mmu.cpp 28 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074
  1. //mmu.cpp
  2. #include "mmu.h"
  3. #include "planner.h"
  4. #include "language.h"
  5. #include "lcd.h"
  6. #include "uart2.h"
  7. #include "temperature.h"
  8. #include "Configuration_prusa.h"
  9. #include "fsensor.h"
  10. #include "cardreader.h"
  11. #include "ultralcd.h"
  12. #include "sound.h"
  13. #include "printers.h"
  14. #include <avr/pgmspace.h>
  15. #define CHECK_FINDA ((IS_SD_PRINTING || is_usb_printing) && (mcode_in_progress != 600) && !saved_printing && e_active())
  16. #define MMU_TODELAY 100
  17. #define MMU_TIMEOUT 10
  18. #define MMU_CMD_TIMEOUT 300000ul //5min timeout for mmu commands (except P0)
  19. #define MMU_P0_TIMEOUT 3000ul //timeout for P0 command: 3seconds
  20. #ifdef MMU_HWRESET
  21. #define MMU_RST_PIN 76
  22. #endif //MMU_HWRESET
  23. bool mmu_enabled = false;
  24. bool mmu_ready = false;
  25. static int8_t mmu_state = 0;
  26. uint8_t mmu_cmd = 0;
  27. uint8_t mmu_extruder = 0;
  28. //! This variable probably has no meaning and is planed to be removed
  29. uint8_t tmp_extruder = 0;
  30. int8_t mmu_finda = -1;
  31. int16_t mmu_version = -1;
  32. int16_t mmu_buildnr = -1;
  33. uint32_t mmu_last_request = 0;
  34. uint32_t mmu_last_response = 0;
  35. //clear rx buffer
  36. void mmu_clr_rx_buf(void)
  37. {
  38. while (fgetc(uart2io) >= 0);
  39. }
  40. //send command - puts
  41. int mmu_puts_P(const char* str)
  42. {
  43. mmu_clr_rx_buf(); //clear rx buffer
  44. int r = fputs_P(str, uart2io); //send command
  45. mmu_last_request = millis();
  46. return r;
  47. }
  48. //send command - printf
  49. int mmu_printf_P(const char* format, ...)
  50. {
  51. va_list args;
  52. va_start(args, format);
  53. mmu_clr_rx_buf(); //clear rx buffer
  54. int r = vfprintf_P(uart2io, format, args); //send command
  55. va_end(args);
  56. mmu_last_request = millis();
  57. return r;
  58. }
  59. //check 'ok' response
  60. int8_t mmu_rx_ok(void)
  61. {
  62. int8_t res = uart2_rx_str_P(PSTR("ok\n"));
  63. if (res == 1) mmu_last_response = millis();
  64. return res;
  65. }
  66. //check 'start' response
  67. int8_t mmu_rx_start(void)
  68. {
  69. int8_t res = uart2_rx_str_P(PSTR("start\n"));
  70. if (res == 1) mmu_last_response = millis();
  71. return res;
  72. }
  73. //initialize mmu2 unit - first part - should be done at begining of startup process
  74. void mmu_init(void)
  75. {
  76. #ifdef MMU_HWRESET
  77. digitalWrite(MMU_RST_PIN, HIGH);
  78. pinMode(MMU_RST_PIN, OUTPUT); //setup reset pin
  79. #endif //MMU_HWRESET
  80. uart2_init(); //init uart2
  81. _delay_ms(10); //wait 10ms for sure
  82. mmu_reset(); //reset mmu (HW or SW), do not wait for response
  83. mmu_state = -1;
  84. }
  85. //mmu main loop - state machine processing
  86. void mmu_loop(void)
  87. {
  88. int filament = 0;
  89. // printf_P(PSTR("MMU loop, state=%d\n"), mmu_state);
  90. switch (mmu_state)
  91. {
  92. case 0:
  93. return;
  94. case -1:
  95. if (mmu_rx_start() > 0)
  96. {
  97. #ifdef MMU_DEBUG
  98. puts_P(PSTR("MMU => 'start'"));
  99. puts_P(PSTR("MMU <= 'S1'"));
  100. #endif //MMU_DEBUG
  101. mmu_puts_P(PSTR("S1\n")); //send 'read version' request
  102. mmu_state = -2;
  103. }
  104. else if (millis() > 30000) //30sec after reset disable mmu
  105. {
  106. puts_P(PSTR("MMU not responding - DISABLED"));
  107. mmu_state = 0;
  108. }
  109. return;
  110. case -2:
  111. if (mmu_rx_ok() > 0)
  112. {
  113. fscanf_P(uart2io, PSTR("%u"), &mmu_version); //scan version from buffer
