Marlin_main.cpp 260 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744374537463747374837493750375137523753375437553756375737583759376037613762376337643765376637673768376937703771377237733774377537763777377837793780378137823783378437853786378737883789379037913792379337943795379637973798379938003801380238033804380538063807380838093810381138123813381438153816381738183819382038213822382338243825382638273828382938303831383238333834383538363837383838393840384138423843384438453846384738483849385038513852385338543855385638573858385938603861386238633864386538663867386838693870387138723873387438753876387738783879388038813882388338843885388638873888388938903891389238933894389538963897389838993900390139023903390439053906390739083909391039113912391339143915391639173918391939203921392239233924392539263927392839293930393139323933393439353936393739383939394039413942394339443945394639473948394939503951395239533954395539563957395839593960396139623963396439653966396739683969397039713972397339743975397639773978397939803981398239833984398539863987398839893990399139923993399439953996399739983999400040014002400340044005400640074008400940104011401240134014401540164017401840194020402140224023402440254026402740284029403040314032403340344035403640374038403940404041404240434044404540464047404840494050405140524053405440554056405740584059406040614062406340644065406640674068406940704071407240734074407540764077407840794080408140824083408440854086408740884089409040914092409340944095409640974098409941004101410241034104410541064107410841094110411141124113411441154116411741184119412041214122412341244125412641274128412941304131413241334134413541364137413841394140414141424143414441454146414741484149415041514152415341544155415641574158415941604161416241634164416541664167416841694170417141724173417441754176417741784179418041814182418341844185418641874188418941904191419241934194419541964197419841994200420142024203420442054206420742084209421042114212421342144215421642174218421942204221422242234224422542264227422842294230423142324233423442354236423742384239424042414242424342444245424642474248424942504251425242534254425542564257425842594260426142624263426442654266426742684269427042714272427342744275427642774278427942804281428242834284428542864287428842894290429142924293429442954296429742984299430043014302430343044305430643074308430943104311431243134314431543164317431843194320432143224323432443254326432743284329433043314332433343344335433643374338433943404341434243434344434543464347434843494350435143524353435443554356435743584359436043614362436343644365436643674368436943704371437243734374437543764377437843794380438143824383438443854386438743884389439043914392439343944395439643974398439944004401440244034404440544064407440844094410441144124413441444154416441744184419442044214422442344244425442644274428442944304431443244334434443544364437443844394440444144424443444444454446444744484449445044514452445344544455445644574458445944604461446244634464446544664467446844694470447144724473447444754476447744784479448044814482448344844485448644874488448944904491449244934494449544964497449844994500450145024503450445054506450745084509451045114512451345144515451645174518451945204521452245234524452545264527452845294530453145324533453445354536453745384539454045414542454345444545454645474548454945504551455245534554455545564557455845594560456145624563456445654566456745684569457045714572457345744575457645774578457945804581458245834584458545864587458845894590459145924593459445954596459745984599460046014602460346044605460646074608460946104611461246134614461546164617461846194620462146224623462446254626462746284629463046314632463346344635463646374638463946404641464246434644464546464647464846494650465146524653465446554656465746584659466046614662466346644665466646674668466946704671467246734674467546764677467846794680468146824683468446854686468746884689469046914692469346944695469646974698469947004701470247034704470547064707470847094710471147124713471447154716471747184719472047214722472347244725472647274728472947304731473247334734473547364737473847394740474147424743474447454746474747484749475047514752475347544755475647574758475947604761476247634764476547664767476847694770477147724773477447754776477747784779478047814782478347844785478647874788478947904791479247934794479547964797479847994800480148024803480448054806480748084809481048114812481348144815481648174818481948204821482248234824482548264827482848294830483148324833483448354836483748384839484048414842484348444845484648474848484948504851485248534854485548564857485848594860486148624863486448654866486748684869487048714872487348744875487648774878487948804881488248834884488548864887488848894890489148924893489448954896489748984899490049014902490349044905490649074908490949104911491249134914491549164917491849194920492149224923492449254926492749284929493049314932493349344935493649374938493949404941494249434944494549464947494849494950495149524953495449554956495749584959496049614962496349644965496649674968496949704971497249734974497549764977497849794980498149824983498449854986498749884989499049914992499349944995499649974998499950005001500250035004500550065007500850095010501150125013501450155016501750185019502050215022502350245025502650275028502950305031503250335034503550365037503850395040504150425043504450455046504750485049505050515052505350545055505650575058505950605061506250635064506550665067506850695070507150725073507450755076507750785079508050815082508350845085508650875088508950905091509250935094509550965097509850995100510151025103510451055106510751085109511051115112511351145115511651175118511951205121512251235124512551265127512851295130513151325133513451355136513751385139514051415142514351445145514651475148514951505151515251535154515551565157515851595160516151625163516451655166516751685169517051715172517351745175517651775178517951805181518251835184518551865187518851895190519151925193519451955196519751985199520052015202520352045205520652075208520952105211521252135214521552165217521852195220522152225223522452255226522752285229523052315232523352345235523652375238523952405241524252435244524552465247524852495250525152525253525452555256525752585259526052615262526352645265526652675268526952705271527252735274527552765277527852795280528152825283528452855286528752885289529052915292529352945295529652975298529953005301530253035304530553065307530853095310531153125313531453155316531753185319532053215322532353245325532653275328532953305331533253335334533553365337533853395340534153425343534453455346534753485349535053515352535353545355535653575358535953605361536253635364536553665367536853695370537153725373537453755376537753785379538053815382538353845385538653875388538953905391539253935394539553965397539853995400540154025403540454055406540754085409541054115412541354145415541654175418541954205421542254235424542554265427542854295430543154325433543454355436543754385439544054415442544354445445544654475448544954505451545254535454545554565457545854595460546154625463546454655466546754685469547054715472547354745475547654775478547954805481548254835484548554865487548854895490549154925493549454955496549754985499550055015502550355045505550655075508550955105511551255135514551555165517551855195520552155225523552455255526552755285529553055315532553355345535553655375538553955405541554255435544554555465547554855495550555155525553555455555556555755585559556055615562556355645565556655675568556955705571557255735574557555765577557855795580558155825583558455855586558755885589559055915592559355945595559655975598559956005601560256035604560556065607560856095610561156125613561456155616561756185619562056215622562356245625562656275628562956305631563256335634563556365637563856395640564156425643564456455646564756485649565056515652565356545655565656575658565956605661566256635664566556665667566856695670567156725673567456755676567756785679568056815682568356845685568656875688568956905691569256935694569556965697569856995700570157025703570457055706570757085709571057115712571357145715571657175718571957205721572257235724572557265727572857295730573157325733573457355736573757385739574057415742574357445745574657475748574957505751575257535754575557565757575857595760576157625763576457655766576757685769577057715772577357745775577657775778577957805781578257835784578557865787578857895790579157925793579457955796579757985799580058015802580358045805580658075808580958105811581258135814581558165817581858195820582158225823582458255826582758285829583058315832583358345835583658375838583958405841584258435844584558465847584858495850585158525853585458555856585758585859586058615862586358645865586658675868586958705871587258735874587558765877587858795880588158825883588458855886588758885889589058915892589358945895589658975898589959005901590259035904590559065907590859095910591159125913591459155916591759185919592059215922592359245925592659275928592959305931593259335934593559365937593859395940594159425943594459455946594759485949595059515952595359545955595659575958595959605961596259635964596559665967596859695970597159725973597459755976597759785979598059815982598359845985598659875988598959905991599259935994599559965997599859996000600160026003600460056006600760086009601060116012601360146015601660176018601960206021602260236024602560266027602860296030603160326033603460356036603760386039604060416042604360446045604660476048604960506051605260536054605560566057605860596060606160626063606460656066606760686069607060716072607360746075607660776078607960806081608260836084608560866087608860896090609160926093609460956096609760986099610061016102610361046105610661076108610961106111611261136114611561166117611861196120612161226123612461256126612761286129613061316132613361346135613661376138613961406141614261436144614561466147614861496150615161526153615461556156615761586159616061616162616361646165616661676168616961706171617261736174617561766177617861796180618161826183618461856186618761886189619061916192619361946195619661976198619962006201620262036204620562066207620862096210621162126213621462156216621762186219622062216222622362246225622662276228622962306231623262336234623562366237623862396240624162426243624462456246624762486249625062516252625362546255625662576258625962606261626262636264626562666267626862696270627162726273627462756276627762786279628062816282628362846285628662876288628962906291629262936294629562966297629862996300630163026303630463056306630763086309631063116312631363146315631663176318631963206321632263236324632563266327632863296330633163326333633463356336633763386339634063416342634363446345634663476348634963506351635263536354635563566357635863596360636163626363636463656366636763686369637063716372637363746375637663776378637963806381638263836384638563866387638863896390639163926393639463956396639763986399640064016402640364046405640664076408640964106411641264136414641564166417641864196420642164226423642464256426642764286429643064316432643364346435643664376438643964406441644264436444644564466447644864496450645164526453645464556456645764586459646064616462646364646465646664676468646964706471647264736474647564766477647864796480648164826483648464856486648764886489649064916492649364946495649664976498649965006501650265036504650565066507650865096510651165126513651465156516651765186519652065216522652365246525652665276528652965306531653265336534653565366537653865396540654165426543654465456546654765486549655065516552655365546555655665576558655965606561656265636564656565666567656865696570657165726573657465756576657765786579658065816582658365846585658665876588658965906591659265936594659565966597659865996600660166026603660466056606660766086609661066116612661366146615661666176618661966206621662266236624662566266627662866296630663166326633663466356636663766386639664066416642664366446645664666476648664966506651665266536654665566566657665866596660666166626663666466656666666766686669667066716672667366746675667666776678667966806681668266836684668566866687668866896690669166926693669466956696669766986699670067016702670367046705670667076708670967106711671267136714671567166717671867196720672167226723672467256726672767286729673067316732673367346735673667376738673967406741674267436744674567466747674867496750675167526753675467556756675767586759676067616762676367646765676667676768676967706771677267736774677567766777677867796780678167826783678467856786678767886789679067916792679367946795679667976798679968006801680268036804680568066807680868096810681168126813681468156816681768186819682068216822682368246825682668276828682968306831683268336834683568366837683868396840684168426843684468456846684768486849685068516852685368546855685668576858685968606861686268636864686568666867686868696870687168726873687468756876687768786879688068816882688368846885688668876888688968906891689268936894689568966897689868996900690169026903690469056906690769086909691069116912691369146915691669176918691969206921692269236924692569266927692869296930693169326933693469356936693769386939694069416942694369446945694669476948694969506951695269536954695569566957695869596960696169626963696469656966696769686969697069716972697369746975697669776978697969806981698269836984698569866987698869896990699169926993699469956996699769986999700070017002700370047005700670077008700970107011701270137014701570167017701870197020702170227023702470257026702770287029703070317032703370347035703670377038703970407041704270437044704570467047704870497050705170527053705470557056705770587059706070617062706370647065706670677068706970707071707270737074707570767077707870797080708170827083708470857086708770887089709070917092709370947095709670977098709971007101710271037104710571067107710871097110711171127113711471157116711771187119712071217122712371247125712671277128712971307131713271337134713571367137713871397140714171427143714471457146714771487149715071517152715371547155715671577158715971607161716271637164716571667167716871697170717171727173717471757176717771787179718071817182718371847185718671877188718971907191719271937194719571967197719871997200720172027203720472057206720772087209721072117212721372147215721672177218721972207221722272237224722572267227722872297230723172327233723472357236723772387239724072417242724372447245724672477248724972507251725272537254725572567257725872597260726172627263726472657266726772687269727072717272727372747275727672777278727972807281728272837284728572867287728872897290729172927293729472957296729772987299730073017302730373047305730673077308730973107311731273137314731573167317731873197320732173227323732473257326732773287329733073317332733373347335733673377338733973407341734273437344734573467347734873497350735173527353735473557356735773587359736073617362736373647365736673677368736973707371737273737374737573767377737873797380738173827383738473857386738773887389739073917392739373947395739673977398739974007401740274037404740574067407740874097410741174127413741474157416741774187419742074217422742374247425742674277428742974307431743274337434743574367437743874397440744174427443744474457446744774487449745074517452745374547455745674577458745974607461746274637464746574667467746874697470747174727473747474757476747774787479748074817482748374847485748674877488748974907491749274937494749574967497749874997500750175027503750475057506750775087509751075117512751375147515751675177518751975207521752275237524752575267527752875297530753175327533753475357536753775387539754075417542754375447545754675477548754975507551755275537554755575567557755875597560756175627563756475657566756775687569757075717572757375747575757675777578757975807581758275837584758575867587758875897590759175927593759475957596759775987599760076017602760376047605760676077608760976107611761276137614761576167617761876197620762176227623762476257626762776287629763076317632763376347635763676377638763976407641764276437644764576467647764876497650765176527653765476557656765776587659766076617662766376647665766676677668766976707671767276737674767576767677767876797680768176827683768476857686768776887689769076917692769376947695769676977698769977007701770277037704770577067707770877097710771177127713771477157716771777187719772077217722772377247725772677277728772977307731773277337734773577367737773877397740774177427743774477457746774777487749775077517752775377547755775677577758775977607761776277637764776577667767776877697770777177727773777477757776777777787779778077817782778377847785778677877788778977907791779277937794779577967797779877997800780178027803780478057806780778087809781078117812781378147815781678177818781978207821782278237824782578267827782878297830
  1. /* -*- c++ -*- */
  2. /*
  3. Reprap firmware based on Sprinter and grbl.
  4. Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
  5. This program is free software: you can redistribute it and/or modify
  6. it under the terms of the GNU General Public License as published by
  7. the Free Software Foundation, either version 3 of the License, or
  8. (at your option) any later version.
  9. This program is distributed in the hope that it will be useful,
  10. but WITHOUT ANY WARRANTY; without even the implied warranty of
  11. MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  12. GNU General Public License for more details.
  13. You should have received a copy of the GNU General Public License
  14. along with this program. If not, see <http://www.gnu.org/licenses/>.
  15. */
  16. /*
  17. This firmware is a mashup between Sprinter and grbl.
  18. (https://github.com/kliment/Sprinter)
  19. (https://github.com/simen/grbl/tree)
  20. It has preliminary support for Matthew Roberts advance algorithm
  21. http://reprap.org/pipermail/reprap-dev/2011-May/003323.html
  22. */
  23. #include "Marlin.h"
  24. #ifdef ENABLE_AUTO_BED_LEVELING
  25. #include "vector_3.h"
  26. #ifdef AUTO_BED_LEVELING_GRID
  27. #include "qr_solve.h"
  28. #endif
  29. #endif // ENABLE_AUTO_BED_LEVELING
  30. #ifdef MESH_BED_LEVELING
  31. #include "mesh_bed_leveling.h"
  32. #include "mesh_bed_calibration.h"
  33. #endif
  34. #include "ultralcd.h"
  35. #include "Configuration_prusa.h"
  36. #include "planner.h"
  37. #include "stepper.h"
  38. #include "temperature.h"
  39. #include "motion_control.h"
  40. #include "cardreader.h"
  41. #include "watchdog.h"
  42. #include "ConfigurationStore.h"
  43. #include "language.h"
  44. #include "pins_arduino.h"
  45. #include "math.h"
  46. #include "util.h"
  47. #include <avr/wdt.h>
  48. #include "Dcodes.h"
  49. #ifdef SWSPI
  50. #include "swspi.h"
  51. #endif //SWSPI
  52. #ifdef SWI2C
  53. #include "swi2c.h"
  54. #endif //SWI2C
  55. #ifdef PAT9125
  56. #include "pat9125.h"
  57. #include "fsensor.h"
  58. #endif //PAT9125
  59. #ifdef TMC2130
  60. #include "tmc2130.h"
  61. #endif //TMC2130
  62. #ifdef BLINKM
  63. #include "BlinkM.h"
  64. #include "Wire.h"
  65. #endif
  66. #ifdef ULTRALCD
  67. #include "ultralcd.h"
  68. #endif
  69. #if NUM_SERVOS > 0
  70. #include "Servo.h"
  71. #endif
  72. #if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
  73. #include <SPI.h>
  74. #endif
  75. #define VERSION_STRING "1.0.2"
  76. #include "ultralcd.h"
  77. #include "cmdqueue.h"
  78. // Macros for bit masks
  79. #define BIT(b) (1<<(b))
  80. #define TEST(n,b) (((n)&BIT(b))!=0)
  81. #define SET_BIT(n,b,value) (n) ^= ((-value)^(n)) & (BIT(b))
  82. //Macro for print fan speed
  83. #define FAN_PULSE_WIDTH_LIMIT ((fanSpeed > 100) ? 3 : 4) //time in ms
  84. // look here for descriptions of G-codes: http://linuxcnc.org/handbook/gcode/g-code.html
  85. // http://objects.reprap.org/wiki/Mendel_User_Manual:_RepRapGCodes
  86. //Implemented Codes
  87. //-------------------
  88. // PRUSA CODES
  89. // P F - Returns FW versions
  90. // P R - Returns revision of printer
  91. // G0 -> G1
  92. // G1 - Coordinated Movement X Y Z E
  93. // G2 - CW ARC
  94. // G3 - CCW ARC
  95. // G4 - Dwell S<seconds> or P<milliseconds>
  96. // G10 - retract filament according to settings of M207
  97. // G11 - retract recover filament according to settings of M208
  98. // G28 - Home all Axis
  99. // G29 - Detailed Z-Probe, probes the bed at 3 or more points. Will fail if you haven't homed yet.
  100. // G30 - Single Z Probe, probes bed at current XY location.
  101. // G31 - Dock sled (Z_PROBE_SLED only)
  102. // G32 - Undock sled (Z_PROBE_SLED only)
  103. // G80 - Automatic mesh bed leveling
  104. // G81 - Print bed profile
  105. // G90 - Use Absolute Coordinates
  106. // G91 - Use Relative Coordinates
  107. // G92 - Set current position to coordinates given
  108. // M Codes
  109. // M0 - Unconditional stop - Wait for user to press a button on the LCD (Only if ULTRA_LCD is enabled)
  110. // M1 - Same as M0
  111. // M17 - Enable/Power all stepper motors
  112. // M18 - Disable all stepper motors; same as M84
  113. // M20 - List SD card
  114. // M21 - Init SD card
  115. // M22 - Release SD card
  116. // M23 - Select SD file (M23 filename.g)
  117. // M24 - Start/resume SD print
  118. // M25 - Pause SD print
  119. // M26 - Set SD position in bytes (M26 S12345)
  120. // M27 - Report SD print status
  121. // M28 - Start SD write (M28 filename.g)
  122. // M29 - Stop SD write
  123. // M30 - Delete file from SD (M30 filename.g)
  124. // M31 - Output time since last M109 or SD card start to serial
  125. // M32 - Select file and start SD print (Can be used _while_ printing from SD card files):
  126. // syntax "M32 /path/filename#", or "M32 S<startpos bytes> !filename#"
  127. // Call gcode file : "M32 P !filename#" and return to caller file after finishing (similar to #include).
  128. // The '#' is necessary when calling from within sd files, as it stops buffer prereading
  129. // M42 - Change pin status via gcode Use M42 Px Sy to set pin x to value y, when omitting Px the onboard led will be used.
  130. // M80 - Turn on Power Supply
  131. // M81 - Turn off Power Supply
  132. // M82 - Set E codes absolute (default)
  133. // M83 - Set E codes relative while in Absolute Coordinates (G90) mode
  134. // M84 - Disable steppers until next move,
  135. // or use S<seconds> to specify an inactivity timeout, after which the steppers will be disabled. S0 to disable the timeout.
  136. // M85 - Set inactivity shutdown timer with parameter S<seconds>. To disable set zero (default)
  137. // M92 - Set axis_steps_per_unit - same syntax as G92
  138. // M104 - Set extruder target temp
  139. // M105 - Read current temp
  140. // M106 - Fan on
  141. // M107 - Fan off
  142. // M109 - Sxxx Wait for extruder current temp to reach target temp. Waits only when heating
  143. // Rxxx Wait for extruder current temp to reach target temp. Waits when heating and cooling
  144. // IF AUTOTEMP is enabled, S<mintemp> B<maxtemp> F<factor>. Exit autotemp by any M109 without F
  145. // M112 - Emergency stop
  146. // M113 - Get or set the timeout interval for Host Keepalive "busy" messages
  147. // M114 - Output current position to serial port
  148. // M115 - Capabilities string
  149. // M117 - display message
  150. // M119 - Output Endstop status to serial port
  151. // M126 - Solenoid Air Valve Open (BariCUDA support by jmil)
  152. // M127 - Solenoid Air Valve Closed (BariCUDA vent to atmospheric pressure by jmil)
  153. // M128 - EtoP Open (BariCUDA EtoP = electricity to air pressure transducer by jmil)
  154. // M129 - EtoP Closed (BariCUDA EtoP = electricity to air pressure transducer by jmil)
  155. // M140 - Set bed target temp
  156. // M150 - Set BlinkM Color Output R: Red<0-255> U(!): Green<0-255> B: Blue<0-255> over i2c, G for green does not work.
  157. // M190 - Sxxx Wait for bed current temp to reach target temp. Waits only when heating
  158. // Rxxx Wait for bed current temp to reach target temp. Waits when heating and cooling
  159. // M200 D<millimeters>- set filament diameter and set E axis units to cubic millimeters (use S0 to set back to millimeters).
  160. // M201 - Set max acceleration in units/s^2 for print moves (M201 X1000 Y1000)
  161. // M202 - Set max acceleration in units/s^2 for travel moves (M202 X1000 Y1000) Unused in Marlin!!
  162. // M203 - Set maximum feedrate that your machine can sustain (M203 X200 Y200 Z300 E10000) in mm/sec
  163. // M204 - Set default acceleration: S normal moves T filament only moves (M204 S3000 T7000) in mm/sec^2 also sets minimum segment time in ms (B20000) to prevent buffer under-runs and M20 minimum feedrate
  164. // M205 - advanced settings: minimum travel speed S=while printing T=travel only, B=minimum segment time X= maximum xy jerk, Z=maximum Z jerk, E=maximum E jerk
  165. // M206 - set additional homing offset
  166. // M207 - set retract length S[positive mm] F[feedrate mm/min] Z[additional zlift/hop], stays in mm regardless of M200 setting
  167. // M208 - set recover=unretract length S[positive mm surplus to the M207 S*] F[feedrate mm/sec]
  168. // M209 - S<1=true/0=false> enable automatic retract detect if the slicer did not support G10/11: every normal extrude-only move will be classified as retract depending on the direction.
  169. // M218 - set hotend offset (in mm): T<extruder_number> X<offset_on_X> Y<offset_on_Y>
  170. // M220 S<factor in percent>- set speed factor override percentage
  171. // M221 S<factor in percent>- set extrude factor override percentage
  172. // M226 P<pin number> S<pin state>- Wait until the specified pin reaches the state required
  173. // M240 - Trigger a camera to take a photograph
  174. // M250 - Set LCD contrast C<contrast value> (value 0..63)
  175. // M280 - set servo position absolute. P: servo index, S: angle or microseconds
  176. // M300 - Play beep sound S<frequency Hz> P<duration ms>
  177. // M301 - Set PID parameters P I and D
  178. // M302 - Allow cold extrudes, or set the minimum extrude S<temperature>.
  179. // M303 - PID relay autotune S<temperature> sets the target temperature. (default target temperature = 150C)
  180. // M304 - Set bed PID parameters P I and D
  181. // M400 - Finish all moves
  182. // M401 - Lower z-probe if present
  183. // M402 - Raise z-probe if present
  184. // M404 - N<dia in mm> Enter the nominal filament width (3mm, 1.75mm ) or will display nominal filament width without parameters
  185. // M405 - Turn on Filament Sensor extrusion control. Optional D<delay in cm> to set delay in centimeters between sensor and extruder
  186. // M406 - Turn off Filament Sensor extrusion control
  187. // M407 - Displays measured filament diameter
  188. // M500 - stores parameters in EEPROM
  189. // M501 - reads parameters from EEPROM (if you need reset them after you changed them temporarily).
  190. // M502 - reverts to the default "factory settings". You still need to store them in EEPROM afterwards if you want to.
  191. // M503 - print the current settings (from memory not from EEPROM)
  192. // M509 - force language selection on next restart
  193. // M540 - Use S[0|1] to enable or disable the stop SD card print on endstop hit (requires ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED)
  194. // M600 - Pause for filament change X[pos] Y[pos] Z[relative lift] E[initial retract] L[later retract distance for removal]
  195. // M605 - Set dual x-carriage movement mode: S<mode> [ X<duplication x-offset> R<duplication temp offset> ]
  196. // M900 - Set LIN_ADVANCE options, if enabled. See Configuration_adv.h for details.
  197. // M907 - Set digital trimpot motor current using axis codes.
  198. // M908 - Control digital trimpot directly.
  199. // M350 - Set microstepping mode.
  200. // M351 - Toggle MS1 MS2 pins directly.
  201. // M928 - Start SD logging (M928 filename.g) - ended by M29
  202. // M999 - Restart after being stopped by error
  203. //Stepper Movement Variables
  204. //===========================================================================
  205. //=============================imported variables============================
  206. //===========================================================================
  207. //===========================================================================
  208. //=============================public variables=============================
  209. //===========================================================================
  210. #ifdef SDSUPPORT
  211. CardReader card;
  212. #endif
  213. unsigned long PingTime = millis();
  214. union Data
  215. {
  216. byte b[2];
  217. int value;
  218. };
  219. float homing_feedrate[] = HOMING_FEEDRATE;
  220. // Currently only the extruder axis may be switched to a relative mode.
  221. // Other axes are always absolute or relative based on the common relative_mode flag.
  222. bool axis_relative_modes[] = AXIS_RELATIVE_MODES;
  223. int feedmultiply=100; //100->1 200->2
  224. int saved_feedmultiply;
  225. int extrudemultiply=100; //100->1 200->2
  226. int extruder_multiply[EXTRUDERS] = {100
  227. #if EXTRUDERS > 1
  228. , 100
  229. #if EXTRUDERS > 2
  230. , 100
  231. #endif
  232. #endif
  233. };
  234. int bowden_length[4] = {385, 385, 385, 385};
  235. bool is_usb_printing = false;
  236. bool homing_flag = false;
  237. bool temp_cal_active = false;
  238. unsigned long kicktime = millis()+100000;
  239. unsigned int usb_printing_counter;
  240. int lcd_change_fil_state = 0;
  241. int feedmultiplyBckp = 100;
  242. float HotendTempBckp = 0;
  243. int fanSpeedBckp = 0;
  244. float pause_lastpos[4];
  245. unsigned long pause_time = 0;
  246. unsigned long start_pause_print = millis();
  247. unsigned long t_fan_rising_edge = millis();
  248. //unsigned long load_filament_time;
  249. bool mesh_bed_leveling_flag = false;
  250. bool mesh_bed_run_from_menu = false;
  251. unsigned char lang_selected = 0;
  252. int8_t FarmMode = 0;
  253. bool prusa_sd_card_upload = false;
  254. unsigned int status_number = 0;
  255. unsigned long total_filament_used;
  256. unsigned int heating_status;
  257. unsigned int heating_status_counter;
  258. bool custom_message;
  259. bool loading_flag = false;
  260. unsigned int custom_message_type;
  261. unsigned int custom_message_state;
  262. char snmm_filaments_used = 0;
  263. float distance_from_min[2];
  264. bool fan_state[2];
  265. int fan_edge_counter[2];
  266. int fan_speed[2];
  267. char dir_names[3][9];
  268. bool sortAlpha = false;
  269. bool volumetric_enabled = false;
  270. float filament_size[EXTRUDERS] = { DEFAULT_NOMINAL_FILAMENT_DIA
  271. #if EXTRUDERS > 1
  272. , DEFAULT_NOMINAL_FILAMENT_DIA
  273. #if EXTRUDERS > 2
  274. , DEFAULT_NOMINAL_FILAMENT_DIA
  275. #endif
  276. #endif
  277. };
  278. float volumetric_multiplier[EXTRUDERS] = {1.0
  279. #if EXTRUDERS > 1
  280. , 1.0
  281. #if EXTRUDERS > 2
  282. , 1.0
  283. #endif
  284. #endif
  285. };
  286. float current_position[NUM_AXIS] = { 0.0, 0.0, 0.0, 0.0 };
  287. float add_homing[3]={0,0,0};
  288. float min_pos[3] = { X_MIN_POS, Y_MIN_POS, Z_MIN_POS };
  289. float max_pos[3] = { X_MAX_POS, Y_MAX_POS, Z_MAX_POS };
  290. bool axis_known_position[3] = {false, false, false};
  291. float zprobe_zoffset;
  292. // Extruder offset
  293. #if EXTRUDERS > 1
  294. #define NUM_EXTRUDER_OFFSETS 2 // only in XY plane
  295. float extruder_offset[NUM_EXTRUDER_OFFSETS][EXTRUDERS] = {
  296. #if defined(EXTRUDER_OFFSET_X) && defined(EXTRUDER_OFFSET_Y)
  297. EXTRUDER_OFFSET_X, EXTRUDER_OFFSET_Y
  298. #endif
  299. };
  300. #endif
  301. uint8_t active_extruder = 0;
  302. int fanSpeed=0;
  303. #ifdef FWRETRACT
  304. bool autoretract_enabled=false;
  305. bool retracted[EXTRUDERS]={false
  306. #if EXTRUDERS > 1
  307. , false
  308. #if EXTRUDERS > 2
  309. , false
  310. #endif
  311. #endif
  312. };
  313. bool retracted_swap[EXTRUDERS]={false
  314. #if EXTRUDERS > 1
  315. , false
  316. #if EXTRUDERS > 2
  317. , false
  318. #endif
  319. #endif
  320. };
  321. float retract_length = RETRACT_LENGTH;
  322. float retract_length_swap = RETRACT_LENGTH_SWAP;
  323. float retract_feedrate = RETRACT_FEEDRATE;
  324. float retract_zlift = RETRACT_ZLIFT;
  325. float retract_recover_length = RETRACT_RECOVER_LENGTH;
  326. float retract_recover_length_swap = RETRACT_RECOVER_LENGTH_SWAP;
  327. float retract_recover_feedrate = RETRACT_RECOVER_FEEDRATE;
  328. #endif
  329. #ifdef ULTIPANEL
  330. #ifdef PS_DEFAULT_OFF
  331. bool powersupply = false;
  332. #else
  333. bool powersupply = true;
  334. #endif
  335. #endif
  336. bool cancel_heatup = false ;
  337. #ifdef HOST_KEEPALIVE_FEATURE
  338. int busy_state = NOT_BUSY;
  339. static long prev_busy_signal_ms = -1;
  340. uint8_t host_keepalive_interval = HOST_KEEPALIVE_INTERVAL;
  341. #else
  342. #define host_keepalive();
  343. #define KEEPALIVE_STATE(n);
  344. #endif
  345. #ifdef FILAMENT_SENSOR
  346. //Variables for Filament Sensor input
  347. float filament_width_nominal=DEFAULT_NOMINAL_FILAMENT_DIA; //Set nominal filament width, can be changed with M404
  348. bool filament_sensor=false; //M405 turns on filament_sensor control, M406 turns it off
  349. float filament_width_meas=DEFAULT_MEASURED_FILAMENT_DIA; //Stores the measured filament diameter
  350. signed char measurement_delay[MAX_MEASUREMENT_DELAY+1]; //ring buffer to delay measurement store extruder factor after subtracting 100
  351. int delay_index1=0; //index into ring buffer
  352. int delay_index2=-1; //index into ring buffer - set to -1 on startup to indicate ring buffer needs to be initialized
  353. float delay_dist=0; //delay distance counter
  354. int meas_delay_cm = MEASUREMENT_DELAY_CM; //distance delay setting
  355. #endif
  356. const char errormagic[] PROGMEM = "Error:";
  357. const char echomagic[] PROGMEM = "echo:";
  358. //===========================================================================
  359. //=============================Private Variables=============================
  360. //===========================================================================
  361. const char axis_codes[NUM_AXIS] = {'X', 'Y', 'Z', 'E'};
  362. float destination[NUM_AXIS] = { 0.0, 0.0, 0.0, 0.0};
  363. static float delta[3] = {0.0, 0.0, 0.0};
  364. // For tracing an arc
  365. static float offset[3] = {0.0, 0.0, 0.0};
  366. static float feedrate = 1500.0, next_feedrate, saved_feedrate;
  367. // Determines Absolute or Relative Coordinates.
  368. // Also there is bool axis_relative_modes[] per axis flag.
  369. static bool relative_mode = false;
  370. #ifndef _DISABLE_M42_M226
  371. const int sensitive_pins[] = SENSITIVE_PINS; // Sensitive pin list for M42
  372. #endif //_DISABLE_M42_M226
  373. //static float tt = 0;
  374. //static float bt = 0;
  375. //Inactivity shutdown variables
  376. static unsigned long previous_millis_cmd = 0;
  377. unsigned long max_inactive_time = 0;
  378. static unsigned long stepper_inactive_time = DEFAULT_STEPPER_DEACTIVE_TIME*1000l;
  379. unsigned long starttime=0;
  380. unsigned long stoptime=0;
  381. unsigned long _usb_timer = 0;
  382. static uint8_t tmp_extruder;
  383. bool extruder_under_pressure = true;
  384. bool Stopped=false;
  385. #if NUM_SERVOS > 0
  386. Servo servos[NUM_SERVOS];
  387. #endif
  388. bool CooldownNoWait = true;
  389. bool target_direction;
  390. //Insert variables if CHDK is defined
  391. #ifdef CHDK
  392. unsigned long chdkHigh = 0;
  393. boolean chdkActive = false;
  394. #endif
  395. //===========================================================================
  396. //=============================Routines======================================
  397. //===========================================================================
  398. void get_arc_coordinates();
  399. bool setTargetedHotend(int code);
  400. void serial_echopair_P(const char *s_P, float v)
  401. { serialprintPGM(s_P); SERIAL_ECHO(v); }
  402. void serial_echopair_P(const char *s_P, double v)
  403. { serialprintPGM(s_P); SERIAL_ECHO(v); }
  404. void serial_echopair_P(const char *s_P, unsigned long v)
  405. { serialprintPGM(s_P); SERIAL_ECHO(v); }
  406. #ifdef SDSUPPORT
  407. #include "SdFatUtil.h"
  408. int freeMemory() { return SdFatUtil::FreeRam(); }
  409. #else
  410. extern "C" {
  411. extern unsigned int __bss_end;
  412. extern unsigned int __heap_start;
  413. extern void *__brkval;
  414. int freeMemory() {
  415. int free_memory;
  416. if ((int)__brkval == 0)
  417. free_memory = ((int)&free_memory) - ((int)&__bss_end);
  418. else
  419. free_memory = ((int)&free_memory) - ((int)__brkval);
  420. return free_memory;
  421. }
  422. }
  423. #endif //!SDSUPPORT
  424. void setup_killpin()
  425. {
  426. #if defined(KILL_PIN) && KILL_PIN > -1
  427. SET_INPUT(KILL_PIN);
  428. WRITE(KILL_PIN,HIGH);
  429. #endif
  430. }
  431. // Set home pin
  432. void setup_homepin(void)
  433. {
  434. #if defined(HOME_PIN) && HOME_PIN > -1
  435. SET_INPUT(HOME_PIN);
  436. WRITE(HOME_PIN,HIGH);
  437. #endif
  438. }
  439. void setup_photpin()
  440. {
  441. #if defined(PHOTOGRAPH_PIN) && PHOTOGRAPH_PIN > -1
  442. SET_OUTPUT(PHOTOGRAPH_PIN);
  443. WRITE(PHOTOGRAPH_PIN, LOW);
  444. #endif
  445. }
  446. void setup_powerhold()
  447. {
  448. #if defined(SUICIDE_PIN) && SUICIDE_PIN > -1
  449. SET_OUTPUT(SUICIDE_PIN);
  450. WRITE(SUICIDE_PIN, HIGH);
  451. #endif
  452. #if defined(PS_ON_PIN) && PS_ON_PIN > -1
  453. SET_OUTPUT(PS_ON_PIN);
  454. #if defined(PS_DEFAULT_OFF)
  455. WRITE(PS_ON_PIN, PS_ON_ASLEEP);
  456. #else
  457. WRITE(PS_ON_PIN, PS_ON_AWAKE);
  458. #endif
  459. #endif
  460. }
  461. void suicide()
  462. {
  463. #if defined(SUICIDE_PIN) && SUICIDE_PIN > -1
  464. SET_OUTPUT(SUICIDE_PIN);
  465. WRITE(SUICIDE_PIN, LOW);
  466. #endif
  467. }
  468. void servo_init()
  469. {
  470. #if (NUM_SERVOS >= 1) && defined(SERVO0_PIN) && (SERVO0_PIN > -1)
  471. servos[0].attach(SERVO0_PIN);
  472. #endif
  473. #if (NUM_SERVOS >= 2) && defined(SERVO1_PIN) && (SERVO1_PIN > -1)
  474. servos[1].attach(SERVO1_PIN);
  475. #endif
  476. #if (NUM_SERVOS >= 3) && defined(SERVO2_PIN) && (SERVO2_PIN > -1)
  477. servos[2].attach(SERVO2_PIN);
  478. #endif
  479. #if (NUM_SERVOS >= 4) && defined(SERVO3_PIN) && (SERVO3_PIN > -1)
  480. servos[3].attach(SERVO3_PIN);
  481. #endif
  482. #if (NUM_SERVOS >= 5)
  483. #error "TODO: enter initalisation code for more servos"
  484. #endif
  485. }
  486. static void lcd_language_menu();
  487. void stop_and_save_print_to_ram(float z_move, float e_move);
  488. void restore_print_from_ram_and_continue(float e_move);
  489. extern int8_t CrashDetectMenu;
  490. void crashdet_enable()
  491. {
  492. MYSERIAL.println("crashdet_enable");
  493. tmc2130_sg_stop_on_crash = true;
  494. eeprom_update_byte((uint8_t*)EEPROM_CRASH_DET, 0xFF);
  495. CrashDetectMenu = 1;
  496. }
  497. void crashdet_disable()
  498. {
  499. MYSERIAL.println("crashdet_disable");
  500. tmc2130_sg_stop_on_crash = false;
  501. tmc2130_sg_crash = false;
  502. eeprom_update_byte((uint8_t*)EEPROM_CRASH_DET, 0x00);
  503. CrashDetectMenu = 0;
  504. }
  505. void crashdet_stop_and_save_print()
  506. {
  507. stop_and_save_print_to_ram(10, 0); //XY - no change, Z 10mm up, E - no change
  508. }
  509. void crashdet_restore_print_and_continue()
  510. {
  511. restore_print_from_ram_and_continue(0); //XYZ = orig, E - no change
  512. // babystep_apply();
  513. }
  514. void crashdet_stop_and_save_print2()
  515. {
  516. cli();
  517. planner_abort_hard(); //abort printing
  518. cmdqueue_reset(); //empty cmdqueue
  519. card.sdprinting = false;
  520. card.closefile();
  521. sei();
  522. }
  523. void crashdet_detected()
  524. {
  525. // printf("CRASH_DETECTED");
  526. /* while (!is_buffer_empty())
  527. {
  528. process_commands();
  529. cmdqueue_pop_front();
  530. }*/
  531. st_synchronize();
  532. lcd_update_enable(true);
  533. lcd_implementation_clear();
  534. lcd_update(2);
  535. // Increment crash counter
  536. uint8_t crash_count = eeprom_read_byte((uint8_t*)EEPROM_CRASH_COUNT);
  537. crash_count++;
  538. eeprom_update_byte((uint8_t*)EEPROM_CRASH_COUNT, crash_count);
  539. #ifdef AUTOMATIC_RECOVERY_AFTER_CRASH
  540. bool yesno = true;
  541. #else
  542. bool yesno = lcd_show_fullscreen_message_yes_no_and_wait_P(MSG_CRASH_DETECTED, false);
  543. #endif
  544. lcd_update_enable(true);
  545. lcd_update(2);
  546. lcd_setstatuspgm(WELCOME_MSG);
  547. if (yesno)
  548. {
  549. enquecommand_P(PSTR("G28 X"));
  550. enquecommand_P(PSTR("G28 Y"));
  551. enquecommand_P(PSTR("CRASH_RECOVER"));
  552. }
  553. else
  554. {
  555. enquecommand_P(PSTR("CRASH_CANCEL"));
  556. }
  557. }
  558. void crashdet_recover()
  559. {
  560. crashdet_restore_print_and_continue();
  561. tmc2130_sg_stop_on_crash = true;
  562. }
  563. void crashdet_cancel()
  564. {
  565. card.sdprinting = false;
  566. card.closefile();
  567. tmc2130_sg_stop_on_crash = true;
  568. }
  569. #ifdef MESH_BED_LEVELING
  570. enum MeshLevelingState { MeshReport, MeshStart, MeshNext, MeshSet };
  571. #endif
  572. // Factory reset function
  573. // This function is used to erase parts or whole EEPROM memory which is used for storing calibration and and so on.
  574. // Level input parameter sets depth of reset
  575. // Quiet parameter masks all waitings for user interact.
  576. int er_progress = 0;
  577. void factory_reset(char level, bool quiet)
  578. {
  579. lcd_implementation_clear();
  580. int cursor_pos = 0;
  581. switch (level) {
  582. // Level 0: Language reset
  583. case 0:
  584. WRITE(BEEPER, HIGH);
  585. _delay_ms(100);
  586. WRITE(BEEPER, LOW);
  587. lcd_force_language_selection();
  588. break;
  589. //Level 1: Reset statistics
  590. case 1:
  591. WRITE(BEEPER, HIGH);
  592. _delay_ms(100);
  593. WRITE(BEEPER, LOW);
  594. eeprom_update_dword((uint32_t *)EEPROM_TOTALTIME, 0);
  595. eeprom_update_dword((uint32_t *)EEPROM_FILAMENTUSED, 0);
  596. eeprom_update_byte((uint8_t *)EEPROM_POWER_COUNT, 0);
  597. eeprom_update_byte((uint8_t *)EEPROM_CRASH_COUNT, 0);
  598. eeprom_update_byte((uint8_t *)EEPROM_FERROR_COUNT, 0);
  599. lcd_menu_statistics();
  600. break;
  601. // Level 2: Prepare for shipping
  602. case 2:
  603. //lcd_printPGM(PSTR("Factory RESET"));
  604. //lcd_print_at_PGM(1,2,PSTR("Shipping prep"));
  605. // Force language selection at the next boot up.
  606. lcd_force_language_selection();
  607. // Force the "Follow calibration flow" message at the next boot up.
