Marlin_main.cpp 382 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971397239733974397539763977397839793980398139823983398439853986398739883989399039913992399339943995399639973998399940004001400240034004400540064007400840094010401140124013401440154016401740184019402040214022402340244025402640274028402940304031403240334034403540364037403840394040404140424043404440454046404740484049405040514052405340544055405640574058405940604061406240634064406540664067406840694070407140724073407440754076407740784079408040814082408340844085408640874088408940904091409240934094409540964097409840994100410141024103410441054106410741084109411041114112411341144115411641174118411941204121412241234124412541264127412841294130413141324133413441354136413741384139414041414142414341444145414641474148414941504151415241534154415541564157415841594160416141624163416441654166416741684169417041714172417341744175417641774178417941804181418241834184418541864187418841894190419141924193419441954196419741984199420042014202420342044205420642074208420942104211421242134214421542164217421842194220422142224223422442254226422742284229423042314232423342344235423642374238423942404241424242434244424542464247424842494250425142524253425442554256425742584259426042614262426342644265426642674268426942704271427242734274427542764277427842794280428142824283428442854286428742884289429042914292429342944295429642974298429943004301430243034304430543064307430843094310431143124313431443154316431743184319432043214322432343244325432643274328432943304331433243334334433543364337433843394340434143424343434443454346434743484349435043514352435343544355435643574358435943604361436243634364436543664367436843694370437143724373437443754376437743784379438043814382438343844385438643874388438943904391439243934394439543964397439843994400440144024403440444054406440744084409441044114412441344144415441644174418441944204421442244234424442544264427442844294430443144324433443444354436443744384439444044414442444344444445444644474448444944504451445244534454445544564457445844594460446144624463446444654466446744684469447044714472447344744475447644774478447944804481448244834484448544864487448844894490449144924493449444954496449744984499450045014502450345044505450645074508450945104511451245134514451545164517451845194520452145224523452445254526452745284529453045314532453345344535453645374538453945404541454245434544454545464547454845494550455145524553455445554556455745584559456045614562456345644565456645674568456945704571457245734574457545764577457845794580458145824583458445854586458745884589459045914592459345944595459645974598459946004601460246034604460546064607460846094610461146124613461446154616461746184619462046214622462346244625462646274628462946304631463246334634463546364637463846394640464146424643464446454646464746484649465046514652465346544655465646574658465946604661466246634664466546664667466846694670467146724673467446754676467746784679468046814682468346844685468646874688468946904691469246934694469546964697469846994700470147024703470447054706470747084709471047114712471347144715471647174718471947204721472247234724472547264727472847294730473147324733473447354736473747384739474047414742474347444745474647474748474947504751475247534754475547564757475847594760476147624763476447654766476747684769477047714772477347744775477647774778477947804781478247834784478547864787478847894790479147924793479447954796479747984799480048014802480348044805480648074808480948104811481248134814481548164817481848194820482148224823482448254826482748284829483048314832483348344835483648374838483948404841484248434844484548464847484848494850485148524853485448554856485748584859486048614862486348644865486648674868486948704871487248734874487548764877487848794880488148824883488448854886488748884889489048914892489348944895489648974898489949004901490249034904490549064907490849094910491149124913491449154916491749184919492049214922492349244925492649274928492949304931493249334934493549364937493849394940494149424943494449454946494749484949495049514952495349544955495649574958495949604961496249634964496549664967496849694970497149724973497449754976497749784979498049814982498349844985498649874988498949904991499249934994499549964997499849995000500150025003500450055006500750085009501050115012501350145015501650175018501950205021502250235024502550265027502850295030503150325033503450355036503750385039504050415042504350445045504650475048504950505051505250535054505550565057505850595060506150625063506450655066506750685069507050715072507350745075507650775078507950805081508250835084508550865087508850895090509150925093509450955096509750985099510051015102510351045105510651075108510951105111511251135114511551165117511851195120512151225123512451255126512751285129513051315132513351345135513651375138513951405141514251435144514551465147514851495150515151525153515451555156515751585159516051615162516351645165516651675168516951705171517251735174517551765177517851795180518151825183518451855186518751885189519051915192519351945195519651975198519952005201520252035204520552065207520852095210521152125213521452155216521752185219522052215222522352245225522652275228522952305231523252335234523552365237523852395240524152425243524452455246524752485249525052515252525352545255525652575258525952605261526252635264526552665267526852695270527152725273527452755276527752785279528052815282528352845285528652875288528952905291529252935294529552965297529852995300530153025303530453055306530753085309531053115312531353145315531653175318531953205321532253235324532553265327532853295330533153325333533453355336533753385339534053415342534353445345534653475348534953505351535253535354535553565357535853595360536153625363536453655366536753685369537053715372537353745375537653775378537953805381538253835384538553865387538853895390539153925393539453955396539753985399540054015402540354045405540654075408540954105411541254135414541554165417541854195420542154225423542454255426542754285429543054315432543354345435543654375438543954405441544254435444544554465447544854495450545154525453545454555456545754585459546054615462546354645465546654675468546954705471547254735474547554765477547854795480548154825483548454855486548754885489549054915492549354945495549654975498549955005501550255035504550555065507550855095510551155125513551455155516551755185519552055215522552355245525552655275528552955305531553255335534553555365537553855395540554155425543554455455546554755485549555055515552555355545555555655575558555955605561556255635564556555665567556855695570557155725573557455755576557755785579558055815582558355845585558655875588558955905591559255935594559555965597559855995600560156025603560456055606560756085609561056115612561356145615561656175618561956205621562256235624562556265627562856295630563156325633563456355636563756385639564056415642564356445645564656475648564956505651565256535654565556565657565856595660566156625663566456655666566756685669567056715672567356745675567656775678567956805681568256835684568556865687568856895690569156925693569456955696569756985699570057015702570357045705570657075708570957105711571257135714571557165717571857195720572157225723572457255726572757285729573057315732573357345735573657375738573957405741574257435744574557465747574857495750575157525753575457555756575757585759576057615762576357645765576657675768576957705771577257735774577557765777577857795780578157825783578457855786578757885789579057915792579357945795579657975798579958005801580258035804580558065807580858095810581158125813581458155816581758185819582058215822582358245825582658275828582958305831583258335834583558365837583858395840584158425843584458455846584758485849585058515852585358545855585658575858585958605861586258635864586558665867586858695870587158725873587458755876587758785879588058815882588358845885588658875888588958905891589258935894589558965897589858995900590159025903590459055906590759085909591059115912591359145915591659175918591959205921592259235924592559265927592859295930593159325933593459355936593759385939594059415942594359445945594659475948594959505951595259535954595559565957595859595960596159625963596459655966596759685969597059715972597359745975597659775978597959805981598259835984598559865987598859895990599159925993599459955996599759985999600060016002600360046005600660076008600960106011601260136014601560166017601860196020602160226023602460256026602760286029603060316032603360346035603660376038603960406041604260436044604560466047604860496050605160526053605460556056605760586059606060616062606360646065606660676068606960706071607260736074607560766077607860796080608160826083608460856086608760886089609060916092609360946095609660976098609961006101610261036104610561066107610861096110611161126113611461156116611761186119612061216122612361246125612661276128612961306131613261336134613561366137613861396140614161426143614461456146614761486149615061516152615361546155615661576158615961606161616261636164616561666167616861696170617161726173617461756176617761786179618061816182618361846185618661876188618961906191619261936194619561966197619861996200620162026203620462056206620762086209621062116212621362146215621662176218621962206221622262236224622562266227622862296230623162326233623462356236623762386239624062416242624362446245624662476248624962506251625262536254625562566257625862596260626162626263626462656266626762686269627062716272627362746275627662776278627962806281628262836284628562866287628862896290629162926293629462956296629762986299630063016302630363046305630663076308630963106311631263136314631563166317631863196320632163226323632463256326632763286329633063316332633363346335633663376338633963406341634263436344634563466347634863496350635163526353635463556356635763586359636063616362636363646365636663676368636963706371637263736374637563766377637863796380638163826383638463856386638763886389639063916392639363946395639663976398639964006401640264036404640564066407640864096410641164126413641464156416641764186419642064216422642364246425642664276428642964306431643264336434643564366437643864396440644164426443644464456446644764486449645064516452645364546455645664576458645964606461646264636464646564666467646864696470647164726473647464756476647764786479648064816482648364846485648664876488648964906491649264936494649564966497649864996500650165026503650465056506650765086509651065116512651365146515651665176518651965206521652265236524652565266527652865296530653165326533653465356536653765386539654065416542654365446545654665476548654965506551655265536554655565566557655865596560656165626563656465656566656765686569657065716572657365746575657665776578657965806581658265836584658565866587658865896590659165926593659465956596659765986599660066016602660366046605660666076608660966106611661266136614661566166617661866196620662166226623662466256626662766286629663066316632663366346635663666376638663966406641664266436644664566466647664866496650665166526653665466556656665766586659666066616662666366646665666666676668666966706671667266736674667566766677667866796680668166826683668466856686668766886689669066916692669366946695669666976698669967006701670267036704670567066707670867096710671167126713671467156716671767186719672067216722672367246725672667276728672967306731673267336734673567366737673867396740674167426743674467456746674767486749675067516752675367546755675667576758675967606761676267636764676567666767676867696770677167726773677467756776677767786779678067816782678367846785678667876788678967906791679267936794679567966797679867996800680168026803680468056806680768086809681068116812681368146815681668176818681968206821682268236824682568266827682868296830683168326833683468356836683768386839684068416842684368446845684668476848684968506851685268536854685568566857685868596860686168626863686468656866686768686869687068716872687368746875687668776878687968806881688268836884688568866887688868896890689168926893689468956896689768986899690069016902690369046905690669076908690969106911691269136914691569166917691869196920692169226923692469256926692769286929693069316932693369346935693669376938693969406941694269436944694569466947694869496950695169526953695469556956695769586959696069616962696369646965696669676968696969706971697269736974697569766977697869796980698169826983698469856986698769886989699069916992699369946995699669976998699970007001700270037004700570067007700870097010701170127013701470157016701770187019702070217022702370247025702670277028702970307031703270337034703570367037703870397040704170427043704470457046704770487049705070517052705370547055705670577058705970607061706270637064706570667067706870697070707170727073707470757076707770787079708070817082708370847085708670877088708970907091709270937094709570967097709870997100710171027103710471057106710771087109711071117112711371147115711671177118711971207121712271237124712571267127712871297130713171327133713471357136713771387139714071417142714371447145714671477148714971507151715271537154715571567157715871597160716171627163716471657166716771687169717071717172717371747175717671777178717971807181718271837184718571867187718871897190719171927193719471957196719771987199720072017202720372047205720672077208720972107211721272137214721572167217721872197220722172227223722472257226722772287229723072317232723372347235723672377238723972407241724272437244724572467247724872497250725172527253725472557256725772587259726072617262726372647265726672677268726972707271727272737274727572767277727872797280728172827283728472857286728772887289729072917292729372947295729672977298729973007301730273037304730573067307730873097310731173127313731473157316731773187319732073217322732373247325732673277328732973307331733273337334733573367337733873397340734173427343734473457346734773487349735073517352735373547355735673577358735973607361736273637364736573667367736873697370737173727373737473757376737773787379738073817382738373847385738673877388738973907391739273937394739573967397739873997400740174027403740474057406740774087409741074117412741374147415741674177418741974207421742274237424742574267427742874297430743174327433743474357436743774387439744074417442744374447445744674477448744974507451745274537454745574567457745874597460746174627463746474657466746774687469747074717472747374747475747674777478747974807481748274837484748574867487748874897490749174927493749474957496749774987499750075017502750375047505750675077508750975107511751275137514751575167517751875197520752175227523752475257526752775287529753075317532753375347535753675377538753975407541754275437544754575467547754875497550755175527553755475557556755775587559756075617562756375647565756675677568756975707571757275737574757575767577757875797580758175827583758475857586758775887589759075917592759375947595759675977598759976007601760276037604760576067607760876097610761176127613761476157616761776187619762076217622762376247625762676277628762976307631763276337634763576367637763876397640764176427643764476457646764776487649765076517652765376547655765676577658765976607661766276637664766576667667766876697670767176727673767476757676767776787679768076817682768376847685768676877688768976907691769276937694769576967697769876997700770177027703770477057706770777087709771077117712771377147715771677177718771977207721772277237724772577267727772877297730773177327733773477357736773777387739774077417742774377447745774677477748774977507751775277537754775577567757775877597760776177627763776477657766776777687769777077717772777377747775777677777778777977807781778277837784778577867787778877897790779177927793779477957796779777987799780078017802780378047805780678077808780978107811781278137814781578167817781878197820782178227823782478257826782778287829783078317832783378347835783678377838783978407841784278437844784578467847784878497850785178527853785478557856785778587859786078617862786378647865786678677868786978707871787278737874787578767877787878797880788178827883788478857886788778887889789078917892789378947895789678977898789979007901790279037904790579067907790879097910791179127913791479157916791779187919792079217922792379247925792679277928792979307931793279337934793579367937793879397940794179427943794479457946794779487949795079517952795379547955795679577958795979607961796279637964796579667967796879697970797179727973797479757976797779787979798079817982798379847985798679877988798979907991799279937994799579967997799879998000800180028003800480058006800780088009801080118012801380148015801680178018801980208021802280238024802580268027802880298030803180328033803480358036803780388039804080418042804380448045804680478048804980508051805280538054805580568057805880598060806180628063806480658066806780688069807080718072807380748075807680778078807980808081808280838084808580868087808880898090809180928093809480958096809780988099810081018102810381048105810681078108810981108111811281138114811581168117811881198120812181228123812481258126812781288129813081318132813381348135813681378138813981408141814281438144814581468147814881498150815181528153815481558156815781588159816081618162816381648165816681678168816981708171817281738174817581768177817881798180818181828183818481858186818781888189819081918192819381948195819681978198819982008201820282038204820582068207820882098210821182128213821482158216821782188219822082218222822382248225822682278228822982308231823282338234823582368237823882398240824182428243824482458246824782488249825082518252825382548255825682578258825982608261826282638264826582668267826882698270827182728273827482758276827782788279828082818282828382848285828682878288828982908291829282938294829582968297829882998300830183028303830483058306830783088309831083118312831383148315831683178318831983208321832283238324832583268327832883298330833183328333833483358336833783388339834083418342834383448345834683478348834983508351835283538354835583568357835883598360836183628363836483658366836783688369837083718372837383748375837683778378837983808381838283838384838583868387838883898390839183928393839483958396839783988399840084018402840384048405840684078408840984108411841284138414841584168417841884198420842184228423842484258426842784288429843084318432843384348435843684378438843984408441844284438444844584468447844884498450845184528453845484558456845784588459846084618462846384648465846684678468846984708471847284738474847584768477847884798480848184828483848484858486848784888489849084918492849384948495849684978498849985008501850285038504850585068507850885098510851185128513851485158516851785188519852085218522852385248525852685278528852985308531853285338534853585368537853885398540854185428543854485458546854785488549855085518552855385548555855685578558855985608561856285638564856585668567856885698570857185728573857485758576857785788579858085818582858385848585858685878588858985908591859285938594859585968597859885998600860186028603860486058606860786088609861086118612861386148615861686178618861986208621862286238624862586268627862886298630863186328633863486358636863786388639864086418642864386448645864686478648864986508651865286538654865586568657865886598660866186628663866486658666866786688669867086718672867386748675867686778678867986808681868286838684868586868687868886898690869186928693869486958696869786988699870087018702870387048705870687078708870987108711871287138714871587168717871887198720872187228723872487258726872787288729873087318732873387348735873687378738873987408741874287438744874587468747874887498750875187528753875487558756875787588759876087618762876387648765876687678768876987708771877287738774877587768777877887798780878187828783878487858786878787888789879087918792879387948795879687978798879988008801880288038804880588068807880888098810881188128813881488158816881788188819882088218822882388248825882688278828882988308831883288338834883588368837883888398840884188428843884488458846884788488849885088518852885388548855885688578858885988608861886288638864886588668867886888698870887188728873887488758876887788788879888088818882888388848885888688878888888988908891889288938894889588968897889888998900890189028903890489058906890789088909891089118912891389148915891689178918891989208921892289238924892589268927892889298930893189328933893489358936893789388939894089418942894389448945894689478948894989508951895289538954895589568957895889598960896189628963896489658966896789688969897089718972897389748975897689778978897989808981898289838984898589868987898889898990899189928993899489958996899789988999900090019002900390049005900690079008900990109011901290139014901590169017901890199020902190229023902490259026902790289029903090319032903390349035903690379038903990409041904290439044904590469047904890499050905190529053905490559056905790589059906090619062906390649065906690679068906990709071907290739074907590769077907890799080908190829083908490859086908790889089909090919092909390949095909690979098909991009101910291039104910591069107910891099110911191129113911491159116911791189119912091219122912391249125912691279128912991309131913291339134913591369137913891399140914191429143914491459146914791489149915091519152915391549155915691579158915991609161916291639164916591669167916891699170917191729173917491759176917791789179918091819182918391849185918691879188918991909191919291939194919591969197919891999200920192029203920492059206920792089209921092119212921392149215921692179218921992209221922292239224922592269227922892299230923192329233923492359236923792389239924092419242924392449245924692479248924992509251925292539254925592569257925892599260926192629263926492659266926792689269927092719272927392749275927692779278927992809281928292839284928592869287928892899290929192929293929492959296929792989299930093019302930393049305930693079308930993109311931293139314931593169317931893199320932193229323932493259326932793289329933093319332933393349335933693379338933993409341934293439344934593469347934893499350935193529353935493559356935793589359936093619362936393649365936693679368936993709371937293739374937593769377937893799380938193829383938493859386938793889389939093919392939393949395939693979398939994009401940294039404940594069407940894099410941194129413941494159416941794189419942094219422942394249425942694279428942994309431943294339434943594369437943894399440944194429443944494459446944794489449945094519452945394549455945694579458945994609461946294639464946594669467946894699470947194729473947494759476947794789479948094819482948394849485948694879488948994909491949294939494949594969497949894999500950195029503950495059506950795089509951095119512951395149515951695179518951995209521952295239524952595269527952895299530953195329533953495359536953795389539954095419542954395449545954695479548954995509551955295539554955595569557955895599560956195629563956495659566956795689569957095719572957395749575957695779578957995809581958295839584958595869587958895899590959195929593959495959596959795989599960096019602960396049605960696079608960996109611961296139614961596169617961896199620962196229623962496259626962796289629963096319632963396349635963696379638963996409641964296439644964596469647964896499650965196529653965496559656965796589659966096619662966396649665966696679668966996709671967296739674967596769677967896799680968196829683968496859686968796889689969096919692969396949695969696979698969997009701970297039704970597069707970897099710971197129713971497159716971797189719972097219722972397249725972697279728972997309731973297339734973597369737973897399740974197429743974497459746974797489749975097519752975397549755975697579758975997609761976297639764976597669767976897699770977197729773977497759776977797789779978097819782978397849785978697879788978997909791979297939794979597969797979897999800980198029803980498059806980798089809981098119812981398149815981698179818981998209821982298239824982598269827982898299830983198329833983498359836983798389839984098419842984398449845984698479848984998509851985298539854985598569857985898599860986198629863986498659866986798689869987098719872987398749875987698779878987998809881988298839884988598869887988898899890989198929893989498959896989798989899990099019902990399049905990699079908990999109911991299139914991599169917991899199920992199229923992499259926992799289929993099319932993399349935993699379938993999409941994299439944994599469947994899499950995199529953995499559956995799589959996099619962996399649965996699679968996999709971997299739974997599769977997899799980998199829983998499859986998799889989999099919992999399949995999699979998999910000100011000210003100041000510006100071000810009100101001110012100131001410015100161001710018100191002010021100221002310024100251002610027100281002910030100311003210033100341003510036100371003810039100401004110042100431004410045100461004710048100491005010051100521005310054100551005610057100581005910060100611006210063100641006510066100671006810069100701007110072100731007410075100761007710078100791008010081100821008310084100851008610087100881008910090100911009210093100941009510096100971009810099101001010110102101031010410105101061010710108101091011010111101121011310114101151011610117101181011910120101211012210123101241012510126101271012810129101301013110132101331013410135101361013710138101391014010141101421014310144101451014610147101481014910150101511015210153101541015510156101571015810159101601016110162101631016410165101661016710168101691017010171101721017310174101751017610177101781017910180101811018210183101841018510186101871018810189101901019110192101931019410195101961019710198101991020010201102021020310204102051020610207102081020910210102111021210213102141021510216102171021810219102201022110222102231022410225102261022710228102291023010231102321023310234102351023610237102381023910240102411024210243102441024510246102471024810249102501025110252102531025410255102561025710258102591026010261102621026310264102651026610267102681026910270102711027210273102741027510276102771027810279102801028110282102831028410285102861028710288102891029010291102921029310294102951029610297102981029910300103011030210303103041030510306103071030810309103101031110312103131031410315103161031710318103191032010321103221032310324103251032610327103281032910330103311033210333103341033510336103371033810339103401034110342103431034410345103461034710348103491035010351103521035310354103551035610357103581035910360103611036210363103641036510366103671036810369103701037110372103731037410375103761037710378103791038010381103821038310384103851038610387103881038910390103911039210393103941039510396103971039810399104001040110402104031040410405104061040710408104091041010411104121041310414104151041610417104181041910420104211042210423104241042510426104271042810429104301043110432104331043410435104361043710438104391044010441104421044310444104451044610447104481044910450104511045210453104541045510456104571045810459104601046110462104631046410465104661046710468104691047010471104721047310474104751047610477104781047910480104811048210483104841048510486104871048810489104901049110492104931049410495104961049710498104991050010501105021050310504105051050610507105081050910510105111051210513105141051510516105171051810519105201052110522105231052410525105261052710528105291053010531105321053310534105351053610537105381053910540105411054210543105441054510546105471054810549105501055110552105531055410555105561055710558105591056010561105621056310564105651056610567105681056910570105711057210573105741057510576105771057810579105801058110582105831058410585105861058710588105891059010591105921059310594105951059610597105981059910600106011060210603106041060510606106071060810609106101061110612106131061410615106161061710618106191062010621106221062310624106251062610627106281062910630106311063210633106341063510636106371063810639106401064110642106431064410645106461064710648106491065010651106521065310654106551065610657106581065910660106611066210663106641066510666106671066810669106701067110672106731067410675106761067710678106791068010681106821068310684106851068610687106881068910690106911069210693106941069510696106971069810699107001070110702107031070410705107061070710708107091071010711107121071310714107151071610717107181071910720107211072210723107241072510726107271072810729107301073110732107331073410735107361073710738107391074010741107421074310744107451074610747107481074910750107511075210753107541075510756107571075810759107601076110762107631076410765107661076710768107691077010771107721077310774107751077610777107781077910780107811078210783107841078510786107871078810789107901079110792107931079410795107961079710798107991080010801108021080310804108051080610807108081080910810108111081210813108141081510816108171081810819108201082110822108231082410825108261082710828108291083010831108321083310834108351083610837108381083910840108411084210843108441084510846108471084810849108501085110852108531085410855108561085710858108591086010861108621086310864108651086610867108681086910870108711087210873108741087510876108771087810879108801088110882108831088410885108861088710888108891089010891108921089310894108951089610897108981089910900109011090210903109041090510906109071090810909109101091110912109131091410915109161091710918109191092010921109221092310924109251092610927109281092910930109311093210933109341093510936109371093810939109401094110942109431094410945109461094710948109491095010951109521095310954109551095610957109581095910960109611096210963109641096510966109671096810969109701097110972109731097410975109761097710978109791098010981109821098310984109851098610987109881098910990109911099210993109941099510996109971099810999110001100111002110031100411005110061100711008110091101011011110121101311014110151101611017110181101911020110211102211023110241102511026110271102811029110301103111032110331103411035110361103711038110391104011041110421104311044110451104611047110481104911050110511105211053110541105511056110571105811059110601106111062110631106411065110661106711068110691107011071110721107311074110751107611077110781107911080110811108211083110841108511086110871108811089110901109111092110931109411095110961109711098110991110011101111021110311104111051110611107111081110911110111111111211113111141111511116111171111811119111201112111122111231112411125111261112711128111291113011131111321113311134111351113611137111381113911140111411114211143111441114511146111471114811149111501115111152111531115411155111561115711158111591116011161111621116311164111651116611167111681116911170111711117211173111741117511176111771117811179111801118111182111831118411185111861118711188111891119011191111921119311194111951119611197111981119911200112011120211203112041120511206112071120811209112101121111212112131121411215112161121711218112191122011221112221122311224112251122611227112281122911230112311123211233112341123511236112371123811239112401124111242112431124411245112461124711248112491125011251112521125311254112551125611257112581125911260112611126211263112641126511266112671126811269112701127111272112731127411275112761127711278112791128011281112821128311284112851128611287112881128911290112911129211293112941129511296112971129811299113001130111302113031130411305113061130711308113091131011311113121131311314113151131611317113181131911320113211132211323113241132511326113271132811329113301133111332113331133411335113361133711338113391134011341113421134311344113451134611347113481134911350113511135211353113541135511356113571135811359113601136111362113631136411365113661136711368113691137011371113721137311374113751137611377113781137911380113811138211383113841138511386113871138811389113901139111392113931139411395113961139711398113991140011401114021140311404114051140611407114081140911410114111141211413114141141511416114171141811419114201142111422114231142411425
  1. /* -*- c++ -*- */
  2. /**
  3. * @file
  4. */
  5. /**
  6. * @mainpage Reprap 3D printer firmware based on Sprinter and grbl.
  7. *
  8. * @section intro_sec Introduction
  9. *
  10. * This firmware is a mashup between Sprinter and grbl.
  11. * https://github.com/kliment/Sprinter
  12. * https://github.com/simen/grbl/tree
  13. *
  14. * It has preliminary support for Matthew Roberts advance algorithm
  15. * http://reprap.org/pipermail/reprap-dev/2011-May/003323.html
  16. *
  17. * Prusa Research s.r.o. https://www.prusa3d.cz
  18. *
  19. * @section copyright_sec Copyright
  20. *
  21. * Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
  22. *
  23. * This program is free software: you can redistribute it and/or modify
  24. * it under the terms of the GNU General Public License as published by
  25. * the Free Software Foundation, either version 3 of the License, or
  26. * (at your option) any later version.
  27. *
  28. * This program is distributed in the hope that it will be useful,
  29. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  30. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  31. * GNU General Public License for more details.
  32. *
  33. * You should have received a copy of the GNU General Public License
  34. * along with this program. If not, see <http://www.gnu.org/licenses/>.
  35. *
  36. * @section notes_sec Notes
  37. *
  38. * * Do not create static objects in global functions.
  39. * Otherwise constructor guard against concurrent calls is generated costing
  40. * about 8B RAM and 14B flash.
  41. *
  42. *
  43. */
  44. //-//
  45. #include "Configuration.h"
  46. #include "Marlin.h"
  47. #ifdef ENABLE_AUTO_BED_LEVELING
  48. #include "vector_3.h"
  49. #ifdef AUTO_BED_LEVELING_GRID
  50. #include "qr_solve.h"
  51. #endif
  52. #endif // ENABLE_AUTO_BED_LEVELING
  53. #ifdef MESH_BED_LEVELING
  54. #include "mesh_bed_leveling.h"
  55. #include "mesh_bed_calibration.h"
  56. #endif
  57. #include "printers.h"
  58. #include "menu.h"
  59. #include "ultralcd.h"
  60. #include "planner.h"
  61. #include "stepper.h"
  62. #include "temperature.h"
  63. #include "motion_control.h"
  64. #include "cardreader.h"
  65. #include "ConfigurationStore.h"
  66. #include "language.h"
  67. #include "pins_arduino.h"
  68. #include "math.h"
  69. #include "util.h"
  70. #include "Timer.h"
  71. #include <avr/wdt.h>
  72. #include <avr/pgmspace.h>
  73. #include "Dcodes.h"
  74. #include "AutoDeplete.h"
  75. #ifdef SWSPI
  76. #include "swspi.h"
  77. #endif //SWSPI
  78. #include "spi.h"
  79. #ifdef SWI2C
  80. #include "swi2c.h"
  81. #endif //SWI2C
  82. #ifdef FILAMENT_SENSOR
  83. #include "fsensor.h"
  84. #endif //FILAMENT_SENSOR
  85. #ifdef TMC2130
  86. #include "tmc2130.h"
  87. #endif //TMC2130
  88. #ifdef W25X20CL
  89. #include "w25x20cl.h"
  90. #include "optiboot_w25x20cl.h"
  91. #endif //W25X20CL
  92. #ifdef BLINKM
  93. #include "BlinkM.h"
  94. #include "Wire.h"
  95. #endif
  96. #ifdef ULTRALCD
  97. #include "ultralcd.h"
  98. #endif
  99. #if NUM_SERVOS > 0
  100. #include "Servo.h"
  101. #endif
  102. #if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
  103. #include <SPI.h>
  104. #endif
  105. #include "mmu.h"
  106. #define VERSION_STRING "1.0.2"
  107. #include "ultralcd.h"
  108. #include "sound.h"
  109. #include "cmdqueue.h"
  110. #include "io_atmega2560.h"
  111. // Macros for bit masks
  112. #define BIT(b) (1<<(b))
  113. #define TEST(n,b) (((n)&BIT(b))!=0)
  114. #define SET_BIT(n,b,value) (n) ^= ((-value)^(n)) & (BIT(b))
  115. //Macro for print fan speed
  116. #define FAN_PULSE_WIDTH_LIMIT ((fanSpeed > 100) ? 3 : 4) //time in ms
  117. //filament types
  118. #define FILAMENT_DEFAULT 0
  119. #define FILAMENT_FLEX 1
  120. #define FILAMENT_PVA 2
  121. #define FILAMENT_UNDEFINED 255
  122. //Stepper Movement Variables
  123. //===========================================================================
  124. //=============================imported variables============================
  125. //===========================================================================
  126. //===========================================================================
  127. //=============================public variables=============================
  128. //===========================================================================
  129. #ifdef SDSUPPORT
  130. CardReader card;
  131. #endif
  132. unsigned long PingTime = _millis();
  133. unsigned long NcTime;
  134. uint8_t mbl_z_probe_nr = 3; //numer of Z measurements for each point in mesh bed leveling calibration
  135. //used for PINDA temp calibration and pause print
  136. #define DEFAULT_RETRACTION 1
  137. #define DEFAULT_RETRACTION_MM 4 //MM
  138. float default_retraction = DEFAULT_RETRACTION;
  139. float homing_feedrate[] = HOMING_FEEDRATE;
  140. // Currently only the extruder axis may be switched to a relative mode.
  141. // Other axes are always absolute or relative based on the common relative_mode flag.
  142. bool axis_relative_modes[] = AXIS_RELATIVE_MODES;
  143. int feedmultiply=100; //100->1 200->2
  144. int extrudemultiply=100; //100->1 200->2
  145. int extruder_multiply[EXTRUDERS] = {100
  146. #if EXTRUDERS > 1
  147. , 100
  148. #if EXTRUDERS > 2
  149. , 100
  150. #endif
  151. #endif
  152. };
  153. int bowden_length[4] = {385, 385, 385, 385};
  154. bool is_usb_printing = false;
  155. bool homing_flag = false;
  156. bool temp_cal_active = false;
  157. unsigned long kicktime = _millis()+100000;
  158. unsigned int usb_printing_counter;
  159. int8_t lcd_change_fil_state = 0;
  160. unsigned long pause_time = 0;
  161. unsigned long start_pause_print = _millis();
  162. unsigned long t_fan_rising_edge = _millis();
  163. LongTimer safetyTimer;
  164. static LongTimer crashDetTimer;
  165. //unsigned long load_filament_time;
  166. bool mesh_bed_leveling_flag = false;
  167. bool mesh_bed_run_from_menu = false;
  168. bool prusa_sd_card_upload = false;
  169. unsigned int status_number = 0;
  170. unsigned long total_filament_used;
  171. unsigned int heating_status;
  172. unsigned int heating_status_counter;
  173. bool loading_flag = false;
  174. char snmm_filaments_used = 0;
  175. bool fan_state[2];
  176. int fan_edge_counter[2];
  177. int fan_speed[2];
  178. char dir_names[3][9];
  179. bool sortAlpha = false;
  180. float extruder_multiplier[EXTRUDERS] = {1.0
  181. #if EXTRUDERS > 1
  182. , 1.0
  183. #if EXTRUDERS > 2
  184. , 1.0
  185. #endif
  186. #endif
  187. };
  188. float current_position[NUM_AXIS] = { 0.0, 0.0, 0.0, 0.0 };
  189. //shortcuts for more readable code
  190. #define _x current_position[X_AXIS]
  191. #define _y current_position[Y_AXIS]
  192. #define _z current_position[Z_AXIS]
  193. #define _e current_position[E_AXIS]
  194. float min_pos[3] = { X_MIN_POS, Y_MIN_POS, Z_MIN_POS };
  195. float max_pos[3] = { X_MAX_POS, Y_MAX_POS, Z_MAX_POS };
  196. bool axis_known_position[3] = {false, false, false};
  197. // Extruder offset
  198. #if EXTRUDERS > 1
  199. #define NUM_EXTRUDER_OFFSETS 2 // only in XY plane
  200. float extruder_offset[NUM_EXTRUDER_OFFSETS][EXTRUDERS] = {
  201. #if defined(EXTRUDER_OFFSET_X) && defined(EXTRUDER_OFFSET_Y)
  202. EXTRUDER_OFFSET_X, EXTRUDER_OFFSET_Y
  203. #endif
  204. };
  205. #endif
  206. uint8_t active_extruder = 0;
  207. int fanSpeed=0;
  208. #ifdef FWRETRACT
  209. bool retracted[EXTRUDERS]={false
  210. #if EXTRUDERS > 1
  211. , false
  212. #if EXTRUDERS > 2
  213. , false
  214. #endif
  215. #endif
  216. };
  217. bool retracted_swap[EXTRUDERS]={false
  218. #if EXTRUDERS > 1
  219. , false
  220. #if EXTRUDERS > 2
  221. , false
  222. #endif
  223. #endif
  224. };
  225. float retract_length_swap = RETRACT_LENGTH_SWAP;
  226. float retract_recover_length_swap = RETRACT_RECOVER_LENGTH_SWAP;
  227. #endif
  228. #ifdef PS_DEFAULT_OFF
  229. bool powersupply = false;
  230. #else
  231. bool powersupply = true;
  232. #endif
  233. bool cancel_heatup = false ;
  234. int8_t busy_state = NOT_BUSY;
  235. static long prev_busy_signal_ms = -1;
  236. uint8_t host_keepalive_interval = HOST_KEEPALIVE_INTERVAL;
  237. const char errormagic[] PROGMEM = "Error:";
  238. const char echomagic[] PROGMEM = "echo:";
  239. bool no_response = false;
  240. uint8_t important_status;
  241. uint8_t saved_filament_type;
  242. #define SAVED_TARGET_UNSET (X_MIN_POS-1)
  243. float saved_target[NUM_AXIS] = {SAVED_TARGET_UNSET, 0, 0, 0};
  244. // save/restore printing in case that mmu was not responding
  245. bool mmu_print_saved = false;
  246. // storing estimated time to end of print counted by slicer
  247. uint8_t print_percent_done_normal = PRINT_PERCENT_DONE_INIT;
  248. uint16_t print_time_remaining_normal = PRINT_TIME_REMAINING_INIT; //estimated remaining print time in minutes
  249. uint8_t print_percent_done_silent = PRINT_PERCENT_DONE_INIT;
  250. uint16_t print_time_remaining_silent = PRINT_TIME_REMAINING_INIT; //estimated remaining print time in minutes
  251. //===========================================================================
  252. //=============================Private Variables=============================
  253. //===========================================================================
  254. #define MSG_BED_LEVELING_FAILED_TIMEOUT 30
  255. const char axis_codes[NUM_AXIS] = {'X', 'Y', 'Z', 'E'};
  256. float destination[NUM_AXIS] = { 0.0, 0.0, 0.0, 0.0};
  257. // For tracing an arc
  258. static float offset[3] = {0.0, 0.0, 0.0};
  259. // Current feedrate
  260. float feedrate = 1500.0;
  261. // Feedrate for the next move
  262. static float next_feedrate;
  263. // Original feedrate saved during homing moves
  264. static float saved_feedrate;
  265. // Determines Absolute or Relative Coordinates.
  266. // Also there is bool axis_relative_modes[] per axis flag.
  267. static bool relative_mode = false;
  268. const int sensitive_pins[] = SENSITIVE_PINS; // Sensitive pin list for M42
  269. //static float tt = 0;
  270. //static float bt = 0;
  271. //Inactivity shutdown variables
  272. static unsigned long previous_millis_cmd = 0;
  273. unsigned long max_inactive_time = 0;
  274. static unsigned long stepper_inactive_time = DEFAULT_STEPPER_DEACTIVE_TIME*1000l;
  275. static unsigned long safetytimer_inactive_time = DEFAULT_SAFETYTIMER_TIME_MINS*60*1000ul;
  276. unsigned long starttime=0;
  277. unsigned long stoptime=0;
  278. unsigned long _usb_timer = 0;
  279. bool extruder_under_pressure = true;
  280. bool Stopped=false;
  281. #if NUM_SERVOS > 0
  282. Servo servos[NUM_SERVOS];
  283. #endif
  284. bool target_direction;
  285. //Insert variables if CHDK is defined
  286. #ifdef CHDK
  287. unsigned long chdkHigh = 0;
  288. boolean chdkActive = false;
  289. #endif
  290. //! @name RAM save/restore printing
  291. //! @{
  292. bool saved_printing = false; //!< Print is paused and saved in RAM
  293. static uint32_t saved_sdpos = 0; //!< SD card position, or line number in case of USB printing
  294. uint8_t saved_printing_type = PRINTING_TYPE_SD;
  295. static float saved_pos[4] = { 0, 0, 0, 0 };
  296. static uint16_t saved_feedrate2 = 0; //!< Default feedrate (truncated from float)
  297. static int saved_feedmultiply2 = 0;
  298. static uint8_t saved_active_extruder = 0;
  299. static float saved_extruder_temperature = 0.0; //!< Active extruder temperature
  300. static bool saved_extruder_under_pressure = false;
  301. static bool saved_extruder_relative_mode = false;
  302. static int saved_fanSpeed = 0; //!< Print fan speed
  303. //! @}
  304. static int saved_feedmultiply_mm = 100;
  305. //===========================================================================
  306. //=============================Routines======================================
  307. //===========================================================================
  308. static void get_arc_coordinates();
  309. static bool setTargetedHotend(int code, uint8_t &extruder);
  310. static void print_time_remaining_init();
  311. static void wait_for_heater(long codenum, uint8_t extruder);
  312. static void gcode_G28(bool home_x_axis, bool home_y_axis, bool home_z_axis);
  313. static void temp_compensation_start();
  314. static void temp_compensation_apply();
  315. uint16_t gcode_in_progress = 0;
  316. uint16_t mcode_in_progress = 0;
  317. void serial_echopair_P(const char *s_P, float v)
  318. { serialprintPGM(s_P); SERIAL_ECHO(v); }
  319. void serial_echopair_P(const char *s_P, double v)
  320. { serialprintPGM(s_P); SERIAL_ECHO(v); }
  321. void serial_echopair_P(const char *s_P, unsigned long v)
  322. { serialprintPGM(s_P); SERIAL_ECHO(v); }
  323. /*FORCE_INLINE*/ void serialprintPGM(const char *str)
  324. {
  325. #if 0
  326. char ch=pgm_read_byte(str);
  327. while(ch)
  328. {
  329. MYSERIAL.write(ch);
  330. ch=pgm_read_byte(++str);
  331. }
  332. #else
  333. // hmm, same size as the above version, the compiler did a good job optimizing the above
  334. while( uint8_t ch = pgm_read_byte(str) ){
  335. MYSERIAL.write((char)ch);
  336. ++str;
  337. }
  338. #endif
  339. }
  340. #ifdef SDSUPPORT
  341. #include "SdFatUtil.h"
  342. int freeMemory() { return SdFatUtil::FreeRam(); }
  343. #else
  344. extern "C" {
  345. extern unsigned int __bss_end;
  346. extern unsigned int __heap_start;
  347. extern void *__brkval;
  348. int freeMemory() {
  349. int free_memory;
  350. if ((int)__brkval == 0)
  351. free_memory = ((int)&free_memory) - ((int)&__bss_end);
  352. else
  353. free_memory = ((int)&free_memory) - ((int)__brkval);
  354. return free_memory;
  355. }
  356. }
  357. #endif //!SDSUPPORT
  358. void setup_killpin()
  359. {
  360. #if defined(KILL_PIN) && KILL_PIN > -1
  361. SET_INPUT(KILL_PIN);
  362. WRITE(KILL_PIN,HIGH);
  363. #endif
  364. }
  365. // Set home pin
  366. void setup_homepin(void)
  367. {
  368. #if defined(HOME_PIN) && HOME_PIN > -1
  369. SET_INPUT(HOME_PIN);
  370. WRITE(HOME_PIN,HIGH);
  371. #endif
  372. }
  373. void setup_photpin()
  374. {
  375. #if defined(PHOTOGRAPH_PIN) && PHOTOGRAPH_PIN > -1
  376. SET_OUTPUT(PHOTOGRAPH_PIN);
  377. WRITE(PHOTOGRAPH_PIN, LOW);
  378. #endif
  379. }
  380. void setup_powerhold()
  381. {
  382. #if defined(SUICIDE_PIN) && SUICIDE_PIN > -1
  383. SET_OUTPUT(SUICIDE_PIN);
  384. WRITE(SUICIDE_PIN, HIGH);
  385. #endif
  386. #if defined(PS_ON_PIN) && PS_ON_PIN > -1
  387. SET_OUTPUT(PS_ON_PIN);
  388. #if defined(PS_DEFAULT_OFF)
  389. WRITE(PS_ON_PIN, PS_ON_ASLEEP);
  390. #else
  391. WRITE(PS_ON_PIN, PS_ON_AWAKE);
  392. #endif
  393. #endif
  394. }
  395. void suicide()
  396. {
  397. #if defined(SUICIDE_PIN) && SUICIDE_PIN > -1
  398. SET_OUTPUT(SUICIDE_PIN);
  399. WRITE(SUICIDE_PIN, LOW);
  400. #endif
  401. }
  402. void servo_init()
  403. {
  404. #if (NUM_SERVOS >= 1) && defined(SERVO0_PIN) && (SERVO0_PIN > -1)
  405. servos[0].attach(SERVO0_PIN);
  406. #endif
  407. #if (NUM_SERVOS >= 2) && defined(SERVO1_PIN) && (SERVO1_PIN > -1)
  408. servos[1].attach(SERVO1_PIN);
  409. #endif
  410. #if (NUM_SERVOS >= 3) && defined(SERVO2_PIN) && (SERVO2_PIN > -1)
  411. servos[2].attach(SERVO2_PIN);
  412. #endif
  413. #if (NUM_SERVOS >= 4) && defined(SERVO3_PIN) && (SERVO3_PIN > -1)
  414. servos[3].attach(SERVO3_PIN);
  415. #endif
  416. #if (NUM_SERVOS >= 5)
  417. #error "TODO: enter initalisation code for more servos"
  418. #endif
  419. }
  420. bool fans_check_enabled = true;
  421. #ifdef TMC2130
  422. void crashdet_stop_and_save_print()
  423. {
  424. stop_and_save_print_to_ram(10, -default_retraction); //XY - no change, Z 10mm up, E -1mm retract
  425. }
  426. void crashdet_restore_print_and_continue()
  427. {
  428. restore_print_from_ram_and_continue(default_retraction); //XYZ = orig, E +1mm unretract
  429. // babystep_apply();
  430. }
  431. void crashdet_stop_and_save_print2()
  432. {
  433. cli();
  434. planner_abort_hard(); //abort printing
  435. cmdqueue_reset(); //empty cmdqueue
  436. card.sdprinting = false;
  437. card.closefile();
  438. // Reset and re-enable the stepper timer just before the global interrupts are enabled.
  439. st_reset_timer();
  440. sei();
  441. }
  442. void crashdet_detected(uint8_t mask)
  443. {
  444. st_synchronize();
  445. static uint8_t crashDet_counter = 0;
  446. bool automatic_recovery_after_crash = true;
  447. if (crashDet_counter++ == 0) {
  448. crashDetTimer.start();
  449. }
  450. else if (crashDetTimer.expired(CRASHDET_TIMER * 1000ul)){
  451. crashDetTimer.stop();
  452. crashDet_counter = 0;
  453. }
  454. else if(crashDet_counter == CRASHDET_COUNTER_MAX){
  455. automatic_recovery_after_crash = false;
  456. crashDetTimer.stop();
  457. crashDet_counter = 0;
  458. }
  459. else {
  460. crashDetTimer.start();
  461. }
  462. lcd_update_enable(true);
  463. lcd_clear();
  464. lcd_update(2);
  465. if (mask & X_AXIS_MASK)
  466. {
  467. eeprom_update_byte((uint8_t*)EEPROM_CRASH_COUNT_X, eeprom_read_byte((uint8_t*)EEPROM_CRASH_COUNT_X) + 1);
  468. eeprom_update_word((uint16_t*)EEPROM_CRASH_COUNT_X_TOT, eeprom_read_word((uint16_t*)EEPROM_CRASH_COUNT_X_TOT) + 1);
  469. }
  470. if (mask & Y_AXIS_MASK)
  471. {
  472. eeprom_update_byte((uint8_t*)EEPROM_CRASH_COUNT_Y, eeprom_read_byte((uint8_t*)EEPROM_CRASH_COUNT_Y) + 1);
  473. eeprom_update_word((uint16_t*)EEPROM_CRASH_COUNT_Y_TOT, eeprom_read_word((uint16_t*)EEPROM_CRASH_COUNT_Y_TOT) + 1);
  474. }
  475. lcd_update_enable(true);
  476. lcd_update(2);
  477. lcd_setstatuspgm(_T(MSG_CRASH_DETECTED));
  478. gcode_G28(true, true, false); //home X and Y
  479. st_synchronize();
  480. if (automatic_recovery_after_crash) {
  481. enquecommand_P(PSTR("CRASH_RECOVER"));
  482. }else{
  483. setTargetHotend(0, active_extruder);
  484. bool yesno = lcd_show_fullscreen_message_yes_no_and_wait_P(_i("Crash detected. Resume print?"), false);
  485. lcd_update_enable(true);
  486. if (yesno)
  487. {
  488. enquecommand_P(PSTR("CRASH_RECOVER"));
  489. }
  490. else
  491. {
  492. enquecommand_P(PSTR("CRASH_CANCEL"));
  493. }
  494. }
  495. }
  496. void crashdet_recover()
  497. {
  498. crashdet_restore_print_and_continue();
  499. if (lcd_crash_detect_enabled()) tmc2130_sg_stop_on_crash = true;
  500. }
  501. void crashdet_cancel()
  502. {
  503. saved_printing = false;
  504. tmc2130_sg_stop_on_crash = true;
  505. if (saved_printing_type == PRINTING_TYPE_SD) {
  506. lcd_print_stop();
  507. }else if(saved_printing_type == PRINTING_TYPE_USB){
  508. SERIAL_ECHOLNRPGM(MSG_OCTOPRINT_CANCEL); //for Octoprint: works the same as clicking "Abort" button in Octoprint GUI
  509. SERIAL_PROTOCOLLNRPGM(MSG_OK);
  510. }
  511. }
  512. #endif //TMC2130
  513. void failstats_reset_print()
  514. {
  515. eeprom_update_byte((uint8_t *)EEPROM_CRASH_COUNT_X, 0);
  516. eeprom_update_byte((uint8_t *)EEPROM_CRASH_COUNT_Y, 0);
  517. eeprom_update_byte((uint8_t *)EEPROM_FERROR_COUNT, 0);
  518. eeprom_update_byte((uint8_t *)EEPROM_POWER_COUNT, 0);
  519. eeprom_update_byte((uint8_t *)EEPROM_MMU_FAIL, 0);
  520. eeprom_update_byte((uint8_t *)EEPROM_MMU_LOAD_FAIL, 0);
  521. }
  522. #ifdef MESH_BED_LEVELING
  523. enum MeshLevelingState { MeshReport, MeshStart, MeshNext, MeshSet };
  524. #endif
  525. // Factory reset function
  526. // This function is used to erase parts or whole EEPROM memory which is used for storing calibration and and so on.
  527. // Level input parameter sets depth of reset
  528. int er_progress = 0;
  529. static void factory_reset(char level)
  530. {
  531. lcd_clear();
  532. switch (level) {
  533. // Level 0: Language reset
  534. case 0:
  535. Sound_MakeCustom(100,0,false);
  536. lang_reset();
  537. break;
  538. //Level 1: Reset statistics
  539. case 1:
  540. Sound_MakeCustom(100,0,false);
  541. eeprom_update_dword((uint32_t *)EEPROM_TOTALTIME, 0);
  542. eeprom_update_dword((uint32_t *)EEPROM_FILAMENTUSED, 0);
  543. eeprom_update_byte((uint8_t *)EEPROM_CRASH_COUNT_X, 0);
  544. eeprom_update_byte((uint8_t *)EEPROM_CRASH_COUNT_Y, 0);
  545. eeprom_update_byte((uint8_t *)EEPROM_FERROR_COUNT, 0);
  546. eeprom_update_byte((uint8_t *)EEPROM_POWER_COUNT, 0);
  547. eeprom_update_word((uint16_t *)EEPROM_CRASH_COUNT_X_TOT, 0);
  548. eeprom_update_word((uint16_t *)EEPROM_CRASH_COUNT_Y_TOT, 0);
  549. eeprom_update_word((uint16_t *)EEPROM_FERROR_COUNT_TOT, 0);
  550. eeprom_update_word((uint16_t *)EEPROM_POWER_COUNT_TOT, 0);
  551. eeprom_update_word((uint16_t *)EEPROM_MMU_FAIL_TOT, 0);
  552. eeprom_update_word((uint16_t *)EEPROM_MMU_LOAD_FAIL_TOT, 0);
  553. eeprom_update_byte((uint8_t *)EEPROM_MMU_FAIL, 0);
  554. eeprom_update_byte((uint8_t *)EEPROM_MMU_LOAD_FAIL, 0);
  555. lcd_menu_statistics();
  556. break;
  557. // Level 2: Prepare for shipping
  558. case 2:
  559. //lcd_puts_P(PSTR("Factory RESET"));
  560. //lcd_puts_at_P(1,2,PSTR("Shipping prep"));
  561. // Force language selection at the next boot up.
  562. lang_reset();
  563. // Force the "Follow calibration flow" message at the next boot up.
  564. calibration_status_store(CALIBRATION_STATUS_Z_CALIBRATION);
  565. eeprom_write_byte((uint8_t*)EEPROM_WIZARD_ACTIVE, 1); //run wizard
  566. farm_no = 0;
  567. farm_mode = false;
  568. eeprom_update_byte((uint8_t*)EEPROM_FARM_MODE, farm_mode);
  569. EEPROM_save_B(EEPROM_FARM_NUMBER, &farm_no);
  570. eeprom_update_dword((uint32_t *)EEPROM_TOTALTIME, 0);
  571. eeprom_update_dword((uint32_t *)EEPROM_FILAMENTUSED, 0);
  572. eeprom_update_word((uint16_t *)EEPROM_CRASH_COUNT_X_TOT, 0);
  573. eeprom_update_word((uint16_t *)EEPROM_CRASH_COUNT_Y_TOT, 0);
  574. eeprom_update_word((uint16_t *)EEPROM_FERROR_COUNT_TOT, 0);
  575. eeprom_update_word((uint16_t *)EEPROM_POWER_COUNT_TOT, 0);
  576. eeprom_update_word((uint16_t *)EEPROM_MMU_FAIL_TOT, 0);
  577. eeprom_update_word((uint16_t *)EEPROM_MMU_LOAD_FAIL_TOT, 0);
  578. eeprom_update_byte((uint8_t *)EEPROM_MMU_FAIL, 0);
  579. eeprom_update_byte((uint8_t *)EEPROM_MMU_LOAD_FAIL, 0);
  580. #ifdef FILAMENT_SENSOR
  581. fsensor_enable();
  582. fsensor_autoload_set(true);
  583. #endif //FILAMENT_SENSOR
  584. Sound_MakeCustom(100,0,false);
  585. //_delay_ms(2000);
  586. break;
  587. // Level 3: erase everything, whole EEPROM will be set to 0xFF
  588. case 3:
  589. lcd_puts_P(PSTR("Factory RESET"));
  590. lcd_puts_at_P(1, 2, PSTR("ERASING all data"));
  591. Sound_MakeCustom(100,0,false);
  592. er_progress = 0;
  593. lcd_puts_at_P(3, 3, PSTR(" "));
  594. lcd_set_cursor(3, 3);
  595. lcd_print(er_progress);
  596. // Erase EEPROM
  597. for (int i = 0; i < 4096; i++) {
  598. eeprom_update_byte((uint8_t*)i, 0xFF);
  599. if (i % 41 == 0) {
  600. er_progress++;
  601. lcd_puts_at_P(3, 3, PSTR(" "));
  602. lcd_set_cursor(3, 3);
  603. lcd_print(er_progress);
  604. lcd_puts_P(PSTR("%"));
  605. }
  606. }
  607. break;
  608. case 4:
  609. bowden_menu();
  610. break;
  611. default:
  612. break;
  613. }
  614. }
  615. extern "C" {
  616. FILE _uartout; //= {0}; Global variable is always zero initialized. No need to explicitly state this.
  617. }
  618. int uart_putchar(char c, FILE *)
  619. {
  620. MYSERIAL.write(c);
  621. return 0;
  622. }
  623. void lcd_splash()
  624. {
  625. lcd_clear(); // clears display and homes screen
  626. lcd_puts_P(PSTR("\n Original Prusa i3\n Prusa Research"));
  627. }
  628. void factory_reset()
  629. {
  630. KEEPALIVE_STATE(PAUSED_FOR_USER);
  631. if (!READ(BTN_ENC))
  632. {
  633. _delay_ms(1000);
  634. if (!READ(BTN_ENC))
  635. {
  636. lcd_clear();
  637. lcd_puts_P(PSTR("Factory RESET"));
  638. SET_OUTPUT(BEEPER);
  639. if(eSoundMode!=e_SOUND_MODE_SILENT)
  640. WRITE(BEEPER, HIGH);
  641. while (!READ(BTN_ENC));
  642. WRITE(BEEPER, LOW);
  643. _delay_ms(2000);
  644. char level = reset_menu();
  645. factory_reset(level);
  646. switch (level) {
  647. case 0: _delay_ms(0); break;
  648. case 1: _delay_ms(0); break;
  649. case 2: _delay_ms(0); break;
  650. case 3: _delay_ms(0); break;
  651. }
  652. }
  653. }
  654. KEEPALIVE_STATE(IN_HANDLER);
  655. }
  656. void show_fw_version_warnings() {
  657. if (FW_DEV_VERSION == FW_VERSION_GOLD || FW_DEV_VERSION == FW_VERSION_RC) return;
  658. switch (FW_DEV_VERSION) {
  659. case(FW_VERSION_ALPHA): lcd_show_fullscreen_message_and_wait_P(_i("You are using firmware alpha version. This is development version. Using this version is not recommended and may cause printer damage.")); break;////MSG_FW_VERSION_ALPHA c=20 r=8
  660. case(FW_VERSION_BETA): lcd_show_fullscreen_message_and_wait_P(_i("You are using firmware beta version. This is development version. Using this version is not recommended and may cause printer damage.")); break;////MSG_FW_VERSION_BETA c=20 r=8
  661. case(FW_VERSION_DEVEL):
  662. case(FW_VERSION_DEBUG):
  663. lcd_update_enable(false);
  664. lcd_clear();
  665. #if FW_DEV_VERSION == FW_VERSION_DEVEL
  666. lcd_puts_at_P(0, 0, PSTR("Development build !!"));
  667. #else
  668. lcd_puts_at_P(0, 0, PSTR("Debbugging build !!!"));
  669. #endif
  670. lcd_puts_at_P(0, 1, PSTR("May destroy printer!"));
  671. lcd_puts_at_P(0, 2, PSTR("ver ")); lcd_puts_P(PSTR(FW_VERSION_FULL));
  672. lcd_puts_at_P(0, 3, PSTR(FW_REPOSITORY));
  673. lcd_wait_for_click();
  674. break;
  675. // default: lcd_show_fullscreen_message_and_wait_P(_i("WARNING: This is an unofficial, unsupported build. Use at your own risk!")); break;////MSG_FW_VERSION_UNKNOWN c=20 r=8
  676. }
  677. lcd_update_enable(true);
  678. }
  679. //! @brief try to check if firmware is on right type of printer
  680. static void check_if_fw_is_on_right_printer(){
  681. #ifdef FILAMENT_SENSOR
  682. if((PRINTER_TYPE == PRINTER_MK3) || (PRINTER_TYPE == PRINTER_MK3S)){
  683. #ifdef IR_SENSOR
  684. swi2c_init();
  685. const uint8_t pat9125_detected = swi2c_readByte_A8(PAT9125_I2C_ADDR,0x00,NULL);
  686. if (pat9125_detected){
  687. lcd_show_fullscreen_message_and_wait_P(_i("MK3S firmware detected on MK3 printer"));}
  688. #endif //IR_SENSOR
  689. #ifdef PAT9125
  690. //will return 1 only if IR can detect filament in bondtech extruder so this may fail even when we have IR sensor
  691. const uint8_t ir_detected = !(PIN_GET(IR_SENSOR_PIN));
  692. if (ir_detected){
  693. lcd_show_fullscreen_message_and_wait_P(_i("MK3 firmware detected on MK3S printer"));}
  694. #endif //PAT9125
  695. }
  696. #endif //FILAMENT_SENSOR
  697. }
  698. uint8_t check_printer_version()
  699. {
  700. uint8_t version_changed = 0;
  701. uint16_t printer_type = eeprom_read_word((uint16_t*)EEPROM_PRINTER_TYPE);
  702. uint16_t motherboard = eeprom_read_word((uint16_t*)EEPROM_BOARD_TYPE);
  703. if (printer_type != PRINTER_TYPE) {
  704. if (printer_type == 0xffff) eeprom_write_word((uint16_t*)EEPROM_PRINTER_TYPE, PRINTER_TYPE);
  705. else version_changed |= 0b10;
  706. }
  707. if (motherboard != MOTHERBOARD) {
  708. if(motherboard == 0xffff) eeprom_write_word((uint16_t*)EEPROM_BOARD_TYPE, MOTHERBOARD);
  709. else version_changed |= 0b01;
  710. }
  711. return version_changed;
  712. }
  713. #ifdef BOOTAPP
  714. #include "bootapp.h" //bootloader support
  715. #endif //BOOTAPP
  716. #if (LANG_MODE != 0) //secondary language support
  717. #ifdef W25X20CL
  718. // language update from external flash
  719. #define LANGBOOT_BLOCKSIZE 0x1000u
  720. #define LANGBOOT_RAMBUFFER 0x0800
  721. void update_sec_lang_from_external_flash()
  722. {
  723. if ((boot_app_magic == BOOT_APP_MAGIC) && (boot_app_flags & BOOT_APP_FLG_USER0))
  724. {
  725. uint8_t lang = boot_reserved >> 4;
  726. uint8_t state = boot_reserved & 0xf;
  727. lang_table_header_t header;
  728. uint32_t src_addr;
  729. if (lang_get_header(lang, &header, &src_addr))
  730. {
  731. lcd_puts_at_P(1,3,PSTR("Language update."));
  732. for (uint8_t i = 0; i < state; i++) fputc('.', lcdout);
  733. _delay(100);
  734. boot_reserved = (state + 1) | (lang << 4);
  735. if ((state * LANGBOOT_BLOCKSIZE) < header.size)
  736. {
  737. cli();
  738. uint16_t size = header.size - state * LANGBOOT_BLOCKSIZE;
  739. if (size > LANGBOOT_BLOCKSIZE) size = LANGBOOT_BLOCKSIZE;
  740. w25x20cl_rd_data(src_addr + state * LANGBOOT_BLOCKSIZE, (uint8_t*)LANGBOOT_RAMBUFFER, size);
  741. if (state == 0)
  742. {
  743. //TODO - check header integrity
  744. }
  745. bootapp_ram2flash(LANGBOOT_RAMBUFFER, _SEC_LANG_TABLE + state * LANGBOOT_BLOCKSIZE, size);
  746. }
  747. else
  748. {
  749. //TODO - check sec lang data integrity
  750. eeprom_update_byte((unsigned char *)EEPROM_LANG, LANG_ID_SEC);
  751. }
  752. }
  753. }
  754. boot_app_flags &= ~BOOT_APP_FLG_USER0;
  755. }
  756. #ifdef DEBUG_W25X20CL
  757. uint8_t lang_xflash_enum_codes(uint16_t* codes)
  758. {
  759. lang_table_header_t header;
  760. uint8_t count = 0;
  761. uint32_t addr = 0x00000;
  762. while (1)
  763. {
  764. printf_P(_n("LANGTABLE%d:"), count);
  765. w25x20cl_rd_data(addr, (uint8_t*)&header, sizeof(lang_table_header_t));
  766. if (header.magic != LANG_MAGIC)
  767. {
  768. printf_P(_n("NG!\n"));
  769. break;
  770. }
  771. printf_P(_n("OK\n"));
  772. printf_P(_n(" _lt_magic = 0x%08lx %S\n"), header.magic, (header.magic==LANG_MAGIC)?_n("OK"):_n("NA"));
  773. printf_P(_n(" _lt_size = 0x%04x (%d)\n"), header.size, header.size);
  774. printf_P(_n(" _lt_count = 0x%04x (%d)\n"), header.count, header.count);
  775. printf_P(_n(" _lt_chsum = 0x%04x\n"), header.checksum);
  776. printf_P(_n(" _lt_code = 0x%04x (%c%c)\n"), header.code, header.code >> 8, header.code & 0xff);
  777. printf_P(_n(" _lt_sign = 0x%08lx\n"), header.signature);
  778. addr += header.size;
  779. codes[count] = header.code;
  780. count ++;
  781. }
  782. return count;
  783. }
  784. void list_sec_lang_from_external_flash()
  785. {
  786. uint16_t codes[8];
  787. uint8_t count = lang_xflash_enum_codes(codes);
  788. printf_P(_n("XFlash lang count = %hhd\n"), count);
  789. }
  790. #endif //DEBUG_W25X20CL
  791. #endif //W25X20CL
  792. #endif //(LANG_MODE != 0)
  793. static void w25x20cl_err_msg()
  794. {
  795. lcd_clear();
  796. lcd_puts_P(_n("External SPI flash\nW25X20CL is not res-\nponding. Language\nswitch unavailable."));
  797. }
  798. // "Setup" function is called by the Arduino framework on startup.
  799. // Before startup, the Timers-functions (PWM)/Analog RW and HardwareSerial provided by the Arduino-code
  800. // are initialized by the main() routine provided by the Arduino framework.
