temperature.cpp 60 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108
  1. /*
  2. temperature.c - temperature control
  3. Part of Marlin
  4. Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
  5. This program is free software: you can redistribute it and/or modify
  6. it under the terms of the GNU General Public License as published by
  7. the Free Software Foundation, either version 3 of the License, or
  8. (at your option) any later version.
  9. This program is distributed in the hope that it will be useful,
  10. but WITHOUT ANY WARRANTY; without even the implied warranty of
  11. MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  12. GNU General Public License for more details.
  13. You should have received a copy of the GNU General Public License
  14. along with this program. If not, see <http://www.gnu.org/licenses/>.
  15. */
  16. /*
  17. This firmware is a mashup between Sprinter and grbl.
  18. (https://github.com/kliment/Sprinter)
  19. (https://github.com/simen/grbl/tree)
  20. It has preliminary support for Matthew Roberts advance algorithm
  21. http://reprap.org/pipermail/reprap-dev/2011-May/003323.html
  22. */
  23. #include "Marlin.h"
  24. #include "ultralcd.h"
  25. #include "sound.h"
  26. #include "temperature.h"
  27. #include "cardreader.h"
  28. #include "Sd2PinMap.h"
  29. #include <avr/wdt.h>
  30. #include "adc.h"
  31. #include "ConfigurationStore.h"
  32. #include "Timer.h"
  33. #include "Configuration_prusa.h"
  34. //===========================================================================
  35. //=============================public variables============================
  36. //===========================================================================
  37. int target_temperature[EXTRUDERS] = { 0 };
  38. int target_temperature_bed = 0;
  39. int current_temperature_raw[EXTRUDERS] = { 0 };
  40. float current_temperature[EXTRUDERS] = { 0.0 };
  41. #ifdef PINDA_THERMISTOR
  42. int current_temperature_raw_pinda = 0 ;
  43. float current_temperature_pinda = 0.0;
  44. #endif //PINDA_THERMISTOR
  45. #ifdef AMBIENT_THERMISTOR
  46. int current_temperature_raw_ambient = 0 ;
  47. float current_temperature_ambient = 0.0;
  48. #endif //AMBIENT_THERMISTOR
  49. #ifdef VOLT_PWR_PIN
  50. int current_voltage_raw_pwr = 0;
  51. #endif
  52. #ifdef VOLT_BED_PIN
  53. int current_voltage_raw_bed = 0;
  54. #endif
  55. int current_temperature_bed_raw = 0;
  56. float current_temperature_bed = 0.0;
  57. #ifdef TEMP_SENSOR_1_AS_REDUNDANT
  58. int redundant_temperature_raw = 0;
  59. float redundant_temperature = 0.0;
  60. #endif
  61. #ifdef PIDTEMP
  62. float _Kp, _Ki, _Kd;
  63. int pid_cycle, pid_number_of_cycles;
  64. bool pid_tuning_finished = false;
  65. #ifdef PID_ADD_EXTRUSION_RATE
  66. float Kc=DEFAULT_Kc;
  67. #endif
  68. #endif //PIDTEMP
  69. #ifdef FAN_SOFT_PWM
  70. unsigned char fanSpeedSoftPwm;
  71. #endif
  72. unsigned char soft_pwm_bed;
  73. #ifdef BABYSTEPPING
  74. volatile int babystepsTodo[3]={0,0,0};
  75. #endif
  76. //===========================================================================
  77. //=============================private variables============================
  78. //===========================================================================
  79. static volatile bool temp_meas_ready = false;
  80. #ifdef PIDTEMP
  81. //static cannot be external:
  82. static float iState_sum[EXTRUDERS] = { 0 };
  83. static float dState_last[EXTRUDERS] = { 0 };
  84. static float pTerm[EXTRUDERS];
  85. static float iTerm[EXTRUDERS];
  86. static float dTerm[EXTRUDERS];
  87. //int output;
  88. static float pid_error[EXTRUDERS];
  89. static float iState_sum_min[EXTRUDERS];
  90. static float iState_sum_max[EXTRUDERS];
  91. // static float pid_input[EXTRUDERS];
  92. // static float pid_output[EXTRUDERS];
  93. static bool pid_reset[EXTRUDERS];
  94. #endif //PIDTEMP
  95. #ifdef PIDTEMPBED
  96. //static cannot be external:
  97. static float temp_iState_bed = { 0 };
  98. static float temp_dState_bed = { 0 };
  99. static float pTerm_bed;
  100. static float iTerm_bed;
  101. static float dTerm_bed;
  102. //int output;
  103. static float pid_error_bed;
  104. static float temp_iState_min_bed;
  105. static float temp_iState_max_bed;
  106. #else //PIDTEMPBED
  107. static unsigned long previous_millis_bed_heater;
  108. #endif //PIDTEMPBED
  109. static unsigned char soft_pwm[EXTRUDERS];
  110. #ifdef FAN_SOFT_PWM
  111. static unsigned char soft_pwm_fan;
  112. #endif
  113. #if (defined(EXTRUDER_0_AUTO_FAN_PIN) && EXTRUDER_0_AUTO_FAN_PIN > -1) || \
  114. (defined(EXTRUDER_1_AUTO_FAN_PIN) && EXTRUDER_1_AUTO_FAN_PIN > -1) || \
  115. (defined(EXTRUDER_2_AUTO_FAN_PIN) && EXTRUDER_2_AUTO_FAN_PIN > -1)
  116. unsigned long extruder_autofan_last_check = _millis();
  117. uint8_t fanSpeedBckp = 255;
  118. bool fan_measuring = false;
  119. #endif
  120. #if EXTRUDERS > 3
  121. # error Unsupported number of extruders
  122. #elif EXTRUDERS > 2
  123. # define ARRAY_BY_EXTRUDERS(v1, v2, v3) { v1, v2, v3 }
  124. #elif EXTRUDERS > 1
  125. # define ARRAY_BY_EXTRUDERS(v1, v2, v3) { v1, v2 }
  126. #else
  127. # define ARRAY_BY_EXTRUDERS(v1, v2, v3) { v1 }
  128. #endif
  129. static ShortTimer oTimer4minTempHeater,oTimer4minTempBed;
  130. // Init min and max temp with extreme values to prevent false errors during startup
  131. static int minttemp_raw[EXTRUDERS] = ARRAY_BY_EXTRUDERS( HEATER_0_RAW_LO_TEMP , HEATER_1_RAW_LO_TEMP , HEATER_2_RAW_LO_TEMP );
  132. static int maxttemp_raw[EXTRUDERS] = ARRAY_BY_EXTRUDERS( HEATER_0_RAW_HI_TEMP , HEATER_1_RAW_HI_TEMP , HEATER_2_RAW_HI_TEMP );
  133. static int minttemp[EXTRUDERS] = ARRAY_BY_EXTRUDERS( 0, 0, 0 );
  134. static int maxttemp[EXTRUDERS] = ARRAY_BY_EXTRUDERS( 16383, 16383, 16383 );
  135. #ifdef BED_MINTEMP
  136. static int bed_minttemp_raw = HEATER_BED_RAW_LO_TEMP;
  137. #endif
  138. #ifdef BED_MAXTEMP
  139. static int bed_maxttemp_raw = HEATER_BED_RAW_HI_TEMP;
  140. #endif
  141. #ifdef TEMP_SENSOR_1_AS_REDUNDANT
  142. static void *heater_ttbl_map[2] = {(void *)HEATER_0_TEMPTABLE, (void *)HEATER_1_TEMPTABLE };
  143. static uint8_t heater_ttbllen_map[2] = { HEATER_0_TEMPTABLE_LEN, HEATER_1_TEMPTABLE_LEN };
  144. #else
  145. static void *heater_ttbl_map[EXTRUDERS] = ARRAY_BY_EXTRUDERS( (void *)HEATER_0_TEMPTABLE, (void *)HEATER_1_TEMPTABLE, (void *)HEATER_2_TEMPTABLE );
  146. static uint8_t heater_ttbllen_map[EXTRUDERS] = ARRAY_BY_EXTRUDERS( HEATER_0_TEMPTABLE_LEN, HEATER_1_TEMPTABLE_LEN, HEATER_2_TEMPTABLE_LEN );
  147. #endif
  148. static float analog2temp(int raw, uint8_t e);
  149. static float analog2tempBed(int raw);
  150. static float analog2tempAmbient(int raw);
  151. static void updateTemperaturesFromRawValues();
  152. enum TempRunawayStates
  153. {
  154. TempRunaway_INACTIVE = 0,
  155. TempRunaway_PREHEAT = 1,
  156. TempRunaway_ACTIVE = 2,
  157. };
  158. #ifdef WATCH_TEMP_PERIOD
  159. int watch_start_temp[EXTRUDERS] = ARRAY_BY_EXTRUDERS(0,0,0);
  160. unsigned long watchmillis[EXTRUDERS] = ARRAY_BY_EXTRUDERS(0,0,0);
  161. #endif //WATCH_TEMP_PERIOD
  162. #ifndef SOFT_PWM_SCALE
  163. #define SOFT_PWM_SCALE 0
  164. #endif
  165. //===========================================================================
  166. //============================= functions ============================
  167. //===========================================================================
  168. #if (defined (TEMP_RUNAWAY_BED_HYSTERESIS) && TEMP_RUNAWAY_BED_TIMEOUT > 0) || (defined (TEMP_RUNAWAY_EXTRUDER_HYSTERESIS) && TEMP_RUNAWAY_EXTRUDER_TIMEOUT > 0)
  169. static float temp_runaway_status[4];
  170. static float temp_runaway_target[4];
  171. static float temp_runaway_timer[4];
  172. static int temp_runaway_error_counter[4];
  173. static void temp_runaway_check(int _heater_id, float _target_temperature, float _current_temperature, float _output, bool _isbed);
  174. static void temp_runaway_stop(bool isPreheat, bool isBed);
  175. #endif
  176. void PID_autotune(float temp, int extruder, int ncycles)
  177. {
  178. pid_number_of_cycles = ncycles;
  179. pid_tuning_finished = false;
  180. float input = 0.0;
  181. pid_cycle=0;
  182. bool heating = true;
  183. unsigned long temp_millis = _millis();
  184. unsigned long t1=temp_millis;
  185. unsigned long t2=temp_millis;
  186. long t_high = 0;
  187. long t_low = 0;
  188. long bias, d;
  189. float Ku, Tu;
  190. float max = 0, min = 10000;
  191. uint8_t safety_check_cycles = 0;
  192. const uint8_t safety_check_cycles_count = (extruder < 0) ? 45 : 10; //10 cycles / 20s delay for extruder and 45 cycles / 90s for heatbed
  193. float temp_ambient;
  194. #if (defined(EXTRUDER_0_AUTO_FAN_PIN) && EXTRUDER_0_AUTO_FAN_PIN > -1) || \
  195. (defined(EXTRUDER_1_AUTO_FAN_PIN) && EXTRUDER_1_AUTO_FAN_PIN > -1) || \
  196. (defined(EXTRUDER_2_AUTO_FAN_PIN) && EXTRUDER_2_AUTO_FAN_PIN > -1)
  197. unsigned long extruder_autofan_last_check = _millis();
  198. #endif
  199. if ((extruder >= EXTRUDERS)
  200. #if (TEMP_BED_PIN <= -1)
  201. ||(extruder < 0)
  202. #endif
  203. ){
  204. SERIAL_ECHOLN("PID Autotune failed. Bad extruder number.");
  205. pid_tuning_finished = true;
  206. pid_cycle = 0;
  207. return;
  208. }
  209. SERIAL_ECHOLN("PID Autotune start");
  210. disable_heater(); // switch off all heaters.