  608. calibration_status_store(CALIBRATION_STATUS_Z_CALIBRATION);
  609. eeprom_write_byte((uint8_t*)EEPROM_WIZARD_ACTIVE, 1); //run wizard
  610. farm_no = 0;
  611. farm_mode == false;
  612. eeprom_update_byte((uint8_t*)EEPROM_FARM_MODE, farm_mode);
  613. EEPROM_save_B(EEPROM_FARM_NUMBER, &farm_no);
  614. WRITE(BEEPER, HIGH);
  615. _delay_ms(100);
  616. WRITE(BEEPER, LOW);
  617. //_delay_ms(2000);
  618. break;
  619. // Level 3: erase everything, whole EEPROM will be set to 0xFF
  620. case 3:
  621. lcd_printPGM(PSTR("Factory RESET"));
  622. lcd_print_at_PGM(1, 2, PSTR("ERASING all data"));
  623. WRITE(BEEPER, HIGH);
  624. _delay_ms(100);
  625. WRITE(BEEPER, LOW);
  626. er_progress = 0;
  627. lcd_print_at_PGM(3, 3, PSTR(" "));
  628. lcd_implementation_print_at(3, 3, er_progress);
  629. // Erase EEPROM
  630. for (int i = 0; i < 4096; i++) {
  631. eeprom_write_byte((uint8_t*)i, 0xFF);
  632. if (i % 41 == 0) {
  633. er_progress++;
  634. lcd_print_at_PGM(3, 3, PSTR(" "));
  635. lcd_implementation_print_at(3, 3, er_progress);
  636. lcd_printPGM(PSTR("%"));
  637. }
  638. }
  639. break;
  640. case 4:
  641. bowden_menu();
  642. break;
  643. default:
  644. break;
  645. }
  646. }
  647. #include "LiquidCrystal.h"
  648. extern LiquidCrystal lcd;
  649. FILE _lcdout = {0};
  650. int lcd_putchar(char c, FILE *stream)
  651. {
  652. lcd.write(c);
  653. return 0;
  654. }
  655. FILE _uartout = {0};
  656. int uart_putchar(char c, FILE *stream)
  657. {
  658. MYSERIAL.write(c);
  659. return 0;
  660. }
  661. void lcd_splash()
  662. {
  663. // lcd_print_at_PGM(0, 1, PSTR(" Original Prusa "));
  664. // lcd_print_at_PGM(0, 2, PSTR(" 3D Printers "));
  665. // lcd.print_P(PSTR("\x1b[1;3HOriginal Prusa\x1b[2;4H3D Printers"));
  666. fputs_P(PSTR(ESC_2J ESC_H(1,1) "Original Prusa i3" ESC_H(3,2) "Prusa Research"), lcdout);
  667. }
  668. // "Setup" function is called by the Arduino framework on startup.
  669. // Before startup, the Timers-functions (PWM)/Analog RW and HardwareSerial provided by the Arduino-code
  670. // are initialized by the main() routine provided by the Arduino framework.
  671. void setup()
  672. {
  673. lcd_init();
  674. fdev_setup_stream(lcdout, lcd_putchar, NULL, _FDEV_SETUP_WRITE); //setup lcdout stream
  675. lcd_splash();
  676. setup_killpin();
  677. setup_powerhold();
  678. farm_mode = eeprom_read_byte((uint8_t*)EEPROM_FARM_MODE);
  679. EEPROM_read_B(EEPROM_FARM_NUMBER, &farm_no);
  680. if ((farm_mode == 0xFF && farm_no == 0) || (farm_no == 0xFFFF)) farm_mode = false; //if farm_mode has not been stored to eeprom yet and farm number is set to zero or EEPROM is fresh, deactivate farm mode
  681. if (farm_no == 0xFFFF) farm_no = 0;
  682. selectedSerialPort = eeprom_read_byte((uint8_t*)EEPROM_SECOND_SERIAL_ACTIVE);
  683. if (selectedSerialPort == 0xFF) selectedSerialPort = 0;
  684. if (farm_mode)
  685. {
  686. prusa_statistics(8);
  687. selectedSerialPort = 1;
  688. }
  689. MYSERIAL.begin(BAUDRATE);
  690. fdev_setup_stream(uartout, uart_putchar, NULL, _FDEV_SETUP_WRITE); //setup uart out stream
  691. stdout = uartout;
  692. SERIAL_PROTOCOLLNPGM("start");
  693. SERIAL_ECHO_START;
  694. #if 0
  695. SERIAL_ECHOLN("Reading eeprom from 0 to 100: start");
  696. for (int i = 0; i < 4096; ++i) {
  697. int b = eeprom_read_byte((unsigned char*)i);
  698. if (b != 255) {
  699. SERIAL_ECHO(i);
  700. SERIAL_ECHO(":");
  701. SERIAL_ECHO(b);
  702. SERIAL_ECHOLN("");
  703. }
  704. }
  705. SERIAL_ECHOLN("Reading eeprom from 0 to 100: done");
  706. #endif
  707. // Check startup - does nothing if bootloader sets MCUSR to 0
  708. byte mcu = MCUSR;
  709. /* if (mcu & 1) SERIAL_ECHOLNRPGM(MSG_POWERUP);
  710. if (mcu & 2) SERIAL_ECHOLNRPGM(MSG_EXTERNAL_RESET);
  711. if (mcu & 4) SERIAL_ECHOLNRPGM(MSG_BROWNOUT_RESET);
  712. if (mcu & 8) SERIAL_ECHOLNRPGM(MSG_WATCHDOG_RESET);
  713. if (mcu & 32) SERIAL_ECHOLNRPGM(MSG_SOFTWARE_RESET);*/
  714. if (mcu & 1) puts_P(MSG_POWERUP);
  715. if (mcu & 2) puts_P(MSG_EXTERNAL_RESET);
  716. if (mcu & 4) puts_P(MSG_BROWNOUT_RESET);
  717. if (mcu & 8) puts_P(MSG_WATCHDOG_RESET);
  718. if (mcu & 32) puts_P(MSG_SOFTWARE_RESET);
  719. MCUSR = 0;
  720. //SERIAL_ECHORPGM(MSG_MARLIN);
  721. //SERIAL_ECHOLNRPGM(VERSION_STRING);
  722. #ifdef STRING_VERSION_CONFIG_H
  723. #ifdef STRING_CONFIG_H_AUTHOR
  724. SERIAL_ECHO_START;
  725. SERIAL_ECHORPGM(MSG_CONFIGURATION_VER);
  726. SERIAL_ECHOPGM(STRING_VERSION_CONFIG_H);
  727. SERIAL_ECHORPGM(MSG_AUTHOR);
  728. SERIAL_ECHOLNPGM(STRING_CONFIG_H_AUTHOR);
  729. SERIAL_ECHOPGM("Compiled: ");
  730. SERIAL_ECHOLNPGM(__DATE__);
  731. #endif
  732. #endif
  733. SERIAL_ECHO_START;
  734. SERIAL_ECHORPGM(MSG_FREE_MEMORY);
  735. SERIAL_ECHO(freeMemory());
  736. SERIAL_ECHORPGM(MSG_PLANNER_BUFFER_BYTES);
  737. SERIAL_ECHOLN((int)sizeof(block_t)*BLOCK_BUFFER_SIZE);
  738. //lcd_update_enable(false); // why do we need this?? - andre
  739. // loads data from EEPROM if available else uses defaults (and resets step acceleration rate)
  740. Config_RetrieveSettings(EEPROM_OFFSET);
  741. SdFatUtil::set_stack_guard(); //writes magic number at the end of static variables to protect against overwriting static memory by stack
  742. tp_init(); // Initialize temperature loop
  743. lcd_splash(); // we need to do this again, because tp_init() kills lcd
  744. plan_init(); // Initialize planner;
  745. watchdog_init();
  746. #ifdef TMC2130
  747. uint8_t silentMode = eeprom_read_byte((uint8_t*)EEPROM_SILENT);
  748. tmc2130_mode = silentMode?TMC2130_MODE_SILENT:TMC2130_MODE_NORMAL;
  749. uint8_t crashdet = eeprom_read_byte((uint8_t*)EEPROM_CRASH_DET);
  750. if (crashdet)
  751. {
  752. crashdet_enable();
  753. MYSERIAL.println("CrashDetect ENABLED!");
  754. }
  755. else
  756. {
  757. crashdet_disable();
  758. MYSERIAL.println("CrashDetect DISABLED");
  759. }
  760. #endif //TMC2130
  761. #ifdef PAT9125
  762. fsensor_init();
  763. #endif //PAT9125
  764. st_init(); // Initialize stepper, this enables interrupts!
  765. setup_photpin();
  766. servo_init();
  767. // Reset the machine correction matrix.
  768. // It does not make sense to load the correction matrix until the machine is homed.
  769. world2machine_reset();
  770. KEEPALIVE_STATE(PAUSED_FOR_USER);
  771. if (!READ(BTN_ENC))
  772. {
  773. _delay_ms(1000);
  774. if (!READ(BTN_ENC))
  775. {
  776. lcd_implementation_clear();
  777. lcd_printPGM(PSTR("Factory RESET"));
  778. SET_OUTPUT(BEEPER);
  779. WRITE(BEEPER, HIGH);
  780. while (!READ(BTN_ENC));
  781. WRITE(BEEPER, LOW);
  782. _delay_ms(2000);
  783. char level = reset_menu();
  784. factory_reset(level, false);
  785. switch (level) {
  786. case 0: _delay_ms(0); break;
  787. case 1: _delay_ms(0); break;
  788. case 2: _delay_ms(0); break;
  789. case 3: _delay_ms(0); break;
  790. }
  791. // _delay_ms(100);
  792. /*
  793. #ifdef MESH_BED_LEVELING
  794. _delay_ms(2000);
  795. if (!READ(BTN_ENC))
  796. {
  797. WRITE(BEEPER, HIGH);
  798. _delay_ms(100);
  799. WRITE(BEEPER, LOW);
  800. _delay_ms(200);
  801. WRITE(BEEPER, HIGH);
  802. _delay_ms(100);
  803. WRITE(BEEPER, LOW);
  804. int _z = 0;
  805. calibration_status_store(CALIBRATION_STATUS_CALIBRATED);
  806. EEPROM_save_B(EEPROM_BABYSTEP_X, &_z);
  807. EEPROM_save_B(EEPROM_BABYSTEP_Y, &_z);
  808. EEPROM_save_B(EEPROM_BABYSTEP_Z, &_z);
  809. }
  810. else
  811. {
  812. WRITE(BEEPER, HIGH);
  813. _delay_ms(100);
  814. WRITE(BEEPER, LOW);
  815. }
  816. #endif // mesh */
  817. }
  818. }
  819. else
  820. {
  821. //_delay_ms(1000); // wait 1sec to display the splash screen // what's this and why do we need it?? - andre
  822. }
  823. #if defined(CONTROLLERFAN_PIN) && (CONTROLLERFAN_PIN > -1)
  824. SET_OUTPUT(CONTROLLERFAN_PIN); //Set pin used for driver cooling fan
  825. #endif
  826. #if defined(LCD_PWM_PIN) && (LCD_PWM_PIN > -1)
  827. SET_OUTPUT(LCD_PWM_PIN); //Set pin used for driver cooling fan
  828. #endif
  829. #ifdef DIGIPOT_I2C
  830. digipot_i2c_init();
  831. #endif
  832. setup_homepin();
  833. if (1) {
  834. SERIAL_ECHOPGM("initial zsteps on power up: "); MYSERIAL.println(tmc2130_rd_MSCNT(Z_TMC2130_CS));
  835. // try to run to zero phase before powering the Z motor.
  836. // Move in negative direction
  837. WRITE(Z_DIR_PIN,INVERT_Z_DIR);
  838. // Round the current micro-micro steps to micro steps.
  839. for (uint16_t phase = (tmc2130_rd_MSCNT(Z_TMC2130_CS) + 8) >> 4; phase > 0; -- phase) {
  840. // Until the phase counter is reset to zero.
  841. WRITE(Z_STEP_PIN, !INVERT_Z_STEP_PIN);
  842. delay(2);
  843. WRITE(Z_STEP_PIN, INVERT_Z_STEP_PIN);
  844. delay(2);
  845. }
  846. SERIAL_ECHOPGM("initial zsteps after reset: "); MYSERIAL.println(tmc2130_rd_MSCNT(Z_TMC2130_CS));
  847. }
  848. #if defined(Z_AXIS_ALWAYS_ON)
  849. enable_z();
  850. #endif
  851. farm_mode = eeprom_read_byte((uint8_t*)EEPROM_FARM_MODE);
  852. EEPROM_read_B(EEPROM_FARM_NUMBER, &farm_no);
  853. if ((farm_mode == 0xFF && farm_no == 0) || (farm_no == 0xFFFF)) farm_mode = false; //if farm_mode has not been stored to eeprom yet and farm number is set to zero or EEPROM is fresh, deactivate farm mode
  854. if (farm_no == 0xFFFF) farm_no = 0;
  855. if (farm_mode)
  856. {
  857. prusa_statistics(8);
  858. }
  859. // Enable Toshiba FlashAir SD card / WiFi enahanced card.
  860. card.ToshibaFlashAir_enable(eeprom_read_byte((unsigned char*)EEPROM_TOSHIBA_FLASH_AIR_COMPATIBLITY) == 1);
  861. if (eeprom_read_dword((uint32_t*)(EEPROM_TOP - 4)) == 0x0ffffffff &&
  862. eeprom_read_dword((uint32_t*)(EEPROM_TOP - 8)) == 0x0ffffffff) {
  863. // Maiden startup. The firmware has been loaded and first started on a virgin RAMBo board,
  864. // where all the EEPROM entries are set to 0x0ff.
  865. // Once a firmware boots up, it forces at least a language selection, which changes
  866. // EEPROM_LANG to number lower than 0x0ff.
  867. // 1) Set a high power mode.
  868. eeprom_write_byte((uint8_t*)EEPROM_SILENT, 0);
  869. eeprom_write_byte((uint8_t*)EEPROM_WIZARD_ACTIVE, 1); //run wizard
  870. }
  871. // Force SD card update. Otherwise the SD card update is done from loop() on card.checkautostart(false),
  872. // but this times out if a blocking dialog is shown in setup().
  873. card.initsd();
  874. if (eeprom_read_byte((uint8_t*)EEPROM_POWER_COUNT) == 0xff)
  875. eeprom_write_byte((uint8_t*)EEPROM_POWER_COUNT, 0);
  876. if (eeprom_read_byte((uint8_t*)EEPROM_CRASH_COUNT) == 0xff)
  877. eeprom_write_byte((uint8_t*)EEPROM_CRASH_COUNT, 0);
  878. if (eeprom_read_byte((uint8_t*)EEPROM_FERROR_COUNT) == 0xff)
  879. eeprom_write_byte((uint8_t*)EEPROM_FERROR_COUNT, 0);
  880. #ifdef SNMM
  881. if (eeprom_read_dword((uint32_t*)EEPROM_BOWDEN_LENGTH) == 0x0ffffffff) { //bowden length used for SNMM
  882. int _z = BOWDEN_LENGTH;
  883. for(int i = 0; i<4; i++) EEPROM_save_B(EEPROM_BOWDEN_LENGTH + i * 2, &_z);
  884. }
  885. #endif
  886. // In the future, somewhere here would one compare the current firmware version against the firmware version stored in the EEPROM.
  887. // If they differ, an update procedure may need to be performed. At the end of this block, the current firmware version
  888. // is being written into the EEPROM, so the update procedure will be triggered only once.
  889. lang_selected = eeprom_read_byte((uint8_t*)EEPROM_LANG);
  890. if (lang_selected >= LANG_NUM){
  891. lcd_mylang();
  892. }
  893. if (eeprom_read_byte((uint8_t*)EEPROM_TEMP_CAL_ACTIVE) == 255) {
  894. eeprom_write_byte((uint8_t*)EEPROM_TEMP_CAL_ACTIVE, 0);
  895. temp_cal_active = false;
  896. } else temp_cal_active = eeprom_read_byte((uint8_t*)EEPROM_TEMP_CAL_ACTIVE);
  897. if (eeprom_read_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA) == 255) {
  898. //eeprom_write_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 0);
  899. eeprom_write_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 1);
  900. eeprom_write_word(((uint16_t*)EEPROM_PROBE_TEMP_SHIFT) + 0, 8); //40C - 20um - 8usteps
  901. eeprom_write_word(((uint16_t*)EEPROM_PROBE_TEMP_SHIFT) + 1, 24); //45C - 60um - 24usteps
  902. eeprom_write_word(((uint16_t*)EEPROM_PROBE_TEMP_SHIFT) + 2, 48); //50C - 120um - 48usteps
  903. eeprom_write_word(((uint16_t*)EEPROM_PROBE_TEMP_SHIFT) + 3, 80); //55C - 200um - 80usteps
  904. eeprom_write_word(((uint16_t*)EEPROM_PROBE_TEMP_SHIFT) + 4, 120); //60C - 300um - 120usteps
  905. eeprom_write_byte((uint8_t*)EEPROM_TEMP_CAL_ACTIVE, 1);
  906. temp_cal_active = true;
  907. }
  908. if (eeprom_read_byte((uint8_t*)EEPROM_UVLO) == 255) {
  909. eeprom_write_byte((uint8_t*)EEPROM_UVLO, 0);
  910. }
  911. if (eeprom_read_byte((uint8_t*)EEPROM_SD_SORT) == 255) {
  912. eeprom_write_byte((uint8_t*)EEPROM_SD_SORT, 0);
  913. }
  914. check_babystep(); //checking if Z babystep is in allowed range
  915. setup_uvlo_interrupt();
  916. setup_fan_interrupt();
  917. fsensor_setup_interrupt();
  918. for (int i = 0; i<4; i++) EEPROM_read_B(EEPROM_BOWDEN_LENGTH + i * 2, &bowden_length[i]);
  919. #ifndef DEBUG_DISABLE_STARTMSGS
  920. if (eeprom_read_byte((uint8_t*)EEPROM_WIZARD_ACTIVE) == 1) {
  921. lcd_wizard(0);
  922. }
  923. if (eeprom_read_byte((uint8_t*)EEPROM_WIZARD_ACTIVE) == 0) { //dont show calibration status messages if wizard is currently active
  924. if (calibration_status() == CALIBRATION_STATUS_ASSEMBLED ||
  925. calibration_status() == CALIBRATION_STATUS_UNKNOWN) {
  926. // Reset the babystepping values, so the printer will not move the Z axis up when the babystepping is enabled.
  927. eeprom_update_word((uint16_t*)EEPROM_BABYSTEP_Z, 0);
  928. // Show the message.
  929. lcd_show_fullscreen_message_and_wait_P(MSG_FOLLOW_CALIBRATION_FLOW);
  930. }
  931. else if (calibration_status() == CALIBRATION_STATUS_LIVE_ADJUST) {
  932. // Show the message.
  933. lcd_show_fullscreen_message_and_wait_P(MSG_BABYSTEP_Z_NOT_SET);
  934. lcd_update_enable(true);
  935. }
  936. else if (calibration_status() == CALIBRATION_STATUS_CALIBRATED && temp_cal_active == true && calibration_status_pinda() == false) {
  937. //lcd_show_fullscreen_message_and_wait_P(MSG_PINDA_NOT_CALIBRATED);
  938. lcd_update_enable(true);
  939. }
  940. else if (calibration_status() == CALIBRATION_STATUS_Z_CALIBRATION) {
  941. // Show the message.
  942. lcd_show_fullscreen_message_and_wait_P(MSG_FOLLOW_CALIBRATION_FLOW);
  943. }
  944. }
  945. KEEPALIVE_STATE(IN_PROCESS);
  946. #endif //DEBUG_DISABLE_STARTMSGS
  947. lcd_update_enable(true);
  948. lcd_implementation_clear();
  949. lcd_update(2);
  950. // Store the currently running firmware into an eeprom,
  951. // so the next time the firmware gets updated, it will know from which version it has been updated.
  952. update_current_firmware_version_to_eeprom();
  953. if (eeprom_read_byte((uint8_t*)EEPROM_UVLO) == 1) { //previous print was terminated by UVLO
  954. /*
  955. if (lcd_show_fullscreen_message_yes_no_and_wait_P(MSG_RECOVER_PRINT, false)) recover_print();
  956. else {
  957. eeprom_update_byte((uint8_t*)EEPROM_UVLO, 0);
  958. lcd_update_enable(true);
  959. lcd_update(2);
  960. lcd_setstatuspgm(WELCOME_MSG);
  961. }
  962. */
  963. manage_heater(); // Update temperatures
  964. #ifdef DEBUG_UVLO_AUTOMATIC_RECOVER
  965. MYSERIAL.println("Power panic detected!");
  966. MYSERIAL.print("Current bed temp:");
  967. MYSERIAL.println(degBed());
  968. MYSERIAL.print("Saved bed temp:");
  969. MYSERIAL.println((float)eeprom_read_byte((uint8_t*)EEPROM_UVLO_TARGET_BED));
  970. #endif
  971. if ( degBed() > ( (float)eeprom_read_byte((uint8_t*)EEPROM_UVLO_TARGET_BED) - AUTOMATIC_UVLO_BED_TEMP_OFFSET) ){
  972. #ifdef DEBUG_UVLO_AUTOMATIC_RECOVER
  973. MYSERIAL.println("Automatic recovery!");
  974. #endif
  975. recover_print(1);
  976. }
  977. else{
  978. #ifdef DEBUG_UVLO_AUTOMATIC_RECOVER
  979. MYSERIAL.println("Normal recovery!");
  980. #endif
  981. if ( lcd_show_fullscreen_message_yes_no_and_wait_P(MSG_RECOVER_PRINT, false) ) recover_print(0);
  982. else {
  983. eeprom_update_byte((uint8_t*)EEPROM_UVLO, 0);
  984. lcd_update_enable(true);
  985. lcd_update(2);
  986. lcd_setstatuspgm(WELCOME_MSG);
  987. }
  988. }
  989. }
  990. KEEPALIVE_STATE(NOT_BUSY);
  991. wdt_enable(WDTO_4S);
  992. }
  993. #ifdef PAT9125
  994. void fsensor_init() {
  995. int pat9125 = pat9125_init(PAT9125_XRES, PAT9125_YRES);
  996. printf_P(PSTR("PAT9125_init:%d\n"), pat9125);
  997. uint8_t fsensor = eeprom_read_byte((uint8_t*)EEPROM_FSENSOR);
  998. if (!pat9125)
  999. {
  1000. fsensor = 0; //disable sensor
  1001. fsensor_not_responding = true;
  1002. }
  1003. puts_P(PSTR("FSensor "));
  1004. if (fsensor)
  1005. {
  1006. puts_P(PSTR("ENABLED\n"));
  1007. fsensor_enable();
  1008. }
  1009. else
  1010. {
  1011. puts_P(PSTR("DISABLED\n"));
  1012. fsensor_disable();
  1013. }
  1014. }
  1015. #endif //PAT9125
  1016. void trace();
  1017. #define CHUNK_SIZE 64 // bytes
  1018. #define SAFETY_MARGIN 1
  1019. char chunk[CHUNK_SIZE+SAFETY_MARGIN];
  1020. int chunkHead = 0;
  1021. int serial_read_stream() {
  1022. setTargetHotend(0, 0);
  1023. setTargetBed(0);
  1024. lcd_implementation_clear();
  1025. lcd_printPGM(PSTR(" Upload in progress"));
  1026. // first wait for how many bytes we will receive
  1027. uint32_t bytesToReceive;
  1028. // receive the four bytes
  1029. char bytesToReceiveBuffer[4];
  1030. for (int i=0; i<4; i++) {
  1031. int data;
  1032. while ((data = MYSERIAL.read()) == -1) {};
  1033. bytesToReceiveBuffer[i] = data;
  1034. }
  1035. // make it a uint32
  1036. memcpy(&bytesToReceive, &bytesToReceiveBuffer, 4);
  1037. // we're ready, notify the sender
  1038. MYSERIAL.write('+');
  1039. // lock in the routine
  1040. uint32_t receivedBytes = 0;
  1041. while (prusa_sd_card_upload) {
  1042. int i;
  1043. for (i=0; i<CHUNK_SIZE; i++) {
  1044. int data;
  1045. // check if we're not done
  1046. if (receivedBytes == bytesToReceive) {
  1047. break;
  1048. }
  1049. // read the next byte
  1050. while ((data = MYSERIAL.read()) == -1) {};
  1051. receivedBytes++;
  1052. // save it to the chunk
  1053. chunk[i] = data;
  1054. }
  1055. // write the chunk to SD
  1056. card.write_command_no_newline(&chunk[0]);
  1057. // notify the sender we're ready for more data
  1058. MYSERIAL.write('+');
  1059. // for safety
  1060. manage_heater();
  1061. // check if we're done
  1062. if(receivedBytes == bytesToReceive) {
  1063. trace(); // beep
  1064. card.closefile();
  1065. prusa_sd_card_upload = false;
  1066. SERIAL_PROTOCOLLNRPGM(MSG_FILE_SAVED);
  1067. return 0;
  1068. }
  1069. }
  1070. }
  1071. #ifdef HOST_KEEPALIVE_FEATURE
  1072. /**
  1073. * Output a "busy" message at regular intervals
  1074. * while the machine is not accepting commands.
  1075. */
  1076. void host_keepalive() {
  1077. if (farm_mode) return;
  1078. long ms = millis();
  1079. if (host_keepalive_interval && busy_state != NOT_BUSY) {
  1080. if ((ms - prev_busy_signal_ms) < (long)(1000L * host_keepalive_interval)) return;
  1081. switch (busy_state) {
  1082. case IN_HANDLER:
  1083. case IN_PROCESS:
  1084. SERIAL_ECHO_START;
  1085. SERIAL_ECHOLNPGM("busy: processing");
  1086. break;
  1087. case PAUSED_FOR_USER:
  1088. SERIAL_ECHO_START;
  1089. SERIAL_ECHOLNPGM("busy: paused for user");
  1090. break;
  1091. case PAUSED_FOR_INPUT:
  1092. SERIAL_ECHO_START;
  1093. SERIAL_ECHOLNPGM("busy: paused for input");
  1094. break;
  1095. default:
  1096. break;
  1097. }
  1098. }
  1099. prev_busy_signal_ms = ms;
  1100. }
  1101. #endif
  1102. // The loop() function is called in an endless loop by the Arduino framework from the default main() routine.
  1103. // Before loop(), the setup() function is called by the main() routine.
  1104. void loop()
  1105. {
  1106. KEEPALIVE_STATE(NOT_BUSY);
  1107. bool stack_integrity = true;
  1108. if (usb_printing_counter > 0 && millis()-_usb_timer > 1000)
  1109. {
  1110. is_usb_printing = true;
  1111. usb_printing_counter--;
  1112. _usb_timer = millis();
  1113. }
  1114. if (usb_printing_counter == 0)
  1115. {
  1116. is_usb_printing = false;
  1117. }
  1118. if (prusa_sd_card_upload)
  1119. {
  1120. //we read byte-by byte
  1121. serial_read_stream();
  1122. } else
  1123. {
  1124. get_command();
  1125. #ifdef SDSUPPORT
  1126. card.checkautostart(false);
  1127. #endif
  1128. if(buflen)
  1129. {
  1130. cmdbuffer_front_already_processed = false;
  1131. #ifdef SDSUPPORT
  1132. if(card.saving)
  1133. {
  1134. // Saving a G-code file onto an SD-card is in progress.
  1135. // Saving starts with M28, saving until M29 is seen.
  1136. if(strstr_P(CMDBUFFER_CURRENT_STRING, PSTR("M29")) == NULL) {
  1137. card.write_command(CMDBUFFER_CURRENT_STRING);
  1138. if(card.logging)
  1139. process_commands();
  1140. else
  1141. SERIAL_PROTOCOLLNRPGM(MSG_OK);
  1142. } else {
  1143. card.closefile();
  1144. SERIAL_PROTOCOLLNRPGM(MSG_FILE_SAVED);
  1145. }
  1146. } else {
  1147. process_commands();
  1148. }
  1149. #else
  1150. process_commands();
  1151. #endif //SDSUPPORT
  1152. if (! cmdbuffer_front_already_processed && buflen)
  1153. {
  1154. cli();
  1155. union {
  1156. struct {
  1157. char lo;
  1158. char hi;
  1159. } lohi;
  1160. uint16_t value;
  1161. } sdlen;
  1162. sdlen.value = 0;
  1163. if (CMDBUFFER_CURRENT_TYPE == CMDBUFFER_CURRENT_TYPE_SDCARD) {
  1164. sdlen.lohi.lo = cmdbuffer[bufindr + 1];
  1165. sdlen.lohi.hi = cmdbuffer[bufindr + 2];
  1166. }
  1167. cmdqueue_pop_front();
  1168. planner_add_sd_length(sdlen.value);
  1169. sei();
  1170. }
  1171. host_keepalive();
  1172. }
  1173. }
  1174. //check heater every n milliseconds
  1175. manage_heater();
  1176. isPrintPaused ? manage_inactivity(true) : manage_inactivity(false);
  1177. checkHitEndstops();
  1178. lcd_update();
  1179. #ifdef PAT9125
  1180. fsensor_update();
  1181. #endif //PAT9125
  1182. #ifdef TMC2130
  1183. tmc2130_check_overtemp();
  1184. if (tmc2130_sg_crash)
  1185. {
  1186. tmc2130_sg_crash = false;
  1187. // crashdet_stop_and_save_print();
  1188. enquecommand_P((PSTR("CRASH_DETECTED")));
  1189. }
  1190. #endif //TMC2130
  1191. }
  1192. #define DEFINE_PGM_READ_ANY(type, reader) \
  1193. static inline type pgm_read_any(const type *p) \
  1194. { return pgm_read_##reader##_near(p); }
  1195. DEFINE_PGM_READ_ANY(float, float);
  1196. DEFINE_PGM_READ_ANY(signed char, byte);
  1197. #define XYZ_CONSTS_FROM_CONFIG(type, array, CONFIG) \
  1198. static const PROGMEM type array##_P[3] = \
  1199. { X_##CONFIG, Y_##CONFIG, Z_##CONFIG }; \
  1200. static inline type array(int axis) \
  1201. { return pgm_read_any(&array##_P[axis]); } \
  1202. type array##_ext(int axis) \
  1203. { return pgm_read_any(&array##_P[axis]); }
  1204. XYZ_CONSTS_FROM_CONFIG(float, base_min_pos, MIN_POS);
  1205. XYZ_CONSTS_FROM_CONFIG(float, base_max_pos, MAX_POS);
  1206. XYZ_CONSTS_FROM_CONFIG(float, base_home_pos, HOME_POS);
  1207. XYZ_CONSTS_FROM_CONFIG(float, max_length, MAX_LENGTH);
  1208. XYZ_CONSTS_FROM_CONFIG(float, home_retract_mm, HOME_RETRACT_MM);
  1209. XYZ_CONSTS_FROM_CONFIG(signed char, home_dir, HOME_DIR);
  1210. static void axis_is_at_home(int axis) {
  1211. current_position[axis] = base_home_pos(axis) + add_homing[axis];
  1212. min_pos[axis] = base_min_pos(axis) + add_homing[axis];
  1213. max_pos[axis] = base_max_pos(axis) + add_homing[axis];
  1214. }
  1215. inline void set_current_to_destination() { memcpy(current_position, destination, sizeof(current_position)); }
  1216. inline void set_destination_to_current() { memcpy(destination, current_position, sizeof(destination)); }
  1217. static void setup_for_endstop_move(bool enable_endstops_now = true) {
  1218. saved_feedrate = feedrate;
  1219. saved_feedmultiply = feedmultiply;
  1220. feedmultiply = 100;
  1221. previous_millis_cmd = millis();
  1222. enable_endstops(enable_endstops_now);
  1223. }
  1224. static void clean_up_after_endstop_move() {
  1225. #ifdef ENDSTOPS_ONLY_FOR_HOMING
  1226. enable_endstops(false);
  1227. #endif
  1228. feedrate = saved_feedrate;
  1229. feedmultiply = saved_feedmultiply;
  1230. previous_millis_cmd = millis();
  1231. }
  1232. #ifdef ENABLE_AUTO_BED_LEVELING
  1233. #ifdef AUTO_BED_LEVELING_GRID
  1234. static void set_bed_level_equation_lsq(double *plane_equation_coefficients)
  1235. {
  1236. vector_3 planeNormal = vector_3(-plane_equation_coefficients[0], -plane_equation_coefficients[1], 1);
  1237. planeNormal.debug("planeNormal");
  1238. plan_bed_level_matrix = matrix_3x3::create_look_at(planeNormal);
  1239. //bedLevel.debug("bedLevel");
  1240. //plan_bed_level_matrix.debug("bed level before");
  1241. //vector_3 uncorrected_position = plan_get_position_mm();
  1242. //uncorrected_position.debug("position before");
  1243. vector_3 corrected_position = plan_get_position();
  1244. // corrected_position.debug("position after");
  1245. current_position[X_AXIS] = corrected_position.x;
  1246. current_position[Y_AXIS] = corrected_position.y;
  1247. current_position[Z_AXIS] = corrected_position.z;
  1248. // put the bed at 0 so we don't go below it.
  1249. current_position[Z_AXIS] = zprobe_zoffset; // in the lsq we reach here after raising the extruder due to the loop structure
  1250. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1251. }
  1252. #else // not AUTO_BED_LEVELING_GRID
  1253. static void set_bed_level_equation_3pts(float z_at_pt_1, float z_at_pt_2, float z_at_pt_3) {
  1254. plan_bed_level_matrix.set_to_identity();
  1255. vector_3 pt1 = vector_3(ABL_PROBE_PT_1_X, ABL_PROBE_PT_1_Y, z_at_pt_1);
  1256. vector_3 pt2 = vector_3(ABL_PROBE_PT_2_X, ABL_PROBE_PT_2_Y, z_at_pt_2);
  1257. vector_3 pt3 = vector_3(ABL_PROBE_PT_3_X, ABL_PROBE_PT_3_Y, z_at_pt_3);
  1258. vector_3 from_2_to_1 = (pt1 - pt2).get_normal();
  1259. vector_3 from_2_to_3 = (pt3 - pt2).get_normal();
  1260. vector_3 planeNormal = vector_3::cross(from_2_to_1, from_2_to_3).get_normal();
  1261. planeNormal = vector_3(planeNormal.x, planeNormal.y, abs(planeNormal.z));
  1262. plan_bed_level_matrix = matrix_3x3::create_look_at(planeNormal);
  1263. vector_3 corrected_position = plan_get_position();
  1264. current_position[X_AXIS] = corrected_position.x;
  1265. current_position[Y_AXIS] = corrected_position.y;
  1266. current_position[Z_AXIS] = corrected_position.z;
  1267. // put the bed at 0 so we don't go below it.
  1268. current_position[Z_AXIS] = zprobe_zoffset;
  1269. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1270. }
  1271. #endif // AUTO_BED_LEVELING_GRID
  1272. static void run_z_probe() {
  1273. plan_bed_level_matrix.set_to_identity();
  1274. feedrate = homing_feedrate[Z_AXIS];
  1275. // move down until you find the bed
  1276. float zPosition = -10;
  1277. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder);
  1278. st_synchronize();
  1279. // we have to let the planner know where we are right now as it is not where we said to go.
  1280. zPosition = st_get_position_mm(Z_AXIS);
  1281. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS]);
  1282. // move up the retract distance
  1283. zPosition += home_retract_mm(Z_AXIS);
  1284. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder);
  1285. st_synchronize();
  1286. // move back down slowly to find bed
  1287. feedrate = homing_feedrate[Z_AXIS]/4;
  1288. zPosition -= home_retract_mm(Z_AXIS) * 2;
  1289. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder);
  1290. st_synchronize();
  1291. current_position[Z_AXIS] = st_get_position_mm(Z_AXIS);
  1292. // make sure the planner knows where we are as it may be a bit different than we last said to move to
  1293. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1294. }
  1295. static void do_blocking_move_to(float x, float y, float z) {
  1296. float oldFeedRate = feedrate;
  1297. feedrate = homing_feedrate[Z_AXIS];
  1298. current_position[Z_AXIS] = z;
  1299. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], feedrate/60, active_extruder);
  1300. st_synchronize();
  1301. feedrate = XY_TRAVEL_SPEED;
  1302. current_position[X_AXIS] = x;
  1303. current_position[Y_AXIS] = y;
  1304. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], feedrate/60, active_extruder);
  1305. st_synchronize();
  1306. feedrate = oldFeedRate;
  1307. }
  1308. static void do_blocking_move_relative(float offset_x, float offset_y, float offset_z) {
  1309. do_blocking_move_to(current_position[X_AXIS] + offset_x, current_position[Y_AXIS] + offset_y, current_position[Z_AXIS] + offset_z);
  1310. }
  1311. /// Probe bed height at position (x,y), returns the measured z value
  1312. static float probe_pt(float x, float y, float z_before) {
  1313. // move to right place
  1314. do_blocking_move_to(current_position[X_AXIS], current_position[Y_AXIS], z_before);
  1315. do_blocking_move_to(x - X_PROBE_OFFSET_FROM_EXTRUDER, y - Y_PROBE_OFFSET_FROM_EXTRUDER, current_position[Z_AXIS]);
  1316. run_z_probe();
  1317. float measured_z = current_position[Z_AXIS];
  1318. SERIAL_PROTOCOLRPGM(MSG_BED);
  1319. SERIAL_PROTOCOLPGM(" x: ");
  1320. SERIAL_PROTOCOL(x);
  1321. SERIAL_PROTOCOLPGM(" y: ");
  1322. SERIAL_PROTOCOL(y);
  1323. SERIAL_PROTOCOLPGM(" z: ");
  1324. SERIAL_PROTOCOL(measured_z);
  1325. SERIAL_PROTOCOLPGM("\n");
  1326. return measured_z;
  1327. }
  1328. #endif // #ifdef ENABLE_AUTO_BED_LEVELING
  1329. #ifdef LIN_ADVANCE
  1330. /**
  1331. * M900: Set and/or Get advance K factor and WH/D ratio
  1332. *
  1333. * K<factor> Set advance K factor
  1334. * R<ratio> Set ratio directly (overrides WH/D)
  1335. * W<width> H<height> D<diam> Set ratio from WH/D
  1336. */
  1337. inline void gcode_M900() {
  1338. st_synchronize();
  1339. const float newK = code_seen('K') ? code_value_float() : -1;
  1340. if (newK >= 0) extruder_advance_k = newK;
  1341. float newR = code_seen('R') ? code_value_float() : -1;
  1342. if (newR < 0) {
  1343. const float newD = code_seen('D') ? code_value_float() : -1,
  1344. newW = code_seen('W') ? code_value_float() : -1,
  1345. newH = code_seen('H') ? code_value_float() : -1;
  1346. if (newD >= 0 && newW >= 0 && newH >= 0)
  1347. newR = newD ? (newW * newH) / (sq(newD * 0.5) * M_PI) : 0;
  1348. }
  1349. if (newR >= 0) advance_ed_ratio = newR;
  1350. SERIAL_ECHO_START;
  1351. SERIAL_ECHOPGM("Advance K=");
  1352. SERIAL_ECHOLN(extruder_advance_k);
  1353. SERIAL_ECHOPGM(" E/D=");
  1354. const float ratio = advance_ed_ratio;
  1355. if (ratio) SERIAL_ECHOLN(ratio); else SERIAL_ECHOLNPGM("Auto");
  1356. }
  1357. #endif // LIN_ADVANCE
  1358. bool check_commands() {
  1359. bool end_command_found = false;
  1360. while (buflen)
  1361. {
  1362. if ((code_seen("M84")) || (code_seen("M 84"))) end_command_found = true;
  1363. if (!cmdbuffer_front_already_processed)
  1364. cmdqueue_pop_front();
  1365. cmdbuffer_front_already_processed = false;
  1366. }
  1367. return end_command_found;
  1368. }
  1369. #ifdef TMC2130
  1370. bool calibrate_z_auto()
  1371. {
  1372. //lcd_display_message_fullscreen_P(MSG_CALIBRATE_Z_AUTO);
  1373. lcd_implementation_clear();
  1374. lcd_print_at_PGM(0,1, MSG_CALIBRATE_Z_AUTO);
  1375. bool endstops_enabled = enable_endstops(true);
  1376. int axis_up_dir = -home_dir(Z_AXIS);
  1377. tmc2130_home_enter(Z_AXIS_MASK);
  1378. current_position[Z_AXIS] = 0;
  1379. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1380. set_destination_to_current();
  1381. destination[Z_AXIS] += (1.1 * max_length(Z_AXIS) * axis_up_dir);
  1382. feedrate = homing_feedrate[Z_AXIS];
  1383. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1384. st_synchronize();
  1385. // current_position[axis] = 0;
  1386. // plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1387. tmc2130_home_exit();
  1388. enable_endstops(false);
  1389. current_position[Z_AXIS] = 0;
  1390. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1391. set_destination_to_current();
  1392. destination[Z_AXIS] += 10 * axis_up_dir; //10mm up
  1393. feedrate = homing_feedrate[Z_AXIS] / 2;
  1394. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1395. st_synchronize();
  1396. enable_endstops(endstops_enabled);
  1397. current_position[Z_AXIS] = Z_MAX_POS+2.0;
  1398. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1399. return true;
  1400. }
  1401. #endif //TMC2130
  1402. void homeaxis(int axis)
  1403. {
  1404. bool endstops_enabled = enable_endstops(true); //RP: endstops should be allways enabled durring homming
  1405. #define HOMEAXIS_DO(LETTER) \
  1406. ((LETTER##_MIN_PIN > -1 && LETTER##_HOME_DIR==-1) || (LETTER##_MAX_PIN > -1 && LETTER##_HOME_DIR==1))
  1407. if ((axis==X_AXIS)?HOMEAXIS_DO(X):(axis==Y_AXIS)?HOMEAXIS_DO(Y):0)
  1408. {
  1409. int axis_home_dir = home_dir(axis);
  1410. feedrate = homing_feedrate[axis];
  1411. #ifdef TMC2130
  1412. tmc2130_home_enter(X_AXIS_MASK << axis);
  1413. #endif
  1414. // Move right a bit, so that the print head does not touch the left end position,
  1415. // and the following left movement has a chance to achieve the required velocity
  1416. // for the stall guard to work.
  1417. current_position[axis] = 0;
  1418. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1419. // destination[axis] = 11.f;
  1420. destination[axis] = 3.f;
  1421. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1422. st_synchronize();
  1423. // Move left away from the possible collision with the collision detection disabled.
  1424. endstops_hit_on_purpose();
  1425. enable_endstops(false);
  1426. current_position[axis] = 0;
  1427. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1428. destination[axis] = - 1.;
  1429. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1430. st_synchronize();
  1431. // Now continue to move up to the left end stop with the collision detection enabled.
  1432. enable_endstops(true);
  1433. destination[axis] = - 1.1 * max_length(axis);
  1434. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1435. st_synchronize();
  1436. // Move right from the collision to a known distance from the left end stop with the collision detection disabled.
  1437. endstops_hit_on_purpose();
  1438. enable_endstops(false);
  1439. current_position[axis] = 0;
  1440. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1441. destination[axis] = 10.f;
  1442. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1443. st_synchronize();
  1444. endstops_hit_on_purpose();
  1445. // Now move left up to the collision, this time with a repeatable velocity.
