
  5144. if (code_seen(axis_codes[i]))
  5145. {
  5146. unsigned long val = code_value();
  5147. #ifdef TMC2130
  5148. unsigned long val_silent = val;
  5149. if ((i == X_AXIS) || (i == Y_AXIS))
  5150. {
  5151. if (val > NORMAL_MAX_ACCEL_XY)
  5152. val = NORMAL_MAX_ACCEL_XY;
  5153. if (val_silent > SILENT_MAX_ACCEL_XY)
  5154. val_silent = SILENT_MAX_ACCEL_XY;
  5155. }
  5156. cs.max_acceleration_units_per_sq_second_normal[i] = val;
  5157. cs.max_acceleration_units_per_sq_second_silent[i] = val_silent;
  5158. #else //TMC2130
  5159. max_acceleration_units_per_sq_second[i] = val;
  5160. #endif //TMC2130
  5161. }
  5162. }
  5163. // steps per sq second need to be updated to agree with the units per sq second (as they are what is used in the planner)
  5164. reset_acceleration_rates();
  5165. break;
  5166. #if 0 // Not used for Sprinter/grbl gen6
  5167. case 202: // M202
  5168. for(int8_t i=0; i < NUM_AXIS; i++) {
  5169. if(code_seen(axis_codes[i])) axis_travel_steps_per_sqr_second[i] = code_value() * cs.axis_steps_per_unit[i];
  5170. }
  5171. break;
  5172. #endif
  5173. case 203: // M203 max feedrate mm/sec
  5174. for (int8_t i = 0; i < NUM_AXIS; i++)
  5175. {
  5176. if (code_seen(axis_codes[i]))
  5177. {
  5178. float val = code_value();
  5179. #ifdef TMC2130
  5180. float val_silent = val;
  5181. if ((i == X_AXIS) || (i == Y_AXIS))
  5182. {
  5183. if (val > NORMAL_MAX_FEEDRATE_XY)
  5184. val = NORMAL_MAX_FEEDRATE_XY;
  5185. if (val_silent > SILENT_MAX_FEEDRATE_XY)
  5186. val_silent = SILENT_MAX_FEEDRATE_XY;
  5187. }
  5188. cs.max_feedrate_normal[i] = val;
  5189. cs.max_feedrate_silent[i] = val_silent;
  5190. #else //TMC2130
  5191. max_feedrate[i] = val;
  5192. #endif //TMC2130
  5193. }
  5194. }
  5195. break;
  5196. case 204:
  5197. //! M204 acclereration settings.
  5198. //!@n Supporting old format: M204 S[normal moves] T[filmanent only moves]
  5199. //!@n and new format: M204 P[printing moves] R[filmanent only moves] T[travel moves] (as of now T is ignored)
  5200. {
  5201. if(code_seen('S')) {
  5202. // Legacy acceleration format. This format is used by the legacy Marlin, MK2 or MK3 firmware,
  5203. // and it is also generated by Slic3r to control acceleration per extrusion type
  5204. // (there is a separate acceleration settings in Slicer for perimeter, first layer etc).
  5205. cs.acceleration = code_value();
  5206. // Interpret the T value as retract acceleration in the old Marlin format.
  5207. if(code_seen('T'))
  5208. cs.retract_acceleration = code_value();
  5209. } else {
  5210. // New acceleration format, compatible with the upstream Marlin.
  5211. if(code_seen('P'))
  5212. cs.acceleration = code_value();
  5213. if(code_seen('R'))
  5214. cs.retract_acceleration = code_value();
  5215. if(code_seen('T')) {
  5216. // Interpret the T value as the travel acceleration in the new Marlin format.
  5217. //FIXME Prusa3D firmware currently does not support travel acceleration value independent from the extruding acceleration value.
  5218. // travel_acceleration = code_value();
  5219. }
  5220. }
  5221. }
  5222. break;
  5223. case 205: //M205 advanced settings: minimum travel speed S=while printing T=travel only, B=minimum segment time X= maximum xy jerk, Z=maximum Z jerk
  5224. {
  5225. if(code_seen('S')) cs.minimumfeedrate = code_value();
  5226. if(code_seen('T')) cs.mintravelfeedrate = code_value();
  5227. if(code_seen('B')) cs.minsegmenttime = code_value() ;
  5228. if(code_seen('X')) cs.max_jerk[X_AXIS] = cs.max_jerk[Y_AXIS] = code_value();
  5229. if(code_seen('Y')) cs.max_jerk[Y_AXIS] = code_value();
  5230. if(code_seen('Z')) cs.max_jerk[Z_AXIS] = code_value();
  5231. if(code_seen('E')) cs.max_jerk[E_AXIS] = code_value();
  5232. if (cs.max_jerk[X_AXIS] > DEFAULT_XJERK) cs.max_jerk[X_AXIS] = DEFAULT_XJERK;
  5233. if (cs.max_jerk[Y_AXIS] > DEFAULT_YJERK) cs.max_jerk[Y_AXIS] = DEFAULT_YJERK;
  5234. }
  5235. break;
  5236. case 206: // M206 additional homing offset
  5237. for(int8_t i=0; i < 3; i++)
  5238. {
  5239. if(code_seen(axis_codes[i])) cs.add_homing[i] = code_value();
  5240. }
  5241. break;
  5242. #ifdef FWRETRACT
  5243. case 207: //M207 - set retract length S[positive mm] F[feedrate mm/min] Z[additional zlift/hop]
  5244. {
  5245. if(code_seen('S'))
  5246. {
  5247. cs.retract_length = code_value() ;
  5248. }
  5249. if(code_seen('F'))
  5250. {
  5251. cs.retract_feedrate = code_value()/60 ;
  5252. }
  5253. if(code_seen('Z'))
  5254. {
  5255. cs.retract_zlift = code_value() ;
  5256. }
  5257. }break;
  5258. case 208: // M208 - set retract recover length S[positive mm surplus to the M207 S*] F[feedrate mm/min]
  5259. {
  5260. if(code_seen('S'))
  5261. {
  5262. cs.retract_recover_length = code_value() ;
  5263. }
  5264. if(code_seen('F'))
  5265. {
  5266. cs.retract_recover_feedrate = code_value()/60 ;
  5267. }
  5268. }break;
  5269. case 209: // M209 - S<1=true/0=false> enable automatic retract detect if the slicer did not support G10/11: every normal extrude-only move will be classified as retract depending on the direction.
  5270. {
  5271. if(code_seen('S'))
  5272. {
  5273. int t= code_value() ;
  5274. switch(t)
  5275. {
  5276. case 0:
  5277. {
  5278. cs.autoretract_enabled=false;
  5279. retracted[0]=false;
  5280. #if EXTRUDERS > 1
  5281. retracted[1]=false;
  5282. #endif
  5283. #if EXTRUDERS > 2
  5284. retracted[2]=false;
  5285. #endif
  5286. }break;
  5287. case 1:
  5288. {
  5289. cs.autoretract_enabled=true;
  5290. retracted[0]=false;
  5291. #if EXTRUDERS > 1
  5292. retracted[1]=false;
  5293. #endif
  5294. #if EXTRUDERS > 2
  5295. retracted[2]=false;
  5296. #endif
  5297. }break;
  5298. default:
  5299. SERIAL_ECHO_START;
  5300. SERIAL_ECHORPGM(MSG_UNKNOWN_COMMAND);
  5301. SERIAL_ECHO(CMDBUFFER_CURRENT_STRING);
  5302. SERIAL_ECHOLNPGM("\"(1)");
  5303. }
  5304. }
  5305. }break;
  5306. #endif // FWRETRACT
  5307. #if EXTRUDERS > 1
  5308. case 218: // M218 - set hotend offset (in mm), T<extruder_number> X<offset_on_X> Y<offset_on_Y>
  5309. {
  5310. uint8_t extruder;
  5311. if(setTargetedHotend(218, extruder)){
  5312. break;
  5313. }
  5314. if(code_seen('X'))
  5315. {
  5316. extruder_offset[X_AXIS][extruder] = code_value();
  5317. }
  5318. if(code_seen('Y'))
  5319. {
  5320. extruder_offset[Y_AXIS][extruder] = code_value();
  5321. }
  5322. SERIAL_ECHO_START;
  5323. SERIAL_ECHORPGM(MSG_HOTEND_OFFSET);
  5324. for(extruder = 0; extruder < EXTRUDERS; extruder++)
  5325. {
  5326. SERIAL_ECHO(" ");
  5327. SERIAL_ECHO(extruder_offset[X_AXIS][extruder]);
  5328. SERIAL_ECHO(",");
  5329. SERIAL_ECHO(extruder_offset[Y_AXIS][extruder]);
  5330. }
  5331. SERIAL_ECHOLN("");
  5332. }break;
  5333. #endif
  5334. case 220: // M220 S<factor in percent>- set speed factor override percentage
  5335. {
  5336. if (code_seen('B')) //backup current speed factor
  5337. {
  5338. saved_feedmultiply_mm = feedmultiply;
  5339. }
  5340. if(code_seen('S'))
  5341. {
  5342. feedmultiply = code_value() ;
  5343. }
  5344. if (code_seen('R')) { //restore previous feedmultiply
  5345. feedmultiply = saved_feedmultiply_mm;
  5346. }
  5347. }
  5348. break;
  5349. case 221: // M221 S<factor in percent>- set extrude factor override percentage
  5350. {
  5351. if(code_seen('S'))
  5352. {
  5353. int tmp_code = code_value();
  5354. if (code_seen('T'))
  5355. {
  5356. uint8_t extruder;
  5357. if(setTargetedHotend(221, extruder)){
  5358. break;
  5359. }
  5360. extruder_multiply[extruder] = tmp_code;
  5361. }
  5362. else
  5363. {
  5364. extrudemultiply = tmp_code ;
  5365. }
  5366. }
  5367. calculate_extruder_multipliers();
  5368. }
  5369. break;
  5370. case 226: // M226 P<pin number> S<pin state>- Wait until the specified pin reaches the state required
  5371. {
  5372. if(code_seen('P')){
  5373. int pin_number = code_value(); // pin number
  5374. int pin_state = -1; // required pin state - default is inverted
  5375. if(code_seen('S')) pin_state = code_value(); // required pin state
  5376. if(pin_state >= -1 && pin_state <= 1){
  5377. for(int8_t i = 0; i < (int8_t)(sizeof(sensitive_pins)/sizeof(int)); i++)
  5378. {
  5379. if (sensitive_pins[i] == pin_number)
  5380. {
  5381. pin_number = -1;
  5382. break;
  5383. }
  5384. }
  5385. if (pin_number > -1)
  5386. {
  5387. int target = LOW;
  5388. st_synchronize();
  5389. pinMode(pin_number, INPUT);
  5390. switch(pin_state){
  5391. case 1:
  5392. target = HIGH;
  5393. break;
  5394. case 0:
  5395. target = LOW;
  5396. break;
  5397. case -1:
  5398. target = !digitalRead(pin_number);
  5399. break;
  5400. }
  5401. while(digitalRead(pin_number) != target){
  5402. manage_heater();
  5403. manage_inactivity();
  5404. lcd_update(0);
  5405. }
  5406. }
  5407. }
  5408. }
  5409. }
  5410. break;
  5411. #if NUM_SERVOS > 0
  5412. case 280: // M280 - set servo position absolute. P: servo index, S: angle or microseconds
  5413. {
  5414. int servo_index = -1;
  5415. int servo_position = 0;
  5416. if (code_seen('P'))
  5417. servo_index = code_value();
  5418. if (code_seen('S')) {
  5419. servo_position = code_value();
  5420. if ((servo_index >= 0) && (servo_index < NUM_SERVOS)) {
  5421. #if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
  5422. servos[servo_index].attach(0);
  5423. #endif
  5424. servos[servo_index].write(servo_position);
  5425. #if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
  5426. delay(PROBE_SERVO_DEACTIVATION_DELAY);
  5427. servos[servo_index].detach();
  5428. #endif
  5429. }
  5430. else {
  5431. SERIAL_ECHO_START;
  5432. SERIAL_ECHO("Servo ");
  5433. SERIAL_ECHO(servo_index);
  5434. SERIAL_ECHOLN(" out of range");
  5435. }
  5436. }
  5437. else if (servo_index >= 0) {
  5438. SERIAL_PROTOCOL(MSG_OK);
  5439. SERIAL_PROTOCOL(" Servo ");
  5440. SERIAL_PROTOCOL(servo_index);
  5441. SERIAL_PROTOCOL(": ");
  5442. SERIAL_PROTOCOL(servos[servo_index].read());
  5443. SERIAL_PROTOCOLLN("");
  5444. }
  5445. }
  5446. break;
  5447. #endif // NUM_SERVOS > 0
  5448. #if (LARGE_FLASH == true && ( BEEPER > 0 || defined(ULTRALCD) || defined(LCD_USE_I2C_BUZZER)))
  5449. case 300: // M300
  5450. {
  5451. int beepS = code_seen('S') ? code_value() : 110;
  5452. int beepP = code_seen('P') ? code_value() : 1000;
  5453. if (beepS > 0)
  5454. {
  5455. #if BEEPER > 0
  5456. if((eSoundMode==e_SOUND_MODE_LOUD)||(eSoundMode==e_SOUND_MODE_ONCE))
  5457. tone(BEEPER, beepS);
  5458. delay(beepP);
  5459. noTone(BEEPER);
  5460. #endif
  5461. }
  5462. else
  5463. {
  5464. delay(beepP);
  5465. }
  5466. }
  5467. break;
  5468. #endif // M300
  5469. #ifdef PIDTEMP
  5470. case 301: // M301
  5471. {
  5472. if(code_seen('P')) cs.Kp = code_value();
  5473. if(code_seen('I')) cs.Ki = scalePID_i(code_value());
  5474. if(code_seen('D')) cs.Kd = scalePID_d(code_value());
  5475. #ifdef PID_ADD_EXTRUSION_RATE
  5476. if(code_seen('C')) Kc = code_value();
  5477. #endif
  5478. updatePID();
  5479. SERIAL_PROTOCOLRPGM(MSG_OK);
  5480. SERIAL_PROTOCOL(" p:");
  5481. SERIAL_PROTOCOL(cs.Kp);
  5482. SERIAL_PROTOCOL(" i:");
  5483. SERIAL_PROTOCOL(unscalePID_i(cs.Ki));
  5484. SERIAL_PROTOCOL(" d:");
  5485. SERIAL_PROTOCOL(unscalePID_d(cs.Kd));
  5486. #ifdef PID_ADD_EXTRUSION_RATE
  5487. SERIAL_PROTOCOL(" c:");
  5488. //Kc does not have scaling applied above, or in resetting defaults
  5489. SERIAL_PROTOCOL(Kc);
  5490. #endif
  5491. SERIAL_PROTOCOLLN("");
  5492. }
  5493. break;
  5494. #endif //PIDTEMP
  5495. #ifdef PIDTEMPBED
  5496. case 304: // M304
  5497. {
  5498. if(code_seen('P')) cs.bedKp = code_value();
  5499. if(code_seen('I')) cs.bedKi = scalePID_i(code_value());
  5500. if(code_seen('D')) cs.bedKd = scalePID_d(code_value());
  5501. updatePID();
  5502. SERIAL_PROTOCOLRPGM(MSG_OK);
  5503. SERIAL_PROTOCOL(" p:");
  5504. SERIAL_PROTOCOL(cs.bedKp);
  5505. SERIAL_PROTOCOL(" i:");
  5506. SERIAL_PROTOCOL(unscalePID_i(cs.bedKi));
  5507. SERIAL_PROTOCOL(" d:");
  5508. SERIAL_PROTOCOL(unscalePID_d(cs.bedKd));
  5509. SERIAL_PROTOCOLLN("");
  5510. }
  5511. break;
  5512. #endif //PIDTEMP
  5513. case 240: // M240 Triggers a camera by emulating a Canon RC-1 : http://www.doc-diy.net/photo/rc-1_hacked/
  5514. {
  5515. #ifdef CHDK
  5516. SET_OUTPUT(CHDK);
  5517. WRITE(CHDK, HIGH);
  5518. chdkHigh = millis();
  5519. chdkActive = true;
  5520. #else
  5521. #if defined(PHOTOGRAPH_PIN) && PHOTOGRAPH_PIN > -1
  5522. const uint8_t NUM_PULSES=16;
  5523. const float PULSE_LENGTH=0.01524;
  5524. for(int i=0; i < NUM_PULSES; i++) {
  5525. WRITE(PHOTOGRAPH_PIN, HIGH);
  5526. _delay_ms(PULSE_LENGTH);
  5527. WRITE(PHOTOGRAPH_PIN, LOW);
  5528. _delay_ms(PULSE_LENGTH);
  5529. }
  5530. delay(7.33);
  5531. for(int i=0; i < NUM_PULSES; i++) {
  5532. WRITE(PHOTOGRAPH_PIN, HIGH);
  5533. _delay_ms(PULSE_LENGTH);
  5534. WRITE(PHOTOGRAPH_PIN, LOW);
  5535. _delay_ms(PULSE_LENGTH);
  5536. }
  5537. #endif
  5538. #endif //chdk end if
  5539. }
  5540. break;
  5541. #ifdef PREVENT_DANGEROUS_EXTRUDE
  5542. case 302: // allow cold extrudes, or set the minimum extrude temperature
  5543. {
  5544. float temp = .0;
  5545. if (code_seen('S')) temp=code_value();
  5546. set_extrude_min_temp(temp);
  5547. }
  5548. break;
  5549. #endif
  5550. case 303: // M303 PID autotune
  5551. {
  5552. float temp = 150.0;
  5553. int e=0;
  5554. int c=5;
  5555. if (code_seen('E')) e=code_value();
  5556. if (e<0)
  5557. temp=70;
  5558. if (code_seen('S')) temp=code_value();
  5559. if (code_seen('C')) c=code_value();
  5560. PID_autotune(temp, e, c);
  5561. }
  5562. break;
  5563. case 400: // M400 finish all moves
  5564. {
  5565. st_synchronize();
  5566. }
  5567. break;
  5568. case 403: //! M403 set filament type (material) for particular extruder and send this information to mmu
  5569. {
  5570. //! currently three different materials are needed (default, flex and PVA)
  5571. //! add storing this information for different load/unload profiles etc. in the future
  5572. //!firmware does not wait for "ok" from mmu
  5573. if (mmu_enabled)
  5574. {
  5575. uint8_t extruder = 255;
  5576. uint8_t filament = FILAMENT_UNDEFINED;
  5577. if(code_seen('E')) extruder = code_value();
  5578. if(code_seen('F')) filament = code_value();
  5579. mmu_set_filament_type(extruder, filament);
  5580. }
  5581. }
  5582. break;
