Marlin_main.cpp 304 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892389338943895389638973898389939003901390239033904390539063907390839093910391139123913391439153916391739183919392039213922392339243925392639273928392939303931393239333934393539363937393839393940394139423943394439453946394739483949395039513952395339543955395639573958395939603961396239633964396539663967396839693970397139723973397439753976397739783979398039813982398339843985398639873988398939903991399239933994399539963997399839994000400140024003400440054006400740084009401040114012401340144015401640174018401940204021402240234024402540264027402840294030403140324033403440354036403740384039404040414042404340444045404640474048404940504051405240534054405540564057405840594060406140624063406440654066406740684069407040714072407340744075407640774078407940804081408240834084408540864087408840894090409140924093409440954096409740984099410041014102410341044105410641074108410941104111411241134114411541164117411841194120412141224123412441254126412741284129413041314132413341344135413641374138413941404141414241434144414541464147414841494150415141524153415441554156415741584159416041614162416341644165416641674168416941704171417241734174417541764177417841794180418141824183418441854186418741884189419041914192419341944195419641974198419942004201420242034204420542064207420842094210421142124213421442154216421742184219422042214222422342244225422642274228422942304231423242334234423542364237423842394240424142424243424442454246424742484249425042514252425342544255425642574258425942604261426242634264426542664267426842694270427142724273427442754276427742784279428042814282428342844285428642874288428942904291429242934294429542964297429842994300430143024303430443054306430743084309431043114312431343144315431643174318431943204321432243234324432543264327432843294330433143324333433443354336433743384339434043414342434343444345434643474348434943504351435243534354435543564357435843594360436143624363436443654366436743684369437043714372437343744375437643774378437943804381438243834384438543864387438843894390439143924393439443954396439743984399440044014402440344044405440644074408440944104411441244134414441544164417441844194420442144224423442444254426442744284429443044314432443344344435443644374438443944404441444244434444444544464447444844494450445144524453445444554456445744584459446044614462446344644465446644674468446944704471447244734474447544764477447844794480448144824483448444854486448744884489449044914492449344944495449644974498449945004501450245034504450545064507450845094510451145124513451445154516451745184519452045214522452345244525452645274528452945304531453245334534453545364537453845394540454145424543454445454546454745484549455045514552455345544555455645574558455945604561456245634564456545664567456845694570457145724573457445754576457745784579458045814582458345844585458645874588458945904591459245934594459545964597459845994600460146024603460446054606460746084609461046114612461346144615461646174618461946204621462246234624462546264627462846294630463146324633463446354636463746384639464046414642464346444645464646474648464946504651465246534654465546564657465846594660466146624663466446654666466746684669467046714672467346744675467646774678467946804681468246834684468546864687468846894690469146924693469446954696469746984699470047014702470347044705470647074708470947104711471247134714471547164717471847194720472147224723472447254726472747284729473047314732473347344735473647374738473947404741474247434744474547464747474847494750475147524753475447554756475747584759476047614762476347644765476647674768476947704771477247734774477547764777477847794780478147824783478447854786478747884789479047914792479347944795479647974798479948004801480248034804480548064807480848094810481148124813481448154816481748184819482048214822482348244825482648274828482948304831483248334834483548364837483848394840484148424843484448454846484748484849485048514852485348544855485648574858485948604861486248634864486548664867486848694870487148724873487448754876487748784879488048814882488348844885488648874888488948904891489248934894489548964897489848994900490149024903490449054906490749084909491049114912491349144915491649174918491949204921492249234924492549264927492849294930493149324933493449354936493749384939494049414942494349444945494649474948494949504951495249534954495549564957495849594960496149624963496449654966496749684969497049714972497349744975497649774978497949804981498249834984498549864987498849894990499149924993499449954996499749984999500050015002500350045005500650075008500950105011501250135014501550165017501850195020502150225023502450255026502750285029503050315032503350345035503650375038503950405041504250435044504550465047504850495050505150525053505450555056505750585059506050615062506350645065506650675068506950705071507250735074507550765077507850795080508150825083508450855086508750885089509050915092509350945095509650975098509951005101510251035104510551065107510851095110511151125113511451155116511751185119512051215122512351245125512651275128512951305131513251335134513551365137513851395140514151425143514451455146514751485149515051515152515351545155515651575158515951605161516251635164516551665167516851695170517151725173517451755176517751785179518051815182518351845185518651875188518951905191519251935194519551965197519851995200520152025203520452055206520752085209521052115212521352145215521652175218521952205221522252235224522552265227522852295230523152325233523452355236523752385239524052415242524352445245524652475248524952505251525252535254525552565257525852595260526152625263526452655266526752685269527052715272527352745275527652775278527952805281528252835284528552865287528852895290529152925293529452955296529752985299530053015302530353045305530653075308530953105311531253135314531553165317531853195320532153225323532453255326532753285329533053315332533353345335533653375338533953405341534253435344534553465347534853495350535153525353535453555356535753585359536053615362536353645365536653675368536953705371537253735374537553765377537853795380538153825383538453855386538753885389539053915392539353945395539653975398539954005401540254035404540554065407540854095410541154125413541454155416541754185419542054215422542354245425542654275428542954305431543254335434543554365437543854395440544154425443544454455446544754485449545054515452545354545455545654575458545954605461546254635464546554665467546854695470547154725473547454755476547754785479548054815482548354845485548654875488548954905491549254935494549554965497549854995500550155025503550455055506550755085509551055115512551355145515551655175518551955205521552255235524552555265527552855295530553155325533553455355536553755385539554055415542554355445545554655475548554955505551555255535554555555565557555855595560556155625563556455655566556755685569557055715572557355745575557655775578557955805581558255835584558555865587558855895590559155925593559455955596559755985599560056015602560356045605560656075608560956105611561256135614561556165617561856195620562156225623562456255626562756285629563056315632563356345635563656375638563956405641564256435644564556465647564856495650565156525653565456555656565756585659566056615662566356645665566656675668566956705671567256735674567556765677567856795680568156825683568456855686568756885689569056915692569356945695569656975698569957005701570257035704570557065707570857095710571157125713571457155716571757185719572057215722572357245725572657275728572957305731573257335734573557365737573857395740574157425743574457455746574757485749575057515752575357545755575657575758575957605761576257635764576557665767576857695770577157725773577457755776577757785779578057815782578357845785578657875788578957905791579257935794579557965797579857995800580158025803580458055806580758085809581058115812581358145815581658175818581958205821582258235824582558265827582858295830583158325833583458355836583758385839584058415842584358445845584658475848584958505851585258535854585558565857585858595860586158625863586458655866586758685869587058715872587358745875587658775878587958805881588258835884588558865887588858895890589158925893589458955896589758985899590059015902590359045905590659075908590959105911591259135914591559165917591859195920592159225923592459255926592759285929593059315932593359345935593659375938593959405941594259435944594559465947594859495950595159525953595459555956595759585959596059615962596359645965596659675968596959705971597259735974597559765977597859795980598159825983598459855986598759885989599059915992599359945995599659975998599960006001600260036004600560066007600860096010601160126013601460156016601760186019602060216022602360246025602660276028602960306031603260336034603560366037603860396040604160426043604460456046604760486049605060516052605360546055605660576058605960606061606260636064606560666067606860696070607160726073607460756076607760786079608060816082608360846085608660876088608960906091609260936094609560966097609860996100610161026103610461056106610761086109611061116112611361146115611661176118611961206121612261236124612561266127612861296130613161326133613461356136613761386139614061416142614361446145614661476148614961506151615261536154615561566157615861596160616161626163616461656166616761686169617061716172617361746175617661776178617961806181618261836184618561866187618861896190619161926193619461956196619761986199620062016202620362046205620662076208620962106211621262136214621562166217621862196220622162226223622462256226622762286229623062316232623362346235623662376238623962406241624262436244624562466247624862496250625162526253625462556256625762586259626062616262626362646265626662676268626962706271627262736274627562766277627862796280628162826283628462856286628762886289629062916292629362946295629662976298629963006301630263036304630563066307630863096310631163126313631463156316631763186319632063216322632363246325632663276328632963306331633263336334633563366337633863396340634163426343634463456346634763486349635063516352635363546355635663576358635963606361636263636364636563666367636863696370637163726373637463756376637763786379638063816382638363846385638663876388638963906391639263936394639563966397639863996400640164026403640464056406640764086409641064116412641364146415641664176418641964206421642264236424642564266427642864296430643164326433643464356436643764386439644064416442644364446445644664476448644964506451645264536454645564566457645864596460646164626463646464656466646764686469647064716472647364746475647664776478647964806481648264836484648564866487648864896490649164926493649464956496649764986499650065016502650365046505650665076508650965106511651265136514651565166517651865196520652165226523652465256526652765286529653065316532653365346535653665376538653965406541654265436544654565466547654865496550655165526553655465556556655765586559656065616562656365646565656665676568656965706571657265736574657565766577657865796580658165826583658465856586658765886589659065916592659365946595659665976598659966006601660266036604660566066607660866096610661166126613661466156616661766186619662066216622662366246625662666276628662966306631663266336634663566366637663866396640664166426643664466456646664766486649665066516652665366546655665666576658665966606661666266636664666566666667666866696670667166726673667466756676667766786679668066816682668366846685668666876688668966906691669266936694669566966697669866996700670167026703670467056706670767086709671067116712671367146715671667176718671967206721672267236724672567266727672867296730673167326733673467356736673767386739674067416742674367446745674667476748674967506751675267536754675567566757675867596760676167626763676467656766676767686769677067716772677367746775677667776778677967806781678267836784678567866787678867896790679167926793679467956796679767986799680068016802680368046805680668076808680968106811681268136814681568166817681868196820682168226823682468256826682768286829683068316832683368346835683668376838683968406841684268436844684568466847684868496850685168526853685468556856685768586859686068616862686368646865686668676868686968706871687268736874687568766877687868796880688168826883688468856886688768886889689068916892689368946895689668976898689969006901690269036904690569066907690869096910691169126913691469156916691769186919692069216922692369246925692669276928692969306931693269336934693569366937693869396940694169426943694469456946694769486949695069516952695369546955695669576958695969606961696269636964696569666967696869696970697169726973697469756976697769786979698069816982698369846985698669876988698969906991699269936994699569966997699869997000700170027003700470057006700770087009701070117012701370147015701670177018701970207021702270237024702570267027702870297030703170327033703470357036703770387039704070417042704370447045704670477048704970507051705270537054705570567057705870597060706170627063706470657066706770687069707070717072707370747075707670777078707970807081708270837084708570867087708870897090709170927093709470957096709770987099710071017102710371047105710671077108710971107111711271137114711571167117711871197120712171227123712471257126712771287129713071317132713371347135713671377138713971407141714271437144714571467147714871497150715171527153715471557156715771587159716071617162716371647165716671677168716971707171717271737174717571767177717871797180718171827183718471857186718771887189719071917192719371947195719671977198719972007201720272037204720572067207720872097210721172127213721472157216721772187219722072217222722372247225722672277228722972307231723272337234723572367237723872397240724172427243724472457246724772487249725072517252725372547255725672577258725972607261726272637264726572667267726872697270727172727273727472757276727772787279728072817282728372847285728672877288728972907291729272937294729572967297729872997300730173027303730473057306730773087309731073117312731373147315731673177318731973207321732273237324732573267327732873297330733173327333733473357336733773387339734073417342734373447345734673477348734973507351735273537354735573567357735873597360736173627363736473657366736773687369737073717372737373747375737673777378737973807381738273837384738573867387738873897390739173927393739473957396739773987399740074017402740374047405740674077408740974107411741274137414741574167417741874197420742174227423742474257426742774287429743074317432743374347435743674377438743974407441744274437444744574467447744874497450745174527453745474557456745774587459746074617462746374647465746674677468746974707471747274737474747574767477747874797480748174827483748474857486748774887489749074917492749374947495749674977498749975007501750275037504750575067507750875097510751175127513751475157516751775187519752075217522752375247525752675277528752975307531753275337534753575367537753875397540754175427543754475457546754775487549755075517552755375547555755675577558755975607561756275637564756575667567756875697570757175727573757475757576757775787579758075817582758375847585758675877588758975907591759275937594759575967597759875997600760176027603760476057606760776087609761076117612761376147615761676177618761976207621762276237624762576267627762876297630763176327633763476357636763776387639764076417642764376447645764676477648764976507651765276537654765576567657765876597660766176627663766476657666766776687669767076717672767376747675767676777678767976807681768276837684768576867687768876897690769176927693769476957696769776987699770077017702770377047705770677077708770977107711771277137714771577167717771877197720772177227723772477257726772777287729773077317732773377347735773677377738773977407741774277437744774577467747774877497750775177527753775477557756775777587759776077617762776377647765776677677768776977707771777277737774777577767777777877797780778177827783778477857786778777887789779077917792779377947795779677977798779978007801780278037804780578067807780878097810781178127813781478157816781778187819782078217822782378247825782678277828782978307831783278337834783578367837783878397840784178427843784478457846784778487849785078517852785378547855785678577858785978607861786278637864786578667867786878697870787178727873787478757876787778787879788078817882788378847885788678877888788978907891789278937894789578967897789878997900790179027903790479057906790779087909791079117912791379147915791679177918791979207921792279237924792579267927792879297930793179327933793479357936793779387939794079417942794379447945794679477948794979507951795279537954795579567957795879597960796179627963796479657966796779687969797079717972797379747975797679777978797979807981798279837984798579867987798879897990799179927993799479957996799779987999800080018002800380048005800680078008800980108011801280138014801580168017801880198020802180228023802480258026802780288029803080318032803380348035803680378038803980408041804280438044804580468047804880498050805180528053805480558056805780588059806080618062806380648065806680678068806980708071807280738074807580768077807880798080808180828083808480858086808780888089809080918092809380948095809680978098809981008101810281038104810581068107810881098110811181128113811481158116811781188119812081218122812381248125812681278128812981308131813281338134813581368137813881398140814181428143814481458146814781488149815081518152815381548155815681578158815981608161816281638164816581668167816881698170817181728173817481758176817781788179818081818182818381848185818681878188818981908191819281938194819581968197819881998200820182028203820482058206820782088209821082118212821382148215821682178218821982208221822282238224822582268227822882298230823182328233823482358236823782388239824082418242824382448245824682478248824982508251825282538254825582568257825882598260826182628263826482658266826782688269827082718272827382748275827682778278827982808281828282838284828582868287828882898290829182928293829482958296829782988299830083018302830383048305830683078308830983108311831283138314831583168317831883198320832183228323832483258326832783288329833083318332833383348335833683378338833983408341834283438344834583468347834883498350835183528353835483558356835783588359836083618362836383648365836683678368836983708371837283738374837583768377837883798380838183828383838483858386838783888389839083918392839383948395839683978398839984008401840284038404840584068407840884098410841184128413841484158416841784188419842084218422842384248425842684278428842984308431843284338434843584368437843884398440844184428443844484458446844784488449845084518452845384548455845684578458845984608461846284638464846584668467846884698470847184728473847484758476847784788479848084818482848384848485848684878488848984908491849284938494849584968497849884998500850185028503850485058506850785088509851085118512851385148515851685178518851985208521852285238524852585268527852885298530853185328533853485358536853785388539854085418542854385448545854685478548854985508551855285538554855585568557855885598560856185628563856485658566856785688569857085718572857385748575857685778578857985808581858285838584858585868587858885898590859185928593859485958596859785988599860086018602860386048605860686078608860986108611861286138614861586168617861886198620862186228623862486258626862786288629863086318632863386348635863686378638863986408641864286438644864586468647864886498650865186528653865486558656865786588659866086618662866386648665866686678668866986708671867286738674867586768677867886798680868186828683868486858686868786888689869086918692869386948695869686978698869987008701870287038704870587068707870887098710871187128713871487158716871787188719872087218722872387248725872687278728872987308731873287338734873587368737873887398740874187428743874487458746874787488749875087518752875387548755875687578758875987608761876287638764876587668767876887698770877187728773877487758776877787788779878087818782878387848785878687878788878987908791879287938794879587968797879887998800880188028803880488058806880788088809881088118812881388148815881688178818881988208821882288238824882588268827882888298830883188328833883488358836883788388839884088418842884388448845884688478848884988508851885288538854885588568857885888598860886188628863886488658866886788688869887088718872887388748875887688778878887988808881888288838884888588868887888888898890889188928893889488958896889788988899890089018902890389048905890689078908890989108911891289138914891589168917891889198920892189228923892489258926892789288929893089318932893389348935893689378938893989408941894289438944894589468947894889498950895189528953895489558956895789588959896089618962896389648965896689678968896989708971897289738974897589768977897889798980898189828983898489858986898789888989899089918992899389948995899689978998899990009001900290039004900590069007900890099010901190129013901490159016901790189019902090219022902390249025902690279028902990309031903290339034903590369037903890399040904190429043904490459046904790489049905090519052905390549055905690579058905990609061906290639064906590669067906890699070907190729073907490759076907790789079908090819082908390849085908690879088908990909091909290939094
  1. /* -*- c++ -*- */
  2. /**
  3. * @file
  4. */
  5. /**
  6. * @mainpage Reprap 3D printer firmware based on Sprinter and grbl.
  7. *
  8. * @section intro_sec Introduction
  9. *
  10. * This firmware is a mashup between Sprinter and grbl.
  11. * https://github.com/kliment/Sprinter
  12. * https://github.com/simen/grbl/tree
  13. *
  14. * It has preliminary support for Matthew Roberts advance algorithm
  15. * http://reprap.org/pipermail/reprap-dev/2011-May/003323.html
  16. *
  17. * Prusa Research s.r.o. https://www.prusa3d.cz
  18. *
  19. * @section copyright_sec Copyright
  20. *
  21. * Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
  22. *
  23. * This program is free software: you can redistribute it and/or modify
  24. * it under the terms of the GNU General Public License as published by
  25. * the Free Software Foundation, either version 3 of the License, or
  26. * (at your option) any later version.
  27. *
  28. * This program is distributed in the hope that it will be useful,
  29. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  30. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  31. * GNU General Public License for more details.
  32. *
  33. * You should have received a copy of the GNU General Public License
  34. * along with this program. If not, see <http://www.gnu.org/licenses/>.
  35. *
  36. * @section notes_sec Notes
  37. *
  38. * * Do not create static objects in global functions.
  39. * Otherwise constructor guard against concurrent calls is generated costing
  40. * about 8B RAM and 14B flash.
  41. *
  42. *
  43. */
  44. #include "Marlin.h"
  45. #ifdef ENABLE_AUTO_BED_LEVELING
  46. #include "vector_3.h"
  47. #ifdef AUTO_BED_LEVELING_GRID
  48. #include "qr_solve.h"
  49. #endif
  50. #endif // ENABLE_AUTO_BED_LEVELING
  51. #ifdef MESH_BED_LEVELING
  52. #include "mesh_bed_leveling.h"
  53. #include "mesh_bed_calibration.h"
  54. #endif
  55. #include "printers.h"
  56. #include "menu.h"
  57. #include "ultralcd.h"
  58. #include "planner.h"
  59. #include "stepper.h"
  60. #include "temperature.h"
  61. #include "motion_control.h"
  62. #include "cardreader.h"
  63. #include "ConfigurationStore.h"
  64. #include "language.h"
  65. #include "pins_arduino.h"
  66. #include "math.h"
  67. #include "util.h"
  68. #include "Timer.h"
  69. #include "uart2.h"
  70. #include <avr/wdt.h>
  71. #include <avr/pgmspace.h>
  72. #include "Dcodes.h"
  73. #ifdef SWSPI
  74. #include "swspi.h"
  75. #endif //SWSPI
  76. #include "spi.h"
  77. #ifdef SWI2C
  78. #include "swi2c.h"
  79. #endif //SWI2C
  80. #ifdef PAT9125
  81. #include "pat9125.h"
  82. #include "fsensor.h"
  83. #endif //PAT9125
  84. #ifdef TMC2130
  85. #include "tmc2130.h"
  86. #endif //TMC2130
  87. #ifdef W25X20CL
  88. #include "w25x20cl.h"
  89. #include "optiboot_w25x20cl.h"
  90. #endif //W25X20CL
  91. #ifdef BLINKM
  92. #include "BlinkM.h"
  93. #include "Wire.h"
  94. #endif
  95. #ifdef ULTRALCD
  96. #include "ultralcd.h"
  97. #endif
  98. #if NUM_SERVOS > 0
  99. #include "Servo.h"
  100. #endif
  101. #if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
  102. #include <SPI.h>
  103. #endif
  104. #define VERSION_STRING "1.0.2"
  105. #include "ultralcd.h"
  106. #include "cmdqueue.h"
  107. // Macros for bit masks
  108. #define BIT(b) (1<<(b))
  109. #define TEST(n,b) (((n)&BIT(b))!=0)
  110. #define SET_BIT(n,b,value) (n) ^= ((-value)^(n)) & (BIT(b))
  111. //Macro for print fan speed
  112. #define FAN_PULSE_WIDTH_LIMIT ((fanSpeed > 100) ? 3 : 4) //time in ms
  113. #define PRINTING_TYPE_SD 0
  114. #define PRINTING_TYPE_USB 1
  115. // look here for descriptions of G-codes: http://linuxcnc.org/handbook/gcode/g-code.html
  116. // http://objects.reprap.org/wiki/Mendel_User_Manual:_RepRapGCodes
  117. //Implemented Codes
  118. //-------------------
  119. // PRUSA CODES
  120. // P F - Returns FW versions
  121. // P R - Returns revision of printer
  122. // G0 -> G1
  123. // G1 - Coordinated Movement X Y Z E
  124. // G2 - CW ARC
  125. // G3 - CCW ARC
  126. // G4 - Dwell S<seconds> or P<milliseconds>
  127. // G10 - retract filament according to settings of M207
  128. // G11 - retract recover filament according to settings of M208
  129. // G28 - Home all Axis
  130. // G29 - Detailed Z-Probe, probes the bed at 3 or more points. Will fail if you haven't homed yet.
  131. // G30 - Single Z Probe, probes bed at current XY location.
  132. // G31 - Dock sled (Z_PROBE_SLED only)
  133. // G32 - Undock sled (Z_PROBE_SLED only)
  134. // G80 - Automatic mesh bed leveling
  135. // G81 - Print bed profile
  136. // G90 - Use Absolute Coordinates
  137. // G91 - Use Relative Coordinates
  138. // G92 - Set current position to coordinates given
  139. // M Codes
  140. // M0 - Unconditional stop - Wait for user to press a button on the LCD
  141. // M1 - Same as M0
  142. // M17 - Enable/Power all stepper motors
  143. // M18 - Disable all stepper motors; same as M84
  144. // M20 - List SD card
  145. // M21 - Init SD card
  146. // M22 - Release SD card
  147. // M23 - Select SD file (M23 filename.g)
  148. // M24 - Start/resume SD print
  149. // M25 - Pause SD print
  150. // M26 - Set SD position in bytes (M26 S12345)
  151. // M27 - Report SD print status
  152. // M28 - Start SD write (M28 filename.g)
  153. // M29 - Stop SD write
  154. // M30 - Delete file from SD (M30 filename.g)
  155. // M31 - Output time since last M109 or SD card start to serial
  156. // M32 - Select file and start SD print (Can be used _while_ printing from SD card files):
  157. // syntax "M32 /path/filename#", or "M32 S<startpos bytes> !filename#"
  158. // Call gcode file : "M32 P !filename#" and return to caller file after finishing (similar to #include).
  159. // The '#' is necessary when calling from within sd files, as it stops buffer prereading
  160. // M42 - Change pin status via gcode Use M42 Px Sy to set pin x to value y, when omitting Px the onboard led will be used.
  161. // M73 - Show percent done and print time remaining
  162. // M80 - Turn on Power Supply
  163. // M81 - Turn off Power Supply
  164. // M82 - Set E codes absolute (default)
  165. // M83 - Set E codes relative while in Absolute Coordinates (G90) mode
  166. // M84 - Disable steppers until next move,
  167. // or use S<seconds> to specify an inactivity timeout, after which the steppers will be disabled. S0 to disable the timeout.
  168. // M85 - Set inactivity shutdown timer with parameter S<seconds>. To disable set zero (default)
  169. // M86 - Set safety timer expiration time with parameter S<seconds>; M86 S0 will disable safety timer
  170. // M92 - Set axis_steps_per_unit - same syntax as G92
  171. // M104 - Set extruder target temp
  172. // M105 - Read current temp
  173. // M106 - Fan on
  174. // M107 - Fan off
  175. // M109 - Sxxx Wait for extruder current temp to reach target temp. Waits only when heating
  176. // Rxxx Wait for extruder current temp to reach target temp. Waits when heating and cooling
  177. // IF AUTOTEMP is enabled, S<mintemp> B<maxtemp> F<factor>. Exit autotemp by any M109 without F
  178. // M112 - Emergency stop
  179. // M113 - Get or set the timeout interval for Host Keepalive "busy" messages
  180. // M114 - Output current position to serial port
  181. // M115 - Capabilities string
  182. // M117 - display message
  183. // M119 - Output Endstop status to serial port
  184. // M126 - Solenoid Air Valve Open (BariCUDA support by jmil)
  185. // M127 - Solenoid Air Valve Closed (BariCUDA vent to atmospheric pressure by jmil)
  186. // M128 - EtoP Open (BariCUDA EtoP = electricity to air pressure transducer by jmil)
  187. // M129 - EtoP Closed (BariCUDA EtoP = electricity to air pressure transducer by jmil)
  188. // M140 - Set bed target temp
  189. // M150 - Set BlinkM Color Output R: Red<0-255> U(!): Green<0-255> B: Blue<0-255> over i2c, G for green does not work.
  190. // M190 - Sxxx Wait for bed current temp to reach target temp. Waits only when heating
  191. // Rxxx Wait for bed current temp to reach target temp. Waits when heating and cooling
  192. // M200 D<millimeters>- set filament diameter and set E axis units to cubic millimeters (use S0 to set back to millimeters).
  193. // M201 - Set max acceleration in units/s^2 for print moves (M201 X1000 Y1000)
  194. // M202 - Set max acceleration in units/s^2 for travel moves (M202 X1000 Y1000) Unused in Marlin!!
  195. // M203 - Set maximum feedrate that your machine can sustain (M203 X200 Y200 Z300 E10000) in mm/sec
  196. // M204 - Set default acceleration: S normal moves T filament only moves (M204 S3000 T7000) in mm/sec^2 also sets minimum segment time in ms (B20000) to prevent buffer under-runs and M20 minimum feedrate
  197. // M205 - advanced settings: minimum travel speed S=while printing T=travel only, B=minimum segment time X= maximum xy jerk, Z=maximum Z jerk, E=maximum E jerk
  198. // M206 - set additional homing offset
  199. // M207 - set retract length S[positive mm] F[feedrate mm/min] Z[additional zlift/hop], stays in mm regardless of M200 setting
  200. // M208 - set recover=unretract length S[positive mm surplus to the M207 S*] F[feedrate mm/sec]
  201. // M209 - S<1=true/0=false> enable automatic retract detect if the slicer did not support G10/11: every normal extrude-only move will be classified as retract depending on the direction.
  202. // M218 - set hotend offset (in mm): T<extruder_number> X<offset_on_X> Y<offset_on_Y>
  203. // M220 S<factor in percent>- set speed factor override percentage
  204. // M221 S<factor in percent>- set extrude factor override percentage
  205. // M226 P<pin number> S<pin state>- Wait until the specified pin reaches the state required
  206. // M240 - Trigger a camera to take a photograph
  207. // M250 - Set LCD contrast C<contrast value> (value 0..63)
  208. // M280 - set servo position absolute. P: servo index, S: angle or microseconds
  209. // M300 - Play beep sound S<frequency Hz> P<duration ms>
  210. // M301 - Set PID parameters P I and D
  211. // M302 - Allow cold extrudes, or set the minimum extrude S<temperature>.
  212. // M303 - PID relay autotune S<temperature> sets the target temperature. (default target temperature = 150C)
  213. // M304 - Set bed PID parameters P I and D
  214. // M400 - Finish all moves
  215. // M401 - Lower z-probe if present
  216. // M402 - Raise z-probe if present
  217. // M404 - N<dia in mm> Enter the nominal filament width (3mm, 1.75mm ) or will display nominal filament width without parameters
  218. // M405 - Turn on Filament Sensor extrusion control. Optional D<delay in cm> to set delay in centimeters between sensor and extruder
  219. // M406 - Turn off Filament Sensor extrusion control
  220. // M407 - Displays measured filament diameter
  221. // M500 - stores parameters in EEPROM
  222. // M501 - reads parameters from EEPROM (if you need reset them after you changed them temporarily).
  223. // M502 - reverts to the default "factory settings". You still need to store them in EEPROM afterwards if you want to.
  224. // M503 - print the current settings (from memory not from EEPROM)
  225. // M509 - force language selection on next restart
  226. // M540 - Use S[0|1] to enable or disable the stop SD card print on endstop hit (requires ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED)
  227. // M600 - Pause for filament change X[pos] Y[pos] Z[relative lift] E[initial retract] L[later retract distance for removal]
  228. // M605 - Set dual x-carriage movement mode: S<mode> [ X<duplication x-offset> R<duplication temp offset> ]
  229. // M860 - Wait for PINDA thermistor to reach target temperature.
  230. // M861 - Set / Read PINDA temperature compensation offsets
  231. // M900 - Set LIN_ADVANCE options, if enabled. See Configuration_adv.h for details.
  232. // M907 - Set digital trimpot motor current using axis codes.
  233. // M908 - Control digital trimpot directly.
  234. // M350 - Set microstepping mode.
  235. // M351 - Toggle MS1 MS2 pins directly.
  236. // M928 - Start SD logging (M928 filename.g) - ended by M29
  237. // M999 - Restart after being stopped by error
  238. //Stepper Movement Variables
  239. //===========================================================================
  240. //=============================imported variables============================
  241. //===========================================================================
  242. //===========================================================================
  243. //=============================public variables=============================
  244. //===========================================================================
  245. #ifdef SDSUPPORT
  246. CardReader card;
  247. #endif
  248. unsigned long PingTime = millis();
  249. unsigned long NcTime;
  250. union Data
  251. {
  252. byte b[2];
  253. int value;
  254. };
  255. float homing_feedrate[] = HOMING_FEEDRATE;
  256. // Currently only the extruder axis may be switched to a relative mode.
  257. // Other axes are always absolute or relative based on the common relative_mode flag.
  258. bool axis_relative_modes[] = AXIS_RELATIVE_MODES;
  259. int feedmultiply=100; //100->1 200->2
  260. int saved_feedmultiply;
  261. int extrudemultiply=100; //100->1 200->2
  262. int extruder_multiply[EXTRUDERS] = {100
  263. #if EXTRUDERS > 1
  264. , 100
  265. #if EXTRUDERS > 2
  266. , 100
  267. #endif
  268. #endif
  269. };
  270. int bowden_length[4] = {385, 385, 385, 385};
  271. bool is_usb_printing = false;
  272. bool homing_flag = false;
  273. bool temp_cal_active = false;
  274. unsigned long kicktime = millis()+100000;
  275. unsigned int usb_printing_counter;
  276. int lcd_change_fil_state = 0;
  277. int feedmultiplyBckp = 100;
  278. float HotendTempBckp = 0;
  279. int fanSpeedBckp = 0;
  280. float pause_lastpos[4];
  281. unsigned long pause_time = 0;
  282. unsigned long start_pause_print = millis();
  283. unsigned long t_fan_rising_edge = millis();
  284. static LongTimer safetyTimer;
  285. static LongTimer crashDetTimer;
  286. //unsigned long load_filament_time;
  287. bool mesh_bed_leveling_flag = false;
  288. bool mesh_bed_run_from_menu = false;
  289. int8_t FarmMode = 0;
  290. bool prusa_sd_card_upload = false;
  291. unsigned int status_number = 0;
  292. unsigned long total_filament_used;
  293. unsigned int heating_status;
  294. unsigned int heating_status_counter;
  295. bool custom_message;
  296. bool loading_flag = false;
  297. unsigned int custom_message_type;
  298. unsigned int custom_message_state;
  299. char snmm_filaments_used = 0;
  300. bool fan_state[2];
  301. int fan_edge_counter[2];
  302. int fan_speed[2];
  303. char dir_names[3][9];
  304. bool sortAlpha = false;
  305. bool volumetric_enabled = false;
  306. float filament_size[EXTRUDERS] = { DEFAULT_NOMINAL_FILAMENT_DIA
  307. #if EXTRUDERS > 1
  308. , DEFAULT_NOMINAL_FILAMENT_DIA
  309. #if EXTRUDERS > 2
  310. , DEFAULT_NOMINAL_FILAMENT_DIA
  311. #endif
  312. #endif
  313. };
  314. float extruder_multiplier[EXTRUDERS] = {1.0
  315. #if EXTRUDERS > 1
  316. , 1.0
  317. #if EXTRUDERS > 2
  318. , 1.0
  319. #endif
  320. #endif
  321. };
  322. float current_position[NUM_AXIS] = { 0.0, 0.0, 0.0, 0.0 };
  323. //shortcuts for more readable code
  324. #define _x current_position[X_AXIS]
  325. #define _y current_position[Y_AXIS]
  326. #define _z current_position[Z_AXIS]
  327. #define _e current_position[E_AXIS]
  328. float add_homing[3]={0,0,0};
  329. float min_pos[3] = { X_MIN_POS, Y_MIN_POS, Z_MIN_POS };
  330. float max_pos[3] = { X_MAX_POS, Y_MAX_POS, Z_MAX_POS };
  331. bool axis_known_position[3] = {false, false, false};
  332. float zprobe_zoffset;
  333. // Extruder offset
  334. #if EXTRUDERS > 1
  335. #define NUM_EXTRUDER_OFFSETS 2 // only in XY plane
  336. float extruder_offset[NUM_EXTRUDER_OFFSETS][EXTRUDERS] = {
  337. #if defined(EXTRUDER_OFFSET_X) && defined(EXTRUDER_OFFSET_Y)
  338. EXTRUDER_OFFSET_X, EXTRUDER_OFFSET_Y
  339. #endif
  340. };
  341. #endif
  342. uint8_t active_extruder = 0;
  343. int fanSpeed=0;
  344. #ifdef FWRETRACT
  345. bool autoretract_enabled=false;
  346. bool retracted[EXTRUDERS]={false
  347. #if EXTRUDERS > 1
  348. , false
  349. #if EXTRUDERS > 2
  350. , false
  351. #endif
  352. #endif
  353. };
  354. bool retracted_swap[EXTRUDERS]={false
  355. #if EXTRUDERS > 1
  356. , false
  357. #if EXTRUDERS > 2
  358. , false
  359. #endif
  360. #endif
  361. };
  362. float retract_length = RETRACT_LENGTH;
  363. float retract_length_swap = RETRACT_LENGTH_SWAP;
  364. float retract_feedrate = RETRACT_FEEDRATE;
  365. float retract_zlift = RETRACT_ZLIFT;
  366. float retract_recover_length = RETRACT_RECOVER_LENGTH;
  367. float retract_recover_length_swap = RETRACT_RECOVER_LENGTH_SWAP;
  368. float retract_recover_feedrate = RETRACT_RECOVER_FEEDRATE;
  369. #endif
  370. #ifdef PS_DEFAULT_OFF
  371. bool powersupply = false;
  372. #else
  373. bool powersupply = true;
  374. #endif
  375. bool cancel_heatup = false ;
  376. #ifdef HOST_KEEPALIVE_FEATURE
  377. int busy_state = NOT_BUSY;
  378. static long prev_busy_signal_ms = -1;
  379. uint8_t host_keepalive_interval = HOST_KEEPALIVE_INTERVAL;
  380. #else
  381. #define host_keepalive();
  382. #define KEEPALIVE_STATE(n);
  383. #endif
  384. const char errormagic[] PROGMEM = "Error:";
  385. const char echomagic[] PROGMEM = "echo:";
  386. bool no_response = false;
  387. uint8_t important_status;
  388. uint8_t saved_filament_type;
  389. // save/restore printing
  390. bool saved_printing = false;
  391. // storing estimated time to end of print counted by slicer
  392. uint8_t print_percent_done_normal = PRINT_PERCENT_DONE_INIT;
  393. uint16_t print_time_remaining_normal = PRINT_TIME_REMAINING_INIT; //estimated remaining print time in minutes
  394. uint8_t print_percent_done_silent = PRINT_PERCENT_DONE_INIT;
  395. uint16_t print_time_remaining_silent = PRINT_TIME_REMAINING_INIT; //estimated remaining print time in minutes
  396. //===========================================================================
  397. //=============================Private Variables=============================
  398. //===========================================================================
  399. const char axis_codes[NUM_AXIS] = {'X', 'Y', 'Z', 'E'};
  400. float destination[NUM_AXIS] = { 0.0, 0.0, 0.0, 0.0};
  401. static float delta[3] = {0.0, 0.0, 0.0};
  402. // For tracing an arc
  403. static float offset[3] = {0.0, 0.0, 0.0};
  404. static float feedrate = 1500.0, next_feedrate, saved_feedrate;
  405. // Determines Absolute or Relative Coordinates.
  406. // Also there is bool axis_relative_modes[] per axis flag.
  407. static bool relative_mode = false;
  408. #ifndef _DISABLE_M42_M226
  409. const int sensitive_pins[] = SENSITIVE_PINS; // Sensitive pin list for M42
  410. #endif //_DISABLE_M42_M226
  411. //static float tt = 0;
  412. //static float bt = 0;
  413. //Inactivity shutdown variables
  414. static unsigned long previous_millis_cmd = 0;
  415. unsigned long max_inactive_time = 0;
  416. static unsigned long stepper_inactive_time = DEFAULT_STEPPER_DEACTIVE_TIME*1000l;
  417. static unsigned long safetytimer_inactive_time = DEFAULT_SAFETYTIMER_TIME_MINS*60*1000ul;
  418. unsigned long starttime=0;
  419. unsigned long stoptime=0;
  420. unsigned long _usb_timer = 0;
  421. static uint8_t tmp_extruder;
  422. bool extruder_under_pressure = true;
  423. bool Stopped=false;
  424. #if NUM_SERVOS > 0
  425. Servo servos[NUM_SERVOS];
  426. #endif
  427. bool CooldownNoWait = true;
  428. bool target_direction;
  429. //Insert variables if CHDK is defined
  430. #ifdef CHDK
  431. unsigned long chdkHigh = 0;
  432. boolean chdkActive = false;
  433. #endif
  434. // save/restore printing
  435. static uint32_t saved_sdpos = 0;
  436. static uint8_t saved_printing_type = PRINTING_TYPE_SD;
  437. static float saved_pos[4] = { 0, 0, 0, 0 };
  438. // Feedrate hopefully derived from an active block of the planner at the time the print has been canceled, in mm/min.
  439. static float saved_feedrate2 = 0;
  440. static uint8_t saved_active_extruder = 0;
  441. static bool saved_extruder_under_pressure = false;
  442. static bool saved_extruder_relative_mode = false;
  443. //===========================================================================
  444. //=============================Routines======================================
  445. //===========================================================================
  446. void get_arc_coordinates();
  447. bool setTargetedHotend(int code);
  448. void serial_echopair_P(const char *s_P, float v)
  449. { serialprintPGM(s_P); SERIAL_ECHO(v); }
  450. void serial_echopair_P(const char *s_P, double v)
  451. { serialprintPGM(s_P); SERIAL_ECHO(v); }
  452. void serial_echopair_P(const char *s_P, unsigned long v)
  453. { serialprintPGM(s_P); SERIAL_ECHO(v); }
  454. #ifdef SDSUPPORT
  455. #include "SdFatUtil.h"
  456. int freeMemory() { return SdFatUtil::FreeRam(); }
  457. #else
  458. extern "C" {
  459. extern unsigned int __bss_end;
  460. extern unsigned int __heap_start;
  461. extern void *__brkval;
  462. int freeMemory() {
  463. int free_memory;
  464. if ((int)__brkval == 0)
  465. free_memory = ((int)&free_memory) - ((int)&__bss_end);
  466. else
  467. free_memory = ((int)&free_memory) - ((int)__brkval);
  468. return free_memory;
  469. }
  470. }
  471. #endif //!SDSUPPORT
  472. void setup_killpin()
  473. {
  474. #if defined(KILL_PIN) && KILL_PIN > -1
  475. SET_INPUT(KILL_PIN);
  476. WRITE(KILL_PIN,HIGH);
  477. #endif
  478. }
  479. // Set home pin
  480. void setup_homepin(void)
  481. {
  482. #if defined(HOME_PIN) && HOME_PIN > -1
  483. SET_INPUT(HOME_PIN);
  484. WRITE(HOME_PIN,HIGH);
  485. #endif
  486. }
  487. void setup_photpin()
  488. {
  489. #if defined(PHOTOGRAPH_PIN) && PHOTOGRAPH_PIN > -1
  490. SET_OUTPUT(PHOTOGRAPH_PIN);
  491. WRITE(PHOTOGRAPH_PIN, LOW);
  492. #endif
  493. }
  494. void setup_powerhold()
  495. {
  496. #if defined(SUICIDE_PIN) && SUICIDE_PIN > -1
  497. SET_OUTPUT(SUICIDE_PIN);
  498. WRITE(SUICIDE_PIN, HIGH);
  499. #endif
  500. #if defined(PS_ON_PIN) && PS_ON_PIN > -1
  501. SET_OUTPUT(PS_ON_PIN);
  502. #if defined(PS_DEFAULT_OFF)
  503. WRITE(PS_ON_PIN, PS_ON_ASLEEP);
  504. #else
  505. WRITE(PS_ON_PIN, PS_ON_AWAKE);
  506. #endif
  507. #endif
  508. }
  509. void suicide()
  510. {
  511. #if defined(SUICIDE_PIN) && SUICIDE_PIN > -1
  512. SET_OUTPUT(SUICIDE_PIN);
  513. WRITE(SUICIDE_PIN, LOW);
  514. #endif
  515. }
  516. void servo_init()
  517. {
  518. #if (NUM_SERVOS >= 1) && defined(SERVO0_PIN) && (SERVO0_PIN > -1)
  519. servos[0].attach(SERVO0_PIN);
  520. #endif
  521. #if (NUM_SERVOS >= 2) && defined(SERVO1_PIN) && (SERVO1_PIN > -1)
  522. servos[1].attach(SERVO1_PIN);
  523. #endif
  524. #if (NUM_SERVOS >= 3) && defined(SERVO2_PIN) && (SERVO2_PIN > -1)
  525. servos[2].attach(SERVO2_PIN);
  526. #endif
  527. #if (NUM_SERVOS >= 4) && defined(SERVO3_PIN) && (SERVO3_PIN > -1)
  528. servos[3].attach(SERVO3_PIN);
  529. #endif
  530. #if (NUM_SERVOS >= 5)
  531. #error "TODO: enter initalisation code for more servos"
  532. #endif
  533. }
  534. void stop_and_save_print_to_ram(float z_move, float e_move);
  535. void restore_print_from_ram_and_continue(float e_move);
  536. bool fans_check_enabled = true;
  537. bool filament_autoload_enabled = true;
  538. #ifdef TMC2130
  539. extern int8_t CrashDetectMenu;
  540. void crashdet_enable()
  541. {
  542. tmc2130_sg_stop_on_crash = true;
  543. eeprom_update_byte((uint8_t*)EEPROM_CRASH_DET, 0xFF);
  544. CrashDetectMenu = 1;
  545. }
  546. void crashdet_disable()
  547. {
  548. tmc2130_sg_stop_on_crash = false;
  549. tmc2130_sg_crash = 0;
  550. eeprom_update_byte((uint8_t*)EEPROM_CRASH_DET, 0x00);
  551. CrashDetectMenu = 0;
  552. }
  553. void crashdet_stop_and_save_print()
  554. {
  555. stop_and_save_print_to_ram(10, -DEFAULT_RETRACTION); //XY - no change, Z 10mm up, E -1mm retract
  556. }
  557. void crashdet_restore_print_and_continue()
  558. {
  559. restore_print_from_ram_and_continue(DEFAULT_RETRACTION); //XYZ = orig, E +1mm unretract
  560. // babystep_apply();
  561. }
  562. void crashdet_stop_and_save_print2()
  563. {
  564. cli();
  565. planner_abort_hard(); //abort printing
  566. cmdqueue_reset(); //empty cmdqueue
  567. card.sdprinting = false;
  568. card.closefile();
  569. // Reset and re-enable the stepper timer just before the global interrupts are enabled.
  570. st_reset_timer();
  571. sei();
  572. }
  573. void crashdet_detected(uint8_t mask)
  574. {
  575. // printf("CRASH_DETECTED");
  576. /* while (!is_buffer_empty())
  577. {
  578. process_commands();
  579. cmdqueue_pop_front();
  580. }*/
  581. st_synchronize();
  582. static uint8_t crashDet_counter = 0;
  583. bool automatic_recovery_after_crash = true;
  584. if (crashDet_counter++ == 0) {
  585. crashDetTimer.start();
  586. }
  587. else if (crashDetTimer.expired(CRASHDET_TIMER * 1000ul)){
  588. crashDetTimer.stop();
  589. crashDet_counter = 0;
  590. }
  591. else if(crashDet_counter == CRASHDET_COUNTER_MAX){
  592. automatic_recovery_after_crash = false;
  593. crashDetTimer.stop();
  594. crashDet_counter = 0;
  595. }
  596. else {
  597. crashDetTimer.start();
  598. }
  599. lcd_update_enable(true);
  600. lcd_clear();
  601. lcd_update(2);
  602. if (mask & X_AXIS_MASK)
  603. {
  604. eeprom_update_byte((uint8_t*)EEPROM_CRASH_COUNT_X, eeprom_read_byte((uint8_t*)EEPROM_CRASH_COUNT_X) + 1);
  605. eeprom_update_word((uint16_t*)EEPROM_CRASH_COUNT_X_TOT, eeprom_read_word((uint16_t*)EEPROM_CRASH_COUNT_X_TOT) + 1);
  606. }
  607. if (mask & Y_AXIS_MASK)
  608. {
  609. eeprom_update_byte((uint8_t*)EEPROM_CRASH_COUNT_Y, eeprom_read_byte((uint8_t*)EEPROM_CRASH_COUNT_Y) + 1);
  610. eeprom_update_word((uint16_t*)EEPROM_CRASH_COUNT_Y_TOT, eeprom_read_word((uint16_t*)EEPROM_CRASH_COUNT_Y_TOT) + 1);
  611. }
  612. lcd_update_enable(true);
  613. lcd_update(2);
  614. lcd_setstatuspgm(_T(MSG_CRASH_DETECTED));
  615. gcode_G28(true, true, false, false); //home X and Y
  616. st_synchronize();
  617. if (automatic_recovery_after_crash) {
  618. enquecommand_P(PSTR("CRASH_RECOVER"));
  619. }else{
  620. HotendTempBckp = degTargetHotend(active_extruder);
  621. setTargetHotend(0, active_extruder);
  622. bool yesno = lcd_show_fullscreen_message_yes_no_and_wait_P(_i("Crash detected. Resume print?"), false);
  623. lcd_update_enable(true);
  624. if (yesno)
  625. {
  626. char cmd1[10];
  627. strcpy(cmd1, "M109 S");
  628. strcat(cmd1, ftostr3(HotendTempBckp));
  629. enquecommand(cmd1);
  630. enquecommand_P(PSTR("CRASH_RECOVER"));
  631. }
  632. else
  633. {
  634. enquecommand_P(PSTR("CRASH_CANCEL"));
  635. }
  636. }
  637. }
  638. void crashdet_recover()
  639. {
  640. crashdet_restore_print_and_continue();
  641. tmc2130_sg_stop_on_crash = true;
  642. }
  643. void crashdet_cancel()
  644. {
  645. tmc2130_sg_stop_on_crash = true;
  646. if (saved_printing_type == PRINTING_TYPE_SD) {
  647. lcd_print_stop();
  648. }else if(saved_printing_type == PRINTING_TYPE_USB){
  649. SERIAL_ECHOLNPGM("// action:cancel"); //for Octoprint: works the same as clicking "Abort" button in Octoprint GUI
  650. SERIAL_PROTOCOLLNRPGM(_T(MSG_OK));
  651. }
  652. }
  653. #endif //TMC2130
  654. void failstats_reset_print()
  655. {
  656. eeprom_update_byte((uint8_t *)EEPROM_CRASH_COUNT_X, 0);
  657. eeprom_update_byte((uint8_t *)EEPROM_CRASH_COUNT_Y, 0);
  658. eeprom_update_byte((uint8_t *)EEPROM_FERROR_COUNT, 0);
  659. eeprom_update_byte((uint8_t *)EEPROM_POWER_COUNT, 0);
  660. }
  661. #ifdef MESH_BED_LEVELING
  662. enum MeshLevelingState { MeshReport, MeshStart, MeshNext, MeshSet };
  663. #endif
  664. // Factory reset function
  665. // This function is used to erase parts or whole EEPROM memory which is used for storing calibration and and so on.
  666. // Level input parameter sets depth of reset
  667. // Quiet parameter masks all waitings for user interact.
  668. int er_progress = 0;
  669. void factory_reset(char level, bool quiet)
  670. {
  671. lcd_clear();
  672. int cursor_pos = 0;
  673. switch (level) {
  674. // Level 0: Language reset
  675. case 0:
  676. WRITE(BEEPER, HIGH);
  677. _delay_ms(100);
  678. WRITE(BEEPER, LOW);
  679. lang_reset();
  680. break;
  681. //Level 1: Reset statistics
  682. case 1:
  683. WRITE(BEEPER, HIGH);
  684. _delay_ms(100);
  685. WRITE(BEEPER, LOW);
  686. eeprom_update_dword((uint32_t *)EEPROM_TOTALTIME, 0);
  687. eeprom_update_dword((uint32_t *)EEPROM_FILAMENTUSED, 0);
  688. eeprom_update_byte((uint8_t *)EEPROM_CRASH_COUNT_X, 0);
  689. eeprom_update_byte((uint8_t *)EEPROM_CRASH_COUNT_Y, 0);
  690. eeprom_update_byte((uint8_t *)EEPROM_FERROR_COUNT, 0);
  691. eeprom_update_byte((uint8_t *)EEPROM_POWER_COUNT, 0);
  692. eeprom_update_word((uint16_t *)EEPROM_CRASH_COUNT_X_TOT, 0);
  693. eeprom_update_word((uint16_t *)EEPROM_CRASH_COUNT_Y_TOT, 0);
  694. eeprom_update_word((uint16_t *)EEPROM_FERROR_COUNT_TOT, 0);
  695. eeprom_update_word((uint16_t *)EEPROM_POWER_COUNT_TOT, 0);
  696. lcd_menu_statistics();
  697. break;
  698. // Level 2: Prepare for shipping
  699. case 2:
  700. //lcd_puts_P(PSTR("Factory RESET"));
  701. //lcd_puts_at_P(1,2,PSTR("Shipping prep"));
  702. // Force language selection at the next boot up.
  703. lang_reset();
  704. // Force the "Follow calibration flow" message at the next boot up.
