Marlin_main.cpp 336 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892389338943895389638973898389939003901390239033904390539063907390839093910391139123913391439153916391739183919392039213922392339243925392639273928392939303931393239333934393539363937393839393940394139423943394439453946394739483949395039513952395339543955395639573958395939603961396239633964396539663967396839693970397139723973397439753976397739783979398039813982398339843985398639873988398939903991399239933994399539963997399839994000400140024003400440054006400740084009401040114012401340144015401640174018401940204021402240234024402540264027402840294030403140324033403440354036403740384039404040414042404340444045404640474048404940504051405240534054405540564057405840594060406140624063406440654066406740684069407040714072407340744075407640774078407940804081408240834084408540864087408840894090409140924093409440954096409740984099410041014102410341044105410641074108410941104111411241134114411541164117411841194120412141224123412441254126412741284129413041314132413341344135413641374138413941404141414241434144414541464147414841494150415141524153415441554156415741584159416041614162416341644165416641674168416941704171417241734174417541764177417841794180418141824183418441854186418741884189419041914192419341944195419641974198419942004201420242034204420542064207420842094210421142124213421442154216421742184219422042214222422342244225422642274228422942304231423242334234423542364237423842394240424142424243424442454246424742484249425042514252425342544255425642574258425942604261426242634264426542664267426842694270427142724273427442754276427742784279428042814282428342844285428642874288428942904291429242934294429542964297429842994300430143024303430443054306430743084309431043114312431343144315431643174318431943204321432243234324432543264327432843294330433143324333433443354336433743384339434043414342434343444345434643474348434943504351435243534354435543564357435843594360436143624363436443654366436743684369437043714372437343744375437643774378437943804381438243834384438543864387438843894390439143924393439443954396439743984399440044014402440344044405440644074408440944104411441244134414441544164417441844194420442144224423442444254426442744284429443044314432443344344435443644374438443944404441444244434444444544464447444844494450445144524453445444554456445744584459446044614462446344644465446644674468446944704471447244734474447544764477447844794480448144824483448444854486448744884489449044914492449344944495449644974498449945004501450245034504450545064507450845094510451145124513451445154516451745184519452045214522452345244525452645274528452945304531453245334534453545364537453845394540454145424543454445454546454745484549455045514552455345544555455645574558455945604561456245634564456545664567456845694570457145724573457445754576457745784579458045814582458345844585458645874588458945904591459245934594459545964597459845994600460146024603460446054606460746084609461046114612461346144615461646174618461946204621462246234624462546264627462846294630463146324633463446354636463746384639464046414642464346444645464646474648464946504651465246534654465546564657465846594660466146624663466446654666466746684669467046714672467346744675467646774678467946804681468246834684468546864687468846894690469146924693469446954696469746984699470047014702470347044705470647074708470947104711471247134714471547164717471847194720472147224723472447254726472747284729473047314732473347344735473647374738473947404741474247434744474547464747474847494750475147524753475447554756475747584759476047614762476347644765476647674768476947704771477247734774477547764777477847794780478147824783478447854786478747884789479047914792479347944795479647974798479948004801480248034804480548064807480848094810481148124813481448154816481748184819482048214822482348244825482648274828482948304831483248334834483548364837483848394840484148424843484448454846484748484849485048514852485348544855485648574858485948604861486248634864486548664867486848694870487148724873487448754876487748784879488048814882488348844885488648874888488948904891489248934894489548964897489848994900490149024903490449054906490749084909491049114912491349144915491649174918491949204921492249234924492549264927492849294930493149324933493449354936493749384939494049414942494349444945494649474948494949504951495249534954495549564957495849594960496149624963496449654966496749684969497049714972497349744975497649774978497949804981498249834984498549864987498849894990499149924993499449954996499749984999500050015002500350045005500650075008500950105011501250135014501550165017501850195020502150225023502450255026502750285029503050315032503350345035503650375038503950405041504250435044504550465047504850495050505150525053505450555056505750585059506050615062506350645065506650675068506950705071507250735074507550765077507850795080508150825083508450855086508750885089509050915092509350945095509650975098509951005101510251035104510551065107510851095110511151125113511451155116511751185119512051215122512351245125512651275128512951305131513251335134513551365137513851395140514151425143514451455146514751485149515051515152515351545155515651575158515951605161516251635164516551665167516851695170517151725173517451755176517751785179518051815182518351845185518651875188518951905191519251935194519551965197519851995200520152025203520452055206520752085209521052115212521352145215521652175218521952205221522252235224522552265227522852295230523152325233523452355236523752385239524052415242524352445245524652475248524952505251525252535254525552565257525852595260526152625263526452655266526752685269527052715272527352745275527652775278527952805281528252835284528552865287528852895290529152925293529452955296529752985299530053015302530353045305530653075308530953105311531253135314531553165317531853195320532153225323532453255326532753285329533053315332533353345335533653375338533953405341534253435344534553465347534853495350535153525353535453555356535753585359536053615362536353645365536653675368536953705371537253735374537553765377537853795380538153825383538453855386538753885389539053915392539353945395539653975398539954005401540254035404540554065407540854095410541154125413541454155416541754185419542054215422542354245425542654275428542954305431543254335434543554365437543854395440544154425443544454455446544754485449545054515452545354545455545654575458545954605461546254635464546554665467546854695470547154725473547454755476547754785479548054815482548354845485548654875488548954905491549254935494549554965497549854995500550155025503550455055506550755085509551055115512551355145515551655175518551955205521552255235524552555265527552855295530553155325533553455355536553755385539554055415542554355445545554655475548554955505551555255535554555555565557555855595560556155625563556455655566556755685569557055715572557355745575557655775578557955805581558255835584558555865587558855895590559155925593559455955596559755985599560056015602560356045605560656075608560956105611561256135614561556165617561856195620562156225623562456255626562756285629563056315632563356345635563656375638563956405641564256435644564556465647564856495650565156525653565456555656565756585659566056615662566356645665566656675668566956705671567256735674567556765677567856795680568156825683568456855686568756885689569056915692569356945695569656975698569957005701570257035704570557065707570857095710571157125713571457155716571757185719572057215722572357245725572657275728572957305731573257335734573557365737573857395740574157425743574457455746574757485749575057515752575357545755575657575758575957605761576257635764576557665767576857695770577157725773577457755776577757785779578057815782578357845785578657875788578957905791579257935794579557965797579857995800580158025803580458055806580758085809581058115812581358145815581658175818581958205821582258235824582558265827582858295830583158325833583458355836583758385839584058415842584358445845584658475848584958505851585258535854585558565857585858595860586158625863586458655866586758685869587058715872587358745875587658775878587958805881588258835884588558865887588858895890589158925893589458955896589758985899590059015902590359045905590659075908590959105911591259135914591559165917591859195920592159225923592459255926592759285929593059315932593359345935593659375938593959405941594259435944594559465947594859495950595159525953595459555956595759585959596059615962596359645965596659675968596959705971597259735974597559765977597859795980598159825983598459855986598759885989599059915992599359945995599659975998599960006001600260036004600560066007600860096010601160126013601460156016601760186019602060216022602360246025602660276028602960306031603260336034603560366037603860396040604160426043604460456046604760486049605060516052605360546055605660576058605960606061606260636064606560666067606860696070607160726073607460756076607760786079608060816082608360846085608660876088608960906091609260936094609560966097609860996100610161026103610461056106610761086109611061116112611361146115611661176118611961206121612261236124612561266127612861296130613161326133613461356136613761386139614061416142614361446145614661476148614961506151615261536154615561566157615861596160616161626163616461656166616761686169617061716172617361746175617661776178617961806181618261836184618561866187618861896190619161926193619461956196619761986199620062016202620362046205620662076208620962106211621262136214621562166217621862196220622162226223622462256226622762286229623062316232623362346235623662376238623962406241624262436244624562466247624862496250625162526253625462556256625762586259626062616262626362646265626662676268626962706271627262736274627562766277627862796280628162826283628462856286628762886289629062916292629362946295629662976298629963006301630263036304630563066307630863096310631163126313631463156316631763186319632063216322632363246325632663276328632963306331633263336334633563366337633863396340634163426343634463456346634763486349635063516352635363546355635663576358635963606361636263636364636563666367636863696370637163726373637463756376637763786379638063816382638363846385638663876388638963906391639263936394639563966397639863996400640164026403640464056406640764086409641064116412641364146415641664176418641964206421642264236424642564266427642864296430643164326433643464356436643764386439644064416442644364446445644664476448644964506451645264536454645564566457645864596460646164626463646464656466646764686469647064716472647364746475647664776478647964806481648264836484648564866487648864896490649164926493649464956496649764986499650065016502650365046505650665076508650965106511651265136514651565166517651865196520652165226523652465256526652765286529653065316532653365346535653665376538653965406541654265436544654565466547654865496550655165526553655465556556655765586559656065616562656365646565656665676568656965706571657265736574657565766577657865796580658165826583658465856586658765886589659065916592659365946595659665976598659966006601660266036604660566066607660866096610661166126613661466156616661766186619662066216622662366246625662666276628662966306631663266336634663566366637663866396640664166426643664466456646664766486649665066516652665366546655665666576658665966606661666266636664666566666667666866696670667166726673667466756676667766786679668066816682668366846685668666876688668966906691669266936694669566966697669866996700670167026703670467056706670767086709671067116712671367146715671667176718671967206721672267236724672567266727672867296730673167326733673467356736673767386739674067416742674367446745674667476748674967506751675267536754675567566757675867596760676167626763676467656766676767686769677067716772677367746775677667776778677967806781678267836784678567866787678867896790679167926793679467956796679767986799680068016802680368046805680668076808680968106811681268136814681568166817681868196820682168226823682468256826682768286829683068316832683368346835683668376838683968406841684268436844684568466847684868496850685168526853685468556856685768586859686068616862686368646865686668676868686968706871687268736874687568766877687868796880688168826883688468856886688768886889689068916892689368946895689668976898689969006901690269036904690569066907690869096910691169126913691469156916691769186919692069216922692369246925692669276928692969306931693269336934693569366937693869396940694169426943694469456946694769486949695069516952695369546955695669576958695969606961696269636964696569666967696869696970697169726973697469756976697769786979698069816982698369846985698669876988698969906991699269936994699569966997699869997000700170027003700470057006700770087009701070117012701370147015701670177018701970207021702270237024702570267027702870297030703170327033703470357036703770387039704070417042704370447045704670477048704970507051705270537054705570567057705870597060706170627063706470657066706770687069707070717072707370747075707670777078707970807081708270837084708570867087708870897090709170927093709470957096709770987099710071017102710371047105710671077108710971107111711271137114711571167117711871197120712171227123712471257126712771287129713071317132713371347135713671377138713971407141714271437144714571467147714871497150715171527153715471557156715771587159716071617162716371647165716671677168716971707171717271737174717571767177717871797180718171827183718471857186718771887189719071917192719371947195719671977198719972007201720272037204720572067207720872097210721172127213721472157216721772187219722072217222722372247225722672277228722972307231723272337234723572367237723872397240724172427243724472457246724772487249725072517252725372547255725672577258725972607261726272637264726572667267726872697270727172727273727472757276727772787279728072817282728372847285728672877288728972907291729272937294729572967297729872997300730173027303730473057306730773087309731073117312731373147315731673177318731973207321732273237324732573267327732873297330733173327333733473357336733773387339734073417342734373447345734673477348734973507351735273537354735573567357735873597360736173627363736473657366736773687369737073717372737373747375737673777378737973807381738273837384738573867387738873897390739173927393739473957396739773987399740074017402740374047405740674077408740974107411741274137414741574167417741874197420742174227423742474257426742774287429743074317432743374347435743674377438743974407441744274437444744574467447744874497450745174527453745474557456745774587459746074617462746374647465746674677468746974707471747274737474747574767477747874797480748174827483748474857486748774887489749074917492749374947495749674977498749975007501750275037504750575067507750875097510751175127513751475157516751775187519752075217522752375247525752675277528752975307531753275337534753575367537753875397540754175427543754475457546754775487549755075517552755375547555755675577558755975607561756275637564756575667567756875697570757175727573757475757576757775787579758075817582758375847585758675877588758975907591759275937594759575967597759875997600760176027603760476057606760776087609761076117612761376147615761676177618761976207621762276237624762576267627762876297630763176327633763476357636763776387639764076417642764376447645764676477648764976507651765276537654765576567657765876597660766176627663766476657666766776687669767076717672767376747675767676777678767976807681768276837684768576867687768876897690769176927693769476957696769776987699770077017702770377047705770677077708770977107711771277137714771577167717771877197720772177227723772477257726772777287729773077317732773377347735773677377738773977407741774277437744774577467747774877497750775177527753775477557756775777587759776077617762776377647765776677677768776977707771777277737774777577767777777877797780778177827783778477857786778777887789779077917792779377947795779677977798779978007801780278037804780578067807780878097810781178127813781478157816781778187819782078217822782378247825782678277828782978307831783278337834783578367837783878397840784178427843784478457846784778487849785078517852785378547855785678577858785978607861786278637864786578667867786878697870787178727873787478757876787778787879788078817882788378847885788678877888788978907891789278937894789578967897789878997900790179027903790479057906790779087909791079117912791379147915791679177918791979207921792279237924792579267927792879297930793179327933793479357936793779387939794079417942794379447945794679477948794979507951795279537954795579567957795879597960796179627963796479657966796779687969797079717972797379747975797679777978797979807981798279837984798579867987798879897990799179927993799479957996799779987999800080018002800380048005800680078008800980108011801280138014801580168017801880198020802180228023802480258026802780288029803080318032803380348035803680378038803980408041804280438044804580468047804880498050805180528053805480558056805780588059806080618062806380648065806680678068806980708071807280738074807580768077807880798080808180828083808480858086808780888089809080918092809380948095809680978098809981008101810281038104810581068107810881098110811181128113811481158116811781188119812081218122812381248125812681278128812981308131813281338134813581368137813881398140814181428143814481458146814781488149815081518152815381548155815681578158815981608161816281638164816581668167816881698170817181728173817481758176817781788179818081818182818381848185818681878188818981908191819281938194819581968197819881998200820182028203820482058206820782088209821082118212821382148215821682178218821982208221822282238224822582268227822882298230823182328233823482358236823782388239824082418242824382448245824682478248824982508251825282538254825582568257825882598260826182628263826482658266826782688269827082718272827382748275827682778278827982808281828282838284828582868287828882898290829182928293829482958296829782988299830083018302830383048305830683078308830983108311831283138314831583168317831883198320832183228323832483258326832783288329833083318332833383348335833683378338833983408341834283438344834583468347834883498350835183528353835483558356835783588359836083618362836383648365836683678368836983708371837283738374837583768377837883798380838183828383838483858386838783888389839083918392839383948395839683978398839984008401840284038404840584068407840884098410841184128413841484158416841784188419842084218422842384248425842684278428842984308431843284338434843584368437843884398440844184428443844484458446844784488449845084518452845384548455845684578458845984608461846284638464846584668467846884698470847184728473847484758476847784788479848084818482848384848485848684878488848984908491849284938494849584968497849884998500850185028503850485058506850785088509851085118512851385148515851685178518851985208521852285238524852585268527852885298530853185328533853485358536853785388539854085418542854385448545854685478548854985508551855285538554855585568557855885598560856185628563856485658566856785688569857085718572857385748575857685778578857985808581858285838584858585868587858885898590859185928593859485958596859785988599860086018602860386048605860686078608860986108611861286138614861586168617861886198620862186228623862486258626862786288629863086318632863386348635863686378638863986408641864286438644864586468647864886498650865186528653865486558656865786588659866086618662866386648665866686678668866986708671867286738674867586768677867886798680868186828683868486858686868786888689869086918692869386948695869686978698869987008701870287038704870587068707870887098710871187128713871487158716871787188719872087218722872387248725872687278728872987308731873287338734873587368737873887398740874187428743874487458746874787488749875087518752875387548755875687578758875987608761876287638764876587668767876887698770877187728773877487758776877787788779878087818782878387848785878687878788878987908791879287938794879587968797879887998800880188028803880488058806880788088809881088118812881388148815881688178818881988208821882288238824882588268827882888298830883188328833883488358836883788388839884088418842884388448845884688478848884988508851885288538854885588568857885888598860886188628863886488658866886788688869887088718872887388748875887688778878887988808881888288838884888588868887888888898890889188928893889488958896889788988899890089018902890389048905890689078908890989108911891289138914891589168917891889198920892189228923892489258926892789288929893089318932893389348935893689378938893989408941894289438944894589468947894889498950895189528953895489558956895789588959896089618962896389648965896689678968896989708971897289738974897589768977897889798980898189828983898489858986898789888989899089918992899389948995899689978998899990009001900290039004900590069007900890099010901190129013901490159016901790189019902090219022902390249025902690279028902990309031903290339034903590369037903890399040904190429043904490459046904790489049905090519052905390549055905690579058905990609061906290639064906590669067906890699070907190729073907490759076907790789079908090819082908390849085908690879088908990909091909290939094909590969097909890999100910191029103910491059106910791089109911091119112911391149115911691179118911991209121912291239124912591269127912891299130913191329133913491359136913791389139914091419142914391449145914691479148914991509151915291539154915591569157915891599160916191629163916491659166916791689169917091719172917391749175917691779178917991809181918291839184918591869187918891899190919191929193919491959196919791989199920092019202920392049205920692079208920992109211921292139214921592169217921892199220922192229223922492259226922792289229923092319232923392349235923692379238923992409241924292439244924592469247924892499250925192529253925492559256925792589259926092619262926392649265926692679268926992709271927292739274927592769277927892799280928192829283928492859286928792889289929092919292929392949295929692979298929993009301930293039304930593069307930893099310931193129313931493159316931793189319932093219322932393249325932693279328932993309331933293339334933593369337933893399340934193429343934493459346934793489349935093519352935393549355935693579358935993609361936293639364936593669367936893699370937193729373937493759376937793789379938093819382938393849385938693879388938993909391939293939394939593969397939893999400940194029403940494059406940794089409941094119412941394149415941694179418941994209421942294239424942594269427942894299430943194329433943494359436943794389439944094419442944394449445944694479448944994509451945294539454945594569457945894599460946194629463946494659466946794689469947094719472947394749475947694779478947994809481948294839484948594869487948894899490949194929493949494959496949794989499950095019502950395049505950695079508950995109511951295139514951595169517951895199520952195229523952495259526952795289529953095319532953395349535953695379538953995409541954295439544954595469547954895499550955195529553955495559556955795589559956095619562956395649565956695679568956995709571957295739574957595769577957895799580958195829583958495859586958795889589959095919592959395949595959695979598959996009601960296039604960596069607960896099610961196129613961496159616961796189619962096219622962396249625962696279628962996309631963296339634963596369637963896399640964196429643964496459646964796489649965096519652965396549655965696579658965996609661966296639664966596669667966896699670967196729673967496759676967796789679968096819682968396849685968696879688968996909691969296939694969596969697969896999700970197029703970497059706970797089709971097119712971397149715971697179718971997209721972297239724972597269727972897299730973197329733973497359736973797389739974097419742974397449745974697479748974997509751975297539754975597569757975897599760976197629763976497659766976797689769977097719772977397749775977697779778977997809781978297839784978597869787978897899790979197929793979497959796979797989799980098019802980398049805980698079808980998109811981298139814981598169817981898199820982198229823982498259826982798289829983098319832983398349835983698379838983998409841984298439844984598469847984898499850985198529853985498559856985798589859986098619862986398649865986698679868986998709871987298739874987598769877987898799880
  1. /* -*- c++ -*- */
  2. /**
  3. * @file
  4. */
  5. /**
  6. * @mainpage Reprap 3D printer firmware based on Sprinter and grbl.
  7. *
  8. * @section intro_sec Introduction
  9. *
  10. * This firmware is a mashup between Sprinter and grbl.
  11. * https://github.com/kliment/Sprinter
  12. * https://github.com/simen/grbl/tree
  13. *
  14. * It has preliminary support for Matthew Roberts advance algorithm
  15. * http://reprap.org/pipermail/reprap-dev/2011-May/003323.html
  16. *
  17. * Prusa Research s.r.o. https://www.prusa3d.cz
  18. *
  19. * @section copyright_sec Copyright
  20. *
  21. * Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
  22. *
  23. * This program is free software: you can redistribute it and/or modify
  24. * it under the terms of the GNU General Public License as published by
  25. * the Free Software Foundation, either version 3 of the License, or
  26. * (at your option) any later version.
  27. *
  28. * This program is distributed in the hope that it will be useful,
  29. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  30. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  31. * GNU General Public License for more details.
  32. *
  33. * You should have received a copy of the GNU General Public License
  34. * along with this program. If not, see <http://www.gnu.org/licenses/>.
  35. *
  36. * @section notes_sec Notes
  37. *
  38. * * Do not create static objects in global functions.
  39. * Otherwise constructor guard against concurrent calls is generated costing
  40. * about 8B RAM and 14B flash.
  41. *
  42. *
  43. */
  44. //-//
  45. #include "Configuration.h"
  46. #include "Marlin.h"
  47. #ifdef ENABLE_AUTO_BED_LEVELING
  48. #include "vector_3.h"
  49. #ifdef AUTO_BED_LEVELING_GRID
  50. #include "qr_solve.h"
  51. #endif
  52. #endif // ENABLE_AUTO_BED_LEVELING
  53. #ifdef MESH_BED_LEVELING
  54. #include "mesh_bed_leveling.h"
  55. #include "mesh_bed_calibration.h"
  56. #endif
  57. #include "printers.h"
  58. #include "menu.h"
  59. #include "ultralcd.h"
  60. #include "planner.h"
  61. #include "stepper.h"
  62. #include "temperature.h"
  63. #include "motion_control.h"
  64. #include "cardreader.h"
  65. #include "ConfigurationStore.h"
  66. #include "language.h"
  67. #include "pins_arduino.h"
  68. #include "math.h"
  69. #include "util.h"
  70. #include "Timer.h"
  71. #include <avr/wdt.h>
  72. #include <avr/pgmspace.h>
  73. #include "Dcodes.h"
  74. #include "AutoDeplete.h"
  75. #ifdef SWSPI
  76. #include "swspi.h"
  77. #endif //SWSPI
  78. #include "spi.h"
  79. #ifdef SWI2C
  80. #include "swi2c.h"
  81. #endif //SWI2C
  82. #ifdef FILAMENT_SENSOR
  83. #include "fsensor.h"
  84. #endif //FILAMENT_SENSOR
  85. #ifdef TMC2130
  86. #include "tmc2130.h"
  87. #endif //TMC2130
  88. #ifdef W25X20CL
  89. #include "w25x20cl.h"
  90. #include "optiboot_w25x20cl.h"
  91. #endif //W25X20CL
  92. #ifdef BLINKM
  93. #include "BlinkM.h"
  94. #include "Wire.h"
  95. #endif
  96. #ifdef ULTRALCD
  97. #include "ultralcd.h"
  98. #endif
  99. #if NUM_SERVOS > 0
  100. #include "Servo.h"
  101. #endif
  102. #if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
  103. #include <SPI.h>
  104. #endif
  105. #include "mmu.h"
  106. #define VERSION_STRING "1.0.2"
  107. #include "ultralcd.h"
  108. #include "sound.h"
  109. #include "cmdqueue.h"
  110. #include "io_atmega2560.h"
  111. // Macros for bit masks
  112. #define BIT(b) (1<<(b))
  113. #define TEST(n,b) (((n)&BIT(b))!=0)
  114. #define SET_BIT(n,b,value) (n) ^= ((-value)^(n)) & (BIT(b))
  115. //Macro for print fan speed
  116. #define FAN_PULSE_WIDTH_LIMIT ((fanSpeed > 100) ? 3 : 4) //time in ms
  117. #define PRINTING_TYPE_SD 0
  118. #define PRINTING_TYPE_USB 1
  119. #define PRINTING_TYPE_NONE 2
  120. //filament types
  121. #define FILAMENT_DEFAULT 0
  122. #define FILAMENT_FLEX 1
  123. #define FILAMENT_PVA 2
  124. #define FILAMENT_UNDEFINED 255
  125. //Stepper Movement Variables
  126. //===========================================================================
  127. //=============================imported variables============================
  128. //===========================================================================
  129. //===========================================================================
  130. //=============================public variables=============================
  131. //===========================================================================
  132. #ifdef SDSUPPORT
  133. CardReader card;
  134. #endif
  135. unsigned long PingTime = _millis();
  136. unsigned long NcTime;
  137. uint8_t mbl_z_probe_nr = 3; //numer of Z measurements for each point in mesh bed leveling calibration
  138. //used for PINDA temp calibration and pause print
  139. #define DEFAULT_RETRACTION 1
  140. #define DEFAULT_RETRACTION_MM 4 //MM
  141. float default_retraction = DEFAULT_RETRACTION;
  142. float homing_feedrate[] = HOMING_FEEDRATE;
  143. // Currently only the extruder axis may be switched to a relative mode.
  144. // Other axes are always absolute or relative based on the common relative_mode flag.
  145. bool axis_relative_modes[] = AXIS_RELATIVE_MODES;
  146. int feedmultiply=100; //100->1 200->2
  147. int extrudemultiply=100; //100->1 200->2
  148. int extruder_multiply[EXTRUDERS] = {100
  149. #if EXTRUDERS > 1
  150. , 100
  151. #if EXTRUDERS > 2
  152. , 100
  153. #endif
  154. #endif
  155. };
  156. int bowden_length[4] = {385, 385, 385, 385};
  157. bool is_usb_printing = false;
  158. bool homing_flag = false;
  159. bool temp_cal_active = false;
  160. unsigned long kicktime = _millis()+100000;
  161. unsigned int usb_printing_counter;
  162. int8_t lcd_change_fil_state = 0;
  163. unsigned long pause_time = 0;
  164. unsigned long start_pause_print = _millis();
  165. unsigned long t_fan_rising_edge = _millis();
  166. LongTimer safetyTimer;
  167. static LongTimer crashDetTimer;
  168. //unsigned long load_filament_time;
  169. bool mesh_bed_leveling_flag = false;
  170. bool mesh_bed_run_from_menu = false;
  171. bool prusa_sd_card_upload = false;
  172. unsigned int status_number = 0;
  173. unsigned long total_filament_used;
  174. unsigned int heating_status;
  175. unsigned int heating_status_counter;
  176. bool loading_flag = false;
  177. char snmm_filaments_used = 0;
  178. bool fan_state[2];
  179. int fan_edge_counter[2];
  180. int fan_speed[2];
  181. char dir_names[3][9];
  182. bool sortAlpha = false;
  183. float extruder_multiplier[EXTRUDERS] = {1.0
  184. #if EXTRUDERS > 1
  185. , 1.0
  186. #if EXTRUDERS > 2
  187. , 1.0
  188. #endif
  189. #endif
  190. };
  191. float current_position[NUM_AXIS] = { 0.0, 0.0, 0.0, 0.0 };
  192. //shortcuts for more readable code
  193. #define _x current_position[X_AXIS]
  194. #define _y current_position[Y_AXIS]
  195. #define _z current_position[Z_AXIS]
  196. #define _e current_position[E_AXIS]
  197. float min_pos[3] = { X_MIN_POS, Y_MIN_POS, Z_MIN_POS };
  198. float max_pos[3] = { X_MAX_POS, Y_MAX_POS, Z_MAX_POS };
  199. bool axis_known_position[3] = {false, false, false};
  200. // Extruder offset
  201. #if EXTRUDERS > 1
  202. #define NUM_EXTRUDER_OFFSETS 2 // only in XY plane
  203. float extruder_offset[NUM_EXTRUDER_OFFSETS][EXTRUDERS] = {
  204. #if defined(EXTRUDER_OFFSET_X) && defined(EXTRUDER_OFFSET_Y)
  205. EXTRUDER_OFFSET_X, EXTRUDER_OFFSET_Y
  206. #endif
  207. };
  208. #endif
  209. uint8_t active_extruder = 0;
  210. int fanSpeed=0;
  211. #ifdef FWRETRACT
  212. bool retracted[EXTRUDERS]={false
  213. #if EXTRUDERS > 1
  214. , false
  215. #if EXTRUDERS > 2
  216. , false
  217. #endif
  218. #endif
  219. };
  220. bool retracted_swap[EXTRUDERS]={false
  221. #if EXTRUDERS > 1
  222. , false
  223. #if EXTRUDERS > 2
  224. , false
  225. #endif
  226. #endif
  227. };
  228. float retract_length_swap = RETRACT_LENGTH_SWAP;
  229. float retract_recover_length_swap = RETRACT_RECOVER_LENGTH_SWAP;
  230. #endif
  231. #ifdef PS_DEFAULT_OFF
  232. bool powersupply = false;
  233. #else
  234. bool powersupply = true;
  235. #endif
  236. bool cancel_heatup = false ;
  237. int8_t busy_state = NOT_BUSY;
  238. static long prev_busy_signal_ms = -1;
  239. uint8_t host_keepalive_interval = HOST_KEEPALIVE_INTERVAL;
  240. const char errormagic[] PROGMEM = "Error:";
  241. const char echomagic[] PROGMEM = "echo:";
  242. bool no_response = false;
  243. uint8_t important_status;
  244. uint8_t saved_filament_type;
  245. // save/restore printing in case that mmu was not responding
  246. bool mmu_print_saved = false;
  247. // storing estimated time to end of print counted by slicer
  248. uint8_t print_percent_done_normal = PRINT_PERCENT_DONE_INIT;
  249. uint16_t print_time_remaining_normal = PRINT_TIME_REMAINING_INIT; //estimated remaining print time in minutes
  250. uint8_t print_percent_done_silent = PRINT_PERCENT_DONE_INIT;
  251. uint16_t print_time_remaining_silent = PRINT_TIME_REMAINING_INIT; //estimated remaining print time in minutes
  252. bool wizard_active = false; //autoload temporarily disabled during wizard
  253. //===========================================================================
  254. //=============================Private Variables=============================
  255. //===========================================================================
  256. #define MSG_BED_LEVELING_FAILED_TIMEOUT 30
  257. const char axis_codes[NUM_AXIS] = {'X', 'Y', 'Z', 'E'};
  258. float destination[NUM_AXIS] = { 0.0, 0.0, 0.0, 0.0};
  259. // For tracing an arc
  260. static float offset[3] = {0.0, 0.0, 0.0};
  261. static float feedrate = 1500.0, next_feedrate, saved_feedrate;
  262. // Determines Absolute or Relative Coordinates.
  263. // Also there is bool axis_relative_modes[] per axis flag.
  264. static bool relative_mode = false;
  265. const int sensitive_pins[] = SENSITIVE_PINS; // Sensitive pin list for M42
  266. //static float tt = 0;
  267. //static float bt = 0;
  268. //Inactivity shutdown variables
  269. static unsigned long previous_millis_cmd = 0;
  270. unsigned long max_inactive_time = 0;
  271. static unsigned long stepper_inactive_time = DEFAULT_STEPPER_DEACTIVE_TIME*1000l;
  272. static unsigned long safetytimer_inactive_time = DEFAULT_SAFETYTIMER_TIME_MINS*60*1000ul;
  273. unsigned long starttime=0;
  274. unsigned long stoptime=0;
  275. unsigned long _usb_timer = 0;
  276. bool extruder_under_pressure = true;
  277. bool Stopped=false;
  278. #if NUM_SERVOS > 0
  279. Servo servos[NUM_SERVOS];
  280. #endif
  281. bool CooldownNoWait = true;
  282. bool target_direction;
  283. //Insert variables if CHDK is defined
  284. #ifdef CHDK
  285. unsigned long chdkHigh = 0;
  286. boolean chdkActive = false;
  287. #endif
  288. //! @name RAM save/restore printing
  289. //! @{
  290. bool saved_printing = false; //!< Print is paused and saved in RAM
  291. static uint32_t saved_sdpos = 0; //!< SD card position, or line number in case of USB printing
  292. static uint8_t saved_printing_type = PRINTING_TYPE_SD;
  293. static float saved_pos[4] = { 0, 0, 0, 0 };
  294. //! Feedrate hopefully derived from an active block of the planner at the time the print has been canceled, in mm/min.
  295. static float saved_feedrate2 = 0;
  296. static uint8_t saved_active_extruder = 0;
  297. static float saved_extruder_temperature = 0.0; //!< Active extruder temperature
  298. static bool saved_extruder_under_pressure = false;
  299. static bool saved_extruder_relative_mode = false;
  300. static int saved_fanSpeed = 0; //!< Print fan speed
  301. //! @}
  302. static int saved_feedmultiply_mm = 100;
  303. //===========================================================================
  304. //=============================Routines======================================
  305. //===========================================================================
  306. static void get_arc_coordinates();
  307. static bool setTargetedHotend(int code, uint8_t &extruder);
  308. static void print_time_remaining_init();
  309. static void wait_for_heater(long codenum, uint8_t extruder);
  310. static void gcode_G28(bool home_x_axis, bool home_y_axis, bool home_z_axis);
  311. uint16_t gcode_in_progress = 0;
  312. uint16_t mcode_in_progress = 0;
  313. void serial_echopair_P(const char *s_P, float v)
  314. { serialprintPGM(s_P); SERIAL_ECHO(v); }
  315. void serial_echopair_P(const char *s_P, double v)
  316. { serialprintPGM(s_P); SERIAL_ECHO(v); }
  317. void serial_echopair_P(const char *s_P, unsigned long v)
  318. { serialprintPGM(s_P); SERIAL_ECHO(v); }
  319. #ifdef SDSUPPORT
  320. #include "SdFatUtil.h"
  321. int freeMemory() { return SdFatUtil::FreeRam(); }
  322. #else
  323. extern "C" {
  324. extern unsigned int __bss_end;
  325. extern unsigned int __heap_start;
  326. extern void *__brkval;
  327. int freeMemory() {
  328. int free_memory;
  329. if ((int)__brkval == 0)
  330. free_memory = ((int)&free_memory) - ((int)&__bss_end);
  331. else
  332. free_memory = ((int)&free_memory) - ((int)__brkval);
  333. return free_memory;
  334. }
  335. }
  336. #endif //!SDSUPPORT
  337. void setup_killpin()
  338. {
  339. #if defined(KILL_PIN) && KILL_PIN > -1
  340. SET_INPUT(KILL_PIN);
  341. WRITE(KILL_PIN,HIGH);
  342. #endif
  343. }
  344. // Set home pin
  345. void setup_homepin(void)
  346. {
  347. #if defined(HOME_PIN) && HOME_PIN > -1
  348. SET_INPUT(HOME_PIN);
  349. WRITE(HOME_PIN,HIGH);
  350. #endif
  351. }
  352. void setup_photpin()
  353. {
  354. #if defined(PHOTOGRAPH_PIN) && PHOTOGRAPH_PIN > -1
  355. SET_OUTPUT(PHOTOGRAPH_PIN);
  356. WRITE(PHOTOGRAPH_PIN, LOW);
  357. #endif
  358. }
  359. void setup_powerhold()
  360. {
  361. #if defined(SUICIDE_PIN) && SUICIDE_PIN > -1
  362. SET_OUTPUT(SUICIDE_PIN);
  363. WRITE(SUICIDE_PIN, HIGH);
  364. #endif
  365. #if defined(PS_ON_PIN) && PS_ON_PIN > -1
  366. SET_OUTPUT(PS_ON_PIN);
  367. #if defined(PS_DEFAULT_OFF)
  368. WRITE(PS_ON_PIN, PS_ON_ASLEEP);
  369. #else
  370. WRITE(PS_ON_PIN, PS_ON_AWAKE);
  371. #endif
  372. #endif
  373. }
  374. void suicide()
  375. {
  376. #if defined(SUICIDE_PIN) && SUICIDE_PIN > -1
  377. SET_OUTPUT(SUICIDE_PIN);
  378. WRITE(SUICIDE_PIN, LOW);
  379. #endif
  380. }
  381. void servo_init()
  382. {
  383. #if (NUM_SERVOS >= 1) && defined(SERVO0_PIN) && (SERVO0_PIN > -1)
  384. servos[0].attach(SERVO0_PIN);
  385. #endif
  386. #if (NUM_SERVOS >= 2) && defined(SERVO1_PIN) && (SERVO1_PIN > -1)
  387. servos[1].attach(SERVO1_PIN);
  388. #endif
  389. #if (NUM_SERVOS >= 3) && defined(SERVO2_PIN) && (SERVO2_PIN > -1)
  390. servos[2].attach(SERVO2_PIN);
  391. #endif
  392. #if (NUM_SERVOS >= 4) && defined(SERVO3_PIN) && (SERVO3_PIN > -1)
  393. servos[3].attach(SERVO3_PIN);
  394. #endif
  395. #if (NUM_SERVOS >= 5)
  396. #error "TODO: enter initalisation code for more servos"
  397. #endif
  398. }
  399. bool fans_check_enabled = true;
  400. #ifdef TMC2130
  401. extern int8_t CrashDetectMenu;
  402. void crashdet_enable()
  403. {
  404. tmc2130_sg_stop_on_crash = true;
  405. eeprom_update_byte((uint8_t*)EEPROM_CRASH_DET, 0xFF);
  406. CrashDetectMenu = 1;
  407. }
  408. void crashdet_disable()
  409. {
  410. tmc2130_sg_stop_on_crash = false;
  411. tmc2130_sg_crash = 0;
  412. eeprom_update_byte((uint8_t*)EEPROM_CRASH_DET, 0x00);
  413. CrashDetectMenu = 0;
  414. }
  415. void crashdet_stop_and_save_print()
  416. {
  417. stop_and_save_print_to_ram(10, -default_retraction); //XY - no change, Z 10mm up, E -1mm retract
  418. }
  419. void crashdet_restore_print_and_continue()
  420. {
  421. restore_print_from_ram_and_continue(default_retraction); //XYZ = orig, E +1mm unretract
  422. // babystep_apply();
  423. }
  424. void crashdet_stop_and_save_print2()
  425. {
  426. cli();
  427. planner_abort_hard(); //abort printing
  428. cmdqueue_reset(); //empty cmdqueue
  429. card.sdprinting = false;
  430. card.closefile();
  431. // Reset and re-enable the stepper timer just before the global interrupts are enabled.
  432. st_reset_timer();
  433. sei();
  434. }
  435. void crashdet_detected(uint8_t mask)
  436. {
  437. st_synchronize();
  438. static uint8_t crashDet_counter = 0;
  439. bool automatic_recovery_after_crash = true;
  440. if (crashDet_counter++ == 0) {
  441. crashDetTimer.start();
  442. }
  443. else if (crashDetTimer.expired(CRASHDET_TIMER * 1000ul)){
  444. crashDetTimer.stop();
  445. crashDet_counter = 0;
  446. }
  447. else if(crashDet_counter == CRASHDET_COUNTER_MAX){
  448. automatic_recovery_after_crash = false;
  449. crashDetTimer.stop();
  450. crashDet_counter = 0;
  451. }
  452. else {
  453. crashDetTimer.start();
  454. }
  455. lcd_update_enable(true);
  456. lcd_clear();
  457. lcd_update(2);
  458. if (mask & X_AXIS_MASK)
  459. {
  460. eeprom_update_byte((uint8_t*)EEPROM_CRASH_COUNT_X, eeprom_read_byte((uint8_t*)EEPROM_CRASH_COUNT_X) + 1);
  461. eeprom_update_word((uint16_t*)EEPROM_CRASH_COUNT_X_TOT, eeprom_read_word((uint16_t*)EEPROM_CRASH_COUNT_X_TOT) + 1);
  462. }
  463. if (mask & Y_AXIS_MASK)
  464. {
  465. eeprom_update_byte((uint8_t*)EEPROM_CRASH_COUNT_Y, eeprom_read_byte((uint8_t*)EEPROM_CRASH_COUNT_Y) + 1);
  466. eeprom_update_word((uint16_t*)EEPROM_CRASH_COUNT_Y_TOT, eeprom_read_word((uint16_t*)EEPROM_CRASH_COUNT_Y_TOT) + 1);
  467. }
  468. lcd_update_enable(true);
  469. lcd_update(2);
  470. lcd_setstatuspgm(_T(MSG_CRASH_DETECTED));
  471. gcode_G28(true, true, false); //home X and Y
  472. st_synchronize();
  473. if (automatic_recovery_after_crash) {
  474. enquecommand_P(PSTR("CRASH_RECOVER"));
  475. }else{
  476. setTargetHotend(0, active_extruder);
  477. bool yesno = lcd_show_fullscreen_message_yes_no_and_wait_P(_i("Crash detected. Resume print?"), false);
  478. lcd_update_enable(true);
  479. if (yesno)
  480. {
  481. enquecommand_P(PSTR("CRASH_RECOVER"));
  482. }
  483. else
  484. {
  485. enquecommand_P(PSTR("CRASH_CANCEL"));
  486. }
  487. }
  488. }
  489. void crashdet_recover()
  490. {
  491. crashdet_restore_print_and_continue();
  492. tmc2130_sg_stop_on_crash = true;
  493. }
  494. void crashdet_cancel()
  495. {
  496. saved_printing = false;
  497. tmc2130_sg_stop_on_crash = true;
  498. if (saved_printing_type == PRINTING_TYPE_SD) {
  499. lcd_print_stop();
  500. }else if(saved_printing_type == PRINTING_TYPE_USB){
  501. SERIAL_ECHOLNPGM("// action:cancel"); //for Octoprint: works the same as clicking "Abort" button in Octoprint GUI
  502. SERIAL_PROTOCOLLNRPGM(MSG_OK);
  503. }
  504. }
  505. #endif //TMC2130
  506. void failstats_reset_print()
  507. {
  508. eeprom_update_byte((uint8_t *)EEPROM_CRASH_COUNT_X, 0);
  509. eeprom_update_byte((uint8_t *)EEPROM_CRASH_COUNT_Y, 0);
  510. eeprom_update_byte((uint8_t *)EEPROM_FERROR_COUNT, 0);
  511. eeprom_update_byte((uint8_t *)EEPROM_POWER_COUNT, 0);
  512. eeprom_update_byte((uint8_t *)EEPROM_MMU_FAIL, 0);
  513. eeprom_update_byte((uint8_t *)EEPROM_MMU_LOAD_FAIL, 0);
  514. }
  515. #ifdef MESH_BED_LEVELING
  516. enum MeshLevelingState { MeshReport, MeshStart, MeshNext, MeshSet };
  517. #endif
  518. // Factory reset function
  519. // This function is used to erase parts or whole EEPROM memory which is used for storing calibration and and so on.
  520. // Level input parameter sets depth of reset
  521. int er_progress = 0;
  522. static void factory_reset(char level)
  523. {
  524. lcd_clear();
  525. switch (level) {
  526. // Level 0: Language reset
  527. case 0:
  528. Sound_MakeCustom(100,0,false);
  529. lang_reset();
  530. break;
  531. //Level 1: Reset statistics
  532. case 1:
  533. Sound_MakeCustom(100,0,false);
  534. eeprom_update_dword((uint32_t *)EEPROM_TOTALTIME, 0);
  535. eeprom_update_dword((uint32_t *)EEPROM_FILAMENTUSED, 0);
  536. eeprom_update_byte((uint8_t *)EEPROM_CRASH_COUNT_X, 0);
  537. eeprom_update_byte((uint8_t *)EEPROM_CRASH_COUNT_Y, 0);
  538. eeprom_update_byte((uint8_t *)EEPROM_FERROR_COUNT, 0);
  539. eeprom_update_byte((uint8_t *)EEPROM_POWER_COUNT, 0);
  540. eeprom_update_word((uint16_t *)EEPROM_CRASH_COUNT_X_TOT, 0);
  541. eeprom_update_word((uint16_t *)EEPROM_CRASH_COUNT_Y_TOT, 0);
  542. eeprom_update_word((uint16_t *)EEPROM_FERROR_COUNT_TOT, 0);
  543. eeprom_update_word((uint16_t *)EEPROM_POWER_COUNT_TOT, 0);
  544. eeprom_update_word((uint16_t *)EEPROM_MMU_FAIL_TOT, 0);
  545. eeprom_update_word((uint16_t *)EEPROM_MMU_LOAD_FAIL_TOT, 0);
  546. eeprom_update_byte((uint8_t *)EEPROM_MMU_FAIL, 0);
  547. eeprom_update_byte((uint8_t *)EEPROM_MMU_LOAD_FAIL, 0);
  548. lcd_menu_statistics();
  549. break;
  550. // Level 2: Prepare for shipping
  551. case 2:
  552. //lcd_puts_P(PSTR("Factory RESET"));
  553. //lcd_puts_at_P(1,2,PSTR("Shipping prep"));
  554. // Force language selection at the next boot up.
  555. lang_reset();
  556. // Force the "Follow calibration flow" message at the next boot up.
  557. calibration_status_store(CALIBRATION_STATUS_Z_CALIBRATION);
  558. eeprom_write_byte((uint8_t*)EEPROM_WIZARD_ACTIVE, 1); //run wizard
  559. farm_no = 0;
  560. farm_mode = false;
  561. eeprom_update_byte((uint8_t*)EEPROM_FARM_MODE, farm_mode);
  562. EEPROM_save_B(EEPROM_FARM_NUMBER, &farm_no);
  563. eeprom_update_dword((uint32_t *)EEPROM_TOTALTIME, 0);
  564. eeprom_update_dword((uint32_t *)EEPROM_FILAMENTUSED, 0);
  565. eeprom_update_word((uint16_t *)EEPROM_CRASH_COUNT_X_TOT, 0);
  566. eeprom_update_word((uint16_t *)EEPROM_CRASH_COUNT_Y_TOT, 0);
  567. eeprom_update_word((uint16_t *)EEPROM_FERROR_COUNT_TOT, 0);
  568. eeprom_update_word((uint16_t *)EEPROM_POWER_COUNT_TOT, 0);
  569. eeprom_update_word((uint16_t *)EEPROM_MMU_FAIL_TOT, 0);
  570. eeprom_update_word((uint16_t *)EEPROM_MMU_LOAD_FAIL_TOT, 0);
  571. eeprom_update_byte((uint8_t *)EEPROM_MMU_FAIL, 0);
  572. eeprom_update_byte((uint8_t *)EEPROM_MMU_LOAD_FAIL, 0);
  573. #ifdef FILAMENT_SENSOR
  574. fsensor_enable();
  575. fsensor_autoload_set(true);
  576. #endif //FILAMENT_SENSOR
  577. Sound_MakeCustom(100,0,false);
  578. //_delay_ms(2000);
  579. break;
  580. // Level 3: erase everything, whole EEPROM will be set to 0xFF
  581. case 3:
  582. lcd_puts_P(PSTR("Factory RESET"));
  583. lcd_puts_at_P(1, 2, PSTR("ERASING all data"));
  584. Sound_MakeCustom(100,0,false);
  585. er_progress = 0;
  586. lcd_puts_at_P(3, 3, PSTR(" "));
  587. lcd_set_cursor(3, 3);
  588. lcd_print(er_progress);
  589. // Erase EEPROM
  590. for (int i = 0; i < 4096; i++) {
  591. eeprom_update_byte((uint8_t*)i, 0xFF);
  592. if (i % 41 == 0) {
  593. er_progress++;
  594. lcd_puts_at_P(3, 3, PSTR(" "));
  595. lcd_set_cursor(3, 3);
  596. lcd_print(er_progress);
  597. lcd_puts_P(PSTR("%"));
  598. }
  599. }
  600. break;
  601. case 4:
  602. bowden_menu();
  603. break;
  604. default:
  605. break;
  606. }
  607. }
  608. extern "C" {
  609. FILE _uartout; //= {0}; Global variable is always zero initialized. No need to explicitly state this.
  610. }
  611. int uart_putchar(char c, FILE *)
  612. {
  613. MYSERIAL.write(c);
  614. return 0;
  615. }
  616. void lcd_splash()
  617. {
  618. lcd_clear(); // clears display and homes screen
  619. lcd_puts_P(PSTR("\n Original Prusa i3\n Prusa Research"));
  620. }
  621. void factory_reset()
  622. {
  623. KEEPALIVE_STATE(PAUSED_FOR_USER);
  624. if (!READ(BTN_ENC))
  625. {
  626. _delay_ms(1000);
  627. if (!READ(BTN_ENC))
  628. {
  629. lcd_clear();
  630. lcd_puts_P(PSTR("Factory RESET"));
  631. SET_OUTPUT(BEEPER);
  632. if(eSoundMode!=e_SOUND_MODE_SILENT)
  633. WRITE(BEEPER, HIGH);
  634. while (!READ(BTN_ENC));
  635. WRITE(BEEPER, LOW);
  636. _delay_ms(2000);
  637. char level = reset_menu();
  638. factory_reset(level);
  639. switch (level) {
  640. case 0: _delay_ms(0); break;
  641. case 1: _delay_ms(0); break;
  642. case 2: _delay_ms(0); break;
  643. case 3: _delay_ms(0); break;
  644. }
  645. }
  646. }
  647. KEEPALIVE_STATE(IN_HANDLER);
  648. }
  649. void show_fw_version_warnings() {
  650. if (FW_DEV_VERSION == FW_VERSION_GOLD || FW_DEV_VERSION == FW_VERSION_RC) return;
  651. switch (FW_DEV_VERSION) {
  652. case(FW_VERSION_ALPHA): lcd_show_fullscreen_message_and_wait_P(_i("You are using firmware alpha version. This is development version. Using this version is not recommended and may cause printer damage.")); break;////MSG_FW_VERSION_ALPHA c=20 r=8
  653. case(FW_VERSION_BETA): lcd_show_fullscreen_message_and_wait_P(_i("You are using firmware beta version. This is development version. Using this version is not recommended and may cause printer damage.")); break;////MSG_FW_VERSION_BETA c=20 r=8
  654. case(FW_VERSION_DEVEL):
  655. case(FW_VERSION_DEBUG):
  656. lcd_update_enable(false);
  657. lcd_clear();
  658. #if FW_DEV_VERSION == FW_VERSION_DEVEL
  659. lcd_puts_at_P(0, 0, PSTR("Development build !!"));
  660. #else
  661. lcd_puts_at_P(0, 0, PSTR("Debbugging build !!!"));
  662. #endif
  663. lcd_puts_at_P(0, 1, PSTR("May destroy printer!"));
  664. lcd_puts_at_P(0, 2, PSTR("ver ")); lcd_puts_P(PSTR(FW_VERSION_FULL));
  665. lcd_puts_at_P(0, 3, PSTR(FW_REPOSITORY));
  666. lcd_wait_for_click();
  667. break;
  668. // default: lcd_show_fullscreen_message_and_wait_P(_i("WARNING: This is an unofficial, unsupported build. Use at your own risk!")); break;////MSG_FW_VERSION_UNKNOWN c=20 r=8
  669. }
  670. lcd_update_enable(true);
  671. }
  672. //! @brief try to check if firmware is on right type of printer
  673. static void check_if_fw_is_on_right_printer(){
  674. #ifdef FILAMENT_SENSOR
  675. if((PRINTER_TYPE == PRINTER_MK3) || (PRINTER_TYPE == PRINTER_MK3S)){
  676. #ifdef IR_SENSOR
  677. swi2c_init();
  678. const uint8_t pat9125_detected = swi2c_readByte_A8(PAT9125_I2C_ADDR,0x00,NULL);
  679. if (pat9125_detected){
  680. lcd_show_fullscreen_message_and_wait_P(_i("MK3S firmware detected on MK3 printer"));}
  681. #endif //IR_SENSOR
  682. #ifdef PAT9125
  683. //will return 1 only if IR can detect filament in bondtech extruder so this may fail even when we have IR sensor
  684. const uint8_t ir_detected = !(PIN_GET(IR_SENSOR_PIN));
  685. if (ir_detected){
  686. lcd_show_fullscreen_message_and_wait_P(_i("MK3 firmware detected on MK3S printer"));}
  687. #endif //PAT9125
  688. }
  689. #endif //FILAMENT_SENSOR
  690. }
  691. uint8_t check_printer_version()
  692. {
  693. uint8_t version_changed = 0;
  694. uint16_t printer_type = eeprom_read_word((uint16_t*)EEPROM_PRINTER_TYPE);
  695. uint16_t motherboard = eeprom_read_word((uint16_t*)EEPROM_BOARD_TYPE);
  696. if (printer_type != PRINTER_TYPE) {
  697. if (printer_type == 0xffff) eeprom_write_word((uint16_t*)EEPROM_PRINTER_TYPE, PRINTER_TYPE);
  698. else version_changed |= 0b10;
  699. }
  700. if (motherboard != MOTHERBOARD) {
  701. if(motherboard == 0xffff) eeprom_write_word((uint16_t*)EEPROM_BOARD_TYPE, MOTHERBOARD);
  702. else version_changed |= 0b01;
  703. }
  704. return version_changed;
  705. }
  706. #ifdef BOOTAPP
  707. #include "bootapp.h" //bootloader support
  708. #endif //BOOTAPP
  709. #if (LANG_MODE != 0) //secondary language support
  710. #ifdef W25X20CL
  711. // language update from external flash
  712. #define LANGBOOT_BLOCKSIZE 0x1000u
  713. #define LANGBOOT_RAMBUFFER 0x0800
  714. void update_sec_lang_from_external_flash()
  715. {
  716. if ((boot_app_magic == BOOT_APP_MAGIC) && (boot_app_flags & BOOT_APP_FLG_USER0))
  717. {
  718. uint8_t lang = boot_reserved >> 4;
  719. uint8_t state = boot_reserved & 0xf;
  720. lang_table_header_t header;
  721. uint32_t src_addr;
  722. if (lang_get_header(lang, &header, &src_addr))
  723. {
  724. lcd_puts_at_P(1,3,PSTR("Language update."));
  725. for (uint8_t i = 0; i < state; i++) fputc('.', lcdout);
  726. _delay(100);
  727. boot_reserved = (state + 1) | (lang << 4);
  728. if ((state * LANGBOOT_BLOCKSIZE) < header.size)
  729. {
  730. cli();
  731. uint16_t size = header.size - state * LANGBOOT_BLOCKSIZE;
  732. if (size > LANGBOOT_BLOCKSIZE) size = LANGBOOT_BLOCKSIZE;
  733. w25x20cl_rd_data(src_addr + state * LANGBOOT_BLOCKSIZE, (uint8_t*)LANGBOOT_RAMBUFFER, size);
  734. if (state == 0)
  735. {
  736. //TODO - check header integrity
  737. }
  738. bootapp_ram2flash(LANGBOOT_RAMBUFFER, _SEC_LANG_TABLE + state * LANGBOOT_BLOCKSIZE, size);
  739. }
  740. else
  741. {
  742. //TODO - check sec lang data integrity
  743. eeprom_update_byte((unsigned char *)EEPROM_LANG, LANG_ID_SEC);
  744. }
  745. }
  746. }
  747. boot_app_flags &= ~BOOT_APP_FLG_USER0;
  748. }
  749. #ifdef DEBUG_W25X20CL
  750. uint8_t lang_xflash_enum_codes(uint16_t* codes)
  751. {
  752. lang_table_header_t header;
  753. uint8_t count = 0;
  754. uint32_t addr = 0x00000;
  755. while (1)
  756. {
  757. printf_P(_n("LANGTABLE%d:"), count);
  758. w25x20cl_rd_data(addr, (uint8_t*)&header, sizeof(lang_table_header_t));
  759. if (header.magic != LANG_MAGIC)
  760. {
  761. printf_P(_n("NG!\n"));
  762. break;
  763. }
  764. printf_P(_n("OK\n"));
  765. printf_P(_n(" _lt_magic = 0x%08lx %S\n"), header.magic, (header.magic==LANG_MAGIC)?_n("OK"):_n("NA"));
  766. printf_P(_n(" _lt_size = 0x%04x (%d)\n"), header.size, header.size);
  767. printf_P(_n(" _lt_count = 0x%04x (%d)\n"), header.count, header.count);
  768. printf_P(_n(" _lt_chsum = 0x%04x\n"), header.checksum);
  769. printf_P(_n(" _lt_code = 0x%04x (%c%c)\n"), header.code, header.code >> 8, header.code & 0xff);
  770. printf_P(_n(" _lt_sign = 0x%08lx\n"), header.signature);
  771. addr += header.size;
  772. codes[count] = header.code;
  773. count ++;
  774. }
  775. return count;
  776. }
  777. void list_sec_lang_from_external_flash()
  778. {
  779. uint16_t codes[8];
  780. uint8_t count = lang_xflash_enum_codes(codes);
  781. printf_P(_n("XFlash lang count = %hhd\n"), count);
  782. }
  783. #endif //DEBUG_W25X20CL
  784. #endif //W25X20CL
  785. #endif //(LANG_MODE != 0)
  786. static void w25x20cl_err_msg()
  787. {
  788. lcd_clear();
  789. lcd_puts_P(_n("External SPI flash\nW25X20CL is not res-\nponding. Language\nswitch unavailable."));
  790. }
  791. // "Setup" function is called by the Arduino framework on startup.
  792. // Before startup, the Timers-functions (PWM)/Analog RW and HardwareSerial provided by the Arduino-code
  793. // are initialized by the main() routine provided by the Arduino framework.
