Marlin_main.cpp 277 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971397239733974397539763977397839793980398139823983398439853986398739883989399039913992399339943995399639973998399940004001400240034004400540064007400840094010401140124013401440154016401740184019402040214022402340244025402640274028402940304031403240334034403540364037403840394040404140424043404440454046404740484049405040514052405340544055405640574058405940604061406240634064406540664067406840694070407140724073407440754076407740784079408040814082408340844085408640874088408940904091409240934094409540964097409840994100410141024103410441054106410741084109411041114112411341144115411641174118411941204121412241234124412541264127412841294130413141324133413441354136413741384139414041414142414341444145414641474148414941504151415241534154415541564157415841594160416141624163416441654166416741684169417041714172417341744175417641774178417941804181418241834184418541864187418841894190419141924193419441954196419741984199420042014202420342044205420642074208420942104211421242134214421542164217421842194220422142224223422442254226422742284229423042314232423342344235423642374238423942404241424242434244424542464247424842494250425142524253425442554256425742584259426042614262426342644265426642674268426942704271427242734274427542764277427842794280428142824283428442854286428742884289429042914292429342944295429642974298429943004301430243034304430543064307430843094310431143124313431443154316431743184319432043214322432343244325432643274328432943304331433243334334433543364337433843394340434143424343434443454346434743484349435043514352435343544355435643574358435943604361436243634364436543664367436843694370437143724373437443754376437743784379438043814382438343844385438643874388438943904391439243934394439543964397439843994400440144024403440444054406440744084409441044114412441344144415441644174418441944204421442244234424442544264427442844294430443144324433443444354436443744384439444044414442444344444445444644474448444944504451445244534454445544564457445844594460446144624463446444654466446744684469447044714472447344744475447644774478447944804481448244834484448544864487448844894490449144924493449444954496449744984499450045014502450345044505450645074508450945104511451245134514451545164517451845194520452145224523452445254526452745284529453045314532453345344535453645374538453945404541454245434544454545464547454845494550455145524553455445554556455745584559456045614562456345644565456645674568456945704571457245734574457545764577457845794580458145824583458445854586458745884589459045914592459345944595459645974598459946004601460246034604460546064607460846094610461146124613461446154616461746184619462046214622462346244625462646274628462946304631463246334634463546364637463846394640464146424643464446454646464746484649465046514652465346544655465646574658465946604661466246634664466546664667466846694670467146724673467446754676467746784679468046814682468346844685468646874688468946904691469246934694469546964697469846994700470147024703470447054706470747084709471047114712471347144715471647174718471947204721472247234724472547264727472847294730473147324733473447354736473747384739474047414742474347444745474647474748474947504751475247534754475547564757475847594760476147624763476447654766476747684769477047714772477347744775477647774778477947804781478247834784478547864787478847894790479147924793479447954796479747984799480048014802480348044805480648074808480948104811481248134814481548164817481848194820482148224823482448254826482748284829483048314832483348344835483648374838483948404841484248434844484548464847484848494850485148524853485448554856485748584859486048614862486348644865486648674868486948704871487248734874487548764877487848794880488148824883488448854886488748884889489048914892489348944895489648974898489949004901490249034904490549064907490849094910491149124913491449154916491749184919492049214922492349244925492649274928492949304931493249334934493549364937493849394940494149424943494449454946494749484949495049514952495349544955495649574958495949604961496249634964496549664967496849694970497149724973497449754976497749784979498049814982498349844985498649874988498949904991499249934994499549964997499849995000500150025003500450055006500750085009501050115012501350145015501650175018501950205021502250235024502550265027502850295030503150325033503450355036503750385039504050415042504350445045504650475048504950505051505250535054505550565057505850595060506150625063506450655066506750685069507050715072507350745075507650775078507950805081508250835084508550865087508850895090509150925093509450955096509750985099510051015102510351045105510651075108510951105111511251135114511551165117511851195120512151225123512451255126512751285129513051315132513351345135513651375138513951405141514251435144514551465147514851495150515151525153515451555156515751585159516051615162516351645165516651675168516951705171517251735174517551765177517851795180518151825183518451855186518751885189519051915192519351945195519651975198519952005201520252035204520552065207520852095210521152125213521452155216521752185219522052215222522352245225522652275228522952305231523252335234523552365237523852395240524152425243524452455246524752485249525052515252525352545255525652575258525952605261526252635264526552665267526852695270527152725273527452755276527752785279528052815282528352845285528652875288528952905291529252935294529552965297529852995300530153025303530453055306530753085309531053115312531353145315531653175318531953205321532253235324532553265327532853295330533153325333533453355336533753385339534053415342534353445345534653475348534953505351535253535354535553565357535853595360536153625363536453655366536753685369537053715372537353745375537653775378537953805381538253835384538553865387538853895390539153925393539453955396539753985399540054015402540354045405540654075408540954105411541254135414541554165417541854195420542154225423542454255426542754285429543054315432543354345435543654375438543954405441544254435444544554465447544854495450545154525453545454555456545754585459546054615462546354645465546654675468546954705471547254735474547554765477547854795480548154825483548454855486548754885489549054915492549354945495549654975498549955005501550255035504550555065507550855095510551155125513551455155516551755185519552055215522552355245525552655275528552955305531553255335534553555365537553855395540554155425543554455455546554755485549555055515552555355545555555655575558555955605561556255635564556555665567556855695570557155725573557455755576557755785579558055815582558355845585558655875588558955905591559255935594559555965597559855995600560156025603560456055606560756085609561056115612561356145615561656175618561956205621562256235624562556265627562856295630563156325633563456355636563756385639564056415642564356445645564656475648564956505651565256535654565556565657565856595660566156625663566456655666566756685669567056715672567356745675567656775678567956805681568256835684568556865687568856895690569156925693569456955696569756985699570057015702570357045705570657075708570957105711571257135714571557165717571857195720572157225723572457255726572757285729573057315732573357345735573657375738573957405741574257435744574557465747574857495750575157525753575457555756575757585759576057615762576357645765576657675768576957705771577257735774577557765777577857795780578157825783578457855786578757885789579057915792579357945795579657975798579958005801580258035804580558065807580858095810581158125813581458155816581758185819582058215822582358245825582658275828582958305831583258335834583558365837583858395840584158425843584458455846584758485849585058515852585358545855585658575858585958605861586258635864586558665867586858695870587158725873587458755876587758785879588058815882588358845885588658875888588958905891589258935894589558965897589858995900590159025903590459055906590759085909591059115912591359145915591659175918591959205921592259235924592559265927592859295930593159325933593459355936593759385939594059415942594359445945594659475948594959505951595259535954595559565957595859595960596159625963596459655966596759685969597059715972597359745975597659775978597959805981598259835984598559865987598859895990599159925993599459955996599759985999600060016002600360046005600660076008600960106011601260136014601560166017601860196020602160226023602460256026602760286029603060316032603360346035603660376038603960406041604260436044604560466047604860496050605160526053605460556056605760586059606060616062606360646065606660676068606960706071607260736074607560766077607860796080608160826083608460856086608760886089609060916092609360946095609660976098609961006101610261036104610561066107610861096110611161126113611461156116611761186119612061216122612361246125612661276128612961306131613261336134613561366137613861396140614161426143614461456146614761486149615061516152615361546155615661576158615961606161616261636164616561666167616861696170617161726173617461756176617761786179618061816182618361846185618661876188618961906191619261936194619561966197619861996200620162026203620462056206620762086209621062116212621362146215621662176218621962206221622262236224622562266227622862296230623162326233623462356236623762386239624062416242624362446245624662476248624962506251625262536254625562566257625862596260626162626263626462656266626762686269627062716272627362746275627662776278627962806281628262836284628562866287628862896290629162926293629462956296629762986299630063016302630363046305630663076308630963106311631263136314631563166317631863196320632163226323632463256326632763286329633063316332633363346335633663376338633963406341634263436344634563466347634863496350635163526353635463556356635763586359636063616362636363646365636663676368636963706371637263736374637563766377637863796380638163826383638463856386638763886389639063916392639363946395639663976398639964006401640264036404640564066407640864096410641164126413641464156416641764186419642064216422642364246425642664276428642964306431643264336434643564366437643864396440644164426443644464456446644764486449645064516452645364546455645664576458645964606461646264636464646564666467646864696470647164726473647464756476647764786479648064816482648364846485648664876488648964906491649264936494649564966497649864996500650165026503650465056506650765086509651065116512651365146515651665176518651965206521652265236524652565266527652865296530653165326533653465356536653765386539654065416542654365446545654665476548654965506551655265536554655565566557655865596560656165626563656465656566656765686569657065716572657365746575657665776578657965806581658265836584658565866587658865896590659165926593659465956596659765986599660066016602660366046605660666076608660966106611661266136614661566166617661866196620662166226623662466256626662766286629663066316632663366346635663666376638663966406641664266436644664566466647664866496650665166526653665466556656665766586659666066616662666366646665666666676668666966706671667266736674667566766677667866796680668166826683668466856686668766886689669066916692669366946695669666976698669967006701670267036704670567066707670867096710671167126713671467156716671767186719672067216722672367246725672667276728672967306731673267336734673567366737673867396740674167426743674467456746674767486749675067516752675367546755675667576758675967606761676267636764676567666767676867696770677167726773677467756776677767786779678067816782678367846785678667876788678967906791679267936794679567966797679867996800680168026803680468056806680768086809681068116812681368146815681668176818681968206821682268236824682568266827682868296830683168326833683468356836683768386839684068416842684368446845684668476848684968506851685268536854685568566857685868596860686168626863686468656866686768686869687068716872687368746875687668776878687968806881688268836884688568866887688868896890689168926893689468956896689768986899690069016902690369046905690669076908690969106911691269136914691569166917691869196920692169226923692469256926692769286929693069316932693369346935693669376938693969406941694269436944694569466947694869496950695169526953695469556956695769586959696069616962696369646965696669676968696969706971697269736974697569766977697869796980698169826983698469856986698769886989699069916992699369946995699669976998699970007001700270037004700570067007700870097010701170127013701470157016701770187019702070217022702370247025702670277028702970307031703270337034703570367037703870397040704170427043704470457046704770487049705070517052705370547055705670577058705970607061706270637064706570667067706870697070707170727073707470757076707770787079708070817082708370847085708670877088708970907091709270937094709570967097709870997100710171027103710471057106710771087109711071117112711371147115711671177118711971207121712271237124712571267127712871297130713171327133713471357136713771387139714071417142714371447145714671477148714971507151715271537154715571567157715871597160716171627163716471657166716771687169717071717172717371747175717671777178717971807181718271837184718571867187718871897190719171927193719471957196719771987199720072017202720372047205720672077208720972107211721272137214721572167217721872197220722172227223722472257226722772287229723072317232723372347235723672377238723972407241724272437244724572467247724872497250725172527253725472557256725772587259726072617262726372647265726672677268726972707271727272737274727572767277727872797280728172827283728472857286728772887289729072917292729372947295729672977298729973007301730273037304730573067307730873097310731173127313731473157316731773187319732073217322732373247325732673277328732973307331733273337334733573367337733873397340734173427343734473457346734773487349735073517352735373547355735673577358735973607361736273637364736573667367736873697370737173727373737473757376737773787379738073817382738373847385738673877388738973907391739273937394739573967397739873997400740174027403740474057406740774087409741074117412741374147415741674177418741974207421742274237424742574267427742874297430743174327433743474357436743774387439744074417442744374447445744674477448744974507451745274537454745574567457745874597460746174627463746474657466746774687469747074717472747374747475747674777478747974807481748274837484748574867487748874897490749174927493749474957496749774987499750075017502750375047505750675077508750975107511751275137514751575167517751875197520752175227523752475257526752775287529753075317532753375347535753675377538753975407541754275437544754575467547754875497550755175527553755475557556755775587559756075617562756375647565756675677568756975707571757275737574757575767577757875797580758175827583758475857586758775887589759075917592759375947595759675977598759976007601760276037604760576067607760876097610761176127613761476157616761776187619762076217622762376247625762676277628762976307631763276337634763576367637763876397640764176427643764476457646764776487649765076517652765376547655765676577658765976607661766276637664766576667667766876697670767176727673767476757676767776787679768076817682768376847685768676877688768976907691769276937694769576967697769876997700770177027703770477057706770777087709771077117712771377147715771677177718771977207721772277237724772577267727772877297730773177327733773477357736773777387739774077417742774377447745774677477748774977507751775277537754775577567757775877597760776177627763776477657766776777687769777077717772777377747775777677777778777977807781778277837784778577867787778877897790779177927793779477957796779777987799780078017802780378047805780678077808780978107811781278137814781578167817781878197820782178227823782478257826782778287829783078317832783378347835783678377838783978407841784278437844784578467847784878497850785178527853785478557856785778587859786078617862786378647865786678677868786978707871787278737874787578767877787878797880788178827883788478857886788778887889789078917892789378947895789678977898789979007901790279037904790579067907790879097910791179127913791479157916791779187919792079217922792379247925792679277928792979307931793279337934793579367937793879397940794179427943794479457946794779487949795079517952795379547955795679577958795979607961796279637964796579667967796879697970797179727973797479757976797779787979798079817982798379847985798679877988798979907991799279937994799579967997799879998000800180028003800480058006800780088009801080118012801380148015801680178018801980208021802280238024802580268027802880298030803180328033803480358036803780388039804080418042804380448045804680478048804980508051805280538054805580568057805880598060806180628063806480658066806780688069807080718072807380748075807680778078807980808081808280838084808580868087808880898090809180928093809480958096809780988099810081018102810381048105810681078108810981108111811281138114811581168117811881198120812181228123812481258126812781288129813081318132813381348135813681378138813981408141814281438144814581468147814881498150815181528153815481558156815781588159816081618162816381648165816681678168816981708171817281738174817581768177817881798180818181828183818481858186818781888189819081918192819381948195819681978198819982008201820282038204820582068207820882098210821182128213821482158216821782188219822082218222822382248225822682278228822982308231823282338234823582368237823882398240824182428243824482458246824782488249825082518252825382548255825682578258825982608261826282638264826582668267826882698270827182728273827482758276827782788279828082818282
  1. /* -*- c++ -*- */
  2. /*
  3. Reprap firmware based on Sprinter and grbl.
  4. Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
  5. This program is free software: you can redistribute it and/or modify
  6. it under the terms of the GNU General Public License as published by
  7. the Free Software Foundation, either version 3 of the License, or
  8. (at your option) any later version.
  9. This program is distributed in the hope that it will be useful,
  10. but WITHOUT ANY WARRANTY; without even the implied warranty of
  11. MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  12. GNU General Public License for more details.
  13. You should have received a copy of the GNU General Public License
  14. along with this program. If not, see <http://www.gnu.org/licenses/>.
  15. */
  16. /*
  17. This firmware is a mashup between Sprinter and grbl.
  18. (https://github.com/kliment/Sprinter)
  19. (https://github.com/simen/grbl/tree)
  20. It has preliminary support for Matthew Roberts advance algorithm
  21. http://reprap.org/pipermail/reprap-dev/2011-May/003323.html
  22. */
  23. #include "Marlin.h"
  24. #ifdef ENABLE_AUTO_BED_LEVELING
  25. #include "vector_3.h"
  26. #ifdef AUTO_BED_LEVELING_GRID
  27. #include "qr_solve.h"
  28. #endif
  29. #endif // ENABLE_AUTO_BED_LEVELING
  30. #ifdef MESH_BED_LEVELING
  31. #include "mesh_bed_leveling.h"
  32. #include "mesh_bed_calibration.h"
  33. #endif
  34. #include "ultralcd.h"
  35. #include "Configuration_prusa.h"
  36. #include "planner.h"
  37. #include "stepper.h"
  38. #include "temperature.h"
  39. #include "motion_control.h"
  40. #include "cardreader.h"
  41. #include "watchdog.h"
  42. #include "ConfigurationStore.h"
  43. #include "language.h"
  44. #include "pins_arduino.h"
  45. #include "math.h"
  46. #include "util.h"
  47. #include <avr/wdt.h>
  48. #include "Dcodes.h"
  49. #ifdef SWSPI
  50. #include "swspi.h"
  51. #endif //SWSPI
  52. #ifdef SWI2C
  53. #include "swi2c.h"
  54. #endif //SWI2C
  55. #ifdef PAT9125
  56. #include "pat9125.h"
  57. #include "fsensor.h"
  58. #endif //PAT9125
  59. #ifdef TMC2130
  60. #include "tmc2130.h"
  61. #endif //TMC2130
  62. #ifdef BLINKM
  63. #include "BlinkM.h"
  64. #include "Wire.h"
  65. #endif
  66. #ifdef ULTRALCD
  67. #include "ultralcd.h"
  68. #endif
  69. #if NUM_SERVOS > 0
  70. #include "Servo.h"
  71. #endif
  72. #if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
  73. #include <SPI.h>
  74. #endif
  75. #define VERSION_STRING "1.0.2"
  76. #include "ultralcd.h"
  77. #include "cmdqueue.h"
  78. // Macros for bit masks
  79. #define BIT(b) (1<<(b))
  80. #define TEST(n,b) (((n)&BIT(b))!=0)
  81. #define SET_BIT(n,b,value) (n) ^= ((-value)^(n)) & (BIT(b))
  82. //Macro for print fan speed
  83. #define FAN_PULSE_WIDTH_LIMIT ((fanSpeed > 100) ? 3 : 4) //time in ms
  84. // look here for descriptions of G-codes: http://linuxcnc.org/handbook/gcode/g-code.html
  85. // http://objects.reprap.org/wiki/Mendel_User_Manual:_RepRapGCodes
  86. //Implemented Codes
  87. //-------------------
  88. // PRUSA CODES
  89. // P F - Returns FW versions
  90. // P R - Returns revision of printer
  91. // G0 -> G1
  92. // G1 - Coordinated Movement X Y Z E
  93. // G2 - CW ARC
  94. // G3 - CCW ARC
  95. // G4 - Dwell S<seconds> or P<milliseconds>
  96. // G10 - retract filament according to settings of M207
  97. // G11 - retract recover filament according to settings of M208
  98. // G28 - Home all Axis
  99. // G29 - Detailed Z-Probe, probes the bed at 3 or more points. Will fail if you haven't homed yet.
  100. // G30 - Single Z Probe, probes bed at current XY location.
  101. // G31 - Dock sled (Z_PROBE_SLED only)
  102. // G32 - Undock sled (Z_PROBE_SLED only)
  103. // G80 - Automatic mesh bed leveling
  104. // G81 - Print bed profile
  105. // G90 - Use Absolute Coordinates
  106. // G91 - Use Relative Coordinates
  107. // G92 - Set current position to coordinates given
  108. // M Codes
  109. // M0 - Unconditional stop - Wait for user to press a button on the LCD (Only if ULTRA_LCD is enabled)
  110. // M1 - Same as M0
  111. // M17 - Enable/Power all stepper motors
  112. // M18 - Disable all stepper motors; same as M84
  113. // M20 - List SD card
  114. // M21 - Init SD card
  115. // M22 - Release SD card
  116. // M23 - Select SD file (M23 filename.g)
  117. // M24 - Start/resume SD print
  118. // M25 - Pause SD print
  119. // M26 - Set SD position in bytes (M26 S12345)
  120. // M27 - Report SD print status
  121. // M28 - Start SD write (M28 filename.g)
  122. // M29 - Stop SD write
  123. // M30 - Delete file from SD (M30 filename.g)
  124. // M31 - Output time since last M109 or SD card start to serial
  125. // M32 - Select file and start SD print (Can be used _while_ printing from SD card files):
  126. // syntax "M32 /path/filename#", or "M32 S<startpos bytes> !filename#"
  127. // Call gcode file : "M32 P !filename#" and return to caller file after finishing (similar to #include).
  128. // The '#' is necessary when calling from within sd files, as it stops buffer prereading
  129. // M42 - Change pin status via gcode Use M42 Px Sy to set pin x to value y, when omitting Px the onboard led will be used.
  130. // M80 - Turn on Power Supply
  131. // M81 - Turn off Power Supply
  132. // M82 - Set E codes absolute (default)
  133. // M83 - Set E codes relative while in Absolute Coordinates (G90) mode
  134. // M84 - Disable steppers until next move,
  135. // or use S<seconds> to specify an inactivity timeout, after which the steppers will be disabled. S0 to disable the timeout.
  136. // M85 - Set inactivity shutdown timer with parameter S<seconds>. To disable set zero (default)
  137. // M92 - Set axis_steps_per_unit - same syntax as G92
  138. // M104 - Set extruder target temp
  139. // M105 - Read current temp
  140. // M106 - Fan on
  141. // M107 - Fan off
  142. // M109 - Sxxx Wait for extruder current temp to reach target temp. Waits only when heating
  143. // Rxxx Wait for extruder current temp to reach target temp. Waits when heating and cooling
  144. // IF AUTOTEMP is enabled, S<mintemp> B<maxtemp> F<factor>. Exit autotemp by any M109 without F
  145. // M112 - Emergency stop
  146. // M113 - Get or set the timeout interval for Host Keepalive "busy" messages
  147. // M114 - Output current position to serial port
  148. // M115 - Capabilities string
  149. // M117 - display message
  150. // M119 - Output Endstop status to serial port
  151. // M126 - Solenoid Air Valve Open (BariCUDA support by jmil)
  152. // M127 - Solenoid Air Valve Closed (BariCUDA vent to atmospheric pressure by jmil)
  153. // M128 - EtoP Open (BariCUDA EtoP = electricity to air pressure transducer by jmil)
  154. // M129 - EtoP Closed (BariCUDA EtoP = electricity to air pressure transducer by jmil)
  155. // M140 - Set bed target temp
  156. // M150 - Set BlinkM Color Output R: Red<0-255> U(!): Green<0-255> B: Blue<0-255> over i2c, G for green does not work.
  157. // M190 - Sxxx Wait for bed current temp to reach target temp. Waits only when heating
  158. // Rxxx Wait for bed current temp to reach target temp. Waits when heating and cooling
  159. // M200 D<millimeters>- set filament diameter and set E axis units to cubic millimeters (use S0 to set back to millimeters).
  160. // M201 - Set max acceleration in units/s^2 for print moves (M201 X1000 Y1000)
  161. // M202 - Set max acceleration in units/s^2 for travel moves (M202 X1000 Y1000) Unused in Marlin!!
  162. // M203 - Set maximum feedrate that your machine can sustain (M203 X200 Y200 Z300 E10000) in mm/sec
  163. // M204 - Set default acceleration: S normal moves T filament only moves (M204 S3000 T7000) in mm/sec^2 also sets minimum segment time in ms (B20000) to prevent buffer under-runs and M20 minimum feedrate
  164. // M205 - advanced settings: minimum travel speed S=while printing T=travel only, B=minimum segment time X= maximum xy jerk, Z=maximum Z jerk, E=maximum E jerk
  165. // M206 - set additional homing offset
  166. // M207 - set retract length S[positive mm] F[feedrate mm/min] Z[additional zlift/hop], stays in mm regardless of M200 setting
  167. // M208 - set recover=unretract length S[positive mm surplus to the M207 S*] F[feedrate mm/sec]
  168. // M209 - S<1=true/0=false> enable automatic retract detect if the slicer did not support G10/11: every normal extrude-only move will be classified as retract depending on the direction.
  169. // M218 - set hotend offset (in mm): T<extruder_number> X<offset_on_X> Y<offset_on_Y>
  170. // M220 S<factor in percent>- set speed factor override percentage
  171. // M221 S<factor in percent>- set extrude factor override percentage
  172. // M226 P<pin number> S<pin state>- Wait until the specified pin reaches the state required
  173. // M240 - Trigger a camera to take a photograph
  174. // M250 - Set LCD contrast C<contrast value> (value 0..63)
  175. // M280 - set servo position absolute. P: servo index, S: angle or microseconds
  176. // M300 - Play beep sound S<frequency Hz> P<duration ms>
  177. // M301 - Set PID parameters P I and D
  178. // M302 - Allow cold extrudes, or set the minimum extrude S<temperature>.
  179. // M303 - PID relay autotune S<temperature> sets the target temperature. (default target temperature = 150C)
  180. // M304 - Set bed PID parameters P I and D
  181. // M400 - Finish all moves
  182. // M401 - Lower z-probe if present
  183. // M402 - Raise z-probe if present
  184. // M404 - N<dia in mm> Enter the nominal filament width (3mm, 1.75mm ) or will display nominal filament width without parameters
  185. // M405 - Turn on Filament Sensor extrusion control. Optional D<delay in cm> to set delay in centimeters between sensor and extruder
  186. // M406 - Turn off Filament Sensor extrusion control
  187. // M407 - Displays measured filament diameter
  188. // M500 - stores parameters in EEPROM
  189. // M501 - reads parameters from EEPROM (if you need reset them after you changed them temporarily).
  190. // M502 - reverts to the default "factory settings". You still need to store them in EEPROM afterwards if you want to.
  191. // M503 - print the current settings (from memory not from EEPROM)
  192. // M509 - force language selection on next restart
  193. // M540 - Use S[0|1] to enable or disable the stop SD card print on endstop hit (requires ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED)
  194. // M600 - Pause for filament change X[pos] Y[pos] Z[relative lift] E[initial retract] L[later retract distance for removal]
  195. // M605 - Set dual x-carriage movement mode: S<mode> [ X<duplication x-offset> R<duplication temp offset> ]
  196. // M666 - Wait for PINDA thermistor to reach target temperature.
  197. // M900 - Set LIN_ADVANCE options, if enabled. See Configuration_adv.h for details.
  198. // M907 - Set digital trimpot motor current using axis codes.
  199. // M908 - Control digital trimpot directly.
  200. // M350 - Set microstepping mode.
  201. // M351 - Toggle MS1 MS2 pins directly.
  202. // M928 - Start SD logging (M928 filename.g) - ended by M29
  203. // M999 - Restart after being stopped by error
  204. //Stepper Movement Variables
  205. //===========================================================================
  206. //=============================imported variables============================
  207. //===========================================================================
  208. //===========================================================================
  209. //=============================public variables=============================
  210. //===========================================================================
  211. #ifdef SDSUPPORT
  212. CardReader card;
  213. #endif
  214. unsigned long PingTime = millis();
  215. union Data
  216. {
  217. byte b[2];
  218. int value;
  219. };
  220. float homing_feedrate[] = HOMING_FEEDRATE;
  221. // Currently only the extruder axis may be switched to a relative mode.
  222. // Other axes are always absolute or relative based on the common relative_mode flag.
  223. bool axis_relative_modes[] = AXIS_RELATIVE_MODES;
  224. int feedmultiply=100; //100->1 200->2
  225. int saved_feedmultiply;
  226. int extrudemultiply=100; //100->1 200->2
  227. int extruder_multiply[EXTRUDERS] = {100
  228. #if EXTRUDERS > 1
  229. , 100
  230. #if EXTRUDERS > 2
  231. , 100
  232. #endif
  233. #endif
  234. };
  235. int bowden_length[4] = {385, 385, 385, 385};
  236. bool is_usb_printing = false;
  237. bool homing_flag = false;
  238. bool temp_cal_active = false;
  239. unsigned long kicktime = millis()+100000;
  240. unsigned int usb_printing_counter;
  241. int lcd_change_fil_state = 0;
  242. int feedmultiplyBckp = 100;
  243. float HotendTempBckp = 0;
  244. int fanSpeedBckp = 0;
  245. float pause_lastpos[4];
  246. unsigned long pause_time = 0;
  247. unsigned long start_pause_print = millis();
  248. unsigned long t_fan_rising_edge = millis();
  249. //unsigned long load_filament_time;
  250. bool mesh_bed_leveling_flag = false;
  251. bool mesh_bed_run_from_menu = false;
  252. unsigned char lang_selected = 0;
  253. int8_t FarmMode = 0;
  254. bool prusa_sd_card_upload = false;
  255. unsigned int status_number = 0;
  256. unsigned long total_filament_used;
  257. unsigned int heating_status;
  258. unsigned int heating_status_counter;
  259. bool custom_message;
  260. bool loading_flag = false;
  261. unsigned int custom_message_type;
  262. unsigned int custom_message_state;
  263. char snmm_filaments_used = 0;
  264. float distance_from_min[2];
  265. bool fan_state[2];
  266. int fan_edge_counter[2];
  267. int fan_speed[2];
  268. char dir_names[3][9];
  269. bool sortAlpha = false;
  270. bool volumetric_enabled = false;
  271. float filament_size[EXTRUDERS] = { DEFAULT_NOMINAL_FILAMENT_DIA
  272. #if EXTRUDERS > 1
  273. , DEFAULT_NOMINAL_FILAMENT_DIA
  274. #if EXTRUDERS > 2
  275. , DEFAULT_NOMINAL_FILAMENT_DIA
  276. #endif
  277. #endif
  278. };
  279. float extruder_multiplier[EXTRUDERS] = {1.0
  280. #if EXTRUDERS > 1
  281. , 1.0
  282. #if EXTRUDERS > 2
  283. , 1.0
  284. #endif
  285. #endif
  286. };
  287. float current_position[NUM_AXIS] = { 0.0, 0.0, 0.0, 0.0 };
  288. float add_homing[3]={0,0,0};
  289. float min_pos[3] = { X_MIN_POS, Y_MIN_POS, Z_MIN_POS };
  290. float max_pos[3] = { X_MAX_POS, Y_MAX_POS, Z_MAX_POS };
  291. bool axis_known_position[3] = {false, false, false};
  292. float zprobe_zoffset;
  293. // Extruder offset
  294. #if EXTRUDERS > 1
  295. #define NUM_EXTRUDER_OFFSETS 2 // only in XY plane
  296. float extruder_offset[NUM_EXTRUDER_OFFSETS][EXTRUDERS] = {
  297. #if defined(EXTRUDER_OFFSET_X) && defined(EXTRUDER_OFFSET_Y)
  298. EXTRUDER_OFFSET_X, EXTRUDER_OFFSET_Y
  299. #endif
  300. };
  301. #endif
  302. uint8_t active_extruder = 0;
  303. int fanSpeed=0;
  304. #ifdef FWRETRACT
  305. bool autoretract_enabled=false;
  306. bool retracted[EXTRUDERS]={false
  307. #if EXTRUDERS > 1
  308. , false
  309. #if EXTRUDERS > 2
  310. , false
  311. #endif
  312. #endif
  313. };
  314. bool retracted_swap[EXTRUDERS]={false
  315. #if EXTRUDERS > 1
  316. , false
  317. #if EXTRUDERS > 2
  318. , false
  319. #endif
  320. #endif
  321. };
  322. float retract_length = RETRACT_LENGTH;
  323. float retract_length_swap = RETRACT_LENGTH_SWAP;
  324. float retract_feedrate = RETRACT_FEEDRATE;
  325. float retract_zlift = RETRACT_ZLIFT;
  326. float retract_recover_length = RETRACT_RECOVER_LENGTH;
  327. float retract_recover_length_swap = RETRACT_RECOVER_LENGTH_SWAP;
  328. float retract_recover_feedrate = RETRACT_RECOVER_FEEDRATE;
  329. #endif
  330. #ifdef ULTIPANEL
  331. #ifdef PS_DEFAULT_OFF
  332. bool powersupply = false;
  333. #else
  334. bool powersupply = true;
  335. #endif
  336. #endif
  337. bool cancel_heatup = false ;
  338. #ifdef HOST_KEEPALIVE_FEATURE
  339. int busy_state = NOT_BUSY;
  340. static long prev_busy_signal_ms = -1;
  341. uint8_t host_keepalive_interval = HOST_KEEPALIVE_INTERVAL;
  342. #else
  343. #define host_keepalive();
  344. #define KEEPALIVE_STATE(n);
  345. #endif
  346. const char errormagic[] PROGMEM = "Error:";
  347. const char echomagic[] PROGMEM = "echo:";
  348. //===========================================================================
  349. //=============================Private Variables=============================
  350. //===========================================================================
  351. const char axis_codes[NUM_AXIS] = {'X', 'Y', 'Z', 'E'};
  352. float destination[NUM_AXIS] = { 0.0, 0.0, 0.0, 0.0};
  353. static float delta[3] = {0.0, 0.0, 0.0};
  354. // For tracing an arc
  355. static float offset[3] = {0.0, 0.0, 0.0};
  356. static float feedrate = 1500.0, next_feedrate, saved_feedrate;
  357. // Determines Absolute or Relative Coordinates.
  358. // Also there is bool axis_relative_modes[] per axis flag.
  359. static bool relative_mode = false;
  360. #ifndef _DISABLE_M42_M226
  361. const int sensitive_pins[] = SENSITIVE_PINS; // Sensitive pin list for M42
  362. #endif //_DISABLE_M42_M226
  363. //static float tt = 0;
  364. //static float bt = 0;
  365. //Inactivity shutdown variables
  366. static unsigned long previous_millis_cmd = 0;
  367. unsigned long max_inactive_time = 0;
  368. static unsigned long stepper_inactive_time = DEFAULT_STEPPER_DEACTIVE_TIME*1000l;
  369. unsigned long starttime=0;
  370. unsigned long stoptime=0;
  371. unsigned long _usb_timer = 0;
  372. static uint8_t tmp_extruder;
  373. bool extruder_under_pressure = true;
  374. bool Stopped=false;
  375. #if NUM_SERVOS > 0
  376. Servo servos[NUM_SERVOS];
  377. #endif
  378. bool CooldownNoWait = true;
  379. bool target_direction;
  380. //Insert variables if CHDK is defined
  381. #ifdef CHDK
  382. unsigned long chdkHigh = 0;
  383. boolean chdkActive = false;
  384. #endif
  385. //===========================================================================
  386. //=============================Routines======================================
  387. //===========================================================================
  388. void get_arc_coordinates();
  389. bool setTargetedHotend(int code);
  390. void serial_echopair_P(const char *s_P, float v)
  391. { serialprintPGM(s_P); SERIAL_ECHO(v); }
  392. void serial_echopair_P(const char *s_P, double v)
  393. { serialprintPGM(s_P); SERIAL_ECHO(v); }
  394. void serial_echopair_P(const char *s_P, unsigned long v)
  395. { serialprintPGM(s_P); SERIAL_ECHO(v); }
  396. #ifdef SDSUPPORT
  397. #include "SdFatUtil.h"
  398. int freeMemory() { return SdFatUtil::FreeRam(); }
  399. #else
  400. extern "C" {
  401. extern unsigned int __bss_end;
  402. extern unsigned int __heap_start;
  403. extern void *__brkval;
  404. int freeMemory() {
  405. int free_memory;
  406. if ((int)__brkval == 0)
  407. free_memory = ((int)&free_memory) - ((int)&__bss_end);
  408. else
  409. free_memory = ((int)&free_memory) - ((int)__brkval);
  410. return free_memory;
  411. }
  412. }
  413. #endif //!SDSUPPORT
  414. void setup_killpin()
  415. {
  416. #if defined(KILL_PIN) && KILL_PIN > -1
  417. SET_INPUT(KILL_PIN);
  418. WRITE(KILL_PIN,HIGH);
  419. #endif
  420. }
  421. // Set home pin
  422. void setup_homepin(void)
  423. {
  424. #if defined(HOME_PIN) && HOME_PIN > -1
  425. SET_INPUT(HOME_PIN);
  426. WRITE(HOME_PIN,HIGH);
  427. #endif
  428. }
  429. void setup_photpin()
  430. {
  431. #if defined(PHOTOGRAPH_PIN) && PHOTOGRAPH_PIN > -1
  432. SET_OUTPUT(PHOTOGRAPH_PIN);
  433. WRITE(PHOTOGRAPH_PIN, LOW);
  434. #endif
  435. }
  436. void setup_powerhold()
  437. {
  438. #if defined(SUICIDE_PIN) && SUICIDE_PIN > -1
  439. SET_OUTPUT(SUICIDE_PIN);
  440. WRITE(SUICIDE_PIN, HIGH);
  441. #endif
  442. #if defined(PS_ON_PIN) && PS_ON_PIN > -1
  443. SET_OUTPUT(PS_ON_PIN);
  444. #if defined(PS_DEFAULT_OFF)
  445. WRITE(PS_ON_PIN, PS_ON_ASLEEP);
  446. #else
  447. WRITE(PS_ON_PIN, PS_ON_AWAKE);
  448. #endif
  449. #endif
  450. }
  451. void suicide()
  452. {
  453. #if defined(SUICIDE_PIN) && SUICIDE_PIN > -1
  454. SET_OUTPUT(SUICIDE_PIN);
  455. WRITE(SUICIDE_PIN, LOW);
  456. #endif
  457. }
  458. void servo_init()
  459. {
  460. #if (NUM_SERVOS >= 1) && defined(SERVO0_PIN) && (SERVO0_PIN > -1)
  461. servos[0].attach(SERVO0_PIN);
  462. #endif
  463. #if (NUM_SERVOS >= 2) && defined(SERVO1_PIN) && (SERVO1_PIN > -1)
  464. servos[1].attach(SERVO1_PIN);
  465. #endif
  466. #if (NUM_SERVOS >= 3) && defined(SERVO2_PIN) && (SERVO2_PIN > -1)
  467. servos[2].attach(SERVO2_PIN);
  468. #endif
  469. #if (NUM_SERVOS >= 4) && defined(SERVO3_PIN) && (SERVO3_PIN > -1)
  470. servos[3].attach(SERVO3_PIN);
  471. #endif
  472. #if (NUM_SERVOS >= 5)
  473. #error "TODO: enter initalisation code for more servos"
  474. #endif
  475. }
  476. static void lcd_language_menu();
  477. void stop_and_save_print_to_ram(float z_move, float e_move);
  478. void restore_print_from_ram_and_continue(float e_move);
  479. bool fans_check_enabled = true;
  480. bool filament_autoload_enabled = true;
  481. extern int8_t CrashDetectMenu;
  482. void crashdet_enable()
  483. {
  484. // MYSERIAL.println("crashdet_enable");
  485. tmc2130_sg_stop_on_crash = true;
  486. eeprom_update_byte((uint8_t*)EEPROM_CRASH_DET, 0xFF);
  487. CrashDetectMenu = 1;
  488. }
  489. void crashdet_disable()
  490. {
  491. // MYSERIAL.println("crashdet_disable");
  492. tmc2130_sg_stop_on_crash = false;
  493. tmc2130_sg_crash = 0;
  494. eeprom_update_byte((uint8_t*)EEPROM_CRASH_DET, 0x00);
  495. CrashDetectMenu = 0;
  496. }
  497. void crashdet_stop_and_save_print()
  498. {
  499. stop_and_save_print_to_ram(10, 0); //XY - no change, Z 10mm up, E - no change
  500. }
  501. void crashdet_restore_print_and_continue()
  502. {
  503. restore_print_from_ram_and_continue(0); //XYZ = orig, E - no change
  504. // babystep_apply();
  505. }
  506. void crashdet_stop_and_save_print2()
  507. {
  508. cli();
  509. planner_abort_hard(); //abort printing
  510. cmdqueue_reset(); //empty cmdqueue
  511. card.sdprinting = false;
  512. card.closefile();
  513. // Reset and re-enable the stepper timer just before the global interrupts are enabled.
  514. st_reset_timer();
  515. sei();
  516. }
  517. void crashdet_detected(uint8_t mask)
  518. {
  519. // printf("CRASH_DETECTED");
  520. /* while (!is_buffer_empty())
  521. {
  522. process_commands();
  523. cmdqueue_pop_front();
  524. }*/
  525. st_synchronize();
  526. lcd_update_enable(true);
  527. lcd_implementation_clear();
  528. lcd_update(2);
  529. if (mask & X_AXIS_MASK)
  530. {
  531. eeprom_update_byte((uint8_t*)EEPROM_CRASH_COUNT_X, eeprom_read_byte((uint8_t*)EEPROM_CRASH_COUNT_X) + 1);
  532. eeprom_update_word((uint16_t*)EEPROM_CRASH_COUNT_X_TOT, eeprom_read_word((uint16_t*)EEPROM_CRASH_COUNT_X_TOT) + 1);
  533. }
  534. if (mask & Y_AXIS_MASK)
  535. {
  536. eeprom_update_byte((uint8_t*)EEPROM_CRASH_COUNT_Y, eeprom_read_byte((uint8_t*)EEPROM_CRASH_COUNT_Y) + 1);
  537. eeprom_update_word((uint16_t*)EEPROM_CRASH_COUNT_Y_TOT, eeprom_read_word((uint16_t*)EEPROM_CRASH_COUNT_Y_TOT) + 1);
  538. }
  539. #ifdef AUTOMATIC_RECOVERY_AFTER_CRASH
  540. bool yesno = true;
  541. #else
  542. bool yesno = lcd_show_fullscreen_message_yes_no_and_wait_P(MSG_CRASH_DETECTED, false);
  543. #endif
  544. lcd_update_enable(true);
  545. lcd_update(2);
  546. lcd_setstatuspgm(MSG_CRASH_DETECTED);
  547. if (yesno)
  548. {
  549. enquecommand_P(PSTR("G28 X Y"));
  550. enquecommand_P(PSTR("CRASH_RECOVER"));
  551. }
  552. else
  553. {
  554. enquecommand_P(PSTR("CRASH_CANCEL"));
  555. }
  556. }
  557. void crashdet_recover()
  558. {
  559. crashdet_restore_print_and_continue();
  560. tmc2130_sg_stop_on_crash = true;
  561. }
  562. void crashdet_cancel()
  563. {
  564. card.sdprinting = false;
  565. card.closefile();
  566. tmc2130_sg_stop_on_crash = true;
  567. }
  568. void failstats_reset_print()
  569. {
  570. eeprom_update_byte((uint8_t *)EEPROM_CRASH_COUNT_X, 0);
  571. eeprom_update_byte((uint8_t *)EEPROM_CRASH_COUNT_Y, 0);
  572. eeprom_update_byte((uint8_t *)EEPROM_FERROR_COUNT, 0);
  573. eeprom_update_byte((uint8_t *)EEPROM_POWER_COUNT, 0);
  574. }
  575. #ifdef MESH_BED_LEVELING
  576. enum MeshLevelingState { MeshReport, MeshStart, MeshNext, MeshSet };
  577. #endif
  578. // Factory reset function
  579. // This function is used to erase parts or whole EEPROM memory which is used for storing calibration and and so on.
  580. // Level input parameter sets depth of reset
  581. // Quiet parameter masks all waitings for user interact.
  582. int er_progress = 0;
  583. void factory_reset(char level, bool quiet)
  584. {
  585. lcd_implementation_clear();
  586. int cursor_pos = 0;
  587. switch (level) {
  588. // Level 0: Language reset
  589. case 0:
  590. WRITE(BEEPER, HIGH);
  591. _delay_ms(100);
  592. WRITE(BEEPER, LOW);
  593. lcd_force_language_selection();
  594. break;
  595. //Level 1: Reset statistics
  596. case 1:
  597. WRITE(BEEPER, HIGH);
  598. _delay_ms(100);
  599. WRITE(BEEPER, LOW);
  600. eeprom_update_dword((uint32_t *)EEPROM_TOTALTIME, 0);
  601. eeprom_update_dword((uint32_t *)EEPROM_FILAMENTUSED, 0);
  602. eeprom_update_byte((uint8_t *)EEPROM_CRASH_COUNT_X, 0);
  603. eeprom_update_byte((uint8_t *)EEPROM_CRASH_COUNT_Y, 0);
  604. eeprom_update_byte((uint8_t *)EEPROM_FERROR_COUNT, 0);
  605. eeprom_update_byte((uint8_t *)EEPROM_POWER_COUNT, 0);
  606. eeprom_update_word((uint16_t *)EEPROM_CRASH_COUNT_X_TOT, 0);
  607. eeprom_update_word((uint16_t *)EEPROM_CRASH_COUNT_Y_TOT, 0);
  608. eeprom_update_word((uint16_t *)EEPROM_FERROR_COUNT_TOT, 0);
  609. eeprom_update_word((uint16_t *)EEPROM_POWER_COUNT_TOT, 0);
  610. lcd_menu_statistics();
  611. break;
  612. // Level 2: Prepare for shipping
  613. case 2:
  614. //lcd_printPGM(PSTR("Factory RESET"));
  615. //lcd_print_at_PGM(1,2,PSTR("Shipping prep"));
  616. // Force language selection at the next boot up.
  617. lcd_force_language_selection();
  618. // Force the "Follow calibration flow" message at the next boot up.