  5583. case 500: // M500 Store settings in EEPROM
  5584. {
  5585. Config_StoreSettings();
  5586. }
  5587. break;
  5588. case 501: // M501 Read settings from EEPROM
  5589. {
  5590. Config_RetrieveSettings();
  5591. }
  5592. break;
  5593. case 502: // M502 Revert to default settings
  5594. {
  5595. Config_ResetDefault();
  5596. }
  5597. break;
  5598. case 503: // M503 print settings currently in memory
  5599. {
  5600. Config_PrintSettings();
  5601. }
  5602. break;
  5603. case 509: //M509 Force language selection
  5604. {
  5605. lang_reset();
  5606. SERIAL_ECHO_START;
  5607. SERIAL_PROTOCOLPGM(("LANG SEL FORCED"));
  5608. }
  5609. break;
  5610. #ifdef ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED
  5611. case 540:
  5612. {
  5613. if(code_seen('S')) abort_on_endstop_hit = code_value() > 0;
  5614. }
  5615. break;
  5616. #endif
  5617. #ifdef CUSTOM_M_CODE_SET_Z_PROBE_OFFSET
  5618. case CUSTOM_M_CODE_SET_Z_PROBE_OFFSET:
  5619. {
  5620. float value;
  5621. if (code_seen('Z'))
  5622. {
  5623. value = code_value();
  5624. if ((Z_PROBE_OFFSET_RANGE_MIN <= value) && (value <= Z_PROBE_OFFSET_RANGE_MAX))
  5625. {
  5626. cs.zprobe_zoffset = -value; // compare w/ line 278 of ConfigurationStore.cpp
  5627. SERIAL_ECHO_START;
  5628. SERIAL_ECHOLNRPGM(CAT4(MSG_ZPROBE_ZOFFSET, " ", MSG_OK,PSTR("")));
  5629. SERIAL_PROTOCOLLN("");
  5630. }
  5631. else
  5632. {
  5633. SERIAL_ECHO_START;
  5634. SERIAL_ECHORPGM(MSG_ZPROBE_ZOFFSET);
  5635. SERIAL_ECHORPGM(MSG_Z_MIN);
  5636. SERIAL_ECHO(Z_PROBE_OFFSET_RANGE_MIN);
  5637. SERIAL_ECHORPGM(MSG_Z_MAX);
  5638. SERIAL_ECHO(Z_PROBE_OFFSET_RANGE_MAX);
  5639. SERIAL_PROTOCOLLN("");
  5640. }
  5641. }
  5642. else
  5643. {
  5644. SERIAL_ECHO_START;
  5645. SERIAL_ECHOLNRPGM(CAT2(MSG_ZPROBE_ZOFFSET, PSTR(" : ")));
  5646. SERIAL_ECHO(-cs.zprobe_zoffset);
  5647. SERIAL_PROTOCOLLN("");
  5648. }
  5649. break;
  5650. }
  5651. #endif // CUSTOM_M_CODE_SET_Z_PROBE_OFFSET
  5652. #ifdef FILAMENTCHANGEENABLE
  5653. case 600: //Pause for filament change X[pos] Y[pos] Z[relative lift] E[initial retract] L[later retract distance for removal]
  5654. {
  5655. st_synchronize();
  5656. float x_position = current_position[X_AXIS];
  5657. float y_position = current_position[Y_AXIS];
  5658. float z_shift = 0;
  5659. float e_shift_init = 0;
  5660. float e_shift_late = 0;
  5661. bool automatic = false;
  5662. //Retract extruder
  5663. if(code_seen('E'))
  5664. {
  5665. e_shift_init = code_value();
  5666. }
  5667. else
  5668. {
  5669. #ifdef FILAMENTCHANGE_FIRSTRETRACT
  5670. e_shift_init = FILAMENTCHANGE_FIRSTRETRACT ;
  5671. #endif
  5672. }
  5673. //currently don't work as we are using the same unload sequence as in M702, needs re-work
  5674. if (code_seen('L'))
  5675. {
  5676. e_shift_late = code_value();
  5677. }
  5678. else
  5679. {
  5680. #ifdef FILAMENTCHANGE_FINALRETRACT
  5681. e_shift_late = FILAMENTCHANGE_FINALRETRACT;
  5682. #endif
  5683. }
  5684. //Lift Z
  5685. if(code_seen('Z'))
  5686. {
  5687. z_shift = code_value();
  5688. }
  5689. else
  5690. {
  5691. #ifdef FILAMENTCHANGE_ZADD
  5692. z_shift= FILAMENTCHANGE_ZADD ;
  5693. if(current_position[Z_AXIS] < 25) z_shift+= 25 ;
  5694. #endif
  5695. }
  5696. //Move XY to side
  5697. if(code_seen('X'))
  5698. {
  5699. x_position = code_value();
  5700. }
  5701. else
  5702. {
  5703. #ifdef FILAMENTCHANGE_XPOS
  5704. x_position = FILAMENTCHANGE_XPOS;
  5705. #endif
  5706. }
  5707. if(code_seen('Y'))
  5708. {
  5709. y_position = code_value();
  5710. }
  5711. else
  5712. {
  5713. #ifdef FILAMENTCHANGE_YPOS
  5714. y_position = FILAMENTCHANGE_YPOS ;
  5715. #endif
  5716. }
  5717. if (mmu_enabled && code_seen("AUTO"))
  5718. automatic = true;
  5719. gcode_M600(automatic, x_position, y_position, z_shift, e_shift_init, e_shift_late);
  5720. }
  5721. break;
  5722. #endif //FILAMENTCHANGEENABLE
  5723. case 601: //! M601 - Pause print
  5724. {
  5725. cmdqueue_pop_front(); //trick because we want skip this command (M601) after restore
  5726. lcd_pause_print();
  5727. }
  5728. break;
  5729. case 602: { //! M602 - Resume print
  5730. lcd_resume_print();
  5731. }
  5732. break;
  5733. #ifdef PINDA_THERMISTOR
  5734. case 860: // M860 - Wait for PINDA thermistor to reach target temperature.
  5735. {
  5736. int set_target_pinda = 0;
  5737. if (code_seen('S')) {
  5738. set_target_pinda = code_value();
  5739. }
  5740. else {
  5741. break;
  5742. }
  5743. LCD_MESSAGERPGM(_T(MSG_PLEASE_WAIT));
  5744. SERIAL_PROTOCOLPGM("Wait for PINDA target temperature:");
  5745. SERIAL_PROTOCOL(set_target_pinda);
  5746. SERIAL_PROTOCOLLN("");
  5747. codenum = millis();
  5748. cancel_heatup = false;
  5749. bool is_pinda_cooling = false;
  5750. if ((degTargetBed() == 0) && (degTargetHotend(0) == 0)) {
  5751. is_pinda_cooling = true;
  5752. }
  5753. while ( ((!is_pinda_cooling) && (!cancel_heatup) && (current_temperature_pinda < set_target_pinda)) || (is_pinda_cooling && (current_temperature_pinda > set_target_pinda)) ) {
  5754. if ((millis() - codenum) > 1000) //Print Temp Reading every 1 second while waiting.
  5755. {
  5756. SERIAL_PROTOCOLPGM("P:");
  5757. SERIAL_PROTOCOL_F(current_temperature_pinda, 1);
  5758. SERIAL_PROTOCOLPGM("/");
  5759. SERIAL_PROTOCOL(set_target_pinda);
  5760. SERIAL_PROTOCOLLN("");
  5761. codenum = millis();
  5762. }
  5763. manage_heater();
  5764. manage_inactivity();
  5765. lcd_update(0);
  5766. }
  5767. LCD_MESSAGERPGM(MSG_OK);
  5768. break;
  5769. }
  5770. case 861: // M861 - Set/Read PINDA temperature compensation offsets
  5771. if (code_seen('?')) { // ? - Print out current EEPROM offset values
  5772. uint8_t cal_status = calibration_status_pinda();
  5773. int16_t usteps = 0;
  5774. cal_status ? SERIAL_PROTOCOLLN("PINDA cal status: 1") : SERIAL_PROTOCOLLN("PINDA cal status: 0");
  5775. SERIAL_PROTOCOLLN("index, temp, ustep, um");
  5776. for (uint8_t i = 0; i < 6; i++)
  5777. {
  5778. if(i>0) EEPROM_read_B(EEPROM_PROBE_TEMP_SHIFT + (i-1) * 2, &usteps);
  5779. float mm = ((float)usteps) / cs.axis_steps_per_unit[Z_AXIS];
  5780. i == 0 ? SERIAL_PROTOCOLPGM("n/a") : SERIAL_PROTOCOL(i - 1);
  5781. SERIAL_PROTOCOLPGM(", ");
  5782. SERIAL_PROTOCOL(35 + (i * 5));
  5783. SERIAL_PROTOCOLPGM(", ");
  5784. SERIAL_PROTOCOL(usteps);
  5785. SERIAL_PROTOCOLPGM(", ");
  5786. SERIAL_PROTOCOL(mm * 1000);
  5787. SERIAL_PROTOCOLLN("");
  5788. }
  5789. }
  5790. else if (code_seen('!')) { // ! - Set factory default values
  5791. eeprom_write_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 1);
  5792. int16_t z_shift = 8; //40C - 20um - 8usteps
  5793. EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT, &z_shift);
  5794. z_shift = 24; //45C - 60um - 24usteps
  5795. EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + 2, &z_shift);
  5796. z_shift = 48; //50C - 120um - 48usteps
  5797. EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + 4, &z_shift);
  5798. z_shift = 80; //55C - 200um - 80usteps
  5799. EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + 6, &z_shift);
  5800. z_shift = 120; //60C - 300um - 120usteps
  5801. EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + 8, &z_shift);
  5802. SERIAL_PROTOCOLLN("factory restored");
  5803. }
  5804. else if (code_seen('Z')) { // Z - Set all values to 0 (effectively disabling PINDA temperature compensation)
  5805. eeprom_write_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 1);
  5806. int16_t z_shift = 0;
  5807. for (uint8_t i = 0; i < 5; i++) EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + i * 2, &z_shift);
  5808. SERIAL_PROTOCOLLN("zerorized");
  5809. }
  5810. else if (code_seen('S')) { // Sxxx Iyyy - Set compensation ustep value S for compensation table index I
  5811. int16_t usteps = code_value();
  5812. if (code_seen('I')) {
  5813. uint8_t index = code_value();
  5814. if (index < 5) {
  5815. EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + index * 2, &usteps);
  5816. SERIAL_PROTOCOLLN("OK");
  5817. SERIAL_PROTOCOLLN("index, temp, ustep, um");
  5818. for (uint8_t i = 0; i < 6; i++)
  5819. {
  5820. usteps = 0;
  5821. if (i>0) EEPROM_read_B(EEPROM_PROBE_TEMP_SHIFT + (i - 1) * 2, &usteps);
  5822. float mm = ((float)usteps) / cs.axis_steps_per_unit[Z_AXIS];
  5823. i == 0 ? SERIAL_PROTOCOLPGM("n/a") : SERIAL_PROTOCOL(i - 1);
  5824. SERIAL_PROTOCOLPGM(", ");
  5825. SERIAL_PROTOCOL(35 + (i * 5));
  5826. SERIAL_PROTOCOLPGM(", ");
  5827. SERIAL_PROTOCOL(usteps);
  5828. SERIAL_PROTOCOLPGM(", ");
  5829. SERIAL_PROTOCOL(mm * 1000);
  5830. SERIAL_PROTOCOLLN("");
  5831. }
  5832. }
  5833. }
  5834. }
  5835. else {
  5836. SERIAL_PROTOCOLPGM("no valid command");
  5837. }
  5838. break;
  5839. #endif //PINDA_THERMISTOR
  5840. #ifdef LIN_ADVANCE
  5841. case 900: // M900: Set LIN_ADVANCE options.
  5842. gcode_M900();
  5843. break;
  5844. #endif
  5845. case 907: // M907 Set digital trimpot motor current using axis codes.
  5846. {
  5847. #ifdef TMC2130
  5848. for (int i = 0; i < NUM_AXIS; i++)
  5849. if(code_seen(axis_codes[i]))
  5850. {
  5851. long cur_mA = code_value_long();
  5852. uint8_t val = tmc2130_cur2val(cur_mA);
  5853. tmc2130_set_current_h(i, val);
  5854. tmc2130_set_current_r(i, val);
  5855. //if (i == E_AXIS) printf_P(PSTR("E-axis current=%ldmA\n"), cur_mA);
  5856. }
  5857. #else //TMC2130
  5858. #if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
  5859. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) st_current_set(i,code_value());
  5860. if(code_seen('B')) st_current_set(4,code_value());
  5861. if(code_seen('S')) for(int i=0;i<=4;i++) st_current_set(i,code_value());
  5862. #endif
  5863. #ifdef MOTOR_CURRENT_PWM_XY_PIN
  5864. if(code_seen('X')) st_current_set(0, code_value());
  5865. #endif
  5866. #ifdef MOTOR_CURRENT_PWM_Z_PIN
  5867. if(code_seen('Z')) st_current_set(1, code_value());
  5868. #endif
  5869. #ifdef MOTOR_CURRENT_PWM_E_PIN
  5870. if(code_seen('E')) st_current_set(2, code_value());
  5871. #endif
  5872. #endif //TMC2130
  5873. }
  5874. break;
  5875. case 908: // M908 Control digital trimpot directly.
  5876. {
  5877. #if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
  5878. uint8_t channel,current;
  5879. if(code_seen('P')) channel=code_value();
  5880. if(code_seen('S')) current=code_value();
  5881. digitalPotWrite(channel, current);
  5882. #endif
  5883. }
  5884. break;
  5885. #ifdef TMC2130_SERVICE_CODES_M910_M918
  5886. case 910: //! M910 - TMC2130 init
  5887. {
  5888. tmc2130_init();
  5889. }
  5890. break;
  5891. case 911: //! M911 - Set TMC2130 holding currents
  5892. {
  5893. if (code_seen('X')) tmc2130_set_current_h(0, code_value());
  5894. if (code_seen('Y')) tmc2130_set_current_h(1, code_value());
  5895. if (code_seen('Z')) tmc2130_set_current_h(2, code_value());
  5896. if (code_seen('E')) tmc2130_set_current_h(3, code_value());
  5897. }
  5898. break;
  5899. case 912: //! M912 - Set TMC2130 running currents
  5900. {
  5901. if (code_seen('X')) tmc2130_set_current_r(0, code_value());
  5902. if (code_seen('Y')) tmc2130_set_current_r(1, code_value());
  5903. if (code_seen('Z')) tmc2130_set_current_r(2, code_value());
  5904. if (code_seen('E')) tmc2130_set_current_r(3, code_value());
  5905. }
  5906. break;
  5907. case 913: //! M913 - Print TMC2130 currents
  5908. {
  5909. tmc2130_print_currents();
  5910. }
  5911. break;
  5912. case 914: //! M914 - Set normal mode
  5913. {
  5914. tmc2130_mode = TMC2130_MODE_NORMAL;
  5915. update_mode_profile();
  5916. tmc2130_init();
  5917. }
  5918. break;
  5919. case 915: //! M915 - Set silent mode
  5920. {
  5921. tmc2130_mode = TMC2130_MODE_SILENT;
  5922. update_mode_profile();
  5923. tmc2130_init();
  5924. }
  5925. break;
  5926. case 916: //! M916 - Set sg_thrs
  5927. {
  5928. if (code_seen('X')) tmc2130_sg_thr[X_AXIS] = code_value();
  5929. if (code_seen('Y')) tmc2130_sg_thr[Y_AXIS] = code_value();
  5930. if (code_seen('Z')) tmc2130_sg_thr[Z_AXIS] = code_value();
  5931. if (code_seen('E')) tmc2130_sg_thr[E_AXIS] = code_value();
  5932. for (uint8_t a = X_AXIS; a <= E_AXIS; a++)
  5933. printf_P(_N("tmc2130_sg_thr[%c]=%d\n"), "XYZE"[a], tmc2130_sg_thr[a]);
  5934. }
  5935. break;
  5936. case 917: //! M917 - Set TMC2130 pwm_ampl
  5937. {
  5938. if (code_seen('X')) tmc2130_set_pwm_ampl(0, code_value());
  5939. if (code_seen('Y')) tmc2130_set_pwm_ampl(1, code_value());
  5940. if (code_seen('Z')) tmc2130_set_pwm_ampl(2, code_value());
  5941. if (code_seen('E')) tmc2130_set_pwm_ampl(3, code_value());
  5942. }
  5943. break;
  5944. case 918: //! M918 - Set TMC2130 pwm_grad
  5945. {
  5946. if (code_seen('X')) tmc2130_set_pwm_grad(0, code_value());
  5947. if (code_seen('Y')) tmc2130_set_pwm_grad(1, code_value());
  5948. if (code_seen('Z')) tmc2130_set_pwm_grad(2, code_value());
  5949. if (code_seen('E')) tmc2130_set_pwm_grad(3, code_value());
  5950. }
  5951. break;
  5952. #endif //TMC2130_SERVICE_CODES_M910_M918
  5953. case 350: //! M350 - Set microstepping mode. Warning: Steps per unit remains unchanged. S code sets stepping mode for all drivers.
  5954. {
  5955. #ifdef TMC2130
  5956. if(code_seen('E'))
  5957. {
  5958. uint16_t res_new = code_value();
  5959. if ((res_new == 8) || (res_new == 16) || (res_new == 32) || (res_new == 64) || (res_new == 128))
  5960. {
  5961. st_synchronize();
  5962. uint8_t axis = E_AXIS;
  5963. uint16_t res = tmc2130_get_res(axis);
  5964. tmc2130_set_res(axis, res_new);
  5965. if (res_new > res)
  5966. {
  5967. uint16_t fac = (res_new / res);
  5968. cs.axis_steps_per_unit[axis] *= fac;
  5969. position[E_AXIS] *= fac;
  5970. }
  5971. else
  5972. {
  5973. uint16_t fac = (res / res_new);
  5974. cs.axis_steps_per_unit[axis] /= fac;
  5975. position[E_AXIS] /= fac;
  5976. }
  5977. }
  5978. }
  5979. #else //TMC2130
  5980. #if defined(X_MS1_PIN) && X_MS1_PIN > -1
  5981. if(code_seen('S')) for(int i=0;i<=4;i++) microstep_mode(i,code_value());
  5982. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) microstep_mode(i,(uint8_t)code_value());
  5983. if(code_seen('B')) microstep_mode(4,code_value());
  5984. microstep_readings();
  5985. #endif
  5986. #endif //TMC2130
  5987. }
  5988. break;
  5989. case 351: //! M351 - Toggle MS1 MS2 pins directly, S# determines MS1 or MS2, X# sets the pin high/low.
