Marlin_main.cpp 233 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892389338943895389638973898389939003901390239033904390539063907390839093910391139123913391439153916391739183919392039213922392339243925392639273928392939303931393239333934393539363937393839393940394139423943394439453946394739483949395039513952395339543955395639573958395939603961396239633964396539663967396839693970397139723973397439753976397739783979398039813982398339843985398639873988398939903991399239933994399539963997399839994000400140024003400440054006400740084009401040114012401340144015401640174018401940204021402240234024402540264027402840294030403140324033403440354036403740384039404040414042404340444045404640474048404940504051405240534054405540564057405840594060406140624063406440654066406740684069407040714072407340744075407640774078407940804081408240834084408540864087408840894090409140924093409440954096409740984099410041014102410341044105410641074108410941104111411241134114411541164117411841194120412141224123412441254126412741284129413041314132413341344135413641374138413941404141414241434144414541464147414841494150415141524153415441554156415741584159416041614162416341644165416641674168416941704171417241734174417541764177417841794180418141824183418441854186418741884189419041914192419341944195419641974198419942004201420242034204420542064207420842094210421142124213421442154216421742184219422042214222422342244225422642274228422942304231423242334234423542364237423842394240424142424243424442454246424742484249425042514252425342544255425642574258425942604261426242634264426542664267426842694270427142724273427442754276427742784279428042814282428342844285428642874288428942904291429242934294429542964297429842994300430143024303430443054306430743084309431043114312431343144315431643174318431943204321432243234324432543264327432843294330433143324333433443354336433743384339434043414342434343444345434643474348434943504351435243534354435543564357435843594360436143624363436443654366436743684369437043714372437343744375437643774378437943804381438243834384438543864387438843894390439143924393439443954396439743984399440044014402440344044405440644074408440944104411441244134414441544164417441844194420442144224423442444254426442744284429443044314432443344344435443644374438443944404441444244434444444544464447444844494450445144524453445444554456445744584459446044614462446344644465446644674468446944704471447244734474447544764477447844794480448144824483448444854486448744884489449044914492449344944495449644974498449945004501450245034504450545064507450845094510451145124513451445154516451745184519452045214522452345244525452645274528452945304531453245334534453545364537453845394540454145424543454445454546454745484549455045514552455345544555455645574558455945604561456245634564456545664567456845694570457145724573457445754576457745784579458045814582458345844585458645874588458945904591459245934594459545964597459845994600460146024603460446054606460746084609461046114612461346144615461646174618461946204621462246234624462546264627462846294630463146324633463446354636463746384639464046414642464346444645464646474648464946504651465246534654465546564657465846594660466146624663466446654666466746684669467046714672467346744675467646774678467946804681468246834684468546864687468846894690469146924693469446954696469746984699470047014702470347044705470647074708470947104711471247134714471547164717471847194720472147224723472447254726472747284729473047314732473347344735473647374738473947404741474247434744474547464747474847494750475147524753475447554756475747584759476047614762476347644765476647674768476947704771477247734774477547764777477847794780478147824783478447854786478747884789479047914792479347944795479647974798479948004801480248034804480548064807480848094810481148124813481448154816481748184819482048214822482348244825482648274828482948304831483248334834483548364837483848394840484148424843484448454846484748484849485048514852485348544855485648574858485948604861486248634864486548664867486848694870487148724873487448754876487748784879488048814882488348844885488648874888488948904891489248934894489548964897489848994900490149024903490449054906490749084909491049114912491349144915491649174918491949204921492249234924492549264927492849294930493149324933493449354936493749384939494049414942494349444945494649474948494949504951495249534954495549564957495849594960496149624963496449654966496749684969497049714972497349744975497649774978497949804981498249834984498549864987498849894990499149924993499449954996499749984999500050015002500350045005500650075008500950105011501250135014501550165017501850195020502150225023502450255026502750285029503050315032503350345035503650375038503950405041504250435044504550465047504850495050505150525053505450555056505750585059506050615062506350645065506650675068506950705071507250735074507550765077507850795080508150825083508450855086508750885089509050915092509350945095509650975098509951005101510251035104510551065107510851095110511151125113511451155116511751185119512051215122512351245125512651275128512951305131513251335134513551365137513851395140514151425143514451455146514751485149515051515152515351545155515651575158515951605161516251635164516551665167516851695170517151725173517451755176517751785179518051815182518351845185518651875188518951905191519251935194519551965197519851995200520152025203520452055206520752085209521052115212521352145215521652175218521952205221522252235224522552265227522852295230523152325233523452355236523752385239524052415242524352445245524652475248524952505251525252535254525552565257525852595260526152625263526452655266526752685269527052715272527352745275527652775278527952805281528252835284528552865287528852895290529152925293529452955296529752985299530053015302530353045305530653075308530953105311531253135314531553165317531853195320532153225323532453255326532753285329533053315332533353345335533653375338533953405341534253435344534553465347534853495350535153525353535453555356535753585359536053615362536353645365536653675368536953705371537253735374537553765377537853795380538153825383538453855386538753885389539053915392539353945395539653975398539954005401540254035404540554065407540854095410541154125413541454155416541754185419542054215422542354245425542654275428542954305431543254335434543554365437543854395440544154425443544454455446544754485449545054515452545354545455545654575458545954605461546254635464546554665467546854695470547154725473547454755476547754785479548054815482548354845485548654875488548954905491549254935494549554965497549854995500550155025503550455055506550755085509551055115512551355145515551655175518551955205521552255235524552555265527552855295530553155325533553455355536553755385539554055415542554355445545554655475548554955505551555255535554555555565557555855595560556155625563556455655566556755685569557055715572557355745575557655775578557955805581558255835584558555865587558855895590559155925593559455955596559755985599560056015602560356045605560656075608560956105611561256135614561556165617561856195620562156225623562456255626562756285629563056315632563356345635563656375638563956405641564256435644564556465647564856495650565156525653565456555656565756585659566056615662566356645665566656675668566956705671567256735674567556765677567856795680568156825683568456855686568756885689569056915692569356945695569656975698569957005701570257035704570557065707570857095710571157125713571457155716571757185719572057215722572357245725572657275728572957305731573257335734573557365737573857395740574157425743574457455746574757485749575057515752575357545755575657575758575957605761576257635764576557665767576857695770577157725773577457755776577757785779578057815782578357845785578657875788578957905791579257935794579557965797579857995800580158025803580458055806580758085809581058115812581358145815581658175818581958205821582258235824582558265827582858295830583158325833583458355836583758385839584058415842584358445845584658475848584958505851585258535854585558565857585858595860586158625863586458655866586758685869587058715872587358745875587658775878587958805881588258835884588558865887588858895890589158925893589458955896589758985899590059015902590359045905590659075908590959105911591259135914591559165917591859195920592159225923592459255926592759285929593059315932593359345935593659375938593959405941594259435944594559465947594859495950595159525953595459555956595759585959596059615962596359645965596659675968596959705971597259735974597559765977597859795980598159825983598459855986598759885989599059915992599359945995599659975998599960006001600260036004600560066007600860096010601160126013601460156016601760186019602060216022602360246025602660276028602960306031603260336034603560366037603860396040604160426043604460456046604760486049605060516052605360546055605660576058605960606061606260636064606560666067606860696070607160726073607460756076607760786079608060816082608360846085608660876088608960906091609260936094609560966097609860996100610161026103610461056106610761086109611061116112611361146115611661176118611961206121612261236124612561266127612861296130613161326133613461356136613761386139614061416142614361446145614661476148614961506151615261536154615561566157615861596160616161626163616461656166616761686169617061716172617361746175617661776178617961806181618261836184618561866187618861896190619161926193619461956196619761986199620062016202620362046205620662076208620962106211621262136214621562166217621862196220622162226223622462256226622762286229623062316232623362346235623662376238623962406241624262436244624562466247624862496250625162526253625462556256625762586259626062616262626362646265626662676268626962706271627262736274627562766277627862796280628162826283628462856286628762886289629062916292629362946295629662976298629963006301630263036304630563066307630863096310631163126313631463156316631763186319632063216322632363246325632663276328632963306331633263336334633563366337633863396340634163426343634463456346634763486349635063516352635363546355635663576358635963606361636263636364636563666367636863696370637163726373637463756376637763786379638063816382638363846385638663876388638963906391639263936394639563966397639863996400640164026403640464056406640764086409641064116412641364146415641664176418641964206421642264236424642564266427642864296430643164326433643464356436643764386439644064416442644364446445644664476448644964506451645264536454645564566457645864596460646164626463646464656466646764686469647064716472647364746475647664776478647964806481648264836484648564866487648864896490649164926493649464956496649764986499650065016502650365046505650665076508650965106511651265136514651565166517651865196520652165226523652465256526652765286529653065316532653365346535653665376538653965406541654265436544654565466547654865496550655165526553655465556556655765586559656065616562656365646565656665676568656965706571657265736574657565766577657865796580658165826583658465856586658765886589659065916592659365946595659665976598659966006601660266036604660566066607660866096610661166126613661466156616661766186619662066216622662366246625662666276628662966306631663266336634663566366637663866396640664166426643664466456646664766486649665066516652665366546655665666576658665966606661666266636664666566666667666866696670667166726673667466756676667766786679668066816682668366846685668666876688668966906691669266936694669566966697669866996700670167026703670467056706670767086709671067116712671367146715671667176718671967206721672267236724672567266727672867296730673167326733673467356736673767386739674067416742674367446745674667476748674967506751675267536754675567566757675867596760676167626763676467656766676767686769677067716772677367746775677667776778677967806781678267836784678567866787678867896790679167926793679467956796679767986799680068016802680368046805680668076808680968106811681268136814681568166817681868196820682168226823682468256826682768286829683068316832683368346835683668376838683968406841684268436844684568466847684868496850685168526853685468556856685768586859686068616862686368646865686668676868686968706871687268736874687568766877687868796880688168826883688468856886688768886889689068916892689368946895689668976898689969006901690269036904690569066907690869096910691169126913691469156916691769186919692069216922692369246925692669276928692969306931693269336934693569366937693869396940694169426943694469456946694769486949695069516952695369546955695669576958695969606961696269636964696569666967696869696970697169726973697469756976697769786979698069816982698369846985698669876988698969906991699269936994699569966997699869997000700170027003700470057006
  1. /* -*- c++ -*- */
  2. /*
  3. Reprap firmware based on Sprinter and grbl.
  4. Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
  5. This program is free software: you can redistribute it and/or modify
  6. it under the terms of the GNU General Public License as published by
  7. the Free Software Foundation, either version 3 of the License, or
  8. (at your option) any later version.
  9. This program is distributed in the hope that it will be useful,
  10. but WITHOUT ANY WARRANTY; without even the implied warranty of
  11. MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  12. GNU General Public License for more details.
  13. You should have received a copy of the GNU General Public License
  14. along with this program. If not, see <http://www.gnu.org/licenses/>.
  15. */
  16. /*
  17. This firmware is a mashup between Sprinter and grbl.
  18. (https://github.com/kliment/Sprinter)
  19. (https://github.com/simen/grbl/tree)
  20. It has preliminary support for Matthew Roberts advance algorithm
  21. http://reprap.org/pipermail/reprap-dev/2011-May/003323.html
  22. */
  23. #include "Marlin.h"
  24. #ifdef ENABLE_AUTO_BED_LEVELING
  25. #include "vector_3.h"
  26. #ifdef AUTO_BED_LEVELING_GRID
  27. #include "qr_solve.h"
  28. #endif
  29. #endif // ENABLE_AUTO_BED_LEVELING
  30. #ifdef MESH_BED_LEVELING
  31. #include "mesh_bed_leveling.h"
  32. #include "mesh_bed_calibration.h"
  33. #endif
  34. #include "ultralcd.h"
  35. #include "Configuration_prusa.h"
  36. #include "planner.h"
  37. #include "stepper.h"
  38. #include "temperature.h"
  39. #include "motion_control.h"
  40. #include "cardreader.h"
  41. #include "watchdog.h"
  42. #include "ConfigurationStore.h"
  43. #include "language.h"
  44. #include "pins_arduino.h"
  45. #include "math.h"
  46. #include "util.h"
  47. #include <avr/wdt.h>
  48. #ifdef BLINKM
  49. #include "BlinkM.h"
  50. #include "Wire.h"
  51. #endif
  52. #ifdef ULTRALCD
  53. #include "ultralcd.h"
  54. #endif
  55. #if NUM_SERVOS > 0
  56. #include "Servo.h"
  57. #endif
  58. #if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
  59. #include <SPI.h>
  60. #endif
  61. #define VERSION_STRING "1.0.2"
  62. #include "ultralcd.h"
  63. #include "sound.h"
  64. // Macros for bit masks
  65. #define BIT(b) (1<<(b))
  66. #define TEST(n,b) (((n)&BIT(b))!=0)
  67. #define SET_BIT(n,b,value) (n) ^= ((-value)^(n)) & (BIT(b))
  68. // look here for descriptions of G-codes: http://linuxcnc.org/handbook/gcode/g-code.html
  69. // http://objects.reprap.org/wiki/Mendel_User_Manual:_RepRapGCodes
  70. //Implemented Codes
  71. //-------------------
  72. // PRUSA CODES
  73. // P F - Returns FW versions
  74. // P R - Returns revision of printer
  75. // G0 -> G1
  76. // G1 - Coordinated Movement X Y Z E
  77. // G2 - CW ARC
  78. // G3 - CCW ARC
  79. // G4 - Dwell S<seconds> or P<milliseconds>
  80. // G10 - retract filament according to settings of M207
  81. // G11 - retract recover filament according to settings of M208
  82. // G28 - Home all Axis
  83. // G29 - Detailed Z-Probe, probes the bed at 3 or more points. Will fail if you haven't homed yet.
  84. // G30 - Single Z Probe, probes bed at current XY location.
  85. // G31 - Dock sled (Z_PROBE_SLED only)
  86. // G32 - Undock sled (Z_PROBE_SLED only)
  87. // G80 - Automatic mesh bed leveling
  88. // G81 - Print bed profile
  89. // G90 - Use Absolute Coordinates
  90. // G91 - Use Relative Coordinates
  91. // G92 - Set current position to coordinates given
  92. // M Codes
  93. // M0 - Unconditional stop - Wait for user to press a button on the LCD (Only if ULTRA_LCD is enabled)
  94. // M1 - Same as M0
  95. // M17 - Enable/Power all stepper motors
  96. // M18 - Disable all stepper motors; same as M84
  97. // M20 - List SD card
  98. // M21 - Init SD card
  99. // M22 - Release SD card
  100. // M23 - Select SD file (M23 filename.g)
  101. // M24 - Start/resume SD print
  102. // M25 - Pause SD print
  103. // M26 - Set SD position in bytes (M26 S12345)
  104. // M27 - Report SD print status
  105. // M28 - Start SD write (M28 filename.g)
  106. // M29 - Stop SD write
  107. // M30 - Delete file from SD (M30 filename.g)
  108. // M31 - Output time since last M109 or SD card start to serial
  109. // M32 - Select file and start SD print (Can be used _while_ printing from SD card files):
  110. // syntax "M32 /path/filename#", or "M32 S<startpos bytes> !filename#"
  111. // Call gcode file : "M32 P !filename#" and return to caller file after finishing (similar to #include).
  112. // The '#' is necessary when calling from within sd files, as it stops buffer prereading
  113. // M42 - Change pin status via gcode Use M42 Px Sy to set pin x to value y, when omitting Px the onboard led will be used.
  114. // M80 - Turn on Power Supply
  115. // M81 - Turn off Power Supply
  116. // M82 - Set E codes absolute (default)
  117. // M83 - Set E codes relative while in Absolute Coordinates (G90) mode
  118. // M84 - Disable steppers until next move,
  119. // or use S<seconds> to specify an inactivity timeout, after which the steppers will be disabled. S0 to disable the timeout.
  120. // M85 - Set inactivity shutdown timer with parameter S<seconds>. To disable set zero (default)
  121. // M92 - Set axis_steps_per_unit - same syntax as G92
  122. // M104 - Set extruder target temp
  123. // M105 - Read current temp
  124. // M106 - Fan on
  125. // M107 - Fan off
  126. // M109 - Sxxx Wait for extruder current temp to reach target temp. Waits only when heating
  127. // Rxxx Wait for extruder current temp to reach target temp. Waits when heating and cooling
  128. // IF AUTOTEMP is enabled, S<mintemp> B<maxtemp> F<factor>. Exit autotemp by any M109 without F
  129. // M112 - Emergency stop
  130. // M113 - Get or set the timeout interval for Host Keepalive "busy" messages
  131. // M114 - Output current position to serial port
  132. // M115 - Capabilities string
  133. // M117 - display message
  134. // M119 - Output Endstop status to serial port
  135. // M126 - Solenoid Air Valve Open (BariCUDA support by jmil)
  136. // M127 - Solenoid Air Valve Closed (BariCUDA vent to atmospheric pressure by jmil)
  137. // M128 - EtoP Open (BariCUDA EtoP = electricity to air pressure transducer by jmil)
  138. // M129 - EtoP Closed (BariCUDA EtoP = electricity to air pressure transducer by jmil)
  139. // M140 - Set bed target temp
  140. // M150 - Set BlinkM Color Output R: Red<0-255> U(!): Green<0-255> B: Blue<0-255> over i2c, G for green does not work.
  141. // M190 - Sxxx Wait for bed current temp to reach target temp. Waits only when heating
  142. // Rxxx Wait for bed current temp to reach target temp. Waits when heating and cooling
  143. // M200 D<millimeters>- set filament diameter and set E axis units to cubic millimeters (use S0 to set back to millimeters).
  144. // M201 - Set max acceleration in units/s^2 for print moves (M201 X1000 Y1000)
  145. // M202 - Set max acceleration in units/s^2 for travel moves (M202 X1000 Y1000) Unused in Marlin!!
  146. // M203 - Set maximum feedrate that your machine can sustain (M203 X200 Y200 Z300 E10000) in mm/sec
  147. // M204 - Set default acceleration: S normal moves T filament only moves (M204 S3000 T7000) in mm/sec^2 also sets minimum segment time in ms (B20000) to prevent buffer under-runs and M20 minimum feedrate
  148. // M205 - advanced settings: minimum travel speed S=while printing T=travel only, B=minimum segment time X= maximum xy jerk, Z=maximum Z jerk, E=maximum E jerk
  149. // M206 - set additional homing offset
  150. // M207 - set retract length S[positive mm] F[feedrate mm/min] Z[additional zlift/hop], stays in mm regardless of M200 setting
  151. // M208 - set recover=unretract length S[positive mm surplus to the M207 S*] F[feedrate mm/sec]
  152. // M209 - S<1=true/0=false> enable automatic retract detect if the slicer did not support G10/11: every normal extrude-only move will be classified as retract depending on the direction.
  153. // M218 - set hotend offset (in mm): T<extruder_number> X<offset_on_X> Y<offset_on_Y>
  154. // M220 S<factor in percent>- set speed factor override percentage
  155. // M221 S<factor in percent>- set extrude factor override percentage
  156. // M226 P<pin number> S<pin state>- Wait until the specified pin reaches the state required
  157. // M240 - Trigger a camera to take a photograph
  158. // M250 - Set LCD contrast C<contrast value> (value 0..63)
  159. // M280 - set servo position absolute. P: servo index, S: angle or microseconds
  160. // M300 - Play beep sound S<frequency Hz> P<duration ms>
  161. // M301 - Set PID parameters P I and D
  162. // M302 - Allow cold extrudes, or set the minimum extrude S<temperature>.
  163. // M303 - PID relay autotune S<temperature> sets the target temperature. (default target temperature = 150C)
  164. // M304 - Set bed PID parameters P I and D
  165. // M400 - Finish all moves
  166. // M401 - Lower z-probe if present
  167. // M402 - Raise z-probe if present
  168. // M404 - N<dia in mm> Enter the nominal filament width (3mm, 1.75mm ) or will display nominal filament width without parameters
  169. // M405 - Turn on Filament Sensor extrusion control. Optional D<delay in cm> to set delay in centimeters between sensor and extruder
  170. // M406 - Turn off Filament Sensor extrusion control
  171. // M407 - Displays measured filament diameter
  172. // M500 - stores parameters in EEPROM
  173. // M501 - reads parameters from EEPROM (if you need reset them after you changed them temporarily).
  174. // M502 - reverts to the default "factory settings". You still need to store them in EEPROM afterwards if you want to.
  175. // M503 - print the current settings (from memory not from EEPROM)
  176. // M509 - force language selection on next restart
  177. // M540 - Use S[0|1] to enable or disable the stop SD card print on endstop hit (requires ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED)
  178. // M600 - Pause for filament change X[pos] Y[pos] Z[relative lift] E[initial retract] L[later retract distance for removal]
  179. // M605 - Set dual x-carriage movement mode: S<mode> [ X<duplication x-offset> R<duplication temp offset> ]
  180. // M900 - Set LIN_ADVANCE options, if enabled. See Configuration_adv.h for details.
  181. // M907 - Set digital trimpot motor current using axis codes.
  182. // M908 - Control digital trimpot directly.
  183. // M350 - Set microstepping mode.
  184. // M351 - Toggle MS1 MS2 pins directly.
  185. // M928 - Start SD logging (M928 filename.g) - ended by M29
  186. // M999 - Restart after being stopped by error
  187. //Stepper Movement Variables
  188. //===========================================================================
  189. //=============================imported variables============================
  190. //===========================================================================
  191. //===========================================================================
  192. //=============================public variables=============================
  193. //===========================================================================
  194. #ifdef SDSUPPORT
  195. CardReader card;
  196. #endif
  197. unsigned long TimeSent = millis();
  198. unsigned long TimeNow = millis();
  199. unsigned long PingTime = millis();
  200. unsigned long NcTime;
  201. union Data
  202. {
  203. byte b[2];
  204. int value;
  205. };
  206. float homing_feedrate[] = HOMING_FEEDRATE;
  207. // Currently only the extruder axis may be switched to a relative mode.
  208. // Other axes are always absolute or relative based on the common relative_mode flag.
  209. bool axis_relative_modes[] = AXIS_RELATIVE_MODES;
  210. int feedmultiply=100; //100->1 200->2
  211. int saved_feedmultiply;
  212. int extrudemultiply=100; //100->1 200->2
  213. int extruder_multiply[EXTRUDERS] = {100
  214. #if EXTRUDERS > 1
  215. , 100
  216. #if EXTRUDERS > 2
  217. , 100
  218. #endif
  219. #endif
  220. };
  221. int bowden_length[4];
  222. bool is_usb_printing = false;
  223. bool homing_flag = false;
  224. bool temp_cal_active = false;
  225. unsigned long kicktime = millis()+100000;
  226. unsigned int usb_printing_counter;
  227. int lcd_change_fil_state = 0;
  228. int feedmultiplyBckp = 100;
  229. float HotendTempBckp = 0;
  230. int fanSpeedBckp = 0;
  231. float pause_lastpos[4];
  232. unsigned long pause_time = 0;
  233. unsigned long start_pause_print = millis();
  234. unsigned long load_filament_time;
  235. bool mesh_bed_leveling_flag = false;
  236. bool mesh_bed_run_from_menu = false;
  237. unsigned char lang_selected = 0;
  238. bool prusa_sd_card_upload = false;
  239. unsigned int status_number = 0;
  240. unsigned long total_filament_used;
  241. unsigned int heating_status;
  242. unsigned int heating_status_counter;
  243. bool custom_message;
  244. bool loading_flag = false;
  245. unsigned int custom_message_type;
  246. unsigned int custom_message_state;
  247. char snmm_filaments_used = 0;
  248. uint8_t selectedSerialPort;
  249. float distance_from_min[3];
  250. bool sortAlpha = false;
  251. bool volumetric_enabled = false;
  252. float filament_size[EXTRUDERS] = { DEFAULT_NOMINAL_FILAMENT_DIA
  253. #if EXTRUDERS > 1
  254. , DEFAULT_NOMINAL_FILAMENT_DIA
  255. #if EXTRUDERS > 2
  256. , DEFAULT_NOMINAL_FILAMENT_DIA
  257. #endif
  258. #endif
  259. };
  260. float volumetric_multiplier[EXTRUDERS] = {1.0
  261. #if EXTRUDERS > 1
  262. , 1.0
  263. #if EXTRUDERS > 2
  264. , 1.0
  265. #endif
  266. #endif
  267. };
  268. float current_position[NUM_AXIS] = { 0.0, 0.0, 0.0, 0.0 };
  269. float add_homing[3]={0,0,0};
  270. float min_pos[3] = { X_MIN_POS, Y_MIN_POS, Z_MIN_POS };
  271. float max_pos[3] = { X_MAX_POS, Y_MAX_POS, Z_MAX_POS };
  272. bool axis_known_position[3] = {false, false, false};
  273. float zprobe_zoffset;
  274. // Extruder offset
  275. #if EXTRUDERS > 1
  276. #define NUM_EXTRUDER_OFFSETS 2 // only in XY plane
  277. float extruder_offset[NUM_EXTRUDER_OFFSETS][EXTRUDERS] = {
  278. #if defined(EXTRUDER_OFFSET_X) && defined(EXTRUDER_OFFSET_Y)
  279. EXTRUDER_OFFSET_X, EXTRUDER_OFFSET_Y
  280. #endif
  281. };
  282. #endif
  283. uint8_t active_extruder = 0;
  284. int fanSpeed=0;
  285. #ifdef FWRETRACT
  286. bool autoretract_enabled=false;
  287. bool retracted[EXTRUDERS]={false
  288. #if EXTRUDERS > 1
  289. , false
  290. #if EXTRUDERS > 2
  291. , false
  292. #endif
  293. #endif
  294. };
  295. bool retracted_swap[EXTRUDERS]={false
  296. #if EXTRUDERS > 1
  297. , false
  298. #if EXTRUDERS > 2
  299. , false
  300. #endif
  301. #endif
  302. };
  303. float retract_length = RETRACT_LENGTH;
  304. float retract_length_swap = RETRACT_LENGTH_SWAP;
  305. float retract_feedrate = RETRACT_FEEDRATE;
  306. float retract_zlift = RETRACT_ZLIFT;
  307. float retract_recover_length = RETRACT_RECOVER_LENGTH;
  308. float retract_recover_length_swap = RETRACT_RECOVER_LENGTH_SWAP;
  309. float retract_recover_feedrate = RETRACT_RECOVER_FEEDRATE;
  310. #endif
  311. #ifdef ULTIPANEL
  312. #ifdef PS_DEFAULT_OFF
  313. bool powersupply = false;
  314. #else
  315. bool powersupply = true;
  316. #endif
  317. #endif
  318. bool cancel_heatup = false ;
  319. #ifdef HOST_KEEPALIVE_FEATURE
  320. MarlinBusyState busy_state = NOT_BUSY;
  321. static long prev_busy_signal_ms = -1;
  322. uint8_t host_keepalive_interval = HOST_KEEPALIVE_INTERVAL;
  323. #else
  324. #define host_keepalive();
  325. #define KEEPALIVE_STATE(n);
  326. #endif
  327. #ifdef FILAMENT_SENSOR
  328. //Variables for Filament Sensor input
  329. float filament_width_nominal=DEFAULT_NOMINAL_FILAMENT_DIA; //Set nominal filament width, can be changed with M404
  330. bool filament_sensor=false; //M405 turns on filament_sensor control, M406 turns it off
  331. float filament_width_meas=DEFAULT_MEASURED_FILAMENT_DIA; //Stores the measured filament diameter
  332. signed char measurement_delay[MAX_MEASUREMENT_DELAY+1]; //ring buffer to delay measurement store extruder factor after subtracting 100
  333. int delay_index1=0; //index into ring buffer
  334. int delay_index2=-1; //index into ring buffer - set to -1 on startup to indicate ring buffer needs to be initialized
  335. float delay_dist=0; //delay distance counter
  336. int meas_delay_cm = MEASUREMENT_DELAY_CM; //distance delay setting
  337. #endif
  338. const char errormagic[] PROGMEM = "Error:";
  339. const char echomagic[] PROGMEM = "echo:";
  340. bool no_response = false;
  341. uint8_t important_status;
  342. uint8_t saved_filament_type;
  343. //===========================================================================
  344. //=============================Private Variables=============================
  345. //===========================================================================
  346. const char axis_codes[NUM_AXIS] = {'X', 'Y', 'Z', 'E'};
  347. float destination[NUM_AXIS] = { 0.0, 0.0, 0.0, 0.0};
  348. // For tracing an arc
  349. static float offset[3] = {0.0, 0.0, 0.0};
  350. static bool home_all_axis = true;
  351. static float feedrate = 1500.0, next_feedrate, saved_feedrate;
  352. static long gcode_N, gcode_LastN, Stopped_gcode_LastN = 0;
  353. // Determines Absolute or Relative Coordinates.
  354. // Also there is bool axis_relative_modes[] per axis flag.
  355. static bool relative_mode = false;
  356. // String circular buffer. Commands may be pushed to the buffer from both sides:
  357. // Chained commands will be pushed to the front, interactive (from LCD menu)
  358. // and printing commands (from serial line or from SD card) are pushed to the tail.
  359. // First character of each entry indicates the type of the entry:
  360. #define CMDBUFFER_CURRENT_TYPE_UNKNOWN 0
  361. // Command in cmdbuffer was sent over USB.
  362. #define CMDBUFFER_CURRENT_TYPE_USB 1
  363. // Command in cmdbuffer was read from SDCARD.
  364. #define CMDBUFFER_CURRENT_TYPE_SDCARD 2
  365. // Command in cmdbuffer was generated by the UI.
  366. #define CMDBUFFER_CURRENT_TYPE_UI 3
  367. // Command in cmdbuffer was generated by another G-code.
  368. #define CMDBUFFER_CURRENT_TYPE_CHAINED 4
  369. // How much space to reserve for the chained commands
  370. // of type CMDBUFFER_CURRENT_TYPE_CHAINED,
  371. // which are pushed to the front of the queue?
  372. // Maximum 5 commands of max length 20 + null terminator.
  373. #define CMDBUFFER_RESERVE_FRONT (5*21)
  374. // Reserve BUFSIZE lines of length MAX_CMD_SIZE plus CMDBUFFER_RESERVE_FRONT.
  375. static char cmdbuffer[BUFSIZE * (MAX_CMD_SIZE + 1) + CMDBUFFER_RESERVE_FRONT];
  376. // Head of the circular buffer, where to read.
  377. static int bufindr = 0;
  378. // Tail of the buffer, where to write.
  379. static int bufindw = 0;
  380. // Number of lines in cmdbuffer.
  381. static int buflen = 0;
  382. // Flag for processing the current command inside the main Arduino loop().
  383. // If a new command was pushed to the front of a command buffer while
  384. // processing another command, this replaces the command on the top.
  385. // Therefore don't remove the command from the queue in the loop() function.
  386. static bool cmdbuffer_front_already_processed = false;
  387. // Type of a command, which is to be executed right now.
  388. #define CMDBUFFER_CURRENT_TYPE (cmdbuffer[bufindr])
  389. // String of a command, which is to be executed right now.
  390. #define CMDBUFFER_CURRENT_STRING (cmdbuffer+bufindr+1)
  391. // Enable debugging of the command buffer.
  392. // Debugging information will be sent to serial line.
  393. // #define CMDBUFFER_DEBUG
  394. static int serial_count = 0; //index of character read from serial line
  395. static boolean comment_mode = false;
  396. static char *strchr_pointer; // just a pointer to find chars in the command string like X, Y, Z, E, etc
  397. const int sensitive_pins[] = SENSITIVE_PINS; // Sensitive pin list for M42
  398. //static float tt = 0;
  399. //static float bt = 0;
  400. //Inactivity shutdown variables
  401. static unsigned long previous_millis_cmd = 0;
  402. unsigned long max_inactive_time = 0;
  403. static unsigned long stepper_inactive_time = DEFAULT_STEPPER_DEACTIVE_TIME*1000l;
  404. unsigned long starttime=0;
  405. unsigned long stoptime=0;
  406. unsigned long _usb_timer = 0;
  407. static uint8_t tmp_extruder;
  408. bool Stopped=false;
  409. #if NUM_SERVOS > 0
  410. Servo servos[NUM_SERVOS];
  411. #endif
  412. bool CooldownNoWait = true;
  413. bool target_direction;
  414. //Insert variables if CHDK is defined
  415. #ifdef CHDK
  416. unsigned long chdkHigh = 0;
  417. boolean chdkActive = false;
  418. #endif
  419. static int saved_feedmultiply_mm = 100;
  420. //===========================================================================
  421. //=============================Routines======================================
  422. //===========================================================================
  423. void get_arc_coordinates();
  424. bool setTargetedHotend(int code);
  425. void serial_echopair_P(const char *s_P, float v)
  426. { serialprintPGM(s_P); SERIAL_ECHO(v); }
  427. void serial_echopair_P(const char *s_P, double v)
  428. { serialprintPGM(s_P); SERIAL_ECHO(v); }
  429. void serial_echopair_P(const char *s_P, unsigned long v)
  430. { serialprintPGM(s_P); SERIAL_ECHO(v); }
  431. #ifdef SDSUPPORT
  432. #include "SdFatUtil.h"
  433. int freeMemory() { return SdFatUtil::FreeRam(); }
  434. #else
  435. extern "C" {
  436. extern unsigned int __bss_end;
  437. extern unsigned int __heap_start;
  438. extern void *__brkval;
  439. int freeMemory() {
  440. int free_memory;
  441. if ((int)__brkval == 0)
  442. free_memory = ((int)&free_memory) - ((int)&__bss_end);
  443. else
  444. free_memory = ((int)&free_memory) - ((int)__brkval);
  445. return free_memory;
  446. }
  447. }
  448. #endif //!SDSUPPORT
  449. // Pop the currently processed command from the queue.
  450. // It is expected, that there is at least one command in the queue.
  451. bool cmdqueue_pop_front()
  452. {
  453. if (buflen > 0) {
  454. #ifdef CMDBUFFER_DEBUG
  455. SERIAL_ECHOPGM("Dequeing ");
  456. SERIAL_ECHO(cmdbuffer+bufindr+1);
  457. SERIAL_ECHOLNPGM("");
  458. SERIAL_ECHOPGM("Old indices: buflen ");
  459. SERIAL_ECHO(buflen);
  460. SERIAL_ECHOPGM(", bufindr ");
  461. SERIAL_ECHO(bufindr);
  462. SERIAL_ECHOPGM(", bufindw ");
  463. SERIAL_ECHO(bufindw);
  464. SERIAL_ECHOPGM(", serial_count ");
  465. SERIAL_ECHO(serial_count);
  466. SERIAL_ECHOPGM(", bufsize ");
  467. SERIAL_ECHO(sizeof(cmdbuffer));
  468. SERIAL_ECHOLNPGM("");
  469. #endif /* CMDBUFFER_DEBUG */
  470. if (-- buflen == 0) {
  471. // Empty buffer.
  472. if (serial_count == 0)
  473. // No serial communication is pending. Reset both pointers to zero.
  474. bufindw = 0;
  475. bufindr = bufindw;
  476. } else {
  477. // There is at least one ready line in the buffer.
  478. // First skip the current command ID and iterate up to the end of the string.
  479. for (++ bufindr; cmdbuffer[bufindr] != 0; ++ bufindr) ;
  480. // Second, skip the end of string null character and iterate until a nonzero command ID is found.
  481. for (++ bufindr; (bufindr < (int)sizeof(cmdbuffer)) && (cmdbuffer[bufindr] == 0); ++ bufindr) ;
  482. // If the end of the buffer was empty,
  483. if (bufindr == sizeof(cmdbuffer)) {
  484. // skip to the start and find the nonzero command.
  485. for (bufindr = 0; cmdbuffer[bufindr] == 0; ++ bufindr) ;
  486. }
  487. #ifdef CMDBUFFER_DEBUG
  488. SERIAL_ECHOPGM("New indices: buflen ");
  489. SERIAL_ECHO(buflen);
  490. SERIAL_ECHOPGM(", bufindr ");
  491. SERIAL_ECHO(bufindr);
  492. SERIAL_ECHOPGM(", bufindw ");
  493. SERIAL_ECHO(bufindw);
  494. SERIAL_ECHOPGM(", serial_count ");
  495. SERIAL_ECHO(serial_count);
  496. SERIAL_ECHOPGM(" new command on the top: ");
  497. SERIAL_ECHO(cmdbuffer+bufindr+1);
  498. SERIAL_ECHOLNPGM("");
  499. #endif /* CMDBUFFER_DEBUG */
  500. }
  501. return true;
  502. }
  503. return false;
  504. }
  505. void cmdqueue_reset()
  506. {
  507. while (cmdqueue_pop_front()) ;
  508. }
  509. // How long a string could be pushed to the front of the command queue?
  510. // If yes, adjust bufindr to the new position, where the new command could be enqued.
  511. // len_asked does not contain the zero terminator size.
  512. bool cmdqueue_could_enqueue_front(int len_asked)
  513. {
  514. // MAX_CMD_SIZE has to accommodate the zero terminator.
  515. if (len_asked >= MAX_CMD_SIZE)
  516. return false;
  517. // Remove the currently processed command from the queue.
  518. if (! cmdbuffer_front_already_processed) {
  519. cmdqueue_pop_front();
  520. cmdbuffer_front_already_processed = true;
  521. }
  522. if (bufindr == bufindw && buflen > 0)
  523. // Full buffer.
  524. return false;
  525. // Adjust the end of the write buffer based on whether a partial line is in the receive buffer.
  526. int endw = (serial_count > 0) ? (bufindw + MAX_CMD_SIZE + 1) : bufindw;
  527. if (bufindw < bufindr) {
  528. int bufindr_new = bufindr - len_asked - 2;
  529. // Simple case. There is a contiguous space between the write buffer and the read buffer.
  530. if (endw <= bufindr_new) {
  531. bufindr = bufindr_new;
  532. return true;
  533. }
  534. } else {
  535. // Otherwise the free space is split between the start and end.
  536. if (len_asked + 2 <= bufindr) {
  537. // Could fit at the start.