  114. #ifdef MMU_DEBUG
  115. printf_P(PSTR("MMU => '%dok'\n"), mmu_version);
  116. puts_P(PSTR("MMU <= 'S2'"));
  117. #endif //MMU_DEBUG
  118. mmu_puts_P(PSTR("S2\n")); //send 'read buildnr' request
  119. mmu_state = -3;
  120. }
  121. return;
  122. case -3:
  123. if (mmu_rx_ok() > 0)
  124. {
  125. fscanf_P(uart2io, PSTR("%u"), &mmu_buildnr); //scan buildnr from buffer
  126. #ifdef MMU_DEBUG
  127. printf_P(PSTR("MMU => '%dok'\n"), mmu_buildnr);
  128. #endif //MMU_DEBUG
  129. bool version_valid = mmu_check_version();
  130. if (!version_valid) mmu_show_warning();
  131. else puts_P(PSTR("MMU version valid"));
  132. if ((PRINTER_TYPE == PRINTER_MK3) || (PRINTER_TYPE == PRINTER_MK3_SNMM))
  133. {
  134. #ifdef MMU_DEBUG
  135. puts_P(PSTR("MMU <= 'P0'"));
  136. #endif //MMU_DEBUG
  137. mmu_puts_P(PSTR("P0\n")); //send 'read finda' request
  138. mmu_state = -4;
  139. }
  140. else
  141. {
  142. #ifdef MMU_DEBUG
  143. puts_P(PSTR("MMU <= 'M1'"));
  144. #endif //MMU_DEBUG
  145. mmu_puts_P(PSTR("M1\n")); //set mmu mode to stealth
  146. mmu_state = -5;
  147. }
  148. }
  149. return;
  150. case -5:
  151. if (mmu_rx_ok() > 0)
  152. {
  153. #ifdef MMU_DEBUG
  154. puts_P(PSTR("MMU <= 'P0'"));
  155. #endif //MMU_DEBUG
  156. mmu_puts_P(PSTR("P0\n")); //send 'read finda' request
  157. mmu_state = -4;
  158. }
  159. return;
  160. case -4:
  161. if (mmu_rx_ok() > 0)
  162. {
  163. fscanf_P(uart2io, PSTR("%hhu"), &mmu_finda); //scan finda from buffer
  164. #ifdef MMU_DEBUG
  165. printf_P(PSTR("MMU => '%dok'\n"), mmu_finda);
  166. #endif //MMU_DEBUG
  167. puts_P(PSTR("MMU - ENABLED"));
  168. mmu_enabled = true;
  169. mmu_state = 1;
  170. }
  171. return;
  172. case 1:
  173. if (mmu_cmd) //command request ?
  174. {
  175. if ((mmu_cmd >= MMU_CMD_T0) && (mmu_cmd <= MMU_CMD_T4))
  176. {
  177. filament = mmu_cmd - MMU_CMD_T0;
  178. #ifdef MMU_DEBUG
  179. printf_P(PSTR("MMU <= 'T%d'\n"), filament);
  180. #endif //MMU_DEBUG
  181. mmu_printf_P(PSTR("T%d\n"), filament);
  182. mmu_state = 3; // wait for response
  183. }
  184. else if ((mmu_cmd >= MMU_CMD_L0) && (mmu_cmd <= MMU_CMD_L4))
  185. {
  186. filament = mmu_cmd - MMU_CMD_L0;
  187. #ifdef MMU_DEBUG
  188. printf_P(PSTR("MMU <= 'L%d'\n"), filament);
  189. #endif //MMU_DEBUG
  190. mmu_printf_P(PSTR("L%d\n"), filament);
  191. mmu_state = 3; // wait for response
  192. }
  193. else if (mmu_cmd == MMU_CMD_C0)
  194. {
  195. #ifdef MMU_DEBUG
  196. printf_P(PSTR("MMU <= 'C0'\n"));
  197. #endif //MMU_DEBUG
  198. mmu_puts_P(PSTR("C0\n")); //send 'continue loading'
  199. mmu_state = 3;
  200. }
  201. else if (mmu_cmd == MMU_CMD_U0)
  202. {
  203. #ifdef MMU_DEBUG
  204. printf_P(PSTR("MMU <= 'U0'\n"));
  205. #endif //MMU_DEBUG
  206. mmu_puts_P(PSTR("U0\n")); //send 'unload current filament'
  207. mmu_state = 3;
  208. }
  209. else if ((mmu_cmd >= MMU_CMD_E0) && (mmu_cmd <= MMU_CMD_E4))
  210. {
  211. int filament = mmu_cmd - MMU_CMD_E0;
  212. #ifdef MMU_DEBUG
  213. printf_P(PSTR("MMU <= 'E%d'\n"), filament);
  214. #endif //MMU_DEBUG
  215. mmu_printf_P(PSTR("E%d\n"), filament); //send eject filament
  216. mmu_state = 3; // wait for response
  217. }
  218. else if (mmu_cmd == MMU_CMD_R0)
  219. {
  220. #ifdef MMU_DEBUG
  221. printf_P(PSTR("MMU <= 'R0'\n"));
  222. #endif //MMU_DEBUG
  223. mmu_puts_P(PSTR("R0\n")); //send recover after eject
  224. mmu_state = 3; // wait for response
  225. }
  226. mmu_cmd = 0;
  227. }
  228. else if ((mmu_last_response + 300) < millis()) //request every 300ms