  211. if (extruder<0)
  212. {
  213. soft_pwm_bed = (MAX_BED_POWER)/2;
  214. timer02_set_pwm0(soft_pwm_bed << 1);
  215. bias = d = (MAX_BED_POWER)/2;
  216. }
  217. else
  218. {
  219. soft_pwm[extruder] = (PID_MAX)/2;
  220. bias = d = (PID_MAX)/2;
  221. }
  222. for(;;) {
  223. #ifdef WATCHDOG
  224. wdt_reset();
  225. #endif //WATCHDOG
  226. if(temp_meas_ready == true) { // temp sample ready
  227. updateTemperaturesFromRawValues();
  228. input = (extruder<0)?current_temperature_bed:current_temperature[extruder];
  229. max=max(max,input);
  230. min=min(min,input);
  231. #if (defined(EXTRUDER_0_AUTO_FAN_PIN) && EXTRUDER_0_AUTO_FAN_PIN > -1) || \
  232. (defined(EXTRUDER_1_AUTO_FAN_PIN) && EXTRUDER_1_AUTO_FAN_PIN > -1) || \
  233. (defined(EXTRUDER_2_AUTO_FAN_PIN) && EXTRUDER_2_AUTO_FAN_PIN > -1)
  234. if(_millis() - extruder_autofan_last_check > 2500) {
  235. checkExtruderAutoFans();
  236. extruder_autofan_last_check = _millis();
  237. }
  238. #endif
  239. if(heating == true && input > temp) {
  240. if(_millis() - t2 > 5000) {
  241. heating=false;
  242. if (extruder<0)
  243. {
  244. soft_pwm_bed = (bias - d) >> 1;
  245. timer02_set_pwm0(soft_pwm_bed << 1);
  246. }
  247. else
  248. soft_pwm[extruder] = (bias - d) >> 1;
  249. t1=_millis();
  250. t_high=t1 - t2;
  251. max=temp;
  252. }
  253. }
  254. if(heating == false && input < temp) {
  255. if(_millis() - t1 > 5000) {
  256. heating=true;
  257. t2=_millis();
  258. t_low=t2 - t1;
  259. if(pid_cycle > 0) {
  260. bias += (d*(t_high - t_low))/(t_low + t_high);
  261. bias = constrain(bias, 20 ,(extruder<0?(MAX_BED_POWER):(PID_MAX))-20);
  262. if(bias > (extruder<0?(MAX_BED_POWER):(PID_MAX))/2) d = (extruder<0?(MAX_BED_POWER):(PID_MAX)) - 1 - bias;
  263. else d = bias;
  264. SERIAL_PROTOCOLPGM(" bias: "); SERIAL_PROTOCOL(bias);
  265. SERIAL_PROTOCOLPGM(" d: "); SERIAL_PROTOCOL(d);
  266. SERIAL_PROTOCOLPGM(" min: "); SERIAL_PROTOCOL(min);
  267. SERIAL_PROTOCOLPGM(" max: "); SERIAL_PROTOCOLLN(max);
  268. if(pid_cycle > 2) {
  269. Ku = (4.0*d)/(3.14159*(max-min)/2.0);
  270. Tu = ((float)(t_low + t_high)/1000.0);
  271. SERIAL_PROTOCOLPGM(" Ku: "); SERIAL_PROTOCOL(Ku);
  272. SERIAL_PROTOCOLPGM(" Tu: "); SERIAL_PROTOCOLLN(Tu);
  273. _Kp = 0.6*Ku;
  274. _Ki = 2*_Kp/Tu;
  275. _Kd = _Kp*Tu/8;
  276. SERIAL_PROTOCOLLNPGM(" Classic PID ");
  277. SERIAL_PROTOCOLPGM(" Kp: "); SERIAL_PROTOCOLLN(_Kp);
  278. SERIAL_PROTOCOLPGM(" Ki: "); SERIAL_PROTOCOLLN(_Ki);
  279. SERIAL_PROTOCOLPGM(" Kd: "); SERIAL_PROTOCOLLN(_Kd);
  280. /*
  281. _Kp = 0.33*Ku;
  282. _Ki = _Kp/Tu;
  283. _Kd = _Kp*Tu/3;
  284. SERIAL_PROTOCOLLNPGM(" Some overshoot ");
  285. SERIAL_PROTOCOLPGM(" Kp: "); SERIAL_PROTOCOLLN(_Kp);
  286. SERIAL_PROTOCOLPGM(" Ki: "); SERIAL_PROTOCOLLN(_Ki);
  287. SERIAL_PROTOCOLPGM(" Kd: "); SERIAL_PROTOCOLLN(_Kd);
  288. _Kp = 0.2*Ku;
  289. _Ki = 2*_Kp/Tu;
  290. _Kd = _Kp*Tu/3;
  291. SERIAL_PROTOCOLLNPGM(" No overshoot ");
  292. SERIAL_PROTOCOLPGM(" Kp: "); SERIAL_PROTOCOLLN(_Kp);
  293. SERIAL_PROTOCOLPGM(" Ki: "); SERIAL_PROTOCOLLN(_Ki);
  294. SERIAL_PROTOCOLPGM(" Kd: "); SERIAL_PROTOCOLLN(_Kd);
  295. */
  296. }
  297. }
  298. if (extruder<0)
  299. {
  300. soft_pwm_bed = (bias + d) >> 1;
  301. timer02_set_pwm0(soft_pwm_bed << 1);
  302. }
  303. else
  304. soft_pwm[extruder] = (bias + d) >> 1;
  305. pid_cycle++;
  306. min=temp;
  307. }
  308. }
  309. }
  310. if(input > (temp + 20)) {
  311. SERIAL_PROTOCOLLNPGM("PID Autotune failed! Temperature too high");
  312. pid_tuning_finished = true;
  313. pid_cycle = 0;
  314. return;
  315. }
  316. if(_millis() - temp_millis > 2000) {
  317. int p;
  318. if (extruder<0){
  319. p=soft_pwm_bed;
  320. SERIAL_PROTOCOLPGM("B:");
  321. }else{
  322. p=soft_pwm[extruder];
  323. SERIAL_PROTOCOLPGM("T:");
  324. }
  325. SERIAL_PROTOCOL(input);
  326. SERIAL_PROTOCOLPGM(" @:");
  327. SERIAL_PROTOCOLLN(p);
  328. if (safety_check_cycles == 0) { //save ambient temp
  329. temp_ambient = input;
  330. //SERIAL_ECHOPGM("Ambient T: ");
  331. //MYSERIAL.println(temp_ambient);
  332. safety_check_cycles++;
  333. }
  334. else if (safety_check_cycles < safety_check_cycles_count) { //delay
  335. safety_check_cycles++;
  336. }
  337. else if (safety_check_cycles == safety_check_cycles_count){ //check that temperature is rising
  338. safety_check_cycles++;
  339. //SERIAL_ECHOPGM("Time from beginning: ");
  340. //MYSERIAL.print(safety_check_cycles_count * 2);
  341. //SERIAL_ECHOPGM("s. Difference between current and ambient T: ");
  342. //MYSERIAL.println(input - temp_ambient);
  343. if (abs(input - temp_ambient) < 5.0) {
  344. temp_runaway_stop(false, (extruder<0));
  345. pid_tuning_finished = true;
  346. return;
  347. }
  348. }
  349. temp_millis = _millis();
  350. }
  351. if(((_millis() - t1) + (_millis() - t2)) > (10L*60L*1000L*2L)) {
  352. SERIAL_PROTOCOLLNPGM("PID Autotune failed! timeout");
  353. pid_tuning_finished = true;
  354. pid_cycle = 0;
  355. return;
  356. }
  357. if(pid_cycle > ncycles) {
  358. SERIAL_PROTOCOLLNPGM("PID Autotune finished! Put the last Kp, Ki and Kd constants from above into Configuration.h");
  359. pid_tuning_finished = true;
  360. pid_cycle = 0;
  361. return;
  362. }
  363. lcd_update(0);
  364. }
  365. }
  366. void updatePID()
  367. {
  368. #ifdef PIDTEMP
  369. for(int e = 0; e < EXTRUDERS; e++) {
  370. iState_sum_max[e] = PID_INTEGRAL_DRIVE_MAX / cs.Ki;
  371. }
  372. #endif
  373. #ifdef PIDTEMPBED
  374. temp_iState_max_bed = PID_INTEGRAL_DRIVE_MAX / cs.bedKi;
  375. #endif
  376. }
  377. int getHeaterPower(int heater) {
  378. if (heater<0)
  379. return soft_pwm_bed;
  380. return soft_pwm[heater];
  381. }
  382. #if (defined(EXTRUDER_0_AUTO_FAN_PIN) && EXTRUDER_0_AUTO_FAN_PIN > -1) || \
  383. (defined(EXTRUDER_1_AUTO_FAN_PIN) && EXTRUDER_1_AUTO_FAN_PIN > -1) || \
  384. (defined(EXTRUDER_2_AUTO_FAN_PIN) && EXTRUDER_2_AUTO_FAN_PIN > -1)
  385. #if defined(FAN_PIN) && FAN_PIN > -1
  386. #if EXTRUDER_0_AUTO_FAN_PIN == FAN_PIN
  387. #error "You cannot set EXTRUDER_0_AUTO_FAN_PIN equal to FAN_PIN"
  388. #endif
  389. #if EXTRUDER_1_AUTO_FAN_PIN == FAN_PIN
  390. #error "You cannot set EXTRUDER_1_AUTO_FAN_PIN equal to FAN_PIN"
  391. #endif
  392. #if EXTRUDER_2_AUTO_FAN_PIN == FAN_PIN
  393. #error "You cannot set EXTRUDER_2_AUTO_FAN_PIN equal to FAN_PIN"
  394. #endif
  395. #endif
  396. void setExtruderAutoFanState(int pin, bool state)
  397. {
  398. unsigned char newFanSpeed = (state != 0) ? EXTRUDER_AUTO_FAN_SPEED : 0;
  399. // this idiom allows both digital and PWM fan outputs (see M42 handling).