  538. bufindr -= len_asked + 2;
  539. return true;
  540. }
  541. int bufindr_new = sizeof(cmdbuffer) - len_asked - 2;
  542. if (endw <= bufindr_new) {
  543. memset(cmdbuffer, 0, bufindr);
  544. bufindr = bufindr_new;
  545. return true;
  546. }
  547. }
  548. return false;
  549. }
  550. // Could one enqueue a command of lenthg len_asked into the buffer,
  551. // while leaving CMDBUFFER_RESERVE_FRONT at the start?
  552. // If yes, adjust bufindw to the new position, where the new command could be enqued.
  553. // len_asked does not contain the zero terminator size.
  554. bool cmdqueue_could_enqueue_back(int len_asked)
  555. {
  556. // MAX_CMD_SIZE has to accommodate the zero terminator.
  557. if (len_asked >= MAX_CMD_SIZE)
  558. return false;
  559. if (bufindr == bufindw && buflen > 0)
  560. // Full buffer.
  561. return false;
  562. if (serial_count > 0) {
  563. // If there is some data stored starting at bufindw, len_asked is certainly smaller than
  564. // the allocated data buffer. Try to reserve a new buffer and to move the already received
  565. // serial data.
  566. // How much memory to reserve for the commands pushed to the front?
  567. // End of the queue, when pushing to the end.
  568. int endw = bufindw + len_asked + 2;
  569. if (bufindw < bufindr)
  570. // Simple case. There is a contiguous space between the write buffer and the read buffer.
  571. return ((endw + CMDBUFFER_RESERVE_FRONT) <= bufindr);
  572. // Otherwise the free space is split between the start and end.
  573. if (// Could one fit to the end, including the reserve?
  574. (endw + CMDBUFFER_RESERVE_FRONT <= (int)sizeof(cmdbuffer)) ||
  575. // Could one fit to the end, and the reserve to the start?
  576. ((endw <= (int)sizeof(cmdbuffer)) && (CMDBUFFER_RESERVE_FRONT <= bufindr)))
  577. return true;
  578. // Could one fit both to the start?
  579. if (len_asked + 2 + CMDBUFFER_RESERVE_FRONT <= bufindr) {
  580. // Mark the rest of the buffer as used.
  581. memset(cmdbuffer+bufindw, 0, sizeof(cmdbuffer)-bufindw);
  582. // and point to the start.
  583. bufindw = 0;
  584. return true;
  585. }
  586. } else {
  587. // How much memory to reserve for the commands pushed to the front?
  588. // End of the queue, when pushing to the end.
  589. int endw = bufindw + len_asked + 2;
  590. if (bufindw < bufindr)
  591. // Simple case. There is a contiguous space between the write buffer and the read buffer.
  592. return ((endw + CMDBUFFER_RESERVE_FRONT) <= bufindr);
  593. // Otherwise the free space is split between the start and end.
  594. if (// Could one fit to the end, including the reserve?
  595. (endw + CMDBUFFER_RESERVE_FRONT <= (int)sizeof(cmdbuffer)) ||
  596. // Could one fit to the end, and the reserve to the start?
  597. ((endw <= (int)sizeof(cmdbuffer)) && (CMDBUFFER_RESERVE_FRONT <= bufindr)))
  598. return true;
  599. // Could one fit both to the start?
  600. if (len_asked + 2 + CMDBUFFER_RESERVE_FRONT <= bufindr) {
  601. // Mark the rest of the buffer as used.
  602. memset(cmdbuffer+bufindw, 0, sizeof(cmdbuffer)-bufindw);
  603. // and point to the start.
  604. bufindw = 0;
  605. return true;
  606. }
  607. }
  608. return false;
  609. }
  610. #ifdef CMDBUFFER_DEBUG
  611. static void cmdqueue_dump_to_serial_single_line(int nr, const char *p)
  612. {
  613. SERIAL_ECHOPGM("Entry nr: ");
  614. SERIAL_ECHO(nr);
  615. SERIAL_ECHOPGM(", type: ");
  616. SERIAL_ECHO(int(*p));
  617. SERIAL_ECHOPGM(", cmd: ");
  618. SERIAL_ECHO(p+1);
  619. SERIAL_ECHOLNPGM("");
  620. }
  621. static void cmdqueue_dump_to_serial()
  622. {
  623. if (buflen == 0) {
  624. SERIAL_ECHOLNPGM("The command buffer is empty.");
  625. } else {
  626. SERIAL_ECHOPGM("Content of the buffer: entries ");
  627. SERIAL_ECHO(buflen);
  628. SERIAL_ECHOPGM(", indr ");
  629. SERIAL_ECHO(bufindr);
  630. SERIAL_ECHOPGM(", indw ");
  631. SERIAL_ECHO(bufindw);
  632. SERIAL_ECHOLNPGM("");
  633. int nr = 0;
  634. if (bufindr < bufindw) {
  635. for (const char *p = cmdbuffer + bufindr; p < cmdbuffer + bufindw; ++ nr) {
  636. cmdqueue_dump_to_serial_single_line(nr, p);
  637. // Skip the command.
  638. for (++p; *p != 0; ++ p);
  639. // Skip the gaps.
  640. for (++p; p < cmdbuffer + bufindw && *p == 0; ++ p);
  641. }
  642. } else {
  643. for (const char *p = cmdbuffer + bufindr; p < cmdbuffer + sizeof(cmdbuffer); ++ nr) {
  644. cmdqueue_dump_to_serial_single_line(nr, p);
  645. // Skip the command.
  646. for (++p; *p != 0; ++ p);
  647. // Skip the gaps.
  648. for (++p; p < cmdbuffer + sizeof(cmdbuffer) && *p == 0; ++ p);
  649. }
  650. for (const char *p = cmdbuffer; p < cmdbuffer + bufindw; ++ nr) {
  651. cmdqueue_dump_to_serial_single_line(nr, p);
  652. // Skip the command.
  653. for (++p; *p != 0; ++ p);
  654. // Skip the gaps.
  655. for (++p; p < cmdbuffer + bufindw && *p == 0; ++ p);
  656. }
  657. }
  658. SERIAL_ECHOLNPGM("End of the buffer.");
  659. }
  660. }
  661. #endif /* CMDBUFFER_DEBUG */
  662. //adds an command to the main command buffer
  663. //thats really done in a non-safe way.
  664. //needs overworking someday
  665. // Currently the maximum length of a command piped through this function is around 20 characters
  666. void enquecommand(const char *cmd, bool from_progmem)
  667. {
  668. int len = from_progmem ? strlen_P(cmd) : strlen(cmd);
  669. // Does cmd fit the queue while leaving sufficient space at the front for the chained commands?
  670. // If it fits, it may move bufindw, so it points to a contiguous buffer, which fits cmd.
  671. if (cmdqueue_could_enqueue_back(len)) {
  672. // This is dangerous if a mixing of serial and this happens
  673. // This may easily be tested: If serial_count > 0, we have a problem.
  674. cmdbuffer[bufindw] = CMDBUFFER_CURRENT_TYPE_UI;
  675. if (from_progmem)
  676. strcpy_P(cmdbuffer + bufindw + 1, cmd);
  677. else
  678. strcpy(cmdbuffer + bufindw + 1, cmd);
  679. if (!farm_mode) {
  680. SERIAL_ECHO_START;
  681. SERIAL_ECHORPGM(MSG_Enqueing);
  682. SERIAL_ECHO(cmdbuffer + bufindw + 1);
  683. SERIAL_ECHOLNPGM("\"");
  684. }
  685. bufindw += len + 2;
  686. if (bufindw == sizeof(cmdbuffer))
  687. bufindw = 0;
  688. ++ buflen;
  689. #ifdef CMDBUFFER_DEBUG
  690. cmdqueue_dump_to_serial();
  691. #endif /* CMDBUFFER_DEBUG */
  692. } else {
  693. SERIAL_ERROR_START;
  694. SERIAL_ECHORPGM(MSG_Enqueing);
  695. if (from_progmem)
  696. SERIAL_PROTOCOLRPGM(cmd);
  697. else
  698. SERIAL_ECHO(cmd);
  699. SERIAL_ECHOLNPGM("\" failed: Buffer full!");
  700. #ifdef CMDBUFFER_DEBUG
  701. cmdqueue_dump_to_serial();
  702. #endif /* CMDBUFFER_DEBUG */
  703. }
  704. }
  705. bool cmd_buffer_empty()
  706. {
  707. return (buflen == 0);
  708. }
  709. void enquecommand_front(const char *cmd, bool from_progmem)
  710. {
  711. int len = from_progmem ? strlen_P(cmd) : strlen(cmd);
  712. // Does cmd fit the queue? This call shall move bufindr, so the command may be copied.
  713. if (cmdqueue_could_enqueue_front(len)) {
  714. cmdbuffer[bufindr] = CMDBUFFER_CURRENT_TYPE_UI;
  715. if (from_progmem)
  716. strcpy_P(cmdbuffer + bufindr + 1, cmd);
  717. else
  718. strcpy(cmdbuffer + bufindr + 1, cmd);
  719. ++ buflen;
  720. if (!farm_mode) {
  721. SERIAL_ECHO_START;
  722. SERIAL_ECHOPGM("Enqueing to the front: \"");
  723. SERIAL_ECHO(cmdbuffer + bufindr + 1);
  724. SERIAL_ECHOLNPGM("\"");
  725. }
  726. #ifdef CMDBUFFER_DEBUG
  727. cmdqueue_dump_to_serial();
  728. #endif /* CMDBUFFER_DEBUG */
  729. } else {
  730. SERIAL_ERROR_START;
  731. SERIAL_ECHOPGM("Enqueing to the front: \"");
  732. if (from_progmem)
  733. SERIAL_PROTOCOLRPGM(cmd);
  734. else
  735. SERIAL_ECHO(cmd);
  736. SERIAL_ECHOLNPGM("\" failed: Buffer full!");
  737. #ifdef CMDBUFFER_DEBUG
  738. cmdqueue_dump_to_serial();
  739. #endif /* CMDBUFFER_DEBUG */
  740. }
  741. }
  742. // Mark the command at the top of the command queue as new.
  743. // Therefore it will not be removed from the queue.
  744. void repeatcommand_front()
  745. {
  746. cmdbuffer_front_already_processed = true;
  747. }
  748. bool is_buffer_empty()
  749. {
  750. if (buflen == 0) return true;
  751. else return false;
  752. }
  753. void setup_killpin()
  754. {
  755. #if defined(KILL_PIN) && KILL_PIN > -1
  756. SET_INPUT(KILL_PIN);
  757. WRITE(KILL_PIN,HIGH);
  758. #endif
  759. }
  760. // Set home pin
  761. void setup_homepin(void)
  762. {
  763. #if defined(HOME_PIN) && HOME_PIN > -1
  764. SET_INPUT(HOME_PIN);
  765. WRITE(HOME_PIN,HIGH);
  766. #endif
  767. }
  768. void setup_photpin()
  769. {
  770. #if defined(PHOTOGRAPH_PIN) && PHOTOGRAPH_PIN > -1
  771. SET_OUTPUT(PHOTOGRAPH_PIN);
  772. WRITE(PHOTOGRAPH_PIN, LOW);
  773. #endif
  774. }
  775. void setup_powerhold()
  776. {
  777. #if defined(SUICIDE_PIN) && SUICIDE_PIN > -1
  778. SET_OUTPUT(SUICIDE_PIN);
  779. WRITE(SUICIDE_PIN, HIGH);
  780. #endif
  781. #if defined(PS_ON_PIN) && PS_ON_PIN > -1
  782. SET_OUTPUT(PS_ON_PIN);
  783. #if defined(PS_DEFAULT_OFF)
  784. WRITE(PS_ON_PIN, PS_ON_ASLEEP);
  785. #else
  786. WRITE(PS_ON_PIN, PS_ON_AWAKE);
  787. #endif
  788. #endif
  789. }
  790. void suicide()
  791. {
  792. #if defined(SUICIDE_PIN) && SUICIDE_PIN > -1
  793. SET_OUTPUT(SUICIDE_PIN);
  794. WRITE(SUICIDE_PIN, LOW);
  795. #endif
  796. }
  797. void servo_init()
  798. {
  799. #if (NUM_SERVOS >= 1) && defined(SERVO0_PIN) && (SERVO0_PIN > -1)
  800. servos[0].attach(SERVO0_PIN);
  801. #endif
  802. #if (NUM_SERVOS >= 2) && defined(SERVO1_PIN) && (SERVO1_PIN > -1)
  803. servos[1].attach(SERVO1_PIN);
  804. #endif
  805. #if (NUM_SERVOS >= 3) && defined(SERVO2_PIN) && (SERVO2_PIN > -1)
  806. servos[2].attach(SERVO2_PIN);
  807. #endif
  808. #if (NUM_SERVOS >= 4) && defined(SERVO3_PIN) && (SERVO3_PIN > -1)
  809. servos[3].attach(SERVO3_PIN);
  810. #endif
  811. #if (NUM_SERVOS >= 5)
  812. #error "TODO: enter initalisation code for more servos"
  813. #endif
  814. }
  815. #ifdef MESH_BED_LEVELING
  816. enum MeshLevelingState { MeshReport, MeshStart, MeshNext, MeshSet };
  817. #endif
  818. // Factory reset function
  819. // This function is used to erase parts or whole EEPROM memory which is used for storing calibration and and so on.
  820. // Level input parameter sets depth of reset
  821. // Quiet parameter masks all waitings for user interact.
  822. int er_progress = 0;
  823. void factory_reset(char level, bool quiet)
  824. {
  825. lcd_implementation_clear();
  826. switch (level) {
  827. // Level 0: Language reset
  828. case 0:
  829. WRITE(BEEPER, HIGH);
  830. _delay_ms(100);
  831. WRITE(BEEPER, LOW);
  832. lcd_force_language_selection();
  833. break;
  834. //Level 1: Reset statistics
  835. case 1:
  836. WRITE(BEEPER, HIGH);
  837. _delay_ms(100);
  838. WRITE(BEEPER, LOW);
  839. eeprom_update_dword((uint32_t *)EEPROM_TOTALTIME, 0);
  840. eeprom_update_dword((uint32_t *)EEPROM_FILAMENTUSED, 0);
  841. lcd_menu_statistics();
  842. break;
  843. // Level 2: Prepare for shipping
  844. case 2:
  845. //lcd_printPGM(PSTR("Factory RESET"));
  846. //lcd_print_at_PGM(1,2,PSTR("Shipping prep"));
  847. // Force language selection at the next boot up.
  848. lcd_force_language_selection();
  849. // Force the "Follow calibration flow" message at the next boot up.
  850. calibration_status_store(CALIBRATION_STATUS_Z_CALIBRATION);
  851. farm_no = 0;
  852. farm_mode = 0;
  853. eeprom_update_byte((uint8_t*)EEPROM_FARM_MODE, farm_mode);
  854. EEPROM_save_B(EEPROM_FARM_NUMBER, &farm_no);
  855. WRITE(BEEPER, HIGH);
  856. _delay_ms(100);
  857. WRITE(BEEPER, LOW);
  858. //_delay_ms(2000);
  859. break;
  860. // Level 3: erase everything, whole EEPROM will be set to 0xFF
  861. case 3:
  862. lcd_printPGM(PSTR("Factory RESET"));
  863. lcd_print_at_PGM(1, 2, PSTR("ERASING all data"));
  864. WRITE(BEEPER, HIGH);
  865. _delay_ms(100);
  866. WRITE(BEEPER, LOW);
  867. er_progress = 0;
  868. lcd_print_at_PGM(3, 3, PSTR(" "));
  869. lcd_implementation_print_at(3, 3, er_progress);
  870. // Erase EEPROM
  871. for (int i = 0; i < 4096; i++) {
  872. eeprom_write_byte((uint8_t*)i, 0xFF);
  873. if (i % 41 == 0) {
  874. er_progress++;
  875. lcd_print_at_PGM(3, 3, PSTR(" "));
  876. lcd_implementation_print_at(3, 3, er_progress);
  877. lcd_printPGM(PSTR("%"));
  878. }
  879. }
  880. break;
  881. case 4:
  882. bowden_menu();
  883. break;
  884. default:
  885. break;
  886. }
  887. }
  888. // "Setup" function is called by the Arduino framework on startup.
  889. // Before startup, the Timers-functions (PWM)/Analog RW and HardwareSerial provided by the Arduino-code
  890. // are initialized by the main() routine provided by the Arduino framework.
  891. void setup()
  892. {
  893. lcd_init();
  894. Sound_Init();
  895. lcd_print_at_PGM(0, 1, PSTR(" Original Prusa "));
  896. lcd_print_at_PGM(0, 2, PSTR(" 3D Printers "));
  897. setup_killpin();
  898. setup_powerhold();
  899. farm_mode = eeprom_read_byte((uint8_t*)EEPROM_FARM_MODE);
  900. EEPROM_read_B(EEPROM_FARM_NUMBER, &farm_no);
  901. if ((farm_mode == 0xFF && farm_no == 0) || ((uint16_t)farm_no == 0xFFFF))
  902. farm_mode = false; //if farm_mode has not been stored to eeprom yet and farm number is set to zero or EEPROM is fresh, deactivate farm mode
  903. if ((uint16_t)farm_no == 0xFFFF) farm_no = 0;
  904. if (farm_mode)
  905. {
  906. prusa_statistics(8);
  907. no_response = true; //we need confirmation by recieving PRUSA thx
  908. important_status = 8;
  909. selectedSerialPort = 1;
  910. } else {
  911. selectedSerialPort = 0;
  912. }
  913. MYSERIAL.begin(BAUDRATE);
  914. SERIAL_PROTOCOLLNPGM("start");
  915. SERIAL_ECHO_START;
  916. #if 0
  917. SERIAL_ECHOLN("Reading eeprom from 0 to 100: start");
  918. for (int i = 0; i < 4096; ++i) {
  919. int b = eeprom_read_byte((unsigned char*)i);
  920. if (b != 255) {
  921. SERIAL_ECHO(i);
  922. SERIAL_ECHO(":");
  923. SERIAL_ECHO(b);
  924. SERIAL_ECHOLN("");
  925. }
  926. }
  927. SERIAL_ECHOLN("Reading eeprom from 0 to 100: done");
  928. #endif
  929. // Check startup - does nothing if bootloader sets MCUSR to 0
  930. byte mcu = MCUSR;
  931. if (mcu & 1) SERIAL_ECHOLNRPGM(MSG_POWERUP);
  932. if (mcu & 2) SERIAL_ECHOLNRPGM(MSG_EXTERNAL_RESET);
  933. if (mcu & 4) SERIAL_ECHOLNRPGM(MSG_BROWNOUT_RESET);
  934. if (mcu & 8) SERIAL_ECHOLNRPGM(MSG_WATCHDOG_RESET);
  935. if (mcu & 32) SERIAL_ECHOLNRPGM(MSG_SOFTWARE_RESET);
  936. MCUSR = 0;
  937. //SERIAL_ECHORPGM(MSG_MARLIN);
  938. //SERIAL_ECHOLNRPGM(VERSION_STRING);
  939. #ifdef STRING_VERSION_CONFIG_H
  940. #ifdef STRING_CONFIG_H_AUTHOR
  941. SERIAL_ECHO_START;
  942. SERIAL_ECHORPGM(MSG_CONFIGURATION_VER);
  943. SERIAL_ECHOPGM(STRING_VERSION_CONFIG_H);
  944. SERIAL_ECHORPGM(MSG_AUTHOR);
  945. SERIAL_ECHOLNPGM(STRING_CONFIG_H_AUTHOR);
  946. SERIAL_ECHOPGM("Compiled: ");
  947. SERIAL_ECHOLNPGM(__DATE__);
  948. #endif
  949. #endif
  950. SERIAL_ECHO_START;
  951. SERIAL_ECHORPGM(MSG_FREE_MEMORY);
  952. SERIAL_ECHO(freeMemory());
  953. SERIAL_ECHORPGM(MSG_PLANNER_BUFFER_BYTES);
  954. SERIAL_ECHOLN((int)sizeof(block_t)*BLOCK_BUFFER_SIZE);
  955. lcd_update_enable(false);
  956. // loads data from EEPROM if available else uses defaults (and resets step acceleration rate)
  957. bool previous_settings_retrieved = Config_RetrieveSettings();
  958. SdFatUtil::set_stack_guard(); //writes magic number at the end of static variables to protect against overwriting static memory by stack
  959. tp_init(); // Initialize temperature loop
  960. plan_init(); // Initialize planner;
  961. watchdog_init();
  962. st_init(); // Initialize stepper, this enables interrupts!
  963. setup_photpin();
  964. servo_init();
  965. // Reset the machine correction matrix.
  966. // It does not make sense to load the correction matrix until the machine is homed.
  967. world2machine_reset();
  968. lcd_init();
  969. KEEPALIVE_STATE(PAUSED_FOR_USER);
  970. if (!READ(BTN_ENC))
  971. {
  972. _delay_ms(1000);
  973. if (!READ(BTN_ENC))
  974. {
  975. lcd_implementation_clear();
  976. lcd_printPGM(PSTR("Factory RESET"));
  977. SET_OUTPUT(BEEPER);
  978. WRITE(BEEPER, HIGH);
  979. while (!READ(BTN_ENC));
  980. WRITE(BEEPER, LOW);
  981. _delay_ms(2000);
  982. char level = reset_menu();
  983. factory_reset(level, false);
  984. switch (level) {
  985. case 0: _delay_ms(0); break;
  986. case 1: _delay_ms(0); break;
  987. case 2: _delay_ms(0); break;
  988. case 3: _delay_ms(0); break;
  989. }
  990. // _delay_ms(100);
  991. /*
  992. #ifdef MESH_BED_LEVELING
  993. _delay_ms(2000);
  994. if (!READ(BTN_ENC))
  995. {
  996. WRITE(BEEPER, HIGH);
  997. _delay_ms(100);
  998. WRITE(BEEPER, LOW);
  999. _delay_ms(200);
  1000. WRITE(BEEPER, HIGH);
  1001. _delay_ms(100);
  1002. WRITE(BEEPER, LOW);
  1003. int _z = 0;
  1004. calibration_status_store(CALIBRATION_STATUS_CALIBRATED);
  1005. EEPROM_save_B(EEPROM_BABYSTEP_X, &_z);
  1006. EEPROM_save_B(EEPROM_BABYSTEP_Y, &_z);
  1007. EEPROM_save_B(EEPROM_BABYSTEP_Z, &_z);
  1008. }
  1009. else
  1010. {
  1011. WRITE(BEEPER, HIGH);
  1012. _delay_ms(100);
  1013. WRITE(BEEPER, LOW);
  1014. }
  1015. #endif // mesh */
  1016. }
  1017. }
  1018. else
  1019. {
  1020. //_delay_ms(1000); // wait 1sec to display the splash screen // what's this and why do we need it?? - andre
  1021. }
  1022. #if defined(CONTROLLERFAN_PIN) && CONTROLLERFAN_PIN > -1
  1023. SET_OUTPUT(CONTROLLERFAN_PIN); //Set pin used for driver cooling fan
  1024. #endif
  1025. #ifdef DIGIPOT_I2C
  1026. digipot_i2c_init();
  1027. #endif
  1028. setup_homepin();
  1029. #if defined(Z_AXIS_ALWAYS_ON)
  1030. enable_z();
  1031. #endif
  1032. // Enable Toshiba FlashAir SD card / WiFi enahanced card.
  1033. card.ToshibaFlashAir_enable(eeprom_read_byte((unsigned char*)EEPROM_TOSHIBA_FLASH_AIR_COMPATIBLITY) == 1);
  1034. // Force SD card update. Otherwise the SD card update is done from loop() on card.checkautostart(false),
  1035. // but this times out if a blocking dialog is shown in setup().
  1036. lcd_print_at_PGM(0, 1, PSTR(" Original Prusa ")); // we need to do this again for some reason, no time to research
  1037. lcd_print_at_PGM(0, 2, PSTR(" 3D Printers "));
  1038. card.initsd();
  1039. if (eeprom_read_dword((uint32_t*)(EEPROM_TOP - 4)) == 0x0ffffffff &&
  1040. eeprom_read_dword((uint32_t*)(EEPROM_TOP - 8)) == 0x0ffffffff &&
  1041. eeprom_read_dword((uint32_t*)(EEPROM_TOP - 12)) == 0x0ffffffff) {
  1042. // Maiden startup. The firmware has been loaded and first started on a virgin RAMBo board,
  1043. // where all the EEPROM entries are set to 0x0ff.
  1044. // Once a firmware boots up, it forces at least a language selection, which changes
  1045. // EEPROM_LANG to number lower than 0x0ff.
  1046. // 1) Set a high power mode.
  1047. eeprom_write_byte((uint8_t*)EEPROM_SILENT, 0);
  1048. eeprom_write_byte((uint8_t*)EEPROM_WIZARD_ACTIVE, 1); //run wizard
  1049. }
  1050. #ifdef SNMM
  1051. if (eeprom_read_dword((uint32_t*)EEPROM_BOWDEN_LENGTH) == 0x0ffffffff) { //bowden length used for SNMM
  1052. int _z = BOWDEN_LENGTH;
  1053. for(int i = 0; i<4; i++) EEPROM_save_B(EEPROM_BOWDEN_LENGTH + i * 2, &_z);
  1054. }
  1055. #endif
  1056. // In the future, somewhere here would one compare the current firmware version against the firmware version stored in the EEPROM.
  1057. // If they differ, an update procedure may need to be performed. At the end of this block, the current firmware version
  1058. // is being written into the EEPROM, so the update procedure will be triggered only once.
  1059. lang_selected = eeprom_read_byte((uint8_t*)EEPROM_LANG);
  1060. if (lang_selected >= LANG_NUM){
  1061. lcd_mylang();
  1062. }
  1063. if (eeprom_read_byte((uint8_t*)EEPROM_TEMP_CAL_ACTIVE) == 255) {
  1064. eeprom_write_byte((uint8_t*)EEPROM_TEMP_CAL_ACTIVE, 0);
  1065. temp_cal_active = false;
  1066. } else temp_cal_active = eeprom_read_byte((uint8_t*)EEPROM_TEMP_CAL_ACTIVE);
  1067. if (eeprom_read_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA) == 255) {
  1068. eeprom_write_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 0);
  1069. }
  1070. if (eeprom_read_byte((uint8_t*)EEPROM_SD_SORT) == 255) {
  1071. eeprom_write_byte((uint8_t*)EEPROM_SD_SORT, 0);
  1072. }
  1073. #ifndef DEBUG_DISABLE_STARTMSGS
  1074. check_babystep(); //checking if Z babystep is in allowed range
  1075. for (int i = 0; i < 4; i++) EEPROM_read_B(EEPROM_BOWDEN_LENGTH + i * 2, &bowden_length[i]);
  1076. if (eeprom_read_byte((uint8_t*)EEPROM_WIZARD_ACTIVE) == 1) {
  1077. lcd_wizard(0);
  1078. }
  1079. else if (eeprom_read_byte((uint8_t*)EEPROM_WIZARD_ACTIVE) == 0) { //dont show calibration status messages if wizard is currently active
  1080. if (calibration_status() == CALIBRATION_STATUS_ASSEMBLED ||
  1081. calibration_status() == CALIBRATION_STATUS_UNKNOWN ||
  1082. calibration_status() == CALIBRATION_STATUS_XYZ_CALIBRATION){
  1083. // Reset the babystepping values, so the printer will not move the Z axis up when the babystepping is enabled.
  1084. eeprom_update_word((uint16_t*)EEPROM_BABYSTEP_Z, 0);
  1085. // Show the message.
  1086. lcd_show_fullscreen_message_and_wait_P(MSG_FOLLOW_CALIBRATION_FLOW);
  1087. }
  1088. else if (calibration_status() == CALIBRATION_STATUS_LIVE_ADJUST) {
  1089. // Show the message.
  1090. lcd_show_fullscreen_message_and_wait_P(MSG_BABYSTEP_Z_NOT_SET);
  1091. lcd_update_enable(true);
  1092. }
  1093. else if (calibration_status() == CALIBRATION_STATUS_CALIBRATED && temp_cal_active == true && calibration_status_pinda() == false) {
  1094. lcd_show_fullscreen_message_and_wait_P(MSG_PINDA_NOT_CALIBRATED);
  1095. lcd_update_enable(true);
  1096. }
  1097. else if (calibration_status() == CALIBRATION_STATUS_Z_CALIBRATION) {
  1098. // Show the message.
  1099. lcd_show_fullscreen_message_and_wait_P(MSG_FOLLOW_CALIBRATION_FLOW);
  1100. }
  1101. //If eeprom version for storing parameters to eeprom using M500 changed, default settings are used. Inform user in this case
  1102. if (!previous_settings_retrieved) {
  1103. lcd_show_fullscreen_message_and_wait_P(MSG_DEFAULT_SETTINGS_LOADED);
  1104. }
  1105. }
  1106. #endif //DEBUG_DISABLE_STARTMSGS
  1107. lcd_update_enable(true);
  1108. // Store the currently running firmware into an eeprom,
  1109. // so the next time the firmware gets updated, it will know from which version it has been updated.
  1110. update_current_firmware_version_to_eeprom();
  1111. KEEPALIVE_STATE(NOT_BUSY);
  1112. }
  1113. void trace();
  1114. #define CHUNK_SIZE 64 // bytes
  1115. #define SAFETY_MARGIN 1
  1116. char chunk[CHUNK_SIZE+SAFETY_MARGIN];
  1117. int chunkHead = 0;
  1118. void serial_read_stream() {
  1119. setTargetHotend(0, 0);
  1120. setTargetBed(0);
  1121. lcd_implementation_clear();
  1122. lcd_printPGM(PSTR(" Upload in progress"));
  1123. // first wait for how many bytes we will receive
  1124. uint32_t bytesToReceive;
  1125. // receive the four bytes
  1126. char bytesToReceiveBuffer[4];
  1127. for (int i=0; i<4; i++) {
  1128. int data;
  1129. while ((data = MYSERIAL.read()) == -1) {};
  1130. bytesToReceiveBuffer[i] = data;
  1131. }
  1132. // make it a uint32
  1133. memcpy(&bytesToReceive, &bytesToReceiveBuffer, 4);
  1134. // we're ready, notify the sender
  1135. MYSERIAL.write('+');
  1136. // lock in the routine
  1137. uint32_t receivedBytes = 0;
  1138. while (prusa_sd_card_upload) {
  1139. int i;
  1140. for (i=0; i<CHUNK_SIZE; i++) {
  1141. int data;
  1142. // check if we're not done
  1143. if (receivedBytes == bytesToReceive) {
  1144. break;
  1145. }
  1146. // read the next byte
  1147. while ((data = MYSERIAL.read()) == -1) {};
  1148. receivedBytes++;
  1149. // save it to the chunk
  1150. chunk[i] = data;
  1151. }
  1152. // write the chunk to SD
  1153. card.write_command_no_newline(&chunk[0]);
  1154. // notify the sender we're ready for more data
  1155. MYSERIAL.write('+');
  1156. // for safety
  1157. manage_heater();
  1158. // check if we're done
  1159. if(receivedBytes == bytesToReceive) {
  1160. trace(); // beep
  1161. card.closefile();
  1162. prusa_sd_card_upload = false;
  1163. SERIAL_PROTOCOLLNRPGM(MSG_FILE_SAVED);
  1164. return;
  1165. }
  1166. }
  1167. }
  1168. #ifdef HOST_KEEPALIVE_FEATURE
  1169. /**
  1170. * Output a "busy" message at regular intervals
  1171. * while the machine is not accepting commands.
  1172. */
  1173. void host_keepalive() {
  1174. if (farm_mode) return;
  1175. long ms = millis();
  1176. if (host_keepalive_interval && busy_state != NOT_BUSY) {
  1177. if ((ms - prev_busy_signal_ms) < (long)(1000L * host_keepalive_interval)) return;
  1178. switch (busy_state) {
  1179. case IN_HANDLER:
  1180. case IN_PROCESS:
  1181. SERIAL_ECHO_START;
  1182. SERIAL_ECHOLNPGM("busy: processing");
  1183. break;
  1184. case PAUSED_FOR_USER:
  1185. SERIAL_ECHO_START;
  1186. SERIAL_ECHOLNPGM("busy: paused for user");
  1187. break;
  1188. case PAUSED_FOR_INPUT:
  1189. SERIAL_ECHO_START;
  1190. SERIAL_ECHOLNPGM("busy: paused for input");
  1191. break;
  1192. default:
  1193. break;
  1194. }
  1195. }
  1196. prev_busy_signal_ms = ms;
  1197. }
  1198. #endif
  1199. // The loop() function is called in an endless loop by the Arduino framework from the default main() routine.
  1200. // Before loop(), the setup() function is called by the main() routine.
  1201. void loop()
  1202. {
  1203. KEEPALIVE_STATE(NOT_BUSY);
  1204. if (usb_printing_counter > 0 && millis()-_usb_timer > 1000)
  1205. {
  1206. is_usb_printing = true;
  1207. usb_printing_counter--;
  1208. _usb_timer = millis();
  1209. }
  1210. if (usb_printing_counter == 0)
  1211. {
  1212. is_usb_printing = false;
  1213. }
  1214. if (prusa_sd_card_upload)
  1215. {
  1216. //we read byte-by byte
  1217. serial_read_stream();
  1218. } else
  1219. {
  1220. get_command();
  1221. #ifdef SDSUPPORT
  1222. card.checkautostart(false);
  1223. #endif
  1224. if(buflen)
  1225. {
  1226. #ifdef SDSUPPORT
  1227. if(card.saving)
  1228. {
  1229. // Saving a G-code file onto an SD-card is in progress.
  1230. // Saving starts with M28, saving until M29 is seen.
  1231. if(strstr_P(CMDBUFFER_CURRENT_STRING, PSTR("M29")) == NULL) {
  1232. card.write_command(CMDBUFFER_CURRENT_STRING);
  1233. if(card.logging)
  1234. process_commands();
  1235. else
  1236. SERIAL_PROTOCOLLNRPGM(MSG_OK);
  1237. } else {
  1238. card.closefile();
  1239. SERIAL_PROTOCOLLNRPGM(MSG_FILE_SAVED);
  1240. }
  1241. } else {
  1242. process_commands();
  1243. }
  1244. #else
  1245. process_commands();
  1246. #endif //SDSUPPORT
  1247. if (! cmdbuffer_front_already_processed)
  1248. cmdqueue_pop_front();
  1249. cmdbuffer_front_already_processed = false;
  1250. host_keepalive();
  1251. }
  1252. }
  1253. //check heater every n milliseconds
  1254. manage_heater();
  1255. isPrintPaused ? manage_inactivity(true) : manage_inactivity(false);
  1256. checkHitEndstops();
  1257. lcd_update();
  1258. }
  1259. void proc_commands() {
  1260. if (buflen)
  1261. {
  1262. process_commands();
  1263. if (!cmdbuffer_front_already_processed)
  1264. cmdqueue_pop_front();
  1265. cmdbuffer_front_already_processed = false;
  1266. }
  1267. }
  1268. void get_command()
  1269. {
  1270. // Test and reserve space for the new command string.
  1271. if (!cmdqueue_could_enqueue_back(MAX_CMD_SIZE - 1))
  1272. return;
  1273. bool rx_buffer_full = false; //flag that serial rx buffer is full
  1274. while (MYSERIAL.available() > 0) {
  1275. if (MYSERIAL.available() == RX_BUFFER_SIZE - 1) { //compare number of chars buffered in rx buffer with rx buffer size
  1276. SERIAL_ECHOLNPGM("Full RX Buffer"); //if buffer was full, there is danger that reading of last gcode will not be completed
  1277. rx_buffer_full = true; //sets flag that buffer was full
  1278. }
  1279. char serial_char = MYSERIAL.read();
  1280. if (selectedSerialPort == 1) {
  1281. selectedSerialPort = 0;
  1282. MYSERIAL.write(serial_char);
  1283. selectedSerialPort = 1;
  1284. }
  1285. TimeSent = millis();
  1286. TimeNow = millis();
  1287. if (serial_char < 0)
  1288. // Ignore extended ASCII characters. These characters have no meaning in the G-code apart from the file names
  1289. // and Marlin does not support such file names anyway.
  1290. // Serial characters with a highest bit set to 1 are generated when the USB cable is unplugged, leading
  1291. // to a hang-up of the print process from an SD card.
  1292. continue;
  1293. if(serial_char == '\n' ||
  1294. serial_char == '\r' ||
  1295. (serial_char == ':' && comment_mode == false) ||
  1296. serial_count >= (MAX_CMD_SIZE - 1) )
  1297. {
  1298. if(!serial_count) { //if empty line
  1299. comment_mode = false; //for new command
  1300. return;
  1301. }
  1302. cmdbuffer[bufindw+serial_count+1] = 0; //terminate string
  1303. if(!comment_mode){
  1304. // Line numbers must be first in buffer
  1305. if ((strstr(cmdbuffer+bufindw+1, "PRUSA") == NULL) &&
  1306. (cmdbuffer[bufindw + 1] == 'N')) {
  1307. // Line number met. When sending a G-code over a serial line, each line may be stamped with its index,
  1308. // and Marlin tests, whether the successive lines are stamped with an increasing line number ID.
  1309. gcode_N = (strtol(cmdbuffer + bufindw + 2, NULL, 10));
  1310. if ((gcode_N != gcode_LastN + 1) &&
  1311. (strstr_P(cmdbuffer+bufindw+1, PSTR("M110")) == NULL))
  1312. {
  1313. // Line numbers not sent in succession.