  5990. {
  5991. #if defined(X_MS1_PIN) && X_MS1_PIN > -1
  5992. if(code_seen('S')) switch((int)code_value())
  5993. {
  5994. case 1:
  5995. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) microstep_ms(i,code_value(),-1);
  5996. if(code_seen('B')) microstep_ms(4,code_value(),-1);
  5997. break;
  5998. case 2:
  5999. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) microstep_ms(i,-1,code_value());
  6000. if(code_seen('B')) microstep_ms(4,-1,code_value());
  6001. break;
  6002. }
  6003. microstep_readings();
  6004. #endif
  6005. }
  6006. break;
  6007. case 701: //! M701 - load filament
  6008. {
  6009. if (mmu_enabled && code_seen('E'))
  6010. tmp_extruder = code_value();
  6011. gcode_M701();
  6012. }
  6013. break;
  6014. case 702: //! M702 [U C] -
  6015. {
  6016. #ifdef SNMM
  6017. if (code_seen('U'))
  6018. extr_unload_used(); //! if "U" unload all filaments which were used in current print
  6019. else if (code_seen('C'))
  6020. extr_unload(); //! if "C" unload just current filament
  6021. else
  6022. extr_unload_all(); //! otherwise unload all filaments
  6023. #else
  6024. if (code_seen('C')) {
  6025. if(mmu_enabled) extr_unload(); //! if "C" unload current filament; if mmu is not present no action is performed
  6026. }
  6027. else {
  6028. if(mmu_enabled) extr_unload(); //! unload current filament
  6029. else unload_filament();
  6030. }
  6031. #endif //SNMM
  6032. }
  6033. break;
  6034. case 999: // M999: Restart after being stopped
  6035. Stopped = false;
  6036. lcd_reset_alert_level();
  6037. gcode_LastN = Stopped_gcode_LastN;
  6038. FlushSerialRequestResend();
  6039. break;
  6040. default:
  6041. printf_P(PSTR("Unknown M code: %s \n"), cmdbuffer + bufindr + CMDHDRSIZE);
  6042. }
  6043. // printf_P(_N("END M-CODE=%u\n"), mcode_in_progress);
  6044. mcode_in_progress = 0;
  6045. }
  6046. }
  6047. // end if(code_seen('M')) (end of M codes)
  6048. //! T<extruder nr.> - select extruder in case of multi extruder printer
  6049. //! select filament in case of MMU_V2
  6050. //! if extruder is "?", open menu to let the user select extruder/filament
  6051. //!
  6052. //! For MMU_V2:
  6053. //! @n T<n> Gcode to extrude at least 38.10 mm at feedrate 19.02 mm/s must follow immediately to load to extruder wheels.
  6054. //! @n T? Gcode to extrude shouldn't have to follow, load to extruder wheels is done automatically
  6055. //! @n Tx Same as T?, except nozzle doesn't have to be preheated. Tc must be placed after extruder nozzle is preheated to finish filament load.
  6056. //! @n Tc Load to nozzle after filament was prepared by Tc and extruder nozzle is already heated.
  6057. else if(code_seen('T'))
  6058. {
  6059. int index;
  6060. bool load_to_nozzle = false;
  6061. for (index = 1; *(strchr_pointer + index) == ' ' || *(strchr_pointer + index) == '\t'; index++);
  6062. *(strchr_pointer + index) = tolower(*(strchr_pointer + index));
  6063. if ((*(strchr_pointer + index) < '0' || *(strchr_pointer + index) > '4') && *(strchr_pointer + index) != '?' && *(strchr_pointer + index) != 'x' && *(strchr_pointer + index) != 'c') {
  6064. SERIAL_ECHOLNPGM("Invalid T code.");
  6065. }
  6066. else if (*(strchr_pointer + index) == 'x'){ //load to bondtech gears; if mmu is not present do nothing
  6067. if (mmu_enabled)
  6068. {
  6069. tmp_extruder = choose_menu_P(_T(MSG_CHOOSE_FILAMENT), _T(MSG_FILAMENT));
  6070. if ((tmp_extruder == mmu_extruder) && mmu_fil_loaded) {
  6071. printf_P(PSTR("Duplicit T-code ignored.\n"));
  6072. return; //dont execute the same T-code twice in a row
  6073. }
  6074. st_synchronize();
  6075. mmu_command(MMU_CMD_T0 + tmp_extruder);
  6076. manage_response(true, true, MMU_TCODE_MOVE);
  6077. }
  6078. }
  6079. else if (*(strchr_pointer + index) == 'c') { //load to from bondtech gears to nozzle (nozzle should be preheated)
  6080. if (mmu_enabled)
  6081. {
  6082. st_synchronize();
  6083. mmu_continue_loading();
  6084. mmu_extruder = tmp_extruder; //filament change is finished
  6085. mmu_load_to_nozzle();
  6086. }
  6087. }
  6088. else {
  6089. if (*(strchr_pointer + index) == '?')
  6090. {
  6091. if(mmu_enabled)
  6092. {
  6093. tmp_extruder = choose_menu_P(_T(MSG_CHOOSE_FILAMENT), _T(MSG_FILAMENT));
  6094. load_to_nozzle = true;
  6095. } else
  6096. {
  6097. tmp_extruder = choose_menu_P(_T(MSG_CHOOSE_EXTRUDER), _T(MSG_EXTRUDER));
  6098. }
  6099. }
  6100. else {
  6101. tmp_extruder = code_value();
  6102. if (mmu_enabled && lcd_autoDepleteEnabled())
  6103. {
  6104. tmp_extruder = ad_getAlternative(tmp_extruder);
  6105. }
  6106. }
  6107. st_synchronize();
  6108. snmm_filaments_used |= (1 << tmp_extruder); //for stop print
  6109. if (mmu_enabled)
  6110. {
  6111. if ((tmp_extruder == mmu_extruder) && mmu_fil_loaded) {
  6112. printf_P(PSTR("Duplicit T-code ignored.\n"));
  6113. return; //dont execute the same T-code twice in a row
  6114. }
  6115. mmu_command(MMU_CMD_T0 + tmp_extruder);
  6116. manage_response(true, true, MMU_TCODE_MOVE);
  6117. mmu_continue_loading();
  6118. mmu_extruder = tmp_extruder; //filament change is finished
  6119. if (load_to_nozzle)// for single material usage with mmu
  6120. {
  6121. mmu_load_to_nozzle();
  6122. }
  6123. }
  6124. else
  6125. {
  6126. #ifdef SNMM
  6127. #ifdef LIN_ADVANCE
  6128. if (mmu_extruder != tmp_extruder)
  6129. clear_current_adv_vars(); //Check if the selected extruder is not the active one and reset LIN_ADVANCE variables if so.
  6130. #endif
  6131. mmu_extruder = tmp_extruder;
  6132. delay(100);
  6133. disable_e0();
  6134. disable_e1();
  6135. disable_e2();
  6136. pinMode(E_MUX0_PIN, OUTPUT);
  6137. pinMode(E_MUX1_PIN, OUTPUT);
  6138. delay(100);
  6139. SERIAL_ECHO_START;
  6140. SERIAL_ECHO("T:");
  6141. SERIAL_ECHOLN((int)tmp_extruder);
  6142. switch (tmp_extruder) {
  6143. case 1:
  6144. WRITE(E_MUX0_PIN, HIGH);
  6145. WRITE(E_MUX1_PIN, LOW);
  6146. break;
  6147. case 2:
  6148. WRITE(E_MUX0_PIN, LOW);
  6149. WRITE(E_MUX1_PIN, HIGH);
  6150. break;
  6151. case 3:
  6152. WRITE(E_MUX0_PIN, HIGH);
  6153. WRITE(E_MUX1_PIN, HIGH);
  6154. break;
  6155. default:
  6156. WRITE(E_MUX0_PIN, LOW);
  6157. WRITE(E_MUX1_PIN, LOW);
  6158. break;
  6159. }
  6160. delay(100);
  6161. #else //SNMM
  6162. if (tmp_extruder >= EXTRUDERS) {
  6163. SERIAL_ECHO_START;
  6164. SERIAL_ECHOPGM("T");
  6165. SERIAL_PROTOCOLLN((int)tmp_extruder);
  6166. SERIAL_ECHOLNRPGM(_n("Invalid extruder"));////MSG_INVALID_EXTRUDER c=0 r=0
  6167. }
  6168. else {
  6169. #if EXTRUDERS > 1
  6170. boolean make_move = false;
  6171. #endif
  6172. if (code_seen('F')) {
  6173. #if EXTRUDERS > 1
  6174. make_move = true;
  6175. #endif
  6176. next_feedrate = code_value();
  6177. if (next_feedrate > 0.0) {
  6178. feedrate = next_feedrate;
  6179. }
  6180. }
  6181. #if EXTRUDERS > 1
  6182. if (tmp_extruder != active_extruder) {
  6183. // Save current position to return to after applying extruder offset
  6184. memcpy(destination, current_position, sizeof(destination));
  6185. // Offset extruder (only by XY)
  6186. int i;
  6187. for (i = 0; i < 2; i++) {
  6188. current_position[i] = current_position[i] -
  6189. extruder_offset[i][active_extruder] +
  6190. extruder_offset[i][tmp_extruder];
  6191. }
  6192. // Set the new active extruder and position
  6193. active_extruder = tmp_extruder;
  6194. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  6195. // Move to the old position if 'F' was in the parameters
  6196. if (make_move && Stopped == false) {
  6197. prepare_move();
  6198. }
  6199. }
  6200. #endif
  6201. SERIAL_ECHO_START;
  6202. SERIAL_ECHORPGM(_n("Active Extruder: "));////MSG_ACTIVE_EXTRUDER c=0 r=0
  6203. SERIAL_PROTOCOLLN((int)active_extruder);
  6204. }
  6205. #endif //SNMM
  6206. }
  6207. }
  6208. } // end if(code_seen('T')) (end of T codes)
  6209. else if (code_seen('D')) // D codes (debug)
  6210. {
  6211. switch((int)code_value())
  6212. {
  6213. #ifdef DEBUG_DCODES
  6214. case -1: //! D-1 - Endless loop
  6215. dcode__1(); break;
  6216. case 0: //! D0 - Reset
  6217. dcode_0(); break;
  6218. case 1: //! D1 - Clear EEPROM
  6219. dcode_1(); break;
  6220. case 2: //! D2 - Read/Write RAM
  6221. dcode_2(); break;
  6222. #endif //DEBUG_DCODES
  6223. #ifdef DEBUG_DCODE3
  6224. case 3: //! D3 - Read/Write EEPROM
  6225. dcode_3(); break;
  6226. #endif //DEBUG_DCODE3
  6227. #ifdef DEBUG_DCODES
  6228. case 4: //! D4 - Read/Write PIN
  6229. dcode_4(); break;
  6230. #endif //DEBUG_DCODES
  6231. #ifdef DEBUG_DCODE5
  6232. case 5: // D5 - Read/Write FLASH
  6233. dcode_5(); break;
  6234. break;
  6235. #endif //DEBUG_DCODE5
  6236. #ifdef DEBUG_DCODES
  6237. case 6: // D6 - Read/Write external FLASH
  6238. dcode_6(); break;
  6239. case 7: //! D7 - Read/Write Bootloader
  6240. dcode_7(); break;
  6241. case 8: //! D8 - Read/Write PINDA
  6242. dcode_8(); break;
  6243. case 9: //! D9 - Read/Write ADC
  6244. dcode_9(); break;
  6245. case 10: //! D10 - XYZ calibration = OK
  6246. dcode_10(); break;
  6247. #ifdef TMC2130
  6248. case 2130: //! D2130 - TMC2130
  6249. dcode_2130(); break;
  6250. #endif //TMC2130
  6251. #ifdef FILAMENT_SENSOR
  6252. case 9125: //! D9125 - FILAMENT_SENSOR
  6253. dcode_9125(); break;
  6254. #endif //FILAMENT_SENSOR
  6255. #endif //DEBUG_DCODES
  6256. }
  6257. }
  6258. else
  6259. {
  6260. SERIAL_ECHO_START;
  6261. SERIAL_ECHORPGM(MSG_UNKNOWN_COMMAND);
  6262. SERIAL_ECHO(CMDBUFFER_CURRENT_STRING);
  6263. SERIAL_ECHOLNPGM("\"(2)");
  6264. }
  6265. KEEPALIVE_STATE(NOT_BUSY);
  6266. ClearToSend();
  6267. }
  6268. void FlushSerialRequestResend()
  6269. {
  6270. //char cmdbuffer[bufindr][100]="Resend:";
  6271. MYSERIAL.flush();
  6272. printf_P(_N("%S: %ld\n%S\n"), _n("Resend"), gcode_LastN + 1, MSG_OK);
  6273. }
  6274. // Confirm the execution of a command, if sent from a serial line.
  6275. // Execution of a command from a SD card will not be confirmed.
  6276. void ClearToSend()
  6277. {
  6278. previous_millis_cmd = millis();
  6279. if ((CMDBUFFER_CURRENT_TYPE == CMDBUFFER_CURRENT_TYPE_USB) || (CMDBUFFER_CURRENT_TYPE == CMDBUFFER_CURRENT_TYPE_USB_WITH_LINENR))
  6280. SERIAL_PROTOCOLLNRPGM(MSG_OK);
  6281. }
  6282. #if MOTHERBOARD == BOARD_RAMBO_MINI_1_0 || MOTHERBOARD == BOARD_RAMBO_MINI_1_3
  6283. void update_currents() {
  6284. float current_high[3] = DEFAULT_PWM_MOTOR_CURRENT_LOUD;
  6285. float current_low[3] = DEFAULT_PWM_MOTOR_CURRENT;
  6286. float tmp_motor[3];
  6287. //SERIAL_ECHOLNPGM("Currents updated: ");
  6288. if (destination[Z_AXIS] < Z_SILENT) {
  6289. //SERIAL_ECHOLNPGM("LOW");
  6290. for (uint8_t i = 0; i < 3; i++) {
  6291. st_current_set(i, current_low[i]);
  6292. /*MYSERIAL.print(int(i));
  6293. SERIAL_ECHOPGM(": ");
  6294. MYSERIAL.println(current_low[i]);*/
  6295. }
  6296. }
  6297. else if (destination[Z_AXIS] > Z_HIGH_POWER) {
  6298. //SERIAL_ECHOLNPGM("HIGH");
  6299. for (uint8_t i = 0; i < 3; i++) {
  6300. st_current_set(i, current_high[i]);
  6301. /*MYSERIAL.print(int(i));
  6302. SERIAL_ECHOPGM(": ");
  6303. MYSERIAL.println(current_high[i]);*/
  6304. }
  6305. }
  6306. else {
  6307. for (uint8_t i = 0; i < 3; i++) {
  6308. float q = current_low[i] - Z_SILENT*((current_high[i] - current_low[i]) / (Z_HIGH_POWER - Z_SILENT));
  6309. tmp_motor[i] = ((current_high[i] - current_low[i]) / (Z_HIGH_POWER - Z_SILENT))*destination[Z_AXIS] + q;
  6310. st_current_set(i, tmp_motor[i]);
  6311. /*MYSERIAL.print(int(i));
  6312. SERIAL_ECHOPGM(": ");
  6313. MYSERIAL.println(tmp_motor[i]);*/
  6314. }
  6315. }
  6316. }
  6317. #endif //MOTHERBOARD == BOARD_RAMBO_MINI_1_0 || MOTHERBOARD == BOARD_RAMBO_MINI_1_3
  6318. void get_coordinates()
  6319. {
  6320. bool seen[4]={false,false,false,false};
  6321. for(int8_t i=0; i < NUM_AXIS; i++) {
  6322. if(code_seen(axis_codes[i]))
  6323. {
  6324. bool relative = axis_relative_modes[i] || relative_mode;
  6325. destination[i] = (float)code_value();
  6326. if (i == E_AXIS) {
  6327. float emult = extruder_multiplier[active_extruder];
  6328. if (emult != 1.) {
  6329. if (! relative) {
  6330. destination[i] -= current_position[i];
  6331. relative = true;
  6332. }
  6333. destination[i] *= emult;
  6334. }
  6335. }
  6336. if (relative)
  6337. destination[i] += current_position[i];
  6338. seen[i]=true;
  6339. #if MOTHERBOARD == BOARD_RAMBO_MINI_1_0 || MOTHERBOARD == BOARD_RAMBO_MINI_1_3
  6340. if (i == Z_AXIS && SilentModeMenu == SILENT_MODE_AUTO) update_currents();
  6341. #endif //MOTHERBOARD == BOARD_RAMBO_MINI_1_0 || MOTHERBOARD == BOARD_RAMBO_MINI_1_3
  6342. }
  6343. else destination[i] = current_position[i]; //Are these else lines really needed?
  6344. }
  6345. if(code_seen('F')) {
  6346. next_feedrate = code_value();
  6347. #ifdef MAX_SILENT_FEEDRATE
  6348. if (tmc2130_mode == TMC2130_MODE_SILENT)
  6349. if (next_feedrate > MAX_SILENT_FEEDRATE) next_feedrate = MAX_SILENT_FEEDRATE;
  6350. #endif //MAX_SILENT_FEEDRATE
  6351. if(next_feedrate > 0.0) feedrate = next_feedrate;
  6352. if (!seen[0] && !seen[1] && !seen[2] && seen[3])
  6353. {
  6354. // float e_max_speed =
  6355. // printf_P(PSTR("E MOVE speed %7.3f\n"), feedrate / 60)
  6356. }
  6357. }
  6358. }
  6359. void get_arc_coordinates()
  6360. {
  6361. #ifdef SF_ARC_FIX
  6362. bool relative_mode_backup = relative_mode;
  6363. relative_mode = true;
  6364. #endif
  6365. get_coordinates();
  6366. #ifdef SF_ARC_FIX
  6367. relative_mode=relative_mode_backup;
  6368. #endif
  6369. if(code_seen('I')) {
  6370. offset[0] = code_value();
  6371. }
  6372. else {
  6373. offset[0] = 0.0;
  6374. }
  6375. if(code_seen('J')) {
  6376. offset[1] = code_value();
  6377. }
  6378. else {
  6379. offset[1] = 0.0;
  6380. }
  6381. }
  6382. void clamp_to_software_endstops(float target[3])
  6383. {
  6384. #ifdef DEBUG_DISABLE_SWLIMITS
  6385. return;
  6386. #endif //DEBUG_DISABLE_SWLIMITS
  6387. world2machine_clamp(target[0], target[1]);
  6388. // Clamp the Z coordinate.