  400. pinMode(pin, OUTPUT);
  401. digitalWrite(pin, newFanSpeed);
  402. //analogWrite(pin, newFanSpeed);
  403. }
  404. #if (defined(FANCHECK) && (((defined(TACH_0) && (TACH_0 >-1)) || (defined(TACH_1) && (TACH_1 > -1)))))
  405. void countFanSpeed()
  406. {
  407. //SERIAL_ECHOPGM("edge counter 1:"); MYSERIAL.println(fan_edge_counter[1]);
  408. fan_speed[0] = (fan_edge_counter[0] * (float(250) / (_millis() - extruder_autofan_last_check)));
  409. fan_speed[1] = (fan_edge_counter[1] * (float(250) / (_millis() - extruder_autofan_last_check)));
  410. /*SERIAL_ECHOPGM("time interval: "); MYSERIAL.println(_millis() - extruder_autofan_last_check);
  411. SERIAL_ECHOPGM("extruder fan speed:"); MYSERIAL.print(fan_speed[0]); SERIAL_ECHOPGM("; edge counter:"); MYSERIAL.println(fan_edge_counter[0]);
  412. SERIAL_ECHOPGM("print fan speed:"); MYSERIAL.print(fan_speed[1]); SERIAL_ECHOPGM("; edge counter:"); MYSERIAL.println(fan_edge_counter[1]);
  413. SERIAL_ECHOLNPGM(" ");*/
  414. fan_edge_counter[0] = 0;
  415. fan_edge_counter[1] = 0;
  416. }
  417. extern bool fans_check_enabled;
  418. void checkFanSpeed()
  419. {
  420. uint8_t max_print_fan_errors = 0;
  421. uint8_t max_extruder_fan_errors = 0;
  422. #ifdef FAN_SOFT_PWM
  423. max_print_fan_errors = 3; //15 seconds
  424. max_extruder_fan_errors = 2; //10seconds
  425. #else //FAN_SOFT_PWM
  426. max_print_fan_errors = 15; //15 seconds
  427. max_extruder_fan_errors = 5; //5 seconds
  428. #endif //FAN_SOFT_PWM
  429. fans_check_enabled = (eeprom_read_byte((uint8_t*)EEPROM_FAN_CHECK_ENABLED) > 0);
  430. static unsigned char fan_speed_errors[2] = { 0,0 };
  431. #if (defined(FANCHECK) && defined(TACH_0) && (TACH_0 >-1))
  432. if ((fan_speed[0] == 0) && (current_temperature[0] > EXTRUDER_AUTO_FAN_TEMPERATURE)) fan_speed_errors[0]++;
  433. else fan_speed_errors[0] = 0;
  434. #endif
  435. #if (defined(FANCHECK) && defined(TACH_1) && (TACH_1 >-1))
  436. if ((fan_speed[1] < 5) && ((blocks_queued() ? block_buffer[block_buffer_tail].fan_speed : fanSpeed) > MIN_PRINT_FAN_SPEED)) fan_speed_errors[1]++;
  437. else fan_speed_errors[1] = 0;
  438. #endif
  439. if ((fan_speed_errors[0] > max_extruder_fan_errors) && fans_check_enabled) {
  440. fan_speed_errors[0] = 0;
  441. fanSpeedError(0); //extruder fan
  442. }
  443. if ((fan_speed_errors[1] > max_print_fan_errors) && fans_check_enabled) {
  444. fan_speed_errors[1] = 0;
  445. fanSpeedError(1); //print fan
  446. }
  447. }
  448. void fanSpeedError(unsigned char _fan) {
  449. if (get_message_level() != 0 && isPrintPaused) return;
  450. //to ensure that target temp. is not set to zero in case taht we are resuming print
  451. if (card.sdprinting) {
  452. if (heating_status != 0) {
  453. lcd_print_stop();
  454. }
  455. else {
  456. lcd_pause_print();
  457. }
  458. }
  459. else {
  460. setTargetHotend0(0);
  461. SERIAL_ECHOLNPGM("// action:pause"); //for octoprint
  462. }
  463. switch (_fan) {
  464. case 0:
  465. SERIAL_ECHOLNPGM("Extruder fan speed is lower then expected");
  466. if (get_message_level() == 0) {
  467. if((eSoundMode==e_SOUND_MODE_LOUD)||(eSoundMode==e_SOUND_MODE_ONCE)||(eSoundMode==e_SOUND_MODE_SILENT))
  468. WRITE(BEEPER, HIGH);
  469. delayMicroseconds(200);
  470. WRITE(BEEPER, LOW);
  471. delayMicroseconds(100);
  472. LCD_ALERTMESSAGEPGM("Err: EXTR. FAN ERROR");
  473. }
  474. break;
  475. case 1:
  476. SERIAL_ECHOLNPGM("Print fan speed is lower then expected");
  477. if (get_message_level() == 0) {
  478. if((eSoundMode==e_SOUND_MODE_LOUD)||(eSoundMode==e_SOUND_MODE_ONCE)||(eSoundMode==e_SOUND_MODE_SILENT))
  479. WRITE(BEEPER, HIGH);
  480. delayMicroseconds(200);
  481. WRITE(BEEPER, LOW);
  482. delayMicroseconds(100);
  483. LCD_ALERTMESSAGEPGM("Err: PRINT FAN ERROR");
  484. }
  485. break;
  486. }
  487. }
  488. #endif //(defined(TACH_0) && TACH_0 >-1) || (defined(TACH_1) && TACH_1 > -1)
  489. void checkExtruderAutoFans()
  490. {
  491. uint8_t fanState = 0;
  492. // which fan pins need to be turned on?
  493. #if defined(EXTRUDER_0_AUTO_FAN_PIN) && EXTRUDER_0_AUTO_FAN_PIN > -1
  494. if (current_temperature[0] > EXTRUDER_AUTO_FAN_TEMPERATURE)
  495. fanState |= 1;
  496. #endif
  497. #if defined(EXTRUDER_1_AUTO_FAN_PIN) && EXTRUDER_1_AUTO_FAN_PIN > -1
  498. if (current_temperature[1] > EXTRUDER_AUTO_FAN_TEMPERATURE)
  499. {
  500. if (EXTRUDER_1_AUTO_FAN_PIN == EXTRUDER_0_AUTO_FAN_PIN)
  501. fanState |= 1;
  502. else
  503. fanState |= 2;
  504. }
  505. #endif
  506. #if defined(EXTRUDER_2_AUTO_FAN_PIN) && EXTRUDER_2_AUTO_FAN_PIN > -1
  507. if (current_temperature[2] > EXTRUDER_AUTO_FAN_TEMPERATURE)
  508. {
  509. if (EXTRUDER_2_AUTO_FAN_PIN == EXTRUDER_0_AUTO_FAN_PIN)
  510. fanState |= 1;
  511. else if (EXTRUDER_2_AUTO_FAN_PIN == EXTRUDER_1_AUTO_FAN_PIN)
  512. fanState |= 2;
  513. else
  514. fanState |= 4;
  515. }
  516. #endif
  517. // update extruder auto fan states
  518. #if defined(EXTRUDER_0_AUTO_FAN_PIN) && EXTRUDER_0_AUTO_FAN_PIN > -1
  519. setExtruderAutoFanState(EXTRUDER_0_AUTO_FAN_PIN, (fanState & 1) != 0);
  520. #endif
  521. #if defined(EXTRUDER_1_AUTO_FAN_PIN) && EXTRUDER_1_AUTO_FAN_PIN > -1
  522. if (EXTRUDER_1_AUTO_FAN_PIN != EXTRUDER_0_AUTO_FAN_PIN)
  523. setExtruderAutoFanState(EXTRUDER_1_AUTO_FAN_PIN, (fanState & 2) != 0);
  524. #endif
  525. #if defined(EXTRUDER_2_AUTO_FAN_PIN) && EXTRUDER_2_AUTO_FAN_PIN > -1
  526. if (EXTRUDER_2_AUTO_FAN_PIN != EXTRUDER_0_AUTO_FAN_PIN
  527. && EXTRUDER_2_AUTO_FAN_PIN != EXTRUDER_1_AUTO_FAN_PIN)
  528. setExtruderAutoFanState(EXTRUDER_2_AUTO_FAN_PIN, (fanState & 4) != 0);
  529. #endif
  530. }
  531. #endif // any extruder auto fan pins set
  532. // ready for eventually parameters adjusting
  533. void resetPID(uint8_t) // only for compiler-warning elimination (if function do nothing)
  534. //void resetPID(uint8_t extruder)
  535. {
  536. }
  537. void manage_heater()
  538. {
  539. #ifdef WATCHDOG
  540. wdt_reset();
  541. #endif //WATCHDOG
  542. float pid_input;
  543. float pid_output;
  544. if(temp_meas_ready != true) //better readability
  545. return;
  546. // more precisely - this condition partially stabilizes time interval for regulation values evaluation (@ ~ 230ms)
  547. updateTemperaturesFromRawValues();
  548. check_max_temp();
  549. check_min_temp();
  550. #ifdef TEMP_RUNAWAY_BED_HYSTERESIS
  551. temp_runaway_check(0, target_temperature_bed, current_temperature_bed, (int)soft_pwm_bed, true);
  552. #endif
  553. for(int e = 0; e < EXTRUDERS; e++)
  554. {
  555. #ifdef TEMP_RUNAWAY_EXTRUDER_HYSTERESIS
  556. temp_runaway_check(e+1, target_temperature[e], current_temperature[e], (int)soft_pwm[e], false);
  557. #endif
  558. #ifdef PIDTEMP
  559. pid_input = current_temperature[e];
  560. #ifndef PID_OPENLOOP
  561. if(target_temperature[e] == 0) {
  562. pid_output = 0;
  563. pid_reset[e] = true;
  564. } else {
  565. pid_error[e] = target_temperature[e] - pid_input;
  566. if(pid_reset[e]) {
  567. iState_sum[e] = 0.0;
  568. dTerm[e] = 0.0; // 'dState_last[e]' initial setting is not necessary (see end of if-statement)
  569. pid_reset[e] = false;
  570. }
  571. #ifndef PonM
  572. pTerm[e] = cs.Kp * pid_error[e];
  573. iState_sum[e] += pid_error[e];
  574. iState_sum[e] = constrain(iState_sum[e], iState_sum_min[e], iState_sum_max[e]);
  575. iTerm[e] = cs.Ki * iState_sum[e];
  576. // K1 defined in Configuration.h in the PID settings
  577. #define K2 (1.0-K1)
  578. dTerm[e] = (cs.Kd * (pid_input - dState_last[e]))*K2 + (K1 * dTerm[e]); // e.g. digital filtration of derivative term changes
  579. pid_output = pTerm[e] + iTerm[e] - dTerm[e]; // subtraction due to "Derivative on Measurement" method (i.e. derivative of input instead derivative of error is used)
  580. if (pid_output > PID_MAX) {
  581. if (pid_error[e] > 0 ) iState_sum[e] -= pid_error[e]; // conditional un-integration
  582. pid_output=PID_MAX;
  583. } else if (pid_output < 0) {
  584. if (pid_error[e] < 0 ) iState_sum[e] -= pid_error[e]; // conditional un-integration
  585. pid_output=0;
  586. }
  587. #else // PonM ("Proportional on Measurement" method)
  588. iState_sum[e] += cs.Ki * pid_error[e];
  589. iState_sum[e] -= cs.Kp * (pid_input - dState_last[e]);
  590. iState_sum[e] = constrain(iState_sum[e], 0, PID_INTEGRAL_DRIVE_MAX);
  591. dTerm[e] = cs.Kd * (pid_input - dState_last[e]);
  592. pid_output = iState_sum[e] - dTerm[e]; // subtraction due to "Derivative on Measurement" method (i.e. derivative of input instead derivative of error is used)
  593. pid_output = constrain(pid_output, 0, PID_MAX);
  594. #endif // PonM
  595. }
  596. dState_last[e] = pid_input;
  597. #else
  598. pid_output = constrain(target_temperature[e], 0, PID_MAX);
  599. #endif //PID_OPENLOOP
  600. #ifdef PID_DEBUG
  601. SERIAL_ECHO_START;
  602. SERIAL_ECHO(" PID_DEBUG ");
  603. SERIAL_ECHO(e);
  604. SERIAL_ECHO(": Input ");
  605. SERIAL_ECHO(pid_input);
  606. SERIAL_ECHO(" Output ");
  607. SERIAL_ECHO(pid_output);
  608. SERIAL_ECHO(" pTerm ");
  609. SERIAL_ECHO(pTerm[e]);
  610. SERIAL_ECHO(" iTerm ");
  611. SERIAL_ECHO(iTerm[e]);
  612. SERIAL_ECHO(" dTerm ");
  613. SERIAL_ECHOLN(-dTerm[e]);
  614. #endif //PID_DEBUG
  615. #else /* PID off */
  616. pid_output = 0;
  617. if(current_temperature[e] < target_temperature[e]) {
  618. pid_output = PID_MAX;
  619. }
  620. #endif
  621. // Check if temperature is within the correct range
  622. if((current_temperature[e] < maxttemp[e]) && (target_temperature[e] != 0))
  623. {
  624. soft_pwm[e] = (int)pid_output >> 1;
  625. }
  626. else
  627. {
  628. soft_pwm[e] = 0;
  629. }
  630. #ifdef WATCH_TEMP_PERIOD
  631. if(watchmillis[e] && _millis() - watchmillis[e] > WATCH_TEMP_PERIOD)
  632. {
  633. if(degHotend(e) < watch_start_temp[e] + WATCH_TEMP_INCREASE)
  634. {
  635. setTargetHotend(0, e);
  636. LCD_MESSAGEPGM("Heating failed");
  637. SERIAL_ECHO_START;
  638. SERIAL_ECHOLN("Heating failed");
  639. }else{
  640. watchmillis[e] = 0;
  641. }
  642. }
  643. #endif
  644. #ifdef TEMP_SENSOR_1_AS_REDUNDANT
  645. if(fabs(current_temperature[0] - redundant_temperature) > MAX_REDUNDANT_TEMP_SENSOR_DIFF) {
  646. disable_heater();
  647. if(IsStopped() == false) {
  648. SERIAL_ERROR_START;
  649. SERIAL_ERRORLNPGM("Extruder switched off. Temperature difference between temp sensors is too high !");
