Marlin_main.cpp 260 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971397239733974397539763977397839793980398139823983398439853986398739883989399039913992399339943995399639973998399940004001400240034004400540064007400840094010401140124013401440154016401740184019402040214022402340244025402640274028402940304031403240334034403540364037403840394040404140424043404440454046404740484049405040514052405340544055405640574058405940604061406240634064406540664067406840694070407140724073407440754076407740784079408040814082408340844085408640874088408940904091409240934094409540964097409840994100410141024103410441054106410741084109411041114112411341144115411641174118411941204121412241234124412541264127412841294130413141324133413441354136413741384139414041414142414341444145414641474148414941504151415241534154415541564157415841594160416141624163416441654166416741684169417041714172417341744175417641774178417941804181418241834184418541864187418841894190419141924193419441954196419741984199420042014202420342044205420642074208420942104211421242134214421542164217421842194220422142224223422442254226422742284229423042314232423342344235423642374238423942404241424242434244424542464247424842494250425142524253425442554256425742584259426042614262426342644265426642674268426942704271427242734274427542764277427842794280428142824283428442854286428742884289429042914292429342944295429642974298429943004301430243034304430543064307430843094310431143124313431443154316431743184319432043214322432343244325432643274328432943304331433243334334433543364337433843394340434143424343434443454346434743484349435043514352435343544355435643574358435943604361436243634364436543664367436843694370437143724373437443754376437743784379438043814382438343844385438643874388438943904391439243934394439543964397439843994400440144024403440444054406440744084409441044114412441344144415441644174418441944204421442244234424442544264427442844294430443144324433443444354436443744384439444044414442444344444445444644474448444944504451445244534454445544564457445844594460446144624463446444654466446744684469447044714472447344744475447644774478447944804481448244834484448544864487448844894490449144924493449444954496449744984499450045014502450345044505450645074508450945104511451245134514451545164517451845194520452145224523452445254526452745284529453045314532453345344535453645374538453945404541454245434544454545464547454845494550455145524553455445554556455745584559456045614562456345644565456645674568456945704571457245734574457545764577457845794580458145824583458445854586458745884589459045914592459345944595459645974598459946004601460246034604460546064607460846094610461146124613461446154616461746184619462046214622462346244625462646274628462946304631463246334634463546364637463846394640464146424643464446454646464746484649465046514652465346544655465646574658465946604661466246634664466546664667466846694670467146724673467446754676467746784679468046814682468346844685468646874688468946904691469246934694469546964697469846994700470147024703470447054706470747084709471047114712471347144715471647174718471947204721472247234724472547264727472847294730473147324733473447354736473747384739474047414742474347444745474647474748474947504751475247534754475547564757475847594760476147624763476447654766476747684769477047714772477347744775477647774778477947804781478247834784478547864787478847894790479147924793479447954796479747984799480048014802480348044805480648074808480948104811481248134814481548164817481848194820482148224823482448254826482748284829483048314832483348344835483648374838483948404841484248434844484548464847484848494850485148524853485448554856485748584859486048614862486348644865486648674868486948704871487248734874487548764877487848794880488148824883488448854886488748884889489048914892489348944895489648974898489949004901490249034904490549064907490849094910491149124913491449154916491749184919492049214922492349244925492649274928492949304931493249334934493549364937493849394940494149424943494449454946494749484949495049514952495349544955495649574958495949604961496249634964496549664967496849694970497149724973497449754976497749784979498049814982498349844985498649874988498949904991499249934994499549964997499849995000500150025003500450055006500750085009501050115012501350145015501650175018501950205021502250235024502550265027502850295030503150325033503450355036503750385039504050415042504350445045504650475048504950505051505250535054505550565057505850595060506150625063506450655066506750685069507050715072507350745075507650775078507950805081508250835084508550865087508850895090509150925093509450955096509750985099510051015102510351045105510651075108510951105111511251135114511551165117511851195120512151225123512451255126512751285129513051315132513351345135513651375138513951405141514251435144514551465147514851495150515151525153515451555156515751585159516051615162516351645165516651675168516951705171517251735174517551765177517851795180518151825183518451855186518751885189519051915192519351945195519651975198519952005201520252035204520552065207520852095210521152125213521452155216521752185219522052215222522352245225522652275228522952305231523252335234523552365237523852395240524152425243524452455246524752485249525052515252525352545255525652575258525952605261526252635264526552665267526852695270527152725273527452755276527752785279528052815282528352845285528652875288528952905291529252935294529552965297529852995300530153025303530453055306530753085309531053115312531353145315531653175318531953205321532253235324532553265327532853295330533153325333533453355336533753385339534053415342534353445345534653475348534953505351535253535354535553565357535853595360536153625363536453655366536753685369537053715372537353745375537653775378537953805381538253835384538553865387538853895390539153925393539453955396539753985399540054015402540354045405540654075408540954105411541254135414541554165417541854195420542154225423542454255426542754285429543054315432543354345435543654375438543954405441544254435444544554465447544854495450545154525453545454555456545754585459546054615462546354645465546654675468546954705471547254735474547554765477547854795480548154825483548454855486548754885489549054915492549354945495549654975498549955005501550255035504550555065507550855095510551155125513551455155516551755185519552055215522552355245525552655275528552955305531553255335534553555365537553855395540554155425543554455455546554755485549555055515552555355545555555655575558555955605561556255635564556555665567556855695570557155725573557455755576557755785579558055815582558355845585558655875588558955905591559255935594559555965597559855995600560156025603560456055606560756085609561056115612561356145615561656175618561956205621562256235624562556265627562856295630563156325633563456355636563756385639564056415642564356445645564656475648564956505651565256535654565556565657565856595660566156625663566456655666566756685669567056715672567356745675567656775678567956805681568256835684568556865687568856895690569156925693569456955696569756985699570057015702570357045705570657075708570957105711571257135714571557165717571857195720572157225723572457255726572757285729573057315732573357345735573657375738573957405741574257435744574557465747574857495750575157525753575457555756575757585759576057615762576357645765576657675768576957705771577257735774577557765777577857795780578157825783578457855786578757885789579057915792579357945795579657975798579958005801580258035804580558065807580858095810581158125813581458155816581758185819582058215822582358245825582658275828582958305831583258335834583558365837583858395840584158425843584458455846584758485849585058515852585358545855585658575858585958605861586258635864586558665867586858695870587158725873587458755876587758785879588058815882588358845885588658875888588958905891589258935894589558965897589858995900590159025903590459055906590759085909591059115912591359145915591659175918591959205921592259235924592559265927592859295930593159325933593459355936593759385939594059415942594359445945594659475948594959505951595259535954595559565957595859595960596159625963596459655966596759685969597059715972597359745975597659775978597959805981598259835984598559865987598859895990599159925993599459955996599759985999600060016002600360046005600660076008600960106011601260136014601560166017601860196020602160226023602460256026602760286029603060316032603360346035603660376038603960406041604260436044604560466047604860496050605160526053605460556056605760586059606060616062606360646065606660676068606960706071607260736074607560766077607860796080608160826083608460856086608760886089609060916092609360946095609660976098609961006101610261036104610561066107610861096110611161126113611461156116611761186119612061216122612361246125612661276128612961306131613261336134613561366137613861396140614161426143614461456146614761486149615061516152615361546155615661576158615961606161616261636164616561666167616861696170617161726173617461756176617761786179618061816182618361846185618661876188618961906191619261936194619561966197619861996200620162026203620462056206620762086209621062116212621362146215621662176218621962206221622262236224622562266227622862296230623162326233623462356236623762386239624062416242624362446245624662476248624962506251625262536254625562566257625862596260626162626263626462656266626762686269627062716272627362746275627662776278627962806281628262836284628562866287628862896290629162926293629462956296629762986299630063016302630363046305630663076308630963106311631263136314631563166317631863196320632163226323632463256326632763286329633063316332633363346335633663376338633963406341634263436344634563466347634863496350635163526353635463556356635763586359636063616362636363646365636663676368636963706371637263736374637563766377637863796380638163826383638463856386638763886389639063916392639363946395639663976398639964006401640264036404640564066407640864096410641164126413641464156416641764186419642064216422642364246425642664276428642964306431643264336434643564366437643864396440644164426443644464456446644764486449645064516452645364546455645664576458645964606461646264636464646564666467646864696470647164726473647464756476647764786479648064816482648364846485648664876488648964906491649264936494649564966497649864996500650165026503650465056506650765086509651065116512651365146515651665176518651965206521652265236524652565266527652865296530653165326533653465356536653765386539654065416542654365446545654665476548654965506551655265536554655565566557655865596560656165626563656465656566656765686569657065716572657365746575657665776578657965806581658265836584658565866587658865896590659165926593659465956596659765986599660066016602660366046605660666076608660966106611661266136614661566166617661866196620662166226623662466256626662766286629663066316632663366346635663666376638663966406641664266436644664566466647664866496650665166526653665466556656665766586659666066616662666366646665666666676668666966706671667266736674667566766677667866796680668166826683668466856686668766886689669066916692669366946695669666976698669967006701670267036704670567066707670867096710671167126713671467156716671767186719672067216722672367246725672667276728672967306731673267336734673567366737673867396740674167426743674467456746674767486749675067516752675367546755675667576758675967606761676267636764676567666767676867696770677167726773677467756776677767786779678067816782678367846785678667876788678967906791679267936794679567966797679867996800680168026803680468056806680768086809681068116812681368146815681668176818681968206821682268236824682568266827682868296830683168326833683468356836683768386839684068416842684368446845684668476848684968506851685268536854685568566857685868596860686168626863686468656866686768686869687068716872687368746875687668776878687968806881688268836884688568866887688868896890689168926893689468956896689768986899690069016902690369046905690669076908690969106911691269136914691569166917691869196920692169226923692469256926692769286929693069316932693369346935693669376938693969406941694269436944694569466947694869496950695169526953695469556956695769586959696069616962696369646965696669676968696969706971697269736974697569766977697869796980698169826983698469856986698769886989699069916992699369946995699669976998699970007001700270037004700570067007700870097010701170127013701470157016701770187019702070217022702370247025702670277028702970307031703270337034703570367037703870397040704170427043704470457046704770487049705070517052705370547055705670577058705970607061706270637064706570667067706870697070707170727073707470757076707770787079708070817082708370847085708670877088708970907091709270937094709570967097709870997100710171027103710471057106710771087109711071117112711371147115711671177118711971207121712271237124712571267127712871297130713171327133713471357136713771387139714071417142714371447145714671477148714971507151715271537154715571567157715871597160716171627163716471657166716771687169717071717172717371747175717671777178717971807181718271837184718571867187718871897190719171927193719471957196719771987199720072017202720372047205720672077208720972107211721272137214721572167217721872197220722172227223722472257226722772287229723072317232723372347235723672377238723972407241724272437244724572467247724872497250725172527253725472557256725772587259726072617262726372647265726672677268726972707271727272737274727572767277727872797280728172827283728472857286728772887289729072917292729372947295729672977298729973007301730273037304730573067307730873097310731173127313731473157316731773187319732073217322732373247325732673277328732973307331733273337334733573367337733873397340734173427343734473457346734773487349735073517352735373547355735673577358735973607361736273637364736573667367736873697370737173727373737473757376737773787379738073817382738373847385738673877388738973907391739273937394739573967397739873997400740174027403740474057406740774087409741074117412741374147415741674177418741974207421742274237424742574267427742874297430743174327433743474357436743774387439744074417442744374447445744674477448744974507451745274537454745574567457745874597460746174627463746474657466746774687469747074717472747374747475747674777478747974807481748274837484748574867487748874897490749174927493749474957496749774987499750075017502750375047505750675077508750975107511751275137514751575167517751875197520752175227523752475257526752775287529753075317532753375347535753675377538753975407541754275437544754575467547754875497550755175527553755475557556755775587559756075617562756375647565756675677568756975707571757275737574757575767577757875797580758175827583758475857586758775887589759075917592759375947595759675977598759976007601760276037604760576067607760876097610761176127613761476157616761776187619762076217622762376247625762676277628762976307631763276337634763576367637763876397640764176427643764476457646764776487649765076517652765376547655765676577658765976607661766276637664766576667667766876697670767176727673767476757676767776787679768076817682768376847685768676877688768976907691769276937694769576967697769876997700770177027703770477057706770777087709771077117712771377147715771677177718771977207721772277237724772577267727772877297730773177327733773477357736773777387739774077417742774377447745774677477748774977507751775277537754775577567757775877597760776177627763776477657766776777687769777077717772777377747775777677777778777977807781778277837784778577867787778877897790779177927793779477957796779777987799780078017802780378047805780678077808780978107811781278137814781578167817781878197820782178227823782478257826782778287829783078317832783378347835783678377838783978407841
  1. /* -*- c++ -*- */
  2. /*
  3. Reprap firmware based on Sprinter and grbl.
  4. Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
  5. This program is free software: you can redistribute it and/or modify
  6. it under the terms of the GNU General Public License as published by
  7. the Free Software Foundation, either version 3 of the License, or
  8. (at your option) any later version.
  9. This program is distributed in the hope that it will be useful,
  10. but WITHOUT ANY WARRANTY; without even the implied warranty of
  11. MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  12. GNU General Public License for more details.
  13. You should have received a copy of the GNU General Public License
  14. along with this program. If not, see <http://www.gnu.org/licenses/>.
  15. */
  16. /*
  17. This firmware is a mashup between Sprinter and grbl.
  18. (https://github.com/kliment/Sprinter)
  19. (https://github.com/simen/grbl/tree)
  20. It has preliminary support for Matthew Roberts advance algorithm
  21. http://reprap.org/pipermail/reprap-dev/2011-May/003323.html
  22. */
  23. #include "Marlin.h"
  24. #ifdef ENABLE_AUTO_BED_LEVELING
  25. #include "vector_3.h"
  26. #ifdef AUTO_BED_LEVELING_GRID
  27. #include "qr_solve.h"
  28. #endif
  29. #endif // ENABLE_AUTO_BED_LEVELING
  30. #ifdef MESH_BED_LEVELING
  31. #include "mesh_bed_leveling.h"
  32. #include "mesh_bed_calibration.h"
  33. #endif
  34. #include "ultralcd.h"
  35. #include "Configuration_prusa.h"
  36. #include "planner.h"
  37. #include "stepper.h"
  38. #include "temperature.h"
  39. #include "motion_control.h"
  40. #include "cardreader.h"
  41. #include "watchdog.h"
  42. #include "ConfigurationStore.h"
  43. #include "language.h"
  44. #include "pins_arduino.h"
  45. #include "math.h"
  46. #include "util.h"
  47. #include <avr/wdt.h>
  48. #include "Dcodes.h"
  49. #ifdef SWSPI
  50. #include "swspi.h"
  51. #endif //SWSPI
  52. #ifdef SWI2C
  53. #include "swi2c.h"
  54. #endif //SWI2C
  55. #ifdef PAT9125
  56. #include "pat9125.h"
  57. #include "fsensor.h"
  58. #endif //PAT9125
  59. #ifdef TMC2130
  60. #include "tmc2130.h"
  61. #endif //TMC2130
  62. #ifdef BLINKM
  63. #include "BlinkM.h"
  64. #include "Wire.h"
  65. #endif
  66. #ifdef ULTRALCD
  67. #include "ultralcd.h"
  68. #endif
  69. #if NUM_SERVOS > 0
  70. #include "Servo.h"
  71. #endif
  72. #if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
  73. #include <SPI.h>
  74. #endif
  75. #define VERSION_STRING "1.0.2"
  76. #include "ultralcd.h"
  77. #include "cmdqueue.h"
  78. // Macros for bit masks
  79. #define BIT(b) (1<<(b))
  80. #define TEST(n,b) (((n)&BIT(b))!=0)
  81. #define SET_BIT(n,b,value) (n) ^= ((-value)^(n)) & (BIT(b))
  82. //Macro for print fan speed
  83. #define FAN_PULSE_WIDTH_LIMIT ((fanSpeed > 100) ? 3 : 4) //time in ms
  84. // look here for descriptions of G-codes: http://linuxcnc.org/handbook/gcode/g-code.html
  85. // http://objects.reprap.org/wiki/Mendel_User_Manual:_RepRapGCodes
  86. //Implemented Codes
  87. //-------------------
  88. // PRUSA CODES
  89. // P F - Returns FW versions
  90. // P R - Returns revision of printer
  91. // G0 -> G1
  92. // G1 - Coordinated Movement X Y Z E
  93. // G2 - CW ARC
  94. // G3 - CCW ARC
  95. // G4 - Dwell S<seconds> or P<milliseconds>
  96. // G10 - retract filament according to settings of M207
  97. // G11 - retract recover filament according to settings of M208
  98. // G28 - Home all Axis
  99. // G29 - Detailed Z-Probe, probes the bed at 3 or more points. Will fail if you haven't homed yet.
  100. // G30 - Single Z Probe, probes bed at current XY location.
  101. // G31 - Dock sled (Z_PROBE_SLED only)
  102. // G32 - Undock sled (Z_PROBE_SLED only)
  103. // G80 - Automatic mesh bed leveling
  104. // G81 - Print bed profile
  105. // G90 - Use Absolute Coordinates
  106. // G91 - Use Relative Coordinates
  107. // G92 - Set current position to coordinates given
  108. // M Codes
  109. // M0 - Unconditional stop - Wait for user to press a button on the LCD (Only if ULTRA_LCD is enabled)
  110. // M1 - Same as M0
  111. // M17 - Enable/Power all stepper motors
  112. // M18 - Disable all stepper motors; same as M84
  113. // M20 - List SD card
  114. // M21 - Init SD card
  115. // M22 - Release SD card
  116. // M23 - Select SD file (M23 filename.g)
  117. // M24 - Start/resume SD print
  118. // M25 - Pause SD print
  119. // M26 - Set SD position in bytes (M26 S12345)
  120. // M27 - Report SD print status
  121. // M28 - Start SD write (M28 filename.g)
  122. // M29 - Stop SD write
  123. // M30 - Delete file from SD (M30 filename.g)
  124. // M31 - Output time since last M109 or SD card start to serial
  125. // M32 - Select file and start SD print (Can be used _while_ printing from SD card files):
  126. // syntax "M32 /path/filename#", or "M32 S<startpos bytes> !filename#"
  127. // Call gcode file : "M32 P !filename#" and return to caller file after finishing (similar to #include).
  128. // The '#' is necessary when calling from within sd files, as it stops buffer prereading
  129. // M42 - Change pin status via gcode Use M42 Px Sy to set pin x to value y, when omitting Px the onboard led will be used.
  130. // M80 - Turn on Power Supply
  131. // M81 - Turn off Power Supply
  132. // M82 - Set E codes absolute (default)
  133. // M83 - Set E codes relative while in Absolute Coordinates (G90) mode
  134. // M84 - Disable steppers until next move,
  135. // or use S<seconds> to specify an inactivity timeout, after which the steppers will be disabled. S0 to disable the timeout.
  136. // M85 - Set inactivity shutdown timer with parameter S<seconds>. To disable set zero (default)
  137. // M92 - Set axis_steps_per_unit - same syntax as G92
  138. // M104 - Set extruder target temp
  139. // M105 - Read current temp
  140. // M106 - Fan on
  141. // M107 - Fan off
  142. // M109 - Sxxx Wait for extruder current temp to reach target temp. Waits only when heating
  143. // Rxxx Wait for extruder current temp to reach target temp. Waits when heating and cooling
  144. // IF AUTOTEMP is enabled, S<mintemp> B<maxtemp> F<factor>. Exit autotemp by any M109 without F
  145. // M112 - Emergency stop
  146. // M113 - Get or set the timeout interval for Host Keepalive "busy" messages
  147. // M114 - Output current position to serial port
  148. // M115 - Capabilities string
  149. // M117 - display message
  150. // M119 - Output Endstop status to serial port
  151. // M126 - Solenoid Air Valve Open (BariCUDA support by jmil)
  152. // M127 - Solenoid Air Valve Closed (BariCUDA vent to atmospheric pressure by jmil)
  153. // M128 - EtoP Open (BariCUDA EtoP = electricity to air pressure transducer by jmil)
  154. // M129 - EtoP Closed (BariCUDA EtoP = electricity to air pressure transducer by jmil)
  155. // M140 - Set bed target temp
  156. // M150 - Set BlinkM Color Output R: Red<0-255> U(!): Green<0-255> B: Blue<0-255> over i2c, G for green does not work.
  157. // M190 - Sxxx Wait for bed current temp to reach target temp. Waits only when heating
  158. // Rxxx Wait for bed current temp to reach target temp. Waits when heating and cooling
  159. // M200 D<millimeters>- set filament diameter and set E axis units to cubic millimeters (use S0 to set back to millimeters).
  160. // M201 - Set max acceleration in units/s^2 for print moves (M201 X1000 Y1000)
  161. // M202 - Set max acceleration in units/s^2 for travel moves (M202 X1000 Y1000) Unused in Marlin!!
  162. // M203 - Set maximum feedrate that your machine can sustain (M203 X200 Y200 Z300 E10000) in mm/sec
  163. // M204 - Set default acceleration: S normal moves T filament only moves (M204 S3000 T7000) in mm/sec^2 also sets minimum segment time in ms (B20000) to prevent buffer under-runs and M20 minimum feedrate
  164. // M205 - advanced settings: minimum travel speed S=while printing T=travel only, B=minimum segment time X= maximum xy jerk, Z=maximum Z jerk, E=maximum E jerk
  165. // M206 - set additional homing offset
  166. // M207 - set retract length S[positive mm] F[feedrate mm/min] Z[additional zlift/hop], stays in mm regardless of M200 setting
  167. // M208 - set recover=unretract length S[positive mm surplus to the M207 S*] F[feedrate mm/sec]
  168. // M209 - S<1=true/0=false> enable automatic retract detect if the slicer did not support G10/11: every normal extrude-only move will be classified as retract depending on the direction.
  169. // M218 - set hotend offset (in mm): T<extruder_number> X<offset_on_X> Y<offset_on_Y>
  170. // M220 S<factor in percent>- set speed factor override percentage
  171. // M221 S<factor in percent>- set extrude factor override percentage
  172. // M226 P<pin number> S<pin state>- Wait until the specified pin reaches the state required
  173. // M240 - Trigger a camera to take a photograph
  174. // M250 - Set LCD contrast C<contrast value> (value 0..63)
  175. // M280 - set servo position absolute. P: servo index, S: angle or microseconds
  176. // M300 - Play beep sound S<frequency Hz> P<duration ms>
  177. // M301 - Set PID parameters P I and D
  178. // M302 - Allow cold extrudes, or set the minimum extrude S<temperature>.
  179. // M303 - PID relay autotune S<temperature> sets the target temperature. (default target temperature = 150C)
  180. // M304 - Set bed PID parameters P I and D
  181. // M400 - Finish all moves
  182. // M401 - Lower z-probe if present
  183. // M402 - Raise z-probe if present
  184. // M404 - N<dia in mm> Enter the nominal filament width (3mm, 1.75mm ) or will display nominal filament width without parameters
  185. // M405 - Turn on Filament Sensor extrusion control. Optional D<delay in cm> to set delay in centimeters between sensor and extruder
  186. // M406 - Turn off Filament Sensor extrusion control
  187. // M407 - Displays measured filament diameter
  188. // M500 - stores parameters in EEPROM
  189. // M501 - reads parameters from EEPROM (if you need reset them after you changed them temporarily).
  190. // M502 - reverts to the default "factory settings". You still need to store them in EEPROM afterwards if you want to.
  191. // M503 - print the current settings (from memory not from EEPROM)
  192. // M509 - force language selection on next restart
  193. // M540 - Use S[0|1] to enable or disable the stop SD card print on endstop hit (requires ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED)
  194. // M600 - Pause for filament change X[pos] Y[pos] Z[relative lift] E[initial retract] L[later retract distance for removal]
  195. // M605 - Set dual x-carriage movement mode: S<mode> [ X<duplication x-offset> R<duplication temp offset> ]
  196. // M900 - Set LIN_ADVANCE options, if enabled. See Configuration_adv.h for details.
  197. // M907 - Set digital trimpot motor current using axis codes.
  198. // M908 - Control digital trimpot directly.
  199. // M350 - Set microstepping mode.
  200. // M351 - Toggle MS1 MS2 pins directly.
  201. // M928 - Start SD logging (M928 filename.g) - ended by M29
  202. // M999 - Restart after being stopped by error
  203. //Stepper Movement Variables
  204. //===========================================================================
  205. //=============================imported variables============================
  206. //===========================================================================
  207. //===========================================================================
  208. //=============================public variables=============================
  209. //===========================================================================
  210. #ifdef SDSUPPORT
  211. CardReader card;
  212. #endif
  213. unsigned long PingTime = millis();
  214. union Data
  215. {
  216. byte b[2];
  217. int value;
  218. };
  219. float homing_feedrate[] = HOMING_FEEDRATE;
  220. // Currently only the extruder axis may be switched to a relative mode.
  221. // Other axes are always absolute or relative based on the common relative_mode flag.
  222. bool axis_relative_modes[] = AXIS_RELATIVE_MODES;
  223. int feedmultiply=100; //100->1 200->2
  224. int saved_feedmultiply;
  225. int extrudemultiply=100; //100->1 200->2
  226. int extruder_multiply[EXTRUDERS] = {100
  227. #if EXTRUDERS > 1
  228. , 100
  229. #if EXTRUDERS > 2
  230. , 100
  231. #endif
  232. #endif
  233. };
  234. int bowden_length[4] = {385, 385, 385, 385};
  235. bool is_usb_printing = false;
  236. bool homing_flag = false;
  237. bool temp_cal_active = false;
  238. unsigned long kicktime = millis()+100000;
  239. unsigned int usb_printing_counter;
  240. int lcd_change_fil_state = 0;
  241. int feedmultiplyBckp = 100;
  242. float HotendTempBckp = 0;
  243. int fanSpeedBckp = 0;
  244. float pause_lastpos[4];
  245. unsigned long pause_time = 0;
  246. unsigned long start_pause_print = millis();
  247. unsigned long t_fan_rising_edge = millis();
  248. //unsigned long load_filament_time;
  249. bool mesh_bed_leveling_flag = false;
  250. bool mesh_bed_run_from_menu = false;
  251. unsigned char lang_selected = 0;
  252. int8_t FarmMode = 0;
  253. bool prusa_sd_card_upload = false;
  254. unsigned int status_number = 0;
  255. unsigned long total_filament_used;
  256. unsigned int heating_status;
  257. unsigned int heating_status_counter;
  258. bool custom_message;
  259. bool loading_flag = false;
  260. unsigned int custom_message_type;
  261. unsigned int custom_message_state;
  262. char snmm_filaments_used = 0;
  263. float distance_from_min[2];
  264. bool fan_state[2];
  265. int fan_edge_counter[2];
  266. int fan_speed[2];
  267. char dir_names[3][9];
  268. bool sortAlpha = false;
  269. bool volumetric_enabled = false;
  270. float filament_size[EXTRUDERS] = { DEFAULT_NOMINAL_FILAMENT_DIA
  271. #if EXTRUDERS > 1
  272. , DEFAULT_NOMINAL_FILAMENT_DIA
  273. #if EXTRUDERS > 2
  274. , DEFAULT_NOMINAL_FILAMENT_DIA
  275. #endif
  276. #endif
  277. };
  278. float volumetric_multiplier[EXTRUDERS] = {1.0
  279. #if EXTRUDERS > 1
  280. , 1.0
  281. #if EXTRUDERS > 2
  282. , 1.0
  283. #endif
  284. #endif
  285. };
  286. float current_position[NUM_AXIS] = { 0.0, 0.0, 0.0, 0.0 };
  287. float add_homing[3]={0,0,0};
  288. float min_pos[3] = { X_MIN_POS, Y_MIN_POS, Z_MIN_POS };
  289. float max_pos[3] = { X_MAX_POS, Y_MAX_POS, Z_MAX_POS };
  290. bool axis_known_position[3] = {false, false, false};
  291. float zprobe_zoffset;
  292. // Extruder offset
  293. #if EXTRUDERS > 1
  294. #define NUM_EXTRUDER_OFFSETS 2 // only in XY plane
  295. float extruder_offset[NUM_EXTRUDER_OFFSETS][EXTRUDERS] = {
  296. #if defined(EXTRUDER_OFFSET_X) && defined(EXTRUDER_OFFSET_Y)
  297. EXTRUDER_OFFSET_X, EXTRUDER_OFFSET_Y
  298. #endif
  299. };
  300. #endif
  301. uint8_t active_extruder = 0;
  302. int fanSpeed=0;
  303. #ifdef FWRETRACT
  304. bool autoretract_enabled=false;
  305. bool retracted[EXTRUDERS]={false
  306. #if EXTRUDERS > 1
  307. , false
  308. #if EXTRUDERS > 2
  309. , false
  310. #endif
  311. #endif
  312. };
  313. bool retracted_swap[EXTRUDERS]={false
  314. #if EXTRUDERS > 1
  315. , false
  316. #if EXTRUDERS > 2
  317. , false
  318. #endif
  319. #endif
  320. };
  321. float retract_length = RETRACT_LENGTH;
  322. float retract_length_swap = RETRACT_LENGTH_SWAP;
  323. float retract_feedrate = RETRACT_FEEDRATE;
  324. float retract_zlift = RETRACT_ZLIFT;
  325. float retract_recover_length = RETRACT_RECOVER_LENGTH;
  326. float retract_recover_length_swap = RETRACT_RECOVER_LENGTH_SWAP;
  327. float retract_recover_feedrate = RETRACT_RECOVER_FEEDRATE;
  328. #endif
  329. #ifdef ULTIPANEL
  330. #ifdef PS_DEFAULT_OFF
  331. bool powersupply = false;
  332. #else
  333. bool powersupply = true;
  334. #endif
  335. #endif
  336. bool cancel_heatup = false ;
  337. #ifdef HOST_KEEPALIVE_FEATURE
  338. int busy_state = NOT_BUSY;
  339. static long prev_busy_signal_ms = -1;
  340. uint8_t host_keepalive_interval = HOST_KEEPALIVE_INTERVAL;
  341. #else
  342. #define host_keepalive();
  343. #define KEEPALIVE_STATE(n);
  344. #endif
  345. #ifdef FILAMENT_SENSOR
  346. //Variables for Filament Sensor input
  347. float filament_width_nominal=DEFAULT_NOMINAL_FILAMENT_DIA; //Set nominal filament width, can be changed with M404
  348. bool filament_sensor=false; //M405 turns on filament_sensor control, M406 turns it off
  349. float filament_width_meas=DEFAULT_MEASURED_FILAMENT_DIA; //Stores the measured filament diameter
  350. signed char measurement_delay[MAX_MEASUREMENT_DELAY+1]; //ring buffer to delay measurement store extruder factor after subtracting 100
  351. int delay_index1=0; //index into ring buffer
  352. int delay_index2=-1; //index into ring buffer - set to -1 on startup to indicate ring buffer needs to be initialized
  353. float delay_dist=0; //delay distance counter
  354. int meas_delay_cm = MEASUREMENT_DELAY_CM; //distance delay setting
  355. #endif
  356. const char errormagic[] PROGMEM = "Error:";
  357. const char echomagic[] PROGMEM = "echo:";
  358. //===========================================================================
  359. //=============================Private Variables=============================
  360. //===========================================================================
  361. const char axis_codes[NUM_AXIS] = {'X', 'Y', 'Z', 'E'};
  362. float destination[NUM_AXIS] = { 0.0, 0.0, 0.0, 0.0};
  363. static float delta[3] = {0.0, 0.0, 0.0};
  364. // For tracing an arc
  365. static float offset[3] = {0.0, 0.0, 0.0};
  366. static float feedrate = 1500.0, next_feedrate, saved_feedrate;
  367. // Determines Absolute or Relative Coordinates.
  368. // Also there is bool axis_relative_modes[] per axis flag.
  369. static bool relative_mode = false;
  370. #ifndef _DISABLE_M42_M226
  371. const int sensitive_pins[] = SENSITIVE_PINS; // Sensitive pin list for M42
  372. #endif //_DISABLE_M42_M226
  373. //static float tt = 0;
  374. //static float bt = 0;
  375. //Inactivity shutdown variables
  376. static unsigned long previous_millis_cmd = 0;
  377. unsigned long max_inactive_time = 0;
  378. static unsigned long stepper_inactive_time = DEFAULT_STEPPER_DEACTIVE_TIME*1000l;
  379. unsigned long starttime=0;
  380. unsigned long stoptime=0;
  381. unsigned long _usb_timer = 0;
  382. static uint8_t tmp_extruder;
  383. bool extruder_under_pressure = true;
  384. bool Stopped=false;
  385. #if NUM_SERVOS > 0
  386. Servo servos[NUM_SERVOS];
  387. #endif
  388. bool CooldownNoWait = true;
  389. bool target_direction;
  390. //Insert variables if CHDK is defined
  391. #ifdef CHDK
  392. unsigned long chdkHigh = 0;
  393. boolean chdkActive = false;
  394. #endif
  395. //===========================================================================
  396. //=============================Routines======================================
  397. //===========================================================================
  398. void get_arc_coordinates();
  399. bool setTargetedHotend(int code);
  400. void serial_echopair_P(const char *s_P, float v)
  401. { serialprintPGM(s_P); SERIAL_ECHO(v); }
  402. void serial_echopair_P(const char *s_P, double v)
  403. { serialprintPGM(s_P); SERIAL_ECHO(v); }
  404. void serial_echopair_P(const char *s_P, unsigned long v)
  405. { serialprintPGM(s_P); SERIAL_ECHO(v); }
  406. #ifdef SDSUPPORT
  407. #include "SdFatUtil.h"
  408. int freeMemory() { return SdFatUtil::FreeRam(); }
  409. #else
  410. extern "C" {
  411. extern unsigned int __bss_end;
  412. extern unsigned int __heap_start;
  413. extern void *__brkval;
  414. int freeMemory() {
  415. int free_memory;
  416. if ((int)__brkval == 0)
  417. free_memory = ((int)&free_memory) - ((int)&__bss_end);
  418. else
  419. free_memory = ((int)&free_memory) - ((int)__brkval);
  420. return free_memory;
  421. }
  422. }
  423. #endif //!SDSUPPORT
  424. void setup_killpin()
  425. {
  426. #if defined(KILL_PIN) && KILL_PIN > -1
  427. SET_INPUT(KILL_PIN);
  428. WRITE(KILL_PIN,HIGH);
  429. #endif
  430. }
  431. // Set home pin
  432. void setup_homepin(void)
  433. {
  434. #if defined(HOME_PIN) && HOME_PIN > -1
  435. SET_INPUT(HOME_PIN);
  436. WRITE(HOME_PIN,HIGH);
  437. #endif
  438. }
  439. void setup_photpin()
  440. {
  441. #if defined(PHOTOGRAPH_PIN) && PHOTOGRAPH_PIN > -1
  442. SET_OUTPUT(PHOTOGRAPH_PIN);
  443. WRITE(PHOTOGRAPH_PIN, LOW);
  444. #endif
  445. }
  446. void setup_powerhold()
  447. {
  448. #if defined(SUICIDE_PIN) && SUICIDE_PIN > -1
  449. SET_OUTPUT(SUICIDE_PIN);
  450. WRITE(SUICIDE_PIN, HIGH);
  451. #endif
  452. #if defined(PS_ON_PIN) && PS_ON_PIN > -1
  453. SET_OUTPUT(PS_ON_PIN);
  454. #if defined(PS_DEFAULT_OFF)
  455. WRITE(PS_ON_PIN, PS_ON_ASLEEP);
  456. #else
  457. WRITE(PS_ON_PIN, PS_ON_AWAKE);
  458. #endif
  459. #endif
  460. }
  461. void suicide()
  462. {
  463. #if defined(SUICIDE_PIN) && SUICIDE_PIN > -1
  464. SET_OUTPUT(SUICIDE_PIN);
  465. WRITE(SUICIDE_PIN, LOW);
  466. #endif
  467. }
  468. void servo_init()
  469. {
  470. #if (NUM_SERVOS >= 1) && defined(SERVO0_PIN) && (SERVO0_PIN > -1)
  471. servos[0].attach(SERVO0_PIN);
  472. #endif
  473. #if (NUM_SERVOS >= 2) && defined(SERVO1_PIN) && (SERVO1_PIN > -1)
  474. servos[1].attach(SERVO1_PIN);
  475. #endif
  476. #if (NUM_SERVOS >= 3) && defined(SERVO2_PIN) && (SERVO2_PIN > -1)
  477. servos[2].attach(SERVO2_PIN);
  478. #endif
  479. #if (NUM_SERVOS >= 4) && defined(SERVO3_PIN) && (SERVO3_PIN > -1)
  480. servos[3].attach(SERVO3_PIN);
  481. #endif
  482. #if (NUM_SERVOS >= 5)
  483. #error "TODO: enter initalisation code for more servos"
  484. #endif
  485. }
  486. static void lcd_language_menu();
  487. void stop_and_save_print_to_ram(float z_move, float e_move);
  488. void restore_print_from_ram_and_continue(float e_move);
  489. bool fans_check_enabled = true;
  490. bool filament_autoload_enabled = true;
  491. extern int8_t CrashDetectMenu;
  492. void crashdet_enable()
  493. {
  494. MYSERIAL.println("crashdet_enable");
  495. tmc2130_sg_stop_on_crash = true;
  496. eeprom_update_byte((uint8_t*)EEPROM_CRASH_DET, 0xFF);
  497. CrashDetectMenu = 1;
  498. }
  499. void crashdet_disable()
  500. {
  501. MYSERIAL.println("crashdet_disable");
  502. tmc2130_sg_stop_on_crash = false;
  503. tmc2130_sg_crash = false;
  504. eeprom_update_byte((uint8_t*)EEPROM_CRASH_DET, 0x00);
  505. CrashDetectMenu = 0;
  506. }
  507. void crashdet_stop_and_save_print()
  508. {
  509. stop_and_save_print_to_ram(10, 0); //XY - no change, Z 10mm up, E - no change
  510. }
  511. void crashdet_restore_print_and_continue()
  512. {
  513. restore_print_from_ram_and_continue(0); //XYZ = orig, E - no change
  514. // babystep_apply();
  515. }
  516. void crashdet_stop_and_save_print2()
  517. {
  518. cli();
  519. planner_abort_hard(); //abort printing
  520. cmdqueue_reset(); //empty cmdqueue
  521. card.sdprinting = false;
  522. card.closefile();
  523. sei();
  524. }
  525. void crashdet_detected()
  526. {
  527. // printf("CRASH_DETECTED");
  528. /* while (!is_buffer_empty())
  529. {
  530. process_commands();
  531. cmdqueue_pop_front();
  532. }*/
  533. st_synchronize();
  534. lcd_update_enable(true);
  535. lcd_implementation_clear();
  536. lcd_update(2);
  537. // Increment crash counter
  538. uint8_t crash_count = eeprom_read_byte((uint8_t*)EEPROM_CRASH_COUNT);
  539. crash_count++;
  540. eeprom_update_byte((uint8_t*)EEPROM_CRASH_COUNT, crash_count);
  541. #ifdef AUTOMATIC_RECOVERY_AFTER_CRASH
  542. bool yesno = true;
  543. #else
  544. bool yesno = lcd_show_fullscreen_message_yes_no_and_wait_P(MSG_CRASH_DETECTED, false);
  545. #endif
  546. lcd_update_enable(true);
  547. lcd_update(2);
  548. lcd_setstatuspgm(WELCOME_MSG);
  549. if (yesno)
  550. {
  551. enquecommand_P(PSTR("G28 X"));
  552. enquecommand_P(PSTR("G28 Y"));
  553. enquecommand_P(PSTR("CRASH_RECOVER"));
  554. }
  555. else
  556. {
  557. enquecommand_P(PSTR("CRASH_CANCEL"));
  558. }
  559. }
  560. void crashdet_recover()
  561. {
  562. crashdet_restore_print_and_continue();
  563. tmc2130_sg_stop_on_crash = true;
  564. }
  565. void crashdet_cancel()
  566. {
  567. card.sdprinting = false;
  568. card.closefile();
  569. tmc2130_sg_stop_on_crash = true;
  570. }
  571. #ifdef MESH_BED_LEVELING
  572. enum MeshLevelingState { MeshReport, MeshStart, MeshNext, MeshSet };
  573. #endif
  574. // Factory reset function
  575. // This function is used to erase parts or whole EEPROM memory which is used for storing calibration and and so on.
  576. // Level input parameter sets depth of reset
  577. // Quiet parameter masks all waitings for user interact.
  578. int er_progress = 0;
  579. void factory_reset(char level, bool quiet)
  580. {
  581. lcd_implementation_clear();
  582. int cursor_pos = 0;
  583. switch (level) {
  584. // Level 0: Language reset
  585. case 0:
  586. WRITE(BEEPER, HIGH);
  587. _delay_ms(100);
  588. WRITE(BEEPER, LOW);
  589. lcd_force_language_selection();
  590. break;
  591. //Level 1: Reset statistics
  592. case 1:
  593. WRITE(BEEPER, HIGH);
  594. _delay_ms(100);
  595. WRITE(BEEPER, LOW);
  596. eeprom_update_dword((uint32_t *)EEPROM_TOTALTIME, 0);
  597. eeprom_update_dword((uint32_t *)EEPROM_FILAMENTUSED, 0);
  598. eeprom_update_byte((uint8_t *)EEPROM_POWER_COUNT, 0);
  599. eeprom_update_byte((uint8_t *)EEPROM_CRASH_COUNT, 0);
  600. eeprom_update_byte((uint8_t *)EEPROM_FERROR_COUNT, 0);
  601. lcd_menu_statistics();
  602. break;
  603. // Level 2: Prepare for shipping
  604. case 2:
  605. //lcd_printPGM(PSTR("Factory RESET"));
  606. //lcd_print_at_PGM(1,2,PSTR("Shipping prep"));
  607. // Force language selection at the next boot up.
  608. lcd_force_language_selection();
  609. // Force the "Follow calibration flow" message at the next boot up.