  619. calibration_status_store(CALIBRATION_STATUS_Z_CALIBRATION);
  620. eeprom_write_byte((uint8_t*)EEPROM_WIZARD_ACTIVE, 1); //run wizard
  621. farm_no = 0;
  622. farm_mode == false;
  623. eeprom_update_byte((uint8_t*)EEPROM_FARM_MODE, farm_mode);
  624. EEPROM_save_B(EEPROM_FARM_NUMBER, &farm_no);
  625. WRITE(BEEPER, HIGH);
  626. _delay_ms(100);
  627. WRITE(BEEPER, LOW);
  628. //_delay_ms(2000);
  629. break;
  630. // Level 3: erase everything, whole EEPROM will be set to 0xFF
  631. case 3:
  632. lcd_printPGM(PSTR("Factory RESET"));
  633. lcd_print_at_PGM(1, 2, PSTR("ERASING all data"));
  634. WRITE(BEEPER, HIGH);
  635. _delay_ms(100);
  636. WRITE(BEEPER, LOW);
  637. er_progress = 0;
  638. lcd_print_at_PGM(3, 3, PSTR(" "));
  639. lcd_implementation_print_at(3, 3, er_progress);
  640. // Erase EEPROM
  641. for (int i = 0; i < 4096; i++) {
  642. eeprom_write_byte((uint8_t*)i, 0xFF);
  643. if (i % 41 == 0) {
  644. er_progress++;
  645. lcd_print_at_PGM(3, 3, PSTR(" "));
  646. lcd_implementation_print_at(3, 3, er_progress);
  647. lcd_printPGM(PSTR("%"));
  648. }
  649. }
  650. break;
  651. case 4:
  652. bowden_menu();
  653. break;
  654. default:
  655. break;
  656. }
  657. }
  658. #include "LiquidCrystal.h"
  659. extern LiquidCrystal lcd;
  660. FILE _lcdout = {0};
  661. int lcd_putchar(char c, FILE *stream)
  662. {
  663. lcd.write(c);
  664. return 0;
  665. }
  666. FILE _uartout = {0};
  667. int uart_putchar(char c, FILE *stream)
  668. {
  669. MYSERIAL.write(c);
  670. return 0;
  671. }
  672. void lcd_splash()
  673. {
  674. // lcd_print_at_PGM(0, 1, PSTR(" Original Prusa "));
  675. // lcd_print_at_PGM(0, 2, PSTR(" 3D Printers "));
  676. // lcd.print_P(PSTR("\x1b[1;3HOriginal Prusa\x1b[2;4H3D Printers"));
  677. fputs_P(PSTR(ESC_2J ESC_H(1,1) "Original Prusa i3" ESC_H(3,2) "Prusa Research"), lcdout);
  678. }
  679. void factory_reset()
  680. {
  681. KEEPALIVE_STATE(PAUSED_FOR_USER);
  682. if (!READ(BTN_ENC))
  683. {
  684. _delay_ms(1000);
  685. if (!READ(BTN_ENC))
  686. {
  687. lcd_implementation_clear();
  688. lcd_printPGM(PSTR("Factory RESET"));
  689. SET_OUTPUT(BEEPER);
  690. WRITE(BEEPER, HIGH);
  691. while (!READ(BTN_ENC));
  692. WRITE(BEEPER, LOW);
  693. _delay_ms(2000);
  694. char level = reset_menu();
  695. factory_reset(level, false);
  696. switch (level) {
  697. case 0: _delay_ms(0); break;
  698. case 1: _delay_ms(0); break;
  699. case 2: _delay_ms(0); break;
  700. case 3: _delay_ms(0); break;
  701. }
  702. // _delay_ms(100);
  703. /*
  704. #ifdef MESH_BED_LEVELING
  705. _delay_ms(2000);
  706. if (!READ(BTN_ENC))
  707. {
  708. WRITE(BEEPER, HIGH);
  709. _delay_ms(100);
  710. WRITE(BEEPER, LOW);
  711. _delay_ms(200);
  712. WRITE(BEEPER, HIGH);
  713. _delay_ms(100);
  714. WRITE(BEEPER, LOW);
  715. int _z = 0;
  716. calibration_status_store(CALIBRATION_STATUS_CALIBRATED);
  717. EEPROM_save_B(EEPROM_BABYSTEP_X, &_z);
  718. EEPROM_save_B(EEPROM_BABYSTEP_Y, &_z);
  719. EEPROM_save_B(EEPROM_BABYSTEP_Z, &_z);
  720. }
  721. else
  722. {
  723. WRITE(BEEPER, HIGH);
  724. _delay_ms(100);
  725. WRITE(BEEPER, LOW);
  726. }
  727. #endif // mesh */
  728. }
  729. }
  730. else
  731. {
  732. //_delay_ms(1000); // wait 1sec to display the splash screen // what's this and why do we need it?? - andre
  733. }
  734. KEEPALIVE_STATE(IN_HANDLER);
  735. }
  736. void show_fw_version_warnings() {
  737. if (FW_DEV_VERSION == FW_VERSION_GOLD || FW_DEV_VERSION == FW_VERSION_RC) return;
  738. switch (FW_DEV_VERSION) {
  739. case(FW_VERSION_ALPHA): lcd_show_fullscreen_message_and_wait_P(MSG_FW_VERSION_ALPHA); break;
  740. case(FW_VERSION_BETA): lcd_show_fullscreen_message_and_wait_P(MSG_FW_VERSION_BETA); break;
  741. case(FW_VERSION_DEVEL):
  742. case(FW_VERSION_DEBUG):
  743. lcd_update_enable(false);
  744. lcd_implementation_clear();
  745. #if FW_DEV_VERSION == FW_VERSION_DEVEL
  746. lcd_print_at_PGM(0, 0, PSTR("Development build !!"));
  747. #else
  748. lcd_print_at_PGM(0, 0, PSTR("Debbugging build !!!"));
  749. #endif
  750. lcd_print_at_PGM(0, 1, PSTR("May destroy printer!"));
  751. lcd_print_at_PGM(0, 2, PSTR("ver ")); lcd_printPGM(PSTR(FW_VERSION_FULL));
  752. lcd_print_at_PGM(0, 3, PSTR(FW_REPOSITORY));
  753. lcd_wait_for_click();
  754. break;
  755. default: lcd_show_fullscreen_message_and_wait_P(MSG_FW_VERSION_UNKNOWN); break;
  756. }
  757. lcd_update_enable(true);
  758. }
  759. void erase_eeprom_section(uint16_t offset, uint16_t bytes)
  760. {
  761. for (int i = offset; i < (offset+bytes); i++) eeprom_write_byte((uint8_t*)i, 0xFF);
  762. }
  763. // "Setup" function is called by the Arduino framework on startup.
  764. // Before startup, the Timers-functions (PWM)/Analog RW and HardwareSerial provided by the Arduino-code
  765. // are initialized by the main() routine provided by the Arduino framework.
  766. void setup()
  767. {
  768. lcd_init();
  769. fdev_setup_stream(lcdout, lcd_putchar, NULL, _FDEV_SETUP_WRITE); //setup lcdout stream
  770. lcd_splash();
  771. setup_killpin();
  772. setup_powerhold();
  773. farm_mode = eeprom_read_byte((uint8_t*)EEPROM_FARM_MODE);
  774. EEPROM_read_B(EEPROM_FARM_NUMBER, &farm_no);
  775. if ((farm_mode == 0xFF && farm_no == 0) || (farm_no == 0xFFFF)) farm_mode = false; //if farm_mode has not been stored to eeprom yet and farm number is set to zero or EEPROM is fresh, deactivate farm mode
  776. if (farm_no == 0xFFFF) farm_no = 0;
  777. selectedSerialPort = eeprom_read_byte((uint8_t*)EEPROM_SECOND_SERIAL_ACTIVE);
  778. if (selectedSerialPort == 0xFF) selectedSerialPort = 0;
  779. if (farm_mode)
  780. {
  781. prusa_statistics(8);
  782. selectedSerialPort = 1;
  783. }
  784. MYSERIAL.begin(BAUDRATE);
  785. fdev_setup_stream(uartout, uart_putchar, NULL, _FDEV_SETUP_WRITE); //setup uart out stream
  786. stdout = uartout;
  787. SERIAL_PROTOCOLLNPGM("start");
  788. SERIAL_ECHO_START;
  789. printf_P(PSTR(" "FW_VERSION_FULL"\n"));
  790. #if 0
  791. SERIAL_ECHOLN("Reading eeprom from 0 to 100: start");
  792. for (int i = 0; i < 4096; ++i) {
  793. int b = eeprom_read_byte((unsigned char*)i);
  794. if (b != 255) {
  795. SERIAL_ECHO(i);
  796. SERIAL_ECHO(":");
  797. SERIAL_ECHO(b);
  798. SERIAL_ECHOLN("");
  799. }
  800. }
  801. SERIAL_ECHOLN("Reading eeprom from 0 to 100: done");
  802. #endif
  803. // Check startup - does nothing if bootloader sets MCUSR to 0
  804. byte mcu = MCUSR;
  805. /* if (mcu & 1) SERIAL_ECHOLNRPGM(MSG_POWERUP);
  806. if (mcu & 2) SERIAL_ECHOLNRPGM(MSG_EXTERNAL_RESET);
  807. if (mcu & 4) SERIAL_ECHOLNRPGM(MSG_BROWNOUT_RESET);
  808. if (mcu & 8) SERIAL_ECHOLNRPGM(MSG_WATCHDOG_RESET);
  809. if (mcu & 32) SERIAL_ECHOLNRPGM(MSG_SOFTWARE_RESET);*/
  810. if (mcu & 1) puts_P(MSG_POWERUP);
  811. if (mcu & 2) puts_P(MSG_EXTERNAL_RESET);
  812. if (mcu & 4) puts_P(MSG_BROWNOUT_RESET);
  813. if (mcu & 8) puts_P(MSG_WATCHDOG_RESET);
  814. if (mcu & 32) puts_P(MSG_SOFTWARE_RESET);
  815. MCUSR = 0;
  816. //SERIAL_ECHORPGM(MSG_MARLIN);
  817. //SERIAL_ECHOLNRPGM(VERSION_STRING);
  818. #ifdef STRING_VERSION_CONFIG_H
  819. #ifdef STRING_CONFIG_H_AUTHOR
  820. SERIAL_ECHO_START;
  821. SERIAL_ECHORPGM(MSG_CONFIGURATION_VER);
  822. SERIAL_ECHOPGM(STRING_VERSION_CONFIG_H);
  823. SERIAL_ECHORPGM(MSG_AUTHOR);
  824. SERIAL_ECHOLNPGM(STRING_CONFIG_H_AUTHOR);
  825. SERIAL_ECHOPGM("Compiled: ");
  826. SERIAL_ECHOLNPGM(__DATE__);
  827. #endif
  828. #endif
  829. SERIAL_ECHO_START;
  830. SERIAL_ECHORPGM(MSG_FREE_MEMORY);
  831. SERIAL_ECHO(freeMemory());
  832. SERIAL_ECHORPGM(MSG_PLANNER_BUFFER_BYTES);
  833. SERIAL_ECHOLN((int)sizeof(block_t)*BLOCK_BUFFER_SIZE);
  834. //lcd_update_enable(false); // why do we need this?? - andre
  835. // loads data from EEPROM if available else uses defaults (and resets step acceleration rate)
  836. bool previous_settings_retrieved = Config_RetrieveSettings(EEPROM_OFFSET);
  837. SdFatUtil::set_stack_guard(); //writes magic number at the end of static variables to protect against overwriting static memory by stack
  838. tp_init(); // Initialize temperature loop
  839. lcd_splash(); // we need to do this again, because tp_init() kills lcd
  840. plan_init(); // Initialize planner;
  841. watchdog_init();
  842. factory_reset();
  843. #ifdef TMC2130
  844. uint8_t silentMode = eeprom_read_byte((uint8_t*)EEPROM_SILENT);
  845. if (silentMode == 0xff) silentMode = 0;
  846. tmc2130_mode = silentMode?TMC2130_MODE_SILENT:TMC2130_MODE_NORMAL;
  847. uint8_t crashdet = eeprom_read_byte((uint8_t*)EEPROM_CRASH_DET);
  848. if (crashdet)
  849. {
  850. crashdet_enable();
  851. MYSERIAL.println("CrashDetect ENABLED!");
  852. }
  853. else
  854. {
  855. crashdet_disable();
  856. MYSERIAL.println("CrashDetect DISABLED");
  857. }
  858. #ifdef TMC2130_LINEARITY_CORRECTION
  859. tmc2130_wave_fac[X_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_WAVE_X_FAC);
  860. tmc2130_wave_fac[Y_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_WAVE_Y_FAC);
  861. tmc2130_wave_fac[Z_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_WAVE_Z_FAC);
  862. tmc2130_wave_fac[E_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_WAVE_E_FAC);
  863. if (tmc2130_wave_fac[X_AXIS] == 0xff) tmc2130_wave_fac[X_AXIS] = 0;
  864. if (tmc2130_wave_fac[Y_AXIS] == 0xff) tmc2130_wave_fac[Y_AXIS] = 0;
  865. if (tmc2130_wave_fac[Z_AXIS] == 0xff) tmc2130_wave_fac[Z_AXIS] = 0;
  866. if (tmc2130_wave_fac[E_AXIS] == 0xff) tmc2130_wave_fac[E_AXIS] = 0;
  867. #endif //TMC2130_LINEARITY_CORRECTION
  868. #ifdef TMC2130_VARIABLE_RESOLUTION
  869. tmc2130_mres[X_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_X_MRES);
  870. tmc2130_mres[Y_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_Y_MRES);
  871. tmc2130_mres[Z_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_Z_MRES);
  872. tmc2130_mres[E_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_E_MRES);
  873. if (tmc2130_mres[X_AXIS] == 0xff) tmc2130_mres[X_AXIS] = tmc2130_usteps2mres(TMC2130_USTEPS_XY);
  874. if (tmc2130_mres[Y_AXIS] == 0xff) tmc2130_mres[Y_AXIS] = tmc2130_usteps2mres(TMC2130_USTEPS_XY);
  875. if (tmc2130_mres[Z_AXIS] == 0xff) tmc2130_mres[Z_AXIS] = tmc2130_usteps2mres(TMC2130_USTEPS_Z);
  876. if (tmc2130_mres[E_AXIS] == 0xff) tmc2130_mres[E_AXIS] = tmc2130_usteps2mres(TMC2130_USTEPS_E);
  877. eeprom_update_byte((uint8_t*)EEPROM_TMC2130_X_MRES, tmc2130_mres[X_AXIS]);
  878. eeprom_update_byte((uint8_t*)EEPROM_TMC2130_Y_MRES, tmc2130_mres[Y_AXIS]);
  879. eeprom_update_byte((uint8_t*)EEPROM_TMC2130_Z_MRES, tmc2130_mres[Z_AXIS]);
  880. eeprom_update_byte((uint8_t*)EEPROM_TMC2130_E_MRES, tmc2130_mres[E_AXIS]);
  881. #else //TMC2130_VARIABLE_RESOLUTION
  882. tmc2130_mres[X_AXIS] = tmc2130_usteps2mres(TMC2130_USTEPS_XY);
  883. tmc2130_mres[Y_AXIS] = tmc2130_usteps2mres(TMC2130_USTEPS_XY);
  884. tmc2130_mres[Z_AXIS] = tmc2130_usteps2mres(TMC2130_USTEPS_Z);
  885. tmc2130_mres[E_AXIS] = tmc2130_usteps2mres(TMC2130_USTEPS_E);
  886. #endif //TMC2130_VARIABLE_RESOLUTION
  887. #endif //TMC2130
  888. st_init(); // Initialize stepper, this enables interrupts!
  889. setup_photpin();
  890. servo_init();
  891. // Reset the machine correction matrix.
  892. // It does not make sense to load the correction matrix until the machine is homed.
  893. world2machine_reset();
  894. #ifdef PAT9125
  895. fsensor_init();
  896. #endif //PAT9125
  897. #if defined(CONTROLLERFAN_PIN) && (CONTROLLERFAN_PIN > -1)
  898. SET_OUTPUT(CONTROLLERFAN_PIN); //Set pin used for driver cooling fan
  899. #endif
  900. #ifdef DIGIPOT_I2C
  901. digipot_i2c_init();
  902. #endif
  903. setup_homepin();
  904. if (1) {
  905. /// SERIAL_ECHOPGM("initial zsteps on power up: "); MYSERIAL.println(tmc2130_rd_MSCNT(Z_AXIS));
  906. // try to run to zero phase before powering the Z motor.
  907. // Move in negative direction
  908. WRITE(Z_DIR_PIN,INVERT_Z_DIR);
  909. // Round the current micro-micro steps to micro steps.
  910. for (uint16_t phase = (tmc2130_rd_MSCNT(Z_AXIS) + 8) >> 4; phase > 0; -- phase) {
  911. // Until the phase counter is reset to zero.
  912. WRITE(Z_STEP_PIN, !INVERT_Z_STEP_PIN);
  913. delay(2);
  914. WRITE(Z_STEP_PIN, INVERT_Z_STEP_PIN);
  915. delay(2);
  916. }
  917. // SERIAL_ECHOPGM("initial zsteps after reset: "); MYSERIAL.println(tmc2130_rd_MSCNT(Z_AXIS));
  918. }
  919. #if defined(Z_AXIS_ALWAYS_ON)
  920. enable_z();
  921. #endif
  922. farm_mode = eeprom_read_byte((uint8_t*)EEPROM_FARM_MODE);
  923. EEPROM_read_B(EEPROM_FARM_NUMBER, &farm_no);
  924. if ((farm_mode == 0xFF && farm_no == 0) || (farm_no == 0xFFFF)) farm_mode = false; //if farm_mode has not been stored to eeprom yet and farm number is set to zero or EEPROM is fresh, deactivate farm mode
  925. if (farm_no == 0xFFFF) farm_no = 0;
  926. if (farm_mode)
  927. {
  928. prusa_statistics(8);
  929. }
  930. // Enable Toshiba FlashAir SD card / WiFi enahanced card.
  931. card.ToshibaFlashAir_enable(eeprom_read_byte((unsigned char*)EEPROM_TOSHIBA_FLASH_AIR_COMPATIBLITY) == 1);
  932. if (eeprom_read_dword((uint32_t*)(EEPROM_TOP - 4)) == 0x0ffffffff &&
  933. eeprom_read_dword((uint32_t*)(EEPROM_TOP - 8)) == 0x0ffffffff) {
  934. // Maiden startup. The firmware has been loaded and first started on a virgin RAMBo board,
  935. // where all the EEPROM entries are set to 0x0ff.
  936. // Once a firmware boots up, it forces at least a language selection, which changes
  937. // EEPROM_LANG to number lower than 0x0ff.
  938. // 1) Set a high power mode.
  939. eeprom_write_byte((uint8_t*)EEPROM_SILENT, 0);
  940. tmc2130_mode = TMC2130_MODE_NORMAL;
  941. eeprom_write_byte((uint8_t*)EEPROM_WIZARD_ACTIVE, 1); //run wizard
  942. }
  943. // Force SD card update. Otherwise the SD card update is done from loop() on card.checkautostart(false),
  944. // but this times out if a blocking dialog is shown in setup().
  945. card.initsd();
  946. #ifdef DEBUG_SD_SPEED_TEST
  947. if (card.cardOK)
  948. {
  949. uint8_t* buff = (uint8_t*)block_buffer;
  950. uint32_t block = 0;
  951. uint32_t sumr = 0;
  952. uint32_t sumw = 0;
  953. for (int i = 0; i < 1024; i++)
  954. {
  955. uint32_t u = micros();
  956. bool res = card.card.readBlock(i, buff);
  957. u = micros() - u;
  958. if (res)
  959. {
  960. printf_P(PSTR("readBlock %4d 512 bytes %lu us\n"), i, u);
  961. sumr += u;
  962. u = micros();
  963. res = card.card.writeBlock(i, buff);
  964. u = micros() - u;
  965. if (res)
  966. {
  967. printf_P(PSTR("writeBlock %4d 512 bytes %lu us\n"), i, u);
  968. sumw += u;
  969. }
  970. else
  971. {
  972. printf_P(PSTR("writeBlock %4d error\n"), i);
  973. break;
  974. }
  975. }
  976. else
  977. {
  978. printf_P(PSTR("readBlock %4d error\n"), i);
  979. break;
  980. }
  981. }
  982. uint32_t avg_rspeed = (1024 * 1000000) / (sumr / 512);
  983. uint32_t avg_wspeed = (1024 * 1000000) / (sumw / 512);
  984. printf_P(PSTR("avg read speed %lu bytes/s\n"), avg_rspeed);
  985. printf_P(PSTR("avg write speed %lu bytes/s\n"), avg_wspeed);
  986. }
  987. else
  988. printf_P(PSTR("Card NG!\n"));
  989. #endif DEBUG_SD_SPEED_TEST
  990. if (eeprom_read_byte((uint8_t*)EEPROM_POWER_COUNT) == 0xff) eeprom_write_byte((uint8_t*)EEPROM_POWER_COUNT, 0);
  991. if (eeprom_read_byte((uint8_t*)EEPROM_CRASH_COUNT_X) == 0xff) eeprom_write_byte((uint8_t*)EEPROM_CRASH_COUNT_X, 0);
  992. if (eeprom_read_byte((uint8_t*)EEPROM_CRASH_COUNT_Y) == 0xff) eeprom_write_byte((uint8_t*)EEPROM_CRASH_COUNT_Y, 0);
  993. if (eeprom_read_byte((uint8_t*)EEPROM_FERROR_COUNT) == 0xff) eeprom_write_byte((uint8_t*)EEPROM_FERROR_COUNT, 0);
  994. if (eeprom_read_word((uint16_t*)EEPROM_POWER_COUNT_TOT) == 0xffff) eeprom_write_word((uint16_t*)EEPROM_POWER_COUNT_TOT, 0);
  995. if (eeprom_read_word((uint16_t*)EEPROM_CRASH_COUNT_X_TOT) == 0xffff) eeprom_write_word((uint16_t*)EEPROM_CRASH_COUNT_X_TOT, 0);
  996. if (eeprom_read_word((uint16_t*)EEPROM_CRASH_COUNT_Y_TOT) == 0xffff) eeprom_write_word((uint16_t*)EEPROM_CRASH_COUNT_Y_TOT, 0);
  997. if (eeprom_read_word((uint16_t*)EEPROM_FERROR_COUNT_TOT) == 0xffff) eeprom_write_word((uint16_t*)EEPROM_FERROR_COUNT_TOT, 0);
  998. #ifdef SNMM
  999. if (eeprom_read_dword((uint32_t*)EEPROM_BOWDEN_LENGTH) == 0x0ffffffff) { //bowden length used for SNMM
  1000. int _z = BOWDEN_LENGTH;
  1001. for(int i = 0; i<4; i++) EEPROM_save_B(EEPROM_BOWDEN_LENGTH + i * 2, &_z);
  1002. }
  1003. #endif
  1004. // In the future, somewhere here would one compare the current firmware version against the firmware version stored in the EEPROM.
  1005. // If they differ, an update procedure may need to be performed. At the end of this block, the current firmware version
  1006. // is being written into the EEPROM, so the update procedure will be triggered only once.
  1007. lang_selected = eeprom_read_byte((uint8_t*)EEPROM_LANG);
  1008. if (lang_selected >= LANG_NUM){
  1009. lcd_mylang();
  1010. }
  1011. if (eeprom_read_byte((uint8_t*)EEPROM_TEMP_CAL_ACTIVE) == 255) {
  1012. eeprom_write_byte((uint8_t*)EEPROM_TEMP_CAL_ACTIVE, 0);
  1013. temp_cal_active = false;
  1014. } else temp_cal_active = eeprom_read_byte((uint8_t*)EEPROM_TEMP_CAL_ACTIVE);
  1015. if (eeprom_read_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA) == 255) {
  1016. //eeprom_write_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 0);
  1017. eeprom_write_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 1);
  1018. eeprom_write_word(((uint16_t*)EEPROM_PROBE_TEMP_SHIFT) + 0, 8); //40C - 20um - 8usteps
  1019. eeprom_write_word(((uint16_t*)EEPROM_PROBE_TEMP_SHIFT) + 1, 24); //45C - 60um - 24usteps
  1020. eeprom_write_word(((uint16_t*)EEPROM_PROBE_TEMP_SHIFT) + 2, 48); //50C - 120um - 48usteps
  1021. eeprom_write_word(((uint16_t*)EEPROM_PROBE_TEMP_SHIFT) + 3, 80); //55C - 200um - 80usteps
  1022. eeprom_write_word(((uint16_t*)EEPROM_PROBE_TEMP_SHIFT) + 4, 120); //60C - 300um - 120usteps
  1023. eeprom_write_byte((uint8_t*)EEPROM_TEMP_CAL_ACTIVE, 1);
  1024. temp_cal_active = true;
  1025. }
  1026. if (eeprom_read_byte((uint8_t*)EEPROM_UVLO) == 255) {
  1027. eeprom_write_byte((uint8_t*)EEPROM_UVLO, 0);
  1028. }
  1029. if (eeprom_read_byte((uint8_t*)EEPROM_SD_SORT) == 255) {
  1030. eeprom_write_byte((uint8_t*)EEPROM_SD_SORT, 0);
  1031. }
  1032. check_babystep(); //checking if Z babystep is in allowed range
  1033. setup_uvlo_interrupt();
  1034. #ifndef DEBUG_DISABLE_FANCHECK
  1035. setup_fan_interrupt();
  1036. #endif //DEBUG_DISABLE_FANCHECK
  1037. #ifndef DEBUG_DISABLE_FSENSORCHECK
  1038. fsensor_setup_interrupt();
  1039. #endif //DEBUG_DISABLE_FSENSORCHECK
  1040. for (int i = 0; i<4; i++) EEPROM_read_B(EEPROM_BOWDEN_LENGTH + i * 2, &bowden_length[i]);
  1041. #ifndef DEBUG_DISABLE_STARTMSGS
  1042. KEEPALIVE_STATE(PAUSED_FOR_USER);
  1043. show_fw_version_warnings();
  1044. if (!previous_settings_retrieved) {
  1045. lcd_show_fullscreen_message_and_wait_P(MSG_DEFAULT_SETTINGS_LOADED); //if EEPROM version was changed, inform user that default setting were loaded
  1046. erase_eeprom_section(EEPROM_OFFSET, 156); //erase M500 part of eeprom
  1047. }
  1048. if (eeprom_read_byte((uint8_t*)EEPROM_WIZARD_ACTIVE) == 1) {
  1049. lcd_wizard(0);
  1050. }
  1051. if (eeprom_read_byte((uint8_t*)EEPROM_WIZARD_ACTIVE) == 0) { //dont show calibration status messages if wizard is currently active
  1052. if (calibration_status() == CALIBRATION_STATUS_ASSEMBLED ||
  1053. calibration_status() == CALIBRATION_STATUS_UNKNOWN) {
  1054. // Reset the babystepping values, so the printer will not move the Z axis up when the babystepping is enabled.
  1055. eeprom_update_word((uint16_t*)EEPROM_BABYSTEP_Z, 0);
  1056. // Show the message.
  1057. lcd_show_fullscreen_message_and_wait_P(MSG_FOLLOW_CALIBRATION_FLOW);
  1058. }
  1059. else if (calibration_status() == CALIBRATION_STATUS_LIVE_ADJUST) {
  1060. // Show the message.
  1061. lcd_show_fullscreen_message_and_wait_P(MSG_BABYSTEP_Z_NOT_SET);
  1062. lcd_update_enable(true);
  1063. }
  1064. else if (calibration_status() == CALIBRATION_STATUS_CALIBRATED && temp_cal_active == true && calibration_status_pinda() == false) {
  1065. //lcd_show_fullscreen_message_and_wait_P(MSG_PINDA_NOT_CALIBRATED);
  1066. lcd_update_enable(true);
  1067. }
  1068. else if (calibration_status() == CALIBRATION_STATUS_Z_CALIBRATION) {
  1069. // Show the message.
  1070. lcd_show_fullscreen_message_and_wait_P(MSG_FOLLOW_CALIBRATION_FLOW);
  1071. }
  1072. }
  1073. if (force_selftest_if_fw_version() && calibration_status() < CALIBRATION_STATUS_ASSEMBLED ) {
  1074. lcd_show_fullscreen_message_and_wait_P(MSG_FORCE_SELFTEST);
  1075. update_current_firmware_version_to_eeprom();
  1076. lcd_selftest();
  1077. }
  1078. KEEPALIVE_STATE(IN_PROCESS);
  1079. #endif //DEBUG_DISABLE_STARTMSGS
  1080. lcd_update_enable(true);
  1081. lcd_implementation_clear();
  1082. lcd_update(2);
  1083. // Store the currently running firmware into an eeprom,
  1084. // so the next time the firmware gets updated, it will know from which version it has been updated.
  1085. update_current_firmware_version_to_eeprom();
  1086. tmc2130_home_origin[X_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_HOME_X_ORIGIN);
  1087. tmc2130_home_bsteps[X_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_HOME_X_BSTEPS);
  1088. tmc2130_home_fsteps[X_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_HOME_X_FSTEPS);
  1089. if (tmc2130_home_origin[X_AXIS] == 0xff) tmc2130_home_origin[X_AXIS] = 0;
  1090. if (tmc2130_home_bsteps[X_AXIS] == 0xff) tmc2130_home_bsteps[X_AXIS] = 48;
  1091. if (tmc2130_home_fsteps[X_AXIS] == 0xff) tmc2130_home_fsteps[X_AXIS] = 48;
  1092. tmc2130_home_origin[Y_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_HOME_Y_ORIGIN);
  1093. tmc2130_home_bsteps[Y_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_HOME_Y_BSTEPS);
  1094. tmc2130_home_fsteps[Y_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_HOME_Y_FSTEPS);
  1095. if (tmc2130_home_origin[Y_AXIS] == 0xff) tmc2130_home_origin[Y_AXIS] = 0;
  1096. if (tmc2130_home_bsteps[Y_AXIS] == 0xff) tmc2130_home_bsteps[Y_AXIS] = 48;
  1097. if (tmc2130_home_fsteps[Y_AXIS] == 0xff) tmc2130_home_fsteps[Y_AXIS] = 48;
  1098. tmc2130_home_enabled = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_HOME_ENABLED);
  1099. if (tmc2130_home_enabled == 0xff) tmc2130_home_enabled = 0;
  1100. if (eeprom_read_byte((uint8_t*)EEPROM_UVLO) == 1) { //previous print was terminated by UVLO
  1101. /*
  1102. if (lcd_show_fullscreen_message_yes_no_and_wait_P(MSG_RECOVER_PRINT, false)) recover_print();
  1103. else {
  1104. eeprom_update_byte((uint8_t*)EEPROM_UVLO, 0);
  1105. lcd_update_enable(true);
  1106. lcd_update(2);
  1107. lcd_setstatuspgm(WELCOME_MSG);
  1108. }
  1109. */
  1110. manage_heater(); // Update temperatures
  1111. #ifdef DEBUG_UVLO_AUTOMATIC_RECOVER
  1112. MYSERIAL.println("Power panic detected!");
  1113. MYSERIAL.print("Current bed temp:");
  1114. MYSERIAL.println(degBed());
  1115. MYSERIAL.print("Saved bed temp:");
  1116. MYSERIAL.println((float)eeprom_read_byte((uint8_t*)EEPROM_UVLO_TARGET_BED));
  1117. #endif
  1118. if ( degBed() > ( (float)eeprom_read_byte((uint8_t*)EEPROM_UVLO_TARGET_BED) - AUTOMATIC_UVLO_BED_TEMP_OFFSET) ){
  1119. #ifdef DEBUG_UVLO_AUTOMATIC_RECOVER
  1120. MYSERIAL.println("Automatic recovery!");
  1121. #endif
  1122. recover_print(1);
  1123. }
  1124. else{
  1125. #ifdef DEBUG_UVLO_AUTOMATIC_RECOVER
  1126. MYSERIAL.println("Normal recovery!");
  1127. #endif
  1128. if ( lcd_show_fullscreen_message_yes_no_and_wait_P(MSG_RECOVER_PRINT, false) ) recover_print(0);
  1129. else {
  1130. eeprom_update_byte((uint8_t*)EEPROM_UVLO, 0);
  1131. lcd_update_enable(true);
  1132. lcd_update(2);
  1133. lcd_setstatuspgm(WELCOME_MSG);
  1134. }
  1135. }
  1136. }
  1137. KEEPALIVE_STATE(NOT_BUSY);
  1138. wdt_enable(WDTO_4S);
  1139. }
  1140. #ifdef PAT9125
  1141. void fsensor_init() {
  1142. int pat9125 = pat9125_init();
  1143. printf_P(PSTR("PAT9125_init:%d\n"), pat9125);
  1144. uint8_t fsensor = eeprom_read_byte((uint8_t*)EEPROM_FSENSOR);
  1145. if (!pat9125)
  1146. {
  1147. fsensor = 0; //disable sensor
  1148. fsensor_not_responding = true;
  1149. }
  1150. else {
  1151. fsensor_not_responding = false;
  1152. }
  1153. puts_P(PSTR("FSensor "));
  1154. if (fsensor)
  1155. {
  1156. puts_P(PSTR("ENABLED\n"));
  1157. fsensor_enable();
  1158. }
  1159. else
  1160. {
  1161. puts_P(PSTR("DISABLED\n"));
  1162. fsensor_disable();
  1163. }
  1164. #ifdef DEBUG_DISABLE_FSENSORCHECK
  1165. filament_autoload_enabled = false;
  1166. fsensor_disable();
  1167. #endif //DEBUG_DISABLE_FSENSORCHECK
  1168. }
  1169. #endif //PAT9125
  1170. void trace();
  1171. #define CHUNK_SIZE 64 // bytes
  1172. #define SAFETY_MARGIN 1
  1173. char chunk[CHUNK_SIZE+SAFETY_MARGIN];
  1174. int chunkHead = 0;
  1175. int serial_read_stream() {
  1176. setTargetHotend(0, 0);
  1177. setTargetBed(0);
  1178. lcd_implementation_clear();
  1179. lcd_printPGM(PSTR(" Upload in progress"));
  1180. // first wait for how many bytes we will receive
  1181. uint32_t bytesToReceive;
  1182. // receive the four bytes
  1183. char bytesToReceiveBuffer[4];
  1184. for (int i=0; i<4; i++) {
  1185. int data;
  1186. while ((data = MYSERIAL.read()) == -1) {};
  1187. bytesToReceiveBuffer[i] = data;
  1188. }
  1189. // make it a uint32
  1190. memcpy(&bytesToReceive, &bytesToReceiveBuffer, 4);
  1191. // we're ready, notify the sender
  1192. MYSERIAL.write('+');
  1193. // lock in the routine
  1194. uint32_t receivedBytes = 0;
  1195. while (prusa_sd_card_upload) {
  1196. int i;
  1197. for (i=0; i<CHUNK_SIZE; i++) {
  1198. int data;
  1199. // check if we're not done
  1200. if (receivedBytes == bytesToReceive) {
  1201. break;
  1202. }
  1203. // read the next byte
  1204. while ((data = MYSERIAL.read()) == -1) {};
  1205. receivedBytes++;
  1206. // save it to the chunk
  1207. chunk[i] = data;
  1208. }
  1209. // write the chunk to SD
  1210. card.write_command_no_newline(&chunk[0]);
  1211. // notify the sender we're ready for more data
  1212. MYSERIAL.write('+');
  1213. // for safety
  1214. manage_heater();
  1215. // check if we're done
  1216. if(receivedBytes == bytesToReceive) {
  1217. trace(); // beep
  1218. card.closefile();
  1219. prusa_sd_card_upload = false;
  1220. SERIAL_PROTOCOLLNRPGM(MSG_FILE_SAVED);
  1221. return 0;
  1222. }
  1223. }
  1224. }
  1225. #ifdef HOST_KEEPALIVE_FEATURE
  1226. /**
  1227. * Output a "busy" message at regular intervals
  1228. * while the machine is not accepting commands.
  1229. */
  1230. void host_keepalive() {
  1231. if (farm_mode) return;
  1232. long ms = millis();
  1233. if (host_keepalive_interval && busy_state != NOT_BUSY) {
  1234. if ((ms - prev_busy_signal_ms) < (long)(1000L * host_keepalive_interval)) return;
  1235. switch (busy_state) {
  1236. case IN_HANDLER:
  1237. case IN_PROCESS:
  1238. SERIAL_ECHO_START;
  1239. SERIAL_ECHOLNPGM("busy: processing");
  1240. break;
  1241. case PAUSED_FOR_USER:
  1242. SERIAL_ECHO_START;
  1243. SERIAL_ECHOLNPGM("busy: paused for user");
  1244. break;
  1245. case PAUSED_FOR_INPUT:
  1246. SERIAL_ECHO_START;
  1247. SERIAL_ECHOLNPGM("busy: paused for input");
  1248. break;
  1249. default:
  1250. break;
  1251. }
  1252. }
  1253. prev_busy_signal_ms = ms;
  1254. }
  1255. #endif
  1256. // The loop() function is called in an endless loop by the Arduino framework from the default main() routine.
  1257. // Before loop(), the setup() function is called by the main() routine.
  1258. void loop()
  1259. {
  1260. KEEPALIVE_STATE(NOT_BUSY);
  1261. bool stack_integrity = true;
  1262. if ((usb_printing_counter > 0) && ((millis()-_usb_timer) > 1000))
  1263. {
  1264. is_usb_printing = true;
  1265. usb_printing_counter--;
  1266. _usb_timer = millis();
  1267. }
  1268. if (usb_printing_counter == 0)
  1269. {
  1270. is_usb_printing = false;
  1271. }
  1272. if (prusa_sd_card_upload)
  1273. {
  1274. //we read byte-by byte
  1275. serial_read_stream();
  1276. } else
  1277. {
  1278. get_command();
  1279. #ifdef SDSUPPORT
  1280. card.checkautostart(false);
  1281. #endif
  1282. if(buflen)
  1283. {
  1284. cmdbuffer_front_already_processed = false;
  1285. #ifdef SDSUPPORT
  1286. if(card.saving)
  1287. {
  1288. // Saving a G-code file onto an SD-card is in progress.
  1289. // Saving starts with M28, saving until M29 is seen.
  1290. if(strstr_P(CMDBUFFER_CURRENT_STRING, PSTR("M29")) == NULL) {
  1291. card.write_command(CMDBUFFER_CURRENT_STRING);
  1292. if(card.logging)
  1293. process_commands();
  1294. else
  1295. SERIAL_PROTOCOLLNRPGM(MSG_OK);
  1296. } else {
  1297. card.closefile();
  1298. SERIAL_PROTOCOLLNRPGM(MSG_FILE_SAVED);
  1299. }
  1300. } else {
  1301. process_commands();
  1302. }
  1303. #else
  1304. process_commands();
  1305. #endif //SDSUPPORT
  1306. if (! cmdbuffer_front_already_processed && buflen)
  1307. {
  1308. // ptr points to the start of the block currently being processed.
  1309. // The first character in the block is the block type.
  1310. char *ptr = cmdbuffer + bufindr;
  1311. if (*ptr == CMDBUFFER_CURRENT_TYPE_SDCARD) {
  1312. // To support power panic, move the lenght of the command on the SD card to a planner buffer.
  1313. union {
  1314. struct {
  1315. char lo;
  1316. char hi;
  1317. } lohi;
  1318. uint16_t value;
  1319. } sdlen;
  1320. sdlen.value = 0;
  1321. {
  1322. // This block locks the interrupts globally for 3.25 us,
  1323. // which corresponds to a maximum repeat frequency of 307.69 kHz.
  1324. // This blocking is safe in the context of a 10kHz stepper driver interrupt
  1325. // or a 115200 Bd serial line receive interrupt, which will not trigger faster than 12kHz.
  1326. cli();
  1327. // Reset the command to something, which will be ignored by the power panic routine,
  1328. // so this buffer length will not be counted twice.
  1329. *ptr ++ = CMDBUFFER_CURRENT_TYPE_TO_BE_REMOVED;
  1330. // Extract the current buffer length.
  1331. sdlen.lohi.lo = *ptr ++;
  1332. sdlen.lohi.hi = *ptr;
  1333. // and pass it to the planner queue.
  1334. planner_add_sd_length(sdlen.value);
  1335. sei();
  1336. }
  1337. }
  1338. // Now it is safe to release the already processed command block. If interrupted by the power panic now,
  1339. // this block's SD card length will not be counted twice as its command type has been replaced
  1340. // by CMDBUFFER_CURRENT_TYPE_TO_BE_REMOVED.
  1341. cmdqueue_pop_front();
  1342. }
  1343. host_keepalive();
  1344. }
  1345. }
  1346. //check heater every n milliseconds
  1347. manage_heater();
  1348. isPrintPaused ? manage_inactivity(true) : manage_inactivity(false);
  1349. checkHitEndstops();
  1350. lcd_update();
  1351. #ifdef PAT9125
  1352. fsensor_update();
  1353. #endif //PAT9125
  1354. #ifdef TMC2130
  1355. tmc2130_check_overtemp();
  1356. if (tmc2130_sg_crash)
  1357. {
  1358. uint8_t crash = tmc2130_sg_crash;
  1359. tmc2130_sg_crash = 0;
  1360. // crashdet_stop_and_save_print();
  1361. switch (crash)
  1362. {
  1363. case 1: enquecommand_P((PSTR("CRASH_DETECTEDX"))); break;
  1364. case 2: enquecommand_P((PSTR("CRASH_DETECTEDY"))); break;
  1365. case 3: enquecommand_P((PSTR("CRASH_DETECTEDXY"))); break;
  1366. }
  1367. }
  1368. #endif //TMC2130
  1369. }
  1370. #define DEFINE_PGM_READ_ANY(type, reader) \
  1371. static inline type pgm_read_any(const type *p) \
  1372. { return pgm_read_##reader##_near(p); }
  1373. DEFINE_PGM_READ_ANY(float, float);
  1374. DEFINE_PGM_READ_ANY(signed char, byte);
  1375. #define XYZ_CONSTS_FROM_CONFIG(type, array, CONFIG) \
  1376. static const PROGMEM type array##_P[3] = \
  1377. { X_##CONFIG, Y_##CONFIG, Z_##CONFIG }; \
  1378. static inline type array(int axis) \
  1379. { return pgm_read_any(&array##_P[axis]); } \
  1380. type array##_ext(int axis) \
  1381. { return pgm_read_any(&array##_P[axis]); }
  1382. XYZ_CONSTS_FROM_CONFIG(float, base_min_pos, MIN_POS);
  1383. XYZ_CONSTS_FROM_CONFIG(float, base_max_pos, MAX_POS);
  1384. XYZ_CONSTS_FROM_CONFIG(float, base_home_pos, HOME_POS);
  1385. XYZ_CONSTS_FROM_CONFIG(float, max_length, MAX_LENGTH);
  1386. XYZ_CONSTS_FROM_CONFIG(float, home_retract_mm, HOME_RETRACT_MM);
  1387. XYZ_CONSTS_FROM_CONFIG(signed char, home_dir, HOME_DIR);
  1388. static void axis_is_at_home(int axis) {
  1389. current_position[axis] = base_home_pos(axis) + add_homing[axis];
  1390. min_pos[axis] = base_min_pos(axis) + add_homing[axis];
  1391. max_pos[axis] = base_max_pos(axis) + add_homing[axis];
  1392. }
  1393. inline void set_current_to_destination() { memcpy(current_position, destination, sizeof(current_position)); }
  1394. inline void set_destination_to_current() { memcpy(destination, current_position, sizeof(destination)); }
  1395. static void setup_for_endstop_move(bool enable_endstops_now = true) {
  1396. saved_feedrate = feedrate;
  1397. saved_feedmultiply = feedmultiply;
  1398. feedmultiply = 100;
  1399. previous_millis_cmd = millis();
  1400. enable_endstops(enable_endstops_now);
  1401. }
  1402. static void clean_up_after_endstop_move() {
  1403. #ifdef ENDSTOPS_ONLY_FOR_HOMING
  1404. enable_endstops(false);
  1405. #endif
  1406. feedrate = saved_feedrate;
  1407. feedmultiply = saved_feedmultiply;
  1408. previous_millis_cmd = millis();
  1409. }
  1410. #ifdef ENABLE_AUTO_BED_LEVELING
  1411. #ifdef AUTO_BED_LEVELING_GRID
  1412. static void set_bed_level_equation_lsq(double *plane_equation_coefficients)
  1413. {
  1414. vector_3 planeNormal = vector_3(-plane_equation_coefficients[0], -plane_equation_coefficients[1], 1);
  1415. planeNormal.debug("planeNormal");
  1416. plan_bed_level_matrix = matrix_3x3::create_look_at(planeNormal);
  1417. //bedLevel.debug("bedLevel");
  1418. //plan_bed_level_matrix.debug("bed level before");
  1419. //vector_3 uncorrected_position = plan_get_position_mm();
  1420. //uncorrected_position.debug("position before");
  1421. vector_3 corrected_position = plan_get_position();
  1422. // corrected_position.debug("position after");
  1423. current_position[X_AXIS] = corrected_position.x;
  1424. current_position[Y_AXIS] = corrected_position.y;
  1425. current_position[Z_AXIS] = corrected_position.z;
  1426. // put the bed at 0 so we don't go below it.
  1427. current_position[Z_AXIS] = zprobe_zoffset; // in the lsq we reach here after raising the extruder due to the loop structure
  1428. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1429. }
  1430. #else // not AUTO_BED_LEVELING_GRID
  1431. static void set_bed_level_equation_3pts(float z_at_pt_1, float z_at_pt_2, float z_at_pt_3) {
  1432. plan_bed_level_matrix.set_to_identity();
  1433. vector_3 pt1 = vector_3(ABL_PROBE_PT_1_X, ABL_PROBE_PT_1_Y, z_at_pt_1);
  1434. vector_3 pt2 = vector_3(ABL_PROBE_PT_2_X, ABL_PROBE_PT_2_Y, z_at_pt_2);
  1435. vector_3 pt3 = vector_3(ABL_PROBE_PT_3_X, ABL_PROBE_PT_3_Y, z_at_pt_3);
  1436. vector_3 from_2_to_1 = (pt1 - pt2).get_normal();
  1437. vector_3 from_2_to_3 = (pt3 - pt2).get_normal();
  1438. vector_3 planeNormal = vector_3::cross(from_2_to_1, from_2_to_3).get_normal();
  1439. planeNormal = vector_3(planeNormal.x, planeNormal.y, abs(planeNormal.z));
  1440. plan_bed_level_matrix = matrix_3x3::create_look_at(planeNormal);
  1441. vector_3 corrected_position = plan_get_position();
  1442. current_position[X_AXIS] = corrected_position.x;
  1443. current_position[Y_AXIS] = corrected_position.y;
  1444. current_position[Z_AXIS] = corrected_position.z;
  1445. // put the bed at 0 so we don't go below it.
  1446. current_position[Z_AXIS] = zprobe_zoffset;
  1447. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1448. }
  1449. #endif // AUTO_BED_LEVELING_GRID
  1450. static void run_z_probe() {
  1451. plan_bed_level_matrix.set_to_identity();
  1452. feedrate = homing_feedrate[Z_AXIS];
  1453. // move down until you find the bed
  1454. float zPosition = -10;
  1455. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder);
  1456. st_synchronize();
  1457. // we have to let the planner know where we are right now as it is not where we said to go.