  650. LCD_ALERTMESSAGEPGM("Err: REDUNDANT TEMP ERROR");
  651. }
  652. #ifndef BOGUS_TEMPERATURE_FAILSAFE_OVERRIDE
  653. Stop();
  654. #endif
  655. }
  656. #endif
  657. } // End extruder for loop
  658. #define FAN_CHECK_PERIOD 5000 //5s
  659. #define FAN_CHECK_DURATION 100 //100ms
  660. #ifndef DEBUG_DISABLE_FANCHECK
  661. #if (defined(EXTRUDER_0_AUTO_FAN_PIN) && EXTRUDER_0_AUTO_FAN_PIN > -1) || \
  662. (defined(EXTRUDER_1_AUTO_FAN_PIN) && EXTRUDER_1_AUTO_FAN_PIN > -1) || \
  663. (defined(EXTRUDER_2_AUTO_FAN_PIN) && EXTRUDER_2_AUTO_FAN_PIN > -1)
  664. #ifdef FAN_SOFT_PWM
  665. if ((_millis() - extruder_autofan_last_check > FAN_CHECK_PERIOD) && (!fan_measuring)) {
  666. extruder_autofan_last_check = _millis();
  667. fanSpeedBckp = fanSpeedSoftPwm;
  668. if (fanSpeedSoftPwm >= MIN_PRINT_FAN_SPEED) { //if we are in rage where we are doing fan check, set full PWM range for a short time to measure fan RPM by reading tacho signal without modulation by PWM signal
  669. // printf_P(PSTR("fanSpeedSoftPwm 1: %d\n"), fanSpeedSoftPwm);
  670. fanSpeedSoftPwm = 255;
  671. }
  672. fan_measuring = true;
  673. }
  674. if ((_millis() - extruder_autofan_last_check > FAN_CHECK_DURATION) && (fan_measuring)) {
  675. countFanSpeed();
  676. checkFanSpeed();
  677. //printf_P(PSTR("fanSpeedSoftPwm 1: %d\n"), fanSpeedSoftPwm);
  678. fanSpeedSoftPwm = fanSpeedBckp;
  679. //printf_P(PSTR("fan PWM: %d; extr fanSpeed measured: %d; print fan speed measured: %d \n"), fanSpeedBckp, fan_speed[0], fan_speed[1]);
  680. extruder_autofan_last_check = _millis();
  681. fan_measuring = false;
  682. }
  683. checkExtruderAutoFans();
  684. #else //FAN_SOFT_PWM
  685. if(_millis() - extruder_autofan_last_check > 1000) // only need to check fan state very infrequently
  686. {
  687. #if (defined(FANCHECK) && ((defined(TACH_0) && (TACH_0 >-1)) || (defined(TACH_1) && (TACH_1 > -1))))
  688. countFanSpeed();
  689. checkFanSpeed();
  690. #endif //(defined(TACH_0) && TACH_0 >-1) || (defined(TACH_1) && TACH_1 > -1)
  691. checkExtruderAutoFans();
  692. extruder_autofan_last_check = _millis();
  693. }
  694. #endif //FAN_SOFT_PWM
  695. #endif
  696. #endif //DEBUG_DISABLE_FANCHECK
  697. #ifndef PIDTEMPBED
  698. if(_millis() - previous_millis_bed_heater < BED_CHECK_INTERVAL)
  699. return;
  700. previous_millis_bed_heater = _millis();
  701. #endif
  702. #if TEMP_SENSOR_BED != 0
  703. #ifdef PIDTEMPBED
  704. pid_input = current_temperature_bed;
  705. #ifndef PID_OPENLOOP
  706. pid_error_bed = target_temperature_bed - pid_input;
  707. pTerm_bed = cs.bedKp * pid_error_bed;
  708. temp_iState_bed += pid_error_bed;
  709. temp_iState_bed = constrain(temp_iState_bed, temp_iState_min_bed, temp_iState_max_bed);
  710. iTerm_bed = cs.bedKi * temp_iState_bed;
  711. //K1 defined in Configuration.h in the PID settings
  712. #define K2 (1.0-K1)
  713. dTerm_bed= (cs.bedKd * (pid_input - temp_dState_bed))*K2 + (K1 * dTerm_bed);
  714. temp_dState_bed = pid_input;
  715. pid_output = pTerm_bed + iTerm_bed - dTerm_bed;
  716. if (pid_output > MAX_BED_POWER) {
  717. if (pid_error_bed > 0 ) temp_iState_bed -= pid_error_bed; // conditional un-integration
  718. pid_output=MAX_BED_POWER;
  719. } else if (pid_output < 0){
  720. if (pid_error_bed < 0 ) temp_iState_bed -= pid_error_bed; // conditional un-integration
  721. pid_output=0;
  722. }
  723. #else
  724. pid_output = constrain(target_temperature_bed, 0, MAX_BED_POWER);
  725. #endif //PID_OPENLOOP
  726. if(current_temperature_bed < BED_MAXTEMP)
  727. {
  728. soft_pwm_bed = (int)pid_output >> 1;
  729. timer02_set_pwm0(soft_pwm_bed << 1);
  730. }
  731. else {
  732. soft_pwm_bed = 0;
  733. timer02_set_pwm0(soft_pwm_bed << 1);
  734. }
  735. #elif !defined(BED_LIMIT_SWITCHING)
  736. // Check if temperature is within the correct range
  737. if(current_temperature_bed < BED_MAXTEMP)
  738. {
  739. if(current_temperature_bed >= target_temperature_bed)
  740. {
  741. soft_pwm_bed = 0;
  742. timer02_set_pwm0(soft_pwm_bed << 1);
  743. }
  744. else
  745. {
  746. soft_pwm_bed = MAX_BED_POWER>>1;
  747. timer02_set_pwm0(soft_pwm_bed << 1);
  748. }
  749. }
  750. else
  751. {
  752. soft_pwm_bed = 0;
  753. timer02_set_pwm0(soft_pwm_bed << 1);
  754. WRITE(HEATER_BED_PIN,LOW);
  755. }
  756. #else //#ifdef BED_LIMIT_SWITCHING
  757. // Check if temperature is within the correct band
  758. if(current_temperature_bed < BED_MAXTEMP)
  759. {
  760. if(current_temperature_bed > target_temperature_bed + BED_HYSTERESIS)
  761. {
  762. soft_pwm_bed = 0;
  763. timer02_set_pwm0(soft_pwm_bed << 1);
  764. }
  765. else if(current_temperature_bed <= target_temperature_bed - BED_HYSTERESIS)
  766. {
  767. soft_pwm_bed = MAX_BED_POWER>>1;
  768. timer02_set_pwm0(soft_pwm_bed << 1);
  769. }
  770. }
  771. else
  772. {
  773. soft_pwm_bed = 0;
  774. timer02_set_pwm0(soft_pwm_bed << 1);
  775. WRITE(HEATER_BED_PIN,LOW);
  776. }
  777. #endif
  778. if(target_temperature_bed==0)
  779. {
  780. soft_pwm_bed = 0;
  781. timer02_set_pwm0(soft_pwm_bed << 1);
  782. }
  783. #endif
  784. #ifdef HOST_KEEPALIVE_FEATURE
  785. host_keepalive();
  786. #endif
  787. }
  788. #define PGM_RD_W(x) (short)pgm_read_word(&x)
  789. // Derived from RepRap FiveD extruder::getTemperature()
  790. // For hot end temperature measurement.
  791. static float analog2temp(int raw, uint8_t e) {
  792. #ifdef TEMP_SENSOR_1_AS_REDUNDANT
  793. if(e > EXTRUDERS)
  794. #else
  795. if(e >= EXTRUDERS)
  796. #endif
  797. {
  798. SERIAL_ERROR_START;
  799. SERIAL_ERROR((int)e);
  800. SERIAL_ERRORLNPGM(" - Invalid extruder number !");
  801. kill(PSTR(""), 6);
  802. return 0.0;
  803. }
  804. #ifdef HEATER_0_USES_MAX6675
  805. if (e == 0)
  806. {
  807. return 0.25 * raw;
  808. }
  809. #endif
  810. if(heater_ttbl_map[e] != NULL)
  811. {
  812. float celsius = 0;
  813. uint8_t i;
  814. short (*tt)[][2] = (short (*)[][2])(heater_ttbl_map[e]);
  815. for (i=1; i<heater_ttbllen_map[e]; i++)
  816. {
  817. if (PGM_RD_W((*tt)[i][0]) > raw)
  818. {
  819. celsius = PGM_RD_W((*tt)[i-1][1]) +
  820. (raw - PGM_RD_W((*tt)[i-1][0])) *
  821. (float)(PGM_RD_W((*tt)[i][1]) - PGM_RD_W((*tt)[i-1][1])) /
  822. (float)(PGM_RD_W((*tt)[i][0]) - PGM_RD_W((*tt)[i-1][0]));
  823. break;
  824. }
  825. }
  826. // Overflow: Set to last value in the table
  827. if (i == heater_ttbllen_map[e]) celsius = PGM_RD_W((*tt)[i-1][1]);
  828. return celsius;
  829. }
  830. return ((raw * ((5.0 * 100.0) / 1024.0) / OVERSAMPLENR) * TEMP_SENSOR_AD595_GAIN) + TEMP_SENSOR_AD595_OFFSET;
  831. }
  832. // Derived from RepRap FiveD extruder::getTemperature()
  833. // For bed temperature measurement.
  834. static float analog2tempBed(int raw) {
  835. #ifdef BED_USES_THERMISTOR
  836. float celsius = 0;
  837. byte i;
  838. for (i=1; i<BEDTEMPTABLE_LEN; i++)
  839. {
  840. if (PGM_RD_W(BEDTEMPTABLE[i][0]) > raw)
  841. {
  842. celsius = PGM_RD_W(BEDTEMPTABLE[i-1][1]) +
  843. (raw - PGM_RD_W(BEDTEMPTABLE[i-1][0])) *
  844. (float)(PGM_RD_W(BEDTEMPTABLE[i][1]) - PGM_RD_W(BEDTEMPTABLE[i-1][1])) /
  845. (float)(PGM_RD_W(BEDTEMPTABLE[i][0]) - PGM_RD_W(BEDTEMPTABLE[i-1][0]));
  846. break;
  847. }
  848. }
  849. // Overflow: Set to last value in the table
  850. if (i == BEDTEMPTABLE_LEN) celsius = PGM_RD_W(BEDTEMPTABLE[i-1][1]);
  851. // temperature offset adjustment
  852. #ifdef BED_OFFSET
  853. float _offset = BED_OFFSET;
  854. float _offset_center = BED_OFFSET_CENTER;
  855. float _offset_start = BED_OFFSET_START;
  856. float _first_koef = (_offset / 2) / (_offset_center - _offset_start);
  857. float _second_koef = (_offset / 2) / (100 - _offset_center);
  858. if (celsius >= _offset_start && celsius <= _offset_center)
  859. {
  860. celsius = celsius + (_first_koef * (celsius - _offset_start));
  861. }
  862. else if (celsius > _offset_center && celsius <= 100)
  863. {
  864. celsius = celsius + (_first_koef * (_offset_center - _offset_start)) + ( _second_koef * ( celsius - ( 100 - _offset_center ) )) ;
  865. }
  866. else if (celsius > 100)
  867. {
  868. celsius = celsius + _offset;
  869. }
  870. #endif
  871. return celsius;
  872. #elif defined BED_USES_AD595
  873. return ((raw * ((5.0 * 100.0) / 1024.0) / OVERSAMPLENR) * TEMP_SENSOR_AD595_GAIN) + TEMP_SENSOR_AD595_OFFSET;
  874. #else
  875. return 0;
  876. #endif
  877. }
  878. #ifdef AMBIENT_THERMISTOR
  879. static float analog2tempAmbient(int raw)
  880. {
  881. float celsius = 0;
  882. byte i;
  883. for (i=1; i<AMBIENTTEMPTABLE_LEN; i++)
  884. {
  885. if (PGM_RD_W(AMBIENTTEMPTABLE[i][0]) > raw)
  886. {
  887. celsius = PGM_RD_W(AMBIENTTEMPTABLE[i-1][1]) +
  888. (raw - PGM_RD_W(AMBIENTTEMPTABLE[i-1][0])) *
  889. (float)(PGM_RD_W(AMBIENTTEMPTABLE[i][1]) - PGM_RD_W(AMBIENTTEMPTABLE[i-1][1])) /
  890. (float)(PGM_RD_W(AMBIENTTEMPTABLE[i][0]) - PGM_RD_W(AMBIENTTEMPTABLE[i-1][0]));
  891. break;
  892. }
  893. }
  894. // Overflow: Set to last value in the table
  895. if (i == AMBIENTTEMPTABLE_LEN) celsius = PGM_RD_W(AMBIENTTEMPTABLE[i-1][1]);
  896. return celsius;
  897. }
  898. #endif //AMBIENT_THERMISTOR
  899. /* Called to get the raw values into the the actual temperatures. The raw values are created in interrupt context,
  900. and this function is called from normal context as it is too slow to run in interrupts and will block the stepper routine otherwise */
  901. static void updateTemperaturesFromRawValues()
  902. {
  903. for(uint8_t e=0;e<EXTRUDERS;e++)
  904. {
  905. current_temperature[e] = analog2temp(current_temperature_raw[e], e);
  906. }
  907. #ifdef PINDA_THERMISTOR
  908. current_temperature_pinda = analog2tempBed(current_temperature_raw_pinda);
  909. #endif
  910. #ifdef AMBIENT_THERMISTOR
  911. current_temperature_ambient = analog2tempAmbient(current_temperature_raw_ambient); //thermistor for ambient is NTCG104LH104JT1 (2000)
  912. #endif
  913. #ifdef DEBUG_HEATER_BED_SIM
  914. current_temperature_bed = target_temperature_bed;
  915. #else //DEBUG_HEATER_BED_SIM
  916. current_temperature_bed = analog2tempBed(current_temperature_bed_raw);
  917. #endif //DEBUG_HEATER_BED_SIM
  918. #ifdef TEMP_SENSOR_1_AS_REDUNDANT
  919. redundant_temperature = analog2temp(redundant_temperature_raw, 1);
  920. #endif
  921. //Reset the watchdog after we know we have a temperature measurement.