  705. calibration_status_store(CALIBRATION_STATUS_Z_CALIBRATION);
  706. eeprom_write_byte((uint8_t*)EEPROM_WIZARD_ACTIVE, 1); //run wizard
  707. farm_no = 0;
  708. farm_mode = false;
  709. eeprom_update_byte((uint8_t*)EEPROM_FARM_MODE, farm_mode);
  710. EEPROM_save_B(EEPROM_FARM_NUMBER, &farm_no);
  711. eeprom_update_dword((uint32_t *)EEPROM_TOTALTIME, 0);
  712. eeprom_update_dword((uint32_t *)EEPROM_FILAMENTUSED, 0);
  713. eeprom_update_word((uint16_t *)EEPROM_CRASH_COUNT_X_TOT, 0);
  714. eeprom_update_word((uint16_t *)EEPROM_CRASH_COUNT_Y_TOT, 0);
  715. eeprom_update_word((uint16_t *)EEPROM_FERROR_COUNT_TOT, 0);
  716. eeprom_update_word((uint16_t *)EEPROM_POWER_COUNT_TOT, 0);
  717. fsensor_enable();
  718. fautoload_set(true);
  719. WRITE(BEEPER, HIGH);
  720. _delay_ms(100);
  721. WRITE(BEEPER, LOW);
  722. //_delay_ms(2000);
  723. break;
  724. // Level 3: erase everything, whole EEPROM will be set to 0xFF
  725. case 3:
  726. lcd_puts_P(PSTR("Factory RESET"));
  727. lcd_puts_at_P(1, 2, PSTR("ERASING all data"));
  728. WRITE(BEEPER, HIGH);
  729. _delay_ms(100);
  730. WRITE(BEEPER, LOW);
  731. er_progress = 0;
  732. lcd_puts_at_P(3, 3, PSTR(" "));
  733. lcd_set_cursor(3, 3);
  734. lcd_print(er_progress);
  735. // Erase EEPROM
  736. for (int i = 0; i < 4096; i++) {
  737. eeprom_write_byte((uint8_t*)i, 0xFF);
  738. if (i % 41 == 0) {
  739. er_progress++;
  740. lcd_puts_at_P(3, 3, PSTR(" "));
  741. lcd_set_cursor(3, 3);
  742. lcd_print(er_progress);
  743. lcd_puts_P(PSTR("%"));
  744. }
  745. }
  746. break;
  747. case 4:
  748. bowden_menu();
  749. break;
  750. default:
  751. break;
  752. }
  753. }
  754. //#include "LiquidCrystal_Prusa.h"
  755. //extern LiquidCrystal_Prusa lcd;
  756. FILE _uartout = {0};
  757. int uart_putchar(char c, FILE *stream)
  758. {
  759. MYSERIAL.write(c);
  760. return 0;
  761. }
  762. void lcd_splash()
  763. {
  764. // lcd_puts_at_P(0, 1, PSTR(" Original Prusa "));
  765. // lcd_puts_at_P(0, 2, PSTR(" 3D Printers "));
  766. // lcd_puts_P(PSTR("\x1b[1;3HOriginal Prusa\x1b[2;4H3D Printers"));
  767. // fputs_P(PSTR(ESC_2J ESC_H(1,1) "Original Prusa i3" ESC_H(3,2) "Prusa Research"), lcdout);
  768. lcd_puts_P(PSTR(ESC_2J ESC_H(1,1) "Original Prusa i3" ESC_H(3,2) "Prusa Research"));
  769. // lcd_printf_P(_N(ESC_2J "x:%.3f\ny:%.3f\nz:%.3f\ne:%.3f"), _x, _y, _z, _e);
  770. }
  771. void factory_reset()
  772. {
  773. KEEPALIVE_STATE(PAUSED_FOR_USER);
  774. if (!READ(BTN_ENC))
  775. {
  776. _delay_ms(1000);
  777. if (!READ(BTN_ENC))
  778. {
  779. lcd_clear();
  780. lcd_puts_P(PSTR("Factory RESET"));
  781. SET_OUTPUT(BEEPER);
  782. WRITE(BEEPER, HIGH);
  783. while (!READ(BTN_ENC));
  784. WRITE(BEEPER, LOW);
  785. _delay_ms(2000);
  786. char level = reset_menu();
  787. factory_reset(level, false);
  788. switch (level) {
  789. case 0: _delay_ms(0); break;
  790. case 1: _delay_ms(0); break;
  791. case 2: _delay_ms(0); break;
  792. case 3: _delay_ms(0); break;
  793. }
  794. // _delay_ms(100);
  795. /*
  796. #ifdef MESH_BED_LEVELING
  797. _delay_ms(2000);
  798. if (!READ(BTN_ENC))
  799. {
  800. WRITE(BEEPER, HIGH);
  801. _delay_ms(100);
  802. WRITE(BEEPER, LOW);
  803. _delay_ms(200);
  804. WRITE(BEEPER, HIGH);
  805. _delay_ms(100);
  806. WRITE(BEEPER, LOW);
  807. int _z = 0;
  808. calibration_status_store(CALIBRATION_STATUS_CALIBRATED);
  809. EEPROM_save_B(EEPROM_BABYSTEP_X, &_z);
  810. EEPROM_save_B(EEPROM_BABYSTEP_Y, &_z);
  811. EEPROM_save_B(EEPROM_BABYSTEP_Z, &_z);
  812. }
  813. else
  814. {
  815. WRITE(BEEPER, HIGH);
  816. _delay_ms(100);
  817. WRITE(BEEPER, LOW);
  818. }
  819. #endif // mesh */
  820. }
  821. }
  822. else
  823. {
  824. //_delay_ms(1000); // wait 1sec to display the splash screen // what's this and why do we need it?? - andre
  825. }
  826. KEEPALIVE_STATE(IN_HANDLER);
  827. }
  828. void show_fw_version_warnings() {
  829. if (FW_DEV_VERSION == FW_VERSION_GOLD || FW_DEV_VERSION == FW_VERSION_RC) return;
  830. switch (FW_DEV_VERSION) {
  831. case(FW_VERSION_ALPHA): lcd_show_fullscreen_message_and_wait_P(_i("You are using firmware alpha version. This is development version. Using this version is not recommended and may cause printer damage.")); break;////MSG_FW_VERSION_ALPHA c=20 r=8
  832. case(FW_VERSION_BETA): lcd_show_fullscreen_message_and_wait_P(_i("You are using firmware beta version. This is development version. Using this version is not recommended and may cause printer damage.")); break;////MSG_FW_VERSION_BETA c=20 r=8
  833. case(FW_VERSION_DEVEL):
  834. case(FW_VERSION_DEBUG):
  835. lcd_update_enable(false);
  836. lcd_clear();
  837. #if FW_DEV_VERSION == FW_VERSION_DEVEL
  838. lcd_puts_at_P(0, 0, PSTR("Development build !!"));
  839. #else
  840. lcd_puts_at_P(0, 0, PSTR("Debbugging build !!!"));
  841. #endif
  842. lcd_puts_at_P(0, 1, PSTR("May destroy printer!"));
  843. lcd_puts_at_P(0, 2, PSTR("ver ")); lcd_puts_P(PSTR(FW_VERSION_FULL));
  844. lcd_puts_at_P(0, 3, PSTR(FW_REPOSITORY));
  845. lcd_wait_for_click();
  846. break;
  847. // default: lcd_show_fullscreen_message_and_wait_P(_i("WARNING: This is an unofficial, unsupported build. Use at your own risk!")); break;////MSG_FW_VERSION_UNKNOWN c=20 r=8
  848. }
  849. lcd_update_enable(true);
  850. }
  851. uint8_t check_printer_version()
  852. {
  853. uint8_t version_changed = 0;
  854. uint16_t printer_type = eeprom_read_word((uint16_t*)EEPROM_PRINTER_TYPE);
  855. uint16_t motherboard = eeprom_read_word((uint16_t*)EEPROM_BOARD_TYPE);
  856. if (printer_type != PRINTER_TYPE) {
  857. if (printer_type == 0xffff) eeprom_write_word((uint16_t*)EEPROM_PRINTER_TYPE, PRINTER_TYPE);
  858. else version_changed |= 0b10;
  859. }
  860. if (motherboard != MOTHERBOARD) {
  861. if(motherboard == 0xffff) eeprom_write_word((uint16_t*)EEPROM_BOARD_TYPE, MOTHERBOARD);
  862. else version_changed |= 0b01;
  863. }
  864. return version_changed;
  865. }
  866. void erase_eeprom_section(uint16_t offset, uint16_t bytes)
  867. {
  868. for (int i = offset; i < (offset+bytes); i++) eeprom_write_byte((uint8_t*)i, 0xFF);
  869. }
  870. #if (LANG_MODE != 0) //secondary language support
  871. #ifdef W25X20CL
  872. #include "bootapp.h" //bootloader support
  873. // language update from external flash
  874. #define LANGBOOT_BLOCKSIZE 0x1000
  875. #define LANGBOOT_RAMBUFFER 0x0800
  876. void update_sec_lang_from_external_flash()
  877. {
  878. if ((boot_app_magic == BOOT_APP_MAGIC) && (boot_app_flags & BOOT_APP_FLG_USER0))
  879. {
  880. uint8_t lang = boot_reserved >> 4;
  881. uint8_t state = boot_reserved & 0xf;
  882. lang_table_header_t header;
  883. uint32_t src_addr;
  884. if (lang_get_header(lang, &header, &src_addr))
  885. {
  886. fputs_P(PSTR(ESC_H(1,3) "Language update."), lcdout);
  887. for (uint8_t i = 0; i < state; i++) fputc('.', lcdout);
  888. delay(100);
  889. boot_reserved = (state + 1) | (lang << 4);
  890. if ((state * LANGBOOT_BLOCKSIZE) < header.size)
  891. {
  892. cli();
  893. uint16_t size = header.size - state * LANGBOOT_BLOCKSIZE;
  894. if (size > LANGBOOT_BLOCKSIZE) size = LANGBOOT_BLOCKSIZE;
  895. w25x20cl_rd_data(src_addr + state * LANGBOOT_BLOCKSIZE, (uint8_t*)LANGBOOT_RAMBUFFER, size);
  896. if (state == 0)
  897. {
  898. //TODO - check header integrity
  899. }
  900. bootapp_ram2flash(LANGBOOT_RAMBUFFER, _SEC_LANG_TABLE + state * LANGBOOT_BLOCKSIZE, size);
  901. }
  902. else
  903. {
  904. //TODO - check sec lang data integrity
  905. eeprom_update_byte((unsigned char *)EEPROM_LANG, LANG_ID_SEC);
  906. }
  907. }
  908. }
  909. boot_app_flags &= ~BOOT_APP_FLG_USER0;
  910. }
  911. #ifdef DEBUG_W25X20CL
  912. uint8_t lang_xflash_enum_codes(uint16_t* codes)
  913. {
  914. lang_table_header_t header;
  915. uint8_t count = 0;
  916. uint32_t addr = 0x00000;
  917. while (1)
  918. {
  919. printf_P(_n("LANGTABLE%d:"), count);
  920. w25x20cl_rd_data(addr, (uint8_t*)&header, sizeof(lang_table_header_t));
  921. if (header.magic != LANG_MAGIC)
  922. {
  923. printf_P(_n("NG!\n"));
  924. break;
  925. }
  926. printf_P(_n("OK\n"));
  927. printf_P(_n(" _lt_magic = 0x%08lx %S\n"), header.magic, (header.magic==LANG_MAGIC)?_n("OK"):_n("NA"));
  928. printf_P(_n(" _lt_size = 0x%04x (%d)\n"), header.size, header.size);
  929. printf_P(_n(" _lt_count = 0x%04x (%d)\n"), header.count, header.count);
  930. printf_P(_n(" _lt_chsum = 0x%04x\n"), header.checksum);
  931. printf_P(_n(" _lt_code = 0x%04x (%c%c)\n"), header.code, header.code >> 8, header.code & 0xff);
  932. printf_P(_n(" _lt_sign = 0x%08lx\n"), header.signature);
  933. addr += header.size;
  934. codes[count] = header.code;
  935. count ++;
  936. }
  937. return count;
  938. }
  939. void list_sec_lang_from_external_flash()
  940. {
  941. uint16_t codes[8];
  942. uint8_t count = lang_xflash_enum_codes(codes);
  943. printf_P(_n("XFlash lang count = %hhd\n"), count);
  944. }
  945. #endif //DEBUG_W25X20CL
  946. #endif //W25X20CL
  947. #endif //(LANG_MODE != 0)
  948. // "Setup" function is called by the Arduino framework on startup.
  949. // Before startup, the Timers-functions (PWM)/Analog RW and HardwareSerial provided by the Arduino-code
  950. // are initialized by the main() routine provided by the Arduino framework.
  951. void setup()
  952. {
  953. ultralcd_init();
  954. spi_init();
  955. lcd_splash();
  956. #ifdef W25X20CL
  957. // Enter an STK500 compatible Optiboot boot loader waiting for flashing the languages to an external flash memory.
  958. // optiboot_w25x20cl_enter();
  959. #endif
  960. #if (LANG_MODE != 0) //secondary language support
  961. #ifdef W25X20CL
  962. if (w25x20cl_init())
  963. update_sec_lang_from_external_flash();
  964. else
  965. kill(_i("External SPI flash W25X20CL not responding."));
  966. #endif //W25X20CL
  967. #endif //(LANG_MODE != 0)
  968. setup_killpin();
  969. setup_powerhold();
  970. farm_mode = eeprom_read_byte((uint8_t*)EEPROM_FARM_MODE);
  971. EEPROM_read_B(EEPROM_FARM_NUMBER, &farm_no);
  972. if ((farm_mode == 0xFF && farm_no == 0) || ((uint16_t)farm_no == 0xFFFF))
  973. farm_mode = false; //if farm_mode has not been stored to eeprom yet and farm number is set to zero or EEPROM is fresh, deactivate farm mode
  974. if ((uint16_t)farm_no == 0xFFFF) farm_no = 0;
  975. selectedSerialPort = eeprom_read_byte((uint8_t*)EEPROM_SECOND_SERIAL_ACTIVE);
  976. if (selectedSerialPort == 0xFF) selectedSerialPort = 0;
  977. if (farm_mode)
  978. {
  979. no_response = true; //we need confirmation by recieving PRUSA thx
  980. important_status = 8;
  981. prusa_statistics(8);
  982. selectedSerialPort = 1;
  983. #ifdef TMC2130
  984. //increased extruder current (PFW363)
  985. tmc2130_current_h[E_AXIS] = 36;
  986. tmc2130_current_r[E_AXIS] = 36;
  987. #endif //TMC2130
  988. //disabled filament autoload (PFW360)
  989. filament_autoload_enabled = false;
  990. eeprom_update_byte((uint8_t*)EEPROM_FSENS_AUTOLOAD_ENABLED, 0);
  991. }
  992. MYSERIAL.begin(BAUDRATE);
  993. fdev_setup_stream(uartout, uart_putchar, NULL, _FDEV_SETUP_WRITE); //setup uart out stream
  994. stdout = uartout;
  995. SERIAL_PROTOCOLLNPGM("start");
  996. SERIAL_ECHO_START;
  997. printf_P(PSTR(" " FW_VERSION_FULL "\n"));
  998. uart2_init();
  999. #ifdef DEBUG_SEC_LANG
  1000. lang_table_header_t header;
  1001. uint32_t src_addr = 0x00000;
  1002. if (lang_get_header(1, &header, &src_addr))
  1003. {
  1004. //this is comparsion of some printing-methods regarding to flash space usage and code size/readability
  1005. #define LT_PRINT_TEST 2
  1006. // flash usage
  1007. // total p.test
  1008. //0 252718 t+c text code
  1009. //1 253142 424 170 254
  1010. //2 253040 322 164 158
  1011. //3 253248 530 135 395
  1012. #if (LT_PRINT_TEST==1) //not optimized printf
  1013. printf_P(_n(" _src_addr = 0x%08lx\n"), src_addr);
  1014. printf_P(_n(" _lt_magic = 0x%08lx %S\n"), header.magic, (header.magic==LANG_MAGIC)?_n("OK"):_n("NA"));
  1015. printf_P(_n(" _lt_size = 0x%04x (%d)\n"), header.size, header.size);
  1016. printf_P(_n(" _lt_count = 0x%04x (%d)\n"), header.count, header.count);
  1017. printf_P(_n(" _lt_chsum = 0x%04x\n"), header.checksum);
  1018. printf_P(_n(" _lt_code = 0x%04x (%c%c)\n"), header.code, header.code >> 8, header.code & 0xff);
  1019. printf_P(_n(" _lt_sign = 0x%08lx\n"), header.signature);
  1020. #elif (LT_PRINT_TEST==2) //optimized printf
  1021. printf_P(
  1022. _n(
  1023. " _src_addr = 0x%08lx\n"
  1024. " _lt_magic = 0x%08lx %S\n"
  1025. " _lt_size = 0x%04x (%d)\n"
  1026. " _lt_count = 0x%04x (%d)\n"
  1027. " _lt_chsum = 0x%04x\n"
  1028. " _lt_code = 0x%04x (%c%c)\n"
  1029. " _lt_resv1 = 0x%08lx\n"
  1030. ),
  1031. src_addr,
  1032. header.magic, (header.magic==LANG_MAGIC)?_n("OK"):_n("NA"),
  1033. header.size, header.size,
  1034. header.count, header.count,
  1035. header.checksum,
  1036. header.code, header.code >> 8, header.code & 0xff,
  1037. header.signature
  1038. );
  1039. #elif (LT_PRINT_TEST==3) //arduino print/println (leading zeros not solved)
  1040. MYSERIAL.print(" _src_addr = 0x");
  1041. MYSERIAL.println(src_addr, 16);
  1042. MYSERIAL.print(" _lt_magic = 0x");
  1043. MYSERIAL.print(header.magic, 16);
  1044. MYSERIAL.println((header.magic==LANG_MAGIC)?" OK":" NA");
  1045. MYSERIAL.print(" _lt_size = 0x");
  1046. MYSERIAL.print(header.size, 16);
  1047. MYSERIAL.print(" (");
  1048. MYSERIAL.print(header.size, 10);
  1049. MYSERIAL.println(")");
  1050. MYSERIAL.print(" _lt_count = 0x");
  1051. MYSERIAL.print(header.count, 16);
  1052. MYSERIAL.print(" (");
  1053. MYSERIAL.print(header.count, 10);
  1054. MYSERIAL.println(")");
  1055. MYSERIAL.print(" _lt_chsum = 0x");
  1056. MYSERIAL.println(header.checksum, 16);
  1057. MYSERIAL.print(" _lt_code = 0x");
  1058. MYSERIAL.print(header.code, 16);
  1059. MYSERIAL.print(" (");
  1060. MYSERIAL.print((char)(header.code >> 8), 0);
  1061. MYSERIAL.print((char)(header.code & 0xff), 0);
  1062. MYSERIAL.println(")");
  1063. MYSERIAL.print(" _lt_resv1 = 0x");
  1064. MYSERIAL.println(header.signature, 16);
  1065. #endif //(LT_PRINT_TEST==)
  1066. #undef LT_PRINT_TEST
  1067. #if 0
  1068. w25x20cl_rd_data(0x25ba, (uint8_t*)&block_buffer, 1024);
  1069. for (uint16_t i = 0; i < 1024; i++)
  1070. {
  1071. if ((i % 16) == 0) printf_P(_n("%04x:"), 0x25ba+i);
  1072. printf_P(_n(" %02x"), ((uint8_t*)&block_buffer)[i]);
  1073. if ((i % 16) == 15) putchar('\n');
  1074. }
  1075. #endif
  1076. uint16_t sum = 0;
  1077. for (uint16_t i = 0; i < header.size; i++)
  1078. sum += (uint16_t)pgm_read_byte((uint8_t*)(_SEC_LANG_TABLE + i)) << ((i & 1)?0:8);
  1079. printf_P(_n("_SEC_LANG_TABLE checksum = %04x\n"), sum);
  1080. sum -= header.checksum; //subtract checksum
  1081. printf_P(_n("_SEC_LANG_TABLE checksum = %04x\n"), sum);
  1082. sum = (sum >> 8) | ((sum & 0xff) << 8); //swap bytes
  1083. if (sum == header.checksum)
  1084. printf_P(_n("Checksum OK\n"), sum);
  1085. else
  1086. printf_P(_n("Checksum NG\n"), sum);
  1087. }
  1088. else
  1089. printf_P(_n("lang_get_header failed!\n"));
  1090. #if 0
  1091. for (uint16_t i = 0; i < 1024*10; i++)
  1092. {
  1093. if ((i % 16) == 0) printf_P(_n("%04x:"), _SEC_LANG_TABLE+i);
  1094. printf_P(_n(" %02x"), pgm_read_byte((uint8_t*)(_SEC_LANG_TABLE+i)));
  1095. if ((i % 16) == 15) putchar('\n');
  1096. }
  1097. #endif
  1098. #if 0
  1099. SERIAL_ECHOLN("Reading eeprom from 0 to 100: start");
  1100. for (int i = 0; i < 4096; ++i) {
  1101. int b = eeprom_read_byte((unsigned char*)i);
  1102. if (b != 255) {
  1103. SERIAL_ECHO(i);
  1104. SERIAL_ECHO(":");
  1105. SERIAL_ECHO(b);
  1106. SERIAL_ECHOLN("");
  1107. }
  1108. }
  1109. SERIAL_ECHOLN("Reading eeprom from 0 to 100: done");
  1110. #endif
  1111. #endif //DEBUG_SEC_LANG
  1112. // Check startup - does nothing if bootloader sets MCUSR to 0
  1113. byte mcu = MCUSR;
  1114. /* if (mcu & 1) SERIAL_ECHOLNRPGM(_T(MSG_POWERUP));
  1115. if (mcu & 2) SERIAL_ECHOLNRPGM(MSG_EXTERNAL_RESET);
  1116. if (mcu & 4) SERIAL_ECHOLNRPGM(MSG_BROWNOUT_RESET);
  1117. if (mcu & 8) SERIAL_ECHOLNRPGM(MSG_WATCHDOG_RESET);
  1118. if (mcu & 32) SERIAL_ECHOLNRPGM(MSG_SOFTWARE_RESET);*/
  1119. if (mcu & 1) puts_P(_T(MSG_POWERUP));
  1120. if (mcu & 2) puts_P(MSG_EXTERNAL_RESET);
  1121. if (mcu & 4) puts_P(MSG_BROWNOUT_RESET);
  1122. if (mcu & 8) puts_P(MSG_WATCHDOG_RESET);
  1123. if (mcu & 32) puts_P(MSG_SOFTWARE_RESET);
  1124. MCUSR = 0;
  1125. //SERIAL_ECHORPGM(MSG_MARLIN);
  1126. //SERIAL_ECHOLNRPGM(VERSION_STRING);
  1127. #ifdef STRING_VERSION_CONFIG_H
  1128. #ifdef STRING_CONFIG_H_AUTHOR
  1129. SERIAL_ECHO_START;
  1130. SERIAL_ECHORPGM(_i(" Last Updated: "));////MSG_CONFIGURATION_VER c=0 r=0
  1131. SERIAL_ECHOPGM(STRING_VERSION_CONFIG_H);
  1132. SERIAL_ECHORPGM(_n(" | Author: "));////MSG_AUTHOR c=0 r=0
  1133. SERIAL_ECHOLNPGM(STRING_CONFIG_H_AUTHOR);
  1134. SERIAL_ECHOPGM("Compiled: ");
  1135. SERIAL_ECHOLNPGM(__DATE__);
  1136. #endif
  1137. #endif
  1138. SERIAL_ECHO_START;
  1139. SERIAL_ECHORPGM(_i(" Free Memory: "));////MSG_FREE_MEMORY c=0 r=0
  1140. SERIAL_ECHO(freeMemory());
  1141. SERIAL_ECHORPGM(_i(" PlannerBufferBytes: "));////MSG_PLANNER_BUFFER_BYTES c=0 r=0
  1142. SERIAL_ECHOLN((int)sizeof(block_t)*BLOCK_BUFFER_SIZE);
  1143. //lcd_update_enable(false); // why do we need this?? - andre
  1144. // loads data from EEPROM if available else uses defaults (and resets step acceleration rate)
  1145. bool previous_settings_retrieved = false;
  1146. uint8_t hw_changed = check_printer_version();
  1147. if (!(hw_changed & 0b10)) { //if printer version wasn't changed, check for eeprom version and retrieve settings from eeprom in case that version wasn't changed
  1148. previous_settings_retrieved = Config_RetrieveSettings(EEPROM_OFFSET);
  1149. }
  1150. else { //printer version was changed so use default settings
  1151. Config_ResetDefault();
  1152. }
  1153. SdFatUtil::set_stack_guard(); //writes magic number at the end of static variables to protect against overwriting static memory by stack
  1154. tp_init(); // Initialize temperature loop
  1155. lcd_splash(); // we need to do this again, because tp_init() kills lcd
  1156. plan_init(); // Initialize planner;
  1157. factory_reset();
  1158. #ifdef TMC2130
  1159. uint8_t silentMode = eeprom_read_byte((uint8_t*)EEPROM_SILENT);
  1160. if (silentMode == 0xff) silentMode = 0;
  1161. // tmc2130_mode = silentMode?TMC2130_MODE_SILENT:TMC2130_MODE_NORMAL;
  1162. tmc2130_mode = TMC2130_MODE_NORMAL;
  1163. uint8_t crashdet = eeprom_read_byte((uint8_t*)EEPROM_CRASH_DET);
  1164. if (crashdet && !farm_mode)
  1165. {
  1166. crashdet_enable();
  1167. puts_P(_N("CrashDetect ENABLED!"));
  1168. }
  1169. else
  1170. {
  1171. crashdet_disable();
  1172. puts_P(_N("CrashDetect DISABLED"));
  1173. }
  1174. #ifdef TMC2130_LINEARITY_CORRECTION
  1175. #ifdef TMC2130_LINEARITY_CORRECTION_XYZ
  1176. tmc2130_wave_fac[X_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_WAVE_X_FAC);
  1177. tmc2130_wave_fac[Y_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_WAVE_Y_FAC);
  1178. tmc2130_wave_fac[Z_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_WAVE_Z_FAC);
  1179. #endif //TMC2130_LINEARITY_CORRECTION_XYZ
  1180. tmc2130_wave_fac[E_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_WAVE_E_FAC);
  1181. if (tmc2130_wave_fac[X_AXIS] == 0xff) tmc2130_wave_fac[X_AXIS] = 0;
  1182. if (tmc2130_wave_fac[Y_AXIS] == 0xff) tmc2130_wave_fac[Y_AXIS] = 0;
  1183. if (tmc2130_wave_fac[Z_AXIS] == 0xff) tmc2130_wave_fac[Z_AXIS] = 0;
  1184. if (tmc2130_wave_fac[E_AXIS] == 0xff) tmc2130_wave_fac[E_AXIS] = 0;
  1185. #endif //TMC2130_LINEARITY_CORRECTION
  1186. #ifdef TMC2130_VARIABLE_RESOLUTION
  1187. tmc2130_mres[X_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_X_MRES);
  1188. tmc2130_mres[Y_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_Y_MRES);
  1189. tmc2130_mres[Z_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_Z_MRES);
  1190. tmc2130_mres[E_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_E_MRES);
  1191. if (tmc2130_mres[X_AXIS] == 0xff) tmc2130_mres[X_AXIS] = tmc2130_usteps2mres(TMC2130_USTEPS_XY);
  1192. if (tmc2130_mres[Y_AXIS] == 0xff) tmc2130_mres[Y_AXIS] = tmc2130_usteps2mres(TMC2130_USTEPS_XY);
  1193. if (tmc2130_mres[Z_AXIS] == 0xff) tmc2130_mres[Z_AXIS] = tmc2130_usteps2mres(TMC2130_USTEPS_Z);
  1194. if (tmc2130_mres[E_AXIS] == 0xff) tmc2130_mres[E_AXIS] = tmc2130_usteps2mres(TMC2130_USTEPS_E);
  1195. eeprom_update_byte((uint8_t*)EEPROM_TMC2130_X_MRES, tmc2130_mres[X_AXIS]);
  1196. eeprom_update_byte((uint8_t*)EEPROM_TMC2130_Y_MRES, tmc2130_mres[Y_AXIS]);
  1197. eeprom_update_byte((uint8_t*)EEPROM_TMC2130_Z_MRES, tmc2130_mres[Z_AXIS]);
  1198. eeprom_update_byte((uint8_t*)EEPROM_TMC2130_E_MRES, tmc2130_mres[E_AXIS]);
  1199. #else //TMC2130_VARIABLE_RESOLUTION
  1200. tmc2130_mres[X_AXIS] = tmc2130_usteps2mres(TMC2130_USTEPS_XY);
  1201. tmc2130_mres[Y_AXIS] = tmc2130_usteps2mres(TMC2130_USTEPS_XY);
  1202. tmc2130_mres[Z_AXIS] = tmc2130_usteps2mres(TMC2130_USTEPS_Z);
  1203. tmc2130_mres[E_AXIS] = tmc2130_usteps2mres(TMC2130_USTEPS_E);
  1204. #endif //TMC2130_VARIABLE_RESOLUTION
  1205. #endif //TMC2130
  1206. st_init(); // Initialize stepper, this enables interrupts!
  1207. #ifdef TMC2130
  1208. tmc2130_mode = silentMode?TMC2130_MODE_SILENT:TMC2130_MODE_NORMAL;
  1209. tmc2130_init();
  1210. #endif //TMC2130
  1211. setup_photpin();
  1212. servo_init();
  1213. // Reset the machine correction matrix.
  1214. // It does not make sense to load the correction matrix until the machine is homed.
  1215. world2machine_reset();
  1216. #ifdef PAT9125
  1217. fsensor_init();
  1218. #endif //PAT9125
  1219. #if defined(CONTROLLERFAN_PIN) && (CONTROLLERFAN_PIN > -1)
  1220. SET_OUTPUT(CONTROLLERFAN_PIN); //Set pin used for driver cooling fan
  1221. #endif
  1222. setup_homepin();
  1223. #ifdef TMC2130
  1224. if (1) {
  1225. // try to run to zero phase before powering the Z motor.
  1226. // Move in negative direction
  1227. WRITE(Z_DIR_PIN,INVERT_Z_DIR);
  1228. // Round the current micro-micro steps to micro steps.
  1229. for (uint16_t phase = (tmc2130_rd_MSCNT(Z_AXIS) + 8) >> 4; phase > 0; -- phase) {
  1230. // Until the phase counter is reset to zero.
  1231. WRITE(Z_STEP_PIN, !INVERT_Z_STEP_PIN);
  1232. delay(2);
  1233. WRITE(Z_STEP_PIN, INVERT_Z_STEP_PIN);
  1234. delay(2);
  1235. }
  1236. }
  1237. #endif //TMC2130
  1238. #if defined(Z_AXIS_ALWAYS_ON)
  1239. enable_z();
  1240. #endif
  1241. farm_mode = eeprom_read_byte((uint8_t*)EEPROM_FARM_MODE);
  1242. EEPROM_read_B(EEPROM_FARM_NUMBER, &farm_no);
  1243. if ((farm_mode == 0xFF && farm_no == 0) || (farm_no == 0xFFFF)) farm_mode = false; //if farm_mode has not been stored to eeprom yet and farm number is set to zero or EEPROM is fresh, deactivate farm mode
  1244. if (farm_no == 0xFFFF) farm_no = 0;
  1245. if (farm_mode)
  1246. {
  1247. prusa_statistics(8);
  1248. }
  1249. // Enable Toshiba FlashAir SD card / WiFi enahanced card.
  1250. card.ToshibaFlashAir_enable(eeprom_read_byte((unsigned char*)EEPROM_TOSHIBA_FLASH_AIR_COMPATIBLITY) == 1);
  1251. if (eeprom_read_dword((uint32_t*)(EEPROM_TOP - 4)) == 0x0ffffffff &&
  1252. eeprom_read_dword((uint32_t*)(EEPROM_TOP - 8)) == 0x0ffffffff) {
  1253. // Maiden startup. The firmware has been loaded and first started on a virgin RAMBo board,
  1254. // where all the EEPROM entries are set to 0x0ff.
  1255. // Once a firmware boots up, it forces at least a language selection, which changes
  1256. // EEPROM_LANG to number lower than 0x0ff.
  1257. // 1) Set a high power mode.
  1258. #ifdef TMC2130
  1259. eeprom_write_byte((uint8_t*)EEPROM_SILENT, 0);
  1260. tmc2130_mode = TMC2130_MODE_NORMAL;
  1261. #endif //TMC2130
  1262. eeprom_write_byte((uint8_t*)EEPROM_WIZARD_ACTIVE, 1); //run wizard
  1263. }
  1264. // Force SD card update. Otherwise the SD card update is done from loop() on card.checkautostart(false),
  1265. // but this times out if a blocking dialog is shown in setup().
  1266. card.initsd();
  1267. #ifdef DEBUG_SD_SPEED_TEST
  1268. if (card.cardOK)
  1269. {
  1270. uint8_t* buff = (uint8_t*)block_buffer;
  1271. uint32_t block = 0;
  1272. uint32_t sumr = 0;
  1273. uint32_t sumw = 0;
  1274. for (int i = 0; i < 1024; i++)
  1275. {
  1276. uint32_t u = micros();
  1277. bool res = card.card.readBlock(i, buff);
  1278. u = micros() - u;
  1279. if (res)
  1280. {
  1281. printf_P(PSTR("readBlock %4d 512 bytes %lu us\n"), i, u);
  1282. sumr += u;
  1283. u = micros();
  1284. res = card.card.writeBlock(i, buff);
  1285. u = micros() - u;
  1286. if (res)
  1287. {
  1288. printf_P(PSTR("writeBlock %4d 512 bytes %lu us\n"), i, u);
  1289. sumw += u;
  1290. }
  1291. else
  1292. {
  1293. printf_P(PSTR("writeBlock %4d error\n"), i);
  1294. break;
  1295. }
  1296. }
  1297. else
  1298. {
  1299. printf_P(PSTR("readBlock %4d error\n"), i);
  1300. break;
  1301. }
  1302. }
  1303. uint32_t avg_rspeed = (1024 * 1000000) / (sumr / 512);
  1304. uint32_t avg_wspeed = (1024 * 1000000) / (sumw / 512);
  1305. printf_P(PSTR("avg read speed %lu bytes/s\n"), avg_rspeed);
  1306. printf_P(PSTR("avg write speed %lu bytes/s\n"), avg_wspeed);
  1307. }
  1308. else
  1309. printf_P(PSTR("Card NG!\n"));
  1310. #endif //DEBUG_SD_SPEED_TEST
  1311. if (eeprom_read_byte((uint8_t*)EEPROM_POWER_COUNT) == 0xff) eeprom_write_byte((uint8_t*)EEPROM_POWER_COUNT, 0);
  1312. if (eeprom_read_byte((uint8_t*)EEPROM_CRASH_COUNT_X) == 0xff) eeprom_write_byte((uint8_t*)EEPROM_CRASH_COUNT_X, 0);
  1313. if (eeprom_read_byte((uint8_t*)EEPROM_CRASH_COUNT_Y) == 0xff) eeprom_write_byte((uint8_t*)EEPROM_CRASH_COUNT_Y, 0);
  1314. if (eeprom_read_byte((uint8_t*)EEPROM_FERROR_COUNT) == 0xff) eeprom_write_byte((uint8_t*)EEPROM_FERROR_COUNT, 0);
  1315. if (eeprom_read_word((uint16_t*)EEPROM_POWER_COUNT_TOT) == 0xffff) eeprom_write_word((uint16_t*)EEPROM_POWER_COUNT_TOT, 0);
  1316. if (eeprom_read_word((uint16_t*)EEPROM_CRASH_COUNT_X_TOT) == 0xffff) eeprom_write_word((uint16_t*)EEPROM_CRASH_COUNT_X_TOT, 0);
  1317. if (eeprom_read_word((uint16_t*)EEPROM_CRASH_COUNT_Y_TOT) == 0xffff) eeprom_write_word((uint16_t*)EEPROM_CRASH_COUNT_Y_TOT, 0);
  1318. if (eeprom_read_word((uint16_t*)EEPROM_FERROR_COUNT_TOT) == 0xffff) eeprom_write_word((uint16_t*)EEPROM_FERROR_COUNT_TOT, 0);
  1319. #ifdef SNMM
  1320. if (eeprom_read_dword((uint32_t*)EEPROM_BOWDEN_LENGTH) == 0x0ffffffff) { //bowden length used for SNMM
  1321. int _z = BOWDEN_LENGTH;
  1322. for(int i = 0; i<4; i++) EEPROM_save_B(EEPROM_BOWDEN_LENGTH + i * 2, &_z);
  1323. }
  1324. #endif
  1325. // In the future, somewhere here would one compare the current firmware version against the firmware version stored in the EEPROM.
  1326. // If they differ, an update procedure may need to be performed. At the end of this block, the current firmware version
  1327. // is being written into the EEPROM, so the update procedure will be triggered only once.
  1328. #if (LANG_MODE != 0) //secondary language support
  1329. #ifdef DEBUG_W25X20CL
  1330. W25X20CL_SPI_ENTER();
  1331. uint8_t uid[8]; // 64bit unique id
  1332. w25x20cl_rd_uid(uid);
  1333. puts_P(_n("W25X20CL UID="));
  1334. for (uint8_t i = 0; i < 8; i ++)
  1335. printf_P(PSTR("%02hhx"), uid[i]);
  1336. putchar('\n');
  1337. list_sec_lang_from_external_flash();
  1338. #endif //DEBUG_W25X20CL
  1339. // lang_reset();
  1340. if (!lang_select(eeprom_read_byte((uint8_t*)EEPROM_LANG)))
  1341. lcd_language();
  1342. #ifdef DEBUG_SEC_LANG
  1343. uint16_t sec_lang_code = lang_get_code(1);
  1344. uint16_t ui = _SEC_LANG_TABLE; //table pointer
  1345. printf_P(_n("lang_selected=%d\nlang_table=0x%04x\nSEC_LANG_CODE=0x%04x (%c%c)\n"), lang_selected, ui, sec_lang_code, sec_lang_code >> 8, sec_lang_code & 0xff);
  1346. // lang_print_sec_lang(uartout);
  1347. #endif //DEBUG_SEC_LANG
  1348. #endif //(LANG_MODE != 0)
  1349. if (eeprom_read_byte((uint8_t*)EEPROM_TEMP_CAL_ACTIVE) == 255) {
  1350. eeprom_write_byte((uint8_t*)EEPROM_TEMP_CAL_ACTIVE, 0);
  1351. temp_cal_active = false;
  1352. } else temp_cal_active = eeprom_read_byte((uint8_t*)EEPROM_TEMP_CAL_ACTIVE);
  1353. if (eeprom_read_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA) == 255) {
  1354. //eeprom_write_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 0);
  1355. eeprom_write_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 1);
  1356. int16_t z_shift = 0;
  1357. for (uint8_t i = 0; i < 5; i++) EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + i * 2, &z_shift);
  1358. eeprom_write_byte((uint8_t*)EEPROM_TEMP_CAL_ACTIVE, 0);
  1359. temp_cal_active = false;
  1360. }
  1361. if (eeprom_read_byte((uint8_t*)EEPROM_UVLO) == 255) {
  1362. eeprom_write_byte((uint8_t*)EEPROM_UVLO, 0);
  1363. }
  1364. if (eeprom_read_byte((uint8_t*)EEPROM_SD_SORT) == 255) {
  1365. eeprom_write_byte((uint8_t*)EEPROM_SD_SORT, 0);
  1366. }
  1367. check_babystep(); //checking if Z babystep is in allowed range
  1368. #ifdef UVLO_SUPPORT
  1369. setup_uvlo_interrupt();
  1370. #endif //UVLO_SUPPORT
  1371. #if !defined(DEBUG_DISABLE_FANCHECK) && defined(FANCHECK) && defined(TACH_1) && TACH_1 >-1
  1372. setup_fan_interrupt();
  1373. #endif //DEBUG_DISABLE_FANCHECK
  1374. #ifdef PAT9125
  1375. #ifndef DEBUG_DISABLE_FSENSORCHECK
  1376. fsensor_setup_interrupt();
  1377. #endif //DEBUG_DISABLE_FSENSORCHECK
  1378. #endif //PAT9125
  1379. for (int i = 0; i<4; i++) EEPROM_read_B(EEPROM_BOWDEN_LENGTH + i * 2, &bowden_length[i]);
  1380. #ifndef DEBUG_DISABLE_STARTMSGS
  1381. KEEPALIVE_STATE(PAUSED_FOR_USER);
  1382. show_fw_version_warnings();
  1383. switch (hw_changed) {
  1384. //if motherboard or printer type was changed inform user as it can indicate flashing wrong firmware version
  1385. //if user confirms with knob, new hw version (printer and/or motherboard) is written to eeprom and message will be not shown next time
  1386. case(0b01):
  1387. lcd_show_fullscreen_message_and_wait_P(_i("Warning: motherboard type changed.")); ////MSG_CHANGED_MOTHERBOARD c=20 r=4
  1388. eeprom_write_word((uint16_t*)EEPROM_BOARD_TYPE, MOTHERBOARD);
  1389. break;
  1390. case(0b10):
  1391. lcd_show_fullscreen_message_and_wait_P(_i("Warning: printer type changed.")); ////MSG_CHANGED_PRINTER c=20 r=4
  1392. eeprom_write_word((uint16_t*)EEPROM_PRINTER_TYPE, PRINTER_TYPE);
  1393. break;
  1394. case(0b11):
  1395. lcd_show_fullscreen_message_and_wait_P(_i("Warning: both printer type and motherboard type changed.")); ////MSG_CHANGED_BOTH c=20 r=4
  1396. eeprom_write_word((uint16_t*)EEPROM_PRINTER_TYPE, PRINTER_TYPE);
  1397. eeprom_write_word((uint16_t*)EEPROM_BOARD_TYPE, MOTHERBOARD);
  1398. break;
  1399. default: break; //no change, show no message
  1400. }
  1401. if (!previous_settings_retrieved) {
  1402. lcd_show_fullscreen_message_and_wait_P(_i("Old settings found. Default PID, Esteps etc. will be set.")); //if EEPROM version or printer type was changed, inform user that default setting were loaded////MSG_DEFAULT_SETTINGS_LOADED c=20 r=4
  1403. erase_eeprom_section(EEPROM_OFFSET, 156); //erase M500 part of eeprom
  1404. }
  1405. if (eeprom_read_byte((uint8_t*)EEPROM_WIZARD_ACTIVE) == 1) {
  1406. lcd_wizard(0);
  1407. }
  1408. if (eeprom_read_byte((uint8_t*)EEPROM_WIZARD_ACTIVE) == 0) { //dont show calibration status messages if wizard is currently active
  1409. if (calibration_status() == CALIBRATION_STATUS_ASSEMBLED ||
  1410. calibration_status() == CALIBRATION_STATUS_UNKNOWN ||
  1411. calibration_status() == CALIBRATION_STATUS_XYZ_CALIBRATION) {
  1412. // Reset the babystepping values, so the printer will not move the Z axis up when the babystepping is enabled.
  1413. eeprom_update_word((uint16_t*)EEPROM_BABYSTEP_Z, 0);
  1414. // Show the message.
  1415. lcd_show_fullscreen_message_and_wait_P(_T(MSG_FOLLOW_CALIBRATION_FLOW));
  1416. }
  1417. else if (calibration_status() == CALIBRATION_STATUS_LIVE_ADJUST) {
  1418. // Show the message.
  1419. lcd_show_fullscreen_message_and_wait_P(_T(MSG_BABYSTEP_Z_NOT_SET));
  1420. lcd_update_enable(true);
  1421. }
  1422. else if (calibration_status() == CALIBRATION_STATUS_CALIBRATED && temp_cal_active == true && calibration_status_pinda() == false) {
  1423. //lcd_show_fullscreen_message_and_wait_P(_i("Temperature calibration has not been run yet"));////MSG_PINDA_NOT_CALIBRATED c=20 r=4
  1424. lcd_update_enable(true);
  1425. }
  1426. else if (calibration_status() == CALIBRATION_STATUS_Z_CALIBRATION) {
  1427. // Show the message.
  1428. lcd_show_fullscreen_message_and_wait_P(_T(MSG_FOLLOW_CALIBRATION_FLOW));
  1429. }
  1430. }
  1431. #if !defined (DEBUG_DISABLE_FORCE_SELFTEST) && defined (TMC2130)
  1432. if (force_selftest_if_fw_version() && calibration_status() < CALIBRATION_STATUS_ASSEMBLED) {
  1433. lcd_show_fullscreen_message_and_wait_P(_i("Selftest will be run to calibrate accurate sensorless rehoming."));////MSG_FORCE_SELFTEST c=20 r=8
  1434. update_current_firmware_version_to_eeprom();
  1435. lcd_selftest();
  1436. }
  1437. #endif //TMC2130 && !DEBUG_DISABLE_FORCE_SELFTEST
  1438. KEEPALIVE_STATE(IN_PROCESS);
  1439. #endif //DEBUG_DISABLE_STARTMSGS
  1440. lcd_update_enable(true);
  1441. lcd_clear();
  1442. lcd_update(2);
  1443. // Store the currently running firmware into an eeprom,
  1444. // so the next time the firmware gets updated, it will know from which version it has been updated.
  1445. update_current_firmware_version_to_eeprom();
  1446. #ifdef TMC2130
  1447. tmc2130_home_origin[X_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_HOME_X_ORIGIN);
  1448. tmc2130_home_bsteps[X_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_HOME_X_BSTEPS);
  1449. tmc2130_home_fsteps[X_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_HOME_X_FSTEPS);
  1450. if (tmc2130_home_origin[X_AXIS] == 0xff) tmc2130_home_origin[X_AXIS] = 0;
  1451. if (tmc2130_home_bsteps[X_AXIS] == 0xff) tmc2130_home_bsteps[X_AXIS] = 48;
  1452. if (tmc2130_home_fsteps[X_AXIS] == 0xff) tmc2130_home_fsteps[X_AXIS] = 48;
  1453. tmc2130_home_origin[Y_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_HOME_Y_ORIGIN);
  1454. tmc2130_home_bsteps[Y_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_HOME_Y_BSTEPS);
  1455. tmc2130_home_fsteps[Y_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_HOME_Y_FSTEPS);
  1456. if (tmc2130_home_origin[Y_AXIS] == 0xff) tmc2130_home_origin[Y_AXIS] = 0;
  1457. if (tmc2130_home_bsteps[Y_AXIS] == 0xff) tmc2130_home_bsteps[Y_AXIS] = 48;
  1458. if (tmc2130_home_fsteps[Y_AXIS] == 0xff) tmc2130_home_fsteps[Y_AXIS] = 48;
  1459. tmc2130_home_enabled = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_HOME_ENABLED);
  1460. if (tmc2130_home_enabled == 0xff) tmc2130_home_enabled = 0;
  1461. #endif //TMC2130
  1462. #ifdef UVLO_SUPPORT
  1463. if (eeprom_read_byte((uint8_t*)EEPROM_UVLO) == 1) { //previous print was terminated by UVLO
  1464. /*
  1465. if (lcd_show_fullscreen_message_yes_no_and_wait_P(_T(MSG_RECOVER_PRINT), false)) recover_print();
  1466. else {
  1467. eeprom_update_byte((uint8_t*)EEPROM_UVLO, 0);
  1468. lcd_update_enable(true);
  1469. lcd_update(2);
  1470. lcd_setstatuspgm(_T(WELCOME_MSG));
  1471. }
  1472. */
  1473. manage_heater(); // Update temperatures
  1474. #ifdef DEBUG_UVLO_AUTOMATIC_RECOVER
  1475. printf_P(_N("Power panic detected!\nCurrent bed temp:%d\nSaved bed temp:%d\n"), (int)degBed(), eeprom_read_byte((uint8_t*)EEPROM_UVLO_TARGET_BED))
  1476. #endif
  1477. if ( degBed() > ( (float)eeprom_read_byte((uint8_t*)EEPROM_UVLO_TARGET_BED) - AUTOMATIC_UVLO_BED_TEMP_OFFSET) ){
  1478. #ifdef DEBUG_UVLO_AUTOMATIC_RECOVER
  1479. puts_P(_N("Automatic recovery!"));
  1480. #endif
  1481. recover_print(1);
  1482. }
  1483. else{
  1484. #ifdef DEBUG_UVLO_AUTOMATIC_RECOVER
  1485. puts_P(_N("Normal recovery!"));
  1486. #endif
  1487. if ( lcd_show_fullscreen_message_yes_no_and_wait_P(_T(MSG_RECOVER_PRINT), false) ) recover_print(0);
  1488. else {
  1489. eeprom_update_byte((uint8_t*)EEPROM_UVLO, 0);
  1490. lcd_update_enable(true);
  1491. lcd_update(2);
  1492. lcd_setstatuspgm(_T(WELCOME_MSG));
  1493. }
  1494. }
  1495. }
  1496. #endif //UVLO_SUPPORT
  1497. KEEPALIVE_STATE(NOT_BUSY);
  1498. #ifdef WATCHDOG
  1499. wdt_enable(WDTO_4S);
  1500. #endif //WATCHDOG
  1501. }
  1502. #ifdef PAT9125
  1503. void fsensor_init() {
  1504. int pat9125 = pat9125_init();
  1505. printf_P(_N("PAT9125_init:%d\n"), pat9125);
  1506. uint8_t fsensor = eeprom_read_byte((uint8_t*)EEPROM_FSENSOR);
  1507. filament_autoload_enabled=eeprom_read_byte((uint8_t*)EEPROM_FSENS_AUTOLOAD_ENABLED);
  1508. if (!pat9125)
  1509. {
  1510. fsensor = 0; //disable sensor
  1511. fsensor_not_responding = true;
  1512. }
  1513. else {
  1514. fsensor_not_responding = false;
  1515. }
  1516. puts_P(PSTR("FSensor "));
  1517. if (fsensor)
  1518. {
  1519. puts_P(PSTR("ENABLED\n"));
  1520. fsensor_enable();
  1521. }
  1522. else
  1523. {
  1524. puts_P(PSTR("DISABLED\n"));
  1525. fsensor_disable();
  1526. }
  1527. #ifdef DEBUG_DISABLE_FSENSORCHECK
  1528. filament_autoload_enabled = false;
  1529. fsensor_disable();
  1530. #endif //DEBUG_DISABLE_FSENSORCHECK
  1531. }
  1532. #endif //PAT9125
  1533. void trace();
  1534. #define CHUNK_SIZE 64 // bytes
  1535. #define SAFETY_MARGIN 1
  1536. char chunk[CHUNK_SIZE+SAFETY_MARGIN];
  1537. int chunkHead = 0;
  1538. int serial_read_stream() {
  1539. setTargetHotend(0, 0);
  1540. setTargetBed(0);
  1541. lcd_clear();
  1542. lcd_puts_P(PSTR(" Upload in progress"));
  1543. // first wait for how many bytes we will receive
  1544. uint32_t bytesToReceive;
  1545. // receive the four bytes
  1546. char bytesToReceiveBuffer[4];
  1547. for (int i=0; i<4; i++) {
  1548. int data;
  1549. while ((data = MYSERIAL.read()) == -1) {};
  1550. bytesToReceiveBuffer[i] = data;
  1551. }
  1552. // make it a uint32
  1553. memcpy(&bytesToReceive, &bytesToReceiveBuffer, 4);
  1554. // we're ready, notify the sender
  1555. MYSERIAL.write('+');
  1556. // lock in the routine
  1557. uint32_t receivedBytes = 0;
  1558. while (prusa_sd_card_upload) {
  1559. int i;
  1560. for (i=0; i<CHUNK_SIZE; i++) {
  1561. int data;
  1562. // check if we're not done
  1563. if (receivedBytes == bytesToReceive) {
  1564. break;
  1565. }
  1566. // read the next byte
  1567. while ((data = MYSERIAL.read()) == -1) {};
  1568. receivedBytes++;
  1569. // save it to the chunk
  1570. chunk[i] = data;
  1571. }
  1572. // write the chunk to SD
  1573. card.write_command_no_newline(&chunk[0]);
  1574. // notify the sender we're ready for more data
  1575. MYSERIAL.write('+');
  1576. // for safety
  1577. manage_heater();
  1578. // check if we're done
  1579. if(receivedBytes == bytesToReceive) {
  1580. trace(); // beep
  1581. card.closefile();
  1582. prusa_sd_card_upload = false;
  1583. SERIAL_PROTOCOLLNRPGM(MSG_FILE_SAVED);
  1584. return 0;
  1585. }
  1586. }
  1587. }
  1588. #ifdef HOST_KEEPALIVE_FEATURE
  1589. /**
  1590. * Output a "busy" message at regular intervals
  1591. * while the machine is not accepting commands.
