planner.cpp 58 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429
  1. /*
  2. planner.c - buffers movement commands and manages the acceleration profile plan
  3. Part of Grbl
  4. Copyright (c) 2009-2011 Simen Svale Skogsrud
  5. Grbl is free software: you can redistribute it and/or modify
  6. it under the terms of the GNU General Public License as published by
  7. the Free Software Foundation, either version 3 of the License, or
  8. (at your option) any later version.
  9. Grbl is distributed in the hope that it will be useful,
  10. but WITHOUT ANY WARRANTY; without even the implied warranty of
  11. MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  12. GNU General Public License for more details.
  13. You should have received a copy of the GNU General Public License
  14. along with Grbl. If not, see <http://www.gnu.org/licenses/>.
  15. */
  16. /* The ring buffer implementation gleaned from the wiring_serial library by David A. Mellis. */
  17. /*
  18. Reasoning behind the mathematics in this module (in the key of 'Mathematica'):
  19. s == speed, a == acceleration, t == time, d == distance
  20. Basic definitions:
  21. Speed[s_, a_, t_] := s + (a*t)
  22. Travel[s_, a_, t_] := Integrate[Speed[s, a, t], t]
  23. Distance to reach a specific speed with a constant acceleration:
  24. Solve[{Speed[s, a, t] == m, Travel[s, a, t] == d}, d, t]
  25. d -> (m^2 - s^2)/(2 a) --> estimate_acceleration_distance()
  26. Speed after a given distance of travel with constant acceleration:
  27. Solve[{Speed[s, a, t] == m, Travel[s, a, t] == d}, m, t]
  28. m -> Sqrt[2 a d + s^2]
  29. DestinationSpeed[s_, a_, d_] := Sqrt[2 a d + s^2]
  30. When to start braking (di) to reach a specified destionation speed (s2) after accelerating
  31. from initial speed s1 without ever stopping at a plateau:
  32. Solve[{DestinationSpeed[s1, a, di] == DestinationSpeed[s2, a, d - di]}, di]
  33. di -> (2 a d - s1^2 + s2^2)/(4 a) --> intersection_distance()
  34. IntersectionDistance[s1_, s2_, a_, d_] := (2 a d - s1^2 + s2^2)/(4 a)
  35. */
  36. #include "Marlin.h"
  37. #include "planner.h"
  38. #include "stepper.h"
  39. #include "temperature.h"
  40. #include "ultralcd.h"
  41. #include "language.h"
  42. #ifdef MESH_BED_LEVELING
  43. #include "mesh_bed_leveling.h"
  44. #include "mesh_bed_calibration.h"
  45. #endif
  46. #ifdef TMC2130
  47. #include "tmc2130.h"
  48. #endif //TMC2130
  49. //===========================================================================
  50. //=============================public variables ============================
  51. //===========================================================================
  52. unsigned long minsegmenttime;
  53. float max_feedrate[NUM_AXIS]; // set the max speeds
  54. float axis_steps_per_unit[NUM_AXIS];
  55. unsigned long max_acceleration_units_per_sq_second[NUM_AXIS]; // Use M201 to override by software
  56. float minimumfeedrate;
  57. float acceleration; // Normal acceleration mm/s^2 THIS IS THE DEFAULT ACCELERATION for all moves. M204 SXXXX
  58. float retract_acceleration; // mm/s^2 filament pull-pack and push-forward while standing still in the other axis M204 TXXXX
  59. // Jerk is a maximum immediate velocity change.
  60. float max_jerk[NUM_AXIS];
  61. float mintravelfeedrate;
  62. unsigned long axis_steps_per_sqr_second[NUM_AXIS];
  63. #ifdef ENABLE_AUTO_BED_LEVELING
  64. // this holds the required transform to compensate for bed level
  65. matrix_3x3 plan_bed_level_matrix = {
  66. 1.0, 0.0, 0.0,
  67. 0.0, 1.0, 0.0,
  68. 0.0, 0.0, 1.0,
  69. };
  70. #endif // #ifdef ENABLE_AUTO_BED_LEVELING
  71. // The current position of the tool in absolute steps
  72. long position[NUM_AXIS]; //rescaled from extern when axis_steps_per_unit are changed by gcode
  73. static float previous_speed[NUM_AXIS]; // Speed of previous path line segment
  74. static float previous_nominal_speed; // Nominal speed of previous path line segment
  75. static float previous_safe_speed; // Exit speed limited by a jerk to full halt of a previous last segment.
  76. #ifdef AUTOTEMP
  77. float autotemp_max=250;
  78. float autotemp_min=210;
  79. float autotemp_factor=0.1;
  80. bool autotemp_enabled=false;
  81. #endif
  82. unsigned char g_uc_extruder_last_move[3] = {0,0,0};
  83. //===========================================================================
  84. //=================semi-private variables, used in inline functions =====
  85. //===========================================================================
  86. block_t block_buffer[BLOCK_BUFFER_SIZE]; // A ring buffer for motion instfructions
  87. volatile unsigned char block_buffer_head; // Index of the next block to be pushed
  88. volatile unsigned char block_buffer_tail; // Index of the block to process now
  89. #ifdef PLANNER_DIAGNOSTICS
  90. // Diagnostic function: Minimum number of planned moves since the last
  91. static uint8_t g_cntr_planner_queue_min = 0;
  92. #endif /* PLANNER_DIAGNOSTICS */
  93. //===========================================================================
  94. //=============================private variables ============================
  95. //===========================================================================
  96. #ifdef PREVENT_DANGEROUS_EXTRUDE
  97. float extrude_min_temp=EXTRUDE_MINTEMP;
  98. #endif
  99. #ifdef FILAMENT_SENSOR
  100. static char meas_sample; //temporary variable to hold filament measurement sample
  101. #endif
  102. #ifdef LIN_ADVANCE
  103. float extruder_advance_k = LIN_ADVANCE_K,
  104. advance_ed_ratio = LIN_ADVANCE_E_D_RATIO,
  105. position_float[NUM_AXIS] = { 0 };
  106. #endif
  107. // Returns the index of the next block in the ring buffer
  108. // NOTE: Removed modulo (%) operator, which uses an expensive divide and multiplication.
  109. static inline int8_t next_block_index(int8_t block_index) {
  110. if (++ block_index == BLOCK_BUFFER_SIZE)
  111. block_index = 0;
  112. return block_index;
  113. }
  114. // Returns the index of the previous block in the ring buffer
  115. static inline int8_t prev_block_index(int8_t block_index) {
  116. if (block_index == 0)
  117. block_index = BLOCK_BUFFER_SIZE;
  118. -- block_index;
  119. return block_index;
  120. }
  121. //===========================================================================
  122. //=============================functions ============================
  123. //===========================================================================
  124. // Calculates the distance (not time) it takes to accelerate from initial_rate to target_rate using the
  125. // given acceleration:
  126. FORCE_INLINE float estimate_acceleration_distance(float initial_rate, float target_rate, float acceleration)
  127. {
  128. if (acceleration!=0) {
  129. return((target_rate*target_rate-initial_rate*initial_rate)/
  130. (2.0*acceleration));
  131. }
  132. else {
  133. return 0.0; // acceleration was 0, set acceleration distance to 0
  134. }
  135. }
  136. // This function gives you the point at which you must start braking (at the rate of -acceleration) if
  137. // you started at speed initial_rate and accelerated until this point and want to end at the final_rate after
  138. // a total travel of distance. This can be used to compute the intersection point between acceleration and
  139. // deceleration in the cases where the trapezoid has no plateau (i.e. never reaches maximum speed)
  140. FORCE_INLINE float intersection_distance(float initial_rate, float final_rate, float acceleration, float distance)
  141. {
  142. if (acceleration!=0) {
  143. return((2.0*acceleration*distance-initial_rate*initial_rate+final_rate*final_rate)/
  144. (4.0*acceleration) );
  145. }
  146. else {
  147. return 0.0; // acceleration was 0, set intersection distance to 0
  148. }
  149. }
  150. #define MINIMAL_STEP_RATE 120
  151. // Calculates trapezoid parameters so that the entry- and exit-speed is compensated by the provided factors.
  152. void calculate_trapezoid_for_block(block_t *block, float entry_speed, float exit_speed)
  153. {
  154. // These two lines are the only floating point calculations performed in this routine.
  155. uint32_t initial_rate = ceil(entry_speed * block->speed_factor); // (step/min)
  156. uint32_t final_rate = ceil(exit_speed * block->speed_factor); // (step/min)
  157. // Limit minimal step rate (Otherwise the timer will overflow.)
  158. if (initial_rate < MINIMAL_STEP_RATE)
  159. initial_rate = MINIMAL_STEP_RATE;
  160. if (initial_rate > block->nominal_rate)
  161. initial_rate = block->nominal_rate;
  162. if (final_rate < MINIMAL_STEP_RATE)
  163. final_rate = MINIMAL_STEP_RATE;
  164. if (final_rate > block->nominal_rate)
  165. final_rate = block->nominal_rate;
  166. uint32_t acceleration = block->acceleration_st;
  167. if (acceleration == 0)
  168. // Don't allow zero acceleration.