  794. void setup()
  795. {
  796. mmu_init();
  797. ultralcd_init();
  798. #if (LCD_BL_PIN != -1) && defined (LCD_BL_PIN)
  799. analogWrite(LCD_BL_PIN, 255); //set full brightnes
  800. #endif //(LCD_BL_PIN != -1) && defined (LCD_BL_PIN)
  801. spi_init();
  802. lcd_splash();
  803. Sound_Init(); // also guarantee "SET_OUTPUT(BEEPER)"
  804. #ifdef W25X20CL
  805. bool w25x20cl_success = w25x20cl_init();
  806. if (w25x20cl_success)
  807. {
  808. optiboot_w25x20cl_enter();
  809. #if (LANG_MODE != 0) //secondary language support
  810. update_sec_lang_from_external_flash();
  811. #endif //(LANG_MODE != 0)
  812. }
  813. else
  814. {
  815. w25x20cl_err_msg();
  816. }
  817. #else
  818. const bool w25x20cl_success = true;
  819. #endif //W25X20CL
  820. setup_killpin();
  821. setup_powerhold();
  822. farm_mode = eeprom_read_byte((uint8_t*)EEPROM_FARM_MODE);
  823. EEPROM_read_B(EEPROM_FARM_NUMBER, &farm_no);
  824. if ((farm_mode == 0xFF && farm_no == 0) || ((uint16_t)farm_no == 0xFFFF))
  825. farm_mode = false; //if farm_mode has not been stored to eeprom yet and farm number is set to zero or EEPROM is fresh, deactivate farm mode
  826. if ((uint16_t)farm_no == 0xFFFF) farm_no = 0;
  827. selectedSerialPort = eeprom_read_byte((uint8_t*)EEPROM_SECOND_SERIAL_ACTIVE);
  828. if (selectedSerialPort == 0xFF) selectedSerialPort = 0;
  829. if (farm_mode)
  830. {
  831. no_response = true; //we need confirmation by recieving PRUSA thx
  832. important_status = 8;
  833. prusa_statistics(8);
  834. selectedSerialPort = 1;
  835. #ifdef TMC2130
  836. //increased extruder current (PFW363)
  837. tmc2130_current_h[E_AXIS] = 36;
  838. tmc2130_current_r[E_AXIS] = 36;
  839. #endif //TMC2130
  840. #ifdef FILAMENT_SENSOR
  841. //disabled filament autoload (PFW360)
  842. fsensor_autoload_set(false);
  843. #endif //FILAMENT_SENSOR
  844. // ~ FanCheck -> on
  845. if(!(eeprom_read_byte((uint8_t*)EEPROM_FAN_CHECK_ENABLED)))
  846. eeprom_update_byte((unsigned char *)EEPROM_FAN_CHECK_ENABLED,true);
  847. }
  848. MYSERIAL.begin(BAUDRATE);
  849. fdev_setup_stream(uartout, uart_putchar, NULL, _FDEV_SETUP_WRITE); //setup uart out stream
  850. #ifndef W25X20CL
  851. SERIAL_PROTOCOLLNPGM("start");
  852. #endif //W25X20CL
  853. stdout = uartout;
  854. SERIAL_ECHO_START;
  855. printf_P(PSTR(" " FW_VERSION_FULL "\n"));
  856. //SERIAL_ECHOPAIR("Active sheet before:", static_cast<unsigned long int>(eeprom_read_byte(&(EEPROM_Sheets_base->active_sheet))));
  857. #ifdef DEBUG_SEC_LANG
  858. lang_table_header_t header;
  859. uint32_t src_addr = 0x00000;
  860. if (lang_get_header(1, &header, &src_addr))
  861. {
  862. //this is comparsion of some printing-methods regarding to flash space usage and code size/readability
  863. #define LT_PRINT_TEST 2
  864. // flash usage
  865. // total p.test
  866. //0 252718 t+c text code
  867. //1 253142 424 170 254
  868. //2 253040 322 164 158
  869. //3 253248 530 135 395
  870. #if (LT_PRINT_TEST==1) //not optimized printf
  871. printf_P(_n(" _src_addr = 0x%08lx\n"), src_addr);
  872. printf_P(_n(" _lt_magic = 0x%08lx %S\n"), header.magic, (header.magic==LANG_MAGIC)?_n("OK"):_n("NA"));
  873. printf_P(_n(" _lt_size = 0x%04x (%d)\n"), header.size, header.size);
  874. printf_P(_n(" _lt_count = 0x%04x (%d)\n"), header.count, header.count);
  875. printf_P(_n(" _lt_chsum = 0x%04x\n"), header.checksum);
  876. printf_P(_n(" _lt_code = 0x%04x (%c%c)\n"), header.code, header.code >> 8, header.code & 0xff);
  877. printf_P(_n(" _lt_sign = 0x%08lx\n"), header.signature);
  878. #elif (LT_PRINT_TEST==2) //optimized printf
  879. printf_P(
  880. _n(
  881. " _src_addr = 0x%08lx\n"
  882. " _lt_magic = 0x%08lx %S\n"
  883. " _lt_size = 0x%04x (%d)\n"
  884. " _lt_count = 0x%04x (%d)\n"
  885. " _lt_chsum = 0x%04x\n"
  886. " _lt_code = 0x%04x (%c%c)\n"
  887. " _lt_resv1 = 0x%08lx\n"
  888. ),
  889. src_addr,
  890. header.magic, (header.magic==LANG_MAGIC)?_n("OK"):_n("NA"),
  891. header.size, header.size,
  892. header.count, header.count,
  893. header.checksum,
  894. header.code, header.code >> 8, header.code & 0xff,
  895. header.signature
  896. );
  897. #elif (LT_PRINT_TEST==3) //arduino print/println (leading zeros not solved)
  898. MYSERIAL.print(" _src_addr = 0x");
  899. MYSERIAL.println(src_addr, 16);
  900. MYSERIAL.print(" _lt_magic = 0x");
  901. MYSERIAL.print(header.magic, 16);
  902. MYSERIAL.println((header.magic==LANG_MAGIC)?" OK":" NA");
  903. MYSERIAL.print(" _lt_size = 0x");
  904. MYSERIAL.print(header.size, 16);
  905. MYSERIAL.print(" (");
  906. MYSERIAL.print(header.size, 10);
  907. MYSERIAL.println(")");
  908. MYSERIAL.print(" _lt_count = 0x");
  909. MYSERIAL.print(header.count, 16);
  910. MYSERIAL.print(" (");
  911. MYSERIAL.print(header.count, 10);
  912. MYSERIAL.println(")");
  913. MYSERIAL.print(" _lt_chsum = 0x");
  914. MYSERIAL.println(header.checksum, 16);
  915. MYSERIAL.print(" _lt_code = 0x");
  916. MYSERIAL.print(header.code, 16);
  917. MYSERIAL.print(" (");
  918. MYSERIAL.print((char)(header.code >> 8), 0);
  919. MYSERIAL.print((char)(header.code & 0xff), 0);
  920. MYSERIAL.println(")");
  921. MYSERIAL.print(" _lt_resv1 = 0x");
  922. MYSERIAL.println(header.signature, 16);
  923. #endif //(LT_PRINT_TEST==)
  924. #undef LT_PRINT_TEST
  925. #if 0
  926. w25x20cl_rd_data(0x25ba, (uint8_t*)&block_buffer, 1024);
  927. for (uint16_t i = 0; i < 1024; i++)
  928. {
  929. if ((i % 16) == 0) printf_P(_n("%04x:"), 0x25ba+i);
  930. printf_P(_n(" %02x"), ((uint8_t*)&block_buffer)[i]);
  931. if ((i % 16) == 15) putchar('\n');
  932. }
  933. #endif
  934. uint16_t sum = 0;
  935. for (uint16_t i = 0; i < header.size; i++)
  936. sum += (uint16_t)pgm_read_byte((uint8_t*)(_SEC_LANG_TABLE + i)) << ((i & 1)?0:8);
  937. printf_P(_n("_SEC_LANG_TABLE checksum = %04x\n"), sum);
  938. sum -= header.checksum; //subtract checksum
  939. printf_P(_n("_SEC_LANG_TABLE checksum = %04x\n"), sum);
  940. sum = (sum >> 8) | ((sum & 0xff) << 8); //swap bytes
  941. if (sum == header.checksum)
  942. printf_P(_n("Checksum OK\n"), sum);
  943. else
  944. printf_P(_n("Checksum NG\n"), sum);
  945. }
  946. else
  947. printf_P(_n("lang_get_header failed!\n"));
  948. #if 0
  949. for (uint16_t i = 0; i < 1024*10; i++)
  950. {
  951. if ((i % 16) == 0) printf_P(_n("%04x:"), _SEC_LANG_TABLE+i);
  952. printf_P(_n(" %02x"), pgm_read_byte((uint8_t*)(_SEC_LANG_TABLE+i)));
  953. if ((i % 16) == 15) putchar('\n');
  954. }
  955. #endif
  956. #if 0
  957. SERIAL_ECHOLN("Reading eeprom from 0 to 100: start");
  958. for (int i = 0; i < 4096; ++i) {
  959. int b = eeprom_read_byte((unsigned char*)i);
  960. if (b != 255) {
  961. SERIAL_ECHO(i);
  962. SERIAL_ECHO(":");
  963. SERIAL_ECHO(b);
  964. SERIAL_ECHOLN("");
  965. }
  966. }
  967. SERIAL_ECHOLN("Reading eeprom from 0 to 100: done");
  968. #endif
  969. #endif //DEBUG_SEC_LANG
  970. // Check startup - does nothing if bootloader sets MCUSR to 0
  971. byte mcu = MCUSR;
  972. /* if (mcu & 1) SERIAL_ECHOLNRPGM(MSG_POWERUP);
  973. if (mcu & 2) SERIAL_ECHOLNRPGM(MSG_EXTERNAL_RESET);
  974. if (mcu & 4) SERIAL_ECHOLNRPGM(MSG_BROWNOUT_RESET);
  975. if (mcu & 8) SERIAL_ECHOLNRPGM(MSG_WATCHDOG_RESET);
  976. if (mcu & 32) SERIAL_ECHOLNRPGM(MSG_SOFTWARE_RESET);*/
  977. if (mcu & 1) puts_P(MSG_POWERUP);
  978. if (mcu & 2) puts_P(MSG_EXTERNAL_RESET);
  979. if (mcu & 4) puts_P(MSG_BROWNOUT_RESET);
  980. if (mcu & 8) puts_P(MSG_WATCHDOG_RESET);
  981. if (mcu & 32) puts_P(MSG_SOFTWARE_RESET);
  982. MCUSR = 0;
  983. //SERIAL_ECHORPGM(MSG_MARLIN);
  984. //SERIAL_ECHOLNRPGM(VERSION_STRING);
  985. #ifdef STRING_VERSION_CONFIG_H
  986. #ifdef STRING_CONFIG_H_AUTHOR
  987. SERIAL_ECHO_START;
  988. SERIAL_ECHORPGM(_n(" Last Updated: "));////MSG_CONFIGURATION_VER
  989. SERIAL_ECHOPGM(STRING_VERSION_CONFIG_H);
  990. SERIAL_ECHORPGM(_n(" | Author: "));////MSG_AUTHOR
  991. SERIAL_ECHOLNPGM(STRING_CONFIG_H_AUTHOR);
  992. SERIAL_ECHOPGM("Compiled: ");
  993. SERIAL_ECHOLNPGM(__DATE__);
  994. #endif
  995. #endif
  996. SERIAL_ECHO_START;
  997. SERIAL_ECHORPGM(_n(" Free Memory: "));////MSG_FREE_MEMORY
  998. SERIAL_ECHO(freeMemory());
  999. SERIAL_ECHORPGM(_n(" PlannerBufferBytes: "));////MSG_PLANNER_BUFFER_BYTES
  1000. SERIAL_ECHOLN((int)sizeof(block_t)*BLOCK_BUFFER_SIZE);
  1001. //lcd_update_enable(false); // why do we need this?? - andre
  1002. // loads data from EEPROM if available else uses defaults (and resets step acceleration rate)
  1003. bool previous_settings_retrieved = false;
  1004. uint8_t hw_changed = check_printer_version();
  1005. if (!(hw_changed & 0b10)) { //if printer version wasn't changed, check for eeprom version and retrieve settings from eeprom in case that version wasn't changed
  1006. previous_settings_retrieved = Config_RetrieveSettings();
  1007. }
  1008. else { //printer version was changed so use default settings
  1009. Config_ResetDefault();
  1010. }
  1011. SdFatUtil::set_stack_guard(); //writes magic number at the end of static variables to protect against overwriting static memory by stack
  1012. tp_init(); // Initialize temperature loop
  1013. if (w25x20cl_success) lcd_splash(); // we need to do this again, because tp_init() kills lcd
  1014. else
  1015. {
  1016. w25x20cl_err_msg();
  1017. printf_P(_n("W25X20CL not responding.\n"));
  1018. }
  1019. plan_init(); // Initialize planner;
  1020. factory_reset();
  1021. lcd_encoder_diff=0;
  1022. #ifdef TMC2130
  1023. uint8_t silentMode = eeprom_read_byte((uint8_t*)EEPROM_SILENT);
  1024. if (silentMode == 0xff) silentMode = 0;
  1025. tmc2130_mode = TMC2130_MODE_NORMAL;
  1026. uint8_t crashdet = eeprom_read_byte((uint8_t*)EEPROM_CRASH_DET);
  1027. if (crashdet && !farm_mode)
  1028. {
  1029. crashdet_enable();
  1030. puts_P(_N("CrashDetect ENABLED!"));
  1031. }
  1032. else
  1033. {
  1034. crashdet_disable();
  1035. puts_P(_N("CrashDetect DISABLED"));
  1036. }
  1037. #ifdef TMC2130_LINEARITY_CORRECTION
  1038. #ifdef TMC2130_LINEARITY_CORRECTION_XYZ
  1039. tmc2130_wave_fac[X_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_WAVE_X_FAC);
  1040. tmc2130_wave_fac[Y_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_WAVE_Y_FAC);
  1041. tmc2130_wave_fac[Z_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_WAVE_Z_FAC);
  1042. #endif //TMC2130_LINEARITY_CORRECTION_XYZ
  1043. tmc2130_wave_fac[E_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_WAVE_E_FAC);
  1044. if (tmc2130_wave_fac[X_AXIS] == 0xff) tmc2130_wave_fac[X_AXIS] = 0;
  1045. if (tmc2130_wave_fac[Y_AXIS] == 0xff) tmc2130_wave_fac[Y_AXIS] = 0;
  1046. if (tmc2130_wave_fac[Z_AXIS] == 0xff) tmc2130_wave_fac[Z_AXIS] = 0;
  1047. if (tmc2130_wave_fac[E_AXIS] == 0xff) tmc2130_wave_fac[E_AXIS] = 0;
  1048. #endif //TMC2130_LINEARITY_CORRECTION
  1049. #ifdef TMC2130_VARIABLE_RESOLUTION
  1050. tmc2130_mres[X_AXIS] = tmc2130_usteps2mres(cs.axis_ustep_resolution[X_AXIS]);
  1051. tmc2130_mres[Y_AXIS] = tmc2130_usteps2mres(cs.axis_ustep_resolution[Y_AXIS]);
  1052. tmc2130_mres[Z_AXIS] = tmc2130_usteps2mres(cs.axis_ustep_resolution[Z_AXIS]);
  1053. tmc2130_mres[E_AXIS] = tmc2130_usteps2mres(cs.axis_ustep_resolution[E_AXIS]);
  1054. #else //TMC2130_VARIABLE_RESOLUTION
  1055. tmc2130_mres[X_AXIS] = tmc2130_usteps2mres(TMC2130_USTEPS_XY);
  1056. tmc2130_mres[Y_AXIS] = tmc2130_usteps2mres(TMC2130_USTEPS_XY);
  1057. tmc2130_mres[Z_AXIS] = tmc2130_usteps2mres(TMC2130_USTEPS_Z);
  1058. tmc2130_mres[E_AXIS] = tmc2130_usteps2mres(TMC2130_USTEPS_E);
  1059. #endif //TMC2130_VARIABLE_RESOLUTION
  1060. #endif //TMC2130
  1061. st_init(); // Initialize stepper, this enables interrupts!
  1062. #ifdef UVLO_SUPPORT
  1063. setup_uvlo_interrupt();
  1064. #endif //UVLO_SUPPORT
  1065. #ifdef TMC2130
  1066. tmc2130_mode = silentMode?TMC2130_MODE_SILENT:TMC2130_MODE_NORMAL;
  1067. update_mode_profile();
  1068. tmc2130_init();
  1069. #endif //TMC2130
  1070. #ifdef PSU_Delta
  1071. init_force_z(); // ! important for correct Z-axis initialization
  1072. #endif // PSU_Delta
  1073. setup_photpin();
  1074. servo_init();
  1075. // Reset the machine correction matrix.
  1076. // It does not make sense to load the correction matrix until the machine is homed.
  1077. world2machine_reset();
  1078. #ifdef FILAMENT_SENSOR
  1079. fsensor_init();
  1080. #endif //FILAMENT_SENSOR
  1081. #if defined(CONTROLLERFAN_PIN) && (CONTROLLERFAN_PIN > -1)
  1082. SET_OUTPUT(CONTROLLERFAN_PIN); //Set pin used for driver cooling fan
  1083. #endif
  1084. setup_homepin();
  1085. #ifdef TMC2130
  1086. if (1) {
  1087. // try to run to zero phase before powering the Z motor.
  1088. // Move in negative direction
  1089. WRITE(Z_DIR_PIN,INVERT_Z_DIR);
  1090. // Round the current micro-micro steps to micro steps.
  1091. for (uint16_t phase = (tmc2130_rd_MSCNT(Z_AXIS) + 8) >> 4; phase > 0; -- phase) {
  1092. // Until the phase counter is reset to zero.
  1093. WRITE(Z_STEP_PIN, !INVERT_Z_STEP_PIN);
  1094. _delay(2);
  1095. WRITE(Z_STEP_PIN, INVERT_Z_STEP_PIN);
  1096. _delay(2);
  1097. }
  1098. }
  1099. #endif //TMC2130
  1100. #if defined(Z_AXIS_ALWAYS_ON) && !defined(PSU_Delta)
  1101. enable_z();
  1102. #endif
  1103. farm_mode = eeprom_read_byte((uint8_t*)EEPROM_FARM_MODE);
  1104. EEPROM_read_B(EEPROM_FARM_NUMBER, &farm_no);
  1105. if ((farm_mode == 0xFF && farm_no == 0) || (farm_no == static_cast<int>(0xFFFF))) farm_mode = false; //if farm_mode has not been stored to eeprom yet and farm number is set to zero or EEPROM is fresh, deactivate farm mode
  1106. if (farm_no == static_cast<int>(0xFFFF)) farm_no = 0;
  1107. if (farm_mode)
  1108. {
  1109. prusa_statistics(8);
  1110. }
  1111. // Enable Toshiba FlashAir SD card / WiFi enahanced card.
  1112. card.ToshibaFlashAir_enable(eeprom_read_byte((unsigned char*)EEPROM_TOSHIBA_FLASH_AIR_COMPATIBLITY) == 1);
  1113. if (eeprom_read_dword((uint32_t*)(EEPROM_TOP - 4)) == 0x0ffffffff &&
  1114. eeprom_read_dword((uint32_t*)(EEPROM_TOP - 8)) == 0x0ffffffff) {
  1115. // Maiden startup. The firmware has been loaded and first started on a virgin RAMBo board,
  1116. // where all the EEPROM entries are set to 0x0ff.
  1117. // Once a firmware boots up, it forces at least a language selection, which changes
  1118. // EEPROM_LANG to number lower than 0x0ff.
  1119. // 1) Set a high power mode.
  1120. #ifdef TMC2130
  1121. eeprom_write_byte((uint8_t*)EEPROM_SILENT, 0);
  1122. tmc2130_mode = TMC2130_MODE_NORMAL;
  1123. #endif //TMC2130
  1124. eeprom_write_byte((uint8_t*)EEPROM_WIZARD_ACTIVE, 1); //run wizard
  1125. }
  1126. // Force SD card update. Otherwise the SD card update is done from loop() on card.checkautostart(false),
  1127. // but this times out if a blocking dialog is shown in setup().
  1128. card.initsd();
  1129. #ifdef DEBUG_SD_SPEED_TEST
  1130. if (card.cardOK)
  1131. {
  1132. uint8_t* buff = (uint8_t*)block_buffer;
  1133. uint32_t block = 0;
  1134. uint32_t sumr = 0;
  1135. uint32_t sumw = 0;
  1136. for (int i = 0; i < 1024; i++)
  1137. {
  1138. uint32_t u = _micros();
  1139. bool res = card.card.readBlock(i, buff);
  1140. u = _micros() - u;
  1141. if (res)
  1142. {
  1143. printf_P(PSTR("readBlock %4d 512 bytes %lu us\n"), i, u);
  1144. sumr += u;
  1145. u = _micros();
  1146. res = card.card.writeBlock(i, buff);
  1147. u = _micros() - u;
  1148. if (res)
  1149. {
  1150. printf_P(PSTR("writeBlock %4d 512 bytes %lu us\n"), i, u);
  1151. sumw += u;
  1152. }
  1153. else
  1154. {
  1155. printf_P(PSTR("writeBlock %4d error\n"), i);
  1156. break;
  1157. }
  1158. }
  1159. else
  1160. {
  1161. printf_P(PSTR("readBlock %4d error\n"), i);
  1162. break;
  1163. }
  1164. }
  1165. uint32_t avg_rspeed = (1024 * 1000000) / (sumr / 512);
  1166. uint32_t avg_wspeed = (1024 * 1000000) / (sumw / 512);
  1167. printf_P(PSTR("avg read speed %lu bytes/s\n"), avg_rspeed);
  1168. printf_P(PSTR("avg write speed %lu bytes/s\n"), avg_wspeed);
  1169. }
  1170. else
  1171. printf_P(PSTR("Card NG!\n"));
  1172. #endif //DEBUG_SD_SPEED_TEST
  1173. eeprom_init();
  1174. #ifdef SNMM
  1175. if (eeprom_read_dword((uint32_t*)EEPROM_BOWDEN_LENGTH) == 0x0ffffffff) { //bowden length used for SNMM
  1176. int _z = BOWDEN_LENGTH;
  1177. for(int i = 0; i<4; i++) EEPROM_save_B(EEPROM_BOWDEN_LENGTH + i * 2, &_z);
  1178. }
  1179. #endif
  1180. // In the future, somewhere here would one compare the current firmware version against the firmware version stored in the EEPROM.
  1181. // If they differ, an update procedure may need to be performed. At the end of this block, the current firmware version
  1182. // is being written into the EEPROM, so the update procedure will be triggered only once.
  1183. #if (LANG_MODE != 0) //secondary language support
  1184. #ifdef DEBUG_W25X20CL
  1185. W25X20CL_SPI_ENTER();
  1186. uint8_t uid[8]; // 64bit unique id
  1187. w25x20cl_rd_uid(uid);
  1188. puts_P(_n("W25X20CL UID="));
  1189. for (uint8_t i = 0; i < 8; i ++)
  1190. printf_P(PSTR("%02hhx"), uid[i]);
  1191. putchar('\n');
  1192. list_sec_lang_from_external_flash();
  1193. #endif //DEBUG_W25X20CL
  1194. // lang_reset();
  1195. if (!lang_select(eeprom_read_byte((uint8_t*)EEPROM_LANG)))
  1196. lcd_language();
  1197. #ifdef DEBUG_SEC_LANG
  1198. uint16_t sec_lang_code = lang_get_code(1);
  1199. uint16_t ui = _SEC_LANG_TABLE; //table pointer
  1200. printf_P(_n("lang_selected=%d\nlang_table=0x%04x\nSEC_LANG_CODE=0x%04x (%c%c)\n"), lang_selected, ui, sec_lang_code, sec_lang_code >> 8, sec_lang_code & 0xff);
  1201. lang_print_sec_lang(uartout);
  1202. #endif //DEBUG_SEC_LANG
  1203. #endif //(LANG_MODE != 0)
  1204. if (eeprom_read_byte((uint8_t*)EEPROM_TEMP_CAL_ACTIVE) == 255) {
  1205. eeprom_write_byte((uint8_t*)EEPROM_TEMP_CAL_ACTIVE, 0);
  1206. temp_cal_active = false;
  1207. } else temp_cal_active = eeprom_read_byte((uint8_t*)EEPROM_TEMP_CAL_ACTIVE);
  1208. if (eeprom_read_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA) == 255) {
  1209. //eeprom_write_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 0);
  1210. eeprom_write_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 1);
  1211. int16_t z_shift = 0;
  1212. for (uint8_t i = 0; i < 5; i++) EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + i * 2, &z_shift);
  1213. eeprom_write_byte((uint8_t*)EEPROM_TEMP_CAL_ACTIVE, 0);
  1214. temp_cal_active = false;
  1215. }
  1216. if (eeprom_read_byte((uint8_t*)EEPROM_UVLO) == 255) {
  1217. eeprom_write_byte((uint8_t*)EEPROM_UVLO, 0);
  1218. }
  1219. if (eeprom_read_byte((uint8_t*)EEPROM_SD_SORT) == 255) {
  1220. eeprom_write_byte((uint8_t*)EEPROM_SD_SORT, 0);
  1221. }
  1222. //mbl_mode_init();
  1223. mbl_settings_init();
  1224. SilentModeMenu_MMU = eeprom_read_byte((uint8_t*)EEPROM_MMU_STEALTH);
  1225. if (SilentModeMenu_MMU == 255) {
  1226. SilentModeMenu_MMU = 1;
  1227. eeprom_write_byte((uint8_t*)EEPROM_MMU_STEALTH, SilentModeMenu_MMU);
  1228. }
  1229. #if !defined(DEBUG_DISABLE_FANCHECK) && defined(FANCHECK) && defined(TACH_1) && TACH_1 >-1
  1230. setup_fan_interrupt();
  1231. #endif //DEBUG_DISABLE_FANCHECK
  1232. #ifdef PAT9125
  1233. fsensor_setup_interrupt();
  1234. #endif //PAT9125
  1235. for (int i = 0; i<4; i++) EEPROM_read_B(EEPROM_BOWDEN_LENGTH + i * 2, &bowden_length[i]);
  1236. #ifndef DEBUG_DISABLE_STARTMSGS
  1237. KEEPALIVE_STATE(PAUSED_FOR_USER);
  1238. check_if_fw_is_on_right_printer();
  1239. show_fw_version_warnings();
  1240. switch (hw_changed) {
  1241. //if motherboard or printer type was changed inform user as it can indicate flashing wrong firmware version
  1242. //if user confirms with knob, new hw version (printer and/or motherboard) is written to eeprom and message will be not shown next time
  1243. case(0b01):
  1244. lcd_show_fullscreen_message_and_wait_P(_i("Warning: motherboard type changed.")); ////MSG_CHANGED_MOTHERBOARD c=20 r=4
  1245. eeprom_write_word((uint16_t*)EEPROM_BOARD_TYPE, MOTHERBOARD);
  1246. break;
  1247. case(0b10):
  1248. lcd_show_fullscreen_message_and_wait_P(_i("Warning: printer type changed.")); ////MSG_CHANGED_PRINTER c=20 r=4
  1249. eeprom_write_word((uint16_t*)EEPROM_PRINTER_TYPE, PRINTER_TYPE);
  1250. break;
  1251. case(0b11):
  1252. lcd_show_fullscreen_message_and_wait_P(_i("Warning: both printer type and motherboard type changed.")); ////MSG_CHANGED_BOTH c=20 r=4
  1253. eeprom_write_word((uint16_t*)EEPROM_PRINTER_TYPE, PRINTER_TYPE);
  1254. eeprom_write_word((uint16_t*)EEPROM_BOARD_TYPE, MOTHERBOARD);
  1255. break;
  1256. default: break; //no change, show no message
  1257. }
  1258. if (!previous_settings_retrieved) {
  1259. lcd_show_fullscreen_message_and_wait_P(_i("Old settings found. Default PID, Esteps etc. will be set.")); //if EEPROM version or printer type was changed, inform user that default setting were loaded////MSG_DEFAULT_SETTINGS_LOADED c=20 r=4
  1260. Config_StoreSettings();
  1261. }
  1262. if (eeprom_read_byte((uint8_t*)EEPROM_WIZARD_ACTIVE) == 1) {
  1263. lcd_wizard(WizState::Run);
  1264. }
  1265. if (eeprom_read_byte((uint8_t*)EEPROM_WIZARD_ACTIVE) == 0) { //dont show calibration status messages if wizard is currently active
  1266. if (calibration_status() == CALIBRATION_STATUS_ASSEMBLED ||
  1267. calibration_status() == CALIBRATION_STATUS_UNKNOWN ||
  1268. calibration_status() == CALIBRATION_STATUS_XYZ_CALIBRATION) {
  1269. // Reset the babystepping values, so the printer will not move the Z axis up when the babystepping is enabled.
  1270. eeprom_update_word((uint16_t*)EEPROM_BABYSTEP_Z, 0);
  1271. // Show the message.
  1272. lcd_show_fullscreen_message_and_wait_P(_T(MSG_FOLLOW_CALIBRATION_FLOW));
  1273. }
  1274. else if (calibration_status() == CALIBRATION_STATUS_LIVE_ADJUST) {
  1275. // Show the message.
  1276. lcd_show_fullscreen_message_and_wait_P(_T(MSG_BABYSTEP_Z_NOT_SET));
  1277. lcd_update_enable(true);
  1278. }
  1279. else if (calibration_status() == CALIBRATION_STATUS_CALIBRATED && temp_cal_active == true && calibration_status_pinda() == false) {
  1280. //lcd_show_fullscreen_message_and_wait_P(_i("Temperature calibration has not been run yet"));////MSG_PINDA_NOT_CALIBRATED c=20 r=4
  1281. lcd_update_enable(true);
  1282. }
  1283. else if (calibration_status() == CALIBRATION_STATUS_Z_CALIBRATION) {
  1284. // Show the message.
  1285. lcd_show_fullscreen_message_and_wait_P(_T(MSG_FOLLOW_Z_CALIBRATION_FLOW));
  1286. }
  1287. }
  1288. #if !defined (DEBUG_DISABLE_FORCE_SELFTEST) && defined (TMC2130)
  1289. if (force_selftest_if_fw_version() && calibration_status() < CALIBRATION_STATUS_ASSEMBLED) {
  1290. lcd_show_fullscreen_message_and_wait_P(_i("Selftest will be run to calibrate accurate sensorless rehoming."));////MSG_FORCE_SELFTEST c=20 r=8
  1291. update_current_firmware_version_to_eeprom();
  1292. lcd_selftest();
  1293. }
  1294. #endif //TMC2130 && !DEBUG_DISABLE_FORCE_SELFTEST
  1295. KEEPALIVE_STATE(IN_PROCESS);
  1296. #endif //DEBUG_DISABLE_STARTMSGS
  1297. lcd_update_enable(true);
  1298. lcd_clear();
  1299. lcd_update(2);
  1300. // Store the currently running firmware into an eeprom,
  1301. // so the next time the firmware gets updated, it will know from which version it has been updated.
  1302. update_current_firmware_version_to_eeprom();
  1303. #ifdef TMC2130
  1304. tmc2130_home_origin[X_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_HOME_X_ORIGIN);
  1305. tmc2130_home_bsteps[X_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_HOME_X_BSTEPS);
  1306. tmc2130_home_fsteps[X_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_HOME_X_FSTEPS);
  1307. if (tmc2130_home_origin[X_AXIS] == 0xff) tmc2130_home_origin[X_AXIS] = 0;
  1308. if (tmc2130_home_bsteps[X_AXIS] == 0xff) tmc2130_home_bsteps[X_AXIS] = 48;
  1309. if (tmc2130_home_fsteps[X_AXIS] == 0xff) tmc2130_home_fsteps[X_AXIS] = 48;
  1310. tmc2130_home_origin[Y_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_HOME_Y_ORIGIN);
  1311. tmc2130_home_bsteps[Y_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_HOME_Y_BSTEPS);
  1312. tmc2130_home_fsteps[Y_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_HOME_Y_FSTEPS);
  1313. if (tmc2130_home_origin[Y_AXIS] == 0xff) tmc2130_home_origin[Y_AXIS] = 0;
  1314. if (tmc2130_home_bsteps[Y_AXIS] == 0xff) tmc2130_home_bsteps[Y_AXIS] = 48;
  1315. if (tmc2130_home_fsteps[Y_AXIS] == 0xff) tmc2130_home_fsteps[Y_AXIS] = 48;
  1316. tmc2130_home_enabled = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_HOME_ENABLED);
  1317. if (tmc2130_home_enabled == 0xff) tmc2130_home_enabled = 0;
  1318. #endif //TMC2130
  1319. #ifdef UVLO_SUPPORT
  1320. if (eeprom_read_byte((uint8_t*)EEPROM_UVLO) != 0) { //previous print was terminated by UVLO
  1321. /*
  1322. if (lcd_show_fullscreen_message_yes_no_and_wait_P(_T(MSG_RECOVER_PRINT), false)) recover_print();
  1323. else {
  1324. eeprom_update_byte((uint8_t*)EEPROM_UVLO, 0);
  1325. lcd_update_enable(true);
  1326. lcd_update(2);
  1327. lcd_setstatuspgm(_T(WELCOME_MSG));
  1328. }
  1329. */
  1330. manage_heater(); // Update temperatures
  1331. #ifdef DEBUG_UVLO_AUTOMATIC_RECOVER
  1332. printf_P(_N("Power panic detected!\nCurrent bed temp:%d\nSaved bed temp:%d\n"), (int)degBed(), eeprom_read_byte((uint8_t*)EEPROM_UVLO_TARGET_BED));
  1333. #endif
  1334. if ( degBed() > ( (float)eeprom_read_byte((uint8_t*)EEPROM_UVLO_TARGET_BED) - AUTOMATIC_UVLO_BED_TEMP_OFFSET) ){
  1335. #ifdef DEBUG_UVLO_AUTOMATIC_RECOVER
  1336. puts_P(_N("Automatic recovery!"));
  1337. #endif
  1338. recover_print(1);
  1339. }
  1340. else{
  1341. #ifdef DEBUG_UVLO_AUTOMATIC_RECOVER
  1342. puts_P(_N("Normal recovery!"));
  1343. #endif
  1344. if ( lcd_show_fullscreen_message_yes_no_and_wait_P(_T(MSG_RECOVER_PRINT), false) ) recover_print(0);
  1345. else {
  1346. eeprom_update_byte((uint8_t*)EEPROM_UVLO, 0);
  1347. lcd_update_enable(true);
  1348. lcd_update(2);
  1349. lcd_setstatuspgm(_T(WELCOME_MSG));
  1350. }
  1351. }
  1352. }
  1353. #endif //UVLO_SUPPORT
  1354. fCheckModeInit();
  1355. fSetMmuMode(mmu_enabled);
  1356. KEEPALIVE_STATE(NOT_BUSY);
  1357. #ifdef WATCHDOG
  1358. wdt_enable(WDTO_4S);
  1359. #endif //WATCHDOG
  1360. }
  1361. void trace();
  1362. #define CHUNK_SIZE 64 // bytes
  1363. #define SAFETY_MARGIN 1
  1364. char chunk[CHUNK_SIZE+SAFETY_MARGIN];
  1365. int chunkHead = 0;
  1366. void serial_read_stream() {
  1367. setAllTargetHotends(0);
  1368. setTargetBed(0);
  1369. lcd_clear();
  1370. lcd_puts_P(PSTR(" Upload in progress"));
  1371. // first wait for how many bytes we will receive
  1372. uint32_t bytesToReceive;
  1373. // receive the four bytes
  1374. char bytesToReceiveBuffer[4];
  1375. for (int i=0; i<4; i++) {
  1376. int data;
  1377. while ((data = MYSERIAL.read()) == -1) {};
  1378. bytesToReceiveBuffer[i] = data;
  1379. }
  1380. // make it a uint32
  1381. memcpy(&bytesToReceive, &bytesToReceiveBuffer, 4);
  1382. // we're ready, notify the sender
  1383. MYSERIAL.write('+');
  1384. // lock in the routine
  1385. uint32_t receivedBytes = 0;
  1386. while (prusa_sd_card_upload) {
  1387. int i;
  1388. for (i=0; i<CHUNK_SIZE; i++) {
  1389. int data;
  1390. // check if we're not done
  1391. if (receivedBytes == bytesToReceive) {
  1392. break;
  1393. }
  1394. // read the next byte
  1395. while ((data = MYSERIAL.read()) == -1) {};
  1396. receivedBytes++;
  1397. // save it to the chunk
  1398. chunk[i] = data;
  1399. }
  1400. // write the chunk to SD
  1401. card.write_command_no_newline(&chunk[0]);
  1402. // notify the sender we're ready for more data
  1403. MYSERIAL.write('+');
  1404. // for safety
  1405. manage_heater();
  1406. // check if we're done
  1407. if(receivedBytes == bytesToReceive) {
  1408. trace(); // beep
  1409. card.closefile();
  1410. prusa_sd_card_upload = false;
  1411. SERIAL_PROTOCOLLNRPGM(MSG_FILE_SAVED);
  1412. }
  1413. }
  1414. }
  1415. /**
  1416. * Output a "busy" message at regular intervals
  1417. * while the machine is not accepting commands.
  1418. */
  1419. void host_keepalive() {
  1420. #ifndef HOST_KEEPALIVE_FEATURE
  1421. return;
  1422. #endif //HOST_KEEPALIVE_FEATURE
  1423. if (farm_mode) return;
  1424. long ms = _millis();
  1425. if (host_keepalive_interval && busy_state != NOT_BUSY) {
  1426. if ((ms - prev_busy_signal_ms) < (long)(1000L * host_keepalive_interval)) return;
  1427. switch (busy_state) {
  1428. case IN_HANDLER:
  1429. case IN_PROCESS:
  1430. SERIAL_ECHO_START;
  1431. SERIAL_ECHOLNPGM("busy: processing");
  1432. break;
  1433. case PAUSED_FOR_USER:
  1434. SERIAL_ECHO_START;
  1435. SERIAL_ECHOLNPGM("busy: paused for user");
  1436. break;
  1437. case PAUSED_FOR_INPUT:
  1438. SERIAL_ECHO_START;
  1439. SERIAL_ECHOLNPGM("busy: paused for input");
  1440. break;
  1441. default:
  1442. break;
  1443. }
  1444. }
  1445. prev_busy_signal_ms = ms;
  1446. }
  1447. // The loop() function is called in an endless loop by the Arduino framework from the default main() routine.
  1448. // Before loop(), the setup() function is called by the main() routine.
  1449. void loop()
  1450. {
  1451. KEEPALIVE_STATE(NOT_BUSY);
  1452. if ((usb_printing_counter > 0) && ((_millis()-_usb_timer) > 1000))
  1453. {
  1454. is_usb_printing = true;
  1455. usb_printing_counter--;
  1456. _usb_timer = _millis();
  1457. }
  1458. if (usb_printing_counter == 0)
  1459. {
  1460. is_usb_printing = false;
  1461. }
  1462. if (prusa_sd_card_upload)
  1463. {
  1464. //we read byte-by byte
  1465. serial_read_stream();
  1466. } else
  1467. {
  1468. get_command();
  1469. #ifdef SDSUPPORT
  1470. card.checkautostart(false);
  1471. #endif
  1472. if(buflen)
  1473. {
  1474. cmdbuffer_front_already_processed = false;
  1475. #ifdef SDSUPPORT
  1476. if(card.saving)
  1477. {
  1478. // Saving a G-code file onto an SD-card is in progress.
  1479. // Saving starts with M28, saving until M29 is seen.
  1480. if(strstr_P(CMDBUFFER_CURRENT_STRING, PSTR("M29")) == NULL) {
  1481. card.write_command(CMDBUFFER_CURRENT_STRING);
  1482. if(card.logging)
  1483. process_commands();
  1484. else
  1485. SERIAL_PROTOCOLLNRPGM(MSG_OK);
  1486. } else {
  1487. card.closefile();
  1488. SERIAL_PROTOCOLLNRPGM(MSG_FILE_SAVED);
  1489. }
  1490. } else {
  1491. process_commands();
  1492. }
  1493. #else
  1494. process_commands();
  1495. #endif //SDSUPPORT
  1496. if (! cmdbuffer_front_already_processed && buflen)
  1497. {
  1498. // ptr points to the start of the block currently being processed.
  1499. // The first character in the block is the block type.
  1500. char *ptr = cmdbuffer + bufindr;
  1501. if (*ptr == CMDBUFFER_CURRENT_TYPE_SDCARD) {
  1502. // To support power panic, move the lenght of the command on the SD card to a planner buffer.
  1503. union {
  1504. struct {
  1505. char lo;
  1506. char hi;
  1507. } lohi;
  1508. uint16_t value;
  1509. } sdlen;
  1510. sdlen.value = 0;
  1511. {
  1512. // This block locks the interrupts globally for 3.25 us,
  1513. // which corresponds to a maximum repeat frequency of 307.69 kHz.
  1514. // This blocking is safe in the context of a 10kHz stepper driver interrupt
  1515. // or a 115200 Bd serial line receive interrupt, which will not trigger faster than 12kHz.
  1516. cli();
  1517. // Reset the command to something, which will be ignored by the power panic routine,
  1518. // so this buffer length will not be counted twice.
  1519. *ptr ++ = CMDBUFFER_CURRENT_TYPE_TO_BE_REMOVED;
  1520. // Extract the current buffer length.
  1521. sdlen.lohi.lo = *ptr ++;
  1522. sdlen.lohi.hi = *ptr;
  1523. // and pass it to the planner queue.
  1524. planner_add_sd_length(sdlen.value);
  1525. sei();
  1526. }
  1527. }
  1528. else if((*ptr == CMDBUFFER_CURRENT_TYPE_USB_WITH_LINENR) && !IS_SD_PRINTING){
  1529. cli();
  1530. *ptr ++ = CMDBUFFER_CURRENT_TYPE_TO_BE_REMOVED;
  1531. // and one for each command to previous block in the planner queue.
  1532. planner_add_sd_length(1);
  1533. sei();
  1534. }
  1535. // Now it is safe to release the already processed command block. If interrupted by the power panic now,
  1536. // this block's SD card length will not be counted twice as its command type has been replaced
  1537. // by CMDBUFFER_CURRENT_TYPE_TO_BE_REMOVED.
  1538. cmdqueue_pop_front();
  1539. }
  1540. host_keepalive();
  1541. }
  1542. }
  1543. //check heater every n milliseconds
  1544. manage_heater();
  1545. isPrintPaused ? manage_inactivity(true) : manage_inactivity(false);
  1546. checkHitEndstops();
  1547. lcd_update(0);
  1548. #ifdef TMC2130
  1549. tmc2130_check_overtemp();
  1550. if (tmc2130_sg_crash)
  1551. {
  1552. uint8_t crash = tmc2130_sg_crash;
  1553. tmc2130_sg_crash = 0;
  1554. // crashdet_stop_and_save_print();
  1555. switch (crash)
  1556. {
  1557. case 1: enquecommand_P((PSTR("CRASH_DETECTEDX"))); break;
  1558. case 2: enquecommand_P((PSTR("CRASH_DETECTEDY"))); break;
  1559. case 3: enquecommand_P((PSTR("CRASH_DETECTEDXY"))); break;
  1560. }
  1561. }
  1562. #endif //TMC2130
  1563. mmu_loop();
  1564. }
  1565. #define DEFINE_PGM_READ_ANY(type, reader) \
  1566. static inline type pgm_read_any(const type *p) \
  1567. { return pgm_read_##reader##_near(p); }
  1568. DEFINE_PGM_READ_ANY(float, float);
  1569. DEFINE_PGM_READ_ANY(signed char, byte);
  1570. #define XYZ_CONSTS_FROM_CONFIG(type, array, CONFIG) \
  1571. static const PROGMEM type array##_P[3] = \
  1572. { X_##CONFIG, Y_##CONFIG, Z_##CONFIG }; \
  1573. static inline type array(int axis) \
  1574. { return pgm_read_any(&array##_P[axis]); } \
  1575. type array##_ext(int axis) \
  1576. { return pgm_read_any(&array##_P[axis]); }
  1577. XYZ_CONSTS_FROM_CONFIG(float, base_min_pos, MIN_POS);
  1578. XYZ_CONSTS_FROM_CONFIG(float, base_max_pos, MAX_POS);
  1579. XYZ_CONSTS_FROM_CONFIG(float, base_home_pos, HOME_POS);
  1580. XYZ_CONSTS_FROM_CONFIG(float, max_length, MAX_LENGTH);
  1581. XYZ_CONSTS_FROM_CONFIG(float, home_retract_mm, HOME_RETRACT_MM);
  1582. XYZ_CONSTS_FROM_CONFIG(signed char, home_dir, HOME_DIR);
  1583. static void axis_is_at_home(int axis) {
  1584. current_position[axis] = base_home_pos(axis) + cs.add_homing[axis];
  1585. min_pos[axis] = base_min_pos(axis) + cs.add_homing[axis];
  1586. max_pos[axis] = base_max_pos(axis) + cs.add_homing[axis];
  1587. }
  1588. inline void set_current_to_destination() { memcpy(current_position, destination, sizeof(current_position)); }
  1589. inline void set_destination_to_current() { memcpy(destination, current_position, sizeof(destination)); }
  1590. //! @return original feedmultiply
  1591. static int setup_for_endstop_move(bool enable_endstops_now = true) {
  1592. saved_feedrate = feedrate;
  1593. int l_feedmultiply = feedmultiply;
  1594. feedmultiply = 100;
  1595. previous_millis_cmd = _millis();
  1596. enable_endstops(enable_endstops_now);
  1597. return l_feedmultiply;
  1598. }
  1599. //! @param original_feedmultiply feedmultiply to restore
  1600. static void clean_up_after_endstop_move(int original_feedmultiply) {
  1601. #ifdef ENDSTOPS_ONLY_FOR_HOMING
  1602. enable_endstops(false);
  1603. #endif
  1604. feedrate = saved_feedrate;
  1605. feedmultiply = original_feedmultiply;
  1606. previous_millis_cmd = _millis();
  1607. }
  1608. #ifdef ENABLE_AUTO_BED_LEVELING
  1609. #ifdef AUTO_BED_LEVELING_GRID
  1610. static void set_bed_level_equation_lsq(double *plane_equation_coefficients)
  1611. {
  1612. vector_3 planeNormal = vector_3(-plane_equation_coefficients[0], -plane_equation_coefficients[1], 1);
  1613. planeNormal.debug("planeNormal");
  1614. plan_bed_level_matrix = matrix_3x3::create_look_at(planeNormal);
  1615. //bedLevel.debug("bedLevel");
  1616. //plan_bed_level_matrix.debug("bed level before");
  1617. //vector_3 uncorrected_position = plan_get_position_mm();
  1618. //uncorrected_position.debug("position before");
  1619. vector_3 corrected_position = plan_get_position();
  1620. // corrected_position.debug("position after");
  1621. current_position[X_AXIS] = corrected_position.x;
  1622. current_position[Y_AXIS] = corrected_position.y;
  1623. current_position[Z_AXIS] = corrected_position.z;
  1624. // put the bed at 0 so we don't go below it.
  1625. current_position[Z_AXIS] = cs.zprobe_zoffset; // in the lsq we reach here after raising the extruder due to the loop structure
  1626. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1627. }
  1628. #else // not AUTO_BED_LEVELING_GRID
  1629. static void set_bed_level_equation_3pts(float z_at_pt_1, float z_at_pt_2, float z_at_pt_3) {
  1630. plan_bed_level_matrix.set_to_identity();
  1631. vector_3 pt1 = vector_3(ABL_PROBE_PT_1_X, ABL_PROBE_PT_1_Y, z_at_pt_1);
  1632. vector_3 pt2 = vector_3(ABL_PROBE_PT_2_X, ABL_PROBE_PT_2_Y, z_at_pt_2);
  1633. vector_3 pt3 = vector_3(ABL_PROBE_PT_3_X, ABL_PROBE_PT_3_Y, z_at_pt_3);
  1634. vector_3 from_2_to_1 = (pt1 - pt2).get_normal();
  1635. vector_3 from_2_to_3 = (pt3 - pt2).get_normal();
  1636. vector_3 planeNormal = vector_3::cross(from_2_to_1, from_2_to_3).get_normal();
  1637. planeNormal = vector_3(planeNormal.x, planeNormal.y, abs(planeNormal.z));
  1638. plan_bed_level_matrix = matrix_3x3::create_look_at(planeNormal);
  1639. vector_3 corrected_position = plan_get_position();
  1640. current_position[X_AXIS] = corrected_position.x;
  1641. current_position[Y_AXIS] = corrected_position.y;
  1642. current_position[Z_AXIS] = corrected_position.z;
  1643. // put the bed at 0 so we don't go below it.
  1644. current_position[Z_AXIS] = cs.zprobe_zoffset;
  1645. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1646. }
  1647. #endif // AUTO_BED_LEVELING_GRID
  1648. static void run_z_probe() {
  1649. plan_bed_level_matrix.set_to_identity();
  1650. feedrate = homing_feedrate[Z_AXIS];
  1651. // move down until you find the bed
  1652. float zPosition = -10;
  1653. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder);
  1654. st_synchronize();
  1655. // we have to let the planner know where we are right now as it is not where we said to go.
  1656. zPosition = st_get_position_mm(Z_AXIS);
  1657. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS]);
  1658. // move up the retract distance
  1659. zPosition += home_retract_mm(Z_AXIS);
  1660. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder);
  1661. st_synchronize();
  1662. // move back down slowly to find bed
  1663. feedrate = homing_feedrate[Z_AXIS]/4;
  1664. zPosition -= home_retract_mm(Z_AXIS) * 2;
  1665. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder);
  1666. st_synchronize();
  1667. current_position[Z_AXIS] = st_get_position_mm(Z_AXIS);
  1668. // make sure the planner knows where we are as it may be a bit different than we last said to move to
  1669. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1670. }
  1671. static void do_blocking_move_to(float x, float y, float z) {
  1672. float oldFeedRate = feedrate;
  1673. feedrate = homing_feedrate[Z_AXIS];
  1674. current_position[Z_AXIS] = z;
  1675. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], feedrate/60, active_extruder);
  1676. st_synchronize();
  1677. feedrate = XY_TRAVEL_SPEED;
  1678. current_position[X_AXIS] = x;
  1679. current_position[Y_AXIS] = y;
  1680. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], feedrate/60, active_extruder);
  1681. st_synchronize();
  1682. feedrate = oldFeedRate;
  1683. }
  1684. static void do_blocking_move_relative(float offset_x, float offset_y, float offset_z) {
  1685. do_blocking_move_to(current_position[X_AXIS] + offset_x, current_position[Y_AXIS] + offset_y, current_position[Z_AXIS] + offset_z);
  1686. }
  1687. /// Probe bed height at position (x,y), returns the measured z value
  1688. static float probe_pt(float x, float y, float z_before) {
  1689. // move to right place
  1690. do_blocking_move_to(current_position[X_AXIS], current_position[Y_AXIS], z_before);
  1691. do_blocking_move_to(x - X_PROBE_OFFSET_FROM_EXTRUDER, y - Y_PROBE_OFFSET_FROM_EXTRUDER, current_position[Z_AXIS]);
  1692. run_z_probe();
  1693. float measured_z = current_position[Z_AXIS];
  1694. SERIAL_PROTOCOLRPGM(_T(MSG_BED));
  1695. SERIAL_PROTOCOLPGM(" x: ");
  1696. SERIAL_PROTOCOL(x);
  1697. SERIAL_PROTOCOLPGM(" y: ");
  1698. SERIAL_PROTOCOL(y);
  1699. SERIAL_PROTOCOLPGM(" z: ");
  1700. SERIAL_PROTOCOL(measured_z);
  1701. SERIAL_PROTOCOLPGM("\n");
  1702. return measured_z;
  1703. }
  1704. #endif // #ifdef ENABLE_AUTO_BED_LEVELING
  1705. #ifdef LIN_ADVANCE
  1706. /**
  1707. * M900: Set and/or Get advance K factor and WH/D ratio
  1708. *
  1709. * K<factor> Set advance K factor
  1710. * R<ratio> Set ratio directly (overrides WH/D)
  1711. * W<width> H<height> D<diam> Set ratio from WH/D
  1712. */
  1713. inline void gcode_M900() {
  1714. st_synchronize();
  1715. const float newK = code_seen('K') ? code_value_float() : -1;
  1716. if (newK >= 0) extruder_advance_k = newK;
  1717. float newR = code_seen('R') ? code_value_float() : -1;
  1718. if (newR < 0) {
  1719. const float newD = code_seen('D') ? code_value_float() : -1,
  1720. newW = code_seen('W') ? code_value_float() : -1,
  1721. newH = code_seen('H') ? code_value_float() : -1;
  1722. if (newD >= 0 && newW >= 0 && newH >= 0)
  1723. newR = newD ? (newW * newH) / (sq(newD * 0.5) * M_PI) : 0;
  1724. }
  1725. if (newR >= 0) advance_ed_ratio = newR;
  1726. SERIAL_ECHO_START;
  1727. SERIAL_ECHOPGM("Advance K=");
  1728. SERIAL_ECHOLN(extruder_advance_k);
  1729. SERIAL_ECHOPGM(" E/D=");
  1730. const float ratio = advance_ed_ratio;
  1731. if (ratio) SERIAL_ECHOLN(ratio); else SERIAL_ECHOLNPGM("Auto");
  1732. }
  1733. #endif // LIN_ADVANCE
  1734. bool check_commands() {
  1735. bool end_command_found = false;
  1736. while (buflen)
  1737. {
  1738. if ((code_seen("M84")) || (code_seen("M 84"))) end_command_found = true;
  1739. if (!cmdbuffer_front_already_processed)
  1740. cmdqueue_pop_front();
  1741. cmdbuffer_front_already_processed = false;
  1742. }
  1743. return end_command_found;
  1744. }
  1745. #ifdef TMC2130
  1746. bool calibrate_z_auto()
  1747. {
  1748. //lcd_display_message_fullscreen_P(_T(MSG_CALIBRATE_Z_AUTO));
  1749. lcd_clear();
  1750. lcd_puts_at_P(0, 1, _T(MSG_CALIBRATE_Z_AUTO));
  1751. bool endstops_enabled = enable_endstops(true);
  1752. int axis_up_dir = -home_dir(Z_AXIS);
  1753. tmc2130_home_enter(Z_AXIS_MASK);
  1754. current_position[Z_AXIS] = 0;
  1755. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1756. set_destination_to_current();
  1757. destination[Z_AXIS] += (1.1 * max_length(Z_AXIS) * axis_up_dir);
  1758. feedrate = homing_feedrate[Z_AXIS];
  1759. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate / 60, active_extruder);
  1760. st_synchronize();
  1761. // current_position[axis] = 0;
  1762. // plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1763. tmc2130_home_exit();
  1764. enable_endstops(false);
  1765. current_position[Z_AXIS] = 0;
  1766. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1767. set_destination_to_current();
  1768. destination[Z_AXIS] += 10 * axis_up_dir; //10mm up
  1769. feedrate = homing_feedrate[Z_AXIS] / 2;
  1770. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate / 60, active_extruder);
  1771. st_synchronize();
  1772. enable_endstops(endstops_enabled);
  1773. if (PRINTER_TYPE == PRINTER_MK3) {
  1774. current_position[Z_AXIS] = Z_MAX_POS + 2.0;
  1775. }
  1776. else {
  1777. current_position[Z_AXIS] = Z_MAX_POS + 9.0;
  1778. }
  1779. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1780. return true;
  1781. }
  1782. #endif //TMC2130
  1783. #ifdef TMC2130
  1784. void homeaxis(int axis, uint8_t cnt, uint8_t* pstep)
  1785. #else
  1786. void homeaxis(int axis, uint8_t cnt)
  1787. #endif //TMC2130
  1788. {
  1789. bool endstops_enabled = enable_endstops(true); //RP: endstops should be allways enabled durring homing
  1790. #define HOMEAXIS_DO(LETTER) \
  1791. ((LETTER##_MIN_PIN > -1 && LETTER##_HOME_DIR==-1) || (LETTER##_MAX_PIN > -1 && LETTER##_HOME_DIR==1))
  1792. if ((axis==X_AXIS)?HOMEAXIS_DO(X):(axis==Y_AXIS)?HOMEAXIS_DO(Y):0)
  1793. {
  1794. int axis_home_dir = home_dir(axis);
  1795. feedrate = homing_feedrate[axis];
  1796. #ifdef TMC2130
  1797. tmc2130_home_enter(X_AXIS_MASK << axis);
  1798. #endif //TMC2130
  1799. // Move away a bit, so that the print head does not touch the end position,
  1800. // and the following movement to endstop has a chance to achieve the required velocity
  1801. // for the stall guard to work.
  1802. current_position[axis] = 0;
  1803. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1804. set_destination_to_current();
  1805. // destination[axis] = 11.f;
  1806. destination[axis] = -3.f * axis_home_dir;
  1807. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1808. st_synchronize();
  1809. // Move away from the possible collision with opposite endstop with the collision detection disabled.
  1810. endstops_hit_on_purpose();
  1811. enable_endstops(false);
  1812. current_position[axis] = 0;
  1813. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1814. destination[axis] = 1. * axis_home_dir;
  1815. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1816. st_synchronize();
  1817. // Now continue to move up to the left end stop with the collision detection enabled.
  1818. enable_endstops(true);
  1819. destination[axis] = 1.1 * axis_home_dir * max_length(axis);
  1820. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1821. st_synchronize();
  1822. for (uint8_t i = 0; i < cnt; i++)
  1823. {
  1824. // Move away from the collision to a known distance from the left end stop with the collision detection disabled.
  1825. endstops_hit_on_purpose();
  1826. enable_endstops(false);
  1827. current_position[axis] = 0;
  1828. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1829. destination[axis] = -10.f * axis_home_dir;
  1830. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1831. st_synchronize();
  1832. endstops_hit_on_purpose();
  1833. // Now move left up to the collision, this time with a repeatable velocity.