  1446. enable_endstops(true);
  1447. destination[axis] = - 15.f;
  1448. feedrate = homing_feedrate[axis]/2;
  1449. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1450. st_synchronize();
  1451. axis_is_at_home(axis);
  1452. axis_known_position[axis] = true;
  1453. #ifdef TMC2130
  1454. tmc2130_home_exit();
  1455. #endif
  1456. // Move the X carriage away from the collision.
  1457. // If this is not done, the X cariage will jump from the collision at the instant the Trinamic driver reduces power on idle.
  1458. endstops_hit_on_purpose();
  1459. enable_endstops(false);
  1460. {
  1461. // Two full periods (4 full steps).
  1462. float gap = 0.32f * 2.f;
  1463. current_position[axis] -= gap;
  1464. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1465. current_position[axis] += gap;
  1466. }
  1467. destination[axis] = current_position[axis];
  1468. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], 0.3f*feedrate/60, active_extruder);
  1469. st_synchronize();
  1470. feedrate = 0.0;
  1471. }
  1472. else if ((axis==Z_AXIS)?HOMEAXIS_DO(Z):0)
  1473. {
  1474. int axis_home_dir = home_dir(axis);
  1475. current_position[axis] = 0;
  1476. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1477. destination[axis] = 1.5 * max_length(axis) * axis_home_dir;
  1478. feedrate = homing_feedrate[axis];
  1479. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1480. st_synchronize();
  1481. current_position[axis] = 0;
  1482. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1483. destination[axis] = -home_retract_mm(axis) * axis_home_dir;
  1484. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1485. st_synchronize();
  1486. destination[axis] = 2*home_retract_mm(axis) * axis_home_dir;
  1487. feedrate = homing_feedrate[axis]/2 ;
  1488. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1489. st_synchronize();
  1490. axis_is_at_home(axis);
  1491. destination[axis] = current_position[axis];
  1492. feedrate = 0.0;
  1493. endstops_hit_on_purpose();
  1494. axis_known_position[axis] = true;
  1495. }
  1496. enable_endstops(endstops_enabled);
  1497. }
  1498. /**/
  1499. void home_xy()
  1500. {
  1501. set_destination_to_current();
  1502. homeaxis(X_AXIS);
  1503. homeaxis(Y_AXIS);
  1504. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1505. endstops_hit_on_purpose();
  1506. }
  1507. void refresh_cmd_timeout(void)
  1508. {
  1509. previous_millis_cmd = millis();
  1510. }
  1511. #ifdef FWRETRACT
  1512. void retract(bool retracting, bool swapretract = false) {
  1513. if(retracting && !retracted[active_extruder]) {
  1514. destination[X_AXIS]=current_position[X_AXIS];
  1515. destination[Y_AXIS]=current_position[Y_AXIS];
  1516. destination[Z_AXIS]=current_position[Z_AXIS];
  1517. destination[E_AXIS]=current_position[E_AXIS];
  1518. if (swapretract) {
  1519. current_position[E_AXIS]+=retract_length_swap/volumetric_multiplier[active_extruder];
  1520. } else {
  1521. current_position[E_AXIS]+=retract_length/volumetric_multiplier[active_extruder];
  1522. }
  1523. plan_set_e_position(current_position[E_AXIS]);
  1524. float oldFeedrate = feedrate;
  1525. feedrate=retract_feedrate*60;
  1526. retracted[active_extruder]=true;
  1527. prepare_move();
  1528. current_position[Z_AXIS]-=retract_zlift;
  1529. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1530. prepare_move();
  1531. feedrate = oldFeedrate;
  1532. } else if(!retracting && retracted[active_extruder]) {
  1533. destination[X_AXIS]=current_position[X_AXIS];
  1534. destination[Y_AXIS]=current_position[Y_AXIS];
  1535. destination[Z_AXIS]=current_position[Z_AXIS];
  1536. destination[E_AXIS]=current_position[E_AXIS];
  1537. current_position[Z_AXIS]+=retract_zlift;
  1538. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1539. //prepare_move();
  1540. if (swapretract) {
  1541. current_position[E_AXIS]-=(retract_length_swap+retract_recover_length_swap)/volumetric_multiplier[active_extruder];
  1542. } else {
  1543. current_position[E_AXIS]-=(retract_length+retract_recover_length)/volumetric_multiplier[active_extruder];
  1544. }
  1545. plan_set_e_position(current_position[E_AXIS]);
  1546. float oldFeedrate = feedrate;
  1547. feedrate=retract_recover_feedrate*60;
  1548. retracted[active_extruder]=false;
  1549. prepare_move();
  1550. feedrate = oldFeedrate;
  1551. }
  1552. } //retract
  1553. #endif //FWRETRACT
  1554. void trace() {
  1555. tone(BEEPER, 440);
  1556. delay(25);
  1557. noTone(BEEPER);
  1558. delay(20);
  1559. }
  1560. /*
  1561. void ramming() {
  1562. // float tmp[4] = DEFAULT_MAX_FEEDRATE;
  1563. if (current_temperature[0] < 230) {
  1564. //PLA
  1565. max_feedrate[E_AXIS] = 50;
  1566. //current_position[E_AXIS] -= 8;
  1567. //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2100 / 60, active_extruder);
  1568. //current_position[E_AXIS] += 8;
  1569. //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2100 / 60, active_extruder);
  1570. current_position[E_AXIS] += 5.4;
  1571. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2800 / 60, active_extruder);
  1572. current_position[E_AXIS] += 3.2;
  1573. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  1574. current_position[E_AXIS] += 3;
  1575. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3400 / 60, active_extruder);
  1576. st_synchronize();
  1577. max_feedrate[E_AXIS] = 80;
  1578. current_position[E_AXIS] -= 82;
  1579. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 9500 / 60, active_extruder);
  1580. max_feedrate[E_AXIS] = 50;//tmp[E_AXIS];
  1581. current_position[E_AXIS] -= 20;
  1582. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 1200 / 60, active_extruder);
  1583. current_position[E_AXIS] += 5;
  1584. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400 / 60, active_extruder);
  1585. current_position[E_AXIS] += 5;
  1586. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  1587. current_position[E_AXIS] -= 10;
  1588. st_synchronize();
  1589. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  1590. current_position[E_AXIS] += 10;
  1591. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  1592. current_position[E_AXIS] -= 10;
  1593. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 800 / 60, active_extruder);
  1594. current_position[E_AXIS] += 10;
  1595. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 800 / 60, active_extruder);
  1596. current_position[E_AXIS] -= 10;
  1597. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 800 / 60, active_extruder);
  1598. st_synchronize();
  1599. }
  1600. else {
  1601. //ABS
  1602. max_feedrate[E_AXIS] = 50;
  1603. //current_position[E_AXIS] -= 8;
  1604. //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2100 / 60, active_extruder);
  1605. //current_position[E_AXIS] += 8;
  1606. //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2100 / 60, active_extruder);
  1607. current_position[E_AXIS] += 3.1;
  1608. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2000 / 60, active_extruder);
  1609. current_position[E_AXIS] += 3.1;
  1610. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2500 / 60, active_extruder);
  1611. current_position[E_AXIS] += 4;
  1612. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  1613. st_synchronize();
  1614. //current_position[X_AXIS] += 23; //delay
  1615. //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600/60, active_extruder); //delay
  1616. //current_position[X_AXIS] -= 23; //delay
  1617. //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600/60, active_extruder); //delay
  1618. delay(4700);
  1619. max_feedrate[E_AXIS] = 80;
  1620. current_position[E_AXIS] -= 92;
  1621. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 9900 / 60, active_extruder);
  1622. max_feedrate[E_AXIS] = 50;//tmp[E_AXIS];
  1623. current_position[E_AXIS] -= 5;
  1624. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 800 / 60, active_extruder);
  1625. current_position[E_AXIS] += 5;
  1626. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400 / 60, active_extruder);
  1627. current_position[E_AXIS] -= 5;
  1628. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  1629. st_synchronize();
  1630. current_position[E_AXIS] += 5;
  1631. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  1632. current_position[E_AXIS] -= 5;
  1633. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  1634. current_position[E_AXIS] += 5;
  1635. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  1636. current_position[E_AXIS] -= 5;
  1637. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  1638. st_synchronize();
  1639. }
  1640. }
  1641. */
  1642. #ifdef TMC2130
  1643. void force_high_power_mode(bool start_high_power_section) {
  1644. uint8_t silent;
  1645. silent = eeprom_read_byte((uint8_t*)EEPROM_SILENT);
  1646. if (silent == 1) {
  1647. //we are in silent mode, set to normal mode to enable crash detection
  1648. st_synchronize();
  1649. cli();
  1650. tmc2130_mode = (start_high_power_section == true) ? TMC2130_MODE_NORMAL : TMC2130_MODE_SILENT;
  1651. tmc2130_init();
  1652. sei();
  1653. digipot_init();
  1654. }
  1655. }
  1656. #endif //TMC2130
  1657. bool gcode_M45(bool onlyZ)
  1658. {
  1659. bool final_result = false;
  1660. #ifdef TMC2130
  1661. FORCE_HIGH_POWER_START;
  1662. #endif // TMC2130
  1663. // Only Z calibration?
  1664. if (!onlyZ)
  1665. {
  1666. setTargetBed(0);
  1667. setTargetHotend(0, 0);
  1668. setTargetHotend(0, 1);
  1669. setTargetHotend(0, 2);
  1670. adjust_bed_reset(); //reset bed level correction
  1671. }
  1672. // Disable the default update procedure of the display. We will do a modal dialog.
  1673. lcd_update_enable(false);
  1674. // Let the planner use the uncorrected coordinates.
  1675. mbl.reset();
  1676. // Reset world2machine_rotation_and_skew and world2machine_shift, therefore
  1677. // the planner will not perform any adjustments in the XY plane.
  1678. // Wait for the motors to stop and update the current position with the absolute values.
  1679. world2machine_revert_to_uncorrected();
  1680. // Reset the baby step value applied without moving the axes.
  1681. babystep_reset();
  1682. // Mark all axes as in a need for homing.
  1683. memset(axis_known_position, 0, sizeof(axis_known_position));
  1684. // Home in the XY plane.
  1685. //set_destination_to_current();
  1686. setup_for_endstop_move();
  1687. lcd_display_message_fullscreen_P(MSG_AUTO_HOME);
  1688. home_xy();
  1689. // Let the user move the Z axes up to the end stoppers.
  1690. #ifdef TMC2130
  1691. if (calibrate_z_auto())
  1692. {
  1693. #else //TMC2130
  1694. if (lcd_calibrate_z_end_stop_manual(onlyZ))
  1695. {
  1696. #endif //TMC2130
  1697. refresh_cmd_timeout();
  1698. //if (((degHotend(0) > MAX_HOTEND_TEMP_CALIBRATION) || (degBed() > MAX_BED_TEMP_CALIBRATION)) && (!onlyZ))
  1699. //{
  1700. // lcd_wait_for_cool_down();
  1701. //}
  1702. if(!onlyZ)
  1703. {
  1704. KEEPALIVE_STATE(PAUSED_FOR_USER);
  1705. bool result = lcd_show_fullscreen_message_yes_no_and_wait_P(MSG_STEEL_SHEET_CHECK, false, false);
  1706. if(result) lcd_show_fullscreen_message_and_wait_P(MSG_REMOVE_STEEL_SHEET);
  1707. lcd_show_fullscreen_message_and_wait_P(MSG_CONFIRM_NOZZLE_CLEAN);
  1708. lcd_show_fullscreen_message_and_wait_P(MSG_PAPER);
  1709. KEEPALIVE_STATE(IN_HANDLER);
  1710. lcd_display_message_fullscreen_P(MSG_FIND_BED_OFFSET_AND_SKEW_LINE1);
  1711. lcd_implementation_print_at(0, 2, 1);
  1712. lcd_printPGM(MSG_FIND_BED_OFFSET_AND_SKEW_LINE2);
  1713. }
  1714. // Move the print head close to the bed.
  1715. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  1716. bool endstops_enabled = enable_endstops(true);
  1717. tmc2130_home_enter(Z_AXIS_MASK);
  1718. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[Z_AXIS] / 40, active_extruder);
  1719. st_synchronize();
  1720. tmc2130_home_exit();
  1721. enable_endstops(endstops_enabled);
  1722. if (st_get_position_mm(Z_AXIS) == MESH_HOME_Z_SEARCH)
  1723. {
  1724. //#ifdef TMC2130
  1725. // tmc2130_home_enter(X_AXIS_MASK | Y_AXIS_MASK);
  1726. //#endif
  1727. int8_t verbosity_level = 0;
  1728. if (code_seen('V'))
  1729. {
  1730. // Just 'V' without a number counts as V1.
  1731. char c = strchr_pointer[1];
  1732. verbosity_level = (c == ' ' || c == '\t' || c == 0) ? 1 : code_value_short();
  1733. }
  1734. if (onlyZ)
  1735. {
  1736. clean_up_after_endstop_move();
  1737. // Z only calibration.
  1738. // Load the machine correction matrix
  1739. world2machine_initialize();
  1740. // and correct the current_position to match the transformed coordinate system.
  1741. world2machine_update_current();
  1742. //FIXME
  1743. bool result = sample_mesh_and_store_reference();
  1744. if (result)
  1745. {
  1746. if (calibration_status() == CALIBRATION_STATUS_Z_CALIBRATION)
  1747. // Shipped, the nozzle height has been set already. The user can start printing now.
  1748. calibration_status_store(CALIBRATION_STATUS_CALIBRATED);
  1749. final_result = true;
  1750. // babystep_apply();
  1751. }
  1752. }
  1753. else
  1754. {
  1755. // Reset the baby step value and the baby step applied flag.
  1756. calibration_status_store(CALIBRATION_STATUS_ASSEMBLED);
  1757. eeprom_update_word((uint16_t*)EEPROM_BABYSTEP_Z, 0);
  1758. // Complete XYZ calibration.
  1759. uint8_t point_too_far_mask = 0;
  1760. BedSkewOffsetDetectionResultType result = find_bed_offset_and_skew(verbosity_level, point_too_far_mask);
  1761. clean_up_after_endstop_move();
  1762. // Print head up.
  1763. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  1764. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[Z_AXIS] / 40, active_extruder);
  1765. st_synchronize();
  1766. if (result >= 0)
  1767. {
  1768. point_too_far_mask = 0;
  1769. // Second half: The fine adjustment.
  1770. // Let the planner use the uncorrected coordinates.
  1771. mbl.reset();
  1772. world2machine_reset();
  1773. // Home in the XY plane.
  1774. setup_for_endstop_move();
  1775. home_xy();
  1776. result = improve_bed_offset_and_skew(1, verbosity_level, point_too_far_mask);
  1777. clean_up_after_endstop_move();
  1778. // Print head up.
  1779. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  1780. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[Z_AXIS] / 40, active_extruder);
  1781. st_synchronize();
  1782. // if (result >= 0) babystep_apply();
  1783. }
  1784. lcd_bed_calibration_show_result(result, point_too_far_mask);
  1785. if (result >= 0)
  1786. {
  1787. // Calibration valid, the machine should be able to print. Advise the user to run the V2Calibration.gcode.
  1788. calibration_status_store(CALIBRATION_STATUS_LIVE_ADJUST);
  1789. if (eeprom_read_byte((uint8_t*)EEPROM_WIZARD_ACTIVE) != 1) lcd_show_fullscreen_message_and_wait_P(MSG_BABYSTEP_Z_NOT_SET);
  1790. final_result = true;
  1791. }
  1792. }
  1793. #ifdef TMC2130
  1794. tmc2130_home_exit();
  1795. #endif
  1796. }
  1797. else
  1798. {
  1799. lcd_show_fullscreen_message_and_wait_P(PSTR("Calibration failed! Check the axes and run again."));
  1800. final_result = false;
  1801. }
  1802. }
  1803. else
  1804. {
  1805. // Timeouted.
  1806. }
  1807. lcd_update_enable(true);
  1808. #ifdef TMC2130
  1809. FORCE_HIGH_POWER_END;
  1810. #endif // TMC2130
  1811. return final_result;
  1812. }
  1813. void gcode_M701()
  1814. {
  1815. #ifdef SNMM
  1816. extr_adj(snmm_extruder);//loads current extruder
  1817. #else
  1818. enable_z();
  1819. custom_message = true;
  1820. custom_message_type = 2;
  1821. lcd_setstatuspgm(MSG_LOADING_FILAMENT);
  1822. current_position[E_AXIS] += 70;
  1823. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400 / 60, active_extruder); //fast sequence
  1824. current_position[E_AXIS] += 25;
  1825. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 100 / 60, active_extruder); //slow sequence
  1826. st_synchronize();
  1827. if (!farm_mode && loading_flag) {
  1828. bool clean = lcd_show_fullscreen_message_yes_no_and_wait_P(MSG_FILAMENT_CLEAN, false, true);
  1829. while (!clean) {
  1830. lcd_update_enable(true);
  1831. lcd_update(2);
  1832. current_position[E_AXIS] += 25;
  1833. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 100 / 60, active_extruder); //slow sequence
  1834. st_synchronize();
  1835. clean = lcd_show_fullscreen_message_yes_no_and_wait_P(MSG_FILAMENT_CLEAN, false, true);
  1836. }
  1837. }
  1838. lcd_update_enable(true);
  1839. lcd_update(2);
  1840. lcd_setstatuspgm(WELCOME_MSG);
  1841. disable_z();
  1842. loading_flag = false;
  1843. custom_message = false;
  1844. custom_message_type = 0;
  1845. #endif
  1846. }
  1847. void process_commands()
  1848. {
  1849. #ifdef FILAMENT_RUNOUT_SUPPORT
  1850. SET_INPUT(FR_SENS);
  1851. #endif
  1852. #ifdef CMDBUFFER_DEBUG
  1853. SERIAL_ECHOPGM("Processing a GCODE command: ");
  1854. SERIAL_ECHO(cmdbuffer+bufindr+CMDHDRSIZE);
  1855. SERIAL_ECHOLNPGM("");
  1856. SERIAL_ECHOPGM("In cmdqueue: ");
  1857. SERIAL_ECHO(buflen);
  1858. SERIAL_ECHOLNPGM("");
  1859. #endif /* CMDBUFFER_DEBUG */
  1860. unsigned long codenum; //throw away variable
  1861. char *starpos = NULL;
  1862. #ifdef ENABLE_AUTO_BED_LEVELING
  1863. float x_tmp, y_tmp, z_tmp, real_z;
  1864. #endif
  1865. // PRUSA GCODES
  1866. KEEPALIVE_STATE(IN_HANDLER);
  1867. #ifdef SNMM
  1868. float tmp_motor[3] = DEFAULT_PWM_MOTOR_CURRENT;
  1869. float tmp_motor_loud[3] = DEFAULT_PWM_MOTOR_CURRENT_LOUD;
  1870. int8_t SilentMode;
  1871. #endif
  1872. if (code_seen("M117")) { //moved to highest priority place to be able to to print strings which includes "G", "PRUSA" and "^"
  1873. starpos = (strchr(strchr_pointer + 5, '*'));
  1874. if (starpos != NULL)
  1875. *(starpos) = '\0';
  1876. lcd_setstatus(strchr_pointer + 5);
  1877. }
  1878. else if(code_seen("CRASH_DETECTED"))
  1879. crashdet_detected();
  1880. else if(code_seen("CRASH_RECOVER"))
  1881. crashdet_recover();
  1882. else if(code_seen("CRASH_CANCEL"))
  1883. crashdet_cancel();
  1884. else if(code_seen("PRUSA")){
  1885. if (code_seen("Ping")) { //PRUSA Ping
  1886. if (farm_mode) {
  1887. PingTime = millis();
  1888. //MYSERIAL.print(farm_no); MYSERIAL.println(": OK");
  1889. }
  1890. }
  1891. else if (code_seen("PRN")) {
  1892. MYSERIAL.println(status_number);
  1893. }else if (code_seen("FAN")) {
  1894. MYSERIAL.print("E0:");
  1895. MYSERIAL.print(60*fan_speed[0]);
  1896. MYSERIAL.println(" RPM");
  1897. MYSERIAL.print("PRN0:");
  1898. MYSERIAL.print(60*fan_speed[1]);
  1899. MYSERIAL.println(" RPM");
  1900. }else if (code_seen("fn")) {
  1901. if (farm_mode) {
  1902. MYSERIAL.println(farm_no);
  1903. }
  1904. else {
  1905. MYSERIAL.println("Not in farm mode.");
  1906. }
  1907. }else if (code_seen("fv")) {
  1908. // get file version
  1909. #ifdef SDSUPPORT
  1910. card.openFile(strchr_pointer + 3,true);
  1911. while (true) {
  1912. uint16_t readByte = card.get();
  1913. MYSERIAL.write(readByte);
  1914. if (readByte=='\n') {
  1915. break;
  1916. }
  1917. }
  1918. card.closefile();
  1919. #endif // SDSUPPORT
  1920. } else if (code_seen("M28")) {
  1921. trace();
  1922. prusa_sd_card_upload = true;
  1923. card.openFile(strchr_pointer+4,false);
  1924. } else if (code_seen("SN")) {
  1925. if (farm_mode) {
  1926. selectedSerialPort = 0;
  1927. MSerial.write(";S");
  1928. // S/N is:CZPX0917X003XC13518
  1929. int numbersRead = 0;
  1930. while (numbersRead < 19) {
  1931. while (MSerial.available() > 0) {
  1932. uint8_t serial_char = MSerial.read();
  1933. selectedSerialPort = 1;
  1934. MSerial.write(serial_char);
  1935. numbersRead++;
  1936. selectedSerialPort = 0;
  1937. }
  1938. }
  1939. selectedSerialPort = 1;
  1940. MSerial.write('\n');
  1941. /*for (int b = 0; b < 3; b++) {
  1942. tone(BEEPER, 110);
  1943. delay(50);
  1944. noTone(BEEPER);
  1945. delay(50);
  1946. }*/
  1947. } else {
  1948. MYSERIAL.println("Not in farm mode.");
  1949. }
  1950. } else if(code_seen("Fir")){
  1951. SERIAL_PROTOCOLLN(FW_version);
  1952. } else if(code_seen("Rev")){
  1953. SERIAL_PROTOCOLLN(FILAMENT_SIZE "-" ELECTRONICS "-" NOZZLE_TYPE );
  1954. } else if(code_seen("Lang")) {
  1955. lcd_force_language_selection();
  1956. } else if(code_seen("Lz")) {
  1957. EEPROM_save_B(EEPROM_BABYSTEP_Z,0);
  1958. } else if (code_seen("SERIAL LOW")) {
  1959. MYSERIAL.println("SERIAL LOW");
  1960. MYSERIAL.begin(BAUDRATE);
  1961. return;
  1962. } else if (code_seen("SERIAL HIGH")) {
  1963. MYSERIAL.println("SERIAL HIGH");
  1964. MYSERIAL.begin(1152000);
  1965. return;
  1966. } else if(code_seen("Beat")) {
  1967. // Kick farm link timer
  1968. kicktime = millis();
  1969. } else if(code_seen("FR")) {
  1970. // Factory full reset
  1971. factory_reset(0,true);
  1972. }
  1973. //else if (code_seen('Cal')) {
  1974. // lcd_calibration();
  1975. // }
  1976. }
  1977. else if (code_seen('^')) {
  1978. // nothing, this is a version line
  1979. } else if(code_seen('G'))
  1980. {
  1981. switch((int)code_value())
  1982. {
  1983. case 0: // G0 -> G1
  1984. case 1: // G1
  1985. if(Stopped == false) {
  1986. #ifdef FILAMENT_RUNOUT_SUPPORT
  1987. if(READ(FR_SENS)){
  1988. feedmultiplyBckp=feedmultiply;
  1989. float target[4];
  1990. float lastpos[4];
  1991. target[X_AXIS]=current_position[X_AXIS];
  1992. target[Y_AXIS]=current_position[Y_AXIS];
  1993. target[Z_AXIS]=current_position[Z_AXIS];
  1994. target[E_AXIS]=current_position[E_AXIS];
  1995. lastpos[X_AXIS]=current_position[X_AXIS];
  1996. lastpos[Y_AXIS]=current_position[Y_AXIS];
  1997. lastpos[Z_AXIS]=current_position[Z_AXIS];
  1998. lastpos[E_AXIS]=current_position[E_AXIS];
  1999. //retract by E
  2000. target[E_AXIS]+= FILAMENTCHANGE_FIRSTRETRACT ;
  2001. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 400, active_extruder);
  2002. target[Z_AXIS]+= FILAMENTCHANGE_ZADD ;
  2003. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 300, active_extruder);
  2004. target[X_AXIS]= FILAMENTCHANGE_XPOS ;
  2005. target[Y_AXIS]= FILAMENTCHANGE_YPOS ;
  2006. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 70, active_extruder);
  2007. target[E_AXIS]+= FILAMENTCHANGE_FINALRETRACT ;
  2008. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 20, active_extruder);
  2009. //finish moves
  2010. st_synchronize();
  2011. //disable extruder steppers so filament can be removed
  2012. disable_e0();
  2013. disable_e1();
  2014. disable_e2();
  2015. delay(100);
  2016. //LCD_ALERTMESSAGEPGM(MSG_FILAMENTCHANGE);
  2017. uint8_t cnt=0;
  2018. int counterBeep = 0;
  2019. lcd_wait_interact();
  2020. while(!lcd_clicked()){
  2021. cnt++;
  2022. manage_heater();
  2023. manage_inactivity(true);
  2024. //lcd_update();
  2025. if(cnt==0)
  2026. {
  2027. #if BEEPER > 0
  2028. if (counterBeep== 500){
  2029. counterBeep = 0;
  2030. }
  2031. SET_OUTPUT(BEEPER);
  2032. if (counterBeep== 0){
  2033. WRITE(BEEPER,HIGH);
  2034. }
  2035. if (counterBeep== 20){
  2036. WRITE(BEEPER,LOW);
  2037. }
  2038. counterBeep++;
  2039. #else
  2040. #if !defined(LCD_FEEDBACK_FREQUENCY_HZ) || !defined(LCD_FEEDBACK_FREQUENCY_DURATION_MS)
  2041. lcd_buzz(1000/6,100);
  2042. #else
  2043. lcd_buzz(LCD_FEEDBACK_FREQUENCY_DURATION_MS,LCD_FEEDBACK_FREQUENCY_HZ);
  2044. #endif
  2045. #endif
  2046. }
  2047. }
  2048. WRITE(BEEPER,LOW);
  2049. target[E_AXIS]+= FILAMENTCHANGE_FIRSTFEED ;
  2050. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 20, active_extruder);
  2051. target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  2052. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder);
  2053. lcd_change_fil_state = 0;
  2054. lcd_loading_filament();
  2055. while ((lcd_change_fil_state == 0)||(lcd_change_fil_state != 1)){
  2056. lcd_change_fil_state = 0;
  2057. lcd_alright();
  2058. switch(lcd_change_fil_state){
  2059. case 2:
  2060. target[E_AXIS]+= FILAMENTCHANGE_FIRSTFEED ;
  2061. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 20, active_extruder);
  2062. target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  2063. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder);
  2064. lcd_loading_filament();
  2065. break;
  2066. case 3:
  2067. target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  2068. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder);
  2069. lcd_loading_color();
  2070. break;
  2071. default:
  2072. lcd_change_success();
  2073. break;
  2074. }
  2075. }
  2076. target[E_AXIS]+= 5;
  2077. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder);
  2078. target[E_AXIS]+= FILAMENTCHANGE_FIRSTRETRACT;
  2079. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 400, active_extruder);
  2080. //current_position[E_AXIS]=target[E_AXIS]; //the long retract of L is compensated by manual filament feeding
  2081. //plan_set_e_position(current_position[E_AXIS]);
  2082. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 70, active_extruder); //should do nothing
  2083. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], target[Z_AXIS], target[E_AXIS], 70, active_extruder); //move xy back
  2084. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], target[E_AXIS], 200, active_extruder); //move z back
  2085. target[E_AXIS]= target[E_AXIS] - FILAMENTCHANGE_FIRSTRETRACT;
  2086. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], target[E_AXIS], 5, active_extruder); //final untretract
  2087. plan_set_e_position(lastpos[E_AXIS]);
  2088. feedmultiply=feedmultiplyBckp;
  2089. char cmd[9];
  2090. sprintf_P(cmd, PSTR("M220 S%i"), feedmultiplyBckp);
  2091. enquecommand(cmd);
  2092. }
  2093. #endif
  2094. get_coordinates(); // For X Y Z E F
  2095. if (total_filament_used > ((current_position[E_AXIS] - destination[E_AXIS]) * 100)) { //protection against total_filament_used overflow
  2096. total_filament_used = total_filament_used + ((destination[E_AXIS] - current_position[E_AXIS]) * 100);
  2097. }
  2098. #ifdef FWRETRACT
  2099. if(autoretract_enabled)
  2100. if( !(code_seen('X') || code_seen('Y') || code_seen('Z')) && code_seen('E')) {
  2101. float echange=destination[E_AXIS]-current_position[E_AXIS];
  2102. if((echange<-MIN_RETRACT && !retracted) || (echange>MIN_RETRACT && retracted)) { //move appears to be an attempt to retract or recover
  2103. current_position[E_AXIS] = destination[E_AXIS]; //hide the slicer-generated retract/recover from calculations
  2104. plan_set_e_position(current_position[E_AXIS]); //AND from the planner
  2105. retract(!retracted);
  2106. return;
  2107. }
  2108. }
  2109. #endif //FWRETRACT
  2110. prepare_move();
  2111. //ClearToSend();
  2112. }
  2113. break;
  2114. case 2: // G2 - CW ARC
  2115. if(Stopped == false) {
  2116. get_arc_coordinates();
  2117. prepare_arc_move(true);
  2118. }
  2119. break;
  2120. case 3: // G3 - CCW ARC
  2121. if(Stopped == false) {
  2122. get_arc_coordinates();
  2123. prepare_arc_move(false);
  2124. }
  2125. break;
  2126. case 4: // G4 dwell
  2127. codenum = 0;
  2128. if(code_seen('P')) codenum = code_value(); // milliseconds to wait
  2129. if(code_seen('S')) codenum = code_value() * 1000; // seconds to wait
  2130. if(codenum != 0) LCD_MESSAGERPGM(MSG_DWELL);
  2131. st_synchronize();
  2132. codenum += millis(); // keep track of when we started waiting
  2133. previous_millis_cmd = millis();
  2134. while(millis() < codenum) {
  2135. manage_heater();
  2136. manage_inactivity();
  2137. lcd_update();
  2138. }
  2139. break;
  2140. #ifdef FWRETRACT
  2141. case 10: // G10 retract
  2142. #if EXTRUDERS > 1
  2143. retracted_swap[active_extruder]=(code_seen('S') && code_value_long() == 1); // checks for swap retract argument
  2144. retract(true,retracted_swap[active_extruder]);
  2145. #else
  2146. retract(true);
  2147. #endif
  2148. break;
  2149. case 11: // G11 retract_recover
  2150. #if EXTRUDERS > 1
  2151. retract(false,retracted_swap[active_extruder]);
  2152. #else
  2153. retract(false);
  2154. #endif
  2155. break;
  2156. #endif //FWRETRACT
  2157. case 28: //G28 Home all Axis one at a time
  2158. {
  2159. st_synchronize();
  2160. #if 1
  2161. SERIAL_ECHOPGM("G28, initial "); print_world_coordinates();
  2162. SERIAL_ECHOPGM("G28, initial "); print_physical_coordinates();
  2163. #endif
  2164. // Flag for the display update routine and to disable the print cancelation during homing.
  2165. homing_flag = true;
  2166. // Which axes should be homed?
  2167. bool home_x = code_seen(axis_codes[X_AXIS]);
  2168. bool home_y = code_seen(axis_codes[Y_AXIS]);
  2169. bool home_z = code_seen(axis_codes[Z_AXIS]);
  2170. // Either all X,Y,Z codes are present, or none of them.
  2171. bool home_all_axes = home_x == home_y && home_x == home_z;
  2172. if (home_all_axes)
  2173. // No X/Y/Z code provided means to home all axes.
  2174. home_x = home_y = home_z = true;
  2175. #ifdef ENABLE_AUTO_BED_LEVELING
  2176. plan_bed_level_matrix.set_to_identity(); //Reset the plane ("erase" all leveling data)
  2177. #endif //ENABLE_AUTO_BED_LEVELING
  2178. // Reset world2machine_rotation_and_skew and world2machine_shift, therefore
  2179. // the planner will not perform any adjustments in the XY plane.
  2180. // Wait for the motors to stop and update the current position with the absolute values.
  2181. world2machine_revert_to_uncorrected();
  2182. // For mesh bed leveling deactivate the matrix temporarily.
  2183. // It is necessary to disable the bed leveling for the X and Y homing moves, so that the move is performed
  2184. // in a single axis only.
  2185. // In case of re-homing the X or Y axes only, the mesh bed leveling is restored after G28.
  2186. #ifdef MESH_BED_LEVELING
  2187. uint8_t mbl_was_active = mbl.active;
  2188. mbl.active = 0;
  2189. current_position[Z_AXIS] = st_get_position_mm(Z_AXIS);
  2190. #endif
  2191. // Reset baby stepping to zero, if the babystepping has already been loaded before. The babystepsTodo value will be
  2192. // consumed during the first movements following this statement.
  2193. if (home_z)
  2194. babystep_undo();
  2195. saved_feedrate = feedrate;
  2196. saved_feedmultiply = feedmultiply;
  2197. feedmultiply = 100;
  2198. previous_millis_cmd = millis();
  2199. enable_endstops(true);
  2200. memcpy(destination, current_position, sizeof(destination));
  2201. feedrate = 0.0;
  2202. #if Z_HOME_DIR > 0 // If homing away from BED do Z first
  2203. if(home_z)
  2204. homeaxis(Z_AXIS);
  2205. #endif
  2206. #ifdef QUICK_HOME
  2207. // In the quick mode, if both x and y are to be homed, a diagonal move will be performed initially.
  2208. if(home_x && home_y) //first diagonal move
  2209. {
  2210. current_position[X_AXIS] = 0;current_position[Y_AXIS] = 0;
  2211. int x_axis_home_dir = home_dir(X_AXIS);
  2212. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2213. destination[X_AXIS] = 1.5 * max_length(X_AXIS) * x_axis_home_dir;destination[Y_AXIS] = 1.5 * max_length(Y_AXIS) * home_dir(Y_AXIS);
  2214. feedrate = homing_feedrate[X_AXIS];
  2215. if(homing_feedrate[Y_AXIS]<feedrate)
  2216. feedrate = homing_feedrate[Y_AXIS];
  2217. if (max_length(X_AXIS) > max_length(Y_AXIS)) {
  2218. feedrate *= sqrt(pow(max_length(Y_AXIS) / max_length(X_AXIS), 2) + 1);
  2219. } else {
  2220. feedrate *= sqrt(pow(max_length(X_AXIS) / max_length(Y_AXIS), 2) + 1);
  2221. }
  2222. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  2223. st_synchronize();
  2224. axis_is_at_home(X_AXIS);
  2225. axis_is_at_home(Y_AXIS);
  2226. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2227. destination[X_AXIS] = current_position[X_AXIS];
  2228. destination[Y_AXIS] = current_position[Y_AXIS];
  2229. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  2230. feedrate = 0.0;
  2231. st_synchronize();
  2232. endstops_hit_on_purpose();
  2233. current_position[X_AXIS] = destination[X_AXIS];
  2234. current_position[Y_AXIS] = destination[Y_AXIS];
  2235. current_position[Z_AXIS] = destination[Z_AXIS];
  2236. }
  2237. #endif /* QUICK_HOME */
  2238. if(home_x)
  2239. homeaxis(X_AXIS);
  2240. if(home_y)
  2241. homeaxis(Y_AXIS);
  2242. if(code_seen(axis_codes[X_AXIS]) && code_value_long() != 0)
  2243. current_position[X_AXIS]=code_value()+add_homing[X_AXIS];
  2244. if(code_seen(axis_codes[Y_AXIS]) && code_value_long() != 0)
  2245. current_position[Y_AXIS]=code_value()+add_homing[Y_AXIS];
  2246. #if Z_HOME_DIR < 0 // If homing towards BED do Z last
  2247. #ifndef Z_SAFE_HOMING
  2248. if(home_z) {
  2249. #if defined (Z_RAISE_BEFORE_HOMING) && (Z_RAISE_BEFORE_HOMING > 0)
  2250. destination[Z_AXIS] = Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS) * (-1); // Set destination away from bed
  2251. feedrate = max_feedrate[Z_AXIS];
  2252. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
  2253. st_synchronize();
  2254. #endif // defined (Z_RAISE_BEFORE_HOMING) && (Z_RAISE_BEFORE_HOMING > 0)
  2255. #if (defined(MESH_BED_LEVELING) && !defined(MK1BP)) // If Mesh bed leveling, moxve X&Y to safe position for home
  2256. if (!(axis_known_position[X_AXIS] && axis_known_position[Y_AXIS] ))
  2257. {
  2258. homeaxis(X_AXIS);
  2259. homeaxis(Y_AXIS);
  2260. }
  2261. // 1st mesh bed leveling measurement point, corrected.
  2262. world2machine_initialize();
  2263. world2machine(pgm_read_float(bed_ref_points), pgm_read_float(bed_ref_points+1), destination[X_AXIS], destination[Y_AXIS]);
  2264. world2machine_reset();
  2265. if (destination[Y_AXIS] < Y_MIN_POS)
  2266. destination[Y_AXIS] = Y_MIN_POS;
  2267. destination[Z_AXIS] = MESH_HOME_Z_SEARCH; // Set destination away from bed
  2268. feedrate = homing_feedrate[Z_AXIS]/10;
  2269. current_position[Z_AXIS] = 0;
  2270. enable_endstops(false);
  2271. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2272. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
  2273. st_synchronize();
  2274. current_position[X_AXIS] = destination[X_AXIS];
  2275. current_position[Y_AXIS] = destination[Y_AXIS];
  2276. enable_endstops(true);
  2277. endstops_hit_on_purpose();
  2278. homeaxis(Z_AXIS);
  2279. #else // MESH_BED_LEVELING
  2280. homeaxis(Z_AXIS);
  2281. #endif // MESH_BED_LEVELING
  2282. }
  2283. #else // defined(Z_SAFE_HOMING): Z Safe mode activated.
  2284. if(home_all_axes) {
  2285. destination[X_AXIS] = round(Z_SAFE_HOMING_X_POINT - X_PROBE_OFFSET_FROM_EXTRUDER);
  2286. destination[Y_AXIS] = round(Z_SAFE_HOMING_Y_POINT - Y_PROBE_OFFSET_FROM_EXTRUDER);
  2287. destination[Z_AXIS] = Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS) * (-1); // Set destination away from bed
  2288. feedrate = XY_TRAVEL_SPEED/60;
  2289. current_position[Z_AXIS] = 0;
  2290. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2291. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
  2292. st_synchronize();
  2293. current_position[X_AXIS] = destination[X_AXIS];
  2294. current_position[Y_AXIS] = destination[Y_AXIS];
  2295. homeaxis(Z_AXIS);
  2296. }
  2297. // Let's see if X and Y are homed and probe is inside bed area.
  2298. if(home_z) {
  2299. if ( (axis_known_position[X_AXIS]) && (axis_known_position[Y_AXIS]) \
  2300. && (current_position[X_AXIS]+X_PROBE_OFFSET_FROM_EXTRUDER >= X_MIN_POS) \
  2301. && (current_position[X_AXIS]+X_PROBE_OFFSET_FROM_EXTRUDER <= X_MAX_POS) \
  2302. && (current_position[Y_AXIS]+Y_PROBE_OFFSET_FROM_EXTRUDER >= Y_MIN_POS) \
  2303. && (current_position[Y_AXIS]+Y_PROBE_OFFSET_FROM_EXTRUDER <= Y_MAX_POS)) {
  2304. current_position[Z_AXIS] = 0;
  2305. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2306. destination[Z_AXIS] = Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS) * (-1); // Set destination away from bed
  2307. feedrate = max_feedrate[Z_AXIS];
  2308. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
  2309. st_synchronize();
  2310. homeaxis(Z_AXIS);
  2311. } else if (!((axis_known_position[X_AXIS]) && (axis_known_position[Y_AXIS]))) {
  2312. LCD_MESSAGERPGM(MSG_POSITION_UNKNOWN);
  2313. SERIAL_ECHO_START;
  2314. SERIAL_ECHOLNRPGM(MSG_POSITION_UNKNOWN);
  2315. } else {
  2316. LCD_MESSAGERPGM(MSG_ZPROBE_OUT);
  2317. SERIAL_ECHO_START;
  2318. SERIAL_ECHOLNRPGM(MSG_ZPROBE_OUT);
  2319. }
  2320. }
  2321. #endif // Z_SAFE_HOMING
  2322. #endif // Z_HOME_DIR < 0
  2323. if(code_seen(axis_codes[Z_AXIS]) && code_value_long() != 0)
  2324. current_position[Z_AXIS]=code_value()+add_homing[Z_AXIS];
  2325. #ifdef ENABLE_AUTO_BED_LEVELING
  2326. if(home_z)
  2327. current_position[Z_AXIS] += zprobe_zoffset; //Add Z_Probe offset (the distance is negative)
  2328. #endif
  2329. // Set the planner and stepper routine positions.
  2330. // At this point the mesh bed leveling and world2machine corrections are disabled and current_position
  2331. // contains the machine coordinates.
  2332. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2333. #ifdef ENDSTOPS_ONLY_FOR_HOMING
  2334. enable_endstops(false);
  2335. #endif
  2336. feedrate = saved_feedrate;
  2337. feedmultiply = saved_feedmultiply;
  2338. previous_millis_cmd = millis();
  2339. endstops_hit_on_purpose();
  2340. #ifndef MESH_BED_LEVELING
  2341. // If MESH_BED_LEVELING is not active, then it is the original Prusa i3.
  2342. // Offer the user to load the baby step value, which has been adjusted at the previous print session.
  2343. if(card.sdprinting && eeprom_read_word((uint16_t *)EEPROM_BABYSTEP_Z))
  2344. lcd_adjust_z();
  2345. #endif
  2346. // Load the machine correction matrix
  2347. world2machine_initialize();
  2348. // and correct the current_position XY axes to match the transformed coordinate system.
  2349. world2machine_update_current();
  2350. #if (defined(MESH_BED_LEVELING) && !defined(MK1BP))
  2351. if (code_seen(axis_codes[X_AXIS]) || code_seen(axis_codes[Y_AXIS]) || code_seen('W') || code_seen(axis_codes[Z_AXIS]))
  2352. {
  2353. if (! home_z && mbl_was_active) {
  2354. // Re-enable the mesh bed leveling if only the X and Y axes were re-homed.
  2355. mbl.active = true;
  2356. // and re-adjust the current logical Z axis with the bed leveling offset applicable at the current XY position.
  2357. current_position[Z_AXIS] -= mbl.get_z(st_get_position_mm(X_AXIS), st_get_position_mm(Y_AXIS));
  2358. }
  2359. }
  2360. else
  2361. {
  2362. st_synchronize();
  2363. homing_flag = false;
  2364. // Push the commands to the front of the message queue in the reverse order!
  2365. // There shall be always enough space reserved for these commands.