  1458. zPosition = st_get_position_mm(Z_AXIS);
  1459. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS]);
  1460. // move up the retract distance
  1461. zPosition += home_retract_mm(Z_AXIS);
  1462. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder);
  1463. st_synchronize();
  1464. // move back down slowly to find bed
  1465. feedrate = homing_feedrate[Z_AXIS]/4;
  1466. zPosition -= home_retract_mm(Z_AXIS) * 2;
  1467. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder);
  1468. st_synchronize();
  1469. current_position[Z_AXIS] = st_get_position_mm(Z_AXIS);
  1470. // make sure the planner knows where we are as it may be a bit different than we last said to move to
  1471. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1472. }
  1473. static void do_blocking_move_to(float x, float y, float z) {
  1474. float oldFeedRate = feedrate;
  1475. feedrate = homing_feedrate[Z_AXIS];
  1476. current_position[Z_AXIS] = z;
  1477. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], feedrate/60, active_extruder);
  1478. st_synchronize();
  1479. feedrate = XY_TRAVEL_SPEED;
  1480. current_position[X_AXIS] = x;
  1481. current_position[Y_AXIS] = y;
  1482. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], feedrate/60, active_extruder);
  1483. st_synchronize();
  1484. feedrate = oldFeedRate;
  1485. }
  1486. static void do_blocking_move_relative(float offset_x, float offset_y, float offset_z) {
  1487. do_blocking_move_to(current_position[X_AXIS] + offset_x, current_position[Y_AXIS] + offset_y, current_position[Z_AXIS] + offset_z);
  1488. }
  1489. /// Probe bed height at position (x,y), returns the measured z value
  1490. static float probe_pt(float x, float y, float z_before) {
  1491. // move to right place
  1492. do_blocking_move_to(current_position[X_AXIS], current_position[Y_AXIS], z_before);
  1493. do_blocking_move_to(x - X_PROBE_OFFSET_FROM_EXTRUDER, y - Y_PROBE_OFFSET_FROM_EXTRUDER, current_position[Z_AXIS]);
  1494. run_z_probe();
  1495. float measured_z = current_position[Z_AXIS];
  1496. SERIAL_PROTOCOLRPGM(MSG_BED);
  1497. SERIAL_PROTOCOLPGM(" x: ");
  1498. SERIAL_PROTOCOL(x);
  1499. SERIAL_PROTOCOLPGM(" y: ");
  1500. SERIAL_PROTOCOL(y);
  1501. SERIAL_PROTOCOLPGM(" z: ");
  1502. SERIAL_PROTOCOL(measured_z);
  1503. SERIAL_PROTOCOLPGM("\n");
  1504. return measured_z;
  1505. }
  1506. #endif // #ifdef ENABLE_AUTO_BED_LEVELING
  1507. #ifdef LIN_ADVANCE
  1508. /**
  1509. * M900: Set and/or Get advance K factor and WH/D ratio
  1510. *
  1511. * K<factor> Set advance K factor
  1512. * R<ratio> Set ratio directly (overrides WH/D)
  1513. * W<width> H<height> D<diam> Set ratio from WH/D
  1514. */
  1515. inline void gcode_M900() {
  1516. st_synchronize();
  1517. const float newK = code_seen('K') ? code_value_float() : -1;
  1518. if (newK >= 0) extruder_advance_k = newK;
  1519. float newR = code_seen('R') ? code_value_float() : -1;
  1520. if (newR < 0) {
  1521. const float newD = code_seen('D') ? code_value_float() : -1,
  1522. newW = code_seen('W') ? code_value_float() : -1,
  1523. newH = code_seen('H') ? code_value_float() : -1;
  1524. if (newD >= 0 && newW >= 0 && newH >= 0)
  1525. newR = newD ? (newW * newH) / (sq(newD * 0.5) * M_PI) : 0;
  1526. }
  1527. if (newR >= 0) advance_ed_ratio = newR;
  1528. SERIAL_ECHO_START;
  1529. SERIAL_ECHOPGM("Advance K=");
  1530. SERIAL_ECHOLN(extruder_advance_k);
  1531. SERIAL_ECHOPGM(" E/D=");
  1532. const float ratio = advance_ed_ratio;
  1533. if (ratio) SERIAL_ECHOLN(ratio); else SERIAL_ECHOLNPGM("Auto");
  1534. }
  1535. #endif // LIN_ADVANCE
  1536. bool check_commands() {
  1537. bool end_command_found = false;
  1538. while (buflen)
  1539. {
  1540. if ((code_seen("M84")) || (code_seen("M 84"))) end_command_found = true;
  1541. if (!cmdbuffer_front_already_processed)
  1542. cmdqueue_pop_front();
  1543. cmdbuffer_front_already_processed = false;
  1544. }
  1545. return end_command_found;
  1546. }
  1547. #ifdef TMC2130
  1548. bool calibrate_z_auto()
  1549. {
  1550. //lcd_display_message_fullscreen_P(MSG_CALIBRATE_Z_AUTO);
  1551. lcd_implementation_clear();
  1552. lcd_print_at_PGM(0,1, MSG_CALIBRATE_Z_AUTO);
  1553. bool endstops_enabled = enable_endstops(true);
  1554. int axis_up_dir = -home_dir(Z_AXIS);
  1555. tmc2130_home_enter(Z_AXIS_MASK);
  1556. current_position[Z_AXIS] = 0;
  1557. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1558. set_destination_to_current();
  1559. destination[Z_AXIS] += (1.1 * max_length(Z_AXIS) * axis_up_dir);
  1560. feedrate = homing_feedrate[Z_AXIS];
  1561. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1562. st_synchronize();
  1563. // current_position[axis] = 0;
  1564. // plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1565. tmc2130_home_exit();
  1566. enable_endstops(false);
  1567. current_position[Z_AXIS] = 0;
  1568. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1569. set_destination_to_current();
  1570. destination[Z_AXIS] += 10 * axis_up_dir; //10mm up
  1571. feedrate = homing_feedrate[Z_AXIS] / 2;
  1572. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1573. st_synchronize();
  1574. enable_endstops(endstops_enabled);
  1575. current_position[Z_AXIS] = Z_MAX_POS+2.0;
  1576. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1577. return true;
  1578. }
  1579. #endif //TMC2130
  1580. void homeaxis(int axis, uint8_t cnt, uint8_t* pstep)
  1581. {
  1582. bool endstops_enabled = enable_endstops(true); //RP: endstops should be allways enabled durring homing
  1583. #define HOMEAXIS_DO(LETTER) \
  1584. ((LETTER##_MIN_PIN > -1 && LETTER##_HOME_DIR==-1) || (LETTER##_MAX_PIN > -1 && LETTER##_HOME_DIR==1))
  1585. if ((axis==X_AXIS)?HOMEAXIS_DO(X):(axis==Y_AXIS)?HOMEAXIS_DO(Y):0)
  1586. {
  1587. int axis_home_dir = home_dir(axis);
  1588. feedrate = homing_feedrate[axis];
  1589. #ifdef TMC2130
  1590. tmc2130_home_enter(X_AXIS_MASK << axis);
  1591. #endif //TMC2130
  1592. // Move right a bit, so that the print head does not touch the left end position,
  1593. // and the following left movement has a chance to achieve the required velocity
  1594. // for the stall guard to work.
  1595. current_position[axis] = 0;
  1596. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1597. set_destination_to_current();
  1598. // destination[axis] = 11.f;
  1599. destination[axis] = 3.f;
  1600. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1601. st_synchronize();
  1602. // Move left away from the possible collision with the collision detection disabled.
  1603. endstops_hit_on_purpose();
  1604. enable_endstops(false);
  1605. current_position[axis] = 0;
  1606. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1607. destination[axis] = - 1.;
  1608. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1609. st_synchronize();
  1610. // Now continue to move up to the left end stop with the collision detection enabled.
  1611. enable_endstops(true);
  1612. destination[axis] = - 1.1 * max_length(axis);
  1613. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1614. st_synchronize();
  1615. for (uint8_t i = 0; i < cnt; i++)
  1616. {
  1617. // Move right from the collision to a known distance from the left end stop with the collision detection disabled.
  1618. endstops_hit_on_purpose();
  1619. enable_endstops(false);
  1620. current_position[axis] = 0;
  1621. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1622. destination[axis] = 10.f;
  1623. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1624. st_synchronize();
  1625. endstops_hit_on_purpose();
  1626. // Now move left up to the collision, this time with a repeatable velocity.
  1627. enable_endstops(true);
  1628. destination[axis] = - 11.f;
  1629. #ifdef TMC2130
  1630. feedrate = homing_feedrate[axis];
  1631. #else //TMC2130
  1632. feedrate = homing_feedrate[axis] / 2;
  1633. #endif //TMC2130
  1634. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1635. st_synchronize();
  1636. #ifdef TMC2130
  1637. uint16_t mscnt = tmc2130_rd_MSCNT(axis);
  1638. if (pstep) pstep[i] = mscnt >> 4;
  1639. printf_P(PSTR("%3d step=%2d mscnt=%4d\n"), i, mscnt >> 4, mscnt);
  1640. #endif //TMC2130
  1641. }
  1642. endstops_hit_on_purpose();
  1643. enable_endstops(false);
  1644. #ifdef TMC2130
  1645. uint8_t orig = tmc2130_home_origin[axis];
  1646. uint8_t back = tmc2130_home_bsteps[axis];
  1647. if (tmc2130_home_enabled && (orig <= 63))
  1648. {
  1649. tmc2130_goto_step(axis, orig, 2, 1000, tmc2130_get_res(axis));
  1650. if (back > 0)
  1651. tmc2130_do_steps(axis, back, 1, 1000);
  1652. }
  1653. else
  1654. tmc2130_do_steps(axis, 8, 2, 1000);
  1655. tmc2130_home_exit();
  1656. #endif //TMC2130
  1657. axis_is_at_home(axis);
  1658. axis_known_position[axis] = true;
  1659. // Move from minimum
  1660. #ifdef TMC2130
  1661. float dist = 0.01f * tmc2130_home_fsteps[axis];
  1662. #else //TMC2130
  1663. float dist = 0.01f * 64;
  1664. #endif //TMC2130
  1665. current_position[axis] -= dist;
  1666. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1667. current_position[axis] += dist;
  1668. destination[axis] = current_position[axis];
  1669. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], 0.5f*feedrate/60, active_extruder);
  1670. st_synchronize();
  1671. feedrate = 0.0;
  1672. }
  1673. else if ((axis==Z_AXIS)?HOMEAXIS_DO(Z):0)
  1674. {
  1675. int axis_home_dir = home_dir(axis);
  1676. current_position[axis] = 0;
  1677. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1678. destination[axis] = 1.5 * max_length(axis) * axis_home_dir;
  1679. feedrate = homing_feedrate[axis];
  1680. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1681. st_synchronize();
  1682. current_position[axis] = 0;
  1683. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1684. destination[axis] = -home_retract_mm(axis) * axis_home_dir;
  1685. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1686. st_synchronize();
  1687. destination[axis] = 2*home_retract_mm(axis) * axis_home_dir;
  1688. feedrate = homing_feedrate[axis]/2 ;
  1689. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1690. st_synchronize();
  1691. axis_is_at_home(axis);
  1692. destination[axis] = current_position[axis];
  1693. feedrate = 0.0;
  1694. endstops_hit_on_purpose();
  1695. axis_known_position[axis] = true;
  1696. }
  1697. enable_endstops(endstops_enabled);
  1698. }
  1699. /**/
  1700. void home_xy()
  1701. {
  1702. set_destination_to_current();
  1703. homeaxis(X_AXIS);
  1704. homeaxis(Y_AXIS);
  1705. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1706. endstops_hit_on_purpose();
  1707. }
  1708. void refresh_cmd_timeout(void)
  1709. {
  1710. previous_millis_cmd = millis();
  1711. }
  1712. #ifdef FWRETRACT
  1713. void retract(bool retracting, bool swapretract = false) {
  1714. if(retracting && !retracted[active_extruder]) {
  1715. destination[X_AXIS]=current_position[X_AXIS];
  1716. destination[Y_AXIS]=current_position[Y_AXIS];
  1717. destination[Z_AXIS]=current_position[Z_AXIS];
  1718. destination[E_AXIS]=current_position[E_AXIS];
  1719. current_position[E_AXIS]+=(swapretract?retract_length_swap:retract_length)*float(extrudemultiply)*0.01f;
  1720. plan_set_e_position(current_position[E_AXIS]);
  1721. float oldFeedrate = feedrate;
  1722. feedrate=retract_feedrate*60;
  1723. retracted[active_extruder]=true;
  1724. prepare_move();
  1725. current_position[Z_AXIS]-=retract_zlift;
  1726. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1727. prepare_move();
  1728. feedrate = oldFeedrate;
  1729. } else if(!retracting && retracted[active_extruder]) {
  1730. destination[X_AXIS]=current_position[X_AXIS];
  1731. destination[Y_AXIS]=current_position[Y_AXIS];
  1732. destination[Z_AXIS]=current_position[Z_AXIS];
  1733. destination[E_AXIS]=current_position[E_AXIS];
  1734. current_position[Z_AXIS]+=retract_zlift;
  1735. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1736. current_position[E_AXIS]-=(swapretract?(retract_length_swap+retract_recover_length_swap):(retract_length+retract_recover_length))*float(extrudemultiply)*0.01f;
  1737. plan_set_e_position(current_position[E_AXIS]);
  1738. float oldFeedrate = feedrate;
  1739. feedrate=retract_recover_feedrate*60;
  1740. retracted[active_extruder]=false;
  1741. prepare_move();
  1742. feedrate = oldFeedrate;
  1743. }
  1744. } //retract
  1745. #endif //FWRETRACT
  1746. void trace() {
  1747. tone(BEEPER, 440);
  1748. delay(25);
  1749. noTone(BEEPER);
  1750. delay(20);
  1751. }
  1752. /*
  1753. void ramming() {
  1754. // float tmp[4] = DEFAULT_MAX_FEEDRATE;
  1755. if (current_temperature[0] < 230) {
  1756. //PLA
  1757. max_feedrate[E_AXIS] = 50;
  1758. //current_position[E_AXIS] -= 8;
  1759. //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2100 / 60, active_extruder);
  1760. //current_position[E_AXIS] += 8;
  1761. //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2100 / 60, active_extruder);
  1762. current_position[E_AXIS] += 5.4;
  1763. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2800 / 60, active_extruder);
  1764. current_position[E_AXIS] += 3.2;
  1765. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  1766. current_position[E_AXIS] += 3;
  1767. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3400 / 60, active_extruder);
  1768. st_synchronize();
  1769. max_feedrate[E_AXIS] = 80;
  1770. current_position[E_AXIS] -= 82;
  1771. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 9500 / 60, active_extruder);
  1772. max_feedrate[E_AXIS] = 50;//tmp[E_AXIS];
  1773. current_position[E_AXIS] -= 20;
  1774. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 1200 / 60, active_extruder);
  1775. current_position[E_AXIS] += 5;
  1776. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400 / 60, active_extruder);
  1777. current_position[E_AXIS] += 5;
  1778. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  1779. current_position[E_AXIS] -= 10;
  1780. st_synchronize();
  1781. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  1782. current_position[E_AXIS] += 10;
  1783. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  1784. current_position[E_AXIS] -= 10;
  1785. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 800 / 60, active_extruder);
  1786. current_position[E_AXIS] += 10;
  1787. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 800 / 60, active_extruder);
  1788. current_position[E_AXIS] -= 10;
  1789. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 800 / 60, active_extruder);
  1790. st_synchronize();
  1791. }
  1792. else {
  1793. //ABS
  1794. max_feedrate[E_AXIS] = 50;
  1795. //current_position[E_AXIS] -= 8;
  1796. //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2100 / 60, active_extruder);
  1797. //current_position[E_AXIS] += 8;
  1798. //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2100 / 60, active_extruder);
  1799. current_position[E_AXIS] += 3.1;
  1800. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2000 / 60, active_extruder);
  1801. current_position[E_AXIS] += 3.1;
  1802. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2500 / 60, active_extruder);
  1803. current_position[E_AXIS] += 4;
  1804. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  1805. st_synchronize();
  1806. //current_position[X_AXIS] += 23; //delay
  1807. //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600/60, active_extruder); //delay
  1808. //current_position[X_AXIS] -= 23; //delay
  1809. //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600/60, active_extruder); //delay
  1810. delay(4700);
  1811. max_feedrate[E_AXIS] = 80;
  1812. current_position[E_AXIS] -= 92;
  1813. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 9900 / 60, active_extruder);
  1814. max_feedrate[E_AXIS] = 50;//tmp[E_AXIS];
  1815. current_position[E_AXIS] -= 5;
  1816. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 800 / 60, active_extruder);
  1817. current_position[E_AXIS] += 5;
  1818. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400 / 60, active_extruder);
  1819. current_position[E_AXIS] -= 5;
  1820. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  1821. st_synchronize();
  1822. current_position[E_AXIS] += 5;
  1823. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  1824. current_position[E_AXIS] -= 5;
  1825. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  1826. current_position[E_AXIS] += 5;
  1827. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  1828. current_position[E_AXIS] -= 5;
  1829. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  1830. st_synchronize();
  1831. }
  1832. }
  1833. */
  1834. #ifdef TMC2130
  1835. void force_high_power_mode(bool start_high_power_section) {
  1836. uint8_t silent;
  1837. silent = eeprom_read_byte((uint8_t*)EEPROM_SILENT);
  1838. if (silent == 1) {
  1839. //we are in silent mode, set to normal mode to enable crash detection
  1840. // Wait for the planner queue to drain and for the stepper timer routine to reach an idle state.
  1841. st_synchronize();
  1842. cli();
  1843. tmc2130_mode = (start_high_power_section == true) ? TMC2130_MODE_NORMAL : TMC2130_MODE_SILENT;
  1844. tmc2130_init();
  1845. // We may have missed a stepper timer interrupt due to the time spent in the tmc2130_init() routine.
  1846. // Be safe than sorry, reset the stepper timer before re-enabling interrupts.
  1847. st_reset_timer();
  1848. sei();
  1849. digipot_init();
  1850. }
  1851. }
  1852. #endif //TMC2130
  1853. bool gcode_M45(bool onlyZ)
  1854. {
  1855. bool final_result = false;
  1856. #ifdef TMC2130
  1857. FORCE_HIGH_POWER_START;
  1858. #endif // TMC2130
  1859. // Only Z calibration?
  1860. if (!onlyZ)
  1861. {
  1862. setTargetBed(0);
  1863. setTargetHotend(0, 0);
  1864. setTargetHotend(0, 1);
  1865. setTargetHotend(0, 2);
  1866. adjust_bed_reset(); //reset bed level correction
  1867. }
  1868. // Disable the default update procedure of the display. We will do a modal dialog.
  1869. lcd_update_enable(false);
  1870. // Let the planner use the uncorrected coordinates.
  1871. mbl.reset();
  1872. // Reset world2machine_rotation_and_skew and world2machine_shift, therefore
  1873. // the planner will not perform any adjustments in the XY plane.
  1874. // Wait for the motors to stop and update the current position with the absolute values.
  1875. world2machine_revert_to_uncorrected();
  1876. // Reset the baby step value applied without moving the axes.
  1877. babystep_reset();
  1878. // Mark all axes as in a need for homing.
  1879. memset(axis_known_position, 0, sizeof(axis_known_position));
  1880. // Home in the XY plane.
  1881. //set_destination_to_current();
  1882. setup_for_endstop_move();
  1883. lcd_display_message_fullscreen_P(MSG_AUTO_HOME);
  1884. home_xy();
  1885. enable_endstops(false);
  1886. current_position[X_AXIS] += 5;
  1887. current_position[Y_AXIS] += 5;
  1888. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[Z_AXIS] / 40, active_extruder);
  1889. st_synchronize();
  1890. // Let the user move the Z axes up to the end stoppers.
  1891. #ifdef TMC2130
  1892. if (calibrate_z_auto())
  1893. {
  1894. #else //TMC2130
  1895. if (lcd_calibrate_z_end_stop_manual(onlyZ))
  1896. {
  1897. #endif //TMC2130
  1898. refresh_cmd_timeout();
  1899. //if (((degHotend(0) > MAX_HOTEND_TEMP_CALIBRATION) || (degBed() > MAX_BED_TEMP_CALIBRATION)) && (!onlyZ))
  1900. //{
  1901. // lcd_wait_for_cool_down();
  1902. //}
  1903. if(!onlyZ)
  1904. {
  1905. KEEPALIVE_STATE(PAUSED_FOR_USER);
  1906. bool result = lcd_show_fullscreen_message_yes_no_and_wait_P(MSG_STEEL_SHEET_CHECK, false, false);
  1907. if(result) lcd_show_fullscreen_message_and_wait_P(MSG_REMOVE_STEEL_SHEET);
  1908. lcd_show_fullscreen_message_and_wait_P(MSG_CONFIRM_NOZZLE_CLEAN);
  1909. lcd_show_fullscreen_message_and_wait_P(MSG_PAPER);
  1910. KEEPALIVE_STATE(IN_HANDLER);
  1911. lcd_display_message_fullscreen_P(MSG_FIND_BED_OFFSET_AND_SKEW_LINE1);
  1912. lcd_implementation_print_at(0, 2, 1);
  1913. lcd_printPGM(MSG_FIND_BED_OFFSET_AND_SKEW_LINE2);
  1914. }
  1915. // Move the print head close to the bed.
  1916. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  1917. bool endstops_enabled = enable_endstops(true);
  1918. tmc2130_home_enter(Z_AXIS_MASK);
  1919. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[Z_AXIS] / 40, active_extruder);
  1920. st_synchronize();
  1921. tmc2130_home_exit();
  1922. enable_endstops(endstops_enabled);
  1923. if (st_get_position_mm(Z_AXIS) == MESH_HOME_Z_SEARCH)
  1924. {
  1925. //#ifdef TMC2130
  1926. // tmc2130_home_enter(X_AXIS_MASK | Y_AXIS_MASK);
  1927. //#endif
  1928. int8_t verbosity_level = 0;
  1929. if (code_seen('V'))
  1930. {
  1931. // Just 'V' without a number counts as V1.
  1932. char c = strchr_pointer[1];
  1933. verbosity_level = (c == ' ' || c == '\t' || c == 0) ? 1 : code_value_short();
  1934. }
  1935. if (onlyZ)
  1936. {
  1937. clean_up_after_endstop_move();
  1938. // Z only calibration.
  1939. // Load the machine correction matrix
  1940. world2machine_initialize();
  1941. // and correct the current_position to match the transformed coordinate system.
  1942. world2machine_update_current();
  1943. //FIXME
  1944. bool result = sample_mesh_and_store_reference();
  1945. if (result)
  1946. {
  1947. if (calibration_status() == CALIBRATION_STATUS_Z_CALIBRATION)
  1948. // Shipped, the nozzle height has been set already. The user can start printing now.
  1949. calibration_status_store(CALIBRATION_STATUS_CALIBRATED);
  1950. final_result = true;
  1951. // babystep_apply();
  1952. }
  1953. }
  1954. else
  1955. {
  1956. // Reset the baby step value and the baby step applied flag.
  1957. calibration_status_store(CALIBRATION_STATUS_XYZ_CALIBRATION);
  1958. eeprom_update_word((uint16_t*)EEPROM_BABYSTEP_Z, 0);
  1959. // Complete XYZ calibration.
  1960. uint8_t point_too_far_mask = 0;
  1961. BedSkewOffsetDetectionResultType result = find_bed_offset_and_skew(verbosity_level, point_too_far_mask);
  1962. clean_up_after_endstop_move();
  1963. // Print head up.
  1964. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  1965. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[Z_AXIS] / 40, active_extruder);
  1966. st_synchronize();
  1967. if (result >= 0)
  1968. {
  1969. point_too_far_mask = 0;
  1970. // Second half: The fine adjustment.
  1971. // Let the planner use the uncorrected coordinates.
  1972. mbl.reset();
  1973. world2machine_reset();
  1974. // Home in the XY plane.
  1975. setup_for_endstop_move();
  1976. home_xy();
  1977. result = improve_bed_offset_and_skew(1, verbosity_level, point_too_far_mask);
  1978. clean_up_after_endstop_move();
  1979. // Print head up.
  1980. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  1981. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[Z_AXIS] / 40, active_extruder);
  1982. st_synchronize();
  1983. // if (result >= 0) babystep_apply();
  1984. }
  1985. lcd_bed_calibration_show_result(result, point_too_far_mask);
  1986. if (result >= 0)
  1987. {
  1988. // Calibration valid, the machine should be able to print. Advise the user to run the V2Calibration.gcode.
  1989. calibration_status_store(CALIBRATION_STATUS_LIVE_ADJUST);
  1990. if (eeprom_read_byte((uint8_t*)EEPROM_WIZARD_ACTIVE) != 1) lcd_show_fullscreen_message_and_wait_P(MSG_BABYSTEP_Z_NOT_SET);
  1991. final_result = true;
  1992. }
  1993. }
  1994. #ifdef TMC2130
  1995. tmc2130_home_exit();
  1996. #endif
  1997. }
  1998. else
  1999. {
  2000. lcd_show_fullscreen_message_and_wait_P(PSTR("Calibration failed! Check the axes and run again."));
  2001. final_result = false;
  2002. }
  2003. }
  2004. else
  2005. {
  2006. // Timeouted.
  2007. }
  2008. lcd_update_enable(true);
  2009. #ifdef TMC2130
  2010. FORCE_HIGH_POWER_END;
  2011. #endif // TMC2130
  2012. return final_result;
  2013. }
  2014. void gcode_M701()
  2015. {
  2016. #ifdef SNMM
  2017. extr_adj(snmm_extruder);//loads current extruder
  2018. #else
  2019. enable_z();
  2020. custom_message = true;
  2021. custom_message_type = 2;
  2022. lcd_setstatuspgm(MSG_LOADING_FILAMENT);
  2023. current_position[E_AXIS] += 70;
  2024. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400 / 60, active_extruder); //fast sequence
  2025. current_position[E_AXIS] += 25;
  2026. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 100 / 60, active_extruder); //slow sequence
  2027. st_synchronize();
  2028. tone(BEEPER, 500);
  2029. delay_keep_alive(50);
  2030. noTone(BEEPER);
  2031. if (!farm_mode && loading_flag) {
  2032. bool clean = lcd_show_fullscreen_message_yes_no_and_wait_P(MSG_FILAMENT_CLEAN, false, true);
  2033. while (!clean) {
  2034. lcd_update_enable(true);
  2035. lcd_update(2);
  2036. current_position[E_AXIS] += 25;
  2037. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 100 / 60, active_extruder); //slow sequence
  2038. st_synchronize();
  2039. clean = lcd_show_fullscreen_message_yes_no_and_wait_P(MSG_FILAMENT_CLEAN, false, true);
  2040. }
  2041. }
  2042. lcd_update_enable(true);
  2043. lcd_update(2);
  2044. lcd_setstatuspgm(WELCOME_MSG);
  2045. disable_z();
  2046. loading_flag = false;
  2047. custom_message = false;
  2048. custom_message_type = 0;
  2049. #endif
  2050. }
  2051. void process_commands()
  2052. {
  2053. #ifdef FILAMENT_RUNOUT_SUPPORT
  2054. SET_INPUT(FR_SENS);
  2055. #endif
  2056. #ifdef CMDBUFFER_DEBUG
  2057. SERIAL_ECHOPGM("Processing a GCODE command: ");
  2058. SERIAL_ECHO(cmdbuffer+bufindr+CMDHDRSIZE);
  2059. SERIAL_ECHOLNPGM("");
  2060. SERIAL_ECHOPGM("In cmdqueue: ");
  2061. SERIAL_ECHO(buflen);
  2062. SERIAL_ECHOLNPGM("");
  2063. #endif /* CMDBUFFER_DEBUG */
  2064. unsigned long codenum; //throw away variable
  2065. char *starpos = NULL;
  2066. #ifdef ENABLE_AUTO_BED_LEVELING
  2067. float x_tmp, y_tmp, z_tmp, real_z;
  2068. #endif
  2069. // PRUSA GCODES
  2070. KEEPALIVE_STATE(IN_HANDLER);
  2071. #ifdef SNMM
  2072. float tmp_motor[3] = DEFAULT_PWM_MOTOR_CURRENT;
  2073. float tmp_motor_loud[3] = DEFAULT_PWM_MOTOR_CURRENT_LOUD;
  2074. int8_t SilentMode;
  2075. #endif
  2076. if (code_seen("M117")) { //moved to highest priority place to be able to to print strings which includes "G", "PRUSA" and "^"
  2077. starpos = (strchr(strchr_pointer + 5, '*'));
  2078. if (starpos != NULL)
  2079. *(starpos) = '\0';
  2080. lcd_setstatus(strchr_pointer + 5);
  2081. }
  2082. else if(code_seen("CRASH_DETECTED"))
  2083. {
  2084. uint8_t mask = 0;
  2085. if (code_seen("X")) mask |= X_AXIS_MASK;
  2086. if (code_seen("Y")) mask |= Y_AXIS_MASK;
  2087. crashdet_detected(mask);
  2088. }
  2089. else if(code_seen("CRASH_RECOVER"))
  2090. crashdet_recover();
  2091. else if(code_seen("CRASH_CANCEL"))
  2092. crashdet_cancel();
  2093. else if(code_seen("PRUSA")){
  2094. if (code_seen("Ping")) { //PRUSA Ping
  2095. if (farm_mode) {
  2096. PingTime = millis();
  2097. //MYSERIAL.print(farm_no); MYSERIAL.println(": OK");
  2098. }
  2099. }
  2100. else if (code_seen("PRN")) {
  2101. MYSERIAL.println(status_number);
  2102. }else if (code_seen("FAN")) {
  2103. MYSERIAL.print("E0:");
  2104. MYSERIAL.print(60*fan_speed[0]);
  2105. MYSERIAL.println(" RPM");
  2106. MYSERIAL.print("PRN0:");
  2107. MYSERIAL.print(60*fan_speed[1]);
  2108. MYSERIAL.println(" RPM");
  2109. }else if (code_seen("fn")) {
  2110. if (farm_mode) {
  2111. MYSERIAL.println(farm_no);
  2112. }
  2113. else {
  2114. MYSERIAL.println("Not in farm mode.");
  2115. }
  2116. }else if (code_seen("fv")) {
  2117. // get file version
  2118. #ifdef SDSUPPORT
  2119. card.openFile(strchr_pointer + 3,true);
  2120. while (true) {
  2121. uint16_t readByte = card.get();
  2122. MYSERIAL.write(readByte);
  2123. if (readByte=='\n') {
  2124. break;
  2125. }
  2126. }
  2127. card.closefile();
  2128. #endif // SDSUPPORT
  2129. } else if (code_seen("M28")) {
  2130. trace();
  2131. prusa_sd_card_upload = true;
  2132. card.openFile(strchr_pointer+4,false);
  2133. } else if (code_seen("SN")) {
  2134. if (farm_mode) {
  2135. selectedSerialPort = 0;
  2136. MSerial.write(";S");
  2137. // S/N is:CZPX0917X003XC13518
  2138. int numbersRead = 0;
  2139. while (numbersRead < 19) {
  2140. while (MSerial.available() > 0) {
  2141. uint8_t serial_char = MSerial.read();
  2142. selectedSerialPort = 1;
  2143. MSerial.write(serial_char);
  2144. numbersRead++;
  2145. selectedSerialPort = 0;
  2146. }
  2147. }
  2148. selectedSerialPort = 1;
  2149. MSerial.write('\n');
  2150. /*for (int b = 0; b < 3; b++) {
  2151. tone(BEEPER, 110);
  2152. delay(50);
  2153. noTone(BEEPER);
  2154. delay(50);
  2155. }*/
  2156. } else {
  2157. MYSERIAL.println("Not in farm mode.");
  2158. }
  2159. } else if(code_seen("Fir")){
  2160. SERIAL_PROTOCOLLN(FW_VERSION);
  2161. } else if(code_seen("Rev")){
  2162. SERIAL_PROTOCOLLN(FILAMENT_SIZE "-" ELECTRONICS "-" NOZZLE_TYPE );
  2163. } else if(code_seen("Lang")) {
  2164. lcd_force_language_selection();
  2165. } else if(code_seen("Lz")) {
  2166. EEPROM_save_B(EEPROM_BABYSTEP_Z,0);
  2167. } else if (code_seen("SERIAL LOW")) {
  2168. MYSERIAL.println("SERIAL LOW");
  2169. MYSERIAL.begin(BAUDRATE);
  2170. return;
  2171. } else if (code_seen("SERIAL HIGH")) {
  2172. MYSERIAL.println("SERIAL HIGH");
  2173. MYSERIAL.begin(1152000);
  2174. return;
  2175. } else if(code_seen("Beat")) {
  2176. // Kick farm link timer
  2177. kicktime = millis();
  2178. } else if(code_seen("FR")) {
  2179. // Factory full reset
  2180. factory_reset(0,true);
  2181. }
  2182. //else if (code_seen('Cal')) {
  2183. // lcd_calibration();
  2184. // }
  2185. }
  2186. else if (code_seen('^')) {
  2187. // nothing, this is a version line
  2188. } else if(code_seen('G'))
  2189. {
  2190. switch((int)code_value())
  2191. {
  2192. case 0: // G0 -> G1
  2193. case 1: // G1
  2194. if(Stopped == false) {
  2195. #ifdef FILAMENT_RUNOUT_SUPPORT
  2196. if(READ(FR_SENS)){
  2197. feedmultiplyBckp=feedmultiply;
  2198. float target[4];
  2199. float lastpos[4];
  2200. target[X_AXIS]=current_position[X_AXIS];
  2201. target[Y_AXIS]=current_position[Y_AXIS];
  2202. target[Z_AXIS]=current_position[Z_AXIS];
  2203. target[E_AXIS]=current_position[E_AXIS];
  2204. lastpos[X_AXIS]=current_position[X_AXIS];
  2205. lastpos[Y_AXIS]=current_position[Y_AXIS];
  2206. lastpos[Z_AXIS]=current_position[Z_AXIS];
  2207. lastpos[E_AXIS]=current_position[E_AXIS];
  2208. //retract by E
  2209. target[E_AXIS]+= FILAMENTCHANGE_FIRSTRETRACT ;
  2210. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 400, active_extruder);
  2211. target[Z_AXIS]+= FILAMENTCHANGE_ZADD ;
  2212. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 300, active_extruder);
  2213. target[X_AXIS]= FILAMENTCHANGE_XPOS ;
  2214. target[Y_AXIS]= FILAMENTCHANGE_YPOS ;
  2215. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 70, active_extruder);
  2216. target[E_AXIS]+= FILAMENTCHANGE_FINALRETRACT ;
  2217. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 20, active_extruder);
  2218. //finish moves
  2219. st_synchronize();
  2220. //disable extruder steppers so filament can be removed
  2221. disable_e0();
  2222. disable_e1();
  2223. disable_e2();
  2224. delay(100);
  2225. //LCD_ALERTMESSAGEPGM(MSG_FILAMENTCHANGE);
  2226. uint8_t cnt=0;
  2227. int counterBeep = 0;
  2228. lcd_wait_interact();
  2229. while(!lcd_clicked()){
  2230. cnt++;
  2231. manage_heater();
  2232. manage_inactivity(true);
  2233. //lcd_update();
  2234. if(cnt==0)
  2235. {
  2236. #if BEEPER > 0
  2237. if (counterBeep== 500){
  2238. counterBeep = 0;
  2239. }
  2240. SET_OUTPUT(BEEPER);
  2241. if (counterBeep== 0){
  2242. WRITE(BEEPER,HIGH);
  2243. }
  2244. if (counterBeep== 20){
  2245. WRITE(BEEPER,LOW);
  2246. }
  2247. counterBeep++;
  2248. #else
  2249. #if !defined(LCD_FEEDBACK_FREQUENCY_HZ) || !defined(LCD_FEEDBACK_FREQUENCY_DURATION_MS)
  2250. lcd_buzz(1000/6,100);
  2251. #else
  2252. lcd_buzz(LCD_FEEDBACK_FREQUENCY_DURATION_MS,LCD_FEEDBACK_FREQUENCY_HZ);
  2253. #endif
  2254. #endif
  2255. }
  2256. }
  2257. WRITE(BEEPER,LOW);
  2258. target[E_AXIS]+= FILAMENTCHANGE_FIRSTFEED ;
  2259. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 20, active_extruder);
  2260. target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  2261. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder);
  2262. lcd_change_fil_state = 0;
  2263. lcd_loading_filament();
  2264. while ((lcd_change_fil_state == 0)||(lcd_change_fil_state != 1)){
  2265. lcd_change_fil_state = 0;
  2266. lcd_alright();
  2267. switch(lcd_change_fil_state){
  2268. case 2:
  2269. target[E_AXIS]+= FILAMENTCHANGE_FIRSTFEED ;
  2270. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 20, active_extruder);
  2271. target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  2272. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder);
  2273. lcd_loading_filament();
  2274. break;
  2275. case 3:
  2276. target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  2277. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder);
  2278. lcd_loading_color();
  2279. break;
  2280. default:
  2281. lcd_change_success();
  2282. break;
  2283. }
  2284. }
  2285. target[E_AXIS]+= 5;
  2286. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder);
  2287. target[E_AXIS]+= FILAMENTCHANGE_FIRSTRETRACT;
  2288. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 400, active_extruder);
  2289. //current_position[E_AXIS]=target[E_AXIS]; //the long retract of L is compensated by manual filament feeding
  2290. //plan_set_e_position(current_position[E_AXIS]);
  2291. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 70, active_extruder); //should do nothing
  2292. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], target[Z_AXIS], target[E_AXIS], 70, active_extruder); //move xy back
  2293. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], target[E_AXIS], 200, active_extruder); //move z back
  2294. target[E_AXIS]= target[E_AXIS] - FILAMENTCHANGE_FIRSTRETRACT;
  2295. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], target[E_AXIS], 5, active_extruder); //final untretract
  2296. plan_set_e_position(lastpos[E_AXIS]);
  2297. feedmultiply=feedmultiplyBckp;
  2298. char cmd[9];
  2299. sprintf_P(cmd, PSTR("M220 S%i"), feedmultiplyBckp);
  2300. enquecommand(cmd);
  2301. }
  2302. #endif
  2303. get_coordinates(); // For X Y Z E F
  2304. if (total_filament_used > ((current_position[E_AXIS] - destination[E_AXIS]) * 100)) { //protection against total_filament_used overflow
  2305. total_filament_used = total_filament_used + ((destination[E_AXIS] - current_position[E_AXIS]) * 100);
  2306. }
  2307. #ifdef FWRETRACT
  2308. if(autoretract_enabled)
  2309. if( !(code_seen('X') || code_seen('Y') || code_seen('Z')) && code_seen('E')) {
  2310. float echange=destination[E_AXIS]-current_position[E_AXIS];
  2311. if((echange<-MIN_RETRACT && !retracted) || (echange>MIN_RETRACT && retracted)) { //move appears to be an attempt to retract or recover
  2312. current_position[E_AXIS] = destination[E_AXIS]; //hide the slicer-generated retract/recover from calculations
  2313. plan_set_e_position(current_position[E_AXIS]); //AND from the planner
  2314. retract(!retracted);
  2315. return;
  2316. }
  2317. }
  2318. #endif //FWRETRACT
  2319. prepare_move();
  2320. //ClearToSend();
  2321. }
  2322. break;
  2323. case 2: // G2 - CW ARC
  2324. if(Stopped == false) {
  2325. get_arc_coordinates();
  2326. prepare_arc_move(true);
  2327. }
  2328. break;
  2329. case 3: // G3 - CCW ARC
  2330. if(Stopped == false) {
  2331. get_arc_coordinates();
  2332. prepare_arc_move(false);
  2333. }
  2334. break;
  2335. case 4: // G4 dwell
  2336. codenum = 0;
  2337. if(code_seen('P')) codenum = code_value(); // milliseconds to wait
  2338. if(code_seen('S')) codenum = code_value() * 1000; // seconds to wait
  2339. if(codenum != 0) LCD_MESSAGERPGM(MSG_DWELL);
  2340. st_synchronize();
  2341. codenum += millis(); // keep track of when we started waiting
  2342. previous_millis_cmd = millis();
  2343. while(millis() < codenum) {
  2344. manage_heater();
  2345. manage_inactivity();
  2346. lcd_update();
  2347. }
  2348. break;
  2349. #ifdef FWRETRACT
  2350. case 10: // G10 retract
  2351. #if EXTRUDERS > 1
  2352. retracted_swap[active_extruder]=(code_seen('S') && code_value_long() == 1); // checks for swap retract argument
  2353. retract(true,retracted_swap[active_extruder]);
  2354. #else
  2355. retract(true);
  2356. #endif
  2357. break;
  2358. case 11: // G11 retract_recover
  2359. #if EXTRUDERS > 1
  2360. retract(false,retracted_swap[active_extruder]);
  2361. #else
  2362. retract(false);
  2363. #endif
  2364. break;
  2365. #endif //FWRETRACT
  2366. case 28: //G28 Home all Axis one at a time
  2367. {
  2368. st_synchronize();
  2369. #if 0
  2370. SERIAL_ECHOPGM("G28, initial "); print_world_coordinates();
  2371. SERIAL_ECHOPGM("G28, initial "); print_physical_coordinates();
  2372. #endif
  2373. // Flag for the display update routine and to disable the print cancelation during homing.
  2374. homing_flag = true;
  2375. // Which axes should be homed?
  2376. bool home_x = code_seen(axis_codes[X_AXIS]);
  2377. bool home_y = code_seen(axis_codes[Y_AXIS]);
  2378. bool home_z = code_seen(axis_codes[Z_AXIS]);
  2379. // calibrate?
  2380. bool calib = code_seen('C');
  2381. // Either all X,Y,Z codes are present, or none of them.
  2382. bool home_all_axes = home_x == home_y && home_x == home_z;
  2383. if (home_all_axes)
  2384. // No X/Y/Z code provided means to home all axes.
  2385. home_x = home_y = home_z = true;
  2386. #ifdef ENABLE_AUTO_BED_LEVELING
  2387. plan_bed_level_matrix.set_to_identity(); //Reset the plane ("erase" all leveling data)
  2388. #endif //ENABLE_AUTO_BED_LEVELING
  2389. // Reset world2machine_rotation_and_skew and world2machine_shift, therefore
  2390. // the planner will not perform any adjustments in the XY plane.
  2391. // Wait for the motors to stop and update the current position with the absolute values.
  2392. world2machine_revert_to_uncorrected();
  2393. // For mesh bed leveling deactivate the matrix temporarily.
  2394. // It is necessary to disable the bed leveling for the X and Y homing moves, so that the move is performed
  2395. // in a single axis only.
  2396. // In case of re-homing the X or Y axes only, the mesh bed leveling is restored after G28.
  2397. #ifdef MESH_BED_LEVELING
  2398. uint8_t mbl_was_active = mbl.active;
  2399. mbl.active = 0;
  2400. current_position[Z_AXIS] = st_get_position_mm(Z_AXIS);
  2401. #endif
  2402. // Reset baby stepping to zero, if the babystepping has already been loaded before. The babystepsTodo value will be
  2403. // consumed during the first movements following this statement.
  2404. if (home_z)
  2405. babystep_undo();
  2406. saved_feedrate = feedrate;
  2407. saved_feedmultiply = feedmultiply;
  2408. feedmultiply = 100;
  2409. previous_millis_cmd = millis();
  2410. enable_endstops(true);
  2411. memcpy(destination, current_position, sizeof(destination));
  2412. feedrate = 0.0;
  2413. #if Z_HOME_DIR > 0 // If homing away from BED do Z first
  2414. if(home_z)
  2415. homeaxis(Z_AXIS);
  2416. #endif
  2417. #ifdef QUICK_HOME
  2418. // In the quick mode, if both x and y are to be homed, a diagonal move will be performed initially.
  2419. if(home_x && home_y) //first diagonal move
  2420. {
  2421. current_position[X_AXIS] = 0;current_position[Y_AXIS] = 0;
  2422. int x_axis_home_dir = home_dir(X_AXIS);
  2423. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2424. destination[X_AXIS] = 1.5 * max_length(X_AXIS) * x_axis_home_dir;destination[Y_AXIS] = 1.5 * max_length(Y_AXIS) * home_dir(Y_AXIS);
  2425. feedrate = homing_feedrate[X_AXIS];
  2426. if(homing_feedrate[Y_AXIS]<feedrate)
  2427. feedrate = homing_feedrate[Y_AXIS];
  2428. if (max_length(X_AXIS) > max_length(Y_AXIS)) {
  2429. feedrate *= sqrt(pow(max_length(Y_AXIS) / max_length(X_AXIS), 2) + 1);
  2430. } else {
  2431. feedrate *= sqrt(pow(max_length(X_AXIS) / max_length(Y_AXIS), 2) + 1);
  2432. }
  2433. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  2434. st_synchronize();
  2435. axis_is_at_home(X_AXIS);
  2436. axis_is_at_home(Y_AXIS);
  2437. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2438. destination[X_AXIS] = current_position[X_AXIS];
  2439. destination[Y_AXIS] = current_position[Y_AXIS];
  2440. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  2441. feedrate = 0.0;
  2442. st_synchronize();
  2443. endstops_hit_on_purpose();
  2444. current_position[X_AXIS] = destination[X_AXIS];
  2445. current_position[Y_AXIS] = destination[Y_AXIS];
  2446. current_position[Z_AXIS] = destination[Z_AXIS];
  2447. }
  2448. #endif /* QUICK_HOME */
  2449. if(home_x)
  2450. {
  2451. if (!calib)
  2452. homeaxis(X_AXIS);
  2453. else
  2454. tmc2130_home_calibrate(X_AXIS);
  2455. }
  2456. if(home_y)
  2457. {
  2458. if (!calib)
  2459. homeaxis(Y_AXIS);
  2460. else
  2461. tmc2130_home_calibrate(Y_AXIS);
  2462. }
  2463. if(code_seen(axis_codes[X_AXIS]) && code_value_long() != 0)
  2464. current_position[X_AXIS]=code_value()+add_homing[X_AXIS];
  2465. if(code_seen(axis_codes[Y_AXIS]) && code_value_long() != 0)
  2466. current_position[Y_AXIS]=code_value()+add_homing[Y_AXIS];
  2467. #if Z_HOME_DIR < 0 // If homing towards BED do Z last
  2468. #ifndef Z_SAFE_HOMING
  2469. if(home_z) {
  2470. #if defined (Z_RAISE_BEFORE_HOMING) && (Z_RAISE_BEFORE_HOMING > 0)
  2471. destination[Z_AXIS] = Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS) * (-1); // Set destination away from bed
  2472. feedrate = max_feedrate[Z_AXIS];
  2473. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
  2474. st_synchronize();
  2475. #endif // defined (Z_RAISE_BEFORE_HOMING) && (Z_RAISE_BEFORE_HOMING > 0)
  2476. #if (defined(MESH_BED_LEVELING) && !defined(MK1BP)) // If Mesh bed leveling, moxve X&Y to safe position for home
  2477. if (!(axis_known_position[X_AXIS] && axis_known_position[Y_AXIS] ))
  2478. {
  2479. homeaxis(X_AXIS);
  2480. homeaxis(Y_AXIS);
  2481. }
  2482. // 1st mesh bed leveling measurement point, corrected.