  610. calibration_status_store(CALIBRATION_STATUS_Z_CALIBRATION);
  611. eeprom_write_byte((uint8_t*)EEPROM_WIZARD_ACTIVE, 1); //run wizard
  612. farm_no = 0;
  613. farm_mode == false;
  614. eeprom_update_byte((uint8_t*)EEPROM_FARM_MODE, farm_mode);
  615. EEPROM_save_B(EEPROM_FARM_NUMBER, &farm_no);
  616. WRITE(BEEPER, HIGH);
  617. _delay_ms(100);
  618. WRITE(BEEPER, LOW);
  619. //_delay_ms(2000);
  620. break;
  621. // Level 3: erase everything, whole EEPROM will be set to 0xFF
  622. case 3:
  623. lcd_printPGM(PSTR("Factory RESET"));
  624. lcd_print_at_PGM(1, 2, PSTR("ERASING all data"));
  625. WRITE(BEEPER, HIGH);
  626. _delay_ms(100);
  627. WRITE(BEEPER, LOW);
  628. er_progress = 0;
  629. lcd_print_at_PGM(3, 3, PSTR(" "));
  630. lcd_implementation_print_at(3, 3, er_progress);
  631. // Erase EEPROM
  632. for (int i = 0; i < 4096; i++) {
  633. eeprom_write_byte((uint8_t*)i, 0xFF);
  634. if (i % 41 == 0) {
  635. er_progress++;
  636. lcd_print_at_PGM(3, 3, PSTR(" "));
  637. lcd_implementation_print_at(3, 3, er_progress);
  638. lcd_printPGM(PSTR("%"));
  639. }
  640. }
  641. break;
  642. case 4:
  643. bowden_menu();
  644. break;
  645. default:
  646. break;
  647. }
  648. }
  649. #include "LiquidCrystal.h"
  650. extern LiquidCrystal lcd;
  651. FILE _lcdout = {0};
  652. int lcd_putchar(char c, FILE *stream)
  653. {
  654. lcd.write(c);
  655. return 0;
  656. }
  657. FILE _uartout = {0};
  658. int uart_putchar(char c, FILE *stream)
  659. {
  660. MYSERIAL.write(c);
  661. return 0;
  662. }
  663. void lcd_splash()
  664. {
  665. // lcd_print_at_PGM(0, 1, PSTR(" Original Prusa "));
  666. // lcd_print_at_PGM(0, 2, PSTR(" 3D Printers "));
  667. // lcd.print_P(PSTR("\x1b[1;3HOriginal Prusa\x1b[2;4H3D Printers"));
  668. fputs_P(PSTR(ESC_2J ESC_H(1,1) "Original Prusa i3" ESC_H(3,2) "Prusa Research"), lcdout);
  669. }
  670. void factory_reset()
  671. {
  672. KEEPALIVE_STATE(PAUSED_FOR_USER);
  673. if (!READ(BTN_ENC))
  674. {
  675. _delay_ms(1000);
  676. if (!READ(BTN_ENC))
  677. {
  678. lcd_implementation_clear();
  679. lcd_printPGM(PSTR("Factory RESET"));
  680. SET_OUTPUT(BEEPER);
  681. WRITE(BEEPER, HIGH);
  682. while (!READ(BTN_ENC));
  683. WRITE(BEEPER, LOW);
  684. _delay_ms(2000);
  685. char level = reset_menu();
  686. factory_reset(level, false);
  687. switch (level) {
  688. case 0: _delay_ms(0); break;
  689. case 1: _delay_ms(0); break;
  690. case 2: _delay_ms(0); break;
  691. case 3: _delay_ms(0); break;
  692. }
  693. // _delay_ms(100);
  694. /*
  695. #ifdef MESH_BED_LEVELING
  696. _delay_ms(2000);
  697. if (!READ(BTN_ENC))
  698. {
  699. WRITE(BEEPER, HIGH);
  700. _delay_ms(100);
  701. WRITE(BEEPER, LOW);
  702. _delay_ms(200);
  703. WRITE(BEEPER, HIGH);
  704. _delay_ms(100);
  705. WRITE(BEEPER, LOW);
  706. int _z = 0;
  707. calibration_status_store(CALIBRATION_STATUS_CALIBRATED);
  708. EEPROM_save_B(EEPROM_BABYSTEP_X, &_z);
  709. EEPROM_save_B(EEPROM_BABYSTEP_Y, &_z);
  710. EEPROM_save_B(EEPROM_BABYSTEP_Z, &_z);
  711. }
  712. else
  713. {
  714. WRITE(BEEPER, HIGH);
  715. _delay_ms(100);
  716. WRITE(BEEPER, LOW);
  717. }
  718. #endif // mesh */
  719. }
  720. }
  721. else
  722. {
  723. //_delay_ms(1000); // wait 1sec to display the splash screen // what's this and why do we need it?? - andre
  724. }
  725. KEEPALIVE_STATE(IN_HANDLER);
  726. }
  727. // "Setup" function is called by the Arduino framework on startup.
  728. // Before startup, the Timers-functions (PWM)/Analog RW and HardwareSerial provided by the Arduino-code
  729. // are initialized by the main() routine provided by the Arduino framework.
  730. void setup()
  731. {
  732. lcd_init();
  733. fdev_setup_stream(lcdout, lcd_putchar, NULL, _FDEV_SETUP_WRITE); //setup lcdout stream
  734. lcd_splash();
  735. setup_killpin();
  736. setup_powerhold();
  737. farm_mode = eeprom_read_byte((uint8_t*)EEPROM_FARM_MODE);
  738. EEPROM_read_B(EEPROM_FARM_NUMBER, &farm_no);
  739. if ((farm_mode == 0xFF && farm_no == 0) || (farm_no == 0xFFFF)) farm_mode = false; //if farm_mode has not been stored to eeprom yet and farm number is set to zero or EEPROM is fresh, deactivate farm mode
  740. if (farm_no == 0xFFFF) farm_no = 0;
  741. selectedSerialPort = eeprom_read_byte((uint8_t*)EEPROM_SECOND_SERIAL_ACTIVE);
  742. if (selectedSerialPort == 0xFF) selectedSerialPort = 0;
  743. if (farm_mode)
  744. {
  745. prusa_statistics(8);
  746. selectedSerialPort = 1;
  747. }
  748. MYSERIAL.begin(BAUDRATE);
  749. fdev_setup_stream(uartout, uart_putchar, NULL, _FDEV_SETUP_WRITE); //setup uart out stream
  750. stdout = uartout;
  751. SERIAL_PROTOCOLLNPGM("start");
  752. SERIAL_ECHO_START;
  753. #if 0
  754. SERIAL_ECHOLN("Reading eeprom from 0 to 100: start");
  755. for (int i = 0; i < 4096; ++i) {
  756. int b = eeprom_read_byte((unsigned char*)i);
  757. if (b != 255) {
  758. SERIAL_ECHO(i);
  759. SERIAL_ECHO(":");
  760. SERIAL_ECHO(b);
  761. SERIAL_ECHOLN("");
  762. }
  763. }
  764. SERIAL_ECHOLN("Reading eeprom from 0 to 100: done");
  765. #endif
  766. // Check startup - does nothing if bootloader sets MCUSR to 0
  767. byte mcu = MCUSR;
  768. /* if (mcu & 1) SERIAL_ECHOLNRPGM(MSG_POWERUP);
  769. if (mcu & 2) SERIAL_ECHOLNRPGM(MSG_EXTERNAL_RESET);
  770. if (mcu & 4) SERIAL_ECHOLNRPGM(MSG_BROWNOUT_RESET);
  771. if (mcu & 8) SERIAL_ECHOLNRPGM(MSG_WATCHDOG_RESET);
  772. if (mcu & 32) SERIAL_ECHOLNRPGM(MSG_SOFTWARE_RESET);*/
  773. if (mcu & 1) puts_P(MSG_POWERUP);
  774. if (mcu & 2) puts_P(MSG_EXTERNAL_RESET);
  775. if (mcu & 4) puts_P(MSG_BROWNOUT_RESET);
  776. if (mcu & 8) puts_P(MSG_WATCHDOG_RESET);
  777. if (mcu & 32) puts_P(MSG_SOFTWARE_RESET);
  778. MCUSR = 0;
  779. //SERIAL_ECHORPGM(MSG_MARLIN);
  780. //SERIAL_ECHOLNRPGM(VERSION_STRING);
  781. #ifdef STRING_VERSION_CONFIG_H
  782. #ifdef STRING_CONFIG_H_AUTHOR
  783. SERIAL_ECHO_START;
  784. SERIAL_ECHORPGM(MSG_CONFIGURATION_VER);
  785. SERIAL_ECHOPGM(STRING_VERSION_CONFIG_H);
  786. SERIAL_ECHORPGM(MSG_AUTHOR);
  787. SERIAL_ECHOLNPGM(STRING_CONFIG_H_AUTHOR);
  788. SERIAL_ECHOPGM("Compiled: ");
  789. SERIAL_ECHOLNPGM(__DATE__);
  790. #endif
  791. #endif
  792. SERIAL_ECHO_START;
  793. SERIAL_ECHORPGM(MSG_FREE_MEMORY);
  794. SERIAL_ECHO(freeMemory());
  795. SERIAL_ECHORPGM(MSG_PLANNER_BUFFER_BYTES);
  796. SERIAL_ECHOLN((int)sizeof(block_t)*BLOCK_BUFFER_SIZE);
  797. //lcd_update_enable(false); // why do we need this?? - andre
  798. // loads data from EEPROM if available else uses defaults (and resets step acceleration rate)
  799. Config_RetrieveSettings(EEPROM_OFFSET);
  800. SdFatUtil::set_stack_guard(); //writes magic number at the end of static variables to protect against overwriting static memory by stack
  801. tp_init(); // Initialize temperature loop
  802. lcd_splash(); // we need to do this again, because tp_init() kills lcd
  803. plan_init(); // Initialize planner;
  804. watchdog_init();
  805. factory_reset();
  806. #ifdef TMC2130
  807. uint8_t silentMode = eeprom_read_byte((uint8_t*)EEPROM_SILENT);
  808. tmc2130_mode = silentMode?TMC2130_MODE_SILENT:TMC2130_MODE_NORMAL;
  809. uint8_t crashdet = eeprom_read_byte((uint8_t*)EEPROM_CRASH_DET);
  810. if (crashdet)
  811. {
  812. crashdet_enable();
  813. MYSERIAL.println("CrashDetect ENABLED!");
  814. }
  815. else
  816. {
  817. crashdet_disable();
  818. MYSERIAL.println("CrashDetect DISABLED");
  819. }
  820. #endif //TMC2130
  821. st_init(); // Initialize stepper, this enables interrupts!
  822. setup_photpin();
  823. servo_init();
  824. // Reset the machine correction matrix.
  825. // It does not make sense to load the correction matrix until the machine is homed.
  826. world2machine_reset();
  827. #ifdef PAT9125
  828. fsensor_init();
  829. #endif //PAT9125
  830. #if defined(CONTROLLERFAN_PIN) && (CONTROLLERFAN_PIN > -1)
  831. SET_OUTPUT(CONTROLLERFAN_PIN); //Set pin used for driver cooling fan
  832. #endif
  833. #if defined(LCD_PWM_PIN) && (LCD_PWM_PIN > -1)
  834. SET_OUTPUT(LCD_PWM_PIN); //Set pin used for driver cooling fan
  835. #endif
  836. #ifdef DIGIPOT_I2C
  837. digipot_i2c_init();
  838. #endif
  839. setup_homepin();
  840. if (1) {
  841. SERIAL_ECHOPGM("initial zsteps on power up: "); MYSERIAL.println(tmc2130_rd_MSCNT(Z_TMC2130_CS));
  842. // try to run to zero phase before powering the Z motor.
  843. // Move in negative direction
  844. WRITE(Z_DIR_PIN,INVERT_Z_DIR);
  845. // Round the current micro-micro steps to micro steps.
  846. for (uint16_t phase = (tmc2130_rd_MSCNT(Z_TMC2130_CS) + 8) >> 4; phase > 0; -- phase) {
  847. // Until the phase counter is reset to zero.
  848. WRITE(Z_STEP_PIN, !INVERT_Z_STEP_PIN);
  849. delay(2);
  850. WRITE(Z_STEP_PIN, INVERT_Z_STEP_PIN);
  851. delay(2);
  852. }
  853. SERIAL_ECHOPGM("initial zsteps after reset: "); MYSERIAL.println(tmc2130_rd_MSCNT(Z_TMC2130_CS));
  854. }
  855. #if defined(Z_AXIS_ALWAYS_ON)
  856. enable_z();
  857. #endif
  858. farm_mode = eeprom_read_byte((uint8_t*)EEPROM_FARM_MODE);
  859. EEPROM_read_B(EEPROM_FARM_NUMBER, &farm_no);
  860. if ((farm_mode == 0xFF && farm_no == 0) || (farm_no == 0xFFFF)) farm_mode = false; //if farm_mode has not been stored to eeprom yet and farm number is set to zero or EEPROM is fresh, deactivate farm mode
  861. if (farm_no == 0xFFFF) farm_no = 0;
  862. if (farm_mode)
  863. {
  864. prusa_statistics(8);
  865. }
  866. // Enable Toshiba FlashAir SD card / WiFi enahanced card.
  867. card.ToshibaFlashAir_enable(eeprom_read_byte((unsigned char*)EEPROM_TOSHIBA_FLASH_AIR_COMPATIBLITY) == 1);
  868. if (eeprom_read_dword((uint32_t*)(EEPROM_TOP - 4)) == 0x0ffffffff &&
  869. eeprom_read_dword((uint32_t*)(EEPROM_TOP - 8)) == 0x0ffffffff) {
  870. // Maiden startup. The firmware has been loaded and first started on a virgin RAMBo board,
  871. // where all the EEPROM entries are set to 0x0ff.
  872. // Once a firmware boots up, it forces at least a language selection, which changes
  873. // EEPROM_LANG to number lower than 0x0ff.
  874. // 1) Set a high power mode.
  875. eeprom_write_byte((uint8_t*)EEPROM_SILENT, 0);
  876. eeprom_write_byte((uint8_t*)EEPROM_WIZARD_ACTIVE, 1); //run wizard
  877. }
  878. // Force SD card update. Otherwise the SD card update is done from loop() on card.checkautostart(false),
  879. // but this times out if a blocking dialog is shown in setup().
  880. card.initsd();
  881. if (eeprom_read_byte((uint8_t*)EEPROM_POWER_COUNT) == 0xff)
  882. eeprom_write_byte((uint8_t*)EEPROM_POWER_COUNT, 0);
  883. if (eeprom_read_byte((uint8_t*)EEPROM_CRASH_COUNT) == 0xff)
  884. eeprom_write_byte((uint8_t*)EEPROM_CRASH_COUNT, 0);
  885. if (eeprom_read_byte((uint8_t*)EEPROM_FERROR_COUNT) == 0xff)
  886. eeprom_write_byte((uint8_t*)EEPROM_FERROR_COUNT, 0);
  887. #ifdef SNMM
  888. if (eeprom_read_dword((uint32_t*)EEPROM_BOWDEN_LENGTH) == 0x0ffffffff) { //bowden length used for SNMM
  889. int _z = BOWDEN_LENGTH;
  890. for(int i = 0; i<4; i++) EEPROM_save_B(EEPROM_BOWDEN_LENGTH + i * 2, &_z);
  891. }
  892. #endif
  893. // In the future, somewhere here would one compare the current firmware version against the firmware version stored in the EEPROM.
  894. // If they differ, an update procedure may need to be performed. At the end of this block, the current firmware version
  895. // is being written into the EEPROM, so the update procedure will be triggered only once.
  896. lang_selected = eeprom_read_byte((uint8_t*)EEPROM_LANG);
  897. if (lang_selected >= LANG_NUM){
  898. lcd_mylang();
  899. }
  900. if (eeprom_read_byte((uint8_t*)EEPROM_TEMP_CAL_ACTIVE) == 255) {
  901. eeprom_write_byte((uint8_t*)EEPROM_TEMP_CAL_ACTIVE, 0);
  902. temp_cal_active = false;
  903. } else temp_cal_active = eeprom_read_byte((uint8_t*)EEPROM_TEMP_CAL_ACTIVE);
  904. if (eeprom_read_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA) == 255) {
  905. //eeprom_write_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 0);
  906. eeprom_write_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 1);
  907. eeprom_write_word(((uint16_t*)EEPROM_PROBE_TEMP_SHIFT) + 0, 8); //40C - 20um - 8usteps
  908. eeprom_write_word(((uint16_t*)EEPROM_PROBE_TEMP_SHIFT) + 1, 24); //45C - 60um - 24usteps
  909. eeprom_write_word(((uint16_t*)EEPROM_PROBE_TEMP_SHIFT) + 2, 48); //50C - 120um - 48usteps
  910. eeprom_write_word(((uint16_t*)EEPROM_PROBE_TEMP_SHIFT) + 3, 80); //55C - 200um - 80usteps
  911. eeprom_write_word(((uint16_t*)EEPROM_PROBE_TEMP_SHIFT) + 4, 120); //60C - 300um - 120usteps
  912. eeprom_write_byte((uint8_t*)EEPROM_TEMP_CAL_ACTIVE, 1);
  913. temp_cal_active = true;
  914. }
  915. if (eeprom_read_byte((uint8_t*)EEPROM_UVLO) == 255) {
  916. eeprom_write_byte((uint8_t*)EEPROM_UVLO, 0);
  917. }
  918. if (eeprom_read_byte((uint8_t*)EEPROM_SD_SORT) == 255) {
  919. eeprom_write_byte((uint8_t*)EEPROM_SD_SORT, 0);
  920. }
  921. check_babystep(); //checking if Z babystep is in allowed range
  922. setup_uvlo_interrupt();
  923. setup_fan_interrupt();
  924. fsensor_setup_interrupt();
  925. for (int i = 0; i<4; i++) EEPROM_read_B(EEPROM_BOWDEN_LENGTH + i * 2, &bowden_length[i]);
  926. #ifndef DEBUG_DISABLE_STARTMSGS
  927. KEEPALIVE_STATE(PAUSED_FOR_USER);
  928. if (eeprom_read_byte((uint8_t*)EEPROM_WIZARD_ACTIVE) == 1) {
  929. lcd_wizard(0);
  930. }
  931. if (eeprom_read_byte((uint8_t*)EEPROM_WIZARD_ACTIVE) == 0) { //dont show calibration status messages if wizard is currently active
  932. if (calibration_status() == CALIBRATION_STATUS_ASSEMBLED ||
  933. calibration_status() == CALIBRATION_STATUS_UNKNOWN) {
  934. // Reset the babystepping values, so the printer will not move the Z axis up when the babystepping is enabled.
  935. eeprom_update_word((uint16_t*)EEPROM_BABYSTEP_Z, 0);
  936. // Show the message.
  937. lcd_show_fullscreen_message_and_wait_P(MSG_FOLLOW_CALIBRATION_FLOW);
  938. }
  939. else if (calibration_status() == CALIBRATION_STATUS_LIVE_ADJUST) {
  940. // Show the message.
  941. lcd_show_fullscreen_message_and_wait_P(MSG_BABYSTEP_Z_NOT_SET);
  942. lcd_update_enable(true);
  943. }
  944. else if (calibration_status() == CALIBRATION_STATUS_CALIBRATED && temp_cal_active == true && calibration_status_pinda() == false) {
  945. //lcd_show_fullscreen_message_and_wait_P(MSG_PINDA_NOT_CALIBRATED);
  946. lcd_update_enable(true);
  947. }
  948. else if (calibration_status() == CALIBRATION_STATUS_Z_CALIBRATION) {
  949. // Show the message.
  950. lcd_show_fullscreen_message_and_wait_P(MSG_FOLLOW_CALIBRATION_FLOW);
  951. }
  952. }
  953. KEEPALIVE_STATE(IN_PROCESS);
  954. #endif //DEBUG_DISABLE_STARTMSGS
  955. lcd_update_enable(true);
  956. lcd_implementation_clear();
  957. lcd_update(2);
  958. // Store the currently running firmware into an eeprom,
  959. // so the next time the firmware gets updated, it will know from which version it has been updated.
  960. update_current_firmware_version_to_eeprom();
  961. if (eeprom_read_byte((uint8_t*)EEPROM_UVLO) == 1) { //previous print was terminated by UVLO
  962. /*
  963. if (lcd_show_fullscreen_message_yes_no_and_wait_P(MSG_RECOVER_PRINT, false)) recover_print();
  964. else {
  965. eeprom_update_byte((uint8_t*)EEPROM_UVLO, 0);
  966. lcd_update_enable(true);
  967. lcd_update(2);
  968. lcd_setstatuspgm(WELCOME_MSG);
  969. }
  970. */
  971. manage_heater(); // Update temperatures
  972. #ifdef DEBUG_UVLO_AUTOMATIC_RECOVER
  973. MYSERIAL.println("Power panic detected!");
  974. MYSERIAL.print("Current bed temp:");
  975. MYSERIAL.println(degBed());
  976. MYSERIAL.print("Saved bed temp:");
  977. MYSERIAL.println((float)eeprom_read_byte((uint8_t*)EEPROM_UVLO_TARGET_BED));
  978. #endif
  979. if ( degBed() > ( (float)eeprom_read_byte((uint8_t*)EEPROM_UVLO_TARGET_BED) - AUTOMATIC_UVLO_BED_TEMP_OFFSET) ){
  980. #ifdef DEBUG_UVLO_AUTOMATIC_RECOVER
  981. MYSERIAL.println("Automatic recovery!");
  982. #endif
  983. recover_print(1);
  984. }
  985. else{
  986. #ifdef DEBUG_UVLO_AUTOMATIC_RECOVER
  987. MYSERIAL.println("Normal recovery!");
  988. #endif
  989. if ( lcd_show_fullscreen_message_yes_no_and_wait_P(MSG_RECOVER_PRINT, false) ) recover_print(0);
  990. else {
  991. eeprom_update_byte((uint8_t*)EEPROM_UVLO, 0);
  992. lcd_update_enable(true);
  993. lcd_update(2);
  994. lcd_setstatuspgm(WELCOME_MSG);
  995. }
  996. }
  997. }
  998. KEEPALIVE_STATE(NOT_BUSY);
  999. wdt_enable(WDTO_4S);
  1000. }
  1001. #ifdef PAT9125
  1002. void fsensor_init() {
  1003. int pat9125 = pat9125_init(PAT9125_XRES, PAT9125_YRES);
  1004. printf_P(PSTR("PAT9125_init:%d\n"), pat9125);
  1005. uint8_t fsensor = eeprom_read_byte((uint8_t*)EEPROM_FSENSOR);
  1006. if (!pat9125)
  1007. {
  1008. fsensor = 0; //disable sensor
  1009. fsensor_not_responding = true;
  1010. }
  1011. else {
  1012. fsensor_not_responding = false;
  1013. }
  1014. puts_P(PSTR("FSensor "));
  1015. if (fsensor)
  1016. {
  1017. puts_P(PSTR("ENABLED\n"));
  1018. fsensor_enable();
  1019. }
  1020. else
  1021. {
  1022. puts_P(PSTR("DISABLED\n"));
  1023. fsensor_disable();
  1024. }
  1025. }
  1026. #endif //PAT9125
  1027. void trace();
  1028. #define CHUNK_SIZE 64 // bytes
  1029. #define SAFETY_MARGIN 1
  1030. char chunk[CHUNK_SIZE+SAFETY_MARGIN];
  1031. int chunkHead = 0;
  1032. int serial_read_stream() {
  1033. setTargetHotend(0, 0);
  1034. setTargetBed(0);
  1035. lcd_implementation_clear();
  1036. lcd_printPGM(PSTR(" Upload in progress"));
  1037. // first wait for how many bytes we will receive
  1038. uint32_t bytesToReceive;
  1039. // receive the four bytes
  1040. char bytesToReceiveBuffer[4];
  1041. for (int i=0; i<4; i++) {
  1042. int data;
  1043. while ((data = MYSERIAL.read()) == -1) {};
  1044. bytesToReceiveBuffer[i] = data;
  1045. }
  1046. // make it a uint32
  1047. memcpy(&bytesToReceive, &bytesToReceiveBuffer, 4);
  1048. // we're ready, notify the sender
  1049. MYSERIAL.write('+');
  1050. // lock in the routine
  1051. uint32_t receivedBytes = 0;
  1052. while (prusa_sd_card_upload) {
  1053. int i;
  1054. for (i=0; i<CHUNK_SIZE; i++) {
  1055. int data;
  1056. // check if we're not done
  1057. if (receivedBytes == bytesToReceive) {
  1058. break;
  1059. }
  1060. // read the next byte
  1061. while ((data = MYSERIAL.read()) == -1) {};
  1062. receivedBytes++;
  1063. // save it to the chunk
  1064. chunk[i] = data;
  1065. }
  1066. // write the chunk to SD
  1067. card.write_command_no_newline(&chunk[0]);
  1068. // notify the sender we're ready for more data
  1069. MYSERIAL.write('+');
  1070. // for safety
  1071. manage_heater();
  1072. // check if we're done
  1073. if(receivedBytes == bytesToReceive) {
  1074. trace(); // beep
  1075. card.closefile();
  1076. prusa_sd_card_upload = false;
  1077. SERIAL_PROTOCOLLNRPGM(MSG_FILE_SAVED);
  1078. return 0;
  1079. }
  1080. }
  1081. }
  1082. #ifdef HOST_KEEPALIVE_FEATURE
  1083. /**
  1084. * Output a "busy" message at regular intervals
  1085. * while the machine is not accepting commands.
  1086. */
  1087. void host_keepalive() {
  1088. if (farm_mode) return;
  1089. long ms = millis();
  1090. if (host_keepalive_interval && busy_state != NOT_BUSY) {
  1091. if ((ms - prev_busy_signal_ms) < (long)(1000L * host_keepalive_interval)) return;
  1092. switch (busy_state) {
  1093. case IN_HANDLER:
  1094. case IN_PROCESS:
  1095. SERIAL_ECHO_START;
  1096. SERIAL_ECHOLNPGM("busy: processing");
  1097. break;
  1098. case PAUSED_FOR_USER:
  1099. SERIAL_ECHO_START;
  1100. SERIAL_ECHOLNPGM("busy: paused for user");
  1101. break;
  1102. case PAUSED_FOR_INPUT:
  1103. SERIAL_ECHO_START;
  1104. SERIAL_ECHOLNPGM("busy: paused for input");
  1105. break;
  1106. default:
  1107. break;
  1108. }
  1109. }
  1110. prev_busy_signal_ms = ms;
  1111. }
  1112. #endif
  1113. // The loop() function is called in an endless loop by the Arduino framework from the default main() routine.
  1114. // Before loop(), the setup() function is called by the main() routine.
  1115. void loop()
  1116. {
  1117. KEEPALIVE_STATE(NOT_BUSY);
  1118. bool stack_integrity = true;
  1119. if (usb_printing_counter > 0 && millis()-_usb_timer > 1000)
  1120. {
  1121. is_usb_printing = true;
  1122. usb_printing_counter--;
  1123. _usb_timer = millis();
  1124. }
  1125. if (usb_printing_counter == 0)
  1126. {
  1127. is_usb_printing = false;
  1128. }
  1129. if (prusa_sd_card_upload)
  1130. {
  1131. //we read byte-by byte
  1132. serial_read_stream();
  1133. } else
  1134. {
  1135. get_command();
  1136. #ifdef SDSUPPORT
  1137. card.checkautostart(false);
  1138. #endif
  1139. if(buflen)
  1140. {
  1141. cmdbuffer_front_already_processed = false;
  1142. #ifdef SDSUPPORT
  1143. if(card.saving)
  1144. {
  1145. // Saving a G-code file onto an SD-card is in progress.
  1146. // Saving starts with M28, saving until M29 is seen.
  1147. if(strstr_P(CMDBUFFER_CURRENT_STRING, PSTR("M29")) == NULL) {
  1148. card.write_command(CMDBUFFER_CURRENT_STRING);
  1149. if(card.logging)
  1150. process_commands();
  1151. else
  1152. SERIAL_PROTOCOLLNRPGM(MSG_OK);
  1153. } else {
  1154. card.closefile();
  1155. SERIAL_PROTOCOLLNRPGM(MSG_FILE_SAVED);
  1156. }
  1157. } else {
  1158. process_commands();
  1159. }
  1160. #else
  1161. process_commands();
  1162. #endif //SDSUPPORT
  1163. if (! cmdbuffer_front_already_processed && buflen)
  1164. {
  1165. cli();
  1166. union {
  1167. struct {
  1168. char lo;
  1169. char hi;
  1170. } lohi;
  1171. uint16_t value;
  1172. } sdlen;
  1173. sdlen.value = 0;
  1174. if (CMDBUFFER_CURRENT_TYPE == CMDBUFFER_CURRENT_TYPE_SDCARD) {
  1175. sdlen.lohi.lo = cmdbuffer[bufindr + 1];
  1176. sdlen.lohi.hi = cmdbuffer[bufindr + 2];
  1177. }
  1178. cmdqueue_pop_front();
  1179. planner_add_sd_length(sdlen.value);
  1180. sei();
  1181. }
  1182. host_keepalive();
  1183. }
  1184. }
  1185. //check heater every n milliseconds
  1186. manage_heater();
  1187. isPrintPaused ? manage_inactivity(true) : manage_inactivity(false);
  1188. checkHitEndstops();
  1189. lcd_update();
  1190. #ifdef PAT9125
  1191. fsensor_update();
  1192. #endif //PAT9125
  1193. #ifdef TMC2130
  1194. tmc2130_check_overtemp();
  1195. if (tmc2130_sg_crash)
  1196. {
  1197. tmc2130_sg_crash = false;
  1198. // crashdet_stop_and_save_print();
  1199. enquecommand_P((PSTR("CRASH_DETECTED")));
  1200. }
  1201. #endif //TMC2130
  1202. }
  1203. #define DEFINE_PGM_READ_ANY(type, reader) \
  1204. static inline type pgm_read_any(const type *p) \
  1205. { return pgm_read_##reader##_near(p); }
  1206. DEFINE_PGM_READ_ANY(float, float);
  1207. DEFINE_PGM_READ_ANY(signed char, byte);
  1208. #define XYZ_CONSTS_FROM_CONFIG(type, array, CONFIG) \
  1209. static const PROGMEM type array##_P[3] = \
  1210. { X_##CONFIG, Y_##CONFIG, Z_##CONFIG }; \
  1211. static inline type array(int axis) \
  1212. { return pgm_read_any(&array##_P[axis]); } \
  1213. type array##_ext(int axis) \
  1214. { return pgm_read_any(&array##_P[axis]); }
  1215. XYZ_CONSTS_FROM_CONFIG(float, base_min_pos, MIN_POS);
  1216. XYZ_CONSTS_FROM_CONFIG(float, base_max_pos, MAX_POS);
  1217. XYZ_CONSTS_FROM_CONFIG(float, base_home_pos, HOME_POS);
  1218. XYZ_CONSTS_FROM_CONFIG(float, max_length, MAX_LENGTH);
  1219. XYZ_CONSTS_FROM_CONFIG(float, home_retract_mm, HOME_RETRACT_MM);
  1220. XYZ_CONSTS_FROM_CONFIG(signed char, home_dir, HOME_DIR);
  1221. static void axis_is_at_home(int axis) {
  1222. current_position[axis] = base_home_pos(axis) + add_homing[axis];
  1223. min_pos[axis] = base_min_pos(axis) + add_homing[axis];
  1224. max_pos[axis] = base_max_pos(axis) + add_homing[axis];
  1225. }
  1226. inline void set_current_to_destination() { memcpy(current_position, destination, sizeof(current_position)); }
  1227. inline void set_destination_to_current() { memcpy(destination, current_position, sizeof(destination)); }
  1228. static void setup_for_endstop_move(bool enable_endstops_now = true) {
  1229. saved_feedrate = feedrate;
  1230. saved_feedmultiply = feedmultiply;
  1231. feedmultiply = 100;
  1232. previous_millis_cmd = millis();
  1233. enable_endstops(enable_endstops_now);
  1234. }
  1235. static void clean_up_after_endstop_move() {
  1236. #ifdef ENDSTOPS_ONLY_FOR_HOMING
  1237. enable_endstops(false);
  1238. #endif
  1239. feedrate = saved_feedrate;
  1240. feedmultiply = saved_feedmultiply;
  1241. previous_millis_cmd = millis();
  1242. }
  1243. #ifdef ENABLE_AUTO_BED_LEVELING
  1244. #ifdef AUTO_BED_LEVELING_GRID
  1245. static void set_bed_level_equation_lsq(double *plane_equation_coefficients)
  1246. {
  1247. vector_3 planeNormal = vector_3(-plane_equation_coefficients[0], -plane_equation_coefficients[1], 1);
  1248. planeNormal.debug("planeNormal");
  1249. plan_bed_level_matrix = matrix_3x3::create_look_at(planeNormal);
  1250. //bedLevel.debug("bedLevel");
  1251. //plan_bed_level_matrix.debug("bed level before");
  1252. //vector_3 uncorrected_position = plan_get_position_mm();
  1253. //uncorrected_position.debug("position before");
  1254. vector_3 corrected_position = plan_get_position();
  1255. // corrected_position.debug("position after");
  1256. current_position[X_AXIS] = corrected_position.x;
  1257. current_position[Y_AXIS] = corrected_position.y;
  1258. current_position[Z_AXIS] = corrected_position.z;
  1259. // put the bed at 0 so we don't go below it.
  1260. current_position[Z_AXIS] = zprobe_zoffset; // in the lsq we reach here after raising the extruder due to the loop structure
  1261. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1262. }
  1263. #else // not AUTO_BED_LEVELING_GRID
  1264. static void set_bed_level_equation_3pts(float z_at_pt_1, float z_at_pt_2, float z_at_pt_3) {
  1265. plan_bed_level_matrix.set_to_identity();
  1266. vector_3 pt1 = vector_3(ABL_PROBE_PT_1_X, ABL_PROBE_PT_1_Y, z_at_pt_1);
  1267. vector_3 pt2 = vector_3(ABL_PROBE_PT_2_X, ABL_PROBE_PT_2_Y, z_at_pt_2);
  1268. vector_3 pt3 = vector_3(ABL_PROBE_PT_3_X, ABL_PROBE_PT_3_Y, z_at_pt_3);
  1269. vector_3 from_2_to_1 = (pt1 - pt2).get_normal();
  1270. vector_3 from_2_to_3 = (pt3 - pt2).get_normal();
  1271. vector_3 planeNormal = vector_3::cross(from_2_to_1, from_2_to_3).get_normal();
  1272. planeNormal = vector_3(planeNormal.x, planeNormal.y, abs(planeNormal.z));
  1273. plan_bed_level_matrix = matrix_3x3::create_look_at(planeNormal);
  1274. vector_3 corrected_position = plan_get_position();
  1275. current_position[X_AXIS] = corrected_position.x;
  1276. current_position[Y_AXIS] = corrected_position.y;
  1277. current_position[Z_AXIS] = corrected_position.z;
  1278. // put the bed at 0 so we don't go below it.
  1279. current_position[Z_AXIS] = zprobe_zoffset;
  1280. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1281. }
  1282. #endif // AUTO_BED_LEVELING_GRID
  1283. static void run_z_probe() {
  1284. plan_bed_level_matrix.set_to_identity();
  1285. feedrate = homing_feedrate[Z_AXIS];
  1286. // move down until you find the bed
  1287. float zPosition = -10;
  1288. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder);
  1289. st_synchronize();
  1290. // we have to let the planner know where we are right now as it is not where we said to go.
  1291. zPosition = st_get_position_mm(Z_AXIS);
  1292. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS]);
  1293. // move up the retract distance
  1294. zPosition += home_retract_mm(Z_AXIS);
  1295. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder);
  1296. st_synchronize();
  1297. // move back down slowly to find bed
  1298. feedrate = homing_feedrate[Z_AXIS]/4;
  1299. zPosition -= home_retract_mm(Z_AXIS) * 2;
  1300. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder);
  1301. st_synchronize();
  1302. current_position[Z_AXIS] = st_get_position_mm(Z_AXIS);
  1303. // make sure the planner knows where we are as it may be a bit different than we last said to move to
  1304. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1305. }
  1306. static void do_blocking_move_to(float x, float y, float z) {
  1307. float oldFeedRate = feedrate;
  1308. feedrate = homing_feedrate[Z_AXIS];
  1309. current_position[Z_AXIS] = z;
  1310. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], feedrate/60, active_extruder);
  1311. st_synchronize();
  1312. feedrate = XY_TRAVEL_SPEED;
  1313. current_position[X_AXIS] = x;
  1314. current_position[Y_AXIS] = y;
  1315. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], feedrate/60, active_extruder);
  1316. st_synchronize();
  1317. feedrate = oldFeedRate;
  1318. }
  1319. static void do_blocking_move_relative(float offset_x, float offset_y, float offset_z) {
  1320. do_blocking_move_to(current_position[X_AXIS] + offset_x, current_position[Y_AXIS] + offset_y, current_position[Z_AXIS] + offset_z);
  1321. }
  1322. /// Probe bed height at position (x,y), returns the measured z value
  1323. static float probe_pt(float x, float y, float z_before) {
  1324. // move to right place
  1325. do_blocking_move_to(current_position[X_AXIS], current_position[Y_AXIS], z_before);
  1326. do_blocking_move_to(x - X_PROBE_OFFSET_FROM_EXTRUDER, y - Y_PROBE_OFFSET_FROM_EXTRUDER, current_position[Z_AXIS]);
  1327. run_z_probe();
  1328. float measured_z = current_position[Z_AXIS];
  1329. SERIAL_PROTOCOLRPGM(MSG_BED);
  1330. SERIAL_PROTOCOLPGM(" x: ");
  1331. SERIAL_PROTOCOL(x);
  1332. SERIAL_PROTOCOLPGM(" y: ");
  1333. SERIAL_PROTOCOL(y);
  1334. SERIAL_PROTOCOLPGM(" z: ");
  1335. SERIAL_PROTOCOL(measured_z);
  1336. SERIAL_PROTOCOLPGM("\n");
  1337. return measured_z;
  1338. }
  1339. #endif // #ifdef ENABLE_AUTO_BED_LEVELING
  1340. #ifdef LIN_ADVANCE
  1341. /**
  1342. * M900: Set and/or Get advance K factor and WH/D ratio
  1343. *
  1344. * K<factor> Set advance K factor
  1345. * R<ratio> Set ratio directly (overrides WH/D)
  1346. * W<width> H<height> D<diam> Set ratio from WH/D
  1347. */
  1348. inline void gcode_M900() {
  1349. st_synchronize();
  1350. const float newK = code_seen('K') ? code_value_float() : -1;
  1351. if (newK >= 0) extruder_advance_k = newK;
  1352. float newR = code_seen('R') ? code_value_float() : -1;
  1353. if (newR < 0) {
  1354. const float newD = code_seen('D') ? code_value_float() : -1,
  1355. newW = code_seen('W') ? code_value_float() : -1,
  1356. newH = code_seen('H') ? code_value_float() : -1;
  1357. if (newD >= 0 && newW >= 0 && newH >= 0)
  1358. newR = newD ? (newW * newH) / (sq(newD * 0.5) * M_PI) : 0;
  1359. }
  1360. if (newR >= 0) advance_ed_ratio = newR;
  1361. SERIAL_ECHO_START;
  1362. SERIAL_ECHOPGM("Advance K=");
  1363. SERIAL_ECHOLN(extruder_advance_k);
  1364. SERIAL_ECHOPGM(" E/D=");
  1365. const float ratio = advance_ed_ratio;
  1366. if (ratio) SERIAL_ECHOLN(ratio); else SERIAL_ECHOLNPGM("Auto");
  1367. }
  1368. #endif // LIN_ADVANCE
  1369. bool check_commands() {
  1370. bool end_command_found = false;
  1371. while (buflen)
  1372. {
  1373. if ((code_seen("M84")) || (code_seen("M 84"))) end_command_found = true;
  1374. if (!cmdbuffer_front_already_processed)
  1375. cmdqueue_pop_front();
  1376. cmdbuffer_front_already_processed = false;
  1377. }
  1378. return end_command_found;
  1379. }
  1380. #ifdef TMC2130
  1381. bool calibrate_z_auto()
  1382. {
  1383. //lcd_display_message_fullscreen_P(MSG_CALIBRATE_Z_AUTO);
  1384. lcd_implementation_clear();
  1385. lcd_print_at_PGM(0,1, MSG_CALIBRATE_Z_AUTO);
  1386. bool endstops_enabled = enable_endstops(true);
  1387. int axis_up_dir = -home_dir(Z_AXIS);
  1388. tmc2130_home_enter(Z_AXIS_MASK);
  1389. current_position[Z_AXIS] = 0;
  1390. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1391. set_destination_to_current();
  1392. destination[Z_AXIS] += (1.1 * max_length(Z_AXIS) * axis_up_dir);
  1393. feedrate = homing_feedrate[Z_AXIS];
  1394. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1395. st_synchronize();
  1396. // current_position[axis] = 0;
  1397. // plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1398. tmc2130_home_exit();
  1399. enable_endstops(false);
  1400. current_position[Z_AXIS] = 0;
  1401. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1402. set_destination_to_current();
  1403. destination[Z_AXIS] += 10 * axis_up_dir; //10mm up
  1404. feedrate = homing_feedrate[Z_AXIS] / 2;
  1405. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1406. st_synchronize();
  1407. enable_endstops(endstops_enabled);
  1408. current_position[Z_AXIS] = Z_MAX_POS+2.0;
  1409. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1410. return true;
  1411. }
  1412. #endif //TMC2130
  1413. void homeaxis(int axis)
  1414. {
  1415. bool endstops_enabled = enable_endstops(true); //RP: endstops should be allways enabled durring homming
  1416. #define HOMEAXIS_DO(LETTER) \
  1417. ((LETTER##_MIN_PIN > -1 && LETTER##_HOME_DIR==-1) || (LETTER##_MAX_PIN > -1 && LETTER##_HOME_DIR==1))
  1418. if ((axis==X_AXIS)?HOMEAXIS_DO(X):(axis==Y_AXIS)?HOMEAXIS_DO(Y):0)
  1419. {
  1420. int axis_home_dir = home_dir(axis);
  1421. feedrate = homing_feedrate[axis];
  1422. #ifdef TMC2130
  1423. tmc2130_home_enter(X_AXIS_MASK << axis);
  1424. #endif
  1425. // Move right a bit, so that the print head does not touch the left end position,
  1426. // and the following left movement has a chance to achieve the required velocity
  1427. // for the stall guard to work.
  1428. current_position[axis] = 0;
  1429. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1430. // destination[axis] = 11.f;
  1431. destination[axis] = 3.f;
  1432. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1433. st_synchronize();
  1434. // Move left away from the possible collision with the collision detection disabled.
  1435. endstops_hit_on_purpose();
  1436. enable_endstops(false);
  1437. current_position[axis] = 0;
  1438. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1439. destination[axis] = - 1.;
  1440. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1441. st_synchronize();
  1442. // Now continue to move up to the left end stop with the collision detection enabled.
  1443. enable_endstops(true);
  1444. destination[axis] = - 1.1 * max_length(axis);
  1445. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1446. st_synchronize();
  1447. // Move right from the collision to a known distance from the left end stop with the collision detection disabled.
  1448. endstops_hit_on_purpose();
  1449. enable_endstops(false);
  1450. current_position[axis] = 0;
  1451. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1452. destination[axis] = 10.f;
  1453. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1454. st_synchronize();
  1455. endstops_hit_on_purpose();
  1456. // Now move left up to the collision, this time with a repeatable velocity.
  1457. enable_endstops(true);
  1458. destination[axis] = - 15.f;
  1459. feedrate = homing_feedrate[axis]/2;
  1460. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1461. st_synchronize();
  1462. axis_is_at_home(axis);
  1463. axis_known_position[axis] = true;
  1464. #ifdef TMC2130
  1465. tmc2130_home_exit();
  1466. #endif
  1467. // Move the X carriage away from the collision.
  1468. // If this is not done, the X cariage will jump from the collision at the instant the Trinamic driver reduces power on idle.