  6389. if (min_software_endstops) {
  6390. float negative_z_offset = 0;
  6391. #ifdef ENABLE_AUTO_BED_LEVELING
  6392. if (Z_PROBE_OFFSET_FROM_EXTRUDER < 0) negative_z_offset = negative_z_offset + Z_PROBE_OFFSET_FROM_EXTRUDER;
  6393. if (cs.add_homing[Z_AXIS] < 0) negative_z_offset = negative_z_offset + cs.add_homing[Z_AXIS];
  6394. #endif
  6395. if (target[Z_AXIS] < min_pos[Z_AXIS]+negative_z_offset) target[Z_AXIS] = min_pos[Z_AXIS]+negative_z_offset;
  6396. }
  6397. if (max_software_endstops) {
  6398. if (target[Z_AXIS] > max_pos[Z_AXIS]) target[Z_AXIS] = max_pos[Z_AXIS];
  6399. }
  6400. }
  6401. #ifdef MESH_BED_LEVELING
  6402. void mesh_plan_buffer_line(const float &x, const float &y, const float &z, const float &e, const float &feed_rate, const uint8_t extruder) {
  6403. float dx = x - current_position[X_AXIS];
  6404. float dy = y - current_position[Y_AXIS];
  6405. float dz = z - current_position[Z_AXIS];
  6406. int n_segments = 0;
  6407. if (mbl.active) {
  6408. float len = abs(dx) + abs(dy);
  6409. if (len > 0)
  6410. // Split to 3cm segments or shorter.
  6411. n_segments = int(ceil(len / 30.f));
  6412. }
  6413. if (n_segments > 1) {
  6414. float de = e - current_position[E_AXIS];
  6415. for (int i = 1; i < n_segments; ++ i) {
  6416. float t = float(i) / float(n_segments);
  6417. if (saved_printing || (mbl.active == false)) return;
  6418. plan_buffer_line(
  6419. current_position[X_AXIS] + t * dx,
  6420. current_position[Y_AXIS] + t * dy,
  6421. current_position[Z_AXIS] + t * dz,
  6422. current_position[E_AXIS] + t * de,
  6423. feed_rate, extruder);
  6424. }
  6425. }
  6426. // The rest of the path.
  6427. plan_buffer_line(x, y, z, e, feed_rate, extruder);
  6428. current_position[X_AXIS] = x;
  6429. current_position[Y_AXIS] = y;
  6430. current_position[Z_AXIS] = z;
  6431. current_position[E_AXIS] = e;
  6432. }
  6433. #endif // MESH_BED_LEVELING
  6434. void prepare_move()
  6435. {
  6436. clamp_to_software_endstops(destination);
  6437. previous_millis_cmd = millis();
  6438. // Do not use feedmultiply for E or Z only moves
  6439. if( (current_position[X_AXIS] == destination [X_AXIS]) && (current_position[Y_AXIS] == destination [Y_AXIS])) {
  6440. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  6441. }
  6442. else {
  6443. #ifdef MESH_BED_LEVELING
  6444. mesh_plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate*feedmultiply*(1./(60.f*100.f)), active_extruder);
  6445. #else
  6446. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate*feedmultiply*(1./(60.f*100.f)), active_extruder);
  6447. #endif
  6448. }
  6449. for(int8_t i=0; i < NUM_AXIS; i++) {
  6450. current_position[i] = destination[i];
  6451. }
  6452. }
  6453. void prepare_arc_move(char isclockwise) {
  6454. float r = hypot(offset[X_AXIS], offset[Y_AXIS]); // Compute arc radius for mc_arc
  6455. // Trace the arc
  6456. mc_arc(current_position, destination, offset, X_AXIS, Y_AXIS, Z_AXIS, feedrate*feedmultiply/60/100.0, r, isclockwise, active_extruder);
  6457. // As far as the parser is concerned, the position is now == target. In reality the
  6458. // motion control system might still be processing the action and the real tool position
  6459. // in any intermediate location.
  6460. for(int8_t i=0; i < NUM_AXIS; i++) {
  6461. current_position[i] = destination[i];
  6462. }
  6463. previous_millis_cmd = millis();
  6464. }
  6465. #if defined(CONTROLLERFAN_PIN) && CONTROLLERFAN_PIN > -1
  6466. #if defined(FAN_PIN)
  6467. #if CONTROLLERFAN_PIN == FAN_PIN
  6468. #error "You cannot set CONTROLLERFAN_PIN equal to FAN_PIN"
  6469. #endif
  6470. #endif
  6471. unsigned long lastMotor = 0; //Save the time for when a motor was turned on last
  6472. unsigned long lastMotorCheck = 0;
  6473. void controllerFan()
  6474. {
  6475. if ((millis() - lastMotorCheck) >= 2500) //Not a time critical function, so we only check every 2500ms
  6476. {
  6477. lastMotorCheck = millis();
  6478. if(!READ(X_ENABLE_PIN) || !READ(Y_ENABLE_PIN) || !READ(Z_ENABLE_PIN) || (soft_pwm_bed > 0)
  6479. #if EXTRUDERS > 2
  6480. || !READ(E2_ENABLE_PIN)
  6481. #endif
  6482. #if EXTRUDER > 1
  6483. #if defined(X2_ENABLE_PIN) && X2_ENABLE_PIN > -1
  6484. || !READ(X2_ENABLE_PIN)
  6485. #endif
  6486. || !READ(E1_ENABLE_PIN)
  6487. #endif
  6488. || !READ(E0_ENABLE_PIN)) //If any of the drivers are enabled...
  6489. {
  6490. lastMotor = millis(); //... set time to NOW so the fan will turn on
  6491. }
  6492. if ((millis() - lastMotor) >= (CONTROLLERFAN_SECS*1000UL) || lastMotor == 0) //If the last time any driver was enabled, is longer since than CONTROLLERSEC...
  6493. {
  6494. digitalWrite(CONTROLLERFAN_PIN, 0);
  6495. analogWrite(CONTROLLERFAN_PIN, 0);
  6496. }
  6497. else
  6498. {
  6499. // allows digital or PWM fan output to be used (see M42 handling)
  6500. digitalWrite(CONTROLLERFAN_PIN, CONTROLLERFAN_SPEED);
  6501. analogWrite(CONTROLLERFAN_PIN, CONTROLLERFAN_SPEED);
  6502. }
  6503. }
  6504. }
  6505. #endif
  6506. #ifdef TEMP_STAT_LEDS
  6507. static bool blue_led = false;
  6508. static bool red_led = false;
  6509. static uint32_t stat_update = 0;
  6510. void handle_status_leds(void) {
  6511. float max_temp = 0.0;
  6512. if(millis() > stat_update) {
  6513. stat_update += 500; // Update every 0.5s
  6514. for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) {
  6515. max_temp = max(max_temp, degHotend(cur_extruder));
  6516. max_temp = max(max_temp, degTargetHotend(cur_extruder));
  6517. }
  6518. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  6519. max_temp = max(max_temp, degTargetBed());
  6520. max_temp = max(max_temp, degBed());
  6521. #endif
  6522. if((max_temp > 55.0) && (red_led == false)) {
  6523. digitalWrite(STAT_LED_RED, 1);
  6524. digitalWrite(STAT_LED_BLUE, 0);
  6525. red_led = true;
  6526. blue_led = false;
  6527. }
  6528. if((max_temp < 54.0) && (blue_led == false)) {
  6529. digitalWrite(STAT_LED_RED, 0);
  6530. digitalWrite(STAT_LED_BLUE, 1);
  6531. red_led = false;
  6532. blue_led = true;
  6533. }
  6534. }
  6535. }
  6536. #endif
  6537. #ifdef SAFETYTIMER
  6538. /**
  6539. * @brief Turn off heating after safetytimer_inactive_time milliseconds of inactivity
  6540. *
  6541. * Full screen blocking notification message is shown after heater turning off.
  6542. * Paused print is not considered inactivity, as nozzle is cooled anyway and bed cooling would
  6543. * damage print.
  6544. *
  6545. * If safetytimer_inactive_time is zero, feature is disabled (heating is never turned off because of inactivity)
  6546. */
  6547. static void handleSafetyTimer()
  6548. {
  6549. #if (EXTRUDERS > 1)
  6550. #error Implemented only for one extruder.
  6551. #endif //(EXTRUDERS > 1)
  6552. if ((PRINTER_ACTIVE) || (!degTargetBed() && !degTargetHotend(0)) || (!safetytimer_inactive_time))
  6553. {
  6554. safetyTimer.stop();
  6555. }
  6556. else if ((degTargetBed() || degTargetHotend(0)) && (!safetyTimer.running()))
  6557. {
  6558. safetyTimer.start();
  6559. }
  6560. else if (safetyTimer.expired(safetytimer_inactive_time))
  6561. {
  6562. setTargetBed(0);
  6563. setAllTargetHotends(0);
  6564. lcd_show_fullscreen_message_and_wait_P(_i("Heating disabled by safety timer."));////MSG_BED_HEATING_SAFETY_DISABLED c=0 r=0
  6565. }
  6566. }
  6567. #endif //SAFETYTIMER
  6568. void manage_inactivity(bool ignore_stepper_queue/*=false*/) //default argument set in Marlin.h
  6569. {
  6570. #ifdef FILAMENT_SENSOR
  6571. if (mmu_enabled == false)
  6572. {
  6573. if (mcode_in_progress != 600) //M600 not in progress
  6574. {
  6575. if (!moves_planned() && !IS_SD_PRINTING && !is_usb_printing && (lcd_commands_type != LCD_COMMAND_V2_CAL) && !wizard_active)
  6576. {
  6577. if (fsensor_check_autoload())
  6578. {
  6579. #ifdef PAT9125
  6580. fsensor_autoload_check_stop();
  6581. #endif //PAT9125
  6582. if (degHotend0() > EXTRUDE_MINTEMP)
  6583. {
  6584. if ((eSoundMode == e_SOUND_MODE_LOUD) || (eSoundMode == e_SOUND_MODE_ONCE))
  6585. tone(BEEPER, 1000);
  6586. delay_keep_alive(50);
  6587. noTone(BEEPER);
  6588. loading_flag = true;
  6589. enquecommand_front_P((PSTR("M701")));
  6590. }
  6591. else
  6592. {
  6593. lcd_update_enable(false);
  6594. show_preheat_nozzle_warning();
  6595. lcd_update_enable(true);
  6596. }
  6597. }
  6598. }
  6599. else
  6600. {
  6601. #ifdef PAT9125
  6602. fsensor_autoload_check_stop();
  6603. #endif //PAT9125
  6604. fsensor_update();
  6605. }
  6606. }
  6607. }
  6608. #endif //FILAMENT_SENSOR
  6609. #ifdef SAFETYTIMER
  6610. handleSafetyTimer();
  6611. #endif //SAFETYTIMER
  6612. #if defined(KILL_PIN) && KILL_PIN > -1
  6613. static int killCount = 0; // make the inactivity button a bit less responsive
  6614. const int KILL_DELAY = 10000;
  6615. #endif
  6616. if(buflen < (BUFSIZE-1)){
  6617. get_command();
  6618. }
  6619. if( (millis() - previous_millis_cmd) > max_inactive_time )
  6620. if(max_inactive_time)
  6621. kill(_n(""), 4);
  6622. if(stepper_inactive_time) {
  6623. if( (millis() - previous_millis_cmd) > stepper_inactive_time )
  6624. {
  6625. if(blocks_queued() == false && ignore_stepper_queue == false) {
  6626. disable_x();
  6627. disable_y();
  6628. disable_z();
  6629. disable_e0();
  6630. disable_e1();
  6631. disable_e2();
  6632. }
  6633. }
  6634. }
  6635. #ifdef CHDK //Check if pin should be set to LOW after M240 set it to HIGH
  6636. if (chdkActive && (millis() - chdkHigh > CHDK_DELAY))
  6637. {
  6638. chdkActive = false;
  6639. WRITE(CHDK, LOW);
  6640. }
  6641. #endif
  6642. #if defined(KILL_PIN) && KILL_PIN > -1
  6643. // Check if the kill button was pressed and wait just in case it was an accidental
  6644. // key kill key press
  6645. // -------------------------------------------------------------------------------
  6646. if( 0 == READ(KILL_PIN) )
  6647. {
  6648. killCount++;
  6649. }
  6650. else if (killCount > 0)
  6651. {
  6652. killCount--;
  6653. }
  6654. // Exceeded threshold and we can confirm that it was not accidental
  6655. // KILL the machine
  6656. // ----------------------------------------------------------------
  6657. if ( killCount >= KILL_DELAY)
  6658. {
  6659. kill("", 5);
  6660. }
  6661. #endif
  6662. #if defined(CONTROLLERFAN_PIN) && CONTROLLERFAN_PIN > -1
  6663. controllerFan(); //Check if fan should be turned on to cool stepper drivers down
  6664. #endif
  6665. #ifdef EXTRUDER_RUNOUT_PREVENT
  6666. if( (millis() - previous_millis_cmd) > EXTRUDER_RUNOUT_SECONDS*1000 )
  6667. if(degHotend(active_extruder)>EXTRUDER_RUNOUT_MINTEMP)
  6668. {
  6669. bool oldstatus=READ(E0_ENABLE_PIN);
  6670. enable_e0();
  6671. float oldepos=current_position[E_AXIS];
  6672. float oldedes=destination[E_AXIS];
  6673. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS],
  6674. destination[E_AXIS]+EXTRUDER_RUNOUT_EXTRUDE*EXTRUDER_RUNOUT_ESTEPS/cs.axis_steps_per_unit[E_AXIS],
  6675. EXTRUDER_RUNOUT_SPEED/60.*EXTRUDER_RUNOUT_ESTEPS/cs.axis_steps_per_unit[E_AXIS], active_extruder);
  6676. current_position[E_AXIS]=oldepos;
  6677. destination[E_AXIS]=oldedes;
  6678. plan_set_e_position(oldepos);
  6679. previous_millis_cmd=millis();
  6680. st_synchronize();
  6681. WRITE(E0_ENABLE_PIN,oldstatus);
  6682. }
  6683. #endif
  6684. #ifdef TEMP_STAT_LEDS
  6685. handle_status_leds();
  6686. #endif
  6687. check_axes_activity();
  6688. mmu_loop();
  6689. }
  6690. void kill(const char *full_screen_message, unsigned char id)
  6691. {
  6692. printf_P(_N("KILL: %d\n"), id);
  6693. //return;
  6694. cli(); // Stop interrupts
  6695. disable_heater();
  6696. disable_x();
  6697. // SERIAL_ECHOLNPGM("kill - disable Y");
  6698. disable_y();
  6699. disable_z();
  6700. disable_e0();
  6701. disable_e1();
  6702. disable_e2();
  6703. #if defined(PS_ON_PIN) && PS_ON_PIN > -1
  6704. pinMode(PS_ON_PIN,INPUT);
  6705. #endif
  6706. SERIAL_ERROR_START;
  6707. SERIAL_ERRORLNRPGM(_n("Printer halted. kill() called!"));////MSG_ERR_KILLED c=0 r=0
  6708. if (full_screen_message != NULL) {
  6709. SERIAL_ERRORLNRPGM(full_screen_message);
  6710. lcd_display_message_fullscreen_P(full_screen_message);
  6711. } else {
  6712. LCD_ALERTMESSAGERPGM(_n("KILLED. "));////MSG_KILLED c=0 r=0
  6713. }
  6714. // FMC small patch to update the LCD before ending
  6715. sei(); // enable interrupts
  6716. for ( int i=5; i--; lcd_update(0))
  6717. {
  6718. delay(200);
  6719. }
  6720. cli(); // disable interrupts
  6721. suicide();
  6722. while(1)
  6723. {
  6724. #ifdef WATCHDOG
  6725. wdt_reset();
  6726. #endif //WATCHDOG
  6727. /* Intentionally left empty */
  6728. } // Wait for reset
  6729. }
  6730. void Stop()
  6731. {
  6732. disable_heater();
  6733. if(Stopped == false) {
  6734. Stopped = true;
  6735. lcd_print_stop();
  6736. Stopped_gcode_LastN = gcode_LastN; // Save last g_code for restart
  6737. SERIAL_ERROR_START;
  6738. SERIAL_ERRORLNRPGM(MSG_ERR_STOPPED);
  6739. LCD_MESSAGERPGM(_T(MSG_STOPPED));
  6740. }
  6741. }
  6742. bool IsStopped() { return Stopped; };
  6743. #ifdef FAST_PWM_FAN
  6744. void setPwmFrequency(uint8_t pin, int val)
  6745. {
  6746. val &= 0x07;
  6747. switch(digitalPinToTimer(pin))
  6748. {
  6749. #if defined(TCCR0A)
  6750. case TIMER0A:
  6751. case TIMER0B:
  6752. // TCCR0B &= ~(_BV(CS00) | _BV(CS01) | _BV(CS02));
  6753. // TCCR0B |= val;
  6754. break;
  6755. #endif
  6756. #if defined(TCCR1A)
  6757. case TIMER1A:
  6758. case TIMER1B:
  6759. // TCCR1B &= ~(_BV(CS10) | _BV(CS11) | _BV(CS12));
  6760. // TCCR1B |= val;
  6761. break;
  6762. #endif
  6763. #if defined(TCCR2)
  6764. case TIMER2:
  6765. case TIMER2:
  6766. TCCR2 &= ~(_BV(CS10) | _BV(CS11) | _BV(CS12));
  6767. TCCR2 |= val;
  6768. break;
  6769. #endif
  6770. #if defined(TCCR2A)
  6771. case TIMER2A:
  6772. case TIMER2B:
  6773. TCCR2B &= ~(_BV(CS20) | _BV(CS21) | _BV(CS22));
  6774. TCCR2B |= val;
  6775. break;
  6776. #endif
  6777. #if defined(TCCR3A)
  6778. case TIMER3A:
  6779. case TIMER3B:
  6780. case TIMER3C:
  6781. TCCR3B &= ~(_BV(CS30) | _BV(CS31) | _BV(CS32));
  6782. TCCR3B |= val;
  6783. break;
  6784. #endif
  6785. #if defined(TCCR4A)
  6786. case TIMER4A:
  6787. case TIMER4B:
  6788. case TIMER4C:
  6789. TCCR4B &= ~(_BV(CS40) | _BV(CS41) | _BV(CS42));
  6790. TCCR4B |= val;
  6791. break;
  6792. #endif
  6793. #if defined(TCCR5A)
  6794. case TIMER5A:
  6795. case TIMER5B:
  6796. case TIMER5C:
  6797. TCCR5B &= ~(_BV(CS50) | _BV(CS51) | _BV(CS52));
  6798. TCCR5B |= val;
  6799. break;
  6800. #endif
  6801. }
  6802. }
  6803. #endif //FAST_PWM_FAN
  6804. //! @brief Get and validate extruder number
  6805. //!