  1314. SERIAL_ERROR_START;
  1315. SERIAL_ERRORRPGM(MSG_ERR_LINE_NO);
  1316. SERIAL_ERRORLN(gcode_LastN);
  1317. //Serial.println(gcode_N);
  1318. FlushSerialRequestResend();
  1319. serial_count = 0;
  1320. return;
  1321. }
  1322. if((strchr_pointer = strchr(cmdbuffer+bufindw+1, '*')) != NULL)
  1323. {
  1324. byte checksum = 0;
  1325. char *p = cmdbuffer+bufindw+1;
  1326. while (p != strchr_pointer)
  1327. checksum = checksum^(*p++);
  1328. if (int(strtol(strchr_pointer+1, NULL, 10)) != int(checksum)) {
  1329. SERIAL_ERROR_START;
  1330. SERIAL_ERRORRPGM(MSG_ERR_CHECKSUM_MISMATCH);
  1331. SERIAL_ERRORLN(gcode_LastN);
  1332. FlushSerialRequestResend();
  1333. serial_count = 0;
  1334. return;
  1335. }
  1336. // If no errors, remove the checksum and continue parsing.
  1337. *strchr_pointer = 0;
  1338. }
  1339. else
  1340. {
  1341. SERIAL_ERROR_START;
  1342. SERIAL_ERRORRPGM(MSG_ERR_NO_CHECKSUM);
  1343. SERIAL_ERRORLN(gcode_LastN);
  1344. FlushSerialRequestResend();
  1345. serial_count = 0;
  1346. return;
  1347. }
  1348. // Don't parse N again with code_seen('N')
  1349. cmdbuffer[bufindw + 1] = '$';
  1350. //if no errors, continue parsing
  1351. gcode_LastN = gcode_N;
  1352. }
  1353. // if we don't receive 'N' but still see '*'
  1354. if((cmdbuffer[bufindw + 1] != 'N') && (cmdbuffer[bufindw + 1] != '$') &&
  1355. (strchr(cmdbuffer + bufindw + 1, '*') != NULL))
  1356. {
  1357. SERIAL_ERROR_START;
  1358. SERIAL_ERRORRPGM(MSG_ERR_NO_LINENUMBER_WITH_CHECKSUM);
  1359. SERIAL_ERRORLN(gcode_LastN);
  1360. serial_count = 0;
  1361. return;
  1362. }
  1363. if ((strchr_pointer = strchr(cmdbuffer+bufindw+1, 'G')) != NULL) {
  1364. if (! IS_SD_PRINTING) {
  1365. usb_printing_counter = 10;
  1366. is_usb_printing = true;
  1367. }
  1368. if (Stopped == true) {
  1369. int gcode = strtol(strchr_pointer+1, NULL, 10);
  1370. if (gcode >= 0 && gcode <= 3) {
  1371. SERIAL_ERRORLNRPGM(MSG_ERR_STOPPED);
  1372. LCD_MESSAGERPGM(MSG_STOPPED);
  1373. }
  1374. }
  1375. } // end of 'G' command
  1376. //If command was e-stop process now
  1377. if(strcmp(cmdbuffer+bufindw+1, "M112") == 0)
  1378. kill();
  1379. // Store the current line into buffer, move to the next line.
  1380. cmdbuffer[bufindw] = CMDBUFFER_CURRENT_TYPE_USB;
  1381. #ifdef CMDBUFFER_DEBUG
  1382. SERIAL_ECHO_START;
  1383. SERIAL_ECHOPGM("Storing a command line to buffer: ");
  1384. SERIAL_ECHO(cmdbuffer+bufindw+1);
  1385. SERIAL_ECHOLNPGM("");
  1386. #endif /* CMDBUFFER_DEBUG */
  1387. bufindw += strlen(cmdbuffer+bufindw+1) + 2;
  1388. if (bufindw == sizeof(cmdbuffer))
  1389. bufindw = 0;
  1390. ++ buflen;
  1391. #ifdef CMDBUFFER_DEBUG
  1392. SERIAL_ECHOPGM("Number of commands in the buffer: ");
  1393. SERIAL_ECHO(buflen);
  1394. SERIAL_ECHOLNPGM("");
  1395. #endif /* CMDBUFFER_DEBUG */
  1396. } // end of 'not comment mode'
  1397. serial_count = 0; //clear buffer
  1398. // Don't call cmdqueue_could_enqueue_back if there are no characters waiting
  1399. // in the queue, as this function will reserve the memory.
  1400. if (MYSERIAL.available() == 0 || ! cmdqueue_could_enqueue_back(MAX_CMD_SIZE-1))
  1401. return;
  1402. } // end of "end of line" processing
  1403. else {
  1404. // Not an "end of line" symbol. Store the new character into a buffer.
  1405. if(serial_char == ';') comment_mode = true;
  1406. if(!comment_mode) cmdbuffer[bufindw+1+serial_count++] = serial_char;
  1407. }
  1408. } // end of serial line processing loop
  1409. if(farm_mode){
  1410. TimeNow = millis();
  1411. if ( ((TimeNow - TimeSent) > 800) && (serial_count > 0) ) {
  1412. cmdbuffer[bufindw+serial_count+1] = 0;
  1413. bufindw += strlen(cmdbuffer+bufindw+1) + 2;
  1414. if (bufindw == sizeof(cmdbuffer))
  1415. bufindw = 0;
  1416. ++ buflen;
  1417. serial_count = 0;
  1418. SERIAL_ECHOPGM("TIMEOUT:");
  1419. //memset(cmdbuffer, 0 , sizeof(cmdbuffer));
  1420. return;
  1421. }
  1422. }
  1423. //add comment
  1424. if (rx_buffer_full == true && serial_count > 0) { //if rx buffer was full and string was not properly terminated
  1425. rx_buffer_full = false;
  1426. bufindw = bufindw - serial_count; //adjust tail of the buffer to prepare buffer for writing new command
  1427. serial_count = 0;
  1428. }
  1429. #ifdef SDSUPPORT
  1430. if(!card.sdprinting || serial_count!=0){
  1431. // If there is a half filled buffer from serial line, wait until return before
  1432. // continuing with the serial line.
  1433. return;
  1434. }
  1435. //'#' stops reading from SD to the buffer prematurely, so procedural macro calls are possible
  1436. // if it occurs, stop_buffering is triggered and the buffer is ran dry.
  1437. // this character _can_ occur in serial com, due to checksums. however, no checksums are used in SD printing
  1438. static bool stop_buffering=false;
  1439. if(buflen==0) stop_buffering=false;
  1440. // Reads whole lines from the SD card. Never leaves a half-filled line in the cmdbuffer.
  1441. while( !card.eof() && !stop_buffering) {
  1442. int16_t n=card.get();
  1443. char serial_char = (char)n;
  1444. if(serial_char == '\n' ||
  1445. serial_char == '\r' ||
  1446. (serial_char == '#' && comment_mode == false) ||
  1447. (serial_char == ':' && comment_mode == false) ||
  1448. serial_count >= (MAX_CMD_SIZE - 1)||n==-1)
  1449. {
  1450. if(card.eof()){
  1451. SERIAL_PROTOCOLLNRPGM(MSG_FILE_PRINTED);
  1452. stoptime=millis();
  1453. char time[30];
  1454. unsigned long t=(stoptime-starttime-pause_time)/1000;
  1455. pause_time = 0;
  1456. int hours, minutes;
  1457. minutes=(t/60)%60;
  1458. hours=t/60/60;
  1459. save_statistics(total_filament_used, t);
  1460. sprintf_P(time, PSTR("%i hours %i minutes"),hours, minutes);
  1461. SERIAL_ECHO_START;
  1462. SERIAL_ECHOLN(time);
  1463. lcd_setstatus(time);
  1464. card.printingHasFinished();
  1465. card.checkautostart(true);
  1466. if (farm_mode)
  1467. {
  1468. prusa_statistics(6);
  1469. lcd_commands_type = LCD_COMMAND_FARM_MODE_CONFIRM;
  1470. }
  1471. }
  1472. if(serial_char=='#')
  1473. stop_buffering=true;
  1474. if(!serial_count)
  1475. {
  1476. comment_mode = false; //for new command
  1477. return; //if empty line
  1478. }
  1479. cmdbuffer[bufindw+serial_count+1] = 0; //terminate string
  1480. cmdbuffer[bufindw] = CMDBUFFER_CURRENT_TYPE_SDCARD;
  1481. ++ buflen;
  1482. bufindw += strlen(cmdbuffer+bufindw+1) + 2;
  1483. if (bufindw == sizeof(cmdbuffer))
  1484. bufindw = 0;
  1485. comment_mode = false; //for new command
  1486. serial_count = 0; //clear buffer
  1487. // The following line will reserve buffer space if available.
  1488. if (! cmdqueue_could_enqueue_back(MAX_CMD_SIZE-1))
  1489. return;
  1490. }
  1491. else
  1492. {
  1493. if(serial_char == ';') comment_mode = true;
  1494. if(!comment_mode) cmdbuffer[bufindw+1+serial_count++] = serial_char;
  1495. }
  1496. }
  1497. #endif //SDSUPPORT
  1498. }
  1499. // Return True if a character was found
  1500. static inline bool code_seen(char code) { return (strchr_pointer = strchr(CMDBUFFER_CURRENT_STRING, code)) != NULL; }
  1501. static inline bool code_seen(const char *code) { return (strchr_pointer = strstr(CMDBUFFER_CURRENT_STRING, code)) != NULL; }
  1502. static inline float code_value() { return strtod(strchr_pointer+1, NULL);}
  1503. static inline long code_value_long() { return strtol(strchr_pointer+1, NULL, 10); }
  1504. static inline int16_t code_value_short() { return int16_t(strtol(strchr_pointer+1, NULL, 10)); };
  1505. static inline uint8_t code_value_uint8() { return uint8_t(strtol(strchr_pointer+1, NULL, 10)); };
  1506. static inline float code_value_float() {
  1507. char* e = strchr(strchr_pointer, 'E');
  1508. if (!e) return strtod(strchr_pointer + 1, NULL);
  1509. *e = 0;
  1510. float ret = strtod(strchr_pointer + 1, NULL);
  1511. *e = 'E';
  1512. return ret;
  1513. }
  1514. #define DEFINE_PGM_READ_ANY(type, reader) \
  1515. static inline type pgm_read_any(const type *p) \
  1516. { return pgm_read_##reader##_near(p); }
  1517. DEFINE_PGM_READ_ANY(float, float);
  1518. DEFINE_PGM_READ_ANY(signed char, byte);
  1519. #define XYZ_CONSTS_FROM_CONFIG(type, array, CONFIG) \
  1520. static const PROGMEM type array##_P[3] = \
  1521. { X_##CONFIG, Y_##CONFIG, Z_##CONFIG }; \
  1522. static inline type array(int axis) \
  1523. { return pgm_read_any(&array##_P[axis]); } \
  1524. type array##_ext(int axis) \
  1525. { return pgm_read_any(&array##_P[axis]); }
  1526. XYZ_CONSTS_FROM_CONFIG(float, base_min_pos, MIN_POS);
  1527. XYZ_CONSTS_FROM_CONFIG(float, base_max_pos, MAX_POS);
  1528. XYZ_CONSTS_FROM_CONFIG(float, base_home_pos, HOME_POS);
  1529. XYZ_CONSTS_FROM_CONFIG(float, max_length, MAX_LENGTH);
  1530. XYZ_CONSTS_FROM_CONFIG(float, home_retract_mm, HOME_RETRACT_MM);
  1531. XYZ_CONSTS_FROM_CONFIG(signed char, home_dir, HOME_DIR);
  1532. static void axis_is_at_home(int axis) {
  1533. current_position[axis] = base_home_pos(axis) + add_homing[axis];
  1534. min_pos[axis] = base_min_pos(axis) + add_homing[axis];
  1535. max_pos[axis] = base_max_pos(axis) + add_homing[axis];
  1536. }
  1537. inline void set_current_to_destination() { memcpy(current_position, destination, sizeof(current_position)); }
  1538. inline void set_destination_to_current() { memcpy(destination, current_position, sizeof(destination)); }
  1539. static void setup_for_endstop_move(bool enable_endstops_now = true) {
  1540. saved_feedrate = feedrate;
  1541. saved_feedmultiply = feedmultiply;
  1542. feedmultiply = 100;
  1543. previous_millis_cmd = millis();
  1544. enable_endstops(enable_endstops_now);
  1545. }
  1546. static void clean_up_after_endstop_move() {
  1547. #ifdef ENDSTOPS_ONLY_FOR_HOMING
  1548. enable_endstops(false);
  1549. #endif
  1550. feedrate = saved_feedrate;
  1551. feedmultiply = saved_feedmultiply;
  1552. previous_millis_cmd = millis();
  1553. }
  1554. #ifdef ENABLE_AUTO_BED_LEVELING
  1555. #ifdef AUTO_BED_LEVELING_GRID
  1556. static void set_bed_level_equation_lsq(double *plane_equation_coefficients)
  1557. {
  1558. vector_3 planeNormal = vector_3(-plane_equation_coefficients[0], -plane_equation_coefficients[1], 1);
  1559. planeNormal.debug("planeNormal");
  1560. plan_bed_level_matrix = matrix_3x3::create_look_at(planeNormal);
  1561. //bedLevel.debug("bedLevel");
  1562. //plan_bed_level_matrix.debug("bed level before");
  1563. //vector_3 uncorrected_position = plan_get_position_mm();
  1564. //uncorrected_position.debug("position before");
  1565. vector_3 corrected_position = plan_get_position();
  1566. // corrected_position.debug("position after");
  1567. current_position[X_AXIS] = corrected_position.x;
  1568. current_position[Y_AXIS] = corrected_position.y;
  1569. current_position[Z_AXIS] = corrected_position.z;
  1570. // put the bed at 0 so we don't go below it.
  1571. current_position[Z_AXIS] = zprobe_zoffset; // in the lsq we reach here after raising the extruder due to the loop structure
  1572. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1573. }
  1574. #else // not AUTO_BED_LEVELING_GRID
  1575. static void set_bed_level_equation_3pts(float z_at_pt_1, float z_at_pt_2, float z_at_pt_3) {
  1576. plan_bed_level_matrix.set_to_identity();
  1577. vector_3 pt1 = vector_3(ABL_PROBE_PT_1_X, ABL_PROBE_PT_1_Y, z_at_pt_1);
  1578. vector_3 pt2 = vector_3(ABL_PROBE_PT_2_X, ABL_PROBE_PT_2_Y, z_at_pt_2);
  1579. vector_3 pt3 = vector_3(ABL_PROBE_PT_3_X, ABL_PROBE_PT_3_Y, z_at_pt_3);
  1580. vector_3 from_2_to_1 = (pt1 - pt2).get_normal();
  1581. vector_3 from_2_to_3 = (pt3 - pt2).get_normal();
  1582. vector_3 planeNormal = vector_3::cross(from_2_to_1, from_2_to_3).get_normal();
  1583. planeNormal = vector_3(planeNormal.x, planeNormal.y, abs(planeNormal.z));
  1584. plan_bed_level_matrix = matrix_3x3::create_look_at(planeNormal);
  1585. vector_3 corrected_position = plan_get_position();
  1586. current_position[X_AXIS] = corrected_position.x;
  1587. current_position[Y_AXIS] = corrected_position.y;
  1588. current_position[Z_AXIS] = corrected_position.z;
  1589. // put the bed at 0 so we don't go below it.
  1590. current_position[Z_AXIS] = zprobe_zoffset;
  1591. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1592. }
  1593. #endif // AUTO_BED_LEVELING_GRID
  1594. static void run_z_probe() {
  1595. plan_bed_level_matrix.set_to_identity();
  1596. feedrate = homing_feedrate[Z_AXIS];
  1597. // move down until you find the bed
  1598. float zPosition = -10;
  1599. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder);
  1600. st_synchronize();
  1601. // we have to let the planner know where we are right now as it is not where we said to go.
  1602. zPosition = st_get_position_mm(Z_AXIS);
  1603. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS]);
  1604. // move up the retract distance
  1605. zPosition += home_retract_mm(Z_AXIS);
  1606. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder);
  1607. st_synchronize();
  1608. // move back down slowly to find bed
  1609. feedrate = homing_feedrate[Z_AXIS]/4;
  1610. zPosition -= home_retract_mm(Z_AXIS) * 2;
  1611. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder);
  1612. st_synchronize();
  1613. current_position[Z_AXIS] = st_get_position_mm(Z_AXIS);
  1614. // make sure the planner knows where we are as it may be a bit different than we last said to move to
  1615. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1616. }
  1617. static void do_blocking_move_to(float x, float y, float z) {
  1618. float oldFeedRate = feedrate;
  1619. feedrate = homing_feedrate[Z_AXIS];
  1620. current_position[Z_AXIS] = z;
  1621. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], feedrate/60, active_extruder);
  1622. st_synchronize();
  1623. feedrate = XY_TRAVEL_SPEED;
  1624. current_position[X_AXIS] = x;
  1625. current_position[Y_AXIS] = y;
  1626. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], feedrate/60, active_extruder);
  1627. st_synchronize();
  1628. feedrate = oldFeedRate;
  1629. }
  1630. static void do_blocking_move_relative(float offset_x, float offset_y, float offset_z) {
  1631. do_blocking_move_to(current_position[X_AXIS] + offset_x, current_position[Y_AXIS] + offset_y, current_position[Z_AXIS] + offset_z);
  1632. }
  1633. /// Probe bed height at position (x,y), returns the measured z value
  1634. static float probe_pt(float x, float y, float z_before) {
  1635. // move to right place
  1636. do_blocking_move_to(current_position[X_AXIS], current_position[Y_AXIS], z_before);
  1637. do_blocking_move_to(x - X_PROBE_OFFSET_FROM_EXTRUDER, y - Y_PROBE_OFFSET_FROM_EXTRUDER, current_position[Z_AXIS]);
  1638. run_z_probe();
  1639. float measured_z = current_position[Z_AXIS];
  1640. SERIAL_PROTOCOLRPGM(MSG_BED);
  1641. SERIAL_PROTOCOLPGM(" x: ");
  1642. SERIAL_PROTOCOL(x);
  1643. SERIAL_PROTOCOLPGM(" y: ");
  1644. SERIAL_PROTOCOL(y);
  1645. SERIAL_PROTOCOLPGM(" z: ");
  1646. SERIAL_PROTOCOL(measured_z);
  1647. SERIAL_PROTOCOLPGM("\n");
  1648. return measured_z;
  1649. }
  1650. #endif // #ifdef ENABLE_AUTO_BED_LEVELING
  1651. #ifdef LIN_ADVANCE
  1652. /**
  1653. * M900: Set and/or Get advance K factor and WH/D ratio
  1654. *
  1655. * K<factor> Set advance K factor
  1656. * R<ratio> Set ratio directly (overrides WH/D)
  1657. * W<width> H<height> D<diam> Set ratio from WH/D
  1658. */
  1659. inline void gcode_M900() {
  1660. st_synchronize();
  1661. const float newK = code_seen('K') ? code_value_float() : -1;
  1662. if (newK >= 0) extruder_advance_k = newK;
  1663. float newR = code_seen('R') ? code_value_float() : -1;
  1664. if (newR < 0) {
  1665. const float newD = code_seen('D') ? code_value_float() : -1,
  1666. newW = code_seen('W') ? code_value_float() : -1,
  1667. newH = code_seen('H') ? code_value_float() : -1;
  1668. if (newD >= 0 && newW >= 0 && newH >= 0)
  1669. newR = newD ? (newW * newH) / (sq(newD * 0.5) * M_PI) : 0;
  1670. }
  1671. if (newR >= 0) advance_ed_ratio = newR;
  1672. SERIAL_ECHO_START;
  1673. SERIAL_ECHOPGM("Advance K=");
  1674. SERIAL_ECHOLN(extruder_advance_k);
  1675. SERIAL_ECHOPGM(" E/D=");
  1676. const float ratio = advance_ed_ratio;
  1677. if (ratio) SERIAL_ECHOLN(ratio); else SERIAL_ECHOLNPGM("Auto");
  1678. }
  1679. #endif // LIN_ADVANCE
  1680. bool check_commands() {
  1681. bool end_command_found = false;
  1682. while (buflen)
  1683. {
  1684. if ((code_seen("M84")) || (code_seen("M 84"))) end_command_found = true;
  1685. if (!cmdbuffer_front_already_processed)
  1686. cmdqueue_pop_front();
  1687. cmdbuffer_front_already_processed = false;
  1688. }
  1689. return end_command_found;
  1690. }
  1691. void homeaxis(int axis) {
  1692. #define HOMEAXIS_DO(LETTER) \
  1693. ((LETTER##_MIN_PIN > -1 && LETTER##_HOME_DIR==-1) || (LETTER##_MAX_PIN > -1 && LETTER##_HOME_DIR==1))
  1694. if (axis==X_AXIS ? HOMEAXIS_DO(X) :
  1695. axis==Y_AXIS ? HOMEAXIS_DO(Y) :
  1696. axis==Z_AXIS ? HOMEAXIS_DO(Z) :
  1697. 0) {
  1698. int axis_home_dir = home_dir(axis);
  1699. current_position[axis] = 0;
  1700. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1701. destination[axis] = 1.5 * max_length(axis) * axis_home_dir;
  1702. feedrate = homing_feedrate[axis];
  1703. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1704. st_synchronize();
  1705. current_position[axis] = 0;
  1706. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1707. destination[axis] = -home_retract_mm(axis) * axis_home_dir;
  1708. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1709. st_synchronize();
  1710. destination[axis] = 2*home_retract_mm(axis) * axis_home_dir;
  1711. feedrate = homing_feedrate[axis]/2 ;
  1712. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1713. st_synchronize();
  1714. axis_is_at_home(axis);
  1715. destination[axis] = current_position[axis];
  1716. feedrate = 0.0;
  1717. endstops_hit_on_purpose();
  1718. axis_known_position[axis] = true;
  1719. }
  1720. }
  1721. void home_xy()
  1722. {
  1723. set_destination_to_current();
  1724. homeaxis(X_AXIS);
  1725. homeaxis(Y_AXIS);
  1726. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1727. endstops_hit_on_purpose();
  1728. }
  1729. void refresh_cmd_timeout(void)
  1730. {
  1731. previous_millis_cmd = millis();
  1732. }
  1733. #ifdef FWRETRACT
  1734. void retract(bool retracting, bool swapretract = false) {
  1735. if(retracting && !retracted[active_extruder]) {
  1736. destination[X_AXIS]=current_position[X_AXIS];
  1737. destination[Y_AXIS]=current_position[Y_AXIS];
  1738. destination[Z_AXIS]=current_position[Z_AXIS];
  1739. destination[E_AXIS]=current_position[E_AXIS];
  1740. if (swapretract) {
  1741. current_position[E_AXIS]+=retract_length_swap/volumetric_multiplier[active_extruder];
  1742. } else {
  1743. current_position[E_AXIS]+=retract_length/volumetric_multiplier[active_extruder];
  1744. }
  1745. plan_set_e_position(current_position[E_AXIS]);
  1746. float oldFeedrate = feedrate;
  1747. feedrate=retract_feedrate*60;
  1748. retracted[active_extruder]=true;
  1749. prepare_move();
  1750. current_position[Z_AXIS]-=retract_zlift;
  1751. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1752. prepare_move();
  1753. feedrate = oldFeedrate;
  1754. } else if(!retracting && retracted[active_extruder]) {
  1755. destination[X_AXIS]=current_position[X_AXIS];
  1756. destination[Y_AXIS]=current_position[Y_AXIS];
  1757. destination[Z_AXIS]=current_position[Z_AXIS];
  1758. destination[E_AXIS]=current_position[E_AXIS];
  1759. current_position[Z_AXIS]+=retract_zlift;
  1760. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1761. //prepare_move();
  1762. if (swapretract) {
  1763. current_position[E_AXIS]-=(retract_length_swap+retract_recover_length_swap)/volumetric_multiplier[active_extruder];
  1764. } else {
  1765. current_position[E_AXIS]-=(retract_length+retract_recover_length)/volumetric_multiplier[active_extruder];
  1766. }
  1767. plan_set_e_position(current_position[E_AXIS]);
  1768. float oldFeedrate = feedrate;
  1769. feedrate=retract_recover_feedrate*60;
  1770. retracted[active_extruder]=false;
  1771. prepare_move();
  1772. feedrate = oldFeedrate;
  1773. }
  1774. } //retract
  1775. #endif //FWRETRACT
  1776. void trace() {
  1777. tone(BEEPER, 440);
  1778. delay(25);
  1779. noTone(BEEPER);
  1780. delay(20);
  1781. }
  1782. /*
  1783. void ramming() {
  1784. // float tmp[4] = DEFAULT_MAX_FEEDRATE;
  1785. if (current_temperature[0] < 230) {
  1786. //PLA
  1787. max_feedrate[E_AXIS] = 50;
  1788. //current_position[E_AXIS] -= 8;
  1789. //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2100 / 60, active_extruder);
  1790. //current_position[E_AXIS] += 8;
  1791. //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2100 / 60, active_extruder);
  1792. current_position[E_AXIS] += 5.4;
  1793. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2800 / 60, active_extruder);
  1794. current_position[E_AXIS] += 3.2;
  1795. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  1796. current_position[E_AXIS] += 3;
  1797. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3400 / 60, active_extruder);
  1798. st_synchronize();
  1799. max_feedrate[E_AXIS] = 80;
  1800. current_position[E_AXIS] -= 82;
  1801. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 9500 / 60, active_extruder);
  1802. max_feedrate[E_AXIS] = 50;//tmp[E_AXIS];
  1803. current_position[E_AXIS] -= 20;
  1804. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 1200 / 60, active_extruder);
  1805. current_position[E_AXIS] += 5;
  1806. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400 / 60, active_extruder);
  1807. current_position[E_AXIS] += 5;
  1808. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  1809. current_position[E_AXIS] -= 10;
  1810. st_synchronize();
  1811. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  1812. current_position[E_AXIS] += 10;
  1813. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  1814. current_position[E_AXIS] -= 10;
  1815. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 800 / 60, active_extruder);
  1816. current_position[E_AXIS] += 10;
  1817. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 800 / 60, active_extruder);
  1818. current_position[E_AXIS] -= 10;
  1819. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 800 / 60, active_extruder);
  1820. st_synchronize();
  1821. }
  1822. else {
  1823. //ABS
  1824. max_feedrate[E_AXIS] = 50;
  1825. //current_position[E_AXIS] -= 8;
  1826. //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2100 / 60, active_extruder);
  1827. //current_position[E_AXIS] += 8;
  1828. //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2100 / 60, active_extruder);
  1829. current_position[E_AXIS] += 3.1;
  1830. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2000 / 60, active_extruder);
  1831. current_position[E_AXIS] += 3.1;
  1832. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2500 / 60, active_extruder);
  1833. current_position[E_AXIS] += 4;
  1834. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  1835. st_synchronize();
  1836. //current_position[X_AXIS] += 23; //delay
  1837. //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600/60, active_extruder); //delay
  1838. //current_position[X_AXIS] -= 23; //delay
  1839. //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600/60, active_extruder); //delay
  1840. delay(4700);
  1841. max_feedrate[E_AXIS] = 80;
  1842. current_position[E_AXIS] -= 92;
  1843. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 9900 / 60, active_extruder);
  1844. max_feedrate[E_AXIS] = 50;//tmp[E_AXIS];
  1845. current_position[E_AXIS] -= 5;
  1846. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 800 / 60, active_extruder);
  1847. current_position[E_AXIS] += 5;
  1848. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400 / 60, active_extruder);
  1849. current_position[E_AXIS] -= 5;
  1850. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  1851. st_synchronize();
  1852. current_position[E_AXIS] += 5;
  1853. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  1854. current_position[E_AXIS] -= 5;
  1855. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  1856. current_position[E_AXIS] += 5;
  1857. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  1858. current_position[E_AXIS] -= 5;
  1859. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  1860. st_synchronize();
  1861. }
  1862. }
  1863. */
  1864. void gcode_M701() {
  1865. #ifdef SNMM
  1866. extr_adj(snmm_extruder);//loads current extruder
  1867. #else
  1868. enable_z();
  1869. custom_message = true;
  1870. custom_message_type = 2;
  1871. lcd_setstatuspgm(MSG_LOADING_FILAMENT);
  1872. current_position[E_AXIS] += 70;
  1873. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400 / 60, active_extruder); //fast sequence
  1874. current_position[E_AXIS] += 25;
  1875. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 100 / 60, active_extruder); //slow sequence
  1876. st_synchronize();
  1877. if (!farm_mode && loading_flag) {
  1878. bool clean = lcd_show_fullscreen_message_yes_no_and_wait_P(MSG_FILAMENT_CLEAN, false, true);
  1879. while (!clean) {
  1880. lcd_update_enable(true);
  1881. lcd_update(2);
  1882. current_position[E_AXIS] += 25;
  1883. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 100 / 60, active_extruder); //slow sequence
  1884. st_synchronize();
  1885. clean = lcd_show_fullscreen_message_yes_no_and_wait_P(MSG_FILAMENT_CLEAN, false, true);
  1886. }
  1887. }
  1888. lcd_update_enable(true);
  1889. lcd_update(2);
  1890. lcd_setstatuspgm(WELCOME_MSG);
  1891. disable_z();
  1892. loading_flag = false;
  1893. custom_message = false;
  1894. custom_message_type = 0;
  1895. #endif
  1896. }
  1897. bool gcode_M45(bool onlyZ) {
  1898. bool final_result = false;
  1899. if (!onlyZ) {
  1900. setTargetBed(0);
  1901. setTargetHotend(0, 0);
  1902. setTargetHotend(0, 1);
  1903. setTargetHotend(0, 2);
  1904. adjust_bed_reset(); //reset bed level correction
  1905. }
  1906. // Disable the default update procedure of the display. We will do a modal dialog.
  1907. lcd_update_enable(false);
  1908. // Let the planner use the uncorrected coordinates.
  1909. mbl.reset();
  1910. // Reset world2machine_rotation_and_skew and world2machine_shift, therefore
  1911. // the planner will not perform any adjustments in the XY plane.
  1912. // Wait for the motors to stop and update the current position with the absolute values.
  1913. world2machine_revert_to_uncorrected();
  1914. // Reset the baby step value applied without moving the axes.
  1915. babystep_reset();
  1916. // Mark all axes as in a need for homing.
  1917. memset(axis_known_position, 0, sizeof(axis_known_position));
  1918. // Let the user move the Z axes up to the end stoppers.
  1919. KEEPALIVE_STATE(PAUSED_FOR_USER);
  1920. if (lcd_calibrate_z_end_stop_manual(onlyZ)) {
  1921. KEEPALIVE_STATE(IN_HANDLER);
  1922. refresh_cmd_timeout();
  1923. if (((degHotend(0) > MAX_HOTEND_TEMP_CALIBRATION) || (degBed() > MAX_BED_TEMP_CALIBRATION)) && (!onlyZ)) {
  1924. lcd_wait_for_cool_down();
  1925. lcd_show_fullscreen_message_and_wait_P(MSG_PAPER);
  1926. lcd_display_message_fullscreen_P(MSG_FIND_BED_OFFSET_AND_SKEW_LINE1);
  1927. lcd_implementation_print_at(0, 3, 1);
  1928. lcd_printPGM(MSG_FIND_BED_OFFSET_AND_SKEW_LINE2);
  1929. }
  1930. // Move the print head close to the bed.
  1931. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  1932. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[Z_AXIS] / 40, active_extruder);
  1933. st_synchronize();
  1934. // Home in the XY plane.
  1935. set_destination_to_current();
  1936. setup_for_endstop_move();
  1937. home_xy();
  1938. int8_t verbosity_level = 0;
  1939. if (code_seen('V')) {
  1940. // Just 'V' without a number counts as V1.
  1941. char c = strchr_pointer[1];
  1942. verbosity_level = (c == ' ' || c == '\t' || c == 0) ? 1 : code_value_short();
  1943. }
  1944. if (onlyZ) {
  1945. clean_up_after_endstop_move();
  1946. // Z only calibration.
  1947. // Load the machine correction matrix
  1948. world2machine_initialize();
  1949. // and correct the current_position to match the transformed coordinate system.
  1950. world2machine_update_current();
  1951. //FIXME
  1952. bool result = sample_mesh_and_store_reference();
  1953. if (result) {
  1954. if (calibration_status() == CALIBRATION_STATUS_Z_CALIBRATION)
  1955. // Shipped, the nozzle height has been set already. The user can start printing now.
  1956. calibration_status_store(CALIBRATION_STATUS_CALIBRATED);
  1957. // babystep_apply();
  1958. final_result = true;
  1959. }
  1960. }
  1961. else {
  1962. //if wizard is active and selftest was succefully completed, we dont want to loose information about it
  1963. if (calibration_status() != 250 || eeprom_read_byte((uint8_t*)EEPROM_WIZARD_ACTIVE) == 0) {
  1964. calibration_status_store(CALIBRATION_STATUS_ASSEMBLED);
  1965. }
  1966. // Reset the baby step value and the baby step applied flag.
  1967. eeprom_update_word((uint16_t*)EEPROM_BABYSTEP_Z, 0);
  1968. // Complete XYZ calibration.
  1969. uint8_t point_too_far_mask = 0;
  1970. BedSkewOffsetDetectionResultType result = find_bed_offset_and_skew(verbosity_level, point_too_far_mask);
  1971. clean_up_after_endstop_move();
  1972. // Print head up.
  1973. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  1974. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[Z_AXIS] / 40, active_extruder);
  1975. st_synchronize();
  1976. if (result >= 0) {
  1977. point_too_far_mask = 0;
  1978. // Second half: The fine adjustment.
  1979. // Let the planner use the uncorrected coordinates.
  1980. mbl.reset();
  1981. world2machine_reset();
  1982. // Home in the XY plane.
  1983. setup_for_endstop_move();
  1984. home_xy();
  1985. result = improve_bed_offset_and_skew(1, verbosity_level, point_too_far_mask);
  1986. clean_up_after_endstop_move();
  1987. // Print head up.
  1988. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  1989. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[Z_AXIS] / 40, active_extruder);
  1990. st_synchronize();
  1991. // if (result >= 0) babystep_apply();
  1992. }
  1993. lcd_bed_calibration_show_result(result, point_too_far_mask);
  1994. if (result >= 0) {
  1995. // Calibration valid, the machine should be able to print. Advise the user to run the V2Calibration.gcode.
  1996. calibration_status_store(CALIBRATION_STATUS_LIVE_ADJUST);
  1997. if(eeprom_read_byte((uint8_t*)EEPROM_WIZARD_ACTIVE) != 1) lcd_show_fullscreen_message_and_wait_P(MSG_BABYSTEP_Z_NOT_SET);
  1998. final_result = true;
  1999. }
  2000. }
  2001. }
  2002. else {
  2003. // Timeouted.
  2004. KEEPALIVE_STATE(IN_HANDLER);
  2005. }
  2006. lcd_update_enable(true);
  2007. return final_result;
  2008. }
  2009. void process_commands()
  2010. {
  2011. #ifdef FILAMENT_RUNOUT_SUPPORT
  2012. SET_INPUT(FR_SENS);
  2013. #endif
  2014. #ifdef CMDBUFFER_DEBUG
  2015. SERIAL_ECHOPGM("Processing a GCODE command: ");
  2016. SERIAL_ECHO(cmdbuffer+bufindr+1);
  2017. SERIAL_ECHOLNPGM("");
  2018. SERIAL_ECHOPGM("In cmdqueue: ");
  2019. SERIAL_ECHO(buflen);
  2020. SERIAL_ECHOLNPGM("");
  2021. #endif /* CMDBUFFER_DEBUG */
  2022. unsigned long codenum; //throw away variable
  2023. char *starpos = NULL;
  2024. #ifdef ENABLE_AUTO_BED_LEVELING
  2025. float x_tmp, y_tmp, z_tmp, real_z;
  2026. #endif
  2027. // PRUSA GCODES
  2028. KEEPALIVE_STATE(IN_HANDLER);
  2029. if (code_seen("M117")) { //moved to highest priority place to be able to to print strings which includes "G", "PRUSA" and "^"
  2030. custom_message = true; //fixes using M117 during SD print, but needs to be be updated in future
  2031. custom_message_type = 2; //fixes using M117 during SD print, but needs to be be updated in future
  2032. starpos = (strchr(strchr_pointer + 5, '*'));
  2033. if (starpos != NULL)
  2034. *(starpos) = '\0';
  2035. lcd_setstatus(strchr_pointer + 5);
  2036. custom_message = false;
  2037. custom_message_type = 0;
  2038. }
  2039. else if(code_seen("PRUSA")){
  2040. if (code_seen("Ping")) { //PRUSA Ping
  2041. if (farm_mode) {
  2042. PingTime = millis();
  2043. //MYSERIAL.print(farm_no); MYSERIAL.println(": OK");
  2044. }
  2045. } else if (code_seen("PRN")) {
  2046. MYSERIAL.println(status_number);
  2047. } else if (code_seen("RESET")) {
  2048. // careful!
