fsensor.cpp 23 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696
  1. //! @file
  2. #include "Marlin.h"
  3. #include "fsensor.h"
  4. #include <avr/pgmspace.h>
  5. #include "pat9125.h"
  6. #include "stepper.h"
  7. #include "planner.h"
  8. #include "fastio.h"
  9. #include "io_atmega2560.h"
  10. #include "cmdqueue.h"
  11. #include "ultralcd.h"
  12. #include "ConfigurationStore.h"
  13. #include "mmu.h"
  14. #include "cardreader.h"
  15. #include "adc.h"
  16. #include "temperature.h"
  17. #include "config.h"
  18. //! @name Basic parameters
  19. //! @{
  20. #define FSENSOR_CHUNK_LEN 0.64F //!< filament sensor chunk length 0.64mm
  21. #define FSENSOR_ERR_MAX 17 //!< filament sensor maximum error count for runout detection
  22. //! @}
  23. //! @name Optical quality measurement parameters
  24. //! @{
  25. #define FSENSOR_OQ_MAX_ES 6 //!< maximum error sum while loading (length ~64mm = 100chunks)
  26. #define FSENSOR_OQ_MAX_EM 2 //!< maximum error counter value while loading
  27. #define FSENSOR_OQ_MIN_YD 2 //!< minimum yd per chunk (applied to avg value)
  28. #define FSENSOR_OQ_MAX_YD 200 //!< maximum yd per chunk (applied to avg value)
  29. #define FSENSOR_OQ_MAX_PD 4 //!< maximum positive deviation (= yd_max/yd_avg)
  30. #define FSENSOR_OQ_MAX_ND 5 //!< maximum negative deviation (= yd_avg/yd_min)
  31. #define FSENSOR_OQ_MAX_SH 13 //!< maximum shutter value
  32. //! @}
  33. const char ERRMSG_PAT9125_NOT_RESP[] PROGMEM = "PAT9125 not responding (%d)!\n";
  34. // PJ7 can not be used (does not have PinChangeInterrupt possibility)
  35. #define FSENSOR_INT_PIN 75 //!< filament sensor interrupt pin PJ4
  36. #define FSENSOR_INT_PIN_MASK 0x10 //!< filament sensor interrupt pin mask (bit4)
  37. #define FSENSOR_INT_PIN_PIN_REG PINJ // PIN register @ PJ4
  38. #define FSENSOR_INT_PIN_VECT PCINT1_vect // PinChange ISR @ PJ4
  39. #define FSENSOR_INT_PIN_PCMSK_REG PCMSK1 // PinChangeMaskRegister @ PJ4
  40. #define FSENSOR_INT_PIN_PCMSK_BIT PCINT13 // PinChange Interrupt / PinChange Enable Mask @ PJ4
  41. #define FSENSOR_INT_PIN_PCICR_BIT PCIE1 // PinChange Interrupt Enable / Flag @ PJ4
  42. //uint8_t fsensor_int_pin = FSENSOR_INT_PIN;
  43. uint8_t fsensor_int_pin_old = 0;
  44. int16_t fsensor_chunk_len = 0;
  45. //! enabled = initialized and sampled every chunk event
  46. bool fsensor_enabled = true;
  47. //! runout watching is done in fsensor_update (called from main loop)
  48. bool fsensor_watch_runout = true;
  49. //! not responding - is set if any communication error occurred during initialization or readout
  50. bool fsensor_not_responding = false;
  51. //! enable/disable quality meassurement
  52. bool fsensor_oq_meassure_enabled = false;
  53. //! number of errors, updated in ISR
  54. uint8_t fsensor_err_cnt = 0;
  55. //! variable for accumulating step count (updated callbacks from stepper and ISR)
  56. int16_t fsensor_st_cnt = 0;
  57. //! last dy value from pat9125 sensor (used in ISR)
  58. int16_t fsensor_dy_old = 0;
  59. //! log flag: 0=log disabled, 1=log enabled
  60. uint8_t fsensor_log = 1;
  61. //! @name filament autoload variables
  62. //! @{
  63. //! autoload feature enabled
  64. bool fsensor_autoload_enabled = true;
  65. //! autoload watching enable/disable flag
  66. bool fsensor_watch_autoload = false;
  67. //
  68. uint16_t fsensor_autoload_y;
  69. //
  70. uint8_t fsensor_autoload_c;
  71. //
  72. uint32_t fsensor_autoload_last_millis;
  73. //
  74. uint8_t fsensor_autoload_sum;
  75. //! @}
  76. //! @name filament optical quality measurement variables
  77. //! @{
  78. //! Measurement enable/disable flag
  79. bool fsensor_oq_meassure = false;
  80. //! skip-chunk counter, for accurate measurement is necessary to skip first chunk...