  1592. */
  1593. void host_keepalive() {
  1594. if (farm_mode) return;
  1595. long ms = millis();
  1596. if (host_keepalive_interval && busy_state != NOT_BUSY) {
  1597. if ((ms - prev_busy_signal_ms) < (long)(1000L * host_keepalive_interval)) return;
  1598. switch (busy_state) {
  1599. case IN_HANDLER:
  1600. case IN_PROCESS:
  1601. SERIAL_ECHO_START;
  1602. SERIAL_ECHOLNPGM("busy: processing");
  1603. break;
  1604. case PAUSED_FOR_USER:
  1605. SERIAL_ECHO_START;
  1606. SERIAL_ECHOLNPGM("busy: paused for user");
  1607. break;
  1608. case PAUSED_FOR_INPUT:
  1609. SERIAL_ECHO_START;
  1610. SERIAL_ECHOLNPGM("busy: paused for input");
  1611. break;
  1612. default:
  1613. break;
  1614. }
  1615. }
  1616. prev_busy_signal_ms = ms;
  1617. }
  1618. #endif
  1619. // The loop() function is called in an endless loop by the Arduino framework from the default main() routine.
  1620. // Before loop(), the setup() function is called by the main() routine.
  1621. void loop()
  1622. {
  1623. KEEPALIVE_STATE(NOT_BUSY);
  1624. bool stack_integrity = true;
  1625. if ((usb_printing_counter > 0) && ((millis()-_usb_timer) > 1000))
  1626. {
  1627. is_usb_printing = true;
  1628. usb_printing_counter--;
  1629. _usb_timer = millis();
  1630. }
  1631. if (usb_printing_counter == 0)
  1632. {
  1633. is_usb_printing = false;
  1634. }
  1635. if (prusa_sd_card_upload)
  1636. {
  1637. //we read byte-by byte
  1638. serial_read_stream();
  1639. } else
  1640. {
  1641. get_command();
  1642. #ifdef SDSUPPORT
  1643. card.checkautostart(false);
  1644. #endif
  1645. if(buflen)
  1646. {
  1647. cmdbuffer_front_already_processed = false;
  1648. #ifdef SDSUPPORT
  1649. if(card.saving)
  1650. {
  1651. // Saving a G-code file onto an SD-card is in progress.
  1652. // Saving starts with M28, saving until M29 is seen.
  1653. if(strstr_P(CMDBUFFER_CURRENT_STRING, PSTR("M29")) == NULL) {
  1654. card.write_command(CMDBUFFER_CURRENT_STRING);
  1655. if(card.logging)
  1656. process_commands();
  1657. else
  1658. SERIAL_PROTOCOLLNRPGM(_T(MSG_OK));
  1659. } else {
  1660. card.closefile();
  1661. SERIAL_PROTOCOLLNRPGM(MSG_FILE_SAVED);
  1662. }
  1663. } else {
  1664. process_commands();
  1665. }
  1666. #else
  1667. process_commands();
  1668. #endif //SDSUPPORT
  1669. if (! cmdbuffer_front_already_processed && buflen)
  1670. {
  1671. // ptr points to the start of the block currently being processed.
  1672. // The first character in the block is the block type.
  1673. char *ptr = cmdbuffer + bufindr;
  1674. if (*ptr == CMDBUFFER_CURRENT_TYPE_SDCARD) {
  1675. // To support power panic, move the lenght of the command on the SD card to a planner buffer.
  1676. union {
  1677. struct {
  1678. char lo;
  1679. char hi;
  1680. } lohi;
  1681. uint16_t value;
  1682. } sdlen;
  1683. sdlen.value = 0;
  1684. {
  1685. // This block locks the interrupts globally for 3.25 us,
  1686. // which corresponds to a maximum repeat frequency of 307.69 kHz.
  1687. // This blocking is safe in the context of a 10kHz stepper driver interrupt
  1688. // or a 115200 Bd serial line receive interrupt, which will not trigger faster than 12kHz.
  1689. cli();
  1690. // Reset the command to something, which will be ignored by the power panic routine,
  1691. // so this buffer length will not be counted twice.
  1692. *ptr ++ = CMDBUFFER_CURRENT_TYPE_TO_BE_REMOVED;
  1693. // Extract the current buffer length.
  1694. sdlen.lohi.lo = *ptr ++;
  1695. sdlen.lohi.hi = *ptr;
  1696. // and pass it to the planner queue.
  1697. planner_add_sd_length(sdlen.value);
  1698. sei();
  1699. }
  1700. }
  1701. else if((*ptr == CMDBUFFER_CURRENT_TYPE_USB_WITH_LINENR) && !IS_SD_PRINTING){
  1702. cli();
  1703. *ptr ++ = CMDBUFFER_CURRENT_TYPE_TO_BE_REMOVED;
  1704. // and one for each command to previous block in the planner queue.
  1705. planner_add_sd_length(1);
  1706. sei();
  1707. }
  1708. // Now it is safe to release the already processed command block. If interrupted by the power panic now,
  1709. // this block's SD card length will not be counted twice as its command type has been replaced
  1710. // by CMDBUFFER_CURRENT_TYPE_TO_BE_REMOVED.
  1711. cmdqueue_pop_front();
  1712. }
  1713. host_keepalive();
  1714. }
  1715. }
  1716. //check heater every n milliseconds
  1717. manage_heater();
  1718. isPrintPaused ? manage_inactivity(true) : manage_inactivity(false);
  1719. checkHitEndstops();
  1720. lcd_update(0);
  1721. #ifdef PAT9125
  1722. fsensor_update();
  1723. #endif //PAT9125
  1724. #ifdef TMC2130
  1725. tmc2130_check_overtemp();
  1726. if (tmc2130_sg_crash)
  1727. {
  1728. uint8_t crash = tmc2130_sg_crash;
  1729. tmc2130_sg_crash = 0;
  1730. // crashdet_stop_and_save_print();
  1731. switch (crash)
  1732. {
  1733. case 1: enquecommand_P((PSTR("CRASH_DETECTEDX"))); break;
  1734. case 2: enquecommand_P((PSTR("CRASH_DETECTEDY"))); break;
  1735. case 3: enquecommand_P((PSTR("CRASH_DETECTEDXY"))); break;
  1736. }
  1737. }
  1738. #endif //TMC2130
  1739. }
  1740. #define DEFINE_PGM_READ_ANY(type, reader) \
  1741. static inline type pgm_read_any(const type *p) \
  1742. { return pgm_read_##reader##_near(p); }
  1743. DEFINE_PGM_READ_ANY(float, float);
  1744. DEFINE_PGM_READ_ANY(signed char, byte);
  1745. #define XYZ_CONSTS_FROM_CONFIG(type, array, CONFIG) \
  1746. static const PROGMEM type array##_P[3] = \
  1747. { X_##CONFIG, Y_##CONFIG, Z_##CONFIG }; \
  1748. static inline type array(int axis) \
  1749. { return pgm_read_any(&array##_P[axis]); } \
  1750. type array##_ext(int axis) \
  1751. { return pgm_read_any(&array##_P[axis]); }
  1752. XYZ_CONSTS_FROM_CONFIG(float, base_min_pos, MIN_POS);
  1753. XYZ_CONSTS_FROM_CONFIG(float, base_max_pos, MAX_POS);
  1754. XYZ_CONSTS_FROM_CONFIG(float, base_home_pos, HOME_POS);
  1755. XYZ_CONSTS_FROM_CONFIG(float, max_length, MAX_LENGTH);
  1756. XYZ_CONSTS_FROM_CONFIG(float, home_retract_mm, HOME_RETRACT_MM);
  1757. XYZ_CONSTS_FROM_CONFIG(signed char, home_dir, HOME_DIR);
  1758. static void axis_is_at_home(int axis) {
  1759. current_position[axis] = base_home_pos(axis) + add_homing[axis];
  1760. min_pos[axis] = base_min_pos(axis) + add_homing[axis];
  1761. max_pos[axis] = base_max_pos(axis) + add_homing[axis];
  1762. }
  1763. inline void set_current_to_destination() { memcpy(current_position, destination, sizeof(current_position)); }
  1764. inline void set_destination_to_current() { memcpy(destination, current_position, sizeof(destination)); }
  1765. static void setup_for_endstop_move(bool enable_endstops_now = true) {
  1766. saved_feedrate = feedrate;
  1767. saved_feedmultiply = feedmultiply;
  1768. feedmultiply = 100;
  1769. previous_millis_cmd = millis();
  1770. enable_endstops(enable_endstops_now);
  1771. }
  1772. static void clean_up_after_endstop_move() {
  1773. #ifdef ENDSTOPS_ONLY_FOR_HOMING
  1774. enable_endstops(false);
  1775. #endif
  1776. feedrate = saved_feedrate;
  1777. feedmultiply = saved_feedmultiply;
  1778. previous_millis_cmd = millis();
  1779. }
  1780. #ifdef ENABLE_AUTO_BED_LEVELING
  1781. #ifdef AUTO_BED_LEVELING_GRID
  1782. static void set_bed_level_equation_lsq(double *plane_equation_coefficients)
  1783. {
  1784. vector_3 planeNormal = vector_3(-plane_equation_coefficients[0], -plane_equation_coefficients[1], 1);
  1785. planeNormal.debug("planeNormal");
  1786. plan_bed_level_matrix = matrix_3x3::create_look_at(planeNormal);
  1787. //bedLevel.debug("bedLevel");
  1788. //plan_bed_level_matrix.debug("bed level before");
  1789. //vector_3 uncorrected_position = plan_get_position_mm();
  1790. //uncorrected_position.debug("position before");
  1791. vector_3 corrected_position = plan_get_position();
  1792. // corrected_position.debug("position after");
  1793. current_position[X_AXIS] = corrected_position.x;
  1794. current_position[Y_AXIS] = corrected_position.y;
  1795. current_position[Z_AXIS] = corrected_position.z;
  1796. // put the bed at 0 so we don't go below it.
  1797. current_position[Z_AXIS] = zprobe_zoffset; // in the lsq we reach here after raising the extruder due to the loop structure
  1798. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1799. }
  1800. #else // not AUTO_BED_LEVELING_GRID
  1801. static void set_bed_level_equation_3pts(float z_at_pt_1, float z_at_pt_2, float z_at_pt_3) {
  1802. plan_bed_level_matrix.set_to_identity();
  1803. vector_3 pt1 = vector_3(ABL_PROBE_PT_1_X, ABL_PROBE_PT_1_Y, z_at_pt_1);
  1804. vector_3 pt2 = vector_3(ABL_PROBE_PT_2_X, ABL_PROBE_PT_2_Y, z_at_pt_2);
  1805. vector_3 pt3 = vector_3(ABL_PROBE_PT_3_X, ABL_PROBE_PT_3_Y, z_at_pt_3);
  1806. vector_3 from_2_to_1 = (pt1 - pt2).get_normal();
  1807. vector_3 from_2_to_3 = (pt3 - pt2).get_normal();
  1808. vector_3 planeNormal = vector_3::cross(from_2_to_1, from_2_to_3).get_normal();
  1809. planeNormal = vector_3(planeNormal.x, planeNormal.y, abs(planeNormal.z));
  1810. plan_bed_level_matrix = matrix_3x3::create_look_at(planeNormal);
  1811. vector_3 corrected_position = plan_get_position();
  1812. current_position[X_AXIS] = corrected_position.x;
  1813. current_position[Y_AXIS] = corrected_position.y;
  1814. current_position[Z_AXIS] = corrected_position.z;
  1815. // put the bed at 0 so we don't go below it.
  1816. current_position[Z_AXIS] = zprobe_zoffset;
  1817. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1818. }
  1819. #endif // AUTO_BED_LEVELING_GRID
  1820. static void run_z_probe() {
  1821. plan_bed_level_matrix.set_to_identity();
  1822. feedrate = homing_feedrate[Z_AXIS];
  1823. // move down until you find the bed
  1824. float zPosition = -10;
  1825. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder);
  1826. st_synchronize();
  1827. // we have to let the planner know where we are right now as it is not where we said to go.
  1828. zPosition = st_get_position_mm(Z_AXIS);
  1829. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS]);
  1830. // move up the retract distance
  1831. zPosition += home_retract_mm(Z_AXIS);
  1832. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder);
  1833. st_synchronize();
  1834. // move back down slowly to find bed
  1835. feedrate = homing_feedrate[Z_AXIS]/4;
  1836. zPosition -= home_retract_mm(Z_AXIS) * 2;
  1837. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder);
  1838. st_synchronize();
  1839. current_position[Z_AXIS] = st_get_position_mm(Z_AXIS);
  1840. // make sure the planner knows where we are as it may be a bit different than we last said to move to
  1841. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1842. }
  1843. static void do_blocking_move_to(float x, float y, float z) {
  1844. float oldFeedRate = feedrate;
  1845. feedrate = homing_feedrate[Z_AXIS];
  1846. current_position[Z_AXIS] = z;
  1847. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], feedrate/60, active_extruder);
  1848. st_synchronize();
  1849. feedrate = XY_TRAVEL_SPEED;
  1850. current_position[X_AXIS] = x;
  1851. current_position[Y_AXIS] = y;
  1852. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], feedrate/60, active_extruder);
  1853. st_synchronize();
  1854. feedrate = oldFeedRate;
  1855. }
  1856. static void do_blocking_move_relative(float offset_x, float offset_y, float offset_z) {
  1857. do_blocking_move_to(current_position[X_AXIS] + offset_x, current_position[Y_AXIS] + offset_y, current_position[Z_AXIS] + offset_z);
  1858. }
  1859. /// Probe bed height at position (x,y), returns the measured z value
  1860. static float probe_pt(float x, float y, float z_before) {
  1861. // move to right place
  1862. do_blocking_move_to(current_position[X_AXIS], current_position[Y_AXIS], z_before);
  1863. do_blocking_move_to(x - X_PROBE_OFFSET_FROM_EXTRUDER, y - Y_PROBE_OFFSET_FROM_EXTRUDER, current_position[Z_AXIS]);
  1864. run_z_probe();
  1865. float measured_z = current_position[Z_AXIS];
  1866. SERIAL_PROTOCOLRPGM(_T(MSG_BED));
  1867. SERIAL_PROTOCOLPGM(" x: ");
  1868. SERIAL_PROTOCOL(x);
  1869. SERIAL_PROTOCOLPGM(" y: ");
  1870. SERIAL_PROTOCOL(y);
  1871. SERIAL_PROTOCOLPGM(" z: ");
  1872. SERIAL_PROTOCOL(measured_z);
  1873. SERIAL_PROTOCOLPGM("\n");
  1874. return measured_z;
  1875. }
  1876. #endif // #ifdef ENABLE_AUTO_BED_LEVELING
  1877. #ifdef LIN_ADVANCE
  1878. /**
  1879. * M900: Set and/or Get advance K factor and WH/D ratio
  1880. *
  1881. * K<factor> Set advance K factor
  1882. * R<ratio> Set ratio directly (overrides WH/D)
  1883. * W<width> H<height> D<diam> Set ratio from WH/D
  1884. */
  1885. inline void gcode_M900() {
  1886. st_synchronize();
  1887. const float newK = code_seen('K') ? code_value_float() : -1;
  1888. if (newK >= 0) extruder_advance_k = newK;
  1889. float newR = code_seen('R') ? code_value_float() : -1;
  1890. if (newR < 0) {
  1891. const float newD = code_seen('D') ? code_value_float() : -1,
  1892. newW = code_seen('W') ? code_value_float() : -1,
  1893. newH = code_seen('H') ? code_value_float() : -1;
  1894. if (newD >= 0 && newW >= 0 && newH >= 0)
  1895. newR = newD ? (newW * newH) / (sq(newD * 0.5) * M_PI) : 0;
  1896. }
  1897. if (newR >= 0) advance_ed_ratio = newR;
  1898. SERIAL_ECHO_START;
  1899. SERIAL_ECHOPGM("Advance K=");
  1900. SERIAL_ECHOLN(extruder_advance_k);
  1901. SERIAL_ECHOPGM(" E/D=");
  1902. const float ratio = advance_ed_ratio;
  1903. if (ratio) SERIAL_ECHOLN(ratio); else SERIAL_ECHOLNPGM("Auto");
  1904. }
  1905. #endif // LIN_ADVANCE
  1906. bool check_commands() {
  1907. bool end_command_found = false;
  1908. while (buflen)
  1909. {
  1910. if ((code_seen("M84")) || (code_seen("M 84"))) end_command_found = true;
  1911. if (!cmdbuffer_front_already_processed)
  1912. cmdqueue_pop_front();
  1913. cmdbuffer_front_already_processed = false;
  1914. }
  1915. return end_command_found;
  1916. }
  1917. #ifdef TMC2130
  1918. bool calibrate_z_auto()
  1919. {
  1920. //lcd_display_message_fullscreen_P(_T(MSG_CALIBRATE_Z_AUTO));
  1921. lcd_clear();
  1922. lcd_puts_at_P(0,1, _T(MSG_CALIBRATE_Z_AUTO));
  1923. bool endstops_enabled = enable_endstops(true);
  1924. int axis_up_dir = -home_dir(Z_AXIS);
  1925. tmc2130_home_enter(Z_AXIS_MASK);
  1926. current_position[Z_AXIS] = 0;
  1927. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1928. set_destination_to_current();
  1929. destination[Z_AXIS] += (1.1 * max_length(Z_AXIS) * axis_up_dir);
  1930. feedrate = homing_feedrate[Z_AXIS];
  1931. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1932. st_synchronize();
  1933. // current_position[axis] = 0;
  1934. // plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1935. tmc2130_home_exit();
  1936. enable_endstops(false);
  1937. current_position[Z_AXIS] = 0;
  1938. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1939. set_destination_to_current();
  1940. destination[Z_AXIS] += 10 * axis_up_dir; //10mm up
  1941. feedrate = homing_feedrate[Z_AXIS] / 2;
  1942. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1943. st_synchronize();
  1944. enable_endstops(endstops_enabled);
  1945. current_position[Z_AXIS] = Z_MAX_POS+2.0;
  1946. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1947. return true;
  1948. }
  1949. #endif //TMC2130
  1950. void homeaxis(int axis, uint8_t cnt, uint8_t* pstep)
  1951. {
  1952. bool endstops_enabled = enable_endstops(true); //RP: endstops should be allways enabled durring homing
  1953. #define HOMEAXIS_DO(LETTER) \
  1954. ((LETTER##_MIN_PIN > -1 && LETTER##_HOME_DIR==-1) || (LETTER##_MAX_PIN > -1 && LETTER##_HOME_DIR==1))
  1955. if ((axis==X_AXIS)?HOMEAXIS_DO(X):(axis==Y_AXIS)?HOMEAXIS_DO(Y):0)
  1956. {
  1957. int axis_home_dir = home_dir(axis);
  1958. feedrate = homing_feedrate[axis];
  1959. #ifdef TMC2130
  1960. tmc2130_home_enter(X_AXIS_MASK << axis);
  1961. #endif //TMC2130
  1962. // Move right a bit, so that the print head does not touch the left end position,
  1963. // and the following left movement has a chance to achieve the required velocity
  1964. // for the stall guard to work.
  1965. current_position[axis] = 0;
  1966. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1967. set_destination_to_current();
  1968. // destination[axis] = 11.f;
  1969. destination[axis] = 3.f;
  1970. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1971. st_synchronize();
  1972. // Move left away from the possible collision with the collision detection disabled.
  1973. endstops_hit_on_purpose();
  1974. enable_endstops(false);
  1975. current_position[axis] = 0;
  1976. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1977. destination[axis] = - 1.;
  1978. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1979. st_synchronize();
  1980. // Now continue to move up to the left end stop with the collision detection enabled.
  1981. enable_endstops(true);
  1982. destination[axis] = - 1.1 * max_length(axis);
  1983. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1984. st_synchronize();
  1985. for (uint8_t i = 0; i < cnt; i++)
  1986. {
  1987. // Move right from the collision to a known distance from the left end stop with the collision detection disabled.
  1988. endstops_hit_on_purpose();
  1989. enable_endstops(false);
  1990. current_position[axis] = 0;
  1991. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1992. destination[axis] = 10.f;
  1993. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1994. st_synchronize();
  1995. endstops_hit_on_purpose();
  1996. // Now move left up to the collision, this time with a repeatable velocity.
  1997. enable_endstops(true);
  1998. destination[axis] = - 11.f;
  1999. #ifdef TMC2130
  2000. feedrate = homing_feedrate[axis];
  2001. #else //TMC2130
  2002. feedrate = homing_feedrate[axis] / 2;
  2003. #endif //TMC2130
  2004. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  2005. st_synchronize();
  2006. #ifdef TMC2130
  2007. uint16_t mscnt = tmc2130_rd_MSCNT(axis);
  2008. if (pstep) pstep[i] = mscnt >> 4;
  2009. printf_P(PSTR("%3d step=%2d mscnt=%4d\n"), i, mscnt >> 4, mscnt);
  2010. #endif //TMC2130
  2011. }
  2012. endstops_hit_on_purpose();
  2013. enable_endstops(false);
  2014. #ifdef TMC2130
  2015. uint8_t orig = tmc2130_home_origin[axis];
  2016. uint8_t back = tmc2130_home_bsteps[axis];
  2017. if (tmc2130_home_enabled && (orig <= 63))
  2018. {
  2019. tmc2130_goto_step(axis, orig, 2, 1000, tmc2130_get_res(axis));
  2020. if (back > 0)
  2021. tmc2130_do_steps(axis, back, 1, 1000);
  2022. }
  2023. else
  2024. tmc2130_do_steps(axis, 8, 2, 1000);
  2025. tmc2130_home_exit();
  2026. #endif //TMC2130
  2027. axis_is_at_home(axis);
  2028. axis_known_position[axis] = true;
  2029. // Move from minimum
  2030. #ifdef TMC2130
  2031. float dist = 0.01f * tmc2130_home_fsteps[axis];
  2032. #else //TMC2130
  2033. float dist = 0.01f * 64;
  2034. #endif //TMC2130
  2035. current_position[axis] -= dist;
  2036. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2037. current_position[axis] += dist;
  2038. destination[axis] = current_position[axis];
  2039. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], 0.5f*feedrate/60, active_extruder);
  2040. st_synchronize();
  2041. feedrate = 0.0;
  2042. }
  2043. else if ((axis==Z_AXIS)?HOMEAXIS_DO(Z):0)
  2044. {
  2045. #ifdef TMC2130
  2046. FORCE_HIGH_POWER_START;
  2047. #endif
  2048. int axis_home_dir = home_dir(axis);
  2049. current_position[axis] = 0;
  2050. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2051. destination[axis] = 1.5 * max_length(axis) * axis_home_dir;
  2052. feedrate = homing_feedrate[axis];
  2053. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  2054. st_synchronize();
  2055. #ifdef TMC2130
  2056. if (READ(Z_TMC2130_DIAG) != 0) { //Z crash
  2057. FORCE_HIGH_POWER_END;
  2058. kill(_T(MSG_BED_LEVELING_FAILED_POINT_LOW));
  2059. return;
  2060. }
  2061. #endif //TMC2130
  2062. current_position[axis] = 0;
  2063. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2064. destination[axis] = -home_retract_mm(axis) * axis_home_dir;
  2065. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  2066. st_synchronize();
  2067. destination[axis] = 2*home_retract_mm(axis) * axis_home_dir;
  2068. feedrate = homing_feedrate[axis]/2 ;
  2069. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  2070. st_synchronize();
  2071. #ifdef TMC2130
  2072. if (READ(Z_TMC2130_DIAG) != 0) { //Z crash
  2073. FORCE_HIGH_POWER_END;
  2074. kill(_T(MSG_BED_LEVELING_FAILED_POINT_LOW));
  2075. return;
  2076. }
  2077. #endif //TMC2130
  2078. axis_is_at_home(axis);
  2079. destination[axis] = current_position[axis];
  2080. feedrate = 0.0;
  2081. endstops_hit_on_purpose();
  2082. axis_known_position[axis] = true;
  2083. #ifdef TMC2130
  2084. FORCE_HIGH_POWER_END;
  2085. #endif
  2086. }
  2087. enable_endstops(endstops_enabled);
  2088. }
  2089. /**/
  2090. void home_xy()
  2091. {
  2092. set_destination_to_current();
  2093. homeaxis(X_AXIS);
  2094. homeaxis(Y_AXIS);
  2095. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2096. endstops_hit_on_purpose();
  2097. }
  2098. void refresh_cmd_timeout(void)
  2099. {
  2100. previous_millis_cmd = millis();
  2101. }
  2102. #ifdef FWRETRACT
  2103. void retract(bool retracting, bool swapretract = false) {
  2104. if(retracting && !retracted[active_extruder]) {
  2105. destination[X_AXIS]=current_position[X_AXIS];
  2106. destination[Y_AXIS]=current_position[Y_AXIS];
  2107. destination[Z_AXIS]=current_position[Z_AXIS];
  2108. destination[E_AXIS]=current_position[E_AXIS];
  2109. current_position[E_AXIS]+=(swapretract?retract_length_swap:retract_length)*float(extrudemultiply)*0.01f;
  2110. plan_set_e_position(current_position[E_AXIS]);
  2111. float oldFeedrate = feedrate;
  2112. feedrate=retract_feedrate*60;
  2113. retracted[active_extruder]=true;
  2114. prepare_move();
  2115. current_position[Z_AXIS]-=retract_zlift;
  2116. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2117. prepare_move();
  2118. feedrate = oldFeedrate;
  2119. } else if(!retracting && retracted[active_extruder]) {
  2120. destination[X_AXIS]=current_position[X_AXIS];
  2121. destination[Y_AXIS]=current_position[Y_AXIS];
  2122. destination[Z_AXIS]=current_position[Z_AXIS];
  2123. destination[E_AXIS]=current_position[E_AXIS];
  2124. current_position[Z_AXIS]+=retract_zlift;
  2125. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2126. current_position[E_AXIS]-=(swapretract?(retract_length_swap+retract_recover_length_swap):(retract_length+retract_recover_length))*float(extrudemultiply)*0.01f;
  2127. plan_set_e_position(current_position[E_AXIS]);
  2128. float oldFeedrate = feedrate;
  2129. feedrate=retract_recover_feedrate*60;
  2130. retracted[active_extruder]=false;
  2131. prepare_move();
  2132. feedrate = oldFeedrate;
  2133. }
  2134. } //retract
  2135. #endif //FWRETRACT
  2136. void trace() {
  2137. tone(BEEPER, 440);
  2138. delay(25);
  2139. noTone(BEEPER);
  2140. delay(20);
  2141. }
  2142. /*
  2143. void ramming() {
  2144. // float tmp[4] = DEFAULT_MAX_FEEDRATE;
  2145. if (current_temperature[0] < 230) {
  2146. //PLA
  2147. max_feedrate[E_AXIS] = 50;
  2148. //current_position[E_AXIS] -= 8;
  2149. //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2100 / 60, active_extruder);
  2150. //current_position[E_AXIS] += 8;
  2151. //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2100 / 60, active_extruder);
  2152. current_position[E_AXIS] += 5.4;
  2153. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2800 / 60, active_extruder);
  2154. current_position[E_AXIS] += 3.2;
  2155. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  2156. current_position[E_AXIS] += 3;
  2157. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3400 / 60, active_extruder);
  2158. st_synchronize();
  2159. max_feedrate[E_AXIS] = 80;
  2160. current_position[E_AXIS] -= 82;
  2161. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 9500 / 60, active_extruder);
  2162. max_feedrate[E_AXIS] = 50;//tmp[E_AXIS];
  2163. current_position[E_AXIS] -= 20;
  2164. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 1200 / 60, active_extruder);
  2165. current_position[E_AXIS] += 5;
  2166. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400 / 60, active_extruder);
  2167. current_position[E_AXIS] += 5;
  2168. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  2169. current_position[E_AXIS] -= 10;
  2170. st_synchronize();
  2171. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  2172. current_position[E_AXIS] += 10;
  2173. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  2174. current_position[E_AXIS] -= 10;
  2175. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 800 / 60, active_extruder);
  2176. current_position[E_AXIS] += 10;
  2177. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 800 / 60, active_extruder);
  2178. current_position[E_AXIS] -= 10;
  2179. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 800 / 60, active_extruder);
  2180. st_synchronize();
  2181. }
  2182. else {
  2183. //ABS
  2184. max_feedrate[E_AXIS] = 50;
  2185. //current_position[E_AXIS] -= 8;
  2186. //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2100 / 60, active_extruder);
  2187. //current_position[E_AXIS] += 8;
  2188. //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2100 / 60, active_extruder);
  2189. current_position[E_AXIS] += 3.1;
  2190. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2000 / 60, active_extruder);
  2191. current_position[E_AXIS] += 3.1;
  2192. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2500 / 60, active_extruder);
  2193. current_position[E_AXIS] += 4;
  2194. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  2195. st_synchronize();
  2196. //current_position[X_AXIS] += 23; //delay
  2197. //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600/60, active_extruder); //delay
  2198. //current_position[X_AXIS] -= 23; //delay
  2199. //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600/60, active_extruder); //delay
  2200. delay(4700);
  2201. max_feedrate[E_AXIS] = 80;
  2202. current_position[E_AXIS] -= 92;
  2203. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 9900 / 60, active_extruder);
  2204. max_feedrate[E_AXIS] = 50;//tmp[E_AXIS];
  2205. current_position[E_AXIS] -= 5;
  2206. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 800 / 60, active_extruder);
  2207. current_position[E_AXIS] += 5;
  2208. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400 / 60, active_extruder);
  2209. current_position[E_AXIS] -= 5;
  2210. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  2211. st_synchronize();
  2212. current_position[E_AXIS] += 5;
  2213. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  2214. current_position[E_AXIS] -= 5;
  2215. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  2216. current_position[E_AXIS] += 5;
  2217. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  2218. current_position[E_AXIS] -= 5;
  2219. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  2220. st_synchronize();
  2221. }
  2222. }
  2223. */
  2224. #ifdef TMC2130
  2225. void force_high_power_mode(bool start_high_power_section) {
  2226. uint8_t silent;
  2227. silent = eeprom_read_byte((uint8_t*)EEPROM_SILENT);
  2228. if (silent == 1) {
  2229. //we are in silent mode, set to normal mode to enable crash detection
  2230. // Wait for the planner queue to drain and for the stepper timer routine to reach an idle state.
  2231. st_synchronize();
  2232. cli();
  2233. tmc2130_mode = (start_high_power_section == true) ? TMC2130_MODE_NORMAL : TMC2130_MODE_SILENT;
  2234. tmc2130_init();
  2235. // We may have missed a stepper timer interrupt due to the time spent in the tmc2130_init() routine.
  2236. // Be safe than sorry, reset the stepper timer before re-enabling interrupts.
  2237. st_reset_timer();
  2238. sei();
  2239. }
  2240. }
  2241. #endif //TMC2130
  2242. void gcode_G28(bool home_x, bool home_y, bool home_z, bool calib) {
  2243. st_synchronize();
  2244. #if 0
  2245. SERIAL_ECHOPGM("G28, initial "); print_world_coordinates();
  2246. SERIAL_ECHOPGM("G28, initial "); print_physical_coordinates();
  2247. #endif
  2248. // Flag for the display update routine and to disable the print cancelation during homing.
  2249. homing_flag = true;
  2250. // Either all X,Y,Z codes are present, or none of them.
  2251. bool home_all_axes = home_x == home_y && home_x == home_z;
  2252. if (home_all_axes)
  2253. // No X/Y/Z code provided means to home all axes.
  2254. home_x = home_y = home_z = true;
  2255. //if we are homing all axes, first move z higher to protect heatbed/steel sheet
  2256. if (home_all_axes) {
  2257. current_position[Z_AXIS] += MESH_HOME_Z_SEARCH;
  2258. feedrate = homing_feedrate[Z_AXIS];
  2259. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], feedrate / 60, active_extruder);
  2260. st_synchronize();
  2261. }
  2262. #ifdef ENABLE_AUTO_BED_LEVELING
  2263. plan_bed_level_matrix.set_to_identity(); //Reset the plane ("erase" all leveling data)
  2264. #endif //ENABLE_AUTO_BED_LEVELING
  2265. // Reset world2machine_rotation_and_skew and world2machine_shift, therefore
  2266. // the planner will not perform any adjustments in the XY plane.
  2267. // Wait for the motors to stop and update the current position with the absolute values.
  2268. world2machine_revert_to_uncorrected();
  2269. // For mesh bed leveling deactivate the matrix temporarily.
  2270. // It is necessary to disable the bed leveling for the X and Y homing moves, so that the move is performed
  2271. // in a single axis only.
  2272. // In case of re-homing the X or Y axes only, the mesh bed leveling is restored after G28.
  2273. #ifdef MESH_BED_LEVELING
  2274. uint8_t mbl_was_active = mbl.active;
  2275. mbl.active = 0;
  2276. current_position[Z_AXIS] = st_get_position_mm(Z_AXIS);
  2277. #endif
  2278. // Reset baby stepping to zero, if the babystepping has already been loaded before. The babystepsTodo value will be
  2279. // consumed during the first movements following this statement.
  2280. if (home_z)
  2281. babystep_undo();
  2282. saved_feedrate = feedrate;
  2283. saved_feedmultiply = feedmultiply;
  2284. feedmultiply = 100;
  2285. previous_millis_cmd = millis();
  2286. enable_endstops(true);
  2287. memcpy(destination, current_position, sizeof(destination));
  2288. feedrate = 0.0;
  2289. #if Z_HOME_DIR > 0 // If homing away from BED do Z first
  2290. if(home_z)
  2291. homeaxis(Z_AXIS);
  2292. #endif
  2293. #ifdef QUICK_HOME
  2294. // In the quick mode, if both x and y are to be homed, a diagonal move will be performed initially.
  2295. if(home_x && home_y) //first diagonal move
  2296. {
  2297. current_position[X_AXIS] = 0;current_position[Y_AXIS] = 0;
  2298. int x_axis_home_dir = home_dir(X_AXIS);
  2299. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2300. destination[X_AXIS] = 1.5 * max_length(X_AXIS) * x_axis_home_dir;destination[Y_AXIS] = 1.5 * max_length(Y_AXIS) * home_dir(Y_AXIS);
  2301. feedrate = homing_feedrate[X_AXIS];
  2302. if(homing_feedrate[Y_AXIS]<feedrate)
  2303. feedrate = homing_feedrate[Y_AXIS];
  2304. if (max_length(X_AXIS) > max_length(Y_AXIS)) {
  2305. feedrate *= sqrt(pow(max_length(Y_AXIS) / max_length(X_AXIS), 2) + 1);
  2306. } else {
  2307. feedrate *= sqrt(pow(max_length(X_AXIS) / max_length(Y_AXIS), 2) + 1);
  2308. }
  2309. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  2310. st_synchronize();
  2311. axis_is_at_home(X_AXIS);
  2312. axis_is_at_home(Y_AXIS);
  2313. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2314. destination[X_AXIS] = current_position[X_AXIS];
  2315. destination[Y_AXIS] = current_position[Y_AXIS];
  2316. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  2317. feedrate = 0.0;
  2318. st_synchronize();
  2319. endstops_hit_on_purpose();
  2320. current_position[X_AXIS] = destination[X_AXIS];
  2321. current_position[Y_AXIS] = destination[Y_AXIS];
  2322. current_position[Z_AXIS] = destination[Z_AXIS];
  2323. }
  2324. #endif /* QUICK_HOME */
  2325. #ifdef TMC2130
  2326. if(home_x)
  2327. {
  2328. if (!calib)
  2329. homeaxis(X_AXIS);
  2330. else
  2331. tmc2130_home_calibrate(X_AXIS);
  2332. }
  2333. if(home_y)
  2334. {
  2335. if (!calib)
  2336. homeaxis(Y_AXIS);
  2337. else
  2338. tmc2130_home_calibrate(Y_AXIS);
  2339. }
  2340. #endif //TMC2130
  2341. if(code_seen(axis_codes[X_AXIS]) && code_value_long() != 0)
  2342. current_position[X_AXIS]=code_value()+add_homing[X_AXIS];
  2343. if(code_seen(axis_codes[Y_AXIS]) && code_value_long() != 0)
  2344. current_position[Y_AXIS]=code_value()+add_homing[Y_AXIS];
  2345. #if Z_HOME_DIR < 0 // If homing towards BED do Z last
  2346. #ifndef Z_SAFE_HOMING
  2347. if(home_z) {
  2348. #if defined (Z_RAISE_BEFORE_HOMING) && (Z_RAISE_BEFORE_HOMING > 0)
  2349. destination[Z_AXIS] = Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS) * (-1); // Set destination away from bed
  2350. feedrate = max_feedrate[Z_AXIS];
  2351. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
  2352. st_synchronize();
  2353. #endif // defined (Z_RAISE_BEFORE_HOMING) && (Z_RAISE_BEFORE_HOMING > 0)
  2354. #if (defined(MESH_BED_LEVELING) && !defined(MK1BP)) // If Mesh bed leveling, move X&Y to safe position for home
  2355. if (!(axis_known_position[X_AXIS] && axis_known_position[Y_AXIS] ))
  2356. {
  2357. homeaxis(X_AXIS);
  2358. homeaxis(Y_AXIS);
  2359. }
  2360. // 1st mesh bed leveling measurement point, corrected.
  2361. world2machine_initialize();
  2362. world2machine(pgm_read_float(bed_ref_points_4), pgm_read_float(bed_ref_points_4+1), destination[X_AXIS], destination[Y_AXIS]);
  2363. world2machine_reset();
  2364. if (destination[Y_AXIS] < Y_MIN_POS)
  2365. destination[Y_AXIS] = Y_MIN_POS;
  2366. destination[Z_AXIS] = MESH_HOME_Z_SEARCH; // Set destination away from bed
  2367. feedrate = homing_feedrate[Z_AXIS]/10;
  2368. current_position[Z_AXIS] = 0;
  2369. enable_endstops(false);
  2370. #ifdef DEBUG_BUILD
  2371. SERIAL_ECHOLNPGM("plan_set_position()");
  2372. MYSERIAL.println(current_position[X_AXIS]);MYSERIAL.println(current_position[Y_AXIS]);
  2373. MYSERIAL.println(current_position[Z_AXIS]);MYSERIAL.println(current_position[E_AXIS]);
  2374. #endif
  2375. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2376. #ifdef DEBUG_BUILD
  2377. SERIAL_ECHOLNPGM("plan_buffer_line()");
  2378. MYSERIAL.println(destination[X_AXIS]);MYSERIAL.println(destination[Y_AXIS]);
  2379. MYSERIAL.println(destination[Z_AXIS]);MYSERIAL.println(destination[E_AXIS]);
  2380. MYSERIAL.println(feedrate);MYSERIAL.println(active_extruder);
  2381. #endif
  2382. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
  2383. st_synchronize();
  2384. current_position[X_AXIS] = destination[X_AXIS];
  2385. current_position[Y_AXIS] = destination[Y_AXIS];
  2386. enable_endstops(true);
  2387. endstops_hit_on_purpose();
  2388. homeaxis(Z_AXIS);
  2389. #else // MESH_BED_LEVELING
  2390. homeaxis(Z_AXIS);
  2391. #endif // MESH_BED_LEVELING
  2392. }
  2393. #else // defined(Z_SAFE_HOMING): Z Safe mode activated.
  2394. if(home_all_axes) {
  2395. destination[X_AXIS] = round(Z_SAFE_HOMING_X_POINT - X_PROBE_OFFSET_FROM_EXTRUDER);
  2396. destination[Y_AXIS] = round(Z_SAFE_HOMING_Y_POINT - Y_PROBE_OFFSET_FROM_EXTRUDER);
  2397. destination[Z_AXIS] = Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS) * (-1); // Set destination away from bed
  2398. feedrate = XY_TRAVEL_SPEED/60;
  2399. current_position[Z_AXIS] = 0;
  2400. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2401. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
  2402. st_synchronize();
  2403. current_position[X_AXIS] = destination[X_AXIS];
  2404. current_position[Y_AXIS] = destination[Y_AXIS];
  2405. homeaxis(Z_AXIS);
  2406. }
  2407. // Let's see if X and Y are homed and probe is inside bed area.
  2408. if(home_z) {
  2409. if ( (axis_known_position[X_AXIS]) && (axis_known_position[Y_AXIS]) \
  2410. && (current_position[X_AXIS]+X_PROBE_OFFSET_FROM_EXTRUDER >= X_MIN_POS) \
  2411. && (current_position[X_AXIS]+X_PROBE_OFFSET_FROM_EXTRUDER <= X_MAX_POS) \
  2412. && (current_position[Y_AXIS]+Y_PROBE_OFFSET_FROM_EXTRUDER >= Y_MIN_POS) \
  2413. && (current_position[Y_AXIS]+Y_PROBE_OFFSET_FROM_EXTRUDER <= Y_MAX_POS)) {
  2414. current_position[Z_AXIS] = 0;
  2415. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2416. destination[Z_AXIS] = Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS) * (-1); // Set destination away from bed
  2417. feedrate = max_feedrate[Z_AXIS];
  2418. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
  2419. st_synchronize();
  2420. homeaxis(Z_AXIS);
  2421. } else if (!((axis_known_position[X_AXIS]) && (axis_known_position[Y_AXIS]))) {
  2422. LCD_MESSAGERPGM(MSG_POSITION_UNKNOWN);
  2423. SERIAL_ECHO_START;
  2424. SERIAL_ECHOLNRPGM(MSG_POSITION_UNKNOWN);
  2425. } else {
  2426. LCD_MESSAGERPGM(MSG_ZPROBE_OUT);
  2427. SERIAL_ECHO_START;
  2428. SERIAL_ECHOLNRPGM(MSG_ZPROBE_OUT);
  2429. }
  2430. }
  2431. #endif // Z_SAFE_HOMING
  2432. #endif // Z_HOME_DIR < 0
  2433. if(code_seen(axis_codes[Z_AXIS]) && code_value_long() != 0)
  2434. current_position[Z_AXIS]=code_value()+add_homing[Z_AXIS];
  2435. #ifdef ENABLE_AUTO_BED_LEVELING
  2436. if(home_z)
  2437. current_position[Z_AXIS] += zprobe_zoffset; //Add Z_Probe offset (the distance is negative)
  2438. #endif
  2439. // Set the planner and stepper routine positions.
  2440. // At this point the mesh bed leveling and world2machine corrections are disabled and current_position
  2441. // contains the machine coordinates.
  2442. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2443. #ifdef ENDSTOPS_ONLY_FOR_HOMING
  2444. enable_endstops(false);
  2445. #endif
  2446. feedrate = saved_feedrate;
  2447. feedmultiply = saved_feedmultiply;
  2448. previous_millis_cmd = millis();
  2449. endstops_hit_on_purpose();
  2450. #ifndef MESH_BED_LEVELING
  2451. // If MESH_BED_LEVELING is not active, then it is the original Prusa i3.
  2452. // Offer the user to load the baby step value, which has been adjusted at the previous print session.
  2453. if(card.sdprinting && eeprom_read_word((uint16_t *)EEPROM_BABYSTEP_Z))
  2454. lcd_adjust_z();
  2455. #endif
  2456. // Load the machine correction matrix
  2457. world2machine_initialize();
  2458. // and correct the current_position XY axes to match the transformed coordinate system.
  2459. world2machine_update_current();
  2460. #if (defined(MESH_BED_LEVELING) && !defined(MK1BP))
  2461. if (code_seen(axis_codes[X_AXIS]) || code_seen(axis_codes[Y_AXIS]) || code_seen('W') || code_seen(axis_codes[Z_AXIS]))
  2462. {
  2463. if (! home_z && mbl_was_active) {
  2464. // Re-enable the mesh bed leveling if only the X and Y axes were re-homed.
  2465. mbl.active = true;
  2466. // and re-adjust the current logical Z axis with the bed leveling offset applicable at the current XY position.
  2467. current_position[Z_AXIS] -= mbl.get_z(st_get_position_mm(X_AXIS), st_get_position_mm(Y_AXIS));
  2468. }
  2469. }
  2470. else
  2471. {
  2472. st_synchronize();
  2473. homing_flag = false;
  2474. // Push the commands to the front of the message queue in the reverse order!
  2475. // There shall be always enough space reserved for these commands.
  2476. enquecommand_front_P((PSTR("G80")));
  2477. //goto case_G80;
  2478. }
  2479. #endif
  2480. if (farm_mode) { prusa_statistics(20); };
  2481. homing_flag = false;
  2482. #if 0
  2483. SERIAL_ECHOPGM("G28, final "); print_world_coordinates();
  2484. SERIAL_ECHOPGM("G28, final "); print_physical_coordinates();
  2485. SERIAL_ECHOPGM("G28, final "); print_mesh_bed_leveling_table();
  2486. #endif
  2487. }
  2488. bool gcode_M45(bool onlyZ, int8_t verbosity_level)
  2489. {
  2490. bool final_result = false;
  2491. #ifdef TMC2130
  2492. FORCE_HIGH_POWER_START;
  2493. #endif // TMC2130
  2494. // Only Z calibration?
  2495. if (!onlyZ)
  2496. {
  2497. setTargetBed(0);
  2498. setTargetHotend(0, 0);
  2499. setTargetHotend(0, 1);
  2500. setTargetHotend(0, 2);
  2501. adjust_bed_reset(); //reset bed level correction
  2502. }
  2503. // Disable the default update procedure of the display. We will do a modal dialog.
  2504. lcd_update_enable(false);
  2505. // Let the planner use the uncorrected coordinates.
  2506. mbl.reset();
  2507. // Reset world2machine_rotation_and_skew and world2machine_shift, therefore
  2508. // the planner will not perform any adjustments in the XY plane.
  2509. // Wait for the motors to stop and update the current position with the absolute values.
  2510. world2machine_revert_to_uncorrected();
  2511. // Reset the baby step value applied without moving the axes.
  2512. babystep_reset();
  2513. // Mark all axes as in a need for homing.
  2514. memset(axis_known_position, 0, sizeof(axis_known_position));
  2515. // Home in the XY plane.
  2516. //set_destination_to_current();
  2517. setup_for_endstop_move();
  2518. lcd_display_message_fullscreen_P(_T(MSG_AUTO_HOME));
  2519. home_xy();
  2520. enable_endstops(false);
  2521. current_position[X_AXIS] += 5;
  2522. current_position[Y_AXIS] += 5;
  2523. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[Z_AXIS] / 40, active_extruder);
  2524. st_synchronize();
  2525. // Let the user move the Z axes up to the end stoppers.
  2526. #ifdef TMC2130
  2527. if (calibrate_z_auto())
  2528. {
  2529. #else //TMC2130
  2530. if (lcd_calibrate_z_end_stop_manual(onlyZ))
  2531. {
  2532. #endif //TMC2130
  2533. refresh_cmd_timeout();
  2534. #ifndef STEEL_SHEET
  2535. if (((degHotend(0) > MAX_HOTEND_TEMP_CALIBRATION) || (degBed() > MAX_BED_TEMP_CALIBRATION)) && (!onlyZ))
  2536. {
  2537. lcd_wait_for_cool_down();
  2538. }
  2539. #endif //STEEL_SHEET
  2540. if(!onlyZ)
  2541. {
  2542. KEEPALIVE_STATE(PAUSED_FOR_USER);
  2543. #ifdef STEEL_SHEET
  2544. bool result = lcd_show_fullscreen_message_yes_no_and_wait_P(_T(MSG_STEEL_SHEET_CHECK), false, false);
  2545. if(result) lcd_show_fullscreen_message_and_wait_P(_T(MSG_REMOVE_STEEL_SHEET));
  2546. #endif //STEEL_SHEET
  2547. lcd_show_fullscreen_message_and_wait_P(_T(MSG_CONFIRM_NOZZLE_CLEAN));
  2548. lcd_show_fullscreen_message_and_wait_P(_T(MSG_PAPER));
  2549. KEEPALIVE_STATE(IN_HANDLER);
  2550. lcd_display_message_fullscreen_P(_T(MSG_FIND_BED_OFFSET_AND_SKEW_LINE1));
  2551. lcd_set_cursor(0, 2);
  2552. lcd_print(1);
  2553. lcd_puts_P(_T(MSG_FIND_BED_OFFSET_AND_SKEW_LINE2));
  2554. }
  2555. // Move the print head close to the bed.
  2556. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  2557. bool endstops_enabled = enable_endstops(true);
  2558. #ifdef TMC2130
  2559. tmc2130_home_enter(Z_AXIS_MASK);
  2560. #endif //TMC2130
  2561. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[Z_AXIS] / 40, active_extruder);
  2562. st_synchronize();
  2563. #ifdef TMC2130
  2564. tmc2130_home_exit();
  2565. #endif //TMC2130
  2566. enable_endstops(endstops_enabled);
  2567. if (st_get_position_mm(Z_AXIS) == MESH_HOME_Z_SEARCH)
  2568. {
  2569. int8_t verbosity_level = 0;
  2570. if (code_seen('V'))
  2571. {
  2572. // Just 'V' without a number counts as V1.
  2573. char c = strchr_pointer[1];
  2574. verbosity_level = (c == ' ' || c == '\t' || c == 0) ? 1 : code_value_short();
  2575. }
  2576. if (onlyZ)
  2577. {
  2578. clean_up_after_endstop_move();
  2579. // Z only calibration.
  2580. // Load the machine correction matrix
  2581. world2machine_initialize();
  2582. // and correct the current_position to match the transformed coordinate system.
  2583. world2machine_update_current();
  2584. //FIXME
  2585. bool result = sample_mesh_and_store_reference();
  2586. if (result)
  2587. {
  2588. if (calibration_status() == CALIBRATION_STATUS_Z_CALIBRATION)
  2589. // Shipped, the nozzle height has been set already. The user can start printing now.
  2590. calibration_status_store(CALIBRATION_STATUS_CALIBRATED);
  2591. final_result = true;
  2592. // babystep_apply();
  2593. }
  2594. }
  2595. else
  2596. {
  2597. // Reset the baby step value and the baby step applied flag.
  2598. calibration_status_store(CALIBRATION_STATUS_XYZ_CALIBRATION);
  2599. eeprom_update_word((uint16_t*)EEPROM_BABYSTEP_Z, 0);
  2600. // Complete XYZ calibration.
  2601. uint8_t point_too_far_mask = 0;
  2602. BedSkewOffsetDetectionResultType result = find_bed_offset_and_skew(verbosity_level, point_too_far_mask);
  2603. clean_up_after_endstop_move();
  2604. // Print head up.
  2605. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  2606. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[Z_AXIS] / 40, active_extruder);
  2607. st_synchronize();
  2608. //#ifndef NEW_XYZCAL
  2609. if (result >= 0)
  2610. {
  2611. #ifdef HEATBED_V2
  2612. sample_z();
  2613. #else //HEATBED_V2
  2614. point_too_far_mask = 0;
  2615. // Second half: The fine adjustment.
  2616. // Let the planner use the uncorrected coordinates.
  2617. mbl.reset();
  2618. world2machine_reset();
  2619. // Home in the XY plane.
  2620. setup_for_endstop_move();
  2621. home_xy();
  2622. result = improve_bed_offset_and_skew(1, verbosity_level, point_too_far_mask);
  2623. clean_up_after_endstop_move();
  2624. // Print head up.
  2625. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  2626. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[Z_AXIS] / 40, active_extruder);
  2627. st_synchronize();
  2628. // if (result >= 0) babystep_apply();
  2629. #endif //HEATBED_V2
  2630. }
  2631. //#endif //NEW_XYZCAL
  2632. lcd_update_enable(true);
  2633. lcd_update(2);
  2634. lcd_bed_calibration_show_result(result, point_too_far_mask);
  2635. if (result >= 0)
  2636. {
  2637. // Calibration valid, the machine should be able to print. Advise the user to run the V2Calibration.gcode.