  1469. endstops_hit_on_purpose();
  1470. enable_endstops(false);
  1471. {
  1472. // Two full periods (4 full steps).
  1473. float gap = 0.32f * 2.f;
  1474. current_position[axis] -= gap;
  1475. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1476. current_position[axis] += gap;
  1477. }
  1478. destination[axis] = current_position[axis];
  1479. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], 0.3f*feedrate/60, active_extruder);
  1480. st_synchronize();
  1481. feedrate = 0.0;
  1482. }
  1483. else if ((axis==Z_AXIS)?HOMEAXIS_DO(Z):0)
  1484. {
  1485. int axis_home_dir = home_dir(axis);
  1486. current_position[axis] = 0;
  1487. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1488. destination[axis] = 1.5 * max_length(axis) * axis_home_dir;
  1489. feedrate = homing_feedrate[axis];
  1490. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1491. st_synchronize();
  1492. current_position[axis] = 0;
  1493. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1494. destination[axis] = -home_retract_mm(axis) * axis_home_dir;
  1495. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1496. st_synchronize();
  1497. destination[axis] = 2*home_retract_mm(axis) * axis_home_dir;
  1498. feedrate = homing_feedrate[axis]/2 ;
  1499. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1500. st_synchronize();
  1501. axis_is_at_home(axis);
  1502. destination[axis] = current_position[axis];
  1503. feedrate = 0.0;
  1504. endstops_hit_on_purpose();
  1505. axis_known_position[axis] = true;
  1506. }
  1507. enable_endstops(endstops_enabled);
  1508. }
  1509. /**/
  1510. void home_xy()
  1511. {
  1512. set_destination_to_current();
  1513. homeaxis(X_AXIS);
  1514. homeaxis(Y_AXIS);
  1515. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1516. endstops_hit_on_purpose();
  1517. }
  1518. void refresh_cmd_timeout(void)
  1519. {
  1520. previous_millis_cmd = millis();
  1521. }
  1522. #ifdef FWRETRACT
  1523. void retract(bool retracting, bool swapretract = false) {
  1524. if(retracting && !retracted[active_extruder]) {
  1525. destination[X_AXIS]=current_position[X_AXIS];
  1526. destination[Y_AXIS]=current_position[Y_AXIS];
  1527. destination[Z_AXIS]=current_position[Z_AXIS];
  1528. destination[E_AXIS]=current_position[E_AXIS];
  1529. if (swapretract) {
  1530. current_position[E_AXIS]+=retract_length_swap/volumetric_multiplier[active_extruder];
  1531. } else {
  1532. current_position[E_AXIS]+=retract_length/volumetric_multiplier[active_extruder];
  1533. }
  1534. plan_set_e_position(current_position[E_AXIS]);
  1535. float oldFeedrate = feedrate;
  1536. feedrate=retract_feedrate*60;
  1537. retracted[active_extruder]=true;
  1538. prepare_move();
  1539. current_position[Z_AXIS]-=retract_zlift;
  1540. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1541. prepare_move();
  1542. feedrate = oldFeedrate;
  1543. } else if(!retracting && retracted[active_extruder]) {
  1544. destination[X_AXIS]=current_position[X_AXIS];
  1545. destination[Y_AXIS]=current_position[Y_AXIS];
  1546. destination[Z_AXIS]=current_position[Z_AXIS];
  1547. destination[E_AXIS]=current_position[E_AXIS];
  1548. current_position[Z_AXIS]+=retract_zlift;
  1549. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1550. //prepare_move();
  1551. if (swapretract) {
  1552. current_position[E_AXIS]-=(retract_length_swap+retract_recover_length_swap)/volumetric_multiplier[active_extruder];
  1553. } else {
  1554. current_position[E_AXIS]-=(retract_length+retract_recover_length)/volumetric_multiplier[active_extruder];
  1555. }
  1556. plan_set_e_position(current_position[E_AXIS]);
  1557. float oldFeedrate = feedrate;
  1558. feedrate=retract_recover_feedrate*60;
  1559. retracted[active_extruder]=false;
  1560. prepare_move();
  1561. feedrate = oldFeedrate;
  1562. }
  1563. } //retract
  1564. #endif //FWRETRACT
  1565. void trace() {
  1566. tone(BEEPER, 440);
  1567. delay(25);
  1568. noTone(BEEPER);
  1569. delay(20);
  1570. }
  1571. /*
  1572. void ramming() {
  1573. // float tmp[4] = DEFAULT_MAX_FEEDRATE;
  1574. if (current_temperature[0] < 230) {
  1575. //PLA
  1576. max_feedrate[E_AXIS] = 50;
  1577. //current_position[E_AXIS] -= 8;
  1578. //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2100 / 60, active_extruder);
  1579. //current_position[E_AXIS] += 8;
  1580. //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2100 / 60, active_extruder);
  1581. current_position[E_AXIS] += 5.4;
  1582. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2800 / 60, active_extruder);
  1583. current_position[E_AXIS] += 3.2;
  1584. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  1585. current_position[E_AXIS] += 3;
  1586. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3400 / 60, active_extruder);
  1587. st_synchronize();
  1588. max_feedrate[E_AXIS] = 80;
  1589. current_position[E_AXIS] -= 82;
  1590. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 9500 / 60, active_extruder);
  1591. max_feedrate[E_AXIS] = 50;//tmp[E_AXIS];
  1592. current_position[E_AXIS] -= 20;
  1593. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 1200 / 60, active_extruder);
  1594. current_position[E_AXIS] += 5;
  1595. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400 / 60, active_extruder);
  1596. current_position[E_AXIS] += 5;
  1597. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  1598. current_position[E_AXIS] -= 10;
  1599. st_synchronize();
  1600. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  1601. current_position[E_AXIS] += 10;
  1602. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  1603. current_position[E_AXIS] -= 10;
  1604. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 800 / 60, active_extruder);
  1605. current_position[E_AXIS] += 10;
  1606. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 800 / 60, active_extruder);
  1607. current_position[E_AXIS] -= 10;
  1608. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 800 / 60, active_extruder);
  1609. st_synchronize();
  1610. }
  1611. else {
  1612. //ABS
  1613. max_feedrate[E_AXIS] = 50;
  1614. //current_position[E_AXIS] -= 8;
  1615. //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2100 / 60, active_extruder);
  1616. //current_position[E_AXIS] += 8;
  1617. //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2100 / 60, active_extruder);
  1618. current_position[E_AXIS] += 3.1;
  1619. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2000 / 60, active_extruder);
  1620. current_position[E_AXIS] += 3.1;
  1621. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2500 / 60, active_extruder);
  1622. current_position[E_AXIS] += 4;
  1623. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  1624. st_synchronize();
  1625. //current_position[X_AXIS] += 23; //delay
  1626. //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600/60, active_extruder); //delay
  1627. //current_position[X_AXIS] -= 23; //delay
  1628. //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600/60, active_extruder); //delay
  1629. delay(4700);
  1630. max_feedrate[E_AXIS] = 80;
  1631. current_position[E_AXIS] -= 92;
  1632. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 9900 / 60, active_extruder);
  1633. max_feedrate[E_AXIS] = 50;//tmp[E_AXIS];
  1634. current_position[E_AXIS] -= 5;
  1635. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 800 / 60, active_extruder);
  1636. current_position[E_AXIS] += 5;
  1637. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400 / 60, active_extruder);
  1638. current_position[E_AXIS] -= 5;
  1639. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  1640. st_synchronize();
  1641. current_position[E_AXIS] += 5;
  1642. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  1643. current_position[E_AXIS] -= 5;
  1644. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  1645. current_position[E_AXIS] += 5;
  1646. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  1647. current_position[E_AXIS] -= 5;
  1648. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  1649. st_synchronize();
  1650. }
  1651. }
  1652. */
  1653. #ifdef TMC2130
  1654. void force_high_power_mode(bool start_high_power_section) {
  1655. uint8_t silent;
  1656. silent = eeprom_read_byte((uint8_t*)EEPROM_SILENT);
  1657. if (silent == 1) {
  1658. //we are in silent mode, set to normal mode to enable crash detection
  1659. st_synchronize();
  1660. cli();
  1661. tmc2130_mode = (start_high_power_section == true) ? TMC2130_MODE_NORMAL : TMC2130_MODE_SILENT;
  1662. tmc2130_init();
  1663. sei();
  1664. digipot_init();
  1665. }
  1666. }
  1667. #endif //TMC2130
  1668. bool gcode_M45(bool onlyZ)
  1669. {
  1670. bool final_result = false;
  1671. #ifdef TMC2130
  1672. FORCE_HIGH_POWER_START;
  1673. #endif // TMC2130
  1674. // Only Z calibration?
  1675. if (!onlyZ)
  1676. {
  1677. setTargetBed(0);
  1678. setTargetHotend(0, 0);
  1679. setTargetHotend(0, 1);
  1680. setTargetHotend(0, 2);
  1681. adjust_bed_reset(); //reset bed level correction
  1682. }
  1683. // Disable the default update procedure of the display. We will do a modal dialog.
  1684. lcd_update_enable(false);
  1685. // Let the planner use the uncorrected coordinates.
  1686. mbl.reset();
  1687. // Reset world2machine_rotation_and_skew and world2machine_shift, therefore
  1688. // the planner will not perform any adjustments in the XY plane.
  1689. // Wait for the motors to stop and update the current position with the absolute values.
  1690. world2machine_revert_to_uncorrected();
  1691. // Reset the baby step value applied without moving the axes.
  1692. babystep_reset();
  1693. // Mark all axes as in a need for homing.
  1694. memset(axis_known_position, 0, sizeof(axis_known_position));
  1695. // Home in the XY plane.
  1696. //set_destination_to_current();
  1697. setup_for_endstop_move();
  1698. lcd_display_message_fullscreen_P(MSG_AUTO_HOME);
  1699. home_xy();
  1700. // Let the user move the Z axes up to the end stoppers.
  1701. #ifdef TMC2130
  1702. if (calibrate_z_auto())
  1703. {
  1704. #else //TMC2130
  1705. if (lcd_calibrate_z_end_stop_manual(onlyZ))
  1706. {
  1707. #endif //TMC2130
  1708. refresh_cmd_timeout();
  1709. //if (((degHotend(0) > MAX_HOTEND_TEMP_CALIBRATION) || (degBed() > MAX_BED_TEMP_CALIBRATION)) && (!onlyZ))
  1710. //{
  1711. // lcd_wait_for_cool_down();
  1712. //}
  1713. if(!onlyZ)
  1714. {
  1715. KEEPALIVE_STATE(PAUSED_FOR_USER);
  1716. bool result = lcd_show_fullscreen_message_yes_no_and_wait_P(MSG_STEEL_SHEET_CHECK, false, false);
  1717. if(result) lcd_show_fullscreen_message_and_wait_P(MSG_REMOVE_STEEL_SHEET);
  1718. lcd_show_fullscreen_message_and_wait_P(MSG_CONFIRM_NOZZLE_CLEAN);
  1719. lcd_show_fullscreen_message_and_wait_P(MSG_PAPER);
  1720. KEEPALIVE_STATE(IN_HANDLER);
  1721. lcd_display_message_fullscreen_P(MSG_FIND_BED_OFFSET_AND_SKEW_LINE1);
  1722. lcd_implementation_print_at(0, 2, 1);
  1723. lcd_printPGM(MSG_FIND_BED_OFFSET_AND_SKEW_LINE2);
  1724. }
  1725. // Move the print head close to the bed.
  1726. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  1727. bool endstops_enabled = enable_endstops(true);
  1728. tmc2130_home_enter(Z_AXIS_MASK);
  1729. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[Z_AXIS] / 40, active_extruder);
  1730. st_synchronize();
  1731. tmc2130_home_exit();
  1732. enable_endstops(endstops_enabled);
  1733. if (st_get_position_mm(Z_AXIS) == MESH_HOME_Z_SEARCH)
  1734. {
  1735. //#ifdef TMC2130
  1736. // tmc2130_home_enter(X_AXIS_MASK | Y_AXIS_MASK);
  1737. //#endif
  1738. int8_t verbosity_level = 0;
  1739. if (code_seen('V'))
  1740. {
  1741. // Just 'V' without a number counts as V1.
  1742. char c = strchr_pointer[1];
  1743. verbosity_level = (c == ' ' || c == '\t' || c == 0) ? 1 : code_value_short();
  1744. }
  1745. if (onlyZ)
  1746. {
  1747. clean_up_after_endstop_move();
  1748. // Z only calibration.
  1749. // Load the machine correction matrix
  1750. world2machine_initialize();
  1751. // and correct the current_position to match the transformed coordinate system.
  1752. world2machine_update_current();
  1753. //FIXME
  1754. bool result = sample_mesh_and_store_reference();
  1755. if (result)
  1756. {
  1757. if (calibration_status() == CALIBRATION_STATUS_Z_CALIBRATION)
  1758. // Shipped, the nozzle height has been set already. The user can start printing now.
  1759. calibration_status_store(CALIBRATION_STATUS_CALIBRATED);
  1760. final_result = true;
  1761. // babystep_apply();
  1762. }
  1763. }
  1764. else
  1765. {
  1766. // Reset the baby step value and the baby step applied flag.
  1767. calibration_status_store(CALIBRATION_STATUS_ASSEMBLED);
  1768. eeprom_update_word((uint16_t*)EEPROM_BABYSTEP_Z, 0);
  1769. // Complete XYZ calibration.
  1770. uint8_t point_too_far_mask = 0;
  1771. BedSkewOffsetDetectionResultType result = find_bed_offset_and_skew(verbosity_level, point_too_far_mask);
  1772. clean_up_after_endstop_move();
  1773. // Print head up.
  1774. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  1775. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[Z_AXIS] / 40, active_extruder);
  1776. st_synchronize();
  1777. if (result >= 0)
  1778. {
  1779. point_too_far_mask = 0;
  1780. // Second half: The fine adjustment.
  1781. // Let the planner use the uncorrected coordinates.
  1782. mbl.reset();
  1783. world2machine_reset();
  1784. // Home in the XY plane.
  1785. setup_for_endstop_move();
  1786. home_xy();
  1787. result = improve_bed_offset_and_skew(1, verbosity_level, point_too_far_mask);
  1788. clean_up_after_endstop_move();
  1789. // Print head up.
  1790. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  1791. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[Z_AXIS] / 40, active_extruder);
  1792. st_synchronize();
  1793. // if (result >= 0) babystep_apply();
  1794. }
  1795. lcd_bed_calibration_show_result(result, point_too_far_mask);
  1796. if (result >= 0)
  1797. {
  1798. // Calibration valid, the machine should be able to print. Advise the user to run the V2Calibration.gcode.
  1799. calibration_status_store(CALIBRATION_STATUS_LIVE_ADJUST);
  1800. if (eeprom_read_byte((uint8_t*)EEPROM_WIZARD_ACTIVE) != 1) lcd_show_fullscreen_message_and_wait_P(MSG_BABYSTEP_Z_NOT_SET);
  1801. final_result = true;
  1802. }
  1803. }
  1804. #ifdef TMC2130
  1805. tmc2130_home_exit();
  1806. #endif
  1807. }
  1808. else
  1809. {
  1810. lcd_show_fullscreen_message_and_wait_P(PSTR("Calibration failed! Check the axes and run again."));
  1811. final_result = false;
  1812. }
  1813. }
  1814. else
  1815. {
  1816. // Timeouted.
  1817. }
  1818. lcd_update_enable(true);
  1819. #ifdef TMC2130
  1820. FORCE_HIGH_POWER_END;
  1821. #endif // TMC2130
  1822. return final_result;
  1823. }
  1824. void gcode_M701()
  1825. {
  1826. #ifdef SNMM
  1827. extr_adj(snmm_extruder);//loads current extruder
  1828. #else
  1829. enable_z();
  1830. custom_message = true;
  1831. custom_message_type = 2;
  1832. lcd_setstatuspgm(MSG_LOADING_FILAMENT);
  1833. current_position[E_AXIS] += 70;
  1834. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400 / 60, active_extruder); //fast sequence
  1835. current_position[E_AXIS] += 25;
  1836. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 100 / 60, active_extruder); //slow sequence
  1837. st_synchronize();
  1838. if (!farm_mode && loading_flag) {
  1839. bool clean = lcd_show_fullscreen_message_yes_no_and_wait_P(MSG_FILAMENT_CLEAN, false, true);
  1840. while (!clean) {
  1841. lcd_update_enable(true);
  1842. lcd_update(2);
  1843. current_position[E_AXIS] += 25;
  1844. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 100 / 60, active_extruder); //slow sequence
  1845. st_synchronize();
  1846. clean = lcd_show_fullscreen_message_yes_no_and_wait_P(MSG_FILAMENT_CLEAN, false, true);
  1847. }
  1848. }
  1849. lcd_update_enable(true);
  1850. lcd_update(2);
  1851. lcd_setstatuspgm(WELCOME_MSG);
  1852. disable_z();
  1853. loading_flag = false;
  1854. custom_message = false;
  1855. custom_message_type = 0;
  1856. #endif
  1857. }
  1858. void process_commands()
  1859. {
  1860. #ifdef FILAMENT_RUNOUT_SUPPORT
  1861. SET_INPUT(FR_SENS);
  1862. #endif
  1863. #ifdef CMDBUFFER_DEBUG
  1864. SERIAL_ECHOPGM("Processing a GCODE command: ");
  1865. SERIAL_ECHO(cmdbuffer+bufindr+CMDHDRSIZE);
  1866. SERIAL_ECHOLNPGM("");
  1867. SERIAL_ECHOPGM("In cmdqueue: ");
  1868. SERIAL_ECHO(buflen);
  1869. SERIAL_ECHOLNPGM("");
  1870. #endif /* CMDBUFFER_DEBUG */
  1871. unsigned long codenum; //throw away variable
  1872. char *starpos = NULL;
  1873. #ifdef ENABLE_AUTO_BED_LEVELING
  1874. float x_tmp, y_tmp, z_tmp, real_z;
  1875. #endif
  1876. // PRUSA GCODES
  1877. KEEPALIVE_STATE(IN_HANDLER);
  1878. #ifdef SNMM
  1879. float tmp_motor[3] = DEFAULT_PWM_MOTOR_CURRENT;
  1880. float tmp_motor_loud[3] = DEFAULT_PWM_MOTOR_CURRENT_LOUD;
  1881. int8_t SilentMode;
  1882. #endif
  1883. if (code_seen("M117")) { //moved to highest priority place to be able to to print strings which includes "G", "PRUSA" and "^"
  1884. starpos = (strchr(strchr_pointer + 5, '*'));
  1885. if (starpos != NULL)
  1886. *(starpos) = '\0';
  1887. lcd_setstatus(strchr_pointer + 5);
  1888. }
  1889. else if(code_seen("CRASH_DETECTED"))
  1890. crashdet_detected();
  1891. else if(code_seen("CRASH_RECOVER"))
  1892. crashdet_recover();
  1893. else if(code_seen("CRASH_CANCEL"))
  1894. crashdet_cancel();
  1895. else if(code_seen("PRUSA")){
  1896. if (code_seen("Ping")) { //PRUSA Ping
  1897. if (farm_mode) {
  1898. PingTime = millis();
  1899. //MYSERIAL.print(farm_no); MYSERIAL.println(": OK");
  1900. }
  1901. }
  1902. else if (code_seen("PRN")) {
  1903. MYSERIAL.println(status_number);
  1904. }else if (code_seen("FAN")) {
  1905. MYSERIAL.print("E0:");
  1906. MYSERIAL.print(60*fan_speed[0]);
  1907. MYSERIAL.println(" RPM");
  1908. MYSERIAL.print("PRN0:");
  1909. MYSERIAL.print(60*fan_speed[1]);
  1910. MYSERIAL.println(" RPM");
  1911. }else if (code_seen("fn")) {
  1912. if (farm_mode) {
  1913. MYSERIAL.println(farm_no);
  1914. }
  1915. else {
  1916. MYSERIAL.println("Not in farm mode.");
  1917. }
  1918. }else if (code_seen("fv")) {
  1919. // get file version
  1920. #ifdef SDSUPPORT
  1921. card.openFile(strchr_pointer + 3,true);
  1922. while (true) {
  1923. uint16_t readByte = card.get();
  1924. MYSERIAL.write(readByte);
  1925. if (readByte=='\n') {
  1926. break;
  1927. }
  1928. }
  1929. card.closefile();
  1930. #endif // SDSUPPORT
  1931. } else if (code_seen("M28")) {
  1932. trace();
  1933. prusa_sd_card_upload = true;
  1934. card.openFile(strchr_pointer+4,false);
  1935. } else if (code_seen("SN")) {
  1936. if (farm_mode) {
  1937. selectedSerialPort = 0;
  1938. MSerial.write(";S");
  1939. // S/N is:CZPX0917X003XC13518
  1940. int numbersRead = 0;
  1941. while (numbersRead < 19) {
  1942. while (MSerial.available() > 0) {
  1943. uint8_t serial_char = MSerial.read();
  1944. selectedSerialPort = 1;
  1945. MSerial.write(serial_char);
  1946. numbersRead++;
  1947. selectedSerialPort = 0;
  1948. }
  1949. }
  1950. selectedSerialPort = 1;
  1951. MSerial.write('\n');
  1952. /*for (int b = 0; b < 3; b++) {
  1953. tone(BEEPER, 110);
  1954. delay(50);
  1955. noTone(BEEPER);
  1956. delay(50);
  1957. }*/
  1958. } else {
  1959. MYSERIAL.println("Not in farm mode.");
  1960. }
  1961. } else if(code_seen("Fir")){
  1962. SERIAL_PROTOCOLLN(FW_version);
  1963. } else if(code_seen("Rev")){
  1964. SERIAL_PROTOCOLLN(FILAMENT_SIZE "-" ELECTRONICS "-" NOZZLE_TYPE );
  1965. } else if(code_seen("Lang")) {
  1966. lcd_force_language_selection();
  1967. } else if(code_seen("Lz")) {
  1968. EEPROM_save_B(EEPROM_BABYSTEP_Z,0);
  1969. } else if (code_seen("SERIAL LOW")) {
  1970. MYSERIAL.println("SERIAL LOW");
  1971. MYSERIAL.begin(BAUDRATE);
  1972. return;
  1973. } else if (code_seen("SERIAL HIGH")) {
  1974. MYSERIAL.println("SERIAL HIGH");
  1975. MYSERIAL.begin(1152000);
  1976. return;
  1977. } else if(code_seen("Beat")) {
  1978. // Kick farm link timer
  1979. kicktime = millis();
  1980. } else if(code_seen("FR")) {
  1981. // Factory full reset
  1982. factory_reset(0,true);
  1983. }
  1984. //else if (code_seen('Cal')) {
  1985. // lcd_calibration();
  1986. // }
  1987. }
  1988. else if (code_seen('^')) {
  1989. // nothing, this is a version line
  1990. } else if(code_seen('G'))
  1991. {
  1992. switch((int)code_value())
  1993. {
  1994. case 0: // G0 -> G1
  1995. case 1: // G1
  1996. if(Stopped == false) {
  1997. #ifdef FILAMENT_RUNOUT_SUPPORT
  1998. if(READ(FR_SENS)){
  1999. feedmultiplyBckp=feedmultiply;
  2000. float target[4];
  2001. float lastpos[4];
  2002. target[X_AXIS]=current_position[X_AXIS];
  2003. target[Y_AXIS]=current_position[Y_AXIS];
  2004. target[Z_AXIS]=current_position[Z_AXIS];
  2005. target[E_AXIS]=current_position[E_AXIS];
  2006. lastpos[X_AXIS]=current_position[X_AXIS];
  2007. lastpos[Y_AXIS]=current_position[Y_AXIS];
  2008. lastpos[Z_AXIS]=current_position[Z_AXIS];
  2009. lastpos[E_AXIS]=current_position[E_AXIS];
  2010. //retract by E
  2011. target[E_AXIS]+= FILAMENTCHANGE_FIRSTRETRACT ;
  2012. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 400, active_extruder);
  2013. target[Z_AXIS]+= FILAMENTCHANGE_ZADD ;
  2014. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 300, active_extruder);
  2015. target[X_AXIS]= FILAMENTCHANGE_XPOS ;
  2016. target[Y_AXIS]= FILAMENTCHANGE_YPOS ;
  2017. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 70, active_extruder);
  2018. target[E_AXIS]+= FILAMENTCHANGE_FINALRETRACT ;
  2019. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 20, active_extruder);
  2020. //finish moves
  2021. st_synchronize();
  2022. //disable extruder steppers so filament can be removed
  2023. disable_e0();
  2024. disable_e1();
  2025. disable_e2();
  2026. delay(100);
  2027. //LCD_ALERTMESSAGEPGM(MSG_FILAMENTCHANGE);
  2028. uint8_t cnt=0;
  2029. int counterBeep = 0;
  2030. lcd_wait_interact();
  2031. while(!lcd_clicked()){
  2032. cnt++;
  2033. manage_heater();
  2034. manage_inactivity(true);
  2035. //lcd_update();
  2036. if(cnt==0)
  2037. {
  2038. #if BEEPER > 0
  2039. if (counterBeep== 500){
  2040. counterBeep = 0;
  2041. }
  2042. SET_OUTPUT(BEEPER);
  2043. if (counterBeep== 0){
  2044. WRITE(BEEPER,HIGH);
  2045. }
  2046. if (counterBeep== 20){
  2047. WRITE(BEEPER,LOW);
  2048. }
  2049. counterBeep++;
  2050. #else
  2051. #if !defined(LCD_FEEDBACK_FREQUENCY_HZ) || !defined(LCD_FEEDBACK_FREQUENCY_DURATION_MS)
  2052. lcd_buzz(1000/6,100);
  2053. #else
  2054. lcd_buzz(LCD_FEEDBACK_FREQUENCY_DURATION_MS,LCD_FEEDBACK_FREQUENCY_HZ);
  2055. #endif
  2056. #endif
  2057. }
  2058. }
  2059. WRITE(BEEPER,LOW);
  2060. target[E_AXIS]+= FILAMENTCHANGE_FIRSTFEED ;
  2061. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 20, active_extruder);
  2062. target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  2063. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder);
  2064. lcd_change_fil_state = 0;
  2065. lcd_loading_filament();
  2066. while ((lcd_change_fil_state == 0)||(lcd_change_fil_state != 1)){
  2067. lcd_change_fil_state = 0;
  2068. lcd_alright();
  2069. switch(lcd_change_fil_state){
  2070. case 2:
  2071. target[E_AXIS]+= FILAMENTCHANGE_FIRSTFEED ;
  2072. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 20, active_extruder);
  2073. target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  2074. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder);
  2075. lcd_loading_filament();
  2076. break;
  2077. case 3:
  2078. target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  2079. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder);
  2080. lcd_loading_color();
  2081. break;
  2082. default:
  2083. lcd_change_success();
  2084. break;
  2085. }
  2086. }
  2087. target[E_AXIS]+= 5;
  2088. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder);
  2089. target[E_AXIS]+= FILAMENTCHANGE_FIRSTRETRACT;
  2090. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 400, active_extruder);
  2091. //current_position[E_AXIS]=target[E_AXIS]; //the long retract of L is compensated by manual filament feeding
  2092. //plan_set_e_position(current_position[E_AXIS]);
  2093. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 70, active_extruder); //should do nothing
  2094. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], target[Z_AXIS], target[E_AXIS], 70, active_extruder); //move xy back
  2095. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], target[E_AXIS], 200, active_extruder); //move z back
  2096. target[E_AXIS]= target[E_AXIS] - FILAMENTCHANGE_FIRSTRETRACT;
  2097. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], target[E_AXIS], 5, active_extruder); //final untretract
  2098. plan_set_e_position(lastpos[E_AXIS]);
  2099. feedmultiply=feedmultiplyBckp;
  2100. char cmd[9];
  2101. sprintf_P(cmd, PSTR("M220 S%i"), feedmultiplyBckp);
  2102. enquecommand(cmd);
  2103. }
  2104. #endif
  2105. get_coordinates(); // For X Y Z E F
  2106. if (total_filament_used > ((current_position[E_AXIS] - destination[E_AXIS]) * 100)) { //protection against total_filament_used overflow
  2107. total_filament_used = total_filament_used + ((destination[E_AXIS] - current_position[E_AXIS]) * 100);
  2108. }
  2109. #ifdef FWRETRACT
  2110. if(autoretract_enabled)
  2111. if( !(code_seen('X') || code_seen('Y') || code_seen('Z')) && code_seen('E')) {
  2112. float echange=destination[E_AXIS]-current_position[E_AXIS];
  2113. if((echange<-MIN_RETRACT && !retracted) || (echange>MIN_RETRACT && retracted)) { //move appears to be an attempt to retract or recover
  2114. current_position[E_AXIS] = destination[E_AXIS]; //hide the slicer-generated retract/recover from calculations
  2115. plan_set_e_position(current_position[E_AXIS]); //AND from the planner
  2116. retract(!retracted);
  2117. return;
  2118. }
  2119. }
  2120. #endif //FWRETRACT
  2121. prepare_move();
  2122. //ClearToSend();
  2123. }
  2124. break;
  2125. case 2: // G2 - CW ARC
  2126. if(Stopped == false) {
  2127. get_arc_coordinates();
  2128. prepare_arc_move(true);
  2129. }
  2130. break;
  2131. case 3: // G3 - CCW ARC
  2132. if(Stopped == false) {
  2133. get_arc_coordinates();
  2134. prepare_arc_move(false);
  2135. }
  2136. break;
  2137. case 4: // G4 dwell
  2138. codenum = 0;
  2139. if(code_seen('P')) codenum = code_value(); // milliseconds to wait
  2140. if(code_seen('S')) codenum = code_value() * 1000; // seconds to wait
  2141. if(codenum != 0) LCD_MESSAGERPGM(MSG_DWELL);
  2142. st_synchronize();
  2143. codenum += millis(); // keep track of when we started waiting
  2144. previous_millis_cmd = millis();
  2145. while(millis() < codenum) {
  2146. manage_heater();
  2147. manage_inactivity();
  2148. lcd_update();
  2149. }
  2150. break;
  2151. #ifdef FWRETRACT
  2152. case 10: // G10 retract
  2153. #if EXTRUDERS > 1
  2154. retracted_swap[active_extruder]=(code_seen('S') && code_value_long() == 1); // checks for swap retract argument
  2155. retract(true,retracted_swap[active_extruder]);
  2156. #else
  2157. retract(true);
  2158. #endif
  2159. break;
  2160. case 11: // G11 retract_recover
  2161. #if EXTRUDERS > 1
  2162. retract(false,retracted_swap[active_extruder]);
  2163. #else
  2164. retract(false);
  2165. #endif
  2166. break;
  2167. #endif //FWRETRACT
  2168. case 28: //G28 Home all Axis one at a time
  2169. {
  2170. st_synchronize();
  2171. #if 1
  2172. SERIAL_ECHOPGM("G28, initial "); print_world_coordinates();
  2173. SERIAL_ECHOPGM("G28, initial "); print_physical_coordinates();
  2174. #endif
  2175. // Flag for the display update routine and to disable the print cancelation during homing.
  2176. homing_flag = true;
  2177. // Which axes should be homed?
  2178. bool home_x = code_seen(axis_codes[X_AXIS]);
  2179. bool home_y = code_seen(axis_codes[Y_AXIS]);
  2180. bool home_z = code_seen(axis_codes[Z_AXIS]);
  2181. // Either all X,Y,Z codes are present, or none of them.
  2182. bool home_all_axes = home_x == home_y && home_x == home_z;
  2183. if (home_all_axes)
  2184. // No X/Y/Z code provided means to home all axes.
  2185. home_x = home_y = home_z = true;
  2186. #ifdef ENABLE_AUTO_BED_LEVELING
  2187. plan_bed_level_matrix.set_to_identity(); //Reset the plane ("erase" all leveling data)
  2188. #endif //ENABLE_AUTO_BED_LEVELING
  2189. // Reset world2machine_rotation_and_skew and world2machine_shift, therefore
  2190. // the planner will not perform any adjustments in the XY plane.
  2191. // Wait for the motors to stop and update the current position with the absolute values.
  2192. world2machine_revert_to_uncorrected();
  2193. // For mesh bed leveling deactivate the matrix temporarily.
  2194. // It is necessary to disable the bed leveling for the X and Y homing moves, so that the move is performed
  2195. // in a single axis only.
  2196. // In case of re-homing the X or Y axes only, the mesh bed leveling is restored after G28.
  2197. #ifdef MESH_BED_LEVELING
  2198. uint8_t mbl_was_active = mbl.active;
  2199. mbl.active = 0;
  2200. current_position[Z_AXIS] = st_get_position_mm(Z_AXIS);
  2201. #endif
  2202. // Reset baby stepping to zero, if the babystepping has already been loaded before. The babystepsTodo value will be
  2203. // consumed during the first movements following this statement.
  2204. if (home_z)
  2205. babystep_undo();
  2206. saved_feedrate = feedrate;
  2207. saved_feedmultiply = feedmultiply;
  2208. feedmultiply = 100;
  2209. previous_millis_cmd = millis();
  2210. enable_endstops(true);
  2211. memcpy(destination, current_position, sizeof(destination));
  2212. feedrate = 0.0;
  2213. #if Z_HOME_DIR > 0 // If homing away from BED do Z first
  2214. if(home_z)
  2215. homeaxis(Z_AXIS);
  2216. #endif
  2217. #ifdef QUICK_HOME
  2218. // In the quick mode, if both x and y are to be homed, a diagonal move will be performed initially.
  2219. if(home_x && home_y) //first diagonal move
  2220. {
  2221. current_position[X_AXIS] = 0;current_position[Y_AXIS] = 0;
  2222. int x_axis_home_dir = home_dir(X_AXIS);
  2223. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2224. destination[X_AXIS] = 1.5 * max_length(X_AXIS) * x_axis_home_dir;destination[Y_AXIS] = 1.5 * max_length(Y_AXIS) * home_dir(Y_AXIS);
  2225. feedrate = homing_feedrate[X_AXIS];
  2226. if(homing_feedrate[Y_AXIS]<feedrate)
  2227. feedrate = homing_feedrate[Y_AXIS];
  2228. if (max_length(X_AXIS) > max_length(Y_AXIS)) {
  2229. feedrate *= sqrt(pow(max_length(Y_AXIS) / max_length(X_AXIS), 2) + 1);
  2230. } else {
  2231. feedrate *= sqrt(pow(max_length(X_AXIS) / max_length(Y_AXIS), 2) + 1);
  2232. }
  2233. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  2234. st_synchronize();
  2235. axis_is_at_home(X_AXIS);
  2236. axis_is_at_home(Y_AXIS);
  2237. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2238. destination[X_AXIS] = current_position[X_AXIS];
  2239. destination[Y_AXIS] = current_position[Y_AXIS];
  2240. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  2241. feedrate = 0.0;
  2242. st_synchronize();
  2243. endstops_hit_on_purpose();
  2244. current_position[X_AXIS] = destination[X_AXIS];
  2245. current_position[Y_AXIS] = destination[Y_AXIS];
  2246. current_position[Z_AXIS] = destination[Z_AXIS];
  2247. }
  2248. #endif /* QUICK_HOME */
  2249. if(home_x)
  2250. homeaxis(X_AXIS);
  2251. if(home_y)
  2252. homeaxis(Y_AXIS);
  2253. if(code_seen(axis_codes[X_AXIS]) && code_value_long() != 0)
  2254. current_position[X_AXIS]=code_value()+add_homing[X_AXIS];
  2255. if(code_seen(axis_codes[Y_AXIS]) && code_value_long() != 0)
  2256. current_position[Y_AXIS]=code_value()+add_homing[Y_AXIS];
  2257. #if Z_HOME_DIR < 0 // If homing towards BED do Z last
  2258. #ifndef Z_SAFE_HOMING
  2259. if(home_z) {
  2260. #if defined (Z_RAISE_BEFORE_HOMING) && (Z_RAISE_BEFORE_HOMING > 0)
  2261. destination[Z_AXIS] = Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS) * (-1); // Set destination away from bed
  2262. feedrate = max_feedrate[Z_AXIS];
  2263. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
  2264. st_synchronize();
  2265. #endif // defined (Z_RAISE_BEFORE_HOMING) && (Z_RAISE_BEFORE_HOMING > 0)
  2266. #if (defined(MESH_BED_LEVELING) && !defined(MK1BP)) // If Mesh bed leveling, moxve X&Y to safe position for home
  2267. if (!(axis_known_position[X_AXIS] && axis_known_position[Y_AXIS] ))
  2268. {
  2269. homeaxis(X_AXIS);
  2270. homeaxis(Y_AXIS);
  2271. }
  2272. // 1st mesh bed leveling measurement point, corrected.
  2273. world2machine_initialize();
  2274. world2machine(pgm_read_float(bed_ref_points), pgm_read_float(bed_ref_points+1), destination[X_AXIS], destination[Y_AXIS]);
  2275. world2machine_reset();
  2276. if (destination[Y_AXIS] < Y_MIN_POS)
  2277. destination[Y_AXIS] = Y_MIN_POS;
  2278. destination[Z_AXIS] = MESH_HOME_Z_SEARCH; // Set destination away from bed
  2279. feedrate = homing_feedrate[Z_AXIS]/10;
  2280. current_position[Z_AXIS] = 0;
  2281. enable_endstops(false);
  2282. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2283. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
  2284. st_synchronize();
  2285. current_position[X_AXIS] = destination[X_AXIS];
  2286. current_position[Y_AXIS] = destination[Y_AXIS];
  2287. enable_endstops(true);
  2288. endstops_hit_on_purpose();
  2289. homeaxis(Z_AXIS);
  2290. #else // MESH_BED_LEVELING
  2291. homeaxis(Z_AXIS);
  2292. #endif // MESH_BED_LEVELING
  2293. }
  2294. #else // defined(Z_SAFE_HOMING): Z Safe mode activated.
  2295. if(home_all_axes) {
  2296. destination[X_AXIS] = round(Z_SAFE_HOMING_X_POINT - X_PROBE_OFFSET_FROM_EXTRUDER);
  2297. destination[Y_AXIS] = round(Z_SAFE_HOMING_Y_POINT - Y_PROBE_OFFSET_FROM_EXTRUDER);
  2298. destination[Z_AXIS] = Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS) * (-1); // Set destination away from bed
  2299. feedrate = XY_TRAVEL_SPEED/60;
  2300. current_position[Z_AXIS] = 0;
  2301. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2302. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
  2303. st_synchronize();
  2304. current_position[X_AXIS] = destination[X_AXIS];
  2305. current_position[Y_AXIS] = destination[Y_AXIS];
  2306. homeaxis(Z_AXIS);
  2307. }
  2308. // Let's see if X and Y are homed and probe is inside bed area.
  2309. if(home_z) {
  2310. if ( (axis_known_position[X_AXIS]) && (axis_known_position[Y_AXIS]) \
  2311. && (current_position[X_AXIS]+X_PROBE_OFFSET_FROM_EXTRUDER >= X_MIN_POS) \
  2312. && (current_position[X_AXIS]+X_PROBE_OFFSET_FROM_EXTRUDER <= X_MAX_POS) \
  2313. && (current_position[Y_AXIS]+Y_PROBE_OFFSET_FROM_EXTRUDER >= Y_MIN_POS) \
  2314. && (current_position[Y_AXIS]+Y_PROBE_OFFSET_FROM_EXTRUDER <= Y_MAX_POS)) {
  2315. current_position[Z_AXIS] = 0;
  2316. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2317. destination[Z_AXIS] = Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS) * (-1); // Set destination away from bed
  2318. feedrate = max_feedrate[Z_AXIS];
  2319. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
  2320. st_synchronize();
  2321. homeaxis(Z_AXIS);
  2322. } else if (!((axis_known_position[X_AXIS]) && (axis_known_position[Y_AXIS]))) {
  2323. LCD_MESSAGERPGM(MSG_POSITION_UNKNOWN);
  2324. SERIAL_ECHO_START;
  2325. SERIAL_ECHOLNRPGM(MSG_POSITION_UNKNOWN);
  2326. } else {
  2327. LCD_MESSAGERPGM(MSG_ZPROBE_OUT);
  2328. SERIAL_ECHO_START;
  2329. SERIAL_ECHOLNRPGM(MSG_ZPROBE_OUT);
  2330. }
  2331. }
  2332. #endif // Z_SAFE_HOMING
  2333. #endif // Z_HOME_DIR < 0
  2334. if(code_seen(axis_codes[Z_AXIS]) && code_value_long() != 0)
  2335. current_position[Z_AXIS]=code_value()+add_homing[Z_AXIS];
  2336. #ifdef ENABLE_AUTO_BED_LEVELING
  2337. if(home_z)
  2338. current_position[Z_AXIS] += zprobe_zoffset; //Add Z_Probe offset (the distance is negative)
  2339. #endif
  2340. // Set the planner and stepper routine positions.
  2341. // At this point the mesh bed leveling and world2machine corrections are disabled and current_position
  2342. // contains the machine coordinates.
  2343. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2344. #ifdef ENDSTOPS_ONLY_FOR_HOMING
  2345. enable_endstops(false);
  2346. #endif
  2347. feedrate = saved_feedrate;
  2348. feedmultiply = saved_feedmultiply;
  2349. previous_millis_cmd = millis();
  2350. endstops_hit_on_purpose();
  2351. #ifndef MESH_BED_LEVELING
  2352. // If MESH_BED_LEVELING is not active, then it is the original Prusa i3.
  2353. // Offer the user to load the baby step value, which has been adjusted at the previous print session.
  2354. if(card.sdprinting && eeprom_read_word((uint16_t *)EEPROM_BABYSTEP_Z))
  2355. lcd_adjust_z();
  2356. #endif
  2357. // Load the machine correction matrix
  2358. world2machine_initialize();
  2359. // and correct the current_position XY axes to match the transformed coordinate system.
  2360. world2machine_update_current();
  2361. #if (defined(MESH_BED_LEVELING) && !defined(MK1BP))
  2362. if (code_seen(axis_codes[X_AXIS]) || code_seen(axis_codes[Y_AXIS]) || code_seen('W') || code_seen(axis_codes[Z_AXIS]))
  2363. {
  2364. if (! home_z && mbl_was_active) {
  2365. // Re-enable the mesh bed leveling if only the X and Y axes were re-homed.
  2366. mbl.active = true;
  2367. // and re-adjust the current logical Z axis with the bed leveling offset applicable at the current XY position.
  2368. current_position[Z_AXIS] -= mbl.get_z(st_get_position_mm(X_AXIS), st_get_position_mm(Y_AXIS));
  2369. }
  2370. }
  2371. else
  2372. {
  2373. st_synchronize();
  2374. homing_flag = false;
  2375. // Push the commands to the front of the message queue in the reverse order!
  2376. // There shall be always enough space reserved for these commands.