  6806. //! If it is not specified, active_extruder is returned in parameter extruder.
  6807. //! @param [in] code M code number
  6808. //! @param [out] extruder
  6809. //! @return error
  6810. //! @retval true Invalid extruder specified in T code
  6811. //! @retval false Valid extruder specified in T code, or not specifiead
  6812. bool setTargetedHotend(int code, uint8_t &extruder)
  6813. {
  6814. extruder = active_extruder;
  6815. if(code_seen('T')) {
  6816. extruder = code_value();
  6817. if(extruder >= EXTRUDERS) {
  6818. SERIAL_ECHO_START;
  6819. switch(code){
  6820. case 104:
  6821. SERIAL_ECHORPGM(_n("M104 Invalid extruder "));////MSG_M104_INVALID_EXTRUDER c=0 r=0
  6822. break;
  6823. case 105:
  6824. SERIAL_ECHO(_n("M105 Invalid extruder "));////MSG_M105_INVALID_EXTRUDER c=0 r=0
  6825. break;
  6826. case 109:
  6827. SERIAL_ECHO(_n("M109 Invalid extruder "));////MSG_M109_INVALID_EXTRUDER c=0 r=0
  6828. break;
  6829. case 218:
  6830. SERIAL_ECHO(_n("M218 Invalid extruder "));////MSG_M218_INVALID_EXTRUDER c=0 r=0
  6831. break;
  6832. case 221:
  6833. SERIAL_ECHO(_n("M221 Invalid extruder "));////MSG_M221_INVALID_EXTRUDER c=0 r=0
  6834. break;
  6835. }
  6836. SERIAL_PROTOCOLLN((int)extruder);
  6837. return true;
  6838. }
  6839. }
  6840. return false;
  6841. }
  6842. void save_statistics(unsigned long _total_filament_used, unsigned long _total_print_time) //_total_filament_used unit: mm/100; print time in s
  6843. {
  6844. if (eeprom_read_byte((uint8_t *)EEPROM_TOTALTIME) == 255 && eeprom_read_byte((uint8_t *)EEPROM_TOTALTIME + 1) == 255 && eeprom_read_byte((uint8_t *)EEPROM_TOTALTIME + 2) == 255 && eeprom_read_byte((uint8_t *)EEPROM_TOTALTIME + 3) == 255)
  6845. {
  6846. eeprom_update_dword((uint32_t *)EEPROM_TOTALTIME, 0);
  6847. eeprom_update_dword((uint32_t *)EEPROM_FILAMENTUSED, 0);
  6848. }
  6849. unsigned long _previous_filament = eeprom_read_dword((uint32_t *)EEPROM_FILAMENTUSED); //_previous_filament unit: cm
  6850. unsigned long _previous_time = eeprom_read_dword((uint32_t *)EEPROM_TOTALTIME); //_previous_time unit: min
  6851. eeprom_update_dword((uint32_t *)EEPROM_TOTALTIME, _previous_time + (_total_print_time/60)); //EEPROM_TOTALTIME unit: min
  6852. eeprom_update_dword((uint32_t *)EEPROM_FILAMENTUSED, _previous_filament + (_total_filament_used / 1000));
  6853. total_filament_used = 0;
  6854. }
  6855. float calculate_extruder_multiplier(float diameter) {
  6856. float out = 1.f;
  6857. if (cs.volumetric_enabled && diameter > 0.f) {
  6858. float area = M_PI * diameter * diameter * 0.25;
  6859. out = 1.f / area;
  6860. }
  6861. if (extrudemultiply != 100)
  6862. out *= float(extrudemultiply) * 0.01f;
  6863. return out;
  6864. }
  6865. void calculate_extruder_multipliers() {
  6866. extruder_multiplier[0] = calculate_extruder_multiplier(cs.filament_size[0]);
  6867. #if EXTRUDERS > 1
  6868. extruder_multiplier[1] = calculate_extruder_multiplier(cs.filament_size[1]);
  6869. #if EXTRUDERS > 2
  6870. extruder_multiplier[2] = calculate_extruder_multiplier(cs.filament_size[2]);
  6871. #endif
  6872. #endif
  6873. }
  6874. void delay_keep_alive(unsigned int ms)
  6875. {
  6876. for (;;) {
  6877. manage_heater();
  6878. // Manage inactivity, but don't disable steppers on timeout.
  6879. manage_inactivity(true);
  6880. lcd_update(0);
  6881. if (ms == 0)
  6882. break;
  6883. else if (ms >= 50) {
  6884. delay(50);
  6885. ms -= 50;
  6886. } else {
  6887. delay(ms);
  6888. ms = 0;
  6889. }
  6890. }
  6891. }
  6892. static void wait_for_heater(long codenum, uint8_t extruder) {
  6893. #ifdef TEMP_RESIDENCY_TIME
  6894. long residencyStart;
  6895. residencyStart = -1;
  6896. /* continue to loop until we have reached the target temp
  6897. _and_ until TEMP_RESIDENCY_TIME hasn't passed since we reached it */
  6898. while ((!cancel_heatup) && ((residencyStart == -1) ||
  6899. (residencyStart >= 0 && (((unsigned int)(millis() - residencyStart)) < (TEMP_RESIDENCY_TIME * 1000UL))))) {
  6900. #else
  6901. while (target_direction ? (isHeatingHotend(tmp_extruder)) : (isCoolingHotend(tmp_extruder) && (CooldownNoWait == false))) {
  6902. #endif //TEMP_RESIDENCY_TIME
  6903. if ((millis() - codenum) > 1000UL)
  6904. { //Print Temp Reading and remaining time every 1 second while heating up/cooling down
  6905. if (!farm_mode) {
  6906. SERIAL_PROTOCOLPGM("T:");
  6907. SERIAL_PROTOCOL_F(degHotend(extruder), 1);
  6908. SERIAL_PROTOCOLPGM(" E:");
  6909. SERIAL_PROTOCOL((int)extruder);
  6910. #ifdef TEMP_RESIDENCY_TIME
  6911. SERIAL_PROTOCOLPGM(" W:");
  6912. if (residencyStart > -1)
  6913. {
  6914. codenum = ((TEMP_RESIDENCY_TIME * 1000UL) - (millis() - residencyStart)) / 1000UL;
  6915. SERIAL_PROTOCOLLN(codenum);
  6916. }
  6917. else
  6918. {
  6919. SERIAL_PROTOCOLLN("?");
  6920. }
  6921. }
  6922. #else
  6923. SERIAL_PROTOCOLLN("");
  6924. #endif
  6925. codenum = millis();
  6926. }
  6927. manage_heater();
  6928. manage_inactivity(true); //do not disable steppers
  6929. lcd_update(0);
  6930. #ifdef TEMP_RESIDENCY_TIME
  6931. /* start/restart the TEMP_RESIDENCY_TIME timer whenever we reach target temp for the first time
  6932. or when current temp falls outside the hysteresis after target temp was reached */
  6933. if ((residencyStart == -1 && target_direction && (degHotend(extruder) >= (degTargetHotend(extruder) - TEMP_WINDOW))) ||
  6934. (residencyStart == -1 && !target_direction && (degHotend(extruder) <= (degTargetHotend(extruder) + TEMP_WINDOW))) ||
  6935. (residencyStart > -1 && labs(degHotend(extruder) - degTargetHotend(extruder)) > TEMP_HYSTERESIS))
  6936. {
  6937. residencyStart = millis();
  6938. }
  6939. #endif //TEMP_RESIDENCY_TIME
  6940. }
  6941. }
  6942. void check_babystep()
  6943. {
  6944. int babystep_z;
  6945. EEPROM_read_B(EEPROM_BABYSTEP_Z, &babystep_z);
  6946. if ((babystep_z < Z_BABYSTEP_MIN) || (babystep_z > Z_BABYSTEP_MAX)) {
  6947. babystep_z = 0; //if babystep value is out of min max range, set it to 0
  6948. SERIAL_ECHOLNPGM("Z live adjust out of range. Setting to 0");
  6949. EEPROM_save_B(EEPROM_BABYSTEP_Z, &babystep_z);
  6950. lcd_show_fullscreen_message_and_wait_P(PSTR("Z live adjust out of range. Setting to 0. Click to continue."));
  6951. lcd_update_enable(true);
  6952. }
  6953. }
  6954. #ifdef DIS
  6955. void d_setup()
  6956. {
  6957. pinMode(D_DATACLOCK, INPUT_PULLUP);
  6958. pinMode(D_DATA, INPUT_PULLUP);
  6959. pinMode(D_REQUIRE, OUTPUT);
  6960. digitalWrite(D_REQUIRE, HIGH);
  6961. }
  6962. float d_ReadData()
  6963. {
  6964. int digit[13];
  6965. String mergeOutput;
  6966. float output;
  6967. digitalWrite(D_REQUIRE, HIGH);
  6968. for (int i = 0; i<13; i++)
  6969. {
  6970. for (int j = 0; j < 4; j++)
  6971. {
  6972. while (digitalRead(D_DATACLOCK) == LOW) {}
  6973. while (digitalRead(D_DATACLOCK) == HIGH) {}
  6974. bitWrite(digit[i], j, digitalRead(D_DATA));
  6975. }
  6976. }
  6977. digitalWrite(D_REQUIRE, LOW);
  6978. mergeOutput = "";
  6979. output = 0;
  6980. for (int r = 5; r <= 10; r++) //Merge digits
  6981. {
  6982. mergeOutput += digit[r];
  6983. }
  6984. output = mergeOutput.toFloat();
  6985. if (digit[4] == 8) //Handle sign
  6986. {
  6987. output *= -1;
  6988. }
  6989. for (int i = digit[11]; i > 0; i--) //Handle floating point
  6990. {
  6991. output /= 10;
  6992. }
  6993. return output;
  6994. }
  6995. void bed_analysis(float x_dimension, float y_dimension, int x_points_num, int y_points_num, float shift_x, float shift_y) {
  6996. int t1 = 0;
  6997. int t_delay = 0;
  6998. int digit[13];
  6999. int m;
  7000. char str[3];
  7001. //String mergeOutput;
  7002. char mergeOutput[15];
  7003. float output;
  7004. int mesh_point = 0; //index number of calibration point
  7005. float bed_zero_ref_x = (-22.f + X_PROBE_OFFSET_FROM_EXTRUDER); //shift between zero point on bed and target and between probe and nozzle
  7006. float bed_zero_ref_y = (-0.6f + Y_PROBE_OFFSET_FROM_EXTRUDER);
  7007. float mesh_home_z_search = 4;
  7008. float row[x_points_num];
  7009. int ix = 0;
  7010. int iy = 0;
  7011. const char* filename_wldsd = "wldsd.txt";
  7012. char data_wldsd[70];
  7013. char numb_wldsd[10];
  7014. d_setup();
  7015. if (!(axis_known_position[X_AXIS] && axis_known_position[Y_AXIS] && axis_known_position[Z_AXIS])) {
  7016. // We don't know where we are! HOME!
  7017. // Push the commands to the front of the message queue in the reverse order!
  7018. // There shall be always enough space reserved for these commands.
  7019. repeatcommand_front(); // repeat G80 with all its parameters
  7020. enquecommand_front_P((PSTR("G28 W0")));
  7021. enquecommand_front_P((PSTR("G1 Z5")));
  7022. return;
  7023. }
  7024. unsigned int custom_message_type_old = custom_message_type;
  7025. unsigned int custom_message_state_old = custom_message_state;
  7026. custom_message_type = CUSTOM_MSG_TYPE_MESHBL;
  7027. custom_message_state = (x_points_num * y_points_num) + 10;
  7028. lcd_update(1);
  7029. mbl.reset();
  7030. babystep_undo();
  7031. card.openFile(filename_wldsd, false);
  7032. current_position[Z_AXIS] = mesh_home_z_search;
  7033. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[Z_AXIS] / 60, active_extruder);
  7034. int XY_AXIS_FEEDRATE = homing_feedrate[X_AXIS] / 20;
  7035. int Z_LIFT_FEEDRATE = homing_feedrate[Z_AXIS] / 40;
  7036. int l_feedmultiply = setup_for_endstop_move(false);
  7037. SERIAL_PROTOCOLPGM("Num X,Y: ");
  7038. SERIAL_PROTOCOL(x_points_num);
  7039. SERIAL_PROTOCOLPGM(",");
  7040. SERIAL_PROTOCOL(y_points_num);
  7041. SERIAL_PROTOCOLPGM("\nZ search height: ");
  7042. SERIAL_PROTOCOL(mesh_home_z_search);
  7043. SERIAL_PROTOCOLPGM("\nDimension X,Y: ");
  7044. SERIAL_PROTOCOL(x_dimension);
  7045. SERIAL_PROTOCOLPGM(",");
  7046. SERIAL_PROTOCOL(y_dimension);
  7047. SERIAL_PROTOCOLLNPGM("\nMeasured points:");
  7048. while (mesh_point != x_points_num * y_points_num) {
  7049. ix = mesh_point % x_points_num; // from 0 to MESH_NUM_X_POINTS - 1
  7050. iy = mesh_point / x_points_num;
  7051. if (iy & 1) ix = (x_points_num - 1) - ix; // Zig zag
  7052. float z0 = 0.f;
  7053. current_position[Z_AXIS] = mesh_home_z_search;
  7054. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], Z_LIFT_FEEDRATE, active_extruder);
  7055. st_synchronize();
  7056. current_position[X_AXIS] = 13.f + ix * (x_dimension / (x_points_num - 1)) - bed_zero_ref_x + shift_x;
  7057. current_position[Y_AXIS] = 6.4f + iy * (y_dimension / (y_points_num - 1)) - bed_zero_ref_y + shift_y;
  7058. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], XY_AXIS_FEEDRATE, active_extruder);
  7059. st_synchronize();
  7060. if (!find_bed_induction_sensor_point_z(-10.f)) { //if we have data from z calibration max allowed difference is 1mm for each point, if we dont have data max difference is 10mm from initial point
  7061. break;
  7062. card.closefile();
  7063. }
  7064. //memset(numb_wldsd, 0, sizeof(numb_wldsd));
  7065. //dtostrf(d_ReadData(), 8, 5, numb_wldsd);
  7066. //strcat(data_wldsd, numb_wldsd);
  7067. //MYSERIAL.println(data_wldsd);
  7068. //delay(1000);
  7069. //delay(3000);
  7070. //t1 = millis();
  7071. //while (digitalRead(D_DATACLOCK) == LOW) {}
  7072. //while (digitalRead(D_DATACLOCK) == HIGH) {}
  7073. memset(digit, 0, sizeof(digit));
  7074. //cli();
  7075. digitalWrite(D_REQUIRE, LOW);
  7076. for (int i = 0; i<13; i++)
  7077. {
  7078. //t1 = millis();
  7079. for (int j = 0; j < 4; j++)
  7080. {
  7081. while (digitalRead(D_DATACLOCK) == LOW) {}
  7082. while (digitalRead(D_DATACLOCK) == HIGH) {}
  7083. bitWrite(digit[i], j, digitalRead(D_DATA));
  7084. }
  7085. //t_delay = (millis() - t1);
  7086. //SERIAL_PROTOCOLPGM(" ");
  7087. //SERIAL_PROTOCOL_F(t_delay, 5);
  7088. //SERIAL_PROTOCOLPGM(" ");
  7089. }
  7090. //sei();
  7091. digitalWrite(D_REQUIRE, HIGH);
  7092. mergeOutput[0] = '\0';
  7093. output = 0;
  7094. for (int r = 5; r <= 10; r++) //Merge digits
  7095. {
  7096. sprintf(str, "%d", digit[r]);
  7097. strcat(mergeOutput, str);
  7098. }
  7099. output = atof(mergeOutput);
  7100. if (digit[4] == 8) //Handle sign
  7101. {
  7102. output *= -1;
  7103. }
  7104. for (int i = digit[11]; i > 0; i--) //Handle floating point
  7105. {
  7106. output *= 0.1;
  7107. }
  7108. //output = d_ReadData();
  7109. //row[ix] = current_position[Z_AXIS];
  7110. memset(data_wldsd, 0, sizeof(data_wldsd));
  7111. for (int i = 0; i <3; i++) {
  7112. memset(numb_wldsd, 0, sizeof(numb_wldsd));
  7113. dtostrf(current_position[i], 8, 5, numb_wldsd);
  7114. strcat(data_wldsd, numb_wldsd);
  7115. strcat(data_wldsd, ";");
  7116. }
  7117. memset(numb_wldsd, 0, sizeof(numb_wldsd));
  7118. dtostrf(output, 8, 5, numb_wldsd);
  7119. strcat(data_wldsd, numb_wldsd);
  7120. //strcat(data_wldsd, ";");
  7121. card.write_command(data_wldsd);
  7122. //row[ix] = d_ReadData();
  7123. row[ix] = output; // current_position[Z_AXIS];
  7124. if (iy % 2 == 1 ? ix == 0 : ix == x_points_num - 1) {
  7125. for (int i = 0; i < x_points_num; i++) {
  7126. SERIAL_PROTOCOLPGM(" ");
  7127. SERIAL_PROTOCOL_F(row[i], 5);
  7128. }
  7129. SERIAL_PROTOCOLPGM("\n");
  7130. }
  7131. custom_message_state--;
  7132. mesh_point++;
  7133. lcd_update(1);
  7134. }
  7135. card.closefile();
  7136. clean_up_after_endstop_move(l_feedmultiply);
  7137. }
  7138. #endif
  7139. void temp_compensation_start() {
  7140. custom_message_type = CUSTOM_MSG_TYPE_TEMPRE;
  7141. custom_message_state = PINDA_HEAT_T + 1;
  7142. lcd_update(2);
  7143. if (degHotend(active_extruder) > EXTRUDE_MINTEMP) {
  7144. current_position[E_AXIS] -= default_retraction;
  7145. }
  7146. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400, active_extruder);
  7147. current_position[X_AXIS] = PINDA_PREHEAT_X;
  7148. current_position[Y_AXIS] = PINDA_PREHEAT_Y;
  7149. current_position[Z_AXIS] = PINDA_PREHEAT_Z;
  7150. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  7151. st_synchronize();
  7152. while (fabs(degBed() - target_temperature_bed) > 1) delay_keep_alive(1000);
  7153. for (int i = 0; i < PINDA_HEAT_T; i++) {