  2049. if (farm_mode) {
  2050. asm volatile(" jmp 0x3E000");
  2051. }
  2052. else {
  2053. MYSERIAL.println("Not in farm mode.");
  2054. }
  2055. } else if (code_seen("fn")) {
  2056. if (farm_mode) {
  2057. MYSERIAL.println(farm_no);
  2058. }
  2059. else {
  2060. MYSERIAL.println("Not in farm mode.");
  2061. }
  2062. }
  2063. else if (code_seen("thx")) {
  2064. no_response = false;
  2065. }else if (code_seen("fv")) {
  2066. // get file version
  2067. #ifdef SDSUPPORT
  2068. card.openFile(strchr_pointer + 3,true);
  2069. while (true) {
  2070. uint16_t readByte = card.get();
  2071. MYSERIAL.write(readByte);
  2072. if (readByte=='\n') {
  2073. break;
  2074. }
  2075. }
  2076. card.closefile();
  2077. #endif // SDSUPPORT
  2078. } else if (code_seen("M28")) {
  2079. trace();
  2080. prusa_sd_card_upload = true;
  2081. card.openFile(strchr_pointer+4,false);
  2082. } else if (code_seen("SN")) {
  2083. if (farm_mode) {
  2084. selectedSerialPort = 0;
  2085. MSerial.write(";S");
  2086. // S/N is:CZPX0917X003XC13518
  2087. int numbersRead = 0;
  2088. while (numbersRead < 19) {
  2089. while (MSerial.available() > 0) {
  2090. uint8_t serial_char = MSerial.read();
  2091. selectedSerialPort = 1;
  2092. MSerial.write(serial_char);
  2093. numbersRead++;
  2094. selectedSerialPort = 0;
  2095. }
  2096. }
  2097. selectedSerialPort = 1;
  2098. MSerial.write('\n');
  2099. /*for (int b = 0; b < 3; b++) {
  2100. tone(BEEPER, 110);
  2101. delay(50);
  2102. noTone(BEEPER);
  2103. delay(50);
  2104. }*/
  2105. } else {
  2106. MYSERIAL.println("Not in farm mode.");
  2107. }
  2108. } else if(code_seen("Fir")){
  2109. SERIAL_PROTOCOLLN(FW_version);
  2110. } else if(code_seen("Rev")){
  2111. SERIAL_PROTOCOLLN(FILAMENT_SIZE "-" ELECTRONICS "-" NOZZLE_TYPE );
  2112. } else if(code_seen("Lang")) {
  2113. lcd_force_language_selection();
  2114. } else if(code_seen("Lz")) {
  2115. EEPROM_save_B(EEPROM_BABYSTEP_Z,0);
  2116. } else if (code_seen("SERIAL LOW")) {
  2117. MYSERIAL.println("SERIAL LOW");
  2118. MYSERIAL.begin(BAUDRATE);
  2119. return;
  2120. } else if (code_seen("SERIAL HIGH")) {
  2121. MYSERIAL.println("SERIAL HIGH");
  2122. MYSERIAL.begin(115200);
  2123. return;
  2124. } else if(code_seen("Beat")) {
  2125. // Kick farm link timer
  2126. kicktime = millis();
  2127. } else if(code_seen("FR")) {
  2128. // Factory full reset
  2129. factory_reset(0,true);
  2130. }
  2131. //else if (code_seen('Cal')) {
  2132. // lcd_calibration();
  2133. // }
  2134. }
  2135. else if (code_seen('^')) {
  2136. // nothing, this is a version line
  2137. } else if(code_seen('G'))
  2138. {
  2139. switch((int)code_value())
  2140. {
  2141. case 0: // G0 -> G1
  2142. case 1: // G1
  2143. if(Stopped == false) {
  2144. #ifdef FILAMENT_RUNOUT_SUPPORT
  2145. if(READ(FR_SENS)){
  2146. enquecommand_front_P((PSTR(FILAMENT_RUNOUT_SCRIPT)));
  2147. /* feedmultiplyBckp=feedmultiply;
  2148. float target[4];
  2149. float lastpos[4];
  2150. target[X_AXIS]=current_position[X_AXIS];
  2151. target[Y_AXIS]=current_position[Y_AXIS];
  2152. target[Z_AXIS]=current_position[Z_AXIS];
  2153. target[E_AXIS]=current_position[E_AXIS];
  2154. lastpos[X_AXIS]=current_position[X_AXIS];
  2155. lastpos[Y_AXIS]=current_position[Y_AXIS];
  2156. lastpos[Z_AXIS]=current_position[Z_AXIS];
  2157. lastpos[E_AXIS]=current_position[E_AXIS];
  2158. //retract by E
  2159. target[E_AXIS]+= FILAMENTCHANGE_FIRSTRETRACT ;
  2160. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 400, active_extruder);
  2161. target[Z_AXIS]+= FILAMENTCHANGE_ZADD ;
  2162. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 300, active_extruder);
  2163. target[X_AXIS]= FILAMENTCHANGE_XPOS ;
  2164. target[Y_AXIS]= FILAMENTCHANGE_YPOS ;
  2165. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 70, active_extruder);
  2166. target[E_AXIS]+= FILAMENTCHANGE_FINALRETRACT ;
  2167. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 20, active_extruder);
  2168. //finish moves
  2169. st_synchronize();
  2170. //disable extruder steppers so filament can be removed
  2171. disable_e0();
  2172. disable_e1();
  2173. disable_e2();
  2174. delay(100);
  2175. //LCD_ALERTMESSAGEPGM(MSG_FILAMENTCHANGE);
  2176. uint8_t cnt=0;
  2177. int counterBeep = 0;
  2178. lcd_wait_interact();
  2179. while(!lcd_clicked()){
  2180. cnt++;
  2181. manage_heater();
  2182. manage_inactivity(true);
  2183. //lcd_update();
  2184. if(cnt==0)
  2185. {
  2186. #if BEEPER > 0
  2187. if (counterBeep== 500){
  2188. counterBeep = 0;
  2189. }
  2190. SET_OUTPUT(BEEPER);
  2191. if (counterBeep== 0){
  2192. WRITE(BEEPER,HIGH);
  2193. }
  2194. if (counterBeep== 20){
  2195. WRITE(BEEPER,LOW);
  2196. }
  2197. counterBeep++;
  2198. #else
  2199. #if !defined(LCD_FEEDBACK_FREQUENCY_HZ) || !defined(LCD_FEEDBACK_FREQUENCY_DURATION_MS)
  2200. lcd_buzz(1000/6,100);
  2201. #else
  2202. lcd_buzz(LCD_FEEDBACK_FREQUENCY_DURATION_MS,LCD_FEEDBACK_FREQUENCY_HZ);
  2203. #endif
  2204. #endif
  2205. }
  2206. }
  2207. WRITE(BEEPER,LOW);
  2208. target[E_AXIS]+= FILAMENTCHANGE_FIRSTFEED ;
  2209. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 20, active_extruder);
  2210. target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  2211. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder);
  2212. lcd_change_fil_state = 0;
  2213. lcd_loading_filament();
  2214. while ((lcd_change_fil_state == 0)||(lcd_change_fil_state != 1)){
  2215. lcd_change_fil_state = 0;
  2216. lcd_alright();
  2217. switch(lcd_change_fil_state){
  2218. case 2:
  2219. target[E_AXIS]+= FILAMENTCHANGE_FIRSTFEED ;
  2220. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 20, active_extruder);
  2221. target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  2222. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder);
  2223. lcd_loading_filament();
  2224. break;
  2225. case 3:
  2226. target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  2227. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder);
  2228. lcd_loading_color();
  2229. break;
  2230. default:
  2231. lcd_change_success();
  2232. break;
  2233. }
  2234. }
  2235. target[E_AXIS]+= 5;
  2236. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder);
  2237. target[E_AXIS]+= FILAMENTCHANGE_FIRSTRETRACT;
  2238. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 400, active_extruder);
  2239. //current_position[E_AXIS]=target[E_AXIS]; //the long retract of L is compensated by manual filament feeding
  2240. //plan_set_e_position(current_position[E_AXIS]);
  2241. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 70, active_extruder); //should do nothing
  2242. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], target[Z_AXIS], target[E_AXIS], 70, active_extruder); //move xy back
  2243. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], target[E_AXIS], 200, active_extruder); //move z back
  2244. target[E_AXIS]= target[E_AXIS] - FILAMENTCHANGE_FIRSTRETRACT;
  2245. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], target[E_AXIS], 5, active_extruder); //final untretract
  2246. plan_set_e_position(lastpos[E_AXIS]);
  2247. feedmultiply=feedmultiplyBckp;
  2248. char cmd[9];
  2249. sprintf_P(cmd, PSTR("M220 S%i"), feedmultiplyBckp);
  2250. enquecommand(cmd);
  2251. */
  2252. }
  2253. #endif
  2254. get_coordinates(); // For X Y Z E F
  2255. if (total_filament_used > ((current_position[E_AXIS] - destination[E_AXIS]) * 100)) { //protection against total_filament_used overflow
  2256. total_filament_used = total_filament_used + ((destination[E_AXIS] - current_position[E_AXIS]) * 100);
  2257. }
  2258. #ifdef FWRETRACT
  2259. if(autoretract_enabled)
  2260. if( !(code_seen('X') || code_seen('Y') || code_seen('Z')) && code_seen('E')) {
  2261. float echange=destination[E_AXIS]-current_position[E_AXIS];
  2262. if((echange<-MIN_RETRACT && !retracted[active_extruder]) || (echange>MIN_RETRACT && retracted[active_extruder])) { //move appears to be an attempt to retract or recover
  2263. current_position[E_AXIS] = destination[E_AXIS]; //hide the slicer-generated retract/recover from calculations
  2264. plan_set_e_position(current_position[E_AXIS]); //AND from the planner
  2265. retract(!retracted[active_extruder]);
  2266. return;
  2267. }
  2268. }
  2269. #endif //FWRETRACT
  2270. prepare_move();
  2271. //ClearToSend();
  2272. }
  2273. break;
  2274. case 2: // G2 - CW ARC
  2275. if(Stopped == false) {
  2276. get_arc_coordinates();
  2277. prepare_arc_move(true);
  2278. }
  2279. break;
  2280. case 3: // G3 - CCW ARC
  2281. if(Stopped == false) {
  2282. get_arc_coordinates();
  2283. prepare_arc_move(false);
  2284. }
  2285. break;
  2286. case 4: // G4 dwell
  2287. codenum = 0;
  2288. if(code_seen('P')) codenum = code_value(); // milliseconds to wait
  2289. if(code_seen('S')) codenum = code_value() * 1000; // seconds to wait
  2290. if(codenum != 0) LCD_MESSAGERPGM(MSG_DWELL);
  2291. st_synchronize();
  2292. codenum += millis(); // keep track of when we started waiting
  2293. previous_millis_cmd = millis();
  2294. while(millis() < codenum) {
  2295. manage_heater();
  2296. manage_inactivity();
  2297. lcd_update();
  2298. }
  2299. break;
  2300. #ifdef FWRETRACT
  2301. case 10: // G10 retract
  2302. #if EXTRUDERS > 1
  2303. retracted_swap[active_extruder]=(code_seen('S') && code_value_long() == 1); // checks for swap retract argument
  2304. retract(true,retracted_swap[active_extruder]);
  2305. #else
  2306. retract(true);
  2307. #endif
  2308. break;
  2309. case 11: // G11 retract_recover
  2310. #if EXTRUDERS > 1
  2311. retract(false,retracted_swap[active_extruder]);
  2312. #else
  2313. retract(false);
  2314. #endif
  2315. break;
  2316. #endif //FWRETRACT
  2317. case 28: //G28 Home all Axis one at a time
  2318. homing_flag = true;
  2319. #ifdef ENABLE_AUTO_BED_LEVELING
  2320. plan_bed_level_matrix.set_to_identity(); //Reset the plane ("erase" all leveling data)
  2321. #endif //ENABLE_AUTO_BED_LEVELING
  2322. // For mesh bed leveling deactivate the matrix temporarily
  2323. #ifdef MESH_BED_LEVELING
  2324. mbl.active = 0;
  2325. #endif
  2326. // Reset world2machine_rotation_and_skew and world2machine_shift, therefore
  2327. // the planner will not perform any adjustments in the XY plane.
  2328. // Wait for the motors to stop and update the current position with the absolute values.
  2329. world2machine_revert_to_uncorrected();
  2330. // Reset baby stepping to zero, if the babystepping has already been loaded before. The babystepsTodo value will be
  2331. // consumed during the first movements following this statement.
  2332. babystep_undo();
  2333. saved_feedrate = feedrate;
  2334. saved_feedmultiply = feedmultiply;
  2335. feedmultiply = 100;
  2336. previous_millis_cmd = millis();
  2337. enable_endstops(true);
  2338. for(int8_t i=0; i < NUM_AXIS; i++)
  2339. destination[i] = current_position[i];
  2340. feedrate = 0.0;
  2341. home_all_axis = !((code_seen(axis_codes[X_AXIS])) || (code_seen(axis_codes[Y_AXIS])) || (code_seen(axis_codes[Z_AXIS])));
  2342. #if Z_HOME_DIR > 0 // If homing away from BED do Z first
  2343. if((home_all_axis) || (code_seen(axis_codes[Z_AXIS]))) {
  2344. homeaxis(Z_AXIS);
  2345. }
  2346. #endif
  2347. #ifdef QUICK_HOME
  2348. // In the quick mode, if both x and y are to be homed, a diagonal move will be performed initially.
  2349. if((home_all_axis)||( code_seen(axis_codes[X_AXIS]) && code_seen(axis_codes[Y_AXIS])) ) //first diagonal move
  2350. {
  2351. current_position[X_AXIS] = 0;current_position[Y_AXIS] = 0;
  2352. int x_axis_home_dir = home_dir(X_AXIS);
  2353. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2354. destination[X_AXIS] = 1.5 * max_length(X_AXIS) * x_axis_home_dir;destination[Y_AXIS] = 1.5 * max_length(Y_AXIS) * home_dir(Y_AXIS);
  2355. feedrate = homing_feedrate[X_AXIS];
  2356. if(homing_feedrate[Y_AXIS]<feedrate)
  2357. feedrate = homing_feedrate[Y_AXIS];
  2358. if (max_length(X_AXIS) > max_length(Y_AXIS)) {
  2359. feedrate *= sqrt(pow(max_length(Y_AXIS) / max_length(X_AXIS), 2) + 1);
  2360. } else {
  2361. feedrate *= sqrt(pow(max_length(X_AXIS) / max_length(Y_AXIS), 2) + 1);
  2362. }
  2363. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  2364. st_synchronize();
  2365. axis_is_at_home(X_AXIS);
  2366. axis_is_at_home(Y_AXIS);
  2367. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2368. destination[X_AXIS] = current_position[X_AXIS];
  2369. destination[Y_AXIS] = current_position[Y_AXIS];
  2370. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  2371. feedrate = 0.0;
  2372. st_synchronize();
  2373. endstops_hit_on_purpose();
  2374. current_position[X_AXIS] = destination[X_AXIS];
  2375. current_position[Y_AXIS] = destination[Y_AXIS];
  2376. current_position[Z_AXIS] = destination[Z_AXIS];
  2377. }
  2378. #endif /* QUICK_HOME */
  2379. if((home_all_axis) || (code_seen(axis_codes[X_AXIS])))
  2380. homeaxis(X_AXIS);
  2381. if((home_all_axis) || (code_seen(axis_codes[Y_AXIS])))
  2382. homeaxis(Y_AXIS);
  2383. if(code_seen(axis_codes[X_AXIS]) && code_value_long() != 0)
  2384. current_position[X_AXIS]=code_value()+add_homing[X_AXIS];
  2385. if(code_seen(axis_codes[Y_AXIS]) && code_value_long() != 0)
  2386. current_position[Y_AXIS]=code_value()+add_homing[Y_AXIS];
  2387. #if Z_HOME_DIR < 0 // If homing towards BED do Z last
  2388. #ifndef Z_SAFE_HOMING
  2389. if((home_all_axis) || (code_seen(axis_codes[Z_AXIS]))) {
  2390. #if defined (Z_RAISE_BEFORE_HOMING) && (Z_RAISE_BEFORE_HOMING > 0)
  2391. destination[Z_AXIS] = Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS) * (-1); // Set destination away from bed
  2392. feedrate = max_feedrate[Z_AXIS];
  2393. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
  2394. st_synchronize();
  2395. #endif // defined (Z_RAISE_BEFORE_HOMING) && (Z_RAISE_BEFORE_HOMING > 0)
  2396. #if (defined(MESH_BED_LEVELING) && !defined(MK1BP)) // If Mesh bed leveling, moxve X&Y to safe position for home
  2397. if (!(axis_known_position[X_AXIS] && axis_known_position[Y_AXIS] ))
  2398. {
  2399. homeaxis(X_AXIS);
  2400. homeaxis(Y_AXIS);
  2401. }
  2402. // 1st mesh bed leveling measurement point, corrected.
  2403. world2machine_initialize();
  2404. world2machine(pgm_read_float(bed_ref_points), pgm_read_float(bed_ref_points+1), destination[X_AXIS], destination[Y_AXIS]);
  2405. world2machine_reset();
  2406. if (destination[Y_AXIS] < Y_MIN_POS)
  2407. destination[Y_AXIS] = Y_MIN_POS;
  2408. destination[Z_AXIS] = MESH_HOME_Z_SEARCH; // Set destination away from bed
  2409. feedrate = homing_feedrate[Z_AXIS]/10;
  2410. current_position[Z_AXIS] = 0;
  2411. enable_endstops(false);
  2412. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2413. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
  2414. st_synchronize();
  2415. current_position[X_AXIS] = destination[X_AXIS];
  2416. current_position[Y_AXIS] = destination[Y_AXIS];
  2417. enable_endstops(true);
  2418. endstops_hit_on_purpose();
  2419. homeaxis(Z_AXIS);
  2420. #else // MESH_BED_LEVELING
  2421. homeaxis(Z_AXIS);
  2422. #endif // MESH_BED_LEVELING
  2423. }
  2424. #else // defined(Z_SAFE_HOMING): Z Safe mode activated.
  2425. if(home_all_axis) {
  2426. destination[X_AXIS] = round(Z_SAFE_HOMING_X_POINT - X_PROBE_OFFSET_FROM_EXTRUDER);
  2427. destination[Y_AXIS] = round(Z_SAFE_HOMING_Y_POINT - Y_PROBE_OFFSET_FROM_EXTRUDER);
  2428. destination[Z_AXIS] = Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS) * (-1); // Set destination away from bed
  2429. feedrate = XY_TRAVEL_SPEED/60;
  2430. current_position[Z_AXIS] = 0;
  2431. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2432. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
  2433. st_synchronize();
  2434. current_position[X_AXIS] = destination[X_AXIS];
  2435. current_position[Y_AXIS] = destination[Y_AXIS];
  2436. homeaxis(Z_AXIS);
  2437. }
  2438. // Let's see if X and Y are homed and probe is inside bed area.
  2439. if(code_seen(axis_codes[Z_AXIS])) {
  2440. if ( (axis_known_position[X_AXIS]) && (axis_known_position[Y_AXIS]) \
  2441. && (current_position[X_AXIS]+X_PROBE_OFFSET_FROM_EXTRUDER >= X_MIN_POS) \
  2442. && (current_position[X_AXIS]+X_PROBE_OFFSET_FROM_EXTRUDER <= X_MAX_POS) \
  2443. && (current_position[Y_AXIS]+Y_PROBE_OFFSET_FROM_EXTRUDER >= Y_MIN_POS) \
  2444. && (current_position[Y_AXIS]+Y_PROBE_OFFSET_FROM_EXTRUDER <= Y_MAX_POS)) {
  2445. current_position[Z_AXIS] = 0;
  2446. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2447. destination[Z_AXIS] = Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS) * (-1); // Set destination away from bed
  2448. feedrate = max_feedrate[Z_AXIS];
  2449. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
  2450. st_synchronize();
  2451. homeaxis(Z_AXIS);
  2452. } else if (!((axis_known_position[X_AXIS]) && (axis_known_position[Y_AXIS]))) {
  2453. LCD_MESSAGERPGM(MSG_POSITION_UNKNOWN);
  2454. SERIAL_ECHO_START;
  2455. SERIAL_ECHOLNRPGM(MSG_POSITION_UNKNOWN);
  2456. } else {
  2457. LCD_MESSAGERPGM(MSG_ZPROBE_OUT);
  2458. SERIAL_ECHO_START;
  2459. SERIAL_ECHOLNRPGM(MSG_ZPROBE_OUT);
  2460. }
  2461. }
  2462. #endif // Z_SAFE_HOMING
  2463. #endif // Z_HOME_DIR < 0
  2464. if(code_seen(axis_codes[Z_AXIS])) {
  2465. if(code_value_long() != 0) {
  2466. current_position[Z_AXIS]=code_value()+add_homing[Z_AXIS];
  2467. }
  2468. }
  2469. #ifdef ENABLE_AUTO_BED_LEVELING
  2470. if((home_all_axis) || (code_seen(axis_codes[Z_AXIS]))) {
  2471. current_position[Z_AXIS] += zprobe_zoffset; //Add Z_Probe offset (the distance is negative)
  2472. }
  2473. #endif
  2474. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2475. #ifdef ENDSTOPS_ONLY_FOR_HOMING
  2476. enable_endstops(false);
  2477. #endif
  2478. feedrate = saved_feedrate;
  2479. feedmultiply = saved_feedmultiply;
  2480. previous_millis_cmd = millis();
  2481. endstops_hit_on_purpose();
  2482. #ifndef MESH_BED_LEVELING
  2483. // If MESH_BED_LEVELING is not active, then it is the original Prusa i3.
  2484. // Offer the user to load the baby step value, which has been adjusted at the previous print session.
  2485. if(card.sdprinting && eeprom_read_word((uint16_t *)EEPROM_BABYSTEP_Z))
  2486. lcd_adjust_z();
  2487. #endif
  2488. // Load the machine correction matrix
  2489. world2machine_initialize();
  2490. // and correct the current_position to match the transformed coordinate system.
  2491. world2machine_update_current();
  2492. #if (defined(MESH_BED_LEVELING) && !defined(MK1BP))
  2493. if (code_seen(axis_codes[X_AXIS]) || code_seen(axis_codes[Y_AXIS]) || code_seen('W') || code_seen(axis_codes[Z_AXIS]))
  2494. {
  2495. }
  2496. else
  2497. {
  2498. st_synchronize();
  2499. homing_flag = false;
  2500. // Push the commands to the front of the message queue in the reverse order!
  2501. // There shall be always enough space reserved for these commands.
  2502. // enquecommand_front_P((PSTR("G80")));
  2503. goto case_G80;
  2504. }
  2505. #endif
  2506. if (farm_mode) { prusa_statistics(20); };
  2507. homing_flag = false;
  2508. break;
  2509. #ifdef ENABLE_AUTO_BED_LEVELING
  2510. case 29: // G29 Detailed Z-Probe, probes the bed at 3 or more points.
  2511. {
  2512. #if Z_MIN_PIN == -1
  2513. #error "You must have a Z_MIN endstop in order to enable Auto Bed Leveling feature! Z_MIN_PIN must point to a valid hardware pin."
  2514. #endif
  2515. // Prevent user from running a G29 without first homing in X and Y
  2516. if (! (axis_known_position[X_AXIS] && axis_known_position[Y_AXIS]) )
  2517. {
  2518. LCD_MESSAGERPGM(MSG_POSITION_UNKNOWN);
  2519. SERIAL_ECHO_START;
  2520. SERIAL_ECHOLNRPGM(MSG_POSITION_UNKNOWN);
  2521. break; // abort G29, since we don't know where we are
  2522. }
  2523. st_synchronize();
  2524. // make sure the bed_level_rotation_matrix is identity or the planner will get it incorectly
  2525. //vector_3 corrected_position = plan_get_position_mm();
  2526. //corrected_position.debug("position before G29");
  2527. plan_bed_level_matrix.set_to_identity();
  2528. vector_3 uncorrected_position = plan_get_position();
  2529. //uncorrected_position.debug("position durring G29");
  2530. current_position[X_AXIS] = uncorrected_position.x;
  2531. current_position[Y_AXIS] = uncorrected_position.y;
  2532. current_position[Z_AXIS] = uncorrected_position.z;
  2533. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2534. setup_for_endstop_move();
  2535. feedrate = homing_feedrate[Z_AXIS];
  2536. #ifdef AUTO_BED_LEVELING_GRID
  2537. // probe at the points of a lattice grid
  2538. int xGridSpacing = (RIGHT_PROBE_BED_POSITION - LEFT_PROBE_BED_POSITION) / (AUTO_BED_LEVELING_GRID_POINTS-1);
  2539. int yGridSpacing = (BACK_PROBE_BED_POSITION - FRONT_PROBE_BED_POSITION) / (AUTO_BED_LEVELING_GRID_POINTS-1);
  2540. // solve the plane equation ax + by + d = z
  2541. // A is the matrix with rows [x y 1] for all the probed points
  2542. // B is the vector of the Z positions
  2543. // the normal vector to the plane is formed by the coefficients of the plane equation in the standard form, which is Vx*x+Vy*y+Vz*z+d = 0
  2544. // so Vx = -a Vy = -b Vz = 1 (we want the vector facing towards positive Z
  2545. // "A" matrix of the linear system of equations
  2546. double eqnAMatrix[AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS*3];
  2547. // "B" vector of Z points
  2548. double eqnBVector[AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS];
  2549. int probePointCounter = 0;
  2550. bool zig = true;
  2551. for (int yProbe=FRONT_PROBE_BED_POSITION; yProbe <= BACK_PROBE_BED_POSITION; yProbe += yGridSpacing)
  2552. {
  2553. int xProbe, xInc;
  2554. if (zig)
  2555. {
  2556. xProbe = LEFT_PROBE_BED_POSITION;
  2557. //xEnd = RIGHT_PROBE_BED_POSITION;
  2558. xInc = xGridSpacing;
  2559. zig = false;
  2560. } else // zag
  2561. {
  2562. xProbe = RIGHT_PROBE_BED_POSITION;
  2563. //xEnd = LEFT_PROBE_BED_POSITION;
  2564. xInc = -xGridSpacing;
  2565. zig = true;
  2566. }
  2567. for (int xCount=0; xCount < AUTO_BED_LEVELING_GRID_POINTS; xCount++)
  2568. {
  2569. float z_before;
  2570. if (probePointCounter == 0)
  2571. {
  2572. // raise before probing
  2573. z_before = Z_RAISE_BEFORE_PROBING;
  2574. } else
  2575. {
  2576. // raise extruder
  2577. z_before = current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS;
  2578. }
  2579. float measured_z = probe_pt(xProbe, yProbe, z_before);
  2580. eqnBVector[probePointCounter] = measured_z;
  2581. eqnAMatrix[probePointCounter + 0*AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS] = xProbe;
  2582. eqnAMatrix[probePointCounter + 1*AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS] = yProbe;
  2583. eqnAMatrix[probePointCounter + 2*AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS] = 1;
  2584. probePointCounter++;
  2585. xProbe += xInc;
  2586. }
  2587. }
  2588. clean_up_after_endstop_move();
  2589. // solve lsq problem
  2590. double *plane_equation_coefficients = qr_solve(AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS, 3, eqnAMatrix, eqnBVector);
  2591. SERIAL_PROTOCOLPGM("Eqn coefficients: a: ");
  2592. SERIAL_PROTOCOL(plane_equation_coefficients[0]);
  2593. SERIAL_PROTOCOLPGM(" b: ");
  2594. SERIAL_PROTOCOL(plane_equation_coefficients[1]);
  2595. SERIAL_PROTOCOLPGM(" d: ");
  2596. SERIAL_PROTOCOLLN(plane_equation_coefficients[2]);
  2597. set_bed_level_equation_lsq(plane_equation_coefficients);
  2598. free(plane_equation_coefficients);
  2599. #else // AUTO_BED_LEVELING_GRID not defined
  2600. // Probe at 3 arbitrary points
  2601. // probe 1
  2602. float z_at_pt_1 = probe_pt(ABL_PROBE_PT_1_X, ABL_PROBE_PT_1_Y, Z_RAISE_BEFORE_PROBING);
  2603. // probe 2
  2604. float z_at_pt_2 = probe_pt(ABL_PROBE_PT_2_X, ABL_PROBE_PT_2_Y, current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS);
  2605. // probe 3
  2606. float z_at_pt_3 = probe_pt(ABL_PROBE_PT_3_X, ABL_PROBE_PT_3_Y, current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS);
  2607. clean_up_after_endstop_move();
  2608. set_bed_level_equation_3pts(z_at_pt_1, z_at_pt_2, z_at_pt_3);
  2609. #endif // AUTO_BED_LEVELING_GRID
  2610. st_synchronize();
  2611. // The following code correct the Z height difference from z-probe position and hotend tip position.
  2612. // The Z height on homing is measured by Z-Probe, but the probe is quite far from the hotend.
  2613. // When the bed is uneven, this height must be corrected.
  2614. real_z = float(st_get_position(Z_AXIS))/axis_steps_per_unit[Z_AXIS]; //get the real Z (since the auto bed leveling is already correcting the plane)
  2615. x_tmp = current_position[X_AXIS] + X_PROBE_OFFSET_FROM_EXTRUDER;
  2616. y_tmp = current_position[Y_AXIS] + Y_PROBE_OFFSET_FROM_EXTRUDER;
  2617. z_tmp = current_position[Z_AXIS];
  2618. apply_rotation_xyz(plan_bed_level_matrix, x_tmp, y_tmp, z_tmp); //Apply the correction sending the probe offset
  2619. current_position[Z_AXIS] = z_tmp - real_z + current_position[Z_AXIS]; //The difference is added to current position and sent to planner.
  2620. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2621. }
  2622. break;
  2623. #ifndef Z_PROBE_SLED
  2624. case 30: // G30 Single Z Probe
  2625. {
  2626. st_synchronize();
  2627. // TODO: make sure the bed_level_rotation_matrix is identity or the planner will get set incorectly
  2628. setup_for_endstop_move();
  2629. feedrate = homing_feedrate[Z_AXIS];
  2630. run_z_probe();
  2631. SERIAL_PROTOCOLPGM(MSG_BED);
  2632. SERIAL_PROTOCOLPGM(" X: ");
  2633. SERIAL_PROTOCOL(current_position[X_AXIS]);
  2634. SERIAL_PROTOCOLPGM(" Y: ");
  2635. SERIAL_PROTOCOL(current_position[Y_AXIS]);
  2636. SERIAL_PROTOCOLPGM(" Z: ");
  2637. SERIAL_PROTOCOL(current_position[Z_AXIS]);
  2638. SERIAL_PROTOCOLPGM("\n");
  2639. clean_up_after_endstop_move();
  2640. }
  2641. break;
  2642. #else
  2643. case 31: // dock the sled
  2644. dock_sled(true);
  2645. break;
  2646. case 32: // undock the sled
  2647. dock_sled(false);
  2648. break;
  2649. #endif // Z_PROBE_SLED
  2650. #endif // ENABLE_AUTO_BED_LEVELING
  2651. #ifdef MESH_BED_LEVELING
  2652. case 30: // G30 Single Z Probe
  2653. {
  2654. st_synchronize();
  2655. // TODO: make sure the bed_level_rotation_matrix is identity or the planner will get set incorectly
  2656. setup_for_endstop_move();
  2657. feedrate = homing_feedrate[Z_AXIS];
  2658. find_bed_induction_sensor_point_z(-10.f, 3);
  2659. SERIAL_PROTOCOLRPGM(MSG_BED);
  2660. SERIAL_PROTOCOLPGM(" X: ");
  2661. MYSERIAL.print(current_position[X_AXIS], 5);
  2662. SERIAL_PROTOCOLPGM(" Y: ");
  2663. MYSERIAL.print(current_position[Y_AXIS], 5);
  2664. SERIAL_PROTOCOLPGM(" Z: ");
  2665. MYSERIAL.print(current_position[Z_AXIS], 5);
  2666. SERIAL_PROTOCOLPGM("\n");
  2667. clean_up_after_endstop_move();
  2668. }
  2669. break;
  2670. case 75:
  2671. {
  2672. for (int i = 40; i <= 110; i++) {
  2673. MYSERIAL.print(i);
  2674. MYSERIAL.print(" ");
  2675. MYSERIAL.println(temp_comp_interpolation(i));// / axis_steps_per_unit[Z_AXIS]);
  2676. }
  2677. }
  2678. break;
  2679. case 76: //PINDA probe temperature calibration
  2680. {
  2681. setTargetBed(PINDA_MIN_T);
  2682. float zero_z;
  2683. int z_shift = 0; //unit: steps
  2684. int t_c; // temperature
  2685. if (!(axis_known_position[X_AXIS] && axis_known_position[Y_AXIS] && axis_known_position[Z_AXIS])) {
  2686. // We don't know where we are! HOME!
  2687. // Push the commands to the front of the message queue in the reverse order!
  2688. // There shall be always enough space reserved for these commands.
  2689. repeatcommand_front(); // repeat G76 with all its parameters
  2690. enquecommand_front_P((PSTR("G28 W0")));
  2691. break;
  2692. }
  2693. KEEPALIVE_STATE(NOT_BUSY); //no need to print busy messages as we print current temperatures periodicaly
  2694. SERIAL_ECHOLNPGM("PINDA probe calibration start");
  2695. custom_message = true;
  2696. custom_message_type = 4;
  2697. custom_message_state = 1;
  2698. custom_message = MSG_TEMP_CALIBRATION;
  2699. current_position[X_AXIS] = PINDA_PREHEAT_X;
  2700. current_position[Y_AXIS] = PINDA_PREHEAT_Y;
  2701. current_position[Z_AXIS] = PINDA_PREHEAT_Z;
  2702. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  2703. st_synchronize();
  2704. while (abs(degBed() - PINDA_MIN_T) > 1) {
  2705. delay_keep_alive(1000);
  2706. serialecho_temperatures();
  2707. }
  2708. //enquecommand_P(PSTR("M190 S50"));
  2709. for (int i = 0; i < PINDA_HEAT_T; i++) {
  2710. delay_keep_alive(1000);
  2711. serialecho_temperatures();
  2712. }
  2713. eeprom_update_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 0); //invalidate temp. calibration in case that in will be aborted during the calibration process
  2714. current_position[Z_AXIS] = 5;
  2715. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  2716. current_position[X_AXIS] = pgm_read_float(bed_ref_points);
  2717. current_position[Y_AXIS] = pgm_read_float(bed_ref_points + 1);
  2718. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  2719. st_synchronize();
  2720. find_bed_induction_sensor_point_z(-1.f);
  2721. zero_z = current_position[Z_AXIS];
  2722. //current_position[Z_AXIS]
  2723. SERIAL_ECHOLNPGM("");
  2724. SERIAL_ECHOPGM("ZERO: ");
  2725. MYSERIAL.print(current_position[Z_AXIS]);
  2726. SERIAL_ECHOLNPGM("");
  2727. for (int i = 0; i<5; i++) {
  2728. SERIAL_ECHOPGM("Step: ");
  2729. MYSERIAL.print(i+2);
  2730. SERIAL_ECHOLNPGM("/6");
  2731. custom_message_state = i + 2;
  2732. t_c = 60 + i * 10;
  2733. setTargetBed(t_c);
  2734. current_position[X_AXIS] = PINDA_PREHEAT_X;
  2735. current_position[Y_AXIS] = PINDA_PREHEAT_Y;
  2736. current_position[Z_AXIS] = PINDA_PREHEAT_Z;
  2737. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  2738. st_synchronize();
  2739. while (degBed() < t_c) {
  2740. delay_keep_alive(1000);
  2741. serialecho_temperatures();
  2742. }
  2743. for (int i = 0; i < PINDA_HEAT_T; i++) {
  2744. delay_keep_alive(1000);
  2745. serialecho_temperatures();
  2746. }
  2747. current_position[Z_AXIS] = 5;
  2748. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  2749. current_position[X_AXIS] = pgm_read_float(bed_ref_points);
  2750. current_position[Y_AXIS] = pgm_read_float(bed_ref_points + 1);
  2751. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  2752. st_synchronize();
  2753. find_bed_induction_sensor_point_z(-1.f);
  2754. z_shift = (int)((current_position[Z_AXIS] - zero_z)*axis_steps_per_unit[Z_AXIS]);
  2755. SERIAL_ECHOLNPGM("");
  2756. SERIAL_ECHOPGM("Temperature: ");
  2757. MYSERIAL.print(t_c);
  2758. SERIAL_ECHOPGM(" Z shift (mm):");
  2759. MYSERIAL.print(current_position[Z_AXIS] - zero_z);
  2760. SERIAL_ECHOLNPGM("");
  2761. EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + i*2, &z_shift);
  2762. }
  2763. custom_message_type = 0;
  2764. custom_message = false;
  2765. eeprom_update_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 1);
  2766. SERIAL_ECHOLNPGM("Temperature calibration done. Continue with pressing the knob.");
  2767. disable_x();
  2768. disable_y();
  2769. disable_z();
  2770. disable_e0();
  2771. disable_e1();
  2772. disable_e2();
  2773. setTargetBed(0); //set bed target temperature back to 0
  2774. lcd_show_fullscreen_message_and_wait_P(MSG_TEMP_CALIBRATION_DONE);
  2775. lcd_update_enable(true);
  2776. lcd_update(2);
  2777. }
  2778. break;
  2779. #ifdef DIS
  2780. case 77:
  2781. {
  2782. //G77 X200 Y150 XP100 YP15 XO10 Y015
  2783. //for 9 point mesh bed leveling G77 X203 Y196 XP3 YP3 XO0 YO0
  2784. //G77 X232 Y218 XP116 YP109 XO-11 YO0
  2785. float dimension_x = 40;
  2786. float dimension_y = 40;
  2787. int points_x = 40;
  2788. int points_y = 40;
  2789. float offset_x = 74;
  2790. float offset_y = 33;
  2791. if (code_seen('X')) dimension_x = code_value();
  2792. if (code_seen('Y')) dimension_y = code_value();
  2793. if (code_seen('XP')) points_x = code_value();
  2794. if (code_seen('YP')) points_y = code_value();
  2795. if (code_seen('XO')) offset_x = code_value();
  2796. if (code_seen('YO')) offset_y = code_value();
  2797. bed_analysis(dimension_x,dimension_y,points_x,points_y,offset_x,offset_y);
  2798. } break;
  2799. #endif
  2800. /**
  2801. * G80: Mesh-based Z probe, probes a grid and produces a
  2802. * mesh to compensate for variable bed height
  2803. *
  2804. * The S0 report the points as below
  2805. *
  2806. * +----> X-axis
  2807. * |
  2808. * |
  2809. * v Y-axis
  2810. *
  2811. */
  2812. case 80:
  2813. #ifdef MK1BP
  2814. break;
  2815. #endif //MK1BP
  2816. case_G80:
  2817. {
  2818. mesh_bed_leveling_flag = true;
  2819. int8_t verbosity_level = 0;
  2820. static bool run = false;
  2821. if (code_seen('V')) {
  2822. // Just 'V' without a number counts as V1.
  2823. char c = strchr_pointer[1];
  2824. verbosity_level = (c == ' ' || c == '\t' || c == 0) ? 1 : code_value_short();
  2825. }
  2826. // Firstly check if we know where we are
  2827. if (!(axis_known_position[X_AXIS] && axis_known_position[Y_AXIS] && axis_known_position[Z_AXIS])) {
  2828. // We don't know where we are! HOME!