  2377. // enquecommand_front_P((PSTR("G80")));
  2378. goto case_G80;
  2379. }
  2380. #endif
  2381. if (farm_mode) { prusa_statistics(20); };
  2382. homing_flag = false;
  2383. SERIAL_ECHOPGM("G28, final "); print_world_coordinates();
  2384. SERIAL_ECHOPGM("G28, final "); print_physical_coordinates();
  2385. SERIAL_ECHOPGM("G28, final "); print_mesh_bed_leveling_table();
  2386. break;
  2387. }
  2388. #ifdef ENABLE_AUTO_BED_LEVELING
  2389. case 29: // G29 Detailed Z-Probe, probes the bed at 3 or more points.
  2390. {
  2391. #if Z_MIN_PIN == -1
  2392. #error "You must have a Z_MIN endstop in order to enable Auto Bed Leveling feature! Z_MIN_PIN must point to a valid hardware pin."
  2393. #endif
  2394. // Prevent user from running a G29 without first homing in X and Y
  2395. if (! (axis_known_position[X_AXIS] && axis_known_position[Y_AXIS]) )
  2396. {
  2397. LCD_MESSAGERPGM(MSG_POSITION_UNKNOWN);
  2398. SERIAL_ECHO_START;
  2399. SERIAL_ECHOLNRPGM(MSG_POSITION_UNKNOWN);
  2400. break; // abort G29, since we don't know where we are
  2401. }
  2402. st_synchronize();
  2403. // make sure the bed_level_rotation_matrix is identity or the planner will get it incorectly
  2404. //vector_3 corrected_position = plan_get_position_mm();
  2405. //corrected_position.debug("position before G29");
  2406. plan_bed_level_matrix.set_to_identity();
  2407. vector_3 uncorrected_position = plan_get_position();
  2408. //uncorrected_position.debug("position durring G29");
  2409. current_position[X_AXIS] = uncorrected_position.x;
  2410. current_position[Y_AXIS] = uncorrected_position.y;
  2411. current_position[Z_AXIS] = uncorrected_position.z;
  2412. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2413. setup_for_endstop_move();
  2414. feedrate = homing_feedrate[Z_AXIS];
  2415. #ifdef AUTO_BED_LEVELING_GRID
  2416. // probe at the points of a lattice grid
  2417. int xGridSpacing = (RIGHT_PROBE_BED_POSITION - LEFT_PROBE_BED_POSITION) / (AUTO_BED_LEVELING_GRID_POINTS-1);
  2418. int yGridSpacing = (BACK_PROBE_BED_POSITION - FRONT_PROBE_BED_POSITION) / (AUTO_BED_LEVELING_GRID_POINTS-1);
  2419. // solve the plane equation ax + by + d = z
  2420. // A is the matrix with rows [x y 1] for all the probed points
  2421. // B is the vector of the Z positions
  2422. // the normal vector to the plane is formed by the coefficients of the plane equation in the standard form, which is Vx*x+Vy*y+Vz*z+d = 0
  2423. // so Vx = -a Vy = -b Vz = 1 (we want the vector facing towards positive Z
  2424. // "A" matrix of the linear system of equations
  2425. double eqnAMatrix[AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS*3];
  2426. // "B" vector of Z points
  2427. double eqnBVector[AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS];
  2428. int probePointCounter = 0;
  2429. bool zig = true;
  2430. for (int yProbe=FRONT_PROBE_BED_POSITION; yProbe <= BACK_PROBE_BED_POSITION; yProbe += yGridSpacing)
  2431. {
  2432. int xProbe, xInc;
  2433. if (zig)
  2434. {
  2435. xProbe = LEFT_PROBE_BED_POSITION;
  2436. //xEnd = RIGHT_PROBE_BED_POSITION;
  2437. xInc = xGridSpacing;
  2438. zig = false;
  2439. } else // zag
  2440. {
  2441. xProbe = RIGHT_PROBE_BED_POSITION;
  2442. //xEnd = LEFT_PROBE_BED_POSITION;
  2443. xInc = -xGridSpacing;
  2444. zig = true;
  2445. }
  2446. for (int xCount=0; xCount < AUTO_BED_LEVELING_GRID_POINTS; xCount++)
  2447. {
  2448. float z_before;
  2449. if (probePointCounter == 0)
  2450. {
  2451. // raise before probing
  2452. z_before = Z_RAISE_BEFORE_PROBING;
  2453. } else
  2454. {
  2455. // raise extruder
  2456. z_before = current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS;
  2457. }
  2458. float measured_z = probe_pt(xProbe, yProbe, z_before);
  2459. eqnBVector[probePointCounter] = measured_z;
  2460. eqnAMatrix[probePointCounter + 0*AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS] = xProbe;
  2461. eqnAMatrix[probePointCounter + 1*AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS] = yProbe;
  2462. eqnAMatrix[probePointCounter + 2*AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS] = 1;
  2463. probePointCounter++;
  2464. xProbe += xInc;
  2465. }
  2466. }
  2467. clean_up_after_endstop_move();
  2468. // solve lsq problem
  2469. double *plane_equation_coefficients = qr_solve(AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS, 3, eqnAMatrix, eqnBVector);
  2470. SERIAL_PROTOCOLPGM("Eqn coefficients: a: ");
  2471. SERIAL_PROTOCOL(plane_equation_coefficients[0]);
  2472. SERIAL_PROTOCOLPGM(" b: ");
  2473. SERIAL_PROTOCOL(plane_equation_coefficients[1]);
  2474. SERIAL_PROTOCOLPGM(" d: ");
  2475. SERIAL_PROTOCOLLN(plane_equation_coefficients[2]);
  2476. set_bed_level_equation_lsq(plane_equation_coefficients);
  2477. free(plane_equation_coefficients);
  2478. #else // AUTO_BED_LEVELING_GRID not defined
  2479. // Probe at 3 arbitrary points
  2480. // probe 1
  2481. float z_at_pt_1 = probe_pt(ABL_PROBE_PT_1_X, ABL_PROBE_PT_1_Y, Z_RAISE_BEFORE_PROBING);
  2482. // probe 2
  2483. float z_at_pt_2 = probe_pt(ABL_PROBE_PT_2_X, ABL_PROBE_PT_2_Y, current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS);
  2484. // probe 3
  2485. float z_at_pt_3 = probe_pt(ABL_PROBE_PT_3_X, ABL_PROBE_PT_3_Y, current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS);
  2486. clean_up_after_endstop_move();
  2487. set_bed_level_equation_3pts(z_at_pt_1, z_at_pt_2, z_at_pt_3);
  2488. #endif // AUTO_BED_LEVELING_GRID
  2489. st_synchronize();
  2490. // The following code correct the Z height difference from z-probe position and hotend tip position.
  2491. // The Z height on homing is measured by Z-Probe, but the probe is quite far from the hotend.
  2492. // When the bed is uneven, this height must be corrected.
  2493. real_z = float(st_get_position(Z_AXIS))/axis_steps_per_unit[Z_AXIS]; //get the real Z (since the auto bed leveling is already correcting the plane)
  2494. x_tmp = current_position[X_AXIS] + X_PROBE_OFFSET_FROM_EXTRUDER;
  2495. y_tmp = current_position[Y_AXIS] + Y_PROBE_OFFSET_FROM_EXTRUDER;
  2496. z_tmp = current_position[Z_AXIS];
  2497. apply_rotation_xyz(plan_bed_level_matrix, x_tmp, y_tmp, z_tmp); //Apply the correction sending the probe offset
  2498. current_position[Z_AXIS] = z_tmp - real_z + current_position[Z_AXIS]; //The difference is added to current position and sent to planner.
  2499. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2500. }
  2501. break;
  2502. #ifndef Z_PROBE_SLED
  2503. case 30: // G30 Single Z Probe
  2504. {
  2505. st_synchronize();
  2506. // TODO: make sure the bed_level_rotation_matrix is identity or the planner will get set incorectly
  2507. setup_for_endstop_move();
  2508. feedrate = homing_feedrate[Z_AXIS];
  2509. run_z_probe();
  2510. SERIAL_PROTOCOLPGM(MSG_BED);
  2511. SERIAL_PROTOCOLPGM(" X: ");
  2512. SERIAL_PROTOCOL(current_position[X_AXIS]);
  2513. SERIAL_PROTOCOLPGM(" Y: ");
  2514. SERIAL_PROTOCOL(current_position[Y_AXIS]);
  2515. SERIAL_PROTOCOLPGM(" Z: ");
  2516. SERIAL_PROTOCOL(current_position[Z_AXIS]);
  2517. SERIAL_PROTOCOLPGM("\n");
  2518. clean_up_after_endstop_move();
  2519. }
  2520. break;
  2521. #else
  2522. case 31: // dock the sled
  2523. dock_sled(true);
  2524. break;
  2525. case 32: // undock the sled
  2526. dock_sled(false);
  2527. break;
  2528. #endif // Z_PROBE_SLED
  2529. #endif // ENABLE_AUTO_BED_LEVELING
  2530. #ifdef MESH_BED_LEVELING
  2531. case 30: // G30 Single Z Probe
  2532. {
  2533. st_synchronize();
  2534. // TODO: make sure the bed_level_rotation_matrix is identity or the planner will get set incorectly
  2535. setup_for_endstop_move();
  2536. feedrate = homing_feedrate[Z_AXIS];
  2537. find_bed_induction_sensor_point_z(-10.f, 3);
  2538. SERIAL_PROTOCOLRPGM(MSG_BED);
  2539. SERIAL_PROTOCOLPGM(" X: ");
  2540. MYSERIAL.print(current_position[X_AXIS], 5);
  2541. SERIAL_PROTOCOLPGM(" Y: ");
  2542. MYSERIAL.print(current_position[Y_AXIS], 5);
  2543. SERIAL_PROTOCOLPGM(" Z: ");
  2544. MYSERIAL.print(current_position[Z_AXIS], 5);
  2545. SERIAL_PROTOCOLPGM("\n");
  2546. clean_up_after_endstop_move();
  2547. }
  2548. break;
  2549. case 75:
  2550. {
  2551. for (int i = 40; i <= 110; i++) {
  2552. MYSERIAL.print(i);
  2553. MYSERIAL.print(" ");
  2554. MYSERIAL.println(temp_comp_interpolation(i));// / axis_steps_per_unit[Z_AXIS]);
  2555. }
  2556. }
  2557. break;
  2558. case 76: //PINDA probe temperature calibration
  2559. {
  2560. #ifdef PINDA_THERMISTOR
  2561. if (true)
  2562. {
  2563. if (!(axis_known_position[X_AXIS] && axis_known_position[Y_AXIS] && axis_known_position[Z_AXIS])) {
  2564. // We don't know where we are! HOME!
  2565. // Push the commands to the front of the message queue in the reverse order!
  2566. // There shall be always enough space reserved for these commands.
  2567. repeatcommand_front(); // repeat G76 with all its parameters
  2568. enquecommand_front_P((PSTR("G28 W0")));
  2569. break;
  2570. }
  2571. KEEPALIVE_STATE(NOT_BUSY); //no need to print busy messages as we print current temperatures periodicaly
  2572. SERIAL_ECHOLNPGM("PINDA probe calibration start");
  2573. float zero_z;
  2574. int z_shift = 0; //unit: steps
  2575. float start_temp = 5 * (int)(current_temperature_pinda / 5);
  2576. if (start_temp < 35) start_temp = 35;
  2577. if (start_temp < current_temperature_pinda) start_temp += 5;
  2578. SERIAL_ECHOPGM("start temperature: ");
  2579. MYSERIAL.println(start_temp);
  2580. // setTargetHotend(200, 0);
  2581. setTargetBed(70 + (start_temp - 30));
  2582. custom_message = true;
  2583. custom_message_type = 4;
  2584. custom_message_state = 1;
  2585. custom_message = MSG_TEMP_CALIBRATION;
  2586. current_position[X_AXIS] = PINDA_PREHEAT_X;
  2587. current_position[Y_AXIS] = PINDA_PREHEAT_Y;
  2588. current_position[Z_AXIS] = PINDA_PREHEAT_Z;
  2589. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  2590. st_synchronize();
  2591. while (current_temperature_pinda < start_temp)
  2592. {
  2593. delay_keep_alive(1000);
  2594. serialecho_temperatures();
  2595. }
  2596. eeprom_update_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 0); //invalidate temp. calibration in case that in will be aborted during the calibration process
  2597. current_position[Z_AXIS] = 5;
  2598. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  2599. current_position[X_AXIS] = pgm_read_float(bed_ref_points);
  2600. current_position[Y_AXIS] = pgm_read_float(bed_ref_points + 1);
  2601. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  2602. st_synchronize();
  2603. find_bed_induction_sensor_point_z(-1.f);
  2604. zero_z = current_position[Z_AXIS];
  2605. //current_position[Z_AXIS]
  2606. SERIAL_ECHOLNPGM("");
  2607. SERIAL_ECHOPGM("ZERO: ");
  2608. MYSERIAL.print(current_position[Z_AXIS]);
  2609. SERIAL_ECHOLNPGM("");
  2610. int i = -1; for (; i < 5; i++)
  2611. {
  2612. float temp = (40 + i * 5);
  2613. SERIAL_ECHOPGM("Step: ");
  2614. MYSERIAL.print(i + 2);
  2615. SERIAL_ECHOLNPGM("/6 (skipped)");
  2616. SERIAL_ECHOPGM("PINDA temperature: ");
  2617. MYSERIAL.print((40 + i*5));
  2618. SERIAL_ECHOPGM(" Z shift (mm):");
  2619. MYSERIAL.print(0);
  2620. SERIAL_ECHOLNPGM("");
  2621. if (i >= 0) EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + i * 2, &z_shift);
  2622. if (start_temp <= temp) break;
  2623. }
  2624. for (i++; i < 5; i++)
  2625. {
  2626. float temp = (40 + i * 5);
  2627. SERIAL_ECHOPGM("Step: ");
  2628. MYSERIAL.print(i + 2);
  2629. SERIAL_ECHOLNPGM("/6");
  2630. custom_message_state = i + 2;
  2631. setTargetBed(50 + 10 * (temp - 30) / 5);
  2632. // setTargetHotend(255, 0);
  2633. current_position[X_AXIS] = PINDA_PREHEAT_X;
  2634. current_position[Y_AXIS] = PINDA_PREHEAT_Y;
  2635. current_position[Z_AXIS] = PINDA_PREHEAT_Z;
  2636. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  2637. st_synchronize();
  2638. while (current_temperature_pinda < temp)
  2639. {
  2640. delay_keep_alive(1000);
  2641. serialecho_temperatures();
  2642. }
  2643. current_position[Z_AXIS] = 5;
  2644. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  2645. current_position[X_AXIS] = pgm_read_float(bed_ref_points);
  2646. current_position[Y_AXIS] = pgm_read_float(bed_ref_points + 1);
  2647. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  2648. st_synchronize();
  2649. find_bed_induction_sensor_point_z(-1.f);
  2650. z_shift = (int)((current_position[Z_AXIS] - zero_z)*axis_steps_per_unit[Z_AXIS]);
  2651. SERIAL_ECHOLNPGM("");
  2652. SERIAL_ECHOPGM("PINDA temperature: ");
  2653. MYSERIAL.print(current_temperature_pinda);
  2654. SERIAL_ECHOPGM(" Z shift (mm):");
  2655. MYSERIAL.print(current_position[Z_AXIS] - zero_z);
  2656. SERIAL_ECHOLNPGM("");
  2657. EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + i * 2, &z_shift);
  2658. }
  2659. custom_message_type = 0;
  2660. custom_message = false;
  2661. eeprom_update_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 1);
  2662. SERIAL_ECHOLNPGM("Temperature calibration done. Continue with pressing the knob.");
  2663. disable_x();
  2664. disable_y();
  2665. disable_z();
  2666. disable_e0();
  2667. disable_e1();
  2668. disable_e2();
  2669. lcd_show_fullscreen_message_and_wait_P(MSG_TEMP_CALIBRATION_DONE);
  2670. lcd_update_enable(true);
  2671. lcd_update(2);
  2672. setTargetBed(0); //set bed target temperature back to 0
  2673. // setTargetHotend(0,0); //set hotend target temperature back to 0
  2674. break;
  2675. }
  2676. #endif //PINDA_THERMISTOR
  2677. setTargetBed(PINDA_MIN_T);
  2678. float zero_z;
  2679. int z_shift = 0; //unit: steps
  2680. int t_c; // temperature
  2681. if (!(axis_known_position[X_AXIS] && axis_known_position[Y_AXIS] && axis_known_position[Z_AXIS])) {
  2682. // We don't know where we are! HOME!
  2683. // Push the commands to the front of the message queue in the reverse order!
  2684. // There shall be always enough space reserved for these commands.
  2685. repeatcommand_front(); // repeat G76 with all its parameters
  2686. enquecommand_front_P((PSTR("G28 W0")));
  2687. break;
  2688. }
  2689. SERIAL_ECHOLNPGM("PINDA probe calibration start");
  2690. custom_message = true;
  2691. custom_message_type = 4;
  2692. custom_message_state = 1;
  2693. custom_message = MSG_TEMP_CALIBRATION;
  2694. current_position[X_AXIS] = PINDA_PREHEAT_X;
  2695. current_position[Y_AXIS] = PINDA_PREHEAT_Y;
  2696. current_position[Z_AXIS] = PINDA_PREHEAT_Z;
  2697. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  2698. st_synchronize();
  2699. while (abs(degBed() - PINDA_MIN_T) > 1) {
  2700. delay_keep_alive(1000);
  2701. serialecho_temperatures();
  2702. }
  2703. //enquecommand_P(PSTR("M190 S50"));
  2704. for (int i = 0; i < PINDA_HEAT_T; i++) {
  2705. delay_keep_alive(1000);
  2706. serialecho_temperatures();
  2707. }
  2708. eeprom_update_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 0); //invalidate temp. calibration in case that in will be aborted during the calibration process
  2709. current_position[Z_AXIS] = 5;
  2710. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  2711. current_position[X_AXIS] = pgm_read_float(bed_ref_points);
  2712. current_position[Y_AXIS] = pgm_read_float(bed_ref_points + 1);
  2713. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  2714. st_synchronize();
  2715. find_bed_induction_sensor_point_z(-1.f);
  2716. zero_z = current_position[Z_AXIS];
  2717. //current_position[Z_AXIS]
  2718. SERIAL_ECHOLNPGM("");
  2719. SERIAL_ECHOPGM("ZERO: ");
  2720. MYSERIAL.print(current_position[Z_AXIS]);
  2721. SERIAL_ECHOLNPGM("");
  2722. for (int i = 0; i<5; i++) {
  2723. SERIAL_ECHOPGM("Step: ");
  2724. MYSERIAL.print(i+2);
  2725. SERIAL_ECHOLNPGM("/6");
  2726. custom_message_state = i + 2;
  2727. t_c = 60 + i * 10;
  2728. setTargetBed(t_c);
  2729. current_position[X_AXIS] = PINDA_PREHEAT_X;
  2730. current_position[Y_AXIS] = PINDA_PREHEAT_Y;
  2731. current_position[Z_AXIS] = PINDA_PREHEAT_Z;
  2732. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  2733. st_synchronize();
  2734. while (degBed() < t_c) {
  2735. delay_keep_alive(1000);
  2736. serialecho_temperatures();
  2737. }
  2738. for (int i = 0; i < PINDA_HEAT_T; i++) {
  2739. delay_keep_alive(1000);
  2740. serialecho_temperatures();
  2741. }
  2742. current_position[Z_AXIS] = 5;
  2743. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  2744. current_position[X_AXIS] = pgm_read_float(bed_ref_points);
  2745. current_position[Y_AXIS] = pgm_read_float(bed_ref_points + 1);
  2746. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  2747. st_synchronize();
  2748. find_bed_induction_sensor_point_z(-1.f);
  2749. z_shift = (int)((current_position[Z_AXIS] - zero_z)*axis_steps_per_unit[Z_AXIS]);
  2750. SERIAL_ECHOLNPGM("");
  2751. SERIAL_ECHOPGM("Temperature: ");
  2752. MYSERIAL.print(t_c);
  2753. SERIAL_ECHOPGM(" Z shift (mm):");
  2754. MYSERIAL.print(current_position[Z_AXIS] - zero_z);
  2755. SERIAL_ECHOLNPGM("");
  2756. EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + i*2, &z_shift);
  2757. }
  2758. custom_message_type = 0;
  2759. custom_message = false;
  2760. eeprom_update_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 1);
  2761. SERIAL_ECHOLNPGM("Temperature calibration done. Continue with pressing the knob.");
  2762. disable_x();
  2763. disable_y();
  2764. disable_z();
  2765. disable_e0();
  2766. disable_e1();
  2767. disable_e2();
  2768. setTargetBed(0); //set bed target temperature back to 0
  2769. lcd_show_fullscreen_message_and_wait_P(MSG_TEMP_CALIBRATION_DONE);
  2770. lcd_update_enable(true);
  2771. lcd_update(2);
  2772. }
  2773. break;
  2774. #ifdef DIS
  2775. case 77:
  2776. {
  2777. //G77 X200 Y150 XP100 YP15 XO10 Y015
  2778. //for 9 point mesh bed leveling G77 X203 Y196 XP3 YP3 XO0 YO0
  2779. //G77 X232 Y218 XP116 YP109 XO-11 YO0
  2780. float dimension_x = 40;
  2781. float dimension_y = 40;
  2782. int points_x = 40;
  2783. int points_y = 40;
  2784. float offset_x = 74;
  2785. float offset_y = 33;
  2786. if (code_seen('X')) dimension_x = code_value();
  2787. if (code_seen('Y')) dimension_y = code_value();
  2788. if (code_seen('XP')) points_x = code_value();
  2789. if (code_seen('YP')) points_y = code_value();
  2790. if (code_seen('XO')) offset_x = code_value();
  2791. if (code_seen('YO')) offset_y = code_value();
  2792. bed_analysis(dimension_x,dimension_y,points_x,points_y,offset_x,offset_y);
  2793. } break;
  2794. #endif
  2795. case 79: {
  2796. for (int i = 255; i > 0; i = i - 5) {
  2797. fanSpeed = i;
  2798. //delay_keep_alive(2000);
  2799. for (int j = 0; j < 100; j++) {
  2800. delay_keep_alive(100);
  2801. }
  2802. fan_speed[1];
  2803. MYSERIAL.print(i); SERIAL_ECHOPGM(": "); MYSERIAL.println(fan_speed[1]);
  2804. }
  2805. }break;
  2806. /**
  2807. * G80: Mesh-based Z probe, probes a grid and produces a
  2808. * mesh to compensate for variable bed height
  2809. *
  2810. * The S0 report the points as below
  2811. *
  2812. * +----> X-axis
  2813. * |
  2814. * |
  2815. * v Y-axis
  2816. *
  2817. */
  2818. case 80:
  2819. #ifdef MK1BP
  2820. break;
  2821. #endif //MK1BP
  2822. case_G80:
  2823. {
  2824. mesh_bed_leveling_flag = true;
  2825. int8_t verbosity_level = 0;
  2826. static bool run = false;
  2827. if (code_seen('V')) {
  2828. // Just 'V' without a number counts as V1.
  2829. char c = strchr_pointer[1];
  2830. verbosity_level = (c == ' ' || c == '\t' || c == 0) ? 1 : code_value_short();
  2831. }
  2832. // Firstly check if we know where we are
  2833. if (!(axis_known_position[X_AXIS] && axis_known_position[Y_AXIS] && axis_known_position[Z_AXIS])) {
  2834. // We don't know where we are! HOME!
  2835. // Push the commands to the front of the message queue in the reverse order!
  2836. // There shall be always enough space reserved for these commands.
  2837. if (lcd_commands_type != LCD_COMMAND_STOP_PRINT) {
  2838. repeatcommand_front(); // repeat G80 with all its parameters
  2839. enquecommand_front_P((PSTR("G28 W0")));
  2840. }
  2841. else {
  2842. mesh_bed_leveling_flag = false;
  2843. }
  2844. break;
  2845. }
  2846. bool temp_comp_start = true;
  2847. #ifdef PINDA_THERMISTOR
  2848. temp_comp_start = false;
  2849. #endif //PINDA_THERMISTOR
  2850. if (temp_comp_start)
  2851. if (run == false && temp_cal_active == true && calibration_status_pinda() == true && target_temperature_bed >= 50) {
  2852. if (lcd_commands_type != LCD_COMMAND_STOP_PRINT) {
  2853. temp_compensation_start();
  2854. run = true;
  2855. repeatcommand_front(); // repeat G80 with all its parameters
  2856. enquecommand_front_P((PSTR("G28 W0")));
  2857. }
  2858. else {
  2859. mesh_bed_leveling_flag = false;
  2860. }
  2861. break;
  2862. }
  2863. run = false;
  2864. if (lcd_commands_type == LCD_COMMAND_STOP_PRINT) {
  2865. mesh_bed_leveling_flag = false;
  2866. break;
  2867. }
  2868. // Save custom message state, set a new custom message state to display: Calibrating point 9.
  2869. bool custom_message_old = custom_message;
  2870. unsigned int custom_message_type_old = custom_message_type;
  2871. unsigned int custom_message_state_old = custom_message_state;
  2872. custom_message = true;
  2873. custom_message_type = 1;
  2874. custom_message_state = (MESH_MEAS_NUM_X_POINTS * MESH_MEAS_NUM_Y_POINTS) + 10;
  2875. lcd_update(1);
  2876. mbl.reset(); //reset mesh bed leveling
  2877. // Reset baby stepping to zero, if the babystepping has already been loaded before. The babystepsTodo value will be
  2878. // consumed during the first movements following this statement.
  2879. babystep_undo();
  2880. // Cycle through all points and probe them
  2881. // First move up. During this first movement, the babystepping will be reverted.
  2882. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  2883. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[Z_AXIS] / 60, active_extruder);
  2884. // The move to the first calibration point.
  2885. current_position[X_AXIS] = pgm_read_float(bed_ref_points);
  2886. current_position[Y_AXIS] = pgm_read_float(bed_ref_points + 1);
  2887. bool clamped = world2machine_clamp(current_position[X_AXIS], current_position[Y_AXIS]);
  2888. #ifdef SUPPORT_VERBOSITY
  2889. if (verbosity_level >= 1) {
  2890. clamped ? SERIAL_PROTOCOLPGM("First calibration point clamped.\n") : SERIAL_PROTOCOLPGM("No clamping for first calibration point.\n");
  2891. }
  2892. #endif //SUPPORT_VERBOSITY
  2893. // mbl.get_meas_xy(0, 0, current_position[X_AXIS], current_position[Y_AXIS], false);
  2894. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[X_AXIS] / 30, active_extruder);
  2895. // Wait until the move is finished.
  2896. st_synchronize();
  2897. int mesh_point = 0; //index number of calibration point
  2898. int ix = 0;
  2899. int iy = 0;
  2900. int XY_AXIS_FEEDRATE = homing_feedrate[X_AXIS] / 20;
  2901. int Z_PROBE_FEEDRATE = homing_feedrate[Z_AXIS] / 60;
  2902. int Z_LIFT_FEEDRATE = homing_feedrate[Z_AXIS] / 40;
  2903. bool has_z = is_bed_z_jitter_data_valid(); //checks if we have data from Z calibration (offsets of the Z heiths of the 8 calibration points from the first point)
  2904. #ifdef SUPPORT_VERBOSITY
  2905. if (verbosity_level >= 1) {
  2906. has_z ? SERIAL_PROTOCOLPGM("Z jitter data from Z cal. valid.\n") : SERIAL_PROTOCOLPGM("Z jitter data from Z cal. not valid.\n");
  2907. }
  2908. #endif // SUPPORT_VERBOSITY
  2909. setup_for_endstop_move(false); //save feedrate and feedmultiply, sets feedmultiply to 100
  2910. const char *kill_message = NULL;
  2911. while (mesh_point != MESH_MEAS_NUM_X_POINTS * MESH_MEAS_NUM_Y_POINTS) {
  2912. // Get coords of a measuring point.
  2913. ix = mesh_point % MESH_MEAS_NUM_X_POINTS; // from 0 to MESH_NUM_X_POINTS - 1
  2914. iy = mesh_point / MESH_MEAS_NUM_X_POINTS;
  2915. if (iy & 1) ix = (MESH_MEAS_NUM_X_POINTS - 1) - ix; // Zig zag
  2916. float z0 = 0.f;
  2917. if (has_z && mesh_point > 0) {
  2918. uint16_t z_offset_u = eeprom_read_word((uint16_t*)(EEPROM_BED_CALIBRATION_Z_JITTER + 2 * (ix + iy * 3 - 1)));
  2919. z0 = mbl.z_values[0][0] + *reinterpret_cast<int16_t*>(&z_offset_u) * 0.01;
  2920. //#if 0
  2921. #ifdef SUPPORT_VERBOSITY
  2922. if (verbosity_level >= 1) {
  2923. SERIAL_ECHOLNPGM("");
  2924. SERIAL_ECHOPGM("Bed leveling, point: ");
  2925. MYSERIAL.print(mesh_point);
  2926. SERIAL_ECHOPGM(", calibration z: ");
  2927. MYSERIAL.print(z0, 5);
  2928. SERIAL_ECHOLNPGM("");
  2929. }
  2930. #endif // SUPPORT_VERBOSITY
  2931. //#endif
  2932. }
  2933. // Move Z up to MESH_HOME_Z_SEARCH.
  2934. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  2935. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], Z_LIFT_FEEDRATE, active_extruder);
  2936. st_synchronize();
  2937. // Move to XY position of the sensor point.
  2938. current_position[X_AXIS] = pgm_read_float(bed_ref_points + 2 * mesh_point);
  2939. current_position[Y_AXIS] = pgm_read_float(bed_ref_points + 2 * mesh_point + 1);
  2940. world2machine_clamp(current_position[X_AXIS], current_position[Y_AXIS]);
  2941. #ifdef SUPPORT_VERBOSITY
  2942. if (verbosity_level >= 1) {
  2943. SERIAL_PROTOCOL(mesh_point);
  2944. clamped ? SERIAL_PROTOCOLPGM(": xy clamped.\n") : SERIAL_PROTOCOLPGM(": no xy clamping\n");
  2945. }
  2946. #endif // SUPPORT_VERBOSITY
  2947. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], XY_AXIS_FEEDRATE, active_extruder);
  2948. st_synchronize();
  2949. // Go down until endstop is hit
  2950. const float Z_CALIBRATION_THRESHOLD = 1.f;
  2951. if (!find_bed_induction_sensor_point_z((has_z && mesh_point > 0) ? z0 - Z_CALIBRATION_THRESHOLD : -10.f)) { //if we have data from z calibration max allowed difference is 1mm for each point, if we dont have data max difference is 10mm from initial point
  2952. kill_message = MSG_BED_LEVELING_FAILED_POINT_LOW;
  2953. break;
  2954. }
  2955. if (MESH_HOME_Z_SEARCH - current_position[Z_AXIS] < 0.1f) {
  2956. kill_message = MSG_BED_LEVELING_FAILED_PROBE_DISCONNECTED;
  2957. break;
  2958. }
  2959. if (has_z && fabs(z0 - current_position[Z_AXIS]) > Z_CALIBRATION_THRESHOLD) { //if we have data from z calibration, max. allowed difference is 1mm for each point
  2960. kill_message = MSG_BED_LEVELING_FAILED_POINT_HIGH;
  2961. break;
  2962. }
  2963. #ifdef SUPPORT_VERBOSITY
  2964. if (verbosity_level >= 10) {
  2965. SERIAL_ECHOPGM("X: ");
  2966. MYSERIAL.print(current_position[X_AXIS], 5);
  2967. SERIAL_ECHOLNPGM("");
  2968. SERIAL_ECHOPGM("Y: ");
  2969. MYSERIAL.print(current_position[Y_AXIS], 5);
  2970. SERIAL_PROTOCOLPGM("\n");
  2971. }
  2972. #endif // SUPPORT_VERBOSITY
  2973. float offset_z = 0;
  2974. #ifdef PINDA_THERMISTOR
  2975. offset_z = temp_compensation_pinda_thermistor_offset(current_temperature_pinda);
  2976. #endif //PINDA_THERMISTOR
  2977. // #ifdef SUPPORT_VERBOSITY
  2978. // if (verbosity_level >= 1)
  2979. {
  2980. SERIAL_ECHOPGM("mesh bed leveling: ");
  2981. MYSERIAL.print(current_position[Z_AXIS], 5);
  2982. SERIAL_ECHOPGM(" offset: ");
  2983. MYSERIAL.print(offset_z, 5);
  2984. SERIAL_ECHOLNPGM("");
  2985. }
  2986. // #endif // SUPPORT_VERBOSITY
  2987. mbl.set_z(ix, iy, current_position[Z_AXIS] - offset_z); //store measured z values z_values[iy][ix] = z - offset_z;
  2988. custom_message_state--;
  2989. mesh_point++;
  2990. lcd_update(1);
  2991. }
  2992. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  2993. #ifdef SUPPORT_VERBOSITY
  2994. if (verbosity_level >= 20) {
  2995. SERIAL_ECHOLNPGM("Mesh bed leveling while loop finished.");
  2996. SERIAL_ECHOLNPGM("MESH_HOME_Z_SEARCH: ");
  2997. MYSERIAL.print(current_position[Z_AXIS], 5);
  2998. }
  2999. #endif // SUPPORT_VERBOSITY
  3000. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], Z_LIFT_FEEDRATE, active_extruder);
  3001. st_synchronize();
  3002. if (mesh_point != MESH_MEAS_NUM_X_POINTS * MESH_MEAS_NUM_Y_POINTS) {
  3003. kill(kill_message);
  3004. SERIAL_ECHOLNPGM("killed");
  3005. }
  3006. clean_up_after_endstop_move();
  3007. SERIAL_ECHOLNPGM("clean up finished ");
  3008. bool apply_temp_comp = true;
  3009. #ifdef PINDA_THERMISTOR
  3010. apply_temp_comp = false;
  3011. #endif
  3012. if (apply_temp_comp)
  3013. if(temp_cal_active == true && calibration_status_pinda() == true) temp_compensation_apply(); //apply PINDA temperature compensation
  3014. babystep_apply(); // Apply Z height correction aka baby stepping before mesh bed leveing gets activated.
  3015. SERIAL_ECHOLNPGM("babystep applied");
  3016. bool eeprom_bed_correction_valid = eeprom_read_byte((unsigned char*)EEPROM_BED_CORRECTION_VALID) == 1;
  3017. #ifdef SUPPORT_VERBOSITY
  3018. if (verbosity_level >= 1) {
  3019. eeprom_bed_correction_valid ? SERIAL_PROTOCOLPGM("Bed correction data valid\n") : SERIAL_PROTOCOLPGM("Bed correction data not valid\n");
  3020. }
  3021. #endif // SUPPORT_VERBOSITY
  3022. for (uint8_t i = 0; i < 4; ++i) {
  3023. unsigned char codes[4] = { 'L', 'R', 'F', 'B' };
  3024. long correction = 0;
  3025. if (code_seen(codes[i]))
  3026. correction = code_value_long();
  3027. else if (eeprom_bed_correction_valid) {
  3028. unsigned char *addr = (i < 2) ?
  3029. ((i == 0) ? (unsigned char*)EEPROM_BED_CORRECTION_LEFT : (unsigned char*)EEPROM_BED_CORRECTION_RIGHT) :
  3030. ((i == 2) ? (unsigned char*)EEPROM_BED_CORRECTION_FRONT : (unsigned char*)EEPROM_BED_CORRECTION_REAR);
  3031. correction = eeprom_read_int8(addr);
  3032. }
  3033. if (correction == 0)
  3034. continue;
  3035. float offset = float(correction) * 0.001f;
  3036. if (fabs(offset) > 0.101f) {
  3037. SERIAL_ERROR_START;
  3038. SERIAL_ECHOPGM("Excessive bed leveling correction: ");
  3039. SERIAL_ECHO(offset);
  3040. SERIAL_ECHOLNPGM(" microns");
  3041. }
  3042. else {
  3043. switch (i) {
  3044. case 0:
  3045. for (uint8_t row = 0; row < 3; ++row) {
  3046. mbl.z_values[row][1] += 0.5f * offset;
  3047. mbl.z_values[row][0] += offset;
  3048. }
  3049. break;
  3050. case 1:
  3051. for (uint8_t row = 0; row < 3; ++row) {
  3052. mbl.z_values[row][1] += 0.5f * offset;
  3053. mbl.z_values[row][2] += offset;
  3054. }
  3055. break;
  3056. case 2:
  3057. for (uint8_t col = 0; col < 3; ++col) {
  3058. mbl.z_values[1][col] += 0.5f * offset;
  3059. mbl.z_values[0][col] += offset;
  3060. }
  3061. break;
  3062. case 3:
  3063. for (uint8_t col = 0; col < 3; ++col) {
  3064. mbl.z_values[1][col] += 0.5f * offset;
  3065. mbl.z_values[2][col] += offset;
  3066. }
  3067. break;
  3068. }
  3069. }
  3070. }
  3071. SERIAL_ECHOLNPGM("Bed leveling correction finished");
  3072. mbl.upsample_3x3(); //bilinear interpolation from 3x3 to 7x7 points while using the same array z_values[iy][ix] for storing (just coppying measured data to new destination and interpolating between them)
  3073. SERIAL_ECHOLNPGM("Upsample finished");
  3074. mbl.active = 1; //activate mesh bed leveling
  3075. SERIAL_ECHOLNPGM("Mesh bed leveling activated");
  3076. go_home_with_z_lift();
  3077. SERIAL_ECHOLNPGM("Go home finished");
  3078. //unretract (after PINDA preheat retraction)
  3079. if (degHotend(active_extruder) > EXTRUDE_MINTEMP && temp_cal_active == true && calibration_status_pinda() == true && target_temperature_bed >= 50) {
  3080. current_position[E_AXIS] += DEFAULT_RETRACTION;
  3081. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400, active_extruder);
  3082. }
  3083. KEEPALIVE_STATE(NOT_BUSY);
  3084. // Restore custom message state
  3085. custom_message = custom_message_old;
  3086. custom_message_type = custom_message_type_old;
  3087. custom_message_state = custom_message_state_old;
  3088. mesh_bed_leveling_flag = false;
  3089. mesh_bed_run_from_menu = false;
  3090. lcd_update(2);
  3091. }
  3092. break;
  3093. /**
  3094. * G81: Print mesh bed leveling status and bed profile if activated
  3095. */
  3096. case 81:
  3097. if (mbl.active) {
  3098. SERIAL_PROTOCOLPGM("Num X,Y: ");
  3099. SERIAL_PROTOCOL(MESH_NUM_X_POINTS);
  3100. SERIAL_PROTOCOLPGM(",");
  3101. SERIAL_PROTOCOL(MESH_NUM_Y_POINTS);
  3102. SERIAL_PROTOCOLPGM("\nZ search height: ");
  3103. SERIAL_PROTOCOL(MESH_HOME_Z_SEARCH);
  3104. SERIAL_PROTOCOLLNPGM("\nMeasured points:");
  3105. for (int y = MESH_NUM_Y_POINTS-1; y >= 0; y--) {
  3106. for (int x = 0; x < MESH_NUM_X_POINTS; x++) {
  3107. SERIAL_PROTOCOLPGM(" ");
  3108. SERIAL_PROTOCOL_F(mbl.z_values[y][x], 5);
  3109. }
  3110. SERIAL_PROTOCOLPGM("\n");
  3111. }
  3112. }
  3113. else
  3114. SERIAL_PROTOCOLLNPGM("Mesh bed leveling not active.");
  3115. break;
  3116. #if 0
  3117. /**
  3118. * G82: Single Z probe at current location
  3119. *
  3120. * WARNING! USE WITH CAUTION! If you'll try to probe where is no leveling pad, nasty things can happen!
  3121. *
  3122. */
  3123. case 82:
  3124. SERIAL_PROTOCOLLNPGM("Finding bed ");
  3125. setup_for_endstop_move();
  3126. find_bed_induction_sensor_point_z();
  3127. clean_up_after_endstop_move();
  3128. SERIAL_PROTOCOLPGM("Bed found at: ");
  3129. SERIAL_PROTOCOL_F(current_position[Z_AXIS], 5);
  3130. SERIAL_PROTOCOLPGM("\n");
  3131. break;
  3132. /**
  3133. * G83: Prusa3D specific: Babystep in Z and store to EEPROM
  3134. */
  3135. case 83:
  3136. {
  3137. int babystepz = code_seen('S') ? code_value() : 0;
  3138. int BabyPosition = code_seen('P') ? code_value() : 0;
  3139. if (babystepz != 0) {
  3140. //FIXME Vojtech: What shall be the index of the axis Z: 3 or 4?
  3141. // Is the axis indexed starting with zero or one?
  3142. if (BabyPosition > 4) {
  3143. SERIAL_PROTOCOLLNPGM("Index out of bounds");
  3144. }else{
  3145. // Save it to the eeprom
  3146. babystepLoadZ = babystepz;
  3147. EEPROM_save_B(EEPROM_BABYSTEP_Z0+(BabyPosition*2),&babystepLoadZ);
  3148. // adjust the Z
  3149. babystepsTodoZadd(babystepLoadZ);
  3150. }
  3151. }
  3152. }
  3153. break;
  3154. /**
  3155. * G84: Prusa3D specific: UNDO Babystep Z (move Z axis back)
  3156. */
  3157. case 84:
  3158. babystepsTodoZsubtract(babystepLoadZ);
  3159. // babystepLoadZ = 0;
  3160. break;
  3161. /**
  3162. * G85: Prusa3D specific: Pick best babystep
  3163. */
  3164. case 85:
  3165. lcd_pick_babystep();
  3166. break;
  3167. #endif
  3168. /**
  3169. * G86: Prusa3D specific: Disable babystep correction after home.
  3170. * This G-code will be performed at the start of a calibration script.
  3171. */
  3172. case 86:
  3173. calibration_status_store(CALIBRATION_STATUS_LIVE_ADJUST);
  3174. break;
  3175. /**
  3176. * G87: Prusa3D specific: Enable babystep correction after home
  3177. * This G-code will be performed at the end of a calibration script.