  2638. calibration_status_store(CALIBRATION_STATUS_LIVE_ADJUST);
  2639. if (eeprom_read_byte((uint8_t*)EEPROM_WIZARD_ACTIVE) != 1) lcd_show_fullscreen_message_and_wait_P(_T(MSG_BABYSTEP_Z_NOT_SET));
  2640. final_result = true;
  2641. }
  2642. }
  2643. #ifdef TMC2130
  2644. tmc2130_home_exit();
  2645. #endif
  2646. }
  2647. else
  2648. {
  2649. lcd_show_fullscreen_message_and_wait_P(PSTR("Calibration failed! Check the axes and run again."));
  2650. final_result = false;
  2651. }
  2652. }
  2653. else
  2654. {
  2655. // Timeouted.
  2656. }
  2657. lcd_update_enable(true);
  2658. #ifdef TMC2130
  2659. FORCE_HIGH_POWER_END;
  2660. #endif // TMC2130
  2661. return final_result;
  2662. }
  2663. void gcode_M114()
  2664. {
  2665. SERIAL_PROTOCOLPGM("X:");
  2666. SERIAL_PROTOCOL(current_position[X_AXIS]);
  2667. SERIAL_PROTOCOLPGM(" Y:");
  2668. SERIAL_PROTOCOL(current_position[Y_AXIS]);
  2669. SERIAL_PROTOCOLPGM(" Z:");
  2670. SERIAL_PROTOCOL(current_position[Z_AXIS]);
  2671. SERIAL_PROTOCOLPGM(" E:");
  2672. SERIAL_PROTOCOL(current_position[E_AXIS]);
  2673. SERIAL_PROTOCOLRPGM(_n(" Count X: "));////MSG_COUNT_X c=0 r=0
  2674. SERIAL_PROTOCOL(float(st_get_position(X_AXIS)) / axis_steps_per_unit[X_AXIS]);
  2675. SERIAL_PROTOCOLPGM(" Y:");
  2676. SERIAL_PROTOCOL(float(st_get_position(Y_AXIS)) / axis_steps_per_unit[Y_AXIS]);
  2677. SERIAL_PROTOCOLPGM(" Z:");
  2678. SERIAL_PROTOCOL(float(st_get_position(Z_AXIS)) / axis_steps_per_unit[Z_AXIS]);
  2679. SERIAL_PROTOCOLPGM(" E:");
  2680. SERIAL_PROTOCOL(float(st_get_position(E_AXIS)) / axis_steps_per_unit[E_AXIS]);
  2681. SERIAL_PROTOCOLLN("");
  2682. }
  2683. void gcode_M701()
  2684. {
  2685. #ifdef SNMM
  2686. extr_adj(snmm_extruder);//loads current extruder
  2687. #else
  2688. enable_z();
  2689. custom_message = true;
  2690. custom_message_type = 2;
  2691. lcd_setstatuspgm(_T(MSG_LOADING_FILAMENT));
  2692. current_position[E_AXIS] += 70;
  2693. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400 / 60, active_extruder); //fast sequence
  2694. current_position[E_AXIS] += 25;
  2695. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 100 / 60, active_extruder); //slow sequence
  2696. st_synchronize();
  2697. tone(BEEPER, 500);
  2698. delay_keep_alive(50);
  2699. noTone(BEEPER);
  2700. if (!farm_mode && loading_flag) {
  2701. bool clean = lcd_show_fullscreen_message_yes_no_and_wait_P(_T(MSG_FILAMENT_CLEAN), false, true);
  2702. while (!clean) {
  2703. lcd_update_enable(true);
  2704. lcd_update(2);
  2705. current_position[E_AXIS] += 25;
  2706. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 100 / 60, active_extruder); //slow sequence
  2707. st_synchronize();
  2708. clean = lcd_show_fullscreen_message_yes_no_and_wait_P(_T(MSG_FILAMENT_CLEAN), false, true);
  2709. }
  2710. }
  2711. lcd_update_enable(true);
  2712. lcd_update(2);
  2713. lcd_setstatuspgm(_T(WELCOME_MSG));
  2714. disable_z();
  2715. loading_flag = false;
  2716. custom_message = false;
  2717. custom_message_type = 0;
  2718. #endif
  2719. }
  2720. /**
  2721. * @brief Get serial number from 32U2 processor
  2722. *
  2723. * Typical format of S/N is:CZPX0917X003XC13518
  2724. *
  2725. * Command operates only in farm mode, if not in farm mode, "Not in farm mode." is written to MYSERIAL.
  2726. *
  2727. * Send command ;S to serial port 0 to retrieve serial number stored in 32U2 processor,
  2728. * reply is transmitted to serial port 1 character by character.
  2729. * Operation takes typically 23 ms. If the retransmit is not finished until 100 ms,
  2730. * it is interrupted, so less, or no characters are retransmitted, only newline character is send
  2731. * in any case.
  2732. */
  2733. static void gcode_PRUSA_SN()
  2734. {
  2735. if (farm_mode) {
  2736. selectedSerialPort = 0;
  2737. putchar(';');
  2738. putchar('S');
  2739. int numbersRead = 0;
  2740. ShortTimer timeout;
  2741. timeout.start();
  2742. while (numbersRead < 19) {
  2743. while (MSerial.available() > 0) {
  2744. uint8_t serial_char = MSerial.read();
  2745. selectedSerialPort = 1;
  2746. putchar(serial_char);
  2747. numbersRead++;
  2748. selectedSerialPort = 0;
  2749. }
  2750. if (timeout.expired(100u)) break;
  2751. }
  2752. selectedSerialPort = 1;
  2753. putchar('\n');
  2754. #if 0
  2755. for (int b = 0; b < 3; b++) {
  2756. tone(BEEPER, 110);
  2757. delay(50);
  2758. noTone(BEEPER);
  2759. delay(50);
  2760. }
  2761. #endif
  2762. } else {
  2763. puts_P(_N("Not in farm mode."));
  2764. }
  2765. }
  2766. #ifdef BACKLASH_X
  2767. extern uint8_t st_backlash_x;
  2768. #endif //BACKLASH_X
  2769. #ifdef BACKLASH_Y
  2770. extern uint8_t st_backlash_y;
  2771. #endif //BACKLASH_Y
  2772. void process_commands()
  2773. {
  2774. if (!buflen) return; //empty command
  2775. #ifdef FILAMENT_RUNOUT_SUPPORT
  2776. SET_INPUT(FR_SENS);
  2777. #endif
  2778. #ifdef CMDBUFFER_DEBUG
  2779. SERIAL_ECHOPGM("Processing a GCODE command: ");
  2780. SERIAL_ECHO(cmdbuffer+bufindr+CMDHDRSIZE);
  2781. SERIAL_ECHOLNPGM("");
  2782. SERIAL_ECHOPGM("In cmdqueue: ");
  2783. SERIAL_ECHO(buflen);
  2784. SERIAL_ECHOLNPGM("");
  2785. #endif /* CMDBUFFER_DEBUG */
  2786. unsigned long codenum; //throw away variable
  2787. char *starpos = NULL;
  2788. #ifdef ENABLE_AUTO_BED_LEVELING
  2789. float x_tmp, y_tmp, z_tmp, real_z;
  2790. #endif
  2791. // PRUSA GCODES
  2792. KEEPALIVE_STATE(IN_HANDLER);
  2793. #ifdef SNMM
  2794. float tmp_motor[3] = DEFAULT_PWM_MOTOR_CURRENT;
  2795. float tmp_motor_loud[3] = DEFAULT_PWM_MOTOR_CURRENT_LOUD;
  2796. int8_t SilentMode;
  2797. #endif
  2798. if (code_seen("M117")) { //moved to highest priority place to be able to to print strings which includes "G", "PRUSA" and "^"
  2799. starpos = (strchr(strchr_pointer + 5, '*'));
  2800. if (starpos != NULL)
  2801. *(starpos) = '\0';
  2802. lcd_setstatus(strchr_pointer + 5);
  2803. }
  2804. #ifdef TMC2130
  2805. else if (strncmp_P(CMDBUFFER_CURRENT_STRING, PSTR("CRASH_"), 6) == 0)
  2806. {
  2807. if(code_seen("CRASH_DETECTED"))
  2808. {
  2809. uint8_t mask = 0;
  2810. if (code_seen("X")) mask |= X_AXIS_MASK;
  2811. if (code_seen("Y")) mask |= Y_AXIS_MASK;
  2812. crashdet_detected(mask);
  2813. }
  2814. else if(code_seen("CRASH_RECOVER"))
  2815. crashdet_recover();
  2816. else if(code_seen("CRASH_CANCEL"))
  2817. crashdet_cancel();
  2818. }
  2819. else if (strncmp_P(CMDBUFFER_CURRENT_STRING, PSTR("TMC_"), 4) == 0)
  2820. {
  2821. if (strncmp_P(CMDBUFFER_CURRENT_STRING + 4, PSTR("SET_WAVE_"), 9) == 0)
  2822. {
  2823. uint8_t axis = *(CMDBUFFER_CURRENT_STRING + 13);
  2824. axis = (axis == 'E')?3:(axis - 'X');
  2825. if (axis < 4)
  2826. {
  2827. uint8_t fac = (uint8_t)strtol(CMDBUFFER_CURRENT_STRING + 14, NULL, 10);
  2828. tmc2130_set_wave(axis, 247, fac);
  2829. }
  2830. }
  2831. else if (strncmp_P(CMDBUFFER_CURRENT_STRING + 4, PSTR("SET_STEP_"), 9) == 0)
  2832. {
  2833. uint8_t axis = *(CMDBUFFER_CURRENT_STRING + 13);
  2834. axis = (axis == 'E')?3:(axis - 'X');
  2835. if (axis < 4)
  2836. {
  2837. uint8_t step = (uint8_t)strtol(CMDBUFFER_CURRENT_STRING + 14, NULL, 10);
  2838. uint16_t res = tmc2130_get_res(axis);
  2839. tmc2130_goto_step(axis, step & (4*res - 1), 2, 1000, res);
  2840. }
  2841. }
  2842. else if (strncmp_P(CMDBUFFER_CURRENT_STRING + 4, PSTR("SET_CHOP_"), 9) == 0)
  2843. {
  2844. uint8_t axis = *(CMDBUFFER_CURRENT_STRING + 13);
  2845. axis = (axis == 'E')?3:(axis - 'X');
  2846. if (axis < 4)
  2847. {
  2848. uint8_t chop0 = tmc2130_chopper_config[axis].toff;
  2849. uint8_t chop1 = tmc2130_chopper_config[axis].hstr;
  2850. uint8_t chop2 = tmc2130_chopper_config[axis].hend;
  2851. uint8_t chop3 = tmc2130_chopper_config[axis].tbl;
  2852. char* str_end = 0;
  2853. if (CMDBUFFER_CURRENT_STRING[14])
  2854. {
  2855. chop0 = (uint8_t)strtol(CMDBUFFER_CURRENT_STRING + 14, &str_end, 10) & 15;
  2856. if (str_end && *str_end)
  2857. {
  2858. chop1 = (uint8_t)strtol(str_end, &str_end, 10) & 7;
  2859. if (str_end && *str_end)
  2860. {
  2861. chop2 = (uint8_t)strtol(str_end, &str_end, 10) & 15;
  2862. if (str_end && *str_end)
  2863. chop3 = (uint8_t)strtol(str_end, &str_end, 10) & 3;
  2864. }
  2865. }
  2866. }
  2867. tmc2130_chopper_config[axis].toff = chop0;
  2868. tmc2130_chopper_config[axis].hstr = chop1 & 7;
  2869. tmc2130_chopper_config[axis].hend = chop2 & 15;
  2870. tmc2130_chopper_config[axis].tbl = chop3 & 3;
  2871. tmc2130_setup_chopper(axis, tmc2130_mres[axis], tmc2130_current_h[axis], tmc2130_current_r[axis]);
  2872. //printf_P(_N("TMC_SET_CHOP_%c %hhd %hhd %hhd %hhd\n"), "xyze"[axis], chop0, chop1, chop2, chop3);
  2873. }
  2874. }
  2875. }
  2876. #ifdef BACKLASH_X
  2877. else if (strncmp_P(CMDBUFFER_CURRENT_STRING, PSTR("BACKLASH_X"), 10) == 0)
  2878. {
  2879. uint8_t bl = (uint8_t)strtol(CMDBUFFER_CURRENT_STRING + 10, NULL, 10);
  2880. st_backlash_x = bl;
  2881. printf_P(_N("st_backlash_x = %hhd\n"), st_backlash_x);
  2882. }
  2883. #endif //BACKLASH_X
  2884. #ifdef BACKLASH_Y
  2885. else if (strncmp_P(CMDBUFFER_CURRENT_STRING, PSTR("BACKLASH_Y"), 10) == 0)
  2886. {
  2887. uint8_t bl = (uint8_t)strtol(CMDBUFFER_CURRENT_STRING + 10, NULL, 10);
  2888. st_backlash_y = bl;
  2889. printf_P(_N("st_backlash_y = %hhd\n"), st_backlash_y);
  2890. }
  2891. #endif //BACKLASH_Y
  2892. #endif //TMC2130
  2893. else if(code_seen("PRUSA")){
  2894. if (code_seen("Ping")) { //PRUSA Ping
  2895. if (farm_mode) {
  2896. PingTime = millis();
  2897. //MYSERIAL.print(farm_no); MYSERIAL.println(": OK");
  2898. }
  2899. }
  2900. else if (code_seen("PRN")) {
  2901. printf_P(_N("%d"), status_number);
  2902. }else if (code_seen("FAN")) {
  2903. printf_P(_N("E0:%d RPM\nPRN0:%d RPM\n"), 60*fan_speed[0], 60*fan_speed[1]);
  2904. }else if (code_seen("fn")) {
  2905. if (farm_mode) {
  2906. printf_P(_N("%d"), farm_no);
  2907. }
  2908. else {
  2909. puts_P(_N("Not in farm mode."));
  2910. }
  2911. }
  2912. else if (code_seen("thx")) {
  2913. no_response = false;
  2914. } else if (code_seen("RESET")) {
  2915. // careful!
  2916. if (farm_mode) {
  2917. #ifdef WATCHDOG
  2918. wdt_enable(WDTO_15MS);
  2919. cli();
  2920. while(1);
  2921. #else //WATCHDOG
  2922. asm volatile("jmp 0x3E000");
  2923. #endif //WATCHDOG
  2924. }
  2925. else {
  2926. MYSERIAL.println("Not in farm mode.");
  2927. }
  2928. }else if (code_seen("fv")) {
  2929. // get file version
  2930. #ifdef SDSUPPORT
  2931. card.openFile(strchr_pointer + 3,true);
  2932. while (true) {
  2933. uint16_t readByte = card.get();
  2934. MYSERIAL.write(readByte);
  2935. if (readByte=='\n') {
  2936. break;
  2937. }
  2938. }
  2939. card.closefile();
  2940. #endif // SDSUPPORT
  2941. } else if (code_seen("M28")) {
  2942. trace();
  2943. prusa_sd_card_upload = true;
  2944. card.openFile(strchr_pointer+4,false);
  2945. } else if (code_seen("SN")) {
  2946. gcode_PRUSA_SN();
  2947. } else if(code_seen("Fir")){
  2948. SERIAL_PROTOCOLLN(FW_VERSION);
  2949. } else if(code_seen("Rev")){
  2950. SERIAL_PROTOCOLLN(FILAMENT_SIZE "-" ELECTRONICS "-" NOZZLE_TYPE );
  2951. } else if(code_seen("Lang")) {
  2952. lang_reset();
  2953. } else if(code_seen("Lz")) {
  2954. EEPROM_save_B(EEPROM_BABYSTEP_Z,0);
  2955. } else if(code_seen("Beat")) {
  2956. // Kick farm link timer
  2957. kicktime = millis();
  2958. } else if(code_seen("FR")) {
  2959. // Factory full reset
  2960. factory_reset(0,true);
  2961. }
  2962. //else if (code_seen('Cal')) {
  2963. // lcd_calibration();
  2964. // }
  2965. }
  2966. else if (code_seen('^')) {
  2967. // nothing, this is a version line
  2968. } else if(code_seen('G'))
  2969. {
  2970. switch((int)code_value())
  2971. {
  2972. case 0: // G0 -> G1
  2973. case 1: // G1
  2974. if(Stopped == false) {
  2975. #ifdef FILAMENT_RUNOUT_SUPPORT
  2976. if(READ(FR_SENS)){
  2977. feedmultiplyBckp=feedmultiply;
  2978. float target[4];
  2979. float lastpos[4];
  2980. target[X_AXIS]=current_position[X_AXIS];
  2981. target[Y_AXIS]=current_position[Y_AXIS];
  2982. target[Z_AXIS]=current_position[Z_AXIS];
  2983. target[E_AXIS]=current_position[E_AXIS];
  2984. lastpos[X_AXIS]=current_position[X_AXIS];
  2985. lastpos[Y_AXIS]=current_position[Y_AXIS];
  2986. lastpos[Z_AXIS]=current_position[Z_AXIS];
  2987. lastpos[E_AXIS]=current_position[E_AXIS];
  2988. //retract by E
  2989. target[E_AXIS]+= FILAMENTCHANGE_FIRSTRETRACT ;
  2990. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 400, active_extruder);
  2991. target[Z_AXIS]+= FILAMENTCHANGE_ZADD ;
  2992. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 300, active_extruder);
  2993. target[X_AXIS]= FILAMENTCHANGE_XPOS ;
  2994. target[Y_AXIS]= FILAMENTCHANGE_YPOS ;
  2995. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 70, active_extruder);
  2996. target[E_AXIS]+= FILAMENTCHANGE_FINALRETRACT ;
  2997. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 20, active_extruder);
  2998. //finish moves
  2999. st_synchronize();
  3000. //disable extruder steppers so filament can be removed
  3001. disable_e0();
  3002. disable_e1();
  3003. disable_e2();
  3004. delay(100);
  3005. //LCD_ALERTMESSAGEPGM(_T(MSG_FILAMENTCHANGE));
  3006. uint8_t cnt=0;
  3007. int counterBeep = 0;
  3008. lcd_wait_interact();
  3009. while(!lcd_clicked()){
  3010. cnt++;
  3011. manage_heater();
  3012. manage_inactivity(true);
  3013. //lcd_update(0);
  3014. if(cnt==0)
  3015. {
  3016. #if BEEPER > 0
  3017. if (counterBeep== 500){
  3018. counterBeep = 0;
  3019. }
  3020. SET_OUTPUT(BEEPER);
  3021. if (counterBeep== 0){
  3022. WRITE(BEEPER,HIGH);
  3023. }
  3024. if (counterBeep== 20){
  3025. WRITE(BEEPER,LOW);
  3026. }
  3027. counterBeep++;
  3028. #else
  3029. #endif
  3030. }
  3031. }
  3032. WRITE(BEEPER,LOW);
  3033. target[E_AXIS]+= FILAMENTCHANGE_FIRSTFEED ;
  3034. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 20, active_extruder);
  3035. target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  3036. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder);
  3037. lcd_change_fil_state = 0;
  3038. lcd_loading_filament();
  3039. while ((lcd_change_fil_state == 0)||(lcd_change_fil_state != 1)){
  3040. lcd_change_fil_state = 0;
  3041. lcd_alright();
  3042. switch(lcd_change_fil_state){
  3043. case 2:
  3044. target[E_AXIS]+= FILAMENTCHANGE_FIRSTFEED ;
  3045. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 20, active_extruder);
  3046. target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  3047. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder);
  3048. lcd_loading_filament();
  3049. break;
  3050. case 3:
  3051. target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  3052. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder);
  3053. lcd_loading_color();
  3054. break;
  3055. default:
  3056. lcd_change_success();
  3057. break;
  3058. }
  3059. }
  3060. target[E_AXIS]+= 5;
  3061. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder);
  3062. target[E_AXIS]+= FILAMENTCHANGE_FIRSTRETRACT;
  3063. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 400, active_extruder);
  3064. //current_position[E_AXIS]=target[E_AXIS]; //the long retract of L is compensated by manual filament feeding
  3065. //plan_set_e_position(current_position[E_AXIS]);
  3066. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 70, active_extruder); //should do nothing
  3067. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], target[Z_AXIS], target[E_AXIS], 70, active_extruder); //move xy back
  3068. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], target[E_AXIS], 200, active_extruder); //move z back
  3069. target[E_AXIS]= target[E_AXIS] - FILAMENTCHANGE_FIRSTRETRACT;
  3070. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], target[E_AXIS], 5, active_extruder); //final untretract
  3071. plan_set_e_position(lastpos[E_AXIS]);
  3072. feedmultiply=feedmultiplyBckp;
  3073. char cmd[9];
  3074. sprintf_P(cmd, PSTR("M220 S%i"), feedmultiplyBckp);
  3075. enquecommand(cmd);
  3076. }
  3077. #endif
  3078. get_coordinates(); // For X Y Z E F
  3079. if (total_filament_used > ((current_position[E_AXIS] - destination[E_AXIS]) * 100)) { //protection against total_filament_used overflow
  3080. total_filament_used = total_filament_used + ((destination[E_AXIS] - current_position[E_AXIS]) * 100);
  3081. }
  3082. #ifdef FWRETRACT
  3083. if(autoretract_enabled)
  3084. if( !(code_seen('X') || code_seen('Y') || code_seen('Z')) && code_seen('E')) {
  3085. float echange=destination[E_AXIS]-current_position[E_AXIS];
  3086. if((echange<-MIN_RETRACT && !retracted[active_extruder]) || (echange>MIN_RETRACT && retracted[active_extruder])) { //move appears to be an attempt to retract or recover
  3087. current_position[E_AXIS] = destination[E_AXIS]; //hide the slicer-generated retract/recover from calculations
  3088. plan_set_e_position(current_position[E_AXIS]); //AND from the planner
  3089. retract(!retracted[active_extruder]);
  3090. return;
  3091. }
  3092. }
  3093. #endif //FWRETRACT
  3094. prepare_move();
  3095. //ClearToSend();
  3096. }
  3097. break;
  3098. case 2: // G2 - CW ARC
  3099. if(Stopped == false) {
  3100. get_arc_coordinates();
  3101. prepare_arc_move(true);
  3102. }
  3103. break;
  3104. case 3: // G3 - CCW ARC
  3105. if(Stopped == false) {
  3106. get_arc_coordinates();
  3107. prepare_arc_move(false);
  3108. }
  3109. break;
  3110. case 4: // G4 dwell
  3111. codenum = 0;
  3112. if(code_seen('P')) codenum = code_value(); // milliseconds to wait
  3113. if(code_seen('S')) codenum = code_value() * 1000; // seconds to wait
  3114. if(codenum != 0) LCD_MESSAGERPGM(_i("Sleep..."));////MSG_DWELL c=0 r=0
  3115. st_synchronize();
  3116. codenum += millis(); // keep track of when we started waiting
  3117. previous_millis_cmd = millis();
  3118. while(millis() < codenum) {
  3119. manage_heater();
  3120. manage_inactivity();
  3121. lcd_update(0);
  3122. }
  3123. break;
  3124. #ifdef FWRETRACT
  3125. case 10: // G10 retract
  3126. #if EXTRUDERS > 1
  3127. retracted_swap[active_extruder]=(code_seen('S') && code_value_long() == 1); // checks for swap retract argument
  3128. retract(true,retracted_swap[active_extruder]);
  3129. #else
  3130. retract(true);
  3131. #endif
  3132. break;
  3133. case 11: // G11 retract_recover
  3134. #if EXTRUDERS > 1
  3135. retract(false,retracted_swap[active_extruder]);
  3136. #else
  3137. retract(false);
  3138. #endif
  3139. break;
  3140. #endif //FWRETRACT
  3141. case 28: //G28 Home all Axis one at a time
  3142. {
  3143. // Which axes should be homed?
  3144. bool home_x = code_seen(axis_codes[X_AXIS]);
  3145. bool home_y = code_seen(axis_codes[Y_AXIS]);
  3146. bool home_z = code_seen(axis_codes[Z_AXIS]);
  3147. // calibrate?
  3148. bool calib = code_seen('C');
  3149. gcode_G28(home_x, home_y, home_z, calib);
  3150. break;
  3151. }
  3152. #ifdef ENABLE_AUTO_BED_LEVELING
  3153. case 29: // G29 Detailed Z-Probe, probes the bed at 3 or more points.
  3154. {
  3155. #if Z_MIN_PIN == -1
  3156. #error "You must have a Z_MIN endstop in order to enable Auto Bed Leveling feature! Z_MIN_PIN must point to a valid hardware pin."
  3157. #endif
  3158. // Prevent user from running a G29 without first homing in X and Y
  3159. if (! (axis_known_position[X_AXIS] && axis_known_position[Y_AXIS]) )
  3160. {
  3161. LCD_MESSAGERPGM(MSG_POSITION_UNKNOWN);
  3162. SERIAL_ECHO_START;
  3163. SERIAL_ECHOLNRPGM(MSG_POSITION_UNKNOWN);
  3164. break; // abort G29, since we don't know where we are
  3165. }
  3166. st_synchronize();
  3167. // make sure the bed_level_rotation_matrix is identity or the planner will get it incorectly
  3168. //vector_3 corrected_position = plan_get_position_mm();
  3169. //corrected_position.debug("position before G29");
  3170. plan_bed_level_matrix.set_to_identity();
  3171. vector_3 uncorrected_position = plan_get_position();
  3172. //uncorrected_position.debug("position durring G29");
  3173. current_position[X_AXIS] = uncorrected_position.x;
  3174. current_position[Y_AXIS] = uncorrected_position.y;
  3175. current_position[Z_AXIS] = uncorrected_position.z;
  3176. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  3177. setup_for_endstop_move();
  3178. feedrate = homing_feedrate[Z_AXIS];
  3179. #ifdef AUTO_BED_LEVELING_GRID
  3180. // probe at the points of a lattice grid
  3181. int xGridSpacing = (RIGHT_PROBE_BED_POSITION - LEFT_PROBE_BED_POSITION) / (AUTO_BED_LEVELING_GRID_POINTS-1);
  3182. int yGridSpacing = (BACK_PROBE_BED_POSITION - FRONT_PROBE_BED_POSITION) / (AUTO_BED_LEVELING_GRID_POINTS-1);
  3183. // solve the plane equation ax + by + d = z
  3184. // A is the matrix with rows [x y 1] for all the probed points
  3185. // B is the vector of the Z positions
  3186. // the normal vector to the plane is formed by the coefficients of the plane equation in the standard form, which is Vx*x+Vy*y+Vz*z+d = 0
  3187. // so Vx = -a Vy = -b Vz = 1 (we want the vector facing towards positive Z
  3188. // "A" matrix of the linear system of equations
  3189. double eqnAMatrix[AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS*3];
  3190. // "B" vector of Z points
  3191. double eqnBVector[AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS];
  3192. int probePointCounter = 0;
  3193. bool zig = true;
  3194. for (int yProbe=FRONT_PROBE_BED_POSITION; yProbe <= BACK_PROBE_BED_POSITION; yProbe += yGridSpacing)
  3195. {
  3196. int xProbe, xInc;
  3197. if (zig)
  3198. {
  3199. xProbe = LEFT_PROBE_BED_POSITION;
  3200. //xEnd = RIGHT_PROBE_BED_POSITION;
  3201. xInc = xGridSpacing;
  3202. zig = false;
  3203. } else // zag
  3204. {
  3205. xProbe = RIGHT_PROBE_BED_POSITION;
  3206. //xEnd = LEFT_PROBE_BED_POSITION;
  3207. xInc = -xGridSpacing;
  3208. zig = true;
  3209. }
  3210. for (int xCount=0; xCount < AUTO_BED_LEVELING_GRID_POINTS; xCount++)
  3211. {
  3212. float z_before;
  3213. if (probePointCounter == 0)
  3214. {
  3215. // raise before probing
  3216. z_before = Z_RAISE_BEFORE_PROBING;
  3217. } else
  3218. {
  3219. // raise extruder
  3220. z_before = current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS;
  3221. }
  3222. float measured_z = probe_pt(xProbe, yProbe, z_before);
  3223. eqnBVector[probePointCounter] = measured_z;
  3224. eqnAMatrix[probePointCounter + 0*AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS] = xProbe;
  3225. eqnAMatrix[probePointCounter + 1*AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS] = yProbe;
  3226. eqnAMatrix[probePointCounter + 2*AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS] = 1;
  3227. probePointCounter++;
  3228. xProbe += xInc;
  3229. }
  3230. }
  3231. clean_up_after_endstop_move();
  3232. // solve lsq problem
  3233. double *plane_equation_coefficients = qr_solve(AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS, 3, eqnAMatrix, eqnBVector);
  3234. SERIAL_PROTOCOLPGM("Eqn coefficients: a: ");
  3235. SERIAL_PROTOCOL(plane_equation_coefficients[0]);
  3236. SERIAL_PROTOCOLPGM(" b: ");
  3237. SERIAL_PROTOCOL(plane_equation_coefficients[1]);
  3238. SERIAL_PROTOCOLPGM(" d: ");
  3239. SERIAL_PROTOCOLLN(plane_equation_coefficients[2]);
  3240. set_bed_level_equation_lsq(plane_equation_coefficients);
  3241. free(plane_equation_coefficients);
  3242. #else // AUTO_BED_LEVELING_GRID not defined
  3243. // Probe at 3 arbitrary points
  3244. // probe 1
  3245. float z_at_pt_1 = probe_pt(ABL_PROBE_PT_1_X, ABL_PROBE_PT_1_Y, Z_RAISE_BEFORE_PROBING);
  3246. // probe 2
  3247. float z_at_pt_2 = probe_pt(ABL_PROBE_PT_2_X, ABL_PROBE_PT_2_Y, current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS);
  3248. // probe 3
  3249. float z_at_pt_3 = probe_pt(ABL_PROBE_PT_3_X, ABL_PROBE_PT_3_Y, current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS);
  3250. clean_up_after_endstop_move();
  3251. set_bed_level_equation_3pts(z_at_pt_1, z_at_pt_2, z_at_pt_3);
  3252. #endif // AUTO_BED_LEVELING_GRID
  3253. st_synchronize();
  3254. // The following code correct the Z height difference from z-probe position and hotend tip position.
  3255. // The Z height on homing is measured by Z-Probe, but the probe is quite far from the hotend.
  3256. // When the bed is uneven, this height must be corrected.
  3257. real_z = float(st_get_position(Z_AXIS))/axis_steps_per_unit[Z_AXIS]; //get the real Z (since the auto bed leveling is already correcting the plane)
  3258. x_tmp = current_position[X_AXIS] + X_PROBE_OFFSET_FROM_EXTRUDER;
  3259. y_tmp = current_position[Y_AXIS] + Y_PROBE_OFFSET_FROM_EXTRUDER;
  3260. z_tmp = current_position[Z_AXIS];
  3261. apply_rotation_xyz(plan_bed_level_matrix, x_tmp, y_tmp, z_tmp); //Apply the correction sending the probe offset
  3262. current_position[Z_AXIS] = z_tmp - real_z + current_position[Z_AXIS]; //The difference is added to current position and sent to planner.
  3263. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  3264. }
  3265. break;
  3266. #ifndef Z_PROBE_SLED
  3267. case 30: // G30 Single Z Probe
  3268. {
  3269. st_synchronize();
  3270. // TODO: make sure the bed_level_rotation_matrix is identity or the planner will get set incorectly
  3271. setup_for_endstop_move();
  3272. feedrate = homing_feedrate[Z_AXIS];
  3273. run_z_probe();
  3274. SERIAL_PROTOCOLPGM(_T(MSG_BED));
  3275. SERIAL_PROTOCOLPGM(" X: ");
  3276. SERIAL_PROTOCOL(current_position[X_AXIS]);
  3277. SERIAL_PROTOCOLPGM(" Y: ");
  3278. SERIAL_PROTOCOL(current_position[Y_AXIS]);
  3279. SERIAL_PROTOCOLPGM(" Z: ");
  3280. SERIAL_PROTOCOL(current_position[Z_AXIS]);
  3281. SERIAL_PROTOCOLPGM("\n");
  3282. clean_up_after_endstop_move();
  3283. }
  3284. break;
  3285. #else
  3286. case 31: // dock the sled
  3287. dock_sled(true);
  3288. break;
  3289. case 32: // undock the sled
  3290. dock_sled(false);
  3291. break;
  3292. #endif // Z_PROBE_SLED
  3293. #endif // ENABLE_AUTO_BED_LEVELING
  3294. #ifdef MESH_BED_LEVELING
  3295. case 30: // G30 Single Z Probe
  3296. {
  3297. st_synchronize();
  3298. // TODO: make sure the bed_level_rotation_matrix is identity or the planner will get set incorectly
  3299. setup_for_endstop_move();
  3300. feedrate = homing_feedrate[Z_AXIS];
  3301. find_bed_induction_sensor_point_z(-10.f, 3);
  3302. printf_P(_N("%S X: %.5f Y: %.5f Z: %.5f\n"), _T(MSG_BED), _x, _y, _z);
  3303. clean_up_after_endstop_move();
  3304. }
  3305. break;
  3306. case 75:
  3307. {
  3308. for (int i = 40; i <= 110; i++)
  3309. printf_P(_N("%d %.2f"), i, temp_comp_interpolation(i));
  3310. }
  3311. break;
  3312. case 76: //PINDA probe temperature calibration
  3313. {
  3314. #ifdef PINDA_THERMISTOR
  3315. if (true)
  3316. {
  3317. if (calibration_status() >= CALIBRATION_STATUS_XYZ_CALIBRATION) {
  3318. //we need to know accurate position of first calibration point
  3319. //if xyz calibration was not performed yet, interrupt temperature calibration and inform user that xyz cal. is needed
  3320. lcd_show_fullscreen_message_and_wait_P(_i("Please run XYZ calibration first."));
  3321. break;
  3322. }
  3323. if (!(axis_known_position[X_AXIS] && axis_known_position[Y_AXIS] && axis_known_position[Z_AXIS]))
  3324. {
  3325. // We don't know where we are! HOME!
  3326. // Push the commands to the front of the message queue in the reverse order!
  3327. // There shall be always enough space reserved for these commands.
  3328. repeatcommand_front(); // repeat G76 with all its parameters
  3329. enquecommand_front_P((PSTR("G28 W0")));
  3330. break;
  3331. }
  3332. lcd_show_fullscreen_message_and_wait_P(_i("Stable ambient temperature 21-26C is needed a rigid stand is required."));////MSG_TEMP_CAL_WARNING c=20 r=4
  3333. bool result = lcd_show_fullscreen_message_yes_no_and_wait_P(_T(MSG_STEEL_SHEET_CHECK), false, false);
  3334. if (result)
  3335. {
  3336. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3337. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3338. current_position[Z_AXIS] = 50;
  3339. current_position[Y_AXIS] = 180;
  3340. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3341. st_synchronize();
  3342. lcd_show_fullscreen_message_and_wait_P(_T(MSG_REMOVE_STEEL_SHEET));
  3343. current_position[Y_AXIS] = pgm_read_float(bed_ref_points_4 + 1);
  3344. current_position[X_AXIS] = pgm_read_float(bed_ref_points_4);
  3345. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3346. st_synchronize();
  3347. gcode_G28(false, false, true, false);
  3348. }
  3349. if ((current_temperature_pinda > 35) && (farm_mode == false)) {
  3350. //waiting for PIDNA probe to cool down in case that we are not in farm mode
  3351. current_position[Z_AXIS] = 100;
  3352. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3353. if (lcd_wait_for_pinda(35) == false) { //waiting for PINDA probe to cool, if this takes more then time expected, temp. cal. fails
  3354. lcd_temp_cal_show_result(false);
  3355. break;
  3356. }
  3357. }
  3358. lcd_update_enable(true);
  3359. KEEPALIVE_STATE(NOT_BUSY); //no need to print busy messages as we print current temperatures periodicaly
  3360. SERIAL_ECHOLNPGM("PINDA probe calibration start");
  3361. float zero_z;
  3362. int z_shift = 0; //unit: steps
  3363. float start_temp = 5 * (int)(current_temperature_pinda / 5);
  3364. if (start_temp < 35) start_temp = 35;
  3365. if (start_temp < current_temperature_pinda) start_temp += 5;
  3366. printf_P(_N("start temperature: %.1f\n"), start_temp);
  3367. // setTargetHotend(200, 0);
  3368. setTargetBed(70 + (start_temp - 30));
  3369. custom_message = true;
  3370. custom_message_type = 4;
  3371. custom_message_state = 1;
  3372. custom_message = _T(MSG_TEMP_CALIBRATION);
  3373. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3374. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3375. current_position[X_AXIS] = PINDA_PREHEAT_X;
  3376. current_position[Y_AXIS] = PINDA_PREHEAT_Y;
  3377. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3378. current_position[Z_AXIS] = PINDA_PREHEAT_Z;
  3379. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3380. st_synchronize();
  3381. while (current_temperature_pinda < start_temp)
  3382. {
  3383. delay_keep_alive(1000);
  3384. serialecho_temperatures();
  3385. }
  3386. eeprom_update_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 0); //invalidate temp. calibration in case that in will be aborted during the calibration process
  3387. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3388. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3389. current_position[X_AXIS] = pgm_read_float(bed_ref_points_4);
  3390. current_position[Y_AXIS] = pgm_read_float(bed_ref_points_4 + 1);
  3391. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3392. st_synchronize();
  3393. bool find_z_result = find_bed_induction_sensor_point_z(-1.f);
  3394. if (find_z_result == false) {
  3395. lcd_temp_cal_show_result(find_z_result);
  3396. break;
  3397. }
  3398. zero_z = current_position[Z_AXIS];
  3399. printf_P(_N("\nZERO: %.3f\n"), current_position[Z_AXIS]);
  3400. int i = -1; for (; i < 5; i++)
  3401. {
  3402. float temp = (40 + i * 5);
  3403. printf_P(_N("\nStep: %d/6 (skipped)\nPINDA temperature: %d Z shift (mm):0\n"), i + 2, (40 + i*5));
  3404. if (i >= 0) EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + i * 2, &z_shift);
  3405. if (start_temp <= temp) break;
  3406. }
  3407. for (i++; i < 5; i++)
  3408. {
  3409. float temp = (40 + i * 5);
  3410. printf_P(_N("\nStep: %d/6\n"), i + 2);
  3411. custom_message_state = i + 2;
  3412. setTargetBed(50 + 10 * (temp - 30) / 5);
  3413. // setTargetHotend(255, 0);
  3414. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3415. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3416. current_position[X_AXIS] = PINDA_PREHEAT_X;
  3417. current_position[Y_AXIS] = PINDA_PREHEAT_Y;
  3418. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3419. current_position[Z_AXIS] = PINDA_PREHEAT_Z;
  3420. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3421. st_synchronize();
  3422. while (current_temperature_pinda < temp)
  3423. {
  3424. delay_keep_alive(1000);
  3425. serialecho_temperatures();
  3426. }
  3427. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3428. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3429. current_position[X_AXIS] = pgm_read_float(bed_ref_points_4);
  3430. current_position[Y_AXIS] = pgm_read_float(bed_ref_points_4 + 1);
  3431. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3432. st_synchronize();
  3433. find_z_result = find_bed_induction_sensor_point_z(-1.f);
  3434. if (find_z_result == false) {
  3435. lcd_temp_cal_show_result(find_z_result);
  3436. break;
  3437. }
  3438. z_shift = (int)((current_position[Z_AXIS] - zero_z)*axis_steps_per_unit[Z_AXIS]);
  3439. printf_P(_N("\nPINDA temperature: %.1f Z shift (mm): %.3f"), current_temperature_pinda, current_position[Z_AXIS] - zero_z);
  3440. EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + i * 2, &z_shift);
  3441. }
  3442. lcd_temp_cal_show_result(true);
  3443. break;
  3444. }
  3445. #endif //PINDA_THERMISTOR
  3446. setTargetBed(PINDA_MIN_T);
  3447. float zero_z;
  3448. int z_shift = 0; //unit: steps
  3449. int t_c; // temperature
  3450. if (!(axis_known_position[X_AXIS] && axis_known_position[Y_AXIS] && axis_known_position[Z_AXIS])) {
  3451. // We don't know where we are! HOME!
  3452. // Push the commands to the front of the message queue in the reverse order!
  3453. // There shall be always enough space reserved for these commands.
  3454. repeatcommand_front(); // repeat G76 with all its parameters
  3455. enquecommand_front_P((PSTR("G28 W0")));
  3456. break;
  3457. }
  3458. puts_P(_N("PINDA probe calibration start"));
  3459. custom_message = true;
  3460. custom_message_type = 4;
  3461. custom_message_state = 1;
  3462. custom_message = _T(MSG_TEMP_CALIBRATION);
  3463. current_position[X_AXIS] = PINDA_PREHEAT_X;
  3464. current_position[Y_AXIS] = PINDA_PREHEAT_Y;
  3465. current_position[Z_AXIS] = PINDA_PREHEAT_Z;
  3466. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3467. st_synchronize();
  3468. while (abs(degBed() - PINDA_MIN_T) > 1) {
  3469. delay_keep_alive(1000);
  3470. serialecho_temperatures();
  3471. }
  3472. //enquecommand_P(PSTR("M190 S50"));
  3473. for (int i = 0; i < PINDA_HEAT_T; i++) {
  3474. delay_keep_alive(1000);
  3475. serialecho_temperatures();
  3476. }
  3477. eeprom_update_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 0); //invalidate temp. calibration in case that in will be aborted during the calibration process
  3478. current_position[Z_AXIS] = 5;
  3479. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3480. current_position[X_AXIS] = pgm_read_float(bed_ref_points);
  3481. current_position[Y_AXIS] = pgm_read_float(bed_ref_points + 1);
  3482. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3483. st_synchronize();
  3484. find_bed_induction_sensor_point_z(-1.f);
  3485. zero_z = current_position[Z_AXIS];
  3486. printf_P(_N("\nZERO: %.3f\n"), current_position[Z_AXIS]);
  3487. for (int i = 0; i<5; i++) {
  3488. printf_P(_N("\nStep: %d/6\n"), i + 2);
  3489. custom_message_state = i + 2;
  3490. t_c = 60 + i * 10;
  3491. setTargetBed(t_c);
  3492. current_position[X_AXIS] = PINDA_PREHEAT_X;
  3493. current_position[Y_AXIS] = PINDA_PREHEAT_Y;
  3494. current_position[Z_AXIS] = PINDA_PREHEAT_Z;
  3495. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3496. st_synchronize();
  3497. while (degBed() < t_c) {
  3498. delay_keep_alive(1000);
  3499. serialecho_temperatures();
  3500. }
  3501. for (int i = 0; i < PINDA_HEAT_T; i++) {
  3502. delay_keep_alive(1000);
  3503. serialecho_temperatures();
  3504. }
  3505. current_position[Z_AXIS] = 5;
  3506. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3507. current_position[X_AXIS] = pgm_read_float(bed_ref_points);
  3508. current_position[Y_AXIS] = pgm_read_float(bed_ref_points + 1);
  3509. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3510. st_synchronize();
  3511. find_bed_induction_sensor_point_z(-1.f);
  3512. z_shift = (int)((current_position[Z_AXIS] - zero_z)*axis_steps_per_unit[Z_AXIS]);
  3513. printf_P(_N("\nTemperature: %d Z shift (mm): %.3f\n"), t_c, current_position[Z_AXIS] - zero_z);
  3514. EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + i*2, &z_shift);
  3515. }
  3516. custom_message_type = 0;
  3517. custom_message = false;
  3518. eeprom_update_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 1);
  3519. puts_P(_N("Temperature calibration done."));
  3520. disable_x();
  3521. disable_y();
  3522. disable_z();
  3523. disable_e0();
  3524. disable_e1();
  3525. disable_e2();
  3526. setTargetBed(0); //set bed target temperature back to 0
  3527. lcd_show_fullscreen_message_and_wait_P(_T(MSG_TEMP_CALIBRATION_DONE));
  3528. temp_cal_active = true;
  3529. eeprom_update_byte((unsigned char *)EEPROM_TEMP_CAL_ACTIVE, 1);
  3530. lcd_update_enable(true);
  3531. lcd_update(2);
  3532. }
  3533. break;
  3534. #ifdef DIS
  3535. case 77:
  3536. {
  3537. //G77 X200 Y150 XP100 YP15 XO10 Y015
  3538. //for 9 point mesh bed leveling G77 X203 Y196 XP3 YP3 XO0 YO0
  3539. //G77 X232 Y218 XP116 YP109 XO-11 YO0
  3540. float dimension_x = 40;
  3541. float dimension_y = 40;
  3542. int points_x = 40;
  3543. int points_y = 40;
  3544. float offset_x = 74;
  3545. float offset_y = 33;
  3546. if (code_seen('X')) dimension_x = code_value();
  3547. if (code_seen('Y')) dimension_y = code_value();
  3548. if (code_seen('XP')) points_x = code_value();
  3549. if (code_seen('YP')) points_y = code_value();
  3550. if (code_seen('XO')) offset_x = code_value();
  3551. if (code_seen('YO')) offset_y = code_value();
  3552. bed_analysis(dimension_x,dimension_y,points_x,points_y,offset_x,offset_y);
  3553. } break;
  3554. #endif
  3555. case 79: {
  3556. for (int i = 255; i > 0; i = i - 5) {
  3557. fanSpeed = i;
  3558. //delay_keep_alive(2000);
  3559. for (int j = 0; j < 100; j++) {
  3560. delay_keep_alive(100);
  3561. }
  3562. fan_speed[1];
  3563. printf_P(_N("%d: %d\n"), i, fan_speed[1]);
  3564. }
  3565. }break;
  3566. /**
  3567. * G80: Mesh-based Z probe, probes a grid and produces a
  3568. * mesh to compensate for variable bed height
  3569. *
  3570. * The S0 report the points as below
  3571. *
  3572. * +----> X-axis
  3573. * |
  3574. * |
  3575. * v Y-axis
  3576. *
  3577. */
  3578. case 80:
  3579. #ifdef MK1BP
  3580. break;
  3581. #endif //MK1BP
  3582. case_G80:
  3583. {
  3584. mesh_bed_leveling_flag = true;
  3585. int8_t verbosity_level = 0;
  3586. static bool run = false;
  3587. if (code_seen('V')) {
  3588. // Just 'V' without a number counts as V1.
  3589. char c = strchr_pointer[1];
  3590. verbosity_level = (c == ' ' || c == '\t' || c == 0) ? 1 : code_value_short();
  3591. }
  3592. // Firstly check if we know where we are
  3593. if (!(axis_known_position[X_AXIS] && axis_known_position[Y_AXIS] && axis_known_position[Z_AXIS])) {
  3594. // We don't know where we are! HOME!
  3595. // Push the commands to the front of the message queue in the reverse order!
  3596. // There shall be always enough space reserved for these commands.
  3597. if (lcd_commands_type != LCD_COMMAND_STOP_PRINT) {
  3598. repeatcommand_front(); // repeat G80 with all its parameters
  3599. enquecommand_front_P((PSTR("G28 W0")));
  3600. }
  3601. else {
  3602. mesh_bed_leveling_flag = false;
  3603. }
  3604. break;
  3605. }
  3606. bool temp_comp_start = true;
  3607. #ifdef PINDA_THERMISTOR
  3608. temp_comp_start = false;
  3609. #endif //PINDA_THERMISTOR
  3610. if (temp_comp_start)
  3611. if (run == false && temp_cal_active == true && calibration_status_pinda() == true && target_temperature_bed >= 50) {
  3612. if (lcd_commands_type != LCD_COMMAND_STOP_PRINT) {
  3613. temp_compensation_start();
  3614. run = true;
  3615. repeatcommand_front(); // repeat G80 with all its parameters
  3616. enquecommand_front_P((PSTR("G28 W0")));
  3617. }
  3618. else {
  3619. mesh_bed_leveling_flag = false;
  3620. }
  3621. break;
  3622. }
  3623. run = false;
  3624. if (lcd_commands_type == LCD_COMMAND_STOP_PRINT) {
  3625. mesh_bed_leveling_flag = false;
  3626. break;
  3627. }
  3628. // Save custom message state, set a new custom message state to display: Calibrating point 9.
  3629. bool custom_message_old = custom_message;
  3630. unsigned int custom_message_type_old = custom_message_type;
  3631. unsigned int custom_message_state_old = custom_message_state;
  3632. custom_message = true;
  3633. custom_message_type = 1;
  3634. custom_message_state = (MESH_MEAS_NUM_X_POINTS * MESH_MEAS_NUM_Y_POINTS) + 10;
  3635. lcd_update(1);
  3636. mbl.reset(); //reset mesh bed leveling
  3637. // Reset baby stepping to zero, if the babystepping has already been loaded before. The babystepsTodo value will be
  3638. // consumed during the first movements following this statement.
  3639. babystep_undo();
  3640. // Cycle through all points and probe them
  3641. // First move up. During this first movement, the babystepping will be reverted.
  3642. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3643. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[Z_AXIS] / 60, active_extruder);
  3644. // The move to the first calibration point.
  3645. current_position[X_AXIS] = pgm_read_float(bed_ref_points);
  3646. current_position[Y_AXIS] = pgm_read_float(bed_ref_points + 1);
  3647. bool clamped = world2machine_clamp(current_position[X_AXIS], current_position[Y_AXIS]);
  3648. #ifdef SUPPORT_VERBOSITY
  3649. if (verbosity_level >= 1) {
  3650. clamped ? SERIAL_PROTOCOLPGM("First calibration point clamped.\n") : SERIAL_PROTOCOLPGM("No clamping for first calibration point.\n");
  3651. }
  3652. #endif //SUPPORT_VERBOSITY
  3653. // mbl.get_meas_xy(0, 0, current_position[X_AXIS], current_position[Y_AXIS], false);
  3654. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[X_AXIS] / 30, active_extruder);
  3655. // Wait until the move is finished.
  3656. st_synchronize();
  3657. int mesh_point = 0; //index number of calibration point
  3658. int ix = 0;
  3659. int iy = 0;
  3660. int XY_AXIS_FEEDRATE = homing_feedrate[X_AXIS] / 20;
  3661. int Z_PROBE_FEEDRATE = homing_feedrate[Z_AXIS] / 60;
  3662. int Z_LIFT_FEEDRATE = homing_feedrate[Z_AXIS] / 40;
  3663. bool has_z = is_bed_z_jitter_data_valid(); //checks if we have data from Z calibration (offsets of the Z heiths of the 8 calibration points from the first point)
  3664. #ifdef SUPPORT_VERBOSITY
  3665. if (verbosity_level >= 1) {
  3666. has_z ? SERIAL_PROTOCOLPGM("Z jitter data from Z cal. valid.\n") : SERIAL_PROTOCOLPGM("Z jitter data from Z cal. not valid.\n");
  3667. }
  3668. #endif // SUPPORT_VERBOSITY
  3669. setup_for_endstop_move(false); //save feedrate and feedmultiply, sets feedmultiply to 100
  3670. const char *kill_message = NULL;
  3671. while (mesh_point != MESH_MEAS_NUM_X_POINTS * MESH_MEAS_NUM_Y_POINTS) {
  3672. // Get coords of a measuring point.
  3673. ix = mesh_point % MESH_MEAS_NUM_X_POINTS; // from 0 to MESH_NUM_X_POINTS - 1
  3674. iy = mesh_point / MESH_MEAS_NUM_X_POINTS;
  3675. if (iy & 1) ix = (MESH_MEAS_NUM_X_POINTS - 1) - ix; // Zig zag
  3676. float z0 = 0.f;
  3677. if (has_z && mesh_point > 0) {
  3678. uint16_t z_offset_u = eeprom_read_word((uint16_t*)(EEPROM_BED_CALIBRATION_Z_JITTER + 2 * (ix + iy * 3 - 1)));
  3679. z0 = mbl.z_values[0][0] + *reinterpret_cast<int16_t*>(&z_offset_u) * 0.01;
  3680. //#if 0
  3681. #ifdef SUPPORT_VERBOSITY
  3682. if (verbosity_level >= 1) {
  3683. SERIAL_ECHOLNPGM("");
  3684. SERIAL_ECHOPGM("Bed leveling, point: ");
  3685. MYSERIAL.print(mesh_point);
  3686. SERIAL_ECHOPGM(", calibration z: ");
  3687. MYSERIAL.print(z0, 5);
  3688. SERIAL_ECHOLNPGM("");
  3689. }
  3690. #endif // SUPPORT_VERBOSITY
  3691. //#endif
  3692. }
  3693. // Move Z up to MESH_HOME_Z_SEARCH.
