planner.h 10 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267
  1. /*
  2. planner.h - buffers movement commands and manages the acceleration profile plan
  3. Part of Grbl
  4. Copyright (c) 2009-2011 Simen Svale Skogsrud
  5. Grbl is free software: you can redistribute it and/or modify
  6. it under the terms of the GNU General Public License as published by
  7. the Free Software Foundation, either version 3 of the License, or
  8. (at your option) any later version.
  9. Grbl is distributed in the hope that it will be useful,
  10. but WITHOUT ANY WARRANTY; without even the implied warranty of
  11. MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  12. GNU General Public License for more details.
  13. You should have received a copy of the GNU General Public License
  14. along with Grbl. If not, see <http://www.gnu.org/licenses/>.
  15. */
  16. // This module is to be considered a sub-module of stepper.c. Please don't include
  17. // this file from any other module.
  18. #ifndef planner_h
  19. #define planner_h
  20. #include "Marlin.h"
  21. #ifdef ENABLE_AUTO_BED_LEVELING
  22. #include "vector_3.h"
  23. #endif // ENABLE_AUTO_BED_LEVELING
  24. enum BlockFlag {
  25. // Planner flag to recalculate trapezoids on entry junction.
  26. // This flag has an optimization purpose only.
  27. BLOCK_FLAG_RECALCULATE = 1,
  28. // Planner flag for nominal speed always reached. That means, the segment is long enough, that the nominal speed
  29. // may be reached if accelerating from a safe speed (in the regard of jerking from zero speed).
  30. BLOCK_FLAG_NOMINAL_LENGTH = 2,
  31. // If set, the machine will start from a halt at the start of this block,
  32. // respecting the maximum allowed jerk.
  33. BLOCK_FLAG_START_FROM_FULL_HALT = 4,
  34. // If set, the stepper interrupt expects, that the number of steps to tick will be lower
  35. // than 32767, therefore the DDA algorithm may run with 16bit resolution only.
  36. // In addition, the stepper routine will not do any end stop checking for higher performance.
  37. BLOCK_FLAG_DDA_LOWRES = 8,
  38. };
  39. union dda_isteps_t
  40. {
  41. int32_t wide;
  42. struct {
  43. int16_t lo;
  44. int16_t hi;
  45. };
  46. };
  47. union dda_usteps_t
  48. {
  49. uint32_t wide;
  50. struct {
  51. uint16_t lo;
  52. uint16_t hi;
  53. };
  54. };
  55. // This struct is used when buffering the setup for each linear movement "nominal" values are as specified in
  56. // the source g-code and may never actually be reached if acceleration management is active.
  57. typedef struct {
  58. // Fields used by the bresenham algorithm for tracing the line
  59. // steps_x.y,z, step_event_count, acceleration_rate, direction_bits and active_extruder are set by plan_buffer_line().
  60. dda_isteps_t steps_x, steps_y, steps_z, steps_e; // Step count along each axis
  61. dda_usteps_t step_event_count; // The number of step events required to complete this block
  62. long acceleration_rate; // The acceleration rate used for acceleration calculation
  63. unsigned char direction_bits; // The direction bit set for this block (refers to *_DIRECTION_BIT in config.h)
  64. unsigned char active_extruder; // Selects the active extruder
  65. // accelerate_until and decelerate_after are set by calculate_trapezoid_for_block() and they need to be synchronized with the stepper interrupt controller.
  66. long accelerate_until; // The index of the step event on which to stop acceleration
  67. long decelerate_after; // The index of the step event on which to start decelerating
  68. // Fields used by the motion planner to manage acceleration
  69. // float speed_x, speed_y, speed_z, speed_e; // Nominal mm/sec for each axis
  70. // The nominal speed for this block in mm/sec.
  71. // This speed may or may not be reached due to the jerk and acceleration limits.
  72. float nominal_speed;
  73. // Entry speed at previous-current junction in mm/sec, respecting the acceleration and jerk limits.