  3178. */
  3179. case 87:
  3180. calibration_status_store(CALIBRATION_STATUS_CALIBRATED);
  3181. break;
  3182. /**
  3183. * G88: Prusa3D specific: Don't know what it is for, it is in V2Calibration.gcode
  3184. */
  3185. case 88:
  3186. break;
  3187. #endif // ENABLE_MESH_BED_LEVELING
  3188. case 90: // G90
  3189. relative_mode = false;
  3190. break;
  3191. case 91: // G91
  3192. relative_mode = true;
  3193. break;
  3194. case 92: // G92
  3195. if(!code_seen(axis_codes[E_AXIS]))
  3196. st_synchronize();
  3197. for(int8_t i=0; i < NUM_AXIS; i++) {
  3198. if(code_seen(axis_codes[i])) {
  3199. if(i == E_AXIS) {
  3200. current_position[i] = code_value();
  3201. plan_set_e_position(current_position[E_AXIS]);
  3202. }
  3203. else {
  3204. current_position[i] = code_value()+add_homing[i];
  3205. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  3206. }
  3207. }
  3208. }
  3209. break;
  3210. case 98: //activate farm mode
  3211. farm_mode = 1;
  3212. PingTime = millis();
  3213. eeprom_update_byte((unsigned char *)EEPROM_FARM_MODE, farm_mode);
  3214. break;
  3215. case 99: //deactivate farm mode
  3216. farm_mode = 0;
  3217. lcd_printer_connected();
  3218. eeprom_update_byte((unsigned char *)EEPROM_FARM_MODE, farm_mode);
  3219. lcd_update(2);
  3220. break;
  3221. }
  3222. } // end if(code_seen('G'))
  3223. else if(code_seen('M'))
  3224. {
  3225. int index;
  3226. for (index = 1; *(strchr_pointer + index) == ' ' || *(strchr_pointer + index) == '\t'; index++);
  3227. /*for (++strchr_pointer; *strchr_pointer == ' ' || *strchr_pointer == '\t'; ++strchr_pointer);*/
  3228. if (*(strchr_pointer+index) < '0' || *(strchr_pointer+index) > '9') {
  3229. SERIAL_ECHOLNPGM("Invalid M code");
  3230. } else
  3231. switch((int)code_value())
  3232. {
  3233. #ifdef ULTIPANEL
  3234. case 0: // M0 - Unconditional stop - Wait for user button press on LCD
  3235. case 1: // M1 - Conditional stop - Wait for user button press on LCD
  3236. {
  3237. char *src = strchr_pointer + 2;
  3238. codenum = 0;
  3239. bool hasP = false, hasS = false;
  3240. if (code_seen('P')) {
  3241. codenum = code_value(); // milliseconds to wait
  3242. hasP = codenum > 0;
  3243. }
  3244. if (code_seen('S')) {
  3245. codenum = code_value() * 1000; // seconds to wait
  3246. hasS = codenum > 0;
  3247. }
  3248. starpos = strchr(src, '*');
  3249. if (starpos != NULL) *(starpos) = '\0';
  3250. while (*src == ' ') ++src;
  3251. if (!hasP && !hasS && *src != '\0') {
  3252. lcd_setstatus(src);
  3253. } else {
  3254. LCD_MESSAGERPGM(MSG_USERWAIT);
  3255. }
  3256. lcd_ignore_click(); //call lcd_ignore_click aslo for else ???
  3257. st_synchronize();
  3258. previous_millis_cmd = millis();
  3259. if (codenum > 0){
  3260. codenum += millis(); // keep track of when we started waiting
  3261. KEEPALIVE_STATE(PAUSED_FOR_USER);
  3262. while(millis() < codenum && !lcd_clicked()){
  3263. manage_heater();
  3264. manage_inactivity(true);
  3265. lcd_update();
  3266. }
  3267. KEEPALIVE_STATE(IN_HANDLER);
  3268. lcd_ignore_click(false);
  3269. }else{
  3270. if (!lcd_detected())
  3271. break;
  3272. KEEPALIVE_STATE(PAUSED_FOR_USER);
  3273. while(!lcd_clicked()){
  3274. manage_heater();
  3275. manage_inactivity(true);
  3276. lcd_update();
  3277. }
  3278. KEEPALIVE_STATE(IN_HANDLER);
  3279. }
  3280. if (IS_SD_PRINTING)
  3281. LCD_MESSAGERPGM(MSG_RESUMING);
  3282. else
  3283. LCD_MESSAGERPGM(WELCOME_MSG);
  3284. }
  3285. break;
  3286. #endif
  3287. case 17:
  3288. LCD_MESSAGERPGM(MSG_NO_MOVE);
  3289. enable_x();
  3290. enable_y();
  3291. enable_z();
  3292. enable_e0();
  3293. enable_e1();
  3294. enable_e2();
  3295. break;
  3296. #ifdef SDSUPPORT
  3297. case 20: // M20 - list SD card
  3298. SERIAL_PROTOCOLLNRPGM(MSG_BEGIN_FILE_LIST);
  3299. card.ls();
  3300. SERIAL_PROTOCOLLNRPGM(MSG_END_FILE_LIST);
  3301. break;
  3302. case 21: // M21 - init SD card
  3303. card.initsd();
  3304. break;
  3305. case 22: //M22 - release SD card
  3306. card.release();
  3307. break;
  3308. case 23: //M23 - Select file
  3309. starpos = (strchr(strchr_pointer + 4,'*'));
  3310. if(starpos!=NULL)
  3311. *(starpos)='\0';
  3312. card.openFile(strchr_pointer + 4,true);
  3313. break;
  3314. case 24: //M24 - Start SD print
  3315. card.startFileprint();
  3316. starttime=millis();
  3317. break;
  3318. case 25: //M25 - Pause SD print
  3319. card.pauseSDPrint();
  3320. break;
  3321. case 26: //M26 - Set SD index
  3322. if(card.cardOK && code_seen('S')) {
  3323. card.setIndex(code_value_long());
  3324. }
  3325. break;
  3326. case 27: //M27 - Get SD status
  3327. card.getStatus();
  3328. break;
  3329. case 28: //M28 - Start SD write
  3330. starpos = (strchr(strchr_pointer + 4,'*'));
  3331. if(starpos != NULL){
  3332. char* npos = strchr(CMDBUFFER_CURRENT_STRING, 'N');
  3333. strchr_pointer = strchr(npos,' ') + 1;
  3334. *(starpos) = '\0';
  3335. }
  3336. card.openFile(strchr_pointer+4,false);
  3337. break;
  3338. case 29: //M29 - Stop SD write
  3339. //processed in write to file routine above
  3340. //card,saving = false;
  3341. break;
  3342. case 30: //M30 <filename> Delete File
  3343. if (card.cardOK){
  3344. card.closefile();
  3345. starpos = (strchr(strchr_pointer + 4,'*'));
  3346. if(starpos != NULL){
  3347. char* npos = strchr(CMDBUFFER_CURRENT_STRING, 'N');
  3348. strchr_pointer = strchr(npos,' ') + 1;
  3349. *(starpos) = '\0';
  3350. }
  3351. card.removeFile(strchr_pointer + 4);
  3352. }
  3353. break;
  3354. case 32: //M32 - Select file and start SD print
  3355. {
  3356. if(card.sdprinting) {
  3357. st_synchronize();
  3358. }
  3359. starpos = (strchr(strchr_pointer + 4,'*'));
  3360. char* namestartpos = (strchr(strchr_pointer + 4,'!')); //find ! to indicate filename string start.
  3361. if(namestartpos==NULL)
  3362. {
  3363. namestartpos=strchr_pointer + 4; //default name position, 4 letters after the M
  3364. }
  3365. else
  3366. namestartpos++; //to skip the '!'
  3367. if(starpos!=NULL)
  3368. *(starpos)='\0';
  3369. bool call_procedure=(code_seen('P'));
  3370. if(strchr_pointer>namestartpos)
  3371. call_procedure=false; //false alert, 'P' found within filename
  3372. if( card.cardOK )
  3373. {
  3374. card.openFile(namestartpos,true,!call_procedure);
  3375. if(code_seen('S'))
  3376. if(strchr_pointer<namestartpos) //only if "S" is occuring _before_ the filename
  3377. card.setIndex(code_value_long());
  3378. card.startFileprint();
  3379. if(!call_procedure)
  3380. starttime=millis(); //procedure calls count as normal print time.
  3381. }
  3382. } break;
  3383. case 928: //M928 - Start SD write
  3384. starpos = (strchr(strchr_pointer + 5,'*'));
  3385. if(starpos != NULL){
  3386. char* npos = strchr(CMDBUFFER_CURRENT_STRING, 'N');
  3387. strchr_pointer = strchr(npos,' ') + 1;
  3388. *(starpos) = '\0';
  3389. }
  3390. card.openLogFile(strchr_pointer+5);
  3391. break;
  3392. #endif //SDSUPPORT
  3393. case 31: //M31 take time since the start of the SD print or an M109 command
  3394. {
  3395. stoptime=millis();
  3396. char time[30];
  3397. unsigned long t=(stoptime-starttime)/1000;
  3398. int sec,min;
  3399. min=t/60;
  3400. sec=t%60;
  3401. sprintf_P(time, PSTR("%i min, %i sec"), min, sec);
  3402. SERIAL_ECHO_START;
  3403. SERIAL_ECHOLN(time);
  3404. lcd_setstatus(time);
  3405. autotempShutdown();
  3406. }
  3407. break;
  3408. #ifndef _DISABLE_M42_M226
  3409. case 42: //M42 -Change pin status via gcode
  3410. if (code_seen('S'))
  3411. {
  3412. int pin_status = code_value();
  3413. int pin_number = LED_PIN;
  3414. if (code_seen('P') && pin_status >= 0 && pin_status <= 255)
  3415. pin_number = code_value();
  3416. for(int8_t i = 0; i < (int8_t)(sizeof(sensitive_pins)/sizeof(int)); i++)
  3417. {
  3418. if (sensitive_pins[i] == pin_number)
  3419. {
  3420. pin_number = -1;
  3421. break;
  3422. }
  3423. }
  3424. #if defined(FAN_PIN) && FAN_PIN > -1
  3425. if (pin_number == FAN_PIN)
  3426. fanSpeed = pin_status;
  3427. #endif
  3428. if (pin_number > -1)
  3429. {
  3430. pinMode(pin_number, OUTPUT);
  3431. digitalWrite(pin_number, pin_status);
  3432. analogWrite(pin_number, pin_status);
  3433. }
  3434. }
  3435. break;
  3436. #endif //_DISABLE_M42_M226
  3437. case 44: // M44: Prusa3D: Reset the bed skew and offset calibration.
  3438. // Reset the baby step value and the baby step applied flag.
  3439. calibration_status_store(CALIBRATION_STATUS_ASSEMBLED);
  3440. eeprom_update_word((uint16_t*)EEPROM_BABYSTEP_Z, 0);
  3441. // Reset the skew and offset in both RAM and EEPROM.
  3442. reset_bed_offset_and_skew();
  3443. // Reset world2machine_rotation_and_skew and world2machine_shift, therefore
  3444. // the planner will not perform any adjustments in the XY plane.
  3445. // Wait for the motors to stop and update the current position with the absolute values.
  3446. world2machine_revert_to_uncorrected();
  3447. break;
  3448. case 45: // M45: Prusa3D: bed skew and offset with manual Z up
  3449. {
  3450. bool only_Z = code_seen('Z');
  3451. gcode_M45(only_Z);
  3452. }
  3453. break;
  3454. /*
  3455. case 46:
  3456. {
  3457. // M46: Prusa3D: Show the assigned IP address.
  3458. uint8_t ip[4];
  3459. bool hasIP = card.ToshibaFlashAir_GetIP(ip);
  3460. if (hasIP) {
  3461. SERIAL_ECHOPGM("Toshiba FlashAir current IP: ");
  3462. SERIAL_ECHO(int(ip[0]));
  3463. SERIAL_ECHOPGM(".");
  3464. SERIAL_ECHO(int(ip[1]));
  3465. SERIAL_ECHOPGM(".");
  3466. SERIAL_ECHO(int(ip[2]));
  3467. SERIAL_ECHOPGM(".");
  3468. SERIAL_ECHO(int(ip[3]));
  3469. SERIAL_ECHOLNPGM("");
  3470. } else {
  3471. SERIAL_ECHOLNPGM("Toshiba FlashAir GetIP failed");
  3472. }
  3473. break;
  3474. }
  3475. */
  3476. case 47:
  3477. // M47: Prusa3D: Show end stops dialog on the display.
  3478. KEEPALIVE_STATE(PAUSED_FOR_USER);
  3479. lcd_diag_show_end_stops();
  3480. KEEPALIVE_STATE(IN_HANDLER);
  3481. break;
  3482. #if 0
  3483. case 48: // M48: scan the bed induction sensor points, print the sensor trigger coordinates to the serial line for visualization on the PC.
  3484. {
  3485. // Disable the default update procedure of the display. We will do a modal dialog.
  3486. lcd_update_enable(false);
  3487. // Let the planner use the uncorrected coordinates.
  3488. mbl.reset();
  3489. // Reset world2machine_rotation_and_skew and world2machine_shift, therefore
  3490. // the planner will not perform any adjustments in the XY plane.
  3491. // Wait for the motors to stop and update the current position with the absolute values.
  3492. world2machine_revert_to_uncorrected();
  3493. // Move the print head close to the bed.
  3494. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3495. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS],current_position[Z_AXIS] , current_position[E_AXIS], homing_feedrate[Z_AXIS]/40, active_extruder);
  3496. st_synchronize();
  3497. // Home in the XY plane.
  3498. set_destination_to_current();
  3499. setup_for_endstop_move();
  3500. home_xy();
  3501. int8_t verbosity_level = 0;
  3502. if (code_seen('V')) {
  3503. // Just 'V' without a number counts as V1.
  3504. char c = strchr_pointer[1];
  3505. verbosity_level = (c == ' ' || c == '\t' || c == 0) ? 1 : code_value_short();
  3506. }
  3507. bool success = scan_bed_induction_points(verbosity_level);
  3508. clean_up_after_endstop_move();
  3509. // Print head up.
  3510. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3511. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS],current_position[Z_AXIS] , current_position[E_AXIS], homing_feedrate[Z_AXIS]/40, active_extruder);
  3512. st_synchronize();
  3513. lcd_update_enable(true);
  3514. break;
  3515. }
  3516. #endif
  3517. // M48 Z-Probe repeatability measurement function.
  3518. //
  3519. // Usage: M48 <n #_samples> <X X_position_for_samples> <Y Y_position_for_samples> <V Verbose_Level> <L legs_of_movement_prior_to_doing_probe>
  3520. //
  3521. // This function assumes the bed has been homed. Specificaly, that a G28 command
  3522. // as been issued prior to invoking the M48 Z-Probe repeatability measurement function.
  3523. // Any information generated by a prior G29 Bed leveling command will be lost and need to be
  3524. // regenerated.
  3525. //
  3526. // The number of samples will default to 10 if not specified. You can use upper or lower case
  3527. // letters for any of the options EXCEPT n. n must be in lower case because Marlin uses a capital
  3528. // N for its communication protocol and will get horribly confused if you send it a capital N.
  3529. //
  3530. #ifdef ENABLE_AUTO_BED_LEVELING
  3531. #ifdef Z_PROBE_REPEATABILITY_TEST
  3532. case 48: // M48 Z-Probe repeatability
  3533. {
  3534. #if Z_MIN_PIN == -1
  3535. #error "You must have a Z_MIN endstop in order to enable calculation of Z-Probe repeatability."
  3536. #endif
  3537. double sum=0.0;
  3538. double mean=0.0;
  3539. double sigma=0.0;
  3540. double sample_set[50];
  3541. int verbose_level=1, n=0, j, n_samples = 10, n_legs=0;
  3542. double X_current, Y_current, Z_current;
  3543. double X_probe_location, Y_probe_location, Z_start_location, ext_position;
  3544. if (code_seen('V') || code_seen('v')) {
  3545. verbose_level = code_value();
  3546. if (verbose_level<0 || verbose_level>4 ) {
  3547. SERIAL_PROTOCOLPGM("?Verbose Level not plausable.\n");
  3548. goto Sigma_Exit;
  3549. }
  3550. }
  3551. if (verbose_level > 0) {
  3552. SERIAL_PROTOCOLPGM("M48 Z-Probe Repeatability test. Version 2.00\n");
  3553. SERIAL_PROTOCOLPGM("Full support at: http://3dprintboard.com/forum.php\n");
  3554. }
  3555. if (code_seen('n')) {
  3556. n_samples = code_value();
  3557. if (n_samples<4 || n_samples>50 ) {
  3558. SERIAL_PROTOCOLPGM("?Specified sample size not plausable.\n");
  3559. goto Sigma_Exit;
  3560. }
  3561. }
  3562. X_current = X_probe_location = st_get_position_mm(X_AXIS);
  3563. Y_current = Y_probe_location = st_get_position_mm(Y_AXIS);
  3564. Z_current = st_get_position_mm(Z_AXIS);
  3565. Z_start_location = st_get_position_mm(Z_AXIS) + Z_RAISE_BEFORE_PROBING;
  3566. ext_position = st_get_position_mm(E_AXIS);
  3567. if (code_seen('X') || code_seen('x') ) {
  3568. X_probe_location = code_value() - X_PROBE_OFFSET_FROM_EXTRUDER;
  3569. if (X_probe_location<X_MIN_POS || X_probe_location>X_MAX_POS ) {
  3570. SERIAL_PROTOCOLPGM("?Specified X position out of range.\n");
  3571. goto Sigma_Exit;
  3572. }
  3573. }
  3574. if (code_seen('Y') || code_seen('y') ) {
  3575. Y_probe_location = code_value() - Y_PROBE_OFFSET_FROM_EXTRUDER;
  3576. if (Y_probe_location<Y_MIN_POS || Y_probe_location>Y_MAX_POS ) {
  3577. SERIAL_PROTOCOLPGM("?Specified Y position out of range.\n");
  3578. goto Sigma_Exit;
  3579. }
  3580. }
  3581. if (code_seen('L') || code_seen('l') ) {
  3582. n_legs = code_value();
  3583. if ( n_legs==1 )
  3584. n_legs = 2;
  3585. if ( n_legs<0 || n_legs>15 ) {
  3586. SERIAL_PROTOCOLPGM("?Specified number of legs in movement not plausable.\n");
  3587. goto Sigma_Exit;
  3588. }
  3589. }
  3590. //
  3591. // Do all the preliminary setup work. First raise the probe.
  3592. //
  3593. st_synchronize();
  3594. plan_bed_level_matrix.set_to_identity();
  3595. plan_buffer_line( X_current, Y_current, Z_start_location,
  3596. ext_position,
  3597. homing_feedrate[Z_AXIS]/60,
  3598. active_extruder);
  3599. st_synchronize();
  3600. //
  3601. // Now get everything to the specified probe point So we can safely do a probe to
  3602. // get us close to the bed. If the Z-Axis is far from the bed, we don't want to
  3603. // use that as a starting point for each probe.
  3604. //
  3605. if (verbose_level > 2)
  3606. SERIAL_PROTOCOL("Positioning probe for the test.\n");
  3607. plan_buffer_line( X_probe_location, Y_probe_location, Z_start_location,
  3608. ext_position,
  3609. homing_feedrate[X_AXIS]/60,
  3610. active_extruder);
  3611. st_synchronize();
  3612. current_position[X_AXIS] = X_current = st_get_position_mm(X_AXIS);
  3613. current_position[Y_AXIS] = Y_current = st_get_position_mm(Y_AXIS);
  3614. current_position[Z_AXIS] = Z_current = st_get_position_mm(Z_AXIS);
  3615. current_position[E_AXIS] = ext_position = st_get_position_mm(E_AXIS);
  3616. //
  3617. // OK, do the inital probe to get us close to the bed.
  3618. // Then retrace the right amount and use that in subsequent probes
  3619. //
  3620. setup_for_endstop_move();
  3621. run_z_probe();
  3622. current_position[Z_AXIS] = Z_current = st_get_position_mm(Z_AXIS);
  3623. Z_start_location = st_get_position_mm(Z_AXIS) + Z_RAISE_BEFORE_PROBING;
  3624. plan_buffer_line( X_probe_location, Y_probe_location, Z_start_location,
  3625. ext_position,
  3626. homing_feedrate[X_AXIS]/60,
  3627. active_extruder);
  3628. st_synchronize();
  3629. current_position[Z_AXIS] = Z_current = st_get_position_mm(Z_AXIS);
  3630. for( n=0; n<n_samples; n++) {
  3631. do_blocking_move_to( X_probe_location, Y_probe_location, Z_start_location); // Make sure we are at the probe location
  3632. if ( n_legs) {
  3633. double radius=0.0, theta=0.0, x_sweep, y_sweep;
  3634. int rotational_direction, l;
  3635. rotational_direction = (unsigned long) millis() & 0x0001; // clockwise or counter clockwise
  3636. radius = (unsigned long) millis() % (long) (X_MAX_LENGTH/4); // limit how far out to go
  3637. theta = (float) ((unsigned long) millis() % (long) 360) / (360./(2*3.1415926)); // turn into radians
  3638. //SERIAL_ECHOPAIR("starting radius: ",radius);
  3639. //SERIAL_ECHOPAIR(" theta: ",theta);
  3640. //SERIAL_ECHOPAIR(" direction: ",rotational_direction);
  3641. //SERIAL_PROTOCOLLNPGM("");
  3642. for( l=0; l<n_legs-1; l++) {
  3643. if (rotational_direction==1)
  3644. theta += (float) ((unsigned long) millis() % (long) 20) / (360.0/(2*3.1415926)); // turn into radians
  3645. else
  3646. theta -= (float) ((unsigned long) millis() % (long) 20) / (360.0/(2*3.1415926)); // turn into radians
  3647. radius += (float) ( ((long) ((unsigned long) millis() % (long) 10)) - 5);
  3648. if ( radius<0.0 )
  3649. radius = -radius;
  3650. X_current = X_probe_location + cos(theta) * radius;
  3651. Y_current = Y_probe_location + sin(theta) * radius;
  3652. if ( X_current<X_MIN_POS) // Make sure our X & Y are sane
  3653. X_current = X_MIN_POS;
  3654. if ( X_current>X_MAX_POS)
  3655. X_current = X_MAX_POS;
  3656. if ( Y_current<Y_MIN_POS) // Make sure our X & Y are sane
  3657. Y_current = Y_MIN_POS;
  3658. if ( Y_current>Y_MAX_POS)
  3659. Y_current = Y_MAX_POS;
  3660. if (verbose_level>3 ) {
  3661. SERIAL_ECHOPAIR("x: ", X_current);
  3662. SERIAL_ECHOPAIR("y: ", Y_current);
  3663. SERIAL_PROTOCOLLNPGM("");
  3664. }
  3665. do_blocking_move_to( X_current, Y_current, Z_current );
  3666. }
  3667. do_blocking_move_to( X_probe_location, Y_probe_location, Z_start_location); // Go back to the probe location
  3668. }
  3669. setup_for_endstop_move();
  3670. run_z_probe();
  3671. sample_set[n] = current_position[Z_AXIS];
  3672. //
  3673. // Get the current mean for the data points we have so far
  3674. //
  3675. sum=0.0;
  3676. for( j=0; j<=n; j++) {
  3677. sum = sum + sample_set[j];
  3678. }
  3679. mean = sum / (double (n+1));
  3680. //
  3681. // Now, use that mean to calculate the standard deviation for the
  3682. // data points we have so far
  3683. //
  3684. sum=0.0;
  3685. for( j=0; j<=n; j++) {
  3686. sum = sum + (sample_set[j]-mean) * (sample_set[j]-mean);
  3687. }
  3688. sigma = sqrt( sum / (double (n+1)) );
  3689. if (verbose_level > 1) {
  3690. SERIAL_PROTOCOL(n+1);
  3691. SERIAL_PROTOCOL(" of ");
  3692. SERIAL_PROTOCOL(n_samples);
  3693. SERIAL_PROTOCOLPGM(" z: ");
  3694. SERIAL_PROTOCOL_F(current_position[Z_AXIS], 6);
  3695. }
  3696. if (verbose_level > 2) {
  3697. SERIAL_PROTOCOL(" mean: ");
  3698. SERIAL_PROTOCOL_F(mean,6);
  3699. SERIAL_PROTOCOL(" sigma: ");
  3700. SERIAL_PROTOCOL_F(sigma,6);
  3701. }
  3702. if (verbose_level > 0)
  3703. SERIAL_PROTOCOLPGM("\n");
  3704. plan_buffer_line( X_probe_location, Y_probe_location, Z_start_location,
  3705. current_position[E_AXIS], homing_feedrate[Z_AXIS]/60, active_extruder);
  3706. st_synchronize();
  3707. }
  3708. delay(1000);
  3709. clean_up_after_endstop_move();
  3710. // enable_endstops(true);
  3711. if (verbose_level > 0) {
  3712. SERIAL_PROTOCOLPGM("Mean: ");
  3713. SERIAL_PROTOCOL_F(mean, 6);
  3714. SERIAL_PROTOCOLPGM("\n");
  3715. }
  3716. SERIAL_PROTOCOLPGM("Standard Deviation: ");
  3717. SERIAL_PROTOCOL_F(sigma, 6);
  3718. SERIAL_PROTOCOLPGM("\n\n");
  3719. Sigma_Exit:
  3720. break;
  3721. }
  3722. #endif // Z_PROBE_REPEATABILITY_TEST
  3723. #endif // ENABLE_AUTO_BED_LEVELING
  3724. case 104: // M104
  3725. if(setTargetedHotend(104)){
  3726. break;
  3727. }
  3728. if (code_seen('S')) setTargetHotend(code_value(), tmp_extruder);
  3729. setWatch();
  3730. break;
  3731. case 112: // M112 -Emergency Stop
  3732. kill("", 3);
  3733. break;
  3734. case 140: // M140 set bed temp
  3735. if (code_seen('S')) setTargetBed(code_value());
  3736. break;
  3737. case 105 : // M105
  3738. if(setTargetedHotend(105)){
  3739. break;
  3740. }
  3741. #if defined(TEMP_0_PIN) && TEMP_0_PIN > -1
  3742. SERIAL_PROTOCOLPGM("ok T:");
  3743. SERIAL_PROTOCOL_F(degHotend(tmp_extruder),1);
  3744. SERIAL_PROTOCOLPGM(" /");
  3745. SERIAL_PROTOCOL_F(degTargetHotend(tmp_extruder),1);
  3746. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  3747. SERIAL_PROTOCOLPGM(" B:");
  3748. SERIAL_PROTOCOL_F(degBed(),1);
  3749. SERIAL_PROTOCOLPGM(" /");
  3750. SERIAL_PROTOCOL_F(degTargetBed(),1);
  3751. #endif //TEMP_BED_PIN
  3752. for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) {
  3753. SERIAL_PROTOCOLPGM(" T");
  3754. SERIAL_PROTOCOL(cur_extruder);
  3755. SERIAL_PROTOCOLPGM(":");
  3756. SERIAL_PROTOCOL_F(degHotend(cur_extruder),1);
  3757. SERIAL_PROTOCOLPGM(" /");
  3758. SERIAL_PROTOCOL_F(degTargetHotend(cur_extruder),1);
  3759. }
  3760. #else
  3761. SERIAL_ERROR_START;
  3762. SERIAL_ERRORLNRPGM(MSG_ERR_NO_THERMISTORS);
  3763. #endif
  3764. SERIAL_PROTOCOLPGM(" @:");
  3765. #ifdef EXTRUDER_WATTS
  3766. SERIAL_PROTOCOL((EXTRUDER_WATTS * getHeaterPower(tmp_extruder))/127);
  3767. SERIAL_PROTOCOLPGM("W");
  3768. #else
  3769. SERIAL_PROTOCOL(getHeaterPower(tmp_extruder));
  3770. #endif
  3771. SERIAL_PROTOCOLPGM(" B@:");
  3772. #ifdef BED_WATTS
  3773. SERIAL_PROTOCOL((BED_WATTS * getHeaterPower(-1))/127);
  3774. SERIAL_PROTOCOLPGM("W");
  3775. #else
  3776. SERIAL_PROTOCOL(getHeaterPower(-1));
  3777. #endif
  3778. #ifdef PINDA_THERMISTOR
  3779. SERIAL_PROTOCOLPGM(" P:");
  3780. SERIAL_PROTOCOL_F(current_temperature_pinda,1);
  3781. #endif //PINDA_THERMISTOR
  3782. #ifdef AMBIENT_THERMISTOR
  3783. SERIAL_PROTOCOLPGM(" A:");
  3784. SERIAL_PROTOCOL_F(current_temperature_ambient,1);
  3785. #endif //AMBIENT_THERMISTOR
  3786. #ifdef SHOW_TEMP_ADC_VALUES
  3787. {float raw = 0.0;
  3788. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  3789. SERIAL_PROTOCOLPGM(" ADC B:");
  3790. SERIAL_PROTOCOL_F(degBed(),1);
  3791. SERIAL_PROTOCOLPGM("C->");
  3792. raw = rawBedTemp();
  3793. SERIAL_PROTOCOL_F(raw/OVERSAMPLENR,5);
  3794. SERIAL_PROTOCOLPGM(" Rb->");
  3795. SERIAL_PROTOCOL_F(100 * (1 + (PtA * (raw/OVERSAMPLENR)) + (PtB * sq((raw/OVERSAMPLENR)))), 5);
  3796. SERIAL_PROTOCOLPGM(" Rxb->");
  3797. SERIAL_PROTOCOL_F(raw, 5);
  3798. #endif
  3799. for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) {
  3800. SERIAL_PROTOCOLPGM(" T");
  3801. SERIAL_PROTOCOL(cur_extruder);
  3802. SERIAL_PROTOCOLPGM(":");
  3803. SERIAL_PROTOCOL_F(degHotend(cur_extruder),1);
  3804. SERIAL_PROTOCOLPGM("C->");
  3805. raw = rawHotendTemp(cur_extruder);
  3806. SERIAL_PROTOCOL_F(raw/OVERSAMPLENR,5);
  3807. SERIAL_PROTOCOLPGM(" Rt");
  3808. SERIAL_PROTOCOL(cur_extruder);
  3809. SERIAL_PROTOCOLPGM("->");
  3810. SERIAL_PROTOCOL_F(100 * (1 + (PtA * (raw/OVERSAMPLENR)) + (PtB * sq((raw/OVERSAMPLENR)))), 5);
  3811. SERIAL_PROTOCOLPGM(" Rx");
  3812. SERIAL_PROTOCOL(cur_extruder);
  3813. SERIAL_PROTOCOLPGM("->");
  3814. SERIAL_PROTOCOL_F(raw, 5);
  3815. }}
  3816. #endif
  3817. SERIAL_PROTOCOLLN("");
  3818. KEEPALIVE_STATE(NOT_BUSY);
  3819. return;
  3820. break;
  3821. case 109:
  3822. {// M109 - Wait for extruder heater to reach target.
  3823. if(setTargetedHotend(109)){
  3824. break;
  3825. }
  3826. LCD_MESSAGERPGM(MSG_HEATING);
  3827. heating_status = 1;
  3828. if (farm_mode) { prusa_statistics(1); };
  3829. #ifdef AUTOTEMP
  3830. autotemp_enabled=false;
  3831. #endif
  3832. if (code_seen('S')) {
  3833. setTargetHotend(code_value(), tmp_extruder);
  3834. CooldownNoWait = true;
  3835. } else if (code_seen('R')) {
  3836. setTargetHotend(code_value(), tmp_extruder);
  3837. CooldownNoWait = false;
  3838. }
  3839. #ifdef AUTOTEMP
  3840. if (code_seen('S')) autotemp_min=code_value();
  3841. if (code_seen('B')) autotemp_max=code_value();
  3842. if (code_seen('F'))
  3843. {
  3844. autotemp_factor=code_value();
  3845. autotemp_enabled=true;
  3846. }
  3847. #endif
  3848. setWatch();
  3849. codenum = millis();
  3850. /* See if we are heating up or cooling down */
  3851. target_direction = isHeatingHotend(tmp_extruder); // true if heating, false if cooling
  3852. KEEPALIVE_STATE(NOT_BUSY);
  3853. cancel_heatup = false;
  3854. wait_for_heater(codenum); //loops until target temperature is reached
  3855. LCD_MESSAGERPGM(MSG_HEATING_COMPLETE);
  3856. KEEPALIVE_STATE(IN_HANDLER);
  3857. heating_status = 2;
  3858. if (farm_mode) { prusa_statistics(2); };
  3859. //starttime=millis();
  3860. previous_millis_cmd = millis();
  3861. }
  3862. break;
  3863. case 190: // M190 - Wait for bed heater to reach target.
  3864. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  3865. LCD_MESSAGERPGM(MSG_BED_HEATING);
  3866. heating_status = 3;
  3867. if (farm_mode) { prusa_statistics(1); };
  3868. if (code_seen('S'))
  3869. {
  3870. setTargetBed(code_value());
  3871. CooldownNoWait = true;
  3872. }
  3873. else if (code_seen('R'))
  3874. {
  3875. setTargetBed(code_value());
  3876. CooldownNoWait = false;
  3877. }
  3878. codenum = millis();
  3879. cancel_heatup = false;
  3880. target_direction = isHeatingBed(); // true if heating, false if cooling
  3881. KEEPALIVE_STATE(NOT_BUSY);
  3882. while ( (target_direction)&&(!cancel_heatup) ? (isHeatingBed()) : (isCoolingBed()&&(CooldownNoWait==false)) )
  3883. {
  3884. if(( millis() - codenum) > 1000 ) //Print Temp Reading every 1 second while heating up.
  3885. {
  3886. if (!farm_mode) {
  3887. float tt = degHotend(active_extruder);
  3888. SERIAL_PROTOCOLPGM("T:");
  3889. SERIAL_PROTOCOL(tt);
  3890. SERIAL_PROTOCOLPGM(" E:");
  3891. SERIAL_PROTOCOL((int)active_extruder);
  3892. SERIAL_PROTOCOLPGM(" B:");
  3893. SERIAL_PROTOCOL_F(degBed(), 1);
  3894. SERIAL_PROTOCOLLN("");
  3895. }
  3896. codenum = millis();
  3897. }
  3898. manage_heater();
  3899. manage_inactivity();
  3900. lcd_update();
  3901. }
  3902. LCD_MESSAGERPGM(MSG_BED_DONE);
  3903. KEEPALIVE_STATE(IN_HANDLER);
  3904. heating_status = 4;
  3905. previous_millis_cmd = millis();
  3906. #endif
  3907. break;
  3908. #if defined(FAN_PIN) && FAN_PIN > -1
  3909. case 106: //M106 Fan On
  3910. if (code_seen('S')){
  3911. fanSpeed=constrain(code_value(),0,255);
  3912. }
  3913. else {
  3914. fanSpeed=255;
  3915. }
  3916. break;
  3917. case 107: //M107 Fan Off
  3918. fanSpeed = 0;
  3919. break;
  3920. #endif //FAN_PIN
  3921. #if defined(PS_ON_PIN) && PS_ON_PIN > -1
  3922. case 80: // M80 - Turn on Power Supply
  3923. SET_OUTPUT(PS_ON_PIN); //GND
  3924. WRITE(PS_ON_PIN, PS_ON_AWAKE);
  3925. // If you have a switch on suicide pin, this is useful
  3926. // if you want to start another print with suicide feature after
  3927. // a print without suicide...
  3928. #if defined SUICIDE_PIN && SUICIDE_PIN > -1
  3929. SET_OUTPUT(SUICIDE_PIN);
  3930. WRITE(SUICIDE_PIN, HIGH);
  3931. #endif
  3932. #ifdef ULTIPANEL
  3933. powersupply = true;
  3934. LCD_MESSAGERPGM(WELCOME_MSG);
  3935. lcd_update();
  3936. #endif
  3937. break;
  3938. #endif
  3939. case 81: // M81 - Turn off Power Supply
  3940. disable_heater();
  3941. st_synchronize();
  3942. disable_e0();
  3943. disable_e1();
  3944. disable_e2();
  3945. finishAndDisableSteppers();
  3946. fanSpeed = 0;
  3947. delay(1000); // Wait a little before to switch off
  3948. #if defined(SUICIDE_PIN) && SUICIDE_PIN > -1
  3949. st_synchronize();
  3950. suicide();
  3951. #elif defined(PS_ON_PIN) && PS_ON_PIN > -1
  3952. SET_OUTPUT(PS_ON_PIN);
  3953. WRITE(PS_ON_PIN, PS_ON_ASLEEP);
  3954. #endif
  3955. #ifdef ULTIPANEL
  3956. powersupply = false;
  3957. LCD_MESSAGERPGM(CAT4(CUSTOM_MENDEL_NAME,PSTR(" "),MSG_OFF,PSTR("."))); //!!
  3958. /*
  3959. MACHNAME = "Prusa i3"
  3960. MSGOFF = "Vypnuto"
  3961. "Prusai3"" ""vypnuto""."
  3962. "Prusa i3"" "MSG_ALL[lang_selected][50]"."
  3963. */
  3964. lcd_update();
  3965. #endif
  3966. break;
  3967. case 82:
  3968. axis_relative_modes[3] = false;
  3969. break;
  3970. case 83:
  3971. axis_relative_modes[3] = true;
  3972. break;
  3973. case 18: //compatibility
  3974. case 84: // M84
  3975. if(code_seen('S')){
  3976. stepper_inactive_time = code_value() * 1000;
  3977. }
  3978. else
  3979. {
  3980. bool all_axis = !((code_seen(axis_codes[X_AXIS])) || (code_seen(axis_codes[Y_AXIS])) || (code_seen(axis_codes[Z_AXIS]))|| (code_seen(axis_codes[E_AXIS])));
  3981. if(all_axis)
  3982. {
  3983. st_synchronize();
  3984. disable_e0();
  3985. disable_e1();
  3986. disable_e2();
  3987. finishAndDisableSteppers();
  3988. }
  3989. else
  3990. {
  3991. st_synchronize();
  3992. if (code_seen('X')) disable_x();
  3993. if (code_seen('Y')) disable_y();
  3994. if (code_seen('Z')) disable_z();
  3995. #if ((E0_ENABLE_PIN != X_ENABLE_PIN) && (E1_ENABLE_PIN != Y_ENABLE_PIN)) // Only enable on boards that have seperate ENABLE_PINS
  3996. if (code_seen('E')) {
  3997. disable_e0();
  3998. disable_e1();
  3999. disable_e2();
  4000. }
  4001. #endif
  4002. }
  4003. }
  4004. snmm_filaments_used = 0;
  4005. break;
  4006. case 85: // M85
  4007. if(code_seen('S')) {
  4008. max_inactive_time = code_value() * 1000;
  4009. }
  4010. break;
  4011. case 92: // M92
  4012. for(int8_t i=0; i < NUM_AXIS; i++)
  4013. {
  4014. if(code_seen(axis_codes[i]))
  4015. {
  4016. if(i == 3) { // E
  4017. float value = code_value();
  4018. if(value < 20.0) {
  4019. float factor = axis_steps_per_unit[i] / value; // increase e constants if M92 E14 is given for netfab.
  4020. max_jerk[E_AXIS] *= factor;
  4021. max_feedrate[i] *= factor;
  4022. axis_steps_per_sqr_second[i] *= factor;
  4023. }
  4024. axis_steps_per_unit[i] = value;
  4025. }
  4026. else {
  4027. axis_steps_per_unit[i] = code_value();
  4028. }
  4029. }
  4030. }
  4031. break;
  4032. #ifdef HOST_KEEPALIVE_FEATURE
  4033. case 113: // M113 - Get or set Host Keepalive interval
  4034. if (code_seen('S')) {
  4035. host_keepalive_interval = (uint8_t)code_value_short();
  4036. // NOMORE(host_keepalive_interval, 60);
  4037. }
  4038. else {
  4039. SERIAL_ECHO_START;
  4040. SERIAL_ECHOPAIR("M113 S", (unsigned long)host_keepalive_interval);
  4041. SERIAL_PROTOCOLLN("");
  4042. }
  4043. break;
  4044. #endif
  4045. case 115: // M115
  4046. if (code_seen('V')) {
  4047. // Report the Prusa version number.
  4048. SERIAL_PROTOCOLLNRPGM(FW_VERSION_STR_P());
  4049. } else if (code_seen('U')) {
  4050. // Check the firmware version provided. If the firmware version provided by the U code is higher than the currently running firmware,
  4051. // pause the print and ask the user to upgrade the firmware.
  4052. show_upgrade_dialog_if_version_newer(++ strchr_pointer);
  4053. } else {
  4054. SERIAL_PROTOCOLRPGM(MSG_M115_REPORT);
  4055. }
  4056. break;
  4057. /* case 117: // M117 display message
  4058. starpos = (strchr(strchr_pointer + 5,'*'));
  4059. if(starpos!=NULL)
  4060. *(starpos)='\0';
  4061. lcd_setstatus(strchr_pointer + 5);
  4062. break;*/
  4063. case 114: // M114
  4064. SERIAL_PROTOCOLPGM("X:");
  4065. SERIAL_PROTOCOL(current_position[X_AXIS]);
  4066. SERIAL_PROTOCOLPGM(" Y:");
  4067. SERIAL_PROTOCOL(current_position[Y_AXIS]);
  4068. SERIAL_PROTOCOLPGM(" Z:");
  4069. SERIAL_PROTOCOL(current_position[Z_AXIS]);
  4070. SERIAL_PROTOCOLPGM(" E:");
  4071. SERIAL_PROTOCOL(current_position[E_AXIS]);
  4072. SERIAL_PROTOCOLRPGM(MSG_COUNT_X);
  4073. SERIAL_PROTOCOL(float(st_get_position(X_AXIS))/axis_steps_per_unit[X_AXIS]);
  4074. SERIAL_PROTOCOLPGM(" Y:");
  4075. SERIAL_PROTOCOL(float(st_get_position(Y_AXIS))/axis_steps_per_unit[Y_AXIS]);
  4076. SERIAL_PROTOCOLPGM(" Z:");
  4077. SERIAL_PROTOCOL(float(st_get_position(Z_AXIS))/axis_steps_per_unit[Z_AXIS]);
  4078. SERIAL_PROTOCOLPGM(" E:");
  4079. SERIAL_PROTOCOL(float(st_get_position(E_AXIS))/axis_steps_per_unit[E_AXIS]);
  4080. SERIAL_PROTOCOLLN("");
  4081. break;
  4082. case 120: // M120
  4083. enable_endstops(false) ;
  4084. break;
  4085. case 121: // M121
  4086. enable_endstops(true) ;
  4087. break;
  4088. case 119: // M119
  4089. SERIAL_PROTOCOLRPGM(MSG_M119_REPORT);
  4090. SERIAL_PROTOCOLLN("");
  4091. #if defined(X_MIN_PIN) && X_MIN_PIN > -1
  4092. SERIAL_PROTOCOLRPGM(MSG_X_MIN);
  4093. if(READ(X_MIN_PIN)^X_MIN_ENDSTOP_INVERTING){
  4094. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_HIT);
  4095. }else{
  4096. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_OPEN);
  4097. }
  4098. SERIAL_PROTOCOLLN("");
  4099. #endif
  4100. #if defined(X_MAX_PIN) && X_MAX_PIN > -1
  4101. SERIAL_PROTOCOLRPGM(MSG_X_MAX);
  4102. if(READ(X_MAX_PIN)^X_MAX_ENDSTOP_INVERTING){
  4103. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_HIT);
  4104. }else{
  4105. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_OPEN);
  4106. }
  4107. SERIAL_PROTOCOLLN("");
  4108. #endif
  4109. #if defined(Y_MIN_PIN) && Y_MIN_PIN > -1
  4110. SERIAL_PROTOCOLRPGM(MSG_Y_MIN);
  4111. if(READ(Y_MIN_PIN)^Y_MIN_ENDSTOP_INVERTING){
  4112. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_HIT);
  4113. }else{
  4114. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_OPEN);
  4115. }
  4116. SERIAL_PROTOCOLLN("");
  4117. #endif
  4118. #if defined(Y_MAX_PIN) && Y_MAX_PIN > -1
  4119. SERIAL_PROTOCOLRPGM(MSG_Y_MAX);
  4120. if(READ(Y_MAX_PIN)^Y_MAX_ENDSTOP_INVERTING){
  4121. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_HIT);
  4122. }else{
  4123. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_OPEN);
  4124. }
  4125. SERIAL_PROTOCOLLN("");
  4126. #endif
  4127. #if defined(Z_MIN_PIN) && Z_MIN_PIN > -1
  4128. SERIAL_PROTOCOLRPGM(MSG_Z_MIN);
  4129. if(READ(Z_MIN_PIN)^Z_MIN_ENDSTOP_INVERTING){
  4130. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_HIT);
  4131. }else{
  4132. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_OPEN);
  4133. }
  4134. SERIAL_PROTOCOLLN("");
  4135. #endif
  4136. #if defined(Z_MAX_PIN) && Z_MAX_PIN > -1
  4137. SERIAL_PROTOCOLRPGM(MSG_Z_MAX);
  4138. if(READ(Z_MAX_PIN)^Z_MAX_ENDSTOP_INVERTING){
  4139. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_HIT);
  4140. }else{
  4141. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_OPEN);
  4142. }
  4143. SERIAL_PROTOCOLLN("");
  4144. #endif
  4145. break;
  4146. //TODO: update for all axis, use for loop
  4147. #ifdef BLINKM
  4148. case 150: // M150
  4149. {
  4150. byte red;
  4151. byte grn;
  4152. byte blu;
  4153. if(code_seen('R')) red = code_value();
  4154. if(code_seen('U')) grn = code_value();
  4155. if(code_seen('B')) blu = code_value();
  4156. SendColors(red,grn,blu);
  4157. }
  4158. break;
  4159. #endif //BLINKM
  4160. case 200: // M200 D<millimeters> set filament diameter and set E axis units to cubic millimeters (use S0 to set back to millimeters).