  3694. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3695. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], Z_LIFT_FEEDRATE, active_extruder);
  3696. st_synchronize();
  3697. // Move to XY position of the sensor point.
  3698. current_position[X_AXIS] = pgm_read_float(bed_ref_points + 2 * mesh_point);
  3699. current_position[Y_AXIS] = pgm_read_float(bed_ref_points + 2 * mesh_point + 1);
  3700. world2machine_clamp(current_position[X_AXIS], current_position[Y_AXIS]);
  3701. #ifdef SUPPORT_VERBOSITY
  3702. if (verbosity_level >= 1) {
  3703. SERIAL_PROTOCOL(mesh_point);
  3704. clamped ? SERIAL_PROTOCOLPGM(": xy clamped.\n") : SERIAL_PROTOCOLPGM(": no xy clamping\n");
  3705. }
  3706. #endif // SUPPORT_VERBOSITY
  3707. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], XY_AXIS_FEEDRATE, active_extruder);
  3708. st_synchronize();
  3709. // Go down until endstop is hit
  3710. const float Z_CALIBRATION_THRESHOLD = 1.f;
  3711. if (!find_bed_induction_sensor_point_z((has_z && mesh_point > 0) ? z0 - Z_CALIBRATION_THRESHOLD : -10.f)) { //if we have data from z calibration max allowed difference is 1mm for each point, if we dont have data max difference is 10mm from initial point
  3712. kill_message = _T(MSG_BED_LEVELING_FAILED_POINT_LOW);
  3713. break;
  3714. }
  3715. if (MESH_HOME_Z_SEARCH - current_position[Z_AXIS] < 0.1f) {
  3716. kill_message = _i("Bed leveling failed. Sensor disconnected or cable broken. Waiting for reset.");////MSG_BED_LEVELING_FAILED_PROBE_DISCONNECTED c=20 r=4
  3717. break;
  3718. }
  3719. if (has_z && fabs(z0 - current_position[Z_AXIS]) > Z_CALIBRATION_THRESHOLD) { //if we have data from z calibration, max. allowed difference is 1mm for each point
  3720. kill_message = _i("Bed leveling failed. Sensor triggered too high. Waiting for reset.");////MSG_BED_LEVELING_FAILED_POINT_HIGH c=20 r=4
  3721. break;
  3722. }
  3723. #ifdef SUPPORT_VERBOSITY
  3724. if (verbosity_level >= 10) {
  3725. SERIAL_ECHOPGM("X: ");
  3726. MYSERIAL.print(current_position[X_AXIS], 5);
  3727. SERIAL_ECHOLNPGM("");
  3728. SERIAL_ECHOPGM("Y: ");
  3729. MYSERIAL.print(current_position[Y_AXIS], 5);
  3730. SERIAL_PROTOCOLPGM("\n");
  3731. }
  3732. #endif // SUPPORT_VERBOSITY
  3733. float offset_z = 0;
  3734. #ifdef PINDA_THERMISTOR
  3735. offset_z = temp_compensation_pinda_thermistor_offset(current_temperature_pinda);
  3736. #endif //PINDA_THERMISTOR
  3737. // #ifdef SUPPORT_VERBOSITY
  3738. /* if (verbosity_level >= 1)
  3739. {
  3740. SERIAL_ECHOPGM("mesh bed leveling: ");
  3741. MYSERIAL.print(current_position[Z_AXIS], 5);
  3742. SERIAL_ECHOPGM(" offset: ");
  3743. MYSERIAL.print(offset_z, 5);
  3744. SERIAL_ECHOLNPGM("");
  3745. }*/
  3746. // #endif // SUPPORT_VERBOSITY
  3747. mbl.set_z(ix, iy, current_position[Z_AXIS] - offset_z); //store measured z values z_values[iy][ix] = z - offset_z;
  3748. custom_message_state--;
  3749. mesh_point++;
  3750. lcd_update(1);
  3751. }
  3752. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3753. #ifdef SUPPORT_VERBOSITY
  3754. if (verbosity_level >= 20) {
  3755. SERIAL_ECHOLNPGM("Mesh bed leveling while loop finished.");
  3756. SERIAL_ECHOLNPGM("MESH_HOME_Z_SEARCH: ");
  3757. MYSERIAL.print(current_position[Z_AXIS], 5);
  3758. }
  3759. #endif // SUPPORT_VERBOSITY
  3760. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], Z_LIFT_FEEDRATE, active_extruder);
  3761. st_synchronize();
  3762. if (mesh_point != MESH_MEAS_NUM_X_POINTS * MESH_MEAS_NUM_Y_POINTS) {
  3763. kill(kill_message);
  3764. SERIAL_ECHOLNPGM("killed");
  3765. }
  3766. clean_up_after_endstop_move();
  3767. // SERIAL_ECHOLNPGM("clean up finished ");
  3768. bool apply_temp_comp = true;
  3769. #ifdef PINDA_THERMISTOR
  3770. apply_temp_comp = false;
  3771. #endif
  3772. if (apply_temp_comp)
  3773. if(temp_cal_active == true && calibration_status_pinda() == true) temp_compensation_apply(); //apply PINDA temperature compensation
  3774. babystep_apply(); // Apply Z height correction aka baby stepping before mesh bed leveing gets activated.
  3775. // SERIAL_ECHOLNPGM("babystep applied");
  3776. bool eeprom_bed_correction_valid = eeprom_read_byte((unsigned char*)EEPROM_BED_CORRECTION_VALID) == 1;
  3777. #ifdef SUPPORT_VERBOSITY
  3778. if (verbosity_level >= 1) {
  3779. eeprom_bed_correction_valid ? SERIAL_PROTOCOLPGM("Bed correction data valid\n") : SERIAL_PROTOCOLPGM("Bed correction data not valid\n");
  3780. }
  3781. #endif // SUPPORT_VERBOSITY
  3782. for (uint8_t i = 0; i < 4; ++i) {
  3783. unsigned char codes[4] = { 'L', 'R', 'F', 'B' };
  3784. long correction = 0;
  3785. if (code_seen(codes[i]))
  3786. correction = code_value_long();
  3787. else if (eeprom_bed_correction_valid) {
  3788. unsigned char *addr = (i < 2) ?
  3789. ((i == 0) ? (unsigned char*)EEPROM_BED_CORRECTION_LEFT : (unsigned char*)EEPROM_BED_CORRECTION_RIGHT) :
  3790. ((i == 2) ? (unsigned char*)EEPROM_BED_CORRECTION_FRONT : (unsigned char*)EEPROM_BED_CORRECTION_REAR);
  3791. correction = eeprom_read_int8(addr);
  3792. }
  3793. if (correction == 0)
  3794. continue;
  3795. float offset = float(correction) * 0.001f;
  3796. if (fabs(offset) > 0.101f) {
  3797. SERIAL_ERROR_START;
  3798. SERIAL_ECHOPGM("Excessive bed leveling correction: ");
  3799. SERIAL_ECHO(offset);
  3800. SERIAL_ECHOLNPGM(" microns");
  3801. }
  3802. else {
  3803. switch (i) {
  3804. case 0:
  3805. for (uint8_t row = 0; row < 3; ++row) {
  3806. mbl.z_values[row][1] += 0.5f * offset;
  3807. mbl.z_values[row][0] += offset;
  3808. }
  3809. break;
  3810. case 1:
  3811. for (uint8_t row = 0; row < 3; ++row) {
  3812. mbl.z_values[row][1] += 0.5f * offset;
  3813. mbl.z_values[row][2] += offset;
  3814. }
  3815. break;
  3816. case 2:
  3817. for (uint8_t col = 0; col < 3; ++col) {
  3818. mbl.z_values[1][col] += 0.5f * offset;
  3819. mbl.z_values[0][col] += offset;
  3820. }
  3821. break;
  3822. case 3:
  3823. for (uint8_t col = 0; col < 3; ++col) {
  3824. mbl.z_values[1][col] += 0.5f * offset;
  3825. mbl.z_values[2][col] += offset;
  3826. }
  3827. break;
  3828. }
  3829. }
  3830. }
  3831. // SERIAL_ECHOLNPGM("Bed leveling correction finished");
  3832. mbl.upsample_3x3(); //bilinear interpolation from 3x3 to 7x7 points while using the same array z_values[iy][ix] for storing (just coppying measured data to new destination and interpolating between them)
  3833. // SERIAL_ECHOLNPGM("Upsample finished");
  3834. mbl.active = 1; //activate mesh bed leveling
  3835. // SERIAL_ECHOLNPGM("Mesh bed leveling activated");
  3836. go_home_with_z_lift();
  3837. // SERIAL_ECHOLNPGM("Go home finished");
  3838. //unretract (after PINDA preheat retraction)
  3839. if (degHotend(active_extruder) > EXTRUDE_MINTEMP && temp_cal_active == true && calibration_status_pinda() == true && target_temperature_bed >= 50) {
  3840. current_position[E_AXIS] += DEFAULT_RETRACTION;
  3841. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400, active_extruder);
  3842. }
  3843. KEEPALIVE_STATE(NOT_BUSY);
  3844. // Restore custom message state
  3845. lcd_setstatuspgm(_T(WELCOME_MSG));
  3846. custom_message = custom_message_old;
  3847. custom_message_type = custom_message_type_old;
  3848. custom_message_state = custom_message_state_old;
  3849. mesh_bed_leveling_flag = false;
  3850. mesh_bed_run_from_menu = false;
  3851. lcd_update(2);
  3852. }
  3853. break;
  3854. /**
  3855. * G81: Print mesh bed leveling status and bed profile if activated
  3856. */
  3857. case 81:
  3858. if (mbl.active) {
  3859. SERIAL_PROTOCOLPGM("Num X,Y: ");
  3860. SERIAL_PROTOCOL(MESH_NUM_X_POINTS);
  3861. SERIAL_PROTOCOLPGM(",");
  3862. SERIAL_PROTOCOL(MESH_NUM_Y_POINTS);
  3863. SERIAL_PROTOCOLPGM("\nZ search height: ");
  3864. SERIAL_PROTOCOL(MESH_HOME_Z_SEARCH);
  3865. SERIAL_PROTOCOLLNPGM("\nMeasured points:");
  3866. for (int y = MESH_NUM_Y_POINTS-1; y >= 0; y--) {
  3867. for (int x = 0; x < MESH_NUM_X_POINTS; x++) {
  3868. SERIAL_PROTOCOLPGM(" ");
  3869. SERIAL_PROTOCOL_F(mbl.z_values[y][x], 5);
  3870. }
  3871. SERIAL_PROTOCOLPGM("\n");
  3872. }
  3873. }
  3874. else
  3875. SERIAL_PROTOCOLLNPGM("Mesh bed leveling not active.");
  3876. break;
  3877. #if 0
  3878. /**
  3879. * G82: Single Z probe at current location
  3880. *
  3881. * WARNING! USE WITH CAUTION! If you'll try to probe where is no leveling pad, nasty things can happen!
  3882. *
  3883. */
  3884. case 82:
  3885. SERIAL_PROTOCOLLNPGM("Finding bed ");
  3886. setup_for_endstop_move();
  3887. find_bed_induction_sensor_point_z();
  3888. clean_up_after_endstop_move();
  3889. SERIAL_PROTOCOLPGM("Bed found at: ");
  3890. SERIAL_PROTOCOL_F(current_position[Z_AXIS], 5);
  3891. SERIAL_PROTOCOLPGM("\n");
  3892. break;
  3893. /**
  3894. * G83: Prusa3D specific: Babystep in Z and store to EEPROM
  3895. */
  3896. case 83:
  3897. {
  3898. int babystepz = code_seen('S') ? code_value() : 0;
  3899. int BabyPosition = code_seen('P') ? code_value() : 0;
  3900. if (babystepz != 0) {
  3901. //FIXME Vojtech: What shall be the index of the axis Z: 3 or 4?
  3902. // Is the axis indexed starting with zero or one?
  3903. if (BabyPosition > 4) {
  3904. SERIAL_PROTOCOLLNPGM("Index out of bounds");
  3905. }else{
  3906. // Save it to the eeprom
  3907. babystepLoadZ = babystepz;
  3908. EEPROM_save_B(EEPROM_BABYSTEP_Z0+(BabyPosition*2),&babystepLoadZ);
  3909. // adjust the Z
  3910. babystepsTodoZadd(babystepLoadZ);
  3911. }
  3912. }
  3913. }
  3914. break;
  3915. /**
  3916. * G84: Prusa3D specific: UNDO Babystep Z (move Z axis back)
  3917. */
  3918. case 84:
  3919. babystepsTodoZsubtract(babystepLoadZ);
  3920. // babystepLoadZ = 0;
  3921. break;
  3922. /**
  3923. * G85: Prusa3D specific: Pick best babystep
  3924. */
  3925. case 85:
  3926. lcd_pick_babystep();
  3927. break;
  3928. #endif
  3929. /**
  3930. * G86: Prusa3D specific: Disable babystep correction after home.
  3931. * This G-code will be performed at the start of a calibration script.
  3932. */
  3933. case 86:
  3934. calibration_status_store(CALIBRATION_STATUS_LIVE_ADJUST);
  3935. break;
  3936. /**
  3937. * G87: Prusa3D specific: Enable babystep correction after home
  3938. * This G-code will be performed at the end of a calibration script.
  3939. */
  3940. case 87:
  3941. calibration_status_store(CALIBRATION_STATUS_CALIBRATED);
  3942. break;
  3943. /**
  3944. * G88: Prusa3D specific: Don't know what it is for, it is in V2Calibration.gcode
  3945. */
  3946. case 88:
  3947. break;
  3948. #endif // ENABLE_MESH_BED_LEVELING
  3949. case 90: // G90
  3950. relative_mode = false;
  3951. break;
  3952. case 91: // G91
  3953. relative_mode = true;
  3954. break;
  3955. case 92: // G92
  3956. if(!code_seen(axis_codes[E_AXIS]))
  3957. st_synchronize();
  3958. for(int8_t i=0; i < NUM_AXIS; i++) {
  3959. if(code_seen(axis_codes[i])) {
  3960. if(i == E_AXIS) {
  3961. current_position[i] = code_value();
  3962. plan_set_e_position(current_position[E_AXIS]);
  3963. }
  3964. else {
  3965. current_position[i] = code_value()+add_homing[i];
  3966. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  3967. }
  3968. }
  3969. }
  3970. break;
  3971. case 98: // G98 (activate farm mode)
  3972. farm_mode = 1;
  3973. PingTime = millis();
  3974. eeprom_update_byte((unsigned char *)EEPROM_FARM_MODE, farm_mode);
  3975. SilentModeMenu = SILENT_MODE_OFF;
  3976. eeprom_update_byte((unsigned char *)EEPROM_SILENT, SilentModeMenu);
  3977. break;
  3978. case 99: // G99 (deactivate farm mode)
  3979. farm_mode = 0;
  3980. lcd_printer_connected();
  3981. eeprom_update_byte((unsigned char *)EEPROM_FARM_MODE, farm_mode);
  3982. lcd_update(2);
  3983. break;
  3984. default:
  3985. printf_P(PSTR("Unknown G code: %s \n"), cmdbuffer + bufindr + CMDHDRSIZE);
  3986. }
  3987. } // end if(code_seen('G'))
  3988. else if(code_seen('M'))
  3989. {
  3990. int index;
  3991. for (index = 1; *(strchr_pointer + index) == ' ' || *(strchr_pointer + index) == '\t'; index++);
  3992. /*for (++strchr_pointer; *strchr_pointer == ' ' || *strchr_pointer == '\t'; ++strchr_pointer);*/
  3993. if (*(strchr_pointer+index) < '0' || *(strchr_pointer+index) > '9') {
  3994. printf_P(PSTR("Invalid M code: %s \n"), cmdbuffer + bufindr + CMDHDRSIZE);
  3995. } else
  3996. switch((int)code_value())
  3997. {
  3998. case 0: // M0 - Unconditional stop - Wait for user button press on LCD
  3999. case 1: // M1 - Conditional stop - Wait for user button press on LCD
  4000. {
  4001. char *src = strchr_pointer + 2;
  4002. codenum = 0;
  4003. bool hasP = false, hasS = false;
  4004. if (code_seen('P')) {
  4005. codenum = code_value(); // milliseconds to wait
  4006. hasP = codenum > 0;
  4007. }
  4008. if (code_seen('S')) {
  4009. codenum = code_value() * 1000; // seconds to wait
  4010. hasS = codenum > 0;
  4011. }
  4012. starpos = strchr(src, '*');
  4013. if (starpos != NULL) *(starpos) = '\0';
  4014. while (*src == ' ') ++src;
  4015. if (!hasP && !hasS && *src != '\0') {
  4016. lcd_setstatus(src);
  4017. } else {
  4018. LCD_MESSAGERPGM(_i("Wait for user..."));////MSG_USERWAIT c=0 r=0
  4019. }
  4020. lcd_ignore_click(); //call lcd_ignore_click aslo for else ???
  4021. st_synchronize();
  4022. previous_millis_cmd = millis();
  4023. if (codenum > 0){
  4024. codenum += millis(); // keep track of when we started waiting
  4025. KEEPALIVE_STATE(PAUSED_FOR_USER);
  4026. while(millis() < codenum && !lcd_clicked()){
  4027. manage_heater();
  4028. manage_inactivity(true);
  4029. lcd_update(0);
  4030. }
  4031. KEEPALIVE_STATE(IN_HANDLER);
  4032. lcd_ignore_click(false);
  4033. }else{
  4034. KEEPALIVE_STATE(PAUSED_FOR_USER);
  4035. while(!lcd_clicked()){
  4036. manage_heater();
  4037. manage_inactivity(true);
  4038. lcd_update(0);
  4039. }
  4040. KEEPALIVE_STATE(IN_HANDLER);
  4041. }
  4042. if (IS_SD_PRINTING)
  4043. LCD_MESSAGERPGM(_T(MSG_RESUMING_PRINT));
  4044. else
  4045. LCD_MESSAGERPGM(_T(WELCOME_MSG));
  4046. }
  4047. break;
  4048. case 17:
  4049. LCD_MESSAGERPGM(_i("No move."));////MSG_NO_MOVE c=0 r=0
  4050. enable_x();
  4051. enable_y();
  4052. enable_z();
  4053. enable_e0();
  4054. enable_e1();
  4055. enable_e2();
  4056. break;
  4057. #ifdef SDSUPPORT
  4058. case 20: // M20 - list SD card
  4059. SERIAL_PROTOCOLLNRPGM(_N("Begin file list"));////MSG_BEGIN_FILE_LIST c=0 r=0
  4060. card.ls();
  4061. SERIAL_PROTOCOLLNRPGM(_N("End file list"));////MSG_END_FILE_LIST c=0 r=0
  4062. break;
  4063. case 21: // M21 - init SD card
  4064. card.initsd();
  4065. break;
  4066. case 22: //M22 - release SD card
  4067. card.release();
  4068. break;
  4069. case 23: //M23 - Select file
  4070. starpos = (strchr(strchr_pointer + 4,'*'));
  4071. if(starpos!=NULL)
  4072. *(starpos)='\0';
  4073. card.openFile(strchr_pointer + 4,true);
  4074. break;
  4075. case 24: //M24 - Start SD print
  4076. if (!card.paused)
  4077. failstats_reset_print();
  4078. card.startFileprint();
  4079. starttime=millis();
  4080. break;
  4081. case 25: //M25 - Pause SD print
  4082. card.pauseSDPrint();
  4083. break;
  4084. case 26: //M26 - Set SD index
  4085. if(card.cardOK && code_seen('S')) {
  4086. card.setIndex(code_value_long());
  4087. }
  4088. break;
  4089. case 27: //M27 - Get SD status
  4090. card.getStatus();
  4091. break;
  4092. case 28: //M28 - Start SD write
  4093. starpos = (strchr(strchr_pointer + 4,'*'));
  4094. if(starpos != NULL){
  4095. char* npos = strchr(CMDBUFFER_CURRENT_STRING, 'N');
  4096. strchr_pointer = strchr(npos,' ') + 1;
  4097. *(starpos) = '\0';
  4098. }
  4099. card.openFile(strchr_pointer+4,false);
  4100. break;
  4101. case 29: //M29 - Stop SD write
  4102. //processed in write to file routine above
  4103. //card,saving = false;
  4104. break;
  4105. case 30: //M30 <filename> Delete File
  4106. if (card.cardOK){
  4107. card.closefile();
  4108. starpos = (strchr(strchr_pointer + 4,'*'));
  4109. if(starpos != NULL){
  4110. char* npos = strchr(CMDBUFFER_CURRENT_STRING, 'N');
  4111. strchr_pointer = strchr(npos,' ') + 1;
  4112. *(starpos) = '\0';
  4113. }
  4114. card.removeFile(strchr_pointer + 4);
  4115. }
  4116. break;
  4117. case 32: //M32 - Select file and start SD print
  4118. {
  4119. if(card.sdprinting) {
  4120. st_synchronize();
  4121. }
  4122. starpos = (strchr(strchr_pointer + 4,'*'));
  4123. char* namestartpos = (strchr(strchr_pointer + 4,'!')); //find ! to indicate filename string start.
  4124. if(namestartpos==NULL)
  4125. {
  4126. namestartpos=strchr_pointer + 4; //default name position, 4 letters after the M
  4127. }
  4128. else
  4129. namestartpos++; //to skip the '!'
  4130. if(starpos!=NULL)
  4131. *(starpos)='\0';
  4132. bool call_procedure=(code_seen('P'));
  4133. if(strchr_pointer>namestartpos)
  4134. call_procedure=false; //false alert, 'P' found within filename
  4135. if( card.cardOK )
  4136. {
  4137. card.openFile(namestartpos,true,!call_procedure);
  4138. if(code_seen('S'))
  4139. if(strchr_pointer<namestartpos) //only if "S" is occuring _before_ the filename
  4140. card.setIndex(code_value_long());
  4141. card.startFileprint();
  4142. if(!call_procedure)
  4143. starttime=millis(); //procedure calls count as normal print time.
  4144. }
  4145. } break;
  4146. case 928: //M928 - Start SD write
  4147. starpos = (strchr(strchr_pointer + 5,'*'));
  4148. if(starpos != NULL){
  4149. char* npos = strchr(CMDBUFFER_CURRENT_STRING, 'N');
  4150. strchr_pointer = strchr(npos,' ') + 1;
  4151. *(starpos) = '\0';
  4152. }
  4153. card.openLogFile(strchr_pointer+5);
  4154. break;
  4155. #endif //SDSUPPORT
  4156. case 31: //M31 take time since the start of the SD print or an M109 command
  4157. {
  4158. stoptime=millis();
  4159. char time[30];
  4160. unsigned long t=(stoptime-starttime)/1000;
  4161. int sec,min;
  4162. min=t/60;
  4163. sec=t%60;
  4164. sprintf_P(time, PSTR("%i min, %i sec"), min, sec);
  4165. SERIAL_ECHO_START;
  4166. SERIAL_ECHOLN(time);
  4167. lcd_setstatus(time);
  4168. autotempShutdown();
  4169. }
  4170. break;
  4171. #ifndef _DISABLE_M42_M226
  4172. case 42: //M42 -Change pin status via gcode
  4173. if (code_seen('S'))
  4174. {
  4175. int pin_status = code_value();
  4176. int pin_number = LED_PIN;
  4177. if (code_seen('P') && pin_status >= 0 && pin_status <= 255)
  4178. pin_number = code_value();
  4179. for(int8_t i = 0; i < (int8_t)(sizeof(sensitive_pins)/sizeof(int)); i++)
  4180. {
  4181. if (sensitive_pins[i] == pin_number)
  4182. {
  4183. pin_number = -1;
  4184. break;
  4185. }
  4186. }
  4187. #if defined(FAN_PIN) && FAN_PIN > -1
  4188. if (pin_number == FAN_PIN)
  4189. fanSpeed = pin_status;
  4190. #endif
  4191. if (pin_number > -1)
  4192. {
  4193. pinMode(pin_number, OUTPUT);
  4194. digitalWrite(pin_number, pin_status);
  4195. analogWrite(pin_number, pin_status);
  4196. }
  4197. }
  4198. break;
  4199. #endif //_DISABLE_M42_M226
  4200. case 44: // M44: Prusa3D: Reset the bed skew and offset calibration.
  4201. // Reset the baby step value and the baby step applied flag.
  4202. calibration_status_store(CALIBRATION_STATUS_ASSEMBLED);
  4203. eeprom_update_word((uint16_t*)EEPROM_BABYSTEP_Z, 0);
  4204. // Reset the skew and offset in both RAM and EEPROM.
  4205. reset_bed_offset_and_skew();
  4206. // Reset world2machine_rotation_and_skew and world2machine_shift, therefore
  4207. // the planner will not perform any adjustments in the XY plane.
  4208. // Wait for the motors to stop and update the current position with the absolute values.
  4209. world2machine_revert_to_uncorrected();
  4210. break;
  4211. case 45: // M45: Prusa3D: bed skew and offset with manual Z up
  4212. {
  4213. int8_t verbosity_level = 0;
  4214. bool only_Z = code_seen('Z');
  4215. #ifdef SUPPORT_VERBOSITY
  4216. if (code_seen('V'))
  4217. {
  4218. // Just 'V' without a number counts as V1.
  4219. char c = strchr_pointer[1];
  4220. verbosity_level = (c == ' ' || c == '\t' || c == 0) ? 1 : code_value_short();
  4221. }
  4222. #endif //SUPPORT_VERBOSITY
  4223. gcode_M45(only_Z, verbosity_level);
  4224. }
  4225. break;
  4226. /*
  4227. case 46:
  4228. {
  4229. // M46: Prusa3D: Show the assigned IP address.
  4230. uint8_t ip[4];
  4231. bool hasIP = card.ToshibaFlashAir_GetIP(ip);
  4232. if (hasIP) {
  4233. SERIAL_ECHOPGM("Toshiba FlashAir current IP: ");
  4234. SERIAL_ECHO(int(ip[0]));
  4235. SERIAL_ECHOPGM(".");
  4236. SERIAL_ECHO(int(ip[1]));
  4237. SERIAL_ECHOPGM(".");
  4238. SERIAL_ECHO(int(ip[2]));
  4239. SERIAL_ECHOPGM(".");
  4240. SERIAL_ECHO(int(ip[3]));
  4241. SERIAL_ECHOLNPGM("");
  4242. } else {
  4243. SERIAL_ECHOLNPGM("Toshiba FlashAir GetIP failed");
  4244. }
  4245. break;
  4246. }
  4247. */
  4248. case 47:
  4249. // M47: Prusa3D: Show end stops dialog on the display.
  4250. KEEPALIVE_STATE(PAUSED_FOR_USER);
  4251. lcd_diag_show_end_stops();
  4252. KEEPALIVE_STATE(IN_HANDLER);
  4253. break;
  4254. #if 0
  4255. case 48: // M48: scan the bed induction sensor points, print the sensor trigger coordinates to the serial line for visualization on the PC.
  4256. {
  4257. // Disable the default update procedure of the display. We will do a modal dialog.
  4258. lcd_update_enable(false);
  4259. // Let the planner use the uncorrected coordinates.
  4260. mbl.reset();
  4261. // Reset world2machine_rotation_and_skew and world2machine_shift, therefore
  4262. // the planner will not perform any adjustments in the XY plane.
  4263. // Wait for the motors to stop and update the current position with the absolute values.
  4264. world2machine_revert_to_uncorrected();
  4265. // Move the print head close to the bed.
  4266. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  4267. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS],current_position[Z_AXIS] , current_position[E_AXIS], homing_feedrate[Z_AXIS]/40, active_extruder);
  4268. st_synchronize();
  4269. // Home in the XY plane.
  4270. set_destination_to_current();
  4271. setup_for_endstop_move();
  4272. home_xy();
  4273. int8_t verbosity_level = 0;
  4274. if (code_seen('V')) {
  4275. // Just 'V' without a number counts as V1.
  4276. char c = strchr_pointer[1];
  4277. verbosity_level = (c == ' ' || c == '\t' || c == 0) ? 1 : code_value_short();
  4278. }
  4279. bool success = scan_bed_induction_points(verbosity_level);
  4280. clean_up_after_endstop_move();
  4281. // Print head up.
  4282. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  4283. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS],current_position[Z_AXIS] , current_position[E_AXIS], homing_feedrate[Z_AXIS]/40, active_extruder);
  4284. st_synchronize();
  4285. lcd_update_enable(true);
  4286. break;
  4287. }
  4288. #endif
  4289. // M48 Z-Probe repeatability measurement function.
  4290. //
  4291. // Usage: M48 <n #_samples> <X X_position_for_samples> <Y Y_position_for_samples> <V Verbose_Level> <L legs_of_movement_prior_to_doing_probe>
  4292. //
  4293. // This function assumes the bed has been homed. Specificaly, that a G28 command
  4294. // as been issued prior to invoking the M48 Z-Probe repeatability measurement function.
  4295. // Any information generated by a prior G29 Bed leveling command will be lost and need to be
  4296. // regenerated.
  4297. //
  4298. // The number of samples will default to 10 if not specified. You can use upper or lower case
  4299. // letters for any of the options EXCEPT n. n must be in lower case because Marlin uses a capital
  4300. // N for its communication protocol and will get horribly confused if you send it a capital N.
  4301. //
  4302. #ifdef ENABLE_AUTO_BED_LEVELING
  4303. #ifdef Z_PROBE_REPEATABILITY_TEST
  4304. case 48: // M48 Z-Probe repeatability
  4305. {
  4306. #if Z_MIN_PIN == -1
  4307. #error "You must have a Z_MIN endstop in order to enable calculation of Z-Probe repeatability."
  4308. #endif
  4309. double sum=0.0;
  4310. double mean=0.0;
  4311. double sigma=0.0;
  4312. double sample_set[50];
  4313. int verbose_level=1, n=0, j, n_samples = 10, n_legs=0;
  4314. double X_current, Y_current, Z_current;
  4315. double X_probe_location, Y_probe_location, Z_start_location, ext_position;
  4316. if (code_seen('V') || code_seen('v')) {
  4317. verbose_level = code_value();
  4318. if (verbose_level<0 || verbose_level>4 ) {
  4319. SERIAL_PROTOCOLPGM("?Verbose Level not plausable.\n");
  4320. goto Sigma_Exit;
  4321. }
  4322. }
  4323. if (verbose_level > 0) {
  4324. SERIAL_PROTOCOLPGM("M48 Z-Probe Repeatability test. Version 2.00\n");
  4325. SERIAL_PROTOCOLPGM("Full support at: http://3dprintboard.com/forum.php\n");
  4326. }
  4327. if (code_seen('n')) {
  4328. n_samples = code_value();
  4329. if (n_samples<4 || n_samples>50 ) {
  4330. SERIAL_PROTOCOLPGM("?Specified sample size not plausable.\n");
  4331. goto Sigma_Exit;
  4332. }
  4333. }
  4334. X_current = X_probe_location = st_get_position_mm(X_AXIS);
  4335. Y_current = Y_probe_location = st_get_position_mm(Y_AXIS);
  4336. Z_current = st_get_position_mm(Z_AXIS);
  4337. Z_start_location = st_get_position_mm(Z_AXIS) + Z_RAISE_BEFORE_PROBING;
  4338. ext_position = st_get_position_mm(E_AXIS);
  4339. if (code_seen('X') || code_seen('x') ) {
  4340. X_probe_location = code_value() - X_PROBE_OFFSET_FROM_EXTRUDER;
  4341. if (X_probe_location<X_MIN_POS || X_probe_location>X_MAX_POS ) {
  4342. SERIAL_PROTOCOLPGM("?Specified X position out of range.\n");
  4343. goto Sigma_Exit;
  4344. }
  4345. }
  4346. if (code_seen('Y') || code_seen('y') ) {
  4347. Y_probe_location = code_value() - Y_PROBE_OFFSET_FROM_EXTRUDER;
  4348. if (Y_probe_location<Y_MIN_POS || Y_probe_location>Y_MAX_POS ) {
  4349. SERIAL_PROTOCOLPGM("?Specified Y position out of range.\n");
  4350. goto Sigma_Exit;
  4351. }
  4352. }
  4353. if (code_seen('L') || code_seen('l') ) {
  4354. n_legs = code_value();
  4355. if ( n_legs==1 )
  4356. n_legs = 2;
  4357. if ( n_legs<0 || n_legs>15 ) {
  4358. SERIAL_PROTOCOLPGM("?Specified number of legs in movement not plausable.\n");
  4359. goto Sigma_Exit;
  4360. }
  4361. }
  4362. //
  4363. // Do all the preliminary setup work. First raise the probe.
  4364. //
  4365. st_synchronize();
  4366. plan_bed_level_matrix.set_to_identity();
  4367. plan_buffer_line( X_current, Y_current, Z_start_location,
  4368. ext_position,
  4369. homing_feedrate[Z_AXIS]/60,
  4370. active_extruder);
  4371. st_synchronize();
  4372. //
  4373. // Now get everything to the specified probe point So we can safely do a probe to
  4374. // get us close to the bed. If the Z-Axis is far from the bed, we don't want to
  4375. // use that as a starting point for each probe.
  4376. //
  4377. if (verbose_level > 2)
  4378. SERIAL_PROTOCOL("Positioning probe for the test.\n");
  4379. plan_buffer_line( X_probe_location, Y_probe_location, Z_start_location,
  4380. ext_position,
  4381. homing_feedrate[X_AXIS]/60,
  4382. active_extruder);
  4383. st_synchronize();
  4384. current_position[X_AXIS] = X_current = st_get_position_mm(X_AXIS);
  4385. current_position[Y_AXIS] = Y_current = st_get_position_mm(Y_AXIS);
  4386. current_position[Z_AXIS] = Z_current = st_get_position_mm(Z_AXIS);
  4387. current_position[E_AXIS] = ext_position = st_get_position_mm(E_AXIS);
  4388. //
  4389. // OK, do the inital probe to get us close to the bed.
  4390. // Then retrace the right amount and use that in subsequent probes
  4391. //
  4392. setup_for_endstop_move();
  4393. run_z_probe();
  4394. current_position[Z_AXIS] = Z_current = st_get_position_mm(Z_AXIS);
  4395. Z_start_location = st_get_position_mm(Z_AXIS) + Z_RAISE_BEFORE_PROBING;
  4396. plan_buffer_line( X_probe_location, Y_probe_location, Z_start_location,
  4397. ext_position,
  4398. homing_feedrate[X_AXIS]/60,
  4399. active_extruder);
  4400. st_synchronize();
  4401. current_position[Z_AXIS] = Z_current = st_get_position_mm(Z_AXIS);
  4402. for( n=0; n<n_samples; n++) {
  4403. do_blocking_move_to( X_probe_location, Y_probe_location, Z_start_location); // Make sure we are at the probe location
  4404. if ( n_legs) {
  4405. double radius=0.0, theta=0.0, x_sweep, y_sweep;
  4406. int rotational_direction, l;
  4407. rotational_direction = (unsigned long) millis() & 0x0001; // clockwise or counter clockwise
  4408. radius = (unsigned long) millis() % (long) (X_MAX_LENGTH/4); // limit how far out to go
  4409. theta = (float) ((unsigned long) millis() % (long) 360) / (360./(2*3.1415926)); // turn into radians
  4410. //SERIAL_ECHOPAIR("starting radius: ",radius);
  4411. //SERIAL_ECHOPAIR(" theta: ",theta);
  4412. //SERIAL_ECHOPAIR(" direction: ",rotational_direction);
  4413. //SERIAL_PROTOCOLLNPGM("");
  4414. for( l=0; l<n_legs-1; l++) {
  4415. if (rotational_direction==1)
  4416. theta += (float) ((unsigned long) millis() % (long) 20) / (360.0/(2*3.1415926)); // turn into radians
  4417. else
  4418. theta -= (float) ((unsigned long) millis() % (long) 20) / (360.0/(2*3.1415926)); // turn into radians
  4419. radius += (float) ( ((long) ((unsigned long) millis() % (long) 10)) - 5);
  4420. if ( radius<0.0 )
  4421. radius = -radius;
  4422. X_current = X_probe_location + cos(theta) * radius;
  4423. Y_current = Y_probe_location + sin(theta) * radius;
  4424. if ( X_current<X_MIN_POS) // Make sure our X & Y are sane
  4425. X_current = X_MIN_POS;
  4426. if ( X_current>X_MAX_POS)
  4427. X_current = X_MAX_POS;
  4428. if ( Y_current<Y_MIN_POS) // Make sure our X & Y are sane
  4429. Y_current = Y_MIN_POS;
  4430. if ( Y_current>Y_MAX_POS)
  4431. Y_current = Y_MAX_POS;
  4432. if (verbose_level>3 ) {
  4433. SERIAL_ECHOPAIR("x: ", X_current);
  4434. SERIAL_ECHOPAIR("y: ", Y_current);
  4435. SERIAL_PROTOCOLLNPGM("");
  4436. }
  4437. do_blocking_move_to( X_current, Y_current, Z_current );
  4438. }
  4439. do_blocking_move_to( X_probe_location, Y_probe_location, Z_start_location); // Go back to the probe location
  4440. }
  4441. setup_for_endstop_move();
  4442. run_z_probe();
  4443. sample_set[n] = current_position[Z_AXIS];
  4444. //
  4445. // Get the current mean for the data points we have so far
  4446. //
  4447. sum=0.0;
  4448. for( j=0; j<=n; j++) {
  4449. sum = sum + sample_set[j];
  4450. }
  4451. mean = sum / (double (n+1));
  4452. //
  4453. // Now, use that mean to calculate the standard deviation for the
  4454. // data points we have so far
  4455. //
  4456. sum=0.0;
  4457. for( j=0; j<=n; j++) {
  4458. sum = sum + (sample_set[j]-mean) * (sample_set[j]-mean);
  4459. }
  4460. sigma = sqrt( sum / (double (n+1)) );
  4461. if (verbose_level > 1) {
  4462. SERIAL_PROTOCOL(n+1);
  4463. SERIAL_PROTOCOL(" of ");
  4464. SERIAL_PROTOCOL(n_samples);
  4465. SERIAL_PROTOCOLPGM(" z: ");
  4466. SERIAL_PROTOCOL_F(current_position[Z_AXIS], 6);
  4467. }
  4468. if (verbose_level > 2) {
  4469. SERIAL_PROTOCOL(" mean: ");
  4470. SERIAL_PROTOCOL_F(mean,6);
  4471. SERIAL_PROTOCOL(" sigma: ");
  4472. SERIAL_PROTOCOL_F(sigma,6);
  4473. }
  4474. if (verbose_level > 0)
  4475. SERIAL_PROTOCOLPGM("\n");
  4476. plan_buffer_line( X_probe_location, Y_probe_location, Z_start_location,
  4477. current_position[E_AXIS], homing_feedrate[Z_AXIS]/60, active_extruder);
  4478. st_synchronize();
  4479. }
  4480. delay(1000);
  4481. clean_up_after_endstop_move();
  4482. // enable_endstops(true);
  4483. if (verbose_level > 0) {
  4484. SERIAL_PROTOCOLPGM("Mean: ");
  4485. SERIAL_PROTOCOL_F(mean, 6);
  4486. SERIAL_PROTOCOLPGM("\n");
  4487. }
  4488. SERIAL_PROTOCOLPGM("Standard Deviation: ");
  4489. SERIAL_PROTOCOL_F(sigma, 6);
  4490. SERIAL_PROTOCOLPGM("\n\n");
  4491. Sigma_Exit:
  4492. break;
  4493. }
  4494. #endif // Z_PROBE_REPEATABILITY_TEST
  4495. #endif // ENABLE_AUTO_BED_LEVELING
  4496. case 73: //M73 show percent done and time remaining
  4497. if(code_seen('P')) print_percent_done_normal = code_value();
  4498. if(code_seen('R')) print_time_remaining_normal = code_value();
  4499. if(code_seen('Q')) print_percent_done_silent = code_value();
  4500. if(code_seen('S')) print_time_remaining_silent = code_value();
  4501. {
  4502. const char* _msg_mode_done_remain = _N("%S MODE: Percent done: %d; print time remaining in mins: %d\n");
  4503. printf_P(_msg_mode_done_remain, _N("NORMAL"), int(print_percent_done_normal), print_time_remaining_normal);
  4504. printf_P(_msg_mode_done_remain, _N("SILENT"), int(print_percent_done_silent), print_time_remaining_silent);
  4505. }
  4506. break;
  4507. case 104: // M104
  4508. if(setTargetedHotend(104)){
  4509. break;
  4510. }
  4511. if (code_seen('S')) setTargetHotend(code_value(), tmp_extruder);
  4512. setWatch();
  4513. break;
  4514. case 112: // M112 -Emergency Stop
  4515. kill(_n(""), 3);
  4516. break;
  4517. case 140: // M140 set bed temp
  4518. if (code_seen('S')) setTargetBed(code_value());
  4519. break;
  4520. case 105 : // M105
  4521. if(setTargetedHotend(105)){
  4522. break;
  4523. }
  4524. #if defined(TEMP_0_PIN) && TEMP_0_PIN > -1
  4525. SERIAL_PROTOCOLPGM("ok T:");
  4526. SERIAL_PROTOCOL_F(degHotend(tmp_extruder),1);
  4527. SERIAL_PROTOCOLPGM(" /");
  4528. SERIAL_PROTOCOL_F(degTargetHotend(tmp_extruder),1);
  4529. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  4530. SERIAL_PROTOCOLPGM(" B:");
  4531. SERIAL_PROTOCOL_F(degBed(),1);
  4532. SERIAL_PROTOCOLPGM(" /");
  4533. SERIAL_PROTOCOL_F(degTargetBed(),1);
  4534. #endif //TEMP_BED_PIN
  4535. for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) {
  4536. SERIAL_PROTOCOLPGM(" T");
  4537. SERIAL_PROTOCOL(cur_extruder);
  4538. SERIAL_PROTOCOLPGM(":");
  4539. SERIAL_PROTOCOL_F(degHotend(cur_extruder),1);
  4540. SERIAL_PROTOCOLPGM(" /");
  4541. SERIAL_PROTOCOL_F(degTargetHotend(cur_extruder),1);
  4542. }
  4543. #else
  4544. SERIAL_ERROR_START;
  4545. SERIAL_ERRORLNRPGM(_i("No thermistors - no temperature"));////MSG_ERR_NO_THERMISTORS c=0 r=0
  4546. #endif
  4547. SERIAL_PROTOCOLPGM(" @:");
  4548. #ifdef EXTRUDER_WATTS
  4549. SERIAL_PROTOCOL((EXTRUDER_WATTS * getHeaterPower(tmp_extruder))/127);
  4550. SERIAL_PROTOCOLPGM("W");
  4551. #else
  4552. SERIAL_PROTOCOL(getHeaterPower(tmp_extruder));
  4553. #endif
  4554. SERIAL_PROTOCOLPGM(" B@:");
  4555. #ifdef BED_WATTS
  4556. SERIAL_PROTOCOL((BED_WATTS * getHeaterPower(-1))/127);
  4557. SERIAL_PROTOCOLPGM("W");
  4558. #else
  4559. SERIAL_PROTOCOL(getHeaterPower(-1));
  4560. #endif
  4561. #ifdef PINDA_THERMISTOR
  4562. SERIAL_PROTOCOLPGM(" P:");
  4563. SERIAL_PROTOCOL_F(current_temperature_pinda,1);
  4564. #endif //PINDA_THERMISTOR
  4565. #ifdef AMBIENT_THERMISTOR
  4566. SERIAL_PROTOCOLPGM(" A:");
  4567. SERIAL_PROTOCOL_F(current_temperature_ambient,1);
  4568. #endif //AMBIENT_THERMISTOR
  4569. #ifdef SHOW_TEMP_ADC_VALUES
  4570. {float raw = 0.0;
  4571. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  4572. SERIAL_PROTOCOLPGM(" ADC B:");
  4573. SERIAL_PROTOCOL_F(degBed(),1);
  4574. SERIAL_PROTOCOLPGM("C->");
  4575. raw = rawBedTemp();
  4576. SERIAL_PROTOCOL_F(raw/OVERSAMPLENR,5);
  4577. SERIAL_PROTOCOLPGM(" Rb->");
  4578. SERIAL_PROTOCOL_F(100 * (1 + (PtA * (raw/OVERSAMPLENR)) + (PtB * sq((raw/OVERSAMPLENR)))), 5);
  4579. SERIAL_PROTOCOLPGM(" Rxb->");
  4580. SERIAL_PROTOCOL_F(raw, 5);
  4581. #endif
  4582. for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) {
  4583. SERIAL_PROTOCOLPGM(" T");
  4584. SERIAL_PROTOCOL(cur_extruder);
  4585. SERIAL_PROTOCOLPGM(":");
  4586. SERIAL_PROTOCOL_F(degHotend(cur_extruder),1);
  4587. SERIAL_PROTOCOLPGM("C->");
  4588. raw = rawHotendTemp(cur_extruder);
  4589. SERIAL_PROTOCOL_F(raw/OVERSAMPLENR,5);
  4590. SERIAL_PROTOCOLPGM(" Rt");
  4591. SERIAL_PROTOCOL(cur_extruder);
  4592. SERIAL_PROTOCOLPGM("->");
  4593. SERIAL_PROTOCOL_F(100 * (1 + (PtA * (raw/OVERSAMPLENR)) + (PtB * sq((raw/OVERSAMPLENR)))), 5);
  4594. SERIAL_PROTOCOLPGM(" Rx");
  4595. SERIAL_PROTOCOL(cur_extruder);
  4596. SERIAL_PROTOCOLPGM("->");
  4597. SERIAL_PROTOCOL_F(raw, 5);
  4598. }}
  4599. #endif
  4600. SERIAL_PROTOCOLLN("");
  4601. KEEPALIVE_STATE(NOT_BUSY);
  4602. return;
  4603. break;
  4604. case 109:
  4605. {// M109 - Wait for extruder heater to reach target.
  4606. if(setTargetedHotend(109)){
  4607. break;
  4608. }
  4609. LCD_MESSAGERPGM(_T(MSG_HEATING));
  4610. heating_status = 1;
  4611. if (farm_mode) { prusa_statistics(1); };
  4612. #ifdef AUTOTEMP
  4613. autotemp_enabled=false;
  4614. #endif
  4615. if (code_seen('S')) {
  4616. setTargetHotend(code_value(), tmp_extruder);
  4617. CooldownNoWait = true;
  4618. } else if (code_seen('R')) {
  4619. setTargetHotend(code_value(), tmp_extruder);
  4620. CooldownNoWait = false;
  4621. }
  4622. #ifdef AUTOTEMP
  4623. if (code_seen('S')) autotemp_min=code_value();
  4624. if (code_seen('B')) autotemp_max=code_value();
  4625. if (code_seen('F'))
  4626. {
  4627. autotemp_factor=code_value();
  4628. autotemp_enabled=true;
  4629. }
  4630. #endif
  4631. setWatch();
  4632. codenum = millis();
  4633. /* See if we are heating up or cooling down */
  4634. target_direction = isHeatingHotend(tmp_extruder); // true if heating, false if cooling
  4635. KEEPALIVE_STATE(NOT_BUSY);
  4636. cancel_heatup = false;
  4637. wait_for_heater(codenum); //loops until target temperature is reached
  4638. LCD_MESSAGERPGM(_T(MSG_HEATING_COMPLETE));
  4639. KEEPALIVE_STATE(IN_HANDLER);
  4640. heating_status = 2;
  4641. if (farm_mode) { prusa_statistics(2); };
  4642. //starttime=millis();
  4643. previous_millis_cmd = millis();
  4644. }
  4645. break;
  4646. case 190: // M190 - Wait for bed heater to reach target.
  4647. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  4648. LCD_MESSAGERPGM(_T(MSG_BED_HEATING));
  4649. heating_status = 3;
  4650. if (farm_mode) { prusa_statistics(1); };
  4651. if (code_seen('S'))
  4652. {
  4653. setTargetBed(code_value());
  4654. CooldownNoWait = true;
  4655. }
  4656. else if (code_seen('R'))
  4657. {
  4658. setTargetBed(code_value());
  4659. CooldownNoWait = false;
  4660. }
  4661. codenum = millis();
  4662. cancel_heatup = false;
  4663. target_direction = isHeatingBed(); // true if heating, false if cooling
  4664. KEEPALIVE_STATE(NOT_BUSY);
  4665. while ( (target_direction)&&(!cancel_heatup) ? (isHeatingBed()) : (isCoolingBed()&&(CooldownNoWait==false)) )
  4666. {
  4667. if(( millis() - codenum) > 1000 ) //Print Temp Reading every 1 second while heating up.
  4668. {
  4669. if (!farm_mode) {
  4670. float tt = degHotend(active_extruder);
  4671. SERIAL_PROTOCOLPGM("T:");
  4672. SERIAL_PROTOCOL(tt);
  4673. SERIAL_PROTOCOLPGM(" E:");
  4674. SERIAL_PROTOCOL((int)active_extruder);
  4675. SERIAL_PROTOCOLPGM(" B:");
  4676. SERIAL_PROTOCOL_F(degBed(), 1);
  4677. SERIAL_PROTOCOLLN("");
  4678. }
  4679. codenum = millis();
  4680. }
  4681. manage_heater();
  4682. manage_inactivity();
  4683. lcd_update(0);
  4684. }
  4685. LCD_MESSAGERPGM(_T(MSG_BED_DONE));
  4686. KEEPALIVE_STATE(IN_HANDLER);
  4687. heating_status = 4;
  4688. previous_millis_cmd = millis();
  4689. #endif
  4690. break;
  4691. #if defined(FAN_PIN) && FAN_PIN > -1
  4692. case 106: //M106 Fan On
  4693. if (code_seen('S')){
  4694. fanSpeed=constrain(code_value(),0,255);
  4695. }
  4696. else {
  4697. fanSpeed=255;
  4698. }
  4699. break;
  4700. case 107: //M107 Fan Off
  4701. fanSpeed = 0;
  4702. break;
  4703. #endif //FAN_PIN
  4704. #if defined(PS_ON_PIN) && PS_ON_PIN > -1
  4705. case 80: // M80 - Turn on Power Supply
  4706. SET_OUTPUT(PS_ON_PIN); //GND
  4707. WRITE(PS_ON_PIN, PS_ON_AWAKE);
  4708. // If you have a switch on suicide pin, this is useful
  4709. // if you want to start another print with suicide feature after
  4710. // a print without suicide...