  81. uint8_t fsensor_oq_skipchunk;
  82. //! number of samples from start of measurement
  83. uint8_t fsensor_oq_samples;
  84. //! sum of steps in positive direction movements
  85. uint16_t fsensor_oq_st_sum;
  86. //! sum of deltas in positive direction movements
  87. uint16_t fsensor_oq_yd_sum;
  88. //! sum of errors during measurement
  89. uint16_t fsensor_oq_er_sum;
  90. //! max error counter value during measurement
  91. uint8_t fsensor_oq_er_max;
  92. //! minimum delta value
  93. int16_t fsensor_oq_yd_min;
  94. //! maximum delta value
  95. int16_t fsensor_oq_yd_max;
  96. //! sum of shutter value
  97. uint16_t fsensor_oq_sh_sum;
  98. //! @}
  99. #if IR_SENSOR_ANALOG
  100. ClFsensorPCB oFsensorPCB;
  101. ClFsensorActionNA oFsensorActionNA;
  102. bool bIRsensorStateFlag=false;
  103. unsigned long nIRsensorLastTime;
  104. #endif //IR_SENSOR_ANALOG
  105. void fsensor_stop_and_save_print(void)
  106. {
  107. printf_P(PSTR("fsensor_stop_and_save_print\n"));
  108. stop_and_save_print_to_ram(0, 0);
  109. fsensor_watch_runout = false;
  110. }
  111. void fsensor_restore_print_and_continue(void)
  112. {
  113. printf_P(PSTR("fsensor_restore_print_and_continue\n"));
  114. fsensor_watch_runout = true;
  115. fsensor_err_cnt = 0;
  116. restore_print_from_ram_and_continue(0);
  117. }
  118. // fsensor_checkpoint_print cuts the current print job at the current position,
  119. // allowing new instructions to be inserted in the middle
  120. void fsensor_checkpoint_print(void)
  121. {
  122. printf_P(PSTR("fsensor_checkpoint_print\n"));
  123. stop_and_save_print_to_ram(0, 0);
  124. restore_print_from_ram_and_continue(0);
  125. }
  126. void fsensor_init(void)
  127. {
  128. #ifdef PAT9125
  129. uint8_t pat9125 = pat9125_init();
  130. printf_P(PSTR("PAT9125_init:%hhu\n"), pat9125);
  131. #endif //PAT9125
  132. uint8_t fsensor = eeprom_read_byte((uint8_t*)EEPROM_FSENSOR);
  133. fsensor_autoload_enabled=eeprom_read_byte((uint8_t*)EEPROM_FSENS_AUTOLOAD_ENABLED);
  134. fsensor_not_responding = false;
  135. #ifdef PAT9125
  136. uint8_t oq_meassure_enabled = eeprom_read_byte((uint8_t*)EEPROM_FSENS_OQ_MEASS_ENABLED);
  137. fsensor_oq_meassure_enabled = (oq_meassure_enabled == 1)?true:false;
  138. fsensor_chunk_len = (int16_t)(FSENSOR_CHUNK_LEN * cs.axis_steps_per_unit[E_AXIS]);
  139. if (!pat9125)
  140. {
  141. fsensor = 0; //disable sensor
  142. fsensor_not_responding = true;
  143. }
  144. #endif //PAT9125
  145. #if IR_SENSOR_ANALOG
  146. bIRsensorStateFlag=false;
  147. oFsensorPCB=(ClFsensorPCB)eeprom_read_byte((uint8_t*)EEPROM_FSENSOR_PCB);
  148. oFsensorActionNA=(ClFsensorActionNA)eeprom_read_byte((uint8_t*)EEPROM_FSENSOR_ACTION_NA);
  149. #endif //IR_SENSOR_ANALOG
  150. if (fsensor)
  151. fsensor_enable(false); // (in this case) EEPROM update is not necessary
  152. else
  153. fsensor_disable(false); // (in this case) EEPROM update is not necessary