  7154. delay_keep_alive(1000);
  7155. custom_message_state = PINDA_HEAT_T - i;
  7156. if (custom_message_state == 99 || custom_message_state == 9) lcd_update(2); //force whole display redraw if number of digits changed
  7157. else lcd_update(1);
  7158. }
  7159. custom_message_type = CUSTOM_MSG_TYPE_STATUS;
  7160. custom_message_state = 0;
  7161. }
  7162. void temp_compensation_apply() {
  7163. int i_add;
  7164. int z_shift = 0;
  7165. float z_shift_mm;
  7166. if (calibration_status() == CALIBRATION_STATUS_CALIBRATED) {
  7167. if (target_temperature_bed % 10 == 0 && target_temperature_bed >= 60 && target_temperature_bed <= 100) {
  7168. i_add = (target_temperature_bed - 60) / 10;
  7169. EEPROM_read_B(EEPROM_PROBE_TEMP_SHIFT + i_add * 2, &z_shift);
  7170. z_shift_mm = z_shift / cs.axis_steps_per_unit[Z_AXIS];
  7171. }else {
  7172. //interpolation
  7173. z_shift_mm = temp_comp_interpolation(target_temperature_bed) / cs.axis_steps_per_unit[Z_AXIS];
  7174. }
  7175. printf_P(_N("\nZ shift applied:%.3f\n"), z_shift_mm);
  7176. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS] - z_shift_mm, current_position[E_AXIS], homing_feedrate[Z_AXIS] / 40, active_extruder);
  7177. st_synchronize();
  7178. plan_set_z_position(current_position[Z_AXIS]);
  7179. }
  7180. else {
  7181. //we have no temp compensation data
  7182. }
  7183. }
  7184. float temp_comp_interpolation(float inp_temperature) {
  7185. //cubic spline interpolation
  7186. int n, i, j;
  7187. float h[10], a, b, c, d, sum, s[10] = { 0 }, x[10], F[10], f[10], m[10][10] = { 0 }, temp;
  7188. int shift[10];
  7189. int temp_C[10];
  7190. n = 6; //number of measured points
  7191. shift[0] = 0;
  7192. for (i = 0; i < n; i++) {
  7193. if (i>0) EEPROM_read_B(EEPROM_PROBE_TEMP_SHIFT + (i-1) * 2, &shift[i]); //read shift in steps from EEPROM
  7194. temp_C[i] = 50 + i * 10; //temperature in C
  7195. #ifdef PINDA_THERMISTOR
  7196. temp_C[i] = 35 + i * 5; //temperature in C
  7197. #else
  7198. temp_C[i] = 50 + i * 10; //temperature in C
  7199. #endif
  7200. x[i] = (float)temp_C[i];
  7201. f[i] = (float)shift[i];
  7202. }
  7203. if (inp_temperature < x[0]) return 0;
  7204. for (i = n - 1; i>0; i--) {
  7205. F[i] = (f[i] - f[i - 1]) / (x[i] - x[i - 1]);
  7206. h[i - 1] = x[i] - x[i - 1];
  7207. }
  7208. //*********** formation of h, s , f matrix **************
  7209. for (i = 1; i<n - 1; i++) {
  7210. m[i][i] = 2 * (h[i - 1] + h[i]);
  7211. if (i != 1) {
  7212. m[i][i - 1] = h[i - 1];
  7213. m[i - 1][i] = h[i - 1];
  7214. }
  7215. m[i][n - 1] = 6 * (F[i + 1] - F[i]);
  7216. }
  7217. //*********** forward elimination **************
  7218. for (i = 1; i<n - 2; i++) {
  7219. temp = (m[i + 1][i] / m[i][i]);
  7220. for (j = 1; j <= n - 1; j++)
  7221. m[i + 1][j] -= temp*m[i][j];
  7222. }
  7223. //*********** backward substitution *********
  7224. for (i = n - 2; i>0; i--) {
  7225. sum = 0;
  7226. for (j = i; j <= n - 2; j++)
  7227. sum += m[i][j] * s[j];
  7228. s[i] = (m[i][n - 1] - sum) / m[i][i];
  7229. }
  7230. for (i = 0; i<n - 1; i++)
  7231. if ((x[i] <= inp_temperature && inp_temperature <= x[i + 1]) || (i == n-2 && inp_temperature > x[i + 1])) {
  7232. a = (s[i + 1] - s[i]) / (6 * h[i]);
  7233. b = s[i] / 2;
  7234. c = (f[i + 1] - f[i]) / h[i] - (2 * h[i] * s[i] + s[i + 1] * h[i]) / 6;
  7235. d = f[i];
  7236. sum = a*pow((inp_temperature - x[i]), 3) + b*pow((inp_temperature - x[i]), 2) + c*(inp_temperature - x[i]) + d;
  7237. }
  7238. return sum;
  7239. }
  7240. #ifdef PINDA_THERMISTOR
  7241. float temp_compensation_pinda_thermistor_offset(float temperature_pinda)
  7242. {
  7243. if (!temp_cal_active) return 0;
  7244. if (!calibration_status_pinda()) return 0;
  7245. return temp_comp_interpolation(temperature_pinda) / cs.axis_steps_per_unit[Z_AXIS];
  7246. }
  7247. #endif //PINDA_THERMISTOR
  7248. void long_pause() //long pause print
  7249. {
  7250. st_synchronize();
  7251. start_pause_print = millis();
  7252. //retract
  7253. current_position[E_AXIS] -= default_retraction;
  7254. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400, active_extruder);
  7255. //lift z
  7256. current_position[Z_AXIS] += Z_PAUSE_LIFT;
  7257. if (current_position[Z_AXIS] > Z_MAX_POS) current_position[Z_AXIS] = Z_MAX_POS;
  7258. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 15, active_extruder);
  7259. //Move XY to side
  7260. current_position[X_AXIS] = X_PAUSE_POS;
  7261. current_position[Y_AXIS] = Y_PAUSE_POS;
  7262. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 50, active_extruder);
  7263. // Turn off the print fan
  7264. fanSpeed = 0;
  7265. st_synchronize();
  7266. }
  7267. void serialecho_temperatures() {
  7268. float tt = degHotend(active_extruder);
  7269. SERIAL_PROTOCOLPGM("T:");
  7270. SERIAL_PROTOCOL(tt);
  7271. SERIAL_PROTOCOLPGM(" E:");
  7272. SERIAL_PROTOCOL((int)active_extruder);
  7273. SERIAL_PROTOCOLPGM(" B:");
  7274. SERIAL_PROTOCOL_F(degBed(), 1);
  7275. SERIAL_PROTOCOLLN("");
  7276. }
  7277. extern uint32_t sdpos_atomic;
  7278. #ifdef UVLO_SUPPORT
  7279. void uvlo_()
  7280. {
  7281. unsigned long time_start = millis();
  7282. bool sd_print = card.sdprinting;
  7283. // Conserve power as soon as possible.
  7284. disable_x();
  7285. disable_y();
  7286. #ifdef TMC2130
  7287. tmc2130_set_current_h(Z_AXIS, 20);
  7288. tmc2130_set_current_r(Z_AXIS, 20);
  7289. tmc2130_set_current_h(E_AXIS, 20);
  7290. tmc2130_set_current_r(E_AXIS, 20);
  7291. #endif //TMC2130
  7292. // Indicate that the interrupt has been triggered.
  7293. // SERIAL_ECHOLNPGM("UVLO");
  7294. // Read out the current Z motor microstep counter. This will be later used
  7295. // for reaching the zero full step before powering off.
  7296. uint16_t z_microsteps = 0;
  7297. #ifdef TMC2130
  7298. z_microsteps = tmc2130_rd_MSCNT(Z_TMC2130_CS);
  7299. #endif //TMC2130
  7300. // Calculate the file position, from which to resume this print.
  7301. long sd_position = sdpos_atomic; //atomic sd position of last command added in queue
  7302. {
  7303. uint16_t sdlen_planner = planner_calc_sd_length(); //length of sd commands in planner
  7304. sd_position -= sdlen_planner;
  7305. uint16_t sdlen_cmdqueue = cmdqueue_calc_sd_length(); //length of sd commands in cmdqueue
  7306. sd_position -= sdlen_cmdqueue;
  7307. if (sd_position < 0) sd_position = 0;
  7308. }
  7309. // Backup the feedrate in mm/min.
  7310. int feedrate_bckp = blocks_queued() ? (block_buffer[block_buffer_tail].nominal_speed * 60.f) : feedrate;
  7311. // After this call, the planner queue is emptied and the current_position is set to a current logical coordinate.
  7312. // The logical coordinate will likely differ from the machine coordinate if the skew calibration and mesh bed leveling
  7313. // are in action.
  7314. planner_abort_hard();
  7315. // Store the current extruder position.
  7316. eeprom_update_float((float*)(EEPROM_UVLO_CURRENT_POSITION_E), st_get_position_mm(E_AXIS));
  7317. eeprom_update_byte((uint8_t*)EEPROM_UVLO_E_ABS, axis_relative_modes[3]?0:1);
  7318. // Clean the input command queue.
  7319. cmdqueue_reset();
  7320. card.sdprinting = false;
  7321. // card.closefile();
  7322. // Enable stepper driver interrupt to move Z axis.
  7323. // This should be fine as the planner and command queues are empty and the SD card printing is disabled.
  7324. //FIXME one may want to disable serial lines at this point of time to avoid interfering with the command queue,
  7325. // though it should not happen that the command queue is touched as the plan_buffer_line always succeed without blocking.
  7326. sei();
  7327. plan_buffer_line(
  7328. current_position[X_AXIS],
  7329. current_position[Y_AXIS],
  7330. current_position[Z_AXIS],
  7331. current_position[E_AXIS] - default_retraction,
  7332. 95, active_extruder);
  7333. st_synchronize();
  7334. disable_e0();
  7335. plan_buffer_line(
  7336. current_position[X_AXIS],
  7337. current_position[Y_AXIS],
  7338. current_position[Z_AXIS] + UVLO_Z_AXIS_SHIFT + float((1024 - z_microsteps + 7) >> 4) / cs.axis_steps_per_unit[Z_AXIS],
  7339. current_position[E_AXIS] - default_retraction,
  7340. 40, active_extruder);
  7341. st_synchronize();
  7342. disable_e0();
  7343. plan_buffer_line(
  7344. current_position[X_AXIS],
  7345. current_position[Y_AXIS],
  7346. current_position[Z_AXIS] + UVLO_Z_AXIS_SHIFT + float((1024 - z_microsteps + 7) >> 4) / cs.axis_steps_per_unit[Z_AXIS],
  7347. current_position[E_AXIS] - default_retraction,
  7348. 40, active_extruder);
  7349. st_synchronize();
  7350. disable_e0();
  7351. disable_z();
  7352. // Move Z up to the next 0th full step.
  7353. // Write the file position.
  7354. eeprom_update_dword((uint32_t*)(EEPROM_FILE_POSITION), sd_position);
  7355. // Store the mesh bed leveling offsets. This is 2*9=18 bytes, which takes 18*3.4us=52us in worst case.
  7356. for (int8_t mesh_point = 0; mesh_point < 9; ++ mesh_point) {
  7357. uint8_t ix = mesh_point % MESH_MEAS_NUM_X_POINTS; // from 0 to MESH_NUM_X_POINTS - 1
  7358. uint8_t iy = mesh_point / MESH_MEAS_NUM_X_POINTS;
  7359. // Scale the z value to 1u resolution.
  7360. int16_t v = mbl.active ? int16_t(floor(mbl.z_values[iy*3][ix*3] * 1000.f + 0.5f)) : 0;
  7361. eeprom_update_word((uint16_t*)(EEPROM_UVLO_MESH_BED_LEVELING+2*mesh_point), *reinterpret_cast<uint16_t*>(&v));
  7362. }
  7363. // Read out the current Z motor microstep counter. This will be later used
  7364. // for reaching the zero full step before powering off.
  7365. eeprom_update_word((uint16_t*)(EEPROM_UVLO_Z_MICROSTEPS), z_microsteps);
  7366. // Store the current position.
  7367. eeprom_update_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 0), current_position[X_AXIS]);
  7368. eeprom_update_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 4), current_position[Y_AXIS]);
  7369. eeprom_update_float((float*)(EEPROM_UVLO_CURRENT_POSITION_Z), current_position[Z_AXIS]);
  7370. // Store the current feed rate, temperatures, fan speed and extruder multipliers (flow rates)
  7371. EEPROM_save_B(EEPROM_UVLO_FEEDRATE, &feedrate_bckp);
  7372. eeprom_update_byte((uint8_t*)EEPROM_UVLO_TARGET_HOTEND, target_temperature[active_extruder]);
  7373. eeprom_update_byte((uint8_t*)EEPROM_UVLO_TARGET_BED, target_temperature_bed);
  7374. eeprom_update_byte((uint8_t*)EEPROM_UVLO_FAN_SPEED, fanSpeed);
  7375. eeprom_update_float((float*)(EEPROM_EXTRUDER_MULTIPLIER_0), extruder_multiplier[0]);
  7376. #if EXTRUDERS > 1
  7377. eeprom_update_float((float*)(EEPROM_EXTRUDER_MULTIPLIER_1), extruder_multiplier[1]);
  7378. #if EXTRUDERS > 2
  7379. eeprom_update_float((float*)(EEPROM_EXTRUDER_MULTIPLIER_2), extruder_multiplier[2]);
  7380. #endif
  7381. #endif
  7382. eeprom_update_word((uint16_t*)(EEPROM_EXTRUDEMULTIPLY), (uint16_t)extrudemultiply);
  7383. // Finaly store the "power outage" flag.
  7384. if(sd_print) eeprom_update_byte((uint8_t*)EEPROM_UVLO, 1);
  7385. st_synchronize();
  7386. printf_P(_N("stps%d\n"), tmc2130_rd_MSCNT(Z_AXIS));
  7387. disable_z();
  7388. // Increment power failure counter
  7389. eeprom_update_byte((uint8_t*)EEPROM_POWER_COUNT, eeprom_read_byte((uint8_t*)EEPROM_POWER_COUNT) + 1);
  7390. eeprom_update_word((uint16_t*)EEPROM_POWER_COUNT_TOT, eeprom_read_word((uint16_t*)EEPROM_POWER_COUNT_TOT) + 1);
  7391. printf_P(_N("UVLO - end %d\n"), millis() - time_start);
  7392. #if 0
  7393. // Move the print head to the side of the print until all the power stored in the power supply capacitors is depleted.
  7394. current_position[X_AXIS] = (current_position[X_AXIS] < 0.5f * (X_MIN_POS + X_MAX_POS)) ? X_MIN_POS : X_MAX_POS;
  7395. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 500, active_extruder);
  7396. st_synchronize();
  7397. #endif
  7398. wdt_enable(WDTO_500MS);
  7399. WRITE(BEEPER,HIGH);
  7400. while(1)
  7401. ;
  7402. }
  7403. void uvlo_tiny()
  7404. {
  7405. uint16_t z_microsteps=0;
  7406. // Conserve power as soon as possible.
  7407. disable_x();
  7408. disable_y();
  7409. disable_e0();
  7410. #ifdef TMC2130
  7411. tmc2130_set_current_h(Z_AXIS, 20);
  7412. tmc2130_set_current_r(Z_AXIS, 20);
  7413. #endif //TMC2130
  7414. // Read out the current Z motor microstep counter
  7415. #ifdef TMC2130
  7416. z_microsteps=tmc2130_rd_MSCNT(Z_TMC2130_CS);
  7417. #endif //TMC2130
  7418. planner_abort_hard();
  7419. sei();
  7420. plan_buffer_line(
  7421. current_position[X_AXIS],
  7422. current_position[Y_AXIS],
  7423. // current_position[Z_AXIS]+float((1024-z_microsteps+7)>>4)/axis_steps_per_unit[Z_AXIS],
  7424. current_position[Z_AXIS]+UVLO_Z_AXIS_SHIFT+float((1024-z_microsteps+7)>>4)/cs.axis_steps_per_unit[Z_AXIS],
  7425. current_position[E_AXIS],
  7426. 40, active_extruder);
  7427. st_synchronize();
  7428. disable_z();
  7429. // Finaly store the "power outage" flag.
  7430. //if(sd_print)
  7431. eeprom_update_byte((uint8_t*)EEPROM_UVLO,2);
  7432. eeprom_update_word((uint16_t*)(EEPROM_UVLO_TINY_Z_MICROSTEPS),z_microsteps);
  7433. eeprom_update_float((float*)(EEPROM_UVLO_TINY_CURRENT_POSITION_Z), current_position[Z_AXIS]);
  7434. // Increment power failure counter
  7435. eeprom_update_byte((uint8_t*)EEPROM_POWER_COUNT, eeprom_read_byte((uint8_t*)EEPROM_POWER_COUNT) + 1);
  7436. eeprom_update_word((uint16_t*)EEPROM_POWER_COUNT_TOT, eeprom_read_word((uint16_t*)EEPROM_POWER_COUNT_TOT) + 1);
  7437. wdt_enable(WDTO_500MS);
  7438. WRITE(BEEPER,HIGH);
  7439. while(1)
  7440. ;
  7441. }
  7442. #endif //UVLO_SUPPORT
  7443. #if (defined(FANCHECK) && defined(TACH_1) && (TACH_1 >-1))
  7444. void setup_fan_interrupt() {
  7445. //INT7
  7446. DDRE &= ~(1 << 7); //input pin
  7447. PORTE &= ~(1 << 7); //no internal pull-up
  7448. //start with sensing rising edge
  7449. EICRB &= ~(1 << 6);
  7450. EICRB |= (1 << 7);
  7451. //enable INT7 interrupt
  7452. EIMSK |= (1 << 7);
  7453. }
  7454. // The fan interrupt is triggered at maximum 325Hz (may be a bit more due to component tollerances),
  7455. // and it takes 4.24 us to process (the interrupt invocation overhead not taken into account).
