Marlin_main.cpp 348 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744374537463747374837493750375137523753375437553756375737583759376037613762376337643765376637673768376937703771377237733774377537763777377837793780378137823783378437853786378737883789379037913792379337943795379637973798379938003801380238033804380538063807380838093810381138123813381438153816381738183819382038213822382338243825382638273828382938303831383238333834383538363837383838393840384138423843384438453846384738483849385038513852385338543855385638573858385938603861386238633864386538663867386838693870387138723873387438753876387738783879388038813882388338843885388638873888388938903891389238933894389538963897389838993900390139023903390439053906390739083909391039113912391339143915391639173918391939203921392239233924392539263927392839293930393139323933393439353936393739383939394039413942394339443945394639473948394939503951395239533954395539563957395839593960396139623963396439653966396739683969397039713972397339743975397639773978397939803981398239833984398539863987398839893990399139923993399439953996399739983999400040014002400340044005400640074008400940104011401240134014401540164017401840194020402140224023402440254026402740284029403040314032403340344035403640374038403940404041404240434044404540464047404840494050405140524053405440554056405740584059406040614062406340644065406640674068406940704071407240734074407540764077407840794080408140824083408440854086408740884089409040914092409340944095409640974098409941004101410241034104410541064107410841094110411141124113411441154116411741184119412041214122412341244125412641274128412941304131413241334134413541364137413841394140414141424143414441454146414741484149415041514152415341544155415641574158415941604161416241634164416541664167416841694170417141724173417441754176417741784179418041814182418341844185418641874188418941904191419241934194419541964197419841994200420142024203420442054206420742084209421042114212421342144215421642174218421942204221422242234224422542264227422842294230423142324233423442354236423742384239424042414242424342444245424642474248424942504251425242534254425542564257425842594260426142624263426442654266426742684269427042714272427342744275427642774278427942804281428242834284428542864287428842894290429142924293429442954296429742984299430043014302430343044305430643074308430943104311431243134314431543164317431843194320432143224323432443254326432743284329433043314332433343344335433643374338433943404341434243434344434543464347434843494350435143524353435443554356435743584359436043614362436343644365436643674368436943704371437243734374437543764377437843794380438143824383438443854386438743884389439043914392439343944395439643974398439944004401440244034404440544064407440844094410441144124413441444154416441744184419442044214422442344244425442644274428442944304431443244334434443544364437443844394440444144424443444444454446444744484449445044514452445344544455445644574458445944604461446244634464446544664467446844694470447144724473447444754476447744784479448044814482448344844485448644874488448944904491449244934494449544964497449844994500450145024503450445054506450745084509451045114512451345144515451645174518451945204521452245234524452545264527452845294530453145324533453445354536453745384539454045414542454345444545454645474548454945504551455245534554455545564557455845594560456145624563456445654566456745684569457045714572457345744575457645774578457945804581458245834584458545864587458845894590459145924593459445954596459745984599460046014602460346044605460646074608460946104611461246134614461546164617461846194620462146224623462446254626462746284629463046314632463346344635463646374638463946404641464246434644464546464647464846494650465146524653465446554656465746584659466046614662466346644665466646674668466946704671467246734674467546764677467846794680468146824683468446854686468746884689469046914692469346944695469646974698469947004701470247034704470547064707470847094710471147124713471447154716471747184719472047214722472347244725472647274728472947304731473247334734473547364737473847394740474147424743474447454746474747484749475047514752475347544755475647574758475947604761476247634764476547664767476847694770477147724773477447754776477747784779478047814782478347844785478647874788478947904791479247934794479547964797479847994800480148024803480448054806480748084809481048114812481348144815481648174818481948204821482248234824482548264827482848294830483148324833483448354836483748384839484048414842484348444845484648474848484948504851485248534854485548564857485848594860486148624863486448654866486748684869487048714872487348744875487648774878487948804881488248834884488548864887488848894890489148924893489448954896489748984899490049014902490349044905490649074908490949104911491249134914491549164917491849194920492149224923492449254926492749284929493049314932493349344935493649374938493949404941494249434944494549464947494849494950495149524953495449554956495749584959496049614962496349644965496649674968496949704971497249734974497549764977497849794980498149824983498449854986498749884989499049914992499349944995499649974998499950005001500250035004500550065007500850095010501150125013501450155016501750185019502050215022502350245025502650275028502950305031503250335034503550365037503850395040504150425043504450455046504750485049505050515052505350545055505650575058505950605061506250635064506550665067506850695070507150725073507450755076507750785079508050815082508350845085508650875088508950905091509250935094509550965097509850995100510151025103510451055106510751085109511051115112511351145115511651175118511951205121512251235124512551265127512851295130513151325133513451355136513751385139514051415142514351445145514651475148514951505151515251535154515551565157515851595160516151625163516451655166516751685169517051715172517351745175517651775178517951805181518251835184518551865187518851895190519151925193519451955196519751985199520052015202520352045205520652075208520952105211521252135214521552165217521852195220522152225223522452255226522752285229523052315232523352345235523652375238523952405241524252435244524552465247524852495250525152525253525452555256525752585259526052615262526352645265526652675268526952705271527252735274527552765277527852795280528152825283528452855286528752885289529052915292529352945295529652975298529953005301530253035304530553065307530853095310531153125313531453155316531753185319532053215322532353245325532653275328532953305331533253335334533553365337533853395340534153425343534453455346534753485349535053515352535353545355535653575358535953605361536253635364536553665367536853695370537153725373537453755376537753785379538053815382538353845385538653875388538953905391539253935394539553965397539853995400540154025403540454055406540754085409541054115412541354145415541654175418541954205421542254235424542554265427542854295430543154325433543454355436543754385439544054415442544354445445544654475448544954505451545254535454545554565457545854595460546154625463546454655466546754685469547054715472547354745475547654775478547954805481548254835484548554865487548854895490549154925493549454955496549754985499550055015502550355045505550655075508550955105511551255135514551555165517551855195520552155225523552455255526552755285529553055315532553355345535553655375538553955405541554255435544554555465547554855495550555155525553555455555556555755585559556055615562556355645565556655675568556955705571557255735574557555765577557855795580558155825583558455855586558755885589559055915592559355945595559655975598559956005601560256035604560556065607560856095610561156125613561456155616561756185619562056215622562356245625562656275628562956305631563256335634563556365637563856395640564156425643564456455646564756485649565056515652565356545655565656575658565956605661566256635664566556665667566856695670567156725673567456755676567756785679568056815682568356845685568656875688568956905691569256935694569556965697569856995700570157025703570457055706570757085709571057115712571357145715571657175718571957205721572257235724572557265727572857295730573157325733573457355736573757385739574057415742574357445745574657475748574957505751575257535754575557565757575857595760576157625763576457655766576757685769577057715772577357745775577657775778577957805781578257835784578557865787578857895790579157925793579457955796579757985799580058015802580358045805580658075808580958105811581258135814581558165817581858195820582158225823582458255826582758285829583058315832583358345835583658375838583958405841584258435844584558465847584858495850585158525853585458555856585758585859586058615862586358645865586658675868586958705871587258735874587558765877587858795880588158825883588458855886588758885889589058915892589358945895589658975898589959005901590259035904590559065907590859095910591159125913591459155916591759185919592059215922592359245925592659275928592959305931593259335934593559365937593859395940594159425943594459455946594759485949595059515952595359545955595659575958595959605961596259635964596559665967596859695970597159725973597459755976597759785979598059815982598359845985598659875988598959905991599259935994599559965997599859996000600160026003600460056006600760086009601060116012601360146015601660176018601960206021602260236024602560266027602860296030603160326033603460356036603760386039604060416042604360446045604660476048604960506051605260536054605560566057605860596060606160626063606460656066606760686069607060716072607360746075607660776078607960806081608260836084608560866087608860896090609160926093609460956096609760986099610061016102610361046105610661076108610961106111611261136114611561166117611861196120612161226123612461256126612761286129613061316132613361346135613661376138613961406141614261436144614561466147614861496150615161526153615461556156615761586159616061616162616361646165616661676168616961706171617261736174617561766177617861796180618161826183618461856186618761886189619061916192619361946195619661976198619962006201620262036204620562066207620862096210621162126213621462156216621762186219622062216222622362246225622662276228622962306231623262336234623562366237623862396240624162426243624462456246624762486249625062516252625362546255625662576258625962606261626262636264626562666267626862696270627162726273627462756276627762786279628062816282628362846285628662876288628962906291629262936294629562966297629862996300630163026303630463056306630763086309631063116312631363146315631663176318631963206321632263236324632563266327632863296330633163326333633463356336633763386339634063416342634363446345634663476348634963506351635263536354635563566357635863596360636163626363636463656366636763686369637063716372637363746375637663776378637963806381638263836384638563866387638863896390639163926393639463956396639763986399640064016402640364046405640664076408640964106411641264136414641564166417641864196420642164226423642464256426642764286429643064316432643364346435643664376438643964406441644264436444644564466447644864496450645164526453645464556456645764586459646064616462646364646465646664676468646964706471647264736474647564766477647864796480648164826483648464856486648764886489649064916492649364946495649664976498649965006501650265036504650565066507650865096510651165126513651465156516651765186519652065216522652365246525652665276528652965306531653265336534653565366537653865396540654165426543654465456546654765486549655065516552655365546555655665576558655965606561656265636564656565666567656865696570657165726573657465756576657765786579658065816582658365846585658665876588658965906591659265936594659565966597659865996600660166026603660466056606660766086609661066116612661366146615661666176618661966206621662266236624662566266627662866296630663166326633663466356636663766386639664066416642664366446645664666476648664966506651665266536654665566566657665866596660666166626663666466656666666766686669667066716672667366746675667666776678667966806681668266836684668566866687668866896690669166926693669466956696669766986699670067016702670367046705670667076708670967106711671267136714671567166717671867196720672167226723672467256726672767286729673067316732673367346735673667376738673967406741674267436744674567466747674867496750675167526753675467556756675767586759676067616762676367646765676667676768676967706771677267736774677567766777677867796780678167826783678467856786678767886789679067916792679367946795679667976798679968006801680268036804680568066807680868096810681168126813681468156816681768186819682068216822682368246825682668276828682968306831683268336834683568366837683868396840684168426843684468456846684768486849685068516852685368546855685668576858685968606861686268636864686568666867686868696870687168726873687468756876687768786879688068816882688368846885688668876888688968906891689268936894689568966897689868996900690169026903690469056906690769086909691069116912691369146915691669176918691969206921692269236924692569266927692869296930693169326933693469356936693769386939694069416942694369446945694669476948694969506951695269536954695569566957695869596960696169626963696469656966696769686969697069716972697369746975697669776978697969806981698269836984698569866987698869896990699169926993699469956996699769986999700070017002700370047005700670077008700970107011701270137014701570167017701870197020702170227023702470257026702770287029703070317032703370347035703670377038703970407041704270437044704570467047704870497050705170527053705470557056705770587059706070617062706370647065706670677068706970707071707270737074707570767077707870797080708170827083708470857086708770887089709070917092709370947095709670977098709971007101710271037104710571067107710871097110711171127113711471157116711771187119712071217122712371247125712671277128712971307131713271337134713571367137713871397140714171427143714471457146714771487149715071517152715371547155715671577158715971607161716271637164716571667167716871697170717171727173717471757176717771787179718071817182718371847185718671877188718971907191719271937194719571967197719871997200720172027203720472057206720772087209721072117212721372147215721672177218721972207221722272237224722572267227722872297230723172327233723472357236723772387239724072417242724372447245724672477248724972507251725272537254725572567257725872597260726172627263726472657266726772687269727072717272727372747275727672777278727972807281728272837284728572867287728872897290729172927293729472957296729772987299730073017302730373047305730673077308730973107311731273137314731573167317731873197320732173227323732473257326732773287329733073317332733373347335733673377338733973407341734273437344734573467347734873497350735173527353735473557356735773587359736073617362736373647365736673677368736973707371737273737374737573767377737873797380738173827383738473857386738773887389739073917392739373947395739673977398739974007401740274037404740574067407740874097410741174127413741474157416741774187419742074217422742374247425742674277428742974307431743274337434743574367437743874397440744174427443744474457446744774487449745074517452745374547455745674577458745974607461746274637464746574667467746874697470747174727473747474757476747774787479748074817482748374847485748674877488748974907491749274937494749574967497749874997500750175027503750475057506750775087509751075117512751375147515751675177518751975207521752275237524752575267527752875297530753175327533753475357536753775387539754075417542754375447545754675477548754975507551755275537554755575567557755875597560756175627563756475657566756775687569757075717572757375747575757675777578757975807581758275837584758575867587758875897590759175927593759475957596759775987599760076017602760376047605760676077608760976107611761276137614761576167617761876197620762176227623762476257626762776287629763076317632763376347635763676377638763976407641764276437644764576467647764876497650765176527653765476557656765776587659766076617662766376647665766676677668766976707671767276737674767576767677767876797680768176827683768476857686768776887689769076917692769376947695769676977698769977007701770277037704770577067707770877097710771177127713771477157716771777187719772077217722772377247725772677277728772977307731773277337734773577367737773877397740774177427743774477457746774777487749775077517752775377547755775677577758775977607761776277637764776577667767776877697770777177727773777477757776777777787779778077817782778377847785778677877788778977907791779277937794779577967797779877997800780178027803780478057806780778087809781078117812781378147815781678177818781978207821782278237824782578267827782878297830783178327833783478357836783778387839784078417842784378447845784678477848784978507851785278537854785578567857785878597860786178627863786478657866786778687869787078717872787378747875787678777878787978807881788278837884788578867887788878897890789178927893789478957896789778987899790079017902790379047905790679077908790979107911791279137914791579167917791879197920792179227923792479257926792779287929793079317932793379347935793679377938793979407941794279437944794579467947794879497950795179527953795479557956795779587959796079617962796379647965796679677968796979707971797279737974797579767977797879797980798179827983798479857986798779887989799079917992799379947995799679977998799980008001800280038004800580068007800880098010801180128013801480158016801780188019802080218022802380248025802680278028802980308031803280338034803580368037803880398040804180428043804480458046804780488049805080518052805380548055805680578058805980608061806280638064806580668067806880698070807180728073807480758076807780788079808080818082808380848085808680878088808980908091809280938094809580968097809880998100810181028103810481058106810781088109811081118112811381148115811681178118811981208121812281238124812581268127812881298130813181328133813481358136813781388139814081418142814381448145814681478148814981508151815281538154815581568157815881598160816181628163816481658166816781688169817081718172817381748175817681778178817981808181818281838184818581868187818881898190819181928193819481958196819781988199820082018202820382048205820682078208820982108211821282138214821582168217821882198220822182228223822482258226822782288229823082318232823382348235823682378238823982408241824282438244824582468247824882498250825182528253825482558256825782588259826082618262826382648265826682678268826982708271827282738274827582768277827882798280828182828283828482858286828782888289829082918292829382948295829682978298829983008301830283038304830583068307830883098310831183128313831483158316831783188319832083218322832383248325832683278328832983308331833283338334833583368337833883398340834183428343834483458346834783488349835083518352835383548355835683578358835983608361836283638364836583668367836883698370837183728373837483758376837783788379838083818382838383848385838683878388838983908391839283938394839583968397839883998400840184028403840484058406840784088409841084118412841384148415841684178418841984208421842284238424842584268427842884298430843184328433843484358436843784388439844084418442844384448445844684478448844984508451845284538454845584568457845884598460846184628463846484658466846784688469847084718472847384748475847684778478847984808481848284838484848584868487848884898490849184928493849484958496849784988499850085018502850385048505850685078508850985108511851285138514851585168517851885198520852185228523852485258526852785288529853085318532853385348535853685378538853985408541854285438544854585468547854885498550855185528553855485558556855785588559856085618562856385648565856685678568856985708571857285738574857585768577857885798580858185828583858485858586858785888589859085918592859385948595859685978598859986008601860286038604860586068607860886098610861186128613861486158616861786188619862086218622862386248625862686278628862986308631863286338634863586368637863886398640864186428643864486458646864786488649865086518652865386548655865686578658865986608661866286638664866586668667866886698670867186728673867486758676867786788679868086818682868386848685868686878688868986908691869286938694869586968697869886998700870187028703870487058706870787088709871087118712871387148715871687178718871987208721872287238724872587268727872887298730873187328733873487358736873787388739874087418742874387448745874687478748874987508751875287538754875587568757875887598760876187628763876487658766876787688769877087718772877387748775877687778778877987808781878287838784878587868787878887898790879187928793879487958796879787988799880088018802880388048805880688078808880988108811881288138814881588168817881888198820882188228823882488258826882788288829883088318832883388348835883688378838883988408841884288438844884588468847884888498850885188528853885488558856885788588859886088618862886388648865886688678868886988708871887288738874887588768877887888798880888188828883888488858886888788888889889088918892889388948895889688978898889989008901890289038904890589068907890889098910891189128913891489158916891789188919892089218922892389248925892689278928892989308931893289338934893589368937893889398940894189428943894489458946894789488949895089518952895389548955895689578958895989608961896289638964896589668967896889698970897189728973897489758976897789788979898089818982898389848985898689878988898989908991899289938994899589968997899889999000900190029003900490059006900790089009901090119012901390149015901690179018901990209021902290239024902590269027902890299030903190329033903490359036903790389039904090419042904390449045904690479048904990509051905290539054905590569057905890599060906190629063906490659066906790689069907090719072907390749075907690779078907990809081908290839084908590869087908890899090909190929093909490959096909790989099910091019102910391049105910691079108910991109111911291139114911591169117911891199120912191229123912491259126912791289129913091319132913391349135913691379138913991409141914291439144914591469147914891499150915191529153915491559156915791589159916091619162916391649165916691679168916991709171917291739174917591769177917891799180918191829183918491859186918791889189919091919192919391949195919691979198919992009201920292039204920592069207920892099210921192129213921492159216921792189219922092219222922392249225922692279228922992309231923292339234923592369237923892399240924192429243924492459246924792489249925092519252925392549255925692579258925992609261926292639264926592669267926892699270927192729273927492759276927792789279928092819282928392849285928692879288928992909291929292939294929592969297929892999300930193029303930493059306930793089309931093119312931393149315931693179318931993209321932293239324932593269327932893299330933193329333933493359336933793389339934093419342934393449345934693479348934993509351935293539354935593569357935893599360936193629363936493659366936793689369937093719372937393749375937693779378937993809381938293839384938593869387938893899390939193929393939493959396939793989399940094019402940394049405940694079408940994109411941294139414941594169417941894199420942194229423942494259426942794289429943094319432943394349435943694379438943994409441944294439444944594469447944894499450945194529453945494559456945794589459946094619462946394649465946694679468946994709471947294739474947594769477947894799480948194829483948494859486948794889489949094919492949394949495949694979498949995009501950295039504950595069507950895099510951195129513951495159516951795189519952095219522952395249525952695279528952995309531953295339534953595369537953895399540954195429543954495459546954795489549955095519552955395549555955695579558955995609561956295639564956595669567956895699570957195729573957495759576957795789579958095819582958395849585958695879588958995909591959295939594959595969597959895999600960196029603960496059606960796089609961096119612961396149615961696179618961996209621962296239624962596269627962896299630963196329633963496359636963796389639964096419642964396449645964696479648964996509651965296539654965596569657965896599660966196629663966496659666966796689669967096719672967396749675967696779678967996809681968296839684968596869687968896899690969196929693969496959696969796989699970097019702970397049705970697079708970997109711971297139714971597169717971897199720972197229723972497259726972797289729973097319732973397349735973697379738973997409741974297439744974597469747974897499750975197529753975497559756975797589759976097619762976397649765976697679768976997709771977297739774977597769777977897799780978197829783978497859786978797889789979097919792979397949795979697979798979998009801980298039804980598069807980898099810981198129813981498159816981798189819982098219822982398249825982698279828982998309831983298339834983598369837983898399840984198429843984498459846984798489849985098519852985398549855985698579858985998609861986298639864986598669867986898699870987198729873987498759876987798789879988098819882988398849885988698879888988998909891989298939894989598969897989898999900990199029903990499059906990799089909991099119912991399149915991699179918991999209921992299239924992599269927992899299930993199329933993499359936993799389939994099419942994399449945994699479948994999509951995299539954995599569957995899599960996199629963996499659966996799689969997099719972997399749975997699779978997999809981998299839984998599869987998899899990999199929993999499959996999799989999100001000110002100031000410005100061000710008100091001010011100121001310014100151001610017100181001910020100211002210023100241002510026100271002810029100301003110032100331003410035100361003710038100391004010041100421004310044100451004610047100481004910050100511005210053100541005510056100571005810059100601006110062100631006410065100661006710068100691007010071100721007310074100751007610077100781007910080100811008210083100841008510086100871008810089100901009110092100931009410095100961009710098100991010010101101021010310104101051010610107101081010910110101111011210113101141011510116101171011810119101201012110122101231012410125101261012710128101291013010131101321013310134101351013610137101381013910140101411014210143101441014510146101471014810149101501015110152101531015410155101561015710158101591016010161101621016310164101651016610167101681016910170101711017210173101741017510176101771017810179101801018110182101831018410185101861018710188101891019010191101921019310194101951019610197101981019910200102011020210203102041020510206102071020810209102101021110212102131021410215102161021710218102191022010221102221022310224102251022610227102281022910230102311023210233102341023510236102371023810239102401024110242102431024410245102461024710248102491025010251102521025310254102551025610257102581025910260102611026210263102641026510266102671026810269102701027110272102731027410275102761027710278102791028010281102821028310284102851028610287102881028910290102911029210293102941029510296102971029810299103001030110302103031030410305103061030710308103091031010311103121031310314103151031610317103181031910320103211032210323103241032510326103271032810329103301033110332103331033410335103361033710338103391034010341103421034310344103451034610347103481034910350103511035210353103541035510356103571035810359103601036110362103631036410365103661036710368103691037010371103721037310374103751037610377103781037910380103811038210383103841038510386103871038810389103901039110392103931039410395103961039710398103991040010401104021040310404104051040610407104081040910410104111041210413104141041510416104171041810419104201042110422104231042410425104261042710428104291043010431104321043310434104351043610437104381043910440104411044210443104441044510446104471044810449104501045110452104531045410455104561045710458104591046010461104621046310464104651046610467104681046910470104711047210473104741047510476104771047810479104801048110482104831048410485104861048710488104891049010491104921049310494104951049610497104981049910500105011050210503105041050510506105071050810509105101051110512105131051410515105161051710518105191052010521105221052310524105251052610527105281052910530105311053210533105341053510536105371053810539105401054110542105431054410545105461054710548105491055010551105521055310554105551055610557105581055910560105611056210563105641056510566105671056810569105701057110572105731057410575105761057710578
  1. /* -*- c++ -*- */
  2. /**
  3. * @file
  4. */
  5. /**
  6. * @mainpage Reprap 3D printer firmware based on Sprinter and grbl.
  7. *
  8. * @section intro_sec Introduction
  9. *
  10. * This firmware is a mashup between Sprinter and grbl.
  11. * https://github.com/kliment/Sprinter
  12. * https://github.com/simen/grbl/tree
  13. *
  14. * It has preliminary support for Matthew Roberts advance algorithm
  15. * http://reprap.org/pipermail/reprap-dev/2011-May/003323.html
  16. *
  17. * Prusa Research s.r.o. https://www.prusa3d.cz
  18. *
  19. * @section copyright_sec Copyright
  20. *
  21. * Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
  22. *
  23. * This program is free software: you can redistribute it and/or modify
  24. * it under the terms of the GNU General Public License as published by
  25. * the Free Software Foundation, either version 3 of the License, or
  26. * (at your option) any later version.
  27. *
  28. * This program is distributed in the hope that it will be useful,
  29. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  30. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  31. * GNU General Public License for more details.
  32. *
  33. * You should have received a copy of the GNU General Public License
  34. * along with this program. If not, see <http://www.gnu.org/licenses/>.
  35. *
  36. * @section notes_sec Notes
  37. *
  38. * * Do not create static objects in global functions.
  39. * Otherwise constructor guard against concurrent calls is generated costing
  40. * about 8B RAM and 14B flash.
  41. *
  42. *
  43. */
  44. //-//
  45. #include "Configuration.h"
  46. #include "Marlin.h"
  47. #ifdef ENABLE_AUTO_BED_LEVELING
  48. #include "vector_3.h"
  49. #ifdef AUTO_BED_LEVELING_GRID
  50. #include "qr_solve.h"
  51. #endif
  52. #endif // ENABLE_AUTO_BED_LEVELING
  53. #ifdef MESH_BED_LEVELING
  54. #include "mesh_bed_leveling.h"
  55. #include "mesh_bed_calibration.h"
  56. #endif
  57. #include "printers.h"
  58. #include "menu.h"
  59. #include "ultralcd.h"
  60. #include "backlight.h"
  61. #include "planner.h"
  62. #include "stepper.h"
  63. #include "temperature.h"
  64. #include "motion_control.h"
  65. #include "cardreader.h"
  66. #include "ConfigurationStore.h"
  67. #include "language.h"
  68. #include "pins_arduino.h"
  69. #include "math.h"
  70. #include "util.h"
  71. #include "Timer.h"
  72. #include <avr/wdt.h>
  73. #include <avr/pgmspace.h>
  74. #include "Dcodes.h"
  75. #include "AutoDeplete.h"
  76. #ifdef SWSPI
  77. #include "swspi.h"
  78. #endif //SWSPI
  79. #include "spi.h"
  80. #ifdef SWI2C
  81. #include "swi2c.h"
  82. #endif //SWI2C
  83. #ifdef FILAMENT_SENSOR
  84. #include "fsensor.h"
  85. #endif //FILAMENT_SENSOR
  86. #ifdef TMC2130
  87. #include "tmc2130.h"
  88. #endif //TMC2130
  89. #ifdef W25X20CL
  90. #include "w25x20cl.h"
  91. #include "optiboot_w25x20cl.h"
  92. #endif //W25X20CL
  93. #ifdef BLINKM
  94. #include "BlinkM.h"
  95. #include "Wire.h"
  96. #endif
  97. #ifdef ULTRALCD
  98. #include "ultralcd.h"
  99. #endif
  100. #if NUM_SERVOS > 0
  101. #include "Servo.h"
  102. #endif
  103. #if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
  104. #include <SPI.h>
  105. #endif
  106. #include "mmu.h"
  107. #define VERSION_STRING "1.0.2"
  108. #include "ultralcd.h"
  109. #include "sound.h"
  110. #include "cmdqueue.h"
  111. #include "io_atmega2560.h"
  112. // Macros for bit masks
  113. #define BIT(b) (1<<(b))
  114. #define TEST(n,b) (((n)&BIT(b))!=0)
  115. #define SET_BIT(n,b,value) (n) ^= ((-value)^(n)) & (BIT(b))
  116. //Macro for print fan speed
  117. #define FAN_PULSE_WIDTH_LIMIT ((fanSpeed > 100) ? 3 : 4) //time in ms
  118. //filament types
  119. #define FILAMENT_DEFAULT 0
  120. #define FILAMENT_FLEX 1
  121. #define FILAMENT_PVA 2
  122. #define FILAMENT_UNDEFINED 255
  123. //Stepper Movement Variables
  124. //===========================================================================
  125. //=============================imported variables============================
  126. //===========================================================================
  127. //===========================================================================
  128. //=============================public variables=============================
  129. //===========================================================================
  130. #ifdef SDSUPPORT
  131. CardReader card;
  132. #endif
  133. unsigned long PingTime = _millis();
  134. unsigned long NcTime;
  135. uint8_t mbl_z_probe_nr = 3; //numer of Z measurements for each point in mesh bed leveling calibration
  136. //used for PINDA temp calibration and pause print
  137. #define DEFAULT_RETRACTION 1
  138. #define DEFAULT_RETRACTION_MM 4 //MM
  139. float default_retraction = DEFAULT_RETRACTION;
  140. float homing_feedrate[] = HOMING_FEEDRATE;
  141. // Currently only the extruder axis may be switched to a relative mode.
  142. // Other axes are always absolute or relative based on the common relative_mode flag.
  143. bool axis_relative_modes[] = AXIS_RELATIVE_MODES;
  144. int feedmultiply=100; //100->1 200->2
  145. int extrudemultiply=100; //100->1 200->2
  146. int extruder_multiply[EXTRUDERS] = {100
  147. #if EXTRUDERS > 1
  148. , 100
  149. #if EXTRUDERS > 2
  150. , 100
  151. #endif
  152. #endif
  153. };
  154. int bowden_length[4] = {385, 385, 385, 385};
  155. bool is_usb_printing = false;
  156. bool homing_flag = false;
  157. bool temp_cal_active = false;
  158. unsigned long kicktime = _millis()+100000;
  159. unsigned int usb_printing_counter;
  160. int8_t lcd_change_fil_state = 0;
  161. unsigned long pause_time = 0;
  162. unsigned long start_pause_print = _millis();
  163. unsigned long t_fan_rising_edge = _millis();
  164. LongTimer safetyTimer;
  165. static LongTimer crashDetTimer;
  166. //unsigned long load_filament_time;
  167. bool mesh_bed_leveling_flag = false;
  168. bool mesh_bed_run_from_menu = false;
  169. bool prusa_sd_card_upload = false;
  170. unsigned int status_number = 0;
  171. unsigned long total_filament_used;
  172. unsigned int heating_status;
  173. unsigned int heating_status_counter;
  174. bool loading_flag = false;
  175. char snmm_filaments_used = 0;
  176. bool fan_state[2];
  177. int fan_edge_counter[2];
  178. int fan_speed[2];
  179. char dir_names[3][9];
  180. bool sortAlpha = false;
  181. float extruder_multiplier[EXTRUDERS] = {1.0
  182. #if EXTRUDERS > 1
  183. , 1.0
  184. #if EXTRUDERS > 2
  185. , 1.0
  186. #endif
  187. #endif
  188. };
  189. float current_position[NUM_AXIS] = { 0.0, 0.0, 0.0, 0.0 };
  190. //shortcuts for more readable code
  191. #define _x current_position[X_AXIS]
  192. #define _y current_position[Y_AXIS]
  193. #define _z current_position[Z_AXIS]
  194. #define _e current_position[E_AXIS]
  195. float min_pos[3] = { X_MIN_POS, Y_MIN_POS, Z_MIN_POS };
  196. float max_pos[3] = { X_MAX_POS, Y_MAX_POS, Z_MAX_POS };
  197. bool axis_known_position[3] = {false, false, false};
  198. // Extruder offset
  199. #if EXTRUDERS > 1
  200. #define NUM_EXTRUDER_OFFSETS 2 // only in XY plane
  201. float extruder_offset[NUM_EXTRUDER_OFFSETS][EXTRUDERS] = {
  202. #if defined(EXTRUDER_OFFSET_X) && defined(EXTRUDER_OFFSET_Y)
  203. EXTRUDER_OFFSET_X, EXTRUDER_OFFSET_Y
  204. #endif
  205. };
  206. #endif
  207. uint8_t active_extruder = 0;
  208. int fanSpeed=0;
  209. #ifdef FWRETRACT
  210. bool retracted[EXTRUDERS]={false
  211. #if EXTRUDERS > 1
  212. , false
  213. #if EXTRUDERS > 2
  214. , false
  215. #endif
  216. #endif
  217. };
  218. bool retracted_swap[EXTRUDERS]={false
  219. #if EXTRUDERS > 1
  220. , false
  221. #if EXTRUDERS > 2
  222. , false
  223. #endif
  224. #endif
  225. };
  226. float retract_length_swap = RETRACT_LENGTH_SWAP;
  227. float retract_recover_length_swap = RETRACT_RECOVER_LENGTH_SWAP;
  228. #endif
  229. #ifdef PS_DEFAULT_OFF
  230. bool powersupply = false;
  231. #else
  232. bool powersupply = true;
  233. #endif
  234. bool cancel_heatup = false ;
  235. int8_t busy_state = NOT_BUSY;
  236. static long prev_busy_signal_ms = -1;
  237. uint8_t host_keepalive_interval = HOST_KEEPALIVE_INTERVAL;
  238. const char errormagic[] PROGMEM = "Error:";
  239. const char echomagic[] PROGMEM = "echo:";
  240. bool no_response = false;
  241. uint8_t important_status;
  242. uint8_t saved_filament_type;
  243. // save/restore printing in case that mmu was not responding
  244. bool mmu_print_saved = false;
  245. // storing estimated time to end of print counted by slicer
  246. uint8_t print_percent_done_normal = PRINT_PERCENT_DONE_INIT;
  247. uint16_t print_time_remaining_normal = PRINT_TIME_REMAINING_INIT; //estimated remaining print time in minutes
  248. uint8_t print_percent_done_silent = PRINT_PERCENT_DONE_INIT;
  249. uint16_t print_time_remaining_silent = PRINT_TIME_REMAINING_INIT; //estimated remaining print time in minutes
  250. //===========================================================================
  251. //=============================Private Variables=============================
  252. //===========================================================================
  253. #define MSG_BED_LEVELING_FAILED_TIMEOUT 30
  254. const char axis_codes[NUM_AXIS] = {'X', 'Y', 'Z', 'E'};
  255. float destination[NUM_AXIS] = { 0.0, 0.0, 0.0, 0.0};
  256. // For tracing an arc
  257. static float offset[3] = {0.0, 0.0, 0.0};
  258. static float feedrate = 1500.0, next_feedrate, saved_feedrate;
  259. // Determines Absolute or Relative Coordinates.
  260. // Also there is bool axis_relative_modes[] per axis flag.
  261. static bool relative_mode = false;
  262. const int sensitive_pins[] = SENSITIVE_PINS; // Sensitive pin list for M42
  263. //static float tt = 0;
  264. //static float bt = 0;
  265. //Inactivity shutdown variables
  266. static unsigned long previous_millis_cmd = 0;
  267. unsigned long max_inactive_time = 0;
  268. static unsigned long stepper_inactive_time = DEFAULT_STEPPER_DEACTIVE_TIME*1000l;
  269. static unsigned long safetytimer_inactive_time = DEFAULT_SAFETYTIMER_TIME_MINS*60*1000ul;
  270. unsigned long starttime=0;
  271. unsigned long stoptime=0;
  272. unsigned long _usb_timer = 0;
  273. bool extruder_under_pressure = true;
  274. bool Stopped=false;
  275. #if NUM_SERVOS > 0
  276. Servo servos[NUM_SERVOS];
  277. #endif
  278. bool target_direction;
  279. //Insert variables if CHDK is defined
  280. #ifdef CHDK
  281. unsigned long chdkHigh = 0;
  282. boolean chdkActive = false;
  283. #endif
  284. //! @name RAM save/restore printing
  285. //! @{
  286. bool saved_printing = false; //!< Print is paused and saved in RAM
  287. static uint32_t saved_sdpos = 0; //!< SD card position, or line number in case of USB printing
  288. uint8_t saved_printing_type = PRINTING_TYPE_SD;
  289. static float saved_pos[4] = { 0, 0, 0, 0 };
  290. //! Feedrate hopefully derived from an active block of the planner at the time the print has been canceled, in mm/min.
  291. static float saved_feedrate2 = 0;
  292. static uint8_t saved_active_extruder = 0;
  293. static float saved_extruder_temperature = 0.0; //!< Active extruder temperature
  294. static bool saved_extruder_under_pressure = false;
  295. static bool saved_extruder_relative_mode = false;
  296. static int saved_fanSpeed = 0; //!< Print fan speed
  297. //! @}
  298. static int saved_feedmultiply_mm = 100;
  299. //===========================================================================
  300. //=============================Routines======================================
  301. //===========================================================================
  302. static void get_arc_coordinates();
  303. static bool setTargetedHotend(int code, uint8_t &extruder);
  304. static void print_time_remaining_init();
  305. static void wait_for_heater(long codenum, uint8_t extruder);
  306. static void gcode_G28(bool home_x_axis, bool home_y_axis, bool home_z_axis);
  307. static void temp_compensation_start();
  308. static void temp_compensation_apply();
  309. uint16_t gcode_in_progress = 0;
  310. uint16_t mcode_in_progress = 0;
  311. void serial_echopair_P(const char *s_P, float v)
  312. { serialprintPGM(s_P); SERIAL_ECHO(v); }
  313. void serial_echopair_P(const char *s_P, double v)
  314. { serialprintPGM(s_P); SERIAL_ECHO(v); }
  315. void serial_echopair_P(const char *s_P, unsigned long v)
  316. { serialprintPGM(s_P); SERIAL_ECHO(v); }
  317. /*FORCE_INLINE*/ void serialprintPGM(const char *str)
  318. {
  319. #if 0
  320. char ch=pgm_read_byte(str);
  321. while(ch)
  322. {
  323. MYSERIAL.write(ch);
  324. ch=pgm_read_byte(++str);
  325. }
  326. #else
  327. // hmm, same size as the above version, the compiler did a good job optimizing the above
  328. while( uint8_t ch = pgm_read_byte(str) ){
  329. MYSERIAL.write((char)ch);
  330. ++str;
  331. }
  332. #endif
  333. }
  334. #ifdef SDSUPPORT
  335. #include "SdFatUtil.h"
  336. int freeMemory() { return SdFatUtil::FreeRam(); }
  337. #else
  338. extern "C" {
  339. extern unsigned int __bss_end;
  340. extern unsigned int __heap_start;
  341. extern void *__brkval;
  342. int freeMemory() {
  343. int free_memory;
  344. if ((int)__brkval == 0)
  345. free_memory = ((int)&free_memory) - ((int)&__bss_end);
  346. else
  347. free_memory = ((int)&free_memory) - ((int)__brkval);
  348. return free_memory;
  349. }
  350. }
  351. #endif //!SDSUPPORT
  352. void setup_killpin()
  353. {
  354. #if defined(KILL_PIN) && KILL_PIN > -1
  355. SET_INPUT(KILL_PIN);
  356. WRITE(KILL_PIN,HIGH);
  357. #endif
  358. }
  359. // Set home pin
  360. void setup_homepin(void)
  361. {
  362. #if defined(HOME_PIN) && HOME_PIN > -1
  363. SET_INPUT(HOME_PIN);
  364. WRITE(HOME_PIN,HIGH);
  365. #endif
  366. }
  367. void setup_photpin()
  368. {
  369. #if defined(PHOTOGRAPH_PIN) && PHOTOGRAPH_PIN > -1
  370. SET_OUTPUT(PHOTOGRAPH_PIN);
  371. WRITE(PHOTOGRAPH_PIN, LOW);
  372. #endif
  373. }
  374. void setup_powerhold()
  375. {
  376. #if defined(SUICIDE_PIN) && SUICIDE_PIN > -1
  377. SET_OUTPUT(SUICIDE_PIN);
  378. WRITE(SUICIDE_PIN, HIGH);
  379. #endif
  380. #if defined(PS_ON_PIN) && PS_ON_PIN > -1
  381. SET_OUTPUT(PS_ON_PIN);
  382. #if defined(PS_DEFAULT_OFF)
  383. WRITE(PS_ON_PIN, PS_ON_ASLEEP);
  384. #else
  385. WRITE(PS_ON_PIN, PS_ON_AWAKE);
  386. #endif
  387. #endif
  388. }
  389. void suicide()
  390. {
  391. #if defined(SUICIDE_PIN) && SUICIDE_PIN > -1
  392. SET_OUTPUT(SUICIDE_PIN);
  393. WRITE(SUICIDE_PIN, LOW);
  394. #endif
  395. }
  396. void servo_init()
  397. {
  398. #if (NUM_SERVOS >= 1) && defined(SERVO0_PIN) && (SERVO0_PIN > -1)
  399. servos[0].attach(SERVO0_PIN);
  400. #endif
  401. #if (NUM_SERVOS >= 2) && defined(SERVO1_PIN) && (SERVO1_PIN > -1)
  402. servos[1].attach(SERVO1_PIN);
  403. #endif
  404. #if (NUM_SERVOS >= 3) && defined(SERVO2_PIN) && (SERVO2_PIN > -1)
  405. servos[2].attach(SERVO2_PIN);
  406. #endif
  407. #if (NUM_SERVOS >= 4) && defined(SERVO3_PIN) && (SERVO3_PIN > -1)
  408. servos[3].attach(SERVO3_PIN);
  409. #endif
  410. #if (NUM_SERVOS >= 5)
  411. #error "TODO: enter initalisation code for more servos"
  412. #endif
  413. }
  414. bool fans_check_enabled = true;
  415. #ifdef TMC2130
  416. void crashdet_stop_and_save_print()
  417. {
  418. stop_and_save_print_to_ram(10, -default_retraction); //XY - no change, Z 10mm up, E -1mm retract
  419. }
  420. void crashdet_restore_print_and_continue()
  421. {
  422. restore_print_from_ram_and_continue(default_retraction); //XYZ = orig, E +1mm unretract
  423. // babystep_apply();
  424. }
  425. void crashdet_stop_and_save_print2()
  426. {
  427. cli();
  428. planner_abort_hard(); //abort printing
  429. cmdqueue_reset(); //empty cmdqueue
  430. card.sdprinting = false;
  431. card.closefile();
  432. // Reset and re-enable the stepper timer just before the global interrupts are enabled.
  433. st_reset_timer();
  434. sei();
  435. }
  436. void crashdet_detected(uint8_t mask)
  437. {
  438. st_synchronize();
  439. static uint8_t crashDet_counter = 0;
  440. bool automatic_recovery_after_crash = true;
  441. if (crashDet_counter++ == 0) {
  442. crashDetTimer.start();
  443. }
  444. else if (crashDetTimer.expired(CRASHDET_TIMER * 1000ul)){
  445. crashDetTimer.stop();
  446. crashDet_counter = 0;
  447. }
  448. else if(crashDet_counter == CRASHDET_COUNTER_MAX){
  449. automatic_recovery_after_crash = false;
  450. crashDetTimer.stop();
  451. crashDet_counter = 0;
  452. }
  453. else {
  454. crashDetTimer.start();
  455. }
  456. lcd_update_enable(true);
  457. lcd_clear();
  458. lcd_update(2);
  459. if (mask & X_AXIS_MASK)
  460. {
  461. eeprom_update_byte((uint8_t*)EEPROM_CRASH_COUNT_X, eeprom_read_byte((uint8_t*)EEPROM_CRASH_COUNT_X) + 1);
  462. eeprom_update_word((uint16_t*)EEPROM_CRASH_COUNT_X_TOT, eeprom_read_word((uint16_t*)EEPROM_CRASH_COUNT_X_TOT) + 1);
  463. }
  464. if (mask & Y_AXIS_MASK)
  465. {
  466. eeprom_update_byte((uint8_t*)EEPROM_CRASH_COUNT_Y, eeprom_read_byte((uint8_t*)EEPROM_CRASH_COUNT_Y) + 1);
  467. eeprom_update_word((uint16_t*)EEPROM_CRASH_COUNT_Y_TOT, eeprom_read_word((uint16_t*)EEPROM_CRASH_COUNT_Y_TOT) + 1);
  468. }
  469. lcd_update_enable(true);
  470. lcd_update(2);
  471. lcd_setstatuspgm(_T(MSG_CRASH_DETECTED));
  472. gcode_G28(true, true, false); //home X and Y
  473. st_synchronize();
  474. if (automatic_recovery_after_crash) {
  475. enquecommand_P(PSTR("CRASH_RECOVER"));
  476. }else{
  477. setTargetHotend(0, active_extruder);
  478. bool yesno = lcd_show_fullscreen_message_yes_no_and_wait_P(_i("Crash detected. Resume print?"), false);
  479. lcd_update_enable(true);
  480. if (yesno)
  481. {
  482. enquecommand_P(PSTR("CRASH_RECOVER"));
  483. }
  484. else
  485. {
  486. enquecommand_P(PSTR("CRASH_CANCEL"));
  487. }
  488. }
  489. }
  490. void crashdet_recover()
  491. {
  492. crashdet_restore_print_and_continue();
  493. if (lcd_crash_detect_enabled()) tmc2130_sg_stop_on_crash = true;
  494. }
  495. void crashdet_cancel()
  496. {
  497. saved_printing = false;
  498. tmc2130_sg_stop_on_crash = true;
  499. if (saved_printing_type == PRINTING_TYPE_SD) {
  500. lcd_print_stop();
  501. }else if(saved_printing_type == PRINTING_TYPE_USB){
  502. SERIAL_ECHOLNRPGM(MSG_OCTOPRINT_CANCEL); //for Octoprint: works the same as clicking "Abort" button in Octoprint GUI
  503. SERIAL_PROTOCOLLNRPGM(MSG_OK);
  504. }
  505. }
  506. #endif //TMC2130
  507. void failstats_reset_print()
  508. {
  509. eeprom_update_byte((uint8_t *)EEPROM_CRASH_COUNT_X, 0);
  510. eeprom_update_byte((uint8_t *)EEPROM_CRASH_COUNT_Y, 0);
  511. eeprom_update_byte((uint8_t *)EEPROM_FERROR_COUNT, 0);
  512. eeprom_update_byte((uint8_t *)EEPROM_POWER_COUNT, 0);
  513. eeprom_update_byte((uint8_t *)EEPROM_MMU_FAIL, 0);
  514. eeprom_update_byte((uint8_t *)EEPROM_MMU_LOAD_FAIL, 0);
  515. }
  516. #ifdef MESH_BED_LEVELING
  517. enum MeshLevelingState { MeshReport, MeshStart, MeshNext, MeshSet };
  518. #endif
  519. // Factory reset function
  520. // This function is used to erase parts or whole EEPROM memory which is used for storing calibration and and so on.
  521. // Level input parameter sets depth of reset
  522. int er_progress = 0;
  523. static void factory_reset(char level)
  524. {
  525. lcd_clear();
  526. switch (level) {
  527. // Level 0: Language reset
  528. case 0:
  529. Sound_MakeCustom(100,0,false);
  530. lang_reset();
  531. break;
  532. //Level 1: Reset statistics
  533. case 1:
  534. Sound_MakeCustom(100,0,false);
  535. eeprom_update_dword((uint32_t *)EEPROM_TOTALTIME, 0);
  536. eeprom_update_dword((uint32_t *)EEPROM_FILAMENTUSED, 0);
  537. eeprom_update_byte((uint8_t *)EEPROM_CRASH_COUNT_X, 0);
  538. eeprom_update_byte((uint8_t *)EEPROM_CRASH_COUNT_Y, 0);
  539. eeprom_update_byte((uint8_t *)EEPROM_FERROR_COUNT, 0);
  540. eeprom_update_byte((uint8_t *)EEPROM_POWER_COUNT, 0);
  541. eeprom_update_word((uint16_t *)EEPROM_CRASH_COUNT_X_TOT, 0);
  542. eeprom_update_word((uint16_t *)EEPROM_CRASH_COUNT_Y_TOT, 0);
  543. eeprom_update_word((uint16_t *)EEPROM_FERROR_COUNT_TOT, 0);
  544. eeprom_update_word((uint16_t *)EEPROM_POWER_COUNT_TOT, 0);
  545. eeprom_update_word((uint16_t *)EEPROM_MMU_FAIL_TOT, 0);
  546. eeprom_update_word((uint16_t *)EEPROM_MMU_LOAD_FAIL_TOT, 0);
  547. eeprom_update_byte((uint8_t *)EEPROM_MMU_FAIL, 0);
  548. eeprom_update_byte((uint8_t *)EEPROM_MMU_LOAD_FAIL, 0);
  549. lcd_menu_statistics();
  550. break;
  551. // Level 2: Prepare for shipping
  552. case 2:
  553. //lcd_puts_P(PSTR("Factory RESET"));
  554. //lcd_puts_at_P(1,2,PSTR("Shipping prep"));
  555. // Force language selection at the next boot up.
  556. lang_reset();
  557. // Force the "Follow calibration flow" message at the next boot up.
  558. calibration_status_store(CALIBRATION_STATUS_Z_CALIBRATION);
  559. eeprom_write_byte((uint8_t*)EEPROM_WIZARD_ACTIVE, 1); //run wizard
  560. farm_no = 0;
  561. farm_mode = false;
  562. eeprom_update_byte((uint8_t*)EEPROM_FARM_MODE, farm_mode);
  563. EEPROM_save_B(EEPROM_FARM_NUMBER, &farm_no);
  564. eeprom_update_dword((uint32_t *)EEPROM_TOTALTIME, 0);
  565. eeprom_update_dword((uint32_t *)EEPROM_FILAMENTUSED, 0);
  566. eeprom_update_word((uint16_t *)EEPROM_CRASH_COUNT_X_TOT, 0);
  567. eeprom_update_word((uint16_t *)EEPROM_CRASH_COUNT_Y_TOT, 0);
  568. eeprom_update_word((uint16_t *)EEPROM_FERROR_COUNT_TOT, 0);
  569. eeprom_update_word((uint16_t *)EEPROM_POWER_COUNT_TOT, 0);
  570. eeprom_update_word((uint16_t *)EEPROM_MMU_FAIL_TOT, 0);
  571. eeprom_update_word((uint16_t *)EEPROM_MMU_LOAD_FAIL_TOT, 0);
  572. eeprom_update_byte((uint8_t *)EEPROM_MMU_FAIL, 0);
  573. eeprom_update_byte((uint8_t *)EEPROM_MMU_LOAD_FAIL, 0);
  574. #ifdef FILAMENT_SENSOR
  575. fsensor_enable();
  576. fsensor_autoload_set(true);
  577. #endif //FILAMENT_SENSOR
  578. Sound_MakeCustom(100,0,false);
  579. //_delay_ms(2000);
  580. break;
  581. // Level 3: erase everything, whole EEPROM will be set to 0xFF
  582. case 3:
  583. lcd_puts_P(PSTR("Factory RESET"));
  584. lcd_puts_at_P(1, 2, PSTR("ERASING all data"));
  585. Sound_MakeCustom(100,0,false);
  586. er_progress = 0;
  587. lcd_puts_at_P(3, 3, PSTR(" "));
  588. lcd_set_cursor(3, 3);
  589. lcd_print(er_progress);
  590. // Erase EEPROM
  591. for (int i = 0; i < 4096; i++) {
  592. eeprom_update_byte((uint8_t*)i, 0xFF);
  593. if (i % 41 == 0) {
  594. er_progress++;
  595. lcd_puts_at_P(3, 3, PSTR(" "));
  596. lcd_set_cursor(3, 3);
  597. lcd_print(er_progress);
  598. lcd_puts_P(PSTR("%"));
  599. }
  600. }
  601. break;
  602. case 4:
  603. bowden_menu();
  604. break;
  605. default:
  606. break;
  607. }
  608. }
  609. extern "C" {
  610. FILE _uartout; //= {0}; Global variable is always zero initialized. No need to explicitly state this.
  611. }
  612. int uart_putchar(char c, FILE *)
  613. {
  614. MYSERIAL.write(c);
  615. return 0;
  616. }
  617. void lcd_splash()
  618. {
  619. lcd_clear(); // clears display and homes screen
  620. lcd_puts_P(PSTR("\n Original Prusa i3\n Prusa Research"));
  621. }
  622. void factory_reset()
  623. {
  624. KEEPALIVE_STATE(PAUSED_FOR_USER);
  625. if (!READ(BTN_ENC))
  626. {
  627. _delay_ms(1000);
  628. if (!READ(BTN_ENC))
  629. {
  630. lcd_clear();
  631. lcd_puts_P(PSTR("Factory RESET"));
  632. SET_OUTPUT(BEEPER);
  633. if(eSoundMode!=e_SOUND_MODE_SILENT)
  634. WRITE(BEEPER, HIGH);
  635. while (!READ(BTN_ENC));
  636. WRITE(BEEPER, LOW);
  637. _delay_ms(2000);
  638. char level = reset_menu();
  639. factory_reset(level);
  640. switch (level) {
  641. case 0: _delay_ms(0); break;
  642. case 1: _delay_ms(0); break;
  643. case 2: _delay_ms(0); break;
  644. case 3: _delay_ms(0); break;
  645. }
  646. }
  647. }
  648. KEEPALIVE_STATE(IN_HANDLER);
  649. }
  650. void show_fw_version_warnings() {
  651. if (FW_DEV_VERSION == FW_VERSION_GOLD || FW_DEV_VERSION == FW_VERSION_RC) return;
  652. switch (FW_DEV_VERSION) {
  653. case(FW_VERSION_ALPHA): lcd_show_fullscreen_message_and_wait_P(_i("You are using firmware alpha version. This is development version. Using this version is not recommended and may cause printer damage.")); break;////MSG_FW_VERSION_ALPHA c=20 r=8
  654. case(FW_VERSION_BETA): lcd_show_fullscreen_message_and_wait_P(_i("You are using firmware beta version. This is development version. Using this version is not recommended and may cause printer damage.")); break;////MSG_FW_VERSION_BETA c=20 r=8
  655. case(FW_VERSION_DEVEL):
  656. case(FW_VERSION_DEBUG):
  657. lcd_update_enable(false);
  658. lcd_clear();
  659. #if FW_DEV_VERSION == FW_VERSION_DEVEL
  660. lcd_puts_at_P(0, 0, PSTR("Development build !!"));
  661. #else
  662. lcd_puts_at_P(0, 0, PSTR("Debbugging build !!!"));
  663. #endif
  664. lcd_puts_at_P(0, 1, PSTR("May destroy printer!"));
  665. lcd_puts_at_P(0, 2, PSTR("ver ")); lcd_puts_P(PSTR(FW_VERSION_FULL));
  666. lcd_puts_at_P(0, 3, PSTR(FW_REPOSITORY));
  667. lcd_wait_for_click();
  668. break;
  669. // default: lcd_show_fullscreen_message_and_wait_P(_i("WARNING: This is an unofficial, unsupported build. Use at your own risk!")); break;////MSG_FW_VERSION_UNKNOWN c=20 r=8
  670. }
  671. lcd_update_enable(true);
  672. }
  673. //! @brief try to check if firmware is on right type of printer
  674. static void check_if_fw_is_on_right_printer(){
  675. #ifdef FILAMENT_SENSOR
  676. if((PRINTER_TYPE == PRINTER_MK3) || (PRINTER_TYPE == PRINTER_MK3S)){
  677. #ifdef IR_SENSOR
  678. swi2c_init();
  679. const uint8_t pat9125_detected = swi2c_readByte_A8(PAT9125_I2C_ADDR,0x00,NULL);
  680. if (pat9125_detected){
  681. lcd_show_fullscreen_message_and_wait_P(_i("MK3S firmware detected on MK3 printer"));}
  682. #endif //IR_SENSOR
  683. #ifdef PAT9125
  684. //will return 1 only if IR can detect filament in bondtech extruder so this may fail even when we have IR sensor
  685. const uint8_t ir_detected = !(PIN_GET(IR_SENSOR_PIN));
  686. if (ir_detected){
  687. lcd_show_fullscreen_message_and_wait_P(_i("MK3 firmware detected on MK3S printer"));}
  688. #endif //PAT9125
  689. }
  690. #endif //FILAMENT_SENSOR
  691. }
  692. uint8_t check_printer_version()
  693. {
  694. uint8_t version_changed = 0;
  695. uint16_t printer_type = eeprom_read_word((uint16_t*)EEPROM_PRINTER_TYPE);
  696. uint16_t motherboard = eeprom_read_word((uint16_t*)EEPROM_BOARD_TYPE);
  697. if (printer_type != PRINTER_TYPE) {
  698. if (printer_type == 0xffff) eeprom_write_word((uint16_t*)EEPROM_PRINTER_TYPE, PRINTER_TYPE);
  699. else version_changed |= 0b10;
  700. }
  701. if (motherboard != MOTHERBOARD) {
  702. if(motherboard == 0xffff) eeprom_write_word((uint16_t*)EEPROM_BOARD_TYPE, MOTHERBOARD);
  703. else version_changed |= 0b01;
  704. }
  705. return version_changed;
  706. }
  707. #ifdef BOOTAPP
  708. #include "bootapp.h" //bootloader support
  709. #endif //BOOTAPP
  710. #if (LANG_MODE != 0) //secondary language support
  711. #ifdef W25X20CL
  712. // language update from external flash
  713. #define LANGBOOT_BLOCKSIZE 0x1000u
  714. #define LANGBOOT_RAMBUFFER 0x0800
  715. void update_sec_lang_from_external_flash()
  716. {
  717. if ((boot_app_magic == BOOT_APP_MAGIC) && (boot_app_flags & BOOT_APP_FLG_USER0))
  718. {
  719. uint8_t lang = boot_reserved >> 4;
  720. uint8_t state = boot_reserved & 0xf;
  721. lang_table_header_t header;
  722. uint32_t src_addr;
  723. if (lang_get_header(lang, &header, &src_addr))
  724. {
  725. lcd_puts_at_P(1,3,PSTR("Language update."));
  726. for (uint8_t i = 0; i < state; i++) fputc('.', lcdout);
  727. _delay(100);
  728. boot_reserved = (state + 1) | (lang << 4);
  729. if ((state * LANGBOOT_BLOCKSIZE) < header.size)
  730. {
  731. cli();
  732. uint16_t size = header.size - state * LANGBOOT_BLOCKSIZE;
  733. if (size > LANGBOOT_BLOCKSIZE) size = LANGBOOT_BLOCKSIZE;
  734. w25x20cl_rd_data(src_addr + state * LANGBOOT_BLOCKSIZE, (uint8_t*)LANGBOOT_RAMBUFFER, size);
  735. if (state == 0)
  736. {
  737. //TODO - check header integrity
  738. }
  739. bootapp_ram2flash(LANGBOOT_RAMBUFFER, _SEC_LANG_TABLE + state * LANGBOOT_BLOCKSIZE, size);
  740. }
  741. else
  742. {
  743. //TODO - check sec lang data integrity
  744. eeprom_update_byte((unsigned char *)EEPROM_LANG, LANG_ID_SEC);
  745. }
  746. }
  747. }
  748. boot_app_flags &= ~BOOT_APP_FLG_USER0;
  749. }
  750. #ifdef DEBUG_W25X20CL
  751. uint8_t lang_xflash_enum_codes(uint16_t* codes)
  752. {
  753. lang_table_header_t header;
  754. uint8_t count = 0;
  755. uint32_t addr = 0x00000;
  756. while (1)
  757. {
  758. printf_P(_n("LANGTABLE%d:"), count);
  759. w25x20cl_rd_data(addr, (uint8_t*)&header, sizeof(lang_table_header_t));
  760. if (header.magic != LANG_MAGIC)
  761. {
  762. printf_P(_n("NG!\n"));
  763. break;
  764. }
  765. printf_P(_n("OK\n"));
  766. printf_P(_n(" _lt_magic = 0x%08lx %S\n"), header.magic, (header.magic==LANG_MAGIC)?_n("OK"):_n("NA"));
  767. printf_P(_n(" _lt_size = 0x%04x (%d)\n"), header.size, header.size);
  768. printf_P(_n(" _lt_count = 0x%04x (%d)\n"), header.count, header.count);
  769. printf_P(_n(" _lt_chsum = 0x%04x\n"), header.checksum);
  770. printf_P(_n(" _lt_code = 0x%04x (%c%c)\n"), header.code, header.code >> 8, header.code & 0xff);
  771. printf_P(_n(" _lt_sign = 0x%08lx\n"), header.signature);
  772. addr += header.size;
  773. codes[count] = header.code;
  774. count ++;
  775. }
  776. return count;
  777. }
  778. void list_sec_lang_from_external_flash()
  779. {
  780. uint16_t codes[8];
  781. uint8_t count = lang_xflash_enum_codes(codes);
  782. printf_P(_n("XFlash lang count = %hhd\n"), count);
  783. }
  784. #endif //DEBUG_W25X20CL
  785. #endif //W25X20CL
  786. #endif //(LANG_MODE != 0)
  787. static void w25x20cl_err_msg()
  788. {
  789. lcd_clear();
  790. lcd_puts_P(_n("External SPI flash\nW25X20CL is not res-\nponding. Language\nswitch unavailable."));
  791. }
  792. // "Setup" function is called by the Arduino framework on startup.
  793. // Before startup, the Timers-functions (PWM)/Analog RW and HardwareSerial provided by the Arduino-code
  794. // are initialized by the main() routine provided by the Arduino framework.