  801. void setup()
  802. {
  803. mmu_init();
  804. ultralcd_init();
  805. #if (LCD_BL_PIN != -1) && defined (LCD_BL_PIN)
  806. analogWrite(LCD_BL_PIN, 255); //set full brightnes
  807. #endif //(LCD_BL_PIN != -1) && defined (LCD_BL_PIN)
  808. spi_init();
  809. lcd_splash();
  810. Sound_Init(); // also guarantee "SET_OUTPUT(BEEPER)"
  811. #ifdef W25X20CL
  812. bool w25x20cl_success = w25x20cl_init();
  813. if (w25x20cl_success)
  814. {
  815. optiboot_w25x20cl_enter();
  816. #if (LANG_MODE != 0) //secondary language support
  817. update_sec_lang_from_external_flash();
  818. #endif //(LANG_MODE != 0)
  819. }
  820. else
  821. {
  822. w25x20cl_err_msg();
  823. }
  824. #else
  825. const bool w25x20cl_success = true;
  826. #endif //W25X20CL
  827. setup_killpin();
  828. setup_powerhold();
  829. farm_mode = eeprom_read_byte((uint8_t*)EEPROM_FARM_MODE);
  830. EEPROM_read_B(EEPROM_FARM_NUMBER, &farm_no);
  831. if ((farm_mode == 0xFF && farm_no == 0) || ((uint16_t)farm_no == 0xFFFF))
  832. farm_mode = false; //if farm_mode has not been stored to eeprom yet and farm number is set to zero or EEPROM is fresh, deactivate farm mode
  833. if ((uint16_t)farm_no == 0xFFFF) farm_no = 0;
  834. selectedSerialPort = eeprom_read_byte((uint8_t*)EEPROM_SECOND_SERIAL_ACTIVE);
  835. if (selectedSerialPort == 0xFF) selectedSerialPort = 0;
  836. if (farm_mode)
  837. {
  838. no_response = true; //we need confirmation by recieving PRUSA thx
  839. important_status = 8;
  840. prusa_statistics(8);
  841. selectedSerialPort = 1;
  842. #ifdef TMC2130
  843. //increased extruder current (PFW363)
  844. tmc2130_current_h[E_AXIS] = 36;
  845. tmc2130_current_r[E_AXIS] = 36;
  846. #endif //TMC2130
  847. #ifdef FILAMENT_SENSOR
  848. //disabled filament autoload (PFW360)
  849. fsensor_autoload_set(false);
  850. #endif //FILAMENT_SENSOR
  851. // ~ FanCheck -> on
  852. if(!(eeprom_read_byte((uint8_t*)EEPROM_FAN_CHECK_ENABLED)))
  853. eeprom_update_byte((unsigned char *)EEPROM_FAN_CHECK_ENABLED,true);
  854. }
  855. MYSERIAL.begin(BAUDRATE);
  856. fdev_setup_stream(uartout, uart_putchar, NULL, _FDEV_SETUP_WRITE); //setup uart out stream
  857. #ifndef W25X20CL
  858. SERIAL_PROTOCOLLNPGM("start");
  859. #endif //W25X20CL
  860. stdout = uartout;
  861. SERIAL_ECHO_START;
  862. printf_P(PSTR(" " FW_VERSION_FULL "\n"));
  863. //SERIAL_ECHOPAIR("Active sheet before:", static_cast<unsigned long int>(eeprom_read_byte(&(EEPROM_Sheets_base->active_sheet))));
  864. #ifdef DEBUG_SEC_LANG
  865. lang_table_header_t header;
  866. uint32_t src_addr = 0x00000;
  867. if (lang_get_header(1, &header, &src_addr))
  868. {
  869. //this is comparsion of some printing-methods regarding to flash space usage and code size/readability
  870. #define LT_PRINT_TEST 2
  871. // flash usage
  872. // total p.test
  873. //0 252718 t+c text code
  874. //1 253142 424 170 254
  875. //2 253040 322 164 158
  876. //3 253248 530 135 395
  877. #if (LT_PRINT_TEST==1) //not optimized printf
  878. printf_P(_n(" _src_addr = 0x%08lx\n"), src_addr);
  879. printf_P(_n(" _lt_magic = 0x%08lx %S\n"), header.magic, (header.magic==LANG_MAGIC)?_n("OK"):_n("NA"));
  880. printf_P(_n(" _lt_size = 0x%04x (%d)\n"), header.size, header.size);
  881. printf_P(_n(" _lt_count = 0x%04x (%d)\n"), header.count, header.count);
  882. printf_P(_n(" _lt_chsum = 0x%04x\n"), header.checksum);
  883. printf_P(_n(" _lt_code = 0x%04x (%c%c)\n"), header.code, header.code >> 8, header.code & 0xff);
  884. printf_P(_n(" _lt_sign = 0x%08lx\n"), header.signature);
  885. #elif (LT_PRINT_TEST==2) //optimized printf
  886. printf_P(
  887. _n(
  888. " _src_addr = 0x%08lx\n"
  889. " _lt_magic = 0x%08lx %S\n"
  890. " _lt_size = 0x%04x (%d)\n"
  891. " _lt_count = 0x%04x (%d)\n"
  892. " _lt_chsum = 0x%04x\n"
  893. " _lt_code = 0x%04x (%c%c)\n"
  894. " _lt_resv1 = 0x%08lx\n"
  895. ),
  896. src_addr,
  897. header.magic, (header.magic==LANG_MAGIC)?_n("OK"):_n("NA"),
  898. header.size, header.size,
  899. header.count, header.count,
  900. header.checksum,
  901. header.code, header.code >> 8, header.code & 0xff,
  902. header.signature
  903. );
  904. #elif (LT_PRINT_TEST==3) //arduino print/println (leading zeros not solved)
  905. MYSERIAL.print(" _src_addr = 0x");
  906. MYSERIAL.println(src_addr, 16);
  907. MYSERIAL.print(" _lt_magic = 0x");
  908. MYSERIAL.print(header.magic, 16);
  909. MYSERIAL.println((header.magic==LANG_MAGIC)?" OK":" NA");
  910. MYSERIAL.print(" _lt_size = 0x");
  911. MYSERIAL.print(header.size, 16);
  912. MYSERIAL.print(" (");
  913. MYSERIAL.print(header.size, 10);
  914. MYSERIAL.println(")");
  915. MYSERIAL.print(" _lt_count = 0x");
  916. MYSERIAL.print(header.count, 16);
  917. MYSERIAL.print(" (");
  918. MYSERIAL.print(header.count, 10);
  919. MYSERIAL.println(")");
  920. MYSERIAL.print(" _lt_chsum = 0x");
  921. MYSERIAL.println(header.checksum, 16);
  922. MYSERIAL.print(" _lt_code = 0x");
  923. MYSERIAL.print(header.code, 16);
  924. MYSERIAL.print(" (");
  925. MYSERIAL.print((char)(header.code >> 8), 0);
  926. MYSERIAL.print((char)(header.code & 0xff), 0);
  927. MYSERIAL.println(")");
  928. MYSERIAL.print(" _lt_resv1 = 0x");
  929. MYSERIAL.println(header.signature, 16);
  930. #endif //(LT_PRINT_TEST==)
  931. #undef LT_PRINT_TEST
  932. #if 0
  933. w25x20cl_rd_data(0x25ba, (uint8_t*)&block_buffer, 1024);
  934. for (uint16_t i = 0; i < 1024; i++)
  935. {
  936. if ((i % 16) == 0) printf_P(_n("%04x:"), 0x25ba+i);
  937. printf_P(_n(" %02x"), ((uint8_t*)&block_buffer)[i]);
  938. if ((i % 16) == 15) putchar('\n');
  939. }
  940. #endif
  941. uint16_t sum = 0;
  942. for (uint16_t i = 0; i < header.size; i++)
  943. sum += (uint16_t)pgm_read_byte((uint8_t*)(_SEC_LANG_TABLE + i)) << ((i & 1)?0:8);
  944. printf_P(_n("_SEC_LANG_TABLE checksum = %04x\n"), sum);
  945. sum -= header.checksum; //subtract checksum
  946. printf_P(_n("_SEC_LANG_TABLE checksum = %04x\n"), sum);
  947. sum = (sum >> 8) | ((sum & 0xff) << 8); //swap bytes
  948. if (sum == header.checksum)
  949. printf_P(_n("Checksum OK\n"), sum);
  950. else
  951. printf_P(_n("Checksum NG\n"), sum);
  952. }
  953. else
  954. printf_P(_n("lang_get_header failed!\n"));
  955. #if 0
  956. for (uint16_t i = 0; i < 1024*10; i++)
  957. {
  958. if ((i % 16) == 0) printf_P(_n("%04x:"), _SEC_LANG_TABLE+i);
  959. printf_P(_n(" %02x"), pgm_read_byte((uint8_t*)(_SEC_LANG_TABLE+i)));
  960. if ((i % 16) == 15) putchar('\n');
  961. }
  962. #endif
  963. #if 0
  964. SERIAL_ECHOLN("Reading eeprom from 0 to 100: start");
  965. for (int i = 0; i < 4096; ++i) {
  966. int b = eeprom_read_byte((unsigned char*)i);
  967. if (b != 255) {
  968. SERIAL_ECHO(i);
  969. SERIAL_ECHO(":");
  970. SERIAL_ECHO(b);
  971. SERIAL_ECHOLN("");
  972. }
  973. }
  974. SERIAL_ECHOLN("Reading eeprom from 0 to 100: done");
  975. #endif
  976. #endif //DEBUG_SEC_LANG
  977. // Check startup - does nothing if bootloader sets MCUSR to 0
  978. byte mcu = MCUSR;
  979. /* if (mcu & 1) SERIAL_ECHOLNRPGM(MSG_POWERUP);
  980. if (mcu & 2) SERIAL_ECHOLNRPGM(MSG_EXTERNAL_RESET);
  981. if (mcu & 4) SERIAL_ECHOLNRPGM(MSG_BROWNOUT_RESET);
  982. if (mcu & 8) SERIAL_ECHOLNRPGM(MSG_WATCHDOG_RESET);
  983. if (mcu & 32) SERIAL_ECHOLNRPGM(MSG_SOFTWARE_RESET);*/
  984. if (mcu & 1) puts_P(MSG_POWERUP);
  985. if (mcu & 2) puts_P(MSG_EXTERNAL_RESET);
  986. if (mcu & 4) puts_P(MSG_BROWNOUT_RESET);
  987. if (mcu & 8) puts_P(MSG_WATCHDOG_RESET);
  988. if (mcu & 32) puts_P(MSG_SOFTWARE_RESET);
  989. MCUSR = 0;
  990. //SERIAL_ECHORPGM(MSG_MARLIN);
  991. //SERIAL_ECHOLNRPGM(VERSION_STRING);
  992. #ifdef STRING_VERSION_CONFIG_H
  993. #ifdef STRING_CONFIG_H_AUTHOR
  994. SERIAL_ECHO_START;
  995. SERIAL_ECHORPGM(_n(" Last Updated: "));////MSG_CONFIGURATION_VER
  996. SERIAL_ECHOPGM(STRING_VERSION_CONFIG_H);
  997. SERIAL_ECHORPGM(_n(" | Author: "));////MSG_AUTHOR
  998. SERIAL_ECHOLNPGM(STRING_CONFIG_H_AUTHOR);
  999. SERIAL_ECHOPGM("Compiled: ");
  1000. SERIAL_ECHOLNPGM(__DATE__);
  1001. #endif
  1002. #endif
  1003. SERIAL_ECHO_START;
  1004. SERIAL_ECHORPGM(_n(" Free Memory: "));////MSG_FREE_MEMORY
  1005. SERIAL_ECHO(freeMemory());
  1006. SERIAL_ECHORPGM(_n(" PlannerBufferBytes: "));////MSG_PLANNER_BUFFER_BYTES
  1007. SERIAL_ECHOLN((int)sizeof(block_t)*BLOCK_BUFFER_SIZE);
  1008. //lcd_update_enable(false); // why do we need this?? - andre
  1009. // loads data from EEPROM if available else uses defaults (and resets step acceleration rate)
  1010. bool previous_settings_retrieved = false;
  1011. uint8_t hw_changed = check_printer_version();
  1012. if (!(hw_changed & 0b10)) { //if printer version wasn't changed, check for eeprom version and retrieve settings from eeprom in case that version wasn't changed
  1013. previous_settings_retrieved = Config_RetrieveSettings();
  1014. }
  1015. else { //printer version was changed so use default settings
  1016. Config_ResetDefault();
  1017. }
  1018. SdFatUtil::set_stack_guard(); //writes magic number at the end of static variables to protect against overwriting static memory by stack
  1019. tp_init(); // Initialize temperature loop
  1020. if (w25x20cl_success) lcd_splash(); // we need to do this again, because tp_init() kills lcd
  1021. else
  1022. {
  1023. w25x20cl_err_msg();
  1024. printf_P(_n("W25X20CL not responding.\n"));
  1025. }
  1026. plan_init(); // Initialize planner;
  1027. factory_reset();
  1028. if (eeprom_read_dword((uint32_t*)(EEPROM_TOP - 4)) == 0x0ffffffff &&
  1029. eeprom_read_dword((uint32_t*)(EEPROM_TOP - 8)) == 0x0ffffffff)
  1030. {
  1031. // Maiden startup. The firmware has been loaded and first started on a virgin RAMBo board,
  1032. // where all the EEPROM entries are set to 0x0ff.
  1033. // Once a firmware boots up, it forces at least a language selection, which changes
  1034. // EEPROM_LANG to number lower than 0x0ff.
  1035. // 1) Set a high power mode.
  1036. eeprom_update_byte((uint8_t*)EEPROM_SILENT, SILENT_MODE_OFF);
  1037. #ifdef TMC2130
  1038. tmc2130_mode = TMC2130_MODE_NORMAL;
  1039. #endif //TMC2130
  1040. eeprom_write_byte((uint8_t*)EEPROM_WIZARD_ACTIVE, 1); //run wizard
  1041. }
  1042. lcd_encoder_diff=0;
  1043. #ifdef TMC2130
  1044. uint8_t silentMode = eeprom_read_byte((uint8_t*)EEPROM_SILENT);
  1045. if (silentMode == 0xff) silentMode = 0;
  1046. tmc2130_mode = TMC2130_MODE_NORMAL;
  1047. if (lcd_crash_detect_enabled() && !farm_mode)
  1048. {
  1049. lcd_crash_detect_enable();
  1050. puts_P(_N("CrashDetect ENABLED!"));
  1051. }
  1052. else
  1053. {
  1054. lcd_crash_detect_disable();
  1055. puts_P(_N("CrashDetect DISABLED"));
  1056. }
  1057. #ifdef TMC2130_LINEARITY_CORRECTION
  1058. #ifdef TMC2130_LINEARITY_CORRECTION_XYZ
  1059. tmc2130_wave_fac[X_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_WAVE_X_FAC);
  1060. tmc2130_wave_fac[Y_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_WAVE_Y_FAC);
  1061. tmc2130_wave_fac[Z_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_WAVE_Z_FAC);
  1062. #endif //TMC2130_LINEARITY_CORRECTION_XYZ
  1063. tmc2130_wave_fac[E_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_WAVE_E_FAC);
  1064. if (tmc2130_wave_fac[X_AXIS] == 0xff) tmc2130_wave_fac[X_AXIS] = 0;
  1065. if (tmc2130_wave_fac[Y_AXIS] == 0xff) tmc2130_wave_fac[Y_AXIS] = 0;
  1066. if (tmc2130_wave_fac[Z_AXIS] == 0xff) tmc2130_wave_fac[Z_AXIS] = 0;
  1067. if (tmc2130_wave_fac[E_AXIS] == 0xff) tmc2130_wave_fac[E_AXIS] = 0;
  1068. #endif //TMC2130_LINEARITY_CORRECTION
  1069. #ifdef TMC2130_VARIABLE_RESOLUTION
  1070. tmc2130_mres[X_AXIS] = tmc2130_usteps2mres(cs.axis_ustep_resolution[X_AXIS]);
  1071. tmc2130_mres[Y_AXIS] = tmc2130_usteps2mres(cs.axis_ustep_resolution[Y_AXIS]);
  1072. tmc2130_mres[Z_AXIS] = tmc2130_usteps2mres(cs.axis_ustep_resolution[Z_AXIS]);
  1073. tmc2130_mres[E_AXIS] = tmc2130_usteps2mres(cs.axis_ustep_resolution[E_AXIS]);
  1074. #else //TMC2130_VARIABLE_RESOLUTION
  1075. tmc2130_mres[X_AXIS] = tmc2130_usteps2mres(TMC2130_USTEPS_XY);
  1076. tmc2130_mres[Y_AXIS] = tmc2130_usteps2mres(TMC2130_USTEPS_XY);
  1077. tmc2130_mres[Z_AXIS] = tmc2130_usteps2mres(TMC2130_USTEPS_Z);
  1078. tmc2130_mres[E_AXIS] = tmc2130_usteps2mres(TMC2130_USTEPS_E);
  1079. #endif //TMC2130_VARIABLE_RESOLUTION
  1080. #endif //TMC2130
  1081. st_init(); // Initialize stepper, this enables interrupts!
  1082. #ifdef UVLO_SUPPORT
  1083. setup_uvlo_interrupt();
  1084. #endif //UVLO_SUPPORT
  1085. #ifdef TMC2130
  1086. tmc2130_mode = silentMode?TMC2130_MODE_SILENT:TMC2130_MODE_NORMAL;
  1087. update_mode_profile();
  1088. tmc2130_init();
  1089. #endif //TMC2130
  1090. #ifdef PSU_Delta
  1091. init_force_z(); // ! important for correct Z-axis initialization
  1092. #endif // PSU_Delta
  1093. setup_photpin();
  1094. servo_init();
  1095. // Reset the machine correction matrix.
  1096. // It does not make sense to load the correction matrix until the machine is homed.
  1097. world2machine_reset();
  1098. #ifdef FILAMENT_SENSOR
  1099. fsensor_init();
  1100. #endif //FILAMENT_SENSOR
  1101. #if defined(CONTROLLERFAN_PIN) && (CONTROLLERFAN_PIN > -1)
  1102. SET_OUTPUT(CONTROLLERFAN_PIN); //Set pin used for driver cooling fan
  1103. #endif
  1104. setup_homepin();
  1105. #ifdef TMC2130
  1106. if (1) {
  1107. // try to run to zero phase before powering the Z motor.
  1108. // Move in negative direction
  1109. WRITE(Z_DIR_PIN,INVERT_Z_DIR);
  1110. // Round the current micro-micro steps to micro steps.
  1111. for (uint16_t phase = (tmc2130_rd_MSCNT(Z_AXIS) + 8) >> 4; phase > 0; -- phase) {
  1112. // Until the phase counter is reset to zero.
  1113. WRITE(Z_STEP_PIN, !INVERT_Z_STEP_PIN);
  1114. _delay(2);
  1115. WRITE(Z_STEP_PIN, INVERT_Z_STEP_PIN);
  1116. _delay(2);
  1117. }
  1118. }
  1119. #endif //TMC2130
  1120. #if defined(Z_AXIS_ALWAYS_ON) && !defined(PSU_Delta)
  1121. enable_z();
  1122. #endif
  1123. farm_mode = eeprom_read_byte((uint8_t*)EEPROM_FARM_MODE);
  1124. EEPROM_read_B(EEPROM_FARM_NUMBER, &farm_no);
  1125. if ((farm_mode == 0xFF && farm_no == 0) || (farm_no == static_cast<int>(0xFFFF))) farm_mode = false; //if farm_mode has not been stored to eeprom yet and farm number is set to zero or EEPROM is fresh, deactivate farm mode
  1126. if (farm_no == static_cast<int>(0xFFFF)) farm_no = 0;
  1127. if (farm_mode)
  1128. {
  1129. prusa_statistics(8);
  1130. }
  1131. // Enable Toshiba FlashAir SD card / WiFi enahanced card.
  1132. card.ToshibaFlashAir_enable(eeprom_read_byte((unsigned char*)EEPROM_TOSHIBA_FLASH_AIR_COMPATIBLITY) == 1);
  1133. // Force SD card update. Otherwise the SD card update is done from loop() on card.checkautostart(false),
  1134. // but this times out if a blocking dialog is shown in setup().
  1135. card.initsd();
  1136. #ifdef DEBUG_SD_SPEED_TEST
  1137. if (card.cardOK)
  1138. {
  1139. uint8_t* buff = (uint8_t*)block_buffer;
  1140. uint32_t block = 0;
  1141. uint32_t sumr = 0;
  1142. uint32_t sumw = 0;
  1143. for (int i = 0; i < 1024; i++)
  1144. {
  1145. uint32_t u = _micros();
  1146. bool res = card.card.readBlock(i, buff);
  1147. u = _micros() - u;
  1148. if (res)
  1149. {
  1150. printf_P(PSTR("readBlock %4d 512 bytes %lu us\n"), i, u);
  1151. sumr += u;
  1152. u = _micros();
  1153. res = card.card.writeBlock(i, buff);
  1154. u = _micros() - u;
  1155. if (res)
  1156. {
  1157. printf_P(PSTR("writeBlock %4d 512 bytes %lu us\n"), i, u);
  1158. sumw += u;
  1159. }
  1160. else
  1161. {
  1162. printf_P(PSTR("writeBlock %4d error\n"), i);
  1163. break;
  1164. }
  1165. }
  1166. else
  1167. {
  1168. printf_P(PSTR("readBlock %4d error\n"), i);
  1169. break;
  1170. }
  1171. }
  1172. uint32_t avg_rspeed = (1024 * 1000000) / (sumr / 512);
  1173. uint32_t avg_wspeed = (1024 * 1000000) / (sumw / 512);
  1174. printf_P(PSTR("avg read speed %lu bytes/s\n"), avg_rspeed);
  1175. printf_P(PSTR("avg write speed %lu bytes/s\n"), avg_wspeed);
  1176. }
  1177. else
  1178. printf_P(PSTR("Card NG!\n"));
  1179. #endif //DEBUG_SD_SPEED_TEST
  1180. eeprom_init();
  1181. #ifdef SNMM
  1182. if (eeprom_read_dword((uint32_t*)EEPROM_BOWDEN_LENGTH) == 0x0ffffffff) { //bowden length used for SNMM
  1183. int _z = BOWDEN_LENGTH;
  1184. for(int i = 0; i<4; i++) EEPROM_save_B(EEPROM_BOWDEN_LENGTH + i * 2, &_z);
  1185. }
  1186. #endif
  1187. // In the future, somewhere here would one compare the current firmware version against the firmware version stored in the EEPROM.
  1188. // If they differ, an update procedure may need to be performed. At the end of this block, the current firmware version
  1189. // is being written into the EEPROM, so the update procedure will be triggered only once.
  1190. #if (LANG_MODE != 0) //secondary language support
  1191. #ifdef DEBUG_W25X20CL
  1192. W25X20CL_SPI_ENTER();
  1193. uint8_t uid[8]; // 64bit unique id
  1194. w25x20cl_rd_uid(uid);
  1195. puts_P(_n("W25X20CL UID="));
  1196. for (uint8_t i = 0; i < 8; i ++)
  1197. printf_P(PSTR("%02hhx"), uid[i]);
  1198. putchar('\n');
  1199. list_sec_lang_from_external_flash();
  1200. #endif //DEBUG_W25X20CL
  1201. // lang_reset();
  1202. if (!lang_select(eeprom_read_byte((uint8_t*)EEPROM_LANG)))
  1203. lcd_language();
  1204. #ifdef DEBUG_SEC_LANG
  1205. uint16_t sec_lang_code = lang_get_code(1);
  1206. uint16_t ui = _SEC_LANG_TABLE; //table pointer
  1207. printf_P(_n("lang_selected=%d\nlang_table=0x%04x\nSEC_LANG_CODE=0x%04x (%c%c)\n"), lang_selected, ui, sec_lang_code, sec_lang_code >> 8, sec_lang_code & 0xff);
  1208. lang_print_sec_lang(uartout);
  1209. #endif //DEBUG_SEC_LANG
  1210. #endif //(LANG_MODE != 0)
  1211. if (eeprom_read_byte((uint8_t*)EEPROM_TEMP_CAL_ACTIVE) == 255) {
  1212. eeprom_write_byte((uint8_t*)EEPROM_TEMP_CAL_ACTIVE, 0);
  1213. temp_cal_active = false;
  1214. } else temp_cal_active = eeprom_read_byte((uint8_t*)EEPROM_TEMP_CAL_ACTIVE);
  1215. if (eeprom_read_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA) == 255) {
  1216. //eeprom_write_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 0);
  1217. eeprom_write_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 1);
  1218. int16_t z_shift = 0;
  1219. for (uint8_t i = 0; i < 5; i++) EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + i * 2, &z_shift);
  1220. eeprom_write_byte((uint8_t*)EEPROM_TEMP_CAL_ACTIVE, 0);
  1221. temp_cal_active = false;
  1222. }
  1223. if (eeprom_read_byte((uint8_t*)EEPROM_UVLO) == 255) {
  1224. eeprom_write_byte((uint8_t*)EEPROM_UVLO, 0);
  1225. }
  1226. if (eeprom_read_byte((uint8_t*)EEPROM_SD_SORT) == 255) {
  1227. eeprom_write_byte((uint8_t*)EEPROM_SD_SORT, 0);
  1228. }
  1229. //mbl_mode_init();
  1230. mbl_settings_init();
  1231. SilentModeMenu_MMU = eeprom_read_byte((uint8_t*)EEPROM_MMU_STEALTH);
  1232. if (SilentModeMenu_MMU == 255) {
  1233. SilentModeMenu_MMU = 1;
  1234. eeprom_write_byte((uint8_t*)EEPROM_MMU_STEALTH, SilentModeMenu_MMU);
  1235. }
  1236. #if !defined(DEBUG_DISABLE_FANCHECK) && defined(FANCHECK) && defined(TACH_1) && TACH_1 >-1
  1237. setup_fan_interrupt();
  1238. #endif //DEBUG_DISABLE_FANCHECK
  1239. #ifdef PAT9125
  1240. fsensor_setup_interrupt();
  1241. #endif //PAT9125
  1242. for (int i = 0; i<4; i++) EEPROM_read_B(EEPROM_BOWDEN_LENGTH + i * 2, &bowden_length[i]);
  1243. #ifndef DEBUG_DISABLE_STARTMSGS
  1244. KEEPALIVE_STATE(PAUSED_FOR_USER);
  1245. if (!farm_mode) {
  1246. check_if_fw_is_on_right_printer();
  1247. show_fw_version_warnings();
  1248. }
  1249. switch (hw_changed) {
  1250. //if motherboard or printer type was changed inform user as it can indicate flashing wrong firmware version
  1251. //if user confirms with knob, new hw version (printer and/or motherboard) is written to eeprom and message will be not shown next time
  1252. case(0b01):
  1253. lcd_show_fullscreen_message_and_wait_P(_i("Warning: motherboard type changed.")); ////MSG_CHANGED_MOTHERBOARD c=20 r=4
  1254. eeprom_write_word((uint16_t*)EEPROM_BOARD_TYPE, MOTHERBOARD);
  1255. break;
  1256. case(0b10):
  1257. lcd_show_fullscreen_message_and_wait_P(_i("Warning: printer type changed.")); ////MSG_CHANGED_PRINTER c=20 r=4
  1258. eeprom_write_word((uint16_t*)EEPROM_PRINTER_TYPE, PRINTER_TYPE);
  1259. break;
  1260. case(0b11):
  1261. lcd_show_fullscreen_message_and_wait_P(_i("Warning: both printer type and motherboard type changed.")); ////MSG_CHANGED_BOTH c=20 r=4
  1262. eeprom_write_word((uint16_t*)EEPROM_PRINTER_TYPE, PRINTER_TYPE);
  1263. eeprom_write_word((uint16_t*)EEPROM_BOARD_TYPE, MOTHERBOARD);
  1264. break;
  1265. default: break; //no change, show no message
  1266. }
  1267. if (!previous_settings_retrieved) {
  1268. lcd_show_fullscreen_message_and_wait_P(_i("Old settings found. Default PID, Esteps etc. will be set.")); //if EEPROM version or printer type was changed, inform user that default setting were loaded////MSG_DEFAULT_SETTINGS_LOADED c=20 r=4
  1269. Config_StoreSettings();
  1270. }
  1271. if (eeprom_read_byte((uint8_t*)EEPROM_WIZARD_ACTIVE) == 1) {
  1272. lcd_wizard(WizState::Run);
  1273. }
  1274. if (eeprom_read_byte((uint8_t*)EEPROM_WIZARD_ACTIVE) == 0) { //dont show calibration status messages if wizard is currently active
  1275. if (calibration_status() == CALIBRATION_STATUS_ASSEMBLED ||
  1276. calibration_status() == CALIBRATION_STATUS_UNKNOWN ||
  1277. calibration_status() == CALIBRATION_STATUS_XYZ_CALIBRATION) {
  1278. // Reset the babystepping values, so the printer will not move the Z axis up when the babystepping is enabled.
  1279. eeprom_update_word(reinterpret_cast<uint16_t *>(&(EEPROM_Sheets_base->s[(eeprom_read_byte(&(EEPROM_Sheets_base->active_sheet)))].z_offset)),0);
  1280. // Show the message.
  1281. lcd_show_fullscreen_message_and_wait_P(_T(MSG_FOLLOW_CALIBRATION_FLOW));
  1282. }
  1283. else if (calibration_status() == CALIBRATION_STATUS_LIVE_ADJUST) {
  1284. // Show the message.
  1285. lcd_show_fullscreen_message_and_wait_P(_T(MSG_BABYSTEP_Z_NOT_SET));
  1286. lcd_update_enable(true);
  1287. }
  1288. else if (calibration_status() == CALIBRATION_STATUS_CALIBRATED && temp_cal_active == true && calibration_status_pinda() == false) {
  1289. //lcd_show_fullscreen_message_and_wait_P(_i("Temperature calibration has not been run yet"));////MSG_PINDA_NOT_CALIBRATED c=20 r=4
  1290. lcd_update_enable(true);
  1291. }
  1292. else if (calibration_status() == CALIBRATION_STATUS_Z_CALIBRATION) {
  1293. // Show the message.
  1294. lcd_show_fullscreen_message_and_wait_P(_T(MSG_FOLLOW_Z_CALIBRATION_FLOW));
  1295. }
  1296. }
  1297. #if !defined (DEBUG_DISABLE_FORCE_SELFTEST) && defined (TMC2130)
  1298. if (force_selftest_if_fw_version() && calibration_status() < CALIBRATION_STATUS_ASSEMBLED) {
  1299. lcd_show_fullscreen_message_and_wait_P(_i("Selftest will be run to calibrate accurate sensorless rehoming."));////MSG_FORCE_SELFTEST c=20 r=8
  1300. update_current_firmware_version_to_eeprom();
  1301. lcd_selftest();
  1302. }
  1303. #endif //TMC2130 && !DEBUG_DISABLE_FORCE_SELFTEST
  1304. KEEPALIVE_STATE(IN_PROCESS);
  1305. #endif //DEBUG_DISABLE_STARTMSGS
  1306. lcd_update_enable(true);
  1307. lcd_clear();
  1308. lcd_update(2);
  1309. // Store the currently running firmware into an eeprom,
  1310. // so the next time the firmware gets updated, it will know from which version it has been updated.
  1311. update_current_firmware_version_to_eeprom();
  1312. #ifdef TMC2130
  1313. tmc2130_home_origin[X_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_HOME_X_ORIGIN);
  1314. tmc2130_home_bsteps[X_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_HOME_X_BSTEPS);
  1315. tmc2130_home_fsteps[X_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_HOME_X_FSTEPS);
  1316. if (tmc2130_home_origin[X_AXIS] == 0xff) tmc2130_home_origin[X_AXIS] = 0;
  1317. if (tmc2130_home_bsteps[X_AXIS] == 0xff) tmc2130_home_bsteps[X_AXIS] = 48;
  1318. if (tmc2130_home_fsteps[X_AXIS] == 0xff) tmc2130_home_fsteps[X_AXIS] = 48;
  1319. tmc2130_home_origin[Y_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_HOME_Y_ORIGIN);
  1320. tmc2130_home_bsteps[Y_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_HOME_Y_BSTEPS);
  1321. tmc2130_home_fsteps[Y_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_HOME_Y_FSTEPS);
  1322. if (tmc2130_home_origin[Y_AXIS] == 0xff) tmc2130_home_origin[Y_AXIS] = 0;
  1323. if (tmc2130_home_bsteps[Y_AXIS] == 0xff) tmc2130_home_bsteps[Y_AXIS] = 48;
  1324. if (tmc2130_home_fsteps[Y_AXIS] == 0xff) tmc2130_home_fsteps[Y_AXIS] = 48;
  1325. tmc2130_home_enabled = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_HOME_ENABLED);
  1326. if (tmc2130_home_enabled == 0xff) tmc2130_home_enabled = 0;
  1327. #endif //TMC2130
  1328. #ifdef UVLO_SUPPORT
  1329. if (eeprom_read_byte((uint8_t*)EEPROM_UVLO) != 0) { //previous print was terminated by UVLO
  1330. /*
  1331. if (lcd_show_fullscreen_message_yes_no_and_wait_P(_T(MSG_RECOVER_PRINT), false)) recover_print();
  1332. else {
  1333. eeprom_update_byte((uint8_t*)EEPROM_UVLO, 0);
  1334. lcd_update_enable(true);
  1335. lcd_update(2);
  1336. lcd_setstatuspgm(_T(WELCOME_MSG));
  1337. }
  1338. */
  1339. manage_heater(); // Update temperatures
  1340. #ifdef DEBUG_UVLO_AUTOMATIC_RECOVER
  1341. printf_P(_N("Power panic detected!\nCurrent bed temp:%d\nSaved bed temp:%d\n"), (int)degBed(), eeprom_read_byte((uint8_t*)EEPROM_UVLO_TARGET_BED));
  1342. #endif
  1343. if ( degBed() > ( (float)eeprom_read_byte((uint8_t*)EEPROM_UVLO_TARGET_BED) - AUTOMATIC_UVLO_BED_TEMP_OFFSET) ){
  1344. #ifdef DEBUG_UVLO_AUTOMATIC_RECOVER
  1345. puts_P(_N("Automatic recovery!"));
  1346. #endif
  1347. recover_print(1);
  1348. }
  1349. else{
  1350. #ifdef DEBUG_UVLO_AUTOMATIC_RECOVER
  1351. puts_P(_N("Normal recovery!"));
  1352. #endif
  1353. if ( lcd_show_fullscreen_message_yes_no_and_wait_P(_T(MSG_RECOVER_PRINT), false) ) recover_print(0);
  1354. else {
  1355. eeprom_update_byte((uint8_t*)EEPROM_UVLO, 0);
  1356. lcd_update_enable(true);
  1357. lcd_update(2);
  1358. lcd_setstatuspgm(_T(WELCOME_MSG));
  1359. }
  1360. }
  1361. }
  1362. #endif //UVLO_SUPPORT
  1363. fCheckModeInit();
  1364. fSetMmuMode(mmu_enabled);
  1365. KEEPALIVE_STATE(NOT_BUSY);
  1366. #ifdef WATCHDOG
  1367. wdt_enable(WDTO_4S);
  1368. #endif //WATCHDOG
  1369. }
  1370. void trace();
  1371. #define CHUNK_SIZE 64 // bytes
  1372. #define SAFETY_MARGIN 1
  1373. char chunk[CHUNK_SIZE+SAFETY_MARGIN];
  1374. int chunkHead = 0;
  1375. void serial_read_stream() {
  1376. setAllTargetHotends(0);
  1377. setTargetBed(0);
  1378. lcd_clear();
  1379. lcd_puts_P(PSTR(" Upload in progress"));
  1380. // first wait for how many bytes we will receive
  1381. uint32_t bytesToReceive;
  1382. // receive the four bytes
  1383. char bytesToReceiveBuffer[4];
  1384. for (int i=0; i<4; i++) {
  1385. int data;
  1386. while ((data = MYSERIAL.read()) == -1) {};
  1387. bytesToReceiveBuffer[i] = data;
  1388. }
  1389. // make it a uint32
  1390. memcpy(&bytesToReceive, &bytesToReceiveBuffer, 4);
  1391. // we're ready, notify the sender
  1392. MYSERIAL.write('+');
  1393. // lock in the routine
  1394. uint32_t receivedBytes = 0;
  1395. while (prusa_sd_card_upload) {
  1396. int i;
  1397. for (i=0; i<CHUNK_SIZE; i++) {
  1398. int data;
  1399. // check if we're not done
  1400. if (receivedBytes == bytesToReceive) {
  1401. break;
  1402. }
  1403. // read the next byte
  1404. while ((data = MYSERIAL.read()) == -1) {};
  1405. receivedBytes++;
  1406. // save it to the chunk
  1407. chunk[i] = data;
  1408. }
  1409. // write the chunk to SD
  1410. card.write_command_no_newline(&chunk[0]);
  1411. // notify the sender we're ready for more data
  1412. MYSERIAL.write('+');
  1413. // for safety
  1414. manage_heater();
  1415. // check if we're done
  1416. if(receivedBytes == bytesToReceive) {
  1417. trace(); // beep
  1418. card.closefile();
  1419. prusa_sd_card_upload = false;
  1420. SERIAL_PROTOCOLLNRPGM(MSG_FILE_SAVED);
  1421. }
  1422. }
  1423. }
  1424. /**
  1425. * Output a "busy" message at regular intervals
  1426. * while the machine is not accepting commands.
  1427. */
  1428. void host_keepalive() {
  1429. #ifndef HOST_KEEPALIVE_FEATURE
  1430. return;
  1431. #endif //HOST_KEEPALIVE_FEATURE
  1432. if (farm_mode) return;
  1433. long ms = _millis();
  1434. if (host_keepalive_interval && busy_state != NOT_BUSY) {
  1435. if ((ms - prev_busy_signal_ms) < (long)(1000L * host_keepalive_interval)) return;
  1436. switch (busy_state) {
  1437. case IN_HANDLER:
  1438. case IN_PROCESS:
  1439. SERIAL_ECHO_START;
  1440. SERIAL_ECHOLNPGM("busy: processing");
  1441. break;
  1442. case PAUSED_FOR_USER:
  1443. SERIAL_ECHO_START;
  1444. SERIAL_ECHOLNPGM("busy: paused for user");
  1445. break;
  1446. case PAUSED_FOR_INPUT:
  1447. SERIAL_ECHO_START;
  1448. SERIAL_ECHOLNPGM("busy: paused for input");
  1449. break;
  1450. default:
  1451. break;
  1452. }
  1453. }
  1454. prev_busy_signal_ms = ms;
  1455. }
  1456. // The loop() function is called in an endless loop by the Arduino framework from the default main() routine.
  1457. // Before loop(), the setup() function is called by the main() routine.
  1458. void loop()
  1459. {
  1460. KEEPALIVE_STATE(NOT_BUSY);
  1461. if ((usb_printing_counter > 0) && ((_millis()-_usb_timer) > 1000))
  1462. {
  1463. is_usb_printing = true;
  1464. usb_printing_counter--;
  1465. _usb_timer = _millis();
  1466. }
  1467. if (usb_printing_counter == 0)
  1468. {
  1469. is_usb_printing = false;
  1470. }
  1471. if (isPrintPaused && saved_printing_type == PRINTING_TYPE_USB) //keep believing that usb is being printed. Prevents accessing dangerous menus while pausing.
  1472. {
  1473. is_usb_printing = true;
  1474. }
  1475. #ifdef FANCHECK
  1476. if (fan_check_error && isPrintPaused)
  1477. {
  1478. KEEPALIVE_STATE(PAUSED_FOR_USER);
  1479. host_keepalive(); //prevent timeouts since usb processing is disabled until print is resumed. This is for a crude way of pausing a print on all hosts.
  1480. }
  1481. #endif
  1482. if (prusa_sd_card_upload)
  1483. {
  1484. //we read byte-by byte
  1485. serial_read_stream();
  1486. }
  1487. else
  1488. {
  1489. get_command();
  1490. #ifdef SDSUPPORT
  1491. card.checkautostart(false);
  1492. #endif
  1493. if(buflen)
  1494. {
  1495. cmdbuffer_front_already_processed = false;
  1496. #ifdef SDSUPPORT
  1497. if(card.saving)
  1498. {
  1499. // Saving a G-code file onto an SD-card is in progress.
  1500. // Saving starts with M28, saving until M29 is seen.
  1501. if(strstr_P(CMDBUFFER_CURRENT_STRING, PSTR("M29")) == NULL) {
  1502. card.write_command(CMDBUFFER_CURRENT_STRING);
  1503. if(card.logging)
  1504. process_commands();
  1505. else
  1506. SERIAL_PROTOCOLLNRPGM(MSG_OK);
  1507. } else {
  1508. card.closefile();
  1509. SERIAL_PROTOCOLLNRPGM(MSG_FILE_SAVED);
  1510. }
  1511. } else {
  1512. process_commands();
  1513. }
  1514. #else
  1515. process_commands();
  1516. #endif //SDSUPPORT
  1517. if (! cmdbuffer_front_already_processed && buflen)
  1518. {
  1519. // ptr points to the start of the block currently being processed.
  1520. // The first character in the block is the block type.
  1521. char *ptr = cmdbuffer + bufindr;
  1522. if (*ptr == CMDBUFFER_CURRENT_TYPE_SDCARD) {
  1523. // To support power panic, move the lenght of the command on the SD card to a planner buffer.
  1524. union {
  1525. struct {
  1526. char lo;
  1527. char hi;
  1528. } lohi;
  1529. uint16_t value;
  1530. } sdlen;
  1531. sdlen.value = 0;
  1532. {
  1533. // This block locks the interrupts globally for 3.25 us,
  1534. // which corresponds to a maximum repeat frequency of 307.69 kHz.
  1535. // This blocking is safe in the context of a 10kHz stepper driver interrupt
  1536. // or a 115200 Bd serial line receive interrupt, which will not trigger faster than 12kHz.
  1537. cli();
  1538. // Reset the command to something, which will be ignored by the power panic routine,
  1539. // so this buffer length will not be counted twice.
  1540. *ptr ++ = CMDBUFFER_CURRENT_TYPE_TO_BE_REMOVED;
  1541. // Extract the current buffer length.
  1542. sdlen.lohi.lo = *ptr ++;
  1543. sdlen.lohi.hi = *ptr;
  1544. // and pass it to the planner queue.
  1545. planner_add_sd_length(sdlen.value);
  1546. sei();
  1547. }
  1548. }
  1549. else if((*ptr == CMDBUFFER_CURRENT_TYPE_USB_WITH_LINENR) && !IS_SD_PRINTING){
  1550. cli();
  1551. *ptr ++ = CMDBUFFER_CURRENT_TYPE_TO_BE_REMOVED;
  1552. // and one for each command to previous block in the planner queue.
  1553. planner_add_sd_length(1);
  1554. sei();
  1555. }
  1556. // Now it is safe to release the already processed command block. If interrupted by the power panic now,
  1557. // this block's SD card length will not be counted twice as its command type has been replaced
  1558. // by CMDBUFFER_CURRENT_TYPE_TO_BE_REMOVED.
  1559. cmdqueue_pop_front();
  1560. }
  1561. host_keepalive();
  1562. }
  1563. }
  1564. //check heater every n milliseconds
  1565. manage_heater();
  1566. isPrintPaused ? manage_inactivity(true) : manage_inactivity(false);
  1567. checkHitEndstops();
  1568. lcd_update(0);
  1569. #ifdef TMC2130
  1570. tmc2130_check_overtemp();
  1571. if (tmc2130_sg_crash)
  1572. {
  1573. uint8_t crash = tmc2130_sg_crash;
  1574. tmc2130_sg_crash = 0;
  1575. // crashdet_stop_and_save_print();
  1576. switch (crash)
  1577. {
  1578. case 1: enquecommand_P((PSTR("CRASH_DETECTEDX"))); break;
  1579. case 2: enquecommand_P((PSTR("CRASH_DETECTEDY"))); break;
  1580. case 3: enquecommand_P((PSTR("CRASH_DETECTEDXY"))); break;
  1581. }
  1582. }
  1583. #endif //TMC2130
  1584. mmu_loop();
  1585. }
  1586. #define DEFINE_PGM_READ_ANY(type, reader) \
  1587. static inline type pgm_read_any(const type *p) \
  1588. { return pgm_read_##reader##_near(p); }
  1589. DEFINE_PGM_READ_ANY(float, float);
  1590. DEFINE_PGM_READ_ANY(signed char, byte);
  1591. #define XYZ_CONSTS_FROM_CONFIG(type, array, CONFIG) \
  1592. static const PROGMEM type array##_P[3] = \
  1593. { X_##CONFIG, Y_##CONFIG, Z_##CONFIG }; \
  1594. static inline type array(int axis) \
  1595. { return pgm_read_any(&array##_P[axis]); } \
  1596. type array##_ext(int axis) \
  1597. { return pgm_read_any(&array##_P[axis]); }
  1598. XYZ_CONSTS_FROM_CONFIG(float, base_min_pos, MIN_POS);
  1599. XYZ_CONSTS_FROM_CONFIG(float, base_max_pos, MAX_POS);
  1600. XYZ_CONSTS_FROM_CONFIG(float, base_home_pos, HOME_POS);
  1601. XYZ_CONSTS_FROM_CONFIG(float, max_length, MAX_LENGTH);
  1602. XYZ_CONSTS_FROM_CONFIG(float, home_retract_mm, HOME_RETRACT_MM);
  1603. XYZ_CONSTS_FROM_CONFIG(signed char, home_dir, HOME_DIR);
  1604. static void axis_is_at_home(int axis) {
  1605. current_position[axis] = base_home_pos(axis) + cs.add_homing[axis];
  1606. min_pos[axis] = base_min_pos(axis) + cs.add_homing[axis];
  1607. max_pos[axis] = base_max_pos(axis) + cs.add_homing[axis];
  1608. }
  1609. inline void set_current_to_destination() { memcpy(current_position, destination, sizeof(current_position)); }
  1610. inline void set_destination_to_current() { memcpy(destination, current_position, sizeof(destination)); }
  1611. //! @return original feedmultiply
  1612. static int setup_for_endstop_move(bool enable_endstops_now = true) {
  1613. saved_feedrate = feedrate;
  1614. int l_feedmultiply = feedmultiply;
  1615. feedmultiply = 100;
  1616. previous_millis_cmd = _millis();
  1617. enable_endstops(enable_endstops_now);
  1618. return l_feedmultiply;
  1619. }
  1620. //! @param original_feedmultiply feedmultiply to restore
  1621. static void clean_up_after_endstop_move(int original_feedmultiply) {
  1622. #ifdef ENDSTOPS_ONLY_FOR_HOMING
  1623. enable_endstops(false);
  1624. #endif
  1625. feedrate = saved_feedrate;
  1626. feedmultiply = original_feedmultiply;
  1627. previous_millis_cmd = _millis();
  1628. }
  1629. #ifdef ENABLE_AUTO_BED_LEVELING
  1630. #ifdef AUTO_BED_LEVELING_GRID
  1631. static void set_bed_level_equation_lsq(double *plane_equation_coefficients)
  1632. {
  1633. vector_3 planeNormal = vector_3(-plane_equation_coefficients[0], -plane_equation_coefficients[1], 1);
  1634. planeNormal.debug("planeNormal");
  1635. plan_bed_level_matrix = matrix_3x3::create_look_at(planeNormal);
  1636. //bedLevel.debug("bedLevel");
  1637. //plan_bed_level_matrix.debug("bed level before");
  1638. //vector_3 uncorrected_position = plan_get_position_mm();
  1639. //uncorrected_position.debug("position before");
  1640. vector_3 corrected_position = plan_get_position();
  1641. // corrected_position.debug("position after");
  1642. current_position[X_AXIS] = corrected_position.x;
  1643. current_position[Y_AXIS] = corrected_position.y;
  1644. current_position[Z_AXIS] = corrected_position.z;
  1645. // put the bed at 0 so we don't go below it.
  1646. current_position[Z_AXIS] = cs.zprobe_zoffset; // in the lsq we reach here after raising the extruder due to the loop structure
  1647. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1648. }
  1649. #else // not AUTO_BED_LEVELING_GRID
  1650. static void set_bed_level_equation_3pts(float z_at_pt_1, float z_at_pt_2, float z_at_pt_3) {
  1651. plan_bed_level_matrix.set_to_identity();
  1652. vector_3 pt1 = vector_3(ABL_PROBE_PT_1_X, ABL_PROBE_PT_1_Y, z_at_pt_1);
  1653. vector_3 pt2 = vector_3(ABL_PROBE_PT_2_X, ABL_PROBE_PT_2_Y, z_at_pt_2);
  1654. vector_3 pt3 = vector_3(ABL_PROBE_PT_3_X, ABL_PROBE_PT_3_Y, z_at_pt_3);
  1655. vector_3 from_2_to_1 = (pt1 - pt2).get_normal();
  1656. vector_3 from_2_to_3 = (pt3 - pt2).get_normal();
  1657. vector_3 planeNormal = vector_3::cross(from_2_to_1, from_2_to_3).get_normal();
  1658. planeNormal = vector_3(planeNormal.x, planeNormal.y, abs(planeNormal.z));
  1659. plan_bed_level_matrix = matrix_3x3::create_look_at(planeNormal);
  1660. vector_3 corrected_position = plan_get_position();
  1661. current_position[X_AXIS] = corrected_position.x;
  1662. current_position[Y_AXIS] = corrected_position.y;
  1663. current_position[Z_AXIS] = corrected_position.z;
  1664. // put the bed at 0 so we don't go below it.
  1665. current_position[Z_AXIS] = cs.zprobe_zoffset;
  1666. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1667. }
  1668. #endif // AUTO_BED_LEVELING_GRID
  1669. static void run_z_probe() {
  1670. plan_bed_level_matrix.set_to_identity();
  1671. feedrate = homing_feedrate[Z_AXIS];
  1672. // move down until you find the bed
  1673. float zPosition = -10;
  1674. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder);
  1675. st_synchronize();
  1676. // we have to let the planner know where we are right now as it is not where we said to go.
  1677. zPosition = st_get_position_mm(Z_AXIS);
  1678. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS]);
  1679. // move up the retract distance
  1680. zPosition += home_retract_mm(Z_AXIS);
  1681. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder);
  1682. st_synchronize();
  1683. // move back down slowly to find bed
  1684. feedrate = homing_feedrate[Z_AXIS]/4;
  1685. zPosition -= home_retract_mm(Z_AXIS) * 2;
  1686. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder);
  1687. st_synchronize();
  1688. current_position[Z_AXIS] = st_get_position_mm(Z_AXIS);
  1689. // make sure the planner knows where we are as it may be a bit different than we last said to move to
  1690. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1691. }
  1692. static void do_blocking_move_to(float x, float y, float z) {
  1693. float oldFeedRate = feedrate;
  1694. feedrate = homing_feedrate[Z_AXIS];
  1695. current_position[Z_AXIS] = z;
  1696. plan_buffer_line_curposXYZE(feedrate/60, active_extruder);
  1697. st_synchronize();
  1698. feedrate = XY_TRAVEL_SPEED;
  1699. current_position[X_AXIS] = x;
  1700. current_position[Y_AXIS] = y;
  1701. plan_buffer_line_curposXYZE(feedrate/60, active_extruder);
  1702. st_synchronize();
  1703. feedrate = oldFeedRate;
  1704. }
  1705. static void do_blocking_move_relative(float offset_x, float offset_y, float offset_z) {
  1706. do_blocking_move_to(current_position[X_AXIS] + offset_x, current_position[Y_AXIS] + offset_y, current_position[Z_AXIS] + offset_z);
  1707. }
  1708. /// Probe bed height at position (x,y), returns the measured z value
  1709. static float probe_pt(float x, float y, float z_before) {
  1710. // move to right place
  1711. do_blocking_move_to(current_position[X_AXIS], current_position[Y_AXIS], z_before);
  1712. do_blocking_move_to(x - X_PROBE_OFFSET_FROM_EXTRUDER, y - Y_PROBE_OFFSET_FROM_EXTRUDER, current_position[Z_AXIS]);
  1713. run_z_probe();
  1714. float measured_z = current_position[Z_AXIS];
  1715. SERIAL_PROTOCOLRPGM(_T(MSG_BED));
  1716. SERIAL_PROTOCOLPGM(" x: ");
  1717. SERIAL_PROTOCOL(x);
  1718. SERIAL_PROTOCOLPGM(" y: ");
  1719. SERIAL_PROTOCOL(y);
  1720. SERIAL_PROTOCOLPGM(" z: ");
  1721. SERIAL_PROTOCOL(measured_z);
  1722. SERIAL_PROTOCOLPGM("\n");
  1723. return measured_z;
  1724. }
  1725. #endif // #ifdef ENABLE_AUTO_BED_LEVELING
  1726. #ifdef LIN_ADVANCE
  1727. /**
  1728. * M900: Set and/or Get advance K factor and WH/D ratio
  1729. *
  1730. * K<factor> Set advance K factor
  1731. * R<ratio> Set ratio directly (overrides WH/D)
  1732. * W<width> H<height> D<diam> Set ratio from WH/D
  1733. */
  1734. inline void gcode_M900() {
  1735. st_synchronize();
  1736. const float newK = code_seen('K') ? code_value_float() : -1;
  1737. if (newK >= 0) extruder_advance_k = newK;
  1738. float newR = code_seen('R') ? code_value_float() : -1;
  1739. if (newR < 0) {
  1740. const float newD = code_seen('D') ? code_value_float() : -1,
  1741. newW = code_seen('W') ? code_value_float() : -1,
  1742. newH = code_seen('H') ? code_value_float() : -1;
  1743. if (newD >= 0 && newW >= 0 && newH >= 0)
  1744. newR = newD ? (newW * newH) / (sq(newD * 0.5) * M_PI) : 0;
  1745. }
  1746. if (newR >= 0) advance_ed_ratio = newR;
  1747. SERIAL_ECHO_START;
  1748. SERIAL_ECHOPGM("Advance K=");
  1749. SERIAL_ECHOLN(extruder_advance_k);
  1750. SERIAL_ECHOPGM(" E/D=");
  1751. const float ratio = advance_ed_ratio;
  1752. if (ratio) SERIAL_ECHOLN(ratio); else SERIAL_ECHOLNPGM("Auto");
  1753. }
  1754. #endif // LIN_ADVANCE
  1755. bool check_commands() {
  1756. bool end_command_found = false;
  1757. while (buflen)
  1758. {
  1759. if ((code_seen("M84")) || (code_seen("M 84"))) end_command_found = true;
  1760. if (!cmdbuffer_front_already_processed)
  1761. cmdqueue_pop_front();
  1762. cmdbuffer_front_already_processed = false;
  1763. }
  1764. return end_command_found;
  1765. }
  1766. // raise_z_above: slowly raise Z to the requested height
  1767. //
  1768. // contrarily to a simple move, this function will carefully plan a move
  1769. // when the current Z position is unknown. In such cases, stallguard is
  1770. // enabled and will prevent prolonged pushing against the Z tops
  1771. void raise_z_above(float target, bool plan)
  1772. {
  1773. if (current_position[Z_AXIS] >= target)
  1774. return;
  1775. // Z needs raising
  1776. current_position[Z_AXIS] = target;
  1777. if (axis_known_position[Z_AXIS])
  1778. {
  1779. // current position is known, it's safe to raise Z
  1780. if(plan) plan_buffer_line_curposXYZE(max_feedrate[Z_AXIS], active_extruder);
  1781. return;
  1782. }
  1783. // ensure Z is powered in normal mode to overcome initial load
  1784. enable_z();
  1785. st_synchronize();
  1786. // rely on crashguard to limit damage
  1787. bool z_endstop_enabled = enable_z_endstop(true);
  1788. #ifdef TMC2130
  1789. tmc2130_home_enter(Z_AXIS_MASK);
  1790. #endif //TMC2130
  1791. plan_buffer_line_curposXYZE(homing_feedrate[Z_AXIS] / 60, active_extruder);
  1792. st_synchronize();
  1793. #ifdef TMC2130
  1794. if (endstop_z_hit_on_purpose())
  1795. {
  1796. // not necessarily exact, but will avoid further vertical moves
  1797. current_position[Z_AXIS] = max_pos[Z_AXIS];
  1798. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS],
  1799. current_position[Z_AXIS], current_position[E_AXIS]);
  1800. }
  1801. tmc2130_home_exit();
  1802. #endif //TMC2130
  1803. enable_z_endstop(z_endstop_enabled);
  1804. }
  1805. #ifdef TMC2130
  1806. bool calibrate_z_auto()
  1807. {
  1808. //lcd_display_message_fullscreen_P(_T(MSG_CALIBRATE_Z_AUTO));
  1809. lcd_clear();
  1810. lcd_puts_at_P(0, 1, _T(MSG_CALIBRATE_Z_AUTO));
  1811. bool endstops_enabled = enable_endstops(true);
  1812. int axis_up_dir = -home_dir(Z_AXIS);
  1813. tmc2130_home_enter(Z_AXIS_MASK);
  1814. current_position[Z_AXIS] = 0;
  1815. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1816. set_destination_to_current();
  1817. destination[Z_AXIS] += (1.1 * max_length(Z_AXIS) * axis_up_dir);
  1818. feedrate = homing_feedrate[Z_AXIS];
  1819. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate / 60, active_extruder);
  1820. st_synchronize();
  1821. // current_position[axis] = 0;
  1822. // plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1823. tmc2130_home_exit();
  1824. enable_endstops(false);
  1825. current_position[Z_AXIS] = 0;
  1826. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1827. set_destination_to_current();
  1828. destination[Z_AXIS] += 10 * axis_up_dir; //10mm up
  1829. feedrate = homing_feedrate[Z_AXIS] / 2;
  1830. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate / 60, active_extruder);
  1831. st_synchronize();
  1832. enable_endstops(endstops_enabled);
  1833. if (PRINTER_TYPE == PRINTER_MK3) {
  1834. current_position[Z_AXIS] = Z_MAX_POS + 2.0;
  1835. }
  1836. else {
  1837. current_position[Z_AXIS] = Z_MAX_POS + 9.0;
  1838. }
  1839. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1840. return true;
  1841. }
  1842. #endif //TMC2130
  1843. #ifdef TMC2130
  1844. void homeaxis(int axis, uint8_t cnt, uint8_t* pstep)
  1845. #else
  1846. void homeaxis(int axis, uint8_t cnt)
  1847. #endif //TMC2130
  1848. {
  1849. bool endstops_enabled = enable_endstops(true); //RP: endstops should be allways enabled durring homing
  1850. #define HOMEAXIS_DO(LETTER) \
  1851. ((LETTER##_MIN_PIN > -1 && LETTER##_HOME_DIR==-1) || (LETTER##_MAX_PIN > -1 && LETTER##_HOME_DIR==1))
  1852. if ((axis==X_AXIS)?HOMEAXIS_DO(X):(axis==Y_AXIS)?HOMEAXIS_DO(Y):0)
  1853. {
  1854. int axis_home_dir = home_dir(axis);
  1855. feedrate = homing_feedrate[axis];
  1856. #ifdef TMC2130
  1857. tmc2130_home_enter(X_AXIS_MASK << axis);
  1858. #endif //TMC2130
  1859. // Move away a bit, so that the print head does not touch the end position,
  1860. // and the following movement to endstop has a chance to achieve the required velocity
  1861. // for the stall guard to work.
  1862. current_position[axis] = 0;
  1863. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1864. set_destination_to_current();
  1865. // destination[axis] = 11.f;
  1866. destination[axis] = -3.f * axis_home_dir;
  1867. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1868. st_synchronize();
  1869. // Move away from the possible collision with opposite endstop with the collision detection disabled.
  1870. endstops_hit_on_purpose();
  1871. enable_endstops(false);
  1872. current_position[axis] = 0;
  1873. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1874. destination[axis] = 1. * axis_home_dir;
  1875. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1876. st_synchronize();
  1877. // Now continue to move up to the left end stop with the collision detection enabled.
  1878. enable_endstops(true);
  1879. destination[axis] = 1.1 * axis_home_dir * max_length(axis);
  1880. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1881. st_synchronize();
  1882. for (uint8_t i = 0; i < cnt; i++)
  1883. {
  1884. // Move away from the collision to a known distance from the left end stop with the collision detection disabled.
  1885. endstops_hit_on_purpose();
  1886. enable_endstops(false);
  1887. current_position[axis] = 0;
  1888. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1889. destination[axis] = -10.f * axis_home_dir;
  1890. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1891. st_synchronize();
  1892. endstops_hit_on_purpose();
  1893. // Now move left up to the collision, this time with a repeatable velocity.
  1894. enable_endstops(true);
  1895. destination[axis] = 11.f * axis_home_dir;
  1896. #ifdef TMC2130
  1897. feedrate = homing_feedrate[axis];
  1898. #else //TMC2130
  1899. feedrate = homing_feedrate[axis] / 2;
  1900. #endif //TMC2130
  1901. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1902. st_synchronize();
  1903. #ifdef TMC2130
  1904. uint16_t mscnt = tmc2130_rd_MSCNT(axis);
  1905. if (pstep) pstep[i] = mscnt >> 4;
  1906. printf_P(PSTR("%3d step=%2d mscnt=%4d\n"), i, mscnt >> 4, mscnt);
  1907. #endif //TMC2130
  1908. }
  1909. endstops_hit_on_purpose();
  1910. enable_endstops(false);
  1911. #ifdef TMC2130
  1912. uint8_t orig = tmc2130_home_origin[axis];
  1913. uint8_t back = tmc2130_home_bsteps[axis];
  1914. if (tmc2130_home_enabled && (orig <= 63))
  1915. {
  1916. tmc2130_goto_step(axis, orig, 2, 1000, tmc2130_get_res(axis));
  1917. if (back > 0)
  1918. tmc2130_do_steps(axis, back, -axis_home_dir, 1000);
  1919. }
  1920. else
  1921. tmc2130_do_steps(axis, 8, -axis_home_dir, 1000);
  1922. tmc2130_home_exit();
  1923. #endif //TMC2130
  1924. axis_is_at_home(axis);
  1925. axis_known_position[axis] = true;
  1926. // Move from minimum
  1927. #ifdef TMC2130
  1928. float dist = - axis_home_dir * 0.01f * tmc2130_home_fsteps[axis];
  1929. #else //TMC2130
  1930. float dist = - axis_home_dir * 0.01f * 64;
  1931. #endif //TMC2130
  1932. current_position[axis] -= dist;
  1933. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1934. current_position[axis] += dist;
  1935. destination[axis] = current_position[axis];
  1936. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], 0.5f*feedrate/60, active_extruder);
  1937. st_synchronize();
  1938. feedrate = 0.0;
  1939. }
  1940. else if ((axis==Z_AXIS)?HOMEAXIS_DO(Z):0)
  1941. {
  1942. #ifdef TMC2130
  1943. FORCE_HIGH_POWER_START;
  1944. #endif
  1945. int axis_home_dir = home_dir(axis);
  1946. current_position[axis] = 0;
  1947. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1948. destination[axis] = 1.5 * max_length(axis) * axis_home_dir;
  1949. feedrate = homing_feedrate[axis];
  1950. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1951. st_synchronize();
  1952. #ifdef TMC2130
  1953. if (READ(Z_TMC2130_DIAG) != 0) { //Z crash
  1954. FORCE_HIGH_POWER_END;
  1955. kill(_T(MSG_BED_LEVELING_FAILED_POINT_LOW));
  1956. return;
  1957. }
  1958. #endif //TMC2130
  1959. current_position[axis] = 0;
  1960. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1961. destination[axis] = -home_retract_mm(axis) * axis_home_dir;
  1962. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1963. st_synchronize();
  1964. destination[axis] = 2*home_retract_mm(axis) * axis_home_dir;
  1965. feedrate = homing_feedrate[axis]/2 ;
  1966. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1967. st_synchronize();
  1968. #ifdef TMC2130
  1969. if (READ(Z_TMC2130_DIAG) != 0) { //Z crash
  1970. FORCE_HIGH_POWER_END;
  1971. kill(_T(MSG_BED_LEVELING_FAILED_POINT_LOW));
  1972. return;
  1973. }
  1974. #endif //TMC2130
  1975. axis_is_at_home(axis);
  1976. destination[axis] = current_position[axis];
  1977. feedrate = 0.0;
  1978. endstops_hit_on_purpose();
  1979. axis_known_position[axis] = true;
  1980. #ifdef TMC2130
  1981. FORCE_HIGH_POWER_END;
  1982. #endif
  1983. }
  1984. enable_endstops(endstops_enabled);
  1985. }
  1986. /**/
  1987. void home_xy()
  1988. {
  1989. set_destination_to_current();
  1990. homeaxis(X_AXIS);
  1991. homeaxis(Y_AXIS);
  1992. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1993. endstops_hit_on_purpose();
  1994. }
  1995. void refresh_cmd_timeout(void)
  1996. {
  1997. previous_millis_cmd = _millis();
  1998. }
  1999. #ifdef FWRETRACT
  2000. void retract(bool retracting, bool swapretract = false) {
  2001. if(retracting && !retracted[active_extruder]) {
  2002. destination[X_AXIS]=current_position[X_AXIS];
  2003. destination[Y_AXIS]=current_position[Y_AXIS];
  2004. destination[Z_AXIS]=current_position[Z_AXIS];
  2005. destination[E_AXIS]=current_position[E_AXIS];
  2006. current_position[E_AXIS]+=(swapretract?retract_length_swap:cs.retract_length)*float(extrudemultiply)*0.01f;
  2007. plan_set_e_position(current_position[E_AXIS]);
  2008. float oldFeedrate = feedrate;
  2009. feedrate=cs.retract_feedrate*60;
  2010. retracted[active_extruder]=true;
  2011. prepare_move();
  2012. current_position[Z_AXIS]-=cs.retract_zlift;
  2013. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2014. prepare_move();
  2015. feedrate = oldFeedrate;
  2016. } else if(!retracting && retracted[active_extruder]) {
  2017. destination[X_AXIS]=current_position[X_AXIS];
  2018. destination[Y_AXIS]=current_position[Y_AXIS];
  2019. destination[Z_AXIS]=current_position[Z_AXIS];
  2020. destination[E_AXIS]=current_position[E_AXIS];
  2021. current_position[Z_AXIS]+=cs.retract_zlift;
  2022. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2023. current_position[E_AXIS]-=(swapretract?(retract_length_swap+retract_recover_length_swap):(cs.retract_length+cs.retract_recover_length))*float(extrudemultiply)*0.01f;
  2024. plan_set_e_position(current_position[E_AXIS]);
  2025. float oldFeedrate = feedrate;
  2026. feedrate=cs.retract_recover_feedrate*60;
  2027. retracted[active_extruder]=false;
  2028. prepare_move();
  2029. feedrate = oldFeedrate;
  2030. }
  2031. } //retract
  2032. #endif //FWRETRACT
  2033. void trace() {
  2034. Sound_MakeCustom(25,440,true);
  2035. }
  2036. /*
  2037. void ramming() {
  2038. // float tmp[4] = DEFAULT_MAX_FEEDRATE;
  2039. if (current_temperature[0] < 230) {
  2040. //PLA
  2041. max_feedrate[E_AXIS] = 50;
  2042. //current_position[E_AXIS] -= 8;
  2043. //plan_buffer_line_curposXYZE(2100 / 60, active_extruder);
  2044. //current_position[E_AXIS] += 8;
  2045. //plan_buffer_line_curposXYZE(2100 / 60, active_extruder);
  2046. current_position[E_AXIS] += 5.4;
  2047. plan_buffer_line_curposXYZE(2800 / 60, active_extruder);
  2048. current_position[E_AXIS] += 3.2;
  2049. plan_buffer_line_curposXYZE(3000 / 60, active_extruder);
  2050. current_position[E_AXIS] += 3;
  2051. plan_buffer_line_curposXYZE(3400 / 60, active_extruder);
  2052. st_synchronize();
  2053. max_feedrate[E_AXIS] = 80;
  2054. current_position[E_AXIS] -= 82;
  2055. plan_buffer_line_curposXYZE(9500 / 60, active_extruder);
  2056. max_feedrate[E_AXIS] = 50;//tmp[E_AXIS];
  2057. current_position[E_AXIS] -= 20;
  2058. plan_buffer_line_curposXYZE(1200 / 60, active_extruder);
  2059. current_position[E_AXIS] += 5;
  2060. plan_buffer_line_curposXYZE(400 / 60, active_extruder);
  2061. current_position[E_AXIS] += 5;
  2062. plan_buffer_line_curposXYZE(600 / 60, active_extruder);
  2063. current_position[E_AXIS] -= 10;
  2064. st_synchronize();
  2065. plan_buffer_line_curposXYZE(600 / 60, active_extruder);
  2066. current_position[E_AXIS] += 10;
  2067. plan_buffer_line_curposXYZE(600 / 60, active_extruder);
  2068. current_position[E_AXIS] -= 10;
  2069. plan_buffer_line_curposXYZE(800 / 60, active_extruder);
  2070. current_position[E_AXIS] += 10;
  2071. plan_buffer_line_curposXYZE(800 / 60, active_extruder);
  2072. current_position[E_AXIS] -= 10;
  2073. plan_buffer_line_curposXYZE(800 / 60, active_extruder);
  2074. st_synchronize();
  2075. }
  2076. else {
  2077. //ABS
  2078. max_feedrate[E_AXIS] = 50;
  2079. //current_position[E_AXIS] -= 8;
  2080. //plan_buffer_line_curposXYZE(2100 / 60, active_extruder);
  2081. //current_position[E_AXIS] += 8;
  2082. //plan_buffer_line_curposXYZE(2100 / 60, active_extruder);
  2083. current_position[E_AXIS] += 3.1;
  2084. plan_buffer_line_curposXYZE(2000 / 60, active_extruder);
  2085. current_position[E_AXIS] += 3.1;
  2086. plan_buffer_line_curposXYZE(2500 / 60, active_extruder);
  2087. current_position[E_AXIS] += 4;
  2088. plan_buffer_line_curposXYZE(3000 / 60, active_extruder);
  2089. st_synchronize();
  2090. //current_position[X_AXIS] += 23; //delay
  2091. //plan_buffer_line_curposXYZE(600/60, active_extruder); //delay
  2092. //current_position[X_AXIS] -= 23; //delay
  2093. //plan_buffer_line_curposXYZE(600/60, active_extruder); //delay
  2094. _delay(4700);
  2095. max_feedrate[E_AXIS] = 80;
  2096. current_position[E_AXIS] -= 92;
  2097. plan_buffer_line_curposXYZE(9900 / 60, active_extruder);
  2098. max_feedrate[E_AXIS] = 50;//tmp[E_AXIS];
  2099. current_position[E_AXIS] -= 5;
  2100. plan_buffer_line_curposXYZE(800 / 60, active_extruder);
  2101. current_position[E_AXIS] += 5;
  2102. plan_buffer_line_curposXYZE(400 / 60, active_extruder);
  2103. current_position[E_AXIS] -= 5;
  2104. plan_buffer_line_curposXYZE(600 / 60, active_extruder);
  2105. st_synchronize();
  2106. current_position[E_AXIS] += 5;
  2107. plan_buffer_line_curposXYZE(600 / 60, active_extruder);
  2108. current_position[E_AXIS] -= 5;
  2109. plan_buffer_line_curposXYZE(600 / 60, active_extruder);
  2110. current_position[E_AXIS] += 5;
  2111. plan_buffer_line_curposXYZE(600 / 60, active_extruder);
  2112. current_position[E_AXIS] -= 5;
  2113. plan_buffer_line_curposXYZE(600 / 60, active_extruder);
  2114. st_synchronize();
  2115. }
  2116. }
  2117. */
  2118. #ifdef TMC2130
  2119. void force_high_power_mode(bool start_high_power_section) {
  2120. #ifdef PSU_Delta
  2121. if (start_high_power_section == true) enable_force_z();
  2122. #endif //PSU_Delta
  2123. uint8_t silent;
  2124. silent = eeprom_read_byte((uint8_t*)EEPROM_SILENT);
  2125. if (silent == 1) {
  2126. //we are in silent mode, set to normal mode to enable crash detection
  2127. // Wait for the planner queue to drain and for the stepper timer routine to reach an idle state.