  2366. // enquecommand_front_P((PSTR("G80")));
  2367. goto case_G80;
  2368. }
  2369. #endif
  2370. if (farm_mode) { prusa_statistics(20); };
  2371. homing_flag = false;
  2372. SERIAL_ECHOPGM("G28, final "); print_world_coordinates();
  2373. SERIAL_ECHOPGM("G28, final "); print_physical_coordinates();
  2374. SERIAL_ECHOPGM("G28, final "); print_mesh_bed_leveling_table();
  2375. break;
  2376. }
  2377. #ifdef ENABLE_AUTO_BED_LEVELING
  2378. case 29: // G29 Detailed Z-Probe, probes the bed at 3 or more points.
  2379. {
  2380. #if Z_MIN_PIN == -1
  2381. #error "You must have a Z_MIN endstop in order to enable Auto Bed Leveling feature! Z_MIN_PIN must point to a valid hardware pin."
  2382. #endif
  2383. // Prevent user from running a G29 without first homing in X and Y
  2384. if (! (axis_known_position[X_AXIS] && axis_known_position[Y_AXIS]) )
  2385. {
  2386. LCD_MESSAGERPGM(MSG_POSITION_UNKNOWN);
  2387. SERIAL_ECHO_START;
  2388. SERIAL_ECHOLNRPGM(MSG_POSITION_UNKNOWN);
  2389. break; // abort G29, since we don't know where we are
  2390. }
  2391. st_synchronize();
  2392. // make sure the bed_level_rotation_matrix is identity or the planner will get it incorectly
  2393. //vector_3 corrected_position = plan_get_position_mm();
  2394. //corrected_position.debug("position before G29");
  2395. plan_bed_level_matrix.set_to_identity();
  2396. vector_3 uncorrected_position = plan_get_position();
  2397. //uncorrected_position.debug("position durring G29");
  2398. current_position[X_AXIS] = uncorrected_position.x;
  2399. current_position[Y_AXIS] = uncorrected_position.y;
  2400. current_position[Z_AXIS] = uncorrected_position.z;
  2401. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2402. setup_for_endstop_move();
  2403. feedrate = homing_feedrate[Z_AXIS];
  2404. #ifdef AUTO_BED_LEVELING_GRID
  2405. // probe at the points of a lattice grid
  2406. int xGridSpacing = (RIGHT_PROBE_BED_POSITION - LEFT_PROBE_BED_POSITION) / (AUTO_BED_LEVELING_GRID_POINTS-1);
  2407. int yGridSpacing = (BACK_PROBE_BED_POSITION - FRONT_PROBE_BED_POSITION) / (AUTO_BED_LEVELING_GRID_POINTS-1);
  2408. // solve the plane equation ax + by + d = z
  2409. // A is the matrix with rows [x y 1] for all the probed points
  2410. // B is the vector of the Z positions
  2411. // the normal vector to the plane is formed by the coefficients of the plane equation in the standard form, which is Vx*x+Vy*y+Vz*z+d = 0
  2412. // so Vx = -a Vy = -b Vz = 1 (we want the vector facing towards positive Z
  2413. // "A" matrix of the linear system of equations
  2414. double eqnAMatrix[AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS*3];
  2415. // "B" vector of Z points
  2416. double eqnBVector[AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS];
  2417. int probePointCounter = 0;
  2418. bool zig = true;
  2419. for (int yProbe=FRONT_PROBE_BED_POSITION; yProbe <= BACK_PROBE_BED_POSITION; yProbe += yGridSpacing)
  2420. {
  2421. int xProbe, xInc;
  2422. if (zig)
  2423. {
  2424. xProbe = LEFT_PROBE_BED_POSITION;
  2425. //xEnd = RIGHT_PROBE_BED_POSITION;
  2426. xInc = xGridSpacing;
  2427. zig = false;
  2428. } else // zag
  2429. {
  2430. xProbe = RIGHT_PROBE_BED_POSITION;
  2431. //xEnd = LEFT_PROBE_BED_POSITION;
  2432. xInc = -xGridSpacing;
  2433. zig = true;
  2434. }
  2435. for (int xCount=0; xCount < AUTO_BED_LEVELING_GRID_POINTS; xCount++)
  2436. {
  2437. float z_before;
  2438. if (probePointCounter == 0)
  2439. {
  2440. // raise before probing
  2441. z_before = Z_RAISE_BEFORE_PROBING;
  2442. } else
  2443. {
  2444. // raise extruder
  2445. z_before = current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS;
  2446. }
  2447. float measured_z = probe_pt(xProbe, yProbe, z_before);
  2448. eqnBVector[probePointCounter] = measured_z;
  2449. eqnAMatrix[probePointCounter + 0*AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS] = xProbe;
  2450. eqnAMatrix[probePointCounter + 1*AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS] = yProbe;
  2451. eqnAMatrix[probePointCounter + 2*AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS] = 1;
  2452. probePointCounter++;
  2453. xProbe += xInc;
  2454. }
  2455. }
  2456. clean_up_after_endstop_move();
  2457. // solve lsq problem
  2458. double *plane_equation_coefficients = qr_solve(AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS, 3, eqnAMatrix, eqnBVector);
  2459. SERIAL_PROTOCOLPGM("Eqn coefficients: a: ");
  2460. SERIAL_PROTOCOL(plane_equation_coefficients[0]);
  2461. SERIAL_PROTOCOLPGM(" b: ");
  2462. SERIAL_PROTOCOL(plane_equation_coefficients[1]);
  2463. SERIAL_PROTOCOLPGM(" d: ");
  2464. SERIAL_PROTOCOLLN(plane_equation_coefficients[2]);
  2465. set_bed_level_equation_lsq(plane_equation_coefficients);
  2466. free(plane_equation_coefficients);
  2467. #else // AUTO_BED_LEVELING_GRID not defined
  2468. // Probe at 3 arbitrary points
  2469. // probe 1
  2470. float z_at_pt_1 = probe_pt(ABL_PROBE_PT_1_X, ABL_PROBE_PT_1_Y, Z_RAISE_BEFORE_PROBING);
  2471. // probe 2
  2472. float z_at_pt_2 = probe_pt(ABL_PROBE_PT_2_X, ABL_PROBE_PT_2_Y, current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS);
  2473. // probe 3
  2474. float z_at_pt_3 = probe_pt(ABL_PROBE_PT_3_X, ABL_PROBE_PT_3_Y, current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS);
  2475. clean_up_after_endstop_move();
  2476. set_bed_level_equation_3pts(z_at_pt_1, z_at_pt_2, z_at_pt_3);
  2477. #endif // AUTO_BED_LEVELING_GRID
  2478. st_synchronize();
  2479. // The following code correct the Z height difference from z-probe position and hotend tip position.
  2480. // The Z height on homing is measured by Z-Probe, but the probe is quite far from the hotend.
  2481. // When the bed is uneven, this height must be corrected.
  2482. real_z = float(st_get_position(Z_AXIS))/axis_steps_per_unit[Z_AXIS]; //get the real Z (since the auto bed leveling is already correcting the plane)
  2483. x_tmp = current_position[X_AXIS] + X_PROBE_OFFSET_FROM_EXTRUDER;
  2484. y_tmp = current_position[Y_AXIS] + Y_PROBE_OFFSET_FROM_EXTRUDER;
  2485. z_tmp = current_position[Z_AXIS];
  2486. apply_rotation_xyz(plan_bed_level_matrix, x_tmp, y_tmp, z_tmp); //Apply the correction sending the probe offset
  2487. current_position[Z_AXIS] = z_tmp - real_z + current_position[Z_AXIS]; //The difference is added to current position and sent to planner.
  2488. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2489. }
  2490. break;
  2491. #ifndef Z_PROBE_SLED
  2492. case 30: // G30 Single Z Probe
  2493. {
  2494. st_synchronize();
  2495. // TODO: make sure the bed_level_rotation_matrix is identity or the planner will get set incorectly
  2496. setup_for_endstop_move();
  2497. feedrate = homing_feedrate[Z_AXIS];
  2498. run_z_probe();
  2499. SERIAL_PROTOCOLPGM(MSG_BED);
  2500. SERIAL_PROTOCOLPGM(" X: ");
  2501. SERIAL_PROTOCOL(current_position[X_AXIS]);
  2502. SERIAL_PROTOCOLPGM(" Y: ");
  2503. SERIAL_PROTOCOL(current_position[Y_AXIS]);
  2504. SERIAL_PROTOCOLPGM(" Z: ");
  2505. SERIAL_PROTOCOL(current_position[Z_AXIS]);
  2506. SERIAL_PROTOCOLPGM("\n");
  2507. clean_up_after_endstop_move();
  2508. }
  2509. break;
  2510. #else
  2511. case 31: // dock the sled
  2512. dock_sled(true);
  2513. break;
  2514. case 32: // undock the sled
  2515. dock_sled(false);
  2516. break;
  2517. #endif // Z_PROBE_SLED
  2518. #endif // ENABLE_AUTO_BED_LEVELING
  2519. #ifdef MESH_BED_LEVELING
  2520. case 30: // G30 Single Z Probe
  2521. {
  2522. st_synchronize();
  2523. // TODO: make sure the bed_level_rotation_matrix is identity or the planner will get set incorectly
  2524. setup_for_endstop_move();
  2525. feedrate = homing_feedrate[Z_AXIS];
  2526. find_bed_induction_sensor_point_z(-10.f, 3);
  2527. SERIAL_PROTOCOLRPGM(MSG_BED);
  2528. SERIAL_PROTOCOLPGM(" X: ");
  2529. MYSERIAL.print(current_position[X_AXIS], 5);
  2530. SERIAL_PROTOCOLPGM(" Y: ");
  2531. MYSERIAL.print(current_position[Y_AXIS], 5);
  2532. SERIAL_PROTOCOLPGM(" Z: ");
  2533. MYSERIAL.print(current_position[Z_AXIS], 5);
  2534. SERIAL_PROTOCOLPGM("\n");
  2535. clean_up_after_endstop_move();
  2536. }
  2537. break;
  2538. case 75:
  2539. {
  2540. for (int i = 40; i <= 110; i++) {
  2541. MYSERIAL.print(i);
  2542. MYSERIAL.print(" ");
  2543. MYSERIAL.println(temp_comp_interpolation(i));// / axis_steps_per_unit[Z_AXIS]);
  2544. }
  2545. }
  2546. break;
  2547. case 76: //PINDA probe temperature calibration
  2548. {
  2549. #ifdef PINDA_THERMISTOR
  2550. if (true)
  2551. {
  2552. if (!(axis_known_position[X_AXIS] && axis_known_position[Y_AXIS] && axis_known_position[Z_AXIS])) {
  2553. // We don't know where we are! HOME!
  2554. // Push the commands to the front of the message queue in the reverse order!
  2555. // There shall be always enough space reserved for these commands.
  2556. repeatcommand_front(); // repeat G76 with all its parameters
  2557. enquecommand_front_P((PSTR("G28 W0")));
  2558. break;
  2559. }
  2560. KEEPALIVE_STATE(NOT_BUSY); //no need to print busy messages as we print current temperatures periodicaly
  2561. SERIAL_ECHOLNPGM("PINDA probe calibration start");
  2562. float zero_z;
  2563. int z_shift = 0; //unit: steps
  2564. float start_temp = 5 * (int)(current_temperature_pinda / 5);
  2565. if (start_temp < 35) start_temp = 35;
  2566. if (start_temp < current_temperature_pinda) start_temp += 5;
  2567. SERIAL_ECHOPGM("start temperature: ");
  2568. MYSERIAL.println(start_temp);
  2569. // setTargetHotend(200, 0);
  2570. setTargetBed(70 + (start_temp - 30));
  2571. custom_message = true;
  2572. custom_message_type = 4;
  2573. custom_message_state = 1;
  2574. custom_message = MSG_TEMP_CALIBRATION;
  2575. current_position[X_AXIS] = PINDA_PREHEAT_X;
  2576. current_position[Y_AXIS] = PINDA_PREHEAT_Y;
  2577. current_position[Z_AXIS] = PINDA_PREHEAT_Z;
  2578. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  2579. st_synchronize();
  2580. while (current_temperature_pinda < start_temp)
  2581. {
  2582. delay_keep_alive(1000);
  2583. serialecho_temperatures();
  2584. }
  2585. eeprom_update_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 0); //invalidate temp. calibration in case that in will be aborted during the calibration process
  2586. current_position[Z_AXIS] = 5;
  2587. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  2588. current_position[X_AXIS] = pgm_read_float(bed_ref_points);
  2589. current_position[Y_AXIS] = pgm_read_float(bed_ref_points + 1);
  2590. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  2591. st_synchronize();
  2592. find_bed_induction_sensor_point_z(-1.f);
  2593. zero_z = current_position[Z_AXIS];
  2594. //current_position[Z_AXIS]
  2595. SERIAL_ECHOLNPGM("");
  2596. SERIAL_ECHOPGM("ZERO: ");
  2597. MYSERIAL.print(current_position[Z_AXIS]);
  2598. SERIAL_ECHOLNPGM("");
  2599. int i = -1; for (; i < 5; i++)
  2600. {
  2601. float temp = (40 + i * 5);
  2602. SERIAL_ECHOPGM("Step: ");
  2603. MYSERIAL.print(i + 2);
  2604. SERIAL_ECHOLNPGM("/6 (skipped)");
  2605. SERIAL_ECHOPGM("PINDA temperature: ");
  2606. MYSERIAL.print((40 + i*5));
  2607. SERIAL_ECHOPGM(" Z shift (mm):");
  2608. MYSERIAL.print(0);
  2609. SERIAL_ECHOLNPGM("");
  2610. if (i >= 0) EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + i * 2, &z_shift);
  2611. if (start_temp <= temp) break;
  2612. }
  2613. for (i++; i < 5; i++)
  2614. {
  2615. float temp = (40 + i * 5);
  2616. SERIAL_ECHOPGM("Step: ");
  2617. MYSERIAL.print(i + 2);
  2618. SERIAL_ECHOLNPGM("/6");
  2619. custom_message_state = i + 2;
  2620. setTargetBed(50 + 10 * (temp - 30) / 5);
  2621. // setTargetHotend(255, 0);
  2622. current_position[X_AXIS] = PINDA_PREHEAT_X;
  2623. current_position[Y_AXIS] = PINDA_PREHEAT_Y;
  2624. current_position[Z_AXIS] = PINDA_PREHEAT_Z;
  2625. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  2626. st_synchronize();
  2627. while (current_temperature_pinda < temp)
  2628. {
  2629. delay_keep_alive(1000);
  2630. serialecho_temperatures();
  2631. }
  2632. current_position[Z_AXIS] = 5;
  2633. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  2634. current_position[X_AXIS] = pgm_read_float(bed_ref_points);
  2635. current_position[Y_AXIS] = pgm_read_float(bed_ref_points + 1);
  2636. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  2637. st_synchronize();
  2638. find_bed_induction_sensor_point_z(-1.f);
  2639. z_shift = (int)((current_position[Z_AXIS] - zero_z)*axis_steps_per_unit[Z_AXIS]);
  2640. SERIAL_ECHOLNPGM("");
  2641. SERIAL_ECHOPGM("PINDA temperature: ");
  2642. MYSERIAL.print(current_temperature_pinda);
  2643. SERIAL_ECHOPGM(" Z shift (mm):");
  2644. MYSERIAL.print(current_position[Z_AXIS] - zero_z);
  2645. SERIAL_ECHOLNPGM("");
  2646. EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + i * 2, &z_shift);
  2647. }
  2648. custom_message_type = 0;
  2649. custom_message = false;
  2650. eeprom_update_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 1);
  2651. SERIAL_ECHOLNPGM("Temperature calibration done. Continue with pressing the knob.");
  2652. disable_x();
  2653. disable_y();
  2654. disable_z();
  2655. disable_e0();
  2656. disable_e1();
  2657. disable_e2();
  2658. lcd_show_fullscreen_message_and_wait_P(MSG_TEMP_CALIBRATION_DONE);
  2659. lcd_update_enable(true);
  2660. lcd_update(2);
  2661. setTargetBed(0); //set bed target temperature back to 0
  2662. // setTargetHotend(0,0); //set hotend target temperature back to 0
  2663. break;
  2664. }
  2665. #endif //PINDA_THERMISTOR
  2666. setTargetBed(PINDA_MIN_T);
  2667. float zero_z;
  2668. int z_shift = 0; //unit: steps
  2669. int t_c; // temperature
  2670. if (!(axis_known_position[X_AXIS] && axis_known_position[Y_AXIS] && axis_known_position[Z_AXIS])) {
  2671. // We don't know where we are! HOME!
  2672. // Push the commands to the front of the message queue in the reverse order!
  2673. // There shall be always enough space reserved for these commands.
  2674. repeatcommand_front(); // repeat G76 with all its parameters
  2675. enquecommand_front_P((PSTR("G28 W0")));
  2676. break;
  2677. }
  2678. SERIAL_ECHOLNPGM("PINDA probe calibration start");
  2679. custom_message = true;
  2680. custom_message_type = 4;
  2681. custom_message_state = 1;
  2682. custom_message = MSG_TEMP_CALIBRATION;
  2683. current_position[X_AXIS] = PINDA_PREHEAT_X;
  2684. current_position[Y_AXIS] = PINDA_PREHEAT_Y;
  2685. current_position[Z_AXIS] = PINDA_PREHEAT_Z;
  2686. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  2687. st_synchronize();
  2688. while (abs(degBed() - PINDA_MIN_T) > 1) {
  2689. delay_keep_alive(1000);
  2690. serialecho_temperatures();
  2691. }
  2692. //enquecommand_P(PSTR("M190 S50"));
  2693. for (int i = 0; i < PINDA_HEAT_T; i++) {
  2694. delay_keep_alive(1000);
  2695. serialecho_temperatures();
  2696. }
  2697. eeprom_update_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 0); //invalidate temp. calibration in case that in will be aborted during the calibration process
  2698. current_position[Z_AXIS] = 5;
  2699. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  2700. current_position[X_AXIS] = pgm_read_float(bed_ref_points);
  2701. current_position[Y_AXIS] = pgm_read_float(bed_ref_points + 1);
  2702. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  2703. st_synchronize();
  2704. find_bed_induction_sensor_point_z(-1.f);
  2705. zero_z = current_position[Z_AXIS];
  2706. //current_position[Z_AXIS]
  2707. SERIAL_ECHOLNPGM("");
  2708. SERIAL_ECHOPGM("ZERO: ");
  2709. MYSERIAL.print(current_position[Z_AXIS]);
  2710. SERIAL_ECHOLNPGM("");
  2711. for (int i = 0; i<5; i++) {
  2712. SERIAL_ECHOPGM("Step: ");
  2713. MYSERIAL.print(i+2);
  2714. SERIAL_ECHOLNPGM("/6");
  2715. custom_message_state = i + 2;
  2716. t_c = 60 + i * 10;
  2717. setTargetBed(t_c);
  2718. current_position[X_AXIS] = PINDA_PREHEAT_X;
  2719. current_position[Y_AXIS] = PINDA_PREHEAT_Y;
  2720. current_position[Z_AXIS] = PINDA_PREHEAT_Z;
  2721. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  2722. st_synchronize();
  2723. while (degBed() < t_c) {
  2724. delay_keep_alive(1000);
  2725. serialecho_temperatures();
  2726. }
  2727. for (int i = 0; i < PINDA_HEAT_T; i++) {
  2728. delay_keep_alive(1000);
  2729. serialecho_temperatures();
  2730. }
  2731. current_position[Z_AXIS] = 5;
  2732. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  2733. current_position[X_AXIS] = pgm_read_float(bed_ref_points);
  2734. current_position[Y_AXIS] = pgm_read_float(bed_ref_points + 1);
  2735. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  2736. st_synchronize();
  2737. find_bed_induction_sensor_point_z(-1.f);
  2738. z_shift = (int)((current_position[Z_AXIS] - zero_z)*axis_steps_per_unit[Z_AXIS]);
  2739. SERIAL_ECHOLNPGM("");
  2740. SERIAL_ECHOPGM("Temperature: ");
  2741. MYSERIAL.print(t_c);
  2742. SERIAL_ECHOPGM(" Z shift (mm):");
  2743. MYSERIAL.print(current_position[Z_AXIS] - zero_z);
  2744. SERIAL_ECHOLNPGM("");
  2745. EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + i*2, &z_shift);
  2746. }
  2747. custom_message_type = 0;
  2748. custom_message = false;
  2749. eeprom_update_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 1);
  2750. SERIAL_ECHOLNPGM("Temperature calibration done. Continue with pressing the knob.");
  2751. disable_x();
  2752. disable_y();
  2753. disable_z();
  2754. disable_e0();
  2755. disable_e1();
  2756. disable_e2();
  2757. setTargetBed(0); //set bed target temperature back to 0
  2758. lcd_show_fullscreen_message_and_wait_P(MSG_TEMP_CALIBRATION_DONE);
  2759. lcd_update_enable(true);
  2760. lcd_update(2);
  2761. }
  2762. break;
  2763. #ifdef DIS
  2764. case 77:
  2765. {
  2766. //G77 X200 Y150 XP100 YP15 XO10 Y015
  2767. //for 9 point mesh bed leveling G77 X203 Y196 XP3 YP3 XO0 YO0
  2768. //G77 X232 Y218 XP116 YP109 XO-11 YO0
  2769. float dimension_x = 40;
  2770. float dimension_y = 40;
  2771. int points_x = 40;
  2772. int points_y = 40;
  2773. float offset_x = 74;
  2774. float offset_y = 33;
  2775. if (code_seen('X')) dimension_x = code_value();
  2776. if (code_seen('Y')) dimension_y = code_value();
  2777. if (code_seen('XP')) points_x = code_value();
  2778. if (code_seen('YP')) points_y = code_value();
  2779. if (code_seen('XO')) offset_x = code_value();
  2780. if (code_seen('YO')) offset_y = code_value();
  2781. bed_analysis(dimension_x,dimension_y,points_x,points_y,offset_x,offset_y);
  2782. } break;
  2783. #endif
  2784. case 79: {
  2785. for (int i = 255; i > 0; i = i - 5) {
  2786. fanSpeed = i;
  2787. //delay_keep_alive(2000);
  2788. for (int j = 0; j < 100; j++) {
  2789. delay_keep_alive(100);
  2790. }
  2791. fan_speed[1];
  2792. MYSERIAL.print(i); SERIAL_ECHOPGM(": "); MYSERIAL.println(fan_speed[1]);
  2793. }
  2794. }break;
  2795. /**
  2796. * G80: Mesh-based Z probe, probes a grid and produces a
  2797. * mesh to compensate for variable bed height
  2798. *
  2799. * The S0 report the points as below
  2800. *
  2801. * +----> X-axis
  2802. * |
  2803. * |
  2804. * v Y-axis
  2805. *
  2806. */
  2807. case 80:
  2808. #ifdef MK1BP
  2809. break;
  2810. #endif //MK1BP
  2811. case_G80:
  2812. {
  2813. mesh_bed_leveling_flag = true;
  2814. int8_t verbosity_level = 0;
  2815. static bool run = false;
  2816. if (code_seen('V')) {
  2817. // Just 'V' without a number counts as V1.
  2818. char c = strchr_pointer[1];
  2819. verbosity_level = (c == ' ' || c == '\t' || c == 0) ? 1 : code_value_short();
  2820. }
  2821. // Firstly check if we know where we are
  2822. if (!(axis_known_position[X_AXIS] && axis_known_position[Y_AXIS] && axis_known_position[Z_AXIS])) {
  2823. // We don't know where we are! HOME!
  2824. // Push the commands to the front of the message queue in the reverse order!
  2825. // There shall be always enough space reserved for these commands.
  2826. if (lcd_commands_type != LCD_COMMAND_STOP_PRINT) {
  2827. repeatcommand_front(); // repeat G80 with all its parameters
  2828. enquecommand_front_P((PSTR("G28 W0")));
  2829. }
  2830. else {
  2831. mesh_bed_leveling_flag = false;
  2832. }
  2833. break;
  2834. }
  2835. bool temp_comp_start = true;
  2836. #ifdef PINDA_THERMISTOR
  2837. temp_comp_start = false;
  2838. #endif //PINDA_THERMISTOR
  2839. if (temp_comp_start)
  2840. if (run == false && temp_cal_active == true && calibration_status_pinda() == true && target_temperature_bed >= 50) {
  2841. if (lcd_commands_type != LCD_COMMAND_STOP_PRINT) {
  2842. temp_compensation_start();
  2843. run = true;
  2844. repeatcommand_front(); // repeat G80 with all its parameters
  2845. enquecommand_front_P((PSTR("G28 W0")));
  2846. }
  2847. else {
  2848. mesh_bed_leveling_flag = false;
  2849. }
  2850. break;
  2851. }
  2852. run = false;
  2853. if (lcd_commands_type == LCD_COMMAND_STOP_PRINT) {
  2854. mesh_bed_leveling_flag = false;
  2855. break;
  2856. }
  2857. // Save custom message state, set a new custom message state to display: Calibrating point 9.
  2858. bool custom_message_old = custom_message;
  2859. unsigned int custom_message_type_old = custom_message_type;
  2860. unsigned int custom_message_state_old = custom_message_state;
  2861. custom_message = true;
  2862. custom_message_type = 1;
  2863. custom_message_state = (MESH_MEAS_NUM_X_POINTS * MESH_MEAS_NUM_Y_POINTS) + 10;
  2864. lcd_update(1);
  2865. mbl.reset(); //reset mesh bed leveling
  2866. // Reset baby stepping to zero, if the babystepping has already been loaded before. The babystepsTodo value will be
  2867. // consumed during the first movements following this statement.
  2868. babystep_undo();
  2869. // Cycle through all points and probe them
  2870. // First move up. During this first movement, the babystepping will be reverted.
  2871. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  2872. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[Z_AXIS] / 60, active_extruder);
  2873. // The move to the first calibration point.
  2874. current_position[X_AXIS] = pgm_read_float(bed_ref_points);
  2875. current_position[Y_AXIS] = pgm_read_float(bed_ref_points + 1);
  2876. bool clamped = world2machine_clamp(current_position[X_AXIS], current_position[Y_AXIS]);
  2877. #ifdef SUPPORT_VERBOSITY
  2878. if (verbosity_level >= 1) {
  2879. clamped ? SERIAL_PROTOCOLPGM("First calibration point clamped.\n") : SERIAL_PROTOCOLPGM("No clamping for first calibration point.\n");
  2880. }
  2881. #endif //SUPPORT_VERBOSITY
  2882. // mbl.get_meas_xy(0, 0, current_position[X_AXIS], current_position[Y_AXIS], false);
  2883. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[X_AXIS] / 30, active_extruder);
  2884. // Wait until the move is finished.
  2885. st_synchronize();
  2886. int mesh_point = 0; //index number of calibration point
  2887. int ix = 0;
  2888. int iy = 0;
  2889. int XY_AXIS_FEEDRATE = homing_feedrate[X_AXIS] / 20;
  2890. int Z_PROBE_FEEDRATE = homing_feedrate[Z_AXIS] / 60;
  2891. int Z_LIFT_FEEDRATE = homing_feedrate[Z_AXIS] / 40;
  2892. bool has_z = is_bed_z_jitter_data_valid(); //checks if we have data from Z calibration (offsets of the Z heiths of the 8 calibration points from the first point)
  2893. #ifdef SUPPORT_VERBOSITY
  2894. if (verbosity_level >= 1) {
  2895. has_z ? SERIAL_PROTOCOLPGM("Z jitter data from Z cal. valid.\n") : SERIAL_PROTOCOLPGM("Z jitter data from Z cal. not valid.\n");
  2896. }
  2897. #endif // SUPPORT_VERBOSITY
  2898. setup_for_endstop_move(false); //save feedrate and feedmultiply, sets feedmultiply to 100
  2899. const char *kill_message = NULL;
  2900. while (mesh_point != MESH_MEAS_NUM_X_POINTS * MESH_MEAS_NUM_Y_POINTS) {
  2901. // Get coords of a measuring point.
  2902. ix = mesh_point % MESH_MEAS_NUM_X_POINTS; // from 0 to MESH_NUM_X_POINTS - 1
  2903. iy = mesh_point / MESH_MEAS_NUM_X_POINTS;
  2904. if (iy & 1) ix = (MESH_MEAS_NUM_X_POINTS - 1) - ix; // Zig zag
  2905. float z0 = 0.f;
  2906. if (has_z && mesh_point > 0) {
  2907. uint16_t z_offset_u = eeprom_read_word((uint16_t*)(EEPROM_BED_CALIBRATION_Z_JITTER + 2 * (ix + iy * 3 - 1)));
  2908. z0 = mbl.z_values[0][0] + *reinterpret_cast<int16_t*>(&z_offset_u) * 0.01;
  2909. //#if 0
  2910. #ifdef SUPPORT_VERBOSITY
  2911. if (verbosity_level >= 1) {
  2912. SERIAL_ECHOLNPGM("");
  2913. SERIAL_ECHOPGM("Bed leveling, point: ");
  2914. MYSERIAL.print(mesh_point);
  2915. SERIAL_ECHOPGM(", calibration z: ");
  2916. MYSERIAL.print(z0, 5);
  2917. SERIAL_ECHOLNPGM("");
  2918. }
  2919. #endif // SUPPORT_VERBOSITY
  2920. //#endif
  2921. }
  2922. // Move Z up to MESH_HOME_Z_SEARCH.
  2923. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  2924. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], Z_LIFT_FEEDRATE, active_extruder);
  2925. st_synchronize();
  2926. // Move to XY position of the sensor point.
  2927. current_position[X_AXIS] = pgm_read_float(bed_ref_points + 2 * mesh_point);
  2928. current_position[Y_AXIS] = pgm_read_float(bed_ref_points + 2 * mesh_point + 1);
  2929. world2machine_clamp(current_position[X_AXIS], current_position[Y_AXIS]);
  2930. #ifdef SUPPORT_VERBOSITY
  2931. if (verbosity_level >= 1) {
  2932. SERIAL_PROTOCOL(mesh_point);
  2933. clamped ? SERIAL_PROTOCOLPGM(": xy clamped.\n") : SERIAL_PROTOCOLPGM(": no xy clamping\n");
  2934. }
  2935. #endif // SUPPORT_VERBOSITY
  2936. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], XY_AXIS_FEEDRATE, active_extruder);
  2937. st_synchronize();
  2938. // Go down until endstop is hit
  2939. const float Z_CALIBRATION_THRESHOLD = 1.f;
  2940. if (!find_bed_induction_sensor_point_z((has_z && mesh_point > 0) ? z0 - Z_CALIBRATION_THRESHOLD : -10.f)) { //if we have data from z calibration max allowed difference is 1mm for each point, if we dont have data max difference is 10mm from initial point
  2941. kill_message = MSG_BED_LEVELING_FAILED_POINT_LOW;
  2942. break;
  2943. }
  2944. if (MESH_HOME_Z_SEARCH - current_position[Z_AXIS] < 0.1f) {
  2945. kill_message = MSG_BED_LEVELING_FAILED_PROBE_DISCONNECTED;
  2946. break;
  2947. }
  2948. if (has_z && fabs(z0 - current_position[Z_AXIS]) > Z_CALIBRATION_THRESHOLD) { //if we have data from z calibration, max. allowed difference is 1mm for each point
  2949. kill_message = MSG_BED_LEVELING_FAILED_POINT_HIGH;
  2950. break;
  2951. }
  2952. #ifdef SUPPORT_VERBOSITY
  2953. if (verbosity_level >= 10) {
  2954. SERIAL_ECHOPGM("X: ");
  2955. MYSERIAL.print(current_position[X_AXIS], 5);
  2956. SERIAL_ECHOLNPGM("");
  2957. SERIAL_ECHOPGM("Y: ");
  2958. MYSERIAL.print(current_position[Y_AXIS], 5);
  2959. SERIAL_PROTOCOLPGM("\n");
  2960. }
  2961. #endif // SUPPORT_VERBOSITY
  2962. float offset_z = 0;
  2963. #ifdef PINDA_THERMISTOR
  2964. offset_z = temp_compensation_pinda_thermistor_offset(current_temperature_pinda);
  2965. #endif //PINDA_THERMISTOR
  2966. // #ifdef SUPPORT_VERBOSITY
  2967. // if (verbosity_level >= 1)
  2968. {
  2969. SERIAL_ECHOPGM("mesh bed leveling: ");
  2970. MYSERIAL.print(current_position[Z_AXIS], 5);
  2971. SERIAL_ECHOPGM(" offset: ");
  2972. MYSERIAL.print(offset_z, 5);
  2973. SERIAL_ECHOLNPGM("");
  2974. }
  2975. // #endif // SUPPORT_VERBOSITY
  2976. mbl.set_z(ix, iy, current_position[Z_AXIS] - offset_z); //store measured z values z_values[iy][ix] = z - offset_z;
  2977. custom_message_state--;
  2978. mesh_point++;
  2979. lcd_update(1);
  2980. }
  2981. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  2982. #ifdef SUPPORT_VERBOSITY
  2983. if (verbosity_level >= 20) {
  2984. SERIAL_ECHOLNPGM("Mesh bed leveling while loop finished.");
  2985. SERIAL_ECHOLNPGM("MESH_HOME_Z_SEARCH: ");
  2986. MYSERIAL.print(current_position[Z_AXIS], 5);
  2987. }
  2988. #endif // SUPPORT_VERBOSITY
  2989. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], Z_LIFT_FEEDRATE, active_extruder);
  2990. st_synchronize();
  2991. if (mesh_point != MESH_MEAS_NUM_X_POINTS * MESH_MEAS_NUM_Y_POINTS) {
  2992. kill(kill_message);
  2993. SERIAL_ECHOLNPGM("killed");
  2994. }
  2995. clean_up_after_endstop_move();
  2996. SERIAL_ECHOLNPGM("clean up finished ");
  2997. bool apply_temp_comp = true;
  2998. #ifdef PINDA_THERMISTOR
  2999. apply_temp_comp = false;
  3000. #endif
  3001. if (apply_temp_comp)
  3002. if(temp_cal_active == true && calibration_status_pinda() == true) temp_compensation_apply(); //apply PINDA temperature compensation
  3003. babystep_apply(); // Apply Z height correction aka baby stepping before mesh bed leveing gets activated.
  3004. SERIAL_ECHOLNPGM("babystep applied");
  3005. bool eeprom_bed_correction_valid = eeprom_read_byte((unsigned char*)EEPROM_BED_CORRECTION_VALID) == 1;
  3006. #ifdef SUPPORT_VERBOSITY
  3007. if (verbosity_level >= 1) {
  3008. eeprom_bed_correction_valid ? SERIAL_PROTOCOLPGM("Bed correction data valid\n") : SERIAL_PROTOCOLPGM("Bed correction data not valid\n");
  3009. }
  3010. #endif // SUPPORT_VERBOSITY
  3011. for (uint8_t i = 0; i < 4; ++i) {
  3012. unsigned char codes[4] = { 'L', 'R', 'F', 'B' };
  3013. long correction = 0;
  3014. if (code_seen(codes[i]))
  3015. correction = code_value_long();
  3016. else if (eeprom_bed_correction_valid) {
  3017. unsigned char *addr = (i < 2) ?
  3018. ((i == 0) ? (unsigned char*)EEPROM_BED_CORRECTION_LEFT : (unsigned char*)EEPROM_BED_CORRECTION_RIGHT) :
  3019. ((i == 2) ? (unsigned char*)EEPROM_BED_CORRECTION_FRONT : (unsigned char*)EEPROM_BED_CORRECTION_REAR);
  3020. correction = eeprom_read_int8(addr);
  3021. }
  3022. if (correction == 0)
  3023. continue;
  3024. float offset = float(correction) * 0.001f;
  3025. if (fabs(offset) > 0.101f) {
  3026. SERIAL_ERROR_START;
  3027. SERIAL_ECHOPGM("Excessive bed leveling correction: ");
  3028. SERIAL_ECHO(offset);
  3029. SERIAL_ECHOLNPGM(" microns");
  3030. }
  3031. else {
  3032. switch (i) {
  3033. case 0:
  3034. for (uint8_t row = 0; row < 3; ++row) {
  3035. mbl.z_values[row][1] += 0.5f * offset;
  3036. mbl.z_values[row][0] += offset;
  3037. }
  3038. break;
  3039. case 1:
  3040. for (uint8_t row = 0; row < 3; ++row) {
  3041. mbl.z_values[row][1] += 0.5f * offset;
  3042. mbl.z_values[row][2] += offset;
  3043. }
  3044. break;
  3045. case 2:
  3046. for (uint8_t col = 0; col < 3; ++col) {
  3047. mbl.z_values[1][col] += 0.5f * offset;
  3048. mbl.z_values[0][col] += offset;
  3049. }
  3050. break;
  3051. case 3:
  3052. for (uint8_t col = 0; col < 3; ++col) {
  3053. mbl.z_values[1][col] += 0.5f * offset;
  3054. mbl.z_values[2][col] += offset;
  3055. }
  3056. break;
  3057. }
  3058. }
  3059. }
  3060. SERIAL_ECHOLNPGM("Bed leveling correction finished");
  3061. mbl.upsample_3x3(); //bilinear interpolation from 3x3 to 7x7 points while using the same array z_values[iy][ix] for storing (just coppying measured data to new destination and interpolating between them)
  3062. SERIAL_ECHOLNPGM("Upsample finished");
  3063. mbl.active = 1; //activate mesh bed leveling
  3064. SERIAL_ECHOLNPGM("Mesh bed leveling activated");
  3065. go_home_with_z_lift();
  3066. SERIAL_ECHOLNPGM("Go home finished");
  3067. //unretract (after PINDA preheat retraction)
  3068. if (degHotend(active_extruder) > EXTRUDE_MINTEMP && temp_cal_active == true && calibration_status_pinda() == true && target_temperature_bed >= 50) {
  3069. current_position[E_AXIS] += DEFAULT_RETRACTION;
  3070. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400, active_extruder);
  3071. }
  3072. KEEPALIVE_STATE(NOT_BUSY);
  3073. // Restore custom message state
  3074. custom_message = custom_message_old;
  3075. custom_message_type = custom_message_type_old;
  3076. custom_message_state = custom_message_state_old;
  3077. mesh_bed_leveling_flag = false;
  3078. mesh_bed_run_from_menu = false;
  3079. lcd_update(2);
  3080. }
  3081. break;
  3082. /**
  3083. * G81: Print mesh bed leveling status and bed profile if activated
  3084. */
  3085. case 81:
  3086. if (mbl.active) {
  3087. SERIAL_PROTOCOLPGM("Num X,Y: ");
  3088. SERIAL_PROTOCOL(MESH_NUM_X_POINTS);
  3089. SERIAL_PROTOCOLPGM(",");
  3090. SERIAL_PROTOCOL(MESH_NUM_Y_POINTS);
  3091. SERIAL_PROTOCOLPGM("\nZ search height: ");
  3092. SERIAL_PROTOCOL(MESH_HOME_Z_SEARCH);
  3093. SERIAL_PROTOCOLLNPGM("\nMeasured points:");
  3094. for (int y = MESH_NUM_Y_POINTS-1; y >= 0; y--) {
  3095. for (int x = 0; x < MESH_NUM_X_POINTS; x++) {
  3096. SERIAL_PROTOCOLPGM(" ");
  3097. SERIAL_PROTOCOL_F(mbl.z_values[y][x], 5);
  3098. }
  3099. SERIAL_PROTOCOLPGM("\n");
  3100. }
  3101. }
  3102. else
  3103. SERIAL_PROTOCOLLNPGM("Mesh bed leveling not active.");
  3104. break;
  3105. #if 0
  3106. /**
  3107. * G82: Single Z probe at current location
  3108. *
  3109. * WARNING! USE WITH CAUTION! If you'll try to probe where is no leveling pad, nasty things can happen!
  3110. *
  3111. */
  3112. case 82:
  3113. SERIAL_PROTOCOLLNPGM("Finding bed ");
  3114. setup_for_endstop_move();
  3115. find_bed_induction_sensor_point_z();
  3116. clean_up_after_endstop_move();
  3117. SERIAL_PROTOCOLPGM("Bed found at: ");
  3118. SERIAL_PROTOCOL_F(current_position[Z_AXIS], 5);
  3119. SERIAL_PROTOCOLPGM("\n");
  3120. break;
  3121. /**
  3122. * G83: Prusa3D specific: Babystep in Z and store to EEPROM
  3123. */
  3124. case 83:
  3125. {
  3126. int babystepz = code_seen('S') ? code_value() : 0;
  3127. int BabyPosition = code_seen('P') ? code_value() : 0;
  3128. if (babystepz != 0) {
  3129. //FIXME Vojtech: What shall be the index of the axis Z: 3 or 4?
  3130. // Is the axis indexed starting with zero or one?
  3131. if (BabyPosition > 4) {
  3132. SERIAL_PROTOCOLLNPGM("Index out of bounds");
  3133. }else{
  3134. // Save it to the eeprom
  3135. babystepLoadZ = babystepz;
  3136. EEPROM_save_B(EEPROM_BABYSTEP_Z0+(BabyPosition*2),&babystepLoadZ);
  3137. // adjust the Z
  3138. babystepsTodoZadd(babystepLoadZ);
  3139. }
  3140. }
  3141. }
  3142. break;
  3143. /**
  3144. * G84: Prusa3D specific: UNDO Babystep Z (move Z axis back)
  3145. */
  3146. case 84:
  3147. babystepsTodoZsubtract(babystepLoadZ);
  3148. // babystepLoadZ = 0;
  3149. break;
  3150. /**
  3151. * G85: Prusa3D specific: Pick best babystep
  3152. */
  3153. case 85:
  3154. lcd_pick_babystep();
  3155. break;
  3156. #endif
  3157. /**
  3158. * G86: Prusa3D specific: Disable babystep correction after home.
  3159. * This G-code will be performed at the start of a calibration script.
  3160. */
  3161. case 86:
  3162. calibration_status_store(CALIBRATION_STATUS_LIVE_ADJUST);
  3163. break;
  3164. /**
  3165. * G87: Prusa3D specific: Enable babystep correction after home
  3166. * This G-code will be performed at the end of a calibration script.