  4161. {
  4162. tmp_extruder = active_extruder;
  4163. if(code_seen('T')) {
  4164. tmp_extruder = code_value();
  4165. if(tmp_extruder >= EXTRUDERS) {
  4166. SERIAL_ECHO_START;
  4167. SERIAL_ECHO(MSG_M200_INVALID_EXTRUDER);
  4168. break;
  4169. }
  4170. }
  4171. float area = .0;
  4172. if(code_seen('D')) {
  4173. float diameter = (float)code_value();
  4174. if (diameter == 0.0) {
  4175. // setting any extruder filament size disables volumetric on the assumption that
  4176. // slicers either generate in extruder values as cubic mm or as as filament feeds
  4177. // for all extruders
  4178. volumetric_enabled = false;
  4179. } else {
  4180. filament_size[tmp_extruder] = (float)code_value();
  4181. // make sure all extruders have some sane value for the filament size
  4182. filament_size[0] = (filament_size[0] == 0.0 ? DEFAULT_NOMINAL_FILAMENT_DIA : filament_size[0]);
  4183. #if EXTRUDERS > 1
  4184. filament_size[1] = (filament_size[1] == 0.0 ? DEFAULT_NOMINAL_FILAMENT_DIA : filament_size[1]);
  4185. #if EXTRUDERS > 2
  4186. filament_size[2] = (filament_size[2] == 0.0 ? DEFAULT_NOMINAL_FILAMENT_DIA : filament_size[2]);
  4187. #endif
  4188. #endif
  4189. volumetric_enabled = true;
  4190. }
  4191. } else {
  4192. //reserved for setting filament diameter via UFID or filament measuring device
  4193. break;
  4194. }
  4195. calculate_volumetric_multipliers();
  4196. }
  4197. break;
  4198. case 201: // M201
  4199. for(int8_t i=0; i < NUM_AXIS; i++)
  4200. {
  4201. if(code_seen(axis_codes[i]))
  4202. {
  4203. max_acceleration_units_per_sq_second[i] = code_value();
  4204. }
  4205. }
  4206. // steps per sq second need to be updated to agree with the units per sq second (as they are what is used in the planner)
  4207. reset_acceleration_rates();
  4208. break;
  4209. #if 0 // Not used for Sprinter/grbl gen6
  4210. case 202: // M202
  4211. for(int8_t i=0; i < NUM_AXIS; i++) {
  4212. if(code_seen(axis_codes[i])) axis_travel_steps_per_sqr_second[i] = code_value() * axis_steps_per_unit[i];
  4213. }
  4214. break;
  4215. #endif
  4216. case 203: // M203 max feedrate mm/sec
  4217. for(int8_t i=0; i < NUM_AXIS; i++) {
  4218. if(code_seen(axis_codes[i])) max_feedrate[i] = code_value();
  4219. }
  4220. break;
  4221. case 204: // M204 acclereration S normal moves T filmanent only moves
  4222. {
  4223. if(code_seen('S')) acceleration = code_value() ;
  4224. if(code_seen('T')) retract_acceleration = code_value() ;
  4225. }
  4226. break;
  4227. case 205: //M205 advanced settings: minimum travel speed S=while printing T=travel only, B=minimum segment time X= maximum xy jerk, Z=maximum Z jerk
  4228. {
  4229. if(code_seen('S')) minimumfeedrate = code_value();
  4230. if(code_seen('T')) mintravelfeedrate = code_value();
  4231. if(code_seen('B')) minsegmenttime = code_value() ;
  4232. if(code_seen('X')) max_jerk[X_AXIS] = max_jerk[Y_AXIS] = code_value();
  4233. if(code_seen('Y')) max_jerk[Y_AXIS] = code_value();
  4234. if(code_seen('Z')) max_jerk[Z_AXIS] = code_value();
  4235. if(code_seen('E')) max_jerk[E_AXIS] = code_value();
  4236. }
  4237. break;
  4238. case 206: // M206 additional homing offset
  4239. for(int8_t i=0; i < 3; i++)
  4240. {
  4241. if(code_seen(axis_codes[i])) add_homing[i] = code_value();
  4242. }
  4243. break;
  4244. #ifdef FWRETRACT
  4245. case 207: //M207 - set retract length S[positive mm] F[feedrate mm/min] Z[additional zlift/hop]
  4246. {
  4247. if(code_seen('S'))
  4248. {
  4249. retract_length = code_value() ;
  4250. }
  4251. if(code_seen('F'))
  4252. {
  4253. retract_feedrate = code_value()/60 ;
  4254. }
  4255. if(code_seen('Z'))
  4256. {
  4257. retract_zlift = code_value() ;
  4258. }
  4259. }break;
  4260. case 208: // M208 - set retract recover length S[positive mm surplus to the M207 S*] F[feedrate mm/min]
  4261. {
  4262. if(code_seen('S'))
  4263. {
  4264. retract_recover_length = code_value() ;
  4265. }
  4266. if(code_seen('F'))
  4267. {
  4268. retract_recover_feedrate = code_value()/60 ;
  4269. }
  4270. }break;
  4271. case 209: // M209 - S<1=true/0=false> enable automatic retract detect if the slicer did not support G10/11: every normal extrude-only move will be classified as retract depending on the direction.
  4272. {
  4273. if(code_seen('S'))
  4274. {
  4275. int t= code_value() ;
  4276. switch(t)
  4277. {
  4278. case 0:
  4279. {
  4280. autoretract_enabled=false;
  4281. retracted[0]=false;
  4282. #if EXTRUDERS > 1
  4283. retracted[1]=false;
  4284. #endif
  4285. #if EXTRUDERS > 2
  4286. retracted[2]=false;
  4287. #endif
  4288. }break;
  4289. case 1:
  4290. {
  4291. autoretract_enabled=true;
  4292. retracted[0]=false;
  4293. #if EXTRUDERS > 1
  4294. retracted[1]=false;
  4295. #endif
  4296. #if EXTRUDERS > 2
  4297. retracted[2]=false;
  4298. #endif
  4299. }break;
  4300. default:
  4301. SERIAL_ECHO_START;
  4302. SERIAL_ECHORPGM(MSG_UNKNOWN_COMMAND);
  4303. SERIAL_ECHO(CMDBUFFER_CURRENT_STRING);
  4304. SERIAL_ECHOLNPGM("\"(1)");
  4305. }
  4306. }
  4307. }break;
  4308. #endif // FWRETRACT
  4309. #if EXTRUDERS > 1
  4310. case 218: // M218 - set hotend offset (in mm), T<extruder_number> X<offset_on_X> Y<offset_on_Y>
  4311. {
  4312. if(setTargetedHotend(218)){
  4313. break;
  4314. }
  4315. if(code_seen('X'))
  4316. {
  4317. extruder_offset[X_AXIS][tmp_extruder] = code_value();
  4318. }
  4319. if(code_seen('Y'))
  4320. {
  4321. extruder_offset[Y_AXIS][tmp_extruder] = code_value();
  4322. }
  4323. SERIAL_ECHO_START;
  4324. SERIAL_ECHORPGM(MSG_HOTEND_OFFSET);
  4325. for(tmp_extruder = 0; tmp_extruder < EXTRUDERS; tmp_extruder++)
  4326. {
  4327. SERIAL_ECHO(" ");
  4328. SERIAL_ECHO(extruder_offset[X_AXIS][tmp_extruder]);
  4329. SERIAL_ECHO(",");
  4330. SERIAL_ECHO(extruder_offset[Y_AXIS][tmp_extruder]);
  4331. }
  4332. SERIAL_ECHOLN("");
  4333. }break;
  4334. #endif
  4335. case 220: // M220 S<factor in percent>- set speed factor override percentage
  4336. {
  4337. if(code_seen('S'))
  4338. {
  4339. feedmultiply = code_value() ;
  4340. }
  4341. }
  4342. break;
  4343. case 221: // M221 S<factor in percent>- set extrude factor override percentage
  4344. {
  4345. if(code_seen('S'))
  4346. {
  4347. int tmp_code = code_value();
  4348. if (code_seen('T'))
  4349. {
  4350. if(setTargetedHotend(221)){
  4351. break;
  4352. }
  4353. extruder_multiply[tmp_extruder] = tmp_code;
  4354. }
  4355. else
  4356. {
  4357. extrudemultiply = tmp_code ;
  4358. }
  4359. }
  4360. }
  4361. break;
  4362. #ifndef _DISABLE_M42_M226
  4363. case 226: // M226 P<pin number> S<pin state>- Wait until the specified pin reaches the state required
  4364. {
  4365. if(code_seen('P')){
  4366. int pin_number = code_value(); // pin number
  4367. int pin_state = -1; // required pin state - default is inverted
  4368. if(code_seen('S')) pin_state = code_value(); // required pin state
  4369. if(pin_state >= -1 && pin_state <= 1){
  4370. for(int8_t i = 0; i < (int8_t)(sizeof(sensitive_pins)/sizeof(int)); i++)
  4371. {
  4372. if (sensitive_pins[i] == pin_number)
  4373. {
  4374. pin_number = -1;
  4375. break;
  4376. }
  4377. }
  4378. if (pin_number > -1)
  4379. {
  4380. int target = LOW;
  4381. st_synchronize();
  4382. pinMode(pin_number, INPUT);
  4383. switch(pin_state){
  4384. case 1:
  4385. target = HIGH;
  4386. break;
  4387. case 0:
  4388. target = LOW;
  4389. break;
  4390. case -1:
  4391. target = !digitalRead(pin_number);
  4392. break;
  4393. }
  4394. while(digitalRead(pin_number) != target){
  4395. manage_heater();
  4396. manage_inactivity();
  4397. lcd_update();
  4398. }
  4399. }
  4400. }
  4401. }
  4402. }
  4403. break;
  4404. #endif //_DISABLE_M42_M226
  4405. #if NUM_SERVOS > 0
  4406. case 280: // M280 - set servo position absolute. P: servo index, S: angle or microseconds
  4407. {
  4408. int servo_index = -1;
  4409. int servo_position = 0;
  4410. if (code_seen('P'))
  4411. servo_index = code_value();
  4412. if (code_seen('S')) {
  4413. servo_position = code_value();
  4414. if ((servo_index >= 0) && (servo_index < NUM_SERVOS)) {
  4415. #if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
  4416. servos[servo_index].attach(0);
  4417. #endif
  4418. servos[servo_index].write(servo_position);
  4419. #if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
  4420. delay(PROBE_SERVO_DEACTIVATION_DELAY);
  4421. servos[servo_index].detach();
  4422. #endif
  4423. }
  4424. else {
  4425. SERIAL_ECHO_START;
  4426. SERIAL_ECHO("Servo ");
  4427. SERIAL_ECHO(servo_index);
  4428. SERIAL_ECHOLN(" out of range");
  4429. }
  4430. }
  4431. else if (servo_index >= 0) {
  4432. SERIAL_PROTOCOL(MSG_OK);
  4433. SERIAL_PROTOCOL(" Servo ");
  4434. SERIAL_PROTOCOL(servo_index);
  4435. SERIAL_PROTOCOL(": ");
  4436. SERIAL_PROTOCOL(servos[servo_index].read());
  4437. SERIAL_PROTOCOLLN("");
  4438. }
  4439. }
  4440. break;
  4441. #endif // NUM_SERVOS > 0
  4442. #if (LARGE_FLASH == true && ( BEEPER > 0 || defined(ULTRALCD) || defined(LCD_USE_I2C_BUZZER)))
  4443. case 300: // M300
  4444. {
  4445. int beepS = code_seen('S') ? code_value() : 110;
  4446. int beepP = code_seen('P') ? code_value() : 1000;
  4447. if (beepS > 0)
  4448. {
  4449. #if BEEPER > 0
  4450. tone(BEEPER, beepS);
  4451. delay(beepP);
  4452. noTone(BEEPER);
  4453. #elif defined(ULTRALCD)
  4454. lcd_buzz(beepS, beepP);
  4455. #elif defined(LCD_USE_I2C_BUZZER)
  4456. lcd_buzz(beepP, beepS);
  4457. #endif
  4458. }
  4459. else
  4460. {
  4461. delay(beepP);
  4462. }
  4463. }
  4464. break;
  4465. #endif // M300
  4466. #ifdef PIDTEMP
  4467. case 301: // M301
  4468. {
  4469. if(code_seen('P')) Kp = code_value();
  4470. if(code_seen('I')) Ki = scalePID_i(code_value());
  4471. if(code_seen('D')) Kd = scalePID_d(code_value());
  4472. #ifdef PID_ADD_EXTRUSION_RATE
  4473. if(code_seen('C')) Kc = code_value();
  4474. #endif
  4475. updatePID();
  4476. SERIAL_PROTOCOLRPGM(MSG_OK);
  4477. SERIAL_PROTOCOL(" p:");
  4478. SERIAL_PROTOCOL(Kp);
  4479. SERIAL_PROTOCOL(" i:");
  4480. SERIAL_PROTOCOL(unscalePID_i(Ki));
  4481. SERIAL_PROTOCOL(" d:");
  4482. SERIAL_PROTOCOL(unscalePID_d(Kd));
  4483. #ifdef PID_ADD_EXTRUSION_RATE
  4484. SERIAL_PROTOCOL(" c:");
  4485. //Kc does not have scaling applied above, or in resetting defaults
  4486. SERIAL_PROTOCOL(Kc);
  4487. #endif
  4488. SERIAL_PROTOCOLLN("");
  4489. }
  4490. break;
  4491. #endif //PIDTEMP
  4492. #ifdef PIDTEMPBED
  4493. case 304: // M304
  4494. {
  4495. if(code_seen('P')) bedKp = code_value();
  4496. if(code_seen('I')) bedKi = scalePID_i(code_value());
  4497. if(code_seen('D')) bedKd = scalePID_d(code_value());
  4498. updatePID();
  4499. SERIAL_PROTOCOLRPGM(MSG_OK);
  4500. SERIAL_PROTOCOL(" p:");
  4501. SERIAL_PROTOCOL(bedKp);
  4502. SERIAL_PROTOCOL(" i:");
  4503. SERIAL_PROTOCOL(unscalePID_i(bedKi));
  4504. SERIAL_PROTOCOL(" d:");
  4505. SERIAL_PROTOCOL(unscalePID_d(bedKd));
  4506. SERIAL_PROTOCOLLN("");
  4507. }
  4508. break;
  4509. #endif //PIDTEMP
  4510. case 240: // M240 Triggers a camera by emulating a Canon RC-1 : http://www.doc-diy.net/photo/rc-1_hacked/
  4511. {
  4512. #ifdef CHDK
  4513. SET_OUTPUT(CHDK);
  4514. WRITE(CHDK, HIGH);
  4515. chdkHigh = millis();
  4516. chdkActive = true;
  4517. #else
  4518. #if defined(PHOTOGRAPH_PIN) && PHOTOGRAPH_PIN > -1
  4519. const uint8_t NUM_PULSES=16;
  4520. const float PULSE_LENGTH=0.01524;
  4521. for(int i=0; i < NUM_PULSES; i++) {
  4522. WRITE(PHOTOGRAPH_PIN, HIGH);
  4523. _delay_ms(PULSE_LENGTH);
  4524. WRITE(PHOTOGRAPH_PIN, LOW);
  4525. _delay_ms(PULSE_LENGTH);
  4526. }
  4527. delay(7.33);
  4528. for(int i=0; i < NUM_PULSES; i++) {
  4529. WRITE(PHOTOGRAPH_PIN, HIGH);
  4530. _delay_ms(PULSE_LENGTH);
  4531. WRITE(PHOTOGRAPH_PIN, LOW);
  4532. _delay_ms(PULSE_LENGTH);
  4533. }
  4534. #endif
  4535. #endif //chdk end if
  4536. }
  4537. break;
  4538. #ifdef DOGLCD
  4539. case 250: // M250 Set LCD contrast value: C<value> (value 0..63)
  4540. {
  4541. if (code_seen('C')) {
  4542. lcd_setcontrast( ((int)code_value())&63 );
  4543. }
  4544. SERIAL_PROTOCOLPGM("lcd contrast value: ");
  4545. SERIAL_PROTOCOL(lcd_contrast);
  4546. SERIAL_PROTOCOLLN("");
  4547. }
  4548. break;
  4549. #endif
  4550. #ifdef PREVENT_DANGEROUS_EXTRUDE
  4551. case 302: // allow cold extrudes, or set the minimum extrude temperature
  4552. {
  4553. float temp = .0;
  4554. if (code_seen('S')) temp=code_value();
  4555. set_extrude_min_temp(temp);
  4556. }
  4557. break;
  4558. #endif
  4559. case 303: // M303 PID autotune
  4560. {
  4561. float temp = 150.0;
  4562. int e=0;
  4563. int c=5;
  4564. if (code_seen('E')) e=code_value();
  4565. if (e<0)
  4566. temp=70;
  4567. if (code_seen('S')) temp=code_value();
  4568. if (code_seen('C')) c=code_value();
  4569. PID_autotune(temp, e, c);
  4570. }
  4571. break;
  4572. case 400: // M400 finish all moves
  4573. {
  4574. st_synchronize();
  4575. }
  4576. break;
  4577. #ifdef FILAMENT_SENSOR
  4578. case 404: //M404 Enter the nominal filament width (3mm, 1.75mm ) N<3.0> or display nominal filament width
  4579. {
  4580. #if (FILWIDTH_PIN > -1)
  4581. if(code_seen('N')) filament_width_nominal=code_value();
  4582. else{
  4583. SERIAL_PROTOCOLPGM("Filament dia (nominal mm):");
  4584. SERIAL_PROTOCOLLN(filament_width_nominal);
  4585. }
  4586. #endif
  4587. }
  4588. break;
  4589. case 405: //M405 Turn on filament sensor for control
  4590. {
  4591. if(code_seen('D')) meas_delay_cm=code_value();
  4592. if(meas_delay_cm> MAX_MEASUREMENT_DELAY)
  4593. meas_delay_cm = MAX_MEASUREMENT_DELAY;
  4594. if(delay_index2 == -1) //initialize the ring buffer if it has not been done since startup
  4595. {
  4596. int temp_ratio = widthFil_to_size_ratio();
  4597. for (delay_index1=0; delay_index1<(MAX_MEASUREMENT_DELAY+1); ++delay_index1 ){
  4598. measurement_delay[delay_index1]=temp_ratio-100; //subtract 100 to scale within a signed byte
  4599. }
  4600. delay_index1=0;
  4601. delay_index2=0;
  4602. }
  4603. filament_sensor = true ;
  4604. //SERIAL_PROTOCOLPGM("Filament dia (measured mm):");
  4605. //SERIAL_PROTOCOL(filament_width_meas);
  4606. //SERIAL_PROTOCOLPGM("Extrusion ratio(%):");
  4607. //SERIAL_PROTOCOL(extrudemultiply);
  4608. }
  4609. break;
  4610. case 406: //M406 Turn off filament sensor for control
  4611. {
  4612. filament_sensor = false ;
  4613. }
  4614. break;
  4615. case 407: //M407 Display measured filament diameter
  4616. {
  4617. SERIAL_PROTOCOLPGM("Filament dia (measured mm):");
  4618. SERIAL_PROTOCOLLN(filament_width_meas);
  4619. }
  4620. break;
  4621. #endif
  4622. case 500: // M500 Store settings in EEPROM
  4623. {
  4624. Config_StoreSettings(EEPROM_OFFSET);
  4625. }
  4626. break;
  4627. case 501: // M501 Read settings from EEPROM
  4628. {
  4629. Config_RetrieveSettings(EEPROM_OFFSET);
  4630. }
  4631. break;
  4632. case 502: // M502 Revert to default settings
  4633. {
  4634. Config_ResetDefault();
  4635. }
  4636. break;
  4637. case 503: // M503 print settings currently in memory
  4638. {
  4639. Config_PrintSettings();
  4640. }
  4641. break;
  4642. case 509: //M509 Force language selection
  4643. {
  4644. lcd_force_language_selection();
  4645. SERIAL_ECHO_START;
  4646. SERIAL_PROTOCOLPGM(("LANG SEL FORCED"));
  4647. }
  4648. break;
  4649. #ifdef ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED
  4650. case 540:
  4651. {
  4652. if(code_seen('S')) abort_on_endstop_hit = code_value() > 0;
  4653. }
  4654. break;
  4655. #endif
  4656. #ifdef CUSTOM_M_CODE_SET_Z_PROBE_OFFSET
  4657. case CUSTOM_M_CODE_SET_Z_PROBE_OFFSET:
  4658. {
  4659. float value;
  4660. if (code_seen('Z'))
  4661. {
  4662. value = code_value();
  4663. if ((Z_PROBE_OFFSET_RANGE_MIN <= value) && (value <= Z_PROBE_OFFSET_RANGE_MAX))
  4664. {
  4665. zprobe_zoffset = -value; // compare w/ line 278 of ConfigurationStore.cpp
  4666. SERIAL_ECHO_START;
  4667. SERIAL_ECHOLNRPGM(CAT4(MSG_ZPROBE_ZOFFSET, " ", MSG_OK,PSTR("")));
  4668. SERIAL_PROTOCOLLN("");
  4669. }
  4670. else
  4671. {
  4672. SERIAL_ECHO_START;
  4673. SERIAL_ECHORPGM(MSG_ZPROBE_ZOFFSET);
  4674. SERIAL_ECHORPGM(MSG_Z_MIN);
  4675. SERIAL_ECHO(Z_PROBE_OFFSET_RANGE_MIN);
  4676. SERIAL_ECHORPGM(MSG_Z_MAX);
  4677. SERIAL_ECHO(Z_PROBE_OFFSET_RANGE_MAX);
  4678. SERIAL_PROTOCOLLN("");
  4679. }
  4680. }
  4681. else
  4682. {
  4683. SERIAL_ECHO_START;
  4684. SERIAL_ECHOLNRPGM(CAT2(MSG_ZPROBE_ZOFFSET, PSTR(" : ")));
  4685. SERIAL_ECHO(-zprobe_zoffset);
  4686. SERIAL_PROTOCOLLN("");
  4687. }
  4688. break;
  4689. }
  4690. #endif // CUSTOM_M_CODE_SET_Z_PROBE_OFFSET
  4691. #ifdef FILAMENTCHANGEENABLE
  4692. case 600: //Pause for filament change X[pos] Y[pos] Z[relative lift] E[initial retract] L[later retract distance for removal]
  4693. {
  4694. bool old_fsensor_enabled = fsensor_enabled;
  4695. fsensor_enabled = false; //temporary solution for unexpected restarting
  4696. st_synchronize();
  4697. float target[4];
  4698. float lastpos[4];
  4699. if (farm_mode)
  4700. {
  4701. prusa_statistics(22);
  4702. }
  4703. feedmultiplyBckp=feedmultiply;
  4704. int8_t TooLowZ = 0;
  4705. target[X_AXIS]=current_position[X_AXIS];
  4706. target[Y_AXIS]=current_position[Y_AXIS];
  4707. target[Z_AXIS]=current_position[Z_AXIS];
  4708. target[E_AXIS]=current_position[E_AXIS];
  4709. lastpos[X_AXIS]=current_position[X_AXIS];
  4710. lastpos[Y_AXIS]=current_position[Y_AXIS];
  4711. lastpos[Z_AXIS]=current_position[Z_AXIS];
  4712. lastpos[E_AXIS]=current_position[E_AXIS];
  4713. //Restract extruder
  4714. if(code_seen('E'))
  4715. {
  4716. target[E_AXIS]+= code_value();
  4717. }
  4718. else
  4719. {
  4720. #ifdef FILAMENTCHANGE_FIRSTRETRACT
  4721. target[E_AXIS]+= FILAMENTCHANGE_FIRSTRETRACT ;
  4722. #endif
  4723. }
  4724. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_RFEED, active_extruder);
  4725. //Lift Z
  4726. if(code_seen('Z'))
  4727. {
  4728. target[Z_AXIS]+= code_value();
  4729. }
  4730. else
  4731. {
  4732. #ifdef FILAMENTCHANGE_ZADD
  4733. target[Z_AXIS]+= FILAMENTCHANGE_ZADD ;
  4734. if(target[Z_AXIS] < 10){
  4735. target[Z_AXIS]+= 10 ;
  4736. TooLowZ = 1;
  4737. }else{
  4738. TooLowZ = 0;
  4739. }
  4740. #endif
  4741. }
  4742. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_ZFEED, active_extruder);
  4743. //Move XY to side
  4744. if(code_seen('X'))
  4745. {
  4746. target[X_AXIS]+= code_value();
  4747. }
  4748. else
  4749. {
  4750. #ifdef FILAMENTCHANGE_XPOS
  4751. target[X_AXIS]= FILAMENTCHANGE_XPOS ;
  4752. #endif
  4753. }
  4754. if(code_seen('Y'))
  4755. {
  4756. target[Y_AXIS]= code_value();
  4757. }
  4758. else
  4759. {
  4760. #ifdef FILAMENTCHANGE_YPOS
  4761. target[Y_AXIS]= FILAMENTCHANGE_YPOS ;
  4762. #endif
  4763. }
  4764. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_XYFEED, active_extruder);
  4765. st_synchronize();
  4766. KEEPALIVE_STATE(PAUSED_FOR_USER);
  4767. uint8_t cnt = 0;
  4768. int counterBeep = 0;
  4769. lcd_display_message_fullscreen_P(MSG_PRESS_TO_UNLOAD);
  4770. while (!lcd_clicked()) {
  4771. cnt++;
  4772. manage_heater();
  4773. manage_inactivity(true);
  4774. /*#ifdef SNMM
  4775. target[E_AXIS] += 0.002;
  4776. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 500, active_extruder);
  4777. #endif // SNMM*/
  4778. if (cnt == 0)
  4779. {
  4780. #if BEEPER > 0
  4781. if (counterBeep == 500) {
  4782. counterBeep = 0;
  4783. }
  4784. SET_OUTPUT(BEEPER);
  4785. if (counterBeep == 0) {
  4786. WRITE(BEEPER, HIGH);
  4787. }
  4788. if (counterBeep == 20) {
  4789. WRITE(BEEPER, LOW);
  4790. }
  4791. counterBeep++;
  4792. #else
  4793. #if !defined(LCD_FEEDBACK_FREQUENCY_HZ) || !defined(LCD_FEEDBACK_FREQUENCY_DURATION_MS)
  4794. lcd_buzz(1000 / 6, 100);
  4795. #else
  4796. lcd_buzz(LCD_FEEDBACK_FREQUENCY_DURATION_MS, LCD_FEEDBACK_FREQUENCY_HZ);
  4797. #endif
  4798. #endif
  4799. }
  4800. }
  4801. WRITE(BEEPER, LOW);
  4802. lcd_change_fil_state = 0;
  4803. while (lcd_change_fil_state == 0) {
  4804. lcd_display_message_fullscreen_P(MSG_UNLOADING_FILAMENT);
  4805. KEEPALIVE_STATE(IN_HANDLER);
  4806. custom_message = true;
  4807. lcd_setstatuspgm(MSG_UNLOADING_FILAMENT);
  4808. // Unload filament
  4809. if (code_seen('L'))
  4810. {
  4811. target[E_AXIS] += code_value();
  4812. }
  4813. else
  4814. {
  4815. #ifdef SNMM
  4816. #else
  4817. #ifdef FILAMENTCHANGE_FINALRETRACT
  4818. target[E_AXIS] += FILAMENTCHANGE_FINALRETRACT;
  4819. #endif
  4820. #endif // SNMM
  4821. }
  4822. #ifdef SNMM
  4823. target[E_AXIS] += 12;
  4824. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 3500, active_extruder);
  4825. target[E_AXIS] += 6;
  4826. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 5000, active_extruder);
  4827. target[E_AXIS] += (FIL_LOAD_LENGTH * -1);
  4828. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 5000, active_extruder);
  4829. st_synchronize();
  4830. target[E_AXIS] += (FIL_COOLING);
  4831. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 50, active_extruder);
  4832. target[E_AXIS] += (FIL_COOLING*-1);
  4833. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 50, active_extruder);
  4834. target[E_AXIS] += (bowden_length[snmm_extruder] * -1);
  4835. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 3000, active_extruder);
  4836. st_synchronize();
  4837. #else
  4838. // plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_RFEED, active_extruder);
  4839. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 3500 / 60, active_extruder);
  4840. #endif // SNMM
  4841. //finish moves
  4842. st_synchronize();
  4843. //disable extruder steppers so filament can be removed
  4844. disable_e0();
  4845. disable_e1();
  4846. disable_e2();
  4847. delay(100);
  4848. KEEPALIVE_STATE(PAUSED_FOR_USER);
  4849. lcd_change_fil_state = !lcd_show_fullscreen_message_yes_no_and_wait_P(MSG_UNLOAD_SUCCESSFULL, false, false);
  4850. //lcd_return_to_status();
  4851. lcd_update_enable(true);
  4852. }
  4853. //Wait for user to insert filament
  4854. lcd_wait_interact();
  4855. //load_filament_time = millis();
  4856. KEEPALIVE_STATE(PAUSED_FOR_USER);
  4857. #ifdef PAT9125
  4858. if (filament_autoload_enabled && fsensor_M600) fsensor_autoload_check_start();
  4859. #endif //PAT9125
  4860. while(!lcd_clicked())
  4861. {
  4862. manage_heater();
  4863. manage_inactivity(true);
  4864. #ifdef PAT9125
  4865. if (filament_autoload_enabled && fsensor_M600 && fsensor_check_autoload())
  4866. break;
  4867. #endif //PAT9125
  4868. /*#ifdef SNMM
  4869. target[E_AXIS] += 0.002;
  4870. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 500, active_extruder);
  4871. #endif // SNMM*/
  4872. }
  4873. #ifdef PAT9125
  4874. if (filament_autoload_enabled && fsensor_M600) fsensor_autoload_check_stop();
  4875. #endif //PAT9125
  4876. //WRITE(BEEPER, LOW);
  4877. KEEPALIVE_STATE(IN_HANDLER);
  4878. #ifdef SNMM
  4879. display_loading();
  4880. KEEPALIVE_STATE(PAUSED_FOR_USER);
  4881. do {
  4882. target[E_AXIS] += 0.002;
  4883. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 500, active_extruder);
  4884. delay_keep_alive(2);
  4885. } while (!lcd_clicked());
  4886. KEEPALIVE_STATE(IN_HANDLER);
  4887. /*if (millis() - load_filament_time > 2) {
  4888. load_filament_time = millis();
  4889. target[E_AXIS] += 0.001;
  4890. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 1000, active_extruder);
  4891. }*/
  4892. //Filament inserted
  4893. //Feed the filament to the end of nozzle quickly
  4894. st_synchronize();
  4895. target[E_AXIS] += bowden_length[snmm_extruder];
  4896. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 3000, active_extruder);
  4897. target[E_AXIS] += FIL_LOAD_LENGTH - 60;
  4898. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 1400, active_extruder);
  4899. target[E_AXIS] += 40;
  4900. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 400, active_extruder);
  4901. target[E_AXIS] += 10;
  4902. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 50, active_extruder);
  4903. #else
  4904. target[E_AXIS] += FILAMENTCHANGE_FIRSTFEED;
  4905. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_EFEED, active_extruder);
  4906. #endif // SNMM
  4907. //Extrude some filament
  4908. target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  4909. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_EXFEED, active_extruder);
  4910. //Wait for user to check the state
  4911. lcd_change_fil_state = 0;
  4912. lcd_loading_filament();
  4913. while ((lcd_change_fil_state == 0)||(lcd_change_fil_state != 1)){
  4914. lcd_change_fil_state = 0;
  4915. KEEPALIVE_STATE(PAUSED_FOR_USER);
  4916. lcd_alright();
  4917. KEEPALIVE_STATE(IN_HANDLER);
  4918. switch(lcd_change_fil_state){
  4919. // Filament failed to load so load it again
  4920. case 2:
  4921. #ifdef SNMM
  4922. display_loading();
  4923. do {
  4924. target[E_AXIS] += 0.002;
  4925. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 500, active_extruder);
  4926. delay_keep_alive(2);
  4927. } while (!lcd_clicked());
  4928. st_synchronize();
  4929. target[E_AXIS] += bowden_length[snmm_extruder];
  4930. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 3000, active_extruder);
  4931. target[E_AXIS] += FIL_LOAD_LENGTH - 60;
  4932. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 1400, active_extruder);
  4933. target[E_AXIS] += 40;
  4934. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 400, active_extruder);
  4935. target[E_AXIS] += 10;
  4936. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 50, active_extruder);
  4937. #else
  4938. target[E_AXIS]+= FILAMENTCHANGE_FIRSTFEED ;
  4939. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_EFEED, active_extruder);
  4940. #endif
  4941. target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  4942. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_EXFEED, active_extruder);
  4943. lcd_loading_filament();
  4944. break;
  4945. // Filament loaded properly but color is not clear
  4946. case 3:
  4947. target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  4948. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder);
  4949. lcd_loading_color();
  4950. break;
  4951. // Everything good
  4952. default:
  4953. lcd_change_success();
  4954. lcd_update_enable(true);
  4955. break;
  4956. }
  4957. }
  4958. //Not let's go back to print
  4959. //Feed a little of filament to stabilize pressure
  4960. target[E_AXIS]+= FILAMENTCHANGE_RECFEED;
  4961. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_EXFEED, active_extruder);
  4962. //Retract
  4963. target[E_AXIS]+= FILAMENTCHANGE_FIRSTRETRACT;
  4964. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_RFEED, active_extruder);
  4965. //plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 70, active_extruder); //should do nothing
  4966. //Move XY back
  4967. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_XYFEED, active_extruder);
  4968. //Move Z back
  4969. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_ZFEED, active_extruder);
  4970. target[E_AXIS]= target[E_AXIS] - FILAMENTCHANGE_FIRSTRETRACT;
  4971. //Unretract
  4972. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_RFEED, active_extruder);
  4973. //Set E position to original
  4974. plan_set_e_position(lastpos[E_AXIS]);
  4975. //Recover feed rate
  4976. feedmultiply=feedmultiplyBckp;
  4977. char cmd[9];
  4978. sprintf_P(cmd, PSTR("M220 S%i"), feedmultiplyBckp);
  4979. enquecommand(cmd);
  4980. lcd_setstatuspgm(WELCOME_MSG);
  4981. custom_message = false;
  4982. custom_message_type = 0;
  4983. fsensor_enabled = old_fsensor_enabled; //temporary solution for unexpected restarting
  4984. #ifdef PAT9125
  4985. if (fsensor_M600)
  4986. {
  4987. cmdqueue_pop_front(); //hack because M600 repeated 2x when enqueued to front
  4988. st_synchronize();
  4989. while (!is_buffer_empty())
  4990. {
  4991. process_commands();
  4992. cmdqueue_pop_front();
  4993. }
  4994. fsensor_enable();
  4995. fsensor_restore_print_and_continue();
  4996. }
  4997. #endif //PAT9125
  4998. }
  4999. break;
  5000. #endif //FILAMENTCHANGEENABLE
  5001. case 601: {
  5002. if(lcd_commands_type == 0) lcd_commands_type = LCD_COMMAND_LONG_PAUSE;
  5003. }
  5004. break;
  5005. case 602: {
  5006. if(lcd_commands_type == 0) lcd_commands_type = LCD_COMMAND_LONG_PAUSE_RESUME;
  5007. }
  5008. break;
  5009. #ifdef LIN_ADVANCE
  5010. case 900: // M900: Set LIN_ADVANCE options.
  5011. gcode_M900();
  5012. break;
  5013. #endif
  5014. case 907: // M907 Set digital trimpot motor current using axis codes.
  5015. {
  5016. #if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
  5017. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) digipot_current(i,code_value());
  5018. if(code_seen('B')) digipot_current(4,code_value());
  5019. if(code_seen('S')) for(int i=0;i<=4;i++) digipot_current(i,code_value());
  5020. #endif
  5021. #ifdef MOTOR_CURRENT_PWM_XY_PIN
  5022. if(code_seen('X')) digipot_current(0, code_value());
  5023. #endif
  5024. #ifdef MOTOR_CURRENT_PWM_Z_PIN
  5025. if(code_seen('Z')) digipot_current(1, code_value());
  5026. #endif
  5027. #ifdef MOTOR_CURRENT_PWM_E_PIN
  5028. if(code_seen('E')) digipot_current(2, code_value());
  5029. #endif
  5030. #ifdef DIGIPOT_I2C
  5031. // this one uses actual amps in floating point
  5032. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) digipot_i2c_set_current(i, code_value());
  5033. // for each additional extruder (named B,C,D,E..., channels 4,5,6,7...)
  5034. for(int i=NUM_AXIS;i<DIGIPOT_I2C_NUM_CHANNELS;i++) if(code_seen('B'+i-NUM_AXIS)) digipot_i2c_set_current(i, code_value());
  5035. #endif
  5036. }
  5037. break;
  5038. case 908: // M908 Control digital trimpot directly.
  5039. {
  5040. #if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
  5041. uint8_t channel,current;
  5042. if(code_seen('P')) channel=code_value();
  5043. if(code_seen('S')) current=code_value();
  5044. digitalPotWrite(channel, current);
  5045. #endif
  5046. }
  5047. break;
  5048. case 910: // M910 TMC2130 init
  5049. {
  5050. tmc2130_init();
  5051. }
  5052. break;
  5053. case 911: // M911 Set TMC2130 holding currents
  5054. {
  5055. if (code_seen('X')) tmc2130_set_current_h(0, code_value());
  5056. if (code_seen('Y')) tmc2130_set_current_h(1, code_value());
  5057. if (code_seen('Z')) tmc2130_set_current_h(2, code_value());
  5058. if (code_seen('E')) tmc2130_set_current_h(3, code_value());
  5059. }
  5060. break;
  5061. case 912: // M912 Set TMC2130 running currents
  5062. {
  5063. if (code_seen('X')) tmc2130_set_current_r(0, code_value());
  5064. if (code_seen('Y')) tmc2130_set_current_r(1, code_value());
  5065. if (code_seen('Z')) tmc2130_set_current_r(2, code_value());
  5066. if (code_seen('E')) tmc2130_set_current_r(3, code_value());
  5067. }
  5068. break;
  5069. case 913: // M913 Print TMC2130 currents
  5070. {
  5071. tmc2130_print_currents();
  5072. }
  5073. break;
  5074. case 914: // M914 Set normal mode
  5075. {
  5076. tmc2130_mode = TMC2130_MODE_NORMAL;
  5077. tmc2130_init();
  5078. }
  5079. break;
  5080. case 915: // M915 Set silent mode
  5081. {
  5082. tmc2130_mode = TMC2130_MODE_SILENT;
  5083. tmc2130_init();
  5084. }
  5085. break;
  5086. case 916: // M916 Set sg_thrs
  5087. {
  5088. if (code_seen('X')) tmc2130_sg_thr[X_AXIS] = code_value();
  5089. if (code_seen('Y')) tmc2130_sg_thr[Y_AXIS] = code_value();
  5090. if (code_seen('Z')) tmc2130_sg_thr[Z_AXIS] = code_value();
  5091. if (code_seen('E')) tmc2130_sg_thr[E_AXIS] = code_value();
  5092. MYSERIAL.print("tmc2130_sg_thr[X]=");
  5093. MYSERIAL.println(tmc2130_sg_thr[X_AXIS], DEC);
  5094. MYSERIAL.print("tmc2130_sg_thr[Y]=");
  5095. MYSERIAL.println(tmc2130_sg_thr[Y_AXIS], DEC);
  5096. MYSERIAL.print("tmc2130_sg_thr[Z]=");
  5097. MYSERIAL.println(tmc2130_sg_thr[Z_AXIS], DEC);
  5098. MYSERIAL.print("tmc2130_sg_thr[E]=");
  5099. MYSERIAL.println(tmc2130_sg_thr[E_AXIS], DEC);
  5100. }
  5101. break;
  5102. case 917: // M917 Set TMC2130 pwm_ampl
  5103. {
  5104. if (code_seen('X')) tmc2130_set_pwm_ampl(0, code_value());
  5105. if (code_seen('Y')) tmc2130_set_pwm_ampl(1, code_value());
  5106. if (code_seen('Z')) tmc2130_set_pwm_ampl(2, code_value());
  5107. if (code_seen('E')) tmc2130_set_pwm_ampl(3, code_value());
  5108. }
  5109. break;
  5110. case 918: // M918 Set TMC2130 pwm_grad
  5111. {
  5112. if (code_seen('X')) tmc2130_set_pwm_grad(0, code_value());
  5113. if (code_seen('Y')) tmc2130_set_pwm_grad(1, code_value());
  5114. if (code_seen('Z')) tmc2130_set_pwm_grad(2, code_value());
  5115. if (code_seen('E')) tmc2130_set_pwm_grad(3, code_value());
  5116. }
  5117. break;
  5118. case 350: // M350 Set microstepping mode. Warning: Steps per unit remains unchanged. S code sets stepping mode for all drivers.
  5119. {
  5120. #if defined(X_MS1_PIN) && X_MS1_PIN > -1
  5121. if(code_seen('S')) for(int i=0;i<=4;i++) microstep_mode(i,code_value());
  5122. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) microstep_mode(i,(uint8_t)code_value());
  5123. if(code_seen('B')) microstep_mode(4,code_value());
  5124. microstep_readings();
  5125. #endif
  5126. }
  5127. break;
  5128. case 351: // M351 Toggle MS1 MS2 pins directly, S# determines MS1 or MS2, X# sets the pin high/low.