  2483. world2machine_initialize();
  2484. world2machine(pgm_read_float(bed_ref_points), pgm_read_float(bed_ref_points+1), destination[X_AXIS], destination[Y_AXIS]);
  2485. world2machine_reset();
  2486. if (destination[Y_AXIS] < Y_MIN_POS)
  2487. destination[Y_AXIS] = Y_MIN_POS;
  2488. destination[Z_AXIS] = MESH_HOME_Z_SEARCH; // Set destination away from bed
  2489. feedrate = homing_feedrate[Z_AXIS]/10;
  2490. current_position[Z_AXIS] = 0;
  2491. enable_endstops(false);
  2492. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2493. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
  2494. st_synchronize();
  2495. current_position[X_AXIS] = destination[X_AXIS];
  2496. current_position[Y_AXIS] = destination[Y_AXIS];
  2497. enable_endstops(true);
  2498. endstops_hit_on_purpose();
  2499. homeaxis(Z_AXIS);
  2500. #else // MESH_BED_LEVELING
  2501. homeaxis(Z_AXIS);
  2502. #endif // MESH_BED_LEVELING
  2503. }
  2504. #else // defined(Z_SAFE_HOMING): Z Safe mode activated.
  2505. if(home_all_axes) {
  2506. destination[X_AXIS] = round(Z_SAFE_HOMING_X_POINT - X_PROBE_OFFSET_FROM_EXTRUDER);
  2507. destination[Y_AXIS] = round(Z_SAFE_HOMING_Y_POINT - Y_PROBE_OFFSET_FROM_EXTRUDER);
  2508. destination[Z_AXIS] = Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS) * (-1); // Set destination away from bed
  2509. feedrate = XY_TRAVEL_SPEED/60;
  2510. current_position[Z_AXIS] = 0;
  2511. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2512. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
  2513. st_synchronize();
  2514. current_position[X_AXIS] = destination[X_AXIS];
  2515. current_position[Y_AXIS] = destination[Y_AXIS];
  2516. homeaxis(Z_AXIS);
  2517. }
  2518. // Let's see if X and Y are homed and probe is inside bed area.
  2519. if(home_z) {
  2520. if ( (axis_known_position[X_AXIS]) && (axis_known_position[Y_AXIS]) \
  2521. && (current_position[X_AXIS]+X_PROBE_OFFSET_FROM_EXTRUDER >= X_MIN_POS) \
  2522. && (current_position[X_AXIS]+X_PROBE_OFFSET_FROM_EXTRUDER <= X_MAX_POS) \
  2523. && (current_position[Y_AXIS]+Y_PROBE_OFFSET_FROM_EXTRUDER >= Y_MIN_POS) \
  2524. && (current_position[Y_AXIS]+Y_PROBE_OFFSET_FROM_EXTRUDER <= Y_MAX_POS)) {
  2525. current_position[Z_AXIS] = 0;
  2526. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2527. destination[Z_AXIS] = Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS) * (-1); // Set destination away from bed
  2528. feedrate = max_feedrate[Z_AXIS];
  2529. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
  2530. st_synchronize();
  2531. homeaxis(Z_AXIS);
  2532. } else if (!((axis_known_position[X_AXIS]) && (axis_known_position[Y_AXIS]))) {
  2533. LCD_MESSAGERPGM(MSG_POSITION_UNKNOWN);
  2534. SERIAL_ECHO_START;
  2535. SERIAL_ECHOLNRPGM(MSG_POSITION_UNKNOWN);
  2536. } else {
  2537. LCD_MESSAGERPGM(MSG_ZPROBE_OUT);
  2538. SERIAL_ECHO_START;
  2539. SERIAL_ECHOLNRPGM(MSG_ZPROBE_OUT);
  2540. }
  2541. }
  2542. #endif // Z_SAFE_HOMING
  2543. #endif // Z_HOME_DIR < 0
  2544. if(code_seen(axis_codes[Z_AXIS]) && code_value_long() != 0)
  2545. current_position[Z_AXIS]=code_value()+add_homing[Z_AXIS];
  2546. #ifdef ENABLE_AUTO_BED_LEVELING
  2547. if(home_z)
  2548. current_position[Z_AXIS] += zprobe_zoffset; //Add Z_Probe offset (the distance is negative)
  2549. #endif
  2550. // Set the planner and stepper routine positions.
  2551. // At this point the mesh bed leveling and world2machine corrections are disabled and current_position
  2552. // contains the machine coordinates.
  2553. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2554. #ifdef ENDSTOPS_ONLY_FOR_HOMING
  2555. enable_endstops(false);
  2556. #endif
  2557. feedrate = saved_feedrate;
  2558. feedmultiply = saved_feedmultiply;
  2559. previous_millis_cmd = millis();
  2560. endstops_hit_on_purpose();
  2561. #ifndef MESH_BED_LEVELING
  2562. // If MESH_BED_LEVELING is not active, then it is the original Prusa i3.
  2563. // Offer the user to load the baby step value, which has been adjusted at the previous print session.
  2564. if(card.sdprinting && eeprom_read_word((uint16_t *)EEPROM_BABYSTEP_Z))
  2565. lcd_adjust_z();
  2566. #endif
  2567. // Load the machine correction matrix
  2568. world2machine_initialize();
  2569. // and correct the current_position XY axes to match the transformed coordinate system.
  2570. world2machine_update_current();
  2571. #if (defined(MESH_BED_LEVELING) && !defined(MK1BP))
  2572. if (code_seen(axis_codes[X_AXIS]) || code_seen(axis_codes[Y_AXIS]) || code_seen('W') || code_seen(axis_codes[Z_AXIS]))
  2573. {
  2574. if (! home_z && mbl_was_active) {
  2575. // Re-enable the mesh bed leveling if only the X and Y axes were re-homed.
  2576. mbl.active = true;
  2577. // and re-adjust the current logical Z axis with the bed leveling offset applicable at the current XY position.
  2578. current_position[Z_AXIS] -= mbl.get_z(st_get_position_mm(X_AXIS), st_get_position_mm(Y_AXIS));
  2579. }
  2580. }
  2581. else
  2582. {
  2583. st_synchronize();
  2584. homing_flag = false;
  2585. // Push the commands to the front of the message queue in the reverse order!
  2586. // There shall be always enough space reserved for these commands.
  2587. // enquecommand_front_P((PSTR("G80")));
  2588. goto case_G80;
  2589. }
  2590. #endif
  2591. if (farm_mode) { prusa_statistics(20); };
  2592. homing_flag = false;
  2593. #if 0
  2594. SERIAL_ECHOPGM("G28, final "); print_world_coordinates();
  2595. SERIAL_ECHOPGM("G28, final "); print_physical_coordinates();
  2596. SERIAL_ECHOPGM("G28, final "); print_mesh_bed_leveling_table();
  2597. #endif
  2598. break;
  2599. }
  2600. #ifdef ENABLE_AUTO_BED_LEVELING
  2601. case 29: // G29 Detailed Z-Probe, probes the bed at 3 or more points.
  2602. {
  2603. #if Z_MIN_PIN == -1
  2604. #error "You must have a Z_MIN endstop in order to enable Auto Bed Leveling feature! Z_MIN_PIN must point to a valid hardware pin."
  2605. #endif
  2606. // Prevent user from running a G29 without first homing in X and Y
  2607. if (! (axis_known_position[X_AXIS] && axis_known_position[Y_AXIS]) )
  2608. {
  2609. LCD_MESSAGERPGM(MSG_POSITION_UNKNOWN);
  2610. SERIAL_ECHO_START;
  2611. SERIAL_ECHOLNRPGM(MSG_POSITION_UNKNOWN);
  2612. break; // abort G29, since we don't know where we are
  2613. }
  2614. st_synchronize();
  2615. // make sure the bed_level_rotation_matrix is identity or the planner will get it incorectly
  2616. //vector_3 corrected_position = plan_get_position_mm();
  2617. //corrected_position.debug("position before G29");
  2618. plan_bed_level_matrix.set_to_identity();
  2619. vector_3 uncorrected_position = plan_get_position();
  2620. //uncorrected_position.debug("position durring G29");
  2621. current_position[X_AXIS] = uncorrected_position.x;
  2622. current_position[Y_AXIS] = uncorrected_position.y;
  2623. current_position[Z_AXIS] = uncorrected_position.z;
  2624. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2625. setup_for_endstop_move();
  2626. feedrate = homing_feedrate[Z_AXIS];
  2627. #ifdef AUTO_BED_LEVELING_GRID
  2628. // probe at the points of a lattice grid
  2629. int xGridSpacing = (RIGHT_PROBE_BED_POSITION - LEFT_PROBE_BED_POSITION) / (AUTO_BED_LEVELING_GRID_POINTS-1);
  2630. int yGridSpacing = (BACK_PROBE_BED_POSITION - FRONT_PROBE_BED_POSITION) / (AUTO_BED_LEVELING_GRID_POINTS-1);
  2631. // solve the plane equation ax + by + d = z
  2632. // A is the matrix with rows [x y 1] for all the probed points
  2633. // B is the vector of the Z positions
  2634. // the normal vector to the plane is formed by the coefficients of the plane equation in the standard form, which is Vx*x+Vy*y+Vz*z+d = 0
  2635. // so Vx = -a Vy = -b Vz = 1 (we want the vector facing towards positive Z
  2636. // "A" matrix of the linear system of equations
  2637. double eqnAMatrix[AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS*3];
  2638. // "B" vector of Z points
  2639. double eqnBVector[AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS];
  2640. int probePointCounter = 0;
  2641. bool zig = true;
  2642. for (int yProbe=FRONT_PROBE_BED_POSITION; yProbe <= BACK_PROBE_BED_POSITION; yProbe += yGridSpacing)
  2643. {
  2644. int xProbe, xInc;
  2645. if (zig)
  2646. {
  2647. xProbe = LEFT_PROBE_BED_POSITION;
  2648. //xEnd = RIGHT_PROBE_BED_POSITION;
  2649. xInc = xGridSpacing;
  2650. zig = false;
  2651. } else // zag
  2652. {
  2653. xProbe = RIGHT_PROBE_BED_POSITION;
  2654. //xEnd = LEFT_PROBE_BED_POSITION;
  2655. xInc = -xGridSpacing;
  2656. zig = true;
  2657. }
  2658. for (int xCount=0; xCount < AUTO_BED_LEVELING_GRID_POINTS; xCount++)
  2659. {
  2660. float z_before;
  2661. if (probePointCounter == 0)
  2662. {
  2663. // raise before probing
  2664. z_before = Z_RAISE_BEFORE_PROBING;
  2665. } else
  2666. {
  2667. // raise extruder
  2668. z_before = current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS;
  2669. }
  2670. float measured_z = probe_pt(xProbe, yProbe, z_before);
  2671. eqnBVector[probePointCounter] = measured_z;
  2672. eqnAMatrix[probePointCounter + 0*AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS] = xProbe;
  2673. eqnAMatrix[probePointCounter + 1*AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS] = yProbe;
  2674. eqnAMatrix[probePointCounter + 2*AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS] = 1;
  2675. probePointCounter++;
  2676. xProbe += xInc;
  2677. }
  2678. }
  2679. clean_up_after_endstop_move();
  2680. // solve lsq problem
  2681. double *plane_equation_coefficients = qr_solve(AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS, 3, eqnAMatrix, eqnBVector);
  2682. SERIAL_PROTOCOLPGM("Eqn coefficients: a: ");
  2683. SERIAL_PROTOCOL(plane_equation_coefficients[0]);
  2684. SERIAL_PROTOCOLPGM(" b: ");
  2685. SERIAL_PROTOCOL(plane_equation_coefficients[1]);
  2686. SERIAL_PROTOCOLPGM(" d: ");
  2687. SERIAL_PROTOCOLLN(plane_equation_coefficients[2]);
  2688. set_bed_level_equation_lsq(plane_equation_coefficients);
  2689. free(plane_equation_coefficients);
  2690. #else // AUTO_BED_LEVELING_GRID not defined
  2691. // Probe at 3 arbitrary points
  2692. // probe 1
  2693. float z_at_pt_1 = probe_pt(ABL_PROBE_PT_1_X, ABL_PROBE_PT_1_Y, Z_RAISE_BEFORE_PROBING);
  2694. // probe 2
  2695. float z_at_pt_2 = probe_pt(ABL_PROBE_PT_2_X, ABL_PROBE_PT_2_Y, current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS);
  2696. // probe 3
  2697. float z_at_pt_3 = probe_pt(ABL_PROBE_PT_3_X, ABL_PROBE_PT_3_Y, current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS);
  2698. clean_up_after_endstop_move();
  2699. set_bed_level_equation_3pts(z_at_pt_1, z_at_pt_2, z_at_pt_3);
  2700. #endif // AUTO_BED_LEVELING_GRID
  2701. st_synchronize();
  2702. // The following code correct the Z height difference from z-probe position and hotend tip position.
  2703. // The Z height on homing is measured by Z-Probe, but the probe is quite far from the hotend.
  2704. // When the bed is uneven, this height must be corrected.
  2705. real_z = float(st_get_position(Z_AXIS))/axis_steps_per_unit[Z_AXIS]; //get the real Z (since the auto bed leveling is already correcting the plane)
  2706. x_tmp = current_position[X_AXIS] + X_PROBE_OFFSET_FROM_EXTRUDER;
  2707. y_tmp = current_position[Y_AXIS] + Y_PROBE_OFFSET_FROM_EXTRUDER;
  2708. z_tmp = current_position[Z_AXIS];
  2709. apply_rotation_xyz(plan_bed_level_matrix, x_tmp, y_tmp, z_tmp); //Apply the correction sending the probe offset
  2710. current_position[Z_AXIS] = z_tmp - real_z + current_position[Z_AXIS]; //The difference is added to current position and sent to planner.
  2711. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2712. }
  2713. break;
  2714. #ifndef Z_PROBE_SLED
  2715. case 30: // G30 Single Z Probe
  2716. {
  2717. st_synchronize();
  2718. // TODO: make sure the bed_level_rotation_matrix is identity or the planner will get set incorectly
  2719. setup_for_endstop_move();
  2720. feedrate = homing_feedrate[Z_AXIS];
  2721. run_z_probe();
  2722. SERIAL_PROTOCOLPGM(MSG_BED);
  2723. SERIAL_PROTOCOLPGM(" X: ");
  2724. SERIAL_PROTOCOL(current_position[X_AXIS]);
  2725. SERIAL_PROTOCOLPGM(" Y: ");
  2726. SERIAL_PROTOCOL(current_position[Y_AXIS]);
  2727. SERIAL_PROTOCOLPGM(" Z: ");
  2728. SERIAL_PROTOCOL(current_position[Z_AXIS]);
  2729. SERIAL_PROTOCOLPGM("\n");
  2730. clean_up_after_endstop_move();
  2731. }
  2732. break;
  2733. #else
  2734. case 31: // dock the sled
  2735. dock_sled(true);
  2736. break;
  2737. case 32: // undock the sled
  2738. dock_sled(false);
  2739. break;
  2740. #endif // Z_PROBE_SLED
  2741. #endif // ENABLE_AUTO_BED_LEVELING
  2742. #ifdef MESH_BED_LEVELING
  2743. case 30: // G30 Single Z Probe
  2744. {
  2745. st_synchronize();
  2746. // TODO: make sure the bed_level_rotation_matrix is identity or the planner will get set incorectly
  2747. setup_for_endstop_move();
  2748. feedrate = homing_feedrate[Z_AXIS];
  2749. find_bed_induction_sensor_point_z(-10.f, 3);
  2750. SERIAL_PROTOCOLRPGM(MSG_BED);
  2751. SERIAL_PROTOCOLPGM(" X: ");
  2752. MYSERIAL.print(current_position[X_AXIS], 5);
  2753. SERIAL_PROTOCOLPGM(" Y: ");
  2754. MYSERIAL.print(current_position[Y_AXIS], 5);
  2755. SERIAL_PROTOCOLPGM(" Z: ");
  2756. MYSERIAL.print(current_position[Z_AXIS], 5);
  2757. SERIAL_PROTOCOLPGM("\n");
  2758. clean_up_after_endstop_move();
  2759. }
  2760. break;
  2761. case 75:
  2762. {
  2763. for (int i = 40; i <= 110; i++) {
  2764. MYSERIAL.print(i);
  2765. MYSERIAL.print(" ");
  2766. MYSERIAL.println(temp_comp_interpolation(i));// / axis_steps_per_unit[Z_AXIS]);
  2767. }
  2768. }
  2769. break;
  2770. case 76: //PINDA probe temperature calibration
  2771. {
  2772. #ifdef PINDA_THERMISTOR
  2773. if (true)
  2774. {
  2775. if (!(axis_known_position[X_AXIS] && axis_known_position[Y_AXIS] && axis_known_position[Z_AXIS]))
  2776. {
  2777. // We don't know where we are! HOME!
  2778. // Push the commands to the front of the message queue in the reverse order!
  2779. // There shall be always enough space reserved for these commands.
  2780. repeatcommand_front(); // repeat G76 with all its parameters
  2781. enquecommand_front_P((PSTR("G28 W0")));
  2782. break;
  2783. }
  2784. lcd_show_fullscreen_message_and_wait_P(MSG_TEMP_CAL_WARNING);
  2785. bool result = lcd_show_fullscreen_message_yes_no_and_wait_P(MSG_STEEL_SHEET_CHECK, false, false);
  2786. if (result)
  2787. {
  2788. current_position[Z_AXIS] = 50;
  2789. current_position[Y_AXIS] = 190;
  2790. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  2791. st_synchronize();
  2792. lcd_show_fullscreen_message_and_wait_P(MSG_REMOVE_STEEL_SHEET);
  2793. }
  2794. lcd_update_enable(true);
  2795. KEEPALIVE_STATE(NOT_BUSY); //no need to print busy messages as we print current temperatures periodicaly
  2796. SERIAL_ECHOLNPGM("PINDA probe calibration start");
  2797. float zero_z;
  2798. int z_shift = 0; //unit: steps
  2799. float start_temp = 5 * (int)(current_temperature_pinda / 5);
  2800. if (start_temp < 35) start_temp = 35;
  2801. if (start_temp < current_temperature_pinda) start_temp += 5;
  2802. SERIAL_ECHOPGM("start temperature: ");
  2803. MYSERIAL.println(start_temp);
  2804. // setTargetHotend(200, 0);
  2805. setTargetBed(70 + (start_temp - 30));
  2806. custom_message = true;
  2807. custom_message_type = 4;
  2808. custom_message_state = 1;
  2809. custom_message = MSG_TEMP_CALIBRATION;
  2810. current_position[X_AXIS] = PINDA_PREHEAT_X;
  2811. current_position[Y_AXIS] = PINDA_PREHEAT_Y;
  2812. current_position[Z_AXIS] = PINDA_PREHEAT_Z;
  2813. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  2814. st_synchronize();
  2815. while (current_temperature_pinda < start_temp)
  2816. {
  2817. delay_keep_alive(1000);
  2818. serialecho_temperatures();
  2819. }
  2820. eeprom_update_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 0); //invalidate temp. calibration in case that in will be aborted during the calibration process
  2821. current_position[Z_AXIS] = 5;
  2822. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  2823. current_position[X_AXIS] = pgm_read_float(bed_ref_points);
  2824. current_position[Y_AXIS] = pgm_read_float(bed_ref_points + 1);
  2825. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  2826. st_synchronize();
  2827. find_bed_induction_sensor_point_z(-1.f);
  2828. zero_z = current_position[Z_AXIS];
  2829. //current_position[Z_AXIS]
  2830. SERIAL_ECHOLNPGM("");
  2831. SERIAL_ECHOPGM("ZERO: ");
  2832. MYSERIAL.print(current_position[Z_AXIS]);
  2833. SERIAL_ECHOLNPGM("");
  2834. int i = -1; for (; i < 5; i++)
  2835. {
  2836. float temp = (40 + i * 5);
  2837. SERIAL_ECHOPGM("Step: ");
  2838. MYSERIAL.print(i + 2);
  2839. SERIAL_ECHOLNPGM("/6 (skipped)");
  2840. SERIAL_ECHOPGM("PINDA temperature: ");
  2841. MYSERIAL.print((40 + i*5));
  2842. SERIAL_ECHOPGM(" Z shift (mm):");
  2843. MYSERIAL.print(0);
  2844. SERIAL_ECHOLNPGM("");
  2845. if (i >= 0) EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + i * 2, &z_shift);
  2846. if (start_temp <= temp) break;
  2847. }
  2848. for (i++; i < 5; i++)
  2849. {
  2850. float temp = (40 + i * 5);
  2851. SERIAL_ECHOPGM("Step: ");
  2852. MYSERIAL.print(i + 2);
  2853. SERIAL_ECHOLNPGM("/6");
  2854. custom_message_state = i + 2;
  2855. setTargetBed(50 + 10 * (temp - 30) / 5);
  2856. // setTargetHotend(255, 0);
  2857. current_position[X_AXIS] = PINDA_PREHEAT_X;
  2858. current_position[Y_AXIS] = PINDA_PREHEAT_Y;
  2859. current_position[Z_AXIS] = PINDA_PREHEAT_Z;
  2860. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  2861. st_synchronize();
  2862. while (current_temperature_pinda < temp)
  2863. {
  2864. delay_keep_alive(1000);
  2865. serialecho_temperatures();
  2866. }
  2867. current_position[Z_AXIS] = 5;
  2868. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  2869. current_position[X_AXIS] = pgm_read_float(bed_ref_points);
  2870. current_position[Y_AXIS] = pgm_read_float(bed_ref_points + 1);
  2871. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  2872. st_synchronize();
  2873. find_bed_induction_sensor_point_z(-1.f);
  2874. z_shift = (int)((current_position[Z_AXIS] - zero_z)*axis_steps_per_unit[Z_AXIS]);
  2875. SERIAL_ECHOLNPGM("");
  2876. SERIAL_ECHOPGM("PINDA temperature: ");
  2877. MYSERIAL.print(current_temperature_pinda);
  2878. SERIAL_ECHOPGM(" Z shift (mm):");
  2879. MYSERIAL.print(current_position[Z_AXIS] - zero_z);
  2880. SERIAL_ECHOLNPGM("");
  2881. EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + i * 2, &z_shift);
  2882. }
  2883. custom_message_type = 0;
  2884. custom_message = false;
  2885. eeprom_update_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 1);
  2886. SERIAL_ECHOLNPGM("Temperature calibration done. Continue with pressing the knob.");
  2887. disable_x();
  2888. disable_y();
  2889. disable_z();
  2890. disable_e0();
  2891. disable_e1();
  2892. disable_e2();
  2893. setTargetBed(0); //set bed target temperature back to 0
  2894. // setTargetHotend(0,0); //set hotend target temperature back to 0
  2895. lcd_show_fullscreen_message_and_wait_P(MSG_TEMP_CALIBRATION_DONE);
  2896. lcd_update_enable(true);
  2897. lcd_update(2);
  2898. break;
  2899. }
  2900. #endif //PINDA_THERMISTOR
  2901. setTargetBed(PINDA_MIN_T);
  2902. float zero_z;
  2903. int z_shift = 0; //unit: steps
  2904. int t_c; // temperature
  2905. if (!(axis_known_position[X_AXIS] && axis_known_position[Y_AXIS] && axis_known_position[Z_AXIS])) {
  2906. // We don't know where we are! HOME!
  2907. // Push the commands to the front of the message queue in the reverse order!
  2908. // There shall be always enough space reserved for these commands.
  2909. repeatcommand_front(); // repeat G76 with all its parameters
  2910. enquecommand_front_P((PSTR("G28 W0")));
  2911. break;
  2912. }
  2913. SERIAL_ECHOLNPGM("PINDA probe calibration start");
  2914. custom_message = true;
  2915. custom_message_type = 4;
  2916. custom_message_state = 1;
  2917. custom_message = MSG_TEMP_CALIBRATION;
  2918. current_position[X_AXIS] = PINDA_PREHEAT_X;
  2919. current_position[Y_AXIS] = PINDA_PREHEAT_Y;
  2920. current_position[Z_AXIS] = PINDA_PREHEAT_Z;
  2921. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  2922. st_synchronize();
  2923. while (abs(degBed() - PINDA_MIN_T) > 1) {
  2924. delay_keep_alive(1000);
  2925. serialecho_temperatures();
  2926. }
  2927. //enquecommand_P(PSTR("M190 S50"));
  2928. for (int i = 0; i < PINDA_HEAT_T; i++) {
  2929. delay_keep_alive(1000);
  2930. serialecho_temperatures();
  2931. }
  2932. eeprom_update_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 0); //invalidate temp. calibration in case that in will be aborted during the calibration process
  2933. current_position[Z_AXIS] = 5;
  2934. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  2935. current_position[X_AXIS] = pgm_read_float(bed_ref_points);
  2936. current_position[Y_AXIS] = pgm_read_float(bed_ref_points + 1);
  2937. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  2938. st_synchronize();
  2939. find_bed_induction_sensor_point_z(-1.f);
  2940. zero_z = current_position[Z_AXIS];
  2941. //current_position[Z_AXIS]
  2942. SERIAL_ECHOLNPGM("");
  2943. SERIAL_ECHOPGM("ZERO: ");
  2944. MYSERIAL.print(current_position[Z_AXIS]);
  2945. SERIAL_ECHOLNPGM("");
  2946. for (int i = 0; i<5; i++) {
  2947. SERIAL_ECHOPGM("Step: ");
  2948. MYSERIAL.print(i+2);
  2949. SERIAL_ECHOLNPGM("/6");
  2950. custom_message_state = i + 2;
  2951. t_c = 60 + i * 10;
  2952. setTargetBed(t_c);
  2953. current_position[X_AXIS] = PINDA_PREHEAT_X;
  2954. current_position[Y_AXIS] = PINDA_PREHEAT_Y;
  2955. current_position[Z_AXIS] = PINDA_PREHEAT_Z;
  2956. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  2957. st_synchronize();
  2958. while (degBed() < t_c) {
  2959. delay_keep_alive(1000);
  2960. serialecho_temperatures();
  2961. }
  2962. for (int i = 0; i < PINDA_HEAT_T; i++) {
  2963. delay_keep_alive(1000);
  2964. serialecho_temperatures();
  2965. }
  2966. current_position[Z_AXIS] = 5;
  2967. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  2968. current_position[X_AXIS] = pgm_read_float(bed_ref_points);
  2969. current_position[Y_AXIS] = pgm_read_float(bed_ref_points + 1);
  2970. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  2971. st_synchronize();
  2972. find_bed_induction_sensor_point_z(-1.f);
  2973. z_shift = (int)((current_position[Z_AXIS] - zero_z)*axis_steps_per_unit[Z_AXIS]);
  2974. SERIAL_ECHOLNPGM("");
  2975. SERIAL_ECHOPGM("Temperature: ");
  2976. MYSERIAL.print(t_c);
  2977. SERIAL_ECHOPGM(" Z shift (mm):");
  2978. MYSERIAL.print(current_position[Z_AXIS] - zero_z);
  2979. SERIAL_ECHOLNPGM("");
  2980. EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + i*2, &z_shift);
  2981. }
  2982. custom_message_type = 0;
  2983. custom_message = false;
  2984. eeprom_update_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 1);
  2985. SERIAL_ECHOLNPGM("Temperature calibration done. Continue with pressing the knob.");
  2986. disable_x();
  2987. disable_y();
  2988. disable_z();
  2989. disable_e0();
  2990. disable_e1();
  2991. disable_e2();
  2992. setTargetBed(0); //set bed target temperature back to 0
  2993. lcd_show_fullscreen_message_and_wait_P(MSG_TEMP_CALIBRATION_DONE);
  2994. lcd_update_enable(true);
  2995. lcd_update(2);
  2996. }
  2997. break;
  2998. #ifdef DIS
  2999. case 77:
  3000. {
  3001. //G77 X200 Y150 XP100 YP15 XO10 Y015
  3002. //for 9 point mesh bed leveling G77 X203 Y196 XP3 YP3 XO0 YO0
  3003. //G77 X232 Y218 XP116 YP109 XO-11 YO0
  3004. float dimension_x = 40;
  3005. float dimension_y = 40;
  3006. int points_x = 40;
  3007. int points_y = 40;
  3008. float offset_x = 74;
  3009. float offset_y = 33;
  3010. if (code_seen('X')) dimension_x = code_value();
  3011. if (code_seen('Y')) dimension_y = code_value();
  3012. if (code_seen('XP')) points_x = code_value();
  3013. if (code_seen('YP')) points_y = code_value();
  3014. if (code_seen('XO')) offset_x = code_value();
  3015. if (code_seen('YO')) offset_y = code_value();
  3016. bed_analysis(dimension_x,dimension_y,points_x,points_y,offset_x,offset_y);
  3017. } break;
  3018. #endif
  3019. case 79: {
  3020. for (int i = 255; i > 0; i = i - 5) {
  3021. fanSpeed = i;
  3022. //delay_keep_alive(2000);
  3023. for (int j = 0; j < 100; j++) {
  3024. delay_keep_alive(100);
  3025. }
  3026. fan_speed[1];
  3027. MYSERIAL.print(i); SERIAL_ECHOPGM(": "); MYSERIAL.println(fan_speed[1]);
  3028. }
  3029. }break;
  3030. /**
  3031. * G80: Mesh-based Z probe, probes a grid and produces a
  3032. * mesh to compensate for variable bed height
  3033. *
  3034. * The S0 report the points as below
  3035. *
  3036. * +----> X-axis
  3037. * |
  3038. * |
  3039. * v Y-axis
  3040. *
  3041. */
  3042. case 80:
  3043. #ifdef MK1BP
  3044. break;
  3045. #endif //MK1BP
  3046. case_G80:
  3047. {
  3048. mesh_bed_leveling_flag = true;
  3049. int8_t verbosity_level = 0;
  3050. static bool run = false;
  3051. if (code_seen('V')) {
  3052. // Just 'V' without a number counts as V1.
  3053. char c = strchr_pointer[1];
  3054. verbosity_level = (c == ' ' || c == '\t' || c == 0) ? 1 : code_value_short();
  3055. }
  3056. // Firstly check if we know where we are
  3057. if (!(axis_known_position[X_AXIS] && axis_known_position[Y_AXIS] && axis_known_position[Z_AXIS])) {
  3058. // We don't know where we are! HOME!
  3059. // Push the commands to the front of the message queue in the reverse order!
  3060. // There shall be always enough space reserved for these commands.
  3061. if (lcd_commands_type != LCD_COMMAND_STOP_PRINT) {
  3062. repeatcommand_front(); // repeat G80 with all its parameters
  3063. enquecommand_front_P((PSTR("G28 W0")));
  3064. }
  3065. else {
  3066. mesh_bed_leveling_flag = false;
  3067. }
  3068. break;
  3069. }
  3070. bool temp_comp_start = true;
  3071. #ifdef PINDA_THERMISTOR
  3072. temp_comp_start = false;
  3073. #endif //PINDA_THERMISTOR
  3074. if (temp_comp_start)
  3075. if (run == false && temp_cal_active == true && calibration_status_pinda() == true && target_temperature_bed >= 50) {
  3076. if (lcd_commands_type != LCD_COMMAND_STOP_PRINT) {
  3077. temp_compensation_start();
  3078. run = true;
  3079. repeatcommand_front(); // repeat G80 with all its parameters
  3080. enquecommand_front_P((PSTR("G28 W0")));
  3081. }
  3082. else {
  3083. mesh_bed_leveling_flag = false;
  3084. }
  3085. break;
  3086. }
  3087. run = false;
  3088. if (lcd_commands_type == LCD_COMMAND_STOP_PRINT) {
  3089. mesh_bed_leveling_flag = false;
  3090. break;
  3091. }
  3092. // Save custom message state, set a new custom message state to display: Calibrating point 9.
  3093. bool custom_message_old = custom_message;
  3094. unsigned int custom_message_type_old = custom_message_type;
  3095. unsigned int custom_message_state_old = custom_message_state;
  3096. custom_message = true;
  3097. custom_message_type = 1;
  3098. custom_message_state = (MESH_MEAS_NUM_X_POINTS * MESH_MEAS_NUM_Y_POINTS) + 10;
  3099. lcd_update(1);
  3100. mbl.reset(); //reset mesh bed leveling
  3101. // Reset baby stepping to zero, if the babystepping has already been loaded before. The babystepsTodo value will be
  3102. // consumed during the first movements following this statement.
  3103. babystep_undo();
  3104. // Cycle through all points and probe them
  3105. // First move up. During this first movement, the babystepping will be reverted.
  3106. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3107. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[Z_AXIS] / 60, active_extruder);
  3108. // The move to the first calibration point.
  3109. current_position[X_AXIS] = pgm_read_float(bed_ref_points);
  3110. current_position[Y_AXIS] = pgm_read_float(bed_ref_points + 1);
  3111. bool clamped = world2machine_clamp(current_position[X_AXIS], current_position[Y_AXIS]);
  3112. #ifdef SUPPORT_VERBOSITY
  3113. if (verbosity_level >= 1) {
  3114. clamped ? SERIAL_PROTOCOLPGM("First calibration point clamped.\n") : SERIAL_PROTOCOLPGM("No clamping for first calibration point.\n");
  3115. }
  3116. #endif //SUPPORT_VERBOSITY
  3117. // mbl.get_meas_xy(0, 0, current_position[X_AXIS], current_position[Y_AXIS], false);
  3118. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[X_AXIS] / 30, active_extruder);
  3119. // Wait until the move is finished.
  3120. st_synchronize();
  3121. int mesh_point = 0; //index number of calibration point
  3122. int ix = 0;
  3123. int iy = 0;
  3124. int XY_AXIS_FEEDRATE = homing_feedrate[X_AXIS] / 20;
  3125. int Z_PROBE_FEEDRATE = homing_feedrate[Z_AXIS] / 60;
  3126. int Z_LIFT_FEEDRATE = homing_feedrate[Z_AXIS] / 40;
  3127. bool has_z = is_bed_z_jitter_data_valid(); //checks if we have data from Z calibration (offsets of the Z heiths of the 8 calibration points from the first point)
  3128. #ifdef SUPPORT_VERBOSITY
  3129. if (verbosity_level >= 1) {
  3130. has_z ? SERIAL_PROTOCOLPGM("Z jitter data from Z cal. valid.\n") : SERIAL_PROTOCOLPGM("Z jitter data from Z cal. not valid.\n");
  3131. }
  3132. #endif // SUPPORT_VERBOSITY
  3133. setup_for_endstop_move(false); //save feedrate and feedmultiply, sets feedmultiply to 100
  3134. const char *kill_message = NULL;
  3135. while (mesh_point != MESH_MEAS_NUM_X_POINTS * MESH_MEAS_NUM_Y_POINTS) {
  3136. // Get coords of a measuring point.
  3137. ix = mesh_point % MESH_MEAS_NUM_X_POINTS; // from 0 to MESH_NUM_X_POINTS - 1
  3138. iy = mesh_point / MESH_MEAS_NUM_X_POINTS;
  3139. if (iy & 1) ix = (MESH_MEAS_NUM_X_POINTS - 1) - ix; // Zig zag
  3140. float z0 = 0.f;
  3141. if (has_z && mesh_point > 0) {
  3142. uint16_t z_offset_u = eeprom_read_word((uint16_t*)(EEPROM_BED_CALIBRATION_Z_JITTER + 2 * (ix + iy * 3 - 1)));
  3143. z0 = mbl.z_values[0][0] + *reinterpret_cast<int16_t*>(&z_offset_u) * 0.01;
  3144. //#if 0
  3145. #ifdef SUPPORT_VERBOSITY
  3146. if (verbosity_level >= 1) {
  3147. SERIAL_ECHOLNPGM("");
  3148. SERIAL_ECHOPGM("Bed leveling, point: ");
  3149. MYSERIAL.print(mesh_point);
  3150. SERIAL_ECHOPGM(", calibration z: ");
  3151. MYSERIAL.print(z0, 5);
  3152. SERIAL_ECHOLNPGM("");
  3153. }
  3154. #endif // SUPPORT_VERBOSITY
  3155. //#endif
  3156. }
  3157. // Move Z up to MESH_HOME_Z_SEARCH.
  3158. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3159. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], Z_LIFT_FEEDRATE, active_extruder);
  3160. st_synchronize();
  3161. // Move to XY position of the sensor point.
  3162. current_position[X_AXIS] = pgm_read_float(bed_ref_points + 2 * mesh_point);
  3163. current_position[Y_AXIS] = pgm_read_float(bed_ref_points + 2 * mesh_point + 1);
  3164. world2machine_clamp(current_position[X_AXIS], current_position[Y_AXIS]);
  3165. #ifdef SUPPORT_VERBOSITY
  3166. if (verbosity_level >= 1) {
  3167. SERIAL_PROTOCOL(mesh_point);
  3168. clamped ? SERIAL_PROTOCOLPGM(": xy clamped.\n") : SERIAL_PROTOCOLPGM(": no xy clamping\n");
  3169. }
  3170. #endif // SUPPORT_VERBOSITY
  3171. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], XY_AXIS_FEEDRATE, active_extruder);
  3172. st_synchronize();
  3173. // Go down until endstop is hit
  3174. const float Z_CALIBRATION_THRESHOLD = 1.f;
  3175. if (!find_bed_induction_sensor_point_z((has_z && mesh_point > 0) ? z0 - Z_CALIBRATION_THRESHOLD : -10.f)) { //if we have data from z calibration max allowed difference is 1mm for each point, if we dont have data max difference is 10mm from initial point
  3176. kill_message = MSG_BED_LEVELING_FAILED_POINT_LOW;
  3177. break;
  3178. }
  3179. if (MESH_HOME_Z_SEARCH - current_position[Z_AXIS] < 0.1f) {
  3180. kill_message = MSG_BED_LEVELING_FAILED_PROBE_DISCONNECTED;
  3181. break;
  3182. }
  3183. if (has_z && fabs(z0 - current_position[Z_AXIS]) > Z_CALIBRATION_THRESHOLD) { //if we have data from z calibration, max. allowed difference is 1mm for each point
  3184. kill_message = MSG_BED_LEVELING_FAILED_POINT_HIGH;
  3185. break;
  3186. }
  3187. #ifdef SUPPORT_VERBOSITY
  3188. if (verbosity_level >= 10) {
  3189. SERIAL_ECHOPGM("X: ");
  3190. MYSERIAL.print(current_position[X_AXIS], 5);
  3191. SERIAL_ECHOLNPGM("");
  3192. SERIAL_ECHOPGM("Y: ");
  3193. MYSERIAL.print(current_position[Y_AXIS], 5);
  3194. SERIAL_PROTOCOLPGM("\n");
  3195. }
  3196. #endif // SUPPORT_VERBOSITY
  3197. float offset_z = 0;
  3198. #ifdef PINDA_THERMISTOR
  3199. offset_z = temp_compensation_pinda_thermistor_offset(current_temperature_pinda);
  3200. #endif //PINDA_THERMISTOR
  3201. // #ifdef SUPPORT_VERBOSITY
  3202. /* if (verbosity_level >= 1)
  3203. {
  3204. SERIAL_ECHOPGM("mesh bed leveling: ");
  3205. MYSERIAL.print(current_position[Z_AXIS], 5);
  3206. SERIAL_ECHOPGM(" offset: ");
  3207. MYSERIAL.print(offset_z, 5);
  3208. SERIAL_ECHOLNPGM("");
  3209. }*/
  3210. // #endif // SUPPORT_VERBOSITY
  3211. mbl.set_z(ix, iy, current_position[Z_AXIS] - offset_z); //store measured z values z_values[iy][ix] = z - offset_z;
  3212. custom_message_state--;
  3213. mesh_point++;
  3214. lcd_update(1);
  3215. }
  3216. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3217. #ifdef SUPPORT_VERBOSITY
  3218. if (verbosity_level >= 20) {
  3219. SERIAL_ECHOLNPGM("Mesh bed leveling while loop finished.");
  3220. SERIAL_ECHOLNPGM("MESH_HOME_Z_SEARCH: ");
  3221. MYSERIAL.print(current_position[Z_AXIS], 5);
  3222. }
  3223. #endif // SUPPORT_VERBOSITY
  3224. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], Z_LIFT_FEEDRATE, active_extruder);
  3225. st_synchronize();
  3226. if (mesh_point != MESH_MEAS_NUM_X_POINTS * MESH_MEAS_NUM_Y_POINTS) {
  3227. kill(kill_message);
  3228. SERIAL_ECHOLNPGM("killed");
  3229. }
  3230. clean_up_after_endstop_move();
  3231. // SERIAL_ECHOLNPGM("clean up finished ");
  3232. bool apply_temp_comp = true;
  3233. #ifdef PINDA_THERMISTOR
  3234. apply_temp_comp = false;
  3235. #endif
  3236. if (apply_temp_comp)
  3237. if(temp_cal_active == true && calibration_status_pinda() == true) temp_compensation_apply(); //apply PINDA temperature compensation
  3238. babystep_apply(); // Apply Z height correction aka baby stepping before mesh bed leveing gets activated.
  3239. // SERIAL_ECHOLNPGM("babystep applied");
  3240. bool eeprom_bed_correction_valid = eeprom_read_byte((unsigned char*)EEPROM_BED_CORRECTION_VALID) == 1;
  3241. #ifdef SUPPORT_VERBOSITY
  3242. if (verbosity_level >= 1) {
  3243. eeprom_bed_correction_valid ? SERIAL_PROTOCOLPGM("Bed correction data valid\n") : SERIAL_PROTOCOLPGM("Bed correction data not valid\n");
  3244. }
  3245. #endif // SUPPORT_VERBOSITY
  3246. for (uint8_t i = 0; i < 4; ++i) {
  3247. unsigned char codes[4] = { 'L', 'R', 'F', 'B' };
  3248. long correction = 0;
  3249. if (code_seen(codes[i]))
  3250. correction = code_value_long();
  3251. else if (eeprom_bed_correction_valid) {
  3252. unsigned char *addr = (i < 2) ?
  3253. ((i == 0) ? (unsigned char*)EEPROM_BED_CORRECTION_LEFT : (unsigned char*)EEPROM_BED_CORRECTION_RIGHT) :
  3254. ((i == 2) ? (unsigned char*)EEPROM_BED_CORRECTION_FRONT : (unsigned char*)EEPROM_BED_CORRECTION_REAR);
  3255. correction = eeprom_read_int8(addr);
  3256. }
  3257. if (correction == 0)
  3258. continue;
  3259. float offset = float(correction) * 0.001f;
  3260. if (fabs(offset) > 0.101f) {
  3261. SERIAL_ERROR_START;
  3262. SERIAL_ECHOPGM("Excessive bed leveling correction: ");
  3263. SERIAL_ECHO(offset);
  3264. SERIAL_ECHOLNPGM(" microns");
  3265. }
  3266. else {
  3267. switch (i) {
  3268. case 0:
  3269. for (uint8_t row = 0; row < 3; ++row) {
  3270. mbl.z_values[row][1] += 0.5f * offset;
  3271. mbl.z_values[row][0] += offset;
  3272. }
  3273. break;
  3274. case 1:
  3275. for (uint8_t row = 0; row < 3; ++row) {
  3276. mbl.z_values[row][1] += 0.5f * offset;
  3277. mbl.z_values[row][2] += offset;
  3278. }
  3279. break;
  3280. case 2:
  3281. for (uint8_t col = 0; col < 3; ++col) {
  3282. mbl.z_values[1][col] += 0.5f * offset;
  3283. mbl.z_values[0][col] += offset;
  3284. }
  3285. break;
  3286. case 3:
  3287. for (uint8_t col = 0; col < 3; ++col) {
  3288. mbl.z_values[1][col] += 0.5f * offset;
  3289. mbl.z_values[2][col] += offset;
  3290. }
  3291. break;
  3292. }
  3293. }
  3294. }
  3295. // SERIAL_ECHOLNPGM("Bed leveling correction finished");
  3296. mbl.upsample_3x3(); //bilinear interpolation from 3x3 to 7x7 points while using the same array z_values[iy][ix] for storing (just coppying measured data to new destination and interpolating between them)
  3297. // SERIAL_ECHOLNPGM("Upsample finished");
  3298. mbl.active = 1; //activate mesh bed leveling
  3299. // SERIAL_ECHOLNPGM("Mesh bed leveling activated");
  3300. go_home_with_z_lift();
  3301. // SERIAL_ECHOLNPGM("Go home finished");
  3302. //unretract (after PINDA preheat retraction)
  3303. if (degHotend(active_extruder) > EXTRUDE_MINTEMP && temp_cal_active == true && calibration_status_pinda() == true && target_temperature_bed >= 50) {
  3304. current_position[E_AXIS] += DEFAULT_RETRACTION;
  3305. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400, active_extruder);
  3306. }
  3307. KEEPALIVE_STATE(NOT_BUSY);
  3308. // Restore custom message state
  3309. custom_message = custom_message_old;
  3310. custom_message_type = custom_message_type_old;
  3311. custom_message_state = custom_message_state_old;
  3312. mesh_bed_leveling_flag = false;
  3313. mesh_bed_run_from_menu = false;
  3314. lcd_update(2);
  3315. }
  3316. break;
  3317. /**
  3318. * G81: Print mesh bed leveling status and bed profile if activated
  3319. */
  3320. case 81:
  3321. if (mbl.active) {
  3322. SERIAL_PROTOCOLPGM("Num X,Y: ");
  3323. SERIAL_PROTOCOL(MESH_NUM_X_POINTS);
  3324. SERIAL_PROTOCOLPGM(",");
  3325. SERIAL_PROTOCOL(MESH_NUM_Y_POINTS);
  3326. SERIAL_PROTOCOLPGM("\nZ search height: ");
  3327. SERIAL_PROTOCOL(MESH_HOME_Z_SEARCH);
  3328. SERIAL_PROTOCOLLNPGM("\nMeasured points:");
  3329. for (int y = MESH_NUM_Y_POINTS-1; y >= 0; y--) {
  3330. for (int x = 0; x < MESH_NUM_X_POINTS; x++) {
  3331. SERIAL_PROTOCOLPGM(" ");
  3332. SERIAL_PROTOCOL_F(mbl.z_values[y][x], 5);
  3333. }
  3334. SERIAL_PROTOCOLPGM("\n");
  3335. }
  3336. }
  3337. else
  3338. SERIAL_PROTOCOLLNPGM("Mesh bed leveling not active.");
  3339. break;
  3340. #if 0
  3341. /**
  3342. * G82: Single Z probe at current location
  3343. *
  3344. * WARNING! USE WITH CAUTION! If you'll try to probe where is no leveling pad, nasty things can happen!