  4711. #if defined SUICIDE_PIN && SUICIDE_PIN > -1
  4712. SET_OUTPUT(SUICIDE_PIN);
  4713. WRITE(SUICIDE_PIN, HIGH);
  4714. #endif
  4715. powersupply = true;
  4716. LCD_MESSAGERPGM(_T(WELCOME_MSG));
  4717. lcd_update(0);
  4718. break;
  4719. #endif
  4720. case 81: // M81 - Turn off Power Supply
  4721. disable_heater();
  4722. st_synchronize();
  4723. disable_e0();
  4724. disable_e1();
  4725. disable_e2();
  4726. finishAndDisableSteppers();
  4727. fanSpeed = 0;
  4728. delay(1000); // Wait a little before to switch off
  4729. #if defined(SUICIDE_PIN) && SUICIDE_PIN > -1
  4730. st_synchronize();
  4731. suicide();
  4732. #elif defined(PS_ON_PIN) && PS_ON_PIN > -1
  4733. SET_OUTPUT(PS_ON_PIN);
  4734. WRITE(PS_ON_PIN, PS_ON_ASLEEP);
  4735. #endif
  4736. powersupply = false;
  4737. LCD_MESSAGERPGM(CAT4(CUSTOM_MENDEL_NAME,PSTR(" "),MSG_OFF,PSTR(".")));
  4738. lcd_update(0);
  4739. break;
  4740. case 82:
  4741. axis_relative_modes[3] = false;
  4742. break;
  4743. case 83:
  4744. axis_relative_modes[3] = true;
  4745. break;
  4746. case 18: //compatibility
  4747. case 84: // M84
  4748. if(code_seen('S')){
  4749. stepper_inactive_time = code_value() * 1000;
  4750. }
  4751. else
  4752. {
  4753. bool all_axis = !((code_seen(axis_codes[X_AXIS])) || (code_seen(axis_codes[Y_AXIS])) || (code_seen(axis_codes[Z_AXIS]))|| (code_seen(axis_codes[E_AXIS])));
  4754. if(all_axis)
  4755. {
  4756. st_synchronize();
  4757. disable_e0();
  4758. disable_e1();
  4759. disable_e2();
  4760. finishAndDisableSteppers();
  4761. }
  4762. else
  4763. {
  4764. st_synchronize();
  4765. if (code_seen('X')) disable_x();
  4766. if (code_seen('Y')) disable_y();
  4767. if (code_seen('Z')) disable_z();
  4768. #if ((E0_ENABLE_PIN != X_ENABLE_PIN) && (E1_ENABLE_PIN != Y_ENABLE_PIN)) // Only enable on boards that have seperate ENABLE_PINS
  4769. if (code_seen('E')) {
  4770. disable_e0();
  4771. disable_e1();
  4772. disable_e2();
  4773. }
  4774. #endif
  4775. }
  4776. }
  4777. //in the end of print set estimated time to end of print and extruders used during print to default values for next print
  4778. print_time_remaining_init();
  4779. snmm_filaments_used = 0;
  4780. break;
  4781. case 85: // M85
  4782. if(code_seen('S')) {
  4783. max_inactive_time = code_value() * 1000;
  4784. }
  4785. break;
  4786. #ifdef SAFETYTIMER
  4787. case 86: // M86 - set safety timer expiration time in seconds; M86 S0 will disable safety timer
  4788. //when safety timer expires heatbed and nozzle target temperatures are set to zero
  4789. if (code_seen('S')) {
  4790. safetytimer_inactive_time = code_value() * 1000;
  4791. safetyTimer.start();
  4792. }
  4793. break;
  4794. #endif
  4795. case 92: // M92
  4796. for(int8_t i=0; i < NUM_AXIS; i++)
  4797. {
  4798. if(code_seen(axis_codes[i]))
  4799. {
  4800. if(i == 3) { // E
  4801. float value = code_value();
  4802. if(value < 20.0) {
  4803. float factor = axis_steps_per_unit[i] / value; // increase e constants if M92 E14 is given for netfab.
  4804. max_jerk[E_AXIS] *= factor;
  4805. max_feedrate[i] *= factor;
  4806. axis_steps_per_sqr_second[i] *= factor;
  4807. }
  4808. axis_steps_per_unit[i] = value;
  4809. }
  4810. else {
  4811. axis_steps_per_unit[i] = code_value();
  4812. }
  4813. }
  4814. }
  4815. break;
  4816. case 110: // M110 - reset line pos
  4817. if (code_seen('N'))
  4818. gcode_LastN = code_value_long();
  4819. break;
  4820. #ifdef HOST_KEEPALIVE_FEATURE
  4821. case 113: // M113 - Get or set Host Keepalive interval
  4822. if (code_seen('S')) {
  4823. host_keepalive_interval = (uint8_t)code_value_short();
  4824. // NOMORE(host_keepalive_interval, 60);
  4825. }
  4826. else {
  4827. SERIAL_ECHO_START;
  4828. SERIAL_ECHOPAIR("M113 S", (unsigned long)host_keepalive_interval);
  4829. SERIAL_PROTOCOLLN("");
  4830. }
  4831. break;
  4832. #endif
  4833. case 115: // M115
  4834. if (code_seen('V')) {
  4835. // Report the Prusa version number.
  4836. SERIAL_PROTOCOLLNRPGM(FW_VERSION_STR_P());
  4837. } else if (code_seen('U')) {
  4838. // Check the firmware version provided. If the firmware version provided by the U code is higher than the currently running firmware,
  4839. // pause the print and ask the user to upgrade the firmware.
  4840. show_upgrade_dialog_if_version_newer(++ strchr_pointer);
  4841. } else {
  4842. SERIAL_ECHOPGM("FIRMWARE_NAME:Prusa-Firmware ");
  4843. SERIAL_ECHORPGM(FW_VERSION_STR_P());
  4844. SERIAL_ECHOPGM(" based on Marlin FIRMWARE_URL:https://github.com/prusa3d/Prusa-Firmware PROTOCOL_VERSION:");
  4845. SERIAL_ECHOPGM(PROTOCOL_VERSION);
  4846. SERIAL_ECHOPGM(" MACHINE_TYPE:");
  4847. SERIAL_ECHOPGM(CUSTOM_MENDEL_NAME);
  4848. SERIAL_ECHOPGM(" EXTRUDER_COUNT:");
  4849. SERIAL_ECHOPGM(STRINGIFY(EXTRUDERS));
  4850. SERIAL_ECHOPGM(" UUID:");
  4851. SERIAL_ECHOLNPGM(MACHINE_UUID);
  4852. }
  4853. break;
  4854. /* case 117: // M117 display message
  4855. starpos = (strchr(strchr_pointer + 5,'*'));
  4856. if(starpos!=NULL)
  4857. *(starpos)='\0';
  4858. lcd_setstatus(strchr_pointer + 5);
  4859. break;*/
  4860. case 114: // M114
  4861. gcode_M114();
  4862. break;
  4863. case 120: // M120
  4864. enable_endstops(false) ;
  4865. break;
  4866. case 121: // M121
  4867. enable_endstops(true) ;
  4868. break;
  4869. case 119: // M119
  4870. SERIAL_PROTOCOLRPGM(_N("Reporting endstop status"));////MSG_M119_REPORT c=0 r=0
  4871. SERIAL_PROTOCOLLN("");
  4872. #if defined(X_MIN_PIN) && X_MIN_PIN > -1
  4873. SERIAL_PROTOCOLRPGM(_n("x_min: "));////MSG_X_MIN c=0 r=0
  4874. if(READ(X_MIN_PIN)^X_MIN_ENDSTOP_INVERTING){
  4875. SERIAL_PROTOCOLRPGM(_T(MSG_ENDSTOP_HIT));
  4876. }else{
  4877. SERIAL_PROTOCOLRPGM(_T(MSG_ENDSTOP_OPEN));
  4878. }
  4879. SERIAL_PROTOCOLLN("");
  4880. #endif
  4881. #if defined(X_MAX_PIN) && X_MAX_PIN > -1
  4882. SERIAL_PROTOCOLRPGM(_n("x_max: "));////MSG_X_MAX c=0 r=0
  4883. if(READ(X_MAX_PIN)^X_MAX_ENDSTOP_INVERTING){
  4884. SERIAL_PROTOCOLRPGM(_T(MSG_ENDSTOP_HIT));
  4885. }else{
  4886. SERIAL_PROTOCOLRPGM(_T(MSG_ENDSTOP_OPEN));
  4887. }
  4888. SERIAL_PROTOCOLLN("");
  4889. #endif
  4890. #if defined(Y_MIN_PIN) && Y_MIN_PIN > -1
  4891. SERIAL_PROTOCOLRPGM(_n("y_min: "));////MSG_Y_MIN c=0 r=0
  4892. if(READ(Y_MIN_PIN)^Y_MIN_ENDSTOP_INVERTING){
  4893. SERIAL_PROTOCOLRPGM(_T(MSG_ENDSTOP_HIT));
  4894. }else{
  4895. SERIAL_PROTOCOLRPGM(_T(MSG_ENDSTOP_OPEN));
  4896. }
  4897. SERIAL_PROTOCOLLN("");
  4898. #endif
  4899. #if defined(Y_MAX_PIN) && Y_MAX_PIN > -1
  4900. SERIAL_PROTOCOLRPGM(_n("y_max: "));////MSG_Y_MAX c=0 r=0
  4901. if(READ(Y_MAX_PIN)^Y_MAX_ENDSTOP_INVERTING){
  4902. SERIAL_PROTOCOLRPGM(_T(MSG_ENDSTOP_HIT));
  4903. }else{
  4904. SERIAL_PROTOCOLRPGM(_T(MSG_ENDSTOP_OPEN));
  4905. }
  4906. SERIAL_PROTOCOLLN("");
  4907. #endif
  4908. #if defined(Z_MIN_PIN) && Z_MIN_PIN > -1
  4909. SERIAL_PROTOCOLRPGM(MSG_Z_MIN);
  4910. if(READ(Z_MIN_PIN)^Z_MIN_ENDSTOP_INVERTING){
  4911. SERIAL_PROTOCOLRPGM(_T(MSG_ENDSTOP_HIT));
  4912. }else{
  4913. SERIAL_PROTOCOLRPGM(_T(MSG_ENDSTOP_OPEN));
  4914. }
  4915. SERIAL_PROTOCOLLN("");
  4916. #endif
  4917. #if defined(Z_MAX_PIN) && Z_MAX_PIN > -1
  4918. SERIAL_PROTOCOLRPGM(MSG_Z_MAX);
  4919. if(READ(Z_MAX_PIN)^Z_MAX_ENDSTOP_INVERTING){
  4920. SERIAL_PROTOCOLRPGM(_T(MSG_ENDSTOP_HIT));
  4921. }else{
  4922. SERIAL_PROTOCOLRPGM(_T(MSG_ENDSTOP_OPEN));
  4923. }
  4924. SERIAL_PROTOCOLLN("");
  4925. #endif
  4926. break;
  4927. //TODO: update for all axis, use for loop
  4928. #ifdef BLINKM
  4929. case 150: // M150
  4930. {
  4931. byte red;
  4932. byte grn;
  4933. byte blu;
  4934. if(code_seen('R')) red = code_value();
  4935. if(code_seen('U')) grn = code_value();
  4936. if(code_seen('B')) blu = code_value();
  4937. SendColors(red,grn,blu);
  4938. }
  4939. break;
  4940. #endif //BLINKM
  4941. case 200: // M200 D<millimeters> set filament diameter and set E axis units to cubic millimeters (use S0 to set back to millimeters).
  4942. {
  4943. tmp_extruder = active_extruder;
  4944. if(code_seen('T')) {
  4945. tmp_extruder = code_value();
  4946. if(tmp_extruder >= EXTRUDERS) {
  4947. SERIAL_ECHO_START;
  4948. SERIAL_ECHO(_i("M200 Invalid extruder "));////MSG_M200_INVALID_EXTRUDER c=0 r=0
  4949. break;
  4950. }
  4951. }
  4952. float area = .0;
  4953. if(code_seen('D')) {
  4954. float diameter = (float)code_value();
  4955. if (diameter == 0.0) {
  4956. // setting any extruder filament size disables volumetric on the assumption that
  4957. // slicers either generate in extruder values as cubic mm or as as filament feeds
  4958. // for all extruders
  4959. volumetric_enabled = false;
  4960. } else {
  4961. filament_size[tmp_extruder] = (float)code_value();
  4962. // make sure all extruders have some sane value for the filament size
  4963. filament_size[0] = (filament_size[0] == 0.0 ? DEFAULT_NOMINAL_FILAMENT_DIA : filament_size[0]);
  4964. #if EXTRUDERS > 1
  4965. filament_size[1] = (filament_size[1] == 0.0 ? DEFAULT_NOMINAL_FILAMENT_DIA : filament_size[1]);
  4966. #if EXTRUDERS > 2
  4967. filament_size[2] = (filament_size[2] == 0.0 ? DEFAULT_NOMINAL_FILAMENT_DIA : filament_size[2]);
  4968. #endif
  4969. #endif
  4970. volumetric_enabled = true;
  4971. }
  4972. } else {
  4973. //reserved for setting filament diameter via UFID or filament measuring device
  4974. break;
  4975. }
  4976. calculate_extruder_multipliers();
  4977. }
  4978. break;
  4979. case 201: // M201
  4980. for(int8_t i=0; i < NUM_AXIS; i++)
  4981. {
  4982. if(code_seen(axis_codes[i]))
  4983. {
  4984. max_acceleration_units_per_sq_second[i] = code_value();
  4985. }
  4986. }
  4987. // steps per sq second need to be updated to agree with the units per sq second (as they are what is used in the planner)
  4988. reset_acceleration_rates();
  4989. break;
  4990. #if 0 // Not used for Sprinter/grbl gen6
  4991. case 202: // M202
  4992. for(int8_t i=0; i < NUM_AXIS; i++) {
  4993. if(code_seen(axis_codes[i])) axis_travel_steps_per_sqr_second[i] = code_value() * axis_steps_per_unit[i];
  4994. }
  4995. break;
  4996. #endif
  4997. case 203: // M203 max feedrate mm/sec
  4998. for(int8_t i=0; i < NUM_AXIS; i++) {
  4999. if(code_seen(axis_codes[i])) max_feedrate[i] = code_value();
  5000. }
  5001. break;
  5002. case 204: // M204 acclereration S normal moves T filmanent only moves
  5003. {
  5004. if(code_seen('S')) acceleration = code_value() ;
  5005. if(code_seen('T')) retract_acceleration = code_value() ;
  5006. }
  5007. break;
  5008. case 205: //M205 advanced settings: minimum travel speed S=while printing T=travel only, B=minimum segment time X= maximum xy jerk, Z=maximum Z jerk
  5009. {
  5010. if(code_seen('S')) minimumfeedrate = code_value();
  5011. if(code_seen('T')) mintravelfeedrate = code_value();
  5012. if(code_seen('B')) minsegmenttime = code_value() ;
  5013. if(code_seen('X')) max_jerk[X_AXIS] = max_jerk[Y_AXIS] = code_value();
  5014. if(code_seen('Y')) max_jerk[Y_AXIS] = code_value();
  5015. if(code_seen('Z')) max_jerk[Z_AXIS] = code_value();
  5016. if(code_seen('E')) max_jerk[E_AXIS] = code_value();
  5017. if (max_jerk[X_AXIS] > DEFAULT_XJERK) max_jerk[X_AXIS] = DEFAULT_XJERK;
  5018. if (max_jerk[Y_AXIS] > DEFAULT_YJERK) max_jerk[Y_AXIS] = DEFAULT_YJERK;
  5019. }
  5020. break;
  5021. case 206: // M206 additional homing offset
  5022. for(int8_t i=0; i < 3; i++)
  5023. {
  5024. if(code_seen(axis_codes[i])) add_homing[i] = code_value();
  5025. }
  5026. break;
  5027. #ifdef FWRETRACT
  5028. case 207: //M207 - set retract length S[positive mm] F[feedrate mm/min] Z[additional zlift/hop]
  5029. {
  5030. if(code_seen('S'))
  5031. {
  5032. retract_length = code_value() ;
  5033. }
  5034. if(code_seen('F'))
  5035. {
  5036. retract_feedrate = code_value()/60 ;
  5037. }
  5038. if(code_seen('Z'))
  5039. {
  5040. retract_zlift = code_value() ;
  5041. }
  5042. }break;
  5043. case 208: // M208 - set retract recover length S[positive mm surplus to the M207 S*] F[feedrate mm/min]
  5044. {
  5045. if(code_seen('S'))
  5046. {
  5047. retract_recover_length = code_value() ;
  5048. }
  5049. if(code_seen('F'))
  5050. {
  5051. retract_recover_feedrate = code_value()/60 ;
  5052. }
  5053. }break;
  5054. case 209: // M209 - S<1=true/0=false> enable automatic retract detect if the slicer did not support G10/11: every normal extrude-only move will be classified as retract depending on the direction.
  5055. {
  5056. if(code_seen('S'))
  5057. {
  5058. int t= code_value() ;
  5059. switch(t)
  5060. {
  5061. case 0:
  5062. {
  5063. autoretract_enabled=false;
  5064. retracted[0]=false;
  5065. #if EXTRUDERS > 1
  5066. retracted[1]=false;
  5067. #endif
  5068. #if EXTRUDERS > 2
  5069. retracted[2]=false;
  5070. #endif
  5071. }break;
  5072. case 1:
  5073. {
  5074. autoretract_enabled=true;
  5075. retracted[0]=false;
  5076. #if EXTRUDERS > 1
  5077. retracted[1]=false;
  5078. #endif
  5079. #if EXTRUDERS > 2
  5080. retracted[2]=false;
  5081. #endif
  5082. }break;
  5083. default:
  5084. SERIAL_ECHO_START;
  5085. SERIAL_ECHORPGM(MSG_UNKNOWN_COMMAND);
  5086. SERIAL_ECHO(CMDBUFFER_CURRENT_STRING);
  5087. SERIAL_ECHOLNPGM("\"(1)");
  5088. }
  5089. }
  5090. }break;
  5091. #endif // FWRETRACT
  5092. #if EXTRUDERS > 1
  5093. case 218: // M218 - set hotend offset (in mm), T<extruder_number> X<offset_on_X> Y<offset_on_Y>
  5094. {
  5095. if(setTargetedHotend(218)){
  5096. break;
  5097. }
  5098. if(code_seen('X'))
  5099. {
  5100. extruder_offset[X_AXIS][tmp_extruder] = code_value();
  5101. }
  5102. if(code_seen('Y'))
  5103. {
  5104. extruder_offset[Y_AXIS][tmp_extruder] = code_value();
  5105. }
  5106. SERIAL_ECHO_START;
  5107. SERIAL_ECHORPGM(MSG_HOTEND_OFFSET);
  5108. for(tmp_extruder = 0; tmp_extruder < EXTRUDERS; tmp_extruder++)
  5109. {
  5110. SERIAL_ECHO(" ");
  5111. SERIAL_ECHO(extruder_offset[X_AXIS][tmp_extruder]);
  5112. SERIAL_ECHO(",");
  5113. SERIAL_ECHO(extruder_offset[Y_AXIS][tmp_extruder]);
  5114. }
  5115. SERIAL_ECHOLN("");
  5116. }break;
  5117. #endif
  5118. case 220: // M220 S<factor in percent>- set speed factor override percentage
  5119. {
  5120. if(code_seen('S'))
  5121. {
  5122. feedmultiply = code_value() ;
  5123. }
  5124. }
  5125. break;
  5126. case 221: // M221 S<factor in percent>- set extrude factor override percentage
  5127. {
  5128. if(code_seen('S'))
  5129. {
  5130. int tmp_code = code_value();
  5131. if (code_seen('T'))
  5132. {
  5133. if(setTargetedHotend(221)){
  5134. break;
  5135. }
  5136. extruder_multiply[tmp_extruder] = tmp_code;
  5137. }
  5138. else
  5139. {
  5140. extrudemultiply = tmp_code ;
  5141. }
  5142. }
  5143. calculate_extruder_multipliers();
  5144. }
  5145. break;
  5146. #ifndef _DISABLE_M42_M226
  5147. case 226: // M226 P<pin number> S<pin state>- Wait until the specified pin reaches the state required
  5148. {
  5149. if(code_seen('P')){
  5150. int pin_number = code_value(); // pin number
  5151. int pin_state = -1; // required pin state - default is inverted
  5152. if(code_seen('S')) pin_state = code_value(); // required pin state
  5153. if(pin_state >= -1 && pin_state <= 1){
  5154. for(int8_t i = 0; i < (int8_t)(sizeof(sensitive_pins)/sizeof(int)); i++)
  5155. {
  5156. if (sensitive_pins[i] == pin_number)
  5157. {
  5158. pin_number = -1;
  5159. break;
  5160. }
  5161. }
  5162. if (pin_number > -1)
  5163. {
  5164. int target = LOW;
  5165. st_synchronize();
  5166. pinMode(pin_number, INPUT);
  5167. switch(pin_state){
  5168. case 1:
  5169. target = HIGH;
  5170. break;
  5171. case 0:
  5172. target = LOW;
  5173. break;
  5174. case -1:
  5175. target = !digitalRead(pin_number);
  5176. break;
  5177. }
  5178. while(digitalRead(pin_number) != target){
  5179. manage_heater();
  5180. manage_inactivity();
  5181. lcd_update(0);
  5182. }
  5183. }
  5184. }
  5185. }
  5186. }
  5187. break;
  5188. #endif //_DISABLE_M42_M226
  5189. #if NUM_SERVOS > 0
  5190. case 280: // M280 - set servo position absolute. P: servo index, S: angle or microseconds
  5191. {
  5192. int servo_index = -1;
  5193. int servo_position = 0;
  5194. if (code_seen('P'))
  5195. servo_index = code_value();
  5196. if (code_seen('S')) {
  5197. servo_position = code_value();
  5198. if ((servo_index >= 0) && (servo_index < NUM_SERVOS)) {
  5199. #if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
  5200. servos[servo_index].attach(0);
  5201. #endif
  5202. servos[servo_index].write(servo_position);
  5203. #if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
  5204. delay(PROBE_SERVO_DEACTIVATION_DELAY);
  5205. servos[servo_index].detach();
  5206. #endif
  5207. }
  5208. else {
  5209. SERIAL_ECHO_START;
  5210. SERIAL_ECHO("Servo ");
  5211. SERIAL_ECHO(servo_index);
  5212. SERIAL_ECHOLN(" out of range");
  5213. }
  5214. }
  5215. else if (servo_index >= 0) {
  5216. SERIAL_PROTOCOL(_T(MSG_OK));
  5217. SERIAL_PROTOCOL(" Servo ");
  5218. SERIAL_PROTOCOL(servo_index);
  5219. SERIAL_PROTOCOL(": ");
  5220. SERIAL_PROTOCOL(servos[servo_index].read());
  5221. SERIAL_PROTOCOLLN("");
  5222. }
  5223. }
  5224. break;
  5225. #endif // NUM_SERVOS > 0
  5226. #if (LARGE_FLASH == true && ( BEEPER > 0 || defined(ULTRALCD) || defined(LCD_USE_I2C_BUZZER)))
  5227. case 300: // M300
  5228. {
  5229. int beepS = code_seen('S') ? code_value() : 110;
  5230. int beepP = code_seen('P') ? code_value() : 1000;
  5231. if (beepS > 0)
  5232. {
  5233. #if BEEPER > 0
  5234. tone(BEEPER, beepS);
  5235. delay(beepP);
  5236. noTone(BEEPER);
  5237. #endif
  5238. }
  5239. else
  5240. {
  5241. delay(beepP);
  5242. }
  5243. }
  5244. break;
  5245. #endif // M300
  5246. #ifdef PIDTEMP
  5247. case 301: // M301
  5248. {
  5249. if(code_seen('P')) Kp = code_value();
  5250. if(code_seen('I')) Ki = scalePID_i(code_value());
  5251. if(code_seen('D')) Kd = scalePID_d(code_value());
  5252. #ifdef PID_ADD_EXTRUSION_RATE
  5253. if(code_seen('C')) Kc = code_value();
  5254. #endif
  5255. updatePID();
  5256. SERIAL_PROTOCOLRPGM(_T(MSG_OK));
  5257. SERIAL_PROTOCOL(" p:");
  5258. SERIAL_PROTOCOL(Kp);
  5259. SERIAL_PROTOCOL(" i:");
  5260. SERIAL_PROTOCOL(unscalePID_i(Ki));
  5261. SERIAL_PROTOCOL(" d:");
  5262. SERIAL_PROTOCOL(unscalePID_d(Kd));
  5263. #ifdef PID_ADD_EXTRUSION_RATE
  5264. SERIAL_PROTOCOL(" c:");
  5265. //Kc does not have scaling applied above, or in resetting defaults
  5266. SERIAL_PROTOCOL(Kc);
  5267. #endif
  5268. SERIAL_PROTOCOLLN("");
  5269. }
  5270. break;
  5271. #endif //PIDTEMP
  5272. #ifdef PIDTEMPBED
  5273. case 304: // M304
  5274. {
  5275. if(code_seen('P')) bedKp = code_value();
  5276. if(code_seen('I')) bedKi = scalePID_i(code_value());
  5277. if(code_seen('D')) bedKd = scalePID_d(code_value());
  5278. updatePID();
  5279. SERIAL_PROTOCOLRPGM(_T(MSG_OK));
  5280. SERIAL_PROTOCOL(" p:");
  5281. SERIAL_PROTOCOL(bedKp);
  5282. SERIAL_PROTOCOL(" i:");
  5283. SERIAL_PROTOCOL(unscalePID_i(bedKi));
  5284. SERIAL_PROTOCOL(" d:");
  5285. SERIAL_PROTOCOL(unscalePID_d(bedKd));
  5286. SERIAL_PROTOCOLLN("");
  5287. }
  5288. break;
  5289. #endif //PIDTEMP
  5290. case 240: // M240 Triggers a camera by emulating a Canon RC-1 : http://www.doc-diy.net/photo/rc-1_hacked/
  5291. {
  5292. #ifdef CHDK
  5293. SET_OUTPUT(CHDK);
  5294. WRITE(CHDK, HIGH);
  5295. chdkHigh = millis();
  5296. chdkActive = true;
  5297. #else
  5298. #if defined(PHOTOGRAPH_PIN) && PHOTOGRAPH_PIN > -1
  5299. const uint8_t NUM_PULSES=16;
  5300. const float PULSE_LENGTH=0.01524;
  5301. for(int i=0; i < NUM_PULSES; i++) {
  5302. WRITE(PHOTOGRAPH_PIN, HIGH);
  5303. _delay_ms(PULSE_LENGTH);
  5304. WRITE(PHOTOGRAPH_PIN, LOW);
  5305. _delay_ms(PULSE_LENGTH);
  5306. }
  5307. delay(7.33);
  5308. for(int i=0; i < NUM_PULSES; i++) {
  5309. WRITE(PHOTOGRAPH_PIN, HIGH);
  5310. _delay_ms(PULSE_LENGTH);
  5311. WRITE(PHOTOGRAPH_PIN, LOW);
  5312. _delay_ms(PULSE_LENGTH);
  5313. }
  5314. #endif
  5315. #endif //chdk end if
  5316. }
  5317. break;
  5318. #ifdef PREVENT_DANGEROUS_EXTRUDE
  5319. case 302: // allow cold extrudes, or set the minimum extrude temperature
  5320. {
  5321. float temp = .0;
  5322. if (code_seen('S')) temp=code_value();
  5323. set_extrude_min_temp(temp);
  5324. }
  5325. break;
  5326. #endif
  5327. case 303: // M303 PID autotune
  5328. {
  5329. float temp = 150.0;
  5330. int e=0;
  5331. int c=5;
  5332. if (code_seen('E')) e=code_value();
  5333. if (e<0)
  5334. temp=70;
  5335. if (code_seen('S')) temp=code_value();
  5336. if (code_seen('C')) c=code_value();
  5337. PID_autotune(temp, e, c);
  5338. }
  5339. break;
  5340. case 400: // M400 finish all moves
  5341. {
  5342. st_synchronize();
  5343. }
  5344. break;
  5345. case 500: // M500 Store settings in EEPROM
  5346. {
  5347. Config_StoreSettings(EEPROM_OFFSET);
  5348. }
  5349. break;
  5350. case 501: // M501 Read settings from EEPROM
  5351. {
  5352. Config_RetrieveSettings(EEPROM_OFFSET);
  5353. }
  5354. break;
  5355. case 502: // M502 Revert to default settings
  5356. {
  5357. Config_ResetDefault();
  5358. }
  5359. break;
  5360. case 503: // M503 print settings currently in memory
  5361. {
  5362. Config_PrintSettings();
  5363. }
  5364. break;
  5365. case 509: //M509 Force language selection
  5366. {
  5367. lang_reset();
  5368. SERIAL_ECHO_START;
  5369. SERIAL_PROTOCOLPGM(("LANG SEL FORCED"));
  5370. }
  5371. break;
  5372. #ifdef ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED
  5373. case 540:
  5374. {
  5375. if(code_seen('S')) abort_on_endstop_hit = code_value() > 0;
  5376. }
  5377. break;
  5378. #endif
  5379. #ifdef CUSTOM_M_CODE_SET_Z_PROBE_OFFSET
  5380. case CUSTOM_M_CODE_SET_Z_PROBE_OFFSET:
  5381. {
  5382. float value;
  5383. if (code_seen('Z'))
  5384. {
  5385. value = code_value();
  5386. if ((Z_PROBE_OFFSET_RANGE_MIN <= value) && (value <= Z_PROBE_OFFSET_RANGE_MAX))
  5387. {
  5388. zprobe_zoffset = -value; // compare w/ line 278 of ConfigurationStore.cpp
  5389. SERIAL_ECHO_START;
  5390. SERIAL_ECHOLNRPGM(CAT4(MSG_ZPROBE_ZOFFSET, " ", _T(MSG_OK),PSTR("")));
  5391. SERIAL_PROTOCOLLN("");
  5392. }
  5393. else
  5394. {
  5395. SERIAL_ECHO_START;
  5396. SERIAL_ECHORPGM(MSG_ZPROBE_ZOFFSET);
  5397. SERIAL_ECHORPGM(MSG_Z_MIN);
  5398. SERIAL_ECHO(Z_PROBE_OFFSET_RANGE_MIN);
  5399. SERIAL_ECHORPGM(MSG_Z_MAX);
  5400. SERIAL_ECHO(Z_PROBE_OFFSET_RANGE_MAX);
  5401. SERIAL_PROTOCOLLN("");
  5402. }
  5403. }
  5404. else
  5405. {
  5406. SERIAL_ECHO_START;
  5407. SERIAL_ECHOLNRPGM(CAT2(MSG_ZPROBE_ZOFFSET, PSTR(" : ")));
  5408. SERIAL_ECHO(-zprobe_zoffset);
  5409. SERIAL_PROTOCOLLN("");
  5410. }
  5411. break;
  5412. }
  5413. #endif // CUSTOM_M_CODE_SET_Z_PROBE_OFFSET
  5414. #ifdef FILAMENTCHANGEENABLE
  5415. case 600: //Pause for filament change X[pos] Y[pos] Z[relative lift] E[initial retract] L[later retract distance for removal]
  5416. {
  5417. #ifdef PAT9125
  5418. bool old_fsensor_enabled = fsensor_enabled;
  5419. fsensor_enabled = false; //temporary solution for unexpected restarting
  5420. #endif //PAT9125
  5421. st_synchronize();
  5422. float target[4];
  5423. float lastpos[4];
  5424. if (farm_mode)
  5425. {
  5426. prusa_statistics(22);
  5427. }
  5428. feedmultiplyBckp=feedmultiply;
  5429. int8_t TooLowZ = 0;
  5430. float HotendTempBckp = degTargetHotend(active_extruder);
  5431. int fanSpeedBckp = fanSpeed;
  5432. target[X_AXIS]=current_position[X_AXIS];
  5433. target[Y_AXIS]=current_position[Y_AXIS];
  5434. target[Z_AXIS]=current_position[Z_AXIS];
  5435. target[E_AXIS]=current_position[E_AXIS];
  5436. lastpos[X_AXIS]=current_position[X_AXIS];
  5437. lastpos[Y_AXIS]=current_position[Y_AXIS];
  5438. lastpos[Z_AXIS]=current_position[Z_AXIS];
  5439. lastpos[E_AXIS]=current_position[E_AXIS];
  5440. //Restract extruder
  5441. if(code_seen('E'))
  5442. {
  5443. target[E_AXIS]+= code_value();
  5444. }
  5445. else
  5446. {
  5447. #ifdef FILAMENTCHANGE_FIRSTRETRACT
  5448. target[E_AXIS]+= FILAMENTCHANGE_FIRSTRETRACT ;
  5449. #endif
  5450. }
  5451. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_RFEED, active_extruder);
  5452. //Lift Z
  5453. if(code_seen('Z'))
  5454. {
  5455. target[Z_AXIS]+= code_value();
  5456. }
  5457. else
  5458. {
  5459. #ifdef FILAMENTCHANGE_ZADD
  5460. target[Z_AXIS]+= FILAMENTCHANGE_ZADD ;
  5461. if(target[Z_AXIS] < 10){
  5462. target[Z_AXIS]+= 10 ;
  5463. TooLowZ = 1;
  5464. }else{
  5465. TooLowZ = 0;
  5466. }
  5467. #endif
  5468. }
  5469. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_ZFEED, active_extruder);
  5470. //Move XY to side
  5471. if(code_seen('X'))
  5472. {
  5473. target[X_AXIS]+= code_value();
  5474. }
  5475. else
  5476. {
  5477. #ifdef FILAMENTCHANGE_XPOS
  5478. target[X_AXIS]= FILAMENTCHANGE_XPOS ;
  5479. #endif
  5480. }
  5481. if(code_seen('Y'))
  5482. {
  5483. target[Y_AXIS]= code_value();
  5484. }
  5485. else
  5486. {
  5487. #ifdef FILAMENTCHANGE_YPOS
  5488. target[Y_AXIS]= FILAMENTCHANGE_YPOS ;
  5489. #endif
  5490. }
  5491. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_XYFEED, active_extruder);
  5492. st_synchronize();
  5493. KEEPALIVE_STATE(PAUSED_FOR_USER);
  5494. uint8_t cnt = 0;
  5495. int counterBeep = 0;
  5496. fanSpeed = 0;
  5497. unsigned long waiting_start_time = millis();
  5498. uint8_t wait_for_user_state = 0;
  5499. lcd_display_message_fullscreen_P(_T(MSG_PRESS_TO_UNLOAD));
  5500. while (!(wait_for_user_state == 0 && lcd_clicked())){
  5501. //cnt++;
  5502. manage_heater();
  5503. manage_inactivity(true);
  5504. /*#ifdef SNMM
  5505. target[E_AXIS] += 0.002;
  5506. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 500, active_extruder);
  5507. #endif // SNMM*/
  5508. //if (cnt == 0)
  5509. {
  5510. #if BEEPER > 0
  5511. if (counterBeep == 500) {
  5512. counterBeep = 0;
  5513. }
  5514. SET_OUTPUT(BEEPER);
  5515. if (counterBeep == 0) {
  5516. WRITE(BEEPER, HIGH);
  5517. }
  5518. if (counterBeep == 20) {
  5519. WRITE(BEEPER, LOW);
  5520. }
  5521. counterBeep++;
  5522. #else
  5523. #endif
  5524. }
  5525. switch (wait_for_user_state) {
  5526. case 0:
  5527. delay_keep_alive(4);
  5528. if (millis() > waiting_start_time + (unsigned long)M600_TIMEOUT * 1000) {
  5529. lcd_display_message_fullscreen_P(_i("Press knob to preheat nozzle and continue."));////MSG_PRESS_TO_PREHEAT c=20 r=4
  5530. wait_for_user_state = 1;
  5531. setTargetHotend(0, 0);
  5532. setTargetHotend(0, 1);
  5533. setTargetHotend(0, 2);
  5534. st_synchronize();
  5535. disable_e0();
  5536. disable_e1();
  5537. disable_e2();
  5538. }
  5539. break;
  5540. case 1:
  5541. delay_keep_alive(4);
  5542. if (lcd_clicked()) {
  5543. setTargetHotend(HotendTempBckp, active_extruder);
  5544. lcd_wait_for_heater();
  5545. wait_for_user_state = 2;
  5546. }
  5547. break;
  5548. case 2:
  5549. if (abs(degTargetHotend(active_extruder) - degHotend(active_extruder)) < 1) {
  5550. lcd_display_message_fullscreen_P(_T(MSG_PRESS_TO_UNLOAD));
  5551. waiting_start_time = millis();
  5552. wait_for_user_state = 0;
  5553. }
  5554. else {
  5555. counterBeep = 20; //beeper will be inactive during waiting for nozzle preheat
  5556. lcd_set_cursor(1, 4);
  5557. lcd_print(ftostr3(degHotend(active_extruder)));
  5558. }
  5559. break;
  5560. }
  5561. }
  5562. WRITE(BEEPER, LOW);
  5563. lcd_change_fil_state = 0;
  5564. // Unload filament
  5565. lcd_display_message_fullscreen_P(_T(MSG_UNLOADING_FILAMENT));
  5566. KEEPALIVE_STATE(IN_HANDLER);
  5567. custom_message = true;
  5568. lcd_setstatuspgm(_T(MSG_UNLOADING_FILAMENT));
  5569. if (code_seen('L'))
  5570. {
  5571. target[E_AXIS] += code_value();
  5572. }
  5573. else
  5574. {
  5575. #ifdef SNMM
  5576. #else
  5577. #ifdef FILAMENTCHANGE_FINALRETRACT
  5578. target[E_AXIS] += FILAMENTCHANGE_FINALRETRACT;
  5579. #endif
  5580. #endif // SNMM
  5581. }
  5582. #ifdef SNMM
  5583. target[E_AXIS] += 12;
  5584. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 3500, active_extruder);
  5585. target[E_AXIS] += 6;
  5586. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 5000, active_extruder);
  5587. target[E_AXIS] += (FIL_LOAD_LENGTH * -1);
  5588. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 5000, active_extruder);
  5589. st_synchronize();
  5590. target[E_AXIS] += (FIL_COOLING);
  5591. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 50, active_extruder);
  5592. target[E_AXIS] += (FIL_COOLING*-1);
  5593. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 50, active_extruder);
  5594. target[E_AXIS] += (bowden_length[snmm_extruder] * -1);
  5595. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 3000, active_extruder);
  5596. st_synchronize();
  5597. #else
  5598. // plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_RFEED, active_extruder);
  5599. //plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 3500 / 60, active_extruder);
  5600. target[E_AXIS] -= FILAMENTCHANGE_FINALRETRACT;
  5601. st_synchronize();
  5602. #ifdef TMC2130
  5603. uint8_t tmc2130_current_r_bckp = tmc2130_current_r[E_AXIS];
  5604. tmc2130_set_current_r(E_AXIS, TMC2130_UNLOAD_CURRENT_R);
  5605. #else
  5606. st_current_set(2, 200); //set lower E motor current for unload to protect filament sensor and ptfe tube
  5607. float tmp_motor[3] = DEFAULT_PWM_MOTOR_CURRENT;
  5608. float tmp_motor_loud[3] = DEFAULT_PWM_MOTOR_CURRENT_LOUD;
  5609. #endif //TMC2130
  5610. target[E_AXIS] -= 45;
  5611. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 5200 / 60, active_extruder);
  5612. st_synchronize();
  5613. target[E_AXIS] -= 15;
  5614. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 1000 / 60, active_extruder);
  5615. st_synchronize();
  5616. target[E_AXIS] -= 20;
  5617. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 1000 / 60, active_extruder);
  5618. st_synchronize();
  5619. #ifdef TMC2130
  5620. tmc2130_set_current_r(E_AXIS, tmc2130_current_r_bckp);
  5621. #else
  5622. uint8_t silentMode = eeprom_read_byte((uint8_t*)EEPROM_SILENT);
  5623. if(silentMode != SILENT_MODE_POWER) st_current_set(2, tmp_motor[2]); //set E back to normal operation currents
  5624. else st_current_set(2, tmp_motor_loud[2]);
  5625. #endif //TMC2130
  5626. #endif // SNMM
  5627. //finish moves
  5628. st_synchronize();
  5629. lcd_display_message_fullscreen_P(_T(MSG_PULL_OUT_FILAMENT));
  5630. //disable extruder steppers so filament can be removed
  5631. disable_e0();
  5632. disable_e1();
  5633. disable_e2();
  5634. delay(100);
  5635. WRITE(BEEPER, HIGH);
  5636. counterBeep = 0;
  5637. while(!lcd_clicked() && (counterBeep < 50)) {
  5638. if(counterBeep > 5) WRITE(BEEPER, LOW);
  5639. delay_keep_alive(100);
  5640. counterBeep++;
  5641. }
  5642. WRITE(BEEPER, LOW);
  5643. KEEPALIVE_STATE(PAUSED_FOR_USER);
  5644. lcd_change_fil_state = lcd_show_fullscreen_message_yes_no_and_wait_P(_i("Was filament unload successful?"), false, true);////MSG_UNLOAD_SUCCESSFUL c=20 r=2
  5645. if (lcd_change_fil_state == 0) lcd_show_fullscreen_message_and_wait_P(_i("Please open idler and remove filament manually."));////MSG_CHECK_IDLER c=20 r=4
  5646. //lcd_return_to_status();
  5647. lcd_update_enable(true);
  5648. //Wait for user to insert filament
  5649. lcd_wait_interact();
  5650. //load_filament_time = millis();
  5651. KEEPALIVE_STATE(PAUSED_FOR_USER);
  5652. #ifdef PAT9125
  5653. if (filament_autoload_enabled && (old_fsensor_enabled || fsensor_M600)) fsensor_autoload_check_start();
  5654. #endif //PAT9125
  5655. // printf_P(PSTR("M600 PAT9125 filament_autoload_enabled=%d, old_fsensor_enabled=%d, fsensor_M600=%d"), filament_autoload_enabled, old_fsensor_enabled, fsensor_M600);
  5656. while(!lcd_clicked())
  5657. {
  5658. manage_heater();
  5659. manage_inactivity(true);
  5660. #ifdef PAT9125
  5661. if (filament_autoload_enabled && (old_fsensor_enabled || fsensor_M600) && fsensor_check_autoload())
  5662. {
  5663. tone(BEEPER, 1000);
  5664. delay_keep_alive(50);
  5665. noTone(BEEPER);
  5666. break;
  5667. }
  5668. #endif //PAT9125
  5669. /*#ifdef SNMM
  5670. target[E_AXIS] += 0.002;
  5671. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 500, active_extruder);
  5672. #endif // SNMM*/
  5673. }
  5674. #ifdef PAT9125
  5675. if (filament_autoload_enabled && (old_fsensor_enabled || fsensor_M600)) fsensor_autoload_check_stop();
  5676. #endif //PAT9125
  5677. //WRITE(BEEPER, LOW);
  5678. KEEPALIVE_STATE(IN_HANDLER);
  5679. #ifdef SNMM
  5680. display_loading();
  5681. KEEPALIVE_STATE(PAUSED_FOR_USER);
  5682. do {
  5683. target[E_AXIS] += 0.002;
  5684. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 500, active_extruder);
  5685. delay_keep_alive(2);
  5686. } while (!lcd_clicked());
  5687. KEEPALIVE_STATE(IN_HANDLER);
  5688. /*if (millis() - load_filament_time > 2) {
  5689. load_filament_time = millis();
  5690. target[E_AXIS] += 0.001;
  5691. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 1000, active_extruder);
  5692. }*/
  5693. //Filament inserted
  5694. //Feed the filament to the end of nozzle quickly
  5695. st_synchronize();
  5696. target[E_AXIS] += bowden_length[snmm_extruder];
  5697. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 3000, active_extruder);
  5698. target[E_AXIS] += FIL_LOAD_LENGTH - 60;
  5699. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 1400, active_extruder);
  5700. target[E_AXIS] += 40;
  5701. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 400, active_extruder);
  5702. target[E_AXIS] += 10;
  5703. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 50, active_extruder);
  5704. #else
  5705. target[E_AXIS] += FILAMENTCHANGE_FIRSTFEED;
  5706. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_EFEED, active_extruder);
  5707. #endif // SNMM
  5708. //Extrude some filament
  5709. target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  5710. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_EXFEED, active_extruder);
  5711. //Wait for user to check the state
  5712. lcd_change_fil_state = 0;
  5713. lcd_loading_filament();
  5714. tone(BEEPER, 500);
  5715. delay_keep_alive(50);
  5716. noTone(BEEPER);
  5717. while ((lcd_change_fil_state == 0)||(lcd_change_fil_state != 1)){
  5718. lcd_change_fil_state = 0;
  5719. KEEPALIVE_STATE(PAUSED_FOR_USER);
  5720. lcd_alright();
  5721. KEEPALIVE_STATE(IN_HANDLER);
  5722. switch(lcd_change_fil_state){
  5723. // Filament failed to load so load it again
  5724. case 2:
  5725. #ifdef SNMM
  5726. display_loading();
  5727. do {
  5728. target[E_AXIS] += 0.002;
  5729. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 500, active_extruder);
  5730. delay_keep_alive(2);
  5731. } while (!lcd_clicked());
  5732. st_synchronize();
  5733. target[E_AXIS] += bowden_length[snmm_extruder];
  5734. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 3000, active_extruder);
  5735. target[E_AXIS] += FIL_LOAD_LENGTH - 60;
  5736. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 1400, active_extruder);
  5737. target[E_AXIS] += 40;
  5738. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 400, active_extruder);
  5739. target[E_AXIS] += 10;
  5740. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 50, active_extruder);
  5741. #else
  5742. target[E_AXIS]+= FILAMENTCHANGE_FIRSTFEED ;
  5743. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_EFEED, active_extruder);
  5744. #endif
  5745. target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  5746. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_EXFEED, active_extruder);
  5747. lcd_loading_filament();
  5748. break;
  5749. // Filament loaded properly but color is not clear
  5750. case 3:
  5751. target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  5752. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder);
  5753. lcd_loading_color();
  5754. break;
  5755. // Everything good
  5756. default:
  5757. lcd_change_success();
  5758. lcd_update_enable(true);
  5759. break;
  5760. }
  5761. }
  5762. //Not let's go back to print
  5763. fanSpeed = fanSpeedBckp;
  5764. //Feed a little of filament to stabilize pressure
  5765. target[E_AXIS]+= FILAMENTCHANGE_RECFEED;
  5766. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_EXFEED, active_extruder);
  5767. //Retract
  5768. target[E_AXIS]+= FILAMENTCHANGE_FIRSTRETRACT;
  5769. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_RFEED, active_extruder);
  5770. //plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 70, active_extruder); //should do nothing
  5771. //Move XY back
  5772. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_XYFEED, active_extruder);
  5773. //Move Z back
  5774. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_ZFEED, active_extruder);
  5775. target[E_AXIS]= target[E_AXIS] - FILAMENTCHANGE_FIRSTRETRACT;
  5776. //Unretract
  5777. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_RFEED, active_extruder);
  5778. //Set E position to original
  5779. plan_set_e_position(lastpos[E_AXIS]);
  5780. //Recover feed rate
  5781. feedmultiply=feedmultiplyBckp;
  5782. char cmd[9];
  5783. sprintf_P(cmd, PSTR("M220 S%i"), feedmultiplyBckp);
  5784. enquecommand(cmd);
  5785. lcd_setstatuspgm(_T(WELCOME_MSG));
  5786. custom_message = false;
  5787. custom_message_type = 0;
  5788. #ifdef PAT9125
  5789. fsensor_enabled = old_fsensor_enabled; //temporary solution for unexpected restarting
  5790. if (fsensor_M600)
  5791. {
  5792. cmdqueue_pop_front(); //hack because M600 repeated 2x when enqueued to front
  5793. st_synchronize();
  5794. while (!is_buffer_empty())
  5795. {
  5796. process_commands();
  5797. cmdqueue_pop_front();
  5798. }
  5799. KEEPALIVE_STATE(IN_HANDLER);
  5800. fsensor_enable();
  5801. fsensor_restore_print_and_continue();
  5802. }
  5803. #endif //PAT9125
  5804. }
  5805. break;
  5806. #endif //FILAMENTCHANGEENABLE
  5807. case 601: {
  5808. if(lcd_commands_type == 0) lcd_commands_type = LCD_COMMAND_LONG_PAUSE;
  5809. }
  5810. break;
  5811. case 602: {
  5812. if(lcd_commands_type == 0) lcd_commands_type = LCD_COMMAND_LONG_PAUSE_RESUME;
  5813. }
  5814. break;
  5815. #ifdef PINDA_THERMISTOR
  5816. case 860: // M860 - Wait for PINDA thermistor to reach target temperature.
  5817. {
  5818. int set_target_pinda = 0;
  5819. if (code_seen('S')) {
  5820. set_target_pinda = code_value();
  5821. }
  5822. else {
  5823. break;
  5824. }
  5825. LCD_MESSAGERPGM(_T(MSG_PLEASE_WAIT));
  5826. SERIAL_PROTOCOLPGM("Wait for PINDA target temperature:");
  5827. SERIAL_PROTOCOL(set_target_pinda);
  5828. SERIAL_PROTOCOLLN("");
  5829. codenum = millis();
  5830. cancel_heatup = false;
  5831. bool is_pinda_cooling = false;
  5832. if ((degTargetBed() == 0) && (degTargetHotend(0) == 0)) {
  5833. is_pinda_cooling = true;
  5834. }
  5835. while ( ((!is_pinda_cooling) && (!cancel_heatup) && (current_temperature_pinda < set_target_pinda)) || (is_pinda_cooling && (current_temperature_pinda > set_target_pinda)) ) {
  5836. if ((millis() - codenum) > 1000) //Print Temp Reading every 1 second while waiting.
  5837. {
  5838. SERIAL_PROTOCOLPGM("P:");
  5839. SERIAL_PROTOCOL_F(current_temperature_pinda, 1);
  5840. SERIAL_PROTOCOLPGM("/");
  5841. SERIAL_PROTOCOL(set_target_pinda);
  5842. SERIAL_PROTOCOLLN("");
  5843. codenum = millis();
  5844. }
  5845. manage_heater();
  5846. manage_inactivity();
  5847. lcd_update(0);
  5848. }
  5849. LCD_MESSAGERPGM(_T(MSG_OK));
  5850. break;
  5851. }
  5852. case 861: // M861 - Set/Read PINDA temperature compensation offsets
  5853. if (code_seen('?')) { // ? - Print out current EEPROM offset values
  5854. uint8_t cal_status = calibration_status_pinda();
  5855. int16_t usteps = 0;
  5856. cal_status ? SERIAL_PROTOCOLLN("PINDA cal status: 1") : SERIAL_PROTOCOLLN("PINDA cal status: 0");
  5857. SERIAL_PROTOCOLLN("index, temp, ustep, um");
  5858. for (uint8_t i = 0; i < 6; i++)
  5859. {
  5860. if(i>0) EEPROM_read_B(EEPROM_PROBE_TEMP_SHIFT + (i-1) * 2, &usteps);
  5861. float mm = ((float)usteps) / axis_steps_per_unit[Z_AXIS];
  5862. i == 0 ? SERIAL_PROTOCOLPGM("n/a") : SERIAL_PROTOCOL(i - 1);
  5863. SERIAL_PROTOCOLPGM(", ");
  5864. SERIAL_PROTOCOL(35 + (i * 5));
  5865. SERIAL_PROTOCOLPGM(", ");
  5866. SERIAL_PROTOCOL(usteps);
  5867. SERIAL_PROTOCOLPGM(", ");
  5868. SERIAL_PROTOCOL(mm * 1000);
  5869. SERIAL_PROTOCOLLN("");
  5870. }
  5871. }
  5872. else if (code_seen('!')) { // ! - Set factory default values
  5873. eeprom_write_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 1);
  5874. int16_t z_shift = 8; //40C - 20um - 8usteps
  5875. EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT, &z_shift);
  5876. z_shift = 24; //45C - 60um - 24usteps
  5877. EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + 2, &z_shift);
  5878. z_shift = 48; //50C - 120um - 48usteps
  5879. EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + 4, &z_shift);
  5880. z_shift = 80; //55C - 200um - 80usteps
  5881. EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + 6, &z_shift);
  5882. z_shift = 120; //60C - 300um - 120usteps
  5883. EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + 8, &z_shift);
  5884. SERIAL_PROTOCOLLN("factory restored");
  5885. }
  5886. else if (code_seen('Z')) { // Z - Set all values to 0 (effectively disabling PINDA temperature compensation)
  5887. eeprom_write_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 1);
  5888. int16_t z_shift = 0;
  5889. for (uint8_t i = 0; i < 5; i++) EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + i * 2, &z_shift);
  5890. SERIAL_PROTOCOLLN("zerorized");
  5891. }
  5892. else if (code_seen('S')) { // Sxxx Iyyy - Set compensation ustep value S for compensation table index I
  5893. int16_t usteps = code_value();
  5894. if (code_seen('I')) {
  5895. byte index = code_value();
  5896. if ((index >= 0) && (index < 5)) {
  5897. EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + index * 2, &usteps);
  5898. SERIAL_PROTOCOLLN("OK");
  5899. SERIAL_PROTOCOLLN("index, temp, ustep, um");
  5900. for (uint8_t i = 0; i < 6; i++)
  5901. {
  5902. usteps = 0;
  5903. if (i>0) EEPROM_read_B(EEPROM_PROBE_TEMP_SHIFT + (i - 1) * 2, &usteps);
  5904. float mm = ((float)usteps) / axis_steps_per_unit[Z_AXIS];
  5905. i == 0 ? SERIAL_PROTOCOLPGM("n/a") : SERIAL_PROTOCOL(i - 1);
  5906. SERIAL_PROTOCOLPGM(", ");
  5907. SERIAL_PROTOCOL(35 + (i * 5));
  5908. SERIAL_PROTOCOLPGM(", ");
  5909. SERIAL_PROTOCOL(usteps);
  5910. SERIAL_PROTOCOLPGM(", ");
  5911. SERIAL_PROTOCOL(mm * 1000);
  5912. SERIAL_PROTOCOLLN("");
  5913. }
  5914. }
  5915. }
  5916. }
  5917. else {
  5918. SERIAL_PROTOCOLPGM("no valid command");
  5919. }
  5920. break;
  5921. #endif //PINDA_THERMISTOR
  5922. #ifdef LIN_ADVANCE
  5923. case 900: // M900: Set LIN_ADVANCE options.