  2128. st_synchronize();
  2129. cli();
  2130. tmc2130_mode = (start_high_power_section == true) ? TMC2130_MODE_NORMAL : TMC2130_MODE_SILENT;
  2131. update_mode_profile();
  2132. tmc2130_init();
  2133. // We may have missed a stepper timer interrupt due to the time spent in the tmc2130_init() routine.
  2134. // Be safe than sorry, reset the stepper timer before re-enabling interrupts.
  2135. st_reset_timer();
  2136. sei();
  2137. }
  2138. }
  2139. #endif //TMC2130
  2140. #ifdef TMC2130
  2141. static void gcode_G28(bool home_x_axis, long home_x_value, bool home_y_axis, long home_y_value, bool home_z_axis, long home_z_value, bool calib, bool without_mbl)
  2142. #else
  2143. static void gcode_G28(bool home_x_axis, long home_x_value, bool home_y_axis, long home_y_value, bool home_z_axis, long home_z_value, bool without_mbl)
  2144. #endif //TMC2130
  2145. {
  2146. st_synchronize();
  2147. #if 0
  2148. SERIAL_ECHOPGM("G28, initial "); print_world_coordinates();
  2149. SERIAL_ECHOPGM("G28, initial "); print_physical_coordinates();
  2150. #endif
  2151. // Flag for the display update routine and to disable the print cancelation during homing.
  2152. homing_flag = true;
  2153. // Which axes should be homed?
  2154. bool home_x = home_x_axis;
  2155. bool home_y = home_y_axis;
  2156. bool home_z = home_z_axis;
  2157. // Either all X,Y,Z codes are present, or none of them.
  2158. bool home_all_axes = home_x == home_y && home_x == home_z;
  2159. if (home_all_axes)
  2160. // No X/Y/Z code provided means to home all axes.
  2161. home_x = home_y = home_z = true;
  2162. //if we are homing all axes, first move z higher to protect heatbed/steel sheet
  2163. if (home_all_axes) {
  2164. raise_z_above(MESH_HOME_Z_SEARCH);
  2165. st_synchronize();
  2166. }
  2167. #ifdef ENABLE_AUTO_BED_LEVELING
  2168. plan_bed_level_matrix.set_to_identity(); //Reset the plane ("erase" all leveling data)
  2169. #endif //ENABLE_AUTO_BED_LEVELING
  2170. // Reset world2machine_rotation_and_skew and world2machine_shift, therefore
  2171. // the planner will not perform any adjustments in the XY plane.
  2172. // Wait for the motors to stop and update the current position with the absolute values.
  2173. world2machine_revert_to_uncorrected();
  2174. // For mesh bed leveling deactivate the matrix temporarily.
  2175. // It is necessary to disable the bed leveling for the X and Y homing moves, so that the move is performed
  2176. // in a single axis only.
  2177. // In case of re-homing the X or Y axes only, the mesh bed leveling is restored after G28.
  2178. #ifdef MESH_BED_LEVELING
  2179. uint8_t mbl_was_active = mbl.active;
  2180. mbl.active = 0;
  2181. current_position[Z_AXIS] = st_get_position_mm(Z_AXIS);
  2182. #endif
  2183. // Reset baby stepping to zero, if the babystepping has already been loaded before. The babystepsTodo value will be
  2184. // consumed during the first movements following this statement.
  2185. if (home_z)
  2186. babystep_undo();
  2187. saved_feedrate = feedrate;
  2188. int l_feedmultiply = feedmultiply;
  2189. feedmultiply = 100;
  2190. previous_millis_cmd = _millis();
  2191. enable_endstops(true);
  2192. memcpy(destination, current_position, sizeof(destination));
  2193. feedrate = 0.0;
  2194. #if Z_HOME_DIR > 0 // If homing away from BED do Z first
  2195. if(home_z)
  2196. homeaxis(Z_AXIS);
  2197. #endif
  2198. #ifdef QUICK_HOME
  2199. // In the quick mode, if both x and y are to be homed, a diagonal move will be performed initially.
  2200. if(home_x && home_y) //first diagonal move
  2201. {
  2202. current_position[X_AXIS] = 0;current_position[Y_AXIS] = 0;
  2203. int x_axis_home_dir = home_dir(X_AXIS);
  2204. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2205. destination[X_AXIS] = 1.5 * max_length(X_AXIS) * x_axis_home_dir;destination[Y_AXIS] = 1.5 * max_length(Y_AXIS) * home_dir(Y_AXIS);
  2206. feedrate = homing_feedrate[X_AXIS];
  2207. if(homing_feedrate[Y_AXIS]<feedrate)
  2208. feedrate = homing_feedrate[Y_AXIS];
  2209. if (max_length(X_AXIS) > max_length(Y_AXIS)) {
  2210. feedrate *= sqrt(pow(max_length(Y_AXIS) / max_length(X_AXIS), 2) + 1);
  2211. } else {
  2212. feedrate *= sqrt(pow(max_length(X_AXIS) / max_length(Y_AXIS), 2) + 1);
  2213. }
  2214. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  2215. st_synchronize();
  2216. axis_is_at_home(X_AXIS);
  2217. axis_is_at_home(Y_AXIS);
  2218. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2219. destination[X_AXIS] = current_position[X_AXIS];
  2220. destination[Y_AXIS] = current_position[Y_AXIS];
  2221. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  2222. feedrate = 0.0;
  2223. st_synchronize();
  2224. endstops_hit_on_purpose();
  2225. current_position[X_AXIS] = destination[X_AXIS];
  2226. current_position[Y_AXIS] = destination[Y_AXIS];
  2227. current_position[Z_AXIS] = destination[Z_AXIS];
  2228. }
  2229. #endif /* QUICK_HOME */
  2230. #ifdef TMC2130
  2231. if(home_x)
  2232. {
  2233. if (!calib)
  2234. homeaxis(X_AXIS);
  2235. else
  2236. tmc2130_home_calibrate(X_AXIS);
  2237. }
  2238. if(home_y)
  2239. {
  2240. if (!calib)
  2241. homeaxis(Y_AXIS);
  2242. else
  2243. tmc2130_home_calibrate(Y_AXIS);
  2244. }
  2245. #else //TMC2130
  2246. if(home_x) homeaxis(X_AXIS);
  2247. if(home_y) homeaxis(Y_AXIS);
  2248. #endif //TMC2130
  2249. if(home_x_axis && home_x_value != 0)
  2250. current_position[X_AXIS]=home_x_value+cs.add_homing[X_AXIS];
  2251. if(home_y_axis && home_y_value != 0)
  2252. current_position[Y_AXIS]=home_y_value+cs.add_homing[Y_AXIS];
  2253. #if Z_HOME_DIR < 0 // If homing towards BED do Z last
  2254. #ifndef Z_SAFE_HOMING
  2255. if(home_z) {
  2256. #if defined (Z_RAISE_BEFORE_HOMING) && (Z_RAISE_BEFORE_HOMING > 0)
  2257. raise_z_above(Z_RAISE_BEFORE_HOMING);
  2258. st_synchronize();
  2259. #endif // defined (Z_RAISE_BEFORE_HOMING) && (Z_RAISE_BEFORE_HOMING > 0)
  2260. #if (defined(MESH_BED_LEVELING) && !defined(MK1BP)) // If Mesh bed leveling, move X&Y to safe position for home
  2261. raise_z_above(MESH_HOME_Z_SEARCH);
  2262. st_synchronize();
  2263. if (!axis_known_position[X_AXIS]) homeaxis(X_AXIS);
  2264. if (!axis_known_position[Y_AXIS]) homeaxis(Y_AXIS);
  2265. // 1st mesh bed leveling measurement point, corrected.
  2266. world2machine_initialize();
  2267. world2machine(pgm_read_float(bed_ref_points_4), pgm_read_float(bed_ref_points_4+1), destination[X_AXIS], destination[Y_AXIS]);
  2268. world2machine_reset();
  2269. if (destination[Y_AXIS] < Y_MIN_POS)
  2270. destination[Y_AXIS] = Y_MIN_POS;
  2271. feedrate = homing_feedrate[X_AXIS] / 20;
  2272. enable_endstops(false);
  2273. #ifdef DEBUG_BUILD
  2274. SERIAL_ECHOLNPGM("plan_set_position()");
  2275. MYSERIAL.println(current_position[X_AXIS]);MYSERIAL.println(current_position[Y_AXIS]);
  2276. MYSERIAL.println(current_position[Z_AXIS]);MYSERIAL.println(current_position[E_AXIS]);
  2277. #endif
  2278. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2279. #ifdef DEBUG_BUILD
  2280. SERIAL_ECHOLNPGM("plan_buffer_line()");
  2281. MYSERIAL.println(destination[X_AXIS]);MYSERIAL.println(destination[Y_AXIS]);
  2282. MYSERIAL.println(destination[Z_AXIS]);MYSERIAL.println(destination[E_AXIS]);
  2283. MYSERIAL.println(feedrate);MYSERIAL.println(active_extruder);
  2284. #endif
  2285. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
  2286. st_synchronize();
  2287. current_position[X_AXIS] = destination[X_AXIS];
  2288. current_position[Y_AXIS] = destination[Y_AXIS];
  2289. enable_endstops(true);
  2290. endstops_hit_on_purpose();
  2291. homeaxis(Z_AXIS);
  2292. #else // MESH_BED_LEVELING
  2293. homeaxis(Z_AXIS);
  2294. #endif // MESH_BED_LEVELING
  2295. }
  2296. #else // defined(Z_SAFE_HOMING): Z Safe mode activated.
  2297. if(home_all_axes) {
  2298. destination[X_AXIS] = round(Z_SAFE_HOMING_X_POINT - X_PROBE_OFFSET_FROM_EXTRUDER);
  2299. destination[Y_AXIS] = round(Z_SAFE_HOMING_Y_POINT - Y_PROBE_OFFSET_FROM_EXTRUDER);
  2300. destination[Z_AXIS] = Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS) * (-1); // Set destination away from bed
  2301. feedrate = XY_TRAVEL_SPEED/60;
  2302. current_position[Z_AXIS] = 0;
  2303. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2304. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
  2305. st_synchronize();
  2306. current_position[X_AXIS] = destination[X_AXIS];
  2307. current_position[Y_AXIS] = destination[Y_AXIS];
  2308. homeaxis(Z_AXIS);
  2309. }
  2310. // Let's see if X and Y are homed and probe is inside bed area.
  2311. if(home_z) {
  2312. if ( (axis_known_position[X_AXIS]) && (axis_known_position[Y_AXIS]) \
  2313. && (current_position[X_AXIS]+X_PROBE_OFFSET_FROM_EXTRUDER >= X_MIN_POS) \
  2314. && (current_position[X_AXIS]+X_PROBE_OFFSET_FROM_EXTRUDER <= X_MAX_POS) \
  2315. && (current_position[Y_AXIS]+Y_PROBE_OFFSET_FROM_EXTRUDER >= Y_MIN_POS) \
  2316. && (current_position[Y_AXIS]+Y_PROBE_OFFSET_FROM_EXTRUDER <= Y_MAX_POS)) {
  2317. current_position[Z_AXIS] = 0;
  2318. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2319. destination[Z_AXIS] = Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS) * (-1); // Set destination away from bed
  2320. feedrate = max_feedrate[Z_AXIS];
  2321. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
  2322. st_synchronize();
  2323. homeaxis(Z_AXIS);
  2324. } else if (!((axis_known_position[X_AXIS]) && (axis_known_position[Y_AXIS]))) {
  2325. LCD_MESSAGERPGM(MSG_POSITION_UNKNOWN);
  2326. SERIAL_ECHO_START;
  2327. SERIAL_ECHOLNRPGM(MSG_POSITION_UNKNOWN);
  2328. } else {
  2329. LCD_MESSAGERPGM(MSG_ZPROBE_OUT);
  2330. SERIAL_ECHO_START;
  2331. SERIAL_ECHOLNRPGM(MSG_ZPROBE_OUT);
  2332. }
  2333. }
  2334. #endif // Z_SAFE_HOMING
  2335. #endif // Z_HOME_DIR < 0
  2336. if(home_z_axis && home_z_value != 0)
  2337. current_position[Z_AXIS]=home_z_value+cs.add_homing[Z_AXIS];
  2338. #ifdef ENABLE_AUTO_BED_LEVELING
  2339. if(home_z)
  2340. current_position[Z_AXIS] += cs.zprobe_zoffset; //Add Z_Probe offset (the distance is negative)
  2341. #endif
  2342. // Set the planner and stepper routine positions.
  2343. // At this point the mesh bed leveling and world2machine corrections are disabled and current_position
  2344. // contains the machine coordinates.
  2345. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2346. #ifdef ENDSTOPS_ONLY_FOR_HOMING
  2347. enable_endstops(false);
  2348. #endif
  2349. feedrate = saved_feedrate;
  2350. feedmultiply = l_feedmultiply;
  2351. previous_millis_cmd = _millis();
  2352. endstops_hit_on_purpose();
  2353. #ifndef MESH_BED_LEVELING
  2354. //-// Oct 2019 :: this part of code is (from) now probably un-compilable
  2355. // If MESH_BED_LEVELING is not active, then it is the original Prusa i3.
  2356. // Offer the user to load the baby step value, which has been adjusted at the previous print session.
  2357. if(card.sdprinting && eeprom_read_word((uint16_t *)EEPROM_BABYSTEP_Z))
  2358. lcd_adjust_z();
  2359. #endif
  2360. // Load the machine correction matrix
  2361. world2machine_initialize();
  2362. // and correct the current_position XY axes to match the transformed coordinate system.
  2363. world2machine_update_current();
  2364. #if (defined(MESH_BED_LEVELING) && !defined(MK1BP))
  2365. if (home_x_axis || home_y_axis || without_mbl || home_z_axis)
  2366. {
  2367. if (! home_z && mbl_was_active) {
  2368. // Re-enable the mesh bed leveling if only the X and Y axes were re-homed.
  2369. mbl.active = true;
  2370. // and re-adjust the current logical Z axis with the bed leveling offset applicable at the current XY position.
  2371. current_position[Z_AXIS] -= mbl.get_z(st_get_position_mm(X_AXIS), st_get_position_mm(Y_AXIS));
  2372. }
  2373. }
  2374. else
  2375. {
  2376. st_synchronize();
  2377. homing_flag = false;
  2378. }
  2379. #endif
  2380. if (farm_mode) { prusa_statistics(20); };
  2381. homing_flag = false;
  2382. #if 0
  2383. SERIAL_ECHOPGM("G28, final "); print_world_coordinates();
  2384. SERIAL_ECHOPGM("G28, final "); print_physical_coordinates();
  2385. SERIAL_ECHOPGM("G28, final "); print_mesh_bed_leveling_table();
  2386. #endif
  2387. }
  2388. static void gcode_G28(bool home_x_axis, bool home_y_axis, bool home_z_axis)
  2389. {
  2390. #ifdef TMC2130
  2391. gcode_G28(home_x_axis, 0, home_y_axis, 0, home_z_axis, 0, false, true);
  2392. #else
  2393. gcode_G28(home_x_axis, 0, home_y_axis, 0, home_z_axis, 0, true);
  2394. #endif //TMC2130
  2395. }
  2396. void adjust_bed_reset()
  2397. {
  2398. eeprom_update_byte((unsigned char*)EEPROM_BED_CORRECTION_VALID, 1);
  2399. eeprom_update_byte((unsigned char*)EEPROM_BED_CORRECTION_LEFT, 0);
  2400. eeprom_update_byte((unsigned char*)EEPROM_BED_CORRECTION_RIGHT, 0);
  2401. eeprom_update_byte((unsigned char*)EEPROM_BED_CORRECTION_FRONT, 0);
  2402. eeprom_update_byte((unsigned char*)EEPROM_BED_CORRECTION_REAR, 0);
  2403. }
  2404. //! @brief Calibrate XYZ
  2405. //! @param onlyZ if true, calibrate only Z axis
  2406. //! @param verbosity_level
  2407. //! @retval true Succeeded
  2408. //! @retval false Failed
  2409. bool gcode_M45(bool onlyZ, int8_t verbosity_level)
  2410. {
  2411. bool final_result = false;
  2412. #ifdef TMC2130
  2413. FORCE_HIGH_POWER_START;
  2414. #endif // TMC2130
  2415. // Only Z calibration?
  2416. if (!onlyZ)
  2417. {
  2418. setTargetBed(0);
  2419. setAllTargetHotends(0);
  2420. adjust_bed_reset(); //reset bed level correction
  2421. }
  2422. // Disable the default update procedure of the display. We will do a modal dialog.
  2423. lcd_update_enable(false);
  2424. // Let the planner use the uncorrected coordinates.
  2425. mbl.reset();
  2426. // Reset world2machine_rotation_and_skew and world2machine_shift, therefore
  2427. // the planner will not perform any adjustments in the XY plane.
  2428. // Wait for the motors to stop and update the current position with the absolute values.
  2429. world2machine_revert_to_uncorrected();
  2430. // Reset the baby step value applied without moving the axes.
  2431. babystep_reset();
  2432. // Mark all axes as in a need for homing.
  2433. memset(axis_known_position, 0, sizeof(axis_known_position));
  2434. // Home in the XY plane.
  2435. //set_destination_to_current();
  2436. int l_feedmultiply = setup_for_endstop_move();
  2437. lcd_display_message_fullscreen_P(_T(MSG_AUTO_HOME));
  2438. home_xy();
  2439. enable_endstops(false);
  2440. current_position[X_AXIS] += 5;
  2441. current_position[Y_AXIS] += 5;
  2442. plan_buffer_line_curposXYZE(homing_feedrate[Z_AXIS] / 40, active_extruder);
  2443. st_synchronize();
  2444. // Let the user move the Z axes up to the end stoppers.
  2445. #ifdef TMC2130
  2446. if (calibrate_z_auto())
  2447. {
  2448. #else //TMC2130
  2449. if (lcd_calibrate_z_end_stop_manual(onlyZ))
  2450. {
  2451. #endif //TMC2130
  2452. lcd_show_fullscreen_message_and_wait_P(_T(MSG_CONFIRM_NOZZLE_CLEAN));
  2453. if(onlyZ){
  2454. lcd_display_message_fullscreen_P(_T(MSG_MEASURE_BED_REFERENCE_HEIGHT_LINE1));
  2455. lcd_set_cursor(0, 3);
  2456. lcd_print(1);
  2457. lcd_puts_P(_T(MSG_MEASURE_BED_REFERENCE_HEIGHT_LINE2));
  2458. }else{
  2459. //lcd_show_fullscreen_message_and_wait_P(_T(MSG_PAPER));
  2460. lcd_display_message_fullscreen_P(_T(MSG_FIND_BED_OFFSET_AND_SKEW_LINE1));
  2461. lcd_set_cursor(0, 2);
  2462. lcd_print(1);
  2463. lcd_puts_P(_T(MSG_FIND_BED_OFFSET_AND_SKEW_LINE2));
  2464. }
  2465. refresh_cmd_timeout();
  2466. #ifndef STEEL_SHEET
  2467. if (((degHotend(0) > MAX_HOTEND_TEMP_CALIBRATION) || (degBed() > MAX_BED_TEMP_CALIBRATION)) && (!onlyZ))
  2468. {
  2469. lcd_wait_for_cool_down();
  2470. }
  2471. #endif //STEEL_SHEET
  2472. if(!onlyZ)
  2473. {
  2474. KEEPALIVE_STATE(PAUSED_FOR_USER);
  2475. #ifdef STEEL_SHEET
  2476. bool result = lcd_show_fullscreen_message_yes_no_and_wait_P(_T(MSG_STEEL_SHEET_CHECK), false, false);
  2477. if(result) lcd_show_fullscreen_message_and_wait_P(_T(MSG_REMOVE_STEEL_SHEET));
  2478. #endif //STEEL_SHEET
  2479. lcd_show_fullscreen_message_and_wait_P(_T(MSG_PAPER));
  2480. KEEPALIVE_STATE(IN_HANDLER);
  2481. lcd_display_message_fullscreen_P(_T(MSG_FIND_BED_OFFSET_AND_SKEW_LINE1));
  2482. lcd_set_cursor(0, 2);
  2483. lcd_print(1);
  2484. lcd_puts_P(_T(MSG_FIND_BED_OFFSET_AND_SKEW_LINE2));
  2485. }
  2486. bool endstops_enabled = enable_endstops(false);
  2487. current_position[Z_AXIS] -= 1; //move 1mm down with disabled endstop
  2488. plan_buffer_line_curposXYZE(homing_feedrate[Z_AXIS] / 40, active_extruder);
  2489. st_synchronize();
  2490. // Move the print head close to the bed.
  2491. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  2492. enable_endstops(true);
  2493. #ifdef TMC2130
  2494. tmc2130_home_enter(Z_AXIS_MASK);
  2495. #endif //TMC2130
  2496. plan_buffer_line_curposXYZE(homing_feedrate[Z_AXIS] / 40, active_extruder);
  2497. st_synchronize();
  2498. #ifdef TMC2130
  2499. tmc2130_home_exit();
  2500. #endif //TMC2130
  2501. enable_endstops(endstops_enabled);
  2502. if ((st_get_position_mm(Z_AXIS) <= (MESH_HOME_Z_SEARCH + HOME_Z_SEARCH_THRESHOLD)) &&
  2503. (st_get_position_mm(Z_AXIS) >= (MESH_HOME_Z_SEARCH - HOME_Z_SEARCH_THRESHOLD)))
  2504. {
  2505. if (onlyZ)
  2506. {
  2507. clean_up_after_endstop_move(l_feedmultiply);
  2508. // Z only calibration.
  2509. // Load the machine correction matrix
  2510. world2machine_initialize();
  2511. // and correct the current_position to match the transformed coordinate system.
  2512. world2machine_update_current();
  2513. //FIXME
  2514. bool result = sample_mesh_and_store_reference();
  2515. if (result)
  2516. {
  2517. if (calibration_status() == CALIBRATION_STATUS_Z_CALIBRATION)
  2518. // Shipped, the nozzle height has been set already. The user can start printing now.
  2519. calibration_status_store(CALIBRATION_STATUS_CALIBRATED);
  2520. final_result = true;
  2521. // babystep_apply();
  2522. }
  2523. }
  2524. else
  2525. {
  2526. // Reset the baby step value and the baby step applied flag.
  2527. calibration_status_store(CALIBRATION_STATUS_XYZ_CALIBRATION);
  2528. eeprom_update_word(reinterpret_cast<uint16_t *>(&(EEPROM_Sheets_base->s[(eeprom_read_byte(&(EEPROM_Sheets_base->active_sheet)))].z_offset)),0);
  2529. // Complete XYZ calibration.
  2530. uint8_t point_too_far_mask = 0;
  2531. BedSkewOffsetDetectionResultType result = find_bed_offset_and_skew(verbosity_level, point_too_far_mask);
  2532. clean_up_after_endstop_move(l_feedmultiply);
  2533. // Print head up.
  2534. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  2535. plan_buffer_line_curposXYZE(homing_feedrate[Z_AXIS] / 40, active_extruder);
  2536. st_synchronize();
  2537. //#ifndef NEW_XYZCAL
  2538. if (result >= 0)
  2539. {
  2540. #ifdef HEATBED_V2
  2541. sample_z();
  2542. #else //HEATBED_V2
  2543. point_too_far_mask = 0;
  2544. // Second half: The fine adjustment.
  2545. // Let the planner use the uncorrected coordinates.
  2546. mbl.reset();
  2547. world2machine_reset();
  2548. // Home in the XY plane.
  2549. int l_feedmultiply = setup_for_endstop_move();
  2550. home_xy();
  2551. result = improve_bed_offset_and_skew(1, verbosity_level, point_too_far_mask);
  2552. clean_up_after_endstop_move(l_feedmultiply);
  2553. // Print head up.
  2554. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  2555. plan_buffer_line_curposXYZE(homing_feedrate[Z_AXIS] / 40, active_extruder);
  2556. st_synchronize();
  2557. // if (result >= 0) babystep_apply();
  2558. #endif //HEATBED_V2
  2559. }
  2560. //#endif //NEW_XYZCAL
  2561. lcd_update_enable(true);
  2562. lcd_update(2);
  2563. lcd_bed_calibration_show_result(result, point_too_far_mask);
  2564. if (result >= 0)
  2565. {
  2566. // Calibration valid, the machine should be able to print. Advise the user to run the V2Calibration.gcode.
  2567. calibration_status_store(CALIBRATION_STATUS_LIVE_ADJUST);
  2568. if (eeprom_read_byte((uint8_t*)EEPROM_WIZARD_ACTIVE) != 1) lcd_show_fullscreen_message_and_wait_P(_T(MSG_BABYSTEP_Z_NOT_SET));
  2569. final_result = true;
  2570. }
  2571. }
  2572. #ifdef TMC2130
  2573. tmc2130_home_exit();
  2574. #endif
  2575. }
  2576. else
  2577. {
  2578. lcd_show_fullscreen_message_and_wait_P(PSTR("Calibration failed! Check the axes and run again."));
  2579. final_result = false;
  2580. }
  2581. }
  2582. else
  2583. {
  2584. // Timeouted.
  2585. }
  2586. lcd_update_enable(true);
  2587. #ifdef TMC2130
  2588. FORCE_HIGH_POWER_END;
  2589. #endif // TMC2130
  2590. return final_result;
  2591. }
  2592. void gcode_M114()
  2593. {
  2594. SERIAL_PROTOCOLPGM("X:");
  2595. SERIAL_PROTOCOL(current_position[X_AXIS]);
  2596. SERIAL_PROTOCOLPGM(" Y:");
  2597. SERIAL_PROTOCOL(current_position[Y_AXIS]);
  2598. SERIAL_PROTOCOLPGM(" Z:");
  2599. SERIAL_PROTOCOL(current_position[Z_AXIS]);
  2600. SERIAL_PROTOCOLPGM(" E:");
  2601. SERIAL_PROTOCOL(current_position[E_AXIS]);
  2602. SERIAL_PROTOCOLRPGM(_n(" Count X: "));////MSG_COUNT_X
  2603. SERIAL_PROTOCOL(float(st_get_position(X_AXIS)) / cs.axis_steps_per_unit[X_AXIS]);
  2604. SERIAL_PROTOCOLPGM(" Y:");
  2605. SERIAL_PROTOCOL(float(st_get_position(Y_AXIS)) / cs.axis_steps_per_unit[Y_AXIS]);
  2606. SERIAL_PROTOCOLPGM(" Z:");
  2607. SERIAL_PROTOCOL(float(st_get_position(Z_AXIS)) / cs.axis_steps_per_unit[Z_AXIS]);
  2608. SERIAL_PROTOCOLPGM(" E:");
  2609. SERIAL_PROTOCOL(float(st_get_position(E_AXIS)) / cs.axis_steps_per_unit[E_AXIS]);
  2610. SERIAL_PROTOCOLLN("");
  2611. }
  2612. //! extracted code to compute z_shift for M600 in case of filament change operation
  2613. //! requested from fsensors.
  2614. //! The function ensures, that the printhead lifts to at least 25mm above the heat bed
  2615. //! unlike the previous implementation, which was adding 25mm even when the head was
  2616. //! printing at e.g. 24mm height.
  2617. //! A safety margin of FILAMENTCHANGE_ZADD is added in all cases to avoid touching
  2618. //! the printout.
  2619. //! This function is templated to enable fast change of computation data type.
  2620. //! @return new z_shift value
  2621. template<typename T>
  2622. static T gcode_M600_filament_change_z_shift()
  2623. {
  2624. #ifdef FILAMENTCHANGE_ZADD
  2625. static_assert(Z_MAX_POS < (255 - FILAMENTCHANGE_ZADD), "Z-range too high, change the T type from uint8_t to uint16_t");
  2626. // avoid floating point arithmetics when not necessary - results in shorter code
  2627. T ztmp = T( current_position[Z_AXIS] );
  2628. T z_shift = 0;
  2629. if(ztmp < T(25)){
  2630. z_shift = T(25) - ztmp; // make sure to be at least 25mm above the heat bed
  2631. }
  2632. return z_shift + T(FILAMENTCHANGE_ZADD); // always move above printout
  2633. #else
  2634. return T(0);
  2635. #endif
  2636. }
  2637. static void gcode_M600(bool automatic, float x_position, float y_position, float z_shift, float e_shift, float /*e_shift_late*/)
  2638. {
  2639. st_synchronize();
  2640. float lastpos[4];
  2641. if (farm_mode)
  2642. {
  2643. prusa_statistics(22);
  2644. }
  2645. //First backup current position and settings
  2646. int feedmultiplyBckp = feedmultiply;
  2647. float HotendTempBckp = degTargetHotend(active_extruder);
  2648. int fanSpeedBckp = fanSpeed;
  2649. lastpos[X_AXIS] = current_position[X_AXIS];
  2650. lastpos[Y_AXIS] = current_position[Y_AXIS];
  2651. lastpos[Z_AXIS] = current_position[Z_AXIS];
  2652. lastpos[E_AXIS] = current_position[E_AXIS];
  2653. //Retract E
  2654. current_position[E_AXIS] += e_shift;
  2655. plan_buffer_line_curposXYZE(FILAMENTCHANGE_RFEED, active_extruder);
  2656. st_synchronize();
  2657. //Lift Z
  2658. current_position[Z_AXIS] += z_shift;
  2659. plan_buffer_line_curposXYZE(FILAMENTCHANGE_ZFEED, active_extruder);
  2660. st_synchronize();
  2661. //Move XY to side
  2662. current_position[X_AXIS] = x_position;
  2663. current_position[Y_AXIS] = y_position;
  2664. plan_buffer_line_curposXYZE(FILAMENTCHANGE_XYFEED, active_extruder);
  2665. st_synchronize();
  2666. //Beep, manage nozzle heater and wait for user to start unload filament
  2667. if(!mmu_enabled) M600_wait_for_user(HotendTempBckp);
  2668. lcd_change_fil_state = 0;
  2669. // Unload filament
  2670. if (mmu_enabled) extr_unload(); //unload just current filament for multimaterial printers (used also in M702)
  2671. else unload_filament(); //unload filament for single material (used also in M702)
  2672. //finish moves
  2673. st_synchronize();
  2674. if (!mmu_enabled)
  2675. {
  2676. KEEPALIVE_STATE(PAUSED_FOR_USER);
  2677. lcd_change_fil_state = lcd_show_fullscreen_message_yes_no_and_wait_P(_i("Was filament unload successful?"),
  2678. false, true); ////MSG_UNLOAD_SUCCESSFUL c=20 r=2
  2679. if (lcd_change_fil_state == 0)
  2680. {
  2681. lcd_clear();
  2682. lcd_set_cursor(0, 2);
  2683. lcd_puts_P(_T(MSG_PLEASE_WAIT));
  2684. current_position[X_AXIS] -= 100;
  2685. plan_buffer_line_curposXYZE(FILAMENTCHANGE_XYFEED, active_extruder);
  2686. st_synchronize();
  2687. lcd_show_fullscreen_message_and_wait_P(_i("Please open idler and remove filament manually."));////MSG_CHECK_IDLER c=20 r=4
  2688. }
  2689. }
  2690. if (mmu_enabled)
  2691. {
  2692. if (!automatic) {
  2693. if (saved_printing) mmu_eject_filament(mmu_extruder, false); //if M600 was invoked by filament senzor (FINDA) eject filament so user can easily remove it
  2694. mmu_M600_wait_and_beep();
  2695. if (saved_printing) {
  2696. lcd_clear();
  2697. lcd_set_cursor(0, 2);
  2698. lcd_puts_P(_T(MSG_PLEASE_WAIT));
  2699. mmu_command(MmuCmd::R0);
  2700. manage_response(false, false);
  2701. }
  2702. }
  2703. mmu_M600_load_filament(automatic, HotendTempBckp);
  2704. }
  2705. else
  2706. M600_load_filament();
  2707. if (!automatic) M600_check_state(HotendTempBckp);
  2708. lcd_update_enable(true);
  2709. //Not let's go back to print
  2710. fanSpeed = fanSpeedBckp;
  2711. //Feed a little of filament to stabilize pressure
  2712. if (!automatic)
  2713. {
  2714. current_position[E_AXIS] += FILAMENTCHANGE_RECFEED;
  2715. plan_buffer_line_curposXYZE(FILAMENTCHANGE_EXFEED, active_extruder);
  2716. }
  2717. //Move XY back
  2718. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS],
  2719. FILAMENTCHANGE_XYFEED, active_extruder);
  2720. st_synchronize();
  2721. //Move Z back
  2722. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], current_position[E_AXIS],
  2723. FILAMENTCHANGE_ZFEED, active_extruder);
  2724. st_synchronize();
  2725. //Set E position to original
  2726. plan_set_e_position(lastpos[E_AXIS]);
  2727. memcpy(current_position, lastpos, sizeof(lastpos));
  2728. memcpy(destination, current_position, sizeof(current_position));
  2729. //Recover feed rate
  2730. feedmultiply = feedmultiplyBckp;
  2731. char cmd[9];
  2732. sprintf_P(cmd, PSTR("M220 S%i"), feedmultiplyBckp);
  2733. enquecommand(cmd);
  2734. #ifdef IR_SENSOR
  2735. //this will set fsensor_watch_autoload to correct value and prevent possible M701 gcode enqueuing when M600 is finished
  2736. fsensor_check_autoload();
  2737. #endif //IR_SENSOR
  2738. lcd_setstatuspgm(_T(WELCOME_MSG));
  2739. custom_message_type = CustomMsg::Status;
  2740. }
  2741. void gcode_M701()
  2742. {
  2743. printf_P(PSTR("gcode_M701 begin\n"));
  2744. if (farm_mode)
  2745. {
  2746. prusa_statistics(22);
  2747. }
  2748. if (mmu_enabled)
  2749. {
  2750. extr_adj(tmp_extruder);//loads current extruder
  2751. mmu_extruder = tmp_extruder;
  2752. }
  2753. else
  2754. {
  2755. enable_z();
  2756. custom_message_type = CustomMsg::FilamentLoading;
  2757. #ifdef FSENSOR_QUALITY
  2758. fsensor_oq_meassure_start(40);
  2759. #endif //FSENSOR_QUALITY
  2760. lcd_setstatuspgm(_T(MSG_LOADING_FILAMENT));
  2761. current_position[E_AXIS] += 40;
  2762. plan_buffer_line_curposXYZE(400 / 60, active_extruder); //fast sequence
  2763. st_synchronize();
  2764. raise_z_above(MIN_Z_FOR_LOAD, false);
  2765. current_position[E_AXIS] += 30;
  2766. plan_buffer_line_curposXYZE(400 / 60, active_extruder); //fast sequence
  2767. load_filament_final_feed(); //slow sequence
  2768. st_synchronize();
  2769. Sound_MakeCustom(50,500,false);
  2770. if (!farm_mode && loading_flag) {
  2771. lcd_load_filament_color_check();
  2772. }
  2773. lcd_update_enable(true);
  2774. lcd_update(2);
  2775. lcd_setstatuspgm(_T(WELCOME_MSG));
  2776. disable_z();
  2777. loading_flag = false;
  2778. custom_message_type = CustomMsg::Status;
  2779. #ifdef FSENSOR_QUALITY
  2780. fsensor_oq_meassure_stop();
  2781. if (!fsensor_oq_result())
  2782. {
  2783. bool disable = lcd_show_fullscreen_message_yes_no_and_wait_P(_i("Fil. sensor response is poor, disable it?"), false, true);
  2784. lcd_update_enable(true);
  2785. lcd_update(2);
  2786. if (disable)
  2787. fsensor_disable();
  2788. }
  2789. #endif //FSENSOR_QUALITY
  2790. }
  2791. }
  2792. /**
  2793. * @brief Get serial number from 32U2 processor
  2794. *
  2795. * Typical format of S/N is:CZPX0917X003XC13518
  2796. *
  2797. * Command operates only in farm mode, if not in farm mode, "Not in farm mode." is written to MYSERIAL.
  2798. *
  2799. * Send command ;S to serial port 0 to retrieve serial number stored in 32U2 processor,
  2800. * reply is transmitted to serial port 1 character by character.
  2801. * Operation takes typically 23 ms. If the retransmit is not finished until 100 ms,
  2802. * it is interrupted, so less, or no characters are retransmitted, only newline character is send
  2803. * in any case.
  2804. */
  2805. static void gcode_PRUSA_SN()
  2806. {
  2807. if (farm_mode) {
  2808. selectedSerialPort = 0;
  2809. putchar(';');
  2810. putchar('S');
  2811. int numbersRead = 0;
  2812. ShortTimer timeout;
  2813. timeout.start();
  2814. while (numbersRead < 19) {
  2815. while (MSerial.available() > 0) {
  2816. uint8_t serial_char = MSerial.read();
  2817. selectedSerialPort = 1;
  2818. putchar(serial_char);
  2819. numbersRead++;
  2820. selectedSerialPort = 0;
  2821. }
  2822. if (timeout.expired(100u)) break;
  2823. }
  2824. selectedSerialPort = 1;
  2825. putchar('\n');
  2826. #if 0
  2827. for (int b = 0; b < 3; b++) {
  2828. _tone(BEEPER, 110);
  2829. _delay(50);
  2830. _noTone(BEEPER);
  2831. _delay(50);
  2832. }
  2833. #endif
  2834. } else {
  2835. puts_P(_N("Not in farm mode."));
  2836. }
  2837. }
  2838. //! Detection of faulty RAMBo 1.1b boards equipped with bigger capacitors
  2839. //! at the TACH_1 pin, which causes bad detection of print fan speed.
  2840. //! Warning: This function is not to be used by ordinary users, it is here only for automated testing purposes,
  2841. //! it may even interfere with other functions of the printer! You have been warned!
  2842. //! The test idea is to measure the time necessary to charge the capacitor.
  2843. //! So the algorithm is as follows:
  2844. //! 1. Set TACH_1 pin to INPUT mode and LOW
  2845. //! 2. Wait a few ms
  2846. //! 3. disable interrupts and measure the time until the TACH_1 pin reaches HIGH
  2847. //! Repeat 1.-3. several times
  2848. //! Good RAMBo's times are in the range of approx. 260-320 us
  2849. //! Bad RAMBo's times are approx. 260-1200 us
  2850. //! So basically we are interested in maximum time, the minima are mostly the same.
  2851. //! May be that's why the bad RAMBo's still produce some fan RPM reading, but not corresponding to reality
  2852. static void gcode_PRUSA_BadRAMBoFanTest(){
  2853. //printf_P(PSTR("Enter fan pin test\n"));
  2854. #if !defined(DEBUG_DISABLE_FANCHECK) && defined(FANCHECK) && defined(TACH_1) && TACH_1 >-1
  2855. fan_measuring = false; // prevent EXTINT7 breaking into the measurement
  2856. unsigned long tach1max = 0;
  2857. uint8_t tach1cntr = 0;
  2858. for( /* nothing */; tach1cntr < 100; ++tach1cntr){
  2859. //printf_P(PSTR("TACH_1: %d\n"), tach1cntr);
  2860. SET_OUTPUT(TACH_1);
  2861. WRITE(TACH_1, LOW);
  2862. _delay(20); // the delay may be lower
  2863. unsigned long tachMeasure = _micros();
  2864. cli();
  2865. SET_INPUT(TACH_1);
  2866. // just wait brutally in an endless cycle until we reach HIGH
  2867. // if this becomes a problem it may be improved to non-endless cycle
  2868. while( READ(TACH_1) == 0 ) ;
  2869. sei();
  2870. tachMeasure = _micros() - tachMeasure;
  2871. if( tach1max < tachMeasure )
  2872. tach1max = tachMeasure;
  2873. //printf_P(PSTR("TACH_1: %d: capacitor check time=%lu us\n"), (int)tach1cntr, tachMeasure);
  2874. }
  2875. //printf_P(PSTR("TACH_1: max=%lu us\n"), tach1max);
  2876. SERIAL_PROTOCOLPGM("RAMBo FAN ");
  2877. if( tach1max > 500 ){
  2878. // bad RAMBo
  2879. SERIAL_PROTOCOLLNPGM("BAD");
  2880. } else {
  2881. SERIAL_PROTOCOLLNPGM("OK");
  2882. }
  2883. // cleanup after the test function
  2884. SET_INPUT(TACH_1);
  2885. WRITE(TACH_1, HIGH);
  2886. #endif
  2887. }
  2888. #ifdef BACKLASH_X
  2889. extern uint8_t st_backlash_x;
  2890. #endif //BACKLASH_X
  2891. #ifdef BACKLASH_Y
  2892. extern uint8_t st_backlash_y;
  2893. #endif //BACKLASH_Y
  2894. //! \ingroup marlin_main
  2895. //! @brief Parse and process commands
  2896. //!
  2897. //! look here for descriptions of G-codes: https://reprap.org/wiki/G-code
  2898. //!
  2899. //!
  2900. //! Implemented Codes
  2901. //! -------------------
  2902. //!
  2903. //! * _This list is not updated. Current documentation is maintained inside the process_cmd function._
  2904. //!
  2905. //!@n PRUSA CODES
  2906. //!@n P F - Returns FW versions
  2907. //!@n P R - Returns revision of printer
  2908. //!
  2909. //!@n G0 -> G1
  2910. //!@n G1 - Coordinated Movement X Y Z E
  2911. //!@n G2 - CW ARC
  2912. //!@n G3 - CCW ARC
  2913. //!@n G4 - Dwell S<seconds> or P<milliseconds>
  2914. //!@n G10 - retract filament according to settings of M207
  2915. //!@n G11 - retract recover filament according to settings of M208
  2916. //!@n G28 - Home all Axis
  2917. //!@n G29 - Detailed Z-Probe, probes the bed at 3 or more points. Will fail if you haven't homed yet.
  2918. //!@n G30 - Single Z Probe, probes bed at current XY location.
  2919. //!@n G31 - Dock sled (Z_PROBE_SLED only)
  2920. //!@n G32 - Undock sled (Z_PROBE_SLED only)
  2921. //!@n G80 - Automatic mesh bed leveling
  2922. //!@n G81 - Print bed profile
  2923. //!@n G90 - Use Absolute Coordinates
  2924. //!@n G91 - Use Relative Coordinates
  2925. //!@n G92 - Set current position to coordinates given
  2926. //!
  2927. //!@n M Codes
  2928. //!@n M0 - Unconditional stop - Wait for user to press a button on the LCD
  2929. //!@n M1 - Same as M0
  2930. //!@n M17 - Enable/Power all stepper motors
  2931. //!@n M18 - Disable all stepper motors; same as M84
  2932. //!@n M20 - List SD card
  2933. //!@n M21 - Init SD card
  2934. //!@n M22 - Release SD card
  2935. //!@n M23 - Select SD file (M23 filename.g)
  2936. //!@n M24 - Start/resume SD print
  2937. //!@n M25 - Pause SD print
  2938. //!@n M26 - Set SD position in bytes (M26 S12345)
  2939. //!@n M27 - Report SD print status
  2940. //!@n M28 - Start SD write (M28 filename.g)
  2941. //!@n M29 - Stop SD write
  2942. //!@n M30 - Delete file from SD (M30 filename.g)
  2943. //!@n M31 - Output time since last M109 or SD card start to serial
  2944. //!@n M32 - Select file and start SD print (Can be used _while_ printing from SD card files):
  2945. //! syntax "M32 /path/filename#", or "M32 S<startpos bytes> !filename#"
  2946. //! Call gcode file : "M32 P !filename#" and return to caller file after finishing (similar to #include).
  2947. //! The '#' is necessary when calling from within sd files, as it stops buffer prereading
  2948. //!@n M42 - Change pin status via gcode Use M42 Px Sy to set pin x to value y, when omitting Px the onboard led will be used.
  2949. //!@n M73 - Show percent done and print time remaining
  2950. //!@n M80 - Turn on Power Supply
  2951. //!@n M81 - Turn off Power Supply
  2952. //!@n M82 - Set E codes absolute (default)
  2953. //!@n M83 - Set E codes relative while in Absolute Coordinates (G90) mode
  2954. //!@n M84 - Disable steppers until next move,
  2955. //! or use S<seconds> to specify an inactivity timeout, after which the steppers will be disabled. S0 to disable the timeout.
  2956. //!@n M85 - Set inactivity shutdown timer with parameter S<seconds>. To disable set zero (default)
  2957. //!@n M86 - Set safety timer expiration time with parameter S<seconds>; M86 S0 will disable safety timer
  2958. //!@n M92 - Set axis_steps_per_unit - same syntax as G92
  2959. //!@n M104 - Set extruder target temp
  2960. //!@n M105 - Read current temp
  2961. //!@n M106 - Fan on
  2962. //!@n M107 - Fan off
  2963. //!@n M109 - Sxxx Wait for extruder current temp to reach target temp. Waits only when heating
  2964. //! Rxxx Wait for extruder current temp to reach target temp. Waits when heating and cooling
  2965. //! IF AUTOTEMP is enabled, S<mintemp> B<maxtemp> F<factor>. Exit autotemp by any M109 without F
  2966. //!@n M112 - Emergency stop
  2967. //!@n M113 - Get or set the timeout interval for Host Keepalive "busy" messages
  2968. //!@n M114 - Output current position to serial port
  2969. //!@n M115 - Capabilities string
  2970. //!@n M117 - display message
  2971. //!@n M119 - Output Endstop status to serial port
  2972. //!@n M126 - Solenoid Air Valve Open (BariCUDA support by jmil)
  2973. //!@n M127 - Solenoid Air Valve Closed (BariCUDA vent to atmospheric pressure by jmil)
  2974. //!@n M128 - EtoP Open (BariCUDA EtoP = electricity to air pressure transducer by jmil)
  2975. //!@n M129 - EtoP Closed (BariCUDA EtoP = electricity to air pressure transducer by jmil)
  2976. //!@n M140 - Set bed target temp
  2977. //!@n M150 - Set BlinkM Color Output R: Red<0-255> U(!): Green<0-255> B: Blue<0-255> over i2c, G for green does not work.
  2978. //!@n M190 - Sxxx Wait for bed current temp to reach target temp. Waits only when heating
  2979. //! Rxxx Wait for bed current temp to reach target temp. Waits when heating and cooling
  2980. //!@n M200 D<millimeters>- set filament diameter and set E axis units to cubic millimeters (use S0 to set back to millimeters).
  2981. //!@n M201 - Set max acceleration in units/s^2 for print moves (M201 X1000 Y1000)
  2982. //!@n M202 - Set max acceleration in units/s^2 for travel moves (M202 X1000 Y1000) Unused in Marlin!!
  2983. //!@n M203 - Set maximum feedrate that your machine can sustain (M203 X200 Y200 Z300 E10000) in mm/sec
  2984. //!@n M204 - Set default acceleration: S normal moves T filament only moves (M204 S3000 T7000) in mm/sec^2 also sets minimum segment time in ms (B20000) to prevent buffer under-runs and M20 minimum feedrate
  2985. //!@n M205 - advanced settings: minimum travel speed S=while printing T=travel only, B=minimum segment time X= maximum xy jerk, Z=maximum Z jerk, E=maximum E jerk
  2986. //!@n M206 - set additional homing offset
  2987. //!@n M207 - set retract length S[positive mm] F[feedrate mm/min] Z[additional zlift/hop], stays in mm regardless of M200 setting
  2988. //!@n M208 - set recover=unretract length S[positive mm surplus to the M207 S*] F[feedrate mm/sec]
  2989. //!@n M209 - S<1=true/0=false> enable automatic retract detect if the slicer did not support G10/11: every normal extrude-only move will be classified as retract depending on the direction.
  2990. //!@n M218 - set hotend offset (in mm): T<extruder_number> X<offset_on_X> Y<offset_on_Y>
  2991. //!@n M220 S<factor in percent>- set speed factor override percentage
  2992. //!@n M221 S<factor in percent>- set extrude factor override percentage
  2993. //!@n M226 P<pin number> S<pin state>- Wait until the specified pin reaches the state required
  2994. //!@n M240 - Trigger a camera to take a photograph
  2995. //!@n M250 - Set LCD contrast C<contrast value> (value 0..63)
  2996. //!@n M280 - set servo position absolute. P: servo index, S: angle or microseconds
  2997. //!@n M300 - Play beep sound S<frequency Hz> P<duration ms>
  2998. //!@n M301 - Set PID parameters P I and D
  2999. //!@n M302 - Allow cold extrudes, or set the minimum extrude S<temperature>.
  3000. //!@n M303 - PID relay autotune S<temperature> sets the target temperature. (default target temperature = 150C)
  3001. //!@n M304 - Set bed PID parameters P I and D
  3002. //!@n M400 - Finish all moves
  3003. //!@n M401 - Lower z-probe if present
  3004. //!@n M402 - Raise z-probe if present
  3005. //!@n M404 - N<dia in mm> Enter the nominal filament width (3mm, 1.75mm ) or will display nominal filament width without parameters
  3006. //!@n M405 - Turn on Filament Sensor extrusion control. Optional D<delay in cm> to set delay in centimeters between sensor and extruder
  3007. //!@n M406 - Turn off Filament Sensor extrusion control
  3008. //!@n M407 - Displays measured filament diameter
  3009. //!@n M500 - stores parameters in EEPROM
  3010. //!@n M501 - reads parameters from EEPROM (if you need reset them after you changed them temporarily).
  3011. //!@n M502 - reverts to the default "factory settings". You still need to store them in EEPROM afterwards if you want to.
  3012. //!@n M503 - print the current settings (from memory not from EEPROM)
  3013. //!@n M509 - force language selection on next restart
  3014. //!@n M540 - Use S[0|1] to enable or disable the stop SD card print on endstop hit (requires ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED)
  3015. //!@n M600 - Pause for filament change X[pos] Y[pos] Z[relative lift] E[initial retract] L[later retract distance for removal]
  3016. //!@n M605 - Set dual x-carriage movement mode: S<mode> [ X<duplication x-offset> R<duplication temp offset> ]
  3017. //!@n M860 - Wait for PINDA thermistor to reach target temperature.
  3018. //!@n M861 - Set / Read PINDA temperature compensation offsets
  3019. //!@n M900 - Set LIN_ADVANCE options, if enabled. See Configuration_adv.h for details.
  3020. //!@n M907 - Set digital trimpot motor current using axis codes.
  3021. //!@n M908 - Control digital trimpot directly.
  3022. //!@n M350 - Set microstepping mode.
  3023. //!@n M351 - Toggle MS1 MS2 pins directly.
  3024. //!
  3025. //!@n M928 - Start SD logging (M928 filename.g) - ended by M29
  3026. //!@n M999 - Restart after being stopped by error
  3027. //! <br><br>
  3028. /** @defgroup marlin_main Marlin main */
  3029. /** \ingroup GCodes */
  3030. //! _This is a list of currently implemented G Codes in Prusa firmware (dynamically generated from doxygen)._
  3031. /**
  3032. They are shown in order of appierence in the code.
  3033. There are reasons why some G Codes aren't in numerical order.
  3034. */
  3035. void process_commands()
  3036. {
  3037. #ifdef FANCHECK
  3038. if(fan_check_error){
  3039. if(fan_check_error == EFCE_DETECTED){
  3040. fan_check_error = EFCE_REPORTED;
  3041. // SERIAL_PROTOCOLLNRPGM(MSG_OCTOPRINT_PAUSED);
  3042. lcd_pause_print();
  3043. } // otherwise it has already been reported, so just ignore further processing
  3044. return; //ignore usb stream. It is reenabled by selecting resume from the lcd.
  3045. }
  3046. #endif
  3047. if (!buflen) return; //empty command
  3048. #ifdef FILAMENT_RUNOUT_SUPPORT
  3049. SET_INPUT(FR_SENS);
  3050. #endif
  3051. #ifdef CMDBUFFER_DEBUG
  3052. SERIAL_ECHOPGM("Processing a GCODE command: ");
  3053. SERIAL_ECHO(cmdbuffer+bufindr+CMDHDRSIZE);
  3054. SERIAL_ECHOLNPGM("");
  3055. SERIAL_ECHOPGM("In cmdqueue: ");
  3056. SERIAL_ECHO(buflen);
  3057. SERIAL_ECHOLNPGM("");
  3058. #endif /* CMDBUFFER_DEBUG */
  3059. unsigned long codenum; //throw away variable
  3060. char *starpos = NULL;
  3061. #ifdef ENABLE_AUTO_BED_LEVELING
  3062. float x_tmp, y_tmp, z_tmp, real_z;
  3063. #endif
  3064. // PRUSA GCODES
  3065. KEEPALIVE_STATE(IN_HANDLER);
  3066. #ifdef SNMM
  3067. float tmp_motor[3] = DEFAULT_PWM_MOTOR_CURRENT;
  3068. float tmp_motor_loud[3] = DEFAULT_PWM_MOTOR_CURRENT_LOUD;
  3069. int8_t SilentMode;
  3070. #endif
  3071. /*!
  3072. ---------------------------------------------------------------------------------
  3073. ### M117 - Display Message <a href="https://reprap.org/wiki/G-code#M117:_Display_Message">M117: Display Message</a>
  3074. This causes the given message to be shown in the status line on an attached LCD.
  3075. It is also used by internal to display status messages on LCD.
  3076. Here the internal status messages:
  3077. Only on MK3/s (TMC2130)
  3078. - CRASH DETECTED
  3079. - CRASH RECOVER
  3080. - CRASH_CANCEL
  3081. - TMC_SET_WAVE
  3082. - TMC_SET_STEP
  3083. - TMC_SET_CHOP
  3084. */
  3085. if (code_seen("M117")) { //moved to highest priority place to be able to to print strings which includes "G", "PRUSA" and "^"
  3086. starpos = (strchr(strchr_pointer + 5, '*'));
  3087. if (starpos != NULL)
  3088. *(starpos) = '\0';
  3089. lcd_setstatus(strchr_pointer + 5);
  3090. }
  3091. #ifdef TMC2130
  3092. else if (strncmp_P(CMDBUFFER_CURRENT_STRING, PSTR("CRASH_"), 6) == 0)
  3093. {
  3094. // ### CRASH_DETECTED - TMC2130
  3095. // ---------------------------------
  3096. if(code_seen("CRASH_DETECTED"))
  3097. {
  3098. uint8_t mask = 0;
  3099. if (code_seen('X')) mask |= X_AXIS_MASK;
  3100. if (code_seen('Y')) mask |= Y_AXIS_MASK;
  3101. crashdet_detected(mask);
  3102. }
  3103. // ### CRASH_RECOVER - TMC2130
  3104. // ----------------------------------
  3105. else if(code_seen("CRASH_RECOVER"))
  3106. crashdet_recover();
  3107. // ### CRASH_CANCEL - TMC2130
  3108. // ----------------------------------
  3109. else if(code_seen("CRASH_CANCEL"))
  3110. crashdet_cancel();
  3111. }
  3112. else if (strncmp_P(CMDBUFFER_CURRENT_STRING, PSTR("TMC_"), 4) == 0)
  3113. {
  3114. // ### TMC_SET_WAVE_
  3115. // --------------------
  3116. if (strncmp_P(CMDBUFFER_CURRENT_STRING + 4, PSTR("SET_WAVE_"), 9) == 0)
  3117. {
  3118. uint8_t axis = *(CMDBUFFER_CURRENT_STRING + 13);
  3119. axis = (axis == 'E')?3:(axis - 'X');
  3120. if (axis < 4)
  3121. {
  3122. uint8_t fac = (uint8_t)strtol(CMDBUFFER_CURRENT_STRING + 14, NULL, 10);
  3123. tmc2130_set_wave(axis, 247, fac);
  3124. }
  3125. }
  3126. // ### TMC_SET_STEP_
  3127. // ------------------
  3128. else if (strncmp_P(CMDBUFFER_CURRENT_STRING + 4, PSTR("SET_STEP_"), 9) == 0)
  3129. {
  3130. uint8_t axis = *(CMDBUFFER_CURRENT_STRING + 13);
  3131. axis = (axis == 'E')?3:(axis - 'X');
  3132. if (axis < 4)
  3133. {
  3134. uint8_t step = (uint8_t)strtol(CMDBUFFER_CURRENT_STRING + 14, NULL, 10);
  3135. uint16_t res = tmc2130_get_res(axis);
  3136. tmc2130_goto_step(axis, step & (4*res - 1), 2, 1000, res);
  3137. }
  3138. }
  3139. // ### TMC_SET_CHOP_
  3140. // -------------------
  3141. else if (strncmp_P(CMDBUFFER_CURRENT_STRING + 4, PSTR("SET_CHOP_"), 9) == 0)
  3142. {
  3143. uint8_t axis = *(CMDBUFFER_CURRENT_STRING + 13);
  3144. axis = (axis == 'E')?3:(axis - 'X');
  3145. if (axis < 4)
  3146. {
  3147. uint8_t chop0 = tmc2130_chopper_config[axis].toff;
  3148. uint8_t chop1 = tmc2130_chopper_config[axis].hstr;
  3149. uint8_t chop2 = tmc2130_chopper_config[axis].hend;
  3150. uint8_t chop3 = tmc2130_chopper_config[axis].tbl;
  3151. char* str_end = 0;
  3152. if (CMDBUFFER_CURRENT_STRING[14])
  3153. {
  3154. chop0 = (uint8_t)strtol(CMDBUFFER_CURRENT_STRING + 14, &str_end, 10) & 15;
  3155. if (str_end && *str_end)
  3156. {
  3157. chop1 = (uint8_t)strtol(str_end, &str_end, 10) & 7;
  3158. if (str_end && *str_end)
  3159. {
  3160. chop2 = (uint8_t)strtol(str_end, &str_end, 10) & 15;
  3161. if (str_end && *str_end)
  3162. chop3 = (uint8_t)strtol(str_end, &str_end, 10) & 3;
  3163. }
  3164. }
  3165. }
  3166. tmc2130_chopper_config[axis].toff = chop0;
  3167. tmc2130_chopper_config[axis].hstr = chop1 & 7;
  3168. tmc2130_chopper_config[axis].hend = chop2 & 15;
  3169. tmc2130_chopper_config[axis].tbl = chop3 & 3;
  3170. tmc2130_setup_chopper(axis, tmc2130_mres[axis], tmc2130_current_h[axis], tmc2130_current_r[axis]);
  3171. //printf_P(_N("TMC_SET_CHOP_%c %hhd %hhd %hhd %hhd\n"), "xyze"[axis], chop0, chop1, chop2, chop3);
  3172. }
  3173. }
  3174. }
  3175. #ifdef BACKLASH_X
  3176. else if (strncmp_P(CMDBUFFER_CURRENT_STRING, PSTR("BACKLASH_X"), 10) == 0)
  3177. {
  3178. uint8_t bl = (uint8_t)strtol(CMDBUFFER_CURRENT_STRING + 10, NULL, 10);
  3179. st_backlash_x = bl;
  3180. printf_P(_N("st_backlash_x = %hhd\n"), st_backlash_x);
  3181. }
  3182. #endif //BACKLASH_X
  3183. #ifdef BACKLASH_Y
  3184. else if (strncmp_P(CMDBUFFER_CURRENT_STRING, PSTR("BACKLASH_Y"), 10) == 0)
  3185. {
  3186. uint8_t bl = (uint8_t)strtol(CMDBUFFER_CURRENT_STRING + 10, NULL, 10);
  3187. st_backlash_y = bl;
  3188. printf_P(_N("st_backlash_y = %hhd\n"), st_backlash_y);
  3189. }
  3190. #endif //BACKLASH_Y
  3191. #endif //TMC2130
  3192. else if(code_seen("PRUSA")){
  3193. /*!
  3194. ---------------------------------------------------------------------------------
  3195. ### PRUSA - Internal command set <a href="https://reprap.org/wiki/G-code#G98:_Activate_farm_mode">G98: Activate farm mode - Notes</a>
  3196. Set of internal PRUSA commands
  3197. #### Usage
  3198. P RUSA [ Ping | PRN | FAN | fn | thx | uvlo | MMURES | RESET | fv | M28 | SN | Fir | Rev | Lang | Lz | Beat | FR ]
  3199. #### Parameters
  3200. - `Ping`
  3201. - `PRN` - Prints revision of the printer
  3202. - `FAN` - Prints fan details
  3203. - `fn` - Prints farm no.
  3204. - `thx`
  3205. - `uvlo`
  3206. - `MMURES` - Reset MMU
  3207. - `RESET` - (Careful!)
  3208. - `fv` - ?
  3209. - `M28`
  3210. - `SN`
  3211. - `Fir` - Prints firmware version
  3212. - `Rev`- Prints filament size, elelectronics, nozzle type
  3213. - `Lang` - Reset the language
  3214. - `Lz`
  3215. - `Beat` - Kick farm link timer
  3216. - `FR` - Full factory reset
  3217. - `nozzle set <diameter>` - set nozzle diameter (farm mode only), e.g. `PRUSA nozzle set 0.4`
  3218. - `nozzle D<diameter>` - check the nozzle diameter (farm mode only), works like M862.1 P, e.g. `PRUSA nozzle D0.4`
  3219. - `nozzle` - prints nozzle diameter (farm mode only), works like M862.1 P, e.g. `PRUSA nozzle`
  3220. */
  3221. if (code_seen("Ping")) { // PRUSA Ping
  3222. if (farm_mode) {
  3223. PingTime = _millis();
  3224. //MYSERIAL.print(farm_no); MYSERIAL.println(": OK");
  3225. }
  3226. }
  3227. else if (code_seen("PRN")) { // PRUSA PRN
  3228. printf_P(_N("%d"), status_number);
  3229. } else if( code_seen("FANPINTST") ){
  3230. gcode_PRUSA_BadRAMBoFanTest();
  3231. }else if (code_seen("FAN")) { // PRUSA FAN
  3232. printf_P(_N("E0:%d RPM\nPRN0:%d RPM\n"), 60*fan_speed[0], 60*fan_speed[1]);
  3233. }else if (code_seen("fn")) { // PRUSA fn
  3234. if (farm_mode) {
  3235. printf_P(_N("%d"), farm_no);
  3236. }
  3237. else {
  3238. puts_P(_N("Not in farm mode."));
  3239. }
  3240. }
  3241. else if (code_seen("thx")) // PRUSA thx
  3242. {
  3243. no_response = false;
  3244. }
  3245. else if (code_seen("uvlo")) // PRUSA uvlo
  3246. {
  3247. eeprom_update_byte((uint8_t*)EEPROM_UVLO,0);
  3248. enquecommand_P(PSTR("M24"));
  3249. }
  3250. else if (code_seen("MMURES")) // PRUSA MMURES
  3251. {
  3252. mmu_reset();
  3253. }
  3254. else if (code_seen("RESET")) { // PRUSA RESET
  3255. // careful!
  3256. if (farm_mode) {
  3257. #if (defined(WATCHDOG) && (MOTHERBOARD == BOARD_EINSY_1_0a))
  3258. boot_app_magic = BOOT_APP_MAGIC;
  3259. boot_app_flags = BOOT_APP_FLG_RUN;
  3260. wdt_enable(WDTO_15MS);
  3261. cli();
  3262. while(1);
  3263. #else //WATCHDOG
  3264. asm volatile("jmp 0x3E000");
  3265. #endif //WATCHDOG
  3266. }
  3267. else {
  3268. MYSERIAL.println("Not in farm mode.");
  3269. }
  3270. }else if (code_seen("fv")) { // PRUSA fv
  3271. // get file version
  3272. #ifdef SDSUPPORT
  3273. card.openFile(strchr_pointer + 3,true);
  3274. while (true) {
  3275. uint16_t readByte = card.get();
  3276. MYSERIAL.write(readByte);
  3277. if (readByte=='\n') {
  3278. break;
  3279. }
  3280. }
  3281. card.closefile();
  3282. #endif // SDSUPPORT
  3283. } else if (code_seen("M28")) { // PRUSA M28
  3284. trace();
  3285. prusa_sd_card_upload = true;
  3286. card.openFile(strchr_pointer+4,false);
  3287. } else if (code_seen("SN")) { // PRUSA SN
  3288. gcode_PRUSA_SN();
  3289. } else if(code_seen("Fir")){ // PRUSA Fir
  3290. SERIAL_PROTOCOLLN(FW_VERSION_FULL);
  3291. } else if(code_seen("Rev")){ // PRUSA Rev
  3292. SERIAL_PROTOCOLLN(FILAMENT_SIZE "-" ELECTRONICS "-" NOZZLE_TYPE );
  3293. } else if(code_seen("Lang")) { // PRUSA Lang
  3294. lang_reset();
  3295. } else if(code_seen("Lz")) { // PRUSA Lz
  3296. eeprom_update_word(reinterpret_cast<uint16_t *>(&(EEPROM_Sheets_base->s[(eeprom_read_byte(&(EEPROM_Sheets_base->active_sheet)))].z_offset)),0);
  3297. } else if(code_seen("Beat")) { // PRUSA Beat
  3298. // Kick farm link timer
  3299. kicktime = _millis();
  3300. } else if(code_seen("FR")) { // PRUSA FR
  3301. // Factory full reset
  3302. factory_reset(0);
  3303. //-//
  3304. /*
  3305. } else if(code_seen("rrr")) {
  3306. MYSERIAL.println("=== checking ===");
  3307. MYSERIAL.println(eeprom_read_byte((uint8_t*)EEPROM_CHECK_MODE),DEC);
  3308. MYSERIAL.println(eeprom_read_byte((uint8_t*)EEPROM_NOZZLE_DIAMETER),DEC);
  3309. MYSERIAL.println(eeprom_read_word((uint16_t*)EEPROM_NOZZLE_DIAMETER_uM),DEC);
  3310. MYSERIAL.println(farm_mode,DEC);
  3311. MYSERIAL.println(eCheckMode,DEC);
  3312. } else if(code_seen("www")) {
  3313. MYSERIAL.println("=== @ FF ===");
  3314. eeprom_update_byte((uint8_t*)EEPROM_CHECK_MODE,0xFF);
  3315. eeprom_update_byte((uint8_t*)EEPROM_NOZZLE_DIAMETER,0xFF);
  3316. eeprom_update_word((uint16_t*)EEPROM_NOZZLE_DIAMETER_uM,0xFFFF);
  3317. */
  3318. } else if (code_seen("nozzle")) { // PRUSA nozzle
  3319. uint16_t nDiameter;
  3320. if(code_seen('D'))
  3321. {
  3322. nDiameter=(uint16_t)(code_value()*1000.0+0.5); // [,um]
  3323. nozzle_diameter_check(nDiameter);
  3324. }
  3325. else if(code_seen("set") && farm_mode)
  3326. {
  3327. strchr_pointer++; // skip 1st char (~ 's')
  3328. strchr_pointer++; // skip 2nd char (~ 'e')
  3329. nDiameter=(uint16_t)(code_value()*1000.0+0.5); // [,um]
  3330. eeprom_update_byte((uint8_t*)EEPROM_NOZZLE_DIAMETER,(uint8_t)ClNozzleDiameter::_Diameter_Undef); // for correct synchronization after farm-mode exiting
  3331. eeprom_update_word((uint16_t*)EEPROM_NOZZLE_DIAMETER_uM,nDiameter);
  3332. }
  3333. else SERIAL_PROTOCOLLN((float)eeprom_read_word((uint16_t*)EEPROM_NOZZLE_DIAMETER_uM)/1000.0);
  3334. //-// !!! SupportMenu
  3335. /*
  3336. // musi byt PRED "PRUSA model"
  3337. } else if (code_seen("smodel")) { //! PRUSA smodel
  3338. size_t nOffset;
  3339. // ! -> "l"
  3340. strchr_pointer+=5*sizeof(*strchr_pointer); // skip 1st - 5th char (~ 'smode')
  3341. nOffset=strspn(strchr_pointer+1," \t\n\r\v\f");
  3342. if(*(strchr_pointer+1+nOffset))
  3343. printer_smodel_check(strchr_pointer);
  3344. else SERIAL_PROTOCOLLN(PRINTER_NAME);
  3345. } else if (code_seen("model")) { //! PRUSA model
  3346. uint16_t nPrinterModel;
  3347. strchr_pointer+=4*sizeof(*strchr_pointer); // skip 1st - 4th char (~ 'mode')
  3348. nPrinterModel=(uint16_t)code_value_long();
  3349. if(nPrinterModel!=0)
  3350. printer_model_check(nPrinterModel);
  3351. else SERIAL_PROTOCOLLN(PRINTER_TYPE);
  3352. } else if (code_seen("version")) { //! PRUSA version
  3353. strchr_pointer+=7*sizeof(*strchr_pointer); // skip 1st - 7th char (~ 'version')
  3354. while(*strchr_pointer==' ') // skip leading spaces
  3355. strchr_pointer++;
  3356. if(*strchr_pointer!=0)
  3357. fw_version_check(strchr_pointer);
  3358. else SERIAL_PROTOCOLLN(FW_VERSION);
  3359. } else if (code_seen("gcode")) { //! PRUSA gcode
  3360. uint16_t nGcodeLevel;
  3361. strchr_pointer+=4*sizeof(*strchr_pointer); // skip 1st - 4th char (~ 'gcod')
  3362. nGcodeLevel=(uint16_t)code_value_long();
  3363. if(nGcodeLevel!=0)
  3364. gcode_level_check(nGcodeLevel);
  3365. else SERIAL_PROTOCOLLN(GCODE_LEVEL);
  3366. */
  3367. }
  3368. //else if (code_seen('Cal')) {
  3369. // lcd_calibration();
  3370. // }
  3371. }
  3372. // This prevents reading files with "^" in their names.