  1834. enable_endstops(true);
  1835. destination[axis] = 11.f * axis_home_dir;
  1836. #ifdef TMC2130
  1837. feedrate = homing_feedrate[axis];
  1838. #else //TMC2130
  1839. feedrate = homing_feedrate[axis] / 2;
  1840. #endif //TMC2130
  1841. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1842. st_synchronize();
  1843. #ifdef TMC2130
  1844. uint16_t mscnt = tmc2130_rd_MSCNT(axis);
  1845. if (pstep) pstep[i] = mscnt >> 4;
  1846. printf_P(PSTR("%3d step=%2d mscnt=%4d\n"), i, mscnt >> 4, mscnt);
  1847. #endif //TMC2130
  1848. }
  1849. endstops_hit_on_purpose();
  1850. enable_endstops(false);
  1851. #ifdef TMC2130
  1852. uint8_t orig = tmc2130_home_origin[axis];
  1853. uint8_t back = tmc2130_home_bsteps[axis];
  1854. if (tmc2130_home_enabled && (orig <= 63))
  1855. {
  1856. tmc2130_goto_step(axis, orig, 2, 1000, tmc2130_get_res(axis));
  1857. if (back > 0)
  1858. tmc2130_do_steps(axis, back, -axis_home_dir, 1000);
  1859. }
  1860. else
  1861. tmc2130_do_steps(axis, 8, -axis_home_dir, 1000);
  1862. tmc2130_home_exit();
  1863. #endif //TMC2130
  1864. axis_is_at_home(axis);
  1865. axis_known_position[axis] = true;
  1866. // Move from minimum
  1867. #ifdef TMC2130
  1868. float dist = - axis_home_dir * 0.01f * tmc2130_home_fsteps[axis];
  1869. #else //TMC2130
  1870. float dist = - axis_home_dir * 0.01f * 64;
  1871. #endif //TMC2130
  1872. current_position[axis] -= dist;
  1873. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1874. current_position[axis] += dist;
  1875. destination[axis] = current_position[axis];
  1876. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], 0.5f*feedrate/60, active_extruder);
  1877. st_synchronize();
  1878. feedrate = 0.0;
  1879. }
  1880. else if ((axis==Z_AXIS)?HOMEAXIS_DO(Z):0)
  1881. {
  1882. #ifdef TMC2130
  1883. FORCE_HIGH_POWER_START;
  1884. #endif
  1885. int axis_home_dir = home_dir(axis);
  1886. current_position[axis] = 0;
  1887. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1888. destination[axis] = 1.5 * max_length(axis) * axis_home_dir;
  1889. feedrate = homing_feedrate[axis];
  1890. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1891. st_synchronize();
  1892. #ifdef TMC2130
  1893. if (READ(Z_TMC2130_DIAG) != 0) { //Z crash
  1894. FORCE_HIGH_POWER_END;
  1895. kill(_T(MSG_BED_LEVELING_FAILED_POINT_LOW));
  1896. return;
  1897. }
  1898. #endif //TMC2130
  1899. current_position[axis] = 0;
  1900. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1901. destination[axis] = -home_retract_mm(axis) * axis_home_dir;
  1902. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1903. st_synchronize();
  1904. destination[axis] = 2*home_retract_mm(axis) * axis_home_dir;
  1905. feedrate = homing_feedrate[axis]/2 ;
  1906. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1907. st_synchronize();
  1908. #ifdef TMC2130
  1909. if (READ(Z_TMC2130_DIAG) != 0) { //Z crash
  1910. FORCE_HIGH_POWER_END;
  1911. kill(_T(MSG_BED_LEVELING_FAILED_POINT_LOW));
  1912. return;
  1913. }
  1914. #endif //TMC2130
  1915. axis_is_at_home(axis);
  1916. destination[axis] = current_position[axis];
  1917. feedrate = 0.0;
  1918. endstops_hit_on_purpose();
  1919. axis_known_position[axis] = true;
  1920. #ifdef TMC2130
  1921. FORCE_HIGH_POWER_END;
  1922. #endif
  1923. }
  1924. enable_endstops(endstops_enabled);
  1925. }
  1926. /**/
  1927. void home_xy()
  1928. {
  1929. set_destination_to_current();
  1930. homeaxis(X_AXIS);
  1931. homeaxis(Y_AXIS);
  1932. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1933. endstops_hit_on_purpose();
  1934. }
  1935. void refresh_cmd_timeout(void)
  1936. {
  1937. previous_millis_cmd = _millis();
  1938. }
  1939. #ifdef FWRETRACT
  1940. void retract(bool retracting, bool swapretract = false) {
  1941. if(retracting && !retracted[active_extruder]) {
  1942. destination[X_AXIS]=current_position[X_AXIS];
  1943. destination[Y_AXIS]=current_position[Y_AXIS];
  1944. destination[Z_AXIS]=current_position[Z_AXIS];
  1945. destination[E_AXIS]=current_position[E_AXIS];
  1946. current_position[E_AXIS]+=(swapretract?retract_length_swap:cs.retract_length)*float(extrudemultiply)*0.01f;
  1947. plan_set_e_position(current_position[E_AXIS]);
  1948. float oldFeedrate = feedrate;
  1949. feedrate=cs.retract_feedrate*60;
  1950. retracted[active_extruder]=true;
  1951. prepare_move();
  1952. current_position[Z_AXIS]-=cs.retract_zlift;
  1953. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1954. prepare_move();
  1955. feedrate = oldFeedrate;
  1956. } else if(!retracting && retracted[active_extruder]) {
  1957. destination[X_AXIS]=current_position[X_AXIS];
  1958. destination[Y_AXIS]=current_position[Y_AXIS];
  1959. destination[Z_AXIS]=current_position[Z_AXIS];
  1960. destination[E_AXIS]=current_position[E_AXIS];
  1961. current_position[Z_AXIS]+=cs.retract_zlift;
  1962. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1963. current_position[E_AXIS]-=(swapretract?(retract_length_swap+retract_recover_length_swap):(cs.retract_length+cs.retract_recover_length))*float(extrudemultiply)*0.01f;
  1964. plan_set_e_position(current_position[E_AXIS]);
  1965. float oldFeedrate = feedrate;
  1966. feedrate=cs.retract_recover_feedrate*60;
  1967. retracted[active_extruder]=false;
  1968. prepare_move();
  1969. feedrate = oldFeedrate;
  1970. }
  1971. } //retract
  1972. #endif //FWRETRACT
  1973. void trace() {
  1974. Sound_MakeCustom(25,440,true);
  1975. }
  1976. /*
  1977. void ramming() {
  1978. // float tmp[4] = DEFAULT_MAX_FEEDRATE;
  1979. if (current_temperature[0] < 230) {
  1980. //PLA
  1981. max_feedrate[E_AXIS] = 50;
  1982. //current_position[E_AXIS] -= 8;
  1983. //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2100 / 60, active_extruder);
  1984. //current_position[E_AXIS] += 8;
  1985. //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2100 / 60, active_extruder);
  1986. current_position[E_AXIS] += 5.4;
  1987. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2800 / 60, active_extruder);
  1988. current_position[E_AXIS] += 3.2;
  1989. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  1990. current_position[E_AXIS] += 3;
  1991. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3400 / 60, active_extruder);
  1992. st_synchronize();
  1993. max_feedrate[E_AXIS] = 80;
  1994. current_position[E_AXIS] -= 82;
  1995. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 9500 / 60, active_extruder);
  1996. max_feedrate[E_AXIS] = 50;//tmp[E_AXIS];
  1997. current_position[E_AXIS] -= 20;
  1998. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 1200 / 60, active_extruder);
  1999. current_position[E_AXIS] += 5;
  2000. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400 / 60, active_extruder);
  2001. current_position[E_AXIS] += 5;
  2002. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  2003. current_position[E_AXIS] -= 10;
  2004. st_synchronize();
  2005. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  2006. current_position[E_AXIS] += 10;
  2007. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  2008. current_position[E_AXIS] -= 10;
  2009. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 800 / 60, active_extruder);
  2010. current_position[E_AXIS] += 10;
  2011. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 800 / 60, active_extruder);
  2012. current_position[E_AXIS] -= 10;
  2013. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 800 / 60, active_extruder);
  2014. st_synchronize();
  2015. }
  2016. else {
  2017. //ABS
  2018. max_feedrate[E_AXIS] = 50;
  2019. //current_position[E_AXIS] -= 8;
  2020. //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2100 / 60, active_extruder);
  2021. //current_position[E_AXIS] += 8;
  2022. //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2100 / 60, active_extruder);
  2023. current_position[E_AXIS] += 3.1;
  2024. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2000 / 60, active_extruder);
  2025. current_position[E_AXIS] += 3.1;
  2026. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2500 / 60, active_extruder);
  2027. current_position[E_AXIS] += 4;
  2028. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  2029. st_synchronize();
  2030. //current_position[X_AXIS] += 23; //delay
  2031. //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600/60, active_extruder); //delay
  2032. //current_position[X_AXIS] -= 23; //delay
  2033. //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600/60, active_extruder); //delay
  2034. _delay(4700);
  2035. max_feedrate[E_AXIS] = 80;
  2036. current_position[E_AXIS] -= 92;
  2037. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 9900 / 60, active_extruder);
  2038. max_feedrate[E_AXIS] = 50;//tmp[E_AXIS];
  2039. current_position[E_AXIS] -= 5;
  2040. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 800 / 60, active_extruder);
  2041. current_position[E_AXIS] += 5;
  2042. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400 / 60, active_extruder);
  2043. current_position[E_AXIS] -= 5;
  2044. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  2045. st_synchronize();
  2046. current_position[E_AXIS] += 5;
  2047. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  2048. current_position[E_AXIS] -= 5;
  2049. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  2050. current_position[E_AXIS] += 5;
  2051. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  2052. current_position[E_AXIS] -= 5;
  2053. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  2054. st_synchronize();
  2055. }
  2056. }
  2057. */
  2058. #ifdef TMC2130
  2059. void force_high_power_mode(bool start_high_power_section) {
  2060. uint8_t silent;
  2061. silent = eeprom_read_byte((uint8_t*)EEPROM_SILENT);
  2062. if (silent == 1) {
  2063. //we are in silent mode, set to normal mode to enable crash detection
  2064. // Wait for the planner queue to drain and for the stepper timer routine to reach an idle state.
  2065. st_synchronize();
  2066. cli();
  2067. tmc2130_mode = (start_high_power_section == true) ? TMC2130_MODE_NORMAL : TMC2130_MODE_SILENT;
  2068. update_mode_profile();
  2069. tmc2130_init();
  2070. // We may have missed a stepper timer interrupt due to the time spent in the tmc2130_init() routine.
  2071. // Be safe than sorry, reset the stepper timer before re-enabling interrupts.
  2072. st_reset_timer();
  2073. sei();
  2074. }
  2075. }
  2076. #endif //TMC2130
  2077. #ifdef TMC2130
  2078. static void gcode_G28(bool home_x_axis, long home_x_value, bool home_y_axis, long home_y_value, bool home_z_axis, long home_z_value, bool calib, bool without_mbl)
  2079. #else
  2080. static void gcode_G28(bool home_x_axis, long home_x_value, bool home_y_axis, long home_y_value, bool home_z_axis, long home_z_value, bool without_mbl)
  2081. #endif //TMC2130
  2082. {
  2083. st_synchronize();
  2084. #if 0
  2085. SERIAL_ECHOPGM("G28, initial "); print_world_coordinates();
  2086. SERIAL_ECHOPGM("G28, initial "); print_physical_coordinates();
  2087. #endif
  2088. // Flag for the display update routine and to disable the print cancelation during homing.
  2089. homing_flag = true;
  2090. // Which axes should be homed?
  2091. bool home_x = home_x_axis;
  2092. bool home_y = home_y_axis;
  2093. bool home_z = home_z_axis;
  2094. // Either all X,Y,Z codes are present, or none of them.
  2095. bool home_all_axes = home_x == home_y && home_x == home_z;
  2096. if (home_all_axes)
  2097. // No X/Y/Z code provided means to home all axes.
  2098. home_x = home_y = home_z = true;
  2099. //if we are homing all axes, first move z higher to protect heatbed/steel sheet
  2100. if (home_all_axes) {
  2101. current_position[Z_AXIS] += MESH_HOME_Z_SEARCH;
  2102. feedrate = homing_feedrate[Z_AXIS];
  2103. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], feedrate / 60, active_extruder);
  2104. st_synchronize();
  2105. }
  2106. #ifdef ENABLE_AUTO_BED_LEVELING
  2107. plan_bed_level_matrix.set_to_identity(); //Reset the plane ("erase" all leveling data)
  2108. #endif //ENABLE_AUTO_BED_LEVELING
  2109. // Reset world2machine_rotation_and_skew and world2machine_shift, therefore
  2110. // the planner will not perform any adjustments in the XY plane.
  2111. // Wait for the motors to stop and update the current position with the absolute values.
  2112. world2machine_revert_to_uncorrected();
  2113. // For mesh bed leveling deactivate the matrix temporarily.
  2114. // It is necessary to disable the bed leveling for the X and Y homing moves, so that the move is performed
  2115. // in a single axis only.
  2116. // In case of re-homing the X or Y axes only, the mesh bed leveling is restored after G28.
  2117. #ifdef MESH_BED_LEVELING
  2118. uint8_t mbl_was_active = mbl.active;
  2119. mbl.active = 0;
  2120. current_position[Z_AXIS] = st_get_position_mm(Z_AXIS);
  2121. #endif
  2122. // Reset baby stepping to zero, if the babystepping has already been loaded before. The babystepsTodo value will be
  2123. // consumed during the first movements following this statement.
  2124. if (home_z)
  2125. babystep_undo();
  2126. saved_feedrate = feedrate;
  2127. int l_feedmultiply = feedmultiply;
  2128. feedmultiply = 100;
  2129. previous_millis_cmd = _millis();
  2130. enable_endstops(true);
  2131. memcpy(destination, current_position, sizeof(destination));
  2132. feedrate = 0.0;
  2133. #if Z_HOME_DIR > 0 // If homing away from BED do Z first
  2134. if(home_z)
  2135. homeaxis(Z_AXIS);
  2136. #endif
  2137. #ifdef QUICK_HOME
  2138. // In the quick mode, if both x and y are to be homed, a diagonal move will be performed initially.
  2139. if(home_x && home_y) //first diagonal move
  2140. {
  2141. current_position[X_AXIS] = 0;current_position[Y_AXIS] = 0;
  2142. int x_axis_home_dir = home_dir(X_AXIS);
  2143. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2144. destination[X_AXIS] = 1.5 * max_length(X_AXIS) * x_axis_home_dir;destination[Y_AXIS] = 1.5 * max_length(Y_AXIS) * home_dir(Y_AXIS);
  2145. feedrate = homing_feedrate[X_AXIS];
  2146. if(homing_feedrate[Y_AXIS]<feedrate)
  2147. feedrate = homing_feedrate[Y_AXIS];
  2148. if (max_length(X_AXIS) > max_length(Y_AXIS)) {
  2149. feedrate *= sqrt(pow(max_length(Y_AXIS) / max_length(X_AXIS), 2) + 1);
  2150. } else {
  2151. feedrate *= sqrt(pow(max_length(X_AXIS) / max_length(Y_AXIS), 2) + 1);
  2152. }
  2153. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  2154. st_synchronize();
  2155. axis_is_at_home(X_AXIS);
  2156. axis_is_at_home(Y_AXIS);
  2157. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2158. destination[X_AXIS] = current_position[X_AXIS];
  2159. destination[Y_AXIS] = current_position[Y_AXIS];
  2160. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  2161. feedrate = 0.0;
  2162. st_synchronize();
  2163. endstops_hit_on_purpose();
  2164. current_position[X_AXIS] = destination[X_AXIS];
  2165. current_position[Y_AXIS] = destination[Y_AXIS];
  2166. current_position[Z_AXIS] = destination[Z_AXIS];
  2167. }
  2168. #endif /* QUICK_HOME */
  2169. #ifdef TMC2130
  2170. if(home_x)
  2171. {
  2172. if (!calib)
  2173. homeaxis(X_AXIS);
  2174. else
  2175. tmc2130_home_calibrate(X_AXIS);
  2176. }
  2177. if(home_y)
  2178. {
  2179. if (!calib)
  2180. homeaxis(Y_AXIS);
  2181. else
  2182. tmc2130_home_calibrate(Y_AXIS);
  2183. }
  2184. #else //TMC2130
  2185. if(home_x) homeaxis(X_AXIS);
  2186. if(home_y) homeaxis(Y_AXIS);
  2187. #endif //TMC2130
  2188. if(home_x_axis && home_x_value != 0)
  2189. current_position[X_AXIS]=home_x_value+cs.add_homing[X_AXIS];
  2190. if(home_y_axis && home_y_value != 0)
  2191. current_position[Y_AXIS]=home_y_value+cs.add_homing[Y_AXIS];
  2192. #if Z_HOME_DIR < 0 // If homing towards BED do Z last
  2193. #ifndef Z_SAFE_HOMING
  2194. if(home_z) {
  2195. #if defined (Z_RAISE_BEFORE_HOMING) && (Z_RAISE_BEFORE_HOMING > 0)
  2196. destination[Z_AXIS] = Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS) * (-1); // Set destination away from bed
  2197. feedrate = max_feedrate[Z_AXIS];
  2198. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
  2199. st_synchronize();
  2200. #endif // defined (Z_RAISE_BEFORE_HOMING) && (Z_RAISE_BEFORE_HOMING > 0)
  2201. #if (defined(MESH_BED_LEVELING) && !defined(MK1BP)) // If Mesh bed leveling, move X&Y to safe position for home
  2202. if (!(axis_known_position[X_AXIS] && axis_known_position[Y_AXIS] ))
  2203. {
  2204. homeaxis(X_AXIS);
  2205. homeaxis(Y_AXIS);
  2206. }
  2207. // 1st mesh bed leveling measurement point, corrected.
  2208. world2machine_initialize();
  2209. world2machine(pgm_read_float(bed_ref_points_4), pgm_read_float(bed_ref_points_4+1), destination[X_AXIS], destination[Y_AXIS]);
  2210. world2machine_reset();
  2211. if (destination[Y_AXIS] < Y_MIN_POS)
  2212. destination[Y_AXIS] = Y_MIN_POS;
  2213. destination[Z_AXIS] = MESH_HOME_Z_SEARCH; // Set destination away from bed
  2214. feedrate = homing_feedrate[Z_AXIS]/10;
  2215. current_position[Z_AXIS] = 0;
  2216. enable_endstops(false);
  2217. #ifdef DEBUG_BUILD
  2218. SERIAL_ECHOLNPGM("plan_set_position()");
  2219. MYSERIAL.println(current_position[X_AXIS]);MYSERIAL.println(current_position[Y_AXIS]);
  2220. MYSERIAL.println(current_position[Z_AXIS]);MYSERIAL.println(current_position[E_AXIS]);
  2221. #endif
  2222. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2223. #ifdef DEBUG_BUILD
  2224. SERIAL_ECHOLNPGM("plan_buffer_line()");
  2225. MYSERIAL.println(destination[X_AXIS]);MYSERIAL.println(destination[Y_AXIS]);
  2226. MYSERIAL.println(destination[Z_AXIS]);MYSERIAL.println(destination[E_AXIS]);
  2227. MYSERIAL.println(feedrate);MYSERIAL.println(active_extruder);
  2228. #endif
  2229. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
  2230. st_synchronize();
  2231. current_position[X_AXIS] = destination[X_AXIS];
  2232. current_position[Y_AXIS] = destination[Y_AXIS];
  2233. enable_endstops(true);
  2234. endstops_hit_on_purpose();
  2235. homeaxis(Z_AXIS);
  2236. #else // MESH_BED_LEVELING
  2237. homeaxis(Z_AXIS);
  2238. #endif // MESH_BED_LEVELING
  2239. }
  2240. #else // defined(Z_SAFE_HOMING): Z Safe mode activated.
  2241. if(home_all_axes) {
  2242. destination[X_AXIS] = round(Z_SAFE_HOMING_X_POINT - X_PROBE_OFFSET_FROM_EXTRUDER);
  2243. destination[Y_AXIS] = round(Z_SAFE_HOMING_Y_POINT - Y_PROBE_OFFSET_FROM_EXTRUDER);
  2244. destination[Z_AXIS] = Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS) * (-1); // Set destination away from bed
  2245. feedrate = XY_TRAVEL_SPEED/60;
  2246. current_position[Z_AXIS] = 0;
  2247. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2248. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
  2249. st_synchronize();
  2250. current_position[X_AXIS] = destination[X_AXIS];
  2251. current_position[Y_AXIS] = destination[Y_AXIS];
  2252. homeaxis(Z_AXIS);
  2253. }
  2254. // Let's see if X and Y are homed and probe is inside bed area.
  2255. if(home_z) {
  2256. if ( (axis_known_position[X_AXIS]) && (axis_known_position[Y_AXIS]) \
  2257. && (current_position[X_AXIS]+X_PROBE_OFFSET_FROM_EXTRUDER >= X_MIN_POS) \
  2258. && (current_position[X_AXIS]+X_PROBE_OFFSET_FROM_EXTRUDER <= X_MAX_POS) \
  2259. && (current_position[Y_AXIS]+Y_PROBE_OFFSET_FROM_EXTRUDER >= Y_MIN_POS) \
  2260. && (current_position[Y_AXIS]+Y_PROBE_OFFSET_FROM_EXTRUDER <= Y_MAX_POS)) {
  2261. current_position[Z_AXIS] = 0;
  2262. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2263. destination[Z_AXIS] = Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS) * (-1); // Set destination away from bed
  2264. feedrate = max_feedrate[Z_AXIS];
  2265. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
  2266. st_synchronize();
  2267. homeaxis(Z_AXIS);
  2268. } else if (!((axis_known_position[X_AXIS]) && (axis_known_position[Y_AXIS]))) {
  2269. LCD_MESSAGERPGM(MSG_POSITION_UNKNOWN);
  2270. SERIAL_ECHO_START;
  2271. SERIAL_ECHOLNRPGM(MSG_POSITION_UNKNOWN);
  2272. } else {
  2273. LCD_MESSAGERPGM(MSG_ZPROBE_OUT);
  2274. SERIAL_ECHO_START;
  2275. SERIAL_ECHOLNRPGM(MSG_ZPROBE_OUT);
  2276. }
  2277. }
  2278. #endif // Z_SAFE_HOMING
  2279. #endif // Z_HOME_DIR < 0
  2280. if(home_z_axis && home_z_value != 0)
  2281. current_position[Z_AXIS]=home_z_value+cs.add_homing[Z_AXIS];
  2282. #ifdef ENABLE_AUTO_BED_LEVELING
  2283. if(home_z)
  2284. current_position[Z_AXIS] += cs.zprobe_zoffset; //Add Z_Probe offset (the distance is negative)
  2285. #endif
  2286. // Set the planner and stepper routine positions.
  2287. // At this point the mesh bed leveling and world2machine corrections are disabled and current_position
  2288. // contains the machine coordinates.
  2289. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2290. #ifdef ENDSTOPS_ONLY_FOR_HOMING
  2291. enable_endstops(false);
  2292. #endif
  2293. feedrate = saved_feedrate;
  2294. feedmultiply = l_feedmultiply;
  2295. previous_millis_cmd = _millis();
  2296. endstops_hit_on_purpose();
  2297. #ifndef MESH_BED_LEVELING
  2298. // If MESH_BED_LEVELING is not active, then it is the original Prusa i3.
  2299. // Offer the user to load the baby step value, which has been adjusted at the previous print session.
  2300. if(card.sdprinting && eeprom_read_word((uint16_t *)EEPROM_BABYSTEP_Z))
  2301. lcd_adjust_z();
  2302. #endif
  2303. // Load the machine correction matrix
  2304. world2machine_initialize();
  2305. // and correct the current_position XY axes to match the transformed coordinate system.
  2306. world2machine_update_current();
  2307. #if (defined(MESH_BED_LEVELING) && !defined(MK1BP))
  2308. if (home_x_axis || home_y_axis || without_mbl || home_z_axis)
  2309. {
  2310. if (! home_z && mbl_was_active) {
  2311. // Re-enable the mesh bed leveling if only the X and Y axes were re-homed.
  2312. mbl.active = true;
  2313. // and re-adjust the current logical Z axis with the bed leveling offset applicable at the current XY position.
  2314. current_position[Z_AXIS] -= mbl.get_z(st_get_position_mm(X_AXIS), st_get_position_mm(Y_AXIS));
  2315. }
  2316. }
  2317. else
  2318. {
  2319. st_synchronize();
  2320. homing_flag = false;
  2321. }
  2322. #endif
  2323. if (farm_mode) { prusa_statistics(20); };
  2324. homing_flag = false;
  2325. #if 0
  2326. SERIAL_ECHOPGM("G28, final "); print_world_coordinates();
  2327. SERIAL_ECHOPGM("G28, final "); print_physical_coordinates();
  2328. SERIAL_ECHOPGM("G28, final "); print_mesh_bed_leveling_table();
  2329. #endif
  2330. }
  2331. static void gcode_G28(bool home_x_axis, bool home_y_axis, bool home_z_axis)
  2332. {
  2333. #ifdef TMC2130
  2334. gcode_G28(home_x_axis, 0, home_y_axis, 0, home_z_axis, 0, false, true);
  2335. #else
  2336. gcode_G28(home_x_axis, 0, home_y_axis, 0, home_z_axis, 0, true);
  2337. #endif //TMC2130
  2338. }
  2339. void adjust_bed_reset()
  2340. {
  2341. eeprom_update_byte((unsigned char*)EEPROM_BED_CORRECTION_VALID, 1);
  2342. eeprom_update_byte((unsigned char*)EEPROM_BED_CORRECTION_LEFT, 0);
  2343. eeprom_update_byte((unsigned char*)EEPROM_BED_CORRECTION_RIGHT, 0);
  2344. eeprom_update_byte((unsigned char*)EEPROM_BED_CORRECTION_FRONT, 0);
  2345. eeprom_update_byte((unsigned char*)EEPROM_BED_CORRECTION_REAR, 0);
  2346. }
  2347. //! @brief Calibrate XYZ
  2348. //! @param onlyZ if true, calibrate only Z axis
  2349. //! @param verbosity_level
  2350. //! @retval true Succeeded
  2351. //! @retval false Failed
  2352. bool gcode_M45(bool onlyZ, int8_t verbosity_level)
  2353. {
  2354. bool final_result = false;
  2355. #ifdef TMC2130
  2356. FORCE_HIGH_POWER_START;
  2357. #endif // TMC2130
  2358. // Only Z calibration?
  2359. if (!onlyZ)
  2360. {
  2361. setTargetBed(0);
  2362. setAllTargetHotends(0);
  2363. adjust_bed_reset(); //reset bed level correction
  2364. }
  2365. // Disable the default update procedure of the display. We will do a modal dialog.
  2366. lcd_update_enable(false);
  2367. // Let the planner use the uncorrected coordinates.
  2368. mbl.reset();
  2369. // Reset world2machine_rotation_and_skew and world2machine_shift, therefore
  2370. // the planner will not perform any adjustments in the XY plane.
  2371. // Wait for the motors to stop and update the current position with the absolute values.
  2372. world2machine_revert_to_uncorrected();
  2373. // Reset the baby step value applied without moving the axes.
  2374. babystep_reset();
  2375. // Mark all axes as in a need for homing.
  2376. memset(axis_known_position, 0, sizeof(axis_known_position));
  2377. // Home in the XY plane.
  2378. //set_destination_to_current();
  2379. int l_feedmultiply = setup_for_endstop_move();
  2380. lcd_display_message_fullscreen_P(_T(MSG_AUTO_HOME));
  2381. home_xy();
  2382. enable_endstops(false);
  2383. current_position[X_AXIS] += 5;
  2384. current_position[Y_AXIS] += 5;
  2385. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[Z_AXIS] / 40, active_extruder);
  2386. st_synchronize();
  2387. // Let the user move the Z axes up to the end stoppers.
  2388. #ifdef TMC2130
  2389. if (calibrate_z_auto())
  2390. {
  2391. #else //TMC2130
  2392. if (lcd_calibrate_z_end_stop_manual(onlyZ))
  2393. {
  2394. #endif //TMC2130
  2395. lcd_show_fullscreen_message_and_wait_P(_T(MSG_CONFIRM_NOZZLE_CLEAN));
  2396. if(onlyZ){
  2397. lcd_display_message_fullscreen_P(_T(MSG_MEASURE_BED_REFERENCE_HEIGHT_LINE1));
  2398. lcd_set_cursor(0, 3);
  2399. lcd_print(1);
  2400. lcd_puts_P(_T(MSG_MEASURE_BED_REFERENCE_HEIGHT_LINE2));
  2401. }else{
  2402. //lcd_show_fullscreen_message_and_wait_P(_T(MSG_PAPER));
  2403. lcd_display_message_fullscreen_P(_T(MSG_FIND_BED_OFFSET_AND_SKEW_LINE1));
  2404. lcd_set_cursor(0, 2);
  2405. lcd_print(1);
  2406. lcd_puts_P(_T(MSG_FIND_BED_OFFSET_AND_SKEW_LINE2));
  2407. }
  2408. refresh_cmd_timeout();
  2409. #ifndef STEEL_SHEET
  2410. if (((degHotend(0) > MAX_HOTEND_TEMP_CALIBRATION) || (degBed() > MAX_BED_TEMP_CALIBRATION)) && (!onlyZ))
  2411. {
  2412. lcd_wait_for_cool_down();
  2413. }
  2414. #endif //STEEL_SHEET
  2415. if(!onlyZ)
  2416. {
  2417. KEEPALIVE_STATE(PAUSED_FOR_USER);
  2418. #ifdef STEEL_SHEET
  2419. bool result = lcd_show_fullscreen_message_yes_no_and_wait_P(_T(MSG_STEEL_SHEET_CHECK), false, false);
  2420. if(result) lcd_show_fullscreen_message_and_wait_P(_T(MSG_REMOVE_STEEL_SHEET));
  2421. #endif //STEEL_SHEET
  2422. lcd_show_fullscreen_message_and_wait_P(_T(MSG_PAPER));
  2423. KEEPALIVE_STATE(IN_HANDLER);
  2424. lcd_display_message_fullscreen_P(_T(MSG_FIND_BED_OFFSET_AND_SKEW_LINE1));
  2425. lcd_set_cursor(0, 2);
  2426. lcd_print(1);
  2427. lcd_puts_P(_T(MSG_FIND_BED_OFFSET_AND_SKEW_LINE2));
  2428. }
  2429. bool endstops_enabled = enable_endstops(false);
  2430. current_position[Z_AXIS] -= 1; //move 1mm down with disabled endstop
  2431. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[Z_AXIS] / 40, active_extruder);
  2432. st_synchronize();
  2433. // Move the print head close to the bed.
  2434. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  2435. enable_endstops(true);
  2436. #ifdef TMC2130
  2437. tmc2130_home_enter(Z_AXIS_MASK);
  2438. #endif //TMC2130
  2439. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[Z_AXIS] / 40, active_extruder);
  2440. st_synchronize();
  2441. #ifdef TMC2130
  2442. tmc2130_home_exit();
  2443. #endif //TMC2130
  2444. enable_endstops(endstops_enabled);
  2445. if (st_get_position_mm(Z_AXIS) == MESH_HOME_Z_SEARCH)
  2446. {
  2447. if (onlyZ)
  2448. {
  2449. clean_up_after_endstop_move(l_feedmultiply);
  2450. // Z only calibration.
  2451. // Load the machine correction matrix
  2452. world2machine_initialize();
  2453. // and correct the current_position to match the transformed coordinate system.
  2454. world2machine_update_current();
  2455. //FIXME
  2456. bool result = sample_mesh_and_store_reference();
  2457. if (result)
  2458. {
  2459. if (calibration_status() == CALIBRATION_STATUS_Z_CALIBRATION)
  2460. // Shipped, the nozzle height has been set already. The user can start printing now.
  2461. calibration_status_store(CALIBRATION_STATUS_CALIBRATED);
  2462. final_result = true;
  2463. // babystep_apply();
  2464. }
  2465. }
  2466. else
  2467. {
  2468. // Reset the baby step value and the baby step applied flag.
  2469. calibration_status_store(CALIBRATION_STATUS_XYZ_CALIBRATION);
  2470. eeprom_update_word((uint16_t*)EEPROM_BABYSTEP_Z, 0);
  2471. // Complete XYZ calibration.
  2472. uint8_t point_too_far_mask = 0;
  2473. BedSkewOffsetDetectionResultType result = find_bed_offset_and_skew(verbosity_level, point_too_far_mask);
  2474. clean_up_after_endstop_move(l_feedmultiply);
  2475. // Print head up.
  2476. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  2477. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[Z_AXIS] / 40, active_extruder);
  2478. st_synchronize();
  2479. //#ifndef NEW_XYZCAL
  2480. if (result >= 0)
  2481. {
  2482. #ifdef HEATBED_V2
  2483. sample_z();
  2484. #else //HEATBED_V2
  2485. point_too_far_mask = 0;
  2486. // Second half: The fine adjustment.
  2487. // Let the planner use the uncorrected coordinates.
  2488. mbl.reset();
  2489. world2machine_reset();
  2490. // Home in the XY plane.
  2491. int l_feedmultiply = setup_for_endstop_move();
  2492. home_xy();
  2493. result = improve_bed_offset_and_skew(1, verbosity_level, point_too_far_mask);
  2494. clean_up_after_endstop_move(l_feedmultiply);
  2495. // Print head up.
  2496. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  2497. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[Z_AXIS] / 40, active_extruder);
  2498. st_synchronize();
  2499. // if (result >= 0) babystep_apply();
  2500. #endif //HEATBED_V2
  2501. }
  2502. //#endif //NEW_XYZCAL
  2503. lcd_update_enable(true);
  2504. lcd_update(2);
  2505. lcd_bed_calibration_show_result(result, point_too_far_mask);
  2506. if (result >= 0)
  2507. {
  2508. // Calibration valid, the machine should be able to print. Advise the user to run the V2Calibration.gcode.
  2509. calibration_status_store(CALIBRATION_STATUS_LIVE_ADJUST);
  2510. if (eeprom_read_byte((uint8_t*)EEPROM_WIZARD_ACTIVE) != 1) lcd_show_fullscreen_message_and_wait_P(_T(MSG_BABYSTEP_Z_NOT_SET));
  2511. final_result = true;
  2512. }
  2513. }
  2514. #ifdef TMC2130
  2515. tmc2130_home_exit();
  2516. #endif
  2517. }
  2518. else
  2519. {
  2520. lcd_show_fullscreen_message_and_wait_P(PSTR("Calibration failed! Check the axes and run again."));
  2521. final_result = false;
  2522. }
  2523. }
  2524. else
  2525. {
  2526. // Timeouted.
  2527. }
  2528. lcd_update_enable(true);
  2529. #ifdef TMC2130
  2530. FORCE_HIGH_POWER_END;
  2531. #endif // TMC2130
  2532. return final_result;
  2533. }
  2534. void gcode_M114()
  2535. {
  2536. SERIAL_PROTOCOLPGM("X:");
  2537. SERIAL_PROTOCOL(current_position[X_AXIS]);
  2538. SERIAL_PROTOCOLPGM(" Y:");
  2539. SERIAL_PROTOCOL(current_position[Y_AXIS]);
  2540. SERIAL_PROTOCOLPGM(" Z:");
  2541. SERIAL_PROTOCOL(current_position[Z_AXIS]);
  2542. SERIAL_PROTOCOLPGM(" E:");
  2543. SERIAL_PROTOCOL(current_position[E_AXIS]);
  2544. SERIAL_PROTOCOLRPGM(_n(" Count X: "));////MSG_COUNT_X
  2545. SERIAL_PROTOCOL(float(st_get_position(X_AXIS)) / cs.axis_steps_per_unit[X_AXIS]);
  2546. SERIAL_PROTOCOLPGM(" Y:");
  2547. SERIAL_PROTOCOL(float(st_get_position(Y_AXIS)) / cs.axis_steps_per_unit[Y_AXIS]);
  2548. SERIAL_PROTOCOLPGM(" Z:");
  2549. SERIAL_PROTOCOL(float(st_get_position(Z_AXIS)) / cs.axis_steps_per_unit[Z_AXIS]);
  2550. SERIAL_PROTOCOLPGM(" E:");
  2551. SERIAL_PROTOCOL(float(st_get_position(E_AXIS)) / cs.axis_steps_per_unit[E_AXIS]);
  2552. SERIAL_PROTOCOLLN("");
  2553. }
  2554. //! extracted code to compute z_shift for M600 in case of filament change operation
  2555. //! requested from fsensors.
  2556. //! The function ensures, that the printhead lifts to at least 25mm above the heat bed
  2557. //! unlike the previous implementation, which was adding 25mm even when the head was
  2558. //! printing at e.g. 24mm height.
  2559. //! A safety margin of FILAMENTCHANGE_ZADD is added in all cases to avoid touching
  2560. //! the printout.
  2561. //! This function is templated to enable fast change of computation data type.
  2562. //! @return new z_shift value
  2563. template<typename T>
  2564. static T gcode_M600_filament_change_z_shift()
  2565. {
  2566. #ifdef FILAMENTCHANGE_ZADD
  2567. static_assert(Z_MAX_POS < (255 - FILAMENTCHANGE_ZADD), "Z-range too high, change the T type from uint8_t to uint16_t");
  2568. // avoid floating point arithmetics when not necessary - results in shorter code
  2569. T ztmp = T( current_position[Z_AXIS] );
  2570. T z_shift = 0;
  2571. if(ztmp < T(25)){
  2572. z_shift = T(25) - ztmp; // make sure to be at least 25mm above the heat bed
  2573. }
  2574. return z_shift + T(FILAMENTCHANGE_ZADD); // always move above printout
  2575. #else
  2576. return T(0);
  2577. #endif
  2578. }
  2579. static void gcode_M600(bool automatic, float x_position, float y_position, float z_shift, float e_shift, float /*e_shift_late*/)
  2580. {
  2581. st_synchronize();
  2582. float lastpos[4];
  2583. if (farm_mode)
  2584. {
  2585. prusa_statistics(22);
  2586. }
  2587. //First backup current position and settings
  2588. int feedmultiplyBckp = feedmultiply;
  2589. float HotendTempBckp = degTargetHotend(active_extruder);
  2590. int fanSpeedBckp = fanSpeed;
  2591. lastpos[X_AXIS] = current_position[X_AXIS];
  2592. lastpos[Y_AXIS] = current_position[Y_AXIS];
  2593. lastpos[Z_AXIS] = current_position[Z_AXIS];
  2594. lastpos[E_AXIS] = current_position[E_AXIS];
  2595. //Retract E
  2596. current_position[E_AXIS] += e_shift;
  2597. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS],
  2598. current_position[E_AXIS], FILAMENTCHANGE_RFEED, active_extruder);
  2599. st_synchronize();
  2600. //Lift Z
  2601. current_position[Z_AXIS] += z_shift;
  2602. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS],
  2603. current_position[E_AXIS], FILAMENTCHANGE_ZFEED, active_extruder);
  2604. st_synchronize();
  2605. //Move XY to side
  2606. current_position[X_AXIS] = x_position;
  2607. current_position[Y_AXIS] = y_position;
  2608. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS],
  2609. current_position[E_AXIS], FILAMENTCHANGE_XYFEED, active_extruder);
  2610. st_synchronize();
  2611. //Beep, manage nozzle heater and wait for user to start unload filament
  2612. if(!mmu_enabled) M600_wait_for_user(HotendTempBckp);
  2613. lcd_change_fil_state = 0;
  2614. // Unload filament
  2615. if (mmu_enabled) extr_unload(); //unload just current filament for multimaterial printers (used also in M702)
  2616. else unload_filament(); //unload filament for single material (used also in M702)
  2617. //finish moves
  2618. st_synchronize();
  2619. if (!mmu_enabled)
  2620. {
  2621. KEEPALIVE_STATE(PAUSED_FOR_USER);
  2622. lcd_change_fil_state = lcd_show_fullscreen_message_yes_no_and_wait_P(_i("Was filament unload successful?"),
  2623. false, true); ////MSG_UNLOAD_SUCCESSFUL c=20 r=2
  2624. if (lcd_change_fil_state == 0)
  2625. {
  2626. lcd_clear();
  2627. lcd_set_cursor(0, 2);
  2628. lcd_puts_P(_T(MSG_PLEASE_WAIT));
  2629. current_position[X_AXIS] -= 100;
  2630. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS],
  2631. current_position[E_AXIS], FILAMENTCHANGE_XYFEED, active_extruder);
  2632. st_synchronize();
  2633. lcd_show_fullscreen_message_and_wait_P(_i("Please open idler and remove filament manually."));////MSG_CHECK_IDLER c=20 r=4
  2634. }
  2635. }
  2636. if (mmu_enabled)
  2637. {
  2638. if (!automatic) {
  2639. if (saved_printing) mmu_eject_filament(mmu_extruder, false); //if M600 was invoked by filament senzor (FINDA) eject filament so user can easily remove it
  2640. mmu_M600_wait_and_beep();
  2641. if (saved_printing) {
  2642. lcd_clear();
  2643. lcd_set_cursor(0, 2);
  2644. lcd_puts_P(_T(MSG_PLEASE_WAIT));
  2645. mmu_command(MmuCmd::R0);
  2646. manage_response(false, false);
  2647. }
  2648. }
  2649. mmu_M600_load_filament(automatic, HotendTempBckp);
  2650. }
  2651. else
  2652. M600_load_filament();
  2653. if (!automatic) M600_check_state(HotendTempBckp);
  2654. lcd_update_enable(true);
  2655. //Not let's go back to print
  2656. fanSpeed = fanSpeedBckp;
  2657. //Feed a little of filament to stabilize pressure
  2658. if (!automatic)
  2659. {
  2660. current_position[E_AXIS] += FILAMENTCHANGE_RECFEED;
  2661. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS],
  2662. current_position[E_AXIS], FILAMENTCHANGE_EXFEED, active_extruder);
  2663. }
  2664. //Move XY back
  2665. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS],
  2666. FILAMENTCHANGE_XYFEED, active_extruder);
  2667. st_synchronize();
  2668. //Move Z back
  2669. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], current_position[E_AXIS],
  2670. FILAMENTCHANGE_ZFEED, active_extruder);
  2671. st_synchronize();
  2672. //Set E position to original
  2673. plan_set_e_position(lastpos[E_AXIS]);
  2674. memcpy(current_position, lastpos, sizeof(lastpos));
  2675. memcpy(destination, current_position, sizeof(current_position));
  2676. //Recover feed rate
  2677. feedmultiply = feedmultiplyBckp;
  2678. char cmd[9];
  2679. sprintf_P(cmd, PSTR("M220 S%i"), feedmultiplyBckp);
  2680. enquecommand(cmd);
  2681. #ifdef IR_SENSOR
  2682. //this will set fsensor_watch_autoload to correct value and prevent possible M701 gcode enqueuing when M600 is finished
  2683. fsensor_check_autoload();
  2684. #endif //IR_SENSOR
  2685. lcd_setstatuspgm(_T(WELCOME_MSG));
  2686. custom_message_type = CustomMsg::Status;
  2687. }
  2688. //! @brief Rise Z if too low to avoid blob/jam before filament loading
  2689. //!
  2690. //! It doesn't plan_buffer_line(), as it expects plan_buffer_line() to be called after
  2691. //! during extruding (loading) filament.
  2692. void marlin_rise_z(void)
  2693. {
  2694. if (current_position[Z_AXIS] < 20) current_position[Z_AXIS] += 30;
  2695. }
  2696. void gcode_M701()
  2697. {
  2698. printf_P(PSTR("gcode_M701 begin\n"));
  2699. if (farm_mode)
  2700. {
  2701. prusa_statistics(22);
  2702. }
  2703. if (mmu_enabled)
  2704. {
  2705. extr_adj(tmp_extruder);//loads current extruder
  2706. mmu_extruder = tmp_extruder;
  2707. }
  2708. else
  2709. {
  2710. enable_z();
  2711. custom_message_type = CustomMsg::FilamentLoading;
  2712. #ifdef FSENSOR_QUALITY
  2713. fsensor_oq_meassure_start(40);
  2714. #endif //FSENSOR_QUALITY
  2715. lcd_setstatuspgm(_T(MSG_LOADING_FILAMENT));
  2716. current_position[E_AXIS] += 40;
  2717. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400 / 60, active_extruder); //fast sequence
  2718. st_synchronize();
  2719. marlin_rise_z();
  2720. current_position[E_AXIS] += 30;
  2721. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400 / 60, active_extruder); //fast sequence
  2722. load_filament_final_feed(); //slow sequence
  2723. st_synchronize();
  2724. Sound_MakeCustom(50,500,false);
  2725. if (!farm_mode && loading_flag) {
  2726. lcd_load_filament_color_check();
  2727. }
  2728. lcd_update_enable(true);
  2729. lcd_update(2);
  2730. lcd_setstatuspgm(_T(WELCOME_MSG));
  2731. disable_z();
  2732. loading_flag = false;
  2733. custom_message_type = CustomMsg::Status;
  2734. #ifdef FSENSOR_QUALITY
  2735. fsensor_oq_meassure_stop();
  2736. if (!fsensor_oq_result())
  2737. {
  2738. bool disable = lcd_show_fullscreen_message_yes_no_and_wait_P(_i("Fil. sensor response is poor, disable it?"), false, true);
  2739. lcd_update_enable(true);
  2740. lcd_update(2);
  2741. if (disable)
  2742. fsensor_disable();
  2743. }
  2744. #endif //FSENSOR_QUALITY
  2745. }
  2746. }
  2747. /**
  2748. * @brief Get serial number from 32U2 processor
  2749. *
  2750. * Typical format of S/N is:CZPX0917X003XC13518
  2751. *
  2752. * Command operates only in farm mode, if not in farm mode, "Not in farm mode." is written to MYSERIAL.
  2753. *
  2754. * Send command ;S to serial port 0 to retrieve serial number stored in 32U2 processor,
  2755. * reply is transmitted to serial port 1 character by character.
  2756. * Operation takes typically 23 ms. If the retransmit is not finished until 100 ms,
  2757. * it is interrupted, so less, or no characters are retransmitted, only newline character is send
  2758. * in any case.
  2759. */
  2760. static void gcode_PRUSA_SN()
  2761. {
  2762. if (farm_mode) {
  2763. selectedSerialPort = 0;
  2764. putchar(';');
  2765. putchar('S');
  2766. int numbersRead = 0;
  2767. ShortTimer timeout;
  2768. timeout.start();
  2769. while (numbersRead < 19) {
  2770. while (MSerial.available() > 0) {
  2771. uint8_t serial_char = MSerial.read();
  2772. selectedSerialPort = 1;
  2773. putchar(serial_char);
  2774. numbersRead++;
  2775. selectedSerialPort = 0;
  2776. }
  2777. if (timeout.expired(100u)) break;
  2778. }
  2779. selectedSerialPort = 1;
  2780. putchar('\n');
  2781. #if 0
  2782. for (int b = 0; b < 3; b++) {
  2783. _tone(BEEPER, 110);
  2784. _delay(50);
  2785. _noTone(BEEPER);
  2786. _delay(50);
  2787. }
  2788. #endif
  2789. } else {
  2790. puts_P(_N("Not in farm mode."));
  2791. }
  2792. }
  2793. #ifdef BACKLASH_X
  2794. extern uint8_t st_backlash_x;
  2795. #endif //BACKLASH_X
  2796. #ifdef BACKLASH_Y
  2797. extern uint8_t st_backlash_y;
  2798. #endif //BACKLASH_Y
  2799. //! @brief Parse and process commands
  2800. //!
  2801. //! look here for descriptions of G-codes: http://linuxcnc.org/handbook/gcode/g-code.html
  2802. //! http://objects.reprap.org/wiki/Mendel_User_Manual:_RepRapGCodes
  2803. //!
  2804. //! Implemented Codes
  2805. //! -------------------
  2806. //!
  2807. //!@n PRUSA CODES
  2808. //!@n P F - Returns FW versions
  2809. //!@n P R - Returns revision of printer
  2810. //!
  2811. //!@n G0 -> G1
  2812. //!@n G1 - Coordinated Movement X Y Z E
  2813. //!@n G2 - CW ARC
  2814. //!@n G3 - CCW ARC
  2815. //!@n G4 - Dwell S<seconds> or P<milliseconds>
  2816. //!@n G10 - retract filament according to settings of M207
  2817. //!@n G11 - retract recover filament according to settings of M208
  2818. //!@n G28 - Home all Axis
  2819. //!@n G29 - Detailed Z-Probe, probes the bed at 3 or more points. Will fail if you haven't homed yet.
  2820. //!@n G30 - Single Z Probe, probes bed at current XY location.
  2821. //!@n G31 - Dock sled (Z_PROBE_SLED only)
  2822. //!@n G32 - Undock sled (Z_PROBE_SLED only)
  2823. //!@n G80 - Automatic mesh bed leveling
  2824. //!@n G81 - Print bed profile
  2825. //!@n G90 - Use Absolute Coordinates
  2826. //!@n G91 - Use Relative Coordinates
  2827. //!@n G92 - Set current position to coordinates given
  2828. //!
  2829. //!@n M Codes
  2830. //!@n M0 - Unconditional stop - Wait for user to press a button on the LCD
  2831. //!@n M1 - Same as M0
  2832. //!@n M17 - Enable/Power all stepper motors
  2833. //!@n M18 - Disable all stepper motors; same as M84
  2834. //!@n M20 - List SD card
  2835. //!@n M21 - Init SD card
  2836. //!@n M22 - Release SD card
  2837. //!@n M23 - Select SD file (M23 filename.g)
  2838. //!@n M24 - Start/resume SD print
  2839. //!@n M25 - Pause SD print
  2840. //!@n M26 - Set SD position in bytes (M26 S12345)
  2841. //!@n M27 - Report SD print status
  2842. //!@n M28 - Start SD write (M28 filename.g)
  2843. //!@n M29 - Stop SD write
  2844. //!@n M30 - Delete file from SD (M30 filename.g)
  2845. //!@n M31 - Output time since last M109 or SD card start to serial
  2846. //!@n M32 - Select file and start SD print (Can be used _while_ printing from SD card files):
  2847. //! syntax "M32 /path/filename#", or "M32 S<startpos bytes> !filename#"
  2848. //! Call gcode file : "M32 P !filename#" and return to caller file after finishing (similar to #include).
  2849. //! The '#' is necessary when calling from within sd files, as it stops buffer prereading
  2850. //!@n M42 - Change pin status via gcode Use M42 Px Sy to set pin x to value y, when omitting Px the onboard led will be used.
  2851. //!@n M73 - Show percent done and print time remaining
  2852. //!@n M80 - Turn on Power Supply
  2853. //!@n M81 - Turn off Power Supply
  2854. //!@n M82 - Set E codes absolute (default)
  2855. //!@n M83 - Set E codes relative while in Absolute Coordinates (G90) mode
  2856. //!@n M84 - Disable steppers until next move,
  2857. //! or use S<seconds> to specify an inactivity timeout, after which the steppers will be disabled. S0 to disable the timeout.
  2858. //!@n M85 - Set inactivity shutdown timer with parameter S<seconds>. To disable set zero (default)
  2859. //!@n M86 - Set safety timer expiration time with parameter S<seconds>; M86 S0 will disable safety timer
  2860. //!@n M92 - Set axis_steps_per_unit - same syntax as G92
  2861. //!@n M104 - Set extruder target temp
  2862. //!@n M105 - Read current temp
  2863. //!@n M106 - Fan on
  2864. //!@n M107 - Fan off
  2865. //!@n M109 - Sxxx Wait for extruder current temp to reach target temp. Waits only when heating
  2866. //! Rxxx Wait for extruder current temp to reach target temp. Waits when heating and cooling
  2867. //! IF AUTOTEMP is enabled, S<mintemp> B<maxtemp> F<factor>. Exit autotemp by any M109 without F
  2868. //!@n M112 - Emergency stop
  2869. //!@n M113 - Get or set the timeout interval for Host Keepalive "busy" messages
  2870. //!@n M114 - Output current position to serial port
  2871. //!@n M115 - Capabilities string
  2872. //!@n M117 - display message
  2873. //!@n M119 - Output Endstop status to serial port
  2874. //!@n M126 - Solenoid Air Valve Open (BariCUDA support by jmil)
  2875. //!@n M127 - Solenoid Air Valve Closed (BariCUDA vent to atmospheric pressure by jmil)
  2876. //!@n M128 - EtoP Open (BariCUDA EtoP = electricity to air pressure transducer by jmil)
  2877. //!@n M129 - EtoP Closed (BariCUDA EtoP = electricity to air pressure transducer by jmil)
  2878. //!@n M140 - Set bed target temp
  2879. //!@n M150 - Set BlinkM Color Output R: Red<0-255> U(!): Green<0-255> B: Blue<0-255> over i2c, G for green does not work.
  2880. //!@n M190 - Sxxx Wait for bed current temp to reach target temp. Waits only when heating
  2881. //! Rxxx Wait for bed current temp to reach target temp. Waits when heating and cooling
  2882. //!@n M200 D<millimeters>- set filament diameter and set E axis units to cubic millimeters (use S0 to set back to millimeters).
  2883. //!@n M201 - Set max acceleration in units/s^2 for print moves (M201 X1000 Y1000)
  2884. //!@n M202 - Set max acceleration in units/s^2 for travel moves (M202 X1000 Y1000) Unused in Marlin!!
  2885. //!@n M203 - Set maximum feedrate that your machine can sustain (M203 X200 Y200 Z300 E10000) in mm/sec
  2886. //!@n M204 - Set default acceleration: S normal moves T filament only moves (M204 S3000 T7000) in mm/sec^2 also sets minimum segment time in ms (B20000) to prevent buffer under-runs and M20 minimum feedrate
  2887. //!@n M205 - advanced settings: minimum travel speed S=while printing T=travel only, B=minimum segment time X= maximum xy jerk, Z=maximum Z jerk, E=maximum E jerk
  2888. //!@n M206 - set additional homing offset
  2889. //!@n M207 - set retract length S[positive mm] F[feedrate mm/min] Z[additional zlift/hop], stays in mm regardless of M200 setting
  2890. //!@n M208 - set recover=unretract length S[positive mm surplus to the M207 S*] F[feedrate mm/sec]
  2891. //!@n M209 - S<1=true/0=false> enable automatic retract detect if the slicer did not support G10/11: every normal extrude-only move will be classified as retract depending on the direction.
  2892. //!@n M218 - set hotend offset (in mm): T<extruder_number> X<offset_on_X> Y<offset_on_Y>
  2893. //!@n M220 S<factor in percent>- set speed factor override percentage
  2894. //!@n M221 S<factor in percent>- set extrude factor override percentage
  2895. //!@n M226 P<pin number> S<pin state>- Wait until the specified pin reaches the state required
  2896. //!@n M240 - Trigger a camera to take a photograph
  2897. //!@n M250 - Set LCD contrast C<contrast value> (value 0..63)
  2898. //!@n M280 - set servo position absolute. P: servo index, S: angle or microseconds
  2899. //!@n M300 - Play beep sound S<frequency Hz> P<duration ms>
  2900. //!@n M301 - Set PID parameters P I and D
  2901. //!@n M302 - Allow cold extrudes, or set the minimum extrude S<temperature>.
  2902. //!@n M303 - PID relay autotune S<temperature> sets the target temperature. (default target temperature = 150C)
  2903. //!@n M304 - Set bed PID parameters P I and D
  2904. //!@n M400 - Finish all moves
  2905. //!@n M401 - Lower z-probe if present
  2906. //!@n M402 - Raise z-probe if present
  2907. //!@n M404 - N<dia in mm> Enter the nominal filament width (3mm, 1.75mm ) or will display nominal filament width without parameters
  2908. //!@n M405 - Turn on Filament Sensor extrusion control. Optional D<delay in cm> to set delay in centimeters between sensor and extruder
  2909. //!@n M406 - Turn off Filament Sensor extrusion control
  2910. //!@n M407 - Displays measured filament diameter
  2911. //!@n M500 - stores parameters in EEPROM
  2912. //!@n M501 - reads parameters from EEPROM (if you need reset them after you changed them temporarily).
  2913. //!@n M502 - reverts to the default "factory settings". You still need to store them in EEPROM afterwards if you want to.
  2914. //!@n M503 - print the current settings (from memory not from EEPROM)
  2915. //!@n M509 - force language selection on next restart
  2916. //!@n M540 - Use S[0|1] to enable or disable the stop SD card print on endstop hit (requires ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED)
  2917. //!@n M600 - Pause for filament change X[pos] Y[pos] Z[relative lift] E[initial retract] L[later retract distance for removal]
  2918. //!@n M605 - Set dual x-carriage movement mode: S<mode> [ X<duplication x-offset> R<duplication temp offset> ]
  2919. //!@n M860 - Wait for PINDA thermistor to reach target temperature.
  2920. //!@n M861 - Set / Read PINDA temperature compensation offsets
  2921. //!@n M900 - Set LIN_ADVANCE options, if enabled. See Configuration_adv.h for details.
  2922. //!@n M907 - Set digital trimpot motor current using axis codes.
  2923. //!@n M908 - Control digital trimpot directly.
  2924. //!@n M350 - Set microstepping mode.
  2925. //!@n M351 - Toggle MS1 MS2 pins directly.
  2926. //!