  5924. gcode_M900();
  5925. break;
  5926. #endif
  5927. case 907: // M907 Set digital trimpot motor current using axis codes.
  5928. {
  5929. #if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
  5930. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) st_current_set(i,code_value());
  5931. if(code_seen('B')) st_current_set(4,code_value());
  5932. if(code_seen('S')) for(int i=0;i<=4;i++) st_current_set(i,code_value());
  5933. #endif
  5934. #ifdef MOTOR_CURRENT_PWM_XY_PIN
  5935. if(code_seen('X')) st_current_set(0, code_value());
  5936. #endif
  5937. #ifdef MOTOR_CURRENT_PWM_Z_PIN
  5938. if(code_seen('Z')) st_current_set(1, code_value());
  5939. #endif
  5940. #ifdef MOTOR_CURRENT_PWM_E_PIN
  5941. if(code_seen('E')) st_current_set(2, code_value());
  5942. #endif
  5943. }
  5944. break;
  5945. case 908: // M908 Control digital trimpot directly.
  5946. {
  5947. #if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
  5948. uint8_t channel,current;
  5949. if(code_seen('P')) channel=code_value();
  5950. if(code_seen('S')) current=code_value();
  5951. digitalPotWrite(channel, current);
  5952. #endif
  5953. }
  5954. break;
  5955. #ifdef TMC2130
  5956. case 910: // M910 TMC2130 init
  5957. {
  5958. tmc2130_init();
  5959. }
  5960. break;
  5961. case 911: // M911 Set TMC2130 holding currents
  5962. {
  5963. if (code_seen('X')) tmc2130_set_current_h(0, code_value());
  5964. if (code_seen('Y')) tmc2130_set_current_h(1, code_value());
  5965. if (code_seen('Z')) tmc2130_set_current_h(2, code_value());
  5966. if (code_seen('E')) tmc2130_set_current_h(3, code_value());
  5967. }
  5968. break;
  5969. case 912: // M912 Set TMC2130 running currents
  5970. {
  5971. if (code_seen('X')) tmc2130_set_current_r(0, code_value());
  5972. if (code_seen('Y')) tmc2130_set_current_r(1, code_value());
  5973. if (code_seen('Z')) tmc2130_set_current_r(2, code_value());
  5974. if (code_seen('E')) tmc2130_set_current_r(3, code_value());
  5975. }
  5976. break;
  5977. case 913: // M913 Print TMC2130 currents
  5978. {
  5979. tmc2130_print_currents();
  5980. }
  5981. break;
  5982. case 914: // M914 Set normal mode
  5983. {
  5984. tmc2130_mode = TMC2130_MODE_NORMAL;
  5985. tmc2130_init();
  5986. }
  5987. break;
  5988. case 915: // M915 Set silent mode
  5989. {
  5990. tmc2130_mode = TMC2130_MODE_SILENT;
  5991. tmc2130_init();
  5992. }
  5993. break;
  5994. case 916: // M916 Set sg_thrs
  5995. {
  5996. if (code_seen('X')) tmc2130_sg_thr[X_AXIS] = code_value();
  5997. if (code_seen('Y')) tmc2130_sg_thr[Y_AXIS] = code_value();
  5998. if (code_seen('Z')) tmc2130_sg_thr[Z_AXIS] = code_value();
  5999. if (code_seen('E')) tmc2130_sg_thr[E_AXIS] = code_value();
  6000. for (uint8_t a = X_AXIS; a <= E_AXIS; a++)
  6001. printf_P(_N("tmc2130_sg_thr[%c]=%d\n"), "XYZE"[a], tmc2130_sg_thr[a]);
  6002. }
  6003. break;
  6004. case 917: // M917 Set TMC2130 pwm_ampl
  6005. {
  6006. if (code_seen('X')) tmc2130_set_pwm_ampl(0, code_value());
  6007. if (code_seen('Y')) tmc2130_set_pwm_ampl(1, code_value());
  6008. if (code_seen('Z')) tmc2130_set_pwm_ampl(2, code_value());
  6009. if (code_seen('E')) tmc2130_set_pwm_ampl(3, code_value());
  6010. }
  6011. break;
  6012. case 918: // M918 Set TMC2130 pwm_grad
  6013. {
  6014. if (code_seen('X')) tmc2130_set_pwm_grad(0, code_value());
  6015. if (code_seen('Y')) tmc2130_set_pwm_grad(1, code_value());
  6016. if (code_seen('Z')) tmc2130_set_pwm_grad(2, code_value());
  6017. if (code_seen('E')) tmc2130_set_pwm_grad(3, code_value());
  6018. }
  6019. break;
  6020. #endif //TMC2130
  6021. case 350: // M350 Set microstepping mode. Warning: Steps per unit remains unchanged. S code sets stepping mode for all drivers.
  6022. {
  6023. #ifdef TMC2130
  6024. if(code_seen('E'))
  6025. {
  6026. uint16_t res_new = code_value();
  6027. if ((res_new == 8) || (res_new == 16) || (res_new == 32) || (res_new == 64) || (res_new == 128))
  6028. {
  6029. st_synchronize();
  6030. uint8_t axis = E_AXIS;
  6031. uint16_t res = tmc2130_get_res(axis);
  6032. tmc2130_set_res(axis, res_new);
  6033. if (res_new > res)
  6034. {
  6035. uint16_t fac = (res_new / res);
  6036. axis_steps_per_unit[axis] *= fac;
  6037. position[E_AXIS] *= fac;
  6038. }
  6039. else
  6040. {
  6041. uint16_t fac = (res / res_new);
  6042. axis_steps_per_unit[axis] /= fac;
  6043. position[E_AXIS] /= fac;
  6044. }
  6045. }
  6046. }
  6047. #else //TMC2130
  6048. #if defined(X_MS1_PIN) && X_MS1_PIN > -1
  6049. if(code_seen('S')) for(int i=0;i<=4;i++) microstep_mode(i,code_value());
  6050. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) microstep_mode(i,(uint8_t)code_value());
  6051. if(code_seen('B')) microstep_mode(4,code_value());
  6052. microstep_readings();
  6053. #endif
  6054. #endif //TMC2130
  6055. }
  6056. break;
  6057. case 351: // M351 Toggle MS1 MS2 pins directly, S# determines MS1 or MS2, X# sets the pin high/low.
  6058. {
  6059. #if defined(X_MS1_PIN) && X_MS1_PIN > -1
  6060. if(code_seen('S')) switch((int)code_value())
  6061. {
  6062. case 1:
  6063. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) microstep_ms(i,code_value(),-1);
  6064. if(code_seen('B')) microstep_ms(4,code_value(),-1);
  6065. break;
  6066. case 2:
  6067. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) microstep_ms(i,-1,code_value());
  6068. if(code_seen('B')) microstep_ms(4,-1,code_value());
  6069. break;
  6070. }
  6071. microstep_readings();
  6072. #endif
  6073. }
  6074. break;
  6075. case 701: //M701: load filament
  6076. {
  6077. gcode_M701();
  6078. }
  6079. break;
  6080. case 702:
  6081. {
  6082. #ifdef SNMM
  6083. if (code_seen('U')) {
  6084. extr_unload_used(); //unload all filaments which were used in current print
  6085. }
  6086. else if (code_seen('C')) {
  6087. extr_unload(); //unload just current filament
  6088. }
  6089. else {
  6090. extr_unload_all(); //unload all filaments
  6091. }
  6092. #else
  6093. #ifdef PAT9125
  6094. bool old_fsensor_enabled = fsensor_enabled;
  6095. fsensor_enabled = false;
  6096. #endif //PAT9125
  6097. custom_message = true;
  6098. custom_message_type = 2;
  6099. lcd_setstatuspgm(_T(MSG_UNLOADING_FILAMENT));
  6100. // extr_unload2();
  6101. current_position[E_AXIS] -= 45;
  6102. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 5200 / 60, active_extruder);
  6103. st_synchronize();
  6104. current_position[E_AXIS] -= 15;
  6105. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 1000 / 60, active_extruder);
  6106. st_synchronize();
  6107. current_position[E_AXIS] -= 20;
  6108. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 1000 / 60, active_extruder);
  6109. st_synchronize();
  6110. lcd_display_message_fullscreen_P(_T(MSG_PULL_OUT_FILAMENT));
  6111. //disable extruder steppers so filament can be removed
  6112. disable_e0();
  6113. disable_e1();
  6114. disable_e2();
  6115. delay(100);
  6116. WRITE(BEEPER, HIGH);
  6117. uint8_t counterBeep = 0;
  6118. while (!lcd_clicked() && (counterBeep < 50)) {
  6119. if (counterBeep > 5) WRITE(BEEPER, LOW);
  6120. delay_keep_alive(100);
  6121. counterBeep++;
  6122. }
  6123. WRITE(BEEPER, LOW);
  6124. st_synchronize();
  6125. while (lcd_clicked()) delay_keep_alive(100);
  6126. lcd_update_enable(true);
  6127. lcd_setstatuspgm(_T(WELCOME_MSG));
  6128. custom_message = false;
  6129. custom_message_type = 0;
  6130. #ifdef PAT9125
  6131. fsensor_enabled = old_fsensor_enabled;
  6132. #endif //PAT9125
  6133. #endif
  6134. }
  6135. break;
  6136. case 999: // M999: Restart after being stopped
  6137. Stopped = false;
  6138. lcd_reset_alert_level();
  6139. gcode_LastN = Stopped_gcode_LastN;
  6140. FlushSerialRequestResend();
  6141. break;
  6142. default:
  6143. printf_P(PSTR("Unknown M code: %s \n"), cmdbuffer + bufindr + CMDHDRSIZE);
  6144. }
  6145. } // end if(code_seen('M')) (end of M codes)
  6146. else if(code_seen('T'))
  6147. {
  6148. int index;
  6149. st_synchronize();
  6150. for (index = 1; *(strchr_pointer + index) == ' ' || *(strchr_pointer + index) == '\t'; index++);
  6151. if ((*(strchr_pointer + index) < '0' || *(strchr_pointer + index) > '9') && *(strchr_pointer + index) != '?') {
  6152. SERIAL_ECHOLNPGM("Invalid T code.");
  6153. }
  6154. else {
  6155. if (*(strchr_pointer + index) == '?') {
  6156. tmp_extruder = choose_extruder_menu();
  6157. }
  6158. else {
  6159. tmp_extruder = code_value();
  6160. }
  6161. snmm_filaments_used |= (1 << tmp_extruder); //for stop print
  6162. #ifdef SNMM_V2
  6163. printf_P(PSTR("T code: %d \n"), tmp_extruder);
  6164. switch (tmp_extruder)
  6165. {
  6166. case 1:
  6167. fprintf_P(uart2io, PSTR("T1\n"));
  6168. break;
  6169. case 2:
  6170. fprintf_P(uart2io, PSTR("T2\n"));
  6171. break;
  6172. case 3:
  6173. fprintf_P(uart2io, PSTR("T3\n"));
  6174. break;
  6175. case 4:
  6176. fprintf_P(uart2io, PSTR("T4\n"));
  6177. break;
  6178. default:
  6179. fprintf_P(uart2io, PSTR("T0\n"));
  6180. break;
  6181. }
  6182. // get response
  6183. uart2_rx_clr();
  6184. while (!uart2_rx_ok())
  6185. {
  6186. //printf_P(PSTR("waiting..\n"));
  6187. delay_keep_alive(100);
  6188. }
  6189. #endif
  6190. #ifdef SNMM
  6191. #ifdef LIN_ADVANCE
  6192. if (snmm_extruder != tmp_extruder)
  6193. clear_current_adv_vars(); //Check if the selected extruder is not the active one and reset LIN_ADVANCE variables if so.
  6194. #endif
  6195. snmm_extruder = tmp_extruder;
  6196. delay(100);
  6197. disable_e0();
  6198. disable_e1();
  6199. disable_e2();
  6200. pinMode(E_MUX0_PIN, OUTPUT);
  6201. pinMode(E_MUX1_PIN, OUTPUT);
  6202. delay(100);
  6203. SERIAL_ECHO_START;
  6204. SERIAL_ECHO("T:");
  6205. SERIAL_ECHOLN((int)tmp_extruder);
  6206. switch (tmp_extruder) {
  6207. case 1:
  6208. WRITE(E_MUX0_PIN, HIGH);
  6209. WRITE(E_MUX1_PIN, LOW);
  6210. break;
  6211. case 2:
  6212. WRITE(E_MUX0_PIN, LOW);
  6213. WRITE(E_MUX1_PIN, HIGH);
  6214. break;
  6215. case 3:
  6216. WRITE(E_MUX0_PIN, HIGH);
  6217. WRITE(E_MUX1_PIN, HIGH);
  6218. break;
  6219. default:
  6220. WRITE(E_MUX0_PIN, LOW);
  6221. WRITE(E_MUX1_PIN, LOW);
  6222. break;
  6223. }
  6224. delay(100);
  6225. #else
  6226. if (tmp_extruder >= EXTRUDERS) {
  6227. SERIAL_ECHO_START;
  6228. SERIAL_ECHOPGM("T");
  6229. SERIAL_PROTOCOLLN((int)tmp_extruder);
  6230. SERIAL_ECHOLNRPGM(_n("Invalid extruder"));////MSG_INVALID_EXTRUDER c=0 r=0
  6231. }
  6232. else {
  6233. boolean make_move = false;
  6234. if (code_seen('F')) {
  6235. make_move = true;
  6236. next_feedrate = code_value();
  6237. if (next_feedrate > 0.0) {
  6238. feedrate = next_feedrate;
  6239. }
  6240. }
  6241. #if EXTRUDERS > 1
  6242. if (tmp_extruder != active_extruder) {
  6243. // Save current position to return to after applying extruder offset
  6244. memcpy(destination, current_position, sizeof(destination));
  6245. // Offset extruder (only by XY)
  6246. int i;
  6247. for (i = 0; i < 2; i++) {
  6248. current_position[i] = current_position[i] -
  6249. extruder_offset[i][active_extruder] +
  6250. extruder_offset[i][tmp_extruder];
  6251. }
  6252. // Set the new active extruder and position
  6253. active_extruder = tmp_extruder;
  6254. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  6255. // Move to the old position if 'F' was in the parameters
  6256. if (make_move && Stopped == false) {
  6257. prepare_move();
  6258. }
  6259. }
  6260. #endif
  6261. SERIAL_ECHO_START;
  6262. SERIAL_ECHORPGM(_n("Active Extruder: "));////MSG_ACTIVE_EXTRUDER c=0 r=0
  6263. SERIAL_PROTOCOLLN((int)active_extruder);
  6264. }
  6265. #endif
  6266. }
  6267. } // end if(code_seen('T')) (end of T codes)
  6268. #ifdef DEBUG_DCODES
  6269. else if (code_seen('D')) // D codes (debug)
  6270. {
  6271. switch((int)code_value())
  6272. {
  6273. case -1: // D-1 - Endless loop
  6274. dcode__1(); break;
  6275. case 0: // D0 - Reset
  6276. dcode_0(); break;
  6277. case 1: // D1 - Clear EEPROM
  6278. dcode_1(); break;
  6279. case 2: // D2 - Read/Write RAM
  6280. dcode_2(); break;
  6281. case 3: // D3 - Read/Write EEPROM
  6282. dcode_3(); break;
  6283. case 4: // D4 - Read/Write PIN
  6284. dcode_4(); break;
  6285. case 5: // D5 - Read/Write FLASH
  6286. // dcode_5(); break;
  6287. break;
  6288. case 6: // D6 - Read/Write external FLASH
  6289. dcode_6(); break;
  6290. case 7: // D7 - Read/Write Bootloader
  6291. dcode_7(); break;
  6292. case 8: // D8 - Read/Write PINDA
  6293. dcode_8(); break;
  6294. case 9: // D9 - Read/Write ADC
  6295. dcode_9(); break;
  6296. case 10: // D10 - XYZ calibration = OK
  6297. dcode_10(); break;
  6298. #ifdef TMC2130
  6299. case 2130: // D9125 - TMC2130
  6300. dcode_2130(); break;
  6301. #endif //TMC2130
  6302. #ifdef PAT9125
  6303. case 9125: // D9125 - PAT9125
  6304. dcode_9125(); break;
  6305. #endif //PAT9125
  6306. }
  6307. }
  6308. #endif //DEBUG_DCODES
  6309. else
  6310. {
  6311. SERIAL_ECHO_START;
  6312. SERIAL_ECHORPGM(MSG_UNKNOWN_COMMAND);
  6313. SERIAL_ECHO(CMDBUFFER_CURRENT_STRING);
  6314. SERIAL_ECHOLNPGM("\"(2)");
  6315. }
  6316. KEEPALIVE_STATE(NOT_BUSY);
  6317. ClearToSend();
  6318. }
  6319. void FlushSerialRequestResend()
  6320. {
  6321. //char cmdbuffer[bufindr][100]="Resend:";
  6322. MYSERIAL.flush();
  6323. printf_P(_N("%S: %ld\n%S\n"), _i("Resend"), gcode_LastN + 1, _T(MSG_OK));
  6324. }
  6325. // Confirm the execution of a command, if sent from a serial line.
  6326. // Execution of a command from a SD card will not be confirmed.
  6327. void ClearToSend()
  6328. {
  6329. previous_millis_cmd = millis();
  6330. if ((CMDBUFFER_CURRENT_TYPE == CMDBUFFER_CURRENT_TYPE_USB) || (CMDBUFFER_CURRENT_TYPE == CMDBUFFER_CURRENT_TYPE_USB_WITH_LINENR))
  6331. SERIAL_PROTOCOLLNRPGM(_T(MSG_OK));
  6332. }
  6333. #if MOTHERBOARD == BOARD_RAMBO_MINI_1_0 || MOTHERBOARD == BOARD_RAMBO_MINI_1_3
  6334. void update_currents() {
  6335. float current_high[3] = DEFAULT_PWM_MOTOR_CURRENT_LOUD;
  6336. float current_low[3] = DEFAULT_PWM_MOTOR_CURRENT;
  6337. float tmp_motor[3];
  6338. //SERIAL_ECHOLNPGM("Currents updated: ");
  6339. if (destination[Z_AXIS] < Z_SILENT) {
  6340. //SERIAL_ECHOLNPGM("LOW");
  6341. for (uint8_t i = 0; i < 3; i++) {
  6342. st_current_set(i, current_low[i]);
  6343. /*MYSERIAL.print(int(i));
  6344. SERIAL_ECHOPGM(": ");
  6345. MYSERIAL.println(current_low[i]);*/
  6346. }
  6347. }
  6348. else if (destination[Z_AXIS] > Z_HIGH_POWER) {
  6349. //SERIAL_ECHOLNPGM("HIGH");
  6350. for (uint8_t i = 0; i < 3; i++) {
  6351. st_current_set(i, current_high[i]);
  6352. /*MYSERIAL.print(int(i));
  6353. SERIAL_ECHOPGM(": ");
  6354. MYSERIAL.println(current_high[i]);*/
  6355. }
  6356. }
  6357. else {
  6358. for (uint8_t i = 0; i < 3; i++) {
  6359. float q = current_low[i] - Z_SILENT*((current_high[i] - current_low[i]) / (Z_HIGH_POWER - Z_SILENT));
  6360. tmp_motor[i] = ((current_high[i] - current_low[i]) / (Z_HIGH_POWER - Z_SILENT))*destination[Z_AXIS] + q;
  6361. st_current_set(i, tmp_motor[i]);
  6362. /*MYSERIAL.print(int(i));
  6363. SERIAL_ECHOPGM(": ");
  6364. MYSERIAL.println(tmp_motor[i]);*/
  6365. }
  6366. }
  6367. }
  6368. #endif //MOTHERBOARD == BOARD_RAMBO_MINI_1_0 || MOTHERBOARD == BOARD_RAMBO_MINI_1_3
  6369. void get_coordinates()
  6370. {
  6371. bool seen[4]={false,false,false,false};
  6372. for(int8_t i=0; i < NUM_AXIS; i++) {
  6373. if(code_seen(axis_codes[i]))
  6374. {
  6375. bool relative = axis_relative_modes[i] || relative_mode;
  6376. destination[i] = (float)code_value();
  6377. if (i == E_AXIS) {
  6378. float emult = extruder_multiplier[active_extruder];
  6379. if (emult != 1.) {
  6380. if (! relative) {
  6381. destination[i] -= current_position[i];
  6382. relative = true;
  6383. }
  6384. destination[i] *= emult;
  6385. }
  6386. }
  6387. if (relative)
  6388. destination[i] += current_position[i];
  6389. seen[i]=true;
  6390. #if MOTHERBOARD == BOARD_RAMBO_MINI_1_0 || MOTHERBOARD == BOARD_RAMBO_MINI_1_3
  6391. if (i == Z_AXIS && SilentModeMenu == SILENT_MODE_AUTO) update_currents();
  6392. #endif //MOTHERBOARD == BOARD_RAMBO_MINI_1_0 || MOTHERBOARD == BOARD_RAMBO_MINI_1_3
  6393. }
  6394. else destination[i] = current_position[i]; //Are these else lines really needed?
  6395. }
  6396. if(code_seen('F')) {
  6397. next_feedrate = code_value();
  6398. #ifdef MAX_SILENT_FEEDRATE
  6399. if (tmc2130_mode == TMC2130_MODE_SILENT)
  6400. if (next_feedrate > MAX_SILENT_FEEDRATE) next_feedrate = MAX_SILENT_FEEDRATE;
  6401. #endif //MAX_SILENT_FEEDRATE
  6402. if(next_feedrate > 0.0) feedrate = next_feedrate;
  6403. if (!seen[0] && !seen[1] && !seen[2] && seen[3])
  6404. {
  6405. // float e_max_speed =
  6406. // printf_P(PSTR("E MOVE speed %7.3f\n"), feedrate / 60)
  6407. }
  6408. }
  6409. }
  6410. void get_arc_coordinates()
  6411. {
  6412. #ifdef SF_ARC_FIX
  6413. bool relative_mode_backup = relative_mode;
  6414. relative_mode = true;
  6415. #endif
  6416. get_coordinates();
  6417. #ifdef SF_ARC_FIX
  6418. relative_mode=relative_mode_backup;
  6419. #endif
  6420. if(code_seen('I')) {
  6421. offset[0] = code_value();
  6422. }
  6423. else {
  6424. offset[0] = 0.0;
  6425. }
  6426. if(code_seen('J')) {
  6427. offset[1] = code_value();
  6428. }
  6429. else {
  6430. offset[1] = 0.0;
  6431. }
  6432. }
  6433. void clamp_to_software_endstops(float target[3])
  6434. {
  6435. #ifdef DEBUG_DISABLE_SWLIMITS
  6436. return;
  6437. #endif //DEBUG_DISABLE_SWLIMITS
  6438. world2machine_clamp(target[0], target[1]);
  6439. // Clamp the Z coordinate.
  6440. if (min_software_endstops) {
  6441. float negative_z_offset = 0;
  6442. #ifdef ENABLE_AUTO_BED_LEVELING
  6443. if (Z_PROBE_OFFSET_FROM_EXTRUDER < 0) negative_z_offset = negative_z_offset + Z_PROBE_OFFSET_FROM_EXTRUDER;
  6444. if (add_homing[Z_AXIS] < 0) negative_z_offset = negative_z_offset + add_homing[Z_AXIS];
  6445. #endif
  6446. if (target[Z_AXIS] < min_pos[Z_AXIS]+negative_z_offset) target[Z_AXIS] = min_pos[Z_AXIS]+negative_z_offset;
  6447. }
  6448. if (max_software_endstops) {
  6449. if (target[Z_AXIS] > max_pos[Z_AXIS]) target[Z_AXIS] = max_pos[Z_AXIS];
  6450. }
  6451. }
  6452. #ifdef MESH_BED_LEVELING
  6453. void mesh_plan_buffer_line(const float &x, const float &y, const float &z, const float &e, const float &feed_rate, const uint8_t extruder) {
  6454. float dx = x - current_position[X_AXIS];
  6455. float dy = y - current_position[Y_AXIS];
  6456. float dz = z - current_position[Z_AXIS];
  6457. int n_segments = 0;
  6458. if (mbl.active) {
  6459. float len = abs(dx) + abs(dy);
  6460. if (len > 0)
  6461. // Split to 3cm segments or shorter.
  6462. n_segments = int(ceil(len / 30.f));
  6463. }
  6464. if (n_segments > 1) {
  6465. float de = e - current_position[E_AXIS];
  6466. for (int i = 1; i < n_segments; ++ i) {
  6467. float t = float(i) / float(n_segments);
  6468. if (saved_printing || (mbl.active == false)) return;
  6469. plan_buffer_line(
  6470. current_position[X_AXIS] + t * dx,
  6471. current_position[Y_AXIS] + t * dy,
  6472. current_position[Z_AXIS] + t * dz,
  6473. current_position[E_AXIS] + t * de,
  6474. feed_rate, extruder);
  6475. }
  6476. }
  6477. // The rest of the path.
  6478. plan_buffer_line(x, y, z, e, feed_rate, extruder);
  6479. current_position[X_AXIS] = x;
  6480. current_position[Y_AXIS] = y;
  6481. current_position[Z_AXIS] = z;
  6482. current_position[E_AXIS] = e;
  6483. }
  6484. #endif // MESH_BED_LEVELING
  6485. void prepare_move()
  6486. {
  6487. clamp_to_software_endstops(destination);
  6488. previous_millis_cmd = millis();
  6489. // Do not use feedmultiply for E or Z only moves
  6490. if( (current_position[X_AXIS] == destination [X_AXIS]) && (current_position[Y_AXIS] == destination [Y_AXIS])) {
  6491. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  6492. }
  6493. else {
  6494. #ifdef MESH_BED_LEVELING
  6495. mesh_plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate*feedmultiply*(1./(60.f*100.f)), active_extruder);
  6496. #else
  6497. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate*feedmultiply*(1./(60.f*100.f)), active_extruder);
  6498. #endif
  6499. }
  6500. for(int8_t i=0; i < NUM_AXIS; i++) {
  6501. current_position[i] = destination[i];
  6502. }
  6503. }
  6504. void prepare_arc_move(char isclockwise) {
  6505. float r = hypot(offset[X_AXIS], offset[Y_AXIS]); // Compute arc radius for mc_arc
  6506. // Trace the arc
  6507. mc_arc(current_position, destination, offset, X_AXIS, Y_AXIS, Z_AXIS, feedrate*feedmultiply/60/100.0, r, isclockwise, active_extruder);
  6508. // As far as the parser is concerned, the position is now == target. In reality the
  6509. // motion control system might still be processing the action and the real tool position
  6510. // in any intermediate location.
  6511. for(int8_t i=0; i < NUM_AXIS; i++) {
  6512. current_position[i] = destination[i];
  6513. }
  6514. previous_millis_cmd = millis();
  6515. }
  6516. #if defined(CONTROLLERFAN_PIN) && CONTROLLERFAN_PIN > -1
  6517. #if defined(FAN_PIN)
  6518. #if CONTROLLERFAN_PIN == FAN_PIN
  6519. #error "You cannot set CONTROLLERFAN_PIN equal to FAN_PIN"
  6520. #endif
  6521. #endif
  6522. unsigned long lastMotor = 0; //Save the time for when a motor was turned on last
  6523. unsigned long lastMotorCheck = 0;
  6524. void controllerFan()
  6525. {
  6526. if ((millis() - lastMotorCheck) >= 2500) //Not a time critical function, so we only check every 2500ms
  6527. {
  6528. lastMotorCheck = millis();
  6529. if(!READ(X_ENABLE_PIN) || !READ(Y_ENABLE_PIN) || !READ(Z_ENABLE_PIN) || (soft_pwm_bed > 0)
  6530. #if EXTRUDERS > 2
  6531. || !READ(E2_ENABLE_PIN)
  6532. #endif
  6533. #if EXTRUDER > 1
  6534. #if defined(X2_ENABLE_PIN) && X2_ENABLE_PIN > -1
  6535. || !READ(X2_ENABLE_PIN)
  6536. #endif
  6537. || !READ(E1_ENABLE_PIN)
  6538. #endif
  6539. || !READ(E0_ENABLE_PIN)) //If any of the drivers are enabled...
  6540. {
  6541. lastMotor = millis(); //... set time to NOW so the fan will turn on
  6542. }
  6543. if ((millis() - lastMotor) >= (CONTROLLERFAN_SECS*1000UL) || lastMotor == 0) //If the last time any driver was enabled, is longer since than CONTROLLERSEC...
  6544. {
  6545. digitalWrite(CONTROLLERFAN_PIN, 0);
  6546. analogWrite(CONTROLLERFAN_PIN, 0);
  6547. }
  6548. else
  6549. {
  6550. // allows digital or PWM fan output to be used (see M42 handling)
  6551. digitalWrite(CONTROLLERFAN_PIN, CONTROLLERFAN_SPEED);
  6552. analogWrite(CONTROLLERFAN_PIN, CONTROLLERFAN_SPEED);
  6553. }
  6554. }
  6555. }
  6556. #endif
  6557. #ifdef TEMP_STAT_LEDS
  6558. static bool blue_led = false;
  6559. static bool red_led = false;
  6560. static uint32_t stat_update = 0;
  6561. void handle_status_leds(void) {
  6562. float max_temp = 0.0;
  6563. if(millis() > stat_update) {
  6564. stat_update += 500; // Update every 0.5s
  6565. for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) {
  6566. max_temp = max(max_temp, degHotend(cur_extruder));
  6567. max_temp = max(max_temp, degTargetHotend(cur_extruder));
  6568. }
  6569. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  6570. max_temp = max(max_temp, degTargetBed());
  6571. max_temp = max(max_temp, degBed());
  6572. #endif
  6573. if((max_temp > 55.0) && (red_led == false)) {
  6574. digitalWrite(STAT_LED_RED, 1);
  6575. digitalWrite(STAT_LED_BLUE, 0);
  6576. red_led = true;
  6577. blue_led = false;
  6578. }
  6579. if((max_temp < 54.0) && (blue_led == false)) {
  6580. digitalWrite(STAT_LED_RED, 0);
  6581. digitalWrite(STAT_LED_BLUE, 1);
  6582. red_led = false;
  6583. blue_led = true;
  6584. }
  6585. }
  6586. }
  6587. #endif
  6588. #ifdef SAFETYTIMER
  6589. /**
  6590. * @brief Turn off heating after safetytimer_inactive_time milliseconds of inactivity
  6591. *
  6592. * Full screen blocking notification message is shown after heater turning off.
  6593. * Paused print is not considered inactivity, as nozzle is cooled anyway and bed cooling would
  6594. * damage print.
  6595. *
  6596. * If safetytimer_inactive_time is zero, feature is disabled (heating is never turned off because of inactivity)
  6597. */
  6598. static void handleSafetyTimer()
  6599. {
  6600. #if (EXTRUDERS > 1)
  6601. #error Implemented only for one extruder.
  6602. #endif //(EXTRUDERS > 1)
  6603. if ((PRINTER_ACTIVE) || (!degTargetBed() && !degTargetHotend(0)) || (!safetytimer_inactive_time))
  6604. {
  6605. safetyTimer.stop();
  6606. }
  6607. else if ((degTargetBed() || degTargetHotend(0)) && (!safetyTimer.running()))
  6608. {
  6609. safetyTimer.start();
  6610. }
  6611. else if (safetyTimer.expired(safetytimer_inactive_time))
  6612. {
  6613. setTargetBed(0);
  6614. setTargetHotend(0, 0);
  6615. lcd_show_fullscreen_message_and_wait_P(_i("Heating disabled by safety timer."));////MSG_BED_HEATING_SAFETY_DISABLED c=0 r=0
  6616. }
  6617. }
  6618. #endif //SAFETYTIMER
  6619. void manage_inactivity(bool ignore_stepper_queue/*=false*/) //default argument set in Marlin.h
  6620. {
  6621. #ifdef PAT9125
  6622. if (fsensor_enabled && filament_autoload_enabled && !fsensor_M600 && !moves_planned() && !IS_SD_PRINTING && !is_usb_printing && (lcd_commands_type != LCD_COMMAND_V2_CAL))
  6623. {
  6624. if (fsensor_autoload_enabled)
  6625. {
  6626. if (fsensor_check_autoload())
  6627. {
  6628. if (degHotend0() > EXTRUDE_MINTEMP)
  6629. {
  6630. fsensor_autoload_check_stop();
  6631. tone(BEEPER, 1000);
  6632. delay_keep_alive(50);
  6633. noTone(BEEPER);
  6634. loading_flag = true;
  6635. enquecommand_front_P((PSTR("M701")));
  6636. }
  6637. else
  6638. {
  6639. lcd_update_enable(false);
  6640. lcd_clear();
  6641. lcd_set_cursor(0, 0);
  6642. lcd_puts_P(_T(MSG_ERROR));
  6643. lcd_set_cursor(0, 2);
  6644. lcd_puts_P(_T(MSG_PREHEAT_NOZZLE));
  6645. delay(2000);
  6646. lcd_clear();
  6647. lcd_update_enable(true);
  6648. }
  6649. }
  6650. }
  6651. else
  6652. fsensor_autoload_check_start();
  6653. }
  6654. else
  6655. if (fsensor_autoload_enabled)
  6656. fsensor_autoload_check_stop();
  6657. #endif //PAT9125
  6658. #ifdef SAFETYTIMER
  6659. handleSafetyTimer();
  6660. #endif //SAFETYTIMER
  6661. #if defined(KILL_PIN) && KILL_PIN > -1
  6662. static int killCount = 0; // make the inactivity button a bit less responsive
  6663. const int KILL_DELAY = 10000;
  6664. #endif
  6665. if(buflen < (BUFSIZE-1)){
  6666. get_command();
  6667. }
  6668. if( (millis() - previous_millis_cmd) > max_inactive_time )
  6669. if(max_inactive_time)
  6670. kill(_n(""), 4);
  6671. if(stepper_inactive_time) {
  6672. if( (millis() - previous_millis_cmd) > stepper_inactive_time )
  6673. {
  6674. if(blocks_queued() == false && ignore_stepper_queue == false) {
  6675. disable_x();
  6676. // SERIAL_ECHOLNPGM("manage_inactivity - disable Y");
  6677. disable_y();
  6678. disable_z();
  6679. disable_e0();
  6680. disable_e1();
  6681. disable_e2();
  6682. }
  6683. }
  6684. }
  6685. #ifdef CHDK //Check if pin should be set to LOW after M240 set it to HIGH
  6686. if (chdkActive && (millis() - chdkHigh > CHDK_DELAY))
  6687. {
  6688. chdkActive = false;
  6689. WRITE(CHDK, LOW);
  6690. }
  6691. #endif
  6692. #if defined(KILL_PIN) && KILL_PIN > -1
  6693. // Check if the kill button was pressed and wait just in case it was an accidental
  6694. // key kill key press
  6695. // -------------------------------------------------------------------------------
  6696. if( 0 == READ(KILL_PIN) )
  6697. {
  6698. killCount++;
  6699. }
  6700. else if (killCount > 0)
  6701. {
  6702. killCount--;
  6703. }
  6704. // Exceeded threshold and we can confirm that it was not accidental
  6705. // KILL the machine
  6706. // ----------------------------------------------------------------
  6707. if ( killCount >= KILL_DELAY)
  6708. {
  6709. kill("", 5);
  6710. }
  6711. #endif
  6712. #if defined(CONTROLLERFAN_PIN) && CONTROLLERFAN_PIN > -1
  6713. controllerFan(); //Check if fan should be turned on to cool stepper drivers down
  6714. #endif
  6715. #ifdef EXTRUDER_RUNOUT_PREVENT
  6716. if( (millis() - previous_millis_cmd) > EXTRUDER_RUNOUT_SECONDS*1000 )
  6717. if(degHotend(active_extruder)>EXTRUDER_RUNOUT_MINTEMP)
  6718. {
  6719. bool oldstatus=READ(E0_ENABLE_PIN);
  6720. enable_e0();
  6721. float oldepos=current_position[E_AXIS];
  6722. float oldedes=destination[E_AXIS];
  6723. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS],
  6724. destination[E_AXIS]+EXTRUDER_RUNOUT_EXTRUDE*EXTRUDER_RUNOUT_ESTEPS/axis_steps_per_unit[E_AXIS],
  6725. EXTRUDER_RUNOUT_SPEED/60.*EXTRUDER_RUNOUT_ESTEPS/axis_steps_per_unit[E_AXIS], active_extruder);
  6726. current_position[E_AXIS]=oldepos;
  6727. destination[E_AXIS]=oldedes;
  6728. plan_set_e_position(oldepos);
  6729. previous_millis_cmd=millis();
  6730. st_synchronize();
  6731. WRITE(E0_ENABLE_PIN,oldstatus);
  6732. }
  6733. #endif
  6734. #ifdef TEMP_STAT_LEDS
  6735. handle_status_leds();
  6736. #endif
  6737. check_axes_activity();
  6738. }
  6739. void kill(const char *full_screen_message, unsigned char id)
  6740. {
  6741. printf_P(_N("KILL: %d\n"), id);
  6742. //return;
  6743. cli(); // Stop interrupts
  6744. disable_heater();
  6745. disable_x();
  6746. // SERIAL_ECHOLNPGM("kill - disable Y");
  6747. disable_y();
  6748. disable_z();
  6749. disable_e0();
  6750. disable_e1();
  6751. disable_e2();
  6752. #if defined(PS_ON_PIN) && PS_ON_PIN > -1
  6753. pinMode(PS_ON_PIN,INPUT);
  6754. #endif
  6755. SERIAL_ERROR_START;
  6756. SERIAL_ERRORLNRPGM(_i("Printer halted. kill() called!"));////MSG_ERR_KILLED c=0 r=0
  6757. if (full_screen_message != NULL) {
  6758. SERIAL_ERRORLNRPGM(full_screen_message);
  6759. lcd_display_message_fullscreen_P(full_screen_message);
  6760. } else {
  6761. LCD_ALERTMESSAGERPGM(_i("KILLED. "));////MSG_KILLED c=0 r=0
  6762. }
  6763. // FMC small patch to update the LCD before ending
  6764. sei(); // enable interrupts
  6765. for ( int i=5; i--; lcd_update(0))
  6766. {
  6767. delay(200);
  6768. }
  6769. cli(); // disable interrupts
  6770. suicide();
  6771. while(1)
  6772. {
  6773. #ifdef WATCHDOG
  6774. wdt_reset();
  6775. #endif //WATCHDOG
  6776. /* Intentionally left empty */
  6777. } // Wait for reset
  6778. }
  6779. void Stop()
  6780. {
  6781. disable_heater();
  6782. if(Stopped == false) {
  6783. Stopped = true;
  6784. Stopped_gcode_LastN = gcode_LastN; // Save last g_code for restart
  6785. SERIAL_ERROR_START;
  6786. SERIAL_ERRORLNRPGM(_T(MSG_ERR_STOPPED));
  6787. LCD_MESSAGERPGM(_T(MSG_STOPPED));
  6788. }
  6789. }
  6790. bool IsStopped() { return Stopped; };
  6791. #ifdef FAST_PWM_FAN
  6792. void setPwmFrequency(uint8_t pin, int val)
  6793. {
  6794. val &= 0x07;
  6795. switch(digitalPinToTimer(pin))
  6796. {
  6797. #if defined(TCCR0A)
  6798. case TIMER0A:
  6799. case TIMER0B:
  6800. // TCCR0B &= ~(_BV(CS00) | _BV(CS01) | _BV(CS02));
  6801. // TCCR0B |= val;
  6802. break;
  6803. #endif
  6804. #if defined(TCCR1A)
  6805. case TIMER1A:
  6806. case TIMER1B:
  6807. // TCCR1B &= ~(_BV(CS10) | _BV(CS11) | _BV(CS12));
  6808. // TCCR1B |= val;
  6809. break;
  6810. #endif
  6811. #if defined(TCCR2)
  6812. case TIMER2:
  6813. case TIMER2:
  6814. TCCR2 &= ~(_BV(CS10) | _BV(CS11) | _BV(CS12));
  6815. TCCR2 |= val;
  6816. break;
  6817. #endif
  6818. #if defined(TCCR2A)
  6819. case TIMER2A:
  6820. case TIMER2B:
  6821. TCCR2B &= ~(_BV(CS20) | _BV(CS21) | _BV(CS22));
  6822. TCCR2B |= val;
  6823. break;
  6824. #endif
  6825. #if defined(TCCR3A)
  6826. case TIMER3A:
  6827. case TIMER3B:
  6828. case TIMER3C:
  6829. TCCR3B &= ~(_BV(CS30) | _BV(CS31) | _BV(CS32));
  6830. TCCR3B |= val;
  6831. break;
  6832. #endif
  6833. #if defined(TCCR4A)
  6834. case TIMER4A:
  6835. case TIMER4B:
  6836. case TIMER4C:
  6837. TCCR4B &= ~(_BV(CS40) | _BV(CS41) | _BV(CS42));
  6838. TCCR4B |= val;
  6839. break;
  6840. #endif
  6841. #if defined(TCCR5A)
  6842. case TIMER5A:
  6843. case TIMER5B:
  6844. case TIMER5C:
  6845. TCCR5B &= ~(_BV(CS50) | _BV(CS51) | _BV(CS52));
  6846. TCCR5B |= val;
  6847. break;
  6848. #endif
  6849. }
  6850. }
  6851. #endif //FAST_PWM_FAN
  6852. bool setTargetedHotend(int code){
  6853. tmp_extruder = active_extruder;
  6854. if(code_seen('T')) {
  6855. tmp_extruder = code_value();
  6856. if(tmp_extruder >= EXTRUDERS) {
  6857. SERIAL_ECHO_START;
  6858. switch(code){
  6859. case 104:
  6860. SERIAL_ECHORPGM(_i("M104 Invalid extruder "));////MSG_M104_INVALID_EXTRUDER c=0 r=0
  6861. break;
  6862. case 105:
  6863. SERIAL_ECHO(_i("M105 Invalid extruder "));////MSG_M105_INVALID_EXTRUDER c=0 r=0
  6864. break;
  6865. case 109:
  6866. SERIAL_ECHO(_i("M109 Invalid extruder "));////MSG_M109_INVALID_EXTRUDER c=0 r=0
  6867. break;
  6868. case 218:
  6869. SERIAL_ECHO(_i("M218 Invalid extruder "));////MSG_M218_INVALID_EXTRUDER c=0 r=0
  6870. break;
  6871. case 221:
  6872. SERIAL_ECHO(_i("M221 Invalid extruder "));////MSG_M221_INVALID_EXTRUDER c=0 r=0
  6873. break;
  6874. }
  6875. SERIAL_PROTOCOLLN((int)tmp_extruder);
  6876. return true;
  6877. }
  6878. }
  6879. return false;
  6880. }
  6881. void save_statistics(unsigned long _total_filament_used, unsigned long _total_print_time) //_total_filament_used unit: mm/100; print time in s
  6882. {
  6883. if (eeprom_read_byte((uint8_t *)EEPROM_TOTALTIME) == 255 && eeprom_read_byte((uint8_t *)EEPROM_TOTALTIME + 1) == 255 && eeprom_read_byte((uint8_t *)EEPROM_TOTALTIME + 2) == 255 && eeprom_read_byte((uint8_t *)EEPROM_TOTALTIME + 3) == 255)
  6884. {
  6885. eeprom_update_dword((uint32_t *)EEPROM_TOTALTIME, 0);
  6886. eeprom_update_dword((uint32_t *)EEPROM_FILAMENTUSED, 0);
  6887. }
  6888. unsigned long _previous_filament = eeprom_read_dword((uint32_t *)EEPROM_FILAMENTUSED); //_previous_filament unit: cm
  6889. unsigned long _previous_time = eeprom_read_dword((uint32_t *)EEPROM_TOTALTIME); //_previous_time unit: min
  6890. eeprom_update_dword((uint32_t *)EEPROM_TOTALTIME, _previous_time + (_total_print_time/60)); //EEPROM_TOTALTIME unit: min
  6891. eeprom_update_dword((uint32_t *)EEPROM_FILAMENTUSED, _previous_filament + (_total_filament_used / 1000));
  6892. total_filament_used = 0;
  6893. }
  6894. float calculate_extruder_multiplier(float diameter) {
  6895. float out = 1.f;
  6896. if (volumetric_enabled && diameter > 0.f) {
  6897. float area = M_PI * diameter * diameter * 0.25;
  6898. out = 1.f / area;
  6899. }
  6900. if (extrudemultiply != 100)
  6901. out *= float(extrudemultiply) * 0.01f;
  6902. return out;
  6903. }
  6904. void calculate_extruder_multipliers() {
  6905. extruder_multiplier[0] = calculate_extruder_multiplier(filament_size[0]);
  6906. #if EXTRUDERS > 1
  6907. extruder_multiplier[1] = calculate_extruder_multiplier(filament_size[1]);
  6908. #if EXTRUDERS > 2
  6909. extruder_multiplier[2] = calculate_extruder_multiplier(filament_size[2]);
  6910. #endif
  6911. #endif
  6912. }
  6913. void delay_keep_alive(unsigned int ms)
  6914. {
  6915. for (;;) {
  6916. manage_heater();
  6917. // Manage inactivity, but don't disable steppers on timeout.
  6918. manage_inactivity(true);
  6919. lcd_update(0);
  6920. if (ms == 0)
  6921. break;
  6922. else if (ms >= 50) {
  6923. delay(50);
  6924. ms -= 50;
  6925. } else {
  6926. delay(ms);
  6927. ms = 0;
  6928. }
  6929. }
  6930. }
  6931. void wait_for_heater(long codenum) {
  6932. #ifdef TEMP_RESIDENCY_TIME
  6933. long residencyStart;
  6934. residencyStart = -1;
  6935. /* continue to loop until we have reached the target temp
  6936. _and_ until TEMP_RESIDENCY_TIME hasn't passed since we reached it */
  6937. while ((!cancel_heatup) && ((residencyStart == -1) ||
  6938. (residencyStart >= 0 && (((unsigned int)(millis() - residencyStart)) < (TEMP_RESIDENCY_TIME * 1000UL))))) {
  6939. #else
  6940. while (target_direction ? (isHeatingHotend(tmp_extruder)) : (isCoolingHotend(tmp_extruder) && (CooldownNoWait == false))) {
  6941. #endif //TEMP_RESIDENCY_TIME
  6942. if ((millis() - codenum) > 1000UL)
  6943. { //Print Temp Reading and remaining time every 1 second while heating up/cooling down
  6944. if (!farm_mode) {
  6945. SERIAL_PROTOCOLPGM("T:");
  6946. SERIAL_PROTOCOL_F(degHotend(tmp_extruder), 1);
  6947. SERIAL_PROTOCOLPGM(" E:");
  6948. SERIAL_PROTOCOL((int)tmp_extruder);
  6949. #ifdef TEMP_RESIDENCY_TIME
  6950. SERIAL_PROTOCOLPGM(" W:");
  6951. if (residencyStart > -1)
  6952. {
  6953. codenum = ((TEMP_RESIDENCY_TIME * 1000UL) - (millis() - residencyStart)) / 1000UL;
  6954. SERIAL_PROTOCOLLN(codenum);
  6955. }
  6956. else
  6957. {
  6958. SERIAL_PROTOCOLLN("?");
  6959. }
  6960. }
  6961. #else
  6962. SERIAL_PROTOCOLLN("");
  6963. #endif
  6964. codenum = millis();
  6965. }
  6966. manage_heater();
  6967. manage_inactivity();
  6968. lcd_update(0);
  6969. #ifdef TEMP_RESIDENCY_TIME
  6970. /* start/restart the TEMP_RESIDENCY_TIME timer whenever we reach target temp for the first time
  6971. or when current temp falls outside the hysteresis after target temp was reached */
  6972. if ((residencyStart == -1 && target_direction && (degHotend(tmp_extruder) >= (degTargetHotend(tmp_extruder) - TEMP_WINDOW))) ||
  6973. (residencyStart == -1 && !target_direction && (degHotend(tmp_extruder) <= (degTargetHotend(tmp_extruder) + TEMP_WINDOW))) ||
  6974. (residencyStart > -1 && labs(degHotend(tmp_extruder) - degTargetHotend(tmp_extruder)) > TEMP_HYSTERESIS))
  6975. {
  6976. residencyStart = millis();
  6977. }
  6978. #endif //TEMP_RESIDENCY_TIME
  6979. }
  6980. }
  6981. void check_babystep() {
  6982. int babystep_z;
  6983. EEPROM_read_B(EEPROM_BABYSTEP_Z, &babystep_z);
  6984. if ((babystep_z < Z_BABYSTEP_MIN) || (babystep_z > Z_BABYSTEP_MAX)) {
  6985. babystep_z = 0; //if babystep value is out of min max range, set it to 0
  6986. SERIAL_ECHOLNPGM("Z live adjust out of range. Setting to 0");
  6987. EEPROM_save_B(EEPROM_BABYSTEP_Z, &babystep_z);
  6988. lcd_show_fullscreen_message_and_wait_P(PSTR("Z live adjust out of range. Setting to 0. Click to continue."));
  6989. lcd_update_enable(true);
  6990. }
  6991. }
  6992. #ifdef DIS
  6993. void d_setup()
  6994. {
  6995. pinMode(D_DATACLOCK, INPUT_PULLUP);
  6996. pinMode(D_DATA, INPUT_PULLUP);
  6997. pinMode(D_REQUIRE, OUTPUT);
  6998. digitalWrite(D_REQUIRE, HIGH);
  6999. }
  7000. float d_ReadData()
  7001. {
  7002. int digit[13];
  7003. String mergeOutput;
  7004. float output;
  7005. digitalWrite(D_REQUIRE, HIGH);
  7006. for (int i = 0; i<13; i++)
  7007. {
  7008. for (int j = 0; j < 4; j++)
  7009. {
  7010. while (digitalRead(D_DATACLOCK) == LOW) {}
  7011. while (digitalRead(D_DATACLOCK) == HIGH) {}
  7012. bitWrite(digit[i], j, digitalRead(D_DATA));
  7013. }
  7014. }
  7015. digitalWrite(D_REQUIRE, LOW);
  7016. mergeOutput = "";
  7017. output = 0;
  7018. for (int r = 5; r <= 10; r++) //Merge digits
  7019. {
  7020. mergeOutput += digit[r];
  7021. }
  7022. output = mergeOutput.toFloat();
  7023. if (digit[4] == 8) //Handle sign
  7024. {
  7025. output *= -1;
  7026. }
  7027. for (int i = digit[11]; i > 0; i--) //Handle floating point
  7028. {
  7029. output /= 10;
  7030. }
  7031. return output;
  7032. }
  7033. void bed_analysis(float x_dimension, float y_dimension, int x_points_num, int y_points_num, float shift_x, float shift_y) {
  7034. int t1 = 0;
  7035. int t_delay = 0;
  7036. int digit[13];
  7037. int m;
  7038. char str[3];
  7039. //String mergeOutput;
  7040. char mergeOutput[15];
  7041. float output;
  7042. int mesh_point = 0; //index number of calibration point
  7043. float bed_zero_ref_x = (-22.f + X_PROBE_OFFSET_FROM_EXTRUDER); //shift between zero point on bed and target and between probe and nozzle
  7044. float bed_zero_ref_y = (-0.6f + Y_PROBE_OFFSET_FROM_EXTRUDER);
  7045. float mesh_home_z_search = 4;
  7046. float row[x_points_num];
  7047. int ix = 0;
  7048. int iy = 0;
  7049. char* filename_wldsd = "wldsd.txt";
  7050. char data_wldsd[70];
  7051. char numb_wldsd[10];
  7052. d_setup();
  7053. if (!(axis_known_position[X_AXIS] && axis_known_position[Y_AXIS] && axis_known_position[Z_AXIS])) {
  7054. // We don't know where we are! HOME!