  3345. *
  3346. */
  3347. case 82:
  3348. SERIAL_PROTOCOLLNPGM("Finding bed ");
  3349. setup_for_endstop_move();
  3350. find_bed_induction_sensor_point_z();
  3351. clean_up_after_endstop_move();
  3352. SERIAL_PROTOCOLPGM("Bed found at: ");
  3353. SERIAL_PROTOCOL_F(current_position[Z_AXIS], 5);
  3354. SERIAL_PROTOCOLPGM("\n");
  3355. break;
  3356. /**
  3357. * G83: Prusa3D specific: Babystep in Z and store to EEPROM
  3358. */
  3359. case 83:
  3360. {
  3361. int babystepz = code_seen('S') ? code_value() : 0;
  3362. int BabyPosition = code_seen('P') ? code_value() : 0;
  3363. if (babystepz != 0) {
  3364. //FIXME Vojtech: What shall be the index of the axis Z: 3 or 4?
  3365. // Is the axis indexed starting with zero or one?
  3366. if (BabyPosition > 4) {
  3367. SERIAL_PROTOCOLLNPGM("Index out of bounds");
  3368. }else{
  3369. // Save it to the eeprom
  3370. babystepLoadZ = babystepz;
  3371. EEPROM_save_B(EEPROM_BABYSTEP_Z0+(BabyPosition*2),&babystepLoadZ);
  3372. // adjust the Z
  3373. babystepsTodoZadd(babystepLoadZ);
  3374. }
  3375. }
  3376. }
  3377. break;
  3378. /**
  3379. * G84: Prusa3D specific: UNDO Babystep Z (move Z axis back)
  3380. */
  3381. case 84:
  3382. babystepsTodoZsubtract(babystepLoadZ);
  3383. // babystepLoadZ = 0;
  3384. break;
  3385. /**
  3386. * G85: Prusa3D specific: Pick best babystep
  3387. */
  3388. case 85:
  3389. lcd_pick_babystep();
  3390. break;
  3391. #endif
  3392. /**
  3393. * G86: Prusa3D specific: Disable babystep correction after home.
  3394. * This G-code will be performed at the start of a calibration script.
  3395. */
  3396. case 86:
  3397. calibration_status_store(CALIBRATION_STATUS_LIVE_ADJUST);
  3398. break;
  3399. /**
  3400. * G87: Prusa3D specific: Enable babystep correction after home
  3401. * This G-code will be performed at the end of a calibration script.
  3402. */
  3403. case 87:
  3404. calibration_status_store(CALIBRATION_STATUS_CALIBRATED);
  3405. break;
  3406. /**
  3407. * G88: Prusa3D specific: Don't know what it is for, it is in V2Calibration.gcode
  3408. */
  3409. case 88:
  3410. break;
  3411. #endif // ENABLE_MESH_BED_LEVELING
  3412. case 90: // G90
  3413. relative_mode = false;
  3414. break;
  3415. case 91: // G91
  3416. relative_mode = true;
  3417. break;
  3418. case 92: // G92
  3419. if(!code_seen(axis_codes[E_AXIS]))
  3420. st_synchronize();
  3421. for(int8_t i=0; i < NUM_AXIS; i++) {
  3422. if(code_seen(axis_codes[i])) {
  3423. if(i == E_AXIS) {
  3424. current_position[i] = code_value();
  3425. plan_set_e_position(current_position[E_AXIS]);
  3426. }
  3427. else {
  3428. current_position[i] = code_value()+add_homing[i];
  3429. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  3430. }
  3431. }
  3432. }
  3433. break;
  3434. case 98: //activate farm mode
  3435. farm_mode = 1;
  3436. PingTime = millis();
  3437. eeprom_update_byte((unsigned char *)EEPROM_FARM_MODE, farm_mode);
  3438. break;
  3439. case 99: //deactivate farm mode
  3440. farm_mode = 0;
  3441. lcd_printer_connected();
  3442. eeprom_update_byte((unsigned char *)EEPROM_FARM_MODE, farm_mode);
  3443. lcd_update(2);
  3444. break;
  3445. default:
  3446. printf_P(PSTR("Unknown G code: %s \n"), cmdbuffer + bufindr + CMDHDRSIZE);
  3447. }
  3448. } // end if(code_seen('G'))
  3449. else if(code_seen('M'))
  3450. {
  3451. int index;
  3452. for (index = 1; *(strchr_pointer + index) == ' ' || *(strchr_pointer + index) == '\t'; index++);
  3453. /*for (++strchr_pointer; *strchr_pointer == ' ' || *strchr_pointer == '\t'; ++strchr_pointer);*/
  3454. if (*(strchr_pointer+index) < '0' || *(strchr_pointer+index) > '9') {
  3455. printf_P(PSTR("Invalid M code: %s \n"), cmdbuffer + bufindr + CMDHDRSIZE);
  3456. } else
  3457. switch((int)code_value())
  3458. {
  3459. #ifdef ULTIPANEL
  3460. case 0: // M0 - Unconditional stop - Wait for user button press on LCD
  3461. case 1: // M1 - Conditional stop - Wait for user button press on LCD
  3462. {
  3463. char *src = strchr_pointer + 2;
  3464. codenum = 0;
  3465. bool hasP = false, hasS = false;
  3466. if (code_seen('P')) {
  3467. codenum = code_value(); // milliseconds to wait
  3468. hasP = codenum > 0;
  3469. }
  3470. if (code_seen('S')) {
  3471. codenum = code_value() * 1000; // seconds to wait
  3472. hasS = codenum > 0;
  3473. }
  3474. starpos = strchr(src, '*');
  3475. if (starpos != NULL) *(starpos) = '\0';
  3476. while (*src == ' ') ++src;
  3477. if (!hasP && !hasS && *src != '\0') {
  3478. lcd_setstatus(src);
  3479. } else {
  3480. LCD_MESSAGERPGM(MSG_USERWAIT);
  3481. }
  3482. lcd_ignore_click(); //call lcd_ignore_click aslo for else ???
  3483. st_synchronize();
  3484. previous_millis_cmd = millis();
  3485. if (codenum > 0){
  3486. codenum += millis(); // keep track of when we started waiting
  3487. KEEPALIVE_STATE(PAUSED_FOR_USER);
  3488. while(millis() < codenum && !lcd_clicked()){
  3489. manage_heater();
  3490. manage_inactivity(true);
  3491. lcd_update();
  3492. }
  3493. KEEPALIVE_STATE(IN_HANDLER);
  3494. lcd_ignore_click(false);
  3495. }else{
  3496. if (!lcd_detected())
  3497. break;
  3498. KEEPALIVE_STATE(PAUSED_FOR_USER);
  3499. while(!lcd_clicked()){
  3500. manage_heater();
  3501. manage_inactivity(true);
  3502. lcd_update();
  3503. }
  3504. KEEPALIVE_STATE(IN_HANDLER);
  3505. }
  3506. if (IS_SD_PRINTING)
  3507. LCD_MESSAGERPGM(MSG_RESUMING);
  3508. else
  3509. LCD_MESSAGERPGM(WELCOME_MSG);
  3510. }
  3511. break;
  3512. #endif
  3513. case 17:
  3514. LCD_MESSAGERPGM(MSG_NO_MOVE);
  3515. enable_x();
  3516. enable_y();
  3517. enable_z();
  3518. enable_e0();
  3519. enable_e1();
  3520. enable_e2();
  3521. break;
  3522. #ifdef SDSUPPORT
  3523. case 20: // M20 - list SD card
  3524. SERIAL_PROTOCOLLNRPGM(MSG_BEGIN_FILE_LIST);
  3525. card.ls();
  3526. SERIAL_PROTOCOLLNRPGM(MSG_END_FILE_LIST);
  3527. break;
  3528. case 21: // M21 - init SD card
  3529. card.initsd();
  3530. break;
  3531. case 22: //M22 - release SD card
  3532. card.release();
  3533. break;
  3534. case 23: //M23 - Select file
  3535. starpos = (strchr(strchr_pointer + 4,'*'));
  3536. if(starpos!=NULL)
  3537. *(starpos)='\0';
  3538. card.openFile(strchr_pointer + 4,true);
  3539. break;
  3540. case 24: //M24 - Start SD print
  3541. if (!card.paused)
  3542. failstats_reset_print();
  3543. card.startFileprint();
  3544. starttime=millis();
  3545. break;
  3546. case 25: //M25 - Pause SD print
  3547. card.pauseSDPrint();
  3548. break;
  3549. case 26: //M26 - Set SD index
  3550. if(card.cardOK && code_seen('S')) {
  3551. card.setIndex(code_value_long());
  3552. }
  3553. break;
  3554. case 27: //M27 - Get SD status
  3555. card.getStatus();
  3556. break;
  3557. case 28: //M28 - Start SD write
  3558. starpos = (strchr(strchr_pointer + 4,'*'));
  3559. if(starpos != NULL){
  3560. char* npos = strchr(CMDBUFFER_CURRENT_STRING, 'N');
  3561. strchr_pointer = strchr(npos,' ') + 1;
  3562. *(starpos) = '\0';
  3563. }
  3564. card.openFile(strchr_pointer+4,false);
  3565. break;
  3566. case 29: //M29 - Stop SD write
  3567. //processed in write to file routine above
  3568. //card,saving = false;
  3569. break;
  3570. case 30: //M30 <filename> Delete File
  3571. if (card.cardOK){
  3572. card.closefile();
  3573. starpos = (strchr(strchr_pointer + 4,'*'));
  3574. if(starpos != NULL){
  3575. char* npos = strchr(CMDBUFFER_CURRENT_STRING, 'N');
  3576. strchr_pointer = strchr(npos,' ') + 1;
  3577. *(starpos) = '\0';
  3578. }
  3579. card.removeFile(strchr_pointer + 4);
  3580. }
  3581. break;
  3582. case 32: //M32 - Select file and start SD print
  3583. {
  3584. if(card.sdprinting) {
  3585. st_synchronize();
  3586. }
  3587. starpos = (strchr(strchr_pointer + 4,'*'));
  3588. char* namestartpos = (strchr(strchr_pointer + 4,'!')); //find ! to indicate filename string start.
  3589. if(namestartpos==NULL)
  3590. {
  3591. namestartpos=strchr_pointer + 4; //default name position, 4 letters after the M
  3592. }
  3593. else
  3594. namestartpos++; //to skip the '!'
  3595. if(starpos!=NULL)
  3596. *(starpos)='\0';
  3597. bool call_procedure=(code_seen('P'));
  3598. if(strchr_pointer>namestartpos)
  3599. call_procedure=false; //false alert, 'P' found within filename
  3600. if( card.cardOK )
  3601. {
  3602. card.openFile(namestartpos,true,!call_procedure);
  3603. if(code_seen('S'))
  3604. if(strchr_pointer<namestartpos) //only if "S" is occuring _before_ the filename
  3605. card.setIndex(code_value_long());
  3606. card.startFileprint();
  3607. if(!call_procedure)
  3608. starttime=millis(); //procedure calls count as normal print time.
  3609. }
  3610. } break;
  3611. case 928: //M928 - Start SD write
  3612. starpos = (strchr(strchr_pointer + 5,'*'));
  3613. if(starpos != NULL){
  3614. char* npos = strchr(CMDBUFFER_CURRENT_STRING, 'N');
  3615. strchr_pointer = strchr(npos,' ') + 1;
  3616. *(starpos) = '\0';
  3617. }
  3618. card.openLogFile(strchr_pointer+5);
  3619. break;
  3620. #endif //SDSUPPORT
  3621. case 31: //M31 take time since the start of the SD print or an M109 command
  3622. {
  3623. stoptime=millis();
  3624. char time[30];
  3625. unsigned long t=(stoptime-starttime)/1000;
  3626. int sec,min;
  3627. min=t/60;
  3628. sec=t%60;
  3629. sprintf_P(time, PSTR("%i min, %i sec"), min, sec);
  3630. SERIAL_ECHO_START;
  3631. SERIAL_ECHOLN(time);
  3632. lcd_setstatus(time);
  3633. autotempShutdown();
  3634. }
  3635. break;
  3636. #ifndef _DISABLE_M42_M226
  3637. case 42: //M42 -Change pin status via gcode
  3638. if (code_seen('S'))
  3639. {
  3640. int pin_status = code_value();
  3641. int pin_number = LED_PIN;
  3642. if (code_seen('P') && pin_status >= 0 && pin_status <= 255)
  3643. pin_number = code_value();
  3644. for(int8_t i = 0; i < (int8_t)(sizeof(sensitive_pins)/sizeof(int)); i++)
  3645. {
  3646. if (sensitive_pins[i] == pin_number)
  3647. {
  3648. pin_number = -1;
  3649. break;
  3650. }
  3651. }
  3652. #if defined(FAN_PIN) && FAN_PIN > -1
  3653. if (pin_number == FAN_PIN)
  3654. fanSpeed = pin_status;
  3655. #endif
  3656. if (pin_number > -1)
  3657. {
  3658. pinMode(pin_number, OUTPUT);
  3659. digitalWrite(pin_number, pin_status);
  3660. analogWrite(pin_number, pin_status);
  3661. }
  3662. }
  3663. break;
  3664. #endif //_DISABLE_M42_M226
  3665. case 44: // M44: Prusa3D: Reset the bed skew and offset calibration.
  3666. // Reset the baby step value and the baby step applied flag.
  3667. calibration_status_store(CALIBRATION_STATUS_ASSEMBLED);
  3668. eeprom_update_word((uint16_t*)EEPROM_BABYSTEP_Z, 0);
  3669. // Reset the skew and offset in both RAM and EEPROM.
  3670. reset_bed_offset_and_skew();
  3671. // Reset world2machine_rotation_and_skew and world2machine_shift, therefore
  3672. // the planner will not perform any adjustments in the XY plane.
  3673. // Wait for the motors to stop and update the current position with the absolute values.
  3674. world2machine_revert_to_uncorrected();
  3675. break;
  3676. case 45: // M45: Prusa3D: bed skew and offset with manual Z up
  3677. {
  3678. bool only_Z = code_seen('Z');
  3679. gcode_M45(only_Z);
  3680. }
  3681. break;
  3682. /*
  3683. case 46:
  3684. {
  3685. // M46: Prusa3D: Show the assigned IP address.
  3686. uint8_t ip[4];
  3687. bool hasIP = card.ToshibaFlashAir_GetIP(ip);
  3688. if (hasIP) {
  3689. SERIAL_ECHOPGM("Toshiba FlashAir current IP: ");
  3690. SERIAL_ECHO(int(ip[0]));
  3691. SERIAL_ECHOPGM(".");
  3692. SERIAL_ECHO(int(ip[1]));
  3693. SERIAL_ECHOPGM(".");
  3694. SERIAL_ECHO(int(ip[2]));
  3695. SERIAL_ECHOPGM(".");
  3696. SERIAL_ECHO(int(ip[3]));
  3697. SERIAL_ECHOLNPGM("");
  3698. } else {
  3699. SERIAL_ECHOLNPGM("Toshiba FlashAir GetIP failed");
  3700. }
  3701. break;
  3702. }
  3703. */
  3704. case 47:
  3705. // M47: Prusa3D: Show end stops dialog on the display.
  3706. KEEPALIVE_STATE(PAUSED_FOR_USER);
  3707. lcd_diag_show_end_stops();
  3708. KEEPALIVE_STATE(IN_HANDLER);
  3709. break;
  3710. #if 0
  3711. case 48: // M48: scan the bed induction sensor points, print the sensor trigger coordinates to the serial line for visualization on the PC.
  3712. {
  3713. // Disable the default update procedure of the display. We will do a modal dialog.
  3714. lcd_update_enable(false);
  3715. // Let the planner use the uncorrected coordinates.
  3716. mbl.reset();
  3717. // Reset world2machine_rotation_and_skew and world2machine_shift, therefore
  3718. // the planner will not perform any adjustments in the XY plane.
  3719. // Wait for the motors to stop and update the current position with the absolute values.
  3720. world2machine_revert_to_uncorrected();
  3721. // Move the print head close to the bed.
  3722. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3723. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS],current_position[Z_AXIS] , current_position[E_AXIS], homing_feedrate[Z_AXIS]/40, active_extruder);
  3724. st_synchronize();
  3725. // Home in the XY plane.
  3726. set_destination_to_current();
  3727. setup_for_endstop_move();
  3728. home_xy();
  3729. int8_t verbosity_level = 0;
  3730. if (code_seen('V')) {
  3731. // Just 'V' without a number counts as V1.
  3732. char c = strchr_pointer[1];
  3733. verbosity_level = (c == ' ' || c == '\t' || c == 0) ? 1 : code_value_short();
  3734. }
  3735. bool success = scan_bed_induction_points(verbosity_level);
  3736. clean_up_after_endstop_move();
  3737. // Print head up.
  3738. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3739. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS],current_position[Z_AXIS] , current_position[E_AXIS], homing_feedrate[Z_AXIS]/40, active_extruder);
  3740. st_synchronize();
  3741. lcd_update_enable(true);
  3742. break;
  3743. }
  3744. #endif
  3745. // M48 Z-Probe repeatability measurement function.
  3746. //
  3747. // Usage: M48 <n #_samples> <X X_position_for_samples> <Y Y_position_for_samples> <V Verbose_Level> <L legs_of_movement_prior_to_doing_probe>
  3748. //
  3749. // This function assumes the bed has been homed. Specificaly, that a G28 command
  3750. // as been issued prior to invoking the M48 Z-Probe repeatability measurement function.
  3751. // Any information generated by a prior G29 Bed leveling command will be lost and need to be
  3752. // regenerated.
  3753. //
  3754. // The number of samples will default to 10 if not specified. You can use upper or lower case
  3755. // letters for any of the options EXCEPT n. n must be in lower case because Marlin uses a capital
  3756. // N for its communication protocol and will get horribly confused if you send it a capital N.
  3757. //
  3758. #ifdef ENABLE_AUTO_BED_LEVELING
  3759. #ifdef Z_PROBE_REPEATABILITY_TEST
  3760. case 48: // M48 Z-Probe repeatability
  3761. {
  3762. #if Z_MIN_PIN == -1
  3763. #error "You must have a Z_MIN endstop in order to enable calculation of Z-Probe repeatability."
  3764. #endif
  3765. double sum=0.0;
  3766. double mean=0.0;
  3767. double sigma=0.0;
  3768. double sample_set[50];
  3769. int verbose_level=1, n=0, j, n_samples = 10, n_legs=0;
  3770. double X_current, Y_current, Z_current;
  3771. double X_probe_location, Y_probe_location, Z_start_location, ext_position;
  3772. if (code_seen('V') || code_seen('v')) {
  3773. verbose_level = code_value();
  3774. if (verbose_level<0 || verbose_level>4 ) {
  3775. SERIAL_PROTOCOLPGM("?Verbose Level not plausable.\n");
  3776. goto Sigma_Exit;
  3777. }
  3778. }
  3779. if (verbose_level > 0) {
  3780. SERIAL_PROTOCOLPGM("M48 Z-Probe Repeatability test. Version 2.00\n");
  3781. SERIAL_PROTOCOLPGM("Full support at: http://3dprintboard.com/forum.php\n");
  3782. }
  3783. if (code_seen('n')) {
  3784. n_samples = code_value();
  3785. if (n_samples<4 || n_samples>50 ) {
  3786. SERIAL_PROTOCOLPGM("?Specified sample size not plausable.\n");
  3787. goto Sigma_Exit;
  3788. }
  3789. }
  3790. X_current = X_probe_location = st_get_position_mm(X_AXIS);
  3791. Y_current = Y_probe_location = st_get_position_mm(Y_AXIS);
  3792. Z_current = st_get_position_mm(Z_AXIS);
  3793. Z_start_location = st_get_position_mm(Z_AXIS) + Z_RAISE_BEFORE_PROBING;
  3794. ext_position = st_get_position_mm(E_AXIS);
  3795. if (code_seen('X') || code_seen('x') ) {
  3796. X_probe_location = code_value() - X_PROBE_OFFSET_FROM_EXTRUDER;
  3797. if (X_probe_location<X_MIN_POS || X_probe_location>X_MAX_POS ) {
  3798. SERIAL_PROTOCOLPGM("?Specified X position out of range.\n");
  3799. goto Sigma_Exit;
  3800. }
  3801. }
  3802. if (code_seen('Y') || code_seen('y') ) {
  3803. Y_probe_location = code_value() - Y_PROBE_OFFSET_FROM_EXTRUDER;
  3804. if (Y_probe_location<Y_MIN_POS || Y_probe_location>Y_MAX_POS ) {
  3805. SERIAL_PROTOCOLPGM("?Specified Y position out of range.\n");
  3806. goto Sigma_Exit;
  3807. }
  3808. }
  3809. if (code_seen('L') || code_seen('l') ) {
  3810. n_legs = code_value();
  3811. if ( n_legs==1 )
  3812. n_legs = 2;
  3813. if ( n_legs<0 || n_legs>15 ) {
  3814. SERIAL_PROTOCOLPGM("?Specified number of legs in movement not plausable.\n");
  3815. goto Sigma_Exit;
  3816. }
  3817. }
  3818. //
  3819. // Do all the preliminary setup work. First raise the probe.
  3820. //
  3821. st_synchronize();
  3822. plan_bed_level_matrix.set_to_identity();
  3823. plan_buffer_line( X_current, Y_current, Z_start_location,
  3824. ext_position,
  3825. homing_feedrate[Z_AXIS]/60,
  3826. active_extruder);
  3827. st_synchronize();
  3828. //
  3829. // Now get everything to the specified probe point So we can safely do a probe to
  3830. // get us close to the bed. If the Z-Axis is far from the bed, we don't want to
  3831. // use that as a starting point for each probe.
  3832. //
  3833. if (verbose_level > 2)
  3834. SERIAL_PROTOCOL("Positioning probe for the test.\n");
  3835. plan_buffer_line( X_probe_location, Y_probe_location, Z_start_location,
  3836. ext_position,
  3837. homing_feedrate[X_AXIS]/60,
  3838. active_extruder);
  3839. st_synchronize();
  3840. current_position[X_AXIS] = X_current = st_get_position_mm(X_AXIS);
  3841. current_position[Y_AXIS] = Y_current = st_get_position_mm(Y_AXIS);
  3842. current_position[Z_AXIS] = Z_current = st_get_position_mm(Z_AXIS);
  3843. current_position[E_AXIS] = ext_position = st_get_position_mm(E_AXIS);
  3844. //
  3845. // OK, do the inital probe to get us close to the bed.
  3846. // Then retrace the right amount and use that in subsequent probes
  3847. //
  3848. setup_for_endstop_move();
  3849. run_z_probe();
  3850. current_position[Z_AXIS] = Z_current = st_get_position_mm(Z_AXIS);
  3851. Z_start_location = st_get_position_mm(Z_AXIS) + Z_RAISE_BEFORE_PROBING;
  3852. plan_buffer_line( X_probe_location, Y_probe_location, Z_start_location,
  3853. ext_position,
  3854. homing_feedrate[X_AXIS]/60,
  3855. active_extruder);
  3856. st_synchronize();
  3857. current_position[Z_AXIS] = Z_current = st_get_position_mm(Z_AXIS);
  3858. for( n=0; n<n_samples; n++) {
  3859. do_blocking_move_to( X_probe_location, Y_probe_location, Z_start_location); // Make sure we are at the probe location
  3860. if ( n_legs) {
  3861. double radius=0.0, theta=0.0, x_sweep, y_sweep;
  3862. int rotational_direction, l;
  3863. rotational_direction = (unsigned long) millis() & 0x0001; // clockwise or counter clockwise
  3864. radius = (unsigned long) millis() % (long) (X_MAX_LENGTH/4); // limit how far out to go
  3865. theta = (float) ((unsigned long) millis() % (long) 360) / (360./(2*3.1415926)); // turn into radians
  3866. //SERIAL_ECHOPAIR("starting radius: ",radius);
  3867. //SERIAL_ECHOPAIR(" theta: ",theta);
  3868. //SERIAL_ECHOPAIR(" direction: ",rotational_direction);
  3869. //SERIAL_PROTOCOLLNPGM("");
  3870. for( l=0; l<n_legs-1; l++) {
  3871. if (rotational_direction==1)
  3872. theta += (float) ((unsigned long) millis() % (long) 20) / (360.0/(2*3.1415926)); // turn into radians
  3873. else
  3874. theta -= (float) ((unsigned long) millis() % (long) 20) / (360.0/(2*3.1415926)); // turn into radians
  3875. radius += (float) ( ((long) ((unsigned long) millis() % (long) 10)) - 5);
  3876. if ( radius<0.0 )
  3877. radius = -radius;
  3878. X_current = X_probe_location + cos(theta) * radius;
  3879. Y_current = Y_probe_location + sin(theta) * radius;
  3880. if ( X_current<X_MIN_POS) // Make sure our X & Y are sane
  3881. X_current = X_MIN_POS;
  3882. if ( X_current>X_MAX_POS)
  3883. X_current = X_MAX_POS;
  3884. if ( Y_current<Y_MIN_POS) // Make sure our X & Y are sane
  3885. Y_current = Y_MIN_POS;
  3886. if ( Y_current>Y_MAX_POS)
  3887. Y_current = Y_MAX_POS;
  3888. if (verbose_level>3 ) {
  3889. SERIAL_ECHOPAIR("x: ", X_current);
  3890. SERIAL_ECHOPAIR("y: ", Y_current);
  3891. SERIAL_PROTOCOLLNPGM("");
  3892. }
  3893. do_blocking_move_to( X_current, Y_current, Z_current );
  3894. }
  3895. do_blocking_move_to( X_probe_location, Y_probe_location, Z_start_location); // Go back to the probe location
  3896. }
  3897. setup_for_endstop_move();
  3898. run_z_probe();
  3899. sample_set[n] = current_position[Z_AXIS];
  3900. //
  3901. // Get the current mean for the data points we have so far
  3902. //
  3903. sum=0.0;
  3904. for( j=0; j<=n; j++) {
  3905. sum = sum + sample_set[j];
  3906. }
  3907. mean = sum / (double (n+1));
  3908. //
  3909. // Now, use that mean to calculate the standard deviation for the
  3910. // data points we have so far
  3911. //
  3912. sum=0.0;
  3913. for( j=0; j<=n; j++) {
  3914. sum = sum + (sample_set[j]-mean) * (sample_set[j]-mean);
  3915. }
  3916. sigma = sqrt( sum / (double (n+1)) );
  3917. if (verbose_level > 1) {
  3918. SERIAL_PROTOCOL(n+1);
  3919. SERIAL_PROTOCOL(" of ");
  3920. SERIAL_PROTOCOL(n_samples);
  3921. SERIAL_PROTOCOLPGM(" z: ");
  3922. SERIAL_PROTOCOL_F(current_position[Z_AXIS], 6);
  3923. }
  3924. if (verbose_level > 2) {
  3925. SERIAL_PROTOCOL(" mean: ");
  3926. SERIAL_PROTOCOL_F(mean,6);
  3927. SERIAL_PROTOCOL(" sigma: ");
  3928. SERIAL_PROTOCOL_F(sigma,6);
  3929. }
  3930. if (verbose_level > 0)
  3931. SERIAL_PROTOCOLPGM("\n");
  3932. plan_buffer_line( X_probe_location, Y_probe_location, Z_start_location,
  3933. current_position[E_AXIS], homing_feedrate[Z_AXIS]/60, active_extruder);
  3934. st_synchronize();
  3935. }
  3936. delay(1000);
  3937. clean_up_after_endstop_move();
  3938. // enable_endstops(true);
  3939. if (verbose_level > 0) {
  3940. SERIAL_PROTOCOLPGM("Mean: ");
  3941. SERIAL_PROTOCOL_F(mean, 6);
  3942. SERIAL_PROTOCOLPGM("\n");
  3943. }
  3944. SERIAL_PROTOCOLPGM("Standard Deviation: ");
  3945. SERIAL_PROTOCOL_F(sigma, 6);
  3946. SERIAL_PROTOCOLPGM("\n\n");
  3947. Sigma_Exit:
  3948. break;
  3949. }
  3950. #endif // Z_PROBE_REPEATABILITY_TEST
  3951. #endif // ENABLE_AUTO_BED_LEVELING
  3952. case 104: // M104
  3953. if(setTargetedHotend(104)){
  3954. break;
  3955. }
  3956. if (code_seen('S')) setTargetHotend(code_value(), tmp_extruder);
  3957. setWatch();
  3958. break;
  3959. case 112: // M112 -Emergency Stop
  3960. kill("", 3);
  3961. break;
  3962. case 140: // M140 set bed temp
  3963. if (code_seen('S')) setTargetBed(code_value());
  3964. break;
  3965. case 105 : // M105
  3966. if(setTargetedHotend(105)){
  3967. break;
  3968. }
  3969. #if defined(TEMP_0_PIN) && TEMP_0_PIN > -1
  3970. SERIAL_PROTOCOLPGM("ok T:");
  3971. SERIAL_PROTOCOL_F(degHotend(tmp_extruder),1);
  3972. SERIAL_PROTOCOLPGM(" /");
  3973. SERIAL_PROTOCOL_F(degTargetHotend(tmp_extruder),1);
  3974. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  3975. SERIAL_PROTOCOLPGM(" B:");
  3976. SERIAL_PROTOCOL_F(degBed(),1);
  3977. SERIAL_PROTOCOLPGM(" /");
  3978. SERIAL_PROTOCOL_F(degTargetBed(),1);
  3979. #endif //TEMP_BED_PIN
  3980. for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) {
  3981. SERIAL_PROTOCOLPGM(" T");
  3982. SERIAL_PROTOCOL(cur_extruder);
  3983. SERIAL_PROTOCOLPGM(":");
  3984. SERIAL_PROTOCOL_F(degHotend(cur_extruder),1);
  3985. SERIAL_PROTOCOLPGM(" /");
  3986. SERIAL_PROTOCOL_F(degTargetHotend(cur_extruder),1);
  3987. }
  3988. #else
  3989. SERIAL_ERROR_START;
  3990. SERIAL_ERRORLNRPGM(MSG_ERR_NO_THERMISTORS);
  3991. #endif
  3992. SERIAL_PROTOCOLPGM(" @:");
  3993. #ifdef EXTRUDER_WATTS
  3994. SERIAL_PROTOCOL((EXTRUDER_WATTS * getHeaterPower(tmp_extruder))/127);
  3995. SERIAL_PROTOCOLPGM("W");
  3996. #else
  3997. SERIAL_PROTOCOL(getHeaterPower(tmp_extruder));
  3998. #endif
  3999. SERIAL_PROTOCOLPGM(" B@:");
  4000. #ifdef BED_WATTS
  4001. SERIAL_PROTOCOL((BED_WATTS * getHeaterPower(-1))/127);
  4002. SERIAL_PROTOCOLPGM("W");
  4003. #else
  4004. SERIAL_PROTOCOL(getHeaterPower(-1));
  4005. #endif
  4006. #ifdef PINDA_THERMISTOR
  4007. SERIAL_PROTOCOLPGM(" P:");
  4008. SERIAL_PROTOCOL_F(current_temperature_pinda,1);
  4009. #endif //PINDA_THERMISTOR
  4010. #ifdef AMBIENT_THERMISTOR
  4011. SERIAL_PROTOCOLPGM(" A:");
  4012. SERIAL_PROTOCOL_F(current_temperature_ambient,1);
  4013. #endif //AMBIENT_THERMISTOR
  4014. #ifdef SHOW_TEMP_ADC_VALUES
  4015. {float raw = 0.0;
  4016. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  4017. SERIAL_PROTOCOLPGM(" ADC B:");
  4018. SERIAL_PROTOCOL_F(degBed(),1);
  4019. SERIAL_PROTOCOLPGM("C->");
  4020. raw = rawBedTemp();
  4021. SERIAL_PROTOCOL_F(raw/OVERSAMPLENR,5);
  4022. SERIAL_PROTOCOLPGM(" Rb->");
  4023. SERIAL_PROTOCOL_F(100 * (1 + (PtA * (raw/OVERSAMPLENR)) + (PtB * sq((raw/OVERSAMPLENR)))), 5);
  4024. SERIAL_PROTOCOLPGM(" Rxb->");
  4025. SERIAL_PROTOCOL_F(raw, 5);
  4026. #endif
  4027. for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) {
  4028. SERIAL_PROTOCOLPGM(" T");
  4029. SERIAL_PROTOCOL(cur_extruder);
  4030. SERIAL_PROTOCOLPGM(":");
  4031. SERIAL_PROTOCOL_F(degHotend(cur_extruder),1);
  4032. SERIAL_PROTOCOLPGM("C->");
  4033. raw = rawHotendTemp(cur_extruder);
  4034. SERIAL_PROTOCOL_F(raw/OVERSAMPLENR,5);
  4035. SERIAL_PROTOCOLPGM(" Rt");
  4036. SERIAL_PROTOCOL(cur_extruder);
  4037. SERIAL_PROTOCOLPGM("->");
  4038. SERIAL_PROTOCOL_F(100 * (1 + (PtA * (raw/OVERSAMPLENR)) + (PtB * sq((raw/OVERSAMPLENR)))), 5);
  4039. SERIAL_PROTOCOLPGM(" Rx");
  4040. SERIAL_PROTOCOL(cur_extruder);
  4041. SERIAL_PROTOCOLPGM("->");
  4042. SERIAL_PROTOCOL_F(raw, 5);
  4043. }}
  4044. #endif
  4045. SERIAL_PROTOCOLLN("");
  4046. KEEPALIVE_STATE(NOT_BUSY);
  4047. return;
  4048. break;
  4049. case 109:
  4050. {// M109 - Wait for extruder heater to reach target.
  4051. if(setTargetedHotend(109)){
  4052. break;
  4053. }
  4054. LCD_MESSAGERPGM(MSG_HEATING);
  4055. heating_status = 1;
  4056. if (farm_mode) { prusa_statistics(1); };
  4057. #ifdef AUTOTEMP
  4058. autotemp_enabled=false;
  4059. #endif
  4060. if (code_seen('S')) {
  4061. setTargetHotend(code_value(), tmp_extruder);
  4062. CooldownNoWait = true;
  4063. } else if (code_seen('R')) {
  4064. setTargetHotend(code_value(), tmp_extruder);
  4065. CooldownNoWait = false;
  4066. }
  4067. #ifdef AUTOTEMP
  4068. if (code_seen('S')) autotemp_min=code_value();
  4069. if (code_seen('B')) autotemp_max=code_value();
  4070. if (code_seen('F'))
  4071. {
  4072. autotemp_factor=code_value();
  4073. autotemp_enabled=true;
  4074. }
  4075. #endif
  4076. setWatch();
  4077. codenum = millis();
  4078. /* See if we are heating up or cooling down */
  4079. target_direction = isHeatingHotend(tmp_extruder); // true if heating, false if cooling
  4080. KEEPALIVE_STATE(NOT_BUSY);
  4081. cancel_heatup = false;
  4082. wait_for_heater(codenum); //loops until target temperature is reached
  4083. LCD_MESSAGERPGM(MSG_HEATING_COMPLETE);
  4084. KEEPALIVE_STATE(IN_HANDLER);
  4085. heating_status = 2;
  4086. if (farm_mode) { prusa_statistics(2); };
  4087. //starttime=millis();
  4088. previous_millis_cmd = millis();
  4089. }
  4090. break;
  4091. case 190: // M190 - Wait for bed heater to reach target.
  4092. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  4093. LCD_MESSAGERPGM(MSG_BED_HEATING);
  4094. heating_status = 3;
  4095. if (farm_mode) { prusa_statistics(1); };
  4096. if (code_seen('S'))
  4097. {
  4098. setTargetBed(code_value());
  4099. CooldownNoWait = true;
  4100. }
  4101. else if (code_seen('R'))
  4102. {
  4103. setTargetBed(code_value());
  4104. CooldownNoWait = false;
  4105. }
  4106. codenum = millis();
  4107. cancel_heatup = false;
  4108. target_direction = isHeatingBed(); // true if heating, false if cooling
  4109. KEEPALIVE_STATE(NOT_BUSY);
  4110. while ( (target_direction)&&(!cancel_heatup) ? (isHeatingBed()) : (isCoolingBed()&&(CooldownNoWait==false)) )
  4111. {
  4112. if(( millis() - codenum) > 1000 ) //Print Temp Reading every 1 second while heating up.
  4113. {
  4114. if (!farm_mode) {
  4115. float tt = degHotend(active_extruder);
  4116. SERIAL_PROTOCOLPGM("T:");
  4117. SERIAL_PROTOCOL(tt);
  4118. SERIAL_PROTOCOLPGM(" E:");
  4119. SERIAL_PROTOCOL((int)active_extruder);
  4120. SERIAL_PROTOCOLPGM(" B:");
  4121. SERIAL_PROTOCOL_F(degBed(), 1);
  4122. SERIAL_PROTOCOLLN("");
  4123. }
  4124. codenum = millis();
  4125. }
  4126. manage_heater();
  4127. manage_inactivity();
  4128. lcd_update();
  4129. }
  4130. LCD_MESSAGERPGM(MSG_BED_DONE);
  4131. KEEPALIVE_STATE(IN_HANDLER);
  4132. heating_status = 4;
  4133. previous_millis_cmd = millis();
  4134. #endif
  4135. break;
  4136. #ifdef PINDA_THERMISTOR
  4137. case 666: // M666 - Wait for PINDA thermistor to reach target temperature.
  4138. {
  4139. int setTargetPinda = 0;
  4140. if (code_seen('S')) {
  4141. setTargetPinda = code_value();
  4142. } else {
  4143. break;
  4144. }
  4145. LCD_MESSAGERPGM(MSG_PLEASE_WAIT);
  4146. SERIAL_PROTOCOLPGM("Wait for PINDA target temperature:");
  4147. SERIAL_PROTOCOL(setTargetPinda);
  4148. SERIAL_PROTOCOLLN("");
  4149. codenum = millis();
  4150. cancel_heatup = false;
  4151. KEEPALIVE_STATE(NOT_BUSY);
  4152. while ( (!cancel_heatup) && current_temperature_pinda < setTargetPinda) {
  4153. if(( millis() - codenum) > 1000 ) //Print Temp Reading every 1 second while waiting.
  4154. {
  4155. SERIAL_PROTOCOLPGM("P:");
  4156. SERIAL_PROTOCOL_F(current_temperature_pinda,1);
  4157. SERIAL_PROTOCOLPGM("/");
  4158. SERIAL_PROTOCOL(setTargetPinda);
  4159. SERIAL_PROTOCOLLN("");
  4160. codenum = millis();
  4161. }
  4162. manage_heater();
  4163. manage_inactivity();
  4164. lcd_update();
  4165. }
  4166. LCD_MESSAGERPGM(MSG_OK);
  4167. break;
  4168. }
  4169. #endif //PINDA_THERMISTOR
  4170. #if defined(FAN_PIN) && FAN_PIN > -1
  4171. case 106: //M106 Fan On
  4172. if (code_seen('S')){
  4173. fanSpeed=constrain(code_value(),0,255);
  4174. }
  4175. else {
  4176. fanSpeed=255;
  4177. }
  4178. break;
  4179. case 107: //M107 Fan Off
  4180. fanSpeed = 0;
  4181. break;
  4182. #endif //FAN_PIN
  4183. #if defined(PS_ON_PIN) && PS_ON_PIN > -1
  4184. case 80: // M80 - Turn on Power Supply
  4185. SET_OUTPUT(PS_ON_PIN); //GND
  4186. WRITE(PS_ON_PIN, PS_ON_AWAKE);
  4187. // If you have a switch on suicide pin, this is useful
  4188. // if you want to start another print with suicide feature after
  4189. // a print without suicide...
  4190. #if defined SUICIDE_PIN && SUICIDE_PIN > -1
  4191. SET_OUTPUT(SUICIDE_PIN);
  4192. WRITE(SUICIDE_PIN, HIGH);
  4193. #endif
  4194. #ifdef ULTIPANEL
  4195. powersupply = true;
  4196. LCD_MESSAGERPGM(WELCOME_MSG);
  4197. lcd_update();
  4198. #endif
  4199. break;
  4200. #endif
  4201. case 81: // M81 - Turn off Power Supply
  4202. disable_heater();
  4203. st_synchronize();
  4204. disable_e0();
  4205. disable_e1();
  4206. disable_e2();
  4207. finishAndDisableSteppers();
  4208. fanSpeed = 0;
  4209. delay(1000); // Wait a little before to switch off
  4210. #if defined(SUICIDE_PIN) && SUICIDE_PIN > -1
  4211. st_synchronize();
  4212. suicide();
  4213. #elif defined(PS_ON_PIN) && PS_ON_PIN > -1
  4214. SET_OUTPUT(PS_ON_PIN);
  4215. WRITE(PS_ON_PIN, PS_ON_ASLEEP);
  4216. #endif
  4217. #ifdef ULTIPANEL
  4218. powersupply = false;
  4219. LCD_MESSAGERPGM(CAT4(CUSTOM_MENDEL_NAME,PSTR(" "),MSG_OFF,PSTR("."))); //!!
  4220. /*
  4221. MACHNAME = "Prusa i3"
  4222. MSGOFF = "Vypnuto"
  4223. "Prusai3"" ""vypnuto""."
  4224. "Prusa i3"" "MSG_ALL[lang_selected][50]"."
  4225. */
  4226. lcd_update();
  4227. #endif
  4228. break;
  4229. case 82:
  4230. axis_relative_modes[3] = false;
  4231. break;
  4232. case 83:
  4233. axis_relative_modes[3] = true;
  4234. break;
  4235. case 18: //compatibility
  4236. case 84: // M84
  4237. if(code_seen('S')){
  4238. stepper_inactive_time = code_value() * 1000;
  4239. }
  4240. else
  4241. {
  4242. bool all_axis = !((code_seen(axis_codes[X_AXIS])) || (code_seen(axis_codes[Y_AXIS])) || (code_seen(axis_codes[Z_AXIS]))|| (code_seen(axis_codes[E_AXIS])));
  4243. if(all_axis)
  4244. {
  4245. st_synchronize();
  4246. disable_e0();
  4247. disable_e1();
  4248. disable_e2();
  4249. finishAndDisableSteppers();
  4250. }
  4251. else
  4252. {
  4253. st_synchronize();
  4254. if (code_seen('X')) disable_x();
  4255. if (code_seen('Y')) disable_y();
  4256. if (code_seen('Z')) disable_z();
  4257. #if ((E0_ENABLE_PIN != X_ENABLE_PIN) && (E1_ENABLE_PIN != Y_ENABLE_PIN)) // Only enable on boards that have seperate ENABLE_PINS
  4258. if (code_seen('E')) {
  4259. disable_e0();
  4260. disable_e1();
  4261. disable_e2();
  4262. }
  4263. #endif
  4264. }
  4265. }
  4266. snmm_filaments_used = 0;
  4267. break;
  4268. case 85: // M85
  4269. if(code_seen('S')) {
  4270. max_inactive_time = code_value() * 1000;
  4271. }
  4272. break;
  4273. case 92: // M92
  4274. for(int8_t i=0; i < NUM_AXIS; i++)
  4275. {
  4276. if(code_seen(axis_codes[i]))
  4277. {
  4278. if(i == 3) { // E
  4279. float value = code_value();
  4280. if(value < 20.0) {
  4281. float factor = axis_steps_per_unit[i] / value; // increase e constants if M92 E14 is given for netfab.
  4282. max_jerk[E_AXIS] *= factor;
  4283. max_feedrate[i] *= factor;
  4284. axis_steps_per_sqr_second[i] *= factor;
  4285. }
  4286. axis_steps_per_unit[i] = value;
  4287. }
  4288. else {
  4289. axis_steps_per_unit[i] = code_value();
  4290. }
  4291. }
  4292. }
  4293. break;
  4294. case 110: // M110 - reset line pos
  4295. if (code_seen('N'))
  4296. gcode_LastN = code_value_long();
  4297. break;
  4298. #ifdef HOST_KEEPALIVE_FEATURE
  4299. case 113: // M113 - Get or set Host Keepalive interval
  4300. if (code_seen('S')) {
  4301. host_keepalive_interval = (uint8_t)code_value_short();
  4302. // NOMORE(host_keepalive_interval, 60);
  4303. }
  4304. else {
  4305. SERIAL_ECHO_START;
  4306. SERIAL_ECHOPAIR("M113 S", (unsigned long)host_keepalive_interval);
  4307. SERIAL_PROTOCOLLN("");
  4308. }
  4309. break;
  4310. #endif
  4311. case 115: // M115
  4312. if (code_seen('V')) {
  4313. // Report the Prusa version number.
  4314. SERIAL_PROTOCOLLNRPGM(FW_VERSION_STR_P());
  4315. } else if (code_seen('U')) {
  4316. // Check the firmware version provided. If the firmware version provided by the U code is higher than the currently running firmware,
  4317. // pause the print and ask the user to upgrade the firmware.