  2927. //!@n M928 - Start SD logging (M928 filename.g) - ended by M29
  2928. //!@n M999 - Restart after being stopped by error
  2929. void process_commands()
  2930. {
  2931. #ifdef FANCHECK
  2932. if (fan_check_error){
  2933. if( fan_check_error == EFCE_DETECTED ){
  2934. fan_check_error = EFCE_REPORTED;
  2935. lcd_pause_print();
  2936. } // otherwise it has already been reported, so just ignore further processing
  2937. return;
  2938. }
  2939. #endif
  2940. if (!buflen) return; //empty command
  2941. #ifdef FILAMENT_RUNOUT_SUPPORT
  2942. SET_INPUT(FR_SENS);
  2943. #endif
  2944. #ifdef CMDBUFFER_DEBUG
  2945. SERIAL_ECHOPGM("Processing a GCODE command: ");
  2946. SERIAL_ECHO(cmdbuffer+bufindr+CMDHDRSIZE);
  2947. SERIAL_ECHOLNPGM("");
  2948. SERIAL_ECHOPGM("In cmdqueue: ");
  2949. SERIAL_ECHO(buflen);
  2950. SERIAL_ECHOLNPGM("");
  2951. #endif /* CMDBUFFER_DEBUG */
  2952. unsigned long codenum; //throw away variable
  2953. char *starpos = NULL;
  2954. #ifdef ENABLE_AUTO_BED_LEVELING
  2955. float x_tmp, y_tmp, z_tmp, real_z;
  2956. #endif
  2957. // PRUSA GCODES
  2958. KEEPALIVE_STATE(IN_HANDLER);
  2959. #ifdef SNMM
  2960. float tmp_motor[3] = DEFAULT_PWM_MOTOR_CURRENT;
  2961. float tmp_motor_loud[3] = DEFAULT_PWM_MOTOR_CURRENT_LOUD;
  2962. int8_t SilentMode;
  2963. #endif
  2964. if (code_seen("M117")) { //moved to highest priority place to be able to to print strings which includes "G", "PRUSA" and "^"
  2965. starpos = (strchr(strchr_pointer + 5, '*'));
  2966. if (starpos != NULL)
  2967. *(starpos) = '\0';
  2968. lcd_setstatus(strchr_pointer + 5);
  2969. }
  2970. #ifdef TMC2130
  2971. else if (strncmp_P(CMDBUFFER_CURRENT_STRING, PSTR("CRASH_"), 6) == 0)
  2972. {
  2973. if(code_seen("CRASH_DETECTED")) //! CRASH_DETECTED
  2974. {
  2975. uint8_t mask = 0;
  2976. if (code_seen('X')) mask |= X_AXIS_MASK;
  2977. if (code_seen('Y')) mask |= Y_AXIS_MASK;
  2978. crashdet_detected(mask);
  2979. }
  2980. else if(code_seen("CRASH_RECOVER")) //! CRASH_RECOVER
  2981. crashdet_recover();
  2982. else if(code_seen("CRASH_CANCEL")) //! CRASH_CANCEL
  2983. crashdet_cancel();
  2984. }
  2985. else if (strncmp_P(CMDBUFFER_CURRENT_STRING, PSTR("TMC_"), 4) == 0)
  2986. {
  2987. if (strncmp_P(CMDBUFFER_CURRENT_STRING + 4, PSTR("SET_WAVE_"), 9) == 0) //! TMC_SET_WAVE_
  2988. {
  2989. uint8_t axis = *(CMDBUFFER_CURRENT_STRING + 13);
  2990. axis = (axis == 'E')?3:(axis - 'X');
  2991. if (axis < 4)
  2992. {
  2993. uint8_t fac = (uint8_t)strtol(CMDBUFFER_CURRENT_STRING + 14, NULL, 10);
  2994. tmc2130_set_wave(axis, 247, fac);
  2995. }
  2996. }
  2997. else if (strncmp_P(CMDBUFFER_CURRENT_STRING + 4, PSTR("SET_STEP_"), 9) == 0) //! TMC_SET_STEP_
  2998. {
  2999. uint8_t axis = *(CMDBUFFER_CURRENT_STRING + 13);
  3000. axis = (axis == 'E')?3:(axis - 'X');
  3001. if (axis < 4)
  3002. {
  3003. uint8_t step = (uint8_t)strtol(CMDBUFFER_CURRENT_STRING + 14, NULL, 10);
  3004. uint16_t res = tmc2130_get_res(axis);
  3005. tmc2130_goto_step(axis, step & (4*res - 1), 2, 1000, res);
  3006. }
  3007. }
  3008. else if (strncmp_P(CMDBUFFER_CURRENT_STRING + 4, PSTR("SET_CHOP_"), 9) == 0) //! TMC_SET_CHOP_
  3009. {
  3010. uint8_t axis = *(CMDBUFFER_CURRENT_STRING + 13);
  3011. axis = (axis == 'E')?3:(axis - 'X');
  3012. if (axis < 4)
  3013. {
  3014. uint8_t chop0 = tmc2130_chopper_config[axis].toff;
  3015. uint8_t chop1 = tmc2130_chopper_config[axis].hstr;
  3016. uint8_t chop2 = tmc2130_chopper_config[axis].hend;
  3017. uint8_t chop3 = tmc2130_chopper_config[axis].tbl;
  3018. char* str_end = 0;
  3019. if (CMDBUFFER_CURRENT_STRING[14])
  3020. {
  3021. chop0 = (uint8_t)strtol(CMDBUFFER_CURRENT_STRING + 14, &str_end, 10) & 15;
  3022. if (str_end && *str_end)
  3023. {
  3024. chop1 = (uint8_t)strtol(str_end, &str_end, 10) & 7;
  3025. if (str_end && *str_end)
  3026. {
  3027. chop2 = (uint8_t)strtol(str_end, &str_end, 10) & 15;
  3028. if (str_end && *str_end)
  3029. chop3 = (uint8_t)strtol(str_end, &str_end, 10) & 3;
  3030. }
  3031. }
  3032. }
  3033. tmc2130_chopper_config[axis].toff = chop0;
  3034. tmc2130_chopper_config[axis].hstr = chop1 & 7;
  3035. tmc2130_chopper_config[axis].hend = chop2 & 15;
  3036. tmc2130_chopper_config[axis].tbl = chop3 & 3;
  3037. tmc2130_setup_chopper(axis, tmc2130_mres[axis], tmc2130_current_h[axis], tmc2130_current_r[axis]);
  3038. //printf_P(_N("TMC_SET_CHOP_%c %hhd %hhd %hhd %hhd\n"), "xyze"[axis], chop0, chop1, chop2, chop3);
  3039. }
  3040. }
  3041. }
  3042. #ifdef BACKLASH_X
  3043. else if (strncmp_P(CMDBUFFER_CURRENT_STRING, PSTR("BACKLASH_X"), 10) == 0)
  3044. {
  3045. uint8_t bl = (uint8_t)strtol(CMDBUFFER_CURRENT_STRING + 10, NULL, 10);
  3046. st_backlash_x = bl;
  3047. printf_P(_N("st_backlash_x = %hhd\n"), st_backlash_x);
  3048. }
  3049. #endif //BACKLASH_X
  3050. #ifdef BACKLASH_Y
  3051. else if (strncmp_P(CMDBUFFER_CURRENT_STRING, PSTR("BACKLASH_Y"), 10) == 0)
  3052. {
  3053. uint8_t bl = (uint8_t)strtol(CMDBUFFER_CURRENT_STRING + 10, NULL, 10);
  3054. st_backlash_y = bl;
  3055. printf_P(_N("st_backlash_y = %hhd\n"), st_backlash_y);
  3056. }
  3057. #endif //BACKLASH_Y
  3058. #endif //TMC2130
  3059. else if(code_seen("PRUSA")){
  3060. if (code_seen("Ping")) { //! PRUSA Ping
  3061. if (farm_mode) {
  3062. PingTime = _millis();
  3063. //MYSERIAL.print(farm_no); MYSERIAL.println(": OK");
  3064. }
  3065. }
  3066. else if (code_seen("PRN")) { //! PRUSA PRN
  3067. printf_P(_N("%d"), status_number);
  3068. }else if (code_seen("FAN")) { //! PRUSA FAN
  3069. printf_P(_N("E0:%d RPM\nPRN0:%d RPM\n"), 60*fan_speed[0], 60*fan_speed[1]);
  3070. }else if (code_seen("fn")) { //! PRUSA fn
  3071. if (farm_mode) {
  3072. printf_P(_N("%d"), farm_no);
  3073. }
  3074. else {
  3075. puts_P(_N("Not in farm mode."));
  3076. }
  3077. }
  3078. else if (code_seen("thx")) //! PRUSA thx
  3079. {
  3080. no_response = false;
  3081. }
  3082. else if (code_seen("uvlo")) //! PRUSA uvlo
  3083. {
  3084. eeprom_update_byte((uint8_t*)EEPROM_UVLO,0);
  3085. enquecommand_P(PSTR("M24"));
  3086. }
  3087. #ifdef FILAMENT_SENSOR
  3088. else if (code_seen("fsensor_recover")) //! PRUSA fsensor_recover
  3089. {
  3090. fsensor_restore_print_and_continue();
  3091. }
  3092. #endif //FILAMENT_SENSOR
  3093. else if (code_seen("MMURES")) //! PRUSA MMURES
  3094. {
  3095. mmu_reset();
  3096. }
  3097. else if (code_seen("RESET")) { //! PRUSA RESET
  3098. // careful!
  3099. if (farm_mode) {
  3100. #if (defined(WATCHDOG) && (MOTHERBOARD == BOARD_EINSY_1_0a))
  3101. boot_app_magic = BOOT_APP_MAGIC;
  3102. boot_app_flags = BOOT_APP_FLG_RUN;
  3103. wdt_enable(WDTO_15MS);
  3104. cli();
  3105. while(1);
  3106. #else //WATCHDOG
  3107. asm volatile("jmp 0x3E000");
  3108. #endif //WATCHDOG
  3109. }
  3110. else {
  3111. MYSERIAL.println("Not in farm mode.");
  3112. }
  3113. }else if (code_seen("fv")) { //! PRUSA fv
  3114. // get file version
  3115. #ifdef SDSUPPORT
  3116. card.openFile(strchr_pointer + 3,true);
  3117. while (true) {
  3118. uint16_t readByte = card.get();
  3119. MYSERIAL.write(readByte);
  3120. if (readByte=='\n') {
  3121. break;
  3122. }
  3123. }
  3124. card.closefile();
  3125. #endif // SDSUPPORT
  3126. } else if (code_seen("M28")) { //! PRUSA M28
  3127. trace();
  3128. prusa_sd_card_upload = true;
  3129. card.openFile(strchr_pointer+4,false);
  3130. } else if (code_seen("SN")) { //! PRUSA SN
  3131. gcode_PRUSA_SN();
  3132. } else if(code_seen("Fir")){ //! PRUSA Fir
  3133. SERIAL_PROTOCOLLN(FW_VERSION_FULL);
  3134. } else if(code_seen("Rev")){ //! PRUSA Rev
  3135. SERIAL_PROTOCOLLN(FILAMENT_SIZE "-" ELECTRONICS "-" NOZZLE_TYPE );
  3136. } else if(code_seen("Lang")) { //! PRUSA Lang
  3137. lang_reset();
  3138. } else if(code_seen("Lz")) { //! PRUSA Lz
  3139. EEPROM_save_B(EEPROM_BABYSTEP_Z,0);
  3140. } else if(code_seen("Beat")) { //! PRUSA Beat
  3141. // Kick farm link timer
  3142. kicktime = _millis();
  3143. } else if(code_seen("FR")) { //! PRUSA FR
  3144. // Factory full reset
  3145. factory_reset(0);
  3146. //-//
  3147. /*
  3148. } else if(code_seen("rrr")) {
  3149. MYSERIAL.println("=== checking ===");
  3150. MYSERIAL.println(eeprom_read_byte((uint8_t*)EEPROM_CHECK_MODE),DEC);
  3151. MYSERIAL.println(eeprom_read_byte((uint8_t*)EEPROM_NOZZLE_DIAMETER),DEC);
  3152. MYSERIAL.println(eeprom_read_word((uint16_t*)EEPROM_NOZZLE_DIAMETER_uM),DEC);
  3153. MYSERIAL.println(farm_mode,DEC);
  3154. MYSERIAL.println(eCheckMode,DEC);
  3155. } else if(code_seen("www")) {
  3156. MYSERIAL.println("=== @ FF ===");
  3157. eeprom_update_byte((uint8_t*)EEPROM_CHECK_MODE,0xFF);
  3158. eeprom_update_byte((uint8_t*)EEPROM_NOZZLE_DIAMETER,0xFF);
  3159. eeprom_update_word((uint16_t*)EEPROM_NOZZLE_DIAMETER_uM,0xFFFF);
  3160. */
  3161. } else if (code_seen("nozzle")) { //! PRUSA nozzle
  3162. uint16_t nDiameter;
  3163. if(code_seen('D'))
  3164. {
  3165. nDiameter=(uint16_t)(code_value()*1000.0+0.5); // [,um]
  3166. nozzle_diameter_check(nDiameter);
  3167. }
  3168. else if(code_seen("set") && farm_mode)
  3169. {
  3170. strchr_pointer++; // skip 1st char (~ 's')
  3171. strchr_pointer++; // skip 2nd char (~ 'e')
  3172. nDiameter=(uint16_t)(code_value()*1000.0+0.5); // [,um]
  3173. eeprom_update_byte((uint8_t*)EEPROM_NOZZLE_DIAMETER,(uint8_t)ClNozzleDiameter::_Diameter_Undef); // for correct synchronization after farm-mode exiting
  3174. eeprom_update_word((uint16_t*)EEPROM_NOZZLE_DIAMETER_uM,nDiameter);
  3175. }
  3176. else SERIAL_PROTOCOLLN((float)eeprom_read_word((uint16_t*)EEPROM_NOZZLE_DIAMETER_uM)/1000.0);
  3177. //-// !!! SupportMenu
  3178. /*
  3179. // musi byt PRED "PRUSA model"
  3180. } else if (code_seen("smodel")) { //! PRUSA smodel
  3181. size_t nOffset;
  3182. // ! -> "l"
  3183. strchr_pointer+=5*sizeof(*strchr_pointer); // skip 1st - 5th char (~ 'smode')
  3184. nOffset=strspn(strchr_pointer+1," \t\n\r\v\f");
  3185. if(*(strchr_pointer+1+nOffset))
  3186. printer_smodel_check(strchr_pointer);
  3187. else SERIAL_PROTOCOLLN(PRINTER_NAME);
  3188. } else if (code_seen("model")) { //! PRUSA model
  3189. uint16_t nPrinterModel;
  3190. strchr_pointer+=4*sizeof(*strchr_pointer); // skip 1st - 4th char (~ 'mode')
  3191. nPrinterModel=(uint16_t)code_value_long();
  3192. if(nPrinterModel!=0)
  3193. printer_model_check(nPrinterModel);
  3194. else SERIAL_PROTOCOLLN(PRINTER_TYPE);
  3195. } else if (code_seen("version")) { //! PRUSA version
  3196. strchr_pointer+=7*sizeof(*strchr_pointer); // skip 1st - 7th char (~ 'version')
  3197. while(*strchr_pointer==' ') // skip leading spaces
  3198. strchr_pointer++;
  3199. if(*strchr_pointer!=0)
  3200. fw_version_check(strchr_pointer);
  3201. else SERIAL_PROTOCOLLN(FW_VERSION);
  3202. } else if (code_seen("gcode")) { //! PRUSA gcode
  3203. uint16_t nGcodeLevel;
  3204. strchr_pointer+=4*sizeof(*strchr_pointer); // skip 1st - 4th char (~ 'gcod')
  3205. nGcodeLevel=(uint16_t)code_value_long();
  3206. if(nGcodeLevel!=0)
  3207. gcode_level_check(nGcodeLevel);
  3208. else SERIAL_PROTOCOLLN(GCODE_LEVEL);
  3209. */
  3210. }
  3211. //else if (code_seen('Cal')) {
  3212. // lcd_calibration();
  3213. // }
  3214. }
  3215. else if (code_seen('^')) {
  3216. // nothing, this is a version line
  3217. } else if(code_seen('G'))
  3218. {
  3219. gcode_in_progress = (int)code_value();
  3220. // printf_P(_N("BEGIN G-CODE=%u\n"), gcode_in_progress);
  3221. switch (gcode_in_progress)
  3222. {
  3223. case 0: // G0 -> G1
  3224. case 1: // G1
  3225. if(Stopped == false) {
  3226. #ifdef FILAMENT_RUNOUT_SUPPORT
  3227. if(READ(FR_SENS)){
  3228. int feedmultiplyBckp=feedmultiply;
  3229. float target[4];
  3230. float lastpos[4];
  3231. target[X_AXIS]=current_position[X_AXIS];
  3232. target[Y_AXIS]=current_position[Y_AXIS];
  3233. target[Z_AXIS]=current_position[Z_AXIS];
  3234. target[E_AXIS]=current_position[E_AXIS];
  3235. lastpos[X_AXIS]=current_position[X_AXIS];
  3236. lastpos[Y_AXIS]=current_position[Y_AXIS];
  3237. lastpos[Z_AXIS]=current_position[Z_AXIS];
  3238. lastpos[E_AXIS]=current_position[E_AXIS];
  3239. //retract by E
  3240. target[E_AXIS]+= FILAMENTCHANGE_FIRSTRETRACT ;
  3241. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 400, active_extruder);
  3242. target[Z_AXIS]+= FILAMENTCHANGE_ZADD ;
  3243. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 300, active_extruder);
  3244. target[X_AXIS]= FILAMENTCHANGE_XPOS ;
  3245. target[Y_AXIS]= FILAMENTCHANGE_YPOS ;
  3246. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 70, active_extruder);
  3247. target[E_AXIS]+= FILAMENTCHANGE_FINALRETRACT ;
  3248. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 20, active_extruder);
  3249. //finish moves
  3250. st_synchronize();
  3251. //disable extruder steppers so filament can be removed
  3252. disable_e0();
  3253. disable_e1();
  3254. disable_e2();
  3255. _delay(100);
  3256. //LCD_ALERTMESSAGEPGM(_T(MSG_FILAMENTCHANGE));
  3257. uint8_t cnt=0;
  3258. int counterBeep = 0;
  3259. lcd_wait_interact();
  3260. while(!lcd_clicked()){
  3261. cnt++;
  3262. manage_heater();
  3263. manage_inactivity(true);
  3264. //lcd_update(0);
  3265. if(cnt==0)
  3266. {
  3267. #if BEEPER > 0
  3268. if (counterBeep== 500){
  3269. counterBeep = 0;
  3270. }
  3271. SET_OUTPUT(BEEPER);
  3272. if (counterBeep== 0){
  3273. if(eSoundMode!=e_SOUND_MODE_SILENT)
  3274. WRITE(BEEPER,HIGH);
  3275. }
  3276. if (counterBeep== 20){
  3277. WRITE(BEEPER,LOW);
  3278. }
  3279. counterBeep++;
  3280. #else
  3281. #endif
  3282. }
  3283. }
  3284. WRITE(BEEPER,LOW);
  3285. target[E_AXIS]+= FILAMENTCHANGE_FIRSTFEED ;
  3286. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 20, active_extruder);
  3287. target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  3288. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder);
  3289. lcd_change_fil_state = 0;
  3290. lcd_loading_filament();
  3291. while ((lcd_change_fil_state == 0)||(lcd_change_fil_state != 1)){
  3292. lcd_change_fil_state = 0;
  3293. lcd_alright();
  3294. switch(lcd_change_fil_state){
  3295. case 2:
  3296. target[E_AXIS]+= FILAMENTCHANGE_FIRSTFEED ;
  3297. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 20, active_extruder);
  3298. target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  3299. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder);
  3300. lcd_loading_filament();
  3301. break;
  3302. case 3:
  3303. target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  3304. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder);
  3305. lcd_loading_color();
  3306. break;
  3307. default:
  3308. lcd_change_success();
  3309. break;
  3310. }
  3311. }
  3312. target[E_AXIS]+= 5;
  3313. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder);
  3314. target[E_AXIS]+= FILAMENTCHANGE_FIRSTRETRACT;
  3315. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 400, active_extruder);
  3316. //current_position[E_AXIS]=target[E_AXIS]; //the long retract of L is compensated by manual filament feeding
  3317. //plan_set_e_position(current_position[E_AXIS]);
  3318. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 70, active_extruder); //should do nothing
  3319. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], target[Z_AXIS], target[E_AXIS], 70, active_extruder); //move xy back
  3320. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], target[E_AXIS], 200, active_extruder); //move z back
  3321. target[E_AXIS]= target[E_AXIS] - FILAMENTCHANGE_FIRSTRETRACT;
  3322. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], target[E_AXIS], 5, active_extruder); //final untretract
  3323. plan_set_e_position(lastpos[E_AXIS]);
  3324. feedmultiply=feedmultiplyBckp;
  3325. char cmd[9];
  3326. sprintf_P(cmd, PSTR("M220 S%i"), feedmultiplyBckp);
  3327. enquecommand(cmd);
  3328. }
  3329. #endif
  3330. get_coordinates(); // For X Y Z E F
  3331. if (total_filament_used > ((current_position[E_AXIS] - destination[E_AXIS]) * 100)) { //protection against total_filament_used overflow
  3332. total_filament_used = total_filament_used + ((destination[E_AXIS] - current_position[E_AXIS]) * 100);
  3333. }
  3334. #ifdef FWRETRACT
  3335. if(cs.autoretract_enabled)
  3336. if( !(code_seen('X') || code_seen('Y') || code_seen('Z')) && code_seen('E')) {
  3337. float echange=destination[E_AXIS]-current_position[E_AXIS];
  3338. if((echange<-MIN_RETRACT && !retracted[active_extruder]) || (echange>MIN_RETRACT && retracted[active_extruder])) { //move appears to be an attempt to retract or recover
  3339. current_position[E_AXIS] = destination[E_AXIS]; //hide the slicer-generated retract/recover from calculations
  3340. plan_set_e_position(current_position[E_AXIS]); //AND from the planner
  3341. retract(!retracted[active_extruder]);
  3342. return;
  3343. }
  3344. }
  3345. #endif //FWRETRACT
  3346. prepare_move();
  3347. //ClearToSend();
  3348. }
  3349. break;
  3350. case 2: // G2 - CW ARC
  3351. if(Stopped == false) {
  3352. get_arc_coordinates();
  3353. prepare_arc_move(true);
  3354. }
  3355. break;
  3356. case 3: // G3 - CCW ARC
  3357. if(Stopped == false) {
  3358. get_arc_coordinates();
  3359. prepare_arc_move(false);
  3360. }
  3361. break;
  3362. case 4: // G4 dwell
  3363. codenum = 0;
  3364. if(code_seen('P')) codenum = code_value(); // milliseconds to wait
  3365. if(code_seen('S')) codenum = code_value() * 1000; // seconds to wait
  3366. if(codenum != 0) LCD_MESSAGERPGM(_n("Sleep..."));////MSG_DWELL
  3367. st_synchronize();
  3368. codenum += _millis(); // keep track of when we started waiting
  3369. previous_millis_cmd = _millis();
  3370. while(_millis() < codenum) {
  3371. manage_heater();
  3372. manage_inactivity();
  3373. lcd_update(0);
  3374. }
  3375. break;
  3376. #ifdef FWRETRACT
  3377. case 10: // G10 retract
  3378. #if EXTRUDERS > 1
  3379. retracted_swap[active_extruder]=(code_seen('S') && code_value_long() == 1); // checks for swap retract argument
  3380. retract(true,retracted_swap[active_extruder]);
  3381. #else
  3382. retract(true);
  3383. #endif
  3384. break;
  3385. case 11: // G11 retract_recover
  3386. #if EXTRUDERS > 1
  3387. retract(false,retracted_swap[active_extruder]);
  3388. #else
  3389. retract(false);
  3390. #endif
  3391. break;
  3392. #endif //FWRETRACT
  3393. case 28: //G28 Home all Axis one at a time
  3394. {
  3395. long home_x_value = 0;
  3396. long home_y_value = 0;
  3397. long home_z_value = 0;
  3398. // Which axes should be homed?
  3399. bool home_x = code_seen(axis_codes[X_AXIS]);
  3400. home_x_value = code_value_long();
  3401. bool home_y = code_seen(axis_codes[Y_AXIS]);
  3402. home_y_value = code_value_long();
  3403. bool home_z = code_seen(axis_codes[Z_AXIS]);
  3404. home_z_value = code_value_long();
  3405. bool without_mbl = code_seen('W');
  3406. // calibrate?
  3407. #ifdef TMC2130
  3408. bool calib = code_seen('C');
  3409. gcode_G28(home_x, home_x_value, home_y, home_y_value, home_z, home_z_value, calib, without_mbl);
  3410. #else
  3411. gcode_G28(home_x, home_x_value, home_y, home_y_value, home_z, home_z_value, without_mbl);
  3412. #endif //TMC2130
  3413. if ((home_x || home_y || without_mbl || home_z) == false) {
  3414. // Push the commands to the front of the message queue in the reverse order!
  3415. // There shall be always enough space reserved for these commands.
  3416. goto case_G80;
  3417. }
  3418. break;
  3419. }
  3420. #ifdef ENABLE_AUTO_BED_LEVELING
  3421. case 29: // G29 Detailed Z-Probe, probes the bed at 3 or more points.
  3422. {
  3423. #if Z_MIN_PIN == -1
  3424. #error "You must have a Z_MIN endstop in order to enable Auto Bed Leveling feature! Z_MIN_PIN must point to a valid hardware pin."
  3425. #endif
  3426. // Prevent user from running a G29 without first homing in X and Y
  3427. if (! (axis_known_position[X_AXIS] && axis_known_position[Y_AXIS]) )
  3428. {
  3429. LCD_MESSAGERPGM(MSG_POSITION_UNKNOWN);
  3430. SERIAL_ECHO_START;
  3431. SERIAL_ECHOLNRPGM(MSG_POSITION_UNKNOWN);
  3432. break; // abort G29, since we don't know where we are
  3433. }
  3434. st_synchronize();
  3435. // make sure the bed_level_rotation_matrix is identity or the planner will get it incorectly
  3436. //vector_3 corrected_position = plan_get_position_mm();
  3437. //corrected_position.debug("position before G29");
  3438. plan_bed_level_matrix.set_to_identity();
  3439. vector_3 uncorrected_position = plan_get_position();
  3440. //uncorrected_position.debug("position durring G29");
  3441. current_position[X_AXIS] = uncorrected_position.x;
  3442. current_position[Y_AXIS] = uncorrected_position.y;
  3443. current_position[Z_AXIS] = uncorrected_position.z;
  3444. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  3445. int l_feedmultiply = setup_for_endstop_move();
  3446. feedrate = homing_feedrate[Z_AXIS];
  3447. #ifdef AUTO_BED_LEVELING_GRID
  3448. // probe at the points of a lattice grid
  3449. int xGridSpacing = (RIGHT_PROBE_BED_POSITION - LEFT_PROBE_BED_POSITION) / (AUTO_BED_LEVELING_GRID_POINTS-1);
  3450. int yGridSpacing = (BACK_PROBE_BED_POSITION - FRONT_PROBE_BED_POSITION) / (AUTO_BED_LEVELING_GRID_POINTS-1);
  3451. // solve the plane equation ax + by + d = z
  3452. // A is the matrix with rows [x y 1] for all the probed points
  3453. // B is the vector of the Z positions
  3454. // the normal vector to the plane is formed by the coefficients of the plane equation in the standard form, which is Vx*x+Vy*y+Vz*z+d = 0
  3455. // so Vx = -a Vy = -b Vz = 1 (we want the vector facing towards positive Z
  3456. // "A" matrix of the linear system of equations
  3457. double eqnAMatrix[AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS*3];
  3458. // "B" vector of Z points
  3459. double eqnBVector[AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS];
  3460. int probePointCounter = 0;
  3461. bool zig = true;
  3462. for (int yProbe=FRONT_PROBE_BED_POSITION; yProbe <= BACK_PROBE_BED_POSITION; yProbe += yGridSpacing)
  3463. {
  3464. int xProbe, xInc;
  3465. if (zig)
  3466. {
  3467. xProbe = LEFT_PROBE_BED_POSITION;
  3468. //xEnd = RIGHT_PROBE_BED_POSITION;
  3469. xInc = xGridSpacing;
  3470. zig = false;
  3471. } else // zag
  3472. {
  3473. xProbe = RIGHT_PROBE_BED_POSITION;
  3474. //xEnd = LEFT_PROBE_BED_POSITION;
  3475. xInc = -xGridSpacing;
  3476. zig = true;
  3477. }
  3478. for (int xCount=0; xCount < AUTO_BED_LEVELING_GRID_POINTS; xCount++)
  3479. {
  3480. float z_before;
  3481. if (probePointCounter == 0)
  3482. {
  3483. // raise before probing
  3484. z_before = Z_RAISE_BEFORE_PROBING;
  3485. } else
  3486. {
  3487. // raise extruder
  3488. z_before = current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS;
  3489. }
  3490. float measured_z = probe_pt(xProbe, yProbe, z_before);
  3491. eqnBVector[probePointCounter] = measured_z;
  3492. eqnAMatrix[probePointCounter + 0*AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS] = xProbe;
  3493. eqnAMatrix[probePointCounter + 1*AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS] = yProbe;
  3494. eqnAMatrix[probePointCounter + 2*AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS] = 1;
  3495. probePointCounter++;
  3496. xProbe += xInc;
  3497. }
  3498. }
  3499. clean_up_after_endstop_move(l_feedmultiply);
  3500. // solve lsq problem
  3501. double *plane_equation_coefficients = qr_solve(AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS, 3, eqnAMatrix, eqnBVector);
  3502. SERIAL_PROTOCOLPGM("Eqn coefficients: a: ");
  3503. SERIAL_PROTOCOL(plane_equation_coefficients[0]);
  3504. SERIAL_PROTOCOLPGM(" b: ");
  3505. SERIAL_PROTOCOL(plane_equation_coefficients[1]);
  3506. SERIAL_PROTOCOLPGM(" d: ");
  3507. SERIAL_PROTOCOLLN(plane_equation_coefficients[2]);
  3508. set_bed_level_equation_lsq(plane_equation_coefficients);
  3509. free(plane_equation_coefficients);
  3510. #else // AUTO_BED_LEVELING_GRID not defined
  3511. // Probe at 3 arbitrary points
  3512. // probe 1
  3513. float z_at_pt_1 = probe_pt(ABL_PROBE_PT_1_X, ABL_PROBE_PT_1_Y, Z_RAISE_BEFORE_PROBING);
  3514. // probe 2
  3515. float z_at_pt_2 = probe_pt(ABL_PROBE_PT_2_X, ABL_PROBE_PT_2_Y, current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS);
  3516. // probe 3
  3517. float z_at_pt_3 = probe_pt(ABL_PROBE_PT_3_X, ABL_PROBE_PT_3_Y, current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS);
  3518. clean_up_after_endstop_move(l_feedmultiply);
  3519. set_bed_level_equation_3pts(z_at_pt_1, z_at_pt_2, z_at_pt_3);
  3520. #endif // AUTO_BED_LEVELING_GRID
  3521. st_synchronize();
  3522. // The following code correct the Z height difference from z-probe position and hotend tip position.
  3523. // The Z height on homing is measured by Z-Probe, but the probe is quite far from the hotend.
  3524. // When the bed is uneven, this height must be corrected.
  3525. real_z = float(st_get_position(Z_AXIS))/cs.axis_steps_per_unit[Z_AXIS]; //get the real Z (since the auto bed leveling is already correcting the plane)
  3526. x_tmp = current_position[X_AXIS] + X_PROBE_OFFSET_FROM_EXTRUDER;
  3527. y_tmp = current_position[Y_AXIS] + Y_PROBE_OFFSET_FROM_EXTRUDER;
  3528. z_tmp = current_position[Z_AXIS];
  3529. apply_rotation_xyz(plan_bed_level_matrix, x_tmp, y_tmp, z_tmp); //Apply the correction sending the probe offset
  3530. current_position[Z_AXIS] = z_tmp - real_z + current_position[Z_AXIS]; //The difference is added to current position and sent to planner.
  3531. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  3532. }
  3533. break;
  3534. #ifndef Z_PROBE_SLED
  3535. case 30: // G30 Single Z Probe
  3536. {
  3537. st_synchronize();
  3538. // TODO: make sure the bed_level_rotation_matrix is identity or the planner will get set incorectly
  3539. int l_feedmultiply = setup_for_endstop_move();
  3540. feedrate = homing_feedrate[Z_AXIS];
  3541. run_z_probe();
  3542. SERIAL_PROTOCOLPGM(_T(MSG_BED));
  3543. SERIAL_PROTOCOLPGM(" X: ");
  3544. SERIAL_PROTOCOL(current_position[X_AXIS]);
  3545. SERIAL_PROTOCOLPGM(" Y: ");
  3546. SERIAL_PROTOCOL(current_position[Y_AXIS]);
  3547. SERIAL_PROTOCOLPGM(" Z: ");
  3548. SERIAL_PROTOCOL(current_position[Z_AXIS]);
  3549. SERIAL_PROTOCOLPGM("\n");
  3550. clean_up_after_endstop_move(l_feedmultiply);
  3551. }
  3552. break;
  3553. #else
  3554. case 31: // dock the sled
  3555. dock_sled(true);
  3556. break;
  3557. case 32: // undock the sled
  3558. dock_sled(false);
  3559. break;
  3560. #endif // Z_PROBE_SLED
  3561. #endif // ENABLE_AUTO_BED_LEVELING
  3562. #ifdef MESH_BED_LEVELING
  3563. case 30: // G30 Single Z Probe
  3564. {
  3565. st_synchronize();
  3566. // TODO: make sure the bed_level_rotation_matrix is identity or the planner will get set incorectly
  3567. int l_feedmultiply = setup_for_endstop_move();
  3568. feedrate = homing_feedrate[Z_AXIS];
  3569. find_bed_induction_sensor_point_z(-10.f, 3);
  3570. printf_P(_N("%S X: %.5f Y: %.5f Z: %.5f\n"), _T(MSG_BED), _x, _y, _z);
  3571. clean_up_after_endstop_move(l_feedmultiply);
  3572. }
  3573. break;
  3574. case 75:
  3575. {
  3576. for (int i = 40; i <= 110; i++)
  3577. printf_P(_N("%d %.2f"), i, temp_comp_interpolation(i));
  3578. }
  3579. break;
  3580. case 76: //! G76 - PINDA probe temperature calibration
  3581. {
  3582. #ifdef PINDA_THERMISTOR
  3583. if (true)
  3584. {
  3585. if (calibration_status() >= CALIBRATION_STATUS_XYZ_CALIBRATION) {
  3586. //we need to know accurate position of first calibration point
  3587. //if xyz calibration was not performed yet, interrupt temperature calibration and inform user that xyz cal. is needed
  3588. lcd_show_fullscreen_message_and_wait_P(_i("Please run XYZ calibration first."));
  3589. break;
  3590. }
  3591. if (!(axis_known_position[X_AXIS] && axis_known_position[Y_AXIS] && axis_known_position[Z_AXIS]))
  3592. {
  3593. // We don't know where we are! HOME!
  3594. // Push the commands to the front of the message queue in the reverse order!
  3595. // There shall be always enough space reserved for these commands.
  3596. repeatcommand_front(); // repeat G76 with all its parameters
  3597. enquecommand_front_P((PSTR("G28 W0")));
  3598. break;
  3599. }
  3600. lcd_show_fullscreen_message_and_wait_P(_i("Stable ambient temperature 21-26C is needed a rigid stand is required."));////MSG_TEMP_CAL_WARNING c=20 r=4
  3601. bool result = lcd_show_fullscreen_message_yes_no_and_wait_P(_T(MSG_STEEL_SHEET_CHECK), false, false);
  3602. if (result)
  3603. {
  3604. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3605. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3606. current_position[Z_AXIS] = 50;
  3607. current_position[Y_AXIS] = 180;
  3608. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3609. st_synchronize();
  3610. lcd_show_fullscreen_message_and_wait_P(_T(MSG_REMOVE_STEEL_SHEET));
  3611. current_position[Y_AXIS] = pgm_read_float(bed_ref_points_4 + 1);
  3612. current_position[X_AXIS] = pgm_read_float(bed_ref_points_4);
  3613. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3614. st_synchronize();
  3615. gcode_G28(false, false, true);
  3616. }
  3617. if ((current_temperature_pinda > 35) && (farm_mode == false)) {
  3618. //waiting for PIDNA probe to cool down in case that we are not in farm mode
  3619. current_position[Z_AXIS] = 100;
  3620. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3621. if (lcd_wait_for_pinda(35) == false) { //waiting for PINDA probe to cool, if this takes more then time expected, temp. cal. fails
  3622. lcd_temp_cal_show_result(false);
  3623. break;
  3624. }
  3625. }
  3626. lcd_update_enable(true);
  3627. KEEPALIVE_STATE(NOT_BUSY); //no need to print busy messages as we print current temperatures periodicaly
  3628. SERIAL_ECHOLNPGM("PINDA probe calibration start");
  3629. float zero_z;
  3630. int z_shift = 0; //unit: steps
  3631. float start_temp = 5 * (int)(current_temperature_pinda / 5);
  3632. if (start_temp < 35) start_temp = 35;
  3633. if (start_temp < current_temperature_pinda) start_temp += 5;
  3634. printf_P(_N("start temperature: %.1f\n"), start_temp);
  3635. // setTargetHotend(200, 0);
  3636. setTargetBed(70 + (start_temp - 30));
  3637. custom_message_type = CustomMsg::TempCal;
  3638. custom_message_state = 1;
  3639. lcd_setstatuspgm(_T(MSG_TEMP_CALIBRATION));
  3640. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3641. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3642. current_position[X_AXIS] = PINDA_PREHEAT_X;
  3643. current_position[Y_AXIS] = PINDA_PREHEAT_Y;
  3644. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3645. current_position[Z_AXIS] = PINDA_PREHEAT_Z;
  3646. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3647. st_synchronize();
  3648. while (current_temperature_pinda < start_temp)
  3649. {
  3650. delay_keep_alive(1000);
  3651. serialecho_temperatures();
  3652. }
  3653. eeprom_update_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 0); //invalidate temp. calibration in case that in will be aborted during the calibration process
  3654. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3655. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3656. current_position[X_AXIS] = pgm_read_float(bed_ref_points_4);
  3657. current_position[Y_AXIS] = pgm_read_float(bed_ref_points_4 + 1);
  3658. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3659. st_synchronize();
  3660. bool find_z_result = find_bed_induction_sensor_point_z(-1.f);
  3661. if (find_z_result == false) {
  3662. lcd_temp_cal_show_result(find_z_result);
  3663. break;
  3664. }
  3665. zero_z = current_position[Z_AXIS];
  3666. printf_P(_N("\nZERO: %.3f\n"), current_position[Z_AXIS]);
  3667. int i = -1; for (; i < 5; i++)
  3668. {
  3669. float temp = (40 + i * 5);
  3670. printf_P(_N("\nStep: %d/6 (skipped)\nPINDA temperature: %d Z shift (mm):0\n"), i + 2, (40 + i*5));
  3671. if (i >= 0) EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + i * 2, &z_shift);
  3672. if (start_temp <= temp) break;
  3673. }
  3674. for (i++; i < 5; i++)
  3675. {
  3676. float temp = (40 + i * 5);
  3677. printf_P(_N("\nStep: %d/6\n"), i + 2);
  3678. custom_message_state = i + 2;
  3679. setTargetBed(50 + 10 * (temp - 30) / 5);
  3680. // setTargetHotend(255, 0);
  3681. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3682. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3683. current_position[X_AXIS] = PINDA_PREHEAT_X;
  3684. current_position[Y_AXIS] = PINDA_PREHEAT_Y;
  3685. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3686. current_position[Z_AXIS] = PINDA_PREHEAT_Z;
  3687. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3688. st_synchronize();
  3689. while (current_temperature_pinda < temp)
  3690. {
  3691. delay_keep_alive(1000);
  3692. serialecho_temperatures();
  3693. }
  3694. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3695. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3696. current_position[X_AXIS] = pgm_read_float(bed_ref_points_4);
  3697. current_position[Y_AXIS] = pgm_read_float(bed_ref_points_4 + 1);
  3698. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3699. st_synchronize();
  3700. find_z_result = find_bed_induction_sensor_point_z(-1.f);
  3701. if (find_z_result == false) {
  3702. lcd_temp_cal_show_result(find_z_result);
  3703. break;
  3704. }
  3705. z_shift = (int)((current_position[Z_AXIS] - zero_z)*cs.axis_steps_per_unit[Z_AXIS]);
  3706. printf_P(_N("\nPINDA temperature: %.1f Z shift (mm): %.3f"), current_temperature_pinda, current_position[Z_AXIS] - zero_z);
  3707. EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + i * 2, &z_shift);
  3708. }
  3709. lcd_temp_cal_show_result(true);
  3710. break;
  3711. }
  3712. #endif //PINDA_THERMISTOR
  3713. setTargetBed(PINDA_MIN_T);
  3714. float zero_z;
  3715. int z_shift = 0; //unit: steps
  3716. int t_c; // temperature
  3717. if (!(axis_known_position[X_AXIS] && axis_known_position[Y_AXIS] && axis_known_position[Z_AXIS])) {
  3718. // We don't know where we are! HOME!
  3719. // Push the commands to the front of the message queue in the reverse order!
  3720. // There shall be always enough space reserved for these commands.
  3721. repeatcommand_front(); // repeat G76 with all its parameters
  3722. enquecommand_front_P((PSTR("G28 W0")));
  3723. break;
  3724. }
  3725. puts_P(_N("PINDA probe calibration start"));
  3726. custom_message_type = CustomMsg::TempCal;
  3727. custom_message_state = 1;
  3728. lcd_setstatuspgm(_T(MSG_TEMP_CALIBRATION));
  3729. current_position[X_AXIS] = PINDA_PREHEAT_X;
  3730. current_position[Y_AXIS] = PINDA_PREHEAT_Y;
  3731. current_position[Z_AXIS] = PINDA_PREHEAT_Z;
  3732. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3733. st_synchronize();
  3734. while (abs(degBed() - PINDA_MIN_T) > 1) {
  3735. delay_keep_alive(1000);
  3736. serialecho_temperatures();
  3737. }
  3738. //enquecommand_P(PSTR("M190 S50"));
  3739. for (int i = 0; i < PINDA_HEAT_T; i++) {
  3740. delay_keep_alive(1000);
  3741. serialecho_temperatures();
  3742. }
  3743. eeprom_update_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 0); //invalidate temp. calibration in case that in will be aborted during the calibration process
  3744. current_position[Z_AXIS] = 5;
  3745. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3746. current_position[X_AXIS] = BED_X0;
  3747. current_position[Y_AXIS] = BED_Y0;
  3748. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3749. st_synchronize();
  3750. find_bed_induction_sensor_point_z(-1.f);
  3751. zero_z = current_position[Z_AXIS];
  3752. printf_P(_N("\nZERO: %.3f\n"), current_position[Z_AXIS]);
  3753. for (int i = 0; i<5; i++) {
  3754. printf_P(_N("\nStep: %d/6\n"), i + 2);
  3755. custom_message_state = i + 2;
  3756. t_c = 60 + i * 10;
  3757. setTargetBed(t_c);
  3758. current_position[X_AXIS] = PINDA_PREHEAT_X;
  3759. current_position[Y_AXIS] = PINDA_PREHEAT_Y;
  3760. current_position[Z_AXIS] = PINDA_PREHEAT_Z;
  3761. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3762. st_synchronize();
  3763. while (degBed() < t_c) {
  3764. delay_keep_alive(1000);
  3765. serialecho_temperatures();
  3766. }
  3767. for (int i = 0; i < PINDA_HEAT_T; i++) {
  3768. delay_keep_alive(1000);
  3769. serialecho_temperatures();
  3770. }
  3771. current_position[Z_AXIS] = 5;
  3772. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3773. current_position[X_AXIS] = BED_X0;
  3774. current_position[Y_AXIS] = BED_Y0;
  3775. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3776. st_synchronize();
  3777. find_bed_induction_sensor_point_z(-1.f);
  3778. z_shift = (int)((current_position[Z_AXIS] - zero_z)*cs.axis_steps_per_unit[Z_AXIS]);
  3779. printf_P(_N("\nTemperature: %d Z shift (mm): %.3f\n"), t_c, current_position[Z_AXIS] - zero_z);
  3780. EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + i*2, &z_shift);
  3781. }
  3782. custom_message_type = CustomMsg::Status;
  3783. eeprom_update_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 1);
  3784. puts_P(_N("Temperature calibration done."));
  3785. disable_x();
  3786. disable_y();
  3787. disable_z();
  3788. disable_e0();
  3789. disable_e1();
  3790. disable_e2();
  3791. setTargetBed(0); //set bed target temperature back to 0
  3792. lcd_show_fullscreen_message_and_wait_P(_T(MSG_TEMP_CALIBRATION_DONE));
  3793. temp_cal_active = true;
  3794. eeprom_update_byte((unsigned char *)EEPROM_TEMP_CAL_ACTIVE, 1);
  3795. lcd_update_enable(true);
  3796. lcd_update(2);
  3797. }
  3798. break;
  3799. /**
  3800. * G80: Mesh-based Z probe, probes a grid and produces a
  3801. * mesh to compensate for variable bed height
  3802. *
  3803. * The S0 report the points as below
  3804. * @code{.unparsed}
  3805. * +----> X-axis
  3806. * |
  3807. * |
  3808. * v Y-axis
  3809. * @endcode
  3810. */
  3811. case 80:
  3812. #ifdef MK1BP
  3813. break;
  3814. #endif //MK1BP
  3815. case_G80:
  3816. {
  3817. mesh_bed_leveling_flag = true;
  3818. static bool run = false;
  3819. #ifdef SUPPORT_VERBOSITY
  3820. int8_t verbosity_level = 0;
  3821. if (code_seen('V')) {
  3822. // Just 'V' without a number counts as V1.
  3823. char c = strchr_pointer[1];
  3824. verbosity_level = (c == ' ' || c == '\t' || c == 0) ? 1 : code_value_short();
  3825. }
  3826. #endif //SUPPORT_VERBOSITY
  3827. // Firstly check if we know where we are
  3828. if (!(axis_known_position[X_AXIS] && axis_known_position[Y_AXIS] && axis_known_position[Z_AXIS])) {
  3829. // We don't know where we are! HOME!
  3830. // Push the commands to the front of the message queue in the reverse order!
  3831. // There shall be always enough space reserved for these commands.
  3832. if (lcd_commands_type != LcdCommands::StopPrint) {
  3833. repeatcommand_front(); // repeat G80 with all its parameters
  3834. enquecommand_front_P((PSTR("G28 W0")));
  3835. }
  3836. else {
  3837. mesh_bed_leveling_flag = false;
  3838. }
  3839. break;
  3840. }
  3841. uint8_t nMeasPoints = MESH_MEAS_NUM_X_POINTS;
  3842. if (code_seen('N')) {
  3843. nMeasPoints = code_value_uint8();
  3844. if (nMeasPoints != 7) {
  3845. nMeasPoints = 3;
  3846. }
  3847. }
  3848. else {
  3849. nMeasPoints = eeprom_read_byte((uint8_t*)EEPROM_MBL_POINTS_NR);
  3850. }
  3851. uint8_t nProbeRetry = 3;
  3852. if (code_seen('R')) {
  3853. nProbeRetry = code_value_uint8();
  3854. if (nProbeRetry > 10) {
  3855. nProbeRetry = 10;
  3856. }
  3857. }
  3858. else {
  3859. nProbeRetry = eeprom_read_byte((uint8_t*)EEPROM_MBL_PROBE_NR);
  3860. }
  3861. bool magnet_elimination = (eeprom_read_byte((uint8_t*)EEPROM_MBL_MAGNET_ELIMINATION) > 0);
  3862. bool temp_comp_start = true;
  3863. #ifdef PINDA_THERMISTOR
  3864. temp_comp_start = false;
  3865. #endif //PINDA_THERMISTOR
  3866. if (temp_comp_start)
  3867. if (run == false && temp_cal_active == true && calibration_status_pinda() == true && target_temperature_bed >= 50) {
  3868. if (lcd_commands_type != LcdCommands::StopPrint) {
  3869. temp_compensation_start();
  3870. run = true;
  3871. repeatcommand_front(); // repeat G80 with all its parameters
  3872. enquecommand_front_P((PSTR("G28 W0")));
  3873. }
  3874. else {
  3875. mesh_bed_leveling_flag = false;
  3876. }
  3877. break;
  3878. }
  3879. run = false;
  3880. if (lcd_commands_type == LcdCommands::StopPrint) {
  3881. mesh_bed_leveling_flag = false;
  3882. break;
  3883. }
  3884. // Save custom message state, set a new custom message state to display: Calibrating point 9.
  3885. CustomMsg custom_message_type_old = custom_message_type;
  3886. unsigned int custom_message_state_old = custom_message_state;
  3887. custom_message_type = CustomMsg::MeshBedLeveling;
  3888. custom_message_state = (nMeasPoints * nMeasPoints) + 10;
  3889. lcd_update(1);
  3890. mbl.reset(); //reset mesh bed leveling
  3891. // Reset baby stepping to zero, if the babystepping has already been loaded before. The babystepsTodo value will be
  3892. // consumed during the first movements following this statement.
  3893. babystep_undo();
  3894. // Cycle through all points and probe them
  3895. // First move up. During this first movement, the babystepping will be reverted.
  3896. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3897. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[Z_AXIS] / 60, active_extruder);
  3898. // The move to the first calibration point.
  3899. current_position[X_AXIS] = BED_X0;
  3900. current_position[Y_AXIS] = BED_Y0;
  3901. #ifdef SUPPORT_VERBOSITY
  3902. if (verbosity_level >= 1)
  3903. {
  3904. bool clamped = world2machine_clamp(current_position[X_AXIS], current_position[Y_AXIS]);
  3905. clamped ? SERIAL_PROTOCOLPGM("First calibration point clamped.\n") : SERIAL_PROTOCOLPGM("No clamping for first calibration point.\n");
  3906. }
  3907. #else //SUPPORT_VERBOSITY
  3908. world2machine_clamp(current_position[X_AXIS], current_position[Y_AXIS]);
  3909. #endif //SUPPORT_VERBOSITY
  3910. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[X_AXIS] / 30, active_extruder);
  3911. // Wait until the move is finished.
  3912. st_synchronize();
  3913. uint8_t mesh_point = 0; //index number of calibration point
  3914. int XY_AXIS_FEEDRATE = homing_feedrate[X_AXIS] / 20;
  3915. int Z_LIFT_FEEDRATE = homing_feedrate[Z_AXIS] / 40;
  3916. bool has_z = is_bed_z_jitter_data_valid(); //checks if we have data from Z calibration (offsets of the Z heiths of the 8 calibration points from the first point)
  3917. #ifdef SUPPORT_VERBOSITY
  3918. if (verbosity_level >= 1) {
  3919. has_z ? SERIAL_PROTOCOLPGM("Z jitter data from Z cal. valid.\n") : SERIAL_PROTOCOLPGM("Z jitter data from Z cal. not valid.\n");
  3920. }
  3921. #endif // SUPPORT_VERBOSITY
  3922. int l_feedmultiply = setup_for_endstop_move(false); //save feedrate and feedmultiply, sets feedmultiply to 100
  3923. const char *kill_message = NULL;
  3924. while (mesh_point != nMeasPoints * nMeasPoints) {
  3925. // Get coords of a measuring point.
  3926. uint8_t ix = mesh_point % nMeasPoints; // from 0 to MESH_NUM_X_POINTS - 1
  3927. uint8_t iy = mesh_point / nMeasPoints;
  3928. /*if (!mbl_point_measurement_valid(ix, iy, nMeasPoints, true)) {
  3929. printf_P(PSTR("Skipping point [%d;%d] \n"), ix, iy);
  3930. custom_message_state--;
  3931. mesh_point++;
  3932. continue; //skip
  3933. }*/
  3934. if (iy & 1) ix = (nMeasPoints - 1) - ix; // Zig zag
  3935. if (nMeasPoints == 7) //if we have 7x7 mesh, compare with Z-calibration for points which are in 3x3 mesh
  3936. {
  3937. has_z = ((ix % 3 == 0) && (iy % 3 == 0)) && is_bed_z_jitter_data_valid();
  3938. }
  3939. float z0 = 0.f;
  3940. if (has_z && (mesh_point > 0)) {
  3941. uint16_t z_offset_u = 0;
  3942. if (nMeasPoints == 7) {
  3943. z_offset_u = eeprom_read_word((uint16_t*)(EEPROM_BED_CALIBRATION_Z_JITTER + 2 * ((ix/3) + iy - 1)));
  3944. }
  3945. else {
  3946. z_offset_u = eeprom_read_word((uint16_t*)(EEPROM_BED_CALIBRATION_Z_JITTER + 2 * (ix + iy * 3 - 1)));
  3947. }
  3948. z0 = mbl.z_values[0][0] + *reinterpret_cast<int16_t*>(&z_offset_u) * 0.01;
  3949. #ifdef SUPPORT_VERBOSITY
  3950. if (verbosity_level >= 1) {
  3951. printf_P(PSTR("Bed leveling, point: %d, calibration Z stored in eeprom: %d, calibration z: %f \n"), mesh_point, z_offset_u, z0);
  3952. }
  3953. #endif // SUPPORT_VERBOSITY
  3954. }
  3955. // Move Z up to MESH_HOME_Z_SEARCH.
  3956. if((ix == 0) && (iy == 0)) current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3957. else current_position[Z_AXIS] += 2.f / nMeasPoints; //use relative movement from Z coordinate where PINDa triggered on previous point. This makes calibration faster.
  3958. float init_z_bckp = current_position[Z_AXIS];
  3959. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], Z_LIFT_FEEDRATE, active_extruder);
  3960. st_synchronize();
  3961. // Move to XY position of the sensor point.
  3962. current_position[X_AXIS] = BED_X(ix, nMeasPoints);
  3963. current_position[Y_AXIS] = BED_Y(iy, nMeasPoints);
  3964. //printf_P(PSTR("[%f;%f]\n"), current_position[X_AXIS], current_position[Y_AXIS]);
  3965. #ifdef SUPPORT_VERBOSITY
  3966. if (verbosity_level >= 1) {
  3967. clamped = world2machine_clamp(current_position[X_AXIS], current_position[Y_AXIS]);
  3968. SERIAL_PROTOCOL(mesh_point);
  3969. clamped ? SERIAL_PROTOCOLPGM(": xy clamped.\n") : SERIAL_PROTOCOLPGM(": no xy clamping\n");
  3970. }
  3971. #else //SUPPORT_VERBOSITY
  3972. world2machine_clamp(current_position[X_AXIS], current_position[Y_AXIS]);
  3973. #endif // SUPPORT_VERBOSITY
  3974. //printf_P(PSTR("after clamping: [%f;%f]\n"), current_position[X_AXIS], current_position[Y_AXIS]);
  3975. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], XY_AXIS_FEEDRATE, active_extruder);
  3976. st_synchronize();
  3977. // Go down until endstop is hit
  3978. const float Z_CALIBRATION_THRESHOLD = 1.f;
  3979. if (!find_bed_induction_sensor_point_z((has_z && mesh_point > 0) ? z0 - Z_CALIBRATION_THRESHOLD : -10.f, nProbeRetry)) { //if we have data from z calibration max allowed difference is 1mm for each point, if we dont have data max difference is 10mm from initial point
  3980. printf_P(_T(MSG_BED_LEVELING_FAILED_POINT_LOW));
  3981. break;
  3982. }
  3983. if (init_z_bckp - current_position[Z_AXIS] < 0.1f) { //broken cable or initial Z coordinate too low. Go to MESH_HOME_Z_SEARCH and repeat last step (z-probe) again to distinguish between these two cases.
  3984. //printf_P(PSTR("Another attempt! Current Z position: %f\n"), current_position[Z_AXIS]);
  3985. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3986. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], Z_LIFT_FEEDRATE, active_extruder);
  3987. st_synchronize();
  3988. if (!find_bed_induction_sensor_point_z((has_z && mesh_point > 0) ? z0 - Z_CALIBRATION_THRESHOLD : -10.f, nProbeRetry)) { //if we have data from z calibration max allowed difference is 1mm for each point, if we dont have data max difference is 10mm from initial point
  3989. printf_P(_T(MSG_BED_LEVELING_FAILED_POINT_LOW));
  3990. break;
  3991. }
  3992. if (MESH_HOME_Z_SEARCH - current_position[Z_AXIS] < 0.1f) {
  3993. printf_P(PSTR("Bed leveling failed. Sensor disconnected or cable broken.\n"));
  3994. break;
  3995. }
  3996. }
  3997. if (has_z && fabs(z0 - current_position[Z_AXIS]) > Z_CALIBRATION_THRESHOLD) { //if we have data from z calibration, max. allowed difference is 1mm for each point
  3998. printf_P(PSTR("Bed leveling failed. Sensor triggered too high.\n"));
  3999. break;
  4000. }
  4001. #ifdef SUPPORT_VERBOSITY
  4002. if (verbosity_level >= 10) {
  4003. SERIAL_ECHOPGM("X: ");
  4004. MYSERIAL.print(current_position[X_AXIS], 5);
  4005. SERIAL_ECHOLNPGM("");
  4006. SERIAL_ECHOPGM("Y: ");
  4007. MYSERIAL.print(current_position[Y_AXIS], 5);
  4008. SERIAL_PROTOCOLPGM("\n");
  4009. }
  4010. #endif // SUPPORT_VERBOSITY
  4011. float offset_z = 0;
  4012. #ifdef PINDA_THERMISTOR
  4013. offset_z = temp_compensation_pinda_thermistor_offset(current_temperature_pinda);
  4014. #endif //PINDA_THERMISTOR
  4015. // #ifdef SUPPORT_VERBOSITY
  4016. /* if (verbosity_level >= 1)
  4017. {
  4018. SERIAL_ECHOPGM("mesh bed leveling: ");
  4019. MYSERIAL.print(current_position[Z_AXIS], 5);
  4020. SERIAL_ECHOPGM(" offset: ");
  4021. MYSERIAL.print(offset_z, 5);
  4022. SERIAL_ECHOLNPGM("");
  4023. }*/
  4024. // #endif // SUPPORT_VERBOSITY
  4025. mbl.set_z(ix, iy, current_position[Z_AXIS] - offset_z); //store measured z values z_values[iy][ix] = z - offset_z;
  4026. custom_message_state--;
  4027. mesh_point++;
  4028. lcd_update(1);
  4029. }
  4030. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  4031. #ifdef SUPPORT_VERBOSITY
  4032. if (verbosity_level >= 20) {
  4033. SERIAL_ECHOLNPGM("Mesh bed leveling while loop finished.");
  4034. SERIAL_ECHOLNPGM("MESH_HOME_Z_SEARCH: ");
  4035. MYSERIAL.print(current_position[Z_AXIS], 5);
  4036. }
  4037. #endif // SUPPORT_VERBOSITY
  4038. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], Z_LIFT_FEEDRATE, active_extruder);
  4039. st_synchronize();
  4040. if (mesh_point != nMeasPoints * nMeasPoints) {
  4041. Sound_MakeSound(e_SOUND_TYPE_StandardAlert);
  4042. bool bState;
  4043. do { // repeat until Z-leveling o.k.