  795. void setup()
  796. {
  797. mmu_init();
  798. ultralcd_init();
  799. spi_init();
  800. lcd_splash();
  801. Sound_Init(); // also guarantee "SET_OUTPUT(BEEPER)"
  802. #ifdef W25X20CL
  803. bool w25x20cl_success = w25x20cl_init();
  804. if (w25x20cl_success)
  805. {
  806. optiboot_w25x20cl_enter();
  807. #if (LANG_MODE != 0) //secondary language support
  808. update_sec_lang_from_external_flash();
  809. #endif //(LANG_MODE != 0)
  810. }
  811. else
  812. {
  813. w25x20cl_err_msg();
  814. }
  815. #else
  816. const bool w25x20cl_success = true;
  817. #endif //W25X20CL
  818. setup_killpin();
  819. setup_powerhold();
  820. farm_mode = eeprom_read_byte((uint8_t*)EEPROM_FARM_MODE);
  821. EEPROM_read_B(EEPROM_FARM_NUMBER, &farm_no);
  822. if ((farm_mode == 0xFF && farm_no == 0) || ((uint16_t)farm_no == 0xFFFF))
  823. farm_mode = false; //if farm_mode has not been stored to eeprom yet and farm number is set to zero or EEPROM is fresh, deactivate farm mode
  824. if ((uint16_t)farm_no == 0xFFFF) farm_no = 0;
  825. selectedSerialPort = eeprom_read_byte((uint8_t*)EEPROM_SECOND_SERIAL_ACTIVE);
  826. if (selectedSerialPort == 0xFF) selectedSerialPort = 0;
  827. if (farm_mode)
  828. {
  829. no_response = true; //we need confirmation by recieving PRUSA thx
  830. important_status = 8;
  831. prusa_statistics(8);
  832. selectedSerialPort = 1;
  833. #ifdef TMC2130
  834. //increased extruder current (PFW363)
  835. tmc2130_current_h[E_AXIS] = 36;
  836. tmc2130_current_r[E_AXIS] = 36;
  837. #endif //TMC2130
  838. #ifdef FILAMENT_SENSOR
  839. //disabled filament autoload (PFW360)
  840. fsensor_autoload_set(false);
  841. #endif //FILAMENT_SENSOR
  842. // ~ FanCheck -> on
  843. if(!(eeprom_read_byte((uint8_t*)EEPROM_FAN_CHECK_ENABLED)))
  844. eeprom_update_byte((unsigned char *)EEPROM_FAN_CHECK_ENABLED,true);
  845. }
  846. MYSERIAL.begin(BAUDRATE);
  847. fdev_setup_stream(uartout, uart_putchar, NULL, _FDEV_SETUP_WRITE); //setup uart out stream
  848. #ifndef W25X20CL
  849. SERIAL_PROTOCOLLNPGM("start");
  850. #endif //W25X20CL
  851. stdout = uartout;
  852. SERIAL_ECHO_START;
  853. printf_P(PSTR(" " FW_VERSION_FULL "\n"));
  854. //SERIAL_ECHOPAIR("Active sheet before:", static_cast<unsigned long int>(eeprom_read_byte(&(EEPROM_Sheets_base->active_sheet))));
  855. #ifdef DEBUG_SEC_LANG
  856. lang_table_header_t header;
  857. uint32_t src_addr = 0x00000;
  858. if (lang_get_header(1, &header, &src_addr))
  859. {
  860. //this is comparsion of some printing-methods regarding to flash space usage and code size/readability
  861. #define LT_PRINT_TEST 2
  862. // flash usage
  863. // total p.test
  864. //0 252718 t+c text code
  865. //1 253142 424 170 254
  866. //2 253040 322 164 158
  867. //3 253248 530 135 395
  868. #if (LT_PRINT_TEST==1) //not optimized printf
  869. printf_P(_n(" _src_addr = 0x%08lx\n"), src_addr);
  870. printf_P(_n(" _lt_magic = 0x%08lx %S\n"), header.magic, (header.magic==LANG_MAGIC)?_n("OK"):_n("NA"));
  871. printf_P(_n(" _lt_size = 0x%04x (%d)\n"), header.size, header.size);
  872. printf_P(_n(" _lt_count = 0x%04x (%d)\n"), header.count, header.count);
  873. printf_P(_n(" _lt_chsum = 0x%04x\n"), header.checksum);
  874. printf_P(_n(" _lt_code = 0x%04x (%c%c)\n"), header.code, header.code >> 8, header.code & 0xff);
  875. printf_P(_n(" _lt_sign = 0x%08lx\n"), header.signature);
  876. #elif (LT_PRINT_TEST==2) //optimized printf
  877. printf_P(
  878. _n(
  879. " _src_addr = 0x%08lx\n"
  880. " _lt_magic = 0x%08lx %S\n"
  881. " _lt_size = 0x%04x (%d)\n"
  882. " _lt_count = 0x%04x (%d)\n"
  883. " _lt_chsum = 0x%04x\n"
  884. " _lt_code = 0x%04x (%c%c)\n"
  885. " _lt_resv1 = 0x%08lx\n"
  886. ),
  887. src_addr,
  888. header.magic, (header.magic==LANG_MAGIC)?_n("OK"):_n("NA"),
  889. header.size, header.size,
  890. header.count, header.count,
  891. header.checksum,
  892. header.code, header.code >> 8, header.code & 0xff,
  893. header.signature
  894. );
  895. #elif (LT_PRINT_TEST==3) //arduino print/println (leading zeros not solved)
  896. MYSERIAL.print(" _src_addr = 0x");
  897. MYSERIAL.println(src_addr, 16);
  898. MYSERIAL.print(" _lt_magic = 0x");
  899. MYSERIAL.print(header.magic, 16);
  900. MYSERIAL.println((header.magic==LANG_MAGIC)?" OK":" NA");
  901. MYSERIAL.print(" _lt_size = 0x");
  902. MYSERIAL.print(header.size, 16);
  903. MYSERIAL.print(" (");
  904. MYSERIAL.print(header.size, 10);
  905. MYSERIAL.println(")");
  906. MYSERIAL.print(" _lt_count = 0x");
  907. MYSERIAL.print(header.count, 16);
  908. MYSERIAL.print(" (");
  909. MYSERIAL.print(header.count, 10);
  910. MYSERIAL.println(")");
  911. MYSERIAL.print(" _lt_chsum = 0x");
  912. MYSERIAL.println(header.checksum, 16);
  913. MYSERIAL.print(" _lt_code = 0x");
  914. MYSERIAL.print(header.code, 16);
  915. MYSERIAL.print(" (");
  916. MYSERIAL.print((char)(header.code >> 8), 0);
  917. MYSERIAL.print((char)(header.code & 0xff), 0);
  918. MYSERIAL.println(")");
  919. MYSERIAL.print(" _lt_resv1 = 0x");
  920. MYSERIAL.println(header.signature, 16);
  921. #endif //(LT_PRINT_TEST==)
  922. #undef LT_PRINT_TEST
  923. #if 0
  924. w25x20cl_rd_data(0x25ba, (uint8_t*)&block_buffer, 1024);
  925. for (uint16_t i = 0; i < 1024; i++)
  926. {
  927. if ((i % 16) == 0) printf_P(_n("%04x:"), 0x25ba+i);
  928. printf_P(_n(" %02x"), ((uint8_t*)&block_buffer)[i]);
  929. if ((i % 16) == 15) putchar('\n');
  930. }
  931. #endif
  932. uint16_t sum = 0;
  933. for (uint16_t i = 0; i < header.size; i++)
  934. sum += (uint16_t)pgm_read_byte((uint8_t*)(_SEC_LANG_TABLE + i)) << ((i & 1)?0:8);
  935. printf_P(_n("_SEC_LANG_TABLE checksum = %04x\n"), sum);
  936. sum -= header.checksum; //subtract checksum
  937. printf_P(_n("_SEC_LANG_TABLE checksum = %04x\n"), sum);
  938. sum = (sum >> 8) | ((sum & 0xff) << 8); //swap bytes
  939. if (sum == header.checksum)
  940. printf_P(_n("Checksum OK\n"), sum);
  941. else
  942. printf_P(_n("Checksum NG\n"), sum);
  943. }
  944. else
  945. printf_P(_n("lang_get_header failed!\n"));
  946. #if 0
  947. for (uint16_t i = 0; i < 1024*10; i++)
  948. {
  949. if ((i % 16) == 0) printf_P(_n("%04x:"), _SEC_LANG_TABLE+i);
  950. printf_P(_n(" %02x"), pgm_read_byte((uint8_t*)(_SEC_LANG_TABLE+i)));
  951. if ((i % 16) == 15) putchar('\n');
  952. }
  953. #endif
  954. #if 0
  955. SERIAL_ECHOLN("Reading eeprom from 0 to 100: start");
  956. for (int i = 0; i < 4096; ++i) {
  957. int b = eeprom_read_byte((unsigned char*)i);
  958. if (b != 255) {
  959. SERIAL_ECHO(i);
  960. SERIAL_ECHO(":");
  961. SERIAL_ECHO(b);
  962. SERIAL_ECHOLN("");
  963. }
  964. }
  965. SERIAL_ECHOLN("Reading eeprom from 0 to 100: done");
  966. #endif
  967. #endif //DEBUG_SEC_LANG
  968. // Check startup - does nothing if bootloader sets MCUSR to 0
  969. byte mcu = MCUSR;
  970. /* if (mcu & 1) SERIAL_ECHOLNRPGM(MSG_POWERUP);
  971. if (mcu & 2) SERIAL_ECHOLNRPGM(MSG_EXTERNAL_RESET);
  972. if (mcu & 4) SERIAL_ECHOLNRPGM(MSG_BROWNOUT_RESET);
  973. if (mcu & 8) SERIAL_ECHOLNRPGM(MSG_WATCHDOG_RESET);
  974. if (mcu & 32) SERIAL_ECHOLNRPGM(MSG_SOFTWARE_RESET);*/
  975. if (mcu & 1) puts_P(MSG_POWERUP);
  976. if (mcu & 2) puts_P(MSG_EXTERNAL_RESET);
  977. if (mcu & 4) puts_P(MSG_BROWNOUT_RESET);
  978. if (mcu & 8) puts_P(MSG_WATCHDOG_RESET);
  979. if (mcu & 32) puts_P(MSG_SOFTWARE_RESET);
  980. MCUSR = 0;
  981. //SERIAL_ECHORPGM(MSG_MARLIN);
  982. //SERIAL_ECHOLNRPGM(VERSION_STRING);
  983. #ifdef STRING_VERSION_CONFIG_H
  984. #ifdef STRING_CONFIG_H_AUTHOR
  985. SERIAL_ECHO_START;
  986. SERIAL_ECHORPGM(_n(" Last Updated: "));////MSG_CONFIGURATION_VER
  987. SERIAL_ECHOPGM(STRING_VERSION_CONFIG_H);
  988. SERIAL_ECHORPGM(_n(" | Author: "));////MSG_AUTHOR
  989. SERIAL_ECHOLNPGM(STRING_CONFIG_H_AUTHOR);
  990. SERIAL_ECHOPGM("Compiled: ");
  991. SERIAL_ECHOLNPGM(__DATE__);
  992. #endif
  993. #endif
  994. SERIAL_ECHO_START;
  995. SERIAL_ECHORPGM(_n(" Free Memory: "));////MSG_FREE_MEMORY
  996. SERIAL_ECHO(freeMemory());
  997. SERIAL_ECHORPGM(_n(" PlannerBufferBytes: "));////MSG_PLANNER_BUFFER_BYTES
  998. SERIAL_ECHOLN((int)sizeof(block_t)*BLOCK_BUFFER_SIZE);
  999. //lcd_update_enable(false); // why do we need this?? - andre
  1000. // loads data from EEPROM if available else uses defaults (and resets step acceleration rate)
  1001. bool previous_settings_retrieved = false;
  1002. uint8_t hw_changed = check_printer_version();
  1003. if (!(hw_changed & 0b10)) { //if printer version wasn't changed, check for eeprom version and retrieve settings from eeprom in case that version wasn't changed
  1004. previous_settings_retrieved = Config_RetrieveSettings();
  1005. }
  1006. else { //printer version was changed so use default settings
  1007. Config_ResetDefault();
  1008. }
  1009. SdFatUtil::set_stack_guard(); //writes magic number at the end of static variables to protect against overwriting static memory by stack
  1010. tp_init(); // Initialize temperature loop
  1011. if (w25x20cl_success) lcd_splash(); // we need to do this again, because tp_init() kills lcd
  1012. else
  1013. {
  1014. w25x20cl_err_msg();
  1015. printf_P(_n("W25X20CL not responding.\n"));
  1016. }
  1017. plan_init(); // Initialize planner;
  1018. factory_reset();
  1019. if (eeprom_read_dword((uint32_t*)(EEPROM_TOP - 4)) == 0x0ffffffff &&
  1020. eeprom_read_dword((uint32_t*)(EEPROM_TOP - 8)) == 0x0ffffffff)
  1021. {
  1022. // Maiden startup. The firmware has been loaded and first started on a virgin RAMBo board,
  1023. // where all the EEPROM entries are set to 0x0ff.
  1024. // Once a firmware boots up, it forces at least a language selection, which changes
  1025. // EEPROM_LANG to number lower than 0x0ff.
  1026. // 1) Set a high power mode.
  1027. #ifdef TMC2130
  1028. eeprom_write_byte((uint8_t*)EEPROM_SILENT, 0);
  1029. tmc2130_mode = TMC2130_MODE_NORMAL;
  1030. #endif //TMC2130
  1031. eeprom_write_byte((uint8_t*)EEPROM_WIZARD_ACTIVE, 1); //run wizard
  1032. }
  1033. lcd_encoder_diff=0;
  1034. #ifdef TMC2130
  1035. uint8_t silentMode = eeprom_read_byte((uint8_t*)EEPROM_SILENT);
  1036. if (silentMode == 0xff) silentMode = 0;
  1037. tmc2130_mode = TMC2130_MODE_NORMAL;
  1038. if (lcd_crash_detect_enabled() && !farm_mode)
  1039. {
  1040. lcd_crash_detect_enable();
  1041. puts_P(_N("CrashDetect ENABLED!"));
  1042. }
  1043. else
  1044. {
  1045. lcd_crash_detect_disable();
  1046. puts_P(_N("CrashDetect DISABLED"));
  1047. }
  1048. #ifdef TMC2130_LINEARITY_CORRECTION
  1049. #ifdef TMC2130_LINEARITY_CORRECTION_XYZ
  1050. tmc2130_wave_fac[X_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_WAVE_X_FAC);
  1051. tmc2130_wave_fac[Y_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_WAVE_Y_FAC);
  1052. tmc2130_wave_fac[Z_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_WAVE_Z_FAC);
  1053. #endif //TMC2130_LINEARITY_CORRECTION_XYZ
  1054. tmc2130_wave_fac[E_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_WAVE_E_FAC);
  1055. if (tmc2130_wave_fac[X_AXIS] == 0xff) tmc2130_wave_fac[X_AXIS] = 0;
  1056. if (tmc2130_wave_fac[Y_AXIS] == 0xff) tmc2130_wave_fac[Y_AXIS] = 0;
  1057. if (tmc2130_wave_fac[Z_AXIS] == 0xff) tmc2130_wave_fac[Z_AXIS] = 0;
  1058. if (tmc2130_wave_fac[E_AXIS] == 0xff) tmc2130_wave_fac[E_AXIS] = 0;
  1059. #endif //TMC2130_LINEARITY_CORRECTION
  1060. #ifdef TMC2130_VARIABLE_RESOLUTION
  1061. tmc2130_mres[X_AXIS] = tmc2130_usteps2mres(cs.axis_ustep_resolution[X_AXIS]);
  1062. tmc2130_mres[Y_AXIS] = tmc2130_usteps2mres(cs.axis_ustep_resolution[Y_AXIS]);
  1063. tmc2130_mres[Z_AXIS] = tmc2130_usteps2mres(cs.axis_ustep_resolution[Z_AXIS]);
  1064. tmc2130_mres[E_AXIS] = tmc2130_usteps2mres(cs.axis_ustep_resolution[E_AXIS]);
  1065. #else //TMC2130_VARIABLE_RESOLUTION
  1066. tmc2130_mres[X_AXIS] = tmc2130_usteps2mres(TMC2130_USTEPS_XY);
  1067. tmc2130_mres[Y_AXIS] = tmc2130_usteps2mres(TMC2130_USTEPS_XY);
  1068. tmc2130_mres[Z_AXIS] = tmc2130_usteps2mres(TMC2130_USTEPS_Z);
  1069. tmc2130_mres[E_AXIS] = tmc2130_usteps2mres(TMC2130_USTEPS_E);
  1070. #endif //TMC2130_VARIABLE_RESOLUTION
  1071. #endif //TMC2130
  1072. st_init(); // Initialize stepper, this enables interrupts!
  1073. #ifdef UVLO_SUPPORT
  1074. setup_uvlo_interrupt();
  1075. #endif //UVLO_SUPPORT
  1076. #ifdef TMC2130
  1077. tmc2130_mode = silentMode?TMC2130_MODE_SILENT:TMC2130_MODE_NORMAL;
  1078. update_mode_profile();
  1079. tmc2130_init();
  1080. #endif //TMC2130
  1081. #ifdef PSU_Delta
  1082. init_force_z(); // ! important for correct Z-axis initialization
  1083. #endif // PSU_Delta
  1084. setup_photpin();
  1085. servo_init();
  1086. // Reset the machine correction matrix.
  1087. // It does not make sense to load the correction matrix until the machine is homed.
  1088. world2machine_reset();
  1089. #ifdef FILAMENT_SENSOR
  1090. fsensor_init();
  1091. #endif //FILAMENT_SENSOR
  1092. #if defined(CONTROLLERFAN_PIN) && (CONTROLLERFAN_PIN > -1)
  1093. SET_OUTPUT(CONTROLLERFAN_PIN); //Set pin used for driver cooling fan
  1094. #endif
  1095. setup_homepin();
  1096. #ifdef TMC2130
  1097. if (1) {
  1098. // try to run to zero phase before powering the Z motor.
  1099. // Move in negative direction
  1100. WRITE(Z_DIR_PIN,INVERT_Z_DIR);
  1101. // Round the current micro-micro steps to micro steps.
  1102. for (uint16_t phase = (tmc2130_rd_MSCNT(Z_AXIS) + 8) >> 4; phase > 0; -- phase) {
  1103. // Until the phase counter is reset to zero.
  1104. WRITE(Z_STEP_PIN, !INVERT_Z_STEP_PIN);
  1105. _delay(2);
  1106. WRITE(Z_STEP_PIN, INVERT_Z_STEP_PIN);
  1107. _delay(2);
  1108. }
  1109. }
  1110. #endif //TMC2130
  1111. #if defined(Z_AXIS_ALWAYS_ON) && !defined(PSU_Delta)
  1112. enable_z();
  1113. #endif
  1114. farm_mode = eeprom_read_byte((uint8_t*)EEPROM_FARM_MODE);
  1115. EEPROM_read_B(EEPROM_FARM_NUMBER, &farm_no);
  1116. if ((farm_mode == 0xFF && farm_no == 0) || (farm_no == static_cast<int>(0xFFFF))) farm_mode = false; //if farm_mode has not been stored to eeprom yet and farm number is set to zero or EEPROM is fresh, deactivate farm mode
  1117. if (farm_no == static_cast<int>(0xFFFF)) farm_no = 0;
  1118. if (farm_mode)
  1119. {
  1120. prusa_statistics(8);
  1121. }
  1122. // Enable Toshiba FlashAir SD card / WiFi enahanced card.
  1123. card.ToshibaFlashAir_enable(eeprom_read_byte((unsigned char*)EEPROM_TOSHIBA_FLASH_AIR_COMPATIBLITY) == 1);
  1124. // Force SD card update. Otherwise the SD card update is done from loop() on card.checkautostart(false),
  1125. // but this times out if a blocking dialog is shown in setup().
  1126. card.initsd();
  1127. #ifdef DEBUG_SD_SPEED_TEST
  1128. if (card.cardOK)
  1129. {
  1130. uint8_t* buff = (uint8_t*)block_buffer;
  1131. uint32_t block = 0;
  1132. uint32_t sumr = 0;
  1133. uint32_t sumw = 0;
  1134. for (int i = 0; i < 1024; i++)
  1135. {
  1136. uint32_t u = _micros();
  1137. bool res = card.card.readBlock(i, buff);
  1138. u = _micros() - u;
  1139. if (res)
  1140. {
  1141. printf_P(PSTR("readBlock %4d 512 bytes %lu us\n"), i, u);
  1142. sumr += u;
  1143. u = _micros();
  1144. res = card.card.writeBlock(i, buff);
  1145. u = _micros() - u;
  1146. if (res)
  1147. {
  1148. printf_P(PSTR("writeBlock %4d 512 bytes %lu us\n"), i, u);
  1149. sumw += u;
  1150. }
  1151. else
  1152. {
  1153. printf_P(PSTR("writeBlock %4d error\n"), i);
  1154. break;
  1155. }
  1156. }
  1157. else
  1158. {
  1159. printf_P(PSTR("readBlock %4d error\n"), i);
  1160. break;
  1161. }
  1162. }
  1163. uint32_t avg_rspeed = (1024 * 1000000) / (sumr / 512);
  1164. uint32_t avg_wspeed = (1024 * 1000000) / (sumw / 512);
  1165. printf_P(PSTR("avg read speed %lu bytes/s\n"), avg_rspeed);
  1166. printf_P(PSTR("avg write speed %lu bytes/s\n"), avg_wspeed);
  1167. }
  1168. else
  1169. printf_P(PSTR("Card NG!\n"));
  1170. #endif //DEBUG_SD_SPEED_TEST
  1171. eeprom_init();
  1172. #ifdef SNMM
  1173. if (eeprom_read_dword((uint32_t*)EEPROM_BOWDEN_LENGTH) == 0x0ffffffff) { //bowden length used for SNMM
  1174. int _z = BOWDEN_LENGTH;
  1175. for(int i = 0; i<4; i++) EEPROM_save_B(EEPROM_BOWDEN_LENGTH + i * 2, &_z);
  1176. }
  1177. #endif
  1178. // In the future, somewhere here would one compare the current firmware version against the firmware version stored in the EEPROM.
  1179. // If they differ, an update procedure may need to be performed. At the end of this block, the current firmware version
  1180. // is being written into the EEPROM, so the update procedure will be triggered only once.
  1181. #if (LANG_MODE != 0) //secondary language support
  1182. #ifdef DEBUG_W25X20CL
  1183. W25X20CL_SPI_ENTER();
  1184. uint8_t uid[8]; // 64bit unique id
  1185. w25x20cl_rd_uid(uid);
  1186. puts_P(_n("W25X20CL UID="));
  1187. for (uint8_t i = 0; i < 8; i ++)
  1188. printf_P(PSTR("%02hhx"), uid[i]);
  1189. putchar('\n');
  1190. list_sec_lang_from_external_flash();
  1191. #endif //DEBUG_W25X20CL
  1192. // lang_reset();
  1193. if (!lang_select(eeprom_read_byte((uint8_t*)EEPROM_LANG)))
  1194. lcd_language();
  1195. #ifdef DEBUG_SEC_LANG
  1196. uint16_t sec_lang_code = lang_get_code(1);
  1197. uint16_t ui = _SEC_LANG_TABLE; //table pointer
  1198. printf_P(_n("lang_selected=%d\nlang_table=0x%04x\nSEC_LANG_CODE=0x%04x (%c%c)\n"), lang_selected, ui, sec_lang_code, sec_lang_code >> 8, sec_lang_code & 0xff);
  1199. lang_print_sec_lang(uartout);
  1200. #endif //DEBUG_SEC_LANG
  1201. #endif //(LANG_MODE != 0)
  1202. if (eeprom_read_byte((uint8_t*)EEPROM_TEMP_CAL_ACTIVE) == 255) {
  1203. eeprom_write_byte((uint8_t*)EEPROM_TEMP_CAL_ACTIVE, 0);
  1204. temp_cal_active = false;
  1205. } else temp_cal_active = eeprom_read_byte((uint8_t*)EEPROM_TEMP_CAL_ACTIVE);
  1206. if (eeprom_read_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA) == 255) {
  1207. //eeprom_write_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 0);
  1208. eeprom_write_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 1);
  1209. int16_t z_shift = 0;
  1210. for (uint8_t i = 0; i < 5; i++) EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + i * 2, &z_shift);
  1211. eeprom_write_byte((uint8_t*)EEPROM_TEMP_CAL_ACTIVE, 0);
  1212. temp_cal_active = false;
  1213. }
  1214. if (eeprom_read_byte((uint8_t*)EEPROM_UVLO) == 255) {
  1215. eeprom_write_byte((uint8_t*)EEPROM_UVLO, 0);
  1216. }
  1217. if (eeprom_read_byte((uint8_t*)EEPROM_SD_SORT) == 255) {
  1218. eeprom_write_byte((uint8_t*)EEPROM_SD_SORT, 0);
  1219. }
  1220. //mbl_mode_init();
  1221. mbl_settings_init();
  1222. SilentModeMenu_MMU = eeprom_read_byte((uint8_t*)EEPROM_MMU_STEALTH);
  1223. if (SilentModeMenu_MMU == 255) {
  1224. SilentModeMenu_MMU = 1;
  1225. eeprom_write_byte((uint8_t*)EEPROM_MMU_STEALTH, SilentModeMenu_MMU);
  1226. }
  1227. #if !defined(DEBUG_DISABLE_FANCHECK) && defined(FANCHECK) && defined(TACH_1) && TACH_1 >-1
  1228. setup_fan_interrupt();
  1229. #endif //DEBUG_DISABLE_FANCHECK
  1230. #ifdef PAT9125
  1231. fsensor_setup_interrupt();
  1232. #endif //PAT9125
  1233. for (int i = 0; i<4; i++) EEPROM_read_B(EEPROM_BOWDEN_LENGTH + i * 2, &bowden_length[i]);
  1234. #ifndef DEBUG_DISABLE_STARTMSGS
  1235. KEEPALIVE_STATE(PAUSED_FOR_USER);
  1236. if (!farm_mode) {
  1237. check_if_fw_is_on_right_printer();
  1238. show_fw_version_warnings();
  1239. }
  1240. switch (hw_changed) {
  1241. //if motherboard or printer type was changed inform user as it can indicate flashing wrong firmware version
  1242. //if user confirms with knob, new hw version (printer and/or motherboard) is written to eeprom and message will be not shown next time
  1243. case(0b01):
  1244. lcd_show_fullscreen_message_and_wait_P(_i("Warning: motherboard type changed.")); ////MSG_CHANGED_MOTHERBOARD c=20 r=4
  1245. eeprom_write_word((uint16_t*)EEPROM_BOARD_TYPE, MOTHERBOARD);
  1246. break;
  1247. case(0b10):
  1248. lcd_show_fullscreen_message_and_wait_P(_i("Warning: printer type changed.")); ////MSG_CHANGED_PRINTER c=20 r=4
  1249. eeprom_write_word((uint16_t*)EEPROM_PRINTER_TYPE, PRINTER_TYPE);
  1250. break;
  1251. case(0b11):
  1252. lcd_show_fullscreen_message_and_wait_P(_i("Warning: both printer type and motherboard type changed.")); ////MSG_CHANGED_BOTH c=20 r=4
  1253. eeprom_write_word((uint16_t*)EEPROM_PRINTER_TYPE, PRINTER_TYPE);
  1254. eeprom_write_word((uint16_t*)EEPROM_BOARD_TYPE, MOTHERBOARD);
  1255. break;
  1256. default: break; //no change, show no message
  1257. }
  1258. if (!previous_settings_retrieved) {
  1259. lcd_show_fullscreen_message_and_wait_P(_i("Old settings found. Default PID, Esteps etc. will be set.")); //if EEPROM version or printer type was changed, inform user that default setting were loaded////MSG_DEFAULT_SETTINGS_LOADED c=20 r=4
  1260. Config_StoreSettings();
  1261. }
  1262. if (eeprom_read_byte((uint8_t*)EEPROM_WIZARD_ACTIVE) == 1) {
  1263. lcd_wizard(WizState::Run);
  1264. }
  1265. if (eeprom_read_byte((uint8_t*)EEPROM_WIZARD_ACTIVE) == 0) { //dont show calibration status messages if wizard is currently active
  1266. if (calibration_status() == CALIBRATION_STATUS_ASSEMBLED ||
  1267. calibration_status() == CALIBRATION_STATUS_UNKNOWN ||
  1268. calibration_status() == CALIBRATION_STATUS_XYZ_CALIBRATION) {
  1269. // Reset the babystepping values, so the printer will not move the Z axis up when the babystepping is enabled.
  1270. eeprom_update_word(reinterpret_cast<uint16_t *>(&(EEPROM_Sheets_base->s[(eeprom_read_byte(&(EEPROM_Sheets_base->active_sheet)))].z_offset)),0);
  1271. // Show the message.
  1272. lcd_show_fullscreen_message_and_wait_P(_T(MSG_FOLLOW_CALIBRATION_FLOW));
  1273. }
  1274. else if (calibration_status() == CALIBRATION_STATUS_LIVE_ADJUST) {
  1275. // Show the message.
  1276. lcd_show_fullscreen_message_and_wait_P(_T(MSG_BABYSTEP_Z_NOT_SET));
  1277. lcd_update_enable(true);
  1278. }
  1279. else if (calibration_status() == CALIBRATION_STATUS_CALIBRATED && temp_cal_active == true && calibration_status_pinda() == false) {
  1280. //lcd_show_fullscreen_message_and_wait_P(_i("Temperature calibration has not been run yet"));////MSG_PINDA_NOT_CALIBRATED c=20 r=4
  1281. lcd_update_enable(true);
  1282. }
  1283. else if (calibration_status() == CALIBRATION_STATUS_Z_CALIBRATION) {
  1284. // Show the message.
  1285. lcd_show_fullscreen_message_and_wait_P(_T(MSG_FOLLOW_Z_CALIBRATION_FLOW));
  1286. }
  1287. }
  1288. #if !defined (DEBUG_DISABLE_FORCE_SELFTEST) && defined (TMC2130)
  1289. if (force_selftest_if_fw_version() && calibration_status() < CALIBRATION_STATUS_ASSEMBLED) {
  1290. lcd_show_fullscreen_message_and_wait_P(_i("Selftest will be run to calibrate accurate sensorless rehoming."));////MSG_FORCE_SELFTEST c=20 r=8
  1291. update_current_firmware_version_to_eeprom();
  1292. lcd_selftest();
  1293. }
  1294. #endif //TMC2130 && !DEBUG_DISABLE_FORCE_SELFTEST
  1295. KEEPALIVE_STATE(IN_PROCESS);
  1296. #endif //DEBUG_DISABLE_STARTMSGS
  1297. lcd_update_enable(true);
  1298. lcd_clear();
  1299. lcd_update(2);
  1300. // Store the currently running firmware into an eeprom,
  1301. // so the next time the firmware gets updated, it will know from which version it has been updated.
  1302. update_current_firmware_version_to_eeprom();
  1303. #ifdef TMC2130
  1304. tmc2130_home_origin[X_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_HOME_X_ORIGIN);
  1305. tmc2130_home_bsteps[X_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_HOME_X_BSTEPS);
  1306. tmc2130_home_fsteps[X_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_HOME_X_FSTEPS);
  1307. if (tmc2130_home_origin[X_AXIS] == 0xff) tmc2130_home_origin[X_AXIS] = 0;
  1308. if (tmc2130_home_bsteps[X_AXIS] == 0xff) tmc2130_home_bsteps[X_AXIS] = 48;
  1309. if (tmc2130_home_fsteps[X_AXIS] == 0xff) tmc2130_home_fsteps[X_AXIS] = 48;
  1310. tmc2130_home_origin[Y_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_HOME_Y_ORIGIN);
  1311. tmc2130_home_bsteps[Y_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_HOME_Y_BSTEPS);
  1312. tmc2130_home_fsteps[Y_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_HOME_Y_FSTEPS);
  1313. if (tmc2130_home_origin[Y_AXIS] == 0xff) tmc2130_home_origin[Y_AXIS] = 0;
  1314. if (tmc2130_home_bsteps[Y_AXIS] == 0xff) tmc2130_home_bsteps[Y_AXIS] = 48;
  1315. if (tmc2130_home_fsteps[Y_AXIS] == 0xff) tmc2130_home_fsteps[Y_AXIS] = 48;
  1316. tmc2130_home_enabled = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_HOME_ENABLED);
  1317. if (tmc2130_home_enabled == 0xff) tmc2130_home_enabled = 0;
  1318. #endif //TMC2130
  1319. #ifdef UVLO_SUPPORT
  1320. if (eeprom_read_byte((uint8_t*)EEPROM_UVLO) != 0) { //previous print was terminated by UVLO
  1321. /*
  1322. if (lcd_show_fullscreen_message_yes_no_and_wait_P(_T(MSG_RECOVER_PRINT), false)) recover_print();
  1323. else {
  1324. eeprom_update_byte((uint8_t*)EEPROM_UVLO, 0);
  1325. lcd_update_enable(true);
  1326. lcd_update(2);
  1327. lcd_setstatuspgm(_T(WELCOME_MSG));
  1328. }
  1329. */
  1330. manage_heater(); // Update temperatures
  1331. #ifdef DEBUG_UVLO_AUTOMATIC_RECOVER
  1332. printf_P(_N("Power panic detected!\nCurrent bed temp:%d\nSaved bed temp:%d\n"), (int)degBed(), eeprom_read_byte((uint8_t*)EEPROM_UVLO_TARGET_BED));
  1333. #endif
  1334. if ( degBed() > ( (float)eeprom_read_byte((uint8_t*)EEPROM_UVLO_TARGET_BED) - AUTOMATIC_UVLO_BED_TEMP_OFFSET) ){
  1335. #ifdef DEBUG_UVLO_AUTOMATIC_RECOVER
  1336. puts_P(_N("Automatic recovery!"));
  1337. #endif
  1338. recover_print(1);
  1339. }
  1340. else{
  1341. #ifdef DEBUG_UVLO_AUTOMATIC_RECOVER
  1342. puts_P(_N("Normal recovery!"));
  1343. #endif
  1344. if ( lcd_show_fullscreen_message_yes_no_and_wait_P(_T(MSG_RECOVER_PRINT), false) ) recover_print(0);
  1345. else {
  1346. eeprom_update_byte((uint8_t*)EEPROM_UVLO, 0);
  1347. lcd_update_enable(true);
  1348. lcd_update(2);
  1349. lcd_setstatuspgm(_T(WELCOME_MSG));
  1350. }
  1351. }
  1352. }
  1353. #endif //UVLO_SUPPORT
  1354. fCheckModeInit();
  1355. fSetMmuMode(mmu_enabled);
  1356. KEEPALIVE_STATE(NOT_BUSY);
  1357. #ifdef WATCHDOG
  1358. wdt_enable(WDTO_4S);
  1359. #endif //WATCHDOG
  1360. }
  1361. void trace();
  1362. #define CHUNK_SIZE 64 // bytes
  1363. #define SAFETY_MARGIN 1
  1364. char chunk[CHUNK_SIZE+SAFETY_MARGIN];
  1365. int chunkHead = 0;
  1366. void serial_read_stream() {
  1367. setAllTargetHotends(0);
  1368. setTargetBed(0);
  1369. lcd_clear();
  1370. lcd_puts_P(PSTR(" Upload in progress"));
  1371. // first wait for how many bytes we will receive
  1372. uint32_t bytesToReceive;
  1373. // receive the four bytes
  1374. char bytesToReceiveBuffer[4];
  1375. for (int i=0; i<4; i++) {
  1376. int data;
  1377. while ((data = MYSERIAL.read()) == -1) {};
  1378. bytesToReceiveBuffer[i] = data;
  1379. }
  1380. // make it a uint32
  1381. memcpy(&bytesToReceive, &bytesToReceiveBuffer, 4);
  1382. // we're ready, notify the sender
  1383. MYSERIAL.write('+');
  1384. // lock in the routine
  1385. uint32_t receivedBytes = 0;
  1386. while (prusa_sd_card_upload) {
  1387. int i;
  1388. for (i=0; i<CHUNK_SIZE; i++) {
  1389. int data;
  1390. // check if we're not done
  1391. if (receivedBytes == bytesToReceive) {
  1392. break;
  1393. }
  1394. // read the next byte
  1395. while ((data = MYSERIAL.read()) == -1) {};
  1396. receivedBytes++;
  1397. // save it to the chunk
  1398. chunk[i] = data;
  1399. }
  1400. // write the chunk to SD
  1401. card.write_command_no_newline(&chunk[0]);
  1402. // notify the sender we're ready for more data
  1403. MYSERIAL.write('+');
  1404. // for safety
  1405. manage_heater();
  1406. // check if we're done
  1407. if(receivedBytes == bytesToReceive) {
  1408. trace(); // beep
  1409. card.closefile();
  1410. prusa_sd_card_upload = false;
  1411. SERIAL_PROTOCOLLNRPGM(MSG_FILE_SAVED);
  1412. }
  1413. }
  1414. }
  1415. /**
  1416. * Output a "busy" message at regular intervals
  1417. * while the machine is not accepting commands.
  1418. */
  1419. void host_keepalive() {
  1420. #ifndef HOST_KEEPALIVE_FEATURE
  1421. return;
  1422. #endif //HOST_KEEPALIVE_FEATURE
  1423. if (farm_mode) return;
  1424. long ms = _millis();
  1425. if (host_keepalive_interval && busy_state != NOT_BUSY) {
  1426. if ((ms - prev_busy_signal_ms) < (long)(1000L * host_keepalive_interval)) return;
  1427. switch (busy_state) {
  1428. case IN_HANDLER:
  1429. case IN_PROCESS:
  1430. SERIAL_ECHO_START;
  1431. SERIAL_ECHOLNPGM("busy: processing");
  1432. break;
  1433. case PAUSED_FOR_USER:
  1434. SERIAL_ECHO_START;
  1435. SERIAL_ECHOLNPGM("busy: paused for user");
  1436. break;
  1437. case PAUSED_FOR_INPUT:
  1438. SERIAL_ECHO_START;
  1439. SERIAL_ECHOLNPGM("busy: paused for input");
  1440. break;
  1441. default:
  1442. break;
  1443. }
  1444. }
  1445. prev_busy_signal_ms = ms;
  1446. }
  1447. // The loop() function is called in an endless loop by the Arduino framework from the default main() routine.
  1448. // Before loop(), the setup() function is called by the main() routine.
  1449. void loop()
  1450. {
  1451. KEEPALIVE_STATE(NOT_BUSY);
  1452. if ((usb_printing_counter > 0) && ((_millis()-_usb_timer) > 1000))
  1453. {
  1454. is_usb_printing = true;
  1455. usb_printing_counter--;
  1456. _usb_timer = _millis();
  1457. }
  1458. if (usb_printing_counter == 0)
  1459. {
  1460. is_usb_printing = false;
  1461. }
  1462. if (isPrintPaused && saved_printing_type == PRINTING_TYPE_USB) //keep believing that usb is being printed. Prevents accessing dangerous menus while pausing.
  1463. {
  1464. is_usb_printing = true;
  1465. }
  1466. #ifdef FANCHECK
  1467. if (fan_check_error && isPrintPaused)
  1468. {
  1469. KEEPALIVE_STATE(PAUSED_FOR_USER);
  1470. host_keepalive(); //prevent timeouts since usb processing is disabled until print is resumed. This is for a crude way of pausing a print on all hosts.
  1471. }
  1472. #endif
  1473. if (prusa_sd_card_upload)
  1474. {
  1475. //we read byte-by byte
  1476. serial_read_stream();
  1477. }
  1478. else
  1479. {
  1480. get_command();
  1481. #ifdef SDSUPPORT
  1482. card.checkautostart(false);
  1483. #endif
  1484. if(buflen)
  1485. {
  1486. cmdbuffer_front_already_processed = false;
  1487. #ifdef SDSUPPORT
  1488. if(card.saving)
  1489. {
  1490. // Saving a G-code file onto an SD-card is in progress.
  1491. // Saving starts with M28, saving until M29 is seen.
  1492. if(strstr_P(CMDBUFFER_CURRENT_STRING, PSTR("M29")) == NULL) {
  1493. card.write_command(CMDBUFFER_CURRENT_STRING);
  1494. if(card.logging)
  1495. process_commands();
  1496. else
  1497. SERIAL_PROTOCOLLNRPGM(MSG_OK);
  1498. } else {
  1499. card.closefile();
  1500. SERIAL_PROTOCOLLNRPGM(MSG_FILE_SAVED);
  1501. }
  1502. } else {
  1503. process_commands();
  1504. }
  1505. #else
  1506. process_commands();
  1507. #endif //SDSUPPORT
  1508. if (! cmdbuffer_front_already_processed && buflen)
  1509. {
  1510. // ptr points to the start of the block currently being processed.
  1511. // The first character in the block is the block type.
  1512. char *ptr = cmdbuffer + bufindr;
  1513. if (*ptr == CMDBUFFER_CURRENT_TYPE_SDCARD) {
  1514. // To support power panic, move the lenght of the command on the SD card to a planner buffer.
  1515. union {
  1516. struct {
  1517. char lo;
  1518. char hi;
  1519. } lohi;
  1520. uint16_t value;
  1521. } sdlen;
  1522. sdlen.value = 0;
  1523. {
  1524. // This block locks the interrupts globally for 3.25 us,
  1525. // which corresponds to a maximum repeat frequency of 307.69 kHz.
  1526. // This blocking is safe in the context of a 10kHz stepper driver interrupt
  1527. // or a 115200 Bd serial line receive interrupt, which will not trigger faster than 12kHz.
  1528. cli();
  1529. // Reset the command to something, which will be ignored by the power panic routine,
  1530. // so this buffer length will not be counted twice.
  1531. *ptr ++ = CMDBUFFER_CURRENT_TYPE_TO_BE_REMOVED;
  1532. // Extract the current buffer length.
  1533. sdlen.lohi.lo = *ptr ++;
  1534. sdlen.lohi.hi = *ptr;
  1535. // and pass it to the planner queue.
  1536. planner_add_sd_length(sdlen.value);
  1537. sei();
  1538. }
  1539. }
  1540. else if((*ptr == CMDBUFFER_CURRENT_TYPE_USB_WITH_LINENR) && !IS_SD_PRINTING){
  1541. cli();
  1542. *ptr ++ = CMDBUFFER_CURRENT_TYPE_TO_BE_REMOVED;
  1543. // and one for each command to previous block in the planner queue.
  1544. planner_add_sd_length(1);
  1545. sei();
  1546. }
  1547. // Now it is safe to release the already processed command block. If interrupted by the power panic now,
  1548. // this block's SD card length will not be counted twice as its command type has been replaced
  1549. // by CMDBUFFER_CURRENT_TYPE_TO_BE_REMOVED.
  1550. cmdqueue_pop_front();
  1551. }
  1552. host_keepalive();
  1553. }
  1554. }
  1555. //check heater every n milliseconds
  1556. manage_heater();
  1557. isPrintPaused ? manage_inactivity(true) : manage_inactivity(false);
  1558. checkHitEndstops();
  1559. lcd_update(0);
  1560. #ifdef TMC2130
  1561. tmc2130_check_overtemp();
  1562. if (tmc2130_sg_crash)
  1563. {
  1564. uint8_t crash = tmc2130_sg_crash;
  1565. tmc2130_sg_crash = 0;
  1566. // crashdet_stop_and_save_print();
  1567. switch (crash)
  1568. {
  1569. case 1: enquecommand_P((PSTR("CRASH_DETECTEDX"))); break;
  1570. case 2: enquecommand_P((PSTR("CRASH_DETECTEDY"))); break;
  1571. case 3: enquecommand_P((PSTR("CRASH_DETECTEDXY"))); break;
  1572. }
  1573. }
  1574. #endif //TMC2130
  1575. mmu_loop();
  1576. }
  1577. #define DEFINE_PGM_READ_ANY(type, reader) \
  1578. static inline type pgm_read_any(const type *p) \
  1579. { return pgm_read_##reader##_near(p); }
  1580. DEFINE_PGM_READ_ANY(float, float);
  1581. DEFINE_PGM_READ_ANY(signed char, byte);
  1582. #define XYZ_CONSTS_FROM_CONFIG(type, array, CONFIG) \
  1583. static const PROGMEM type array##_P[3] = \
  1584. { X_##CONFIG, Y_##CONFIG, Z_##CONFIG }; \
  1585. static inline type array(int axis) \
  1586. { return pgm_read_any(&array##_P[axis]); } \
  1587. type array##_ext(int axis) \
  1588. { return pgm_read_any(&array##_P[axis]); }
  1589. XYZ_CONSTS_FROM_CONFIG(float, base_min_pos, MIN_POS);
  1590. XYZ_CONSTS_FROM_CONFIG(float, base_max_pos, MAX_POS);
  1591. XYZ_CONSTS_FROM_CONFIG(float, base_home_pos, HOME_POS);
  1592. XYZ_CONSTS_FROM_CONFIG(float, max_length, MAX_LENGTH);
  1593. XYZ_CONSTS_FROM_CONFIG(float, home_retract_mm, HOME_RETRACT_MM);
  1594. XYZ_CONSTS_FROM_CONFIG(signed char, home_dir, HOME_DIR);
  1595. static void axis_is_at_home(int axis) {
  1596. current_position[axis] = base_home_pos(axis) + cs.add_homing[axis];
  1597. min_pos[axis] = base_min_pos(axis) + cs.add_homing[axis];
  1598. max_pos[axis] = base_max_pos(axis) + cs.add_homing[axis];
  1599. }
  1600. inline void set_current_to_destination() { memcpy(current_position, destination, sizeof(current_position)); }
  1601. inline void set_destination_to_current() { memcpy(destination, current_position, sizeof(destination)); }
  1602. //! @return original feedmultiply
  1603. static int setup_for_endstop_move(bool enable_endstops_now = true) {
  1604. saved_feedrate = feedrate;
  1605. int l_feedmultiply = feedmultiply;
  1606. feedmultiply = 100;
  1607. previous_millis_cmd = _millis();
  1608. enable_endstops(enable_endstops_now);
  1609. return l_feedmultiply;
  1610. }
  1611. //! @param original_feedmultiply feedmultiply to restore
  1612. static void clean_up_after_endstop_move(int original_feedmultiply) {
  1613. #ifdef ENDSTOPS_ONLY_FOR_HOMING
  1614. enable_endstops(false);
  1615. #endif
  1616. feedrate = saved_feedrate;
  1617. feedmultiply = original_feedmultiply;
  1618. previous_millis_cmd = _millis();
  1619. }
  1620. #ifdef ENABLE_AUTO_BED_LEVELING
  1621. #ifdef AUTO_BED_LEVELING_GRID
  1622. static void set_bed_level_equation_lsq(double *plane_equation_coefficients)
  1623. {
  1624. vector_3 planeNormal = vector_3(-plane_equation_coefficients[0], -plane_equation_coefficients[1], 1);
  1625. planeNormal.debug("planeNormal");
  1626. plan_bed_level_matrix = matrix_3x3::create_look_at(planeNormal);
  1627. //bedLevel.debug("bedLevel");
  1628. //plan_bed_level_matrix.debug("bed level before");
  1629. //vector_3 uncorrected_position = plan_get_position_mm();
  1630. //uncorrected_position.debug("position before");
  1631. vector_3 corrected_position = plan_get_position();
  1632. // corrected_position.debug("position after");
  1633. current_position[X_AXIS] = corrected_position.x;
  1634. current_position[Y_AXIS] = corrected_position.y;
  1635. current_position[Z_AXIS] = corrected_position.z;
  1636. // put the bed at 0 so we don't go below it.
  1637. current_position[Z_AXIS] = cs.zprobe_zoffset; // in the lsq we reach here after raising the extruder due to the loop structure
  1638. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1639. }
  1640. #else // not AUTO_BED_LEVELING_GRID
  1641. static void set_bed_level_equation_3pts(float z_at_pt_1, float z_at_pt_2, float z_at_pt_3) {
  1642. plan_bed_level_matrix.set_to_identity();
  1643. vector_3 pt1 = vector_3(ABL_PROBE_PT_1_X, ABL_PROBE_PT_1_Y, z_at_pt_1);
  1644. vector_3 pt2 = vector_3(ABL_PROBE_PT_2_X, ABL_PROBE_PT_2_Y, z_at_pt_2);
  1645. vector_3 pt3 = vector_3(ABL_PROBE_PT_3_X, ABL_PROBE_PT_3_Y, z_at_pt_3);
  1646. vector_3 from_2_to_1 = (pt1 - pt2).get_normal();
  1647. vector_3 from_2_to_3 = (pt3 - pt2).get_normal();
  1648. vector_3 planeNormal = vector_3::cross(from_2_to_1, from_2_to_3).get_normal();
  1649. planeNormal = vector_3(planeNormal.x, planeNormal.y, abs(planeNormal.z));
  1650. plan_bed_level_matrix = matrix_3x3::create_look_at(planeNormal);
  1651. vector_3 corrected_position = plan_get_position();
  1652. current_position[X_AXIS] = corrected_position.x;
  1653. current_position[Y_AXIS] = corrected_position.y;
  1654. current_position[Z_AXIS] = corrected_position.z;
  1655. // put the bed at 0 so we don't go below it.
  1656. current_position[Z_AXIS] = cs.zprobe_zoffset;
  1657. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1658. }
  1659. #endif // AUTO_BED_LEVELING_GRID
  1660. static void run_z_probe() {
  1661. plan_bed_level_matrix.set_to_identity();
  1662. feedrate = homing_feedrate[Z_AXIS];
  1663. // move down until you find the bed
  1664. float zPosition = -10;
  1665. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder);
  1666. st_synchronize();
  1667. // we have to let the planner know where we are right now as it is not where we said to go.
  1668. zPosition = st_get_position_mm(Z_AXIS);
  1669. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS]);
  1670. // move up the retract distance
  1671. zPosition += home_retract_mm(Z_AXIS);
  1672. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder);
  1673. st_synchronize();
  1674. // move back down slowly to find bed
  1675. feedrate = homing_feedrate[Z_AXIS]/4;
  1676. zPosition -= home_retract_mm(Z_AXIS) * 2;
  1677. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder);
  1678. st_synchronize();
  1679. current_position[Z_AXIS] = st_get_position_mm(Z_AXIS);
  1680. // make sure the planner knows where we are as it may be a bit different than we last said to move to
  1681. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1682. }
  1683. static void do_blocking_move_to(float x, float y, float z) {
  1684. float oldFeedRate = feedrate;
  1685. feedrate = homing_feedrate[Z_AXIS];
  1686. current_position[Z_AXIS] = z;
  1687. plan_buffer_line_curposXYZE(feedrate/60, active_extruder);
  1688. st_synchronize();
  1689. feedrate = XY_TRAVEL_SPEED;
  1690. current_position[X_AXIS] = x;
  1691. current_position[Y_AXIS] = y;
  1692. plan_buffer_line_curposXYZE(feedrate/60, active_extruder);
  1693. st_synchronize();
  1694. feedrate = oldFeedRate;
  1695. }
  1696. static void do_blocking_move_relative(float offset_x, float offset_y, float offset_z) {
  1697. do_blocking_move_to(current_position[X_AXIS] + offset_x, current_position[Y_AXIS] + offset_y, current_position[Z_AXIS] + offset_z);
  1698. }
  1699. /// Probe bed height at position (x,y), returns the measured z value
  1700. static float probe_pt(float x, float y, float z_before) {
  1701. // move to right place
  1702. do_blocking_move_to(current_position[X_AXIS], current_position[Y_AXIS], z_before);
  1703. do_blocking_move_to(x - X_PROBE_OFFSET_FROM_EXTRUDER, y - Y_PROBE_OFFSET_FROM_EXTRUDER, current_position[Z_AXIS]);
  1704. run_z_probe();
  1705. float measured_z = current_position[Z_AXIS];
  1706. SERIAL_PROTOCOLRPGM(_T(MSG_BED));
  1707. SERIAL_PROTOCOLPGM(" x: ");
  1708. SERIAL_PROTOCOL(x);
  1709. SERIAL_PROTOCOLPGM(" y: ");
  1710. SERIAL_PROTOCOL(y);
  1711. SERIAL_PROTOCOLPGM(" z: ");
  1712. SERIAL_PROTOCOL(measured_z);
  1713. SERIAL_PROTOCOLPGM("\n");
  1714. return measured_z;
  1715. }
  1716. #endif // #ifdef ENABLE_AUTO_BED_LEVELING
  1717. #ifdef LIN_ADVANCE
  1718. /**
  1719. * M900: Set and/or Get advance K factor and WH/D ratio
  1720. *
  1721. * K<factor> Set advance K factor
  1722. * R<ratio> Set ratio directly (overrides WH/D)
  1723. * W<width> H<height> D<diam> Set ratio from WH/D
  1724. */
  1725. inline void gcode_M900() {
  1726. st_synchronize();
  1727. const float newK = code_seen('K') ? code_value_float() : -1;
  1728. if (newK >= 0) extruder_advance_k = newK;
  1729. float newR = code_seen('R') ? code_value_float() : -1;
  1730. if (newR < 0) {
  1731. const float newD = code_seen('D') ? code_value_float() : -1,
  1732. newW = code_seen('W') ? code_value_float() : -1,
  1733. newH = code_seen('H') ? code_value_float() : -1;
  1734. if (newD >= 0 && newW >= 0 && newH >= 0)
  1735. newR = newD ? (newW * newH) / (sq(newD * 0.5) * M_PI) : 0;
  1736. }
  1737. if (newR >= 0) advance_ed_ratio = newR;
  1738. SERIAL_ECHO_START;
  1739. SERIAL_ECHOPGM("Advance K=");
  1740. SERIAL_ECHOLN(extruder_advance_k);
  1741. SERIAL_ECHOPGM(" E/D=");
  1742. const float ratio = advance_ed_ratio;
  1743. if (ratio) SERIAL_ECHOLN(ratio); else SERIAL_ECHOLNPGM("Auto");
  1744. }
  1745. #endif // LIN_ADVANCE
  1746. bool check_commands() {
  1747. bool end_command_found = false;
  1748. while (buflen)
  1749. {
  1750. if ((code_seen("M84")) || (code_seen("M 84"))) end_command_found = true;
  1751. if (!cmdbuffer_front_already_processed)
  1752. cmdqueue_pop_front();
  1753. cmdbuffer_front_already_processed = false;
  1754. }
  1755. return end_command_found;
  1756. }
  1757. #ifdef TMC2130
  1758. bool calibrate_z_auto()
  1759. {
  1760. //lcd_display_message_fullscreen_P(_T(MSG_CALIBRATE_Z_AUTO));
  1761. lcd_clear();
  1762. lcd_puts_at_P(0, 1, _T(MSG_CALIBRATE_Z_AUTO));
  1763. bool endstops_enabled = enable_endstops(true);
  1764. int axis_up_dir = -home_dir(Z_AXIS);
  1765. tmc2130_home_enter(Z_AXIS_MASK);
  1766. current_position[Z_AXIS] = 0;
  1767. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1768. set_destination_to_current();
  1769. destination[Z_AXIS] += (1.1 * max_length(Z_AXIS) * axis_up_dir);
  1770. feedrate = homing_feedrate[Z_AXIS];
  1771. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate / 60, active_extruder);
  1772. st_synchronize();
  1773. // current_position[axis] = 0;
  1774. // plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1775. tmc2130_home_exit();
  1776. enable_endstops(false);
  1777. current_position[Z_AXIS] = 0;
  1778. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1779. set_destination_to_current();
  1780. destination[Z_AXIS] += 10 * axis_up_dir; //10mm up
  1781. feedrate = homing_feedrate[Z_AXIS] / 2;
  1782. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate / 60, active_extruder);
  1783. st_synchronize();
  1784. enable_endstops(endstops_enabled);
  1785. if (PRINTER_TYPE == PRINTER_MK3) {
  1786. current_position[Z_AXIS] = Z_MAX_POS + 2.0;
  1787. }
  1788. else {
  1789. current_position[Z_AXIS] = Z_MAX_POS + 9.0;
  1790. }
  1791. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1792. return true;
  1793. }
  1794. #endif //TMC2130
  1795. #ifdef TMC2130
  1796. void homeaxis(int axis, uint8_t cnt, uint8_t* pstep)
  1797. #else
  1798. void homeaxis(int axis, uint8_t cnt)
  1799. #endif //TMC2130
  1800. {
  1801. bool endstops_enabled = enable_endstops(true); //RP: endstops should be allways enabled durring homing
  1802. #define HOMEAXIS_DO(LETTER) \
  1803. ((LETTER##_MIN_PIN > -1 && LETTER##_HOME_DIR==-1) || (LETTER##_MAX_PIN > -1 && LETTER##_HOME_DIR==1))
  1804. if ((axis==X_AXIS)?HOMEAXIS_DO(X):(axis==Y_AXIS)?HOMEAXIS_DO(Y):0)
  1805. {
  1806. int axis_home_dir = home_dir(axis);
  1807. feedrate = homing_feedrate[axis];
  1808. #ifdef TMC2130
  1809. tmc2130_home_enter(X_AXIS_MASK << axis);
  1810. #endif //TMC2130
  1811. // Move away a bit, so that the print head does not touch the end position,
  1812. // and the following movement to endstop has a chance to achieve the required velocity
  1813. // for the stall guard to work.
  1814. current_position[axis] = 0;
  1815. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1816. set_destination_to_current();
  1817. // destination[axis] = 11.f;
  1818. destination[axis] = -3.f * axis_home_dir;
  1819. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1820. st_synchronize();
  1821. // Move away from the possible collision with opposite endstop with the collision detection disabled.
  1822. endstops_hit_on_purpose();
  1823. enable_endstops(false);
  1824. current_position[axis] = 0;
  1825. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1826. destination[axis] = 1. * axis_home_dir;
  1827. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1828. st_synchronize();
  1829. // Now continue to move up to the left end stop with the collision detection enabled.
  1830. enable_endstops(true);
  1831. destination[axis] = 1.1 * axis_home_dir * max_length(axis);
  1832. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1833. st_synchronize();
  1834. for (uint8_t i = 0; i < cnt; i++)
  1835. {
  1836. // Move away from the collision to a known distance from the left end stop with the collision detection disabled.
  1837. endstops_hit_on_purpose();
  1838. enable_endstops(false);
  1839. current_position[axis] = 0;
  1840. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1841. destination[axis] = -10.f * axis_home_dir;
  1842. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1843. st_synchronize();
  1844. endstops_hit_on_purpose();
  1845. // Now move left up to the collision, this time with a repeatable velocity.