  229. {
  230. #ifdef MMU_DEBUG
  231. puts_P(PSTR("MMU <= 'P0'"));
  232. #endif //MMU_DEBUG
  233. mmu_puts_P(PSTR("P0\n")); //send 'read finda' request
  234. mmu_state = 2;
  235. }
  236. return;
  237. case 2: //response to command P0
  238. if (mmu_rx_ok() > 0)
  239. {
  240. fscanf_P(uart2io, PSTR("%hhu"), &mmu_finda); //scan finda from buffer
  241. #ifdef MMU_DEBUG
  242. printf_P(PSTR("MMU => '%dok'\n"), mmu_finda);
  243. #endif //MMU_DEBUG
  244. //printf_P(PSTR("Eact: %d\n"), int(e_active()));
  245. if (!mmu_finda && CHECK_FINDA && fsensor_enabled) {
  246. fsensor_stop_and_save_print();
  247. enquecommand_front_P(PSTR("FSENSOR_RECOVER")); //then recover
  248. if (lcd_autoDeplete) enquecommand_front_P(PSTR("M600 AUTO")); //save print and run M600 command
  249. else enquecommand_front_P(PSTR("M600")); //save print and run M600 command
  250. }
  251. mmu_state = 1;
  252. if (mmu_cmd == 0)
  253. mmu_ready = true;
  254. }
  255. else if ((mmu_last_request + MMU_P0_TIMEOUT) < millis())
  256. { //resend request after timeout (30s)
  257. mmu_state = 1;
  258. }
  259. return;
  260. case 3: //response to mmu commands
  261. if (mmu_rx_ok() > 0)
  262. {
  263. #ifdef MMU_DEBUG
  264. printf_P(PSTR("MMU => 'ok'\n"));
  265. #endif //MMU_DEBUG
  266. mmu_ready = true;
  267. mmu_state = 1;
  268. }
  269. else if ((mmu_last_request + MMU_CMD_TIMEOUT) < millis())
  270. { //resend request after timeout (5 min)
  271. mmu_state = 1;
  272. }
  273. return;
  274. }
  275. }
  276. void mmu_reset(void)
  277. {
  278. #ifdef MMU_HWRESET //HW - pulse reset pin
  279. digitalWrite(MMU_RST_PIN, LOW);
  280. _delay_us(100);
  281. digitalWrite(MMU_RST_PIN, HIGH);
  282. #else //SW - send X0 command
  283. mmu_puts_P(PSTR("X0\n"));
  284. #endif
  285. }
  286. int8_t mmu_set_filament_type(uint8_t extruder, uint8_t filament)
  287. {
  288. printf_P(PSTR("MMU <= 'F%d %d'\n"), extruder, filament);
  289. mmu_printf_P(PSTR("F%d %d\n"), extruder, filament);
  290. unsigned char timeout = MMU_TIMEOUT; //10x100ms
  291. while ((mmu_rx_ok() <= 0) && (--timeout))
  292. delay_keep_alive(MMU_TODELAY);
  293. return timeout?1:0;
  294. }
  295. void mmu_command(uint8_t cmd)
  296. {
  297. mmu_cmd = cmd;
  298. mmu_ready = false;
  299. }
  300. bool mmu_get_response(void)
  301. {
  302. // printf_P(PSTR("mmu_get_response - begin\n"));
  303. KEEPALIVE_STATE(IN_PROCESS);
  304. while (mmu_cmd != 0)
  305. {
  306. // mmu_loop();
  307. delay_keep_alive(100);
  308. }
  309. while (!mmu_ready)
  310. {
  311. // mmu_loop();
  312. if (mmu_state != 3)
  313. break;
  314. delay_keep_alive(100);
  315. }
  316. bool ret = mmu_ready;
  317. mmu_ready = false;
  318. // printf_P(PSTR("mmu_get_response - end %d\n"), ret?1:0);
  319. return ret;
  320. /* //waits for "ok" from mmu
  321. //function returns true if "ok" was received
  322. //if timeout is set to true function return false if there is no "ok" received before timeout
  323. bool response = true;
  324. LongTimer mmu_get_reponse_timeout;
  325. KEEPALIVE_STATE(IN_PROCESS);
  326. mmu_get_reponse_timeout.start();
  327. while (mmu_rx_ok() <= 0)
  328. {
  329. delay_keep_alive(100);
  330. if (timeout && mmu_get_reponse_timeout.expired(5 * 60 * 1000ul))
  331. { //5 minutes timeout
  332. response = false;
  333. break;
  334. }
  335. }
  336. printf_P(PSTR("mmu_get_response - end %d\n"), response?1:0);
  337. return response;*/
  338. }
  339. void manage_response(bool move_axes, bool turn_off_nozzle)
  340. {