  7456. ISR(INT7_vect) {
  7457. //measuring speed now works for fanSpeed > 18 (approximately), which is sufficient because MIN_PRINT_FAN_SPEED is higher
  7458. if (fanSpeed < MIN_PRINT_FAN_SPEED) return;
  7459. if ((1 << 6) & EICRB) { //interrupt was triggered by rising edge
  7460. t_fan_rising_edge = millis_nc();
  7461. }
  7462. else { //interrupt was triggered by falling edge
  7463. if ((millis_nc() - t_fan_rising_edge) >= FAN_PULSE_WIDTH_LIMIT) {//this pulse was from sensor and not from pwm
  7464. fan_edge_counter[1] += 2; //we are currently counting all edges so lets count two edges for one pulse
  7465. }
  7466. }
  7467. EICRB ^= (1 << 6); //change edge
  7468. }
  7469. #endif
  7470. #ifdef UVLO_SUPPORT
  7471. void setup_uvlo_interrupt() {
  7472. DDRE &= ~(1 << 4); //input pin
  7473. PORTE &= ~(1 << 4); //no internal pull-up
  7474. //sensing falling edge
  7475. EICRB |= (1 << 0);
  7476. EICRB &= ~(1 << 1);
  7477. //enable INT4 interrupt
  7478. EIMSK |= (1 << 4);
  7479. }
  7480. ISR(INT4_vect) {
  7481. EIMSK &= ~(1 << 4); //disable INT4 interrupt to make sure that this code will be executed just once
  7482. SERIAL_ECHOLNPGM("INT4");
  7483. if(IS_SD_PRINTING && (!(eeprom_read_byte((uint8_t*)EEPROM_UVLO))) ) uvlo_();
  7484. if(eeprom_read_byte((uint8_t*)EEPROM_UVLO)) uvlo_tiny();
  7485. }
  7486. void recover_print(uint8_t automatic) {
  7487. char cmd[30];
  7488. lcd_update_enable(true);
  7489. lcd_update(2);
  7490. lcd_setstatuspgm(_i("Recovering print "));////MSG_RECOVERING_PRINT c=20 r=1
  7491. bool bTiny=(eeprom_read_byte((uint8_t*)EEPROM_UVLO)==2);
  7492. recover_machine_state_after_power_panic(bTiny); //recover position, temperatures and extrude_multipliers
  7493. // Lift the print head, so one may remove the excess priming material.
  7494. if(!bTiny&&(current_position[Z_AXIS]<25))
  7495. enquecommand_P(PSTR("G1 Z25 F800"));
  7496. // Home X and Y axes. Homing just X and Y shall not touch the babystep and the world2machine transformation status.
  7497. enquecommand_P(PSTR("G28 X Y"));
  7498. // Set the target bed and nozzle temperatures and wait.
  7499. sprintf_P(cmd, PSTR("M109 S%d"), target_temperature[active_extruder]);
  7500. enquecommand(cmd);
  7501. sprintf_P(cmd, PSTR("M190 S%d"), target_temperature_bed);
  7502. enquecommand(cmd);
  7503. enquecommand_P(PSTR("M83")); //E axis relative mode
  7504. //enquecommand_P(PSTR("G1 E5 F120")); //Extrude some filament to stabilize pessure
  7505. // If not automatically recoreverd (long power loss), extrude extra filament to stabilize
  7506. if(automatic == 0){
  7507. enquecommand_P(PSTR("G1 E5 F120")); //Extrude some filament to stabilize pessure
  7508. }
  7509. enquecommand_P(PSTR("G1 E" STRINGIFY(-default_retraction)" F480"));
  7510. printf_P(_N("After waiting for temp:\nCurrent pos X_AXIS:%.3f\nCurrent pos Y_AXIS:%.3f\n"), current_position[X_AXIS], current_position[Y_AXIS]);
  7511. // Restart the print.
  7512. restore_print_from_eeprom();
  7513. printf_P(_N("Current pos Z_AXIS:%.3f\nCurrent pos E_AXIS:%.3f\n"), current_position[Z_AXIS], current_position[E_AXIS]);
  7514. }
  7515. void recover_machine_state_after_power_panic(bool bTiny)
  7516. {
  7517. char cmd[30];
  7518. // 1) Recover the logical cordinates at the time of the power panic.
  7519. // The logical XY coordinates are needed to recover the machine Z coordinate corrected by the mesh bed leveling.
  7520. current_position[X_AXIS] = eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 0));
  7521. current_position[Y_AXIS] = eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 4));
  7522. // Recover the logical coordinate of the Z axis at the time of the power panic.
  7523. // The current position after power panic is moved to the next closest 0th full step.
  7524. if(bTiny)
  7525. current_position[Z_AXIS] = eeprom_read_float((float*)(EEPROM_UVLO_TINY_CURRENT_POSITION_Z)) +
  7526. UVLO_Z_AXIS_SHIFT + float((1024 - eeprom_read_word((uint16_t*)(EEPROM_UVLO_TINY_Z_MICROSTEPS)) + 7) >> 4) / cs.axis_steps_per_unit[Z_AXIS];
  7527. else
  7528. current_position[Z_AXIS] = eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION_Z)) +
  7529. UVLO_Z_AXIS_SHIFT + float((1024 - eeprom_read_word((uint16_t*)(EEPROM_UVLO_Z_MICROSTEPS)) + 7) >> 4) / cs.axis_steps_per_unit[Z_AXIS];
  7530. if (eeprom_read_byte((uint8_t*)EEPROM_UVLO_E_ABS)) {
  7531. current_position[E_AXIS] = eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION_E));
  7532. sprintf_P(cmd, PSTR("G92 E"));
  7533. dtostrf(current_position[E_AXIS], 6, 3, cmd + strlen(cmd));
  7534. enquecommand(cmd);
  7535. }
  7536. memcpy(destination, current_position, sizeof(destination));
  7537. SERIAL_ECHOPGM("recover_machine_state_after_power_panic, initial ");
  7538. print_world_coordinates();
  7539. // 2) Initialize the logical to physical coordinate system transformation.
  7540. world2machine_initialize();
  7541. // 3) Restore the mesh bed leveling offsets. This is 2*9=18 bytes, which takes 18*3.4us=52us in worst case.
  7542. mbl.active = false;
  7543. for (int8_t mesh_point = 0; mesh_point < 9; ++ mesh_point) {
  7544. uint8_t ix = mesh_point % MESH_MEAS_NUM_X_POINTS; // from 0 to MESH_NUM_X_POINTS - 1
  7545. uint8_t iy = mesh_point / MESH_MEAS_NUM_X_POINTS;
  7546. // Scale the z value to 10u resolution.
  7547. int16_t v;
  7548. eeprom_read_block(&v, (void*)(EEPROM_UVLO_MESH_BED_LEVELING+2*mesh_point), 2);
  7549. if (v != 0)
  7550. mbl.active = true;
  7551. mbl.z_values[iy][ix] = float(v) * 0.001f;
  7552. }
  7553. if (mbl.active)
  7554. mbl.upsample_3x3();
  7555. // SERIAL_ECHOPGM("recover_machine_state_after_power_panic, initial ");
  7556. // print_mesh_bed_leveling_table();
  7557. // 4) Load the baby stepping value, which is expected to be active at the time of power panic.
  7558. // The baby stepping value is used to reset the physical Z axis when rehoming the Z axis.
  7559. babystep_load();
  7560. // 5) Set the physical positions from the logical positions using the world2machine transformation and the active bed leveling.
  7561. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  7562. // 6) Power up the motors, mark their positions as known.
  7563. //FIXME Verfiy, whether the X and Y axes should be powered up here, as they will later be re-homed anyway.
  7564. axis_known_position[X_AXIS] = true; enable_x();
  7565. axis_known_position[Y_AXIS] = true; enable_y();
  7566. axis_known_position[Z_AXIS] = true; enable_z();
  7567. SERIAL_ECHOPGM("recover_machine_state_after_power_panic, initial ");
  7568. print_physical_coordinates();
  7569. // 7) Recover the target temperatures.
  7570. target_temperature[active_extruder] = eeprom_read_byte((uint8_t*)EEPROM_UVLO_TARGET_HOTEND);
  7571. target_temperature_bed = eeprom_read_byte((uint8_t*)EEPROM_UVLO_TARGET_BED);
  7572. // 8) Recover extruder multipilers
  7573. extruder_multiplier[0] = eeprom_read_float((float*)(EEPROM_EXTRUDER_MULTIPLIER_0));
  7574. #if EXTRUDERS > 1
  7575. extruder_multiplier[1] = eeprom_read_float((float*)(EEPROM_EXTRUDER_MULTIPLIER_1));
  7576. #if EXTRUDERS > 2
  7577. extruder_multiplier[2] = eeprom_read_float((float*)(EEPROM_EXTRUDER_MULTIPLIER_2));
  7578. #endif
  7579. #endif
  7580. extrudemultiply = (int)eeprom_read_word((uint16_t*)(EEPROM_EXTRUDEMULTIPLY));
  7581. }
  7582. void restore_print_from_eeprom() {
  7583. int feedrate_rec;
  7584. uint8_t fan_speed_rec;
  7585. char cmd[30];
  7586. char filename[13];
  7587. uint8_t depth = 0;
  7588. char dir_name[9];
  7589. fan_speed_rec = eeprom_read_byte((uint8_t*)EEPROM_UVLO_FAN_SPEED);
  7590. EEPROM_read_B(EEPROM_UVLO_FEEDRATE, &feedrate_rec);
  7591. SERIAL_ECHOPGM("Feedrate:");
  7592. MYSERIAL.println(feedrate_rec);
  7593. depth = eeprom_read_byte((uint8_t*)EEPROM_DIR_DEPTH);
  7594. MYSERIAL.println(int(depth));
  7595. for (int i = 0; i < depth; i++) {
  7596. for (int j = 0; j < 8; j++) {
  7597. dir_name[j] = eeprom_read_byte((uint8_t*)EEPROM_DIRS + j + 8 * i);
  7598. }
  7599. dir_name[8] = '\0';
  7600. MYSERIAL.println(dir_name);
  7601. strcpy(dir_names[i], dir_name);
  7602. card.chdir(dir_name);
  7603. }
  7604. for (int i = 0; i < 8; i++) {
  7605. filename[i] = eeprom_read_byte((uint8_t*)EEPROM_FILENAME + i);
  7606. }
  7607. filename[8] = '\0';
  7608. MYSERIAL.print(filename);
  7609. strcat_P(filename, PSTR(".gco"));
  7610. sprintf_P(cmd, PSTR("M23 %s"), filename);
  7611. enquecommand(cmd);
  7612. uint32_t position = eeprom_read_dword((uint32_t*)(EEPROM_FILE_POSITION));
  7613. SERIAL_ECHOPGM("Position read from eeprom:");
  7614. MYSERIAL.println(position);
  7615. // E axis relative mode.
  7616. enquecommand_P(PSTR("M83"));
  7617. // Move to the XY print position in logical coordinates, where the print has been killed.
  7618. strcpy_P(cmd, PSTR("G1 X")); strcat(cmd, ftostr32(eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 0))));
  7619. strcat_P(cmd, PSTR(" Y")); strcat(cmd, ftostr32(eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 4))));
  7620. strcat_P(cmd, PSTR(" F2000"));
  7621. enquecommand(cmd);
  7622. // Move the Z axis down to the print, in logical coordinates.
  7623. strcpy_P(cmd, PSTR("G1 Z")); strcat(cmd, ftostr32(eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION_Z))));
  7624. enquecommand(cmd);
  7625. // Unretract.
  7626. enquecommand_P(PSTR("G1 E" STRINGIFY(2*default_retraction)" F480"));
  7627. // Set the feedrate saved at the power panic.
  7628. sprintf_P(cmd, PSTR("G1 F%d"), feedrate_rec);
  7629. enquecommand(cmd);
  7630. if (eeprom_read_byte((uint8_t*)EEPROM_UVLO_E_ABS))
  7631. {
  7632. enquecommand_P(PSTR("M82")); //E axis abslute mode
  7633. }
  7634. // Set the fan speed saved at the power panic.
  7635. strcpy_P(cmd, PSTR("M106 S"));
  7636. strcat(cmd, itostr3(int(fan_speed_rec)));
  7637. enquecommand(cmd);
  7638. // Set a position in the file.
  7639. sprintf_P(cmd, PSTR("M26 S%lu"), position);
  7640. enquecommand(cmd);
  7641. enquecommand_P(PSTR("G4 S0"));
  7642. enquecommand_P(PSTR("PRUSA uvlo"));
  7643. }
  7644. #endif //UVLO_SUPPORT
  7645. //! @brief Immediately stop print moves
  7646. //!
  7647. //! Immediately stop print moves, save current extruder temperature and position to RAM.
  7648. //! If printing from sd card, position in file is saved.
  7649. //! If printing from USB, line number is saved.
  7650. //!
  7651. //! @param z_move
  7652. //! @param e_move
  7653. void stop_and_save_print_to_ram(float z_move, float e_move)
  7654. {
  7655. if (saved_printing) return;
  7656. #if 0
  7657. unsigned char nplanner_blocks;
  7658. #endif
  7659. unsigned char nlines;
  7660. uint16_t sdlen_planner;
  7661. uint16_t sdlen_cmdqueue;
  7662. cli();
  7663. if (card.sdprinting) {
  7664. #if 0
  7665. nplanner_blocks = number_of_blocks();
  7666. #endif
  7667. saved_sdpos = sdpos_atomic; //atomic sd position of last command added in queue
  7668. sdlen_planner = planner_calc_sd_length(); //length of sd commands in planner
  7669. saved_sdpos -= sdlen_planner;
  7670. sdlen_cmdqueue = cmdqueue_calc_sd_length(); //length of sd commands in cmdqueue
  7671. saved_sdpos -= sdlen_cmdqueue;
  7672. saved_printing_type = PRINTING_TYPE_SD;
  7673. }
  7674. else if (is_usb_printing) { //reuse saved_sdpos for storing line number
  7675. saved_sdpos = gcode_LastN; //start with line number of command added recently to cmd queue
  7676. //reuse planner_calc_sd_length function for getting number of lines of commands in planner:
  7677. nlines = planner_calc_sd_length(); //number of lines of commands in planner
  7678. saved_sdpos -= nlines;
  7679. saved_sdpos -= buflen; //number of blocks in cmd buffer
  7680. saved_printing_type = PRINTING_TYPE_USB;
  7681. }
  7682. else {
  7683. //not sd printing nor usb printing
  7684. }
  7685. #if 0
  7686. SERIAL_ECHOPGM("SDPOS_ATOMIC="); MYSERIAL.println(sdpos_atomic, DEC);
  7687. SERIAL_ECHOPGM("SDPOS="); MYSERIAL.println(card.get_sdpos(), DEC);
  7688. SERIAL_ECHOPGM("SDLEN_PLAN="); MYSERIAL.println(sdlen_planner, DEC);
  7689. SERIAL_ECHOPGM("SDLEN_CMDQ="); MYSERIAL.println(sdlen_cmdqueue, DEC);
  7690. SERIAL_ECHOPGM("PLANNERBLOCKS="); MYSERIAL.println(int(nplanner_blocks), DEC);
  7691. SERIAL_ECHOPGM("SDSAVED="); MYSERIAL.println(saved_sdpos, DEC);
  7692. //SERIAL_ECHOPGM("SDFILELEN="); MYSERIAL.println(card.fileSize(), DEC);
  7693. {
  7694. card.setIndex(saved_sdpos);
  7695. SERIAL_ECHOLNPGM("Content of planner buffer: ");
  7696. for (unsigned int idx = 0; idx < sdlen_planner; ++ idx)
  7697. MYSERIAL.print(char(card.get()));
  7698. SERIAL_ECHOLNPGM("Content of command buffer: ");
  7699. for (unsigned int idx = 0; idx < sdlen_cmdqueue; ++ idx)
  7700. MYSERIAL.print(char(card.get()));
  7701. SERIAL_ECHOLNPGM("End of command buffer");
  7702. }
  7703. {
  7704. // Print the content of the planner buffer, line by line:
  7705. card.setIndex(saved_sdpos);
  7706. int8_t iline = 0;
  7707. for (unsigned char idx = block_buffer_tail; idx != block_buffer_head; idx = (idx + 1) & (BLOCK_BUFFER_SIZE - 1), ++ iline) {
  7708. SERIAL_ECHOPGM("Planner line (from file): ");
  7709. MYSERIAL.print(int(iline), DEC);
  7710. SERIAL_ECHOPGM(", length: ");
  7711. MYSERIAL.print(block_buffer[idx].sdlen, DEC);
  7712. SERIAL_ECHOPGM(", steps: (");
  7713. MYSERIAL.print(block_buffer[idx].steps_x, DEC);
  7714. SERIAL_ECHOPGM(",");
  7715. MYSERIAL.print(block_buffer[idx].steps_y, DEC);
  7716. SERIAL_ECHOPGM(",");
  7717. MYSERIAL.print(block_buffer[idx].steps_z, DEC);
  7718. SERIAL_ECHOPGM(",");
  7719. MYSERIAL.print(block_buffer[idx].steps_e, DEC);
  7720. SERIAL_ECHOPGM("), events: ");
  7721. MYSERIAL.println(block_buffer[idx].step_event_count, DEC);
  7722. for (int len = block_buffer[idx].sdlen; len > 0; -- len)
  7723. MYSERIAL.print(char(card.get()));
  7724. }
  7725. }
  7726. {
  7727. // Print the content of the command buffer, line by line:
  7728. int8_t iline = 0;
  7729. union {
  7730. struct {
  7731. char lo;
  7732. char hi;
  7733. } lohi;
  7734. uint16_t value;
  7735. } sdlen_single;
  7736. int _bufindr = bufindr;
  7737. for (int _buflen = buflen; _buflen > 0; ++ iline) {
  7738. if (cmdbuffer[_bufindr] == CMDBUFFER_CURRENT_TYPE_SDCARD) {
  7739. sdlen_single.lohi.lo = cmdbuffer[_bufindr + 1];
  7740. sdlen_single.lohi.hi = cmdbuffer[_bufindr + 2];
  7741. }
  7742. SERIAL_ECHOPGM("Buffer line (from buffer): ");
  7743. MYSERIAL.print(int(iline), DEC);
  7744. SERIAL_ECHOPGM(", type: ");
  7745. MYSERIAL.print(int(cmdbuffer[_bufindr]), DEC);
  7746. SERIAL_ECHOPGM(", len: ");
  7747. MYSERIAL.println(sdlen_single.value, DEC);
  7748. // Print the content of the buffer line.