  2829. // Push the commands to the front of the message queue in the reverse order!
  2830. // There shall be always enough space reserved for these commands.
  2831. if (lcd_commands_type != LCD_COMMAND_STOP_PRINT) {
  2832. repeatcommand_front(); // repeat G80 with all its parameters
  2833. enquecommand_front_P((PSTR("G28 W0")));
  2834. }
  2835. else {
  2836. mesh_bed_leveling_flag = false;
  2837. }
  2838. break;
  2839. }
  2840. if (run == false && temp_cal_active == true && calibration_status_pinda() == true && target_temperature_bed >= 50) {
  2841. if (lcd_commands_type != LCD_COMMAND_STOP_PRINT) {
  2842. temp_compensation_start();
  2843. run = true;
  2844. repeatcommand_front(); // repeat G80 with all its parameters
  2845. enquecommand_front_P((PSTR("G28 W0")));
  2846. }
  2847. else {
  2848. mesh_bed_leveling_flag = false;
  2849. }
  2850. break;
  2851. }
  2852. run = false;
  2853. if (lcd_commands_type == LCD_COMMAND_STOP_PRINT) {
  2854. mesh_bed_leveling_flag = false;
  2855. break;
  2856. }
  2857. // Save custom message state, set a new custom message state to display: Calibrating point 9.
  2858. bool custom_message_old = custom_message;
  2859. unsigned int custom_message_type_old = custom_message_type;
  2860. unsigned int custom_message_state_old = custom_message_state;
  2861. custom_message = true;
  2862. custom_message_type = 1;
  2863. custom_message_state = (MESH_MEAS_NUM_X_POINTS * MESH_MEAS_NUM_Y_POINTS) + 10;
  2864. lcd_update(1);
  2865. mbl.reset(); //reset mesh bed leveling
  2866. // Reset baby stepping to zero, if the babystepping has already been loaded before. The babystepsTodo value will be
  2867. // consumed during the first movements following this statement.
  2868. babystep_undo();
  2869. // Cycle through all points and probe them
  2870. // First move up. During this first movement, the babystepping will be reverted.
  2871. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  2872. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[Z_AXIS] / 60, active_extruder);
  2873. // The move to the first calibration point.
  2874. current_position[X_AXIS] = pgm_read_float(bed_ref_points);
  2875. current_position[Y_AXIS] = pgm_read_float(bed_ref_points + 1);
  2876. bool clamped = world2machine_clamp(current_position[X_AXIS], current_position[Y_AXIS]);
  2877. #ifdef SUPPORT_VERBOSITY
  2878. if (verbosity_level >= 1) {
  2879. clamped ? SERIAL_PROTOCOLPGM("First calibration point clamped.\n") : SERIAL_PROTOCOLPGM("No clamping for first calibration point.\n");
  2880. }
  2881. #endif // SUPPORT_VERBOSITY
  2882. // mbl.get_meas_xy(0, 0, current_position[X_AXIS], current_position[Y_AXIS], false);
  2883. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[X_AXIS] / 30, active_extruder);
  2884. // Wait until the move is finished.
  2885. st_synchronize();
  2886. int mesh_point = 0; //index number of calibration point
  2887. int ix = 0;
  2888. int iy = 0;
  2889. int XY_AXIS_FEEDRATE = homing_feedrate[X_AXIS] / 20;
  2890. int Z_LIFT_FEEDRATE = homing_feedrate[Z_AXIS] / 40;
  2891. bool has_z = is_bed_z_jitter_data_valid(); //checks if we have data from Z calibration (offsets of the Z heiths of the 8 calibration points from the first point)
  2892. #ifdef SUPPORT_VERBOSITY
  2893. if (verbosity_level >= 1) {
  2894. has_z ? SERIAL_PROTOCOLPGM("Z jitter data from Z cal. valid.\n") : SERIAL_PROTOCOLPGM("Z jitter data from Z cal. not valid.\n");
  2895. }
  2896. #endif // SUPPORT_VERBOSITY
  2897. setup_for_endstop_move(false); //save feedrate and feedmultiply, sets feedmultiply to 100
  2898. const char *kill_message = NULL;
  2899. while (mesh_point != MESH_MEAS_NUM_X_POINTS * MESH_MEAS_NUM_Y_POINTS) {
  2900. #ifdef SUPPORT_VERBOSITY
  2901. if (verbosity_level >= 1) SERIAL_ECHOLNPGM("");
  2902. #endif // SUPPORT_VERBOSITY
  2903. // Get coords of a measuring point.
  2904. ix = mesh_point % MESH_MEAS_NUM_X_POINTS; // from 0 to MESH_NUM_X_POINTS - 1
  2905. iy = mesh_point / MESH_MEAS_NUM_X_POINTS;
  2906. if (iy & 1) ix = (MESH_MEAS_NUM_X_POINTS - 1) - ix; // Zig zag
  2907. float z0 = 0.f;
  2908. if (has_z && mesh_point > 0) {
  2909. uint16_t z_offset_u = eeprom_read_word((uint16_t*)(EEPROM_BED_CALIBRATION_Z_JITTER + 2 * (ix + iy * 3 - 1)));
  2910. z0 = mbl.z_values[0][0] + *reinterpret_cast<int16_t*>(&z_offset_u) * 0.01;
  2911. #ifdef SUPPORT_VERBOSITY
  2912. if (verbosity_level >= 1) {
  2913. SERIAL_ECHOPGM("Bed leveling, point: ");
  2914. MYSERIAL.print(mesh_point);
  2915. SERIAL_ECHOPGM(", calibration z: ");
  2916. MYSERIAL.print(z0, 5);
  2917. SERIAL_ECHOLNPGM("");
  2918. }
  2919. #endif // SUPPORT_VERBOSITY
  2920. }
  2921. // Move Z up to MESH_HOME_Z_SEARCH.
  2922. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  2923. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], Z_LIFT_FEEDRATE, active_extruder);
  2924. st_synchronize();
  2925. // Move to XY position of the sensor point.
  2926. current_position[X_AXIS] = pgm_read_float(bed_ref_points + 2 * mesh_point);
  2927. current_position[Y_AXIS] = pgm_read_float(bed_ref_points + 2 * mesh_point + 1);
  2928. world2machine_clamp(current_position[X_AXIS], current_position[Y_AXIS]);
  2929. #ifdef SUPPORT_VERBOSITY
  2930. if (verbosity_level >= 1) {
  2931. SERIAL_PROTOCOL(mesh_point);
  2932. clamped ? SERIAL_PROTOCOLPGM(": xy clamped.\n") : SERIAL_PROTOCOLPGM(": no xy clamping\n");
  2933. }
  2934. #endif // SUPPORT_VERBOSITY
  2935. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], XY_AXIS_FEEDRATE, active_extruder);
  2936. st_synchronize();
  2937. // Go down until endstop is hit
  2938. const float Z_CALIBRATION_THRESHOLD = 1.f;
  2939. if (!find_bed_induction_sensor_point_z((has_z && mesh_point > 0) ? z0 - Z_CALIBRATION_THRESHOLD : -10.f)) { //if we have data from z calibration max allowed difference is 1mm for each point, if we dont have data max difference is 10mm from initial point
  2940. kill_message = MSG_BED_LEVELING_FAILED_POINT_LOW;
  2941. break;
  2942. }
  2943. if (MESH_HOME_Z_SEARCH - current_position[Z_AXIS] < 0.1f) {
  2944. kill_message = MSG_BED_LEVELING_FAILED_PROBE_DISCONNECTED;
  2945. break;
  2946. }
  2947. if (has_z && fabs(z0 - current_position[Z_AXIS]) > Z_CALIBRATION_THRESHOLD) { //if we have data from z calibration, max. allowed difference is 1mm for each point
  2948. kill_message = MSG_BED_LEVELING_FAILED_POINT_HIGH;
  2949. break;
  2950. }
  2951. #ifdef SUPPORT_VERBOSITY
  2952. if (verbosity_level >= 10) {
  2953. SERIAL_ECHOPGM("X: ");
  2954. MYSERIAL.print(current_position[X_AXIS], 5);
  2955. SERIAL_ECHOLNPGM("");
  2956. SERIAL_ECHOPGM("Y: ");
  2957. MYSERIAL.print(current_position[Y_AXIS], 5);
  2958. SERIAL_PROTOCOLPGM("\n");
  2959. }
  2960. if (verbosity_level >= 1) {
  2961. SERIAL_ECHOPGM("mesh bed leveling: ");
  2962. MYSERIAL.print(current_position[Z_AXIS], 5);
  2963. SERIAL_ECHOLNPGM("");
  2964. }
  2965. #endif // SUPPORT_VERBOSITY
  2966. mbl.set_z(ix, iy, current_position[Z_AXIS]); //store measured z values z_values[iy][ix] = z;
  2967. custom_message_state--;
  2968. mesh_point++;
  2969. lcd_update(1);
  2970. }
  2971. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  2972. #ifdef SUPPORT_VERBOSITY
  2973. if (verbosity_level >= 20) {
  2974. SERIAL_ECHOLNPGM("Mesh bed leveling while loop finished.");
  2975. SERIAL_ECHOLNPGM("MESH_HOME_Z_SEARCH: ");
  2976. MYSERIAL.print(current_position[Z_AXIS], 5);
  2977. }
  2978. #endif // SUPPORT_VERBOSITY
  2979. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], Z_LIFT_FEEDRATE, active_extruder);
  2980. st_synchronize();
  2981. if (mesh_point != MESH_MEAS_NUM_X_POINTS * MESH_MEAS_NUM_Y_POINTS) {
  2982. kill(kill_message);
  2983. SERIAL_ECHOLNPGM("killed");
  2984. }
  2985. clean_up_after_endstop_move();
  2986. SERIAL_ECHOLNPGM("clean up finished ");
  2987. if(temp_cal_active == true && calibration_status_pinda() == true) temp_compensation_apply(); //apply PINDA temperature compensation
  2988. babystep_apply(); // Apply Z height correction aka baby stepping before mesh bed leveing gets activated.
  2989. SERIAL_ECHOLNPGM("babystep applied");
  2990. bool eeprom_bed_correction_valid = eeprom_read_byte((unsigned char*)EEPROM_BED_CORRECTION_VALID) == 1;
  2991. #ifdef SUPPORT_VERBOSITY
  2992. if (verbosity_level >= 1) {
  2993. eeprom_bed_correction_valid ? SERIAL_PROTOCOLPGM("Bed correction data valid\n") : SERIAL_PROTOCOLPGM("Bed correction data not valid\n");
  2994. }
  2995. #endif // SUPPORT_VERBOSITY
  2996. for (uint8_t i = 0; i < 4; ++i) {
  2997. unsigned char codes[4] = { 'L', 'R', 'F', 'B' };
  2998. long correction = 0;
  2999. if (code_seen(codes[i]))
  3000. correction = code_value_long();
  3001. else if (eeprom_bed_correction_valid) {
  3002. unsigned char *addr = (i < 2) ?
  3003. ((i == 0) ? (unsigned char*)EEPROM_BED_CORRECTION_LEFT : (unsigned char*)EEPROM_BED_CORRECTION_RIGHT) :
  3004. ((i == 2) ? (unsigned char*)EEPROM_BED_CORRECTION_FRONT : (unsigned char*)EEPROM_BED_CORRECTION_REAR);
  3005. correction = eeprom_read_int8(addr);
  3006. }
  3007. if (correction == 0)
  3008. continue;
  3009. float offset = float(correction) * 0.001f;
  3010. if (fabs(offset) > 0.101f) {
  3011. SERIAL_ERROR_START;
  3012. SERIAL_ECHOPGM("Excessive bed leveling correction: ");
  3013. SERIAL_ECHO(offset);
  3014. SERIAL_ECHOLNPGM(" microns");
  3015. }
  3016. else {
  3017. switch (i) {
  3018. case 0:
  3019. for (uint8_t row = 0; row < 3; ++row) {
  3020. mbl.z_values[row][1] += 0.5f * offset;
  3021. mbl.z_values[row][0] += offset;
  3022. }
  3023. break;
  3024. case 1:
  3025. for (uint8_t row = 0; row < 3; ++row) {
  3026. mbl.z_values[row][1] += 0.5f * offset;
  3027. mbl.z_values[row][2] += offset;
  3028. }
  3029. break;
  3030. case 2:
  3031. for (uint8_t col = 0; col < 3; ++col) {
  3032. mbl.z_values[1][col] += 0.5f * offset;
  3033. mbl.z_values[0][col] += offset;
  3034. }
  3035. break;
  3036. case 3:
  3037. for (uint8_t col = 0; col < 3; ++col) {
  3038. mbl.z_values[1][col] += 0.5f * offset;
  3039. mbl.z_values[2][col] += offset;
  3040. }
  3041. break;
  3042. }
  3043. }
  3044. }
  3045. SERIAL_ECHOLNPGM("Bed leveling correction finished");
  3046. mbl.upsample_3x3(); //bilinear interpolation from 3x3 to 7x7 points while using the same array z_values[iy][ix] for storing (just coppying measured data to new destination and interpolating between them)
  3047. SERIAL_ECHOLNPGM("Upsample finished");
  3048. mbl.active = 1; //activate mesh bed leveling
  3049. SERIAL_ECHOLNPGM("Mesh bed leveling activated");
  3050. go_home_with_z_lift();
  3051. SERIAL_ECHOLNPGM("Go home finished");
  3052. //unretract (after PINDA preheat retraction)
  3053. if (degHotend(active_extruder) > EXTRUDE_MINTEMP && temp_cal_active == true && calibration_status_pinda() == true && target_temperature_bed >= 50) {
  3054. current_position[E_AXIS] += DEFAULT_RETRACTION;
  3055. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400, active_extruder);
  3056. }
  3057. KEEPALIVE_STATE(NOT_BUSY);
  3058. // Restore custom message state
  3059. custom_message = custom_message_old;
  3060. custom_message_type = custom_message_type_old;
  3061. custom_message_state = custom_message_state_old;
  3062. mesh_bed_leveling_flag = false;
  3063. mesh_bed_run_from_menu = false;
  3064. lcd_update(2);
  3065. }
  3066. break;
  3067. /**
  3068. * G81: Print mesh bed leveling status and bed profile if activated
  3069. */
  3070. case 81:
  3071. if (mbl.active) {
  3072. SERIAL_PROTOCOLPGM("Num X,Y: ");
  3073. SERIAL_PROTOCOL(MESH_NUM_X_POINTS);
  3074. SERIAL_PROTOCOLPGM(",");
  3075. SERIAL_PROTOCOL(MESH_NUM_Y_POINTS);
  3076. SERIAL_PROTOCOLPGM("\nZ search height: ");
  3077. SERIAL_PROTOCOL(MESH_HOME_Z_SEARCH);
  3078. SERIAL_PROTOCOLLNPGM("\nMeasured points:");
  3079. for (int y = MESH_NUM_Y_POINTS-1; y >= 0; y--) {
  3080. for (int x = 0; x < MESH_NUM_X_POINTS; x++) {
  3081. SERIAL_PROTOCOLPGM(" ");
  3082. SERIAL_PROTOCOL_F(mbl.z_values[y][x], 5);
  3083. }
  3084. SERIAL_PROTOCOLPGM("\n");
  3085. }
  3086. }
  3087. else
  3088. SERIAL_PROTOCOLLNPGM("Mesh bed leveling not active.");
  3089. break;
  3090. #if 0
  3091. /**
  3092. * G82: Single Z probe at current location
  3093. *
  3094. * WARNING! USE WITH CAUTION! If you'll try to probe where is no leveling pad, nasty things can happen!
  3095. *
  3096. */
  3097. case 82:
  3098. SERIAL_PROTOCOLLNPGM("Finding bed ");
  3099. setup_for_endstop_move();
  3100. find_bed_induction_sensor_point_z();
  3101. clean_up_after_endstop_move();
  3102. SERIAL_PROTOCOLPGM("Bed found at: ");
  3103. SERIAL_PROTOCOL_F(current_position[Z_AXIS], 5);
  3104. SERIAL_PROTOCOLPGM("\n");
  3105. break;
  3106. /**
  3107. * G83: Prusa3D specific: Babystep in Z and store to EEPROM
  3108. */
  3109. case 83:
  3110. {
  3111. int babystepz = code_seen('S') ? code_value() : 0;
  3112. int BabyPosition = code_seen('P') ? code_value() : 0;
  3113. if (babystepz != 0) {
  3114. //FIXME Vojtech: What shall be the index of the axis Z: 3 or 4?
  3115. // Is the axis indexed starting with zero or one?
  3116. if (BabyPosition > 4) {
  3117. SERIAL_PROTOCOLLNPGM("Index out of bounds");
  3118. }else{
  3119. // Save it to the eeprom
  3120. babystepLoadZ = babystepz;
  3121. EEPROM_save_B(EEPROM_BABYSTEP_Z0+(BabyPosition*2),&babystepLoadZ);
  3122. // adjust the Z
  3123. babystepsTodoZadd(babystepLoadZ);
  3124. }
  3125. }
  3126. }
  3127. break;
  3128. /**
  3129. * G84: Prusa3D specific: UNDO Babystep Z (move Z axis back)
  3130. */
  3131. case 84:
  3132. babystepsTodoZsubtract(babystepLoadZ);
  3133. // babystepLoadZ = 0;
  3134. break;
  3135. /**
  3136. * G85: Prusa3D specific: Pick best babystep
  3137. */
  3138. case 85:
  3139. lcd_pick_babystep();
  3140. break;
  3141. #endif
  3142. /**
  3143. * G86: Prusa3D specific: Disable babystep correction after home.
  3144. * This G-code will be performed at the start of a calibration script.
  3145. */
  3146. case 86:
  3147. calibration_status_store(CALIBRATION_STATUS_LIVE_ADJUST);
  3148. break;
  3149. /**
  3150. * G87: Prusa3D specific: Enable babystep correction after home
  3151. * This G-code will be performed at the end of a calibration script.
  3152. */
  3153. case 87:
  3154. calibration_status_store(CALIBRATION_STATUS_CALIBRATED);
  3155. break;
  3156. /*case 88: //just for test
  3157. SERIAL_ECHOPGM("Calibration status:");
  3158. MYSERIAL.println(int(calibration_status()));
  3159. if (code_seen('S')) codenum = code_value();
  3160. calibration_status_store(codenum);
  3161. SERIAL_ECHOPGM("Calibration status:");
  3162. MYSERIAL.println(int(calibration_status()));
  3163. eeprom_write_byte((uint8_t*)EEPROM_WIZARD_ACTIVE, 1); //run wizard
  3164. break;
  3165. */
  3166. #endif // ENABLE_MESH_BED_LEVELING
  3167. case 90: // G90
  3168. relative_mode = false;
  3169. break;
  3170. case 91: // G91
  3171. relative_mode = true;
  3172. break;
  3173. case 92: // G92
  3174. if(!code_seen(axis_codes[E_AXIS]))
  3175. st_synchronize();
  3176. for(int8_t i=0; i < NUM_AXIS; i++) {
  3177. if(code_seen(axis_codes[i])) {
  3178. if(i == E_AXIS) {
  3179. current_position[i] = code_value();
  3180. plan_set_e_position(current_position[E_AXIS]);
  3181. }
  3182. else {
  3183. current_position[i] = code_value()+add_homing[i];
  3184. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  3185. }
  3186. }
  3187. }
  3188. break;
  3189. case 98: //activate farm mode
  3190. farm_mode = 1;
  3191. PingTime = millis();
  3192. EEPROM_save_B(EEPROM_FARM_NUMBER, &farm_no);
  3193. eeprom_update_byte((unsigned char *)EEPROM_FARM_MODE, farm_mode);
  3194. break;
  3195. case 99: //deactivate farm mode
  3196. farm_mode = 0;
  3197. lcd_printer_connected();
  3198. eeprom_update_byte((unsigned char *)EEPROM_FARM_MODE, farm_mode);
  3199. lcd_update(2);
  3200. break;
  3201. }
  3202. } // end if(code_seen('G'))
  3203. else if(code_seen('M'))
  3204. {
  3205. int index;
  3206. for (index = 1; *(strchr_pointer + index) == ' ' || *(strchr_pointer + index) == '\t'; index++);
  3207. /*for (++strchr_pointer; *strchr_pointer == ' ' || *strchr_pointer == '\t'; ++strchr_pointer);*/
  3208. if (*(strchr_pointer+index) < '0' || *(strchr_pointer+index) > '9') {
  3209. SERIAL_ECHOLNPGM("Invalid M code");
  3210. } else
  3211. switch((int)code_value())
  3212. {
  3213. #ifdef ULTIPANEL
  3214. case 0: // M0 - Unconditional stop - Wait for user button press on LCD
  3215. case 1: // M1 - Conditional stop - Wait for user button press on LCD
  3216. {
  3217. custom_message = true; //fixes using M1 during SD print, but needs to be be updated in future
  3218. custom_message_type = 2; //fixes using M1 during SD print, but needs to be be updated in future
  3219. char *src = strchr_pointer + 2;
  3220. codenum = 0;
  3221. bool hasP = false, hasS = false;
  3222. if (code_seen('P')) {
  3223. codenum = code_value(); // milliseconds to wait
  3224. hasP = codenum > 0;
  3225. }
  3226. if (code_seen('S')) {
  3227. codenum = code_value() * 1000; // seconds to wait
  3228. hasS = codenum > 0;
  3229. }
  3230. starpos = strchr(src, '*');
  3231. if (starpos != NULL) *(starpos) = '\0';
  3232. while (*src == ' ') ++src;
  3233. if (!hasP && !hasS && *src != '\0') {
  3234. lcd_setstatus(src);
  3235. } else {
  3236. LCD_MESSAGERPGM(MSG_USERWAIT);
  3237. }
  3238. lcd_ignore_click(); //call lcd_ignore_click aslo for else ???
  3239. st_synchronize();
  3240. previous_millis_cmd = millis();
  3241. if (codenum > 0){
  3242. codenum += millis(); // keep track of when we started waiting
  3243. KEEPALIVE_STATE(PAUSED_FOR_USER);
  3244. while(millis() < codenum && !lcd_clicked()){
  3245. manage_heater();
  3246. manage_inactivity(true);
  3247. lcd_update();
  3248. }
  3249. KEEPALIVE_STATE(IN_HANDLER);
  3250. lcd_ignore_click(false);
  3251. }else{
  3252. if (!lcd_detected())
  3253. break;
  3254. KEEPALIVE_STATE(PAUSED_FOR_USER);
  3255. while(!lcd_clicked()){
  3256. manage_heater();
  3257. manage_inactivity(true);
  3258. lcd_update();
  3259. }
  3260. KEEPALIVE_STATE(IN_HANDLER);
  3261. }
  3262. if (IS_SD_PRINTING)
  3263. LCD_MESSAGERPGM(MSG_RESUMING);
  3264. else
  3265. LCD_MESSAGERPGM(WELCOME_MSG);
  3266. custom_message = false;
  3267. custom_message_type = 0;
  3268. }
  3269. break;
  3270. #endif
  3271. case 17:
  3272. LCD_MESSAGERPGM(MSG_NO_MOVE);
  3273. enable_x();
  3274. enable_y();
  3275. enable_z();
  3276. enable_e0();
  3277. enable_e1();
  3278. enable_e2();
  3279. break;
  3280. #ifdef SDSUPPORT
  3281. case 20: // M20 - list SD card
  3282. SERIAL_PROTOCOLLNRPGM(MSG_BEGIN_FILE_LIST);
  3283. card.ls();
  3284. SERIAL_PROTOCOLLNRPGM(MSG_END_FILE_LIST);
  3285. break;
  3286. case 21: // M21 - init SD card
  3287. card.initsd();
  3288. break;
  3289. case 22: //M22 - release SD card
  3290. card.release();
  3291. break;
  3292. case 23: //M23 - Select file
  3293. starpos = (strchr(strchr_pointer + 4,'*'));
  3294. if(starpos!=NULL)
  3295. *(starpos)='\0';
  3296. card.openFile(strchr_pointer + 4,true);
  3297. break;
  3298. case 24: //M24 - Start SD print
  3299. card.startFileprint();
  3300. starttime=millis();
  3301. break;
  3302. case 25: //M25 - Pause SD print
  3303. card.pauseSDPrint();
  3304. break;
  3305. case 26: //M26 - Set SD index
  3306. if(card.cardOK && code_seen('S')) {
  3307. card.setIndex(code_value_long());
  3308. }
  3309. break;
  3310. case 27: //M27 - Get SD status
  3311. card.getStatus();
  3312. break;
  3313. case 28: //M28 - Start SD write
  3314. starpos = (strchr(strchr_pointer + 4,'*'));
  3315. if(starpos != NULL){
  3316. char* npos = strchr(CMDBUFFER_CURRENT_STRING, 'N');
  3317. strchr_pointer = strchr(npos,' ') + 1;
  3318. *(starpos) = '\0';
  3319. }
  3320. card.openFile(strchr_pointer+4,false);
  3321. break;
  3322. case 29: //M29 - Stop SD write
  3323. //processed in write to file routine above
  3324. //card,saving = false;
  3325. break;
  3326. case 30: //M30 <filename> Delete File
  3327. if (card.cardOK){
  3328. card.closefile();
  3329. starpos = (strchr(strchr_pointer + 4,'*'));
  3330. if(starpos != NULL){
  3331. char* npos = strchr(CMDBUFFER_CURRENT_STRING, 'N');
  3332. strchr_pointer = strchr(npos,' ') + 1;
  3333. *(starpos) = '\0';
  3334. }
  3335. card.removeFile(strchr_pointer + 4);
  3336. }
  3337. break;
  3338. case 32: //M32 - Select file and start SD print
  3339. {
  3340. if(card.sdprinting) {
  3341. st_synchronize();
  3342. }
  3343. starpos = (strchr(strchr_pointer + 4,'*'));
  3344. char* namestartpos = (strchr(strchr_pointer + 4,'!')); //find ! to indicate filename string start.
  3345. if(namestartpos==NULL)
  3346. {
  3347. namestartpos=strchr_pointer + 4; //default name position, 4 letters after the M
  3348. }
  3349. else
  3350. namestartpos++; //to skip the '!'
  3351. if(starpos!=NULL)
  3352. *(starpos)='\0';
  3353. bool call_procedure=(code_seen('P'));
  3354. if(strchr_pointer>namestartpos)
  3355. call_procedure=false; //false alert, 'P' found within filename
  3356. if( card.cardOK )
  3357. {
  3358. card.openFile(namestartpos,true,!call_procedure);
  3359. if(code_seen('S'))
  3360. if(strchr_pointer<namestartpos) //only if "S" is occuring _before_ the filename
  3361. card.setIndex(code_value_long());
  3362. card.startFileprint();
  3363. if(!call_procedure)
  3364. starttime=millis(); //procedure calls count as normal print time.
  3365. }
  3366. } break;
  3367. case 928: //M928 - Start SD write
  3368. starpos = (strchr(strchr_pointer + 5,'*'));
  3369. if(starpos != NULL){
  3370. char* npos = strchr(CMDBUFFER_CURRENT_STRING, 'N');
  3371. strchr_pointer = strchr(npos,' ') + 1;
  3372. *(starpos) = '\0';
  3373. }
  3374. card.openLogFile(strchr_pointer+5);
  3375. break;
  3376. #endif //SDSUPPORT
  3377. case 31: //M31 take time since the start of the SD print or an M109 command
  3378. {
  3379. stoptime=millis();
  3380. char time[30];
  3381. unsigned long t=(stoptime-starttime)/1000;
  3382. int sec,min;
  3383. min=t/60;
  3384. sec=t%60;
  3385. sprintf_P(time, PSTR("%i min, %i sec"), min, sec);
  3386. SERIAL_ECHO_START;
  3387. SERIAL_ECHOLN(time);
  3388. lcd_setstatus(time);
  3389. autotempShutdown();
  3390. }
  3391. break;
  3392. case 42: //M42 -Change pin status via gcode
  3393. if (code_seen('S'))
  3394. {
  3395. int pin_status = code_value();
  3396. int pin_number = LED_PIN;
  3397. if (code_seen('P') && pin_status >= 0 && pin_status <= 255)
  3398. pin_number = code_value();
  3399. for(int8_t i = 0; i < (int8_t)(sizeof(sensitive_pins)/sizeof(int)); i++)
  3400. {
  3401. if (sensitive_pins[i] == pin_number)
  3402. {
  3403. pin_number = -1;
  3404. break;
  3405. }
  3406. }
  3407. #if defined(FAN_PIN) && FAN_PIN > -1
  3408. if (pin_number == FAN_PIN)
  3409. fanSpeed = pin_status;
  3410. #endif
  3411. if (pin_number > -1)
  3412. {
  3413. pinMode(pin_number, OUTPUT);
  3414. digitalWrite(pin_number, pin_status);
  3415. analogWrite(pin_number, pin_status);
  3416. }
  3417. }
  3418. break;
  3419. case 44: // M44: Prusa3D: Reset the bed skew and offset calibration.
  3420. // Reset the baby step value and the baby step applied flag.
  3421. calibration_status_store(CALIBRATION_STATUS_ASSEMBLED);
  3422. eeprom_update_word((uint16_t*)EEPROM_BABYSTEP_Z, 0);
  3423. // Reset the skew and offset in both RAM and EEPROM.
  3424. reset_bed_offset_and_skew();
  3425. // Reset world2machine_rotation_and_skew and world2machine_shift, therefore
  3426. // the planner will not perform any adjustments in the XY plane.
  3427. // Wait for the motors to stop and update the current position with the absolute values.
  3428. world2machine_revert_to_uncorrected();
  3429. break;
  3430. case 45: // M45: Prusa3D: bed skew and offset with manual Z up
  3431. {
  3432. // Only Z calibration?
  3433. bool only_Z = code_seen('Z');
  3434. gcode_M45(only_Z);
  3435. break;
  3436. }
  3437. /*
  3438. case 46:
  3439. {
  3440. // M46: Prusa3D: Show the assigned IP address.
  3441. uint8_t ip[4];
  3442. bool hasIP = card.ToshibaFlashAir_GetIP(ip);
  3443. if (hasIP) {
  3444. SERIAL_ECHOPGM("Toshiba FlashAir current IP: ");
  3445. SERIAL_ECHO(int(ip[0]));
  3446. SERIAL_ECHOPGM(".");
  3447. SERIAL_ECHO(int(ip[1]));
  3448. SERIAL_ECHOPGM(".");
  3449. SERIAL_ECHO(int(ip[2]));
  3450. SERIAL_ECHOPGM(".");
  3451. SERIAL_ECHO(int(ip[3]));
  3452. SERIAL_ECHOLNPGM("");
  3453. } else {
  3454. SERIAL_ECHOLNPGM("Toshiba FlashAir GetIP failed");
  3455. }
  3456. break;
  3457. }
  3458. */
  3459. case 47:
  3460. // M47: Prusa3D: Show end stops dialog on the display.
  3461. KEEPALIVE_STATE(PAUSED_FOR_USER);
  3462. lcd_diag_show_end_stops();
  3463. KEEPALIVE_STATE(IN_HANDLER);
  3464. break;
  3465. #if 0
  3466. case 48: // M48: scan the bed induction sensor points, print the sensor trigger coordinates to the serial line for visualization on the PC.
  3467. {
  3468. // Disable the default update procedure of the display. We will do a modal dialog.
  3469. lcd_update_enable(false);
  3470. // Let the planner use the uncorrected coordinates.
  3471. mbl.reset();
  3472. // Reset world2machine_rotation_and_skew and world2machine_shift, therefore
  3473. // the planner will not perform any adjustments in the XY plane.
  3474. // Wait for the motors to stop and update the current position with the absolute values.
  3475. world2machine_revert_to_uncorrected();
  3476. // Move the print head close to the bed.
  3477. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3478. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS],current_position[Z_AXIS] , current_position[E_AXIS], homing_feedrate[Z_AXIS]/40, active_extruder);
  3479. st_synchronize();
  3480. // Home in the XY plane.
  3481. set_destination_to_current();
  3482. setup_for_endstop_move();
  3483. home_xy();
  3484. int8_t verbosity_level = 0;
  3485. if (code_seen('V')) {
  3486. // Just 'V' without a number counts as V1.
  3487. char c = strchr_pointer[1];
  3488. verbosity_level = (c == ' ' || c == '\t' || c == 0) ? 1 : code_value_short();
  3489. }
  3490. bool success = scan_bed_induction_points(verbosity_level);
  3491. clean_up_after_endstop_move();
  3492. // Print head up.
  3493. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3494. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS],current_position[Z_AXIS] , current_position[E_AXIS], homing_feedrate[Z_AXIS]/40, active_extruder);
  3495. st_synchronize();
  3496. lcd_update_enable(true);
  3497. break;
  3498. }
  3499. #endif
  3500. // M48 Z-Probe repeatability measurement function.
  3501. //
  3502. // Usage: M48 <n #_samples> <X X_position_for_samples> <Y Y_position_for_samples> <V Verbose_Level> <L legs_of_movement_prior_to_doing_probe>
  3503. //
  3504. // This function assumes the bed has been homed. Specificaly, that a G28 command
  3505. // as been issued prior to invoking the M48 Z-Probe repeatability measurement function.
  3506. // Any information generated by a prior G29 Bed leveling command will be lost and need to be
  3507. // regenerated.
  3508. //
  3509. // The number of samples will default to 10 if not specified. You can use upper or lower case
  3510. // letters for any of the options EXCEPT n. n must be in lower case because Marlin uses a capital
  3511. // N for its communication protocol and will get horribly confused if you send it a capital N.
  3512. //
  3513. #ifdef ENABLE_AUTO_BED_LEVELING
  3514. #ifdef Z_PROBE_REPEATABILITY_TEST
  3515. case 48: // M48 Z-Probe repeatability
  3516. {
  3517. #if Z_MIN_PIN == -1
  3518. #error "You must have a Z_MIN endstop in order to enable calculation of Z-Probe repeatability."
  3519. #endif
  3520. double sum=0.0;
  3521. double mean=0.0;
  3522. double sigma=0.0;
  3523. double sample_set[50];
  3524. int verbose_level=1, n=0, j, n_samples = 10, n_legs=0;
  3525. double X_current, Y_current, Z_current;
  3526. double X_probe_location, Y_probe_location, Z_start_location, ext_position;
  3527. if (code_seen('V') || code_seen('v')) {
  3528. verbose_level = code_value();
  3529. if (verbose_level<0 || verbose_level>4 ) {
  3530. SERIAL_PROTOCOLPGM("?Verbose Level not plausable.\n");
  3531. goto Sigma_Exit;
  3532. }
  3533. }
  3534. if (verbose_level > 0) {
  3535. SERIAL_PROTOCOLPGM("M48 Z-Probe Repeatability test. Version 2.00\n");
  3536. SERIAL_PROTOCOLPGM("Full support at: http://3dprintboard.com/forum.php\n");
  3537. }
  3538. if (code_seen('n')) {
  3539. n_samples = code_value();
  3540. if (n_samples<4 || n_samples>50 ) {
  3541. SERIAL_PROTOCOLPGM("?Specified sample size not plausable.\n");
  3542. goto Sigma_Exit;
  3543. }
  3544. }
  3545. X_current = X_probe_location = st_get_position_mm(X_AXIS);
  3546. Y_current = Y_probe_location = st_get_position_mm(Y_AXIS);
  3547. Z_current = st_get_position_mm(Z_AXIS);
  3548. Z_start_location = st_get_position_mm(Z_AXIS) + Z_RAISE_BEFORE_PROBING;
  3549. ext_position = st_get_position_mm(E_AXIS);
  3550. if (code_seen('X') || code_seen('x') ) {
  3551. X_probe_location = code_value() - X_PROBE_OFFSET_FROM_EXTRUDER;
  3552. if (X_probe_location<X_MIN_POS || X_probe_location>X_MAX_POS ) {
  3553. SERIAL_PROTOCOLPGM("?Specified X position out of range.\n");
  3554. goto Sigma_Exit;
  3555. }
  3556. }
  3557. if (code_seen('Y') || code_seen('y') ) {
  3558. Y_probe_location = code_value() - Y_PROBE_OFFSET_FROM_EXTRUDER;
  3559. if (Y_probe_location<Y_MIN_POS || Y_probe_location>Y_MAX_POS ) {
  3560. SERIAL_PROTOCOLPGM("?Specified Y position out of range.\n");
  3561. goto Sigma_Exit;
  3562. }
  3563. }
  3564. if (code_seen('L') || code_seen('l') ) {
  3565. n_legs = code_value();
  3566. if ( n_legs==1 )
  3567. n_legs = 2;
  3568. if ( n_legs<0 || n_legs>15 ) {
  3569. SERIAL_PROTOCOLPGM("?Specified number of legs in movement not plausable.\n");
  3570. goto Sigma_Exit;
  3571. }
  3572. }
  3573. //
  3574. // Do all the preliminary setup work. First raise the probe.
  3575. //
  3576. st_synchronize();
  3577. plan_bed_level_matrix.set_to_identity();
  3578. plan_buffer_line( X_current, Y_current, Z_start_location,
  3579. ext_position,
  3580. homing_feedrate[Z_AXIS]/60,
  3581. active_extruder);
  3582. st_synchronize();
  3583. //
  3584. // Now get everything to the specified probe point So we can safely do a probe to
  3585. // get us close to the bed. If the Z-Axis is far from the bed, we don't want to
  3586. // use that as a starting point for each probe.
  3587. //
  3588. if (verbose_level > 2)
  3589. SERIAL_PROTOCOL("Positioning probe for the test.\n");
  3590. plan_buffer_line( X_probe_location, Y_probe_location, Z_start_location,
  3591. ext_position,
  3592. homing_feedrate[X_AXIS]/60,
  3593. active_extruder);
  3594. st_synchronize();
  3595. current_position[X_AXIS] = X_current = st_get_position_mm(X_AXIS);
  3596. current_position[Y_AXIS] = Y_current = st_get_position_mm(Y_AXIS);
  3597. current_position[Z_AXIS] = Z_current = st_get_position_mm(Z_AXIS);
  3598. current_position[E_AXIS] = ext_position = st_get_position_mm(E_AXIS);
  3599. //
  3600. // OK, do the inital probe to get us close to the bed.