  154. printf_P(PSTR("FSensor %S"), (fsensor_enabled?PSTR("ENABLED"):PSTR("DISABLED")));
  155. #if IR_SENSOR_ANALOG
  156. printf_P(PSTR(" (sensor board revision: %S)\n"),(oFsensorPCB==ClFsensorPCB::_Rev03b)?PSTR("03b or newer"):PSTR("03 or older"));
  157. #else //IR_SENSOR_ANALOG
  158. printf_P(PSTR("\n"));
  159. #endif //IR_SENSOR_ANALOG
  160. if (check_for_ir_sensor()) ir_sensor_detected = true;
  161. }
  162. bool fsensor_enable(bool bUpdateEEPROM)
  163. {
  164. #ifdef PAT9125
  165. if (mmu_enabled == false) { //filament sensor is pat9125, enable only if it is working
  166. uint8_t pat9125 = pat9125_init();
  167. printf_P(PSTR("PAT9125_init:%hhu\n"), pat9125);
  168. if (pat9125)
  169. fsensor_not_responding = false;
  170. else
  171. fsensor_not_responding = true;
  172. fsensor_enabled = pat9125 ? true : false;
  173. fsensor_watch_runout = true;
  174. fsensor_oq_meassure = false;
  175. fsensor_err_cnt = 0;
  176. fsensor_dy_old = 0;
  177. eeprom_update_byte((uint8_t*)EEPROM_FSENSOR, fsensor_enabled ? 0x01 : 0x00);
  178. FSensorStateMenu = fsensor_enabled ? 1 : 0;
  179. }
  180. else //filament sensor is FINDA, always enable
  181. {
  182. fsensor_enabled = true;
  183. eeprom_update_byte((uint8_t*)EEPROM_FSENSOR, 0x01);
  184. FSensorStateMenu = 1;
  185. }
  186. #else // PAT9125
  187. #if IR_SENSOR_ANALOG
  188. if(!fsensor_IR_check())
  189. {
  190. bUpdateEEPROM=true;
  191. fsensor_enabled=false;
  192. fsensor_not_responding=true;
  193. FSensorStateMenu=0;
  194. }
  195. else {
  196. #endif //IR_SENSOR_ANALOG
  197. fsensor_enabled=true;
  198. fsensor_not_responding=false;
  199. FSensorStateMenu=1;
  200. #if IR_SENSOR_ANALOG
  201. }
  202. #endif //IR_SENSOR_ANALOG
  203. if(bUpdateEEPROM)
  204. eeprom_update_byte((uint8_t*)EEPROM_FSENSOR, FSensorStateMenu);
  205. #endif //PAT9125
  206. return fsensor_enabled;
  207. }
  208. void fsensor_disable(bool bUpdateEEPROM)
  209. {
  210. fsensor_enabled = false;
  211. FSensorStateMenu = 0;
  212. if(bUpdateEEPROM)
  213. eeprom_update_byte((uint8_t*)EEPROM_FSENSOR, 0x00);
  214. }
  215. void fsensor_autoload_set(bool State)
  216. {
  217. #ifdef PAT9125
  218. if (!State) fsensor_autoload_check_stop();
  219. #endif //PAT9125
  220. fsensor_autoload_enabled = State;
  221. eeprom_update_byte((unsigned char *)EEPROM_FSENS_AUTOLOAD_ENABLED, fsensor_autoload_enabled);
  222. }
  223. void pciSetup(byte pin)
  224. {
  225. // !!! "digitalPinTo?????bit()" does not provide the correct results for some MCU pins
  226. *digitalPinToPCMSK(pin) |= bit (digitalPinToPCMSKbit(pin)); // enable pin
  227. PCIFR |= bit (digitalPinToPCICRbit(pin)); // clear any outstanding interrupt
  228. PCICR |= bit (digitalPinToPCICRbit(pin)); // enable interrupt for the group
  229. }
  230. #ifdef PAT9125
  231. void fsensor_autoload_check_start(void)
  232. {
  233. // puts_P(_N("fsensor_autoload_check_start\n"));
  234. if (!fsensor_enabled) return;
  235. if (!fsensor_autoload_enabled) return;