  922. #ifdef WATCHDOG
  923. wdt_reset();
  924. #endif //WATCHDOG
  925. CRITICAL_SECTION_START;
  926. temp_meas_ready = false;
  927. CRITICAL_SECTION_END;
  928. }
  929. void tp_init()
  930. {
  931. #if MB(RUMBA) && ((TEMP_SENSOR_0==-1)||(TEMP_SENSOR_1==-1)||(TEMP_SENSOR_2==-1)||(TEMP_SENSOR_BED==-1))
  932. //disable RUMBA JTAG in case the thermocouple extension is plugged on top of JTAG connector
  933. MCUCR=(1<<JTD);
  934. MCUCR=(1<<JTD);
  935. #endif
  936. // Finish init of mult extruder arrays
  937. for(int e = 0; e < EXTRUDERS; e++) {
  938. // populate with the first value
  939. maxttemp[e] = maxttemp[0];
  940. #ifdef PIDTEMP
  941. iState_sum_min[e] = 0.0;
  942. iState_sum_max[e] = PID_INTEGRAL_DRIVE_MAX / cs.Ki;
  943. #endif //PIDTEMP
  944. #ifdef PIDTEMPBED
  945. temp_iState_min_bed = 0.0;
  946. temp_iState_max_bed = PID_INTEGRAL_DRIVE_MAX / cs.bedKi;
  947. #endif //PIDTEMPBED
  948. }
  949. #if defined(HEATER_0_PIN) && (HEATER_0_PIN > -1)
  950. SET_OUTPUT(HEATER_0_PIN);
  951. #endif
  952. #if defined(HEATER_1_PIN) && (HEATER_1_PIN > -1)
  953. SET_OUTPUT(HEATER_1_PIN);
  954. #endif
  955. #if defined(HEATER_2_PIN) && (HEATER_2_PIN > -1)
  956. SET_OUTPUT(HEATER_2_PIN);
  957. #endif
  958. #if defined(HEATER_BED_PIN) && (HEATER_BED_PIN > -1)
  959. SET_OUTPUT(HEATER_BED_PIN);
  960. #endif
  961. #if defined(FAN_PIN) && (FAN_PIN > -1)
  962. SET_OUTPUT(FAN_PIN);
  963. #ifdef FAST_PWM_FAN
  964. setPwmFrequency(FAN_PIN, 1); // No prescaling. Pwm frequency = F_CPU/256/8
  965. #endif
  966. #ifdef FAN_SOFT_PWM
  967. soft_pwm_fan = fanSpeedSoftPwm / (1 << (8 - FAN_SOFT_PWM_BITS));
  968. #endif
  969. #endif
  970. #ifdef HEATER_0_USES_MAX6675
  971. #ifndef SDSUPPORT
  972. SET_OUTPUT(SCK_PIN);
  973. WRITE(SCK_PIN,0);
  974. SET_OUTPUT(MOSI_PIN);
  975. WRITE(MOSI_PIN,1);
  976. SET_INPUT(MISO_PIN);
  977. WRITE(MISO_PIN,1);
  978. #endif
  979. /* Using pinMode and digitalWrite, as that was the only way I could get it to compile */
  980. //Have to toggle SD card CS pin to low first, to enable firmware to talk with SD card
  981. pinMode(SS_PIN, OUTPUT);
  982. digitalWrite(SS_PIN,0);
  983. pinMode(MAX6675_SS, OUTPUT);
  984. digitalWrite(MAX6675_SS,1);
  985. #endif
  986. adc_init();
  987. #ifdef SYSTEM_TIMER_2
  988. timer02_init();
  989. OCR2B = 128;
  990. TIMSK2 |= (1<<OCIE2B);
  991. #else //SYSTEM_TIMER_2
  992. // Use timer0 for temperature measurement
  993. // Interleave temperature interrupt with millies interrupt
  994. OCR0B = 128;
  995. TIMSK0 |= (1<<OCIE0B);
  996. #endif //SYSTEM_TIMER_2
  997. // Wait for temperature measurement to settle
  998. _delay(250);
  999. #ifdef HEATER_0_MINTEMP
  1000. minttemp[0] = HEATER_0_MINTEMP;
  1001. while(analog2temp(minttemp_raw[0], 0) < HEATER_0_MINTEMP) {
  1002. #if HEATER_0_RAW_LO_TEMP < HEATER_0_RAW_HI_TEMP
  1003. minttemp_raw[0] += OVERSAMPLENR;
  1004. #else
  1005. minttemp_raw[0] -= OVERSAMPLENR;
  1006. #endif
  1007. }
  1008. #endif //MINTEMP
  1009. #ifdef HEATER_0_MAXTEMP
  1010. maxttemp[0] = HEATER_0_MAXTEMP;
  1011. while(analog2temp(maxttemp_raw[0], 0) > HEATER_0_MAXTEMP) {
  1012. #if HEATER_0_RAW_LO_TEMP < HEATER_0_RAW_HI_TEMP
  1013. maxttemp_raw[0] -= OVERSAMPLENR;
  1014. #else
  1015. maxttemp_raw[0] += OVERSAMPLENR;
  1016. #endif
  1017. }
  1018. #endif //MAXTEMP
  1019. #if (EXTRUDERS > 1) && defined(HEATER_1_MINTEMP)
  1020. minttemp[1] = HEATER_1_MINTEMP;
  1021. while(analog2temp(minttemp_raw[1], 1) < HEATER_1_MINTEMP) {
  1022. #if HEATER_1_RAW_LO_TEMP < HEATER_1_RAW_HI_TEMP
  1023. minttemp_raw[1] += OVERSAMPLENR;
  1024. #else
  1025. minttemp_raw[1] -= OVERSAMPLENR;
  1026. #endif
  1027. }
  1028. #endif // MINTEMP 1
  1029. #if (EXTRUDERS > 1) && defined(HEATER_1_MAXTEMP)
  1030. maxttemp[1] = HEATER_1_MAXTEMP;
  1031. while(analog2temp(maxttemp_raw[1], 1) > HEATER_1_MAXTEMP) {
  1032. #if HEATER_1_RAW_LO_TEMP < HEATER_1_RAW_HI_TEMP
  1033. maxttemp_raw[1] -= OVERSAMPLENR;
  1034. #else
  1035. maxttemp_raw[1] += OVERSAMPLENR;
  1036. #endif
  1037. }
  1038. #endif //MAXTEMP 1
  1039. #if (EXTRUDERS > 2) && defined(HEATER_2_MINTEMP)
  1040. minttemp[2] = HEATER_2_MINTEMP;
  1041. while(analog2temp(minttemp_raw[2], 2) < HEATER_2_MINTEMP) {
  1042. #if HEATER_2_RAW_LO_TEMP < HEATER_2_RAW_HI_TEMP
  1043. minttemp_raw[2] += OVERSAMPLENR;
  1044. #else
  1045. minttemp_raw[2] -= OVERSAMPLENR;
  1046. #endif
  1047. }
  1048. #endif //MINTEMP 2
  1049. #if (EXTRUDERS > 2) && defined(HEATER_2_MAXTEMP)
  1050. maxttemp[2] = HEATER_2_MAXTEMP;
  1051. while(analog2temp(maxttemp_raw[2], 2) > HEATER_2_MAXTEMP) {
  1052. #if HEATER_2_RAW_LO_TEMP < HEATER_2_RAW_HI_TEMP
  1053. maxttemp_raw[2] -= OVERSAMPLENR;
  1054. #else
  1055. maxttemp_raw[2] += OVERSAMPLENR;
  1056. #endif
  1057. }
  1058. #endif //MAXTEMP 2
  1059. #ifdef BED_MINTEMP
  1060. /* No bed MINTEMP error implemented?!? */
  1061. while(analog2tempBed(bed_minttemp_raw) < BED_MINTEMP) {
  1062. #if HEATER_BED_RAW_LO_TEMP < HEATER_BED_RAW_HI_TEMP
  1063. bed_minttemp_raw += OVERSAMPLENR;
  1064. #else
  1065. bed_minttemp_raw -= OVERSAMPLENR;
  1066. #endif
  1067. }
  1068. #endif //BED_MINTEMP
  1069. #ifdef BED_MAXTEMP
  1070. while(analog2tempBed(bed_maxttemp_raw) > BED_MAXTEMP) {
  1071. #if HEATER_BED_RAW_LO_TEMP < HEATER_BED_RAW_HI_TEMP
  1072. bed_maxttemp_raw -= OVERSAMPLENR;
  1073. #else
  1074. bed_maxttemp_raw += OVERSAMPLENR;
  1075. #endif
  1076. }
  1077. #endif //BED_MAXTEMP
  1078. }
  1079. void setWatch()
  1080. {
  1081. #ifdef WATCH_TEMP_PERIOD
  1082. for (int e = 0; e < EXTRUDERS; e++)
  1083. {
  1084. if(degHotend(e) < degTargetHotend(e) - (WATCH_TEMP_INCREASE * 2))
  1085. {
  1086. watch_start_temp[e] = degHotend(e);
  1087. watchmillis[e] = _millis();
  1088. }
  1089. }
  1090. #endif
  1091. }
  1092. #if (defined (TEMP_RUNAWAY_BED_HYSTERESIS) && TEMP_RUNAWAY_BED_TIMEOUT > 0) || (defined (TEMP_RUNAWAY_EXTRUDER_HYSTERESIS) && TEMP_RUNAWAY_EXTRUDER_TIMEOUT > 0)
  1093. void temp_runaway_check(int _heater_id, float _target_temperature, float _current_temperature, float _output, bool _isbed)
  1094. {
  1095. float __hysteresis = 0;
  1096. int __timeout = 0;
  1097. bool temp_runaway_check_active = false;
  1098. static float __preheat_start[2] = { 0,0}; //currently just bed and one extruder
  1099. static int __preheat_counter[2] = { 0,0};
  1100. static int __preheat_errors[2] = { 0,0};
  1101. if (_millis() - temp_runaway_timer[_heater_id] > 2000)
  1102. {
  1103. #ifdef TEMP_RUNAWAY_BED_TIMEOUT
  1104. if (_isbed)
  1105. {
  1106. __hysteresis = TEMP_RUNAWAY_BED_HYSTERESIS;
  1107. __timeout = TEMP_RUNAWAY_BED_TIMEOUT;
  1108. }
  1109. #endif
  1110. #ifdef TEMP_RUNAWAY_EXTRUDER_TIMEOUT
  1111. if (!_isbed)
  1112. {