  3373. // Since it is unclear, if there is some usage of this construct,
  3374. // it will be deprecated in 3.9 alpha a possibly completely removed in the future:
  3375. // else if (code_seen('^')) {
  3376. // // nothing, this is a version line
  3377. // }
  3378. else if(code_seen('G'))
  3379. {
  3380. gcode_in_progress = (int)code_value();
  3381. // printf_P(_N("BEGIN G-CODE=%u\n"), gcode_in_progress);
  3382. switch (gcode_in_progress)
  3383. {
  3384. /*!
  3385. ---------------------------------------------------------------------------------
  3386. # G Codes
  3387. ### G0, G1 - Coordinated movement X Y Z E <a href="https://reprap.org/wiki/G-code#G0_.26_G1:_Move">G0 & G1: Move</a>
  3388. In Prusa Frimware G0 and G1 are the same.
  3389. #### Usage
  3390. G0 [ X | Y | Z | E | F | S ]
  3391. G1 [ X | Y | Z | E | F | S ]
  3392. #### Parameters
  3393. - `X` - The position to move to on the X axis
  3394. - `Y` - The position to move to on the Y axis
  3395. - `Z` - The position to move to on the Z axis
  3396. - `E` - The amount to extrude between the starting point and ending point
  3397. - `F` - The feedrate per minute of the move between the starting point and ending point (if supplied)
  3398. */
  3399. case 0: // G0 -> G1
  3400. case 1: // G1
  3401. if(Stopped == false) {
  3402. #ifdef FILAMENT_RUNOUT_SUPPORT
  3403. if(READ(FR_SENS)){
  3404. int feedmultiplyBckp=feedmultiply;
  3405. float target[4];
  3406. float lastpos[4];
  3407. target[X_AXIS]=current_position[X_AXIS];
  3408. target[Y_AXIS]=current_position[Y_AXIS];
  3409. target[Z_AXIS]=current_position[Z_AXIS];
  3410. target[E_AXIS]=current_position[E_AXIS];
  3411. lastpos[X_AXIS]=current_position[X_AXIS];
  3412. lastpos[Y_AXIS]=current_position[Y_AXIS];
  3413. lastpos[Z_AXIS]=current_position[Z_AXIS];
  3414. lastpos[E_AXIS]=current_position[E_AXIS];
  3415. //retract by E
  3416. target[E_AXIS]+= FILAMENTCHANGE_FIRSTRETRACT ;
  3417. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 400, active_extruder);
  3418. target[Z_AXIS]+= FILAMENTCHANGE_ZADD ;
  3419. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 300, active_extruder);
  3420. target[X_AXIS]= FILAMENTCHANGE_XPOS ;
  3421. target[Y_AXIS]= FILAMENTCHANGE_YPOS ;
  3422. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 70, active_extruder);
  3423. target[E_AXIS]+= FILAMENTCHANGE_FINALRETRACT ;
  3424. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 20, active_extruder);
  3425. //finish moves
  3426. st_synchronize();
  3427. //disable extruder steppers so filament can be removed
  3428. disable_e0();
  3429. disable_e1();
  3430. disable_e2();
  3431. _delay(100);
  3432. //LCD_ALERTMESSAGEPGM(_T(MSG_FILAMENTCHANGE));
  3433. uint8_t cnt=0;
  3434. int counterBeep = 0;
  3435. lcd_wait_interact();
  3436. while(!lcd_clicked()){
  3437. cnt++;
  3438. manage_heater();
  3439. manage_inactivity(true);
  3440. //lcd_update(0);
  3441. if(cnt==0)
  3442. {
  3443. #if BEEPER > 0
  3444. if (counterBeep== 500){
  3445. counterBeep = 0;
  3446. }
  3447. SET_OUTPUT(BEEPER);
  3448. if (counterBeep== 0){
  3449. if(eSoundMode!=e_SOUND_MODE_SILENT)
  3450. WRITE(BEEPER,HIGH);
  3451. }
  3452. if (counterBeep== 20){
  3453. WRITE(BEEPER,LOW);
  3454. }
  3455. counterBeep++;
  3456. #else
  3457. #endif
  3458. }
  3459. }
  3460. WRITE(BEEPER,LOW);
  3461. target[E_AXIS]+= FILAMENTCHANGE_FIRSTFEED ;
  3462. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 20, active_extruder);
  3463. target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  3464. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder);
  3465. lcd_change_fil_state = 0;
  3466. lcd_loading_filament();
  3467. while ((lcd_change_fil_state == 0)||(lcd_change_fil_state != 1)){
  3468. lcd_change_fil_state = 0;
  3469. lcd_alright();
  3470. switch(lcd_change_fil_state){
  3471. case 2:
  3472. target[E_AXIS]+= FILAMENTCHANGE_FIRSTFEED ;
  3473. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 20, active_extruder);
  3474. target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  3475. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder);
  3476. lcd_loading_filament();
  3477. break;
  3478. case 3:
  3479. target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  3480. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder);
  3481. lcd_loading_color();
  3482. break;
  3483. default:
  3484. lcd_change_success();
  3485. break;
  3486. }
  3487. }
  3488. target[E_AXIS]+= 5;
  3489. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder);
  3490. target[E_AXIS]+= FILAMENTCHANGE_FIRSTRETRACT;
  3491. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 400, active_extruder);
  3492. //current_position[E_AXIS]=target[E_AXIS]; //the long retract of L is compensated by manual filament feeding
  3493. //plan_set_e_position(current_position[E_AXIS]);
  3494. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 70, active_extruder); //should do nothing
  3495. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], target[Z_AXIS], target[E_AXIS], 70, active_extruder); //move xy back
  3496. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], target[E_AXIS], 200, active_extruder); //move z back
  3497. target[E_AXIS]= target[E_AXIS] - FILAMENTCHANGE_FIRSTRETRACT;
  3498. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], target[E_AXIS], 5, active_extruder); //final untretract
  3499. plan_set_e_position(lastpos[E_AXIS]);
  3500. feedmultiply=feedmultiplyBckp;
  3501. char cmd[9];
  3502. sprintf_P(cmd, PSTR("M220 S%i"), feedmultiplyBckp);
  3503. enquecommand(cmd);
  3504. }
  3505. #endif
  3506. get_coordinates(); // For X Y Z E F
  3507. // When recovering from a previous print move, restore the originally
  3508. // calculated target position on the first USB/SD command. This accounts
  3509. // properly for relative moves
  3510. if ((saved_target[0] != SAVED_TARGET_UNSET) &&
  3511. ((CMDBUFFER_CURRENT_TYPE == CMDBUFFER_CURRENT_TYPE_SDCARD) ||
  3512. (CMDBUFFER_CURRENT_TYPE == CMDBUFFER_CURRENT_TYPE_USB_WITH_LINENR)))
  3513. {
  3514. memcpy(destination, saved_target, sizeof(destination));
  3515. saved_target[0] = SAVED_TARGET_UNSET;
  3516. }
  3517. if (total_filament_used > ((current_position[E_AXIS] - destination[E_AXIS]) * 100)) { //protection against total_filament_used overflow
  3518. total_filament_used = total_filament_used + ((destination[E_AXIS] - current_position[E_AXIS]) * 100);
  3519. }
  3520. #ifdef FWRETRACT
  3521. if(cs.autoretract_enabled)
  3522. if( !(code_seen('X') || code_seen('Y') || code_seen('Z')) && code_seen('E')) {
  3523. float echange=destination[E_AXIS]-current_position[E_AXIS];
  3524. if((echange<-MIN_RETRACT && !retracted[active_extruder]) || (echange>MIN_RETRACT && retracted[active_extruder])) { //move appears to be an attempt to retract or recover
  3525. current_position[E_AXIS] = destination[E_AXIS]; //hide the slicer-generated retract/recover from calculations
  3526. plan_set_e_position(current_position[E_AXIS]); //AND from the planner
  3527. retract(!retracted[active_extruder]);
  3528. return;
  3529. }
  3530. }
  3531. #endif //FWRETRACT
  3532. prepare_move();
  3533. //ClearToSend();
  3534. }
  3535. break;
  3536. /*!
  3537. ### G2, G3 - Controlled Arc Move <a href="https://reprap.org/wiki/G-code#G2_.26_G3:_Controlled_Arc_Move">G2 & G3: Controlled Arc Move</a>
  3538. #### Usage
  3539. G2 [ X | Y | I | E | F ] (Clockwise Arc)
  3540. G3 [ X | Y | I | E | F ] (Counter-Clockwise Arc)
  3541. #### Parameters
  3542. - `X` - The position to move to on the X axis
  3543. - `Y` - The position to move to on the Y axis
  3544. - `I` - The point in X space from the current X position to maintain a constant distance from
  3545. - `J` - The point in Y space from the current Y position to maintain a constant distance from
  3546. - `E` - The amount to extrude between the starting point and ending point
  3547. - `F` - The feedrate per minute of the move between the starting point and ending point (if supplied)
  3548. */
  3549. case 2:
  3550. if(Stopped == false) {
  3551. get_arc_coordinates();
  3552. prepare_arc_move(true);
  3553. }
  3554. break;
  3555. // -------------------------------
  3556. case 3:
  3557. if(Stopped == false) {
  3558. get_arc_coordinates();
  3559. prepare_arc_move(false);
  3560. }
  3561. break;
  3562. /*!
  3563. ### G4 - Dwell <a href="https://reprap.org/wiki/G-code#G4:_Dwell">G4: Dwell</a>
  3564. Pause the machine for a period of time.
  3565. #### Usage
  3566. G4 [ P | S ]
  3567. #### Parameters
  3568. - `P` - Time to wait, in milliseconds
  3569. - `S` - Time to wait, in seconds
  3570. */
  3571. case 4:
  3572. codenum = 0;
  3573. if(code_seen('P')) codenum = code_value(); // milliseconds to wait
  3574. if(code_seen('S')) codenum = code_value() * 1000; // seconds to wait
  3575. if(codenum != 0) LCD_MESSAGERPGM(_n("Sleep..."));////MSG_DWELL
  3576. st_synchronize();
  3577. codenum += _millis(); // keep track of when we started waiting
  3578. previous_millis_cmd = _millis();
  3579. while(_millis() < codenum) {
  3580. manage_heater();
  3581. manage_inactivity();
  3582. lcd_update(0);
  3583. }
  3584. break;
  3585. #ifdef FWRETRACT
  3586. /*!
  3587. ### G10 - Retract <a href="https://reprap.org/wiki/G-code#G10:_Retract">G10: Retract</a>
  3588. Retracts filament according to settings of `M207`
  3589. #### Usage
  3590. G10
  3591. */
  3592. case 10:
  3593. #if EXTRUDERS > 1
  3594. retracted_swap[active_extruder]=(code_seen('S') && code_value_long() == 1); // checks for swap retract argument
  3595. retract(true,retracted_swap[active_extruder]);
  3596. #else
  3597. retract(true);
  3598. #endif
  3599. break;
  3600. /*!
  3601. ### G11 - Retract recover <a href="https://reprap.org/wiki/G-code#G11:_Unretract">G11: Unretract</a>
  3602. Unretracts/recovers filament according to settings of `M208`
  3603. #### Usage
  3604. G11
  3605. */
  3606. case 11:
  3607. #if EXTRUDERS > 1
  3608. retract(false,retracted_swap[active_extruder]);
  3609. #else
  3610. retract(false);
  3611. #endif
  3612. break;
  3613. #endif //FWRETRACT
  3614. /*!
  3615. ### G28 - Home all Axis one at a time <a href="https://reprap.org/wiki/G-code#G28:_Move_to_Origin_.28Home.29">G28: Move to Origin (Home)</a>
  3616. Unsing `G28` without any paramters will perfom on the Prusa i3 printers home AND mesh bed leveling, while `G28 W` will just home the printer
  3617. #### Usage
  3618. G28 [ X | Y | Z | W | C ]
  3619. #### Parameters
  3620. - `X` - Flag to go back to the X axis origin
  3621. - `Y` - Flag to go back to the Y axis origin
  3622. - `Z` - Flag to go back to the Z axis origin
  3623. - `W` - Suppress mesh bed leveling
  3624. - `C` - Calibrate X and Y origin (home) - Only on MK3/s
  3625. */
  3626. case 28:
  3627. {
  3628. long home_x_value = 0;
  3629. long home_y_value = 0;
  3630. long home_z_value = 0;
  3631. // Which axes should be homed?
  3632. bool home_x = code_seen(axis_codes[X_AXIS]);
  3633. home_x_value = code_value_long();
  3634. bool home_y = code_seen(axis_codes[Y_AXIS]);
  3635. home_y_value = code_value_long();
  3636. bool home_z = code_seen(axis_codes[Z_AXIS]);
  3637. home_z_value = code_value_long();
  3638. bool without_mbl = code_seen('W');
  3639. // calibrate?
  3640. #ifdef TMC2130
  3641. bool calib = code_seen('C');
  3642. gcode_G28(home_x, home_x_value, home_y, home_y_value, home_z, home_z_value, calib, without_mbl);
  3643. #else
  3644. gcode_G28(home_x, home_x_value, home_y, home_y_value, home_z, home_z_value, without_mbl);
  3645. #endif //TMC2130
  3646. if ((home_x || home_y || without_mbl || home_z) == false) {
  3647. // Push the commands to the front of the message queue in the reverse order!
  3648. // There shall be always enough space reserved for these commands.
  3649. goto case_G80;
  3650. }
  3651. break;
  3652. }
  3653. #ifdef ENABLE_AUTO_BED_LEVELING
  3654. /*!
  3655. ### G29 - Detailed Z-Probe <a href="https://reprap.org/wiki/G-code#G29:_Detailed_Z-Probe">G29: Detailed Z-Probe</a>
  3656. In Prusa Firmware this G-code is deactivated by default, must be turned on in the source code.
  3657. See `G81`
  3658. */
  3659. case 29:
  3660. {
  3661. #if Z_MIN_PIN == -1
  3662. #error "You must have a Z_MIN endstop in order to enable Auto Bed Leveling feature! Z_MIN_PIN must point to a valid hardware pin."
  3663. #endif
  3664. // Prevent user from running a G29 without first homing in X and Y
  3665. if (! (axis_known_position[X_AXIS] && axis_known_position[Y_AXIS]) )
  3666. {
  3667. LCD_MESSAGERPGM(MSG_POSITION_UNKNOWN);
  3668. SERIAL_ECHO_START;
  3669. SERIAL_ECHOLNRPGM(MSG_POSITION_UNKNOWN);
  3670. break; // abort G29, since we don't know where we are
  3671. }
  3672. st_synchronize();
  3673. // make sure the bed_level_rotation_matrix is identity or the planner will get it incorectly
  3674. //vector_3 corrected_position = plan_get_position_mm();
  3675. //corrected_position.debug("position before G29");
  3676. plan_bed_level_matrix.set_to_identity();
  3677. vector_3 uncorrected_position = plan_get_position();
  3678. //uncorrected_position.debug("position durring G29");
  3679. current_position[X_AXIS] = uncorrected_position.x;
  3680. current_position[Y_AXIS] = uncorrected_position.y;
  3681. current_position[Z_AXIS] = uncorrected_position.z;
  3682. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  3683. int l_feedmultiply = setup_for_endstop_move();
  3684. feedrate = homing_feedrate[Z_AXIS];
  3685. #ifdef AUTO_BED_LEVELING_GRID
  3686. // probe at the points of a lattice grid
  3687. int xGridSpacing = (RIGHT_PROBE_BED_POSITION - LEFT_PROBE_BED_POSITION) / (AUTO_BED_LEVELING_GRID_POINTS-1);
  3688. int yGridSpacing = (BACK_PROBE_BED_POSITION - FRONT_PROBE_BED_POSITION) / (AUTO_BED_LEVELING_GRID_POINTS-1);
  3689. // solve the plane equation ax + by + d = z
  3690. // A is the matrix with rows [x y 1] for all the probed points
  3691. // B is the vector of the Z positions
  3692. // the normal vector to the plane is formed by the coefficients of the plane equation in the standard form, which is Vx*x+Vy*y+Vz*z+d = 0
  3693. // so Vx = -a Vy = -b Vz = 1 (we want the vector facing towards positive Z
  3694. // "A" matrix of the linear system of equations
  3695. double eqnAMatrix[AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS*3];
  3696. // "B" vector of Z points
  3697. double eqnBVector[AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS];
  3698. int probePointCounter = 0;
  3699. bool zig = true;
  3700. for (int yProbe=FRONT_PROBE_BED_POSITION; yProbe <= BACK_PROBE_BED_POSITION; yProbe += yGridSpacing)
  3701. {
  3702. int xProbe, xInc;
  3703. if (zig)
  3704. {
  3705. xProbe = LEFT_PROBE_BED_POSITION;
  3706. //xEnd = RIGHT_PROBE_BED_POSITION;
  3707. xInc = xGridSpacing;
  3708. zig = false;
  3709. } else // zag
  3710. {
  3711. xProbe = RIGHT_PROBE_BED_POSITION;
  3712. //xEnd = LEFT_PROBE_BED_POSITION;
  3713. xInc = -xGridSpacing;
  3714. zig = true;
  3715. }
  3716. for (int xCount=0; xCount < AUTO_BED_LEVELING_GRID_POINTS; xCount++)
  3717. {
  3718. float z_before;
  3719. if (probePointCounter == 0)
  3720. {
  3721. // raise before probing
  3722. z_before = Z_RAISE_BEFORE_PROBING;
  3723. } else
  3724. {
  3725. // raise extruder
  3726. z_before = current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS;
  3727. }
  3728. float measured_z = probe_pt(xProbe, yProbe, z_before);
  3729. eqnBVector[probePointCounter] = measured_z;
  3730. eqnAMatrix[probePointCounter + 0*AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS] = xProbe;
  3731. eqnAMatrix[probePointCounter + 1*AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS] = yProbe;
  3732. eqnAMatrix[probePointCounter + 2*AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS] = 1;
  3733. probePointCounter++;
  3734. xProbe += xInc;
  3735. }
  3736. }
  3737. clean_up_after_endstop_move(l_feedmultiply);
  3738. // solve lsq problem
  3739. double *plane_equation_coefficients = qr_solve(AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS, 3, eqnAMatrix, eqnBVector);
  3740. SERIAL_PROTOCOLPGM("Eqn coefficients: a: ");
  3741. SERIAL_PROTOCOL(plane_equation_coefficients[0]);
  3742. SERIAL_PROTOCOLPGM(" b: ");
  3743. SERIAL_PROTOCOL(plane_equation_coefficients[1]);
  3744. SERIAL_PROTOCOLPGM(" d: ");
  3745. SERIAL_PROTOCOLLN(plane_equation_coefficients[2]);
  3746. set_bed_level_equation_lsq(plane_equation_coefficients);
  3747. free(plane_equation_coefficients);
  3748. #else // AUTO_BED_LEVELING_GRID not defined
  3749. // Probe at 3 arbitrary points
  3750. // probe 1
  3751. float z_at_pt_1 = probe_pt(ABL_PROBE_PT_1_X, ABL_PROBE_PT_1_Y, Z_RAISE_BEFORE_PROBING);
  3752. // probe 2
  3753. float z_at_pt_2 = probe_pt(ABL_PROBE_PT_2_X, ABL_PROBE_PT_2_Y, current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS);
  3754. // probe 3
  3755. float z_at_pt_3 = probe_pt(ABL_PROBE_PT_3_X, ABL_PROBE_PT_3_Y, current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS);
  3756. clean_up_after_endstop_move(l_feedmultiply);
  3757. set_bed_level_equation_3pts(z_at_pt_1, z_at_pt_2, z_at_pt_3);
  3758. #endif // AUTO_BED_LEVELING_GRID
  3759. st_synchronize();
  3760. // The following code correct the Z height difference from z-probe position and hotend tip position.
  3761. // The Z height on homing is measured by Z-Probe, but the probe is quite far from the hotend.
  3762. // When the bed is uneven, this height must be corrected.
  3763. real_z = float(st_get_position(Z_AXIS))/cs.axis_steps_per_unit[Z_AXIS]; //get the real Z (since the auto bed leveling is already correcting the plane)
  3764. x_tmp = current_position[X_AXIS] + X_PROBE_OFFSET_FROM_EXTRUDER;
  3765. y_tmp = current_position[Y_AXIS] + Y_PROBE_OFFSET_FROM_EXTRUDER;
  3766. z_tmp = current_position[Z_AXIS];
  3767. apply_rotation_xyz(plan_bed_level_matrix, x_tmp, y_tmp, z_tmp); //Apply the correction sending the probe offset
  3768. current_position[Z_AXIS] = z_tmp - real_z + current_position[Z_AXIS]; //The difference is added to current position and sent to planner.
  3769. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  3770. }
  3771. break;
  3772. #ifndef Z_PROBE_SLED
  3773. /*!
  3774. ### G30 - Single Z Probe <a href="https://reprap.org/wiki/G-code#G30:_Single_Z-Probe">G30: Single Z-Probe</a>
  3775. In Prusa Firmware this G-code is deactivated by default, must be turned on in the source code.
  3776. */
  3777. case 30:
  3778. {
  3779. st_synchronize();
  3780. // TODO: make sure the bed_level_rotation_matrix is identity or the planner will get set incorectly
  3781. int l_feedmultiply = setup_for_endstop_move();
  3782. feedrate = homing_feedrate[Z_AXIS];
  3783. run_z_probe();
  3784. SERIAL_PROTOCOLPGM(_T(MSG_BED));
  3785. SERIAL_PROTOCOLPGM(" X: ");
  3786. SERIAL_PROTOCOL(current_position[X_AXIS]);
  3787. SERIAL_PROTOCOLPGM(" Y: ");
  3788. SERIAL_PROTOCOL(current_position[Y_AXIS]);
  3789. SERIAL_PROTOCOLPGM(" Z: ");
  3790. SERIAL_PROTOCOL(current_position[Z_AXIS]);
  3791. SERIAL_PROTOCOLPGM("\n");
  3792. clean_up_after_endstop_move(l_feedmultiply);
  3793. }
  3794. break;
  3795. #else
  3796. /*!
  3797. ### G31 - Dock the sled <a href="https://reprap.org/wiki/G-code#G31:_Dock_Z_Probe_sled">G31: Dock Z Probe sled</a>
  3798. In Prusa Firmware this G-code is deactivated by default, must be turned on in the source code.
  3799. */
  3800. case 31:
  3801. dock_sled(true);
  3802. break;
  3803. /*!
  3804. ### G32 - Undock the sled <a href="https://reprap.org/wiki/G-code#G32:_Undock_Z_Probe_sled">G32: Undock Z Probe sled</a>
  3805. In Prusa Firmware this G-code is deactivated by default, must be turned on in the source code.
  3806. */
  3807. case 32:
  3808. dock_sled(false);
  3809. break;
  3810. #endif // Z_PROBE_SLED
  3811. #endif // ENABLE_AUTO_BED_LEVELING
  3812. #ifdef MESH_BED_LEVELING
  3813. /*!
  3814. ### G30 - Single Z Probe <a href="https://reprap.org/wiki/G-code#G30:_Single_Z-Probe">G30: Single Z-Probe</a>
  3815. */
  3816. case 30:
  3817. {
  3818. st_synchronize();
  3819. // TODO: make sure the bed_level_rotation_matrix is identity or the planner will get set incorectly
  3820. int l_feedmultiply = setup_for_endstop_move();
  3821. feedrate = homing_feedrate[Z_AXIS];
  3822. find_bed_induction_sensor_point_z(-10.f, 3);
  3823. printf_P(_N("%S X: %.5f Y: %.5f Z: %.5f\n"), _T(MSG_BED), _x, _y, _z);
  3824. clean_up_after_endstop_move(l_feedmultiply);
  3825. }
  3826. break;
  3827. /*!
  3828. ### G75 - Print temperature interpolation <a href="https://reprap.org/wiki/G-code#G75:_Print_temperature_interpolation">G75: Print temperature interpolation</a>
  3829. Show/print PINDA temperature interpolating.
  3830. #### Usage
  3831. G75
  3832. */
  3833. case 75:
  3834. {
  3835. for (int i = 40; i <= 110; i++)
  3836. printf_P(_N("%d %.2f"), i, temp_comp_interpolation(i));
  3837. }
  3838. break;
  3839. /*!
  3840. ### G76 - PINDA probe temperature calibration <a href="https://reprap.org/wiki/G-code#G76:_PINDA_probe_temperature_calibration">G76: PINDA probe temperature calibration</a>
  3841. This G-code is used to calibrate the temperature drift of the PINDA (inductive Sensor).
  3842. The PINDAv2 sensor has a built-in thermistor which has the advantage that the calibration can be done once for all materials.
  3843. The Original i3 Prusa MK2/s uses PINDAv1 and this calibration improves the temperature drift, but not as good as the PINDAv2.
  3844. #### Usage
  3845. G76
  3846. #### Example
  3847. ```
  3848. G76
  3849. echo PINDA probe calibration start
  3850. echo start temperature: 35.0°
  3851. echo ...
  3852. echo PINDA temperature -- Z shift (mm): 0.---
  3853. ```
  3854. */
  3855. case 76:
  3856. {
  3857. #ifdef PINDA_THERMISTOR
  3858. if (true)
  3859. {
  3860. if (calibration_status() >= CALIBRATION_STATUS_XYZ_CALIBRATION) {
  3861. //we need to know accurate position of first calibration point
  3862. //if xyz calibration was not performed yet, interrupt temperature calibration and inform user that xyz cal. is needed
  3863. lcd_show_fullscreen_message_and_wait_P(_i("Please run XYZ calibration first."));
  3864. break;
  3865. }
  3866. if (!(axis_known_position[X_AXIS] && axis_known_position[Y_AXIS] && axis_known_position[Z_AXIS]))
  3867. {
  3868. // We don't know where we are! HOME!
  3869. // Push the commands to the front of the message queue in the reverse order!
  3870. // There shall be always enough space reserved for these commands.
  3871. repeatcommand_front(); // repeat G76 with all its parameters
  3872. enquecommand_front_P((PSTR("G28 W0")));
  3873. break;
  3874. }
  3875. lcd_show_fullscreen_message_and_wait_P(_i("Stable ambient temperature 21-26C is needed a rigid stand is required."));////MSG_TEMP_CAL_WARNING c=20 r=4
  3876. bool result = lcd_show_fullscreen_message_yes_no_and_wait_P(_T(MSG_STEEL_SHEET_CHECK), false, false);
  3877. if (result)
  3878. {
  3879. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3880. plan_buffer_line_curposXYZE(3000 / 60, active_extruder);
  3881. current_position[Z_AXIS] = 50;
  3882. current_position[Y_AXIS] = 180;
  3883. plan_buffer_line_curposXYZE(3000 / 60, active_extruder);
  3884. st_synchronize();
  3885. lcd_show_fullscreen_message_and_wait_P(_T(MSG_REMOVE_STEEL_SHEET));
  3886. current_position[Y_AXIS] = pgm_read_float(bed_ref_points_4 + 1);
  3887. current_position[X_AXIS] = pgm_read_float(bed_ref_points_4);
  3888. plan_buffer_line_curposXYZE(3000 / 60, active_extruder);
  3889. st_synchronize();
  3890. gcode_G28(false, false, true);
  3891. }
  3892. if ((current_temperature_pinda > 35) && (farm_mode == false)) {
  3893. //waiting for PIDNA probe to cool down in case that we are not in farm mode
  3894. current_position[Z_AXIS] = 100;
  3895. plan_buffer_line_curposXYZE(3000 / 60, active_extruder);
  3896. if (lcd_wait_for_pinda(35) == false) { //waiting for PINDA probe to cool, if this takes more then time expected, temp. cal. fails
  3897. lcd_temp_cal_show_result(false);
  3898. break;
  3899. }
  3900. }
  3901. lcd_update_enable(true);
  3902. KEEPALIVE_STATE(NOT_BUSY); //no need to print busy messages as we print current temperatures periodicaly
  3903. SERIAL_ECHOLNPGM("PINDA probe calibration start");
  3904. float zero_z;
  3905. int z_shift = 0; //unit: steps
  3906. float start_temp = 5 * (int)(current_temperature_pinda / 5);
  3907. if (start_temp < 35) start_temp = 35;
  3908. if (start_temp < current_temperature_pinda) start_temp += 5;
  3909. printf_P(_N("start temperature: %.1f\n"), start_temp);
  3910. // setTargetHotend(200, 0);
  3911. setTargetBed(70 + (start_temp - 30));
  3912. custom_message_type = CustomMsg::TempCal;
  3913. custom_message_state = 1;
  3914. lcd_setstatuspgm(_T(MSG_TEMP_CALIBRATION));
  3915. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3916. plan_buffer_line_curposXYZE(3000 / 60, active_extruder);
  3917. current_position[X_AXIS] = PINDA_PREHEAT_X;
  3918. current_position[Y_AXIS] = PINDA_PREHEAT_Y;
  3919. plan_buffer_line_curposXYZE(3000 / 60, active_extruder);
  3920. current_position[Z_AXIS] = PINDA_PREHEAT_Z;
  3921. plan_buffer_line_curposXYZE(3000 / 60, active_extruder);
  3922. st_synchronize();
  3923. while (current_temperature_pinda < start_temp)
  3924. {
  3925. delay_keep_alive(1000);
  3926. serialecho_temperatures();
  3927. }
  3928. eeprom_update_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 0); //invalidate temp. calibration in case that in will be aborted during the calibration process
  3929. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3930. plan_buffer_line_curposXYZE(3000 / 60, active_extruder);
  3931. current_position[X_AXIS] = pgm_read_float(bed_ref_points_4);
  3932. current_position[Y_AXIS] = pgm_read_float(bed_ref_points_4 + 1);
  3933. plan_buffer_line_curposXYZE(3000 / 60, active_extruder);
  3934. st_synchronize();
  3935. bool find_z_result = find_bed_induction_sensor_point_z(-1.f);
  3936. if (find_z_result == false) {
  3937. lcd_temp_cal_show_result(find_z_result);
  3938. break;
  3939. }
  3940. zero_z = current_position[Z_AXIS];
  3941. printf_P(_N("\nZERO: %.3f\n"), current_position[Z_AXIS]);
  3942. int i = -1; for (; i < 5; i++)
  3943. {
  3944. float temp = (40 + i * 5);
  3945. printf_P(_N("\nStep: %d/6 (skipped)\nPINDA temperature: %d Z shift (mm):0\n"), i + 2, (40 + i*5));
  3946. if (i >= 0) EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + i * 2, &z_shift);
  3947. if (start_temp <= temp) break;
  3948. }
  3949. for (i++; i < 5; i++)
  3950. {
  3951. float temp = (40 + i * 5);
  3952. printf_P(_N("\nStep: %d/6\n"), i + 2);
  3953. custom_message_state = i + 2;
  3954. setTargetBed(50 + 10 * (temp - 30) / 5);
  3955. // setTargetHotend(255, 0);
  3956. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3957. plan_buffer_line_curposXYZE(3000 / 60, active_extruder);
  3958. current_position[X_AXIS] = PINDA_PREHEAT_X;
  3959. current_position[Y_AXIS] = PINDA_PREHEAT_Y;
  3960. plan_buffer_line_curposXYZE(3000 / 60, active_extruder);
  3961. current_position[Z_AXIS] = PINDA_PREHEAT_Z;
  3962. plan_buffer_line_curposXYZE(3000 / 60, active_extruder);
  3963. st_synchronize();
  3964. while (current_temperature_pinda < temp)
  3965. {
  3966. delay_keep_alive(1000);
  3967. serialecho_temperatures();
  3968. }
  3969. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3970. plan_buffer_line_curposXYZE(3000 / 60, active_extruder);
  3971. current_position[X_AXIS] = pgm_read_float(bed_ref_points_4);
  3972. current_position[Y_AXIS] = pgm_read_float(bed_ref_points_4 + 1);
  3973. plan_buffer_line_curposXYZE(3000 / 60, active_extruder);
  3974. st_synchronize();
  3975. find_z_result = find_bed_induction_sensor_point_z(-1.f);
  3976. if (find_z_result == false) {
  3977. lcd_temp_cal_show_result(find_z_result);
  3978. break;
  3979. }
  3980. z_shift = (int)((current_position[Z_AXIS] - zero_z)*cs.axis_steps_per_unit[Z_AXIS]);
  3981. printf_P(_N("\nPINDA temperature: %.1f Z shift (mm): %.3f"), current_temperature_pinda, current_position[Z_AXIS] - zero_z);
  3982. EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + i * 2, &z_shift);
  3983. }
  3984. lcd_temp_cal_show_result(true);
  3985. break;
  3986. }
  3987. #endif //PINDA_THERMISTOR
  3988. setTargetBed(PINDA_MIN_T);
  3989. float zero_z;
  3990. int z_shift = 0; //unit: steps
  3991. int t_c; // temperature
  3992. if (!(axis_known_position[X_AXIS] && axis_known_position[Y_AXIS] && axis_known_position[Z_AXIS])) {
  3993. // We don't know where we are! HOME!
  3994. // Push the commands to the front of the message queue in the reverse order!
  3995. // There shall be always enough space reserved for these commands.
  3996. repeatcommand_front(); // repeat G76 with all its parameters
  3997. enquecommand_front_P((PSTR("G28 W0")));
  3998. break;
  3999. }
  4000. puts_P(_N("PINDA probe calibration start"));
  4001. custom_message_type = CustomMsg::TempCal;
  4002. custom_message_state = 1;
  4003. lcd_setstatuspgm(_T(MSG_TEMP_CALIBRATION));
  4004. current_position[X_AXIS] = PINDA_PREHEAT_X;
  4005. current_position[Y_AXIS] = PINDA_PREHEAT_Y;
  4006. current_position[Z_AXIS] = PINDA_PREHEAT_Z;
  4007. plan_buffer_line_curposXYZE(3000 / 60, active_extruder);
  4008. st_synchronize();
  4009. while (abs(degBed() - PINDA_MIN_T) > 1) {
  4010. delay_keep_alive(1000);
  4011. serialecho_temperatures();
  4012. }
  4013. //enquecommand_P(PSTR("M190 S50"));
  4014. for (int i = 0; i < PINDA_HEAT_T; i++) {
  4015. delay_keep_alive(1000);
  4016. serialecho_temperatures();
  4017. }
  4018. eeprom_update_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 0); //invalidate temp. calibration in case that in will be aborted during the calibration process
  4019. current_position[Z_AXIS] = 5;
  4020. plan_buffer_line_curposXYZE(3000 / 60, active_extruder);
  4021. current_position[X_AXIS] = BED_X0;
  4022. current_position[Y_AXIS] = BED_Y0;
  4023. plan_buffer_line_curposXYZE(3000 / 60, active_extruder);
  4024. st_synchronize();
  4025. find_bed_induction_sensor_point_z(-1.f);
  4026. zero_z = current_position[Z_AXIS];
  4027. printf_P(_N("\nZERO: %.3f\n"), current_position[Z_AXIS]);
  4028. for (int i = 0; i<5; i++) {
  4029. printf_P(_N("\nStep: %d/6\n"), i + 2);
  4030. custom_message_state = i + 2;
  4031. t_c = 60 + i * 10;
  4032. setTargetBed(t_c);
  4033. current_position[X_AXIS] = PINDA_PREHEAT_X;
  4034. current_position[Y_AXIS] = PINDA_PREHEAT_Y;
  4035. current_position[Z_AXIS] = PINDA_PREHEAT_Z;
  4036. plan_buffer_line_curposXYZE(3000 / 60, active_extruder);
  4037. st_synchronize();
  4038. while (degBed() < t_c) {
  4039. delay_keep_alive(1000);
  4040. serialecho_temperatures();
  4041. }
  4042. for (int i = 0; i < PINDA_HEAT_T; i++) {
  4043. delay_keep_alive(1000);
  4044. serialecho_temperatures();
  4045. }
  4046. current_position[Z_AXIS] = 5;
  4047. plan_buffer_line_curposXYZE(3000 / 60, active_extruder);
  4048. current_position[X_AXIS] = BED_X0;
  4049. current_position[Y_AXIS] = BED_Y0;
  4050. plan_buffer_line_curposXYZE(3000 / 60, active_extruder);
  4051. st_synchronize();
  4052. find_bed_induction_sensor_point_z(-1.f);
  4053. z_shift = (int)((current_position[Z_AXIS] - zero_z)*cs.axis_steps_per_unit[Z_AXIS]);
  4054. printf_P(_N("\nTemperature: %d Z shift (mm): %.3f\n"), t_c, current_position[Z_AXIS] - zero_z);
  4055. EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + i*2, &z_shift);
  4056. }
  4057. custom_message_type = CustomMsg::Status;
  4058. eeprom_update_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 1);
  4059. puts_P(_N("Temperature calibration done."));
  4060. disable_x();
  4061. disable_y();
  4062. disable_z();
  4063. disable_e0();
  4064. disable_e1();
  4065. disable_e2();
  4066. setTargetBed(0); //set bed target temperature back to 0
  4067. lcd_show_fullscreen_message_and_wait_P(_T(MSG_TEMP_CALIBRATION_DONE));
  4068. temp_cal_active = true;
  4069. eeprom_update_byte((unsigned char *)EEPROM_TEMP_CAL_ACTIVE, 1);
  4070. lcd_update_enable(true);
  4071. lcd_update(2);
  4072. }
  4073. break;
  4074. /*!
  4075. ### G80 - Mesh-based Z probe <a href="https://reprap.org/wiki/G-code#G80:_Mesh-based_Z_probe">G80: Mesh-based Z probe</a>
  4076. Default 3x3 grid can be changed on MK2.5/s and MK3/s to 7x7 grid.
  4077. #### Usage
  4078. G80 [ N | R | V | L | R | F | B ]
  4079. #### Parameters
  4080. - `N` - Number of mesh points on x axis. Default is 3. Valid values are 3 and 7.
  4081. - `R` - Probe retries. Default 3 max. 10
  4082. - `V` - Verbosity level 1=low, 10=mid, 20=high. It can be only used if firmware has been compiled with SUPPORT_VERBOSITY active.
  4083. Using the following parameters enables additional "manual" bed leveling correction. Valid values are -100 microns to 100 microns.
  4084. #### Additional Parameters
  4085. - `L` - Left Bed Level correct value in um.
  4086. - `R` - Right Bed Level correct value in um.
  4087. - `F` - Front Bed Level correct value in um.
  4088. - `B` - Back Bed Level correct value in um.
  4089. */
  4090. /*
  4091. * Probes a grid and produces a mesh to compensate for variable bed height
  4092. * The S0 report the points as below
  4093. * +----> X-axis
  4094. * |
  4095. * |
  4096. * v Y-axis
  4097. */
  4098. case 80:
  4099. #ifdef MK1BP
  4100. break;
  4101. #endif //MK1BP
  4102. case_G80:
  4103. {
  4104. mesh_bed_leveling_flag = true;
  4105. #ifndef PINDA_THERMISTOR
  4106. static bool run = false; // thermistor-less PINDA temperature compensation is running
  4107. #endif // ndef PINDA_THERMISTOR
  4108. #ifdef SUPPORT_VERBOSITY
  4109. int8_t verbosity_level = 0;
  4110. if (code_seen('V')) {
  4111. // Just 'V' without a number counts as V1.
  4112. char c = strchr_pointer[1];
  4113. verbosity_level = (c == ' ' || c == '\t' || c == 0) ? 1 : code_value_short();
  4114. }
  4115. #endif //SUPPORT_VERBOSITY
  4116. // Firstly check if we know where we are
  4117. if (!(axis_known_position[X_AXIS] && axis_known_position[Y_AXIS] && axis_known_position[Z_AXIS])) {
  4118. // We don't know where we are! HOME!
  4119. // Push the commands to the front of the message queue in the reverse order!
  4120. // There shall be always enough space reserved for these commands.
  4121. if (lcd_commands_type != LcdCommands::StopPrint) {
  4122. repeatcommand_front(); // repeat G80 with all its parameters
  4123. enquecommand_front_P((PSTR("G28 W0")));
  4124. }
  4125. else {
  4126. mesh_bed_leveling_flag = false;
  4127. }
  4128. break;
  4129. }
  4130. uint8_t nMeasPoints = MESH_MEAS_NUM_X_POINTS;
  4131. if (code_seen('N')) {
  4132. nMeasPoints = code_value_uint8();
  4133. if (nMeasPoints != 7) {
  4134. nMeasPoints = 3;
  4135. }
  4136. }
  4137. else {
  4138. nMeasPoints = eeprom_read_byte((uint8_t*)EEPROM_MBL_POINTS_NR);
  4139. }
  4140. uint8_t nProbeRetry = 3;
  4141. if (code_seen('R')) {
  4142. nProbeRetry = code_value_uint8();
  4143. if (nProbeRetry > 10) {
  4144. nProbeRetry = 10;
  4145. }
  4146. }
  4147. else {
  4148. nProbeRetry = eeprom_read_byte((uint8_t*)EEPROM_MBL_PROBE_NR);
  4149. }
  4150. bool magnet_elimination = (eeprom_read_byte((uint8_t*)EEPROM_MBL_MAGNET_ELIMINATION) > 0);
  4151. #ifndef PINDA_THERMISTOR
  4152. if (run == false && temp_cal_active == true && calibration_status_pinda() == true && target_temperature_bed >= 50)
  4153. {
  4154. if (lcd_commands_type != LcdCommands::StopPrint) {
  4155. temp_compensation_start();
  4156. run = true;
  4157. repeatcommand_front(); // repeat G80 with all its parameters
  4158. enquecommand_front_P((PSTR("G28 W0")));
  4159. }
  4160. else {
  4161. mesh_bed_leveling_flag = false;
  4162. }
  4163. break;
  4164. }
  4165. run = false;
  4166. #endif //PINDA_THERMISTOR
  4167. if (lcd_commands_type == LcdCommands::StopPrint) {
  4168. mesh_bed_leveling_flag = false;
  4169. break;
  4170. }
  4171. // Save custom message state, set a new custom message state to display: Calibrating point 9.
  4172. CustomMsg custom_message_type_old = custom_message_type;
  4173. unsigned int custom_message_state_old = custom_message_state;
  4174. custom_message_type = CustomMsg::MeshBedLeveling;
  4175. custom_message_state = (nMeasPoints * nMeasPoints) + 10;
  4176. lcd_update(1);
  4177. mbl.reset(); //reset mesh bed leveling
  4178. // Reset baby stepping to zero, if the babystepping has already been loaded before. The babystepsTodo value will be
  4179. // consumed during the first movements following this statement.
  4180. babystep_undo();
  4181. // Cycle through all points and probe them
  4182. // First move up. During this first movement, the babystepping will be reverted.
  4183. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  4184. plan_buffer_line_curposXYZE(homing_feedrate[Z_AXIS] / 60, active_extruder);
  4185. // The move to the first calibration point.
  4186. current_position[X_AXIS] = BED_X0;
  4187. current_position[Y_AXIS] = BED_Y0;
  4188. #ifdef SUPPORT_VERBOSITY
  4189. if (verbosity_level >= 1)
  4190. {
  4191. bool clamped = world2machine_clamp(current_position[X_AXIS], current_position[Y_AXIS]);
  4192. clamped ? SERIAL_PROTOCOLPGM("First calibration point clamped.\n") : SERIAL_PROTOCOLPGM("No clamping for first calibration point.\n");
  4193. }
  4194. #else //SUPPORT_VERBOSITY
  4195. world2machine_clamp(current_position[X_AXIS], current_position[Y_AXIS]);
  4196. #endif //SUPPORT_VERBOSITY
  4197. plan_buffer_line_curposXYZE(homing_feedrate[X_AXIS] / 30, active_extruder);
  4198. // Wait until the move is finished.
  4199. st_synchronize();
  4200. uint8_t mesh_point = 0; //index number of calibration point
  4201. int XY_AXIS_FEEDRATE = homing_feedrate[X_AXIS] / 20;
  4202. int Z_LIFT_FEEDRATE = homing_feedrate[Z_AXIS] / 40;
  4203. bool has_z = is_bed_z_jitter_data_valid(); //checks if we have data from Z calibration (offsets of the Z heiths of the 8 calibration points from the first point)
  4204. #ifdef SUPPORT_VERBOSITY
  4205. if (verbosity_level >= 1) {
  4206. has_z ? SERIAL_PROTOCOLPGM("Z jitter data from Z cal. valid.\n") : SERIAL_PROTOCOLPGM("Z jitter data from Z cal. not valid.\n");
  4207. }
  4208. #endif // SUPPORT_VERBOSITY
  4209. int l_feedmultiply = setup_for_endstop_move(false); //save feedrate and feedmultiply, sets feedmultiply to 100
  4210. const char *kill_message = NULL;
  4211. while (mesh_point != nMeasPoints * nMeasPoints) {
  4212. // Get coords of a measuring point.
  4213. uint8_t ix = mesh_point % nMeasPoints; // from 0 to MESH_NUM_X_POINTS - 1
  4214. uint8_t iy = mesh_point / nMeasPoints;
  4215. /*if (!mbl_point_measurement_valid(ix, iy, nMeasPoints, true)) {
  4216. printf_P(PSTR("Skipping point [%d;%d] \n"), ix, iy);
  4217. custom_message_state--;
  4218. mesh_point++;
  4219. continue; //skip
  4220. }*/
  4221. if (iy & 1) ix = (nMeasPoints - 1) - ix; // Zig zag
  4222. if (nMeasPoints == 7) //if we have 7x7 mesh, compare with Z-calibration for points which are in 3x3 mesh
  4223. {
  4224. has_z = ((ix % 3 == 0) && (iy % 3 == 0)) && is_bed_z_jitter_data_valid();
  4225. }
  4226. float z0 = 0.f;
  4227. if (has_z && (mesh_point > 0)) {
  4228. uint16_t z_offset_u = 0;
  4229. if (nMeasPoints == 7) {
  4230. z_offset_u = eeprom_read_word((uint16_t*)(EEPROM_BED_CALIBRATION_Z_JITTER + 2 * ((ix/3) + iy - 1)));
  4231. }
  4232. else {
  4233. z_offset_u = eeprom_read_word((uint16_t*)(EEPROM_BED_CALIBRATION_Z_JITTER + 2 * (ix + iy * 3 - 1)));
  4234. }
  4235. z0 = mbl.z_values[0][0] + *reinterpret_cast<int16_t*>(&z_offset_u) * 0.01;
  4236. #ifdef SUPPORT_VERBOSITY
  4237. if (verbosity_level >= 1) {
  4238. printf_P(PSTR("Bed leveling, point: %d, calibration Z stored in eeprom: %d, calibration z: %f \n"), mesh_point, z_offset_u, z0);
  4239. }
  4240. #endif // SUPPORT_VERBOSITY
  4241. }
  4242. // Move Z up to MESH_HOME_Z_SEARCH.
  4243. if((ix == 0) && (iy == 0)) current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  4244. else current_position[Z_AXIS] += 2.f / nMeasPoints; //use relative movement from Z coordinate where PINDa triggered on previous point. This makes calibration faster.
  4245. float init_z_bckp = current_position[Z_AXIS];
  4246. plan_buffer_line_curposXYZE(Z_LIFT_FEEDRATE, active_extruder);
  4247. st_synchronize();
  4248. // Move to XY position of the sensor point.
  4249. current_position[X_AXIS] = BED_X(ix, nMeasPoints);
  4250. current_position[Y_AXIS] = BED_Y(iy, nMeasPoints);
  4251. //printf_P(PSTR("[%f;%f]\n"), current_position[X_AXIS], current_position[Y_AXIS]);
  4252. #ifdef SUPPORT_VERBOSITY
  4253. if (verbosity_level >= 1) {
  4254. clamped = world2machine_clamp(current_position[X_AXIS], current_position[Y_AXIS]);
  4255. SERIAL_PROTOCOL(mesh_point);
  4256. clamped ? SERIAL_PROTOCOLPGM(": xy clamped.\n") : SERIAL_PROTOCOLPGM(": no xy clamping\n");
  4257. }
  4258. #else //SUPPORT_VERBOSITY
  4259. world2machine_clamp(current_position[X_AXIS], current_position[Y_AXIS]);
  4260. #endif // SUPPORT_VERBOSITY
  4261. //printf_P(PSTR("after clamping: [%f;%f]\n"), current_position[X_AXIS], current_position[Y_AXIS]);
  4262. plan_buffer_line_curposXYZE(XY_AXIS_FEEDRATE, active_extruder);
  4263. st_synchronize();
  4264. // Go down until endstop is hit
  4265. const float Z_CALIBRATION_THRESHOLD = 1.f;
  4266. if (!find_bed_induction_sensor_point_z((has_z && mesh_point > 0) ? z0 - Z_CALIBRATION_THRESHOLD : -10.f, nProbeRetry)) { //if we have data from z calibration max allowed difference is 1mm for each point, if we dont have data max difference is 10mm from initial point
  4267. printf_P(_T(MSG_BED_LEVELING_FAILED_POINT_LOW));
  4268. break;
  4269. }
  4270. if (init_z_bckp - current_position[Z_AXIS] < 0.1f) { //broken cable or initial Z coordinate too low. Go to MESH_HOME_Z_SEARCH and repeat last step (z-probe) again to distinguish between these two cases.
  4271. //printf_P(PSTR("Another attempt! Current Z position: %f\n"), current_position[Z_AXIS]);
  4272. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  4273. plan_buffer_line_curposXYZE(Z_LIFT_FEEDRATE, active_extruder);
  4274. st_synchronize();
  4275. if (!find_bed_induction_sensor_point_z((has_z && mesh_point > 0) ? z0 - Z_CALIBRATION_THRESHOLD : -10.f, nProbeRetry)) { //if we have data from z calibration max allowed difference is 1mm for each point, if we dont have data max difference is 10mm from initial point
  4276. printf_P(_T(MSG_BED_LEVELING_FAILED_POINT_LOW));
  4277. break;
  4278. }
  4279. if (MESH_HOME_Z_SEARCH - current_position[Z_AXIS] < 0.1f) {
  4280. printf_P(PSTR("Bed leveling failed. Sensor disconnected or cable broken.\n"));
  4281. break;
  4282. }
  4283. }
  4284. if (has_z && fabs(z0 - current_position[Z_AXIS]) > Z_CALIBRATION_THRESHOLD) { //if we have data from z calibration, max. allowed difference is 1mm for each point
  4285. printf_P(PSTR("Bed leveling failed. Sensor triggered too high.\n"));
  4286. break;
  4287. }
  4288. #ifdef SUPPORT_VERBOSITY
  4289. if (verbosity_level >= 10) {
  4290. SERIAL_ECHOPGM("X: ");
  4291. MYSERIAL.print(current_position[X_AXIS], 5);
  4292. SERIAL_ECHOLNPGM("");
  4293. SERIAL_ECHOPGM("Y: ");
  4294. MYSERIAL.print(current_position[Y_AXIS], 5);
  4295. SERIAL_PROTOCOLPGM("\n");
  4296. }
  4297. #endif // SUPPORT_VERBOSITY
  4298. float offset_z = 0;
  4299. #ifdef PINDA_THERMISTOR
  4300. offset_z = temp_compensation_pinda_thermistor_offset(current_temperature_pinda);
  4301. #endif //PINDA_THERMISTOR
  4302. // #ifdef SUPPORT_VERBOSITY
  4303. /* if (verbosity_level >= 1)
  4304. {
  4305. SERIAL_ECHOPGM("mesh bed leveling: ");
  4306. MYSERIAL.print(current_position[Z_AXIS], 5);
  4307. SERIAL_ECHOPGM(" offset: ");
  4308. MYSERIAL.print(offset_z, 5);
  4309. SERIAL_ECHOLNPGM("");
  4310. }*/
  4311. // #endif // SUPPORT_VERBOSITY
  4312. mbl.set_z(ix, iy, current_position[Z_AXIS] - offset_z); //store measured z values z_values[iy][ix] = z - offset_z;
  4313. custom_message_state--;
  4314. mesh_point++;
  4315. lcd_update(1);
  4316. }
  4317. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  4318. #ifdef SUPPORT_VERBOSITY
  4319. if (verbosity_level >= 20) {
  4320. SERIAL_ECHOLNPGM("Mesh bed leveling while loop finished.");
  4321. SERIAL_ECHOLNPGM("MESH_HOME_Z_SEARCH: ");
  4322. MYSERIAL.print(current_position[Z_AXIS], 5);
  4323. }
  4324. #endif // SUPPORT_VERBOSITY
  4325. plan_buffer_line_curposXYZE(Z_LIFT_FEEDRATE, active_extruder);
  4326. st_synchronize();
  4327. if (mesh_point != nMeasPoints * nMeasPoints) {
  4328. Sound_MakeSound(e_SOUND_TYPE_StandardAlert);
  4329. bool bState;
  4330. do { // repeat until Z-leveling o.k.
  4331. lcd_display_message_fullscreen_P(_i("Some problem encountered, Z-leveling enforced ..."));
  4332. #ifdef TMC2130
  4333. lcd_wait_for_click_delay(MSG_BED_LEVELING_FAILED_TIMEOUT);
  4334. calibrate_z_auto(); // Z-leveling (X-assembly stay up!!!)
  4335. #else // TMC2130
  4336. lcd_wait_for_click_delay(0); // ~ no timeout
  4337. lcd_calibrate_z_end_stop_manual(true); // Z-leveling (X-assembly stay up!!!)
  4338. #endif // TMC2130
  4339. // ~ Z-homing (can not be used "G28", because X & Y-homing would have been done before (Z-homing))
  4340. bState=enable_z_endstop(false);
  4341. current_position[Z_AXIS] -= 1;
  4342. plan_buffer_line_curposXYZE(homing_feedrate[Z_AXIS] / 40, active_extruder);
  4343. st_synchronize();
  4344. enable_z_endstop(true);
  4345. #ifdef TMC2130
  4346. tmc2130_home_enter(Z_AXIS_MASK);
  4347. #endif // TMC2130
  4348. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  4349. plan_buffer_line_curposXYZE(homing_feedrate[Z_AXIS] / 40, active_extruder);
  4350. st_synchronize();
  4351. #ifdef TMC2130
  4352. tmc2130_home_exit();
  4353. #endif // TMC2130
  4354. enable_z_endstop(bState);
  4355. } while (st_get_position_mm(Z_AXIS) > MESH_HOME_Z_SEARCH); // i.e. Z-leveling not o.k.
  4356. // plan_set_z_position(MESH_HOME_Z_SEARCH); // is not necessary ('do-while' loop always ends at the expected Z-position)
  4357. custom_message_type=CustomMsg::Status; // display / status-line recovery
  4358. lcd_update_enable(true); // display / status-line recovery
  4359. gcode_G28(true, true, true); // X & Y & Z-homing (must be after individual Z-homing (problem with spool-holder)!)
  4360. repeatcommand_front(); // re-run (i.e. of "G80")
  4361. break;
  4362. }
  4363. clean_up_after_endstop_move(l_feedmultiply);
  4364. // SERIAL_ECHOLNPGM("clean up finished ");
  4365. #ifndef PINDA_THERMISTOR
  4366. if(temp_cal_active == true && calibration_status_pinda() == true) temp_compensation_apply(); //apply PINDA temperature compensation
  4367. #endif
  4368. babystep_apply(); // Apply Z height correction aka baby stepping before mesh bed leveing gets activated.
  4369. // SERIAL_ECHOLNPGM("babystep applied");
  4370. bool eeprom_bed_correction_valid = eeprom_read_byte((unsigned char*)EEPROM_BED_CORRECTION_VALID) == 1;
  4371. #ifdef SUPPORT_VERBOSITY
  4372. if (verbosity_level >= 1) {
  4373. eeprom_bed_correction_valid ? SERIAL_PROTOCOLPGM("Bed correction data valid\n") : SERIAL_PROTOCOLPGM("Bed correction data not valid\n");
  4374. }
  4375. #endif // SUPPORT_VERBOSITY
  4376. for (uint8_t i = 0; i < 4; ++i) {
  4377. unsigned char codes[4] = { 'L', 'R', 'F', 'B' };
  4378. long correction = 0;
  4379. if (code_seen(codes[i]))
  4380. correction = code_value_long();
  4381. else if (eeprom_bed_correction_valid) {
  4382. unsigned char *addr = (i < 2) ?
  4383. ((i == 0) ? (unsigned char*)EEPROM_BED_CORRECTION_LEFT : (unsigned char*)EEPROM_BED_CORRECTION_RIGHT) :
  4384. ((i == 2) ? (unsigned char*)EEPROM_BED_CORRECTION_FRONT : (unsigned char*)EEPROM_BED_CORRECTION_REAR);
  4385. correction = eeprom_read_int8(addr);
  4386. }
  4387. if (correction == 0)
  4388. continue;
  4389. if (labs(correction) > BED_ADJUSTMENT_UM_MAX) {
  4390. SERIAL_ERROR_START;
  4391. SERIAL_ECHOPGM("Excessive bed leveling correction: ");
  4392. SERIAL_ECHO(correction);
  4393. SERIAL_ECHOLNPGM(" microns");
  4394. }
  4395. else {
  4396. float offset = float(correction) * 0.001f;
  4397. switch (i) {
  4398. case 0:
  4399. for (uint8_t row = 0; row < nMeasPoints; ++row) {
  4400. for (uint8_t col = 0; col < nMeasPoints - 1; ++col) {
  4401. mbl.z_values[row][col] += offset * (nMeasPoints - 1 - col) / (nMeasPoints - 1);
  4402. }
  4403. }
  4404. break;
  4405. case 1:
  4406. for (uint8_t row = 0; row < nMeasPoints; ++row) {
  4407. for (uint8_t col = 1; col < nMeasPoints; ++col) {
  4408. mbl.z_values[row][col] += offset * col / (nMeasPoints - 1);
  4409. }
  4410. }
  4411. break;
  4412. case 2:
  4413. for (uint8_t col = 0; col < nMeasPoints; ++col) {
  4414. for (uint8_t row = 0; row < nMeasPoints; ++row) {
  4415. mbl.z_values[row][col] += offset * (nMeasPoints - 1 - row) / (nMeasPoints - 1);
  4416. }
  4417. }
  4418. break;
  4419. case 3:
  4420. for (uint8_t col = 0; col < nMeasPoints; ++col) {
  4421. for (uint8_t row = 1; row < nMeasPoints; ++row) {
  4422. mbl.z_values[row][col] += offset * row / (nMeasPoints - 1);
  4423. }
  4424. }
  4425. break;
  4426. }
  4427. }
  4428. }
  4429. // SERIAL_ECHOLNPGM("Bed leveling correction finished");
  4430. if (nMeasPoints == 3) {
  4431. mbl.upsample_3x3(); //interpolation from 3x3 to 7x7 points using largrangian polynomials while using the same array z_values[iy][ix] for storing (just coppying measured data to new destination and interpolating between them)
  4432. }
  4433. /*
  4434. SERIAL_PROTOCOLPGM("Num X,Y: ");
  4435. SERIAL_PROTOCOL(MESH_NUM_X_POINTS);
  4436. SERIAL_PROTOCOLPGM(",");
  4437. SERIAL_PROTOCOL(MESH_NUM_Y_POINTS);
  4438. SERIAL_PROTOCOLPGM("\nZ search height: ");
  4439. SERIAL_PROTOCOL(MESH_HOME_Z_SEARCH);
  4440. SERIAL_PROTOCOLLNPGM("\nMeasured points:");
  4441. for (int y = MESH_NUM_Y_POINTS-1; y >= 0; y--) {
  4442. for (int x = 0; x < MESH_NUM_X_POINTS; x++) {
  4443. SERIAL_PROTOCOLPGM(" ");
  4444. SERIAL_PROTOCOL_F(mbl.z_values[y][x], 5);
  4445. }
  4446. SERIAL_PROTOCOLPGM("\n");
  4447. }
  4448. */
  4449. if (nMeasPoints == 7 && magnet_elimination) {
  4450. mbl_interpolation(nMeasPoints);
  4451. }
  4452. /*
  4453. SERIAL_PROTOCOLPGM("Num X,Y: ");
  4454. SERIAL_PROTOCOL(MESH_NUM_X_POINTS);
  4455. SERIAL_PROTOCOLPGM(",");
  4456. SERIAL_PROTOCOL(MESH_NUM_Y_POINTS);
  4457. SERIAL_PROTOCOLPGM("\nZ search height: ");
  4458. SERIAL_PROTOCOL(MESH_HOME_Z_SEARCH);
  4459. SERIAL_PROTOCOLLNPGM("\nMeasured points:");
  4460. for (int y = MESH_NUM_Y_POINTS-1; y >= 0; y--) {
  4461. for (int x = 0; x < MESH_NUM_X_POINTS; x++) {
  4462. SERIAL_PROTOCOLPGM(" ");
  4463. SERIAL_PROTOCOL_F(mbl.z_values[y][x], 5);
  4464. }
  4465. SERIAL_PROTOCOLPGM("\n");
  4466. }
  4467. */
  4468. // SERIAL_ECHOLNPGM("Upsample finished");
  4469. mbl.active = 1; //activate mesh bed leveling
  4470. // SERIAL_ECHOLNPGM("Mesh bed leveling activated");
  4471. go_home_with_z_lift();
  4472. // SERIAL_ECHOLNPGM("Go home finished");
  4473. //unretract (after PINDA preheat retraction)
  4474. if (degHotend(active_extruder) > EXTRUDE_MINTEMP && temp_cal_active == true && calibration_status_pinda() == true && target_temperature_bed >= 50) {
  4475. current_position[E_AXIS] += default_retraction;
  4476. plan_buffer_line_curposXYZE(400, active_extruder);
  4477. }
  4478. KEEPALIVE_STATE(NOT_BUSY);
  4479. // Restore custom message state
  4480. lcd_setstatuspgm(_T(WELCOME_MSG));
  4481. custom_message_type = custom_message_type_old;
  4482. custom_message_state = custom_message_state_old;
  4483. mesh_bed_leveling_flag = false;
  4484. mesh_bed_run_from_menu = false;
  4485. lcd_update(2);
  4486. }
  4487. break;
  4488. /*!
  4489. ### G81 - Mesh bed leveling status <a href="https://reprap.org/wiki/G-code#G81:_Mesh_bed_leveling_status">G81: Mesh bed leveling status</a>
  4490. Prints mesh bed leveling status and bed profile if activated.
  4491. #### Usage
  4492. G81
  4493. */
  4494. case 81:
  4495. if (mbl.active) {
  4496. SERIAL_PROTOCOLPGM("Num X,Y: ");
  4497. SERIAL_PROTOCOL(MESH_NUM_X_POINTS);
  4498. SERIAL_PROTOCOLPGM(",");
  4499. SERIAL_PROTOCOL(MESH_NUM_Y_POINTS);
  4500. SERIAL_PROTOCOLPGM("\nZ search height: ");
  4501. SERIAL_PROTOCOL(MESH_HOME_Z_SEARCH);
  4502. SERIAL_PROTOCOLLNPGM("\nMeasured points:");
  4503. for (int y = MESH_NUM_Y_POINTS-1; y >= 0; y--) {
  4504. for (int x = 0; x < MESH_NUM_X_POINTS; x++) {
  4505. SERIAL_PROTOCOLPGM(" ");
  4506. SERIAL_PROTOCOL_F(mbl.z_values[y][x], 5);
  4507. }
  4508. SERIAL_PROTOCOLPGM("\n");
  4509. }
  4510. }
  4511. else
  4512. SERIAL_PROTOCOLLNPGM("Mesh bed leveling not active.");
  4513. break;
  4514. #if 0
  4515. /*!
  4516. ### G82: Single Z probe at current location - Not active <a href="https://reprap.org/wiki/G-code#G82:_Single_Z_probe_at_current_location">G82: Single Z probe at current location</a>
  4517. WARNING! USE WITH CAUTION! If you'll try to probe where is no leveling pad, nasty things can happen!
  4518. In Prusa Firmware this G-code is deactivated by default, must be turned on in the source code.
  4519. */
  4520. case 82:
  4521. SERIAL_PROTOCOLLNPGM("Finding bed ");
  4522. int l_feedmultiply = setup_for_endstop_move();
  4523. find_bed_induction_sensor_point_z();
  4524. clean_up_after_endstop_move(l_feedmultiply);
  4525. SERIAL_PROTOCOLPGM("Bed found at: ");
  4526. SERIAL_PROTOCOL_F(current_position[Z_AXIS], 5);
  4527. SERIAL_PROTOCOLPGM("\n");
  4528. break;
  4529. /*!
  4530. ### G83: Babystep in Z and store to EEPROM - Not active <a href="https://reprap.org/wiki/G-code#G83:_Babystep_in_Z_and_store_to_EEPROM">G83: Babystep in Z and store to EEPROM</a>
  4531. In Prusa Firmware this G-code is deactivated by default, must be turned on in the source code.
  4532. */
  4533. case 83:
  4534. {
  4535. int babystepz = code_seen('S') ? code_value() : 0;
  4536. int BabyPosition = code_seen('P') ? code_value() : 0;
  4537. if (babystepz != 0) {
  4538. //FIXME Vojtech: What shall be the index of the axis Z: 3 or 4?
  4539. // Is the axis indexed starting with zero or one?