  236. if (fsensor_watch_autoload) return;
  237. if (!pat9125_update_y()) //update sensor
  238. {
  239. fsensor_disable();
  240. fsensor_not_responding = true;
  241. fsensor_watch_autoload = false;
  242. printf_P(ERRMSG_PAT9125_NOT_RESP, 3);
  243. return;
  244. }
  245. puts_P(_N("fsensor_autoload_check_start - autoload ENABLED\n"));
  246. fsensor_autoload_y = pat9125_y; //save current y value
  247. fsensor_autoload_c = 0; //reset number of changes counter
  248. fsensor_autoload_sum = 0;
  249. fsensor_autoload_last_millis = _millis();
  250. fsensor_watch_runout = false;
  251. fsensor_watch_autoload = true;
  252. fsensor_err_cnt = 0;
  253. }
  254. void fsensor_autoload_check_stop(void)
  255. {
  256. // puts_P(_N("fsensor_autoload_check_stop\n"));
  257. if (!fsensor_enabled) return;
  258. // puts_P(_N("fsensor_autoload_check_stop 1\n"));
  259. if (!fsensor_autoload_enabled) return;
  260. // puts_P(_N("fsensor_autoload_check_stop 2\n"));
  261. if (!fsensor_watch_autoload) return;
  262. puts_P(_N("fsensor_autoload_check_stop - autoload DISABLED\n"));
  263. fsensor_autoload_sum = 0;
  264. fsensor_watch_autoload = false;
  265. fsensor_watch_runout = true;
  266. fsensor_err_cnt = 0;
  267. }
  268. #endif //PAT9125
  269. bool fsensor_check_autoload(void)
  270. {
  271. if (!fsensor_enabled) return false;
  272. if (!fsensor_autoload_enabled) return false;
  273. if (ir_sensor_detected) {
  274. if (digitalRead(IR_SENSOR_PIN) == 1) {
  275. fsensor_watch_autoload = true;
  276. }
  277. else if (fsensor_watch_autoload == true) {
  278. fsensor_watch_autoload = false;
  279. return true;
  280. }
  281. }
  282. #ifdef PAT9125
  283. if (!fsensor_watch_autoload)
  284. {
  285. fsensor_autoload_check_start();
  286. return false;
  287. }
  288. #if 0
  289. uint8_t fsensor_autoload_c_old = fsensor_autoload_c;
  290. #endif
  291. if ((_millis() - fsensor_autoload_last_millis) < 25) return false;
  292. fsensor_autoload_last_millis = _millis();
  293. if (!pat9125_update_y()) //update sensor
  294. {
  295. fsensor_disable();
  296. fsensor_not_responding = true;
  297. printf_P(ERRMSG_PAT9125_NOT_RESP, 2);
  298. return false;
  299. }
  300. int16_t dy = pat9125_y - fsensor_autoload_y;
  301. if (dy) //? dy value is nonzero
  302. {
  303. if (dy > 0) //? delta-y value is positive (inserting)
  304. {
  305. fsensor_autoload_sum += dy;
  306. fsensor_autoload_c += 3; //increment change counter by 3
  307. }
  308. else if (fsensor_autoload_c > 1)
  309. fsensor_autoload_c -= 2; //decrement change counter by 2
  310. fsensor_autoload_y = pat9125_y; //save current value
  311. }
  312. else if (fsensor_autoload_c > 0)
  313. fsensor_autoload_c--;
  314. if (fsensor_autoload_c == 0) fsensor_autoload_sum = 0;
  315. #if 0
  316. puts_P(_N("fsensor_check_autoload\n"));
  317. if (fsensor_autoload_c != fsensor_autoload_c_old)
  318. printf_P(PSTR("fsensor_check_autoload dy=%d c=%d sum=%d\n"), dy, fsensor_autoload_c, fsensor_autoload_sum);