  1113. __hysteresis = TEMP_RUNAWAY_EXTRUDER_HYSTERESIS;
  1114. __timeout = TEMP_RUNAWAY_EXTRUDER_TIMEOUT;
  1115. }
  1116. #endif
  1117. temp_runaway_timer[_heater_id] = _millis();
  1118. if (_output == 0)
  1119. {
  1120. temp_runaway_check_active = false;
  1121. temp_runaway_error_counter[_heater_id] = 0;
  1122. }
  1123. if (temp_runaway_target[_heater_id] != _target_temperature)
  1124. {
  1125. if (_target_temperature > 0)
  1126. {
  1127. temp_runaway_status[_heater_id] = TempRunaway_PREHEAT;
  1128. temp_runaway_target[_heater_id] = _target_temperature;
  1129. __preheat_start[_heater_id] = _current_temperature;
  1130. __preheat_counter[_heater_id] = 0;
  1131. }
  1132. else
  1133. {
  1134. temp_runaway_status[_heater_id] = TempRunaway_INACTIVE;
  1135. temp_runaway_target[_heater_id] = _target_temperature;
  1136. }
  1137. }
  1138. if ((_current_temperature < _target_temperature) && (temp_runaway_status[_heater_id] == TempRunaway_PREHEAT))
  1139. {
  1140. __preheat_counter[_heater_id]++;
  1141. if (__preheat_counter[_heater_id] > ((_isbed) ? 16 : 8)) // periodicaly check if current temperature changes
  1142. {
  1143. /*SERIAL_ECHOPGM("Heater:");
  1144. MYSERIAL.print(_heater_id);
  1145. SERIAL_ECHOPGM(" T:");
  1146. MYSERIAL.print(_current_temperature);
  1147. SERIAL_ECHOPGM(" Tstart:");
  1148. MYSERIAL.print(__preheat_start[_heater_id]);*/
  1149. if (_current_temperature - __preheat_start[_heater_id] < 2) {
  1150. __preheat_errors[_heater_id]++;
  1151. /*SERIAL_ECHOPGM(" Preheat errors:");
  1152. MYSERIAL.println(__preheat_errors[_heater_id]);*/
  1153. }
  1154. else {
  1155. //SERIAL_ECHOLNPGM("");
  1156. __preheat_errors[_heater_id] = 0;
  1157. }
  1158. if (__preheat_errors[_heater_id] > ((_isbed) ? 2 : 5))
  1159. {
  1160. if (farm_mode) { prusa_statistics(0); }
  1161. temp_runaway_stop(true, _isbed);
  1162. if (farm_mode) { prusa_statistics(91); }
  1163. }
  1164. __preheat_start[_heater_id] = _current_temperature;
  1165. __preheat_counter[_heater_id] = 0;
  1166. }
  1167. }
  1168. if (_current_temperature >= _target_temperature && temp_runaway_status[_heater_id] == TempRunaway_PREHEAT)
  1169. {
  1170. temp_runaway_status[_heater_id] = TempRunaway_ACTIVE;
  1171. temp_runaway_check_active = false;
  1172. }
  1173. if (_output > 0)
  1174. {
  1175. temp_runaway_check_active = true;
  1176. }
  1177. if (temp_runaway_check_active)
  1178. {
  1179. // we are in range
  1180. if ((_current_temperature > (_target_temperature - __hysteresis)) && (_current_temperature < (_target_temperature + __hysteresis)))
  1181. {
  1182. temp_runaway_check_active = false;
  1183. temp_runaway_error_counter[_heater_id] = 0;
  1184. }
  1185. else
  1186. {
  1187. if (temp_runaway_status[_heater_id] > TempRunaway_PREHEAT)
  1188. {
  1189. temp_runaway_error_counter[_heater_id]++;
  1190. if (temp_runaway_error_counter[_heater_id] * 2 > __timeout)
  1191. {
  1192. if (farm_mode) { prusa_statistics(0); }
  1193. temp_runaway_stop(false, _isbed);
  1194. if (farm_mode) { prusa_statistics(90); }
  1195. }
  1196. }
  1197. }
  1198. }
  1199. }
  1200. }
  1201. void temp_runaway_stop(bool isPreheat, bool isBed)
  1202. {
  1203. cancel_heatup = true;
  1204. quickStop();
  1205. if (card.sdprinting)
  1206. {
  1207. card.sdprinting = false;
  1208. card.closefile();
  1209. }
  1210. // Clean the input command queue
  1211. // This is necessary, because in command queue there can be commands which would later set heater or bed temperature.
  1212. cmdqueue_reset();
  1213. disable_heater();
  1214. disable_x();
  1215. disable_y();
  1216. disable_e0();
  1217. disable_e1();
  1218. disable_e2();
  1219. manage_heater();
  1220. lcd_update(0);
  1221. if((eSoundMode==e_SOUND_MODE_LOUD)||(eSoundMode==e_SOUND_MODE_ONCE)||(eSoundMode==e_SOUND_MODE_SILENT))
  1222. WRITE(BEEPER, HIGH);
  1223. delayMicroseconds(500);
  1224. WRITE(BEEPER, LOW);
  1225. delayMicroseconds(100);
  1226. if (isPreheat)
  1227. {
  1228. Stop();
  1229. isBed ? LCD_ALERTMESSAGEPGM("BED PREHEAT ERROR") : LCD_ALERTMESSAGEPGM("PREHEAT ERROR");
  1230. SERIAL_ERROR_START;
  1231. isBed ? SERIAL_ERRORLNPGM(" THERMAL RUNAWAY ( PREHEAT HEATBED)") : SERIAL_ERRORLNPGM(" THERMAL RUNAWAY ( PREHEAT HOTEND)");
  1232. SET_OUTPUT(EXTRUDER_0_AUTO_FAN_PIN);
  1233. SET_OUTPUT(FAN_PIN);
  1234. WRITE(EXTRUDER_0_AUTO_FAN_PIN, 1);
  1235. #ifdef FAN_SOFT_PWM
  1236. fanSpeedSoftPwm = 255;
  1237. #else //FAN_SOFT_PWM
  1238. analogWrite(FAN_PIN, 255);
  1239. #endif //FAN_SOFT_PWM
  1240. fanSpeed = 255;
  1241. delayMicroseconds(2000);
  1242. }
  1243. else
  1244. {
  1245. isBed ? LCD_ALERTMESSAGEPGM("BED THERMAL RUNAWAY") : LCD_ALERTMESSAGEPGM("THERMAL RUNAWAY");
  1246. SERIAL_ERROR_START;
  1247. isBed ? SERIAL_ERRORLNPGM(" HEATBED THERMAL RUNAWAY") : SERIAL_ERRORLNPGM(" HOTEND THERMAL RUNAWAY");
  1248. }
  1249. }
  1250. #endif
  1251. void disable_heater()
  1252. {
  1253. setAllTargetHotends(0);
  1254. setTargetBed(0);
  1255. #if defined(TEMP_0_PIN) && TEMP_0_PIN > -1
  1256. target_temperature[0]=0;
  1257. soft_pwm[0]=0;
  1258. #if defined(HEATER_0_PIN) && HEATER_0_PIN > -1
  1259. WRITE(HEATER_0_PIN,LOW);
  1260. #endif
  1261. #endif
  1262. #if defined(TEMP_1_PIN) && TEMP_1_PIN > -1 && EXTRUDERS > 1
  1263. target_temperature[1]=0;
  1264. soft_pwm[1]=0;
  1265. #if defined(HEATER_1_PIN) && HEATER_1_PIN > -1
  1266. WRITE(HEATER_1_PIN,LOW);
  1267. #endif
  1268. #endif
  1269. #if defined(TEMP_2_PIN) && TEMP_2_PIN > -1 && EXTRUDERS > 2
  1270. target_temperature[2]=0;
  1271. soft_pwm[2]=0;
  1272. #if defined(HEATER_2_PIN) && HEATER_2_PIN > -1
  1273. WRITE(HEATER_2_PIN,LOW);
  1274. #endif
  1275. #endif
  1276. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  1277. target_temperature_bed=0;
  1278. soft_pwm_bed=0;
  1279. timer02_set_pwm0(soft_pwm_bed << 1);
  1280. #if defined(HEATER_BED_PIN) && HEATER_BED_PIN > -1
  1281. WRITE(HEATER_BED_PIN,LOW);
  1282. #endif
  1283. #endif
  1284. }
  1285. void max_temp_error(uint8_t e) {
  1286. disable_heater();
  1287. if(IsStopped() == false) {
  1288. SERIAL_ERROR_START;
  1289. SERIAL_ERRORLN((int)e);
  1290. SERIAL_ERRORLNPGM(": Extruder switched off. MAXTEMP triggered !");
  1291. LCD_ALERTMESSAGEPGM("Err: MAXTEMP");
  1292. }
  1293. #ifndef BOGUS_TEMPERATURE_FAILSAFE_OVERRIDE
  1294. Stop();
  1295. #endif
  1296. SET_OUTPUT(EXTRUDER_0_AUTO_FAN_PIN);
  1297. SET_OUTPUT(FAN_PIN);
  1298. SET_OUTPUT(BEEPER);
  1299. WRITE(FAN_PIN, 1);
  1300. WRITE(EXTRUDER_0_AUTO_FAN_PIN, 1);
  1301. if((eSoundMode==e_SOUND_MODE_LOUD)||(eSoundMode==e_SOUND_MODE_ONCE)||(eSoundMode==e_SOUND_MODE_SILENT))
  1302. WRITE(BEEPER, 1);
  1303. // fanSpeed will consumed by the check_axes_activity() routine.