  3601. // Then retrace the right amount and use that in subsequent probes
  3602. //
  3603. setup_for_endstop_move();
  3604. run_z_probe();
  3605. current_position[Z_AXIS] = Z_current = st_get_position_mm(Z_AXIS);
  3606. Z_start_location = st_get_position_mm(Z_AXIS) + Z_RAISE_BEFORE_PROBING;
  3607. plan_buffer_line( X_probe_location, Y_probe_location, Z_start_location,
  3608. ext_position,
  3609. homing_feedrate[X_AXIS]/60,
  3610. active_extruder);
  3611. st_synchronize();
  3612. current_position[Z_AXIS] = Z_current = st_get_position_mm(Z_AXIS);
  3613. for( n=0; n<n_samples; n++) {
  3614. do_blocking_move_to( X_probe_location, Y_probe_location, Z_start_location); // Make sure we are at the probe location
  3615. if ( n_legs) {
  3616. double radius=0.0, theta=0.0, x_sweep, y_sweep;
  3617. int rotational_direction, l;
  3618. rotational_direction = (unsigned long) millis() & 0x0001; // clockwise or counter clockwise
  3619. radius = (unsigned long) millis() % (long) (X_MAX_LENGTH/4); // limit how far out to go
  3620. theta = (float) ((unsigned long) millis() % (long) 360) / (360./(2*3.1415926)); // turn into radians
  3621. //SERIAL_ECHOPAIR("starting radius: ",radius);
  3622. //SERIAL_ECHOPAIR(" theta: ",theta);
  3623. //SERIAL_ECHOPAIR(" direction: ",rotational_direction);
  3624. //SERIAL_PROTOCOLLNPGM("");
  3625. for( l=0; l<n_legs-1; l++) {
  3626. if (rotational_direction==1)
  3627. theta += (float) ((unsigned long) millis() % (long) 20) / (360.0/(2*3.1415926)); // turn into radians
  3628. else
  3629. theta -= (float) ((unsigned long) millis() % (long) 20) / (360.0/(2*3.1415926)); // turn into radians
  3630. radius += (float) ( ((long) ((unsigned long) millis() % (long) 10)) - 5);
  3631. if ( radius<0.0 )
  3632. radius = -radius;
  3633. X_current = X_probe_location + cos(theta) * radius;
  3634. Y_current = Y_probe_location + sin(theta) * radius;
  3635. if ( X_current<X_MIN_POS) // Make sure our X & Y are sane
  3636. X_current = X_MIN_POS;
  3637. if ( X_current>X_MAX_POS)
  3638. X_current = X_MAX_POS;
  3639. if ( Y_current<Y_MIN_POS) // Make sure our X & Y are sane
  3640. Y_current = Y_MIN_POS;
  3641. if ( Y_current>Y_MAX_POS)
  3642. Y_current = Y_MAX_POS;
  3643. if (verbose_level>3 ) {
  3644. SERIAL_ECHOPAIR("x: ", X_current);
  3645. SERIAL_ECHOPAIR("y: ", Y_current);
  3646. SERIAL_PROTOCOLLNPGM("");
  3647. }
  3648. do_blocking_move_to( X_current, Y_current, Z_current );
  3649. }
  3650. do_blocking_move_to( X_probe_location, Y_probe_location, Z_start_location); // Go back to the probe location
  3651. }
  3652. setup_for_endstop_move();
  3653. run_z_probe();
  3654. sample_set[n] = current_position[Z_AXIS];
  3655. //
  3656. // Get the current mean for the data points we have so far
  3657. //
  3658. sum=0.0;
  3659. for( j=0; j<=n; j++) {
  3660. sum = sum + sample_set[j];
  3661. }
  3662. mean = sum / (double (n+1));
  3663. //
  3664. // Now, use that mean to calculate the standard deviation for the
  3665. // data points we have so far
  3666. //
  3667. sum=0.0;
  3668. for( j=0; j<=n; j++) {
  3669. sum = sum + (sample_set[j]-mean) * (sample_set[j]-mean);
  3670. }
  3671. sigma = sqrt( sum / (double (n+1)) );
  3672. if (verbose_level > 1) {
  3673. SERIAL_PROTOCOL(n+1);
  3674. SERIAL_PROTOCOL(" of ");
  3675. SERIAL_PROTOCOL(n_samples);
  3676. SERIAL_PROTOCOLPGM(" z: ");
  3677. SERIAL_PROTOCOL_F(current_position[Z_AXIS], 6);
  3678. }
  3679. if (verbose_level > 2) {
  3680. SERIAL_PROTOCOL(" mean: ");
  3681. SERIAL_PROTOCOL_F(mean,6);
  3682. SERIAL_PROTOCOL(" sigma: ");
  3683. SERIAL_PROTOCOL_F(sigma,6);
  3684. }
  3685. if (verbose_level > 0)
  3686. SERIAL_PROTOCOLPGM("\n");
  3687. plan_buffer_line( X_probe_location, Y_probe_location, Z_start_location,
  3688. current_position[E_AXIS], homing_feedrate[Z_AXIS]/60, active_extruder);
  3689. st_synchronize();
  3690. }
  3691. delay(1000);
  3692. clean_up_after_endstop_move();
  3693. // enable_endstops(true);
  3694. if (verbose_level > 0) {
  3695. SERIAL_PROTOCOLPGM("Mean: ");
  3696. SERIAL_PROTOCOL_F(mean, 6);
  3697. SERIAL_PROTOCOLPGM("\n");
  3698. }
  3699. SERIAL_PROTOCOLPGM("Standard Deviation: ");
  3700. SERIAL_PROTOCOL_F(sigma, 6);
  3701. SERIAL_PROTOCOLPGM("\n\n");
  3702. Sigma_Exit:
  3703. break;
  3704. }
  3705. #endif // Z_PROBE_REPEATABILITY_TEST
  3706. #endif // ENABLE_AUTO_BED_LEVELING
  3707. case 104: // M104
  3708. if(setTargetedHotend(104)){
  3709. break;
  3710. }
  3711. if (code_seen('S')) setTargetHotend(code_value(), tmp_extruder);
  3712. setWatch();
  3713. break;
  3714. case 112: // M112 -Emergency Stop
  3715. kill();
  3716. break;
  3717. case 140: // M140 set bed temp
  3718. if (code_seen('S')) setTargetBed(code_value());
  3719. break;
  3720. case 105 : // M105
  3721. if(setTargetedHotend(105)){
  3722. break;
  3723. }
  3724. #if defined(TEMP_0_PIN) && TEMP_0_PIN > -1
  3725. SERIAL_PROTOCOLPGM("ok T:");
  3726. SERIAL_PROTOCOL_F(degHotend(tmp_extruder),1);
  3727. SERIAL_PROTOCOLPGM(" /");
  3728. SERIAL_PROTOCOL_F(degTargetHotend(tmp_extruder),1);
  3729. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  3730. SERIAL_PROTOCOLPGM(" B:");
  3731. SERIAL_PROTOCOL_F(degBed(),1);
  3732. SERIAL_PROTOCOLPGM(" /");
  3733. SERIAL_PROTOCOL_F(degTargetBed(),1);
  3734. #endif //TEMP_BED_PIN
  3735. for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) {
  3736. SERIAL_PROTOCOLPGM(" T");
  3737. SERIAL_PROTOCOL(cur_extruder);
  3738. SERIAL_PROTOCOLPGM(":");
  3739. SERIAL_PROTOCOL_F(degHotend(cur_extruder),1);
  3740. SERIAL_PROTOCOLPGM(" /");
  3741. SERIAL_PROTOCOL_F(degTargetHotend(cur_extruder),1);
  3742. }
  3743. #else
  3744. SERIAL_ERROR_START;
  3745. SERIAL_ERRORLNRPGM(MSG_ERR_NO_THERMISTORS);
  3746. #endif
  3747. SERIAL_PROTOCOLPGM(" @:");
  3748. #ifdef EXTRUDER_WATTS
  3749. SERIAL_PROTOCOL((EXTRUDER_WATTS * getHeaterPower(tmp_extruder))/127);
  3750. SERIAL_PROTOCOLPGM("W");
  3751. #else
  3752. SERIAL_PROTOCOL(getHeaterPower(tmp_extruder));
  3753. #endif
  3754. SERIAL_PROTOCOLPGM(" B@:");
  3755. #ifdef BED_WATTS
  3756. SERIAL_PROTOCOL((BED_WATTS * getHeaterPower(-1))/127);
  3757. SERIAL_PROTOCOLPGM("W");
  3758. #else
  3759. SERIAL_PROTOCOL(getHeaterPower(-1));
  3760. #endif
  3761. #ifdef SHOW_TEMP_ADC_VALUES
  3762. {float raw = 0.0;
  3763. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  3764. SERIAL_PROTOCOLPGM(" ADC B:");
  3765. SERIAL_PROTOCOL_F(degBed(),1);
  3766. SERIAL_PROTOCOLPGM("C->");
  3767. raw = rawBedTemp();
  3768. SERIAL_PROTOCOL_F(raw/OVERSAMPLENR,5);
  3769. SERIAL_PROTOCOLPGM(" Rb->");
  3770. SERIAL_PROTOCOL_F(100 * (1 + (PtA * (raw/OVERSAMPLENR)) + (PtB * sq((raw/OVERSAMPLENR)))), 5);
  3771. SERIAL_PROTOCOLPGM(" Rxb->");
  3772. SERIAL_PROTOCOL_F(raw, 5);
  3773. #endif
  3774. for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) {
  3775. SERIAL_PROTOCOLPGM(" T");
  3776. SERIAL_PROTOCOL(cur_extruder);
  3777. SERIAL_PROTOCOLPGM(":");
  3778. SERIAL_PROTOCOL_F(degHotend(cur_extruder),1);
  3779. SERIAL_PROTOCOLPGM("C->");
  3780. raw = rawHotendTemp(cur_extruder);
  3781. SERIAL_PROTOCOL_F(raw/OVERSAMPLENR,5);
  3782. SERIAL_PROTOCOLPGM(" Rt");
  3783. SERIAL_PROTOCOL(cur_extruder);
  3784. SERIAL_PROTOCOLPGM("->");
  3785. SERIAL_PROTOCOL_F(100 * (1 + (PtA * (raw/OVERSAMPLENR)) + (PtB * sq((raw/OVERSAMPLENR)))), 5);
  3786. SERIAL_PROTOCOLPGM(" Rx");
  3787. SERIAL_PROTOCOL(cur_extruder);
  3788. SERIAL_PROTOCOLPGM("->");
  3789. SERIAL_PROTOCOL_F(raw, 5);
  3790. }}
  3791. #endif
  3792. SERIAL_PROTOCOLLN("");
  3793. KEEPALIVE_STATE(NOT_BUSY);
  3794. return;
  3795. break;
  3796. case 109:
  3797. {// M109 - Wait for extruder heater to reach target.
  3798. if(setTargetedHotend(109)){
  3799. break;
  3800. }
  3801. LCD_MESSAGERPGM(MSG_HEATING);
  3802. heating_status = 1;
  3803. if (farm_mode) { prusa_statistics(1); };
  3804. #ifdef AUTOTEMP
  3805. autotemp_enabled=false;
  3806. #endif
  3807. if (code_seen('S')) {
  3808. setTargetHotend(code_value(), tmp_extruder);
  3809. CooldownNoWait = true;
  3810. } else if (code_seen('R')) {
  3811. setTargetHotend(code_value(), tmp_extruder);
  3812. CooldownNoWait = false;
  3813. }
  3814. #ifdef AUTOTEMP
  3815. if (code_seen('S')) autotemp_min=code_value();
  3816. if (code_seen('B')) autotemp_max=code_value();
  3817. if (code_seen('F'))
  3818. {
  3819. autotemp_factor=code_value();
  3820. autotemp_enabled=true;
  3821. }
  3822. #endif
  3823. setWatch();
  3824. codenum = millis();
  3825. /* See if we are heating up or cooling down */
  3826. target_direction = isHeatingHotend(tmp_extruder); // true if heating, false if cooling
  3827. KEEPALIVE_STATE(NOT_BUSY);
  3828. cancel_heatup = false;
  3829. wait_for_heater(codenum); //loops until target temperature is reached
  3830. LCD_MESSAGERPGM(MSG_HEATING_COMPLETE);
  3831. KEEPALIVE_STATE(IN_HANDLER);
  3832. heating_status = 2;
  3833. if (farm_mode) { prusa_statistics(2); };
  3834. //starttime=millis();
  3835. previous_millis_cmd = millis();
  3836. }
  3837. break;
  3838. case 190: // M190 - Wait for bed heater to reach target.
  3839. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  3840. LCD_MESSAGERPGM(MSG_BED_HEATING);
  3841. heating_status = 3;
  3842. if (farm_mode) { prusa_statistics(1); };
  3843. if (code_seen('S'))
  3844. {
  3845. setTargetBed(code_value());
  3846. CooldownNoWait = true;
  3847. }
  3848. else if (code_seen('R'))
  3849. {
  3850. setTargetBed(code_value());
  3851. CooldownNoWait = false;
  3852. }
  3853. codenum = millis();
  3854. cancel_heatup = false;
  3855. target_direction = isHeatingBed(); // true if heating, false if cooling
  3856. KEEPALIVE_STATE(NOT_BUSY);
  3857. while ( (target_direction)&&(!cancel_heatup) ? (isHeatingBed()) : (isCoolingBed()&&(CooldownNoWait==false)) )
  3858. {
  3859. if(( millis() - codenum) > 1000 ) //Print Temp Reading every 1 second while heating up.
  3860. {
  3861. if (!farm_mode) {
  3862. float tt = degHotend(active_extruder);
  3863. SERIAL_PROTOCOLPGM("T:");
  3864. SERIAL_PROTOCOL(tt);
  3865. SERIAL_PROTOCOLPGM(" E:");
  3866. SERIAL_PROTOCOL((int)active_extruder);
  3867. SERIAL_PROTOCOLPGM(" B:");
  3868. SERIAL_PROTOCOL_F(degBed(), 1);
  3869. SERIAL_PROTOCOLLN("");
  3870. }
  3871. codenum = millis();
  3872. }
  3873. manage_heater();
  3874. manage_inactivity();
  3875. lcd_update();
  3876. }
  3877. LCD_MESSAGERPGM(MSG_BED_DONE);
  3878. KEEPALIVE_STATE(IN_HANDLER);
  3879. heating_status = 4;
  3880. previous_millis_cmd = millis();
  3881. #endif
  3882. break;
  3883. #if defined(FAN_PIN) && FAN_PIN > -1
  3884. case 106: //M106 Fan On
  3885. if (code_seen('S')){
  3886. fanSpeed=constrain(code_value(),0,255);
  3887. }
  3888. else {
  3889. fanSpeed=255;
  3890. }
  3891. break;
  3892. case 107: //M107 Fan Off
  3893. fanSpeed = 0;
  3894. break;
  3895. #endif //FAN_PIN
  3896. #if defined(PS_ON_PIN) && PS_ON_PIN > -1
  3897. case 80: // M80 - Turn on Power Supply
  3898. SET_OUTPUT(PS_ON_PIN); //GND
  3899. WRITE(PS_ON_PIN, PS_ON_AWAKE);
  3900. // If you have a switch on suicide pin, this is useful
  3901. // if you want to start another print with suicide feature after
  3902. // a print without suicide...
  3903. #if defined SUICIDE_PIN && SUICIDE_PIN > -1
  3904. SET_OUTPUT(SUICIDE_PIN);
  3905. WRITE(SUICIDE_PIN, HIGH);
  3906. #endif
  3907. #ifdef ULTIPANEL
  3908. powersupply = true;
  3909. LCD_MESSAGERPGM(WELCOME_MSG);
  3910. lcd_update();
  3911. #endif
  3912. break;
  3913. #endif
  3914. case 81: // M81 - Turn off Power Supply
  3915. disable_heater();
  3916. st_synchronize();
  3917. disable_e0();
  3918. disable_e1();
  3919. disable_e2();
  3920. finishAndDisableSteppers();
  3921. fanSpeed = 0;
  3922. delay(1000); // Wait a little before to switch off
  3923. #if defined(SUICIDE_PIN) && SUICIDE_PIN > -1
  3924. st_synchronize();
  3925. suicide();
  3926. #elif defined(PS_ON_PIN) && PS_ON_PIN > -1
  3927. SET_OUTPUT(PS_ON_PIN);
  3928. WRITE(PS_ON_PIN, PS_ON_ASLEEP);
  3929. #endif
  3930. #ifdef ULTIPANEL
  3931. powersupply = false;
  3932. LCD_MESSAGERPGM(CAT4(CUSTOM_MENDEL_NAME,PSTR(" "),MSG_OFF,PSTR("."))); //!!
  3933. /*
  3934. MACHNAME = "Prusa i3"
  3935. MSGOFF = "Vypnuto"
  3936. "Prusai3"" ""vypnuto""."
  3937. "Prusa i3"" "MSG_ALL[lang_selected][50]"."
  3938. */
  3939. lcd_update();
  3940. #endif
  3941. break;
  3942. case 82:
  3943. axis_relative_modes[3] = false;
  3944. break;
  3945. case 83:
  3946. axis_relative_modes[3] = true;
  3947. break;
  3948. case 18: //compatibility
  3949. case 84: // M84
  3950. if(code_seen('S')){
  3951. stepper_inactive_time = code_value() * 1000;
  3952. }
  3953. else
  3954. {
  3955. bool all_axis = !((code_seen(axis_codes[X_AXIS])) || (code_seen(axis_codes[Y_AXIS])) || (code_seen(axis_codes[Z_AXIS]))|| (code_seen(axis_codes[E_AXIS])));
  3956. if(all_axis)
  3957. {
  3958. st_synchronize();
  3959. disable_e0();
  3960. disable_e1();
  3961. disable_e2();
  3962. finishAndDisableSteppers();
  3963. }
  3964. else
  3965. {
  3966. st_synchronize();
  3967. if (code_seen('X')) disable_x();
  3968. if (code_seen('Y')) disable_y();
  3969. if (code_seen('Z')) disable_z();
  3970. #if ((E0_ENABLE_PIN != X_ENABLE_PIN) && (E1_ENABLE_PIN != Y_ENABLE_PIN)) // Only enable on boards that have seperate ENABLE_PINS
  3971. if (code_seen('E')) {
  3972. disable_e0();
  3973. disable_e1();
  3974. disable_e2();
  3975. }
  3976. #endif
  3977. }
  3978. }
  3979. snmm_filaments_used = 0;
  3980. break;
  3981. case 85: // M85
  3982. if(code_seen('S')) {
  3983. max_inactive_time = code_value() * 1000;
  3984. }
  3985. break;
  3986. case 92: // M92
  3987. for(int8_t i=0; i < NUM_AXIS; i++)
  3988. {
  3989. if(code_seen(axis_codes[i]))
  3990. {
  3991. if(i == 3) { // E
  3992. float value = code_value();
  3993. if(value < 20.0) {
  3994. float factor = axis_steps_per_unit[i] / value; // increase e constants if M92 E14 is given for netfab.
  3995. max_jerk[E_AXIS] *= factor;
  3996. max_feedrate[i] *= factor;
  3997. axis_steps_per_sqr_second[i] *= factor;
  3998. }
  3999. axis_steps_per_unit[i] = value;
  4000. }
  4001. else {
  4002. axis_steps_per_unit[i] = code_value();
  4003. }
  4004. }
  4005. }
  4006. break;
  4007. case 110: // M110 - reset line pos
  4008. if (code_seen('N'))
  4009. gcode_LastN = code_value_long();
  4010. break;
  4011. #ifdef HOST_KEEPALIVE_FEATURE
  4012. case 113: // M113 - Get or set Host Keepalive interval
  4013. if (code_seen('S')) {
  4014. host_keepalive_interval = (uint8_t)code_value_short();
  4015. NOMORE(host_keepalive_interval, 60);
  4016. } else {
  4017. SERIAL_ECHO_START;
  4018. SERIAL_ECHOPAIR("M113 S", (unsigned long)host_keepalive_interval);
  4019. SERIAL_PROTOCOLLN("");
  4020. }
  4021. break;
  4022. #endif
  4023. case 115: // M115
  4024. if (code_seen('V')) {
  4025. // Report the Prusa version number.
  4026. SERIAL_PROTOCOLLNRPGM(FW_VERSION_STR_P());
  4027. } else if (code_seen('U')) {
  4028. // Check the firmware version provided. If the firmware version provided by the U code is higher than the currently running firmware,
  4029. // pause the print and ask the user to upgrade the firmware.
  4030. show_upgrade_dialog_if_version_newer(++ strchr_pointer);
  4031. } else {
  4032. SERIAL_PROTOCOLRPGM(MSG_M115_REPORT);
  4033. }
  4034. break;
  4035. /* case 117: // M117 display message
  4036. starpos = (strchr(strchr_pointer + 5,'*'));
  4037. if(starpos!=NULL)
  4038. *(starpos)='\0';
  4039. lcd_setstatus(strchr_pointer + 5);
  4040. break;*/
  4041. case 114: // M114
  4042. SERIAL_PROTOCOLPGM("X:");
  4043. SERIAL_PROTOCOL(current_position[X_AXIS]);
  4044. SERIAL_PROTOCOLPGM(" Y:");
  4045. SERIAL_PROTOCOL(current_position[Y_AXIS]);
  4046. SERIAL_PROTOCOLPGM(" Z:");
  4047. SERIAL_PROTOCOL(current_position[Z_AXIS]);
  4048. SERIAL_PROTOCOLPGM(" E:");
  4049. SERIAL_PROTOCOL(current_position[E_AXIS]);
  4050. SERIAL_PROTOCOLRPGM(MSG_COUNT_X);
  4051. SERIAL_PROTOCOL(float(st_get_position(X_AXIS))/axis_steps_per_unit[X_AXIS]);
  4052. SERIAL_PROTOCOLPGM(" Y:");
  4053. SERIAL_PROTOCOL(float(st_get_position(Y_AXIS))/axis_steps_per_unit[Y_AXIS]);
  4054. SERIAL_PROTOCOLPGM(" Z:");
  4055. SERIAL_PROTOCOL(float(st_get_position(Z_AXIS))/axis_steps_per_unit[Z_AXIS]);
  4056. SERIAL_PROTOCOLLN("");
  4057. break;
  4058. case 120: // M120
  4059. enable_endstops(false) ;
  4060. break;
  4061. case 121: // M121
  4062. enable_endstops(true) ;
  4063. break;
  4064. case 119: // M119
  4065. SERIAL_PROTOCOLRPGM(MSG_M119_REPORT);
  4066. SERIAL_PROTOCOLLN("");
  4067. #if defined(X_MIN_PIN) && X_MIN_PIN > -1
  4068. SERIAL_PROTOCOLRPGM(MSG_X_MIN);
  4069. if(READ(X_MIN_PIN)^X_MIN_ENDSTOP_INVERTING){
  4070. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_HIT);
  4071. }else{
  4072. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_OPEN);
  4073. }
  4074. SERIAL_PROTOCOLLN("");
  4075. #endif
  4076. #if defined(X_MAX_PIN) && X_MAX_PIN > -1
  4077. SERIAL_PROTOCOLRPGM(MSG_X_MAX);
  4078. if(READ(X_MAX_PIN)^X_MAX_ENDSTOP_INVERTING){
  4079. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_HIT);
  4080. }else{
  4081. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_OPEN);
  4082. }
  4083. SERIAL_PROTOCOLLN("");
  4084. #endif
  4085. #if defined(Y_MIN_PIN) && Y_MIN_PIN > -1
  4086. SERIAL_PROTOCOLRPGM(MSG_Y_MIN);
  4087. if(READ(Y_MIN_PIN)^Y_MIN_ENDSTOP_INVERTING){
  4088. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_HIT);
  4089. }else{
  4090. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_OPEN);
  4091. }
  4092. SERIAL_PROTOCOLLN("");
  4093. #endif
  4094. #if defined(Y_MAX_PIN) && Y_MAX_PIN > -1
  4095. SERIAL_PROTOCOLRPGM(MSG_Y_MAX);
  4096. if(READ(Y_MAX_PIN)^Y_MAX_ENDSTOP_INVERTING){
  4097. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_HIT);
  4098. }else{
  4099. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_OPEN);
  4100. }
  4101. SERIAL_PROTOCOLLN("");
  4102. #endif
  4103. #if defined(Z_MIN_PIN) && Z_MIN_PIN > -1
  4104. SERIAL_PROTOCOLRPGM(MSG_Z_MIN);
  4105. if(READ(Z_MIN_PIN)^Z_MIN_ENDSTOP_INVERTING){
  4106. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_HIT);
  4107. }else{
  4108. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_OPEN);
  4109. }
  4110. SERIAL_PROTOCOLLN("");
  4111. #endif
  4112. #if defined(Z_MAX_PIN) && Z_MAX_PIN > -1
  4113. SERIAL_PROTOCOLRPGM(MSG_Z_MAX);
  4114. if(READ(Z_MAX_PIN)^Z_MAX_ENDSTOP_INVERTING){
  4115. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_HIT);
  4116. }else{
  4117. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_OPEN);
  4118. }
  4119. SERIAL_PROTOCOLLN("");
  4120. #endif
  4121. break;
  4122. //TODO: update for all axis, use for loop
  4123. #ifdef BLINKM
  4124. case 150: // M150
  4125. {
  4126. byte red;
  4127. byte grn;
  4128. byte blu;
  4129. if(code_seen('R')) red = code_value();
  4130. if(code_seen('U')) grn = code_value();
  4131. if(code_seen('B')) blu = code_value();
  4132. SendColors(red,grn,blu);
  4133. }
  4134. break;
  4135. #endif //BLINKM
  4136. case 200: // M200 D<millimeters> set filament diameter and set E axis units to cubic millimeters (use S0 to set back to millimeters).
  4137. {
  4138. tmp_extruder = active_extruder;
  4139. if(code_seen('T')) {
  4140. tmp_extruder = code_value();
  4141. if(tmp_extruder >= EXTRUDERS) {
  4142. SERIAL_ECHO_START;
  4143. SERIAL_ECHO(MSG_M200_INVALID_EXTRUDER);
  4144. break;
  4145. }
  4146. }
  4147. if(code_seen('D')) {
  4148. float diameter = (float)code_value();
  4149. if (diameter == 0.0) {
  4150. // setting any extruder filament size disables volumetric on the assumption that
  4151. // slicers either generate in extruder values as cubic mm or as as filament feeds
  4152. // for all extruders
  4153. volumetric_enabled = false;
  4154. } else {
  4155. filament_size[tmp_extruder] = (float)code_value();
  4156. // make sure all extruders have some sane value for the filament size
  4157. filament_size[0] = (filament_size[0] == 0.0 ? DEFAULT_NOMINAL_FILAMENT_DIA : filament_size[0]);
  4158. #if EXTRUDERS > 1
  4159. filament_size[1] = (filament_size[1] == 0.0 ? DEFAULT_NOMINAL_FILAMENT_DIA : filament_size[1]);
  4160. #if EXTRUDERS > 2
  4161. filament_size[2] = (filament_size[2] == 0.0 ? DEFAULT_NOMINAL_FILAMENT_DIA : filament_size[2]);
  4162. #endif
  4163. #endif
  4164. volumetric_enabled = true;
  4165. }
  4166. } else {
  4167. //reserved for setting filament diameter via UFID or filament measuring device
  4168. break;
  4169. }
  4170. calculate_volumetric_multipliers();
  4171. }
  4172. break;
  4173. case 201: // M201
  4174. for(int8_t i=0; i < NUM_AXIS; i++)
  4175. {
  4176. if(code_seen(axis_codes[i]))
  4177. {
  4178. max_acceleration_units_per_sq_second[i] = code_value();
  4179. }
  4180. }
  4181. // steps per sq second need to be updated to agree with the units per sq second (as they are what is used in the planner)
  4182. reset_acceleration_rates();
  4183. break;
  4184. #if 0 // Not used for Sprinter/grbl gen6
  4185. case 202: // M202
  4186. for(int8_t i=0; i < NUM_AXIS; i++) {
  4187. if(code_seen(axis_codes[i])) axis_travel_steps_per_sqr_second[i] = code_value() * axis_steps_per_unit[i];
  4188. }
  4189. break;
  4190. #endif
  4191. case 203: // M203 max feedrate mm/sec
  4192. for(int8_t i=0; i < NUM_AXIS; i++) {
  4193. if(code_seen(axis_codes[i])) max_feedrate[i] = code_value();
  4194. }
  4195. break;
  4196. case 204: // M204 acclereration S normal moves T filmanent only moves
  4197. {
  4198. if(code_seen('S')) acceleration = code_value() ;
  4199. if(code_seen('T')) retract_acceleration = code_value() ;
  4200. }
  4201. break;
  4202. case 205: //M205 advanced settings: minimum travel speed S=while printing T=travel only, B=minimum segment time X= maximum xy jerk, Z=maximum Z jerk
  4203. {
  4204. if(code_seen('S')) minimumfeedrate = code_value();
  4205. if(code_seen('T')) mintravelfeedrate = code_value();
  4206. if(code_seen('B')) minsegmenttime = code_value() ;
  4207. if(code_seen('X')) max_jerk[X_AXIS] = max_jerk[Y_AXIS] = code_value();
  4208. if(code_seen('Y')) max_jerk[Y_AXIS] = code_value();
  4209. if(code_seen('Z')) max_jerk[Z_AXIS] = code_value();
  4210. if(code_seen('E')) max_jerk[E_AXIS] = code_value();
  4211. }
  4212. break;
  4213. case 206: // M206 additional homing offset
  4214. for(int8_t i=0; i < 3; i++)
  4215. {
  4216. if(code_seen(axis_codes[i])) add_homing[i] = code_value();
  4217. }
  4218. break;
  4219. #ifdef FWRETRACT
  4220. case 207: //M207 - set retract length S[positive mm] F[feedrate mm/min] Z[additional zlift/hop]
  4221. {
  4222. if(code_seen('S'))
  4223. {
  4224. retract_length = code_value() ;
  4225. }
  4226. if(code_seen('F'))
  4227. {
  4228. retract_feedrate = code_value()/60 ;
  4229. }
  4230. if(code_seen('Z'))
  4231. {
  4232. retract_zlift = code_value() ;
  4233. }
  4234. }break;
  4235. case 208: // M208 - set retract recover length S[positive mm surplus to the M207 S*] F[feedrate mm/min]
  4236. {
  4237. if(code_seen('S'))
  4238. {
  4239. retract_recover_length = code_value() ;
  4240. }
  4241. if(code_seen('F'))
  4242. {
  4243. retract_recover_feedrate = code_value()/60 ;
  4244. }
  4245. }break;
  4246. case 209: // M209 - S<1=true/0=false> enable automatic retract detect if the slicer did not support G10/11: every normal extrude-only move will be classified as retract depending on the direction.