  319. #endif
  320. // if ((fsensor_autoload_c >= 15) && (fsensor_autoload_sum > 30))
  321. if ((fsensor_autoload_c >= 12) && (fsensor_autoload_sum > 20))
  322. {
  323. // puts_P(_N("fsensor_check_autoload = true !!!\n"));
  324. return true;
  325. }
  326. #endif //PAT9125
  327. return false;
  328. }
  329. void fsensor_oq_meassure_set(bool State)
  330. {
  331. fsensor_oq_meassure_enabled = State;
  332. eeprom_update_byte((unsigned char *)EEPROM_FSENS_OQ_MEASS_ENABLED, fsensor_oq_meassure_enabled);
  333. }
  334. void fsensor_oq_meassure_start(uint8_t skip)
  335. {
  336. if (!fsensor_enabled) return;
  337. if (!fsensor_oq_meassure_enabled) return;
  338. printf_P(PSTR("fsensor_oq_meassure_start\n"));
  339. fsensor_oq_skipchunk = skip;
  340. fsensor_oq_samples = 0;
  341. fsensor_oq_st_sum = 0;
  342. fsensor_oq_yd_sum = 0;
  343. fsensor_oq_er_sum = 0;
  344. fsensor_oq_er_max = 0;
  345. fsensor_oq_yd_min = FSENSOR_OQ_MAX_YD;
  346. fsensor_oq_yd_max = 0;
  347. fsensor_oq_sh_sum = 0;
  348. pat9125_update();
  349. pat9125_y = 0;
  350. fsensor_oq_meassure = true;
  351. }
  352. void fsensor_oq_meassure_stop(void)
  353. {
  354. if (!fsensor_enabled) return;
  355. if (!fsensor_oq_meassure_enabled) return;
  356. printf_P(PSTR("fsensor_oq_meassure_stop, %hhu samples\n"), fsensor_oq_samples);
  357. printf_P(_N(" st_sum=%u yd_sum=%u er_sum=%u er_max=%hhu\n"), fsensor_oq_st_sum, fsensor_oq_yd_sum, fsensor_oq_er_sum, fsensor_oq_er_max);
  358. printf_P(_N(" yd_min=%u yd_max=%u yd_avg=%u sh_avg=%u\n"), fsensor_oq_yd_min, fsensor_oq_yd_max, (uint16_t)((uint32_t)fsensor_oq_yd_sum * fsensor_chunk_len / fsensor_oq_st_sum), (uint16_t)(fsensor_oq_sh_sum / fsensor_oq_samples));
  359. fsensor_oq_meassure = false;
  360. fsensor_err_cnt = 0;
  361. }
  362. const char _OK[] PROGMEM = "OK";
  363. const char _NG[] PROGMEM = "NG!";
  364. bool fsensor_oq_result(void)
  365. {
  366. if (!fsensor_enabled) return true;
  367. if (!fsensor_oq_meassure_enabled) return true;
  368. printf_P(_N("fsensor_oq_result\n"));
  369. bool res_er_sum = (fsensor_oq_er_sum <= FSENSOR_OQ_MAX_ES);
  370. printf_P(_N(" er_sum = %u %S\n"), fsensor_oq_er_sum, (res_er_sum?_OK:_NG));
  371. bool res_er_max = (fsensor_oq_er_max <= FSENSOR_OQ_MAX_EM);
  372. printf_P(_N(" er_max = %hhu %S\n"), fsensor_oq_er_max, (res_er_max?_OK:_NG));
  373. uint8_t yd_avg = ((uint32_t)fsensor_oq_yd_sum * fsensor_chunk_len / fsensor_oq_st_sum);
  374. bool res_yd_avg = (yd_avg >= FSENSOR_OQ_MIN_YD) && (yd_avg <= FSENSOR_OQ_MAX_YD);
  375. printf_P(_N(" yd_avg = %hhu %S\n"), yd_avg, (res_yd_avg?_OK:_NG));
  376. bool res_yd_max = (fsensor_oq_yd_max <= (yd_avg * FSENSOR_OQ_MAX_PD));
  377. printf_P(_N(" yd_max = %u %S\n"), fsensor_oq_yd_max, (res_yd_max?_OK:_NG));
  378. bool res_yd_min = (fsensor_oq_yd_min >= (yd_avg / FSENSOR_OQ_MAX_ND));
  379. printf_P(_N(" yd_min = %u %S\n"), fsensor_oq_yd_min, (res_yd_min?_OK:_NG));