  4540. if (BabyPosition > 4) {
  4541. SERIAL_PROTOCOLLNPGM("Index out of bounds");
  4542. }else{
  4543. // Save it to the eeprom
  4544. babystepLoadZ = babystepz;
  4545. EEPROM_save_B(EEPROM_BABYSTEP_Z0+(BabyPosition*2),&babystepLoadZ);
  4546. // adjust the Z
  4547. babystepsTodoZadd(babystepLoadZ);
  4548. }
  4549. }
  4550. }
  4551. break;
  4552. /*!
  4553. ### G84: UNDO Babystep Z (move Z axis back) - Not active <a href="https://reprap.org/wiki/G-code#G84:_UNDO_Babystep_Z_.28move_Z_axis_back.29">G84: UNDO Babystep Z (move Z axis back)</a>
  4554. In Prusa Firmware this G-code is deactivated by default, must be turned on in the source code.
  4555. */
  4556. case 84:
  4557. babystepsTodoZsubtract(babystepLoadZ);
  4558. // babystepLoadZ = 0;
  4559. break;
  4560. /*!
  4561. ### G85: Pick best babystep - Not active <a href="https://reprap.org/wiki/G-code#G85:_Pick_best_babystep>G85: Pick best babystep</a>
  4562. In Prusa Firmware this G-code is deactivated by default, must be turned on in the source code.
  4563. */
  4564. case 85:
  4565. lcd_pick_babystep();
  4566. break;
  4567. #endif
  4568. /*!
  4569. ### G86 - Disable babystep correction after home <a href="https://reprap.org/wiki/G-code#G86:_Disable_babystep_correction_after_home">G86: Disable babystep correction after home</a>
  4570. This G-code will be performed at the start of a calibration script.
  4571. (Prusa3D specific)
  4572. */
  4573. case 86:
  4574. calibration_status_store(CALIBRATION_STATUS_LIVE_ADJUST);
  4575. break;
  4576. /*!
  4577. ### G87 - Enable babystep correction after home <a href="https://reprap.org/wiki/G-code#G87:_Enable_babystep_correction_after_home">G87: Enable babystep correction after home</a>
  4578. This G-code will be performed at the end of a calibration script.
  4579. (Prusa3D specific)
  4580. */
  4581. case 87:
  4582. calibration_status_store(CALIBRATION_STATUS_CALIBRATED);
  4583. break;
  4584. /*!
  4585. ### G88 - Reserved <a href="https://reprap.org/wiki/G-code#G88:_Reserved">G88: Reserved</a>
  4586. Currently has no effect.
  4587. */
  4588. // Prusa3D specific: Don't know what it is for, it is in V2Calibration.gcode
  4589. case 88:
  4590. break;
  4591. #endif // ENABLE_MESH_BED_LEVELING
  4592. /*!
  4593. ### G90 - Switch off relative mode <a href="https://reprap.org/wiki/G-code#G90:_Set_to_Absolute_Positioning">G90: Set to Absolute Positioning</a>
  4594. #### Usage
  4595. G90
  4596. All coordinates from now on are absolute relative to the origin of the machine.
  4597. */
  4598. case 90:
  4599. relative_mode = false;
  4600. break;
  4601. /*! ### G91 - Switch on relative mode <a href="https://reprap.org/wiki/G-code#G91:_Set_to_Relative_Positioning">G91: Set to Relative Positioning</a>
  4602. #### Usage
  4603. G91
  4604. All coordinates from now on are relative to the last position.
  4605. */
  4606. case 91:
  4607. relative_mode = true;
  4608. break;
  4609. /*!
  4610. ### G92 - Set position <a href="https://reprap.org/wiki/G-code#G92:_Set_Position">G92: Set Position</a>
  4611. #### Usage
  4612. G92 [ X | Y | Z | E ]
  4613. #### Parameters
  4614. - `X` - new X axis position
  4615. - `Y` - new Y axis position
  4616. - `Z` - new Z axis position
  4617. - `E` - new extruder position
  4618. Allows programming of absolute zero point, by reseting the current position to the values specified. This would set the machine's X coordinate to 10, and the extrude coordinate to 90. No physical motion will occur.
  4619. A G92 without coordinates will reset all axes to zero on some firmware.
  4620. */
  4621. case 92:
  4622. if(!code_seen(axis_codes[E_AXIS]))
  4623. st_synchronize();
  4624. for(int8_t i=0; i < NUM_AXIS; i++) {
  4625. if(code_seen(axis_codes[i])) {
  4626. if(i == E_AXIS) {
  4627. current_position[i] = code_value();
  4628. plan_set_e_position(current_position[E_AXIS]);
  4629. }
  4630. else {
  4631. current_position[i] = code_value()+cs.add_homing[i];
  4632. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  4633. }
  4634. }
  4635. }
  4636. break;
  4637. /*!
  4638. ### G98 - Activate farm mode <a href="https://reprap.org/wiki/G-code#G98:_Activate_farm_mode">G98: Activate farm mode</a>
  4639. Enable Prusa-specific Farm functions and g-code.
  4640. #### Usage
  4641. G98
  4642. See Internal Prusa commands
  4643. */
  4644. case 98:
  4645. farm_mode = 1;
  4646. PingTime = _millis();
  4647. eeprom_update_byte((unsigned char *)EEPROM_FARM_MODE, farm_mode);
  4648. EEPROM_save_B(EEPROM_FARM_NUMBER, &farm_no);
  4649. SilentModeMenu = SILENT_MODE_OFF;
  4650. eeprom_update_byte((unsigned char *)EEPROM_SILENT, SilentModeMenu);
  4651. fCheckModeInit(); // alternatively invoke printer reset
  4652. break;
  4653. /*! ### G99 - Deactivate farm mode <a href="https://reprap.org/wiki/G-code#G99:_Deactivate_farm_mode">G99: Deactivate farm mode</a>
  4654. Disables Prusa-specific Farm functions and g-code.
  4655. #### Usage
  4656. G99
  4657. */
  4658. case 99:
  4659. farm_mode = 0;
  4660. lcd_printer_connected();
  4661. eeprom_update_byte((unsigned char *)EEPROM_FARM_MODE, farm_mode);
  4662. lcd_update(2);
  4663. fCheckModeInit(); // alternatively invoke printer reset
  4664. break;
  4665. default:
  4666. printf_P(PSTR("Unknown G code: %s \n"), cmdbuffer + bufindr + CMDHDRSIZE);
  4667. }
  4668. // printf_P(_N("END G-CODE=%u\n"), gcode_in_progress);
  4669. gcode_in_progress = 0;
  4670. } // end if(code_seen('G'))
  4671. /*!
  4672. ### End of G-Codes
  4673. */
  4674. /*!
  4675. ---------------------------------------------------------------------------------
  4676. # M Commands
  4677. */
  4678. else if(code_seen('M'))
  4679. {
  4680. int index;
  4681. for (index = 1; *(strchr_pointer + index) == ' ' || *(strchr_pointer + index) == '\t'; index++);
  4682. /*for (++strchr_pointer; *strchr_pointer == ' ' || *strchr_pointer == '\t'; ++strchr_pointer);*/
  4683. if (*(strchr_pointer+index) < '0' || *(strchr_pointer+index) > '9') {
  4684. printf_P(PSTR("Invalid M code: %s \n"), cmdbuffer + bufindr + CMDHDRSIZE);
  4685. } else
  4686. {
  4687. mcode_in_progress = (int)code_value();
  4688. // printf_P(_N("BEGIN M-CODE=%u\n"), mcode_in_progress);
  4689. switch(mcode_in_progress)
  4690. {
  4691. /*!
  4692. ### M0, M1 - Stop the printer <a href="https://reprap.org/wiki/G-code#M0:_Stop_or_Unconditional_stop">M0: Stop or Unconditional stop</a>
  4693. */
  4694. case 0: // M0 - Unconditional stop - Wait for user button press on LCD
  4695. case 1: // M1 - Conditional stop - Wait for user button press on LCD
  4696. {
  4697. char *src = strchr_pointer + 2;
  4698. codenum = 0;
  4699. bool hasP = false, hasS = false;
  4700. if (code_seen('P')) {
  4701. codenum = code_value(); // milliseconds to wait
  4702. hasP = codenum > 0;
  4703. }
  4704. if (code_seen('S')) {
  4705. codenum = code_value() * 1000; // seconds to wait
  4706. hasS = codenum > 0;
  4707. }
  4708. starpos = strchr(src, '*');
  4709. if (starpos != NULL) *(starpos) = '\0';
  4710. while (*src == ' ') ++src;
  4711. if (!hasP && !hasS && *src != '\0') {
  4712. lcd_setstatus(src);
  4713. } else {
  4714. LCD_MESSAGERPGM(_i("Wait for user..."));////MSG_USERWAIT
  4715. }
  4716. lcd_ignore_click(); //call lcd_ignore_click aslo for else ???
  4717. st_synchronize();
  4718. previous_millis_cmd = _millis();
  4719. if (codenum > 0){
  4720. codenum += _millis(); // keep track of when we started waiting
  4721. KEEPALIVE_STATE(PAUSED_FOR_USER);
  4722. while(_millis() < codenum && !lcd_clicked()){
  4723. manage_heater();
  4724. manage_inactivity(true);
  4725. lcd_update(0);
  4726. }
  4727. KEEPALIVE_STATE(IN_HANDLER);
  4728. lcd_ignore_click(false);
  4729. }else{
  4730. marlin_wait_for_click();
  4731. }
  4732. if (IS_SD_PRINTING)
  4733. LCD_MESSAGERPGM(_T(MSG_RESUMING_PRINT));
  4734. else
  4735. LCD_MESSAGERPGM(_T(WELCOME_MSG));
  4736. }
  4737. break;
  4738. /*!
  4739. ### M17 - Enable axes <a href="https://reprap.org/wiki/G-code#M17:_Enable.2FPower_all_stepper_motors">M17: Enable/Power all stepper motors</a>
  4740. */
  4741. case 17:
  4742. LCD_MESSAGERPGM(_i("No move."));////MSG_NO_MOVE
  4743. enable_x();
  4744. enable_y();
  4745. enable_z();
  4746. enable_e0();
  4747. enable_e1();
  4748. enable_e2();
  4749. break;
  4750. #ifdef SDSUPPORT
  4751. /*!
  4752. ### M20 - SD Card file list <a href="https://reprap.org/wiki/G-code#M20:_List_SD_card">M20: List SD card</a>
  4753. */
  4754. case 20:
  4755. SERIAL_PROTOCOLLNRPGM(_N("Begin file list"));////MSG_BEGIN_FILE_LIST
  4756. card.ls();
  4757. SERIAL_PROTOCOLLNRPGM(_N("End file list"));////MSG_END_FILE_LIST
  4758. break;
  4759. /*!
  4760. ### M21 - Init SD card <a href="https://reprap.org/wiki/G-code#M21:_Initialize_SD_card">M21: Initialize SD card</a>
  4761. */
  4762. case 21:
  4763. card.initsd();
  4764. break;
  4765. /*!
  4766. ### M22 - Release SD card <a href="https://reprap.org/wiki/G-code#M22:_Release_SD_card">M22: Release SD card</a>
  4767. */
  4768. case 22:
  4769. card.release();
  4770. break;
  4771. /*!
  4772. ### M23 - Select file <a href="https://reprap.org/wiki/G-code#M23:_Select_SD_file">M23: Select SD file</a>
  4773. */
  4774. case 23:
  4775. starpos = (strchr(strchr_pointer + 4,'*'));
  4776. if(starpos!=NULL)
  4777. *(starpos)='\0';
  4778. card.openFile(strchr_pointer + 4,true);
  4779. break;
  4780. /*!
  4781. ### M24 - Start SD print <a href="https://reprap.org/wiki/G-code#M24:_Start.2Fresume_SD_print">M24: Start/resume SD print</a>
  4782. */
  4783. case 24:
  4784. if (isPrintPaused)
  4785. lcd_resume_print();
  4786. else
  4787. {
  4788. failstats_reset_print();
  4789. card.startFileprint();
  4790. starttime=_millis();
  4791. }
  4792. break;
  4793. /*!
  4794. ### M26 - Set SD index <a href="https://reprap.org/wiki/G-code#M26:_Set_SD_position">M26: Set SD position</a>
  4795. Set position in SD card file to index in bytes.
  4796. This command is expected to be called after M23 and before M24.
  4797. Otherwise effect of this command is undefined.
  4798. M26 [ S ]
  4799. - `S` - Index in bytes
  4800. */
  4801. case 26:
  4802. if(card.cardOK && code_seen('S')) {
  4803. long index = code_value_long();
  4804. card.setIndex(index);
  4805. // We don't disable interrupt during update of sdpos_atomic
  4806. // as we expect, that SD card print is not active in this moment
  4807. sdpos_atomic = index;
  4808. }
  4809. break;
  4810. /*!
  4811. ### M27 - Get SD status <a href="https://reprap.org/wiki/G-code#M27:_Report_SD_print_status">M27: Report SD print status</a>
  4812. */
  4813. case 27:
  4814. card.getStatus();
  4815. break;
  4816. /*!
  4817. ### M28 - Start SD write <a href="https://reprap.org/wiki/G-code#M28:_Begin_write_to_SD_card">M28: Begin write to SD card</a>
  4818. */
  4819. case 28:
  4820. starpos = (strchr(strchr_pointer + 4,'*'));
  4821. if(starpos != NULL){
  4822. char* npos = strchr(CMDBUFFER_CURRENT_STRING, 'N');
  4823. strchr_pointer = strchr(npos,' ') + 1;
  4824. *(starpos) = '\0';
  4825. }
  4826. card.openFile(strchr_pointer+4,false);
  4827. break;
  4828. /*! ### M29 - Stop SD write <a href="https://reprap.org/wiki/G-code#M29:_Stop_writing_to_SD_card">M29: Stop writing to SD card</a>
  4829. Currently has no effect.
  4830. */
  4831. case 29:
  4832. //processed in write to file routine above
  4833. //card,saving = false;
  4834. break;
  4835. /*!
  4836. ### M30 - Delete file <filename> <a href="https://reprap.org/wiki/G-code#M30:_Delete_a_file_on_the_SD_card">M30: Delete a file on the SD card</a>
  4837. */
  4838. case 30:
  4839. if (card.cardOK){
  4840. card.closefile();
  4841. starpos = (strchr(strchr_pointer + 4,'*'));
  4842. if(starpos != NULL){
  4843. char* npos = strchr(CMDBUFFER_CURRENT_STRING, 'N');
  4844. strchr_pointer = strchr(npos,' ') + 1;
  4845. *(starpos) = '\0';
  4846. }
  4847. card.removeFile(strchr_pointer + 4);
  4848. }
  4849. break;
  4850. /*!
  4851. ### M32 - Select file and start SD print <a href="https://reprap.org/wiki/G-code#M32:_Select_file_and_start_SD_print">M32: Select file and start SD print</a>
  4852. @todo What are the parameters P and S for in M32?
  4853. */
  4854. case 32:
  4855. {
  4856. if(card.sdprinting) {
  4857. st_synchronize();
  4858. }
  4859. starpos = (strchr(strchr_pointer + 4,'*'));
  4860. char* namestartpos = (strchr(strchr_pointer + 4,'!')); //find ! to indicate filename string start.
  4861. if(namestartpos==NULL)
  4862. {
  4863. namestartpos=strchr_pointer + 4; //default name position, 4 letters after the M
  4864. }
  4865. else
  4866. namestartpos++; //to skip the '!'
  4867. if(starpos!=NULL)
  4868. *(starpos)='\0';
  4869. bool call_procedure=(code_seen('P'));
  4870. if(strchr_pointer>namestartpos)
  4871. call_procedure=false; //false alert, 'P' found within filename
  4872. if( card.cardOK )
  4873. {
  4874. card.openFile(namestartpos,true,!call_procedure);
  4875. if(code_seen('S'))
  4876. if(strchr_pointer<namestartpos) //only if "S" is occuring _before_ the filename
  4877. card.setIndex(code_value_long());
  4878. card.startFileprint();
  4879. if(!call_procedure)
  4880. starttime=_millis(); //procedure calls count as normal print time.
  4881. }
  4882. } break;
  4883. /*!
  4884. ### M982 - Start SD logging <a href="https://reprap.org/wiki/G-code#M928:_Start_SD_logging">M928: Start SD logging</a>
  4885. */
  4886. case 928:
  4887. starpos = (strchr(strchr_pointer + 5,'*'));
  4888. if(starpos != NULL){
  4889. char* npos = strchr(CMDBUFFER_CURRENT_STRING, 'N');
  4890. strchr_pointer = strchr(npos,' ') + 1;
  4891. *(starpos) = '\0';
  4892. }
  4893. card.openLogFile(strchr_pointer+5);
  4894. break;
  4895. #endif //SDSUPPORT
  4896. /*!
  4897. ### M31 - Report current print time <a href="https://reprap.org/wiki/G-code#M31:_Output_time_since_last_M109_or_SD_card_start_to_serial">M31: Output time since last M109 or SD card start to serial</a>
  4898. */
  4899. case 31: //M31 take time since the start of the SD print or an M109 command
  4900. {
  4901. stoptime=_millis();
  4902. char time[30];
  4903. unsigned long t=(stoptime-starttime)/1000;
  4904. int sec,min;
  4905. min=t/60;
  4906. sec=t%60;
  4907. sprintf_P(time, PSTR("%i min, %i sec"), min, sec);
  4908. SERIAL_ECHO_START;
  4909. SERIAL_ECHOLN(time);
  4910. lcd_setstatus(time);
  4911. autotempShutdown();
  4912. }
  4913. break;
  4914. /*!
  4915. ### M42 - Set pin state <a href="https://reprap.org/wiki/G-code#M42:_Switch_I.2FO_pin">M42: Switch I/O pin</a>
  4916. */
  4917. case 42:
  4918. if (code_seen('S'))
  4919. {
  4920. int pin_status = code_value();
  4921. int pin_number = LED_PIN;
  4922. if (code_seen('P') && pin_status >= 0 && pin_status <= 255)
  4923. pin_number = code_value();
  4924. for(int8_t i = 0; i < (int8_t)(sizeof(sensitive_pins)/sizeof(int)); i++)
  4925. {
  4926. if (sensitive_pins[i] == pin_number)
  4927. {
  4928. pin_number = -1;
  4929. break;
  4930. }
  4931. }
  4932. #if defined(FAN_PIN) && FAN_PIN > -1
  4933. if (pin_number == FAN_PIN)
  4934. fanSpeed = pin_status;
  4935. #endif
  4936. if (pin_number > -1)
  4937. {
  4938. pinMode(pin_number, OUTPUT);
  4939. digitalWrite(pin_number, pin_status);
  4940. analogWrite(pin_number, pin_status);
  4941. }
  4942. }
  4943. break;
  4944. /*!
  4945. ### M44 - Reset the bed skew and offset calibration <a href="https://reprap.org/wiki/G-code#M44:_Reset_the_bed_skew_and_offset_calibration">M44: Reset the bed skew and offset calibration</a>
  4946. */
  4947. case 44: // M44: Prusa3D: Reset the bed skew and offset calibration.
  4948. // Reset the baby step value and the baby step applied flag.
  4949. calibration_status_store(CALIBRATION_STATUS_ASSEMBLED);
  4950. eeprom_update_word(reinterpret_cast<uint16_t *>(&(EEPROM_Sheets_base->s[(eeprom_read_byte(&(EEPROM_Sheets_base->active_sheet)))].z_offset)),0);
  4951. // Reset the skew and offset in both RAM and EEPROM.
  4952. reset_bed_offset_and_skew();
  4953. // Reset world2machine_rotation_and_skew and world2machine_shift, therefore
  4954. // the planner will not perform any adjustments in the XY plane.
  4955. // Wait for the motors to stop and update the current position with the absolute values.
  4956. world2machine_revert_to_uncorrected();
  4957. break;
  4958. /*!
  4959. ### M45 - Bed skew and offset with manual Z up <a href="https://reprap.org/wiki/G-code#M45:_Bed_skew_and_offset_with_manual_Z_up">M45: Bed skew and offset with manual Z up</a>
  4960. M45 [ V ]
  4961. - `V` - Verbosity level 1, 10 and 20 (low, mid, high). Only when SUPPORT_VERBOSITY is defined.
  4962. */
  4963. case 45: // M45: Prusa3D: bed skew and offset with manual Z up
  4964. {
  4965. int8_t verbosity_level = 0;
  4966. bool only_Z = code_seen('Z');
  4967. #ifdef SUPPORT_VERBOSITY
  4968. if (code_seen('V'))
  4969. {
  4970. // Just 'V' without a number counts as V1.
  4971. char c = strchr_pointer[1];
  4972. verbosity_level = (c == ' ' || c == '\t' || c == 0) ? 1 : code_value_short();
  4973. }
  4974. #endif //SUPPORT_VERBOSITY
  4975. gcode_M45(only_Z, verbosity_level);
  4976. }
  4977. break;
  4978. /*!
  4979. ### M46 - Show the assigned IP address <a href="https://reprap.org/wiki/G-code#M46:_Show_the_assigned_IP_address">M46: Show the assigned IP address.</a>
  4980. */
  4981. /*
  4982. case 46:
  4983. {
  4984. // M46: Prusa3D: Show the assigned IP address.
  4985. uint8_t ip[4];
  4986. bool hasIP = card.ToshibaFlashAir_GetIP(ip);
  4987. if (hasIP) {
  4988. SERIAL_ECHOPGM("Toshiba FlashAir current IP: ");
  4989. SERIAL_ECHO(int(ip[0]));
  4990. SERIAL_ECHOPGM(".");
  4991. SERIAL_ECHO(int(ip[1]));
  4992. SERIAL_ECHOPGM(".");
  4993. SERIAL_ECHO(int(ip[2]));
  4994. SERIAL_ECHOPGM(".");
  4995. SERIAL_ECHO(int(ip[3]));
  4996. SERIAL_ECHOLNPGM("");
  4997. } else {
  4998. SERIAL_ECHOLNPGM("Toshiba FlashAir GetIP failed");
  4999. }
  5000. break;
  5001. }
  5002. */
  5003. /*!
  5004. ### M47 - Show end stops dialog on the display <a href="https://reprap.org/wiki/G-code#M47:_Show_end_stops_dialog_on_the_display">M47: Show end stops dialog on the display</a>
  5005. */
  5006. case 47:
  5007. KEEPALIVE_STATE(PAUSED_FOR_USER);
  5008. lcd_diag_show_end_stops();
  5009. KEEPALIVE_STATE(IN_HANDLER);
  5010. break;
  5011. #if 0
  5012. case 48: // M48: scan the bed induction sensor points, print the sensor trigger coordinates to the serial line for visualization on the PC.
  5013. {
  5014. // Disable the default update procedure of the display. We will do a modal dialog.
  5015. lcd_update_enable(false);
  5016. // Let the planner use the uncorrected coordinates.
  5017. mbl.reset();
  5018. // Reset world2machine_rotation_and_skew and world2machine_shift, therefore
  5019. // the planner will not perform any adjustments in the XY plane.
  5020. // Wait for the motors to stop and update the current position with the absolute values.
  5021. world2machine_revert_to_uncorrected();
  5022. // Move the print head close to the bed.
  5023. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  5024. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS],current_position[Z_AXIS] , current_position[E_AXIS], homing_feedrate[Z_AXIS]/40, active_extruder);
  5025. st_synchronize();
  5026. // Home in the XY plane.
  5027. set_destination_to_current();
  5028. int l_feedmultiply = setup_for_endstop_move();
  5029. home_xy();
  5030. int8_t verbosity_level = 0;
  5031. if (code_seen('V')) {
  5032. // Just 'V' without a number counts as V1.
  5033. char c = strchr_pointer[1];
  5034. verbosity_level = (c == ' ' || c == '\t' || c == 0) ? 1 : code_value_short();
  5035. }
  5036. bool success = scan_bed_induction_points(verbosity_level);
  5037. clean_up_after_endstop_move(l_feedmultiply);
  5038. // Print head up.
  5039. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  5040. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS],current_position[Z_AXIS] , current_position[E_AXIS], homing_feedrate[Z_AXIS]/40, active_extruder);
  5041. st_synchronize();
  5042. lcd_update_enable(true);
  5043. break;
  5044. }
  5045. #endif
  5046. #ifdef ENABLE_AUTO_BED_LEVELING
  5047. #ifdef Z_PROBE_REPEATABILITY_TEST
  5048. /*!
  5049. ### M48 - Z-Probe repeatability measurement function <a href="https://reprap.org/wiki/G-code#M48:_Measure_Z-Probe_repeatability">M48: Measure Z-Probe repeatability</a>
  5050. This function assumes the bed has been homed. Specifically, that a G28 command as been issued prior to invoking the M48 Z-Probe repeatability measurement function. Any information generated by a prior G29 Bed leveling command will be lost and need to be regenerated.
  5051. The number of samples will default to 10 if not specified. You can use upper or lower case letters for any of the options EXCEPT n. n must be in lower case because Marlin uses a capital N for its communication protocol and will get horribly confused if you send it a capital N.
  5052. M48 [ n | X | Y | V | L ]
  5053. - `n` - Number of samples. Valid values 4-50
  5054. - `X` - X position for samples
  5055. - `Y` - Y position for samples
  5056. - `V` - Verbose level. Valid values 1-4
  5057. - `L` - Legs of movementprior to doing probe. Valid values 1-15
  5058. */
  5059. case 48: // M48 Z-Probe repeatability
  5060. {
  5061. #if Z_MIN_PIN == -1
  5062. #error "You must have a Z_MIN endstop in order to enable calculation of Z-Probe repeatability."
  5063. #endif
  5064. double sum=0.0;
  5065. double mean=0.0;
  5066. double sigma=0.0;
  5067. double sample_set[50];
  5068. int verbose_level=1, n=0, j, n_samples = 10, n_legs=0;
  5069. double X_current, Y_current, Z_current;
  5070. double X_probe_location, Y_probe_location, Z_start_location, ext_position;
  5071. if (code_seen('V') || code_seen('v')) {
  5072. verbose_level = code_value();
  5073. if (verbose_level<0 || verbose_level>4 ) {
  5074. SERIAL_PROTOCOLPGM("?Verbose Level not plausable.\n");
  5075. goto Sigma_Exit;
  5076. }
  5077. }
  5078. if (verbose_level > 0) {
  5079. SERIAL_PROTOCOLPGM("M48 Z-Probe Repeatability test. Version 2.00\n");
  5080. SERIAL_PROTOCOLPGM("Full support at: http://3dprintboard.com/forum.php\n");
  5081. }
  5082. if (code_seen('n')) {
  5083. n_samples = code_value();
  5084. if (n_samples<4 || n_samples>50 ) {
  5085. SERIAL_PROTOCOLPGM("?Specified sample size not plausable.\n");
  5086. goto Sigma_Exit;
  5087. }
  5088. }
  5089. X_current = X_probe_location = st_get_position_mm(X_AXIS);
  5090. Y_current = Y_probe_location = st_get_position_mm(Y_AXIS);
  5091. Z_current = st_get_position_mm(Z_AXIS);
  5092. Z_start_location = st_get_position_mm(Z_AXIS) + Z_RAISE_BEFORE_PROBING;
  5093. ext_position = st_get_position_mm(E_AXIS);
  5094. if (code_seen('X') || code_seen('x') ) {
  5095. X_probe_location = code_value() - X_PROBE_OFFSET_FROM_EXTRUDER;
  5096. if (X_probe_location<X_MIN_POS || X_probe_location>X_MAX_POS ) {
  5097. SERIAL_PROTOCOLPGM("?Specified X position out of range.\n");
  5098. goto Sigma_Exit;
  5099. }
  5100. }
  5101. if (code_seen('Y') || code_seen('y') ) {
  5102. Y_probe_location = code_value() - Y_PROBE_OFFSET_FROM_EXTRUDER;
  5103. if (Y_probe_location<Y_MIN_POS || Y_probe_location>Y_MAX_POS ) {
  5104. SERIAL_PROTOCOLPGM("?Specified Y position out of range.\n");
  5105. goto Sigma_Exit;
  5106. }
  5107. }
  5108. if (code_seen('L') || code_seen('l') ) {
  5109. n_legs = code_value();
  5110. if ( n_legs==1 )
  5111. n_legs = 2;
  5112. if ( n_legs<0 || n_legs>15 ) {
  5113. SERIAL_PROTOCOLPGM("?Specified number of legs in movement not plausable.\n");
  5114. goto Sigma_Exit;
  5115. }
  5116. }
  5117. //
  5118. // Do all the preliminary setup work. First raise the probe.
  5119. //
  5120. st_synchronize();
  5121. plan_bed_level_matrix.set_to_identity();
  5122. plan_buffer_line( X_current, Y_current, Z_start_location,
  5123. ext_position,
  5124. homing_feedrate[Z_AXIS]/60,
  5125. active_extruder);
  5126. st_synchronize();
  5127. //
  5128. // Now get everything to the specified probe point So we can safely do a probe to
  5129. // get us close to the bed. If the Z-Axis is far from the bed, we don't want to
  5130. // use that as a starting point for each probe.
  5131. //
  5132. if (verbose_level > 2)
  5133. SERIAL_PROTOCOL("Positioning probe for the test.\n");
  5134. plan_buffer_line( X_probe_location, Y_probe_location, Z_start_location,
  5135. ext_position,
  5136. homing_feedrate[X_AXIS]/60,
  5137. active_extruder);
  5138. st_synchronize();
  5139. current_position[X_AXIS] = X_current = st_get_position_mm(X_AXIS);
  5140. current_position[Y_AXIS] = Y_current = st_get_position_mm(Y_AXIS);
  5141. current_position[Z_AXIS] = Z_current = st_get_position_mm(Z_AXIS);
  5142. current_position[E_AXIS] = ext_position = st_get_position_mm(E_AXIS);
  5143. //
  5144. // OK, do the inital probe to get us close to the bed.
  5145. // Then retrace the right amount and use that in subsequent probes
  5146. //
  5147. int l_feedmultiply = setup_for_endstop_move();
  5148. run_z_probe();
  5149. current_position[Z_AXIS] = Z_current = st_get_position_mm(Z_AXIS);
  5150. Z_start_location = st_get_position_mm(Z_AXIS) + Z_RAISE_BEFORE_PROBING;
  5151. plan_buffer_line( X_probe_location, Y_probe_location, Z_start_location,
  5152. ext_position,
  5153. homing_feedrate[X_AXIS]/60,
  5154. active_extruder);
  5155. st_synchronize();
  5156. current_position[Z_AXIS] = Z_current = st_get_position_mm(Z_AXIS);
  5157. for( n=0; n<n_samples; n++) {
  5158. do_blocking_move_to( X_probe_location, Y_probe_location, Z_start_location); // Make sure we are at the probe location
  5159. if ( n_legs) {
  5160. double radius=0.0, theta=0.0, x_sweep, y_sweep;
  5161. int rotational_direction, l;
  5162. rotational_direction = (unsigned long) _millis() & 0x0001; // clockwise or counter clockwise
  5163. radius = (unsigned long) _millis() % (long) (X_MAX_LENGTH/4); // limit how far out to go
  5164. theta = (float) ((unsigned long) _millis() % (long) 360) / (360./(2*3.1415926)); // turn into radians
  5165. //SERIAL_ECHOPAIR("starting radius: ",radius);
  5166. //SERIAL_ECHOPAIR(" theta: ",theta);
  5167. //SERIAL_ECHOPAIR(" direction: ",rotational_direction);
  5168. //SERIAL_PROTOCOLLNPGM("");
  5169. for( l=0; l<n_legs-1; l++) {
  5170. if (rotational_direction==1)
  5171. theta += (float) ((unsigned long) _millis() % (long) 20) / (360.0/(2*3.1415926)); // turn into radians
  5172. else
  5173. theta -= (float) ((unsigned long) _millis() % (long) 20) / (360.0/(2*3.1415926)); // turn into radians
  5174. radius += (float) ( ((long) ((unsigned long) _millis() % (long) 10)) - 5);
  5175. if ( radius<0.0 )
  5176. radius = -radius;
  5177. X_current = X_probe_location + cos(theta) * radius;
  5178. Y_current = Y_probe_location + sin(theta) * radius;
  5179. if ( X_current<X_MIN_POS) // Make sure our X & Y are sane
  5180. X_current = X_MIN_POS;
  5181. if ( X_current>X_MAX_POS)
  5182. X_current = X_MAX_POS;
  5183. if ( Y_current<Y_MIN_POS) // Make sure our X & Y are sane
  5184. Y_current = Y_MIN_POS;
  5185. if ( Y_current>Y_MAX_POS)
  5186. Y_current = Y_MAX_POS;
  5187. if (verbose_level>3 ) {
  5188. SERIAL_ECHOPAIR("x: ", X_current);
  5189. SERIAL_ECHOPAIR("y: ", Y_current);
  5190. SERIAL_PROTOCOLLNPGM("");
  5191. }
  5192. do_blocking_move_to( X_current, Y_current, Z_current );
  5193. }
  5194. do_blocking_move_to( X_probe_location, Y_probe_location, Z_start_location); // Go back to the probe location
  5195. }
  5196. int l_feedmultiply = setup_for_endstop_move();
  5197. run_z_probe();
  5198. sample_set[n] = current_position[Z_AXIS];
  5199. //
  5200. // Get the current mean for the data points we have so far
  5201. //
  5202. sum=0.0;
  5203. for( j=0; j<=n; j++) {
  5204. sum = sum + sample_set[j];
  5205. }
  5206. mean = sum / (double (n+1));
  5207. //
  5208. // Now, use that mean to calculate the standard deviation for the
  5209. // data points we have so far
  5210. //
  5211. sum=0.0;
  5212. for( j=0; j<=n; j++) {
  5213. sum = sum + (sample_set[j]-mean) * (sample_set[j]-mean);
  5214. }
  5215. sigma = sqrt( sum / (double (n+1)) );
  5216. if (verbose_level > 1) {
  5217. SERIAL_PROTOCOL(n+1);
  5218. SERIAL_PROTOCOL(" of ");
  5219. SERIAL_PROTOCOL(n_samples);
  5220. SERIAL_PROTOCOLPGM(" z: ");
  5221. SERIAL_PROTOCOL_F(current_position[Z_AXIS], 6);
  5222. }
  5223. if (verbose_level > 2) {
  5224. SERIAL_PROTOCOL(" mean: ");
  5225. SERIAL_PROTOCOL_F(mean,6);
  5226. SERIAL_PROTOCOL(" sigma: ");
  5227. SERIAL_PROTOCOL_F(sigma,6);
  5228. }
  5229. if (verbose_level > 0)
  5230. SERIAL_PROTOCOLPGM("\n");
  5231. plan_buffer_line( X_probe_location, Y_probe_location, Z_start_location,
  5232. current_position[E_AXIS], homing_feedrate[Z_AXIS]/60, active_extruder);
  5233. st_synchronize();
  5234. }
  5235. _delay(1000);
  5236. clean_up_after_endstop_move(l_feedmultiply);
  5237. // enable_endstops(true);
  5238. if (verbose_level > 0) {
  5239. SERIAL_PROTOCOLPGM("Mean: ");
  5240. SERIAL_PROTOCOL_F(mean, 6);
  5241. SERIAL_PROTOCOLPGM("\n");
  5242. }
  5243. SERIAL_PROTOCOLPGM("Standard Deviation: ");
  5244. SERIAL_PROTOCOL_F(sigma, 6);
  5245. SERIAL_PROTOCOLPGM("\n\n");
  5246. Sigma_Exit:
  5247. break;
  5248. }
  5249. #endif // Z_PROBE_REPEATABILITY_TEST
  5250. #endif // ENABLE_AUTO_BED_LEVELING
  5251. /*!
  5252. ### M73 - Set/get print progress <a href="https://reprap.org/wiki/G-code#M73:_Set.2FGet_build_percentage">M73: Set/Get build percentage</a>
  5253. Prusa firmware just shows percent done and time remaining.
  5254. M73 [ P | R | Q | S ]
  5255. - `P` - Percent in normal mode
  5256. - `R` - Time remaining in normal mode
  5257. - `Q` - Percent in silent mode
  5258. - `S` - Time in silent mode
  5259. */
  5260. case 73: //M73 show percent done and time remaining
  5261. if(code_seen('P')) print_percent_done_normal = code_value();
  5262. if(code_seen('R')) print_time_remaining_normal = code_value();
  5263. if(code_seen('Q')) print_percent_done_silent = code_value();
  5264. if(code_seen('S')) print_time_remaining_silent = code_value();
  5265. {
  5266. const char* _msg_mode_done_remain = _N("%S MODE: Percent done: %d; print time remaining in mins: %d\n");
  5267. printf_P(_msg_mode_done_remain, _N("NORMAL"), int(print_percent_done_normal), print_time_remaining_normal);
  5268. printf_P(_msg_mode_done_remain, _N("SILENT"), int(print_percent_done_silent), print_time_remaining_silent);
  5269. }
  5270. break;
  5271. /*!
  5272. ### M104 - Set hotend temperature <a href="https://reprap.org/wiki/G-code#M104:_Set_Extruder_Temperature">M104: Set Extruder Temperature</a>
  5273. M104 [ S ]
  5274. - `S` - Target temperature
  5275. */
  5276. case 104: // M104
  5277. {
  5278. uint8_t extruder;
  5279. if(setTargetedHotend(104,extruder)){
  5280. break;
  5281. }
  5282. if (code_seen('S'))
  5283. {
  5284. setTargetHotendSafe(code_value(), extruder);
  5285. }
  5286. break;
  5287. }
  5288. /*!
  5289. ### M112 - Emergency stop <a href="https://reprap.org/wiki/G-code#M112:_Full_.28Emergency.29_Stop">M112: Full (Emergency) Stop</a>
  5290. */
  5291. case 112:
  5292. kill(_n(""), 3);
  5293. break;
  5294. /*!
  5295. ### M140 - Set bed temperature <a href="https://reprap.org/wiki/G-code#M140:_Set_Bed_Temperature_.28Fast.29">M140: Set Bed Temperature (Fast)</a>
  5296. */
  5297. case 140:
  5298. if (code_seen('S')) setTargetBed(code_value());
  5299. break;
  5300. /*!
  5301. ### M105 - Report temperatures <a href="https://reprap.org/wiki/G-code#M105:_Get_Extruder_Temperature">M105: Get Extruder Temperature</a>
  5302. Prints temperatures:
  5303. - `T:` - Hotend (actual / target)
  5304. - `B:` - Bed (actual / target)
  5305. - `Tx:` - x Tool (actual / target)
  5306. - `@:` - Hotend power
  5307. - `B@:` - Bed power
  5308. - `P:` - PINDAv2 actual (only MK2.5/s and MK3.5/s)
  5309. - `A:` - Ambient actual (only MK3/s)
  5310. _Example:_
  5311. ok T:20.2 /0.0 B:19.1 /0.0 T0:20.2 /0.0 @:0 B@:0 P:19.8 A:26.4
  5312. */
  5313. case 105:
  5314. {
  5315. uint8_t extruder;
  5316. if(setTargetedHotend(105, extruder)){
  5317. break;
  5318. }
  5319. #if defined(TEMP_0_PIN) && TEMP_0_PIN > -1
  5320. SERIAL_PROTOCOLPGM("ok T:");
  5321. SERIAL_PROTOCOL_F(degHotend(extruder),1);
  5322. SERIAL_PROTOCOLPGM(" /");
  5323. SERIAL_PROTOCOL_F(degTargetHotend(extruder),1);
  5324. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  5325. SERIAL_PROTOCOLPGM(" B:");
  5326. SERIAL_PROTOCOL_F(degBed(),1);
  5327. SERIAL_PROTOCOLPGM(" /");
  5328. SERIAL_PROTOCOL_F(degTargetBed(),1);
  5329. #endif //TEMP_BED_PIN
  5330. for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) {
  5331. SERIAL_PROTOCOLPGM(" T");
  5332. SERIAL_PROTOCOL(cur_extruder);
  5333. SERIAL_PROTOCOLPGM(":");
  5334. SERIAL_PROTOCOL_F(degHotend(cur_extruder),1);
  5335. SERIAL_PROTOCOLPGM(" /");
  5336. SERIAL_PROTOCOL_F(degTargetHotend(cur_extruder),1);
  5337. }
  5338. #else
  5339. SERIAL_ERROR_START;
  5340. SERIAL_ERRORLNRPGM(_i("No thermistors - no temperature"));////MSG_ERR_NO_THERMISTORS
  5341. #endif
  5342. SERIAL_PROTOCOLPGM(" @:");
  5343. #ifdef EXTRUDER_WATTS
  5344. SERIAL_PROTOCOL((EXTRUDER_WATTS * getHeaterPower(tmp_extruder))/127);
  5345. SERIAL_PROTOCOLPGM("W");
  5346. #else
  5347. SERIAL_PROTOCOL(getHeaterPower(extruder));
  5348. #endif
  5349. SERIAL_PROTOCOLPGM(" B@:");
  5350. #ifdef BED_WATTS
  5351. SERIAL_PROTOCOL((BED_WATTS * getHeaterPower(-1))/127);
  5352. SERIAL_PROTOCOLPGM("W");
  5353. #else
  5354. SERIAL_PROTOCOL(getHeaterPower(-1));
  5355. #endif
  5356. #ifdef PINDA_THERMISTOR
  5357. SERIAL_PROTOCOLPGM(" P:");
  5358. SERIAL_PROTOCOL_F(current_temperature_pinda,1);
  5359. #endif //PINDA_THERMISTOR
  5360. #ifdef AMBIENT_THERMISTOR
  5361. SERIAL_PROTOCOLPGM(" A:");
  5362. SERIAL_PROTOCOL_F(current_temperature_ambient,1);
  5363. #endif //AMBIENT_THERMISTOR
  5364. #ifdef SHOW_TEMP_ADC_VALUES
  5365. {float raw = 0.0;
  5366. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  5367. SERIAL_PROTOCOLPGM(" ADC B:");
  5368. SERIAL_PROTOCOL_F(degBed(),1);
  5369. SERIAL_PROTOCOLPGM("C->");
  5370. raw = rawBedTemp();
  5371. SERIAL_PROTOCOL_F(raw/OVERSAMPLENR,5);
  5372. SERIAL_PROTOCOLPGM(" Rb->");
  5373. SERIAL_PROTOCOL_F(100 * (1 + (PtA * (raw/OVERSAMPLENR)) + (PtB * sq((raw/OVERSAMPLENR)))), 5);
  5374. SERIAL_PROTOCOLPGM(" Rxb->");
  5375. SERIAL_PROTOCOL_F(raw, 5);
  5376. #endif
  5377. for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) {
  5378. SERIAL_PROTOCOLPGM(" T");
  5379. SERIAL_PROTOCOL(cur_extruder);
  5380. SERIAL_PROTOCOLPGM(":");
  5381. SERIAL_PROTOCOL_F(degHotend(cur_extruder),1);
  5382. SERIAL_PROTOCOLPGM("C->");
  5383. raw = rawHotendTemp(cur_extruder);
  5384. SERIAL_PROTOCOL_F(raw/OVERSAMPLENR,5);
  5385. SERIAL_PROTOCOLPGM(" Rt");
  5386. SERIAL_PROTOCOL(cur_extruder);
  5387. SERIAL_PROTOCOLPGM("->");
  5388. SERIAL_PROTOCOL_F(100 * (1 + (PtA * (raw/OVERSAMPLENR)) + (PtB * sq((raw/OVERSAMPLENR)))), 5);
  5389. SERIAL_PROTOCOLPGM(" Rx");
  5390. SERIAL_PROTOCOL(cur_extruder);
  5391. SERIAL_PROTOCOLPGM("->");
  5392. SERIAL_PROTOCOL_F(raw, 5);
  5393. }}
  5394. #endif
  5395. SERIAL_PROTOCOLLN("");
  5396. KEEPALIVE_STATE(NOT_BUSY);
  5397. return;
  5398. break;
  5399. }
  5400. /*!
  5401. ### M109 - Wait for extruder temperature <a href="https://reprap.org/wiki/G-code#M109:_Set_Extruder_Temperature_and_Wait">M109: Set Extruder Temperature and Wait</a>
  5402. Parameters (not mandatory):
  5403. - `S` - Set extruder temperature
  5404. - `R` - Set extruder temperature
  5405. - `B` - Set max. extruder temperature, while `S` is min. temperature. Not active in default, only if AUTOTEMP is defined in source code.
  5406. Parameters S and R are treated identically.
  5407. Command always waits for both cool down and heat up.
  5408. If no parameters are supplied waits for previously
  5409. set extruder temperature.
  5410. */
  5411. case 109:
  5412. {
  5413. uint8_t extruder;
  5414. if(setTargetedHotend(109, extruder)){
  5415. break;
  5416. }
  5417. LCD_MESSAGERPGM(_T(MSG_HEATING));
  5418. heating_status = 1;
  5419. if (farm_mode) { prusa_statistics(1); };
  5420. #ifdef AUTOTEMP
  5421. autotemp_enabled=false;
  5422. #endif
  5423. if (code_seen('S')) {
  5424. setTargetHotendSafe(code_value(), extruder);
  5425. } else if (code_seen('R')) {
  5426. setTargetHotendSafe(code_value(), extruder);
  5427. }
  5428. #ifdef AUTOTEMP
  5429. if (code_seen('S')) autotemp_min=code_value();
  5430. if (code_seen('B')) autotemp_max=code_value();
  5431. if (code_seen('F'))
  5432. {
  5433. autotemp_factor=code_value();
  5434. autotemp_enabled=true;
  5435. }
  5436. #endif
  5437. codenum = _millis();
  5438. /* See if we are heating up or cooling down */
  5439. target_direction = isHeatingHotend(extruder); // true if heating, false if cooling
  5440. KEEPALIVE_STATE(NOT_BUSY);
  5441. cancel_heatup = false;
  5442. wait_for_heater(codenum, extruder); //loops until target temperature is reached
  5443. LCD_MESSAGERPGM(_T(MSG_HEATING_COMPLETE));
  5444. KEEPALIVE_STATE(IN_HANDLER);
  5445. heating_status = 2;
  5446. if (farm_mode) { prusa_statistics(2); };
  5447. //starttime=_millis();
  5448. previous_millis_cmd = _millis();
  5449. }
  5450. break;
  5451. /*!
  5452. ### M190 - Wait for bed temperature <a href="https://reprap.org/wiki/G-code#M190:_Wait_for_bed_temperature_to_reach_target_temp">M190: Wait for bed temperature to reach target temp</a>
  5453. Parameters (not mandatory):
  5454. - `S` - Set extruder temperature and wait for heating
  5455. - `R` - Set extruder temperature and wait for heating or cooling
  5456. If no parameter is supplied, waits for heating or cooling to previously set temperature.
  5457. */
  5458. case 190:
  5459. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  5460. {
  5461. bool CooldownNoWait = false;
  5462. LCD_MESSAGERPGM(_T(MSG_BED_HEATING));
  5463. heating_status = 3;
  5464. if (farm_mode) { prusa_statistics(1); };
  5465. if (code_seen('S'))
  5466. {
  5467. setTargetBed(code_value());
  5468. CooldownNoWait = true;
  5469. }
  5470. else if (code_seen('R'))
  5471. {
  5472. setTargetBed(code_value());
  5473. }
  5474. codenum = _millis();
  5475. cancel_heatup = false;
  5476. target_direction = isHeatingBed(); // true if heating, false if cooling
  5477. KEEPALIVE_STATE(NOT_BUSY);
  5478. while ( (target_direction)&&(!cancel_heatup) ? (isHeatingBed()) : (isCoolingBed()&&(CooldownNoWait==false)) )
  5479. {
  5480. if(( _millis() - codenum) > 1000 ) //Print Temp Reading every 1 second while heating up.
  5481. {
  5482. if (!farm_mode) {
  5483. float tt = degHotend(active_extruder);
  5484. SERIAL_PROTOCOLPGM("T:");
  5485. SERIAL_PROTOCOL(tt);
  5486. SERIAL_PROTOCOLPGM(" E:");
  5487. SERIAL_PROTOCOL((int)active_extruder);
  5488. SERIAL_PROTOCOLPGM(" B:");
  5489. SERIAL_PROTOCOL_F(degBed(), 1);
  5490. SERIAL_PROTOCOLLN("");
  5491. }
  5492. codenum = _millis();
  5493. }
  5494. manage_heater();
  5495. manage_inactivity();
  5496. lcd_update(0);
  5497. }
  5498. LCD_MESSAGERPGM(_T(MSG_BED_DONE));
  5499. KEEPALIVE_STATE(IN_HANDLER);
  5500. heating_status = 4;
  5501. previous_millis_cmd = _millis();
  5502. }
  5503. #endif
  5504. break;
  5505. #if defined(FAN_PIN) && FAN_PIN > -1
  5506. /*!
  5507. ### M106 - Set fan speed <a href="https://reprap.org/wiki/G-code#M106:_Fan_On">M106: Fan On</a>
  5508. */
  5509. case 106: // M106 Sxxx Fan On S<speed> 0 .. 255
  5510. if (code_seen('S')){
  5511. fanSpeed=constrain(code_value(),0,255);
  5512. }
  5513. else {
  5514. fanSpeed=255;
  5515. }
  5516. break;
  5517. /*!
  5518. ### M107 - Fan off <a href="https://reprap.org/wiki/G-code#M107:_Fan_Off">M107: Fan Off</a>
  5519. */
  5520. case 107:
  5521. fanSpeed = 0;
  5522. break;
  5523. #endif //FAN_PIN
  5524. #if defined(PS_ON_PIN) && PS_ON_PIN > -1
  5525. /*!
  5526. ### M80 - Turn on the Power Supply <a href="https://reprap.org/wiki/G-code#M80:_ATX_Power_On">M80: ATX Power On</a>
  5527. */
  5528. case 80:
  5529. SET_OUTPUT(PS_ON_PIN); //GND
  5530. WRITE(PS_ON_PIN, PS_ON_AWAKE);
  5531. // If you have a switch on suicide pin, this is useful
  5532. // if you want to start another print with suicide feature after
  5533. // a print without suicide...
  5534. #if defined SUICIDE_PIN && SUICIDE_PIN > -1
  5535. SET_OUTPUT(SUICIDE_PIN);
  5536. WRITE(SUICIDE_PIN, HIGH);
  5537. #endif
  5538. powersupply = true;
  5539. LCD_MESSAGERPGM(_T(WELCOME_MSG));
  5540. lcd_update(0);
  5541. break;
  5542. #endif
  5543. /*!
  5544. ### M81 - Turn off Power Supply <a href="https://reprap.org/wiki/G-code#M81:_ATX_Power_Off">M81: ATX Power Off</a>
  5545. */
  5546. case 81:
  5547. disable_heater();
  5548. st_synchronize();
  5549. disable_e0();
  5550. disable_e1();
  5551. disable_e2();
  5552. finishAndDisableSteppers();
  5553. fanSpeed = 0;
  5554. _delay(1000); // Wait a little before to switch off
  5555. #if defined(SUICIDE_PIN) && SUICIDE_PIN > -1
  5556. st_synchronize();
  5557. suicide();
  5558. #elif defined(PS_ON_PIN) && PS_ON_PIN > -1
  5559. SET_OUTPUT(PS_ON_PIN);
  5560. WRITE(PS_ON_PIN, PS_ON_ASLEEP);
  5561. #endif
  5562. powersupply = false;
  5563. LCD_MESSAGERPGM(CAT4(CUSTOM_MENDEL_NAME,PSTR(" "),MSG_OFF,PSTR(".")));
  5564. lcd_update(0);
  5565. break;
  5566. /*!
  5567. ### M82 - Set E axis to absolute mode <a href="https://reprap.org/wiki/G-code#M82:_Set_extruder_to_absolute_mode">M82: Set extruder to absolute mode</a>
  5568. Makes the extruder interpret extrusion as absolute positions.
  5569. */
  5570. case 82:
  5571. axis_relative_modes[3] = false;
  5572. break;
  5573. /*!
  5574. ### M83 - Set E axis to relative mode <a href="https://reprap.org/wiki/G-code#M83:_Set_extruder_to_relative_mode">M83: Set extruder to relative mode</a>
  5575. Makes the extruder interpret extrusion values as relative positions.
  5576. */
  5577. case 83:
  5578. axis_relative_modes[3] = true;
  5579. break;
  5580. /*!
  5581. ### M84 - Disable steppers <a href="https://reprap.org/wiki/G-code#M84:_Stop_idle_hold">M84: Stop idle hold</a>
  5582. This command can be used to set the stepper inactivity timeout (`S`) or to disable steppers (`X`,`Y`,`Z`,`E`)
  5583. _This command can be used without any additional parameters._
  5584. M84 [ S | X | Y | Z | E ]
  5585. - `S` - Seconds
  5586. - `X` - X axsis
  5587. - `Y` - Y axis
  5588. - `Z` - Z axis
  5589. - `E` - Exruder drive(s)
  5590. ### M18 - Disable steppers <a href="https://reprap.org/wiki/G-code#M18:_Disable_all_stepper_motors">M18: Disable all stepper motors</a>
  5591. Equal to M84 (compatibility)
  5592. */
  5593. case 18: //compatibility
  5594. case 84: // M84
  5595. if(code_seen('S')){
  5596. stepper_inactive_time = code_value() * 1000;
  5597. }
  5598. else
  5599. {
  5600. bool all_axis = !((code_seen(axis_codes[X_AXIS])) || (code_seen(axis_codes[Y_AXIS])) || (code_seen(axis_codes[Z_AXIS]))|| (code_seen(axis_codes[E_AXIS])));
  5601. if(all_axis)
  5602. {
  5603. st_synchronize();
  5604. disable_e0();
  5605. disable_e1();
  5606. disable_e2();
  5607. finishAndDisableSteppers();
  5608. }
  5609. else
  5610. {
  5611. st_synchronize();
  5612. if (code_seen('X')) disable_x();
  5613. if (code_seen('Y')) disable_y();
  5614. if (code_seen('Z')) disable_z();
  5615. #if ((E0_ENABLE_PIN != X_ENABLE_PIN) && (E1_ENABLE_PIN != Y_ENABLE_PIN)) // Only enable on boards that have seperate ENABLE_PINS
  5616. if (code_seen('E')) {
  5617. disable_e0();
  5618. disable_e1();
  5619. disable_e2();
  5620. }
  5621. #endif
  5622. }
  5623. }
  5624. //in the end of print set estimated time to end of print and extruders used during print to default values for next print
  5625. print_time_remaining_init();
  5626. snmm_filaments_used = 0;
  5627. break;
  5628. /*!
  5629. ### M85 - Set max inactive time <a href="https://reprap.org/wiki/G-code#M85:_Set_Inactivity_Shutdown_Timer">M85: Set Inactivity Shutdown Timer</a>
  5630. Set Inactivity Shutdown Timer with parameter S<seconds>. "M85 S0" will disable the inactivity shutdown time (default)
  5631. */
  5632. case 85: // M85
  5633. if(code_seen('S')) {
  5634. max_inactive_time = code_value() * 1000;
  5635. }
  5636. break;
  5637. #ifdef SAFETYTIMER
  5638. /*!
  5639. ### M86 - Set safety timer expiration time <a href="https://reprap.org/wiki/G-code#M86:_Set_Safety_Timer_expiration_time">M86: Set Safety Timer expiration time</a>
  5640. Sets the safety timer expiration time in seconds.
  5641. When safety timer expires, heatbed and nozzle target temperatures are set to zero.
  5642. M86 [ S ]
  5643. - `S` - Seconds Setting it to 0 will disable safety timer.
  5644. */
  5645. case 86:
  5646. if (code_seen('S')) {
  5647. safetytimer_inactive_time = code_value() * 1000;
  5648. safetyTimer.start();
  5649. }
  5650. break;
  5651. #endif
  5652. /*!
  5653. ### M92 Set Axis steps-per-unit <a href="https://reprap.org/wiki/G-code#M92:_Set_axis_steps_per_unit">M92: Set axis_steps_per_unit</a>
  5654. Allows programming of steps per unit (usually mm) for motor drives. These values are reset to firmware defaults on power on, unless saved to EEPROM if available (M500 in Marlin)
  5655. M92 [ X | Y | Z | E ]
  5656. - `X` - Steps per unit for the X drive
  5657. - `Y` - Steps per unit for the Y drive
  5658. - `Z` - Steps per unit for the Z drive
  5659. - `E` - Steps per unit for the extruder drive(s)
  5660. */
  5661. case 92:
  5662. for(int8_t i=0; i < NUM_AXIS; i++)
  5663. {
  5664. if(code_seen(axis_codes[i]))
  5665. {
  5666. if(i == 3) { // E
  5667. float value = code_value();
  5668. if(value < 20.0) {
  5669. float factor = cs.axis_steps_per_unit[i] / value; // increase e constants if M92 E14 is given for netfab.
  5670. cs.max_jerk[E_AXIS] *= factor;
  5671. max_feedrate[i] *= factor;
  5672. axis_steps_per_sqr_second[i] *= factor;
  5673. }
  5674. cs.axis_steps_per_unit[i] = value;
  5675. }
  5676. else {
  5677. cs.axis_steps_per_unit[i] = code_value();
  5678. }
  5679. }
  5680. }
  5681. break;
  5682. /*!
  5683. ### M110 - Set Line number <a href="https://reprap.org/wiki/G-code#M110:_Set_Current_Line_Number">M110: Set Current Line Number</a>
  5684. Sets the line number in G-code
  5685. M110 [ N ]
  5686. - `N` - Line number
  5687. */
  5688. case 110:
  5689. if (code_seen('N'))
  5690. gcode_LastN = code_value_long();
  5691. break;
  5692. /*!
  5693. ### M113 - Get or set host keep-alive interval <a href="https://reprap.org/wiki/G-code#M113:_Host_Keepalive">M113: Host Keepalive</a>
  5694. During some lengthy processes, such as G29, Marlin may appear to the host to have “gone away.” The “host keepalive” feature will send messages to the host when Marlin is busy or waiting for user response so the host won’t try to reconnect.
  5695. M113 [ S ]
  5696. - `S` - Seconds Default is 2 seconds between "busy" messages
  5697. */
  5698. case 113:
  5699. if (code_seen('S')) {
  5700. host_keepalive_interval = (uint8_t)code_value_short();
  5701. // NOMORE(host_keepalive_interval, 60);
  5702. }
  5703. else {
  5704. SERIAL_ECHO_START;
  5705. SERIAL_ECHOPAIR("M113 S", (unsigned long)host_keepalive_interval);
  5706. SERIAL_PROTOCOLLN("");
  5707. }
  5708. break;
  5709. /*!
  5710. ### M115 - Firmware info <a href="https://reprap.org/wiki/G-code#M115:_Get_Firmware_Version_and_Capabilities">M115: Get Firmware Version and Capabilities</a>
  5711. Print the firmware info and capabilities
  5712. M115 [ V | U ]
  5713. - V - Report current installed firmware version
  5714. - U - Firmware version provided by G-code to be compared to current one.
  5715. Without any arguments, prints Prusa firmware version number, machine type, extruder count and UUID.
  5716. `M115 U` Checks the firmware version provided. If the firmware version provided by the U code is higher than the currently running firmware, it will pause the print for 30s and ask the user to upgrade the firmware.
  5717. _Examples:_
  5718. `M115` results:
  5719. `FIRMWARE_NAME:Prusa-Firmware 3.8.1 based on Marlin FIRMWARE_URL:https://github.com/prusa3d/Prusa-Firmware PROTOCOL_VERSION:1.0 MACHINE_TYPE:Prusa i3 MK3S EXTRUDER_COUNT:1 UUID:00000000-0000-0000-0000-000000000000`
  5720. `M115 V` results:
  5721. `3.8.1`
  5722. `M115 U3.8.2-RC1` results on LCD display for 30s or user interaction:
  5723. `New firmware version available: 3.8.2-RC1 Please upgrade.`
  5724. */
  5725. case 115: // M115
  5726. if (code_seen('V')) {
  5727. // Report the Prusa version number.
  5728. SERIAL_PROTOCOLLNRPGM(FW_VERSION_STR_P());
  5729. } else if (code_seen('U')) {
  5730. // Check the firmware version provided. If the firmware version provided by the U code is higher than the currently running firmware,
  5731. // pause the print for 30s and ask the user to upgrade the firmware.
  5732. show_upgrade_dialog_if_version_newer(++ strchr_pointer);
  5733. } else {
  5734. SERIAL_ECHOPGM("FIRMWARE_NAME:Prusa-Firmware ");
  5735. SERIAL_ECHORPGM(FW_VERSION_STR_P());
  5736. SERIAL_ECHOPGM(" based on Marlin FIRMWARE_URL:https://github.com/prusa3d/Prusa-Firmware PROTOCOL_VERSION:");
  5737. SERIAL_ECHOPGM(PROTOCOL_VERSION);
  5738. SERIAL_ECHOPGM(" MACHINE_TYPE:");
  5739. SERIAL_ECHOPGM(CUSTOM_MENDEL_NAME);
  5740. SERIAL_ECHOPGM(" EXTRUDER_COUNT:");
  5741. SERIAL_ECHOPGM(STRINGIFY(EXTRUDERS));
  5742. SERIAL_ECHOPGM(" UUID:");
  5743. SERIAL_ECHOLNPGM(MACHINE_UUID);
  5744. }
  5745. break;
  5746. /*!
  5747. ### M114 - Get current position <a href="https://reprap.org/wiki/G-code#M114:_Get_Current_Position">M114: Get Current Position</a>
  5748. */
  5749. case 114:
  5750. gcode_M114();
  5751. break;
  5752. /*
  5753. M117 moved up to get the high priority
  5754. case 117: // M117 display message
  5755. starpos = (strchr(strchr_pointer + 5,'*'));
  5756. if(starpos!=NULL)
  5757. *(starpos)='\0';
  5758. lcd_setstatus(strchr_pointer + 5);
  5759. break;*/
  5760. /*!
  5761. ### M120 - Enable endstops <a href="https://reprap.org/wiki/G-code#M120:_Enable_endstop_detection">M120: Enable endstop detection</a>
  5762. */
  5763. case 120:
  5764. enable_endstops(false) ;
  5765. break;
  5766. /*!
  5767. ### M121 - Disable endstops <a href="https://reprap.org/wiki/G-code#M121:_Disable_endstop_detection">M121: Disable endstop detection</a>
  5768. */
  5769. case 121:
  5770. enable_endstops(true) ;
  5771. break;
  5772. /*!
  5773. ### M119 - Get endstop states <a href="https://reprap.org/wiki/G-code#M119:_Get_Endstop_Status">M119: Get Endstop Status</a>
  5774. Returns the current state of the configured X, Y, Z endstops. Takes into account any 'inverted endstop' settings, so one can confirm that the machine is interpreting the endstops correctly.
  5775. */
  5776. case 119:
  5777. SERIAL_PROTOCOLRPGM(_N("Reporting endstop status"));////MSG_M119_REPORT
  5778. SERIAL_PROTOCOLLN("");
  5779. #if defined(X_MIN_PIN) && X_MIN_PIN > -1
  5780. SERIAL_PROTOCOLRPGM(_n("x_min: "));////MSG_X_MIN
  5781. if(READ(X_MIN_PIN)^X_MIN_ENDSTOP_INVERTING){
  5782. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_HIT);
  5783. }else{
  5784. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_OPEN);
  5785. }
  5786. SERIAL_PROTOCOLLN("");
  5787. #endif
  5788. #if defined(X_MAX_PIN) && X_MAX_PIN > -1
  5789. SERIAL_PROTOCOLRPGM(_n("x_max: "));////MSG_X_MAX
  5790. if(READ(X_MAX_PIN)^X_MAX_ENDSTOP_INVERTING){
  5791. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_HIT);
  5792. }else{
  5793. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_OPEN);
  5794. }
  5795. SERIAL_PROTOCOLLN("");
  5796. #endif
  5797. #if defined(Y_MIN_PIN) && Y_MIN_PIN > -1
  5798. SERIAL_PROTOCOLRPGM(_n("y_min: "));////MSG_Y_MIN
  5799. if(READ(Y_MIN_PIN)^Y_MIN_ENDSTOP_INVERTING){
  5800. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_HIT);
  5801. }else{
  5802. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_OPEN);
  5803. }
  5804. SERIAL_PROTOCOLLN("");
  5805. #endif
  5806. #if defined(Y_MAX_PIN) && Y_MAX_PIN > -1
  5807. SERIAL_PROTOCOLRPGM(_n("y_max: "));////MSG_Y_MAX
  5808. if(READ(Y_MAX_PIN)^Y_MAX_ENDSTOP_INVERTING){
  5809. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_HIT);
  5810. }else{
  5811. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_OPEN);
  5812. }
  5813. SERIAL_PROTOCOLLN("");
  5814. #endif
  5815. #if defined(Z_MIN_PIN) && Z_MIN_PIN > -1
  5816. SERIAL_PROTOCOLRPGM(MSG_Z_MIN);
  5817. if(READ(Z_MIN_PIN)^Z_MIN_ENDSTOP_INVERTING){
  5818. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_HIT);
  5819. }else{
  5820. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_OPEN);
  5821. }
  5822. SERIAL_PROTOCOLLN("");
  5823. #endif
  5824. #if defined(Z_MAX_PIN) && Z_MAX_PIN > -1
  5825. SERIAL_PROTOCOLRPGM(MSG_Z_MAX);
  5826. if(READ(Z_MAX_PIN)^Z_MAX_ENDSTOP_INVERTING){
  5827. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_HIT);
  5828. }else{
  5829. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_OPEN);
  5830. }
  5831. SERIAL_PROTOCOLLN("");
  5832. #endif
  5833. break;
  5834. //TODO: update for all axis, use for loop
  5835. #ifdef BLINKM
  5836. /*!
  5837. ### M150 - Set RGB(W) Color <a href="https://reprap.org/wiki/G-code#M150:_Set_LED_color">M150: Set LED color</a>
  5838. In Prusa Firmware this G-code is deactivated by default, must be turned on in the source code by defining BLINKM and its dependencies.
  5839. */
  5840. case 150:
  5841. {
  5842. byte red;
  5843. byte grn;
  5844. byte blu;
  5845. if(code_seen('R')) red = code_value();
  5846. if(code_seen('U')) grn = code_value();
  5847. if(code_seen('B')) blu = code_value();
  5848. SendColors(red,grn,blu);
  5849. }
  5850. break;
  5851. #endif //BLINKM
  5852. /*!
  5853. ### M200 - Set filament diameter <a href="https://reprap.org/wiki/G-code#M200:_Set_filament_diameter">M200: Set filament diameter</a>
  5854. M200 [ D | T ]
  5855. - `D` - Diameter in mm
  5856. - `T` - Number of extruder (MMUs)
  5857. */
  5858. case 200: // M200 D<millimeters> set filament diameter and set E axis units to cubic millimeters (use S0 to set back to millimeters).