  1846. enable_endstops(true);
  1847. destination[axis] = 11.f * axis_home_dir;
  1848. #ifdef TMC2130
  1849. feedrate = homing_feedrate[axis];
  1850. #else //TMC2130
  1851. feedrate = homing_feedrate[axis] / 2;
  1852. #endif //TMC2130
  1853. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1854. st_synchronize();
  1855. #ifdef TMC2130
  1856. uint16_t mscnt = tmc2130_rd_MSCNT(axis);
  1857. if (pstep) pstep[i] = mscnt >> 4;
  1858. printf_P(PSTR("%3d step=%2d mscnt=%4d\n"), i, mscnt >> 4, mscnt);
  1859. #endif //TMC2130
  1860. }
  1861. endstops_hit_on_purpose();
  1862. enable_endstops(false);
  1863. #ifdef TMC2130
  1864. uint8_t orig = tmc2130_home_origin[axis];
  1865. uint8_t back = tmc2130_home_bsteps[axis];
  1866. if (tmc2130_home_enabled && (orig <= 63))
  1867. {
  1868. tmc2130_goto_step(axis, orig, 2, 1000, tmc2130_get_res(axis));
  1869. if (back > 0)
  1870. tmc2130_do_steps(axis, back, -axis_home_dir, 1000);
  1871. }
  1872. else
  1873. tmc2130_do_steps(axis, 8, -axis_home_dir, 1000);
  1874. tmc2130_home_exit();
  1875. #endif //TMC2130
  1876. axis_is_at_home(axis);
  1877. axis_known_position[axis] = true;
  1878. // Move from minimum
  1879. #ifdef TMC2130
  1880. float dist = - axis_home_dir * 0.01f * tmc2130_home_fsteps[axis];
  1881. #else //TMC2130
  1882. float dist = - axis_home_dir * 0.01f * 64;
  1883. #endif //TMC2130
  1884. current_position[axis] -= dist;
  1885. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1886. current_position[axis] += dist;
  1887. destination[axis] = current_position[axis];
  1888. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], 0.5f*feedrate/60, active_extruder);
  1889. st_synchronize();
  1890. feedrate = 0.0;
  1891. }
  1892. else if ((axis==Z_AXIS)?HOMEAXIS_DO(Z):0)
  1893. {
  1894. #ifdef TMC2130
  1895. FORCE_HIGH_POWER_START;
  1896. #endif
  1897. int axis_home_dir = home_dir(axis);
  1898. current_position[axis] = 0;
  1899. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1900. destination[axis] = 1.5 * max_length(axis) * axis_home_dir;
  1901. feedrate = homing_feedrate[axis];
  1902. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1903. st_synchronize();
  1904. #ifdef TMC2130
  1905. if (READ(Z_TMC2130_DIAG) != 0) { //Z crash
  1906. FORCE_HIGH_POWER_END;
  1907. kill(_T(MSG_BED_LEVELING_FAILED_POINT_LOW));
  1908. return;
  1909. }
  1910. #endif //TMC2130
  1911. current_position[axis] = 0;
  1912. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1913. destination[axis] = -home_retract_mm(axis) * axis_home_dir;
  1914. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1915. st_synchronize();
  1916. destination[axis] = 2*home_retract_mm(axis) * axis_home_dir;
  1917. feedrate = homing_feedrate[axis]/2 ;
  1918. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1919. st_synchronize();
  1920. #ifdef TMC2130
  1921. if (READ(Z_TMC2130_DIAG) != 0) { //Z crash
  1922. FORCE_HIGH_POWER_END;
  1923. kill(_T(MSG_BED_LEVELING_FAILED_POINT_LOW));
  1924. return;
  1925. }
  1926. #endif //TMC2130
  1927. axis_is_at_home(axis);
  1928. destination[axis] = current_position[axis];
  1929. feedrate = 0.0;
  1930. endstops_hit_on_purpose();
  1931. axis_known_position[axis] = true;
  1932. #ifdef TMC2130
  1933. FORCE_HIGH_POWER_END;
  1934. #endif
  1935. }
  1936. enable_endstops(endstops_enabled);
  1937. }
  1938. /**/
  1939. void home_xy()
  1940. {
  1941. set_destination_to_current();
  1942. homeaxis(X_AXIS);
  1943. homeaxis(Y_AXIS);
  1944. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1945. endstops_hit_on_purpose();
  1946. }
  1947. void refresh_cmd_timeout(void)
  1948. {
  1949. previous_millis_cmd = _millis();
  1950. }
  1951. #ifdef FWRETRACT
  1952. void retract(bool retracting, bool swapretract = false) {
  1953. if(retracting && !retracted[active_extruder]) {
  1954. destination[X_AXIS]=current_position[X_AXIS];
  1955. destination[Y_AXIS]=current_position[Y_AXIS];
  1956. destination[Z_AXIS]=current_position[Z_AXIS];
  1957. destination[E_AXIS]=current_position[E_AXIS];
  1958. current_position[E_AXIS]+=(swapretract?retract_length_swap:cs.retract_length)*float(extrudemultiply)*0.01f;
  1959. plan_set_e_position(current_position[E_AXIS]);
  1960. float oldFeedrate = feedrate;
  1961. feedrate=cs.retract_feedrate*60;
  1962. retracted[active_extruder]=true;
  1963. prepare_move();
  1964. current_position[Z_AXIS]-=cs.retract_zlift;
  1965. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1966. prepare_move();
  1967. feedrate = oldFeedrate;
  1968. } else if(!retracting && retracted[active_extruder]) {
  1969. destination[X_AXIS]=current_position[X_AXIS];
  1970. destination[Y_AXIS]=current_position[Y_AXIS];
  1971. destination[Z_AXIS]=current_position[Z_AXIS];
  1972. destination[E_AXIS]=current_position[E_AXIS];
  1973. current_position[Z_AXIS]+=cs.retract_zlift;
  1974. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1975. current_position[E_AXIS]-=(swapretract?(retract_length_swap+retract_recover_length_swap):(cs.retract_length+cs.retract_recover_length))*float(extrudemultiply)*0.01f;
  1976. plan_set_e_position(current_position[E_AXIS]);
  1977. float oldFeedrate = feedrate;
  1978. feedrate=cs.retract_recover_feedrate*60;
  1979. retracted[active_extruder]=false;
  1980. prepare_move();
  1981. feedrate = oldFeedrate;
  1982. }
  1983. } //retract
  1984. #endif //FWRETRACT
  1985. void trace() {
  1986. Sound_MakeCustom(25,440,true);
  1987. }
  1988. /*
  1989. void ramming() {
  1990. // float tmp[4] = DEFAULT_MAX_FEEDRATE;
  1991. if (current_temperature[0] < 230) {
  1992. //PLA
  1993. max_feedrate[E_AXIS] = 50;
  1994. //current_position[E_AXIS] -= 8;
  1995. //plan_buffer_line_curposXYZE(2100 / 60, active_extruder);
  1996. //current_position[E_AXIS] += 8;
  1997. //plan_buffer_line_curposXYZE(2100 / 60, active_extruder);
  1998. current_position[E_AXIS] += 5.4;
  1999. plan_buffer_line_curposXYZE(2800 / 60, active_extruder);
  2000. current_position[E_AXIS] += 3.2;
  2001. plan_buffer_line_curposXYZE(3000 / 60, active_extruder);
  2002. current_position[E_AXIS] += 3;
  2003. plan_buffer_line_curposXYZE(3400 / 60, active_extruder);
  2004. st_synchronize();
  2005. max_feedrate[E_AXIS] = 80;
  2006. current_position[E_AXIS] -= 82;
  2007. plan_buffer_line_curposXYZE(9500 / 60, active_extruder);
  2008. max_feedrate[E_AXIS] = 50;//tmp[E_AXIS];
  2009. current_position[E_AXIS] -= 20;
  2010. plan_buffer_line_curposXYZE(1200 / 60, active_extruder);
  2011. current_position[E_AXIS] += 5;
  2012. plan_buffer_line_curposXYZE(400 / 60, active_extruder);
  2013. current_position[E_AXIS] += 5;
  2014. plan_buffer_line_curposXYZE(600 / 60, active_extruder);
  2015. current_position[E_AXIS] -= 10;
  2016. st_synchronize();
  2017. plan_buffer_line_curposXYZE(600 / 60, active_extruder);
  2018. current_position[E_AXIS] += 10;
  2019. plan_buffer_line_curposXYZE(600 / 60, active_extruder);
  2020. current_position[E_AXIS] -= 10;
  2021. plan_buffer_line_curposXYZE(800 / 60, active_extruder);
  2022. current_position[E_AXIS] += 10;
  2023. plan_buffer_line_curposXYZE(800 / 60, active_extruder);
  2024. current_position[E_AXIS] -= 10;
  2025. plan_buffer_line_curposXYZE(800 / 60, active_extruder);
  2026. st_synchronize();
  2027. }
  2028. else {
  2029. //ABS
  2030. max_feedrate[E_AXIS] = 50;
  2031. //current_position[E_AXIS] -= 8;
  2032. //plan_buffer_line_curposXYZE(2100 / 60, active_extruder);
  2033. //current_position[E_AXIS] += 8;
  2034. //plan_buffer_line_curposXYZE(2100 / 60, active_extruder);
  2035. current_position[E_AXIS] += 3.1;
  2036. plan_buffer_line_curposXYZE(2000 / 60, active_extruder);
  2037. current_position[E_AXIS] += 3.1;
  2038. plan_buffer_line_curposXYZE(2500 / 60, active_extruder);
  2039. current_position[E_AXIS] += 4;
  2040. plan_buffer_line_curposXYZE(3000 / 60, active_extruder);
  2041. st_synchronize();
  2042. //current_position[X_AXIS] += 23; //delay
  2043. //plan_buffer_line_curposXYZE(600/60, active_extruder); //delay
  2044. //current_position[X_AXIS] -= 23; //delay
  2045. //plan_buffer_line_curposXYZE(600/60, active_extruder); //delay
  2046. _delay(4700);
  2047. max_feedrate[E_AXIS] = 80;
  2048. current_position[E_AXIS] -= 92;
  2049. plan_buffer_line_curposXYZE(9900 / 60, active_extruder);
  2050. max_feedrate[E_AXIS] = 50;//tmp[E_AXIS];
  2051. current_position[E_AXIS] -= 5;
  2052. plan_buffer_line_curposXYZE(800 / 60, active_extruder);
  2053. current_position[E_AXIS] += 5;
  2054. plan_buffer_line_curposXYZE(400 / 60, active_extruder);
  2055. current_position[E_AXIS] -= 5;
  2056. plan_buffer_line_curposXYZE(600 / 60, active_extruder);
  2057. st_synchronize();
  2058. current_position[E_AXIS] += 5;
  2059. plan_buffer_line_curposXYZE(600 / 60, active_extruder);
  2060. current_position[E_AXIS] -= 5;
  2061. plan_buffer_line_curposXYZE(600 / 60, active_extruder);
  2062. current_position[E_AXIS] += 5;
  2063. plan_buffer_line_curposXYZE(600 / 60, active_extruder);
  2064. current_position[E_AXIS] -= 5;
  2065. plan_buffer_line_curposXYZE(600 / 60, active_extruder);
  2066. st_synchronize();
  2067. }
  2068. }
  2069. */
  2070. #ifdef TMC2130
  2071. void force_high_power_mode(bool start_high_power_section) {
  2072. uint8_t silent;
  2073. silent = eeprom_read_byte((uint8_t*)EEPROM_SILENT);
  2074. if (silent == 1) {
  2075. //we are in silent mode, set to normal mode to enable crash detection
  2076. // Wait for the planner queue to drain and for the stepper timer routine to reach an idle state.
  2077. st_synchronize();
  2078. cli();
  2079. tmc2130_mode = (start_high_power_section == true) ? TMC2130_MODE_NORMAL : TMC2130_MODE_SILENT;
  2080. update_mode_profile();
  2081. tmc2130_init();
  2082. // We may have missed a stepper timer interrupt due to the time spent in the tmc2130_init() routine.
  2083. // Be safe than sorry, reset the stepper timer before re-enabling interrupts.
  2084. st_reset_timer();
  2085. sei();
  2086. }
  2087. }
  2088. #endif //TMC2130
  2089. #ifdef TMC2130
  2090. static void gcode_G28(bool home_x_axis, long home_x_value, bool home_y_axis, long home_y_value, bool home_z_axis, long home_z_value, bool calib, bool without_mbl)
  2091. #else
  2092. static void gcode_G28(bool home_x_axis, long home_x_value, bool home_y_axis, long home_y_value, bool home_z_axis, long home_z_value, bool without_mbl)
  2093. #endif //TMC2130
  2094. {
  2095. st_synchronize();
  2096. #if 0
  2097. SERIAL_ECHOPGM("G28, initial "); print_world_coordinates();
  2098. SERIAL_ECHOPGM("G28, initial "); print_physical_coordinates();
  2099. #endif
  2100. // Flag for the display update routine and to disable the print cancelation during homing.
  2101. homing_flag = true;
  2102. // Which axes should be homed?
  2103. bool home_x = home_x_axis;
  2104. bool home_y = home_y_axis;
  2105. bool home_z = home_z_axis;
  2106. // Either all X,Y,Z codes are present, or none of them.
  2107. bool home_all_axes = home_x == home_y && home_x == home_z;
  2108. if (home_all_axes)
  2109. // No X/Y/Z code provided means to home all axes.
  2110. home_x = home_y = home_z = true;
  2111. //if we are homing all axes, first move z higher to protect heatbed/steel sheet
  2112. if (home_all_axes) {
  2113. current_position[Z_AXIS] += MESH_HOME_Z_SEARCH;
  2114. feedrate = homing_feedrate[Z_AXIS];
  2115. plan_buffer_line_curposXYZE(feedrate / 60, active_extruder);
  2116. st_synchronize();
  2117. }
  2118. #ifdef ENABLE_AUTO_BED_LEVELING
  2119. plan_bed_level_matrix.set_to_identity(); //Reset the plane ("erase" all leveling data)
  2120. #endif //ENABLE_AUTO_BED_LEVELING
  2121. // Reset world2machine_rotation_and_skew and world2machine_shift, therefore
  2122. // the planner will not perform any adjustments in the XY plane.
  2123. // Wait for the motors to stop and update the current position with the absolute values.
  2124. world2machine_revert_to_uncorrected();
  2125. // For mesh bed leveling deactivate the matrix temporarily.
  2126. // It is necessary to disable the bed leveling for the X and Y homing moves, so that the move is performed
  2127. // in a single axis only.
  2128. // In case of re-homing the X or Y axes only, the mesh bed leveling is restored after G28.
  2129. #ifdef MESH_BED_LEVELING
  2130. uint8_t mbl_was_active = mbl.active;
  2131. mbl.active = 0;
  2132. current_position[Z_AXIS] = st_get_position_mm(Z_AXIS);
  2133. #endif
  2134. // Reset baby stepping to zero, if the babystepping has already been loaded before. The babystepsTodo value will be
  2135. // consumed during the first movements following this statement.
  2136. if (home_z)
  2137. babystep_undo();
  2138. saved_feedrate = feedrate;
  2139. int l_feedmultiply = feedmultiply;
  2140. feedmultiply = 100;
  2141. previous_millis_cmd = _millis();
  2142. enable_endstops(true);
  2143. memcpy(destination, current_position, sizeof(destination));
  2144. feedrate = 0.0;
  2145. #if Z_HOME_DIR > 0 // If homing away from BED do Z first
  2146. if(home_z)
  2147. homeaxis(Z_AXIS);
  2148. #endif
  2149. #ifdef QUICK_HOME
  2150. // In the quick mode, if both x and y are to be homed, a diagonal move will be performed initially.
  2151. if(home_x && home_y) //first diagonal move
  2152. {
  2153. current_position[X_AXIS] = 0;current_position[Y_AXIS] = 0;
  2154. int x_axis_home_dir = home_dir(X_AXIS);
  2155. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2156. destination[X_AXIS] = 1.5 * max_length(X_AXIS) * x_axis_home_dir;destination[Y_AXIS] = 1.5 * max_length(Y_AXIS) * home_dir(Y_AXIS);
  2157. feedrate = homing_feedrate[X_AXIS];
  2158. if(homing_feedrate[Y_AXIS]<feedrate)
  2159. feedrate = homing_feedrate[Y_AXIS];
  2160. if (max_length(X_AXIS) > max_length(Y_AXIS)) {
  2161. feedrate *= sqrt(pow(max_length(Y_AXIS) / max_length(X_AXIS), 2) + 1);
  2162. } else {
  2163. feedrate *= sqrt(pow(max_length(X_AXIS) / max_length(Y_AXIS), 2) + 1);
  2164. }
  2165. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  2166. st_synchronize();
  2167. axis_is_at_home(X_AXIS);
  2168. axis_is_at_home(Y_AXIS);
  2169. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2170. destination[X_AXIS] = current_position[X_AXIS];
  2171. destination[Y_AXIS] = current_position[Y_AXIS];
  2172. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  2173. feedrate = 0.0;
  2174. st_synchronize();
  2175. endstops_hit_on_purpose();
  2176. current_position[X_AXIS] = destination[X_AXIS];
  2177. current_position[Y_AXIS] = destination[Y_AXIS];
  2178. current_position[Z_AXIS] = destination[Z_AXIS];
  2179. }
  2180. #endif /* QUICK_HOME */
  2181. #ifdef TMC2130
  2182. if(home_x)
  2183. {
  2184. if (!calib)
  2185. homeaxis(X_AXIS);
  2186. else
  2187. tmc2130_home_calibrate(X_AXIS);
  2188. }
  2189. if(home_y)
  2190. {
  2191. if (!calib)
  2192. homeaxis(Y_AXIS);
  2193. else
  2194. tmc2130_home_calibrate(Y_AXIS);
  2195. }
  2196. #else //TMC2130
  2197. if(home_x) homeaxis(X_AXIS);
  2198. if(home_y) homeaxis(Y_AXIS);
  2199. #endif //TMC2130
  2200. if(home_x_axis && home_x_value != 0)
  2201. current_position[X_AXIS]=home_x_value+cs.add_homing[X_AXIS];
  2202. if(home_y_axis && home_y_value != 0)
  2203. current_position[Y_AXIS]=home_y_value+cs.add_homing[Y_AXIS];
  2204. #if Z_HOME_DIR < 0 // If homing towards BED do Z last
  2205. #ifndef Z_SAFE_HOMING
  2206. if(home_z) {
  2207. #if defined (Z_RAISE_BEFORE_HOMING) && (Z_RAISE_BEFORE_HOMING > 0)
  2208. destination[Z_AXIS] = Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS) * (-1); // Set destination away from bed
  2209. feedrate = max_feedrate[Z_AXIS];
  2210. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
  2211. st_synchronize();
  2212. #endif // defined (Z_RAISE_BEFORE_HOMING) && (Z_RAISE_BEFORE_HOMING > 0)
  2213. #if (defined(MESH_BED_LEVELING) && !defined(MK1BP)) // If Mesh bed leveling, move X&Y to safe position for home
  2214. if (!(axis_known_position[X_AXIS] && axis_known_position[Y_AXIS] ))
  2215. {
  2216. homeaxis(X_AXIS);
  2217. homeaxis(Y_AXIS);
  2218. }
  2219. // 1st mesh bed leveling measurement point, corrected.
  2220. world2machine_initialize();
  2221. world2machine(pgm_read_float(bed_ref_points_4), pgm_read_float(bed_ref_points_4+1), destination[X_AXIS], destination[Y_AXIS]);
  2222. world2machine_reset();
  2223. if (destination[Y_AXIS] < Y_MIN_POS)
  2224. destination[Y_AXIS] = Y_MIN_POS;
  2225. destination[Z_AXIS] = MESH_HOME_Z_SEARCH; // Set destination away from bed
  2226. feedrate = homing_feedrate[Z_AXIS]/10;
  2227. current_position[Z_AXIS] = 0;
  2228. enable_endstops(false);
  2229. #ifdef DEBUG_BUILD
  2230. SERIAL_ECHOLNPGM("plan_set_position()");
  2231. MYSERIAL.println(current_position[X_AXIS]);MYSERIAL.println(current_position[Y_AXIS]);
  2232. MYSERIAL.println(current_position[Z_AXIS]);MYSERIAL.println(current_position[E_AXIS]);
  2233. #endif
  2234. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2235. #ifdef DEBUG_BUILD
  2236. SERIAL_ECHOLNPGM("plan_buffer_line()");
  2237. MYSERIAL.println(destination[X_AXIS]);MYSERIAL.println(destination[Y_AXIS]);
  2238. MYSERIAL.println(destination[Z_AXIS]);MYSERIAL.println(destination[E_AXIS]);
  2239. MYSERIAL.println(feedrate);MYSERIAL.println(active_extruder);
  2240. #endif
  2241. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
  2242. st_synchronize();
  2243. current_position[X_AXIS] = destination[X_AXIS];
  2244. current_position[Y_AXIS] = destination[Y_AXIS];
  2245. enable_endstops(true);
  2246. endstops_hit_on_purpose();
  2247. homeaxis(Z_AXIS);
  2248. #else // MESH_BED_LEVELING
  2249. homeaxis(Z_AXIS);
  2250. #endif // MESH_BED_LEVELING
  2251. }
  2252. #else // defined(Z_SAFE_HOMING): Z Safe mode activated.
  2253. if(home_all_axes) {
  2254. destination[X_AXIS] = round(Z_SAFE_HOMING_X_POINT - X_PROBE_OFFSET_FROM_EXTRUDER);
  2255. destination[Y_AXIS] = round(Z_SAFE_HOMING_Y_POINT - Y_PROBE_OFFSET_FROM_EXTRUDER);
  2256. destination[Z_AXIS] = Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS) * (-1); // Set destination away from bed
  2257. feedrate = XY_TRAVEL_SPEED/60;
  2258. current_position[Z_AXIS] = 0;
  2259. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2260. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
  2261. st_synchronize();
  2262. current_position[X_AXIS] = destination[X_AXIS];
  2263. current_position[Y_AXIS] = destination[Y_AXIS];
  2264. homeaxis(Z_AXIS);
  2265. }
  2266. // Let's see if X and Y are homed and probe is inside bed area.
  2267. if(home_z) {
  2268. if ( (axis_known_position[X_AXIS]) && (axis_known_position[Y_AXIS]) \
  2269. && (current_position[X_AXIS]+X_PROBE_OFFSET_FROM_EXTRUDER >= X_MIN_POS) \
  2270. && (current_position[X_AXIS]+X_PROBE_OFFSET_FROM_EXTRUDER <= X_MAX_POS) \
  2271. && (current_position[Y_AXIS]+Y_PROBE_OFFSET_FROM_EXTRUDER >= Y_MIN_POS) \
  2272. && (current_position[Y_AXIS]+Y_PROBE_OFFSET_FROM_EXTRUDER <= Y_MAX_POS)) {
  2273. current_position[Z_AXIS] = 0;
  2274. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2275. destination[Z_AXIS] = Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS) * (-1); // Set destination away from bed
  2276. feedrate = max_feedrate[Z_AXIS];
  2277. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
  2278. st_synchronize();
  2279. homeaxis(Z_AXIS);
  2280. } else if (!((axis_known_position[X_AXIS]) && (axis_known_position[Y_AXIS]))) {
  2281. LCD_MESSAGERPGM(MSG_POSITION_UNKNOWN);
  2282. SERIAL_ECHO_START;
  2283. SERIAL_ECHOLNRPGM(MSG_POSITION_UNKNOWN);
  2284. } else {
  2285. LCD_MESSAGERPGM(MSG_ZPROBE_OUT);
  2286. SERIAL_ECHO_START;
  2287. SERIAL_ECHOLNRPGM(MSG_ZPROBE_OUT);
  2288. }
  2289. }
  2290. #endif // Z_SAFE_HOMING
  2291. #endif // Z_HOME_DIR < 0
  2292. if(home_z_axis && home_z_value != 0)
  2293. current_position[Z_AXIS]=home_z_value+cs.add_homing[Z_AXIS];
  2294. #ifdef ENABLE_AUTO_BED_LEVELING
  2295. if(home_z)
  2296. current_position[Z_AXIS] += cs.zprobe_zoffset; //Add Z_Probe offset (the distance is negative)
  2297. #endif
  2298. // Set the planner and stepper routine positions.
  2299. // At this point the mesh bed leveling and world2machine corrections are disabled and current_position
  2300. // contains the machine coordinates.
  2301. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2302. #ifdef ENDSTOPS_ONLY_FOR_HOMING
  2303. enable_endstops(false);
  2304. #endif
  2305. feedrate = saved_feedrate;
  2306. feedmultiply = l_feedmultiply;
  2307. previous_millis_cmd = _millis();
  2308. endstops_hit_on_purpose();
  2309. #ifndef MESH_BED_LEVELING
  2310. //-// Oct 2019 :: this part of code is (from) now probably un-compilable
  2311. // If MESH_BED_LEVELING is not active, then it is the original Prusa i3.
  2312. // Offer the user to load the baby step value, which has been adjusted at the previous print session.
  2313. if(card.sdprinting && eeprom_read_word((uint16_t *)EEPROM_BABYSTEP_Z))
  2314. lcd_adjust_z();
  2315. #endif
  2316. // Load the machine correction matrix
  2317. world2machine_initialize();
  2318. // and correct the current_position XY axes to match the transformed coordinate system.
  2319. world2machine_update_current();
  2320. #if (defined(MESH_BED_LEVELING) && !defined(MK1BP))
  2321. if (home_x_axis || home_y_axis || without_mbl || home_z_axis)
  2322. {
  2323. if (! home_z && mbl_was_active) {
  2324. // Re-enable the mesh bed leveling if only the X and Y axes were re-homed.
  2325. mbl.active = true;
  2326. // and re-adjust the current logical Z axis with the bed leveling offset applicable at the current XY position.
  2327. current_position[Z_AXIS] -= mbl.get_z(st_get_position_mm(X_AXIS), st_get_position_mm(Y_AXIS));
  2328. }
  2329. }
  2330. else
  2331. {
  2332. st_synchronize();
  2333. homing_flag = false;
  2334. }
  2335. #endif
  2336. if (farm_mode) { prusa_statistics(20); };
  2337. homing_flag = false;
  2338. #if 0
  2339. SERIAL_ECHOPGM("G28, final "); print_world_coordinates();
  2340. SERIAL_ECHOPGM("G28, final "); print_physical_coordinates();
  2341. SERIAL_ECHOPGM("G28, final "); print_mesh_bed_leveling_table();
  2342. #endif
  2343. }
  2344. static void gcode_G28(bool home_x_axis, bool home_y_axis, bool home_z_axis)
  2345. {
  2346. #ifdef TMC2130
  2347. gcode_G28(home_x_axis, 0, home_y_axis, 0, home_z_axis, 0, false, true);
  2348. #else
  2349. gcode_G28(home_x_axis, 0, home_y_axis, 0, home_z_axis, 0, true);
  2350. #endif //TMC2130
  2351. }
  2352. void adjust_bed_reset()
  2353. {
  2354. eeprom_update_byte((unsigned char*)EEPROM_BED_CORRECTION_VALID, 1);
  2355. eeprom_update_byte((unsigned char*)EEPROM_BED_CORRECTION_LEFT, 0);
  2356. eeprom_update_byte((unsigned char*)EEPROM_BED_CORRECTION_RIGHT, 0);
  2357. eeprom_update_byte((unsigned char*)EEPROM_BED_CORRECTION_FRONT, 0);
  2358. eeprom_update_byte((unsigned char*)EEPROM_BED_CORRECTION_REAR, 0);
  2359. }
  2360. //! @brief Calibrate XYZ
  2361. //! @param onlyZ if true, calibrate only Z axis
  2362. //! @param verbosity_level
  2363. //! @retval true Succeeded
  2364. //! @retval false Failed
  2365. bool gcode_M45(bool onlyZ, int8_t verbosity_level)
  2366. {
  2367. bool final_result = false;
  2368. #ifdef TMC2130
  2369. FORCE_HIGH_POWER_START;
  2370. #endif // TMC2130
  2371. #ifdef LCD_BL_PIN
  2372. FORCE_BL_ON_START;
  2373. #endif // LCD_BL_PIN
  2374. // Only Z calibration?
  2375. if (!onlyZ)
  2376. {
  2377. setTargetBed(0);
  2378. setAllTargetHotends(0);
  2379. adjust_bed_reset(); //reset bed level correction
  2380. }
  2381. // Disable the default update procedure of the display. We will do a modal dialog.
  2382. lcd_update_enable(false);
  2383. // Let the planner use the uncorrected coordinates.
  2384. mbl.reset();
  2385. // Reset world2machine_rotation_and_skew and world2machine_shift, therefore
  2386. // the planner will not perform any adjustments in the XY plane.
  2387. // Wait for the motors to stop and update the current position with the absolute values.
  2388. world2machine_revert_to_uncorrected();
  2389. // Reset the baby step value applied without moving the axes.
  2390. babystep_reset();
  2391. // Mark all axes as in a need for homing.
  2392. memset(axis_known_position, 0, sizeof(axis_known_position));
  2393. // Home in the XY plane.
  2394. //set_destination_to_current();
  2395. int l_feedmultiply = setup_for_endstop_move();
  2396. lcd_display_message_fullscreen_P(_T(MSG_AUTO_HOME));
  2397. home_xy();
  2398. enable_endstops(false);
  2399. current_position[X_AXIS] += 5;
  2400. current_position[Y_AXIS] += 5;
  2401. plan_buffer_line_curposXYZE(homing_feedrate[Z_AXIS] / 40, active_extruder);
  2402. st_synchronize();
  2403. // Let the user move the Z axes up to the end stoppers.
  2404. #ifdef TMC2130
  2405. if (calibrate_z_auto())
  2406. {
  2407. #else //TMC2130
  2408. if (lcd_calibrate_z_end_stop_manual(onlyZ))
  2409. {
  2410. #endif //TMC2130
  2411. lcd_show_fullscreen_message_and_wait_P(_T(MSG_CONFIRM_NOZZLE_CLEAN));
  2412. if(onlyZ){
  2413. lcd_display_message_fullscreen_P(_T(MSG_MEASURE_BED_REFERENCE_HEIGHT_LINE1));
  2414. lcd_set_cursor(0, 3);
  2415. lcd_print(1);
  2416. lcd_puts_P(_T(MSG_MEASURE_BED_REFERENCE_HEIGHT_LINE2));
  2417. }else{
  2418. //lcd_show_fullscreen_message_and_wait_P(_T(MSG_PAPER));
  2419. lcd_display_message_fullscreen_P(_T(MSG_FIND_BED_OFFSET_AND_SKEW_LINE1));
  2420. lcd_set_cursor(0, 2);
  2421. lcd_print(1);
  2422. lcd_puts_P(_T(MSG_FIND_BED_OFFSET_AND_SKEW_LINE2));
  2423. }
  2424. refresh_cmd_timeout();
  2425. #ifndef STEEL_SHEET
  2426. if (((degHotend(0) > MAX_HOTEND_TEMP_CALIBRATION) || (degBed() > MAX_BED_TEMP_CALIBRATION)) && (!onlyZ))
  2427. {
  2428. lcd_wait_for_cool_down();
  2429. }
  2430. #endif //STEEL_SHEET
  2431. if(!onlyZ)
  2432. {
  2433. KEEPALIVE_STATE(PAUSED_FOR_USER);
  2434. #ifdef STEEL_SHEET
  2435. bool result = lcd_show_fullscreen_message_yes_no_and_wait_P(_T(MSG_STEEL_SHEET_CHECK), false, false);
  2436. if(result) lcd_show_fullscreen_message_and_wait_P(_T(MSG_REMOVE_STEEL_SHEET));
  2437. #endif //STEEL_SHEET
  2438. lcd_show_fullscreen_message_and_wait_P(_T(MSG_PAPER));
  2439. KEEPALIVE_STATE(IN_HANDLER);
  2440. lcd_display_message_fullscreen_P(_T(MSG_FIND_BED_OFFSET_AND_SKEW_LINE1));
  2441. lcd_set_cursor(0, 2);
  2442. lcd_print(1);
  2443. lcd_puts_P(_T(MSG_FIND_BED_OFFSET_AND_SKEW_LINE2));
  2444. }
  2445. bool endstops_enabled = enable_endstops(false);
  2446. current_position[Z_AXIS] -= 1; //move 1mm down with disabled endstop
  2447. plan_buffer_line_curposXYZE(homing_feedrate[Z_AXIS] / 40, active_extruder);
  2448. st_synchronize();
  2449. // Move the print head close to the bed.
  2450. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  2451. enable_endstops(true);
  2452. #ifdef TMC2130
  2453. tmc2130_home_enter(Z_AXIS_MASK);
  2454. #endif //TMC2130
  2455. plan_buffer_line_curposXYZE(homing_feedrate[Z_AXIS] / 40, active_extruder);
  2456. st_synchronize();
  2457. #ifdef TMC2130
  2458. tmc2130_home_exit();
  2459. #endif //TMC2130
  2460. enable_endstops(endstops_enabled);
  2461. if ((st_get_position_mm(Z_AXIS) <= (MESH_HOME_Z_SEARCH + HOME_Z_SEARCH_THRESHOLD)) &&
  2462. (st_get_position_mm(Z_AXIS) >= (MESH_HOME_Z_SEARCH - HOME_Z_SEARCH_THRESHOLD)))
  2463. {
  2464. if (onlyZ)
  2465. {
  2466. clean_up_after_endstop_move(l_feedmultiply);
  2467. // Z only calibration.
  2468. // Load the machine correction matrix
  2469. world2machine_initialize();
  2470. // and correct the current_position to match the transformed coordinate system.
  2471. world2machine_update_current();
  2472. //FIXME
  2473. bool result = sample_mesh_and_store_reference();
  2474. if (result)
  2475. {
  2476. if (calibration_status() == CALIBRATION_STATUS_Z_CALIBRATION)
  2477. // Shipped, the nozzle height has been set already. The user can start printing now.
  2478. calibration_status_store(CALIBRATION_STATUS_CALIBRATED);
  2479. final_result = true;
  2480. // babystep_apply();
  2481. }
  2482. }
  2483. else
  2484. {
  2485. // Reset the baby step value and the baby step applied flag.
  2486. calibration_status_store(CALIBRATION_STATUS_XYZ_CALIBRATION);
  2487. eeprom_update_word(reinterpret_cast<uint16_t *>(&(EEPROM_Sheets_base->s[(eeprom_read_byte(&(EEPROM_Sheets_base->active_sheet)))].z_offset)),0);
  2488. // Complete XYZ calibration.
  2489. uint8_t point_too_far_mask = 0;
  2490. BedSkewOffsetDetectionResultType result = find_bed_offset_and_skew(verbosity_level, point_too_far_mask);
  2491. clean_up_after_endstop_move(l_feedmultiply);
  2492. // Print head up.
  2493. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  2494. plan_buffer_line_curposXYZE(homing_feedrate[Z_AXIS] / 40, active_extruder);
  2495. st_synchronize();
  2496. //#ifndef NEW_XYZCAL
  2497. if (result >= 0)
  2498. {
  2499. #ifdef HEATBED_V2
  2500. sample_z();
  2501. #else //HEATBED_V2
  2502. point_too_far_mask = 0;
  2503. // Second half: The fine adjustment.
  2504. // Let the planner use the uncorrected coordinates.
  2505. mbl.reset();
  2506. world2machine_reset();
  2507. // Home in the XY plane.
  2508. int l_feedmultiply = setup_for_endstop_move();
  2509. home_xy();
  2510. result = improve_bed_offset_and_skew(1, verbosity_level, point_too_far_mask);
  2511. clean_up_after_endstop_move(l_feedmultiply);
  2512. // Print head up.
  2513. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  2514. plan_buffer_line_curposXYZE(homing_feedrate[Z_AXIS] / 40, active_extruder);
  2515. st_synchronize();
  2516. // if (result >= 0) babystep_apply();
  2517. #endif //HEATBED_V2
  2518. }
  2519. //#endif //NEW_XYZCAL
  2520. lcd_update_enable(true);
  2521. lcd_update(2);
  2522. lcd_bed_calibration_show_result(result, point_too_far_mask);
  2523. if (result >= 0)
  2524. {
  2525. // Calibration valid, the machine should be able to print. Advise the user to run the V2Calibration.gcode.
  2526. calibration_status_store(CALIBRATION_STATUS_LIVE_ADJUST);
  2527. if (eeprom_read_byte((uint8_t*)EEPROM_WIZARD_ACTIVE) != 1) lcd_show_fullscreen_message_and_wait_P(_T(MSG_BABYSTEP_Z_NOT_SET));
  2528. final_result = true;
  2529. }
  2530. }
  2531. #ifdef TMC2130
  2532. tmc2130_home_exit();
  2533. #endif
  2534. }
  2535. else
  2536. {
  2537. lcd_show_fullscreen_message_and_wait_P(PSTR("Calibration failed! Check the axes and run again."));
  2538. final_result = false;
  2539. }
  2540. }
  2541. else
  2542. {
  2543. // Timeouted.
  2544. }
  2545. lcd_update_enable(true);
  2546. #ifdef TMC2130
  2547. FORCE_HIGH_POWER_END;
  2548. #endif // TMC2130
  2549. #ifdef LCD_BL_PIN
  2550. FORCE_BL_ON_END;
  2551. #endif // LCD_BL_PIN
  2552. return final_result;
  2553. }
  2554. void gcode_M114()
  2555. {
  2556. SERIAL_PROTOCOLPGM("X:");
  2557. SERIAL_PROTOCOL(current_position[X_AXIS]);
  2558. SERIAL_PROTOCOLPGM(" Y:");
  2559. SERIAL_PROTOCOL(current_position[Y_AXIS]);
  2560. SERIAL_PROTOCOLPGM(" Z:");
  2561. SERIAL_PROTOCOL(current_position[Z_AXIS]);
  2562. SERIAL_PROTOCOLPGM(" E:");
  2563. SERIAL_PROTOCOL(current_position[E_AXIS]);
  2564. SERIAL_PROTOCOLRPGM(_n(" Count X: "));////MSG_COUNT_X
  2565. SERIAL_PROTOCOL(float(st_get_position(X_AXIS)) / cs.axis_steps_per_unit[X_AXIS]);
  2566. SERIAL_PROTOCOLPGM(" Y:");
  2567. SERIAL_PROTOCOL(float(st_get_position(Y_AXIS)) / cs.axis_steps_per_unit[Y_AXIS]);
  2568. SERIAL_PROTOCOLPGM(" Z:");
  2569. SERIAL_PROTOCOL(float(st_get_position(Z_AXIS)) / cs.axis_steps_per_unit[Z_AXIS]);
  2570. SERIAL_PROTOCOLPGM(" E:");
  2571. SERIAL_PROTOCOL(float(st_get_position(E_AXIS)) / cs.axis_steps_per_unit[E_AXIS]);
  2572. SERIAL_PROTOCOLLN("");
  2573. }
  2574. //! extracted code to compute z_shift for M600 in case of filament change operation
  2575. //! requested from fsensors.
  2576. //! The function ensures, that the printhead lifts to at least 25mm above the heat bed
  2577. //! unlike the previous implementation, which was adding 25mm even when the head was
  2578. //! printing at e.g. 24mm height.
  2579. //! A safety margin of FILAMENTCHANGE_ZADD is added in all cases to avoid touching
  2580. //! the printout.
  2581. //! This function is templated to enable fast change of computation data type.
  2582. //! @return new z_shift value
  2583. template<typename T>
  2584. static T gcode_M600_filament_change_z_shift()
  2585. {
  2586. #ifdef FILAMENTCHANGE_ZADD
  2587. static_assert(Z_MAX_POS < (255 - FILAMENTCHANGE_ZADD), "Z-range too high, change the T type from uint8_t to uint16_t");
  2588. // avoid floating point arithmetics when not necessary - results in shorter code
  2589. T ztmp = T( current_position[Z_AXIS] );
  2590. T z_shift = 0;
  2591. if(ztmp < T(25)){
  2592. z_shift = T(25) - ztmp; // make sure to be at least 25mm above the heat bed
  2593. }
  2594. return z_shift + T(FILAMENTCHANGE_ZADD); // always move above printout
  2595. #else
  2596. return T(0);
  2597. #endif
  2598. }
  2599. static void gcode_M600(bool automatic, float x_position, float y_position, float z_shift, float e_shift, float /*e_shift_late*/)
  2600. {
  2601. st_synchronize();
  2602. float lastpos[4];
  2603. if (farm_mode)
  2604. {
  2605. prusa_statistics(22);
  2606. }
  2607. //First backup current position and settings
  2608. int feedmultiplyBckp = feedmultiply;
  2609. float HotendTempBckp = degTargetHotend(active_extruder);
  2610. int fanSpeedBckp = fanSpeed;
  2611. lastpos[X_AXIS] = current_position[X_AXIS];
  2612. lastpos[Y_AXIS] = current_position[Y_AXIS];
  2613. lastpos[Z_AXIS] = current_position[Z_AXIS];
  2614. lastpos[E_AXIS] = current_position[E_AXIS];
  2615. //Retract E
  2616. current_position[E_AXIS] += e_shift;
  2617. plan_buffer_line_curposXYZE(FILAMENTCHANGE_RFEED, active_extruder);
  2618. st_synchronize();
  2619. //Lift Z
  2620. current_position[Z_AXIS] += z_shift;
  2621. plan_buffer_line_curposXYZE(FILAMENTCHANGE_ZFEED, active_extruder);
  2622. st_synchronize();
  2623. //Move XY to side
  2624. current_position[X_AXIS] = x_position;
  2625. current_position[Y_AXIS] = y_position;
  2626. plan_buffer_line_curposXYZE(FILAMENTCHANGE_XYFEED, active_extruder);
  2627. st_synchronize();
  2628. //Beep, manage nozzle heater and wait for user to start unload filament
  2629. if(!mmu_enabled) M600_wait_for_user(HotendTempBckp);
  2630. lcd_change_fil_state = 0;
  2631. // Unload filament
  2632. if (mmu_enabled) extr_unload(); //unload just current filament for multimaterial printers (used also in M702)
  2633. else unload_filament(); //unload filament for single material (used also in M702)
  2634. //finish moves
  2635. st_synchronize();
  2636. if (!mmu_enabled)
  2637. {
  2638. KEEPALIVE_STATE(PAUSED_FOR_USER);
  2639. lcd_change_fil_state = lcd_show_fullscreen_message_yes_no_and_wait_P(_i("Was filament unload successful?"),
  2640. false, true); ////MSG_UNLOAD_SUCCESSFUL c=20 r=2
  2641. if (lcd_change_fil_state == 0)
  2642. {
  2643. lcd_clear();
  2644. lcd_set_cursor(0, 2);
  2645. lcd_puts_P(_T(MSG_PLEASE_WAIT));
  2646. current_position[X_AXIS] -= 100;
  2647. plan_buffer_line_curposXYZE(FILAMENTCHANGE_XYFEED, active_extruder);
  2648. st_synchronize();
  2649. lcd_show_fullscreen_message_and_wait_P(_i("Please open idler and remove filament manually."));////MSG_CHECK_IDLER c=20 r=4
  2650. }
  2651. }
  2652. if (mmu_enabled)
  2653. {
  2654. if (!automatic) {
  2655. if (saved_printing) mmu_eject_filament(mmu_extruder, false); //if M600 was invoked by filament senzor (FINDA) eject filament so user can easily remove it
  2656. mmu_M600_wait_and_beep();
  2657. if (saved_printing) {
  2658. lcd_clear();
  2659. lcd_set_cursor(0, 2);
  2660. lcd_puts_P(_T(MSG_PLEASE_WAIT));
  2661. mmu_command(MmuCmd::R0);
  2662. manage_response(false, false);
  2663. }
  2664. }
  2665. mmu_M600_load_filament(automatic, HotendTempBckp);
  2666. }
  2667. else
  2668. M600_load_filament();
  2669. if (!automatic) M600_check_state(HotendTempBckp);
  2670. lcd_update_enable(true);
  2671. //Not let's go back to print
  2672. fanSpeed = fanSpeedBckp;
  2673. //Feed a little of filament to stabilize pressure
  2674. if (!automatic)
  2675. {
  2676. current_position[E_AXIS] += FILAMENTCHANGE_RECFEED;
  2677. plan_buffer_line_curposXYZE(FILAMENTCHANGE_EXFEED, active_extruder);
  2678. }
  2679. //Move XY back
  2680. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS],
  2681. FILAMENTCHANGE_XYFEED, active_extruder);
  2682. st_synchronize();
  2683. //Move Z back
  2684. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], current_position[E_AXIS],
  2685. FILAMENTCHANGE_ZFEED, active_extruder);
  2686. st_synchronize();
  2687. //Set E position to original
  2688. plan_set_e_position(lastpos[E_AXIS]);
  2689. memcpy(current_position, lastpos, sizeof(lastpos));
  2690. memcpy(destination, current_position, sizeof(current_position));
  2691. //Recover feed rate
  2692. feedmultiply = feedmultiplyBckp;
  2693. char cmd[9];
  2694. sprintf_P(cmd, PSTR("M220 S%i"), feedmultiplyBckp);
  2695. enquecommand(cmd);
  2696. #ifdef IR_SENSOR
  2697. //this will set fsensor_watch_autoload to correct value and prevent possible M701 gcode enqueuing when M600 is finished
  2698. fsensor_check_autoload();
  2699. #endif //IR_SENSOR
  2700. lcd_setstatuspgm(_T(WELCOME_MSG));
  2701. custom_message_type = CustomMsg::Status;
  2702. }
  2703. //! @brief Rise Z if too low to avoid blob/jam before filament loading
  2704. //!
  2705. //! It doesn't plan_buffer_line(), as it expects plan_buffer_line() to be called after
  2706. //! during extruding (loading) filament.
  2707. void marlin_rise_z(void)
  2708. {
  2709. if (current_position[Z_AXIS] < 20) current_position[Z_AXIS] += 30;
  2710. }
  2711. void gcode_M701()
  2712. {
  2713. printf_P(PSTR("gcode_M701 begin\n"));
  2714. if (farm_mode)
  2715. {
  2716. prusa_statistics(22);
  2717. }
  2718. if (mmu_enabled)
  2719. {
  2720. extr_adj(tmp_extruder);//loads current extruder
  2721. mmu_extruder = tmp_extruder;
  2722. }
  2723. else
  2724. {
  2725. enable_z();
  2726. custom_message_type = CustomMsg::FilamentLoading;
  2727. #ifdef FSENSOR_QUALITY
  2728. fsensor_oq_meassure_start(40);
  2729. #endif //FSENSOR_QUALITY
  2730. lcd_setstatuspgm(_T(MSG_LOADING_FILAMENT));
  2731. current_position[E_AXIS] += 40;
  2732. plan_buffer_line_curposXYZE(400 / 60, active_extruder); //fast sequence
  2733. st_synchronize();
  2734. marlin_rise_z();
  2735. current_position[E_AXIS] += 30;
  2736. plan_buffer_line_curposXYZE(400 / 60, active_extruder); //fast sequence
  2737. load_filament_final_feed(); //slow sequence
  2738. st_synchronize();
  2739. Sound_MakeCustom(50,500,false);
  2740. if (!farm_mode && loading_flag) {
  2741. lcd_load_filament_color_check();
  2742. }
  2743. lcd_update_enable(true);
  2744. lcd_update(2);
  2745. lcd_setstatuspgm(_T(WELCOME_MSG));
  2746. disable_z();
  2747. loading_flag = false;
  2748. custom_message_type = CustomMsg::Status;
  2749. #ifdef FSENSOR_QUALITY
  2750. fsensor_oq_meassure_stop();
  2751. if (!fsensor_oq_result())
  2752. {
  2753. bool disable = lcd_show_fullscreen_message_yes_no_and_wait_P(_i("Fil. sensor response is poor, disable it?"), false, true);
  2754. lcd_update_enable(true);
  2755. lcd_update(2);
  2756. if (disable)
  2757. fsensor_disable();
  2758. }
  2759. #endif //FSENSOR_QUALITY
  2760. }
  2761. }
  2762. /**
  2763. * @brief Get serial number from 32U2 processor
  2764. *
  2765. * Typical format of S/N is:CZPX0917X003XC13518
  2766. *
  2767. * Command operates only in farm mode, if not in farm mode, "Not in farm mode." is written to MYSERIAL.
  2768. *
  2769. * Send command ;S to serial port 0 to retrieve serial number stored in 32U2 processor,
  2770. * reply is transmitted to serial port 1 character by character.
  2771. * Operation takes typically 23 ms. If the retransmit is not finished until 100 ms,
  2772. * it is interrupted, so less, or no characters are retransmitted, only newline character is send
  2773. * in any case.
  2774. */
  2775. static void gcode_PRUSA_SN()
  2776. {
  2777. if (farm_mode) {
  2778. selectedSerialPort = 0;
  2779. putchar(';');
  2780. putchar('S');
  2781. int numbersRead = 0;
  2782. ShortTimer timeout;
  2783. timeout.start();
  2784. while (numbersRead < 19) {
  2785. while (MSerial.available() > 0) {
  2786. uint8_t serial_char = MSerial.read();
  2787. selectedSerialPort = 1;
  2788. putchar(serial_char);
  2789. numbersRead++;
  2790. selectedSerialPort = 0;
  2791. }
  2792. if (timeout.expired(100u)) break;
  2793. }
  2794. selectedSerialPort = 1;
  2795. putchar('\n');
  2796. #if 0
  2797. for (int b = 0; b < 3; b++) {
  2798. _tone(BEEPER, 110);
  2799. _delay(50);
  2800. _noTone(BEEPER);
  2801. _delay(50);
  2802. }
  2803. #endif
  2804. } else {
  2805. puts_P(_N("Not in farm mode."));
  2806. }
  2807. }
  2808. //! Detection of faulty RAMBo 1.1b boards equipped with bigger capacitors
  2809. //! at the TACH_1 pin, which causes bad detection of print fan speed.
  2810. //! Warning: This function is not to be used by ordinary users, it is here only for automated testing purposes,
  2811. //! it may even interfere with other functions of the printer! You have been warned!
  2812. //! The test idea is to measure the time necessary to charge the capacitor.
  2813. //! So the algorithm is as follows:
  2814. //! 1. Set TACH_1 pin to INPUT mode and LOW
  2815. //! 2. Wait a few ms
  2816. //! 3. disable interrupts and measure the time until the TACH_1 pin reaches HIGH
  2817. //! Repeat 1.-3. several times
  2818. //! Good RAMBo's times are in the range of approx. 260-320 us
  2819. //! Bad RAMBo's times are approx. 260-1200 us
  2820. //! So basically we are interested in maximum time, the minima are mostly the same.
  2821. //! May be that's why the bad RAMBo's still produce some fan RPM reading, but not corresponding to reality
  2822. static void gcode_PRUSA_BadRAMBoFanTest(){
  2823. //printf_P(PSTR("Enter fan pin test\n"));
  2824. #if !defined(DEBUG_DISABLE_FANCHECK) && defined(FANCHECK) && defined(TACH_1) && TACH_1 >-1
  2825. fan_measuring = false; // prevent EXTINT7 breaking into the measurement
  2826. unsigned long tach1max = 0;
  2827. uint8_t tach1cntr = 0;
  2828. for( /* nothing */; tach1cntr < 100; ++tach1cntr){
  2829. //printf_P(PSTR("TACH_1: %d\n"), tach1cntr);
  2830. SET_OUTPUT(TACH_1);
  2831. WRITE(TACH_1, LOW);
  2832. _delay(20); // the delay may be lower
  2833. unsigned long tachMeasure = _micros();
  2834. cli();
  2835. SET_INPUT(TACH_1);
  2836. // just wait brutally in an endless cycle until we reach HIGH
  2837. // if this becomes a problem it may be improved to non-endless cycle
  2838. while( READ(TACH_1) == 0 ) ;
  2839. sei();
  2840. tachMeasure = _micros() - tachMeasure;
  2841. if( tach1max < tachMeasure )
  2842. tach1max = tachMeasure;
  2843. //printf_P(PSTR("TACH_1: %d: capacitor check time=%lu us\n"), (int)tach1cntr, tachMeasure);
  2844. }
  2845. //printf_P(PSTR("TACH_1: max=%lu us\n"), tach1max);
  2846. SERIAL_PROTOCOLPGM("RAMBo FAN ");
  2847. if( tach1max > 500 ){
  2848. // bad RAMBo
  2849. SERIAL_PROTOCOLLNPGM("BAD");
  2850. } else {
  2851. SERIAL_PROTOCOLLNPGM("OK");
  2852. }
  2853. // cleanup after the test function
  2854. SET_INPUT(TACH_1);
  2855. WRITE(TACH_1, HIGH);
  2856. #endif
  2857. }
  2858. #ifdef BACKLASH_X
  2859. extern uint8_t st_backlash_x;
  2860. #endif //BACKLASH_X
  2861. #ifdef BACKLASH_Y
  2862. extern uint8_t st_backlash_y;
  2863. #endif //BACKLASH_Y
  2864. //! \ingroup marlin_main
  2865. //! @brief Parse and process commands
  2866. //!
  2867. //! look here for descriptions of G-codes: http://linuxcnc.org/handbook/gcode/g-code.html
  2868. //! http://objects.reprap.org/wiki/Mendel_User_Manual:_RepRapGCodes
  2869. //!
  2870. //!
  2871. //! Implemented Codes
  2872. //! -------------------
  2873. //!
  2874. //! * _This list is not updated. Current documentation is maintained inside the process_cmd function._
  2875. //!
  2876. //!@n PRUSA CODES
  2877. //!@n P F - Returns FW versions
  2878. //!@n P R - Returns revision of printer
  2879. //!
  2880. //!@n G0 -> G1
  2881. //!@n G1 - Coordinated Movement X Y Z E
  2882. //!@n G2 - CW ARC
  2883. //!@n G3 - CCW ARC
  2884. //!@n G4 - Dwell S<seconds> or P<milliseconds>
  2885. //!@n G10 - retract filament according to settings of M207
  2886. //!@n G11 - retract recover filament according to settings of M208
  2887. //!@n G28 - Home all Axis
  2888. //!@n G29 - Detailed Z-Probe, probes the bed at 3 or more points. Will fail if you haven't homed yet.
  2889. //!@n G30 - Single Z Probe, probes bed at current XY location.
  2890. //!@n G31 - Dock sled (Z_PROBE_SLED only)
  2891. //!@n G32 - Undock sled (Z_PROBE_SLED only)
  2892. //!@n G80 - Automatic mesh bed leveling
  2893. //!@n G81 - Print bed profile
  2894. //!@n G90 - Use Absolute Coordinates
  2895. //!@n G91 - Use Relative Coordinates
  2896. //!@n G92 - Set current position to coordinates given
  2897. //!
  2898. //!@n M Codes
  2899. //!@n M0 - Unconditional stop - Wait for user to press a button on the LCD
  2900. //!@n M1 - Same as M0
  2901. //!@n M17 - Enable/Power all stepper motors
  2902. //!@n M18 - Disable all stepper motors; same as M84
  2903. //!@n M20 - List SD card
  2904. //!@n M21 - Init SD card
  2905. //!@n M22 - Release SD card
  2906. //!@n M23 - Select SD file (M23 filename.g)
  2907. //!@n M24 - Start/resume SD print
  2908. //!@n M25 - Pause SD print
  2909. //!@n M26 - Set SD position in bytes (M26 S12345)
  2910. //!@n M27 - Report SD print status
  2911. //!@n M28 - Start SD write (M28 filename.g)
  2912. //!@n M29 - Stop SD write
  2913. //!@n M30 - Delete file from SD (M30 filename.g)
  2914. //!@n M31 - Output time since last M109 or SD card start to serial
  2915. //!@n M32 - Select file and start SD print (Can be used _while_ printing from SD card files):
  2916. //! syntax "M32 /path/filename#", or "M32 S<startpos bytes> !filename#"
  2917. //! Call gcode file : "M32 P !filename#" and return to caller file after finishing (similar to #include).
  2918. //! The '#' is necessary when calling from within sd files, as it stops buffer prereading
  2919. //!@n M42 - Change pin status via gcode Use M42 Px Sy to set pin x to value y, when omitting Px the onboard led will be used.
  2920. //!@n M73 - Show percent done and print time remaining
  2921. //!@n M80 - Turn on Power Supply
  2922. //!@n M81 - Turn off Power Supply
  2923. //!@n M82 - Set E codes absolute (default)
  2924. //!@n M83 - Set E codes relative while in Absolute Coordinates (G90) mode
  2925. //!@n M84 - Disable steppers until next move,
  2926. //! or use S<seconds> to specify an inactivity timeout, after which the steppers will be disabled. S0 to disable the timeout.
  2927. //!@n M85 - Set inactivity shutdown timer with parameter S<seconds>. To disable set zero (default)
  2928. //!@n M86 - Set safety timer expiration time with parameter S<seconds>; M86 S0 will disable safety timer
  2929. //!@n M92 - Set axis_steps_per_unit - same syntax as G92
  2930. //!@n M104 - Set extruder target temp
  2931. //!@n M105 - Read current temp
  2932. //!@n M106 - Fan on
  2933. //!@n M107 - Fan off
  2934. //!@n M109 - Sxxx Wait for extruder current temp to reach target temp. Waits only when heating
  2935. //! Rxxx Wait for extruder current temp to reach target temp. Waits when heating and cooling
  2936. //! IF AUTOTEMP is enabled, S<mintemp> B<maxtemp> F<factor>. Exit autotemp by any M109 without F
  2937. //!@n M112 - Emergency stop
  2938. //!@n M113 - Get or set the timeout interval for Host Keepalive "busy" messages
  2939. //!@n M114 - Output current position to serial port
  2940. //!@n M115 - Capabilities string
  2941. //!@n M117 - display message
  2942. //!@n M119 - Output Endstop status to serial port
  2943. //!@n M126 - Solenoid Air Valve Open (BariCUDA support by jmil)
  2944. //!@n M127 - Solenoid Air Valve Closed (BariCUDA vent to atmospheric pressure by jmil)
  2945. //!@n M128 - EtoP Open (BariCUDA EtoP = electricity to air pressure transducer by jmil)
  2946. //!@n M129 - EtoP Closed (BariCUDA EtoP = electricity to air pressure transducer by jmil)
  2947. //!@n M140 - Set bed target temp
  2948. //!@n M150 - Set BlinkM Color Output R: Red<0-255> U(!): Green<0-255> B: Blue<0-255> over i2c, G for green does not work.
  2949. //!@n M190 - Sxxx Wait for bed current temp to reach target temp. Waits only when heating
  2950. //! Rxxx Wait for bed current temp to reach target temp. Waits when heating and cooling
  2951. //!@n M200 D<millimeters>- set filament diameter and set E axis units to cubic millimeters (use S0 to set back to millimeters).
  2952. //!@n M201 - Set max acceleration in units/s^2 for print moves (M201 X1000 Y1000)
  2953. //!@n M202 - Set max acceleration in units/s^2 for travel moves (M202 X1000 Y1000) Unused in Marlin!!
  2954. //!@n M203 - Set maximum feedrate that your machine can sustain (M203 X200 Y200 Z300 E10000) in mm/sec
  2955. //!@n M204 - Set default acceleration: S normal moves T filament only moves (M204 S3000 T7000) in mm/sec^2 also sets minimum segment time in ms (B20000) to prevent buffer under-runs and M20 minimum feedrate
  2956. //!@n M205 - advanced settings: minimum travel speed S=while printing T=travel only, B=minimum segment time X= maximum xy jerk, Z=maximum Z jerk, E=maximum E jerk
  2957. //!@n M206 - set additional homing offset
  2958. //!@n M207 - set retract length S[positive mm] F[feedrate mm/min] Z[additional zlift/hop], stays in mm regardless of M200 setting
  2959. //!@n M208 - set recover=unretract length S[positive mm surplus to the M207 S*] F[feedrate mm/sec]
  2960. //!@n M209 - S<1=true/0=false> enable automatic retract detect if the slicer did not support G10/11: every normal extrude-only move will be classified as retract depending on the direction.
  2961. //!@n M218 - set hotend offset (in mm): T<extruder_number> X<offset_on_X> Y<offset_on_Y>
  2962. //!@n M220 S<factor in percent>- set speed factor override percentage
  2963. //!@n M221 S<factor in percent>- set extrude factor override percentage
  2964. //!@n M226 P<pin number> S<pin state>- Wait until the specified pin reaches the state required
  2965. //!@n M240 - Trigger a camera to take a photograph
  2966. //!@n M250 - Set LCD contrast C<contrast value> (value 0..63)
  2967. //!@n M280 - set servo position absolute. P: servo index, S: angle or microseconds
  2968. //!@n M300 - Play beep sound S<frequency Hz> P<duration ms>
  2969. //!@n M301 - Set PID parameters P I and D
  2970. //!@n M302 - Allow cold extrudes, or set the minimum extrude S<temperature>.
  2971. //!@n M303 - PID relay autotune S<temperature> sets the target temperature. (default target temperature = 150C)
  2972. //!@n M304 - Set bed PID parameters P I and D
  2973. //!@n M400 - Finish all moves
  2974. //!@n M401 - Lower z-probe if present
  2975. //!@n M402 - Raise z-probe if present
  2976. //!@n M404 - N<dia in mm> Enter the nominal filament width (3mm, 1.75mm ) or will display nominal filament width without parameters
  2977. //!@n M405 - Turn on Filament Sensor extrusion control. Optional D<delay in cm> to set delay in centimeters between sensor and extruder
  2978. //!@n M406 - Turn off Filament Sensor extrusion control
  2979. //!@n M407 - Displays measured filament diameter
  2980. //!@n M500 - stores parameters in EEPROM
  2981. //!@n M501 - reads parameters from EEPROM (if you need reset them after you changed them temporarily).
  2982. //!@n M502 - reverts to the default "factory settings". You still need to store them in EEPROM afterwards if you want to.
  2983. //!@n M503 - print the current settings (from memory not from EEPROM)
  2984. //!@n M509 - force language selection on next restart
  2985. //!@n M540 - Use S[0|1] to enable or disable the stop SD card print on endstop hit (requires ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED)
  2986. //!@n M600 - Pause for filament change X[pos] Y[pos] Z[relative lift] E[initial retract] L[later retract distance for removal]
  2987. //!@n M605 - Set dual x-carriage movement mode: S<mode> [ X<duplication x-offset> R<duplication temp offset> ]
  2988. //!@n M860 - Wait for PINDA thermistor to reach target temperature.
  2989. //!@n M861 - Set / Read PINDA temperature compensation offsets
  2990. //!@n M900 - Set LIN_ADVANCE options, if enabled. See Configuration_adv.h for details.
  2991. //!@n M907 - Set digital trimpot motor current using axis codes.
  2992. //!@n M908 - Control digital trimpot directly.
  2993. //!@n M350 - Set microstepping mode.
  2994. //!@n M351 - Toggle MS1 MS2 pins directly.
  2995. //!
  2996. //!@n M928 - Start SD logging (M928 filename.g) - ended by M29
  2997. //!@n M999 - Restart after being stopped by error
  2998. //! <br><br>
  2999. /** @defgroup marlin_main Marlin main */
  3000. /** \ingroup GCodes */
  3001. //! _This is a list of currently implemented G Codes in Prusa firmware (dynamically generated from doxygen)_
  3002. void process_commands()
  3003. {
  3004. #ifdef FANCHECK
  3005. if(fan_check_error){
  3006. if(fan_check_error == EFCE_DETECTED){
  3007. fan_check_error = EFCE_REPORTED;
  3008. // SERIAL_PROTOCOLLNRPGM(MSG_OCTOPRINT_PAUSED);
  3009. lcd_pause_print();
  3010. } // otherwise it has already been reported, so just ignore further processing
  3011. return; //ignore usb stream. It is reenabled by selecting resume from the lcd.