  380. uint16_t yd_dev = (fsensor_oq_yd_max - yd_avg) + (yd_avg - fsensor_oq_yd_min);
  381. printf_P(_N(" yd_dev = %u\n"), yd_dev);
  382. uint16_t yd_qua = 10 * yd_avg / (yd_dev + 1);
  383. printf_P(_N(" yd_qua = %u %S\n"), yd_qua, ((yd_qua >= 8)?_OK:_NG));
  384. uint8_t sh_avg = (fsensor_oq_sh_sum / fsensor_oq_samples);
  385. bool res_sh_avg = (sh_avg <= FSENSOR_OQ_MAX_SH);
  386. if (yd_qua >= 8) res_sh_avg = true;
  387. printf_P(_N(" sh_avg = %hhu %S\n"), sh_avg, (res_sh_avg?_OK:_NG));
  388. bool res = res_er_sum && res_er_max && res_yd_avg && res_yd_max && res_yd_min && res_sh_avg;
  389. printf_P(_N("fsensor_oq_result %S\n"), (res?_OK:_NG));
  390. return res;
  391. }
  392. #ifdef PAT9125
  393. ISR(FSENSOR_INT_PIN_VECT)
  394. {
  395. if (mmu_enabled || ir_sensor_detected) return;
  396. if (!((fsensor_int_pin_old ^ FSENSOR_INT_PIN_PIN_REG) & FSENSOR_INT_PIN_MASK)) return;
  397. fsensor_int_pin_old = FSENSOR_INT_PIN_PIN_REG;
  398. static bool _lock = false;
  399. if (_lock) return;
  400. _lock = true;
  401. int st_cnt = fsensor_st_cnt;
  402. fsensor_st_cnt = 0;
  403. sei();
  404. uint8_t old_err_cnt = fsensor_err_cnt;
  405. uint8_t pat9125_res = fsensor_oq_meassure?pat9125_update():pat9125_update_y();
  406. if (!pat9125_res)
  407. {
  408. fsensor_disable();
  409. fsensor_not_responding = true;
  410. printf_P(ERRMSG_PAT9125_NOT_RESP, 1);
  411. }
  412. if (st_cnt != 0)
  413. { //movement
  414. if (st_cnt > 0) //positive movement
  415. {
  416. if (pat9125_y < 0)
  417. {
  418. if (fsensor_err_cnt)
  419. fsensor_err_cnt += 2;
  420. else
  421. fsensor_err_cnt++;
  422. }
  423. else if (pat9125_y > 0)
  424. {
  425. if (fsensor_err_cnt)
  426. fsensor_err_cnt--;
  427. }
  428. else //(pat9125_y == 0)
  429. if (((fsensor_dy_old <= 0) || (fsensor_err_cnt)) && (st_cnt > (fsensor_chunk_len >> 1)))
  430. fsensor_err_cnt++;
  431. if (fsensor_oq_meassure)
  432. {
  433. if (fsensor_oq_skipchunk)
  434. {
  435. fsensor_oq_skipchunk--;
  436. fsensor_err_cnt = 0;
  437. }
  438. else
  439. {
  440. if (st_cnt == fsensor_chunk_len)
  441. {
  442. if (pat9125_y > 0) if (fsensor_oq_yd_min > pat9125_y) fsensor_oq_yd_min = (fsensor_oq_yd_min + pat9125_y) / 2;
  443. if (pat9125_y >= 0) if (fsensor_oq_yd_max < pat9125_y) fsensor_oq_yd_max = (fsensor_oq_yd_max + pat9125_y) / 2;
  444. }
  445. fsensor_oq_samples++;
  446. fsensor_oq_st_sum += st_cnt;
  447. if (pat9125_y > 0) fsensor_oq_yd_sum += pat9125_y;
  448. if (fsensor_err_cnt > old_err_cnt)
  449. fsensor_oq_er_sum += (fsensor_err_cnt - old_err_cnt);
  450. if (fsensor_oq_er_max < fsensor_err_cnt)
  451. fsensor_oq_er_max = fsensor_err_cnt;
  452. fsensor_oq_sh_sum += pat9125_s;
  453. }
  454. }
  455. }
  456. else //negative movement
  457. {
  458. }
  459. }
  460. else
  461. { //no movement
  462. }
  463. #ifdef DEBUG_FSENSOR_LOG
  464. if (fsensor_log)
  465. {