  1304. fanSpeed=255;
  1305. if (farm_mode) { prusa_statistics(93); }
  1306. }
  1307. void min_temp_error(uint8_t e) {
  1308. #ifdef DEBUG_DISABLE_MINTEMP
  1309. return;
  1310. #endif
  1311. //if (current_temperature_ambient < MINTEMP_MINAMBIENT) return;
  1312. disable_heater();
  1313. if(IsStopped() == false) {
  1314. SERIAL_ERROR_START;
  1315. SERIAL_ERRORLN((int)e);
  1316. SERIAL_ERRORLNPGM(": Extruder switched off. MINTEMP triggered !");
  1317. LCD_ALERTMESSAGEPGM("Err: MINTEMP");
  1318. }
  1319. #ifndef BOGUS_TEMPERATURE_FAILSAFE_OVERRIDE
  1320. Stop();
  1321. #endif
  1322. if (farm_mode) { prusa_statistics(92); }
  1323. }
  1324. void bed_max_temp_error(void) {
  1325. #if HEATER_BED_PIN > -1
  1326. WRITE(HEATER_BED_PIN, 0);
  1327. #endif
  1328. if(IsStopped() == false) {
  1329. SERIAL_ERROR_START;
  1330. SERIAL_ERRORLNPGM("Temperature heated bed switched off. MAXTEMP triggered !");
  1331. LCD_ALERTMESSAGEPGM("Err: MAXTEMP BED");
  1332. }
  1333. #ifndef BOGUS_TEMPERATURE_FAILSAFE_OVERRIDE
  1334. Stop();
  1335. #endif
  1336. }
  1337. void bed_min_temp_error(void) {
  1338. #ifdef DEBUG_DISABLE_MINTEMP
  1339. return;
  1340. #endif
  1341. //if (current_temperature_ambient < MINTEMP_MINAMBIENT) return;
  1342. #if HEATER_BED_PIN > -1
  1343. WRITE(HEATER_BED_PIN, 0);
  1344. #endif
  1345. if(IsStopped() == false) {
  1346. SERIAL_ERROR_START;
  1347. SERIAL_ERRORLNPGM("Temperature heated bed switched off. MINTEMP triggered !");
  1348. LCD_ALERTMESSAGEPGM("Err: MINTEMP BED");
  1349. }
  1350. #ifndef BOGUS_TEMPERATURE_FAILSAFE_OVERRIDE
  1351. Stop();
  1352. #endif
  1353. }
  1354. #ifdef HEATER_0_USES_MAX6675
  1355. #define MAX6675_HEAT_INTERVAL 250
  1356. long max6675_previous_millis = MAX6675_HEAT_INTERVAL;
  1357. int max6675_temp = 2000;
  1358. int read_max6675()
  1359. {
  1360. if (_millis() - max6675_previous_millis < MAX6675_HEAT_INTERVAL)
  1361. return max6675_temp;
  1362. max6675_previous_millis = _millis();
  1363. max6675_temp = 0;
  1364. #ifdef PRR
  1365. PRR &= ~(1<<PRSPI);
  1366. #elif defined PRR0
  1367. PRR0 &= ~(1<<PRSPI);
  1368. #endif
  1369. SPCR = (1<<MSTR) | (1<<SPE) | (1<<SPR0);
  1370. // enable TT_MAX6675
  1371. WRITE(MAX6675_SS, 0);
  1372. // ensure 100ns delay - a bit extra is fine
  1373. asm("nop");//50ns on 20Mhz, 62.5ns on 16Mhz
  1374. asm("nop");//50ns on 20Mhz, 62.5ns on 16Mhz
  1375. // read MSB
  1376. SPDR = 0;
  1377. for (;(SPSR & (1<<SPIF)) == 0;);
  1378. max6675_temp = SPDR;
  1379. max6675_temp <<= 8;
  1380. // read LSB
  1381. SPDR = 0;
  1382. for (;(SPSR & (1<<SPIF)) == 0;);
  1383. max6675_temp |= SPDR;
  1384. // disable TT_MAX6675
  1385. WRITE(MAX6675_SS, 1);
  1386. if (max6675_temp & 4)
  1387. {
  1388. // thermocouple open
  1389. max6675_temp = 2000;
  1390. }
  1391. else
  1392. {
  1393. max6675_temp = max6675_temp >> 3;
  1394. }
  1395. return max6675_temp;
  1396. }
  1397. #endif
  1398. extern "C" {
  1399. void adc_ready(void) //callback from adc when sampling finished
  1400. {
  1401. current_temperature_raw[0] = adc_values[ADC_PIN_IDX(TEMP_0_PIN)]; //heater
  1402. current_temperature_raw_pinda = adc_values[ADC_PIN_IDX(TEMP_PINDA_PIN)];
  1403. current_temperature_bed_raw = adc_values[ADC_PIN_IDX(TEMP_BED_PIN)];
  1404. #ifdef VOLT_PWR_PIN
  1405. current_voltage_raw_pwr = adc_values[ADC_PIN_IDX(VOLT_PWR_PIN)];
  1406. #endif
  1407. #ifdef AMBIENT_THERMISTOR
  1408. current_temperature_raw_ambient = adc_values[ADC_PIN_IDX(TEMP_AMBIENT_PIN)];
  1409. #endif //AMBIENT_THERMISTOR
  1410. #ifdef VOLT_BED_PIN
  1411. current_voltage_raw_bed = adc_values[ADC_PIN_IDX(VOLT_BED_PIN)]; // 6->9
  1412. #endif
  1413. temp_meas_ready = true;
  1414. }
  1415. } // extern "C"
  1416. // Timer2 (originaly timer0) is shared with millies
  1417. #ifdef SYSTEM_TIMER_2
  1418. ISR(TIMER2_COMPB_vect)
  1419. #else //SYSTEM_TIMER_2
  1420. ISR(TIMER0_COMPB_vect)
  1421. #endif //SYSTEM_TIMER_2
  1422. {
  1423. static bool _lock = false;
  1424. if (_lock) return;
  1425. _lock = true;
  1426. asm("sei");
  1427. if (!temp_meas_ready) adc_cycle();
  1428. lcd_buttons_update();
  1429. static unsigned char pwm_count = (1 << SOFT_PWM_SCALE);
  1430. static unsigned char soft_pwm_0;
  1431. #ifdef SLOW_PWM_HEATERS
  1432. static unsigned char slow_pwm_count = 0;
  1433. static unsigned char state_heater_0 = 0;
  1434. static unsigned char state_timer_heater_0 = 0;
  1435. #endif
  1436. #if (EXTRUDERS > 1) || defined(HEATERS_PARALLEL)
  1437. static unsigned char soft_pwm_1;
  1438. #ifdef SLOW_PWM_HEATERS
  1439. static unsigned char state_heater_1 = 0;
  1440. static unsigned char state_timer_heater_1 = 0;
  1441. #endif
  1442. #endif
  1443. #if EXTRUDERS > 2
  1444. static unsigned char soft_pwm_2;
  1445. #ifdef SLOW_PWM_HEATERS
  1446. static unsigned char state_heater_2 = 0;
  1447. static unsigned char state_timer_heater_2 = 0;
  1448. #endif
  1449. #endif
  1450. #if HEATER_BED_PIN > -1
  1451. static unsigned char soft_pwm_b;
  1452. #ifdef SLOW_PWM_HEATERS
  1453. static unsigned char state_heater_b = 0;
  1454. static unsigned char state_timer_heater_b = 0;
  1455. #endif
  1456. #endif
  1457. #if defined(FILWIDTH_PIN) &&(FILWIDTH_PIN > -1)
  1458. static unsigned long raw_filwidth_value = 0; //added for filament width sensor
  1459. #endif
  1460. #ifndef SLOW_PWM_HEATERS
  1461. /*
  1462. * standard PWM modulation
  1463. */
  1464. if (pwm_count == 0)
  1465. {
  1466. soft_pwm_0 = soft_pwm[0];
  1467. if(soft_pwm_0 > 0)
  1468. {
  1469. WRITE(HEATER_0_PIN,1);
  1470. #ifdef HEATERS_PARALLEL
  1471. WRITE(HEATER_1_PIN,1);
  1472. #endif
  1473. } else WRITE(HEATER_0_PIN,0);
  1474. #if EXTRUDERS > 1
  1475. soft_pwm_1 = soft_pwm[1];
  1476. if(soft_pwm_1 > 0) WRITE(HEATER_1_PIN,1); else WRITE(HEATER_1_PIN,0);
  1477. #endif
  1478. #if EXTRUDERS > 2
  1479. soft_pwm_2 = soft_pwm[2];
  1480. if(soft_pwm_2 > 0) WRITE(HEATER_2_PIN,1); else WRITE(HEATER_2_PIN,0);
  1481. #endif
  1482. #if defined(HEATER_BED_PIN) && HEATER_BED_PIN > -1
  1483. soft_pwm_b = soft_pwm_bed;
  1484. #ifndef SYSTEM_TIMER_2
  1485. if(soft_pwm_b > 0) WRITE(HEATER_BED_PIN,1); else WRITE(HEATER_BED_PIN,0);
  1486. #endif //SYSTEM_TIMER_2
  1487. #endif
  1488. }
  1489. #ifdef FAN_SOFT_PWM
  1490. if ((pwm_count & ((1 << FAN_SOFT_PWM_BITS) - 1)) == 0)
  1491. {
  1492. soft_pwm_fan = fanSpeedSoftPwm / (1 << (8 - FAN_SOFT_PWM_BITS));
  1493. if(soft_pwm_fan > 0) WRITE(FAN_PIN,1); else WRITE(FAN_PIN,0);
  1494. }
  1495. #endif
  1496. if(soft_pwm_0 < pwm_count)
  1497. {
  1498. WRITE(HEATER_0_PIN,0);
  1499. #ifdef HEATERS_PARALLEL
  1500. WRITE(HEATER_1_PIN,0);
  1501. #endif
  1502. }
  1503. #if EXTRUDERS > 1
  1504. if(soft_pwm_1 < pwm_count) WRITE(HEATER_1_PIN,0);
  1505. #endif
  1506. #if EXTRUDERS > 2
  1507. if(soft_pwm_2 < pwm_count) WRITE(HEATER_2_PIN,0);
  1508. #endif
  1509. #if defined(HEATER_BED_PIN) && HEATER_BED_PIN > -1
  1510. if(soft_pwm_b < pwm_count) WRITE(HEATER_BED_PIN,0);
  1511. #endif
  1512. #ifdef FAN_SOFT_PWM
  1513. if (soft_pwm_fan < (pwm_count & ((1 << FAN_SOFT_PWM_BITS) - 1))) WRITE(FAN_PIN,0);
  1514. #endif
  1515. pwm_count += (1 << SOFT_PWM_SCALE);
  1516. pwm_count &= 0x7f;
  1517. #else //ifndef SLOW_PWM_HEATERS
  1518. /*
  1519. * SLOW PWM HEATERS
  1520. *
  1521. * for heaters drived by relay
  1522. */
  1523. #ifndef MIN_STATE_TIME
  1524. #define MIN_STATE_TIME 16 // MIN_STATE_TIME * 65.5 = time in milliseconds
  1525. #endif
  1526. if (slow_pwm_count == 0) {
  1527. // EXTRUDER 0
  1528. soft_pwm_0 = soft_pwm[0];
  1529. if (soft_pwm_0 > 0) {
  1530. // turn ON heather only if the minimum time is up
  1531. if (state_timer_heater_0 == 0) {
  1532. // if change state set timer
  1533. if (state_heater_0 == 0) {
  1534. state_timer_heater_0 = MIN_STATE_TIME;
  1535. }
  1536. state_heater_0 = 1;
  1537. WRITE(HEATER_0_PIN, 1);
  1538. #ifdef HEATERS_PARALLEL
  1539. WRITE(HEATER_1_PIN, 1);
  1540. #endif
  1541. }
  1542. } else {
  1543. // turn OFF heather only if the minimum time is up
  1544. if (state_timer_heater_0 == 0) {
  1545. // if change state set timer
  1546. if (state_heater_0 == 1) {
  1547. state_timer_heater_0 = MIN_STATE_TIME;
  1548. }
  1549. state_heater_0 = 0;
  1550. WRITE(HEATER_0_PIN, 0);
  1551. #ifdef HEATERS_PARALLEL
  1552. WRITE(HEATER_1_PIN, 0);
  1553. #endif
  1554. }
  1555. }
  1556. #if EXTRUDERS > 1
  1557. // EXTRUDER 1
  1558. soft_pwm_1 = soft_pwm[1];
  1559. if (soft_pwm_1 > 0) {
  1560. // turn ON heather only if the minimum time is up
  1561. if (state_timer_heater_1 == 0) {
  1562. // if change state set timer
  1563. if (state_heater_1 == 0) {
  1564. state_timer_heater_1 = MIN_STATE_TIME;
  1565. }
  1566. state_heater_1 = 1;
  1567. WRITE(HEATER_1_PIN, 1);
  1568. }
  1569. } else {
  1570. // turn OFF heather only if the minimum time is up
  1571. if (state_timer_heater_1 == 0) {
  1572. // if change state set timer
  1573. if (state_heater_1 == 1) {
  1574. state_timer_heater_1 = MIN_STATE_TIME;
  1575. }
  1576. state_heater_1 = 0;
  1577. WRITE(HEATER_1_PIN, 0);
  1578. }
  1579. }
  1580. #endif
  1581. #if EXTRUDERS > 2
  1582. // EXTRUDER 2
  1583. soft_pwm_2 = soft_pwm[2];
  1584. if (soft_pwm_2 > 0) {
  1585. // turn ON heather only if the minimum time is up
  1586. if (state_timer_heater_2 == 0) {