  5859. {
  5860. uint8_t extruder = active_extruder;
  5861. if(code_seen('T')) {
  5862. extruder = code_value();
  5863. if(extruder >= EXTRUDERS) {
  5864. SERIAL_ECHO_START;
  5865. SERIAL_ECHO(_n("M200 Invalid extruder "));////MSG_M200_INVALID_EXTRUDER
  5866. break;
  5867. }
  5868. }
  5869. if(code_seen('D')) {
  5870. float diameter = (float)code_value();
  5871. if (diameter == 0.0) {
  5872. // setting any extruder filament size disables volumetric on the assumption that
  5873. // slicers either generate in extruder values as cubic mm or as as filament feeds
  5874. // for all extruders
  5875. cs.volumetric_enabled = false;
  5876. } else {
  5877. cs.filament_size[extruder] = (float)code_value();
  5878. // make sure all extruders have some sane value for the filament size
  5879. cs.filament_size[0] = (cs.filament_size[0] == 0.0 ? DEFAULT_NOMINAL_FILAMENT_DIA : cs.filament_size[0]);
  5880. #if EXTRUDERS > 1
  5881. cs.filament_size[1] = (cs.filament_size[1] == 0.0 ? DEFAULT_NOMINAL_FILAMENT_DIA : cs.filament_size[1]);
  5882. #if EXTRUDERS > 2
  5883. cs.filament_size[2] = (cs.filament_size[2] == 0.0 ? DEFAULT_NOMINAL_FILAMENT_DIA : cs.filament_size[2]);
  5884. #endif
  5885. #endif
  5886. cs.volumetric_enabled = true;
  5887. }
  5888. } else {
  5889. //reserved for setting filament diameter via UFID or filament measuring device
  5890. break;
  5891. }
  5892. calculate_extruder_multipliers();
  5893. }
  5894. break;
  5895. /*!
  5896. ### M201 - Set Print Max Acceleration <a href="https://reprap.org/wiki/G-code#M201:_Set_max_printing_acceleration">M201: Set max printing acceleration</a>
  5897. */
  5898. case 201:
  5899. for (int8_t i = 0; i < NUM_AXIS; i++)
  5900. {
  5901. if (code_seen(axis_codes[i]))
  5902. {
  5903. unsigned long val = code_value();
  5904. #ifdef TMC2130
  5905. unsigned long val_silent = val;
  5906. if ((i == X_AXIS) || (i == Y_AXIS))
  5907. {
  5908. if (val > NORMAL_MAX_ACCEL_XY)
  5909. val = NORMAL_MAX_ACCEL_XY;
  5910. if (val_silent > SILENT_MAX_ACCEL_XY)
  5911. val_silent = SILENT_MAX_ACCEL_XY;
  5912. }
  5913. cs.max_acceleration_units_per_sq_second_normal[i] = val;
  5914. cs.max_acceleration_units_per_sq_second_silent[i] = val_silent;
  5915. #else //TMC2130
  5916. max_acceleration_units_per_sq_second[i] = val;
  5917. #endif //TMC2130
  5918. }
  5919. }
  5920. // steps per sq second need to be updated to agree with the units per sq second (as they are what is used in the planner)
  5921. reset_acceleration_rates();
  5922. break;
  5923. #if 0 // Not used for Sprinter/grbl gen6
  5924. case 202: // M202
  5925. for(int8_t i=0; i < NUM_AXIS; i++) {
  5926. if(code_seen(axis_codes[i])) axis_travel_steps_per_sqr_second[i] = code_value() * cs.axis_steps_per_unit[i];
  5927. }
  5928. break;
  5929. #endif
  5930. /*!
  5931. ### M203 - Set Max Feedrate <a href="https://reprap.org/wiki/G-code#M203:_Set_maximum_feedrate">M203: Set maximum feedrate</a>
  5932. */
  5933. case 203: // M203 max feedrate mm/sec
  5934. for (int8_t i = 0; i < NUM_AXIS; i++)
  5935. {
  5936. if (code_seen(axis_codes[i]))
  5937. {
  5938. float val = code_value();
  5939. #ifdef TMC2130
  5940. float val_silent = val;
  5941. if ((i == X_AXIS) || (i == Y_AXIS))
  5942. {
  5943. if (val > NORMAL_MAX_FEEDRATE_XY)
  5944. val = NORMAL_MAX_FEEDRATE_XY;
  5945. if (val_silent > SILENT_MAX_FEEDRATE_XY)
  5946. val_silent = SILENT_MAX_FEEDRATE_XY;
  5947. }
  5948. cs.max_feedrate_normal[i] = val;
  5949. cs.max_feedrate_silent[i] = val_silent;
  5950. #else //TMC2130
  5951. max_feedrate[i] = val;
  5952. #endif //TMC2130
  5953. }
  5954. }
  5955. break;
  5956. /*!
  5957. ### M204 - Acceleration settings <a href="https://reprap.org/wiki/G-code#M204:_Set_default_acceleration">M204: Set default acceleration</a>
  5958. */
  5959. /*! Supporting old format:
  5960. M204 [ S | T ]
  5961. - `S` - normal moves
  5962. - `T` - filmanent only moves
  5963. and new format:
  5964. M204 [ P | R | T ]
  5965. - `P` - printing moves
  5966. - `R` - filmanent only moves
  5967. - `T` - travel moves (as of now T is ignored)
  5968. */
  5969. case 204:
  5970. {
  5971. if(code_seen('S')) {
  5972. // Legacy acceleration format. This format is used by the legacy Marlin, MK2 or MK3 firmware,
  5973. // and it is also generated by Slic3r to control acceleration per extrusion type
  5974. // (there is a separate acceleration settings in Slicer for perimeter, first layer etc).
  5975. cs.acceleration = code_value();
  5976. // Interpret the T value as retract acceleration in the old Marlin format.
  5977. if(code_seen('T'))
  5978. cs.retract_acceleration = code_value();
  5979. } else {
  5980. // New acceleration format, compatible with the upstream Marlin.
  5981. if(code_seen('P'))
  5982. cs.acceleration = code_value();
  5983. if(code_seen('R'))
  5984. cs.retract_acceleration = code_value();
  5985. if(code_seen('T')) {
  5986. // Interpret the T value as the travel acceleration in the new Marlin format.
  5987. //FIXME Prusa3D firmware currently does not support travel acceleration value independent from the extruding acceleration value.
  5988. // travel_acceleration = code_value();
  5989. }
  5990. }
  5991. }
  5992. break;
  5993. /*!
  5994. ### M205 - Set advanced settings <a href="https://reprap.org/wiki/G-code#M205:_Advanced_settings">M205: Advanced settings</a>
  5995. */
  5996. /*! Set some advanced settings related to movement.
  5997. M205 [ S | T | B | X | Y | Z | E ]
  5998. - `S` - Minimum feedrate for print moves (unit/s)
  5999. - `T` - Minimum feedrate for travel moves (units/s)
  6000. - `B` - Minimum segment time (us)
  6001. - `X` - Maximum X jerk (units/s)
  6002. - `Y` - Maximum Y jerk (units/s)
  6003. - `Z` - Maximum Z jerk (units/s)
  6004. - `E` - Maximum E jerk (units/s)
  6005. */
  6006. case 205:
  6007. {
  6008. if(code_seen('S')) cs.minimumfeedrate = code_value();
  6009. if(code_seen('T')) cs.mintravelfeedrate = code_value();
  6010. if(code_seen('B')) cs.minsegmenttime = code_value() ;
  6011. if(code_seen('X')) cs.max_jerk[X_AXIS] = cs.max_jerk[Y_AXIS] = code_value();
  6012. if(code_seen('Y')) cs.max_jerk[Y_AXIS] = code_value();
  6013. if(code_seen('Z')) cs.max_jerk[Z_AXIS] = code_value();
  6014. if(code_seen('E')) cs.max_jerk[E_AXIS] = code_value();
  6015. if (cs.max_jerk[X_AXIS] > DEFAULT_XJERK) cs.max_jerk[X_AXIS] = DEFAULT_XJERK;
  6016. if (cs.max_jerk[Y_AXIS] > DEFAULT_YJERK) cs.max_jerk[Y_AXIS] = DEFAULT_YJERK;
  6017. }
  6018. break;
  6019. /*!
  6020. ### M206 - Set additional homing offsets <a href="https://reprap.org/wiki/G-code#M206:_Offset_axes">M206: Offset axes</a>
  6021. M206 [ X | Y | Z]
  6022. - `X` - X axis offset
  6023. - `Y` - Y axis offset
  6024. - `Z` - Z axis offset
  6025. */
  6026. case 206:
  6027. for(int8_t i=0; i < 3; i++)
  6028. {
  6029. if(code_seen(axis_codes[i])) cs.add_homing[i] = code_value();
  6030. }
  6031. break;
  6032. #ifdef FWRETRACT
  6033. /*!
  6034. ### M207 - Set firmware retraction <a href="https://reprap.org/wiki/G-code#M207:_Set_retract_length">M207: Set retract length</a>
  6035. M207 [ S | F | Z]
  6036. - `S` - positive length to retract, in mm
  6037. - `F` - retraction feedrate, in mm/min
  6038. - `Z` - additional zlift/hop
  6039. */
  6040. case 207: //M207 - set retract length S[positive mm] F[feedrate mm/min] Z[additional zlift/hop]
  6041. {
  6042. if(code_seen('S'))
  6043. {
  6044. cs.retract_length = code_value() ;
  6045. }
  6046. if(code_seen('F'))
  6047. {
  6048. cs.retract_feedrate = code_value()/60 ;
  6049. }
  6050. if(code_seen('Z'))
  6051. {
  6052. cs.retract_zlift = code_value() ;
  6053. }
  6054. }break;
  6055. /*!
  6056. ### M208 - Set retract recover length <a href="https://reprap.org/wiki/G-code#M208:_Set_unretract_length">M208: Set unretract length</a>
  6057. M208 [ S | F ]
  6058. - `S` - positive length surplus to the M207 Snnn, in mm
  6059. - `F` - feedrate, in mm/sec
  6060. */
  6061. case 208: // M208 - set retract recover length S[positive mm surplus to the M207 S*] F[feedrate mm/min]
  6062. {
  6063. if(code_seen('S'))
  6064. {
  6065. cs.retract_recover_length = code_value() ;
  6066. }
  6067. if(code_seen('F'))
  6068. {
  6069. cs.retract_recover_feedrate = code_value()/60 ;
  6070. }
  6071. }break;
  6072. /*!
  6073. ### M209 - Enable/disable automatict retract <a href="https://reprap.org/wiki/G-code#M209:_Enable_automatic_retract">M209: Enable automatic retract</a>
  6074. M209 [ S ]
  6075. - `S` - 1=true or 0=false
  6076. This boolean value S 1=true or 0=false enables automatic retract detect if the slicer did not support G10/G11: every normal extrude-only move will be classified as retract depending on the direction.
  6077. */
  6078. case 209: // M209 - S<1=true/0=false> enable automatic retract detect if the slicer did not support G10/11: every normal extrude-only move will be classified as retract depending on the direction.
  6079. {
  6080. if(code_seen('S'))
  6081. {
  6082. int t= code_value() ;
  6083. switch(t)
  6084. {
  6085. case 0:
  6086. {
  6087. cs.autoretract_enabled=false;
  6088. retracted[0]=false;
  6089. #if EXTRUDERS > 1
  6090. retracted[1]=false;
  6091. #endif
  6092. #if EXTRUDERS > 2
  6093. retracted[2]=false;
  6094. #endif
  6095. }break;
  6096. case 1:
  6097. {
  6098. cs.autoretract_enabled=true;
  6099. retracted[0]=false;
  6100. #if EXTRUDERS > 1
  6101. retracted[1]=false;
  6102. #endif
  6103. #if EXTRUDERS > 2
  6104. retracted[2]=false;
  6105. #endif
  6106. }break;
  6107. default:
  6108. SERIAL_ECHO_START;
  6109. SERIAL_ECHORPGM(MSG_UNKNOWN_COMMAND);
  6110. SERIAL_ECHO(CMDBUFFER_CURRENT_STRING);
  6111. SERIAL_ECHOLNPGM("\"(1)");
  6112. }
  6113. }
  6114. }break;
  6115. #endif // FWRETRACT
  6116. #if EXTRUDERS > 1
  6117. /*!
  6118. ### M218 - Set hotend offset <a href="https://reprap.org/wiki/G-code#M218:_Set_Hotend_Offset">M218: Set Hotend Offset</a>
  6119. In Prusa Firmware this G-code is only active if `EXTRUDERS` is higher then 1 in the source code. On Original i3 Prusa MK2/s MK2.5/s MK3/s it is not active.
  6120. */
  6121. case 218: // M218 - set hotend offset (in mm), T<extruder_number> X<offset_on_X> Y<offset_on_Y>
  6122. {
  6123. uint8_t extruder;
  6124. if(setTargetedHotend(218, extruder)){
  6125. break;
  6126. }
  6127. if(code_seen('X'))
  6128. {
  6129. extruder_offset[X_AXIS][extruder] = code_value();
  6130. }
  6131. if(code_seen('Y'))
  6132. {
  6133. extruder_offset[Y_AXIS][extruder] = code_value();
  6134. }
  6135. SERIAL_ECHO_START;
  6136. SERIAL_ECHORPGM(MSG_HOTEND_OFFSET);
  6137. for(extruder = 0; extruder < EXTRUDERS; extruder++)
  6138. {
  6139. SERIAL_ECHO(" ");
  6140. SERIAL_ECHO(extruder_offset[X_AXIS][extruder]);
  6141. SERIAL_ECHO(",");
  6142. SERIAL_ECHO(extruder_offset[Y_AXIS][extruder]);
  6143. }
  6144. SERIAL_ECHOLN("");
  6145. }break;
  6146. #endif
  6147. /*!
  6148. ### M220 Set feedrate percentage <a href="https://reprap.org/wiki/G-code#M220:_Set_speed_factor_override_percentage">M220: Set speed factor override percentage</a>
  6149. M220 [ B | S | R ]
  6150. - `B` - Backup current speed factor
  6151. - `S` - Speed factor override percentage (0..100 or higher)
  6152. - `R` - Restore previous speed factor
  6153. */
  6154. case 220: // M220 S<factor in percent>- set speed factor override percentage
  6155. {
  6156. if (code_seen('B')) //backup current speed factor
  6157. {
  6158. saved_feedmultiply_mm = feedmultiply;
  6159. }
  6160. if(code_seen('S'))
  6161. {
  6162. feedmultiply = code_value() ;
  6163. }
  6164. if (code_seen('R')) { //restore previous feedmultiply
  6165. feedmultiply = saved_feedmultiply_mm;
  6166. }
  6167. }
  6168. break;
  6169. /*!
  6170. ### M221 - Set extrude factor override percentage <a href="https://reprap.org/wiki/G-code#M221:_Set_extrude_factor_override_percentage">M221: Set extrude factor override percentage</a>
  6171. M221 [ S | T ]
  6172. - `S` - Extrude factor override percentage (0..100 or higher), default 100%
  6173. - `T` - Extruder drive number (Prusa Firmware only), default 0 if not set.
  6174. */
  6175. case 221: // M221 S<factor in percent>- set extrude factor override percentage
  6176. {
  6177. if(code_seen('S'))
  6178. {
  6179. int tmp_code = code_value();
  6180. if (code_seen('T'))
  6181. {
  6182. uint8_t extruder;
  6183. if(setTargetedHotend(221, extruder)){
  6184. break;
  6185. }
  6186. extruder_multiply[extruder] = tmp_code;
  6187. }
  6188. else
  6189. {
  6190. extrudemultiply = tmp_code ;
  6191. }
  6192. }
  6193. calculate_extruder_multipliers();
  6194. }
  6195. break;
  6196. /*!
  6197. ### M226 - Wait for Pin state <a href="https://reprap.org/wiki/G-code#M226:_Wait_for_pin_state">M226: Wait for pin state</a>
  6198. M226 [ P | S ]
  6199. - `P` - pin number
  6200. - `S` - pin state
  6201. Wait until the specified pin reaches the state required
  6202. */
  6203. case 226: // M226 P<pin number> S<pin state>- Wait until the specified pin reaches the state required
  6204. {
  6205. if(code_seen('P')){
  6206. int pin_number = code_value(); // pin number
  6207. int pin_state = -1; // required pin state - default is inverted
  6208. if(code_seen('S')) pin_state = code_value(); // required pin state
  6209. if(pin_state >= -1 && pin_state <= 1){
  6210. for(int8_t i = 0; i < (int8_t)(sizeof(sensitive_pins)/sizeof(int)); i++)
  6211. {
  6212. if (sensitive_pins[i] == pin_number)
  6213. {
  6214. pin_number = -1;
  6215. break;
  6216. }
  6217. }
  6218. if (pin_number > -1)
  6219. {
  6220. int target = LOW;
  6221. st_synchronize();
  6222. pinMode(pin_number, INPUT);
  6223. switch(pin_state){
  6224. case 1:
  6225. target = HIGH;
  6226. break;
  6227. case 0:
  6228. target = LOW;
  6229. break;
  6230. case -1:
  6231. target = !digitalRead(pin_number);
  6232. break;
  6233. }
  6234. while(digitalRead(pin_number) != target){
  6235. manage_heater();
  6236. manage_inactivity();
  6237. lcd_update(0);
  6238. }
  6239. }
  6240. }
  6241. }
  6242. }
  6243. break;
  6244. #if NUM_SERVOS > 0
  6245. /*!
  6246. ### M280 - Set/Get servo position <a href="https://reprap.org/wiki/G-code#M280:_Set_servo_position">M280: Set servo position</a>
  6247. In Prusa Firmware this G-code is deactivated by default, must be turned on in the source code.
  6248. */
  6249. case 280: // M280 - set servo position absolute. P: servo index, S: angle or microseconds
  6250. {
  6251. int servo_index = -1;
  6252. int servo_position = 0;
  6253. if (code_seen('P'))
  6254. servo_index = code_value();
  6255. if (code_seen('S')) {
  6256. servo_position = code_value();
  6257. if ((servo_index >= 0) && (servo_index < NUM_SERVOS)) {
  6258. #if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
  6259. servos[servo_index].attach(0);
  6260. #endif
  6261. servos[servo_index].write(servo_position);
  6262. #if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
  6263. _delay(PROBE_SERVO_DEACTIVATION_DELAY);
  6264. servos[servo_index].detach();
  6265. #endif
  6266. }
  6267. else {
  6268. SERIAL_ECHO_START;
  6269. SERIAL_ECHO("Servo ");
  6270. SERIAL_ECHO(servo_index);
  6271. SERIAL_ECHOLN(" out of range");
  6272. }
  6273. }
  6274. else if (servo_index >= 0) {
  6275. SERIAL_PROTOCOL(MSG_OK);
  6276. SERIAL_PROTOCOL(" Servo ");
  6277. SERIAL_PROTOCOL(servo_index);
  6278. SERIAL_PROTOCOL(": ");
  6279. SERIAL_PROTOCOL(servos[servo_index].read());
  6280. SERIAL_PROTOCOLLN("");
  6281. }
  6282. }
  6283. break;
  6284. #endif // NUM_SERVOS > 0
  6285. #if (LARGE_FLASH == true && ( BEEPER > 0 || defined(ULTRALCD) || defined(LCD_USE_I2C_BUZZER)))
  6286. /*!
  6287. ### M300 - Play tone <a href="https://reprap.org/wiki/G-code#M300:_Play_beep_sound">M300: Play beep sound</a>
  6288. M300 [ S | P ]
  6289. - `S` - frequency in Hz
  6290. - `P` - duration in milliseconds
  6291. In Prusa Firmware the defaults are `100Hz` and `1000ms`, so that `M300` without parameters will beep for a second.
  6292. */
  6293. case 300: // M300
  6294. {
  6295. int beepS = code_seen('S') ? code_value() : 110;
  6296. int beepP = code_seen('P') ? code_value() : 1000;
  6297. if (beepS > 0)
  6298. {
  6299. #if BEEPER > 0
  6300. Sound_MakeCustom(beepP,beepS,false);
  6301. #endif
  6302. }
  6303. else
  6304. {
  6305. _delay(beepP);
  6306. }
  6307. }
  6308. break;
  6309. #endif // M300
  6310. #ifdef PIDTEMP
  6311. /*!
  6312. ### M301 - Set hotend PID <a href="https://reprap.org/wiki/G-code#M301:_Set_PID_parameters">M301: Set PID parameters</a>
  6313. M301 [ P | I | D | C ]
  6314. - `P` - proportional (Kp)
  6315. - `I` - integral (Ki)
  6316. - `D` - derivative (Kd)
  6317. - `C` - heating power=Kc*(e_speed0)
  6318. Sets Proportional (P), Integral (I) and Derivative (D) values for hot end.
  6319. See also <a href="https://reprap.org/wiki/PID_Tuning">PID Tuning.</a>
  6320. */
  6321. case 301:
  6322. {
  6323. if(code_seen('P')) cs.Kp = code_value();
  6324. if(code_seen('I')) cs.Ki = scalePID_i(code_value());
  6325. if(code_seen('D')) cs.Kd = scalePID_d(code_value());
  6326. #ifdef PID_ADD_EXTRUSION_RATE
  6327. if(code_seen('C')) Kc = code_value();
  6328. #endif
  6329. updatePID();
  6330. SERIAL_PROTOCOLRPGM(MSG_OK);
  6331. SERIAL_PROTOCOL(" p:");
  6332. SERIAL_PROTOCOL(cs.Kp);
  6333. SERIAL_PROTOCOL(" i:");
  6334. SERIAL_PROTOCOL(unscalePID_i(cs.Ki));
  6335. SERIAL_PROTOCOL(" d:");
  6336. SERIAL_PROTOCOL(unscalePID_d(cs.Kd));
  6337. #ifdef PID_ADD_EXTRUSION_RATE
  6338. SERIAL_PROTOCOL(" c:");
  6339. //Kc does not have scaling applied above, or in resetting defaults
  6340. SERIAL_PROTOCOL(Kc);
  6341. #endif
  6342. SERIAL_PROTOCOLLN("");
  6343. }
  6344. break;
  6345. #endif //PIDTEMP
  6346. #ifdef PIDTEMPBED
  6347. /*!
  6348. ### M304 - Set bed PID <a href="https://reprap.org/wiki/G-code#M304:_Set_PID_parameters_-_Bed">M304: Set PID parameters - Bed</a>
  6349. M304 [ P | I | D ]
  6350. - `P` - proportional (Kp)
  6351. - `I` - integral (Ki)
  6352. - `D` - derivative (Kd)
  6353. Sets Proportional (P), Integral (I) and Derivative (D) values for bed.
  6354. See also <a href="https://reprap.org/wiki/PID_Tuning">PID Tuning.</a>
  6355. */
  6356. case 304:
  6357. {
  6358. if(code_seen('P')) cs.bedKp = code_value();
  6359. if(code_seen('I')) cs.bedKi = scalePID_i(code_value());
  6360. if(code_seen('D')) cs.bedKd = scalePID_d(code_value());
  6361. updatePID();
  6362. SERIAL_PROTOCOLRPGM(MSG_OK);
  6363. SERIAL_PROTOCOL(" p:");
  6364. SERIAL_PROTOCOL(cs.bedKp);
  6365. SERIAL_PROTOCOL(" i:");
  6366. SERIAL_PROTOCOL(unscalePID_i(cs.bedKi));
  6367. SERIAL_PROTOCOL(" d:");
  6368. SERIAL_PROTOCOL(unscalePID_d(cs.bedKd));
  6369. SERIAL_PROTOCOLLN("");
  6370. }
  6371. break;
  6372. #endif //PIDTEMP
  6373. /*!
  6374. ### M240 - Trigger camera <a href="https://reprap.org/wiki/G-code#M240:_Trigger_camera">M240: Trigger camera</a>
  6375. In Prusa Firmware this G-code is deactivated by default, must be turned on in the source code.
  6376. You need to define `CHDK` and assign a `PHOTOGRAPH_PIN` to bea ble to use it.
  6377. */
  6378. case 240: // M240 Triggers a camera by emulating a Canon RC-1 : http://www.doc-diy.net/photo/rc-1_hacked/
  6379. {
  6380. #ifdef CHDK
  6381. SET_OUTPUT(CHDK);
  6382. WRITE(CHDK, HIGH);
  6383. chdkHigh = _millis();
  6384. chdkActive = true;
  6385. #else
  6386. #if defined(PHOTOGRAPH_PIN) && PHOTOGRAPH_PIN > -1
  6387. const uint8_t NUM_PULSES=16;
  6388. const float PULSE_LENGTH=0.01524;
  6389. for(int i=0; i < NUM_PULSES; i++) {
  6390. WRITE(PHOTOGRAPH_PIN, HIGH);
  6391. _delay_ms(PULSE_LENGTH);
  6392. WRITE(PHOTOGRAPH_PIN, LOW);
  6393. _delay_ms(PULSE_LENGTH);
  6394. }
  6395. _delay(7.33);
  6396. for(int i=0; i < NUM_PULSES; i++) {
  6397. WRITE(PHOTOGRAPH_PIN, HIGH);
  6398. _delay_ms(PULSE_LENGTH);
  6399. WRITE(PHOTOGRAPH_PIN, LOW);
  6400. _delay_ms(PULSE_LENGTH);
  6401. }
  6402. #endif
  6403. #endif //chdk end if
  6404. }
  6405. break;
  6406. #ifdef PREVENT_DANGEROUS_EXTRUDE
  6407. /*!
  6408. ### M302 - Allow cold extrude, or set minimum extrude temperature <a href="https://reprap.org/wiki/G-code#M302:_Allow_cold_extrudes">M302: Allow cold extrudes</a>
  6409. M302 [ S ]
  6410. - `S` - Cold extrude minimum temperature
  6411. This tells the printer to allow movement of the extruder motor above a certain temperature, or if disabled, to allow extruder movement when the hotend is below a safe printing temperature.
  6412. */
  6413. case 302:
  6414. {
  6415. float temp = .0;
  6416. if (code_seen('S')) temp=code_value();
  6417. set_extrude_min_temp(temp);
  6418. }
  6419. break;
  6420. #endif
  6421. /*!
  6422. ### M303 - PID autotune <a href="https://reprap.org/wiki/G-code#M303:_Run_PID_tuning">M303: Run PID tuning</a>
  6423. M303 [ E | S | C ]
  6424. - `E` - Extruder, default `E0`.
  6425. - `S` - Target temperature, default `210°C`
  6426. - `C` - Cycles, default `5`
  6427. PID Tuning refers to a control algorithm used in some repraps to tune heating behavior for hot ends and heated beds. This command generates Proportional (Kp), Integral (Ki), and Derivative (Kd) values for the hotend or bed (`E-1`). Send the appropriate code and wait for the output to update the firmware.
  6428. */
  6429. case 303:
  6430. {
  6431. float temp = 150.0;
  6432. int e=0;
  6433. int c=5;
  6434. if (code_seen('E')) e=code_value();
  6435. if (e<0)
  6436. temp=70;
  6437. if (code_seen('S')) temp=code_value();
  6438. if (code_seen('C')) c=code_value();
  6439. PID_autotune(temp, e, c);
  6440. }
  6441. break;
  6442. /*!
  6443. ### M400 - Wait for all moves to finish <a href="https://reprap.org/wiki/G-code#M400:_Wait_for_current_moves_to_finish">M400: Wait for current moves to finish</a>
  6444. Finishes all current moves and and thus clears the buffer.
  6445. */
  6446. case 400:
  6447. {
  6448. st_synchronize();
  6449. }
  6450. break;
  6451. /*!
  6452. ### M403 - Set filament type (material) for particular extruder and notify the MMU <a href="https://reprap.org/wiki/G-code#M403:_Set_filament_type_.28material.29_for_particular_extruder_and_notify_the_MMU.">M403 - Set filament type (material) for particular extruder and notify the MMU</a>
  6453. M403 [ E | F ]
  6454. - `E` - Extruder number
  6455. - `F` - Filament type
  6456. Currently three different materials are needed (default, flex and PVA).
  6457. And storing this information for different load/unload profiles etc. in the future firmware does not have to wait for "ok" from MMU.
  6458. */
  6459. case 403:
  6460. {
  6461. // currently three different materials are needed (default, flex and PVA)
  6462. // add storing this information for different load/unload profiles etc. in the future
  6463. // firmware does not wait for "ok" from mmu
  6464. if (mmu_enabled)
  6465. {
  6466. uint8_t extruder = 255;
  6467. uint8_t filament = FILAMENT_UNDEFINED;
  6468. if(code_seen('E')) extruder = code_value();
  6469. if(code_seen('F')) filament = code_value();
  6470. mmu_set_filament_type(extruder, filament);
  6471. }
  6472. }
  6473. break;
  6474. /*!
  6475. ### M500 - Store settings in EEPROM <a href="https://reprap.org/wiki/G-code#M500:_Store_parameters_in_non-volatile_storage">M500: Store parameters in non-volatile storage</a>
  6476. Save current parameters to EEPROM, SD card or other non-volatile storage.
  6477. */
  6478. case 500:
  6479. {
  6480. Config_StoreSettings();
  6481. }
  6482. break;
  6483. /*!
  6484. ### M501 - Read settings from EEPROM <a href="https://reprap.org/wiki/G-code#M501:_Read_parameters_from_EEPROM">M501: Read parameters from EEPROM</a>
  6485. Set the active parameters to those stored in the EEPROM, SD card or other non-volatile storage. This is useful to revert parameters after experimenting with them.
  6486. */
  6487. case 501:
  6488. {
  6489. Config_RetrieveSettings();
  6490. }
  6491. break;
  6492. /*!
  6493. ### M502 - Revert all settings to factory default <a href="https://reprap.org/wiki/G-code#M502:_Restore_Default_Settings">M502: Restore Default Settings</a>
  6494. This command resets all tunable parameters to their default values, as set in the firmware's configuration files. This doesn't reset any parameters stored in the EEPROM, so it must be followed with M500 to reboot with default settings.
  6495. */
  6496. case 502:
  6497. {
  6498. Config_ResetDefault();
  6499. }
  6500. break;
  6501. /*!
  6502. ### M503 - Repport all settings currently in memory <a href="https://reprap.org/wiki/G-code#M503:_Report_Current_Settings">M503: Report Current Settings</a>
  6503. This command asks the firmware to reply with the current print settings as set in memory. Settings will differ from EEPROM contents if changed since the last load / save. The reply output includes the G-Code commands to produce each setting. For example, Steps-Per-Unit values are displayed as an M92 command.
  6504. */
  6505. case 503:
  6506. {
  6507. Config_PrintSettings();
  6508. }
  6509. break;
  6510. /*!
  6511. ### M509 - Force language selection <a href="https://reprap.org/wiki/G-code#M509:_Force_language_selection">M509: Force language selection</a>
  6512. Resets the language to English.
  6513. Only on Original Prusa i3 MK2.5/s and MK3/s with multiple languages.
  6514. */
  6515. case 509:
  6516. {
  6517. lang_reset();
  6518. SERIAL_ECHO_START;
  6519. SERIAL_PROTOCOLPGM(("LANG SEL FORCED"));
  6520. }
  6521. break;
  6522. #ifdef ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED
  6523. /*!
  6524. ### M540 - Abort print on endstop hit (enable/disable) <a href="https://reprap.org/wiki/G-code#M540_in_Marlin:_Enable.2FDisable_.22Stop_SD_Print_on_Endstop_Hit.22">M540 in Marlin: Enable/Disable "Stop SD Print on Endstop Hit"</a>
  6525. In Prusa Firmware this G-code is deactivated by default, must be turned on in the source code. You must define `ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED`.
  6526. */
  6527. case 540:
  6528. {
  6529. if(code_seen('S')) abort_on_endstop_hit = code_value() > 0;
  6530. }
  6531. break;
  6532. #endif
  6533. /*!
  6534. ### M851 - Set Z-Probe Offset <a href="https://reprap.org/wiki/G-code#M851:_Set_Z-Probe_Offset">M851: Set Z-Probe Offset"</a>
  6535. M4861 [ Z ]
  6536. - `Z` - Z offset probe to nozzle.
  6537. Sets the Z-probe Z offset. This offset is used to determine the actual Z position of the nozzle when using a probe to home Z with G28. This value may also be used by G81 (Prusa) / G29 (Marlin) to apply correction to the Z position.
  6538. This value represents the distance from nozzle to the bed surface at the point where the probe is triggered. This value will be negative for typical switch probes, inductive probes, and setups where the nozzle makes a circuit with a raised metal contact. This setting will be greater than zero on machines where the nozzle itself is used as the probe, pressing down on the bed to press a switch. (This is a common setup on delta machines.)
  6539. */
  6540. #ifdef CUSTOM_M_CODE_SET_Z_PROBE_OFFSET
  6541. case CUSTOM_M_CODE_SET_Z_PROBE_OFFSET:
  6542. {
  6543. float value;
  6544. if (code_seen('Z'))
  6545. {
  6546. value = code_value();
  6547. if ((Z_PROBE_OFFSET_RANGE_MIN <= value) && (value <= Z_PROBE_OFFSET_RANGE_MAX))
  6548. {
  6549. cs.zprobe_zoffset = -value; // compare w/ line 278 of ConfigurationStore.cpp
  6550. SERIAL_ECHO_START;
  6551. SERIAL_ECHOLNRPGM(CAT4(MSG_ZPROBE_ZOFFSET, " ", MSG_OK,PSTR("")));
  6552. SERIAL_PROTOCOLLN("");
  6553. }
  6554. else
  6555. {
  6556. SERIAL_ECHO_START;
  6557. SERIAL_ECHORPGM(MSG_ZPROBE_ZOFFSET);
  6558. SERIAL_ECHORPGM(MSG_Z_MIN);
  6559. SERIAL_ECHO(Z_PROBE_OFFSET_RANGE_MIN);
  6560. SERIAL_ECHORPGM(MSG_Z_MAX);
  6561. SERIAL_ECHO(Z_PROBE_OFFSET_RANGE_MAX);
  6562. SERIAL_PROTOCOLLN("");
  6563. }
  6564. }
  6565. else
  6566. {
  6567. SERIAL_ECHO_START;
  6568. SERIAL_ECHOLNRPGM(CAT2(MSG_ZPROBE_ZOFFSET, PSTR(" : ")));
  6569. SERIAL_ECHO(-cs.zprobe_zoffset);
  6570. SERIAL_PROTOCOLLN("");
  6571. }
  6572. break;
  6573. }
  6574. #endif // CUSTOM_M_CODE_SET_Z_PROBE_OFFSET
  6575. #ifdef FILAMENTCHANGEENABLE
  6576. /*!
  6577. ### M600 - Initiate Filament change procedure <a href="https://reprap.org/wiki/G-code#M600:_Filament_change_pause">M600: Filament change pause</a>
  6578. M600 [ X | Y | Z | E | L | AUTO ]
  6579. - `X` - X position, default 211
  6580. - `Y` - Y position, default 0
  6581. - `Z` - relative lift Z, default 2.
  6582. - `E` - initial retract, default -2
  6583. - `L` - later retract distance for removal, default -80
  6584. - `AUTO` - Automatically (only with MMU)
  6585. Initiates Filament change, it is also used during Filament Runout Sensor process.
  6586. If the `M600` is triggered under 25mm it will do a Z-lift of 25mm to prevent a filament blob.
  6587. */
  6588. case 600: //Pause for filament change X[pos] Y[pos] Z[relative lift] E[initial retract] L[later retract distance for removal]
  6589. {
  6590. st_synchronize();
  6591. float x_position = current_position[X_AXIS];
  6592. float y_position = current_position[Y_AXIS];
  6593. float z_shift = 0; // is it necessary to be a float?
  6594. float e_shift_init = 0;
  6595. float e_shift_late = 0;
  6596. bool automatic = false;
  6597. //Retract extruder
  6598. if(code_seen('E'))
  6599. {
  6600. e_shift_init = code_value();
  6601. }
  6602. else
  6603. {
  6604. #ifdef FILAMENTCHANGE_FIRSTRETRACT
  6605. e_shift_init = FILAMENTCHANGE_FIRSTRETRACT ;
  6606. #endif
  6607. }
  6608. //currently don't work as we are using the same unload sequence as in M702, needs re-work
  6609. if (code_seen('L'))
  6610. {
  6611. e_shift_late = code_value();
  6612. }
  6613. else
  6614. {
  6615. #ifdef FILAMENTCHANGE_FINALRETRACT
  6616. e_shift_late = FILAMENTCHANGE_FINALRETRACT;
  6617. #endif
  6618. }
  6619. //Lift Z
  6620. if(code_seen('Z'))
  6621. {
  6622. z_shift = code_value();
  6623. }
  6624. else
  6625. {
  6626. z_shift = gcode_M600_filament_change_z_shift<uint8_t>();
  6627. }
  6628. //Move XY to side
  6629. if(code_seen('X'))
  6630. {
  6631. x_position = code_value();
  6632. }
  6633. else
  6634. {
  6635. #ifdef FILAMENTCHANGE_XPOS
  6636. x_position = FILAMENTCHANGE_XPOS;
  6637. #endif
  6638. }
  6639. if(code_seen('Y'))
  6640. {
  6641. y_position = code_value();
  6642. }
  6643. else
  6644. {
  6645. #ifdef FILAMENTCHANGE_YPOS
  6646. y_position = FILAMENTCHANGE_YPOS ;
  6647. #endif
  6648. }
  6649. if (mmu_enabled && code_seen("AUTO"))
  6650. automatic = true;
  6651. gcode_M600(automatic, x_position, y_position, z_shift, e_shift_init, e_shift_late);
  6652. }
  6653. break;
  6654. #endif //FILAMENTCHANGEENABLE
  6655. /*!
  6656. ### M601 - Pause print <a href="https://reprap.org/wiki/G-code#M601:_Pause_print">M601: Pause print</a>
  6657. */
  6658. /*!
  6659. ### M125 - Pause print (TODO: not implemented)
  6660. */
  6661. /*!
  6662. ### M25 - Pause SD print <a href="https://reprap.org/wiki/G-code#M25:_Pause_SD_print">M25: Pause SD print</a>
  6663. */
  6664. case 25:
  6665. case 601:
  6666. {
  6667. if (!isPrintPaused)
  6668. {
  6669. st_synchronize();
  6670. cmdqueue_pop_front(); //trick because we want skip this command (M601) after restore
  6671. lcd_pause_print();
  6672. }
  6673. }
  6674. break;
  6675. /*!
  6676. ### M602 - Resume print <a href="https://reprap.org/wiki/G-code#M602:_Resume_print">M602: Resume print</a>
  6677. */
  6678. case 602: {
  6679. if (isPrintPaused)
  6680. lcd_resume_print();
  6681. }
  6682. break;
  6683. /*!
  6684. ### M603 - Stop print <a href="https://reprap.org/wiki/G-code#M603:_Stop_print">M603: Stop print</a>
  6685. */
  6686. case 603: {
  6687. Stop();
  6688. }
  6689. break;
  6690. #ifdef PINDA_THERMISTOR
  6691. /*!
  6692. ### M860 - Wait for extruder temperature (PINDA) <a href="https://reprap.org/wiki/G-code#M860_Wait_for_Probe_Temperature">M860 Wait for Probe Temperature</a>
  6693. M860 [ S ]
  6694. - `S` - Target temperature
  6695. Wait for PINDA thermistor to reach target temperature
  6696. */
  6697. case 860:
  6698. {
  6699. int set_target_pinda = 0;
  6700. if (code_seen('S')) {
  6701. set_target_pinda = code_value();
  6702. }
  6703. else {
  6704. break;
  6705. }
  6706. LCD_MESSAGERPGM(_T(MSG_PLEASE_WAIT));
  6707. SERIAL_PROTOCOLPGM("Wait for PINDA target temperature:");
  6708. SERIAL_PROTOCOL(set_target_pinda);
  6709. SERIAL_PROTOCOLLN("");
  6710. codenum = _millis();
  6711. cancel_heatup = false;
  6712. bool is_pinda_cooling = false;
  6713. if ((degTargetBed() == 0) && (degTargetHotend(0) == 0)) {
  6714. is_pinda_cooling = true;
  6715. }
  6716. while ( ((!is_pinda_cooling) && (!cancel_heatup) && (current_temperature_pinda < set_target_pinda)) || (is_pinda_cooling && (current_temperature_pinda > set_target_pinda)) ) {
  6717. if ((_millis() - codenum) > 1000) //Print Temp Reading every 1 second while waiting.
  6718. {
  6719. SERIAL_PROTOCOLPGM("P:");
  6720. SERIAL_PROTOCOL_F(current_temperature_pinda, 1);
  6721. SERIAL_PROTOCOLPGM("/");
  6722. SERIAL_PROTOCOL(set_target_pinda);
  6723. SERIAL_PROTOCOLLN("");
  6724. codenum = _millis();
  6725. }
  6726. manage_heater();
  6727. manage_inactivity();
  6728. lcd_update(0);
  6729. }
  6730. LCD_MESSAGERPGM(MSG_OK);
  6731. break;
  6732. }
  6733. /*!
  6734. ### M861 - Set/Get PINDA temperature compensation offsets <a href="https://reprap.org/wiki/G-code#M861_Set_Probe_Thermal_Compensation">M861 Set Probe Thermal Compensation</a>
  6735. M861 [ ? | ! | Z | S | I ]
  6736. - `?` - Print current EEPROM offset values
  6737. - `!` - Set factory default values
  6738. - `Z` - Set all values to 0 (effectively disabling PINDA temperature compensation)
  6739. - `S` - Microsteps
  6740. - `I` - Table index
  6741. Set compensation ustep value `S` for compensation table index `I`.
  6742. */
  6743. case 861:
  6744. if (code_seen('?')) { // ? - Print out current EEPROM offset values
  6745. uint8_t cal_status = calibration_status_pinda();
  6746. int16_t usteps = 0;
  6747. cal_status ? SERIAL_PROTOCOLLN("PINDA cal status: 1") : SERIAL_PROTOCOLLN("PINDA cal status: 0");
  6748. SERIAL_PROTOCOLLN("index, temp, ustep, um");
  6749. for (uint8_t i = 0; i < 6; i++)
  6750. {
  6751. if(i>0) EEPROM_read_B(EEPROM_PROBE_TEMP_SHIFT + (i-1) * 2, &usteps);
  6752. float mm = ((float)usteps) / cs.axis_steps_per_unit[Z_AXIS];
  6753. i == 0 ? SERIAL_PROTOCOLPGM("n/a") : SERIAL_PROTOCOL(i - 1);
  6754. SERIAL_PROTOCOLPGM(", ");
  6755. SERIAL_PROTOCOL(35 + (i * 5));
  6756. SERIAL_PROTOCOLPGM(", ");
  6757. SERIAL_PROTOCOL(usteps);
  6758. SERIAL_PROTOCOLPGM(", ");
  6759. SERIAL_PROTOCOL(mm * 1000);
  6760. SERIAL_PROTOCOLLN("");
  6761. }
  6762. }
  6763. else if (code_seen('!')) { // ! - Set factory default values
  6764. eeprom_write_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 1);
  6765. int16_t z_shift = 8; //40C - 20um - 8usteps
  6766. EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT, &z_shift);
  6767. z_shift = 24; //45C - 60um - 24usteps
  6768. EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + 2, &z_shift);
  6769. z_shift = 48; //50C - 120um - 48usteps
  6770. EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + 4, &z_shift);
  6771. z_shift = 80; //55C - 200um - 80usteps
  6772. EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + 6, &z_shift);
  6773. z_shift = 120; //60C - 300um - 120usteps
  6774. EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + 8, &z_shift);
  6775. SERIAL_PROTOCOLLN("factory restored");
  6776. }
  6777. else if (code_seen('Z')) { // Z - Set all values to 0 (effectively disabling PINDA temperature compensation)
  6778. eeprom_write_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 1);
  6779. int16_t z_shift = 0;
  6780. for (uint8_t i = 0; i < 5; i++) EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + i * 2, &z_shift);
  6781. SERIAL_PROTOCOLLN("zerorized");
  6782. }
  6783. else if (code_seen('S')) { // Sxxx Iyyy - Set compensation ustep value S for compensation table index I
  6784. int16_t usteps = code_value();
  6785. if (code_seen('I')) {
  6786. uint8_t index = code_value();
  6787. if (index < 5) {
  6788. EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + index * 2, &usteps);
  6789. SERIAL_PROTOCOLLN("OK");
  6790. SERIAL_PROTOCOLLN("index, temp, ustep, um");
  6791. for (uint8_t i = 0; i < 6; i++)
  6792. {
  6793. usteps = 0;
  6794. if (i>0) EEPROM_read_B(EEPROM_PROBE_TEMP_SHIFT + (i - 1) * 2, &usteps);
  6795. float mm = ((float)usteps) / cs.axis_steps_per_unit[Z_AXIS];
  6796. i == 0 ? SERIAL_PROTOCOLPGM("n/a") : SERIAL_PROTOCOL(i - 1);
  6797. SERIAL_PROTOCOLPGM(", ");
  6798. SERIAL_PROTOCOL(35 + (i * 5));
  6799. SERIAL_PROTOCOLPGM(", ");
  6800. SERIAL_PROTOCOL(usteps);
  6801. SERIAL_PROTOCOLPGM(", ");
  6802. SERIAL_PROTOCOL(mm * 1000);
  6803. SERIAL_PROTOCOLLN("");
  6804. }
  6805. }
  6806. }
  6807. }
  6808. else {
  6809. SERIAL_PROTOCOLPGM("no valid command");
  6810. }
  6811. break;
  6812. #endif //PINDA_THERMISTOR
  6813. /*!
  6814. ### M862 - Print checking <a href="https://reprap.org/wiki/G-code#M862:_Print_checking">M862: Print checking</a>
  6815. Checks the parameters of the printer and gcode and performs compatibility check
  6816. - M862.1 { P<nozzle_diameter> | Q } 0.25/0.40/0.60
  6817. - M862.2 { P<model_code> | Q }
  6818. - M862.3 { P"<model_name>" | Q }
  6819. - M862.4 { P<fw_version> | Q }
  6820. - M862.5 { P<gcode_level> | Q }
  6821. When run with P<> argument, the check is performed against the input value.
  6822. When run with Q argument, the current value is shown.
  6823. M862.3 accepts text identifiers of printer types too.
  6824. The syntax of M862.3 is (note the quotes around the type):
  6825. M862.3 P "MK3S"
  6826. Accepted printer type identifiers and their numeric counterparts:
  6827. - MK1 (100)
  6828. - MK2 (200)
  6829. - MK2MM (201)
  6830. - MK2S (202)
  6831. - MK2SMM (203)
  6832. - MK2.5 (250)
  6833. - MK2.5MMU2 (20250)
  6834. - MK2.5S (252)
  6835. - MK2.5SMMU2S (20252)
  6836. - MK3 (300)
  6837. - MK3MMU2 (20300)
  6838. - MK3S (302)
  6839. - MK3SMMU2S (20302)
  6840. */
  6841. case 862: // M862: print checking
  6842. float nDummy;
  6843. uint8_t nCommand;
  6844. nCommand=(uint8_t)(modff(code_value_float(),&nDummy)*10.0+0.5);
  6845. switch((ClPrintChecking)nCommand)
  6846. {
  6847. case ClPrintChecking::_Nozzle: // ~ .1
  6848. uint16_t nDiameter;
  6849. if(code_seen('P'))
  6850. {
  6851. nDiameter=(uint16_t)(code_value()*1000.0+0.5); // [,um]
  6852. nozzle_diameter_check(nDiameter);
  6853. }
  6854. /*
  6855. else if(code_seen('S')&&farm_mode)
  6856. {
  6857. nDiameter=(uint16_t)(code_value()*1000.0+0.5); // [,um]
  6858. eeprom_update_byte((uint8_t*)EEPROM_NOZZLE_DIAMETER,(uint8_t)ClNozzleDiameter::_Diameter_Undef); // for correct synchronization after farm-mode exiting
  6859. eeprom_update_word((uint16_t*)EEPROM_NOZZLE_DIAMETER_uM,nDiameter);
  6860. }
  6861. */
  6862. else if(code_seen('Q'))
  6863. SERIAL_PROTOCOLLN((float)eeprom_read_word((uint16_t*)EEPROM_NOZZLE_DIAMETER_uM)/1000.0);
  6864. break;
  6865. case ClPrintChecking::_Model: // ~ .2
  6866. if(code_seen('P'))
  6867. {
  6868. uint16_t nPrinterModel;
  6869. nPrinterModel=(uint16_t)code_value_long();
  6870. printer_model_check(nPrinterModel);
  6871. }
  6872. else if(code_seen('Q'))
  6873. SERIAL_PROTOCOLLN(nPrinterType);
  6874. break;
  6875. case ClPrintChecking::_Smodel: // ~ .3
  6876. if(code_seen('P'))
  6877. printer_smodel_check(strchr_pointer);
  6878. else if(code_seen('Q'))
  6879. SERIAL_PROTOCOLLNRPGM(sPrinterName);
  6880. break;
  6881. case ClPrintChecking::_Version: // ~ .4
  6882. if(code_seen('P'))
  6883. fw_version_check(++strchr_pointer);
  6884. else if(code_seen('Q'))
  6885. SERIAL_PROTOCOLLN(FW_VERSION);
  6886. break;
  6887. case ClPrintChecking::_Gcode: // ~ .5
  6888. if(code_seen('P'))
  6889. {
  6890. uint16_t nGcodeLevel;
  6891. nGcodeLevel=(uint16_t)code_value_long();
  6892. gcode_level_check(nGcodeLevel);
  6893. }
  6894. else if(code_seen('Q'))
  6895. SERIAL_PROTOCOLLN(GCODE_LEVEL);
  6896. break;
  6897. }
  6898. break;
  6899. #ifdef LIN_ADVANCE
  6900. /*!
  6901. ### M900 - Set Linear advance options <a href="https://reprap.org/wiki/G-code#M900_Set_Linear_Advance_Scaling_Factors">M900 Set Linear Advance Scaling Factors</a>
  6902. Sets the advance extrusion factors for Linear Advance. If any of the R, W, H, or D parameters are set to zero the ratio will be computed dynamically during printing.
  6903. M900 [ K | R | W | H | D]
  6904. - `K` - Advance K factor
  6905. - `R` - Set ratio directly (overrides WH/D)
  6906. - `W` - Width
  6907. - `H` - Height
  6908. - `D` - Diameter Set ratio from WH/D
  6909. */
  6910. case 900:
  6911. gcode_M900();
  6912. break;
  6913. #endif
  6914. /*!
  6915. ### M907 - Set digital trimpot motor current in mA using axis codes <a href="https://reprap.org/wiki/G-code#M907:_Set_digital_trimpot_motor">M907: Set digital trimpot motor</a>
  6916. Set digital trimpot motor current using axis codes (X, Y, Z, E, B, S).
  6917. M907 [ X | Y | Z | E | B | S ]
  6918. - `X` - X motor driver
  6919. - `Y` - Y motor driver
  6920. - `Z` - Z motor driver
  6921. - `E` - Extruder motor driver
  6922. - `B` - ??
  6923. - `S` - ??
  6924. @todo What are `B` and `S` in M907?
  6925. */
  6926. case 907:
  6927. {
  6928. #ifdef TMC2130
  6929. // See tmc2130_cur2val() for translation to 0 .. 63 range
  6930. for (int i = 0; i < NUM_AXIS; i++)
  6931. if(code_seen(axis_codes[i]))
  6932. {
  6933. long cur_mA = code_value_long();
  6934. uint8_t val = tmc2130_cur2val(cur_mA);
  6935. tmc2130_set_current_h(i, val);
  6936. tmc2130_set_current_r(i, val);
  6937. //if (i == E_AXIS) printf_P(PSTR("E-axis current=%ldmA\n"), cur_mA);
  6938. }
  6939. #else //TMC2130
  6940. #if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
  6941. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) st_current_set(i,code_value());
  6942. if(code_seen('B')) st_current_set(4,code_value());
  6943. if(code_seen('S')) for(int i=0;i<=4;i++) st_current_set(i,code_value());
  6944. #endif
  6945. #ifdef MOTOR_CURRENT_PWM_XY_PIN
  6946. if(code_seen('X')) st_current_set(0, code_value());
  6947. #endif
  6948. #ifdef MOTOR_CURRENT_PWM_Z_PIN
  6949. if(code_seen('Z')) st_current_set(1, code_value());
  6950. #endif
  6951. #ifdef MOTOR_CURRENT_PWM_E_PIN
  6952. if(code_seen('E')) st_current_set(2, code_value());
  6953. #endif
  6954. #endif //TMC2130
  6955. }
  6956. break;
  6957. /*!
  6958. ### M908 - Control digital trimpot directly <a href="https://reprap.org/wiki/G-code#M908:_Control_digital_trimpot_directly">M908: Control digital trimpot directly</a>
  6959. In Prusa Firmware this G-code is deactivated by default, must be turned on in the source code.
  6960. */
  6961. case 908:
  6962. {
  6963. #if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
  6964. uint8_t channel,current;
  6965. if(code_seen('P')) channel=code_value();
  6966. if(code_seen('S')) current=code_value();
  6967. digitalPotWrite(channel, current);
  6968. #endif
  6969. }
  6970. break;
  6971. #ifdef TMC2130_SERVICE_CODES_M910_M918
  6972. /*!
  6973. ### M910 - TMC2130 init <a href="https://reprap.org/wiki/G-code#M910:_TMC2130_init">M910: TMC2130 init</a>
  6974. Not active in default, only if `TMC2130_SERVICE_CODES_M910_M918` is defined in source code.
  6975. */
  6976. case 910:
  6977. {
  6978. tmc2130_init();
  6979. }
  6980. break;
  6981. /*!
  6982. ### M911 - Set TMC2130 holding currents <a href="https://reprap.org/wiki/G-code#M911:_Set_TMC2130_holding_currents">M911: Set TMC2130 holding currents</a>
  6983. Not active in default, only if `TMC2130_SERVICE_CODES_M910_M918` is defined in source code.
  6984. M911 [ X | Y | Z | E ]
  6985. - `X` - X stepper driver holding current value
  6986. - `Y` - Y stepper driver holding current value
  6987. - `Z` - Z stepper driver holding current value
  6988. - `E` - Extruder stepper driver holding current value
  6989. */
  6990. case 911:
  6991. {
  6992. if (code_seen('X')) tmc2130_set_current_h(0, code_value());
  6993. if (code_seen('Y')) tmc2130_set_current_h(1, code_value());
  6994. if (code_seen('Z')) tmc2130_set_current_h(2, code_value());
  6995. if (code_seen('E')) tmc2130_set_current_h(3, code_value());
  6996. }
  6997. break;
  6998. /*!
  6999. ### M912 - Set TMC2130 running currents <a href="https://reprap.org/wiki/G-code#M912:_Set_TMC2130_running_currents">M912: Set TMC2130 running currents</a>
  7000. Not active in default, only if `TMC2130_SERVICE_CODES_M910_M918` is defined in source code.
  7001. M912 [ X | Y | Z | E ]
  7002. - `X` - X stepper driver running current value
  7003. - `Y` - Y stepper driver running current value
  7004. - `Z` - Z stepper driver running current value
  7005. - `E` - Extruder stepper driver running current value
  7006. */
  7007. case 912:
  7008. {
  7009. if (code_seen('X')) tmc2130_set_current_r(0, code_value());
  7010. if (code_seen('Y')) tmc2130_set_current_r(1, code_value());
  7011. if (code_seen('Z')) tmc2130_set_current_r(2, code_value());
  7012. if (code_seen('E')) tmc2130_set_current_r(3, code_value());
  7013. }
  7014. break;
  7015. /*!
  7016. ### M913 - Print TMC2130 currents <a href="https://reprap.org/wiki/G-code#M913:_Print_TMC2130_currents">M913: Print TMC2130 currents</a>
  7017. Not active in default, only if `TMC2130_SERVICE_CODES_M910_M918` is defined in source code.
  7018. Shows TMC2130 currents.
  7019. */
  7020. case 913:
  7021. {
  7022. tmc2130_print_currents();
  7023. }
  7024. break;
  7025. /*!
  7026. ### M914 - Set TMC2130 normal mode <a href="https://reprap.org/wiki/G-code#M914:_Set_TMC2130_normal_mode">M914: Set TMC2130 normal mode</a>
  7027. Not active in default, only if `TMC2130_SERVICE_CODES_M910_M918` is defined in source code.
  7028. */
  7029. case 914:
  7030. {
  7031. tmc2130_mode = TMC2130_MODE_NORMAL;
  7032. update_mode_profile();
  7033. tmc2130_init();
  7034. }
  7035. break;
  7036. /*!
  7037. ### M915 - Set TMC2130 silent mode <a href="https://reprap.org/wiki/G-code#M915:_Set_TMC2130_silent_mode">M915: Set TMC2130 silent mode</a>
  7038. Not active in default, only if `TMC2130_SERVICE_CODES_M910_M918` is defined in source code.
  7039. */
  7040. case 915:
  7041. {
  7042. tmc2130_mode = TMC2130_MODE_SILENT;
  7043. update_mode_profile();
  7044. tmc2130_init();
  7045. }
  7046. break;
  7047. /*!
  7048. ### M916 - Set TMC2130 Stallguard sensitivity threshold <a href="https://reprap.org/wiki/G-code#M916:_Set_TMC2130_Stallguard_sensitivity_threshold">M916: Set TMC2130 Stallguard sensitivity threshold</a>
  7049. Not active in default, only if `TMC2130_SERVICE_CODES_M910_M918` is defined in source code.
  7050. M916 [ X | Y | Z | E ]
  7051. - `X` - X stepper driver stallguard sensitivity threshold value
  7052. - `Y` - Y stepper driver stallguard sensitivity threshold value
  7053. - `Z` - Z stepper driver stallguard sensitivity threshold value
  7054. - `E` - Extruder stepper driver stallguard sensitivity threshold value
  7055. */
  7056. case 916:
  7057. {
  7058. if (code_seen('X')) tmc2130_sg_thr[X_AXIS] = code_value();
  7059. if (code_seen('Y')) tmc2130_sg_thr[Y_AXIS] = code_value();
  7060. if (code_seen('Z')) tmc2130_sg_thr[Z_AXIS] = code_value();
  7061. if (code_seen('E')) tmc2130_sg_thr[E_AXIS] = code_value();
  7062. for (uint8_t a = X_AXIS; a <= E_AXIS; a++)
  7063. printf_P(_N("tmc2130_sg_thr[%c]=%d\n"), "XYZE"[a], tmc2130_sg_thr[a]);
  7064. }
  7065. break;
  7066. /*!
  7067. ### M917 - Set TMC2130 PWM amplitude offset (pwm_ampl) <a href="https://reprap.org/wiki/G-code#M917:_Set_TMC2130_PWM_amplitude_offset_.28pwm_ampl.29">M917: Set TMC2130 PWM amplitude offset (pwm_ampl)</a>
  7068. Not active in default, only if `TMC2130_SERVICE_CODES_M910_M918` is defined in source code.
  7069. M917 [ X | Y | Z | E ]
  7070. - `X` - X stepper driver PWM amplitude offset value
  7071. - `Y` - Y stepper driver PWM amplitude offset value
  7072. - `Z` - Z stepper driver PWM amplitude offset value
  7073. - `E` - Extruder stepper driver PWM amplitude offset value
  7074. */
  7075. case 917:
  7076. {
  7077. if (code_seen('X')) tmc2130_set_pwm_ampl(0, code_value());
  7078. if (code_seen('Y')) tmc2130_set_pwm_ampl(1, code_value());
  7079. if (code_seen('Z')) tmc2130_set_pwm_ampl(2, code_value());
  7080. if (code_seen('E')) tmc2130_set_pwm_ampl(3, code_value());
  7081. }
  7082. break;
  7083. /*!
  7084. ### M918 - Set TMC2130 PWM amplitude gradient (pwm_grad) <a href="https://reprap.org/wiki/G-code#M918:_Set_TMC2130_PWM_amplitude_gradient_.28pwm_grad.29">M918: Set TMC2130 PWM amplitude gradient (pwm_grad)</a>
  7085. Not active in default, only if `TMC2130_SERVICE_CODES_M910_M918` is defined in source code.
  7086. M918 [ X | Y | Z | E ]
  7087. - `X` - X stepper driver PWM amplitude gradient value
  7088. - `Y` - Y stepper driver PWM amplitude gradient value
  7089. - `Z` - Z stepper driver PWM amplitude gradient value
  7090. - `E` - Extruder stepper driver PWM amplitude gradient value
  7091. */
  7092. case 918:
  7093. {
  7094. if (code_seen('X')) tmc2130_set_pwm_grad(0, code_value());
  7095. if (code_seen('Y')) tmc2130_set_pwm_grad(1, code_value());
  7096. if (code_seen('Z')) tmc2130_set_pwm_grad(2, code_value());
  7097. if (code_seen('E')) tmc2130_set_pwm_grad(3, code_value());
  7098. }
  7099. break;
  7100. #endif //TMC2130_SERVICE_CODES_M910_M918
  7101. /*!
  7102. ### M350 - Set microstepping mode <a href="https://reprap.org/wiki/G-code#M350:_Set_microstepping_mode">M350: Set microstepping mode</a>
  7103. Warning: Steps per unit remains unchanged. S code sets stepping mode for all drivers.
  7104. */
  7105. case 350:
  7106. {
  7107. #ifdef TMC2130
  7108. for (int i=0; i<NUM_AXIS; i++)
  7109. {
  7110. if(code_seen(axis_codes[i]))
  7111. {
  7112. uint16_t res_new = code_value();
  7113. bool res_valid = (res_new == 8) || (res_new == 16) || (res_new == 32); // resolutions valid for all axis
  7114. res_valid |= (i != E_AXIS) && ((res_new == 1) || (res_new == 2) || (res_new == 4)); // resolutions valid for X Y Z only
  7115. res_valid |= (i == E_AXIS) && ((res_new == 64) || (res_new == 128)); // resolutions valid for E only
  7116. if (res_valid)
  7117. {
  7118. st_synchronize();
  7119. uint16_t res = tmc2130_get_res(i);
  7120. tmc2130_set_res(i, res_new);
  7121. cs.axis_ustep_resolution[i] = res_new;
  7122. if (res_new > res)
  7123. {
  7124. uint16_t fac = (res_new / res);
  7125. cs.axis_steps_per_unit[i] *= fac;
  7126. position[i] *= fac;
  7127. }
  7128. else
  7129. {
  7130. uint16_t fac = (res / res_new);
  7131. cs.axis_steps_per_unit[i] /= fac;
  7132. position[i] /= fac;
  7133. }
  7134. }
  7135. }
  7136. }
  7137. #else //TMC2130
  7138. #if defined(X_MS1_PIN) && X_MS1_PIN > -1
  7139. if(code_seen('S')) for(int i=0;i<=4;i++) microstep_mode(i,code_value());
  7140. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) microstep_mode(i,(uint8_t)code_value());
  7141. if(code_seen('B')) microstep_mode(4,code_value());
  7142. microstep_readings();
  7143. #endif
  7144. #endif //TMC2130
  7145. }
  7146. break;
  7147. /*!
  7148. ### M351 - Toggle Microstep Pins <a href="https://reprap.org/wiki/G-code#M351:_Toggle_MS1_MS2_pins_directly">M351: Toggle MS1 MS2 pins directly</a>
  7149. Toggle MS1 MS2 pins directly, S# determines MS1 or MS2, X# sets the pin high/low.
  7150. M351 [B<0|1>] [E<0|1>] S<1|2> [X<0|1>] [Y<0|1>] [Z<0|1>]
  7151. */
  7152. case 351:
  7153. {
  7154. #if defined(X_MS1_PIN) && X_MS1_PIN > -1
  7155. if(code_seen('S')) switch((int)code_value())
  7156. {
  7157. case 1:
  7158. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) microstep_ms(i,code_value(),-1);
  7159. if(code_seen('B')) microstep_ms(4,code_value(),-1);
  7160. break;
  7161. case 2:
  7162. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) microstep_ms(i,-1,code_value());
  7163. if(code_seen('B')) microstep_ms(4,-1,code_value());
  7164. break;
  7165. }
  7166. microstep_readings();
  7167. #endif
  7168. }
  7169. break;
  7170. /*!
  7171. ### M701 - Load filament <a href="https://reprap.org/wiki/G-code#M701:_Load_filament">M701: Load filament</a>
  7172. */
  7173. case 701:
  7174. {
  7175. if (mmu_enabled && code_seen('E'))
  7176. tmp_extruder = code_value();
  7177. gcode_M701();
  7178. }
  7179. break;
  7180. /*!
  7181. ### M702 - Unload filament <a href="https://reprap.org/wiki/G-code#M702:_Unload_filament">G32: Undock Z Probe sled</a>
  7182. M702 [ U | C]
  7183. - `U` - Unload all filaments used in current print
  7184. - `C` - Unload just current filament
  7185. - without any parameters unload all filaments
  7186. */
  7187. case 702:
  7188. {
  7189. #ifdef SNMM
  7190. if (code_seen('U'))
  7191. extr_unload_used(); //! if "U" unload all filaments which were used in current print
  7192. else if (code_seen('C'))
  7193. extr_unload(); //! if "C" unload just current filament
  7194. else
  7195. extr_unload_all(); //! otherwise unload all filaments
  7196. #else
  7197. if (code_seen('C')) {
  7198. if(mmu_enabled) extr_unload(); //! if "C" unload current filament; if mmu is not present no action is performed
  7199. }
  7200. else {
  7201. if(mmu_enabled) extr_unload(); //! unload current filament
  7202. else unload_filament();
  7203. }
  7204. #endif //SNMM
  7205. }
  7206. break;
  7207. /*!
  7208. ### M999 - Restart after being stopped <a href="https://reprap.org/wiki/G-code#M999:_Restart_after_being_stopped_by_error">M999: Restart after being stopped by error</a>
  7209. */
  7210. case 999:
  7211. Stopped = false;
  7212. lcd_reset_alert_level();
  7213. gcode_LastN = Stopped_gcode_LastN;
  7214. FlushSerialRequestResend();
  7215. break;
  7216. /*!
  7217. #### End of M-Commands
  7218. */
  7219. default:
  7220. printf_P(PSTR("Unknown M code: %s \n"), cmdbuffer + bufindr + CMDHDRSIZE);
  7221. }
  7222. // printf_P(_N("END M-CODE=%u\n"), mcode_in_progress);
  7223. mcode_in_progress = 0;
  7224. }
  7225. }
  7226. // end if(code_seen('M')) (end of M codes)
  7227. //! -----------------------------------------------------------------------------------------
  7228. //! # T Codes
  7229. //!
  7230. //! T<extruder nr.> - select extruder in case of multi extruder printer
  7231. //! select filament in case of MMU_V2
  7232. //! if extruder is "?", open menu to let the user select extruder/filament
  7233. //!
  7234. //! For MMU_V2:
  7235. //! @n T<n> Gcode to extrude at least 38.10 mm at feedrate 19.02 mm/s must follow immediately to load to extruder wheels.
  7236. //! @n T? Gcode to extrude shouldn't have to follow, load to extruder wheels is done automatically
  7237. //! @n Tx Same as T?, except nozzle doesn't have to be preheated. Tc must be placed after extruder nozzle is preheated to finish filament load.
  7238. //! @n Tc Load to nozzle after filament was prepared by Tc and extruder nozzle is already heated.