  466. printf_P(_N("FSENSOR cnt=%d dy=%d err=%hhu %S\n"), st_cnt, pat9125_y, fsensor_err_cnt, (fsensor_err_cnt > old_err_cnt)?_N("NG!"):_N("OK"));
  467. if (fsensor_oq_meassure) printf_P(_N("FSENSOR st_sum=%u yd_sum=%u er_sum=%u er_max=%hhu yd_max=%u\n"), fsensor_oq_st_sum, fsensor_oq_yd_sum, fsensor_oq_er_sum, fsensor_oq_er_max, fsensor_oq_yd_max);
  468. }
  469. #endif //DEBUG_FSENSOR_LOG
  470. fsensor_dy_old = pat9125_y;
  471. pat9125_y = 0;
  472. _lock = false;
  473. return;
  474. }
  475. void fsensor_setup_interrupt(void)
  476. {
  477. pinMode(FSENSOR_INT_PIN, OUTPUT);
  478. digitalWrite(FSENSOR_INT_PIN, LOW);
  479. fsensor_int_pin_old = 0;
  480. //pciSetup(FSENSOR_INT_PIN);
  481. // !!! "pciSetup()" does not provide the correct results for some MCU pins
  482. // so interrupt registers settings:
  483. FSENSOR_INT_PIN_PCMSK_REG |= bit(FSENSOR_INT_PIN_PCMSK_BIT); // enable corresponding PinChangeInterrupt (individual pin)
  484. PCIFR |= bit(FSENSOR_INT_PIN_PCICR_BIT); // clear previous occasional interrupt (set of pins)
  485. PCICR |= bit(FSENSOR_INT_PIN_PCICR_BIT); // enable corresponding PinChangeInterrupt (set of pins)
  486. }
  487. #endif //PAT9125
  488. void fsensor_st_block_begin(block_t* bl)
  489. {
  490. if (!fsensor_enabled) return;
  491. if (((fsensor_st_cnt > 0) && (bl->direction_bits & 0x8)) ||
  492. ((fsensor_st_cnt < 0) && !(bl->direction_bits & 0x8)))
  493. {
  494. // !!! bit toggling (PINxn <- 1) (for PinChangeInterrupt) does not work for some MCU pins
  495. if (PIN_GET(FSENSOR_INT_PIN)) {PIN_VAL(FSENSOR_INT_PIN, LOW);}
  496. else {PIN_VAL(FSENSOR_INT_PIN, HIGH);}
  497. }
  498. }
  499. void fsensor_st_block_chunk(block_t* bl, int cnt)
  500. {
  501. if (!fsensor_enabled) return;
  502. fsensor_st_cnt += (bl->direction_bits & 0x8)?-cnt:cnt;
  503. if ((fsensor_st_cnt >= fsensor_chunk_len) || (fsensor_st_cnt <= -fsensor_chunk_len))
  504. {
  505. // !!! bit toggling (PINxn <- 1) (for PinChangeInterrupt) does not work for some MCU pins
  506. if (PIN_GET(FSENSOR_INT_PIN)) {PIN_VAL(FSENSOR_INT_PIN, LOW);}
  507. else {PIN_VAL(FSENSOR_INT_PIN, HIGH);}
  508. }
  509. }
  510. //! Common code for enqueing M600 and supplemental codes into the command queue.
  511. //! Used both for the IR sensor and the PAT9125
  512. void fsensor_enque_M600(){
  513. printf_P(PSTR("fsensor_update - M600\n"));
  514. eeprom_update_byte((uint8_t*)EEPROM_FERROR_COUNT, eeprom_read_byte((uint8_t*)EEPROM_FERROR_COUNT) + 1);
  515. eeprom_update_word((uint16_t*)EEPROM_FERROR_COUNT_TOT, eeprom_read_word((uint16_t*)EEPROM_FERROR_COUNT_TOT) + 1);
  516. enquecommand_front_P((PSTR("M600")));
  517. }
  518. //! @brief filament sensor update (perform M600 on filament runout)
  519. //!
  520. //! Works only if filament sensor is enabled.
  521. //! When the filament sensor error count is larger then FSENSOR_ERR_MAX, pauses print, tries to move filament back and forth.
  522. //! If there is still no plausible signal from filament sensor plans M600 (Filament change).