  3012. }
  3013. #endif
  3014. if (!buflen) return; //empty command
  3015. #ifdef FILAMENT_RUNOUT_SUPPORT
  3016. SET_INPUT(FR_SENS);
  3017. #endif
  3018. #ifdef CMDBUFFER_DEBUG
  3019. SERIAL_ECHOPGM("Processing a GCODE command: ");
  3020. SERIAL_ECHO(cmdbuffer+bufindr+CMDHDRSIZE);
  3021. SERIAL_ECHOLNPGM("");
  3022. SERIAL_ECHOPGM("In cmdqueue: ");
  3023. SERIAL_ECHO(buflen);
  3024. SERIAL_ECHOLNPGM("");
  3025. #endif /* CMDBUFFER_DEBUG */
  3026. unsigned long codenum; //throw away variable
  3027. char *starpos = NULL;
  3028. #ifdef ENABLE_AUTO_BED_LEVELING
  3029. float x_tmp, y_tmp, z_tmp, real_z;
  3030. #endif
  3031. // PRUSA GCODES
  3032. KEEPALIVE_STATE(IN_HANDLER);
  3033. #ifdef SNMM
  3034. float tmp_motor[3] = DEFAULT_PWM_MOTOR_CURRENT;
  3035. float tmp_motor_loud[3] = DEFAULT_PWM_MOTOR_CURRENT_LOUD;
  3036. int8_t SilentMode;
  3037. #endif
  3038. if (code_seen("M117")) { //moved to highest priority place to be able to to print strings which includes "G", "PRUSA" and "^"
  3039. starpos = (strchr(strchr_pointer + 5, '*'));
  3040. if (starpos != NULL)
  3041. *(starpos) = '\0';
  3042. lcd_setstatus(strchr_pointer + 5);
  3043. }
  3044. #ifdef TMC2130
  3045. else if (strncmp_P(CMDBUFFER_CURRENT_STRING, PSTR("CRASH_"), 6) == 0)
  3046. {
  3047. //! ### CRASH_DETECTED - TMC2130
  3048. // ---------------------------------
  3049. if(code_seen("CRASH_DETECTED"))
  3050. {
  3051. uint8_t mask = 0;
  3052. if (code_seen('X')) mask |= X_AXIS_MASK;
  3053. if (code_seen('Y')) mask |= Y_AXIS_MASK;
  3054. crashdet_detected(mask);
  3055. }
  3056. //! ### CRASH_RECOVER - TMC2130
  3057. // ----------------------------------
  3058. else if(code_seen("CRASH_RECOVER"))
  3059. crashdet_recover();
  3060. //! ### CRASH_CANCEL - TMC2130
  3061. // ----------------------------------
  3062. else if(code_seen("CRASH_CANCEL"))
  3063. crashdet_cancel();
  3064. }
  3065. else if (strncmp_P(CMDBUFFER_CURRENT_STRING, PSTR("TMC_"), 4) == 0)
  3066. {
  3067. //! ### TMC_SET_WAVE_
  3068. // --------------------
  3069. if (strncmp_P(CMDBUFFER_CURRENT_STRING + 4, PSTR("SET_WAVE_"), 9) == 0)
  3070. {
  3071. uint8_t axis = *(CMDBUFFER_CURRENT_STRING + 13);
  3072. axis = (axis == 'E')?3:(axis - 'X');
  3073. if (axis < 4)
  3074. {
  3075. uint8_t fac = (uint8_t)strtol(CMDBUFFER_CURRENT_STRING + 14, NULL, 10);
  3076. tmc2130_set_wave(axis, 247, fac);
  3077. }
  3078. }
  3079. //! ### TMC_SET_STEP_
  3080. // ------------------
  3081. else if (strncmp_P(CMDBUFFER_CURRENT_STRING + 4, PSTR("SET_STEP_"), 9) == 0)
  3082. {
  3083. uint8_t axis = *(CMDBUFFER_CURRENT_STRING + 13);
  3084. axis = (axis == 'E')?3:(axis - 'X');
  3085. if (axis < 4)
  3086. {
  3087. uint8_t step = (uint8_t)strtol(CMDBUFFER_CURRENT_STRING + 14, NULL, 10);
  3088. uint16_t res = tmc2130_get_res(axis);
  3089. tmc2130_goto_step(axis, step & (4*res - 1), 2, 1000, res);
  3090. }
  3091. }
  3092. //! ### TMC_SET_CHOP_
  3093. // -------------------
  3094. else if (strncmp_P(CMDBUFFER_CURRENT_STRING + 4, PSTR("SET_CHOP_"), 9) == 0)
  3095. {
  3096. uint8_t axis = *(CMDBUFFER_CURRENT_STRING + 13);
  3097. axis = (axis == 'E')?3:(axis - 'X');
  3098. if (axis < 4)
  3099. {
  3100. uint8_t chop0 = tmc2130_chopper_config[axis].toff;
  3101. uint8_t chop1 = tmc2130_chopper_config[axis].hstr;
  3102. uint8_t chop2 = tmc2130_chopper_config[axis].hend;
  3103. uint8_t chop3 = tmc2130_chopper_config[axis].tbl;
  3104. char* str_end = 0;
  3105. if (CMDBUFFER_CURRENT_STRING[14])
  3106. {
  3107. chop0 = (uint8_t)strtol(CMDBUFFER_CURRENT_STRING + 14, &str_end, 10) & 15;
  3108. if (str_end && *str_end)
  3109. {
  3110. chop1 = (uint8_t)strtol(str_end, &str_end, 10) & 7;
  3111. if (str_end && *str_end)
  3112. {
  3113. chop2 = (uint8_t)strtol(str_end, &str_end, 10) & 15;
  3114. if (str_end && *str_end)
  3115. chop3 = (uint8_t)strtol(str_end, &str_end, 10) & 3;
  3116. }
  3117. }
  3118. }
  3119. tmc2130_chopper_config[axis].toff = chop0;
  3120. tmc2130_chopper_config[axis].hstr = chop1 & 7;
  3121. tmc2130_chopper_config[axis].hend = chop2 & 15;
  3122. tmc2130_chopper_config[axis].tbl = chop3 & 3;
  3123. tmc2130_setup_chopper(axis, tmc2130_mres[axis], tmc2130_current_h[axis], tmc2130_current_r[axis]);
  3124. //printf_P(_N("TMC_SET_CHOP_%c %hhd %hhd %hhd %hhd\n"), "xyze"[axis], chop0, chop1, chop2, chop3);
  3125. }
  3126. }
  3127. }
  3128. #ifdef BACKLASH_X
  3129. else if (strncmp_P(CMDBUFFER_CURRENT_STRING, PSTR("BACKLASH_X"), 10) == 0)
  3130. {
  3131. uint8_t bl = (uint8_t)strtol(CMDBUFFER_CURRENT_STRING + 10, NULL, 10);
  3132. st_backlash_x = bl;
  3133. printf_P(_N("st_backlash_x = %hhd\n"), st_backlash_x);
  3134. }
  3135. #endif //BACKLASH_X
  3136. #ifdef BACKLASH_Y
  3137. else if (strncmp_P(CMDBUFFER_CURRENT_STRING, PSTR("BACKLASH_Y"), 10) == 0)
  3138. {
  3139. uint8_t bl = (uint8_t)strtol(CMDBUFFER_CURRENT_STRING + 10, NULL, 10);
  3140. st_backlash_y = bl;
  3141. printf_P(_N("st_backlash_y = %hhd\n"), st_backlash_y);
  3142. }
  3143. #endif //BACKLASH_Y
  3144. #endif //TMC2130
  3145. else if(code_seen("PRUSA")){
  3146. /*!
  3147. *
  3148. ### PRUSA - Internal command set
  3149. Set of internal PRUSA commands
  3150. PRUSA [ Ping | PRN | FAN | fn | thx | uvlo | fsensor_recover | MMURES | RESET | fv | M28 | SN | Fir | Rev | Lang | Lz | Beat | FR ]
  3151. - `Ping`
  3152. - `PRN` - Prints revision of the printer
  3153. - `FAN` - Prints fan details
  3154. - `fn` - Prints farm no.
  3155. - `thx`
  3156. - `uvlo`
  3157. - `fsensor_recover` - Filament sensor recover - restore print and continue
  3158. - `MMURES` - Reset MMU
  3159. - `RESET` - (Careful!)
  3160. - `fv` - ?
  3161. - `M28`
  3162. - `SN`
  3163. - `Fir` - Prints firmware version
  3164. - `Rev`- Prints filament size, elelectronics, nozzle type
  3165. - `Lang` - Reset the language
  3166. - `Lz`
  3167. - `Beat` - Kick farm link timer
  3168. - `FR` - Full factory reset
  3169. - `nozzle set <diameter>` - set nozzle diameter (farm mode only), e.g. `PRUSA nozzle set 0.4`
  3170. - `nozzle D<diameter>` - check the nozzle diameter (farm mode only), works like M862.1 P, e.g. `PRUSA nozzle D0.4`
  3171. - `nozzle` - prints nozzle diameter (farm mode only), works like M862.1 P, e.g. `PRUSA nozzle`
  3172. *
  3173. */
  3174. if (code_seen("Ping")) { // PRUSA Ping
  3175. if (farm_mode) {
  3176. PingTime = _millis();
  3177. //MYSERIAL.print(farm_no); MYSERIAL.println(": OK");
  3178. }
  3179. }
  3180. else if (code_seen("PRN")) { // PRUSA PRN
  3181. printf_P(_N("%d"), status_number);
  3182. } else if( code_seen("FANPINTST") ){
  3183. gcode_PRUSA_BadRAMBoFanTest();
  3184. }else if (code_seen("FAN")) { //! PRUSA FAN
  3185. printf_P(_N("E0:%d RPM\nPRN0:%d RPM\n"), 60*fan_speed[0], 60*fan_speed[1]);
  3186. }else if (code_seen("fn")) { // PRUSA fn
  3187. if (farm_mode) {
  3188. printf_P(_N("%d"), farm_no);
  3189. }
  3190. else {
  3191. puts_P(_N("Not in farm mode."));
  3192. }
  3193. }
  3194. else if (code_seen("thx")) // PRUSA thx
  3195. {
  3196. no_response = false;
  3197. }
  3198. else if (code_seen("uvlo")) // PRUSA uvlo
  3199. {
  3200. eeprom_update_byte((uint8_t*)EEPROM_UVLO,0);
  3201. enquecommand_P(PSTR("M24"));
  3202. }
  3203. #ifdef FILAMENT_SENSOR
  3204. else if (code_seen("fsensor_recover")) // PRUSA fsensor_recover
  3205. {
  3206. fsensor_restore_print_and_continue();
  3207. }
  3208. #endif //FILAMENT_SENSOR
  3209. else if (code_seen("MMURES")) // PRUSA MMURES
  3210. {
  3211. mmu_reset();
  3212. }
  3213. else if (code_seen("RESET")) { // PRUSA RESET
  3214. // careful!
  3215. if (farm_mode) {
  3216. #if (defined(WATCHDOG) && (MOTHERBOARD == BOARD_EINSY_1_0a))
  3217. boot_app_magic = BOOT_APP_MAGIC;
  3218. boot_app_flags = BOOT_APP_FLG_RUN;
  3219. wdt_enable(WDTO_15MS);
  3220. cli();
  3221. while(1);
  3222. #else //WATCHDOG
  3223. asm volatile("jmp 0x3E000");
  3224. #endif //WATCHDOG
  3225. }
  3226. else {
  3227. MYSERIAL.println("Not in farm mode.");
  3228. }
  3229. }else if (code_seen("fv")) { // PRUSA fv
  3230. // get file version
  3231. #ifdef SDSUPPORT
  3232. card.openFile(strchr_pointer + 3,true);
  3233. while (true) {
  3234. uint16_t readByte = card.get();
  3235. MYSERIAL.write(readByte);
  3236. if (readByte=='\n') {
  3237. break;
  3238. }
  3239. }
  3240. card.closefile();
  3241. #endif // SDSUPPORT
  3242. } else if (code_seen("M28")) { // PRUSA M28
  3243. trace();
  3244. prusa_sd_card_upload = true;
  3245. card.openFile(strchr_pointer+4,false);
  3246. } else if (code_seen("SN")) { // PRUSA SN
  3247. gcode_PRUSA_SN();
  3248. } else if(code_seen("Fir")){ // PRUSA Fir
  3249. SERIAL_PROTOCOLLN(FW_VERSION_FULL);
  3250. } else if(code_seen("Rev")){ // PRUSA Rev
  3251. SERIAL_PROTOCOLLN(FILAMENT_SIZE "-" ELECTRONICS "-" NOZZLE_TYPE );
  3252. } else if(code_seen("Lang")) { // PRUSA Lang
  3253. lang_reset();
  3254. } else if(code_seen("Lz")) { // PRUSA Lz
  3255. eeprom_update_word(reinterpret_cast<uint16_t *>(&(EEPROM_Sheets_base->s[(eeprom_read_byte(&(EEPROM_Sheets_base->active_sheet)))].z_offset)),0);
  3256. } else if(code_seen("Beat")) { // PRUSA Beat
  3257. // Kick farm link timer
  3258. kicktime = _millis();
  3259. } else if(code_seen("FR")) { // PRUSA FR
  3260. // Factory full reset
  3261. factory_reset(0);
  3262. //-//
  3263. /*
  3264. } else if(code_seen("rrr")) {
  3265. MYSERIAL.println("=== checking ===");
  3266. MYSERIAL.println(eeprom_read_byte((uint8_t*)EEPROM_CHECK_MODE),DEC);
  3267. MYSERIAL.println(eeprom_read_byte((uint8_t*)EEPROM_NOZZLE_DIAMETER),DEC);
  3268. MYSERIAL.println(eeprom_read_word((uint16_t*)EEPROM_NOZZLE_DIAMETER_uM),DEC);
  3269. MYSERIAL.println(farm_mode,DEC);
  3270. MYSERIAL.println(eCheckMode,DEC);
  3271. } else if(code_seen("www")) {
  3272. MYSERIAL.println("=== @ FF ===");
  3273. eeprom_update_byte((uint8_t*)EEPROM_CHECK_MODE,0xFF);
  3274. eeprom_update_byte((uint8_t*)EEPROM_NOZZLE_DIAMETER,0xFF);
  3275. eeprom_update_word((uint16_t*)EEPROM_NOZZLE_DIAMETER_uM,0xFFFF);
  3276. */
  3277. } else if (code_seen("nozzle")) { // PRUSA nozzle
  3278. uint16_t nDiameter;
  3279. if(code_seen('D'))
  3280. {
  3281. nDiameter=(uint16_t)(code_value()*1000.0+0.5); // [,um]
  3282. nozzle_diameter_check(nDiameter);
  3283. }
  3284. else if(code_seen("set") && farm_mode)
  3285. {
  3286. strchr_pointer++; // skip 1st char (~ 's')
  3287. strchr_pointer++; // skip 2nd char (~ 'e')
  3288. nDiameter=(uint16_t)(code_value()*1000.0+0.5); // [,um]
  3289. eeprom_update_byte((uint8_t*)EEPROM_NOZZLE_DIAMETER,(uint8_t)ClNozzleDiameter::_Diameter_Undef); // for correct synchronization after farm-mode exiting
  3290. eeprom_update_word((uint16_t*)EEPROM_NOZZLE_DIAMETER_uM,nDiameter);
  3291. }
  3292. else SERIAL_PROTOCOLLN((float)eeprom_read_word((uint16_t*)EEPROM_NOZZLE_DIAMETER_uM)/1000.0);
  3293. //-// !!! SupportMenu
  3294. /*
  3295. // musi byt PRED "PRUSA model"
  3296. } else if (code_seen("smodel")) { //! PRUSA smodel
  3297. size_t nOffset;
  3298. // ! -> "l"
  3299. strchr_pointer+=5*sizeof(*strchr_pointer); // skip 1st - 5th char (~ 'smode')
  3300. nOffset=strspn(strchr_pointer+1," \t\n\r\v\f");
  3301. if(*(strchr_pointer+1+nOffset))
  3302. printer_smodel_check(strchr_pointer);
  3303. else SERIAL_PROTOCOLLN(PRINTER_NAME);
  3304. } else if (code_seen("model")) { //! PRUSA model
  3305. uint16_t nPrinterModel;
  3306. strchr_pointer+=4*sizeof(*strchr_pointer); // skip 1st - 4th char (~ 'mode')
  3307. nPrinterModel=(uint16_t)code_value_long();
  3308. if(nPrinterModel!=0)
  3309. printer_model_check(nPrinterModel);
  3310. else SERIAL_PROTOCOLLN(PRINTER_TYPE);
  3311. } else if (code_seen("version")) { //! PRUSA version
  3312. strchr_pointer+=7*sizeof(*strchr_pointer); // skip 1st - 7th char (~ 'version')
  3313. while(*strchr_pointer==' ') // skip leading spaces
  3314. strchr_pointer++;
  3315. if(*strchr_pointer!=0)
  3316. fw_version_check(strchr_pointer);
  3317. else SERIAL_PROTOCOLLN(FW_VERSION);
  3318. } else if (code_seen("gcode")) { //! PRUSA gcode
  3319. uint16_t nGcodeLevel;
  3320. strchr_pointer+=4*sizeof(*strchr_pointer); // skip 1st - 4th char (~ 'gcod')
  3321. nGcodeLevel=(uint16_t)code_value_long();
  3322. if(nGcodeLevel!=0)
  3323. gcode_level_check(nGcodeLevel);
  3324. else SERIAL_PROTOCOLLN(GCODE_LEVEL);
  3325. */
  3326. }
  3327. //else if (code_seen('Cal')) {
  3328. // lcd_calibration();
  3329. // }
  3330. }
  3331. // This prevents reading files with "^" in their names.
  3332. // Since it is unclear, if there is some usage of this construct,
  3333. // it will be deprecated in 3.9 alpha a possibly completely removed in the future:
  3334. // else if (code_seen('^')) {
  3335. // // nothing, this is a version line
  3336. // }
  3337. else if(code_seen('G'))
  3338. {
  3339. gcode_in_progress = (int)code_value();
  3340. // printf_P(_N("BEGIN G-CODE=%u\n"), gcode_in_progress);
  3341. switch (gcode_in_progress)
  3342. {
  3343. //! ### G0, G1 - Coordinated movement X Y Z E
  3344. // --------------------------------------
  3345. case 0: // G0 -> G1
  3346. case 1: // G1
  3347. if(Stopped == false) {
  3348. #ifdef FILAMENT_RUNOUT_SUPPORT
  3349. if(READ(FR_SENS)){
  3350. int feedmultiplyBckp=feedmultiply;
  3351. float target[4];
  3352. float lastpos[4];
  3353. target[X_AXIS]=current_position[X_AXIS];
  3354. target[Y_AXIS]=current_position[Y_AXIS];
  3355. target[Z_AXIS]=current_position[Z_AXIS];
  3356. target[E_AXIS]=current_position[E_AXIS];
  3357. lastpos[X_AXIS]=current_position[X_AXIS];
  3358. lastpos[Y_AXIS]=current_position[Y_AXIS];
  3359. lastpos[Z_AXIS]=current_position[Z_AXIS];
  3360. lastpos[E_AXIS]=current_position[E_AXIS];
  3361. //retract by E
  3362. target[E_AXIS]+= FILAMENTCHANGE_FIRSTRETRACT ;
  3363. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 400, active_extruder);
  3364. target[Z_AXIS]+= FILAMENTCHANGE_ZADD ;
  3365. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 300, active_extruder);
  3366. target[X_AXIS]= FILAMENTCHANGE_XPOS ;
  3367. target[Y_AXIS]= FILAMENTCHANGE_YPOS ;
  3368. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 70, active_extruder);
  3369. target[E_AXIS]+= FILAMENTCHANGE_FINALRETRACT ;
  3370. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 20, active_extruder);
  3371. //finish moves
  3372. st_synchronize();
  3373. //disable extruder steppers so filament can be removed
  3374. disable_e0();
  3375. disable_e1();
  3376. disable_e2();
  3377. _delay(100);
  3378. //LCD_ALERTMESSAGEPGM(_T(MSG_FILAMENTCHANGE));
  3379. uint8_t cnt=0;
  3380. int counterBeep = 0;
  3381. lcd_wait_interact();
  3382. while(!lcd_clicked()){
  3383. cnt++;
  3384. manage_heater();
  3385. manage_inactivity(true);
  3386. //lcd_update(0);
  3387. if(cnt==0)
  3388. {
  3389. #if BEEPER > 0
  3390. if (counterBeep== 500){
  3391. counterBeep = 0;
  3392. }
  3393. SET_OUTPUT(BEEPER);
  3394. if (counterBeep== 0){
  3395. if(eSoundMode!=e_SOUND_MODE_SILENT)
  3396. WRITE(BEEPER,HIGH);
  3397. }
  3398. if (counterBeep== 20){
  3399. WRITE(BEEPER,LOW);
  3400. }
  3401. counterBeep++;
  3402. #else
  3403. #endif
  3404. }
  3405. }
  3406. WRITE(BEEPER,LOW);
  3407. target[E_AXIS]+= FILAMENTCHANGE_FIRSTFEED ;
  3408. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 20, active_extruder);
  3409. target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  3410. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder);
  3411. lcd_change_fil_state = 0;
  3412. lcd_loading_filament();
  3413. while ((lcd_change_fil_state == 0)||(lcd_change_fil_state != 1)){
  3414. lcd_change_fil_state = 0;
  3415. lcd_alright();
  3416. switch(lcd_change_fil_state){
  3417. case 2:
  3418. target[E_AXIS]+= FILAMENTCHANGE_FIRSTFEED ;
  3419. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 20, active_extruder);
  3420. target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  3421. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder);
  3422. lcd_loading_filament();
  3423. break;
  3424. case 3:
  3425. target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  3426. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder);
  3427. lcd_loading_color();
  3428. break;
  3429. default:
  3430. lcd_change_success();
  3431. break;
  3432. }
  3433. }
  3434. target[E_AXIS]+= 5;
  3435. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder);
  3436. target[E_AXIS]+= FILAMENTCHANGE_FIRSTRETRACT;
  3437. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 400, active_extruder);
  3438. //current_position[E_AXIS]=target[E_AXIS]; //the long retract of L is compensated by manual filament feeding
  3439. //plan_set_e_position(current_position[E_AXIS]);
  3440. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 70, active_extruder); //should do nothing
  3441. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], target[Z_AXIS], target[E_AXIS], 70, active_extruder); //move xy back
  3442. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], target[E_AXIS], 200, active_extruder); //move z back
  3443. target[E_AXIS]= target[E_AXIS] - FILAMENTCHANGE_FIRSTRETRACT;
  3444. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], target[E_AXIS], 5, active_extruder); //final untretract
  3445. plan_set_e_position(lastpos[E_AXIS]);
  3446. feedmultiply=feedmultiplyBckp;
  3447. char cmd[9];
  3448. sprintf_P(cmd, PSTR("M220 S%i"), feedmultiplyBckp);
  3449. enquecommand(cmd);
  3450. }
  3451. #endif
  3452. get_coordinates(); // For X Y Z E F
  3453. if (total_filament_used > ((current_position[E_AXIS] - destination[E_AXIS]) * 100)) { //protection against total_filament_used overflow
  3454. total_filament_used = total_filament_used + ((destination[E_AXIS] - current_position[E_AXIS]) * 100);
  3455. }
  3456. #ifdef FWRETRACT
  3457. if(cs.autoretract_enabled)
  3458. if( !(code_seen('X') || code_seen('Y') || code_seen('Z')) && code_seen('E')) {
  3459. float echange=destination[E_AXIS]-current_position[E_AXIS];
  3460. if((echange<-MIN_RETRACT && !retracted[active_extruder]) || (echange>MIN_RETRACT && retracted[active_extruder])) { //move appears to be an attempt to retract or recover
  3461. current_position[E_AXIS] = destination[E_AXIS]; //hide the slicer-generated retract/recover from calculations
  3462. plan_set_e_position(current_position[E_AXIS]); //AND from the planner
  3463. retract(!retracted[active_extruder]);
  3464. return;
  3465. }
  3466. }
  3467. #endif //FWRETRACT
  3468. prepare_move();
  3469. //ClearToSend();
  3470. }
  3471. break;
  3472. //! ### G2 - CW ARC
  3473. // ------------------------------
  3474. case 2:
  3475. if(Stopped == false) {
  3476. get_arc_coordinates();
  3477. prepare_arc_move(true);
  3478. }
  3479. break;
  3480. //! ### G3 - CCW ARC
  3481. // -------------------------------
  3482. case 3:
  3483. if(Stopped == false) {
  3484. get_arc_coordinates();
  3485. prepare_arc_move(false);
  3486. }
  3487. break;
  3488. //! ### G4 - Dwell
  3489. // -------------------------------
  3490. case 4:
  3491. codenum = 0;
  3492. if(code_seen('P')) codenum = code_value(); // milliseconds to wait
  3493. if(code_seen('S')) codenum = code_value() * 1000; // seconds to wait
  3494. if(codenum != 0) LCD_MESSAGERPGM(_n("Sleep..."));////MSG_DWELL
  3495. st_synchronize();
  3496. codenum += _millis(); // keep track of when we started waiting
  3497. previous_millis_cmd = _millis();
  3498. while(_millis() < codenum) {
  3499. manage_heater();
  3500. manage_inactivity();
  3501. lcd_update(0);
  3502. }
  3503. break;
  3504. #ifdef FWRETRACT
  3505. //! ### G10 Retract
  3506. // ------------------------------
  3507. case 10:
  3508. #if EXTRUDERS > 1
  3509. retracted_swap[active_extruder]=(code_seen('S') && code_value_long() == 1); // checks for swap retract argument
  3510. retract(true,retracted_swap[active_extruder]);
  3511. #else
  3512. retract(true);
  3513. #endif
  3514. break;
  3515. //! ### G11 - Retract recover
  3516. // -----------------------------
  3517. case 11:
  3518. #if EXTRUDERS > 1
  3519. retract(false,retracted_swap[active_extruder]);
  3520. #else
  3521. retract(false);
  3522. #endif
  3523. break;
  3524. #endif //FWRETRACT
  3525. //! ### G28 - Home all Axis one at a time
  3526. // --------------------------------------------
  3527. case 28:
  3528. {
  3529. long home_x_value = 0;
  3530. long home_y_value = 0;
  3531. long home_z_value = 0;
  3532. // Which axes should be homed?
  3533. bool home_x = code_seen(axis_codes[X_AXIS]);
  3534. home_x_value = code_value_long();
  3535. bool home_y = code_seen(axis_codes[Y_AXIS]);
  3536. home_y_value = code_value_long();
  3537. bool home_z = code_seen(axis_codes[Z_AXIS]);
  3538. home_z_value = code_value_long();
  3539. bool without_mbl = code_seen('W');
  3540. // calibrate?
  3541. #ifdef TMC2130
  3542. bool calib = code_seen('C');
  3543. gcode_G28(home_x, home_x_value, home_y, home_y_value, home_z, home_z_value, calib, without_mbl);
  3544. #else
  3545. gcode_G28(home_x, home_x_value, home_y, home_y_value, home_z, home_z_value, without_mbl);
  3546. #endif //TMC2130
  3547. if ((home_x || home_y || without_mbl || home_z) == false) {
  3548. // Push the commands to the front of the message queue in the reverse order!
  3549. // There shall be always enough space reserved for these commands.
  3550. goto case_G80;
  3551. }
  3552. break;
  3553. }
  3554. #ifdef ENABLE_AUTO_BED_LEVELING
  3555. //! ### G29 - Detailed Z-Probe
  3556. // --------------------------------
  3557. case 29:
  3558. {
  3559. #if Z_MIN_PIN == -1
  3560. #error "You must have a Z_MIN endstop in order to enable Auto Bed Leveling feature! Z_MIN_PIN must point to a valid hardware pin."
  3561. #endif
  3562. // Prevent user from running a G29 without first homing in X and Y
  3563. if (! (axis_known_position[X_AXIS] && axis_known_position[Y_AXIS]) )
  3564. {
  3565. LCD_MESSAGERPGM(MSG_POSITION_UNKNOWN);
  3566. SERIAL_ECHO_START;
  3567. SERIAL_ECHOLNRPGM(MSG_POSITION_UNKNOWN);
  3568. break; // abort G29, since we don't know where we are
  3569. }
  3570. st_synchronize();
  3571. // make sure the bed_level_rotation_matrix is identity or the planner will get it incorectly
  3572. //vector_3 corrected_position = plan_get_position_mm();
  3573. //corrected_position.debug("position before G29");
  3574. plan_bed_level_matrix.set_to_identity();
  3575. vector_3 uncorrected_position = plan_get_position();
  3576. //uncorrected_position.debug("position durring G29");
  3577. current_position[X_AXIS] = uncorrected_position.x;
  3578. current_position[Y_AXIS] = uncorrected_position.y;
  3579. current_position[Z_AXIS] = uncorrected_position.z;
  3580. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  3581. int l_feedmultiply = setup_for_endstop_move();
  3582. feedrate = homing_feedrate[Z_AXIS];
  3583. #ifdef AUTO_BED_LEVELING_GRID
  3584. // probe at the points of a lattice grid
  3585. int xGridSpacing = (RIGHT_PROBE_BED_POSITION - LEFT_PROBE_BED_POSITION) / (AUTO_BED_LEVELING_GRID_POINTS-1);
  3586. int yGridSpacing = (BACK_PROBE_BED_POSITION - FRONT_PROBE_BED_POSITION) / (AUTO_BED_LEVELING_GRID_POINTS-1);
  3587. // solve the plane equation ax + by + d = z
  3588. // A is the matrix with rows [x y 1] for all the probed points
  3589. // B is the vector of the Z positions
  3590. // the normal vector to the plane is formed by the coefficients of the plane equation in the standard form, which is Vx*x+Vy*y+Vz*z+d = 0
  3591. // so Vx = -a Vy = -b Vz = 1 (we want the vector facing towards positive Z
  3592. // "A" matrix of the linear system of equations
  3593. double eqnAMatrix[AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS*3];
  3594. // "B" vector of Z points
  3595. double eqnBVector[AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS];
  3596. int probePointCounter = 0;
  3597. bool zig = true;
  3598. for (int yProbe=FRONT_PROBE_BED_POSITION; yProbe <= BACK_PROBE_BED_POSITION; yProbe += yGridSpacing)
  3599. {
  3600. int xProbe, xInc;
  3601. if (zig)
  3602. {
  3603. xProbe = LEFT_PROBE_BED_POSITION;
  3604. //xEnd = RIGHT_PROBE_BED_POSITION;
  3605. xInc = xGridSpacing;
  3606. zig = false;
  3607. } else // zag
  3608. {
  3609. xProbe = RIGHT_PROBE_BED_POSITION;
  3610. //xEnd = LEFT_PROBE_BED_POSITION;
  3611. xInc = -xGridSpacing;
  3612. zig = true;
  3613. }
  3614. for (int xCount=0; xCount < AUTO_BED_LEVELING_GRID_POINTS; xCount++)
  3615. {
  3616. float z_before;
  3617. if (probePointCounter == 0)
  3618. {
  3619. // raise before probing
  3620. z_before = Z_RAISE_BEFORE_PROBING;
  3621. } else
  3622. {
  3623. // raise extruder
  3624. z_before = current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS;
  3625. }
  3626. float measured_z = probe_pt(xProbe, yProbe, z_before);
  3627. eqnBVector[probePointCounter] = measured_z;
  3628. eqnAMatrix[probePointCounter + 0*AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS] = xProbe;
  3629. eqnAMatrix[probePointCounter + 1*AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS] = yProbe;
  3630. eqnAMatrix[probePointCounter + 2*AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS] = 1;
  3631. probePointCounter++;
  3632. xProbe += xInc;
  3633. }
  3634. }
  3635. clean_up_after_endstop_move(l_feedmultiply);
  3636. // solve lsq problem
  3637. double *plane_equation_coefficients = qr_solve(AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS, 3, eqnAMatrix, eqnBVector);
  3638. SERIAL_PROTOCOLPGM("Eqn coefficients: a: ");
  3639. SERIAL_PROTOCOL(plane_equation_coefficients[0]);
  3640. SERIAL_PROTOCOLPGM(" b: ");
  3641. SERIAL_PROTOCOL(plane_equation_coefficients[1]);
  3642. SERIAL_PROTOCOLPGM(" d: ");
  3643. SERIAL_PROTOCOLLN(plane_equation_coefficients[2]);
  3644. set_bed_level_equation_lsq(plane_equation_coefficients);
  3645. free(plane_equation_coefficients);
  3646. #else // AUTO_BED_LEVELING_GRID not defined
  3647. // Probe at 3 arbitrary points
  3648. // probe 1
  3649. float z_at_pt_1 = probe_pt(ABL_PROBE_PT_1_X, ABL_PROBE_PT_1_Y, Z_RAISE_BEFORE_PROBING);
  3650. // probe 2
  3651. float z_at_pt_2 = probe_pt(ABL_PROBE_PT_2_X, ABL_PROBE_PT_2_Y, current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS);
  3652. // probe 3
  3653. float z_at_pt_3 = probe_pt(ABL_PROBE_PT_3_X, ABL_PROBE_PT_3_Y, current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS);
  3654. clean_up_after_endstop_move(l_feedmultiply);
  3655. set_bed_level_equation_3pts(z_at_pt_1, z_at_pt_2, z_at_pt_3);
  3656. #endif // AUTO_BED_LEVELING_GRID
  3657. st_synchronize();
  3658. // The following code correct the Z height difference from z-probe position and hotend tip position.
  3659. // The Z height on homing is measured by Z-Probe, but the probe is quite far from the hotend.
  3660. // When the bed is uneven, this height must be corrected.
  3661. real_z = float(st_get_position(Z_AXIS))/cs.axis_steps_per_unit[Z_AXIS]; //get the real Z (since the auto bed leveling is already correcting the plane)
  3662. x_tmp = current_position[X_AXIS] + X_PROBE_OFFSET_FROM_EXTRUDER;
  3663. y_tmp = current_position[Y_AXIS] + Y_PROBE_OFFSET_FROM_EXTRUDER;
  3664. z_tmp = current_position[Z_AXIS];
  3665. apply_rotation_xyz(plan_bed_level_matrix, x_tmp, y_tmp, z_tmp); //Apply the correction sending the probe offset
  3666. current_position[Z_AXIS] = z_tmp - real_z + current_position[Z_AXIS]; //The difference is added to current position and sent to planner.
  3667. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  3668. }
  3669. break;
  3670. #ifndef Z_PROBE_SLED
  3671. //! ### G30 - Single Z Probe
  3672. // ------------------------------------
  3673. case 30:
  3674. {
  3675. st_synchronize();
  3676. // TODO: make sure the bed_level_rotation_matrix is identity or the planner will get set incorectly
  3677. int l_feedmultiply = setup_for_endstop_move();
  3678. feedrate = homing_feedrate[Z_AXIS];
  3679. run_z_probe();
  3680. SERIAL_PROTOCOLPGM(_T(MSG_BED));
  3681. SERIAL_PROTOCOLPGM(" X: ");
  3682. SERIAL_PROTOCOL(current_position[X_AXIS]);
  3683. SERIAL_PROTOCOLPGM(" Y: ");
  3684. SERIAL_PROTOCOL(current_position[Y_AXIS]);
  3685. SERIAL_PROTOCOLPGM(" Z: ");
  3686. SERIAL_PROTOCOL(current_position[Z_AXIS]);
  3687. SERIAL_PROTOCOLPGM("\n");
  3688. clean_up_after_endstop_move(l_feedmultiply);
  3689. }
  3690. break;
  3691. #else
  3692. //! ### G31 - Dock the sled
  3693. // ---------------------------
  3694. case 31:
  3695. dock_sled(true);
  3696. break;
  3697. //! ### G32 - Undock the sled
  3698. // ----------------------------
  3699. case 32:
  3700. dock_sled(false);
  3701. break;
  3702. #endif // Z_PROBE_SLED
  3703. #endif // ENABLE_AUTO_BED_LEVELING
  3704. #ifdef MESH_BED_LEVELING
  3705. //! ### G30 - Single Z Probe
  3706. // ----------------------------
  3707. case 30:
  3708. {
  3709. st_synchronize();
  3710. // TODO: make sure the bed_level_rotation_matrix is identity or the planner will get set incorectly
  3711. int l_feedmultiply = setup_for_endstop_move();
  3712. feedrate = homing_feedrate[Z_AXIS];
  3713. find_bed_induction_sensor_point_z(-10.f, 3);
  3714. printf_P(_N("%S X: %.5f Y: %.5f Z: %.5f\n"), _T(MSG_BED), _x, _y, _z);
  3715. clean_up_after_endstop_move(l_feedmultiply);
  3716. }
  3717. break;
  3718. //! ### G75 - Print temperature interpolation
  3719. // ---------------------------------------------
  3720. case 75:
  3721. {
  3722. for (int i = 40; i <= 110; i++)
  3723. printf_P(_N("%d %.2f"), i, temp_comp_interpolation(i));
  3724. }
  3725. break;
  3726. //! ### G76 - PINDA probe temperature calibration
  3727. // ------------------------------------------------
  3728. case 76:
  3729. {
  3730. #ifdef PINDA_THERMISTOR
  3731. if (true)
  3732. {
  3733. if (calibration_status() >= CALIBRATION_STATUS_XYZ_CALIBRATION) {
  3734. //we need to know accurate position of first calibration point
  3735. //if xyz calibration was not performed yet, interrupt temperature calibration and inform user that xyz cal. is needed
  3736. lcd_show_fullscreen_message_and_wait_P(_i("Please run XYZ calibration first."));
  3737. break;
  3738. }
  3739. if (!(axis_known_position[X_AXIS] && axis_known_position[Y_AXIS] && axis_known_position[Z_AXIS]))
  3740. {
  3741. // We don't know where we are! HOME!
  3742. // Push the commands to the front of the message queue in the reverse order!
  3743. // There shall be always enough space reserved for these commands.
  3744. repeatcommand_front(); // repeat G76 with all its parameters
  3745. enquecommand_front_P((PSTR("G28 W0")));
  3746. break;
  3747. }
  3748. lcd_show_fullscreen_message_and_wait_P(_i("Stable ambient temperature 21-26C is needed a rigid stand is required."));////MSG_TEMP_CAL_WARNING c=20 r=4
  3749. bool result = lcd_show_fullscreen_message_yes_no_and_wait_P(_T(MSG_STEEL_SHEET_CHECK), false, false);
  3750. if (result)
  3751. {
  3752. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3753. plan_buffer_line_curposXYZE(3000 / 60, active_extruder);
  3754. current_position[Z_AXIS] = 50;
  3755. current_position[Y_AXIS] = 180;
  3756. plan_buffer_line_curposXYZE(3000 / 60, active_extruder);
  3757. st_synchronize();
  3758. lcd_show_fullscreen_message_and_wait_P(_T(MSG_REMOVE_STEEL_SHEET));
  3759. current_position[Y_AXIS] = pgm_read_float(bed_ref_points_4 + 1);
  3760. current_position[X_AXIS] = pgm_read_float(bed_ref_points_4);
  3761. plan_buffer_line_curposXYZE(3000 / 60, active_extruder);
  3762. st_synchronize();
  3763. gcode_G28(false, false, true);
  3764. }
  3765. if ((current_temperature_pinda > 35) && (farm_mode == false)) {
  3766. //waiting for PIDNA probe to cool down in case that we are not in farm mode
  3767. current_position[Z_AXIS] = 100;
  3768. plan_buffer_line_curposXYZE(3000 / 60, active_extruder);
  3769. if (lcd_wait_for_pinda(35) == false) { //waiting for PINDA probe to cool, if this takes more then time expected, temp. cal. fails
  3770. lcd_temp_cal_show_result(false);
  3771. break;
  3772. }
  3773. }
  3774. lcd_update_enable(true);
  3775. KEEPALIVE_STATE(NOT_BUSY); //no need to print busy messages as we print current temperatures periodicaly
  3776. SERIAL_ECHOLNPGM("PINDA probe calibration start");
  3777. float zero_z;
  3778. int z_shift = 0; //unit: steps
  3779. float start_temp = 5 * (int)(current_temperature_pinda / 5);
  3780. if (start_temp < 35) start_temp = 35;
  3781. if (start_temp < current_temperature_pinda) start_temp += 5;
  3782. printf_P(_N("start temperature: %.1f\n"), start_temp);
  3783. // setTargetHotend(200, 0);
  3784. setTargetBed(70 + (start_temp - 30));
  3785. custom_message_type = CustomMsg::TempCal;
  3786. custom_message_state = 1;
  3787. lcd_setstatuspgm(_T(MSG_TEMP_CALIBRATION));
  3788. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3789. plan_buffer_line_curposXYZE(3000 / 60, active_extruder);
  3790. current_position[X_AXIS] = PINDA_PREHEAT_X;
  3791. current_position[Y_AXIS] = PINDA_PREHEAT_Y;
  3792. plan_buffer_line_curposXYZE(3000 / 60, active_extruder);
  3793. current_position[Z_AXIS] = PINDA_PREHEAT_Z;
  3794. plan_buffer_line_curposXYZE(3000 / 60, active_extruder);
  3795. st_synchronize();
  3796. while (current_temperature_pinda < start_temp)
  3797. {
  3798. delay_keep_alive(1000);
  3799. serialecho_temperatures();
  3800. }
  3801. eeprom_update_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 0); //invalidate temp. calibration in case that in will be aborted during the calibration process
  3802. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3803. plan_buffer_line_curposXYZE(3000 / 60, active_extruder);
  3804. current_position[X_AXIS] = pgm_read_float(bed_ref_points_4);
  3805. current_position[Y_AXIS] = pgm_read_float(bed_ref_points_4 + 1);
  3806. plan_buffer_line_curposXYZE(3000 / 60, active_extruder);
  3807. st_synchronize();
  3808. bool find_z_result = find_bed_induction_sensor_point_z(-1.f);
  3809. if (find_z_result == false) {
  3810. lcd_temp_cal_show_result(find_z_result);
  3811. break;
  3812. }
  3813. zero_z = current_position[Z_AXIS];
  3814. printf_P(_N("\nZERO: %.3f\n"), current_position[Z_AXIS]);
  3815. int i = -1; for (; i < 5; i++)
  3816. {
  3817. float temp = (40 + i * 5);
  3818. printf_P(_N("\nStep: %d/6 (skipped)\nPINDA temperature: %d Z shift (mm):0\n"), i + 2, (40 + i*5));
  3819. if (i >= 0) EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + i * 2, &z_shift);
  3820. if (start_temp <= temp) break;
  3821. }
  3822. for (i++; i < 5; i++)
  3823. {
  3824. float temp = (40 + i * 5);
  3825. printf_P(_N("\nStep: %d/6\n"), i + 2);
  3826. custom_message_state = i + 2;
  3827. setTargetBed(50 + 10 * (temp - 30) / 5);
  3828. // setTargetHotend(255, 0);
  3829. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3830. plan_buffer_line_curposXYZE(3000 / 60, active_extruder);
  3831. current_position[X_AXIS] = PINDA_PREHEAT_X;
  3832. current_position[Y_AXIS] = PINDA_PREHEAT_Y;
  3833. plan_buffer_line_curposXYZE(3000 / 60, active_extruder);
  3834. current_position[Z_AXIS] = PINDA_PREHEAT_Z;
  3835. plan_buffer_line_curposXYZE(3000 / 60, active_extruder);
  3836. st_synchronize();
  3837. while (current_temperature_pinda < temp)
  3838. {
  3839. delay_keep_alive(1000);
  3840. serialecho_temperatures();
  3841. }
  3842. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3843. plan_buffer_line_curposXYZE(3000 / 60, active_extruder);
  3844. current_position[X_AXIS] = pgm_read_float(bed_ref_points_4);
  3845. current_position[Y_AXIS] = pgm_read_float(bed_ref_points_4 + 1);
  3846. plan_buffer_line_curposXYZE(3000 / 60, active_extruder);
  3847. st_synchronize();
  3848. find_z_result = find_bed_induction_sensor_point_z(-1.f);
  3849. if (find_z_result == false) {
  3850. lcd_temp_cal_show_result(find_z_result);
  3851. break;
  3852. }
  3853. z_shift = (int)((current_position[Z_AXIS] - zero_z)*cs.axis_steps_per_unit[Z_AXIS]);
  3854. printf_P(_N("\nPINDA temperature: %.1f Z shift (mm): %.3f"), current_temperature_pinda, current_position[Z_AXIS] - zero_z);
  3855. EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + i * 2, &z_shift);
  3856. }
  3857. lcd_temp_cal_show_result(true);
  3858. break;
  3859. }
  3860. #endif //PINDA_THERMISTOR
  3861. setTargetBed(PINDA_MIN_T);
  3862. float zero_z;
  3863. int z_shift = 0; //unit: steps
  3864. int t_c; // temperature
  3865. if (!(axis_known_position[X_AXIS] && axis_known_position[Y_AXIS] && axis_known_position[Z_AXIS])) {
  3866. // We don't know where we are! HOME!
  3867. // Push the commands to the front of the message queue in the reverse order!
  3868. // There shall be always enough space reserved for these commands.
  3869. repeatcommand_front(); // repeat G76 with all its parameters
  3870. enquecommand_front_P((PSTR("G28 W0")));
  3871. break;
  3872. }
  3873. puts_P(_N("PINDA probe calibration start"));
  3874. custom_message_type = CustomMsg::TempCal;
  3875. custom_message_state = 1;
  3876. lcd_setstatuspgm(_T(MSG_TEMP_CALIBRATION));
  3877. current_position[X_AXIS] = PINDA_PREHEAT_X;
  3878. current_position[Y_AXIS] = PINDA_PREHEAT_Y;
  3879. current_position[Z_AXIS] = PINDA_PREHEAT_Z;
  3880. plan_buffer_line_curposXYZE(3000 / 60, active_extruder);
  3881. st_synchronize();
  3882. while (abs(degBed() - PINDA_MIN_T) > 1) {
  3883. delay_keep_alive(1000);
  3884. serialecho_temperatures();
  3885. }
  3886. //enquecommand_P(PSTR("M190 S50"));
  3887. for (int i = 0; i < PINDA_HEAT_T; i++) {
  3888. delay_keep_alive(1000);
  3889. serialecho_temperatures();
  3890. }
  3891. eeprom_update_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 0); //invalidate temp. calibration in case that in will be aborted during the calibration process
  3892. current_position[Z_AXIS] = 5;
  3893. plan_buffer_line_curposXYZE(3000 / 60, active_extruder);
  3894. current_position[X_AXIS] = BED_X0;
  3895. current_position[Y_AXIS] = BED_Y0;
  3896. plan_buffer_line_curposXYZE(3000 / 60, active_extruder);
  3897. st_synchronize();
  3898. find_bed_induction_sensor_point_z(-1.f);
  3899. zero_z = current_position[Z_AXIS];
  3900. printf_P(_N("\nZERO: %.3f\n"), current_position[Z_AXIS]);
  3901. for (int i = 0; i<5; i++) {
  3902. printf_P(_N("\nStep: %d/6\n"), i + 2);
  3903. custom_message_state = i + 2;
  3904. t_c = 60 + i * 10;
  3905. setTargetBed(t_c);
  3906. current_position[X_AXIS] = PINDA_PREHEAT_X;
  3907. current_position[Y_AXIS] = PINDA_PREHEAT_Y;
  3908. current_position[Z_AXIS] = PINDA_PREHEAT_Z;
  3909. plan_buffer_line_curposXYZE(3000 / 60, active_extruder);
  3910. st_synchronize();
  3911. while (degBed() < t_c) {
  3912. delay_keep_alive(1000);
  3913. serialecho_temperatures();
  3914. }
  3915. for (int i = 0; i < PINDA_HEAT_T; i++) {
  3916. delay_keep_alive(1000);
  3917. serialecho_temperatures();
  3918. }
  3919. current_position[Z_AXIS] = 5;
  3920. plan_buffer_line_curposXYZE(3000 / 60, active_extruder);
  3921. current_position[X_AXIS] = BED_X0;
  3922. current_position[Y_AXIS] = BED_Y0;
  3923. plan_buffer_line_curposXYZE(3000 / 60, active_extruder);
  3924. st_synchronize();
  3925. find_bed_induction_sensor_point_z(-1.f);
  3926. z_shift = (int)((current_position[Z_AXIS] - zero_z)*cs.axis_steps_per_unit[Z_AXIS]);
  3927. printf_P(_N("\nTemperature: %d Z shift (mm): %.3f\n"), t_c, current_position[Z_AXIS] - zero_z);
  3928. EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + i*2, &z_shift);
  3929. }
  3930. custom_message_type = CustomMsg::Status;
  3931. eeprom_update_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 1);
  3932. puts_P(_N("Temperature calibration done."));
  3933. disable_x();
  3934. disable_y();
  3935. disable_z();
  3936. disable_e0();
  3937. disable_e1();
  3938. disable_e2();
  3939. setTargetBed(0); //set bed target temperature back to 0
  3940. lcd_show_fullscreen_message_and_wait_P(_T(MSG_TEMP_CALIBRATION_DONE));
  3941. temp_cal_active = true;
  3942. eeprom_update_byte((unsigned char *)EEPROM_TEMP_CAL_ACTIVE, 1);
  3943. lcd_update_enable(true);
  3944. lcd_update(2);
  3945. }
  3946. break;
  3947. //! ### G80 - Mesh-based Z probe
  3948. // -----------------------------------
  3949. /*
  3950. * Probes a grid and produces a mesh to compensate for variable bed height
  3951. * The S0 report the points as below
  3952. * +----> X-axis
  3953. * |
  3954. * |
  3955. * v Y-axis
  3956. */
  3957. case 80:
  3958. #ifdef MK1BP
  3959. break;
  3960. #endif //MK1BP
  3961. case_G80:
  3962. {
  3963. mesh_bed_leveling_flag = true;
  3964. #ifndef PINDA_THERMISTOR
  3965. static bool run = false; // thermistor-less PINDA temperature compensation is running
  3966. #endif // ndef PINDA_THERMISTOR
  3967. #ifdef SUPPORT_VERBOSITY
  3968. int8_t verbosity_level = 0;
  3969. if (code_seen('V')) {
  3970. // Just 'V' without a number counts as V1.
  3971. char c = strchr_pointer[1];
  3972. verbosity_level = (c == ' ' || c == '\t' || c == 0) ? 1 : code_value_short();
  3973. }
  3974. #endif //SUPPORT_VERBOSITY
  3975. // Firstly check if we know where we are
  3976. if (!(axis_known_position[X_AXIS] && axis_known_position[Y_AXIS] && axis_known_position[Z_AXIS])) {
  3977. // We don't know where we are! HOME!
  3978. // Push the commands to the front of the message queue in the reverse order!
  3979. // There shall be always enough space reserved for these commands.
  3980. if (lcd_commands_type != LcdCommands::StopPrint) {
  3981. repeatcommand_front(); // repeat G80 with all its parameters
  3982. enquecommand_front_P((PSTR("G28 W0")));
  3983. }
  3984. else {
  3985. mesh_bed_leveling_flag = false;
  3986. }
  3987. break;
  3988. }
  3989. uint8_t nMeasPoints = MESH_MEAS_NUM_X_POINTS;
  3990. if (code_seen('N')) {
  3991. nMeasPoints = code_value_uint8();
  3992. if (nMeasPoints != 7) {
  3993. nMeasPoints = 3;
  3994. }
  3995. }
  3996. else {
  3997. nMeasPoints = eeprom_read_byte((uint8_t*)EEPROM_MBL_POINTS_NR);
  3998. }
  3999. uint8_t nProbeRetry = 3;
  4000. if (code_seen('R')) {
  4001. nProbeRetry = code_value_uint8();
  4002. if (nProbeRetry > 10) {
  4003. nProbeRetry = 10;
  4004. }
  4005. }
  4006. else {
  4007. nProbeRetry = eeprom_read_byte((uint8_t*)EEPROM_MBL_PROBE_NR);
  4008. }
  4009. bool magnet_elimination = (eeprom_read_byte((uint8_t*)EEPROM_MBL_MAGNET_ELIMINATION) > 0);
  4010. #ifndef PINDA_THERMISTOR
  4011. if (run == false && temp_cal_active == true && calibration_status_pinda() == true && target_temperature_bed >= 50)
  4012. {
  4013. if (lcd_commands_type != LcdCommands::StopPrint) {
  4014. temp_compensation_start();
  4015. run = true;
  4016. repeatcommand_front(); // repeat G80 with all its parameters
  4017. enquecommand_front_P((PSTR("G28 W0")));
  4018. }
  4019. else {
  4020. mesh_bed_leveling_flag = false;
  4021. }
  4022. break;
  4023. }
  4024. run = false;
  4025. #endif //PINDA_THERMISTOR
  4026. if (lcd_commands_type == LcdCommands::StopPrint) {
  4027. mesh_bed_leveling_flag = false;
  4028. break;
  4029. }
  4030. // Save custom message state, set a new custom message state to display: Calibrating point 9.
  4031. CustomMsg custom_message_type_old = custom_message_type;
  4032. unsigned int custom_message_state_old = custom_message_state;
  4033. custom_message_type = CustomMsg::MeshBedLeveling;
  4034. custom_message_state = (nMeasPoints * nMeasPoints) + 10;
  4035. lcd_update(1);
  4036. mbl.reset(); //reset mesh bed leveling
  4037. // Reset baby stepping to zero, if the babystepping has already been loaded before. The babystepsTodo value will be
  4038. // consumed during the first movements following this statement.
  4039. babystep_undo();
  4040. // Cycle through all points and probe them
  4041. // First move up. During this first movement, the babystepping will be reverted.
  4042. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  4043. plan_buffer_line_curposXYZE(homing_feedrate[Z_AXIS] / 60, active_extruder);
  4044. // The move to the first calibration point.
  4045. current_position[X_AXIS] = BED_X0;
  4046. current_position[Y_AXIS] = BED_Y0;
  4047. #ifdef SUPPORT_VERBOSITY
  4048. if (verbosity_level >= 1)
  4049. {
  4050. bool clamped = world2machine_clamp(current_position[X_AXIS], current_position[Y_AXIS]);
  4051. clamped ? SERIAL_PROTOCOLPGM("First calibration point clamped.\n") : SERIAL_PROTOCOLPGM("No clamping for first calibration point.\n");
  4052. }
  4053. #else //SUPPORT_VERBOSITY
  4054. world2machine_clamp(current_position[X_AXIS], current_position[Y_AXIS]);
  4055. #endif //SUPPORT_VERBOSITY
  4056. plan_buffer_line_curposXYZE(homing_feedrate[X_AXIS] / 30, active_extruder);
  4057. // Wait until the move is finished.
  4058. st_synchronize();
  4059. uint8_t mesh_point = 0; //index number of calibration point
  4060. int XY_AXIS_FEEDRATE = homing_feedrate[X_AXIS] / 20;
  4061. int Z_LIFT_FEEDRATE = homing_feedrate[Z_AXIS] / 40;
  4062. bool has_z = is_bed_z_jitter_data_valid(); //checks if we have data from Z calibration (offsets of the Z heiths of the 8 calibration points from the first point)
  4063. #ifdef SUPPORT_VERBOSITY
  4064. if (verbosity_level >= 1) {
  4065. has_z ? SERIAL_PROTOCOLPGM("Z jitter data from Z cal. valid.\n") : SERIAL_PROTOCOLPGM("Z jitter data from Z cal. not valid.\n");
  4066. }
  4067. #endif // SUPPORT_VERBOSITY
  4068. int l_feedmultiply = setup_for_endstop_move(false); //save feedrate and feedmultiply, sets feedmultiply to 100
  4069. const char *kill_message = NULL;
  4070. while (mesh_point != nMeasPoints * nMeasPoints) {
  4071. // Get coords of a measuring point.
  4072. uint8_t ix = mesh_point % nMeasPoints; // from 0 to MESH_NUM_X_POINTS - 1
  4073. uint8_t iy = mesh_point / nMeasPoints;
  4074. /*if (!mbl_point_measurement_valid(ix, iy, nMeasPoints, true)) {
  4075. printf_P(PSTR("Skipping point [%d;%d] \n"), ix, iy);
  4076. custom_message_state--;
  4077. mesh_point++;
  4078. continue; //skip
  4079. }*/
  4080. if (iy & 1) ix = (nMeasPoints - 1) - ix; // Zig zag
  4081. if (nMeasPoints == 7) //if we have 7x7 mesh, compare with Z-calibration for points which are in 3x3 mesh
  4082. {
  4083. has_z = ((ix % 3 == 0) && (iy % 3 == 0)) && is_bed_z_jitter_data_valid();
  4084. }
  4085. float z0 = 0.f;
  4086. if (has_z && (mesh_point > 0)) {
  4087. uint16_t z_offset_u = 0;
  4088. if (nMeasPoints == 7) {
  4089. z_offset_u = eeprom_read_word((uint16_t*)(EEPROM_BED_CALIBRATION_Z_JITTER + 2 * ((ix/3) + iy - 1)));
  4090. }
  4091. else {
  4092. z_offset_u = eeprom_read_word((uint16_t*)(EEPROM_BED_CALIBRATION_Z_JITTER + 2 * (ix + iy * 3 - 1)));
  4093. }
  4094. z0 = mbl.z_values[0][0] + *reinterpret_cast<int16_t*>(&z_offset_u) * 0.01;
  4095. #ifdef SUPPORT_VERBOSITY
  4096. if (verbosity_level >= 1) {
  4097. printf_P(PSTR("Bed leveling, point: %d, calibration Z stored in eeprom: %d, calibration z: %f \n"), mesh_point, z_offset_u, z0);
  4098. }
  4099. #endif // SUPPORT_VERBOSITY
  4100. }
  4101. // Move Z up to MESH_HOME_Z_SEARCH.
  4102. if((ix == 0) && (iy == 0)) current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  4103. else current_position[Z_AXIS] += 2.f / nMeasPoints; //use relative movement from Z coordinate where PINDa triggered on previous point. This makes calibration faster.
  4104. float init_z_bckp = current_position[Z_AXIS];
  4105. plan_buffer_line_curposXYZE(Z_LIFT_FEEDRATE, active_extruder);
  4106. st_synchronize();
  4107. // Move to XY position of the sensor point.
  4108. current_position[X_AXIS] = BED_X(ix, nMeasPoints);
  4109. current_position[Y_AXIS] = BED_Y(iy, nMeasPoints);
  4110. //printf_P(PSTR("[%f;%f]\n"), current_position[X_AXIS], current_position[Y_AXIS]);
  4111. #ifdef SUPPORT_VERBOSITY
  4112. if (verbosity_level >= 1) {
  4113. clamped = world2machine_clamp(current_position[X_AXIS], current_position[Y_AXIS]);
  4114. SERIAL_PROTOCOL(mesh_point);
  4115. clamped ? SERIAL_PROTOCOLPGM(": xy clamped.\n") : SERIAL_PROTOCOLPGM(": no xy clamping\n");
  4116. }
  4117. #else //SUPPORT_VERBOSITY
  4118. world2machine_clamp(current_position[X_AXIS], current_position[Y_AXIS]);
  4119. #endif // SUPPORT_VERBOSITY
  4120. //printf_P(PSTR("after clamping: [%f;%f]\n"), current_position[X_AXIS], current_position[Y_AXIS]);
  4121. plan_buffer_line_curposXYZE(XY_AXIS_FEEDRATE, active_extruder);
  4122. st_synchronize();
  4123. // Go down until endstop is hit
  4124. const float Z_CALIBRATION_THRESHOLD = 1.f;
  4125. if (!find_bed_induction_sensor_point_z((has_z && mesh_point > 0) ? z0 - Z_CALIBRATION_THRESHOLD : -10.f, nProbeRetry)) { //if we have data from z calibration max allowed difference is 1mm for each point, if we dont have data max difference is 10mm from initial point
  4126. printf_P(_T(MSG_BED_LEVELING_FAILED_POINT_LOW));
  4127. break;
  4128. }
  4129. if (init_z_bckp - current_position[Z_AXIS] < 0.1f) { //broken cable or initial Z coordinate too low. Go to MESH_HOME_Z_SEARCH and repeat last step (z-probe) again to distinguish between these two cases.
  4130. //printf_P(PSTR("Another attempt! Current Z position: %f\n"), current_position[Z_AXIS]);
  4131. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  4132. plan_buffer_line_curposXYZE(Z_LIFT_FEEDRATE, active_extruder);
  4133. st_synchronize();
  4134. if (!find_bed_induction_sensor_point_z((has_z && mesh_point > 0) ? z0 - Z_CALIBRATION_THRESHOLD : -10.f, nProbeRetry)) { //if we have data from z calibration max allowed difference is 1mm for each point, if we dont have data max difference is 10mm from initial point
  4135. printf_P(_T(MSG_BED_LEVELING_FAILED_POINT_LOW));
  4136. break;
  4137. }
  4138. if (MESH_HOME_Z_SEARCH - current_position[Z_AXIS] < 0.1f) {
  4139. printf_P(PSTR("Bed leveling failed. Sensor disconnected or cable broken.\n"));
  4140. break;
  4141. }
  4142. }
  4143. if (has_z && fabs(z0 - current_position[Z_AXIS]) > Z_CALIBRATION_THRESHOLD) { //if we have data from z calibration, max. allowed difference is 1mm for each point
  4144. printf_P(PSTR("Bed leveling failed. Sensor triggered too high.\n"));
  4145. break;
  4146. }
  4147. #ifdef SUPPORT_VERBOSITY
  4148. if (verbosity_level >= 10) {
  4149. SERIAL_ECHOPGM("X: ");
  4150. MYSERIAL.print(current_position[X_AXIS], 5);
  4151. SERIAL_ECHOLNPGM("");
  4152. SERIAL_ECHOPGM("Y: ");
  4153. MYSERIAL.print(current_position[Y_AXIS], 5);
  4154. SERIAL_PROTOCOLPGM("\n");
  4155. }
  4156. #endif // SUPPORT_VERBOSITY
  4157. float offset_z = 0;
  4158. #ifdef PINDA_THERMISTOR
  4159. offset_z = temp_compensation_pinda_thermistor_offset(current_temperature_pinda);
  4160. #endif //PINDA_THERMISTOR
  4161. // #ifdef SUPPORT_VERBOSITY
  4162. /* if (verbosity_level >= 1)
  4163. {
  4164. SERIAL_ECHOPGM("mesh bed leveling: ");
  4165. MYSERIAL.print(current_position[Z_AXIS], 5);
  4166. SERIAL_ECHOPGM(" offset: ");
  4167. MYSERIAL.print(offset_z, 5);
  4168. SERIAL_ECHOLNPGM("");
  4169. }*/
  4170. // #endif // SUPPORT_VERBOSITY
  4171. mbl.set_z(ix, iy, current_position[Z_AXIS] - offset_z); //store measured z values z_values[iy][ix] = z - offset_z;
  4172. custom_message_state--;
  4173. mesh_point++;
  4174. lcd_update(1);
  4175. }
  4176. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  4177. #ifdef SUPPORT_VERBOSITY
  4178. if (verbosity_level >= 20) {
  4179. SERIAL_ECHOLNPGM("Mesh bed leveling while loop finished.");
  4180. SERIAL_ECHOLNPGM("MESH_HOME_Z_SEARCH: ");
  4181. MYSERIAL.print(current_position[Z_AXIS], 5);
  4182. }
  4183. #endif // SUPPORT_VERBOSITY
  4184. plan_buffer_line_curposXYZE(Z_LIFT_FEEDRATE, active_extruder);
  4185. st_synchronize();
  4186. if (mesh_point != nMeasPoints * nMeasPoints) {
  4187. Sound_MakeSound(e_SOUND_TYPE_StandardAlert);
  4188. bool bState;
  4189. do { // repeat until Z-leveling o.k.