  7239. else if(code_seen('T'))
  7240. {
  7241. int index;
  7242. bool load_to_nozzle = false;
  7243. for (index = 1; *(strchr_pointer + index) == ' ' || *(strchr_pointer + index) == '\t'; index++);
  7244. *(strchr_pointer + index) = tolower(*(strchr_pointer + index));
  7245. if ((*(strchr_pointer + index) < '0' || *(strchr_pointer + index) > '4') && *(strchr_pointer + index) != '?' && *(strchr_pointer + index) != 'x' && *(strchr_pointer + index) != 'c') {
  7246. SERIAL_ECHOLNPGM("Invalid T code.");
  7247. }
  7248. else if (*(strchr_pointer + index) == 'x'){ //load to bondtech gears; if mmu is not present do nothing
  7249. if (mmu_enabled)
  7250. {
  7251. tmp_extruder = choose_menu_P(_T(MSG_CHOOSE_FILAMENT), _T(MSG_FILAMENT));
  7252. if ((tmp_extruder == mmu_extruder) && mmu_fil_loaded) //dont execute the same T-code twice in a row
  7253. {
  7254. printf_P(PSTR("Duplicate T-code ignored.\n"));
  7255. }
  7256. else
  7257. {
  7258. st_synchronize();
  7259. mmu_command(MmuCmd::T0 + tmp_extruder);
  7260. manage_response(true, true, MMU_TCODE_MOVE);
  7261. }
  7262. }
  7263. }
  7264. else if (*(strchr_pointer + index) == 'c') { //load to from bondtech gears to nozzle (nozzle should be preheated)
  7265. if (mmu_enabled)
  7266. {
  7267. st_synchronize();
  7268. mmu_continue_loading(is_usb_printing || (lcd_commands_type == LcdCommands::Layer1Cal));
  7269. mmu_extruder = tmp_extruder; //filament change is finished
  7270. mmu_load_to_nozzle();
  7271. }
  7272. }
  7273. else {
  7274. if (*(strchr_pointer + index) == '?')
  7275. {
  7276. if(mmu_enabled)
  7277. {
  7278. tmp_extruder = choose_menu_P(_T(MSG_CHOOSE_FILAMENT), _T(MSG_FILAMENT));
  7279. load_to_nozzle = true;
  7280. } else
  7281. {
  7282. tmp_extruder = choose_menu_P(_T(MSG_CHOOSE_EXTRUDER), _T(MSG_EXTRUDER));
  7283. }
  7284. }
  7285. else {
  7286. tmp_extruder = code_value();
  7287. if (mmu_enabled && lcd_autoDepleteEnabled())
  7288. {
  7289. tmp_extruder = ad_getAlternative(tmp_extruder);
  7290. }
  7291. }
  7292. st_synchronize();
  7293. snmm_filaments_used |= (1 << tmp_extruder); //for stop print
  7294. if (mmu_enabled)
  7295. {
  7296. if ((tmp_extruder == mmu_extruder) && mmu_fil_loaded) //dont execute the same T-code twice in a row
  7297. {
  7298. printf_P(PSTR("Duplicate T-code ignored.\n"));
  7299. }
  7300. else
  7301. {
  7302. #if defined(MMU_HAS_CUTTER) && defined(MMU_ALWAYS_CUT)
  7303. if (EEPROM_MMU_CUTTER_ENABLED_always == eeprom_read_byte((uint8_t*)EEPROM_MMU_CUTTER_ENABLED))
  7304. {
  7305. mmu_command(MmuCmd::K0 + tmp_extruder);
  7306. manage_response(true, true, MMU_UNLOAD_MOVE);
  7307. }
  7308. #endif //defined(MMU_HAS_CUTTER) && defined(MMU_ALWAYS_CUT)
  7309. mmu_command(MmuCmd::T0 + tmp_extruder);
  7310. manage_response(true, true, MMU_TCODE_MOVE);
  7311. mmu_continue_loading(is_usb_printing || (lcd_commands_type == LcdCommands::Layer1Cal));
  7312. mmu_extruder = tmp_extruder; //filament change is finished
  7313. if (load_to_nozzle)// for single material usage with mmu
  7314. {
  7315. mmu_load_to_nozzle();
  7316. }
  7317. }
  7318. }
  7319. else
  7320. {
  7321. #ifdef SNMM
  7322. #ifdef LIN_ADVANCE
  7323. if (mmu_extruder != tmp_extruder)
  7324. clear_current_adv_vars(); //Check if the selected extruder is not the active one and reset LIN_ADVANCE variables if so.
  7325. #endif
  7326. mmu_extruder = tmp_extruder;
  7327. _delay(100);
  7328. disable_e0();
  7329. disable_e1();
  7330. disable_e2();
  7331. pinMode(E_MUX0_PIN, OUTPUT);
  7332. pinMode(E_MUX1_PIN, OUTPUT);
  7333. _delay(100);
  7334. SERIAL_ECHO_START;
  7335. SERIAL_ECHO("T:");
  7336. SERIAL_ECHOLN((int)tmp_extruder);
  7337. switch (tmp_extruder) {
  7338. case 1:
  7339. WRITE(E_MUX0_PIN, HIGH);
  7340. WRITE(E_MUX1_PIN, LOW);
  7341. break;
  7342. case 2:
  7343. WRITE(E_MUX0_PIN, LOW);
  7344. WRITE(E_MUX1_PIN, HIGH);
  7345. break;
  7346. case 3:
  7347. WRITE(E_MUX0_PIN, HIGH);
  7348. WRITE(E_MUX1_PIN, HIGH);
  7349. break;
  7350. default:
  7351. WRITE(E_MUX0_PIN, LOW);
  7352. WRITE(E_MUX1_PIN, LOW);
  7353. break;
  7354. }
  7355. _delay(100);
  7356. #else //SNMM
  7357. if (tmp_extruder >= EXTRUDERS) {
  7358. SERIAL_ECHO_START;
  7359. SERIAL_ECHOPGM("T");
  7360. SERIAL_PROTOCOLLN((int)tmp_extruder);
  7361. SERIAL_ECHOLNRPGM(_n("Invalid extruder"));////MSG_INVALID_EXTRUDER
  7362. }
  7363. else {
  7364. #if EXTRUDERS > 1
  7365. boolean make_move = false;
  7366. #endif
  7367. if (code_seen('F')) {
  7368. #if EXTRUDERS > 1
  7369. make_move = true;
  7370. #endif
  7371. next_feedrate = code_value();
  7372. if (next_feedrate > 0.0) {
  7373. feedrate = next_feedrate;
  7374. }
  7375. }
  7376. #if EXTRUDERS > 1
  7377. if (tmp_extruder != active_extruder) {
  7378. // Save current position to return to after applying extruder offset
  7379. memcpy(destination, current_position, sizeof(destination));
  7380. // Offset extruder (only by XY)
  7381. int i;
  7382. for (i = 0; i < 2; i++) {
  7383. current_position[i] = current_position[i] -
  7384. extruder_offset[i][active_extruder] +
  7385. extruder_offset[i][tmp_extruder];
  7386. }
  7387. // Set the new active extruder and position
  7388. active_extruder = tmp_extruder;
  7389. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  7390. // Move to the old position if 'F' was in the parameters
  7391. if (make_move && Stopped == false) {
  7392. prepare_move();
  7393. }
  7394. }
  7395. #endif
  7396. SERIAL_ECHO_START;
  7397. SERIAL_ECHORPGM(_n("Active Extruder: "));////MSG_ACTIVE_EXTRUDER
  7398. SERIAL_PROTOCOLLN((int)active_extruder);
  7399. }
  7400. #endif //SNMM
  7401. }
  7402. }
  7403. } // end if(code_seen('T')) (end of T codes)
  7404. /*!
  7405. #### End of T-Codes
  7406. */
  7407. /**
  7408. *---------------------------------------------------------------------------------
  7409. *# D codes
  7410. */
  7411. else if (code_seen('D')) // D codes (debug)
  7412. {
  7413. switch((int)code_value())
  7414. {
  7415. /*!
  7416. *
  7417. ### D-1 - Endless Loop <a href="https://reprap.org/wiki/G-code#D-1:_Endless_Loop">D-1: Endless Loop</a>
  7418. D-1
  7419. *
  7420. */
  7421. case -1:
  7422. dcode__1(); break;
  7423. #ifdef DEBUG_DCODES
  7424. /*!
  7425. *
  7426. ### D0 - Reset <a href="https://reprap.org/wiki/G-code#D0:_Reset">D0: Reset</a>
  7427. D0 [ B ]
  7428. - `B` - Bootloader
  7429. *
  7430. */
  7431. case 0:
  7432. dcode_0(); break;
  7433. /*!
  7434. *
  7435. ### D1 - Clear EEPROM and RESET <a href="https://reprap.org/wiki/G-code#D1:_Clear_EEPROM_and_RESET">D1: Clear EEPROM and RESET</a>
  7436. D1
  7437. *
  7438. */
  7439. case 1:
  7440. dcode_1(); break;
  7441. /*!
  7442. *
  7443. ### D2 - Read/Write RAM <a href="https://reprap.org/wiki/G-code#D2:_Read.2FWrite_RAM">D3: Read/Write RAM</a>
  7444. This command can be used without any additional parameters. It will read the entire RAM.
  7445. D3 [ A | C | X ]
  7446. - `A` - Address (0x0000-0x1fff)
  7447. - `C` - Count (0x0001-0x2000)
  7448. - `X` - Data
  7449. *
  7450. */
  7451. case 2:
  7452. dcode_2(); break;
  7453. #endif //DEBUG_DCODES
  7454. #ifdef DEBUG_DCODE3
  7455. /*!
  7456. *
  7457. ### D3 - Read/Write EEPROM <a href="https://reprap.org/wiki/G-code#D3:_Read.2FWrite_EEPROM">D3: Read/Write EEPROM</a>
  7458. This command can be used without any additional parameters. It will read the entire eeprom.
  7459. D3 [ A | C | X ]
  7460. - `A` - Address (0x0000-0x0fff)
  7461. - `C` - Count (0x0001-0x1000)
  7462. - `X` - Data
  7463. *
  7464. */
  7465. case 3:
  7466. dcode_3(); break;
  7467. #endif //DEBUG_DCODE3
  7468. #ifdef DEBUG_DCODES
  7469. /*!
  7470. *
  7471. ### D4 - Read/Write PIN <a href="https://reprap.org/wiki/G-code#D4:_Read.2FWrite_PIN">D4: Read/Write PIN</a>
  7472. To read the digital value of a pin you need only to define the pin number.
  7473. D4 [ P | F | V ]
  7474. - `P` - Pin (0-255)
  7475. - `F` - Function in/out (0/1)
  7476. - `V` - Value (0/1)
  7477. *
  7478. */
  7479. case 4:
  7480. dcode_4(); break;
  7481. #endif //DEBUG_DCODES
  7482. #ifdef DEBUG_DCODE5
  7483. /*!
  7484. *
  7485. ### D5 - Read/Write FLASH <a href="https://reprap.org/wiki/G-code#D5:_Read.2FWrite_FLASH">D5: Read/Write Flash</a>
  7486. This command can be used without any additional parameters. It will read the 1kb FLASH.
  7487. D3 [ A | C | X | E ]
  7488. - `A` - Address (0x00000-0x3ffff)
  7489. - `C` - Count (0x0001-0x2000)
  7490. - `X` - Data
  7491. - `E` - Erase
  7492. *
  7493. */
  7494. case 5:
  7495. dcode_5(); break;
  7496. break;
  7497. #endif //DEBUG_DCODE5
  7498. #ifdef DEBUG_DCODES
  7499. /*!
  7500. *
  7501. ### D6 - Read/Write external FLASH <a href="https://reprap.org/wiki/G-code#D6:_Read.2FWrite_external_FLASH">D6: Read/Write external Flash</a>
  7502. Reserved
  7503. *
  7504. */
  7505. case 6:
  7506. dcode_6(); break;
  7507. /*!
  7508. *
  7509. ### D7 - Read/Write Bootloader <a href="https://reprap.org/wiki/G-code#D7:_Read.2FWrite_Bootloader">D7: Read/Write Bootloader</a>
  7510. Reserved
  7511. *
  7512. */
  7513. case 7:
  7514. dcode_7(); break;
  7515. /*!
  7516. *
  7517. ### D8 - Read/Write PINDA <a href="https://reprap.org/wiki/G-code#D8:_Read.2FWrite_PINDA">D8: Read/Write PINDA</a>
  7518. D8 [ ? | ! | P | Z ]
  7519. - `?` - Read PINDA temperature shift values
  7520. - `!` - Reset PINDA temperature shift values to default
  7521. - `P` - Pinda temperature [C]
  7522. - `Z` - Z Offset [mm]
  7523. *
  7524. */
  7525. case 8:
  7526. dcode_8(); break;
  7527. /*!
  7528. *
  7529. ### D9 - Read ADC <a href="https://reprap.org/wiki/G-code#D9:_Read.2FWrite_ADC">D9: Read ADC</a>
  7530. D9 [ I | V ]
  7531. - `I` - ADC channel index
  7532. - `0` - Heater 0 temperature
  7533. - `1` - Heater 1 temperature
  7534. - `2` - Bed temperature
  7535. - `3` - PINDA temperature
  7536. - `4` - PWR voltage
  7537. - `5` - Ambient temperature
  7538. - `6` - BED voltage
  7539. - `V` Value to be written as simulated
  7540. *
  7541. */
  7542. case 9:
  7543. dcode_9(); break;
  7544. /*!
  7545. *
  7546. ### D10 - Set XYZ calibration = OK <a href="https://reprap.org/wiki/G-code#D10:_Set_XYZ_calibration_.3D_OK">D10: Set XYZ calibration = OK</a>
  7547. *
  7548. */
  7549. case 10:
  7550. dcode_10(); break;
  7551. /*!
  7552. *
  7553. ### D12 - Time <a href="https://reprap.org/wiki/G-code#D12:_Time">D12: Time</a>
  7554. Writes the actual time in the log file.
  7555. *
  7556. */
  7557. #endif //DEBUG_DCODES
  7558. #ifdef HEATBED_ANALYSIS
  7559. /*!
  7560. *
  7561. ### D80 - Bed check <a href="https://reprap.org/wiki/G-code#D80:_Bed_check">D80: Bed check</a>
  7562. This command will log data to SD card file "mesh.txt".
  7563. D80 [ E | F | G | H | I | J ]
  7564. - `E` - Dimension X (default 40)
  7565. - `F` - Dimention Y (default 40)
  7566. - `G` - Points X (default 40)
  7567. - `H` - Points Y (default 40)
  7568. - `I` - Offset X (default 74)
  7569. - `J` - Offset Y (default 34)
  7570. */
  7571. case 80:
  7572. {
  7573. float dimension_x = 40;
  7574. float dimension_y = 40;
  7575. int points_x = 40;
  7576. int points_y = 40;
  7577. float offset_x = 74;
  7578. float offset_y = 33;
  7579. if (code_seen('E')) dimension_x = code_value();
  7580. if (code_seen('F')) dimension_y = code_value();
  7581. if (code_seen('G')) {points_x = code_value(); }
  7582. if (code_seen('H')) {points_y = code_value(); }
  7583. if (code_seen('I')) {offset_x = code_value(); }
  7584. if (code_seen('J')) {offset_y = code_value(); }
  7585. printf_P(PSTR("DIM X: %f\n"), dimension_x);
  7586. printf_P(PSTR("DIM Y: %f\n"), dimension_y);
  7587. printf_P(PSTR("POINTS X: %d\n"), points_x);
  7588. printf_P(PSTR("POINTS Y: %d\n"), points_y);
  7589. printf_P(PSTR("OFFSET X: %f\n"), offset_x);
  7590. printf_P(PSTR("OFFSET Y: %f\n"), offset_y);
  7591. bed_check(dimension_x,dimension_y,points_x,points_y,offset_x,offset_y);
  7592. }break;
  7593. /*!
  7594. *
  7595. ### D81 - Bed analysis <a href="https://reprap.org/wiki/G-code#D81:_Bed_analysis">D80: Bed analysis</a>
  7596. This command will log data to SD card file "wldsd.txt".
  7597. D81 [ E | F | G | H | I | J ]
  7598. - `E` - Dimension X (default 40)
  7599. - `F` - Dimention Y (default 40)
  7600. - `G` - Points X (default 40)
  7601. - `H` - Points Y (default 40)
  7602. - `I` - Offset X (default 74)
  7603. - `J` - Offset Y (default 34)
  7604. */
  7605. case 81:
  7606. {
  7607. float dimension_x = 40;
  7608. float dimension_y = 40;
  7609. int points_x = 40;
  7610. int points_y = 40;
  7611. float offset_x = 74;
  7612. float offset_y = 33;
  7613. if (code_seen('E')) dimension_x = code_value();
  7614. if (code_seen('F')) dimension_y = code_value();
  7615. if (code_seen("G")) { strchr_pointer+=1; points_x = code_value(); }
  7616. if (code_seen("H")) { strchr_pointer+=1; points_y = code_value(); }
  7617. if (code_seen("I")) { strchr_pointer+=1; offset_x = code_value(); }
  7618. if (code_seen("J")) { strchr_pointer+=1; offset_y = code_value(); }
  7619. bed_analysis(dimension_x,dimension_y,points_x,points_y,offset_x,offset_y);
  7620. } break;
  7621. #endif //HEATBED_ANALYSIS
  7622. #ifdef DEBUG_DCODES
  7623. /*!
  7624. *
  7625. ### D106 - Print measured fan speed for different pwm values <a href="https://reprap.org/wiki/G-code#D106:_Print_measured_fan_speed_for_different_pwm_values">D106: Print measured fan speed for different pwm values</a>
  7626. */
  7627. case 106:
  7628. {
  7629. for (int i = 255; i > 0; i = i - 5) {
  7630. fanSpeed = i;
  7631. //delay_keep_alive(2000);
  7632. for (int j = 0; j < 100; j++) {
  7633. delay_keep_alive(100);
  7634. }
  7635. printf_P(_N("%d: %d\n"), i, fan_speed[1]);
  7636. }
  7637. }break;
  7638. #ifdef TMC2130
  7639. /*!
  7640. *
  7641. ### D2130 - Trinamic stepper controller <a href="https://reprap.org/wiki/G-code#D2130:_Trinamic_stepper_controller">D2130: Trinamic stepper controller</a>
  7642. @todo Please review by owner of the code. RepRap Wiki Gcode needs to be updated after review of owner as well.
  7643. D2130 [ Axis | Command | Subcommand | Value ]
  7644. - Axis
  7645. - `X` - X stepper driver
  7646. - `Y` - Y stepper driver
  7647. - `Z` - Z stepper driver
  7648. - `E` - Extruder stepper driver
  7649. - Commands
  7650. - `0` - Current off
  7651. - `1` - Current on
  7652. - `+` - Single step
  7653. - `-` - Single step oposite direction
  7654. - `NNN` - Value sereval steps
  7655. - `?` - Read register
  7656. - Subcommands for read register
  7657. - `mres` - Micro step resolution. More information in datasheet '5.5.2 CHOPCONF – Chopper Configuration'
  7658. - `step` - Step
  7659. - `mscnt` - Microstep counter. More information in datasheet '5.5 Motor Driver Registers'
  7660. - `mscuract` - Actual microstep current for motor. More information in datasheet '5.5 Motor Driver Registers'
  7661. - `wave` - Microstep linearity compensation curve
  7662. - `!` - Set register
  7663. - Subcommands for set register
  7664. - `mres` - Micro step resolution
  7665. - `step` - Step
  7666. - `wave` - Microstep linearity compensation curve
  7667. - Values for set register
  7668. - `0, 180 --> 250` - Off
  7669. - `0.9 --> 1.25` - Valid values (recommended is 1.1)
  7670. - `@` - Home calibrate axis
  7671. Examples:
  7672. D2130E?wave
  7673. Print extruder microstep linearity compensation curve
  7674. D2130E!wave0
  7675. Disable extruder linearity compensation curve, (sine curve is used)
  7676. D2130E!wave220
  7677. (sin(x))^1.1 extruder microstep compensation curve used
  7678. Notes:
  7679. For more information see https://www.trinamic.com/fileadmin/assets/Products/ICs_Documents/TMC2130_datasheet.pdf
  7680. *
  7681. */
  7682. case 2130:
  7683. dcode_2130(); break;
  7684. #endif //TMC2130
  7685. #if (defined (FILAMENT_SENSOR) && defined(PAT9125))
  7686. /*!
  7687. *
  7688. ### D9125 - PAT9125 filament sensor <a href="https://reprap.org/wiki/G-code#D9:_Read.2FWrite_ADC">D9125: PAT9125 filament sensor</a>
  7689. D9125 [ ? | ! | R | X | Y | L ]
  7690. - `?` - Print values
  7691. - `!` - Print values
  7692. - `R` - Resolution. Not active in code
  7693. - `X` - X values
  7694. - `Y` - Y values
  7695. - `L` - Activate filament sensor log
  7696. *
  7697. */
  7698. case 9125:
  7699. dcode_9125(); break;
  7700. #endif //FILAMENT_SENSOR
  7701. #endif //DEBUG_DCODES
  7702. }
  7703. }
  7704. else
  7705. {
  7706. SERIAL_ECHO_START;
  7707. SERIAL_ECHORPGM(MSG_UNKNOWN_COMMAND);
  7708. SERIAL_ECHO(CMDBUFFER_CURRENT_STRING);
  7709. SERIAL_ECHOLNPGM("\"(2)");
  7710. }
  7711. KEEPALIVE_STATE(NOT_BUSY);
  7712. ClearToSend();
  7713. }
  7714. /*!
  7715. #### End of D-Codes
  7716. */
  7717. /** @defgroup GCodes G-Code List
  7718. */
  7719. // ---------------------------------------------------
  7720. void FlushSerialRequestResend()
  7721. {
  7722. //char cmdbuffer[bufindr][100]="Resend:";
  7723. MYSERIAL.flush();
  7724. printf_P(_N("%S: %ld\n%S\n"), _n("Resend"), gcode_LastN + 1, MSG_OK);
  7725. }
  7726. // Confirm the execution of a command, if sent from a serial line.
  7727. // Execution of a command from a SD card will not be confirmed.
  7728. void ClearToSend()
  7729. {
  7730. previous_millis_cmd = _millis();
  7731. if ((CMDBUFFER_CURRENT_TYPE == CMDBUFFER_CURRENT_TYPE_USB) || (CMDBUFFER_CURRENT_TYPE == CMDBUFFER_CURRENT_TYPE_USB_WITH_LINENR))
  7732. SERIAL_PROTOCOLLNRPGM(MSG_OK);
  7733. }
  7734. #if MOTHERBOARD == BOARD_RAMBO_MINI_1_0 || MOTHERBOARD == BOARD_RAMBO_MINI_1_3
  7735. void update_currents() {
  7736. float current_high[3] = DEFAULT_PWM_MOTOR_CURRENT_LOUD;
  7737. float current_low[3] = DEFAULT_PWM_MOTOR_CURRENT;
  7738. float tmp_motor[3];
  7739. //SERIAL_ECHOLNPGM("Currents updated: ");
  7740. if (destination[Z_AXIS] < Z_SILENT) {
  7741. //SERIAL_ECHOLNPGM("LOW");
  7742. for (uint8_t i = 0; i < 3; i++) {
  7743. st_current_set(i, current_low[i]);
  7744. /*MYSERIAL.print(int(i));
  7745. SERIAL_ECHOPGM(": ");
  7746. MYSERIAL.println(current_low[i]);*/
  7747. }
  7748. }
  7749. else if (destination[Z_AXIS] > Z_HIGH_POWER) {
  7750. //SERIAL_ECHOLNPGM("HIGH");
  7751. for (uint8_t i = 0; i < 3; i++) {
  7752. st_current_set(i, current_high[i]);
  7753. /*MYSERIAL.print(int(i));
  7754. SERIAL_ECHOPGM(": ");
  7755. MYSERIAL.println(current_high[i]);*/
  7756. }
  7757. }
  7758. else {
  7759. for (uint8_t i = 0; i < 3; i++) {
  7760. float q = current_low[i] - Z_SILENT*((current_high[i] - current_low[i]) / (Z_HIGH_POWER - Z_SILENT));
  7761. tmp_motor[i] = ((current_high[i] - current_low[i]) / (Z_HIGH_POWER - Z_SILENT))*destination[Z_AXIS] + q;
  7762. st_current_set(i, tmp_motor[i]);
  7763. /*MYSERIAL.print(int(i));
  7764. SERIAL_ECHOPGM(": ");
  7765. MYSERIAL.println(tmp_motor[i]);*/
  7766. }
  7767. }
  7768. }
  7769. #endif //MOTHERBOARD == BOARD_RAMBO_MINI_1_0 || MOTHERBOARD == BOARD_RAMBO_MINI_1_3
  7770. void get_coordinates()
  7771. {
  7772. bool seen[4]={false,false,false,false};
  7773. for(int8_t i=0; i < NUM_AXIS; i++) {
  7774. if(code_seen(axis_codes[i]))
  7775. {
  7776. bool relative = axis_relative_modes[i] || relative_mode;
  7777. destination[i] = (float)code_value();
  7778. if (i == E_AXIS) {
  7779. float emult = extruder_multiplier[active_extruder];
  7780. if (emult != 1.) {
  7781. if (! relative) {
  7782. destination[i] -= current_position[i];
  7783. relative = true;
  7784. }
  7785. destination[i] *= emult;
  7786. }
  7787. }
  7788. if (relative)
  7789. destination[i] += current_position[i];
  7790. seen[i]=true;
  7791. #if MOTHERBOARD == BOARD_RAMBO_MINI_1_0 || MOTHERBOARD == BOARD_RAMBO_MINI_1_3
  7792. if (i == Z_AXIS && SilentModeMenu == SILENT_MODE_AUTO) update_currents();
  7793. #endif //MOTHERBOARD == BOARD_RAMBO_MINI_1_0 || MOTHERBOARD == BOARD_RAMBO_MINI_1_3
  7794. }
  7795. else destination[i] = current_position[i]; //Are these else lines really needed?
  7796. }
  7797. if(code_seen('F')) {
  7798. next_feedrate = code_value();
  7799. #ifdef MAX_SILENT_FEEDRATE
  7800. if (tmc2130_mode == TMC2130_MODE_SILENT)
  7801. if (next_feedrate > MAX_SILENT_FEEDRATE) next_feedrate = MAX_SILENT_FEEDRATE;
  7802. #endif //MAX_SILENT_FEEDRATE
  7803. if(next_feedrate > 0.0) feedrate = next_feedrate;
  7804. if (!seen[0] && !seen[1] && !seen[2] && seen[3])
  7805. {
  7806. // float e_max_speed =
  7807. // printf_P(PSTR("E MOVE speed %7.3f\n"), feedrate / 60)
  7808. }
  7809. }
  7810. }
  7811. void get_arc_coordinates()
  7812. {
  7813. #ifdef SF_ARC_FIX
  7814. bool relative_mode_backup = relative_mode;
  7815. relative_mode = true;
  7816. #endif
  7817. get_coordinates();
  7818. #ifdef SF_ARC_FIX
  7819. relative_mode=relative_mode_backup;
  7820. #endif
  7821. if(code_seen('I')) {
  7822. offset[0] = code_value();
  7823. }
  7824. else {
  7825. offset[0] = 0.0;
  7826. }
  7827. if(code_seen('J')) {
  7828. offset[1] = code_value();
  7829. }
  7830. else {
  7831. offset[1] = 0.0;
  7832. }
  7833. }
  7834. void clamp_to_software_endstops(float target[3])
  7835. {
  7836. #ifdef DEBUG_DISABLE_SWLIMITS
  7837. return;
  7838. #endif //DEBUG_DISABLE_SWLIMITS
  7839. world2machine_clamp(target[0], target[1]);
  7840. // Clamp the Z coordinate.
  7841. if (min_software_endstops) {
  7842. float negative_z_offset = 0;
  7843. #ifdef ENABLE_AUTO_BED_LEVELING
  7844. if (Z_PROBE_OFFSET_FROM_EXTRUDER < 0) negative_z_offset = negative_z_offset + Z_PROBE_OFFSET_FROM_EXTRUDER;
  7845. if (cs.add_homing[Z_AXIS] < 0) negative_z_offset = negative_z_offset + cs.add_homing[Z_AXIS];
  7846. #endif
  7847. if (target[Z_AXIS] < min_pos[Z_AXIS]+negative_z_offset) target[Z_AXIS] = min_pos[Z_AXIS]+negative_z_offset;
  7848. }
  7849. if (max_software_endstops) {
  7850. if (target[Z_AXIS] > max_pos[Z_AXIS]) target[Z_AXIS] = max_pos[Z_AXIS];
  7851. }
  7852. }
  7853. #ifdef MESH_BED_LEVELING
  7854. void mesh_plan_buffer_line(const float &x, const float &y, const float &z, const float &e, const float &feed_rate, const uint8_t extruder) {
  7855. float dx = x - current_position[X_AXIS];
  7856. float dy = y - current_position[Y_AXIS];
  7857. int n_segments = 0;
  7858. if (mbl.active) {
  7859. float len = abs(dx) + abs(dy);
  7860. if (len > 0)
  7861. // Split to 3cm segments or shorter.
  7862. n_segments = int(ceil(len / 30.f));
  7863. }
  7864. if (n_segments > 1) {
  7865. // In a multi-segment move explicitly set the final target in the plan
  7866. // as the move will be recalculated in it's entirety
  7867. float gcode_target[NUM_AXIS];
  7868. gcode_target[X_AXIS] = x;
  7869. gcode_target[Y_AXIS] = y;
  7870. gcode_target[Z_AXIS] = z;
  7871. gcode_target[E_AXIS] = e;
  7872. float dz = z - current_position[Z_AXIS];
  7873. float de = e - current_position[E_AXIS];
  7874. for (int i = 1; i < n_segments; ++ i) {
  7875. float t = float(i) / float(n_segments);
  7876. plan_buffer_line(current_position[X_AXIS] + t * dx,
  7877. current_position[Y_AXIS] + t * dy,
  7878. current_position[Z_AXIS] + t * dz,
  7879. current_position[E_AXIS] + t * de,
  7880. feed_rate, extruder, gcode_target);
  7881. if (waiting_inside_plan_buffer_line_print_aborted)
  7882. return;
  7883. }
  7884. }
  7885. // The rest of the path.
  7886. plan_buffer_line(x, y, z, e, feed_rate, extruder);
  7887. }
  7888. #endif // MESH_BED_LEVELING
  7889. void prepare_move()
  7890. {
  7891. clamp_to_software_endstops(destination);
  7892. previous_millis_cmd = _millis();
  7893. // Do not use feedmultiply for E or Z only moves
  7894. if( (current_position[X_AXIS] == destination [X_AXIS]) && (current_position[Y_AXIS] == destination [Y_AXIS])) {
  7895. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  7896. }
  7897. else {
  7898. #ifdef MESH_BED_LEVELING
  7899. mesh_plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate*feedmultiply*(1./(60.f*100.f)), active_extruder);
  7900. #else
  7901. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate*feedmultiply*(1./(60.f*100.f)), active_extruder);
  7902. #endif
  7903. }
  7904. if (waiting_inside_plan_buffer_line_print_aborted)
  7905. return;
  7906. set_current_to_destination();
  7907. }
  7908. void prepare_arc_move(char isclockwise) {
  7909. float r = hypot(offset[X_AXIS], offset[Y_AXIS]); // Compute arc radius for mc_arc
  7910. // Trace the arc
  7911. mc_arc(current_position, destination, offset, X_AXIS, Y_AXIS, Z_AXIS, feedrate*feedmultiply/60/100.0, r, isclockwise, active_extruder);
  7912. // As far as the parser is concerned, the position is now == target. In reality the
  7913. // motion control system might still be processing the action and the real tool position
  7914. // in any intermediate location.
  7915. for(int8_t i=0; i < NUM_AXIS; i++) {
  7916. current_position[i] = destination[i];
  7917. }
  7918. previous_millis_cmd = _millis();
  7919. }
  7920. #if defined(CONTROLLERFAN_PIN) && CONTROLLERFAN_PIN > -1
  7921. #if defined(FAN_PIN)
  7922. #if CONTROLLERFAN_PIN == FAN_PIN
  7923. #error "You cannot set CONTROLLERFAN_PIN equal to FAN_PIN"
  7924. #endif
  7925. #endif
  7926. unsigned long lastMotor = 0; //Save the time for when a motor was turned on last
  7927. unsigned long lastMotorCheck = 0;
  7928. void controllerFan()
  7929. {
  7930. if ((_millis() - lastMotorCheck) >= 2500) //Not a time critical function, so we only check every 2500ms
  7931. {
  7932. lastMotorCheck = _millis();
  7933. if(!READ(X_ENABLE_PIN) || !READ(Y_ENABLE_PIN) || !READ(Z_ENABLE_PIN) || (soft_pwm_bed > 0)
  7934. #if EXTRUDERS > 2
  7935. || !READ(E2_ENABLE_PIN)
  7936. #endif
  7937. #if EXTRUDER > 1
  7938. #if defined(X2_ENABLE_PIN) && X2_ENABLE_PIN > -1
  7939. || !READ(X2_ENABLE_PIN)
  7940. #endif
  7941. || !READ(E1_ENABLE_PIN)
  7942. #endif
  7943. || !READ(E0_ENABLE_PIN)) //If any of the drivers are enabled...
  7944. {
  7945. lastMotor = _millis(); //... set time to NOW so the fan will turn on
  7946. }
  7947. if ((_millis() - lastMotor) >= (CONTROLLERFAN_SECS*1000UL) || lastMotor == 0) //If the last time any driver was enabled, is longer since than CONTROLLERSEC...
  7948. {
  7949. digitalWrite(CONTROLLERFAN_PIN, 0);
  7950. analogWrite(CONTROLLERFAN_PIN, 0);
  7951. }
  7952. else
  7953. {
  7954. // allows digital or PWM fan output to be used (see M42 handling)
  7955. digitalWrite(CONTROLLERFAN_PIN, CONTROLLERFAN_SPEED);
  7956. analogWrite(CONTROLLERFAN_PIN, CONTROLLERFAN_SPEED);
  7957. }
  7958. }
  7959. }
  7960. #endif
  7961. #ifdef TEMP_STAT_LEDS
  7962. static bool blue_led = false;
  7963. static bool red_led = false;
  7964. static uint32_t stat_update = 0;
  7965. void handle_status_leds(void) {
  7966. float max_temp = 0.0;
  7967. if(_millis() > stat_update) {
  7968. stat_update += 500; // Update every 0.5s
  7969. for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) {
  7970. max_temp = max(max_temp, degHotend(cur_extruder));
  7971. max_temp = max(max_temp, degTargetHotend(cur_extruder));
  7972. }
  7973. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  7974. max_temp = max(max_temp, degTargetBed());
  7975. max_temp = max(max_temp, degBed());
  7976. #endif
  7977. if((max_temp > 55.0) && (red_led == false)) {
  7978. digitalWrite(STAT_LED_RED, 1);
  7979. digitalWrite(STAT_LED_BLUE, 0);
  7980. red_led = true;
  7981. blue_led = false;
  7982. }
  7983. if((max_temp < 54.0) && (blue_led == false)) {
  7984. digitalWrite(STAT_LED_RED, 0);
  7985. digitalWrite(STAT_LED_BLUE, 1);
  7986. red_led = false;
  7987. blue_led = true;
  7988. }
  7989. }
  7990. }
  7991. #endif
  7992. #ifdef SAFETYTIMER
  7993. /**
  7994. * @brief Turn off heating after safetytimer_inactive_time milliseconds of inactivity
  7995. *
  7996. * Full screen blocking notification message is shown after heater turning off.
  7997. * Paused print is not considered inactivity, as nozzle is cooled anyway and bed cooling would
  7998. * damage print.
  7999. *
  8000. * If safetytimer_inactive_time is zero, feature is disabled (heating is never turned off because of inactivity)
  8001. */
  8002. static void handleSafetyTimer()
  8003. {
  8004. #if (EXTRUDERS > 1)
  8005. #error Implemented only for one extruder.
  8006. #endif //(EXTRUDERS > 1)
  8007. if ((PRINTER_ACTIVE) || (!degTargetBed() && !degTargetHotend(0)) || (!safetytimer_inactive_time))
  8008. {
  8009. safetyTimer.stop();
  8010. }
  8011. else if ((degTargetBed() || degTargetHotend(0)) && (!safetyTimer.running()))
  8012. {
  8013. safetyTimer.start();
  8014. }
  8015. else if (safetyTimer.expired(farm_mode?FARM_DEFAULT_SAFETYTIMER_TIME_ms:safetytimer_inactive_time))
  8016. {
  8017. setTargetBed(0);
  8018. setAllTargetHotends(0);
  8019. lcd_show_fullscreen_message_and_wait_P(_i("Heating disabled by safety timer."));////MSG_BED_HEATING_SAFETY_DISABLED
  8020. }
  8021. }
  8022. #endif //SAFETYTIMER
  8023. void manage_inactivity(bool ignore_stepper_queue/*=false*/) //default argument set in Marlin.h
  8024. {
  8025. bool bInhibitFlag;
  8026. #ifdef FILAMENT_SENSOR
  8027. if (mmu_enabled == false)
  8028. {
  8029. //-// if (mcode_in_progress != 600) //M600 not in progress
  8030. #ifdef PAT9125
  8031. bInhibitFlag=(menu_menu==lcd_menu_extruder_info); // Support::ExtruderInfo menu active
  8032. #endif // PAT9125
  8033. #ifdef IR_SENSOR
  8034. bInhibitFlag=(menu_menu==lcd_menu_show_sensors_state); // Support::SensorInfo menu active
  8035. #endif // IR_SENSOR
  8036. if ((mcode_in_progress != 600) && (eFilamentAction != FilamentAction::AutoLoad) && (!bInhibitFlag)) //M600 not in progress, preHeat @ autoLoad menu not active, Support::ExtruderInfo/SensorInfo menu not active
  8037. {
  8038. if (!moves_planned() && !IS_SD_PRINTING && !is_usb_printing && (lcd_commands_type != LcdCommands::Layer1Cal) && ! eeprom_read_byte((uint8_t*)EEPROM_WIZARD_ACTIVE))
  8039. {
  8040. if (fsensor_check_autoload())
  8041. {
  8042. #ifdef PAT9125
  8043. fsensor_autoload_check_stop();
  8044. #endif //PAT9125
  8045. //-// if (degHotend0() > EXTRUDE_MINTEMP)
  8046. if(0)
  8047. {
  8048. Sound_MakeCustom(50,1000,false);
  8049. loading_flag = true;
  8050. enquecommand_front_P((PSTR("M701")));
  8051. }
  8052. else
  8053. {
  8054. /*
  8055. lcd_update_enable(false);
  8056. show_preheat_nozzle_warning();
  8057. lcd_update_enable(true);
  8058. */
  8059. eFilamentAction=FilamentAction::AutoLoad;
  8060. bFilamentFirstRun=false;
  8061. if(target_temperature[0]>=EXTRUDE_MINTEMP)
  8062. {
  8063. bFilamentPreheatState=true;
  8064. // mFilamentItem(target_temperature[0],target_temperature_bed);
  8065. menu_submenu(mFilamentItemForce);
  8066. }
  8067. else
  8068. {
  8069. menu_submenu(lcd_generic_preheat_menu);
  8070. lcd_timeoutToStatus.start();
  8071. }
  8072. }
  8073. }
  8074. }
  8075. else
  8076. {
  8077. #ifdef PAT9125
  8078. fsensor_autoload_check_stop();
  8079. #endif //PAT9125
  8080. fsensor_update();
  8081. }
  8082. }
  8083. }
  8084. #endif //FILAMENT_SENSOR
  8085. #ifdef SAFETYTIMER
  8086. handleSafetyTimer();
  8087. #endif //SAFETYTIMER
  8088. #if defined(KILL_PIN) && KILL_PIN > -1
  8089. static int killCount = 0; // make the inactivity button a bit less responsive
  8090. const int KILL_DELAY = 10000;
  8091. #endif
  8092. if(buflen < (BUFSIZE-1)){
  8093. get_command();
  8094. }
  8095. if( (_millis() - previous_millis_cmd) > max_inactive_time )
  8096. if(max_inactive_time)
  8097. kill(_n(""), 4);
  8098. if(stepper_inactive_time) {
  8099. if( (_millis() - previous_millis_cmd) > stepper_inactive_time )
  8100. {
  8101. if(blocks_queued() == false && ignore_stepper_queue == false) {
  8102. disable_x();
  8103. disable_y();
  8104. disable_z();
  8105. disable_e0();
  8106. disable_e1();
  8107. disable_e2();
  8108. }
  8109. }
  8110. }
  8111. #ifdef CHDK //Check if pin should be set to LOW after M240 set it to HIGH
  8112. if (chdkActive && (_millis() - chdkHigh > CHDK_DELAY))
  8113. {
  8114. chdkActive = false;
  8115. WRITE(CHDK, LOW);
  8116. }
  8117. #endif
  8118. #if defined(KILL_PIN) && KILL_PIN > -1
  8119. // Check if the kill button was pressed and wait just in case it was an accidental
  8120. // key kill key press
  8121. // -------------------------------------------------------------------------------
  8122. if( 0 == READ(KILL_PIN) )
  8123. {
  8124. killCount++;
  8125. }
  8126. else if (killCount > 0)
  8127. {
  8128. killCount--;
  8129. }
  8130. // Exceeded threshold and we can confirm that it was not accidental
  8131. // KILL the machine
  8132. // ----------------------------------------------------------------
  8133. if ( killCount >= KILL_DELAY)
  8134. {
  8135. kill("", 5);
  8136. }
  8137. #endif
  8138. #if defined(CONTROLLERFAN_PIN) && CONTROLLERFAN_PIN > -1
  8139. controllerFan(); //Check if fan should be turned on to cool stepper drivers down
  8140. #endif
  8141. #ifdef EXTRUDER_RUNOUT_PREVENT
  8142. if( (_millis() - previous_millis_cmd) > EXTRUDER_RUNOUT_SECONDS*1000 )
  8143. if(degHotend(active_extruder)>EXTRUDER_RUNOUT_MINTEMP)
  8144. {
  8145. bool oldstatus=READ(E0_ENABLE_PIN);
  8146. enable_e0();
  8147. float oldepos=current_position[E_AXIS];
  8148. float oldedes=destination[E_AXIS];
  8149. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS],
  8150. destination[E_AXIS]+EXTRUDER_RUNOUT_EXTRUDE*EXTRUDER_RUNOUT_ESTEPS/cs.axis_steps_per_unit[E_AXIS],
  8151. EXTRUDER_RUNOUT_SPEED/60.*EXTRUDER_RUNOUT_ESTEPS/cs.axis_steps_per_unit[E_AXIS], active_extruder);
  8152. current_position[E_AXIS]=oldepos;
  8153. destination[E_AXIS]=oldedes;
  8154. plan_set_e_position(oldepos);
  8155. previous_millis_cmd=_millis();
  8156. st_synchronize();
  8157. WRITE(E0_ENABLE_PIN,oldstatus);
  8158. }
  8159. #endif
  8160. #ifdef TEMP_STAT_LEDS
  8161. handle_status_leds();
  8162. #endif
  8163. check_axes_activity();
  8164. mmu_loop();
  8165. }
  8166. void kill(const char *full_screen_message, unsigned char id)
  8167. {
  8168. printf_P(_N("KILL: %d\n"), id);
  8169. //return;
  8170. cli(); // Stop interrupts
  8171. disable_heater();
  8172. disable_x();
  8173. // SERIAL_ECHOLNPGM("kill - disable Y");
  8174. disable_y();
  8175. disable_z();
  8176. disable_e0();
  8177. disable_e1();
  8178. disable_e2();
  8179. #if defined(PS_ON_PIN) && PS_ON_PIN > -1
  8180. pinMode(PS_ON_PIN,INPUT);
  8181. #endif
  8182. SERIAL_ERROR_START;
  8183. SERIAL_ERRORLNRPGM(_n("Printer halted. kill() called!"));////MSG_ERR_KILLED
  8184. if (full_screen_message != NULL) {
  8185. SERIAL_ERRORLNRPGM(full_screen_message);
  8186. lcd_display_message_fullscreen_P(full_screen_message);
  8187. } else {
  8188. LCD_ALERTMESSAGERPGM(_n("KILLED. "));////MSG_KILLED
  8189. }
  8190. // FMC small patch to update the LCD before ending
  8191. sei(); // enable interrupts
  8192. for ( int i=5; i--; lcd_update(0))
  8193. {
  8194. _delay(200);
  8195. }
  8196. cli(); // disable interrupts
  8197. suicide();
  8198. while(1)
  8199. {
  8200. #ifdef WATCHDOG
  8201. wdt_reset();
  8202. #endif //WATCHDOG
  8203. /* Intentionally left empty */
  8204. } // Wait for reset
  8205. }
  8206. void Stop()
  8207. {
  8208. disable_heater();
  8209. if(Stopped == false) {
  8210. Stopped = true;
  8211. lcd_print_stop();
  8212. Stopped_gcode_LastN = gcode_LastN; // Save last g_code for restart
  8213. SERIAL_ERROR_START;
  8214. SERIAL_ERRORLNRPGM(MSG_ERR_STOPPED);
  8215. LCD_MESSAGERPGM(_T(MSG_STOPPED));
  8216. }
  8217. }
  8218. bool IsStopped() { return Stopped; };
  8219. #ifdef FAST_PWM_FAN
  8220. void setPwmFrequency(uint8_t pin, int val)
  8221. {
  8222. val &= 0x07;
  8223. switch(digitalPinToTimer(pin))
  8224. {
  8225. #if defined(TCCR0A)
  8226. case TIMER0A:
  8227. case TIMER0B:
  8228. // TCCR0B &= ~(_BV(CS00) | _BV(CS01) | _BV(CS02));
  8229. // TCCR0B |= val;
  8230. break;
  8231. #endif
  8232. #if defined(TCCR1A)
  8233. case TIMER1A:
  8234. case TIMER1B:
  8235. // TCCR1B &= ~(_BV(CS10) | _BV(CS11) | _BV(CS12));
  8236. // TCCR1B |= val;
  8237. break;
  8238. #endif
  8239. #if defined(TCCR2)
  8240. case TIMER2:
  8241. case TIMER2:
  8242. TCCR2 &= ~(_BV(CS10) | _BV(CS11) | _BV(CS12));
  8243. TCCR2 |= val;
  8244. break;
  8245. #endif
  8246. #if defined(TCCR2A)
  8247. case TIMER2A:
  8248. case TIMER2B:
  8249. TCCR2B &= ~(_BV(CS20) | _BV(CS21) | _BV(CS22));
  8250. TCCR2B |= val;
  8251. break;
  8252. #endif
  8253. #if defined(TCCR3A)
  8254. case TIMER3A:
  8255. case TIMER3B:
  8256. case TIMER3C:
  8257. TCCR3B &= ~(_BV(CS30) | _BV(CS31) | _BV(CS32));
  8258. TCCR3B |= val;
  8259. break;
  8260. #endif
  8261. #if defined(TCCR4A)
  8262. case TIMER4A:
  8263. case TIMER4B:
  8264. case TIMER4C:
  8265. TCCR4B &= ~(_BV(CS40) | _BV(CS41) | _BV(CS42));
  8266. TCCR4B |= val;
  8267. break;
  8268. #endif
  8269. #if defined(TCCR5A)
  8270. case TIMER5A:
  8271. case TIMER5B:
  8272. case TIMER5C:
  8273. TCCR5B &= ~(_BV(CS50) | _BV(CS51) | _BV(CS52));
  8274. TCCR5B |= val;
  8275. break;
  8276. #endif
  8277. }
  8278. }
  8279. #endif //FAST_PWM_FAN
  8280. //! @brief Get and validate extruder number
  8281. //!
  8282. //! If it is not specified, active_extruder is returned in parameter extruder.
  8283. //! @param [in] code M code number
  8284. //! @param [out] extruder
  8285. //! @return error
  8286. //! @retval true Invalid extruder specified in T code
  8287. //! @retval false Valid extruder specified in T code, or not specifiead
  8288. bool setTargetedHotend(int code, uint8_t &extruder)
  8289. {
  8290. extruder = active_extruder;
  8291. if(code_seen('T')) {
  8292. extruder = code_value();
  8293. if(extruder >= EXTRUDERS) {
  8294. SERIAL_ECHO_START;
  8295. switch(code){
  8296. case 104:
  8297. SERIAL_ECHORPGM(_n("M104 Invalid extruder "));////MSG_M104_INVALID_EXTRUDER
  8298. break;
  8299. case 105:
  8300. SERIAL_ECHO(_n("M105 Invalid extruder "));////MSG_M105_INVALID_EXTRUDER
  8301. break;
  8302. case 109:
  8303. SERIAL_ECHO(_n("M109 Invalid extruder "));////MSG_M109_INVALID_EXTRUDER
  8304. break;
  8305. case 218:
  8306. SERIAL_ECHO(_n("M218 Invalid extruder "));////MSG_M218_INVALID_EXTRUDER
  8307. break;
  8308. case 221:
  8309. SERIAL_ECHO(_n("M221 Invalid extruder "));////MSG_M221_INVALID_EXTRUDER
  8310. break;
  8311. }
  8312. SERIAL_PROTOCOLLN((int)extruder);
  8313. return true;
  8314. }
  8315. }
  8316. return false;
  8317. }
  8318. void save_statistics(unsigned long _total_filament_used, unsigned long _total_print_time) //_total_filament_used unit: mm/100; print time in s
  8319. {
  8320. if (eeprom_read_byte((uint8_t *)EEPROM_TOTALTIME) == 255 && eeprom_read_byte((uint8_t *)EEPROM_TOTALTIME + 1) == 255 && eeprom_read_byte((uint8_t *)EEPROM_TOTALTIME + 2) == 255 && eeprom_read_byte((uint8_t *)EEPROM_TOTALTIME + 3) == 255)
  8321. {
  8322. eeprom_update_dword((uint32_t *)EEPROM_TOTALTIME, 0);
  8323. eeprom_update_dword((uint32_t *)EEPROM_FILAMENTUSED, 0);
  8324. }
  8325. unsigned long _previous_filament = eeprom_read_dword((uint32_t *)EEPROM_FILAMENTUSED); //_previous_filament unit: cm
  8326. unsigned long _previous_time = eeprom_read_dword((uint32_t *)EEPROM_TOTALTIME); //_previous_time unit: min
  8327. eeprom_update_dword((uint32_t *)EEPROM_TOTALTIME, _previous_time + (_total_print_time/60)); //EEPROM_TOTALTIME unit: min
  8328. eeprom_update_dword((uint32_t *)EEPROM_FILAMENTUSED, _previous_filament + (_total_filament_used / 1000));
  8329. total_filament_used = 0;
  8330. }
  8331. float calculate_extruder_multiplier(float diameter) {
  8332. float out = 1.f;
  8333. if (cs.volumetric_enabled && diameter > 0.f) {
  8334. float area = M_PI * diameter * diameter * 0.25;
  8335. out = 1.f / area;
  8336. }
  8337. if (extrudemultiply != 100)
  8338. out *= float(extrudemultiply) * 0.01f;
  8339. return out;
  8340. }
  8341. void calculate_extruder_multipliers() {
  8342. extruder_multiplier[0] = calculate_extruder_multiplier(cs.filament_size[0]);
  8343. #if EXTRUDERS > 1
  8344. extruder_multiplier[1] = calculate_extruder_multiplier(cs.filament_size[1]);
  8345. #if EXTRUDERS > 2
  8346. extruder_multiplier[2] = calculate_extruder_multiplier(cs.filament_size[2]);
  8347. #endif
  8348. #endif
  8349. }
  8350. void delay_keep_alive(unsigned int ms)
  8351. {
  8352. for (;;) {
  8353. manage_heater();
  8354. // Manage inactivity, but don't disable steppers on timeout.
  8355. manage_inactivity(true);
  8356. lcd_update(0);
  8357. if (ms == 0)
  8358. break;
  8359. else if (ms >= 50) {
  8360. _delay(50);
  8361. ms -= 50;
  8362. } else {
  8363. _delay(ms);
  8364. ms = 0;
  8365. }
  8366. }
  8367. }
  8368. static void wait_for_heater(long codenum, uint8_t extruder) {
  8369. if (!degTargetHotend(extruder))
  8370. return;
  8371. #ifdef TEMP_RESIDENCY_TIME
  8372. long residencyStart;
  8373. residencyStart = -1;
  8374. /* continue to loop until we have reached the target temp
  8375. _and_ until TEMP_RESIDENCY_TIME hasn't passed since we reached it */
  8376. while ((!cancel_heatup) && ((residencyStart == -1) ||
  8377. (residencyStart >= 0 && (((unsigned int)(_millis() - residencyStart)) < (TEMP_RESIDENCY_TIME * 1000UL))))) {
  8378. #else
  8379. while (target_direction ? (isHeatingHotend(tmp_extruder)) : (isCoolingHotend(tmp_extruder) && (CooldownNoWait == false))) {
  8380. #endif //TEMP_RESIDENCY_TIME
  8381. if ((_millis() - codenum) > 1000UL)
  8382. { //Print Temp Reading and remaining time every 1 second while heating up/cooling down
  8383. if (!farm_mode) {
  8384. SERIAL_PROTOCOLPGM("T:");
  8385. SERIAL_PROTOCOL_F(degHotend(extruder), 1);
  8386. SERIAL_PROTOCOLPGM(" E:");
  8387. SERIAL_PROTOCOL((int)extruder);
  8388. #ifdef TEMP_RESIDENCY_TIME
  8389. SERIAL_PROTOCOLPGM(" W:");
  8390. if (residencyStart > -1)
  8391. {
  8392. codenum = ((TEMP_RESIDENCY_TIME * 1000UL) - (_millis() - residencyStart)) / 1000UL;
  8393. SERIAL_PROTOCOLLN(codenum);
  8394. }
  8395. else
  8396. {
  8397. SERIAL_PROTOCOLLN("?");
  8398. }
  8399. }
  8400. #else
  8401. SERIAL_PROTOCOLLN("");
  8402. #endif
  8403. codenum = _millis();
  8404. }
  8405. manage_heater();
  8406. manage_inactivity(true); //do not disable steppers
  8407. lcd_update(0);
  8408. #ifdef TEMP_RESIDENCY_TIME
  8409. /* start/restart the TEMP_RESIDENCY_TIME timer whenever we reach target temp for the first time
  8410. or when current temp falls outside the hysteresis after target temp was reached */
  8411. if ((residencyStart == -1 && target_direction && (degHotend(extruder) >= (degTargetHotend(extruder) - TEMP_WINDOW))) ||
  8412. (residencyStart == -1 && !target_direction && (degHotend(extruder) <= (degTargetHotend(extruder) + TEMP_WINDOW))) ||
  8413. (residencyStart > -1 && labs(degHotend(extruder) - degTargetHotend(extruder)) > TEMP_HYSTERESIS))
  8414. {
  8415. residencyStart = _millis();
  8416. }
  8417. #endif //TEMP_RESIDENCY_TIME
  8418. }
  8419. }
  8420. void check_babystep()
  8421. {
  8422. int babystep_z = eeprom_read_word(reinterpret_cast<uint16_t *>(&(EEPROM_Sheets_base->
  8423. s[(eeprom_read_byte(&(EEPROM_Sheets_base->active_sheet)))].z_offset)));
  8424. if ((babystep_z < Z_BABYSTEP_MIN) || (babystep_z > Z_BABYSTEP_MAX)) {
  8425. babystep_z = 0; //if babystep value is out of min max range, set it to 0
  8426. SERIAL_ECHOLNPGM("Z live adjust out of range. Setting to 0");
  8427. eeprom_write_word(reinterpret_cast<uint16_t *>(&(EEPROM_Sheets_base->
  8428. s[(eeprom_read_byte(&(EEPROM_Sheets_base->active_sheet)))].z_offset)),
  8429. babystep_z);
  8430. lcd_show_fullscreen_message_and_wait_P(PSTR("Z live adjust out of range. Setting to 0. Click to continue."));
  8431. lcd_update_enable(true);
  8432. }
  8433. }
  8434. #ifdef HEATBED_ANALYSIS
  8435. void d_setup()
  8436. {
  8437. pinMode(D_DATACLOCK, INPUT_PULLUP);
  8438. pinMode(D_DATA, INPUT_PULLUP);
  8439. pinMode(D_REQUIRE, OUTPUT);
  8440. digitalWrite(D_REQUIRE, HIGH);
  8441. }
  8442. float d_ReadData()
  8443. {
  8444. int digit[13];
  8445. String mergeOutput;
  8446. float output;
  8447. digitalWrite(D_REQUIRE, HIGH);
  8448. for (int i = 0; i<13; i++)
  8449. {
  8450. for (int j = 0; j < 4; j++)
  8451. {
  8452. while (digitalRead(D_DATACLOCK) == LOW) {}
  8453. while (digitalRead(D_DATACLOCK) == HIGH) {}
  8454. bitWrite(digit[i], j, digitalRead(D_DATA));
  8455. }
  8456. }
  8457. digitalWrite(D_REQUIRE, LOW);
  8458. mergeOutput = "";
  8459. output = 0;
  8460. for (int r = 5; r <= 10; r++) //Merge digits
  8461. {
  8462. mergeOutput += digit[r];
  8463. }
  8464. output = mergeOutput.toFloat();
  8465. if (digit[4] == 8) //Handle sign
  8466. {
  8467. output *= -1;
  8468. }
  8469. for (int i = digit[11]; i > 0; i--) //Handle floating point
  8470. {
  8471. output /= 10;
  8472. }
  8473. return output;
  8474. }
  8475. void bed_check(float x_dimension, float y_dimension, int x_points_num, int y_points_num, float shift_x, float shift_y) {
  8476. int t1 = 0;
  8477. int t_delay = 0;
  8478. int digit[13];
  8479. int m;
  8480. char str[3];
  8481. //String mergeOutput;
  8482. char mergeOutput[15];
  8483. float output;
  8484. int mesh_point = 0; //index number of calibration point
  8485. float bed_zero_ref_x = (-22.f + X_PROBE_OFFSET_FROM_EXTRUDER); //shift between zero point on bed and target and between probe and nozzle
  8486. float bed_zero_ref_y = (-0.6f + Y_PROBE_OFFSET_FROM_EXTRUDER);
  8487. float mesh_home_z_search = 4;
  8488. float measure_z_height = 0.2f;
  8489. float row[x_points_num];
  8490. int ix = 0;
  8491. int iy = 0;
  8492. const char* filename_wldsd = "mesh.txt";
  8493. char data_wldsd[x_points_num * 7 + 1]; //6 chars(" -A.BCD")for each measurement + null
  8494. char numb_wldsd[8]; // (" -A.BCD" + null)
  8495. #ifdef MICROMETER_LOGGING
  8496. d_setup();
  8497. #endif //MICROMETER_LOGGING
  8498. int XY_AXIS_FEEDRATE = homing_feedrate[X_AXIS] / 20;
  8499. int Z_LIFT_FEEDRATE = homing_feedrate[Z_AXIS] / 40;
  8500. unsigned int custom_message_type_old = custom_message_type;
  8501. unsigned int custom_message_state_old = custom_message_state;
  8502. custom_message_type = CustomMsg::MeshBedLeveling;
  8503. custom_message_state = (x_points_num * y_points_num) + 10;
  8504. lcd_update(1);
  8505. //mbl.reset();
  8506. babystep_undo();
  8507. card.openFile(filename_wldsd, false);
  8508. /*destination[Z_AXIS] = mesh_home_z_search;
  8509. //plan_buffer_line_curposXYZE(Z_LIFT_FEEDRATE, active_extruder);
  8510. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], Z_LIFT_FEEDRATE, active_extruder);
  8511. for(int8_t i=0; i < NUM_AXIS; i++) {
  8512. current_position[i] = destination[i];
  8513. }
  8514. st_synchronize();
  8515. */
  8516. destination[Z_AXIS] = measure_z_height;
  8517. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], Z_LIFT_FEEDRATE, active_extruder);
  8518. for(int8_t i=0; i < NUM_AXIS; i++) {
  8519. current_position[i] = destination[i];
  8520. }
  8521. st_synchronize();
  8522. /*int l_feedmultiply = */setup_for_endstop_move(false);
  8523. SERIAL_PROTOCOLPGM("Num X,Y: ");
  8524. SERIAL_PROTOCOL(x_points_num);
  8525. SERIAL_PROTOCOLPGM(",");
  8526. SERIAL_PROTOCOL(y_points_num);
  8527. SERIAL_PROTOCOLPGM("\nZ search height: ");
  8528. SERIAL_PROTOCOL(mesh_home_z_search);
  8529. SERIAL_PROTOCOLPGM("\nDimension X,Y: ");
  8530. SERIAL_PROTOCOL(x_dimension);
  8531. SERIAL_PROTOCOLPGM(",");
  8532. SERIAL_PROTOCOL(y_dimension);
  8533. SERIAL_PROTOCOLLNPGM("\nMeasured points:");
  8534. while (mesh_point != x_points_num * y_points_num) {
  8535. ix = mesh_point % x_points_num; // from 0 to MESH_NUM_X_POINTS - 1
  8536. iy = mesh_point / x_points_num;
  8537. if (iy & 1) ix = (x_points_num - 1) - ix; // Zig zag
  8538. float z0 = 0.f;
  8539. /*destination[Z_AXIS] = mesh_home_z_search;
  8540. //plan_buffer_line_curposXYZE(Z_LIFT_FEEDRATE, active_extruder);
  8541. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], Z_LIFT_FEEDRATE, active_extruder);
  8542. for(int8_t i=0; i < NUM_AXIS; i++) {
  8543. current_position[i] = destination[i];
  8544. }
  8545. st_synchronize();*/
  8546. //current_position[X_AXIS] = 13.f + ix * (x_dimension / (x_points_num - 1)) - bed_zero_ref_x + shift_x;
  8547. //current_position[Y_AXIS] = 6.4f + iy * (y_dimension / (y_points_num - 1)) - bed_zero_ref_y + shift_y;
  8548. destination[X_AXIS] = ix * (x_dimension / (x_points_num - 1)) + shift_x;
  8549. destination[Y_AXIS] = iy * (y_dimension / (y_points_num - 1)) + shift_y;
  8550. mesh_plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], XY_AXIS_FEEDRATE/6, active_extruder);
  8551. set_current_to_destination();
  8552. st_synchronize();
  8553. // printf_P(PSTR("X = %f; Y= %f \n"), current_position[X_AXIS], current_position[Y_AXIS]);
  8554. delay_keep_alive(1000);
  8555. #ifdef MICROMETER_LOGGING
  8556. //memset(numb_wldsd, 0, sizeof(numb_wldsd));
  8557. //dtostrf(d_ReadData(), 8, 5, numb_wldsd);
  8558. //strcat(data_wldsd, numb_wldsd);
  8559. //MYSERIAL.println(data_wldsd);
  8560. //delay(1000);
  8561. //delay(3000);
  8562. //t1 = millis();
  8563. //while (digitalRead(D_DATACLOCK) == LOW) {}
  8564. //while (digitalRead(D_DATACLOCK) == HIGH) {}
  8565. memset(digit, 0, sizeof(digit));
  8566. //cli();
  8567. digitalWrite(D_REQUIRE, LOW);
  8568. for (int i = 0; i<13; i++)
  8569. {
  8570. //t1 = millis();
  8571. for (int j = 0; j < 4; j++)
  8572. {
  8573. while (digitalRead(D_DATACLOCK) == LOW) {}
  8574. while (digitalRead(D_DATACLOCK) == HIGH) {}
  8575. //printf_P(PSTR("Done %d\n"), j);
  8576. bitWrite(digit[i], j, digitalRead(D_DATA));
  8577. }
  8578. //t_delay = (millis() - t1);
  8579. //SERIAL_PROTOCOLPGM(" ");
  8580. //SERIAL_PROTOCOL_F(t_delay, 5);
  8581. //SERIAL_PROTOCOLPGM(" ");
  8582. }
  8583. //sei();
  8584. digitalWrite(D_REQUIRE, HIGH);
  8585. mergeOutput[0] = '\0';
  8586. output = 0;
  8587. for (int r = 5; r <= 10; r++) //Merge digits
  8588. {
  8589. sprintf(str, "%d", digit[r]);
  8590. strcat(mergeOutput, str);
  8591. }
  8592. output = atof(mergeOutput);
  8593. if (digit[4] == 8) //Handle sign
  8594. {
  8595. output *= -1;
  8596. }
  8597. for (int i = digit[11]; i > 0; i--) //Handle floating point
  8598. {
  8599. output *= 0.1;
  8600. }
  8601. //output = d_ReadData();
  8602. //row[ix] = current_position[Z_AXIS];
  8603. //row[ix] = d_ReadData();
  8604. row[ix] = output;
  8605. if (iy % 2 == 1 ? ix == 0 : ix == x_points_num - 1) {
  8606. memset(data_wldsd, 0, sizeof(data_wldsd));
  8607. for (int i = 0; i < x_points_num; i++) {
  8608. SERIAL_PROTOCOLPGM(" ");
  8609. SERIAL_PROTOCOL_F(row[i], 5);
  8610. memset(numb_wldsd, 0, sizeof(numb_wldsd));
  8611. dtostrf(row[i], 7, 3, numb_wldsd);
  8612. strcat(data_wldsd, numb_wldsd);
  8613. }
  8614. card.write_command(data_wldsd);
  8615. SERIAL_PROTOCOLPGM("\n");
  8616. }
  8617. custom_message_state--;
  8618. mesh_point++;
  8619. lcd_update(1);
  8620. }
  8621. #endif //MICROMETER_LOGGING
  8622. card.closefile();
  8623. //clean_up_after_endstop_move(l_feedmultiply);
  8624. }
  8625. void bed_analysis(float x_dimension, float y_dimension, int x_points_num, int y_points_num, float shift_x, float shift_y) {
  8626. int t1 = 0;
  8627. int t_delay = 0;
  8628. int digit[13];
  8629. int m;
  8630. char str[3];
  8631. //String mergeOutput;
  8632. char mergeOutput[15];
  8633. float output;
  8634. int mesh_point = 0; //index number of calibration point
  8635. float bed_zero_ref_x = (-22.f + X_PROBE_OFFSET_FROM_EXTRUDER); //shift between zero point on bed and target and between probe and nozzle
  8636. float bed_zero_ref_y = (-0.6f + Y_PROBE_OFFSET_FROM_EXTRUDER);
  8637. float mesh_home_z_search = 4;
  8638. float row[x_points_num];
  8639. int ix = 0;
  8640. int iy = 0;
  8641. const char* filename_wldsd = "wldsd.txt";
  8642. char data_wldsd[70];
  8643. char numb_wldsd[10];
  8644. d_setup();
  8645. if (!(axis_known_position[X_AXIS] && axis_known_position[Y_AXIS] && axis_known_position[Z_AXIS])) {
  8646. // We don't know where we are! HOME!
  8647. // Push the commands to the front of the message queue in the reverse order!
  8648. // There shall be always enough space reserved for these commands.