  1587. // if change state set timer
  1588. if (state_heater_2 == 0) {
  1589. state_timer_heater_2 = MIN_STATE_TIME;
  1590. }
  1591. state_heater_2 = 1;
  1592. WRITE(HEATER_2_PIN, 1);
  1593. }
  1594. } else {
  1595. // turn OFF heather only if the minimum time is up
  1596. if (state_timer_heater_2 == 0) {
  1597. // if change state set timer
  1598. if (state_heater_2 == 1) {
  1599. state_timer_heater_2 = MIN_STATE_TIME;
  1600. }
  1601. state_heater_2 = 0;
  1602. WRITE(HEATER_2_PIN, 0);
  1603. }
  1604. }
  1605. #endif
  1606. #if defined(HEATER_BED_PIN) && HEATER_BED_PIN > -1
  1607. // BED
  1608. soft_pwm_b = soft_pwm_bed;
  1609. if (soft_pwm_b > 0) {
  1610. // turn ON heather only if the minimum time is up
  1611. if (state_timer_heater_b == 0) {
  1612. // if change state set timer
  1613. if (state_heater_b == 0) {
  1614. state_timer_heater_b = MIN_STATE_TIME;
  1615. }
  1616. state_heater_b = 1;
  1617. //WRITE(HEATER_BED_PIN, 1);
  1618. }
  1619. } else {
  1620. // turn OFF heather only if the minimum time is up
  1621. if (state_timer_heater_b == 0) {
  1622. // if change state set timer
  1623. if (state_heater_b == 1) {
  1624. state_timer_heater_b = MIN_STATE_TIME;
  1625. }
  1626. state_heater_b = 0;
  1627. WRITE(HEATER_BED_PIN, 0);
  1628. }
  1629. }
  1630. #endif
  1631. } // if (slow_pwm_count == 0)
  1632. // EXTRUDER 0
  1633. if (soft_pwm_0 < slow_pwm_count) {
  1634. // turn OFF heather only if the minimum time is up
  1635. if (state_timer_heater_0 == 0) {
  1636. // if change state set timer
  1637. if (state_heater_0 == 1) {
  1638. state_timer_heater_0 = MIN_STATE_TIME;
  1639. }
  1640. state_heater_0 = 0;
  1641. WRITE(HEATER_0_PIN, 0);
  1642. #ifdef HEATERS_PARALLEL
  1643. WRITE(HEATER_1_PIN, 0);
  1644. #endif
  1645. }
  1646. }
  1647. #if EXTRUDERS > 1
  1648. // EXTRUDER 1
  1649. if (soft_pwm_1 < slow_pwm_count) {
  1650. // turn OFF heather only if the minimum time is up
  1651. if (state_timer_heater_1 == 0) {
  1652. // if change state set timer
  1653. if (state_heater_1 == 1) {
  1654. state_timer_heater_1 = MIN_STATE_TIME;
  1655. }
  1656. state_heater_1 = 0;
  1657. WRITE(HEATER_1_PIN, 0);
  1658. }
  1659. }
  1660. #endif
  1661. #if EXTRUDERS > 2
  1662. // EXTRUDER 2
  1663. if (soft_pwm_2 < slow_pwm_count) {
  1664. // turn OFF heather only if the minimum time is up
  1665. if (state_timer_heater_2 == 0) {
  1666. // if change state set timer
  1667. if (state_heater_2 == 1) {
  1668. state_timer_heater_2 = MIN_STATE_TIME;
  1669. }
  1670. state_heater_2 = 0;
  1671. WRITE(HEATER_2_PIN, 0);
  1672. }
  1673. }
  1674. #endif
  1675. #if defined(HEATER_BED_PIN) && HEATER_BED_PIN > -1
  1676. // BED
  1677. if (soft_pwm_b < slow_pwm_count) {
  1678. // turn OFF heather only if the minimum time is up
  1679. if (state_timer_heater_b == 0) {
  1680. // if change state set timer
  1681. if (state_heater_b == 1) {
  1682. state_timer_heater_b = MIN_STATE_TIME;
  1683. }
  1684. state_heater_b = 0;
  1685. WRITE(HEATER_BED_PIN, 0);
  1686. }
  1687. }
  1688. #endif
  1689. #ifdef FAN_SOFT_PWM
  1690. if ((pwm_count & ((1 << FAN_SOFT_PWM_BITS) - 1)) == 0)
  1691. soft_pwm_fan = fanSpeedSoftPwm / (1 << (8 - FAN_SOFT_PWM_BITS));
  1692. if (soft_pwm_fan > 0) WRITE(FAN_PIN,1); else WRITE(FAN_PIN,0);
  1693. }
  1694. if (soft_pwm_fan < pwm_count) WRITE(FAN_PIN,0);
  1695. #endif
  1696. pwm_count += (1 << SOFT_PWM_SCALE);
  1697. pwm_count &= 0x7f;
  1698. // increment slow_pwm_count only every 64 pwm_count circa 65.5ms
  1699. if ((pwm_count % 64) == 0) {
  1700. slow_pwm_count++;
  1701. slow_pwm_count &= 0x7f;
  1702. // Extruder 0
  1703. if (state_timer_heater_0 > 0) {
  1704. state_timer_heater_0--;
  1705. }
  1706. #if EXTRUDERS > 1
  1707. // Extruder 1
  1708. if (state_timer_heater_1 > 0)
  1709. state_timer_heater_1--;
  1710. #endif
  1711. #if EXTRUDERS > 2
  1712. // Extruder 2
  1713. if (state_timer_heater_2 > 0)
  1714. state_timer_heater_2--;
  1715. #endif
  1716. #if defined(HEATER_BED_PIN) && HEATER_BED_PIN > -1
  1717. // Bed
  1718. if (state_timer_heater_b > 0)
  1719. state_timer_heater_b--;
  1720. #endif
  1721. } //if ((pwm_count % 64) == 0) {
  1722. #endif //ifndef SLOW_PWM_HEATERS
  1723. #ifdef BABYSTEPPING
  1724. for(uint8_t axis=0;axis<3;axis++)
  1725. {
  1726. int curTodo=babystepsTodo[axis]; //get rid of volatile for performance
  1727. if(curTodo>0)
  1728. {
  1729. asm("cli");
  1730. babystep(axis,/*fwd*/true);
  1731. babystepsTodo[axis]--; //less to do next time
  1732. asm("sei");
  1733. }
  1734. else
  1735. if(curTodo<0)
  1736. {
  1737. asm("cli");
  1738. babystep(axis,/*fwd*/false);
  1739. babystepsTodo[axis]++; //less to do next time
  1740. asm("sei");
  1741. }
  1742. }
  1743. #endif //BABYSTEPPING
  1744. #if (defined(FANCHECK) && defined(TACH_0) && (TACH_0 > -1))
  1745. check_fans();
  1746. #endif //(defined(TACH_0))
  1747. _lock = false;
  1748. }
  1749. void check_max_temp()
  1750. {
  1751. //heater
  1752. #if HEATER_0_RAW_LO_TEMP > HEATER_0_RAW_HI_TEMP
  1753. if (current_temperature_raw[0] <= maxttemp_raw[0]) {
  1754. #else
  1755. if (current_temperature_raw[0] >= maxttemp_raw[0]) {
  1756. #endif
  1757. max_temp_error(0);
  1758. }
  1759. //bed
  1760. #if defined(BED_MAXTEMP) && (TEMP_SENSOR_BED != 0)
  1761. #if HEATER_BED_RAW_LO_TEMP > HEATER_BED_RAW_HI_TEMP
  1762. if (current_temperature_bed_raw <= bed_maxttemp_raw) {
  1763. #else
  1764. if (current_temperature_bed_raw >= bed_maxttemp_raw) {
  1765. #endif
  1766. target_temperature_bed = 0;
  1767. bed_max_temp_error();
  1768. }
  1769. #endif
  1770. }
  1771. void check_min_temp_heater0()
  1772. {
  1773. //heater
  1774. #if HEATER_0_RAW_LO_TEMP > HEATER_0_RAW_HI_TEMP
  1775. if (current_temperature_raw[0] >= minttemp_raw[0]) {
  1776. #else
  1777. if (current_temperature_raw[0] <= minttemp_raw[0]) {
  1778. #endif
  1779. min_temp_error(0);
  1780. }
  1781. }
  1782. void check_min_temp_bed()
  1783. {
  1784. #if HEATER_BED_RAW_LO_TEMP > HEATER_BED_RAW_HI_TEMP
  1785. if (current_temperature_bed_raw >= bed_minttemp_raw) {
  1786. #else
  1787. if (current_temperature_bed_raw <= bed_minttemp_raw) {
  1788. #endif
  1789. bed_min_temp_error();
  1790. }
  1791. }
  1792. void check_min_temp()
  1793. {
  1794. static bool bCheckingOnHeater=false; // state variable, which allows to short no-checking delay (is set, when temperature is (first time) over heaterMintemp)
  1795. static bool bCheckingOnBed=false; // state variable, which allows to short no-checking delay (is set, when temperature is (first time) over bedMintemp)
  1796. #ifdef AMBIENT_THERMISTOR
  1797. if(current_temperature_raw_ambient>(OVERSAMPLENR*MINTEMP_MINAMBIENT_RAW)) // thermistor is NTC type, so operator is ">" ;-)
  1798. { // ambient temperature is low
  1799. #endif //AMBIENT_THERMISTOR
  1800. // *** 'common' part of code for MK2.5 & MK3
  1801. // * nozzle checking
  1802. if(target_temperature[active_extruder]>minttemp[active_extruder])
  1803. { // ~ nozzle heating is on
  1804. bCheckingOnHeater=bCheckingOnHeater||(current_temperature[active_extruder]>(minttemp[active_extruder]+TEMP_HYSTERESIS)); // for eventually delay cutting
  1805. if(oTimer4minTempHeater.expired(HEATER_MINTEMP_DELAY)||(!oTimer4minTempHeater.running())||bCheckingOnHeater)
  1806. {
  1807. bCheckingOnHeater=true; // not necessary
  1808. check_min_temp_heater0(); // delay is elapsed or temperature is/was over minTemp => periodical checking is active
  1809. }
  1810. }
  1811. else { // ~ nozzle heating is off
  1812. oTimer4minTempHeater.start();
  1813. bCheckingOnHeater=false;
  1814. }
  1815. // * bed checking
  1816. if(target_temperature_bed>BED_MINTEMP)
  1817. { // ~ bed heating is on
  1818. bCheckingOnBed=bCheckingOnBed||(current_temperature_bed>(BED_MINTEMP+TEMP_HYSTERESIS)); // for eventually delay cutting
  1819. if(oTimer4minTempBed.expired(BED_MINTEMP_DELAY)||(!oTimer4minTempBed.running())||bCheckingOnBed)
  1820. {
  1821. bCheckingOnBed=true; // not necessary
  1822. check_min_temp_bed(); // delay is elapsed or temperature is/was over minTemp => periodical checking is active
  1823. }
  1824. }
  1825. else { // ~ bed heating is off
  1826. oTimer4minTempBed.start();
  1827. bCheckingOnBed=false;
  1828. }
  1829. // *** end of 'common' part
  1830. #ifdef AMBIENT_THERMISTOR
  1831. }
  1832. else { // ambient temperature is standard
  1833. check_min_temp_heater0();
  1834. check_min_temp_bed();
  1835. }
  1836. #endif //AMBIENT_THERMISTOR
  1837. }
  1838. #if (defined(FANCHECK) && defined(TACH_0) && (TACH_0 > -1))
  1839. void check_fans() {
  1840. if (READ(TACH_0) != fan_state[0]) {
  1841. fan_edge_counter[0] ++;
  1842. fan_state[0] = !fan_state[0];
  1843. }
  1844. //if (READ(TACH_1) != fan_state[1]) {
  1845. // fan_edge_counter[1] ++;
  1846. // fan_state[1] = !fan_state[1];
  1847. //}
  1848. }
  1849. #endif //TACH_0
  1850. #ifdef PIDTEMP
  1851. // Apply the scale factors to the PID values
  1852. float scalePID_i(float i)
  1853. {
  1854. return i*PID_dT;
  1855. }
  1856. float unscalePID_i(float i)
  1857. {
  1858. return i/PID_dT;
  1859. }
  1860. float scalePID_d(float d)
  1861. {
  1862. return d/PID_dT;
  1863. }
  1864. float unscalePID_d(float d)
  1865. {
  1866. return d*PID_dT;
  1867. }
  1868. #endif //PIDTEMP