  341. bool response = false;
  342. mmu_print_saved = false;
  343. bool lcd_update_was_enabled = false;
  344. float hotend_temp_bckp = degTargetHotend(active_extruder);
  345. float z_position_bckp = current_position[Z_AXIS];
  346. float x_position_bckp = current_position[X_AXIS];
  347. float y_position_bckp = current_position[Y_AXIS];
  348. while(!response)
  349. {
  350. response = mmu_get_response(); //wait for "ok" from mmu
  351. if (!response) { //no "ok" was received in reserved time frame, user will fix the issue on mmu unit
  352. if (!mmu_print_saved) { //first occurence, we are saving current position, park print head in certain position and disable nozzle heater
  353. if (lcd_update_enabled) {
  354. lcd_update_was_enabled = true;
  355. lcd_update_enable(false);
  356. }
  357. st_synchronize();
  358. mmu_print_saved = true;
  359. printf_P(PSTR("MMU not responding\n"));
  360. hotend_temp_bckp = degTargetHotend(active_extruder);
  361. if (move_axes) {
  362. z_position_bckp = current_position[Z_AXIS];
  363. x_position_bckp = current_position[X_AXIS];
  364. y_position_bckp = current_position[Y_AXIS];
  365. //lift z
  366. current_position[Z_AXIS] += Z_PAUSE_LIFT;
  367. if (current_position[Z_AXIS] > Z_MAX_POS) current_position[Z_AXIS] = Z_MAX_POS;
  368. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 15, active_extruder);
  369. st_synchronize();
  370. //Move XY to side
  371. current_position[X_AXIS] = X_PAUSE_POS;
  372. current_position[Y_AXIS] = Y_PAUSE_POS;
  373. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 50, active_extruder);
  374. st_synchronize();
  375. }
  376. if (turn_off_nozzle) {
  377. //set nozzle target temperature to 0
  378. setAllTargetHotends(0);
  379. }
  380. }
  381. lcd_display_message_fullscreen_P(_i("MMU needs user attention. Fix the issue and then press button on MMU unit."));
  382. delay_keep_alive(1000);
  383. }
  384. else if (mmu_print_saved) {
  385. printf_P(PSTR("MMU starts responding\n"));
  386. if (turn_off_nozzle)
  387. {
  388. lcd_clear();
  389. setTargetHotend(hotend_temp_bckp, active_extruder);
  390. lcd_display_message_fullscreen_P(_i("MMU OK. Resuming temperature..."));
  391. delay_keep_alive(3000);
  392. while ((degTargetHotend(active_extruder) - degHotend(active_extruder)) > 5)
  393. {
  394. delay_keep_alive(1000);
  395. lcd_wait_for_heater();
  396. }
  397. }
  398. if (move_axes) {
  399. lcd_clear();
  400. lcd_display_message_fullscreen_P(_i("MMU OK. Resuming position..."));
  401. current_position[X_AXIS] = x_position_bckp;
  402. current_position[Y_AXIS] = y_position_bckp;
  403. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 50, active_extruder);
  404. st_synchronize();
  405. current_position[Z_AXIS] = z_position_bckp;
  406. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 15, active_extruder);
  407. st_synchronize();
  408. }
  409. else {
  410. lcd_clear();
  411. lcd_display_message_fullscreen_P(_i("MMU OK. Resuming..."));
  412. delay_keep_alive(1000); //delay just for showing MMU OK message for a while in case that there are no xyz movements
  413. }
  414. }
  415. }
  416. if (lcd_update_was_enabled) lcd_update_enable(true);
  417. }
  418. //! @brief load filament to nozzle of multimaterial printer
  419. //!
  420. //! This function is used only only after T? (user select filament) and M600 (change filament).
  421. //! It is not used after T0 .. T4 command (select filament), in such case, gcode is responsible for loading
  422. //! filament to nozzle.
  423. //!