  4318. show_upgrade_dialog_if_version_newer(++ strchr_pointer);
  4319. } else {
  4320. SERIAL_PROTOCOLRPGM(MSG_M115_REPORT);
  4321. }
  4322. break;
  4323. /* case 117: // M117 display message
  4324. starpos = (strchr(strchr_pointer + 5,'*'));
  4325. if(starpos!=NULL)
  4326. *(starpos)='\0';
  4327. lcd_setstatus(strchr_pointer + 5);
  4328. break;*/
  4329. case 114: // M114
  4330. SERIAL_PROTOCOLPGM("X:");
  4331. SERIAL_PROTOCOL(current_position[X_AXIS]);
  4332. SERIAL_PROTOCOLPGM(" Y:");
  4333. SERIAL_PROTOCOL(current_position[Y_AXIS]);
  4334. SERIAL_PROTOCOLPGM(" Z:");
  4335. SERIAL_PROTOCOL(current_position[Z_AXIS]);
  4336. SERIAL_PROTOCOLPGM(" E:");
  4337. SERIAL_PROTOCOL(current_position[E_AXIS]);
  4338. SERIAL_PROTOCOLRPGM(MSG_COUNT_X);
  4339. SERIAL_PROTOCOL(float(st_get_position(X_AXIS))/axis_steps_per_unit[X_AXIS]);
  4340. SERIAL_PROTOCOLPGM(" Y:");
  4341. SERIAL_PROTOCOL(float(st_get_position(Y_AXIS))/axis_steps_per_unit[Y_AXIS]);
  4342. SERIAL_PROTOCOLPGM(" Z:");
  4343. SERIAL_PROTOCOL(float(st_get_position(Z_AXIS))/axis_steps_per_unit[Z_AXIS]);
  4344. SERIAL_PROTOCOLPGM(" E:");
  4345. SERIAL_PROTOCOL(float(st_get_position(E_AXIS))/axis_steps_per_unit[E_AXIS]);
  4346. SERIAL_PROTOCOLLN("");
  4347. break;
  4348. case 120: // M120
  4349. enable_endstops(false) ;
  4350. break;
  4351. case 121: // M121
  4352. enable_endstops(true) ;
  4353. break;
  4354. case 119: // M119
  4355. SERIAL_PROTOCOLRPGM(MSG_M119_REPORT);
  4356. SERIAL_PROTOCOLLN("");
  4357. #if defined(X_MIN_PIN) && X_MIN_PIN > -1
  4358. SERIAL_PROTOCOLRPGM(MSG_X_MIN);
  4359. if(READ(X_MIN_PIN)^X_MIN_ENDSTOP_INVERTING){
  4360. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_HIT);
  4361. }else{
  4362. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_OPEN);
  4363. }
  4364. SERIAL_PROTOCOLLN("");
  4365. #endif
  4366. #if defined(X_MAX_PIN) && X_MAX_PIN > -1
  4367. SERIAL_PROTOCOLRPGM(MSG_X_MAX);
  4368. if(READ(X_MAX_PIN)^X_MAX_ENDSTOP_INVERTING){
  4369. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_HIT);
  4370. }else{
  4371. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_OPEN);
  4372. }
  4373. SERIAL_PROTOCOLLN("");
  4374. #endif
  4375. #if defined(Y_MIN_PIN) && Y_MIN_PIN > -1
  4376. SERIAL_PROTOCOLRPGM(MSG_Y_MIN);
  4377. if(READ(Y_MIN_PIN)^Y_MIN_ENDSTOP_INVERTING){
  4378. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_HIT);
  4379. }else{
  4380. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_OPEN);
  4381. }
  4382. SERIAL_PROTOCOLLN("");
  4383. #endif
  4384. #if defined(Y_MAX_PIN) && Y_MAX_PIN > -1
  4385. SERIAL_PROTOCOLRPGM(MSG_Y_MAX);
  4386. if(READ(Y_MAX_PIN)^Y_MAX_ENDSTOP_INVERTING){
  4387. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_HIT);
  4388. }else{
  4389. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_OPEN);
  4390. }
  4391. SERIAL_PROTOCOLLN("");
  4392. #endif
  4393. #if defined(Z_MIN_PIN) && Z_MIN_PIN > -1
  4394. SERIAL_PROTOCOLRPGM(MSG_Z_MIN);
  4395. if(READ(Z_MIN_PIN)^Z_MIN_ENDSTOP_INVERTING){
  4396. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_HIT);
  4397. }else{
  4398. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_OPEN);
  4399. }
  4400. SERIAL_PROTOCOLLN("");
  4401. #endif
  4402. #if defined(Z_MAX_PIN) && Z_MAX_PIN > -1
  4403. SERIAL_PROTOCOLRPGM(MSG_Z_MAX);
  4404. if(READ(Z_MAX_PIN)^Z_MAX_ENDSTOP_INVERTING){
  4405. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_HIT);
  4406. }else{
  4407. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_OPEN);
  4408. }
  4409. SERIAL_PROTOCOLLN("");
  4410. #endif
  4411. break;
  4412. //TODO: update for all axis, use for loop
  4413. #ifdef BLINKM
  4414. case 150: // M150
  4415. {
  4416. byte red;
  4417. byte grn;
  4418. byte blu;
  4419. if(code_seen('R')) red = code_value();
  4420. if(code_seen('U')) grn = code_value();
  4421. if(code_seen('B')) blu = code_value();
  4422. SendColors(red,grn,blu);
  4423. }
  4424. break;
  4425. #endif //BLINKM
  4426. case 200: // M200 D<millimeters> set filament diameter and set E axis units to cubic millimeters (use S0 to set back to millimeters).
  4427. {
  4428. tmp_extruder = active_extruder;
  4429. if(code_seen('T')) {
  4430. tmp_extruder = code_value();
  4431. if(tmp_extruder >= EXTRUDERS) {
  4432. SERIAL_ECHO_START;
  4433. SERIAL_ECHO(MSG_M200_INVALID_EXTRUDER);
  4434. break;
  4435. }
  4436. }
  4437. float area = .0;
  4438. if(code_seen('D')) {
  4439. float diameter = (float)code_value();
  4440. if (diameter == 0.0) {
  4441. // setting any extruder filament size disables volumetric on the assumption that
  4442. // slicers either generate in extruder values as cubic mm or as as filament feeds
  4443. // for all extruders
  4444. volumetric_enabled = false;
  4445. } else {
  4446. filament_size[tmp_extruder] = (float)code_value();
  4447. // make sure all extruders have some sane value for the filament size
  4448. filament_size[0] = (filament_size[0] == 0.0 ? DEFAULT_NOMINAL_FILAMENT_DIA : filament_size[0]);
  4449. #if EXTRUDERS > 1
  4450. filament_size[1] = (filament_size[1] == 0.0 ? DEFAULT_NOMINAL_FILAMENT_DIA : filament_size[1]);
  4451. #if EXTRUDERS > 2
  4452. filament_size[2] = (filament_size[2] == 0.0 ? DEFAULT_NOMINAL_FILAMENT_DIA : filament_size[2]);
  4453. #endif
  4454. #endif
  4455. volumetric_enabled = true;
  4456. }
  4457. } else {
  4458. //reserved for setting filament diameter via UFID or filament measuring device
  4459. break;
  4460. }
  4461. calculate_extruder_multipliers();
  4462. }
  4463. break;
  4464. case 201: // M201
  4465. for(int8_t i=0; i < NUM_AXIS; i++)
  4466. {
  4467. if(code_seen(axis_codes[i]))
  4468. {
  4469. max_acceleration_units_per_sq_second[i] = code_value();
  4470. }
  4471. }
  4472. // steps per sq second need to be updated to agree with the units per sq second (as they are what is used in the planner)
  4473. reset_acceleration_rates();
  4474. break;
  4475. #if 0 // Not used for Sprinter/grbl gen6
  4476. case 202: // M202
  4477. for(int8_t i=0; i < NUM_AXIS; i++) {
  4478. if(code_seen(axis_codes[i])) axis_travel_steps_per_sqr_second[i] = code_value() * axis_steps_per_unit[i];
  4479. }
  4480. break;
  4481. #endif
  4482. case 203: // M203 max feedrate mm/sec
  4483. for(int8_t i=0; i < NUM_AXIS; i++) {
  4484. if(code_seen(axis_codes[i])) max_feedrate[i] = code_value();
  4485. }
  4486. break;
  4487. case 204: // M204 acclereration S normal moves T filmanent only moves
  4488. {
  4489. if(code_seen('S')) acceleration = code_value() ;
  4490. if(code_seen('T')) retract_acceleration = code_value() ;
  4491. }
  4492. break;
  4493. case 205: //M205 advanced settings: minimum travel speed S=while printing T=travel only, B=minimum segment time X= maximum xy jerk, Z=maximum Z jerk
  4494. {
  4495. if(code_seen('S')) minimumfeedrate = code_value();
  4496. if(code_seen('T')) mintravelfeedrate = code_value();
  4497. if(code_seen('B')) minsegmenttime = code_value() ;
  4498. if(code_seen('X')) max_jerk[X_AXIS] = max_jerk[Y_AXIS] = code_value();
  4499. if(code_seen('Y')) max_jerk[Y_AXIS] = code_value();
  4500. if(code_seen('Z')) max_jerk[Z_AXIS] = code_value();
  4501. if(code_seen('E')) max_jerk[E_AXIS] = code_value();
  4502. if (max_jerk[X_AXIS] > DEFAULT_XJERK) max_jerk[X_AXIS] = DEFAULT_XJERK;
  4503. if (max_jerk[Y_AXIS] > DEFAULT_YJERK) max_jerk[Y_AXIS] = DEFAULT_YJERK;
  4504. }
  4505. break;
  4506. case 206: // M206 additional homing offset
  4507. for(int8_t i=0; i < 3; i++)
  4508. {
  4509. if(code_seen(axis_codes[i])) add_homing[i] = code_value();
  4510. }
  4511. break;
  4512. #ifdef FWRETRACT
  4513. case 207: //M207 - set retract length S[positive mm] F[feedrate mm/min] Z[additional zlift/hop]
  4514. {
  4515. if(code_seen('S'))
  4516. {
  4517. retract_length = code_value() ;
  4518. }
  4519. if(code_seen('F'))
  4520. {
  4521. retract_feedrate = code_value()/60 ;
  4522. }
  4523. if(code_seen('Z'))
  4524. {
  4525. retract_zlift = code_value() ;
  4526. }
  4527. }break;
  4528. case 208: // M208 - set retract recover length S[positive mm surplus to the M207 S*] F[feedrate mm/min]
  4529. {
  4530. if(code_seen('S'))
  4531. {
  4532. retract_recover_length = code_value() ;
  4533. }
  4534. if(code_seen('F'))
  4535. {
  4536. retract_recover_feedrate = code_value()/60 ;
  4537. }
  4538. }break;
  4539. case 209: // M209 - S<1=true/0=false> enable automatic retract detect if the slicer did not support G10/11: every normal extrude-only move will be classified as retract depending on the direction.
  4540. {
  4541. if(code_seen('S'))
  4542. {
  4543. int t= code_value() ;
  4544. switch(t)
  4545. {
  4546. case 0:
  4547. {
  4548. autoretract_enabled=false;
  4549. retracted[0]=false;
  4550. #if EXTRUDERS > 1
  4551. retracted[1]=false;
  4552. #endif
  4553. #if EXTRUDERS > 2
  4554. retracted[2]=false;
  4555. #endif
  4556. }break;
  4557. case 1:
  4558. {
  4559. autoretract_enabled=true;
  4560. retracted[0]=false;
  4561. #if EXTRUDERS > 1
  4562. retracted[1]=false;
  4563. #endif
  4564. #if EXTRUDERS > 2
  4565. retracted[2]=false;
  4566. #endif
  4567. }break;
  4568. default:
  4569. SERIAL_ECHO_START;
  4570. SERIAL_ECHORPGM(MSG_UNKNOWN_COMMAND);
  4571. SERIAL_ECHO(CMDBUFFER_CURRENT_STRING);
  4572. SERIAL_ECHOLNPGM("\"(1)");
  4573. }
  4574. }
  4575. }break;
  4576. #endif // FWRETRACT
  4577. #if EXTRUDERS > 1
  4578. case 218: // M218 - set hotend offset (in mm), T<extruder_number> X<offset_on_X> Y<offset_on_Y>
  4579. {
  4580. if(setTargetedHotend(218)){
  4581. break;
  4582. }
  4583. if(code_seen('X'))
  4584. {
  4585. extruder_offset[X_AXIS][tmp_extruder] = code_value();
  4586. }
  4587. if(code_seen('Y'))
  4588. {
  4589. extruder_offset[Y_AXIS][tmp_extruder] = code_value();
  4590. }
  4591. SERIAL_ECHO_START;
  4592. SERIAL_ECHORPGM(MSG_HOTEND_OFFSET);
  4593. for(tmp_extruder = 0; tmp_extruder < EXTRUDERS; tmp_extruder++)
  4594. {
  4595. SERIAL_ECHO(" ");
  4596. SERIAL_ECHO(extruder_offset[X_AXIS][tmp_extruder]);
  4597. SERIAL_ECHO(",");
  4598. SERIAL_ECHO(extruder_offset[Y_AXIS][tmp_extruder]);
  4599. }
  4600. SERIAL_ECHOLN("");
  4601. }break;
  4602. #endif
  4603. case 220: // M220 S<factor in percent>- set speed factor override percentage
  4604. {
  4605. if(code_seen('S'))
  4606. {
  4607. feedmultiply = code_value() ;
  4608. }
  4609. }
  4610. break;
  4611. case 221: // M221 S<factor in percent>- set extrude factor override percentage
  4612. {
  4613. if(code_seen('S'))
  4614. {
  4615. int tmp_code = code_value();
  4616. if (code_seen('T'))
  4617. {
  4618. if(setTargetedHotend(221)){
  4619. break;
  4620. }
  4621. extruder_multiply[tmp_extruder] = tmp_code;
  4622. }
  4623. else
  4624. {
  4625. extrudemultiply = tmp_code ;
  4626. }
  4627. }
  4628. calculate_extruder_multipliers();
  4629. }
  4630. break;
  4631. #ifndef _DISABLE_M42_M226
  4632. case 226: // M226 P<pin number> S<pin state>- Wait until the specified pin reaches the state required
  4633. {
  4634. if(code_seen('P')){
  4635. int pin_number = code_value(); // pin number
  4636. int pin_state = -1; // required pin state - default is inverted
  4637. if(code_seen('S')) pin_state = code_value(); // required pin state
  4638. if(pin_state >= -1 && pin_state <= 1){
  4639. for(int8_t i = 0; i < (int8_t)(sizeof(sensitive_pins)/sizeof(int)); i++)
  4640. {
  4641. if (sensitive_pins[i] == pin_number)
  4642. {
  4643. pin_number = -1;
  4644. break;
  4645. }
  4646. }
  4647. if (pin_number > -1)
  4648. {
  4649. int target = LOW;
  4650. st_synchronize();
  4651. pinMode(pin_number, INPUT);
  4652. switch(pin_state){
  4653. case 1:
  4654. target = HIGH;
  4655. break;
  4656. case 0:
  4657. target = LOW;
  4658. break;
  4659. case -1:
  4660. target = !digitalRead(pin_number);
  4661. break;
  4662. }
  4663. while(digitalRead(pin_number) != target){
  4664. manage_heater();
  4665. manage_inactivity();
  4666. lcd_update();
  4667. }
  4668. }
  4669. }
  4670. }
  4671. }
  4672. break;
  4673. #endif //_DISABLE_M42_M226
  4674. #if NUM_SERVOS > 0
  4675. case 280: // M280 - set servo position absolute. P: servo index, S: angle or microseconds
  4676. {
  4677. int servo_index = -1;
  4678. int servo_position = 0;
  4679. if (code_seen('P'))
  4680. servo_index = code_value();
  4681. if (code_seen('S')) {
  4682. servo_position = code_value();
  4683. if ((servo_index >= 0) && (servo_index < NUM_SERVOS)) {
  4684. #if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
  4685. servos[servo_index].attach(0);
  4686. #endif
  4687. servos[servo_index].write(servo_position);
  4688. #if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
  4689. delay(PROBE_SERVO_DEACTIVATION_DELAY);
  4690. servos[servo_index].detach();
  4691. #endif
  4692. }
  4693. else {
  4694. SERIAL_ECHO_START;
  4695. SERIAL_ECHO("Servo ");
  4696. SERIAL_ECHO(servo_index);
  4697. SERIAL_ECHOLN(" out of range");
  4698. }
  4699. }
  4700. else if (servo_index >= 0) {
  4701. SERIAL_PROTOCOL(MSG_OK);
  4702. SERIAL_PROTOCOL(" Servo ");
  4703. SERIAL_PROTOCOL(servo_index);
  4704. SERIAL_PROTOCOL(": ");
  4705. SERIAL_PROTOCOL(servos[servo_index].read());
  4706. SERIAL_PROTOCOLLN("");
  4707. }
  4708. }
  4709. break;
  4710. #endif // NUM_SERVOS > 0
  4711. #if (LARGE_FLASH == true && ( BEEPER > 0 || defined(ULTRALCD) || defined(LCD_USE_I2C_BUZZER)))
  4712. case 300: // M300
  4713. {
  4714. int beepS = code_seen('S') ? code_value() : 110;
  4715. int beepP = code_seen('P') ? code_value() : 1000;
  4716. if (beepS > 0)
  4717. {
  4718. #if BEEPER > 0
  4719. tone(BEEPER, beepS);
  4720. delay(beepP);
  4721. noTone(BEEPER);
  4722. #elif defined(ULTRALCD)
  4723. lcd_buzz(beepS, beepP);
  4724. #elif defined(LCD_USE_I2C_BUZZER)
  4725. lcd_buzz(beepP, beepS);
  4726. #endif
  4727. }
  4728. else
  4729. {
  4730. delay(beepP);
  4731. }
  4732. }
  4733. break;
  4734. #endif // M300
  4735. #ifdef PIDTEMP
  4736. case 301: // M301
  4737. {
  4738. if(code_seen('P')) Kp = code_value();
  4739. if(code_seen('I')) Ki = scalePID_i(code_value());
  4740. if(code_seen('D')) Kd = scalePID_d(code_value());
  4741. #ifdef PID_ADD_EXTRUSION_RATE
  4742. if(code_seen('C')) Kc = code_value();
  4743. #endif
  4744. updatePID();
  4745. SERIAL_PROTOCOLRPGM(MSG_OK);
  4746. SERIAL_PROTOCOL(" p:");
  4747. SERIAL_PROTOCOL(Kp);
  4748. SERIAL_PROTOCOL(" i:");
  4749. SERIAL_PROTOCOL(unscalePID_i(Ki));
  4750. SERIAL_PROTOCOL(" d:");
  4751. SERIAL_PROTOCOL(unscalePID_d(Kd));
  4752. #ifdef PID_ADD_EXTRUSION_RATE
  4753. SERIAL_PROTOCOL(" c:");
  4754. //Kc does not have scaling applied above, or in resetting defaults
  4755. SERIAL_PROTOCOL(Kc);
  4756. #endif
  4757. SERIAL_PROTOCOLLN("");
  4758. }
  4759. break;
  4760. #endif //PIDTEMP
  4761. #ifdef PIDTEMPBED
  4762. case 304: // M304
  4763. {
  4764. if(code_seen('P')) bedKp = code_value();
  4765. if(code_seen('I')) bedKi = scalePID_i(code_value());
  4766. if(code_seen('D')) bedKd = scalePID_d(code_value());
  4767. updatePID();
  4768. SERIAL_PROTOCOLRPGM(MSG_OK);
  4769. SERIAL_PROTOCOL(" p:");
  4770. SERIAL_PROTOCOL(bedKp);
  4771. SERIAL_PROTOCOL(" i:");
  4772. SERIAL_PROTOCOL(unscalePID_i(bedKi));
  4773. SERIAL_PROTOCOL(" d:");
  4774. SERIAL_PROTOCOL(unscalePID_d(bedKd));
  4775. SERIAL_PROTOCOLLN("");
  4776. }
  4777. break;
  4778. #endif //PIDTEMP
  4779. case 240: // M240 Triggers a camera by emulating a Canon RC-1 : http://www.doc-diy.net/photo/rc-1_hacked/
  4780. {
  4781. #ifdef CHDK
  4782. SET_OUTPUT(CHDK);
  4783. WRITE(CHDK, HIGH);
  4784. chdkHigh = millis();
  4785. chdkActive = true;
  4786. #else
  4787. #if defined(PHOTOGRAPH_PIN) && PHOTOGRAPH_PIN > -1
  4788. const uint8_t NUM_PULSES=16;
  4789. const float PULSE_LENGTH=0.01524;
  4790. for(int i=0; i < NUM_PULSES; i++) {
  4791. WRITE(PHOTOGRAPH_PIN, HIGH);
  4792. _delay_ms(PULSE_LENGTH);
  4793. WRITE(PHOTOGRAPH_PIN, LOW);
  4794. _delay_ms(PULSE_LENGTH);
  4795. }
  4796. delay(7.33);
  4797. for(int i=0; i < NUM_PULSES; i++) {
  4798. WRITE(PHOTOGRAPH_PIN, HIGH);
  4799. _delay_ms(PULSE_LENGTH);
  4800. WRITE(PHOTOGRAPH_PIN, LOW);
  4801. _delay_ms(PULSE_LENGTH);
  4802. }
  4803. #endif
  4804. #endif //chdk end if
  4805. }
  4806. break;
  4807. #ifdef DOGLCD
  4808. case 250: // M250 Set LCD contrast value: C<value> (value 0..63)
  4809. {
  4810. if (code_seen('C')) {
  4811. lcd_setcontrast( ((int)code_value())&63 );
  4812. }
  4813. SERIAL_PROTOCOLPGM("lcd contrast value: ");
  4814. SERIAL_PROTOCOL(lcd_contrast);
  4815. SERIAL_PROTOCOLLN("");
  4816. }
  4817. break;
  4818. #endif
  4819. #ifdef PREVENT_DANGEROUS_EXTRUDE
  4820. case 302: // allow cold extrudes, or set the minimum extrude temperature
  4821. {
  4822. float temp = .0;
  4823. if (code_seen('S')) temp=code_value();
  4824. set_extrude_min_temp(temp);
  4825. }
  4826. break;
  4827. #endif
  4828. case 303: // M303 PID autotune
  4829. {
  4830. float temp = 150.0;
  4831. int e=0;
  4832. int c=5;
  4833. if (code_seen('E')) e=code_value();
  4834. if (e<0)
  4835. temp=70;
  4836. if (code_seen('S')) temp=code_value();
  4837. if (code_seen('C')) c=code_value();
  4838. PID_autotune(temp, e, c);
  4839. }
  4840. break;
  4841. case 400: // M400 finish all moves
  4842. {
  4843. st_synchronize();
  4844. }
  4845. break;
  4846. case 500: // M500 Store settings in EEPROM
  4847. {
  4848. Config_StoreSettings(EEPROM_OFFSET);
  4849. }
  4850. break;
  4851. case 501: // M501 Read settings from EEPROM
  4852. {
  4853. Config_RetrieveSettings(EEPROM_OFFSET);
  4854. }
  4855. break;
  4856. case 502: // M502 Revert to default settings
  4857. {
  4858. Config_ResetDefault();
  4859. }
  4860. break;
  4861. case 503: // M503 print settings currently in memory
  4862. {
  4863. Config_PrintSettings();
  4864. }
  4865. break;
  4866. case 509: //M509 Force language selection
  4867. {
  4868. lcd_force_language_selection();
  4869. SERIAL_ECHO_START;
  4870. SERIAL_PROTOCOLPGM(("LANG SEL FORCED"));
  4871. }
  4872. break;
  4873. #ifdef ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED
  4874. case 540:
  4875. {
  4876. if(code_seen('S')) abort_on_endstop_hit = code_value() > 0;
  4877. }
  4878. break;
  4879. #endif
  4880. #ifdef CUSTOM_M_CODE_SET_Z_PROBE_OFFSET
  4881. case CUSTOM_M_CODE_SET_Z_PROBE_OFFSET:
  4882. {
  4883. float value;
  4884. if (code_seen('Z'))
  4885. {
  4886. value = code_value();
  4887. if ((Z_PROBE_OFFSET_RANGE_MIN <= value) && (value <= Z_PROBE_OFFSET_RANGE_MAX))
  4888. {
  4889. zprobe_zoffset = -value; // compare w/ line 278 of ConfigurationStore.cpp
  4890. SERIAL_ECHO_START;
  4891. SERIAL_ECHOLNRPGM(CAT4(MSG_ZPROBE_ZOFFSET, " ", MSG_OK,PSTR("")));
  4892. SERIAL_PROTOCOLLN("");
  4893. }
  4894. else
  4895. {
  4896. SERIAL_ECHO_START;
  4897. SERIAL_ECHORPGM(MSG_ZPROBE_ZOFFSET);
  4898. SERIAL_ECHORPGM(MSG_Z_MIN);
  4899. SERIAL_ECHO(Z_PROBE_OFFSET_RANGE_MIN);
  4900. SERIAL_ECHORPGM(MSG_Z_MAX);
  4901. SERIAL_ECHO(Z_PROBE_OFFSET_RANGE_MAX);
  4902. SERIAL_PROTOCOLLN("");
  4903. }
  4904. }
  4905. else
  4906. {
  4907. SERIAL_ECHO_START;
  4908. SERIAL_ECHOLNRPGM(CAT2(MSG_ZPROBE_ZOFFSET, PSTR(" : ")));
  4909. SERIAL_ECHO(-zprobe_zoffset);
  4910. SERIAL_PROTOCOLLN("");
  4911. }
  4912. break;
  4913. }
  4914. #endif // CUSTOM_M_CODE_SET_Z_PROBE_OFFSET
  4915. #ifdef FILAMENTCHANGEENABLE
  4916. case 600: //Pause for filament change X[pos] Y[pos] Z[relative lift] E[initial retract] L[later retract distance for removal]
  4917. {
  4918. bool old_fsensor_enabled = fsensor_enabled;
  4919. fsensor_enabled = false; //temporary solution for unexpected restarting
  4920. st_synchronize();
  4921. float target[4];
  4922. float lastpos[4];
  4923. if (farm_mode)
  4924. {
  4925. prusa_statistics(22);
  4926. }
  4927. feedmultiplyBckp=feedmultiply;
  4928. int8_t TooLowZ = 0;
  4929. float HotendTempBckp = degTargetHotend(active_extruder);
  4930. int fanSpeedBckp = fanSpeed;
  4931. target[X_AXIS]=current_position[X_AXIS];
  4932. target[Y_AXIS]=current_position[Y_AXIS];
  4933. target[Z_AXIS]=current_position[Z_AXIS];
  4934. target[E_AXIS]=current_position[E_AXIS];
  4935. lastpos[X_AXIS]=current_position[X_AXIS];
  4936. lastpos[Y_AXIS]=current_position[Y_AXIS];
  4937. lastpos[Z_AXIS]=current_position[Z_AXIS];
  4938. lastpos[E_AXIS]=current_position[E_AXIS];
  4939. //Restract extruder
  4940. if(code_seen('E'))
  4941. {
  4942. target[E_AXIS]+= code_value();
  4943. }
  4944. else
  4945. {
  4946. #ifdef FILAMENTCHANGE_FIRSTRETRACT
  4947. target[E_AXIS]+= FILAMENTCHANGE_FIRSTRETRACT ;
  4948. #endif
  4949. }
  4950. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_RFEED, active_extruder);
  4951. //Lift Z
  4952. if(code_seen('Z'))
  4953. {
  4954. target[Z_AXIS]+= code_value();
  4955. }
  4956. else
  4957. {
  4958. #ifdef FILAMENTCHANGE_ZADD
  4959. target[Z_AXIS]+= FILAMENTCHANGE_ZADD ;
  4960. if(target[Z_AXIS] < 10){
  4961. target[Z_AXIS]+= 10 ;
  4962. TooLowZ = 1;
  4963. }else{
  4964. TooLowZ = 0;
  4965. }
  4966. #endif
  4967. }
  4968. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_ZFEED, active_extruder);
  4969. //Move XY to side
  4970. if(code_seen('X'))
  4971. {
  4972. target[X_AXIS]+= code_value();
  4973. }
  4974. else
  4975. {
  4976. #ifdef FILAMENTCHANGE_XPOS
  4977. target[X_AXIS]= FILAMENTCHANGE_XPOS ;
  4978. #endif
  4979. }
  4980. if(code_seen('Y'))
  4981. {
  4982. target[Y_AXIS]= code_value();
  4983. }
  4984. else
  4985. {
  4986. #ifdef FILAMENTCHANGE_YPOS
  4987. target[Y_AXIS]= FILAMENTCHANGE_YPOS ;
  4988. #endif
  4989. }
  4990. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_XYFEED, active_extruder);
  4991. st_synchronize();
  4992. KEEPALIVE_STATE(PAUSED_FOR_USER);
  4993. uint8_t cnt = 0;
  4994. int counterBeep = 0;
  4995. fanSpeed = 0;
  4996. unsigned long waiting_start_time = millis();
  4997. uint8_t wait_for_user_state = 0;
  4998. lcd_display_message_fullscreen_P(MSG_PRESS_TO_UNLOAD);
  4999. while (!(wait_for_user_state == 0 && lcd_clicked())){
  5000. //cnt++;
  5001. manage_heater();
  5002. manage_inactivity(true);
  5003. /*#ifdef SNMM
  5004. target[E_AXIS] += 0.002;
  5005. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 500, active_extruder);
  5006. #endif // SNMM*/
  5007. //if (cnt == 0)
  5008. {
  5009. #if BEEPER > 0
  5010. if (counterBeep == 500) {
  5011. counterBeep = 0;
  5012. }
  5013. SET_OUTPUT(BEEPER);
  5014. if (counterBeep == 0) {
  5015. WRITE(BEEPER, HIGH);
  5016. }
  5017. if (counterBeep == 20) {
  5018. WRITE(BEEPER, LOW);
  5019. }
  5020. counterBeep++;
  5021. #else
  5022. #if !defined(LCD_FEEDBACK_FREQUENCY_HZ) || !defined(LCD_FEEDBACK_FREQUENCY_DURATION_MS)
  5023. lcd_buzz(1000 / 6, 100);
  5024. #else
  5025. lcd_buzz(LCD_FEEDBACK_FREQUENCY_DURATION_MS, LCD_FEEDBACK_FREQUENCY_HZ);
  5026. #endif
  5027. #endif
  5028. }
  5029. switch (wait_for_user_state) {
  5030. case 0:
  5031. delay_keep_alive(4);
  5032. if (millis() > waiting_start_time + (unsigned long)M600_TIMEOUT * 1000) {
  5033. lcd_display_message_fullscreen_P(MSG_PRESS_TO_PREHEAT);
  5034. wait_for_user_state = 1;
  5035. setTargetHotend(0, 0);
  5036. setTargetHotend(0, 1);
  5037. setTargetHotend(0, 2);
  5038. st_synchronize();
  5039. disable_e0();
  5040. disable_e1();
  5041. disable_e2();
  5042. }
  5043. break;
  5044. case 1:
  5045. delay_keep_alive(4);
  5046. if (lcd_clicked()) {
  5047. setTargetHotend(HotendTempBckp, active_extruder);
  5048. lcd_wait_for_heater();
  5049. wait_for_user_state = 2;
  5050. }
  5051. break;
  5052. case 2:
  5053. if (abs(degTargetHotend(active_extruder) - degHotend(active_extruder)) < 1) {
  5054. lcd_display_message_fullscreen_P(MSG_PRESS_TO_UNLOAD);
  5055. waiting_start_time = millis();
  5056. wait_for_user_state = 0;
  5057. }
  5058. else {
  5059. counterBeep = 20; //beeper will be inactive during waiting for nozzle preheat
  5060. lcd.setCursor(1, 4);
  5061. lcd.print(ftostr3(degHotend(active_extruder)));
  5062. }
  5063. break;
  5064. }
  5065. }
  5066. WRITE(BEEPER, LOW);
  5067. lcd_change_fil_state = 0;
  5068. // Unload filament
  5069. lcd_display_message_fullscreen_P(MSG_UNLOADING_FILAMENT);
  5070. KEEPALIVE_STATE(IN_HANDLER);
  5071. custom_message = true;
  5072. lcd_setstatuspgm(MSG_UNLOADING_FILAMENT);
  5073. if (code_seen('L'))
  5074. {
  5075. target[E_AXIS] += code_value();
  5076. }
  5077. else
  5078. {
  5079. #ifdef SNMM
  5080. #else
  5081. #ifdef FILAMENTCHANGE_FINALRETRACT
  5082. target[E_AXIS] += FILAMENTCHANGE_FINALRETRACT;
  5083. #endif
  5084. #endif // SNMM
  5085. }
  5086. #ifdef SNMM
  5087. target[E_AXIS] += 12;
  5088. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 3500, active_extruder);
  5089. target[E_AXIS] += 6;
  5090. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 5000, active_extruder);
  5091. target[E_AXIS] += (FIL_LOAD_LENGTH * -1);
  5092. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 5000, active_extruder);
  5093. st_synchronize();
  5094. target[E_AXIS] += (FIL_COOLING);
  5095. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 50, active_extruder);
  5096. target[E_AXIS] += (FIL_COOLING*-1);
  5097. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 50, active_extruder);
  5098. target[E_AXIS] += (bowden_length[snmm_extruder] * -1);
  5099. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 3000, active_extruder);
  5100. st_synchronize();
  5101. #else
  5102. // plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_RFEED, active_extruder);
  5103. //plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 3500 / 60, active_extruder);
  5104. target[E_AXIS] -= FILAMENTCHANGE_FINALRETRACT;
  5105. st_synchronize();
  5106. uint8_t tmc2130_current_r_bckp = tmc2130_current_r[E_AXIS];
  5107. tmc2130_set_current_r(E_AXIS, TMC2130_UNLOAD_CURRENT_R);
  5108. target[E_AXIS] -= 45;
  5109. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 5200 / 60, active_extruder);
  5110. st_synchronize();
  5111. target[E_AXIS] -= 15;
  5112. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 1000 / 60, active_extruder);
  5113. st_synchronize();
  5114. target[E_AXIS] -= 20;
  5115. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 1000 / 60, active_extruder);
  5116. st_synchronize();
  5117. tmc2130_set_current_r(E_AXIS, tmc2130_current_r_bckp);
  5118. #endif // SNMM
  5119. //finish moves
  5120. st_synchronize();
  5121. lcd_display_message_fullscreen_P(MSG_PULL_OUT_FILAMENT);
  5122. //disable extruder steppers so filament can be removed
  5123. disable_e0();
  5124. disable_e1();
  5125. disable_e2();
  5126. delay(100);
  5127. WRITE(BEEPER, HIGH);
  5128. counterBeep = 0;
  5129. while(!lcd_clicked() && (counterBeep < 50)) {
  5130. if(counterBeep > 5) WRITE(BEEPER, LOW);
  5131. delay_keep_alive(100);
  5132. counterBeep++;
  5133. }
  5134. WRITE(BEEPER, LOW);
  5135. KEEPALIVE_STATE(PAUSED_FOR_USER);
  5136. lcd_change_fil_state = lcd_show_fullscreen_message_yes_no_and_wait_P(MSG_UNLOAD_SUCCESSFUL, false, true);
  5137. if (lcd_change_fil_state == 0) lcd_show_fullscreen_message_and_wait_P(MSG_CHECK_IDLER);
  5138. //lcd_return_to_status();
  5139. lcd_update_enable(true);
  5140. //Wait for user to insert filament
  5141. lcd_wait_interact();
  5142. //load_filament_time = millis();
  5143. KEEPALIVE_STATE(PAUSED_FOR_USER);
  5144. #ifdef PAT9125
  5145. if (filament_autoload_enabled && (old_fsensor_enabled || fsensor_M600)) fsensor_autoload_check_start();
  5146. #endif //PAT9125
  5147. // printf_P(PSTR("M600 PAT9125 filament_autoload_enabled=%d, old_fsensor_enabled=%d, fsensor_M600=%d"), filament_autoload_enabled, old_fsensor_enabled, fsensor_M600);
  5148. while(!lcd_clicked())
  5149. {
  5150. manage_heater();
  5151. manage_inactivity(true);
  5152. #ifdef PAT9125
  5153. if (filament_autoload_enabled && (old_fsensor_enabled || fsensor_M600) && fsensor_check_autoload())
  5154. {
  5155. tone(BEEPER, 1000);
  5156. delay_keep_alive(50);
  5157. noTone(BEEPER);
  5158. break;
  5159. }
  5160. #endif //PAT9125
  5161. /*#ifdef SNMM
  5162. target[E_AXIS] += 0.002;
  5163. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 500, active_extruder);
  5164. #endif // SNMM*/
  5165. }
  5166. #ifdef PAT9125
  5167. if (filament_autoload_enabled && (old_fsensor_enabled || fsensor_M600)) fsensor_autoload_check_stop();
  5168. #endif //PAT9125
  5169. //WRITE(BEEPER, LOW);
  5170. KEEPALIVE_STATE(IN_HANDLER);
  5171. #ifdef SNMM
  5172. display_loading();
  5173. KEEPALIVE_STATE(PAUSED_FOR_USER);
  5174. do {
  5175. target[E_AXIS] += 0.002;
  5176. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 500, active_extruder);
  5177. delay_keep_alive(2);
  5178. } while (!lcd_clicked());
  5179. KEEPALIVE_STATE(IN_HANDLER);
  5180. /*if (millis() - load_filament_time > 2) {
  5181. load_filament_time = millis();
  5182. target[E_AXIS] += 0.001;
  5183. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 1000, active_extruder);
  5184. }*/
  5185. //Filament inserted
  5186. //Feed the filament to the end of nozzle quickly
  5187. st_synchronize();
  5188. target[E_AXIS] += bowden_length[snmm_extruder];
  5189. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 3000, active_extruder);
  5190. target[E_AXIS] += FIL_LOAD_LENGTH - 60;
  5191. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 1400, active_extruder);
  5192. target[E_AXIS] += 40;
  5193. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 400, active_extruder);
  5194. target[E_AXIS] += 10;
  5195. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 50, active_extruder);
  5196. #else
  5197. target[E_AXIS] += FILAMENTCHANGE_FIRSTFEED;
  5198. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_EFEED, active_extruder);
  5199. #endif // SNMM
  5200. //Extrude some filament
  5201. target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  5202. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_EXFEED, active_extruder);
  5203. //Wait for user to check the state
  5204. lcd_change_fil_state = 0;
  5205. lcd_loading_filament();
  5206. tone(BEEPER, 500);
  5207. delay_keep_alive(50);
  5208. noTone(BEEPER);
  5209. while ((lcd_change_fil_state == 0)||(lcd_change_fil_state != 1)){
  5210. lcd_change_fil_state = 0;
  5211. KEEPALIVE_STATE(PAUSED_FOR_USER);
  5212. lcd_alright();
  5213. KEEPALIVE_STATE(IN_HANDLER);
  5214. switch(lcd_change_fil_state){
  5215. // Filament failed to load so load it again
  5216. case 2:
  5217. #ifdef SNMM
  5218. display_loading();
  5219. do {
  5220. target[E_AXIS] += 0.002;
  5221. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 500, active_extruder);
  5222. delay_keep_alive(2);
  5223. } while (!lcd_clicked());
  5224. st_synchronize();
  5225. target[E_AXIS] += bowden_length[snmm_extruder];
  5226. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 3000, active_extruder);
  5227. target[E_AXIS] += FIL_LOAD_LENGTH - 60;
  5228. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 1400, active_extruder);
  5229. target[E_AXIS] += 40;
  5230. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 400, active_extruder);
  5231. target[E_AXIS] += 10;
  5232. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 50, active_extruder);
  5233. #else
  5234. target[E_AXIS]+= FILAMENTCHANGE_FIRSTFEED ;
  5235. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_EFEED, active_extruder);
  5236. #endif
  5237. target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  5238. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_EXFEED, active_extruder);
  5239. lcd_loading_filament();
  5240. break;
  5241. // Filament loaded properly but color is not clear
  5242. case 3:
  5243. target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  5244. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder);
  5245. lcd_loading_color();
  5246. break;
  5247. // Everything good
  5248. default:
  5249. lcd_change_success();
  5250. lcd_update_enable(true);
  5251. break;
  5252. }
  5253. }
  5254. //Not let's go back to print
  5255. fanSpeed = fanSpeedBckp;
  5256. //Feed a little of filament to stabilize pressure
  5257. target[E_AXIS]+= FILAMENTCHANGE_RECFEED;
  5258. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_EXFEED, active_extruder);
  5259. //Retract
  5260. target[E_AXIS]+= FILAMENTCHANGE_FIRSTRETRACT;
  5261. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_RFEED, active_extruder);
  5262. //plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 70, active_extruder); //should do nothing
  5263. //Move XY back
  5264. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_XYFEED, active_extruder);
  5265. //Move Z back
  5266. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_ZFEED, active_extruder);
  5267. target[E_AXIS]= target[E_AXIS] - FILAMENTCHANGE_FIRSTRETRACT;
  5268. //Unretract
  5269. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_RFEED, active_extruder);
  5270. //Set E position to original
  5271. plan_set_e_position(lastpos[E_AXIS]);
  5272. //Recover feed rate
  5273. feedmultiply=feedmultiplyBckp;
  5274. char cmd[9];
  5275. sprintf_P(cmd, PSTR("M220 S%i"), feedmultiplyBckp);
  5276. enquecommand(cmd);
  5277. lcd_setstatuspgm(WELCOME_MSG);
  5278. custom_message = false;
  5279. custom_message_type = 0;
  5280. fsensor_enabled = old_fsensor_enabled; //temporary solution for unexpected restarting
  5281. #ifdef PAT9125
  5282. if (fsensor_M600)
  5283. {
  5284. cmdqueue_pop_front(); //hack because M600 repeated 2x when enqueued to front
  5285. st_synchronize();
  5286. while (!is_buffer_empty())
  5287. {
  5288. process_commands();
  5289. cmdqueue_pop_front();
  5290. }
  5291. fsensor_enable();
  5292. fsensor_restore_print_and_continue();
  5293. }
  5294. #endif //PAT9125
  5295. }
  5296. break;
  5297. #endif //FILAMENTCHANGEENABLE
  5298. case 601: {
  5299. if(lcd_commands_type == 0) lcd_commands_type = LCD_COMMAND_LONG_PAUSE;
  5300. }
  5301. break;
  5302. case 602: {
  5303. if(lcd_commands_type == 0) lcd_commands_type = LCD_COMMAND_LONG_PAUSE_RESUME;
  5304. }
  5305. break;
  5306. #ifdef LIN_ADVANCE
  5307. case 900: // M900: Set LIN_ADVANCE options.
  5308. gcode_M900();
  5309. break;
  5310. #endif
  5311. case 907: // M907 Set digital trimpot motor current using axis codes.
  5312. {
  5313. #if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
  5314. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) digipot_current(i,code_value());
  5315. if(code_seen('B')) digipot_current(4,code_value());
  5316. if(code_seen('S')) for(int i=0;i<=4;i++) digipot_current(i,code_value());
  5317. #endif
  5318. #ifdef MOTOR_CURRENT_PWM_XY_PIN
  5319. if(code_seen('X')) digipot_current(0, code_value());
  5320. #endif
  5321. #ifdef MOTOR_CURRENT_PWM_Z_PIN
  5322. if(code_seen('Z')) digipot_current(1, code_value());
  5323. #endif
  5324. #ifdef MOTOR_CURRENT_PWM_E_PIN
  5325. if(code_seen('E')) digipot_current(2, code_value());
  5326. #endif
  5327. #ifdef DIGIPOT_I2C
  5328. // this one uses actual amps in floating point
  5329. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) digipot_i2c_set_current(i, code_value());
  5330. // for each additional extruder (named B,C,D,E..., channels 4,5,6,7...)
  5331. for(int i=NUM_AXIS;i<DIGIPOT_I2C_NUM_CHANNELS;i++) if(code_seen('B'+i-NUM_AXIS)) digipot_i2c_set_current(i, code_value());
  5332. #endif
  5333. }
  5334. break;
  5335. case 908: // M908 Control digital trimpot directly.
  5336. {
  5337. #if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
  5338. uint8_t channel,current;
  5339. if(code_seen('P')) channel=code_value();
  5340. if(code_seen('S')) current=code_value();
  5341. digitalPotWrite(channel, current);
  5342. #endif
  5343. }
  5344. break;
  5345. case 910: // M910 TMC2130 init
  5346. {
  5347. tmc2130_init();
  5348. }
  5349. break;
  5350. case 911: // M911 Set TMC2130 holding currents
  5351. {
  5352. if (code_seen('X')) tmc2130_set_current_h(0, code_value());
  5353. if (code_seen('Y')) tmc2130_set_current_h(1, code_value());
  5354. if (code_seen('Z')) tmc2130_set_current_h(2, code_value());
  5355. if (code_seen('E')) tmc2130_set_current_h(3, code_value());
  5356. }
  5357. break;
  5358. case 912: // M912 Set TMC2130 running currents
  5359. {
  5360. if (code_seen('X')) tmc2130_set_current_r(0, code_value());
  5361. if (code_seen('Y')) tmc2130_set_current_r(1, code_value());
  5362. if (code_seen('Z')) tmc2130_set_current_r(2, code_value());
  5363. if (code_seen('E')) tmc2130_set_current_r(3, code_value());
  5364. }
  5365. break;
  5366. case 913: // M913 Print TMC2130 currents
  5367. {
  5368. tmc2130_print_currents();
  5369. }
  5370. break;
  5371. case 914: // M914 Set normal mode
  5372. {
  5373. tmc2130_mode = TMC2130_MODE_NORMAL;
  5374. tmc2130_init();
  5375. }
  5376. break;
  5377. case 915: // M915 Set silent mode
  5378. {
  5379. tmc2130_mode = TMC2130_MODE_SILENT;
  5380. tmc2130_init();
  5381. }
  5382. break;
  5383. case 916: // M916 Set sg_thrs
  5384. {
  5385. if (code_seen('X')) tmc2130_sg_thr[X_AXIS] = code_value();
  5386. if (code_seen('Y')) tmc2130_sg_thr[Y_AXIS] = code_value();
  5387. if (code_seen('Z')) tmc2130_sg_thr[Z_AXIS] = code_value();
  5388. if (code_seen('E')) tmc2130_sg_thr[E_AXIS] = code_value();
  5389. MYSERIAL.print("tmc2130_sg_thr[X]=");
  5390. MYSERIAL.println(tmc2130_sg_thr[X_AXIS], DEC);
  5391. MYSERIAL.print("tmc2130_sg_thr[Y]=");
  5392. MYSERIAL.println(tmc2130_sg_thr[Y_AXIS], DEC);
  5393. MYSERIAL.print("tmc2130_sg_thr[Z]=");
  5394. MYSERIAL.println(tmc2130_sg_thr[Z_AXIS], DEC);
  5395. MYSERIAL.print("tmc2130_sg_thr[E]=");
  5396. MYSERIAL.println(tmc2130_sg_thr[E_AXIS], DEC);
  5397. }
  5398. break;
  5399. case 917: // M917 Set TMC2130 pwm_ampl
  5400. {
  5401. if (code_seen('X')) tmc2130_set_pwm_ampl(0, code_value());
  5402. if (code_seen('Y')) tmc2130_set_pwm_ampl(1, code_value());
  5403. if (code_seen('Z')) tmc2130_set_pwm_ampl(2, code_value());
  5404. if (code_seen('E')) tmc2130_set_pwm_ampl(3, code_value());
  5405. }
  5406. break;
  5407. case 918: // M918 Set TMC2130 pwm_grad
  5408. {
  5409. if (code_seen('X')) tmc2130_set_pwm_grad(0, code_value());
  5410. if (code_seen('Y')) tmc2130_set_pwm_grad(1, code_value());
  5411. if (code_seen('Z')) tmc2130_set_pwm_grad(2, code_value());
  5412. if (code_seen('E')) tmc2130_set_pwm_grad(3, code_value());
  5413. }
  5414. break;
  5415. case 350: // M350 Set microstepping mode. Warning: Steps per unit remains unchanged. S code sets stepping mode for all drivers.