  4044. lcd_display_message_fullscreen_P(_i("Some problem encountered, Z-leveling enforced ..."));
  4045. #ifdef TMC2130
  4046. lcd_wait_for_click_delay(MSG_BED_LEVELING_FAILED_TIMEOUT);
  4047. calibrate_z_auto(); // Z-leveling (X-assembly stay up!!!)
  4048. #else // TMC2130
  4049. lcd_wait_for_click_delay(0); // ~ no timeout
  4050. lcd_calibrate_z_end_stop_manual(true); // Z-leveling (X-assembly stay up!!!)
  4051. #endif // TMC2130
  4052. // ~ Z-homing (can not be used "G28", because X & Y-homing would have been done before (Z-homing))
  4053. bState=enable_z_endstop(false);
  4054. current_position[Z_AXIS] -= 1;
  4055. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[Z_AXIS] / 40, active_extruder);
  4056. st_synchronize();
  4057. enable_z_endstop(true);
  4058. #ifdef TMC2130
  4059. tmc2130_home_enter(Z_AXIS_MASK);
  4060. #endif // TMC2130
  4061. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  4062. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[Z_AXIS] / 40, active_extruder);
  4063. st_synchronize();
  4064. #ifdef TMC2130
  4065. tmc2130_home_exit();
  4066. #endif // TMC2130
  4067. enable_z_endstop(bState);
  4068. } while (st_get_position_mm(Z_AXIS) > MESH_HOME_Z_SEARCH); // i.e. Z-leveling not o.k.
  4069. // plan_set_z_position(MESH_HOME_Z_SEARCH); // is not necessary ('do-while' loop always ends at the expected Z-position)
  4070. custom_message_type=CustomMsg::Status; // display / status-line recovery
  4071. lcd_update_enable(true); // display / status-line recovery
  4072. gcode_G28(true, true, true); // X & Y & Z-homing (must be after individual Z-homing (problem with spool-holder)!)
  4073. repeatcommand_front(); // re-run (i.e. of "G80")
  4074. break;
  4075. }
  4076. clean_up_after_endstop_move(l_feedmultiply);
  4077. // SERIAL_ECHOLNPGM("clean up finished ");
  4078. bool apply_temp_comp = true;
  4079. #ifdef PINDA_THERMISTOR
  4080. apply_temp_comp = false;
  4081. #endif
  4082. if (apply_temp_comp)
  4083. if(temp_cal_active == true && calibration_status_pinda() == true) temp_compensation_apply(); //apply PINDA temperature compensation
  4084. babystep_apply(); // Apply Z height correction aka baby stepping before mesh bed leveing gets activated.
  4085. // SERIAL_ECHOLNPGM("babystep applied");
  4086. bool eeprom_bed_correction_valid = eeprom_read_byte((unsigned char*)EEPROM_BED_CORRECTION_VALID) == 1;
  4087. #ifdef SUPPORT_VERBOSITY
  4088. if (verbosity_level >= 1) {
  4089. eeprom_bed_correction_valid ? SERIAL_PROTOCOLPGM("Bed correction data valid\n") : SERIAL_PROTOCOLPGM("Bed correction data not valid\n");
  4090. }
  4091. #endif // SUPPORT_VERBOSITY
  4092. for (uint8_t i = 0; i < 4; ++i) {
  4093. unsigned char codes[4] = { 'L', 'R', 'F', 'B' };
  4094. long correction = 0;
  4095. if (code_seen(codes[i]))
  4096. correction = code_value_long();
  4097. else if (eeprom_bed_correction_valid) {
  4098. unsigned char *addr = (i < 2) ?
  4099. ((i == 0) ? (unsigned char*)EEPROM_BED_CORRECTION_LEFT : (unsigned char*)EEPROM_BED_CORRECTION_RIGHT) :
  4100. ((i == 2) ? (unsigned char*)EEPROM_BED_CORRECTION_FRONT : (unsigned char*)EEPROM_BED_CORRECTION_REAR);
  4101. correction = eeprom_read_int8(addr);
  4102. }
  4103. if (correction == 0)
  4104. continue;
  4105. if (labs(correction) > BED_ADJUSTMENT_UM_MAX) {
  4106. SERIAL_ERROR_START;
  4107. SERIAL_ECHOPGM("Excessive bed leveling correction: ");
  4108. SERIAL_ECHO(correction);
  4109. SERIAL_ECHOLNPGM(" microns");
  4110. }
  4111. else {
  4112. float offset = float(correction) * 0.001f;
  4113. switch (i) {
  4114. case 0:
  4115. for (uint8_t row = 0; row < nMeasPoints; ++row) {
  4116. for (uint8_t col = 0; col < nMeasPoints - 1; ++col) {
  4117. mbl.z_values[row][col] += offset * (nMeasPoints - 1 - col) / (nMeasPoints - 1);
  4118. }
  4119. }
  4120. break;
  4121. case 1:
  4122. for (uint8_t row = 0; row < nMeasPoints; ++row) {
  4123. for (uint8_t col = 1; col < nMeasPoints; ++col) {
  4124. mbl.z_values[row][col] += offset * col / (nMeasPoints - 1);
  4125. }
  4126. }
  4127. break;
  4128. case 2:
  4129. for (uint8_t col = 0; col < nMeasPoints; ++col) {
  4130. for (uint8_t row = 0; row < nMeasPoints; ++row) {
  4131. mbl.z_values[row][col] += offset * (nMeasPoints - 1 - row) / (nMeasPoints - 1);
  4132. }
  4133. }
  4134. break;
  4135. case 3:
  4136. for (uint8_t col = 0; col < nMeasPoints; ++col) {
  4137. for (uint8_t row = 1; row < nMeasPoints; ++row) {
  4138. mbl.z_values[row][col] += offset * row / (nMeasPoints - 1);
  4139. }
  4140. }
  4141. break;
  4142. }
  4143. }
  4144. }
  4145. // SERIAL_ECHOLNPGM("Bed leveling correction finished");
  4146. if (nMeasPoints == 3) {
  4147. mbl.upsample_3x3(); //interpolation from 3x3 to 7x7 points using largrangian polynomials while using the same array z_values[iy][ix] for storing (just coppying measured data to new destination and interpolating between them)
  4148. }
  4149. /*
  4150. SERIAL_PROTOCOLPGM("Num X,Y: ");
  4151. SERIAL_PROTOCOL(MESH_NUM_X_POINTS);
  4152. SERIAL_PROTOCOLPGM(",");
  4153. SERIAL_PROTOCOL(MESH_NUM_Y_POINTS);
  4154. SERIAL_PROTOCOLPGM("\nZ search height: ");
  4155. SERIAL_PROTOCOL(MESH_HOME_Z_SEARCH);
  4156. SERIAL_PROTOCOLLNPGM("\nMeasured points:");
  4157. for (int y = MESH_NUM_Y_POINTS-1; y >= 0; y--) {
  4158. for (int x = 0; x < MESH_NUM_X_POINTS; x++) {
  4159. SERIAL_PROTOCOLPGM(" ");
  4160. SERIAL_PROTOCOL_F(mbl.z_values[y][x], 5);
  4161. }
  4162. SERIAL_PROTOCOLPGM("\n");
  4163. }
  4164. */
  4165. if (nMeasPoints == 7 && magnet_elimination) {
  4166. mbl_interpolation(nMeasPoints);
  4167. }
  4168. /*
  4169. SERIAL_PROTOCOLPGM("Num X,Y: ");
  4170. SERIAL_PROTOCOL(MESH_NUM_X_POINTS);
  4171. SERIAL_PROTOCOLPGM(",");
  4172. SERIAL_PROTOCOL(MESH_NUM_Y_POINTS);
  4173. SERIAL_PROTOCOLPGM("\nZ search height: ");
  4174. SERIAL_PROTOCOL(MESH_HOME_Z_SEARCH);
  4175. SERIAL_PROTOCOLLNPGM("\nMeasured points:");
  4176. for (int y = MESH_NUM_Y_POINTS-1; y >= 0; y--) {
  4177. for (int x = 0; x < MESH_NUM_X_POINTS; x++) {
  4178. SERIAL_PROTOCOLPGM(" ");
  4179. SERIAL_PROTOCOL_F(mbl.z_values[y][x], 5);
  4180. }
  4181. SERIAL_PROTOCOLPGM("\n");
  4182. }
  4183. */
  4184. // SERIAL_ECHOLNPGM("Upsample finished");
  4185. mbl.active = 1; //activate mesh bed leveling
  4186. // SERIAL_ECHOLNPGM("Mesh bed leveling activated");
  4187. go_home_with_z_lift();
  4188. // SERIAL_ECHOLNPGM("Go home finished");
  4189. //unretract (after PINDA preheat retraction)
  4190. if (degHotend(active_extruder) > EXTRUDE_MINTEMP && temp_cal_active == true && calibration_status_pinda() == true && target_temperature_bed >= 50) {
  4191. current_position[E_AXIS] += default_retraction;
  4192. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400, active_extruder);
  4193. }
  4194. KEEPALIVE_STATE(NOT_BUSY);
  4195. // Restore custom message state
  4196. lcd_setstatuspgm(_T(WELCOME_MSG));
  4197. custom_message_type = custom_message_type_old;
  4198. custom_message_state = custom_message_state_old;
  4199. mesh_bed_leveling_flag = false;
  4200. mesh_bed_run_from_menu = false;
  4201. lcd_update(2);
  4202. }
  4203. break;
  4204. /**
  4205. * G81: Print mesh bed leveling status and bed profile if activated
  4206. */
  4207. case 81:
  4208. if (mbl.active) {
  4209. SERIAL_PROTOCOLPGM("Num X,Y: ");
  4210. SERIAL_PROTOCOL(MESH_NUM_X_POINTS);
  4211. SERIAL_PROTOCOLPGM(",");
  4212. SERIAL_PROTOCOL(MESH_NUM_Y_POINTS);
  4213. SERIAL_PROTOCOLPGM("\nZ search height: ");
  4214. SERIAL_PROTOCOL(MESH_HOME_Z_SEARCH);
  4215. SERIAL_PROTOCOLLNPGM("\nMeasured points:");
  4216. for (int y = MESH_NUM_Y_POINTS-1; y >= 0; y--) {
  4217. for (int x = 0; x < MESH_NUM_X_POINTS; x++) {
  4218. SERIAL_PROTOCOLPGM(" ");
  4219. SERIAL_PROTOCOL_F(mbl.z_values[y][x], 5);
  4220. }
  4221. SERIAL_PROTOCOLPGM("\n");
  4222. }
  4223. }
  4224. else
  4225. SERIAL_PROTOCOLLNPGM("Mesh bed leveling not active.");
  4226. break;
  4227. #if 0
  4228. /**
  4229. * G82: Single Z probe at current location
  4230. *
  4231. * WARNING! USE WITH CAUTION! If you'll try to probe where is no leveling pad, nasty things can happen!
  4232. *
  4233. */
  4234. case 82:
  4235. SERIAL_PROTOCOLLNPGM("Finding bed ");
  4236. int l_feedmultiply = setup_for_endstop_move();
  4237. find_bed_induction_sensor_point_z();
  4238. clean_up_after_endstop_move(l_feedmultiply);
  4239. SERIAL_PROTOCOLPGM("Bed found at: ");
  4240. SERIAL_PROTOCOL_F(current_position[Z_AXIS], 5);
  4241. SERIAL_PROTOCOLPGM("\n");
  4242. break;
  4243. /**
  4244. * G83: Prusa3D specific: Babystep in Z and store to EEPROM
  4245. */
  4246. case 83:
  4247. {
  4248. int babystepz = code_seen('S') ? code_value() : 0;
  4249. int BabyPosition = code_seen('P') ? code_value() : 0;
  4250. if (babystepz != 0) {
  4251. //FIXME Vojtech: What shall be the index of the axis Z: 3 or 4?
  4252. // Is the axis indexed starting with zero or one?
  4253. if (BabyPosition > 4) {
  4254. SERIAL_PROTOCOLLNPGM("Index out of bounds");
  4255. }else{
  4256. // Save it to the eeprom
  4257. babystepLoadZ = babystepz;
  4258. EEPROM_save_B(EEPROM_BABYSTEP_Z0+(BabyPosition*2),&babystepLoadZ);
  4259. // adjust the Z
  4260. babystepsTodoZadd(babystepLoadZ);
  4261. }
  4262. }
  4263. }
  4264. break;
  4265. /**
  4266. * G84: Prusa3D specific: UNDO Babystep Z (move Z axis back)
  4267. */
  4268. case 84:
  4269. babystepsTodoZsubtract(babystepLoadZ);
  4270. // babystepLoadZ = 0;
  4271. break;
  4272. /**
  4273. * G85: Prusa3D specific: Pick best babystep
  4274. */
  4275. case 85:
  4276. lcd_pick_babystep();
  4277. break;
  4278. #endif
  4279. /**
  4280. * G86: Prusa3D specific: Disable babystep correction after home.
  4281. * This G-code will be performed at the start of a calibration script.
  4282. */
  4283. case 86:
  4284. calibration_status_store(CALIBRATION_STATUS_LIVE_ADJUST);
  4285. break;
  4286. /**
  4287. * G87: Prusa3D specific: Enable babystep correction after home
  4288. * This G-code will be performed at the end of a calibration script.
  4289. */
  4290. case 87:
  4291. calibration_status_store(CALIBRATION_STATUS_CALIBRATED);
  4292. break;
  4293. /**
  4294. * G88: Prusa3D specific: Don't know what it is for, it is in V2Calibration.gcode
  4295. */
  4296. case 88:
  4297. break;
  4298. #endif // ENABLE_MESH_BED_LEVELING
  4299. case 90: // G90
  4300. relative_mode = false;
  4301. break;
  4302. case 91: // G91
  4303. relative_mode = true;
  4304. break;
  4305. case 92: // G92
  4306. if(!code_seen(axis_codes[E_AXIS]))
  4307. st_synchronize();
  4308. for(int8_t i=0; i < NUM_AXIS; i++) {
  4309. if(code_seen(axis_codes[i])) {
  4310. if(i == E_AXIS) {
  4311. current_position[i] = code_value();
  4312. plan_set_e_position(current_position[E_AXIS]);
  4313. }
  4314. else {
  4315. current_position[i] = code_value()+cs.add_homing[i];
  4316. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  4317. }
  4318. }
  4319. }
  4320. break;
  4321. case 98: //! G98 (activate farm mode)
  4322. farm_mode = 1;
  4323. PingTime = _millis();
  4324. eeprom_update_byte((unsigned char *)EEPROM_FARM_MODE, farm_mode);
  4325. EEPROM_save_B(EEPROM_FARM_NUMBER, &farm_no);
  4326. SilentModeMenu = SILENT_MODE_OFF;
  4327. eeprom_update_byte((unsigned char *)EEPROM_SILENT, SilentModeMenu);
  4328. fCheckModeInit(); // alternatively invoke printer reset
  4329. break;
  4330. case 99: //! G99 (deactivate farm mode)
  4331. farm_mode = 0;
  4332. lcd_printer_connected();
  4333. eeprom_update_byte((unsigned char *)EEPROM_FARM_MODE, farm_mode);
  4334. lcd_update(2);
  4335. fCheckModeInit(); // alternatively invoke printer reset
  4336. break;
  4337. default:
  4338. printf_P(PSTR("Unknown G code: %s \n"), cmdbuffer + bufindr + CMDHDRSIZE);
  4339. }
  4340. // printf_P(_N("END G-CODE=%u\n"), gcode_in_progress);
  4341. gcode_in_progress = 0;
  4342. } // end if(code_seen('G'))
  4343. else if(code_seen('M'))
  4344. {
  4345. int index;
  4346. for (index = 1; *(strchr_pointer + index) == ' ' || *(strchr_pointer + index) == '\t'; index++);
  4347. /*for (++strchr_pointer; *strchr_pointer == ' ' || *strchr_pointer == '\t'; ++strchr_pointer);*/
  4348. if (*(strchr_pointer+index) < '0' || *(strchr_pointer+index) > '9') {
  4349. printf_P(PSTR("Invalid M code: %s \n"), cmdbuffer + bufindr + CMDHDRSIZE);
  4350. } else
  4351. {
  4352. mcode_in_progress = (int)code_value();
  4353. // printf_P(_N("BEGIN M-CODE=%u\n"), mcode_in_progress);
  4354. switch(mcode_in_progress)
  4355. {
  4356. case 0: // M0 - Unconditional stop - Wait for user button press on LCD
  4357. case 1: // M1 - Conditional stop - Wait for user button press on LCD
  4358. {
  4359. char *src = strchr_pointer + 2;
  4360. codenum = 0;
  4361. bool hasP = false, hasS = false;
  4362. if (code_seen('P')) {
  4363. codenum = code_value(); // milliseconds to wait
  4364. hasP = codenum > 0;
  4365. }
  4366. if (code_seen('S')) {
  4367. codenum = code_value() * 1000; // seconds to wait
  4368. hasS = codenum > 0;
  4369. }
  4370. starpos = strchr(src, '*');
  4371. if (starpos != NULL) *(starpos) = '\0';
  4372. while (*src == ' ') ++src;
  4373. if (!hasP && !hasS && *src != '\0') {
  4374. lcd_setstatus(src);
  4375. } else {
  4376. LCD_MESSAGERPGM(_i("Wait for user..."));////MSG_USERWAIT
  4377. }
  4378. lcd_ignore_click(); //call lcd_ignore_click aslo for else ???
  4379. st_synchronize();
  4380. previous_millis_cmd = _millis();
  4381. if (codenum > 0){
  4382. codenum += _millis(); // keep track of when we started waiting
  4383. KEEPALIVE_STATE(PAUSED_FOR_USER);
  4384. while(_millis() < codenum && !lcd_clicked()){
  4385. manage_heater();
  4386. manage_inactivity(true);
  4387. lcd_update(0);
  4388. }
  4389. KEEPALIVE_STATE(IN_HANDLER);
  4390. lcd_ignore_click(false);
  4391. }else{
  4392. marlin_wait_for_click();
  4393. }
  4394. if (IS_SD_PRINTING)
  4395. LCD_MESSAGERPGM(_T(MSG_RESUMING_PRINT));
  4396. else
  4397. LCD_MESSAGERPGM(_T(WELCOME_MSG));
  4398. }
  4399. break;
  4400. case 17:
  4401. LCD_MESSAGERPGM(_i("No move."));////MSG_NO_MOVE
  4402. enable_x();
  4403. enable_y();
  4404. enable_z();
  4405. enable_e0();
  4406. enable_e1();
  4407. enable_e2();
  4408. break;
  4409. #ifdef SDSUPPORT
  4410. case 20: // M20 - list SD card
  4411. SERIAL_PROTOCOLLNRPGM(_N("Begin file list"));////MSG_BEGIN_FILE_LIST
  4412. card.ls();
  4413. SERIAL_PROTOCOLLNRPGM(_N("End file list"));////MSG_END_FILE_LIST
  4414. break;
  4415. case 21: // M21 - init SD card
  4416. card.initsd();
  4417. break;
  4418. case 22: //M22 - release SD card
  4419. card.release();
  4420. break;
  4421. case 23: //M23 - Select file
  4422. starpos = (strchr(strchr_pointer + 4,'*'));
  4423. if(starpos!=NULL)
  4424. *(starpos)='\0';
  4425. card.openFile(strchr_pointer + 4,true);
  4426. break;
  4427. case 24: //M24 - Start SD print
  4428. if (!card.paused)
  4429. failstats_reset_print();
  4430. card.startFileprint();
  4431. starttime=_millis();
  4432. break;
  4433. case 25: //M25 - Pause SD print
  4434. card.pauseSDPrint();
  4435. break;
  4436. case 26: //M26 - Set SD index
  4437. if(card.cardOK && code_seen('S')) {
  4438. card.setIndex(code_value_long());
  4439. }
  4440. break;
  4441. case 27: //M27 - Get SD status
  4442. card.getStatus();
  4443. break;
  4444. case 28: //M28 - Start SD write
  4445. starpos = (strchr(strchr_pointer + 4,'*'));
  4446. if(starpos != NULL){
  4447. char* npos = strchr(CMDBUFFER_CURRENT_STRING, 'N');
  4448. strchr_pointer = strchr(npos,' ') + 1;
  4449. *(starpos) = '\0';
  4450. }
  4451. card.openFile(strchr_pointer+4,false);
  4452. break;
  4453. case 29: //M29 - Stop SD write
  4454. //processed in write to file routine above
  4455. //card,saving = false;
  4456. break;
  4457. case 30: //M30 <filename> Delete File
  4458. if (card.cardOK){
  4459. card.closefile();
  4460. starpos = (strchr(strchr_pointer + 4,'*'));
  4461. if(starpos != NULL){
  4462. char* npos = strchr(CMDBUFFER_CURRENT_STRING, 'N');
  4463. strchr_pointer = strchr(npos,' ') + 1;
  4464. *(starpos) = '\0';
  4465. }
  4466. card.removeFile(strchr_pointer + 4);
  4467. }
  4468. break;
  4469. case 32: //M32 - Select file and start SD print
  4470. {
  4471. if(card.sdprinting) {
  4472. st_synchronize();
  4473. }
  4474. starpos = (strchr(strchr_pointer + 4,'*'));
  4475. char* namestartpos = (strchr(strchr_pointer + 4,'!')); //find ! to indicate filename string start.
  4476. if(namestartpos==NULL)
  4477. {
  4478. namestartpos=strchr_pointer + 4; //default name position, 4 letters after the M
  4479. }
  4480. else
  4481. namestartpos++; //to skip the '!'
  4482. if(starpos!=NULL)
  4483. *(starpos)='\0';
  4484. bool call_procedure=(code_seen('P'));
  4485. if(strchr_pointer>namestartpos)
  4486. call_procedure=false; //false alert, 'P' found within filename
  4487. if( card.cardOK )
  4488. {
  4489. card.openFile(namestartpos,true,!call_procedure);
  4490. if(code_seen('S'))
  4491. if(strchr_pointer<namestartpos) //only if "S" is occuring _before_ the filename
  4492. card.setIndex(code_value_long());
  4493. card.startFileprint();
  4494. if(!call_procedure)
  4495. starttime=_millis(); //procedure calls count as normal print time.
  4496. }
  4497. } break;
  4498. case 928: //M928 - Start SD write
  4499. starpos = (strchr(strchr_pointer + 5,'*'));
  4500. if(starpos != NULL){
  4501. char* npos = strchr(CMDBUFFER_CURRENT_STRING, 'N');
  4502. strchr_pointer = strchr(npos,' ') + 1;
  4503. *(starpos) = '\0';
  4504. }
  4505. card.openLogFile(strchr_pointer+5);
  4506. break;
  4507. #endif //SDSUPPORT
  4508. case 31: //M31 take time since the start of the SD print or an M109 command
  4509. {
  4510. stoptime=_millis();
  4511. char time[30];
  4512. unsigned long t=(stoptime-starttime)/1000;
  4513. int sec,min;
  4514. min=t/60;
  4515. sec=t%60;
  4516. sprintf_P(time, PSTR("%i min, %i sec"), min, sec);
  4517. SERIAL_ECHO_START;
  4518. SERIAL_ECHOLN(time);
  4519. lcd_setstatus(time);
  4520. autotempShutdown();
  4521. }
  4522. break;
  4523. case 42: //M42 -Change pin status via gcode
  4524. if (code_seen('S'))
  4525. {
  4526. int pin_status = code_value();
  4527. int pin_number = LED_PIN;
  4528. if (code_seen('P') && pin_status >= 0 && pin_status <= 255)
  4529. pin_number = code_value();
  4530. for(int8_t i = 0; i < (int8_t)(sizeof(sensitive_pins)/sizeof(int)); i++)
  4531. {
  4532. if (sensitive_pins[i] == pin_number)
  4533. {
  4534. pin_number = -1;
  4535. break;
  4536. }
  4537. }
  4538. #if defined(FAN_PIN) && FAN_PIN > -1
  4539. if (pin_number == FAN_PIN)
  4540. fanSpeed = pin_status;
  4541. #endif
  4542. if (pin_number > -1)
  4543. {
  4544. pinMode(pin_number, OUTPUT);
  4545. digitalWrite(pin_number, pin_status);
  4546. analogWrite(pin_number, pin_status);
  4547. }
  4548. }
  4549. break;
  4550. case 44: //! M44: Prusa3D: Reset the bed skew and offset calibration.
  4551. // Reset the baby step value and the baby step applied flag.
  4552. calibration_status_store(CALIBRATION_STATUS_ASSEMBLED);
  4553. eeprom_update_word((uint16_t*)EEPROM_BABYSTEP_Z, 0);
  4554. // Reset the skew and offset in both RAM and EEPROM.
  4555. reset_bed_offset_and_skew();
  4556. // Reset world2machine_rotation_and_skew and world2machine_shift, therefore
  4557. // the planner will not perform any adjustments in the XY plane.
  4558. // Wait for the motors to stop and update the current position with the absolute values.
  4559. world2machine_revert_to_uncorrected();
  4560. break;
  4561. case 45: //! M45: Prusa3D: bed skew and offset with manual Z up
  4562. {
  4563. int8_t verbosity_level = 0;
  4564. bool only_Z = code_seen('Z');
  4565. #ifdef SUPPORT_VERBOSITY
  4566. if (code_seen('V'))
  4567. {
  4568. // Just 'V' without a number counts as V1.
  4569. char c = strchr_pointer[1];
  4570. verbosity_level = (c == ' ' || c == '\t' || c == 0) ? 1 : code_value_short();
  4571. }
  4572. #endif //SUPPORT_VERBOSITY
  4573. gcode_M45(only_Z, verbosity_level);
  4574. }
  4575. break;
  4576. /*
  4577. case 46:
  4578. {
  4579. // M46: Prusa3D: Show the assigned IP address.
  4580. uint8_t ip[4];
  4581. bool hasIP = card.ToshibaFlashAir_GetIP(ip);
  4582. if (hasIP) {
  4583. SERIAL_ECHOPGM("Toshiba FlashAir current IP: ");
  4584. SERIAL_ECHO(int(ip[0]));
  4585. SERIAL_ECHOPGM(".");
  4586. SERIAL_ECHO(int(ip[1]));
  4587. SERIAL_ECHOPGM(".");
  4588. SERIAL_ECHO(int(ip[2]));
  4589. SERIAL_ECHOPGM(".");
  4590. SERIAL_ECHO(int(ip[3]));
  4591. SERIAL_ECHOLNPGM("");
  4592. } else {
  4593. SERIAL_ECHOLNPGM("Toshiba FlashAir GetIP failed");
  4594. }
  4595. break;
  4596. }
  4597. */
  4598. case 47:
  4599. //! M47: Prusa3D: Show end stops dialog on the display.
  4600. KEEPALIVE_STATE(PAUSED_FOR_USER);
  4601. lcd_diag_show_end_stops();
  4602. KEEPALIVE_STATE(IN_HANDLER);
  4603. break;
  4604. #if 0
  4605. case 48: //! M48: scan the bed induction sensor points, print the sensor trigger coordinates to the serial line for visualization on the PC.
  4606. {
  4607. // Disable the default update procedure of the display. We will do a modal dialog.
  4608. lcd_update_enable(false);
  4609. // Let the planner use the uncorrected coordinates.
  4610. mbl.reset();
  4611. // Reset world2machine_rotation_and_skew and world2machine_shift, therefore
  4612. // the planner will not perform any adjustments in the XY plane.
  4613. // Wait for the motors to stop and update the current position with the absolute values.
  4614. world2machine_revert_to_uncorrected();
  4615. // Move the print head close to the bed.
  4616. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  4617. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS],current_position[Z_AXIS] , current_position[E_AXIS], homing_feedrate[Z_AXIS]/40, active_extruder);
  4618. st_synchronize();
  4619. // Home in the XY plane.
  4620. set_destination_to_current();
  4621. int l_feedmultiply = setup_for_endstop_move();
  4622. home_xy();
  4623. int8_t verbosity_level = 0;
  4624. if (code_seen('V')) {
  4625. // Just 'V' without a number counts as V1.
  4626. char c = strchr_pointer[1];
  4627. verbosity_level = (c == ' ' || c == '\t' || c == 0) ? 1 : code_value_short();
  4628. }
  4629. bool success = scan_bed_induction_points(verbosity_level);
  4630. clean_up_after_endstop_move(l_feedmultiply);
  4631. // Print head up.
  4632. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  4633. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS],current_position[Z_AXIS] , current_position[E_AXIS], homing_feedrate[Z_AXIS]/40, active_extruder);
  4634. st_synchronize();
  4635. lcd_update_enable(true);
  4636. break;
  4637. }
  4638. #endif
  4639. #ifdef ENABLE_AUTO_BED_LEVELING
  4640. #ifdef Z_PROBE_REPEATABILITY_TEST
  4641. //! M48 Z-Probe repeatability measurement function.
  4642. //!
  4643. //! Usage: M48 <n #_samples> <X X_position_for_samples> <Y Y_position_for_samples> <V Verbose_Level> <L legs_of_movement_prior_to_doing_probe>
  4644. //!
  4645. //! This function assumes the bed has been homed. Specificaly, that a G28 command
  4646. //! as been issued prior to invoking the M48 Z-Probe repeatability measurement function.
  4647. //! Any information generated by a prior G29 Bed leveling command will be lost and need to be
  4648. //! regenerated.
  4649. //!
  4650. //! The number of samples will default to 10 if not specified. You can use upper or lower case
  4651. //! letters for any of the options EXCEPT n. n must be in lower case because Marlin uses a capital
  4652. //! N for its communication protocol and will get horribly confused if you send it a capital N.
  4653. //!
  4654. case 48: // M48 Z-Probe repeatability
  4655. {
  4656. #if Z_MIN_PIN == -1
  4657. #error "You must have a Z_MIN endstop in order to enable calculation of Z-Probe repeatability."
  4658. #endif
  4659. double sum=0.0;
  4660. double mean=0.0;
  4661. double sigma=0.0;
  4662. double sample_set[50];
  4663. int verbose_level=1, n=0, j, n_samples = 10, n_legs=0;
  4664. double X_current, Y_current, Z_current;
  4665. double X_probe_location, Y_probe_location, Z_start_location, ext_position;
  4666. if (code_seen('V') || code_seen('v')) {
  4667. verbose_level = code_value();
  4668. if (verbose_level<0 || verbose_level>4 ) {
  4669. SERIAL_PROTOCOLPGM("?Verbose Level not plausable.\n");
  4670. goto Sigma_Exit;
  4671. }
  4672. }
  4673. if (verbose_level > 0) {
  4674. SERIAL_PROTOCOLPGM("M48 Z-Probe Repeatability test. Version 2.00\n");
  4675. SERIAL_PROTOCOLPGM("Full support at: http://3dprintboard.com/forum.php\n");
  4676. }
  4677. if (code_seen('n')) {
  4678. n_samples = code_value();
  4679. if (n_samples<4 || n_samples>50 ) {
  4680. SERIAL_PROTOCOLPGM("?Specified sample size not plausable.\n");
  4681. goto Sigma_Exit;
  4682. }
  4683. }
  4684. X_current = X_probe_location = st_get_position_mm(X_AXIS);
  4685. Y_current = Y_probe_location = st_get_position_mm(Y_AXIS);
  4686. Z_current = st_get_position_mm(Z_AXIS);
  4687. Z_start_location = st_get_position_mm(Z_AXIS) + Z_RAISE_BEFORE_PROBING;
  4688. ext_position = st_get_position_mm(E_AXIS);
  4689. if (code_seen('X') || code_seen('x') ) {
  4690. X_probe_location = code_value() - X_PROBE_OFFSET_FROM_EXTRUDER;
  4691. if (X_probe_location<X_MIN_POS || X_probe_location>X_MAX_POS ) {
  4692. SERIAL_PROTOCOLPGM("?Specified X position out of range.\n");
  4693. goto Sigma_Exit;
  4694. }
  4695. }
  4696. if (code_seen('Y') || code_seen('y') ) {
  4697. Y_probe_location = code_value() - Y_PROBE_OFFSET_FROM_EXTRUDER;
  4698. if (Y_probe_location<Y_MIN_POS || Y_probe_location>Y_MAX_POS ) {
  4699. SERIAL_PROTOCOLPGM("?Specified Y position out of range.\n");
  4700. goto Sigma_Exit;
  4701. }
  4702. }
  4703. if (code_seen('L') || code_seen('l') ) {
  4704. n_legs = code_value();
  4705. if ( n_legs==1 )
  4706. n_legs = 2;
  4707. if ( n_legs<0 || n_legs>15 ) {
  4708. SERIAL_PROTOCOLPGM("?Specified number of legs in movement not plausable.\n");
  4709. goto Sigma_Exit;
  4710. }
  4711. }
  4712. //
  4713. // Do all the preliminary setup work. First raise the probe.
  4714. //
  4715. st_synchronize();
  4716. plan_bed_level_matrix.set_to_identity();
  4717. plan_buffer_line( X_current, Y_current, Z_start_location,
  4718. ext_position,
  4719. homing_feedrate[Z_AXIS]/60,
  4720. active_extruder);
  4721. st_synchronize();
  4722. //
  4723. // Now get everything to the specified probe point So we can safely do a probe to
  4724. // get us close to the bed. If the Z-Axis is far from the bed, we don't want to
  4725. // use that as a starting point for each probe.
  4726. //
  4727. if (verbose_level > 2)
  4728. SERIAL_PROTOCOL("Positioning probe for the test.\n");
  4729. plan_buffer_line( X_probe_location, Y_probe_location, Z_start_location,
  4730. ext_position,
  4731. homing_feedrate[X_AXIS]/60,
  4732. active_extruder);
  4733. st_synchronize();
  4734. current_position[X_AXIS] = X_current = st_get_position_mm(X_AXIS);
  4735. current_position[Y_AXIS] = Y_current = st_get_position_mm(Y_AXIS);
  4736. current_position[Z_AXIS] = Z_current = st_get_position_mm(Z_AXIS);
  4737. current_position[E_AXIS] = ext_position = st_get_position_mm(E_AXIS);
  4738. //
  4739. // OK, do the inital probe to get us close to the bed.
  4740. // Then retrace the right amount and use that in subsequent probes
  4741. //
  4742. int l_feedmultiply = setup_for_endstop_move();
  4743. run_z_probe();
  4744. current_position[Z_AXIS] = Z_current = st_get_position_mm(Z_AXIS);
  4745. Z_start_location = st_get_position_mm(Z_AXIS) + Z_RAISE_BEFORE_PROBING;
  4746. plan_buffer_line( X_probe_location, Y_probe_location, Z_start_location,
  4747. ext_position,
  4748. homing_feedrate[X_AXIS]/60,
  4749. active_extruder);
  4750. st_synchronize();
  4751. current_position[Z_AXIS] = Z_current = st_get_position_mm(Z_AXIS);
  4752. for( n=0; n<n_samples; n++) {
  4753. do_blocking_move_to( X_probe_location, Y_probe_location, Z_start_location); // Make sure we are at the probe location
  4754. if ( n_legs) {
  4755. double radius=0.0, theta=0.0, x_sweep, y_sweep;
  4756. int rotational_direction, l;
  4757. rotational_direction = (unsigned long) _millis() & 0x0001; // clockwise or counter clockwise
  4758. radius = (unsigned long) _millis() % (long) (X_MAX_LENGTH/4); // limit how far out to go
  4759. theta = (float) ((unsigned long) _millis() % (long) 360) / (360./(2*3.1415926)); // turn into radians
  4760. //SERIAL_ECHOPAIR("starting radius: ",radius);
  4761. //SERIAL_ECHOPAIR(" theta: ",theta);
  4762. //SERIAL_ECHOPAIR(" direction: ",rotational_direction);
  4763. //SERIAL_PROTOCOLLNPGM("");
  4764. for( l=0; l<n_legs-1; l++) {
  4765. if (rotational_direction==1)
  4766. theta += (float) ((unsigned long) _millis() % (long) 20) / (360.0/(2*3.1415926)); // turn into radians
  4767. else
  4768. theta -= (float) ((unsigned long) _millis() % (long) 20) / (360.0/(2*3.1415926)); // turn into radians
  4769. radius += (float) ( ((long) ((unsigned long) _millis() % (long) 10)) - 5);
  4770. if ( radius<0.0 )
  4771. radius = -radius;
  4772. X_current = X_probe_location + cos(theta) * radius;
  4773. Y_current = Y_probe_location + sin(theta) * radius;
  4774. if ( X_current<X_MIN_POS) // Make sure our X & Y are sane
  4775. X_current = X_MIN_POS;
  4776. if ( X_current>X_MAX_POS)
  4777. X_current = X_MAX_POS;
  4778. if ( Y_current<Y_MIN_POS) // Make sure our X & Y are sane
  4779. Y_current = Y_MIN_POS;
  4780. if ( Y_current>Y_MAX_POS)
  4781. Y_current = Y_MAX_POS;
  4782. if (verbose_level>3 ) {
  4783. SERIAL_ECHOPAIR("x: ", X_current);
  4784. SERIAL_ECHOPAIR("y: ", Y_current);
  4785. SERIAL_PROTOCOLLNPGM("");
  4786. }
  4787. do_blocking_move_to( X_current, Y_current, Z_current );
  4788. }
  4789. do_blocking_move_to( X_probe_location, Y_probe_location, Z_start_location); // Go back to the probe location
  4790. }
  4791. int l_feedmultiply = setup_for_endstop_move();
  4792. run_z_probe();
  4793. sample_set[n] = current_position[Z_AXIS];
  4794. //
  4795. // Get the current mean for the data points we have so far
  4796. //
  4797. sum=0.0;
  4798. for( j=0; j<=n; j++) {
  4799. sum = sum + sample_set[j];
  4800. }
  4801. mean = sum / (double (n+1));
  4802. //
  4803. // Now, use that mean to calculate the standard deviation for the
  4804. // data points we have so far
  4805. //
  4806. sum=0.0;
  4807. for( j=0; j<=n; j++) {
  4808. sum = sum + (sample_set[j]-mean) * (sample_set[j]-mean);
  4809. }
  4810. sigma = sqrt( sum / (double (n+1)) );
  4811. if (verbose_level > 1) {
  4812. SERIAL_PROTOCOL(n+1);
  4813. SERIAL_PROTOCOL(" of ");
  4814. SERIAL_PROTOCOL(n_samples);
  4815. SERIAL_PROTOCOLPGM(" z: ");
  4816. SERIAL_PROTOCOL_F(current_position[Z_AXIS], 6);
  4817. }
  4818. if (verbose_level > 2) {
  4819. SERIAL_PROTOCOL(" mean: ");
  4820. SERIAL_PROTOCOL_F(mean,6);
  4821. SERIAL_PROTOCOL(" sigma: ");
  4822. SERIAL_PROTOCOL_F(sigma,6);
  4823. }
  4824. if (verbose_level > 0)
  4825. SERIAL_PROTOCOLPGM("\n");
  4826. plan_buffer_line( X_probe_location, Y_probe_location, Z_start_location,
  4827. current_position[E_AXIS], homing_feedrate[Z_AXIS]/60, active_extruder);
  4828. st_synchronize();
  4829. }
  4830. _delay(1000);
  4831. clean_up_after_endstop_move(l_feedmultiply);
  4832. // enable_endstops(true);
  4833. if (verbose_level > 0) {
  4834. SERIAL_PROTOCOLPGM("Mean: ");
  4835. SERIAL_PROTOCOL_F(mean, 6);
  4836. SERIAL_PROTOCOLPGM("\n");
  4837. }
  4838. SERIAL_PROTOCOLPGM("Standard Deviation: ");
  4839. SERIAL_PROTOCOL_F(sigma, 6);
  4840. SERIAL_PROTOCOLPGM("\n\n");
  4841. Sigma_Exit:
  4842. break;
  4843. }
  4844. #endif // Z_PROBE_REPEATABILITY_TEST
  4845. #endif // ENABLE_AUTO_BED_LEVELING
  4846. case 73: //M73 show percent done and time remaining
  4847. if(code_seen('P')) print_percent_done_normal = code_value();
  4848. if(code_seen('R')) print_time_remaining_normal = code_value();
  4849. if(code_seen('Q')) print_percent_done_silent = code_value();
  4850. if(code_seen('S')) print_time_remaining_silent = code_value();
  4851. {
  4852. const char* _msg_mode_done_remain = _N("%S MODE: Percent done: %d; print time remaining in mins: %d\n");
  4853. printf_P(_msg_mode_done_remain, _N("NORMAL"), int(print_percent_done_normal), print_time_remaining_normal);
  4854. printf_P(_msg_mode_done_remain, _N("SILENT"), int(print_percent_done_silent), print_time_remaining_silent);
  4855. }
  4856. break;
  4857. case 104: // M104
  4858. {
  4859. uint8_t extruder;
  4860. if(setTargetedHotend(104,extruder)){
  4861. break;
  4862. }
  4863. if (code_seen('S'))
  4864. {
  4865. setTargetHotendSafe(code_value(), extruder);
  4866. }
  4867. setWatch();
  4868. break;
  4869. }
  4870. case 112: // M112 -Emergency Stop
  4871. kill(_n(""), 3);
  4872. break;
  4873. case 140: // M140 set bed temp
  4874. if (code_seen('S')) setTargetBed(code_value());
  4875. break;
  4876. case 105 : // M105
  4877. {
  4878. uint8_t extruder;
  4879. if(setTargetedHotend(105, extruder)){
  4880. break;
  4881. }
  4882. #if defined(TEMP_0_PIN) && TEMP_0_PIN > -1
  4883. SERIAL_PROTOCOLPGM("ok T:");
  4884. SERIAL_PROTOCOL_F(degHotend(extruder),1);
  4885. SERIAL_PROTOCOLPGM(" /");
  4886. SERIAL_PROTOCOL_F(degTargetHotend(extruder),1);
  4887. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  4888. SERIAL_PROTOCOLPGM(" B:");
  4889. SERIAL_PROTOCOL_F(degBed(),1);
  4890. SERIAL_PROTOCOLPGM(" /");
  4891. SERIAL_PROTOCOL_F(degTargetBed(),1);
  4892. #endif //TEMP_BED_PIN
  4893. for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) {
  4894. SERIAL_PROTOCOLPGM(" T");
  4895. SERIAL_PROTOCOL(cur_extruder);
  4896. SERIAL_PROTOCOLPGM(":");
  4897. SERIAL_PROTOCOL_F(degHotend(cur_extruder),1);
  4898. SERIAL_PROTOCOLPGM(" /");
  4899. SERIAL_PROTOCOL_F(degTargetHotend(cur_extruder),1);
  4900. }
  4901. #else
  4902. SERIAL_ERROR_START;
  4903. SERIAL_ERRORLNRPGM(_i("No thermistors - no temperature"));////MSG_ERR_NO_THERMISTORS
  4904. #endif
  4905. SERIAL_PROTOCOLPGM(" @:");
  4906. #ifdef EXTRUDER_WATTS
  4907. SERIAL_PROTOCOL((EXTRUDER_WATTS * getHeaterPower(tmp_extruder))/127);
  4908. SERIAL_PROTOCOLPGM("W");
  4909. #else
  4910. SERIAL_PROTOCOL(getHeaterPower(extruder));
  4911. #endif
  4912. SERIAL_PROTOCOLPGM(" B@:");
  4913. #ifdef BED_WATTS
  4914. SERIAL_PROTOCOL((BED_WATTS * getHeaterPower(-1))/127);
  4915. SERIAL_PROTOCOLPGM("W");
  4916. #else
  4917. SERIAL_PROTOCOL(getHeaterPower(-1));
  4918. #endif
  4919. #ifdef PINDA_THERMISTOR
  4920. SERIAL_PROTOCOLPGM(" P:");
  4921. SERIAL_PROTOCOL_F(current_temperature_pinda,1);
  4922. #endif //PINDA_THERMISTOR
  4923. #ifdef AMBIENT_THERMISTOR
  4924. SERIAL_PROTOCOLPGM(" A:");
  4925. SERIAL_PROTOCOL_F(current_temperature_ambient,1);
  4926. #endif //AMBIENT_THERMISTOR
  4927. #ifdef SHOW_TEMP_ADC_VALUES
  4928. {float raw = 0.0;
  4929. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  4930. SERIAL_PROTOCOLPGM(" ADC B:");
  4931. SERIAL_PROTOCOL_F(degBed(),1);
  4932. SERIAL_PROTOCOLPGM("C->");
  4933. raw = rawBedTemp();
  4934. SERIAL_PROTOCOL_F(raw/OVERSAMPLENR,5);
  4935. SERIAL_PROTOCOLPGM(" Rb->");
  4936. SERIAL_PROTOCOL_F(100 * (1 + (PtA * (raw/OVERSAMPLENR)) + (PtB * sq((raw/OVERSAMPLENR)))), 5);
  4937. SERIAL_PROTOCOLPGM(" Rxb->");
  4938. SERIAL_PROTOCOL_F(raw, 5);
  4939. #endif
  4940. for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) {
  4941. SERIAL_PROTOCOLPGM(" T");
  4942. SERIAL_PROTOCOL(cur_extruder);
  4943. SERIAL_PROTOCOLPGM(":");
  4944. SERIAL_PROTOCOL_F(degHotend(cur_extruder),1);
  4945. SERIAL_PROTOCOLPGM("C->");
  4946. raw = rawHotendTemp(cur_extruder);
  4947. SERIAL_PROTOCOL_F(raw/OVERSAMPLENR,5);
  4948. SERIAL_PROTOCOLPGM(" Rt");
  4949. SERIAL_PROTOCOL(cur_extruder);
  4950. SERIAL_PROTOCOLPGM("->");
  4951. SERIAL_PROTOCOL_F(100 * (1 + (PtA * (raw/OVERSAMPLENR)) + (PtB * sq((raw/OVERSAMPLENR)))), 5);
  4952. SERIAL_PROTOCOLPGM(" Rx");
  4953. SERIAL_PROTOCOL(cur_extruder);
  4954. SERIAL_PROTOCOLPGM("->");
  4955. SERIAL_PROTOCOL_F(raw, 5);
  4956. }}
  4957. #endif
  4958. SERIAL_PROTOCOLLN("");
  4959. KEEPALIVE_STATE(NOT_BUSY);
  4960. return;
  4961. break;
  4962. }
  4963. case 109:
  4964. {// M109 - Wait for extruder heater to reach target.
  4965. uint8_t extruder;
  4966. if(setTargetedHotend(109, extruder)){
  4967. break;
  4968. }
  4969. LCD_MESSAGERPGM(_T(MSG_HEATING));
  4970. heating_status = 1;
  4971. if (farm_mode) { prusa_statistics(1); };
  4972. #ifdef AUTOTEMP
  4973. autotemp_enabled=false;
  4974. #endif
  4975. if (code_seen('S')) {
  4976. setTargetHotendSafe(code_value(), extruder);
  4977. CooldownNoWait = true;
  4978. } else if (code_seen('R')) {
  4979. setTargetHotendSafe(code_value(), extruder);
  4980. CooldownNoWait = false;
  4981. }
  4982. #ifdef AUTOTEMP
  4983. if (code_seen('S')) autotemp_min=code_value();
  4984. if (code_seen('B')) autotemp_max=code_value();
  4985. if (code_seen('F'))
  4986. {
  4987. autotemp_factor=code_value();
  4988. autotemp_enabled=true;
  4989. }
  4990. #endif
  4991. setWatch();
  4992. codenum = _millis();
  4993. /* See if we are heating up or cooling down */
  4994. target_direction = isHeatingHotend(extruder); // true if heating, false if cooling
  4995. KEEPALIVE_STATE(NOT_BUSY);
  4996. cancel_heatup = false;
  4997. wait_for_heater(codenum, extruder); //loops until target temperature is reached
  4998. LCD_MESSAGERPGM(_T(MSG_HEATING_COMPLETE));
  4999. KEEPALIVE_STATE(IN_HANDLER);
  5000. heating_status = 2;
  5001. if (farm_mode) { prusa_statistics(2); };
  5002. //starttime=_millis();
  5003. previous_millis_cmd = _millis();
  5004. }
  5005. break;
  5006. case 190: // M190 - Wait for bed heater to reach target.
  5007. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  5008. LCD_MESSAGERPGM(_T(MSG_BED_HEATING));
  5009. heating_status = 3;
  5010. if (farm_mode) { prusa_statistics(1); };
  5011. if (code_seen('S'))
  5012. {
  5013. setTargetBed(code_value());
  5014. CooldownNoWait = true;
  5015. }
  5016. else if (code_seen('R'))
  5017. {
  5018. setTargetBed(code_value());
  5019. CooldownNoWait = false;
  5020. }
  5021. codenum = _millis();
  5022. cancel_heatup = false;
  5023. target_direction = isHeatingBed(); // true if heating, false if cooling
  5024. KEEPALIVE_STATE(NOT_BUSY);
  5025. while ( (target_direction)&&(!cancel_heatup) ? (isHeatingBed()) : (isCoolingBed()&&(CooldownNoWait==false)) )
  5026. {
  5027. if(( _millis() - codenum) > 1000 ) //Print Temp Reading every 1 second while heating up.
  5028. {
  5029. if (!farm_mode) {
  5030. float tt = degHotend(active_extruder);
  5031. SERIAL_PROTOCOLPGM("T:");
  5032. SERIAL_PROTOCOL(tt);
  5033. SERIAL_PROTOCOLPGM(" E:");
  5034. SERIAL_PROTOCOL((int)active_extruder);
  5035. SERIAL_PROTOCOLPGM(" B:");
  5036. SERIAL_PROTOCOL_F(degBed(), 1);
  5037. SERIAL_PROTOCOLLN("");
  5038. }
  5039. codenum = _millis();
  5040. }
  5041. manage_heater();
  5042. manage_inactivity();
  5043. lcd_update(0);
  5044. }
  5045. LCD_MESSAGERPGM(_T(MSG_BED_DONE));
  5046. KEEPALIVE_STATE(IN_HANDLER);
  5047. heating_status = 4;
  5048. previous_millis_cmd = _millis();
  5049. #endif
  5050. break;
  5051. #if defined(FAN_PIN) && FAN_PIN > -1
  5052. case 106: //!M106 Sxxx Fan On S<speed> 0 .. 255
  5053. if (code_seen('S')){
  5054. fanSpeed=constrain(code_value(),0,255);
  5055. }
  5056. else {
  5057. fanSpeed=255;
  5058. }
  5059. break;
  5060. case 107: //M107 Fan Off
  5061. fanSpeed = 0;
  5062. break;
  5063. #endif //FAN_PIN
  5064. #if defined(PS_ON_PIN) && PS_ON_PIN > -1
  5065. case 80: // M80 - Turn on Power Supply
  5066. SET_OUTPUT(PS_ON_PIN); //GND
  5067. WRITE(PS_ON_PIN, PS_ON_AWAKE);
  5068. // If you have a switch on suicide pin, this is useful
  5069. // if you want to start another print with suicide feature after
  5070. // a print without suicide...
  5071. #if defined SUICIDE_PIN && SUICIDE_PIN > -1
  5072. SET_OUTPUT(SUICIDE_PIN);
  5073. WRITE(SUICIDE_PIN, HIGH);
  5074. #endif
  5075. powersupply = true;
  5076. LCD_MESSAGERPGM(_T(WELCOME_MSG));
  5077. lcd_update(0);
  5078. break;
  5079. #endif
  5080. case 81: // M81 - Turn off Power Supply
  5081. disable_heater();
  5082. st_synchronize();
  5083. disable_e0();
  5084. disable_e1();
  5085. disable_e2();
  5086. finishAndDisableSteppers();
  5087. fanSpeed = 0;
  5088. _delay(1000); // Wait a little before to switch off
  5089. #if defined(SUICIDE_PIN) && SUICIDE_PIN > -1
  5090. st_synchronize();
  5091. suicide();
  5092. #elif defined(PS_ON_PIN) && PS_ON_PIN > -1
  5093. SET_OUTPUT(PS_ON_PIN);
  5094. WRITE(PS_ON_PIN, PS_ON_ASLEEP);
  5095. #endif
  5096. powersupply = false;
  5097. LCD_MESSAGERPGM(CAT4(CUSTOM_MENDEL_NAME,PSTR(" "),MSG_OFF,PSTR(".")));
  5098. lcd_update(0);
  5099. break;
  5100. case 82:
  5101. axis_relative_modes[3] = false;
  5102. break;
  5103. case 83:
  5104. axis_relative_modes[3] = true;
  5105. break;
  5106. case 18: //compatibility
  5107. case 84: // M84
  5108. if(code_seen('S')){
  5109. stepper_inactive_time = code_value() * 1000;
  5110. }
  5111. else
  5112. {
  5113. bool all_axis = !((code_seen(axis_codes[X_AXIS])) || (code_seen(axis_codes[Y_AXIS])) || (code_seen(axis_codes[Z_AXIS]))|| (code_seen(axis_codes[E_AXIS])));
  5114. if(all_axis)
  5115. {
  5116. st_synchronize();
  5117. disable_e0();
  5118. disable_e1();
  5119. disable_e2();
  5120. finishAndDisableSteppers();
  5121. }
  5122. else
  5123. {
  5124. st_synchronize();
  5125. if (code_seen('X')) disable_x();
  5126. if (code_seen('Y')) disable_y();
  5127. if (code_seen('Z')) disable_z();
  5128. #if ((E0_ENABLE_PIN != X_ENABLE_PIN) && (E1_ENABLE_PIN != Y_ENABLE_PIN)) // Only enable on boards that have seperate ENABLE_PINS
  5129. if (code_seen('E')) {
  5130. disable_e0();
  5131. disable_e1();
  5132. disable_e2();
  5133. }
  5134. #endif
  5135. }
  5136. }
  5137. //in the end of print set estimated time to end of print and extruders used during print to default values for next print
  5138. print_time_remaining_init();
  5139. snmm_filaments_used = 0;
  5140. break;
  5141. case 85: // M85
  5142. if(code_seen('S')) {
  5143. max_inactive_time = code_value() * 1000;
  5144. }
  5145. break;
  5146. #ifdef SAFETYTIMER
  5147. case 86: // M86 - set safety timer expiration time in seconds; M86 S0 will disable safety timer
  5148. //when safety timer expires heatbed and nozzle target temperatures are set to zero
  5149. if (code_seen('S')) {
  5150. safetytimer_inactive_time = code_value() * 1000;
  5151. safetyTimer.start();
  5152. }
  5153. break;
  5154. #endif
  5155. case 92: // M92
  5156. for(int8_t i=0; i < NUM_AXIS; i++)
  5157. {
  5158. if(code_seen(axis_codes[i]))
  5159. {
  5160. if(i == 3) { // E
  5161. float value = code_value();
  5162. if(value < 20.0) {
  5163. float factor = cs.axis_steps_per_unit[i] / value; // increase e constants if M92 E14 is given for netfab.
  5164. cs.max_jerk[E_AXIS] *= factor;
  5165. max_feedrate[i] *= factor;
  5166. axis_steps_per_sqr_second[i] *= factor;
  5167. }
  5168. cs.axis_steps_per_unit[i] = value;
  5169. }
  5170. else {
  5171. cs.axis_steps_per_unit[i] = code_value();
  5172. }
  5173. }
  5174. }
  5175. break;
  5176. case 110: //! M110 N<line number> - reset line pos
  5177. if (code_seen('N'))
  5178. gcode_LastN = code_value_long();
  5179. break;
  5180. case 113: // M113 - Get or set Host Keepalive interval
  5181. if (code_seen('S')) {
  5182. host_keepalive_interval = (uint8_t)code_value_short();
  5183. // NOMORE(host_keepalive_interval, 60);
  5184. }
  5185. else {
  5186. SERIAL_ECHO_START;
  5187. SERIAL_ECHOPAIR("M113 S", (unsigned long)host_keepalive_interval);
  5188. SERIAL_PROTOCOLLN("");
  5189. }
  5190. break;
  5191. case 115: // M115
  5192. if (code_seen('V')) {
  5193. // Report the Prusa version number.
  5194. SERIAL_PROTOCOLLNRPGM(FW_VERSION_STR_P());
  5195. } else if (code_seen('U')) {
  5196. // Check the firmware version provided. If the firmware version provided by the U code is higher than the currently running firmware,
  5197. // pause the print for 30s and ask the user to upgrade the firmware.