  424. void mmu_load_to_nozzle()
  425. {
  426. st_synchronize();
  427. bool saved_e_relative_mode = axis_relative_modes[E_AXIS];
  428. if (!saved_e_relative_mode) axis_relative_modes[E_AXIS] = true;
  429. current_position[E_AXIS] += 7.2f;
  430. float feedrate = 562;
  431. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], feedrate / 60, active_extruder);
  432. st_synchronize();
  433. current_position[E_AXIS] += 14.4f;
  434. feedrate = 871;
  435. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], feedrate / 60, active_extruder);
  436. st_synchronize();
  437. current_position[E_AXIS] += 36.0f;
  438. feedrate = 1393;
  439. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], feedrate / 60, active_extruder);
  440. st_synchronize();
  441. current_position[E_AXIS] += 14.4f;
  442. feedrate = 871;
  443. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], feedrate / 60, active_extruder);
  444. st_synchronize();
  445. if (!saved_e_relative_mode) axis_relative_modes[E_AXIS] = false;
  446. }
  447. void mmu_M600_wait_and_beep() {
  448. //Beep and wait for user to remove old filament and prepare new filament for load
  449. KEEPALIVE_STATE(PAUSED_FOR_USER);
  450. int counterBeep = 0;
  451. lcd_display_message_fullscreen_P(_i("Remove old filament and press the knob to start loading new filament."));
  452. bool bFirst=true;
  453. while (!lcd_clicked()){
  454. manage_heater();
  455. manage_inactivity(true);
  456. #if BEEPER > 0
  457. if (counterBeep == 500) {
  458. counterBeep = 0;
  459. }
  460. SET_OUTPUT(BEEPER);
  461. if (counterBeep == 0) {
  462. if((eSoundMode==e_SOUND_MODE_LOUD)||((eSoundMode==e_SOUND_MODE_ONCE)&&bFirst))
  463. {
  464. bFirst=false;
  465. WRITE(BEEPER, HIGH);
  466. }
  467. }
  468. if (counterBeep == 20) {
  469. WRITE(BEEPER, LOW);
  470. }
  471. counterBeep++;
  472. #endif //BEEPER > 0
  473. delay_keep_alive(4);
  474. }
  475. WRITE(BEEPER, LOW);
  476. }
  477. void mmu_M600_load_filament(bool automatic)
  478. {
  479. //load filament for mmu v2
  480. tmp_extruder = mmu_extruder;
  481. if (!automatic) {
  482. #ifdef MMU_M600_SWITCH_EXTRUDER
  483. bool yes = lcd_show_fullscreen_message_yes_no_and_wait_P(_i("Do you want to switch extruder?"), false);
  484. if(yes) tmp_extruder = choose_extruder_menu();
  485. #endif //MMU_M600_SWITCH_EXTRUDER
  486. }
  487. else {
  488. tmp_extruder = (tmp_extruder+1)%5;
  489. }
  490. lcd_update_enable(false);
  491. lcd_clear();
  492. lcd_set_cursor(0, 1); lcd_puts_P(_T(MSG_LOADING_FILAMENT));
  493. lcd_print(" ");
  494. lcd_print(tmp_extruder + 1);
  495. snmm_filaments_used |= (1 << tmp_extruder); //for stop print
  496. // printf_P(PSTR("T code: %d \n"), tmp_extruder);
  497. // mmu_printf_P(PSTR("T%d\n"), tmp_extruder);
  498. mmu_command(MMU_CMD_T0 + tmp_extruder);
  499. manage_response(false, true);
  500. mmu_command(MMU_CMD_C0);
  501. mmu_extruder = tmp_extruder; //filament change is finished
  502. mmu_load_to_nozzle();
  503. st_synchronize();
  504. current_position[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  505. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2, active_extruder);
  506. }
  507. void extr_mov(float shift, float feed_rate)
  508. { //move extruder no matter what the current heater temperature is
  509. set_extrude_min_temp(.0);
  510. current_position[E_AXIS] += shift;
  511. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], feed_rate, active_extruder);
  512. set_extrude_min_temp(EXTRUDE_MINTEMP);
  513. }
  514. void change_extr(int
  515. #ifdef SNMM
  516. extr
  517. #endif //SNMM
  518. ) { //switches multiplexer for extruders
  519. #ifdef SNMM
  520. st_synchronize();
  521. delay(100);
  522. disable_e0();
  523. disable_e1();
  524. disable_e2();
  525. mmu_extruder = extr;
  526. pinMode(E_MUX0_PIN, OUTPUT);
  527. pinMode(E_MUX1_PIN, OUTPUT);
  528. switch (extr) {
  529. case 1:
  530. WRITE(E_MUX0_PIN, HIGH);
  531. WRITE(E_MUX1_PIN, LOW);
  532. break;
  533. case 2:
  534. WRITE(E_MUX0_PIN, LOW);
  535. WRITE(E_MUX1_PIN, HIGH);
  536. break;
  537. case 3:
  538. WRITE(E_MUX0_PIN, HIGH);
  539. WRITE(E_MUX1_PIN, HIGH);
  540. break;
  541. default:
  542. WRITE(E_MUX0_PIN, LOW);
  543. WRITE(E_MUX1_PIN, LOW);
  544. break;
  545. }