  8649. repeatcommand_front(); // repeat G80 with all its parameters
  8650. enquecommand_front_P((PSTR("G28 W0")));
  8651. enquecommand_front_P((PSTR("G1 Z5")));
  8652. return;
  8653. }
  8654. unsigned int custom_message_type_old = custom_message_type;
  8655. unsigned int custom_message_state_old = custom_message_state;
  8656. custom_message_type = CustomMsg::MeshBedLeveling;
  8657. custom_message_state = (x_points_num * y_points_num) + 10;
  8658. lcd_update(1);
  8659. mbl.reset();
  8660. babystep_undo();
  8661. card.openFile(filename_wldsd, false);
  8662. current_position[Z_AXIS] = mesh_home_z_search;
  8663. plan_buffer_line_curposXYZE(homing_feedrate[Z_AXIS] / 60, active_extruder);
  8664. int XY_AXIS_FEEDRATE = homing_feedrate[X_AXIS] / 20;
  8665. int Z_LIFT_FEEDRATE = homing_feedrate[Z_AXIS] / 40;
  8666. int l_feedmultiply = setup_for_endstop_move(false);
  8667. SERIAL_PROTOCOLPGM("Num X,Y: ");
  8668. SERIAL_PROTOCOL(x_points_num);
  8669. SERIAL_PROTOCOLPGM(",");
  8670. SERIAL_PROTOCOL(y_points_num);
  8671. SERIAL_PROTOCOLPGM("\nZ search height: ");
  8672. SERIAL_PROTOCOL(mesh_home_z_search);
  8673. SERIAL_PROTOCOLPGM("\nDimension X,Y: ");
  8674. SERIAL_PROTOCOL(x_dimension);
  8675. SERIAL_PROTOCOLPGM(",");
  8676. SERIAL_PROTOCOL(y_dimension);
  8677. SERIAL_PROTOCOLLNPGM("\nMeasured points:");
  8678. while (mesh_point != x_points_num * y_points_num) {
  8679. ix = mesh_point % x_points_num; // from 0 to MESH_NUM_X_POINTS - 1
  8680. iy = mesh_point / x_points_num;
  8681. if (iy & 1) ix = (x_points_num - 1) - ix; // Zig zag
  8682. float z0 = 0.f;
  8683. current_position[Z_AXIS] = mesh_home_z_search;
  8684. plan_buffer_line_curposXYZE(Z_LIFT_FEEDRATE, active_extruder);
  8685. st_synchronize();
  8686. current_position[X_AXIS] = 13.f + ix * (x_dimension / (x_points_num - 1)) - bed_zero_ref_x + shift_x;
  8687. current_position[Y_AXIS] = 6.4f + iy * (y_dimension / (y_points_num - 1)) - bed_zero_ref_y + shift_y;
  8688. plan_buffer_line_curposXYZE(XY_AXIS_FEEDRATE, active_extruder);
  8689. st_synchronize();
  8690. if (!find_bed_induction_sensor_point_z(-10.f)) { //if we have data from z calibration max allowed difference is 1mm for each point, if we dont have data max difference is 10mm from initial point
  8691. break;
  8692. card.closefile();
  8693. }
  8694. //memset(numb_wldsd, 0, sizeof(numb_wldsd));
  8695. //dtostrf(d_ReadData(), 8, 5, numb_wldsd);
  8696. //strcat(data_wldsd, numb_wldsd);
  8697. //MYSERIAL.println(data_wldsd);
  8698. //_delay(1000);
  8699. //_delay(3000);
  8700. //t1 = _millis();
  8701. //while (digitalRead(D_DATACLOCK) == LOW) {}
  8702. //while (digitalRead(D_DATACLOCK) == HIGH) {}
  8703. memset(digit, 0, sizeof(digit));
  8704. //cli();
  8705. digitalWrite(D_REQUIRE, LOW);
  8706. for (int i = 0; i<13; i++)
  8707. {
  8708. //t1 = _millis();
  8709. for (int j = 0; j < 4; j++)
  8710. {
  8711. while (digitalRead(D_DATACLOCK) == LOW) {}
  8712. while (digitalRead(D_DATACLOCK) == HIGH) {}
  8713. bitWrite(digit[i], j, digitalRead(D_DATA));
  8714. }
  8715. //t_delay = (_millis() - t1);
  8716. //SERIAL_PROTOCOLPGM(" ");
  8717. //SERIAL_PROTOCOL_F(t_delay, 5);
  8718. //SERIAL_PROTOCOLPGM(" ");
  8719. }
  8720. //sei();
  8721. digitalWrite(D_REQUIRE, HIGH);
  8722. mergeOutput[0] = '\0';
  8723. output = 0;
  8724. for (int r = 5; r <= 10; r++) //Merge digits
  8725. {
  8726. sprintf(str, "%d", digit[r]);
  8727. strcat(mergeOutput, str);
  8728. }
  8729. output = atof(mergeOutput);
  8730. if (digit[4] == 8) //Handle sign
  8731. {
  8732. output *= -1;
  8733. }
  8734. for (int i = digit[11]; i > 0; i--) //Handle floating point
  8735. {
  8736. output *= 0.1;
  8737. }
  8738. //output = d_ReadData();
  8739. //row[ix] = current_position[Z_AXIS];
  8740. memset(data_wldsd, 0, sizeof(data_wldsd));
  8741. for (int i = 0; i <3; i++) {
  8742. memset(numb_wldsd, 0, sizeof(numb_wldsd));
  8743. dtostrf(current_position[i], 8, 5, numb_wldsd);
  8744. strcat(data_wldsd, numb_wldsd);
  8745. strcat(data_wldsd, ";");
  8746. }
  8747. memset(numb_wldsd, 0, sizeof(numb_wldsd));
  8748. dtostrf(output, 8, 5, numb_wldsd);
  8749. strcat(data_wldsd, numb_wldsd);
  8750. //strcat(data_wldsd, ";");
  8751. card.write_command(data_wldsd);
  8752. //row[ix] = d_ReadData();
  8753. row[ix] = output; // current_position[Z_AXIS];
  8754. if (iy % 2 == 1 ? ix == 0 : ix == x_points_num - 1) {
  8755. for (int i = 0; i < x_points_num; i++) {
  8756. SERIAL_PROTOCOLPGM(" ");
  8757. SERIAL_PROTOCOL_F(row[i], 5);
  8758. }
  8759. SERIAL_PROTOCOLPGM("\n");
  8760. }
  8761. custom_message_state--;
  8762. mesh_point++;
  8763. lcd_update(1);
  8764. }
  8765. card.closefile();
  8766. clean_up_after_endstop_move(l_feedmultiply);
  8767. }
  8768. #endif //HEATBED_ANALYSIS
  8769. #ifndef PINDA_THERMISTOR
  8770. static void temp_compensation_start() {
  8771. custom_message_type = CustomMsg::TempCompPreheat;
  8772. custom_message_state = PINDA_HEAT_T + 1;
  8773. lcd_update(2);
  8774. if (degHotend(active_extruder) > EXTRUDE_MINTEMP) {
  8775. current_position[E_AXIS] -= default_retraction;
  8776. }
  8777. plan_buffer_line_curposXYZE(400, active_extruder);
  8778. current_position[X_AXIS] = PINDA_PREHEAT_X;
  8779. current_position[Y_AXIS] = PINDA_PREHEAT_Y;
  8780. current_position[Z_AXIS] = PINDA_PREHEAT_Z;
  8781. plan_buffer_line_curposXYZE(3000 / 60, active_extruder);
  8782. st_synchronize();
  8783. while (fabs(degBed() - target_temperature_bed) > 1) delay_keep_alive(1000);
  8784. for (int i = 0; i < PINDA_HEAT_T; i++) {
  8785. delay_keep_alive(1000);
  8786. custom_message_state = PINDA_HEAT_T - i;
  8787. if (custom_message_state == 99 || custom_message_state == 9) lcd_update(2); //force whole display redraw if number of digits changed
  8788. else lcd_update(1);
  8789. }
  8790. custom_message_type = CustomMsg::Status;
  8791. custom_message_state = 0;
  8792. }
  8793. static void temp_compensation_apply() {
  8794. int i_add;
  8795. int z_shift = 0;
  8796. float z_shift_mm;
  8797. if (calibration_status() == CALIBRATION_STATUS_CALIBRATED) {
  8798. if (target_temperature_bed % 10 == 0 && target_temperature_bed >= 60 && target_temperature_bed <= 100) {
  8799. i_add = (target_temperature_bed - 60) / 10;
  8800. EEPROM_read_B(EEPROM_PROBE_TEMP_SHIFT + i_add * 2, &z_shift);
  8801. z_shift_mm = z_shift / cs.axis_steps_per_unit[Z_AXIS];
  8802. }else {
  8803. //interpolation
  8804. z_shift_mm = temp_comp_interpolation(target_temperature_bed) / cs.axis_steps_per_unit[Z_AXIS];
  8805. }
  8806. printf_P(_N("\nZ shift applied:%.3f\n"), z_shift_mm);
  8807. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS] - z_shift_mm, current_position[E_AXIS], homing_feedrate[Z_AXIS] / 40, active_extruder);
  8808. st_synchronize();
  8809. plan_set_z_position(current_position[Z_AXIS]);
  8810. }
  8811. else {
  8812. //we have no temp compensation data
  8813. }
  8814. }
  8815. #endif //ndef PINDA_THERMISTOR
  8816. float temp_comp_interpolation(float inp_temperature) {
  8817. //cubic spline interpolation
  8818. int n, i, j;
  8819. float h[10], a, b, c, d, sum, s[10] = { 0 }, x[10], F[10], f[10], m[10][10] = { 0 }, temp;
  8820. int shift[10];
  8821. int temp_C[10];
  8822. n = 6; //number of measured points
  8823. shift[0] = 0;
  8824. for (i = 0; i < n; i++) {
  8825. if (i>0) EEPROM_read_B(EEPROM_PROBE_TEMP_SHIFT + (i-1) * 2, &shift[i]); //read shift in steps from EEPROM
  8826. temp_C[i] = 50 + i * 10; //temperature in C
  8827. #ifdef PINDA_THERMISTOR
  8828. temp_C[i] = 35 + i * 5; //temperature in C
  8829. #else
  8830. temp_C[i] = 50 + i * 10; //temperature in C
  8831. #endif
  8832. x[i] = (float)temp_C[i];
  8833. f[i] = (float)shift[i];
  8834. }
  8835. if (inp_temperature < x[0]) return 0;
  8836. for (i = n - 1; i>0; i--) {
  8837. F[i] = (f[i] - f[i - 1]) / (x[i] - x[i - 1]);
  8838. h[i - 1] = x[i] - x[i - 1];
  8839. }
  8840. //*********** formation of h, s , f matrix **************
  8841. for (i = 1; i<n - 1; i++) {
  8842. m[i][i] = 2 * (h[i - 1] + h[i]);
  8843. if (i != 1) {
  8844. m[i][i - 1] = h[i - 1];
  8845. m[i - 1][i] = h[i - 1];
  8846. }
  8847. m[i][n - 1] = 6 * (F[i + 1] - F[i]);
  8848. }
  8849. //*********** forward elimination **************
  8850. for (i = 1; i<n - 2; i++) {
  8851. temp = (m[i + 1][i] / m[i][i]);
  8852. for (j = 1; j <= n - 1; j++)
  8853. m[i + 1][j] -= temp*m[i][j];
  8854. }
  8855. //*********** backward substitution *********
  8856. for (i = n - 2; i>0; i--) {
  8857. sum = 0;
  8858. for (j = i; j <= n - 2; j++)
  8859. sum += m[i][j] * s[j];
  8860. s[i] = (m[i][n - 1] - sum) / m[i][i];
  8861. }
  8862. for (i = 0; i<n - 1; i++)
  8863. if ((x[i] <= inp_temperature && inp_temperature <= x[i + 1]) || (i == n-2 && inp_temperature > x[i + 1])) {
  8864. a = (s[i + 1] - s[i]) / (6 * h[i]);
  8865. b = s[i] / 2;
  8866. c = (f[i + 1] - f[i]) / h[i] - (2 * h[i] * s[i] + s[i + 1] * h[i]) / 6;
  8867. d = f[i];
  8868. sum = a*pow((inp_temperature - x[i]), 3) + b*pow((inp_temperature - x[i]), 2) + c*(inp_temperature - x[i]) + d;
  8869. }
  8870. return sum;
  8871. }
  8872. #ifdef PINDA_THERMISTOR
  8873. float temp_compensation_pinda_thermistor_offset(float temperature_pinda)
  8874. {
  8875. if (!temp_cal_active) return 0;
  8876. if (!calibration_status_pinda()) return 0;
  8877. return temp_comp_interpolation(temperature_pinda) / cs.axis_steps_per_unit[Z_AXIS];
  8878. }
  8879. #endif //PINDA_THERMISTOR
  8880. void long_pause() //long pause print
  8881. {
  8882. st_synchronize();
  8883. start_pause_print = _millis();
  8884. //retract
  8885. current_position[E_AXIS] -= default_retraction;
  8886. plan_buffer_line_curposXYZE(400, active_extruder);
  8887. //lift z
  8888. current_position[Z_AXIS] += Z_PAUSE_LIFT;
  8889. if (current_position[Z_AXIS] > Z_MAX_POS) current_position[Z_AXIS] = Z_MAX_POS;
  8890. plan_buffer_line_curposXYZE(15, active_extruder);
  8891. //Move XY to side
  8892. current_position[X_AXIS] = X_PAUSE_POS;
  8893. current_position[Y_AXIS] = Y_PAUSE_POS;
  8894. plan_buffer_line_curposXYZE(50, active_extruder);
  8895. // Turn off the hotends and print fan
  8896. setAllTargetHotends(0);
  8897. fanSpeed = 0;
  8898. }
  8899. void serialecho_temperatures() {
  8900. float tt = degHotend(active_extruder);
  8901. SERIAL_PROTOCOLPGM("T:");
  8902. SERIAL_PROTOCOL(tt);
  8903. SERIAL_PROTOCOLPGM(" E:");
  8904. SERIAL_PROTOCOL((int)active_extruder);
  8905. SERIAL_PROTOCOLPGM(" B:");
  8906. SERIAL_PROTOCOL_F(degBed(), 1);
  8907. SERIAL_PROTOCOLLN("");
  8908. }
  8909. #ifdef UVLO_SUPPORT
  8910. void uvlo_()
  8911. {
  8912. unsigned long time_start = _millis();
  8913. bool sd_print = card.sdprinting;
  8914. // Conserve power as soon as possible.
  8915. disable_x();
  8916. disable_y();
  8917. #ifdef TMC2130
  8918. tmc2130_set_current_h(Z_AXIS, 20);
  8919. tmc2130_set_current_r(Z_AXIS, 20);
  8920. tmc2130_set_current_h(E_AXIS, 20);
  8921. tmc2130_set_current_r(E_AXIS, 20);
  8922. #endif //TMC2130
  8923. // Indicate that the interrupt has been triggered.
  8924. // SERIAL_ECHOLNPGM("UVLO");
  8925. // Read out the current Z motor microstep counter. This will be later used
  8926. // for reaching the zero full step before powering off.
  8927. uint16_t z_microsteps = 0;
  8928. #ifdef TMC2130
  8929. z_microsteps = tmc2130_rd_MSCNT(Z_TMC2130_CS);
  8930. #endif //TMC2130
  8931. // Calculate the file position, from which to resume this print.
  8932. long sd_position = sdpos_atomic; //atomic sd position of last command added in queue
  8933. {
  8934. uint16_t sdlen_planner = planner_calc_sd_length(); //length of sd commands in planner
  8935. sd_position -= sdlen_planner;
  8936. uint16_t sdlen_cmdqueue = cmdqueue_calc_sd_length(); //length of sd commands in cmdqueue
  8937. sd_position -= sdlen_cmdqueue;
  8938. if (sd_position < 0) sd_position = 0;
  8939. }
  8940. // save the global state at planning time
  8941. uint16_t feedrate_bckp;
  8942. if (blocks_queued())
  8943. {
  8944. memcpy(saved_target, current_block->gcode_target, sizeof(saved_target));
  8945. feedrate_bckp = current_block->gcode_feedrate;
  8946. }
  8947. else
  8948. {
  8949. saved_target[0] = SAVED_TARGET_UNSET;
  8950. feedrate_bckp = feedrate;
  8951. }
  8952. // After this call, the planner queue is emptied and the current_position is set to a current logical coordinate.
  8953. // The logical coordinate will likely differ from the machine coordinate if the skew calibration and mesh bed leveling
  8954. // are in action.
  8955. planner_abort_hard();
  8956. // Store the current extruder position.
  8957. eeprom_update_float((float*)(EEPROM_UVLO_CURRENT_POSITION_E), st_get_position_mm(E_AXIS));
  8958. eeprom_update_byte((uint8_t*)EEPROM_UVLO_E_ABS, axis_relative_modes[3]?0:1);
  8959. // Clean the input command queue.
  8960. cmdqueue_reset();
  8961. card.sdprinting = false;
  8962. // card.closefile();
  8963. // Enable stepper driver interrupt to move Z axis.
  8964. // This should be fine as the planner and command queues are empty and the SD card printing is disabled.
  8965. //FIXME one may want to disable serial lines at this point of time to avoid interfering with the command queue,
  8966. // though it should not happen that the command queue is touched as the plan_buffer_line always succeed without blocking.
  8967. sei();
  8968. plan_buffer_line(
  8969. current_position[X_AXIS],
  8970. current_position[Y_AXIS],
  8971. current_position[Z_AXIS],
  8972. current_position[E_AXIS] - default_retraction,
  8973. 95, active_extruder);
  8974. st_synchronize();
  8975. disable_e0();
  8976. plan_buffer_line(
  8977. current_position[X_AXIS],
  8978. current_position[Y_AXIS],
  8979. current_position[Z_AXIS] + UVLO_Z_AXIS_SHIFT + float((1024 - z_microsteps + 7) >> 4) / cs.axis_steps_per_unit[Z_AXIS],
  8980. current_position[E_AXIS] - default_retraction,
  8981. 40, active_extruder);
  8982. st_synchronize();
  8983. disable_e0();
  8984. plan_buffer_line(
  8985. current_position[X_AXIS],
  8986. current_position[Y_AXIS],
  8987. current_position[Z_AXIS] + UVLO_Z_AXIS_SHIFT + float((1024 - z_microsteps + 7) >> 4) / cs.axis_steps_per_unit[Z_AXIS],
  8988. current_position[E_AXIS] - default_retraction,
  8989. 40, active_extruder);
  8990. st_synchronize();
  8991. disable_e0();
  8992. // Move Z up to the next 0th full step.
  8993. // Write the file position.
  8994. eeprom_update_dword((uint32_t*)(EEPROM_FILE_POSITION), sd_position);
  8995. // Store the mesh bed leveling offsets. This is 2*7*7=98 bytes, which takes 98*3.4us=333us in worst case.
  8996. for (int8_t mesh_point = 0; mesh_point < MESH_NUM_X_POINTS * MESH_NUM_Y_POINTS; ++ mesh_point) {
  8997. uint8_t ix = mesh_point % MESH_NUM_X_POINTS; // from 0 to MESH_NUM_X_POINTS - 1
  8998. uint8_t iy = mesh_point / MESH_NUM_X_POINTS;
  8999. // Scale the z value to 1u resolution.
  9000. int16_t v = mbl.active ? int16_t(floor(mbl.z_values[iy][ix] * 1000.f + 0.5f)) : 0;
  9001. eeprom_update_word((uint16_t*)(EEPROM_UVLO_MESH_BED_LEVELING_FULL +2*mesh_point), *reinterpret_cast<uint16_t*>(&v));
  9002. }
  9003. // Read out the current Z motor microstep counter. This will be later used
  9004. // for reaching the zero full step before powering off.
  9005. eeprom_update_word((uint16_t*)(EEPROM_UVLO_Z_MICROSTEPS), z_microsteps);
  9006. // Store the current position.
  9007. eeprom_update_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 0), current_position[X_AXIS]);
  9008. eeprom_update_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 4), current_position[Y_AXIS]);
  9009. eeprom_update_float((float*)EEPROM_UVLO_CURRENT_POSITION_Z , current_position[Z_AXIS]);
  9010. // Store the current feed rate, temperatures, fan speed and extruder multipliers (flow rates)
  9011. eeprom_update_word((uint16_t*)EEPROM_UVLO_FEEDRATE, feedrate_bckp);
  9012. EEPROM_save_B(EEPROM_UVLO_FEEDMULTIPLY, &feedmultiply);
  9013. eeprom_update_byte((uint8_t*)EEPROM_UVLO_TARGET_HOTEND, target_temperature[active_extruder]);
  9014. eeprom_update_byte((uint8_t*)EEPROM_UVLO_TARGET_BED, target_temperature_bed);
  9015. eeprom_update_byte((uint8_t*)EEPROM_UVLO_FAN_SPEED, fanSpeed);
  9016. eeprom_update_float((float*)(EEPROM_EXTRUDER_MULTIPLIER_0), extruder_multiplier[0]);
  9017. #if EXTRUDERS > 1
  9018. eeprom_update_float((float*)(EEPROM_EXTRUDER_MULTIPLIER_1), extruder_multiplier[1]);
  9019. #if EXTRUDERS > 2
  9020. eeprom_update_float((float*)(EEPROM_EXTRUDER_MULTIPLIER_2), extruder_multiplier[2]);
  9021. #endif
  9022. #endif
  9023. eeprom_update_word((uint16_t*)(EEPROM_EXTRUDEMULTIPLY), (uint16_t)extrudemultiply);
  9024. // Store the saved target
  9025. eeprom_update_float((float*)(EEPROM_UVLO_SAVED_TARGET+0*4), saved_target[X_AXIS]);
  9026. eeprom_update_float((float*)(EEPROM_UVLO_SAVED_TARGET+1*4), saved_target[Y_AXIS]);
  9027. eeprom_update_float((float*)(EEPROM_UVLO_SAVED_TARGET+2*4), saved_target[Z_AXIS]);
  9028. eeprom_update_float((float*)(EEPROM_UVLO_SAVED_TARGET+3*4), saved_target[E_AXIS]);
  9029. // Finaly store the "power outage" flag.
  9030. if(sd_print) eeprom_update_byte((uint8_t*)EEPROM_UVLO, 1);
  9031. st_synchronize();
  9032. printf_P(_N("stps%d\n"), tmc2130_rd_MSCNT(Z_AXIS));
  9033. // Increment power failure counter
  9034. eeprom_update_byte((uint8_t*)EEPROM_POWER_COUNT, eeprom_read_byte((uint8_t*)EEPROM_POWER_COUNT) + 1);
  9035. eeprom_update_word((uint16_t*)EEPROM_POWER_COUNT_TOT, eeprom_read_word((uint16_t*)EEPROM_POWER_COUNT_TOT) + 1);
  9036. printf_P(_N("UVLO - end %d\n"), _millis() - time_start);
  9037. #if 0
  9038. // Move the print head to the side of the print until all the power stored in the power supply capacitors is depleted.
  9039. current_position[X_AXIS] = (current_position[X_AXIS] < 0.5f * (X_MIN_POS + X_MAX_POS)) ? X_MIN_POS : X_MAX_POS;
  9040. plan_buffer_line_curposXYZE(500, active_extruder);
  9041. st_synchronize();
  9042. #endif
  9043. wdt_enable(WDTO_500MS);
  9044. WRITE(BEEPER,HIGH);
  9045. while(1)
  9046. ;
  9047. }
  9048. void uvlo_tiny()
  9049. {
  9050. uint16_t z_microsteps=0;
  9051. // Conserve power as soon as possible.
  9052. disable_x();
  9053. disable_y();
  9054. disable_e0();
  9055. #ifdef TMC2130
  9056. tmc2130_set_current_h(Z_AXIS, 20);
  9057. tmc2130_set_current_r(Z_AXIS, 20);
  9058. #endif //TMC2130
  9059. // Read out the current Z motor microstep counter
  9060. #ifdef TMC2130
  9061. z_microsteps=tmc2130_rd_MSCNT(Z_TMC2130_CS);
  9062. #endif //TMC2130
  9063. planner_abort_hard();
  9064. //save current position only in case, where the printer is moving on Z axis, which is only when EEPROM_UVLO is 1
  9065. //EEPROM_UVLO is 1 after normal uvlo or after recover_print(), when the extruder is moving on Z axis after rehome
  9066. if(eeprom_read_byte((uint8_t*)EEPROM_UVLO)!=2){
  9067. eeprom_update_float((float*)(EEPROM_UVLO_TINY_CURRENT_POSITION_Z), current_position[Z_AXIS]);
  9068. eeprom_update_word((uint16_t*)(EEPROM_UVLO_TINY_Z_MICROSTEPS),z_microsteps);
  9069. }
  9070. //after multiple power panics current Z axis is unknow
  9071. //in this case we set EEPROM_UVLO_TINY_CURRENT_POSITION_Z to last know position which is EEPROM_UVLO_CURRENT_POSITION_Z
  9072. if(eeprom_read_float((float*)EEPROM_UVLO_TINY_CURRENT_POSITION_Z) < 0.001f){
  9073. eeprom_update_float((float*)(EEPROM_UVLO_TINY_CURRENT_POSITION_Z), eeprom_read_float((float*)EEPROM_UVLO_CURRENT_POSITION_Z));
  9074. eeprom_update_word((uint16_t*)(EEPROM_UVLO_TINY_Z_MICROSTEPS), eeprom_read_word((uint16_t*)EEPROM_UVLO_Z_MICROSTEPS));
  9075. }
  9076. // Finaly store the "power outage" flag.
  9077. eeprom_update_byte((uint8_t*)EEPROM_UVLO,2);
  9078. // Increment power failure counter
  9079. eeprom_update_byte((uint8_t*)EEPROM_POWER_COUNT, eeprom_read_byte((uint8_t*)EEPROM_POWER_COUNT) + 1);
  9080. eeprom_update_word((uint16_t*)EEPROM_POWER_COUNT_TOT, eeprom_read_word((uint16_t*)EEPROM_POWER_COUNT_TOT) + 1);
  9081. wdt_enable(WDTO_500MS);
  9082. WRITE(BEEPER,HIGH);
  9083. while(1)
  9084. ;
  9085. }
  9086. #endif //UVLO_SUPPORT
  9087. #if (defined(FANCHECK) && defined(TACH_1) && (TACH_1 >-1))
  9088. void setup_fan_interrupt() {
  9089. //INT7
  9090. DDRE &= ~(1 << 7); //input pin
  9091. PORTE &= ~(1 << 7); //no internal pull-up
  9092. //start with sensing rising edge
  9093. EICRB &= ~(1 << 6);
  9094. EICRB |= (1 << 7);
  9095. //enable INT7 interrupt
  9096. EIMSK |= (1 << 7);
  9097. }
  9098. // The fan interrupt is triggered at maximum 325Hz (may be a bit more due to component tollerances),
  9099. // and it takes 4.24 us to process (the interrupt invocation overhead not taken into account).
  9100. ISR(INT7_vect) {
  9101. //measuring speed now works for fanSpeed > 18 (approximately), which is sufficient because MIN_PRINT_FAN_SPEED is higher
  9102. #ifdef FAN_SOFT_PWM
  9103. if (!fan_measuring || (fanSpeedSoftPwm < MIN_PRINT_FAN_SPEED)) return;
  9104. #else //FAN_SOFT_PWM
  9105. if (fanSpeed < MIN_PRINT_FAN_SPEED) return;
  9106. #endif //FAN_SOFT_PWM
  9107. if ((1 << 6) & EICRB) { //interrupt was triggered by rising edge
  9108. t_fan_rising_edge = millis_nc();
  9109. }
  9110. else { //interrupt was triggered by falling edge
  9111. if ((millis_nc() - t_fan_rising_edge) >= FAN_PULSE_WIDTH_LIMIT) {//this pulse was from sensor and not from pwm
  9112. fan_edge_counter[1] += 2; //we are currently counting all edges so lets count two edges for one pulse
  9113. }
  9114. }
  9115. EICRB ^= (1 << 6); //change edge
  9116. }
  9117. #endif
  9118. #ifdef UVLO_SUPPORT
  9119. void setup_uvlo_interrupt() {
  9120. DDRE &= ~(1 << 4); //input pin
  9121. PORTE &= ~(1 << 4); //no internal pull-up
  9122. //sensing falling edge
  9123. EICRB |= (1 << 0);
  9124. EICRB &= ~(1 << 1);
  9125. //enable INT4 interrupt
  9126. EIMSK |= (1 << 4);
  9127. }
  9128. ISR(INT4_vect) {
  9129. EIMSK &= ~(1 << 4); //disable INT4 interrupt to make sure that this code will be executed just once
  9130. SERIAL_ECHOLNPGM("INT4");
  9131. //fire normal uvlo only in case where EEPROM_UVLO is 0 or if IS_SD_PRINTING is 1.
  9132. if(PRINTER_ACTIVE && (!(eeprom_read_byte((uint8_t*)EEPROM_UVLO)))) uvlo_();
  9133. if(eeprom_read_byte((uint8_t*)EEPROM_UVLO)) uvlo_tiny();
  9134. }
  9135. void recover_print(uint8_t automatic) {
  9136. char cmd[30];
  9137. lcd_update_enable(true);
  9138. lcd_update(2);
  9139. lcd_setstatuspgm(_i("Recovering print "));////MSG_RECOVERING_PRINT c=20 r=1
  9140. bool bTiny=(eeprom_read_byte((uint8_t*)EEPROM_UVLO)==2);
  9141. recover_machine_state_after_power_panic(bTiny); //recover position, temperatures and extrude_multipliers
  9142. // Lift the print head, so one may remove the excess priming material.
  9143. if(!bTiny&&(current_position[Z_AXIS]<25))
  9144. enquecommand_P(PSTR("G1 Z25 F800"));
  9145. // Home X and Y axes. Homing just X and Y shall not touch the babystep and the world2machine transformation status.
  9146. enquecommand_P(PSTR("G28 X Y"));
  9147. // Set the target bed and nozzle temperatures and wait.
  9148. sprintf_P(cmd, PSTR("M109 S%d"), target_temperature[active_extruder]);
  9149. enquecommand(cmd);
  9150. sprintf_P(cmd, PSTR("M190 S%d"), target_temperature_bed);
  9151. enquecommand(cmd);
  9152. enquecommand_P(PSTR("M83")); //E axis relative mode
  9153. //enquecommand_P(PSTR("G1 E5 F120")); //Extrude some filament to stabilize pessure
  9154. // If not automatically recoreverd (long power loss), extrude extra filament to stabilize
  9155. if(automatic == 0){
  9156. enquecommand_P(PSTR("G1 E5 F120")); //Extrude some filament to stabilize pessure
  9157. }
  9158. enquecommand_P(PSTR("G1 E" STRINGIFY(-default_retraction)" F480"));
  9159. printf_P(_N("After waiting for temp:\nCurrent pos X_AXIS:%.3f\nCurrent pos Y_AXIS:%.3f\n"), current_position[X_AXIS], current_position[Y_AXIS]);
  9160. // Restart the print.
  9161. restore_print_from_eeprom();
  9162. printf_P(_N("Current pos Z_AXIS:%.3f\nCurrent pos E_AXIS:%.3f\n"), current_position[Z_AXIS], current_position[E_AXIS]);
  9163. }
  9164. void recover_machine_state_after_power_panic(bool bTiny)
  9165. {
  9166. char cmd[30];
  9167. // 1) Recover the logical cordinates at the time of the power panic.
  9168. // The logical XY coordinates are needed to recover the machine Z coordinate corrected by the mesh bed leveling.
  9169. current_position[X_AXIS] = eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 0));
  9170. current_position[Y_AXIS] = eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 4));
  9171. // 2) Restore the mesh bed leveling offsets. This is 2*7*7=98 bytes, which takes 98*3.4us=333us in worst case.
  9172. mbl.active = false;
  9173. for (int8_t mesh_point = 0; mesh_point < MESH_NUM_X_POINTS * MESH_NUM_Y_POINTS; ++ mesh_point) {
  9174. uint8_t ix = mesh_point % MESH_NUM_X_POINTS; // from 0 to MESH_NUM_X_POINTS - 1
  9175. uint8_t iy = mesh_point / MESH_NUM_X_POINTS;
  9176. // Scale the z value to 10u resolution.
  9177. int16_t v;
  9178. eeprom_read_block(&v, (void*)(EEPROM_UVLO_MESH_BED_LEVELING_FULL+2*mesh_point), 2);
  9179. if (v != 0)
  9180. mbl.active = true;
  9181. mbl.z_values[iy][ix] = float(v) * 0.001f;
  9182. }
  9183. // Recover the logical coordinate of the Z axis at the time of the power panic.
  9184. // The current position after power panic is moved to the next closest 0th full step.
  9185. if(bTiny){
  9186. current_position[Z_AXIS] = eeprom_read_float((float*)(EEPROM_UVLO_TINY_CURRENT_POSITION_Z))
  9187. + float((1024 - eeprom_read_word((uint16_t*)(EEPROM_UVLO_TINY_Z_MICROSTEPS))
  9188. + 7) >> 4) / cs.axis_steps_per_unit[Z_AXIS];
  9189. //after multiple power panics the print is slightly in the air so get it little bit down.
  9190. //Not exactly sure why is this happening, but it has something to do with bed leveling and world2machine coordinates
  9191. current_position[Z_AXIS] -= 0.4*mbl.get_z(current_position[X_AXIS], current_position[Y_AXIS]);
  9192. }
  9193. else{
  9194. current_position[Z_AXIS] = eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION_Z)) +
  9195. UVLO_Z_AXIS_SHIFT + float((1024 - eeprom_read_word((uint16_t*)(EEPROM_UVLO_Z_MICROSTEPS))
  9196. + 7) >> 4) / cs.axis_steps_per_unit[Z_AXIS];
  9197. }
  9198. if (eeprom_read_byte((uint8_t*)EEPROM_UVLO_E_ABS)) {
  9199. current_position[E_AXIS] = eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION_E));
  9200. sprintf_P(cmd, PSTR("G92 E"));
  9201. dtostrf(current_position[E_AXIS], 6, 3, cmd + strlen(cmd));
  9202. enquecommand(cmd);
  9203. }
  9204. memcpy(destination, current_position, sizeof(destination));
  9205. SERIAL_ECHOPGM("recover_machine_state_after_power_panic, initial ");
  9206. print_world_coordinates();
  9207. // 3) Initialize the logical to physical coordinate system transformation.
  9208. world2machine_initialize();
  9209. // SERIAL_ECHOPGM("recover_machine_state_after_power_panic, initial ");
  9210. // print_mesh_bed_leveling_table();
  9211. // 4) Load the baby stepping value, which is expected to be active at the time of power panic.
  9212. // The baby stepping value is used to reset the physical Z axis when rehoming the Z axis.
  9213. babystep_load();
  9214. // 5) Set the physical positions from the logical positions using the world2machine transformation and the active bed leveling.
  9215. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  9216. // 6) Power up the motors, mark their positions as known.
  9217. //FIXME Verfiy, whether the X and Y axes should be powered up here, as they will later be re-homed anyway.
  9218. axis_known_position[X_AXIS] = true; enable_x();
  9219. axis_known_position[Y_AXIS] = true; enable_y();
  9220. axis_known_position[Z_AXIS] = true; enable_z();
  9221. SERIAL_ECHOPGM("recover_machine_state_after_power_panic, initial ");
  9222. print_physical_coordinates();
  9223. // 7) Recover the target temperatures.
  9224. target_temperature[active_extruder] = eeprom_read_byte((uint8_t*)EEPROM_UVLO_TARGET_HOTEND);
  9225. target_temperature_bed = eeprom_read_byte((uint8_t*)EEPROM_UVLO_TARGET_BED);
  9226. // 8) Recover extruder multipilers
  9227. extruder_multiplier[0] = eeprom_read_float((float*)(EEPROM_EXTRUDER_MULTIPLIER_0));
  9228. #if EXTRUDERS > 1
  9229. extruder_multiplier[1] = eeprom_read_float((float*)(EEPROM_EXTRUDER_MULTIPLIER_1));
  9230. #if EXTRUDERS > 2
  9231. extruder_multiplier[2] = eeprom_read_float((float*)(EEPROM_EXTRUDER_MULTIPLIER_2));
  9232. #endif
  9233. #endif
  9234. extrudemultiply = (int)eeprom_read_word((uint16_t*)(EEPROM_EXTRUDEMULTIPLY));
  9235. // 9) Recover the saved target
  9236. saved_target[X_AXIS] = eeprom_read_float((float*)(EEPROM_UVLO_SAVED_TARGET+0*4));
  9237. saved_target[Y_AXIS] = eeprom_read_float((float*)(EEPROM_UVLO_SAVED_TARGET+1*4));
  9238. saved_target[Z_AXIS] = eeprom_read_float((float*)(EEPROM_UVLO_SAVED_TARGET+2*4));
  9239. saved_target[E_AXIS] = eeprom_read_float((float*)(EEPROM_UVLO_SAVED_TARGET+3*4));
  9240. }
  9241. void restore_print_from_eeprom() {
  9242. int feedrate_rec;
  9243. int feedmultiply_rec;
  9244. uint8_t fan_speed_rec;
  9245. char cmd[30];
  9246. char filename[13];
  9247. uint8_t depth = 0;
  9248. char dir_name[9];
  9249. fan_speed_rec = eeprom_read_byte((uint8_t*)EEPROM_UVLO_FAN_SPEED);
  9250. feedrate_rec = eeprom_read_word((uint16_t*)EEPROM_UVLO_FEEDRATE);
  9251. EEPROM_read_B(EEPROM_UVLO_FEEDMULTIPLY, &feedmultiply_rec);
  9252. SERIAL_ECHOPGM("Feedrate:");
  9253. MYSERIAL.print(feedrate_rec);
  9254. SERIAL_ECHOPGM(", feedmultiply:");
  9255. MYSERIAL.println(feedmultiply_rec);
  9256. depth = eeprom_read_byte((uint8_t*)EEPROM_DIR_DEPTH);
  9257. MYSERIAL.println(int(depth));
  9258. for (int i = 0; i < depth; i++) {
  9259. for (int j = 0; j < 8; j++) {
  9260. dir_name[j] = eeprom_read_byte((uint8_t*)EEPROM_DIRS + j + 8 * i);
  9261. }
  9262. dir_name[8] = '\0';
  9263. MYSERIAL.println(dir_name);
  9264. strcpy(dir_names[i], dir_name);
  9265. card.chdir(dir_name);
  9266. }
  9267. for (int i = 0; i < 8; i++) {
  9268. filename[i] = eeprom_read_byte((uint8_t*)EEPROM_FILENAME + i);
  9269. }
  9270. filename[8] = '\0';
  9271. MYSERIAL.print(filename);
  9272. strcat_P(filename, PSTR(".gco"));
  9273. sprintf_P(cmd, PSTR("M23 %s"), filename);
  9274. enquecommand(cmd);
  9275. uint32_t position = eeprom_read_dword((uint32_t*)(EEPROM_FILE_POSITION));
  9276. SERIAL_ECHOPGM("Position read from eeprom:");
  9277. MYSERIAL.println(position);
  9278. // E axis relative mode.
  9279. enquecommand_P(PSTR("M83"));
  9280. // Move to the XY print position in logical coordinates, where the print has been killed.
  9281. strcpy_P(cmd, PSTR("G1 X")); strcat(cmd, ftostr32(eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 0))));
  9282. strcat_P(cmd, PSTR(" Y")); strcat(cmd, ftostr32(eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 4))));
  9283. strcat_P(cmd, PSTR(" F2000"));
  9284. enquecommand(cmd);
  9285. //moving on Z axis ahead, set EEPROM_UVLO to 1, so normal uvlo can fire
  9286. eeprom_update_byte((uint8_t*)EEPROM_UVLO,1);
  9287. // Move the Z axis down to the print, in logical coordinates.
  9288. strcpy_P(cmd, PSTR("G1 Z")); strcat(cmd, ftostr32(eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION_Z))));
  9289. enquecommand(cmd);
  9290. // Unretract.
  9291. enquecommand_P(PSTR("G1 E" STRINGIFY(2*default_retraction)" F480"));
  9292. // Set the feedrates saved at the power panic.
  9293. sprintf_P(cmd, PSTR("G1 F%d"), feedrate_rec);
  9294. enquecommand(cmd);
  9295. sprintf_P(cmd, PSTR("M220 S%d"), feedmultiply_rec);
  9296. enquecommand(cmd);
  9297. if (eeprom_read_byte((uint8_t*)EEPROM_UVLO_E_ABS))
  9298. {
  9299. enquecommand_P(PSTR("M82")); //E axis abslute mode
  9300. }
  9301. // Set the fan speed saved at the power panic.
  9302. strcpy_P(cmd, PSTR("M106 S"));
  9303. strcat(cmd, itostr3(int(fan_speed_rec)));
  9304. enquecommand(cmd);
  9305. // Set a position in the file.
  9306. sprintf_P(cmd, PSTR("M26 S%lu"), position);
  9307. enquecommand(cmd);
  9308. enquecommand_P(PSTR("G4 S0"));
  9309. enquecommand_P(PSTR("PRUSA uvlo"));
  9310. }
  9311. #endif //UVLO_SUPPORT
  9312. //! @brief Immediately stop print moves
  9313. //!
  9314. //! Immediately stop print moves, save current extruder temperature and position to RAM.
  9315. //! If printing from sd card, position in file is saved.
  9316. //! If printing from USB, line number is saved.
  9317. //!
  9318. //! @param z_move
  9319. //! @param e_move
  9320. void stop_and_save_print_to_ram(float z_move, float e_move)
  9321. {
  9322. if (saved_printing) return;
  9323. #if 0
  9324. unsigned char nplanner_blocks;
  9325. #endif
  9326. unsigned char nlines;
  9327. uint16_t sdlen_planner;
  9328. uint16_t sdlen_cmdqueue;
  9329. cli();
  9330. if (card.sdprinting) {
  9331. #if 0
  9332. nplanner_blocks = number_of_blocks();
  9333. #endif
  9334. saved_sdpos = sdpos_atomic; //atomic sd position of last command added in queue
  9335. sdlen_planner = planner_calc_sd_length(); //length of sd commands in planner
  9336. saved_sdpos -= sdlen_planner;
  9337. sdlen_cmdqueue = cmdqueue_calc_sd_length(); //length of sd commands in cmdqueue
  9338. saved_sdpos -= sdlen_cmdqueue;
  9339. saved_printing_type = PRINTING_TYPE_SD;
  9340. }
  9341. else if (is_usb_printing) { //reuse saved_sdpos for storing line number
  9342. saved_sdpos = gcode_LastN; //start with line number of command added recently to cmd queue
  9343. //reuse planner_calc_sd_length function for getting number of lines of commands in planner:
  9344. nlines = planner_calc_sd_length(); //number of lines of commands in planner
  9345. saved_sdpos -= nlines;
  9346. saved_sdpos -= buflen; //number of blocks in cmd buffer
  9347. saved_printing_type = PRINTING_TYPE_USB;
  9348. }
  9349. else {
  9350. saved_printing_type = PRINTING_TYPE_NONE;
  9351. //not sd printing nor usb printing
  9352. }
  9353. #if 0
  9354. SERIAL_ECHOPGM("SDPOS_ATOMIC="); MYSERIAL.println(sdpos_atomic, DEC);
  9355. SERIAL_ECHOPGM("SDPOS="); MYSERIAL.println(card.get_sdpos(), DEC);
  9356. SERIAL_ECHOPGM("SDLEN_PLAN="); MYSERIAL.println(sdlen_planner, DEC);
  9357. SERIAL_ECHOPGM("SDLEN_CMDQ="); MYSERIAL.println(sdlen_cmdqueue, DEC);
  9358. SERIAL_ECHOPGM("PLANNERBLOCKS="); MYSERIAL.println(int(nplanner_blocks), DEC);
  9359. SERIAL_ECHOPGM("SDSAVED="); MYSERIAL.println(saved_sdpos, DEC);
  9360. //SERIAL_ECHOPGM("SDFILELEN="); MYSERIAL.println(card.fileSize(), DEC);
  9361. {
  9362. card.setIndex(saved_sdpos);
  9363. SERIAL_ECHOLNPGM("Content of planner buffer: ");
  9364. for (unsigned int idx = 0; idx < sdlen_planner; ++ idx)
  9365. MYSERIAL.print(char(card.get()));
  9366. SERIAL_ECHOLNPGM("Content of command buffer: ");
  9367. for (unsigned int idx = 0; idx < sdlen_cmdqueue; ++ idx)
  9368. MYSERIAL.print(char(card.get()));
  9369. SERIAL_ECHOLNPGM("End of command buffer");
  9370. }
  9371. {
  9372. // Print the content of the planner buffer, line by line:
  9373. card.setIndex(saved_sdpos);
  9374. int8_t iline = 0;
  9375. for (unsigned char idx = block_buffer_tail; idx != block_buffer_head; idx = (idx + 1) & (BLOCK_BUFFER_SIZE - 1), ++ iline) {
  9376. SERIAL_ECHOPGM("Planner line (from file): ");
  9377. MYSERIAL.print(int(iline), DEC);
  9378. SERIAL_ECHOPGM(", length: ");
  9379. MYSERIAL.print(block_buffer[idx].sdlen, DEC);
  9380. SERIAL_ECHOPGM(", steps: (");
  9381. MYSERIAL.print(block_buffer[idx].steps_x, DEC);
  9382. SERIAL_ECHOPGM(",");
  9383. MYSERIAL.print(block_buffer[idx].steps_y, DEC);
  9384. SERIAL_ECHOPGM(",");
  9385. MYSERIAL.print(block_buffer[idx].steps_z, DEC);
  9386. SERIAL_ECHOPGM(",");
  9387. MYSERIAL.print(block_buffer[idx].steps_e, DEC);
  9388. SERIAL_ECHOPGM("), events: ");
  9389. MYSERIAL.println(block_buffer[idx].step_event_count, DEC);
  9390. for (int len = block_buffer[idx].sdlen; len > 0; -- len)
  9391. MYSERIAL.print(char(card.get()));
  9392. }
  9393. }
  9394. {
  9395. // Print the content of the command buffer, line by line:
  9396. int8_t iline = 0;
  9397. union {
  9398. struct {
  9399. char lo;
  9400. char hi;
  9401. } lohi;
  9402. uint16_t value;
  9403. } sdlen_single;
  9404. int _bufindr = bufindr;
  9405. for (int _buflen = buflen; _buflen > 0; ++ iline) {
  9406. if (cmdbuffer[_bufindr] == CMDBUFFER_CURRENT_TYPE_SDCARD) {
  9407. sdlen_single.lohi.lo = cmdbuffer[_bufindr + 1];
  9408. sdlen_single.lohi.hi = cmdbuffer[_bufindr + 2];
  9409. }
  9410. SERIAL_ECHOPGM("Buffer line (from buffer): ");
  9411. MYSERIAL.print(int(iline), DEC);
  9412. SERIAL_ECHOPGM(", type: ");
  9413. MYSERIAL.print(int(cmdbuffer[_bufindr]), DEC);
  9414. SERIAL_ECHOPGM(", len: ");
  9415. MYSERIAL.println(sdlen_single.value, DEC);
  9416. // Print the content of the buffer line.
  9417. MYSERIAL.println(cmdbuffer + _bufindr + CMDHDRSIZE);
  9418. SERIAL_ECHOPGM("Buffer line (from file): ");
  9419. MYSERIAL.println(int(iline), DEC);
  9420. for (; sdlen_single.value > 0; -- sdlen_single.value)
  9421. MYSERIAL.print(char(card.get()));
  9422. if (-- _buflen == 0)
  9423. break;
  9424. // First skip the current command ID and iterate up to the end of the string.
  9425. for (_bufindr += CMDHDRSIZE; cmdbuffer[_bufindr] != 0; ++ _bufindr) ;
  9426. // Second, skip the end of string null character and iterate until a nonzero command ID is found.
  9427. for (++ _bufindr; _bufindr < sizeof(cmdbuffer) && cmdbuffer[_bufindr] == 0; ++ _bufindr) ;
  9428. // If the end of the buffer was empty,
  9429. if (_bufindr == sizeof(cmdbuffer)) {
  9430. // skip to the start and find the nonzero command.
  9431. for (_bufindr = 0; cmdbuffer[_bufindr] == 0; ++ _bufindr) ;
  9432. }
  9433. }
  9434. }
  9435. #endif
  9436. // save the global state at planning time
  9437. if (blocks_queued())
  9438. {
  9439. memcpy(saved_target, current_block->gcode_target, sizeof(saved_target));
  9440. saved_feedrate2 = current_block->gcode_feedrate;
  9441. }
  9442. else
  9443. {
  9444. saved_target[0] = SAVED_TARGET_UNSET;
  9445. saved_feedrate2 = feedrate;
  9446. }
  9447. planner_abort_hard(); //abort printing
  9448. memcpy(saved_pos, current_position, sizeof(saved_pos));
  9449. saved_feedmultiply2 = feedmultiply; //save feedmultiply
  9450. saved_active_extruder = active_extruder; //save active_extruder
  9451. saved_extruder_temperature = degTargetHotend(active_extruder);
  9452. saved_extruder_under_pressure = extruder_under_pressure; //extruder under pressure flag - currently unused
  9453. saved_extruder_relative_mode = axis_relative_modes[E_AXIS];
  9454. saved_fanSpeed = fanSpeed;
  9455. cmdqueue_reset(); //empty cmdqueue
  9456. card.sdprinting = false;
  9457. // card.closefile();
  9458. saved_printing = true;
  9459. // We may have missed a stepper timer interrupt. Be safe than sorry, reset the stepper timer before re-enabling interrupts.
  9460. st_reset_timer();
  9461. sei();
  9462. if ((z_move != 0) || (e_move != 0)) { // extruder or z move
  9463. #if 1
  9464. // Rather than calling plan_buffer_line directly, push the move into the command queue,
  9465. char buf[48];
  9466. // First unretract (relative extrusion)
  9467. if(!saved_extruder_relative_mode){
  9468. enquecommand(PSTR("M83"), true);
  9469. }
  9470. //retract 45mm/s
  9471. // A single sprintf may not be faster, but is definitely 20B shorter
  9472. // than a sequence of commands building the string piece by piece
  9473. // A snprintf would have been a safer call, but since it is not used
  9474. // in the whole program, its implementation would bring more bytes to the total size
  9475. // The behavior of dtostrf 8,3 should be roughly the same as %-0.3
  9476. sprintf_P(buf, PSTR("G1 E%-0.3f F2700"), e_move);
  9477. enquecommand(buf, false);
  9478. // Then lift Z axis
  9479. sprintf_P(buf, PSTR("G1 Z%-0.3f F%-0.3f"), saved_pos[Z_AXIS] + z_move, homing_feedrate[Z_AXIS]);
  9480. // At this point the command queue is empty.
  9481. enquecommand(buf, false);
  9482. // If this call is invoked from the main Arduino loop() function, let the caller know that the command
  9483. // in the command queue is not the original command, but a new one, so it should not be removed from the queue.
  9484. repeatcommand_front();
  9485. #else
  9486. plan_buffer_line(saved_pos[X_AXIS], saved_pos[Y_AXIS], saved_pos[Z_AXIS] + z_move, saved_pos[E_AXIS] + e_move, homing_feedrate[Z_AXIS], active_extruder);
  9487. st_synchronize(); //wait moving
  9488. memcpy(current_position, saved_pos, sizeof(saved_pos));
  9489. memcpy(destination, current_position, sizeof(destination));
  9490. #endif
  9491. }
  9492. }
  9493. //! @brief Restore print from ram
  9494. //!
  9495. //! Restore print saved by stop_and_save_print_to_ram(). Is blocking, restores
  9496. //! print fan speed, waits for extruder temperature restore, then restores
  9497. //! position and continues print moves.
  9498. //!
  9499. //! Internally lcd_update() is called by wait_for_heater().
  9500. //!
  9501. //! @param e_move
  9502. void restore_print_from_ram_and_continue(float e_move)
  9503. {
  9504. if (!saved_printing) return;
  9505. #ifdef FANCHECK
  9506. // Do not allow resume printing if fans are still not ok
  9507. if ((fan_check_error != EFCE_OK) && (fan_check_error != EFCE_FIXED)) return;
  9508. if (fan_check_error == EFCE_FIXED) fan_check_error = EFCE_OK; //reenable serial stream processing if printing from usb
  9509. #endif
  9510. // for (int axis = X_AXIS; axis <= E_AXIS; axis++)
  9511. // current_position[axis] = st_get_position_mm(axis);
  9512. active_extruder = saved_active_extruder; //restore active_extruder
  9513. fanSpeed = saved_fanSpeed;
  9514. if (degTargetHotend(saved_active_extruder) != saved_extruder_temperature)
  9515. {
  9516. setTargetHotendSafe(saved_extruder_temperature, saved_active_extruder);
  9517. heating_status = 1;
  9518. wait_for_heater(_millis(), saved_active_extruder);
  9519. heating_status = 2;
  9520. }
  9521. axis_relative_modes[E_AXIS] = saved_extruder_relative_mode;
  9522. float e = saved_pos[E_AXIS] - e_move;
  9523. plan_set_e_position(e);
  9524. #ifdef FANCHECK
  9525. fans_check_enabled = false;
  9526. #endif
  9527. //first move print head in XY to the saved position:
  9528. plan_buffer_line(saved_pos[X_AXIS], saved_pos[Y_AXIS], current_position[Z_AXIS], saved_pos[E_AXIS] - e_move, homing_feedrate[Z_AXIS]/13, active_extruder);
  9529. st_synchronize();
  9530. //then move Z
  9531. plan_buffer_line(saved_pos[X_AXIS], saved_pos[Y_AXIS], saved_pos[Z_AXIS], saved_pos[E_AXIS] - e_move, homing_feedrate[Z_AXIS]/13, active_extruder);
  9532. st_synchronize();
  9533. //and finaly unretract (35mm/s)
  9534. plan_buffer_line(saved_pos[X_AXIS], saved_pos[Y_AXIS], saved_pos[Z_AXIS], saved_pos[E_AXIS], 35, active_extruder);
  9535. st_synchronize();
  9536. #ifdef FANCHECK
  9537. fans_check_enabled = true;
  9538. #endif
  9539. // restore original feedrate/feedmultiply _after_ restoring the extruder position
  9540. feedrate = saved_feedrate2;
  9541. feedmultiply = saved_feedmultiply2;
  9542. memcpy(current_position, saved_pos, sizeof(saved_pos));
  9543. memcpy(destination, current_position, sizeof(destination));
  9544. if (saved_printing_type == PRINTING_TYPE_SD) { //was sd printing
  9545. card.setIndex(saved_sdpos);
  9546. sdpos_atomic = saved_sdpos;
  9547. card.sdprinting = true;
  9548. }
  9549. else if (saved_printing_type == PRINTING_TYPE_USB) { //was usb printing
  9550. gcode_LastN = saved_sdpos; //saved_sdpos was reused for storing line number when usb printing
  9551. serial_count = 0;
  9552. FlushSerialRequestResend();
  9553. }
  9554. else {
  9555. //not sd printing nor usb printing
  9556. }
  9557. SERIAL_PROTOCOLLNRPGM(MSG_OK); //dummy response because of octoprint is waiting for this
  9558. lcd_setstatuspgm(_T(WELCOME_MSG));
  9559. saved_printing_type = PRINTING_TYPE_NONE;
  9560. saved_printing = false;
  9561. waiting_inside_plan_buffer_line_print_aborted = true; //unroll the stack
  9562. }
  9563. void print_world_coordinates()
  9564. {
  9565. printf_P(_N("world coordinates: (%.3f, %.3f, %.3f)\n"), current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS]);
  9566. }
  9567. void print_physical_coordinates()
  9568. {
  9569. printf_P(_N("physical coordinates: (%.3f, %.3f, %.3f)\n"), st_get_position_mm(X_AXIS), st_get_position_mm(Y_AXIS), st_get_position_mm(Z_AXIS));
  9570. }
  9571. void print_mesh_bed_leveling_table()
  9572. {
  9573. SERIAL_ECHOPGM("mesh bed leveling: ");
  9574. for (int8_t y = 0; y < MESH_NUM_Y_POINTS; ++ y)
  9575. for (int8_t x = 0; x < MESH_NUM_Y_POINTS; ++ x) {
  9576. MYSERIAL.print(mbl.z_values[y][x], 3);
  9577. SERIAL_ECHOPGM(" ");
  9578. }
  9579. SERIAL_ECHOLNPGM("");
  9580. }
  9581. uint16_t print_time_remaining() {
  9582. uint16_t print_t = PRINT_TIME_REMAINING_INIT;
  9583. #ifdef TMC2130
  9584. if (SilentModeMenu == SILENT_MODE_OFF) print_t = print_time_remaining_normal;
  9585. else print_t = print_time_remaining_silent;
  9586. #else
  9587. print_t = print_time_remaining_normal;
  9588. #endif //TMC2130
  9589. if ((print_t != PRINT_TIME_REMAINING_INIT) && (feedmultiply != 0)) print_t = 100ul * print_t / feedmultiply;
  9590. return print_t;
  9591. }
  9592. uint8_t calc_percent_done()
  9593. {
  9594. //in case that we have information from M73 gcode return percentage counted by slicer, else return percentage counted as byte_printed/filesize
  9595. uint8_t percent_done = 0;
  9596. #ifdef TMC2130
  9597. if (SilentModeMenu == SILENT_MODE_OFF && print_percent_done_normal <= 100) {
  9598. percent_done = print_percent_done_normal;
  9599. }
  9600. else if (print_percent_done_silent <= 100) {
  9601. percent_done = print_percent_done_silent;
  9602. }
  9603. #else
  9604. if (print_percent_done_normal <= 100) {
  9605. percent_done = print_percent_done_normal;
  9606. }
  9607. #endif //TMC2130
  9608. else {
  9609. percent_done = card.percentDone();
  9610. }
  9611. return percent_done;
  9612. }
  9613. static void print_time_remaining_init()
  9614. {
  9615. print_time_remaining_normal = PRINT_TIME_REMAINING_INIT;
  9616. print_time_remaining_silent = PRINT_TIME_REMAINING_INIT;
  9617. print_percent_done_normal = PRINT_PERCENT_DONE_INIT;
  9618. print_percent_done_silent = PRINT_PERCENT_DONE_INIT;
  9619. }
  9620. void load_filament_final_feed()
  9621. {
  9622. current_position[E_AXIS]+= FILAMENTCHANGE_FINALFEED;
  9623. plan_buffer_line_curposXYZE(FILAMENTCHANGE_EFEED_FINAL, active_extruder);
  9624. }
  9625. //! @brief Wait for user to check the state
  9626. //! @par nozzle_temp nozzle temperature to load filament
  9627. void M600_check_state(float nozzle_temp)
  9628. {
  9629. lcd_change_fil_state = 0;
  9630. while (lcd_change_fil_state != 1)
  9631. {
  9632. lcd_change_fil_state = 0;
  9633. KEEPALIVE_STATE(PAUSED_FOR_USER);
  9634. lcd_alright();
  9635. KEEPALIVE_STATE(IN_HANDLER);
  9636. switch(lcd_change_fil_state)
  9637. {
  9638. // Filament failed to load so load it again
  9639. case 2:
  9640. if (mmu_enabled)
  9641. mmu_M600_load_filament(false, nozzle_temp); //nonautomatic load; change to "wrong filament loaded" option?
  9642. else
  9643. M600_load_filament_movements();
  9644. break;
  9645. // Filament loaded properly but color is not clear
  9646. case 3:
  9647. st_synchronize();
  9648. load_filament_final_feed();
  9649. lcd_loading_color();
  9650. st_synchronize();
  9651. break;
  9652. // Everything good
  9653. default:
  9654. lcd_change_success();
  9655. break;
  9656. }
  9657. }
  9658. }
  9659. //! @brief Wait for user action
  9660. //!
  9661. //! Beep, manage nozzle heater and wait for user to start unload filament
  9662. //! If times out, active extruder temperature is set to 0.
  9663. //!
  9664. //! @param HotendTempBckp Temperature to be restored for active extruder, after user resolves MMU problem.
  9665. void M600_wait_for_user(float HotendTempBckp) {
  9666. KEEPALIVE_STATE(PAUSED_FOR_USER);
  9667. int counterBeep = 0;
  9668. unsigned long waiting_start_time = _millis();
  9669. uint8_t wait_for_user_state = 0;
  9670. lcd_display_message_fullscreen_P(_T(MSG_PRESS_TO_UNLOAD));
  9671. bool bFirst=true;
  9672. while (!(wait_for_user_state == 0 && lcd_clicked())){
  9673. manage_heater();
  9674. manage_inactivity(true);
  9675. #if BEEPER > 0
  9676. if (counterBeep == 500) {
  9677. counterBeep = 0;
  9678. }
  9679. SET_OUTPUT(BEEPER);
  9680. if (counterBeep == 0) {
  9681. if((eSoundMode==e_SOUND_MODE_BLIND)|| (eSoundMode==e_SOUND_MODE_LOUD)||((eSoundMode==e_SOUND_MODE_ONCE)&&bFirst))
  9682. {
  9683. bFirst=false;
  9684. WRITE(BEEPER, HIGH);
  9685. }
  9686. }
  9687. if (counterBeep == 20) {
  9688. WRITE(BEEPER, LOW);
  9689. }
  9690. counterBeep++;
  9691. #endif //BEEPER > 0
  9692. switch (wait_for_user_state) {
  9693. case 0: //nozzle is hot, waiting for user to press the knob to unload filament
  9694. delay_keep_alive(4);
  9695. if (_millis() > waiting_start_time + (unsigned long)M600_TIMEOUT * 1000) {
  9696. lcd_display_message_fullscreen_P(_i("Press knob to preheat nozzle and continue."));////MSG_PRESS_TO_PREHEAT c=20 r=4
  9697. wait_for_user_state = 1;
  9698. setAllTargetHotends(0);
  9699. st_synchronize();
  9700. disable_e0();
  9701. disable_e1();
  9702. disable_e2();
  9703. }
  9704. break;
  9705. case 1: //nozzle target temperature is set to zero, waiting for user to start nozzle preheat
  9706. delay_keep_alive(4);
  9707. if (lcd_clicked()) {
  9708. setTargetHotend(HotendTempBckp, active_extruder);
  9709. lcd_wait_for_heater();
  9710. wait_for_user_state = 2;
  9711. }
  9712. break;
  9713. case 2: //waiting for nozzle to reach target temperature
  9714. if (abs(degTargetHotend(active_extruder) - degHotend(active_extruder)) < 1) {
  9715. lcd_display_message_fullscreen_P(_T(MSG_PRESS_TO_UNLOAD));
  9716. waiting_start_time = _millis();
  9717. wait_for_user_state = 0;
  9718. }
  9719. else {
  9720. counterBeep = 20; //beeper will be inactive during waiting for nozzle preheat
  9721. lcd_set_cursor(1, 4);
  9722. lcd_print(ftostr3(degHotend(active_extruder)));
  9723. }
  9724. break;
  9725. }
  9726. }
  9727. WRITE(BEEPER, LOW);
  9728. }
  9729. void M600_load_filament_movements()
  9730. {
  9731. #ifdef SNMM
  9732. display_loading();
  9733. do
  9734. {
  9735. current_position[E_AXIS] += 0.002;
  9736. plan_buffer_line_curposXYZE(500, active_extruder);
  9737. delay_keep_alive(2);
  9738. }
  9739. while (!lcd_clicked());
  9740. st_synchronize();
  9741. current_position[E_AXIS] += bowden_length[mmu_extruder];
  9742. plan_buffer_line_curposXYZE(3000, active_extruder);
  9743. current_position[E_AXIS] += FIL_LOAD_LENGTH - 60;
  9744. plan_buffer_line_curposXYZE(1400, active_extruder);
  9745. current_position[E_AXIS] += 40;
  9746. plan_buffer_line_curposXYZE(400, active_extruder);
  9747. current_position[E_AXIS] += 10;
  9748. plan_buffer_line_curposXYZE(50, active_extruder);
  9749. #else
  9750. current_position[E_AXIS]+= FILAMENTCHANGE_FIRSTFEED ;
  9751. plan_buffer_line_curposXYZE(FILAMENTCHANGE_EFEED_FIRST, active_extruder);
  9752. #endif
  9753. load_filament_final_feed();
  9754. lcd_loading_filament();
  9755. st_synchronize();
  9756. }
  9757. void M600_load_filament() {
  9758. //load filament for single material and SNMM
  9759. lcd_wait_interact();
  9760. //load_filament_time = _millis();
  9761. KEEPALIVE_STATE(PAUSED_FOR_USER);
  9762. #ifdef PAT9125
  9763. fsensor_autoload_check_start();
  9764. #endif //PAT9125
  9765. while(!lcd_clicked())
  9766. {
  9767. manage_heater();
  9768. manage_inactivity(true);
  9769. #ifdef FILAMENT_SENSOR
  9770. if (fsensor_check_autoload())
  9771. {
  9772. Sound_MakeCustom(50,1000,false);
  9773. break;
  9774. }
  9775. #endif //FILAMENT_SENSOR
  9776. }
  9777. #ifdef PAT9125
  9778. fsensor_autoload_check_stop();
  9779. #endif //PAT9125
  9780. KEEPALIVE_STATE(IN_HANDLER);
  9781. #ifdef FSENSOR_QUALITY
  9782. fsensor_oq_meassure_start(70);
  9783. #endif //FSENSOR_QUALITY
  9784. M600_load_filament_movements();
  9785. Sound_MakeCustom(50,1000,false);
  9786. #ifdef FSENSOR_QUALITY
  9787. fsensor_oq_meassure_stop();
  9788. if (!fsensor_oq_result())
  9789. {
  9790. bool disable = lcd_show_fullscreen_message_yes_no_and_wait_P(_i("Fil. sensor response is poor, disable it?"), false, true);
  9791. lcd_update_enable(true);
  9792. lcd_update(2);
  9793. if (disable)
  9794. fsensor_disable();
  9795. }
  9796. #endif //FSENSOR_QUALITY
  9797. lcd_update_enable(false);
  9798. }
  9799. //! @brief Wait for click
  9800. //!
  9801. //! Set
  9802. void marlin_wait_for_click()
  9803. {
  9804. int8_t busy_state_backup = busy_state;
  9805. KEEPALIVE_STATE(PAUSED_FOR_USER);
  9806. lcd_consume_click();
  9807. while(!lcd_clicked())
  9808. {
  9809. manage_heater();
  9810. manage_inactivity(true);
  9811. lcd_update(0);
  9812. }
  9813. KEEPALIVE_STATE(busy_state_backup);
  9814. }
  9815. #define FIL_LOAD_LENGTH 60
  9816. #ifdef PSU_Delta
  9817. bool bEnableForce_z;
  9818. void init_force_z()
  9819. {
  9820. WRITE(Z_ENABLE_PIN,Z_ENABLE_ON);
  9821. bEnableForce_z=true; // "true"-value enforce "disable_force_z()" executing
  9822. disable_force_z();
  9823. }
  9824. void check_force_z()
  9825. {
  9826. if(!(bEnableForce_z||eeprom_read_byte((uint8_t*)EEPROM_SILENT)))
  9827. init_force_z(); // causes enforced switching into disable-state
  9828. }
  9829. void disable_force_z()
  9830. {
  9831. uint16_t z_microsteps=0;
  9832. if(!bEnableForce_z) return; // motor already disabled (may be ;-p )
  9833. bEnableForce_z=false;
  9834. // switching to silent mode
  9835. #ifdef TMC2130
  9836. tmc2130_mode=TMC2130_MODE_SILENT;
  9837. update_mode_profile();
  9838. tmc2130_init(true);
  9839. #endif // TMC2130
  9840. axis_known_position[Z_AXIS]=false;
  9841. }
  9842. void enable_force_z()
  9843. {
  9844. if(bEnableForce_z)
  9845. return; // motor already enabled (may be ;-p )
  9846. bEnableForce_z=true;
  9847. // mode recovering
  9848. #ifdef TMC2130
  9849. tmc2130_mode=eeprom_read_byte((uint8_t*)EEPROM_SILENT)?TMC2130_MODE_SILENT:TMC2130_MODE_NORMAL;
  9850. update_mode_profile();
  9851. tmc2130_init(true);
  9852. #endif // TMC2130
  9853. WRITE(Z_ENABLE_PIN,Z_ENABLE_ON); // slightly redundant ;-p
  9854. }
  9855. #endif // PSU_Delta