  4190. lcd_display_message_fullscreen_P(_i("Some problem encountered, Z-leveling enforced ..."));
  4191. #ifdef TMC2130
  4192. lcd_wait_for_click_delay(MSG_BED_LEVELING_FAILED_TIMEOUT);
  4193. calibrate_z_auto(); // Z-leveling (X-assembly stay up!!!)
  4194. #else // TMC2130
  4195. lcd_wait_for_click_delay(0); // ~ no timeout
  4196. lcd_calibrate_z_end_stop_manual(true); // Z-leveling (X-assembly stay up!!!)
  4197. #endif // TMC2130
  4198. // ~ Z-homing (can not be used "G28", because X & Y-homing would have been done before (Z-homing))
  4199. bState=enable_z_endstop(false);
  4200. current_position[Z_AXIS] -= 1;
  4201. plan_buffer_line_curposXYZE(homing_feedrate[Z_AXIS] / 40, active_extruder);
  4202. st_synchronize();
  4203. enable_z_endstop(true);
  4204. #ifdef TMC2130
  4205. tmc2130_home_enter(Z_AXIS_MASK);
  4206. #endif // TMC2130
  4207. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  4208. plan_buffer_line_curposXYZE(homing_feedrate[Z_AXIS] / 40, active_extruder);
  4209. st_synchronize();
  4210. #ifdef TMC2130
  4211. tmc2130_home_exit();
  4212. #endif // TMC2130
  4213. enable_z_endstop(bState);
  4214. } while (st_get_position_mm(Z_AXIS) > MESH_HOME_Z_SEARCH); // i.e. Z-leveling not o.k.
  4215. // plan_set_z_position(MESH_HOME_Z_SEARCH); // is not necessary ('do-while' loop always ends at the expected Z-position)
  4216. custom_message_type=CustomMsg::Status; // display / status-line recovery
  4217. lcd_update_enable(true); // display / status-line recovery
  4218. gcode_G28(true, true, true); // X & Y & Z-homing (must be after individual Z-homing (problem with spool-holder)!)
  4219. repeatcommand_front(); // re-run (i.e. of "G80")
  4220. break;
  4221. }
  4222. clean_up_after_endstop_move(l_feedmultiply);
  4223. // SERIAL_ECHOLNPGM("clean up finished ");
  4224. #ifndef PINDA_THERMISTOR
  4225. if(temp_cal_active == true && calibration_status_pinda() == true) temp_compensation_apply(); //apply PINDA temperature compensation
  4226. #endif
  4227. babystep_apply(); // Apply Z height correction aka baby stepping before mesh bed leveing gets activated.
  4228. // SERIAL_ECHOLNPGM("babystep applied");
  4229. bool eeprom_bed_correction_valid = eeprom_read_byte((unsigned char*)EEPROM_BED_CORRECTION_VALID) == 1;
  4230. #ifdef SUPPORT_VERBOSITY
  4231. if (verbosity_level >= 1) {
  4232. eeprom_bed_correction_valid ? SERIAL_PROTOCOLPGM("Bed correction data valid\n") : SERIAL_PROTOCOLPGM("Bed correction data not valid\n");
  4233. }
  4234. #endif // SUPPORT_VERBOSITY
  4235. for (uint8_t i = 0; i < 4; ++i) {
  4236. unsigned char codes[4] = { 'L', 'R', 'F', 'B' };
  4237. long correction = 0;
  4238. if (code_seen(codes[i]))
  4239. correction = code_value_long();
  4240. else if (eeprom_bed_correction_valid) {
  4241. unsigned char *addr = (i < 2) ?
  4242. ((i == 0) ? (unsigned char*)EEPROM_BED_CORRECTION_LEFT : (unsigned char*)EEPROM_BED_CORRECTION_RIGHT) :
  4243. ((i == 2) ? (unsigned char*)EEPROM_BED_CORRECTION_FRONT : (unsigned char*)EEPROM_BED_CORRECTION_REAR);
  4244. correction = eeprom_read_int8(addr);
  4245. }
  4246. if (correction == 0)
  4247. continue;
  4248. if (labs(correction) > BED_ADJUSTMENT_UM_MAX) {
  4249. SERIAL_ERROR_START;
  4250. SERIAL_ECHOPGM("Excessive bed leveling correction: ");
  4251. SERIAL_ECHO(correction);
  4252. SERIAL_ECHOLNPGM(" microns");
  4253. }
  4254. else {
  4255. float offset = float(correction) * 0.001f;
  4256. switch (i) {
  4257. case 0:
  4258. for (uint8_t row = 0; row < nMeasPoints; ++row) {
  4259. for (uint8_t col = 0; col < nMeasPoints - 1; ++col) {
  4260. mbl.z_values[row][col] += offset * (nMeasPoints - 1 - col) / (nMeasPoints - 1);
  4261. }
  4262. }
  4263. break;
  4264. case 1:
  4265. for (uint8_t row = 0; row < nMeasPoints; ++row) {
  4266. for (uint8_t col = 1; col < nMeasPoints; ++col) {
  4267. mbl.z_values[row][col] += offset * col / (nMeasPoints - 1);
  4268. }
  4269. }
  4270. break;
  4271. case 2:
  4272. for (uint8_t col = 0; col < nMeasPoints; ++col) {
  4273. for (uint8_t row = 0; row < nMeasPoints; ++row) {
  4274. mbl.z_values[row][col] += offset * (nMeasPoints - 1 - row) / (nMeasPoints - 1);
  4275. }
  4276. }
  4277. break;
  4278. case 3:
  4279. for (uint8_t col = 0; col < nMeasPoints; ++col) {
  4280. for (uint8_t row = 1; row < nMeasPoints; ++row) {
  4281. mbl.z_values[row][col] += offset * row / (nMeasPoints - 1);
  4282. }
  4283. }
  4284. break;
  4285. }
  4286. }
  4287. }
  4288. // SERIAL_ECHOLNPGM("Bed leveling correction finished");
  4289. if (nMeasPoints == 3) {
  4290. mbl.upsample_3x3(); //interpolation from 3x3 to 7x7 points using largrangian polynomials while using the same array z_values[iy][ix] for storing (just coppying measured data to new destination and interpolating between them)
  4291. }
  4292. /*
  4293. SERIAL_PROTOCOLPGM("Num X,Y: ");
  4294. SERIAL_PROTOCOL(MESH_NUM_X_POINTS);
  4295. SERIAL_PROTOCOLPGM(",");
  4296. SERIAL_PROTOCOL(MESH_NUM_Y_POINTS);
  4297. SERIAL_PROTOCOLPGM("\nZ search height: ");
  4298. SERIAL_PROTOCOL(MESH_HOME_Z_SEARCH);
  4299. SERIAL_PROTOCOLLNPGM("\nMeasured points:");
  4300. for (int y = MESH_NUM_Y_POINTS-1; y >= 0; y--) {
  4301. for (int x = 0; x < MESH_NUM_X_POINTS; x++) {
  4302. SERIAL_PROTOCOLPGM(" ");
  4303. SERIAL_PROTOCOL_F(mbl.z_values[y][x], 5);
  4304. }
  4305. SERIAL_PROTOCOLPGM("\n");
  4306. }
  4307. */
  4308. if (nMeasPoints == 7 && magnet_elimination) {
  4309. mbl_interpolation(nMeasPoints);
  4310. }
  4311. /*
  4312. SERIAL_PROTOCOLPGM("Num X,Y: ");
  4313. SERIAL_PROTOCOL(MESH_NUM_X_POINTS);
  4314. SERIAL_PROTOCOLPGM(",");
  4315. SERIAL_PROTOCOL(MESH_NUM_Y_POINTS);
  4316. SERIAL_PROTOCOLPGM("\nZ search height: ");
  4317. SERIAL_PROTOCOL(MESH_HOME_Z_SEARCH);
  4318. SERIAL_PROTOCOLLNPGM("\nMeasured points:");
  4319. for (int y = MESH_NUM_Y_POINTS-1; y >= 0; y--) {
  4320. for (int x = 0; x < MESH_NUM_X_POINTS; x++) {
  4321. SERIAL_PROTOCOLPGM(" ");
  4322. SERIAL_PROTOCOL_F(mbl.z_values[y][x], 5);
  4323. }
  4324. SERIAL_PROTOCOLPGM("\n");
  4325. }
  4326. */
  4327. // SERIAL_ECHOLNPGM("Upsample finished");
  4328. mbl.active = 1; //activate mesh bed leveling
  4329. // SERIAL_ECHOLNPGM("Mesh bed leveling activated");
  4330. go_home_with_z_lift();
  4331. // SERIAL_ECHOLNPGM("Go home finished");
  4332. //unretract (after PINDA preheat retraction)
  4333. if (degHotend(active_extruder) > EXTRUDE_MINTEMP && temp_cal_active == true && calibration_status_pinda() == true && target_temperature_bed >= 50) {
  4334. current_position[E_AXIS] += default_retraction;
  4335. plan_buffer_line_curposXYZE(400, active_extruder);
  4336. }
  4337. KEEPALIVE_STATE(NOT_BUSY);
  4338. // Restore custom message state
  4339. lcd_setstatuspgm(_T(WELCOME_MSG));
  4340. custom_message_type = custom_message_type_old;
  4341. custom_message_state = custom_message_state_old;
  4342. mesh_bed_leveling_flag = false;
  4343. mesh_bed_run_from_menu = false;
  4344. lcd_update(2);
  4345. }
  4346. break;
  4347. //! ### G81 - Mesh bed leveling status
  4348. // -----------------------------------------
  4349. /*
  4350. * Prints mesh bed leveling status and bed profile if activated
  4351. */
  4352. case 81:
  4353. if (mbl.active) {
  4354. SERIAL_PROTOCOLPGM("Num X,Y: ");
  4355. SERIAL_PROTOCOL(MESH_NUM_X_POINTS);
  4356. SERIAL_PROTOCOLPGM(",");
  4357. SERIAL_PROTOCOL(MESH_NUM_Y_POINTS);
  4358. SERIAL_PROTOCOLPGM("\nZ search height: ");
  4359. SERIAL_PROTOCOL(MESH_HOME_Z_SEARCH);
  4360. SERIAL_PROTOCOLLNPGM("\nMeasured points:");
  4361. for (int y = MESH_NUM_Y_POINTS-1; y >= 0; y--) {
  4362. for (int x = 0; x < MESH_NUM_X_POINTS; x++) {
  4363. SERIAL_PROTOCOLPGM(" ");
  4364. SERIAL_PROTOCOL_F(mbl.z_values[y][x], 5);
  4365. }
  4366. SERIAL_PROTOCOLPGM("\n");
  4367. }
  4368. }
  4369. else
  4370. SERIAL_PROTOCOLLNPGM("Mesh bed leveling not active.");
  4371. break;
  4372. #if 0
  4373. /*
  4374. * G82: Single Z probe at current location
  4375. *
  4376. * WARNING! USE WITH CAUTION! If you'll try to probe where is no leveling pad, nasty things can happen!
  4377. *
  4378. */
  4379. case 82:
  4380. SERIAL_PROTOCOLLNPGM("Finding bed ");
  4381. int l_feedmultiply = setup_for_endstop_move();
  4382. find_bed_induction_sensor_point_z();
  4383. clean_up_after_endstop_move(l_feedmultiply);
  4384. SERIAL_PROTOCOLPGM("Bed found at: ");
  4385. SERIAL_PROTOCOL_F(current_position[Z_AXIS], 5);
  4386. SERIAL_PROTOCOLPGM("\n");
  4387. break;
  4388. /*
  4389. * G83: Prusa3D specific: Babystep in Z and store to EEPROM
  4390. */
  4391. case 83:
  4392. {
  4393. int babystepz = code_seen('S') ? code_value() : 0;
  4394. int BabyPosition = code_seen('P') ? code_value() : 0;
  4395. if (babystepz != 0) {
  4396. //FIXME Vojtech: What shall be the index of the axis Z: 3 or 4?
  4397. // Is the axis indexed starting with zero or one?
  4398. if (BabyPosition > 4) {
  4399. SERIAL_PROTOCOLLNPGM("Index out of bounds");
  4400. }else{
  4401. // Save it to the eeprom
  4402. babystepLoadZ = babystepz;
  4403. EEPROM_save_B(EEPROM_BABYSTEP_Z0+(BabyPosition*2),&babystepLoadZ);
  4404. // adjust the Z
  4405. babystepsTodoZadd(babystepLoadZ);
  4406. }
  4407. }
  4408. }
  4409. break;
  4410. /*
  4411. * G84: Prusa3D specific: UNDO Babystep Z (move Z axis back)
  4412. */
  4413. case 84:
  4414. babystepsTodoZsubtract(babystepLoadZ);
  4415. // babystepLoadZ = 0;
  4416. break;
  4417. /*
  4418. * G85: Prusa3D specific: Pick best babystep
  4419. */
  4420. case 85:
  4421. lcd_pick_babystep();
  4422. break;
  4423. #endif
  4424. /**
  4425. * ### G86 - Disable babystep correction after home
  4426. *
  4427. * This G-code will be performed at the start of a calibration script.
  4428. * (Prusa3D specific)
  4429. */
  4430. case 86:
  4431. calibration_status_store(CALIBRATION_STATUS_LIVE_ADJUST);
  4432. break;
  4433. /**
  4434. * ### G87 - Enable babystep correction after home
  4435. *
  4436. *
  4437. * This G-code will be performed at the end of a calibration script.
  4438. * (Prusa3D specific)
  4439. */
  4440. case 87:
  4441. calibration_status_store(CALIBRATION_STATUS_CALIBRATED);
  4442. break;
  4443. /**
  4444. * ### G88 - Reserved
  4445. *
  4446. * Currently has no effect.
  4447. */
  4448. // Prusa3D specific: Don't know what it is for, it is in V2Calibration.gcode
  4449. case 88:
  4450. break;
  4451. #endif // ENABLE_MESH_BED_LEVELING
  4452. //! ### G90 - Switch off relative mode
  4453. // -------------------------------
  4454. case 90:
  4455. relative_mode = false;
  4456. break;
  4457. //! ### G91 - Switch on relative mode
  4458. // -------------------------------
  4459. case 91:
  4460. relative_mode = true;
  4461. break;
  4462. //! ### G92 - Set position
  4463. // -----------------------------
  4464. case 92:
  4465. if(!code_seen(axis_codes[E_AXIS]))
  4466. st_synchronize();
  4467. for(int8_t i=0; i < NUM_AXIS; i++) {
  4468. if(code_seen(axis_codes[i])) {
  4469. if(i == E_AXIS) {
  4470. current_position[i] = code_value();
  4471. plan_set_e_position(current_position[E_AXIS]);
  4472. }
  4473. else {
  4474. current_position[i] = code_value()+cs.add_homing[i];
  4475. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  4476. }
  4477. }
  4478. }
  4479. break;
  4480. //! ### G98 - Activate farm mode
  4481. // -----------------------------------
  4482. case 98:
  4483. farm_mode = 1;
  4484. PingTime = _millis();
  4485. eeprom_update_byte((unsigned char *)EEPROM_FARM_MODE, farm_mode);
  4486. EEPROM_save_B(EEPROM_FARM_NUMBER, &farm_no);
  4487. SilentModeMenu = SILENT_MODE_OFF;
  4488. eeprom_update_byte((unsigned char *)EEPROM_SILENT, SilentModeMenu);
  4489. fCheckModeInit(); // alternatively invoke printer reset
  4490. break;
  4491. //! ### G99 - Deactivate farm mode
  4492. // -------------------------------------
  4493. case 99:
  4494. farm_mode = 0;
  4495. lcd_printer_connected();
  4496. eeprom_update_byte((unsigned char *)EEPROM_FARM_MODE, farm_mode);
  4497. lcd_update(2);
  4498. fCheckModeInit(); // alternatively invoke printer reset
  4499. break;
  4500. default:
  4501. printf_P(PSTR("Unknown G code: %s \n"), cmdbuffer + bufindr + CMDHDRSIZE);
  4502. }
  4503. // printf_P(_N("END G-CODE=%u\n"), gcode_in_progress);
  4504. gcode_in_progress = 0;
  4505. } // end if(code_seen('G'))
  4506. //! ---------------------------------------------------------------------------------
  4507. else if(code_seen('M'))
  4508. {
  4509. int index;
  4510. for (index = 1; *(strchr_pointer + index) == ' ' || *(strchr_pointer + index) == '\t'; index++);
  4511. /*for (++strchr_pointer; *strchr_pointer == ' ' || *strchr_pointer == '\t'; ++strchr_pointer);*/
  4512. if (*(strchr_pointer+index) < '0' || *(strchr_pointer+index) > '9') {
  4513. printf_P(PSTR("Invalid M code: %s \n"), cmdbuffer + bufindr + CMDHDRSIZE);
  4514. } else
  4515. {
  4516. mcode_in_progress = (int)code_value();
  4517. // printf_P(_N("BEGIN M-CODE=%u\n"), mcode_in_progress);
  4518. switch(mcode_in_progress)
  4519. {
  4520. //! ### M0, M1 - Stop the printer
  4521. // ---------------------------------------------------------------
  4522. case 0: // M0 - Unconditional stop - Wait for user button press on LCD
  4523. case 1: // M1 - Conditional stop - Wait for user button press on LCD
  4524. {
  4525. char *src = strchr_pointer + 2;
  4526. codenum = 0;
  4527. bool hasP = false, hasS = false;
  4528. if (code_seen('P')) {
  4529. codenum = code_value(); // milliseconds to wait
  4530. hasP = codenum > 0;
  4531. }
  4532. if (code_seen('S')) {
  4533. codenum = code_value() * 1000; // seconds to wait
  4534. hasS = codenum > 0;
  4535. }
  4536. starpos = strchr(src, '*');
  4537. if (starpos != NULL) *(starpos) = '\0';
  4538. while (*src == ' ') ++src;
  4539. if (!hasP && !hasS && *src != '\0') {
  4540. lcd_setstatus(src);
  4541. } else {
  4542. LCD_MESSAGERPGM(_i("Wait for user..."));////MSG_USERWAIT
  4543. }
  4544. lcd_ignore_click(); //call lcd_ignore_click aslo for else ???
  4545. st_synchronize();
  4546. previous_millis_cmd = _millis();
  4547. if (codenum > 0){
  4548. codenum += _millis(); // keep track of when we started waiting
  4549. KEEPALIVE_STATE(PAUSED_FOR_USER);
  4550. while(_millis() < codenum && !lcd_clicked()){
  4551. manage_heater();
  4552. manage_inactivity(true);
  4553. lcd_update(0);
  4554. }
  4555. KEEPALIVE_STATE(IN_HANDLER);
  4556. lcd_ignore_click(false);
  4557. }else{
  4558. marlin_wait_for_click();
  4559. }
  4560. if (IS_SD_PRINTING)
  4561. LCD_MESSAGERPGM(_T(MSG_RESUMING_PRINT));
  4562. else
  4563. LCD_MESSAGERPGM(_T(WELCOME_MSG));
  4564. }
  4565. break;
  4566. //! ### M17 - Enable axes
  4567. // ---------------------------------
  4568. case 17:
  4569. LCD_MESSAGERPGM(_i("No move."));////MSG_NO_MOVE
  4570. enable_x();
  4571. enable_y();
  4572. enable_z();
  4573. enable_e0();
  4574. enable_e1();
  4575. enable_e2();
  4576. break;
  4577. #ifdef SDSUPPORT
  4578. //! ### M20 - SD Card file list
  4579. // -----------------------------------
  4580. case 20:
  4581. SERIAL_PROTOCOLLNRPGM(_N("Begin file list"));////MSG_BEGIN_FILE_LIST
  4582. card.ls();
  4583. SERIAL_PROTOCOLLNRPGM(_N("End file list"));////MSG_END_FILE_LIST
  4584. break;
  4585. //! ### M21 - Init SD card
  4586. // ------------------------------------
  4587. case 21:
  4588. card.initsd();
  4589. break;
  4590. //! ### M22 - Release SD card
  4591. // -----------------------------------
  4592. case 22:
  4593. card.release();
  4594. break;
  4595. //! ### M23 - Select file
  4596. // -----------------------------------
  4597. case 23:
  4598. starpos = (strchr(strchr_pointer + 4,'*'));
  4599. if(starpos!=NULL)
  4600. *(starpos)='\0';
  4601. card.openFile(strchr_pointer + 4,true);
  4602. break;
  4603. //! ### M24 - Start SD print
  4604. // ----------------------------------
  4605. case 24:
  4606. if (!card.paused)
  4607. failstats_reset_print();
  4608. card.startFileprint();
  4609. starttime=_millis();
  4610. break;
  4611. //! ### M25 - Pause SD print
  4612. // ----------------------------------
  4613. case 25:
  4614. card.pauseSDPrint();
  4615. break;
  4616. //! ### M26 S\<index\> - Set SD index
  4617. //! Set position in SD card file to index in bytes.
  4618. //! This command is expected to be called after M23 and before M24.
  4619. //! Otherwise effect of this command is undefined.
  4620. // ----------------------------------
  4621. case 26:
  4622. if(card.cardOK && code_seen('S')) {
  4623. long index = code_value_long();
  4624. card.setIndex(index);
  4625. // We don't disable interrupt during update of sdpos_atomic
  4626. // as we expect, that SD card print is not active in this moment
  4627. sdpos_atomic = index;
  4628. }
  4629. break;
  4630. //! ### M27 - Get SD status
  4631. // ----------------------------------
  4632. case 27:
  4633. card.getStatus();
  4634. break;
  4635. //! ### M28 - Start SD write
  4636. // ---------------------------------
  4637. case 28:
  4638. starpos = (strchr(strchr_pointer + 4,'*'));
  4639. if(starpos != NULL){
  4640. char* npos = strchr(CMDBUFFER_CURRENT_STRING, 'N');
  4641. strchr_pointer = strchr(npos,' ') + 1;
  4642. *(starpos) = '\0';
  4643. }
  4644. card.openFile(strchr_pointer+4,false);
  4645. break;
  4646. //! ### M29 - Stop SD write
  4647. // -------------------------------------
  4648. //! Currently has no effect.
  4649. case 29:
  4650. //processed in write to file routine above
  4651. //card,saving = false;
  4652. break;
  4653. //! ### M30 - Delete file <filename>
  4654. // ----------------------------------
  4655. case 30:
  4656. if (card.cardOK){
  4657. card.closefile();
  4658. starpos = (strchr(strchr_pointer + 4,'*'));
  4659. if(starpos != NULL){
  4660. char* npos = strchr(CMDBUFFER_CURRENT_STRING, 'N');
  4661. strchr_pointer = strchr(npos,' ') + 1;
  4662. *(starpos) = '\0';
  4663. }
  4664. card.removeFile(strchr_pointer + 4);
  4665. }
  4666. break;
  4667. //! ### M32 - Select file and start SD print
  4668. // ------------------------------------
  4669. case 32:
  4670. {
  4671. if(card.sdprinting) {
  4672. st_synchronize();
  4673. }
  4674. starpos = (strchr(strchr_pointer + 4,'*'));
  4675. char* namestartpos = (strchr(strchr_pointer + 4,'!')); //find ! to indicate filename string start.
  4676. if(namestartpos==NULL)
  4677. {
  4678. namestartpos=strchr_pointer + 4; //default name position, 4 letters after the M
  4679. }
  4680. else
  4681. namestartpos++; //to skip the '!'
  4682. if(starpos!=NULL)
  4683. *(starpos)='\0';
  4684. bool call_procedure=(code_seen('P'));
  4685. if(strchr_pointer>namestartpos)
  4686. call_procedure=false; //false alert, 'P' found within filename
  4687. if( card.cardOK )
  4688. {
  4689. card.openFile(namestartpos,true,!call_procedure);
  4690. if(code_seen('S'))
  4691. if(strchr_pointer<namestartpos) //only if "S" is occuring _before_ the filename
  4692. card.setIndex(code_value_long());
  4693. card.startFileprint();
  4694. if(!call_procedure)
  4695. starttime=_millis(); //procedure calls count as normal print time.
  4696. }
  4697. } break;
  4698. //! ### M982 - Start SD write
  4699. // ---------------------------------
  4700. case 928:
  4701. starpos = (strchr(strchr_pointer + 5,'*'));
  4702. if(starpos != NULL){
  4703. char* npos = strchr(CMDBUFFER_CURRENT_STRING, 'N');
  4704. strchr_pointer = strchr(npos,' ') + 1;
  4705. *(starpos) = '\0';
  4706. }
  4707. card.openLogFile(strchr_pointer+5);
  4708. break;
  4709. #endif //SDSUPPORT
  4710. //! ### M31 - Report current print time
  4711. // --------------------------------------------------
  4712. case 31: //M31 take time since the start of the SD print or an M109 command
  4713. {
  4714. stoptime=_millis();
  4715. char time[30];
  4716. unsigned long t=(stoptime-starttime)/1000;
  4717. int sec,min;
  4718. min=t/60;
  4719. sec=t%60;
  4720. sprintf_P(time, PSTR("%i min, %i sec"), min, sec);
  4721. SERIAL_ECHO_START;
  4722. SERIAL_ECHOLN(time);
  4723. lcd_setstatus(time);
  4724. autotempShutdown();
  4725. }
  4726. break;
  4727. //! ### M42 - Set pin state
  4728. // -----------------------------
  4729. case 42:
  4730. if (code_seen('S'))
  4731. {
  4732. int pin_status = code_value();
  4733. int pin_number = LED_PIN;
  4734. if (code_seen('P') && pin_status >= 0 && pin_status <= 255)
  4735. pin_number = code_value();
  4736. for(int8_t i = 0; i < (int8_t)(sizeof(sensitive_pins)/sizeof(int)); i++)
  4737. {
  4738. if (sensitive_pins[i] == pin_number)
  4739. {
  4740. pin_number = -1;
  4741. break;
  4742. }
  4743. }
  4744. #if defined(FAN_PIN) && FAN_PIN > -1
  4745. if (pin_number == FAN_PIN)
  4746. fanSpeed = pin_status;
  4747. #endif
  4748. if (pin_number > -1)
  4749. {
  4750. pinMode(pin_number, OUTPUT);
  4751. digitalWrite(pin_number, pin_status);
  4752. analogWrite(pin_number, pin_status);
  4753. }
  4754. }
  4755. break;
  4756. //! ### M44 - Reset the bed skew and offset calibration (Prusa specific)
  4757. // --------------------------------------------------------------------
  4758. case 44: // M44: Prusa3D: Reset the bed skew and offset calibration.
  4759. // Reset the baby step value and the baby step applied flag.
  4760. calibration_status_store(CALIBRATION_STATUS_ASSEMBLED);
  4761. eeprom_update_word(reinterpret_cast<uint16_t *>(&(EEPROM_Sheets_base->s[(eeprom_read_byte(&(EEPROM_Sheets_base->active_sheet)))].z_offset)),0);
  4762. // Reset the skew and offset in both RAM and EEPROM.
  4763. reset_bed_offset_and_skew();
  4764. // Reset world2machine_rotation_and_skew and world2machine_shift, therefore
  4765. // the planner will not perform any adjustments in the XY plane.
  4766. // Wait for the motors to stop and update the current position with the absolute values.
  4767. world2machine_revert_to_uncorrected();
  4768. break;
  4769. //! ### M45 - Bed skew and offset with manual Z up (Prusa specific)
  4770. // ------------------------------------------------------
  4771. case 45: // M45: Prusa3D: bed skew and offset with manual Z up
  4772. {
  4773. int8_t verbosity_level = 0;
  4774. bool only_Z = code_seen('Z');
  4775. #ifdef SUPPORT_VERBOSITY
  4776. if (code_seen('V'))
  4777. {
  4778. // Just 'V' without a number counts as V1.
  4779. char c = strchr_pointer[1];
  4780. verbosity_level = (c == ' ' || c == '\t' || c == 0) ? 1 : code_value_short();
  4781. }
  4782. #endif //SUPPORT_VERBOSITY
  4783. gcode_M45(only_Z, verbosity_level);
  4784. }
  4785. break;
  4786. /*
  4787. case 46:
  4788. {
  4789. // M46: Prusa3D: Show the assigned IP address.
  4790. uint8_t ip[4];
  4791. bool hasIP = card.ToshibaFlashAir_GetIP(ip);
  4792. if (hasIP) {
  4793. SERIAL_ECHOPGM("Toshiba FlashAir current IP: ");
  4794. SERIAL_ECHO(int(ip[0]));
  4795. SERIAL_ECHOPGM(".");
  4796. SERIAL_ECHO(int(ip[1]));
  4797. SERIAL_ECHOPGM(".");
  4798. SERIAL_ECHO(int(ip[2]));
  4799. SERIAL_ECHOPGM(".");
  4800. SERIAL_ECHO(int(ip[3]));
  4801. SERIAL_ECHOLNPGM("");
  4802. } else {
  4803. SERIAL_ECHOLNPGM("Toshiba FlashAir GetIP failed");
  4804. }
  4805. break;
  4806. }
  4807. */
  4808. //! ### M47 - Show end stops dialog on the display (Prusa specific)
  4809. // ----------------------------------------------------
  4810. case 47:
  4811. KEEPALIVE_STATE(PAUSED_FOR_USER);
  4812. lcd_diag_show_end_stops();
  4813. KEEPALIVE_STATE(IN_HANDLER);
  4814. break;
  4815. #if 0
  4816. case 48: // M48: scan the bed induction sensor points, print the sensor trigger coordinates to the serial line for visualization on the PC.
  4817. {
  4818. // Disable the default update procedure of the display. We will do a modal dialog.
  4819. lcd_update_enable(false);
  4820. // Let the planner use the uncorrected coordinates.
  4821. mbl.reset();
  4822. // Reset world2machine_rotation_and_skew and world2machine_shift, therefore
  4823. // the planner will not perform any adjustments in the XY plane.
  4824. // Wait for the motors to stop and update the current position with the absolute values.
  4825. world2machine_revert_to_uncorrected();
  4826. // Move the print head close to the bed.
  4827. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  4828. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS],current_position[Z_AXIS] , current_position[E_AXIS], homing_feedrate[Z_AXIS]/40, active_extruder);
  4829. st_synchronize();
  4830. // Home in the XY plane.
  4831. set_destination_to_current();
  4832. int l_feedmultiply = setup_for_endstop_move();
  4833. home_xy();
  4834. int8_t verbosity_level = 0;
  4835. if (code_seen('V')) {
  4836. // Just 'V' without a number counts as V1.
  4837. char c = strchr_pointer[1];
  4838. verbosity_level = (c == ' ' || c == '\t' || c == 0) ? 1 : code_value_short();
  4839. }
  4840. bool success = scan_bed_induction_points(verbosity_level);
  4841. clean_up_after_endstop_move(l_feedmultiply);
  4842. // Print head up.
  4843. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  4844. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS],current_position[Z_AXIS] , current_position[E_AXIS], homing_feedrate[Z_AXIS]/40, active_extruder);
  4845. st_synchronize();
  4846. lcd_update_enable(true);
  4847. break;
  4848. }
  4849. #endif
  4850. #ifdef ENABLE_AUTO_BED_LEVELING
  4851. #ifdef Z_PROBE_REPEATABILITY_TEST
  4852. //! ### M48 - Z-Probe repeatability measurement function.
  4853. // ------------------------------------------------------
  4854. //!
  4855. //! _Usage:_
  4856. //!
  4857. //! M48 <n #_samples> <X X_position_for_samples> <Y Y_position_for_samples> <V Verbose_Level> <L legs_of_movement_prior_to_doing_probe>
  4858. //!
  4859. //! This function assumes the bed has been homed. Specifically, that a G28 command
  4860. //! as been issued prior to invoking the M48 Z-Probe repeatability measurement function.
  4861. //! Any information generated by a prior G29 Bed leveling command will be lost and need to be
  4862. //! regenerated.
  4863. //!
  4864. //! The number of samples will default to 10 if not specified. You can use upper or lower case
  4865. //! letters for any of the options EXCEPT n. n must be in lower case because Marlin uses a capital
  4866. //! N for its communication protocol and will get horribly confused if you send it a capital N.
  4867. //!
  4868. case 48: // M48 Z-Probe repeatability
  4869. {
  4870. #if Z_MIN_PIN == -1
  4871. #error "You must have a Z_MIN endstop in order to enable calculation of Z-Probe repeatability."
  4872. #endif
  4873. double sum=0.0;
  4874. double mean=0.0;
  4875. double sigma=0.0;
  4876. double sample_set[50];
  4877. int verbose_level=1, n=0, j, n_samples = 10, n_legs=0;
  4878. double X_current, Y_current, Z_current;
  4879. double X_probe_location, Y_probe_location, Z_start_location, ext_position;
  4880. if (code_seen('V') || code_seen('v')) {
  4881. verbose_level = code_value();
  4882. if (verbose_level<0 || verbose_level>4 ) {
  4883. SERIAL_PROTOCOLPGM("?Verbose Level not plausable.\n");
  4884. goto Sigma_Exit;
  4885. }
  4886. }
  4887. if (verbose_level > 0) {
  4888. SERIAL_PROTOCOLPGM("M48 Z-Probe Repeatability test. Version 2.00\n");
  4889. SERIAL_PROTOCOLPGM("Full support at: http://3dprintboard.com/forum.php\n");
  4890. }
  4891. if (code_seen('n')) {
  4892. n_samples = code_value();
  4893. if (n_samples<4 || n_samples>50 ) {
  4894. SERIAL_PROTOCOLPGM("?Specified sample size not plausable.\n");
  4895. goto Sigma_Exit;
  4896. }
  4897. }
  4898. X_current = X_probe_location = st_get_position_mm(X_AXIS);
  4899. Y_current = Y_probe_location = st_get_position_mm(Y_AXIS);
  4900. Z_current = st_get_position_mm(Z_AXIS);
  4901. Z_start_location = st_get_position_mm(Z_AXIS) + Z_RAISE_BEFORE_PROBING;
  4902. ext_position = st_get_position_mm(E_AXIS);
  4903. if (code_seen('X') || code_seen('x') ) {
  4904. X_probe_location = code_value() - X_PROBE_OFFSET_FROM_EXTRUDER;
  4905. if (X_probe_location<X_MIN_POS || X_probe_location>X_MAX_POS ) {
  4906. SERIAL_PROTOCOLPGM("?Specified X position out of range.\n");
  4907. goto Sigma_Exit;
  4908. }
  4909. }
  4910. if (code_seen('Y') || code_seen('y') ) {
  4911. Y_probe_location = code_value() - Y_PROBE_OFFSET_FROM_EXTRUDER;
  4912. if (Y_probe_location<Y_MIN_POS || Y_probe_location>Y_MAX_POS ) {
  4913. SERIAL_PROTOCOLPGM("?Specified Y position out of range.\n");
  4914. goto Sigma_Exit;
  4915. }
  4916. }
  4917. if (code_seen('L') || code_seen('l') ) {
  4918. n_legs = code_value();
  4919. if ( n_legs==1 )
  4920. n_legs = 2;
  4921. if ( n_legs<0 || n_legs>15 ) {
  4922. SERIAL_PROTOCOLPGM("?Specified number of legs in movement not plausable.\n");
  4923. goto Sigma_Exit;
  4924. }
  4925. }
  4926. //
  4927. // Do all the preliminary setup work. First raise the probe.
  4928. //
  4929. st_synchronize();
  4930. plan_bed_level_matrix.set_to_identity();
  4931. plan_buffer_line( X_current, Y_current, Z_start_location,
  4932. ext_position,
  4933. homing_feedrate[Z_AXIS]/60,
  4934. active_extruder);
  4935. st_synchronize();
  4936. //
  4937. // Now get everything to the specified probe point So we can safely do a probe to
  4938. // get us close to the bed. If the Z-Axis is far from the bed, we don't want to
  4939. // use that as a starting point for each probe.
  4940. //
  4941. if (verbose_level > 2)
  4942. SERIAL_PROTOCOL("Positioning probe for the test.\n");
  4943. plan_buffer_line( X_probe_location, Y_probe_location, Z_start_location,
  4944. ext_position,
  4945. homing_feedrate[X_AXIS]/60,
  4946. active_extruder);
  4947. st_synchronize();
  4948. current_position[X_AXIS] = X_current = st_get_position_mm(X_AXIS);
  4949. current_position[Y_AXIS] = Y_current = st_get_position_mm(Y_AXIS);
  4950. current_position[Z_AXIS] = Z_current = st_get_position_mm(Z_AXIS);
  4951. current_position[E_AXIS] = ext_position = st_get_position_mm(E_AXIS);
  4952. //
  4953. // OK, do the inital probe to get us close to the bed.
  4954. // Then retrace the right amount and use that in subsequent probes
  4955. //
  4956. int l_feedmultiply = setup_for_endstop_move();
  4957. run_z_probe();
  4958. current_position[Z_AXIS] = Z_current = st_get_position_mm(Z_AXIS);
  4959. Z_start_location = st_get_position_mm(Z_AXIS) + Z_RAISE_BEFORE_PROBING;
  4960. plan_buffer_line( X_probe_location, Y_probe_location, Z_start_location,
  4961. ext_position,
  4962. homing_feedrate[X_AXIS]/60,
  4963. active_extruder);
  4964. st_synchronize();
  4965. current_position[Z_AXIS] = Z_current = st_get_position_mm(Z_AXIS);
  4966. for( n=0; n<n_samples; n++) {
  4967. do_blocking_move_to( X_probe_location, Y_probe_location, Z_start_location); // Make sure we are at the probe location
  4968. if ( n_legs) {
  4969. double radius=0.0, theta=0.0, x_sweep, y_sweep;
  4970. int rotational_direction, l;
  4971. rotational_direction = (unsigned long) _millis() & 0x0001; // clockwise or counter clockwise
  4972. radius = (unsigned long) _millis() % (long) (X_MAX_LENGTH/4); // limit how far out to go
  4973. theta = (float) ((unsigned long) _millis() % (long) 360) / (360./(2*3.1415926)); // turn into radians
  4974. //SERIAL_ECHOPAIR("starting radius: ",radius);
  4975. //SERIAL_ECHOPAIR(" theta: ",theta);
  4976. //SERIAL_ECHOPAIR(" direction: ",rotational_direction);
  4977. //SERIAL_PROTOCOLLNPGM("");
  4978. for( l=0; l<n_legs-1; l++) {
  4979. if (rotational_direction==1)
  4980. theta += (float) ((unsigned long) _millis() % (long) 20) / (360.0/(2*3.1415926)); // turn into radians
  4981. else
  4982. theta -= (float) ((unsigned long) _millis() % (long) 20) / (360.0/(2*3.1415926)); // turn into radians
  4983. radius += (float) ( ((long) ((unsigned long) _millis() % (long) 10)) - 5);
  4984. if ( radius<0.0 )
  4985. radius = -radius;
  4986. X_current = X_probe_location + cos(theta) * radius;
  4987. Y_current = Y_probe_location + sin(theta) * radius;
  4988. if ( X_current<X_MIN_POS) // Make sure our X & Y are sane
  4989. X_current = X_MIN_POS;
  4990. if ( X_current>X_MAX_POS)
  4991. X_current = X_MAX_POS;
  4992. if ( Y_current<Y_MIN_POS) // Make sure our X & Y are sane
  4993. Y_current = Y_MIN_POS;
  4994. if ( Y_current>Y_MAX_POS)
  4995. Y_current = Y_MAX_POS;
  4996. if (verbose_level>3 ) {
  4997. SERIAL_ECHOPAIR("x: ", X_current);
  4998. SERIAL_ECHOPAIR("y: ", Y_current);
  4999. SERIAL_PROTOCOLLNPGM("");
  5000. }
  5001. do_blocking_move_to( X_current, Y_current, Z_current );
  5002. }
  5003. do_blocking_move_to( X_probe_location, Y_probe_location, Z_start_location); // Go back to the probe location
  5004. }
  5005. int l_feedmultiply = setup_for_endstop_move();
  5006. run_z_probe();
  5007. sample_set[n] = current_position[Z_AXIS];
  5008. //
  5009. // Get the current mean for the data points we have so far
  5010. //
  5011. sum=0.0;
  5012. for( j=0; j<=n; j++) {
  5013. sum = sum + sample_set[j];
  5014. }
  5015. mean = sum / (double (n+1));
  5016. //
  5017. // Now, use that mean to calculate the standard deviation for the
  5018. // data points we have so far
  5019. //
  5020. sum=0.0;
  5021. for( j=0; j<=n; j++) {
  5022. sum = sum + (sample_set[j]-mean) * (sample_set[j]-mean);
  5023. }
  5024. sigma = sqrt( sum / (double (n+1)) );
  5025. if (verbose_level > 1) {
  5026. SERIAL_PROTOCOL(n+1);
  5027. SERIAL_PROTOCOL(" of ");
  5028. SERIAL_PROTOCOL(n_samples);
  5029. SERIAL_PROTOCOLPGM(" z: ");
  5030. SERIAL_PROTOCOL_F(current_position[Z_AXIS], 6);
  5031. }
  5032. if (verbose_level > 2) {
  5033. SERIAL_PROTOCOL(" mean: ");
  5034. SERIAL_PROTOCOL_F(mean,6);
  5035. SERIAL_PROTOCOL(" sigma: ");
  5036. SERIAL_PROTOCOL_F(sigma,6);
  5037. }
  5038. if (verbose_level > 0)
  5039. SERIAL_PROTOCOLPGM("\n");
  5040. plan_buffer_line( X_probe_location, Y_probe_location, Z_start_location,
  5041. current_position[E_AXIS], homing_feedrate[Z_AXIS]/60, active_extruder);
  5042. st_synchronize();
  5043. }
  5044. _delay(1000);
  5045. clean_up_after_endstop_move(l_feedmultiply);
  5046. // enable_endstops(true);
  5047. if (verbose_level > 0) {
  5048. SERIAL_PROTOCOLPGM("Mean: ");
  5049. SERIAL_PROTOCOL_F(mean, 6);
  5050. SERIAL_PROTOCOLPGM("\n");
  5051. }
  5052. SERIAL_PROTOCOLPGM("Standard Deviation: ");
  5053. SERIAL_PROTOCOL_F(sigma, 6);
  5054. SERIAL_PROTOCOLPGM("\n\n");
  5055. Sigma_Exit:
  5056. break;
  5057. }
  5058. #endif // Z_PROBE_REPEATABILITY_TEST
  5059. #endif // ENABLE_AUTO_BED_LEVELING
  5060. //! ### M73 - Set/get print progress
  5061. // -------------------------------------
  5062. //! _Usage:_
  5063. //!
  5064. //! M73 P<percent> R<time_remaining> Q<percent_silent> S<time_remaining_silent>
  5065. //!
  5066. case 73: //M73 show percent done and time remaining
  5067. if(code_seen('P')) print_percent_done_normal = code_value();
  5068. if(code_seen('R')) print_time_remaining_normal = code_value();
  5069. if(code_seen('Q')) print_percent_done_silent = code_value();
  5070. if(code_seen('S')) print_time_remaining_silent = code_value();
  5071. {
  5072. const char* _msg_mode_done_remain = _N("%S MODE: Percent done: %d; print time remaining in mins: %d\n");
  5073. printf_P(_msg_mode_done_remain, _N("NORMAL"), int(print_percent_done_normal), print_time_remaining_normal);
  5074. printf_P(_msg_mode_done_remain, _N("SILENT"), int(print_percent_done_silent), print_time_remaining_silent);
  5075. }
  5076. break;
  5077. //! ### M104 - Set hotend temperature
  5078. // -----------------------------------------
  5079. case 104: // M104
  5080. {
  5081. uint8_t extruder;
  5082. if(setTargetedHotend(104,extruder)){
  5083. break;
  5084. }
  5085. if (code_seen('S'))
  5086. {
  5087. setTargetHotendSafe(code_value(), extruder);
  5088. }
  5089. break;
  5090. }
  5091. //! ### M112 - Emergency stop
  5092. // -----------------------------------------
  5093. case 112:
  5094. kill(_n(""), 3);
  5095. break;
  5096. //! ### M140 - Set bed temperature
  5097. // -----------------------------------------
  5098. case 140:
  5099. if (code_seen('S')) setTargetBed(code_value());
  5100. break;
  5101. //! ### M105 - Report temperatures
  5102. // -----------------------------------------
  5103. case 105:
  5104. {
  5105. uint8_t extruder;
  5106. if(setTargetedHotend(105, extruder)){
  5107. break;
  5108. }
  5109. #if defined(TEMP_0_PIN) && TEMP_0_PIN > -1
  5110. SERIAL_PROTOCOLPGM("ok T:");
  5111. SERIAL_PROTOCOL_F(degHotend(extruder),1);
  5112. SERIAL_PROTOCOLPGM(" /");
  5113. SERIAL_PROTOCOL_F(degTargetHotend(extruder),1);
  5114. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  5115. SERIAL_PROTOCOLPGM(" B:");
  5116. SERIAL_PROTOCOL_F(degBed(),1);
  5117. SERIAL_PROTOCOLPGM(" /");
  5118. SERIAL_PROTOCOL_F(degTargetBed(),1);
  5119. #endif //TEMP_BED_PIN
  5120. for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) {
  5121. SERIAL_PROTOCOLPGM(" T");
  5122. SERIAL_PROTOCOL(cur_extruder);
  5123. SERIAL_PROTOCOLPGM(":");
  5124. SERIAL_PROTOCOL_F(degHotend(cur_extruder),1);
  5125. SERIAL_PROTOCOLPGM(" /");
  5126. SERIAL_PROTOCOL_F(degTargetHotend(cur_extruder),1);
  5127. }
  5128. #else
  5129. SERIAL_ERROR_START;
  5130. SERIAL_ERRORLNRPGM(_i("No thermistors - no temperature"));////MSG_ERR_NO_THERMISTORS
  5131. #endif
  5132. SERIAL_PROTOCOLPGM(" @:");
  5133. #ifdef EXTRUDER_WATTS
  5134. SERIAL_PROTOCOL((EXTRUDER_WATTS * getHeaterPower(tmp_extruder))/127);
  5135. SERIAL_PROTOCOLPGM("W");
  5136. #else
  5137. SERIAL_PROTOCOL(getHeaterPower(extruder));
  5138. #endif
  5139. SERIAL_PROTOCOLPGM(" B@:");
  5140. #ifdef BED_WATTS
  5141. SERIAL_PROTOCOL((BED_WATTS * getHeaterPower(-1))/127);
  5142. SERIAL_PROTOCOLPGM("W");
  5143. #else
  5144. SERIAL_PROTOCOL(getHeaterPower(-1));
  5145. #endif
  5146. #ifdef PINDA_THERMISTOR
  5147. SERIAL_PROTOCOLPGM(" P:");
  5148. SERIAL_PROTOCOL_F(current_temperature_pinda,1);
  5149. #endif //PINDA_THERMISTOR
  5150. #ifdef AMBIENT_THERMISTOR
  5151. SERIAL_PROTOCOLPGM(" A:");
  5152. SERIAL_PROTOCOL_F(current_temperature_ambient,1);
  5153. #endif //AMBIENT_THERMISTOR
  5154. #ifdef SHOW_TEMP_ADC_VALUES
  5155. {float raw = 0.0;
  5156. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  5157. SERIAL_PROTOCOLPGM(" ADC B:");
  5158. SERIAL_PROTOCOL_F(degBed(),1);
  5159. SERIAL_PROTOCOLPGM("C->");
  5160. raw = rawBedTemp();
  5161. SERIAL_PROTOCOL_F(raw/OVERSAMPLENR,5);
  5162. SERIAL_PROTOCOLPGM(" Rb->");
  5163. SERIAL_PROTOCOL_F(100 * (1 + (PtA * (raw/OVERSAMPLENR)) + (PtB * sq((raw/OVERSAMPLENR)))), 5);
  5164. SERIAL_PROTOCOLPGM(" Rxb->");
  5165. SERIAL_PROTOCOL_F(raw, 5);
  5166. #endif
  5167. for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) {
  5168. SERIAL_PROTOCOLPGM(" T");
  5169. SERIAL_PROTOCOL(cur_extruder);
  5170. SERIAL_PROTOCOLPGM(":");
  5171. SERIAL_PROTOCOL_F(degHotend(cur_extruder),1);
  5172. SERIAL_PROTOCOLPGM("C->");
  5173. raw = rawHotendTemp(cur_extruder);
  5174. SERIAL_PROTOCOL_F(raw/OVERSAMPLENR,5);
  5175. SERIAL_PROTOCOLPGM(" Rt");
  5176. SERIAL_PROTOCOL(cur_extruder);
  5177. SERIAL_PROTOCOLPGM("->");
  5178. SERIAL_PROTOCOL_F(100 * (1 + (PtA * (raw/OVERSAMPLENR)) + (PtB * sq((raw/OVERSAMPLENR)))), 5);
  5179. SERIAL_PROTOCOLPGM(" Rx");
  5180. SERIAL_PROTOCOL(cur_extruder);
  5181. SERIAL_PROTOCOLPGM("->");
  5182. SERIAL_PROTOCOL_F(raw, 5);
  5183. }}
  5184. #endif
  5185. SERIAL_PROTOCOLLN("");
  5186. KEEPALIVE_STATE(NOT_BUSY);
  5187. return;
  5188. break;
  5189. }
  5190. //! ### M109 - Wait for extruder temperature
  5191. //! Parameters (not mandatory):
  5192. //! * S \<temp\> set extruder temperature
  5193. //! * R \<temp\> set extruder temperature
  5194. //!
  5195. //! Parameters S and R are treated identically.
  5196. //! Command always waits for both cool down and heat up.
  5197. //! If no parameters are supplied waits for previously
  5198. //! set extruder temperature.
  5199. // -------------------------------------------------
  5200. case 109:
  5201. {
  5202. uint8_t extruder;
  5203. if(setTargetedHotend(109, extruder)){
  5204. break;
  5205. }
  5206. LCD_MESSAGERPGM(_T(MSG_HEATING));
  5207. heating_status = 1;
  5208. if (farm_mode) { prusa_statistics(1); };
  5209. #ifdef AUTOTEMP
  5210. autotemp_enabled=false;
  5211. #endif
  5212. if (code_seen('S')) {
  5213. setTargetHotendSafe(code_value(), extruder);
  5214. } else if (code_seen('R')) {
  5215. setTargetHotendSafe(code_value(), extruder);
  5216. }
  5217. #ifdef AUTOTEMP
  5218. if (code_seen('S')) autotemp_min=code_value();
  5219. if (code_seen('B')) autotemp_max=code_value();
  5220. if (code_seen('F'))
  5221. {
  5222. autotemp_factor=code_value();
  5223. autotemp_enabled=true;
  5224. }
  5225. #endif
  5226. codenum = _millis();
  5227. /* See if we are heating up or cooling down */
  5228. target_direction = isHeatingHotend(extruder); // true if heating, false if cooling
  5229. KEEPALIVE_STATE(NOT_BUSY);
  5230. cancel_heatup = false;
  5231. wait_for_heater(codenum, extruder); //loops until target temperature is reached
  5232. LCD_MESSAGERPGM(_T(MSG_HEATING_COMPLETE));
  5233. KEEPALIVE_STATE(IN_HANDLER);
  5234. heating_status = 2;
  5235. if (farm_mode) { prusa_statistics(2); };
  5236. //starttime=_millis();
  5237. previous_millis_cmd = _millis();
  5238. }
  5239. break;
  5240. //! ### M190 - Wait for bed temperature
  5241. //! Parameters (not mandatory):
  5242. //! * S \<temp\> set extruder temperature and wait for heating
  5243. //! * R \<temp\> set extruder temperature and wait for heating or cooling
  5244. //!
  5245. //! If no parameter is supplied, waits for heating or cooling to previously set temperature.
  5246. case 190:
  5247. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  5248. {
  5249. bool CooldownNoWait = false;
  5250. LCD_MESSAGERPGM(_T(MSG_BED_HEATING));
  5251. heating_status = 3;
  5252. if (farm_mode) { prusa_statistics(1); };
  5253. if (code_seen('S'))
  5254. {
  5255. setTargetBed(code_value());
  5256. CooldownNoWait = true;
  5257. }
  5258. else if (code_seen('R'))
  5259. {
  5260. setTargetBed(code_value());
  5261. }
  5262. codenum = _millis();
  5263. cancel_heatup = false;
  5264. target_direction = isHeatingBed(); // true if heating, false if cooling
  5265. KEEPALIVE_STATE(NOT_BUSY);
  5266. while ( (target_direction)&&(!cancel_heatup) ? (isHeatingBed()) : (isCoolingBed()&&(CooldownNoWait==false)) )
  5267. {
  5268. if(( _millis() - codenum) > 1000 ) //Print Temp Reading every 1 second while heating up.
  5269. {
  5270. if (!farm_mode) {
  5271. float tt = degHotend(active_extruder);
  5272. SERIAL_PROTOCOLPGM("T:");
  5273. SERIAL_PROTOCOL(tt);
  5274. SERIAL_PROTOCOLPGM(" E:");
  5275. SERIAL_PROTOCOL((int)active_extruder);
  5276. SERIAL_PROTOCOLPGM(" B:");
  5277. SERIAL_PROTOCOL_F(degBed(), 1);
  5278. SERIAL_PROTOCOLLN("");
  5279. }
  5280. codenum = _millis();
  5281. }
  5282. manage_heater();
  5283. manage_inactivity();
  5284. lcd_update(0);
  5285. }
  5286. LCD_MESSAGERPGM(_T(MSG_BED_DONE));
  5287. KEEPALIVE_STATE(IN_HANDLER);
  5288. heating_status = 4;
  5289. previous_millis_cmd = _millis();
  5290. }
  5291. #endif
  5292. break;
  5293. #if defined(FAN_PIN) && FAN_PIN > -1
  5294. //! ### M106 - Set fan speed
  5295. // -------------------------------------------
  5296. case 106: // M106 Sxxx Fan On S<speed> 0 .. 255
  5297. if (code_seen('S')){
  5298. fanSpeed=constrain(code_value(),0,255);
  5299. }
  5300. else {
  5301. fanSpeed=255;
  5302. }
  5303. break;
  5304. //! ### M107 - Fan off
  5305. // -------------------------------
  5306. case 107:
  5307. fanSpeed = 0;
  5308. break;
  5309. #endif //FAN_PIN
  5310. #if defined(PS_ON_PIN) && PS_ON_PIN > -1
  5311. //! ### M80 - Turn on the Power Supply
  5312. // -------------------------------
  5313. case 80:
  5314. SET_OUTPUT(PS_ON_PIN); //GND
  5315. WRITE(PS_ON_PIN, PS_ON_AWAKE);
  5316. // If you have a switch on suicide pin, this is useful
  5317. // if you want to start another print with suicide feature after
  5318. // a print without suicide...
  5319. #if defined SUICIDE_PIN && SUICIDE_PIN > -1
  5320. SET_OUTPUT(SUICIDE_PIN);
  5321. WRITE(SUICIDE_PIN, HIGH);
  5322. #endif
  5323. powersupply = true;
  5324. LCD_MESSAGERPGM(_T(WELCOME_MSG));
  5325. lcd_update(0);
  5326. break;
  5327. #endif
  5328. //! ### M81 - Turn off Power Supply
  5329. // --------------------------------------
  5330. case 81:
  5331. disable_heater();
  5332. st_synchronize();
  5333. disable_e0();
  5334. disable_e1();
  5335. disable_e2();
  5336. finishAndDisableSteppers();
  5337. fanSpeed = 0;
  5338. _delay(1000); // Wait a little before to switch off
  5339. #if defined(SUICIDE_PIN) && SUICIDE_PIN > -1
  5340. st_synchronize();
  5341. suicide();
  5342. #elif defined(PS_ON_PIN) && PS_ON_PIN > -1
  5343. SET_OUTPUT(PS_ON_PIN);
  5344. WRITE(PS_ON_PIN, PS_ON_ASLEEP);
  5345. #endif
  5346. powersupply = false;
  5347. LCD_MESSAGERPGM(CAT4(CUSTOM_MENDEL_NAME,PSTR(" "),MSG_OFF,PSTR(".")));
  5348. lcd_update(0);
  5349. break;
  5350. //! ### M82 - Set E axis to absolute mode
  5351. // ---------------------------------------
  5352. case 82:
  5353. axis_relative_modes[3] = false;
  5354. break;
  5355. //! ### M83 - Set E axis to relative mode
  5356. // ---------------------------------------
  5357. case 83:
  5358. axis_relative_modes[3] = true;
  5359. break;
  5360. //! ### M84, M18 - Disable steppers
  5361. //---------------------------------------
  5362. //! This command can be used to set the stepper inactivity timeout (`S`) or to disable steppers (`X`,`Y`,`Z`,`E`)
  5363. //!
  5364. //! M84 [E<flag>] [S<seconds>] [X<flag>] [Y<flag>] [Z<flag>]
  5365. //!
  5366. case 18: //compatibility
  5367. case 84: // M84
  5368. if(code_seen('S')){
  5369. stepper_inactive_time = code_value() * 1000;
  5370. }
  5371. else
  5372. {
  5373. bool all_axis = !((code_seen(axis_codes[X_AXIS])) || (code_seen(axis_codes[Y_AXIS])) || (code_seen(axis_codes[Z_AXIS]))|| (code_seen(axis_codes[E_AXIS])));
  5374. if(all_axis)
  5375. {
  5376. st_synchronize();
  5377. disable_e0();
  5378. disable_e1();
  5379. disable_e2();
  5380. finishAndDisableSteppers();
  5381. }
  5382. else
  5383. {
  5384. st_synchronize();
  5385. if (code_seen('X')) disable_x();
  5386. if (code_seen('Y')) disable_y();
  5387. if (code_seen('Z')) disable_z();
  5388. #if ((E0_ENABLE_PIN != X_ENABLE_PIN) && (E1_ENABLE_PIN != Y_ENABLE_PIN)) // Only enable on boards that have seperate ENABLE_PINS
  5389. if (code_seen('E')) {
  5390. disable_e0();
  5391. disable_e1();
  5392. disable_e2();
  5393. }
  5394. #endif
  5395. }
  5396. }
  5397. //in the end of print set estimated time to end of print and extruders used during print to default values for next print
  5398. print_time_remaining_init();
  5399. snmm_filaments_used = 0;
  5400. break;
  5401. //! ### M85 - Set max inactive time
  5402. // ---------------------------------------
  5403. case 85: // M85
  5404. if(code_seen('S')) {
  5405. max_inactive_time = code_value() * 1000;
  5406. }
  5407. break;
  5408. #ifdef SAFETYTIMER
  5409. //! ### M86 - Set safety timer expiration time
  5410. //!
  5411. //! _Usage:_
  5412. //! M86 S<seconds>
  5413. //!
  5414. //! Sets the safety timer expiration time in seconds. M86 S0 will disable safety timer.
  5415. //! When safety timer expires, heatbed and nozzle target temperatures are set to zero.
  5416. case 86:
  5417. if (code_seen('S')) {
  5418. safetytimer_inactive_time = code_value() * 1000;
  5419. safetyTimer.start();
  5420. }
  5421. break;
  5422. #endif
  5423. //! ### M92 Set Axis steps-per-unit
  5424. // ---------------------------------------
  5425. //! Same syntax as G92
  5426. case 92:
  5427. for(int8_t i=0; i < NUM_AXIS; i++)
  5428. {
  5429. if(code_seen(axis_codes[i]))
  5430. {
  5431. if(i == 3) { // E
  5432. float value = code_value();
  5433. if(value < 20.0) {
  5434. float factor = cs.axis_steps_per_unit[i] / value; // increase e constants if M92 E14 is given for netfab.
  5435. cs.max_jerk[E_AXIS] *= factor;
  5436. max_feedrate[i] *= factor;
  5437. axis_steps_per_sqr_second[i] *= factor;
  5438. }
  5439. cs.axis_steps_per_unit[i] = value;
  5440. }
  5441. else {
  5442. cs.axis_steps_per_unit[i] = code_value();
  5443. }
  5444. }
  5445. }
  5446. break;
  5447. //! ### M110 - Set Line number
  5448. // ---------------------------------------
  5449. case 110:
  5450. if (code_seen('N'))
  5451. gcode_LastN = code_value_long();
  5452. break;
  5453. //! ### M113 - Get or set host keep-alive interval
  5454. // ------------------------------------------
  5455. case 113:
  5456. if (code_seen('S')) {
  5457. host_keepalive_interval = (uint8_t)code_value_short();
  5458. // NOMORE(host_keepalive_interval, 60);
  5459. }
  5460. else {
  5461. SERIAL_ECHO_START;
  5462. SERIAL_ECHOPAIR("M113 S", (unsigned long)host_keepalive_interval);
  5463. SERIAL_PROTOCOLLN("");
  5464. }
  5465. break;
  5466. //! ### M115 - Firmware info
  5467. // --------------------------------------
  5468. //! Print the firmware info and capabilities
  5469. //!