  546. delay(100);
  547. #endif
  548. }
  549. int get_ext_nr()
  550. { //reads multiplexer input pins and return current extruder number (counted from 0)
  551. #ifndef SNMM
  552. return(mmu_extruder); //update needed
  553. #else
  554. return(2 * READ(E_MUX1_PIN) + READ(E_MUX0_PIN));
  555. #endif
  556. }
  557. void display_loading()
  558. {
  559. switch (mmu_extruder)
  560. {
  561. case 1: lcd_display_message_fullscreen_P(_T(MSG_FILAMENT_LOADING_T1)); break;
  562. case 2: lcd_display_message_fullscreen_P(_T(MSG_FILAMENT_LOADING_T2)); break;
  563. case 3: lcd_display_message_fullscreen_P(_T(MSG_FILAMENT_LOADING_T3)); break;
  564. default: lcd_display_message_fullscreen_P(_T(MSG_FILAMENT_LOADING_T0)); break;
  565. }
  566. }
  567. void extr_adj(int extruder) //loading filament for SNMM
  568. {
  569. #ifndef SNMM
  570. uint8_t cmd = MMU_CMD_L0 + extruder;
  571. if (cmd > MMU_CMD_L4)
  572. {
  573. printf_P(PSTR("Filament out of range %d \n"),extruder);
  574. return;
  575. }
  576. mmu_command(cmd);
  577. //show which filament is currently loaded
  578. lcd_update_enable(false);
  579. lcd_clear();
  580. lcd_set_cursor(0, 1); lcd_puts_P(_T(MSG_LOADING_FILAMENT));
  581. //if(strlen(_T(MSG_LOADING_FILAMENT))>18) lcd.setCursor(0, 1);
  582. //else lcd.print(" ");
  583. lcd_print(" ");
  584. lcd_print(extruder + 1);
  585. // get response
  586. manage_response(false, false);
  587. lcd_update_enable(true);
  588. //lcd_return_to_status();
  589. #else
  590. bool correct;
  591. max_feedrate[E_AXIS] =80;
  592. //max_feedrate[E_AXIS] = 50;
  593. START:
  594. lcd_clear();
  595. lcd_set_cursor(0, 0);
  596. switch (extruder) {
  597. case 1: lcd_display_message_fullscreen_P(_T(MSG_FILAMENT_LOADING_T1)); break;
  598. case 2: lcd_display_message_fullscreen_P(_T(MSG_FILAMENT_LOADING_T2)); break;
  599. case 3: lcd_display_message_fullscreen_P(_T(MSG_FILAMENT_LOADING_T3)); break;
  600. default: lcd_display_message_fullscreen_P(_T(MSG_FILAMENT_LOADING_T0)); break;
  601. }
  602. KEEPALIVE_STATE(PAUSED_FOR_USER);
  603. do{
  604. extr_mov(0.001,1000);
  605. delay_keep_alive(2);
  606. } while (!lcd_clicked());
  607. //delay_keep_alive(500);
  608. KEEPALIVE_STATE(IN_HANDLER);
  609. st_synchronize();
  610. //correct = lcd_show_fullscreen_message_yes_no_and_wait_P(MSG_FIL_LOADED_CHECK, false);
  611. //if (!correct) goto START;
  612. //extr_mov(BOWDEN_LENGTH/2.f, 500); //dividing by 2 is there because of max. extrusion length limitation (x_max + y_max)
  613. //extr_mov(BOWDEN_LENGTH/2.f, 500);
  614. extr_mov(bowden_length[extruder], 500);
  615. lcd_clear();
  616. lcd_set_cursor(0, 0); lcd_puts_P(_T(MSG_LOADING_FILAMENT));
  617. if(strlen(_T(MSG_LOADING_FILAMENT))>18) lcd_set_cursor(0, 1);
  618. else lcd_print(" ");
  619. lcd_print(mmu_extruder + 1);
  620. lcd_set_cursor(0, 2); lcd_puts_P(_T(MSG_PLEASE_WAIT));
  621. st_synchronize();
  622. max_feedrate[E_AXIS] = 50;
  623. lcd_update_enable(true);
  624. lcd_return_to_status();
  625. lcdDrawUpdate = 2;
  626. #endif
  627. }
  628. struct E_step
  629. {
  630. float extrude; //!< extrude distance in mm
  631. float feed_rate; //!< feed rate in mm/s
  632. };
  633. static const E_step ramming_sequence[] PROGMEM =
  634. {
  635. {1.0, 1000.0/60},
  636. {1.0, 1500.0/60},
  637. {2.0, 2000.0/60},
  638. {1.5, 3000.0/60},
  639. {2.5, 4000.0/60},
  640. {-15.0, 5000.0/60},
  641. {-14.0, 1200.0/60},
  642. {-6.0, 600.0/60},
  643. {10.0, 700.0/60},
  644. {-10.0, 400.0/60},
  645. {-50.0, 2000.0/60},
  646. };
  647. //! @brief Unload sequence to optimize shape of the tip of the unloaded filament
  648. static void filament_ramming()
  649. {
  650. for(uint8_t i = 0; i < (sizeof(ramming_sequence)/sizeof(E_step));++i)
  651. {
  652. current_position[E_AXIS] += pgm_read_float(&(ramming_sequence[i].extrude));
  653. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS],
  654. current_position[E_AXIS], pgm_read_float(&(ramming_sequence[i].feed_rate)), active_extruder);
  655. st_synchronize();
  656. }
  657. }
  658. void extr_unload()
  659. { //unload just current filament for multimaterial printers
  660. #ifdef SNMM
  661. float tmp_motor[3] = DEFAULT_PWM_MOTOR_CURRENT;
  662. float tmp_motor_loud[3] = DEFAULT_PWM_MOTOR_CURRENT_LOUD;