  4247. {
  4248. if(code_seen('S'))
  4249. {
  4250. int t= code_value() ;
  4251. switch(t)
  4252. {
  4253. case 0:
  4254. {
  4255. autoretract_enabled=false;
  4256. retracted[0]=false;
  4257. #if EXTRUDERS > 1
  4258. retracted[1]=false;
  4259. #endif
  4260. #if EXTRUDERS > 2
  4261. retracted[2]=false;
  4262. #endif
  4263. }break;
  4264. case 1:
  4265. {
  4266. autoretract_enabled=true;
  4267. retracted[0]=false;
  4268. #if EXTRUDERS > 1
  4269. retracted[1]=false;
  4270. #endif
  4271. #if EXTRUDERS > 2
  4272. retracted[2]=false;
  4273. #endif
  4274. }break;
  4275. default:
  4276. SERIAL_ECHO_START;
  4277. SERIAL_ECHORPGM(MSG_UNKNOWN_COMMAND);
  4278. SERIAL_ECHO(CMDBUFFER_CURRENT_STRING);
  4279. SERIAL_ECHOLNPGM("\"");
  4280. }
  4281. }
  4282. }break;
  4283. #endif // FWRETRACT
  4284. #if EXTRUDERS > 1
  4285. case 218: // M218 - set hotend offset (in mm), T<extruder_number> X<offset_on_X> Y<offset_on_Y>
  4286. {
  4287. if(setTargetedHotend(218)){
  4288. break;
  4289. }
  4290. if(code_seen('X'))
  4291. {
  4292. extruder_offset[X_AXIS][tmp_extruder] = code_value();
  4293. }
  4294. if(code_seen('Y'))
  4295. {
  4296. extruder_offset[Y_AXIS][tmp_extruder] = code_value();
  4297. }
  4298. SERIAL_ECHO_START;
  4299. SERIAL_ECHORPGM(MSG_HOTEND_OFFSET);
  4300. for(tmp_extruder = 0; tmp_extruder < EXTRUDERS; tmp_extruder++)
  4301. {
  4302. SERIAL_ECHO(" ");
  4303. SERIAL_ECHO(extruder_offset[X_AXIS][tmp_extruder]);
  4304. SERIAL_ECHO(",");
  4305. SERIAL_ECHO(extruder_offset[Y_AXIS][tmp_extruder]);
  4306. }
  4307. SERIAL_ECHOLN("");
  4308. }break;
  4309. #endif
  4310. case 220: // M220 S<factor in percent>- set speed factor override percentage
  4311. {
  4312. if (code_seen('B')) //backup current speed factor
  4313. {
  4314. saved_feedmultiply_mm = feedmultiply;
  4315. }
  4316. if(code_seen('S'))
  4317. {
  4318. feedmultiply = code_value() ;
  4319. }
  4320. if (code_seen('R')) { //restore previous feedmultiply
  4321. feedmultiply = saved_feedmultiply_mm;
  4322. }
  4323. }
  4324. break;
  4325. case 221: // M221 S<factor in percent>- set extrude factor override percentage
  4326. {
  4327. if(code_seen('S'))
  4328. {
  4329. int tmp_code = code_value();
  4330. if (code_seen('T'))
  4331. {
  4332. if(setTargetedHotend(221)){
  4333. break;
  4334. }
  4335. extruder_multiply[tmp_extruder] = tmp_code;
  4336. }
  4337. else
  4338. {
  4339. extrudemultiply = tmp_code ;
  4340. }
  4341. }
  4342. }
  4343. break;
  4344. case 226: // M226 P<pin number> S<pin state>- Wait until the specified pin reaches the state required
  4345. {
  4346. if(code_seen('P')){
  4347. int pin_number = code_value(); // pin number
  4348. int pin_state = -1; // required pin state - default is inverted
  4349. if(code_seen('S')) pin_state = code_value(); // required pin state
  4350. if(pin_state >= -1 && pin_state <= 1){
  4351. for(int8_t i = 0; i < (int8_t)(sizeof(sensitive_pins)/sizeof(int)); i++)
  4352. {
  4353. if (sensitive_pins[i] == pin_number)
  4354. {
  4355. pin_number = -1;
  4356. break;
  4357. }
  4358. }
  4359. if (pin_number > -1)
  4360. {
  4361. int target = LOW;
  4362. st_synchronize();
  4363. pinMode(pin_number, INPUT);
  4364. switch(pin_state){
  4365. case 1:
  4366. target = HIGH;
  4367. break;
  4368. case 0:
  4369. target = LOW;
  4370. break;
  4371. case -1:
  4372. target = !digitalRead(pin_number);
  4373. break;
  4374. }
  4375. while(digitalRead(pin_number) != target){
  4376. manage_heater();
  4377. manage_inactivity();
  4378. lcd_update();
  4379. }
  4380. }
  4381. }
  4382. }
  4383. }
  4384. break;
  4385. #if NUM_SERVOS > 0
  4386. case 280: // M280 - set servo position absolute. P: servo index, S: angle or microseconds
  4387. {
  4388. int servo_index = -1;
  4389. int servo_position = 0;
  4390. if (code_seen('P'))
  4391. servo_index = code_value();
  4392. if (code_seen('S')) {
  4393. servo_position = code_value();
  4394. if ((servo_index >= 0) && (servo_index < NUM_SERVOS)) {
  4395. #if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
  4396. servos[servo_index].attach(0);
  4397. #endif
  4398. servos[servo_index].write(servo_position);
  4399. #if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
  4400. delay(PROBE_SERVO_DEACTIVATION_DELAY);
  4401. servos[servo_index].detach();
  4402. #endif
  4403. }
  4404. else {
  4405. SERIAL_ECHO_START;
  4406. SERIAL_ECHO("Servo ");
  4407. SERIAL_ECHO(servo_index);
  4408. SERIAL_ECHOLN(" out of range");
  4409. }
  4410. }
  4411. else if (servo_index >= 0) {
  4412. SERIAL_PROTOCOL(MSG_OK);
  4413. SERIAL_PROTOCOL(" Servo ");
  4414. SERIAL_PROTOCOL(servo_index);
  4415. SERIAL_PROTOCOL(": ");
  4416. SERIAL_PROTOCOL(servos[servo_index].read());
  4417. SERIAL_PROTOCOLLN("");
  4418. }
  4419. }
  4420. break;
  4421. #endif // NUM_SERVOS > 0
  4422. #if (LARGE_FLASH == true && ( BEEPER > 0 || defined(ULTRALCD) || defined(LCD_USE_I2C_BUZZER)))
  4423. case 300: // M300
  4424. {
  4425. int beepS = code_seen('S') ? code_value() : 110;
  4426. int beepP = code_seen('P') ? code_value() : 1000;
  4427. if (beepS > 0)
  4428. {
  4429. #if BEEPER > 0
  4430. tone(BEEPER, beepS);
  4431. delay(beepP);
  4432. noTone(BEEPER);
  4433. #elif defined(ULTRALCD)
  4434. lcd_buzz(beepS, beepP);
  4435. #elif defined(LCD_USE_I2C_BUZZER)
  4436. lcd_buzz(beepP, beepS);
  4437. #endif
  4438. }
  4439. else
  4440. {
  4441. delay(beepP);
  4442. }
  4443. }
  4444. break;
  4445. #endif // M300
  4446. #ifdef PIDTEMP
  4447. case 301: // M301
  4448. {
  4449. if(code_seen('P')) Kp = code_value();
  4450. if(code_seen('I')) Ki = scalePID_i(code_value());
  4451. if(code_seen('D')) Kd = scalePID_d(code_value());
  4452. #ifdef PID_ADD_EXTRUSION_RATE
  4453. if(code_seen('C')) Kc = code_value();
  4454. #endif
  4455. updatePID();
  4456. SERIAL_PROTOCOLRPGM(MSG_OK);
  4457. SERIAL_PROTOCOL(" p:");
  4458. SERIAL_PROTOCOL(Kp);
  4459. SERIAL_PROTOCOL(" i:");
  4460. SERIAL_PROTOCOL(unscalePID_i(Ki));
  4461. SERIAL_PROTOCOL(" d:");
  4462. SERIAL_PROTOCOL(unscalePID_d(Kd));
  4463. #ifdef PID_ADD_EXTRUSION_RATE
  4464. SERIAL_PROTOCOL(" c:");
  4465. //Kc does not have scaling applied above, or in resetting defaults
  4466. SERIAL_PROTOCOL(Kc);
  4467. #endif
  4468. SERIAL_PROTOCOLLN("");
  4469. }
  4470. break;
  4471. #endif //PIDTEMP
  4472. #ifdef PIDTEMPBED
  4473. case 304: // M304
  4474. {
  4475. if(code_seen('P')) bedKp = code_value();
  4476. if(code_seen('I')) bedKi = scalePID_i(code_value());
  4477. if(code_seen('D')) bedKd = scalePID_d(code_value());
  4478. updatePID();
  4479. SERIAL_PROTOCOLRPGM(MSG_OK);
  4480. SERIAL_PROTOCOL(" p:");
  4481. SERIAL_PROTOCOL(bedKp);
  4482. SERIAL_PROTOCOL(" i:");
  4483. SERIAL_PROTOCOL(unscalePID_i(bedKi));
  4484. SERIAL_PROTOCOL(" d:");
  4485. SERIAL_PROTOCOL(unscalePID_d(bedKd));
  4486. SERIAL_PROTOCOLLN("");
  4487. }
  4488. break;
  4489. #endif //PIDTEMP
  4490. case 240: // M240 Triggers a camera by emulating a Canon RC-1 : http://www.doc-diy.net/photo/rc-1_hacked/
  4491. {
  4492. #ifdef CHDK
  4493. SET_OUTPUT(CHDK);
  4494. WRITE(CHDK, HIGH);
  4495. chdkHigh = millis();
  4496. chdkActive = true;
  4497. #else
  4498. #if defined(PHOTOGRAPH_PIN) && PHOTOGRAPH_PIN > -1
  4499. const uint8_t NUM_PULSES=16;
  4500. const float PULSE_LENGTH=0.01524;
  4501. for(int i=0; i < NUM_PULSES; i++) {
  4502. WRITE(PHOTOGRAPH_PIN, HIGH);
  4503. _delay_ms(PULSE_LENGTH);
  4504. WRITE(PHOTOGRAPH_PIN, LOW);
  4505. _delay_ms(PULSE_LENGTH);
  4506. }
  4507. delay(7.33);
  4508. for(int i=0; i < NUM_PULSES; i++) {
  4509. WRITE(PHOTOGRAPH_PIN, HIGH);
  4510. _delay_ms(PULSE_LENGTH);
  4511. WRITE(PHOTOGRAPH_PIN, LOW);
  4512. _delay_ms(PULSE_LENGTH);
  4513. }
  4514. #endif
  4515. #endif //chdk end if
  4516. }
  4517. break;
  4518. #ifdef DOGLCD
  4519. case 250: // M250 Set LCD contrast value: C<value> (value 0..63)
  4520. {
  4521. if (code_seen('C')) {
  4522. lcd_setcontrast( ((int)code_value())&63 );
  4523. }
  4524. SERIAL_PROTOCOLPGM("lcd contrast value: ");
  4525. SERIAL_PROTOCOL(lcd_contrast);
  4526. SERIAL_PROTOCOLLN("");
  4527. }
  4528. break;
  4529. #endif
  4530. #ifdef PREVENT_DANGEROUS_EXTRUDE
  4531. case 302: // allow cold extrudes, or set the minimum extrude temperature
  4532. {
  4533. float temp = .0;
  4534. if (code_seen('S')) temp=code_value();
  4535. set_extrude_min_temp(temp);
  4536. }
  4537. break;
  4538. #endif
  4539. case 303: // M303 PID autotune
  4540. {
  4541. float temp = 150.0;
  4542. int e=0;
  4543. int c=5;
  4544. if (code_seen('E')) e=code_value();
  4545. if (e<0)
  4546. temp=70;
  4547. if (code_seen('S')) temp=code_value();
  4548. if (code_seen('C')) c=code_value();
  4549. PID_autotune(temp, e, c);
  4550. }
  4551. break;
  4552. case 400: // M400 finish all moves
  4553. {
  4554. st_synchronize();
  4555. }
  4556. break;
  4557. #ifdef FILAMENT_SENSOR
  4558. case 404: //M404 Enter the nominal filament width (3mm, 1.75mm ) N<3.0> or display nominal filament width
  4559. {
  4560. #if (FILWIDTH_PIN > -1)
  4561. if(code_seen('N')) filament_width_nominal=code_value();
  4562. else{
  4563. SERIAL_PROTOCOLPGM("Filament dia (nominal mm):");
  4564. SERIAL_PROTOCOLLN(filament_width_nominal);
  4565. }
  4566. #endif
  4567. }
  4568. break;
  4569. case 405: //M405 Turn on filament sensor for control
  4570. {
  4571. if(code_seen('D')) meas_delay_cm=code_value();
  4572. if(meas_delay_cm> MAX_MEASUREMENT_DELAY)
  4573. meas_delay_cm = MAX_MEASUREMENT_DELAY;
  4574. if(delay_index2 == -1) //initialize the ring buffer if it has not been done since startup
  4575. {
  4576. int temp_ratio = widthFil_to_size_ratio();
  4577. for (delay_index1=0; delay_index1<(MAX_MEASUREMENT_DELAY+1); ++delay_index1 ){
  4578. measurement_delay[delay_index1]=temp_ratio-100; //subtract 100 to scale within a signed byte
  4579. }
  4580. delay_index1=0;
  4581. delay_index2=0;
  4582. }
  4583. filament_sensor = true ;
  4584. //SERIAL_PROTOCOLPGM("Filament dia (measured mm):");
  4585. //SERIAL_PROTOCOL(filament_width_meas);
  4586. //SERIAL_PROTOCOLPGM("Extrusion ratio(%):");
  4587. //SERIAL_PROTOCOL(extrudemultiply);
  4588. }
  4589. break;
  4590. case 406: //M406 Turn off filament sensor for control
  4591. {
  4592. filament_sensor = false ;
  4593. }
  4594. break;
  4595. case 407: //M407 Display measured filament diameter
  4596. {
  4597. SERIAL_PROTOCOLPGM("Filament dia (measured mm):");
  4598. SERIAL_PROTOCOLLN(filament_width_meas);
  4599. }
  4600. break;
  4601. #endif
  4602. case 500: // M500 Store settings in EEPROM
  4603. {
  4604. Config_StoreSettings();
  4605. }
  4606. break;
  4607. case 501: // M501 Read settings from EEPROM
  4608. {
  4609. Config_RetrieveSettings();
  4610. }
  4611. break;
  4612. case 502: // M502 Revert to default settings
  4613. {
  4614. Config_ResetDefault();
  4615. }
  4616. break;
  4617. case 503: // M503 print settings currently in memory
  4618. {
  4619. Config_PrintSettings();
  4620. }
  4621. break;
  4622. case 509: //M509 Force language selection
  4623. {
  4624. lcd_force_language_selection();
  4625. SERIAL_ECHO_START;
  4626. SERIAL_PROTOCOLPGM(("LANG SEL FORCED"));
  4627. }
  4628. break;
  4629. #ifdef ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED
  4630. case 540:
  4631. {
  4632. if(code_seen('S')) abort_on_endstop_hit = code_value() > 0;
  4633. }
  4634. break;
  4635. #endif
  4636. #ifdef CUSTOM_M_CODE_SET_Z_PROBE_OFFSET
  4637. case CUSTOM_M_CODE_SET_Z_PROBE_OFFSET:
  4638. {
  4639. float value;
  4640. if (code_seen('Z'))
  4641. {
  4642. value = code_value();
  4643. if ((Z_PROBE_OFFSET_RANGE_MIN <= value) && (value <= Z_PROBE_OFFSET_RANGE_MAX))
  4644. {
  4645. zprobe_zoffset = -value; // compare w/ line 278 of ConfigurationStore.cpp
  4646. SERIAL_ECHO_START;
  4647. SERIAL_ECHOLNRPGM(CAT4(MSG_ZPROBE_ZOFFSET, " ", MSG_OK,PSTR("")));
  4648. SERIAL_PROTOCOLLN("");
  4649. }
  4650. else
  4651. {
  4652. SERIAL_ECHO_START;
  4653. SERIAL_ECHORPGM(MSG_ZPROBE_ZOFFSET);
  4654. SERIAL_ECHORPGM(MSG_Z_MIN);
  4655. SERIAL_ECHO(Z_PROBE_OFFSET_RANGE_MIN);
  4656. SERIAL_ECHORPGM(MSG_Z_MAX);
  4657. SERIAL_ECHO(Z_PROBE_OFFSET_RANGE_MAX);
  4658. SERIAL_PROTOCOLLN("");
  4659. }
  4660. }
  4661. else
  4662. {
  4663. SERIAL_ECHO_START;
  4664. SERIAL_ECHOLNRPGM(CAT2(MSG_ZPROBE_ZOFFSET, PSTR(" : ")));
  4665. SERIAL_ECHO(-zprobe_zoffset);
  4666. SERIAL_PROTOCOLLN("");
  4667. }
  4668. break;
  4669. }
  4670. #endif // CUSTOM_M_CODE_SET_Z_PROBE_OFFSET
  4671. #ifdef FILAMENTCHANGEENABLE
  4672. case 600: //Pause for filament change X[pos] Y[pos] Z[relative lift] E[initial retract] L[later retract distance for removal]
  4673. {
  4674. st_synchronize();
  4675. float target[4];
  4676. float lastpos[4];
  4677. if (farm_mode)
  4678. {
  4679. prusa_statistics(22);
  4680. }
  4681. feedmultiplyBckp=feedmultiply;
  4682. target[X_AXIS]=current_position[X_AXIS];
  4683. target[Y_AXIS]=current_position[Y_AXIS];
  4684. target[Z_AXIS]=current_position[Z_AXIS];
  4685. target[E_AXIS]=current_position[E_AXIS];
  4686. lastpos[X_AXIS]=current_position[X_AXIS];
  4687. lastpos[Y_AXIS]=current_position[Y_AXIS];
  4688. lastpos[Z_AXIS]=current_position[Z_AXIS];
  4689. lastpos[E_AXIS]=current_position[E_AXIS];
  4690. //Retract extruder
  4691. if(code_seen('E'))
  4692. {
  4693. target[E_AXIS]+= code_value();
  4694. }
  4695. else
  4696. {
  4697. #ifdef FILAMENTCHANGE_FIRSTRETRACT
  4698. target[E_AXIS]+= FILAMENTCHANGE_FIRSTRETRACT ;
  4699. #endif
  4700. }
  4701. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_RFEED, active_extruder);
  4702. //Lift Z
  4703. if(code_seen('Z'))
  4704. {
  4705. target[Z_AXIS]+= code_value();
  4706. }
  4707. else
  4708. {
  4709. #ifdef FILAMENTCHANGE_ZADD
  4710. target[Z_AXIS]+= FILAMENTCHANGE_ZADD ;
  4711. // XXX: Removed unused var 'TooLowZ'
  4712. if(target[Z_AXIS] < 10){
  4713. target[Z_AXIS]+= 10 ;
  4714. }
  4715. #endif
  4716. }
  4717. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_ZFEED, active_extruder);
  4718. //Move XY to side
  4719. if(code_seen('X'))
  4720. {
  4721. target[X_AXIS]+= code_value();
  4722. }
  4723. else
  4724. {
  4725. #ifdef FILAMENTCHANGE_XPOS
  4726. target[X_AXIS]= FILAMENTCHANGE_XPOS ;
  4727. #endif
  4728. }
  4729. if(code_seen('Y'))
  4730. {
  4731. target[Y_AXIS]= code_value();
  4732. }
  4733. else
  4734. {
  4735. #ifdef FILAMENTCHANGE_YPOS
  4736. target[Y_AXIS]= FILAMENTCHANGE_YPOS ;
  4737. #endif
  4738. }
  4739. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_XYFEED, active_extruder);
  4740. st_synchronize();
  4741. custom_message = true;
  4742. lcd_setstatuspgm(MSG_UNLOADING_FILAMENT);
  4743. // Unload filament
  4744. if(code_seen('L'))
  4745. {
  4746. target[E_AXIS]+= code_value();
  4747. }
  4748. else
  4749. {
  4750. #ifdef SNMM
  4751. #else
  4752. #ifdef FILAMENTCHANGE_FINALRETRACT
  4753. target[E_AXIS] += FILAMENTCHANGE_FINALRETRACT;
  4754. #endif
  4755. #endif // SNMM
  4756. }
  4757. #ifdef SNMM
  4758. target[E_AXIS] += 12;
  4759. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 3500, active_extruder);
  4760. target[E_AXIS] += 6;
  4761. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 5000, active_extruder);
  4762. target[E_AXIS] += (FIL_LOAD_LENGTH * -1);
  4763. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 5000, active_extruder);
  4764. st_synchronize();
  4765. target[E_AXIS] += (FIL_COOLING);
  4766. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 50, active_extruder);
  4767. target[E_AXIS] += (FIL_COOLING*-1);
  4768. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 50, active_extruder);
  4769. target[E_AXIS] += (bowden_length[snmm_extruder] *-1);
  4770. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 3000, active_extruder);
  4771. st_synchronize();
  4772. #else
  4773. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_RFEED, active_extruder);
  4774. #endif // SNMM
  4775. //finish moves
  4776. st_synchronize();
  4777. //disable extruder steppers so filament can be removed
  4778. disable_e0();
  4779. disable_e1();
  4780. disable_e2();
  4781. delay(100);
  4782. //Wait for user to insert filament
  4783. uint8_t cnt=0;
  4784. int counterBeep = 0;
  4785. lcd_wait_interact();
  4786. load_filament_time = millis();
  4787. KEEPALIVE_STATE(PAUSED_FOR_USER);
  4788. bool bFirst=true;
  4789. while(!lcd_clicked()){
  4790. cnt++;
  4791. manage_heater();
  4792. manage_inactivity(true);
  4793. /*#ifdef SNMM
  4794. target[E_AXIS] += 0.002;
  4795. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 500, active_extruder);
  4796. #endif // SNMM*/
  4797. if(cnt==0)
  4798. {
  4799. #if BEEPER > 0
  4800. if (counterBeep== 500){
  4801. counterBeep = 0;
  4802. }
  4803. SET_OUTPUT(BEEPER);
  4804. if (counterBeep== 0){
  4805. if((eSoundMode==e_SOUND_MODE_LOUD)||((eSoundMode==e_SOUND_MODE_ONCE)&&bFirst))
  4806. {
  4807. bFirst=false;
  4808. WRITE(BEEPER, HIGH);
  4809. }
  4810. }
  4811. if (counterBeep== 20){
  4812. WRITE(BEEPER,LOW);
  4813. }
  4814. counterBeep++;
  4815. #else
  4816. #if !defined(LCD_FEEDBACK_FREQUENCY_HZ) || !defined(LCD_FEEDBACK_FREQUENCY_DURATION_MS)
  4817. lcd_buzz(1000/6,100);
  4818. #else
  4819. lcd_buzz(LCD_FEEDBACK_FREQUENCY_DURATION_MS,LCD_FEEDBACK_FREQUENCY_HZ);
  4820. #endif
  4821. #endif
  4822. }
  4823. }
  4824. KEEPALIVE_STATE(IN_HANDLER);
  4825. WRITE(BEEPER, LOW);
  4826. #ifdef SNMM
  4827. display_loading();
  4828. KEEPALIVE_STATE(PAUSED_FOR_USER);
  4829. do {
  4830. target[E_AXIS] += 0.002;
  4831. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 500, active_extruder);
  4832. delay_keep_alive(2);
  4833. } while (!lcd_clicked());
  4834. KEEPALIVE_STATE(IN_HANDLER);
  4835. /*if (millis() - load_filament_time > 2) {
  4836. load_filament_time = millis();
  4837. target[E_AXIS] += 0.001;
  4838. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 1000, active_extruder);
  4839. }*/
  4840. #endif
  4841. //Filament inserted
  4842. //Feed the filament to the end of nozzle quickly
  4843. #ifdef SNMM
  4844. st_synchronize();
  4845. target[E_AXIS] += bowden_length[snmm_extruder];
  4846. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 3000, active_extruder);
  4847. target[E_AXIS] += FIL_LOAD_LENGTH - 60;
  4848. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 1400, active_extruder);
  4849. target[E_AXIS] += 40;
  4850. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 400, active_extruder);
  4851. target[E_AXIS] += 10;
  4852. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 50, active_extruder);
  4853. #else
  4854. target[E_AXIS] += FILAMENTCHANGE_FIRSTFEED;
  4855. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_EFEED, active_extruder);
  4856. #endif // SNMM
  4857. //Extrude some filament
  4858. target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  4859. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_EXFEED, active_extruder);
  4860. //Wait for user to check the state
  4861. lcd_change_fil_state = 0;
  4862. lcd_loading_filament();
  4863. while ((lcd_change_fil_state == 0)||(lcd_change_fil_state != 1)){
  4864. lcd_change_fil_state = 0;
  4865. KEEPALIVE_STATE(PAUSED_FOR_USER);
  4866. lcd_alright();
  4867. KEEPALIVE_STATE(IN_HANDLER);
  4868. switch(lcd_change_fil_state){
  4869. // Filament failed to load so load it again
  4870. case 2:
  4871. #ifdef SNMM
  4872. display_loading();
  4873. do {
  4874. target[E_AXIS] += 0.002;
  4875. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 500, active_extruder);
  4876. delay_keep_alive(2);
  4877. } while (!lcd_clicked());
  4878. st_synchronize();
  4879. target[E_AXIS] += bowden_length[snmm_extruder];
  4880. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 3000, active_extruder);
  4881. target[E_AXIS] += FIL_LOAD_LENGTH - 60;
  4882. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 1400, active_extruder);
  4883. target[E_AXIS] += 40;
  4884. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 400, active_extruder);
  4885. target[E_AXIS] += 10;
  4886. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 50, active_extruder);
  4887. #else
  4888. target[E_AXIS]+= FILAMENTCHANGE_FIRSTFEED ;
  4889. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_EFEED, active_extruder);
  4890. #endif
  4891. target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  4892. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_EXFEED, active_extruder);
  4893. lcd_loading_filament();
  4894. break;
  4895. // Filament loaded properly but color is not clear
  4896. case 3:
  4897. target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  4898. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder);
  4899. lcd_loading_color();
  4900. break;
  4901. // Everything good
  4902. default:
  4903. lcd_change_success();
  4904. lcd_update_enable(true);
  4905. break;
  4906. }
  4907. }
  4908. //Not let's go back to print
  4909. //Feed a little of filament to stabilize pressure
  4910. target[E_AXIS]+= FILAMENTCHANGE_RECFEED;
  4911. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_EXFEED, active_extruder);
  4912. //Retract
  4913. target[E_AXIS]+= FILAMENTCHANGE_FIRSTRETRACT;
  4914. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_RFEED, active_extruder);
  4915. //plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 70, active_extruder); //should do nothing
  4916. //Move XY back
  4917. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_XYFEED, active_extruder);
  4918. //Move Z back
  4919. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_ZFEED, active_extruder);
  4920. target[E_AXIS]= target[E_AXIS] - FILAMENTCHANGE_FIRSTRETRACT;
  4921. //Unretract
  4922. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_RFEED, active_extruder);
  4923. //Set E position to original
  4924. plan_set_e_position(lastpos[E_AXIS]);
  4925. //Recover feed rate
  4926. feedmultiply=feedmultiplyBckp;
  4927. char cmd[9];
  4928. sprintf_P(cmd, PSTR("M220 S%i"), feedmultiplyBckp);
  4929. enquecommand(cmd);
  4930. lcd_setstatuspgm(WELCOME_MSG);
  4931. custom_message = false;
  4932. custom_message_type = 0;
  4933. }
  4934. break;
  4935. #endif //FILAMENTCHANGEENABLE
  4936. case 601: {
  4937. if(lcd_commands_type == 0) lcd_commands_type = LCD_COMMAND_LONG_PAUSE;
  4938. }
  4939. break;
  4940. case 602: {
  4941. if(lcd_commands_type == 0) lcd_commands_type = LCD_COMMAND_LONG_PAUSE_RESUME;
  4942. }
  4943. break;
  4944. #ifdef LIN_ADVANCE
  4945. case 900: // M900: Set LIN_ADVANCE options.
  4946. gcode_M900();
  4947. break;
  4948. #endif
  4949. case 907: // M907 Set digital trimpot motor current using axis codes.
  4950. {
  4951. #if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
  4952. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) digipot_current(i,code_value());
  4953. if(code_seen('B')) digipot_current(4,code_value());
  4954. if(code_seen('S')) for(int i=0;i<=4;i++) digipot_current(i,code_value());
  4955. #endif
  4956. #ifdef MOTOR_CURRENT_PWM_XY_PIN
  4957. if(code_seen('X')) digipot_current(0, code_value());
  4958. #endif
  4959. #ifdef MOTOR_CURRENT_PWM_Z_PIN
  4960. if(code_seen('Z')) digipot_current(1, code_value());
  4961. #endif
  4962. #ifdef MOTOR_CURRENT_PWM_E_PIN
  4963. if(code_seen('E')) digipot_current(2, code_value());
  4964. #endif
  4965. #ifdef DIGIPOT_I2C
  4966. // this one uses actual amps in floating point
  4967. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) digipot_i2c_set_current(i, code_value());
  4968. // for each additional extruder (named B,C,D,E..., channels 4,5,6,7...)
  4969. for(int i=NUM_AXIS;i<DIGIPOT_I2C_NUM_CHANNELS;i++) if(code_seen('B'+i-NUM_AXIS)) digipot_i2c_set_current(i, code_value());
  4970. #endif
  4971. }
  4972. break;
  4973. case 908: // M908 Control digital trimpot directly.
  4974. {
  4975. #if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
  4976. uint8_t channel,current;
  4977. if(code_seen('P')) channel=code_value();
  4978. if(code_seen('S')) current=code_value();
  4979. digitalPotWrite(channel, current);
  4980. #endif
  4981. }
  4982. break;
  4983. case 350: // M350 Set microstepping mode. Warning: Steps per unit remains unchanged. S code sets stepping mode for all drivers.
  4984. {
  4985. #if defined(X_MS1_PIN) && X_MS1_PIN > -1
  4986. if(code_seen('S')) for(int i=0;i<=4;i++) microstep_mode(i,code_value());
  4987. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) microstep_mode(i,(uint8_t)code_value());
  4988. if(code_seen('B')) microstep_mode(4,code_value());
  4989. microstep_readings();
  4990. #endif
  4991. }
  4992. break;
  4993. case 351: // M351 Toggle MS1 MS2 pins directly, S# determines MS1 or MS2, X# sets the pin high/low.
  4994. {
  4995. #if defined(X_MS1_PIN) && X_MS1_PIN > -1
  4996. if(code_seen('S')) switch((int)code_value())
  4997. {
  4998. case 1:
  4999. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) microstep_ms(i,code_value(),-1);
  5000. if(code_seen('B')) microstep_ms(4,code_value(),-1);
  5001. break;
  5002. case 2:
  5003. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) microstep_ms(i,-1,code_value());
  5004. if(code_seen('B')) microstep_ms(4,-1,code_value());
  5005. break;
  5006. }
  5007. microstep_readings();
  5008. #endif
  5009. }
  5010. break;
  5011. case 701: //M701: load filament
  5012. {
  5013. gcode_M701();
  5014. }
  5015. break;
  5016. case 702:
  5017. {
  5018. #ifdef SNMM
  5019. if (code_seen('U')) {
  5020. extr_unload_used(); //unload all filaments which were used in current print
  5021. }
  5022. else if (code_seen('C')) {
  5023. extr_unload(); //unload just current filament
  5024. }
  5025. else {
  5026. extr_unload_all(); //unload all filaments
  5027. }
  5028. #else
  5029. custom_message = true;
  5030. custom_message_type = 2;
  5031. lcd_setstatuspgm(MSG_UNLOADING_FILAMENT);
  5032. current_position[E_AXIS] -= 80;
  5033. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 7000 / 60, active_extruder);
  5034. st_synchronize();
  5035. lcd_setstatuspgm(WELCOME_MSG);
  5036. custom_message = false;
  5037. custom_message_type = 0;
  5038. #endif
  5039. }
  5040. break;
  5041. case 999: // M999: Restart after being stopped
  5042. Stopped = false;
  5043. lcd_reset_alert_level();
  5044. gcode_LastN = Stopped_gcode_LastN;
  5045. FlushSerialRequestResend();
  5046. break;
  5047. default: SERIAL_ECHOLNPGM("Invalid M code.");
  5048. }
  5049. } // end if(code_seen('M')) (end of M codes)
  5050. else if(code_seen('T'))
  5051. {
  5052. int index;
  5053. st_synchronize();
  5054. for (index = 1; *(strchr_pointer + index) == ' ' || *(strchr_pointer + index) == '\t'; index++);
  5055. if ((*(strchr_pointer + index) < '0' || *(strchr_pointer + index) > '9') && *(strchr_pointer + index) != '?') {
  5056. SERIAL_ECHOLNPGM("Invalid T code.");
  5057. }
  5058. else {
  5059. if (*(strchr_pointer + index) == '?') {
  5060. tmp_extruder = choose_extruder_menu();
  5061. }
  5062. else {
  5063. tmp_extruder = code_value();
  5064. }
  5065. snmm_filaments_used |= (1 << tmp_extruder); //for stop print
  5066. #ifdef SNMM
  5067. #ifdef LIN_ADVANCE
  5068. if (snmm_extruder != tmp_extruder)
  5069. clear_current_adv_vars(); //Check if the selected extruder is not the active one and reset LIN_ADVANCE variables if so.
  5070. #endif
  5071. snmm_extruder = tmp_extruder;
  5072. delay(100);
  5073. disable_e0();
  5074. disable_e1();
  5075. disable_e2();
  5076. pinMode(E_MUX0_PIN, OUTPUT);
  5077. pinMode(E_MUX1_PIN, OUTPUT);
  5078. delay(100);
  5079. SERIAL_ECHO_START;
  5080. SERIAL_ECHO("T:");
  5081. SERIAL_ECHOLN((int)tmp_extruder);
  5082. switch (tmp_extruder) {
  5083. case 1:
  5084. WRITE(E_MUX0_PIN, HIGH);
  5085. WRITE(E_MUX1_PIN, LOW);
  5086. break;
  5087. case 2:
  5088. WRITE(E_MUX0_PIN, LOW);
  5089. WRITE(E_MUX1_PIN, HIGH);
  5090. break;
  5091. case 3:
  5092. WRITE(E_MUX0_PIN, HIGH);
  5093. WRITE(E_MUX1_PIN, HIGH);
  5094. break;
  5095. default:
  5096. WRITE(E_MUX0_PIN, LOW);
  5097. WRITE(E_MUX1_PIN, LOW);
  5098. break;
  5099. }
  5100. delay(100);
  5101. #else
  5102. if (tmp_extruder >= EXTRUDERS) {
  5103. SERIAL_ECHO_START;
  5104. SERIAL_ECHOPGM("T");
  5105. SERIAL_PROTOCOLLN((int)tmp_extruder);
  5106. SERIAL_ECHOLNRPGM(MSG_INVALID_EXTRUDER);
  5107. }
  5108. else {
  5109. #if EXTRUDERS == 1
  5110. if (code_seen('F')) {
  5111. next_feedrate = code_value();
  5112. if (next_feedrate > 0.0) {
  5113. feedrate = next_feedrate;
  5114. }
  5115. }
  5116. #else
  5117. boolean make_move = false;
  5118. if (code_seen('F')) {
  5119. make_move = true;
  5120. next_feedrate = code_value();
  5121. if (next_feedrate > 0.0) {
  5122. feedrate = next_feedrate;
  5123. }
  5124. }
  5125. if (tmp_extruder != active_extruder) {
  5126. // Save current position to return to after applying extruder offset
  5127. memcpy(destination, current_position, sizeof(destination));
  5128. // Offset extruder (only by XY)
  5129. int i;
  5130. for (i = 0; i < 2; i++) {
  5131. current_position[i] = current_position[i] -
  5132. extruder_offset[i][active_extruder] +
  5133. extruder_offset[i][tmp_extruder];
  5134. }
  5135. // Set the new active extruder and position
  5136. active_extruder = tmp_extruder;
  5137. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  5138. // Move to the old position if 'F' was in the parameters
  5139. if (make_move && Stopped == false) {
  5140. prepare_move();
  5141. }
  5142. }
  5143. #endif
  5144. SERIAL_ECHO_START;
  5145. SERIAL_ECHORPGM(MSG_ACTIVE_EXTRUDER);
  5146. SERIAL_PROTOCOLLN((int)active_extruder);
  5147. }
  5148. #endif
  5149. }
  5150. } // end if(code_seen('T')) (end of T codes)
  5151. #ifdef DEBUG_DCODES
  5152. else if (code_seen('D')) // D codes (debug)
  5153. {
  5154. switch((int)code_value_uint8())
  5155. {
  5156. case 0: // D0 - Reset
  5157. if (*(strchr_pointer + 1) == 0) break;
  5158. MYSERIAL.println("D0 - Reset");
  5159. asm volatile("jmp 0x00000");
  5160. break;
  5161. case 1: // D1 - Clear EEPROM
  5162. {
  5163. MYSERIAL.println("D1 - Clear EEPROM");
  5164. cli();
  5165. for (int i = 0; i < 4096; i++)
  5166. eeprom_write_byte((unsigned char*)i, (unsigned char)0);
  5167. sei();
  5168. }
  5169. break;
  5170. case 2: // D2 - Read/Write PIN
  5171. {
  5172. if (code_seen('P')) // Pin (0-255)
  5173. {
  5174. int pin = (int)code_value();
  5175. if ((pin >= 0) && (pin <= 255))
  5176. {
  5177. if (code_seen('F')) // Function in/out (0/1)
  5178. {
  5179. int fnc = (int)code_value();
  5180. if (fnc == 0) pinMode(pin, INPUT);
  5181. else if (fnc == 1) pinMode(pin, OUTPUT);
  5182. }
  5183. if (code_seen('V')) // Value (0/1)
  5184. {
  5185. int val = (int)code_value();
  5186. if (val == 0) digitalWrite(pin, LOW);
  5187. else if (val == 1) digitalWrite(pin, HIGH);
  5188. }
  5189. else
  5190. {
  5191. int val = (digitalRead(pin) != LOW)?1:0;
  5192. MYSERIAL.print("PIN");
  5193. MYSERIAL.print(pin);
  5194. MYSERIAL.print("=");
  5195. MYSERIAL.println(val);
  5196. }
  5197. }
  5198. }
  5199. }
  5200. break;
  5201. }
  5202. }
  5203. #endif //DEBUG_DCODES
  5204. else
  5205. {
  5206. SERIAL_ECHO_START;
  5207. SERIAL_ECHORPGM(MSG_UNKNOWN_COMMAND);
  5208. SERIAL_ECHO(CMDBUFFER_CURRENT_STRING);
  5209. SERIAL_ECHOLNPGM("\"");
  5210. }
  5211. KEEPALIVE_STATE(NOT_BUSY);
  5212. ClearToSend();
  5213. }
  5214. void FlushSerialRequestResend()
  5215. {
  5216. //char cmdbuffer[bufindr][100]="Resend:";
  5217. MYSERIAL.flush();
  5218. SERIAL_PROTOCOLRPGM(MSG_RESEND);
  5219. SERIAL_PROTOCOLLN(gcode_LastN + 1);
  5220. ClearToSend();
  5221. }
  5222. // Confirm the execution of a command, if sent from a serial line.
  5223. // Execution of a command from a SD card will not be confirmed.
  5224. void ClearToSend()
  5225. {
  5226. previous_millis_cmd = millis();
  5227. if (CMDBUFFER_CURRENT_TYPE == CMDBUFFER_CURRENT_TYPE_USB)
  5228. SERIAL_PROTOCOLLNRPGM(MSG_OK);
  5229. }
  5230. void update_currents() {
  5231. float current_high[3] = DEFAULT_PWM_MOTOR_CURRENT_LOUD;
  5232. float current_low[3] = DEFAULT_PWM_MOTOR_CURRENT;
  5233. float tmp_motor[3];
  5234. //SERIAL_ECHOLNPGM("Currents updated: ");
  5235. if (destination[Z_AXIS] < Z_SILENT) {
  5236. //SERIAL_ECHOLNPGM("LOW");
  5237. for (uint8_t i = 0; i < 3; i++) {
  5238. digipot_current(i, current_low[i]);
  5239. /*MYSERIAL.print(int(i));
  5240. SERIAL_ECHOPGM(": ");
  5241. MYSERIAL.println(current_low[i]);*/
  5242. }
  5243. }
  5244. else if (destination[Z_AXIS] > Z_HIGH_POWER) {
  5245. //SERIAL_ECHOLNPGM("HIGH");
  5246. for (uint8_t i = 0; i < 3; i++) {
  5247. digipot_current(i, current_high[i]);
  5248. /*MYSERIAL.print(int(i));
  5249. SERIAL_ECHOPGM(": ");
  5250. MYSERIAL.println(current_high[i]);*/
  5251. }
  5252. }
  5253. else {
  5254. for (uint8_t i = 0; i < 3; i++) {
  5255. float q = current_low[i] - Z_SILENT*((current_high[i] - current_low[i]) / (Z_HIGH_POWER - Z_SILENT));
  5256. tmp_motor[i] = ((current_high[i] - current_low[i]) / (Z_HIGH_POWER - Z_SILENT))*destination[Z_AXIS] + q;
  5257. digipot_current(i, tmp_motor[i]);
  5258. /*MYSERIAL.print(int(i));
  5259. SERIAL_ECHOPGM(": ");
  5260. MYSERIAL.println(tmp_motor[i]);*/
  5261. }
  5262. }
  5263. }
  5264. void get_coordinates()
  5265. {
  5266. // XXX: Unused var (set but not ref)
  5267. // bool seen[4]={false,false,false,false};
  5268. for(int8_t i=0; i < NUM_AXIS; i++) {
  5269. if(code_seen(axis_codes[i]))
  5270. {
  5271. destination[i] = (float)code_value() + (axis_relative_modes[i] || relative_mode)*current_position[i];
  5272. // seen[i]=true;
  5273. if (i == Z_AXIS && SilentModeMenu == 2) update_currents();
  5274. }
  5275. else destination[i] = current_position[i]; //Are these else lines really needed?
  5276. }
  5277. if(code_seen('F')) {
  5278. next_feedrate = code_value();
  5279. if(next_feedrate > 0.0) feedrate = next_feedrate;
  5280. }
  5281. }
  5282. void get_arc_coordinates()
  5283. {
  5284. #ifdef SF_ARC_FIX
  5285. bool relative_mode_backup = relative_mode;
  5286. relative_mode = true;
  5287. #endif
  5288. get_coordinates();
  5289. #ifdef SF_ARC_FIX
  5290. relative_mode=relative_mode_backup;
  5291. #endif
  5292. if(code_seen('I')) {
  5293. offset[0] = code_value();
  5294. }
  5295. else {
  5296. offset[0] = 0.0;
  5297. }
  5298. if(code_seen('J')) {
  5299. offset[1] = code_value();
  5300. }
  5301. else {
  5302. offset[1] = 0.0;
  5303. }
  5304. }
  5305. void clamp_to_software_endstops(float target[3])
  5306. {
  5307. #ifdef DEBUG_DISABLE_SWLIMITS
  5308. return;
  5309. #endif //DEBUG_DISABLE_SWLIMITS
  5310. world2machine_clamp(target[0], target[1]);
  5311. // Clamp the Z coordinate.
  5312. if (min_software_endstops) {
  5313. float negative_z_offset = 0;
  5314. #ifdef ENABLE_AUTO_BED_LEVELING
  5315. if (Z_PROBE_OFFSET_FROM_EXTRUDER < 0) negative_z_offset = negative_z_offset + Z_PROBE_OFFSET_FROM_EXTRUDER;
  5316. if (add_homing[Z_AXIS] < 0) negative_z_offset = negative_z_offset + add_homing[Z_AXIS];
  5317. #endif
  5318. if (target[Z_AXIS] < min_pos[Z_AXIS]+negative_z_offset) target[Z_AXIS] = min_pos[Z_AXIS]+negative_z_offset;
  5319. }
  5320. if (max_software_endstops) {
  5321. if (target[Z_AXIS] > max_pos[Z_AXIS]) target[Z_AXIS] = max_pos[Z_AXIS];
  5322. }
  5323. }
  5324. #ifdef MESH_BED_LEVELING
  5325. void mesh_plan_buffer_line(const float &x, const float &y, const float &z, const float &e, const float &feed_rate, const uint8_t extruder) {
  5326. float dx = x - current_position[X_AXIS];
  5327. float dy = y - current_position[Y_AXIS];
  5328. float dz = z - current_position[Z_AXIS];
  5329. int n_segments = 0;
  5330. if (mbl.active) {
  5331. float len = abs(dx) + abs(dy);
  5332. if (len > 0)
  5333. // Split to 3cm segments or shorter.