  523. void fsensor_update(void)
  524. {
  525. #ifdef PAT9125
  526. if (fsensor_watch_runout && (fsensor_err_cnt > FSENSOR_ERR_MAX))
  527. {
  528. fsensor_stop_and_save_print();
  529. KEEPALIVE_STATE(IN_HANDLER);
  530. bool autoload_enabled_tmp = fsensor_autoload_enabled;
  531. fsensor_autoload_enabled = false;
  532. bool oq_meassure_enabled_tmp = fsensor_oq_meassure_enabled;
  533. fsensor_oq_meassure_enabled = true;
  534. // move the nozzle away while checking the filament
  535. current_position[Z_AXIS] += 0.8;
  536. if(current_position[Z_AXIS] > Z_MAX_POS) current_position[Z_AXIS] = Z_MAX_POS;
  537. plan_buffer_line_curposXYZE(max_feedrate[Z_AXIS], active_extruder);
  538. st_synchronize();
  539. // check the filament in isolation
  540. fsensor_err_cnt = 0;
  541. fsensor_oq_meassure_start(0);
  542. float e_tmp = current_position[E_AXIS];
  543. current_position[E_AXIS] -= 3;
  544. plan_buffer_line_curposXYZE(200/60, active_extruder);
  545. current_position[E_AXIS] = e_tmp;
  546. plan_buffer_line_curposXYZE(200/60, active_extruder);
  547. st_synchronize();
  548. uint8_t err_cnt = fsensor_err_cnt;
  549. fsensor_oq_meassure_stop();
  550. bool err = false;
  551. err |= (err_cnt > 1);
  552. err |= (fsensor_oq_er_sum > 2);
  553. err |= (fsensor_oq_yd_sum < (4 * FSENSOR_OQ_MIN_YD));
  554. fsensor_restore_print_and_continue();
  555. fsensor_autoload_enabled = autoload_enabled_tmp;
  556. fsensor_oq_meassure_enabled = oq_meassure_enabled_tmp;
  557. if (!err)
  558. printf_P(PSTR("fsensor_err_cnt = 0\n"));
  559. else
  560. fsensor_enque_M600();
  561. }
  562. #else //PAT9125
  563. if (CHECK_FSENSOR && ir_sensor_detected)
  564. {
  565. if(digitalRead(IR_SENSOR_PIN))
  566. { // IR_SENSOR_PIN ~ H
  567. #if IR_SENSOR_ANALOG
  568. if(!bIRsensorStateFlag)
  569. {
  570. bIRsensorStateFlag=true;
  571. nIRsensorLastTime=_millis();
  572. }
  573. else
  574. {
  575. if((_millis()-nIRsensorLastTime)>IR_SENSOR_STEADY)
  576. {
  577. uint8_t nMUX1,nMUX2;
  578. uint16_t nADC;
  579. bIRsensorStateFlag=false;
  580. // sequence for direct data reading from AD converter
  581. DISABLE_TEMPERATURE_INTERRUPT();
  582. nMUX1=ADMUX; // ADMUX saving
  583. nMUX2=ADCSRB;
  584. adc_setmux(VOLT_IR_PIN);
  585. ADCSRA|=(1<<ADSC); // first conversion after ADMUX change discarded (preventively)
  586. while(ADCSRA&(1<<ADSC))
  587. ;
  588. ADCSRA|=(1<<ADSC); // second conversion used
  589. while(ADCSRA&(1<<ADSC))
  590. ;
  591. nADC=ADC;
  592. ADMUX=nMUX1; // ADMUX restoring
  593. ADCSRB=nMUX2;
  594. ENABLE_TEMPERATURE_INTERRUPT();
  595. // end of sequence for ...
  596. if((oFsensorPCB==ClFsensorPCB::_Rev03b)&&((nADC*OVERSAMPLENR)>((int)IRsensor_Hopen_TRESHOLD)))
  597. {
  598. fsensor_disable();
  599. fsensor_not_responding = true;
  600. printf_P(PSTR("IR sensor not responding (%d)!\n"),1);
  601. if((ClFsensorActionNA)eeprom_read_byte((uint8_t*)EEPROM_FSENSOR_ACTION_NA)==ClFsensorActionNA::_Pause)
  602. if(oFsensorActionNA==ClFsensorActionNA::_Pause)
  603. lcd_pause_print();
  604. }
  605. else
  606. {
  607. #endif //IR_SENSOR_ANALOG
  608. fsensor_checkpoint_print();
  609. fsensor_enque_M600();
  610. #if IR_SENSOR_ANALOG
  611. }
  612. }
  613. }
  614. }
  615. else
  616. { // IR_SENSOR_PIN ~ L
  617. bIRsensorStateFlag=false;
  618. #endif //IR_SENSOR_ANALOG
  619. }
  620. }
  621. #endif //PAT9125
  622. }
  623. #if IR_SENSOR_ANALOG
  624. bool fsensor_IR_check()
  625. {
  626. uint16_t volt_IR_int;
  627. bool bCheckResult;
  628. volt_IR_int=current_voltage_raw_IR;
  629. bCheckResult=(volt_IR_int<((int)IRsensor_Lmax_TRESHOLD))||(volt_IR_int>((int)IRsensor_Hmin_TRESHOLD));
  630. bCheckResult=bCheckResult&&(!((oFsensorPCB==ClFsensorPCB::_Rev03b)&&(volt_IR_int>((int)IRsensor_Hopen_TRESHOLD))));
  631. return(bCheckResult);
  632. }
  633. #endif //IR_SENSOR_ANALOG