  169. acceleration = 1;
  170. // estimate_acceleration_distance(float initial_rate, float target_rate, float acceleration)
  171. // (target_rate*target_rate-initial_rate*initial_rate)/(2.0*acceleration));
  172. uint32_t initial_rate_sqr = initial_rate*initial_rate;
  173. //FIXME assert that this result fits a 64bit unsigned int.
  174. uint32_t nominal_rate_sqr = block->nominal_rate*block->nominal_rate;
  175. uint32_t final_rate_sqr = final_rate*final_rate;
  176. uint32_t acceleration_x2 = acceleration << 1;
  177. // ceil(estimate_acceleration_distance(initial_rate, block->nominal_rate, acceleration));
  178. uint32_t accelerate_steps = (nominal_rate_sqr - initial_rate_sqr + acceleration_x2 - 1) / acceleration_x2;
  179. // floor(estimate_acceleration_distance(block->nominal_rate, final_rate, -acceleration));
  180. uint32_t decelerate_steps = (nominal_rate_sqr - final_rate_sqr) / acceleration_x2;
  181. uint32_t accel_decel_steps = accelerate_steps + decelerate_steps;
  182. // Size of Plateau of Nominal Rate.
  183. uint32_t plateau_steps = 0;
  184. // Is the Plateau of Nominal Rate smaller than nothing? That means no cruising, and we will
  185. // have to use intersection_distance() to calculate when to abort acceleration and start braking
  186. // in order to reach the final_rate exactly at the end of this block.
  187. if (accel_decel_steps < block->step_event_count) {
  188. plateau_steps = block->step_event_count - accel_decel_steps;
  189. } else {
  190. uint32_t acceleration_x4 = acceleration << 2;
  191. // Avoid negative numbers
  192. if (final_rate_sqr >= initial_rate_sqr) {
  193. // accelerate_steps = ceil(intersection_distance(initial_rate, final_rate, acceleration, block->step_event_count));
  194. // intersection_distance(float initial_rate, float final_rate, float acceleration, float distance)
  195. // (2.0*acceleration*distance-initial_rate*initial_rate+final_rate*final_rate)/(4.0*acceleration);
  196. #if 0
  197. accelerate_steps = (block->step_event_count >> 1) + (final_rate_sqr - initial_rate_sqr + acceleration_x4 - 1 + (block->step_event_count & 1) * acceleration_x2) / acceleration_x4;
  198. #else
  199. accelerate_steps = final_rate_sqr - initial_rate_sqr + acceleration_x4 - 1;
  200. if (block->step_event_count & 1)
  201. accelerate_steps += acceleration_x2;
  202. accelerate_steps /= acceleration_x4;
  203. accelerate_steps += (block->step_event_count >> 1);
  204. #endif
  205. if (accelerate_steps > block->step_event_count)
  206. accelerate_steps = block->step_event_count;
  207. } else {
  208. #if 0
  209. decelerate_steps = (block->step_event_count >> 1) + (initial_rate_sqr - final_rate_sqr + (block->step_event_count & 1) * acceleration_x2) / acceleration_x4;
  210. #else
  211. decelerate_steps = initial_rate_sqr - final_rate_sqr;
  212. if (block->step_event_count & 1)
  213. decelerate_steps += acceleration_x2;
  214. decelerate_steps /= acceleration_x4;
  215. decelerate_steps += (block->step_event_count >> 1);
  216. #endif
  217. if (decelerate_steps > block->step_event_count)
  218. decelerate_steps = block->step_event_count;
  219. accelerate_steps = block->step_event_count - decelerate_steps;
  220. }
  221. }
  222. CRITICAL_SECTION_START; // Fill variables used by the stepper in a critical section
  223. // This block locks the interrupts globally for 4.38 us,
  224. // which corresponds to a maximum repeat frequency of 228.57 kHz.
  225. // This blocking is safe in the context of a 10kHz stepper driver interrupt
  226. // or a 115200 Bd serial line receive interrupt, which will not trigger faster than 12kHz.
  227. if (! block->busy) { // Don't update variables if block is busy.
  228. block->accelerate_until = accelerate_steps;
  229. block->decelerate_after = accelerate_steps+plateau_steps;
  230. block->initial_rate = initial_rate;
  231. block->final_rate = final_rate;
  232. }
  233. CRITICAL_SECTION_END;
  234. }
  235. // Calculates the maximum allowable entry speed, when you must be able to reach target_velocity using the
  236. // decceleration within the allotted distance.
  237. FORCE_INLINE float max_allowable_entry_speed(float decceleration, float target_velocity, float distance)
  238. {
  239. // assert(decceleration < 0);
  240. return sqrt(target_velocity*target_velocity-2*decceleration*distance);
  241. }
  242. // Recalculates the motion plan according to the following algorithm:
  243. //
  244. // 1. Go over every block in reverse order and calculate a junction speed reduction (i.e. block_t.entry_factor)
  245. // so that:
  246. // a. The junction jerk is within the set limit
  247. // b. No speed reduction within one block requires faster deceleration than the one, true constant
  248. // acceleration.
  249. // 2. Go over every block in chronological order and dial down junction speed reduction values if
  250. // a. The speed increase within one block would require faster accelleration than the one, true
  251. // constant acceleration.
  252. //
  253. // When these stages are complete all blocks have an entry_factor that will allow all speed changes to
  254. // be performed using only the one, true constant acceleration, and where no junction jerk is jerkier than
  255. // the set limit. Finally it will:
  256. //
  257. // 3. Recalculate trapezoids for all blocks.
  258. //
  259. //FIXME This routine is called 15x every time a new line is added to the planner,
  260. // therefore it is a bottle neck and it shall be rewritten into a Fixed Point arithmetics,
  261. // if the CPU is found lacking computational power.
  262. //
  263. // Following sources may be used to optimize the 8-bit AVR code:
  264. // http://www.mikrocontroller.net/articles/AVR_Arithmetik
  265. // http://darcy.rsgc.on.ca/ACES/ICE4M/FixedPoint/avrfix.pdf
  266. //
  267. // https://github.com/gcc-mirror/gcc/blob/master/libgcc/config/avr/lib1funcs-fixed.S
  268. // https://gcc.gnu.org/onlinedocs/gcc/Fixed-Point.html
  269. // https://gcc.gnu.org/onlinedocs/gccint/Fixed-point-fractional-library-routines.html
  270. //
  271. // https://ucexperiment.wordpress.com/2015/04/04/arduino-s15-16-fixed-point-math-routines/
  272. // https://mekonik.wordpress.com/2009/03/18/arduino-avr-gcc-multiplication/
  273. // https://github.com/rekka/avrmultiplication
  274. //
  275. // https://people.ece.cornell.edu/land/courses/ece4760/Math/Floating_point/
  276. // https://courses.cit.cornell.edu/ee476/Math/
  277. // https://courses.cit.cornell.edu/ee476/Math/GCC644/fixedPt/multASM.S
  278. //
  279. void planner_recalculate(const float &safe_final_speed)
  280. {
  281. // Reverse pass
  282. // Make a local copy of block_buffer_tail, because the interrupt can alter it
  283. // by consuming the blocks, therefore shortening the queue.
  284. unsigned char tail = block_buffer_tail;
  285. uint8_t block_index;
  286. block_t *prev, *current, *next;
  287. // SERIAL_ECHOLNPGM("planner_recalculate - 1");
  288. // At least three blocks are in the queue?
  289. unsigned char n_blocks = (block_buffer_head + BLOCK_BUFFER_SIZE - tail) & (BLOCK_BUFFER_SIZE - 1);
  290. if (n_blocks >= 3) {
  291. // Initialize the last tripple of blocks.
  292. block_index = prev_block_index(block_buffer_head);
  293. next = block_buffer + block_index;
  294. current = block_buffer + (block_index = prev_block_index(block_index));
  295. // No need to recalculate the last block, it has already been set by the plan_buffer_line() function.
  296. // Vojtech thinks, that one shall not touch the entry speed of the very first block as well, because
  297. // 1) it may already be running at the stepper interrupt,
  298. // 2) there is no way to limit it when going in the forward direction.
  299. while (block_index != tail) {
  300. if (current->flag & BLOCK_FLAG_START_FROM_FULL_HALT) {
  301. // Don't modify the entry velocity of the starting block.
  302. // Also don't modify the trapezoids before this block, they are finalized already, prepared
  303. // for the stepper interrupt routine to use them.
  304. tail = block_index;
  305. // Update the number of blocks to process.
  306. n_blocks = (block_buffer_head + BLOCK_BUFFER_SIZE - tail) & (BLOCK_BUFFER_SIZE - 1);
  307. // SERIAL_ECHOLNPGM("START");
  308. break;
  309. }
  310. // If entry speed is already at the maximum entry speed, no need to recheck. Block is cruising.
  311. // If not, block in state of acceleration or deceleration. Reset entry speed to maximum and
  312. // check for maximum allowable speed reductions to ensure maximum possible planned speed.