  3167. */
  3168. case 87:
  3169. calibration_status_store(CALIBRATION_STATUS_CALIBRATED);
  3170. break;
  3171. /**
  3172. * G88: Prusa3D specific: Don't know what it is for, it is in V2Calibration.gcode
  3173. */
  3174. case 88:
  3175. break;
  3176. #endif // ENABLE_MESH_BED_LEVELING
  3177. case 90: // G90
  3178. relative_mode = false;
  3179. break;
  3180. case 91: // G91
  3181. relative_mode = true;
  3182. break;
  3183. case 92: // G92
  3184. if(!code_seen(axis_codes[E_AXIS]))
  3185. st_synchronize();
  3186. for(int8_t i=0; i < NUM_AXIS; i++) {
  3187. if(code_seen(axis_codes[i])) {
  3188. if(i == E_AXIS) {
  3189. current_position[i] = code_value();
  3190. plan_set_e_position(current_position[E_AXIS]);
  3191. }
  3192. else {
  3193. current_position[i] = code_value()+add_homing[i];
  3194. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  3195. }
  3196. }
  3197. }
  3198. break;
  3199. case 98: //activate farm mode
  3200. farm_mode = 1;
  3201. PingTime = millis();
  3202. eeprom_update_byte((unsigned char *)EEPROM_FARM_MODE, farm_mode);
  3203. break;
  3204. case 99: //deactivate farm mode
  3205. farm_mode = 0;
  3206. lcd_printer_connected();
  3207. eeprom_update_byte((unsigned char *)EEPROM_FARM_MODE, farm_mode);
  3208. lcd_update(2);
  3209. break;
  3210. }
  3211. } // end if(code_seen('G'))
  3212. else if(code_seen('M'))
  3213. {
  3214. int index;
  3215. for (index = 1; *(strchr_pointer + index) == ' ' || *(strchr_pointer + index) == '\t'; index++);
  3216. /*for (++strchr_pointer; *strchr_pointer == ' ' || *strchr_pointer == '\t'; ++strchr_pointer);*/
  3217. if (*(strchr_pointer+index) < '0' || *(strchr_pointer+index) > '9') {
  3218. SERIAL_ECHOLNPGM("Invalid M code");
  3219. } else
  3220. switch((int)code_value())
  3221. {
  3222. #ifdef ULTIPANEL
  3223. case 0: // M0 - Unconditional stop - Wait for user button press on LCD
  3224. case 1: // M1 - Conditional stop - Wait for user button press on LCD
  3225. {
  3226. char *src = strchr_pointer + 2;
  3227. codenum = 0;
  3228. bool hasP = false, hasS = false;
  3229. if (code_seen('P')) {
  3230. codenum = code_value(); // milliseconds to wait
  3231. hasP = codenum > 0;
  3232. }
  3233. if (code_seen('S')) {
  3234. codenum = code_value() * 1000; // seconds to wait
  3235. hasS = codenum > 0;
  3236. }
  3237. starpos = strchr(src, '*');
  3238. if (starpos != NULL) *(starpos) = '\0';
  3239. while (*src == ' ') ++src;
  3240. if (!hasP && !hasS && *src != '\0') {
  3241. lcd_setstatus(src);
  3242. } else {
  3243. LCD_MESSAGERPGM(MSG_USERWAIT);
  3244. }
  3245. lcd_ignore_click(); //call lcd_ignore_click aslo for else ???
  3246. st_synchronize();
  3247. previous_millis_cmd = millis();
  3248. if (codenum > 0){
  3249. codenum += millis(); // keep track of when we started waiting
  3250. KEEPALIVE_STATE(PAUSED_FOR_USER);
  3251. while(millis() < codenum && !lcd_clicked()){
  3252. manage_heater();
  3253. manage_inactivity(true);
  3254. lcd_update();
  3255. }
  3256. KEEPALIVE_STATE(IN_HANDLER);
  3257. lcd_ignore_click(false);
  3258. }else{
  3259. if (!lcd_detected())
  3260. break;
  3261. KEEPALIVE_STATE(PAUSED_FOR_USER);
  3262. while(!lcd_clicked()){
  3263. manage_heater();
  3264. manage_inactivity(true);
  3265. lcd_update();
  3266. }
  3267. KEEPALIVE_STATE(IN_HANDLER);
  3268. }
  3269. if (IS_SD_PRINTING)
  3270. LCD_MESSAGERPGM(MSG_RESUMING);
  3271. else
  3272. LCD_MESSAGERPGM(WELCOME_MSG);
  3273. }
  3274. break;
  3275. #endif
  3276. case 17:
  3277. LCD_MESSAGERPGM(MSG_NO_MOVE);
  3278. enable_x();
  3279. enable_y();
  3280. enable_z();
  3281. enable_e0();
  3282. enable_e1();
  3283. enable_e2();
  3284. break;
  3285. #ifdef SDSUPPORT
  3286. case 20: // M20 - list SD card
  3287. SERIAL_PROTOCOLLNRPGM(MSG_BEGIN_FILE_LIST);
  3288. card.ls();
  3289. SERIAL_PROTOCOLLNRPGM(MSG_END_FILE_LIST);
  3290. break;
  3291. case 21: // M21 - init SD card
  3292. card.initsd();
  3293. break;
  3294. case 22: //M22 - release SD card
  3295. card.release();
  3296. break;
  3297. case 23: //M23 - Select file
  3298. starpos = (strchr(strchr_pointer + 4,'*'));
  3299. if(starpos!=NULL)
  3300. *(starpos)='\0';
  3301. card.openFile(strchr_pointer + 4,true);
  3302. break;
  3303. case 24: //M24 - Start SD print
  3304. card.startFileprint();
  3305. starttime=millis();
  3306. break;
  3307. case 25: //M25 - Pause SD print
  3308. card.pauseSDPrint();
  3309. break;
  3310. case 26: //M26 - Set SD index
  3311. if(card.cardOK && code_seen('S')) {
  3312. card.setIndex(code_value_long());
  3313. }
  3314. break;
  3315. case 27: //M27 - Get SD status
  3316. card.getStatus();
  3317. break;
  3318. case 28: //M28 - Start SD write
  3319. starpos = (strchr(strchr_pointer + 4,'*'));
  3320. if(starpos != NULL){
  3321. char* npos = strchr(CMDBUFFER_CURRENT_STRING, 'N');
  3322. strchr_pointer = strchr(npos,' ') + 1;
  3323. *(starpos) = '\0';
  3324. }
  3325. card.openFile(strchr_pointer+4,false);
  3326. break;
  3327. case 29: //M29 - Stop SD write
  3328. //processed in write to file routine above
  3329. //card,saving = false;
  3330. break;
  3331. case 30: //M30 <filename> Delete File
  3332. if (card.cardOK){
  3333. card.closefile();
  3334. starpos = (strchr(strchr_pointer + 4,'*'));
  3335. if(starpos != NULL){
  3336. char* npos = strchr(CMDBUFFER_CURRENT_STRING, 'N');
  3337. strchr_pointer = strchr(npos,' ') + 1;
  3338. *(starpos) = '\0';
  3339. }
  3340. card.removeFile(strchr_pointer + 4);
  3341. }
  3342. break;
  3343. case 32: //M32 - Select file and start SD print
  3344. {
  3345. if(card.sdprinting) {
  3346. st_synchronize();
  3347. }
  3348. starpos = (strchr(strchr_pointer + 4,'*'));
  3349. char* namestartpos = (strchr(strchr_pointer + 4,'!')); //find ! to indicate filename string start.
  3350. if(namestartpos==NULL)
  3351. {
  3352. namestartpos=strchr_pointer + 4; //default name position, 4 letters after the M
  3353. }
  3354. else
  3355. namestartpos++; //to skip the '!'
  3356. if(starpos!=NULL)
  3357. *(starpos)='\0';
  3358. bool call_procedure=(code_seen('P'));
  3359. if(strchr_pointer>namestartpos)
  3360. call_procedure=false; //false alert, 'P' found within filename
  3361. if( card.cardOK )
  3362. {
  3363. card.openFile(namestartpos,true,!call_procedure);
  3364. if(code_seen('S'))
  3365. if(strchr_pointer<namestartpos) //only if "S" is occuring _before_ the filename
  3366. card.setIndex(code_value_long());
  3367. card.startFileprint();
  3368. if(!call_procedure)
  3369. starttime=millis(); //procedure calls count as normal print time.
  3370. }
  3371. } break;
  3372. case 928: //M928 - Start SD write
  3373. starpos = (strchr(strchr_pointer + 5,'*'));
  3374. if(starpos != NULL){
  3375. char* npos = strchr(CMDBUFFER_CURRENT_STRING, 'N');
  3376. strchr_pointer = strchr(npos,' ') + 1;
  3377. *(starpos) = '\0';
  3378. }
  3379. card.openLogFile(strchr_pointer+5);
  3380. break;
  3381. #endif //SDSUPPORT
  3382. case 31: //M31 take time since the start of the SD print or an M109 command
  3383. {
  3384. stoptime=millis();
  3385. char time[30];
  3386. unsigned long t=(stoptime-starttime)/1000;
  3387. int sec,min;
  3388. min=t/60;
  3389. sec=t%60;
  3390. sprintf_P(time, PSTR("%i min, %i sec"), min, sec);
  3391. SERIAL_ECHO_START;
  3392. SERIAL_ECHOLN(time);
  3393. lcd_setstatus(time);
  3394. autotempShutdown();
  3395. }
  3396. break;
  3397. #ifndef _DISABLE_M42_M226
  3398. case 42: //M42 -Change pin status via gcode
  3399. if (code_seen('S'))
  3400. {
  3401. int pin_status = code_value();
  3402. int pin_number = LED_PIN;
  3403. if (code_seen('P') && pin_status >= 0 && pin_status <= 255)
  3404. pin_number = code_value();
  3405. for(int8_t i = 0; i < (int8_t)(sizeof(sensitive_pins)/sizeof(int)); i++)
  3406. {
  3407. if (sensitive_pins[i] == pin_number)
  3408. {
  3409. pin_number = -1;
  3410. break;
  3411. }
  3412. }
  3413. #if defined(FAN_PIN) && FAN_PIN > -1
  3414. if (pin_number == FAN_PIN)
  3415. fanSpeed = pin_status;
  3416. #endif
  3417. if (pin_number > -1)
  3418. {
  3419. pinMode(pin_number, OUTPUT);
  3420. digitalWrite(pin_number, pin_status);
  3421. analogWrite(pin_number, pin_status);
  3422. }
  3423. }
  3424. break;
  3425. #endif //_DISABLE_M42_M226
  3426. case 44: // M44: Prusa3D: Reset the bed skew and offset calibration.
  3427. // Reset the baby step value and the baby step applied flag.
  3428. calibration_status_store(CALIBRATION_STATUS_ASSEMBLED);
  3429. eeprom_update_word((uint16_t*)EEPROM_BABYSTEP_Z, 0);
  3430. // Reset the skew and offset in both RAM and EEPROM.
  3431. reset_bed_offset_and_skew();
  3432. // Reset world2machine_rotation_and_skew and world2machine_shift, therefore
  3433. // the planner will not perform any adjustments in the XY plane.
  3434. // Wait for the motors to stop and update the current position with the absolute values.
  3435. world2machine_revert_to_uncorrected();
  3436. break;
  3437. case 45: // M45: Prusa3D: bed skew and offset with manual Z up
  3438. {
  3439. bool only_Z = code_seen('Z');
  3440. gcode_M45(only_Z);
  3441. }
  3442. break;
  3443. /*
  3444. case 46:
  3445. {
  3446. // M46: Prusa3D: Show the assigned IP address.
  3447. uint8_t ip[4];
  3448. bool hasIP = card.ToshibaFlashAir_GetIP(ip);
  3449. if (hasIP) {
  3450. SERIAL_ECHOPGM("Toshiba FlashAir current IP: ");
  3451. SERIAL_ECHO(int(ip[0]));
  3452. SERIAL_ECHOPGM(".");
  3453. SERIAL_ECHO(int(ip[1]));
  3454. SERIAL_ECHOPGM(".");
  3455. SERIAL_ECHO(int(ip[2]));
  3456. SERIAL_ECHOPGM(".");
  3457. SERIAL_ECHO(int(ip[3]));
  3458. SERIAL_ECHOLNPGM("");
  3459. } else {
  3460. SERIAL_ECHOLNPGM("Toshiba FlashAir GetIP failed");
  3461. }
  3462. break;
  3463. }
  3464. */
  3465. case 47:
  3466. // M47: Prusa3D: Show end stops dialog on the display.
  3467. KEEPALIVE_STATE(PAUSED_FOR_USER);
  3468. lcd_diag_show_end_stops();
  3469. KEEPALIVE_STATE(IN_HANDLER);
  3470. break;
  3471. #if 0
  3472. case 48: // M48: scan the bed induction sensor points, print the sensor trigger coordinates to the serial line for visualization on the PC.
  3473. {
  3474. // Disable the default update procedure of the display. We will do a modal dialog.
  3475. lcd_update_enable(false);
  3476. // Let the planner use the uncorrected coordinates.
  3477. mbl.reset();
  3478. // Reset world2machine_rotation_and_skew and world2machine_shift, therefore
  3479. // the planner will not perform any adjustments in the XY plane.
  3480. // Wait for the motors to stop and update the current position with the absolute values.
  3481. world2machine_revert_to_uncorrected();
  3482. // Move the print head close to the bed.
  3483. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3484. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS],current_position[Z_AXIS] , current_position[E_AXIS], homing_feedrate[Z_AXIS]/40, active_extruder);
  3485. st_synchronize();
  3486. // Home in the XY plane.
  3487. set_destination_to_current();
  3488. setup_for_endstop_move();
  3489. home_xy();
  3490. int8_t verbosity_level = 0;
  3491. if (code_seen('V')) {
  3492. // Just 'V' without a number counts as V1.
  3493. char c = strchr_pointer[1];
  3494. verbosity_level = (c == ' ' || c == '\t' || c == 0) ? 1 : code_value_short();
  3495. }
  3496. bool success = scan_bed_induction_points(verbosity_level);
  3497. clean_up_after_endstop_move();
  3498. // Print head up.
  3499. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3500. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS],current_position[Z_AXIS] , current_position[E_AXIS], homing_feedrate[Z_AXIS]/40, active_extruder);
  3501. st_synchronize();
  3502. lcd_update_enable(true);
  3503. break;
  3504. }
  3505. #endif
  3506. // M48 Z-Probe repeatability measurement function.
  3507. //
  3508. // Usage: M48 <n #_samples> <X X_position_for_samples> <Y Y_position_for_samples> <V Verbose_Level> <L legs_of_movement_prior_to_doing_probe>
  3509. //
  3510. // This function assumes the bed has been homed. Specificaly, that a G28 command
  3511. // as been issued prior to invoking the M48 Z-Probe repeatability measurement function.
  3512. // Any information generated by a prior G29 Bed leveling command will be lost and need to be
  3513. // regenerated.
  3514. //
  3515. // The number of samples will default to 10 if not specified. You can use upper or lower case
  3516. // letters for any of the options EXCEPT n. n must be in lower case because Marlin uses a capital
  3517. // N for its communication protocol and will get horribly confused if you send it a capital N.
  3518. //
  3519. #ifdef ENABLE_AUTO_BED_LEVELING
  3520. #ifdef Z_PROBE_REPEATABILITY_TEST
  3521. case 48: // M48 Z-Probe repeatability
  3522. {
  3523. #if Z_MIN_PIN == -1
  3524. #error "You must have a Z_MIN endstop in order to enable calculation of Z-Probe repeatability."
  3525. #endif
  3526. double sum=0.0;
  3527. double mean=0.0;
  3528. double sigma=0.0;
  3529. double sample_set[50];
  3530. int verbose_level=1, n=0, j, n_samples = 10, n_legs=0;
  3531. double X_current, Y_current, Z_current;
  3532. double X_probe_location, Y_probe_location, Z_start_location, ext_position;
  3533. if (code_seen('V') || code_seen('v')) {
  3534. verbose_level = code_value();
  3535. if (verbose_level<0 || verbose_level>4 ) {
  3536. SERIAL_PROTOCOLPGM("?Verbose Level not plausable.\n");
  3537. goto Sigma_Exit;
  3538. }
  3539. }
  3540. if (verbose_level > 0) {
  3541. SERIAL_PROTOCOLPGM("M48 Z-Probe Repeatability test. Version 2.00\n");
  3542. SERIAL_PROTOCOLPGM("Full support at: http://3dprintboard.com/forum.php\n");
  3543. }
  3544. if (code_seen('n')) {
  3545. n_samples = code_value();
  3546. if (n_samples<4 || n_samples>50 ) {
  3547. SERIAL_PROTOCOLPGM("?Specified sample size not plausable.\n");
  3548. goto Sigma_Exit;
  3549. }
  3550. }
  3551. X_current = X_probe_location = st_get_position_mm(X_AXIS);
  3552. Y_current = Y_probe_location = st_get_position_mm(Y_AXIS);
  3553. Z_current = st_get_position_mm(Z_AXIS);
  3554. Z_start_location = st_get_position_mm(Z_AXIS) + Z_RAISE_BEFORE_PROBING;
  3555. ext_position = st_get_position_mm(E_AXIS);
  3556. if (code_seen('X') || code_seen('x') ) {
  3557. X_probe_location = code_value() - X_PROBE_OFFSET_FROM_EXTRUDER;
  3558. if (X_probe_location<X_MIN_POS || X_probe_location>X_MAX_POS ) {
  3559. SERIAL_PROTOCOLPGM("?Specified X position out of range.\n");
  3560. goto Sigma_Exit;
  3561. }
  3562. }
  3563. if (code_seen('Y') || code_seen('y') ) {
  3564. Y_probe_location = code_value() - Y_PROBE_OFFSET_FROM_EXTRUDER;
  3565. if (Y_probe_location<Y_MIN_POS || Y_probe_location>Y_MAX_POS ) {
  3566. SERIAL_PROTOCOLPGM("?Specified Y position out of range.\n");
  3567. goto Sigma_Exit;
  3568. }
  3569. }
  3570. if (code_seen('L') || code_seen('l') ) {
  3571. n_legs = code_value();
  3572. if ( n_legs==1 )
  3573. n_legs = 2;
  3574. if ( n_legs<0 || n_legs>15 ) {
  3575. SERIAL_PROTOCOLPGM("?Specified number of legs in movement not plausable.\n");
  3576. goto Sigma_Exit;
  3577. }
  3578. }
  3579. //
  3580. // Do all the preliminary setup work. First raise the probe.
  3581. //
  3582. st_synchronize();
  3583. plan_bed_level_matrix.set_to_identity();
  3584. plan_buffer_line( X_current, Y_current, Z_start_location,
  3585. ext_position,
  3586. homing_feedrate[Z_AXIS]/60,
  3587. active_extruder);
  3588. st_synchronize();
  3589. //
  3590. // Now get everything to the specified probe point So we can safely do a probe to
  3591. // get us close to the bed. If the Z-Axis is far from the bed, we don't want to
  3592. // use that as a starting point for each probe.
  3593. //
  3594. if (verbose_level > 2)
  3595. SERIAL_PROTOCOL("Positioning probe for the test.\n");
  3596. plan_buffer_line( X_probe_location, Y_probe_location, Z_start_location,
  3597. ext_position,
  3598. homing_feedrate[X_AXIS]/60,
  3599. active_extruder);
  3600. st_synchronize();
  3601. current_position[X_AXIS] = X_current = st_get_position_mm(X_AXIS);
  3602. current_position[Y_AXIS] = Y_current = st_get_position_mm(Y_AXIS);
  3603. current_position[Z_AXIS] = Z_current = st_get_position_mm(Z_AXIS);
  3604. current_position[E_AXIS] = ext_position = st_get_position_mm(E_AXIS);
  3605. //
  3606. // OK, do the inital probe to get us close to the bed.
  3607. // Then retrace the right amount and use that in subsequent probes
  3608. //
  3609. setup_for_endstop_move();
  3610. run_z_probe();
  3611. current_position[Z_AXIS] = Z_current = st_get_position_mm(Z_AXIS);
  3612. Z_start_location = st_get_position_mm(Z_AXIS) + Z_RAISE_BEFORE_PROBING;
  3613. plan_buffer_line( X_probe_location, Y_probe_location, Z_start_location,
  3614. ext_position,
  3615. homing_feedrate[X_AXIS]/60,
  3616. active_extruder);
  3617. st_synchronize();
  3618. current_position[Z_AXIS] = Z_current = st_get_position_mm(Z_AXIS);
  3619. for( n=0; n<n_samples; n++) {
  3620. do_blocking_move_to( X_probe_location, Y_probe_location, Z_start_location); // Make sure we are at the probe location
  3621. if ( n_legs) {
  3622. double radius=0.0, theta=0.0, x_sweep, y_sweep;
  3623. int rotational_direction, l;
  3624. rotational_direction = (unsigned long) millis() & 0x0001; // clockwise or counter clockwise
  3625. radius = (unsigned long) millis() % (long) (X_MAX_LENGTH/4); // limit how far out to go
  3626. theta = (float) ((unsigned long) millis() % (long) 360) / (360./(2*3.1415926)); // turn into radians
  3627. //SERIAL_ECHOPAIR("starting radius: ",radius);
  3628. //SERIAL_ECHOPAIR(" theta: ",theta);
  3629. //SERIAL_ECHOPAIR(" direction: ",rotational_direction);
  3630. //SERIAL_PROTOCOLLNPGM("");
  3631. for( l=0; l<n_legs-1; l++) {
  3632. if (rotational_direction==1)
  3633. theta += (float) ((unsigned long) millis() % (long) 20) / (360.0/(2*3.1415926)); // turn into radians
  3634. else
  3635. theta -= (float) ((unsigned long) millis() % (long) 20) / (360.0/(2*3.1415926)); // turn into radians
  3636. radius += (float) ( ((long) ((unsigned long) millis() % (long) 10)) - 5);
  3637. if ( radius<0.0 )
  3638. radius = -radius;
  3639. X_current = X_probe_location + cos(theta) * radius;
  3640. Y_current = Y_probe_location + sin(theta) * radius;
  3641. if ( X_current<X_MIN_POS) // Make sure our X & Y are sane
  3642. X_current = X_MIN_POS;
  3643. if ( X_current>X_MAX_POS)
  3644. X_current = X_MAX_POS;
  3645. if ( Y_current<Y_MIN_POS) // Make sure our X & Y are sane
  3646. Y_current = Y_MIN_POS;
  3647. if ( Y_current>Y_MAX_POS)
  3648. Y_current = Y_MAX_POS;
  3649. if (verbose_level>3 ) {
  3650. SERIAL_ECHOPAIR("x: ", X_current);
  3651. SERIAL_ECHOPAIR("y: ", Y_current);
  3652. SERIAL_PROTOCOLLNPGM("");
  3653. }
  3654. do_blocking_move_to( X_current, Y_current, Z_current );
  3655. }
  3656. do_blocking_move_to( X_probe_location, Y_probe_location, Z_start_location); // Go back to the probe location
  3657. }
  3658. setup_for_endstop_move();
  3659. run_z_probe();
  3660. sample_set[n] = current_position[Z_AXIS];
  3661. //
  3662. // Get the current mean for the data points we have so far
  3663. //
  3664. sum=0.0;
  3665. for( j=0; j<=n; j++) {
  3666. sum = sum + sample_set[j];
  3667. }
  3668. mean = sum / (double (n+1));
  3669. //
  3670. // Now, use that mean to calculate the standard deviation for the
  3671. // data points we have so far
  3672. //
  3673. sum=0.0;
  3674. for( j=0; j<=n; j++) {
  3675. sum = sum + (sample_set[j]-mean) * (sample_set[j]-mean);
  3676. }
  3677. sigma = sqrt( sum / (double (n+1)) );
  3678. if (verbose_level > 1) {
  3679. SERIAL_PROTOCOL(n+1);
  3680. SERIAL_PROTOCOL(" of ");
  3681. SERIAL_PROTOCOL(n_samples);
  3682. SERIAL_PROTOCOLPGM(" z: ");
  3683. SERIAL_PROTOCOL_F(current_position[Z_AXIS], 6);
  3684. }
  3685. if (verbose_level > 2) {
  3686. SERIAL_PROTOCOL(" mean: ");
  3687. SERIAL_PROTOCOL_F(mean,6);
  3688. SERIAL_PROTOCOL(" sigma: ");
  3689. SERIAL_PROTOCOL_F(sigma,6);
  3690. }
  3691. if (verbose_level > 0)
  3692. SERIAL_PROTOCOLPGM("\n");
  3693. plan_buffer_line( X_probe_location, Y_probe_location, Z_start_location,
  3694. current_position[E_AXIS], homing_feedrate[Z_AXIS]/60, active_extruder);
  3695. st_synchronize();
  3696. }
  3697. delay(1000);
  3698. clean_up_after_endstop_move();
  3699. // enable_endstops(true);
  3700. if (verbose_level > 0) {
  3701. SERIAL_PROTOCOLPGM("Mean: ");
  3702. SERIAL_PROTOCOL_F(mean, 6);
  3703. SERIAL_PROTOCOLPGM("\n");
  3704. }
  3705. SERIAL_PROTOCOLPGM("Standard Deviation: ");
  3706. SERIAL_PROTOCOL_F(sigma, 6);
  3707. SERIAL_PROTOCOLPGM("\n\n");
  3708. Sigma_Exit:
  3709. break;
  3710. }
  3711. #endif // Z_PROBE_REPEATABILITY_TEST
  3712. #endif // ENABLE_AUTO_BED_LEVELING
  3713. case 104: // M104
  3714. if(setTargetedHotend(104)){
  3715. break;
  3716. }
  3717. if (code_seen('S')) setTargetHotend(code_value(), tmp_extruder);
  3718. setWatch();
  3719. break;
  3720. case 112: // M112 -Emergency Stop
  3721. kill("", 3);
  3722. break;
  3723. case 140: // M140 set bed temp
  3724. if (code_seen('S')) setTargetBed(code_value());
  3725. break;
  3726. case 105 : // M105
  3727. if(setTargetedHotend(105)){
  3728. break;
  3729. }
  3730. #if defined(TEMP_0_PIN) && TEMP_0_PIN > -1
  3731. SERIAL_PROTOCOLPGM("ok T:");
  3732. SERIAL_PROTOCOL_F(degHotend(tmp_extruder),1);
  3733. SERIAL_PROTOCOLPGM(" /");
  3734. SERIAL_PROTOCOL_F(degTargetHotend(tmp_extruder),1);
  3735. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  3736. SERIAL_PROTOCOLPGM(" B:");
  3737. SERIAL_PROTOCOL_F(degBed(),1);
  3738. SERIAL_PROTOCOLPGM(" /");
  3739. SERIAL_PROTOCOL_F(degTargetBed(),1);
  3740. #endif //TEMP_BED_PIN
  3741. for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) {
  3742. SERIAL_PROTOCOLPGM(" T");
  3743. SERIAL_PROTOCOL(cur_extruder);
  3744. SERIAL_PROTOCOLPGM(":");
  3745. SERIAL_PROTOCOL_F(degHotend(cur_extruder),1);
  3746. SERIAL_PROTOCOLPGM(" /");
  3747. SERIAL_PROTOCOL_F(degTargetHotend(cur_extruder),1);
  3748. }
  3749. #else
  3750. SERIAL_ERROR_START;
  3751. SERIAL_ERRORLNRPGM(MSG_ERR_NO_THERMISTORS);
  3752. #endif
  3753. SERIAL_PROTOCOLPGM(" @:");
  3754. #ifdef EXTRUDER_WATTS
  3755. SERIAL_PROTOCOL((EXTRUDER_WATTS * getHeaterPower(tmp_extruder))/127);
  3756. SERIAL_PROTOCOLPGM("W");
  3757. #else
  3758. SERIAL_PROTOCOL(getHeaterPower(tmp_extruder));
  3759. #endif
  3760. SERIAL_PROTOCOLPGM(" B@:");
  3761. #ifdef BED_WATTS
  3762. SERIAL_PROTOCOL((BED_WATTS * getHeaterPower(-1))/127);
  3763. SERIAL_PROTOCOLPGM("W");
  3764. #else
  3765. SERIAL_PROTOCOL(getHeaterPower(-1));
  3766. #endif
  3767. #ifdef PINDA_THERMISTOR
  3768. SERIAL_PROTOCOLPGM(" P:");
  3769. SERIAL_PROTOCOL_F(current_temperature_pinda,1);
  3770. #endif //PINDA_THERMISTOR
  3771. #ifdef AMBIENT_THERMISTOR
  3772. SERIAL_PROTOCOLPGM(" A:");
  3773. SERIAL_PROTOCOL_F(current_temperature_ambient,1);
  3774. #endif //AMBIENT_THERMISTOR
  3775. #ifdef SHOW_TEMP_ADC_VALUES
  3776. {float raw = 0.0;
  3777. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  3778. SERIAL_PROTOCOLPGM(" ADC B:");
  3779. SERIAL_PROTOCOL_F(degBed(),1);
  3780. SERIAL_PROTOCOLPGM("C->");
  3781. raw = rawBedTemp();
  3782. SERIAL_PROTOCOL_F(raw/OVERSAMPLENR,5);
  3783. SERIAL_PROTOCOLPGM(" Rb->");
  3784. SERIAL_PROTOCOL_F(100 * (1 + (PtA * (raw/OVERSAMPLENR)) + (PtB * sq((raw/OVERSAMPLENR)))), 5);
  3785. SERIAL_PROTOCOLPGM(" Rxb->");
  3786. SERIAL_PROTOCOL_F(raw, 5);
  3787. #endif
  3788. for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) {
  3789. SERIAL_PROTOCOLPGM(" T");
  3790. SERIAL_PROTOCOL(cur_extruder);
  3791. SERIAL_PROTOCOLPGM(":");
  3792. SERIAL_PROTOCOL_F(degHotend(cur_extruder),1);
  3793. SERIAL_PROTOCOLPGM("C->");
  3794. raw = rawHotendTemp(cur_extruder);
  3795. SERIAL_PROTOCOL_F(raw/OVERSAMPLENR,5);
  3796. SERIAL_PROTOCOLPGM(" Rt");
  3797. SERIAL_PROTOCOL(cur_extruder);
  3798. SERIAL_PROTOCOLPGM("->");
  3799. SERIAL_PROTOCOL_F(100 * (1 + (PtA * (raw/OVERSAMPLENR)) + (PtB * sq((raw/OVERSAMPLENR)))), 5);
  3800. SERIAL_PROTOCOLPGM(" Rx");
  3801. SERIAL_PROTOCOL(cur_extruder);
  3802. SERIAL_PROTOCOLPGM("->");
  3803. SERIAL_PROTOCOL_F(raw, 5);
  3804. }}
  3805. #endif
  3806. SERIAL_PROTOCOLLN("");
  3807. KEEPALIVE_STATE(NOT_BUSY);
  3808. return;
  3809. break;
  3810. case 109:
  3811. {// M109 - Wait for extruder heater to reach target.
  3812. if(setTargetedHotend(109)){
  3813. break;
  3814. }
  3815. LCD_MESSAGERPGM(MSG_HEATING);
  3816. heating_status = 1;
  3817. if (farm_mode) { prusa_statistics(1); };
  3818. #ifdef AUTOTEMP
  3819. autotemp_enabled=false;
  3820. #endif
  3821. if (code_seen('S')) {
  3822. setTargetHotend(code_value(), tmp_extruder);
  3823. CooldownNoWait = true;
  3824. } else if (code_seen('R')) {
  3825. setTargetHotend(code_value(), tmp_extruder);
  3826. CooldownNoWait = false;
  3827. }
  3828. #ifdef AUTOTEMP
  3829. if (code_seen('S')) autotemp_min=code_value();
  3830. if (code_seen('B')) autotemp_max=code_value();
  3831. if (code_seen('F'))
  3832. {
  3833. autotemp_factor=code_value();
  3834. autotemp_enabled=true;
  3835. }
  3836. #endif
  3837. setWatch();
  3838. codenum = millis();
  3839. /* See if we are heating up or cooling down */
  3840. target_direction = isHeatingHotend(tmp_extruder); // true if heating, false if cooling
  3841. KEEPALIVE_STATE(NOT_BUSY);
  3842. cancel_heatup = false;
  3843. wait_for_heater(codenum); //loops until target temperature is reached
  3844. LCD_MESSAGERPGM(MSG_HEATING_COMPLETE);
  3845. KEEPALIVE_STATE(IN_HANDLER);
  3846. heating_status = 2;
  3847. if (farm_mode) { prusa_statistics(2); };
  3848. //starttime=millis();
  3849. previous_millis_cmd = millis();
  3850. }
  3851. break;
  3852. case 190: // M190 - Wait for bed heater to reach target.
  3853. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  3854. LCD_MESSAGERPGM(MSG_BED_HEATING);
  3855. heating_status = 3;
  3856. if (farm_mode) { prusa_statistics(1); };
  3857. if (code_seen('S'))
  3858. {
  3859. setTargetBed(code_value());
  3860. CooldownNoWait = true;
  3861. }
  3862. else if (code_seen('R'))
  3863. {
  3864. setTargetBed(code_value());
  3865. CooldownNoWait = false;
  3866. }
  3867. codenum = millis();
  3868. cancel_heatup = false;
  3869. target_direction = isHeatingBed(); // true if heating, false if cooling
  3870. KEEPALIVE_STATE(NOT_BUSY);
  3871. while ( (target_direction)&&(!cancel_heatup) ? (isHeatingBed()) : (isCoolingBed()&&(CooldownNoWait==false)) )
  3872. {
  3873. if(( millis() - codenum) > 1000 ) //Print Temp Reading every 1 second while heating up.
  3874. {
  3875. if (!farm_mode) {
  3876. float tt = degHotend(active_extruder);
  3877. SERIAL_PROTOCOLPGM("T:");
  3878. SERIAL_PROTOCOL(tt);
  3879. SERIAL_PROTOCOLPGM(" E:");
  3880. SERIAL_PROTOCOL((int)active_extruder);
  3881. SERIAL_PROTOCOLPGM(" B:");
  3882. SERIAL_PROTOCOL_F(degBed(), 1);
  3883. SERIAL_PROTOCOLLN("");
  3884. }
  3885. codenum = millis();
  3886. }
  3887. manage_heater();
  3888. manage_inactivity();
  3889. lcd_update();
  3890. }
  3891. LCD_MESSAGERPGM(MSG_BED_DONE);
  3892. KEEPALIVE_STATE(IN_HANDLER);
  3893. heating_status = 4;
  3894. previous_millis_cmd = millis();
  3895. #endif
  3896. break;
  3897. #if defined(FAN_PIN) && FAN_PIN > -1
  3898. case 106: //M106 Fan On
  3899. if (code_seen('S')){
  3900. fanSpeed=constrain(code_value(),0,255);
  3901. }
  3902. else {
  3903. fanSpeed=255;
  3904. }
  3905. break;
  3906. case 107: //M107 Fan Off
  3907. fanSpeed = 0;
  3908. break;
  3909. #endif //FAN_PIN
  3910. #if defined(PS_ON_PIN) && PS_ON_PIN > -1
  3911. case 80: // M80 - Turn on Power Supply
  3912. SET_OUTPUT(PS_ON_PIN); //GND
  3913. WRITE(PS_ON_PIN, PS_ON_AWAKE);
  3914. // If you have a switch on suicide pin, this is useful
  3915. // if you want to start another print with suicide feature after
  3916. // a print without suicide...
  3917. #if defined SUICIDE_PIN && SUICIDE_PIN > -1
  3918. SET_OUTPUT(SUICIDE_PIN);
  3919. WRITE(SUICIDE_PIN, HIGH);
  3920. #endif
  3921. #ifdef ULTIPANEL
  3922. powersupply = true;
  3923. LCD_MESSAGERPGM(WELCOME_MSG);
  3924. lcd_update();
  3925. #endif
  3926. break;
  3927. #endif
  3928. case 81: // M81 - Turn off Power Supply
  3929. disable_heater();
  3930. st_synchronize();
  3931. disable_e0();
  3932. disable_e1();
  3933. disable_e2();
  3934. finishAndDisableSteppers();
  3935. fanSpeed = 0;
  3936. delay(1000); // Wait a little before to switch off
  3937. #if defined(SUICIDE_PIN) && SUICIDE_PIN > -1
  3938. st_synchronize();
  3939. suicide();
  3940. #elif defined(PS_ON_PIN) && PS_ON_PIN > -1
  3941. SET_OUTPUT(PS_ON_PIN);
  3942. WRITE(PS_ON_PIN, PS_ON_ASLEEP);
  3943. #endif
  3944. #ifdef ULTIPANEL
  3945. powersupply = false;
  3946. LCD_MESSAGERPGM(CAT4(CUSTOM_MENDEL_NAME,PSTR(" "),MSG_OFF,PSTR("."))); //!!
  3947. /*
  3948. MACHNAME = "Prusa i3"
  3949. MSGOFF = "Vypnuto"
  3950. "Prusai3"" ""vypnuto""."
  3951. "Prusa i3"" "MSG_ALL[lang_selected][50]"."
  3952. */
  3953. lcd_update();
  3954. #endif
  3955. break;
  3956. case 82:
  3957. axis_relative_modes[3] = false;
  3958. break;
  3959. case 83:
  3960. axis_relative_modes[3] = true;
  3961. break;
  3962. case 18: //compatibility
  3963. case 84: // M84
  3964. if(code_seen('S')){
  3965. stepper_inactive_time = code_value() * 1000;
  3966. }
  3967. else
  3968. {
  3969. bool all_axis = !((code_seen(axis_codes[X_AXIS])) || (code_seen(axis_codes[Y_AXIS])) || (code_seen(axis_codes[Z_AXIS]))|| (code_seen(axis_codes[E_AXIS])));
  3970. if(all_axis)
  3971. {
  3972. st_synchronize();
  3973. disable_e0();
  3974. disable_e1();
  3975. disable_e2();
  3976. finishAndDisableSteppers();
  3977. }
  3978. else
  3979. {
  3980. st_synchronize();
  3981. if (code_seen('X')) disable_x();
  3982. if (code_seen('Y')) disable_y();
  3983. if (code_seen('Z')) disable_z();
  3984. #if ((E0_ENABLE_PIN != X_ENABLE_PIN) && (E1_ENABLE_PIN != Y_ENABLE_PIN)) // Only enable on boards that have seperate ENABLE_PINS
  3985. if (code_seen('E')) {
  3986. disable_e0();
  3987. disable_e1();
  3988. disable_e2();
  3989. }
  3990. #endif
  3991. }
  3992. }
  3993. snmm_filaments_used = 0;
  3994. break;
  3995. case 85: // M85
  3996. if(code_seen('S')) {
  3997. max_inactive_time = code_value() * 1000;
  3998. }
  3999. break;
  4000. case 92: // M92
  4001. for(int8_t i=0; i < NUM_AXIS; i++)
  4002. {
  4003. if(code_seen(axis_codes[i]))
  4004. {
  4005. if(i == 3) { // E
  4006. float value = code_value();
  4007. if(value < 20.0) {
  4008. float factor = axis_steps_per_unit[i] / value; // increase e constants if M92 E14 is given for netfab.
  4009. max_jerk[E_AXIS] *= factor;
  4010. max_feedrate[i] *= factor;
  4011. axis_steps_per_sqr_second[i] *= factor;
  4012. }
  4013. axis_steps_per_unit[i] = value;
  4014. }
  4015. else {
  4016. axis_steps_per_unit[i] = code_value();
  4017. }
  4018. }
  4019. }
  4020. break;
  4021. #ifdef HOST_KEEPALIVE_FEATURE
  4022. case 113: // M113 - Get or set Host Keepalive interval
  4023. if (code_seen('S')) {
  4024. host_keepalive_interval = (uint8_t)code_value_short();
  4025. // NOMORE(host_keepalive_interval, 60);
  4026. }
  4027. else {
  4028. SERIAL_ECHO_START;
  4029. SERIAL_ECHOPAIR("M113 S", (unsigned long)host_keepalive_interval);
  4030. SERIAL_PROTOCOLLN("");
  4031. }
  4032. break;
  4033. #endif
  4034. case 115: // M115
  4035. if (code_seen('V')) {
  4036. // Report the Prusa version number.
  4037. SERIAL_PROTOCOLLNRPGM(FW_VERSION_STR_P());
  4038. } else if (code_seen('U')) {
  4039. // Check the firmware version provided. If the firmware version provided by the U code is higher than the currently running firmware,
  4040. // pause the print and ask the user to upgrade the firmware.
  4041. show_upgrade_dialog_if_version_newer(++ strchr_pointer);
  4042. } else {
  4043. SERIAL_PROTOCOLRPGM(MSG_M115_REPORT);
  4044. }
  4045. break;
  4046. /* case 117: // M117 display message
  4047. starpos = (strchr(strchr_pointer + 5,'*'));
  4048. if(starpos!=NULL)
  4049. *(starpos)='\0';
  4050. lcd_setstatus(strchr_pointer + 5);
  4051. break;*/
  4052. case 114: // M114
  4053. SERIAL_PROTOCOLPGM("X:");
  4054. SERIAL_PROTOCOL(current_position[X_AXIS]);
  4055. SERIAL_PROTOCOLPGM(" Y:");
  4056. SERIAL_PROTOCOL(current_position[Y_AXIS]);
  4057. SERIAL_PROTOCOLPGM(" Z:");
  4058. SERIAL_PROTOCOL(current_position[Z_AXIS]);
  4059. SERIAL_PROTOCOLPGM(" E:");
  4060. SERIAL_PROTOCOL(current_position[E_AXIS]);
  4061. SERIAL_PROTOCOLRPGM(MSG_COUNT_X);
  4062. SERIAL_PROTOCOL(float(st_get_position(X_AXIS))/axis_steps_per_unit[X_AXIS]);
  4063. SERIAL_PROTOCOLPGM(" Y:");
  4064. SERIAL_PROTOCOL(float(st_get_position(Y_AXIS))/axis_steps_per_unit[Y_AXIS]);
  4065. SERIAL_PROTOCOLPGM(" Z:");
  4066. SERIAL_PROTOCOL(float(st_get_position(Z_AXIS))/axis_steps_per_unit[Z_AXIS]);
  4067. SERIAL_PROTOCOLPGM(" E:");
  4068. SERIAL_PROTOCOL(float(st_get_position(E_AXIS))/axis_steps_per_unit[E_AXIS]);
  4069. SERIAL_PROTOCOLLN("");
  4070. break;
  4071. case 120: // M120
  4072. enable_endstops(false) ;
  4073. break;
  4074. case 121: // M121
  4075. enable_endstops(true) ;
  4076. break;
  4077. case 119: // M119
  4078. SERIAL_PROTOCOLRPGM(MSG_M119_REPORT);
  4079. SERIAL_PROTOCOLLN("");
  4080. #if defined(X_MIN_PIN) && X_MIN_PIN > -1
  4081. SERIAL_PROTOCOLRPGM(MSG_X_MIN);
  4082. if(READ(X_MIN_PIN)^X_MIN_ENDSTOP_INVERTING){
  4083. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_HIT);
  4084. }else{
  4085. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_OPEN);
  4086. }
  4087. SERIAL_PROTOCOLLN("");
  4088. #endif
  4089. #if defined(X_MAX_PIN) && X_MAX_PIN > -1
  4090. SERIAL_PROTOCOLRPGM(MSG_X_MAX);
  4091. if(READ(X_MAX_PIN)^X_MAX_ENDSTOP_INVERTING){
  4092. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_HIT);
  4093. }else{
  4094. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_OPEN);
  4095. }
  4096. SERIAL_PROTOCOLLN("");
  4097. #endif
  4098. #if defined(Y_MIN_PIN) && Y_MIN_PIN > -1
  4099. SERIAL_PROTOCOLRPGM(MSG_Y_MIN);
  4100. if(READ(Y_MIN_PIN)^Y_MIN_ENDSTOP_INVERTING){
  4101. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_HIT);
  4102. }else{
  4103. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_OPEN);
  4104. }
  4105. SERIAL_PROTOCOLLN("");
  4106. #endif
  4107. #if defined(Y_MAX_PIN) && Y_MAX_PIN > -1
  4108. SERIAL_PROTOCOLRPGM(MSG_Y_MAX);
  4109. if(READ(Y_MAX_PIN)^Y_MAX_ENDSTOP_INVERTING){
  4110. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_HIT);
  4111. }else{
  4112. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_OPEN);
  4113. }
  4114. SERIAL_PROTOCOLLN("");
  4115. #endif
  4116. #if defined(Z_MIN_PIN) && Z_MIN_PIN > -1
  4117. SERIAL_PROTOCOLRPGM(MSG_Z_MIN);
  4118. if(READ(Z_MIN_PIN)^Z_MIN_ENDSTOP_INVERTING){
  4119. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_HIT);
  4120. }else{
  4121. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_OPEN);
  4122. }
  4123. SERIAL_PROTOCOLLN("");
  4124. #endif
  4125. #if defined(Z_MAX_PIN) && Z_MAX_PIN > -1
  4126. SERIAL_PROTOCOLRPGM(MSG_Z_MAX);
  4127. if(READ(Z_MAX_PIN)^Z_MAX_ENDSTOP_INVERTING){
  4128. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_HIT);
  4129. }else{
  4130. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_OPEN);
  4131. }
  4132. SERIAL_PROTOCOLLN("");
  4133. #endif
  4134. break;
  4135. //TODO: update for all axis, use for loop
  4136. #ifdef BLINKM
  4137. case 150: // M150
  4138. {
  4139. byte red;
  4140. byte grn;
  4141. byte blu;
  4142. if(code_seen('R')) red = code_value();
  4143. if(code_seen('U')) grn = code_value();
  4144. if(code_seen('B')) blu = code_value();
  4145. SendColors(red,grn,blu);
  4146. }
  4147. break;
  4148. #endif //BLINKM
  4149. case 200: // M200 D<millimeters> set filament diameter and set E axis units to cubic millimeters (use S0 to set back to millimeters).