  5129. {
  5130. #if defined(X_MS1_PIN) && X_MS1_PIN > -1
  5131. if(code_seen('S')) switch((int)code_value())
  5132. {
  5133. case 1:
  5134. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) microstep_ms(i,code_value(),-1);
  5135. if(code_seen('B')) microstep_ms(4,code_value(),-1);
  5136. break;
  5137. case 2:
  5138. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) microstep_ms(i,-1,code_value());
  5139. if(code_seen('B')) microstep_ms(4,-1,code_value());
  5140. break;
  5141. }
  5142. microstep_readings();
  5143. #endif
  5144. }
  5145. break;
  5146. case 701: //M701: load filament
  5147. {
  5148. gcode_M701();
  5149. }
  5150. break;
  5151. case 702:
  5152. {
  5153. #ifdef SNMM
  5154. if (code_seen('U')) {
  5155. extr_unload_used(); //unload all filaments which were used in current print
  5156. }
  5157. else if (code_seen('C')) {
  5158. extr_unload(); //unload just current filament
  5159. }
  5160. else {
  5161. extr_unload_all(); //unload all filaments
  5162. }
  5163. #else
  5164. bool old_fsensor_enabled = fsensor_enabled;
  5165. fsensor_enabled = false;
  5166. custom_message = true;
  5167. custom_message_type = 2;
  5168. lcd_setstatuspgm(MSG_UNLOADING_FILAMENT);
  5169. // extr_unload2();
  5170. current_position[E_AXIS] -= 80;
  5171. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 7000 / 60, active_extruder);
  5172. st_synchronize();
  5173. lcd_setstatuspgm(WELCOME_MSG);
  5174. custom_message = false;
  5175. custom_message_type = 0;
  5176. fsensor_enabled = old_fsensor_enabled;
  5177. #endif
  5178. }
  5179. break;
  5180. case 999: // M999: Restart after being stopped
  5181. Stopped = false;
  5182. lcd_reset_alert_level();
  5183. gcode_LastN = Stopped_gcode_LastN;
  5184. FlushSerialRequestResend();
  5185. break;
  5186. default: SERIAL_ECHOLNPGM("Invalid M code.");
  5187. }
  5188. } // end if(code_seen('M')) (end of M codes)
  5189. else if(code_seen('T'))
  5190. {
  5191. int index;
  5192. st_synchronize();
  5193. for (index = 1; *(strchr_pointer + index) == ' ' || *(strchr_pointer + index) == '\t'; index++);
  5194. if ((*(strchr_pointer + index) < '0' || *(strchr_pointer + index) > '9') && *(strchr_pointer + index) != '?') {
  5195. SERIAL_ECHOLNPGM("Invalid T code.");
  5196. }
  5197. else {
  5198. if (*(strchr_pointer + index) == '?') {
  5199. tmp_extruder = choose_extruder_menu();
  5200. }
  5201. else {
  5202. tmp_extruder = code_value();
  5203. }
  5204. snmm_filaments_used |= (1 << tmp_extruder); //for stop print
  5205. #ifdef SNMM
  5206. #ifdef LIN_ADVANCE
  5207. if (snmm_extruder != tmp_extruder)
  5208. clear_current_adv_vars(); //Check if the selected extruder is not the active one and reset LIN_ADVANCE variables if so.
  5209. #endif
  5210. snmm_extruder = tmp_extruder;
  5211. delay(100);
  5212. disable_e0();
  5213. disable_e1();
  5214. disable_e2();
  5215. pinMode(E_MUX0_PIN, OUTPUT);
  5216. pinMode(E_MUX1_PIN, OUTPUT);
  5217. pinMode(E_MUX2_PIN, OUTPUT);
  5218. delay(100);
  5219. SERIAL_ECHO_START;
  5220. SERIAL_ECHO("T:");
  5221. SERIAL_ECHOLN((int)tmp_extruder);
  5222. switch (tmp_extruder) {
  5223. case 1:
  5224. WRITE(E_MUX0_PIN, HIGH);
  5225. WRITE(E_MUX1_PIN, LOW);
  5226. WRITE(E_MUX2_PIN, LOW);
  5227. break;
  5228. case 2:
  5229. WRITE(E_MUX0_PIN, LOW);
  5230. WRITE(E_MUX1_PIN, HIGH);
  5231. WRITE(E_MUX2_PIN, LOW);
  5232. break;
  5233. case 3:
  5234. WRITE(E_MUX0_PIN, HIGH);
  5235. WRITE(E_MUX1_PIN, HIGH);
  5236. WRITE(E_MUX2_PIN, LOW);
  5237. break;
  5238. default:
  5239. WRITE(E_MUX0_PIN, LOW);
  5240. WRITE(E_MUX1_PIN, LOW);
  5241. WRITE(E_MUX2_PIN, LOW);
  5242. break;
  5243. }
  5244. delay(100);
  5245. #else
  5246. if (tmp_extruder >= EXTRUDERS) {
  5247. SERIAL_ECHO_START;
  5248. SERIAL_ECHOPGM("T");
  5249. SERIAL_PROTOCOLLN((int)tmp_extruder);
  5250. SERIAL_ECHOLNRPGM(MSG_INVALID_EXTRUDER);
  5251. }
  5252. else {
  5253. boolean make_move = false;
  5254. if (code_seen('F')) {
  5255. make_move = true;
  5256. next_feedrate = code_value();
  5257. if (next_feedrate > 0.0) {
  5258. feedrate = next_feedrate;
  5259. }
  5260. }
  5261. #if EXTRUDERS > 1
  5262. if (tmp_extruder != active_extruder) {
  5263. // Save current position to return to after applying extruder offset
  5264. memcpy(destination, current_position, sizeof(destination));
  5265. // Offset extruder (only by XY)
  5266. int i;
  5267. for (i = 0; i < 2; i++) {
  5268. current_position[i] = current_position[i] -
  5269. extruder_offset[i][active_extruder] +
  5270. extruder_offset[i][tmp_extruder];
  5271. }
  5272. // Set the new active extruder and position
  5273. active_extruder = tmp_extruder;
  5274. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  5275. // Move to the old position if 'F' was in the parameters
  5276. if (make_move && Stopped == false) {
  5277. prepare_move();
  5278. }
  5279. }
  5280. #endif
  5281. SERIAL_ECHO_START;
  5282. SERIAL_ECHORPGM(MSG_ACTIVE_EXTRUDER);
  5283. SERIAL_PROTOCOLLN((int)active_extruder);
  5284. }
  5285. #endif
  5286. }
  5287. } // end if(code_seen('T')) (end of T codes)
  5288. #ifdef DEBUG_DCODES
  5289. else if (code_seen('D')) // D codes (debug)
  5290. {
  5291. switch((int)code_value())
  5292. {
  5293. case -1: // D-1 - Endless loop
  5294. dcode__1(); break;
  5295. case 0: // D0 - Reset
  5296. dcode_0(); break;
  5297. case 1: // D1 - Clear EEPROM
  5298. dcode_1(); break;
  5299. case 2: // D2 - Read/Write RAM
  5300. dcode_2(); break;
  5301. case 3: // D3 - Read/Write EEPROM
  5302. dcode_3(); break;
  5303. case 4: // D4 - Read/Write PIN
  5304. dcode_4(); break;
  5305. case 5: // D5 - Read/Write FLASH
  5306. // dcode_5(); break;
  5307. break;
  5308. case 6: // D6 - Read/Write external FLASH
  5309. dcode_6(); break;
  5310. case 7: // D7 - Read/Write Bootloader
  5311. dcode_7(); break;
  5312. case 8: // D8 - Read/Write PINDA
  5313. dcode_8(); break;
  5314. case 9: // D9 - Read/Write ADC
  5315. dcode_9(); break;
  5316. case 10: // D10 - XYZ calibration = OK
  5317. dcode_10(); break;
  5318. case 12: //D12 - Reset failstat counters
  5319. dcode_12(); break;
  5320. case 2130: // D9125 - TMC2130
  5321. dcode_2130(); break;
  5322. case 9125: // D9125 - PAT9125
  5323. dcode_9125(); break;
  5324. }
  5325. }
  5326. #endif //DEBUG_DCODES
  5327. else
  5328. {
  5329. SERIAL_ECHO_START;
  5330. SERIAL_ECHORPGM(MSG_UNKNOWN_COMMAND);
  5331. SERIAL_ECHO(CMDBUFFER_CURRENT_STRING);
  5332. SERIAL_ECHOLNPGM("\"(2)");
  5333. }
  5334. KEEPALIVE_STATE(NOT_BUSY);
  5335. ClearToSend();
  5336. }
  5337. void FlushSerialRequestResend()
  5338. {
  5339. //char cmdbuffer[bufindr][100]="Resend:";
  5340. MYSERIAL.flush();
  5341. SERIAL_PROTOCOLRPGM(MSG_RESEND);
  5342. SERIAL_PROTOCOLLN(gcode_LastN + 1);
  5343. ClearToSend();
  5344. }
  5345. // Confirm the execution of a command, if sent from a serial line.
  5346. // Execution of a command from a SD card will not be confirmed.
  5347. void ClearToSend()
  5348. {
  5349. previous_millis_cmd = millis();
  5350. if (CMDBUFFER_CURRENT_TYPE == CMDBUFFER_CURRENT_TYPE_USB)
  5351. SERIAL_PROTOCOLLNRPGM(MSG_OK);
  5352. }
  5353. void get_coordinates()
  5354. {
  5355. bool seen[4]={false,false,false,false};
  5356. for(int8_t i=0; i < NUM_AXIS; i++) {
  5357. if(code_seen(axis_codes[i]))
  5358. {
  5359. destination[i] = (float)code_value() + (axis_relative_modes[i] || relative_mode)*current_position[i];
  5360. seen[i]=true;
  5361. }
  5362. else destination[i] = current_position[i]; //Are these else lines really needed?
  5363. }
  5364. if(code_seen('F')) {
  5365. next_feedrate = code_value();
  5366. #ifdef MAX_SILENT_FEEDRATE
  5367. if (tmc2130_mode == TMC2130_MODE_SILENT)
  5368. if (next_feedrate > MAX_SILENT_FEEDRATE) next_feedrate = MAX_SILENT_FEEDRATE;
  5369. #endif //MAX_SILENT_FEEDRATE
  5370. if(next_feedrate > 0.0) feedrate = next_feedrate;
  5371. }
  5372. }
  5373. void get_arc_coordinates()
  5374. {
  5375. #ifdef SF_ARC_FIX
  5376. bool relative_mode_backup = relative_mode;
  5377. relative_mode = true;
  5378. #endif
  5379. get_coordinates();
  5380. #ifdef SF_ARC_FIX
  5381. relative_mode=relative_mode_backup;
  5382. #endif
  5383. if(code_seen('I')) {
  5384. offset[0] = code_value();
  5385. }
  5386. else {
  5387. offset[0] = 0.0;
  5388. }
  5389. if(code_seen('J')) {
  5390. offset[1] = code_value();
  5391. }
  5392. else {
  5393. offset[1] = 0.0;
  5394. }
  5395. }
  5396. void clamp_to_software_endstops(float target[3])
  5397. {
  5398. #ifdef DEBUG_DISABLE_SWLIMITS
  5399. return;
  5400. #endif //DEBUG_DISABLE_SWLIMITS
  5401. world2machine_clamp(target[0], target[1]);
  5402. // Clamp the Z coordinate.
  5403. if (min_software_endstops) {
  5404. float negative_z_offset = 0;
  5405. #ifdef ENABLE_AUTO_BED_LEVELING
  5406. if (Z_PROBE_OFFSET_FROM_EXTRUDER < 0) negative_z_offset = negative_z_offset + Z_PROBE_OFFSET_FROM_EXTRUDER;
  5407. if (add_homing[Z_AXIS] < 0) negative_z_offset = negative_z_offset + add_homing[Z_AXIS];
  5408. #endif
  5409. if (target[Z_AXIS] < min_pos[Z_AXIS]+negative_z_offset) target[Z_AXIS] = min_pos[Z_AXIS]+negative_z_offset;
  5410. }
  5411. if (max_software_endstops) {
  5412. if (target[Z_AXIS] > max_pos[Z_AXIS]) target[Z_AXIS] = max_pos[Z_AXIS];
  5413. }
  5414. }
  5415. #ifdef MESH_BED_LEVELING
  5416. void mesh_plan_buffer_line(const float &x, const float &y, const float &z, const float &e, const float &feed_rate, const uint8_t extruder) {
  5417. float dx = x - current_position[X_AXIS];
  5418. float dy = y - current_position[Y_AXIS];
  5419. float dz = z - current_position[Z_AXIS];
  5420. int n_segments = 0;
  5421. if (mbl.active) {
  5422. float len = abs(dx) + abs(dy);
  5423. if (len > 0)
  5424. // Split to 3cm segments or shorter.
  5425. n_segments = int(ceil(len / 30.f));
  5426. }
  5427. if (n_segments > 1) {
  5428. float de = e - current_position[E_AXIS];
  5429. for (int i = 1; i < n_segments; ++ i) {
  5430. float t = float(i) / float(n_segments);
  5431. plan_buffer_line(
  5432. current_position[X_AXIS] + t * dx,
  5433. current_position[Y_AXIS] + t * dy,
  5434. current_position[Z_AXIS] + t * dz,
  5435. current_position[E_AXIS] + t * de,
  5436. feed_rate, extruder);
  5437. }
  5438. }
  5439. // The rest of the path.
  5440. plan_buffer_line(x, y, z, e, feed_rate, extruder);
  5441. current_position[X_AXIS] = x;
  5442. current_position[Y_AXIS] = y;
  5443. current_position[Z_AXIS] = z;
  5444. current_position[E_AXIS] = e;
  5445. }
  5446. #endif // MESH_BED_LEVELING
  5447. void prepare_move()
  5448. {
  5449. clamp_to_software_endstops(destination);
  5450. previous_millis_cmd = millis();
  5451. // Do not use feedmultiply for E or Z only moves
  5452. if( (current_position[X_AXIS] == destination [X_AXIS]) && (current_position[Y_AXIS] == destination [Y_AXIS])) {
  5453. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  5454. }
  5455. else {
  5456. #ifdef MESH_BED_LEVELING
  5457. mesh_plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate*feedmultiply*(1./(60.f*100.f)), active_extruder);
  5458. #else
  5459. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate*feedmultiply*(1./(60.f*100.f)), active_extruder);
  5460. #endif
  5461. }
  5462. for(int8_t i=0; i < NUM_AXIS; i++) {
  5463. current_position[i] = destination[i];
  5464. }
  5465. }
  5466. void prepare_arc_move(char isclockwise) {
  5467. float r = hypot(offset[X_AXIS], offset[Y_AXIS]); // Compute arc radius for mc_arc
  5468. // Trace the arc
  5469. mc_arc(current_position, destination, offset, X_AXIS, Y_AXIS, Z_AXIS, feedrate*feedmultiply/60/100.0, r, isclockwise, active_extruder);
  5470. // As far as the parser is concerned, the position is now == target. In reality the
  5471. // motion control system might still be processing the action and the real tool position
  5472. // in any intermediate location.
  5473. for(int8_t i=0; i < NUM_AXIS; i++) {
  5474. current_position[i] = destination[i];
  5475. }
  5476. previous_millis_cmd = millis();
  5477. }
  5478. #if defined(CONTROLLERFAN_PIN) && CONTROLLERFAN_PIN > -1
  5479. #if defined(FAN_PIN)
  5480. #if CONTROLLERFAN_PIN == FAN_PIN
  5481. #error "You cannot set CONTROLLERFAN_PIN equal to FAN_PIN"
  5482. #endif
  5483. #endif
  5484. unsigned long lastMotor = 0; //Save the time for when a motor was turned on last
  5485. unsigned long lastMotorCheck = 0;
  5486. void controllerFan()
  5487. {
  5488. if ((millis() - lastMotorCheck) >= 2500) //Not a time critical function, so we only check every 2500ms
  5489. {
  5490. lastMotorCheck = millis();
  5491. if(!READ(X_ENABLE_PIN) || !READ(Y_ENABLE_PIN) || !READ(Z_ENABLE_PIN) || (soft_pwm_bed > 0)
  5492. #if EXTRUDERS > 2
  5493. || !READ(E2_ENABLE_PIN)
  5494. #endif
  5495. #if EXTRUDER > 1
  5496. #if defined(X2_ENABLE_PIN) && X2_ENABLE_PIN > -1
  5497. || !READ(X2_ENABLE_PIN)
  5498. #endif
  5499. || !READ(E1_ENABLE_PIN)
  5500. #endif
  5501. || !READ(E0_ENABLE_PIN)) //If any of the drivers are enabled...
  5502. {
  5503. lastMotor = millis(); //... set time to NOW so the fan will turn on
  5504. }
  5505. if ((millis() - lastMotor) >= (CONTROLLERFAN_SECS*1000UL) || lastMotor == 0) //If the last time any driver was enabled, is longer since than CONTROLLERSEC...
  5506. {
  5507. digitalWrite(CONTROLLERFAN_PIN, 0);
  5508. analogWrite(CONTROLLERFAN_PIN, 0);
  5509. }
  5510. else
  5511. {
  5512. // allows digital or PWM fan output to be used (see M42 handling)
  5513. digitalWrite(CONTROLLERFAN_PIN, CONTROLLERFAN_SPEED);
  5514. analogWrite(CONTROLLERFAN_PIN, CONTROLLERFAN_SPEED);
  5515. }
  5516. }
  5517. }
  5518. #endif
  5519. #ifdef TEMP_STAT_LEDS
  5520. static bool blue_led = false;
  5521. static bool red_led = false;
  5522. static uint32_t stat_update = 0;
  5523. void handle_status_leds(void) {
  5524. float max_temp = 0.0;
  5525. if(millis() > stat_update) {
  5526. stat_update += 500; // Update every 0.5s
  5527. for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) {
  5528. max_temp = max(max_temp, degHotend(cur_extruder));
  5529. max_temp = max(max_temp, degTargetHotend(cur_extruder));
  5530. }
  5531. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  5532. max_temp = max(max_temp, degTargetBed());
  5533. max_temp = max(max_temp, degBed());
  5534. #endif
  5535. if((max_temp > 55.0) && (red_led == false)) {
  5536. digitalWrite(STAT_LED_RED, 1);
  5537. digitalWrite(STAT_LED_BLUE, 0);
  5538. red_led = true;
  5539. blue_led = false;
  5540. }
  5541. if((max_temp < 54.0) && (blue_led == false)) {
  5542. digitalWrite(STAT_LED_RED, 0);
  5543. digitalWrite(STAT_LED_BLUE, 1);
  5544. red_led = false;
  5545. blue_led = true;
  5546. }
  5547. }
  5548. }
  5549. #endif
  5550. void manage_inactivity(bool ignore_stepper_queue/*=false*/) //default argument set in Marlin.h
  5551. {
  5552. if (fsensor_enabled && filament_autoload_enabled && !fsensor_M600 && !moves_planned() && !IS_SD_PRINTING && !is_usb_printing && (lcd_commands_type != LCD_COMMAND_V2_CAL) && (current_temperature[0] > EXTRUDE_MINTEMP))
  5553. {
  5554. if (fsensor_autoload_enabled)
  5555. {
  5556. if (fsensor_check_autoload())
  5557. {
  5558. fsensor_autoload_check_stop();
  5559. enquecommand_front_P((PSTR("M701")));
  5560. }
  5561. }
  5562. else
  5563. fsensor_autoload_check_start();
  5564. }
  5565. else
  5566. if (fsensor_autoload_enabled)
  5567. fsensor_autoload_check_stop();
  5568. #if defined(KILL_PIN) && KILL_PIN > -1
  5569. static int killCount = 0; // make the inactivity button a bit less responsive
  5570. const int KILL_DELAY = 10000;
  5571. #endif
  5572. if(buflen < (BUFSIZE-1)){
  5573. get_command();
  5574. }
  5575. if( (millis() - previous_millis_cmd) > max_inactive_time )
  5576. if(max_inactive_time)
  5577. kill("", 4);
  5578. if(stepper_inactive_time) {
  5579. if( (millis() - previous_millis_cmd) > stepper_inactive_time )
  5580. {
  5581. if(blocks_queued() == false && ignore_stepper_queue == false) {
  5582. disable_x();
  5583. // SERIAL_ECHOLNPGM("manage_inactivity - disable Y");
  5584. disable_y();
  5585. disable_z();
  5586. disable_e0();
  5587. disable_e1();
  5588. disable_e2();
  5589. }
  5590. }
  5591. }
  5592. #ifdef CHDK //Check if pin should be set to LOW after M240 set it to HIGH
  5593. if (chdkActive && (millis() - chdkHigh > CHDK_DELAY))
  5594. {
  5595. chdkActive = false;
  5596. WRITE(CHDK, LOW);
  5597. }
  5598. #endif
  5599. #if defined(KILL_PIN) && KILL_PIN > -1
  5600. // Check if the kill button was pressed and wait just in case it was an accidental
  5601. // key kill key press
  5602. // -------------------------------------------------------------------------------
  5603. if( 0 == READ(KILL_PIN) )
  5604. {
  5605. killCount++;
  5606. }
  5607. else if (killCount > 0)
  5608. {
  5609. killCount--;
  5610. }
  5611. // Exceeded threshold and we can confirm that it was not accidental
  5612. // KILL the machine
  5613. // ----------------------------------------------------------------
  5614. if ( killCount >= KILL_DELAY)
  5615. {
  5616. kill("", 5);
  5617. }
  5618. #endif
  5619. #if defined(CONTROLLERFAN_PIN) && CONTROLLERFAN_PIN > -1
  5620. controllerFan(); //Check if fan should be turned on to cool stepper drivers down
  5621. #endif
  5622. #ifdef EXTRUDER_RUNOUT_PREVENT
  5623. if( (millis() - previous_millis_cmd) > EXTRUDER_RUNOUT_SECONDS*1000 )
  5624. if(degHotend(active_extruder)>EXTRUDER_RUNOUT_MINTEMP)
  5625. {
  5626. bool oldstatus=READ(E0_ENABLE_PIN);
  5627. enable_e0();
  5628. float oldepos=current_position[E_AXIS];
  5629. float oldedes=destination[E_AXIS];
  5630. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS],
  5631. destination[E_AXIS]+EXTRUDER_RUNOUT_EXTRUDE*EXTRUDER_RUNOUT_ESTEPS/axis_steps_per_unit[E_AXIS],
  5632. EXTRUDER_RUNOUT_SPEED/60.*EXTRUDER_RUNOUT_ESTEPS/axis_steps_per_unit[E_AXIS], active_extruder);
  5633. current_position[E_AXIS]=oldepos;
  5634. destination[E_AXIS]=oldedes;
  5635. plan_set_e_position(oldepos);
  5636. previous_millis_cmd=millis();
  5637. st_synchronize();
  5638. WRITE(E0_ENABLE_PIN,oldstatus);
  5639. }
  5640. #endif
  5641. #ifdef TEMP_STAT_LEDS
  5642. handle_status_leds();
  5643. #endif
  5644. check_axes_activity();
  5645. }
  5646. void kill(const char *full_screen_message, unsigned char id)
  5647. {
  5648. SERIAL_ECHOPGM("KILL: ");
  5649. MYSERIAL.println(int(id));
  5650. //return;
  5651. cli(); // Stop interrupts
  5652. disable_heater();
  5653. disable_x();
  5654. // SERIAL_ECHOLNPGM("kill - disable Y");
  5655. disable_y();
  5656. disable_z();
  5657. disable_e0();
  5658. disable_e1();
  5659. disable_e2();
  5660. #if defined(PS_ON_PIN) && PS_ON_PIN > -1
  5661. pinMode(PS_ON_PIN,INPUT);
  5662. #endif
  5663. SERIAL_ERROR_START;
  5664. SERIAL_ERRORLNRPGM(MSG_ERR_KILLED);
  5665. if (full_screen_message != NULL) {
  5666. SERIAL_ERRORLNRPGM(full_screen_message);
  5667. lcd_display_message_fullscreen_P(full_screen_message);
  5668. } else {
  5669. LCD_ALERTMESSAGERPGM(MSG_KILLED);
  5670. }
  5671. // FMC small patch to update the LCD before ending
  5672. sei(); // enable interrupts
  5673. for ( int i=5; i--; lcd_update())
  5674. {
  5675. delay(200);
  5676. }
  5677. cli(); // disable interrupts
  5678. suicide();
  5679. while(1)
  5680. {
  5681. wdt_reset();
  5682. /* Intentionally left empty */
  5683. } // Wait for reset
  5684. }
  5685. void Stop()
  5686. {
  5687. disable_heater();
  5688. if(Stopped == false) {
  5689. Stopped = true;
  5690. Stopped_gcode_LastN = gcode_LastN; // Save last g_code for restart
  5691. SERIAL_ERROR_START;
  5692. SERIAL_ERRORLNRPGM(MSG_ERR_STOPPED);
  5693. LCD_MESSAGERPGM(MSG_STOPPED);
  5694. }
  5695. }
  5696. bool IsStopped() { return Stopped; };
  5697. #ifdef FAST_PWM_FAN
  5698. void setPwmFrequency(uint8_t pin, int val)
  5699. {
  5700. val &= 0x07;
  5701. switch(digitalPinToTimer(pin))
  5702. {
  5703. #if defined(TCCR0A)
  5704. case TIMER0A:
  5705. case TIMER0B:
  5706. // TCCR0B &= ~(_BV(CS00) | _BV(CS01) | _BV(CS02));
  5707. // TCCR0B |= val;
  5708. break;
  5709. #endif
  5710. #if defined(TCCR1A)
  5711. case TIMER1A:
  5712. case TIMER1B:
  5713. // TCCR1B &= ~(_BV(CS10) | _BV(CS11) | _BV(CS12));
  5714. // TCCR1B |= val;
  5715. break;
  5716. #endif
  5717. #if defined(TCCR2)
  5718. case TIMER2:
  5719. case TIMER2:
  5720. TCCR2 &= ~(_BV(CS10) | _BV(CS11) | _BV(CS12));
  5721. TCCR2 |= val;
  5722. break;
  5723. #endif
  5724. #if defined(TCCR2A)
  5725. case TIMER2A:
  5726. case TIMER2B:
  5727. TCCR2B &= ~(_BV(CS20) | _BV(CS21) | _BV(CS22));
  5728. TCCR2B |= val;
  5729. break;
  5730. #endif
  5731. #if defined(TCCR3A)
  5732. case TIMER3A:
  5733. case TIMER3B:
  5734. case TIMER3C:
  5735. TCCR3B &= ~(_BV(CS30) | _BV(CS31) | _BV(CS32));
  5736. TCCR3B |= val;
  5737. break;
  5738. #endif
  5739. #if defined(TCCR4A)
  5740. case TIMER4A:
  5741. case TIMER4B:
  5742. case TIMER4C:
  5743. TCCR4B &= ~(_BV(CS40) | _BV(CS41) | _BV(CS42));
  5744. TCCR4B |= val;
  5745. break;
  5746. #endif
  5747. #if defined(TCCR5A)
  5748. case TIMER5A:
  5749. case TIMER5B:
  5750. case TIMER5C:
  5751. TCCR5B &= ~(_BV(CS50) | _BV(CS51) | _BV(CS52));
  5752. TCCR5B |= val;
  5753. break;
  5754. #endif
  5755. }
  5756. }
  5757. #endif //FAST_PWM_FAN
  5758. bool setTargetedHotend(int code){
  5759. tmp_extruder = active_extruder;
  5760. if(code_seen('T')) {
  5761. tmp_extruder = code_value();
  5762. if(tmp_extruder >= EXTRUDERS) {
  5763. SERIAL_ECHO_START;
  5764. switch(code){
  5765. case 104:
  5766. SERIAL_ECHORPGM(MSG_M104_INVALID_EXTRUDER);
  5767. break;
  5768. case 105:
  5769. SERIAL_ECHO(MSG_M105_INVALID_EXTRUDER);
  5770. break;
  5771. case 109:
  5772. SERIAL_ECHO(MSG_M109_INVALID_EXTRUDER);
  5773. break;
  5774. case 218:
  5775. SERIAL_ECHO(MSG_M218_INVALID_EXTRUDER);
  5776. break;
  5777. case 221:
  5778. SERIAL_ECHO(MSG_M221_INVALID_EXTRUDER);
  5779. break;
  5780. }
  5781. SERIAL_PROTOCOLLN((int)tmp_extruder);
  5782. return true;
  5783. }
  5784. }
  5785. return false;
  5786. }
  5787. void save_statistics(unsigned long _total_filament_used, unsigned long _total_print_time) //_total_filament_used unit: mm/100; print time in s
  5788. {
  5789. if (eeprom_read_byte((uint8_t *)EEPROM_TOTALTIME) == 255 && eeprom_read_byte((uint8_t *)EEPROM_TOTALTIME + 1) == 255 && eeprom_read_byte((uint8_t *)EEPROM_TOTALTIME + 2) == 255 && eeprom_read_byte((uint8_t *)EEPROM_TOTALTIME + 3) == 255)
  5790. {
  5791. eeprom_update_dword((uint32_t *)EEPROM_TOTALTIME, 0);
  5792. eeprom_update_dword((uint32_t *)EEPROM_FILAMENTUSED, 0);
  5793. }
  5794. unsigned long _previous_filament = eeprom_read_dword((uint32_t *)EEPROM_FILAMENTUSED); //_previous_filament unit: cm
  5795. unsigned long _previous_time = eeprom_read_dword((uint32_t *)EEPROM_TOTALTIME); //_previous_time unit: min
  5796. eeprom_update_dword((uint32_t *)EEPROM_TOTALTIME, _previous_time + (_total_print_time/60)); //EEPROM_TOTALTIME unit: min
  5797. eeprom_update_dword((uint32_t *)EEPROM_FILAMENTUSED, _previous_filament + (_total_filament_used / 1000));
  5798. total_filament_used = 0;
  5799. }
  5800. float calculate_volumetric_multiplier(float diameter) {
  5801. float area = .0;
  5802. float radius = .0;
  5803. radius = diameter * .5;
  5804. if (! volumetric_enabled || radius == 0) {
  5805. area = 1;
  5806. }
  5807. else {
  5808. area = M_PI * pow(radius, 2);
  5809. }
  5810. return 1.0 / area;
  5811. }
  5812. void calculate_volumetric_multipliers() {
  5813. volumetric_multiplier[0] = calculate_volumetric_multiplier(filament_size[0]);
  5814. #if EXTRUDERS > 1
  5815. volumetric_multiplier[1] = calculate_volumetric_multiplier(filament_size[1]);
  5816. #if EXTRUDERS > 2
  5817. volumetric_multiplier[2] = calculate_volumetric_multiplier(filament_size[2]);
  5818. #endif
  5819. #endif
  5820. }
  5821. void delay_keep_alive(unsigned int ms)
  5822. {
  5823. for (;;) {
  5824. manage_heater();
  5825. // Manage inactivity, but don't disable steppers on timeout.
  5826. manage_inactivity(true);
  5827. lcd_update();
  5828. if (ms == 0)
  5829. break;
  5830. else if (ms >= 50) {
  5831. delay(50);
  5832. ms -= 50;
  5833. } else {
  5834. delay(ms);
  5835. ms = 0;
  5836. }
  5837. }
  5838. }
  5839. void wait_for_heater(long codenum) {
  5840. #ifdef TEMP_RESIDENCY_TIME
  5841. long residencyStart;
  5842. residencyStart = -1;
  5843. /* continue to loop until we have reached the target temp
  5844. _and_ until TEMP_RESIDENCY_TIME hasn't passed since we reached it */
  5845. while ((!cancel_heatup) && ((residencyStart == -1) ||
  5846. (residencyStart >= 0 && (((unsigned int)(millis() - residencyStart)) < (TEMP_RESIDENCY_TIME * 1000UL))))) {
  5847. #else
  5848. while (target_direction ? (isHeatingHotend(tmp_extruder)) : (isCoolingHotend(tmp_extruder) && (CooldownNoWait == false))) {
  5849. #endif //TEMP_RESIDENCY_TIME
  5850. if ((millis() - codenum) > 1000UL)
  5851. { //Print Temp Reading and remaining time every 1 second while heating up/cooling down
  5852. if (!farm_mode) {
  5853. SERIAL_PROTOCOLPGM("T:");
  5854. SERIAL_PROTOCOL_F(degHotend(tmp_extruder), 1);
  5855. SERIAL_PROTOCOLPGM(" E:");
  5856. SERIAL_PROTOCOL((int)tmp_extruder);
  5857. #ifdef TEMP_RESIDENCY_TIME
  5858. SERIAL_PROTOCOLPGM(" W:");
  5859. if (residencyStart > -1)
  5860. {
  5861. codenum = ((TEMP_RESIDENCY_TIME * 1000UL) - (millis() - residencyStart)) / 1000UL;
  5862. SERIAL_PROTOCOLLN(codenum);
  5863. }
  5864. else
  5865. {
  5866. SERIAL_PROTOCOLLN("?");
  5867. }
  5868. }
  5869. #else
  5870. SERIAL_PROTOCOLLN("");
  5871. #endif
  5872. codenum = millis();
  5873. }
  5874. manage_heater();
  5875. manage_inactivity();
  5876. lcd_update();
  5877. #ifdef TEMP_RESIDENCY_TIME
  5878. /* start/restart the TEMP_RESIDENCY_TIME timer whenever we reach target temp for the first time
  5879. or when current temp falls outside the hysteresis after target temp was reached */
  5880. if ((residencyStart == -1 && target_direction && (degHotend(tmp_extruder) >= (degTargetHotend(tmp_extruder) - TEMP_WINDOW))) ||
  5881. (residencyStart == -1 && !target_direction && (degHotend(tmp_extruder) <= (degTargetHotend(tmp_extruder) + TEMP_WINDOW))) ||
  5882. (residencyStart > -1 && labs(degHotend(tmp_extruder) - degTargetHotend(tmp_extruder)) > TEMP_HYSTERESIS))
  5883. {
  5884. residencyStart = millis();
  5885. }
  5886. #endif //TEMP_RESIDENCY_TIME
  5887. }
  5888. }
  5889. void check_babystep() {
  5890. int babystep_z;
  5891. EEPROM_read_B(EEPROM_BABYSTEP_Z, &babystep_z);
  5892. if ((babystep_z < Z_BABYSTEP_MIN) || (babystep_z > Z_BABYSTEP_MAX)) {
  5893. babystep_z = 0; //if babystep value is out of min max range, set it to 0
  5894. SERIAL_ECHOLNPGM("Z live adjust out of range. Setting to 0");
  5895. EEPROM_save_B(EEPROM_BABYSTEP_Z, &babystep_z);
  5896. lcd_show_fullscreen_message_and_wait_P(PSTR("Z live adjust out of range. Setting to 0. Click to continue."));
  5897. lcd_update_enable(true);
  5898. }
  5899. }
  5900. #ifdef DIS
  5901. void d_setup()
  5902. {
  5903. pinMode(D_DATACLOCK, INPUT_PULLUP);
  5904. pinMode(D_DATA, INPUT_PULLUP);
  5905. pinMode(D_REQUIRE, OUTPUT);
  5906. digitalWrite(D_REQUIRE, HIGH);
  5907. }
  5908. float d_ReadData()
  5909. {
  5910. int digit[13];
  5911. String mergeOutput;
  5912. float output;
  5913. digitalWrite(D_REQUIRE, HIGH);
  5914. for (int i = 0; i<13; i++)
  5915. {
  5916. for (int j = 0; j < 4; j++)
  5917. {
  5918. while (digitalRead(D_DATACLOCK) == LOW) {}
  5919. while (digitalRead(D_DATACLOCK) == HIGH) {}
  5920. bitWrite(digit[i], j, digitalRead(D_DATA));
  5921. }
  5922. }
  5923. digitalWrite(D_REQUIRE, LOW);
  5924. mergeOutput = "";
  5925. output = 0;
  5926. for (int r = 5; r <= 10; r++) //Merge digits
  5927. {
  5928. mergeOutput += digit[r];
  5929. }
  5930. output = mergeOutput.toFloat();
  5931. if (digit[4] == 8) //Handle sign
  5932. {
  5933. output *= -1;
  5934. }
  5935. for (int i = digit[11]; i > 0; i--) //Handle floating point
  5936. {
  5937. output /= 10;
  5938. }
  5939. return output;
  5940. }
  5941. void bed_analysis(float x_dimension, float y_dimension, int x_points_num, int y_points_num, float shift_x, float shift_y) {
  5942. int t1 = 0;
  5943. int t_delay = 0;
  5944. int digit[13];
  5945. int m;
  5946. char str[3];
  5947. //String mergeOutput;
  5948. char mergeOutput[15];
  5949. float output;
  5950. int mesh_point = 0; //index number of calibration point
  5951. float bed_zero_ref_x = (-22.f + X_PROBE_OFFSET_FROM_EXTRUDER); //shift between zero point on bed and target and between probe and nozzle
  5952. float bed_zero_ref_y = (-0.6f + Y_PROBE_OFFSET_FROM_EXTRUDER);
  5953. float mesh_home_z_search = 4;
  5954. float row[x_points_num];
  5955. int ix = 0;
  5956. int iy = 0;
  5957. char* filename_wldsd = "wldsd.txt";
  5958. char data_wldsd[70];
  5959. char numb_wldsd[10];
  5960. d_setup();
  5961. if (!(axis_known_position[X_AXIS] && axis_known_position[Y_AXIS] && axis_known_position[Z_AXIS])) {
  5962. // We don't know where we are! HOME!
  5963. // Push the commands to the front of the message queue in the reverse order!
  5964. // There shall be always enough space reserved for these commands.