  313. if (current->entry_speed != current->max_entry_speed) {
  314. // assert(current->entry_speed < current->max_entry_speed);
  315. // Entry speed could be increased up to the max_entry_speed, limited by the length of the current
  316. // segment and the maximum acceleration allowed for this segment.
  317. // If nominal length true, max junction speed is guaranteed to be reached even if decelerating to a jerk-from-zero velocity.
  318. // Only compute for max allowable speed if block is decelerating and nominal length is false.
  319. // entry_speed is uint16_t, 24 bits would be sufficient for block->acceleration and block->millimiteres, if scaled to um.
  320. // therefore an optimized assembly 24bit x 24bit -> 32bit multiply would be more than sufficient
  321. // together with an assembly 32bit->16bit sqrt function.
  322. current->entry_speed = ((current->flag & BLOCK_FLAG_NOMINAL_LENGTH) || current->max_entry_speed <= next->entry_speed) ?
  323. current->max_entry_speed :
  324. // min(current->max_entry_speed, sqrt(next->entry_speed*next->entry_speed+2*current->acceleration*current->millimeters));
  325. min(current->max_entry_speed, max_allowable_entry_speed(-current->acceleration,next->entry_speed,current->millimeters));
  326. current->flag |= BLOCK_FLAG_RECALCULATE;
  327. }
  328. next = current;
  329. current = block_buffer + (block_index = prev_block_index(block_index));
  330. }
  331. }
  332. // SERIAL_ECHOLNPGM("planner_recalculate - 2");
  333. // Forward pass and recalculate the trapezoids.
  334. if (n_blocks >= 2) {
  335. // Better to limit the velocities using the already processed block, if it is available, so rather use the saved tail.
  336. block_index = tail;
  337. prev = block_buffer + block_index;
  338. current = block_buffer + (block_index = next_block_index(block_index));
  339. do {
  340. // If the previous block is an acceleration block, but it is not long enough to complete the
  341. // full speed change within the block, we need to adjust the entry speed accordingly. Entry
  342. // speeds have already been reset, maximized, and reverse planned by reverse planner.
  343. // If nominal length is true, max junction speed is guaranteed to be reached. No need to recheck.
  344. if (! (prev->flag & BLOCK_FLAG_NOMINAL_LENGTH) && prev->entry_speed < current->entry_speed) {
  345. float entry_speed = min(current->entry_speed, max_allowable_entry_speed(-prev->acceleration,prev->entry_speed,prev->millimeters));
  346. // Check for junction speed change
  347. if (current->entry_speed != entry_speed) {
  348. current->entry_speed = entry_speed;
  349. current->flag |= BLOCK_FLAG_RECALCULATE;
  350. }
  351. }
  352. // Recalculate if current block entry or exit junction speed has changed.
  353. if ((prev->flag | current->flag) & BLOCK_FLAG_RECALCULATE) {
  354. // NOTE: Entry and exit factors always > 0 by all previous logic operations.
  355. calculate_trapezoid_for_block(prev, prev->entry_speed, current->entry_speed);
  356. // Reset current only to ensure next trapezoid is computed.
  357. prev->flag &= ~BLOCK_FLAG_RECALCULATE;
  358. }
  359. prev = current;
  360. current = block_buffer + (block_index = next_block_index(block_index));
  361. } while (block_index != block_buffer_head);
  362. }
  363. // SERIAL_ECHOLNPGM("planner_recalculate - 3");
  364. // Last/newest block in buffer. Exit speed is set with safe_final_speed. Always recalculated.
  365. current = block_buffer + prev_block_index(block_buffer_head);
  366. calculate_trapezoid_for_block(current, current->entry_speed, safe_final_speed);
  367. current->flag &= ~BLOCK_FLAG_RECALCULATE;
  368. // SERIAL_ECHOLNPGM("planner_recalculate - 4");
  369. }
  370. void plan_init() {
  371. block_buffer_head = 0;
  372. block_buffer_tail = 0;
  373. memset(position, 0, sizeof(position)); // clear position
  374. #ifdef LIN_ADVANCE
  375. memset(position_float, 0, sizeof(position)); // clear position
  376. #endif
  377. previous_speed[0] = 0.0;
  378. previous_speed[1] = 0.0;
  379. previous_speed[2] = 0.0;
  380. previous_speed[3] = 0.0;
  381. previous_nominal_speed = 0.0;
  382. }
  383. #ifdef AUTOTEMP
  384. void getHighESpeed()
  385. {
  386. static float oldt=0;
  387. if(!autotemp_enabled){
  388. return;
  389. }
  390. if(degTargetHotend0()+2<autotemp_min) { //probably temperature set to zero.
  391. return; //do nothing
  392. }
  393. float high=0.0;
  394. uint8_t block_index = block_buffer_tail;
  395. while(block_index != block_buffer_head) {
  396. if((block_buffer[block_index].steps_x != 0) ||
  397. (block_buffer[block_index].steps_y != 0) ||
  398. (block_buffer[block_index].steps_z != 0)) {
  399. float se=(float(block_buffer[block_index].steps_e)/float(block_buffer[block_index].step_event_count))*block_buffer[block_index].nominal_speed;
  400. //se; mm/sec;
  401. if(se>high)
  402. {
  403. high=se;
  404. }
  405. }
  406. block_index = (block_index+1) & (BLOCK_BUFFER_SIZE - 1);
  407. }
  408. float g=autotemp_min+high*autotemp_factor;
  409. float t=g;
  410. if(t<autotemp_min)
  411. t=autotemp_min;
  412. if(t>autotemp_max)
  413. t=autotemp_max;
  414. if(oldt>t)
  415. {
  416. t=AUTOTEMP_OLDWEIGHT*oldt+(1-AUTOTEMP_OLDWEIGHT)*t;
  417. }
  418. oldt=t;
  419. setTargetHotend0(t);
  420. }
  421. #endif
  422. void check_axes_activity()
  423. {
  424. unsigned char x_active = 0;
  425. unsigned char y_active = 0;
  426. unsigned char z_active = 0;
  427. unsigned char e_active = 0;
  428. unsigned char tail_fan_speed = fanSpeed;
  429. block_t *block;
  430. if(block_buffer_tail != block_buffer_head)
  431. {
  432. uint8_t block_index = block_buffer_tail;
  433. tail_fan_speed = block_buffer[block_index].fan_speed;
  434. while(block_index != block_buffer_head)
  435. {
  436. block = &block_buffer[block_index];
  437. if(block->steps_x != 0) x_active++;
  438. if(block->steps_y != 0) y_active++;
  439. if(block->steps_z != 0) z_active++;
  440. if(block->steps_e != 0) e_active++;
  441. block_index = (block_index+1) & (BLOCK_BUFFER_SIZE - 1);
  442. }
  443. }
  444. if((DISABLE_X) && (x_active == 0)) disable_x();
  445. if((DISABLE_Y) && (y_active == 0)) disable_y();
  446. if((DISABLE_Z) && (z_active == 0)) disable_z();
  447. if((DISABLE_E) && (e_active == 0))
  448. {
  449. disable_e0();
  450. disable_e1();
  451. disable_e2();
  452. }
  453. #if defined(FAN_PIN) && FAN_PIN > -1
  454. #ifdef FAN_KICKSTART_TIME
  455. static unsigned long fan_kick_end;
  456. if (tail_fan_speed) {
  457. if (fan_kick_end == 0) {
  458. // Just starting up fan - run at full power.
  459. fan_kick_end = millis() + FAN_KICKSTART_TIME;
  460. tail_fan_speed = 255;
  461. } else if (fan_kick_end > millis())
  462. // Fan still spinning up.
  463. tail_fan_speed = 255;
  464. } else {
  465. fan_kick_end = 0;
  466. }
  467. #endif//FAN_KICKSTART_TIME
  468. #ifdef FAN_SOFT_PWM
  469. fanSpeedSoftPwm = tail_fan_speed;
  470. #else
  471. analogWrite(FAN_PIN,tail_fan_speed);
  472. #endif//!FAN_SOFT_PWM
  473. #endif//FAN_PIN > -1
  474. #ifdef AUTOTEMP
  475. getHighESpeed();
  476. #endif
  477. }
  478. bool waiting_inside_plan_buffer_line_print_aborted = false;
  479. /*
  480. void planner_abort_soft()
  481. {
  482. // Empty the queue.
  483. while (blocks_queued()) plan_discard_current_block();
  484. // Relay to planner wait routine, that the current line shall be canceled.
  485. waiting_inside_plan_buffer_line_print_aborted = true;
  486. //current_position[i]
  487. }
  488. */
  489. #ifdef PLANNER_DIAGNOSTICS
  490. static inline void planner_update_queue_min_counter()
  491. {
  492. uint8_t new_counter = moves_planned();
  493. if (new_counter < g_cntr_planner_queue_min)
  494. g_cntr_planner_queue_min = new_counter;
  495. }
  496. #endif /* PLANNER_DIAGNOSTICS */
  497. extern volatile uint32_t step_events_completed; // The number of step events executed in the current block
  498. void planner_abort_hard()
  499. {
  500. // Abort the stepper routine and flush the planner queue.