  5334. n_segments = int(ceil(len / 30.f));
  5335. }
  5336. if (n_segments > 1) {
  5337. float de = e - current_position[E_AXIS];
  5338. for (int i = 1; i < n_segments; ++ i) {
  5339. float t = float(i) / float(n_segments);
  5340. plan_buffer_line(
  5341. current_position[X_AXIS] + t * dx,
  5342. current_position[Y_AXIS] + t * dy,
  5343. current_position[Z_AXIS] + t * dz,
  5344. current_position[E_AXIS] + t * de,
  5345. feed_rate, extruder);
  5346. }
  5347. }
  5348. // The rest of the path.
  5349. plan_buffer_line(x, y, z, e, feed_rate, extruder);
  5350. current_position[X_AXIS] = x;
  5351. current_position[Y_AXIS] = y;
  5352. current_position[Z_AXIS] = z;
  5353. current_position[E_AXIS] = e;
  5354. }
  5355. #endif // MESH_BED_LEVELING
  5356. void prepare_move()
  5357. {
  5358. clamp_to_software_endstops(destination);
  5359. previous_millis_cmd = millis();
  5360. // Do not use feedmultiply for E or Z only moves
  5361. if( (current_position[X_AXIS] == destination [X_AXIS]) && (current_position[Y_AXIS] == destination [Y_AXIS])) {
  5362. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  5363. }
  5364. else {
  5365. #ifdef MESH_BED_LEVELING
  5366. mesh_plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate*feedmultiply*(1./(60.f*100.f)), active_extruder);
  5367. #else
  5368. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate*feedmultiply*(1./(60.f*100.f)), active_extruder);
  5369. #endif
  5370. }
  5371. for(int8_t i=0; i < NUM_AXIS; i++) {
  5372. current_position[i] = destination[i];
  5373. }
  5374. }
  5375. void prepare_arc_move(char isclockwise) {
  5376. float r = hypot(offset[X_AXIS], offset[Y_AXIS]); // Compute arc radius for mc_arc
  5377. // Trace the arc
  5378. mc_arc(current_position, destination, offset, X_AXIS, Y_AXIS, Z_AXIS, feedrate*feedmultiply/60/100.0, r, isclockwise, active_extruder);
  5379. // As far as the parser is concerned, the position is now == target. In reality the
  5380. // motion control system might still be processing the action and the real tool position
  5381. // in any intermediate location.
  5382. for(int8_t i=0; i < NUM_AXIS; i++) {
  5383. current_position[i] = destination[i];
  5384. }
  5385. previous_millis_cmd = millis();
  5386. }
  5387. #if defined(CONTROLLERFAN_PIN) && CONTROLLERFAN_PIN > -1
  5388. #if defined(FAN_PIN)
  5389. #if CONTROLLERFAN_PIN == FAN_PIN
  5390. #error "You cannot set CONTROLLERFAN_PIN equal to FAN_PIN"
  5391. #endif
  5392. #endif
  5393. unsigned long lastMotor = 0; //Save the time for when a motor was turned on last
  5394. unsigned long lastMotorCheck = 0;
  5395. void controllerFan()
  5396. {
  5397. if ((millis() - lastMotorCheck) >= 2500) //Not a time critical function, so we only check every 2500ms
  5398. {
  5399. lastMotorCheck = millis();
  5400. if(!READ(X_ENABLE_PIN) || !READ(Y_ENABLE_PIN) || !READ(Z_ENABLE_PIN) || (soft_pwm_bed > 0)
  5401. #if EXTRUDERS > 2
  5402. || !READ(E2_ENABLE_PIN)
  5403. #endif
  5404. #if EXTRUDER > 1
  5405. #if defined(X2_ENABLE_PIN) && X2_ENABLE_PIN > -1
  5406. || !READ(X2_ENABLE_PIN)
  5407. #endif
  5408. || !READ(E1_ENABLE_PIN)
  5409. #endif
  5410. || !READ(E0_ENABLE_PIN)) //If any of the drivers are enabled...
  5411. {
  5412. lastMotor = millis(); //... set time to NOW so the fan will turn on
  5413. }
  5414. if ((millis() - lastMotor) >= (CONTROLLERFAN_SECS*1000UL) || lastMotor == 0) //If the last time any driver was enabled, is longer since than CONTROLLERSEC...
  5415. {
  5416. digitalWrite(CONTROLLERFAN_PIN, 0);
  5417. analogWrite(CONTROLLERFAN_PIN, 0);
  5418. }
  5419. else
  5420. {
  5421. // allows digital or PWM fan output to be used (see M42 handling)
  5422. digitalWrite(CONTROLLERFAN_PIN, CONTROLLERFAN_SPEED);
  5423. analogWrite(CONTROLLERFAN_PIN, CONTROLLERFAN_SPEED);
  5424. }
  5425. }
  5426. }
  5427. #endif
  5428. #ifdef TEMP_STAT_LEDS
  5429. static bool blue_led = false;
  5430. static bool red_led = false;
  5431. static uint32_t stat_update = 0;
  5432. void handle_status_leds(void) {
  5433. float max_temp = 0.0;
  5434. if(millis() > stat_update) {
  5435. stat_update += 500; // Update every 0.5s
  5436. for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) {
  5437. max_temp = max(max_temp, degHotend(cur_extruder));
  5438. max_temp = max(max_temp, degTargetHotend(cur_extruder));
  5439. }
  5440. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  5441. max_temp = max(max_temp, degTargetBed());
  5442. max_temp = max(max_temp, degBed());
  5443. #endif
  5444. if((max_temp > 55.0) && (red_led == false)) {
  5445. digitalWrite(STAT_LED_RED, 1);
  5446. digitalWrite(STAT_LED_BLUE, 0);
  5447. red_led = true;
  5448. blue_led = false;
  5449. }
  5450. if((max_temp < 54.0) && (blue_led == false)) {
  5451. digitalWrite(STAT_LED_RED, 0);
  5452. digitalWrite(STAT_LED_BLUE, 1);
  5453. red_led = false;
  5454. blue_led = true;
  5455. }
  5456. }
  5457. }
  5458. #endif
  5459. void manage_inactivity(bool ignore_stepper_queue/*=false*/) //default argument set in Marlin.h
  5460. {
  5461. #if defined(KILL_PIN) && KILL_PIN > -1
  5462. static int killCount = 0; // make the inactivity button a bit less responsive
  5463. const int KILL_DELAY = 10000;
  5464. #endif
  5465. if(buflen < (BUFSIZE-1)){
  5466. get_command();
  5467. }
  5468. if( (millis() - previous_millis_cmd) > max_inactive_time )
  5469. if(max_inactive_time)
  5470. kill();
  5471. if(stepper_inactive_time) {
  5472. if( (millis() - previous_millis_cmd) > stepper_inactive_time )
  5473. {
  5474. if(blocks_queued() == false && ignore_stepper_queue == false) {
  5475. disable_x();
  5476. // SERIAL_ECHOLNPGM("manage_inactivity - disable Y");
  5477. disable_y();
  5478. disable_z();
  5479. disable_e0();
  5480. disable_e1();
  5481. disable_e2();
  5482. }
  5483. }
  5484. }
  5485. #ifdef CHDK //Check if pin should be set to LOW after M240 set it to HIGH
  5486. if (chdkActive && (millis() - chdkHigh > CHDK_DELAY))
  5487. {
  5488. chdkActive = false;
  5489. WRITE(CHDK, LOW);
  5490. }
  5491. #endif
  5492. #if defined(KILL_PIN) && KILL_PIN > -1
  5493. // Check if the kill button was pressed and wait just in case it was an accidental
  5494. // key kill key press
  5495. // -------------------------------------------------------------------------------
  5496. if( 0 == READ(KILL_PIN) )
  5497. {
  5498. killCount++;
  5499. }
  5500. else if (killCount > 0)
  5501. {
  5502. killCount--;
  5503. }
  5504. // Exceeded threshold and we can confirm that it was not accidental
  5505. // KILL the machine
  5506. // ----------------------------------------------------------------
  5507. if ( killCount >= KILL_DELAY)
  5508. {
  5509. kill();
  5510. }
  5511. #endif
  5512. #if defined(CONTROLLERFAN_PIN) && CONTROLLERFAN_PIN > -1
  5513. controllerFan(); //Check if fan should be turned on to cool stepper drivers down
  5514. #endif
  5515. #ifdef EXTRUDER_RUNOUT_PREVENT
  5516. if( (millis() - previous_millis_cmd) > EXTRUDER_RUNOUT_SECONDS*1000 )
  5517. if(degHotend(active_extruder)>EXTRUDER_RUNOUT_MINTEMP)
  5518. {
  5519. bool oldstatus=READ(E0_ENABLE_PIN);
  5520. enable_e0();
  5521. float oldepos=current_position[E_AXIS];
  5522. float oldedes=destination[E_AXIS];
  5523. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS],
  5524. destination[E_AXIS]+EXTRUDER_RUNOUT_EXTRUDE*EXTRUDER_RUNOUT_ESTEPS/axis_steps_per_unit[E_AXIS],
  5525. EXTRUDER_RUNOUT_SPEED/60.*EXTRUDER_RUNOUT_ESTEPS/axis_steps_per_unit[E_AXIS], active_extruder);
  5526. current_position[E_AXIS]=oldepos;
  5527. destination[E_AXIS]=oldedes;
  5528. plan_set_e_position(oldepos);
  5529. previous_millis_cmd=millis();
  5530. st_synchronize();
  5531. WRITE(E0_ENABLE_PIN,oldstatus);
  5532. }
  5533. #endif
  5534. #ifdef TEMP_STAT_LEDS
  5535. handle_status_leds();
  5536. #endif
  5537. check_axes_activity();
  5538. }
  5539. void kill(const char *full_screen_message)
  5540. {
  5541. cli(); // Stop interrupts
  5542. disable_heater();
  5543. disable_x();
  5544. // SERIAL_ECHOLNPGM("kill - disable Y");
  5545. disable_y();
  5546. disable_z();
  5547. disable_e0();
  5548. disable_e1();
  5549. disable_e2();
  5550. #if defined(PS_ON_PIN) && PS_ON_PIN > -1
  5551. pinMode(PS_ON_PIN,INPUT);
  5552. #endif
  5553. SERIAL_ERROR_START;
  5554. SERIAL_ERRORLNRPGM(MSG_ERR_KILLED);
  5555. if (full_screen_message != NULL) {
  5556. SERIAL_ERRORLNRPGM(full_screen_message);
  5557. lcd_display_message_fullscreen_P(full_screen_message);
  5558. } else {
  5559. LCD_ALERTMESSAGERPGM(MSG_KILLED);
  5560. }
  5561. // FMC small patch to update the LCD before ending
  5562. sei(); // enable interrupts
  5563. for ( int i=5; i--; lcd_update())
  5564. {
  5565. delay(200);
  5566. }
  5567. cli(); // disable interrupts
  5568. suicide();
  5569. while(1) { /* Intentionally left empty */ } // Wait for reset
  5570. }
  5571. void Stop()
  5572. {
  5573. disable_heater();
  5574. if(Stopped == false) {
  5575. Stopped = true;
  5576. Stopped_gcode_LastN = gcode_LastN; // Save last g_code for restart
  5577. SERIAL_ERROR_START;
  5578. SERIAL_ERRORLNRPGM(MSG_ERR_STOPPED);
  5579. LCD_MESSAGERPGM(MSG_STOPPED);
  5580. }
  5581. }
  5582. bool IsStopped() { return Stopped; };
  5583. #ifdef FAST_PWM_FAN
  5584. void setPwmFrequency(uint8_t pin, int val)
  5585. {
  5586. val &= 0x07;
  5587. switch(digitalPinToTimer(pin))
  5588. {
  5589. #if defined(TCCR0A)
  5590. case TIMER0A:
  5591. case TIMER0B:
  5592. // TCCR0B &= ~(_BV(CS00) | _BV(CS01) | _BV(CS02));
  5593. // TCCR0B |= val;
  5594. break;
  5595. #endif
  5596. #if defined(TCCR1A)
  5597. case TIMER1A:
  5598. case TIMER1B:
  5599. // TCCR1B &= ~(_BV(CS10) | _BV(CS11) | _BV(CS12));
  5600. // TCCR1B |= val;
  5601. break;
  5602. #endif
  5603. #if defined(TCCR2)
  5604. case TIMER2:
  5605. case TIMER2:
  5606. TCCR2 &= ~(_BV(CS10) | _BV(CS11) | _BV(CS12));
  5607. TCCR2 |= val;
  5608. break;
  5609. #endif
  5610. #if defined(TCCR2A)
  5611. case TIMER2A:
  5612. case TIMER2B:
  5613. TCCR2B &= ~(_BV(CS20) | _BV(CS21) | _BV(CS22));
  5614. TCCR2B |= val;
  5615. break;
  5616. #endif
  5617. #if defined(TCCR3A)
  5618. case TIMER3A:
  5619. case TIMER3B:
  5620. case TIMER3C:
  5621. TCCR3B &= ~(_BV(CS30) | _BV(CS31) | _BV(CS32));
  5622. TCCR3B |= val;
  5623. break;
  5624. #endif
  5625. #if defined(TCCR4A)
  5626. case TIMER4A:
  5627. case TIMER4B:
  5628. case TIMER4C:
  5629. TCCR4B &= ~(_BV(CS40) | _BV(CS41) | _BV(CS42));
  5630. TCCR4B |= val;
  5631. break;
  5632. #endif
  5633. #if defined(TCCR5A)
  5634. case TIMER5A:
  5635. case TIMER5B:
  5636. case TIMER5C:
  5637. TCCR5B &= ~(_BV(CS50) | _BV(CS51) | _BV(CS52));
  5638. TCCR5B |= val;
  5639. break;
  5640. #endif
  5641. }
  5642. }
  5643. #endif //FAST_PWM_FAN
  5644. bool setTargetedHotend(int code){
  5645. tmp_extruder = active_extruder;
  5646. if(code_seen('T')) {
  5647. tmp_extruder = code_value();
  5648. if(tmp_extruder >= EXTRUDERS) {
  5649. SERIAL_ECHO_START;
  5650. switch(code){
  5651. case 104:
  5652. SERIAL_ECHORPGM(MSG_M104_INVALID_EXTRUDER);
  5653. break;
  5654. case 105:
  5655. SERIAL_ECHO(MSG_M105_INVALID_EXTRUDER);
  5656. break;
  5657. case 109:
  5658. SERIAL_ECHO(MSG_M109_INVALID_EXTRUDER);
  5659. break;
  5660. case 218:
  5661. SERIAL_ECHO(MSG_M218_INVALID_EXTRUDER);
  5662. break;
  5663. case 221:
  5664. SERIAL_ECHO(MSG_M221_INVALID_EXTRUDER);
  5665. break;
  5666. }
  5667. SERIAL_PROTOCOLLN((int)tmp_extruder);
  5668. return true;
  5669. }
  5670. }
  5671. return false;
  5672. }
  5673. void save_statistics(unsigned long _total_filament_used, unsigned long _total_print_time) //_total_filament_used unit: mm/100; print time in s
  5674. {
  5675. if (eeprom_read_byte((uint8_t *)EEPROM_TOTALTIME) == 255 && eeprom_read_byte((uint8_t *)EEPROM_TOTALTIME + 1) == 255 && eeprom_read_byte((uint8_t *)EEPROM_TOTALTIME + 2) == 255 && eeprom_read_byte((uint8_t *)EEPROM_TOTALTIME + 3) == 255)
  5676. {
  5677. eeprom_update_dword((uint32_t *)EEPROM_TOTALTIME, 0);
  5678. eeprom_update_dword((uint32_t *)EEPROM_FILAMENTUSED, 0);
  5679. }
  5680. unsigned long _previous_filament = eeprom_read_dword((uint32_t *)EEPROM_FILAMENTUSED); //_previous_filament unit: cm
  5681. unsigned long _previous_time = eeprom_read_dword((uint32_t *)EEPROM_TOTALTIME); //_previous_time unit: min
  5682. eeprom_update_dword((uint32_t *)EEPROM_TOTALTIME, _previous_time + (_total_print_time/60)); //EEPROM_TOTALTIME unit: min
  5683. eeprom_update_dword((uint32_t *)EEPROM_FILAMENTUSED, _previous_filament + (_total_filament_used / 1000));
  5684. total_filament_used = 0;
  5685. }
  5686. float calculate_volumetric_multiplier(float diameter) {
  5687. float area = .0;
  5688. float radius = .0;
  5689. radius = diameter * .5;
  5690. if (! volumetric_enabled || radius == 0) {
  5691. area = 1;
  5692. }
  5693. else {
  5694. area = M_PI * pow(radius, 2);
  5695. }
  5696. return 1.0 / area;
  5697. }
  5698. void calculate_volumetric_multipliers() {
  5699. volumetric_multiplier[0] = calculate_volumetric_multiplier(filament_size[0]);
  5700. #if EXTRUDERS > 1
  5701. volumetric_multiplier[1] = calculate_volumetric_multiplier(filament_size[1]);
  5702. #if EXTRUDERS > 2
  5703. volumetric_multiplier[2] = calculate_volumetric_multiplier(filament_size[2]);
  5704. #endif
  5705. #endif
  5706. }
  5707. void delay_keep_alive(unsigned int ms)
  5708. {
  5709. for (;;) {
  5710. manage_heater();
  5711. // Manage inactivity, but don't disable steppers on timeout.
  5712. manage_inactivity(true);
  5713. lcd_update();
  5714. if (ms == 0)
  5715. break;
  5716. else if (ms >= 50) {
  5717. delay(50);
  5718. ms -= 50;
  5719. } else {
  5720. delay(ms);
  5721. ms = 0;
  5722. }
  5723. }
  5724. }
  5725. void wait_for_heater(long codenum) {
  5726. #ifdef TEMP_RESIDENCY_TIME
  5727. long residencyStart;
  5728. residencyStart = -1;
  5729. /* continue to loop until we have reached the target temp
  5730. _and_ until TEMP_RESIDENCY_TIME hasn't passed since we reached it */
  5731. while ((!cancel_heatup) && ((residencyStart == -1) ||
  5732. (residencyStart >= 0 && (((unsigned int)(millis() - residencyStart)) < (TEMP_RESIDENCY_TIME * 1000UL))))) {
  5733. #else
  5734. while (target_direction ? (isHeatingHotend(tmp_extruder)) : (isCoolingHotend(tmp_extruder) && (CooldownNoWait == false))) {
  5735. #endif //TEMP_RESIDENCY_TIME
  5736. if ((millis() - codenum) > 1000UL)
  5737. { //Print Temp Reading and remaining time every 1 second while heating up/cooling down
  5738. if (!farm_mode) {
  5739. SERIAL_PROTOCOLPGM("T:");
  5740. SERIAL_PROTOCOL_F(degHotend(tmp_extruder), 1);
  5741. SERIAL_PROTOCOLPGM(" E:");
  5742. SERIAL_PROTOCOL((int)tmp_extruder);
  5743. #ifdef TEMP_RESIDENCY_TIME
  5744. SERIAL_PROTOCOLPGM(" W:");
  5745. if (residencyStart > -1)
  5746. {
  5747. codenum = ((TEMP_RESIDENCY_TIME * 1000UL) - (millis() - residencyStart)) / 1000UL;
  5748. SERIAL_PROTOCOLLN(codenum);
  5749. }
  5750. else
  5751. {
  5752. SERIAL_PROTOCOLLN("?");
  5753. }
  5754. }
  5755. #else
  5756. SERIAL_PROTOCOLLN("");
  5757. #endif
  5758. codenum = millis();
  5759. }
  5760. manage_heater();
  5761. manage_inactivity();
  5762. lcd_update();
  5763. #ifdef TEMP_RESIDENCY_TIME
  5764. /* start/restart the TEMP_RESIDENCY_TIME timer whenever we reach target temp for the first time
  5765. or when current temp falls outside the hysteresis after target temp was reached */
  5766. if ((residencyStart == -1 && target_direction && (degHotend(tmp_extruder) >= (degTargetHotend(tmp_extruder) - TEMP_WINDOW))) ||
  5767. (residencyStart == -1 && !target_direction && (degHotend(tmp_extruder) <= (degTargetHotend(tmp_extruder) + TEMP_WINDOW))) ||
  5768. (residencyStart > -1 && labs(degHotend(tmp_extruder) - degTargetHotend(tmp_extruder)) > TEMP_HYSTERESIS))
  5769. {
  5770. residencyStart = millis();
  5771. }
  5772. #endif //TEMP_RESIDENCY_TIME
  5773. }
  5774. }
  5775. void check_babystep() {
  5776. int babystep_z;
  5777. EEPROM_read_B(EEPROM_BABYSTEP_Z, &babystep_z);
  5778. if ((babystep_z < Z_BABYSTEP_MIN) || (babystep_z > Z_BABYSTEP_MAX)) {
  5779. babystep_z = 0; //if babystep value is out of min max range, set it to 0
  5780. SERIAL_ECHOLNPGM("Z live adjust out of range. Setting to 0");
  5781. EEPROM_save_B(EEPROM_BABYSTEP_Z, &babystep_z);
  5782. lcd_show_fullscreen_message_and_wait_P(PSTR("Z live adjust out of range. Setting to 0. Click to continue."));
  5783. lcd_update_enable(true);
  5784. }
  5785. }
  5786. #ifdef DIS
  5787. void d_setup()
  5788. {
  5789. pinMode(D_DATACLOCK, INPUT_PULLUP);
  5790. pinMode(D_DATA, INPUT_PULLUP);
  5791. pinMode(D_REQUIRE, OUTPUT);
  5792. digitalWrite(D_REQUIRE, HIGH);
  5793. }
  5794. float d_ReadData()
  5795. {
  5796. int digit[13];
  5797. String mergeOutput;
  5798. float output;
  5799. digitalWrite(D_REQUIRE, HIGH);
  5800. for (int i = 0; i<13; i++)
  5801. {
  5802. for (int j = 0; j < 4; j++)
  5803. {
  5804. while (digitalRead(D_DATACLOCK) == LOW) {}
  5805. while (digitalRead(D_DATACLOCK) == HIGH) {}
  5806. bitWrite(digit[i], j, digitalRead(D_DATA));
  5807. }
  5808. }
  5809. digitalWrite(D_REQUIRE, LOW);
  5810. mergeOutput = "";
  5811. output = 0;
  5812. for (int r = 5; r <= 10; r++) //Merge digits
  5813. {
  5814. mergeOutput += digit[r];
  5815. }
  5816. output = mergeOutput.toFloat();
  5817. if (digit[4] == 8) //Handle sign
  5818. {
  5819. output *= -1;
  5820. }
  5821. for (int i = digit[11]; i > 0; i--) //Handle floating point
  5822. {
  5823. output /= 10;
  5824. }
  5825. return output;
  5826. }
  5827. void bed_analysis(float x_dimension, float y_dimension, int x_points_num, int y_points_num, float shift_x, float shift_y) {
  5828. int t1 = 0;
  5829. int t_delay = 0;
  5830. int digit[13];
  5831. int m;
  5832. char str[3];
  5833. //String mergeOutput;
  5834. char mergeOutput[15];
  5835. float output;
  5836. int mesh_point = 0; //index number of calibration point
  5837. float bed_zero_ref_x = (-22.f + X_PROBE_OFFSET_FROM_EXTRUDER); //shift between zero point on bed and target and between probe and nozzle
  5838. float bed_zero_ref_y = (-0.6f + Y_PROBE_OFFSET_FROM_EXTRUDER);
  5839. float mesh_home_z_search = 4;
  5840. float row[x_points_num];
  5841. int ix = 0;
  5842. int iy = 0;
  5843. char* filename_wldsd = "wldsd.txt";
  5844. char data_wldsd[70];
  5845. char numb_wldsd[10];
  5846. d_setup();
  5847. if (!(axis_known_position[X_AXIS] && axis_known_position[Y_AXIS] && axis_known_position[Z_AXIS])) {
  5848. // We don't know where we are! HOME!
  5849. // Push the commands to the front of the message queue in the reverse order!
  5850. // There shall be always enough space reserved for these commands.
  5851. repeatcommand_front(); // repeat G80 with all its parameters
  5852. enquecommand_front_P((PSTR("G28 W0")));
  5853. enquecommand_front_P((PSTR("G1 Z5")));
  5854. return;
  5855. }
  5856. bool custom_message_old = custom_message;
  5857. unsigned int custom_message_type_old = custom_message_type;
  5858. unsigned int custom_message_state_old = custom_message_state;
  5859. custom_message = true;
  5860. custom_message_type = 1;
  5861. custom_message_state = (x_points_num * y_points_num) + 10;
  5862. lcd_update(1);
  5863. mbl.reset();
  5864. babystep_undo();
  5865. card.openFile(filename_wldsd, false);
  5866. current_position[Z_AXIS] = mesh_home_z_search;
  5867. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[Z_AXIS] / 60, active_extruder);
  5868. int XY_AXIS_FEEDRATE = homing_feedrate[X_AXIS] / 20;
  5869. int Z_LIFT_FEEDRATE = homing_feedrate[Z_AXIS] / 40;
  5870. setup_for_endstop_move(false);
  5871. SERIAL_PROTOCOLPGM("Num X,Y: ");
  5872. SERIAL_PROTOCOL(x_points_num);
  5873. SERIAL_PROTOCOLPGM(",");
  5874. SERIAL_PROTOCOL(y_points_num);
  5875. SERIAL_PROTOCOLPGM("\nZ search height: ");
  5876. SERIAL_PROTOCOL(mesh_home_z_search);
  5877. SERIAL_PROTOCOLPGM("\nDimension X,Y: ");
  5878. SERIAL_PROTOCOL(x_dimension);
  5879. SERIAL_PROTOCOLPGM(",");
  5880. SERIAL_PROTOCOL(y_dimension);
  5881. SERIAL_PROTOCOLLNPGM("\nMeasured points:");
  5882. while (mesh_point != x_points_num * y_points_num) {
  5883. ix = mesh_point % x_points_num; // from 0 to MESH_NUM_X_POINTS - 1
  5884. iy = mesh_point / x_points_num;
  5885. if (iy & 1) ix = (x_points_num - 1) - ix; // Zig zag
  5886. float z0 = 0.f;
  5887. current_position[Z_AXIS] = mesh_home_z_search;
  5888. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], Z_LIFT_FEEDRATE, active_extruder);
  5889. st_synchronize();
  5890. current_position[X_AXIS] = 13.f + ix * (x_dimension / (x_points_num - 1)) - bed_zero_ref_x + shift_x;
  5891. current_position[Y_AXIS] = 6.4f + iy * (y_dimension / (y_points_num - 1)) - bed_zero_ref_y + shift_y;
  5892. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], XY_AXIS_FEEDRATE, active_extruder);
  5893. st_synchronize();
  5894. if (!find_bed_induction_sensor_point_z(-10.f)) { //if we have data from z calibration max allowed difference is 1mm for each point, if we dont have data max difference is 10mm from initial point
  5895. break;
  5896. card.closefile();
  5897. }
  5898. //memset(numb_wldsd, 0, sizeof(numb_wldsd));
  5899. //dtostrf(d_ReadData(), 8, 5, numb_wldsd);
  5900. //strcat(data_wldsd, numb_wldsd);
  5901. //MYSERIAL.println(data_wldsd);
  5902. //delay(1000);
  5903. //delay(3000);
  5904. //t1 = millis();
  5905. //while (digitalRead(D_DATACLOCK) == LOW) {}
  5906. //while (digitalRead(D_DATACLOCK) == HIGH) {}
  5907. memset(digit, 0, sizeof(digit));
  5908. //cli();
  5909. digitalWrite(D_REQUIRE, LOW);
  5910. for (int i = 0; i<13; i++)
  5911. {
  5912. //t1 = millis();
  5913. for (int j = 0; j < 4; j++)
  5914. {
  5915. while (digitalRead(D_DATACLOCK) == LOW) {}
  5916. while (digitalRead(D_DATACLOCK) == HIGH) {}
  5917. bitWrite(digit[i], j, digitalRead(D_DATA));
  5918. }
  5919. //t_delay = (millis() - t1);
  5920. //SERIAL_PROTOCOLPGM(" ");
  5921. //SERIAL_PROTOCOL_F(t_delay, 5);
  5922. //SERIAL_PROTOCOLPGM(" ");
  5923. }
  5924. //sei();
  5925. digitalWrite(D_REQUIRE, HIGH);
  5926. mergeOutput[0] = '\0';
  5927. output = 0;
  5928. for (int r = 5; r <= 10; r++) //Merge digits
  5929. {
  5930. sprintf(str, "%d", digit[r]);
  5931. strcat(mergeOutput, str);
  5932. }
  5933. output = atof(mergeOutput);
  5934. if (digit[4] == 8) //Handle sign
  5935. {
  5936. output *= -1;
  5937. }
  5938. for (int i = digit[11]; i > 0; i--) //Handle floating point
  5939. {
  5940. output *= 0.1;
  5941. }
  5942. //output = d_ReadData();
  5943. //row[ix] = current_position[Z_AXIS];
  5944. memset(data_wldsd, 0, sizeof(data_wldsd));
  5945. for (int i = 0; i <3; i++) {
  5946. memset(numb_wldsd, 0, sizeof(numb_wldsd));
  5947. dtostrf(current_position[i], 8, 5, numb_wldsd);
  5948. strcat(data_wldsd, numb_wldsd);
  5949. strcat(data_wldsd, ";");
  5950. }
  5951. memset(numb_wldsd, 0, sizeof(numb_wldsd));
  5952. dtostrf(output, 8, 5, numb_wldsd);
  5953. strcat(data_wldsd, numb_wldsd);
  5954. //strcat(data_wldsd, ";");
  5955. card.write_command(data_wldsd);
  5956. //row[ix] = d_ReadData();
  5957. row[ix] = output; // current_position[Z_AXIS];
  5958. if (iy % 2 == 1 ? ix == 0 : ix == x_points_num - 1) {
  5959. for (int i = 0; i < x_points_num; i++) {
  5960. SERIAL_PROTOCOLPGM(" ");
  5961. SERIAL_PROTOCOL_F(row[i], 5);
  5962. }
  5963. SERIAL_PROTOCOLPGM("\n");
  5964. }
  5965. custom_message_state--;
  5966. mesh_point++;
  5967. lcd_update(1);
  5968. }
  5969. card.closefile();
  5970. }
  5971. #endif
  5972. void temp_compensation_start() {
  5973. custom_message = true;
  5974. custom_message_type = 5;
  5975. custom_message_state = PINDA_HEAT_T + 1;
  5976. lcd_update(2);
  5977. if (degHotend(active_extruder) > EXTRUDE_MINTEMP) {
  5978. current_position[E_AXIS] -= DEFAULT_RETRACTION;
  5979. }
  5980. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400, active_extruder);
  5981. current_position[X_AXIS] = PINDA_PREHEAT_X;
  5982. current_position[Y_AXIS] = PINDA_PREHEAT_Y;
  5983. current_position[Z_AXIS] = PINDA_PREHEAT_Z;
  5984. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  5985. st_synchronize();
  5986. while (fabs(degBed() - target_temperature_bed) > 1) delay_keep_alive(1000);
  5987. for (int i = 0; i < PINDA_HEAT_T; i++) {
  5988. delay_keep_alive(1000);
  5989. custom_message_state = PINDA_HEAT_T - i;
  5990. if (custom_message_state == 99 || custom_message_state == 9) lcd_update(2); //force whole display redraw if number of digits changed
  5991. else lcd_update(1);
  5992. }
  5993. custom_message_type = 0;
  5994. custom_message_state = 0;
  5995. custom_message = false;
  5996. }
  5997. void temp_compensation_apply() {
  5998. int i_add;
  5999. int z_shift = 0;
  6000. float z_shift_mm;
  6001. if (calibration_status() == CALIBRATION_STATUS_CALIBRATED) {
  6002. if (target_temperature_bed % 10 == 0 && target_temperature_bed >= 60 && target_temperature_bed <= 100) {
  6003. i_add = (target_temperature_bed - 60) / 10;
  6004. EEPROM_read_B(EEPROM_PROBE_TEMP_SHIFT + i_add * 2, &z_shift);
  6005. z_shift_mm = z_shift / axis_steps_per_unit[Z_AXIS];
  6006. }else {
  6007. //interpolation
  6008. z_shift_mm = temp_comp_interpolation(target_temperature_bed) / axis_steps_per_unit[Z_AXIS];
  6009. }
  6010. SERIAL_PROTOCOLPGM("\n");
  6011. SERIAL_PROTOCOLPGM("Z shift applied:");
  6012. MYSERIAL.print(z_shift_mm);
  6013. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS] - z_shift_mm, current_position[E_AXIS], homing_feedrate[Z_AXIS] / 40, active_extruder);
  6014. st_synchronize();
  6015. plan_set_z_position(current_position[Z_AXIS]);
  6016. }
  6017. else {
  6018. //we have no temp compensation data
  6019. }
  6020. }
  6021. float temp_comp_interpolation(float inp_temperature) {
  6022. //cubic spline interpolation
  6023. int n, i, j;
  6024. float h[10], a, b, c, d, sum, s[10] = { 0 }, x[10], F[10], f[10], m[10][10] = { 0 }, temp;
  6025. int shift[10];
  6026. int temp_C[10];
  6027. n = 6; //number of measured points
  6028. shift[0] = 0;
  6029. for (i = 0; i < n; i++) {
  6030. if (i>0) EEPROM_read_B(EEPROM_PROBE_TEMP_SHIFT + (i-1) * 2, &shift[i]); //read shift in steps from EEPROM
  6031. temp_C[i] = 50 + i * 10; //temperature in C
  6032. x[i] = (float)temp_C[i];
  6033. f[i] = (float)shift[i];
  6034. }
  6035. if (inp_temperature < x[0]) return 0;
  6036. for (i = n - 1; i>0; i--) {
  6037. F[i] = (f[i] - f[i - 1]) / (x[i] - x[i - 1]);
  6038. h[i - 1] = x[i] - x[i - 1];
  6039. }
  6040. //*********** formation of h, s , f matrix **************
  6041. for (i = 1; i<n - 1; i++) {
  6042. m[i][i] = 2 * (h[i - 1] + h[i]);
  6043. if (i != 1) {
  6044. m[i][i - 1] = h[i - 1];
  6045. m[i - 1][i] = h[i - 1];
  6046. }
  6047. m[i][n - 1] = 6 * (F[i + 1] - F[i]);
  6048. }
  6049. //*********** forward elimination **************
  6050. for (i = 1; i<n - 2; i++) {
  6051. temp = (m[i + 1][i] / m[i][i]);
  6052. for (j = 1; j <= n - 1; j++)
  6053. m[i + 1][j] -= temp*m[i][j];
  6054. }
  6055. //*********** backward substitution *********
  6056. for (i = n - 2; i>0; i--) {
  6057. sum = 0;
  6058. for (j = i; j <= n - 2; j++)
  6059. sum += m[i][j] * s[j];
  6060. s[i] = (m[i][n - 1] - sum) / m[i][i];
  6061. }
  6062. for (i = 0; i<n - 1; i++)
  6063. if ((x[i] <= inp_temperature && inp_temperature <= x[i + 1]) || (i == n-2 && inp_temperature > x[i + 1])) {
  6064. a = (s[i + 1] - s[i]) / (6 * h[i]);
  6065. b = s[i] / 2;
  6066. c = (f[i + 1] - f[i]) / h[i] - (2 * h[i] * s[i] + s[i + 1] * h[i]) / 6;
  6067. d = f[i];
  6068. sum = a*pow((inp_temperature - x[i]), 3) + b*pow((inp_temperature - x[i]), 2) + c*(inp_temperature - x[i]) + d;
  6069. }
  6070. return sum;
  6071. }
  6072. void long_pause() //long pause print
  6073. {
  6074. st_synchronize();
  6075. //save currently set parameters to global variables
  6076. saved_feedmultiply = feedmultiply;
  6077. HotendTempBckp = degTargetHotend(active_extruder);
  6078. fanSpeedBckp = fanSpeed;
  6079. start_pause_print = millis();
  6080. //save position
  6081. pause_lastpos[X_AXIS] = current_position[X_AXIS];
  6082. pause_lastpos[Y_AXIS] = current_position[Y_AXIS];
  6083. pause_lastpos[Z_AXIS] = current_position[Z_AXIS];
  6084. pause_lastpos[E_AXIS] = current_position[E_AXIS];
  6085. //retract
  6086. current_position[E_AXIS] -= DEFAULT_RETRACTION;
  6087. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400, active_extruder);
  6088. //lift z
  6089. current_position[Z_AXIS] += Z_PAUSE_LIFT;
  6090. if (current_position[Z_AXIS] > Z_MAX_POS) current_position[Z_AXIS] = Z_MAX_POS;
  6091. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 15, active_extruder);
  6092. //set nozzle target temperature to 0
  6093. setTargetHotend(0, 0);
  6094. setTargetHotend(0, 1);
  6095. setTargetHotend(0, 2);
  6096. //Move XY to side
  6097. current_position[X_AXIS] = X_PAUSE_POS;
  6098. current_position[Y_AXIS] = Y_PAUSE_POS;
  6099. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 50, active_extruder);
  6100. // Turn off the print fan
  6101. fanSpeed = 0;
  6102. st_synchronize();
  6103. }
  6104. void serialecho_temperatures() {
  6105. float tt = degHotend(active_extruder);
  6106. SERIAL_PROTOCOLPGM("T:");
  6107. SERIAL_PROTOCOL(tt);
  6108. SERIAL_PROTOCOLPGM(" E:");
  6109. SERIAL_PROTOCOL((int)active_extruder);
  6110. SERIAL_PROTOCOLPGM(" B:");
  6111. SERIAL_PROTOCOL_F(degBed(), 1);
  6112. SERIAL_PROTOCOLLN("");
  6113. }