  5965. repeatcommand_front(); // repeat G80 with all its parameters
  5966. enquecommand_front_P((PSTR("G28 W0")));
  5967. enquecommand_front_P((PSTR("G1 Z5")));
  5968. return;
  5969. }
  5970. bool custom_message_old = custom_message;
  5971. unsigned int custom_message_type_old = custom_message_type;
  5972. unsigned int custom_message_state_old = custom_message_state;
  5973. custom_message = true;
  5974. custom_message_type = 1;
  5975. custom_message_state = (x_points_num * y_points_num) + 10;
  5976. lcd_update(1);
  5977. mbl.reset();
  5978. babystep_undo();
  5979. card.openFile(filename_wldsd, false);
  5980. current_position[Z_AXIS] = mesh_home_z_search;
  5981. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[Z_AXIS] / 60, active_extruder);
  5982. int XY_AXIS_FEEDRATE = homing_feedrate[X_AXIS] / 20;
  5983. int Z_PROBE_FEEDRATE = homing_feedrate[Z_AXIS] / 60;
  5984. int Z_LIFT_FEEDRATE = homing_feedrate[Z_AXIS] / 40;
  5985. setup_for_endstop_move(false);
  5986. SERIAL_PROTOCOLPGM("Num X,Y: ");
  5987. SERIAL_PROTOCOL(x_points_num);
  5988. SERIAL_PROTOCOLPGM(",");
  5989. SERIAL_PROTOCOL(y_points_num);
  5990. SERIAL_PROTOCOLPGM("\nZ search height: ");
  5991. SERIAL_PROTOCOL(mesh_home_z_search);
  5992. SERIAL_PROTOCOLPGM("\nDimension X,Y: ");
  5993. SERIAL_PROTOCOL(x_dimension);
  5994. SERIAL_PROTOCOLPGM(",");
  5995. SERIAL_PROTOCOL(y_dimension);
  5996. SERIAL_PROTOCOLLNPGM("\nMeasured points:");
  5997. while (mesh_point != x_points_num * y_points_num) {
  5998. ix = mesh_point % x_points_num; // from 0 to MESH_NUM_X_POINTS - 1
  5999. iy = mesh_point / x_points_num;
  6000. if (iy & 1) ix = (x_points_num - 1) - ix; // Zig zag
  6001. float z0 = 0.f;
  6002. current_position[Z_AXIS] = mesh_home_z_search;
  6003. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], Z_LIFT_FEEDRATE, active_extruder);
  6004. st_synchronize();
  6005. current_position[X_AXIS] = 13.f + ix * (x_dimension / (x_points_num - 1)) - bed_zero_ref_x + shift_x;
  6006. current_position[Y_AXIS] = 6.4f + iy * (y_dimension / (y_points_num - 1)) - bed_zero_ref_y + shift_y;
  6007. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], XY_AXIS_FEEDRATE, active_extruder);
  6008. st_synchronize();
  6009. if (!find_bed_induction_sensor_point_z(-10.f)) { //if we have data from z calibration max allowed difference is 1mm for each point, if we dont have data max difference is 10mm from initial point
  6010. break;
  6011. card.closefile();
  6012. }
  6013. //memset(numb_wldsd, 0, sizeof(numb_wldsd));
  6014. //dtostrf(d_ReadData(), 8, 5, numb_wldsd);
  6015. //strcat(data_wldsd, numb_wldsd);
  6016. //MYSERIAL.println(data_wldsd);
  6017. //delay(1000);
  6018. //delay(3000);
  6019. //t1 = millis();
  6020. //while (digitalRead(D_DATACLOCK) == LOW) {}
  6021. //while (digitalRead(D_DATACLOCK) == HIGH) {}
  6022. memset(digit, 0, sizeof(digit));
  6023. //cli();
  6024. digitalWrite(D_REQUIRE, LOW);
  6025. for (int i = 0; i<13; i++)
  6026. {
  6027. //t1 = millis();
  6028. for (int j = 0; j < 4; j++)
  6029. {
  6030. while (digitalRead(D_DATACLOCK) == LOW) {}
  6031. while (digitalRead(D_DATACLOCK) == HIGH) {}
  6032. bitWrite(digit[i], j, digitalRead(D_DATA));
  6033. }
  6034. //t_delay = (millis() - t1);
  6035. //SERIAL_PROTOCOLPGM(" ");
  6036. //SERIAL_PROTOCOL_F(t_delay, 5);
  6037. //SERIAL_PROTOCOLPGM(" ");
  6038. }
  6039. //sei();
  6040. digitalWrite(D_REQUIRE, HIGH);
  6041. mergeOutput[0] = '\0';
  6042. output = 0;
  6043. for (int r = 5; r <= 10; r++) //Merge digits
  6044. {
  6045. sprintf(str, "%d", digit[r]);
  6046. strcat(mergeOutput, str);
  6047. }
  6048. output = atof(mergeOutput);
  6049. if (digit[4] == 8) //Handle sign
  6050. {
  6051. output *= -1;
  6052. }
  6053. for (int i = digit[11]; i > 0; i--) //Handle floating point
  6054. {
  6055. output *= 0.1;
  6056. }
  6057. //output = d_ReadData();
  6058. //row[ix] = current_position[Z_AXIS];
  6059. memset(data_wldsd, 0, sizeof(data_wldsd));
  6060. for (int i = 0; i <3; i++) {
  6061. memset(numb_wldsd, 0, sizeof(numb_wldsd));
  6062. dtostrf(current_position[i], 8, 5, numb_wldsd);
  6063. strcat(data_wldsd, numb_wldsd);
  6064. strcat(data_wldsd, ";");
  6065. }
  6066. memset(numb_wldsd, 0, sizeof(numb_wldsd));
  6067. dtostrf(output, 8, 5, numb_wldsd);
  6068. strcat(data_wldsd, numb_wldsd);
  6069. //strcat(data_wldsd, ";");
  6070. card.write_command(data_wldsd);
  6071. //row[ix] = d_ReadData();
  6072. row[ix] = output; // current_position[Z_AXIS];
  6073. if (iy % 2 == 1 ? ix == 0 : ix == x_points_num - 1) {
  6074. for (int i = 0; i < x_points_num; i++) {
  6075. SERIAL_PROTOCOLPGM(" ");
  6076. SERIAL_PROTOCOL_F(row[i], 5);
  6077. }
  6078. SERIAL_PROTOCOLPGM("\n");
  6079. }
  6080. custom_message_state--;
  6081. mesh_point++;
  6082. lcd_update(1);
  6083. }
  6084. card.closefile();
  6085. }
  6086. #endif
  6087. void temp_compensation_start() {
  6088. custom_message = true;
  6089. custom_message_type = 5;
  6090. custom_message_state = PINDA_HEAT_T + 1;
  6091. lcd_update(2);
  6092. if (degHotend(active_extruder) > EXTRUDE_MINTEMP) {
  6093. current_position[E_AXIS] -= DEFAULT_RETRACTION;
  6094. }
  6095. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400, active_extruder);
  6096. current_position[X_AXIS] = PINDA_PREHEAT_X;
  6097. current_position[Y_AXIS] = PINDA_PREHEAT_Y;
  6098. current_position[Z_AXIS] = PINDA_PREHEAT_Z;
  6099. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  6100. st_synchronize();
  6101. while (fabs(degBed() - target_temperature_bed) > 1) delay_keep_alive(1000);
  6102. for (int i = 0; i < PINDA_HEAT_T; i++) {
  6103. delay_keep_alive(1000);
  6104. custom_message_state = PINDA_HEAT_T - i;
  6105. if (custom_message_state == 99 || custom_message_state == 9) lcd_update(2); //force whole display redraw if number of digits changed
  6106. else lcd_update(1);
  6107. }
  6108. custom_message_type = 0;
  6109. custom_message_state = 0;
  6110. custom_message = false;
  6111. }
  6112. void temp_compensation_apply() {
  6113. int i_add;
  6114. int compensation_value;
  6115. int z_shift = 0;
  6116. float z_shift_mm;
  6117. if (calibration_status() == CALIBRATION_STATUS_CALIBRATED) {
  6118. if (target_temperature_bed % 10 == 0 && target_temperature_bed >= 60 && target_temperature_bed <= 100) {
  6119. i_add = (target_temperature_bed - 60) / 10;
  6120. EEPROM_read_B(EEPROM_PROBE_TEMP_SHIFT + i_add * 2, &z_shift);
  6121. z_shift_mm = z_shift / axis_steps_per_unit[Z_AXIS];
  6122. }else {
  6123. //interpolation
  6124. z_shift_mm = temp_comp_interpolation(target_temperature_bed) / axis_steps_per_unit[Z_AXIS];
  6125. }
  6126. SERIAL_PROTOCOLPGM("\n");
  6127. SERIAL_PROTOCOLPGM("Z shift applied:");
  6128. MYSERIAL.print(z_shift_mm);
  6129. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS] - z_shift_mm, current_position[E_AXIS], homing_feedrate[Z_AXIS] / 40, active_extruder);
  6130. st_synchronize();
  6131. plan_set_z_position(current_position[Z_AXIS]);
  6132. }
  6133. else {
  6134. //we have no temp compensation data
  6135. }
  6136. }
  6137. float temp_comp_interpolation(float inp_temperature) {
  6138. //cubic spline interpolation
  6139. int n, i, j, k;
  6140. float h[10], a, b, c, d, sum, s[10] = { 0 }, x[10], F[10], f[10], m[10][10] = { 0 }, temp;
  6141. int shift[10];
  6142. int temp_C[10];
  6143. n = 6; //number of measured points
  6144. shift[0] = 0;
  6145. for (i = 0; i < n; i++) {
  6146. if (i>0) EEPROM_read_B(EEPROM_PROBE_TEMP_SHIFT + (i-1) * 2, &shift[i]); //read shift in steps from EEPROM
  6147. temp_C[i] = 50 + i * 10; //temperature in C
  6148. #ifdef PINDA_THERMISTOR
  6149. temp_C[i] = 35 + i * 5; //temperature in C
  6150. #else
  6151. temp_C[i] = 50 + i * 10; //temperature in C
  6152. #endif
  6153. x[i] = (float)temp_C[i];
  6154. f[i] = (float)shift[i];
  6155. }
  6156. if (inp_temperature < x[0]) return 0;
  6157. for (i = n - 1; i>0; i--) {
  6158. F[i] = (f[i] - f[i - 1]) / (x[i] - x[i - 1]);
  6159. h[i - 1] = x[i] - x[i - 1];
  6160. }
  6161. //*********** formation of h, s , f matrix **************
  6162. for (i = 1; i<n - 1; i++) {
  6163. m[i][i] = 2 * (h[i - 1] + h[i]);
  6164. if (i != 1) {
  6165. m[i][i - 1] = h[i - 1];
  6166. m[i - 1][i] = h[i - 1];
  6167. }
  6168. m[i][n - 1] = 6 * (F[i + 1] - F[i]);
  6169. }
  6170. //*********** forward elimination **************
  6171. for (i = 1; i<n - 2; i++) {
  6172. temp = (m[i + 1][i] / m[i][i]);
  6173. for (j = 1; j <= n - 1; j++)
  6174. m[i + 1][j] -= temp*m[i][j];
  6175. }
  6176. //*********** backward substitution *********
  6177. for (i = n - 2; i>0; i--) {
  6178. sum = 0;
  6179. for (j = i; j <= n - 2; j++)
  6180. sum += m[i][j] * s[j];
  6181. s[i] = (m[i][n - 1] - sum) / m[i][i];
  6182. }
  6183. for (i = 0; i<n - 1; i++)
  6184. if ((x[i] <= inp_temperature && inp_temperature <= x[i + 1]) || (i == n-2 && inp_temperature > x[i + 1])) {
  6185. a = (s[i + 1] - s[i]) / (6 * h[i]);
  6186. b = s[i] / 2;
  6187. c = (f[i + 1] - f[i]) / h[i] - (2 * h[i] * s[i] + s[i + 1] * h[i]) / 6;
  6188. d = f[i];
  6189. sum = a*pow((inp_temperature - x[i]), 3) + b*pow((inp_temperature - x[i]), 2) + c*(inp_temperature - x[i]) + d;
  6190. }
  6191. return sum;
  6192. }
  6193. #ifdef PINDA_THERMISTOR
  6194. float temp_compensation_pinda_thermistor_offset(float temperature_pinda)
  6195. {
  6196. if (!temp_cal_active) return 0;
  6197. if (!calibration_status_pinda()) return 0;
  6198. return temp_comp_interpolation(temperature_pinda) / axis_steps_per_unit[Z_AXIS];
  6199. }
  6200. #endif //PINDA_THERMISTOR
  6201. void long_pause() //long pause print
  6202. {
  6203. st_synchronize();
  6204. //save currently set parameters to global variables
  6205. saved_feedmultiply = feedmultiply;
  6206. HotendTempBckp = degTargetHotend(active_extruder);
  6207. fanSpeedBckp = fanSpeed;
  6208. start_pause_print = millis();
  6209. //save position
  6210. pause_lastpos[X_AXIS] = current_position[X_AXIS];
  6211. pause_lastpos[Y_AXIS] = current_position[Y_AXIS];
  6212. pause_lastpos[Z_AXIS] = current_position[Z_AXIS];
  6213. pause_lastpos[E_AXIS] = current_position[E_AXIS];
  6214. //retract
  6215. current_position[E_AXIS] -= DEFAULT_RETRACTION;
  6216. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400, active_extruder);
  6217. //lift z
  6218. current_position[Z_AXIS] += Z_PAUSE_LIFT;
  6219. if (current_position[Z_AXIS] > Z_MAX_POS) current_position[Z_AXIS] = Z_MAX_POS;
  6220. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 15, active_extruder);
  6221. //set nozzle target temperature to 0
  6222. setTargetHotend(0, 0);
  6223. setTargetHotend(0, 1);
  6224. setTargetHotend(0, 2);
  6225. //Move XY to side
  6226. current_position[X_AXIS] = X_PAUSE_POS;
  6227. current_position[Y_AXIS] = Y_PAUSE_POS;
  6228. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 50, active_extruder);
  6229. // Turn off the print fan
  6230. fanSpeed = 0;
  6231. st_synchronize();
  6232. }
  6233. void serialecho_temperatures() {
  6234. float tt = degHotend(active_extruder);
  6235. SERIAL_PROTOCOLPGM("T:");
  6236. SERIAL_PROTOCOL(tt);
  6237. SERIAL_PROTOCOLPGM(" E:");
  6238. SERIAL_PROTOCOL((int)active_extruder);
  6239. SERIAL_PROTOCOLPGM(" B:");
  6240. SERIAL_PROTOCOL_F(degBed(), 1);
  6241. SERIAL_PROTOCOLLN("");
  6242. }
  6243. extern uint32_t sdpos_atomic;
  6244. void uvlo_()
  6245. {
  6246. unsigned long time_start = millis();
  6247. bool sd_print = card.sdprinting;
  6248. // Conserve power as soon as possible.
  6249. disable_x();
  6250. disable_y();
  6251. tmc2130_set_current_h(Z_AXIS, 12);
  6252. tmc2130_set_current_r(Z_AXIS, 12);
  6253. tmc2130_set_current_h(E_AXIS, 20);
  6254. tmc2130_set_current_r(E_AXIS, 20);
  6255. // Indicate that the interrupt has been triggered.
  6256. SERIAL_ECHOLNPGM("UVLO");
  6257. // Read out the current Z motor microstep counter. This will be later used
  6258. // for reaching the zero full step before powering off.
  6259. uint16_t z_microsteps = tmc2130_rd_MSCNT(Z_TMC2130_CS);
  6260. // Calculate the file position, from which to resume this print.
  6261. long sd_position = sdpos_atomic; //atomic sd position of last command added in queue
  6262. {
  6263. uint16_t sdlen_planner = planner_calc_sd_length(); //length of sd commands in planner
  6264. sd_position -= sdlen_planner;
  6265. uint16_t sdlen_cmdqueue = cmdqueue_calc_sd_length(); //length of sd commands in cmdqueue
  6266. sd_position -= sdlen_cmdqueue;
  6267. if (sd_position < 0) sd_position = 0;
  6268. }
  6269. // Backup the feedrate in mm/min.
  6270. int feedrate_bckp = blocks_queued() ? (block_buffer[block_buffer_tail].nominal_speed * 60.f) : feedrate;
  6271. // After this call, the planner queue is emptied and the current_position is set to a current logical coordinate.
  6272. // The logical coordinate will likely differ from the machine coordinate if the skew calibration and mesh bed leveling
  6273. // are in action.
  6274. planner_abort_hard();
  6275. // Store the current extruder position.
  6276. eeprom_update_float((float*)(EEPROM_UVLO_CURRENT_POSITION_E), st_get_position_mm(E_AXIS));
  6277. eeprom_update_byte((uint8_t*)EEPROM_UVLO_E_ABS, axis_relative_modes[3]?0:1);
  6278. // Clean the input command queue.
  6279. cmdqueue_reset();
  6280. card.sdprinting = false;
  6281. // card.closefile();
  6282. // Enable stepper driver interrupt to move Z axis.
  6283. // This should be fine as the planner and command queues are empty and the SD card printing is disabled.
  6284. //FIXME one may want to disable serial lines at this point of time to avoid interfering with the command queue,
  6285. // though it should not happen that the command queue is touched as the plan_buffer_line always succeed without blocking.
  6286. sei();
  6287. plan_buffer_line(
  6288. current_position[X_AXIS],
  6289. current_position[Y_AXIS],
  6290. current_position[Z_AXIS],
  6291. current_position[E_AXIS] - DEFAULT_RETRACTION,
  6292. 400, active_extruder);
  6293. plan_buffer_line(
  6294. current_position[X_AXIS],
  6295. current_position[Y_AXIS],
  6296. current_position[Z_AXIS] + UVLO_Z_AXIS_SHIFT + float((1024 - z_microsteps + 7) >> 4) / axis_steps_per_unit[Z_AXIS],
  6297. current_position[E_AXIS] - DEFAULT_RETRACTION,
  6298. 40, active_extruder);
  6299. // Move Z up to the next 0th full step.
  6300. // Write the file position.
  6301. eeprom_update_dword((uint32_t*)(EEPROM_FILE_POSITION), sd_position);
  6302. // Store the mesh bed leveling offsets. This is 2*9=18 bytes, which takes 18*3.4us=52us in worst case.
  6303. for (int8_t mesh_point = 0; mesh_point < 9; ++ mesh_point) {
  6304. uint8_t ix = mesh_point % MESH_MEAS_NUM_X_POINTS; // from 0 to MESH_NUM_X_POINTS - 1
  6305. uint8_t iy = mesh_point / MESH_MEAS_NUM_X_POINTS;
  6306. // Scale the z value to 1u resolution.
  6307. int16_t v = mbl.active ? int16_t(floor(mbl.z_values[iy*3][ix*3] * 1000.f + 0.5f)) : 0;
  6308. eeprom_update_word((uint16_t*)(EEPROM_UVLO_MESH_BED_LEVELING+2*mesh_point), *reinterpret_cast<uint16_t*>(&v));
  6309. }
  6310. // Read out the current Z motor microstep counter. This will be later used
  6311. // for reaching the zero full step before powering off.
  6312. eeprom_update_word((uint16_t*)(EEPROM_UVLO_Z_MICROSTEPS), z_microsteps);
  6313. // Store the current position.
  6314. eeprom_update_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 0), current_position[X_AXIS]);
  6315. eeprom_update_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 4), current_position[Y_AXIS]);
  6316. eeprom_update_float((float*)(EEPROM_UVLO_CURRENT_POSITION_Z), current_position[Z_AXIS]);
  6317. // Store the current feed rate, temperatures and fan speed.
  6318. EEPROM_save_B(EEPROM_UVLO_FEEDRATE, &feedrate_bckp);
  6319. eeprom_update_byte((uint8_t*)EEPROM_UVLO_TARGET_HOTEND, target_temperature[active_extruder]);
  6320. eeprom_update_byte((uint8_t*)EEPROM_UVLO_TARGET_BED, target_temperature_bed);
  6321. eeprom_update_byte((uint8_t*)EEPROM_UVLO_FAN_SPEED, fanSpeed);
  6322. // Finaly store the "power outage" flag.
  6323. if(sd_print) eeprom_update_byte((uint8_t*)EEPROM_UVLO, 1);
  6324. st_synchronize();
  6325. SERIAL_ECHOPGM("stps");
  6326. MYSERIAL.println(tmc2130_rd_MSCNT(Z_TMC2130_CS));
  6327. #if 0
  6328. // Move the print head to the side of the print until all the power stored in the power supply capacitors is depleted.
  6329. current_position[X_AXIS] = (current_position[X_AXIS] < 0.5f * (X_MIN_POS + X_MAX_POS)) ? X_MIN_POS : X_MAX_POS;
  6330. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 500, active_extruder);
  6331. st_synchronize();
  6332. #endif
  6333. disable_z();
  6334. // Increment power failure counter
  6335. uint8_t power_count = eeprom_read_byte((uint8_t*)EEPROM_POWER_COUNT);
  6336. power_count++;
  6337. eeprom_update_byte((uint8_t*)EEPROM_POWER_COUNT, power_count);
  6338. SERIAL_ECHOLNPGM("UVLO - end");
  6339. MYSERIAL.println(millis() - time_start);
  6340. cli();
  6341. while(1);
  6342. }
  6343. void setup_fan_interrupt() {
  6344. //INT7
  6345. DDRE &= ~(1 << 7); //input pin
  6346. PORTE &= ~(1 << 7); //no internal pull-up
  6347. //start with sensing rising edge
  6348. EICRB &= ~(1 << 6);
  6349. EICRB |= (1 << 7);
  6350. //enable INT7 interrupt
  6351. EIMSK |= (1 << 7);
  6352. }
  6353. ISR(INT7_vect) {
  6354. //measuring speed now works for fanSpeed > 18 (approximately), which is sufficient because MIN_PRINT_FAN_SPEED is higher
  6355. if (fanSpeed < MIN_PRINT_FAN_SPEED) return;
  6356. if ((1 << 6) & EICRB) { //interrupt was triggered by rising edge
  6357. t_fan_rising_edge = millis();
  6358. }
  6359. else { //interrupt was triggered by falling edge
  6360. if ((millis() - t_fan_rising_edge) >= FAN_PULSE_WIDTH_LIMIT) {//this pulse was from sensor and not from pwm
  6361. fan_edge_counter[1] += 2; //we are currently counting all edges so lets count two edges for one pulse
  6362. }
  6363. }
  6364. EICRB ^= (1 << 6); //change edge
  6365. }
  6366. void setup_uvlo_interrupt() {
  6367. DDRE &= ~(1 << 4); //input pin
  6368. PORTE &= ~(1 << 4); //no internal pull-up
  6369. //sensing falling edge
  6370. EICRB |= (1 << 0);
  6371. EICRB &= ~(1 << 1);
  6372. //enable INT4 interrupt
  6373. EIMSK |= (1 << 4);
  6374. }
  6375. ISR(INT4_vect) {
  6376. EIMSK &= ~(1 << 4); //disable INT4 interrupt to make sure that this code will be executed just once
  6377. SERIAL_ECHOLNPGM("INT4");
  6378. if (IS_SD_PRINTING) uvlo_();
  6379. }
  6380. void recover_print(uint8_t automatic) {
  6381. char cmd[30];
  6382. lcd_update_enable(true);
  6383. lcd_update(2);
  6384. lcd_setstatuspgm(MSG_RECOVERING_PRINT);
  6385. recover_machine_state_after_power_panic();
  6386. // Set the target bed and nozzle temperatures.
  6387. sprintf_P(cmd, PSTR("M104 S%d"), target_temperature[active_extruder]);
  6388. enquecommand(cmd);
  6389. sprintf_P(cmd, PSTR("M140 S%d"), target_temperature_bed);
  6390. enquecommand(cmd);
  6391. // Lift the print head, so one may remove the excess priming material.
  6392. if (current_position[Z_AXIS] < 25)
  6393. enquecommand_P(PSTR("G1 Z25 F800"));
  6394. // Home X and Y axes. Homing just X and Y shall not touch the babystep and the world2machine transformation status.
  6395. enquecommand_P(PSTR("G28 X Y"));
  6396. // Set the target bed and nozzle temperatures and wait.
  6397. sprintf_P(cmd, PSTR("M109 S%d"), target_temperature[active_extruder]);
  6398. enquecommand(cmd);
  6399. sprintf_P(cmd, PSTR("M190 S%d"), target_temperature_bed);
  6400. enquecommand(cmd);
  6401. enquecommand_P(PSTR("M83")); //E axis relative mode
  6402. //enquecommand_P(PSTR("G1 E5 F120")); //Extrude some filament to stabilize pessure
  6403. // If not automatically recoreverd (long power loss), extrude extra filament to stabilize
  6404. if(automatic == 0){
  6405. enquecommand_P(PSTR("G1 E5 F120")); //Extrude some filament to stabilize pessure
  6406. }
  6407. enquecommand_P(PSTR("G1 E" STRINGIFY(-DEFAULT_RETRACTION)" F480"));
  6408. // Mark the power panic status as inactive.
  6409. eeprom_update_byte((uint8_t*)EEPROM_UVLO, 0);
  6410. /*while ((abs(degHotend(0)- target_temperature[0])>5) || (abs(degBed() -target_temperature_bed)>3)) { //wait for heater and bed to reach target temp
  6411. delay_keep_alive(1000);
  6412. }*/
  6413. SERIAL_ECHOPGM("After waiting for temp:");
  6414. SERIAL_ECHOPGM("Current position X_AXIS:");
  6415. MYSERIAL.println(current_position[X_AXIS]);
  6416. SERIAL_ECHOPGM("Current position Y_AXIS:");
  6417. MYSERIAL.println(current_position[Y_AXIS]);
  6418. // Restart the print.
  6419. restore_print_from_eeprom();
  6420. SERIAL_ECHOPGM("current_position[Z_AXIS]:");
  6421. MYSERIAL.print(current_position[Z_AXIS]);
  6422. SERIAL_ECHOPGM("current_position[E_AXIS]:");
  6423. MYSERIAL.print(current_position[E_AXIS]);
  6424. }
  6425. void recover_machine_state_after_power_panic()
  6426. {
  6427. char cmd[30];
  6428. // 1) Recover the logical cordinates at the time of the power panic.
  6429. // The logical XY coordinates are needed to recover the machine Z coordinate corrected by the mesh bed leveling.
  6430. current_position[X_AXIS] = eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 0));
  6431. current_position[Y_AXIS] = eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 4));
  6432. // Recover the logical coordinate of the Z axis at the time of the power panic.
  6433. // The current position after power panic is moved to the next closest 0th full step.
  6434. current_position[Z_AXIS] = eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION_Z)) +
  6435. UVLO_Z_AXIS_SHIFT + float((1024 - eeprom_read_word((uint16_t*)(EEPROM_UVLO_Z_MICROSTEPS)) + 7) >> 4) / axis_steps_per_unit[Z_AXIS];
  6436. if (eeprom_read_byte((uint8_t*)EEPROM_UVLO_E_ABS)) {
  6437. current_position[E_AXIS] = eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION_E));
  6438. sprintf_P(cmd, PSTR("G92 E"));
  6439. dtostrf(current_position[E_AXIS], 6, 3, cmd + strlen(cmd));
  6440. enquecommand(cmd);
  6441. }
  6442. memcpy(destination, current_position, sizeof(destination));
  6443. SERIAL_ECHOPGM("recover_machine_state_after_power_panic, initial ");
  6444. print_world_coordinates();
  6445. // 2) Initialize the logical to physical coordinate system transformation.
  6446. world2machine_initialize();
  6447. // 3) Restore the mesh bed leveling offsets. This is 2*9=18 bytes, which takes 18*3.4us=52us in worst case.
  6448. mbl.active = false;
  6449. for (int8_t mesh_point = 0; mesh_point < 9; ++ mesh_point) {
  6450. uint8_t ix = mesh_point % MESH_MEAS_NUM_X_POINTS; // from 0 to MESH_NUM_X_POINTS - 1
  6451. uint8_t iy = mesh_point / MESH_MEAS_NUM_X_POINTS;
  6452. // Scale the z value to 10u resolution.
  6453. int16_t v;
  6454. eeprom_read_block(&v, (void*)(EEPROM_UVLO_MESH_BED_LEVELING+2*mesh_point), 2);
  6455. if (v != 0)
  6456. mbl.active = true;
  6457. mbl.z_values[iy][ix] = float(v) * 0.001f;
  6458. }
  6459. if (mbl.active)
  6460. mbl.upsample_3x3();
  6461. SERIAL_ECHOPGM("recover_machine_state_after_power_panic, initial ");
  6462. print_mesh_bed_leveling_table();
  6463. // 4) Load the baby stepping value, which is expected to be active at the time of power panic.
  6464. // The baby stepping value is used to reset the physical Z axis when rehoming the Z axis.
  6465. babystep_load();
  6466. // 5) Set the physical positions from the logical positions using the world2machine transformation and the active bed leveling.
  6467. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  6468. // 6) Power up the motors, mark their positions as known.
  6469. //FIXME Verfiy, whether the X and Y axes should be powered up here, as they will later be re-homed anyway.
  6470. axis_known_position[X_AXIS] = true; enable_x();
  6471. axis_known_position[Y_AXIS] = true; enable_y();
  6472. axis_known_position[Z_AXIS] = true; enable_z();
  6473. SERIAL_ECHOPGM("recover_machine_state_after_power_panic, initial ");
  6474. print_physical_coordinates();
  6475. // 7) Recover the target temperatures.
  6476. target_temperature[active_extruder] = eeprom_read_byte((uint8_t*)EEPROM_UVLO_TARGET_HOTEND);
  6477. target_temperature_bed = eeprom_read_byte((uint8_t*)EEPROM_UVLO_TARGET_BED);
  6478. }
  6479. void restore_print_from_eeprom() {
  6480. float x_rec, y_rec, z_pos;
  6481. int feedrate_rec;
  6482. uint8_t fan_speed_rec;
  6483. char cmd[30];
  6484. char* c;
  6485. char filename[13];
  6486. uint8_t depth = 0;
  6487. char dir_name[9];
  6488. fan_speed_rec = eeprom_read_byte((uint8_t*)EEPROM_UVLO_FAN_SPEED);
  6489. EEPROM_read_B(EEPROM_UVLO_FEEDRATE, &feedrate_rec);
  6490. SERIAL_ECHOPGM("Feedrate:");
  6491. MYSERIAL.println(feedrate_rec);
  6492. depth = eeprom_read_byte((uint8_t*)EEPROM_DIR_DEPTH);
  6493. MYSERIAL.println(int(depth));
  6494. for (int i = 0; i < depth; i++) {
  6495. for (int j = 0; j < 8; j++) {
  6496. dir_name[j] = eeprom_read_byte((uint8_t*)EEPROM_DIRS + j + 8 * i);
  6497. }
  6498. dir_name[8] = '\0';
  6499. MYSERIAL.println(dir_name);
  6500. card.chdir(dir_name);
  6501. }
  6502. for (int i = 0; i < 8; i++) {
  6503. filename[i] = eeprom_read_byte((uint8_t*)EEPROM_FILENAME + i);
  6504. }
  6505. filename[8] = '\0';
  6506. MYSERIAL.print(filename);
  6507. strcat_P(filename, PSTR(".gco"));
  6508. sprintf_P(cmd, PSTR("M23 %s"), filename);
  6509. for (c = &cmd[4]; *c; c++)
  6510. *c = tolower(*c);
  6511. enquecommand(cmd);
  6512. uint32_t position = eeprom_read_dword((uint32_t*)(EEPROM_FILE_POSITION));
  6513. SERIAL_ECHOPGM("Position read from eeprom:");
  6514. MYSERIAL.println(position);
  6515. // E axis relative mode.
  6516. enquecommand_P(PSTR("M83"));
  6517. // Move to the XY print position in logical coordinates, where the print has been killed.
  6518. strcpy_P(cmd, PSTR("G1 X")); strcat(cmd, ftostr32(eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 0))));
  6519. strcat_P(cmd, PSTR(" Y")); strcat(cmd, ftostr32(eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 4))));
  6520. strcat_P(cmd, PSTR(" F2000"));
  6521. enquecommand(cmd);
  6522. // Move the Z axis down to the print, in logical coordinates.
  6523. strcpy_P(cmd, PSTR("G1 Z")); strcat(cmd, ftostr32(eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION_Z))));
  6524. enquecommand(cmd);
  6525. // Unretract.
  6526. enquecommand_P(PSTR("G1 E" STRINGIFY(DEFAULT_RETRACTION)" F480"));
  6527. // Set the feedrate saved at the power panic.
  6528. sprintf_P(cmd, PSTR("G1 F%d"), feedrate_rec);
  6529. enquecommand(cmd);
  6530. if (eeprom_read_byte((uint8_t*)EEPROM_UVLO_E_ABS))
  6531. {
  6532. float extruder_abs_pos = eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION_E));
  6533. enquecommand_P(PSTR("M82")); //E axis abslute mode
  6534. }
  6535. // Set the fan speed saved at the power panic.
  6536. strcpy_P(cmd, PSTR("M106 S"));
  6537. strcat(cmd, itostr3(int(fan_speed_rec)));
  6538. enquecommand(cmd);
  6539. // Set a position in the file.
  6540. sprintf_P(cmd, PSTR("M26 S%lu"), position);
  6541. enquecommand(cmd);
  6542. // Start SD print.
  6543. enquecommand_P(PSTR("M24"));
  6544. }
  6545. ////////////////////////////////////////////////////////////////////////////////
  6546. // new save/restore printing
  6547. //extern uint32_t sdpos_atomic;
  6548. bool saved_printing = false;
  6549. uint32_t saved_sdpos = 0;
  6550. float saved_pos[4] = {0, 0, 0, 0};
  6551. // Feedrate hopefully derived from an active block of the planner at the time the print has been canceled, in mm/min.
  6552. float saved_feedrate2 = 0;
  6553. uint8_t saved_active_extruder = 0;
  6554. bool saved_extruder_under_pressure = false;
  6555. void stop_and_save_print_to_ram(float z_move, float e_move)
  6556. {
  6557. if (saved_printing) return;
  6558. cli();
  6559. unsigned char nplanner_blocks = number_of_blocks();
  6560. saved_sdpos = sdpos_atomic; //atomic sd position of last command added in queue
  6561. uint16_t sdlen_planner = planner_calc_sd_length(); //length of sd commands in planner
  6562. saved_sdpos -= sdlen_planner;
  6563. uint16_t sdlen_cmdqueue = cmdqueue_calc_sd_length(); //length of sd commands in cmdqueue
  6564. saved_sdpos -= sdlen_cmdqueue;
  6565. #if 0
  6566. SERIAL_ECHOPGM("SDPOS_ATOMIC="); MYSERIAL.println(sdpos_atomic, DEC);
  6567. SERIAL_ECHOPGM("SDPOS="); MYSERIAL.println(card.get_sdpos(), DEC);
  6568. SERIAL_ECHOPGM("SDLEN_PLAN="); MYSERIAL.println(sdlen_planner, DEC);
  6569. SERIAL_ECHOPGM("SDLEN_CMDQ="); MYSERIAL.println(sdlen_cmdqueue, DEC);
  6570. SERIAL_ECHOPGM("PLANNERBLOCKS="); MYSERIAL.println(int(nplanner_blocks), DEC);
  6571. SERIAL_ECHOPGM("SDSAVED="); MYSERIAL.println(saved_sdpos, DEC);
  6572. SERIAL_ECHOPGM("SDFILELEN="); MYSERIAL.println(card.fileSize(), DEC);
  6573. {
  6574. card.setIndex(saved_sdpos);
  6575. SERIAL_ECHOLNPGM("Content of planner buffer: ");
  6576. for (unsigned int idx = 0; idx < sdlen_planner; ++ idx)
  6577. MYSERIAL.print(char(card.get()));
  6578. SERIAL_ECHOLNPGM("Content of command buffer: ");
  6579. for (unsigned int idx = 0; idx < sdlen_cmdqueue; ++ idx)
  6580. MYSERIAL.print(char(card.get()));
  6581. SERIAL_ECHOLNPGM("End of command buffer");
  6582. }
  6583. {
  6584. // Print the content of the planner buffer, line by line:
  6585. card.setIndex(saved_sdpos);
  6586. int8_t iline = 0;
  6587. for (unsigned char idx = block_buffer_tail; idx != block_buffer_head; idx = (idx + 1) & (BLOCK_BUFFER_SIZE - 1), ++ iline) {
  6588. SERIAL_ECHOPGM("Planner line (from file): ");
  6589. MYSERIAL.print(int(iline), DEC);
  6590. SERIAL_ECHOPGM(", length: ");
  6591. MYSERIAL.print(block_buffer[idx].sdlen, DEC);
  6592. SERIAL_ECHOPGM(", steps: (");
  6593. MYSERIAL.print(block_buffer[idx].steps_x, DEC);
  6594. SERIAL_ECHOPGM(",");
  6595. MYSERIAL.print(block_buffer[idx].steps_y, DEC);
  6596. SERIAL_ECHOPGM(",");
  6597. MYSERIAL.print(block_buffer[idx].steps_z, DEC);
  6598. SERIAL_ECHOPGM(",");
  6599. MYSERIAL.print(block_buffer[idx].steps_e, DEC);
  6600. SERIAL_ECHOPGM("), events: ");
  6601. MYSERIAL.println(block_buffer[idx].step_event_count, DEC);
  6602. for (int len = block_buffer[idx].sdlen; len > 0; -- len)
  6603. MYSERIAL.print(char(card.get()));
  6604. }
  6605. }
  6606. {
  6607. // Print the content of the command buffer, line by line:
  6608. int8_t iline = 0;
  6609. union {
  6610. struct {
  6611. char lo;
  6612. char hi;
  6613. } lohi;
  6614. uint16_t value;
  6615. } sdlen_single;
  6616. int _bufindr = bufindr;
  6617. for (int _buflen = buflen; _buflen > 0; ++ iline) {
  6618. if (cmdbuffer[_bufindr] == CMDBUFFER_CURRENT_TYPE_SDCARD) {
  6619. sdlen_single.lohi.lo = cmdbuffer[_bufindr + 1];
  6620. sdlen_single.lohi.hi = cmdbuffer[_bufindr + 2];
  6621. }
  6622. SERIAL_ECHOPGM("Buffer line (from buffer): ");
  6623. MYSERIAL.print(int(iline), DEC);
  6624. SERIAL_ECHOPGM(", type: ");
  6625. MYSERIAL.print(int(cmdbuffer[_bufindr]), DEC);
  6626. SERIAL_ECHOPGM(", len: ");
  6627. MYSERIAL.println(sdlen_single.value, DEC);
  6628. // Print the content of the buffer line.
  6629. MYSERIAL.println(cmdbuffer + _bufindr + CMDHDRSIZE);
  6630. SERIAL_ECHOPGM("Buffer line (from file): ");
  6631. MYSERIAL.print(int(iline), DEC);
  6632. MYSERIAL.println(int(iline), DEC);
  6633. for (; sdlen_single.value > 0; -- sdlen_single.value)
  6634. MYSERIAL.print(char(card.get()));
  6635. if (-- _buflen == 0)
  6636. break;
  6637. // First skip the current command ID and iterate up to the end of the string.
  6638. for (_bufindr += CMDHDRSIZE; cmdbuffer[_bufindr] != 0; ++ _bufindr) ;
  6639. // Second, skip the end of string null character and iterate until a nonzero command ID is found.
  6640. for (++ _bufindr; _bufindr < sizeof(cmdbuffer) && cmdbuffer[_bufindr] == 0; ++ _bufindr) ;
  6641. // If the end of the buffer was empty,
  6642. if (_bufindr == sizeof(cmdbuffer)) {
  6643. // skip to the start and find the nonzero command.
  6644. for (_bufindr = 0; cmdbuffer[_bufindr] == 0; ++ _bufindr) ;
  6645. }
  6646. }
  6647. }
  6648. #endif
  6649. #if 0
  6650. saved_feedrate2 = feedrate; //save feedrate
  6651. #else
  6652. // Try to deduce the feedrate from the first block of the planner.
  6653. // Speed is in mm/min.
  6654. saved_feedrate2 = blocks_queued() ? (block_buffer[block_buffer_tail].nominal_speed * 60.f) : feedrate;
  6655. #endif
  6656. planner_abort_hard(); //abort printing
  6657. memcpy(saved_pos, current_position, sizeof(saved_pos));
  6658. saved_active_extruder = active_extruder; //save active_extruder
  6659. saved_extruder_under_pressure = extruder_under_pressure; //extruder under pressure flag - currently unused
  6660. cmdqueue_reset(); //empty cmdqueue
  6661. card.sdprinting = false;
  6662. // card.closefile();
  6663. saved_printing = true;
  6664. sei();
  6665. if ((z_move != 0) || (e_move != 0)) { // extruder or z move
  6666. #if 1
  6667. // Rather than calling plan_buffer_line directly, push the move into the command queue,
  6668. char buf[48];
  6669. strcpy_P(buf, PSTR("G1 Z"));
  6670. dtostrf(saved_pos[Z_AXIS] + z_move, 8, 3, buf + strlen(buf));
  6671. strcat_P(buf, PSTR(" E"));
  6672. // Relative extrusion
  6673. dtostrf(e_move, 6, 3, buf + strlen(buf));
  6674. strcat_P(buf, PSTR(" F"));
  6675. dtostrf(homing_feedrate[Z_AXIS], 8, 3, buf + strlen(buf));
  6676. // At this point the command queue is empty.
  6677. enquecommand(buf, false);
  6678. // If this call is invoked from the main Arduino loop() function, let the caller know that the command
  6679. // in the command queue is not the original command, but a new one, so it should not be removed from the queue.
  6680. repeatcommand_front();
  6681. #else
  6682. plan_buffer_line(saved_pos[X_AXIS], saved_pos[Y_AXIS], saved_pos[Z_AXIS] + z_move, saved_pos[E_AXIS] + e_move, homing_feedrate[Z_AXIS], active_extruder);
  6683. st_synchronize(); //wait moving
  6684. memcpy(current_position, saved_pos, sizeof(saved_pos));
  6685. memcpy(destination, current_position, sizeof(destination));
  6686. #endif
  6687. }
  6688. }
  6689. void restore_print_from_ram_and_continue(float e_move)
  6690. {
  6691. if (!saved_printing) return;
  6692. // for (int axis = X_AXIS; axis <= E_AXIS; axis++)
  6693. // current_position[axis] = st_get_position_mm(axis);
  6694. active_extruder = saved_active_extruder; //restore active_extruder
  6695. feedrate = saved_feedrate2; //restore feedrate
  6696. float e = saved_pos[E_AXIS] - e_move;
  6697. plan_set_e_position(e);
  6698. plan_buffer_line(saved_pos[X_AXIS], saved_pos[Y_AXIS], saved_pos[Z_AXIS], saved_pos[E_AXIS], homing_feedrate[Z_AXIS]/13, active_extruder);
  6699. st_synchronize();
  6700. memcpy(current_position, saved_pos, sizeof(saved_pos));
  6701. memcpy(destination, current_position, sizeof(destination));
  6702. card.setIndex(saved_sdpos);
  6703. sdpos_atomic = saved_sdpos;
  6704. card.sdprinting = true;
  6705. saved_printing = false;
  6706. }
  6707. void print_world_coordinates()
  6708. {
  6709. SERIAL_ECHOPGM("world coordinates: (");
  6710. MYSERIAL.print(current_position[X_AXIS], 3);
  6711. SERIAL_ECHOPGM(", ");
  6712. MYSERIAL.print(current_position[Y_AXIS], 3);
  6713. SERIAL_ECHOPGM(", ");
  6714. MYSERIAL.print(current_position[Z_AXIS], 3);
  6715. SERIAL_ECHOLNPGM(")");
  6716. }
  6717. void print_physical_coordinates()
  6718. {
  6719. SERIAL_ECHOPGM("physical coordinates: (");
  6720. MYSERIAL.print(st_get_position_mm(X_AXIS), 3);
  6721. SERIAL_ECHOPGM(", ");
  6722. MYSERIAL.print(st_get_position_mm(Y_AXIS), 3);
  6723. SERIAL_ECHOPGM(", ");
  6724. MYSERIAL.print(st_get_position_mm(Z_AXIS), 3);
  6725. SERIAL_ECHOLNPGM(")");
  6726. }
  6727. void print_mesh_bed_leveling_table()
  6728. {
  6729. SERIAL_ECHOPGM("mesh bed leveling: ");
  6730. for (int8_t y = 0; y < MESH_NUM_Y_POINTS; ++ y)
  6731. for (int8_t x = 0; x < MESH_NUM_Y_POINTS; ++ x) {
  6732. MYSERIAL.print(mbl.z_values[y][x], 3);
  6733. SERIAL_ECHOPGM(" ");
  6734. }
  6735. SERIAL_ECHOLNPGM("");
  6736. }
  6737. #define FIL_LOAD_LENGTH 60
  6738. void extr_unload2() { //unloads filament
  6739. // float tmp_motor[3] = DEFAULT_PWM_MOTOR_CURRENT;
  6740. // float tmp_motor_loud[3] = DEFAULT_PWM_MOTOR_CURRENT_LOUD;
  6741. // int8_t SilentMode;
  6742. uint8_t snmm_extruder = 0;
  6743. if (degHotend0() > EXTRUDE_MINTEMP) {
  6744. lcd_implementation_clear();
  6745. lcd_display_message_fullscreen_P(PSTR(""));
  6746. max_feedrate[E_AXIS] = 50;
  6747. lcd.setCursor(0, 0); lcd_printPGM(MSG_UNLOADING_FILAMENT);
  6748. // lcd.print(" ");
  6749. // lcd.print(snmm_extruder + 1);
  6750. lcd.setCursor(0, 2); lcd_printPGM(MSG_PLEASE_WAIT);
  6751. if (current_position[Z_AXIS] < 15) {
  6752. current_position[Z_AXIS] += 15; //lifting in Z direction to make space for extrusion
  6753. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 25, active_extruder);
  6754. }
  6755. current_position[E_AXIS] += 10; //extrusion
  6756. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 10, active_extruder);
  6757. // digipot_current(2, E_MOTOR_HIGH_CURRENT);
  6758. if (current_temperature[0] < 230) { //PLA & all other filaments
  6759. current_position[E_AXIS] += 5.4;
  6760. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2800 / 60, active_extruder);
  6761. current_position[E_AXIS] += 3.2;
  6762. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  6763. current_position[E_AXIS] += 3;
  6764. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3400 / 60, active_extruder);
  6765. }
  6766. else { //ABS
  6767. current_position[E_AXIS] += 3.1;
  6768. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2000 / 60, active_extruder);
  6769. current_position[E_AXIS] += 3.1;
  6770. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2500 / 60, active_extruder);
  6771. current_position[E_AXIS] += 4;
  6772. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  6773. /*current_position[X_AXIS] += 23; //delay
  6774. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder); //delay
  6775. current_position[X_AXIS] -= 23; //delay
  6776. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder); //delay*/
  6777. delay_keep_alive(4700);
  6778. }
  6779. max_feedrate[E_AXIS] = 80;
  6780. current_position[E_AXIS] -= (bowden_length[snmm_extruder] + 60 + FIL_LOAD_LENGTH) / 2;
  6781. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 500, active_extruder);
  6782. current_position[E_AXIS] -= (bowden_length[snmm_extruder] + 60 + FIL_LOAD_LENGTH) / 2;
  6783. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 500, active_extruder);
  6784. st_synchronize();
  6785. //digipot_init();
  6786. // if (SilentMode == 1) digipot_current(2, tmp_motor[2]); //set back to normal operation currents
  6787. // else digipot_current(2, tmp_motor_loud[2]);
  6788. lcd_update_enable(true);
  6789. // lcd_return_to_status();
  6790. max_feedrate[E_AXIS] = 50;
  6791. }
  6792. else {
  6793. lcd_implementation_clear();
  6794. lcd.setCursor(0, 0);
  6795. lcd_printPGM(MSG_ERROR);
  6796. lcd.setCursor(0, 2);
  6797. lcd_printPGM(MSG_PREHEAT_NOZZLE);
  6798. delay(2000);
  6799. lcd_implementation_clear();
  6800. }
  6801. // lcd_return_to_status();
  6802. }