  501. // DISABLE_STEPPER_DRIVER_INTERRUPT
  502. TIMSK1 &= ~(1<<OCIE1A);
  503. // Now the front-end (the Marlin_main.cpp with its current_position) is out of sync.
  504. // First update the planner's current position in the physical motor steps.
  505. position[X_AXIS] = st_get_position(X_AXIS);
  506. position[Y_AXIS] = st_get_position(Y_AXIS);
  507. position[Z_AXIS] = st_get_position(Z_AXIS);
  508. position[E_AXIS] = st_get_position(E_AXIS);
  509. // Second update the current position of the front end.
  510. current_position[X_AXIS] = st_get_position_mm(X_AXIS);
  511. current_position[Y_AXIS] = st_get_position_mm(Y_AXIS);
  512. current_position[Z_AXIS] = st_get_position_mm(Z_AXIS);
  513. current_position[E_AXIS] = st_get_position_mm(E_AXIS);
  514. // Apply the mesh bed leveling correction to the Z axis.
  515. #ifdef MESH_BED_LEVELING
  516. if (mbl.active) {
  517. #if 1
  518. // Undo the bed level correction so the current Z position is reversible wrt. the machine coordinates.
  519. // This does not necessary mean that the Z position will be the same as linearly interpolated from the source G-code line.
  520. current_position[Z_AXIS] -= mbl.get_z(current_position[X_AXIS], current_position[Y_AXIS]);
  521. #else
  522. // Undo the bed level correction so that the current Z position is the same as linearly interpolated from the source G-code line.
  523. if (current_block == NULL || (current_block->steps_x == 0 && current_block->steps_y == 0))
  524. current_position[Z_AXIS] -= mbl.get_z(current_position[X_AXIS], current_position[Y_AXIS]);
  525. else {
  526. float t = float(step_events_completed) / float(current_block->step_event_count);
  527. float vec[3] = {
  528. current_block->steps_x / axis_steps_per_unit[X_AXIS],
  529. current_block->steps_y / axis_steps_per_unit[Y_AXIS],
  530. current_block->steps_z / axis_steps_per_unit[Z_AXIS]
  531. };
  532. float pos1[3], pos2[3];
  533. for (int8_t i = 0; i < 3; ++ i) {
  534. if (current_block->direction_bits & (1<<i))
  535. vec[i] = - vec[i];
  536. pos1[i] = current_position[i] - vec[i] * t;
  537. pos2[i] = current_position[i] + vec[i] * (1.f - t);
  538. }
  539. pos1[Z_AXIS] -= mbl.get_z(pos1[X_AXIS], pos1[Y_AXIS]);
  540. pos2[Z_AXIS] -= mbl.get_z(pos2[X_AXIS], pos2[Y_AXIS]);
  541. current_position[Z_AXIS] = pos1[Z_AXIS] * t + pos2[Z_AXIS] * (1.f - t);
  542. }
  543. #endif
  544. }
  545. #endif
  546. // Clear the planner queue.
  547. quickStop();
  548. // Apply inverse world correction matrix.
  549. machine2world(current_position[X_AXIS], current_position[Y_AXIS]);
  550. memcpy(destination, current_position, sizeof(destination));
  551. // Resets planner junction speeds. Assumes start from rest.
  552. previous_nominal_speed = 0.0;
  553. previous_speed[0] = 0.0;
  554. previous_speed[1] = 0.0;
  555. previous_speed[2] = 0.0;
  556. previous_speed[3] = 0.0;
  557. // Relay to planner wait routine, that the current line shall be canceled.
  558. waiting_inside_plan_buffer_line_print_aborted = true;
  559. }
  560. float junction_deviation = 0.1;
  561. // Add a new linear movement to the buffer. steps_x, _y and _z is the absolute position in
  562. // mm. Microseconds specify how many microseconds the move should take to perform. To aid acceleration
  563. // calculation the caller must also provide the physical length of the line in millimeters.
  564. void plan_buffer_line(float x, float y, float z, const float &e, float feed_rate, const uint8_t &extruder)
  565. {
  566. // Calculate the buffer head after we push this byte
  567. int next_buffer_head = next_block_index(block_buffer_head);
  568. // If the buffer is full: good! That means we are well ahead of the robot.
  569. // Rest here until there is room in the buffer.
  570. if (block_buffer_tail == next_buffer_head) {
  571. waiting_inside_plan_buffer_line_print_aborted = false;
  572. do {
  573. manage_heater();
  574. // Vojtech: Don't disable motors inside the planner!
  575. manage_inactivity(false);
  576. lcd_update();
  577. } while (block_buffer_tail == next_buffer_head);
  578. if (waiting_inside_plan_buffer_line_print_aborted) {
  579. // Inside the lcd_update() routine the print has been aborted.
  580. // Cancel the print, do not plan the current line this routine is waiting on.
  581. #ifdef PLANNER_DIAGNOSTICS
  582. planner_update_queue_min_counter();
  583. #endif /* PLANNER_DIAGNOSTICS */
  584. return;
  585. }
  586. }
  587. #ifdef PLANNER_DIAGNOSTICS
  588. planner_update_queue_min_counter();
  589. #endif /* PLANNER_DIAGNOSTICS */
  590. #ifdef ENABLE_AUTO_BED_LEVELING
  591. apply_rotation_xyz(plan_bed_level_matrix, x, y, z);
  592. #endif // ENABLE_AUTO_BED_LEVELING
  593. // Apply the machine correction matrix.
  594. {
  595. #if 0
  596. SERIAL_ECHOPGM("Planner, current position - servos: ");
  597. MYSERIAL.print(st_get_position_mm(X_AXIS), 5);
  598. SERIAL_ECHOPGM(", ");
  599. MYSERIAL.print(st_get_position_mm(Y_AXIS), 5);
  600. SERIAL_ECHOPGM(", ");
  601. MYSERIAL.print(st_get_position_mm(Z_AXIS), 5);
  602. SERIAL_ECHOLNPGM("");
  603. SERIAL_ECHOPGM("Planner, target position, initial: ");
  604. MYSERIAL.print(x, 5);
  605. SERIAL_ECHOPGM(", ");
  606. MYSERIAL.print(y, 5);
  607. SERIAL_ECHOLNPGM("");
  608. SERIAL_ECHOPGM("Planner, world2machine: ");
  609. MYSERIAL.print(world2machine_rotation_and_skew[0][0], 5);
  610. SERIAL_ECHOPGM(", ");
  611. MYSERIAL.print(world2machine_rotation_and_skew[0][1], 5);
  612. SERIAL_ECHOPGM(", ");
  613. MYSERIAL.print(world2machine_rotation_and_skew[1][0], 5);
  614. SERIAL_ECHOPGM(", ");
  615. MYSERIAL.print(world2machine_rotation_and_skew[1][1], 5);
  616. SERIAL_ECHOLNPGM("");
  617. SERIAL_ECHOPGM("Planner, offset: ");
  618. MYSERIAL.print(world2machine_shift[0], 5);
  619. SERIAL_ECHOPGM(", ");
  620. MYSERIAL.print(world2machine_shift[1], 5);
  621. SERIAL_ECHOLNPGM("");
  622. #endif
  623. world2machine(x, y);
  624. #if 0
  625. SERIAL_ECHOPGM("Planner, target position, corrected: ");
  626. MYSERIAL.print(x, 5);
  627. SERIAL_ECHOPGM(", ");
  628. MYSERIAL.print(y, 5);
  629. SERIAL_ECHOLNPGM("");
  630. #endif
  631. }
  632. // The target position of the tool in absolute steps
  633. // Calculate target position in absolute steps
  634. //this should be done after the wait, because otherwise a M92 code within the gcode disrupts this calculation somehow
  635. long target[4];
  636. target[X_AXIS] = lround(x*axis_steps_per_unit[X_AXIS]);
  637. target[Y_AXIS] = lround(y*axis_steps_per_unit[Y_AXIS]);
  638. #ifdef MESH_BED_LEVELING
  639. if (mbl.active){
  640. target[Z_AXIS] = lround((z+mbl.get_z(x, y))*axis_steps_per_unit[Z_AXIS]);
  641. }else{
  642. target[Z_AXIS] = lround(z*axis_steps_per_unit[Z_AXIS]);
  643. }
  644. #else
  645. target[Z_AXIS] = lround(z*axis_steps_per_unit[Z_AXIS]);
  646. #endif // ENABLE_MESH_BED_LEVELING
  647. target[E_AXIS] = lround(e*axis_steps_per_unit[E_AXIS]);
  648. #ifdef LIN_ADVANCE
  649. const float mm_D_float = sqrt(sq(x - position_float[X_AXIS]) + sq(y - position_float[Y_AXIS]));
  650. float de_float = e - position_float[E_AXIS];
  651. #endif
  652. #ifdef PREVENT_DANGEROUS_EXTRUDE
  653. if(target[E_AXIS]!=position[E_AXIS])
  654. {
  655. if(degHotend(active_extruder)<extrude_min_temp)
  656. {
  657. position[E_AXIS]=target[E_AXIS]; //behave as if the move really took place, but ignore E part
  658. #ifdef LIN_ADVANCE
  659. position_float[E_AXIS] = e;
  660. de_float = 0;
  661. #endif
  662. SERIAL_ECHO_START;
  663. SERIAL_ECHOLNRPGM(MSG_ERR_COLD_EXTRUDE_STOP);
  664. }
  665. #ifdef PREVENT_LENGTHY_EXTRUDE
  666. if(labs(target[E_AXIS]-position[E_AXIS])>axis_steps_per_unit[E_AXIS]*EXTRUDE_MAXLENGTH)
  667. {
  668. position[E_AXIS]=target[E_AXIS]; //behave as if the move really took place, but ignore E part
  669. #ifdef LIN_ADVANCE
  670. position_float[E_AXIS] = e;
  671. de_float = 0;
  672. #endif
  673. SERIAL_ECHO_START;
  674. SERIAL_ECHOLNRPGM(MSG_ERR_LONG_EXTRUDE_STOP);
  675. }
  676. #endif
  677. }
  678. #endif
  679. // Prepare to set up new block
  680. block_t *block = &block_buffer[block_buffer_head];
  681. // Set sdlen for calculating sd position
  682. block->sdlen = 0;
  683. // Mark block as not busy (Not executed by the stepper interrupt, could be still tinkered with.)