  5470. //! M115 [V] [U<version>]
  5471. //!
  5472. //! Without any arguments, prints Prusa firmware version number, machine type, extruder count and UUID.
  5473. //! `M115 U` Checks the firmware version provided. If the firmware version provided by the U code is higher than the currently running firmware,
  5474. //! pause the print for 30s and ask the user to upgrade the firmware.
  5475. case 115: // M115
  5476. if (code_seen('V')) {
  5477. // Report the Prusa version number.
  5478. SERIAL_PROTOCOLLNRPGM(FW_VERSION_STR_P());
  5479. } else if (code_seen('U')) {
  5480. // Check the firmware version provided. If the firmware version provided by the U code is higher than the currently running firmware,
  5481. // pause the print for 30s and ask the user to upgrade the firmware.
  5482. show_upgrade_dialog_if_version_newer(++ strchr_pointer);
  5483. } else {
  5484. SERIAL_ECHOPGM("FIRMWARE_NAME:Prusa-Firmware ");
  5485. SERIAL_ECHORPGM(FW_VERSION_STR_P());
  5486. SERIAL_ECHOPGM(" based on Marlin FIRMWARE_URL:https://github.com/prusa3d/Prusa-Firmware PROTOCOL_VERSION:");
  5487. SERIAL_ECHOPGM(PROTOCOL_VERSION);
  5488. SERIAL_ECHOPGM(" MACHINE_TYPE:");
  5489. SERIAL_ECHOPGM(CUSTOM_MENDEL_NAME);
  5490. SERIAL_ECHOPGM(" EXTRUDER_COUNT:");
  5491. SERIAL_ECHOPGM(STRINGIFY(EXTRUDERS));
  5492. SERIAL_ECHOPGM(" UUID:");
  5493. SERIAL_ECHOLNPGM(MACHINE_UUID);
  5494. }
  5495. break;
  5496. //! ### M114 - Get current position
  5497. // -------------------------------------
  5498. case 114:
  5499. gcode_M114();
  5500. break;
  5501. //! ### M117 - Set LCD Message
  5502. // --------------------------------------
  5503. /*
  5504. M117 moved up to get the high priority
  5505. case 117: // M117 display message
  5506. starpos = (strchr(strchr_pointer + 5,'*'));
  5507. if(starpos!=NULL)
  5508. *(starpos)='\0';
  5509. lcd_setstatus(strchr_pointer + 5);
  5510. break;*/
  5511. //! ### M120 - Disable endstops
  5512. // ----------------------------------------
  5513. case 120:
  5514. enable_endstops(false) ;
  5515. break;
  5516. //! ### M121 - Enable endstops
  5517. // ----------------------------------------
  5518. case 121:
  5519. enable_endstops(true) ;
  5520. break;
  5521. //! ### M119 - Get endstop states
  5522. // ----------------------------------------
  5523. case 119:
  5524. SERIAL_PROTOCOLRPGM(_N("Reporting endstop status"));////MSG_M119_REPORT
  5525. SERIAL_PROTOCOLLN("");
  5526. #if defined(X_MIN_PIN) && X_MIN_PIN > -1
  5527. SERIAL_PROTOCOLRPGM(_n("x_min: "));////MSG_X_MIN
  5528. if(READ(X_MIN_PIN)^X_MIN_ENDSTOP_INVERTING){
  5529. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_HIT);
  5530. }else{
  5531. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_OPEN);
  5532. }
  5533. SERIAL_PROTOCOLLN("");
  5534. #endif
  5535. #if defined(X_MAX_PIN) && X_MAX_PIN > -1
  5536. SERIAL_PROTOCOLRPGM(_n("x_max: "));////MSG_X_MAX
  5537. if(READ(X_MAX_PIN)^X_MAX_ENDSTOP_INVERTING){
  5538. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_HIT);
  5539. }else{
  5540. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_OPEN);
  5541. }
  5542. SERIAL_PROTOCOLLN("");
  5543. #endif
  5544. #if defined(Y_MIN_PIN) && Y_MIN_PIN > -1
  5545. SERIAL_PROTOCOLRPGM(_n("y_min: "));////MSG_Y_MIN
  5546. if(READ(Y_MIN_PIN)^Y_MIN_ENDSTOP_INVERTING){
  5547. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_HIT);
  5548. }else{
  5549. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_OPEN);
  5550. }
  5551. SERIAL_PROTOCOLLN("");
  5552. #endif
  5553. #if defined(Y_MAX_PIN) && Y_MAX_PIN > -1
  5554. SERIAL_PROTOCOLRPGM(_n("y_max: "));////MSG_Y_MAX
  5555. if(READ(Y_MAX_PIN)^Y_MAX_ENDSTOP_INVERTING){
  5556. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_HIT);
  5557. }else{
  5558. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_OPEN);
  5559. }
  5560. SERIAL_PROTOCOLLN("");
  5561. #endif
  5562. #if defined(Z_MIN_PIN) && Z_MIN_PIN > -1
  5563. SERIAL_PROTOCOLRPGM(MSG_Z_MIN);
  5564. if(READ(Z_MIN_PIN)^Z_MIN_ENDSTOP_INVERTING){
  5565. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_HIT);
  5566. }else{
  5567. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_OPEN);
  5568. }
  5569. SERIAL_PROTOCOLLN("");
  5570. #endif
  5571. #if defined(Z_MAX_PIN) && Z_MAX_PIN > -1
  5572. SERIAL_PROTOCOLRPGM(MSG_Z_MAX);
  5573. if(READ(Z_MAX_PIN)^Z_MAX_ENDSTOP_INVERTING){
  5574. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_HIT);
  5575. }else{
  5576. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_OPEN);
  5577. }
  5578. SERIAL_PROTOCOLLN("");
  5579. #endif
  5580. break;
  5581. //TODO: update for all axis, use for loop
  5582. #ifdef BLINKM
  5583. //! ### M150 - Set RGB(W) Color
  5584. // -------------------------------------------
  5585. case 150:
  5586. {
  5587. byte red;
  5588. byte grn;
  5589. byte blu;
  5590. if(code_seen('R')) red = code_value();
  5591. if(code_seen('U')) grn = code_value();
  5592. if(code_seen('B')) blu = code_value();
  5593. SendColors(red,grn,blu);
  5594. }
  5595. break;
  5596. #endif //BLINKM
  5597. //! ### M200 - Set filament diameter
  5598. // ----------------------------------------
  5599. case 200: // M200 D<millimeters> set filament diameter and set E axis units to cubic millimeters (use S0 to set back to millimeters).
  5600. {
  5601. uint8_t extruder = active_extruder;
  5602. if(code_seen('T')) {
  5603. extruder = code_value();
  5604. if(extruder >= EXTRUDERS) {
  5605. SERIAL_ECHO_START;
  5606. SERIAL_ECHO(_n("M200 Invalid extruder "));////MSG_M200_INVALID_EXTRUDER
  5607. break;
  5608. }
  5609. }
  5610. if(code_seen('D')) {
  5611. float diameter = (float)code_value();
  5612. if (diameter == 0.0) {
  5613. // setting any extruder filament size disables volumetric on the assumption that
  5614. // slicers either generate in extruder values as cubic mm or as as filament feeds
  5615. // for all extruders
  5616. cs.volumetric_enabled = false;
  5617. } else {
  5618. cs.filament_size[extruder] = (float)code_value();
  5619. // make sure all extruders have some sane value for the filament size
  5620. cs.filament_size[0] = (cs.filament_size[0] == 0.0 ? DEFAULT_NOMINAL_FILAMENT_DIA : cs.filament_size[0]);
  5621. #if EXTRUDERS > 1
  5622. cs.filament_size[1] = (cs.filament_size[1] == 0.0 ? DEFAULT_NOMINAL_FILAMENT_DIA : cs.filament_size[1]);
  5623. #if EXTRUDERS > 2
  5624. cs.filament_size[2] = (cs.filament_size[2] == 0.0 ? DEFAULT_NOMINAL_FILAMENT_DIA : cs.filament_size[2]);
  5625. #endif
  5626. #endif
  5627. cs.volumetric_enabled = true;
  5628. }
  5629. } else {
  5630. //reserved for setting filament diameter via UFID or filament measuring device
  5631. break;
  5632. }
  5633. calculate_extruder_multipliers();
  5634. }
  5635. break;
  5636. //! ### M201 - Set Print Max Acceleration
  5637. // -------------------------------------------
  5638. case 201:
  5639. for (int8_t i = 0; i < NUM_AXIS; i++)
  5640. {
  5641. if (code_seen(axis_codes[i]))
  5642. {
  5643. unsigned long val = code_value();
  5644. #ifdef TMC2130
  5645. unsigned long val_silent = val;
  5646. if ((i == X_AXIS) || (i == Y_AXIS))
  5647. {
  5648. if (val > NORMAL_MAX_ACCEL_XY)
  5649. val = NORMAL_MAX_ACCEL_XY;
  5650. if (val_silent > SILENT_MAX_ACCEL_XY)
  5651. val_silent = SILENT_MAX_ACCEL_XY;
  5652. }
  5653. cs.max_acceleration_units_per_sq_second_normal[i] = val;
  5654. cs.max_acceleration_units_per_sq_second_silent[i] = val_silent;
  5655. #else //TMC2130
  5656. max_acceleration_units_per_sq_second[i] = val;
  5657. #endif //TMC2130
  5658. }
  5659. }
  5660. // steps per sq second need to be updated to agree with the units per sq second (as they are what is used in the planner)
  5661. reset_acceleration_rates();
  5662. break;
  5663. #if 0 // Not used for Sprinter/grbl gen6
  5664. case 202: // M202
  5665. for(int8_t i=0; i < NUM_AXIS; i++) {
  5666. if(code_seen(axis_codes[i])) axis_travel_steps_per_sqr_second[i] = code_value() * cs.axis_steps_per_unit[i];
  5667. }
  5668. break;
  5669. #endif
  5670. //! ### M203 - Set Max Feedrate
  5671. // ---------------------------------------
  5672. case 203: // M203 max feedrate mm/sec
  5673. for (int8_t i = 0; i < NUM_AXIS; i++)
  5674. {
  5675. if (code_seen(axis_codes[i]))
  5676. {
  5677. float val = code_value();
  5678. #ifdef TMC2130
  5679. float val_silent = val;
  5680. if ((i == X_AXIS) || (i == Y_AXIS))
  5681. {
  5682. if (val > NORMAL_MAX_FEEDRATE_XY)
  5683. val = NORMAL_MAX_FEEDRATE_XY;
  5684. if (val_silent > SILENT_MAX_FEEDRATE_XY)
  5685. val_silent = SILENT_MAX_FEEDRATE_XY;
  5686. }
  5687. cs.max_feedrate_normal[i] = val;
  5688. cs.max_feedrate_silent[i] = val_silent;
  5689. #else //TMC2130
  5690. max_feedrate[i] = val;
  5691. #endif //TMC2130
  5692. }
  5693. }
  5694. break;
  5695. //! ### M204 - Acceleration settings
  5696. // ------------------------------------------
  5697. //! Supporting old format:
  5698. //!
  5699. //! M204 S[normal moves] T[filmanent only moves]
  5700. //!
  5701. //! and new format:
  5702. //!
  5703. //! M204 P[printing moves] R[filmanent only moves] T[travel moves] (as of now T is ignored)
  5704. case 204:
  5705. {
  5706. if(code_seen('S')) {
  5707. // Legacy acceleration format. This format is used by the legacy Marlin, MK2 or MK3 firmware,
  5708. // and it is also generated by Slic3r to control acceleration per extrusion type
  5709. // (there is a separate acceleration settings in Slicer for perimeter, first layer etc).
  5710. cs.acceleration = code_value();
  5711. // Interpret the T value as retract acceleration in the old Marlin format.
  5712. if(code_seen('T'))
  5713. cs.retract_acceleration = code_value();
  5714. } else {
  5715. // New acceleration format, compatible with the upstream Marlin.
  5716. if(code_seen('P'))
  5717. cs.acceleration = code_value();
  5718. if(code_seen('R'))
  5719. cs.retract_acceleration = code_value();
  5720. if(code_seen('T')) {
  5721. // Interpret the T value as the travel acceleration in the new Marlin format.
  5722. //FIXME Prusa3D firmware currently does not support travel acceleration value independent from the extruding acceleration value.
  5723. // travel_acceleration = code_value();
  5724. }
  5725. }
  5726. }
  5727. break;
  5728. //! ### M205 - Set advanced settings
  5729. // ---------------------------------------------
  5730. //! Set some advanced settings related to movement.
  5731. //!
  5732. //! M205 [S] [T] [B] [X] [Y] [Z] [E]
  5733. /*!
  5734. - `S` - Minimum feedrate for print moves (unit/s)
  5735. - `T` - Minimum feedrate for travel moves (units/s)
  5736. - `B` - Minimum segment time (us)
  5737. - `X` - Maximum X jerk (units/s), similarly for other axes
  5738. */
  5739. case 205:
  5740. {
  5741. if(code_seen('S')) cs.minimumfeedrate = code_value();
  5742. if(code_seen('T')) cs.mintravelfeedrate = code_value();
  5743. if(code_seen('B')) cs.minsegmenttime = code_value() ;
  5744. if(code_seen('X')) cs.max_jerk[X_AXIS] = cs.max_jerk[Y_AXIS] = code_value();
  5745. if(code_seen('Y')) cs.max_jerk[Y_AXIS] = code_value();
  5746. if(code_seen('Z')) cs.max_jerk[Z_AXIS] = code_value();
  5747. if(code_seen('E')) cs.max_jerk[E_AXIS] = code_value();
  5748. if (cs.max_jerk[X_AXIS] > DEFAULT_XJERK) cs.max_jerk[X_AXIS] = DEFAULT_XJERK;
  5749. if (cs.max_jerk[Y_AXIS] > DEFAULT_YJERK) cs.max_jerk[Y_AXIS] = DEFAULT_YJERK;
  5750. }
  5751. break;
  5752. //! ### M206 - Set additional homing offsets
  5753. // ----------------------------------------------
  5754. case 206:
  5755. for(int8_t i=0; i < 3; i++)
  5756. {
  5757. if(code_seen(axis_codes[i])) cs.add_homing[i] = code_value();
  5758. }
  5759. break;
  5760. #ifdef FWRETRACT
  5761. //! ### M207 - Set firmware retraction
  5762. // --------------------------------------------------
  5763. case 207: //M207 - set retract length S[positive mm] F[feedrate mm/min] Z[additional zlift/hop]
  5764. {
  5765. if(code_seen('S'))
  5766. {
  5767. cs.retract_length = code_value() ;
  5768. }
  5769. if(code_seen('F'))
  5770. {
  5771. cs.retract_feedrate = code_value()/60 ;
  5772. }
  5773. if(code_seen('Z'))
  5774. {
  5775. cs.retract_zlift = code_value() ;
  5776. }
  5777. }break;
  5778. //! ### M208 - Set retract recover length
  5779. // --------------------------------------------
  5780. case 208: // M208 - set retract recover length S[positive mm surplus to the M207 S*] F[feedrate mm/min]
  5781. {
  5782. if(code_seen('S'))
  5783. {
  5784. cs.retract_recover_length = code_value() ;
  5785. }
  5786. if(code_seen('F'))
  5787. {
  5788. cs.retract_recover_feedrate = code_value()/60 ;
  5789. }
  5790. }break;
  5791. //! ### M209 - Enable/disable automatict retract
  5792. // ---------------------------------------------
  5793. case 209: // M209 - S<1=true/0=false> enable automatic retract detect if the slicer did not support G10/11: every normal extrude-only move will be classified as retract depending on the direction.
  5794. {
  5795. if(code_seen('S'))
  5796. {
  5797. int t= code_value() ;
  5798. switch(t)
  5799. {
  5800. case 0:
  5801. {
  5802. cs.autoretract_enabled=false;
  5803. retracted[0]=false;
  5804. #if EXTRUDERS > 1
  5805. retracted[1]=false;
  5806. #endif
  5807. #if EXTRUDERS > 2
  5808. retracted[2]=false;
  5809. #endif
  5810. }break;
  5811. case 1:
  5812. {
  5813. cs.autoretract_enabled=true;
  5814. retracted[0]=false;
  5815. #if EXTRUDERS > 1
  5816. retracted[1]=false;
  5817. #endif
  5818. #if EXTRUDERS > 2
  5819. retracted[2]=false;
  5820. #endif
  5821. }break;
  5822. default:
  5823. SERIAL_ECHO_START;
  5824. SERIAL_ECHORPGM(MSG_UNKNOWN_COMMAND);
  5825. SERIAL_ECHO(CMDBUFFER_CURRENT_STRING);
  5826. SERIAL_ECHOLNPGM("\"(1)");
  5827. }
  5828. }
  5829. }break;
  5830. #endif // FWRETRACT
  5831. #if EXTRUDERS > 1
  5832. // ### M218 - Set hotend offset
  5833. // ----------------------------------------
  5834. case 218: // M218 - set hotend offset (in mm), T<extruder_number> X<offset_on_X> Y<offset_on_Y>
  5835. {
  5836. uint8_t extruder;
  5837. if(setTargetedHotend(218, extruder)){
  5838. break;
  5839. }
  5840. if(code_seen('X'))
  5841. {
  5842. extruder_offset[X_AXIS][extruder] = code_value();
  5843. }
  5844. if(code_seen('Y'))
  5845. {
  5846. extruder_offset[Y_AXIS][extruder] = code_value();
  5847. }
  5848. SERIAL_ECHO_START;
  5849. SERIAL_ECHORPGM(MSG_HOTEND_OFFSET);
  5850. for(extruder = 0; extruder < EXTRUDERS; extruder++)
  5851. {
  5852. SERIAL_ECHO(" ");
  5853. SERIAL_ECHO(extruder_offset[X_AXIS][extruder]);
  5854. SERIAL_ECHO(",");
  5855. SERIAL_ECHO(extruder_offset[Y_AXIS][extruder]);
  5856. }
  5857. SERIAL_ECHOLN("");
  5858. }break;
  5859. #endif
  5860. //! ### M220 Set feedrate percentage
  5861. // -----------------------------------------------
  5862. case 220: // M220 S<factor in percent>- set speed factor override percentage
  5863. {
  5864. if (code_seen('B')) //backup current speed factor
  5865. {
  5866. saved_feedmultiply_mm = feedmultiply;
  5867. }
  5868. if(code_seen('S'))
  5869. {
  5870. feedmultiply = code_value() ;
  5871. }
  5872. if (code_seen('R')) { //restore previous feedmultiply
  5873. feedmultiply = saved_feedmultiply_mm;
  5874. }
  5875. }
  5876. break;
  5877. //! ### M221 - Set extrude factor override percentage
  5878. // ----------------------------------------------------
  5879. case 221: // M221 S<factor in percent>- set extrude factor override percentage
  5880. {
  5881. if(code_seen('S'))
  5882. {
  5883. int tmp_code = code_value();
  5884. if (code_seen('T'))
  5885. {
  5886. uint8_t extruder;
  5887. if(setTargetedHotend(221, extruder)){
  5888. break;
  5889. }
  5890. extruder_multiply[extruder] = tmp_code;
  5891. }
  5892. else
  5893. {
  5894. extrudemultiply = tmp_code ;
  5895. }
  5896. }
  5897. calculate_extruder_multipliers();
  5898. }
  5899. break;
  5900. //! ### M226 - Wait for Pin state
  5901. // ------------------------------------------
  5902. case 226: // M226 P<pin number> S<pin state>- Wait until the specified pin reaches the state required
  5903. {
  5904. if(code_seen('P')){
  5905. int pin_number = code_value(); // pin number
  5906. int pin_state = -1; // required pin state - default is inverted
  5907. if(code_seen('S')) pin_state = code_value(); // required pin state
  5908. if(pin_state >= -1 && pin_state <= 1){
  5909. for(int8_t i = 0; i < (int8_t)(sizeof(sensitive_pins)/sizeof(int)); i++)
  5910. {
  5911. if (sensitive_pins[i] == pin_number)
  5912. {
  5913. pin_number = -1;
  5914. break;
  5915. }
  5916. }
  5917. if (pin_number > -1)
  5918. {
  5919. int target = LOW;
  5920. st_synchronize();
  5921. pinMode(pin_number, INPUT);
  5922. switch(pin_state){
  5923. case 1:
  5924. target = HIGH;
  5925. break;
  5926. case 0:
  5927. target = LOW;
  5928. break;
  5929. case -1:
  5930. target = !digitalRead(pin_number);
  5931. break;
  5932. }
  5933. while(digitalRead(pin_number) != target){
  5934. manage_heater();
  5935. manage_inactivity();
  5936. lcd_update(0);
  5937. }
  5938. }
  5939. }
  5940. }
  5941. }
  5942. break;
  5943. #if NUM_SERVOS > 0
  5944. //! ### M280 - Set/Get servo position
  5945. // --------------------------------------------
  5946. case 280: // M280 - set servo position absolute. P: servo index, S: angle or microseconds
  5947. {
  5948. int servo_index = -1;
  5949. int servo_position = 0;
  5950. if (code_seen('P'))
  5951. servo_index = code_value();
  5952. if (code_seen('S')) {
  5953. servo_position = code_value();
  5954. if ((servo_index >= 0) && (servo_index < NUM_SERVOS)) {
  5955. #if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
  5956. servos[servo_index].attach(0);
  5957. #endif
  5958. servos[servo_index].write(servo_position);
  5959. #if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
  5960. _delay(PROBE_SERVO_DEACTIVATION_DELAY);
  5961. servos[servo_index].detach();
  5962. #endif
  5963. }
  5964. else {
  5965. SERIAL_ECHO_START;
  5966. SERIAL_ECHO("Servo ");
  5967. SERIAL_ECHO(servo_index);
  5968. SERIAL_ECHOLN(" out of range");
  5969. }
  5970. }
  5971. else if (servo_index >= 0) {
  5972. SERIAL_PROTOCOL(MSG_OK);
  5973. SERIAL_PROTOCOL(" Servo ");
  5974. SERIAL_PROTOCOL(servo_index);
  5975. SERIAL_PROTOCOL(": ");
  5976. SERIAL_PROTOCOL(servos[servo_index].read());
  5977. SERIAL_PROTOCOLLN("");
  5978. }
  5979. }
  5980. break;
  5981. #endif // NUM_SERVOS > 0
  5982. #if (LARGE_FLASH == true && ( BEEPER > 0 || defined(ULTRALCD) || defined(LCD_USE_I2C_BUZZER)))
  5983. //! ### M300 - Play tone
  5984. // -----------------------
  5985. case 300: // M300
  5986. {
  5987. int beepS = code_seen('S') ? code_value() : 110;
  5988. int beepP = code_seen('P') ? code_value() : 1000;
  5989. if (beepS > 0)
  5990. {
  5991. #if BEEPER > 0
  5992. Sound_MakeCustom(beepP,beepS,false);
  5993. #endif
  5994. }
  5995. else
  5996. {
  5997. _delay(beepP);
  5998. }
  5999. }
  6000. break;
  6001. #endif // M300
  6002. #ifdef PIDTEMP
  6003. //! ### M301 - Set hotend PID
  6004. // ---------------------------------------
  6005. case 301:
  6006. {
  6007. if(code_seen('P')) cs.Kp = code_value();
  6008. if(code_seen('I')) cs.Ki = scalePID_i(code_value());
  6009. if(code_seen('D')) cs.Kd = scalePID_d(code_value());
  6010. #ifdef PID_ADD_EXTRUSION_RATE
  6011. if(code_seen('C')) Kc = code_value();
  6012. #endif
  6013. updatePID();
  6014. SERIAL_PROTOCOLRPGM(MSG_OK);
  6015. SERIAL_PROTOCOL(" p:");
  6016. SERIAL_PROTOCOL(cs.Kp);
  6017. SERIAL_PROTOCOL(" i:");
  6018. SERIAL_PROTOCOL(unscalePID_i(cs.Ki));
  6019. SERIAL_PROTOCOL(" d:");
  6020. SERIAL_PROTOCOL(unscalePID_d(cs.Kd));
  6021. #ifdef PID_ADD_EXTRUSION_RATE
  6022. SERIAL_PROTOCOL(" c:");
  6023. //Kc does not have scaling applied above, or in resetting defaults
  6024. SERIAL_PROTOCOL(Kc);
  6025. #endif
  6026. SERIAL_PROTOCOLLN("");
  6027. }
  6028. break;
  6029. #endif //PIDTEMP
  6030. #ifdef PIDTEMPBED
  6031. //! ### M304 - Set bed PID
  6032. // --------------------------------------
  6033. case 304:
  6034. {
  6035. if(code_seen('P')) cs.bedKp = code_value();
  6036. if(code_seen('I')) cs.bedKi = scalePID_i(code_value());
  6037. if(code_seen('D')) cs.bedKd = scalePID_d(code_value());
  6038. updatePID();
  6039. SERIAL_PROTOCOLRPGM(MSG_OK);
  6040. SERIAL_PROTOCOL(" p:");
  6041. SERIAL_PROTOCOL(cs.bedKp);
  6042. SERIAL_PROTOCOL(" i:");
  6043. SERIAL_PROTOCOL(unscalePID_i(cs.bedKi));
  6044. SERIAL_PROTOCOL(" d:");
  6045. SERIAL_PROTOCOL(unscalePID_d(cs.bedKd));
  6046. SERIAL_PROTOCOLLN("");
  6047. }
  6048. break;
  6049. #endif //PIDTEMP
  6050. //! ### M240 - Trigger camera
  6051. // --------------------------------------------
  6052. case 240: // M240 Triggers a camera by emulating a Canon RC-1 : http://www.doc-diy.net/photo/rc-1_hacked/
  6053. {
  6054. #ifdef CHDK
  6055. SET_OUTPUT(CHDK);
  6056. WRITE(CHDK, HIGH);
  6057. chdkHigh = _millis();
  6058. chdkActive = true;
  6059. #else
  6060. #if defined(PHOTOGRAPH_PIN) && PHOTOGRAPH_PIN > -1
  6061. const uint8_t NUM_PULSES=16;
  6062. const float PULSE_LENGTH=0.01524;
  6063. for(int i=0; i < NUM_PULSES; i++) {
  6064. WRITE(PHOTOGRAPH_PIN, HIGH);
  6065. _delay_ms(PULSE_LENGTH);
  6066. WRITE(PHOTOGRAPH_PIN, LOW);
  6067. _delay_ms(PULSE_LENGTH);
  6068. }
  6069. _delay(7.33);
  6070. for(int i=0; i < NUM_PULSES; i++) {
  6071. WRITE(PHOTOGRAPH_PIN, HIGH);
  6072. _delay_ms(PULSE_LENGTH);
  6073. WRITE(PHOTOGRAPH_PIN, LOW);
  6074. _delay_ms(PULSE_LENGTH);
  6075. }
  6076. #endif
  6077. #endif //chdk end if
  6078. }
  6079. break;
  6080. #ifdef PREVENT_DANGEROUS_EXTRUDE
  6081. //! ### M302 - Allow cold extrude, or set minimum extrude temperature
  6082. // -------------------------------------------------------------------
  6083. case 302:
  6084. {
  6085. float temp = .0;
  6086. if (code_seen('S')) temp=code_value();
  6087. set_extrude_min_temp(temp);
  6088. }
  6089. break;
  6090. #endif
  6091. //! ### M303 - PID autotune
  6092. // -------------------------------------
  6093. case 303:
  6094. {
  6095. float temp = 150.0;
  6096. int e=0;
  6097. int c=5;
  6098. if (code_seen('E')) e=code_value();
  6099. if (e<0)
  6100. temp=70;
  6101. if (code_seen('S')) temp=code_value();
  6102. if (code_seen('C')) c=code_value();
  6103. PID_autotune(temp, e, c);
  6104. }
  6105. break;
  6106. //! ### M400 - Wait for all moves to finish
  6107. // -----------------------------------------
  6108. case 400:
  6109. {
  6110. st_synchronize();
  6111. }
  6112. break;
  6113. //! ### M403 - Set filament type (material) for particular extruder and notify the MMU
  6114. // ----------------------------------------------
  6115. case 403:
  6116. {
  6117. // currently three different materials are needed (default, flex and PVA)
  6118. // add storing this information for different load/unload profiles etc. in the future
  6119. // firmware does not wait for "ok" from mmu
  6120. if (mmu_enabled)
  6121. {
  6122. uint8_t extruder = 255;
  6123. uint8_t filament = FILAMENT_UNDEFINED;
  6124. if(code_seen('E')) extruder = code_value();
  6125. if(code_seen('F')) filament = code_value();
  6126. mmu_set_filament_type(extruder, filament);
  6127. }
  6128. }
  6129. break;
  6130. //! ### M500 - Store settings in EEPROM
  6131. // -----------------------------------------
  6132. case 500:
  6133. {
  6134. Config_StoreSettings();
  6135. }
  6136. break;
  6137. //! ### M501 - Read settings from EEPROM
  6138. // ----------------------------------------
  6139. case 501:
  6140. {
  6141. Config_RetrieveSettings();
  6142. }
  6143. break;
  6144. //! ### M502 - Revert all settings to factory default
  6145. // -------------------------------------------------
  6146. case 502:
  6147. {
  6148. Config_ResetDefault();
  6149. }
  6150. break;
  6151. //! ### M503 - Repport all settings currently in memory
  6152. // -------------------------------------------------
  6153. case 503:
  6154. {
  6155. Config_PrintSettings();
  6156. }
  6157. break;
  6158. //! ### M509 - Force language selection
  6159. // ------------------------------------------------
  6160. case 509:
  6161. {
  6162. lang_reset();
  6163. SERIAL_ECHO_START;
  6164. SERIAL_PROTOCOLPGM(("LANG SEL FORCED"));
  6165. }
  6166. break;
  6167. #ifdef ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED
  6168. //! ### M540 - Abort print on endstop hit (enable/disable)
  6169. // -----------------------------------------------------
  6170. case 540:
  6171. {
  6172. if(code_seen('S')) abort_on_endstop_hit = code_value() > 0;
  6173. }
  6174. break;
  6175. #endif
  6176. #ifdef CUSTOM_M_CODE_SET_Z_PROBE_OFFSET
  6177. case CUSTOM_M_CODE_SET_Z_PROBE_OFFSET:
  6178. {
  6179. float value;
  6180. if (code_seen('Z'))
  6181. {
  6182. value = code_value();
  6183. if ((Z_PROBE_OFFSET_RANGE_MIN <= value) && (value <= Z_PROBE_OFFSET_RANGE_MAX))
  6184. {
  6185. cs.zprobe_zoffset = -value; // compare w/ line 278 of ConfigurationStore.cpp
  6186. SERIAL_ECHO_START;
  6187. SERIAL_ECHOLNRPGM(CAT4(MSG_ZPROBE_ZOFFSET, " ", MSG_OK,PSTR("")));
  6188. SERIAL_PROTOCOLLN("");
  6189. }
  6190. else
  6191. {
  6192. SERIAL_ECHO_START;
  6193. SERIAL_ECHORPGM(MSG_ZPROBE_ZOFFSET);
  6194. SERIAL_ECHORPGM(MSG_Z_MIN);
  6195. SERIAL_ECHO(Z_PROBE_OFFSET_RANGE_MIN);
  6196. SERIAL_ECHORPGM(MSG_Z_MAX);
  6197. SERIAL_ECHO(Z_PROBE_OFFSET_RANGE_MAX);
  6198. SERIAL_PROTOCOLLN("");
  6199. }
  6200. }
  6201. else
  6202. {
  6203. SERIAL_ECHO_START;
  6204. SERIAL_ECHOLNRPGM(CAT2(MSG_ZPROBE_ZOFFSET, PSTR(" : ")));
  6205. SERIAL_ECHO(-cs.zprobe_zoffset);
  6206. SERIAL_PROTOCOLLN("");
  6207. }
  6208. break;
  6209. }
  6210. #endif // CUSTOM_M_CODE_SET_Z_PROBE_OFFSET
  6211. #ifdef FILAMENTCHANGEENABLE
  6212. //! ### M600 - Initiate Filament change procedure
  6213. // --------------------------------------
  6214. case 600: //Pause for filament change X[pos] Y[pos] Z[relative lift] E[initial retract] L[later retract distance for removal]
  6215. {
  6216. st_synchronize();
  6217. float x_position = current_position[X_AXIS];
  6218. float y_position = current_position[Y_AXIS];
  6219. float z_shift = 0; // is it necessary to be a float?
  6220. float e_shift_init = 0;
  6221. float e_shift_late = 0;
  6222. bool automatic = false;
  6223. //Retract extruder
  6224. if(code_seen('E'))
  6225. {
  6226. e_shift_init = code_value();
  6227. }
  6228. else
  6229. {
  6230. #ifdef FILAMENTCHANGE_FIRSTRETRACT
  6231. e_shift_init = FILAMENTCHANGE_FIRSTRETRACT ;
  6232. #endif
  6233. }
  6234. //currently don't work as we are using the same unload sequence as in M702, needs re-work
  6235. if (code_seen('L'))
  6236. {
  6237. e_shift_late = code_value();
  6238. }
  6239. else
  6240. {
  6241. #ifdef FILAMENTCHANGE_FINALRETRACT
  6242. e_shift_late = FILAMENTCHANGE_FINALRETRACT;
  6243. #endif
  6244. }
  6245. //Lift Z
  6246. if(code_seen('Z'))
  6247. {
  6248. z_shift = code_value();
  6249. }
  6250. else
  6251. {
  6252. z_shift = gcode_M600_filament_change_z_shift<uint8_t>();
  6253. }
  6254. //Move XY to side
  6255. if(code_seen('X'))
  6256. {
  6257. x_position = code_value();
  6258. }
  6259. else
  6260. {
  6261. #ifdef FILAMENTCHANGE_XPOS
  6262. x_position = FILAMENTCHANGE_XPOS;
  6263. #endif
  6264. }
  6265. if(code_seen('Y'))
  6266. {
  6267. y_position = code_value();
  6268. }
  6269. else
  6270. {
  6271. #ifdef FILAMENTCHANGE_YPOS
  6272. y_position = FILAMENTCHANGE_YPOS ;
  6273. #endif
  6274. }
  6275. if (mmu_enabled && code_seen("AUTO"))
  6276. automatic = true;
  6277. gcode_M600(automatic, x_position, y_position, z_shift, e_shift_init, e_shift_late);
  6278. }
  6279. break;
  6280. #endif //FILAMENTCHANGEENABLE
  6281. //! ### M601 - Pause print
  6282. // -------------------------------
  6283. case 601:
  6284. {
  6285. cmdqueue_pop_front(); //trick because we want skip this command (M601) after restore
  6286. lcd_pause_print();
  6287. }
  6288. break;
  6289. //! ### M602 - Resume print
  6290. // -------------------------------
  6291. case 602: {
  6292. lcd_resume_print();
  6293. }
  6294. break;
  6295. //! ### M603 - Stop print
  6296. // -------------------------------
  6297. case 603: {
  6298. lcd_print_stop();
  6299. }
  6300. #ifdef PINDA_THERMISTOR
  6301. //! ### M860 - Wait for extruder temperature (PINDA)
  6302. // --------------------------------------------------------------
  6303. /*!
  6304. Wait for PINDA thermistor to reach target temperature
  6305. M860 [S<target_temperature>]
  6306. */
  6307. case 860:
  6308. {
  6309. int set_target_pinda = 0;
  6310. if (code_seen('S')) {
  6311. set_target_pinda = code_value();
  6312. }
  6313. else {
  6314. break;
  6315. }
  6316. LCD_MESSAGERPGM(_T(MSG_PLEASE_WAIT));
  6317. SERIAL_PROTOCOLPGM("Wait for PINDA target temperature:");
  6318. SERIAL_PROTOCOL(set_target_pinda);
  6319. SERIAL_PROTOCOLLN("");
  6320. codenum = _millis();
  6321. cancel_heatup = false;
  6322. bool is_pinda_cooling = false;
  6323. if ((degTargetBed() == 0) && (degTargetHotend(0) == 0)) {
  6324. is_pinda_cooling = true;
  6325. }
  6326. while ( ((!is_pinda_cooling) && (!cancel_heatup) && (current_temperature_pinda < set_target_pinda)) || (is_pinda_cooling && (current_temperature_pinda > set_target_pinda)) ) {
  6327. if ((_millis() - codenum) > 1000) //Print Temp Reading every 1 second while waiting.
  6328. {
  6329. SERIAL_PROTOCOLPGM("P:");
  6330. SERIAL_PROTOCOL_F(current_temperature_pinda, 1);
  6331. SERIAL_PROTOCOLPGM("/");
  6332. SERIAL_PROTOCOL(set_target_pinda);
  6333. SERIAL_PROTOCOLLN("");
  6334. codenum = _millis();
  6335. }
  6336. manage_heater();
  6337. manage_inactivity();
  6338. lcd_update(0);
  6339. }
  6340. LCD_MESSAGERPGM(MSG_OK);
  6341. break;
  6342. }
  6343. //! ### M861 - Set/Get PINDA temperature compensation offsets
  6344. // -----------------------------------------------------------
  6345. /*!
  6346. M861 [ ? | ! | Z | S<microsteps> [I<table_index>] ]
  6347. - `?` - Print current EEPROM offset values
  6348. - `!` - Set factory default values
  6349. - `Z` - Set all values to 0 (effectively disabling PINDA temperature compensation)
  6350. - `S<microsteps>` `I<table_index>` - Set compensation ustep value S for compensation table index I
  6351. */
  6352. case 861:
  6353. if (code_seen('?')) { // ? - Print out current EEPROM offset values
  6354. uint8_t cal_status = calibration_status_pinda();
  6355. int16_t usteps = 0;
  6356. cal_status ? SERIAL_PROTOCOLLN("PINDA cal status: 1") : SERIAL_PROTOCOLLN("PINDA cal status: 0");
  6357. SERIAL_PROTOCOLLN("index, temp, ustep, um");
  6358. for (uint8_t i = 0; i < 6; i++)
  6359. {
  6360. if(i>0) EEPROM_read_B(EEPROM_PROBE_TEMP_SHIFT + (i-1) * 2, &usteps);
  6361. float mm = ((float)usteps) / cs.axis_steps_per_unit[Z_AXIS];
  6362. i == 0 ? SERIAL_PROTOCOLPGM("n/a") : SERIAL_PROTOCOL(i - 1);
  6363. SERIAL_PROTOCOLPGM(", ");
  6364. SERIAL_PROTOCOL(35 + (i * 5));
  6365. SERIAL_PROTOCOLPGM(", ");
  6366. SERIAL_PROTOCOL(usteps);
  6367. SERIAL_PROTOCOLPGM(", ");
  6368. SERIAL_PROTOCOL(mm * 1000);
  6369. SERIAL_PROTOCOLLN("");
  6370. }
  6371. }
  6372. else if (code_seen('!')) { // ! - Set factory default values
  6373. eeprom_write_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 1);
  6374. int16_t z_shift = 8; //40C - 20um - 8usteps
  6375. EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT, &z_shift);
  6376. z_shift = 24; //45C - 60um - 24usteps
  6377. EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + 2, &z_shift);
  6378. z_shift = 48; //50C - 120um - 48usteps
  6379. EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + 4, &z_shift);
  6380. z_shift = 80; //55C - 200um - 80usteps
  6381. EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + 6, &z_shift);
  6382. z_shift = 120; //60C - 300um - 120usteps
  6383. EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + 8, &z_shift);
  6384. SERIAL_PROTOCOLLN("factory restored");
  6385. }
  6386. else if (code_seen('Z')) { // Z - Set all values to 0 (effectively disabling PINDA temperature compensation)
  6387. eeprom_write_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 1);
  6388. int16_t z_shift = 0;
  6389. for (uint8_t i = 0; i < 5; i++) EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + i * 2, &z_shift);
  6390. SERIAL_PROTOCOLLN("zerorized");
  6391. }
  6392. else if (code_seen('S')) { // Sxxx Iyyy - Set compensation ustep value S for compensation table index I
  6393. int16_t usteps = code_value();
  6394. if (code_seen('I')) {
  6395. uint8_t index = code_value();
  6396. if (index < 5) {
  6397. EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + index * 2, &usteps);
  6398. SERIAL_PROTOCOLLN("OK");
  6399. SERIAL_PROTOCOLLN("index, temp, ustep, um");
  6400. for (uint8_t i = 0; i < 6; i++)
  6401. {
  6402. usteps = 0;
  6403. if (i>0) EEPROM_read_B(EEPROM_PROBE_TEMP_SHIFT + (i - 1) * 2, &usteps);
  6404. float mm = ((float)usteps) / cs.axis_steps_per_unit[Z_AXIS];
  6405. i == 0 ? SERIAL_PROTOCOLPGM("n/a") : SERIAL_PROTOCOL(i - 1);
  6406. SERIAL_PROTOCOLPGM(", ");
  6407. SERIAL_PROTOCOL(35 + (i * 5));
  6408. SERIAL_PROTOCOLPGM(", ");
  6409. SERIAL_PROTOCOL(usteps);
  6410. SERIAL_PROTOCOLPGM(", ");
  6411. SERIAL_PROTOCOL(mm * 1000);
  6412. SERIAL_PROTOCOLLN("");
  6413. }
  6414. }
  6415. }
  6416. }
  6417. else {
  6418. SERIAL_PROTOCOLPGM("no valid command");
  6419. }
  6420. break;
  6421. #endif //PINDA_THERMISTOR
  6422. //! ### M862 - Print checking
  6423. // ----------------------------------------------
  6424. /*!
  6425. Checks the parameters of the printer and gcode and performs compatibility check
  6426. - M862.1 { P<nozzle_diameter> | Q }
  6427. - M862.2 { P<model_code> | Q }
  6428. - M862.3 { P"<model_name>" | Q }
  6429. - M862.4 { P<fw_version> | Q }
  6430. - M862.5 { P<gcode_level> | Q }
  6431. When run with P<> argument, the check is performed against the input value.
  6432. When run with Q argument, the current value is shown.
  6433. M862.3 accepts text identifiers of printer types too.
  6434. The syntax of M862.3 is (note the quotes around the type):
  6435. M862.3 P "MK3S"
  6436. Accepted printer type identifiers and their numeric counterparts:
  6437. - MK1 (100)
  6438. - MK2 (200)
  6439. - MK2MM (201)
  6440. - MK2S (202)
  6441. - MK2SMM (203)
  6442. - MK2.5 (250)
  6443. - MK2.5MMU2 (20250)
  6444. - MK2.5S (252)
  6445. - MK2.5SMMU2S (20252)
  6446. - MK3 (300)
  6447. - MK3MMU2 (20300)
  6448. - MK3S (302)
  6449. - MK3SMMU2S (20302)
  6450. */
  6451. case 862: // M862: print checking
  6452. float nDummy;
  6453. uint8_t nCommand;
  6454. nCommand=(uint8_t)(modff(code_value_float(),&nDummy)*10.0+0.5);
  6455. switch((ClPrintChecking)nCommand)
  6456. {
  6457. case ClPrintChecking::_Nozzle: // ~ .1
  6458. uint16_t nDiameter;
  6459. if(code_seen('P'))
  6460. {
  6461. nDiameter=(uint16_t)(code_value()*1000.0+0.5); // [,um]
  6462. nozzle_diameter_check(nDiameter);
  6463. }
  6464. /*
  6465. else if(code_seen('S')&&farm_mode)
  6466. {
  6467. nDiameter=(uint16_t)(code_value()*1000.0+0.5); // [,um]
  6468. eeprom_update_byte((uint8_t*)EEPROM_NOZZLE_DIAMETER,(uint8_t)ClNozzleDiameter::_Diameter_Undef); // for correct synchronization after farm-mode exiting
  6469. eeprom_update_word((uint16_t*)EEPROM_NOZZLE_DIAMETER_uM,nDiameter);
  6470. }
  6471. */
  6472. else if(code_seen('Q'))
  6473. SERIAL_PROTOCOLLN((float)eeprom_read_word((uint16_t*)EEPROM_NOZZLE_DIAMETER_uM)/1000.0);
  6474. break;
  6475. case ClPrintChecking::_Model: // ~ .2
  6476. if(code_seen('P'))
  6477. {
  6478. uint16_t nPrinterModel;
  6479. nPrinterModel=(uint16_t)code_value_long();
  6480. printer_model_check(nPrinterModel);
  6481. }
  6482. else if(code_seen('Q'))
  6483. SERIAL_PROTOCOLLN(nPrinterType);
  6484. break;
  6485. case ClPrintChecking::_Smodel: // ~ .3
  6486. if(code_seen('P'))
  6487. printer_smodel_check(strchr_pointer);
  6488. else if(code_seen('Q'))
  6489. SERIAL_PROTOCOLLNRPGM(sPrinterName);
  6490. break;
  6491. case ClPrintChecking::_Version: // ~ .4
  6492. if(code_seen('P'))
  6493. fw_version_check(++strchr_pointer);
  6494. else if(code_seen('Q'))
  6495. SERIAL_PROTOCOLLN(FW_VERSION);
  6496. break;
  6497. case ClPrintChecking::_Gcode: // ~ .5
  6498. if(code_seen('P'))
  6499. {
  6500. uint16_t nGcodeLevel;
  6501. nGcodeLevel=(uint16_t)code_value_long();
  6502. gcode_level_check(nGcodeLevel);
  6503. }
  6504. else if(code_seen('Q'))
  6505. SERIAL_PROTOCOLLN(GCODE_LEVEL);
  6506. break;
  6507. }
  6508. break;
  6509. #ifdef LIN_ADVANCE
  6510. //! ### M900 - Set Linear advance options
  6511. // ----------------------------------------------
  6512. case 900:
  6513. gcode_M900();
  6514. break;
  6515. #endif
  6516. //! ### M907 - Set digital trimpot motor current in mA using axis codes
  6517. // ---------------------------------------------------------------
  6518. case 907:
  6519. {
  6520. #ifdef TMC2130
  6521. //! See tmc2130_cur2val() for translation to 0 .. 63 range
  6522. for (int i = 0; i < NUM_AXIS; i++)
  6523. if(code_seen(axis_codes[i]))
  6524. {
  6525. long cur_mA = code_value_long();
  6526. uint8_t val = tmc2130_cur2val(cur_mA);
  6527. tmc2130_set_current_h(i, val);
  6528. tmc2130_set_current_r(i, val);
  6529. //if (i == E_AXIS) printf_P(PSTR("E-axis current=%ldmA\n"), cur_mA);
  6530. }
  6531. #else //TMC2130
  6532. #if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
  6533. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) st_current_set(i,code_value());
  6534. if(code_seen('B')) st_current_set(4,code_value());
  6535. if(code_seen('S')) for(int i=0;i<=4;i++) st_current_set(i,code_value());
  6536. #endif
  6537. #ifdef MOTOR_CURRENT_PWM_XY_PIN
  6538. if(code_seen('X')) st_current_set(0, code_value());
  6539. #endif
  6540. #ifdef MOTOR_CURRENT_PWM_Z_PIN
  6541. if(code_seen('Z')) st_current_set(1, code_value());
  6542. #endif
  6543. #ifdef MOTOR_CURRENT_PWM_E_PIN
  6544. if(code_seen('E')) st_current_set(2, code_value());
  6545. #endif
  6546. #endif //TMC2130
  6547. }
  6548. break;
  6549. //! ### M908 - Control digital trimpot directly
  6550. // ---------------------------------------------------------
  6551. case 908:
  6552. {
  6553. #if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
  6554. uint8_t channel,current;
  6555. if(code_seen('P')) channel=code_value();
  6556. if(code_seen('S')) current=code_value();
  6557. digitalPotWrite(channel, current);
  6558. #endif
  6559. }
  6560. break;
  6561. #ifdef TMC2130_SERVICE_CODES_M910_M918
  6562. //! ### M910 - TMC2130 init
  6563. // -----------------------------------------------
  6564. case 910:
  6565. {
  6566. tmc2130_init();
  6567. }
  6568. break;
  6569. //! ### M911 - Set TMC2130 holding currents
  6570. // -------------------------------------------------
  6571. case 911:
  6572. {
  6573. if (code_seen('X')) tmc2130_set_current_h(0, code_value());
  6574. if (code_seen('Y')) tmc2130_set_current_h(1, code_value());
  6575. if (code_seen('Z')) tmc2130_set_current_h(2, code_value());
  6576. if (code_seen('E')) tmc2130_set_current_h(3, code_value());
  6577. }
  6578. break;
  6579. //! ### M912 - Set TMC2130 running currents
  6580. // -----------------------------------------------
  6581. case 912:
  6582. {
  6583. if (code_seen('X')) tmc2130_set_current_r(0, code_value());
  6584. if (code_seen('Y')) tmc2130_set_current_r(1, code_value());
  6585. if (code_seen('Z')) tmc2130_set_current_r(2, code_value());
  6586. if (code_seen('E')) tmc2130_set_current_r(3, code_value());
  6587. }
  6588. break;
  6589. //! ### M913 - Print TMC2130 currents
  6590. // -----------------------------
  6591. case 913:
  6592. {
  6593. tmc2130_print_currents();
  6594. }
  6595. break;
  6596. //! ### M914 - Set TMC2130 normal mode
  6597. // ------------------------------
  6598. case 914:
  6599. {
  6600. tmc2130_mode = TMC2130_MODE_NORMAL;
  6601. update_mode_profile();
  6602. tmc2130_init();
  6603. }
  6604. break;
  6605. //! ### M95 - Set TMC2130 silent mode
  6606. // ------------------------------
  6607. case 915:
  6608. {
  6609. tmc2130_mode = TMC2130_MODE_SILENT;
  6610. update_mode_profile();
  6611. tmc2130_init();
  6612. }
  6613. break;
  6614. //! ### M916 - Set TMC2130 Stallguard sensitivity threshold
  6615. // -------------------------------------------------------
  6616. case 916:
  6617. {
  6618. if (code_seen('X')) tmc2130_sg_thr[X_AXIS] = code_value();
  6619. if (code_seen('Y')) tmc2130_sg_thr[Y_AXIS] = code_value();
  6620. if (code_seen('Z')) tmc2130_sg_thr[Z_AXIS] = code_value();
  6621. if (code_seen('E')) tmc2130_sg_thr[E_AXIS] = code_value();
  6622. for (uint8_t a = X_AXIS; a <= E_AXIS; a++)
  6623. printf_P(_N("tmc2130_sg_thr[%c]=%d\n"), "XYZE"[a], tmc2130_sg_thr[a]);
  6624. }
  6625. break;
  6626. //! ### M917 - Set TMC2130 PWM amplitude offset (pwm_ampl)
  6627. // --------------------------------------------------------------
  6628. case 917:
  6629. {
  6630. if (code_seen('X')) tmc2130_set_pwm_ampl(0, code_value());
  6631. if (code_seen('Y')) tmc2130_set_pwm_ampl(1, code_value());
  6632. if (code_seen('Z')) tmc2130_set_pwm_ampl(2, code_value());
  6633. if (code_seen('E')) tmc2130_set_pwm_ampl(3, code_value());
  6634. }
  6635. break;
  6636. //! ### M918 - Set TMC2130 PWM amplitude gradient (pwm_grad)
  6637. // -------------------------------------------------------------
  6638. case 918:
  6639. {
  6640. if (code_seen('X')) tmc2130_set_pwm_grad(0, code_value());
  6641. if (code_seen('Y')) tmc2130_set_pwm_grad(1, code_value());
  6642. if (code_seen('Z')) tmc2130_set_pwm_grad(2, code_value());
  6643. if (code_seen('E')) tmc2130_set_pwm_grad(3, code_value());
  6644. }
  6645. break;
  6646. #endif //TMC2130_SERVICE_CODES_M910_M918
  6647. //! ### M350 - Set microstepping mode
  6648. // ---------------------------------------------------
  6649. //! Warning: Steps per unit remains unchanged. S code sets stepping mode for all drivers.
  6650. case 350:
  6651. {
  6652. #ifdef TMC2130
  6653. if(code_seen('E'))
  6654. {
  6655. uint16_t res_new = code_value();
  6656. if ((res_new == 8) || (res_new == 16) || (res_new == 32) || (res_new == 64) || (res_new == 128))
  6657. {
  6658. st_synchronize();
  6659. uint8_t axis = E_AXIS;
  6660. uint16_t res = tmc2130_get_res(axis);
  6661. tmc2130_set_res(axis, res_new);
  6662. cs.axis_ustep_resolution[axis] = res_new;
  6663. if (res_new > res)
  6664. {
  6665. uint16_t fac = (res_new / res);
  6666. cs.axis_steps_per_unit[axis] *= fac;
  6667. position[E_AXIS] *= fac;
  6668. }
  6669. else
  6670. {
  6671. uint16_t fac = (res / res_new);
  6672. cs.axis_steps_per_unit[axis] /= fac;
  6673. position[E_AXIS] /= fac;
  6674. }
  6675. }
  6676. }
  6677. #else //TMC2130
  6678. #if defined(X_MS1_PIN) && X_MS1_PIN > -1
  6679. if(code_seen('S')) for(int i=0;i<=4;i++) microstep_mode(i,code_value());
  6680. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) microstep_mode(i,(uint8_t)code_value());
  6681. if(code_seen('B')) microstep_mode(4,code_value());
  6682. microstep_readings();
  6683. #endif
  6684. #endif //TMC2130
  6685. }
  6686. break;
  6687. //! ### M351 - Toggle Microstep Pins
  6688. // -----------------------------------
  6689. //! Toggle MS1 MS2 pins directly, S# determines MS1 or MS2, X# sets the pin high/low.
  6690. //!
  6691. //! M351 [B<0|1>] [E<0|1>] S<1|2> [X<0|1>] [Y<0|1>] [Z<0|1>]
  6692. case 351:
  6693. {
  6694. #if defined(X_MS1_PIN) && X_MS1_PIN > -1
  6695. if(code_seen('S')) switch((int)code_value())
  6696. {
  6697. case 1:
  6698. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) microstep_ms(i,code_value(),-1);
  6699. if(code_seen('B')) microstep_ms(4,code_value(),-1);
  6700. break;
  6701. case 2:
  6702. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) microstep_ms(i,-1,code_value());
  6703. if(code_seen('B')) microstep_ms(4,-1,code_value());
  6704. break;
  6705. }
  6706. microstep_readings();
  6707. #endif
  6708. }
  6709. break;
  6710. //! ### M701 - Load filament
  6711. // -------------------------
  6712. case 701:
  6713. {
  6714. if (mmu_enabled && code_seen('E'))
  6715. tmp_extruder = code_value();
  6716. gcode_M701();
  6717. }
  6718. break;
  6719. //! ### M702 - Unload filament
  6720. // ------------------------
  6721. /*!
  6722. M702 [U C]
  6723. - `U` Unload all filaments used in current print
  6724. - `C` Unload just current filament
  6725. - without any parameters unload all filaments
  6726. */
  6727. case 702:
  6728. {
  6729. #ifdef SNMM
  6730. if (code_seen('U'))
  6731. extr_unload_used(); //! if "U" unload all filaments which were used in current print
  6732. else if (code_seen('C'))
  6733. extr_unload(); //! if "C" unload just current filament
  6734. else
  6735. extr_unload_all(); //! otherwise unload all filaments
  6736. #else
  6737. if (code_seen('C')) {
  6738. if(mmu_enabled) extr_unload(); //! if "C" unload current filament; if mmu is not present no action is performed
  6739. }
  6740. else {
  6741. if(mmu_enabled) extr_unload(); //! unload current filament
  6742. else unload_filament();
  6743. }
  6744. #endif //SNMM
  6745. }
  6746. break;
  6747. //! ### M999 - Restart after being stopped
  6748. // ------------------------------------
  6749. case 999:
  6750. Stopped = false;
  6751. lcd_reset_alert_level();
  6752. gcode_LastN = Stopped_gcode_LastN;
  6753. FlushSerialRequestResend();
  6754. break;
  6755. default:
  6756. printf_P(PSTR("Unknown M code: %s \n"), cmdbuffer + bufindr + CMDHDRSIZE);
  6757. }
  6758. // printf_P(_N("END M-CODE=%u\n"), mcode_in_progress);
  6759. mcode_in_progress = 0;
  6760. }
  6761. }
  6762. // end if(code_seen('M')) (end of M codes)
  6763. //! -----------------------------------------------------------------------------------------
  6764. //! T Codes
  6765. //!
  6766. //! T<extruder nr.> - select extruder in case of multi extruder printer
  6767. //! select filament in case of MMU_V2
  6768. //! if extruder is "?", open menu to let the user select extruder/filament
  6769. //!
  6770. //! For MMU_V2:
  6771. //! @n T<n> Gcode to extrude at least 38.10 mm at feedrate 19.02 mm/s must follow immediately to load to extruder wheels.
  6772. //! @n T? Gcode to extrude shouldn't have to follow, load to extruder wheels is done automatically
  6773. //! @n Tx Same as T?, except nozzle doesn't have to be preheated. Tc must be placed after extruder nozzle is preheated to finish filament load.
  6774. //! @n Tc Load to nozzle after filament was prepared by Tc and extruder nozzle is already heated.
  6775. else if(code_seen('T'))
  6776. {
  6777. int index;
  6778. bool load_to_nozzle = false;
  6779. for (index = 1; *(strchr_pointer + index) == ' ' || *(strchr_pointer + index) == '\t'; index++);
  6780. *(strchr_pointer + index) = tolower(*(strchr_pointer + index));
  6781. if ((*(strchr_pointer + index) < '0' || *(strchr_pointer + index) > '4') && *(strchr_pointer + index) != '?' && *(strchr_pointer + index) != 'x' && *(strchr_pointer + index) != 'c') {
  6782. SERIAL_ECHOLNPGM("Invalid T code.");
  6783. }
  6784. else if (*(strchr_pointer + index) == 'x'){ //load to bondtech gears; if mmu is not present do nothing
  6785. if (mmu_enabled)
  6786. {
  6787. tmp_extruder = choose_menu_P(_T(MSG_CHOOSE_FILAMENT), _T(MSG_FILAMENT));
  6788. if ((tmp_extruder == mmu_extruder) && mmu_fil_loaded) //dont execute the same T-code twice in a row
  6789. {
  6790. printf_P(PSTR("Duplicate T-code ignored.\n"));
  6791. }
  6792. else
  6793. {
  6794. st_synchronize();
  6795. mmu_command(MmuCmd::T0 + tmp_extruder);
  6796. manage_response(true, true, MMU_TCODE_MOVE);
  6797. }
  6798. }
  6799. }
  6800. else if (*(strchr_pointer + index) == 'c') { //load to from bondtech gears to nozzle (nozzle should be preheated)
  6801. if (mmu_enabled)
  6802. {
  6803. st_synchronize();
  6804. mmu_continue_loading(is_usb_printing || (lcd_commands_type == LcdCommands::Layer1Cal));
  6805. mmu_extruder = tmp_extruder; //filament change is finished
  6806. mmu_load_to_nozzle();
  6807. }
  6808. }
  6809. else {
  6810. if (*(strchr_pointer + index) == '?')
  6811. {
  6812. if(mmu_enabled)
  6813. {
  6814. tmp_extruder = choose_menu_P(_T(MSG_CHOOSE_FILAMENT), _T(MSG_FILAMENT));
  6815. load_to_nozzle = true;
  6816. } else
  6817. {
  6818. tmp_extruder = choose_menu_P(_T(MSG_CHOOSE_EXTRUDER), _T(MSG_EXTRUDER));
  6819. }
  6820. }
  6821. else {
  6822. tmp_extruder = code_value();
  6823. if (mmu_enabled && lcd_autoDepleteEnabled())
  6824. {
  6825. tmp_extruder = ad_getAlternative(tmp_extruder);
  6826. }
  6827. }
  6828. st_synchronize();
  6829. snmm_filaments_used |= (1 << tmp_extruder); //for stop print
  6830. if (mmu_enabled)
  6831. {
  6832. if ((tmp_extruder == mmu_extruder) && mmu_fil_loaded) //dont execute the same T-code twice in a row
  6833. {
  6834. printf_P(PSTR("Duplicate T-code ignored.\n"));
  6835. }
  6836. else
  6837. {
  6838. #if defined(MMU_HAS_CUTTER) && defined(MMU_ALWAYS_CUT)
  6839. if (EEPROM_MMU_CUTTER_ENABLED_always == eeprom_read_byte((uint8_t*)EEPROM_MMU_CUTTER_ENABLED))
  6840. {
  6841. mmu_command(MmuCmd::K0 + tmp_extruder);
  6842. manage_response(true, true, MMU_UNLOAD_MOVE);
  6843. }
  6844. #endif //defined(MMU_HAS_CUTTER) && defined(MMU_ALWAYS_CUT)
  6845. mmu_command(MmuCmd::T0 + tmp_extruder);
  6846. manage_response(true, true, MMU_TCODE_MOVE);
  6847. mmu_continue_loading(is_usb_printing || (lcd_commands_type == LcdCommands::Layer1Cal));
  6848. mmu_extruder = tmp_extruder; //filament change is finished
  6849. if (load_to_nozzle)// for single material usage with mmu
  6850. {
  6851. mmu_load_to_nozzle();
  6852. }
  6853. }
  6854. }
  6855. else
  6856. {
  6857. #ifdef SNMM
  6858. #ifdef LIN_ADVANCE
  6859. if (mmu_extruder != tmp_extruder)
  6860. clear_current_adv_vars(); //Check if the selected extruder is not the active one and reset LIN_ADVANCE variables if so.