  74. // The entry speed limit of the current block equals the exit speed of the preceding block.
  75. float entry_speed;
  76. // Maximum allowable junction entry speed in mm/sec. This value is also a maximum exit speed of the previous block.
  77. float max_entry_speed;
  78. // The total travel of this block in mm
  79. float millimeters;
  80. // acceleration mm/sec^2
  81. float acceleration;
  82. // Bit flags defined by the BlockFlag enum.
  83. uint8_t flag;
  84. // Settings for the trapezoid generator (runs inside an interrupt handler).
  85. // Changing the following values in the planner needs to be synchronized with the interrupt handler by disabling the interrupts.
  86. //FIXME nominal_rate, initial_rate and final_rate are limited to uint16_t by MultiU24X24toH16 in the stepper interrupt anyway!
  87. unsigned long nominal_rate; // The nominal step rate for this block in step_events/sec
  88. unsigned long initial_rate; // The jerk-adjusted step rate at start of block
  89. unsigned long final_rate; // The minimal rate at exit
  90. unsigned long acceleration_st; // acceleration steps/sec^2
  91. //FIXME does it have to be unsigned long? Probably uint8_t would be just fine.
  92. unsigned long fan_speed;
  93. volatile char busy;
  94. // Pre-calculated division for the calculate_trapezoid_for_block() routine to run faster.
  95. float speed_factor;
  96. #ifdef LIN_ADVANCE
  97. bool use_advance_lead;
  98. unsigned long abs_adv_steps_multiplier8; // Factorised by 2^8 to avoid float
  99. #endif
  100. // Save/recovery state data
  101. float gcode_target[NUM_AXIS]; // Target (abs mm) of the original Gcode instruction
  102. uint16_t gcode_feedrate; // Default and/or move feedrate
  103. uint16_t sdlen; // Length of the Gcode instruction
  104. } block_t;
  105. #ifdef LIN_ADVANCE
  106. extern float extruder_advance_k, advance_ed_ratio;
  107. #endif
  108. #ifdef ENABLE_AUTO_BED_LEVELING
  109. // this holds the required transform to compensate for bed level
  110. extern matrix_3x3 plan_bed_level_matrix;
  111. #endif // #ifdef ENABLE_AUTO_BED_LEVELING
  112. // Initialize the motion plan subsystem
  113. void plan_init();
  114. // Add a new linear movement to the buffer. x, y and z is the signed, absolute target position in
  115. // millimaters. Feed rate specifies the speed of the motion.
  116. #ifdef ENABLE_AUTO_BED_LEVELING
  117. void plan_buffer_line(float x, float y, float z, const float &e, float feed_rate, const uint8_t &extruder);
  118. // Get the position applying the bed level matrix if enabled
  119. vector_3 plan_get_position();
  120. #else
  121. /// Extracting common call of
  122. /// plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[3], ...
  123. /// saves almost 5KB.
  124. /// The performance penalty is negligible, since these planned lines are usually maintenance moves with the extruder.
  125. void plan_buffer_line_curposXYZE(float feed_rate, uint8_t extruder);
  126. void plan_buffer_line(float x, float y, float z, const float &e, float feed_rate, uint8_t extruder, const float* gcode_target = NULL);
  127. //void plan_buffer_line(const float &x, const float &y, const float &z, const float &e, float feed_rate, const uint8_t &extruder);
  128. #endif // ENABLE_AUTO_BED_LEVELING
  129. // Set position. Used for G92 instructions.