  684. block->busy = false;
  685. // Number of steps for each axis
  686. #ifndef COREXY
  687. // default non-h-bot planning
  688. block->steps_x = labs(target[X_AXIS]-position[X_AXIS]);
  689. block->steps_y = labs(target[Y_AXIS]-position[Y_AXIS]);
  690. #else
  691. // corexy planning
  692. // these equations follow the form of the dA and dB equations on http://www.corexy.com/theory.html
  693. block->steps_x = labs((target[X_AXIS]-position[X_AXIS]) + (target[Y_AXIS]-position[Y_AXIS]));
  694. block->steps_y = labs((target[X_AXIS]-position[X_AXIS]) - (target[Y_AXIS]-position[Y_AXIS]));
  695. #endif
  696. block->steps_z = labs(target[Z_AXIS]-position[Z_AXIS]);
  697. block->steps_e = labs(target[E_AXIS]-position[E_AXIS]);
  698. if (volumetric_multiplier[active_extruder] != 1.f)
  699. block->steps_e *= volumetric_multiplier[active_extruder];
  700. if (extrudemultiply != 100) {
  701. block->steps_e *= extrudemultiply;
  702. block->steps_e /= 100;
  703. }
  704. block->step_event_count = max(block->steps_x, max(block->steps_y, max(block->steps_z, block->steps_e)));
  705. // Bail if this is a zero-length block
  706. if (block->step_event_count <= dropsegments)
  707. {
  708. #ifdef PLANNER_DIAGNOSTICS
  709. planner_update_queue_min_counter();
  710. #endif /* PLANNER_DIAGNOSTICS */
  711. return;
  712. }
  713. block->fan_speed = fanSpeed;
  714. // Compute direction bits for this block
  715. block->direction_bits = 0;
  716. #ifndef COREXY
  717. if (target[X_AXIS] < position[X_AXIS])
  718. {
  719. block->direction_bits |= (1<<X_AXIS);
  720. }
  721. if (target[Y_AXIS] < position[Y_AXIS])
  722. {
  723. block->direction_bits |= (1<<Y_AXIS);
  724. }
  725. #else
  726. if ((target[X_AXIS]-position[X_AXIS]) + (target[Y_AXIS]-position[Y_AXIS]) < 0)
  727. {
  728. block->direction_bits |= (1<<X_AXIS);
  729. }
  730. if ((target[X_AXIS]-position[X_AXIS]) - (target[Y_AXIS]-position[Y_AXIS]) < 0)
  731. {
  732. block->direction_bits |= (1<<Y_AXIS);
  733. }
  734. #endif
  735. if (target[Z_AXIS] < position[Z_AXIS])
  736. {
  737. block->direction_bits |= (1<<Z_AXIS);
  738. }
  739. if (target[E_AXIS] < position[E_AXIS])
  740. {
  741. block->direction_bits |= (1<<E_AXIS);
  742. }
  743. block->active_extruder = extruder;
  744. //enable active axes
  745. #ifdef COREXY
  746. if((block->steps_x != 0) || (block->steps_y != 0))
  747. {
  748. enable_x();
  749. enable_y();
  750. }
  751. #else
  752. if(block->steps_x != 0) enable_x();
  753. if(block->steps_y != 0) enable_y();
  754. #endif
  755. #ifndef Z_LATE_ENABLE
  756. if(block->steps_z != 0) enable_z();
  757. #endif
  758. // Enable extruder(s)
  759. if(block->steps_e != 0)
  760. {
  761. if (DISABLE_INACTIVE_EXTRUDER) //enable only selected extruder
  762. {
  763. if(g_uc_extruder_last_move[0] > 0) g_uc_extruder_last_move[0]--;
  764. if(g_uc_extruder_last_move[1] > 0) g_uc_extruder_last_move[1]--;
  765. if(g_uc_extruder_last_move[2] > 0) g_uc_extruder_last_move[2]--;
  766. switch(extruder)
  767. {
  768. case 0:
  769. enable_e0();
  770. g_uc_extruder_last_move[0] = BLOCK_BUFFER_SIZE*2;
  771. if(g_uc_extruder_last_move[1] == 0) disable_e1();
  772. if(g_uc_extruder_last_move[2] == 0) disable_e2();
  773. break;
  774. case 1:
  775. enable_e1();
  776. g_uc_extruder_last_move[1] = BLOCK_BUFFER_SIZE*2;
  777. if(g_uc_extruder_last_move[0] == 0) disable_e0();
  778. if(g_uc_extruder_last_move[2] == 0) disable_e2();
  779. break;
  780. case 2:
  781. enable_e2();
  782. g_uc_extruder_last_move[2] = BLOCK_BUFFER_SIZE*2;
  783. if(g_uc_extruder_last_move[0] == 0) disable_e0();
  784. if(g_uc_extruder_last_move[1] == 0) disable_e1();
  785. break;
  786. }
  787. }
  788. else //enable all
  789. {
  790. enable_e0();
  791. enable_e1();
  792. enable_e2();
  793. }
  794. }
  795. if (block->steps_e == 0)
  796. {
  797. if(feed_rate<mintravelfeedrate) feed_rate=mintravelfeedrate;
  798. }
  799. else
  800. {
  801. if(feed_rate<minimumfeedrate) feed_rate=minimumfeedrate;
  802. }
  803. /* This part of the code calculates the total length of the movement.
  804. For cartesian bots, the X_AXIS is the real X movement and same for Y_AXIS.
  805. But for corexy bots, that is not true. The "X_AXIS" and "Y_AXIS" motors (that should be named to A_AXIS
  806. and B_AXIS) cannot be used for X and Y length, because A=X+Y and B=X-Y.
  807. So we need to create other 2 "AXIS", named X_HEAD and Y_HEAD, meaning the real displacement of the Head.
  808. Having the real displacement of the head, we can calculate the total movement length and apply the desired speed.
  809. */
  810. #ifndef COREXY
  811. float delta_mm[4];
  812. delta_mm[X_AXIS] = (target[X_AXIS]-position[X_AXIS])/axis_steps_per_unit[X_AXIS];
  813. delta_mm[Y_AXIS] = (target[Y_AXIS]-position[Y_AXIS])/axis_steps_per_unit[Y_AXIS];
  814. #else
  815. float delta_mm[6];
  816. delta_mm[X_HEAD] = (target[X_AXIS]-position[X_AXIS])/axis_steps_per_unit[X_AXIS];
  817. delta_mm[Y_HEAD] = (target[Y_AXIS]-position[Y_AXIS])/axis_steps_per_unit[Y_AXIS];
  818. delta_mm[X_AXIS] = ((target[X_AXIS]-position[X_AXIS]) + (target[Y_AXIS]-position[Y_AXIS]))/axis_steps_per_unit[X_AXIS];
  819. delta_mm[Y_AXIS] = ((target[X_AXIS]-position[X_AXIS]) - (target[Y_AXIS]-position[Y_AXIS]))/axis_steps_per_unit[Y_AXIS];
  820. #endif
  821. delta_mm[Z_AXIS] = (target[Z_AXIS]-position[Z_AXIS])/axis_steps_per_unit[Z_AXIS];
  822. delta_mm[E_AXIS] = ((target[E_AXIS]-position[E_AXIS])/axis_steps_per_unit[E_AXIS])*volumetric_multiplier[active_extruder]*extrudemultiply/100.0;
  823. if ( block->steps_x <=dropsegments && block->steps_y <=dropsegments && block->steps_z <=dropsegments )
  824. {
  825. block->millimeters = fabs(delta_mm[E_AXIS]);
  826. }
  827. else
  828. {
  829. #ifndef COREXY
  830. block->millimeters = sqrt(square(delta_mm[X_AXIS]) + square(delta_mm[Y_AXIS]) + square(delta_mm[Z_AXIS]));
  831. #else
  832. block->millimeters = sqrt(square(delta_mm[X_HEAD]) + square(delta_mm[Y_HEAD]) + square(delta_mm[Z_AXIS]));
  833. #endif
  834. }
  835. float inverse_millimeters = 1.0/block->millimeters; // Inverse millimeters to remove multiple divides
  836. // Calculate speed in mm/second for each axis. No divide by zero due to previous checks.