  6861. #endif
  6862. mmu_extruder = tmp_extruder;
  6863. _delay(100);
  6864. disable_e0();
  6865. disable_e1();
  6866. disable_e2();
  6867. pinMode(E_MUX0_PIN, OUTPUT);
  6868. pinMode(E_MUX1_PIN, OUTPUT);
  6869. _delay(100);
  6870. SERIAL_ECHO_START;
  6871. SERIAL_ECHO("T:");
  6872. SERIAL_ECHOLN((int)tmp_extruder);
  6873. switch (tmp_extruder) {
  6874. case 1:
  6875. WRITE(E_MUX0_PIN, HIGH);
  6876. WRITE(E_MUX1_PIN, LOW);
  6877. break;
  6878. case 2:
  6879. WRITE(E_MUX0_PIN, LOW);
  6880. WRITE(E_MUX1_PIN, HIGH);
  6881. break;
  6882. case 3:
  6883. WRITE(E_MUX0_PIN, HIGH);
  6884. WRITE(E_MUX1_PIN, HIGH);
  6885. break;
  6886. default:
  6887. WRITE(E_MUX0_PIN, LOW);
  6888. WRITE(E_MUX1_PIN, LOW);
  6889. break;
  6890. }
  6891. _delay(100);
  6892. #else //SNMM
  6893. if (tmp_extruder >= EXTRUDERS) {
  6894. SERIAL_ECHO_START;
  6895. SERIAL_ECHOPGM("T");
  6896. SERIAL_PROTOCOLLN((int)tmp_extruder);
  6897. SERIAL_ECHOLNRPGM(_n("Invalid extruder"));////MSG_INVALID_EXTRUDER
  6898. }
  6899. else {
  6900. #if EXTRUDERS > 1
  6901. boolean make_move = false;
  6902. #endif
  6903. if (code_seen('F')) {
  6904. #if EXTRUDERS > 1
  6905. make_move = true;
  6906. #endif
  6907. next_feedrate = code_value();
  6908. if (next_feedrate > 0.0) {
  6909. feedrate = next_feedrate;
  6910. }
  6911. }
  6912. #if EXTRUDERS > 1
  6913. if (tmp_extruder != active_extruder) {
  6914. // Save current position to return to after applying extruder offset
  6915. memcpy(destination, current_position, sizeof(destination));
  6916. // Offset extruder (only by XY)
  6917. int i;
  6918. for (i = 0; i < 2; i++) {
  6919. current_position[i] = current_position[i] -
  6920. extruder_offset[i][active_extruder] +
  6921. extruder_offset[i][tmp_extruder];
  6922. }
  6923. // Set the new active extruder and position
  6924. active_extruder = tmp_extruder;
  6925. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  6926. // Move to the old position if 'F' was in the parameters
  6927. if (make_move && Stopped == false) {
  6928. prepare_move();
  6929. }
  6930. }
  6931. #endif
  6932. SERIAL_ECHO_START;
  6933. SERIAL_ECHORPGM(_n("Active Extruder: "));////MSG_ACTIVE_EXTRUDER
  6934. SERIAL_PROTOCOLLN((int)active_extruder);
  6935. }
  6936. #endif //SNMM
  6937. }
  6938. }
  6939. } // end if(code_seen('T')) (end of T codes)
  6940. //! ----------------------------------------------------------------------------------------------
  6941. else if (code_seen('D')) // D codes (debug)
  6942. {
  6943. switch((int)code_value())
  6944. {
  6945. //! ### D-1 - Endless loop
  6946. // -------------------
  6947. case -1:
  6948. dcode__1(); break;
  6949. #ifdef DEBUG_DCODES
  6950. //! ### D0 - Reset
  6951. // --------------
  6952. case 0:
  6953. dcode_0(); break;
  6954. //! ### D1 - Clear EEPROM
  6955. // ------------------
  6956. case 1:
  6957. dcode_1(); break;
  6958. //! ### D2 - Read/Write RAM
  6959. // --------------------
  6960. case 2:
  6961. dcode_2(); break;
  6962. #endif //DEBUG_DCODES
  6963. #ifdef DEBUG_DCODE3
  6964. //! ### D3 - Read/Write EEPROM
  6965. // -----------------------
  6966. case 3:
  6967. dcode_3(); break;
  6968. #endif //DEBUG_DCODE3
  6969. #ifdef DEBUG_DCODES
  6970. //! ### D4 - Read/Write PIN
  6971. // ---------------------
  6972. case 4:
  6973. dcode_4(); break;
  6974. #endif //DEBUG_DCODES
  6975. #ifdef DEBUG_DCODE5
  6976. //! ### D5 - Read/Write FLASH
  6977. // ------------------------
  6978. case 5:
  6979. dcode_5(); break;
  6980. break;
  6981. #endif //DEBUG_DCODE5
  6982. #ifdef DEBUG_DCODES
  6983. //! ### D6 - Read/Write external FLASH
  6984. // ---------------------------------------
  6985. case 6:
  6986. dcode_6(); break;
  6987. //! ### D7 - Read/Write Bootloader
  6988. // -------------------------------
  6989. case 7:
  6990. dcode_7(); break;
  6991. //! ### D8 - Read/Write PINDA
  6992. // ---------------------------
  6993. case 8:
  6994. dcode_8(); break;
  6995. // ### D9 - Read/Write ADC
  6996. // ------------------------
  6997. case 9:
  6998. dcode_9(); break;
  6999. //! ### D10 - XYZ calibration = OK
  7000. // ------------------------------
  7001. case 10:
  7002. dcode_10(); break;
  7003. #endif //DEBUG_DCODES
  7004. #ifdef HEATBED_ANALYSIS
  7005. //! ### D80 - Bed check
  7006. // ---------------------
  7007. /*!
  7008. - `E` - dimension x
  7009. - `F` - dimention y
  7010. - `G` - points_x
  7011. - `H` - points_y
  7012. - `I` - offset_x
  7013. - `J` - offset_y
  7014. */
  7015. case 80:
  7016. {
  7017. float dimension_x = 40;
  7018. float dimension_y = 40;
  7019. int points_x = 40;
  7020. int points_y = 40;
  7021. float offset_x = 74;
  7022. float offset_y = 33;
  7023. if (code_seen('E')) dimension_x = code_value();
  7024. if (code_seen('F')) dimension_y = code_value();
  7025. if (code_seen('G')) {points_x = code_value(); }
  7026. if (code_seen('H')) {points_y = code_value(); }
  7027. if (code_seen('I')) {offset_x = code_value(); }
  7028. if (code_seen('J')) {offset_y = code_value(); }
  7029. printf_P(PSTR("DIM X: %f\n"), dimension_x);
  7030. printf_P(PSTR("DIM Y: %f\n"), dimension_y);
  7031. printf_P(PSTR("POINTS X: %d\n"), points_x);
  7032. printf_P(PSTR("POINTS Y: %d\n"), points_y);
  7033. printf_P(PSTR("OFFSET X: %f\n"), offset_x);
  7034. printf_P(PSTR("OFFSET Y: %f\n"), offset_y);
  7035. bed_check(dimension_x,dimension_y,points_x,points_y,offset_x,offset_y);
  7036. }break;
  7037. //! ### D81 - Bed analysis
  7038. // -----------------------------
  7039. /*!
  7040. - `E` - dimension x
  7041. - `F` - dimention y
  7042. - `G` - points_x
  7043. - `H` - points_y
  7044. - `I` - offset_x
  7045. - `J` - offset_y
  7046. */
  7047. case 81:
  7048. {
  7049. float dimension_x = 40;
  7050. float dimension_y = 40;
  7051. int points_x = 40;
  7052. int points_y = 40;
  7053. float offset_x = 74;
  7054. float offset_y = 33;
  7055. if (code_seen('E')) dimension_x = code_value();
  7056. if (code_seen('F')) dimension_y = code_value();
  7057. if (code_seen("G")) { strchr_pointer+=1; points_x = code_value(); }
  7058. if (code_seen("H")) { strchr_pointer+=1; points_y = code_value(); }
  7059. if (code_seen("I")) { strchr_pointer+=1; offset_x = code_value(); }
  7060. if (code_seen("J")) { strchr_pointer+=1; offset_y = code_value(); }
  7061. bed_analysis(dimension_x,dimension_y,points_x,points_y,offset_x,offset_y);
  7062. } break;
  7063. #endif //HEATBED_ANALYSIS
  7064. #ifdef DEBUG_DCODES
  7065. //! ### D106 print measured fan speed for different pwm values
  7066. // --------------------------------------------------------------
  7067. case 106:
  7068. {
  7069. for (int i = 255; i > 0; i = i - 5) {
  7070. fanSpeed = i;
  7071. //delay_keep_alive(2000);
  7072. for (int j = 0; j < 100; j++) {
  7073. delay_keep_alive(100);
  7074. }
  7075. printf_P(_N("%d: %d\n"), i, fan_speed[1]);
  7076. }
  7077. }break;
  7078. #ifdef TMC2130
  7079. //! ### D2130 - TMC2130 Trinamic stepper controller
  7080. // ---------------------------
  7081. /*!
  7082. D2130<axis><command>[subcommand][value]
  7083. - <command>:
  7084. - '0' current off
  7085. - '1' current on
  7086. - '+' single step
  7087. - * value sereval steps
  7088. - '-' dtto oposite direction
  7089. - '?' read register
  7090. - * "mres"
  7091. - * "step"
  7092. - * "mscnt"
  7093. - * "mscuract"
  7094. - * "wave"
  7095. - '!' set register
  7096. - * "mres"
  7097. - * "step"
  7098. - * "wave"
  7099. - '@' home calibrate axis
  7100. Example:
  7101. D2130E?wave ... print extruder microstep linearity compensation curve
  7102. D2130E!wave0 ... disable extruder linearity compensation curve, (sine curve is used)
  7103. D2130E!wave220 ... (sin(x))^1.1 extruder microstep compensation curve used
  7104. */
  7105. case 2130:
  7106. dcode_2130(); break;
  7107. #endif //TMC2130
  7108. #if (defined (FILAMENT_SENSOR) && defined(PAT9125))
  7109. //! ### D9125 - FILAMENT_SENSOR
  7110. // ---------------------------------
  7111. case 9125:
  7112. dcode_9125(); break;
  7113. #endif //FILAMENT_SENSOR
  7114. #endif //DEBUG_DCODES
  7115. }
  7116. }
  7117. else
  7118. {
  7119. SERIAL_ECHO_START;
  7120. SERIAL_ECHORPGM(MSG_UNKNOWN_COMMAND);
  7121. SERIAL_ECHO(CMDBUFFER_CURRENT_STRING);
  7122. SERIAL_ECHOLNPGM("\"(2)");
  7123. }
  7124. KEEPALIVE_STATE(NOT_BUSY);
  7125. ClearToSend();
  7126. }
  7127. /** @defgroup GCodes G-Code List
  7128. */
  7129. // ---------------------------------------------------
  7130. void FlushSerialRequestResend()
  7131. {
  7132. //char cmdbuffer[bufindr][100]="Resend:";
  7133. MYSERIAL.flush();
  7134. printf_P(_N("%S: %ld\n%S\n"), _n("Resend"), gcode_LastN + 1, MSG_OK);
  7135. }
  7136. // Confirm the execution of a command, if sent from a serial line.
  7137. // Execution of a command from a SD card will not be confirmed.
  7138. void ClearToSend()
  7139. {
  7140. previous_millis_cmd = _millis();
  7141. if ((CMDBUFFER_CURRENT_TYPE == CMDBUFFER_CURRENT_TYPE_USB) || (CMDBUFFER_CURRENT_TYPE == CMDBUFFER_CURRENT_TYPE_USB_WITH_LINENR))
  7142. SERIAL_PROTOCOLLNRPGM(MSG_OK);
  7143. }
  7144. #if MOTHERBOARD == BOARD_RAMBO_MINI_1_0 || MOTHERBOARD == BOARD_RAMBO_MINI_1_3
  7145. void update_currents() {
  7146. float current_high[3] = DEFAULT_PWM_MOTOR_CURRENT_LOUD;
  7147. float current_low[3] = DEFAULT_PWM_MOTOR_CURRENT;
  7148. float tmp_motor[3];
  7149. //SERIAL_ECHOLNPGM("Currents updated: ");
  7150. if (destination[Z_AXIS] < Z_SILENT) {
  7151. //SERIAL_ECHOLNPGM("LOW");
  7152. for (uint8_t i = 0; i < 3; i++) {
  7153. st_current_set(i, current_low[i]);
  7154. /*MYSERIAL.print(int(i));
  7155. SERIAL_ECHOPGM(": ");
  7156. MYSERIAL.println(current_low[i]);*/
  7157. }
  7158. }
  7159. else if (destination[Z_AXIS] > Z_HIGH_POWER) {
  7160. //SERIAL_ECHOLNPGM("HIGH");
  7161. for (uint8_t i = 0; i < 3; i++) {
  7162. st_current_set(i, current_high[i]);
  7163. /*MYSERIAL.print(int(i));
  7164. SERIAL_ECHOPGM(": ");
  7165. MYSERIAL.println(current_high[i]);*/
  7166. }
  7167. }
  7168. else {
  7169. for (uint8_t i = 0; i < 3; i++) {
  7170. float q = current_low[i] - Z_SILENT*((current_high[i] - current_low[i]) / (Z_HIGH_POWER - Z_SILENT));
  7171. tmp_motor[i] = ((current_high[i] - current_low[i]) / (Z_HIGH_POWER - Z_SILENT))*destination[Z_AXIS] + q;
  7172. st_current_set(i, tmp_motor[i]);
  7173. /*MYSERIAL.print(int(i));
  7174. SERIAL_ECHOPGM(": ");
  7175. MYSERIAL.println(tmp_motor[i]);*/
  7176. }
  7177. }
  7178. }
  7179. #endif //MOTHERBOARD == BOARD_RAMBO_MINI_1_0 || MOTHERBOARD == BOARD_RAMBO_MINI_1_3
  7180. void get_coordinates()
  7181. {
  7182. bool seen[4]={false,false,false,false};
  7183. for(int8_t i=0; i < NUM_AXIS; i++) {
  7184. if(code_seen(axis_codes[i]))
  7185. {
  7186. bool relative = axis_relative_modes[i] || relative_mode;
  7187. destination[i] = (float)code_value();
  7188. if (i == E_AXIS) {
  7189. float emult = extruder_multiplier[active_extruder];
  7190. if (emult != 1.) {
  7191. if (! relative) {
  7192. destination[i] -= current_position[i];
  7193. relative = true;
  7194. }
  7195. destination[i] *= emult;
  7196. }
  7197. }
  7198. if (relative)
  7199. destination[i] += current_position[i];
  7200. seen[i]=true;
  7201. #if MOTHERBOARD == BOARD_RAMBO_MINI_1_0 || MOTHERBOARD == BOARD_RAMBO_MINI_1_3
  7202. if (i == Z_AXIS && SilentModeMenu == SILENT_MODE_AUTO) update_currents();
  7203. #endif //MOTHERBOARD == BOARD_RAMBO_MINI_1_0 || MOTHERBOARD == BOARD_RAMBO_MINI_1_3
  7204. }
  7205. else destination[i] = current_position[i]; //Are these else lines really needed?
  7206. }
  7207. if(code_seen('F')) {
  7208. next_feedrate = code_value();
  7209. #ifdef MAX_SILENT_FEEDRATE
  7210. if (tmc2130_mode == TMC2130_MODE_SILENT)
  7211. if (next_feedrate > MAX_SILENT_FEEDRATE) next_feedrate = MAX_SILENT_FEEDRATE;
  7212. #endif //MAX_SILENT_FEEDRATE
  7213. if(next_feedrate > 0.0) feedrate = next_feedrate;
  7214. if (!seen[0] && !seen[1] && !seen[2] && seen[3])
  7215. {
  7216. // float e_max_speed =
  7217. // printf_P(PSTR("E MOVE speed %7.3f\n"), feedrate / 60)
  7218. }
  7219. }
  7220. }
  7221. void get_arc_coordinates()
  7222. {
  7223. #ifdef SF_ARC_FIX
  7224. bool relative_mode_backup = relative_mode;
  7225. relative_mode = true;
  7226. #endif
  7227. get_coordinates();
  7228. #ifdef SF_ARC_FIX
  7229. relative_mode=relative_mode_backup;
  7230. #endif
  7231. if(code_seen('I')) {
  7232. offset[0] = code_value();
  7233. }
  7234. else {
  7235. offset[0] = 0.0;
  7236. }
  7237. if(code_seen('J')) {
  7238. offset[1] = code_value();
  7239. }
  7240. else {
  7241. offset[1] = 0.0;
  7242. }
  7243. }
  7244. void clamp_to_software_endstops(float target[3])
  7245. {
  7246. #ifdef DEBUG_DISABLE_SWLIMITS
  7247. return;
  7248. #endif //DEBUG_DISABLE_SWLIMITS
  7249. world2machine_clamp(target[0], target[1]);
  7250. // Clamp the Z coordinate.
  7251. if (min_software_endstops) {
  7252. float negative_z_offset = 0;
  7253. #ifdef ENABLE_AUTO_BED_LEVELING
  7254. if (Z_PROBE_OFFSET_FROM_EXTRUDER < 0) negative_z_offset = negative_z_offset + Z_PROBE_OFFSET_FROM_EXTRUDER;
  7255. if (cs.add_homing[Z_AXIS] < 0) negative_z_offset = negative_z_offset + cs.add_homing[Z_AXIS];
  7256. #endif
  7257. if (target[Z_AXIS] < min_pos[Z_AXIS]+negative_z_offset) target[Z_AXIS] = min_pos[Z_AXIS]+negative_z_offset;
  7258. }
  7259. if (max_software_endstops) {
  7260. if (target[Z_AXIS] > max_pos[Z_AXIS]) target[Z_AXIS] = max_pos[Z_AXIS];
  7261. }
  7262. }
  7263. #ifdef MESH_BED_LEVELING
  7264. void mesh_plan_buffer_line(const float &x, const float &y, const float &z, const float &e, const float &feed_rate, const uint8_t extruder) {
  7265. float dx = x - current_position[X_AXIS];
  7266. float dy = y - current_position[Y_AXIS];
  7267. float dz = z - current_position[Z_AXIS];
  7268. int n_segments = 0;
  7269. if (mbl.active) {
  7270. float len = abs(dx) + abs(dy);
  7271. if (len > 0)
  7272. // Split to 3cm segments or shorter.
  7273. n_segments = int(ceil(len / 30.f));
  7274. }
  7275. if (n_segments > 1) {
  7276. float de = e - current_position[E_AXIS];
  7277. for (int i = 1; i < n_segments; ++ i) {
  7278. float t = float(i) / float(n_segments);
  7279. if (saved_printing || (mbl.active == false)) return;
  7280. plan_buffer_line(
  7281. current_position[X_AXIS] + t * dx,
  7282. current_position[Y_AXIS] + t * dy,
  7283. current_position[Z_AXIS] + t * dz,
  7284. current_position[E_AXIS] + t * de,
  7285. feed_rate, extruder);
  7286. }
  7287. }
  7288. // The rest of the path.
  7289. plan_buffer_line(x, y, z, e, feed_rate, extruder);
  7290. current_position[X_AXIS] = x;
  7291. current_position[Y_AXIS] = y;
  7292. current_position[Z_AXIS] = z;
  7293. current_position[E_AXIS] = e;
  7294. }
  7295. #endif // MESH_BED_LEVELING
  7296. void prepare_move()
  7297. {
  7298. clamp_to_software_endstops(destination);
  7299. previous_millis_cmd = _millis();
  7300. // Do not use feedmultiply for E or Z only moves
  7301. if( (current_position[X_AXIS] == destination [X_AXIS]) && (current_position[Y_AXIS] == destination [Y_AXIS])) {
  7302. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  7303. }
  7304. else {
  7305. #ifdef MESH_BED_LEVELING
  7306. mesh_plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate*feedmultiply*(1./(60.f*100.f)), active_extruder);
  7307. #else
  7308. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate*feedmultiply*(1./(60.f*100.f)), active_extruder);
  7309. #endif
  7310. }
  7311. for(int8_t i=0; i < NUM_AXIS; i++) {
  7312. current_position[i] = destination[i];
  7313. }
  7314. }
  7315. void prepare_arc_move(char isclockwise) {
  7316. float r = hypot(offset[X_AXIS], offset[Y_AXIS]); // Compute arc radius for mc_arc
  7317. // Trace the arc
  7318. mc_arc(current_position, destination, offset, X_AXIS, Y_AXIS, Z_AXIS, feedrate*feedmultiply/60/100.0, r, isclockwise, active_extruder);
  7319. // As far as the parser is concerned, the position is now == target. In reality the
  7320. // motion control system might still be processing the action and the real tool position
  7321. // in any intermediate location.
  7322. for(int8_t i=0; i < NUM_AXIS; i++) {
  7323. current_position[i] = destination[i];
  7324. }
  7325. previous_millis_cmd = _millis();
  7326. }
  7327. #if defined(CONTROLLERFAN_PIN) && CONTROLLERFAN_PIN > -1
  7328. #if defined(FAN_PIN)
  7329. #if CONTROLLERFAN_PIN == FAN_PIN
  7330. #error "You cannot set CONTROLLERFAN_PIN equal to FAN_PIN"
  7331. #endif
  7332. #endif
  7333. unsigned long lastMotor = 0; //Save the time for when a motor was turned on last
  7334. unsigned long lastMotorCheck = 0;
  7335. void controllerFan()
  7336. {
  7337. if ((_millis() - lastMotorCheck) >= 2500) //Not a time critical function, so we only check every 2500ms
  7338. {
  7339. lastMotorCheck = _millis();
  7340. if(!READ(X_ENABLE_PIN) || !READ(Y_ENABLE_PIN) || !READ(Z_ENABLE_PIN) || (soft_pwm_bed > 0)
  7341. #if EXTRUDERS > 2
  7342. || !READ(E2_ENABLE_PIN)
  7343. #endif
  7344. #if EXTRUDER > 1
  7345. #if defined(X2_ENABLE_PIN) && X2_ENABLE_PIN > -1
  7346. || !READ(X2_ENABLE_PIN)
  7347. #endif
  7348. || !READ(E1_ENABLE_PIN)
  7349. #endif
  7350. || !READ(E0_ENABLE_PIN)) //If any of the drivers are enabled...
  7351. {
  7352. lastMotor = _millis(); //... set time to NOW so the fan will turn on
  7353. }
  7354. if ((_millis() - lastMotor) >= (CONTROLLERFAN_SECS*1000UL) || lastMotor == 0) //If the last time any driver was enabled, is longer since than CONTROLLERSEC...
  7355. {
  7356. digitalWrite(CONTROLLERFAN_PIN, 0);
  7357. analogWrite(CONTROLLERFAN_PIN, 0);
  7358. }
  7359. else
  7360. {
  7361. // allows digital or PWM fan output to be used (see M42 handling)
  7362. digitalWrite(CONTROLLERFAN_PIN, CONTROLLERFAN_SPEED);
  7363. analogWrite(CONTROLLERFAN_PIN, CONTROLLERFAN_SPEED);
  7364. }
  7365. }
  7366. }
  7367. #endif
  7368. #ifdef TEMP_STAT_LEDS
  7369. static bool blue_led = false;
  7370. static bool red_led = false;
  7371. static uint32_t stat_update = 0;
  7372. void handle_status_leds(void) {
  7373. float max_temp = 0.0;
  7374. if(_millis() > stat_update) {
  7375. stat_update += 500; // Update every 0.5s
  7376. for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) {
  7377. max_temp = max(max_temp, degHotend(cur_extruder));
  7378. max_temp = max(max_temp, degTargetHotend(cur_extruder));
  7379. }
  7380. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  7381. max_temp = max(max_temp, degTargetBed());
  7382. max_temp = max(max_temp, degBed());
  7383. #endif
  7384. if((max_temp > 55.0) && (red_led == false)) {
  7385. digitalWrite(STAT_LED_RED, 1);
  7386. digitalWrite(STAT_LED_BLUE, 0);
  7387. red_led = true;
  7388. blue_led = false;
  7389. }
  7390. if((max_temp < 54.0) && (blue_led == false)) {
  7391. digitalWrite(STAT_LED_RED, 0);
  7392. digitalWrite(STAT_LED_BLUE, 1);
  7393. red_led = false;
  7394. blue_led = true;
  7395. }
  7396. }
  7397. }
  7398. #endif
  7399. #ifdef SAFETYTIMER
  7400. /**
  7401. * @brief Turn off heating after safetytimer_inactive_time milliseconds of inactivity
  7402. *
  7403. * Full screen blocking notification message is shown after heater turning off.
  7404. * Paused print is not considered inactivity, as nozzle is cooled anyway and bed cooling would
  7405. * damage print.
  7406. *
  7407. * If safetytimer_inactive_time is zero, feature is disabled (heating is never turned off because of inactivity)
  7408. */
  7409. static void handleSafetyTimer()
  7410. {
  7411. #if (EXTRUDERS > 1)
  7412. #error Implemented only for one extruder.
  7413. #endif //(EXTRUDERS > 1)
  7414. if ((PRINTER_ACTIVE) || (!degTargetBed() && !degTargetHotend(0)) || (!safetytimer_inactive_time))
  7415. {
  7416. safetyTimer.stop();
  7417. }
  7418. else if ((degTargetBed() || degTargetHotend(0)) && (!safetyTimer.running()))
  7419. {
  7420. safetyTimer.start();
  7421. }
  7422. else if (safetyTimer.expired(farm_mode?FARM_DEFAULT_SAFETYTIMER_TIME_ms:safetytimer_inactive_time))
  7423. {
  7424. setTargetBed(0);
  7425. setAllTargetHotends(0);
  7426. lcd_show_fullscreen_message_and_wait_P(_i("Heating disabled by safety timer."));////MSG_BED_HEATING_SAFETY_DISABLED
  7427. }
  7428. }
  7429. #endif //SAFETYTIMER
  7430. void manage_inactivity(bool ignore_stepper_queue/*=false*/) //default argument set in Marlin.h
  7431. {
  7432. bool bInhibitFlag;
  7433. #ifdef FILAMENT_SENSOR
  7434. if (mmu_enabled == false)
  7435. {
  7436. //-// if (mcode_in_progress != 600) //M600 not in progress
  7437. #ifdef PAT9125
  7438. bInhibitFlag=(menu_menu==lcd_menu_extruder_info); // Support::ExtruderInfo menu active
  7439. #endif // PAT9125
  7440. #ifdef IR_SENSOR
  7441. bInhibitFlag=(menu_menu==lcd_menu_show_sensors_state); // Support::SensorInfo menu active
  7442. #endif // IR_SENSOR
  7443. if ((mcode_in_progress != 600) && (eFilamentAction != FilamentAction::AutoLoad) && (!bInhibitFlag)) //M600 not in progress, preHeat @ autoLoad menu not active, Support::ExtruderInfo/SensorInfo menu not active
  7444. {
  7445. if (!moves_planned() && !IS_SD_PRINTING && !is_usb_printing && (lcd_commands_type != LcdCommands::Layer1Cal) && ! eeprom_read_byte((uint8_t*)EEPROM_WIZARD_ACTIVE))
  7446. {
  7447. if (fsensor_check_autoload())
  7448. {
  7449. #ifdef PAT9125
  7450. fsensor_autoload_check_stop();
  7451. #endif //PAT9125
  7452. //-// if (degHotend0() > EXTRUDE_MINTEMP)
  7453. if(0)
  7454. {
  7455. Sound_MakeCustom(50,1000,false);
  7456. loading_flag = true;
  7457. enquecommand_front_P((PSTR("M701")));
  7458. }
  7459. else
  7460. {
  7461. /*
  7462. lcd_update_enable(false);
  7463. show_preheat_nozzle_warning();
  7464. lcd_update_enable(true);
  7465. */
  7466. eFilamentAction=FilamentAction::AutoLoad;
  7467. bFilamentFirstRun=false;
  7468. if(target_temperature[0]>=EXTRUDE_MINTEMP)
  7469. {
  7470. bFilamentPreheatState=true;
  7471. // mFilamentItem(target_temperature[0],target_temperature_bed);
  7472. menu_submenu(mFilamentItemForce);
  7473. }
  7474. else
  7475. {
  7476. menu_submenu(lcd_generic_preheat_menu);
  7477. lcd_timeoutToStatus.start();
  7478. }
  7479. }
  7480. }
  7481. }
  7482. else
  7483. {
  7484. #ifdef PAT9125
  7485. fsensor_autoload_check_stop();
  7486. #endif //PAT9125
  7487. fsensor_update();
  7488. }
  7489. }
  7490. }
  7491. #endif //FILAMENT_SENSOR
  7492. #ifdef SAFETYTIMER
  7493. handleSafetyTimer();
  7494. #endif //SAFETYTIMER
  7495. #if defined(KILL_PIN) && KILL_PIN > -1
  7496. static int killCount = 0; // make the inactivity button a bit less responsive
  7497. const int KILL_DELAY = 10000;
  7498. #endif
  7499. if(buflen < (BUFSIZE-1)){
  7500. get_command();
  7501. }
  7502. if( (_millis() - previous_millis_cmd) > max_inactive_time )
  7503. if(max_inactive_time)
  7504. kill(_n(""), 4);
  7505. if(stepper_inactive_time) {
  7506. if( (_millis() - previous_millis_cmd) > stepper_inactive_time )
  7507. {
  7508. if(blocks_queued() == false && ignore_stepper_queue == false) {
  7509. disable_x();
  7510. disable_y();
  7511. disable_z();
  7512. disable_e0();
  7513. disable_e1();
  7514. disable_e2();
  7515. }
  7516. }
  7517. }
  7518. #ifdef CHDK //Check if pin should be set to LOW after M240 set it to HIGH
  7519. if (chdkActive && (_millis() - chdkHigh > CHDK_DELAY))
  7520. {
  7521. chdkActive = false;
  7522. WRITE(CHDK, LOW);
  7523. }
  7524. #endif
  7525. #if defined(KILL_PIN) && KILL_PIN > -1
  7526. // Check if the kill button was pressed and wait just in case it was an accidental
  7527. // key kill key press
  7528. // -------------------------------------------------------------------------------
  7529. if( 0 == READ(KILL_PIN) )
  7530. {
  7531. killCount++;
  7532. }
  7533. else if (killCount > 0)
  7534. {
  7535. killCount--;
  7536. }
  7537. // Exceeded threshold and we can confirm that it was not accidental
  7538. // KILL the machine
  7539. // ----------------------------------------------------------------
  7540. if ( killCount >= KILL_DELAY)
  7541. {
  7542. kill("", 5);
  7543. }
  7544. #endif
  7545. #if defined(CONTROLLERFAN_PIN) && CONTROLLERFAN_PIN > -1
  7546. controllerFan(); //Check if fan should be turned on to cool stepper drivers down
  7547. #endif
  7548. #ifdef EXTRUDER_RUNOUT_PREVENT
  7549. if( (_millis() - previous_millis_cmd) > EXTRUDER_RUNOUT_SECONDS*1000 )
  7550. if(degHotend(active_extruder)>EXTRUDER_RUNOUT_MINTEMP)
  7551. {
  7552. bool oldstatus=READ(E0_ENABLE_PIN);
  7553. enable_e0();
  7554. float oldepos=current_position[E_AXIS];
  7555. float oldedes=destination[E_AXIS];
  7556. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS],
  7557. destination[E_AXIS]+EXTRUDER_RUNOUT_EXTRUDE*EXTRUDER_RUNOUT_ESTEPS/cs.axis_steps_per_unit[E_AXIS],
  7558. EXTRUDER_RUNOUT_SPEED/60.*EXTRUDER_RUNOUT_ESTEPS/cs.axis_steps_per_unit[E_AXIS], active_extruder);
  7559. current_position[E_AXIS]=oldepos;
  7560. destination[E_AXIS]=oldedes;
  7561. plan_set_e_position(oldepos);
  7562. previous_millis_cmd=_millis();
  7563. st_synchronize();
  7564. WRITE(E0_ENABLE_PIN,oldstatus);
  7565. }
  7566. #endif
  7567. #ifdef TEMP_STAT_LEDS
  7568. handle_status_leds();
  7569. #endif
  7570. check_axes_activity();
  7571. mmu_loop();
  7572. }
  7573. void kill(const char *full_screen_message, unsigned char id)
  7574. {
  7575. printf_P(_N("KILL: %d\n"), id);
  7576. //return;
  7577. cli(); // Stop interrupts
  7578. disable_heater();
  7579. disable_x();
  7580. // SERIAL_ECHOLNPGM("kill - disable Y");
  7581. disable_y();
  7582. disable_z();
  7583. disable_e0();
  7584. disable_e1();
  7585. disable_e2();
  7586. #if defined(PS_ON_PIN) && PS_ON_PIN > -1
  7587. pinMode(PS_ON_PIN,INPUT);
  7588. #endif
  7589. SERIAL_ERROR_START;
  7590. SERIAL_ERRORLNRPGM(_n("Printer halted. kill() called!"));////MSG_ERR_KILLED
  7591. if (full_screen_message != NULL) {
  7592. SERIAL_ERRORLNRPGM(full_screen_message);
  7593. lcd_display_message_fullscreen_P(full_screen_message);
  7594. } else {
  7595. LCD_ALERTMESSAGERPGM(_n("KILLED. "));////MSG_KILLED
  7596. }
  7597. // FMC small patch to update the LCD before ending
  7598. sei(); // enable interrupts
  7599. for ( int i=5; i--; lcd_update(0))
  7600. {
  7601. _delay(200);
  7602. }
  7603. cli(); // disable interrupts
  7604. suicide();
  7605. while(1)
  7606. {
  7607. #ifdef WATCHDOG
  7608. wdt_reset();
  7609. #endif //WATCHDOG
  7610. /* Intentionally left empty */
  7611. } // Wait for reset
  7612. }
  7613. void Stop()
  7614. {
  7615. disable_heater();
  7616. if(Stopped == false) {
  7617. Stopped = true;
  7618. lcd_print_stop();
  7619. Stopped_gcode_LastN = gcode_LastN; // Save last g_code for restart
  7620. SERIAL_ERROR_START;
  7621. SERIAL_ERRORLNRPGM(MSG_ERR_STOPPED);
  7622. LCD_MESSAGERPGM(_T(MSG_STOPPED));
  7623. }
  7624. }
  7625. bool IsStopped() { return Stopped; };
  7626. #ifdef FAST_PWM_FAN
  7627. void setPwmFrequency(uint8_t pin, int val)
  7628. {
  7629. val &= 0x07;
  7630. switch(digitalPinToTimer(pin))
  7631. {
  7632. #if defined(TCCR0A)
  7633. case TIMER0A:
  7634. case TIMER0B:
  7635. // TCCR0B &= ~(_BV(CS00) | _BV(CS01) | _BV(CS02));
  7636. // TCCR0B |= val;
  7637. break;
  7638. #endif
  7639. #if defined(TCCR1A)
  7640. case TIMER1A:
  7641. case TIMER1B:
  7642. // TCCR1B &= ~(_BV(CS10) | _BV(CS11) | _BV(CS12));
  7643. // TCCR1B |= val;
  7644. break;
  7645. #endif
  7646. #if defined(TCCR2)
  7647. case TIMER2:
  7648. case TIMER2:
  7649. TCCR2 &= ~(_BV(CS10) | _BV(CS11) | _BV(CS12));
  7650. TCCR2 |= val;
  7651. break;
  7652. #endif
  7653. #if defined(TCCR2A)
  7654. case TIMER2A:
  7655. case TIMER2B:
  7656. TCCR2B &= ~(_BV(CS20) | _BV(CS21) | _BV(CS22));
  7657. TCCR2B |= val;
  7658. break;
  7659. #endif
  7660. #if defined(TCCR3A)
  7661. case TIMER3A:
  7662. case TIMER3B:
  7663. case TIMER3C:
  7664. TCCR3B &= ~(_BV(CS30) | _BV(CS31) | _BV(CS32));
  7665. TCCR3B |= val;
  7666. break;
  7667. #endif
  7668. #if defined(TCCR4A)
  7669. case TIMER4A:
  7670. case TIMER4B:
  7671. case TIMER4C:
  7672. TCCR4B &= ~(_BV(CS40) | _BV(CS41) | _BV(CS42));
  7673. TCCR4B |= val;
  7674. break;
  7675. #endif
  7676. #if defined(TCCR5A)
  7677. case TIMER5A:
  7678. case TIMER5B:
  7679. case TIMER5C:
  7680. TCCR5B &= ~(_BV(CS50) | _BV(CS51) | _BV(CS52));
  7681. TCCR5B |= val;
  7682. break;
  7683. #endif
  7684. }
  7685. }
  7686. #endif //FAST_PWM_FAN
  7687. //! @brief Get and validate extruder number
  7688. //!
  7689. //! If it is not specified, active_extruder is returned in parameter extruder.
  7690. //! @param [in] code M code number
  7691. //! @param [out] extruder
  7692. //! @return error
  7693. //! @retval true Invalid extruder specified in T code
  7694. //! @retval false Valid extruder specified in T code, or not specifiead
  7695. bool setTargetedHotend(int code, uint8_t &extruder)
  7696. {
  7697. extruder = active_extruder;
  7698. if(code_seen('T')) {
  7699. extruder = code_value();
  7700. if(extruder >= EXTRUDERS) {
  7701. SERIAL_ECHO_START;
  7702. switch(code){
  7703. case 104:
  7704. SERIAL_ECHORPGM(_n("M104 Invalid extruder "));////MSG_M104_INVALID_EXTRUDER
  7705. break;
  7706. case 105:
  7707. SERIAL_ECHO(_n("M105 Invalid extruder "));////MSG_M105_INVALID_EXTRUDER
  7708. break;
  7709. case 109:
  7710. SERIAL_ECHO(_n("M109 Invalid extruder "));////MSG_M109_INVALID_EXTRUDER
  7711. break;
  7712. case 218:
  7713. SERIAL_ECHO(_n("M218 Invalid extruder "));////MSG_M218_INVALID_EXTRUDER
  7714. break;
  7715. case 221:
  7716. SERIAL_ECHO(_n("M221 Invalid extruder "));////MSG_M221_INVALID_EXTRUDER
  7717. break;
  7718. }
  7719. SERIAL_PROTOCOLLN((int)extruder);
  7720. return true;
  7721. }
  7722. }
  7723. return false;
  7724. }
  7725. void save_statistics(unsigned long _total_filament_used, unsigned long _total_print_time) //_total_filament_used unit: mm/100; print time in s
  7726. {
  7727. if (eeprom_read_byte((uint8_t *)EEPROM_TOTALTIME) == 255 && eeprom_read_byte((uint8_t *)EEPROM_TOTALTIME + 1) == 255 && eeprom_read_byte((uint8_t *)EEPROM_TOTALTIME + 2) == 255 && eeprom_read_byte((uint8_t *)EEPROM_TOTALTIME + 3) == 255)
  7728. {
  7729. eeprom_update_dword((uint32_t *)EEPROM_TOTALTIME, 0);
  7730. eeprom_update_dword((uint32_t *)EEPROM_FILAMENTUSED, 0);
  7731. }
  7732. unsigned long _previous_filament = eeprom_read_dword((uint32_t *)EEPROM_FILAMENTUSED); //_previous_filament unit: cm
  7733. unsigned long _previous_time = eeprom_read_dword((uint32_t *)EEPROM_TOTALTIME); //_previous_time unit: min
  7734. eeprom_update_dword((uint32_t *)EEPROM_TOTALTIME, _previous_time + (_total_print_time/60)); //EEPROM_TOTALTIME unit: min
  7735. eeprom_update_dword((uint32_t *)EEPROM_FILAMENTUSED, _previous_filament + (_total_filament_used / 1000));
  7736. total_filament_used = 0;
  7737. }
  7738. float calculate_extruder_multiplier(float diameter) {
  7739. float out = 1.f;
  7740. if (cs.volumetric_enabled && diameter > 0.f) {
  7741. float area = M_PI * diameter * diameter * 0.25;
  7742. out = 1.f / area;
  7743. }
  7744. if (extrudemultiply != 100)
  7745. out *= float(extrudemultiply) * 0.01f;
  7746. return out;
  7747. }
  7748. void calculate_extruder_multipliers() {
  7749. extruder_multiplier[0] = calculate_extruder_multiplier(cs.filament_size[0]);
  7750. #if EXTRUDERS > 1
  7751. extruder_multiplier[1] = calculate_extruder_multiplier(cs.filament_size[1]);
  7752. #if EXTRUDERS > 2
  7753. extruder_multiplier[2] = calculate_extruder_multiplier(cs.filament_size[2]);
  7754. #endif
  7755. #endif
  7756. }
  7757. void delay_keep_alive(unsigned int ms)
  7758. {
  7759. for (;;) {
  7760. manage_heater();
  7761. // Manage inactivity, but don't disable steppers on timeout.
  7762. manage_inactivity(true);
  7763. lcd_update(0);
  7764. if (ms == 0)
  7765. break;
  7766. else if (ms >= 50) {
  7767. _delay(50);
  7768. ms -= 50;
  7769. } else {
  7770. _delay(ms);
  7771. ms = 0;
  7772. }
  7773. }
  7774. }
  7775. static void wait_for_heater(long codenum, uint8_t extruder) {
  7776. #ifdef TEMP_RESIDENCY_TIME
  7777. long residencyStart;
  7778. residencyStart = -1;
  7779. /* continue to loop until we have reached the target temp
  7780. _and_ until TEMP_RESIDENCY_TIME hasn't passed since we reached it */
  7781. while ((!cancel_heatup) && ((residencyStart == -1) ||
  7782. (residencyStart >= 0 && (((unsigned int)(_millis() - residencyStart)) < (TEMP_RESIDENCY_TIME * 1000UL))))) {
  7783. #else
  7784. while (target_direction ? (isHeatingHotend(tmp_extruder)) : (isCoolingHotend(tmp_extruder) && (CooldownNoWait == false))) {
  7785. #endif //TEMP_RESIDENCY_TIME
  7786. if ((_millis() - codenum) > 1000UL)
  7787. { //Print Temp Reading and remaining time every 1 second while heating up/cooling down
  7788. if (!farm_mode) {
  7789. SERIAL_PROTOCOLPGM("T:");
  7790. SERIAL_PROTOCOL_F(degHotend(extruder), 1);
  7791. SERIAL_PROTOCOLPGM(" E:");
  7792. SERIAL_PROTOCOL((int)extruder);
  7793. #ifdef TEMP_RESIDENCY_TIME
  7794. SERIAL_PROTOCOLPGM(" W:");
  7795. if (residencyStart > -1)
  7796. {
  7797. codenum = ((TEMP_RESIDENCY_TIME * 1000UL) - (_millis() - residencyStart)) / 1000UL;
  7798. SERIAL_PROTOCOLLN(codenum);
  7799. }
  7800. else
  7801. {
  7802. SERIAL_PROTOCOLLN("?");
  7803. }
  7804. }
  7805. #else
  7806. SERIAL_PROTOCOLLN("");
  7807. #endif
  7808. codenum = _millis();
  7809. }
  7810. manage_heater();
  7811. manage_inactivity(true); //do not disable steppers
  7812. lcd_update(0);
  7813. #ifdef TEMP_RESIDENCY_TIME
  7814. /* start/restart the TEMP_RESIDENCY_TIME timer whenever we reach target temp for the first time
  7815. or when current temp falls outside the hysteresis after target temp was reached */
  7816. if ((residencyStart == -1 && target_direction && (degHotend(extruder) >= (degTargetHotend(extruder) - TEMP_WINDOW))) ||
  7817. (residencyStart == -1 && !target_direction && (degHotend(extruder) <= (degTargetHotend(extruder) + TEMP_WINDOW))) ||
  7818. (residencyStart > -1 && labs(degHotend(extruder) - degTargetHotend(extruder)) > TEMP_HYSTERESIS))
  7819. {
  7820. residencyStart = _millis();
  7821. }
  7822. #endif //TEMP_RESIDENCY_TIME
  7823. }
  7824. }
  7825. void check_babystep()
  7826. {
  7827. int babystep_z = eeprom_read_word(reinterpret_cast<uint16_t *>(&(EEPROM_Sheets_base->
  7828. s[(eeprom_read_byte(&(EEPROM_Sheets_base->active_sheet)))].z_offset)));
  7829. if ((babystep_z < Z_BABYSTEP_MIN) || (babystep_z > Z_BABYSTEP_MAX)) {
  7830. babystep_z = 0; //if babystep value is out of min max range, set it to 0
  7831. SERIAL_ECHOLNPGM("Z live adjust out of range. Setting to 0");
  7832. eeprom_write_word(reinterpret_cast<uint16_t *>(&(EEPROM_Sheets_base->
  7833. s[(eeprom_read_byte(&(EEPROM_Sheets_base->active_sheet)))].z_offset)),
  7834. babystep_z);
  7835. lcd_show_fullscreen_message_and_wait_P(PSTR("Z live adjust out of range. Setting to 0. Click to continue."));
  7836. lcd_update_enable(true);
  7837. }
  7838. }
  7839. #ifdef HEATBED_ANALYSIS
  7840. void d_setup()
  7841. {
  7842. pinMode(D_DATACLOCK, INPUT_PULLUP);
  7843. pinMode(D_DATA, INPUT_PULLUP);
  7844. pinMode(D_REQUIRE, OUTPUT);
  7845. digitalWrite(D_REQUIRE, HIGH);
  7846. }
  7847. float d_ReadData()
  7848. {
  7849. int digit[13];
  7850. String mergeOutput;
  7851. float output;
  7852. digitalWrite(D_REQUIRE, HIGH);
  7853. for (int i = 0; i<13; i++)
  7854. {
  7855. for (int j = 0; j < 4; j++)
  7856. {
  7857. while (digitalRead(D_DATACLOCK) == LOW) {}
  7858. while (digitalRead(D_DATACLOCK) == HIGH) {}
  7859. bitWrite(digit[i], j, digitalRead(D_DATA));
  7860. }
  7861. }
  7862. digitalWrite(D_REQUIRE, LOW);
  7863. mergeOutput = "";
  7864. output = 0;
  7865. for (int r = 5; r <= 10; r++) //Merge digits
  7866. {
  7867. mergeOutput += digit[r];
  7868. }
  7869. output = mergeOutput.toFloat();
  7870. if (digit[4] == 8) //Handle sign
  7871. {
  7872. output *= -1;
  7873. }
  7874. for (int i = digit[11]; i > 0; i--) //Handle floating point
  7875. {
  7876. output /= 10;
  7877. }
  7878. return output;
  7879. }
  7880. void bed_check(float x_dimension, float y_dimension, int x_points_num, int y_points_num, float shift_x, float shift_y) {
  7881. int t1 = 0;
  7882. int t_delay = 0;
  7883. int digit[13];
  7884. int m;
  7885. char str[3];
  7886. //String mergeOutput;
  7887. char mergeOutput[15];
  7888. float output;
  7889. int mesh_point = 0; //index number of calibration point
  7890. float bed_zero_ref_x = (-22.f + X_PROBE_OFFSET_FROM_EXTRUDER); //shift between zero point on bed and target and between probe and nozzle
  7891. float bed_zero_ref_y = (-0.6f + Y_PROBE_OFFSET_FROM_EXTRUDER);
  7892. float mesh_home_z_search = 4;
  7893. float measure_z_height = 0.2f;
  7894. float row[x_points_num];
  7895. int ix = 0;
  7896. int iy = 0;
  7897. const char* filename_wldsd = "mesh.txt";
  7898. char data_wldsd[x_points_num * 7 + 1]; //6 chars(" -A.BCD")for each measurement + null
  7899. char numb_wldsd[8]; // (" -A.BCD" + null)
  7900. #ifdef MICROMETER_LOGGING
  7901. d_setup();
  7902. #endif //MICROMETER_LOGGING
  7903. int XY_AXIS_FEEDRATE = homing_feedrate[X_AXIS] / 20;
  7904. int Z_LIFT_FEEDRATE = homing_feedrate[Z_AXIS] / 40;
  7905. unsigned int custom_message_type_old = custom_message_type;
  7906. unsigned int custom_message_state_old = custom_message_state;
  7907. custom_message_type = CustomMsg::MeshBedLeveling;
  7908. custom_message_state = (x_points_num * y_points_num) + 10;
  7909. lcd_update(1);
  7910. //mbl.reset();
  7911. babystep_undo();
  7912. card.openFile(filename_wldsd, false);
  7913. /*destination[Z_AXIS] = mesh_home_z_search;
  7914. //plan_buffer_line_curposXYZE(Z_LIFT_FEEDRATE, active_extruder);
  7915. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], Z_LIFT_FEEDRATE, active_extruder);
  7916. for(int8_t i=0; i < NUM_AXIS; i++) {
  7917. current_position[i] = destination[i];
  7918. }
  7919. st_synchronize();
  7920. */
  7921. destination[Z_AXIS] = measure_z_height;
  7922. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], Z_LIFT_FEEDRATE, active_extruder);
  7923. for(int8_t i=0; i < NUM_AXIS; i++) {
  7924. current_position[i] = destination[i];
  7925. }
  7926. st_synchronize();
  7927. /*int l_feedmultiply = */setup_for_endstop_move(false);
  7928. SERIAL_PROTOCOLPGM("Num X,Y: ");
  7929. SERIAL_PROTOCOL(x_points_num);
  7930. SERIAL_PROTOCOLPGM(",");
  7931. SERIAL_PROTOCOL(y_points_num);
  7932. SERIAL_PROTOCOLPGM("\nZ search height: ");
  7933. SERIAL_PROTOCOL(mesh_home_z_search);
  7934. SERIAL_PROTOCOLPGM("\nDimension X,Y: ");
  7935. SERIAL_PROTOCOL(x_dimension);
  7936. SERIAL_PROTOCOLPGM(",");
  7937. SERIAL_PROTOCOL(y_dimension);
  7938. SERIAL_PROTOCOLLNPGM("\nMeasured points:");
  7939. while (mesh_point != x_points_num * y_points_num) {
  7940. ix = mesh_point % x_points_num; // from 0 to MESH_NUM_X_POINTS - 1
  7941. iy = mesh_point / x_points_num;
  7942. if (iy & 1) ix = (x_points_num - 1) - ix; // Zig zag
  7943. float z0 = 0.f;
  7944. /*destination[Z_AXIS] = mesh_home_z_search;
  7945. //plan_buffer_line_curposXYZE(Z_LIFT_FEEDRATE, active_extruder);
  7946. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], Z_LIFT_FEEDRATE, active_extruder);
  7947. for(int8_t i=0; i < NUM_AXIS; i++) {
  7948. current_position[i] = destination[i];
  7949. }
  7950. st_synchronize();*/
  7951. //current_position[X_AXIS] = 13.f + ix * (x_dimension / (x_points_num - 1)) - bed_zero_ref_x + shift_x;
  7952. //current_position[Y_AXIS] = 6.4f + iy * (y_dimension / (y_points_num - 1)) - bed_zero_ref_y + shift_y;
  7953. destination[X_AXIS] = ix * (x_dimension / (x_points_num - 1)) + shift_x;
  7954. destination[Y_AXIS] = iy * (y_dimension / (y_points_num - 1)) + shift_y;
  7955. mesh_plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], XY_AXIS_FEEDRATE/6, active_extruder);
  7956. for(int8_t i=0; i < NUM_AXIS; i++) {
  7957. current_position[i] = destination[i];
  7958. }
  7959. st_synchronize();
  7960. // printf_P(PSTR("X = %f; Y= %f \n"), current_position[X_AXIS], current_position[Y_AXIS]);
  7961. delay_keep_alive(1000);
  7962. #ifdef MICROMETER_LOGGING
  7963. //memset(numb_wldsd, 0, sizeof(numb_wldsd));
  7964. //dtostrf(d_ReadData(), 8, 5, numb_wldsd);
  7965. //strcat(data_wldsd, numb_wldsd);
  7966. //MYSERIAL.println(data_wldsd);
  7967. //delay(1000);
  7968. //delay(3000);
  7969. //t1 = millis();
  7970. //while (digitalRead(D_DATACLOCK) == LOW) {}
  7971. //while (digitalRead(D_DATACLOCK) == HIGH) {}
  7972. memset(digit, 0, sizeof(digit));
  7973. //cli();
  7974. digitalWrite(D_REQUIRE, LOW);
  7975. for (int i = 0; i<13; i++)
  7976. {
  7977. //t1 = millis();
  7978. for (int j = 0; j < 4; j++)
  7979. {
  7980. while (digitalRead(D_DATACLOCK) == LOW) {}
  7981. while (digitalRead(D_DATACLOCK) == HIGH) {}
  7982. //printf_P(PSTR("Done %d\n"), j);
  7983. bitWrite(digit[i], j, digitalRead(D_DATA));
  7984. }
  7985. //t_delay = (millis() - t1);
  7986. //SERIAL_PROTOCOLPGM(" ");
  7987. //SERIAL_PROTOCOL_F(t_delay, 5);
  7988. //SERIAL_PROTOCOLPGM(" ");
  7989. }
  7990. //sei();
  7991. digitalWrite(D_REQUIRE, HIGH);
  7992. mergeOutput[0] = '\0';
  7993. output = 0;
  7994. for (int r = 5; r <= 10; r++) //Merge digits
  7995. {
  7996. sprintf(str, "%d", digit[r]);
  7997. strcat(mergeOutput, str);
  7998. }
  7999. output = atof(mergeOutput);
  8000. if (digit[4] == 8) //Handle sign
  8001. {
  8002. output *= -1;
  8003. }
  8004. for (int i = digit[11]; i > 0; i--) //Handle floating point
  8005. {
  8006. output *= 0.1;
  8007. }
  8008. //output = d_ReadData();
  8009. //row[ix] = current_position[Z_AXIS];
  8010. //row[ix] = d_ReadData();
  8011. row[ix] = output;
  8012. if (iy % 2 == 1 ? ix == 0 : ix == x_points_num - 1) {
  8013. memset(data_wldsd, 0, sizeof(data_wldsd));
  8014. for (int i = 0; i < x_points_num; i++) {
  8015. SERIAL_PROTOCOLPGM(" ");
  8016. SERIAL_PROTOCOL_F(row[i], 5);
  8017. memset(numb_wldsd, 0, sizeof(numb_wldsd));
  8018. dtostrf(row[i], 7, 3, numb_wldsd);
  8019. strcat(data_wldsd, numb_wldsd);
  8020. }
  8021. card.write_command(data_wldsd);
  8022. SERIAL_PROTOCOLPGM("\n");
  8023. }
  8024. custom_message_state--;
  8025. mesh_point++;
  8026. lcd_update(1);
  8027. }
  8028. #endif //MICROMETER_LOGGING
  8029. card.closefile();
  8030. //clean_up_after_endstop_move(l_feedmultiply);
  8031. }
  8032. void bed_analysis(float x_dimension, float y_dimension, int x_points_num, int y_points_num, float shift_x, float shift_y) {
  8033. int t1 = 0;
  8034. int t_delay = 0;
  8035. int digit[13];
  8036. int m;
  8037. char str[3];
  8038. //String mergeOutput;
  8039. char mergeOutput[15];
  8040. float output;
  8041. int mesh_point = 0; //index number of calibration point
  8042. float bed_zero_ref_x = (-22.f + X_PROBE_OFFSET_FROM_EXTRUDER); //shift between zero point on bed and target and between probe and nozzle
  8043. float bed_zero_ref_y = (-0.6f + Y_PROBE_OFFSET_FROM_EXTRUDER);
  8044. float mesh_home_z_search = 4;
  8045. float row[x_points_num];
  8046. int ix = 0;
  8047. int iy = 0;
  8048. const char* filename_wldsd = "wldsd.txt";
  8049. char data_wldsd[70];
  8050. char numb_wldsd[10];
  8051. d_setup();
  8052. if (!(axis_known_position[X_AXIS] && axis_known_position[Y_AXIS] && axis_known_position[Z_AXIS])) {
  8053. // We don't know where we are! HOME!
  8054. // Push the commands to the front of the message queue in the reverse order!
  8055. // There shall be always enough space reserved for these commands.