  4150. {
  4151. tmp_extruder = active_extruder;
  4152. if(code_seen('T')) {
  4153. tmp_extruder = code_value();
  4154. if(tmp_extruder >= EXTRUDERS) {
  4155. SERIAL_ECHO_START;
  4156. SERIAL_ECHO(MSG_M200_INVALID_EXTRUDER);
  4157. break;
  4158. }
  4159. }
  4160. float area = .0;
  4161. if(code_seen('D')) {
  4162. float diameter = (float)code_value();
  4163. if (diameter == 0.0) {
  4164. // setting any extruder filament size disables volumetric on the assumption that
  4165. // slicers either generate in extruder values as cubic mm or as as filament feeds
  4166. // for all extruders
  4167. volumetric_enabled = false;
  4168. } else {
  4169. filament_size[tmp_extruder] = (float)code_value();
  4170. // make sure all extruders have some sane value for the filament size
  4171. filament_size[0] = (filament_size[0] == 0.0 ? DEFAULT_NOMINAL_FILAMENT_DIA : filament_size[0]);
  4172. #if EXTRUDERS > 1
  4173. filament_size[1] = (filament_size[1] == 0.0 ? DEFAULT_NOMINAL_FILAMENT_DIA : filament_size[1]);
  4174. #if EXTRUDERS > 2
  4175. filament_size[2] = (filament_size[2] == 0.0 ? DEFAULT_NOMINAL_FILAMENT_DIA : filament_size[2]);
  4176. #endif
  4177. #endif
  4178. volumetric_enabled = true;
  4179. }
  4180. } else {
  4181. //reserved for setting filament diameter via UFID or filament measuring device
  4182. break;
  4183. }
  4184. calculate_volumetric_multipliers();
  4185. }
  4186. break;
  4187. case 201: // M201
  4188. for(int8_t i=0; i < NUM_AXIS; i++)
  4189. {
  4190. if(code_seen(axis_codes[i]))
  4191. {
  4192. max_acceleration_units_per_sq_second[i] = code_value();
  4193. }
  4194. }
  4195. // steps per sq second need to be updated to agree with the units per sq second (as they are what is used in the planner)
  4196. reset_acceleration_rates();
  4197. break;
  4198. #if 0 // Not used for Sprinter/grbl gen6
  4199. case 202: // M202
  4200. for(int8_t i=0; i < NUM_AXIS; i++) {
  4201. if(code_seen(axis_codes[i])) axis_travel_steps_per_sqr_second[i] = code_value() * axis_steps_per_unit[i];
  4202. }
  4203. break;
  4204. #endif
  4205. case 203: // M203 max feedrate mm/sec
  4206. for(int8_t i=0; i < NUM_AXIS; i++) {
  4207. if(code_seen(axis_codes[i])) max_feedrate[i] = code_value();
  4208. }
  4209. break;
  4210. case 204: // M204 acclereration S normal moves T filmanent only moves
  4211. {
  4212. if(code_seen('S')) acceleration = code_value() ;
  4213. if(code_seen('T')) retract_acceleration = code_value() ;
  4214. }
  4215. break;
  4216. case 205: //M205 advanced settings: minimum travel speed S=while printing T=travel only, B=minimum segment time X= maximum xy jerk, Z=maximum Z jerk
  4217. {
  4218. if(code_seen('S')) minimumfeedrate = code_value();
  4219. if(code_seen('T')) mintravelfeedrate = code_value();
  4220. if(code_seen('B')) minsegmenttime = code_value() ;
  4221. if(code_seen('X')) max_jerk[X_AXIS] = max_jerk[Y_AXIS] = code_value();
  4222. if(code_seen('Y')) max_jerk[Y_AXIS] = code_value();
  4223. if(code_seen('Z')) max_jerk[Z_AXIS] = code_value();
  4224. if(code_seen('E')) max_jerk[E_AXIS] = code_value();
  4225. }
  4226. break;
  4227. case 206: // M206 additional homing offset
  4228. for(int8_t i=0; i < 3; i++)
  4229. {
  4230. if(code_seen(axis_codes[i])) add_homing[i] = code_value();
  4231. }
  4232. break;
  4233. #ifdef FWRETRACT
  4234. case 207: //M207 - set retract length S[positive mm] F[feedrate mm/min] Z[additional zlift/hop]
  4235. {
  4236. if(code_seen('S'))
  4237. {
  4238. retract_length = code_value() ;
  4239. }
  4240. if(code_seen('F'))
  4241. {
  4242. retract_feedrate = code_value()/60 ;
  4243. }
  4244. if(code_seen('Z'))
  4245. {
  4246. retract_zlift = code_value() ;
  4247. }
  4248. }break;
  4249. case 208: // M208 - set retract recover length S[positive mm surplus to the M207 S*] F[feedrate mm/min]
  4250. {
  4251. if(code_seen('S'))
  4252. {
  4253. retract_recover_length = code_value() ;
  4254. }
  4255. if(code_seen('F'))
  4256. {
  4257. retract_recover_feedrate = code_value()/60 ;
  4258. }
  4259. }break;
  4260. case 209: // M209 - S<1=true/0=false> enable automatic retract detect if the slicer did not support G10/11: every normal extrude-only move will be classified as retract depending on the direction.
  4261. {
  4262. if(code_seen('S'))
  4263. {
  4264. int t= code_value() ;
  4265. switch(t)
  4266. {
  4267. case 0:
  4268. {
  4269. autoretract_enabled=false;
  4270. retracted[0]=false;
  4271. #if EXTRUDERS > 1
  4272. retracted[1]=false;
  4273. #endif
  4274. #if EXTRUDERS > 2
  4275. retracted[2]=false;
  4276. #endif
  4277. }break;
  4278. case 1:
  4279. {
  4280. autoretract_enabled=true;
  4281. retracted[0]=false;
  4282. #if EXTRUDERS > 1
  4283. retracted[1]=false;
  4284. #endif
  4285. #if EXTRUDERS > 2
  4286. retracted[2]=false;
  4287. #endif
  4288. }break;
  4289. default:
  4290. SERIAL_ECHO_START;
  4291. SERIAL_ECHORPGM(MSG_UNKNOWN_COMMAND);
  4292. SERIAL_ECHO(CMDBUFFER_CURRENT_STRING);
  4293. SERIAL_ECHOLNPGM("\"(1)");
  4294. }
  4295. }
  4296. }break;
  4297. #endif // FWRETRACT
  4298. #if EXTRUDERS > 1
  4299. case 218: // M218 - set hotend offset (in mm), T<extruder_number> X<offset_on_X> Y<offset_on_Y>
  4300. {
  4301. if(setTargetedHotend(218)){
  4302. break;
  4303. }
  4304. if(code_seen('X'))
  4305. {
  4306. extruder_offset[X_AXIS][tmp_extruder] = code_value();
  4307. }
  4308. if(code_seen('Y'))
  4309. {
  4310. extruder_offset[Y_AXIS][tmp_extruder] = code_value();
  4311. }
  4312. SERIAL_ECHO_START;
  4313. SERIAL_ECHORPGM(MSG_HOTEND_OFFSET);
  4314. for(tmp_extruder = 0; tmp_extruder < EXTRUDERS; tmp_extruder++)
  4315. {
  4316. SERIAL_ECHO(" ");
  4317. SERIAL_ECHO(extruder_offset[X_AXIS][tmp_extruder]);
  4318. SERIAL_ECHO(",");
  4319. SERIAL_ECHO(extruder_offset[Y_AXIS][tmp_extruder]);
  4320. }
  4321. SERIAL_ECHOLN("");
  4322. }break;
  4323. #endif
  4324. case 220: // M220 S<factor in percent>- set speed factor override percentage
  4325. {
  4326. if(code_seen('S'))
  4327. {
  4328. feedmultiply = code_value() ;
  4329. }
  4330. }
  4331. break;
  4332. case 221: // M221 S<factor in percent>- set extrude factor override percentage
  4333. {
  4334. if(code_seen('S'))
  4335. {
  4336. int tmp_code = code_value();
  4337. if (code_seen('T'))
  4338. {
  4339. if(setTargetedHotend(221)){
  4340. break;
  4341. }
  4342. extruder_multiply[tmp_extruder] = tmp_code;
  4343. }
  4344. else
  4345. {
  4346. extrudemultiply = tmp_code ;
  4347. }
  4348. }
  4349. }
  4350. break;
  4351. #ifndef _DISABLE_M42_M226
  4352. case 226: // M226 P<pin number> S<pin state>- Wait until the specified pin reaches the state required
  4353. {
  4354. if(code_seen('P')){
  4355. int pin_number = code_value(); // pin number
  4356. int pin_state = -1; // required pin state - default is inverted
  4357. if(code_seen('S')) pin_state = code_value(); // required pin state
  4358. if(pin_state >= -1 && pin_state <= 1){
  4359. for(int8_t i = 0; i < (int8_t)(sizeof(sensitive_pins)/sizeof(int)); i++)
  4360. {
  4361. if (sensitive_pins[i] == pin_number)
  4362. {
  4363. pin_number = -1;
  4364. break;
  4365. }
  4366. }
  4367. if (pin_number > -1)
  4368. {
  4369. int target = LOW;
  4370. st_synchronize();
  4371. pinMode(pin_number, INPUT);
  4372. switch(pin_state){
  4373. case 1:
  4374. target = HIGH;
  4375. break;
  4376. case 0:
  4377. target = LOW;
  4378. break;
  4379. case -1:
  4380. target = !digitalRead(pin_number);
  4381. break;
  4382. }
  4383. while(digitalRead(pin_number) != target){
  4384. manage_heater();
  4385. manage_inactivity();
  4386. lcd_update();
  4387. }
  4388. }
  4389. }
  4390. }
  4391. }
  4392. break;
  4393. #endif //_DISABLE_M42_M226
  4394. #if NUM_SERVOS > 0
  4395. case 280: // M280 - set servo position absolute. P: servo index, S: angle or microseconds
  4396. {
  4397. int servo_index = -1;
  4398. int servo_position = 0;
  4399. if (code_seen('P'))
  4400. servo_index = code_value();
  4401. if (code_seen('S')) {
  4402. servo_position = code_value();
  4403. if ((servo_index >= 0) && (servo_index < NUM_SERVOS)) {
  4404. #if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
  4405. servos[servo_index].attach(0);
  4406. #endif
  4407. servos[servo_index].write(servo_position);
  4408. #if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
  4409. delay(PROBE_SERVO_DEACTIVATION_DELAY);
  4410. servos[servo_index].detach();
  4411. #endif
  4412. }
  4413. else {
  4414. SERIAL_ECHO_START;
  4415. SERIAL_ECHO("Servo ");
  4416. SERIAL_ECHO(servo_index);
  4417. SERIAL_ECHOLN(" out of range");
  4418. }
  4419. }
  4420. else if (servo_index >= 0) {
  4421. SERIAL_PROTOCOL(MSG_OK);
  4422. SERIAL_PROTOCOL(" Servo ");
  4423. SERIAL_PROTOCOL(servo_index);
  4424. SERIAL_PROTOCOL(": ");
  4425. SERIAL_PROTOCOL(servos[servo_index].read());
  4426. SERIAL_PROTOCOLLN("");
  4427. }
  4428. }
  4429. break;
  4430. #endif // NUM_SERVOS > 0
  4431. #if (LARGE_FLASH == true && ( BEEPER > 0 || defined(ULTRALCD) || defined(LCD_USE_I2C_BUZZER)))
  4432. case 300: // M300
  4433. {
  4434. int beepS = code_seen('S') ? code_value() : 110;
  4435. int beepP = code_seen('P') ? code_value() : 1000;
  4436. if (beepS > 0)
  4437. {
  4438. #if BEEPER > 0
  4439. tone(BEEPER, beepS);
  4440. delay(beepP);
  4441. noTone(BEEPER);
  4442. #elif defined(ULTRALCD)
  4443. lcd_buzz(beepS, beepP);
  4444. #elif defined(LCD_USE_I2C_BUZZER)
  4445. lcd_buzz(beepP, beepS);
  4446. #endif
  4447. }
  4448. else
  4449. {
  4450. delay(beepP);
  4451. }
  4452. }
  4453. break;
  4454. #endif // M300
  4455. #ifdef PIDTEMP
  4456. case 301: // M301
  4457. {
  4458. if(code_seen('P')) Kp = code_value();
  4459. if(code_seen('I')) Ki = scalePID_i(code_value());
  4460. if(code_seen('D')) Kd = scalePID_d(code_value());
  4461. #ifdef PID_ADD_EXTRUSION_RATE
  4462. if(code_seen('C')) Kc = code_value();
  4463. #endif
  4464. updatePID();
  4465. SERIAL_PROTOCOLRPGM(MSG_OK);
  4466. SERIAL_PROTOCOL(" p:");
  4467. SERIAL_PROTOCOL(Kp);
  4468. SERIAL_PROTOCOL(" i:");
  4469. SERIAL_PROTOCOL(unscalePID_i(Ki));
  4470. SERIAL_PROTOCOL(" d:");
  4471. SERIAL_PROTOCOL(unscalePID_d(Kd));
  4472. #ifdef PID_ADD_EXTRUSION_RATE
  4473. SERIAL_PROTOCOL(" c:");
  4474. //Kc does not have scaling applied above, or in resetting defaults
  4475. SERIAL_PROTOCOL(Kc);
  4476. #endif
  4477. SERIAL_PROTOCOLLN("");
  4478. }
  4479. break;
  4480. #endif //PIDTEMP
  4481. #ifdef PIDTEMPBED
  4482. case 304: // M304
  4483. {
  4484. if(code_seen('P')) bedKp = code_value();
  4485. if(code_seen('I')) bedKi = scalePID_i(code_value());
  4486. if(code_seen('D')) bedKd = scalePID_d(code_value());
  4487. updatePID();
  4488. SERIAL_PROTOCOLRPGM(MSG_OK);
  4489. SERIAL_PROTOCOL(" p:");
  4490. SERIAL_PROTOCOL(bedKp);
  4491. SERIAL_PROTOCOL(" i:");
  4492. SERIAL_PROTOCOL(unscalePID_i(bedKi));
  4493. SERIAL_PROTOCOL(" d:");
  4494. SERIAL_PROTOCOL(unscalePID_d(bedKd));
  4495. SERIAL_PROTOCOLLN("");
  4496. }
  4497. break;
  4498. #endif //PIDTEMP
  4499. case 240: // M240 Triggers a camera by emulating a Canon RC-1 : http://www.doc-diy.net/photo/rc-1_hacked/
  4500. {
  4501. #ifdef CHDK
  4502. SET_OUTPUT(CHDK);
  4503. WRITE(CHDK, HIGH);
  4504. chdkHigh = millis();
  4505. chdkActive = true;
  4506. #else
  4507. #if defined(PHOTOGRAPH_PIN) && PHOTOGRAPH_PIN > -1
  4508. const uint8_t NUM_PULSES=16;
  4509. const float PULSE_LENGTH=0.01524;
  4510. for(int i=0; i < NUM_PULSES; i++) {
  4511. WRITE(PHOTOGRAPH_PIN, HIGH);
  4512. _delay_ms(PULSE_LENGTH);
  4513. WRITE(PHOTOGRAPH_PIN, LOW);
  4514. _delay_ms(PULSE_LENGTH);
  4515. }
  4516. delay(7.33);
  4517. for(int i=0; i < NUM_PULSES; i++) {
  4518. WRITE(PHOTOGRAPH_PIN, HIGH);
  4519. _delay_ms(PULSE_LENGTH);
  4520. WRITE(PHOTOGRAPH_PIN, LOW);
  4521. _delay_ms(PULSE_LENGTH);
  4522. }
  4523. #endif
  4524. #endif //chdk end if
  4525. }
  4526. break;
  4527. #ifdef DOGLCD
  4528. case 250: // M250 Set LCD contrast value: C<value> (value 0..63)
  4529. {
  4530. if (code_seen('C')) {
  4531. lcd_setcontrast( ((int)code_value())&63 );
  4532. }
  4533. SERIAL_PROTOCOLPGM("lcd contrast value: ");
  4534. SERIAL_PROTOCOL(lcd_contrast);
  4535. SERIAL_PROTOCOLLN("");
  4536. }
  4537. break;
  4538. #endif
  4539. #ifdef PREVENT_DANGEROUS_EXTRUDE
  4540. case 302: // allow cold extrudes, or set the minimum extrude temperature
  4541. {
  4542. float temp = .0;
  4543. if (code_seen('S')) temp=code_value();
  4544. set_extrude_min_temp(temp);
  4545. }
  4546. break;
  4547. #endif
  4548. case 303: // M303 PID autotune
  4549. {
  4550. float temp = 150.0;
  4551. int e=0;
  4552. int c=5;
  4553. if (code_seen('E')) e=code_value();
  4554. if (e<0)
  4555. temp=70;
  4556. if (code_seen('S')) temp=code_value();
  4557. if (code_seen('C')) c=code_value();
  4558. PID_autotune(temp, e, c);
  4559. }
  4560. break;
  4561. case 400: // M400 finish all moves
  4562. {
  4563. st_synchronize();
  4564. }
  4565. break;
  4566. #ifdef FILAMENT_SENSOR
  4567. case 404: //M404 Enter the nominal filament width (3mm, 1.75mm ) N<3.0> or display nominal filament width
  4568. {
  4569. #if (FILWIDTH_PIN > -1)
  4570. if(code_seen('N')) filament_width_nominal=code_value();
  4571. else{
  4572. SERIAL_PROTOCOLPGM("Filament dia (nominal mm):");
  4573. SERIAL_PROTOCOLLN(filament_width_nominal);
  4574. }
  4575. #endif
  4576. }
  4577. break;
  4578. case 405: //M405 Turn on filament sensor for control
  4579. {
  4580. if(code_seen('D')) meas_delay_cm=code_value();
  4581. if(meas_delay_cm> MAX_MEASUREMENT_DELAY)
  4582. meas_delay_cm = MAX_MEASUREMENT_DELAY;
  4583. if(delay_index2 == -1) //initialize the ring buffer if it has not been done since startup
  4584. {
  4585. int temp_ratio = widthFil_to_size_ratio();
  4586. for (delay_index1=0; delay_index1<(MAX_MEASUREMENT_DELAY+1); ++delay_index1 ){
  4587. measurement_delay[delay_index1]=temp_ratio-100; //subtract 100 to scale within a signed byte
  4588. }
  4589. delay_index1=0;
  4590. delay_index2=0;
  4591. }
  4592. filament_sensor = true ;
  4593. //SERIAL_PROTOCOLPGM("Filament dia (measured mm):");
  4594. //SERIAL_PROTOCOL(filament_width_meas);
  4595. //SERIAL_PROTOCOLPGM("Extrusion ratio(%):");
  4596. //SERIAL_PROTOCOL(extrudemultiply);
  4597. }
  4598. break;
  4599. case 406: //M406 Turn off filament sensor for control
  4600. {
  4601. filament_sensor = false ;
  4602. }
  4603. break;
  4604. case 407: //M407 Display measured filament diameter
  4605. {
  4606. SERIAL_PROTOCOLPGM("Filament dia (measured mm):");
  4607. SERIAL_PROTOCOLLN(filament_width_meas);
  4608. }
  4609. break;
  4610. #endif
  4611. case 500: // M500 Store settings in EEPROM
  4612. {
  4613. Config_StoreSettings(EEPROM_OFFSET);
  4614. }
  4615. break;
  4616. case 501: // M501 Read settings from EEPROM
  4617. {
  4618. Config_RetrieveSettings(EEPROM_OFFSET);
  4619. }
  4620. break;
  4621. case 502: // M502 Revert to default settings
  4622. {
  4623. Config_ResetDefault();
  4624. }
  4625. break;
  4626. case 503: // M503 print settings currently in memory
  4627. {
  4628. Config_PrintSettings();
  4629. }
  4630. break;
  4631. case 509: //M509 Force language selection
  4632. {
  4633. lcd_force_language_selection();
  4634. SERIAL_ECHO_START;
  4635. SERIAL_PROTOCOLPGM(("LANG SEL FORCED"));
  4636. }
  4637. break;
  4638. #ifdef ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED
  4639. case 540:
  4640. {
  4641. if(code_seen('S')) abort_on_endstop_hit = code_value() > 0;
  4642. }
  4643. break;
  4644. #endif
  4645. #ifdef CUSTOM_M_CODE_SET_Z_PROBE_OFFSET
  4646. case CUSTOM_M_CODE_SET_Z_PROBE_OFFSET:
  4647. {
  4648. float value;
  4649. if (code_seen('Z'))
  4650. {
  4651. value = code_value();
  4652. if ((Z_PROBE_OFFSET_RANGE_MIN <= value) && (value <= Z_PROBE_OFFSET_RANGE_MAX))
  4653. {
  4654. zprobe_zoffset = -value; // compare w/ line 278 of ConfigurationStore.cpp
  4655. SERIAL_ECHO_START;
  4656. SERIAL_ECHOLNRPGM(CAT4(MSG_ZPROBE_ZOFFSET, " ", MSG_OK,PSTR("")));
  4657. SERIAL_PROTOCOLLN("");
  4658. }
  4659. else
  4660. {
  4661. SERIAL_ECHO_START;
  4662. SERIAL_ECHORPGM(MSG_ZPROBE_ZOFFSET);
  4663. SERIAL_ECHORPGM(MSG_Z_MIN);
  4664. SERIAL_ECHO(Z_PROBE_OFFSET_RANGE_MIN);
  4665. SERIAL_ECHORPGM(MSG_Z_MAX);
  4666. SERIAL_ECHO(Z_PROBE_OFFSET_RANGE_MAX);
  4667. SERIAL_PROTOCOLLN("");
  4668. }
  4669. }
  4670. else
  4671. {
  4672. SERIAL_ECHO_START;
  4673. SERIAL_ECHOLNRPGM(CAT2(MSG_ZPROBE_ZOFFSET, PSTR(" : ")));
  4674. SERIAL_ECHO(-zprobe_zoffset);
  4675. SERIAL_PROTOCOLLN("");
  4676. }
  4677. break;
  4678. }
  4679. #endif // CUSTOM_M_CODE_SET_Z_PROBE_OFFSET
  4680. #ifdef FILAMENTCHANGEENABLE
  4681. case 600: //Pause for filament change X[pos] Y[pos] Z[relative lift] E[initial retract] L[later retract distance for removal]
  4682. {
  4683. MYSERIAL.println("!!!!M600!!!!");
  4684. bool old_fsensor_enabled = fsensor_enabled;
  4685. fsensor_enabled = false; //temporary solution for unexpected restarting
  4686. st_synchronize();
  4687. float target[4];
  4688. float lastpos[4];
  4689. if (farm_mode)
  4690. {
  4691. prusa_statistics(22);
  4692. }
  4693. feedmultiplyBckp=feedmultiply;
  4694. int8_t TooLowZ = 0;
  4695. target[X_AXIS]=current_position[X_AXIS];
  4696. target[Y_AXIS]=current_position[Y_AXIS];
  4697. target[Z_AXIS]=current_position[Z_AXIS];
  4698. target[E_AXIS]=current_position[E_AXIS];
  4699. lastpos[X_AXIS]=current_position[X_AXIS];
  4700. lastpos[Y_AXIS]=current_position[Y_AXIS];
  4701. lastpos[Z_AXIS]=current_position[Z_AXIS];
  4702. lastpos[E_AXIS]=current_position[E_AXIS];
  4703. //Restract extruder
  4704. if(code_seen('E'))
  4705. {
  4706. target[E_AXIS]+= code_value();
  4707. }
  4708. else
  4709. {
  4710. #ifdef FILAMENTCHANGE_FIRSTRETRACT
  4711. target[E_AXIS]+= FILAMENTCHANGE_FIRSTRETRACT ;
  4712. #endif
  4713. }
  4714. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_RFEED, active_extruder);
  4715. //Lift Z
  4716. if(code_seen('Z'))
  4717. {
  4718. target[Z_AXIS]+= code_value();
  4719. }
  4720. else
  4721. {
  4722. #ifdef FILAMENTCHANGE_ZADD
  4723. target[Z_AXIS]+= FILAMENTCHANGE_ZADD ;
  4724. if(target[Z_AXIS] < 10){
  4725. target[Z_AXIS]+= 10 ;
  4726. TooLowZ = 1;
  4727. }else{
  4728. TooLowZ = 0;
  4729. }
  4730. #endif
  4731. }
  4732. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_ZFEED, active_extruder);
  4733. //Move XY to side
  4734. if(code_seen('X'))
  4735. {
  4736. target[X_AXIS]+= code_value();
  4737. }
  4738. else
  4739. {
  4740. #ifdef FILAMENTCHANGE_XPOS
  4741. target[X_AXIS]= FILAMENTCHANGE_XPOS ;
  4742. #endif
  4743. }
  4744. if(code_seen('Y'))
  4745. {
  4746. target[Y_AXIS]= code_value();
  4747. }
  4748. else
  4749. {
  4750. #ifdef FILAMENTCHANGE_YPOS
  4751. target[Y_AXIS]= FILAMENTCHANGE_YPOS ;
  4752. #endif
  4753. }
  4754. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_XYFEED, active_extruder);
  4755. st_synchronize();
  4756. KEEPALIVE_STATE(PAUSED_FOR_USER);
  4757. uint8_t cnt = 0;
  4758. int counterBeep = 0;
  4759. lcd_display_message_fullscreen_P(MSG_PRESS_TO_UNLOAD);
  4760. while (!lcd_clicked()) {
  4761. cnt++;
  4762. manage_heater();
  4763. manage_inactivity(true);
  4764. /*#ifdef SNMM
  4765. target[E_AXIS] += 0.002;
  4766. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 500, active_extruder);
  4767. #endif // SNMM*/
  4768. if (cnt == 0)
  4769. {
  4770. #if BEEPER > 0
  4771. if (counterBeep == 500) {
  4772. counterBeep = 0;
  4773. }
  4774. SET_OUTPUT(BEEPER);
  4775. if (counterBeep == 0) {
  4776. WRITE(BEEPER, HIGH);
  4777. }
  4778. if (counterBeep == 20) {
  4779. WRITE(BEEPER, LOW);
  4780. }
  4781. counterBeep++;
  4782. #else
  4783. #if !defined(LCD_FEEDBACK_FREQUENCY_HZ) || !defined(LCD_FEEDBACK_FREQUENCY_DURATION_MS)
  4784. lcd_buzz(1000 / 6, 100);
  4785. #else
  4786. lcd_buzz(LCD_FEEDBACK_FREQUENCY_DURATION_MS, LCD_FEEDBACK_FREQUENCY_HZ);
  4787. #endif
  4788. #endif
  4789. }
  4790. }
  4791. WRITE(BEEPER, LOW);
  4792. lcd_change_fil_state = 0;
  4793. while (lcd_change_fil_state == 0) {
  4794. lcd_display_message_fullscreen_P(MSG_UNLOADING_FILAMENT);
  4795. KEEPALIVE_STATE(IN_HANDLER);
  4796. custom_message = true;
  4797. lcd_setstatuspgm(MSG_UNLOADING_FILAMENT);
  4798. // Unload filament
  4799. if (code_seen('L'))
  4800. {
  4801. target[E_AXIS] += code_value();
  4802. }
  4803. else
  4804. {
  4805. #ifdef SNMM
  4806. #else
  4807. #ifdef FILAMENTCHANGE_FINALRETRACT
  4808. target[E_AXIS] += FILAMENTCHANGE_FINALRETRACT;
  4809. #endif
  4810. #endif // SNMM
  4811. }
  4812. #ifdef SNMM
  4813. target[E_AXIS] += 12;
  4814. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 3500, active_extruder);
  4815. target[E_AXIS] += 6;
  4816. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 5000, active_extruder);
  4817. target[E_AXIS] += (FIL_LOAD_LENGTH * -1);
  4818. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 5000, active_extruder);
  4819. st_synchronize();
  4820. target[E_AXIS] += (FIL_COOLING);
  4821. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 50, active_extruder);
  4822. target[E_AXIS] += (FIL_COOLING*-1);
  4823. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 50, active_extruder);
  4824. target[E_AXIS] += (bowden_length[snmm_extruder] * -1);
  4825. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 3000, active_extruder);
  4826. st_synchronize();
  4827. #else
  4828. // plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_RFEED, active_extruder);
  4829. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 3500 / 60, active_extruder);
  4830. #endif // SNMM
  4831. //finish moves
  4832. st_synchronize();
  4833. //disable extruder steppers so filament can be removed
  4834. disable_e0();
  4835. disable_e1();
  4836. disable_e2();
  4837. delay(100);
  4838. KEEPALIVE_STATE(PAUSED_FOR_USER);
  4839. lcd_change_fil_state = !lcd_show_fullscreen_message_yes_no_and_wait_P(MSG_UNLOAD_SUCCESSFULL, false, false);
  4840. //lcd_return_to_status();
  4841. lcd_update_enable(true);
  4842. }
  4843. //Wait for user to insert filament
  4844. lcd_wait_interact();
  4845. //load_filament_time = millis();
  4846. KEEPALIVE_STATE(PAUSED_FOR_USER);
  4847. #ifdef PAT9125
  4848. if (fsensor_M600) fsensor_autoload_check_start();
  4849. #endif //PAT9125
  4850. while(!lcd_clicked())
  4851. {
  4852. manage_heater();
  4853. manage_inactivity(true);
  4854. #ifdef PAT9125
  4855. if (fsensor_M600 && fsensor_check_autoload())
  4856. break;
  4857. #endif //PAT9125
  4858. /*#ifdef SNMM
  4859. target[E_AXIS] += 0.002;
  4860. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 500, active_extruder);
  4861. #endif // SNMM*/
  4862. }
  4863. #ifdef PAT9125
  4864. if (fsensor_M600) fsensor_autoload_check_stop();
  4865. #endif //PAT9125
  4866. //WRITE(BEEPER, LOW);
  4867. KEEPALIVE_STATE(IN_HANDLER);
  4868. #ifdef SNMM
  4869. display_loading();
  4870. KEEPALIVE_STATE(PAUSED_FOR_USER);
  4871. do {
  4872. target[E_AXIS] += 0.002;
  4873. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 500, active_extruder);
  4874. delay_keep_alive(2);
  4875. } while (!lcd_clicked());
  4876. KEEPALIVE_STATE(IN_HANDLER);
  4877. /*if (millis() - load_filament_time > 2) {
  4878. load_filament_time = millis();
  4879. target[E_AXIS] += 0.001;
  4880. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 1000, active_extruder);
  4881. }*/
  4882. //Filament inserted
  4883. //Feed the filament to the end of nozzle quickly
  4884. st_synchronize();
  4885. target[E_AXIS] += bowden_length[snmm_extruder];
  4886. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 3000, active_extruder);
  4887. target[E_AXIS] += FIL_LOAD_LENGTH - 60;
  4888. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 1400, active_extruder);
  4889. target[E_AXIS] += 40;
  4890. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 400, active_extruder);
  4891. target[E_AXIS] += 10;
  4892. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 50, active_extruder);
  4893. #else
  4894. target[E_AXIS] += FILAMENTCHANGE_FIRSTFEED;
  4895. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_EFEED, active_extruder);
  4896. #endif // SNMM
  4897. //Extrude some filament
  4898. target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  4899. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_EXFEED, active_extruder);
  4900. //Wait for user to check the state
  4901. lcd_change_fil_state = 0;
  4902. lcd_loading_filament();
  4903. while ((lcd_change_fil_state == 0)||(lcd_change_fil_state != 1)){
  4904. lcd_change_fil_state = 0;
  4905. KEEPALIVE_STATE(PAUSED_FOR_USER);
  4906. lcd_alright();
  4907. KEEPALIVE_STATE(IN_HANDLER);
  4908. switch(lcd_change_fil_state){
  4909. // Filament failed to load so load it again
  4910. case 2:
  4911. #ifdef SNMM
  4912. display_loading();
  4913. do {
  4914. target[E_AXIS] += 0.002;
  4915. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 500, active_extruder);
  4916. delay_keep_alive(2);
  4917. } while (!lcd_clicked());
  4918. st_synchronize();
  4919. target[E_AXIS] += bowden_length[snmm_extruder];
  4920. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 3000, active_extruder);
  4921. target[E_AXIS] += FIL_LOAD_LENGTH - 60;
  4922. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 1400, active_extruder);
  4923. target[E_AXIS] += 40;
  4924. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 400, active_extruder);
  4925. target[E_AXIS] += 10;
  4926. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 50, active_extruder);
  4927. #else
  4928. target[E_AXIS]+= FILAMENTCHANGE_FIRSTFEED ;
  4929. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_EFEED, active_extruder);
  4930. #endif
  4931. target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  4932. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_EXFEED, active_extruder);
  4933. lcd_loading_filament();
  4934. break;
  4935. // Filament loaded properly but color is not clear
  4936. case 3:
  4937. target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  4938. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder);
  4939. lcd_loading_color();
  4940. break;
  4941. // Everything good
  4942. default:
  4943. lcd_change_success();
  4944. lcd_update_enable(true);
  4945. break;
  4946. }
  4947. }
  4948. //Not let's go back to print
  4949. //Feed a little of filament to stabilize pressure
  4950. target[E_AXIS]+= FILAMENTCHANGE_RECFEED;
  4951. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_EXFEED, active_extruder);
  4952. //Retract
  4953. target[E_AXIS]+= FILAMENTCHANGE_FIRSTRETRACT;
  4954. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_RFEED, active_extruder);
  4955. //plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 70, active_extruder); //should do nothing
  4956. //Move XY back
  4957. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_XYFEED, active_extruder);
  4958. //Move Z back
  4959. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_ZFEED, active_extruder);
  4960. target[E_AXIS]= target[E_AXIS] - FILAMENTCHANGE_FIRSTRETRACT;
  4961. //Unretract
  4962. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_RFEED, active_extruder);
  4963. //Set E position to original
  4964. plan_set_e_position(lastpos[E_AXIS]);
  4965. //Recover feed rate
  4966. feedmultiply=feedmultiplyBckp;
  4967. char cmd[9];
  4968. sprintf_P(cmd, PSTR("M220 S%i"), feedmultiplyBckp);
  4969. enquecommand(cmd);
  4970. lcd_setstatuspgm(WELCOME_MSG);
  4971. custom_message = false;
  4972. custom_message_type = 0;
  4973. fsensor_enabled = old_fsensor_enabled; //temporary solution for unexpected restarting
  4974. #ifdef PAT9125
  4975. if (fsensor_M600)
  4976. {
  4977. cmdqueue_pop_front(); //hack because M600 repeated 2x when enqueued to front
  4978. st_synchronize();
  4979. while (!is_buffer_empty())
  4980. {
  4981. process_commands();
  4982. cmdqueue_pop_front();
  4983. }
  4984. fsensor_enable();
  4985. fsensor_restore_print_and_continue();
  4986. }
  4987. #endif //PAT9125
  4988. }
  4989. break;
  4990. #endif //FILAMENTCHANGEENABLE
  4991. case 601: {
  4992. if(lcd_commands_type == 0) lcd_commands_type = LCD_COMMAND_LONG_PAUSE;
  4993. }
  4994. break;
  4995. case 602: {
  4996. if(lcd_commands_type == 0) lcd_commands_type = LCD_COMMAND_LONG_PAUSE_RESUME;
  4997. }
  4998. break;
  4999. #ifdef LIN_ADVANCE
  5000. case 900: // M900: Set LIN_ADVANCE options.
  5001. gcode_M900();
  5002. break;
  5003. #endif
  5004. case 907: // M907 Set digital trimpot motor current using axis codes.
  5005. {
  5006. #if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
  5007. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) digipot_current(i,code_value());
  5008. if(code_seen('B')) digipot_current(4,code_value());
  5009. if(code_seen('S')) for(int i=0;i<=4;i++) digipot_current(i,code_value());
  5010. #endif
  5011. #ifdef MOTOR_CURRENT_PWM_XY_PIN
  5012. if(code_seen('X')) digipot_current(0, code_value());
  5013. #endif
  5014. #ifdef MOTOR_CURRENT_PWM_Z_PIN
  5015. if(code_seen('Z')) digipot_current(1, code_value());
  5016. #endif
  5017. #ifdef MOTOR_CURRENT_PWM_E_PIN
  5018. if(code_seen('E')) digipot_current(2, code_value());
  5019. #endif
  5020. #ifdef DIGIPOT_I2C
  5021. // this one uses actual amps in floating point
  5022. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) digipot_i2c_set_current(i, code_value());
  5023. // for each additional extruder (named B,C,D,E..., channels 4,5,6,7...)
  5024. for(int i=NUM_AXIS;i<DIGIPOT_I2C_NUM_CHANNELS;i++) if(code_seen('B'+i-NUM_AXIS)) digipot_i2c_set_current(i, code_value());
  5025. #endif
  5026. }
  5027. break;
  5028. case 908: // M908 Control digital trimpot directly.
  5029. {
  5030. #if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
  5031. uint8_t channel,current;
  5032. if(code_seen('P')) channel=code_value();
  5033. if(code_seen('S')) current=code_value();
  5034. digitalPotWrite(channel, current);
  5035. #endif
  5036. }
  5037. break;
  5038. case 910: // M910 TMC2130 init
  5039. {
  5040. tmc2130_init();
  5041. }
  5042. break;
  5043. case 911: // M911 Set TMC2130 holding currents
  5044. {
  5045. if (code_seen('X')) tmc2130_set_current_h(0, code_value());
  5046. if (code_seen('Y')) tmc2130_set_current_h(1, code_value());
  5047. if (code_seen('Z')) tmc2130_set_current_h(2, code_value());
  5048. if (code_seen('E')) tmc2130_set_current_h(3, code_value());
  5049. }
  5050. break;
  5051. case 912: // M912 Set TMC2130 running currents
  5052. {
  5053. if (code_seen('X')) tmc2130_set_current_r(0, code_value());
  5054. if (code_seen('Y')) tmc2130_set_current_r(1, code_value());
  5055. if (code_seen('Z')) tmc2130_set_current_r(2, code_value());
  5056. if (code_seen('E')) tmc2130_set_current_r(3, code_value());
  5057. }
  5058. break;
  5059. case 913: // M913 Print TMC2130 currents
  5060. {
  5061. tmc2130_print_currents();
  5062. }
  5063. break;
  5064. case 914: // M914 Set normal mode
  5065. {
  5066. tmc2130_mode = TMC2130_MODE_NORMAL;
  5067. tmc2130_init();
  5068. }
  5069. break;
  5070. case 915: // M915 Set silent mode
  5071. {
  5072. tmc2130_mode = TMC2130_MODE_SILENT;
  5073. tmc2130_init();
  5074. }
  5075. break;
  5076. case 916: // M916 Set sg_thrs
  5077. {
  5078. if (code_seen('X')) tmc2130_sg_thr[X_AXIS] = code_value();
  5079. if (code_seen('Y')) tmc2130_sg_thr[Y_AXIS] = code_value();
  5080. if (code_seen('Z')) tmc2130_sg_thr[Z_AXIS] = code_value();
  5081. if (code_seen('E')) tmc2130_sg_thr[E_AXIS] = code_value();
  5082. MYSERIAL.print("tmc2130_sg_thr[X]=");
  5083. MYSERIAL.println(tmc2130_sg_thr[X_AXIS], DEC);
  5084. MYSERIAL.print("tmc2130_sg_thr[Y]=");
  5085. MYSERIAL.println(tmc2130_sg_thr[Y_AXIS], DEC);
  5086. MYSERIAL.print("tmc2130_sg_thr[Z]=");
  5087. MYSERIAL.println(tmc2130_sg_thr[Z_AXIS], DEC);
  5088. MYSERIAL.print("tmc2130_sg_thr[E]=");
  5089. MYSERIAL.println(tmc2130_sg_thr[E_AXIS], DEC);
  5090. }
  5091. break;
  5092. case 917: // M917 Set TMC2130 pwm_ampl
  5093. {
  5094. if (code_seen('X')) tmc2130_set_pwm_ampl(0, code_value());
  5095. if (code_seen('Y')) tmc2130_set_pwm_ampl(1, code_value());
  5096. if (code_seen('Z')) tmc2130_set_pwm_ampl(2, code_value());
  5097. if (code_seen('E')) tmc2130_set_pwm_ampl(3, code_value());
  5098. }
  5099. break;
  5100. case 918: // M918 Set TMC2130 pwm_grad
  5101. {
  5102. if (code_seen('X')) tmc2130_set_pwm_grad(0, code_value());
  5103. if (code_seen('Y')) tmc2130_set_pwm_grad(1, code_value());
  5104. if (code_seen('Z')) tmc2130_set_pwm_grad(2, code_value());
  5105. if (code_seen('E')) tmc2130_set_pwm_grad(3, code_value());
  5106. }
  5107. break;
  5108. case 350: // M350 Set microstepping mode. Warning: Steps per unit remains unchanged. S code sets stepping mode for all drivers.