  663. uint8_t SilentMode = eeprom_read_byte((uint8_t*)EEPROM_SILENT);
  664. #endif
  665. if (degHotend0() > EXTRUDE_MINTEMP)
  666. {
  667. #ifndef SNMM
  668. st_synchronize();
  669. //show which filament is currently unloaded
  670. lcd_update_enable(false);
  671. lcd_clear();
  672. lcd_set_cursor(0, 1); lcd_puts_P(_T(MSG_UNLOADING_FILAMENT));
  673. lcd_print(" ");
  674. lcd_print(mmu_extruder + 1);
  675. filament_ramming();
  676. mmu_command(MMU_CMD_U0);
  677. // get response
  678. manage_response(false, true);
  679. lcd_update_enable(true);
  680. #else //SNMM
  681. lcd_clear();
  682. lcd_display_message_fullscreen_P(PSTR(""));
  683. max_feedrate[E_AXIS] = 50;
  684. lcd_set_cursor(0, 0); lcd_puts_P(_T(MSG_UNLOADING_FILAMENT));
  685. lcd_print(" ");
  686. lcd_print(mmu_extruder + 1);
  687. lcd_set_cursor(0, 2); lcd_puts_P(_T(MSG_PLEASE_WAIT));
  688. if (current_position[Z_AXIS] < 15) {
  689. current_position[Z_AXIS] += 15; //lifting in Z direction to make space for extrusion
  690. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 25, active_extruder);
  691. }
  692. current_position[E_AXIS] += 10; //extrusion
  693. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 10, active_extruder);
  694. st_current_set(2, E_MOTOR_HIGH_CURRENT);
  695. if (current_temperature[0] < 230) { //PLA & all other filaments
  696. current_position[E_AXIS] += 5.4;
  697. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2800 / 60, active_extruder);
  698. current_position[E_AXIS] += 3.2;
  699. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  700. current_position[E_AXIS] += 3;
  701. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3400 / 60, active_extruder);
  702. }
  703. else { //ABS
  704. current_position[E_AXIS] += 3.1;
  705. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2000 / 60, active_extruder);
  706. current_position[E_AXIS] += 3.1;
  707. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2500 / 60, active_extruder);
  708. current_position[E_AXIS] += 4;
  709. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  710. /*current_position[X_AXIS] += 23; //delay
  711. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder); //delay
  712. current_position[X_AXIS] -= 23; //delay
  713. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder); //delay*/
  714. delay_keep_alive(4700);
  715. }
  716. max_feedrate[E_AXIS] = 80;
  717. current_position[E_AXIS] -= (bowden_length[mmu_extruder] + 60 + FIL_LOAD_LENGTH) / 2;
  718. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 500, active_extruder);
  719. current_position[E_AXIS] -= (bowden_length[mmu_extruder] + 60 + FIL_LOAD_LENGTH) / 2;
  720. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 500, active_extruder);
  721. st_synchronize();
  722. //st_current_init();
  723. if (SilentMode != SILENT_MODE_OFF) st_current_set(2, tmp_motor[2]); //set back to normal operation currents
  724. else st_current_set(2, tmp_motor_loud[2]);
  725. lcd_update_enable(true);
  726. lcd_return_to_status();
  727. max_feedrate[E_AXIS] = 50;
  728. #endif //SNMM
  729. }
  730. else
  731. {
  732. lcd_clear();
  733. lcd_set_cursor(0, 0);
  734. lcd_puts_P(_T(MSG_ERROR));
  735. lcd_set_cursor(0, 2);
  736. lcd_puts_P(_T(MSG_PREHEAT_NOZZLE));
  737. delay(2000);
  738. lcd_clear();
  739. }
  740. //lcd_return_to_status();
  741. }
  742. //wrapper functions for loading filament
  743. void extr_adj_0()
  744. {
  745. #ifndef SNMM
  746. enquecommand_P(PSTR("M701 E0"));
  747. #else
  748. change_extr(0);
  749. extr_adj(0);
  750. #endif
  751. }
  752. void extr_adj_1()
  753. {
  754. #ifndef SNMM
  755. enquecommand_P(PSTR("M701 E1"));
  756. #else
  757. change_extr(1);
  758. extr_adj(1);
  759. #endif
  760. }
  761. void extr_adj_2()
  762. {
  763. #ifndef SNMM
  764. enquecommand_P(PSTR("M701 E2"));
  765. #else
  766. change_extr(2);
  767. extr_adj(2);
  768. #endif
  769. }
  770. void extr_adj_3()
  771. {
  772. #ifndef SNMM
  773. enquecommand_P(PSTR("M701 E3"));
  774. #else
  775. change_extr(3);
  776. extr_adj(3);
  777. #endif
  778. }
  779. void extr_adj_4()
  780. {
  781. #ifndef SNMM
  782. enquecommand_P(PSTR("M701 E4"));
  783. #else
  784. change_extr(4);
  785. extr_adj(4);