  8056. repeatcommand_front(); // repeat G80 with all its parameters
  8057. enquecommand_front_P((PSTR("G28 W0")));
  8058. enquecommand_front_P((PSTR("G1 Z5")));
  8059. return;
  8060. }
  8061. unsigned int custom_message_type_old = custom_message_type;
  8062. unsigned int custom_message_state_old = custom_message_state;
  8063. custom_message_type = CustomMsg::MeshBedLeveling;
  8064. custom_message_state = (x_points_num * y_points_num) + 10;
  8065. lcd_update(1);
  8066. mbl.reset();
  8067. babystep_undo();
  8068. card.openFile(filename_wldsd, false);
  8069. current_position[Z_AXIS] = mesh_home_z_search;
  8070. plan_buffer_line_curposXYZE(homing_feedrate[Z_AXIS] / 60, active_extruder);
  8071. int XY_AXIS_FEEDRATE = homing_feedrate[X_AXIS] / 20;
  8072. int Z_LIFT_FEEDRATE = homing_feedrate[Z_AXIS] / 40;
  8073. int l_feedmultiply = setup_for_endstop_move(false);
  8074. SERIAL_PROTOCOLPGM("Num X,Y: ");
  8075. SERIAL_PROTOCOL(x_points_num);
  8076. SERIAL_PROTOCOLPGM(",");
  8077. SERIAL_PROTOCOL(y_points_num);
  8078. SERIAL_PROTOCOLPGM("\nZ search height: ");
  8079. SERIAL_PROTOCOL(mesh_home_z_search);
  8080. SERIAL_PROTOCOLPGM("\nDimension X,Y: ");
  8081. SERIAL_PROTOCOL(x_dimension);
  8082. SERIAL_PROTOCOLPGM(",");
  8083. SERIAL_PROTOCOL(y_dimension);
  8084. SERIAL_PROTOCOLLNPGM("\nMeasured points:");
  8085. while (mesh_point != x_points_num * y_points_num) {
  8086. ix = mesh_point % x_points_num; // from 0 to MESH_NUM_X_POINTS - 1
  8087. iy = mesh_point / x_points_num;
  8088. if (iy & 1) ix = (x_points_num - 1) - ix; // Zig zag
  8089. float z0 = 0.f;
  8090. current_position[Z_AXIS] = mesh_home_z_search;
  8091. plan_buffer_line_curposXYZE(Z_LIFT_FEEDRATE, active_extruder);
  8092. st_synchronize();
  8093. current_position[X_AXIS] = 13.f + ix * (x_dimension / (x_points_num - 1)) - bed_zero_ref_x + shift_x;
  8094. current_position[Y_AXIS] = 6.4f + iy * (y_dimension / (y_points_num - 1)) - bed_zero_ref_y + shift_y;
  8095. plan_buffer_line_curposXYZE(XY_AXIS_FEEDRATE, active_extruder);
  8096. st_synchronize();
  8097. if (!find_bed_induction_sensor_point_z(-10.f)) { //if we have data from z calibration max allowed difference is 1mm for each point, if we dont have data max difference is 10mm from initial point
  8098. break;
  8099. card.closefile();
  8100. }
  8101. //memset(numb_wldsd, 0, sizeof(numb_wldsd));
  8102. //dtostrf(d_ReadData(), 8, 5, numb_wldsd);
  8103. //strcat(data_wldsd, numb_wldsd);
  8104. //MYSERIAL.println(data_wldsd);
  8105. //_delay(1000);
  8106. //_delay(3000);
  8107. //t1 = _millis();
  8108. //while (digitalRead(D_DATACLOCK) == LOW) {}
  8109. //while (digitalRead(D_DATACLOCK) == HIGH) {}
  8110. memset(digit, 0, sizeof(digit));
  8111. //cli();
  8112. digitalWrite(D_REQUIRE, LOW);
  8113. for (int i = 0; i<13; i++)
  8114. {
  8115. //t1 = _millis();
  8116. for (int j = 0; j < 4; j++)
  8117. {
  8118. while (digitalRead(D_DATACLOCK) == LOW) {}
  8119. while (digitalRead(D_DATACLOCK) == HIGH) {}
  8120. bitWrite(digit[i], j, digitalRead(D_DATA));
  8121. }
  8122. //t_delay = (_millis() - t1);
  8123. //SERIAL_PROTOCOLPGM(" ");
  8124. //SERIAL_PROTOCOL_F(t_delay, 5);
  8125. //SERIAL_PROTOCOLPGM(" ");
  8126. }
  8127. //sei();
  8128. digitalWrite(D_REQUIRE, HIGH);
  8129. mergeOutput[0] = '\0';
  8130. output = 0;
  8131. for (int r = 5; r <= 10; r++) //Merge digits
  8132. {
  8133. sprintf(str, "%d", digit[r]);
  8134. strcat(mergeOutput, str);
  8135. }
  8136. output = atof(mergeOutput);
  8137. if (digit[4] == 8) //Handle sign
  8138. {
  8139. output *= -1;
  8140. }
  8141. for (int i = digit[11]; i > 0; i--) //Handle floating point
  8142. {
  8143. output *= 0.1;
  8144. }
  8145. //output = d_ReadData();
  8146. //row[ix] = current_position[Z_AXIS];
  8147. memset(data_wldsd, 0, sizeof(data_wldsd));
  8148. for (int i = 0; i <3; i++) {
  8149. memset(numb_wldsd, 0, sizeof(numb_wldsd));
  8150. dtostrf(current_position[i], 8, 5, numb_wldsd);
  8151. strcat(data_wldsd, numb_wldsd);
  8152. strcat(data_wldsd, ";");
  8153. }
  8154. memset(numb_wldsd, 0, sizeof(numb_wldsd));
  8155. dtostrf(output, 8, 5, numb_wldsd);
  8156. strcat(data_wldsd, numb_wldsd);
  8157. //strcat(data_wldsd, ";");
  8158. card.write_command(data_wldsd);
  8159. //row[ix] = d_ReadData();
  8160. row[ix] = output; // current_position[Z_AXIS];
  8161. if (iy % 2 == 1 ? ix == 0 : ix == x_points_num - 1) {
  8162. for (int i = 0; i < x_points_num; i++) {
  8163. SERIAL_PROTOCOLPGM(" ");
  8164. SERIAL_PROTOCOL_F(row[i], 5);
  8165. }
  8166. SERIAL_PROTOCOLPGM("\n");
  8167. }
  8168. custom_message_state--;
  8169. mesh_point++;
  8170. lcd_update(1);
  8171. }
  8172. card.closefile();
  8173. clean_up_after_endstop_move(l_feedmultiply);
  8174. }
  8175. #endif //HEATBED_ANALYSIS
  8176. #ifndef PINDA_THERMISTOR
  8177. static void temp_compensation_start() {
  8178. custom_message_type = CustomMsg::TempCompPreheat;
  8179. custom_message_state = PINDA_HEAT_T + 1;
  8180. lcd_update(2);
  8181. if (degHotend(active_extruder) > EXTRUDE_MINTEMP) {
  8182. current_position[E_AXIS] -= default_retraction;
  8183. }
  8184. plan_buffer_line_curposXYZE(400, active_extruder);
  8185. current_position[X_AXIS] = PINDA_PREHEAT_X;
  8186. current_position[Y_AXIS] = PINDA_PREHEAT_Y;
  8187. current_position[Z_AXIS] = PINDA_PREHEAT_Z;
  8188. plan_buffer_line_curposXYZE(3000 / 60, active_extruder);
  8189. st_synchronize();
  8190. while (fabs(degBed() - target_temperature_bed) > 1) delay_keep_alive(1000);
  8191. for (int i = 0; i < PINDA_HEAT_T; i++) {
  8192. delay_keep_alive(1000);
  8193. custom_message_state = PINDA_HEAT_T - i;
  8194. if (custom_message_state == 99 || custom_message_state == 9) lcd_update(2); //force whole display redraw if number of digits changed
  8195. else lcd_update(1);
  8196. }
  8197. custom_message_type = CustomMsg::Status;
  8198. custom_message_state = 0;
  8199. }
  8200. static void temp_compensation_apply() {
  8201. int i_add;
  8202. int z_shift = 0;
  8203. float z_shift_mm;
  8204. if (calibration_status() == CALIBRATION_STATUS_CALIBRATED) {
  8205. if (target_temperature_bed % 10 == 0 && target_temperature_bed >= 60 && target_temperature_bed <= 100) {
  8206. i_add = (target_temperature_bed - 60) / 10;
  8207. EEPROM_read_B(EEPROM_PROBE_TEMP_SHIFT + i_add * 2, &z_shift);
  8208. z_shift_mm = z_shift / cs.axis_steps_per_unit[Z_AXIS];
  8209. }else {
  8210. //interpolation
  8211. z_shift_mm = temp_comp_interpolation(target_temperature_bed) / cs.axis_steps_per_unit[Z_AXIS];
  8212. }
  8213. printf_P(_N("\nZ shift applied:%.3f\n"), z_shift_mm);
  8214. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS] - z_shift_mm, current_position[E_AXIS], homing_feedrate[Z_AXIS] / 40, active_extruder);
  8215. st_synchronize();
  8216. plan_set_z_position(current_position[Z_AXIS]);
  8217. }
  8218. else {
  8219. //we have no temp compensation data
  8220. }
  8221. }
  8222. #endif //ndef PINDA_THERMISTOR
  8223. float temp_comp_interpolation(float inp_temperature) {
  8224. //cubic spline interpolation
  8225. int n, i, j;
  8226. float h[10], a, b, c, d, sum, s[10] = { 0 }, x[10], F[10], f[10], m[10][10] = { 0 }, temp;
  8227. int shift[10];
  8228. int temp_C[10];
  8229. n = 6; //number of measured points
  8230. shift[0] = 0;
  8231. for (i = 0; i < n; i++) {
  8232. if (i>0) EEPROM_read_B(EEPROM_PROBE_TEMP_SHIFT + (i-1) * 2, &shift[i]); //read shift in steps from EEPROM
  8233. temp_C[i] = 50 + i * 10; //temperature in C
  8234. #ifdef PINDA_THERMISTOR
  8235. temp_C[i] = 35 + i * 5; //temperature in C
  8236. #else
  8237. temp_C[i] = 50 + i * 10; //temperature in C
  8238. #endif
  8239. x[i] = (float)temp_C[i];
  8240. f[i] = (float)shift[i];
  8241. }
  8242. if (inp_temperature < x[0]) return 0;
  8243. for (i = n - 1; i>0; i--) {
  8244. F[i] = (f[i] - f[i - 1]) / (x[i] - x[i - 1]);
  8245. h[i - 1] = x[i] - x[i - 1];
  8246. }
  8247. //*********** formation of h, s , f matrix **************
  8248. for (i = 1; i<n - 1; i++) {
  8249. m[i][i] = 2 * (h[i - 1] + h[i]);
  8250. if (i != 1) {
  8251. m[i][i - 1] = h[i - 1];
  8252. m[i - 1][i] = h[i - 1];
  8253. }
  8254. m[i][n - 1] = 6 * (F[i + 1] - F[i]);
  8255. }
  8256. //*********** forward elimination **************
  8257. for (i = 1; i<n - 2; i++) {
  8258. temp = (m[i + 1][i] / m[i][i]);
  8259. for (j = 1; j <= n - 1; j++)
  8260. m[i + 1][j] -= temp*m[i][j];
  8261. }
  8262. //*********** backward substitution *********
  8263. for (i = n - 2; i>0; i--) {
  8264. sum = 0;
  8265. for (j = i; j <= n - 2; j++)
  8266. sum += m[i][j] * s[j];
  8267. s[i] = (m[i][n - 1] - sum) / m[i][i];
  8268. }
  8269. for (i = 0; i<n - 1; i++)
  8270. if ((x[i] <= inp_temperature && inp_temperature <= x[i + 1]) || (i == n-2 && inp_temperature > x[i + 1])) {
  8271. a = (s[i + 1] - s[i]) / (6 * h[i]);
  8272. b = s[i] / 2;
  8273. c = (f[i + 1] - f[i]) / h[i] - (2 * h[i] * s[i] + s[i + 1] * h[i]) / 6;
  8274. d = f[i];
  8275. sum = a*pow((inp_temperature - x[i]), 3) + b*pow((inp_temperature - x[i]), 2) + c*(inp_temperature - x[i]) + d;
  8276. }
  8277. return sum;
  8278. }
  8279. #ifdef PINDA_THERMISTOR
  8280. float temp_compensation_pinda_thermistor_offset(float temperature_pinda)
  8281. {
  8282. if (!temp_cal_active) return 0;
  8283. if (!calibration_status_pinda()) return 0;
  8284. return temp_comp_interpolation(temperature_pinda) / cs.axis_steps_per_unit[Z_AXIS];
  8285. }
  8286. #endif //PINDA_THERMISTOR
  8287. void long_pause() //long pause print
  8288. {
  8289. st_synchronize();
  8290. start_pause_print = _millis();
  8291. //retract
  8292. current_position[E_AXIS] -= default_retraction;
  8293. plan_buffer_line_curposXYZE(400, active_extruder);
  8294. //lift z
  8295. current_position[Z_AXIS] += Z_PAUSE_LIFT;
  8296. if (current_position[Z_AXIS] > Z_MAX_POS) current_position[Z_AXIS] = Z_MAX_POS;
  8297. plan_buffer_line_curposXYZE(15, active_extruder);
  8298. //Move XY to side
  8299. current_position[X_AXIS] = X_PAUSE_POS;
  8300. current_position[Y_AXIS] = Y_PAUSE_POS;
  8301. plan_buffer_line_curposXYZE(50, active_extruder);
  8302. // Turn off the print fan
  8303. fanSpeed = 0;
  8304. st_synchronize();
  8305. }
  8306. void serialecho_temperatures() {
  8307. float tt = degHotend(active_extruder);
  8308. SERIAL_PROTOCOLPGM("T:");
  8309. SERIAL_PROTOCOL(tt);
  8310. SERIAL_PROTOCOLPGM(" E:");
  8311. SERIAL_PROTOCOL((int)active_extruder);
  8312. SERIAL_PROTOCOLPGM(" B:");
  8313. SERIAL_PROTOCOL_F(degBed(), 1);
  8314. SERIAL_PROTOCOLLN("");
  8315. }
  8316. #ifdef UVLO_SUPPORT
  8317. void uvlo_()
  8318. {
  8319. unsigned long time_start = _millis();
  8320. bool sd_print = card.sdprinting;
  8321. // Conserve power as soon as possible.
  8322. #ifdef LCD_BL_PIN
  8323. backlightMode = BACKLIGHT_MODE_DIM;
  8324. backlightLevel_LOW = 0;
  8325. backlight_update();
  8326. #endif //LCD_BL_PIN
  8327. disable_x();
  8328. disable_y();
  8329. #ifdef TMC2130
  8330. tmc2130_set_current_h(Z_AXIS, 20);
  8331. tmc2130_set_current_r(Z_AXIS, 20);
  8332. tmc2130_set_current_h(E_AXIS, 20);
  8333. tmc2130_set_current_r(E_AXIS, 20);
  8334. #endif //TMC2130
  8335. // Indicate that the interrupt has been triggered.
  8336. // SERIAL_ECHOLNPGM("UVLO");
  8337. // Read out the current Z motor microstep counter. This will be later used
  8338. // for reaching the zero full step before powering off.
  8339. uint16_t z_microsteps = 0;
  8340. #ifdef TMC2130
  8341. z_microsteps = tmc2130_rd_MSCNT(Z_TMC2130_CS);
  8342. #endif //TMC2130
  8343. // Calculate the file position, from which to resume this print.
  8344. long sd_position = sdpos_atomic; //atomic sd position of last command added in queue
  8345. {
  8346. uint16_t sdlen_planner = planner_calc_sd_length(); //length of sd commands in planner
  8347. sd_position -= sdlen_planner;
  8348. uint16_t sdlen_cmdqueue = cmdqueue_calc_sd_length(); //length of sd commands in cmdqueue
  8349. sd_position -= sdlen_cmdqueue;
  8350. if (sd_position < 0) sd_position = 0;
  8351. }
  8352. // Backup the feedrate in mm/min.
  8353. int feedrate_bckp = blocks_queued() ? (block_buffer[block_buffer_tail].nominal_speed * 60.f) : feedrate;
  8354. // After this call, the planner queue is emptied and the current_position is set to a current logical coordinate.
  8355. // The logical coordinate will likely differ from the machine coordinate if the skew calibration and mesh bed leveling
  8356. // are in action.
  8357. planner_abort_hard();
  8358. // Store the current extruder position.
  8359. eeprom_update_float((float*)(EEPROM_UVLO_CURRENT_POSITION_E), st_get_position_mm(E_AXIS));
  8360. eeprom_update_byte((uint8_t*)EEPROM_UVLO_E_ABS, axis_relative_modes[3]?0:1);
  8361. // Clean the input command queue.
  8362. cmdqueue_reset();
  8363. card.sdprinting = false;
  8364. // card.closefile();
  8365. // Enable stepper driver interrupt to move Z axis.
  8366. // This should be fine as the planner and command queues are empty and the SD card printing is disabled.
  8367. //FIXME one may want to disable serial lines at this point of time to avoid interfering with the command queue,
  8368. // though it should not happen that the command queue is touched as the plan_buffer_line always succeed without blocking.
  8369. sei();
  8370. plan_buffer_line(
  8371. current_position[X_AXIS],
  8372. current_position[Y_AXIS],
  8373. current_position[Z_AXIS],
  8374. current_position[E_AXIS] - default_retraction,
  8375. 95, active_extruder);
  8376. st_synchronize();
  8377. disable_e0();
  8378. plan_buffer_line(
  8379. current_position[X_AXIS],
  8380. current_position[Y_AXIS],
  8381. current_position[Z_AXIS] + UVLO_Z_AXIS_SHIFT + float((1024 - z_microsteps + 7) >> 4) / cs.axis_steps_per_unit[Z_AXIS],
  8382. current_position[E_AXIS] - default_retraction,
  8383. 40, active_extruder);
  8384. st_synchronize();
  8385. disable_e0();
  8386. plan_buffer_line(
  8387. current_position[X_AXIS],
  8388. current_position[Y_AXIS],
  8389. current_position[Z_AXIS] + UVLO_Z_AXIS_SHIFT + float((1024 - z_microsteps + 7) >> 4) / cs.axis_steps_per_unit[Z_AXIS],
  8390. current_position[E_AXIS] - default_retraction,
  8391. 40, active_extruder);
  8392. st_synchronize();
  8393. disable_e0();
  8394. // Move Z up to the next 0th full step.
  8395. // Write the file position.
  8396. eeprom_update_dword((uint32_t*)(EEPROM_FILE_POSITION), sd_position);
  8397. // Store the mesh bed leveling offsets. This is 2*7*7=98 bytes, which takes 98*3.4us=333us in worst case.
  8398. for (int8_t mesh_point = 0; mesh_point < MESH_NUM_X_POINTS * MESH_NUM_Y_POINTS; ++ mesh_point) {
  8399. uint8_t ix = mesh_point % MESH_NUM_X_POINTS; // from 0 to MESH_NUM_X_POINTS - 1
  8400. uint8_t iy = mesh_point / MESH_NUM_X_POINTS;
  8401. // Scale the z value to 1u resolution.
  8402. int16_t v = mbl.active ? int16_t(floor(mbl.z_values[iy][ix] * 1000.f + 0.5f)) : 0;
  8403. eeprom_update_word((uint16_t*)(EEPROM_UVLO_MESH_BED_LEVELING_FULL +2*mesh_point), *reinterpret_cast<uint16_t*>(&v));
  8404. }
  8405. // Read out the current Z motor microstep counter. This will be later used
  8406. // for reaching the zero full step before powering off.
  8407. eeprom_update_word((uint16_t*)(EEPROM_UVLO_Z_MICROSTEPS), z_microsteps);
  8408. // Store the current position.
  8409. eeprom_update_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 0), current_position[X_AXIS]);
  8410. eeprom_update_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 4), current_position[Y_AXIS]);
  8411. eeprom_update_float((float*)EEPROM_UVLO_CURRENT_POSITION_Z , current_position[Z_AXIS]);
  8412. // Store the current feed rate, temperatures, fan speed and extruder multipliers (flow rates)
  8413. EEPROM_save_B(EEPROM_UVLO_FEEDRATE, &feedrate_bckp);
  8414. eeprom_update_byte((uint8_t*)EEPROM_UVLO_TARGET_HOTEND, target_temperature[active_extruder]);
  8415. eeprom_update_byte((uint8_t*)EEPROM_UVLO_TARGET_BED, target_temperature_bed);
  8416. eeprom_update_byte((uint8_t*)EEPROM_UVLO_FAN_SPEED, fanSpeed);
  8417. eeprom_update_float((float*)(EEPROM_EXTRUDER_MULTIPLIER_0), extruder_multiplier[0]);
  8418. #if EXTRUDERS > 1
  8419. eeprom_update_float((float*)(EEPROM_EXTRUDER_MULTIPLIER_1), extruder_multiplier[1]);
  8420. #if EXTRUDERS > 2
  8421. eeprom_update_float((float*)(EEPROM_EXTRUDER_MULTIPLIER_2), extruder_multiplier[2]);
  8422. #endif
  8423. #endif
  8424. eeprom_update_word((uint16_t*)(EEPROM_EXTRUDEMULTIPLY), (uint16_t)extrudemultiply);
  8425. // Finaly store the "power outage" flag.
  8426. if(sd_print) eeprom_update_byte((uint8_t*)EEPROM_UVLO, 1);
  8427. st_synchronize();
  8428. printf_P(_N("stps%d\n"), tmc2130_rd_MSCNT(Z_AXIS));
  8429. // Increment power failure counter
  8430. eeprom_update_byte((uint8_t*)EEPROM_POWER_COUNT, eeprom_read_byte((uint8_t*)EEPROM_POWER_COUNT) + 1);
  8431. eeprom_update_word((uint16_t*)EEPROM_POWER_COUNT_TOT, eeprom_read_word((uint16_t*)EEPROM_POWER_COUNT_TOT) + 1);
  8432. printf_P(_N("UVLO - end %d\n"), _millis() - time_start);
  8433. #if 0
  8434. // Move the print head to the side of the print until all the power stored in the power supply capacitors is depleted.
  8435. current_position[X_AXIS] = (current_position[X_AXIS] < 0.5f * (X_MIN_POS + X_MAX_POS)) ? X_MIN_POS : X_MAX_POS;
  8436. plan_buffer_line_curposXYZE(500, active_extruder);
  8437. st_synchronize();
  8438. #endif
  8439. wdt_enable(WDTO_500MS);
  8440. WRITE(BEEPER,HIGH);
  8441. while(1)
  8442. ;
  8443. }
  8444. void uvlo_tiny()
  8445. {
  8446. uint16_t z_microsteps=0;
  8447. // Conserve power as soon as possible.
  8448. disable_x();
  8449. disable_y();
  8450. disable_e0();
  8451. #ifdef TMC2130
  8452. tmc2130_set_current_h(Z_AXIS, 20);
  8453. tmc2130_set_current_r(Z_AXIS, 20);
  8454. #endif //TMC2130
  8455. // Read out the current Z motor microstep counter
  8456. #ifdef TMC2130
  8457. z_microsteps=tmc2130_rd_MSCNT(Z_TMC2130_CS);
  8458. #endif //TMC2130
  8459. planner_abort_hard();
  8460. //save current position only in case, where the printer is moving on Z axis, which is only when EEPROM_UVLO is 1
  8461. //EEPROM_UVLO is 1 after normal uvlo or after recover_print(), when the extruder is moving on Z axis after rehome
  8462. if(eeprom_read_byte((uint8_t*)EEPROM_UVLO)!=2){
  8463. eeprom_update_float((float*)(EEPROM_UVLO_TINY_CURRENT_POSITION_Z), current_position[Z_AXIS]);
  8464. eeprom_update_word((uint16_t*)(EEPROM_UVLO_TINY_Z_MICROSTEPS),z_microsteps);
  8465. }
  8466. //after multiple power panics current Z axis is unknow
  8467. //in this case we set EEPROM_UVLO_TINY_CURRENT_POSITION_Z to last know position which is EEPROM_UVLO_CURRENT_POSITION_Z
  8468. if(eeprom_read_float((float*)EEPROM_UVLO_TINY_CURRENT_POSITION_Z) < 0.001f){
  8469. eeprom_update_float((float*)(EEPROM_UVLO_TINY_CURRENT_POSITION_Z), eeprom_read_float((float*)EEPROM_UVLO_CURRENT_POSITION_Z));
  8470. eeprom_update_word((uint16_t*)(EEPROM_UVLO_TINY_Z_MICROSTEPS), eeprom_read_word((uint16_t*)EEPROM_UVLO_Z_MICROSTEPS));
  8471. }
  8472. // Finaly store the "power outage" flag.
  8473. eeprom_update_byte((uint8_t*)EEPROM_UVLO,2);
  8474. // Increment power failure counter
  8475. eeprom_update_byte((uint8_t*)EEPROM_POWER_COUNT, eeprom_read_byte((uint8_t*)EEPROM_POWER_COUNT) + 1);
  8476. eeprom_update_word((uint16_t*)EEPROM_POWER_COUNT_TOT, eeprom_read_word((uint16_t*)EEPROM_POWER_COUNT_TOT) + 1);
  8477. wdt_enable(WDTO_500MS);
  8478. WRITE(BEEPER,HIGH);
  8479. while(1)
  8480. ;
  8481. }
  8482. #endif //UVLO_SUPPORT
  8483. #if (defined(FANCHECK) && defined(TACH_1) && (TACH_1 >-1))
  8484. void setup_fan_interrupt() {
  8485. //INT7
  8486. DDRE &= ~(1 << 7); //input pin
  8487. PORTE &= ~(1 << 7); //no internal pull-up
  8488. //start with sensing rising edge
  8489. EICRB &= ~(1 << 6);
  8490. EICRB |= (1 << 7);
  8491. //enable INT7 interrupt
  8492. EIMSK |= (1 << 7);
  8493. }
  8494. // The fan interrupt is triggered at maximum 325Hz (may be a bit more due to component tollerances),
  8495. // and it takes 4.24 us to process (the interrupt invocation overhead not taken into account).
  8496. ISR(INT7_vect) {
  8497. //measuring speed now works for fanSpeed > 18 (approximately), which is sufficient because MIN_PRINT_FAN_SPEED is higher
  8498. #ifdef FAN_SOFT_PWM
  8499. if (!fan_measuring || (fanSpeedSoftPwm < MIN_PRINT_FAN_SPEED)) return;
  8500. #else //FAN_SOFT_PWM
  8501. if (fanSpeed < MIN_PRINT_FAN_SPEED) return;
  8502. #endif //FAN_SOFT_PWM
  8503. if ((1 << 6) & EICRB) { //interrupt was triggered by rising edge
  8504. t_fan_rising_edge = millis_nc();
  8505. }
  8506. else { //interrupt was triggered by falling edge
  8507. if ((millis_nc() - t_fan_rising_edge) >= FAN_PULSE_WIDTH_LIMIT) {//this pulse was from sensor and not from pwm
  8508. fan_edge_counter[1] += 2; //we are currently counting all edges so lets count two edges for one pulse
  8509. }
  8510. }
  8511. EICRB ^= (1 << 6); //change edge
  8512. }
  8513. #endif
  8514. #ifdef UVLO_SUPPORT
  8515. void setup_uvlo_interrupt() {
  8516. DDRE &= ~(1 << 4); //input pin
  8517. PORTE &= ~(1 << 4); //no internal pull-up
  8518. //sensing falling edge
  8519. EICRB |= (1 << 0);
  8520. EICRB &= ~(1 << 1);
  8521. //enable INT4 interrupt
  8522. EIMSK |= (1 << 4);
  8523. }
  8524. ISR(INT4_vect) {
  8525. EIMSK &= ~(1 << 4); //disable INT4 interrupt to make sure that this code will be executed just once
  8526. SERIAL_ECHOLNPGM("INT4");
  8527. //fire normal uvlo only in case where EEPROM_UVLO is 0 or if IS_SD_PRINTING is 1.
  8528. if(PRINTER_ACTIVE && (!(eeprom_read_byte((uint8_t*)EEPROM_UVLO)))) uvlo_();
  8529. if(eeprom_read_byte((uint8_t*)EEPROM_UVLO)) uvlo_tiny();
  8530. }
  8531. void recover_print(uint8_t automatic) {
  8532. char cmd[30];
  8533. lcd_update_enable(true);
  8534. lcd_update(2);
  8535. lcd_setstatuspgm(_i("Recovering print "));////MSG_RECOVERING_PRINT c=20 r=1
  8536. bool bTiny=(eeprom_read_byte((uint8_t*)EEPROM_UVLO)==2);
  8537. recover_machine_state_after_power_panic(bTiny); //recover position, temperatures and extrude_multipliers
  8538. // Lift the print head, so one may remove the excess priming material.
  8539. if(!bTiny&&(current_position[Z_AXIS]<25))
  8540. enquecommand_P(PSTR("G1 Z25 F800"));
  8541. // Home X and Y axes. Homing just X and Y shall not touch the babystep and the world2machine transformation status.
  8542. enquecommand_P(PSTR("G28 X Y"));
  8543. // Set the target bed and nozzle temperatures and wait.
  8544. sprintf_P(cmd, PSTR("M109 S%d"), target_temperature[active_extruder]);
  8545. enquecommand(cmd);
  8546. sprintf_P(cmd, PSTR("M190 S%d"), target_temperature_bed);
  8547. enquecommand(cmd);
  8548. enquecommand_P(PSTR("M83")); //E axis relative mode
  8549. //enquecommand_P(PSTR("G1 E5 F120")); //Extrude some filament to stabilize pessure
  8550. // If not automatically recoreverd (long power loss), extrude extra filament to stabilize
  8551. if(automatic == 0){
  8552. enquecommand_P(PSTR("G1 E5 F120")); //Extrude some filament to stabilize pessure
  8553. }
  8554. enquecommand_P(PSTR("G1 E" STRINGIFY(-default_retraction)" F480"));
  8555. printf_P(_N("After waiting for temp:\nCurrent pos X_AXIS:%.3f\nCurrent pos Y_AXIS:%.3f\n"), current_position[X_AXIS], current_position[Y_AXIS]);
  8556. // Restart the print.
  8557. restore_print_from_eeprom();
  8558. printf_P(_N("Current pos Z_AXIS:%.3f\nCurrent pos E_AXIS:%.3f\n"), current_position[Z_AXIS], current_position[E_AXIS]);
  8559. }
  8560. void recover_machine_state_after_power_panic(bool bTiny)
  8561. {
  8562. char cmd[30];
  8563. // 1) Recover the logical cordinates at the time of the power panic.
  8564. // The logical XY coordinates are needed to recover the machine Z coordinate corrected by the mesh bed leveling.
  8565. current_position[X_AXIS] = eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 0));
  8566. current_position[Y_AXIS] = eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 4));
  8567. // 2) Restore the mesh bed leveling offsets. This is 2*7*7=98 bytes, which takes 98*3.4us=333us in worst case.
  8568. mbl.active = false;
  8569. for (int8_t mesh_point = 0; mesh_point < MESH_NUM_X_POINTS * MESH_NUM_Y_POINTS; ++ mesh_point) {
  8570. uint8_t ix = mesh_point % MESH_NUM_X_POINTS; // from 0 to MESH_NUM_X_POINTS - 1
  8571. uint8_t iy = mesh_point / MESH_NUM_X_POINTS;
  8572. // Scale the z value to 10u resolution.
  8573. int16_t v;
  8574. eeprom_read_block(&v, (void*)(EEPROM_UVLO_MESH_BED_LEVELING_FULL+2*mesh_point), 2);
  8575. if (v != 0)
  8576. mbl.active = true;
  8577. mbl.z_values[iy][ix] = float(v) * 0.001f;
  8578. }
  8579. // Recover the logical coordinate of the Z axis at the time of the power panic.
  8580. // The current position after power panic is moved to the next closest 0th full step.
  8581. if(bTiny){
  8582. current_position[Z_AXIS] = eeprom_read_float((float*)(EEPROM_UVLO_TINY_CURRENT_POSITION_Z))
  8583. + float((1024 - eeprom_read_word((uint16_t*)(EEPROM_UVLO_TINY_Z_MICROSTEPS))
  8584. + 7) >> 4) / cs.axis_steps_per_unit[Z_AXIS];
  8585. //after multiple power panics the print is slightly in the air so get it little bit down.
  8586. //Not exactly sure why is this happening, but it has something to do with bed leveling and world2machine coordinates
  8587. current_position[Z_AXIS] -= 0.4*mbl.get_z(current_position[X_AXIS], current_position[Y_AXIS]);
  8588. }
  8589. else{
  8590. current_position[Z_AXIS] = eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION_Z)) +
  8591. UVLO_Z_AXIS_SHIFT + float((1024 - eeprom_read_word((uint16_t*)(EEPROM_UVLO_Z_MICROSTEPS))
  8592. + 7) >> 4) / cs.axis_steps_per_unit[Z_AXIS];
  8593. }
  8594. if (eeprom_read_byte((uint8_t*)EEPROM_UVLO_E_ABS)) {
  8595. current_position[E_AXIS] = eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION_E));
  8596. sprintf_P(cmd, PSTR("G92 E"));
  8597. dtostrf(current_position[E_AXIS], 6, 3, cmd + strlen(cmd));
  8598. enquecommand(cmd);
  8599. }
  8600. memcpy(destination, current_position, sizeof(destination));
  8601. SERIAL_ECHOPGM("recover_machine_state_after_power_panic, initial ");
  8602. print_world_coordinates();
  8603. // 3) Initialize the logical to physical coordinate system transformation.
  8604. world2machine_initialize();
  8605. // SERIAL_ECHOPGM("recover_machine_state_after_power_panic, initial ");
  8606. // print_mesh_bed_leveling_table();
  8607. // 4) Load the baby stepping value, which is expected to be active at the time of power panic.
  8608. // The baby stepping value is used to reset the physical Z axis when rehoming the Z axis.
  8609. babystep_load();
  8610. // 5) Set the physical positions from the logical positions using the world2machine transformation and the active bed leveling.
  8611. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  8612. // 6) Power up the motors, mark their positions as known.
  8613. //FIXME Verfiy, whether the X and Y axes should be powered up here, as they will later be re-homed anyway.
  8614. axis_known_position[X_AXIS] = true; enable_x();
  8615. axis_known_position[Y_AXIS] = true; enable_y();
  8616. axis_known_position[Z_AXIS] = true; enable_z();
  8617. SERIAL_ECHOPGM("recover_machine_state_after_power_panic, initial ");
  8618. print_physical_coordinates();
  8619. // 7) Recover the target temperatures.
  8620. target_temperature[active_extruder] = eeprom_read_byte((uint8_t*)EEPROM_UVLO_TARGET_HOTEND);
  8621. target_temperature_bed = eeprom_read_byte((uint8_t*)EEPROM_UVLO_TARGET_BED);
  8622. // 8) Recover extruder multipilers
  8623. extruder_multiplier[0] = eeprom_read_float((float*)(EEPROM_EXTRUDER_MULTIPLIER_0));
  8624. #if EXTRUDERS > 1
  8625. extruder_multiplier[1] = eeprom_read_float((float*)(EEPROM_EXTRUDER_MULTIPLIER_1));
  8626. #if EXTRUDERS > 2
  8627. extruder_multiplier[2] = eeprom_read_float((float*)(EEPROM_EXTRUDER_MULTIPLIER_2));
  8628. #endif
  8629. #endif
  8630. extrudemultiply = (int)eeprom_read_word((uint16_t*)(EEPROM_EXTRUDEMULTIPLY));
  8631. }
  8632. void restore_print_from_eeprom() {
  8633. int feedrate_rec;
  8634. uint8_t fan_speed_rec;
  8635. char cmd[30];
  8636. char filename[13];
  8637. uint8_t depth = 0;
  8638. char dir_name[9];
  8639. fan_speed_rec = eeprom_read_byte((uint8_t*)EEPROM_UVLO_FAN_SPEED);
  8640. EEPROM_read_B(EEPROM_UVLO_FEEDRATE, &feedrate_rec);
  8641. SERIAL_ECHOPGM("Feedrate:");
  8642. MYSERIAL.println(feedrate_rec);
  8643. depth = eeprom_read_byte((uint8_t*)EEPROM_DIR_DEPTH);
  8644. MYSERIAL.println(int(depth));
  8645. for (int i = 0; i < depth; i++) {
  8646. for (int j = 0; j < 8; j++) {
  8647. dir_name[j] = eeprom_read_byte((uint8_t*)EEPROM_DIRS + j + 8 * i);
  8648. }
  8649. dir_name[8] = '\0';
  8650. MYSERIAL.println(dir_name);
  8651. strcpy(dir_names[i], dir_name);
  8652. card.chdir(dir_name);
  8653. }
  8654. for (int i = 0; i < 8; i++) {
  8655. filename[i] = eeprom_read_byte((uint8_t*)EEPROM_FILENAME + i);
  8656. }
  8657. filename[8] = '\0';
  8658. MYSERIAL.print(filename);
  8659. strcat_P(filename, PSTR(".gco"));
  8660. sprintf_P(cmd, PSTR("M23 %s"), filename);
  8661. enquecommand(cmd);
  8662. uint32_t position = eeprom_read_dword((uint32_t*)(EEPROM_FILE_POSITION));
  8663. SERIAL_ECHOPGM("Position read from eeprom:");
  8664. MYSERIAL.println(position);
  8665. // E axis relative mode.
  8666. enquecommand_P(PSTR("M83"));
  8667. // Move to the XY print position in logical coordinates, where the print has been killed.
  8668. strcpy_P(cmd, PSTR("G1 X")); strcat(cmd, ftostr32(eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 0))));
  8669. strcat_P(cmd, PSTR(" Y")); strcat(cmd, ftostr32(eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 4))));
  8670. strcat_P(cmd, PSTR(" F2000"));
  8671. enquecommand(cmd);
  8672. //moving on Z axis ahead, set EEPROM_UVLO to 1, so normal uvlo can fire
  8673. eeprom_update_byte((uint8_t*)EEPROM_UVLO,1);
  8674. // Move the Z axis down to the print, in logical coordinates.
  8675. strcpy_P(cmd, PSTR("G1 Z")); strcat(cmd, ftostr32(eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION_Z))));
  8676. enquecommand(cmd);
  8677. // Unretract.
  8678. enquecommand_P(PSTR("G1 E" STRINGIFY(2*default_retraction)" F480"));
  8679. // Set the feedrate saved at the power panic.
  8680. sprintf_P(cmd, PSTR("G1 F%d"), feedrate_rec);
  8681. enquecommand(cmd);
  8682. if (eeprom_read_byte((uint8_t*)EEPROM_UVLO_E_ABS))
  8683. {
  8684. enquecommand_P(PSTR("M82")); //E axis abslute mode
  8685. }
  8686. // Set the fan speed saved at the power panic.
  8687. strcpy_P(cmd, PSTR("M106 S"));
  8688. strcat(cmd, itostr3(int(fan_speed_rec)));
  8689. enquecommand(cmd);
  8690. // Set a position in the file.
  8691. sprintf_P(cmd, PSTR("M26 S%lu"), position);
  8692. enquecommand(cmd);
  8693. enquecommand_P(PSTR("G4 S0"));
  8694. enquecommand_P(PSTR("PRUSA uvlo"));
  8695. }
  8696. #endif //UVLO_SUPPORT
  8697. //! @brief Immediately stop print moves
  8698. //!
  8699. //! Immediately stop print moves, save current extruder temperature and position to RAM.
  8700. //! If printing from sd card, position in file is saved.
  8701. //! If printing from USB, line number is saved.
  8702. //!
  8703. //! @param z_move
  8704. //! @param e_move
  8705. void stop_and_save_print_to_ram(float z_move, float e_move)
  8706. {
  8707. if (saved_printing) return;
  8708. #if 0
  8709. unsigned char nplanner_blocks;
  8710. #endif
  8711. unsigned char nlines;
  8712. uint16_t sdlen_planner;
  8713. uint16_t sdlen_cmdqueue;
  8714. cli();
  8715. if (card.sdprinting) {
  8716. #if 0
  8717. nplanner_blocks = number_of_blocks();
  8718. #endif
  8719. saved_sdpos = sdpos_atomic; //atomic sd position of last command added in queue
  8720. sdlen_planner = planner_calc_sd_length(); //length of sd commands in planner
  8721. saved_sdpos -= sdlen_planner;
  8722. sdlen_cmdqueue = cmdqueue_calc_sd_length(); //length of sd commands in cmdqueue
  8723. saved_sdpos -= sdlen_cmdqueue;
  8724. saved_printing_type = PRINTING_TYPE_SD;
  8725. }
  8726. else if (is_usb_printing) { //reuse saved_sdpos for storing line number
  8727. saved_sdpos = gcode_LastN; //start with line number of command added recently to cmd queue
  8728. //reuse planner_calc_sd_length function for getting number of lines of commands in planner:
  8729. nlines = planner_calc_sd_length(); //number of lines of commands in planner
  8730. saved_sdpos -= nlines;
  8731. saved_sdpos -= buflen; //number of blocks in cmd buffer
  8732. saved_printing_type = PRINTING_TYPE_USB;
  8733. }
  8734. else {
  8735. saved_printing_type = PRINTING_TYPE_NONE;
  8736. //not sd printing nor usb printing
  8737. }
  8738. #if 0
  8739. SERIAL_ECHOPGM("SDPOS_ATOMIC="); MYSERIAL.println(sdpos_atomic, DEC);
  8740. SERIAL_ECHOPGM("SDPOS="); MYSERIAL.println(card.get_sdpos(), DEC);
  8741. SERIAL_ECHOPGM("SDLEN_PLAN="); MYSERIAL.println(sdlen_planner, DEC);
  8742. SERIAL_ECHOPGM("SDLEN_CMDQ="); MYSERIAL.println(sdlen_cmdqueue, DEC);
  8743. SERIAL_ECHOPGM("PLANNERBLOCKS="); MYSERIAL.println(int(nplanner_blocks), DEC);
  8744. SERIAL_ECHOPGM("SDSAVED="); MYSERIAL.println(saved_sdpos, DEC);
  8745. //SERIAL_ECHOPGM("SDFILELEN="); MYSERIAL.println(card.fileSize(), DEC);
  8746. {
  8747. card.setIndex(saved_sdpos);
  8748. SERIAL_ECHOLNPGM("Content of planner buffer: ");
  8749. for (unsigned int idx = 0; idx < sdlen_planner; ++ idx)
  8750. MYSERIAL.print(char(card.get()));
  8751. SERIAL_ECHOLNPGM("Content of command buffer: ");
  8752. for (unsigned int idx = 0; idx < sdlen_cmdqueue; ++ idx)
  8753. MYSERIAL.print(char(card.get()));
  8754. SERIAL_ECHOLNPGM("End of command buffer");
  8755. }
  8756. {
  8757. // Print the content of the planner buffer, line by line:
  8758. card.setIndex(saved_sdpos);
  8759. int8_t iline = 0;
  8760. for (unsigned char idx = block_buffer_tail; idx != block_buffer_head; idx = (idx + 1) & (BLOCK_BUFFER_SIZE - 1), ++ iline) {
  8761. SERIAL_ECHOPGM("Planner line (from file): ");
  8762. MYSERIAL.print(int(iline), DEC);
  8763. SERIAL_ECHOPGM(", length: ");
  8764. MYSERIAL.print(block_buffer[idx].sdlen, DEC);
  8765. SERIAL_ECHOPGM(", steps: (");
  8766. MYSERIAL.print(block_buffer[idx].steps_x, DEC);
  8767. SERIAL_ECHOPGM(",");
  8768. MYSERIAL.print(block_buffer[idx].steps_y, DEC);
  8769. SERIAL_ECHOPGM(",");
  8770. MYSERIAL.print(block_buffer[idx].steps_z, DEC);
  8771. SERIAL_ECHOPGM(",");
  8772. MYSERIAL.print(block_buffer[idx].steps_e, DEC);
  8773. SERIAL_ECHOPGM("), events: ");
  8774. MYSERIAL.println(block_buffer[idx].step_event_count, DEC);
  8775. for (int len = block_buffer[idx].sdlen; len > 0; -- len)
  8776. MYSERIAL.print(char(card.get()));
  8777. }
  8778. }
  8779. {
  8780. // Print the content of the command buffer, line by line:
  8781. int8_t iline = 0;
  8782. union {
  8783. struct {
  8784. char lo;
  8785. char hi;
  8786. } lohi;
  8787. uint16_t value;
  8788. } sdlen_single;
  8789. int _bufindr = bufindr;
  8790. for (int _buflen = buflen; _buflen > 0; ++ iline) {
  8791. if (cmdbuffer[_bufindr] == CMDBUFFER_CURRENT_TYPE_SDCARD) {
  8792. sdlen_single.lohi.lo = cmdbuffer[_bufindr + 1];
  8793. sdlen_single.lohi.hi = cmdbuffer[_bufindr + 2];
  8794. }
  8795. SERIAL_ECHOPGM("Buffer line (from buffer): ");
  8796. MYSERIAL.print(int(iline), DEC);
  8797. SERIAL_ECHOPGM(", type: ");
  8798. MYSERIAL.print(int(cmdbuffer[_bufindr]), DEC);
  8799. SERIAL_ECHOPGM(", len: ");
  8800. MYSERIAL.println(sdlen_single.value, DEC);
  8801. // Print the content of the buffer line.
  8802. MYSERIAL.println(cmdbuffer + _bufindr + CMDHDRSIZE);
  8803. SERIAL_ECHOPGM("Buffer line (from file): ");
  8804. MYSERIAL.println(int(iline), DEC);
  8805. for (; sdlen_single.value > 0; -- sdlen_single.value)
  8806. MYSERIAL.print(char(card.get()));
  8807. if (-- _buflen == 0)
  8808. break;
  8809. // First skip the current command ID and iterate up to the end of the string.
  8810. for (_bufindr += CMDHDRSIZE; cmdbuffer[_bufindr] != 0; ++ _bufindr) ;
  8811. // Second, skip the end of string null character and iterate until a nonzero command ID is found.
  8812. for (++ _bufindr; _bufindr < sizeof(cmdbuffer) && cmdbuffer[_bufindr] == 0; ++ _bufindr) ;
  8813. // If the end of the buffer was empty,
  8814. if (_bufindr == sizeof(cmdbuffer)) {
  8815. // skip to the start and find the nonzero command.
  8816. for (_bufindr = 0; cmdbuffer[_bufindr] == 0; ++ _bufindr) ;
  8817. }
  8818. }
  8819. }
  8820. #endif
  8821. #if 0
  8822. saved_feedrate2 = feedrate; //save feedrate
  8823. #else
  8824. // Try to deduce the feedrate from the first block of the planner.
  8825. // Speed is in mm/min.
  8826. saved_feedrate2 = blocks_queued() ? (block_buffer[block_buffer_tail].nominal_speed * 60.f) : feedrate;
  8827. #endif
  8828. planner_abort_hard(); //abort printing
  8829. memcpy(saved_pos, current_position, sizeof(saved_pos));
  8830. saved_active_extruder = active_extruder; //save active_extruder
  8831. saved_extruder_temperature = degTargetHotend(active_extruder);
  8832. saved_extruder_under_pressure = extruder_under_pressure; //extruder under pressure flag - currently unused
  8833. saved_extruder_relative_mode = axis_relative_modes[E_AXIS];
  8834. saved_fanSpeed = fanSpeed;
  8835. cmdqueue_reset(); //empty cmdqueue
  8836. card.sdprinting = false;
  8837. // card.closefile();
  8838. saved_printing = true;
  8839. // We may have missed a stepper timer interrupt. Be safe than sorry, reset the stepper timer before re-enabling interrupts.
  8840. st_reset_timer();
  8841. sei();
  8842. if ((z_move != 0) || (e_move != 0)) { // extruder or z move
  8843. #if 1
  8844. // Rather than calling plan_buffer_line directly, push the move into the command queue,
  8845. char buf[48];
  8846. // First unretract (relative extrusion)
  8847. if(!saved_extruder_relative_mode){
  8848. enquecommand(PSTR("M83"), true);
  8849. }
  8850. //retract 45mm/s
  8851. // A single sprintf may not be faster, but is definitely 20B shorter
  8852. // than a sequence of commands building the string piece by piece
  8853. // A snprintf would have been a safer call, but since it is not used
  8854. // in the whole program, its implementation would bring more bytes to the total size
  8855. // The behavior of dtostrf 8,3 should be roughly the same as %-0.3
  8856. sprintf_P(buf, PSTR("G1 E%-0.3f F2700"), e_move);
  8857. enquecommand(buf, false);
  8858. // Then lift Z axis
  8859. sprintf_P(buf, PSTR("G1 Z%-0.3f F%-0.3f"), saved_pos[Z_AXIS] + z_move, homing_feedrate[Z_AXIS]);
  8860. // At this point the command queue is empty.
  8861. enquecommand(buf, false);
  8862. // If this call is invoked from the main Arduino loop() function, let the caller know that the command
  8863. // in the command queue is not the original command, but a new one, so it should not be removed from the queue.
  8864. repeatcommand_front();
  8865. #else
  8866. plan_buffer_line(saved_pos[X_AXIS], saved_pos[Y_AXIS], saved_pos[Z_AXIS] + z_move, saved_pos[E_AXIS] + e_move, homing_feedrate[Z_AXIS], active_extruder);
  8867. st_synchronize(); //wait moving
  8868. memcpy(current_position, saved_pos, sizeof(saved_pos));
  8869. memcpy(destination, current_position, sizeof(destination));
  8870. #endif
  8871. }
  8872. }
  8873. //! @brief Restore print from ram
  8874. //!
  8875. //! Restore print saved by stop_and_save_print_to_ram(). Is blocking, restores
  8876. //! print fan speed, waits for extruder temperature restore, then restores
  8877. //! position and continues print moves.
  8878. //!
  8879. //! Internally lcd_update() is called by wait_for_heater().
  8880. //!
  8881. //! @param e_move
  8882. void restore_print_from_ram_and_continue(float e_move)
  8883. {
  8884. if (!saved_printing) return;
  8885. #ifdef FANCHECK
  8886. // Do not allow resume printing if fans are still not ok
  8887. if ((fan_check_error != EFCE_OK) && (fan_check_error != EFCE_FIXED)) return;
  8888. if (fan_check_error == EFCE_FIXED) fan_check_error = EFCE_OK; //reenable serial stream processing if printing from usb
  8889. #endif
  8890. // for (int axis = X_AXIS; axis <= E_AXIS; axis++)
  8891. // current_position[axis] = st_get_position_mm(axis);
  8892. active_extruder = saved_active_extruder; //restore active_extruder
  8893. fanSpeed = saved_fanSpeed;
  8894. if (degTargetHotend(saved_active_extruder) != saved_extruder_temperature)
  8895. {
  8896. setTargetHotendSafe(saved_extruder_temperature, saved_active_extruder);
  8897. heating_status = 1;
  8898. wait_for_heater(_millis(), saved_active_extruder);
  8899. heating_status = 2;
  8900. }
  8901. feedrate = saved_feedrate2; //restore feedrate
  8902. axis_relative_modes[E_AXIS] = saved_extruder_relative_mode;
  8903. float e = saved_pos[E_AXIS] - e_move;
  8904. plan_set_e_position(e);
  8905. #ifdef FANCHECK
  8906. fans_check_enabled = false;
  8907. #endif
  8908. //first move print head in XY to the saved position:
  8909. plan_buffer_line(saved_pos[X_AXIS], saved_pos[Y_AXIS], current_position[Z_AXIS], saved_pos[E_AXIS] - e_move, homing_feedrate[Z_AXIS]/13, active_extruder);
  8910. st_synchronize();
  8911. //then move Z
  8912. plan_buffer_line(saved_pos[X_AXIS], saved_pos[Y_AXIS], saved_pos[Z_AXIS], saved_pos[E_AXIS] - e_move, homing_feedrate[Z_AXIS]/13, active_extruder);
  8913. st_synchronize();
  8914. //and finaly unretract (35mm/s)
  8915. plan_buffer_line(saved_pos[X_AXIS], saved_pos[Y_AXIS], saved_pos[Z_AXIS], saved_pos[E_AXIS], 35, active_extruder);
  8916. st_synchronize();
  8917. #ifdef FANCHECK
  8918. fans_check_enabled = true;
  8919. #endif
  8920. memcpy(current_position, saved_pos, sizeof(saved_pos));
  8921. memcpy(destination, current_position, sizeof(destination));
  8922. if (saved_printing_type == PRINTING_TYPE_SD) { //was sd printing
  8923. card.setIndex(saved_sdpos);
  8924. sdpos_atomic = saved_sdpos;
  8925. card.sdprinting = true;
  8926. }
  8927. else if (saved_printing_type == PRINTING_TYPE_USB) { //was usb printing
  8928. gcode_LastN = saved_sdpos; //saved_sdpos was reused for storing line number when usb printing
  8929. serial_count = 0;
  8930. FlushSerialRequestResend();
  8931. }
  8932. else {
  8933. //not sd printing nor usb printing
  8934. }
  8935. SERIAL_PROTOCOLLNRPGM(MSG_OK); //dummy response because of octoprint is waiting for this
  8936. lcd_setstatuspgm(_T(WELCOME_MSG));
  8937. saved_printing_type = PRINTING_TYPE_NONE;
  8938. saved_printing = false;
  8939. }
  8940. void print_world_coordinates()
  8941. {
  8942. printf_P(_N("world coordinates: (%.3f, %.3f, %.3f)\n"), current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS]);
  8943. }
  8944. void print_physical_coordinates()
  8945. {
  8946. printf_P(_N("physical coordinates: (%.3f, %.3f, %.3f)\n"), st_get_position_mm(X_AXIS), st_get_position_mm(Y_AXIS), st_get_position_mm(Z_AXIS));
  8947. }
  8948. void print_mesh_bed_leveling_table()
  8949. {
  8950. SERIAL_ECHOPGM("mesh bed leveling: ");
  8951. for (int8_t y = 0; y < MESH_NUM_Y_POINTS; ++ y)
  8952. for (int8_t x = 0; x < MESH_NUM_Y_POINTS; ++ x) {
  8953. MYSERIAL.print(mbl.z_values[y][x], 3);
  8954. SERIAL_ECHOPGM(" ");
  8955. }
  8956. SERIAL_ECHOLNPGM("");
  8957. }
  8958. uint16_t print_time_remaining() {
  8959. uint16_t print_t = PRINT_TIME_REMAINING_INIT;
  8960. #ifdef TMC2130
  8961. if (SilentModeMenu == SILENT_MODE_OFF) print_t = print_time_remaining_normal;
  8962. else print_t = print_time_remaining_silent;
  8963. #else
  8964. print_t = print_time_remaining_normal;
  8965. #endif //TMC2130
  8966. if ((print_t != PRINT_TIME_REMAINING_INIT) && (feedmultiply != 0)) print_t = 100ul * print_t / feedmultiply;
  8967. return print_t;
  8968. }
  8969. uint8_t calc_percent_done()
  8970. {
  8971. //in case that we have information from M73 gcode return percentage counted by slicer, else return percentage counted as byte_printed/filesize
  8972. uint8_t percent_done = 0;
  8973. #ifdef TMC2130
  8974. if (SilentModeMenu == SILENT_MODE_OFF && print_percent_done_normal <= 100) {
  8975. percent_done = print_percent_done_normal;
  8976. }
  8977. else if (print_percent_done_silent <= 100) {
  8978. percent_done = print_percent_done_silent;
  8979. }
  8980. #else
  8981. if (print_percent_done_normal <= 100) {
  8982. percent_done = print_percent_done_normal;
  8983. }
  8984. #endif //TMC2130
  8985. else {
  8986. percent_done = card.percentDone();
  8987. }
  8988. return percent_done;
  8989. }
  8990. static void print_time_remaining_init()
  8991. {
  8992. print_time_remaining_normal = PRINT_TIME_REMAINING_INIT;
  8993. print_time_remaining_silent = PRINT_TIME_REMAINING_INIT;
  8994. print_percent_done_normal = PRINT_PERCENT_DONE_INIT;
  8995. print_percent_done_silent = PRINT_PERCENT_DONE_INIT;
  8996. }
  8997. void load_filament_final_feed()
  8998. {
  8999. current_position[E_AXIS]+= FILAMENTCHANGE_FINALFEED;
  9000. plan_buffer_line_curposXYZE(FILAMENTCHANGE_EFEED_FINAL, active_extruder);
  9001. }
  9002. //! @brief Wait for user to check the state
  9003. //! @par nozzle_temp nozzle temperature to load filament
  9004. void M600_check_state(float nozzle_temp)
  9005. {
  9006. lcd_change_fil_state = 0;
  9007. while (lcd_change_fil_state != 1)
  9008. {
  9009. lcd_change_fil_state = 0;
  9010. KEEPALIVE_STATE(PAUSED_FOR_USER);
  9011. lcd_alright();
  9012. KEEPALIVE_STATE(IN_HANDLER);
  9013. switch(lcd_change_fil_state)
  9014. {
  9015. // Filament failed to load so load it again
  9016. case 2:
  9017. if (mmu_enabled)
  9018. mmu_M600_load_filament(false, nozzle_temp); //nonautomatic load; change to "wrong filament loaded" option?
  9019. else
  9020. M600_load_filament_movements();
  9021. break;
  9022. // Filament loaded properly but color is not clear
  9023. case 3:
  9024. st_synchronize();
  9025. load_filament_final_feed();
  9026. lcd_loading_color();
  9027. st_synchronize();
  9028. break;
  9029. // Everything good
  9030. default:
  9031. lcd_change_success();
  9032. break;
  9033. }
  9034. }
  9035. }
  9036. //! @brief Wait for user action
  9037. //!
  9038. //! Beep, manage nozzle heater and wait for user to start unload filament
  9039. //! If times out, active extruder temperature is set to 0.
  9040. //!
  9041. //! @param HotendTempBckp Temperature to be restored for active extruder, after user resolves MMU problem.
  9042. void M600_wait_for_user(float HotendTempBckp) {
  9043. KEEPALIVE_STATE(PAUSED_FOR_USER);
  9044. int counterBeep = 0;
  9045. unsigned long waiting_start_time = _millis();
  9046. uint8_t wait_for_user_state = 0;
  9047. lcd_display_message_fullscreen_P(_T(MSG_PRESS_TO_UNLOAD));
  9048. bool bFirst=true;
  9049. while (!(wait_for_user_state == 0 && lcd_clicked())){
  9050. manage_heater();
  9051. manage_inactivity(true);
  9052. #if BEEPER > 0
  9053. if (counterBeep == 500) {
  9054. counterBeep = 0;
  9055. }
  9056. SET_OUTPUT(BEEPER);
  9057. if (counterBeep == 0) {
  9058. if((eSoundMode==e_SOUND_MODE_BLIND)|| (eSoundMode==e_SOUND_MODE_LOUD)||((eSoundMode==e_SOUND_MODE_ONCE)&&bFirst))
  9059. {
  9060. bFirst=false;
  9061. WRITE(BEEPER, HIGH);
  9062. }
  9063. }
  9064. if (counterBeep == 20) {
  9065. WRITE(BEEPER, LOW);
  9066. }
  9067. counterBeep++;
  9068. #endif //BEEPER > 0
  9069. switch (wait_for_user_state) {
  9070. case 0: //nozzle is hot, waiting for user to press the knob to unload filament
  9071. delay_keep_alive(4);
  9072. if (_millis() > waiting_start_time + (unsigned long)M600_TIMEOUT * 1000) {
  9073. lcd_display_message_fullscreen_P(_i("Press knob to preheat nozzle and continue."));////MSG_PRESS_TO_PREHEAT c=20 r=4
  9074. wait_for_user_state = 1;
  9075. setAllTargetHotends(0);
  9076. st_synchronize();
  9077. disable_e0();
  9078. disable_e1();
  9079. disable_e2();
  9080. }
  9081. break;
  9082. case 1: //nozzle target temperature is set to zero, waiting for user to start nozzle preheat
  9083. delay_keep_alive(4);
  9084. if (lcd_clicked()) {
  9085. setTargetHotend(HotendTempBckp, active_extruder);
  9086. lcd_wait_for_heater();
  9087. wait_for_user_state = 2;
  9088. }
  9089. break;
  9090. case 2: //waiting for nozzle to reach target temperature
  9091. if (abs(degTargetHotend(active_extruder) - degHotend(active_extruder)) < 1) {
  9092. lcd_display_message_fullscreen_P(_T(MSG_PRESS_TO_UNLOAD));
  9093. waiting_start_time = _millis();
  9094. wait_for_user_state = 0;
  9095. }
  9096. else {
  9097. counterBeep = 20; //beeper will be inactive during waiting for nozzle preheat
  9098. lcd_set_cursor(1, 4);
  9099. lcd_print(ftostr3(degHotend(active_extruder)));
  9100. }
  9101. break;
  9102. }
  9103. }
  9104. WRITE(BEEPER, LOW);
  9105. }
  9106. void M600_load_filament_movements()
  9107. {
  9108. #ifdef SNMM
  9109. display_loading();
  9110. do
  9111. {
  9112. current_position[E_AXIS] += 0.002;
  9113. plan_buffer_line_curposXYZE(500, active_extruder);
  9114. delay_keep_alive(2);
  9115. }
  9116. while (!lcd_clicked());
  9117. st_synchronize();
  9118. current_position[E_AXIS] += bowden_length[mmu_extruder];
  9119. plan_buffer_line_curposXYZE(3000, active_extruder);
  9120. current_position[E_AXIS] += FIL_LOAD_LENGTH - 60;
  9121. plan_buffer_line_curposXYZE(1400, active_extruder);
  9122. current_position[E_AXIS] += 40;
  9123. plan_buffer_line_curposXYZE(400, active_extruder);
  9124. current_position[E_AXIS] += 10;
  9125. plan_buffer_line_curposXYZE(50, active_extruder);
  9126. #else
  9127. current_position[E_AXIS]+= FILAMENTCHANGE_FIRSTFEED ;
  9128. plan_buffer_line_curposXYZE(FILAMENTCHANGE_EFEED_FIRST, active_extruder);
  9129. #endif
  9130. load_filament_final_feed();
  9131. lcd_loading_filament();
  9132. st_synchronize();
  9133. }
  9134. void M600_load_filament() {
  9135. //load filament for single material and SNMM
  9136. lcd_wait_interact();
  9137. //load_filament_time = _millis();
  9138. KEEPALIVE_STATE(PAUSED_FOR_USER);
  9139. #ifdef PAT9125
  9140. fsensor_autoload_check_start();
  9141. #endif //PAT9125
  9142. while(!lcd_clicked())
  9143. {
  9144. manage_heater();
  9145. manage_inactivity(true);
  9146. #ifdef FILAMENT_SENSOR
  9147. if (fsensor_check_autoload())
  9148. {
  9149. Sound_MakeCustom(50,1000,false);
  9150. break;
  9151. }
  9152. #endif //FILAMENT_SENSOR
  9153. }
  9154. #ifdef PAT9125
  9155. fsensor_autoload_check_stop();
  9156. #endif //PAT9125
  9157. KEEPALIVE_STATE(IN_HANDLER);
  9158. #ifdef FSENSOR_QUALITY
  9159. fsensor_oq_meassure_start(70);
  9160. #endif //FSENSOR_QUALITY
  9161. M600_load_filament_movements();
  9162. Sound_MakeCustom(50,1000,false);
  9163. #ifdef FSENSOR_QUALITY
  9164. fsensor_oq_meassure_stop();
  9165. if (!fsensor_oq_result())
  9166. {
  9167. bool disable = lcd_show_fullscreen_message_yes_no_and_wait_P(_i("Fil. sensor response is poor, disable it?"), false, true);
  9168. lcd_update_enable(true);
  9169. lcd_update(2);
  9170. if (disable)
  9171. fsensor_disable();
  9172. }
  9173. #endif //FSENSOR_QUALITY
  9174. lcd_update_enable(false);
  9175. }
  9176. //! @brief Wait for click
  9177. //!
  9178. //! Set
  9179. void marlin_wait_for_click()
  9180. {
  9181. int8_t busy_state_backup = busy_state;
  9182. KEEPALIVE_STATE(PAUSED_FOR_USER);
  9183. lcd_consume_click();
  9184. while(!lcd_clicked())
  9185. {
  9186. manage_heater();
  9187. manage_inactivity(true);
  9188. lcd_update(0);
  9189. }
  9190. KEEPALIVE_STATE(busy_state_backup);
  9191. }
  9192. #define FIL_LOAD_LENGTH 60
  9193. #ifdef PSU_Delta
  9194. bool bEnableForce_z;
  9195. void init_force_z()
  9196. {
  9197. WRITE(Z_ENABLE_PIN,Z_ENABLE_ON);
  9198. bEnableForce_z=true; // "true"-value enforce "disable_force_z()" executing
  9199. disable_force_z();
  9200. }
  9201. void check_force_z()
  9202. {
  9203. if(!(bEnableForce_z||eeprom_read_byte((uint8_t*)EEPROM_SILENT)))
  9204. init_force_z(); // causes enforced switching into disable-state
  9205. }
  9206. void disable_force_z()
  9207. {
  9208. uint16_t z_microsteps=0;
  9209. if(!bEnableForce_z) return; // motor already disabled (may be ;-p )
  9210. bEnableForce_z=false;
  9211. // switching to silent mode
  9212. #ifdef TMC2130
  9213. tmc2130_mode=TMC2130_MODE_SILENT;
  9214. update_mode_profile();
  9215. tmc2130_init(true);
  9216. #endif // TMC2130
  9217. axis_known_position[Z_AXIS]=false;
  9218. }
  9219. void enable_force_z()
  9220. {
  9221. if(bEnableForce_z)
  9222. return; // motor already enabled (may be ;-p )
  9223. bEnableForce_z=true;
  9224. // mode recovering
  9225. #ifdef TMC2130
  9226. tmc2130_mode=eeprom_read_byte((uint8_t*)EEPROM_SILENT)?TMC2130_MODE_SILENT:TMC2130_MODE_NORMAL;
  9227. update_mode_profile();
  9228. tmc2130_init(true);
  9229. #endif // TMC2130
  9230. WRITE(Z_ENABLE_PIN,Z_ENABLE_ON); // slightly redundant ;-p
  9231. }
  9232. #endif // PSU_Delta