  5416. {
  5417. #ifdef TMC2130
  5418. if(code_seen('E'))
  5419. {
  5420. uint16_t res_new = code_value();
  5421. if ((res_new == 8) || (res_new == 16) || (res_new == 32) || (res_new == 64) || (res_new == 128))
  5422. {
  5423. st_synchronize();
  5424. uint8_t axis = E_AXIS;
  5425. uint16_t res = tmc2130_get_res(axis);
  5426. tmc2130_set_res(axis, res_new);
  5427. if (res_new > res)
  5428. {
  5429. uint16_t fac = (res_new / res);
  5430. axis_steps_per_unit[axis] *= fac;
  5431. position[E_AXIS] *= fac;
  5432. }
  5433. else
  5434. {
  5435. uint16_t fac = (res / res_new);
  5436. axis_steps_per_unit[axis] /= fac;
  5437. position[E_AXIS] /= fac;
  5438. }
  5439. }
  5440. }
  5441. #else //TMC2130
  5442. #if defined(X_MS1_PIN) && X_MS1_PIN > -1
  5443. if(code_seen('S')) for(int i=0;i<=4;i++) microstep_mode(i,code_value());
  5444. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) microstep_mode(i,(uint8_t)code_value());
  5445. if(code_seen('B')) microstep_mode(4,code_value());
  5446. microstep_readings();
  5447. #endif
  5448. #endif //TMC2130
  5449. }
  5450. break;
  5451. case 351: // M351 Toggle MS1 MS2 pins directly, S# determines MS1 or MS2, X# sets the pin high/low.
  5452. {
  5453. #if defined(X_MS1_PIN) && X_MS1_PIN > -1
  5454. if(code_seen('S')) switch((int)code_value())
  5455. {
  5456. case 1:
  5457. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) microstep_ms(i,code_value(),-1);
  5458. if(code_seen('B')) microstep_ms(4,code_value(),-1);
  5459. break;
  5460. case 2:
  5461. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) microstep_ms(i,-1,code_value());
  5462. if(code_seen('B')) microstep_ms(4,-1,code_value());
  5463. break;
  5464. }
  5465. microstep_readings();
  5466. #endif
  5467. }
  5468. break;
  5469. case 701: //M701: load filament
  5470. {
  5471. gcode_M701();
  5472. }
  5473. break;
  5474. case 702:
  5475. {
  5476. #ifdef SNMM
  5477. if (code_seen('U')) {
  5478. extr_unload_used(); //unload all filaments which were used in current print
  5479. }
  5480. else if (code_seen('C')) {
  5481. extr_unload(); //unload just current filament
  5482. }
  5483. else {
  5484. extr_unload_all(); //unload all filaments
  5485. }
  5486. #else
  5487. bool old_fsensor_enabled = fsensor_enabled;
  5488. fsensor_enabled = false;
  5489. custom_message = true;
  5490. custom_message_type = 2;
  5491. lcd_setstatuspgm(MSG_UNLOADING_FILAMENT);
  5492. // extr_unload2();
  5493. current_position[E_AXIS] -= 45;
  5494. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 5200 / 60, active_extruder);
  5495. st_synchronize();
  5496. current_position[E_AXIS] -= 15;
  5497. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 1000 / 60, active_extruder);
  5498. st_synchronize();
  5499. current_position[E_AXIS] -= 20;
  5500. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 1000 / 60, active_extruder);
  5501. st_synchronize();
  5502. lcd_display_message_fullscreen_P(MSG_PULL_OUT_FILAMENT);
  5503. //disable extruder steppers so filament can be removed
  5504. disable_e0();
  5505. disable_e1();
  5506. disable_e2();
  5507. delay(100);
  5508. WRITE(BEEPER, HIGH);
  5509. uint8_t counterBeep = 0;
  5510. while (!lcd_clicked() && (counterBeep < 50)) {
  5511. if (counterBeep > 5) WRITE(BEEPER, LOW);
  5512. delay_keep_alive(100);
  5513. counterBeep++;
  5514. }
  5515. WRITE(BEEPER, LOW);
  5516. st_synchronize();
  5517. while (lcd_clicked()) delay_keep_alive(100);
  5518. lcd_update_enable(true);
  5519. lcd_setstatuspgm(WELCOME_MSG);
  5520. custom_message = false;
  5521. custom_message_type = 0;
  5522. fsensor_enabled = old_fsensor_enabled;
  5523. #endif
  5524. }
  5525. break;
  5526. case 999: // M999: Restart after being stopped
  5527. Stopped = false;
  5528. lcd_reset_alert_level();
  5529. gcode_LastN = Stopped_gcode_LastN;
  5530. FlushSerialRequestResend();
  5531. break;
  5532. default:
  5533. printf_P(PSTR("Unknown M code: %s \n"), cmdbuffer + bufindr + CMDHDRSIZE);
  5534. }
  5535. } // end if(code_seen('M')) (end of M codes)
  5536. else if(code_seen('T'))
  5537. {
  5538. int index;
  5539. st_synchronize();
  5540. for (index = 1; *(strchr_pointer + index) == ' ' || *(strchr_pointer + index) == '\t'; index++);
  5541. if ((*(strchr_pointer + index) < '0' || *(strchr_pointer + index) > '9') && *(strchr_pointer + index) != '?') {
  5542. SERIAL_ECHOLNPGM("Invalid T code.");
  5543. }
  5544. else {
  5545. if (*(strchr_pointer + index) == '?') {
  5546. tmp_extruder = choose_extruder_menu();
  5547. }
  5548. else {
  5549. tmp_extruder = code_value();
  5550. }
  5551. snmm_filaments_used |= (1 << tmp_extruder); //for stop print
  5552. #ifdef SNMM
  5553. #ifdef LIN_ADVANCE
  5554. if (snmm_extruder != tmp_extruder)
  5555. clear_current_adv_vars(); //Check if the selected extruder is not the active one and reset LIN_ADVANCE variables if so.
  5556. #endif
  5557. snmm_extruder = tmp_extruder;
  5558. delay(100);
  5559. disable_e0();
  5560. disable_e1();
  5561. disable_e2();
  5562. pinMode(E_MUX0_PIN, OUTPUT);
  5563. pinMode(E_MUX1_PIN, OUTPUT);
  5564. pinMode(E_MUX2_PIN, OUTPUT);
  5565. delay(100);
  5566. SERIAL_ECHO_START;
  5567. SERIAL_ECHO("T:");
  5568. SERIAL_ECHOLN((int)tmp_extruder);
  5569. switch (tmp_extruder) {
  5570. case 1:
  5571. WRITE(E_MUX0_PIN, HIGH);
  5572. WRITE(E_MUX1_PIN, LOW);
  5573. WRITE(E_MUX2_PIN, LOW);
  5574. break;
  5575. case 2:
  5576. WRITE(E_MUX0_PIN, LOW);
  5577. WRITE(E_MUX1_PIN, HIGH);
  5578. WRITE(E_MUX2_PIN, LOW);
  5579. break;
  5580. case 3:
  5581. WRITE(E_MUX0_PIN, HIGH);
  5582. WRITE(E_MUX1_PIN, HIGH);
  5583. WRITE(E_MUX2_PIN, LOW);
  5584. break;
  5585. default:
  5586. WRITE(E_MUX0_PIN, LOW);
  5587. WRITE(E_MUX1_PIN, LOW);
  5588. WRITE(E_MUX2_PIN, LOW);
  5589. break;
  5590. }
  5591. delay(100);
  5592. #else
  5593. if (tmp_extruder >= EXTRUDERS) {
  5594. SERIAL_ECHO_START;
  5595. SERIAL_ECHOPGM("T");
  5596. SERIAL_PROTOCOLLN((int)tmp_extruder);
  5597. SERIAL_ECHOLNRPGM(MSG_INVALID_EXTRUDER);
  5598. }
  5599. else {
  5600. boolean make_move = false;
  5601. if (code_seen('F')) {
  5602. make_move = true;
  5603. next_feedrate = code_value();
  5604. if (next_feedrate > 0.0) {
  5605. feedrate = next_feedrate;
  5606. }
  5607. }
  5608. #if EXTRUDERS > 1
  5609. if (tmp_extruder != active_extruder) {
  5610. // Save current position to return to after applying extruder offset
  5611. memcpy(destination, current_position, sizeof(destination));
  5612. // Offset extruder (only by XY)
  5613. int i;
  5614. for (i = 0; i < 2; i++) {
  5615. current_position[i] = current_position[i] -
  5616. extruder_offset[i][active_extruder] +
  5617. extruder_offset[i][tmp_extruder];
  5618. }
  5619. // Set the new active extruder and position
  5620. active_extruder = tmp_extruder;
  5621. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  5622. // Move to the old position if 'F' was in the parameters
  5623. if (make_move && Stopped == false) {
  5624. prepare_move();
  5625. }
  5626. }
  5627. #endif
  5628. SERIAL_ECHO_START;
  5629. SERIAL_ECHORPGM(MSG_ACTIVE_EXTRUDER);
  5630. SERIAL_PROTOCOLLN((int)active_extruder);
  5631. }
  5632. #endif
  5633. }
  5634. } // end if(code_seen('T')) (end of T codes)
  5635. #ifdef DEBUG_DCODES
  5636. else if (code_seen('D')) // D codes (debug)
  5637. {
  5638. switch((int)code_value())
  5639. {
  5640. case -1: // D-1 - Endless loop
  5641. dcode__1(); break;
  5642. case 0: // D0 - Reset
  5643. dcode_0(); break;
  5644. case 1: // D1 - Clear EEPROM
  5645. dcode_1(); break;
  5646. case 2: // D2 - Read/Write RAM
  5647. dcode_2(); break;
  5648. case 3: // D3 - Read/Write EEPROM
  5649. dcode_3(); break;
  5650. case 4: // D4 - Read/Write PIN
  5651. dcode_4(); break;
  5652. case 5: // D5 - Read/Write FLASH
  5653. // dcode_5(); break;
  5654. break;
  5655. case 6: // D6 - Read/Write external FLASH
  5656. dcode_6(); break;
  5657. case 7: // D7 - Read/Write Bootloader
  5658. dcode_7(); break;
  5659. case 8: // D8 - Read/Write PINDA
  5660. dcode_8(); break;
  5661. case 9: // D9 - Read/Write ADC
  5662. dcode_9(); break;
  5663. case 10: // D10 - XYZ calibration = OK
  5664. dcode_10(); break;
  5665. case 2130: // D9125 - TMC2130
  5666. dcode_2130(); break;
  5667. case 9125: // D9125 - PAT9125
  5668. dcode_9125(); break;
  5669. }
  5670. }
  5671. #endif //DEBUG_DCODES
  5672. else
  5673. {
  5674. SERIAL_ECHO_START;
  5675. SERIAL_ECHORPGM(MSG_UNKNOWN_COMMAND);
  5676. SERIAL_ECHO(CMDBUFFER_CURRENT_STRING);
  5677. SERIAL_ECHOLNPGM("\"(2)");
  5678. }
  5679. KEEPALIVE_STATE(NOT_BUSY);
  5680. ClearToSend();
  5681. }
  5682. void FlushSerialRequestResend()
  5683. {
  5684. //char cmdbuffer[bufindr][100]="Resend:";
  5685. MYSERIAL.flush();
  5686. SERIAL_PROTOCOLRPGM(MSG_RESEND);
  5687. SERIAL_PROTOCOLLN(gcode_LastN + 1);
  5688. previous_millis_cmd = millis();
  5689. SERIAL_PROTOCOLLNRPGM(MSG_OK);
  5690. }
  5691. // Confirm the execution of a command, if sent from a serial line.
  5692. // Execution of a command from a SD card will not be confirmed.
  5693. void ClearToSend()
  5694. {
  5695. previous_millis_cmd = millis();
  5696. if (CMDBUFFER_CURRENT_TYPE == CMDBUFFER_CURRENT_TYPE_USB)
  5697. SERIAL_PROTOCOLLNRPGM(MSG_OK);
  5698. }
  5699. void get_coordinates()
  5700. {
  5701. bool seen[4]={false,false,false,false};
  5702. for(int8_t i=0; i < NUM_AXIS; i++) {
  5703. if(code_seen(axis_codes[i]))
  5704. {
  5705. bool relative = axis_relative_modes[i] || relative_mode;
  5706. destination[i] = (float)code_value();
  5707. if (i == E_AXIS) {
  5708. float emult = extruder_multiplier[active_extruder];
  5709. if (emult != 1.) {
  5710. if (! relative) {
  5711. destination[i] -= current_position[i];
  5712. relative = true;
  5713. }
  5714. destination[i] *= emult;
  5715. }
  5716. }
  5717. if (relative)
  5718. destination[i] += current_position[i];
  5719. seen[i]=true;
  5720. }
  5721. else destination[i] = current_position[i]; //Are these else lines really needed?
  5722. }
  5723. if(code_seen('F')) {
  5724. next_feedrate = code_value();
  5725. #ifdef MAX_SILENT_FEEDRATE
  5726. if (tmc2130_mode == TMC2130_MODE_SILENT)
  5727. if (next_feedrate > MAX_SILENT_FEEDRATE) next_feedrate = MAX_SILENT_FEEDRATE;
  5728. #endif //MAX_SILENT_FEEDRATE
  5729. if(next_feedrate > 0.0) feedrate = next_feedrate;
  5730. if (!seen[0] && !seen[1] && !seen[2] && seen[3])
  5731. {
  5732. // float e_max_speed =
  5733. // printf_P(PSTR("E MOVE speed %7.3f\n"), feedrate / 60)
  5734. }
  5735. }
  5736. }
  5737. void get_arc_coordinates()
  5738. {
  5739. #ifdef SF_ARC_FIX
  5740. bool relative_mode_backup = relative_mode;
  5741. relative_mode = true;
  5742. #endif
  5743. get_coordinates();
  5744. #ifdef SF_ARC_FIX
  5745. relative_mode=relative_mode_backup;
  5746. #endif
  5747. if(code_seen('I')) {
  5748. offset[0] = code_value();
  5749. }
  5750. else {
  5751. offset[0] = 0.0;
  5752. }
  5753. if(code_seen('J')) {
  5754. offset[1] = code_value();
  5755. }
  5756. else {
  5757. offset[1] = 0.0;
  5758. }
  5759. }
  5760. void clamp_to_software_endstops(float target[3])
  5761. {
  5762. #ifdef DEBUG_DISABLE_SWLIMITS
  5763. return;
  5764. #endif //DEBUG_DISABLE_SWLIMITS
  5765. world2machine_clamp(target[0], target[1]);
  5766. // Clamp the Z coordinate.
  5767. if (min_software_endstops) {
  5768. float negative_z_offset = 0;
  5769. #ifdef ENABLE_AUTO_BED_LEVELING
  5770. if (Z_PROBE_OFFSET_FROM_EXTRUDER < 0) negative_z_offset = negative_z_offset + Z_PROBE_OFFSET_FROM_EXTRUDER;
  5771. if (add_homing[Z_AXIS] < 0) negative_z_offset = negative_z_offset + add_homing[Z_AXIS];
  5772. #endif
  5773. if (target[Z_AXIS] < min_pos[Z_AXIS]+negative_z_offset) target[Z_AXIS] = min_pos[Z_AXIS]+negative_z_offset;
  5774. }
  5775. if (max_software_endstops) {
  5776. if (target[Z_AXIS] > max_pos[Z_AXIS]) target[Z_AXIS] = max_pos[Z_AXIS];
  5777. }
  5778. }
  5779. #ifdef MESH_BED_LEVELING
  5780. void mesh_plan_buffer_line(const float &x, const float &y, const float &z, const float &e, const float &feed_rate, const uint8_t extruder) {
  5781. float dx = x - current_position[X_AXIS];
  5782. float dy = y - current_position[Y_AXIS];
  5783. float dz = z - current_position[Z_AXIS];
  5784. int n_segments = 0;
  5785. if (mbl.active) {
  5786. float len = abs(dx) + abs(dy);
  5787. if (len > 0)
  5788. // Split to 3cm segments or shorter.
  5789. n_segments = int(ceil(len / 30.f));
  5790. }
  5791. if (n_segments > 1) {
  5792. float de = e - current_position[E_AXIS];
  5793. for (int i = 1; i < n_segments; ++ i) {
  5794. float t = float(i) / float(n_segments);
  5795. plan_buffer_line(
  5796. current_position[X_AXIS] + t * dx,
  5797. current_position[Y_AXIS] + t * dy,
  5798. current_position[Z_AXIS] + t * dz,
  5799. current_position[E_AXIS] + t * de,
  5800. feed_rate, extruder);
  5801. }
  5802. }
  5803. // The rest of the path.
  5804. plan_buffer_line(x, y, z, e, feed_rate, extruder);
  5805. current_position[X_AXIS] = x;
  5806. current_position[Y_AXIS] = y;
  5807. current_position[Z_AXIS] = z;
  5808. current_position[E_AXIS] = e;
  5809. }
  5810. #endif // MESH_BED_LEVELING
  5811. void prepare_move()
  5812. {
  5813. clamp_to_software_endstops(destination);
  5814. previous_millis_cmd = millis();
  5815. // Do not use feedmultiply for E or Z only moves
  5816. if( (current_position[X_AXIS] == destination [X_AXIS]) && (current_position[Y_AXIS] == destination [Y_AXIS])) {
  5817. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  5818. }
  5819. else {
  5820. #ifdef MESH_BED_LEVELING
  5821. mesh_plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate*feedmultiply*(1./(60.f*100.f)), active_extruder);
  5822. #else
  5823. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate*feedmultiply*(1./(60.f*100.f)), active_extruder);
  5824. #endif
  5825. }
  5826. for(int8_t i=0; i < NUM_AXIS; i++) {
  5827. current_position[i] = destination[i];
  5828. }
  5829. }
  5830. void prepare_arc_move(char isclockwise) {
  5831. float r = hypot(offset[X_AXIS], offset[Y_AXIS]); // Compute arc radius for mc_arc
  5832. // Trace the arc
  5833. mc_arc(current_position, destination, offset, X_AXIS, Y_AXIS, Z_AXIS, feedrate*feedmultiply/60/100.0, r, isclockwise, active_extruder);
  5834. // As far as the parser is concerned, the position is now == target. In reality the
  5835. // motion control system might still be processing the action and the real tool position
  5836. // in any intermediate location.
  5837. for(int8_t i=0; i < NUM_AXIS; i++) {
  5838. current_position[i] = destination[i];
  5839. }
  5840. previous_millis_cmd = millis();
  5841. }
  5842. #if defined(CONTROLLERFAN_PIN) && CONTROLLERFAN_PIN > -1
  5843. #if defined(FAN_PIN)
  5844. #if CONTROLLERFAN_PIN == FAN_PIN
  5845. #error "You cannot set CONTROLLERFAN_PIN equal to FAN_PIN"
  5846. #endif
  5847. #endif
  5848. unsigned long lastMotor = 0; //Save the time for when a motor was turned on last
  5849. unsigned long lastMotorCheck = 0;
  5850. void controllerFan()
  5851. {
  5852. if ((millis() - lastMotorCheck) >= 2500) //Not a time critical function, so we only check every 2500ms
  5853. {
  5854. lastMotorCheck = millis();
  5855. if(!READ(X_ENABLE_PIN) || !READ(Y_ENABLE_PIN) || !READ(Z_ENABLE_PIN) || (soft_pwm_bed > 0)
  5856. #if EXTRUDERS > 2
  5857. || !READ(E2_ENABLE_PIN)
  5858. #endif
  5859. #if EXTRUDER > 1
  5860. #if defined(X2_ENABLE_PIN) && X2_ENABLE_PIN > -1
  5861. || !READ(X2_ENABLE_PIN)
  5862. #endif
  5863. || !READ(E1_ENABLE_PIN)
  5864. #endif
  5865. || !READ(E0_ENABLE_PIN)) //If any of the drivers are enabled...
  5866. {
  5867. lastMotor = millis(); //... set time to NOW so the fan will turn on
  5868. }
  5869. if ((millis() - lastMotor) >= (CONTROLLERFAN_SECS*1000UL) || lastMotor == 0) //If the last time any driver was enabled, is longer since than CONTROLLERSEC...
  5870. {
  5871. digitalWrite(CONTROLLERFAN_PIN, 0);
  5872. analogWrite(CONTROLLERFAN_PIN, 0);
  5873. }
  5874. else
  5875. {
  5876. // allows digital or PWM fan output to be used (see M42 handling)
  5877. digitalWrite(CONTROLLERFAN_PIN, CONTROLLERFAN_SPEED);
  5878. analogWrite(CONTROLLERFAN_PIN, CONTROLLERFAN_SPEED);
  5879. }
  5880. }
  5881. }
  5882. #endif
  5883. #ifdef TEMP_STAT_LEDS
  5884. static bool blue_led = false;
  5885. static bool red_led = false;
  5886. static uint32_t stat_update = 0;
  5887. void handle_status_leds(void) {
  5888. float max_temp = 0.0;
  5889. if(millis() > stat_update) {
  5890. stat_update += 500; // Update every 0.5s
  5891. for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) {
  5892. max_temp = max(max_temp, degHotend(cur_extruder));
  5893. max_temp = max(max_temp, degTargetHotend(cur_extruder));
  5894. }
  5895. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  5896. max_temp = max(max_temp, degTargetBed());
  5897. max_temp = max(max_temp, degBed());
  5898. #endif
  5899. if((max_temp > 55.0) && (red_led == false)) {
  5900. digitalWrite(STAT_LED_RED, 1);
  5901. digitalWrite(STAT_LED_BLUE, 0);
  5902. red_led = true;
  5903. blue_led = false;
  5904. }
  5905. if((max_temp < 54.0) && (blue_led == false)) {
  5906. digitalWrite(STAT_LED_RED, 0);
  5907. digitalWrite(STAT_LED_BLUE, 1);
  5908. red_led = false;
  5909. blue_led = true;
  5910. }
  5911. }
  5912. }
  5913. #endif
  5914. void manage_inactivity(bool ignore_stepper_queue/*=false*/) //default argument set in Marlin.h
  5915. {
  5916. if (fsensor_enabled && filament_autoload_enabled && !fsensor_M600 && !moves_planned() && !IS_SD_PRINTING && !is_usb_printing && (lcd_commands_type != LCD_COMMAND_V2_CAL))
  5917. {
  5918. if (fsensor_autoload_enabled)
  5919. {
  5920. if (fsensor_check_autoload())
  5921. {
  5922. if (degHotend0() > EXTRUDE_MINTEMP)
  5923. {
  5924. fsensor_autoload_check_stop();
  5925. tone(BEEPER, 1000);
  5926. delay_keep_alive(50);
  5927. noTone(BEEPER);
  5928. loading_flag = true;
  5929. enquecommand_front_P((PSTR("M701")));
  5930. }
  5931. else
  5932. {
  5933. lcd_update_enable(false);
  5934. lcd_implementation_clear();
  5935. lcd.setCursor(0, 0);
  5936. lcd_printPGM(MSG_ERROR);
  5937. lcd.setCursor(0, 2);
  5938. lcd_printPGM(MSG_PREHEAT_NOZZLE);
  5939. delay(2000);
  5940. lcd_implementation_clear();
  5941. lcd_update_enable(true);
  5942. }
  5943. }
  5944. }
  5945. else
  5946. fsensor_autoload_check_start();
  5947. }
  5948. else
  5949. if (fsensor_autoload_enabled)
  5950. fsensor_autoload_check_stop();
  5951. #if defined(KILL_PIN) && KILL_PIN > -1
  5952. static int killCount = 0; // make the inactivity button a bit less responsive
  5953. const int KILL_DELAY = 10000;
  5954. #endif
  5955. if(buflen < (BUFSIZE-1)){
  5956. get_command();
  5957. }
  5958. if( (millis() - previous_millis_cmd) > max_inactive_time )
  5959. if(max_inactive_time)
  5960. kill("", 4);
  5961. if(stepper_inactive_time) {
  5962. if( (millis() - previous_millis_cmd) > stepper_inactive_time )
  5963. {
  5964. if(blocks_queued() == false && ignore_stepper_queue == false) {
  5965. disable_x();
  5966. // SERIAL_ECHOLNPGM("manage_inactivity - disable Y");
  5967. disable_y();
  5968. disable_z();
  5969. disable_e0();
  5970. disable_e1();
  5971. disable_e2();
  5972. }
  5973. }
  5974. }
  5975. #ifdef CHDK //Check if pin should be set to LOW after M240 set it to HIGH
  5976. if (chdkActive && (millis() - chdkHigh > CHDK_DELAY))
  5977. {
  5978. chdkActive = false;
  5979. WRITE(CHDK, LOW);
  5980. }
  5981. #endif
  5982. #if defined(KILL_PIN) && KILL_PIN > -1
  5983. // Check if the kill button was pressed and wait just in case it was an accidental
  5984. // key kill key press
  5985. // -------------------------------------------------------------------------------
  5986. if( 0 == READ(KILL_PIN) )
  5987. {
  5988. killCount++;
  5989. }
  5990. else if (killCount > 0)
  5991. {
  5992. killCount--;
  5993. }
  5994. // Exceeded threshold and we can confirm that it was not accidental
  5995. // KILL the machine
  5996. // ----------------------------------------------------------------
  5997. if ( killCount >= KILL_DELAY)
  5998. {
  5999. kill("", 5);
  6000. }
  6001. #endif
  6002. #if defined(CONTROLLERFAN_PIN) && CONTROLLERFAN_PIN > -1
  6003. controllerFan(); //Check if fan should be turned on to cool stepper drivers down
  6004. #endif
  6005. #ifdef EXTRUDER_RUNOUT_PREVENT
  6006. if( (millis() - previous_millis_cmd) > EXTRUDER_RUNOUT_SECONDS*1000 )
  6007. if(degHotend(active_extruder)>EXTRUDER_RUNOUT_MINTEMP)
  6008. {
  6009. bool oldstatus=READ(E0_ENABLE_PIN);
  6010. enable_e0();
  6011. float oldepos=current_position[E_AXIS];
  6012. float oldedes=destination[E_AXIS];
  6013. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS],
  6014. destination[E_AXIS]+EXTRUDER_RUNOUT_EXTRUDE*EXTRUDER_RUNOUT_ESTEPS/axis_steps_per_unit[E_AXIS],
  6015. EXTRUDER_RUNOUT_SPEED/60.*EXTRUDER_RUNOUT_ESTEPS/axis_steps_per_unit[E_AXIS], active_extruder);
  6016. current_position[E_AXIS]=oldepos;
  6017. destination[E_AXIS]=oldedes;
  6018. plan_set_e_position(oldepos);
  6019. previous_millis_cmd=millis();
  6020. st_synchronize();
  6021. WRITE(E0_ENABLE_PIN,oldstatus);
  6022. }
  6023. #endif
  6024. #ifdef TEMP_STAT_LEDS
  6025. handle_status_leds();
  6026. #endif
  6027. check_axes_activity();
  6028. }
  6029. void kill(const char *full_screen_message, unsigned char id)
  6030. {
  6031. SERIAL_ECHOPGM("KILL: ");
  6032. MYSERIAL.println(int(id));
  6033. //return;
  6034. cli(); // Stop interrupts
  6035. disable_heater();
  6036. disable_x();
  6037. // SERIAL_ECHOLNPGM("kill - disable Y");
  6038. disable_y();
  6039. disable_z();
  6040. disable_e0();
  6041. disable_e1();
  6042. disable_e2();
  6043. #if defined(PS_ON_PIN) && PS_ON_PIN > -1
  6044. pinMode(PS_ON_PIN,INPUT);
  6045. #endif
  6046. SERIAL_ERROR_START;
  6047. SERIAL_ERRORLNRPGM(MSG_ERR_KILLED);
  6048. if (full_screen_message != NULL) {
  6049. SERIAL_ERRORLNRPGM(full_screen_message);
  6050. lcd_display_message_fullscreen_P(full_screen_message);
  6051. } else {
  6052. LCD_ALERTMESSAGERPGM(MSG_KILLED);
  6053. }
  6054. // FMC small patch to update the LCD before ending
  6055. sei(); // enable interrupts
  6056. for ( int i=5; i--; lcd_update())
  6057. {
  6058. delay(200);
  6059. }
  6060. cli(); // disable interrupts
  6061. suicide();
  6062. while(1)
  6063. {
  6064. wdt_reset();
  6065. /* Intentionally left empty */
  6066. } // Wait for reset
  6067. }
  6068. void Stop()
  6069. {
  6070. disable_heater();
  6071. if(Stopped == false) {
  6072. Stopped = true;
  6073. Stopped_gcode_LastN = gcode_LastN; // Save last g_code for restart
  6074. SERIAL_ERROR_START;
  6075. SERIAL_ERRORLNRPGM(MSG_ERR_STOPPED);
  6076. LCD_MESSAGERPGM(MSG_STOPPED);
  6077. }
  6078. }
  6079. bool IsStopped() { return Stopped; };
  6080. #ifdef FAST_PWM_FAN
  6081. void setPwmFrequency(uint8_t pin, int val)
  6082. {
  6083. val &= 0x07;
  6084. switch(digitalPinToTimer(pin))
  6085. {
  6086. #if defined(TCCR0A)
  6087. case TIMER0A:
  6088. case TIMER0B:
  6089. // TCCR0B &= ~(_BV(CS00) | _BV(CS01) | _BV(CS02));
  6090. // TCCR0B |= val;
  6091. break;
  6092. #endif
  6093. #if defined(TCCR1A)
  6094. case TIMER1A:
  6095. case TIMER1B:
  6096. // TCCR1B &= ~(_BV(CS10) | _BV(CS11) | _BV(CS12));
  6097. // TCCR1B |= val;
  6098. break;
  6099. #endif
  6100. #if defined(TCCR2)
  6101. case TIMER2:
  6102. case TIMER2:
  6103. TCCR2 &= ~(_BV(CS10) | _BV(CS11) | _BV(CS12));
  6104. TCCR2 |= val;
  6105. break;
  6106. #endif
  6107. #if defined(TCCR2A)
  6108. case TIMER2A:
  6109. case TIMER2B:
  6110. TCCR2B &= ~(_BV(CS20) | _BV(CS21) | _BV(CS22));
  6111. TCCR2B |= val;
  6112. break;
  6113. #endif
  6114. #if defined(TCCR3A)
  6115. case TIMER3A:
  6116. case TIMER3B:
  6117. case TIMER3C:
  6118. TCCR3B &= ~(_BV(CS30) | _BV(CS31) | _BV(CS32));
  6119. TCCR3B |= val;
  6120. break;
  6121. #endif
  6122. #if defined(TCCR4A)
  6123. case TIMER4A:
  6124. case TIMER4B:
  6125. case TIMER4C:
  6126. TCCR4B &= ~(_BV(CS40) | _BV(CS41) | _BV(CS42));
  6127. TCCR4B |= val;
  6128. break;
  6129. #endif
  6130. #if defined(TCCR5A)
  6131. case TIMER5A:
  6132. case TIMER5B:
  6133. case TIMER5C:
  6134. TCCR5B &= ~(_BV(CS50) | _BV(CS51) | _BV(CS52));
  6135. TCCR5B |= val;
  6136. break;
  6137. #endif
  6138. }
  6139. }
  6140. #endif //FAST_PWM_FAN
  6141. bool setTargetedHotend(int code){
  6142. tmp_extruder = active_extruder;
  6143. if(code_seen('T')) {
  6144. tmp_extruder = code_value();
  6145. if(tmp_extruder >= EXTRUDERS) {
  6146. SERIAL_ECHO_START;
  6147. switch(code){
  6148. case 104:
  6149. SERIAL_ECHORPGM(MSG_M104_INVALID_EXTRUDER);
  6150. break;
  6151. case 105:
  6152. SERIAL_ECHO(MSG_M105_INVALID_EXTRUDER);
  6153. break;
  6154. case 109:
  6155. SERIAL_ECHO(MSG_M109_INVALID_EXTRUDER);
  6156. break;
  6157. case 218:
  6158. SERIAL_ECHO(MSG_M218_INVALID_EXTRUDER);
  6159. break;
  6160. case 221:
  6161. SERIAL_ECHO(MSG_M221_INVALID_EXTRUDER);
  6162. break;
  6163. }
  6164. SERIAL_PROTOCOLLN((int)tmp_extruder);
  6165. return true;
  6166. }
  6167. }
  6168. return false;
  6169. }
  6170. void save_statistics(unsigned long _total_filament_used, unsigned long _total_print_time) //_total_filament_used unit: mm/100; print time in s
  6171. {
  6172. if (eeprom_read_byte((uint8_t *)EEPROM_TOTALTIME) == 255 && eeprom_read_byte((uint8_t *)EEPROM_TOTALTIME + 1) == 255 && eeprom_read_byte((uint8_t *)EEPROM_TOTALTIME + 2) == 255 && eeprom_read_byte((uint8_t *)EEPROM_TOTALTIME + 3) == 255)
  6173. {
  6174. eeprom_update_dword((uint32_t *)EEPROM_TOTALTIME, 0);
  6175. eeprom_update_dword((uint32_t *)EEPROM_FILAMENTUSED, 0);
  6176. }
  6177. unsigned long _previous_filament = eeprom_read_dword((uint32_t *)EEPROM_FILAMENTUSED); //_previous_filament unit: cm
  6178. unsigned long _previous_time = eeprom_read_dword((uint32_t *)EEPROM_TOTALTIME); //_previous_time unit: min
  6179. eeprom_update_dword((uint32_t *)EEPROM_TOTALTIME, _previous_time + (_total_print_time/60)); //EEPROM_TOTALTIME unit: min
  6180. eeprom_update_dword((uint32_t *)EEPROM_FILAMENTUSED, _previous_filament + (_total_filament_used / 1000));
  6181. total_filament_used = 0;
  6182. }
  6183. float calculate_extruder_multiplier(float diameter) {
  6184. float out = 1.f;
  6185. if (volumetric_enabled && diameter > 0.f) {
  6186. float area = M_PI * diameter * diameter * 0.25;
  6187. out = 1.f / area;
  6188. }
  6189. if (extrudemultiply != 100)
  6190. out *= float(extrudemultiply) * 0.01f;
  6191. return out;
  6192. }
  6193. void calculate_extruder_multipliers() {
  6194. extruder_multiplier[0] = calculate_extruder_multiplier(filament_size[0]);
  6195. #if EXTRUDERS > 1
  6196. extruder_multiplier[1] = calculate_extruder_multiplier(filament_size[1]);
  6197. #if EXTRUDERS > 2
  6198. extruder_multiplier[2] = calculate_extruder_multiplier(filament_size[2]);
  6199. #endif
  6200. #endif
  6201. }
  6202. void delay_keep_alive(unsigned int ms)
  6203. {
  6204. for (;;) {
  6205. manage_heater();
  6206. // Manage inactivity, but don't disable steppers on timeout.
  6207. manage_inactivity(true);
  6208. lcd_update();
  6209. if (ms == 0)
  6210. break;
  6211. else if (ms >= 50) {
  6212. delay(50);
  6213. ms -= 50;
  6214. } else {
  6215. delay(ms);
  6216. ms = 0;
  6217. }
  6218. }
  6219. }
  6220. void wait_for_heater(long codenum) {
  6221. #ifdef TEMP_RESIDENCY_TIME
  6222. long residencyStart;
  6223. residencyStart = -1;
  6224. /* continue to loop until we have reached the target temp
  6225. _and_ until TEMP_RESIDENCY_TIME hasn't passed since we reached it */
  6226. while ((!cancel_heatup) && ((residencyStart == -1) ||
  6227. (residencyStart >= 0 && (((unsigned int)(millis() - residencyStart)) < (TEMP_RESIDENCY_TIME * 1000UL))))) {
  6228. #else
  6229. while (target_direction ? (isHeatingHotend(tmp_extruder)) : (isCoolingHotend(tmp_extruder) && (CooldownNoWait == false))) {
  6230. #endif //TEMP_RESIDENCY_TIME
  6231. if ((millis() - codenum) > 1000UL)
  6232. { //Print Temp Reading and remaining time every 1 second while heating up/cooling down
  6233. if (!farm_mode) {
  6234. SERIAL_PROTOCOLPGM("T:");
  6235. SERIAL_PROTOCOL_F(degHotend(tmp_extruder), 1);
  6236. SERIAL_PROTOCOLPGM(" E:");
  6237. SERIAL_PROTOCOL((int)tmp_extruder);
  6238. #ifdef TEMP_RESIDENCY_TIME
  6239. SERIAL_PROTOCOLPGM(" W:");
  6240. if (residencyStart > -1)
  6241. {
  6242. codenum = ((TEMP_RESIDENCY_TIME * 1000UL) - (millis() - residencyStart)) / 1000UL;
  6243. SERIAL_PROTOCOLLN(codenum);
  6244. }
  6245. else
  6246. {
  6247. SERIAL_PROTOCOLLN("?");
  6248. }
  6249. }
  6250. #else
  6251. SERIAL_PROTOCOLLN("");
  6252. #endif
  6253. codenum = millis();
  6254. }
  6255. manage_heater();
  6256. manage_inactivity();
  6257. lcd_update();
  6258. #ifdef TEMP_RESIDENCY_TIME
  6259. /* start/restart the TEMP_RESIDENCY_TIME timer whenever we reach target temp for the first time
  6260. or when current temp falls outside the hysteresis after target temp was reached */
  6261. if ((residencyStart == -1 && target_direction && (degHotend(tmp_extruder) >= (degTargetHotend(tmp_extruder) - TEMP_WINDOW))) ||
  6262. (residencyStart == -1 && !target_direction && (degHotend(tmp_extruder) <= (degTargetHotend(tmp_extruder) + TEMP_WINDOW))) ||
  6263. (residencyStart > -1 && labs(degHotend(tmp_extruder) - degTargetHotend(tmp_extruder)) > TEMP_HYSTERESIS))
  6264. {
  6265. residencyStart = millis();
  6266. }
  6267. #endif //TEMP_RESIDENCY_TIME
  6268. }
  6269. }
  6270. void check_babystep() {
  6271. int babystep_z;
  6272. EEPROM_read_B(EEPROM_BABYSTEP_Z, &babystep_z);
  6273. if ((babystep_z < Z_BABYSTEP_MIN) || (babystep_z > Z_BABYSTEP_MAX)) {
  6274. babystep_z = 0; //if babystep value is out of min max range, set it to 0
  6275. SERIAL_ECHOLNPGM("Z live adjust out of range. Setting to 0");
  6276. EEPROM_save_B(EEPROM_BABYSTEP_Z, &babystep_z);
  6277. lcd_show_fullscreen_message_and_wait_P(PSTR("Z live adjust out of range. Setting to 0. Click to continue."));
  6278. lcd_update_enable(true);
  6279. }
  6280. }
  6281. #ifdef DIS
  6282. void d_setup()
  6283. {
  6284. pinMode(D_DATACLOCK, INPUT_PULLUP);
  6285. pinMode(D_DATA, INPUT_PULLUP);
  6286. pinMode(D_REQUIRE, OUTPUT);
  6287. digitalWrite(D_REQUIRE, HIGH);
  6288. }
  6289. float d_ReadData()
  6290. {
  6291. int digit[13];
  6292. String mergeOutput;
  6293. float output;
  6294. digitalWrite(D_REQUIRE, HIGH);
  6295. for (int i = 0; i<13; i++)
  6296. {
  6297. for (int j = 0; j < 4; j++)
  6298. {
  6299. while (digitalRead(D_DATACLOCK) == LOW) {}
  6300. while (digitalRead(D_DATACLOCK) == HIGH) {}
  6301. bitWrite(digit[i], j, digitalRead(D_DATA));
  6302. }
  6303. }
  6304. digitalWrite(D_REQUIRE, LOW);
  6305. mergeOutput = "";
  6306. output = 0;
  6307. for (int r = 5; r <= 10; r++) //Merge digits
  6308. {
  6309. mergeOutput += digit[r];
  6310. }
  6311. output = mergeOutput.toFloat();
  6312. if (digit[4] == 8) //Handle sign
  6313. {
  6314. output *= -1;
  6315. }
  6316. for (int i = digit[11]; i > 0; i--) //Handle floating point
  6317. {
  6318. output /= 10;
  6319. }
  6320. return output;
  6321. }
  6322. void bed_analysis(float x_dimension, float y_dimension, int x_points_num, int y_points_num, float shift_x, float shift_y) {
  6323. int t1 = 0;
  6324. int t_delay = 0;
  6325. int digit[13];
  6326. int m;
  6327. char str[3];
  6328. //String mergeOutput;
  6329. char mergeOutput[15];
  6330. float output;
  6331. int mesh_point = 0; //index number of calibration point
  6332. float bed_zero_ref_x = (-22.f + X_PROBE_OFFSET_FROM_EXTRUDER); //shift between zero point on bed and target and between probe and nozzle
  6333. float bed_zero_ref_y = (-0.6f + Y_PROBE_OFFSET_FROM_EXTRUDER);
  6334. float mesh_home_z_search = 4;
  6335. float row[x_points_num];
  6336. int ix = 0;
  6337. int iy = 0;
  6338. char* filename_wldsd = "wldsd.txt";
  6339. char data_wldsd[70];
  6340. char numb_wldsd[10];
  6341. d_setup();
  6342. if (!(axis_known_position[X_AXIS] && axis_known_position[Y_AXIS] && axis_known_position[Z_AXIS])) {
  6343. // We don't know where we are! HOME!
  6344. // Push the commands to the front of the message queue in the reverse order!
  6345. // There shall be always enough space reserved for these commands.