  5198. show_upgrade_dialog_if_version_newer(++ strchr_pointer);
  5199. } else {
  5200. SERIAL_ECHOPGM("FIRMWARE_NAME:Prusa-Firmware ");
  5201. SERIAL_ECHORPGM(FW_VERSION_STR_P());
  5202. SERIAL_ECHOPGM(" based on Marlin FIRMWARE_URL:https://github.com/prusa3d/Prusa-Firmware PROTOCOL_VERSION:");
  5203. SERIAL_ECHOPGM(PROTOCOL_VERSION);
  5204. SERIAL_ECHOPGM(" MACHINE_TYPE:");
  5205. SERIAL_ECHOPGM(CUSTOM_MENDEL_NAME);
  5206. SERIAL_ECHOPGM(" EXTRUDER_COUNT:");
  5207. SERIAL_ECHOPGM(STRINGIFY(EXTRUDERS));
  5208. SERIAL_ECHOPGM(" UUID:");
  5209. SERIAL_ECHOLNPGM(MACHINE_UUID);
  5210. }
  5211. break;
  5212. /* case 117: // M117 display message
  5213. starpos = (strchr(strchr_pointer + 5,'*'));
  5214. if(starpos!=NULL)
  5215. *(starpos)='\0';
  5216. lcd_setstatus(strchr_pointer + 5);
  5217. break;*/
  5218. case 114: // M114
  5219. gcode_M114();
  5220. break;
  5221. case 120: //! M120 - Disable endstops
  5222. enable_endstops(false) ;
  5223. break;
  5224. case 121: //! M121 - Enable endstops
  5225. enable_endstops(true) ;
  5226. break;
  5227. case 119: // M119
  5228. SERIAL_PROTOCOLRPGM(_N("Reporting endstop status"));////MSG_M119_REPORT
  5229. SERIAL_PROTOCOLLN("");
  5230. #if defined(X_MIN_PIN) && X_MIN_PIN > -1
  5231. SERIAL_PROTOCOLRPGM(_n("x_min: "));////MSG_X_MIN
  5232. if(READ(X_MIN_PIN)^X_MIN_ENDSTOP_INVERTING){
  5233. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_HIT);
  5234. }else{
  5235. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_OPEN);
  5236. }
  5237. SERIAL_PROTOCOLLN("");
  5238. #endif
  5239. #if defined(X_MAX_PIN) && X_MAX_PIN > -1
  5240. SERIAL_PROTOCOLRPGM(_n("x_max: "));////MSG_X_MAX
  5241. if(READ(X_MAX_PIN)^X_MAX_ENDSTOP_INVERTING){
  5242. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_HIT);
  5243. }else{
  5244. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_OPEN);
  5245. }
  5246. SERIAL_PROTOCOLLN("");
  5247. #endif
  5248. #if defined(Y_MIN_PIN) && Y_MIN_PIN > -1
  5249. SERIAL_PROTOCOLRPGM(_n("y_min: "));////MSG_Y_MIN
  5250. if(READ(Y_MIN_PIN)^Y_MIN_ENDSTOP_INVERTING){
  5251. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_HIT);
  5252. }else{
  5253. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_OPEN);
  5254. }
  5255. SERIAL_PROTOCOLLN("");
  5256. #endif
  5257. #if defined(Y_MAX_PIN) && Y_MAX_PIN > -1
  5258. SERIAL_PROTOCOLRPGM(_n("y_max: "));////MSG_Y_MAX
  5259. if(READ(Y_MAX_PIN)^Y_MAX_ENDSTOP_INVERTING){
  5260. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_HIT);
  5261. }else{
  5262. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_OPEN);
  5263. }
  5264. SERIAL_PROTOCOLLN("");
  5265. #endif
  5266. #if defined(Z_MIN_PIN) && Z_MIN_PIN > -1
  5267. SERIAL_PROTOCOLRPGM(MSG_Z_MIN);
  5268. if(READ(Z_MIN_PIN)^Z_MIN_ENDSTOP_INVERTING){
  5269. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_HIT);
  5270. }else{
  5271. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_OPEN);
  5272. }
  5273. SERIAL_PROTOCOLLN("");
  5274. #endif
  5275. #if defined(Z_MAX_PIN) && Z_MAX_PIN > -1
  5276. SERIAL_PROTOCOLRPGM(MSG_Z_MAX);
  5277. if(READ(Z_MAX_PIN)^Z_MAX_ENDSTOP_INVERTING){
  5278. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_HIT);
  5279. }else{
  5280. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_OPEN);
  5281. }
  5282. SERIAL_PROTOCOLLN("");
  5283. #endif
  5284. break;
  5285. //TODO: update for all axis, use for loop
  5286. #ifdef BLINKM
  5287. case 150: // M150
  5288. {
  5289. byte red;
  5290. byte grn;
  5291. byte blu;
  5292. if(code_seen('R')) red = code_value();
  5293. if(code_seen('U')) grn = code_value();
  5294. if(code_seen('B')) blu = code_value();
  5295. SendColors(red,grn,blu);
  5296. }
  5297. break;
  5298. #endif //BLINKM
  5299. case 200: // M200 D<millimeters> set filament diameter and set E axis units to cubic millimeters (use S0 to set back to millimeters).
  5300. {
  5301. uint8_t extruder = active_extruder;
  5302. if(code_seen('T')) {
  5303. extruder = code_value();
  5304. if(extruder >= EXTRUDERS) {
  5305. SERIAL_ECHO_START;
  5306. SERIAL_ECHO(_n("M200 Invalid extruder "));////MSG_M200_INVALID_EXTRUDER
  5307. break;
  5308. }
  5309. }
  5310. if(code_seen('D')) {
  5311. float diameter = (float)code_value();
  5312. if (diameter == 0.0) {
  5313. // setting any extruder filament size disables volumetric on the assumption that
  5314. // slicers either generate in extruder values as cubic mm or as as filament feeds
  5315. // for all extruders
  5316. cs.volumetric_enabled = false;
  5317. } else {
  5318. cs.filament_size[extruder] = (float)code_value();
  5319. // make sure all extruders have some sane value for the filament size
  5320. cs.filament_size[0] = (cs.filament_size[0] == 0.0 ? DEFAULT_NOMINAL_FILAMENT_DIA : cs.filament_size[0]);
  5321. #if EXTRUDERS > 1
  5322. cs.filament_size[1] = (cs.filament_size[1] == 0.0 ? DEFAULT_NOMINAL_FILAMENT_DIA : cs.filament_size[1]);
  5323. #if EXTRUDERS > 2
  5324. cs.filament_size[2] = (cs.filament_size[2] == 0.0 ? DEFAULT_NOMINAL_FILAMENT_DIA : cs.filament_size[2]);
  5325. #endif
  5326. #endif
  5327. cs.volumetric_enabled = true;
  5328. }
  5329. } else {
  5330. //reserved for setting filament diameter via UFID or filament measuring device
  5331. break;
  5332. }
  5333. calculate_extruder_multipliers();
  5334. }
  5335. break;
  5336. case 201: // M201
  5337. for (int8_t i = 0; i < NUM_AXIS; i++)
  5338. {
  5339. if (code_seen(axis_codes[i]))
  5340. {
  5341. unsigned long val = code_value();
  5342. #ifdef TMC2130
  5343. unsigned long val_silent = val;
  5344. if ((i == X_AXIS) || (i == Y_AXIS))
  5345. {
  5346. if (val > NORMAL_MAX_ACCEL_XY)
  5347. val = NORMAL_MAX_ACCEL_XY;
  5348. if (val_silent > SILENT_MAX_ACCEL_XY)
  5349. val_silent = SILENT_MAX_ACCEL_XY;
  5350. }
  5351. cs.max_acceleration_units_per_sq_second_normal[i] = val;
  5352. cs.max_acceleration_units_per_sq_second_silent[i] = val_silent;
  5353. #else //TMC2130
  5354. max_acceleration_units_per_sq_second[i] = val;
  5355. #endif //TMC2130
  5356. }
  5357. }
  5358. // steps per sq second need to be updated to agree with the units per sq second (as they are what is used in the planner)
  5359. reset_acceleration_rates();
  5360. break;
  5361. #if 0 // Not used for Sprinter/grbl gen6
  5362. case 202: // M202
  5363. for(int8_t i=0; i < NUM_AXIS; i++) {
  5364. if(code_seen(axis_codes[i])) axis_travel_steps_per_sqr_second[i] = code_value() * cs.axis_steps_per_unit[i];
  5365. }
  5366. break;
  5367. #endif
  5368. case 203: // M203 max feedrate mm/sec
  5369. for (int8_t i = 0; i < NUM_AXIS; i++)
  5370. {
  5371. if (code_seen(axis_codes[i]))
  5372. {
  5373. float val = code_value();
  5374. #ifdef TMC2130
  5375. float val_silent = val;
  5376. if ((i == X_AXIS) || (i == Y_AXIS))
  5377. {
  5378. if (val > NORMAL_MAX_FEEDRATE_XY)
  5379. val = NORMAL_MAX_FEEDRATE_XY;
  5380. if (val_silent > SILENT_MAX_FEEDRATE_XY)
  5381. val_silent = SILENT_MAX_FEEDRATE_XY;
  5382. }
  5383. cs.max_feedrate_normal[i] = val;
  5384. cs.max_feedrate_silent[i] = val_silent;
  5385. #else //TMC2130
  5386. max_feedrate[i] = val;
  5387. #endif //TMC2130
  5388. }
  5389. }
  5390. break;
  5391. case 204:
  5392. //! M204 acclereration settings.
  5393. //!@n Supporting old format: M204 S[normal moves] T[filmanent only moves]
  5394. //!@n and new format: M204 P[printing moves] R[filmanent only moves] T[travel moves] (as of now T is ignored)
  5395. {
  5396. if(code_seen('S')) {
  5397. // Legacy acceleration format. This format is used by the legacy Marlin, MK2 or MK3 firmware,
  5398. // and it is also generated by Slic3r to control acceleration per extrusion type
  5399. // (there is a separate acceleration settings in Slicer for perimeter, first layer etc).
  5400. cs.acceleration = code_value();
  5401. // Interpret the T value as retract acceleration in the old Marlin format.
  5402. if(code_seen('T'))
  5403. cs.retract_acceleration = code_value();
  5404. } else {
  5405. // New acceleration format, compatible with the upstream Marlin.
  5406. if(code_seen('P'))
  5407. cs.acceleration = code_value();
  5408. if(code_seen('R'))
  5409. cs.retract_acceleration = code_value();
  5410. if(code_seen('T')) {
  5411. // Interpret the T value as the travel acceleration in the new Marlin format.
  5412. //FIXME Prusa3D firmware currently does not support travel acceleration value independent from the extruding acceleration value.
  5413. // travel_acceleration = code_value();
  5414. }
  5415. }
  5416. }
  5417. break;
  5418. case 205: //M205 advanced settings: minimum travel speed S=while printing T=travel only, B=minimum segment time X= maximum xy jerk, Z=maximum Z jerk
  5419. {
  5420. if(code_seen('S')) cs.minimumfeedrate = code_value();
  5421. if(code_seen('T')) cs.mintravelfeedrate = code_value();
  5422. if(code_seen('B')) cs.minsegmenttime = code_value() ;
  5423. if(code_seen('X')) cs.max_jerk[X_AXIS] = cs.max_jerk[Y_AXIS] = code_value();
  5424. if(code_seen('Y')) cs.max_jerk[Y_AXIS] = code_value();
  5425. if(code_seen('Z')) cs.max_jerk[Z_AXIS] = code_value();
  5426. if(code_seen('E')) cs.max_jerk[E_AXIS] = code_value();
  5427. if (cs.max_jerk[X_AXIS] > DEFAULT_XJERK) cs.max_jerk[X_AXIS] = DEFAULT_XJERK;
  5428. if (cs.max_jerk[Y_AXIS] > DEFAULT_YJERK) cs.max_jerk[Y_AXIS] = DEFAULT_YJERK;
  5429. }
  5430. break;
  5431. case 206: // M206 additional homing offset
  5432. for(int8_t i=0; i < 3; i++)
  5433. {
  5434. if(code_seen(axis_codes[i])) cs.add_homing[i] = code_value();
  5435. }
  5436. break;
  5437. #ifdef FWRETRACT
  5438. case 207: //M207 - set retract length S[positive mm] F[feedrate mm/min] Z[additional zlift/hop]
  5439. {
  5440. if(code_seen('S'))
  5441. {
  5442. cs.retract_length = code_value() ;
  5443. }
  5444. if(code_seen('F'))
  5445. {
  5446. cs.retract_feedrate = code_value()/60 ;
  5447. }
  5448. if(code_seen('Z'))
  5449. {
  5450. cs.retract_zlift = code_value() ;
  5451. }
  5452. }break;
  5453. case 208: // M208 - set retract recover length S[positive mm surplus to the M207 S*] F[feedrate mm/min]
  5454. {
  5455. if(code_seen('S'))
  5456. {
  5457. cs.retract_recover_length = code_value() ;
  5458. }
  5459. if(code_seen('F'))
  5460. {
  5461. cs.retract_recover_feedrate = code_value()/60 ;
  5462. }
  5463. }break;
  5464. case 209: // M209 - S<1=true/0=false> enable automatic retract detect if the slicer did not support G10/11: every normal extrude-only move will be classified as retract depending on the direction.
  5465. {
  5466. if(code_seen('S'))
  5467. {
  5468. int t= code_value() ;
  5469. switch(t)
  5470. {
  5471. case 0:
  5472. {
  5473. cs.autoretract_enabled=false;
  5474. retracted[0]=false;
  5475. #if EXTRUDERS > 1
  5476. retracted[1]=false;
  5477. #endif
  5478. #if EXTRUDERS > 2
  5479. retracted[2]=false;
  5480. #endif
  5481. }break;
  5482. case 1:
  5483. {
  5484. cs.autoretract_enabled=true;
  5485. retracted[0]=false;
  5486. #if EXTRUDERS > 1
  5487. retracted[1]=false;
  5488. #endif
  5489. #if EXTRUDERS > 2
  5490. retracted[2]=false;
  5491. #endif
  5492. }break;
  5493. default:
  5494. SERIAL_ECHO_START;
  5495. SERIAL_ECHORPGM(MSG_UNKNOWN_COMMAND);
  5496. SERIAL_ECHO(CMDBUFFER_CURRENT_STRING);
  5497. SERIAL_ECHOLNPGM("\"(1)");
  5498. }
  5499. }
  5500. }break;
  5501. #endif // FWRETRACT
  5502. #if EXTRUDERS > 1
  5503. case 218: // M218 - set hotend offset (in mm), T<extruder_number> X<offset_on_X> Y<offset_on_Y>
  5504. {
  5505. uint8_t extruder;
  5506. if(setTargetedHotend(218, extruder)){
  5507. break;
  5508. }
  5509. if(code_seen('X'))
  5510. {
  5511. extruder_offset[X_AXIS][extruder] = code_value();
  5512. }
  5513. if(code_seen('Y'))
  5514. {
  5515. extruder_offset[Y_AXIS][extruder] = code_value();
  5516. }
  5517. SERIAL_ECHO_START;
  5518. SERIAL_ECHORPGM(MSG_HOTEND_OFFSET);
  5519. for(extruder = 0; extruder < EXTRUDERS; extruder++)
  5520. {
  5521. SERIAL_ECHO(" ");
  5522. SERIAL_ECHO(extruder_offset[X_AXIS][extruder]);
  5523. SERIAL_ECHO(",");
  5524. SERIAL_ECHO(extruder_offset[Y_AXIS][extruder]);
  5525. }
  5526. SERIAL_ECHOLN("");
  5527. }break;
  5528. #endif
  5529. case 220: // M220 S<factor in percent>- set speed factor override percentage
  5530. {
  5531. if (code_seen('B')) //backup current speed factor
  5532. {
  5533. saved_feedmultiply_mm = feedmultiply;
  5534. }
  5535. if(code_seen('S'))
  5536. {
  5537. feedmultiply = code_value() ;
  5538. }
  5539. if (code_seen('R')) { //restore previous feedmultiply
  5540. feedmultiply = saved_feedmultiply_mm;
  5541. }
  5542. }
  5543. break;
  5544. case 221: // M221 S<factor in percent>- set extrude factor override percentage
  5545. {
  5546. if(code_seen('S'))
  5547. {
  5548. int tmp_code = code_value();
  5549. if (code_seen('T'))
  5550. {
  5551. uint8_t extruder;
  5552. if(setTargetedHotend(221, extruder)){
  5553. break;
  5554. }
  5555. extruder_multiply[extruder] = tmp_code;
  5556. }
  5557. else
  5558. {
  5559. extrudemultiply = tmp_code ;
  5560. }
  5561. }
  5562. calculate_extruder_multipliers();
  5563. }
  5564. break;
  5565. case 226: // M226 P<pin number> S<pin state>- Wait until the specified pin reaches the state required
  5566. {
  5567. if(code_seen('P')){
  5568. int pin_number = code_value(); // pin number
  5569. int pin_state = -1; // required pin state - default is inverted
  5570. if(code_seen('S')) pin_state = code_value(); // required pin state
  5571. if(pin_state >= -1 && pin_state <= 1){
  5572. for(int8_t i = 0; i < (int8_t)(sizeof(sensitive_pins)/sizeof(int)); i++)
  5573. {
  5574. if (sensitive_pins[i] == pin_number)
  5575. {
  5576. pin_number = -1;
  5577. break;
  5578. }
  5579. }
  5580. if (pin_number > -1)
  5581. {
  5582. int target = LOW;
  5583. st_synchronize();
  5584. pinMode(pin_number, INPUT);
  5585. switch(pin_state){
  5586. case 1:
  5587. target = HIGH;
  5588. break;
  5589. case 0:
  5590. target = LOW;
  5591. break;
  5592. case -1:
  5593. target = !digitalRead(pin_number);
  5594. break;
  5595. }
  5596. while(digitalRead(pin_number) != target){
  5597. manage_heater();
  5598. manage_inactivity();
  5599. lcd_update(0);
  5600. }
  5601. }
  5602. }
  5603. }
  5604. }
  5605. break;
  5606. #if NUM_SERVOS > 0
  5607. case 280: // M280 - set servo position absolute. P: servo index, S: angle or microseconds
  5608. {
  5609. int servo_index = -1;
  5610. int servo_position = 0;
  5611. if (code_seen('P'))
  5612. servo_index = code_value();
  5613. if (code_seen('S')) {
  5614. servo_position = code_value();
  5615. if ((servo_index >= 0) && (servo_index < NUM_SERVOS)) {
  5616. #if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
  5617. servos[servo_index].attach(0);
  5618. #endif
  5619. servos[servo_index].write(servo_position);
  5620. #if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
  5621. _delay(PROBE_SERVO_DEACTIVATION_DELAY);
  5622. servos[servo_index].detach();
  5623. #endif
  5624. }
  5625. else {
  5626. SERIAL_ECHO_START;
  5627. SERIAL_ECHO("Servo ");
  5628. SERIAL_ECHO(servo_index);
  5629. SERIAL_ECHOLN(" out of range");
  5630. }
  5631. }
  5632. else if (servo_index >= 0) {
  5633. SERIAL_PROTOCOL(MSG_OK);
  5634. SERIAL_PROTOCOL(" Servo ");
  5635. SERIAL_PROTOCOL(servo_index);
  5636. SERIAL_PROTOCOL(": ");
  5637. SERIAL_PROTOCOL(servos[servo_index].read());
  5638. SERIAL_PROTOCOLLN("");
  5639. }
  5640. }
  5641. break;
  5642. #endif // NUM_SERVOS > 0
  5643. #if (LARGE_FLASH == true && ( BEEPER > 0 || defined(ULTRALCD) || defined(LCD_USE_I2C_BUZZER)))
  5644. case 300: // M300
  5645. {
  5646. int beepS = code_seen('S') ? code_value() : 110;
  5647. int beepP = code_seen('P') ? code_value() : 1000;
  5648. if (beepS > 0)
  5649. {
  5650. #if BEEPER > 0
  5651. Sound_MakeCustom(beepP,beepS,false);
  5652. #endif
  5653. }
  5654. else
  5655. {
  5656. _delay(beepP);
  5657. }
  5658. }
  5659. break;
  5660. #endif // M300
  5661. #ifdef PIDTEMP
  5662. case 301: // M301
  5663. {
  5664. if(code_seen('P')) cs.Kp = code_value();
  5665. if(code_seen('I')) cs.Ki = scalePID_i(code_value());
  5666. if(code_seen('D')) cs.Kd = scalePID_d(code_value());
  5667. #ifdef PID_ADD_EXTRUSION_RATE
  5668. if(code_seen('C')) Kc = code_value();
  5669. #endif
  5670. updatePID();
  5671. SERIAL_PROTOCOLRPGM(MSG_OK);
  5672. SERIAL_PROTOCOL(" p:");
  5673. SERIAL_PROTOCOL(cs.Kp);
  5674. SERIAL_PROTOCOL(" i:");
  5675. SERIAL_PROTOCOL(unscalePID_i(cs.Ki));
  5676. SERIAL_PROTOCOL(" d:");
  5677. SERIAL_PROTOCOL(unscalePID_d(cs.Kd));
  5678. #ifdef PID_ADD_EXTRUSION_RATE
  5679. SERIAL_PROTOCOL(" c:");
  5680. //Kc does not have scaling applied above, or in resetting defaults
  5681. SERIAL_PROTOCOL(Kc);
  5682. #endif
  5683. SERIAL_PROTOCOLLN("");
  5684. }
  5685. break;
  5686. #endif //PIDTEMP
  5687. #ifdef PIDTEMPBED
  5688. case 304: // M304
  5689. {
  5690. if(code_seen('P')) cs.bedKp = code_value();
  5691. if(code_seen('I')) cs.bedKi = scalePID_i(code_value());
  5692. if(code_seen('D')) cs.bedKd = scalePID_d(code_value());
  5693. updatePID();
  5694. SERIAL_PROTOCOLRPGM(MSG_OK);
  5695. SERIAL_PROTOCOL(" p:");
  5696. SERIAL_PROTOCOL(cs.bedKp);
  5697. SERIAL_PROTOCOL(" i:");
  5698. SERIAL_PROTOCOL(unscalePID_i(cs.bedKi));
  5699. SERIAL_PROTOCOL(" d:");
  5700. SERIAL_PROTOCOL(unscalePID_d(cs.bedKd));
  5701. SERIAL_PROTOCOLLN("");
  5702. }
  5703. break;
  5704. #endif //PIDTEMP
  5705. case 240: // M240 Triggers a camera by emulating a Canon RC-1 : http://www.doc-diy.net/photo/rc-1_hacked/
  5706. {
  5707. #ifdef CHDK
  5708. SET_OUTPUT(CHDK);
  5709. WRITE(CHDK, HIGH);
  5710. chdkHigh = _millis();
  5711. chdkActive = true;
  5712. #else
  5713. #if defined(PHOTOGRAPH_PIN) && PHOTOGRAPH_PIN > -1
  5714. const uint8_t NUM_PULSES=16;
  5715. const float PULSE_LENGTH=0.01524;
  5716. for(int i=0; i < NUM_PULSES; i++) {
  5717. WRITE(PHOTOGRAPH_PIN, HIGH);
  5718. _delay_ms(PULSE_LENGTH);
  5719. WRITE(PHOTOGRAPH_PIN, LOW);
  5720. _delay_ms(PULSE_LENGTH);
  5721. }
  5722. _delay(7.33);
  5723. for(int i=0; i < NUM_PULSES; i++) {
  5724. WRITE(PHOTOGRAPH_PIN, HIGH);
  5725. _delay_ms(PULSE_LENGTH);
  5726. WRITE(PHOTOGRAPH_PIN, LOW);
  5727. _delay_ms(PULSE_LENGTH);
  5728. }
  5729. #endif
  5730. #endif //chdk end if
  5731. }
  5732. break;
  5733. #ifdef PREVENT_DANGEROUS_EXTRUDE
  5734. case 302: // allow cold extrudes, or set the minimum extrude temperature
  5735. {
  5736. float temp = .0;
  5737. if (code_seen('S')) temp=code_value();
  5738. set_extrude_min_temp(temp);
  5739. }
  5740. break;
  5741. #endif
  5742. case 303: // M303 PID autotune
  5743. {
  5744. float temp = 150.0;
  5745. int e=0;
  5746. int c=5;
  5747. if (code_seen('E')) e=code_value();
  5748. if (e<0)
  5749. temp=70;
  5750. if (code_seen('S')) temp=code_value();
  5751. if (code_seen('C')) c=code_value();
  5752. PID_autotune(temp, e, c);
  5753. }
  5754. break;
  5755. case 400: // M400 finish all moves
  5756. {
  5757. st_synchronize();
  5758. }
  5759. break;
  5760. case 403: //! M403 set filament type (material) for particular extruder and send this information to mmu
  5761. {
  5762. //! currently three different materials are needed (default, flex and PVA)
  5763. //! add storing this information for different load/unload profiles etc. in the future
  5764. //!firmware does not wait for "ok" from mmu
  5765. if (mmu_enabled)
  5766. {
  5767. uint8_t extruder = 255;
  5768. uint8_t filament = FILAMENT_UNDEFINED;
  5769. if(code_seen('E')) extruder = code_value();
  5770. if(code_seen('F')) filament = code_value();
  5771. mmu_set_filament_type(extruder, filament);
  5772. }
  5773. }
  5774. break;
  5775. case 500: // M500 Store settings in EEPROM
  5776. {
  5777. Config_StoreSettings();
  5778. }
  5779. break;
  5780. case 501: // M501 Read settings from EEPROM
  5781. {
  5782. Config_RetrieveSettings();
  5783. }
  5784. break;
  5785. case 502: // M502 Revert to default settings
  5786. {
  5787. Config_ResetDefault();
  5788. }
  5789. break;
  5790. case 503: // M503 print settings currently in memory
  5791. {
  5792. Config_PrintSettings();
  5793. }
  5794. break;
  5795. case 509: //M509 Force language selection
  5796. {
  5797. lang_reset();
  5798. SERIAL_ECHO_START;
  5799. SERIAL_PROTOCOLPGM(("LANG SEL FORCED"));
  5800. }
  5801. break;
  5802. #ifdef ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED
  5803. case 540:
  5804. {
  5805. if(code_seen('S')) abort_on_endstop_hit = code_value() > 0;
  5806. }
  5807. break;
  5808. #endif
  5809. #ifdef CUSTOM_M_CODE_SET_Z_PROBE_OFFSET
  5810. case CUSTOM_M_CODE_SET_Z_PROBE_OFFSET:
  5811. {
  5812. float value;
  5813. if (code_seen('Z'))
  5814. {
  5815. value = code_value();
  5816. if ((Z_PROBE_OFFSET_RANGE_MIN <= value) && (value <= Z_PROBE_OFFSET_RANGE_MAX))
  5817. {
  5818. cs.zprobe_zoffset = -value; // compare w/ line 278 of ConfigurationStore.cpp
  5819. SERIAL_ECHO_START;
  5820. SERIAL_ECHOLNRPGM(CAT4(MSG_ZPROBE_ZOFFSET, " ", MSG_OK,PSTR("")));
  5821. SERIAL_PROTOCOLLN("");
  5822. }
  5823. else
  5824. {
  5825. SERIAL_ECHO_START;
  5826. SERIAL_ECHORPGM(MSG_ZPROBE_ZOFFSET);
  5827. SERIAL_ECHORPGM(MSG_Z_MIN);
  5828. SERIAL_ECHO(Z_PROBE_OFFSET_RANGE_MIN);
  5829. SERIAL_ECHORPGM(MSG_Z_MAX);
  5830. SERIAL_ECHO(Z_PROBE_OFFSET_RANGE_MAX);
  5831. SERIAL_PROTOCOLLN("");
  5832. }
  5833. }
  5834. else
  5835. {
  5836. SERIAL_ECHO_START;
  5837. SERIAL_ECHOLNRPGM(CAT2(MSG_ZPROBE_ZOFFSET, PSTR(" : ")));
  5838. SERIAL_ECHO(-cs.zprobe_zoffset);
  5839. SERIAL_PROTOCOLLN("");
  5840. }
  5841. break;
  5842. }
  5843. #endif // CUSTOM_M_CODE_SET_Z_PROBE_OFFSET
  5844. #ifdef FILAMENTCHANGEENABLE
  5845. case 600: //Pause for filament change X[pos] Y[pos] Z[relative lift] E[initial retract] L[later retract distance for removal]
  5846. {
  5847. st_synchronize();
  5848. float x_position = current_position[X_AXIS];
  5849. float y_position = current_position[Y_AXIS];
  5850. float z_shift = 0; // is it necessary to be a float?
  5851. float e_shift_init = 0;
  5852. float e_shift_late = 0;
  5853. bool automatic = false;
  5854. //Retract extruder
  5855. if(code_seen('E'))
  5856. {
  5857. e_shift_init = code_value();
  5858. }
  5859. else
  5860. {
  5861. #ifdef FILAMENTCHANGE_FIRSTRETRACT
  5862. e_shift_init = FILAMENTCHANGE_FIRSTRETRACT ;
  5863. #endif
  5864. }
  5865. //currently don't work as we are using the same unload sequence as in M702, needs re-work
  5866. if (code_seen('L'))
  5867. {
  5868. e_shift_late = code_value();
  5869. }
  5870. else
  5871. {
  5872. #ifdef FILAMENTCHANGE_FINALRETRACT
  5873. e_shift_late = FILAMENTCHANGE_FINALRETRACT;
  5874. #endif
  5875. }
  5876. //Lift Z
  5877. if(code_seen('Z'))
  5878. {
  5879. z_shift = code_value();
  5880. }
  5881. else
  5882. {
  5883. z_shift = gcode_M600_filament_change_z_shift<uint8_t>();
  5884. }
  5885. //Move XY to side
  5886. if(code_seen('X'))
  5887. {
  5888. x_position = code_value();
  5889. }
  5890. else
  5891. {
  5892. #ifdef FILAMENTCHANGE_XPOS
  5893. x_position = FILAMENTCHANGE_XPOS;
  5894. #endif
  5895. }
  5896. if(code_seen('Y'))
  5897. {
  5898. y_position = code_value();
  5899. }
  5900. else
  5901. {
  5902. #ifdef FILAMENTCHANGE_YPOS
  5903. y_position = FILAMENTCHANGE_YPOS ;
  5904. #endif
  5905. }
  5906. if (mmu_enabled && code_seen("AUTO"))
  5907. automatic = true;
  5908. gcode_M600(automatic, x_position, y_position, z_shift, e_shift_init, e_shift_late);
  5909. }
  5910. break;
  5911. #endif //FILAMENTCHANGEENABLE
  5912. case 601: //! M601 - Pause print
  5913. {
  5914. cmdqueue_pop_front(); //trick because we want skip this command (M601) after restore
  5915. lcd_pause_print();
  5916. }
  5917. break;
  5918. case 602: { //! M602 - Resume print
  5919. lcd_resume_print();
  5920. }
  5921. break;
  5922. #ifdef PINDA_THERMISTOR
  5923. case 860: // M860 - Wait for PINDA thermistor to reach target temperature.
  5924. {
  5925. int set_target_pinda = 0;
  5926. if (code_seen('S')) {
  5927. set_target_pinda = code_value();
  5928. }
  5929. else {
  5930. break;
  5931. }
  5932. LCD_MESSAGERPGM(_T(MSG_PLEASE_WAIT));
  5933. SERIAL_PROTOCOLPGM("Wait for PINDA target temperature:");
  5934. SERIAL_PROTOCOL(set_target_pinda);
  5935. SERIAL_PROTOCOLLN("");
  5936. codenum = _millis();
  5937. cancel_heatup = false;
  5938. bool is_pinda_cooling = false;
  5939. if ((degTargetBed() == 0) && (degTargetHotend(0) == 0)) {
  5940. is_pinda_cooling = true;
  5941. }
  5942. while ( ((!is_pinda_cooling) && (!cancel_heatup) && (current_temperature_pinda < set_target_pinda)) || (is_pinda_cooling && (current_temperature_pinda > set_target_pinda)) ) {
  5943. if ((_millis() - codenum) > 1000) //Print Temp Reading every 1 second while waiting.
  5944. {
  5945. SERIAL_PROTOCOLPGM("P:");
  5946. SERIAL_PROTOCOL_F(current_temperature_pinda, 1);
  5947. SERIAL_PROTOCOLPGM("/");
  5948. SERIAL_PROTOCOL(set_target_pinda);
  5949. SERIAL_PROTOCOLLN("");
  5950. codenum = _millis();
  5951. }
  5952. manage_heater();
  5953. manage_inactivity();
  5954. lcd_update(0);
  5955. }
  5956. LCD_MESSAGERPGM(MSG_OK);
  5957. break;
  5958. }
  5959. case 861: // M861 - Set/Read PINDA temperature compensation offsets
  5960. if (code_seen('?')) { // ? - Print out current EEPROM offset values
  5961. uint8_t cal_status = calibration_status_pinda();
  5962. int16_t usteps = 0;
  5963. cal_status ? SERIAL_PROTOCOLLN("PINDA cal status: 1") : SERIAL_PROTOCOLLN("PINDA cal status: 0");
  5964. SERIAL_PROTOCOLLN("index, temp, ustep, um");
  5965. for (uint8_t i = 0; i < 6; i++)
  5966. {
  5967. if(i>0) EEPROM_read_B(EEPROM_PROBE_TEMP_SHIFT + (i-1) * 2, &usteps);
  5968. float mm = ((float)usteps) / cs.axis_steps_per_unit[Z_AXIS];
  5969. i == 0 ? SERIAL_PROTOCOLPGM("n/a") : SERIAL_PROTOCOL(i - 1);
  5970. SERIAL_PROTOCOLPGM(", ");
  5971. SERIAL_PROTOCOL(35 + (i * 5));
  5972. SERIAL_PROTOCOLPGM(", ");
  5973. SERIAL_PROTOCOL(usteps);
  5974. SERIAL_PROTOCOLPGM(", ");
  5975. SERIAL_PROTOCOL(mm * 1000);
  5976. SERIAL_PROTOCOLLN("");
  5977. }
  5978. }
  5979. else if (code_seen('!')) { // ! - Set factory default values
  5980. eeprom_write_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 1);
  5981. int16_t z_shift = 8; //40C - 20um - 8usteps
  5982. EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT, &z_shift);
  5983. z_shift = 24; //45C - 60um - 24usteps
  5984. EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + 2, &z_shift);
  5985. z_shift = 48; //50C - 120um - 48usteps
  5986. EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + 4, &z_shift);
  5987. z_shift = 80; //55C - 200um - 80usteps
  5988. EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + 6, &z_shift);
  5989. z_shift = 120; //60C - 300um - 120usteps
  5990. EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + 8, &z_shift);
  5991. SERIAL_PROTOCOLLN("factory restored");
  5992. }
  5993. else if (code_seen('Z')) { // Z - Set all values to 0 (effectively disabling PINDA temperature compensation)
  5994. eeprom_write_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 1);
  5995. int16_t z_shift = 0;
  5996. for (uint8_t i = 0; i < 5; i++) EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + i * 2, &z_shift);
  5997. SERIAL_PROTOCOLLN("zerorized");
  5998. }
  5999. else if (code_seen('S')) { // Sxxx Iyyy - Set compensation ustep value S for compensation table index I
  6000. int16_t usteps = code_value();
  6001. if (code_seen('I')) {
  6002. uint8_t index = code_value();
  6003. if (index < 5) {
  6004. EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + index * 2, &usteps);
  6005. SERIAL_PROTOCOLLN("OK");
  6006. SERIAL_PROTOCOLLN("index, temp, ustep, um");
  6007. for (uint8_t i = 0; i < 6; i++)
  6008. {
  6009. usteps = 0;
  6010. if (i>0) EEPROM_read_B(EEPROM_PROBE_TEMP_SHIFT + (i - 1) * 2, &usteps);
  6011. float mm = ((float)usteps) / cs.axis_steps_per_unit[Z_AXIS];
  6012. i == 0 ? SERIAL_PROTOCOLPGM("n/a") : SERIAL_PROTOCOL(i - 1);
  6013. SERIAL_PROTOCOLPGM(", ");
  6014. SERIAL_PROTOCOL(35 + (i * 5));
  6015. SERIAL_PROTOCOLPGM(", ");
  6016. SERIAL_PROTOCOL(usteps);
  6017. SERIAL_PROTOCOLPGM(", ");
  6018. SERIAL_PROTOCOL(mm * 1000);
  6019. SERIAL_PROTOCOLLN("");
  6020. }
  6021. }
  6022. }
  6023. }
  6024. else {
  6025. SERIAL_PROTOCOLPGM("no valid command");
  6026. }
  6027. break;
  6028. #endif //PINDA_THERMISTOR
  6029. case 862: // M862: print checking
  6030. float nDummy;
  6031. uint8_t nCommand;
  6032. nCommand=(uint8_t)(modff(code_value_float(),&nDummy)*10.0+0.5);
  6033. switch((ClPrintChecking)nCommand)
  6034. {
  6035. case ClPrintChecking::_Nozzle: // ~ .1
  6036. uint16_t nDiameter;
  6037. if(code_seen('P'))
  6038. {
  6039. nDiameter=(uint16_t)(code_value()*1000.0+0.5); // [,um]
  6040. nozzle_diameter_check(nDiameter);
  6041. }
  6042. /*
  6043. else if(code_seen('S')&&farm_mode)
  6044. {
  6045. nDiameter=(uint16_t)(code_value()*1000.0+0.5); // [,um]
  6046. eeprom_update_byte((uint8_t*)EEPROM_NOZZLE_DIAMETER,(uint8_t)ClNozzleDiameter::_Diameter_Undef); // for correct synchronization after farm-mode exiting
  6047. eeprom_update_word((uint16_t*)EEPROM_NOZZLE_DIAMETER_uM,nDiameter);
  6048. }
  6049. */
  6050. else if(code_seen('Q'))
  6051. SERIAL_PROTOCOLLN((float)eeprom_read_word((uint16_t*)EEPROM_NOZZLE_DIAMETER_uM)/1000.0);
  6052. break;
  6053. case ClPrintChecking::_Model: // ~ .2
  6054. if(code_seen('P'))
  6055. {
  6056. uint16_t nPrinterModel;
  6057. nPrinterModel=(uint16_t)code_value_long();
  6058. printer_model_check(nPrinterModel);
  6059. }
  6060. else if(code_seen('Q'))
  6061. SERIAL_PROTOCOLLN(nPrinterType);
  6062. break;
  6063. case ClPrintChecking::_Smodel: // ~ .3
  6064. if(code_seen('P'))
  6065. printer_smodel_check(strchr_pointer);
  6066. else if(code_seen('Q'))
  6067. SERIAL_PROTOCOLLNRPGM(sPrinterName);
  6068. break;
  6069. case ClPrintChecking::_Version: // ~ .4
  6070. if(code_seen('P'))
  6071. fw_version_check(++strchr_pointer);
  6072. else if(code_seen('Q'))
  6073. SERIAL_PROTOCOLLN(FW_VERSION);
  6074. break;
  6075. case ClPrintChecking::_Gcode: // ~ .5
  6076. if(code_seen('P'))
  6077. {
  6078. uint16_t nGcodeLevel;
  6079. nGcodeLevel=(uint16_t)code_value_long();
  6080. gcode_level_check(nGcodeLevel);
  6081. }
  6082. else if(code_seen('Q'))
  6083. SERIAL_PROTOCOLLN(GCODE_LEVEL);
  6084. break;
  6085. }
  6086. break;
  6087. #ifdef LIN_ADVANCE
  6088. case 900: // M900: Set LIN_ADVANCE options.
  6089. gcode_M900();
  6090. break;
  6091. #endif
  6092. case 907: // M907 Set digital trimpot motor current using axis codes.
  6093. {
  6094. #ifdef TMC2130
  6095. for (int i = 0; i < NUM_AXIS; i++)
  6096. if(code_seen(axis_codes[i]))
  6097. {
  6098. long cur_mA = code_value_long();
  6099. uint8_t val = tmc2130_cur2val(cur_mA);
  6100. tmc2130_set_current_h(i, val);
  6101. tmc2130_set_current_r(i, val);
  6102. //if (i == E_AXIS) printf_P(PSTR("E-axis current=%ldmA\n"), cur_mA);
  6103. }
  6104. #else //TMC2130
  6105. #if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
  6106. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) st_current_set(i,code_value());
  6107. if(code_seen('B')) st_current_set(4,code_value());
  6108. if(code_seen('S')) for(int i=0;i<=4;i++) st_current_set(i,code_value());
  6109. #endif
  6110. #ifdef MOTOR_CURRENT_PWM_XY_PIN
  6111. if(code_seen('X')) st_current_set(0, code_value());
  6112. #endif
  6113. #ifdef MOTOR_CURRENT_PWM_Z_PIN
  6114. if(code_seen('Z')) st_current_set(1, code_value());
  6115. #endif
  6116. #ifdef MOTOR_CURRENT_PWM_E_PIN
  6117. if(code_seen('E')) st_current_set(2, code_value());
  6118. #endif
  6119. #endif //TMC2130
  6120. }
  6121. break;
  6122. case 908: // M908 Control digital trimpot directly.
  6123. {
  6124. #if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
  6125. uint8_t channel,current;
  6126. if(code_seen('P')) channel=code_value();
  6127. if(code_seen('S')) current=code_value();
  6128. digitalPotWrite(channel, current);
  6129. #endif
  6130. }
  6131. break;
  6132. #ifdef TMC2130_SERVICE_CODES_M910_M918
  6133. case 910: //! M910 - TMC2130 init
  6134. {
  6135. tmc2130_init();
  6136. }
  6137. break;
  6138. case 911: //! M911 - Set TMC2130 holding currents
  6139. {
  6140. if (code_seen('X')) tmc2130_set_current_h(0, code_value());
  6141. if (code_seen('Y')) tmc2130_set_current_h(1, code_value());
  6142. if (code_seen('Z')) tmc2130_set_current_h(2, code_value());
  6143. if (code_seen('E')) tmc2130_set_current_h(3, code_value());
  6144. }
  6145. break;
  6146. case 912: //! M912 - Set TMC2130 running currents
  6147. {
  6148. if (code_seen('X')) tmc2130_set_current_r(0, code_value());
  6149. if (code_seen('Y')) tmc2130_set_current_r(1, code_value());
  6150. if (code_seen('Z')) tmc2130_set_current_r(2, code_value());
  6151. if (code_seen('E')) tmc2130_set_current_r(3, code_value());
  6152. }
  6153. break;
  6154. case 913: //! M913 - Print TMC2130 currents
  6155. {
  6156. tmc2130_print_currents();
  6157. }
  6158. break;
  6159. case 914: //! M914 - Set normal mode
  6160. {
  6161. tmc2130_mode = TMC2130_MODE_NORMAL;
  6162. update_mode_profile();
  6163. tmc2130_init();
  6164. }
  6165. break;
  6166. case 915: //! M915 - Set silent mode
  6167. {
  6168. tmc2130_mode = TMC2130_MODE_SILENT;
  6169. update_mode_profile();
  6170. tmc2130_init();
  6171. }
  6172. break;
  6173. case 916: //! M916 - Set sg_thrs
  6174. {
  6175. if (code_seen('X')) tmc2130_sg_thr[X_AXIS] = code_value();
  6176. if (code_seen('Y')) tmc2130_sg_thr[Y_AXIS] = code_value();
  6177. if (code_seen('Z')) tmc2130_sg_thr[Z_AXIS] = code_value();
  6178. if (code_seen('E')) tmc2130_sg_thr[E_AXIS] = code_value();
  6179. for (uint8_t a = X_AXIS; a <= E_AXIS; a++)
  6180. printf_P(_N("tmc2130_sg_thr[%c]=%d\n"), "XYZE"[a], tmc2130_sg_thr[a]);
  6181. }
  6182. break;
  6183. case 917: //! M917 - Set TMC2130 pwm_ampl
  6184. {
  6185. if (code_seen('X')) tmc2130_set_pwm_ampl(0, code_value());
  6186. if (code_seen('Y')) tmc2130_set_pwm_ampl(1, code_value());
  6187. if (code_seen('Z')) tmc2130_set_pwm_ampl(2, code_value());
  6188. if (code_seen('E')) tmc2130_set_pwm_ampl(3, code_value());
  6189. }
  6190. break;
  6191. case 918: //! M918 - Set TMC2130 pwm_grad
  6192. {
  6193. if (code_seen('X')) tmc2130_set_pwm_grad(0, code_value());
  6194. if (code_seen('Y')) tmc2130_set_pwm_grad(1, code_value());
  6195. if (code_seen('Z')) tmc2130_set_pwm_grad(2, code_value());
  6196. if (code_seen('E')) tmc2130_set_pwm_grad(3, code_value());
  6197. }
  6198. break;
  6199. #endif //TMC2130_SERVICE_CODES_M910_M918
  6200. case 350: //! M350 - Set microstepping mode. Warning: Steps per unit remains unchanged. S code sets stepping mode for all drivers.
  6201. {
  6202. #ifdef TMC2130
  6203. if(code_seen('E'))
  6204. {
  6205. uint16_t res_new = code_value();
  6206. if ((res_new == 8) || (res_new == 16) || (res_new == 32) || (res_new == 64) || (res_new == 128))
  6207. {
  6208. st_synchronize();
  6209. uint8_t axis = E_AXIS;
  6210. uint16_t res = tmc2130_get_res(axis);
  6211. tmc2130_set_res(axis, res_new);
  6212. cs.axis_ustep_resolution[axis] = res_new;
  6213. if (res_new > res)
  6214. {
  6215. uint16_t fac = (res_new / res);
  6216. cs.axis_steps_per_unit[axis] *= fac;
  6217. position[E_AXIS] *= fac;
  6218. }
  6219. else
  6220. {
  6221. uint16_t fac = (res / res_new);
  6222. cs.axis_steps_per_unit[axis] /= fac;
  6223. position[E_AXIS] /= fac;
  6224. }
  6225. }
  6226. }
  6227. #else //TMC2130
  6228. #if defined(X_MS1_PIN) && X_MS1_PIN > -1
  6229. if(code_seen('S')) for(int i=0;i<=4;i++) microstep_mode(i,code_value());
  6230. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) microstep_mode(i,(uint8_t)code_value());
  6231. if(code_seen('B')) microstep_mode(4,code_value());
  6232. microstep_readings();
  6233. #endif
  6234. #endif //TMC2130
  6235. }
  6236. break;
  6237. case 351: //! M351 - Toggle MS1 MS2 pins directly, S# determines MS1 or MS2, X# sets the pin high/low.
  6238. {
  6239. #if defined(X_MS1_PIN) && X_MS1_PIN > -1
  6240. if(code_seen('S')) switch((int)code_value())
  6241. {
  6242. case 1:
  6243. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) microstep_ms(i,code_value(),-1);
  6244. if(code_seen('B')) microstep_ms(4,code_value(),-1);
  6245. break;
  6246. case 2:
  6247. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) microstep_ms(i,-1,code_value());
  6248. if(code_seen('B')) microstep_ms(4,-1,code_value());
  6249. break;
  6250. }
  6251. microstep_readings();
  6252. #endif
  6253. }
  6254. break;
  6255. case 701: //! M701 - load filament
  6256. {
  6257. if (mmu_enabled && code_seen('E'))
  6258. tmp_extruder = code_value();
  6259. gcode_M701();
  6260. }
  6261. break;
  6262. case 702: //! M702 [U C] -
  6263. {
  6264. #ifdef SNMM
  6265. if (code_seen('U'))
  6266. extr_unload_used(); //! if "U" unload all filaments which were used in current print
  6267. else if (code_seen('C'))
  6268. extr_unload(); //! if "C" unload just current filament
  6269. else
  6270. extr_unload_all(); //! otherwise unload all filaments
  6271. #else
  6272. if (code_seen('C')) {
  6273. if(mmu_enabled) extr_unload(); //! if "C" unload current filament; if mmu is not present no action is performed
  6274. }
  6275. else {
  6276. if(mmu_enabled) extr_unload(); //! unload current filament
  6277. else unload_filament();
  6278. }
  6279. #endif //SNMM
  6280. }
  6281. break;
  6282. case 999: // M999: Restart after being stopped
  6283. Stopped = false;
  6284. lcd_reset_alert_level();
  6285. gcode_LastN = Stopped_gcode_LastN;
  6286. FlushSerialRequestResend();
  6287. break;
  6288. default:
  6289. printf_P(PSTR("Unknown M code: %s \n"), cmdbuffer + bufindr + CMDHDRSIZE);
  6290. }
  6291. // printf_P(_N("END M-CODE=%u\n"), mcode_in_progress);
  6292. mcode_in_progress = 0;
  6293. }
  6294. }
  6295. // end if(code_seen('M')) (end of M codes)
  6296. //! T<extruder nr.> - select extruder in case of multi extruder printer
  6297. //! select filament in case of MMU_V2
  6298. //! if extruder is "?", open menu to let the user select extruder/filament
  6299. //!
  6300. //! For MMU_V2:
  6301. //! @n T<n> Gcode to extrude at least 38.10 mm at feedrate 19.02 mm/s must follow immediately to load to extruder wheels.
  6302. //! @n T? Gcode to extrude shouldn't have to follow, load to extruder wheels is done automatically
  6303. //! @n Tx Same as T?, except nozzle doesn't have to be preheated. Tc must be placed after extruder nozzle is preheated to finish filament load.
  6304. //! @n Tc Load to nozzle after filament was prepared by Tc and extruder nozzle is already heated.
  6305. else if(code_seen('T'))
  6306. {
  6307. int index;
  6308. bool load_to_nozzle = false;
  6309. for (index = 1; *(strchr_pointer + index) == ' ' || *(strchr_pointer + index) == '\t'; index++);
  6310. *(strchr_pointer + index) = tolower(*(strchr_pointer + index));
  6311. if ((*(strchr_pointer + index) < '0' || *(strchr_pointer + index) > '4') && *(strchr_pointer + index) != '?' && *(strchr_pointer + index) != 'x' && *(strchr_pointer + index) != 'c') {
  6312. SERIAL_ECHOLNPGM("Invalid T code.");
  6313. }
  6314. else if (*(strchr_pointer + index) == 'x'){ //load to bondtech gears; if mmu is not present do nothing
  6315. if (mmu_enabled)
  6316. {
  6317. tmp_extruder = choose_menu_P(_T(MSG_CHOOSE_FILAMENT), _T(MSG_FILAMENT));
  6318. if ((tmp_extruder == mmu_extruder) && mmu_fil_loaded) //dont execute the same T-code twice in a row
  6319. {
  6320. printf_P(PSTR("Duplicate T-code ignored.\n"));
  6321. }
  6322. else
  6323. {
  6324. st_synchronize();
  6325. mmu_command(MmuCmd::T0 + tmp_extruder);
  6326. manage_response(true, true, MMU_TCODE_MOVE);
  6327. }
  6328. }
  6329. }
  6330. else if (*(strchr_pointer + index) == 'c') { //load to from bondtech gears to nozzle (nozzle should be preheated)
  6331. if (mmu_enabled)
  6332. {
  6333. st_synchronize();
  6334. mmu_continue_loading(is_usb_printing);
  6335. mmu_extruder = tmp_extruder; //filament change is finished
  6336. mmu_load_to_nozzle();
  6337. }
  6338. }
  6339. else {
  6340. if (*(strchr_pointer + index) == '?')
  6341. {
  6342. if(mmu_enabled)
  6343. {
  6344. tmp_extruder = choose_menu_P(_T(MSG_CHOOSE_FILAMENT), _T(MSG_FILAMENT));
  6345. load_to_nozzle = true;
  6346. } else
  6347. {
  6348. tmp_extruder = choose_menu_P(_T(MSG_CHOOSE_EXTRUDER), _T(MSG_EXTRUDER));
  6349. }
  6350. }
  6351. else {
  6352. tmp_extruder = code_value();
  6353. if (mmu_enabled && lcd_autoDepleteEnabled())
  6354. {
  6355. tmp_extruder = ad_getAlternative(tmp_extruder);
  6356. }
  6357. }
  6358. st_synchronize();
  6359. snmm_filaments_used |= (1 << tmp_extruder); //for stop print
  6360. if (mmu_enabled)
  6361. {
  6362. if ((tmp_extruder == mmu_extruder) && mmu_fil_loaded) //dont execute the same T-code twice in a row
  6363. {
  6364. printf_P(PSTR("Duplicate T-code ignored.\n"));
  6365. }
  6366. else
  6367. {
  6368. #if defined(MMU_HAS_CUTTER) && defined(MMU_ALWAYS_CUT)
  6369. if (EEPROM_MMU_CUTTER_ENABLED_always == eeprom_read_byte((uint8_t*)EEPROM_MMU_CUTTER_ENABLED))
  6370. {
  6371. mmu_command(MmuCmd::K0 + tmp_extruder);
  6372. manage_response(true, true, MMU_UNLOAD_MOVE);
  6373. }
  6374. #endif //defined(MMU_HAS_CUTTER) && defined(MMU_ALWAYS_CUT)
  6375. mmu_command(MmuCmd::T0 + tmp_extruder);
  6376. manage_response(true, true, MMU_TCODE_MOVE);
  6377. mmu_continue_loading(is_usb_printing);
  6378. mmu_extruder = tmp_extruder; //filament change is finished
  6379. if (load_to_nozzle)// for single material usage with mmu
  6380. {
  6381. mmu_load_to_nozzle();
  6382. }
  6383. }
  6384. }
  6385. else
  6386. {
  6387. #ifdef SNMM
  6388. #ifdef LIN_ADVANCE
  6389. if (mmu_extruder != tmp_extruder)
  6390. clear_current_adv_vars(); //Check if the selected extruder is not the active one and reset LIN_ADVANCE variables if so.