  837. float inverse_second = feed_rate * inverse_millimeters;
  838. int moves_queued = moves_planned();
  839. // slow down when de buffer starts to empty, rather than wait at the corner for a buffer refill
  840. #ifdef SLOWDOWN
  841. //FIXME Vojtech: Why moves_queued > 1? Why not >=1?
  842. // Can we somehow differentiate the filling of the buffer at the start of a g-code from a buffer draining situation?
  843. if (moves_queued > 1 && moves_queued < (BLOCK_BUFFER_SIZE >> 1)) {
  844. // segment time in micro seconds
  845. unsigned long segment_time = lround(1000000.0/inverse_second);
  846. if (segment_time < minsegmenttime)
  847. // buffer is draining, add extra time. The amount of time added increases if the buffer is still emptied more.
  848. inverse_second=1000000.0/(segment_time+lround(2*(minsegmenttime-segment_time)/moves_queued));
  849. }
  850. #endif // SLOWDOWN
  851. block->nominal_speed = block->millimeters * inverse_second; // (mm/sec) Always > 0
  852. block->nominal_rate = ceil(block->step_event_count * inverse_second); // (step/sec) Always > 0
  853. #ifdef FILAMENT_SENSOR
  854. //FMM update ring buffer used for delay with filament measurements
  855. if((extruder==FILAMENT_SENSOR_EXTRUDER_NUM) && (delay_index2 > -1)) //only for extruder with filament sensor and if ring buffer is initialized
  856. {
  857. delay_dist = delay_dist + delta_mm[E_AXIS]; //increment counter with next move in e axis
  858. while (delay_dist >= (10*(MAX_MEASUREMENT_DELAY+1))) //check if counter is over max buffer size in mm
  859. delay_dist = delay_dist - 10*(MAX_MEASUREMENT_DELAY+1); //loop around the buffer
  860. while (delay_dist<0)
  861. delay_dist = delay_dist + 10*(MAX_MEASUREMENT_DELAY+1); //loop around the buffer
  862. delay_index1=delay_dist/10.0; //calculate index
  863. //ensure the number is within range of the array after converting from floating point
  864. if(delay_index1<0)
  865. delay_index1=0;
  866. else if (delay_index1>MAX_MEASUREMENT_DELAY)
  867. delay_index1=MAX_MEASUREMENT_DELAY;
  868. if(delay_index1 != delay_index2) //moved index
  869. {
  870. meas_sample=widthFil_to_size_ratio()-100; //subtract off 100 to reduce magnitude - to store in a signed char
  871. }
  872. while( delay_index1 != delay_index2)
  873. {
  874. delay_index2 = delay_index2 + 1;
  875. if(delay_index2>MAX_MEASUREMENT_DELAY)
  876. delay_index2=delay_index2-(MAX_MEASUREMENT_DELAY+1); //loop around buffer when incrementing
  877. if(delay_index2<0)
  878. delay_index2=0;
  879. else if (delay_index2>MAX_MEASUREMENT_DELAY)
  880. delay_index2=MAX_MEASUREMENT_DELAY;
  881. measurement_delay[delay_index2]=meas_sample;
  882. }
  883. }
  884. #endif
  885. // Calculate and limit speed in mm/sec for each axis
  886. float current_speed[4];
  887. float speed_factor = 1.0; //factor <=1 do decrease speed
  888. for(int i=0; i < 4; i++)
  889. {
  890. current_speed[i] = delta_mm[i] * inverse_second;
  891. #ifdef TMC2130
  892. float max_fr = max_feedrate[i];
  893. if (i < 2) // X, Y
  894. {
  895. if (tmc2130_mode == TMC2130_MODE_SILENT)
  896. {
  897. if (max_fr > SILENT_MAX_FEEDRATE)
  898. max_fr = SILENT_MAX_FEEDRATE;
  899. }
  900. else
  901. {
  902. if (max_fr > NORMAL_MAX_FEEDRATE)
  903. max_fr = NORMAL_MAX_FEEDRATE;
  904. }
  905. }
  906. if(fabs(current_speed[i]) > max_fr)
  907. speed_factor = min(speed_factor, max_fr / fabs(current_speed[i]));
  908. #else //TMC2130
  909. if(fabs(current_speed[i]) > max_feedrate[i])
  910. speed_factor = min(speed_factor, max_feedrate[i] / fabs(current_speed[i]));
  911. #endif //TMC2130
  912. }
  913. // Correct the speed
  914. if( speed_factor < 1.0)
  915. {
  916. for(unsigned char i=0; i < 4; i++)
  917. {
  918. current_speed[i] *= speed_factor;
  919. }
  920. block->nominal_speed *= speed_factor;
  921. block->nominal_rate *= speed_factor;
  922. }
  923. // Compute and limit the acceleration rate for the trapezoid generator.
  924. // block->step_event_count ... event count of the fastest axis
  925. // block->millimeters ... Euclidian length of the XYZ movement or the E length, if no XYZ movement.
  926. float steps_per_mm = block->step_event_count/block->millimeters;
  927. if(block->steps_x == 0 && block->steps_y == 0 && block->steps_z == 0)
  928. {
  929. block->acceleration_st = ceil(retract_acceleration * steps_per_mm); // convert to: acceleration steps/sec^2
  930. }
  931. else
  932. {
  933. block->acceleration_st = ceil(acceleration * steps_per_mm); // convert to: acceleration steps/sec^2
  934. #ifdef TMC2130
  935. #ifdef SIMPLE_ACCEL_LIMIT // in some cases can be acceleration limited inproperly
  936. if (tmc2130_mode == TMC2130_MODE_SILENT)
  937. {
  938. if (block->steps_x || block->steps_y)
  939. if (block->acceleration_st > SILENT_MAX_ACCEL_ST) block->acceleration_st = SILENT_MAX_ACCEL_ST;
  940. }
  941. else
  942. {
  943. if (block->steps_x || block->steps_y)
  944. if (block->acceleration_st > NORMAL_MAX_ACCEL_ST) block->acceleration_st = NORMAL_MAX_ACCEL_ST;
  945. }
  946. if (block->steps_x && (block->acceleration_st > axis_steps_per_sqr_second[X_AXIS])) block->acceleration_st = axis_steps_per_sqr_second[X_AXIS];
  947. if (block->steps_y && (block->acceleration_st > axis_steps_per_sqr_second[Y_AXIS])) block->acceleration_st = axis_steps_per_sqr_second[Y_AXIS];
  948. if (block->steps_z && (block->acceleration_st > axis_steps_per_sqr_second[Z_AXIS])) block->acceleration_st = axis_steps_per_sqr_second[Z_AXIS];
  949. if (block->steps_e && (block->acceleration_st > axis_steps_per_sqr_second[E_AXIS])) block->acceleration_st = axis_steps_per_sqr_second[E_AXIS];
  950. #else // SIMPLE_ACCEL_LIMIT
  951. if (tmc2130_mode == TMC2130_MODE_SILENT)
  952. {
  953. if ((block->steps_x > block->step_event_count / 2) || (block->steps_y > block->step_event_count / 2))
  954. if (block->acceleration_st > SILENT_MAX_ACCEL_ST) block->acceleration_st = SILENT_MAX_ACCEL_ST;
  955. }
  956. else
  957. {
  958. if ((block->steps_x > block->step_event_count / 2) || (block->steps_y > block->step_event_count / 2))
  959. if (block->acceleration_st > NORMAL_MAX_ACCEL_ST) block->acceleration_st = NORMAL_MAX_ACCEL_ST;
  960. }
  961. if(((float)block->acceleration_st * (float)block->steps_x / (float)block->step_event_count) > axis_steps_per_sqr_second[X_AXIS])
  962. block->acceleration_st = axis_steps_per_sqr_second[X_AXIS];
  963. if(((float)block->acceleration_st * (float)block->steps_y / (float)block->step_event_count) > axis_steps_per_sqr_second[Y_AXIS])
  964. block->acceleration_st = axis_steps_per_sqr_second[Y_AXIS];
  965. if(((float)block->acceleration_st * (float)block->steps_z / (float)block->step_event_count ) > axis_steps_per_sqr_second[Z_AXIS])
  966. block->acceleration_st = axis_steps_per_sqr_second[Z_AXIS];
  967. if(((float)block->acceleration_st * (float)block->steps_e / (float)block->step_event_count) > axis_steps_per_sqr_second[E_AXIS])
  968. block->acceleration_st = axis_steps_per_sqr_second[E_AXIS];
  969. #endif // SIMPLE_ACCEL_LIMIT
  970. #else //TMC2130
  971. // Limit acceleration per axis
  972. //FIXME Vojtech: One shall rather limit a projection of the acceleration vector instead of using the limit.