  5109. {
  5110. #if defined(X_MS1_PIN) && X_MS1_PIN > -1
  5111. if(code_seen('S')) for(int i=0;i<=4;i++) microstep_mode(i,code_value());
  5112. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) microstep_mode(i,(uint8_t)code_value());
  5113. if(code_seen('B')) microstep_mode(4,code_value());
  5114. microstep_readings();
  5115. #endif
  5116. }
  5117. break;
  5118. case 351: // M351 Toggle MS1 MS2 pins directly, S# determines MS1 or MS2, X# sets the pin high/low.
  5119. {
  5120. #if defined(X_MS1_PIN) && X_MS1_PIN > -1
  5121. if(code_seen('S')) switch((int)code_value())
  5122. {
  5123. case 1:
  5124. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) microstep_ms(i,code_value(),-1);
  5125. if(code_seen('B')) microstep_ms(4,code_value(),-1);
  5126. break;
  5127. case 2:
  5128. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) microstep_ms(i,-1,code_value());
  5129. if(code_seen('B')) microstep_ms(4,-1,code_value());
  5130. break;
  5131. }
  5132. microstep_readings();
  5133. #endif
  5134. }
  5135. break;
  5136. case 701: //M701: load filament
  5137. {
  5138. gcode_M701();
  5139. }
  5140. break;
  5141. case 702:
  5142. {
  5143. #ifdef SNMM
  5144. if (code_seen('U')) {
  5145. extr_unload_used(); //unload all filaments which were used in current print
  5146. }
  5147. else if (code_seen('C')) {
  5148. extr_unload(); //unload just current filament
  5149. }
  5150. else {
  5151. extr_unload_all(); //unload all filaments
  5152. }
  5153. #else
  5154. bool old_fsensor_enabled = fsensor_enabled;
  5155. fsensor_enabled = false;
  5156. custom_message = true;
  5157. custom_message_type = 2;
  5158. lcd_setstatuspgm(MSG_UNLOADING_FILAMENT);
  5159. // extr_unload2();
  5160. current_position[E_AXIS] -= 80;
  5161. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 7000 / 60, active_extruder);
  5162. st_synchronize();
  5163. lcd_setstatuspgm(WELCOME_MSG);
  5164. custom_message = false;
  5165. custom_message_type = 0;
  5166. fsensor_enabled = old_fsensor_enabled;
  5167. #endif
  5168. }
  5169. break;
  5170. case 999: // M999: Restart after being stopped
  5171. Stopped = false;
  5172. lcd_reset_alert_level();
  5173. gcode_LastN = Stopped_gcode_LastN;
  5174. FlushSerialRequestResend();
  5175. break;
  5176. default: SERIAL_ECHOLNPGM("Invalid M code.");
  5177. }
  5178. } // end if(code_seen('M')) (end of M codes)
  5179. else if(code_seen('T'))
  5180. {
  5181. int index;
  5182. st_synchronize();
  5183. for (index = 1; *(strchr_pointer + index) == ' ' || *(strchr_pointer + index) == '\t'; index++);
  5184. if ((*(strchr_pointer + index) < '0' || *(strchr_pointer + index) > '9') && *(strchr_pointer + index) != '?') {
  5185. SERIAL_ECHOLNPGM("Invalid T code.");
  5186. }
  5187. else {
  5188. if (*(strchr_pointer + index) == '?') {
  5189. tmp_extruder = choose_extruder_menu();
  5190. }
  5191. else {
  5192. tmp_extruder = code_value();
  5193. }
  5194. snmm_filaments_used |= (1 << tmp_extruder); //for stop print
  5195. #ifdef SNMM
  5196. #ifdef LIN_ADVANCE
  5197. if (snmm_extruder != tmp_extruder)
  5198. clear_current_adv_vars(); //Check if the selected extruder is not the active one and reset LIN_ADVANCE variables if so.
  5199. #endif
  5200. snmm_extruder = tmp_extruder;
  5201. delay(100);
  5202. disable_e0();
  5203. disable_e1();
  5204. disable_e2();
  5205. pinMode(E_MUX0_PIN, OUTPUT);
  5206. pinMode(E_MUX1_PIN, OUTPUT);
  5207. pinMode(E_MUX2_PIN, OUTPUT);
  5208. delay(100);
  5209. SERIAL_ECHO_START;
  5210. SERIAL_ECHO("T:");
  5211. SERIAL_ECHOLN((int)tmp_extruder);
  5212. switch (tmp_extruder) {
  5213. case 1:
  5214. WRITE(E_MUX0_PIN, HIGH);
  5215. WRITE(E_MUX1_PIN, LOW);
  5216. WRITE(E_MUX2_PIN, LOW);
  5217. break;
  5218. case 2:
  5219. WRITE(E_MUX0_PIN, LOW);
  5220. WRITE(E_MUX1_PIN, HIGH);
  5221. WRITE(E_MUX2_PIN, LOW);
  5222. break;
  5223. case 3:
  5224. WRITE(E_MUX0_PIN, HIGH);
  5225. WRITE(E_MUX1_PIN, HIGH);
  5226. WRITE(E_MUX2_PIN, LOW);
  5227. break;
  5228. default:
  5229. WRITE(E_MUX0_PIN, LOW);
  5230. WRITE(E_MUX1_PIN, LOW);
  5231. WRITE(E_MUX2_PIN, LOW);
  5232. break;
  5233. }
  5234. delay(100);
  5235. #else
  5236. if (tmp_extruder >= EXTRUDERS) {
  5237. SERIAL_ECHO_START;
  5238. SERIAL_ECHOPGM("T");
  5239. SERIAL_PROTOCOLLN((int)tmp_extruder);
  5240. SERIAL_ECHOLNRPGM(MSG_INVALID_EXTRUDER);
  5241. }
  5242. else {
  5243. boolean make_move = false;
  5244. if (code_seen('F')) {
  5245. make_move = true;
  5246. next_feedrate = code_value();
  5247. if (next_feedrate > 0.0) {
  5248. feedrate = next_feedrate;
  5249. }
  5250. }
  5251. #if EXTRUDERS > 1
  5252. if (tmp_extruder != active_extruder) {
  5253. // Save current position to return to after applying extruder offset
  5254. memcpy(destination, current_position, sizeof(destination));
  5255. // Offset extruder (only by XY)
  5256. int i;
  5257. for (i = 0; i < 2; i++) {
  5258. current_position[i] = current_position[i] -
  5259. extruder_offset[i][active_extruder] +
  5260. extruder_offset[i][tmp_extruder];
  5261. }
  5262. // Set the new active extruder and position
  5263. active_extruder = tmp_extruder;
  5264. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  5265. // Move to the old position if 'F' was in the parameters
  5266. if (make_move && Stopped == false) {
  5267. prepare_move();
  5268. }
  5269. }
  5270. #endif
  5271. SERIAL_ECHO_START;
  5272. SERIAL_ECHORPGM(MSG_ACTIVE_EXTRUDER);
  5273. SERIAL_PROTOCOLLN((int)active_extruder);
  5274. }
  5275. #endif
  5276. }
  5277. } // end if(code_seen('T')) (end of T codes)
  5278. #ifdef DEBUG_DCODES
  5279. else if (code_seen('D')) // D codes (debug)
  5280. {
  5281. switch((int)code_value())
  5282. {
  5283. case -1: // D-1 - Endless loop
  5284. dcode__1(); break;
  5285. case 0: // D0 - Reset
  5286. dcode_0(); break;
  5287. case 1: // D1 - Clear EEPROM
  5288. dcode_1(); break;
  5289. case 2: // D2 - Read/Write RAM
  5290. dcode_2(); break;
  5291. case 3: // D3 - Read/Write EEPROM
  5292. dcode_3(); break;
  5293. case 4: // D4 - Read/Write PIN
  5294. dcode_4(); break;
  5295. case 5: // D5 - Read/Write FLASH
  5296. // dcode_5(); break;
  5297. break;
  5298. case 6: // D6 - Read/Write external FLASH
  5299. dcode_6(); break;
  5300. case 7: // D7 - Read/Write Bootloader
  5301. dcode_7(); break;
  5302. case 8: // D8 - Read/Write PINDA
  5303. dcode_8(); break;
  5304. case 10: // D10 - XYZ calibration = OK
  5305. dcode_10(); break;
  5306. case 12: //D12 - Reset failstat counters
  5307. dcode_12(); break;
  5308. case 2130: // D9125 - TMC2130
  5309. dcode_2130(); break;
  5310. case 9125: // D9125 - PAT9125
  5311. dcode_9125(); break;
  5312. }
  5313. }
  5314. #endif //DEBUG_DCODES
  5315. else
  5316. {
  5317. SERIAL_ECHO_START;
  5318. SERIAL_ECHORPGM(MSG_UNKNOWN_COMMAND);
  5319. SERIAL_ECHO(CMDBUFFER_CURRENT_STRING);
  5320. SERIAL_ECHOLNPGM("\"(2)");
  5321. }
  5322. KEEPALIVE_STATE(NOT_BUSY);
  5323. ClearToSend();
  5324. }
  5325. void FlushSerialRequestResend()
  5326. {
  5327. //char cmdbuffer[bufindr][100]="Resend:";
  5328. MYSERIAL.flush();
  5329. SERIAL_PROTOCOLRPGM(MSG_RESEND);
  5330. SERIAL_PROTOCOLLN(gcode_LastN + 1);
  5331. ClearToSend();
  5332. }
  5333. // Confirm the execution of a command, if sent from a serial line.
  5334. // Execution of a command from a SD card will not be confirmed.
  5335. void ClearToSend()
  5336. {
  5337. previous_millis_cmd = millis();
  5338. if (CMDBUFFER_CURRENT_TYPE == CMDBUFFER_CURRENT_TYPE_USB)
  5339. SERIAL_PROTOCOLLNRPGM(MSG_OK);
  5340. }
  5341. void get_coordinates()
  5342. {
  5343. bool seen[4]={false,false,false,false};
  5344. for(int8_t i=0; i < NUM_AXIS; i++) {
  5345. if(code_seen(axis_codes[i]))
  5346. {
  5347. destination[i] = (float)code_value() + (axis_relative_modes[i] || relative_mode)*current_position[i];
  5348. seen[i]=true;
  5349. }
  5350. else destination[i] = current_position[i]; //Are these else lines really needed?
  5351. }
  5352. if(code_seen('F')) {
  5353. next_feedrate = code_value();
  5354. #ifdef MAX_SILENT_FEEDRATE
  5355. if (tmc2130_mode == TMC2130_MODE_SILENT)
  5356. if (next_feedrate > MAX_SILENT_FEEDRATE) next_feedrate = MAX_SILENT_FEEDRATE;
  5357. #endif //MAX_SILENT_FEEDRATE
  5358. if(next_feedrate > 0.0) feedrate = next_feedrate;
  5359. }
  5360. }
  5361. void get_arc_coordinates()
  5362. {
  5363. #ifdef SF_ARC_FIX
  5364. bool relative_mode_backup = relative_mode;
  5365. relative_mode = true;
  5366. #endif
  5367. get_coordinates();
  5368. #ifdef SF_ARC_FIX
  5369. relative_mode=relative_mode_backup;
  5370. #endif
  5371. if(code_seen('I')) {
  5372. offset[0] = code_value();
  5373. }
  5374. else {
  5375. offset[0] = 0.0;
  5376. }
  5377. if(code_seen('J')) {
  5378. offset[1] = code_value();
  5379. }
  5380. else {
  5381. offset[1] = 0.0;
  5382. }
  5383. }
  5384. void clamp_to_software_endstops(float target[3])
  5385. {
  5386. #ifdef DEBUG_DISABLE_SWLIMITS
  5387. return;
  5388. #endif //DEBUG_DISABLE_SWLIMITS
  5389. world2machine_clamp(target[0], target[1]);
  5390. // Clamp the Z coordinate.
  5391. if (min_software_endstops) {
  5392. float negative_z_offset = 0;
  5393. #ifdef ENABLE_AUTO_BED_LEVELING
  5394. if (Z_PROBE_OFFSET_FROM_EXTRUDER < 0) negative_z_offset = negative_z_offset + Z_PROBE_OFFSET_FROM_EXTRUDER;
  5395. if (add_homing[Z_AXIS] < 0) negative_z_offset = negative_z_offset + add_homing[Z_AXIS];
  5396. #endif
  5397. if (target[Z_AXIS] < min_pos[Z_AXIS]+negative_z_offset) target[Z_AXIS] = min_pos[Z_AXIS]+negative_z_offset;
  5398. }
  5399. if (max_software_endstops) {
  5400. if (target[Z_AXIS] > max_pos[Z_AXIS]) target[Z_AXIS] = max_pos[Z_AXIS];
  5401. }
  5402. }
  5403. #ifdef MESH_BED_LEVELING
  5404. void mesh_plan_buffer_line(const float &x, const float &y, const float &z, const float &e, const float &feed_rate, const uint8_t extruder) {
  5405. float dx = x - current_position[X_AXIS];
  5406. float dy = y - current_position[Y_AXIS];
  5407. float dz = z - current_position[Z_AXIS];
  5408. int n_segments = 0;
  5409. if (mbl.active) {
  5410. float len = abs(dx) + abs(dy);
  5411. if (len > 0)
  5412. // Split to 3cm segments or shorter.
  5413. n_segments = int(ceil(len / 30.f));
  5414. }
  5415. if (n_segments > 1) {
  5416. float de = e - current_position[E_AXIS];
  5417. for (int i = 1; i < n_segments; ++ i) {
  5418. float t = float(i) / float(n_segments);
  5419. plan_buffer_line(
  5420. current_position[X_AXIS] + t * dx,
  5421. current_position[Y_AXIS] + t * dy,
  5422. current_position[Z_AXIS] + t * dz,
  5423. current_position[E_AXIS] + t * de,
  5424. feed_rate, extruder);
  5425. }
  5426. }
  5427. // The rest of the path.
  5428. plan_buffer_line(x, y, z, e, feed_rate, extruder);
  5429. current_position[X_AXIS] = x;
  5430. current_position[Y_AXIS] = y;
  5431. current_position[Z_AXIS] = z;
  5432. current_position[E_AXIS] = e;
  5433. }
  5434. #endif // MESH_BED_LEVELING
  5435. void prepare_move()
  5436. {
  5437. clamp_to_software_endstops(destination);
  5438. previous_millis_cmd = millis();
  5439. // Do not use feedmultiply for E or Z only moves
  5440. if( (current_position[X_AXIS] == destination [X_AXIS]) && (current_position[Y_AXIS] == destination [Y_AXIS])) {
  5441. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  5442. }
  5443. else {
  5444. #ifdef MESH_BED_LEVELING
  5445. mesh_plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate*feedmultiply*(1./(60.f*100.f)), active_extruder);
  5446. #else
  5447. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate*feedmultiply*(1./(60.f*100.f)), active_extruder);
  5448. #endif
  5449. }
  5450. for(int8_t i=0; i < NUM_AXIS; i++) {
  5451. current_position[i] = destination[i];
  5452. }
  5453. }
  5454. void prepare_arc_move(char isclockwise) {
  5455. float r = hypot(offset[X_AXIS], offset[Y_AXIS]); // Compute arc radius for mc_arc
  5456. // Trace the arc
  5457. mc_arc(current_position, destination, offset, X_AXIS, Y_AXIS, Z_AXIS, feedrate*feedmultiply/60/100.0, r, isclockwise, active_extruder);
  5458. // As far as the parser is concerned, the position is now == target. In reality the
  5459. // motion control system might still be processing the action and the real tool position
  5460. // in any intermediate location.
  5461. for(int8_t i=0; i < NUM_AXIS; i++) {
  5462. current_position[i] = destination[i];
  5463. }
  5464. previous_millis_cmd = millis();
  5465. }
  5466. #if defined(CONTROLLERFAN_PIN) && CONTROLLERFAN_PIN > -1
  5467. #if defined(FAN_PIN)
  5468. #if CONTROLLERFAN_PIN == FAN_PIN
  5469. #error "You cannot set CONTROLLERFAN_PIN equal to FAN_PIN"
  5470. #endif
  5471. #endif
  5472. unsigned long lastMotor = 0; //Save the time for when a motor was turned on last
  5473. unsigned long lastMotorCheck = 0;
  5474. void controllerFan()
  5475. {
  5476. if ((millis() - lastMotorCheck) >= 2500) //Not a time critical function, so we only check every 2500ms
  5477. {
  5478. lastMotorCheck = millis();
  5479. if(!READ(X_ENABLE_PIN) || !READ(Y_ENABLE_PIN) || !READ(Z_ENABLE_PIN) || (soft_pwm_bed > 0)
  5480. #if EXTRUDERS > 2
  5481. || !READ(E2_ENABLE_PIN)
  5482. #endif
  5483. #if EXTRUDER > 1
  5484. #if defined(X2_ENABLE_PIN) && X2_ENABLE_PIN > -1
  5485. || !READ(X2_ENABLE_PIN)
  5486. #endif
  5487. || !READ(E1_ENABLE_PIN)
  5488. #endif
  5489. || !READ(E0_ENABLE_PIN)) //If any of the drivers are enabled...
  5490. {
  5491. lastMotor = millis(); //... set time to NOW so the fan will turn on
  5492. }
  5493. if ((millis() - lastMotor) >= (CONTROLLERFAN_SECS*1000UL) || lastMotor == 0) //If the last time any driver was enabled, is longer since than CONTROLLERSEC...
  5494. {
  5495. digitalWrite(CONTROLLERFAN_PIN, 0);
  5496. analogWrite(CONTROLLERFAN_PIN, 0);
  5497. }
  5498. else
  5499. {
  5500. // allows digital or PWM fan output to be used (see M42 handling)
  5501. digitalWrite(CONTROLLERFAN_PIN, CONTROLLERFAN_SPEED);
  5502. analogWrite(CONTROLLERFAN_PIN, CONTROLLERFAN_SPEED);
  5503. }
  5504. }
  5505. }
  5506. #endif
  5507. #ifdef TEMP_STAT_LEDS
  5508. static bool blue_led = false;
  5509. static bool red_led = false;
  5510. static uint32_t stat_update = 0;
  5511. void handle_status_leds(void) {
  5512. float max_temp = 0.0;
  5513. if(millis() > stat_update) {
  5514. stat_update += 500; // Update every 0.5s
  5515. for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) {
  5516. max_temp = max(max_temp, degHotend(cur_extruder));
  5517. max_temp = max(max_temp, degTargetHotend(cur_extruder));
  5518. }
  5519. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  5520. max_temp = max(max_temp, degTargetBed());
  5521. max_temp = max(max_temp, degBed());
  5522. #endif
  5523. if((max_temp > 55.0) && (red_led == false)) {
  5524. digitalWrite(STAT_LED_RED, 1);
  5525. digitalWrite(STAT_LED_BLUE, 0);
  5526. red_led = true;
  5527. blue_led = false;
  5528. }
  5529. if((max_temp < 54.0) && (blue_led == false)) {
  5530. digitalWrite(STAT_LED_RED, 0);
  5531. digitalWrite(STAT_LED_BLUE, 1);
  5532. red_led = false;
  5533. blue_led = true;
  5534. }
  5535. }
  5536. }
  5537. #endif
  5538. void manage_inactivity(bool ignore_stepper_queue/*=false*/) //default argument set in Marlin.h
  5539. {
  5540. if (fsensor_enabled && !fsensor_M600 && !moves_planned() && !IS_SD_PRINTING && !is_usb_printing && (lcd_commands_type != LCD_COMMAND_V2_CAL) && (current_temperature[0] > EXTRUDE_MINTEMP))
  5541. {
  5542. if (fsensor_autoload_enabled)
  5543. {
  5544. if (fsensor_check_autoload())
  5545. {
  5546. fsensor_autoload_check_stop();
  5547. enquecommand_front_P((PSTR("M701")));
  5548. }
  5549. }
  5550. else
  5551. fsensor_autoload_check_start();
  5552. }
  5553. else
  5554. if (fsensor_autoload_enabled)
  5555. fsensor_autoload_check_stop();
  5556. #if defined(KILL_PIN) && KILL_PIN > -1
  5557. static int killCount = 0; // make the inactivity button a bit less responsive
  5558. const int KILL_DELAY = 10000;
  5559. #endif
  5560. if(buflen < (BUFSIZE-1)){
  5561. get_command();
  5562. }
  5563. if( (millis() - previous_millis_cmd) > max_inactive_time )
  5564. if(max_inactive_time)
  5565. kill("", 4);
  5566. if(stepper_inactive_time) {
  5567. if( (millis() - previous_millis_cmd) > stepper_inactive_time )
  5568. {
  5569. if(blocks_queued() == false && ignore_stepper_queue == false) {
  5570. disable_x();
  5571. // SERIAL_ECHOLNPGM("manage_inactivity - disable Y");
  5572. disable_y();
  5573. disable_z();
  5574. disable_e0();
  5575. disable_e1();
  5576. disable_e2();
  5577. }
  5578. }
  5579. }
  5580. #ifdef CHDK //Check if pin should be set to LOW after M240 set it to HIGH
  5581. if (chdkActive && (millis() - chdkHigh > CHDK_DELAY))
  5582. {
  5583. chdkActive = false;
  5584. WRITE(CHDK, LOW);
  5585. }
  5586. #endif
  5587. #if defined(KILL_PIN) && KILL_PIN > -1
  5588. // Check if the kill button was pressed and wait just in case it was an accidental
  5589. // key kill key press
  5590. // -------------------------------------------------------------------------------
  5591. if( 0 == READ(KILL_PIN) )
  5592. {
  5593. killCount++;
  5594. }
  5595. else if (killCount > 0)
  5596. {
  5597. killCount--;
  5598. }
  5599. // Exceeded threshold and we can confirm that it was not accidental
  5600. // KILL the machine
  5601. // ----------------------------------------------------------------
  5602. if ( killCount >= KILL_DELAY)
  5603. {
  5604. kill("", 5);
  5605. }
  5606. #endif
  5607. #if defined(CONTROLLERFAN_PIN) && CONTROLLERFAN_PIN > -1
  5608. controllerFan(); //Check if fan should be turned on to cool stepper drivers down
  5609. #endif
  5610. #ifdef EXTRUDER_RUNOUT_PREVENT
  5611. if( (millis() - previous_millis_cmd) > EXTRUDER_RUNOUT_SECONDS*1000 )
  5612. if(degHotend(active_extruder)>EXTRUDER_RUNOUT_MINTEMP)
  5613. {
  5614. bool oldstatus=READ(E0_ENABLE_PIN);
  5615. enable_e0();
  5616. float oldepos=current_position[E_AXIS];
  5617. float oldedes=destination[E_AXIS];
  5618. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS],
  5619. destination[E_AXIS]+EXTRUDER_RUNOUT_EXTRUDE*EXTRUDER_RUNOUT_ESTEPS/axis_steps_per_unit[E_AXIS],
  5620. EXTRUDER_RUNOUT_SPEED/60.*EXTRUDER_RUNOUT_ESTEPS/axis_steps_per_unit[E_AXIS], active_extruder);
  5621. current_position[E_AXIS]=oldepos;
  5622. destination[E_AXIS]=oldedes;
  5623. plan_set_e_position(oldepos);
  5624. previous_millis_cmd=millis();
  5625. st_synchronize();
  5626. WRITE(E0_ENABLE_PIN,oldstatus);
  5627. }
  5628. #endif
  5629. #ifdef TEMP_STAT_LEDS
  5630. handle_status_leds();
  5631. #endif
  5632. check_axes_activity();
  5633. }
  5634. void kill(const char *full_screen_message, unsigned char id)
  5635. {
  5636. SERIAL_ECHOPGM("KILL: ");
  5637. MYSERIAL.println(int(id));
  5638. //return;
  5639. cli(); // Stop interrupts
  5640. disable_heater();
  5641. disable_x();
  5642. // SERIAL_ECHOLNPGM("kill - disable Y");
  5643. disable_y();
  5644. disable_z();
  5645. disable_e0();
  5646. disable_e1();
  5647. disable_e2();
  5648. #if defined(PS_ON_PIN) && PS_ON_PIN > -1
  5649. pinMode(PS_ON_PIN,INPUT);
  5650. #endif
  5651. SERIAL_ERROR_START;
  5652. SERIAL_ERRORLNRPGM(MSG_ERR_KILLED);
  5653. if (full_screen_message != NULL) {
  5654. SERIAL_ERRORLNRPGM(full_screen_message);
  5655. lcd_display_message_fullscreen_P(full_screen_message);
  5656. } else {
  5657. LCD_ALERTMESSAGERPGM(MSG_KILLED);
  5658. }
  5659. // FMC small patch to update the LCD before ending
  5660. sei(); // enable interrupts
  5661. for ( int i=5; i--; lcd_update())
  5662. {
  5663. delay(200);
  5664. }
  5665. cli(); // disable interrupts
  5666. suicide();
  5667. while(1)
  5668. {
  5669. wdt_reset();
  5670. /* Intentionally left empty */
  5671. } // Wait for reset
  5672. }
  5673. void Stop()
  5674. {
  5675. disable_heater();
  5676. if(Stopped == false) {
  5677. Stopped = true;
  5678. Stopped_gcode_LastN = gcode_LastN; // Save last g_code for restart
  5679. SERIAL_ERROR_START;
  5680. SERIAL_ERRORLNRPGM(MSG_ERR_STOPPED);
  5681. LCD_MESSAGERPGM(MSG_STOPPED);
  5682. }
  5683. }
  5684. bool IsStopped() { return Stopped; };
  5685. #ifdef FAST_PWM_FAN
  5686. void setPwmFrequency(uint8_t pin, int val)
  5687. {
  5688. val &= 0x07;
  5689. switch(digitalPinToTimer(pin))
  5690. {
  5691. #if defined(TCCR0A)
  5692. case TIMER0A:
  5693. case TIMER0B:
  5694. // TCCR0B &= ~(_BV(CS00) | _BV(CS01) | _BV(CS02));
  5695. // TCCR0B |= val;
  5696. break;
  5697. #endif
  5698. #if defined(TCCR1A)
  5699. case TIMER1A:
  5700. case TIMER1B:
  5701. // TCCR1B &= ~(_BV(CS10) | _BV(CS11) | _BV(CS12));
  5702. // TCCR1B |= val;
  5703. break;
  5704. #endif
  5705. #if defined(TCCR2)
  5706. case TIMER2:
  5707. case TIMER2:
  5708. TCCR2 &= ~(_BV(CS10) | _BV(CS11) | _BV(CS12));
  5709. TCCR2 |= val;
  5710. break;
  5711. #endif
  5712. #if defined(TCCR2A)
  5713. case TIMER2A:
  5714. case TIMER2B:
  5715. TCCR2B &= ~(_BV(CS20) | _BV(CS21) | _BV(CS22));
  5716. TCCR2B |= val;
  5717. break;
  5718. #endif
  5719. #if defined(TCCR3A)
  5720. case TIMER3A:
  5721. case TIMER3B:
  5722. case TIMER3C:
  5723. TCCR3B &= ~(_BV(CS30) | _BV(CS31) | _BV(CS32));
  5724. TCCR3B |= val;
  5725. break;
  5726. #endif
  5727. #if defined(TCCR4A)
  5728. case TIMER4A:
  5729. case TIMER4B:
  5730. case TIMER4C:
  5731. TCCR4B &= ~(_BV(CS40) | _BV(CS41) | _BV(CS42));
  5732. TCCR4B |= val;
  5733. break;
  5734. #endif
  5735. #if defined(TCCR5A)
  5736. case TIMER5A:
  5737. case TIMER5B:
  5738. case TIMER5C:
  5739. TCCR5B &= ~(_BV(CS50) | _BV(CS51) | _BV(CS52));
  5740. TCCR5B |= val;
  5741. break;
  5742. #endif
  5743. }
  5744. }
  5745. #endif //FAST_PWM_FAN
  5746. bool setTargetedHotend(int code){
  5747. tmp_extruder = active_extruder;
  5748. if(code_seen('T')) {
  5749. tmp_extruder = code_value();
  5750. if(tmp_extruder >= EXTRUDERS) {
  5751. SERIAL_ECHO_START;
  5752. switch(code){
  5753. case 104:
  5754. SERIAL_ECHORPGM(MSG_M104_INVALID_EXTRUDER);
  5755. break;
  5756. case 105:
  5757. SERIAL_ECHO(MSG_M105_INVALID_EXTRUDER);
  5758. break;
  5759. case 109:
  5760. SERIAL_ECHO(MSG_M109_INVALID_EXTRUDER);
  5761. break;
  5762. case 218:
  5763. SERIAL_ECHO(MSG_M218_INVALID_EXTRUDER);
  5764. break;
  5765. case 221:
  5766. SERIAL_ECHO(MSG_M221_INVALID_EXTRUDER);
  5767. break;
  5768. }
  5769. SERIAL_PROTOCOLLN((int)tmp_extruder);
  5770. return true;
  5771. }
  5772. }
  5773. return false;
  5774. }
  5775. void save_statistics(unsigned long _total_filament_used, unsigned long _total_print_time) //_total_filament_used unit: mm/100; print time in s
  5776. {
  5777. if (eeprom_read_byte((uint8_t *)EEPROM_TOTALTIME) == 255 && eeprom_read_byte((uint8_t *)EEPROM_TOTALTIME + 1) == 255 && eeprom_read_byte((uint8_t *)EEPROM_TOTALTIME + 2) == 255 && eeprom_read_byte((uint8_t *)EEPROM_TOTALTIME + 3) == 255)
  5778. {
  5779. eeprom_update_dword((uint32_t *)EEPROM_TOTALTIME, 0);
  5780. eeprom_update_dword((uint32_t *)EEPROM_FILAMENTUSED, 0);
  5781. }
  5782. unsigned long _previous_filament = eeprom_read_dword((uint32_t *)EEPROM_FILAMENTUSED); //_previous_filament unit: cm
  5783. unsigned long _previous_time = eeprom_read_dword((uint32_t *)EEPROM_TOTALTIME); //_previous_time unit: min
  5784. eeprom_update_dword((uint32_t *)EEPROM_TOTALTIME, _previous_time + (_total_print_time/60)); //EEPROM_TOTALTIME unit: min
  5785. eeprom_update_dword((uint32_t *)EEPROM_FILAMENTUSED, _previous_filament + (_total_filament_used / 1000));
  5786. total_filament_used = 0;
  5787. }
  5788. float calculate_volumetric_multiplier(float diameter) {
  5789. float area = .0;
  5790. float radius = .0;
  5791. radius = diameter * .5;
  5792. if (! volumetric_enabled || radius == 0) {
  5793. area = 1;
  5794. }
  5795. else {
  5796. area = M_PI * pow(radius, 2);
  5797. }
  5798. return 1.0 / area;
  5799. }
  5800. void calculate_volumetric_multipliers() {
  5801. volumetric_multiplier[0] = calculate_volumetric_multiplier(filament_size[0]);
  5802. #if EXTRUDERS > 1
  5803. volumetric_multiplier[1] = calculate_volumetric_multiplier(filament_size[1]);
  5804. #if EXTRUDERS > 2
  5805. volumetric_multiplier[2] = calculate_volumetric_multiplier(filament_size[2]);
  5806. #endif
  5807. #endif
  5808. }
  5809. void delay_keep_alive(unsigned int ms)
  5810. {
  5811. for (;;) {
  5812. manage_heater();
  5813. // Manage inactivity, but don't disable steppers on timeout.
  5814. manage_inactivity(true);
  5815. lcd_update();
  5816. if (ms == 0)
  5817. break;
  5818. else if (ms >= 50) {
  5819. delay(50);
  5820. ms -= 50;
  5821. } else {
  5822. delay(ms);
  5823. ms = 0;
  5824. }
  5825. }
  5826. }
  5827. void wait_for_heater(long codenum) {
  5828. #ifdef TEMP_RESIDENCY_TIME
  5829. long residencyStart;
  5830. residencyStart = -1;
  5831. /* continue to loop until we have reached the target temp
  5832. _and_ until TEMP_RESIDENCY_TIME hasn't passed since we reached it */
  5833. while ((!cancel_heatup) && ((residencyStart == -1) ||
  5834. (residencyStart >= 0 && (((unsigned int)(millis() - residencyStart)) < (TEMP_RESIDENCY_TIME * 1000UL))))) {
  5835. #else
  5836. while (target_direction ? (isHeatingHotend(tmp_extruder)) : (isCoolingHotend(tmp_extruder) && (CooldownNoWait == false))) {
  5837. #endif //TEMP_RESIDENCY_TIME
  5838. if ((millis() - codenum) > 1000UL)
  5839. { //Print Temp Reading and remaining time every 1 second while heating up/cooling down
  5840. if (!farm_mode) {
  5841. SERIAL_PROTOCOLPGM("T:");
  5842. SERIAL_PROTOCOL_F(degHotend(tmp_extruder), 1);
  5843. SERIAL_PROTOCOLPGM(" E:");
  5844. SERIAL_PROTOCOL((int)tmp_extruder);
  5845. #ifdef TEMP_RESIDENCY_TIME
  5846. SERIAL_PROTOCOLPGM(" W:");
  5847. if (residencyStart > -1)
  5848. {
  5849. codenum = ((TEMP_RESIDENCY_TIME * 1000UL) - (millis() - residencyStart)) / 1000UL;
  5850. SERIAL_PROTOCOLLN(codenum);
  5851. }
  5852. else
  5853. {
  5854. SERIAL_PROTOCOLLN("?");
  5855. }
  5856. }
  5857. #else
  5858. SERIAL_PROTOCOLLN("");
  5859. #endif
  5860. codenum = millis();
  5861. }
  5862. manage_heater();
  5863. manage_inactivity();
  5864. lcd_update();
  5865. #ifdef TEMP_RESIDENCY_TIME
  5866. /* start/restart the TEMP_RESIDENCY_TIME timer whenever we reach target temp for the first time
  5867. or when current temp falls outside the hysteresis after target temp was reached */
  5868. if ((residencyStart == -1 && target_direction && (degHotend(tmp_extruder) >= (degTargetHotend(tmp_extruder) - TEMP_WINDOW))) ||
  5869. (residencyStart == -1 && !target_direction && (degHotend(tmp_extruder) <= (degTargetHotend(tmp_extruder) + TEMP_WINDOW))) ||
  5870. (residencyStart > -1 && labs(degHotend(tmp_extruder) - degTargetHotend(tmp_extruder)) > TEMP_HYSTERESIS))
  5871. {
  5872. residencyStart = millis();
  5873. }
  5874. #endif //TEMP_RESIDENCY_TIME
  5875. }
  5876. }
  5877. void check_babystep() {
  5878. int babystep_z;
  5879. EEPROM_read_B(EEPROM_BABYSTEP_Z, &babystep_z);
  5880. if ((babystep_z < Z_BABYSTEP_MIN) || (babystep_z > Z_BABYSTEP_MAX)) {
  5881. babystep_z = 0; //if babystep value is out of min max range, set it to 0
  5882. SERIAL_ECHOLNPGM("Z live adjust out of range. Setting to 0");
  5883. EEPROM_save_B(EEPROM_BABYSTEP_Z, &babystep_z);
  5884. lcd_show_fullscreen_message_and_wait_P(PSTR("Z live adjust out of range. Setting to 0. Click to continue."));
  5885. lcd_update_enable(true);
  5886. }
  5887. }
  5888. #ifdef DIS
  5889. void d_setup()
  5890. {
  5891. pinMode(D_DATACLOCK, INPUT_PULLUP);
  5892. pinMode(D_DATA, INPUT_PULLUP);
  5893. pinMode(D_REQUIRE, OUTPUT);
  5894. digitalWrite(D_REQUIRE, HIGH);
  5895. }
  5896. float d_ReadData()
  5897. {
  5898. int digit[13];
  5899. String mergeOutput;
  5900. float output;
  5901. digitalWrite(D_REQUIRE, HIGH);
  5902. for (int i = 0; i<13; i++)
  5903. {
  5904. for (int j = 0; j < 4; j++)
  5905. {
  5906. while (digitalRead(D_DATACLOCK) == LOW) {}
  5907. while (digitalRead(D_DATACLOCK) == HIGH) {}
  5908. bitWrite(digit[i], j, digitalRead(D_DATA));
  5909. }
  5910. }
  5911. digitalWrite(D_REQUIRE, LOW);
  5912. mergeOutput = "";
  5913. output = 0;
  5914. for (int r = 5; r <= 10; r++) //Merge digits
  5915. {
  5916. mergeOutput += digit[r];
  5917. }
  5918. output = mergeOutput.toFloat();
  5919. if (digit[4] == 8) //Handle sign
  5920. {
  5921. output *= -1;
  5922. }
  5923. for (int i = digit[11]; i > 0; i--) //Handle floating point
  5924. {
  5925. output /= 10;
  5926. }
  5927. return output;
  5928. }
  5929. void bed_analysis(float x_dimension, float y_dimension, int x_points_num, int y_points_num, float shift_x, float shift_y) {
  5930. int t1 = 0;
  5931. int t_delay = 0;
  5932. int digit[13];
  5933. int m;
  5934. char str[3];
  5935. //String mergeOutput;
  5936. char mergeOutput[15];
  5937. float output;
  5938. int mesh_point = 0; //index number of calibration point
  5939. float bed_zero_ref_x = (-22.f + X_PROBE_OFFSET_FROM_EXTRUDER); //shift between zero point on bed and target and between probe and nozzle
  5940. float bed_zero_ref_y = (-0.6f + Y_PROBE_OFFSET_FROM_EXTRUDER);
  5941. float mesh_home_z_search = 4;
  5942. float row[x_points_num];
  5943. int ix = 0;
  5944. int iy = 0;
  5945. char* filename_wldsd = "wldsd.txt";
  5946. char data_wldsd[70];
  5947. char numb_wldsd[10];
  5948. d_setup();
  5949. if (!(axis_known_position[X_AXIS] && axis_known_position[Y_AXIS] && axis_known_position[Z_AXIS])) {
  5950. // We don't know where we are! HOME!
  5951. // Push the commands to the front of the message queue in the reverse order!
  5952. // There shall be always enough space reserved for these commands.