  6391. #endif
  6392. mmu_extruder = tmp_extruder;
  6393. _delay(100);
  6394. disable_e0();
  6395. disable_e1();
  6396. disable_e2();
  6397. pinMode(E_MUX0_PIN, OUTPUT);
  6398. pinMode(E_MUX1_PIN, OUTPUT);
  6399. _delay(100);
  6400. SERIAL_ECHO_START;
  6401. SERIAL_ECHO("T:");
  6402. SERIAL_ECHOLN((int)tmp_extruder);
  6403. switch (tmp_extruder) {
  6404. case 1:
  6405. WRITE(E_MUX0_PIN, HIGH);
  6406. WRITE(E_MUX1_PIN, LOW);
  6407. break;
  6408. case 2:
  6409. WRITE(E_MUX0_PIN, LOW);
  6410. WRITE(E_MUX1_PIN, HIGH);
  6411. break;
  6412. case 3:
  6413. WRITE(E_MUX0_PIN, HIGH);
  6414. WRITE(E_MUX1_PIN, HIGH);
  6415. break;
  6416. default:
  6417. WRITE(E_MUX0_PIN, LOW);
  6418. WRITE(E_MUX1_PIN, LOW);
  6419. break;
  6420. }
  6421. _delay(100);
  6422. #else //SNMM
  6423. if (tmp_extruder >= EXTRUDERS) {
  6424. SERIAL_ECHO_START;
  6425. SERIAL_ECHOPGM("T");
  6426. SERIAL_PROTOCOLLN((int)tmp_extruder);
  6427. SERIAL_ECHOLNRPGM(_n("Invalid extruder"));////MSG_INVALID_EXTRUDER
  6428. }
  6429. else {
  6430. #if EXTRUDERS > 1
  6431. boolean make_move = false;
  6432. #endif
  6433. if (code_seen('F')) {
  6434. #if EXTRUDERS > 1
  6435. make_move = true;
  6436. #endif
  6437. next_feedrate = code_value();
  6438. if (next_feedrate > 0.0) {
  6439. feedrate = next_feedrate;
  6440. }
  6441. }
  6442. #if EXTRUDERS > 1
  6443. if (tmp_extruder != active_extruder) {
  6444. // Save current position to return to after applying extruder offset
  6445. memcpy(destination, current_position, sizeof(destination));
  6446. // Offset extruder (only by XY)
  6447. int i;
  6448. for (i = 0; i < 2; i++) {
  6449. current_position[i] = current_position[i] -
  6450. extruder_offset[i][active_extruder] +
  6451. extruder_offset[i][tmp_extruder];
  6452. }
  6453. // Set the new active extruder and position
  6454. active_extruder = tmp_extruder;
  6455. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  6456. // Move to the old position if 'F' was in the parameters
  6457. if (make_move && Stopped == false) {
  6458. prepare_move();
  6459. }
  6460. }
  6461. #endif
  6462. SERIAL_ECHO_START;
  6463. SERIAL_ECHORPGM(_n("Active Extruder: "));////MSG_ACTIVE_EXTRUDER
  6464. SERIAL_PROTOCOLLN((int)active_extruder);
  6465. }
  6466. #endif //SNMM
  6467. }
  6468. }
  6469. } // end if(code_seen('T')) (end of T codes)
  6470. else if (code_seen('D')) // D codes (debug)
  6471. {
  6472. switch((int)code_value())
  6473. {
  6474. case -1: //! D-1 - Endless loop
  6475. dcode__1(); break;
  6476. #ifdef DEBUG_DCODES
  6477. case 0: //! D0 - Reset
  6478. dcode_0(); break;
  6479. case 1: //! D1 - Clear EEPROM
  6480. dcode_1(); break;
  6481. case 2: //! D2 - Read/Write RAM
  6482. dcode_2(); break;
  6483. #endif //DEBUG_DCODES
  6484. #ifdef DEBUG_DCODE3
  6485. case 3: //! D3 - Read/Write EEPROM
  6486. dcode_3(); break;
  6487. #endif //DEBUG_DCODE3
  6488. #ifdef DEBUG_DCODES
  6489. case 4: //! D4 - Read/Write PIN
  6490. dcode_4(); break;
  6491. #endif //DEBUG_DCODES
  6492. #ifdef DEBUG_DCODE5
  6493. case 5: // D5 - Read/Write FLASH
  6494. dcode_5(); break;
  6495. break;
  6496. #endif //DEBUG_DCODE5
  6497. #ifdef DEBUG_DCODES
  6498. case 6: // D6 - Read/Write external FLASH
  6499. dcode_6(); break;
  6500. case 7: //! D7 - Read/Write Bootloader
  6501. dcode_7(); break;
  6502. case 8: //! D8 - Read/Write PINDA
  6503. dcode_8(); break;
  6504. case 9: //! D9 - Read/Write ADC
  6505. dcode_9(); break;
  6506. case 10: //! D10 - XYZ calibration = OK
  6507. dcode_10(); break;
  6508. #endif //DEBUG_DCODES
  6509. #ifdef HEATBED_ANALYSIS
  6510. case 80:
  6511. {
  6512. float dimension_x = 40;
  6513. float dimension_y = 40;
  6514. int points_x = 40;
  6515. int points_y = 40;
  6516. float offset_x = 74;
  6517. float offset_y = 33;
  6518. if (code_seen('E')) dimension_x = code_value();
  6519. if (code_seen('F')) dimension_y = code_value();
  6520. if (code_seen('G')) {points_x = code_value(); }
  6521. if (code_seen('H')) {points_y = code_value(); }
  6522. if (code_seen('I')) {offset_x = code_value(); }
  6523. if (code_seen('J')) {offset_y = code_value(); }
  6524. printf_P(PSTR("DIM X: %f\n"), dimension_x);
  6525. printf_P(PSTR("DIM Y: %f\n"), dimension_y);
  6526. printf_P(PSTR("POINTS X: %d\n"), points_x);
  6527. printf_P(PSTR("POINTS Y: %d\n"), points_y);
  6528. printf_P(PSTR("OFFSET X: %f\n"), offset_x);
  6529. printf_P(PSTR("OFFSET Y: %f\n"), offset_y);
  6530. bed_check(dimension_x,dimension_y,points_x,points_y,offset_x,offset_y);
  6531. }break;
  6532. case 81:
  6533. {
  6534. float dimension_x = 40;
  6535. float dimension_y = 40;
  6536. int points_x = 40;
  6537. int points_y = 40;
  6538. float offset_x = 74;
  6539. float offset_y = 33;
  6540. if (code_seen('E')) dimension_x = code_value();
  6541. if (code_seen('F')) dimension_y = code_value();
  6542. if (code_seen("G")) { strchr_pointer+=1; points_x = code_value(); }
  6543. if (code_seen("H")) { strchr_pointer+=1; points_y = code_value(); }
  6544. if (code_seen("I")) { strchr_pointer+=1; offset_x = code_value(); }
  6545. if (code_seen("J")) { strchr_pointer+=1; offset_y = code_value(); }
  6546. bed_analysis(dimension_x,dimension_y,points_x,points_y,offset_x,offset_y);
  6547. } break;
  6548. #endif //HEATBED_ANALYSIS
  6549. #ifdef DEBUG_DCODES
  6550. case 106: //D106 print measured fan speed for different pwm values
  6551. {
  6552. for (int i = 255; i > 0; i = i - 5) {
  6553. fanSpeed = i;
  6554. //delay_keep_alive(2000);
  6555. for (int j = 0; j < 100; j++) {
  6556. delay_keep_alive(100);
  6557. }
  6558. printf_P(_N("%d: %d\n"), i, fan_speed[1]);
  6559. }
  6560. }break;
  6561. #ifdef TMC2130
  6562. case 2130: //! D2130 - TMC2130
  6563. dcode_2130(); break;
  6564. #endif //TMC2130
  6565. #if (defined (FILAMENT_SENSOR) && defined(PAT9125))
  6566. case 9125: //! D9125 - FILAMENT_SENSOR
  6567. dcode_9125(); break;
  6568. #endif //FILAMENT_SENSOR
  6569. #endif //DEBUG_DCODES
  6570. }
  6571. }
  6572. else
  6573. {
  6574. SERIAL_ECHO_START;
  6575. SERIAL_ECHORPGM(MSG_UNKNOWN_COMMAND);
  6576. SERIAL_ECHO(CMDBUFFER_CURRENT_STRING);
  6577. SERIAL_ECHOLNPGM("\"(2)");
  6578. }
  6579. KEEPALIVE_STATE(NOT_BUSY);
  6580. ClearToSend();
  6581. }
  6582. void FlushSerialRequestResend()
  6583. {
  6584. //char cmdbuffer[bufindr][100]="Resend:";
  6585. MYSERIAL.flush();
  6586. printf_P(_N("%S: %ld\n%S\n"), _n("Resend"), gcode_LastN + 1, MSG_OK);
  6587. }
  6588. // Confirm the execution of a command, if sent from a serial line.
  6589. // Execution of a command from a SD card will not be confirmed.
  6590. void ClearToSend()
  6591. {
  6592. previous_millis_cmd = _millis();
  6593. if ((CMDBUFFER_CURRENT_TYPE == CMDBUFFER_CURRENT_TYPE_USB) || (CMDBUFFER_CURRENT_TYPE == CMDBUFFER_CURRENT_TYPE_USB_WITH_LINENR))
  6594. SERIAL_PROTOCOLLNRPGM(MSG_OK);
  6595. }
  6596. #if MOTHERBOARD == BOARD_RAMBO_MINI_1_0 || MOTHERBOARD == BOARD_RAMBO_MINI_1_3
  6597. void update_currents() {
  6598. float current_high[3] = DEFAULT_PWM_MOTOR_CURRENT_LOUD;
  6599. float current_low[3] = DEFAULT_PWM_MOTOR_CURRENT;
  6600. float tmp_motor[3];
  6601. //SERIAL_ECHOLNPGM("Currents updated: ");
  6602. if (destination[Z_AXIS] < Z_SILENT) {
  6603. //SERIAL_ECHOLNPGM("LOW");
  6604. for (uint8_t i = 0; i < 3; i++) {
  6605. st_current_set(i, current_low[i]);
  6606. /*MYSERIAL.print(int(i));
  6607. SERIAL_ECHOPGM(": ");
  6608. MYSERIAL.println(current_low[i]);*/
  6609. }
  6610. }
  6611. else if (destination[Z_AXIS] > Z_HIGH_POWER) {
  6612. //SERIAL_ECHOLNPGM("HIGH");
  6613. for (uint8_t i = 0; i < 3; i++) {
  6614. st_current_set(i, current_high[i]);
  6615. /*MYSERIAL.print(int(i));
  6616. SERIAL_ECHOPGM(": ");
  6617. MYSERIAL.println(current_high[i]);*/
  6618. }
  6619. }
  6620. else {
  6621. for (uint8_t i = 0; i < 3; i++) {
  6622. float q = current_low[i] - Z_SILENT*((current_high[i] - current_low[i]) / (Z_HIGH_POWER - Z_SILENT));
  6623. tmp_motor[i] = ((current_high[i] - current_low[i]) / (Z_HIGH_POWER - Z_SILENT))*destination[Z_AXIS] + q;
  6624. st_current_set(i, tmp_motor[i]);
  6625. /*MYSERIAL.print(int(i));
  6626. SERIAL_ECHOPGM(": ");
  6627. MYSERIAL.println(tmp_motor[i]);*/
  6628. }
  6629. }
  6630. }
  6631. #endif //MOTHERBOARD == BOARD_RAMBO_MINI_1_0 || MOTHERBOARD == BOARD_RAMBO_MINI_1_3
  6632. void get_coordinates()
  6633. {
  6634. bool seen[4]={false,false,false,false};
  6635. for(int8_t i=0; i < NUM_AXIS; i++) {
  6636. if(code_seen(axis_codes[i]))
  6637. {
  6638. bool relative = axis_relative_modes[i] || relative_mode;
  6639. destination[i] = (float)code_value();
  6640. if (i == E_AXIS) {
  6641. float emult = extruder_multiplier[active_extruder];
  6642. if (emult != 1.) {
  6643. if (! relative) {
  6644. destination[i] -= current_position[i];
  6645. relative = true;
  6646. }
  6647. destination[i] *= emult;
  6648. }
  6649. }
  6650. if (relative)
  6651. destination[i] += current_position[i];
  6652. seen[i]=true;
  6653. #if MOTHERBOARD == BOARD_RAMBO_MINI_1_0 || MOTHERBOARD == BOARD_RAMBO_MINI_1_3
  6654. if (i == Z_AXIS && SilentModeMenu == SILENT_MODE_AUTO) update_currents();
  6655. #endif //MOTHERBOARD == BOARD_RAMBO_MINI_1_0 || MOTHERBOARD == BOARD_RAMBO_MINI_1_3
  6656. }
  6657. else destination[i] = current_position[i]; //Are these else lines really needed?
  6658. }
  6659. if(code_seen('F')) {
  6660. next_feedrate = code_value();
  6661. #ifdef MAX_SILENT_FEEDRATE
  6662. if (tmc2130_mode == TMC2130_MODE_SILENT)
  6663. if (next_feedrate > MAX_SILENT_FEEDRATE) next_feedrate = MAX_SILENT_FEEDRATE;
  6664. #endif //MAX_SILENT_FEEDRATE
  6665. if(next_feedrate > 0.0) feedrate = next_feedrate;
  6666. if (!seen[0] && !seen[1] && !seen[2] && seen[3])
  6667. {
  6668. // float e_max_speed =
  6669. // printf_P(PSTR("E MOVE speed %7.3f\n"), feedrate / 60)
  6670. }
  6671. }
  6672. }
  6673. void get_arc_coordinates()
  6674. {
  6675. #ifdef SF_ARC_FIX
  6676. bool relative_mode_backup = relative_mode;
  6677. relative_mode = true;
  6678. #endif
  6679. get_coordinates();
  6680. #ifdef SF_ARC_FIX
  6681. relative_mode=relative_mode_backup;
  6682. #endif
  6683. if(code_seen('I')) {
  6684. offset[0] = code_value();
  6685. }
  6686. else {
  6687. offset[0] = 0.0;
  6688. }
  6689. if(code_seen('J')) {
  6690. offset[1] = code_value();
  6691. }
  6692. else {
  6693. offset[1] = 0.0;
  6694. }
  6695. }
  6696. void clamp_to_software_endstops(float target[3])
  6697. {
  6698. #ifdef DEBUG_DISABLE_SWLIMITS
  6699. return;
  6700. #endif //DEBUG_DISABLE_SWLIMITS
  6701. world2machine_clamp(target[0], target[1]);
  6702. // Clamp the Z coordinate.
  6703. if (min_software_endstops) {
  6704. float negative_z_offset = 0;
  6705. #ifdef ENABLE_AUTO_BED_LEVELING
  6706. if (Z_PROBE_OFFSET_FROM_EXTRUDER < 0) negative_z_offset = negative_z_offset + Z_PROBE_OFFSET_FROM_EXTRUDER;
  6707. if (cs.add_homing[Z_AXIS] < 0) negative_z_offset = negative_z_offset + cs.add_homing[Z_AXIS];
  6708. #endif
  6709. if (target[Z_AXIS] < min_pos[Z_AXIS]+negative_z_offset) target[Z_AXIS] = min_pos[Z_AXIS]+negative_z_offset;
  6710. }
  6711. if (max_software_endstops) {
  6712. if (target[Z_AXIS] > max_pos[Z_AXIS]) target[Z_AXIS] = max_pos[Z_AXIS];
  6713. }
  6714. }
  6715. #ifdef MESH_BED_LEVELING
  6716. void mesh_plan_buffer_line(const float &x, const float &y, const float &z, const float &e, const float &feed_rate, const uint8_t extruder) {
  6717. float dx = x - current_position[X_AXIS];
  6718. float dy = y - current_position[Y_AXIS];
  6719. float dz = z - current_position[Z_AXIS];
  6720. int n_segments = 0;
  6721. if (mbl.active) {
  6722. float len = abs(dx) + abs(dy);
  6723. if (len > 0)
  6724. // Split to 3cm segments or shorter.
  6725. n_segments = int(ceil(len / 30.f));
  6726. }
  6727. if (n_segments > 1) {
  6728. float de = e - current_position[E_AXIS];
  6729. for (int i = 1; i < n_segments; ++ i) {
  6730. float t = float(i) / float(n_segments);
  6731. if (saved_printing || (mbl.active == false)) return;
  6732. plan_buffer_line(
  6733. current_position[X_AXIS] + t * dx,
  6734. current_position[Y_AXIS] + t * dy,
  6735. current_position[Z_AXIS] + t * dz,
  6736. current_position[E_AXIS] + t * de,
  6737. feed_rate, extruder);
  6738. }
  6739. }
  6740. // The rest of the path.
  6741. plan_buffer_line(x, y, z, e, feed_rate, extruder);
  6742. current_position[X_AXIS] = x;
  6743. current_position[Y_AXIS] = y;
  6744. current_position[Z_AXIS] = z;
  6745. current_position[E_AXIS] = e;
  6746. }
  6747. #endif // MESH_BED_LEVELING
  6748. void prepare_move()
  6749. {
  6750. clamp_to_software_endstops(destination);
  6751. previous_millis_cmd = _millis();
  6752. // Do not use feedmultiply for E or Z only moves
  6753. if( (current_position[X_AXIS] == destination [X_AXIS]) && (current_position[Y_AXIS] == destination [Y_AXIS])) {
  6754. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  6755. }
  6756. else {
  6757. #ifdef MESH_BED_LEVELING
  6758. mesh_plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate*feedmultiply*(1./(60.f*100.f)), active_extruder);
  6759. #else
  6760. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate*feedmultiply*(1./(60.f*100.f)), active_extruder);
  6761. #endif
  6762. }
  6763. for(int8_t i=0; i < NUM_AXIS; i++) {
  6764. current_position[i] = destination[i];
  6765. }
  6766. }
  6767. void prepare_arc_move(char isclockwise) {
  6768. float r = hypot(offset[X_AXIS], offset[Y_AXIS]); // Compute arc radius for mc_arc
  6769. // Trace the arc
  6770. mc_arc(current_position, destination, offset, X_AXIS, Y_AXIS, Z_AXIS, feedrate*feedmultiply/60/100.0, r, isclockwise, active_extruder);
  6771. // As far as the parser is concerned, the position is now == target. In reality the
  6772. // motion control system might still be processing the action and the real tool position
  6773. // in any intermediate location.
  6774. for(int8_t i=0; i < NUM_AXIS; i++) {
  6775. current_position[i] = destination[i];
  6776. }
  6777. previous_millis_cmd = _millis();
  6778. }
  6779. #if defined(CONTROLLERFAN_PIN) && CONTROLLERFAN_PIN > -1
  6780. #if defined(FAN_PIN)
  6781. #if CONTROLLERFAN_PIN == FAN_PIN
  6782. #error "You cannot set CONTROLLERFAN_PIN equal to FAN_PIN"
  6783. #endif
  6784. #endif
  6785. unsigned long lastMotor = 0; //Save the time for when a motor was turned on last
  6786. unsigned long lastMotorCheck = 0;
  6787. void controllerFan()
  6788. {
  6789. if ((_millis() - lastMotorCheck) >= 2500) //Not a time critical function, so we only check every 2500ms
  6790. {
  6791. lastMotorCheck = _millis();
  6792. if(!READ(X_ENABLE_PIN) || !READ(Y_ENABLE_PIN) || !READ(Z_ENABLE_PIN) || (soft_pwm_bed > 0)
  6793. #if EXTRUDERS > 2
  6794. || !READ(E2_ENABLE_PIN)
  6795. #endif
  6796. #if EXTRUDER > 1
  6797. #if defined(X2_ENABLE_PIN) && X2_ENABLE_PIN > -1
  6798. || !READ(X2_ENABLE_PIN)
  6799. #endif
  6800. || !READ(E1_ENABLE_PIN)
  6801. #endif
  6802. || !READ(E0_ENABLE_PIN)) //If any of the drivers are enabled...
  6803. {
  6804. lastMotor = _millis(); //... set time to NOW so the fan will turn on
  6805. }
  6806. if ((_millis() - lastMotor) >= (CONTROLLERFAN_SECS*1000UL) || lastMotor == 0) //If the last time any driver was enabled, is longer since than CONTROLLERSEC...
  6807. {
  6808. digitalWrite(CONTROLLERFAN_PIN, 0);
  6809. analogWrite(CONTROLLERFAN_PIN, 0);
  6810. }
  6811. else
  6812. {
  6813. // allows digital or PWM fan output to be used (see M42 handling)
  6814. digitalWrite(CONTROLLERFAN_PIN, CONTROLLERFAN_SPEED);
  6815. analogWrite(CONTROLLERFAN_PIN, CONTROLLERFAN_SPEED);
  6816. }
  6817. }
  6818. }
  6819. #endif
  6820. #ifdef TEMP_STAT_LEDS
  6821. static bool blue_led = false;
  6822. static bool red_led = false;
  6823. static uint32_t stat_update = 0;
  6824. void handle_status_leds(void) {
  6825. float max_temp = 0.0;
  6826. if(_millis() > stat_update) {
  6827. stat_update += 500; // Update every 0.5s
  6828. for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) {
  6829. max_temp = max(max_temp, degHotend(cur_extruder));
  6830. max_temp = max(max_temp, degTargetHotend(cur_extruder));
  6831. }
  6832. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  6833. max_temp = max(max_temp, degTargetBed());
  6834. max_temp = max(max_temp, degBed());
  6835. #endif
  6836. if((max_temp > 55.0) && (red_led == false)) {
  6837. digitalWrite(STAT_LED_RED, 1);
  6838. digitalWrite(STAT_LED_BLUE, 0);
  6839. red_led = true;
  6840. blue_led = false;
  6841. }
  6842. if((max_temp < 54.0) && (blue_led == false)) {
  6843. digitalWrite(STAT_LED_RED, 0);
  6844. digitalWrite(STAT_LED_BLUE, 1);
  6845. red_led = false;
  6846. blue_led = true;
  6847. }
  6848. }
  6849. }
  6850. #endif
  6851. #ifdef SAFETYTIMER
  6852. /**
  6853. * @brief Turn off heating after safetytimer_inactive_time milliseconds of inactivity
  6854. *
  6855. * Full screen blocking notification message is shown after heater turning off.
  6856. * Paused print is not considered inactivity, as nozzle is cooled anyway and bed cooling would
  6857. * damage print.
  6858. *
  6859. * If safetytimer_inactive_time is zero, feature is disabled (heating is never turned off because of inactivity)
  6860. */
  6861. static void handleSafetyTimer()
  6862. {
  6863. #if (EXTRUDERS > 1)
  6864. #error Implemented only for one extruder.
  6865. #endif //(EXTRUDERS > 1)
  6866. if ((PRINTER_ACTIVE) || (!degTargetBed() && !degTargetHotend(0)) || (!safetytimer_inactive_time))
  6867. {
  6868. safetyTimer.stop();
  6869. }
  6870. else if ((degTargetBed() || degTargetHotend(0)) && (!safetyTimer.running()))
  6871. {
  6872. safetyTimer.start();
  6873. }
  6874. else if (safetyTimer.expired(farm_mode?FARM_DEFAULT_SAFETYTIMER_TIME_ms:safetytimer_inactive_time))
  6875. {
  6876. setTargetBed(0);
  6877. setAllTargetHotends(0);
  6878. lcd_show_fullscreen_message_and_wait_P(_i("Heating disabled by safety timer."));////MSG_BED_HEATING_SAFETY_DISABLED
  6879. }
  6880. }
  6881. #endif //SAFETYTIMER
  6882. void manage_inactivity(bool ignore_stepper_queue/*=false*/) //default argument set in Marlin.h
  6883. {
  6884. bool bInhibitFlag;
  6885. #ifdef FILAMENT_SENSOR
  6886. if (mmu_enabled == false)
  6887. {
  6888. //-// if (mcode_in_progress != 600) //M600 not in progress
  6889. #ifdef PAT9125
  6890. bInhibitFlag=(menu_menu==lcd_menu_extruder_info); // Support::ExtruderInfo menu active
  6891. #endif // PAT9125
  6892. #ifdef IR_SENSOR
  6893. bInhibitFlag=(menu_menu==lcd_menu_show_sensors_state); // Support::SensorInfo menu active
  6894. #endif // IR_SENSOR
  6895. if ((mcode_in_progress != 600) && (eFilamentAction != FilamentAction::AutoLoad) && (!bInhibitFlag)) //M600 not in progress, preHeat @ autoLoad menu not active, Support::ExtruderInfo/SensorInfo menu not active
  6896. {
  6897. if (!moves_planned() && !IS_SD_PRINTING && !is_usb_printing && (lcd_commands_type != LcdCommands::Layer1Cal) && !wizard_active)
  6898. {
  6899. if (fsensor_check_autoload())
  6900. {
  6901. #ifdef PAT9125
  6902. fsensor_autoload_check_stop();
  6903. #endif //PAT9125
  6904. //-// if (degHotend0() > EXTRUDE_MINTEMP)
  6905. if(0)
  6906. {
  6907. Sound_MakeCustom(50,1000,false);
  6908. loading_flag = true;
  6909. enquecommand_front_P((PSTR("M701")));
  6910. }
  6911. else
  6912. {
  6913. /*
  6914. lcd_update_enable(false);
  6915. show_preheat_nozzle_warning();
  6916. lcd_update_enable(true);
  6917. */
  6918. eFilamentAction=FilamentAction::AutoLoad;
  6919. bFilamentFirstRun=false;
  6920. if(target_temperature[0]>=EXTRUDE_MINTEMP)
  6921. {
  6922. bFilamentPreheatState=true;
  6923. // mFilamentItem(target_temperature[0],target_temperature_bed);
  6924. menu_submenu(mFilamentItemForce);
  6925. }
  6926. else
  6927. {
  6928. menu_submenu(mFilamentMenu);
  6929. lcd_timeoutToStatus.start();
  6930. }
  6931. }
  6932. }
  6933. }
  6934. else
  6935. {
  6936. #ifdef PAT9125
  6937. fsensor_autoload_check_stop();
  6938. #endif //PAT9125
  6939. fsensor_update();
  6940. }
  6941. }
  6942. }
  6943. #endif //FILAMENT_SENSOR
  6944. #ifdef SAFETYTIMER
  6945. handleSafetyTimer();
  6946. #endif //SAFETYTIMER
  6947. #if defined(KILL_PIN) && KILL_PIN > -1
  6948. static int killCount = 0; // make the inactivity button a bit less responsive
  6949. const int KILL_DELAY = 10000;
  6950. #endif
  6951. if(buflen < (BUFSIZE-1)){
  6952. get_command();
  6953. }
  6954. if( (_millis() - previous_millis_cmd) > max_inactive_time )
  6955. if(max_inactive_time)
  6956. kill(_n(""), 4);
  6957. if(stepper_inactive_time) {
  6958. if( (_millis() - previous_millis_cmd) > stepper_inactive_time )
  6959. {
  6960. if(blocks_queued() == false && ignore_stepper_queue == false) {
  6961. disable_x();
  6962. disable_y();
  6963. disable_z();
  6964. disable_e0();
  6965. disable_e1();
  6966. disable_e2();
  6967. }
  6968. }
  6969. }
  6970. #ifdef CHDK //Check if pin should be set to LOW after M240 set it to HIGH
  6971. if (chdkActive && (_millis() - chdkHigh > CHDK_DELAY))
  6972. {
  6973. chdkActive = false;
  6974. WRITE(CHDK, LOW);
  6975. }
  6976. #endif
  6977. #if defined(KILL_PIN) && KILL_PIN > -1
  6978. // Check if the kill button was pressed and wait just in case it was an accidental
  6979. // key kill key press
  6980. // -------------------------------------------------------------------------------
  6981. if( 0 == READ(KILL_PIN) )
  6982. {
  6983. killCount++;
  6984. }
  6985. else if (killCount > 0)
  6986. {
  6987. killCount--;
  6988. }
  6989. // Exceeded threshold and we can confirm that it was not accidental
  6990. // KILL the machine
  6991. // ----------------------------------------------------------------
  6992. if ( killCount >= KILL_DELAY)
  6993. {
  6994. kill("", 5);
  6995. }
  6996. #endif
  6997. #if defined(CONTROLLERFAN_PIN) && CONTROLLERFAN_PIN > -1
  6998. controllerFan(); //Check if fan should be turned on to cool stepper drivers down
  6999. #endif
  7000. #ifdef EXTRUDER_RUNOUT_PREVENT
  7001. if( (_millis() - previous_millis_cmd) > EXTRUDER_RUNOUT_SECONDS*1000 )
  7002. if(degHotend(active_extruder)>EXTRUDER_RUNOUT_MINTEMP)
  7003. {
  7004. bool oldstatus=READ(E0_ENABLE_PIN);
  7005. enable_e0();
  7006. float oldepos=current_position[E_AXIS];
  7007. float oldedes=destination[E_AXIS];
  7008. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS],
  7009. destination[E_AXIS]+EXTRUDER_RUNOUT_EXTRUDE*EXTRUDER_RUNOUT_ESTEPS/cs.axis_steps_per_unit[E_AXIS],
  7010. EXTRUDER_RUNOUT_SPEED/60.*EXTRUDER_RUNOUT_ESTEPS/cs.axis_steps_per_unit[E_AXIS], active_extruder);
  7011. current_position[E_AXIS]=oldepos;
  7012. destination[E_AXIS]=oldedes;
  7013. plan_set_e_position(oldepos);
  7014. previous_millis_cmd=_millis();
  7015. st_synchronize();
  7016. WRITE(E0_ENABLE_PIN,oldstatus);
  7017. }
  7018. #endif
  7019. #ifdef TEMP_STAT_LEDS
  7020. handle_status_leds();
  7021. #endif
  7022. check_axes_activity();
  7023. mmu_loop();
  7024. }
  7025. void kill(const char *full_screen_message, unsigned char id)
  7026. {
  7027. printf_P(_N("KILL: %d\n"), id);
  7028. //return;
  7029. cli(); // Stop interrupts
  7030. disable_heater();
  7031. disable_x();
  7032. // SERIAL_ECHOLNPGM("kill - disable Y");
  7033. disable_y();
  7034. disable_z();
  7035. disable_e0();
  7036. disable_e1();
  7037. disable_e2();
  7038. #if defined(PS_ON_PIN) && PS_ON_PIN > -1
  7039. pinMode(PS_ON_PIN,INPUT);
  7040. #endif
  7041. SERIAL_ERROR_START;
  7042. SERIAL_ERRORLNRPGM(_n("Printer halted. kill() called!"));////MSG_ERR_KILLED
  7043. if (full_screen_message != NULL) {
  7044. SERIAL_ERRORLNRPGM(full_screen_message);
  7045. lcd_display_message_fullscreen_P(full_screen_message);
  7046. } else {
  7047. LCD_ALERTMESSAGERPGM(_n("KILLED. "));////MSG_KILLED
  7048. }
  7049. // FMC small patch to update the LCD before ending
  7050. sei(); // enable interrupts
  7051. for ( int i=5; i--; lcd_update(0))
  7052. {
  7053. _delay(200);
  7054. }
  7055. cli(); // disable interrupts
  7056. suicide();
  7057. while(1)
  7058. {
  7059. #ifdef WATCHDOG
  7060. wdt_reset();
  7061. #endif //WATCHDOG
  7062. /* Intentionally left empty */
  7063. } // Wait for reset
  7064. }
  7065. void Stop()
  7066. {
  7067. disable_heater();
  7068. if(Stopped == false) {
  7069. Stopped = true;
  7070. lcd_print_stop();
  7071. Stopped_gcode_LastN = gcode_LastN; // Save last g_code for restart
  7072. SERIAL_ERROR_START;
  7073. SERIAL_ERRORLNRPGM(MSG_ERR_STOPPED);
  7074. LCD_MESSAGERPGM(_T(MSG_STOPPED));
  7075. }
  7076. }
  7077. bool IsStopped() { return Stopped; };
  7078. #ifdef FAST_PWM_FAN
  7079. void setPwmFrequency(uint8_t pin, int val)
  7080. {
  7081. val &= 0x07;
  7082. switch(digitalPinToTimer(pin))
  7083. {
  7084. #if defined(TCCR0A)
  7085. case TIMER0A:
  7086. case TIMER0B:
  7087. // TCCR0B &= ~(_BV(CS00) | _BV(CS01) | _BV(CS02));
  7088. // TCCR0B |= val;
  7089. break;
  7090. #endif
  7091. #if defined(TCCR1A)
  7092. case TIMER1A:
  7093. case TIMER1B:
  7094. // TCCR1B &= ~(_BV(CS10) | _BV(CS11) | _BV(CS12));
  7095. // TCCR1B |= val;
  7096. break;
  7097. #endif
  7098. #if defined(TCCR2)
  7099. case TIMER2:
  7100. case TIMER2:
  7101. TCCR2 &= ~(_BV(CS10) | _BV(CS11) | _BV(CS12));
  7102. TCCR2 |= val;
  7103. break;
  7104. #endif
  7105. #if defined(TCCR2A)
  7106. case TIMER2A:
  7107. case TIMER2B:
  7108. TCCR2B &= ~(_BV(CS20) | _BV(CS21) | _BV(CS22));
  7109. TCCR2B |= val;
  7110. break;
  7111. #endif
  7112. #if defined(TCCR3A)
  7113. case TIMER3A:
  7114. case TIMER3B:
  7115. case TIMER3C:
  7116. TCCR3B &= ~(_BV(CS30) | _BV(CS31) | _BV(CS32));
  7117. TCCR3B |= val;
  7118. break;
  7119. #endif
  7120. #if defined(TCCR4A)
  7121. case TIMER4A:
  7122. case TIMER4B:
  7123. case TIMER4C:
  7124. TCCR4B &= ~(_BV(CS40) | _BV(CS41) | _BV(CS42));
  7125. TCCR4B |= val;
  7126. break;
  7127. #endif
  7128. #if defined(TCCR5A)
  7129. case TIMER5A:
  7130. case TIMER5B:
  7131. case TIMER5C:
  7132. TCCR5B &= ~(_BV(CS50) | _BV(CS51) | _BV(CS52));
  7133. TCCR5B |= val;
  7134. break;
  7135. #endif
  7136. }
  7137. }
  7138. #endif //FAST_PWM_FAN
  7139. //! @brief Get and validate extruder number
  7140. //!
  7141. //! If it is not specified, active_extruder is returned in parameter extruder.
  7142. //! @param [in] code M code number
  7143. //! @param [out] extruder
  7144. //! @return error
  7145. //! @retval true Invalid extruder specified in T code
  7146. //! @retval false Valid extruder specified in T code, or not specifiead
  7147. bool setTargetedHotend(int code, uint8_t &extruder)
  7148. {
  7149. extruder = active_extruder;
  7150. if(code_seen('T')) {
  7151. extruder = code_value();
  7152. if(extruder >= EXTRUDERS) {
  7153. SERIAL_ECHO_START;
  7154. switch(code){
  7155. case 104:
  7156. SERIAL_ECHORPGM(_n("M104 Invalid extruder "));////MSG_M104_INVALID_EXTRUDER
  7157. break;
  7158. case 105:
  7159. SERIAL_ECHO(_n("M105 Invalid extruder "));////MSG_M105_INVALID_EXTRUDER
  7160. break;
  7161. case 109:
  7162. SERIAL_ECHO(_n("M109 Invalid extruder "));////MSG_M109_INVALID_EXTRUDER
  7163. break;
  7164. case 218:
  7165. SERIAL_ECHO(_n("M218 Invalid extruder "));////MSG_M218_INVALID_EXTRUDER
  7166. break;
  7167. case 221:
  7168. SERIAL_ECHO(_n("M221 Invalid extruder "));////MSG_M221_INVALID_EXTRUDER
  7169. break;
  7170. }
  7171. SERIAL_PROTOCOLLN((int)extruder);
  7172. return true;
  7173. }
  7174. }
  7175. return false;
  7176. }
  7177. void save_statistics(unsigned long _total_filament_used, unsigned long _total_print_time) //_total_filament_used unit: mm/100; print time in s
  7178. {
  7179. if (eeprom_read_byte((uint8_t *)EEPROM_TOTALTIME) == 255 && eeprom_read_byte((uint8_t *)EEPROM_TOTALTIME + 1) == 255 && eeprom_read_byte((uint8_t *)EEPROM_TOTALTIME + 2) == 255 && eeprom_read_byte((uint8_t *)EEPROM_TOTALTIME + 3) == 255)
  7180. {
  7181. eeprom_update_dword((uint32_t *)EEPROM_TOTALTIME, 0);
  7182. eeprom_update_dword((uint32_t *)EEPROM_FILAMENTUSED, 0);
  7183. }
  7184. unsigned long _previous_filament = eeprom_read_dword((uint32_t *)EEPROM_FILAMENTUSED); //_previous_filament unit: cm
  7185. unsigned long _previous_time = eeprom_read_dword((uint32_t *)EEPROM_TOTALTIME); //_previous_time unit: min
  7186. eeprom_update_dword((uint32_t *)EEPROM_TOTALTIME, _previous_time + (_total_print_time/60)); //EEPROM_TOTALTIME unit: min
  7187. eeprom_update_dword((uint32_t *)EEPROM_FILAMENTUSED, _previous_filament + (_total_filament_used / 1000));
  7188. total_filament_used = 0;
  7189. }
  7190. float calculate_extruder_multiplier(float diameter) {
  7191. float out = 1.f;
  7192. if (cs.volumetric_enabled && diameter > 0.f) {
  7193. float area = M_PI * diameter * diameter * 0.25;
  7194. out = 1.f / area;
  7195. }
  7196. if (extrudemultiply != 100)
  7197. out *= float(extrudemultiply) * 0.01f;
  7198. return out;
  7199. }
  7200. void calculate_extruder_multipliers() {
  7201. extruder_multiplier[0] = calculate_extruder_multiplier(cs.filament_size[0]);
  7202. #if EXTRUDERS > 1
  7203. extruder_multiplier[1] = calculate_extruder_multiplier(cs.filament_size[1]);
  7204. #if EXTRUDERS > 2
  7205. extruder_multiplier[2] = calculate_extruder_multiplier(cs.filament_size[2]);
  7206. #endif
  7207. #endif
  7208. }
  7209. void delay_keep_alive(unsigned int ms)
  7210. {
  7211. for (;;) {
  7212. manage_heater();
  7213. // Manage inactivity, but don't disable steppers on timeout.
  7214. manage_inactivity(true);
  7215. lcd_update(0);
  7216. if (ms == 0)
  7217. break;
  7218. else if (ms >= 50) {
  7219. _delay(50);
  7220. ms -= 50;
  7221. } else {
  7222. _delay(ms);
  7223. ms = 0;
  7224. }
  7225. }
  7226. }
  7227. static void wait_for_heater(long codenum, uint8_t extruder) {
  7228. #ifdef TEMP_RESIDENCY_TIME
  7229. long residencyStart;
  7230. residencyStart = -1;
  7231. /* continue to loop until we have reached the target temp
  7232. _and_ until TEMP_RESIDENCY_TIME hasn't passed since we reached it */
  7233. while ((!cancel_heatup) && ((residencyStart == -1) ||
  7234. (residencyStart >= 0 && (((unsigned int)(_millis() - residencyStart)) < (TEMP_RESIDENCY_TIME * 1000UL))))) {
  7235. #else
  7236. while (target_direction ? (isHeatingHotend(tmp_extruder)) : (isCoolingHotend(tmp_extruder) && (CooldownNoWait == false))) {
  7237. #endif //TEMP_RESIDENCY_TIME
  7238. if ((_millis() - codenum) > 1000UL)
  7239. { //Print Temp Reading and remaining time every 1 second while heating up/cooling down
  7240. if (!farm_mode) {
  7241. SERIAL_PROTOCOLPGM("T:");
  7242. SERIAL_PROTOCOL_F(degHotend(extruder), 1);
  7243. SERIAL_PROTOCOLPGM(" E:");
  7244. SERIAL_PROTOCOL((int)extruder);
  7245. #ifdef TEMP_RESIDENCY_TIME
  7246. SERIAL_PROTOCOLPGM(" W:");
  7247. if (residencyStart > -1)
  7248. {
  7249. codenum = ((TEMP_RESIDENCY_TIME * 1000UL) - (_millis() - residencyStart)) / 1000UL;
  7250. SERIAL_PROTOCOLLN(codenum);
  7251. }
  7252. else
  7253. {
  7254. SERIAL_PROTOCOLLN("?");
  7255. }
  7256. }
  7257. #else
  7258. SERIAL_PROTOCOLLN("");
  7259. #endif
  7260. codenum = _millis();
  7261. }
  7262. manage_heater();
  7263. manage_inactivity(true); //do not disable steppers
  7264. lcd_update(0);
  7265. #ifdef TEMP_RESIDENCY_TIME
  7266. /* start/restart the TEMP_RESIDENCY_TIME timer whenever we reach target temp for the first time
  7267. or when current temp falls outside the hysteresis after target temp was reached */
  7268. if ((residencyStart == -1 && target_direction && (degHotend(extruder) >= (degTargetHotend(extruder) - TEMP_WINDOW))) ||
  7269. (residencyStart == -1 && !target_direction && (degHotend(extruder) <= (degTargetHotend(extruder) + TEMP_WINDOW))) ||
  7270. (residencyStart > -1 && labs(degHotend(extruder) - degTargetHotend(extruder)) > TEMP_HYSTERESIS))
  7271. {
  7272. residencyStart = _millis();
  7273. }
  7274. #endif //TEMP_RESIDENCY_TIME
  7275. }
  7276. }
  7277. void check_babystep()
  7278. {
  7279. int babystep_z = eeprom_read_word(reinterpret_cast<uint16_t *>(&(EEPROM_Sheets_base->
  7280. s[(eeprom_read_byte(&(EEPROM_Sheets_base->active_sheet)))].z_offset)));
  7281. if ((babystep_z < Z_BABYSTEP_MIN) || (babystep_z > Z_BABYSTEP_MAX)) {
  7282. babystep_z = 0; //if babystep value is out of min max range, set it to 0
  7283. SERIAL_ECHOLNPGM("Z live adjust out of range. Setting to 0");
  7284. eeprom_write_word(reinterpret_cast<uint16_t *>(&(EEPROM_Sheets_base->
  7285. s[(eeprom_read_byte(&(EEPROM_Sheets_base->active_sheet)))].z_offset)),
  7286. babystep_z);
  7287. lcd_show_fullscreen_message_and_wait_P(PSTR("Z live adjust out of range. Setting to 0. Click to continue."));
  7288. lcd_update_enable(true);
  7289. }
  7290. }
  7291. #ifdef HEATBED_ANALYSIS
  7292. void d_setup()
  7293. {
  7294. pinMode(D_DATACLOCK, INPUT_PULLUP);
  7295. pinMode(D_DATA, INPUT_PULLUP);
  7296. pinMode(D_REQUIRE, OUTPUT);
  7297. digitalWrite(D_REQUIRE, HIGH);
  7298. }
  7299. float d_ReadData()
  7300. {
  7301. int digit[13];
  7302. String mergeOutput;
  7303. float output;
  7304. digitalWrite(D_REQUIRE, HIGH);
  7305. for (int i = 0; i<13; i++)
  7306. {
  7307. for (int j = 0; j < 4; j++)
  7308. {
  7309. while (digitalRead(D_DATACLOCK) == LOW) {}
  7310. while (digitalRead(D_DATACLOCK) == HIGH) {}
  7311. bitWrite(digit[i], j, digitalRead(D_DATA));
  7312. }
  7313. }
  7314. digitalWrite(D_REQUIRE, LOW);
  7315. mergeOutput = "";
  7316. output = 0;
  7317. for (int r = 5; r <= 10; r++) //Merge digits
  7318. {
  7319. mergeOutput += digit[r];
  7320. }
  7321. output = mergeOutput.toFloat();
  7322. if (digit[4] == 8) //Handle sign
  7323. {
  7324. output *= -1;
  7325. }
  7326. for (int i = digit[11]; i > 0; i--) //Handle floating point
  7327. {
  7328. output /= 10;
  7329. }
  7330. return output;
  7331. }
  7332. void bed_check(float x_dimension, float y_dimension, int x_points_num, int y_points_num, float shift_x, float shift_y) {
  7333. int t1 = 0;
  7334. int t_delay = 0;
  7335. int digit[13];
  7336. int m;
  7337. char str[3];
  7338. //String mergeOutput;
  7339. char mergeOutput[15];
  7340. float output;
  7341. int mesh_point = 0; //index number of calibration point
  7342. float bed_zero_ref_x = (-22.f + X_PROBE_OFFSET_FROM_EXTRUDER); //shift between zero point on bed and target and between probe and nozzle
  7343. float bed_zero_ref_y = (-0.6f + Y_PROBE_OFFSET_FROM_EXTRUDER);
  7344. float mesh_home_z_search = 4;
  7345. float measure_z_height = 0.2f;
  7346. float row[x_points_num];
  7347. int ix = 0;
  7348. int iy = 0;
  7349. const char* filename_wldsd = "mesh.txt";
  7350. char data_wldsd[x_points_num * 7 + 1]; //6 chars(" -A.BCD")for each measurement + null
  7351. char numb_wldsd[8]; // (" -A.BCD" + null)
  7352. #ifdef MICROMETER_LOGGING
  7353. d_setup();
  7354. #endif //MICROMETER_LOGGING
  7355. int XY_AXIS_FEEDRATE = homing_feedrate[X_AXIS] / 20;
  7356. int Z_LIFT_FEEDRATE = homing_feedrate[Z_AXIS] / 40;
  7357. unsigned int custom_message_type_old = custom_message_type;
  7358. unsigned int custom_message_state_old = custom_message_state;
  7359. custom_message_type = CustomMsg::MeshBedLeveling;
  7360. custom_message_state = (x_points_num * y_points_num) + 10;
  7361. lcd_update(1);
  7362. //mbl.reset();
  7363. babystep_undo();
  7364. card.openFile(filename_wldsd, false);
  7365. /*destination[Z_AXIS] = mesh_home_z_search;
  7366. //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], Z_LIFT_FEEDRATE, active_extruder);
  7367. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], Z_LIFT_FEEDRATE, active_extruder);
  7368. for(int8_t i=0; i < NUM_AXIS; i++) {
  7369. current_position[i] = destination[i];
  7370. }
  7371. st_synchronize();
  7372. */
  7373. destination[Z_AXIS] = measure_z_height;
  7374. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], Z_LIFT_FEEDRATE, active_extruder);
  7375. for(int8_t i=0; i < NUM_AXIS; i++) {
  7376. current_position[i] = destination[i];
  7377. }
  7378. st_synchronize();
  7379. /*int l_feedmultiply = */setup_for_endstop_move(false);
  7380. SERIAL_PROTOCOLPGM("Num X,Y: ");
  7381. SERIAL_PROTOCOL(x_points_num);
  7382. SERIAL_PROTOCOLPGM(",");
  7383. SERIAL_PROTOCOL(y_points_num);
  7384. SERIAL_PROTOCOLPGM("\nZ search height: ");
  7385. SERIAL_PROTOCOL(mesh_home_z_search);
  7386. SERIAL_PROTOCOLPGM("\nDimension X,Y: ");
  7387. SERIAL_PROTOCOL(x_dimension);
  7388. SERIAL_PROTOCOLPGM(",");
  7389. SERIAL_PROTOCOL(y_dimension);
  7390. SERIAL_PROTOCOLLNPGM("\nMeasured points:");
  7391. while (mesh_point != x_points_num * y_points_num) {
  7392. ix = mesh_point % x_points_num; // from 0 to MESH_NUM_X_POINTS - 1
  7393. iy = mesh_point / x_points_num;
  7394. if (iy & 1) ix = (x_points_num - 1) - ix; // Zig zag
  7395. float z0 = 0.f;
  7396. /*destination[Z_AXIS] = mesh_home_z_search;
  7397. //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], Z_LIFT_FEEDRATE, active_extruder);
  7398. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], Z_LIFT_FEEDRATE, active_extruder);
  7399. for(int8_t i=0; i < NUM_AXIS; i++) {
  7400. current_position[i] = destination[i];
  7401. }
  7402. st_synchronize();*/
  7403. //current_position[X_AXIS] = 13.f + ix * (x_dimension / (x_points_num - 1)) - bed_zero_ref_x + shift_x;
  7404. //current_position[Y_AXIS] = 6.4f + iy * (y_dimension / (y_points_num - 1)) - bed_zero_ref_y + shift_y;
  7405. destination[X_AXIS] = ix * (x_dimension / (x_points_num - 1)) + shift_x;
  7406. destination[Y_AXIS] = iy * (y_dimension / (y_points_num - 1)) + shift_y;
  7407. mesh_plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], XY_AXIS_FEEDRATE/6, active_extruder);
  7408. for(int8_t i=0; i < NUM_AXIS; i++) {
  7409. current_position[i] = destination[i];
  7410. }
  7411. st_synchronize();
  7412. // printf_P(PSTR("X = %f; Y= %f \n"), current_position[X_AXIS], current_position[Y_AXIS]);
  7413. delay_keep_alive(1000);
  7414. #ifdef MICROMETER_LOGGING
  7415. //memset(numb_wldsd, 0, sizeof(numb_wldsd));
  7416. //dtostrf(d_ReadData(), 8, 5, numb_wldsd);
  7417. //strcat(data_wldsd, numb_wldsd);
  7418. //MYSERIAL.println(data_wldsd);
  7419. //delay(1000);
  7420. //delay(3000);
  7421. //t1 = millis();
  7422. //while (digitalRead(D_DATACLOCK) == LOW) {}
  7423. //while (digitalRead(D_DATACLOCK) == HIGH) {}
  7424. memset(digit, 0, sizeof(digit));
  7425. //cli();
  7426. digitalWrite(D_REQUIRE, LOW);
  7427. for (int i = 0; i<13; i++)
  7428. {
  7429. //t1 = millis();
  7430. for (int j = 0; j < 4; j++)
  7431. {
  7432. while (digitalRead(D_DATACLOCK) == LOW) {}
  7433. while (digitalRead(D_DATACLOCK) == HIGH) {}
  7434. //printf_P(PSTR("Done %d\n"), j);
  7435. bitWrite(digit[i], j, digitalRead(D_DATA));
  7436. }
  7437. //t_delay = (millis() - t1);
  7438. //SERIAL_PROTOCOLPGM(" ");
  7439. //SERIAL_PROTOCOL_F(t_delay, 5);
  7440. //SERIAL_PROTOCOLPGM(" ");
  7441. }
  7442. //sei();
  7443. digitalWrite(D_REQUIRE, HIGH);
  7444. mergeOutput[0] = '\0';
  7445. output = 0;
  7446. for (int r = 5; r <= 10; r++) //Merge digits
  7447. {
  7448. sprintf(str, "%d", digit[r]);
  7449. strcat(mergeOutput, str);
  7450. }
  7451. output = atof(mergeOutput);
  7452. if (digit[4] == 8) //Handle sign
  7453. {
  7454. output *= -1;
  7455. }
  7456. for (int i = digit[11]; i > 0; i--) //Handle floating point
  7457. {
  7458. output *= 0.1;
  7459. }
  7460. //output = d_ReadData();
  7461. //row[ix] = current_position[Z_AXIS];
  7462. //row[ix] = d_ReadData();
  7463. row[ix] = output;
  7464. if (iy % 2 == 1 ? ix == 0 : ix == x_points_num - 1) {
  7465. memset(data_wldsd, 0, sizeof(data_wldsd));
  7466. for (int i = 0; i < x_points_num; i++) {
  7467. SERIAL_PROTOCOLPGM(" ");
  7468. SERIAL_PROTOCOL_F(row[i], 5);
  7469. memset(numb_wldsd, 0, sizeof(numb_wldsd));
  7470. dtostrf(row[i], 7, 3, numb_wldsd);
  7471. strcat(data_wldsd, numb_wldsd);
  7472. }
  7473. card.write_command(data_wldsd);
  7474. SERIAL_PROTOCOLPGM("\n");
  7475. }
  7476. custom_message_state--;
  7477. mesh_point++;
  7478. lcd_update(1);
  7479. }
  7480. #endif //MICROMETER_LOGGING
  7481. card.closefile();
  7482. //clean_up_after_endstop_move(l_feedmultiply);
  7483. }
  7484. void bed_analysis(float x_dimension, float y_dimension, int x_points_num, int y_points_num, float shift_x, float shift_y) {
  7485. int t1 = 0;
  7486. int t_delay = 0;
  7487. int digit[13];
  7488. int m;
  7489. char str[3];
  7490. //String mergeOutput;
  7491. char mergeOutput[15];
  7492. float output;
  7493. int mesh_point = 0; //index number of calibration point
  7494. float bed_zero_ref_x = (-22.f + X_PROBE_OFFSET_FROM_EXTRUDER); //shift between zero point on bed and target and between probe and nozzle
  7495. float bed_zero_ref_y = (-0.6f + Y_PROBE_OFFSET_FROM_EXTRUDER);
  7496. float mesh_home_z_search = 4;
  7497. float row[x_points_num];
  7498. int ix = 0;
  7499. int iy = 0;
  7500. const char* filename_wldsd = "wldsd.txt";
  7501. char data_wldsd[70];
  7502. char numb_wldsd[10];
  7503. d_setup();
  7504. if (!(axis_known_position[X_AXIS] && axis_known_position[Y_AXIS] && axis_known_position[Z_AXIS])) {
  7505. // We don't know where we are! HOME!
  7506. // Push the commands to the front of the message queue in the reverse order!
  7507. // There shall be always enough space reserved for these commands.
  7508. repeatcommand_front(); // repeat G80 with all its parameters
  7509. enquecommand_front_P((PSTR("G28 W0")));
  7510. enquecommand_front_P((PSTR("G1 Z5")));
  7511. return;
  7512. }
  7513. unsigned int custom_message_type_old = custom_message_type;
  7514. unsigned int custom_message_state_old = custom_message_state;
  7515. custom_message_type = CustomMsg::MeshBedLeveling;
  7516. custom_message_state = (x_points_num * y_points_num) + 10;
  7517. lcd_update(1);
  7518. mbl.reset();
  7519. babystep_undo();
  7520. card.openFile(filename_wldsd, false);
  7521. current_position[Z_AXIS] = mesh_home_z_search;
  7522. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[Z_AXIS] / 60, active_extruder);
  7523. int XY_AXIS_FEEDRATE = homing_feedrate[X_AXIS] / 20;
  7524. int Z_LIFT_FEEDRATE = homing_feedrate[Z_AXIS] / 40;
  7525. int l_feedmultiply = setup_for_endstop_move(false);
  7526. SERIAL_PROTOCOLPGM("Num X,Y: ");
  7527. SERIAL_PROTOCOL(x_points_num);
  7528. SERIAL_PROTOCOLPGM(",");
  7529. SERIAL_PROTOCOL(y_points_num);
  7530. SERIAL_PROTOCOLPGM("\nZ search height: ");
  7531. SERIAL_PROTOCOL(mesh_home_z_search);
  7532. SERIAL_PROTOCOLPGM("\nDimension X,Y: ");
  7533. SERIAL_PROTOCOL(x_dimension);
  7534. SERIAL_PROTOCOLPGM(",");
  7535. SERIAL_PROTOCOL(y_dimension);
  7536. SERIAL_PROTOCOLLNPGM("\nMeasured points:");
  7537. while (mesh_point != x_points_num * y_points_num) {
  7538. ix = mesh_point % x_points_num; // from 0 to MESH_NUM_X_POINTS - 1
  7539. iy = mesh_point / x_points_num;
  7540. if (iy & 1) ix = (x_points_num - 1) - ix; // Zig zag
  7541. float z0 = 0.f;
  7542. current_position[Z_AXIS] = mesh_home_z_search;
  7543. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], Z_LIFT_FEEDRATE, active_extruder);
  7544. st_synchronize();
  7545. current_position[X_AXIS] = 13.f + ix * (x_dimension / (x_points_num - 1)) - bed_zero_ref_x + shift_x;
  7546. current_position[Y_AXIS] = 6.4f + iy * (y_dimension / (y_points_num - 1)) - bed_zero_ref_y + shift_y;
  7547. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], XY_AXIS_FEEDRATE, active_extruder);
  7548. st_synchronize();
  7549. if (!find_bed_induction_sensor_point_z(-10.f)) { //if we have data from z calibration max allowed difference is 1mm for each point, if we dont have data max difference is 10mm from initial point
  7550. break;
  7551. card.closefile();
  7552. }
  7553. //memset(numb_wldsd, 0, sizeof(numb_wldsd));
  7554. //dtostrf(d_ReadData(), 8, 5, numb_wldsd);
  7555. //strcat(data_wldsd, numb_wldsd);
  7556. //MYSERIAL.println(data_wldsd);
  7557. //_delay(1000);
  7558. //_delay(3000);
  7559. //t1 = _millis();
  7560. //while (digitalRead(D_DATACLOCK) == LOW) {}
  7561. //while (digitalRead(D_DATACLOCK) == HIGH) {}
  7562. memset(digit, 0, sizeof(digit));
  7563. //cli();
  7564. digitalWrite(D_REQUIRE, LOW);
  7565. for (int i = 0; i<13; i++)
  7566. {
  7567. //t1 = _millis();
  7568. for (int j = 0; j < 4; j++)
  7569. {
  7570. while (digitalRead(D_DATACLOCK) == LOW) {}
  7571. while (digitalRead(D_DATACLOCK) == HIGH) {}
  7572. bitWrite(digit[i], j, digitalRead(D_DATA));
  7573. }
  7574. //t_delay = (_millis() - t1);
  7575. //SERIAL_PROTOCOLPGM(" ");
  7576. //SERIAL_PROTOCOL_F(t_delay, 5);
  7577. //SERIAL_PROTOCOLPGM(" ");
  7578. }
  7579. //sei();
  7580. digitalWrite(D_REQUIRE, HIGH);
  7581. mergeOutput[0] = '\0';
  7582. output = 0;
  7583. for (int r = 5; r <= 10; r++) //Merge digits
  7584. {
  7585. sprintf(str, "%d", digit[r]);
  7586. strcat(mergeOutput, str);
  7587. }
  7588. output = atof(mergeOutput);
  7589. if (digit[4] == 8) //Handle sign
  7590. {
  7591. output *= -1;
  7592. }
  7593. for (int i = digit[11]; i > 0; i--) //Handle floating point
  7594. {
  7595. output *= 0.1;
  7596. }
  7597. //output = d_ReadData();
  7598. //row[ix] = current_position[Z_AXIS];
  7599. memset(data_wldsd, 0, sizeof(data_wldsd));
  7600. for (int i = 0; i <3; i++) {
  7601. memset(numb_wldsd, 0, sizeof(numb_wldsd));
  7602. dtostrf(current_position[i], 8, 5, numb_wldsd);
  7603. strcat(data_wldsd, numb_wldsd);
  7604. strcat(data_wldsd, ";");
  7605. }
  7606. memset(numb_wldsd, 0, sizeof(numb_wldsd));
  7607. dtostrf(output, 8, 5, numb_wldsd);
  7608. strcat(data_wldsd, numb_wldsd);
  7609. //strcat(data_wldsd, ";");
  7610. card.write_command(data_wldsd);
  7611. //row[ix] = d_ReadData();
  7612. row[ix] = output; // current_position[Z_AXIS];
  7613. if (iy % 2 == 1 ? ix == 0 : ix == x_points_num - 1) {
  7614. for (int i = 0; i < x_points_num; i++) {
  7615. SERIAL_PROTOCOLPGM(" ");
  7616. SERIAL_PROTOCOL_F(row[i], 5);
  7617. }
  7618. SERIAL_PROTOCOLPGM("\n");
  7619. }
  7620. custom_message_state--;
  7621. mesh_point++;
  7622. lcd_update(1);
  7623. }
  7624. card.closefile();
  7625. clean_up_after_endstop_move(l_feedmultiply);
  7626. }
  7627. #endif //HEATBED_ANALYSIS
  7628. void temp_compensation_start() {
  7629. custom_message_type = CustomMsg::TempCompPreheat;
  7630. custom_message_state = PINDA_HEAT_T + 1;
  7631. lcd_update(2);
  7632. if (degHotend(active_extruder) > EXTRUDE_MINTEMP) {
  7633. current_position[E_AXIS] -= default_retraction;
  7634. }
  7635. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400, active_extruder);
  7636. current_position[X_AXIS] = PINDA_PREHEAT_X;
  7637. current_position[Y_AXIS] = PINDA_PREHEAT_Y;
  7638. current_position[Z_AXIS] = PINDA_PREHEAT_Z;
  7639. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  7640. st_synchronize();
  7641. while (fabs(degBed() - target_temperature_bed) > 1) delay_keep_alive(1000);
  7642. for (int i = 0; i < PINDA_HEAT_T; i++) {
  7643. delay_keep_alive(1000);
  7644. custom_message_state = PINDA_HEAT_T - i;
  7645. if (custom_message_state == 99 || custom_message_state == 9) lcd_update(2); //force whole display redraw if number of digits changed
  7646. else lcd_update(1);
  7647. }
  7648. custom_message_type = CustomMsg::Status;
  7649. custom_message_state = 0;
  7650. }
  7651. void temp_compensation_apply() {
  7652. int i_add;
  7653. int z_shift = 0;
  7654. float z_shift_mm;
  7655. if (calibration_status() == CALIBRATION_STATUS_CALIBRATED) {
  7656. if (target_temperature_bed % 10 == 0 && target_temperature_bed >= 60 && target_temperature_bed <= 100) {
  7657. i_add = (target_temperature_bed - 60) / 10;
  7658. EEPROM_read_B(EEPROM_PROBE_TEMP_SHIFT + i_add * 2, &z_shift);
  7659. z_shift_mm = z_shift / cs.axis_steps_per_unit[Z_AXIS];
  7660. }else {
  7661. //interpolation
  7662. z_shift_mm = temp_comp_interpolation(target_temperature_bed) / cs.axis_steps_per_unit[Z_AXIS];
  7663. }
  7664. printf_P(_N("\nZ shift applied:%.3f\n"), z_shift_mm);
  7665. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS] - z_shift_mm, current_position[E_AXIS], homing_feedrate[Z_AXIS] / 40, active_extruder);
  7666. st_synchronize();
  7667. plan_set_z_position(current_position[Z_AXIS]);
  7668. }
  7669. else {
  7670. //we have no temp compensation data
  7671. }
  7672. }
  7673. float temp_comp_interpolation(float inp_temperature) {
  7674. //cubic spline interpolation
  7675. int n, i, j;
  7676. float h[10], a, b, c, d, sum, s[10] = { 0 }, x[10], F[10], f[10], m[10][10] = { 0 }, temp;
  7677. int shift[10];
  7678. int temp_C[10];
  7679. n = 6; //number of measured points
  7680. shift[0] = 0;
  7681. for (i = 0; i < n; i++) {
  7682. if (i>0) EEPROM_read_B(EEPROM_PROBE_TEMP_SHIFT + (i-1) * 2, &shift[i]); //read shift in steps from EEPROM
  7683. temp_C[i] = 50 + i * 10; //temperature in C
  7684. #ifdef PINDA_THERMISTOR
  7685. temp_C[i] = 35 + i * 5; //temperature in C
  7686. #else
  7687. temp_C[i] = 50 + i * 10; //temperature in C
  7688. #endif
  7689. x[i] = (float)temp_C[i];
  7690. f[i] = (float)shift[i];
  7691. }
  7692. if (inp_temperature < x[0]) return 0;
  7693. for (i = n - 1; i>0; i--) {
  7694. F[i] = (f[i] - f[i - 1]) / (x[i] - x[i - 1]);
  7695. h[i - 1] = x[i] - x[i - 1];
  7696. }
  7697. //*********** formation of h, s , f matrix **************
  7698. for (i = 1; i<n - 1; i++) {
  7699. m[i][i] = 2 * (h[i - 1] + h[i]);
  7700. if (i != 1) {
  7701. m[i][i - 1] = h[i - 1];
  7702. m[i - 1][i] = h[i - 1];
  7703. }
  7704. m[i][n - 1] = 6 * (F[i + 1] - F[i]);
  7705. }
  7706. //*********** forward elimination **************
  7707. for (i = 1; i<n - 2; i++) {
  7708. temp = (m[i + 1][i] / m[i][i]);
  7709. for (j = 1; j <= n - 1; j++)
  7710. m[i + 1][j] -= temp*m[i][j];
  7711. }
  7712. //*********** backward substitution *********
  7713. for (i = n - 2; i>0; i--) {
  7714. sum = 0;
  7715. for (j = i; j <= n - 2; j++)
  7716. sum += m[i][j] * s[j];
  7717. s[i] = (m[i][n - 1] - sum) / m[i][i];
  7718. }
  7719. for (i = 0; i<n - 1; i++)
  7720. if ((x[i] <= inp_temperature && inp_temperature <= x[i + 1]) || (i == n-2 && inp_temperature > x[i + 1])) {
  7721. a = (s[i + 1] - s[i]) / (6 * h[i]);
  7722. b = s[i] / 2;
  7723. c = (f[i + 1] - f[i]) / h[i] - (2 * h[i] * s[i] + s[i + 1] * h[i]) / 6;
  7724. d = f[i];
  7725. sum = a*pow((inp_temperature - x[i]), 3) + b*pow((inp_temperature - x[i]), 2) + c*(inp_temperature - x[i]) + d;
  7726. }
  7727. return sum;
  7728. }
  7729. #ifdef PINDA_THERMISTOR
  7730. float temp_compensation_pinda_thermistor_offset(float temperature_pinda)
  7731. {
  7732. if (!temp_cal_active) return 0;
  7733. if (!calibration_status_pinda()) return 0;
  7734. return temp_comp_interpolation(temperature_pinda) / cs.axis_steps_per_unit[Z_AXIS];
  7735. }
  7736. #endif //PINDA_THERMISTOR
  7737. void long_pause() //long pause print
  7738. {
  7739. st_synchronize();
  7740. start_pause_print = _millis();
  7741. //retract
  7742. current_position[E_AXIS] -= default_retraction;
  7743. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400, active_extruder);
  7744. //lift z
  7745. current_position[Z_AXIS] += Z_PAUSE_LIFT;
  7746. if (current_position[Z_AXIS] > Z_MAX_POS) current_position[Z_AXIS] = Z_MAX_POS;
  7747. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 15, active_extruder);
  7748. //Move XY to side
  7749. current_position[X_AXIS] = X_PAUSE_POS;
  7750. current_position[Y_AXIS] = Y_PAUSE_POS;
  7751. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 50, active_extruder);
  7752. // Turn off the print fan
  7753. fanSpeed = 0;
  7754. st_synchronize();
  7755. }
  7756. void serialecho_temperatures() {
  7757. float tt = degHotend(active_extruder);
  7758. SERIAL_PROTOCOLPGM("T:");
  7759. SERIAL_PROTOCOL(tt);
  7760. SERIAL_PROTOCOLPGM(" E:");
  7761. SERIAL_PROTOCOL((int)active_extruder);
  7762. SERIAL_PROTOCOLPGM(" B:");
  7763. SERIAL_PROTOCOL_F(degBed(), 1);
  7764. SERIAL_PROTOCOLLN("");
  7765. }
  7766. extern uint32_t sdpos_atomic;
  7767. #ifdef UVLO_SUPPORT
  7768. void uvlo_()
  7769. {
  7770. unsigned long time_start = _millis();
  7771. bool sd_print = card.sdprinting;
  7772. // Conserve power as soon as possible.