  786. #endif
  787. }
  788. void mmu_eject_fil_0()
  789. {
  790. mmu_eject_filament(0, true);
  791. }
  792. void mmu_eject_fil_1()
  793. {
  794. mmu_eject_filament(1, true);
  795. }
  796. void mmu_eject_fil_2()
  797. {
  798. mmu_eject_filament(2, true);
  799. }
  800. void mmu_eject_fil_3()
  801. {
  802. mmu_eject_filament(3, true);
  803. }
  804. void mmu_eject_fil_4()
  805. {
  806. mmu_eject_filament(4, true);
  807. }
  808. void load_all()
  809. {
  810. #ifndef SNMM
  811. enquecommand_P(PSTR("M701 E0"));
  812. enquecommand_P(PSTR("M701 E1"));
  813. enquecommand_P(PSTR("M701 E2"));
  814. enquecommand_P(PSTR("M701 E3"));
  815. enquecommand_P(PSTR("M701 E4"));
  816. #else
  817. for (int i = 0; i < 4; i++)
  818. {
  819. change_extr(i);
  820. extr_adj(i);
  821. }
  822. #endif
  823. }
  824. //wrapper functions for changing extruders
  825. void extr_change_0()
  826. {
  827. change_extr(0);
  828. lcd_return_to_status();
  829. }
  830. void extr_change_1()
  831. {
  832. change_extr(1);
  833. lcd_return_to_status();
  834. }
  835. void extr_change_2()
  836. {
  837. change_extr(2);
  838. lcd_return_to_status();
  839. }
  840. void extr_change_3()
  841. {
  842. change_extr(3);
  843. lcd_return_to_status();
  844. }
  845. //wrapper functions for unloading filament
  846. void extr_unload_all()
  847. {
  848. if (degHotend0() > EXTRUDE_MINTEMP)
  849. {
  850. for (int i = 0; i < 4; i++)
  851. {
  852. change_extr(i);
  853. extr_unload();
  854. }
  855. }
  856. else
  857. {
  858. lcd_clear();
  859. lcd_set_cursor(0, 0);
  860. lcd_puts_P(_T(MSG_ERROR));
  861. lcd_set_cursor(0, 2);
  862. lcd_puts_P(_T(MSG_PREHEAT_NOZZLE));
  863. delay(2000);
  864. lcd_clear();
  865. lcd_return_to_status();
  866. }
  867. }
  868. //unloading just used filament (for snmm)
  869. void extr_unload_used()
  870. {
  871. if (degHotend0() > EXTRUDE_MINTEMP) {
  872. for (int i = 0; i < 4; i++) {
  873. if (snmm_filaments_used & (1 << i)) {
  874. change_extr(i);
  875. extr_unload();
  876. }
  877. }
  878. snmm_filaments_used = 0;
  879. }
  880. else {
  881. lcd_clear();
  882. lcd_set_cursor(0, 0);
  883. lcd_puts_P(_T(MSG_ERROR));
  884. lcd_set_cursor(0, 2);
  885. lcd_puts_P(_T(MSG_PREHEAT_NOZZLE));
  886. delay(2000);
  887. lcd_clear();
  888. lcd_return_to_status();
  889. }
  890. }
  891. void extr_unload_0()
  892. {
  893. change_extr(0);
  894. extr_unload();
  895. }
  896. void extr_unload_1()
  897. {
  898. change_extr(1);
  899. extr_unload();
  900. }
  901. void extr_unload_2()
  902. {
  903. change_extr(2);
  904. extr_unload();
  905. }
  906. void extr_unload_3()
  907. {
  908. change_extr(3);
  909. extr_unload();
  910. }
  911. void extr_unload_4()
  912. {
  913. change_extr(4);
  914. extr_unload();
  915. }
  916. bool mmu_check_version()
  917. {
  918. return (mmu_buildnr >= MMU_REQUIRED_FW_BUILDNR);
  919. }
  920. void mmu_show_warning()
  921. {
  922. printf_P(PSTR("MMU2 firmware version invalid. Required version: build number %d or higher."), MMU_REQUIRED_FW_BUILDNR);
  923. kill(_i("Please update firmware in your MMU2. Waiting for reset."));
  924. }
  925. void mmu_eject_filament(uint8_t filament, bool recover)
  926. {
  927. if (filament < 5)
  928. {
  929. if (degHotend0() > EXTRUDE_MINTEMP)
  930. {
  931. st_synchronize();
  932. {
  933. LcdUpdateDisabler disableLcdUpdate;
  934. lcd_clear();
  935. lcd_set_cursor(0, 1); lcd_puts_P(_i("Ejecting filament"));
  936. current_position[E_AXIS] -= 80;
  937. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2500 / 60, active_extruder);
  938. st_synchronize();
  939. mmu_command(MMU_CMD_E0 + filament);
  940. manage_response(false, false);
  941. if (recover)
  942. {
  943. lcd_show_fullscreen_message_and_wait_P(_i("Please remove filament and then press the knob."));
  944. mmu_command(MMU_CMD_R0);
  945. manage_response(false, false);
  946. }
  947. }
  948. }
  949. else
  950. {
  951. lcd_clear();
  952. lcd_set_cursor(0, 0);
  953. lcd_puts_P(_T(MSG_ERROR));
  954. lcd_set_cursor(0, 2);
  955. lcd_puts_P(_T(MSG_PREHEAT_NOZZLE));
  956. delay(2000);
  957. lcd_clear();
  958. }
  959. }
  960. else
  961. {
  962. puts_P(PSTR("Filament nr out of range!"));
  963. }
  964. }