  5953. repeatcommand_front(); // repeat G80 with all its parameters
  5954. enquecommand_front_P((PSTR("G28 W0")));
  5955. enquecommand_front_P((PSTR("G1 Z5")));
  5956. return;
  5957. }
  5958. bool custom_message_old = custom_message;
  5959. unsigned int custom_message_type_old = custom_message_type;
  5960. unsigned int custom_message_state_old = custom_message_state;
  5961. custom_message = true;
  5962. custom_message_type = 1;
  5963. custom_message_state = (x_points_num * y_points_num) + 10;
  5964. lcd_update(1);
  5965. mbl.reset();
  5966. babystep_undo();
  5967. card.openFile(filename_wldsd, false);
  5968. current_position[Z_AXIS] = mesh_home_z_search;
  5969. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[Z_AXIS] / 60, active_extruder);
  5970. int XY_AXIS_FEEDRATE = homing_feedrate[X_AXIS] / 20;
  5971. int Z_PROBE_FEEDRATE = homing_feedrate[Z_AXIS] / 60;
  5972. int Z_LIFT_FEEDRATE = homing_feedrate[Z_AXIS] / 40;
  5973. setup_for_endstop_move(false);
  5974. SERIAL_PROTOCOLPGM("Num X,Y: ");
  5975. SERIAL_PROTOCOL(x_points_num);
  5976. SERIAL_PROTOCOLPGM(",");
  5977. SERIAL_PROTOCOL(y_points_num);
  5978. SERIAL_PROTOCOLPGM("\nZ search height: ");
  5979. SERIAL_PROTOCOL(mesh_home_z_search);
  5980. SERIAL_PROTOCOLPGM("\nDimension X,Y: ");
  5981. SERIAL_PROTOCOL(x_dimension);
  5982. SERIAL_PROTOCOLPGM(",");
  5983. SERIAL_PROTOCOL(y_dimension);
  5984. SERIAL_PROTOCOLLNPGM("\nMeasured points:");
  5985. while (mesh_point != x_points_num * y_points_num) {
  5986. ix = mesh_point % x_points_num; // from 0 to MESH_NUM_X_POINTS - 1
  5987. iy = mesh_point / x_points_num;
  5988. if (iy & 1) ix = (x_points_num - 1) - ix; // Zig zag
  5989. float z0 = 0.f;
  5990. current_position[Z_AXIS] = mesh_home_z_search;
  5991. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], Z_LIFT_FEEDRATE, active_extruder);
  5992. st_synchronize();
  5993. current_position[X_AXIS] = 13.f + ix * (x_dimension / (x_points_num - 1)) - bed_zero_ref_x + shift_x;
  5994. current_position[Y_AXIS] = 6.4f + iy * (y_dimension / (y_points_num - 1)) - bed_zero_ref_y + shift_y;
  5995. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], XY_AXIS_FEEDRATE, active_extruder);
  5996. st_synchronize();
  5997. if (!find_bed_induction_sensor_point_z(-10.f)) { //if we have data from z calibration max allowed difference is 1mm for each point, if we dont have data max difference is 10mm from initial point
  5998. break;
  5999. card.closefile();
  6000. }
  6001. //memset(numb_wldsd, 0, sizeof(numb_wldsd));
  6002. //dtostrf(d_ReadData(), 8, 5, numb_wldsd);
  6003. //strcat(data_wldsd, numb_wldsd);
  6004. //MYSERIAL.println(data_wldsd);
  6005. //delay(1000);
  6006. //delay(3000);
  6007. //t1 = millis();
  6008. //while (digitalRead(D_DATACLOCK) == LOW) {}
  6009. //while (digitalRead(D_DATACLOCK) == HIGH) {}
  6010. memset(digit, 0, sizeof(digit));
  6011. //cli();
  6012. digitalWrite(D_REQUIRE, LOW);
  6013. for (int i = 0; i<13; i++)
  6014. {
  6015. //t1 = millis();
  6016. for (int j = 0; j < 4; j++)
  6017. {
  6018. while (digitalRead(D_DATACLOCK) == LOW) {}
  6019. while (digitalRead(D_DATACLOCK) == HIGH) {}
  6020. bitWrite(digit[i], j, digitalRead(D_DATA));
  6021. }
  6022. //t_delay = (millis() - t1);
  6023. //SERIAL_PROTOCOLPGM(" ");
  6024. //SERIAL_PROTOCOL_F(t_delay, 5);
  6025. //SERIAL_PROTOCOLPGM(" ");
  6026. }
  6027. //sei();
  6028. digitalWrite(D_REQUIRE, HIGH);
  6029. mergeOutput[0] = '\0';
  6030. output = 0;
  6031. for (int r = 5; r <= 10; r++) //Merge digits
  6032. {
  6033. sprintf(str, "%d", digit[r]);
  6034. strcat(mergeOutput, str);
  6035. }
  6036. output = atof(mergeOutput);
  6037. if (digit[4] == 8) //Handle sign
  6038. {
  6039. output *= -1;
  6040. }
  6041. for (int i = digit[11]; i > 0; i--) //Handle floating point
  6042. {
  6043. output *= 0.1;
  6044. }
  6045. //output = d_ReadData();
  6046. //row[ix] = current_position[Z_AXIS];
  6047. memset(data_wldsd, 0, sizeof(data_wldsd));
  6048. for (int i = 0; i <3; i++) {
  6049. memset(numb_wldsd, 0, sizeof(numb_wldsd));
  6050. dtostrf(current_position[i], 8, 5, numb_wldsd);
  6051. strcat(data_wldsd, numb_wldsd);
  6052. strcat(data_wldsd, ";");
  6053. }
  6054. memset(numb_wldsd, 0, sizeof(numb_wldsd));
  6055. dtostrf(output, 8, 5, numb_wldsd);
  6056. strcat(data_wldsd, numb_wldsd);
  6057. //strcat(data_wldsd, ";");
  6058. card.write_command(data_wldsd);
  6059. //row[ix] = d_ReadData();
  6060. row[ix] = output; // current_position[Z_AXIS];
  6061. if (iy % 2 == 1 ? ix == 0 : ix == x_points_num - 1) {
  6062. for (int i = 0; i < x_points_num; i++) {
  6063. SERIAL_PROTOCOLPGM(" ");
  6064. SERIAL_PROTOCOL_F(row[i], 5);
  6065. }
  6066. SERIAL_PROTOCOLPGM("\n");
  6067. }
  6068. custom_message_state--;
  6069. mesh_point++;
  6070. lcd_update(1);
  6071. }
  6072. card.closefile();
  6073. }
  6074. #endif
  6075. void temp_compensation_start() {
  6076. custom_message = true;
  6077. custom_message_type = 5;
  6078. custom_message_state = PINDA_HEAT_T + 1;
  6079. lcd_update(2);
  6080. if (degHotend(active_extruder) > EXTRUDE_MINTEMP) {
  6081. current_position[E_AXIS] -= DEFAULT_RETRACTION;
  6082. }
  6083. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400, active_extruder);
  6084. current_position[X_AXIS] = PINDA_PREHEAT_X;
  6085. current_position[Y_AXIS] = PINDA_PREHEAT_Y;
  6086. current_position[Z_AXIS] = PINDA_PREHEAT_Z;
  6087. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  6088. st_synchronize();
  6089. while (fabs(degBed() - target_temperature_bed) > 1) delay_keep_alive(1000);
  6090. for (int i = 0; i < PINDA_HEAT_T; i++) {
  6091. delay_keep_alive(1000);
  6092. custom_message_state = PINDA_HEAT_T - i;
  6093. if (custom_message_state == 99 || custom_message_state == 9) lcd_update(2); //force whole display redraw if number of digits changed
  6094. else lcd_update(1);
  6095. }
  6096. custom_message_type = 0;
  6097. custom_message_state = 0;
  6098. custom_message = false;
  6099. }
  6100. void temp_compensation_apply() {
  6101. int i_add;
  6102. int compensation_value;
  6103. int z_shift = 0;
  6104. float z_shift_mm;
  6105. if (calibration_status() == CALIBRATION_STATUS_CALIBRATED) {
  6106. if (target_temperature_bed % 10 == 0 && target_temperature_bed >= 60 && target_temperature_bed <= 100) {
  6107. i_add = (target_temperature_bed - 60) / 10;
  6108. EEPROM_read_B(EEPROM_PROBE_TEMP_SHIFT + i_add * 2, &z_shift);
  6109. z_shift_mm = z_shift / axis_steps_per_unit[Z_AXIS];
  6110. }else {
  6111. //interpolation
  6112. z_shift_mm = temp_comp_interpolation(target_temperature_bed) / axis_steps_per_unit[Z_AXIS];
  6113. }
  6114. SERIAL_PROTOCOLPGM("\n");
  6115. SERIAL_PROTOCOLPGM("Z shift applied:");
  6116. MYSERIAL.print(z_shift_mm);
  6117. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS] - z_shift_mm, current_position[E_AXIS], homing_feedrate[Z_AXIS] / 40, active_extruder);
  6118. st_synchronize();
  6119. plan_set_z_position(current_position[Z_AXIS]);
  6120. }
  6121. else {
  6122. //we have no temp compensation data
  6123. }
  6124. }
  6125. float temp_comp_interpolation(float inp_temperature) {
  6126. //cubic spline interpolation
  6127. int n, i, j, k;
  6128. float h[10], a, b, c, d, sum, s[10] = { 0 }, x[10], F[10], f[10], m[10][10] = { 0 }, temp;
  6129. int shift[10];
  6130. int temp_C[10];
  6131. n = 6; //number of measured points
  6132. shift[0] = 0;
  6133. for (i = 0; i < n; i++) {
  6134. if (i>0) EEPROM_read_B(EEPROM_PROBE_TEMP_SHIFT + (i-1) * 2, &shift[i]); //read shift in steps from EEPROM
  6135. temp_C[i] = 50 + i * 10; //temperature in C
  6136. #ifdef PINDA_THERMISTOR
  6137. temp_C[i] = 35 + i * 5; //temperature in C
  6138. #else
  6139. temp_C[i] = 50 + i * 10; //temperature in C
  6140. #endif
  6141. x[i] = (float)temp_C[i];
  6142. f[i] = (float)shift[i];
  6143. }
  6144. if (inp_temperature < x[0]) return 0;
  6145. for (i = n - 1; i>0; i--) {
  6146. F[i] = (f[i] - f[i - 1]) / (x[i] - x[i - 1]);
  6147. h[i - 1] = x[i] - x[i - 1];
  6148. }
  6149. //*********** formation of h, s , f matrix **************
  6150. for (i = 1; i<n - 1; i++) {
  6151. m[i][i] = 2 * (h[i - 1] + h[i]);
  6152. if (i != 1) {
  6153. m[i][i - 1] = h[i - 1];
  6154. m[i - 1][i] = h[i - 1];
  6155. }
  6156. m[i][n - 1] = 6 * (F[i + 1] - F[i]);
  6157. }
  6158. //*********** forward elimination **************
  6159. for (i = 1; i<n - 2; i++) {
  6160. temp = (m[i + 1][i] / m[i][i]);
  6161. for (j = 1; j <= n - 1; j++)
  6162. m[i + 1][j] -= temp*m[i][j];
  6163. }
  6164. //*********** backward substitution *********
  6165. for (i = n - 2; i>0; i--) {
  6166. sum = 0;
  6167. for (j = i; j <= n - 2; j++)
  6168. sum += m[i][j] * s[j];
  6169. s[i] = (m[i][n - 1] - sum) / m[i][i];
  6170. }
  6171. for (i = 0; i<n - 1; i++)
  6172. if ((x[i] <= inp_temperature && inp_temperature <= x[i + 1]) || (i == n-2 && inp_temperature > x[i + 1])) {
  6173. a = (s[i + 1] - s[i]) / (6 * h[i]);
  6174. b = s[i] / 2;
  6175. c = (f[i + 1] - f[i]) / h[i] - (2 * h[i] * s[i] + s[i + 1] * h[i]) / 6;
  6176. d = f[i];
  6177. sum = a*pow((inp_temperature - x[i]), 3) + b*pow((inp_temperature - x[i]), 2) + c*(inp_temperature - x[i]) + d;
  6178. }
  6179. return sum;
  6180. }
  6181. #ifdef PINDA_THERMISTOR
  6182. float temp_compensation_pinda_thermistor_offset(float temperature_pinda)
  6183. {
  6184. if (!temp_cal_active) return 0;
  6185. if (!calibration_status_pinda()) return 0;
  6186. return temp_comp_interpolation(temperature_pinda) / axis_steps_per_unit[Z_AXIS];
  6187. }
  6188. #endif //PINDA_THERMISTOR
  6189. void long_pause() //long pause print
  6190. {
  6191. st_synchronize();
  6192. //save currently set parameters to global variables
  6193. saved_feedmultiply = feedmultiply;
  6194. HotendTempBckp = degTargetHotend(active_extruder);
  6195. fanSpeedBckp = fanSpeed;
  6196. start_pause_print = millis();
  6197. //save position
  6198. pause_lastpos[X_AXIS] = current_position[X_AXIS];
  6199. pause_lastpos[Y_AXIS] = current_position[Y_AXIS];
  6200. pause_lastpos[Z_AXIS] = current_position[Z_AXIS];
  6201. pause_lastpos[E_AXIS] = current_position[E_AXIS];
  6202. //retract
  6203. current_position[E_AXIS] -= DEFAULT_RETRACTION;
  6204. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400, active_extruder);
  6205. //lift z
  6206. current_position[Z_AXIS] += Z_PAUSE_LIFT;
  6207. if (current_position[Z_AXIS] > Z_MAX_POS) current_position[Z_AXIS] = Z_MAX_POS;
  6208. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 15, active_extruder);
  6209. //set nozzle target temperature to 0
  6210. setTargetHotend(0, 0);
  6211. setTargetHotend(0, 1);
  6212. setTargetHotend(0, 2);
  6213. //Move XY to side
  6214. current_position[X_AXIS] = X_PAUSE_POS;
  6215. current_position[Y_AXIS] = Y_PAUSE_POS;
  6216. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 50, active_extruder);
  6217. // Turn off the print fan
  6218. fanSpeed = 0;
  6219. st_synchronize();
  6220. }
  6221. void serialecho_temperatures() {
  6222. float tt = degHotend(active_extruder);
  6223. SERIAL_PROTOCOLPGM("T:");
  6224. SERIAL_PROTOCOL(tt);
  6225. SERIAL_PROTOCOLPGM(" E:");
  6226. SERIAL_PROTOCOL((int)active_extruder);
  6227. SERIAL_PROTOCOLPGM(" B:");
  6228. SERIAL_PROTOCOL_F(degBed(), 1);
  6229. SERIAL_PROTOCOLLN("");
  6230. }
  6231. extern uint32_t sdpos_atomic;
  6232. void uvlo_()
  6233. {
  6234. unsigned long time_start = millis();
  6235. bool sd_print = card.sdprinting;
  6236. // Conserve power as soon as possible.
  6237. disable_x();
  6238. disable_y();
  6239. tmc2130_set_current_h(Z_AXIS, 12);
  6240. tmc2130_set_current_r(Z_AXIS, 12);
  6241. tmc2130_set_current_h(E_AXIS, 20);
  6242. tmc2130_set_current_r(E_AXIS, 20);
  6243. // Indicate that the interrupt has been triggered.
  6244. SERIAL_ECHOLNPGM("UVLO");
  6245. // Read out the current Z motor microstep counter. This will be later used
  6246. // for reaching the zero full step before powering off.
  6247. uint16_t z_microsteps = tmc2130_rd_MSCNT(Z_TMC2130_CS);
  6248. // Calculate the file position, from which to resume this print.
  6249. long sd_position = sdpos_atomic; //atomic sd position of last command added in queue
  6250. {
  6251. uint16_t sdlen_planner = planner_calc_sd_length(); //length of sd commands in planner
  6252. sd_position -= sdlen_planner;
  6253. uint16_t sdlen_cmdqueue = cmdqueue_calc_sd_length(); //length of sd commands in cmdqueue
  6254. sd_position -= sdlen_cmdqueue;
  6255. if (sd_position < 0) sd_position = 0;
  6256. }
  6257. // Backup the feedrate in mm/min.
  6258. int feedrate_bckp = blocks_queued() ? (block_buffer[block_buffer_tail].nominal_speed * 60.f) : feedrate;
  6259. // After this call, the planner queue is emptied and the current_position is set to a current logical coordinate.
  6260. // The logical coordinate will likely differ from the machine coordinate if the skew calibration and mesh bed leveling
  6261. // are in action.
  6262. planner_abort_hard();
  6263. // Store the current extruder position.
  6264. eeprom_update_float((float*)(EEPROM_UVLO_CURRENT_POSITION_E), st_get_position_mm(E_AXIS));
  6265. eeprom_update_byte((uint8_t*)EEPROM_UVLO_E_ABS, axis_relative_modes[3]?0:1);
  6266. // Clean the input command queue.
  6267. cmdqueue_reset();
  6268. card.sdprinting = false;
  6269. // card.closefile();
  6270. // Enable stepper driver interrupt to move Z axis.
  6271. // This should be fine as the planner and command queues are empty and the SD card printing is disabled.
  6272. //FIXME one may want to disable serial lines at this point of time to avoid interfering with the command queue,
  6273. // though it should not happen that the command queue is touched as the plan_buffer_line always succeed without blocking.
  6274. sei();
  6275. plan_buffer_line(
  6276. current_position[X_AXIS],
  6277. current_position[Y_AXIS],
  6278. current_position[Z_AXIS],
  6279. current_position[E_AXIS] - DEFAULT_RETRACTION,
  6280. 400, active_extruder);
  6281. plan_buffer_line(
  6282. current_position[X_AXIS],
  6283. current_position[Y_AXIS],
  6284. current_position[Z_AXIS] + UVLO_Z_AXIS_SHIFT + float((1024 - z_microsteps + 7) >> 4) / axis_steps_per_unit[Z_AXIS],
  6285. current_position[E_AXIS] - DEFAULT_RETRACTION,
  6286. 40, active_extruder);
  6287. // Move Z up to the next 0th full step.
  6288. // Write the file position.
  6289. eeprom_update_dword((uint32_t*)(EEPROM_FILE_POSITION), sd_position);
  6290. // Store the mesh bed leveling offsets. This is 2*9=18 bytes, which takes 18*3.4us=52us in worst case.
  6291. for (int8_t mesh_point = 0; mesh_point < 9; ++ mesh_point) {
  6292. uint8_t ix = mesh_point % MESH_MEAS_NUM_X_POINTS; // from 0 to MESH_NUM_X_POINTS - 1
  6293. uint8_t iy = mesh_point / MESH_MEAS_NUM_X_POINTS;
  6294. // Scale the z value to 1u resolution.
  6295. int16_t v = mbl.active ? int16_t(floor(mbl.z_values[iy*3][ix*3] * 1000.f + 0.5f)) : 0;
  6296. eeprom_update_word((uint16_t*)(EEPROM_UVLO_MESH_BED_LEVELING+2*mesh_point), *reinterpret_cast<uint16_t*>(&v));
  6297. }
  6298. // Read out the current Z motor microstep counter. This will be later used
  6299. // for reaching the zero full step before powering off.
  6300. eeprom_update_word((uint16_t*)(EEPROM_UVLO_Z_MICROSTEPS), z_microsteps);
  6301. // Store the current position.
  6302. eeprom_update_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 0), current_position[X_AXIS]);
  6303. eeprom_update_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 4), current_position[Y_AXIS]);
  6304. eeprom_update_float((float*)(EEPROM_UVLO_CURRENT_POSITION_Z), current_position[Z_AXIS]);
  6305. // Store the current feed rate, temperatures and fan speed.
  6306. EEPROM_save_B(EEPROM_UVLO_FEEDRATE, &feedrate_bckp);
  6307. eeprom_update_byte((uint8_t*)EEPROM_UVLO_TARGET_HOTEND, target_temperature[active_extruder]);
  6308. eeprom_update_byte((uint8_t*)EEPROM_UVLO_TARGET_BED, target_temperature_bed);
  6309. eeprom_update_byte((uint8_t*)EEPROM_UVLO_FAN_SPEED, fanSpeed);
  6310. // Finaly store the "power outage" flag.
  6311. if(sd_print) eeprom_update_byte((uint8_t*)EEPROM_UVLO, 1);
  6312. st_synchronize();
  6313. SERIAL_ECHOPGM("stps");
  6314. MYSERIAL.println(tmc2130_rd_MSCNT(Z_TMC2130_CS));
  6315. #if 0
  6316. // Move the print head to the side of the print until all the power stored in the power supply capacitors is depleted.
  6317. current_position[X_AXIS] = (current_position[X_AXIS] < 0.5f * (X_MIN_POS + X_MAX_POS)) ? X_MIN_POS : X_MAX_POS;
  6318. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 500, active_extruder);
  6319. st_synchronize();
  6320. #endif
  6321. disable_z();
  6322. // Increment power failure counter
  6323. uint8_t power_count = eeprom_read_byte((uint8_t*)EEPROM_POWER_COUNT);
  6324. power_count++;
  6325. eeprom_update_byte((uint8_t*)EEPROM_POWER_COUNT, power_count);
  6326. SERIAL_ECHOLNPGM("UVLO - end");
  6327. MYSERIAL.println(millis() - time_start);
  6328. cli();
  6329. while(1);
  6330. }
  6331. void setup_fan_interrupt() {
  6332. //INT7
  6333. DDRE &= ~(1 << 7); //input pin
  6334. PORTE &= ~(1 << 7); //no internal pull-up
  6335. //start with sensing rising edge
  6336. EICRB &= ~(1 << 6);
  6337. EICRB |= (1 << 7);
  6338. //enable INT7 interrupt
  6339. EIMSK |= (1 << 7);
  6340. }
  6341. ISR(INT7_vect) {
  6342. //measuring speed now works for fanSpeed > 18 (approximately), which is sufficient because MIN_PRINT_FAN_SPEED is higher
  6343. if (fanSpeed < MIN_PRINT_FAN_SPEED) return;
  6344. if ((1 << 6) & EICRB) { //interrupt was triggered by rising edge
  6345. t_fan_rising_edge = millis();
  6346. }
  6347. else { //interrupt was triggered by falling edge
  6348. if ((millis() - t_fan_rising_edge) >= FAN_PULSE_WIDTH_LIMIT) {//this pulse was from sensor and not from pwm
  6349. fan_edge_counter[1] += 2; //we are currently counting all edges so lets count two edges for one pulse
  6350. }
  6351. }
  6352. EICRB ^= (1 << 6); //change edge
  6353. }
  6354. void setup_uvlo_interrupt() {
  6355. DDRE &= ~(1 << 4); //input pin
  6356. PORTE &= ~(1 << 4); //no internal pull-up
  6357. //sensing falling edge
  6358. EICRB |= (1 << 0);
  6359. EICRB &= ~(1 << 1);
  6360. //enable INT4 interrupt
  6361. EIMSK |= (1 << 4);
  6362. }
  6363. ISR(INT4_vect) {
  6364. EIMSK &= ~(1 << 4); //disable INT4 interrupt to make sure that this code will be executed just once
  6365. SERIAL_ECHOLNPGM("INT4");
  6366. if (IS_SD_PRINTING) uvlo_();
  6367. }
  6368. void recover_print(uint8_t automatic) {
  6369. char cmd[30];
  6370. lcd_update_enable(true);
  6371. lcd_update(2);
  6372. lcd_setstatuspgm(MSG_RECOVERING_PRINT);
  6373. recover_machine_state_after_power_panic();
  6374. // Set the target bed and nozzle temperatures.
  6375. sprintf_P(cmd, PSTR("M104 S%d"), target_temperature[active_extruder]);
  6376. enquecommand(cmd);
  6377. sprintf_P(cmd, PSTR("M140 S%d"), target_temperature_bed);
  6378. enquecommand(cmd);
  6379. // Lift the print head, so one may remove the excess priming material.
  6380. if (current_position[Z_AXIS] < 25)
  6381. enquecommand_P(PSTR("G1 Z25 F800"));
  6382. // Home X and Y axes. Homing just X and Y shall not touch the babystep and the world2machine transformation status.
  6383. enquecommand_P(PSTR("G28 X Y"));
  6384. // Set the target bed and nozzle temperatures and wait.
  6385. sprintf_P(cmd, PSTR("M109 S%d"), target_temperature[active_extruder]);
  6386. enquecommand(cmd);
  6387. sprintf_P(cmd, PSTR("M190 S%d"), target_temperature_bed);
  6388. enquecommand(cmd);
  6389. enquecommand_P(PSTR("M83")); //E axis relative mode
  6390. //enquecommand_P(PSTR("G1 E5 F120")); //Extrude some filament to stabilize pessure
  6391. // If not automatically recoreverd (long power loss), extrude extra filament to stabilize
  6392. if(automatic == 0){
  6393. enquecommand_P(PSTR("G1 E5 F120")); //Extrude some filament to stabilize pessure
  6394. }
  6395. enquecommand_P(PSTR("G1 E" STRINGIFY(-DEFAULT_RETRACTION)" F480"));
  6396. // Mark the power panic status as inactive.
  6397. eeprom_update_byte((uint8_t*)EEPROM_UVLO, 0);
  6398. /*while ((abs(degHotend(0)- target_temperature[0])>5) || (abs(degBed() -target_temperature_bed)>3)) { //wait for heater and bed to reach target temp
  6399. delay_keep_alive(1000);
  6400. }*/
  6401. SERIAL_ECHOPGM("After waiting for temp:");
  6402. SERIAL_ECHOPGM("Current position X_AXIS:");
  6403. MYSERIAL.println(current_position[X_AXIS]);
  6404. SERIAL_ECHOPGM("Current position Y_AXIS:");
  6405. MYSERIAL.println(current_position[Y_AXIS]);
  6406. // Restart the print.
  6407. restore_print_from_eeprom();
  6408. SERIAL_ECHOPGM("current_position[Z_AXIS]:");
  6409. MYSERIAL.print(current_position[Z_AXIS]);
  6410. SERIAL_ECHOPGM("current_position[E_AXIS]:");
  6411. MYSERIAL.print(current_position[E_AXIS]);
  6412. }
  6413. void recover_machine_state_after_power_panic()
  6414. {
  6415. char cmd[30];
  6416. // 1) Recover the logical cordinates at the time of the power panic.
  6417. // The logical XY coordinates are needed to recover the machine Z coordinate corrected by the mesh bed leveling.
  6418. current_position[X_AXIS] = eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 0));
  6419. current_position[Y_AXIS] = eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 4));
  6420. // Recover the logical coordinate of the Z axis at the time of the power panic.
  6421. // The current position after power panic is moved to the next closest 0th full step.
  6422. current_position[Z_AXIS] = eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION_Z)) +
  6423. UVLO_Z_AXIS_SHIFT + float((1024 - eeprom_read_word((uint16_t*)(EEPROM_UVLO_Z_MICROSTEPS)) + 7) >> 4) / axis_steps_per_unit[Z_AXIS];
  6424. if (eeprom_read_byte((uint8_t*)EEPROM_UVLO_E_ABS)) {
  6425. current_position[E_AXIS] = eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION_E));
  6426. sprintf_P(cmd, PSTR("G92 E"));
  6427. dtostrf(current_position[E_AXIS], 6, 3, cmd + strlen(cmd));
  6428. enquecommand(cmd);
  6429. }
  6430. memcpy(destination, current_position, sizeof(destination));
  6431. SERIAL_ECHOPGM("recover_machine_state_after_power_panic, initial ");
  6432. print_world_coordinates();
  6433. // 2) Initialize the logical to physical coordinate system transformation.
  6434. world2machine_initialize();
  6435. // 3) Restore the mesh bed leveling offsets. This is 2*9=18 bytes, which takes 18*3.4us=52us in worst case.
  6436. mbl.active = false;
  6437. for (int8_t mesh_point = 0; mesh_point < 9; ++ mesh_point) {
  6438. uint8_t ix = mesh_point % MESH_MEAS_NUM_X_POINTS; // from 0 to MESH_NUM_X_POINTS - 1
  6439. uint8_t iy = mesh_point / MESH_MEAS_NUM_X_POINTS;
  6440. // Scale the z value to 10u resolution.
  6441. int16_t v;
  6442. eeprom_read_block(&v, (void*)(EEPROM_UVLO_MESH_BED_LEVELING+2*mesh_point), 2);
  6443. if (v != 0)
  6444. mbl.active = true;
  6445. mbl.z_values[iy][ix] = float(v) * 0.001f;
  6446. }
  6447. if (mbl.active)
  6448. mbl.upsample_3x3();
  6449. SERIAL_ECHOPGM("recover_machine_state_after_power_panic, initial ");
  6450. print_mesh_bed_leveling_table();
  6451. // 4) Load the baby stepping value, which is expected to be active at the time of power panic.
  6452. // The baby stepping value is used to reset the physical Z axis when rehoming the Z axis.
  6453. babystep_load();
  6454. // 5) Set the physical positions from the logical positions using the world2machine transformation and the active bed leveling.
  6455. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  6456. // 6) Power up the motors, mark their positions as known.
  6457. //FIXME Verfiy, whether the X and Y axes should be powered up here, as they will later be re-homed anyway.
  6458. axis_known_position[X_AXIS] = true; enable_x();
  6459. axis_known_position[Y_AXIS] = true; enable_y();
  6460. axis_known_position[Z_AXIS] = true; enable_z();
  6461. SERIAL_ECHOPGM("recover_machine_state_after_power_panic, initial ");
  6462. print_physical_coordinates();
  6463. // 7) Recover the target temperatures.
  6464. target_temperature[active_extruder] = eeprom_read_byte((uint8_t*)EEPROM_UVLO_TARGET_HOTEND);
  6465. target_temperature_bed = eeprom_read_byte((uint8_t*)EEPROM_UVLO_TARGET_BED);
  6466. }
  6467. void restore_print_from_eeprom() {
  6468. float x_rec, y_rec, z_pos;
  6469. int feedrate_rec;
  6470. uint8_t fan_speed_rec;
  6471. char cmd[30];
  6472. char* c;
  6473. char filename[13];
  6474. uint8_t depth = 0;
  6475. char dir_name[9];
  6476. fan_speed_rec = eeprom_read_byte((uint8_t*)EEPROM_UVLO_FAN_SPEED);
  6477. EEPROM_read_B(EEPROM_UVLO_FEEDRATE, &feedrate_rec);
  6478. SERIAL_ECHOPGM("Feedrate:");
  6479. MYSERIAL.println(feedrate_rec);
  6480. depth = eeprom_read_byte((uint8_t*)EEPROM_DIR_DEPTH);
  6481. MYSERIAL.println(int(depth));
  6482. for (int i = 0; i < depth; i++) {
  6483. for (int j = 0; j < 8; j++) {
  6484. dir_name[j] = eeprom_read_byte((uint8_t*)EEPROM_DIRS + j + 8 * i);
  6485. }
  6486. dir_name[8] = '\0';
  6487. MYSERIAL.println(dir_name);
  6488. card.chdir(dir_name);
  6489. }
  6490. for (int i = 0; i < 8; i++) {
  6491. filename[i] = eeprom_read_byte((uint8_t*)EEPROM_FILENAME + i);
  6492. }
  6493. filename[8] = '\0';
  6494. MYSERIAL.print(filename);
  6495. strcat_P(filename, PSTR(".gco"));
  6496. sprintf_P(cmd, PSTR("M23 %s"), filename);
  6497. for (c = &cmd[4]; *c; c++)
  6498. *c = tolower(*c);
  6499. enquecommand(cmd);
  6500. uint32_t position = eeprom_read_dword((uint32_t*)(EEPROM_FILE_POSITION));
  6501. SERIAL_ECHOPGM("Position read from eeprom:");
  6502. MYSERIAL.println(position);
  6503. // E axis relative mode.
  6504. enquecommand_P(PSTR("M83"));
  6505. // Move to the XY print position in logical coordinates, where the print has been killed.
  6506. strcpy_P(cmd, PSTR("G1 X")); strcat(cmd, ftostr32(eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 0))));
  6507. strcat_P(cmd, PSTR(" Y")); strcat(cmd, ftostr32(eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 4))));
  6508. strcat_P(cmd, PSTR(" F2000"));
  6509. enquecommand(cmd);
  6510. // Move the Z axis down to the print, in logical coordinates.
  6511. strcpy_P(cmd, PSTR("G1 Z")); strcat(cmd, ftostr32(eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION_Z))));
  6512. enquecommand(cmd);
  6513. // Unretract.
  6514. enquecommand_P(PSTR("G1 E" STRINGIFY(DEFAULT_RETRACTION)" F480"));
  6515. // Set the feedrate saved at the power panic.
  6516. sprintf_P(cmd, PSTR("G1 F%d"), feedrate_rec);
  6517. enquecommand(cmd);
  6518. if (eeprom_read_byte((uint8_t*)EEPROM_UVLO_E_ABS))
  6519. {
  6520. float extruder_abs_pos = eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION_E));
  6521. enquecommand_P(PSTR("M82")); //E axis abslute mode
  6522. }
  6523. // Set the fan speed saved at the power panic.
  6524. strcpy_P(cmd, PSTR("M106 S"));
  6525. strcat(cmd, itostr3(int(fan_speed_rec)));
  6526. enquecommand(cmd);
  6527. // Set a position in the file.
  6528. sprintf_P(cmd, PSTR("M26 S%lu"), position);
  6529. enquecommand(cmd);
  6530. // Start SD print.
  6531. enquecommand_P(PSTR("M24"));
  6532. }
  6533. ////////////////////////////////////////////////////////////////////////////////
  6534. // new save/restore printing
  6535. //extern uint32_t sdpos_atomic;
  6536. bool saved_printing = false;
  6537. uint32_t saved_sdpos = 0;
  6538. float saved_pos[4] = {0, 0, 0, 0};
  6539. // Feedrate hopefully derived from an active block of the planner at the time the print has been canceled, in mm/min.
  6540. float saved_feedrate2 = 0;
  6541. uint8_t saved_active_extruder = 0;
  6542. bool saved_extruder_under_pressure = false;
  6543. void stop_and_save_print_to_ram(float z_move, float e_move)
  6544. {
  6545. if (saved_printing) return;
  6546. cli();
  6547. unsigned char nplanner_blocks = number_of_blocks();
  6548. saved_sdpos = sdpos_atomic; //atomic sd position of last command added in queue
  6549. uint16_t sdlen_planner = planner_calc_sd_length(); //length of sd commands in planner
  6550. saved_sdpos -= sdlen_planner;
  6551. uint16_t sdlen_cmdqueue = cmdqueue_calc_sd_length(); //length of sd commands in cmdqueue
  6552. saved_sdpos -= sdlen_cmdqueue;
  6553. #if 0
  6554. SERIAL_ECHOPGM("SDPOS_ATOMIC="); MYSERIAL.println(sdpos_atomic, DEC);
  6555. SERIAL_ECHOPGM("SDPOS="); MYSERIAL.println(card.get_sdpos(), DEC);
  6556. SERIAL_ECHOPGM("SDLEN_PLAN="); MYSERIAL.println(sdlen_planner, DEC);
  6557. SERIAL_ECHOPGM("SDLEN_CMDQ="); MYSERIAL.println(sdlen_cmdqueue, DEC);
  6558. SERIAL_ECHOPGM("PLANNERBLOCKS="); MYSERIAL.println(int(nplanner_blocks), DEC);
  6559. SERIAL_ECHOPGM("SDSAVED="); MYSERIAL.println(saved_sdpos, DEC);
  6560. SERIAL_ECHOPGM("SDFILELEN="); MYSERIAL.println(card.fileSize(), DEC);
  6561. {
  6562. card.setIndex(saved_sdpos);
  6563. SERIAL_ECHOLNPGM("Content of planner buffer: ");
  6564. for (unsigned int idx = 0; idx < sdlen_planner; ++ idx)
  6565. MYSERIAL.print(char(card.get()));
  6566. SERIAL_ECHOLNPGM("Content of command buffer: ");
  6567. for (unsigned int idx = 0; idx < sdlen_cmdqueue; ++ idx)
  6568. MYSERIAL.print(char(card.get()));
  6569. SERIAL_ECHOLNPGM("End of command buffer");
  6570. }
  6571. {
  6572. // Print the content of the planner buffer, line by line:
  6573. card.setIndex(saved_sdpos);
  6574. int8_t iline = 0;
  6575. for (unsigned char idx = block_buffer_tail; idx != block_buffer_head; idx = (idx + 1) & (BLOCK_BUFFER_SIZE - 1), ++ iline) {
  6576. SERIAL_ECHOPGM("Planner line (from file): ");
  6577. MYSERIAL.print(int(iline), DEC);
  6578. SERIAL_ECHOPGM(", length: ");
  6579. MYSERIAL.print(block_buffer[idx].sdlen, DEC);
  6580. SERIAL_ECHOPGM(", steps: (");
  6581. MYSERIAL.print(block_buffer[idx].steps_x, DEC);
  6582. SERIAL_ECHOPGM(",");
  6583. MYSERIAL.print(block_buffer[idx].steps_y, DEC);
  6584. SERIAL_ECHOPGM(",");
  6585. MYSERIAL.print(block_buffer[idx].steps_z, DEC);
  6586. SERIAL_ECHOPGM(",");
  6587. MYSERIAL.print(block_buffer[idx].steps_e, DEC);
  6588. SERIAL_ECHOPGM("), events: ");
  6589. MYSERIAL.println(block_buffer[idx].step_event_count, DEC);
  6590. for (int len = block_buffer[idx].sdlen; len > 0; -- len)
  6591. MYSERIAL.print(char(card.get()));
  6592. }
  6593. }
  6594. {
  6595. // Print the content of the command buffer, line by line:
  6596. int8_t iline = 0;
  6597. union {
  6598. struct {
  6599. char lo;
  6600. char hi;
  6601. } lohi;
  6602. uint16_t value;
  6603. } sdlen_single;
  6604. int _bufindr = bufindr;
  6605. for (int _buflen = buflen; _buflen > 0; ++ iline) {
  6606. if (cmdbuffer[_bufindr] == CMDBUFFER_CURRENT_TYPE_SDCARD) {
  6607. sdlen_single.lohi.lo = cmdbuffer[_bufindr + 1];
  6608. sdlen_single.lohi.hi = cmdbuffer[_bufindr + 2];
  6609. }
  6610. SERIAL_ECHOPGM("Buffer line (from buffer): ");
  6611. MYSERIAL.print(int(iline), DEC);
  6612. SERIAL_ECHOPGM(", type: ");
  6613. MYSERIAL.print(int(cmdbuffer[_bufindr]), DEC);
  6614. SERIAL_ECHOPGM(", len: ");
  6615. MYSERIAL.println(sdlen_single.value, DEC);
  6616. // Print the content of the buffer line.
  6617. MYSERIAL.println(cmdbuffer + _bufindr + CMDHDRSIZE);
  6618. SERIAL_ECHOPGM("Buffer line (from file): ");
  6619. MYSERIAL.print(int(iline), DEC);
  6620. MYSERIAL.println(int(iline), DEC);
  6621. for (; sdlen_single.value > 0; -- sdlen_single.value)
  6622. MYSERIAL.print(char(card.get()));
  6623. if (-- _buflen == 0)
  6624. break;
  6625. // First skip the current command ID and iterate up to the end of the string.
  6626. for (_bufindr += CMDHDRSIZE; cmdbuffer[_bufindr] != 0; ++ _bufindr) ;
  6627. // Second, skip the end of string null character and iterate until a nonzero command ID is found.
  6628. for (++ _bufindr; _bufindr < sizeof(cmdbuffer) && cmdbuffer[_bufindr] == 0; ++ _bufindr) ;
  6629. // If the end of the buffer was empty,
  6630. if (_bufindr == sizeof(cmdbuffer)) {
  6631. // skip to the start and find the nonzero command.
  6632. for (_bufindr = 0; cmdbuffer[_bufindr] == 0; ++ _bufindr) ;
  6633. }
  6634. }
  6635. }
  6636. #endif
  6637. #if 0
  6638. saved_feedrate2 = feedrate; //save feedrate
  6639. #else
  6640. // Try to deduce the feedrate from the first block of the planner.
  6641. // Speed is in mm/min.
  6642. saved_feedrate2 = blocks_queued() ? (block_buffer[block_buffer_tail].nominal_speed * 60.f) : feedrate;
  6643. #endif
  6644. planner_abort_hard(); //abort printing
  6645. memcpy(saved_pos, current_position, sizeof(saved_pos));
  6646. saved_active_extruder = active_extruder; //save active_extruder
  6647. saved_extruder_under_pressure = extruder_under_pressure; //extruder under pressure flag - currently unused
  6648. cmdqueue_reset(); //empty cmdqueue
  6649. card.sdprinting = false;
  6650. // card.closefile();
  6651. saved_printing = true;
  6652. sei();
  6653. if ((z_move != 0) || (e_move != 0)) { // extruder or z move
  6654. #if 1
  6655. // Rather than calling plan_buffer_line directly, push the move into the command queue,
  6656. char buf[48];
  6657. strcpy_P(buf, PSTR("G1 Z"));
  6658. dtostrf(saved_pos[Z_AXIS] + z_move, 8, 3, buf + strlen(buf));
  6659. strcat_P(buf, PSTR(" E"));
  6660. // Relative extrusion
  6661. dtostrf(e_move, 6, 3, buf + strlen(buf));
  6662. strcat_P(buf, PSTR(" F"));
  6663. dtostrf(homing_feedrate[Z_AXIS], 8, 3, buf + strlen(buf));
  6664. // At this point the command queue is empty.
  6665. enquecommand(buf, false);
  6666. // If this call is invoked from the main Arduino loop() function, let the caller know that the command
  6667. // in the command queue is not the original command, but a new one, so it should not be removed from the queue.
  6668. repeatcommand_front();
  6669. #else
  6670. plan_buffer_line(saved_pos[X_AXIS], saved_pos[Y_AXIS], saved_pos[Z_AXIS] + z_move, saved_pos[E_AXIS] + e_move, homing_feedrate[Z_AXIS], active_extruder);
  6671. st_synchronize(); //wait moving
  6672. memcpy(current_position, saved_pos, sizeof(saved_pos));
  6673. memcpy(destination, current_position, sizeof(destination));
  6674. #endif
  6675. }
  6676. }
  6677. void restore_print_from_ram_and_continue(float e_move)
  6678. {
  6679. if (!saved_printing) return;
  6680. // for (int axis = X_AXIS; axis <= E_AXIS; axis++)
  6681. // current_position[axis] = st_get_position_mm(axis);
  6682. active_extruder = saved_active_extruder; //restore active_extruder
  6683. feedrate = saved_feedrate2; //restore feedrate
  6684. float e = saved_pos[E_AXIS] - e_move;
  6685. plan_set_e_position(e);
  6686. plan_buffer_line(saved_pos[X_AXIS], saved_pos[Y_AXIS], saved_pos[Z_AXIS], saved_pos[E_AXIS], homing_feedrate[Z_AXIS]/13, active_extruder);
  6687. st_synchronize();
  6688. memcpy(current_position, saved_pos, sizeof(saved_pos));
  6689. memcpy(destination, current_position, sizeof(destination));
  6690. card.setIndex(saved_sdpos);
  6691. sdpos_atomic = saved_sdpos;
  6692. card.sdprinting = true;
  6693. saved_printing = false;
  6694. }
  6695. void print_world_coordinates()
  6696. {
  6697. SERIAL_ECHOPGM("world coordinates: (");
  6698. MYSERIAL.print(current_position[X_AXIS], 3);
  6699. SERIAL_ECHOPGM(", ");
  6700. MYSERIAL.print(current_position[Y_AXIS], 3);
  6701. SERIAL_ECHOPGM(", ");
  6702. MYSERIAL.print(current_position[Z_AXIS], 3);
  6703. SERIAL_ECHOLNPGM(")");
  6704. }
  6705. void print_physical_coordinates()
  6706. {
  6707. SERIAL_ECHOPGM("physical coordinates: (");
  6708. MYSERIAL.print(st_get_position_mm(X_AXIS), 3);
  6709. SERIAL_ECHOPGM(", ");
  6710. MYSERIAL.print(st_get_position_mm(Y_AXIS), 3);
  6711. SERIAL_ECHOPGM(", ");
  6712. MYSERIAL.print(st_get_position_mm(Z_AXIS), 3);
  6713. SERIAL_ECHOLNPGM(")");
  6714. }
  6715. void print_mesh_bed_leveling_table()
  6716. {
  6717. SERIAL_ECHOPGM("mesh bed leveling: ");
  6718. for (int8_t y = 0; y < MESH_NUM_Y_POINTS; ++ y)
  6719. for (int8_t x = 0; x < MESH_NUM_Y_POINTS; ++ x) {
  6720. MYSERIAL.print(mbl.z_values[y][x], 3);
  6721. SERIAL_ECHOPGM(" ");
  6722. }
  6723. SERIAL_ECHOLNPGM("");
  6724. }
  6725. #define FIL_LOAD_LENGTH 60
  6726. void extr_unload2() { //unloads filament
  6727. // float tmp_motor[3] = DEFAULT_PWM_MOTOR_CURRENT;
  6728. // float tmp_motor_loud[3] = DEFAULT_PWM_MOTOR_CURRENT_LOUD;
  6729. // int8_t SilentMode;
  6730. uint8_t snmm_extruder = 0;
  6731. if (degHotend0() > EXTRUDE_MINTEMP) {
  6732. lcd_implementation_clear();
  6733. lcd_display_message_fullscreen_P(PSTR(""));
  6734. max_feedrate[E_AXIS] = 50;
  6735. lcd.setCursor(0, 0); lcd_printPGM(MSG_UNLOADING_FILAMENT);
  6736. // lcd.print(" ");
  6737. // lcd.print(snmm_extruder + 1);
  6738. lcd.setCursor(0, 2); lcd_printPGM(MSG_PLEASE_WAIT);
  6739. if (current_position[Z_AXIS] < 15) {
  6740. current_position[Z_AXIS] += 15; //lifting in Z direction to make space for extrusion
  6741. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 25, active_extruder);
  6742. }
  6743. current_position[E_AXIS] += 10; //extrusion
  6744. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 10, active_extruder);
  6745. // digipot_current(2, E_MOTOR_HIGH_CURRENT);
  6746. if (current_temperature[0] < 230) { //PLA & all other filaments
  6747. current_position[E_AXIS] += 5.4;
  6748. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2800 / 60, active_extruder);
  6749. current_position[E_AXIS] += 3.2;
  6750. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  6751. current_position[E_AXIS] += 3;
  6752. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3400 / 60, active_extruder);
  6753. }
  6754. else { //ABS
  6755. current_position[E_AXIS] += 3.1;
  6756. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2000 / 60, active_extruder);
  6757. current_position[E_AXIS] += 3.1;
  6758. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2500 / 60, active_extruder);
  6759. current_position[E_AXIS] += 4;
  6760. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  6761. /*current_position[X_AXIS] += 23; //delay
  6762. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder); //delay
  6763. current_position[X_AXIS] -= 23; //delay
  6764. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder); //delay*/
  6765. delay_keep_alive(4700);
  6766. }
  6767. max_feedrate[E_AXIS] = 80;
  6768. current_position[E_AXIS] -= (bowden_length[snmm_extruder] + 60 + FIL_LOAD_LENGTH) / 2;
  6769. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 500, active_extruder);
  6770. current_position[E_AXIS] -= (bowden_length[snmm_extruder] + 60 + FIL_LOAD_LENGTH) / 2;
  6771. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 500, active_extruder);
  6772. st_synchronize();
  6773. //digipot_init();
  6774. // if (SilentMode == 1) digipot_current(2, tmp_motor[2]); //set back to normal operation currents
  6775. // else digipot_current(2, tmp_motor_loud[2]);
  6776. lcd_update_enable(true);
  6777. // lcd_return_to_status();
  6778. max_feedrate[E_AXIS] = 50;
  6779. }
  6780. else {
  6781. lcd_implementation_clear();
  6782. lcd.setCursor(0, 0);
  6783. lcd_printPGM(MSG_ERROR);
  6784. lcd.setCursor(0, 2);
  6785. lcd_printPGM(MSG_PREHEAT_NOZZLE);
  6786. delay(2000);
  6787. lcd_implementation_clear();
  6788. }
  6789. // lcd_return_to_status();
  6790. }