  7773. disable_x();
  7774. disable_y();
  7775. #ifdef TMC2130
  7776. tmc2130_set_current_h(Z_AXIS, 20);
  7777. tmc2130_set_current_r(Z_AXIS, 20);
  7778. tmc2130_set_current_h(E_AXIS, 20);
  7779. tmc2130_set_current_r(E_AXIS, 20);
  7780. #endif //TMC2130
  7781. // Indicate that the interrupt has been triggered.
  7782. // SERIAL_ECHOLNPGM("UVLO");
  7783. // Read out the current Z motor microstep counter. This will be later used
  7784. // for reaching the zero full step before powering off.
  7785. uint16_t z_microsteps = 0;
  7786. #ifdef TMC2130
  7787. z_microsteps = tmc2130_rd_MSCNT(Z_TMC2130_CS);
  7788. #endif //TMC2130
  7789. // Calculate the file position, from which to resume this print.
  7790. long sd_position = sdpos_atomic; //atomic sd position of last command added in queue
  7791. {
  7792. uint16_t sdlen_planner = planner_calc_sd_length(); //length of sd commands in planner
  7793. sd_position -= sdlen_planner;
  7794. uint16_t sdlen_cmdqueue = cmdqueue_calc_sd_length(); //length of sd commands in cmdqueue
  7795. sd_position -= sdlen_cmdqueue;
  7796. if (sd_position < 0) sd_position = 0;
  7797. }
  7798. // Backup the feedrate in mm/min.
  7799. int feedrate_bckp = blocks_queued() ? (block_buffer[block_buffer_tail].nominal_speed * 60.f) : feedrate;
  7800. // After this call, the planner queue is emptied and the current_position is set to a current logical coordinate.
  7801. // The logical coordinate will likely differ from the machine coordinate if the skew calibration and mesh bed leveling
  7802. // are in action.
  7803. planner_abort_hard();
  7804. // Store the current extruder position.
  7805. eeprom_update_float((float*)(EEPROM_UVLO_CURRENT_POSITION_E), st_get_position_mm(E_AXIS));
  7806. eeprom_update_byte((uint8_t*)EEPROM_UVLO_E_ABS, axis_relative_modes[3]?0:1);
  7807. // Clean the input command queue.
  7808. cmdqueue_reset();
  7809. card.sdprinting = false;
  7810. // card.closefile();
  7811. // Enable stepper driver interrupt to move Z axis.
  7812. // This should be fine as the planner and command queues are empty and the SD card printing is disabled.
  7813. //FIXME one may want to disable serial lines at this point of time to avoid interfering with the command queue,
  7814. // though it should not happen that the command queue is touched as the plan_buffer_line always succeed without blocking.
  7815. sei();
  7816. plan_buffer_line(
  7817. current_position[X_AXIS],
  7818. current_position[Y_AXIS],
  7819. current_position[Z_AXIS],
  7820. current_position[E_AXIS] - default_retraction,
  7821. 95, active_extruder);
  7822. st_synchronize();
  7823. disable_e0();
  7824. plan_buffer_line(
  7825. current_position[X_AXIS],
  7826. current_position[Y_AXIS],
  7827. current_position[Z_AXIS] + UVLO_Z_AXIS_SHIFT + float((1024 - z_microsteps + 7) >> 4) / cs.axis_steps_per_unit[Z_AXIS],
  7828. current_position[E_AXIS] - default_retraction,
  7829. 40, active_extruder);
  7830. st_synchronize();
  7831. disable_e0();
  7832. plan_buffer_line(
  7833. current_position[X_AXIS],
  7834. current_position[Y_AXIS],
  7835. current_position[Z_AXIS] + UVLO_Z_AXIS_SHIFT + float((1024 - z_microsteps + 7) >> 4) / cs.axis_steps_per_unit[Z_AXIS],
  7836. current_position[E_AXIS] - default_retraction,
  7837. 40, active_extruder);
  7838. st_synchronize();
  7839. disable_e0();
  7840. disable_z();
  7841. // Move Z up to the next 0th full step.
  7842. // Write the file position.
  7843. eeprom_update_dword((uint32_t*)(EEPROM_FILE_POSITION), sd_position);
  7844. // Store the mesh bed leveling offsets. This is 2*7*7=98 bytes, which takes 98*3.4us=333us in worst case.
  7845. for (int8_t mesh_point = 0; mesh_point < MESH_NUM_X_POINTS * MESH_NUM_Y_POINTS; ++ mesh_point) {
  7846. uint8_t ix = mesh_point % MESH_NUM_X_POINTS; // from 0 to MESH_NUM_X_POINTS - 1
  7847. uint8_t iy = mesh_point / MESH_NUM_X_POINTS;
  7848. // Scale the z value to 1u resolution.
  7849. int16_t v = mbl.active ? int16_t(floor(mbl.z_values[iy][ix] * 1000.f + 0.5f)) : 0;
  7850. eeprom_update_word((uint16_t*)(EEPROM_UVLO_MESH_BED_LEVELING_FULL +2*mesh_point), *reinterpret_cast<uint16_t*>(&v));
  7851. }
  7852. // Read out the current Z motor microstep counter. This will be later used
  7853. // for reaching the zero full step before powering off.
  7854. eeprom_update_word((uint16_t*)(EEPROM_UVLO_Z_MICROSTEPS), z_microsteps);
  7855. // Store the current position.
  7856. eeprom_update_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 0), current_position[X_AXIS]);
  7857. eeprom_update_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 4), current_position[Y_AXIS]);
  7858. eeprom_update_float((float*)EEPROM_UVLO_CURRENT_POSITION_Z , current_position[Z_AXIS]);
  7859. // Store the current feed rate, temperatures, fan speed and extruder multipliers (flow rates)
  7860. EEPROM_save_B(EEPROM_UVLO_FEEDRATE, &feedrate_bckp);
  7861. eeprom_update_byte((uint8_t*)EEPROM_UVLO_TARGET_HOTEND, target_temperature[active_extruder]);
  7862. eeprom_update_byte((uint8_t*)EEPROM_UVLO_TARGET_BED, target_temperature_bed);
  7863. eeprom_update_byte((uint8_t*)EEPROM_UVLO_FAN_SPEED, fanSpeed);
  7864. eeprom_update_float((float*)(EEPROM_EXTRUDER_MULTIPLIER_0), extruder_multiplier[0]);
  7865. #if EXTRUDERS > 1
  7866. eeprom_update_float((float*)(EEPROM_EXTRUDER_MULTIPLIER_1), extruder_multiplier[1]);
  7867. #if EXTRUDERS > 2
  7868. eeprom_update_float((float*)(EEPROM_EXTRUDER_MULTIPLIER_2), extruder_multiplier[2]);
  7869. #endif
  7870. #endif
  7871. eeprom_update_word((uint16_t*)(EEPROM_EXTRUDEMULTIPLY), (uint16_t)extrudemultiply);
  7872. // Finaly store the "power outage" flag.
  7873. if(sd_print) eeprom_update_byte((uint8_t*)EEPROM_UVLO, 1);
  7874. st_synchronize();
  7875. printf_P(_N("stps%d\n"), tmc2130_rd_MSCNT(Z_AXIS));
  7876. disable_z();
  7877. // Increment power failure counter
  7878. eeprom_update_byte((uint8_t*)EEPROM_POWER_COUNT, eeprom_read_byte((uint8_t*)EEPROM_POWER_COUNT) + 1);
  7879. eeprom_update_word((uint16_t*)EEPROM_POWER_COUNT_TOT, eeprom_read_word((uint16_t*)EEPROM_POWER_COUNT_TOT) + 1);
  7880. printf_P(_N("UVLO - end %d\n"), _millis() - time_start);
  7881. #if 0
  7882. // Move the print head to the side of the print until all the power stored in the power supply capacitors is depleted.
  7883. current_position[X_AXIS] = (current_position[X_AXIS] < 0.5f * (X_MIN_POS + X_MAX_POS)) ? X_MIN_POS : X_MAX_POS;
  7884. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 500, active_extruder);
  7885. st_synchronize();
  7886. #endif
  7887. wdt_enable(WDTO_500MS);
  7888. WRITE(BEEPER,HIGH);
  7889. while(1)
  7890. ;
  7891. }
  7892. void uvlo_tiny()
  7893. {
  7894. uint16_t z_microsteps=0;
  7895. // Conserve power as soon as possible.
  7896. disable_x();
  7897. disable_y();
  7898. disable_e0();
  7899. #ifdef TMC2130
  7900. tmc2130_set_current_h(Z_AXIS, 20);
  7901. tmc2130_set_current_r(Z_AXIS, 20);
  7902. #endif //TMC2130
  7903. // Read out the current Z motor microstep counter
  7904. #ifdef TMC2130
  7905. z_microsteps=tmc2130_rd_MSCNT(Z_TMC2130_CS);
  7906. #endif //TMC2130
  7907. planner_abort_hard();
  7908. disable_z();
  7909. //save current position only in case, where the printer is moving on Z axis, which is only when EEPROM_UVLO is 1
  7910. //EEPROM_UVLO is 1 after normal uvlo or after recover_print(), when the extruder is moving on Z axis after rehome
  7911. if(eeprom_read_byte((uint8_t*)EEPROM_UVLO)!=2){
  7912. eeprom_update_float((float*)(EEPROM_UVLO_TINY_CURRENT_POSITION_Z), current_position[Z_AXIS]);
  7913. eeprom_update_word((uint16_t*)(EEPROM_UVLO_TINY_Z_MICROSTEPS),z_microsteps);
  7914. }
  7915. //after multiple power panics current Z axis is unknow
  7916. //in this case we set EEPROM_UVLO_TINY_CURRENT_POSITION_Z to last know position which is EEPROM_UVLO_CURRENT_POSITION_Z
  7917. if(eeprom_read_float((float*)EEPROM_UVLO_TINY_CURRENT_POSITION_Z) < 0.001f){
  7918. eeprom_update_float((float*)(EEPROM_UVLO_TINY_CURRENT_POSITION_Z), eeprom_read_float((float*)EEPROM_UVLO_CURRENT_POSITION_Z));
  7919. eeprom_update_word((uint16_t*)(EEPROM_UVLO_TINY_Z_MICROSTEPS), eeprom_read_word((uint16_t*)EEPROM_UVLO_Z_MICROSTEPS));
  7920. }
  7921. // Finaly store the "power outage" flag.
  7922. eeprom_update_byte((uint8_t*)EEPROM_UVLO,2);
  7923. // Increment power failure counter
  7924. eeprom_update_byte((uint8_t*)EEPROM_POWER_COUNT, eeprom_read_byte((uint8_t*)EEPROM_POWER_COUNT) + 1);
  7925. eeprom_update_word((uint16_t*)EEPROM_POWER_COUNT_TOT, eeprom_read_word((uint16_t*)EEPROM_POWER_COUNT_TOT) + 1);
  7926. wdt_enable(WDTO_500MS);
  7927. WRITE(BEEPER,HIGH);
  7928. while(1)
  7929. ;
  7930. }
  7931. #endif //UVLO_SUPPORT
  7932. #if (defined(FANCHECK) && defined(TACH_1) && (TACH_1 >-1))
  7933. void setup_fan_interrupt() {
  7934. //INT7
  7935. DDRE &= ~(1 << 7); //input pin
  7936. PORTE &= ~(1 << 7); //no internal pull-up
  7937. //start with sensing rising edge
  7938. EICRB &= ~(1 << 6);
  7939. EICRB |= (1 << 7);
  7940. //enable INT7 interrupt
  7941. EIMSK |= (1 << 7);
  7942. }
  7943. // The fan interrupt is triggered at maximum 325Hz (may be a bit more due to component tollerances),
  7944. // and it takes 4.24 us to process (the interrupt invocation overhead not taken into account).
  7945. ISR(INT7_vect) {
  7946. //measuring speed now works for fanSpeed > 18 (approximately), which is sufficient because MIN_PRINT_FAN_SPEED is higher
  7947. #ifdef FAN_SOFT_PWM
  7948. if (!fan_measuring || (fanSpeedSoftPwm < MIN_PRINT_FAN_SPEED)) return;
  7949. #else //FAN_SOFT_PWM
  7950. if (fanSpeed < MIN_PRINT_FAN_SPEED) return;
  7951. #endif //FAN_SOFT_PWM
  7952. if ((1 << 6) & EICRB) { //interrupt was triggered by rising edge
  7953. t_fan_rising_edge = millis_nc();
  7954. }
  7955. else { //interrupt was triggered by falling edge
  7956. if ((millis_nc() - t_fan_rising_edge) >= FAN_PULSE_WIDTH_LIMIT) {//this pulse was from sensor and not from pwm
  7957. fan_edge_counter[1] += 2; //we are currently counting all edges so lets count two edges for one pulse
  7958. }
  7959. }
  7960. EICRB ^= (1 << 6); //change edge
  7961. }
  7962. #endif
  7963. #ifdef UVLO_SUPPORT
  7964. void setup_uvlo_interrupt() {
  7965. DDRE &= ~(1 << 4); //input pin
  7966. PORTE &= ~(1 << 4); //no internal pull-up
  7967. //sensing falling edge
  7968. EICRB |= (1 << 0);
  7969. EICRB &= ~(1 << 1);
  7970. //enable INT4 interrupt
  7971. EIMSK |= (1 << 4);
  7972. }
  7973. ISR(INT4_vect) {
  7974. EIMSK &= ~(1 << 4); //disable INT4 interrupt to make sure that this code will be executed just once
  7975. SERIAL_ECHOLNPGM("INT4");
  7976. //fire normal uvlo only in case where EEPROM_UVLO is 0 or if IS_SD_PRINTING is 1.
  7977. if(PRINTER_ACTIVE && (!(eeprom_read_byte((uint8_t*)EEPROM_UVLO)))) uvlo_();
  7978. if(eeprom_read_byte((uint8_t*)EEPROM_UVLO)) uvlo_tiny();
  7979. }
  7980. void recover_print(uint8_t automatic) {
  7981. char cmd[30];
  7982. lcd_update_enable(true);
  7983. lcd_update(2);
  7984. lcd_setstatuspgm(_i("Recovering print "));////MSG_RECOVERING_PRINT c=20 r=1
  7985. bool bTiny=(eeprom_read_byte((uint8_t*)EEPROM_UVLO)==2);
  7986. recover_machine_state_after_power_panic(bTiny); //recover position, temperatures and extrude_multipliers
  7987. // Lift the print head, so one may remove the excess priming material.
  7988. if(!bTiny&&(current_position[Z_AXIS]<25))
  7989. enquecommand_P(PSTR("G1 Z25 F800"));
  7990. // Home X and Y axes. Homing just X and Y shall not touch the babystep and the world2machine transformation status.
  7991. enquecommand_P(PSTR("G28 X Y"));
  7992. // Set the target bed and nozzle temperatures and wait.
  7993. sprintf_P(cmd, PSTR("M109 S%d"), target_temperature[active_extruder]);
  7994. enquecommand(cmd);
  7995. sprintf_P(cmd, PSTR("M190 S%d"), target_temperature_bed);
  7996. enquecommand(cmd);
  7997. enquecommand_P(PSTR("M83")); //E axis relative mode
  7998. //enquecommand_P(PSTR("G1 E5 F120")); //Extrude some filament to stabilize pessure
  7999. // If not automatically recoreverd (long power loss), extrude extra filament to stabilize
  8000. if(automatic == 0){
  8001. enquecommand_P(PSTR("G1 E5 F120")); //Extrude some filament to stabilize pessure
  8002. }
  8003. enquecommand_P(PSTR("G1 E" STRINGIFY(-default_retraction)" F480"));
  8004. printf_P(_N("After waiting for temp:\nCurrent pos X_AXIS:%.3f\nCurrent pos Y_AXIS:%.3f\n"), current_position[X_AXIS], current_position[Y_AXIS]);
  8005. // Restart the print.
  8006. restore_print_from_eeprom();
  8007. printf_P(_N("Current pos Z_AXIS:%.3f\nCurrent pos E_AXIS:%.3f\n"), current_position[Z_AXIS], current_position[E_AXIS]);
  8008. }
  8009. void recover_machine_state_after_power_panic(bool bTiny)
  8010. {
  8011. char cmd[30];
  8012. // 1) Recover the logical cordinates at the time of the power panic.
  8013. // The logical XY coordinates are needed to recover the machine Z coordinate corrected by the mesh bed leveling.
  8014. current_position[X_AXIS] = eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 0));
  8015. current_position[Y_AXIS] = eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 4));
  8016. // 2) Restore the mesh bed leveling offsets. This is 2*7*7=98 bytes, which takes 98*3.4us=333us in worst case.
  8017. mbl.active = false;
  8018. for (int8_t mesh_point = 0; mesh_point < MESH_NUM_X_POINTS * MESH_NUM_Y_POINTS; ++ mesh_point) {
  8019. uint8_t ix = mesh_point % MESH_NUM_X_POINTS; // from 0 to MESH_NUM_X_POINTS - 1
  8020. uint8_t iy = mesh_point / MESH_NUM_X_POINTS;
  8021. // Scale the z value to 10u resolution.
  8022. int16_t v;
  8023. eeprom_read_block(&v, (void*)(EEPROM_UVLO_MESH_BED_LEVELING_FULL+2*mesh_point), 2);
  8024. if (v != 0)
  8025. mbl.active = true;
  8026. mbl.z_values[iy][ix] = float(v) * 0.001f;
  8027. }
  8028. // Recover the logical coordinate of the Z axis at the time of the power panic.
  8029. // The current position after power panic is moved to the next closest 0th full step.
  8030. if(bTiny){
  8031. current_position[Z_AXIS] = eeprom_read_float((float*)(EEPROM_UVLO_TINY_CURRENT_POSITION_Z))
  8032. + float((1024 - eeprom_read_word((uint16_t*)(EEPROM_UVLO_TINY_Z_MICROSTEPS))
  8033. + 7) >> 4) / cs.axis_steps_per_unit[Z_AXIS];
  8034. //after multiple power panics the print is slightly in the air so get it little bit down.
  8035. //Not exactly sure why is this happening, but it has something to do with bed leveling and world2machine coordinates
  8036. current_position[Z_AXIS] -= 0.4*mbl.get_z(current_position[X_AXIS], current_position[Y_AXIS]);
  8037. }
  8038. else{
  8039. current_position[Z_AXIS] = eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION_Z)) +
  8040. UVLO_Z_AXIS_SHIFT + float((1024 - eeprom_read_word((uint16_t*)(EEPROM_UVLO_Z_MICROSTEPS))
  8041. + 7) >> 4) / cs.axis_steps_per_unit[Z_AXIS];
  8042. }
  8043. if (eeprom_read_byte((uint8_t*)EEPROM_UVLO_E_ABS)) {
  8044. current_position[E_AXIS] = eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION_E));
  8045. sprintf_P(cmd, PSTR("G92 E"));
  8046. dtostrf(current_position[E_AXIS], 6, 3, cmd + strlen(cmd));
  8047. enquecommand(cmd);
  8048. }
  8049. memcpy(destination, current_position, sizeof(destination));
  8050. SERIAL_ECHOPGM("recover_machine_state_after_power_panic, initial ");
  8051. print_world_coordinates();
  8052. // 3) Initialize the logical to physical coordinate system transformation.
  8053. world2machine_initialize();
  8054. // SERIAL_ECHOPGM("recover_machine_state_after_power_panic, initial ");
  8055. // print_mesh_bed_leveling_table();
  8056. // 4) Load the baby stepping value, which is expected to be active at the time of power panic.
  8057. // The baby stepping value is used to reset the physical Z axis when rehoming the Z axis.
  8058. babystep_load();
  8059. // 5) Set the physical positions from the logical positions using the world2machine transformation and the active bed leveling.
  8060. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  8061. // 6) Power up the motors, mark their positions as known.
  8062. //FIXME Verfiy, whether the X and Y axes should be powered up here, as they will later be re-homed anyway.
  8063. axis_known_position[X_AXIS] = true; enable_x();
  8064. axis_known_position[Y_AXIS] = true; enable_y();
  8065. axis_known_position[Z_AXIS] = true; enable_z();
  8066. SERIAL_ECHOPGM("recover_machine_state_after_power_panic, initial ");
  8067. print_physical_coordinates();
  8068. // 7) Recover the target temperatures.
  8069. target_temperature[active_extruder] = eeprom_read_byte((uint8_t*)EEPROM_UVLO_TARGET_HOTEND);
  8070. target_temperature_bed = eeprom_read_byte((uint8_t*)EEPROM_UVLO_TARGET_BED);
  8071. // 8) Recover extruder multipilers
  8072. extruder_multiplier[0] = eeprom_read_float((float*)(EEPROM_EXTRUDER_MULTIPLIER_0));
  8073. #if EXTRUDERS > 1
  8074. extruder_multiplier[1] = eeprom_read_float((float*)(EEPROM_EXTRUDER_MULTIPLIER_1));
  8075. #if EXTRUDERS > 2
  8076. extruder_multiplier[2] = eeprom_read_float((float*)(EEPROM_EXTRUDER_MULTIPLIER_2));
  8077. #endif
  8078. #endif
  8079. extrudemultiply = (int)eeprom_read_word((uint16_t*)(EEPROM_EXTRUDEMULTIPLY));
  8080. }
  8081. void restore_print_from_eeprom() {
  8082. int feedrate_rec;
  8083. uint8_t fan_speed_rec;
  8084. char cmd[30];
  8085. char filename[13];
  8086. uint8_t depth = 0;
  8087. char dir_name[9];
  8088. fan_speed_rec = eeprom_read_byte((uint8_t*)EEPROM_UVLO_FAN_SPEED);
  8089. EEPROM_read_B(EEPROM_UVLO_FEEDRATE, &feedrate_rec);
  8090. SERIAL_ECHOPGM("Feedrate:");
  8091. MYSERIAL.println(feedrate_rec);
  8092. depth = eeprom_read_byte((uint8_t*)EEPROM_DIR_DEPTH);
  8093. MYSERIAL.println(int(depth));
  8094. for (int i = 0; i < depth; i++) {
  8095. for (int j = 0; j < 8; j++) {
  8096. dir_name[j] = eeprom_read_byte((uint8_t*)EEPROM_DIRS + j + 8 * i);
  8097. }
  8098. dir_name[8] = '\0';
  8099. MYSERIAL.println(dir_name);
  8100. strcpy(dir_names[i], dir_name);
  8101. card.chdir(dir_name);
  8102. }
  8103. for (int i = 0; i < 8; i++) {
  8104. filename[i] = eeprom_read_byte((uint8_t*)EEPROM_FILENAME + i);
  8105. }
  8106. filename[8] = '\0';
  8107. MYSERIAL.print(filename);
  8108. strcat_P(filename, PSTR(".gco"));
  8109. sprintf_P(cmd, PSTR("M23 %s"), filename);
  8110. enquecommand(cmd);
  8111. uint32_t position = eeprom_read_dword((uint32_t*)(EEPROM_FILE_POSITION));
  8112. SERIAL_ECHOPGM("Position read from eeprom:");
  8113. MYSERIAL.println(position);
  8114. // E axis relative mode.
  8115. enquecommand_P(PSTR("M83"));
  8116. // Move to the XY print position in logical coordinates, where the print has been killed.
  8117. strcpy_P(cmd, PSTR("G1 X")); strcat(cmd, ftostr32(eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 0))));
  8118. strcat_P(cmd, PSTR(" Y")); strcat(cmd, ftostr32(eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 4))));
  8119. strcat_P(cmd, PSTR(" F2000"));
  8120. enquecommand(cmd);
  8121. //moving on Z axis ahead, set EEPROM_UVLO to 1, so normal uvlo can fire
  8122. eeprom_update_byte((uint8_t*)EEPROM_UVLO,1);
  8123. // Move the Z axis down to the print, in logical coordinates.
  8124. strcpy_P(cmd, PSTR("G1 Z")); strcat(cmd, ftostr32(eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION_Z))));
  8125. enquecommand(cmd);
  8126. // Unretract.
  8127. enquecommand_P(PSTR("G1 E" STRINGIFY(2*default_retraction)" F480"));
  8128. // Set the feedrate saved at the power panic.
  8129. sprintf_P(cmd, PSTR("G1 F%d"), feedrate_rec);
  8130. enquecommand(cmd);
  8131. if (eeprom_read_byte((uint8_t*)EEPROM_UVLO_E_ABS))
  8132. {
  8133. enquecommand_P(PSTR("M82")); //E axis abslute mode
  8134. }
  8135. // Set the fan speed saved at the power panic.
  8136. strcpy_P(cmd, PSTR("M106 S"));
  8137. strcat(cmd, itostr3(int(fan_speed_rec)));
  8138. enquecommand(cmd);
  8139. // Set a position in the file.
  8140. sprintf_P(cmd, PSTR("M26 S%lu"), position);
  8141. enquecommand(cmd);
  8142. enquecommand_P(PSTR("G4 S0"));
  8143. enquecommand_P(PSTR("PRUSA uvlo"));
  8144. }
  8145. #endif //UVLO_SUPPORT
  8146. //! @brief Immediately stop print moves
  8147. //!
  8148. //! Immediately stop print moves, save current extruder temperature and position to RAM.
  8149. //! If printing from sd card, position in file is saved.
  8150. //! If printing from USB, line number is saved.
  8151. //!
  8152. //! @param z_move
  8153. //! @param e_move
  8154. void stop_and_save_print_to_ram(float z_move, float e_move)
  8155. {
  8156. if (saved_printing) return;
  8157. #if 0
  8158. unsigned char nplanner_blocks;
  8159. #endif
  8160. unsigned char nlines;
  8161. uint16_t sdlen_planner;
  8162. uint16_t sdlen_cmdqueue;
  8163. cli();
  8164. if (card.sdprinting) {
  8165. #if 0
  8166. nplanner_blocks = number_of_blocks();
  8167. #endif
  8168. saved_sdpos = sdpos_atomic; //atomic sd position of last command added in queue
  8169. sdlen_planner = planner_calc_sd_length(); //length of sd commands in planner
  8170. saved_sdpos -= sdlen_planner;
  8171. sdlen_cmdqueue = cmdqueue_calc_sd_length(); //length of sd commands in cmdqueue
  8172. saved_sdpos -= sdlen_cmdqueue;
  8173. saved_printing_type = PRINTING_TYPE_SD;
  8174. }
  8175. else if (is_usb_printing) { //reuse saved_sdpos for storing line number
  8176. saved_sdpos = gcode_LastN; //start with line number of command added recently to cmd queue
  8177. //reuse planner_calc_sd_length function for getting number of lines of commands in planner:
  8178. nlines = planner_calc_sd_length(); //number of lines of commands in planner
  8179. saved_sdpos -= nlines;
  8180. saved_sdpos -= buflen; //number of blocks in cmd buffer
  8181. saved_printing_type = PRINTING_TYPE_USB;
  8182. }
  8183. else {
  8184. saved_printing_type = PRINTING_TYPE_NONE;
  8185. //not sd printing nor usb printing
  8186. }
  8187. #if 0
  8188. SERIAL_ECHOPGM("SDPOS_ATOMIC="); MYSERIAL.println(sdpos_atomic, DEC);
  8189. SERIAL_ECHOPGM("SDPOS="); MYSERIAL.println(card.get_sdpos(), DEC);
  8190. SERIAL_ECHOPGM("SDLEN_PLAN="); MYSERIAL.println(sdlen_planner, DEC);
  8191. SERIAL_ECHOPGM("SDLEN_CMDQ="); MYSERIAL.println(sdlen_cmdqueue, DEC);
  8192. SERIAL_ECHOPGM("PLANNERBLOCKS="); MYSERIAL.println(int(nplanner_blocks), DEC);
  8193. SERIAL_ECHOPGM("SDSAVED="); MYSERIAL.println(saved_sdpos, DEC);
  8194. //SERIAL_ECHOPGM("SDFILELEN="); MYSERIAL.println(card.fileSize(), DEC);
  8195. {
  8196. card.setIndex(saved_sdpos);
  8197. SERIAL_ECHOLNPGM("Content of planner buffer: ");
  8198. for (unsigned int idx = 0; idx < sdlen_planner; ++ idx)
  8199. MYSERIAL.print(char(card.get()));
  8200. SERIAL_ECHOLNPGM("Content of command buffer: ");
  8201. for (unsigned int idx = 0; idx < sdlen_cmdqueue; ++ idx)
  8202. MYSERIAL.print(char(card.get()));
  8203. SERIAL_ECHOLNPGM("End of command buffer");
  8204. }
  8205. {
  8206. // Print the content of the planner buffer, line by line:
  8207. card.setIndex(saved_sdpos);
  8208. int8_t iline = 0;
  8209. for (unsigned char idx = block_buffer_tail; idx != block_buffer_head; idx = (idx + 1) & (BLOCK_BUFFER_SIZE - 1), ++ iline) {
  8210. SERIAL_ECHOPGM("Planner line (from file): ");
  8211. MYSERIAL.print(int(iline), DEC);
  8212. SERIAL_ECHOPGM(", length: ");
  8213. MYSERIAL.print(block_buffer[idx].sdlen, DEC);
  8214. SERIAL_ECHOPGM(", steps: (");
  8215. MYSERIAL.print(block_buffer[idx].steps_x, DEC);
  8216. SERIAL_ECHOPGM(",");
  8217. MYSERIAL.print(block_buffer[idx].steps_y, DEC);
  8218. SERIAL_ECHOPGM(",");
  8219. MYSERIAL.print(block_buffer[idx].steps_z, DEC);
  8220. SERIAL_ECHOPGM(",");
  8221. MYSERIAL.print(block_buffer[idx].steps_e, DEC);
  8222. SERIAL_ECHOPGM("), events: ");
  8223. MYSERIAL.println(block_buffer[idx].step_event_count, DEC);
  8224. for (int len = block_buffer[idx].sdlen; len > 0; -- len)
  8225. MYSERIAL.print(char(card.get()));
  8226. }
  8227. }
  8228. {
  8229. // Print the content of the command buffer, line by line:
  8230. int8_t iline = 0;
  8231. union {
  8232. struct {
  8233. char lo;
  8234. char hi;
  8235. } lohi;
  8236. uint16_t value;
  8237. } sdlen_single;
  8238. int _bufindr = bufindr;
  8239. for (int _buflen = buflen; _buflen > 0; ++ iline) {
  8240. if (cmdbuffer[_bufindr] == CMDBUFFER_CURRENT_TYPE_SDCARD) {
  8241. sdlen_single.lohi.lo = cmdbuffer[_bufindr + 1];
  8242. sdlen_single.lohi.hi = cmdbuffer[_bufindr + 2];
  8243. }
  8244. SERIAL_ECHOPGM("Buffer line (from buffer): ");
  8245. MYSERIAL.print(int(iline), DEC);
  8246. SERIAL_ECHOPGM(", type: ");
  8247. MYSERIAL.print(int(cmdbuffer[_bufindr]), DEC);
  8248. SERIAL_ECHOPGM(", len: ");
  8249. MYSERIAL.println(sdlen_single.value, DEC);
  8250. // Print the content of the buffer line.
  8251. MYSERIAL.println(cmdbuffer + _bufindr + CMDHDRSIZE);
  8252. SERIAL_ECHOPGM("Buffer line (from file): ");
  8253. MYSERIAL.println(int(iline), DEC);
  8254. for (; sdlen_single.value > 0; -- sdlen_single.value)
  8255. MYSERIAL.print(char(card.get()));
  8256. if (-- _buflen == 0)
  8257. break;
  8258. // First skip the current command ID and iterate up to the end of the string.
  8259. for (_bufindr += CMDHDRSIZE; cmdbuffer[_bufindr] != 0; ++ _bufindr) ;
  8260. // Second, skip the end of string null character and iterate until a nonzero command ID is found.
  8261. for (++ _bufindr; _bufindr < sizeof(cmdbuffer) && cmdbuffer[_bufindr] == 0; ++ _bufindr) ;
  8262. // If the end of the buffer was empty,
  8263. if (_bufindr == sizeof(cmdbuffer)) {
  8264. // skip to the start and find the nonzero command.
  8265. for (_bufindr = 0; cmdbuffer[_bufindr] == 0; ++ _bufindr) ;
  8266. }
  8267. }
  8268. }
  8269. #endif
  8270. #if 0
  8271. saved_feedrate2 = feedrate; //save feedrate
  8272. #else
  8273. // Try to deduce the feedrate from the first block of the planner.
  8274. // Speed is in mm/min.
  8275. saved_feedrate2 = blocks_queued() ? (block_buffer[block_buffer_tail].nominal_speed * 60.f) : feedrate;
  8276. #endif
  8277. planner_abort_hard(); //abort printing
  8278. memcpy(saved_pos, current_position, sizeof(saved_pos));
  8279. saved_active_extruder = active_extruder; //save active_extruder
  8280. saved_extruder_temperature = degTargetHotend(active_extruder);
  8281. saved_extruder_under_pressure = extruder_under_pressure; //extruder under pressure flag - currently unused
  8282. saved_extruder_relative_mode = axis_relative_modes[E_AXIS];
  8283. saved_fanSpeed = fanSpeed;
  8284. cmdqueue_reset(); //empty cmdqueue
  8285. card.sdprinting = false;
  8286. // card.closefile();
  8287. saved_printing = true;
  8288. // We may have missed a stepper timer interrupt. Be safe than sorry, reset the stepper timer before re-enabling interrupts.
  8289. st_reset_timer();
  8290. sei();
  8291. if ((z_move != 0) || (e_move != 0)) { // extruder or z move
  8292. #if 1
  8293. // Rather than calling plan_buffer_line directly, push the move into the command queue,
  8294. char buf[48];
  8295. // First unretract (relative extrusion)
  8296. if(!saved_extruder_relative_mode){
  8297. enquecommand(PSTR("M83"), true);
  8298. }
  8299. //retract 45mm/s
  8300. // A single sprintf may not be faster, but is definitely 20B shorter
  8301. // than a sequence of commands building the string piece by piece
  8302. // A snprintf would have been a safer call, but since it is not used
  8303. // in the whole program, its implementation would bring more bytes to the total size
  8304. // The behavior of dtostrf 8,3 should be roughly the same as %-0.3
  8305. sprintf_P(buf, PSTR("G1 E%-0.3f F2700"), e_move);
  8306. enquecommand(buf, false);
  8307. // Then lift Z axis
  8308. sprintf_P(buf, PSTR("G1 Z%-0.3f F%-0.3f"), saved_pos[Z_AXIS] + z_move, homing_feedrate[Z_AXIS]);
  8309. // At this point the command queue is empty.
  8310. enquecommand(buf, false);
  8311. // If this call is invoked from the main Arduino loop() function, let the caller know that the command
  8312. // in the command queue is not the original command, but a new one, so it should not be removed from the queue.
  8313. repeatcommand_front();
  8314. #else
  8315. plan_buffer_line(saved_pos[X_AXIS], saved_pos[Y_AXIS], saved_pos[Z_AXIS] + z_move, saved_pos[E_AXIS] + e_move, homing_feedrate[Z_AXIS], active_extruder);
  8316. st_synchronize(); //wait moving
  8317. memcpy(current_position, saved_pos, sizeof(saved_pos));
  8318. memcpy(destination, current_position, sizeof(destination));
  8319. #endif
  8320. }
  8321. }
  8322. //! @brief Restore print from ram
  8323. //!
  8324. //! Restore print saved by stop_and_save_print_to_ram(). Is blocking, restores
  8325. //! print fan speed, waits for extruder temperature restore, then restores
  8326. //! position and continues print moves.
  8327. //!
  8328. //! Internally lcd_update() is called by wait_for_heater().
  8329. //!
  8330. //! @param e_move
  8331. void restore_print_from_ram_and_continue(float e_move)
  8332. {
  8333. if (!saved_printing) return;
  8334. #ifdef FANCHECK
  8335. // Do not allow resume printing if fans are still not ok
  8336. if( fan_check_error != EFCE_OK )return;
  8337. #endif
  8338. // for (int axis = X_AXIS; axis <= E_AXIS; axis++)
  8339. // current_position[axis] = st_get_position_mm(axis);
  8340. active_extruder = saved_active_extruder; //restore active_extruder
  8341. fanSpeed = saved_fanSpeed;
  8342. if (degTargetHotend(saved_active_extruder) != saved_extruder_temperature)
  8343. {
  8344. setTargetHotendSafe(saved_extruder_temperature, saved_active_extruder);
  8345. heating_status = 1;
  8346. wait_for_heater(_millis(), saved_active_extruder);
  8347. heating_status = 2;
  8348. }
  8349. feedrate = saved_feedrate2; //restore feedrate
  8350. axis_relative_modes[E_AXIS] = saved_extruder_relative_mode;
  8351. float e = saved_pos[E_AXIS] - e_move;
  8352. plan_set_e_position(e);
  8353. #ifdef FANCHECK
  8354. fans_check_enabled = false;
  8355. #endif
  8356. //first move print head in XY to the saved position:
  8357. plan_buffer_line(saved_pos[X_AXIS], saved_pos[Y_AXIS], current_position[Z_AXIS], saved_pos[E_AXIS] - e_move, homing_feedrate[Z_AXIS]/13, active_extruder);
  8358. st_synchronize();
  8359. //then move Z
  8360. plan_buffer_line(saved_pos[X_AXIS], saved_pos[Y_AXIS], saved_pos[Z_AXIS], saved_pos[E_AXIS] - e_move, homing_feedrate[Z_AXIS]/13, active_extruder);
  8361. st_synchronize();
  8362. //and finaly unretract (35mm/s)
  8363. plan_buffer_line(saved_pos[X_AXIS], saved_pos[Y_AXIS], saved_pos[Z_AXIS], saved_pos[E_AXIS], 35, active_extruder);
  8364. st_synchronize();
  8365. #ifdef FANCHECK
  8366. fans_check_enabled = true;
  8367. #endif
  8368. memcpy(current_position, saved_pos, sizeof(saved_pos));
  8369. memcpy(destination, current_position, sizeof(destination));
  8370. if (saved_printing_type == PRINTING_TYPE_SD) { //was sd printing
  8371. card.setIndex(saved_sdpos);
  8372. sdpos_atomic = saved_sdpos;
  8373. card.sdprinting = true;
  8374. printf_P(PSTR("ok\n")); //dummy response because of octoprint is waiting for this
  8375. }
  8376. else if (saved_printing_type == PRINTING_TYPE_USB) { //was usb printing
  8377. gcode_LastN = saved_sdpos; //saved_sdpos was reused for storing line number when usb printing
  8378. serial_count = 0;
  8379. FlushSerialRequestResend();
  8380. }
  8381. else {
  8382. //not sd printing nor usb printing
  8383. }
  8384. lcd_setstatuspgm(_T(WELCOME_MSG));
  8385. saved_printing = false;
  8386. }
  8387. void print_world_coordinates()
  8388. {
  8389. printf_P(_N("world coordinates: (%.3f, %.3f, %.3f)\n"), current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS]);
  8390. }
  8391. void print_physical_coordinates()
  8392. {
  8393. printf_P(_N("physical coordinates: (%.3f, %.3f, %.3f)\n"), st_get_position_mm(X_AXIS), st_get_position_mm(Y_AXIS), st_get_position_mm(Z_AXIS));
  8394. }
  8395. void print_mesh_bed_leveling_table()
  8396. {
  8397. SERIAL_ECHOPGM("mesh bed leveling: ");
  8398. for (int8_t y = 0; y < MESH_NUM_Y_POINTS; ++ y)
  8399. for (int8_t x = 0; x < MESH_NUM_Y_POINTS; ++ x) {
  8400. MYSERIAL.print(mbl.z_values[y][x], 3);
  8401. SERIAL_ECHOPGM(" ");
  8402. }
  8403. SERIAL_ECHOLNPGM("");
  8404. }
  8405. uint16_t print_time_remaining() {
  8406. uint16_t print_t = PRINT_TIME_REMAINING_INIT;
  8407. #ifdef TMC2130
  8408. if (SilentModeMenu == SILENT_MODE_OFF) print_t = print_time_remaining_normal;
  8409. else print_t = print_time_remaining_silent;
  8410. #else
  8411. print_t = print_time_remaining_normal;
  8412. #endif //TMC2130
  8413. if ((print_t != PRINT_TIME_REMAINING_INIT) && (feedmultiply != 0)) print_t = 100ul * print_t / feedmultiply;
  8414. return print_t;
  8415. }
  8416. uint8_t calc_percent_done()
  8417. {
  8418. //in case that we have information from M73 gcode return percentage counted by slicer, else return percentage counted as byte_printed/filesize
  8419. uint8_t percent_done = 0;
  8420. #ifdef TMC2130
  8421. if (SilentModeMenu == SILENT_MODE_OFF && print_percent_done_normal <= 100) {
  8422. percent_done = print_percent_done_normal;
  8423. }
  8424. else if (print_percent_done_silent <= 100) {
  8425. percent_done = print_percent_done_silent;
  8426. }
  8427. #else
  8428. if (print_percent_done_normal <= 100) {
  8429. percent_done = print_percent_done_normal;
  8430. }
  8431. #endif //TMC2130
  8432. else {
  8433. percent_done = card.percentDone();
  8434. }
  8435. return percent_done;
  8436. }
  8437. static void print_time_remaining_init()
  8438. {
  8439. print_time_remaining_normal = PRINT_TIME_REMAINING_INIT;
  8440. print_time_remaining_silent = PRINT_TIME_REMAINING_INIT;
  8441. print_percent_done_normal = PRINT_PERCENT_DONE_INIT;
  8442. print_percent_done_silent = PRINT_PERCENT_DONE_INIT;
  8443. }
  8444. void load_filament_final_feed()
  8445. {
  8446. current_position[E_AXIS]+= FILAMENTCHANGE_FINALFEED;
  8447. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], FILAMENTCHANGE_EFEED_FINAL, active_extruder);
  8448. }
  8449. //! @brief Wait for user to check the state
  8450. //! @par nozzle_temp nozzle temperature to load filament
  8451. void M600_check_state(float nozzle_temp)
  8452. {
  8453. lcd_change_fil_state = 0;
  8454. while (lcd_change_fil_state != 1)
  8455. {
  8456. lcd_change_fil_state = 0;
  8457. KEEPALIVE_STATE(PAUSED_FOR_USER);
  8458. lcd_alright();
  8459. KEEPALIVE_STATE(IN_HANDLER);
  8460. switch(lcd_change_fil_state)
  8461. {
  8462. // Filament failed to load so load it again
  8463. case 2:
  8464. if (mmu_enabled)
  8465. mmu_M600_load_filament(false, nozzle_temp); //nonautomatic load; change to "wrong filament loaded" option?
  8466. else
  8467. M600_load_filament_movements();
  8468. break;
  8469. // Filament loaded properly but color is not clear
  8470. case 3:
  8471. st_synchronize();
  8472. load_filament_final_feed();
  8473. lcd_loading_color();
  8474. st_synchronize();
  8475. break;
  8476. // Everything good
  8477. default:
  8478. lcd_change_success();
  8479. break;
  8480. }
  8481. }
  8482. }
  8483. //! @brief Wait for user action
  8484. //!
  8485. //! Beep, manage nozzle heater and wait for user to start unload filament
  8486. //! If times out, active extruder temperature is set to 0.
  8487. //!
  8488. //! @param HotendTempBckp Temperature to be restored for active extruder, after user resolves MMU problem.
  8489. void M600_wait_for_user(float HotendTempBckp) {
  8490. KEEPALIVE_STATE(PAUSED_FOR_USER);
  8491. int counterBeep = 0;
  8492. unsigned long waiting_start_time = _millis();
  8493. uint8_t wait_for_user_state = 0;
  8494. lcd_display_message_fullscreen_P(_T(MSG_PRESS_TO_UNLOAD));
  8495. bool bFirst=true;
  8496. while (!(wait_for_user_state == 0 && lcd_clicked())){
  8497. manage_heater();
  8498. manage_inactivity(true);
  8499. #if BEEPER > 0
  8500. if (counterBeep == 500) {
  8501. counterBeep = 0;
  8502. }
  8503. SET_OUTPUT(BEEPER);
  8504. if (counterBeep == 0) {
  8505. if((eSoundMode==e_SOUND_MODE_BLIND)|| (eSoundMode==e_SOUND_MODE_LOUD)||((eSoundMode==e_SOUND_MODE_ONCE)&&bFirst))
  8506. {
  8507. bFirst=false;
  8508. WRITE(BEEPER, HIGH);
  8509. }
  8510. }
  8511. if (counterBeep == 20) {
  8512. WRITE(BEEPER, LOW);
  8513. }
  8514. counterBeep++;
  8515. #endif //BEEPER > 0
  8516. switch (wait_for_user_state) {
  8517. case 0: //nozzle is hot, waiting for user to press the knob to unload filament
  8518. delay_keep_alive(4);
  8519. if (_millis() > waiting_start_time + (unsigned long)M600_TIMEOUT * 1000) {
  8520. lcd_display_message_fullscreen_P(_i("Press knob to preheat nozzle and continue."));////MSG_PRESS_TO_PREHEAT c=20 r=4
  8521. wait_for_user_state = 1;
  8522. setAllTargetHotends(0);
  8523. st_synchronize();
  8524. disable_e0();
  8525. disable_e1();
  8526. disable_e2();
  8527. }
  8528. break;
  8529. case 1: //nozzle target temperature is set to zero, waiting for user to start nozzle preheat
  8530. delay_keep_alive(4);
  8531. if (lcd_clicked()) {
  8532. setTargetHotend(HotendTempBckp, active_extruder);
  8533. lcd_wait_for_heater();
  8534. wait_for_user_state = 2;
  8535. }
  8536. break;
  8537. case 2: //waiting for nozzle to reach target temperature
  8538. if (abs(degTargetHotend(active_extruder) - degHotend(active_extruder)) < 1) {
  8539. lcd_display_message_fullscreen_P(_T(MSG_PRESS_TO_UNLOAD));
  8540. waiting_start_time = _millis();
  8541. wait_for_user_state = 0;
  8542. }
  8543. else {
  8544. counterBeep = 20; //beeper will be inactive during waiting for nozzle preheat
  8545. lcd_set_cursor(1, 4);
  8546. lcd_print(ftostr3(degHotend(active_extruder)));
  8547. }
  8548. break;
  8549. }
  8550. }
  8551. WRITE(BEEPER, LOW);
  8552. }
  8553. void M600_load_filament_movements()
  8554. {
  8555. #ifdef SNMM
  8556. display_loading();
  8557. do
  8558. {
  8559. current_position[E_AXIS] += 0.002;
  8560. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 500, active_extruder);
  8561. delay_keep_alive(2);
  8562. }
  8563. while (!lcd_clicked());
  8564. st_synchronize();
  8565. current_position[E_AXIS] += bowden_length[mmu_extruder];
  8566. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000, active_extruder);
  8567. current_position[E_AXIS] += FIL_LOAD_LENGTH - 60;
  8568. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 1400, active_extruder);
  8569. current_position[E_AXIS] += 40;
  8570. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400, active_extruder);
  8571. current_position[E_AXIS] += 10;
  8572. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 50, active_extruder);
  8573. #else
  8574. current_position[E_AXIS]+= FILAMENTCHANGE_FIRSTFEED ;
  8575. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], FILAMENTCHANGE_EFEED_FIRST, active_extruder);
  8576. #endif
  8577. load_filament_final_feed();
  8578. lcd_loading_filament();
  8579. st_synchronize();
  8580. }
  8581. void M600_load_filament() {
  8582. //load filament for single material and SNMM
  8583. lcd_wait_interact();
  8584. //load_filament_time = _millis();
  8585. KEEPALIVE_STATE(PAUSED_FOR_USER);
  8586. #ifdef PAT9125
  8587. fsensor_autoload_check_start();
  8588. #endif //PAT9125
  8589. while(!lcd_clicked())
  8590. {
  8591. manage_heater();
  8592. manage_inactivity(true);
  8593. #ifdef FILAMENT_SENSOR
  8594. if (fsensor_check_autoload())
  8595. {
  8596. Sound_MakeCustom(50,1000,false);
  8597. break;
  8598. }
  8599. #endif //FILAMENT_SENSOR
  8600. }
  8601. #ifdef PAT9125
  8602. fsensor_autoload_check_stop();
  8603. #endif //PAT9125
  8604. KEEPALIVE_STATE(IN_HANDLER);
  8605. #ifdef FSENSOR_QUALITY
  8606. fsensor_oq_meassure_start(70);
  8607. #endif //FSENSOR_QUALITY
  8608. M600_load_filament_movements();
  8609. Sound_MakeCustom(50,1000,false);
  8610. #ifdef FSENSOR_QUALITY
  8611. fsensor_oq_meassure_stop();
  8612. if (!fsensor_oq_result())
  8613. {
  8614. bool disable = lcd_show_fullscreen_message_yes_no_and_wait_P(_i("Fil. sensor response is poor, disable it?"), false, true);
  8615. lcd_update_enable(true);
  8616. lcd_update(2);
  8617. if (disable)
  8618. fsensor_disable();
  8619. }
  8620. #endif //FSENSOR_QUALITY
  8621. lcd_update_enable(false);
  8622. }
  8623. //! @brief Wait for click
  8624. //!
  8625. //! Set
  8626. void marlin_wait_for_click()
  8627. {
  8628. int8_t busy_state_backup = busy_state;
  8629. KEEPALIVE_STATE(PAUSED_FOR_USER);
  8630. lcd_consume_click();
  8631. while(!lcd_clicked())
  8632. {
  8633. manage_heater();
  8634. manage_inactivity(true);
  8635. lcd_update(0);
  8636. }
  8637. KEEPALIVE_STATE(busy_state_backup);
  8638. }
  8639. #define FIL_LOAD_LENGTH 60
  8640. #ifdef PSU_Delta
  8641. bool bEnableForce_z;
  8642. void init_force_z()
  8643. {
  8644. WRITE(Z_ENABLE_PIN,Z_ENABLE_ON);
  8645. bEnableForce_z=true; // "true"-value enforce "disable_force_z()" executing
  8646. disable_force_z();
  8647. }
  8648. void check_force_z()
  8649. {
  8650. if(!(bEnableForce_z||eeprom_read_byte((uint8_t*)EEPROM_SILENT)))
  8651. init_force_z(); // causes enforced switching into disable-state
  8652. }
  8653. void disable_force_z()
  8654. {
  8655. uint16_t z_microsteps=0;
  8656. if(!bEnableForce_z)
  8657. return; // motor already disabled (may be ;-p )
  8658. bEnableForce_z=false;
  8659. // alignment to full-step
  8660. #ifdef TMC2130
  8661. z_microsteps=tmc2130_rd_MSCNT(Z_TMC2130_CS);
  8662. #endif // TMC2130
  8663. planner_abort_hard();
  8664. sei();
  8665. plan_buffer_line(
  8666. current_position[X_AXIS],
  8667. current_position[Y_AXIS],
  8668. current_position[Z_AXIS]+float((1024-z_microsteps+7)>>4)/cs.axis_steps_per_unit[Z_AXIS],
  8669. current_position[E_AXIS],
  8670. 40, active_extruder);
  8671. st_synchronize();
  8672. // switching to silent mode
  8673. #ifdef TMC2130
  8674. tmc2130_mode=TMC2130_MODE_SILENT;
  8675. update_mode_profile();
  8676. tmc2130_init(true);
  8677. #endif // TMC2130
  8678. axis_known_position[Z_AXIS]=false;
  8679. }
  8680. void enable_force_z()
  8681. {
  8682. if(bEnableForce_z)
  8683. return; // motor already enabled (may be ;-p )
  8684. bEnableForce_z=true;
  8685. // mode recovering
  8686. #ifdef TMC2130
  8687. tmc2130_mode=eeprom_read_byte((uint8_t*)EEPROM_SILENT)?TMC2130_MODE_SILENT:TMC2130_MODE_NORMAL;
  8688. update_mode_profile();
  8689. tmc2130_init(true);
  8690. #endif // TMC2130
  8691. WRITE(Z_ENABLE_PIN,Z_ENABLE_ON); // slightly redundant ;-p
  8692. }
  8693. #endif // PSU_Delta