  130. //#ifdef ENABLE_AUTO_BED_LEVELING
  131. void plan_set_position(float x, float y, float z, const float &e);
  132. //#else
  133. //void plan_set_position(const float &x, const float &y, const float &z, const float &e);
  134. //#endif // ENABLE_AUTO_BED_LEVELING
  135. void plan_set_z_position(const float &z);
  136. void plan_set_e_position(const float &e);
  137. extern bool e_active();
  138. void check_axes_activity();
  139. // Use M203 to override by software
  140. extern float* max_feedrate;
  141. // Use M201 to override by software
  142. extern unsigned long* max_acceleration_units_per_sq_second;
  143. extern unsigned long axis_steps_per_sqr_second[NUM_AXIS];
  144. extern long position[NUM_AXIS];
  145. extern uint8_t maxlimit_status;
  146. #ifdef AUTOTEMP
  147. extern bool autotemp_enabled;
  148. extern float autotemp_max;
  149. extern float autotemp_min;
  150. extern float autotemp_factor;
  151. #endif
  152. extern block_t block_buffer[BLOCK_BUFFER_SIZE]; // A ring buffer for motion instfructions
  153. // Index of the next block to be pushed into the planner queue.
  154. extern volatile unsigned char block_buffer_head;
  155. // Index of the first block in the planner queue.
  156. // This is the block, which is being currently processed by the stepper routine,
  157. // or which is first to be processed by the stepper routine.
  158. extern volatile unsigned char block_buffer_tail;
  159. // Called when the current block is no longer needed. Discards the block and makes the memory
  160. // available for new blocks.
  161. FORCE_INLINE void plan_discard_current_block()
  162. {
  163. if (block_buffer_head != block_buffer_tail) {
  164. block_buffer_tail = (block_buffer_tail + 1) & (BLOCK_BUFFER_SIZE - 1);
  165. }
  166. }
  167. // Gets the current block. This is the block to be exectuted by the stepper routine.
  168. // Mark this block as busy, so its velocities and acceperations will be no more recalculated
  169. // by the planner routine.
  170. // Returns NULL if buffer empty
  171. FORCE_INLINE block_t *plan_get_current_block()
  172. {
  173. if (block_buffer_head == block_buffer_tail) {
  174. return(NULL);
  175. }
  176. block_t *block = &block_buffer[block_buffer_tail];
  177. block->busy = true;
  178. return(block);
  179. }
  180. // Returns true if the buffer has a queued block, false otherwise
  181. FORCE_INLINE bool blocks_queued() {
  182. return (block_buffer_head != block_buffer_tail);
  183. }
  184. //return the nr of buffered moves
  185. FORCE_INLINE uint8_t moves_planned() {
  186. return (block_buffer_head + BLOCK_BUFFER_SIZE - block_buffer_tail) & (BLOCK_BUFFER_SIZE - 1);
  187. }
  188. FORCE_INLINE bool planner_queue_full() {
  189. unsigned char next_block_index = block_buffer_head;
  190. if (++ next_block_index == BLOCK_BUFFER_SIZE)
  191. next_block_index = 0;
  192. return block_buffer_tail == next_block_index;
  193. }
  194. // Abort the stepper routine, clean up the block queue,
  195. // wait for the steppers to stop,
  196. // update planner's current position and the current_position of the front end.
  197. extern void planner_abort_hard();
  198. extern bool waiting_inside_plan_buffer_line_print_aborted;
  199. #ifdef PREVENT_DANGEROUS_EXTRUDE
  200. void set_extrude_min_temp(float temp);
  201. #endif
  202. void reset_acceleration_rates();
  203. #endif
  204. void update_mode_profile();
  205. unsigned char number_of_blocks();
  206. // #define PLANNER_DIAGNOSTICS
  207. #ifdef PLANNER_DIAGNOSTICS
  208. // Diagnostic functions to display planner buffer underflow on the display.
  209. extern uint8_t planner_queue_min();
  210. // Diagnostic function: Reset the minimum planner segments.
  211. extern void planner_queue_min_reset();
  212. #endif /* PLANNER_DIAGNOSTICS */
  213. extern void planner_add_sd_length(uint16_t sdlen);
  214. extern uint16_t planner_calc_sd_length();