  973. if(((float)block->acceleration_st * (float)block->steps_x / (float)block->step_event_count) > axis_steps_per_sqr_second[X_AXIS])
  974. block->acceleration_st = axis_steps_per_sqr_second[X_AXIS];
  975. if(((float)block->acceleration_st * (float)block->steps_y / (float)block->step_event_count) > axis_steps_per_sqr_second[Y_AXIS])
  976. block->acceleration_st = axis_steps_per_sqr_second[Y_AXIS];
  977. if(((float)block->acceleration_st * (float)block->steps_e / (float)block->step_event_count) > axis_steps_per_sqr_second[E_AXIS])
  978. block->acceleration_st = axis_steps_per_sqr_second[E_AXIS];
  979. if(((float)block->acceleration_st * (float)block->steps_z / (float)block->step_event_count ) > axis_steps_per_sqr_second[Z_AXIS])
  980. block->acceleration_st = axis_steps_per_sqr_second[Z_AXIS];
  981. #endif //TMC2130
  982. }
  983. // Acceleration of the segment, in mm/sec^2
  984. block->acceleration = block->acceleration_st / steps_per_mm;
  985. #if 0
  986. // Oversample diagonal movements by a power of 2 up to 8x
  987. // to achieve more accurate diagonal movements.
  988. uint8_t bresenham_oversample = 1;
  989. for (uint8_t i = 0; i < 3; ++ i) {
  990. if (block->nominal_rate >= 5000) // 5kHz
  991. break;
  992. block->nominal_rate << 1;
  993. bresenham_oversample << 1;
  994. block->step_event_count << 1;
  995. }
  996. if (bresenham_oversample > 1)
  997. // Lower the acceleration steps/sec^2 to account for the oversampling.
  998. block->acceleration_st = (block->acceleration_st + (bresenham_oversample >> 1)) / bresenham_oversample;
  999. #endif
  1000. block->acceleration_rate = (long)((float)block->acceleration_st * (16777216.0 / (F_CPU / 8.0)));
  1001. // Start with a safe speed.
  1002. // Safe speed is the speed, from which the machine may halt to stop immediately.
  1003. float safe_speed = block->nominal_speed;
  1004. bool limited = false;
  1005. for (uint8_t axis = 0; axis < 4; ++ axis) {
  1006. float jerk = fabs(current_speed[axis]);
  1007. if (jerk > max_jerk[axis]) {
  1008. // The actual jerk is lower, if it has been limited by the XY jerk.
  1009. if (limited) {
  1010. // Spare one division by a following gymnastics:
  1011. // Instead of jerk *= safe_speed / block->nominal_speed,
  1012. // multiply max_jerk[axis] by the divisor.
  1013. jerk *= safe_speed;
  1014. float mjerk = max_jerk[axis] * block->nominal_speed;
  1015. if (jerk > mjerk) {
  1016. safe_speed *= mjerk / jerk;
  1017. limited = true;
  1018. }
  1019. } else {
  1020. safe_speed = max_jerk[axis];
  1021. limited = true;
  1022. }
  1023. }
  1024. }
  1025. // Reset the block flag.
  1026. block->flag = 0;
  1027. // Initial limit on the segment entry velocity.
  1028. float vmax_junction;
  1029. //FIXME Vojtech: Why only if at least two lines are planned in the queue?
  1030. // Is it because we don't want to tinker with the first buffer line, which
  1031. // is likely to be executed by the stepper interrupt routine soon?
  1032. if (moves_queued > 1 && previous_nominal_speed > 0.0001f) {
  1033. // Estimate a maximum velocity allowed at a joint of two successive segments.
  1034. // If this maximum velocity allowed is lower than the minimum of the entry / exit safe velocities,
  1035. // then the machine is not coasting anymore and the safe entry / exit velocities shall be used.
  1036. // The junction velocity will be shared between successive segments. Limit the junction velocity to their minimum.
  1037. bool prev_speed_larger = previous_nominal_speed > block->nominal_speed;
  1038. float smaller_speed_factor = prev_speed_larger ? (block->nominal_speed / previous_nominal_speed) : (previous_nominal_speed / block->nominal_speed);
  1039. // Pick the smaller of the nominal speeds. Higher speed shall not be achieved at the junction during coasting.
  1040. vmax_junction = prev_speed_larger ? block->nominal_speed : previous_nominal_speed;
  1041. // Factor to multiply the previous / current nominal velocities to get componentwise limited velocities.
  1042. float v_factor = 1.f;
  1043. limited = false;
  1044. // Now limit the jerk in all axes.
  1045. for (uint8_t axis = 0; axis < 4; ++ axis) {
  1046. // Limit an axis. We have to differentiate coasting from the reversal of an axis movement, or a full stop.
  1047. float v_exit = previous_speed[axis];
  1048. float v_entry = current_speed [axis];
  1049. if (prev_speed_larger)
  1050. v_exit *= smaller_speed_factor;
  1051. if (limited) {
  1052. v_exit *= v_factor;
  1053. v_entry *= v_factor;
  1054. }
  1055. // Calculate the jerk depending on whether the axis is coasting in the same direction or reversing a direction.
  1056. float jerk =
  1057. (v_exit > v_entry) ?
  1058. ((v_entry > 0.f || v_exit < 0.f) ?
  1059. // coasting
  1060. (v_exit - v_entry) :
  1061. // axis reversal
  1062. max(v_exit, - v_entry)) :
  1063. // v_exit <= v_entry
  1064. ((v_entry < 0.f || v_exit > 0.f) ?
  1065. // coasting
  1066. (v_entry - v_exit) :
  1067. // axis reversal
  1068. max(- v_exit, v_entry));
  1069. if (jerk > max_jerk[axis]) {
  1070. v_factor *= max_jerk[axis] / jerk;
  1071. limited = true;
  1072. }
  1073. }
  1074. if (limited)
  1075. vmax_junction *= v_factor;
  1076. // Now the transition velocity is known, which maximizes the shared exit / entry velocity while
  1077. // respecting the jerk factors, it may be possible, that applying separate safe exit / entry velocities will achieve faster prints.
  1078. float vmax_junction_threshold = vmax_junction * 0.99f;
  1079. if (previous_safe_speed > vmax_junction_threshold && safe_speed > vmax_junction_threshold) {
  1080. // Not coasting. The machine will stop and start the movements anyway,
  1081. // better to start the segment from start.
  1082. block->flag |= BLOCK_FLAG_START_FROM_FULL_HALT;
  1083. vmax_junction = safe_speed;
  1084. }
  1085. } else {
  1086. block->flag |= BLOCK_FLAG_START_FROM_FULL_HALT;
  1087. vmax_junction = safe_speed;
  1088. }
  1089. // Max entry speed of this block equals the max exit speed of the previous block.
  1090. block->max_entry_speed = vmax_junction;
  1091. // Initialize block entry speed. Compute based on deceleration to safe_speed.
  1092. double v_allowable = max_allowable_entry_speed(-block->acceleration,safe_speed,block->millimeters);
  1093. block->entry_speed = min(vmax_junction, v_allowable);
  1094. // Initialize planner efficiency flags
  1095. // Set flag if block will always reach maximum junction speed regardless of entry/exit speeds.
  1096. // If a block can de/ac-celerate from nominal speed to zero within the length of the block, then
  1097. // the current block and next block junction speeds are guaranteed to always be at their maximum
  1098. // junction speeds in deceleration and acceleration, respectively. This is due to how the current
  1099. // block nominal speed limits both the current and next maximum junction speeds. Hence, in both
  1100. // the reverse and forward planners, the corresponding block junction speed will always be at the
  1101. // the maximum junction speed and may always be ignored for any speed reduction checks.
  1102. // Always calculate trapezoid for new block
  1103. block->flag |= (block->nominal_speed <= v_allowable) ? (BLOCK_FLAG_NOMINAL_LENGTH | BLOCK_FLAG_RECALCULATE) : BLOCK_FLAG_RECALCULATE;
  1104. // Update previous path unit_vector and nominal speed
  1105. memcpy(previous_speed, current_speed, sizeof(previous_speed)); // previous_speed[] = current_speed[]
  1106. previous_nominal_speed = block->nominal_speed;
  1107. previous_safe_speed = safe_speed;
  1108. #ifdef LIN_ADVANCE
  1109. //
  1110. // Use LIN_ADVANCE for blocks if all these are true:
  1111. //
  1112. // esteps : We have E steps todo (a printing move)
  1113. //
  1114. // block->steps[X_AXIS] || block->steps[Y_AXIS] : We have a movement in XY direction (i.e., not retract / prime).
  1115. //
  1116. // extruder_advance_k : There is an advance factor set.