  7055. // Push the commands to the front of the message queue in the reverse order!
  7056. // There shall be always enough space reserved for these commands.
  7057. repeatcommand_front(); // repeat G80 with all its parameters
  7058. enquecommand_front_P((PSTR("G28 W0")));
  7059. enquecommand_front_P((PSTR("G1 Z5")));
  7060. return;
  7061. }
  7062. bool custom_message_old = custom_message;
  7063. unsigned int custom_message_type_old = custom_message_type;
  7064. unsigned int custom_message_state_old = custom_message_state;
  7065. custom_message = true;
  7066. custom_message_type = 1;
  7067. custom_message_state = (x_points_num * y_points_num) + 10;
  7068. lcd_update(1);
  7069. mbl.reset();
  7070. babystep_undo();
  7071. card.openFile(filename_wldsd, false);
  7072. current_position[Z_AXIS] = mesh_home_z_search;
  7073. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[Z_AXIS] / 60, active_extruder);
  7074. int XY_AXIS_FEEDRATE = homing_feedrate[X_AXIS] / 20;
  7075. int Z_PROBE_FEEDRATE = homing_feedrate[Z_AXIS] / 60;
  7076. int Z_LIFT_FEEDRATE = homing_feedrate[Z_AXIS] / 40;
  7077. setup_for_endstop_move(false);
  7078. SERIAL_PROTOCOLPGM("Num X,Y: ");
  7079. SERIAL_PROTOCOL(x_points_num);
  7080. SERIAL_PROTOCOLPGM(",");
  7081. SERIAL_PROTOCOL(y_points_num);
  7082. SERIAL_PROTOCOLPGM("\nZ search height: ");
  7083. SERIAL_PROTOCOL(mesh_home_z_search);
  7084. SERIAL_PROTOCOLPGM("\nDimension X,Y: ");
  7085. SERIAL_PROTOCOL(x_dimension);
  7086. SERIAL_PROTOCOLPGM(",");
  7087. SERIAL_PROTOCOL(y_dimension);
  7088. SERIAL_PROTOCOLLNPGM("\nMeasured points:");
  7089. while (mesh_point != x_points_num * y_points_num) {
  7090. ix = mesh_point % x_points_num; // from 0 to MESH_NUM_X_POINTS - 1
  7091. iy = mesh_point / x_points_num;
  7092. if (iy & 1) ix = (x_points_num - 1) - ix; // Zig zag
  7093. float z0 = 0.f;
  7094. current_position[Z_AXIS] = mesh_home_z_search;
  7095. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], Z_LIFT_FEEDRATE, active_extruder);
  7096. st_synchronize();
  7097. current_position[X_AXIS] = 13.f + ix * (x_dimension / (x_points_num - 1)) - bed_zero_ref_x + shift_x;
  7098. current_position[Y_AXIS] = 6.4f + iy * (y_dimension / (y_points_num - 1)) - bed_zero_ref_y + shift_y;
  7099. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], XY_AXIS_FEEDRATE, active_extruder);
  7100. st_synchronize();
  7101. if (!find_bed_induction_sensor_point_z(-10.f)) { //if we have data from z calibration max allowed difference is 1mm for each point, if we dont have data max difference is 10mm from initial point
  7102. break;
  7103. card.closefile();
  7104. }
  7105. //memset(numb_wldsd, 0, sizeof(numb_wldsd));
  7106. //dtostrf(d_ReadData(), 8, 5, numb_wldsd);
  7107. //strcat(data_wldsd, numb_wldsd);
  7108. //MYSERIAL.println(data_wldsd);
  7109. //delay(1000);
  7110. //delay(3000);
  7111. //t1 = millis();
  7112. //while (digitalRead(D_DATACLOCK) == LOW) {}
  7113. //while (digitalRead(D_DATACLOCK) == HIGH) {}
  7114. memset(digit, 0, sizeof(digit));
  7115. //cli();
  7116. digitalWrite(D_REQUIRE, LOW);
  7117. for (int i = 0; i<13; i++)
  7118. {
  7119. //t1 = millis();
  7120. for (int j = 0; j < 4; j++)
  7121. {
  7122. while (digitalRead(D_DATACLOCK) == LOW) {}
  7123. while (digitalRead(D_DATACLOCK) == HIGH) {}
  7124. bitWrite(digit[i], j, digitalRead(D_DATA));
  7125. }
  7126. //t_delay = (millis() - t1);
  7127. //SERIAL_PROTOCOLPGM(" ");
  7128. //SERIAL_PROTOCOL_F(t_delay, 5);
  7129. //SERIAL_PROTOCOLPGM(" ");
  7130. }
  7131. //sei();
  7132. digitalWrite(D_REQUIRE, HIGH);
  7133. mergeOutput[0] = '\0';
  7134. output = 0;
  7135. for (int r = 5; r <= 10; r++) //Merge digits
  7136. {
  7137. sprintf(str, "%d", digit[r]);
  7138. strcat(mergeOutput, str);
  7139. }
  7140. output = atof(mergeOutput);
  7141. if (digit[4] == 8) //Handle sign
  7142. {
  7143. output *= -1;
  7144. }
  7145. for (int i = digit[11]; i > 0; i--) //Handle floating point
  7146. {
  7147. output *= 0.1;
  7148. }
  7149. //output = d_ReadData();
  7150. //row[ix] = current_position[Z_AXIS];
  7151. memset(data_wldsd, 0, sizeof(data_wldsd));
  7152. for (int i = 0; i <3; i++) {
  7153. memset(numb_wldsd, 0, sizeof(numb_wldsd));
  7154. dtostrf(current_position[i], 8, 5, numb_wldsd);
  7155. strcat(data_wldsd, numb_wldsd);
  7156. strcat(data_wldsd, ";");
  7157. }
  7158. memset(numb_wldsd, 0, sizeof(numb_wldsd));
  7159. dtostrf(output, 8, 5, numb_wldsd);
  7160. strcat(data_wldsd, numb_wldsd);
  7161. //strcat(data_wldsd, ";");
  7162. card.write_command(data_wldsd);
  7163. //row[ix] = d_ReadData();
  7164. row[ix] = output; // current_position[Z_AXIS];
  7165. if (iy % 2 == 1 ? ix == 0 : ix == x_points_num - 1) {
  7166. for (int i = 0; i < x_points_num; i++) {
  7167. SERIAL_PROTOCOLPGM(" ");
  7168. SERIAL_PROTOCOL_F(row[i], 5);
  7169. }
  7170. SERIAL_PROTOCOLPGM("\n");
  7171. }
  7172. custom_message_state--;
  7173. mesh_point++;
  7174. lcd_update(1);
  7175. }
  7176. card.closefile();
  7177. }
  7178. #endif
  7179. void temp_compensation_start() {
  7180. custom_message = true;
  7181. custom_message_type = 5;
  7182. custom_message_state = PINDA_HEAT_T + 1;
  7183. lcd_update(2);
  7184. if (degHotend(active_extruder) > EXTRUDE_MINTEMP) {
  7185. current_position[E_AXIS] -= DEFAULT_RETRACTION;
  7186. }
  7187. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400, active_extruder);
  7188. current_position[X_AXIS] = PINDA_PREHEAT_X;
  7189. current_position[Y_AXIS] = PINDA_PREHEAT_Y;
  7190. current_position[Z_AXIS] = PINDA_PREHEAT_Z;
  7191. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  7192. st_synchronize();
  7193. while (fabs(degBed() - target_temperature_bed) > 1) delay_keep_alive(1000);
  7194. for (int i = 0; i < PINDA_HEAT_T; i++) {
  7195. delay_keep_alive(1000);
  7196. custom_message_state = PINDA_HEAT_T - i;
  7197. if (custom_message_state == 99 || custom_message_state == 9) lcd_update(2); //force whole display redraw if number of digits changed
  7198. else lcd_update(1);
  7199. }
  7200. custom_message_type = 0;
  7201. custom_message_state = 0;
  7202. custom_message = false;
  7203. }
  7204. void temp_compensation_apply() {
  7205. int i_add;
  7206. int compensation_value;
  7207. int z_shift = 0;
  7208. float z_shift_mm;
  7209. if (calibration_status() == CALIBRATION_STATUS_CALIBRATED) {
  7210. if (target_temperature_bed % 10 == 0 && target_temperature_bed >= 60 && target_temperature_bed <= 100) {
  7211. i_add = (target_temperature_bed - 60) / 10;
  7212. EEPROM_read_B(EEPROM_PROBE_TEMP_SHIFT + i_add * 2, &z_shift);
  7213. z_shift_mm = z_shift / axis_steps_per_unit[Z_AXIS];
  7214. }else {
  7215. //interpolation
  7216. z_shift_mm = temp_comp_interpolation(target_temperature_bed) / axis_steps_per_unit[Z_AXIS];
  7217. }
  7218. printf_P(_N("\nZ shift applied:%.3f\n"), z_shift_mm);
  7219. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS] - z_shift_mm, current_position[E_AXIS], homing_feedrate[Z_AXIS] / 40, active_extruder);
  7220. st_synchronize();
  7221. plan_set_z_position(current_position[Z_AXIS]);
  7222. }
  7223. else {
  7224. //we have no temp compensation data
  7225. }
  7226. }
  7227. float temp_comp_interpolation(float inp_temperature) {
  7228. //cubic spline interpolation
  7229. int n, i, j, k;
  7230. float h[10], a, b, c, d, sum, s[10] = { 0 }, x[10], F[10], f[10], m[10][10] = { 0 }, temp;
  7231. int shift[10];
  7232. int temp_C[10];
  7233. n = 6; //number of measured points
  7234. shift[0] = 0;
  7235. for (i = 0; i < n; i++) {
  7236. if (i>0) EEPROM_read_B(EEPROM_PROBE_TEMP_SHIFT + (i-1) * 2, &shift[i]); //read shift in steps from EEPROM
  7237. temp_C[i] = 50 + i * 10; //temperature in C
  7238. #ifdef PINDA_THERMISTOR
  7239. temp_C[i] = 35 + i * 5; //temperature in C
  7240. #else
  7241. temp_C[i] = 50 + i * 10; //temperature in C
  7242. #endif
  7243. x[i] = (float)temp_C[i];
  7244. f[i] = (float)shift[i];
  7245. }
  7246. if (inp_temperature < x[0]) return 0;
  7247. for (i = n - 1; i>0; i--) {
  7248. F[i] = (f[i] - f[i - 1]) / (x[i] - x[i - 1]);
  7249. h[i - 1] = x[i] - x[i - 1];
  7250. }
  7251. //*********** formation of h, s , f matrix **************
  7252. for (i = 1; i<n - 1; i++) {
  7253. m[i][i] = 2 * (h[i - 1] + h[i]);
  7254. if (i != 1) {
  7255. m[i][i - 1] = h[i - 1];
  7256. m[i - 1][i] = h[i - 1];
  7257. }
  7258. m[i][n - 1] = 6 * (F[i + 1] - F[i]);
  7259. }
  7260. //*********** forward elimination **************
  7261. for (i = 1; i<n - 2; i++) {
  7262. temp = (m[i + 1][i] / m[i][i]);
  7263. for (j = 1; j <= n - 1; j++)
  7264. m[i + 1][j] -= temp*m[i][j];
  7265. }
  7266. //*********** backward substitution *********
  7267. for (i = n - 2; i>0; i--) {
  7268. sum = 0;
  7269. for (j = i; j <= n - 2; j++)
  7270. sum += m[i][j] * s[j];
  7271. s[i] = (m[i][n - 1] - sum) / m[i][i];
  7272. }
  7273. for (i = 0; i<n - 1; i++)
  7274. if ((x[i] <= inp_temperature && inp_temperature <= x[i + 1]) || (i == n-2 && inp_temperature > x[i + 1])) {
  7275. a = (s[i + 1] - s[i]) / (6 * h[i]);
  7276. b = s[i] / 2;
  7277. c = (f[i + 1] - f[i]) / h[i] - (2 * h[i] * s[i] + s[i + 1] * h[i]) / 6;
  7278. d = f[i];
  7279. sum = a*pow((inp_temperature - x[i]), 3) + b*pow((inp_temperature - x[i]), 2) + c*(inp_temperature - x[i]) + d;
  7280. }
  7281. return sum;
  7282. }
  7283. #ifdef PINDA_THERMISTOR
  7284. float temp_compensation_pinda_thermistor_offset(float temperature_pinda)
  7285. {
  7286. if (!temp_cal_active) return 0;
  7287. if (!calibration_status_pinda()) return 0;
  7288. return temp_comp_interpolation(temperature_pinda) / axis_steps_per_unit[Z_AXIS];
  7289. }
  7290. #endif //PINDA_THERMISTOR
  7291. void long_pause() //long pause print
  7292. {
  7293. st_synchronize();
  7294. //save currently set parameters to global variables
  7295. saved_feedmultiply = feedmultiply;
  7296. HotendTempBckp = degTargetHotend(active_extruder);
  7297. fanSpeedBckp = fanSpeed;
  7298. start_pause_print = millis();
  7299. //save position
  7300. pause_lastpos[X_AXIS] = current_position[X_AXIS];
  7301. pause_lastpos[Y_AXIS] = current_position[Y_AXIS];
  7302. pause_lastpos[Z_AXIS] = current_position[Z_AXIS];
  7303. pause_lastpos[E_AXIS] = current_position[E_AXIS];
  7304. //retract
  7305. current_position[E_AXIS] -= DEFAULT_RETRACTION;
  7306. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400, active_extruder);
  7307. //lift z
  7308. current_position[Z_AXIS] += Z_PAUSE_LIFT;
  7309. if (current_position[Z_AXIS] > Z_MAX_POS) current_position[Z_AXIS] = Z_MAX_POS;
  7310. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 15, active_extruder);
  7311. //set nozzle target temperature to 0
  7312. setTargetHotend(0, 0);
  7313. setTargetHotend(0, 1);
  7314. setTargetHotend(0, 2);
  7315. //Move XY to side
  7316. current_position[X_AXIS] = X_PAUSE_POS;
  7317. current_position[Y_AXIS] = Y_PAUSE_POS;
  7318. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 50, active_extruder);
  7319. // Turn off the print fan
  7320. fanSpeed = 0;
  7321. st_synchronize();
  7322. }
  7323. void serialecho_temperatures() {
  7324. float tt = degHotend(active_extruder);
  7325. SERIAL_PROTOCOLPGM("T:");
  7326. SERIAL_PROTOCOL(tt);
  7327. SERIAL_PROTOCOLPGM(" E:");
  7328. SERIAL_PROTOCOL((int)active_extruder);
  7329. SERIAL_PROTOCOLPGM(" B:");
  7330. SERIAL_PROTOCOL_F(degBed(), 1);
  7331. SERIAL_PROTOCOLLN("");
  7332. }
  7333. extern uint32_t sdpos_atomic;
  7334. #ifdef UVLO_SUPPORT
  7335. void uvlo_()
  7336. {
  7337. unsigned long time_start = millis();
  7338. bool sd_print = card.sdprinting;
  7339. // Conserve power as soon as possible.
  7340. disable_x();
  7341. disable_y();
  7342. #ifdef TMC2130
  7343. tmc2130_set_current_h(Z_AXIS, 20);
  7344. tmc2130_set_current_r(Z_AXIS, 20);
  7345. tmc2130_set_current_h(E_AXIS, 20);
  7346. tmc2130_set_current_r(E_AXIS, 20);
  7347. #endif //TMC2130
  7348. // Indicate that the interrupt has been triggered.
  7349. // SERIAL_ECHOLNPGM("UVLO");
  7350. // Read out the current Z motor microstep counter. This will be later used
  7351. // for reaching the zero full step before powering off.
  7352. uint16_t z_microsteps = 0;
  7353. #ifdef TMC2130
  7354. z_microsteps = tmc2130_rd_MSCNT(Z_TMC2130_CS);
  7355. #endif //TMC2130
  7356. // Calculate the file position, from which to resume this print.
  7357. long sd_position = sdpos_atomic; //atomic sd position of last command added in queue
  7358. {
  7359. uint16_t sdlen_planner = planner_calc_sd_length(); //length of sd commands in planner
  7360. sd_position -= sdlen_planner;
  7361. uint16_t sdlen_cmdqueue = cmdqueue_calc_sd_length(); //length of sd commands in cmdqueue
  7362. sd_position -= sdlen_cmdqueue;
  7363. if (sd_position < 0) sd_position = 0;
  7364. }
  7365. // Backup the feedrate in mm/min.
  7366. int feedrate_bckp = blocks_queued() ? (block_buffer[block_buffer_tail].nominal_speed * 60.f) : feedrate;
  7367. // After this call, the planner queue is emptied and the current_position is set to a current logical coordinate.
  7368. // The logical coordinate will likely differ from the machine coordinate if the skew calibration and mesh bed leveling
  7369. // are in action.
  7370. planner_abort_hard();
  7371. // Store the current extruder position.
  7372. eeprom_update_float((float*)(EEPROM_UVLO_CURRENT_POSITION_E), st_get_position_mm(E_AXIS));
  7373. eeprom_update_byte((uint8_t*)EEPROM_UVLO_E_ABS, axis_relative_modes[3]?0:1);
  7374. // Clean the input command queue.
  7375. cmdqueue_reset();
  7376. card.sdprinting = false;
  7377. // card.closefile();
  7378. // Enable stepper driver interrupt to move Z axis.
  7379. // This should be fine as the planner and command queues are empty and the SD card printing is disabled.
  7380. //FIXME one may want to disable serial lines at this point of time to avoid interfering with the command queue,
  7381. // though it should not happen that the command queue is touched as the plan_buffer_line always succeed without blocking.
  7382. sei();
  7383. plan_buffer_line(
  7384. current_position[X_AXIS],
  7385. current_position[Y_AXIS],
  7386. current_position[Z_AXIS],
  7387. current_position[E_AXIS] - DEFAULT_RETRACTION,
  7388. 95, active_extruder);
  7389. st_synchronize();
  7390. disable_e0();
  7391. plan_buffer_line(
  7392. current_position[X_AXIS],
  7393. current_position[Y_AXIS],
  7394. current_position[Z_AXIS] + UVLO_Z_AXIS_SHIFT + float((1024 - z_microsteps + 7) >> 4) / axis_steps_per_unit[Z_AXIS],
  7395. current_position[E_AXIS] - DEFAULT_RETRACTION,
  7396. 40, active_extruder);
  7397. st_synchronize();
  7398. disable_e0();
  7399. plan_buffer_line(
  7400. current_position[X_AXIS],
  7401. current_position[Y_AXIS],
  7402. current_position[Z_AXIS] + UVLO_Z_AXIS_SHIFT + float((1024 - z_microsteps + 7) >> 4) / axis_steps_per_unit[Z_AXIS],
  7403. current_position[E_AXIS] - DEFAULT_RETRACTION,
  7404. 40, active_extruder);
  7405. st_synchronize();
  7406. disable_e0();
  7407. disable_z();
  7408. // Move Z up to the next 0th full step.
  7409. // Write the file position.
  7410. eeprom_update_dword((uint32_t*)(EEPROM_FILE_POSITION), sd_position);
  7411. // Store the mesh bed leveling offsets. This is 2*9=18 bytes, which takes 18*3.4us=52us in worst case.
  7412. for (int8_t mesh_point = 0; mesh_point < 9; ++ mesh_point) {
  7413. uint8_t ix = mesh_point % MESH_MEAS_NUM_X_POINTS; // from 0 to MESH_NUM_X_POINTS - 1
  7414. uint8_t iy = mesh_point / MESH_MEAS_NUM_X_POINTS;
  7415. // Scale the z value to 1u resolution.
  7416. int16_t v = mbl.active ? int16_t(floor(mbl.z_values[iy*3][ix*3] * 1000.f + 0.5f)) : 0;
  7417. eeprom_update_word((uint16_t*)(EEPROM_UVLO_MESH_BED_LEVELING+2*mesh_point), *reinterpret_cast<uint16_t*>(&v));
  7418. }
  7419. // Read out the current Z motor microstep counter. This will be later used
  7420. // for reaching the zero full step before powering off.
  7421. eeprom_update_word((uint16_t*)(EEPROM_UVLO_Z_MICROSTEPS), z_microsteps);
  7422. // Store the current position.
  7423. eeprom_update_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 0), current_position[X_AXIS]);
  7424. eeprom_update_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 4), current_position[Y_AXIS]);
  7425. eeprom_update_float((float*)(EEPROM_UVLO_CURRENT_POSITION_Z), current_position[Z_AXIS]);
  7426. // Store the current feed rate, temperatures, fan speed and extruder multipliers (flow rates)
  7427. EEPROM_save_B(EEPROM_UVLO_FEEDRATE, &feedrate_bckp);
  7428. eeprom_update_byte((uint8_t*)EEPROM_UVLO_TARGET_HOTEND, target_temperature[active_extruder]);
  7429. eeprom_update_byte((uint8_t*)EEPROM_UVLO_TARGET_BED, target_temperature_bed);
  7430. eeprom_update_byte((uint8_t*)EEPROM_UVLO_FAN_SPEED, fanSpeed);
  7431. eeprom_update_float((float*)(EEPROM_EXTRUDER_MULTIPLIER_0), extruder_multiplier[0]);
  7432. #if EXTRUDERS > 1
  7433. eeprom_update_float((float*)(EEPROM_EXTRUDER_MULTIPLIER_1), extruder_multiplier[1]);
  7434. #if EXTRUDERS > 2
  7435. eeprom_update_float((float*)(EEPROM_EXTRUDER_MULTIPLIER_2), extruder_multiplier[2]);
  7436. #endif
  7437. #endif
  7438. eeprom_update_word((uint16_t*)(EEPROM_EXTRUDEMULTIPLY), (uint16_t)extrudemultiply);
  7439. // Finaly store the "power outage" flag.
  7440. if(sd_print) eeprom_update_byte((uint8_t*)EEPROM_UVLO, 1);
  7441. st_synchronize();
  7442. printf_P(_N("stps%d\n"), tmc2130_rd_MSCNT(Z_AXIS));
  7443. disable_z();
  7444. // Increment power failure counter
  7445. eeprom_update_byte((uint8_t*)EEPROM_POWER_COUNT, eeprom_read_byte((uint8_t*)EEPROM_POWER_COUNT) + 1);
  7446. eeprom_update_word((uint16_t*)EEPROM_POWER_COUNT_TOT, eeprom_read_word((uint16_t*)EEPROM_POWER_COUNT_TOT) + 1);
  7447. printf_P(_N("UVLO - end %d\n"), millis() - time_start);
  7448. #if 0
  7449. // Move the print head to the side of the print until all the power stored in the power supply capacitors is depleted.
  7450. current_position[X_AXIS] = (current_position[X_AXIS] < 0.5f * (X_MIN_POS + X_MAX_POS)) ? X_MIN_POS : X_MAX_POS;
  7451. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 500, active_extruder);
  7452. st_synchronize();
  7453. #endif
  7454. cli();
  7455. volatile unsigned int ppcount = 0;
  7456. SET_OUTPUT(BEEPER);
  7457. WRITE(BEEPER, HIGH);
  7458. for(ppcount = 0; ppcount < 2000; ppcount ++){
  7459. asm("nop");//50ns on 20Mhz, 62.5ns on 16Mhz
  7460. }
  7461. WRITE(BEEPER, LOW);
  7462. while(1){
  7463. #if 1
  7464. WRITE(BEEPER, LOW);
  7465. for(ppcount = 0; ppcount < 8000; ppcount ++){
  7466. asm("nop");//50ns on 20Mhz, 62.5ns on 16Mhz
  7467. }
  7468. #endif
  7469. };
  7470. }
  7471. #endif //UVLO_SUPPORT
  7472. #if (defined(FANCHECK) && defined(TACH_1) && (TACH_1 >-1))
  7473. void setup_fan_interrupt() {
  7474. //INT7
  7475. DDRE &= ~(1 << 7); //input pin
  7476. PORTE &= ~(1 << 7); //no internal pull-up
  7477. //start with sensing rising edge
  7478. EICRB &= ~(1 << 6);
  7479. EICRB |= (1 << 7);
  7480. //enable INT7 interrupt
  7481. EIMSK |= (1 << 7);
  7482. }
  7483. // The fan interrupt is triggered at maximum 325Hz (may be a bit more due to component tollerances),
  7484. // and it takes 4.24 us to process (the interrupt invocation overhead not taken into account).
  7485. ISR(INT7_vect) {
  7486. //measuring speed now works for fanSpeed > 18 (approximately), which is sufficient because MIN_PRINT_FAN_SPEED is higher
  7487. if (fanSpeed < MIN_PRINT_FAN_SPEED) return;
  7488. if ((1 << 6) & EICRB) { //interrupt was triggered by rising edge
  7489. t_fan_rising_edge = millis_nc();
  7490. }
  7491. else { //interrupt was triggered by falling edge
  7492. if ((millis_nc() - t_fan_rising_edge) >= FAN_PULSE_WIDTH_LIMIT) {//this pulse was from sensor and not from pwm
  7493. fan_edge_counter[1] += 2; //we are currently counting all edges so lets count two edges for one pulse
  7494. }
  7495. }
  7496. EICRB ^= (1 << 6); //change edge
  7497. }
  7498. #endif
  7499. #ifdef UVLO_SUPPORT
  7500. void setup_uvlo_interrupt() {
  7501. DDRE &= ~(1 << 4); //input pin
  7502. PORTE &= ~(1 << 4); //no internal pull-up
  7503. //sensing falling edge
  7504. EICRB |= (1 << 0);
  7505. EICRB &= ~(1 << 1);
  7506. //enable INT4 interrupt
  7507. EIMSK |= (1 << 4);
  7508. }
  7509. ISR(INT4_vect) {
  7510. EIMSK &= ~(1 << 4); //disable INT4 interrupt to make sure that this code will be executed just once
  7511. SERIAL_ECHOLNPGM("INT4");
  7512. if (IS_SD_PRINTING) uvlo_();
  7513. }
  7514. void recover_print(uint8_t automatic) {
  7515. char cmd[30];
  7516. lcd_update_enable(true);
  7517. lcd_update(2);
  7518. lcd_setstatuspgm(_i("Recovering print "));////MSG_RECOVERING_PRINT c=20 r=1
  7519. recover_machine_state_after_power_panic(); //recover position, temperatures and extrude_multipliers
  7520. // Lift the print head, so one may remove the excess priming material.
  7521. if (current_position[Z_AXIS] < 25)
  7522. enquecommand_P(PSTR("G1 Z25 F800"));
  7523. // Home X and Y axes. Homing just X and Y shall not touch the babystep and the world2machine transformation status.
  7524. enquecommand_P(PSTR("G28 X Y"));
  7525. // Set the target bed and nozzle temperatures and wait.
  7526. sprintf_P(cmd, PSTR("M109 S%d"), target_temperature[active_extruder]);
  7527. enquecommand(cmd);
  7528. sprintf_P(cmd, PSTR("M190 S%d"), target_temperature_bed);
  7529. enquecommand(cmd);
  7530. enquecommand_P(PSTR("M83")); //E axis relative mode
  7531. //enquecommand_P(PSTR("G1 E5 F120")); //Extrude some filament to stabilize pessure
  7532. // If not automatically recoreverd (long power loss), extrude extra filament to stabilize
  7533. if(automatic == 0){
  7534. enquecommand_P(PSTR("G1 E5 F120")); //Extrude some filament to stabilize pessure
  7535. }
  7536. enquecommand_P(PSTR("G1 E" STRINGIFY(-DEFAULT_RETRACTION)" F480"));
  7537. // Mark the power panic status as inactive.
  7538. eeprom_update_byte((uint8_t*)EEPROM_UVLO, 0);
  7539. /*while ((abs(degHotend(0)- target_temperature[0])>5) || (abs(degBed() -target_temperature_bed)>3)) { //wait for heater and bed to reach target temp
  7540. delay_keep_alive(1000);
  7541. }*/
  7542. printf_P(_N("After waiting for temp:\nCurrent pos X_AXIS:%.3f\nCurrent pos Y_AXIS:%.3f\n"), current_position[X_AXIS], current_position[Y_AXIS]);
  7543. // Restart the print.
  7544. restore_print_from_eeprom();
  7545. printf_P(_N("Current pos Z_AXIS:%.3f\nCurrent pos E_AXIS:%.3f\n"), current_position[Z_AXIS], current_position[E_AXIS]);
  7546. }
  7547. void recover_machine_state_after_power_panic()
  7548. {
  7549. char cmd[30];
  7550. // 1) Recover the logical cordinates at the time of the power panic.
  7551. // The logical XY coordinates are needed to recover the machine Z coordinate corrected by the mesh bed leveling.
  7552. current_position[X_AXIS] = eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 0));
  7553. current_position[Y_AXIS] = eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 4));
  7554. // Recover the logical coordinate of the Z axis at the time of the power panic.
  7555. // The current position after power panic is moved to the next closest 0th full step.
  7556. current_position[Z_AXIS] = eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION_Z)) +
  7557. UVLO_Z_AXIS_SHIFT + float((1024 - eeprom_read_word((uint16_t*)(EEPROM_UVLO_Z_MICROSTEPS)) + 7) >> 4) / axis_steps_per_unit[Z_AXIS];
  7558. if (eeprom_read_byte((uint8_t*)EEPROM_UVLO_E_ABS)) {
  7559. current_position[E_AXIS] = eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION_E));
  7560. sprintf_P(cmd, PSTR("G92 E"));
  7561. dtostrf(current_position[E_AXIS], 6, 3, cmd + strlen(cmd));
  7562. enquecommand(cmd);
  7563. }
  7564. memcpy(destination, current_position, sizeof(destination));
  7565. SERIAL_ECHOPGM("recover_machine_state_after_power_panic, initial ");
  7566. print_world_coordinates();
  7567. // 2) Initialize the logical to physical coordinate system transformation.
  7568. world2machine_initialize();
  7569. // 3) Restore the mesh bed leveling offsets. This is 2*9=18 bytes, which takes 18*3.4us=52us in worst case.
  7570. mbl.active = false;
  7571. for (int8_t mesh_point = 0; mesh_point < 9; ++ mesh_point) {
  7572. uint8_t ix = mesh_point % MESH_MEAS_NUM_X_POINTS; // from 0 to MESH_NUM_X_POINTS - 1
  7573. uint8_t iy = mesh_point / MESH_MEAS_NUM_X_POINTS;
  7574. // Scale the z value to 10u resolution.
  7575. int16_t v;
  7576. eeprom_read_block(&v, (void*)(EEPROM_UVLO_MESH_BED_LEVELING+2*mesh_point), 2);
  7577. if (v != 0)
  7578. mbl.active = true;
  7579. mbl.z_values[iy][ix] = float(v) * 0.001f;
  7580. }
  7581. if (mbl.active)
  7582. mbl.upsample_3x3();
  7583. // SERIAL_ECHOPGM("recover_machine_state_after_power_panic, initial ");
  7584. // print_mesh_bed_leveling_table();
  7585. // 4) Load the baby stepping value, which is expected to be active at the time of power panic.
  7586. // The baby stepping value is used to reset the physical Z axis when rehoming the Z axis.
  7587. babystep_load();
  7588. // 5) Set the physical positions from the logical positions using the world2machine transformation and the active bed leveling.
  7589. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  7590. // 6) Power up the motors, mark their positions as known.
  7591. //FIXME Verfiy, whether the X and Y axes should be powered up here, as they will later be re-homed anyway.
  7592. axis_known_position[X_AXIS] = true; enable_x();
  7593. axis_known_position[Y_AXIS] = true; enable_y();
  7594. axis_known_position[Z_AXIS] = true; enable_z();
  7595. SERIAL_ECHOPGM("recover_machine_state_after_power_panic, initial ");
  7596. print_physical_coordinates();
  7597. // 7) Recover the target temperatures.
  7598. target_temperature[active_extruder] = eeprom_read_byte((uint8_t*)EEPROM_UVLO_TARGET_HOTEND);
  7599. target_temperature_bed = eeprom_read_byte((uint8_t*)EEPROM_UVLO_TARGET_BED);
  7600. // 8) Recover extruder multipilers
  7601. extruder_multiplier[0] = eeprom_read_float((float*)(EEPROM_EXTRUDER_MULTIPLIER_0));
  7602. #if EXTRUDERS > 1
  7603. extruder_multiplier[1] = eeprom_read_float((float*)(EEPROM_EXTRUDER_MULTIPLIER_1));
  7604. #if EXTRUDERS > 2
  7605. extruder_multiplier[2] = eeprom_read_float((float*)(EEPROM_EXTRUDER_MULTIPLIER_2));
  7606. #endif
  7607. #endif
  7608. extrudemultiply = (int)eeprom_read_word((uint16_t*)(EEPROM_EXTRUDEMULTIPLY));
  7609. }
  7610. void restore_print_from_eeprom() {
  7611. float x_rec, y_rec, z_pos;
  7612. int feedrate_rec;
  7613. uint8_t fan_speed_rec;
  7614. char cmd[30];
  7615. char* c;
  7616. char filename[13];
  7617. uint8_t depth = 0;
  7618. char dir_name[9];
  7619. fan_speed_rec = eeprom_read_byte((uint8_t*)EEPROM_UVLO_FAN_SPEED);
  7620. EEPROM_read_B(EEPROM_UVLO_FEEDRATE, &feedrate_rec);
  7621. SERIAL_ECHOPGM("Feedrate:");
  7622. MYSERIAL.println(feedrate_rec);
  7623. depth = eeprom_read_byte((uint8_t*)EEPROM_DIR_DEPTH);
  7624. MYSERIAL.println(int(depth));
  7625. for (int i = 0; i < depth; i++) {
  7626. for (int j = 0; j < 8; j++) {
  7627. dir_name[j] = eeprom_read_byte((uint8_t*)EEPROM_DIRS + j + 8 * i);
  7628. }
  7629. dir_name[8] = '\0';
  7630. MYSERIAL.println(dir_name);
  7631. strcpy(dir_names[i], dir_name);
  7632. card.chdir(dir_name);
  7633. }
  7634. for (int i = 0; i < 8; i++) {
  7635. filename[i] = eeprom_read_byte((uint8_t*)EEPROM_FILENAME + i);
  7636. }
  7637. filename[8] = '\0';
  7638. MYSERIAL.print(filename);
  7639. strcat_P(filename, PSTR(".gco"));
  7640. sprintf_P(cmd, PSTR("M23 %s"), filename);
  7641. enquecommand(cmd);
  7642. uint32_t position = eeprom_read_dword((uint32_t*)(EEPROM_FILE_POSITION));
  7643. SERIAL_ECHOPGM("Position read from eeprom:");
  7644. MYSERIAL.println(position);
  7645. // E axis relative mode.
  7646. enquecommand_P(PSTR("M83"));
  7647. // Move to the XY print position in logical coordinates, where the print has been killed.
  7648. strcpy_P(cmd, PSTR("G1 X")); strcat(cmd, ftostr32(eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 0))));
  7649. strcat_P(cmd, PSTR(" Y")); strcat(cmd, ftostr32(eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 4))));
  7650. strcat_P(cmd, PSTR(" F2000"));
  7651. enquecommand(cmd);
  7652. // Move the Z axis down to the print, in logical coordinates.
  7653. strcpy_P(cmd, PSTR("G1 Z")); strcat(cmd, ftostr32(eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION_Z))));
  7654. enquecommand(cmd);
  7655. // Unretract.
  7656. enquecommand_P(PSTR("G1 E" STRINGIFY(2*DEFAULT_RETRACTION)" F480"));
  7657. // Set the feedrate saved at the power panic.
  7658. sprintf_P(cmd, PSTR("G1 F%d"), feedrate_rec);
  7659. enquecommand(cmd);
  7660. if (eeprom_read_byte((uint8_t*)EEPROM_UVLO_E_ABS))
  7661. {
  7662. float extruder_abs_pos = eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION_E));
  7663. enquecommand_P(PSTR("M82")); //E axis abslute mode
  7664. }
  7665. // Set the fan speed saved at the power panic.
  7666. strcpy_P(cmd, PSTR("M106 S"));
  7667. strcat(cmd, itostr3(int(fan_speed_rec)));
  7668. enquecommand(cmd);
  7669. // Set a position in the file.
  7670. sprintf_P(cmd, PSTR("M26 S%lu"), position);
  7671. enquecommand(cmd);
  7672. // Start SD print.
  7673. enquecommand_P(PSTR("M24"));
  7674. }
  7675. #endif //UVLO_SUPPORT
  7676. ////////////////////////////////////////////////////////////////////////////////
  7677. // save/restore printing
  7678. void stop_and_save_print_to_ram(float z_move, float e_move)
  7679. {
  7680. if (saved_printing) return;
  7681. unsigned char nplanner_blocks;
  7682. unsigned char nlines;
  7683. uint16_t sdlen_planner;
  7684. uint16_t sdlen_cmdqueue;
  7685. cli();
  7686. if (card.sdprinting) {
  7687. nplanner_blocks = number_of_blocks();
  7688. saved_sdpos = sdpos_atomic; //atomic sd position of last command added in queue
  7689. sdlen_planner = planner_calc_sd_length(); //length of sd commands in planner
  7690. saved_sdpos -= sdlen_planner;
  7691. sdlen_cmdqueue = cmdqueue_calc_sd_length(); //length of sd commands in cmdqueue
  7692. saved_sdpos -= sdlen_cmdqueue;
  7693. saved_printing_type = PRINTING_TYPE_SD;
  7694. }
  7695. else if (is_usb_printing) { //reuse saved_sdpos for storing line number
  7696. saved_sdpos = gcode_LastN; //start with line number of command added recently to cmd queue
  7697. //reuse planner_calc_sd_length function for getting number of lines of commands in planner:
  7698. nlines = planner_calc_sd_length(); //number of lines of commands in planner
  7699. saved_sdpos -= nlines;
  7700. saved_sdpos -= buflen; //number of blocks in cmd buffer
  7701. saved_printing_type = PRINTING_TYPE_USB;
  7702. }
  7703. else {
  7704. //not sd printing nor usb printing
  7705. }
  7706. #if 0
  7707. SERIAL_ECHOPGM("SDPOS_ATOMIC="); MYSERIAL.println(sdpos_atomic, DEC);
  7708. SERIAL_ECHOPGM("SDPOS="); MYSERIAL.println(card.get_sdpos(), DEC);
  7709. SERIAL_ECHOPGM("SDLEN_PLAN="); MYSERIAL.println(sdlen_planner, DEC);
  7710. SERIAL_ECHOPGM("SDLEN_CMDQ="); MYSERIAL.println(sdlen_cmdqueue, DEC);
  7711. SERIAL_ECHOPGM("PLANNERBLOCKS="); MYSERIAL.println(int(nplanner_blocks), DEC);
  7712. SERIAL_ECHOPGM("SDSAVED="); MYSERIAL.println(saved_sdpos, DEC);
  7713. //SERIAL_ECHOPGM("SDFILELEN="); MYSERIAL.println(card.fileSize(), DEC);
  7714. {
  7715. card.setIndex(saved_sdpos);
  7716. SERIAL_ECHOLNPGM("Content of planner buffer: ");
  7717. for (unsigned int idx = 0; idx < sdlen_planner; ++ idx)
  7718. MYSERIAL.print(char(card.get()));
  7719. SERIAL_ECHOLNPGM("Content of command buffer: ");
  7720. for (unsigned int idx = 0; idx < sdlen_cmdqueue; ++ idx)
  7721. MYSERIAL.print(char(card.get()));
  7722. SERIAL_ECHOLNPGM("End of command buffer");
  7723. }
  7724. {
  7725. // Print the content of the planner buffer, line by line:
  7726. card.setIndex(saved_sdpos);
  7727. int8_t iline = 0;
  7728. for (unsigned char idx = block_buffer_tail; idx != block_buffer_head; idx = (idx + 1) & (BLOCK_BUFFER_SIZE - 1), ++ iline) {
  7729. SERIAL_ECHOPGM("Planner line (from file): ");
  7730. MYSERIAL.print(int(iline), DEC);
  7731. SERIAL_ECHOPGM(", length: ");
  7732. MYSERIAL.print(block_buffer[idx].sdlen, DEC);
  7733. SERIAL_ECHOPGM(", steps: (");
  7734. MYSERIAL.print(block_buffer[idx].steps_x, DEC);
  7735. SERIAL_ECHOPGM(",");
  7736. MYSERIAL.print(block_buffer[idx].steps_y, DEC);
  7737. SERIAL_ECHOPGM(",");
  7738. MYSERIAL.print(block_buffer[idx].steps_z, DEC);
  7739. SERIAL_ECHOPGM(",");
  7740. MYSERIAL.print(block_buffer[idx].steps_e, DEC);
  7741. SERIAL_ECHOPGM("), events: ");
  7742. MYSERIAL.println(block_buffer[idx].step_event_count, DEC);
  7743. for (int len = block_buffer[idx].sdlen; len > 0; -- len)
  7744. MYSERIAL.print(char(card.get()));
  7745. }
  7746. }
  7747. {
  7748. // Print the content of the command buffer, line by line:
  7749. int8_t iline = 0;
  7750. union {
  7751. struct {
  7752. char lo;
  7753. char hi;
  7754. } lohi;
  7755. uint16_t value;
  7756. } sdlen_single;
  7757. int _bufindr = bufindr;
  7758. for (int _buflen = buflen; _buflen > 0; ++ iline) {
  7759. if (cmdbuffer[_bufindr] == CMDBUFFER_CURRENT_TYPE_SDCARD) {
  7760. sdlen_single.lohi.lo = cmdbuffer[_bufindr + 1];
  7761. sdlen_single.lohi.hi = cmdbuffer[_bufindr + 2];
  7762. }
  7763. SERIAL_ECHOPGM("Buffer line (from buffer): ");
  7764. MYSERIAL.print(int(iline), DEC);
  7765. SERIAL_ECHOPGM(", type: ");
  7766. MYSERIAL.print(int(cmdbuffer[_bufindr]), DEC);
  7767. SERIAL_ECHOPGM(", len: ");
  7768. MYSERIAL.println(sdlen_single.value, DEC);
  7769. // Print the content of the buffer line.
  7770. MYSERIAL.println(cmdbuffer + _bufindr + CMDHDRSIZE);
  7771. SERIAL_ECHOPGM("Buffer line (from file): ");
  7772. MYSERIAL.println(int(iline), DEC);
  7773. for (; sdlen_single.value > 0; -- sdlen_single.value)
  7774. MYSERIAL.print(char(card.get()));
  7775. if (-- _buflen == 0)
  7776. break;
  7777. // First skip the current command ID and iterate up to the end of the string.
  7778. for (_bufindr += CMDHDRSIZE; cmdbuffer[_bufindr] != 0; ++ _bufindr) ;
  7779. // Second, skip the end of string null character and iterate until a nonzero command ID is found.
  7780. for (++ _bufindr; _bufindr < sizeof(cmdbuffer) && cmdbuffer[_bufindr] == 0; ++ _bufindr) ;
  7781. // If the end of the buffer was empty,
  7782. if (_bufindr == sizeof(cmdbuffer)) {
  7783. // skip to the start and find the nonzero command.
  7784. for (_bufindr = 0; cmdbuffer[_bufindr] == 0; ++ _bufindr) ;
  7785. }
  7786. }
  7787. }
  7788. #endif
  7789. #if 0
  7790. saved_feedrate2 = feedrate; //save feedrate
  7791. #else
  7792. // Try to deduce the feedrate from the first block of the planner.
  7793. // Speed is in mm/min.
  7794. saved_feedrate2 = blocks_queued() ? (block_buffer[block_buffer_tail].nominal_speed * 60.f) : feedrate;
  7795. #endif
  7796. planner_abort_hard(); //abort printing
  7797. memcpy(saved_pos, current_position, sizeof(saved_pos));
  7798. saved_active_extruder = active_extruder; //save active_extruder
  7799. saved_extruder_under_pressure = extruder_under_pressure; //extruder under pressure flag - currently unused
  7800. saved_extruder_relative_mode = axis_relative_modes[E_AXIS];
  7801. cmdqueue_reset(); //empty cmdqueue
  7802. card.sdprinting = false;
  7803. // card.closefile();
  7804. saved_printing = true;
  7805. // We may have missed a stepper timer interrupt. Be safe than sorry, reset the stepper timer before re-enabling interrupts.
  7806. st_reset_timer();
  7807. sei();
  7808. if ((z_move != 0) || (e_move != 0)) { // extruder or z move
  7809. #if 1
  7810. // Rather than calling plan_buffer_line directly, push the move into the command queue,
  7811. char buf[48];
  7812. // First unretract (relative extrusion)
  7813. if(!saved_extruder_relative_mode){
  7814. strcpy_P(buf, PSTR("M83"));
  7815. enquecommand(buf, false);
  7816. }
  7817. //retract 45mm/s
  7818. strcpy_P(buf, PSTR("G1 E"));
  7819. dtostrf(e_move, 6, 3, buf + strlen(buf));
  7820. strcat_P(buf, PSTR(" F"));
  7821. dtostrf(2700, 8, 3, buf + strlen(buf));
  7822. enquecommand(buf, false);
  7823. // Then lift Z axis
  7824. strcpy_P(buf, PSTR("G1 Z"));
  7825. dtostrf(saved_pos[Z_AXIS] + z_move, 8, 3, buf + strlen(buf));
  7826. strcat_P(buf, PSTR(" F"));
  7827. dtostrf(homing_feedrate[Z_AXIS], 8, 3, buf + strlen(buf));
  7828. // At this point the command queue is empty.
  7829. enquecommand(buf, false);
  7830. // If this call is invoked from the main Arduino loop() function, let the caller know that the command
  7831. // in the command queue is not the original command, but a new one, so it should not be removed from the queue.
  7832. repeatcommand_front();
  7833. #else
  7834. plan_buffer_line(saved_pos[X_AXIS], saved_pos[Y_AXIS], saved_pos[Z_AXIS] + z_move, saved_pos[E_AXIS] + e_move, homing_feedrate[Z_AXIS], active_extruder);
  7835. st_synchronize(); //wait moving
  7836. memcpy(current_position, saved_pos, sizeof(saved_pos));
  7837. memcpy(destination, current_position, sizeof(destination));
  7838. #endif
  7839. }
  7840. }
  7841. void restore_print_from_ram_and_continue(float e_move)
  7842. {
  7843. if (!saved_printing) return;
  7844. // for (int axis = X_AXIS; axis <= E_AXIS; axis++)
  7845. // current_position[axis] = st_get_position_mm(axis);
  7846. active_extruder = saved_active_extruder; //restore active_extruder
  7847. feedrate = saved_feedrate2; //restore feedrate
  7848. axis_relative_modes[E_AXIS] = saved_extruder_relative_mode;
  7849. float e = saved_pos[E_AXIS] - e_move;
  7850. plan_set_e_position(e);
  7851. //first move print head in XY to the saved position:
  7852. plan_buffer_line(saved_pos[X_AXIS], saved_pos[Y_AXIS], current_position[Z_AXIS], saved_pos[E_AXIS] - e_move, homing_feedrate[Z_AXIS]/13, active_extruder);
  7853. st_synchronize();
  7854. //then move Z
  7855. plan_buffer_line(saved_pos[X_AXIS], saved_pos[Y_AXIS], saved_pos[Z_AXIS], saved_pos[E_AXIS] - e_move, homing_feedrate[Z_AXIS]/13, active_extruder);
  7856. st_synchronize();
  7857. //and finaly unretract (35mm/s)
  7858. plan_buffer_line(saved_pos[X_AXIS], saved_pos[Y_AXIS], saved_pos[Z_AXIS], saved_pos[E_AXIS], 35, active_extruder);
  7859. st_synchronize();
  7860. memcpy(current_position, saved_pos, sizeof(saved_pos));
  7861. memcpy(destination, current_position, sizeof(destination));
  7862. if (saved_printing_type == PRINTING_TYPE_SD) { //was sd printing
  7863. card.setIndex(saved_sdpos);
  7864. sdpos_atomic = saved_sdpos;
  7865. card.sdprinting = true;
  7866. printf_P(PSTR("ok\n")); //dummy response because of octoprint is waiting for this
  7867. }
  7868. else if (saved_printing_type == PRINTING_TYPE_USB) { //was usb printing
  7869. gcode_LastN = saved_sdpos; //saved_sdpos was reused for storing line number when usb printing
  7870. serial_count = 0;
  7871. FlushSerialRequestResend();
  7872. }
  7873. else {
  7874. //not sd printing nor usb printing
  7875. }
  7876. lcd_setstatuspgm(_T(WELCOME_MSG));
  7877. saved_printing = false;
  7878. }
  7879. void print_world_coordinates()
  7880. {
  7881. printf_P(_N("world coordinates: (%.3f, %.3f, %.3f)\n"), current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS]);
  7882. }
  7883. void print_physical_coordinates()
  7884. {
  7885. printf_P(_N("physical coordinates: (%.3f, %.3f, %.3f)\n"), st_get_position_mm[X_AXIS], st_get_position_mm[Y_AXIS], st_get_position_mm[Z_AXIS]);
  7886. }
  7887. void print_mesh_bed_leveling_table()
  7888. {
  7889. SERIAL_ECHOPGM("mesh bed leveling: ");
  7890. for (int8_t y = 0; y < MESH_NUM_Y_POINTS; ++ y)
  7891. for (int8_t x = 0; x < MESH_NUM_Y_POINTS; ++ x) {
  7892. MYSERIAL.print(mbl.z_values[y][x], 3);
  7893. SERIAL_ECHOPGM(" ");
  7894. }
  7895. SERIAL_ECHOLNPGM("");
  7896. }
  7897. uint16_t print_time_remaining() {
  7898. uint16_t print_t = PRINT_TIME_REMAINING_INIT;
  7899. if (SilentModeMenu == SILENT_MODE_OFF) print_t = print_time_remaining_normal;
  7900. else print_t = print_time_remaining_silent;
  7901. if ((print_t != PRINT_TIME_REMAINING_INIT) && (feedmultiply != 0)) print_t = 100 * print_t / feedmultiply;
  7902. return print_t;
  7903. }
  7904. uint8_t print_percent_done() {
  7905. //in case that we have information from M73 gcode return percentage counted by slicer, else return percentage counted as byte_printed/filesize
  7906. uint8_t percent_done = 0;
  7907. if (SilentModeMenu == SILENT_MODE_OFF && print_percent_done_normal <= 100) {
  7908. percent_done = print_percent_done_normal;
  7909. }
  7910. else if (print_percent_done_silent <= 100) {
  7911. percent_done = print_percent_done_silent;
  7912. }
  7913. else {
  7914. percent_done = card.percentDone();
  7915. }
  7916. return percent_done;
  7917. }
  7918. static void print_time_remaining_init() {
  7919. print_time_remaining_normal = PRINT_TIME_REMAINING_INIT;
  7920. print_time_remaining_silent = PRINT_TIME_REMAINING_INIT;
  7921. print_percent_done_normal = PRINT_PERCENT_DONE_INIT;
  7922. print_percent_done_silent = PRINT_PERCENT_DONE_INIT;
  7923. }
  7924. #define FIL_LOAD_LENGTH 60