  7749. MYSERIAL.println(cmdbuffer + _bufindr + CMDHDRSIZE);
  7750. SERIAL_ECHOPGM("Buffer line (from file): ");
  7751. MYSERIAL.println(int(iline), DEC);
  7752. for (; sdlen_single.value > 0; -- sdlen_single.value)
  7753. MYSERIAL.print(char(card.get()));
  7754. if (-- _buflen == 0)
  7755. break;
  7756. // First skip the current command ID and iterate up to the end of the string.
  7757. for (_bufindr += CMDHDRSIZE; cmdbuffer[_bufindr] != 0; ++ _bufindr) ;
  7758. // Second, skip the end of string null character and iterate until a nonzero command ID is found.
  7759. for (++ _bufindr; _bufindr < sizeof(cmdbuffer) && cmdbuffer[_bufindr] == 0; ++ _bufindr) ;
  7760. // If the end of the buffer was empty,
  7761. if (_bufindr == sizeof(cmdbuffer)) {
  7762. // skip to the start and find the nonzero command.
  7763. for (_bufindr = 0; cmdbuffer[_bufindr] == 0; ++ _bufindr) ;
  7764. }
  7765. }
  7766. }
  7767. #endif
  7768. #if 0
  7769. saved_feedrate2 = feedrate; //save feedrate
  7770. #else
  7771. // Try to deduce the feedrate from the first block of the planner.
  7772. // Speed is in mm/min.
  7773. saved_feedrate2 = blocks_queued() ? (block_buffer[block_buffer_tail].nominal_speed * 60.f) : feedrate;
  7774. #endif
  7775. planner_abort_hard(); //abort printing
  7776. memcpy(saved_pos, current_position, sizeof(saved_pos));
  7777. saved_active_extruder = active_extruder; //save active_extruder
  7778. saved_extruder_temperature = degTargetHotend(active_extruder);
  7779. saved_extruder_under_pressure = extruder_under_pressure; //extruder under pressure flag - currently unused
  7780. saved_extruder_relative_mode = axis_relative_modes[E_AXIS];
  7781. saved_fanSpeed = fanSpeed;
  7782. cmdqueue_reset(); //empty cmdqueue
  7783. card.sdprinting = false;
  7784. // card.closefile();
  7785. saved_printing = true;
  7786. // We may have missed a stepper timer interrupt. Be safe than sorry, reset the stepper timer before re-enabling interrupts.
  7787. st_reset_timer();
  7788. sei();
  7789. if ((z_move != 0) || (e_move != 0)) { // extruder or z move
  7790. #if 1
  7791. // Rather than calling plan_buffer_line directly, push the move into the command queue,
  7792. char buf[48];
  7793. // First unretract (relative extrusion)
  7794. if(!saved_extruder_relative_mode){
  7795. strcpy_P(buf, PSTR("M83"));
  7796. enquecommand(buf, false);
  7797. }
  7798. //retract 45mm/s
  7799. strcpy_P(buf, PSTR("G1 E"));
  7800. dtostrf(e_move, 6, 3, buf + strlen(buf));
  7801. strcat_P(buf, PSTR(" F"));
  7802. dtostrf(2700, 8, 3, buf + strlen(buf));
  7803. enquecommand(buf, false);
  7804. // Then lift Z axis
  7805. strcpy_P(buf, PSTR("G1 Z"));
  7806. dtostrf(saved_pos[Z_AXIS] + z_move, 8, 3, buf + strlen(buf));
  7807. strcat_P(buf, PSTR(" F"));
  7808. dtostrf(homing_feedrate[Z_AXIS], 8, 3, buf + strlen(buf));
  7809. // At this point the command queue is empty.
  7810. enquecommand(buf, false);
  7811. // If this call is invoked from the main Arduino loop() function, let the caller know that the command
  7812. // in the command queue is not the original command, but a new one, so it should not be removed from the queue.
  7813. repeatcommand_front();
  7814. #else
  7815. plan_buffer_line(saved_pos[X_AXIS], saved_pos[Y_AXIS], saved_pos[Z_AXIS] + z_move, saved_pos[E_AXIS] + e_move, homing_feedrate[Z_AXIS], active_extruder);
  7816. st_synchronize(); //wait moving
  7817. memcpy(current_position, saved_pos, sizeof(saved_pos));
  7818. memcpy(destination, current_position, sizeof(destination));
  7819. #endif
  7820. }
  7821. }
  7822. //! @brief Restore print from ram
  7823. //!
  7824. //! Restore print saved by stop_and_save_print_to_ram(). Is blocking,
  7825. //! waits for extruder temperature restore, then restores position and continues
  7826. //! print moves.
  7827. //! Internaly lcd_update() is called by wait_for_heater().
  7828. //!
  7829. //! @param e_move
  7830. void restore_print_from_ram_and_continue(float e_move)
  7831. {
  7832. if (!saved_printing) return;
  7833. // for (int axis = X_AXIS; axis <= E_AXIS; axis++)
  7834. // current_position[axis] = st_get_position_mm(axis);
  7835. active_extruder = saved_active_extruder; //restore active_extruder
  7836. setTargetHotendSafe(saved_extruder_temperature,saved_active_extruder);
  7837. heating_status = 1;
  7838. wait_for_heater(millis(),saved_active_extruder);
  7839. heating_status = 2;
  7840. feedrate = saved_feedrate2; //restore feedrate
  7841. axis_relative_modes[E_AXIS] = saved_extruder_relative_mode;
  7842. fanSpeed = saved_fanSpeed;
  7843. float e = saved_pos[E_AXIS] - e_move;
  7844. plan_set_e_position(e);
  7845. //first move print head in XY to the saved position:
  7846. plan_buffer_line(saved_pos[X_AXIS], saved_pos[Y_AXIS], current_position[Z_AXIS], saved_pos[E_AXIS] - e_move, homing_feedrate[Z_AXIS]/13, active_extruder);
  7847. st_synchronize();
  7848. //then move Z
  7849. plan_buffer_line(saved_pos[X_AXIS], saved_pos[Y_AXIS], saved_pos[Z_AXIS], saved_pos[E_AXIS] - e_move, homing_feedrate[Z_AXIS]/13, active_extruder);
  7850. st_synchronize();
  7851. //and finaly unretract (35mm/s)
  7852. plan_buffer_line(saved_pos[X_AXIS], saved_pos[Y_AXIS], saved_pos[Z_AXIS], saved_pos[E_AXIS], 35, active_extruder);
  7853. st_synchronize();
  7854. memcpy(current_position, saved_pos, sizeof(saved_pos));
  7855. memcpy(destination, current_position, sizeof(destination));
  7856. if (saved_printing_type == PRINTING_TYPE_SD) { //was sd printing
  7857. card.setIndex(saved_sdpos);
  7858. sdpos_atomic = saved_sdpos;
  7859. card.sdprinting = true;
  7860. printf_P(PSTR("ok\n")); //dummy response because of octoprint is waiting for this
  7861. }
  7862. else if (saved_printing_type == PRINTING_TYPE_USB) { //was usb printing
  7863. gcode_LastN = saved_sdpos; //saved_sdpos was reused for storing line number when usb printing
  7864. serial_count = 0;
  7865. FlushSerialRequestResend();
  7866. }
  7867. else {
  7868. //not sd printing nor usb printing
  7869. }
  7870. lcd_setstatuspgm(_T(WELCOME_MSG));
  7871. saved_printing = false;
  7872. }
  7873. void print_world_coordinates()
  7874. {
  7875. printf_P(_N("world coordinates: (%.3f, %.3f, %.3f)\n"), current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS]);
  7876. }
  7877. void print_physical_coordinates()
  7878. {
  7879. printf_P(_N("physical coordinates: (%.3f, %.3f, %.3f)\n"), st_get_position_mm(X_AXIS), st_get_position_mm(Y_AXIS), st_get_position_mm(Z_AXIS));
  7880. }
  7881. void print_mesh_bed_leveling_table()
  7882. {
  7883. SERIAL_ECHOPGM("mesh bed leveling: ");
  7884. for (int8_t y = 0; y < MESH_NUM_Y_POINTS; ++ y)
  7885. for (int8_t x = 0; x < MESH_NUM_Y_POINTS; ++ x) {
  7886. MYSERIAL.print(mbl.z_values[y][x], 3);
  7887. SERIAL_ECHOPGM(" ");
  7888. }
  7889. SERIAL_ECHOLNPGM("");
  7890. }
  7891. uint16_t print_time_remaining() {
  7892. uint16_t print_t = PRINT_TIME_REMAINING_INIT;
  7893. #ifdef TMC2130
  7894. if (SilentModeMenu == SILENT_MODE_OFF) print_t = print_time_remaining_normal;
  7895. else print_t = print_time_remaining_silent;
  7896. #else
  7897. print_t = print_time_remaining_normal;
  7898. #endif //TMC2130
  7899. if ((print_t != PRINT_TIME_REMAINING_INIT) && (feedmultiply != 0)) print_t = 100ul * print_t / feedmultiply;
  7900. return print_t;
  7901. }
  7902. uint8_t calc_percent_done()
  7903. {
  7904. //in case that we have information from M73 gcode return percentage counted by slicer, else return percentage counted as byte_printed/filesize
  7905. uint8_t percent_done = 0;
  7906. #ifdef TMC2130
  7907. if (SilentModeMenu == SILENT_MODE_OFF && print_percent_done_normal <= 100) {
  7908. percent_done = print_percent_done_normal;
  7909. }
  7910. else if (print_percent_done_silent <= 100) {
  7911. percent_done = print_percent_done_silent;
  7912. }
  7913. #else
  7914. if (print_percent_done_normal <= 100) {
  7915. percent_done = print_percent_done_normal;
  7916. }
  7917. #endif //TMC2130
  7918. else {
  7919. percent_done = card.percentDone();
  7920. }
  7921. return percent_done;
  7922. }
  7923. static void print_time_remaining_init()
  7924. {
  7925. print_time_remaining_normal = PRINT_TIME_REMAINING_INIT;
  7926. print_time_remaining_silent = PRINT_TIME_REMAINING_INIT;
  7927. print_percent_done_normal = PRINT_PERCENT_DONE_INIT;
  7928. print_percent_done_silent = PRINT_PERCENT_DONE_INIT;
  7929. }
  7930. void load_filament_final_feed()
  7931. {
  7932. current_position[E_AXIS]+= FILAMENTCHANGE_FINALFEED;
  7933. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], FILAMENTCHANGE_EFEED_FINAL, active_extruder);
  7934. }
  7935. void M600_check_state()
  7936. {
  7937. //Wait for user to check the state
  7938. lcd_change_fil_state = 0;
  7939. while (lcd_change_fil_state != 1){
  7940. lcd_change_fil_state = 0;
  7941. KEEPALIVE_STATE(PAUSED_FOR_USER);
  7942. lcd_alright();
  7943. KEEPALIVE_STATE(IN_HANDLER);
  7944. switch(lcd_change_fil_state){
  7945. // Filament failed to load so load it again
  7946. case 2:
  7947. if (mmu_enabled)
  7948. mmu_M600_load_filament(false); //nonautomatic load; change to "wrong filament loaded" option?
  7949. else
  7950. M600_load_filament_movements();
  7951. break;
  7952. // Filament loaded properly but color is not clear
  7953. case 3:
  7954. st_synchronize();
  7955. load_filament_final_feed();
  7956. lcd_loading_color();
  7957. st_synchronize();
  7958. break;
  7959. // Everything good
  7960. default:
  7961. lcd_change_success();
  7962. break;
  7963. }
  7964. }
  7965. }
  7966. //! @brief Wait for user action
  7967. //!
  7968. //! Beep, manage nozzle heater and wait for user to start unload filament
  7969. //! If times out, active extruder temperature is set to 0.
  7970. //!
  7971. //! @param HotendTempBckp Temperature to be restored for active extruder, after user resolves MMU problem.
  7972. void M600_wait_for_user(float HotendTempBckp) {
  7973. KEEPALIVE_STATE(PAUSED_FOR_USER);
  7974. int counterBeep = 0;
  7975. unsigned long waiting_start_time = millis();
  7976. uint8_t wait_for_user_state = 0;
  7977. lcd_display_message_fullscreen_P(_T(MSG_PRESS_TO_UNLOAD));
  7978. bool bFirst=true;
  7979. while (!(wait_for_user_state == 0 && lcd_clicked())){
  7980. manage_heater();
  7981. manage_inactivity(true);
  7982. #if BEEPER > 0
  7983. if (counterBeep == 500) {
  7984. counterBeep = 0;
  7985. }
  7986. SET_OUTPUT(BEEPER);
  7987. if (counterBeep == 0) {
  7988. if((eSoundMode==e_SOUND_MODE_LOUD)||((eSoundMode==e_SOUND_MODE_ONCE)&&bFirst))
  7989. {
  7990. bFirst=false;
  7991. WRITE(BEEPER, HIGH);
  7992. }
  7993. }
  7994. if (counterBeep == 20) {
  7995. WRITE(BEEPER, LOW);
  7996. }
  7997. counterBeep++;
  7998. #endif //BEEPER > 0
  7999. switch (wait_for_user_state) {
  8000. case 0: //nozzle is hot, waiting for user to press the knob to unload filament
  8001. delay_keep_alive(4);
  8002. if (millis() > waiting_start_time + (unsigned long)M600_TIMEOUT * 1000) {
  8003. lcd_display_message_fullscreen_P(_i("Press knob to preheat nozzle and continue."));////MSG_PRESS_TO_PREHEAT c=20 r=4
  8004. wait_for_user_state = 1;
  8005. setAllTargetHotends(0);
  8006. st_synchronize();
  8007. disable_e0();
  8008. disable_e1();
  8009. disable_e2();
  8010. }
  8011. break;
  8012. case 1: //nozzle target temperature is set to zero, waiting for user to start nozzle preheat
  8013. delay_keep_alive(4);
  8014. if (lcd_clicked()) {
  8015. setTargetHotend(HotendTempBckp, active_extruder);
  8016. lcd_wait_for_heater();
  8017. wait_for_user_state = 2;
  8018. }
  8019. break;
  8020. case 2: //waiting for nozzle to reach target temperature
  8021. if (abs(degTargetHotend(active_extruder) - degHotend(active_extruder)) < 1) {
  8022. lcd_display_message_fullscreen_P(_T(MSG_PRESS_TO_UNLOAD));
  8023. waiting_start_time = millis();
  8024. wait_for_user_state = 0;
  8025. }
  8026. else {
  8027. counterBeep = 20; //beeper will be inactive during waiting for nozzle preheat
  8028. lcd_set_cursor(1, 4);
  8029. lcd_print(ftostr3(degHotend(active_extruder)));
  8030. }
  8031. break;
  8032. }
  8033. }
  8034. WRITE(BEEPER, LOW);
  8035. }
  8036. void M600_load_filament_movements()
  8037. {
  8038. #ifdef SNMM
  8039. display_loading();
  8040. do
  8041. {
  8042. current_position[E_AXIS] += 0.002;
  8043. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 500, active_extruder);
  8044. delay_keep_alive(2);
  8045. }
  8046. while (!lcd_clicked());
  8047. st_synchronize();
  8048. current_position[E_AXIS] += bowden_length[mmu_extruder];
  8049. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000, active_extruder);
  8050. current_position[E_AXIS] += FIL_LOAD_LENGTH - 60;
  8051. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 1400, active_extruder);
  8052. current_position[E_AXIS] += 40;
  8053. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400, active_extruder);
  8054. current_position[E_AXIS] += 10;
  8055. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 50, active_extruder);
  8056. #else
  8057. current_position[E_AXIS]+= FILAMENTCHANGE_FIRSTFEED ;
  8058. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], FILAMENTCHANGE_EFEED_FIRST, active_extruder);
  8059. #endif
  8060. load_filament_final_feed();
  8061. lcd_loading_filament();
  8062. st_synchronize();
  8063. }
  8064. void M600_load_filament() {
  8065. //load filament for single material and SNMM
  8066. lcd_wait_interact();
  8067. //load_filament_time = millis();
  8068. KEEPALIVE_STATE(PAUSED_FOR_USER);
  8069. #ifdef PAT9125
  8070. fsensor_autoload_check_start();
  8071. #endif //PAT9125
  8072. while(!lcd_clicked())
  8073. {
  8074. manage_heater();
  8075. manage_inactivity(true);
  8076. #ifdef FILAMENT_SENSOR
  8077. if (fsensor_check_autoload())
  8078. {
  8079. if((eSoundMode==e_SOUND_MODE_LOUD)||(eSoundMode==e_SOUND_MODE_ONCE))
  8080. tone(BEEPER, 1000);
  8081. delay_keep_alive(50);
  8082. noTone(BEEPER);
  8083. break;
  8084. }
  8085. #endif //FILAMENT_SENSOR
  8086. }
  8087. #ifdef PAT9125
  8088. fsensor_autoload_check_stop();
  8089. #endif //PAT9125
  8090. KEEPALIVE_STATE(IN_HANDLER);
  8091. #ifdef FSENSOR_QUALITY
  8092. fsensor_oq_meassure_start(70);
  8093. #endif //FSENSOR_QUALITY
  8094. M600_load_filament_movements();
  8095. if((eSoundMode==e_SOUND_MODE_LOUD)||(eSoundMode==e_SOUND_MODE_ONCE))
  8096. tone(BEEPER, 500);
  8097. delay_keep_alive(50);
  8098. noTone(BEEPER);
  8099. #ifdef FSENSOR_QUALITY
  8100. fsensor_oq_meassure_stop();
  8101. if (!fsensor_oq_result())
  8102. {
  8103. bool disable = lcd_show_fullscreen_message_yes_no_and_wait_P(_i("Fil. sensor response is poor, disable it?"), false, true);
  8104. lcd_update_enable(true);
  8105. lcd_update(2);
  8106. if (disable)
  8107. fsensor_disable();
  8108. }
  8109. #endif //FSENSOR_QUALITY
  8110. lcd_update_enable(false);
  8111. }
  8112. #define FIL_LOAD_LENGTH 60