  6346. repeatcommand_front(); // repeat G80 with all its parameters
  6347. enquecommand_front_P((PSTR("G28 W0")));
  6348. enquecommand_front_P((PSTR("G1 Z5")));
  6349. return;
  6350. }
  6351. bool custom_message_old = custom_message;
  6352. unsigned int custom_message_type_old = custom_message_type;
  6353. unsigned int custom_message_state_old = custom_message_state;
  6354. custom_message = true;
  6355. custom_message_type = 1;
  6356. custom_message_state = (x_points_num * y_points_num) + 10;
  6357. lcd_update(1);
  6358. mbl.reset();
  6359. babystep_undo();
  6360. card.openFile(filename_wldsd, false);
  6361. current_position[Z_AXIS] = mesh_home_z_search;
  6362. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[Z_AXIS] / 60, active_extruder);
  6363. int XY_AXIS_FEEDRATE = homing_feedrate[X_AXIS] / 20;
  6364. int Z_PROBE_FEEDRATE = homing_feedrate[Z_AXIS] / 60;
  6365. int Z_LIFT_FEEDRATE = homing_feedrate[Z_AXIS] / 40;
  6366. setup_for_endstop_move(false);
  6367. SERIAL_PROTOCOLPGM("Num X,Y: ");
  6368. SERIAL_PROTOCOL(x_points_num);
  6369. SERIAL_PROTOCOLPGM(",");
  6370. SERIAL_PROTOCOL(y_points_num);
  6371. SERIAL_PROTOCOLPGM("\nZ search height: ");
  6372. SERIAL_PROTOCOL(mesh_home_z_search);
  6373. SERIAL_PROTOCOLPGM("\nDimension X,Y: ");
  6374. SERIAL_PROTOCOL(x_dimension);
  6375. SERIAL_PROTOCOLPGM(",");
  6376. SERIAL_PROTOCOL(y_dimension);
  6377. SERIAL_PROTOCOLLNPGM("\nMeasured points:");
  6378. while (mesh_point != x_points_num * y_points_num) {
  6379. ix = mesh_point % x_points_num; // from 0 to MESH_NUM_X_POINTS - 1
  6380. iy = mesh_point / x_points_num;
  6381. if (iy & 1) ix = (x_points_num - 1) - ix; // Zig zag
  6382. float z0 = 0.f;
  6383. current_position[Z_AXIS] = mesh_home_z_search;
  6384. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], Z_LIFT_FEEDRATE, active_extruder);
  6385. st_synchronize();
  6386. current_position[X_AXIS] = 13.f + ix * (x_dimension / (x_points_num - 1)) - bed_zero_ref_x + shift_x;
  6387. current_position[Y_AXIS] = 6.4f + iy * (y_dimension / (y_points_num - 1)) - bed_zero_ref_y + shift_y;
  6388. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], XY_AXIS_FEEDRATE, active_extruder);
  6389. st_synchronize();
  6390. if (!find_bed_induction_sensor_point_z(-10.f)) { //if we have data from z calibration max allowed difference is 1mm for each point, if we dont have data max difference is 10mm from initial point
  6391. break;
  6392. card.closefile();
  6393. }
  6394. //memset(numb_wldsd, 0, sizeof(numb_wldsd));
  6395. //dtostrf(d_ReadData(), 8, 5, numb_wldsd);
  6396. //strcat(data_wldsd, numb_wldsd);
  6397. //MYSERIAL.println(data_wldsd);
  6398. //delay(1000);
  6399. //delay(3000);
  6400. //t1 = millis();
  6401. //while (digitalRead(D_DATACLOCK) == LOW) {}
  6402. //while (digitalRead(D_DATACLOCK) == HIGH) {}
  6403. memset(digit, 0, sizeof(digit));
  6404. //cli();
  6405. digitalWrite(D_REQUIRE, LOW);
  6406. for (int i = 0; i<13; i++)
  6407. {
  6408. //t1 = millis();
  6409. for (int j = 0; j < 4; j++)
  6410. {
  6411. while (digitalRead(D_DATACLOCK) == LOW) {}
  6412. while (digitalRead(D_DATACLOCK) == HIGH) {}
  6413. bitWrite(digit[i], j, digitalRead(D_DATA));
  6414. }
  6415. //t_delay = (millis() - t1);
  6416. //SERIAL_PROTOCOLPGM(" ");
  6417. //SERIAL_PROTOCOL_F(t_delay, 5);
  6418. //SERIAL_PROTOCOLPGM(" ");
  6419. }
  6420. //sei();
  6421. digitalWrite(D_REQUIRE, HIGH);
  6422. mergeOutput[0] = '\0';
  6423. output = 0;
  6424. for (int r = 5; r <= 10; r++) //Merge digits
  6425. {
  6426. sprintf(str, "%d", digit[r]);
  6427. strcat(mergeOutput, str);
  6428. }
  6429. output = atof(mergeOutput);
  6430. if (digit[4] == 8) //Handle sign
  6431. {
  6432. output *= -1;
  6433. }
  6434. for (int i = digit[11]; i > 0; i--) //Handle floating point
  6435. {
  6436. output *= 0.1;
  6437. }
  6438. //output = d_ReadData();
  6439. //row[ix] = current_position[Z_AXIS];
  6440. memset(data_wldsd, 0, sizeof(data_wldsd));
  6441. for (int i = 0; i <3; i++) {
  6442. memset(numb_wldsd, 0, sizeof(numb_wldsd));
  6443. dtostrf(current_position[i], 8, 5, numb_wldsd);
  6444. strcat(data_wldsd, numb_wldsd);
  6445. strcat(data_wldsd, ";");
  6446. }
  6447. memset(numb_wldsd, 0, sizeof(numb_wldsd));
  6448. dtostrf(output, 8, 5, numb_wldsd);
  6449. strcat(data_wldsd, numb_wldsd);
  6450. //strcat(data_wldsd, ";");
  6451. card.write_command(data_wldsd);
  6452. //row[ix] = d_ReadData();
  6453. row[ix] = output; // current_position[Z_AXIS];
  6454. if (iy % 2 == 1 ? ix == 0 : ix == x_points_num - 1) {
  6455. for (int i = 0; i < x_points_num; i++) {
  6456. SERIAL_PROTOCOLPGM(" ");
  6457. SERIAL_PROTOCOL_F(row[i], 5);
  6458. }
  6459. SERIAL_PROTOCOLPGM("\n");
  6460. }
  6461. custom_message_state--;
  6462. mesh_point++;
  6463. lcd_update(1);
  6464. }
  6465. card.closefile();
  6466. }
  6467. #endif
  6468. void temp_compensation_start() {
  6469. custom_message = true;
  6470. custom_message_type = 5;
  6471. custom_message_state = PINDA_HEAT_T + 1;
  6472. lcd_update(2);
  6473. if (degHotend(active_extruder) > EXTRUDE_MINTEMP) {
  6474. current_position[E_AXIS] -= DEFAULT_RETRACTION;
  6475. }
  6476. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400, active_extruder);
  6477. current_position[X_AXIS] = PINDA_PREHEAT_X;
  6478. current_position[Y_AXIS] = PINDA_PREHEAT_Y;
  6479. current_position[Z_AXIS] = PINDA_PREHEAT_Z;
  6480. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  6481. st_synchronize();
  6482. while (fabs(degBed() - target_temperature_bed) > 1) delay_keep_alive(1000);
  6483. for (int i = 0; i < PINDA_HEAT_T; i++) {
  6484. delay_keep_alive(1000);
  6485. custom_message_state = PINDA_HEAT_T - i;
  6486. if (custom_message_state == 99 || custom_message_state == 9) lcd_update(2); //force whole display redraw if number of digits changed
  6487. else lcd_update(1);
  6488. }
  6489. custom_message_type = 0;
  6490. custom_message_state = 0;
  6491. custom_message = false;
  6492. }
  6493. void temp_compensation_apply() {
  6494. int i_add;
  6495. int compensation_value;
  6496. int z_shift = 0;
  6497. float z_shift_mm;
  6498. if (calibration_status() == CALIBRATION_STATUS_CALIBRATED) {
  6499. if (target_temperature_bed % 10 == 0 && target_temperature_bed >= 60 && target_temperature_bed <= 100) {
  6500. i_add = (target_temperature_bed - 60) / 10;
  6501. EEPROM_read_B(EEPROM_PROBE_TEMP_SHIFT + i_add * 2, &z_shift);
  6502. z_shift_mm = z_shift / axis_steps_per_unit[Z_AXIS];
  6503. }else {
  6504. //interpolation
  6505. z_shift_mm = temp_comp_interpolation(target_temperature_bed) / axis_steps_per_unit[Z_AXIS];
  6506. }
  6507. SERIAL_PROTOCOLPGM("\n");
  6508. SERIAL_PROTOCOLPGM("Z shift applied:");
  6509. MYSERIAL.print(z_shift_mm);
  6510. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS] - z_shift_mm, current_position[E_AXIS], homing_feedrate[Z_AXIS] / 40, active_extruder);
  6511. st_synchronize();
  6512. plan_set_z_position(current_position[Z_AXIS]);
  6513. }
  6514. else {
  6515. //we have no temp compensation data
  6516. }
  6517. }
  6518. float temp_comp_interpolation(float inp_temperature) {
  6519. //cubic spline interpolation
  6520. int n, i, j, k;
  6521. float h[10], a, b, c, d, sum, s[10] = { 0 }, x[10], F[10], f[10], m[10][10] = { 0 }, temp;
  6522. int shift[10];
  6523. int temp_C[10];
  6524. n = 6; //number of measured points
  6525. shift[0] = 0;
  6526. for (i = 0; i < n; i++) {
  6527. if (i>0) EEPROM_read_B(EEPROM_PROBE_TEMP_SHIFT + (i-1) * 2, &shift[i]); //read shift in steps from EEPROM
  6528. temp_C[i] = 50 + i * 10; //temperature in C
  6529. #ifdef PINDA_THERMISTOR
  6530. temp_C[i] = 35 + i * 5; //temperature in C
  6531. #else
  6532. temp_C[i] = 50 + i * 10; //temperature in C
  6533. #endif
  6534. x[i] = (float)temp_C[i];
  6535. f[i] = (float)shift[i];
  6536. }
  6537. if (inp_temperature < x[0]) return 0;
  6538. for (i = n - 1; i>0; i--) {
  6539. F[i] = (f[i] - f[i - 1]) / (x[i] - x[i - 1]);
  6540. h[i - 1] = x[i] - x[i - 1];
  6541. }
  6542. //*********** formation of h, s , f matrix **************
  6543. for (i = 1; i<n - 1; i++) {
  6544. m[i][i] = 2 * (h[i - 1] + h[i]);
  6545. if (i != 1) {
  6546. m[i][i - 1] = h[i - 1];
  6547. m[i - 1][i] = h[i - 1];
  6548. }
  6549. m[i][n - 1] = 6 * (F[i + 1] - F[i]);
  6550. }
  6551. //*********** forward elimination **************
  6552. for (i = 1; i<n - 2; i++) {
  6553. temp = (m[i + 1][i] / m[i][i]);
  6554. for (j = 1; j <= n - 1; j++)
  6555. m[i + 1][j] -= temp*m[i][j];
  6556. }
  6557. //*********** backward substitution *********
  6558. for (i = n - 2; i>0; i--) {
  6559. sum = 0;
  6560. for (j = i; j <= n - 2; j++)
  6561. sum += m[i][j] * s[j];
  6562. s[i] = (m[i][n - 1] - sum) / m[i][i];
  6563. }
  6564. for (i = 0; i<n - 1; i++)
  6565. if ((x[i] <= inp_temperature && inp_temperature <= x[i + 1]) || (i == n-2 && inp_temperature > x[i + 1])) {
  6566. a = (s[i + 1] - s[i]) / (6 * h[i]);
  6567. b = s[i] / 2;
  6568. c = (f[i + 1] - f[i]) / h[i] - (2 * h[i] * s[i] + s[i + 1] * h[i]) / 6;
  6569. d = f[i];
  6570. sum = a*pow((inp_temperature - x[i]), 3) + b*pow((inp_temperature - x[i]), 2) + c*(inp_temperature - x[i]) + d;
  6571. }
  6572. return sum;
  6573. }
  6574. #ifdef PINDA_THERMISTOR
  6575. float temp_compensation_pinda_thermistor_offset(float temperature_pinda)
  6576. {
  6577. if (!temp_cal_active) return 0;
  6578. if (!calibration_status_pinda()) return 0;
  6579. return temp_comp_interpolation(temperature_pinda) / axis_steps_per_unit[Z_AXIS];
  6580. }
  6581. #endif //PINDA_THERMISTOR
  6582. void long_pause() //long pause print
  6583. {
  6584. st_synchronize();
  6585. //save currently set parameters to global variables
  6586. saved_feedmultiply = feedmultiply;
  6587. HotendTempBckp = degTargetHotend(active_extruder);
  6588. fanSpeedBckp = fanSpeed;
  6589. start_pause_print = millis();
  6590. //save position
  6591. pause_lastpos[X_AXIS] = current_position[X_AXIS];
  6592. pause_lastpos[Y_AXIS] = current_position[Y_AXIS];
  6593. pause_lastpos[Z_AXIS] = current_position[Z_AXIS];
  6594. pause_lastpos[E_AXIS] = current_position[E_AXIS];
  6595. //retract
  6596. current_position[E_AXIS] -= DEFAULT_RETRACTION;
  6597. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400, active_extruder);
  6598. //lift z
  6599. current_position[Z_AXIS] += Z_PAUSE_LIFT;
  6600. if (current_position[Z_AXIS] > Z_MAX_POS) current_position[Z_AXIS] = Z_MAX_POS;
  6601. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 15, active_extruder);
  6602. //set nozzle target temperature to 0
  6603. setTargetHotend(0, 0);
  6604. setTargetHotend(0, 1);
  6605. setTargetHotend(0, 2);
  6606. //Move XY to side
  6607. current_position[X_AXIS] = X_PAUSE_POS;
  6608. current_position[Y_AXIS] = Y_PAUSE_POS;
  6609. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 50, active_extruder);
  6610. // Turn off the print fan
  6611. fanSpeed = 0;
  6612. st_synchronize();
  6613. }
  6614. void serialecho_temperatures() {
  6615. float tt = degHotend(active_extruder);
  6616. SERIAL_PROTOCOLPGM("T:");
  6617. SERIAL_PROTOCOL(tt);
  6618. SERIAL_PROTOCOLPGM(" E:");
  6619. SERIAL_PROTOCOL((int)active_extruder);
  6620. SERIAL_PROTOCOLPGM(" B:");
  6621. SERIAL_PROTOCOL_F(degBed(), 1);
  6622. SERIAL_PROTOCOLLN("");
  6623. }
  6624. extern uint32_t sdpos_atomic;
  6625. void uvlo_()
  6626. {
  6627. unsigned long time_start = millis();
  6628. bool sd_print = card.sdprinting;
  6629. // Conserve power as soon as possible.
  6630. disable_x();
  6631. disable_y();
  6632. disable_e0();
  6633. tmc2130_set_current_h(Z_AXIS, 20);
  6634. tmc2130_set_current_r(Z_AXIS, 20);
  6635. tmc2130_set_current_h(E_AXIS, 20);
  6636. tmc2130_set_current_r(E_AXIS, 20);
  6637. // Indicate that the interrupt has been triggered.
  6638. // SERIAL_ECHOLNPGM("UVLO");
  6639. // Read out the current Z motor microstep counter. This will be later used
  6640. // for reaching the zero full step before powering off.
  6641. uint16_t z_microsteps = tmc2130_rd_MSCNT(Z_AXIS);
  6642. // Calculate the file position, from which to resume this print.
  6643. long sd_position = sdpos_atomic; //atomic sd position of last command added in queue
  6644. {
  6645. uint16_t sdlen_planner = planner_calc_sd_length(); //length of sd commands in planner
  6646. sd_position -= sdlen_planner;
  6647. uint16_t sdlen_cmdqueue = cmdqueue_calc_sd_length(); //length of sd commands in cmdqueue
  6648. sd_position -= sdlen_cmdqueue;
  6649. if (sd_position < 0) sd_position = 0;
  6650. }
  6651. // Backup the feedrate in mm/min.
  6652. int feedrate_bckp = blocks_queued() ? (block_buffer[block_buffer_tail].nominal_speed * 60.f) : feedrate;
  6653. // After this call, the planner queue is emptied and the current_position is set to a current logical coordinate.
  6654. // The logical coordinate will likely differ from the machine coordinate if the skew calibration and mesh bed leveling
  6655. // are in action.
  6656. planner_abort_hard();
  6657. // Store the current extruder position.
  6658. eeprom_update_float((float*)(EEPROM_UVLO_CURRENT_POSITION_E), st_get_position_mm(E_AXIS));
  6659. eeprom_update_byte((uint8_t*)EEPROM_UVLO_E_ABS, axis_relative_modes[3]?0:1);
  6660. // Clean the input command queue.
  6661. cmdqueue_reset();
  6662. card.sdprinting = false;
  6663. // card.closefile();
  6664. // Enable stepper driver interrupt to move Z axis.
  6665. // This should be fine as the planner and command queues are empty and the SD card printing is disabled.
  6666. //FIXME one may want to disable serial lines at this point of time to avoid interfering with the command queue,
  6667. // though it should not happen that the command queue is touched as the plan_buffer_line always succeed without blocking.
  6668. sei();
  6669. plan_buffer_line(
  6670. current_position[X_AXIS],
  6671. current_position[Y_AXIS],
  6672. current_position[Z_AXIS],
  6673. current_position[E_AXIS] - DEFAULT_RETRACTION,
  6674. 95, active_extruder);
  6675. st_synchronize();
  6676. disable_e0();
  6677. plan_buffer_line(
  6678. current_position[X_AXIS],
  6679. current_position[Y_AXIS],
  6680. current_position[Z_AXIS] + UVLO_Z_AXIS_SHIFT + float((1024 - z_microsteps + 7) >> 4) / axis_steps_per_unit[Z_AXIS],
  6681. current_position[E_AXIS] - DEFAULT_RETRACTION,
  6682. 40, active_extruder);
  6683. st_synchronize();
  6684. disable_e0();
  6685. plan_buffer_line(
  6686. current_position[X_AXIS],
  6687. current_position[Y_AXIS],
  6688. current_position[Z_AXIS] + UVLO_Z_AXIS_SHIFT + float((1024 - z_microsteps + 7) >> 4) / axis_steps_per_unit[Z_AXIS],
  6689. current_position[E_AXIS] - DEFAULT_RETRACTION,
  6690. 40, active_extruder);
  6691. st_synchronize();
  6692. disable_e0();
  6693. disable_z();
  6694. // Move Z up to the next 0th full step.
  6695. // Write the file position.
  6696. eeprom_update_dword((uint32_t*)(EEPROM_FILE_POSITION), sd_position);
  6697. // Store the mesh bed leveling offsets. This is 2*9=18 bytes, which takes 18*3.4us=52us in worst case.
  6698. for (int8_t mesh_point = 0; mesh_point < 9; ++ mesh_point) {
  6699. uint8_t ix = mesh_point % MESH_MEAS_NUM_X_POINTS; // from 0 to MESH_NUM_X_POINTS - 1
  6700. uint8_t iy = mesh_point / MESH_MEAS_NUM_X_POINTS;
  6701. // Scale the z value to 1u resolution.
  6702. int16_t v = mbl.active ? int16_t(floor(mbl.z_values[iy*3][ix*3] * 1000.f + 0.5f)) : 0;
  6703. eeprom_update_word((uint16_t*)(EEPROM_UVLO_MESH_BED_LEVELING+2*mesh_point), *reinterpret_cast<uint16_t*>(&v));
  6704. }
  6705. // Read out the current Z motor microstep counter. This will be later used
  6706. // for reaching the zero full step before powering off.
  6707. eeprom_update_word((uint16_t*)(EEPROM_UVLO_Z_MICROSTEPS), z_microsteps);
  6708. // Store the current position.
  6709. eeprom_update_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 0), current_position[X_AXIS]);
  6710. eeprom_update_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 4), current_position[Y_AXIS]);
  6711. eeprom_update_float((float*)(EEPROM_UVLO_CURRENT_POSITION_Z), current_position[Z_AXIS]);
  6712. // Store the current feed rate, temperatures and fan speed.
  6713. EEPROM_save_B(EEPROM_UVLO_FEEDRATE, &feedrate_bckp);
  6714. eeprom_update_byte((uint8_t*)EEPROM_UVLO_TARGET_HOTEND, target_temperature[active_extruder]);
  6715. eeprom_update_byte((uint8_t*)EEPROM_UVLO_TARGET_BED, target_temperature_bed);
  6716. eeprom_update_byte((uint8_t*)EEPROM_UVLO_FAN_SPEED, fanSpeed);
  6717. // Finaly store the "power outage" flag.
  6718. if(sd_print) eeprom_update_byte((uint8_t*)EEPROM_UVLO, 1);
  6719. st_synchronize();
  6720. SERIAL_ECHOPGM("stps");
  6721. MYSERIAL.println(tmc2130_rd_MSCNT(Z_AXIS));
  6722. disable_z();
  6723. // Increment power failure counter
  6724. eeprom_update_byte((uint8_t*)EEPROM_POWER_COUNT, eeprom_read_byte((uint8_t*)EEPROM_POWER_COUNT) + 1);
  6725. eeprom_update_word((uint16_t*)EEPROM_POWER_COUNT_TOT, eeprom_read_word((uint16_t*)EEPROM_POWER_COUNT_TOT) + 1);
  6726. SERIAL_ECHOLNPGM("UVLO - end");
  6727. MYSERIAL.println(millis() - time_start);
  6728. #if 0
  6729. // Move the print head to the side of the print until all the power stored in the power supply capacitors is depleted.
  6730. current_position[X_AXIS] = (current_position[X_AXIS] < 0.5f * (X_MIN_POS + X_MAX_POS)) ? X_MIN_POS : X_MAX_POS;
  6731. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 500, active_extruder);
  6732. st_synchronize();
  6733. #endif
  6734. cli();
  6735. volatile unsigned int ppcount = 0;
  6736. SET_OUTPUT(BEEPER);
  6737. WRITE(BEEPER, HIGH);
  6738. for(ppcount = 0; ppcount < 2000; ppcount ++){
  6739. asm("nop");//50ns on 20Mhz, 62.5ns on 16Mhz
  6740. }
  6741. WRITE(BEEPER, LOW);
  6742. while(1){
  6743. #if 1
  6744. WRITE(BEEPER, LOW);
  6745. for(ppcount = 0; ppcount < 8000; ppcount ++){
  6746. asm("nop");//50ns on 20Mhz, 62.5ns on 16Mhz
  6747. }
  6748. #endif
  6749. };
  6750. }
  6751. void setup_fan_interrupt() {
  6752. //INT7
  6753. DDRE &= ~(1 << 7); //input pin
  6754. PORTE &= ~(1 << 7); //no internal pull-up
  6755. //start with sensing rising edge
  6756. EICRB &= ~(1 << 6);
  6757. EICRB |= (1 << 7);
  6758. //enable INT7 interrupt
  6759. EIMSK |= (1 << 7);
  6760. }
  6761. // The fan interrupt is triggered at maximum 325Hz (may be a bit more due to component tollerances),
  6762. // and it takes 4.24 us to process (the interrupt invocation overhead not taken into account).
  6763. ISR(INT7_vect) {
  6764. //measuring speed now works for fanSpeed > 18 (approximately), which is sufficient because MIN_PRINT_FAN_SPEED is higher
  6765. if (fanSpeed < MIN_PRINT_FAN_SPEED) return;
  6766. if ((1 << 6) & EICRB) { //interrupt was triggered by rising edge
  6767. t_fan_rising_edge = millis_nc();
  6768. }
  6769. else { //interrupt was triggered by falling edge
  6770. if ((millis_nc() - t_fan_rising_edge) >= FAN_PULSE_WIDTH_LIMIT) {//this pulse was from sensor and not from pwm
  6771. fan_edge_counter[1] += 2; //we are currently counting all edges so lets count two edges for one pulse
  6772. }
  6773. }
  6774. EICRB ^= (1 << 6); //change edge
  6775. }
  6776. void setup_uvlo_interrupt() {
  6777. DDRE &= ~(1 << 4); //input pin
  6778. PORTE &= ~(1 << 4); //no internal pull-up
  6779. //sensing falling edge
  6780. EICRB |= (1 << 0);
  6781. EICRB &= ~(1 << 1);
  6782. //enable INT4 interrupt
  6783. EIMSK |= (1 << 4);
  6784. }
  6785. ISR(INT4_vect) {
  6786. EIMSK &= ~(1 << 4); //disable INT4 interrupt to make sure that this code will be executed just once
  6787. SERIAL_ECHOLNPGM("INT4");
  6788. if (IS_SD_PRINTING) uvlo_();
  6789. }
  6790. void recover_print(uint8_t automatic) {
  6791. char cmd[30];
  6792. lcd_update_enable(true);
  6793. lcd_update(2);
  6794. lcd_setstatuspgm(MSG_RECOVERING_PRINT);
  6795. recover_machine_state_after_power_panic();
  6796. // Set the target bed and nozzle temperatures.
  6797. sprintf_P(cmd, PSTR("M104 S%d"), target_temperature[active_extruder]);
  6798. enquecommand(cmd);
  6799. sprintf_P(cmd, PSTR("M140 S%d"), target_temperature_bed);
  6800. enquecommand(cmd);
  6801. // Lift the print head, so one may remove the excess priming material.
  6802. if (current_position[Z_AXIS] < 25)
  6803. enquecommand_P(PSTR("G1 Z25 F800"));
  6804. // Home X and Y axes. Homing just X and Y shall not touch the babystep and the world2machine transformation status.
  6805. enquecommand_P(PSTR("G28 X Y"));
  6806. // Set the target bed and nozzle temperatures and wait.
  6807. sprintf_P(cmd, PSTR("M109 S%d"), target_temperature[active_extruder]);
  6808. enquecommand(cmd);
  6809. sprintf_P(cmd, PSTR("M190 S%d"), target_temperature_bed);
  6810. enquecommand(cmd);
  6811. enquecommand_P(PSTR("M83")); //E axis relative mode
  6812. //enquecommand_P(PSTR("G1 E5 F120")); //Extrude some filament to stabilize pessure
  6813. // If not automatically recoreverd (long power loss), extrude extra filament to stabilize
  6814. if(automatic == 0){
  6815. enquecommand_P(PSTR("G1 E5 F120")); //Extrude some filament to stabilize pessure
  6816. }
  6817. enquecommand_P(PSTR("G1 E" STRINGIFY(-DEFAULT_RETRACTION)" F480"));
  6818. // Mark the power panic status as inactive.
  6819. eeprom_update_byte((uint8_t*)EEPROM_UVLO, 0);
  6820. /*while ((abs(degHotend(0)- target_temperature[0])>5) || (abs(degBed() -target_temperature_bed)>3)) { //wait for heater and bed to reach target temp
  6821. delay_keep_alive(1000);
  6822. }*/
  6823. SERIAL_ECHOPGM("After waiting for temp:");
  6824. SERIAL_ECHOPGM("Current position X_AXIS:");
  6825. MYSERIAL.println(current_position[X_AXIS]);
  6826. SERIAL_ECHOPGM("Current position Y_AXIS:");
  6827. MYSERIAL.println(current_position[Y_AXIS]);
  6828. // Restart the print.
  6829. restore_print_from_eeprom();
  6830. SERIAL_ECHOPGM("current_position[Z_AXIS]:");
  6831. MYSERIAL.print(current_position[Z_AXIS]);
  6832. SERIAL_ECHOPGM("current_position[E_AXIS]:");
  6833. MYSERIAL.print(current_position[E_AXIS]);
  6834. }
  6835. void recover_machine_state_after_power_panic()
  6836. {
  6837. char cmd[30];
  6838. // 1) Recover the logical cordinates at the time of the power panic.
  6839. // The logical XY coordinates are needed to recover the machine Z coordinate corrected by the mesh bed leveling.
  6840. current_position[X_AXIS] = eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 0));
  6841. current_position[Y_AXIS] = eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 4));
  6842. // Recover the logical coordinate of the Z axis at the time of the power panic.
  6843. // The current position after power panic is moved to the next closest 0th full step.
  6844. current_position[Z_AXIS] = eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION_Z)) +
  6845. UVLO_Z_AXIS_SHIFT + float((1024 - eeprom_read_word((uint16_t*)(EEPROM_UVLO_Z_MICROSTEPS)) + 7) >> 4) / axis_steps_per_unit[Z_AXIS];
  6846. if (eeprom_read_byte((uint8_t*)EEPROM_UVLO_E_ABS)) {
  6847. current_position[E_AXIS] = eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION_E));
  6848. sprintf_P(cmd, PSTR("G92 E"));
  6849. dtostrf(current_position[E_AXIS], 6, 3, cmd + strlen(cmd));
  6850. enquecommand(cmd);
  6851. }
  6852. memcpy(destination, current_position, sizeof(destination));
  6853. SERIAL_ECHOPGM("recover_machine_state_after_power_panic, initial ");
  6854. print_world_coordinates();
  6855. // 2) Initialize the logical to physical coordinate system transformation.
  6856. world2machine_initialize();
  6857. // 3) Restore the mesh bed leveling offsets. This is 2*9=18 bytes, which takes 18*3.4us=52us in worst case.
  6858. mbl.active = false;
  6859. for (int8_t mesh_point = 0; mesh_point < 9; ++ mesh_point) {
  6860. uint8_t ix = mesh_point % MESH_MEAS_NUM_X_POINTS; // from 0 to MESH_NUM_X_POINTS - 1
  6861. uint8_t iy = mesh_point / MESH_MEAS_NUM_X_POINTS;
  6862. // Scale the z value to 10u resolution.
  6863. int16_t v;
  6864. eeprom_read_block(&v, (void*)(EEPROM_UVLO_MESH_BED_LEVELING+2*mesh_point), 2);
  6865. if (v != 0)
  6866. mbl.active = true;
  6867. mbl.z_values[iy][ix] = float(v) * 0.001f;
  6868. }
  6869. if (mbl.active)
  6870. mbl.upsample_3x3();
  6871. // SERIAL_ECHOPGM("recover_machine_state_after_power_panic, initial ");
  6872. // print_mesh_bed_leveling_table();
  6873. // 4) Load the baby stepping value, which is expected to be active at the time of power panic.
  6874. // The baby stepping value is used to reset the physical Z axis when rehoming the Z axis.
  6875. babystep_load();
  6876. // 5) Set the physical positions from the logical positions using the world2machine transformation and the active bed leveling.
  6877. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  6878. // 6) Power up the motors, mark their positions as known.
  6879. //FIXME Verfiy, whether the X and Y axes should be powered up here, as they will later be re-homed anyway.
  6880. axis_known_position[X_AXIS] = true; enable_x();
  6881. axis_known_position[Y_AXIS] = true; enable_y();
  6882. axis_known_position[Z_AXIS] = true; enable_z();
  6883. SERIAL_ECHOPGM("recover_machine_state_after_power_panic, initial ");
  6884. print_physical_coordinates();
  6885. // 7) Recover the target temperatures.
  6886. target_temperature[active_extruder] = eeprom_read_byte((uint8_t*)EEPROM_UVLO_TARGET_HOTEND);
  6887. target_temperature_bed = eeprom_read_byte((uint8_t*)EEPROM_UVLO_TARGET_BED);
  6888. }
  6889. void restore_print_from_eeprom() {
  6890. float x_rec, y_rec, z_pos;
  6891. int feedrate_rec;
  6892. uint8_t fan_speed_rec;
  6893. char cmd[30];
  6894. char* c;
  6895. char filename[13];
  6896. uint8_t depth = 0;
  6897. char dir_name[9];
  6898. fan_speed_rec = eeprom_read_byte((uint8_t*)EEPROM_UVLO_FAN_SPEED);
  6899. EEPROM_read_B(EEPROM_UVLO_FEEDRATE, &feedrate_rec);
  6900. SERIAL_ECHOPGM("Feedrate:");
  6901. MYSERIAL.println(feedrate_rec);
  6902. depth = eeprom_read_byte((uint8_t*)EEPROM_DIR_DEPTH);
  6903. MYSERIAL.println(int(depth));
  6904. for (int i = 0; i < depth; i++) {
  6905. for (int j = 0; j < 8; j++) {
  6906. dir_name[j] = eeprom_read_byte((uint8_t*)EEPROM_DIRS + j + 8 * i);
  6907. }
  6908. dir_name[8] = '\0';
  6909. MYSERIAL.println(dir_name);
  6910. card.chdir(dir_name);
  6911. }
  6912. for (int i = 0; i < 8; i++) {
  6913. filename[i] = eeprom_read_byte((uint8_t*)EEPROM_FILENAME + i);
  6914. }
  6915. filename[8] = '\0';
  6916. MYSERIAL.print(filename);
  6917. strcat_P(filename, PSTR(".gco"));
  6918. sprintf_P(cmd, PSTR("M23 %s"), filename);
  6919. for (c = &cmd[4]; *c; c++)
  6920. *c = tolower(*c);
  6921. enquecommand(cmd);
  6922. uint32_t position = eeprom_read_dword((uint32_t*)(EEPROM_FILE_POSITION));
  6923. SERIAL_ECHOPGM("Position read from eeprom:");
  6924. MYSERIAL.println(position);
  6925. // E axis relative mode.
  6926. enquecommand_P(PSTR("M83"));
  6927. // Move to the XY print position in logical coordinates, where the print has been killed.
  6928. strcpy_P(cmd, PSTR("G1 X")); strcat(cmd, ftostr32(eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 0))));
  6929. strcat_P(cmd, PSTR(" Y")); strcat(cmd, ftostr32(eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 4))));
  6930. strcat_P(cmd, PSTR(" F2000"));
  6931. enquecommand(cmd);
  6932. // Move the Z axis down to the print, in logical coordinates.
  6933. strcpy_P(cmd, PSTR("G1 Z")); strcat(cmd, ftostr32(eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION_Z))));
  6934. enquecommand(cmd);
  6935. // Unretract.
  6936. enquecommand_P(PSTR("G1 E" STRINGIFY(2*DEFAULT_RETRACTION)" F480"));
  6937. // Set the feedrate saved at the power panic.
  6938. sprintf_P(cmd, PSTR("G1 F%d"), feedrate_rec);
  6939. enquecommand(cmd);
  6940. if (eeprom_read_byte((uint8_t*)EEPROM_UVLO_E_ABS))
  6941. {
  6942. float extruder_abs_pos = eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION_E));
  6943. enquecommand_P(PSTR("M82")); //E axis abslute mode
  6944. }
  6945. // Set the fan speed saved at the power panic.
  6946. strcpy_P(cmd, PSTR("M106 S"));
  6947. strcat(cmd, itostr3(int(fan_speed_rec)));
  6948. enquecommand(cmd);
  6949. // Set a position in the file.
  6950. sprintf_P(cmd, PSTR("M26 S%lu"), position);
  6951. enquecommand(cmd);
  6952. // Start SD print.
  6953. enquecommand_P(PSTR("M24"));
  6954. }
  6955. ////////////////////////////////////////////////////////////////////////////////
  6956. // new save/restore printing
  6957. //extern uint32_t sdpos_atomic;
  6958. bool saved_printing = false;
  6959. uint32_t saved_sdpos = 0;
  6960. float saved_pos[4] = {0, 0, 0, 0};
  6961. // Feedrate hopefully derived from an active block of the planner at the time the print has been canceled, in mm/min.
  6962. float saved_feedrate2 = 0;
  6963. uint8_t saved_active_extruder = 0;
  6964. bool saved_extruder_under_pressure = false;
  6965. void stop_and_save_print_to_ram(float z_move, float e_move)
  6966. {
  6967. if (saved_printing) return;
  6968. cli();
  6969. unsigned char nplanner_blocks = number_of_blocks();
  6970. saved_sdpos = sdpos_atomic; //atomic sd position of last command added in queue
  6971. uint16_t sdlen_planner = planner_calc_sd_length(); //length of sd commands in planner
  6972. saved_sdpos -= sdlen_planner;
  6973. uint16_t sdlen_cmdqueue = cmdqueue_calc_sd_length(); //length of sd commands in cmdqueue
  6974. saved_sdpos -= sdlen_cmdqueue;
  6975. #if 0
  6976. SERIAL_ECHOPGM("SDPOS_ATOMIC="); MYSERIAL.println(sdpos_atomic, DEC);
  6977. SERIAL_ECHOPGM("SDPOS="); MYSERIAL.println(card.get_sdpos(), DEC);
  6978. SERIAL_ECHOPGM("SDLEN_PLAN="); MYSERIAL.println(sdlen_planner, DEC);
  6979. SERIAL_ECHOPGM("SDLEN_CMDQ="); MYSERIAL.println(sdlen_cmdqueue, DEC);
  6980. SERIAL_ECHOPGM("PLANNERBLOCKS="); MYSERIAL.println(int(nplanner_blocks), DEC);
  6981. SERIAL_ECHOPGM("SDSAVED="); MYSERIAL.println(saved_sdpos, DEC);
  6982. SERIAL_ECHOPGM("SDFILELEN="); MYSERIAL.println(card.fileSize(), DEC);
  6983. {
  6984. card.setIndex(saved_sdpos);
  6985. SERIAL_ECHOLNPGM("Content of planner buffer: ");
  6986. for (unsigned int idx = 0; idx < sdlen_planner; ++ idx)
  6987. MYSERIAL.print(char(card.get()));
  6988. SERIAL_ECHOLNPGM("Content of command buffer: ");
  6989. for (unsigned int idx = 0; idx < sdlen_cmdqueue; ++ idx)
  6990. MYSERIAL.print(char(card.get()));
  6991. SERIAL_ECHOLNPGM("End of command buffer");
  6992. }
  6993. {
  6994. // Print the content of the planner buffer, line by line:
  6995. card.setIndex(saved_sdpos);
  6996. int8_t iline = 0;
  6997. for (unsigned char idx = block_buffer_tail; idx != block_buffer_head; idx = (idx + 1) & (BLOCK_BUFFER_SIZE - 1), ++ iline) {
  6998. SERIAL_ECHOPGM("Planner line (from file): ");
  6999. MYSERIAL.print(int(iline), DEC);
  7000. SERIAL_ECHOPGM(", length: ");
  7001. MYSERIAL.print(block_buffer[idx].sdlen, DEC);
  7002. SERIAL_ECHOPGM(", steps: (");
  7003. MYSERIAL.print(block_buffer[idx].steps_x, DEC);
  7004. SERIAL_ECHOPGM(",");
  7005. MYSERIAL.print(block_buffer[idx].steps_y, DEC);
  7006. SERIAL_ECHOPGM(",");
  7007. MYSERIAL.print(block_buffer[idx].steps_z, DEC);
  7008. SERIAL_ECHOPGM(",");
  7009. MYSERIAL.print(block_buffer[idx].steps_e, DEC);
  7010. SERIAL_ECHOPGM("), events: ");
  7011. MYSERIAL.println(block_buffer[idx].step_event_count, DEC);
  7012. for (int len = block_buffer[idx].sdlen; len > 0; -- len)
  7013. MYSERIAL.print(char(card.get()));
  7014. }
  7015. }
  7016. {
  7017. // Print the content of the command buffer, line by line:
  7018. int8_t iline = 0;
  7019. union {
  7020. struct {
  7021. char lo;
  7022. char hi;
  7023. } lohi;
  7024. uint16_t value;
  7025. } sdlen_single;
  7026. int _bufindr = bufindr;
  7027. for (int _buflen = buflen; _buflen > 0; ++ iline) {
  7028. if (cmdbuffer[_bufindr] == CMDBUFFER_CURRENT_TYPE_SDCARD) {
  7029. sdlen_single.lohi.lo = cmdbuffer[_bufindr + 1];
  7030. sdlen_single.lohi.hi = cmdbuffer[_bufindr + 2];
  7031. }
  7032. SERIAL_ECHOPGM("Buffer line (from buffer): ");
  7033. MYSERIAL.print(int(iline), DEC);
  7034. SERIAL_ECHOPGM(", type: ");
  7035. MYSERIAL.print(int(cmdbuffer[_bufindr]), DEC);
  7036. SERIAL_ECHOPGM(", len: ");
  7037. MYSERIAL.println(sdlen_single.value, DEC);
  7038. // Print the content of the buffer line.
  7039. MYSERIAL.println(cmdbuffer + _bufindr + CMDHDRSIZE);
  7040. SERIAL_ECHOPGM("Buffer line (from file): ");
  7041. MYSERIAL.print(int(iline), DEC);
  7042. MYSERIAL.println(int(iline), DEC);
  7043. for (; sdlen_single.value > 0; -- sdlen_single.value)
  7044. MYSERIAL.print(char(card.get()));
  7045. if (-- _buflen == 0)
  7046. break;
  7047. // First skip the current command ID and iterate up to the end of the string.
  7048. for (_bufindr += CMDHDRSIZE; cmdbuffer[_bufindr] != 0; ++ _bufindr) ;
  7049. // Second, skip the end of string null character and iterate until a nonzero command ID is found.
  7050. for (++ _bufindr; _bufindr < sizeof(cmdbuffer) && cmdbuffer[_bufindr] == 0; ++ _bufindr) ;
  7051. // If the end of the buffer was empty,
  7052. if (_bufindr == sizeof(cmdbuffer)) {
  7053. // skip to the start and find the nonzero command.
  7054. for (_bufindr = 0; cmdbuffer[_bufindr] == 0; ++ _bufindr) ;
  7055. }
  7056. }
  7057. }
  7058. #endif
  7059. #if 0
  7060. saved_feedrate2 = feedrate; //save feedrate
  7061. #else
  7062. // Try to deduce the feedrate from the first block of the planner.
  7063. // Speed is in mm/min.
  7064. saved_feedrate2 = blocks_queued() ? (block_buffer[block_buffer_tail].nominal_speed * 60.f) : feedrate;
  7065. #endif
  7066. planner_abort_hard(); //abort printing
  7067. memcpy(saved_pos, current_position, sizeof(saved_pos));
  7068. saved_active_extruder = active_extruder; //save active_extruder
  7069. saved_extruder_under_pressure = extruder_under_pressure; //extruder under pressure flag - currently unused
  7070. cmdqueue_reset(); //empty cmdqueue
  7071. card.sdprinting = false;
  7072. // card.closefile();
  7073. saved_printing = true;
  7074. // We may have missed a stepper timer interrupt. Be safe than sorry, reset the stepper timer before re-enabling interrupts.
  7075. st_reset_timer();
  7076. sei();
  7077. if ((z_move != 0) || (e_move != 0)) { // extruder or z move
  7078. #if 1
  7079. // Rather than calling plan_buffer_line directly, push the move into the command queue,
  7080. char buf[48];
  7081. strcpy_P(buf, PSTR("G1 Z"));
  7082. dtostrf(saved_pos[Z_AXIS] + z_move, 8, 3, buf + strlen(buf));
  7083. strcat_P(buf, PSTR(" E"));
  7084. // Relative extrusion
  7085. dtostrf(e_move, 6, 3, buf + strlen(buf));
  7086. strcat_P(buf, PSTR(" F"));
  7087. dtostrf(homing_feedrate[Z_AXIS], 8, 3, buf + strlen(buf));
  7088. // At this point the command queue is empty.
  7089. enquecommand(buf, false);
  7090. // If this call is invoked from the main Arduino loop() function, let the caller know that the command
  7091. // in the command queue is not the original command, but a new one, so it should not be removed from the queue.
  7092. repeatcommand_front();
  7093. #else
  7094. plan_buffer_line(saved_pos[X_AXIS], saved_pos[Y_AXIS], saved_pos[Z_AXIS] + z_move, saved_pos[E_AXIS] + e_move, homing_feedrate[Z_AXIS], active_extruder);
  7095. st_synchronize(); //wait moving
  7096. memcpy(current_position, saved_pos, sizeof(saved_pos));
  7097. memcpy(destination, current_position, sizeof(destination));
  7098. #endif
  7099. }
  7100. }
  7101. void restore_print_from_ram_and_continue(float e_move)
  7102. {
  7103. if (!saved_printing) return;
  7104. // for (int axis = X_AXIS; axis <= E_AXIS; axis++)
  7105. // current_position[axis] = st_get_position_mm(axis);
  7106. active_extruder = saved_active_extruder; //restore active_extruder
  7107. feedrate = saved_feedrate2; //restore feedrate
  7108. float e = saved_pos[E_AXIS] - e_move;
  7109. plan_set_e_position(e);
  7110. plan_buffer_line(saved_pos[X_AXIS], saved_pos[Y_AXIS], saved_pos[Z_AXIS], saved_pos[E_AXIS], homing_feedrate[Z_AXIS]/13, active_extruder);
  7111. st_synchronize();
  7112. memcpy(current_position, saved_pos, sizeof(saved_pos));
  7113. memcpy(destination, current_position, sizeof(destination));
  7114. card.setIndex(saved_sdpos);
  7115. sdpos_atomic = saved_sdpos;
  7116. card.sdprinting = true;
  7117. saved_printing = false;
  7118. printf_P(PSTR("ok\n")); //dummy response because of octoprint is waiting for this
  7119. }
  7120. void print_world_coordinates()
  7121. {
  7122. SERIAL_ECHOPGM("world coordinates: (");
  7123. MYSERIAL.print(current_position[X_AXIS], 3);
  7124. SERIAL_ECHOPGM(", ");
  7125. MYSERIAL.print(current_position[Y_AXIS], 3);
  7126. SERIAL_ECHOPGM(", ");
  7127. MYSERIAL.print(current_position[Z_AXIS], 3);
  7128. SERIAL_ECHOLNPGM(")");
  7129. }
  7130. void print_physical_coordinates()
  7131. {
  7132. SERIAL_ECHOPGM("physical coordinates: (");
  7133. MYSERIAL.print(st_get_position_mm(X_AXIS), 3);
  7134. SERIAL_ECHOPGM(", ");
  7135. MYSERIAL.print(st_get_position_mm(Y_AXIS), 3);
  7136. SERIAL_ECHOPGM(", ");
  7137. MYSERIAL.print(st_get_position_mm(Z_AXIS), 3);
  7138. SERIAL_ECHOLNPGM(")");
  7139. }
  7140. void print_mesh_bed_leveling_table()
  7141. {
  7142. SERIAL_ECHOPGM("mesh bed leveling: ");
  7143. for (int8_t y = 0; y < MESH_NUM_Y_POINTS; ++ y)
  7144. for (int8_t x = 0; x < MESH_NUM_Y_POINTS; ++ x) {
  7145. MYSERIAL.print(mbl.z_values[y][x], 3);
  7146. SERIAL_ECHOPGM(" ");
  7147. }
  7148. SERIAL_ECHOLNPGM("");
  7149. }
  7150. #define FIL_LOAD_LENGTH 60
  7151. void extr_unload2() { //unloads filament
  7152. // float tmp_motor[3] = DEFAULT_PWM_MOTOR_CURRENT;
  7153. // float tmp_motor_loud[3] = DEFAULT_PWM_MOTOR_CURRENT_LOUD;
  7154. // int8_t SilentMode;
  7155. uint8_t snmm_extruder = 0;
  7156. if (degHotend0() > EXTRUDE_MINTEMP) {
  7157. lcd_implementation_clear();
  7158. lcd_display_message_fullscreen_P(PSTR(""));
  7159. max_feedrate[E_AXIS] = 50;
  7160. lcd.setCursor(0, 0); lcd_printPGM(MSG_UNLOADING_FILAMENT);
  7161. // lcd.print(" ");
  7162. // lcd.print(snmm_extruder + 1);
  7163. lcd.setCursor(0, 2); lcd_printPGM(MSG_PLEASE_WAIT);
  7164. if (current_position[Z_AXIS] < 15) {
  7165. current_position[Z_AXIS] += 15; //lifting in Z direction to make space for extrusion
  7166. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 25, active_extruder);
  7167. }
  7168. current_position[E_AXIS] += 10; //extrusion
  7169. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 10, active_extruder);
  7170. // digipot_current(2, E_MOTOR_HIGH_CURRENT);
  7171. if (current_temperature[0] < 230) { //PLA & all other filaments
  7172. current_position[E_AXIS] += 5.4;
  7173. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2800 / 60, active_extruder);
  7174. current_position[E_AXIS] += 3.2;
  7175. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  7176. current_position[E_AXIS] += 3;
  7177. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3400 / 60, active_extruder);
  7178. }
  7179. else { //ABS
  7180. current_position[E_AXIS] += 3.1;
  7181. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2000 / 60, active_extruder);
  7182. current_position[E_AXIS] += 3.1;
  7183. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2500 / 60, active_extruder);
  7184. current_position[E_AXIS] += 4;
  7185. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  7186. /*current_position[X_AXIS] += 23; //delay
  7187. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder); //delay
  7188. current_position[X_AXIS] -= 23; //delay
  7189. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder); //delay*/
  7190. delay_keep_alive(4700);
  7191. }
  7192. max_feedrate[E_AXIS] = 80;
  7193. current_position[E_AXIS] -= (bowden_length[snmm_extruder] + 60 + FIL_LOAD_LENGTH) / 2;
  7194. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 500, active_extruder);
  7195. current_position[E_AXIS] -= (bowden_length[snmm_extruder] + 60 + FIL_LOAD_LENGTH) / 2;
  7196. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 500, active_extruder);
  7197. st_synchronize();
  7198. //digipot_init();
  7199. // if (SilentMode == 1) digipot_current(2, tmp_motor[2]); //set back to normal operation currents
  7200. // else digipot_current(2, tmp_motor_loud[2]);
  7201. lcd_update_enable(true);
  7202. // lcd_return_to_status();
  7203. max_feedrate[E_AXIS] = 50;
  7204. }
  7205. else {
  7206. lcd_implementation_clear();
  7207. lcd.setCursor(0, 0);
  7208. lcd_printPGM(MSG_ERROR);
  7209. lcd.setCursor(0, 2);
  7210. lcd_printPGM(MSG_PREHEAT_NOZZLE);
  7211. delay(2000);
  7212. lcd_implementation_clear();
  7213. }
  7214. // lcd_return_to_status();
  7215. }