  1117. //
  1118. // block->steps[E_AXIS] != block->step_event_count : A problem occurs if the move before a retract is too small.
  1119. // In that case, the retract and move will be executed together.
  1120. // This leads to too many advance steps due to a huge e_acceleration.
  1121. // The math is good, but we must avoid retract moves with advance!
  1122. // de_float > 0.0 : Extruder is running forward (e.g., for "Wipe while retracting" (Slic3r) or "Combing" (Cura) moves)
  1123. //
  1124. block->use_advance_lead = block->steps_e
  1125. && (block->steps_x || block->steps_y)
  1126. && extruder_advance_k
  1127. && (uint32_t)block->steps_e != block->step_event_count
  1128. && de_float > 0.0;
  1129. if (block->use_advance_lead)
  1130. block->abs_adv_steps_multiplier8 = lround(
  1131. extruder_advance_k
  1132. * ((advance_ed_ratio < 0.000001) ? de_float / mm_D_float : advance_ed_ratio) // Use the fixed ratio, if set
  1133. * (block->nominal_speed / (float)block->nominal_rate)
  1134. * axis_steps_per_unit[E_AXIS] * 256.0
  1135. );
  1136. #endif
  1137. // Precalculate the division, so when all the trapezoids in the planner queue get recalculated, the division is not repeated.
  1138. block->speed_factor = block->nominal_rate / block->nominal_speed;
  1139. calculate_trapezoid_for_block(block, block->entry_speed, safe_speed);
  1140. // Move the buffer head. From now the block may be picked up by the stepper interrupt controller.
  1141. block_buffer_head = next_buffer_head;
  1142. // Update position
  1143. memcpy(position, target, sizeof(target)); // position[] = target[]
  1144. #ifdef LIN_ADVANCE
  1145. position_float[X_AXIS] = x;
  1146. position_float[Y_AXIS] = y;
  1147. position_float[Z_AXIS] = z;
  1148. position_float[E_AXIS] = e;
  1149. #endif
  1150. // Recalculate the trapezoids to maximize speed at the segment transitions while respecting
  1151. // the machine limits (maximum acceleration and maximum jerk).
  1152. // This runs asynchronously with the stepper interrupt controller, which may
  1153. // interfere with the process.
  1154. planner_recalculate(safe_speed);
  1155. // SERIAL_ECHOPGM("Q");
  1156. // SERIAL_ECHO(int(moves_planned()));
  1157. // SERIAL_ECHOLNPGM("");
  1158. #ifdef PLANNER_DIAGNOSTICS
  1159. planner_update_queue_min_counter();
  1160. #endif /* PLANNER_DIAGNOSTIC */
  1161. st_wake_up();
  1162. }
  1163. #ifdef ENABLE_AUTO_BED_LEVELING
  1164. vector_3 plan_get_position() {
  1165. vector_3 position = vector_3(st_get_position_mm(X_AXIS), st_get_position_mm(Y_AXIS), st_get_position_mm(Z_AXIS));
  1166. //position.debug("in plan_get position");
  1167. //plan_bed_level_matrix.debug("in plan_get bed_level");
  1168. matrix_3x3 inverse = matrix_3x3::transpose(plan_bed_level_matrix);
  1169. //inverse.debug("in plan_get inverse");
  1170. position.apply_rotation(inverse);
  1171. //position.debug("after rotation");
  1172. return position;
  1173. }
  1174. #endif // ENABLE_AUTO_BED_LEVELING
  1175. void plan_set_position(float x, float y, float z, const float &e)
  1176. {
  1177. #ifdef ENABLE_AUTO_BED_LEVELING
  1178. apply_rotation_xyz(plan_bed_level_matrix, x, y, z);
  1179. #endif // ENABLE_AUTO_BED_LEVELING
  1180. // Apply the machine correction matrix.
  1181. if (world2machine_correction_mode != WORLD2MACHINE_CORRECTION_NONE)
  1182. {
  1183. float tmpx = x;
  1184. float tmpy = y;
  1185. x = world2machine_rotation_and_skew[0][0] * tmpx + world2machine_rotation_and_skew[0][1] * tmpy + world2machine_shift[0];
  1186. y = world2machine_rotation_and_skew[1][0] * tmpx + world2machine_rotation_and_skew[1][1] * tmpy + world2machine_shift[1];
  1187. }
  1188. position[X_AXIS] = lround(x*axis_steps_per_unit[X_AXIS]);
  1189. position[Y_AXIS] = lround(y*axis_steps_per_unit[Y_AXIS]);
  1190. #ifdef MESH_BED_LEVELING
  1191. position[Z_AXIS] = mbl.active ?
  1192. lround((z+mbl.get_z(x, y))*axis_steps_per_unit[Z_AXIS]) :
  1193. lround(z*axis_steps_per_unit[Z_AXIS]);
  1194. #else
  1195. position[Z_AXIS] = lround(z*axis_steps_per_unit[Z_AXIS]);
  1196. #endif // ENABLE_MESH_BED_LEVELING
  1197. position[E_AXIS] = lround(e*axis_steps_per_unit[E_AXIS]);
  1198. #ifdef LIN_ADVANCE
  1199. position_float[X_AXIS] = x;
  1200. position_float[Y_AXIS] = y;
  1201. position_float[Z_AXIS] = z;
  1202. position_float[E_AXIS] = e;
  1203. #endif
  1204. st_set_position(position[X_AXIS], position[Y_AXIS], position[Z_AXIS], position[E_AXIS]);
  1205. previous_nominal_speed = 0.0; // Resets planner junction speeds. Assumes start from rest.
  1206. previous_speed[0] = 0.0;
  1207. previous_speed[1] = 0.0;
  1208. previous_speed[2] = 0.0;
  1209. previous_speed[3] = 0.0;
  1210. }
  1211. // Only useful in the bed leveling routine, when the mesh bed leveling is off.
  1212. void plan_set_z_position(const float &z)
  1213. {
  1214. #ifdef LIN_ADVANCE
  1215. position_float[Z_AXIS] = z;
  1216. #endif
  1217. position[Z_AXIS] = lround(z*axis_steps_per_unit[Z_AXIS]);
  1218. st_set_position(position[X_AXIS], position[Y_AXIS], position[Z_AXIS], position[E_AXIS]);
  1219. }
  1220. void plan_set_e_position(const float &e)
  1221. {
  1222. #ifdef LIN_ADVANCE
  1223. position_float[E_AXIS] = e;
  1224. #endif
  1225. position[E_AXIS] = lround(e*axis_steps_per_unit[E_AXIS]);
  1226. st_set_e_position(position[E_AXIS]);
  1227. }
  1228. #ifdef PREVENT_DANGEROUS_EXTRUDE
  1229. void set_extrude_min_temp(float temp)
  1230. {
  1231. extrude_min_temp=temp;
  1232. }
  1233. #endif
  1234. // Calculate the steps/s^2 acceleration rates, based on the mm/s^s
  1235. void reset_acceleration_rates()
  1236. {
  1237. for(int8_t i=0; i < NUM_AXIS; i++)
  1238. {
  1239. axis_steps_per_sqr_second[i] = max_acceleration_units_per_sq_second[i] * axis_steps_per_unit[i];
  1240. }
  1241. }
  1242. unsigned char number_of_blocks() {
  1243. return (block_buffer_head + BLOCK_BUFFER_SIZE - block_buffer_tail) & (BLOCK_BUFFER_SIZE - 1);
  1244. }
  1245. #ifdef PLANNER_DIAGNOSTICS
  1246. uint8_t planner_queue_min()
  1247. {
  1248. return g_cntr_planner_queue_min;
  1249. }
  1250. void planner_queue_min_reset()
  1251. {
  1252. g_cntr_planner_queue_min = moves_planned();
  1253. }
  1254. #endif /* PLANNER_DIAGNOSTICS */
  1255. void planner_add_sd_length(uint16_t sdlen)
  1256. {
  1257. if (block_buffer_head != block_buffer_tail) {
  1258. // The planner buffer is not empty. Get the index of the last buffer line entered,
  1259. // which is (block_buffer_head - 1) modulo BLOCK_BUFFER_SIZE.
  1260. block_buffer[prev_block_index(block_buffer_head)].sdlen += sdlen;
  1261. } else {
  1262. // There is no line stored in the planner buffer, which means the last command does not need to be revertible,
  1263. // at a power panic, so the length of this command may be forgotten.
  1264. }
  1265. }
  1266. uint16_t planner_calc_sd_length()
  1267. {
  1268. unsigned char _block_buffer_head = block_buffer_head;
  1269. unsigned char _block_buffer_tail = block_buffer_tail;
  1270. uint16_t sdlen = 0;
  1271. while (_block_buffer_head != _block_buffer_tail)
  1272. {
  1273. sdlen += block_buffer[_block_buffer_tail].sdlen;
  1274. _block_buffer_tail = (_block_buffer_tail + 1) & (BLOCK_BUFFER_SIZE - 1);
  1275. }
  1276. return sdlen;
  1277. }